
Tsuyoshi Morioka

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright @ 2001 by Tsuyoshi Morioka

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques
395 Wellington Street 395. rue Wellington
Ottawa ON K I A O N 4 OtîawaON K1A ON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distn'bute or seil reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/nlm, de

reproduction sur papier ou sur format
electronique .

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

Classification of Search Problems and Their Definability in Bounded Arithmetic

Tsuyos hi Morioka

Master of Science *

Graduate Department of Computer Science

University of Toronto

2001

We present a new framework for the study of search problerns and their definability in

bounded arithmetic. We identify two notions of complexity of search problems: verifi-

cation complexity and computational complexity. Notions of exact solvability and exact

reducibility are developed, and exact Cf-definability of search problems in bounded arith-

metic is introduced. We specify a new machine mode1 called the oblivious witness-oracle

.Turing machines.

Based on work of Buss and Krajicek, we present a type-2 search problem ITER4TION

(ITER) t hat characterizes the class PLS and the esactly C: -de finable search pro blerns

of the theory Ti. We show that the type-2 problems of Beame et. al. are not Turing

reducibIe to ITER. The separations of the corresponding type-2 classes and the unprov-

ability of certain combinatorial principles in a relativized version of Ti are obtained as

corollaries.

We also present the first characterization of the exactly c;-definable search problems

of Sk and Ti.

Acknowledgement s

It has been an absolute pleasure to do a graduate study under the supervision of Steve

Cook, to whom 17d like to express rny greatest gratitude. His support and encouragement

have been invaluable a t al1 stages of my research, and discussions with him have been

always inspiring and delightful.

1 would lilce to thank Toni Pitassi for reading a draft of this thesis and suggsting some

improvements.

1 am s o lucky to have many theory-oriented grad students as colleagues . Talking

with thern about research is so much fun, and talking with them about other things is

even more fun.

1 would Iike to thank rny best friend Masami Migiyarna for her support throughout

the writing of this thesis.

Finally, I would like to thank my parents, Takeshi Morioka and Fumiko Morioka, mho

have supported me throughout my life. They taught me how to learn, and they have

been always encouraging me to pursue my oivn interests.

Contents

1 Introduction 1

1.1 Background . I

1.2 Our Work . 5

1.3 Preliminaries . 7

2 Search Problems 11

2.1 Verification Complexity of Search Problems 21

2.2 Witness Oracles and Computational Cornplexity 14

. 2.3 Reducibility among Search Problems 23

2.4 Subclasses o f V P . 28

3 Type-2 Characterization 32

3.1 Basic Definitions . 32

3.2 Type-2 Problems and Search Classes . 34

3.3 Reducibility among the Type-2 Search Problems 43

3.4 The hhximization Problems . 50

4 Bounded Arithmetic and Type-2 Search Problems 53

. 4.1 Theories of Bounded Arithmetic 53

4.2 Definability of Search Problems . 55

. 4.3 Exactly Ci-definable Search Problems 58

4.4 Exactly Ci-definable Search Problems . 62

5 Conclusions and Future Works 65

Bibliography 66

Chapter 1

Introduction

1.1 Background

Computational Complexity is the study of cornputational problems and the amount of

resources required to solve them. Cook's introduction of NP-completeness in 1971 [Cooïl]

st arted decades of fruitful research, and since then numerous cornputational problems

have been s h o m to be complete for, or a t least classified into, various complexity classes.

In particular, a great number of combinatorial problerns that arise naturally in practical

settings are shown to be NP-complete.

The interesting aspect of Computational Complexity is that it has been focused

mainly on decision problems, or the problems of deciding whether the input has a certain

property, although most combinatorial problems are more naturally formulated as search

problems, or the problems of finding an object with a certain property. For example,

when Rie wish to analyze the complexity of CLIQUE-Search(G, k), the problem of find-

ing a clique of size 2 k in the input graph G, we first transform it to the corresponding

decision problem CLIQUE(G, k) of deciding whether G have a clique of size 2 k. There

\vas supposed to be little loss in doing so, since most search problems have corresponding

decision problems that are computationally equivalent in the sense that if one is feasible,

so is the other, or, more formally, they are Turing reducible to each other. Thus, studying

the complexity of decision problems should reveal the complesity of the corresponding

search problems.

However, it has been realized tha t search problems have deeper level of structure that

are lost when they are transformed to decision problems, and the existence of search

problems for which there are no computationally equivalent decision problems has been

demonstrated [BCE+98]. Thus, i t is necessary to study search problems directly, and

several frameworks for this purpose have been proposed. The following is a list of such

frameworks on which our work is based.

The classes E'pNP and F P ~ ~ [O (I O ~ n)] [Kre88]

FNP, FP, TFNP, and subclasses of TFNP [JPY88, PapSO, MP91, Pap94b,

BCE+98]

0 The hierarchy O: of functions [Bus861

We should emphasize that the above list is grossly incomplete and there are many other

frameworks that Ive do not discuss in this report, such as [KPSSO, Kre92, Se194, GKR951.

Krentel [I<re88] studied the complexity of computation of optimal values in terrns of

the number of queries to an NP oracle required to perform it in polynomial time. He

came up with the classes F P ~ ~ and log n)]: F P ~ ~ is the class of functions

that can be computed in deterministic polynomial time with polynomially many queries

to an NP oracle, and F P ~ ~ [O (~ O ~ n)] is obtained from F P ~ ~ by restricting the number

of NP queries to O(1og n). One of his many results is that that TSP-COST(G), the

problem of computing the cost of an optimal tour of a graph, is complete for E'pNP, mhile

MAX-CLIQUE-SIZE(G) is cornplete for F P ~ ~ log n)], with respect to a suitable

notion of reducibility. Moreover, he showed that TSP-COST E log n)] implies

P = NP; hence, in terms of the number of NP queries required, TSP-COST(G) is

strictly harder than MM-CLIQUE(G) assuming P # NP, even though the decision

counterparts of both search problems are NP-complete.

Krentel's framework is a nice setting for the study of functions, that is, search prob-

lems with a unique solution. However, it does not cover search problems with multiple

solutions. Meggido and Papadimitriou [hifP91] introduced the classes FNP, FP and

TFNP that easily capture the multiplicity of solutions.

Let R (x , y) be a polynomially balanced, polynomial-tirne predicate. Then R gives rise

to an NP search problem Q: given x, find y such that R (x , y) holds. FNP is the class

of NP search problems [MP91]. For example, the problem SAT-Search(q5) of finding a

satisfying solution for a propositional formula qb is in FNP. Note that SAT-Search(q5)

has no solution if q5 is unsatisfiable. NTe Say a search problem is total if every instance of

it has a solution. For example, SAT-Search(4) is not total.

TFNP is the subclass of FNP containing total search problems [MP91]. TFNP

contains many natural combinatorial problems, but it is a semantic class and therefore

is not expected to have comp!ete problems [BCEf 981. However, TFNP contains several

interesting syntactic subclasses such as PLS [JPY88, Yan971, PPP, PPA, PPAD, and

PPADS [PapgO, Pap94b, BCEf98]. Each class is defined based on the combinatorial

principle that guarantees the totality of problems in the class. For example, P L S is

the class of local search problems whose totality follows fiom the combinatorial principle

"every directed acyclic graph has a sink", and PPP is the class of problems whose

totality is guaranteed by the injective pigeonhole principle "there is no injective mapping

from n + 1 to n". TFNP and its subclasses are interesting because they contain search

problems that have no computationally equivalent decision problems [BCEf 981.

FP is the subclass of FNP containing problems for which there is a polynomial-time

algorithm that h d s a solution [MP91]. Thus, the problem HORNSAT-Search(q5) of

finding a satiseing truth assignment for a propositional Horn formula is in FP.

Beame, Cook, Edmonds, Impagliazzo, and Pitassi [BCE+98] introduced type-2 to ta1

search problems that capture certain combinatorïal principles, and they presented an

elegant type-2 characterization of the classes PPA, PPAD, PPADS, and PPP. By

exhibiting the existence or nonexistence of reduction between the type-2 problems, t hey

showed al1 possible separations of these classes in a generic relativized world. Further-

more, they proved that none of their type-:! problems is Turing equivalent to any decision

problem.

In his thesis published in 1986, Buss [Bus861 developed a hierarchy of theories of

bounded an'thmetic and showed its connection to the polynomial hierarchy. In doing so, he

also introduced a hierarchy of classes of function as follows: 0: is the class of polynomial-

time computable functions, and O:+,, i 2 1, is the class of functions computable in

polynomial-time with access to a predicate from CI. He showed that a function f is in

0; if and only if it is C/-definable in Si.

More results on the characterization of MC:-consequences of bounded arithmetic

t heories followed [Kra95]. One particularly interesting result is by Buss and Krajicek

[BK94]: they showed that the V33C;-consequences of Ti corresponds to PLS in a certain

sense, suggesting the existence of ot her search classes corresponding t O ~ 3 ~ ~ - c o n s e ~ u e n c e s

of various theories. Chiari and Krajicek present in [CK98] many results in this direction.

Buss, Krajicek, and Takeuti [BKS93] introduced the notion of witness oracles, an

extension of oracles whose positive answers are accompanied by an object that witnesses

the correctness of the answer. They defined classes ~ ~ ~ : [u r i t , f (n)] of total search prob-

lems whose solution can be found in polynomial time using at most f (n) witness queries

to a Zr predicate. Krajicek [Kra951 characterized ~3~! j -conse~uences of Si and T: by

classes of this form.

Thanks to the success of the above lines of research, much has been knom about

the search problems and their definability in bouncied arithmetic. However, because of

inconsisteat terminology and implicit assumptions, it is hard to see how the results in

one framework relate to the results in another framework.

For exarnple, notice the diEerent usages of the term 'FP'. In the sense of Krentel

[Kre88], FP deno tes the class of polynomial-t ime total func t ions. However, Meggido

and Papadimitriou [MP91] defines FP to be the class of search problems such that it

is easy to recognize solutions and at least one solution can be computed in polynomial

time. Their FP can be modified to be a class of total search problems, but in its origiral

formulation, it contains nontotal problems. And FP in F P ~ ~ [wit] of Buss, Krajicek, and

Takeuti [BKTSS] denotes the class of total search problems such that one of the solutions

can be found in polynomial tirne. The problems in this class can have solutions that are

impossible to compute or recognize.

1.2 Our Work

The purpose of our work is to provide a unified framework for classification of search

problems and t heir definability in bounded arithmetic. Our framework incorporates most

of the above classes without any inconsistency or confusion, even though some classes

are called by different names in our setting-

In Chapter 2, we present the basic definition of search problems, followed by intro-

duction of the the notions of verif ication complexity, compvtat ional complexity, exact

solvability, and exact reducibility.

Verification complexity of a search problem is the hardness of veriS.ing or recognizing

solutions. Magiddo and Papadimitriou's TFNP [MPSl] is called in our setting VP

(verifiable in polynomial time), and it is a t the bottom of our verifiability hierarchy

VPH = Ui>, VC:, where VC: is the class of total search problems for which the

verification of solutions is in Ep of the polynomial hierarchy PH [Sto??, Wra77, Pap94aI.

We show that VPH collapses if and only if PH collapses.

Computational complexity of a search problem is the hardness of finding a solution,

that is, the hardness of 'solving' the search problem. We show that the use of an intu-

itive notion of solvability results in the notion of computational complexity that is not

meaningfully related to verification complexïty. We introduce a new notion of solvability

called exact solvability.

Our work is based on a new mode1 of computation called the oblivious witness-oracle

Turing machines. It is as powerful as the ordinary witness-oracle Turing machines of

Buss, Krajicek, and Takeuti [BKT93] wit h respect to simple solvability. Interestingly, the

power of oblivious machines seems to be more restricted with respect to esact solvability,

and it allows a more sensitive treatment of computational complexity of search problems.

We ddevelop a collection of search classes of the form ~ ~ ~ ~ [o b l i v i o u s , f (n)] that c a p

ture the hardness of exactly solving the search problems. We show that our classes

contain natural combinatorial problems.

Reducibility betsveen problems is an essential tool in the study of complesity. How-

ever, we show that the commonly-used many-one reducibdity is not the right tool for

our purpose. We corne up with a stronger notion of exact many-one rehcibility that

corresponds nicely to esact solvability.

Chapter 3 is devoted to the type-2 characterization of various search classes. We

present a type-2 total search problem ITERATION and use it to characterize the class

E[PLS], the smallest class closed under exact many-one reduciblity. Using the type-2

problems of [BCEf 981, we provide type-2 characterïzation of PPA, PPAD, PPADS,

and PPP that is slightly different from that of Beame et. al.

Then we present the most significant of our theorems: we show that any of the

type-2 problems of Beame et. al. is not Turing reducible to ITER. This theorem has

two important consequences. The first is the type-2 separation of E[PLS] from the other

search classes corresponding to the other type-2 problems. The second, which is stated ip

Chapter 4, is the unprovability of certain combinatorial principles in a relativized theory

Ti@) of bounded arithmetic. The latter suggests a methodology to obtaïn separations

of theories of bounded arithmetic via separations of type-2 search problems.

The chapter ends with the introduction of hvo new type-2 pro blems: fi1 AYIDf I Z E R

and L-MAXIMIZER. They characterize EP* [oblivious] and E P ~ ~ [oblivious, O (log n)] ,

respectively.

Chapter 4 connects our framework of search problems with Buss's theories of bounded

arithmetic. After a brief introduction, we present the notion of exact C:-definability of

search problems in bounded arithmetic, that corresponds to exact solvability and exact

reducibility. This definabiüty notion is from [BKT93], where it is called strong CI-

definability. Then, we show the equalities between the classes of the exact E:-definable

search problems of Si, Ti, and v a ~ a n t s of Si and the search classes that we have intro-

duced in Chapter 3.

Lastly, we characterize the classes of exactly C:-definable search problems of Si and

Ti by L-MAXIM IZER and M A X I k f IZER. This is the first characterization of these

classes, although a similar result has been obtained by Chiari and Krajicek [CK98] in a

slightly different context .

