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L k  consider a feedforward neural network mode1 rvith hyperpararneters controlling grotips 

of weights. Civen some training data. the posterior distribution of the weights and the 

hyperpararneters can be obtainecl by alternately updat ing the weights wit h hybrid Nonte 

Carlo and sarnpling from the hyperparameters iising Gibbs sampling. Homever. t tiis 

methori becomes slow for networks rvith large hidden layers. We address this prohlem 

by incorporating t h e  hyperparameters into the hybricl .\Ionte Carlo update. However. 

the region of state space under the posterior witti large hyperparameters is tiuge and 

has low probability density. ivhile the region with small hyperpararneters is ver- small 

and verp higti density. -4s hybrid !donte Carlo inherently does not move ivell between 

siicli regions. we reparameterize the weights to make the two regions more compatible. 

only to be hampered by the resulting inability to compute good stepsizes. Yo definite 

improvement results from our efforts. but we diagnose the reasons for that. and suggest 

future direct ions of research. 
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Chapter 1 

Introduction 

1.1 Overview 

:\ ftedforward rietiral nettvork is a nonlinear rnodel that maps an input to a n  oiitpiit. It 

cari be viervetl as a nonparamet ric mode1 iri the sense t hat its parameters canriot easily 

be  interpreted to provide insight into the problem that it is being used for. Neverthrless. 

leedforward neural networks are porverful as with sufficient hidden tinits they can learn to 

approsimate any nonlinear mapping arbitrarily closely (Cybenko. 1989). Partly because 

of this Hesibility. the- have becorne widespread tools used by many practitioners in 

the sciences and engineering. These pract it ioners typically use well-established learning 

techniques like backpropagation (Rumelhart et al.. 1986) or its variants. But  despite the 

multitude of learning met hods already in existence. learning for feedforward networks 

remains an area of active research. 

:\ recent approach to feedforward neural net learning is Bayesian learning (Buntine 

and Weignd. 1991: MacKay. 1991. 1999: Xeal. 1996: Müller and Insua. 1993). This new 

approach can be viewed as a response to the problern of incorporating pnor  knowiedge 

into neural networks. However, the cornputational problems in Bayesian learning are 

cornplex. and none of the  existing techniques are perfect. In the interests of computational 



tractability, both the works of MacKay (1991; 1999) and Buntine and LVeigend (1991) 

assume Gaussian approximations to the posterior distribution over network weights. 

.A more general and Aesible approach is to sample from the posterior distribution of 

the weights. as has been done by Neal (1996) and Blüller and insua (199s). Neal obtains 

samples by alternating hybrid Monte Carlo updates of the weights with Gibbs snmpling 

updates of the hyperparameters. Miller and h u a  also alternately update the  weights 

and Gibbs-sample the hyperparameters. but in addition. t hey observe t hat. given al1 

weights ercept for the hidden-to-output ones. the posterior distribution of the latter is 

simply Gaussian rvhen the data noise is Gaussian. While the other weights still rieed 

to be updated by a more complicated Metropolis step. this does allow thern to  sarnple 

direct ly from the Gaussian distribution of the hidden-to-output weights. Howevrr. as 

will be described later. both methods are expected to become slow for large networks. 

possibly to the point where they become unusable. 

This thesis addresses the above inefficiency for large networks. Specificaily. it is 

concerned with improving on the hybrid Monte Carlo technique used by Neal so that 

both parameters and hyperparameters are updated using hybrid Monte Carlo. 

1.2 The Neural Network Learning Problem 

The rest of this thesis is about feedforward neural networks oniy. so we drop the "feeci- 

forward'* for simplicity. 

in this section. we define the neural network learning problem tliat underlies this 

t hesis. 

Given a set of inputs X = {xc}z,  and targets Y = {yc)z,. a neural network c m  be 

used to mode1 the relationship between them so that: 

where f(-: GV) is the  function computed by the neural network with weights W .  This 



modeling is achieved by .'trainingq' the weights I.V using the  training data consisting of 

the inputs S and the targets Y .  Once training is complete. the neural net can be used 

to predict targets given previously unseen values of inputs. 

Conventionally? the learning process is viewed as an optirnization problem where the 

weights are learned using some kind of gradient descent method on an error function such 

The result of this procedure is a single optimal set of weights CC:,, that minimizes 

the error. This  single set of weights is then used for future predictions from a new input. 

Tlir convent ionnlly-t rained network predict ion is t hus: 

1.3 Bayesian Approach to Neural Net Learning 

The Bayesian approach to neural network !earning differs fundamentally from the con- 

ventional optirnization approach in that. rather than obtaining a single "best" set of 

weights from the training process. a probability distribution over the weights is obtained 

instead. 

1.3.1 B ayesian Inference 

Cenerally speaking. Bayesian inference is a way by which unknown properties of a system 

may be inferred from observations. In the Bayesian inference framework. we mode1 the 

obserlations z as being generated by some mode1 mit h unobserved parameters <. Specif- 

ically. we corne up with a likelihood function p ( : ( i ) .  the probability of the observable 

state z given a particular setting for the  parameter i. Nest, we decide on p ( i ) .  the prior 

probability distribution over parameters C. 



With these two functions in han& ive use Bayes' rule to  infer the posterior probability 

that the parameters have the value < when we observe the  state z :  

Bayesian learnirig can be applied to neural networks in the 

the targets as the neural network output f(x; IV) plus some 

folloiving way. W e  tnodel 

noise, which defines the 

likelihood p(1-1 CI;. S). and we assume some lorm for the prior distribiition of t h e  weights 

p(LCV). The posterior distribution of the weights is then: 

where we have set p (C Ip IS)  = P ( W )  since the prior distribution of the  rveights does not 

depend on the inputs. p(CVIS. \.*) in  Eqn. 1.5 is the probability distribution over weights 

t hat we infer in the Bayesian frarnework. 

1.3.2 A Simple Example 

As a simple esample. assuming that the noise in the output of each unit is Gaiissian with 

fised standard deviation a. we get for a net with iV, oiitpiits: 

And assuming a simple priot ivhere al1 the weights CC' = iWi}>, have Gaussian 

dist ribitt ion of ftxed inverse variance r: 

This gives the posterior distribution for CV: 

1 IV, 

w: - -Clf(xC: CV) - y c 1 2  
i=t 

?a2 
c=l 



Here, the symbol cc denotes proportionality. CVe have dropped t h e  normalizing con- 

s tant  l/p(Yl.Y) as well as factors not dependent on the weights. This is because we are 

considering the posterior distribution over the weights only in this simple model. with a 

and  r fised. 

The predict ion of the net trained using Bayesian inference is obtained as the espected 

oittpiit over al1 possible weight settings. weighted hy t heir posterior probabilitirs: 

Cornparecl to Eqri. 1.3. 

1.3.4 Determining 

J 

Bayesian predict ion is clearly more complicated. 

the Hyperparameters From the Data 

The inverse variance of the weights r is called a hyperparameter because it is a parameter 

tliat coritrols the prior distribution of the parameters I V ; .  In practice. it is reasorinble to 

let the huperparanieters be determined from the data. For instance. the input-tu-hidden 

weights for one training set might need to be larger t han for anot her training set hecaiise 

its otitputs Vary more rapidly. Evidently. it is possible to infer the  hyperparameters from 

the  training data. 

But we infer the  hyperparameters not just because it is possible. but because it is 

desirable as w l l .  This is because it is difficult for a human operator to guess a good sett ing 

of the hyperparameters. but it is easier to guess a prior distri but ion for hyperparameters. 

e-g.. in terms of its mean and some measure of its spread. Moreover. allowing the precision 

r t o  Vary in Eqn. 1.7 couples the weights in t heir prior distribution and allows for a richer 

prior. whereas al1 the weights would be independent in t heir pnor  if r were fised. Details 

of the incorporation of the hyperparameters into the  sampiing procedure will be given in 

later chapters. 



Once we have the posterior distribution of the weights and the hyperparameters. the 

network has been -trained". Predictions from the net now involve the joint posterior 

distribution of the weights and the hyperparameters Q: 

fs(x) = E[f (x: kt: Q ) ] ~ ~ - , a l s , y  = f (x: Cv)p(CK 9 1-y- l-)dCC-dQ 1 
T hc aborc intcgïa! ü ~ ü î ! ! : i  cznnot Y c ~iid:;t ically ûbtai ricd Li rieu r d  iirtivur k iiiuJrls. 

Xote that a. the variance of the data. is often also regarded as a hyperparameter 

because the role it plays in controlling the network error is sirnilar to that played by 

ot her hyperparameters in controlling t heir respective iveights. 

1.4 Motivation 

The practicality of the Bayesian frameivork hingcs on the existence of compiitationally 

efficient ways to evaluate or approximate Eqn. 1.10. The main problem is that the 

posterior distribution p(LK QIS. Y )  is often such that the integral in Eqn. 1.10 cannot 

be performed analyt ically. 