We work with the natural numbers N For n E N, In(denotes the length of binary

representation of n; hence In1 = [log (n + 1)l. For a E N, ~ s l ~ l denotes { n E N : In1 5

lai), the set of al1 numbers that can be represented using (al bits.

Let A be any unary predicate. -4 detemninistic oracle Turing machine with access to

A, or sirnply an oracle Turing machine, is a deterministic Turing machine that is allowed

to ask queries of the form 'A(z)?', for which the oracle returns q E {O, l), where q = 1 if

A(z) holds, and q = O otherwise. A nondeterministic oracle Turing machine is defined

similarly.

A deterministic, nondeterministic, or oracle Turing machine M is said t O be polynomial-

t i m e if there exists a constant c such that 1l.I on inputs of length n halts within O(nc)

steps.

A predicate R(z) is said to be polynomial-time cornputable if i t can be computed by

a deterministic polynomial-time Turing machine. We Say R is polynomial-time in A if a

polynomial-time oracle Turing machine with access to A decides R.

Let C , D be complexity classes. Then CD is the class of predicates decidable by a

deterministic or nondeterministic oracle Turing machine that runs wïthin the time or

space bound of complexity class C ni th access to a predicate in D.

Let R(x , y) be a binary predicate on the natural numbers. We Say R is polynomially

balanced if there exists a constant c such that, for al1 a , b E N, R(a, b) implies 1 bl < laiC C C

[Pap94a]. Note that, if R is polynomially baIanced, it can be expressed as R(x, y) G 1 y1 5

lxlC + c A RI (x, y) for some predicate RI.

Theorem 1.3.1 [Pap94a] Let R(x) be a predicate. R E N P if and only if there is a poly-

nomially balanced, polynomial-time predicate S (x , y) such that R (x) (3y)S(x, y).

The polynomial hierarchy is the sequence of classes of predicates defined as foIIows:

First, X: = 11; = Ai = P; and for i 2 0,

- NP=' CL1 -

+ = c0NPz:

A = pz:.

Note that Cf U A:+, C X:+, n II:+,, for al1 i 2 O. Finally, PH = UiZo Cr. We

Say the polynomial hierarchy collapses u t the i t h level if P H = E:. See [Sto77, Wra77,

Pap94al for more information on the polynomial hierarchy.

Theorem 1.3.2 [WraYY, Pap94aj Let R(x) be a predicate, and i 2 1. R E XP if and

only if there exists a polynomially balanced predicate S(x , y) E II:-, such that R(x)

(3y)S(x, Y)-

A function f : N I+ N is said to be polynomial-time if there exists a deterministic

polynomial-time Turing machine $1 such that &f on x halts with the binary representa-

tion of f (x) in its output tape. We Say f is polynomial-tirne in A if an oracle machine

with access to A cornputes the value of f in polynomial-tirne.

is defined by Buss to be the class of al1 polyuomial-time functions and O:+, is the

class of functions polynomial in a ÇI predicate [Bus86, Bus98].

The following definitions are from [Bus86, Kra95, Bus98]. Let

be the language of bounded arithrnetic, where O is a constant, S is the successor function,

1x1 = [log ,XI denotes the binary length of z, and z#y = 21x1*l~l is the smash function.

Note that for every term t(a) in the language LBA, there exists a constant c such that

ItWI E O(lxlC)-

-4 quantifier is said to be sharply bounded if it is of the form (3s < It(ü)l) or (Vx 5

It (ü) l) , where t is a term in the language Lsn -4 quantifier is said to be bounded if it is

of the form (32 5 t(â)) or (Vx 5 t(ü)).

The sets Ct = nt are the sets of formulas in which al1 quantifiers are sharply bounded.

For i 2 1, the set C,b is the set containing C:-, U II!-, and closed under A, V, sharply

bounded quantifications and the existential bounded quantification. The set II: is defined

sirnilarly except that it is closed under the universal bounded quantification, instead of

the existential bounded quantification.

Let be the standard mode1 of arithmetic, in which nonlogical symbols of LBA assume

their standard interpretation. We Say that a formula 4(a, b) represents a predicate R(a, b)

if and only if

where s,, s, are numerals representing n, m E N, respectively.

Theorem 1.3.3 (Bus86, Kra95, Bus981 A predicate R is in Ey i f and only if there exists

a Eq formula 4 that represents R.

Chapter 2

Search Problems

2.1 Verification Complexity of Search Problems

The purpose of our study is to present a unified framework for the study of complesity

of search problems, and thus we begin with the formal definition of search problems.

The following is a slight generalization of the definition in [MP91, BCE+98]; a similar

definition appears in [G J79].

Definition 2.1.1 [B C P 981 Let R Nx N be any polynomially balanced binary predicate

a n the natural nurnbers. Then R defines a search problern QR which associates with evenj

x E N the set QR(x) = {y : R (x , y)). We say that QR(x) iS the set of solutions for a n

instance x and that R is a defining predicate of QR.

QR is said to be total if IQR(x)I > O for al1 x E N. W e say QR i s a function problem

i f 1 Q ~ (x) 1 5 1 for al1 x E N. CI

Note that, since we require a defining predicate R to be polynomially balanced, for

every search problem QR there exists a constant c such that Q (x) C IV~ lx lCfc for al1 x.

The subscript of QR is omitted when i t is not necessary to indicate a defining predicate

of the search problem.

Definition 2.1.2 For any predicate R (x) , let fR be the characteristic function problem,

defined as

Intuitively, the characteristic function problem fR of R is t h e 'search version' of the

characteristic function, since &(x) = (1) if R (x) holds, and fR(z) = {O) othenvise. For

example, f s A ~ is the characteristic function pro blem of the NP-cornplete predicate SAT.

The following are examples of natural search problems. L e t 4 be a propositional

formula, @ a Horn formula, r a truth assignment, G an undirec- ted graph, and C a set

of vertices of a graph G. FV denotes a weighted graph, and T is sri. sequence of vertices of

W . Under a suitable encoding scheme, these objects can be encoded as natural numbers.

SAT-Search(#) = {T : r satisfies 4)

HORNSAT-Search($) = {r : T satisfies $}

rLIAX-CLIQUE(G) = {C : C is a maximum clique of G)

MAX-CLIQUE-SIZE(G) = {n E N : n is the size of the largest clique of G}

T S P (W) = {T : T is an optimal tour of W)

TSP-COST(W) = {n E N : n is the cost of the optimal tour of W)

TSP stands for the Traveling Salesperson Problem.

Note that SAT-Search and HORNSAT-Search are the on ly total problems among

the above, and MAX-CLIQUE-SiZE and TSP-COST are the only function problems.

Let QR be a search problem defined by a predicate R. The uerification problern for QR

is the task of deciding whether b E Q(a) for arbitrary a, b E N, which can be done by

simply evaluating R(a, b). Hence, the complexity of the verification problems for Q is

same as the complexity of a defining predicate R.

For example, the verifkation complexity of SAT-Search and HORNSAT-Search

is P while the verification problems for & f A X - C L I Q U E and TSP are coNP. The

verification problem of M A X - C L I Q U E - S I Z E and T S P - C O S T seem harder since they

are cornplete for the class DP, which contains NP LJ coNP and is contained in X2 n E-
(See [PY84, Pap94aI for more information on the class DP).

Note that the verification problern for fsAT can be solved in polynomial time by

making one que- to SAS. Thus, its verification problem is in pNP = Ag. In general,

the verification problem of fR is in PR.

The remarks above indicate that search problems can be classified, according to their

verification complexity, into the following classes.

Definition 2.1.3 VP is the class of total search problems whose uerification problems

are in P . VP stands for 'Verifiable in Polynomial-tirne'.

For i 1 0, VZ;, VIIy, and VA: are the classes of total search problems whose

verification problems are in Çr, II:, and A:, respectively.

Finally, we define the verifiability hierarchy VPH as VPH = Uira VC:. O

Note that VP is the clûss of search problems QR such that R E P and (Vx)(3y)R(x, y)

holds; similarly for VE:, VIT:, and VA:. Hence, MAX-CLIQUE is in VIT: and

M M - C L I Q U E - S I Z E is in VA;. However, S.4T-Search and H O R N S A S - S e a r c h do

not belong to any of the classes just defined since they are not total.

The problem fsAT is in VA;. The following is an easy lemma that generalizes this

fact,

Lemma 2.1.4 Let i 2 O . If a predicate R is in EP, then fR E VA:+, .

The following lemma connects the polynomial hierarchy and the verifiability hierarchy.

Lemma 2.1.5 For every i 2 O, VC; = VC:+, if and only i f P H collapses to the i t h

leuel.

Proof. The 'if7 part is obvious-

Before showing the 'only if' part, let us introduce a predicate QSATi for i > 1. Each

instance x of QSATi encodes a propositional formula q5 with its variables partitioned

into i sets XI, X2, . . . , Xi- Mre mi te #(XL, /Y2' . . . Xi) to indicate the formula and the

partition. QSAZ (x) is true if and only if

is true, where Q is 3 if i is odd and b' if i is even. Note that QSATL is equivalent to

SAT, which is cornplete for N P ; in fact, for al1 i 2 1, QSAG is complete for Cy [FVra77,

Pap94al. QSATi stands for 'Quantified Satisfiability Mth i alternations of quantifiers'.

Let Titl be a search problem such that

It is clear that E VC:+,. Assume VXp = VX;+,. Then, z+L E VC:, and it

follows that QS-4zil E CF, since x E Q S A G L 1 E c+l (x). The collapse of the

polynomial hierarchy follows from the fact that QSAX+l is complete for Cy+,. O

Note that VP coïncides with the class TFNP introduced by Megiddo and Papadim-

itriou [MP91]. Several important subclasses of VP are identified and studied in [JPY88,

Pap94b, BCE+98]. We will introduce these classes later.

2.2 Witness Oracles and Computational Complexity

In the preceding section we introduced the notion of uerification complexzty of search

problems. We present in this section the notion of cornputational complexity of search

problems, or the complexity of 'solving' search problems. In order to do this, we need

to specify a mode1 of computation and formalize the notion of 'solving a search prob-

lem7. After making necessary definitions, we will show how verification complexity and

computational compIexity are related to each other.

W e introduce the Turing machines with witness oracle of [BKT93], which is an es-

tension of the oracle Turing machines.

Definition 2.2.1 [BKT93] A Turing machine iLI with witness oracle A, also called a

wïtness-oracle Turing machine Ad wïth access to A, is a deterministic machine with a

special query tape and a write-only output tape with the following properties.

1. On every input, 1VI writes a binary number in its output tape before halting.

2. Oracle A is in Cf for some i 2 1 end of the fonn A (a) = (3x)B(a ,x) , where

B E II:-,. Note that there exists a constant c such that i f B (a , x) , then 1x1 5 lalc+c.

3. W h e n M asks a witness query of the fonn 'A(a)17 with a binary nurnber a, the

oracle returns a pair (q, w) with q E { O , 1) and w E N ~ I " ~ ' + ~ such that

(1) q = 1 and B(a, w) if A (a) is tme; and

(2) q = O and w = O i f A(a) is false.

Let OutputM(x) denote the set of al1 possible outputs that can be produced by M on

A nondeterministic 'Turing machine with witness oracle -4, also called a nondetermin-

istic vitness-oracle Turing machine with access to A, is defined similarly. [7

Although witness-oracle Turing machines M are deterministic, nondeterministic be-

haviour may arise when a query ' (3w)B(a , w)?' has multiple witnesses: the oracle may

return any (1, w*) sat is5ng B(a , w') and the computation of Ad branches off according

to the witness it receives. Since 1VI's next query may depend on ut*, different queries

may b e asked in different computation paths of M. Thus, valid computations of M on

input x can contain different sequences of witness queries and answers, For this reason,

wïtness-oracle machines can be too general for our analysis to work. The following, more

restricted mode1 turns out to be useful.

Definition 2.2.2 Let M be a witness-oracle machine- fi1 is oblivious i f its ith query

depends only o n the input x and the sequence (ql, 92, - . . , qi- t), where qj is part of the

oracle answer (qjl wj) to M ' s j t h query.

Ive work with the oblivious machines. Note that an oblivious witness-oracle machine

1W can still exhibit nondeterminism, but it asks the same sequence of witness queries in ev-

ery valid computation. This is because every valid sequence (ql, wl), (q2, w2) 1 . . . , (qi, wi)

of answers to M's queries must have the same sequence (pl, q2, . . . , qi) of yes/no ansmers.

The following is our first attempt to formalize the notion of when a search problem should

be considered solved. This is the notion implicitly used in [BKT93, Kra951.

Definition 2.2.3 Let Q be a total search problem and Ad be a Turing machine with

witness oracle. W e Say simply solves Q if, for al1 x, Ad on x outputs some y E Q (x)

in every valid computation, that is , O ~ t p a t , ~ ~ (x) C Q(x) . 0

The above definition has intuitive value: when a machine fi1 always outputs a correct

solution for Q and never fails, it seems reasonable to Say solves Q. However, since Q

may contain solutions which M can never End, the connection between hf and Q is not

very tight: M solves any Q with Outputg(x) C Q(x), and there are infinitely many such

Q7s.

Furthermore, consider the following example.

Exarnple 2.2.4 Let U be a search problem defined as U (x) = (y : y = O V [lyl 5

1x1 A K (x)]) , where K is an undecidable predicate. E v e n though the verification problern

for U is undecidable, U can be solved by a trivial machine that outputs O on every input,

and therefore U can be simply solved in constant time.

The above exarnple shows that the simple solvability of a search problem is not

meaningfully related to the verification complexity of the problem.

In order to address the issues raised in the preceding paragraph, we present a stronger

notion of solvability of search problems.