In the interests of computationai feasibility. Buntine and Weigend (1991) and .\lacIiay 

(1991; 1999) approximate the  posterior distribution of the weights and hyperpararneters 

as a Gaussian distribution. L'nfortiinately, it usually cannot be seen in advance from the 

training data if a Gaussian clistribut ion is a teasonable approximation to the posterior 

distribution. For instance. for a small network that has just enough hidden units to rnodel 

some given data. we would espect that. ignoring multiple modes due to units swapping 

roles. the posterior distribution is peaked at a single mode because each unit has a well- 

constrained role to play in the mapping. In such a case, one might reasonably espect the 

posterior to be approximately Gaussian. Hoivever. when there are more hidden units. 

units are no longer so constrained, and the posterior distribution will be broader in ways 

that  do not necessarily retain a Gaussian appearance. 



Neal's (1996) and Müller and Insua's (1998) approach to the problern is to sample from 

the posterior distribution using àlarkov chain Monte Carlo ('VICMC) techniqiies. hICh[C 

techniques do not approximate the posterior distribution as a Gaussian. but instead 

sample faithfully froni its true form. With n samples frorn the posterior distribution. ive 

can obtain the espected output of the net as: 

In order for this method to be effective. each sample (CC;. Q i )  must be as inclependent 

of the previous sample as possible. A common problem of hICSIC techniques is that 

samples can be highly correlatrd. in which case even though they are drawn from the 

correct dist ribiit ion. t hey sample the distribution very slowly. and a litige numbrr of 

saniples might be rieeded For reliable estirnates. In severe cases. the method becomes 

irifeasible for practical use. The LICSIC technique iised by Neal faces ttiis problem wheri 

the niimber of hiciden units becomes large. His method alternates between iising hybrid 

SIonte Carlo to update the network parameters. and Gibbs sarnpling to sample the 

hrperparameters. Cn fort iinately. it is t his alternat ion between tipdat ing t h e  parameters 

and the hyperparameters that causes high correlations from one sample to the nest as 

the  niirnber of hidden units becornes large. 

The root of this inefficiency is that. tluring each hybrid Monte Carlo process thar 

yields one sarnple of the weights. the hyperparameters are held fixed. This would not 

be a problem if. to obtain the  nest sample of the weights. the hyperpararneters can be 

shifted to an uncorrelated value. However. because the hyperparameters are updated 

using Gibbs sampling given the current values of the weights. t hey are "pinneci" and 

unable to move much. The iarger the number of hidden units. the greater t h e  pinning 

effect is. 

Müller and Insua's method suffers from the same inefficiency as it also alternates 

Gibbs sampling of the hyperparameters with Markov c h a h  updates of the network pa- 

rameters. 



This problem is the motivation for this thesis. In this thesis. we propose antl inves- 

tigate a modification to the hybrid Monte Carlo technique used by Neal. Specifically. 

rather than updating the weights by hybrid Monte Carlo and the hyperparameters by 

Gibbç sampling, rve update both the weights and the hyperparameters using hybrid 

Monte Carlo. The idea is that, because both the weights and the hyperparameters are 

now changing at  the sarne time, ive no longer have the pinning effect. and hvbrid Monte 

Carlo shoiild t hen be able to produce sarnples t hat move miich more efficient ly t hrough 

the posterior distribution. 

Of course one might ask mhy we would want to ilse large hidden layers in the first 

place. There are several reasons for this. Firstly. since a neural network is a nonpara- 

metric model. it makes sense when modelling some data to ilse a lot of hidden iinits in 

order to maximize the network's porver of representation. Ttiat is. we want the functioti 

compiiteci by the neural network to not be constrained by there bcing too few iinits. antl 

be deterrnined instead by the clata. Secondly. small numbers of hiclden iinits often leacls 

to local masima in the posterior distribution of the weights because the fcw available 

hitlden units can get trapped into representing stiboptimal feattlres in the data. leaving 

no spare *buniised" iinits to seek out the important featiires. Using a larger hidden layer 

tends to connect the multiple modes into ridges and thus improves mobility. Finally. in 

his book. Xeal (1996) has shown that the prior distribution of a neural network becornes 

tractable for infinite-sized hidden Iayers. So. using many hidden units allows For a more 

precise specification of a neural network's prior distribution. Incidentallp. overfitting is 

not a problem in the first justification given above because Neal's results show hoiv to 

assign appropriate priors for increasing network size. 

This thesis is organized as follows. As an effort to make this a self-contained work. 

Chapter 2 Iays down the background material on hIarkov chains and the hybrid Monte 

Carlo met hod that is necessary and hopefully sufficient to undentand the test of what 

follows. Chapter 3 describes the original method of Neal. Chapter 4 presents the new 



method that is the subject of this thesis. Results of the investigations of the new method 

are presented in Chapter 5. followed by the discussions and conclusions in the final 

chapter. 