Definition 2.2.5 Let Q be a total search problem and M be a witness-oracle Turing

machine. W e say that i1.I exactlÿ solves Q if Outpu tb f (x) = Q (x) for all x. El

If a witness-oracle machine iV1 exactly solves Q, then Q(x) can be descnbed as

Q (x) = {y : there exists a valid computation of n/I on x Mth y as the output).

Moreover, esact solvability implies a stronger connection bettveen machines and search

problems in the sense that for every machine M , there exists a unique search problem

t hat is exactly solved by M .

Now we introduce classes of search probIems based on their computational complexity.

Definition 2.2.6 EP is the class of total search problerns that are exactly solvable by

a detenninzstic polynomial time Turing machine. EP stands for 'Exactly solvable in

Polynomial-time '. SP is defined similarly except that the machines are required to simply

solve the problems instead of exactly solving them. SP stands for 'Solvable in Polynomial-

tzme '. O

Example 2.2.4 shows that SP VPH.

The class FP of [JPY88, MP91, Pap94b, BCE+98] can be defined as the subclass

of VP containing search problems for which a solution can be found in deterministic

polynomial-time. Therefore, FP = VP n SP.

Note that EP is a class of function problems, since the output of a deterministic

machine is unique. EP and 0; coincide in the following sense: f E O: if and only if

Q (x) = If (4) E EP*

EP is extended in the following tvay.

Definition 2.2.7 For i 3 1, EP": is the class of total search problems that can be

exactly solued by a polynomial-time oracle Turing machine with access to a CP predi-

cate. ~ ~ ~ T [u r i t] i s defined by polynomial-time witness-oracle machines with access t o Cr

predicates, and EP"~ [oblivious] is defined similarly b y O blivious witness-oracle machines.

~ ~ ~ f [z u i t , f (n)] and ~ ~ ~ l [w i t , O(f (n))] are obtained by bounding the number of witness

queries b y f (n) and O(f (n)) , respectively, where n is the input length.

Extensions of S P are defined in a similar way. O

It should be rernarked that Krentel's classes FP* and F P ~ ~ [O (~ O ~ n)] [Kre88,

Pap94aI are equimlent to E P ~ ~ and E P ~ ~ [O (~ O ~ n)], respectively. Furthermore, Kra-

jicek's classes F P ~ ~ [wit] and F P ~ [O (~ O ~ n)] [Kra951 correspond to spNP [wit] and

S P ~ ~ [O (I O ~ n)], respectively. Notice how the terrn FP is used differently by differ-

ent researchers. In our framework, the subt Ie differences between Krentel's classes and

Krajicek's classes are made e,uplicit.

The following is a restaternent of KrenteI's result in our framework.

Lernma 2.2.8 IKre88, Pap94aI

(1) MAX-CLIQUE-SIZE E E P ~ [O (Z O ~ n)] , and

(2) TSP-COST E EP?

Based on Krentel's result above, we can show that two of our classes defined by

O blivious queries cont ain nat ural combinatorial pro blems.

L e m m a 2.2.9

(3) MAX-CLIQUE E E P ~ ~ [obliuious, O(log n)]

(4) TSP E ~ ~ ~ ~ [o b l i v i o u s]

Proof of Lemmas 2.2.8 and 2.2.9. Suppose we are given a graph G and asked to

compute the maximum size of cliques of G. Since the size of G's largest clique is at most

IV[5 n, it can be computed by binary search using O(1og n) queries to an N P predicate

mm) " G has a clique of size 2 m".

Thus, claim (1) holds.

Claim (3) follows from the above argument. Let Ad be a witness-oracle Turing machine

that first executes the above algorithm to compute the largest clique size m*. Shen A-1

makes a witness query 'R(m*)?' for which the oracle returns (1, C), where C is a clique

of the maximum size m*. Then, is an oblivious witness-oracle machine that exactly

solves AdM-CLIQUE.

Claim (2) is shown similarly to (1). Let x describe a weighted graph G with weights

represented in binary. Shen the cost of a tour is at most 3": where n = 1x1. Hence, the

cost of an optimal TSP tour can be computed by binas. search using O(1og 2") = O(n)

N P queries, and (4) easily follows. [7

The following lemma shows one aspect of how the cornputational complexity and ver-

ification complesity are related.

Lemma 2.2.10 For any i 2 1, ~ ~ ~ l [w i t] C VC:+, C ~ ~ ~ r + l [w i t , 11.

Proof. The second inclusion is obvious, since if Q E VX:+,, then (3y)y E Q(x) is a

E:+, predicate, which can be used as a witness oracle.

The first inclusion requires more work. If Q E ~ ~ ~ i [w i t] , then there exists a witness-

oracle machine M with access to an C: predicate R(a) = (3z)B(a, z) , B E II:-,, such

that hl esactly solves Q. We construct a nondeterministic oracle machine N with access

to a predicate such that N on (x, y) accepts if and only if y E Q(x).

Suppose that M on x asks at most ~(1x1) witness queries. Given (x, y), 1x1 = n,

N rejects if y is too long to be in Q (x) . Otherwise, N nondeterministically guesses a

sequence (41, wi) , (42, w2), . - . (qp(*) , w ~ (~)) of oracle answers. Then N starts simulating

A4 on x using the guessed sequence in the followïng way. For i = 1,2, . . . , p(n) , when 114

asks the i th witness query ai, LV suspends the simulation and test whether the following

condition is satisfied:

qi = 1 and B (ai, wi) holds, or

q~ = O, wi = O and 1(3w)B(ai, w) holds.

Note that this can be done by making one query to a predicate complete for ÇP. If the

test fails, then N rejects because the guessed pair (qi, wi) is incorrect. Note, however,

that there is one successful guess for every correct oracle answer for the i th query. Thus,

the number of computations of N that successfully complete the simulation is equal to

the number of valid cornputations of M on x. Finally, N accepts y if it is the output of

ILI and rejects othenvise.

It is not hard to see that N accepts (x, y) if and only if y E Q(x), and that iV runs in

tirne polynomial in 1 (z, y) 1. Therefore, the verification problem of Q is in N P ~ ~ = En, ,

and the claim holds. 0

The following statement appears in [BKT93, Kra951.

Lemma 2.2.11 [BKT93, Kra951 For any i 2 1, i f Q E ~ ~ ~ r [u r i t , f (n)], then Q is

simply solvable by a machine M with access to a predicate in Xy that asks f (n) oracle

queries (not witness queries) followed b y one witness query.

Proof. The proof appears in [Kra951 (see Lemma 6.3.4). It is similar to the proof of

Lemma 2.2.13 below. 0

Inspired by the machine Ad in the above lemma, we make the following definition. We

cal1 M above a patient witness-oracle machine.

Definition 2.2.12 A patient witness-oracle machine LU is a special kind of witness-

oracle machine which is allowed to ask only one witness query preceded by a sequence of

oracle qu eries (not witness quen'es).

For i 2 1, let ~ ~ ' l [p a t i e n t , f (n)] be the class of search problems esactly solvable by

a polynomial-time patient witness-oracle Turing machine Ad zvith access t o a predicate

A E Zf. Note that M i s allowed t o ask f (n) - l oracle quen'es (not witness queries)

followed by one witness query.

~ ~ ~ ' [~ a t i e n t , O (f (n))] = U E P ~ ? [p t i e n t , g(n)] .
g(nEO(f (4)

 patient, f (n)] is defined s imi lady by replacing 'ezactly soluable' with 'simply solv-

able ', and ~ ~ ~ ; [~ a t i e n t , O(f (n))] is defined in an analogous way. 13

-4 statement similar to Lemma 2.2.11 holds with respect to EP and oblivious ma-

chines.

Lernma 2.2.13 For any i 2 1, ~ ~ ~ r [o b l i u i o u s , f(n)] c ~ ~ ~ l b a t i e n t , j(n) + 11

Proof. This is proven sirnilarly to Lemma 2.2.11 as follows. Let Q E ~ ~ ~ ~ [o b l i v i o u s , f (n)]

and assume that M is an oblivious witness-oracle machine that exactly solves Q. F k x

and let n = 1x1. Shen, a patient machine M' can compute the sequence ql , q 2 , . - . , q ~ (~)

of correct yes/no answers to Ad's witness queries by making f (n) oracle queries of the

form

1s there a valid computation of M on x such that ql,.. . , qk is a correct sequence of

yes/no answers to the first k witness queries and qkf 1 = 1?

Shen, Ad' asks a witness query

1s there a valid computation of M on x such that q l , . . . , qf(,) is a correct sequence

of yes/no answers to the queries made by M?

Note that every valid computation of M on x has the same sequence ql-, 92, . . . , q~(,)

of yes/no ansnrers. Hence, the final nritness query of h.1' retums every vanid computa-

tion of M on x, from which iLIf can easily extract the output of M on r. Therefore,

Outputbf(x) = OutputMr (x) , and hl' evactly solves Q. 0

Corollary 2.2.14 F o r any i >_ 1,

(1) ~ ~ ~ ~ [o b l i v i o u s , O(f (n))] = ~ ~ ~ l [~ a t i e n t , O (f (n))], and

(2) spE:[wit, O(f (n))] = ~ ~ ~ ~ [o b l i u i o u s , O (f (n))] = ~ ~ ~ ; [p a t i e n t , O(f (n3)]-

Proof. We show (1). That ~ ~ ~ f [~ a t i e n t , O (f (n))] ~ ~ ~ : [o b l i v i o u s , O(P((n))] is triv-

ial, since every patient Mtness-oracle machine is oblivious. The other incluision follows

Tom Lemma 2.2.13.

For (2), first note that

~ ~ ~ l [~ a t i e n t , O (f (n))] C ~ ~ ~ ~ [o b l i v i o u s , O(f (n))] E ~ ~ q [w i t , O (f (n))]

is irnmediate. The equalities follow from Lemma 2.2.11 which implies

S P ~ ~ [wit, O(f (TL))] C S P ~ ~ [patient, O(f(n))].

By Corollary 2.2.14, the O blivious witness-oracle machines and the pat ient witness-

oracle machines are equally powerful. Interestingly, they are as powerful as tthe ordinary

witness-oracle machines with respect to simple solvability, but we do not kmow whether

a similar statement holds for exact solvability.

The equality (2) of Corollary 2.2.14 seems to be the reason Buss, Kmajicek, and

Takeuti [BKT93], and Krajicek [Kra951 study search problems in the context of simple

solvability. However, the combination of exact solvability and oblivious wiitness-oracle

machines turns out to be a natural context for the study of search problems-.

2.3 Reducibility arnong Search Problems

Reducibility between problems is an essential tool in the field of Computational Com-

plexity, and we need a reasonable notion of reducibility between search problems. In

this section, Ive present two such notions. The first is many-one reducibility, which is

commonly used in various papers such as [BCEf 98, JPY88, MP91, Pap94bI. We show

that many-one reducibility corresponds in a certain sense to simple solvability, which is

not a desirable property- We d l then introduce a stronger notion of exact reducibility,

which corresponds to exact solvability.

Definition 2.3.1 Let Ql and Q2 be total search problems. T h e n QI i s many-one re-

ducible to 9 2 , denoted QI 5, Q2, if there exist two polynomial-time functions f, g such

that

Y E Q l (4 if (3 4 [2 E Q d f (x)) A Y = g(x, 41.

Many-one reducibility is closely connected to the notion of simple solvability in the

follonring sense. If QI and Q2 are two total search problems and if QL 5, Q2, then there

exists a witness-oracle Turing machine Ad with access to a predicate '(3y)y E Q2(a)' that

simply solves QI in polynomial-time as follows. Given x, &f first makes a witness query

'(3y)Q2(f (x))?', which must have at least one witness. The oracle returns (1, y*) with

some y* E Q2(f (x)), and M outputs g(x, y), which is guaranteed to be in Ql(x).

Let us generalize the notion of witness oracle.

Definition 2.3.2 Let Q be a search problem. T h e n a Turing machine DI with witness

oracle Q i s a machine that uses (3y)y E Q(a) as a 4witness oracle.

The paragraph preceding the above definition shows that, if QI 5, Q2, then there

exits a witness-oracle Turing machine M that sirnply solves Q1 by making one witness

query to Q2-

Since w e would like a framework based on exact solvability rather than simple solv-

ability, we define a new notion of reducibility, exact many-one reducibility.

Definition 2.3.3 Let Ql and Q2 be total search problems. Then QI i s exactly many-one

reducible t o Q2, denoted QI <,, Q2, i f there exist two polynomial-time functions f, g

such that

Y E Q&) ++ (34[r E Q2(f(x)) A Y =g(x,41.

Note that <,, is transitive. We m i t e exact reducibility when 'exact many-one re-

ducibility' is intended. It is easy to see that, if QI and Qs are total search problems and

Ql Sem Q2> there is a polynomial-time witness-oracle Turing machine that exactly

solves Q by making one witness query to Q2. Thus, <,, is related to the notion of exact

solvability, as opposed to simple solvability.

Let S be a class of search problems. We Say S is closed under rnany-one reducibility

(exact reducibilityl if R E S and Ql 5, Q2 (QI 5, Q2) implies Qi E S. Moreover, we

define C[S] as the smaLlest class containing S and closed under many-one reducibility,

Le-:

C[S] = {Q : Q <, Q' for some Q' E S) .

Similarly, E [S] is defined as

E[S] = {Q : Q Sem Q' foi some Q' E S).

We Say QI is Turing reducible to Q2, and mi t e QI sT Q2, if there exists a polynomial-

time Turing machine fi1 that simply solves Q1 by making multiple witness queries to Q2.

If QL is exactly solvable by such M , then we Say QI is exactly Turing reducible to Q2 and

mi te Q1 IeT Q2. Note that Q1 se, Q2 implies QL Sm Q2, which implies Ql sT Q2.

Let S be a class of search problems. Shen CT[S] and &[SI are the smallest classes

containing S and closed under ST and SeT, respectively.

The following two lemmas show that notions of exact solvability and exact many-

one reducibility constitute a nice framework for the study of verification complexity and

computational complexity of search problems.