Chapter 2 

The Hybrid Monte Carlo Method 

In this chapter. we introdiice the  hybrid Monte Carlo method. which is the  main methocl 

by which ive sample from the  posterior distribution of a neural network. 

2.1 Background on Markov chah Monte Carlo Sam- 

pling 

In th is  section. ive present sorne necessary background on 4Iarkov chains a t  a level of 

technical detail sufficient t o  esplain the rest of this work. More detailed presentations 

may be focinci elsewhere. such as Feller's (1966) book. 

Definition 1 (Markov chah) .4 Markou chain is a series of random variables Su. Si. 

-Y2. .... etc. .  such that: 

That is. gioen .Yi-i. Si is independent of al1 "earlier' -Y 'S. 

A LCfarkov chah is defined by the dute space S i n  which the Xi 's live. the distribution 

over the initial state P ( X a ) ,  and the transition probability Iunction P ( X i  laYi-, ). 



For us. t h e  utility of blarkov chains lies in the fact that, under the right conditions. 

t hey converge to some probability distribution regardless of starting state. In ot her 

words. independent of starting state. in the limit of large n. Sn will become a sample 

from a particular distribution Q(r). This allows us to obtain samples from posterior 

distributions that arise in probabilistic inference. 

3çluii. rrc prcaaiit a ilirurriii ub~a i i i r r l  Iruiii Ruscii~iiai (i39Çi ~ i i a ~  kiis u s  ~ i i r  coii- 

ciitions iinder which a àlarkov chain converges to a distribution. In this presentation. 

probability density functions will be used in two ways: wi th  a state as an argument. or 

rvitti a set as an  argument. Thus. p ( x )  will refer to the probabiiity density at r. while 

p(.-l) rvill mean t h e  total probability mass in the set -4. First. we need the following 

definitions. Let S be the state space of the hIarkov chain. 

Definition 2 (Multitransition probability) For x E .S and .4 C .S. ii7e d+tc t h e  

rnultitrarisition probnbility Tn(s.  -4) as the probulility of eriding u p  in the set .-I after n 

transitions uccortiing to  the .\larkou transition probabilities yioen that toe starttd a t  stutr 

r .  Tn(x. -4) is really P(.Yn E .-Il.Yu = J ) .  Fur one transition. tue ulso rrrite T(x. .-\) 

rather thun TL(x .  -4). 

Definition 3 (Invariant distribution) n(r) is an invariant distribution of n .Markoc 

chain taîth transitions T(s. -4) if. Jor al1 sets -4 C Sr 

where dg is a set of infinitesimal volume at date y.  CFe also say that the .Clarkoc chain 

letlws ~ ( s )  inuariant. 

Xote that a blarkov chah may not have an invariant distribution. and if it has one. 

it rnay not be unique. 



Definition 4 (Total variation distance) The total variation distance l e t  ween t rro 

probability distributions p und q on S is giuen by: 

Suppose we start a hlarkov chain from state x E S. Then. depending on the history 

of transitions it takes. it will take varying numbers of steps to enter the set -4 C S of 

nonzero volume. if it does at all. Let r;l be the history-dependent random variable that 

denotes the first time the Markov chain enters -4. i.e.. r.4 = inf{n 2 L; .Y, E A).  Note 

that 7.4 coiild eqiial infinity. Then. we have the following important definitions about the 

mixing properties of a Markov chain: 

Definition 5 (Irreducibility) -4 .Ilarkou chain is irreducible $/or un9 set .-I C 01 
nonrero iwlurn~. P,(T..\ < x)  > O /or al1 stnrting points x E S .  Thnt is. nny  stnrtirlg 

point s hns some probability of going to a n y  nonzero colume uiithin n finiir rrurnbcr 01 

s t eps .  

Definition 6 (Aperiodicity) -4 .Ilarkov chain is  aperiodic i f  there does no[ erist a 

partition of the d a t e  space S = Si U & U ... U Sm /or sonle m 2 2 such that T ( r .  SE+,) = 

L for ail r E S, roith i = 1 to n - 1. and T (x .S i )  = 1 for al1 x E -C,. 

If a hlarkov chain has an invariant distribution. and it is both irreducible and ape- 

riodic. t hen it converges to t hat invariant distri but ion. This t heorem, presented below 

withoiit proof. is a slightly modified version of the one given by Rosenthal (L999). who 

also proves it. 