Lemma 2.3.4

(1) EP and ~ ~ ~ r [z u i t , f (n)] for any i 3 1 and any f (n) are closed under se,
(2) For every i 3 1, VX! is closed under S.,.

Proof. (1) We Vegue for the case of EP. Let QI se, Q2 and Q2 E EP. By the

discussion foilowing Definition 2.3.3, there exists a polynomial-time witness oracle Turing

machine M that exactly solves Qi by making one w-itness query '(3y) y E QÎ(f (x))?'.

Since Qp E EP, the query to Q2 can be simulated in deterministic polynomial time, and

therefore Q I E EP.

-4 similar arguments works for ~ ~ " p [w i t , f (n)]. The only difference iç that a mitness

query is simulated by using f (n) mitness queries to a CP predicate.

(2) Let Q se, Q' and Q' E VC:, i 2 1. Then Q can be expressed

where f , g E 0: are functions that are asserted to exist in Definition 2.3.3. Since 'z E

Q r (f (2))' is a 22: predicate and 'y = g (x , y)' is polynomial-time decidable, it follows that

(*) is and therefore '(32) (c) ' is also CF. Thus, Q E VC:. [7

Hoivever, EP and its extensions of Definition 2.2.7 are not closed under 9,; the search

problem U in Example 2.2.4 is not in EP, but it is many-one reducible to a trivial problem

in EP. The same argument shows that the subclasses of the verifiability hierarchy VPH

are not closed under 5,.

The following lemma shows that the classes VTI;, i 2 O, are not as robust as VÇ:.

In particular, it states that VP is closed under Sem if and only if P = NP.

Lemma 2.3.5 For every i 2 O, is closed under 5, if and only if the polynomial

hierarchy collapses at the ith level.

Proof. FLY i)_ O. We show the 'if' direction Erst. Let QI be a problem such that

Ql lem Q 2 for QZ E q. Then Q can be expressed as

(*)

where f , g E 0; are the reduction. The (c) part is II:, and by Theorem 1.3.2, this

defining predicate of Ql is C$,. If the polynomial hierarchy collapses at the ithe level

(Le. PH = CI) , then I I I = PH [SP98] and hence QI E V q -

For the 'only if' direction, the actual claim is the following: if Vn:; is closed under

$,,, then Cr+, C II:, which implies the collapse of the polynornial hierarchy at the ith

level-

Recall that QSAZ is a predicate complete for Cy [Wra77, Pap94aI; we introduced it in

the proof of of Lemma 2.1.5. Let Si+, be a total search problem whose instance is the same

as that of QSATi+l, Le., instance x encodes a propositional formula $(XI, . . . , Xi+,)

where X j Y s are a partition of the variables. Let X be an arbitrary number that does not

encode a partial truth assignment to X I . The set of solutions is defined as

S i + l (~) = {X; : Either VX23X3...Q~Yi+i$(lY~,ly21 ... ,Xi+l)

or X; =A) ,

where Q is 3 if i + 1 is odd and V othenvise. Note that Si+1 is total, since the number X

is always a solution. Furtherrnore, S E Vn;.

Let g be a mapping such that for al1 x,

I if z encodes a truth assignemeni to &YF,

O othenvise.

Then, let Ti+l be a search problem such that Ti+1 5- Si+l, expressed as

From this definition, it follows that

({ O) othenvise.

The rest of the proof is identical to the final step of the proof of Lemma 2.1.5. If

VTI; is closed under Sem, then Ti,l E VlIf and thus QSATi+, E II:, because x E

QSATi+1 +=+ 1 E Ti+l(x). The collapse of the polynomial hierarchy follows from the

fact that QSATi+l is complete for XI+, [Wra77, Pap94aI. O

Krentel [Kre88] showed that his classes F P ~ ~ and FP* [O (log n)] have natural com-

plete probIems. We can directly translate his results into Our framework as follows.

Theorem 2.3.6 [Kre88, PapSda] With respect to Sem,

(1) IIIM-CLIQUE-SIZE is complete for E P ~ ~ [O (Z O ~ n)]; and

(2) TSP-COST is complete for EP?

Proof Idea. Krentel defines a search problem MAX-OUTPUT as follows.

Input (N, ln), where N is a nondeterministic polynomial-time Turing machine such that

in every valid computation, N on ln halts with a binary number of length O(n) as

its output.

Output A maximum number that is output by N on ln.

He first proves that MAX-OUTPUT is cornplete for E P ~ ~ . Then, he shows several

problems are complete for the class, including TSP-COST.

Let MAX-OUTPUT[O(log n)] be defined similarly to MAX-OUTPUT except that

N outputs a binary number of length O(log n). This problem can be shown to be

complete for E P ~ ~ [O (~ O ~ n)], and it is used in the proof showing that MAX-CLIQUE-

SIZE is complete for the class. O

Based on the above result of Krentel, we beLieve the following assertions hold: with

respect to Sm,

MAX-CLIQUE is complete for ~ ~ ~ ~ [o b l i u i o u s , O(log n]; and

rn TSP is complete for ~ ~ ~ ~ [o b l i u i o u s] .

2.4 Subclasses of VP

Johnson, Papadimitriou, and Yannakakis [JPY88] defined a polynomial local search (PLS)

problem as an optirnization problem that can be formulated as a local search problem.

The follolving definition of PLS problems is by Buss and Krajicek [BK94, Bus981.

Definition 2.4.1 [m, Bus981 Let Q be a search problem. W e say Q is a PLS problem

i f the following conditions are met.

1. There exists a set Fq(x) of candidates and a constant c such that for every instance

X, O E Fq (x) and Q (x) E FQ (x) C The binary predicate 'v E FQ (z) is

required to be polynomial-time.

2. There exist polynornial-time functions CQ, NQ : H H N such that for every instance

X, N'(x, v) # v irnplies Cq(z, v) c CQ (x, NQ (x, v)) . NQ is an abstraction of a

heuristic used to improve the cost of the current candidate. When v E FQ(z) A

NQ (x, v) = v, v is said t o be locally optimal.

3- Q (x) can be expressed as the set of candidates that are locally optima. Le.:

PLS is the class of al1 search pro blems satisfying the above conditions.

Let Q be a PLS problem and x be an instance of Q. The instance x, together *th FQ,

CQ and Nq, implicitly define an exponentially large directed graph G = (V, E), mhere

V = FQ(x) and (u, u) E E if N(x, u) = v A u # u. By the dehi t ion of PLS problems, G

is acyclic and Q(x) is the set of sinks of G. Since every directed acyclic graph has a sink,

Q is total. Sinks of G can be recognized in polynomial time, and therefore PLS VP.

PLS contains optirnization problems that arise naturally in practical settings, some

of which are complete for the class; see [Yang71 for more information on PLS.

The relation between PLS and the ~3Ct-consequences of the theory Ti of bounded

arithmetic is shown in [BK94]; see also [Kra95, CK98j. FVe Vell discuss and extend this

result in Chapter 4.

It is obvious that PLS is not closed under 5,; see Example 2.2.4. However, the

question of whether it PLS is cIosed under Le, is related to the question of whether

every PLS problem is simply solvable in polynomial tirne.

Lemma 2.4.2 If EiPLS] 2 VP, then PLS C SP.

Proof. Let Q E PLS. Assume that there exists a problem Q* E E[PLS] and

Q*(x) = (z : (3y)[y E Q(x) A z is a prefur of y]),

where z is said to be a prefk of y if it consists of the most significant lzl bits of y. In

other words, if y E Q (x) , then Q* (x) contains al1 possible prefixes of y.

If E[PLS] 2 VI?, then the verification problem for Q* is polynomial-time. If this is

the case, we can construct a solution for Q(x) in a bit-by-bit manner as follows. First;

check if O E Q*(x). If the answer is yes, then there exists a solution y E Q (x) whose first

bit is O, so set bl := O. If the answer is no, then set bl := 1. Next, check if b10 E Q* (x)

and set b2 accordingly. By repeating this polynomially many times, we can find every bit

of a solution for Q(x). Thus, Q E SP follows.

It remains to show that such Q* E E[PLS] exists. It is done by constructing another

PLS problem Q' so that Q* 5, Q'. We define Q' as

where 'y = lyl ly2' means that the binary string y is a concatenation of yl, 'l', and y*,

and c is a constant such that Q(x) C N~IXIc+". Intuitively, if y E Q (x) then Q'(x) contains

1x1' + c solutions of the form ily, where i E N~lXlcf '.

It is not hard to show that Q' is also a PLS problem. Recall that FQ,CQ and IVQ

define a dag G such that Q(x) is the set of sinks of G. Then we can easily construct

FQt, Cpt and IVQ# that define a dag G' consisting of 1x1' + c copies of G with vertices

named appropriately so that Q f (x) is the set of sinks of Gr.

Now we can define Q* as

Note that a prefkx y, of y E Q'(x) indicates the length of z, a prefix of y2 € Q (x) .

From this definition, it is clear that Q* 5, Q I . Moreover, Q * (x) is the set of al1

prefkes of every y E Q(x) . 0

CoroUary 2.4.3 If P L S is closed under Sem, then PLS SP.

Proof. If P L S is closed under Sm, then E[PLS] C P L S 2 VP.

Let Q E PLS. Recall that instance x and FQ, NQ, and CQ implicitly specifies an

exponentially large directed acyclic graph (dag) G, and that a P L S problem can be

thought of as the problem of finding a sink of G. The existence of a solution is guaranteed

by a combinatorial principle "every dag has a sink" . The classes P P A , PPAD, P P A D S ,

and PPP are defined similarly as problems of h d i n g in an exponentially large graph a

node with a certain property [PapSO, Pap94bI. The following combinatorial principles

guarantee the totality of search problems in each class: the parity principle "every graph

of degree two or less has an even number of leaves" (PPA) , the parity principle for

directed graphs (PPAD and PPADS), and the injective pigeonhole principle "there

is no injective mapping from n + 1 to n" (PPP). These classes contain many natural

problems of practical interest, some of which are complete. Type-2 characterization of

these classes appears in [BCE+98], and it is a topic of the next chapter.

Chapter 3

Type-2 Charact erizat ion

3.1 Basic Definitions

So far we have been working with type-l predicates, or predicates whose arguments are

numbers. A predicate is said to be type-2 when its arguments are either numbers or

functions on numbers [TowSO, CIY97, BCEf 981.

Let P (a , x, y) be a type-2 predicate that takes a function argument a and nurnber

arguments x and y. We generalize the notion of polynomially balanced predicate and

say P is polynomially balanced if there exists a constant c such that if P(a, x, y) then

1 y[5 lxlc + c. We work only with polynomially balanced type-2 predicates.

The complesity of a type-2 predicate P is measured as the amount of resource (time

or space) required to decide P(a, x, y) in a world in which a (c) for any c can be computed

at unit cost. More specifically, a Turing machine M that decides P (a , x, y) is allowed to

access a as an oracle: M on (x, y) can ask queries of the form 'ct(c) =?' and receive the

value of a (c) at unit cost. P is said to be polynomial-time if &ï runs in time polynomial

in KX, Y)I-

Definition 3.1.1 [BCl?98] Every Pary, polynomially balanced type-2 predicate P de-

j hes a type-? search problern Q p (a , x) = {Y : P(a, r , y)). A pair (a, x) i~ an instance

of QP, and Q p (q x) = {y : P(a , x, y)) is the set of solutions for the instance. P i s a

d e h i n g predicate of Qp .

A type-2 search problem Qp i s said to be total if IQP(a, x)I > O for every (a,x), and

it i s a function i f IQp(x)l 5 i for every (a, x). O

The subscript of Qp is omitted when it is not necessary to indicate a defining predicate

of a search problem.

As in the type-1 case, evaluating P(a, x, y) for arbitrary (a, x, y) is the verification

problem for Qp. The uerification complexity of Q is the complexity of its verification

problem.

Definition 3.1.2 V'P is the class of fype-2 total search problems whose vemfication

problems are polynomial-time cornputable. For i > O , V2Cf and V2117 are the classes of

type-2 total search problems whose verification problems are in type-2 Cr and type-2 II;,

respectively.

See [Tomgo, CIY971 for more information on type-:! predicates and the type-3 polynomial-

time hierarchy.

The notion of many-one reducibility is generalized to type-2 setting as follows.

Definition 3.1.3 [CIYSII, BCF98]

Let QI and Q2 be type-2 total search problems. W e say QI i s many-one reducible to Q2,

denoted Q1 5, QZ, i f there exist three type-2 polynomial-tinte functions F , G and N

such that

Exact many-one reducibility between type-2 search problems is defined as follows.

Definition 3.1.1 Let Q1 and Q2 be type-2 total search problems. Then Q1 is exactly

many-one reducible to Q2, denoted Ql <e, Q2, i f there exist three type-2 polpornial-time

functions F , G and H such that

where F[a , x] = Az.F(a, x, z) . 0

When QI is type-1, the above definitions are applied by treating Q1 as a type-2

problem with no function argument. More speci£ically, Ql is exactly many-one reducible

to Qz if there are three type-1 functions f , g, and h such that

where f [XI = Ar. f(x, z) .

Let Q be a type-2 total search problem. Then

C(Q) = {R : R is type-1 and R 5, Q), and

E(Q) = {R : R is type-1 and R se, Q).

It is straightforward to generalize Turing reducibility to the type-2 setting. When QI

and Q2 are type-2 total search problems, we say QI is Turing reducible to Qat denoted

Ql sT Q2, if there exists a polynomial-tirne Turing machine M with witness oracle Q2

that, on (a, x), outputs some y E Ql(a,x) . For each query to Q2, M must provide an

instance (pl z) of Q2, where f l is polynomial-time computable with access to a.

We say QI is exactly Turing reducible to Q2 if there exists a witness-oracle Turing

machine &1 that exactly solves Q1 using Q2 as a witness oracle.

3.2 Type-2 Problems and Search Classes

We begin with the definition of a new type-2 problem ITERATION (ITER). It is

inspired by the i t e r~ t ion problems of [CK98]. Since both PLS [BK941 and the iteration

problems [CK98] characterize the EfCI-consecpences of Tt in a certain sense, they have

been known to be equivalent. However, their equivalence has been stated in an indirect

way and therefore it has not been cfear how problems in one class relate to the problems

in the other-

We show a more precise correspondence by demonstrating E[PLS] = E(ITER) , that

is, a seârch problem is exactly reducible to a P L S problem if and only if it is exactly

reducible to ITER. bIoreover, our result is obtained directly without relying on the

results in bounded arithrnetic,

Definition 3.2.1 ISERATION (ISER) i s a type-% problem specified as follows. Let

(cu,x) be an instance, where a : W H W is any function and x is a natural number.

V = lVsIzl is the search space. A function a* : V ct V is such that

a(v) i f a (v) E V and a (v) > v
a*(u) =

for al1 v E V . Note that cu*(v) 2 v for every v E V. Then the set of solvtions for an

instance (a, x) is

The totality of ITER follows from the iteration principle which states that if f

satisfies the conditions

then there exists a b < a such that f (b) = a [BK94].

We can also interpret ITER as the problem of finding vertices wïth a certain property

in an exponentially large directed graph. Let (a,x) be an instance of ITER, and let

V = MI"I as in the above definition. If we define E as the set of pairs (u, u) E V x V

snch that a* (u) = v, then G = (V, E) is a directed graph with no cycles of length 3 2.

\Ve Say that v is a h o p if a*(u) = u, and w e say that u is the successor of u if a*(u) = v,

u # v. Shen Q(x) is the set containing (i) O if it is a loop, and (ii) every v whose successor

is a loop. It is not hard to see that the totality of ITER follows from the combinatorial

principle "every dag has a sink".

The fact that ITER(a, x) can be expressed as the set of sinks and possibly O suggests

a strong connection between PLS and ITER. This connection is formalized in the

following statements.

Lernma 3.2.2 PLS C E(ITER).

Proof. Let Q E PLS, and let Fq, ATQ, CQ be the predicate and functions that specie

a directed acyclic graph (dag) G such that Q (x) is the set of sinks of G. Our goal is to

show that Q <,, ITER by constructing functions f , g, and h such that

where f [x] = Ar. f (x, z) , and f 1x1, g, h E 0;. Informally, f [XI and g specify a directed

graph so that h is a mapping from the set of sinks ont0 Q(x).

The idea is to construct f , g, h so that they define a dag G' similar to G such that

Q(x) can be extracted from the set of sinks of G'. This seems easy, escept that we have

to ensure that if (u, u) E E(Gf) then u 2 v. Note that there is no such restriction in G.

We construct G' in the following way so that this condition is satisfied.

Recall that there exists a constant c and a set FQ(x) such that Q(x) C Fq(x) C

~ ~ l ~ l ~ + ~ and O E FQ (x) for every x. Since CQ is a polynomial-time function, there is a

polynomial p (n) such that for al1 u E FQ (x) , ICQ (x, v) 1 5 p(lx1). Assume without loss of

generality that C Q (x , v) > O for al1 u E FQ (x).

Fix an instance x of Q, and defhe U = N S P (~ ~ ~) + 121c+c, the set of numbers of binary

length a t most p(lxl)+Ixlc+c. We assume that every u E U is descnbed by p(lxl)+lxlC+c

bits, possibly Mth leading 0's. Then, every u E U is the concatenation of ul and u2,

where ul is a ~(1x1)-bit string and u2 1x1' + c-bit. We Say u is correct if ul = CQ(u2),

that is, if the prefk of u correctly describes the cost of the candidate corresponding to

U'S SUEX.

Define a function f [x] : U H U with parameter x as

where wl is a sequence of 0's and w~ = NQ (x, v),

Note that f[x](u) 2 u for a11 u E U.

Now define E C U x U by (u, v) E E if and only if f [x](u) = u. Then G' = (U, E)

is directed graph with no cycles of length > 2. Let us Say u E U is isolated when u

is a loop and u's indegree is 1. It follows that for every v E FQ(x), E contains a path

(Ou, iv , . . . Cq(v)v) and isolated vertices (c+ l) v , . . . , (2 p (l X l) - 1)v. The path may be part

of a longer path.

Lemma 3.2.3 A correct vertex u = ulu2 E U i s a loop tha t is n o t isolated if and only if

uz E Q(4-

Proof. (*) Suppose u = uiu2 is a loop that is not isolated. Then u2 E FQ(x) because

u is not isoIated, and NQ (x, 212) = u2 since u is a loop. By the definition of PLS problems,

u2 must be in Q(x).

(+) Suppose v E Q(x). Then, by the definition of PLS problems, v E FQ(x) and

Nq (x, v) = v. The paragraph before the curent lemma shows that G contains a path

(Ou, I V , . . .CQ(v)v), the last vertex of which is a loop. Then u = u1u2 = CQ(x,v)u.

(Lemma 3.2.3) Cl

Now consider ITER(f , ~(1x1) + lxlC+ c); it is the set of vertices in G' whose successors

are loops, which, by the above lemma, are the solutions for Q(x). Thus,

where g (x) = ~(1x1) + lxlc + c, which is polynomial-time computable. Therefore, Q se,
ITER. O

Let Q be a type-2 search problem. Then we mi t e Q[n:] to denote the set of type-1

search problems Q' for mhich there exist functions f E 0: such that Q'(x) = Q(f [XI, x),
where f[x] = Xz. f (x, 2). Intuitively, Q[DT] is the set of instances of Q such that the

function given as an argument is polynomial-time computable.

Lemma 3.2.4 ITER[OY] C PLS.

Proof. It suffices to show that, for every f E O:, there is a PLS problem Q sa t i sbng

Q (x) = ITER(f [x] , x) for dl x.

We construct Q by specifying FQ, Cq and Nq. First, let V = N<I'I. We define

FQ (x) = {v E V : f [XI (v) > v) u {O) NII~~. It easily satisfies Q(x) C F' (x)

and O E FQ(x).

neighbourhood of

For v E FQ(x), the cost function is simply C Q (~ , v) = u, and the

I otherwise.

To see that Q(x) = ITER(f [x],g(x)), note that v < f [x](u) and f [x](v) = f [x](f [x](v))

if and only if v E F'(z) and Nq (x, v) = W. 0

The above lemmas establish a direct connection between ITER and PLS with respect

<,m.

Theorem 3.2.5 E[PLS] = E(1TER).

Proof. Lemma 3.2.2 states that PLS C E(ITER), from which E[PLS] C E(1TER)

follows. The opposite inclusion follows from Lemma 3.2.4, since Q E E(ITER) if and

only iE Q 5, Q' for some Q' E ITER[OY] E PLS. C71

We introduce below the V2P type-2 search problems that originally defined by Beame,

Cook, Edmonds, Impagliazzo, and Pitassi [BCEC98]. Each problem is defined on in-

stances of the form (a, x), where a, is any mapping from N tu N and x is a string that

defines the search space V = IVSlzl = {n E N : In1 5 1x1). Given (a, x) , orv : V H- V from

a can be defined as crv(u) = O if a(u) 6 V and ab-(u) = a(v) othenvise, for al1 v E V.

Under a reasonable encoding scheme, a can be interpreted as a mapping from N to

N x N. When a is interpreted as such, av denotes a function crv : V ++ V x V.

Definition 3.2.6 [BCl?98] LEAF(û., x) i s defined as follows. Let V = lVSIxl, and

define av : V H V x V frOm al. Then every instance (a , x) defines a n undirected graph

G = (V, E) , where {u, u) E E(G) if and only i f u # u A u E av(v) A u E orv(u). Finally,

LEAF(a,x) = {u E V : (v = O A v i s not a leaf o f G)

V (U # O A U is a leaf of G)) ,

where a leaf of G is a vertex with degree 1. 0

It is easy to see that G has maximum degree 5 2 and therefore G consists of isolated

vertices and paths. Because of the parity principle "every g a p h of degree two or less has

an even number of leaves", LEAF is total.

Definition 3.2.7 [BCP98] The type-2 search problem SOURCE.OR.SINK (SOS) i s

defined as follows. A n instance (a, x), defines a graph in a way sirnilar to LEAF except

that the graph G = (V, E) is directed. There i s a directed edge from u to v i f and only if

î~ # v A ay(u) = (*, v) A aV(v) = (u, *), where * denotes an arbitrary vertex. A vertex

u E V is a source if it has indegree O and outdegree 1, and it is a sink if its indegree is

O and outdegree is 1. Then

SOS(a, x) = { u E V : (v = O A u i s not a source of G)

~ (v # O A v i s a sink or source of G)}.

The directed graph G in the above definition has maximum outdegree and indegree

5 1, and hence it consists of isolated vertices and directed paths. Thus, the existence of

a solution is guaranteed by the variant of the parity principle "every directed graph with

indegree and outdegree < 1 has a sink if it has a source".

Definition 3.2.8 [BCF98/ The type-2 search problem S INK is defined in the same

way as SOURCE.0 R S I N K except that

SINK(cr,x) = {v E V : (v = O A U is n o t a source of G)

V(U # O A v i s a sink G)} .

Finally, the following problem is total because of the injective version of the pigeonhole

principle "there is no injective mapping from a + 1 to a".

Definition 3.2.9 [BCEC98] For every (a, x), PIGEON(a, x) i s specijied as follous-

Let V = PI5lZI, and define C Y ~ : V H V from a. Then

Using the type-2 problems above of Beame et- al., Ive can define Papadimitriou's

classes PPA, PPAD, PPADS, and PPP [Pap94b] in a clean way.

Definition 3.2.10

(1) PPA = L E . ~ F [u ~] ,

(2) PPAD = SOS[o:],

(3) PPADS = SINK[oy], and

(4) PPP = PIGEON[OY].

I t is not hard to prove that our definition and Papadimitriou's definition in [Pap94b]

define the same classes. Our definition is inspired by the foLlowing, slightly different

definitions by Beame et. al [BCE'98]: we rename the classes to avoid confusion.

Definition 3.2.11 [BCE?98]

(1) PPA* = C(LEAF) n VP,

(2) PPAD* = C (S 0 S) n VP,

(3) PPADS* = C(S1NK) n VP, and

(4) PPP* = C(PIGE0N) n W.

It should be noted that PPA* is not the same as Papadimitriou's PPA, since it is

possible to show that PPA* = C(LEAF) n VP contains problems mith an even number

of solutions, while every PPA problem must have an odd number of solutions. The same

argument shows that PPAD # PPAD*. We do not know whether PPADS = PPADS*

and/or PPP = PPP* hold.

The starred classes of Definition 3.2.11 have an advantage of being closed under 5,

in VP. On the other hand, the classes of Definition 3.2.10 are not closed under Le,,

assuming that they are not simply solvable in polynomial time. However, we feel that

the classes of the form E(Q), ivhere Q is LEAF, SOS, S I N K , or PIGEON are more

natural, not only because of the following lemma but also because of their relationship

to theories of bounded arithmetic, which is discussed in the next chapter.

Proof. Immediate from Definitio n 3.2.10. 0

Interestingly, if we define classes in the style of Beame et. al. (Definition 3.2.11,

[BCE+98]) but intersect C(Q) Nith VE? instead of VP, the resulting class is E(Q).

Proof. We sketch the proof for (1); the others can be shown by similar arguments.

First, note that E(LEAF) C C (L E A F) n VCf easily follows from E (LEAF) 5 VC;.

Our goal is to show C(LEAF) n VEy Ç E(LEAF). Let Q E C (L E A F) f~ VE?. We

first describe a nondeteminzstic wivitness-oracle Turing machine iV t hat exactly solves Q,

and then we show that N can be simulated by a deterministic witness-oracle machine. N

on x first computes a solution y for Q (x) deterministically by making one witness query

to LEAF. Then, iV nondeterminis tically guesses a number z and an alleged witness w

to the NP predicate ' z E Q(x) ' . I f w correctly witnesses ' z E Q (x) ' , N outputs z and

halts. Othenvise, it halts with y. It is easy to check that O u t p z ~ t ~ (x) = Q(x) and that

N runs in polynomial time.

Nest, we show that N can be simulated by a deterministic witness-oracle machine

1iJf that rnakes one witness query t o LEAF. Since N does not exhibit nondeterminism

until it queries LEAF, it suffices t a show that, by asking a witness query to LEAF, M

can obtain a nondeterministically d o s e n number in addition to the witnesses iV would

receive form LEAF.

Suppose that the simulation of N by 1M requires a nondeterministically chosen c-bit

number. We claim that, for every functions f and g, there exist fc and g, such that for

any O < s 5 2',

Note that every solution for LEAF(fc[x], g,(x)) is the concatenation of y and s such that

y E Q (x) and s is nondeterministically chosen c-bit number. Now our goal is to show

such fc and g, ex&-

Recall that LEAF(f [x], g (x)) is the set of leaves of the graph G = (V, E), where

V = ~s1g(~)1 such that E is specified by f [XI. Consider a graph G' = (VIE') consisting 2'

copies Go, GL, . - -, G2C-1 of G, so that the vertes of Gi corresponding to j E V is named

i2" + j. Note that 22" + j is a leaf of V if and only if j is a leaf of G. However, we do not

want i2c to be a leaf when O is not a solution for L E A F (f [XI, g (x)) . We ensure that i2',

1 3 i 1 2" - 1, is not a leaf by modiS.ing G' in the follotving way: 6rst, modify G 2 =- 1 so

that it consists of one large cycle; then, create an edge between vertices i2' and (i + 1)2',

for i = 1,3 ,5 , . . . , 2C - 3. Let f,[x], gg,(x) be functions that implicitly speciQ the resulting

Gt : we can easily construct them from f [x] and g (x) . n

The following can be shown similarly to Lemma 2-42, which states that if E[PLS] C

V P , then PLS C SP.

Lemma 3.2.14 If E[PPA] 2 VP, then P P A C SP. S i m i l a d y for PPAD, PPADS,

and PPP.