Theorem 1 (Markov Chain Convergence) Let T ( x .  -4) be the transition probabilities 

for an irreducibie. apen'odic Markou chain having inoariant distribution n(x) on  n state 

space S .  Then. for al1 x E S such that ~ ( x )  fi O: 

lim ITn(x, -) - n( - )  1 = O 
n+oa 



That is. as the number of transitions goes to infniity, the total variation distance 

betuieen the invariant distribution and the distribution of the .\.larkov chain started j?om 

ariy date  x such that ~ ( x )  # O goes to O. 

Usirig the above theorern. we can construct Markov chains that converge to a clesired 

distribution by ensuring that it is aperiodic. irreducible and has the target distribution as 

a n  invariant distribution. However. whiie the above theorern giiarantres convergence in 

ttieory. it does not say anything about the speed with which convergence is achieved. This 

is important as the initial portion of a Xlarkov chain is typically not representative of the 

invariant distribution, and needs to be discardecl in order not to bias the distribution. 

lloreover. a badly-constructed Markov chain can converge far too slowly to be cisefiil 

iri practice. Yevertheless. having one that converges to the correct distribution. a n d  

knowing t hat it does. is a good start. 

:\ Ilarkov ctiain t hat is const ructed to generate samples from sonie target distribution 

is kriown in t h e  literatiire as a hlarkov cliain Monte Carlo (!vIChIC) method. An esample 

of an SICSIC method that is commonly used for rniiltivariate distributions is Gibbs 

sampling. Gibbs sarnpling consists of iipdate steps where each variable is iipdated in 

turn. During each update. a variable is replaced by a sample frorn its target rlistributiori 

conditional on al1 the other variables having their current values. ?lote that the new 

\allie of the variable is chosen mithout reference to the old value it replaces. This leaves 

the desired distribution invariant because the resiilting rnultivariate state is an outcome 

drawn according to the t a g e t  distribution. Furthermore. because al1 values of a variable 

have non-zero probability of being generated. the met hod is irreduci ble and aperiodic so 

long as al1 the variables get updated at some point. 

Although it is conceptually simple. Gibbs sampling requires that one is able to sample 

frorn the conditional distribution of each variable. For complicated distributions like the 

neural network posteriors in this thesis. this is usually not possible. Other schemes exist 

that  do not have this requirement. Beloiv. we present the Metropolis algorithrn with 



simple proposals. which requires only that we be able to evaluate the target probability 

density at a given state, but whose weaknesses will motivate the more sophisticated 

hybrid Monte Car10 method used in this thesis. 

2.2 The Metropolis Algorithm with Simple Propos- 

als 

The Metropolis algorithm (Metropolis e t  al.. 1953) is a well-known algorithm for con- 

structing a Markov c h a h  w i t h  a desired invariant distribution. 

Let ?(S) be the desired invariant distribution. Suppose oiir hIarkov chain ciirrently 

has stnte .Y,. The Met ropolis algorithm amounts to the following 4larkov chain transit ion 

ride. First. propose a transition to a new state .Y: from the current state Si. where the 

proposa1 probability density .II(.\',. .Y:) must be symmetric. thrrt is: 

.i.I(S,. S,') is the probability density of going to Si given that ive were originally nt S,. 

Yext. accept the proposed state as the next Markov chain state S,+, with  the following 

probability: 

Qaccept) = min 

I l  we reject. the state .Y,+, is set to b e  the previous state -Yi. 

One can show that the hIetropolis algorithm guarantees that the target distribution 

+Y) is an invariant distribution of the Markov chain. However. it does not guarantee 

t hat the Markov chah  is irreducible and aperiodic. 

Let us consider t he  performance of the Metropolis algorithm in sampling From some 

target distribution when we use a simple Gaussian proposal with a fixed covariance E 



centred on t he  current point -Y;: 

P(?i ( )  = 
1 

exp --(A': - s ~ ~ ~ ~ - ~ ( J I  - si> 
( ~ T I X I ) J / ~  [ :  1 

mhere d is the dimensionality of the state space. This example will illuminate the key 

issues in sampling a distribution with the Metropolis algorithm. 

If  the variance of' the Gaussian proposals are too large compared with the width of the 

target clist ri but ion. the Met ropolis algorit hm almost always rejects. as proposals iisually 

end iip in regions of lotv target probability. Clearly. this may lead to a slow exploration of 

the state space. and a proposal with a srnaller variance and higher acceptance rate may be 

better. Indeed. with the exception of special cases like two-dimensional Gaussian target 

distributions. fairly high acceptarice rates (z 0.5) are better than very low acceptance 

rates. But in order to keep the acceptance rate high. the standard deviation of the 

proposai distribution must be of a size comparable to the distribution's thinnest cross 

sectiori. and JO the steps taken rnust be very small cornpared to the overall tlistribiition 

if t he  distribution is very thin in one direction. but very long in others. 