3.3 Reducibility arnong the Type-2 Search Problems

Beame et. al. obtained al1 possible reducibility and nonreducibility results among their

type-2 search problems.

Theorem 3.3.1 [BC@98]

(1) SOS 5, S I N K 5, PIGEON, and SOS 5, LEAF.

(2) LEAF i s no t Turing reducible t o PIGEON.

(3) PIGEON i s n o t Turing reducible t o SINK.

(4) SINK is no t Turing reducible t o LEAF.

Remark. SOS 5, S I N K in (1) is not obvious, and it is not shorvn in [BCEf 981. We

briefly describe how SOS 5, S I N K follows from SOS $, SINJl which is proven in

[BCE+98]. We use the technique we used to prove Lemma 3.2.13. First, show that there

exists a nondeterminzstic witness-oracle machine N with access to a! t hat exactly solves

SOS by making one witness query to SINK. Then, it is possible to show that N can

be simulated by a deterministic witness-oracle machine kf with access to a and SINK.

0

Let us define the type-2 analog of E(Q) as follows.

Definition 3.3.2 Let Q be a type-2 total search problem. Then , E2(Q) is the set of

type-2 problems that are exactly many-one reducible to Q , that is,

E*(Q) = {R : R is type-2 and R Sem Q).

Then, Theorem 3.3.1 yields the following.

Corollary 3 -3.3 [BCF 981

(1) E2(SOS) Ç E2(SINK) Ç E2(PIGEON),

(2) E*(SOS) ç E ~ (L E A F) ,

(3) E2(PIGEON) i E2(LEAF) and E2(LEAF) E2(PIGEON).

Proof. Note that QI Lem Q2 implies QI sT Q2. Shen, the claims easily follow from

Theorem 3.3.1. 611

Now we present our main theorem. Using the techniques applied in [BCEf 981, we show

the folloming nesv nonreducibility result for ITER.

Theorem 3-3-4 SOS is not T u h g reducible t o ITER.

Corollary 3.3.5 SINK, PIGEON, and LEAF are not Turing reducible to ITER.

Proof of Corollary 3.3.5. By Theorem 3.3.1, SOS is exactly many-one reducible to

SIIVK, SOS, and PIGEON. If aoy of them is Turing reducible to ITER, then it would

follow that S O S ST ITER, which contradicts Theorem 3.3.4. [3

Corollary 3.3.6 Let Q be any of LEAF', PIGEON, S I N K , and SOS. Then, E2(Q) $

E2(ITER) .

Proof of Corollary 3.3.6. This is immediate from Corollary 3.3.5. 0

Because we connect E2[ITER] with a relativized theory Ti(ct) of bounded arithmetic

in the next chapter (Corollary 4-33), Theorem 3.3.4 yields interesthg consequences on

the provability of some combinatorial principles in Ti(cr) (Corollary 4.3.7). This is a

topic of Chapter 4.

It is worth remarking that me do not know whether ITER is reducible to any of

LEAF, SOS, S I N K , and PIGEON.

The rest of this section is devoted to the proof of Theorem 3.3.4.

Proof of Theorem 3.3.4. Our proof is a straightfonvard application of the techniques

used in [BCEC98] to prove Theorem 3.3.1. Assume, for the sake of contradiction, that

SOS sT ITER. Then, there exists a polynomial-time witness-oracle Turing machine

that, on input (a, x), finds a solution to SOS(a, x) by making queries to a and ITER.

We show that there exïsts (a , x) such that M's output is incorrect.

Fïx an instance x nrith 1x1 suaiciently large, and let a : N ct N. We interpret cr as a

function from V to V x V, where V = ~sI<l"l. For al1 v E V, a(v) is a pair (u, v) E V x V

consisting of the predecessor u a n d the successor w of v; we m i t e u = pred(v) and

w = succ(u) to mean that u and w are the first element and the second element of cr(v),

respectively. Then a directed graph G = (V, E) is defined by letting (u, u) E E if and

only if u = pred(v) A v = succ(u) . Note that G has indegree and outdegree at most 1.

Recall that u E V is a sink if i t s outdegree is O and a source if its indegree is O. We

consider a that makes O a source so that Q (x) is the set of sinks and sources of G other

than O.

Assume that hl on (a , x) runs in time t. For i = O, 1,. . . , t, let ai be a restriction of

a such that

dom(oi) = {u E V : a(u) is queried during the first i steps of M's computation on (a , x)).

Note that each q,~ is an extension of ai. The restriction cri represents the part of G

that is knonm to M a t the end of the ith step.

Our goal is to show the following:

Lemma 3.3.7 For i = 0,1, . . . , t , there exists ai such that (i) IIdom(cti)l is bounded by a

polynomial in 1x1; and (ii) ai does not specify any v E dom(&), u # O, to De a sink or a

source.

Suppose that the lemma holds. Since Idorn(cy,)l is bounded by polynomial, only

a small part of an exponentially large graph G is is known to &I a t the end of its

computation. Moreover, the known part of G contains neither a source nor a sink. Thus,

M is forced to output a sink or a source of G without knowing one, and we can extend

at to a! so that M's output is incorrect.

We have shown that Theorem 3.3.4 follows from Lemma 3.3.7. See below for the

proof of the Lemma. 0:

Proof of Lemma 3.3.7 Ive prove the claim by induction on i. The base case is trivial-

Assume ai satisfies the conditions of the Lemma. We construct ai+r that extends ai- If

A4 does not access a nor ITER at the i + 1st step, &+l = Qi suffices.

There are only two cases rernaining- Define

Si = {W : (371 E dom(&))cti(v) = (*, w)), and

Pi = {U : (3 ~ E ~ o ~ (c Y ~)) ~ (u) = (u, *)),

where * denotes an arbitrary vertex.

Case: Step i + 1 is a query u to a. Assume that u @ dom(ai); othenvise this case is

trivial. If u = O, then we set a(0) = (O, w) Mth arbitrary w 6 Si, w # O. Note that

O does not have an incoming edge, since succ(0) # 0.

Othenvise, we answer the query with (u, w) as follows. If there exists x E dom(ai)

with succ(x) = u, we set u := x. Note that such x is unique if it exists. Othenvise,

pick an arbitrary u such that u 4 Pi. Similarly, if there is y E dom(ai) with

pred(y) = u, set w := y; othenvise, find an arbitrary w $ Si.

It is easy to see that ai thus constructed satisfies conditions (i) and (ii).

Case: Step i + 1 is a query (/?, z) to ITER. Let V' = N'I'I and assume, without loss of

generality, ,!? : V' ct V' is such that ,!?(c) 2 c for al1 c E V'. Then ITER(P, z) can

be expressed as

Our goal now is to show that there exists a solution to ITER(/3, z) that can be

found by making polynomially rnany queries to a, even if we answer the queries in

such a way that no sink or source is specified by a.

Recall that p is required to be polynomial-time in a. Shen, there exists a detennin-

istic machine M* such that M* on c cornputes p(c) in polynomial time by making

queries to a. C o ~ ~ i d e r the computation paths of DI* on c. The paths au start a t

the initial state, and they diverge only at the point when M* asks a query 'cu(u) =?'

for u $ dom(ai), since there are multiple ways we can answer the query. Thus, the

value of P(c) depends only on the values a(u) for v 4 dom(%), and therefore we

can express possible values of P(c) by a decision tree T(c) whose leaves of T(c) are

labeled by {p(c) = d) for some d E V' and whose internal nodes represent queries

'CY(V) =?' for v $ dom(Cti).

To simpli& our argument, me represent a query 'a(v) =?' by two successive queries

'pred(u) =?' and 'succ(u) =?'; note that there is no loss of generality in doing this.

Then, an internal node of T(c) is labeled by either {pred(u)) or {succ(v)) for some

u E V, and every edge is labeled with some u E V. If an edge labeled {u} leaves a

node labeled {pred(u)), it indicates that pred(v) = u. Similarly for an edge leaving

a node with a label {succ(v)). Let k be the maximum height of the trees. Note

that k is bounded by a polynomial in 1x1.

Next, we prune branches of T(c) that specify a solution to SOS(ol,x). First, we

prune every edge speciQing that succ(u) = O for any u. Shen, we prune an edge

{x) Ieavïng from a node {pred (y)) if if either x E Pi or the path in T(c) from the

root reaching that node contains an edge specikng that pred(w) = x for sorne W.

Similady, an edge {x) is pruned if it originates from a node {succ(y)) and if x has

been defined as the successor of some element of V. It follows that a node a t depth

j of any T(c) has at least IV[- (- j - 1 outgoing edges.

Note that every path p from the root to a leaf of T(c) defines a collection of values

of pred and succ and thus values of a. We Say two paths p , p f are consistent if they

agree on the answers to the common queries. Let label(p) denote the leaf label of

a path p. We claim the following:

Lemma 3.3.8 At least one of the following holds:

(1) T(0) has a path p with label (p) = {8(0) = O); o r

(2) There are two consistent paths p in T(c) and p' in T l (d) , c < d, such that

label(p) = {P(c) = d) and label@>) = {P(d) = d).

If item (1) holds, then we can find a solution to ITER(P, z) by simply computing

P(0). Similarly, if (2) is true, computing P(c) and B (d) yields a solution. In either

case, has only polynomially more values than ai, and izhe pruning procedure

ensures that specifies neither a sink nor a source (other than O).

Our final goal is to show that Lemma 3.3.8 holds. We show t h a t if (1) is false, (2)

must be true. Thus: we assume that every leaf label of T(0) states that B(0) # 0.

Let w = 214 - 1; in other mords, w is the greatest element of V'. Then, every leaf of

S (w) is labeled by ' {P (w) = w)' . From this fact and the assumpticrn ive made in the last

paragraph, it follows that there exists c E V' which is the greatest element whose tree

T(c) contains a path p with label(p) = {p(c) = d}, c < d. Since e-very path of T (d) has

a leaf label { p (d) = d), it suffices to show that T(d) has at least one path p' consistent

with p.

We prune every branch of T (d) that is inconsistent with p. L e t {pred(x)) be a node

of T(d). If p contains the same query, then ive prune al1 outgoing edges except a t most

one edge which agrees with the answer specified in p. If the query i s not asked in p, then

we prune an outgoing edge {y) if p specifies y as the predecessor o f a node other than x.

Note that in this case at most k outgoing edges of {pred(x)) are pruned, and therefore

the node still has a t least 1 VI - Id0m(ai) 1 - j - 1 - k outgoing edges , where j is the depth

of the node. We do similarly for an edge speciS.ing a successor.

It is easy to see that, after the pruning, every node of T (d) reachable from its root

has a t least one outgoing edge. Hence there must be a path from t h e root to a leaf. O

CHAPTER 3. TYPE-2 CHARACTERIZATION

3.4 The Maximization Problems

In this section, w e introduce and study type-2 problems tvith higher verification com-

plexity.

Definition 3.4.1 A type-2 search problem &IAXlMIZER is defined as follows. For

a n instance (a , . x) , let V = IV5lzl and define cuv : V V /rom cr by

M M I M I Z E R (a , x) = (u E V : (Qu E V)av(u) 5 a v (v) } .

iWAX1MIZER is the problem of finding an argument of av that realize the max-

imum value of av. Our definition of the problem &IiVr'lMIZER is inspired by the

function maximizat ion pro blem of Chiari and Krajicek [CK98].

If we place a restriction on the size of the range of orv) so that orv : V ct {O, 1,. . .log [VI),

then we get anot her interesting search problem L-hIAXIMlZE R, which is the type-2

counterpart of the sharply bounded function maximization problem of [CK98].

Definition 3.4.2 A type-2 search problem L-hf A X I M I Z E R i s clefined as follows. For

a n instance (or, x) , let V = lVSIzI . Define or* as

Then,

L -MAXIMIZER(cr , x) = {v E V : (Vu E V)a*(u) 5 a*(u)) .

The 'L' in L--44iVCI&lIZER stands for log, since the range of the function av has

size logarithm in the size of the domain.

From the definitions above, it is clear that rVIAYIMER and L-MAXIikIIZER are

in V2m.

We show the first type-2 characterïzation of E P ~ ~ [oblivious] and E P ~ ~ [oblivious, O (log n].

Theorem 3.4.3

(1) E P ~ ~ [obl ivious] = E (M A X I M I Z E R)

(2) E P ~ ~ [oblivious, O (log n)] = E(L -MAXIrWIZE R)

Proof. We show (1) as follows. First, E(MAXIM1ZER) 2 ~ ~ ~ ~ [o b l i v i o a s] is easy.

If Q se, IVIAXIMIZER, then

Since the function f [X I is polynomial-time, its maximum value can be computed by

making log IV1 = Ig(x)l NP queries by binary search. Since Ig(x)l is bounded by a

polynomial in 1x1, the daim holds.

Next, we show that ~ ~ ~ [~ b l i u i o u s] 2 E(MAX1MIZER) . Let Q E ~ ~ ~ ~ [o b l i v i o u s]

and hl be a polynomial-time, oblivious witness-oracle machine with access to an N P pred-

icate R such that OutputM(x) = Q(x) for a11 x. Let R(a) = (3z)B(a,z) , B E P, be the

witness oracle that M has access to. Note that there exists a constant c such that, for a l

x, if (q, w) is an oracle answer to M7s witness query, then I(q, w)[5 Ixlc + c Moreover,

there exists a polynomial p (n) such that M on x asks a t most ~(1x1) witness queries.

FLu an instance x, 1x1 = TL, and define V = ~3(")-("'+~). Then, every possible (not

necessarily valid) sequence of answers to M's witness queries is encoded by some v E V

of the form v = (q,, wl), (q2, w2), . . . , (qP(lzl), w ~ (~ ~ ~)) . Define f : V H V to be a function

that maps each u E V to a binary number f (v) = bibî . . . bp(lzl), where each bi E {O, 1).

Given a, f (v) is computed by a deterministic polynomial-time machine hl' as follows.

Given v, M' starts simulating M on x. For i = 1,2,. . . ,p(n), when M makes the ith

Nitness query ai, &Ir test mhether qi = 1 and B (ai, wi) holds. If succeeds, Mi sets bi = 1

and continues the simulation using (qi7 wi) as an oracle answer. 0th e N s e , Mt sets bi = O

and use (qi, wi) = (O, 0).

Since A4 is oblivious, a11 correct sequences of oracle answers have t he same ql, q2, . . . , q,(,)

and therefore the same b1b2. - . b p (,) In fact, if we let f* := r n a ~ , ~ ~ j (v) , f (v) = f * if

and only if u = (b L , w1), (b2, wz), . . . , (b,(,), w,(,)) is a sequence of correct oracle answers.

It follows that iVIMIMIZER(f ,p(ld) - Ixlc + c) is the set of al1 possible sequences of

correct oracle answers to M's queries. The claim holds, since

Q (x) = {y : (3u)[v E M h Y l M I Z E R (f , ~(1x1) - (Ixlc + c))

AM on x with a sequence v of answers outputs y]}.

For E(L-MAXIII.IIZER) Ç ~ ~ ~ ~ [o b l i v i o u s , O(1og n)], sirnply observe that the

maximum value of f [x] can be found by binary search using log l g (x) 1 E O (log n) queries.

For the other direction, a reduction similar to the above works becairse p(n) is in O (log n)

in this case. 13

Note that it is trivial that L-iWAXIMIZER se, MAXI21IIZER. We have not

proved that MAXIDfIZER is not exactly reducible to L-MAXIiWIZER, but it must

be the case because of Chiari and Krajicek7s result that is stated in the next chapter.

The relationship between the maximizer problems and theories S$ and Ti of bounded

arithmetic will also be shown below.

Chapter 4

Bounded Arithmetic and Type-2

Search Problems

4.1 Theories of Bounded Arithmetic

We connect our framework with Buss's theories Si and Ti of bounded arithmetic, which

have been shown to be closely linked to complexity classes in the polynomial hierarchy

[Bus86, Bus93, Bus98, Kra951. These theories are defined over the Language LBA of

bounded arithmetic. Let BASIC is the set of asioms that define the meaning of the

nonlogical symbols in LBA .

Definition 4.1.1 [Bus86, Bz~s981 Let <P. be a set of fornulas. The G P I N D axioms are

the formulas

for al1 formulas A E CD. Similady, O-IND axioms are the fonnulas

for al1 A E Q.

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 54

For i 3 O , Si is the theory aziornatized by B A S I C axïorns plus c P - P I N D , and Ti is

the theory axiomatized by BASIC plus CP-IND. [7

The theories Sg and Ti are related to each other in the following way [Bus86]:

However, it is not knotvn whether this hierarchy extends infinitely or collapses at a hnite

level. This question is related to whether the polynomial-tùne hierarchy collapses at a

finite level [Bus95].

Definition 4.1.2 [Bus86, Bus981 Let R(d) be a predicate. We say R i s Ag-defined in

theory T if there is a Cg-formula A(5) and a II!-formula B (Z) such that (1) R has a

defining axiorn R (Z) ct A(?) and (2) T i- (Y?) [A(Z) ti B (Z)] . [7

In other words, a theory T Ag-defines a predicate R if T can prove that R is repre-

sentable by both a C: formula and a II! formula.

We mi t e (3!x) to mean that "there exists a unique x such that ...".

Definition 4.1.3 [Bus86, Bus981 Let f be a function. We Say f is c;-defined in theory

T i f f has a defining axiorn y = f (Z) u A (Z , y) , where A E C! with al1 free variables

indicated, such that T i- ('45) (S ! y) A (Z , y) . O

The following theorems of Buss show that the computational complexity of a function

corresponds to its definabili~ in the hierarchy of bounded arithmetic theories.

Theorem 4.1.4 [Bus86, Bus981

(1) A fvnction i s polynomial-time cornputable if and only if it is Ci-definable in Si.
(2) Let i 2 1. A function is in CI: if and only if it i s Cf -demable in Si.

Theorem 4.1.5 [Bw86 , Bus981

(1) A predicate is polynomial-tirne cornputable i f and only if it is A:-defilaable in Si.
(2) Let i 2 1. A predicate is in A: if and only if it is A!-definable in Si.

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS

Chapter 7 of [Kra951 contains more results of this kind.

4.2 Definability of Search Problems

Since our object of study is search problems, the notion of definability should be extended

to take into account the multiplicity of solutions. Buss, Krajicek, and Takeuti [BKT93]

int roduced the following definit ion.

Definition 4.2.1 [BKT93] Let Q be a total search problem and T be a lheory of bounded

arithrnetic. Then we say Q is Ci-definable in T if and only if for some Ep-formula d (x , y) ,

1- Tl-

Note that, in the above definition, the formula 4(a, b) is not required to hold for every

solution 6 of Q(a); in other words, 4 is not required to represent a defining predicate for

Q. This requirement is not strong enough, since the C:-definability of Q provides a mean-

ingful bound on neither the verification complexity nor the computational complexity of

Q with respect to exact solvability. For example, the search problem U in Example 2.2.4

is Ct-definable in Si, since Si F (Vx)(3y)y = 0.

We need a stronger notion of definability for search problems, which corresponds

to exact solvability. It turns out that strong EC,b-definablity, which Buss, Krajicek, and

Takeuti introduced in [BKT93] but used in a limited way, is precisely what is required

for our purpose. We cal1 it exact definability, because of its obvious connection to exact

many-one reducibility and exact solvability.

Definition 4.2.2 Let Q be a search problem, R be a defining predicate of Q, and 4 a

formula of bounded arithrnetic. Then, we say q5 i s a defining formula of Q if 9 represents

R. cl

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 56

Definition 4.2.3 [BKT93] Let Q be a total search problem and T be a theory. Then we

say Q is exactly c!-defbable in T if and only i f there exists a c:- fonnda 4(x, y) such

that

1. 4(a, b) is a defining formula of Q, and

We know that a predicate is X4 if and only if it is represented by a C: formula

(Theorem 1.3.3). Thus, if Q has a defining predicate R E C:, the condition (1) in the

above definition is automatically satisfied. On the other hand, if Q is exactly c:-definable

in T, then it is immediate that Q E VCP.

In order to simpli@ Our discussion of classes of search problems exactly definable in

theories of bounded arithmetic, we introduce the following notation.

Definition 4.2.4 Let T be a theory of bounded arithmetic. Then d[C(, Tl and ed[C(, Tl

denote the classes of search problerns that are C:-definable and exactly Cq-definable i n T ,

respectiuely. O

The following lemma shows that esact Cgdefinability is the right notion of definability

~ 6 t h respect to exact solvability and Le,.

Lemma 4.2.5 Let T be a theory such that St 2 T . Then, e d [~ : , T] i s closed under $,,.

Proof. Let QI $,, Qz and Q2 E e d [~ i , Tl. Then, there exist functions f , g E 07 such

t hai

Qi(4 = {Y : (34[z E Q a (f (4) A Y = d x , 4lh

mhere '2 E Qz(f (x))' is represented by a C4-formula 4 such that T pioves (Qx) (3 y) 4 (~ , y).

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 57

Since Si c T, T ~b,-define polynomial-time functions f and g; thus, T proves

(V x) (3 y) y = f (x) and (V z , z) (3 y) y = g (x , z) , where ' y = f (x) ' and ' y = g(x, t)' are

represented by C!-formulas. Then, we can construct a CE-formula @ as

where t and s are terrns. It is easy to see that $(a, b) represents Lb E Qi(a)' and

T l- (W(~Y)+(X, Y)- O

Chiari and Krajicek [CK98] obtained maüy interesting results on the relationship be-

tmeen various classes of search problems and classes of C:-definable search problems of

various t heories. Their results are stated in the following framework.

Definition 4.2.6 [CK98] Let T be a theory of bounded arithmetic and S be a class of

search pro blems. S is said to characterize d[Cq, T] i f the following conditions are satisfied:

(1) Every problem Q E S is Z!-definable in T .

(2) I f T k (Vx)(3y)#(x, y) for # E Cf , there exists a search problem Q' E S such that for

euery a E N, i f b E Qr(a) then b i s of the fonn b = (c, di, d2,. . . , dk) and @(a, C) holds. O

The above debition is not satisfactory for Our goal because (i) it is based on the

notion of simple solvability and (ii) the condition (2) is unnecessarily complicated. (i)

can be resolved easily by requiring exact Cf-definability in (1). Since condition (2) is

saying that {y : $(x, y)) is reducible t o Q', (ii) disappears if we always use a class closed

under <,, in place of S.

Our results will be stated in the forrn S = ed[CP, Tl, where S is some search class

closed under se,. Such a result shows a close connection between the class S and the

theory T in the following sense: Q E S if and only if T t- (Vx) (3 ~) [Y E Q (x)] , where

[y E Q (x)] is represented by a C(-formula.

CHAPTER 4. BOUNDED ARITHMETEC AND TYPE-2 SEARCH PROBLEMS

4.3 Exactly ~b,-definable Search Problems

Theorem 4.3.1 ed[C!, S:] = SP fi VC?.

Proof. First, we show that ed[Cb,, Si] & SP n V q . Let Q E ed[~: , Si] represented

by a Ci-formula QQ(a, 6) ; thus, Q E VE:. Since S: proves (V X) (~ ~) $ ~ (X , Y), by Buss's

witness theorem [Bus86, Bus981, there euists f E 0: such that for al1 n E N , dQ(n, f (n))

holds. Thus, Q E SP and Q E VC;.

Next, we prove that any Q in SP n VE? is exactly C1-definable in Si. Because

Q E SP, there exists a polynomial-time function f such that f (x) E Q (x) for ail x. By

(1) of Theorem 4.1.4, there exists a Ci-formula Il>s(a, b) tha t represents 'b = f (a) ' such

that Si l- (Vx) (3y)Sl (r, y). It then easily follows that Si i- (Vz) (3y) [?Lr (z, y) v #Q(z, y)],

where q5q is a Ct-formula that represents Q. Note that b E &(a) = 7,bf(a, 6) V &(a, 6);

thus, the daim holds. a

The following can be shown in a similar way, based on (2) of Theorem 4.1.4.

Theorem 4.3.2 For a n y i 2 2, ed[Cg, Si] = SP'L~ n VCf.

Proof. Ornitted.

Buss and Krajicek [BK941 related PLS and the MC:-consequences of Ti:

Theorem 4.3.3 [BK941

(1) For every Q E PLS, Ti i- (Vx) (3y)dq (z, y) , where & (x, y) i s a CL fornula that

represents ' y E Q (x) '.

(2) If @ E C'; and if T,' t- (Vx)(3y)lC>(x, y), then there is a polynornial-time projection

function f and a PLS problem Q such that whenever b E &(a) , $(a, f (b)) holds.

The above theorem is stated in our framework as follows.

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS

Corollary 4.3.4

(1) PLS ed[Cb,, T:], and

(2) ed[C!, T:] C C[PLS].

We strengthen the above corollary to obtain an exact characterization of ed[C:, Tt].

Theorem 4.3.5 E(ITER) = ed[Ci, Ti].

Proof. Recall that ed[C:, Ti] is closed under 5, (Lemma 4.2.5); therefore, E[PLS] 2

ed[Cf, Ti] follows from (1) above. Since E(ITER) = E[PLS] (Theorem 3.2.5), we have

E (ITER) & ed[Cb,, Ti].

Next, we show that ed[Ci, Ti] E[PLS]. Let Q E ed[Ci, Ti] and let A E NP be a

defining predicate of Q such that b E Q(a) = A(a, b) (3z)B((a, b) , z) . Then, by (2) of

Corollary 4.3.4, there exists Q' E PLS such that Q Sm QI.

We use the technique we used in the proof of Lemma 3.2.13. Let N be a nondeter-

ministic witness-oracle machine with access to Q'. Given x, N computes one solution

y for Q (x) by querying Q' once; note that this is done without nondeterminism. Shen,

N nondeterministically guesses another solution z and a witness w to the NP predicate

' z E Q(x)'. If w mitnesses z E Q(x), then N outputs z and halts. Othenvise, N halts

wkth y in its output tape. Note that OutputN(x) = Q(x).

Suppose N on x requires at most c-bit nondeterministically chosen binary string.

Then, it is not hard to construct a PLS problem Q" such that

f o r al1 O 5 s 5 2'- 1. Thus, a deterministic witness-oracle machine ll1 can simulate N by

making one witness query to Q". It follows that Q 5, Q" and therefore Q E E[PLS].

a

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 60

Let T (a) be a theory corresponding to Ti in the language L U {a), mhere ct is a new

function symbol with no defining auiom, and let CP(cu), i 2 O, be the set of 2:-formulas

in the language LBA U {a}. Then, the above theorem easily relativizes in the following

sense.

Coroiiary 4.3.6 E2(ITER) = ed[Cf (a) , T:(a)].

Proof. Omitted.

Let a : N ct N be any function. Then, 3PIGEON(a) is the formula

where V = ~ 5 1 ~ 1 and ctv : V * V are defined in the same way as in the definition of

P I G E O N (Definition 3.2.9). Note that a is a free variable. Thus, 3PIGEOiV(a) is a

formula which asserts the existence of a solution for PIGEON(a , a) for al1 a E N, that

is, 3PIGEON(cr) is a defining formula for PIGEON.

Similarly, let 3LEAF(ol), 3SOS(a), and 3SINK(a) be defining formulas for LEAF,

SOS, and S INK.

From the Corollaries 3 - 3 5 and 4.3.6, Ive obtain the following unprovability result for

T: (4 -

Corollary 4.3.7 Ti@) does no t proue any of the follouing:

(1) 3PIGEON(a).

(2) 33LEA3'(4,

(3) 3SINK(cu), and

(4) 3SOS(a),

Proof. We argue for (1). Suppose T$ (a) proves 3PIGEON(a) . Shen, by Corollary

4.3.6, P I G E O N E E2(ITER), since 3PIGEON(a) is a defining formula of PIGEON(&, x).