Thus. the first problem is that the presence of a long. thin regiori in a distribution 

constrains such a scheme to take steps which may be ver- sniall conipared to the size 

of the overall distribution. This by itself is not so bad if the direction of the next 

step is somehuw correlated ivith that of the first. However. it is not. and that is the 

second problem: the next step is chosen independently of the first. and because it has 

the possibility of doubling back on the first step. a randorn walk results. This effect is 

illustrateci in Fig. 2.1. 

ive eespect that the posterior distribution of a neural network's weights is cornplicated 

under most circumstances. and might potent ially have long. narrow regions. Thus. to 

sample from the  posterior distribution of a neural network using the Metropolis algo- 

rithm with Gaussian proposals. ive would need to use proposal distributions with small 

tariances, This leads to inefficient random walks as described above. 

A rnethod that is more appropriate for the complicated posteriors seen in neural 



Figure 2.1: tlltistration of random walk when iising the 'vletropolis algorithm with sim- 

ple Gaussian proposals to esplore a two dimensional Gaussian distribution. Mere. the  

standard deviation of the Gaussian proposals was 0.05. and of the  200 samples obtained. 

there were 14 rejections. (Large steps are actually more efficient for the special case of 

a two-dimensional Gaussian target distribution: this figure serves as an illustration of 

random walks o n l . )  



network models is the hybrid Monte Carlo algorithm. which addresses the randorn rvalk 

problem by having auxiliary momentum variables that allow it to keep going in the 

same direction for many steps. This rneans that. in the  case of hybrid Monte Carlo. the 

Metropolis rejection test is applied only after many steps to give it a chance at travelling 

a long distance. 

2.3 The Hybrid Monte Carlo Method 

The  tiybricl hlonte Carlo niethod. first iised in physics by Duane el  al. (19s;). can br 

thoiight of as a .LIetropolis algorithm with a sophisticated proposal. Ir i  this section. 

i v e  describe how the hybrid Monte Carlo method works. Neal (1993. 1996) has rvritten 

releiant expositions of ttiis technique. but we incliide it here for completeriess. LVe d l  

lise t tie synibols C and C' to denote normalizing constants. 

In hybrid LIonte Carlo. we associate a physical system with the distribirtiori that 

Ive want to sample from. In esserice. we simulate t h e  movement of a particle movirig 

in a potetitial energy well eqiial to the  negative log of the probabiiity density for the 

distribution that we want to sample Frorn. Each iteration consists of randomizing the 

velocity of this particle. simulating its motion for sorne time. and tlien obtaining its 

position. which becomes a nerv sample. 

Suppose that Ive wish to sample lrom the distribution P(q).  where q E !Rd. !Rd is 

then the state space of Our associated physical system. and q is a s tate  of t h e  system. 

LVe augment each state variable qi with a momentum variable pi .  and we define the 

Karniltonian: 

W b p )  = E(q) + h'(p) 

where the potential energy E(q) is obtained from the desired distribution as: 

E(q)  = - log P(q) - log Z 



for any choice of 2. and the kinetic energy K(p) is defined rvit h the set of masses {mi):=, : 

Hybrid Monte Carlo allows us to set up a Markov chain that converges to C1esp(- E(q)- 

Ii(p))  as its iiniqiie invariant distribution. By ignoring the values of p, ive obtain samples 

of q drawn from the target distribution P(q). since this is the marginal distribution. 

In  the hybritl Monte Carlo met hod. we simulate the time evoliition of the physical 

system mith the above Hamiltonian using Hamiltonian dynamics. which is given by: 

nt ?ni 

Let ils assume for nom that we have the ability to do the simulation 114th perfrçt 

acciiracy. Since Hamiltonian dynamics leaves H invariant and keeps phase space volume 

constant (see :\ppendis A ) .  simttlating the system over anp fised length of time yields 

a new pair (q. p )  that leaves any distribtition that is a function of H invariant. In 

particiilar. it leaves C1esp(-H(q. p)) = Ciexp(- E(q) - l\'(p)) invariant. 

However. a 5larkov chain that consists of only this update is not irrediicible. as al1 

points generated from a starting point never leave a hypershell of constant K. thiis rio- 

lating the irredocibility requirement for Thm 1. To rectify this situation. we tipdate the 

momentum variables in siich a rvay that the Markov chain has some chance OF reaching 

al1 the other values of H after some number of iterations. Specifically. before the simu- 

lation of Hamiltonian dynamics. we replace al1 the mornentum variables by new values 

drawn from the distribut ion C exp(-K(p)). Again. t his update Ieaves the distribution 

Cr exp( - E(q) - Iï( p ) )  invariant since it draws p  from the correct conditional distribution. 

which happens to be independent of q. 

So the  joint update consisting of the momentum update followed by the Hamiltonian 

dynamics simulation is a Markov c h a h  that leaves Cfexp(-E(q) - K(p))  invariant. If 

we can construct such a Markov chain and prove that it is irreducible and aperiodic, 



then we have a LIarkov chain that converges to the desired distribution C'expi-E(q) - 

I i (p)) .  and we can obtain the desired samples by ignoring p. Moreover. if. during the 

Hamiltonian simulation. n e  follow the dynamical trajectory of a state for a long time. ive  

rnight obtain a s tate  that is much less correlated with the original state than a !vletropolis 

algorit hm wit h simple proposals. 

L7.e The mcth~d pr~scntcd thüs hr is zct the actüa! h:;Srid !.lon:c Cx!o dgcrithm. ,.,, 

it contains al1 the  essential ideas. What is different about hybrid Monte Carlo is that. in 

reality ive are unable to simulate Hamiltonian dynamics perfectly. Owing to the fact that 

neural netivork models are bighly complez and so lead to non-inteçrable Haniiltonians. 

rve ha\-e to settle for an approsimate discretized simulation of Hamiltonian dyriamics. 

followed by a 'rletropolis rejection test tha t  ensures that C'exp(- H )  is kept invariaut. 

A s  before. t tie update consisting of moment um resarnpling followed by the simiilat ion 

keeps the  desired distribution C' esp(- H )  invariant. The conditions uncler whicli t his 

SIarkov ctiain is irrediicible and aperiodic depends on its details. and ive delav disciissing 

t his tint i l  Section 2.3.3.  

Finally. we note that the discretized simulation is now also a Metropolis proposal. 

with the probability of rejection increasing as the simulation error as measured by the 

rise in H increases. When we do the simulation well. me keep H alrnost invariant over long 

trajectories. so it is in Our interests to  do the simulation as well as we c m  in order to have 

a high acceptance rate. even though simulation errors are corrected by the Sletropolis 

rejectiori test to give the esact desired distribution. 

2.3.1 Leapfkog Propos& 

Because the discretized simulation used as a Met ropolis proposal is determinist ic. the 

standard reversi bility condit ion for Metropolis proposals ( Eqn. 2.5)  does not apply. 

Instead. the equivalent reversibility conditions for deterministic proposals are t hat the 

mapping that is the Metropolis proposa1 is its omn inverse, and that it has Jacobian 1. 



That is: 

Theorem 2 (Deterministic Proposals for Metropolis Algorithm) IfY = M(X) 

is a deterministic mapping that satisfies the truo conditions: 

= 1 (volume conservation) 

then by accepting the update X + M(X) with probability rnin(l. n(M(X))/;;(X)) and 

rejecting it othencise. the distribulion r;(X) is le f i  in pariant. 

CVe give the proof of this in Appendix B. 

To satisfy the two conditions of voliime conservation and reversibility. we use a detcr- 

rninistic proposal composed of *'leapfrog updates" to simulate the Hamiltonian dynamics 

by performing a trajectory of 1 steps each lasting r tirne. .At the end of each trajectory. 

ive negate the rnomenttim p. Each leapfrog iipdate consists of: 

€ r a E  
pi(t + = pi(t) - .-(q(t)) for each i = l..d - L dqi . 

r d E  
~ i ( t + c )  = p i ( t  + ,) - r-(q(t  + c ) )  for each i = L..d - ? d q i  

Note that. in the above scheme. all the components are updated before rnoving on 

to the  next line. For instance. al1 the components of p i ( t  + $) are calculated before t h e  

update for q is computed. 

To see that the Leapfrop update satisfies the volume conservation condition. Ive note 

that t h e  change in each component of each state variable does not depend on itself. and 

so each component's update amounts to  a shear. which is a volume-preserving trans- 

formation. and which therefore has Jacobian 1. This is discussed in greater detail in 

Appendix C. 



Also. it is easy to check that the negation of the momentum at the end of a leapfrog 

trajectory of multiple leapfrog steps means that. if a trajectory takes us from point .A to 

point B. then starting at B takes us back to -4. Thus. leapfrog trajectories also satisfy 

the reversibitity condition. 