It follows that P I G E O N se, ITER, which contradicts Corollary 3.3.5. CI

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 61

The unprovability of 3 P I G E O N (a) in Si (a) has been known; in fact, Ti (a) does

not prove that there is no injective mapping from 2a to a, a 2 1 [Kra95]. However, we

are not aware of any result on the unprovability of the other combinatorial principles

3 L E A F (a) , 3 S I N K (a) , and 3SOS(a) . Moreover, the way we demonstrated this result

is new: it is obtained by showing that there is no reduction between the corresponding

type-2 search problerns.

Let S$(O:) be a theory corresponding to SJ obtained by adding to the language a nem

functions syrnbol for every function in Of. Note that Si (O?) is consemative over S:

[Bus86, Bus981.

Let Q be a total type-2 search problem and F be a class of functions. Then 3Q(F)

denotes the set of formulas of the form 3Q(f) for every f E F. In other words, 3Q(F) is

the set of defining formulas for Q(f , a) for al1 a E N and f E F.

The following statement appears without a proof in [Kra95]: a search problem is

CI-definable in S J (0 f) +3LEAF(n';) if and only if it can be witnessed by PPA problem

(Theorem 7.5.5). The above statement inspired the following theorem, which esplicitly

connects the type-? problems in [BCE+98] and the theories of bounded arithmetic.

Theorem 4.3.8

Proof. We sketch a proof for (1)) since the rest can be shown analogously. Note that

3 P I G E O N (O f) is the set of formulas that represent defining predicates for problems in

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 62

PIGEON(0;) = PPP. Since Si(ol) + 3PIGEON(nf) is closed uoder se, (Lemma

4.2.5), we have E[PPP] C ed[Ci (O:), S: (O:) + 3PIGEO N(Oy)].

For the other direction, let Q E ed[C! (O?) , S: (O:) + 3PIGEOiV(Oy)]; we show that

Q Inn PIGEON. Note that Q has a defining formula dQ(x, y) E C:(O~) such that

Assume, for simplicity, that the proof of (V X) (~ Y) ~ ~ (X , y) involws only one instance of

3PIGEON(Oy); let us cal1 it 3PIGEON(f). Then,

Si(or) i- P I G E O N (f) 3 (V~)(Ely)q5~(z; y) .

By Buss7s witness theorem [Bus86, Bus981, there exists a deterministic polynomial-time

machine M such that M on (a,w), where w is a witness to 3PIGEON(f) , outputs b

satisfying +Q (a, b) and therefore b E Q(a) . Since w can be obtained by a witness query

to PIGEON, it follows that Q 5, PIGEON.

When the proof of (Vx) (3y) #Q (x, y) contains multiple instances of 3PIGEON(Oy),

Ive obtain witnesses to al1 of them by one witness query to PIGEON. This can be done

because a constant number of instances of PIGEON can be combined in a straight-

fortvard way so that a solution for the combined instance contains solutions for al1 the

instances.

Finally, Q 5, PIGEON can be strengthened to Q se, PIGEON by the techniques

we used in the proof of Theorem 4.3.5. 0

4.4 Exactly defi fin able Search Problems

Chairi and Krajicek [CK98] used their function maximization problern and sharply bounded

function maximization problem to characterize d[Ci,Ti] and partially d [~ : , Si] in the

sense of Definition 4.2.6. Their results inspired our definition of type-2 problems M A X I M I Z E R

and L-MAXIMIZER (Definitions 3.4.1 and 3.4.2) and our type-2characterization of

CHAPTER 4- BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 63

ed[Ci, Ti] and ed[CI, Si] below. Since our characterïzation is based on exact reducibility

and exact dehability, it is slightly stronger than Chain and Krajicek7s results.

We base our result on the following theorem of Krajicek.

Theorem 4.4.1 [Kra951

(1) spNP [wit, O(10g n)] = d[C;, Si], and

(2) spNP [wit] = d [C:, Ti].

Note that (2) is not explicitly stated in (Kra951, but it can be shonn by modikng

Krajicek's proof of (1). We strengthen the above result as below.

Theorem 4.4.2

(1) ~ ~ ~ [o b l i v i o a s , O (log n)] = ed[Ci, St] .

(2) E P ~ ~ [ublivious] = ed [Ci, T:] .

Proof. First, let Q E ~ ~ ~ ~ [o b l i u i u u s , O(log n)] and assume M is a witness-oracle

machine that exactly solves Q by asking O(1og n) witness queries. That Q E e d [~ ! $, Si]

follows directly from Krajicek's proof for (1) of Theorem 4.4.1 (Theorem 6.3.3 of [Kra95]).

The idea is to construct a formula WitCompM(x, w) which States that w encodes a legal

computation of M on x. Note that w contains (possibly incorrect) answers to M's nritness

queries. S: can prove the existence of u with al1 answers correct by proving the existence

of the largest sequence q = 41, 42, . . - , qk, where k E O (log lx[), of yes/no answers, using

the Cb,-LENGTH-MAX principle. The output of 1I.1 on x can be easily extracted from

W.

For (2), this direction can be carried out in Ti using the C!-II/IAX principle.

We show the other direction of (1). Let Q be a search problem defined by a ~2-formula

q!~(z, y) of the form (32. 5 t(x, y))+(x, y, z) , where i, E E I f . Our goal is to show that if

Q E ed[Ci, Si], then Q E E P ~ ~ [obliuious, 0 (log n)]. Assume Q E ed(C2, Si]. Then,

Q E e d [~ ; , Si] C d [~ t , Si] = spNP [wit, O(1og n)] = spNP [~blivious, O(log n].

CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 64

The first inclusion is trivial, and the first equaliw is from Krajicek's theorem above. The

last equality is by Corollary 2.2.14.

Thus, t here exists an O blivious polynornial-t ime nrit ness-oracle machine kf such t hat

(i) OutputM(x) Q(x) for aU x; and (ii) hl on x makes at most clog 1x1 witness queries

to some R E NP. By applying a technique that Buss, Krajicek, and Takeuti used in

[BKT93], we construct another witness-oracle machine &lf with access to an NP-complete

predicate P that exactly solves Q. Given x, fiIf simulâtes hl on x until it is about to halt

Nith some y E Q(x). Adf makes two more queries so that 144' can output every solution

for Q(x) . The first query is to obtain two numbers z, w nondeterministically. This is

done by asking (32, w) [Ir[$ [xlc + c A Iwl $ lxld + d] with some appropriate c, d that

depend on the formula (bQ. Then, Mf tests if z is a solution for Q (x) by ashing whether

l $ (x , z, w) holds, which is an NP question. Finally, Mf outputs z if z E Q(x), and

othenvise M' outputs y, which is obtained by the simulation of A4 on x.

This direction of (2) is similar. 0

Corollary 4.4.3

(1) E(L-&IAXIMIZER) = ed[C!, Si].

(2) E (~ / ~ M I I V ~ I Z E R) = ed[CH, Ti].

Proof. This trivially follonrs from Theorems 3.4.3 and 4.4.2.

The above is the first characterization of e d [~ i , Ti] and ed[Ci, Si].
Note that Chiari and Krajicek [CK98] showed that the oracle function mavimization

problem, is not C$definabIe in a relativized version of the theory Si. Since teh oracle

function maximization problem corresponds to M A X I M I Z E R , the above statement

implies that M A X I M I Z E R $, L-MAXIMIZER.

Chapter 5

Conclusions and Future Works

We developed a new framework for the study of search problems and their definability

in bounded arithmetic. It would be fruitful to extend it further by importing into our

setting more results obtained in the other contexts outlined in Section 1.1. Another

interesting direction is to see if more classes of the form ed[CP, T] for various i's and T's

can be characterized by type-2 search problems. Results in this direction would enable

us to separate theories by exhibiting separations of the type-2 problems. The paper by

Chiari and Krajicek [CK98] is a natural starting point for this direction.

In Section 3.3, we showed that none of LEAF, S I N K , SOS, and PIGEON is

Turing reducible to ITER. However, we do not know whether ITER is reducible to any

of the above. This question is equivalent to the question of whether Si (a) + 3Q(a) is
b

MC;-conserwtive over Ti (a) , where Q is any of the type-2 problems of Beame et. al.

Chiari and Krajicek [CK98] showed that the relativized version of their function

rnaxirnization problem, which is essentially Our type-2 &f AXIAdlZE R problem, is not

Ct-definable in a relativized Si. In our context, it implies tha t M A X I M I Z E R is not

reducible to L-MAXT&llZER. It may be interesting to demonstrate directly the nonex-

istence of reduction between the problems.

Recall that we obtained the equality

(Corollary 4.4.3) by showing t hat both the RHS and ILHS are qua1 to E P ~ ~ [obliuious, O (log n)]

(Theorems 3.4.3 and 4.4.2). It would be interesting rto directly show the equality without

going through E P ~ ~ [obliî)i~us, O(10g n)] . Similarly: it is open whether we can prove

\vit hout going through E P ~ [oblivious] .

Finally, recall that ~ ~ ~ r [z u i t , O(f (TL))] = ~ ~ ~ ~ [o b l i v i o u s , O(f (n))] for any i 2 1 and

any function f (Lemma 22-14), and therefore the crblivious witness-oracle machines are

as powerful as the ordinary witness-oracle machines w i th respect to simple solvability. we

do not know whether E P ~ ~ [wit, O(f (n))] properly ocontains E P ~ : [oblivious, O (f (n))].

Bibliography

[BCEC98] P. Beame, S. A. Cook, J. Edmonds, R. Irnpagliazzo, and T. Pitassi. The

relative complexity of NP search problems. Journal of Cornputer and System

Sciences, 57:3-19, 1998.

S. R. Buss and J. Krajicek. -kn application of Boolean complexity to separation

problems in bounded arithmetic. Proceedings of the London Mathematical

Society, 69:l-27, 1994.

S. R. Buss, J. Krajicek, and G. Takeuti. Provably total functions in bounded

arithmetic theories Ri, U;' and In P. Clote and J. Krajicek, editors, Arith-

metic, Proof Theory, and Computational Complexity: pages 116-161. Oxford

University Press, 1993.

S. R. Buss. Bounded An'thmetic. Bibliopolis, 1986.

S. R. Buss. Relating the Bounded Arithmetic and Polynomial Time Hierar-

chies. Annals of Pure and Applied Logic, 75:67-77, 1995.

S. R. Buss. First-order proof theory of arithmetic. In S. R. Buss, editor,

Handbook of proof theory, pages 79-147. Elsevier Science, 1998.

S. A. Cook, R. Irnpagliazzo, and T. Yamakami. A tight relationship be-

tween generic oracles and type-:! complexity. Information and Computation,

lX'(2): l59-l?O, 1997.

M. Chiari and J. Krajicek. Witnessing functions in bounded arithmetic and

search problems- The Journal of Symbolic Logic, 63:1095-1115, 1998-

S- -4. Cook. The cornplexity of theorem proving procedures. In Proceedings

of the 3rd Annual ACM Symposium o n Theory of Cornputing, pages 83-97,

1971.

M. R. Garey and D. S. Johnson. Cornputers and intractability. W . H . Freeman,

1979.

W. 1. Gasarch, M. W. Krentel, and K. J. Rappoport. OptP as teh normal

behabior of NP-complete problems. Mathematical Systems Theory, 28:487-

514, 1998.

D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local

search? Journal of Cornputer and Sys tem Sciences, 37:79-100, 1988.

J. Krajicek, P. Pudlak, and J. Sgall. Interactive computations of optimal

values. In MFCS'SO, Lecture Notes in Computer Science 452, pages 48-60,

1990.

J. Krajicek. Bounded Arithrnetic, Propositional Logic, and Complexity Theory,

volume 60 of Encyclopedia of Mathematics and Its Applications. Cambridge

University Press, 1995.

M. W. Krentel. The cornplexity of optimization problems. Journal of Corn-

puter and System Sciences, 36:490-509, 1988.

M. W. Krentel. Generalizations of OptP to the polynomial hierarchy. Theo-

retical Computer Science, 97:183-198, 1992.

[MP9 11

[P ~ P ~ O I

[Pap94a]

[Pap94b]

[PY84]

[Se1941

[SP98]

[Sto77]

[Tow 9 O]

[Wra77]

N. Megiddo and C- H. Papadimitriou. On total functions, existence theorerns

and computational complexity. Theoretical Computer Science, 81:317-324,

1991-

C- H. Papadimitriou. On graph-theoretic lemmata and complexity classes. In

Proceedings of the 3ist Annual IEEE Symposium on Foundations of Computer

Science, pages 794-801, 1990.

C. H. Papadimitriou. Computational Complexity- Addison-Wesley, 1994.

C. H. Papadimitriou. On the complesity of the parity argument and other

ineEcient proofs of existence. Journal of Computer and System Sciences,

48:498-532, 1994.

C. H. Papadimitriou and M. Yannakakis. The complexity of facets (and some

facets of complexity). Journal of Computer and System Sciences, 28:244-259,

1984.

A. L. Selman. A taxonomy of complexity classes of functions. Journal of

Compte r and System Sciences, 48:357-381, 1994.

U. Schoning and R. Pruim. Gems of Theoretical Computer Science. Springer-

Verlag, 1998.

L. J- Stockmeyer. The p olynomial-time hierarchy. Theoretical Computer Sci-

ence, 3:l-22, 1977.

M. Townsend. Complexity for type-2 relations. Notre Dame Journal of F o n a l

Logid, 31(2) :241-262, 1990.

C. Wrathall. Complete sets and the polynornial-time hierarchy Theoretical

Computer Science, 3:23-33, 1977.

[Yang71 M. Yannakakis. Computational complexity. In E. Aarts and J. K. Lenstra,

editors, Local Search in Combznatorial Optirnizution, pages 19-55. John Wiley

and Sons Ltd-, 1997.