We summarize the algorithm for the hybrid Monte Carlo in Algorithm 1 and Algo- 

replaceci by resampling before the next leapfrog t rajectory anyways. 

The algorithm disciissed thus far avoids random walks by allowirig long trajectory 

lerigths. However. t tie actiial algorit hm implemented by Neal ( 1996) has a n  aclditional 

optimization of the stepsizes that estimates the local second derivative of the potential 

energ? in order to take steps t hat are appropriatrly scaled in the varioils cliniensiori. This 

is disciissed nest . 

2.3.2 Stepsize Selection 

In iising the hybrid Monte Carlo methoci. the question of what values to choose for the 

stepsize c and for the masses 171, naturally arises. -4s we stiall see. it turns out that 

choosing t h e  masses is eqiiivalent to choosing different stepsizes in different dimensions 

of the state variable. and the careful choice of these stepsizes is necessary for hybrid 

Monte Carlo to perform well. 

I t  is clear frorn Eqn. 2.14 that. since 6 is the tirnestep of a discretized simulation 

of Harniltonian dynamics, large values of c cause an inaccurate simc!ztion so that H 

can wander Far from its initial value. In particular. such an inïkccurate sirnulation will 

typically land the proposed state in a region of Iow target probabilitp. This is analogous to 

using a Gaussian proposa1 with too large a variance in the Metropolis algorit hm evample 

of Section 2.2. and so having to  reject frequently. Thus. keeping rejection rates low 

requires careful selection of e that is Low enough, and yet not so low that we explore the 

distribut ion laboriously. 



Algorithm 1 HybridblonteCarlo(nsamples. 1. E. q i n i l )  
* 

for each component J do 

p: t :V(rnean = O. variance = m,) 

end for 

for i = 1 to nsnmples do 

for each component j do 

p: t N(mean = O. variance = mj)  

end for 

pL - pl 

9' +- qL-l 

for j = I to I do 

(q'. p') t Leap/rogC'pdate(ql. pl. E )  

end for 

if (-[O. 11 > min(1. exp( - H(qb. p' ) + H(ql-l . pi-'))] then 

q1 + q4-' 

P' + PI 

end if 

end for 

nsomplcs Return {q'. pi)i=o 



Algorithm 2 LeapfrogUpdate(q, p, E )  

for each component i do 

end for 

for each component i do 

end for 

for each component i do 

pi t pi - ( € 1 2 )  x il( E/ i I q ; ) ( q )  

end for 

Ret urn q. p 

-4s clescribed by Yeal (1990). for a toy quadratic Hamiltonian of the forni: 

H diverges iinder the leapfrog discretization if a stepsize é > 20 is used. whereas H stays 

bountlell if c < ?a. To transfer this result to a general non-quadratic H(q. p) .  we note 

t hat . near equilibrium. samples are usually obtained near local minima of E ( q ) .  where it 

can be approximated by its Taylor expansion to second order. Thus. ive expect a stepsize 

e - (i)'E/&&'12 to be appropriate near equilibrium. 

In the case tvhere the state space is multi-dimensional but the Taylor expansion to 

second order has no correlations between its dimensions. we could set: 

in order to prevent the leapfrog simulation from diverging. But if the Taylor expansion 

has correlations between its dimensions. the above might not be srnall enough. as the 

s t ability of the leapfrog updates is const rained by the narrowest cross-sect ion. w hich 

might not be axis-aligned at all. In general. the stepsize r has to be adjusted dotvnwards 



by different arnounts depending on the shape and orientation of the energy function. To 

take this into account. we introduce an operator-defined tuning parameter O. which we 

cal1 the stepsize adjustment factor. and which controls the stepsizes as follows: 

. .. 
tiowever. choosing the same st epsize to use in ail direct ions may cause slow. random 

waik-like esplorat ion in t hose direct ions unless we use ver- long trajectories. wliich ni- 

be unnecessarily computationally intensive. The underlying problem is that of making a 

move t hat is compatible mith the local length scales of the distribution. It  is the same 

problem t hat we encountered earlier in considering the blet ropolis algori t hm wit h simple 

proposais. but iincler a slightly different guise. 

Clearly. i t is preferab le t O I ise different and appropriate stepsizes for eac ti direct im. 

the \aliies of which ive choose by looking st the local length scales of t he  distribution. 

Ideùlly. ive woiild like to set the stepsize for direction i. r, .  basecl on the rviclth of the 

potential energy bowl in the direction 

Horvever. one may wonder i f  the leapfrog iipdate with different stepsizes for tlifferent 

components still simdates Hamiltonian dynamics. The answer is that the masses are 

the extra degrees of freedom t hat enable us to implement different stepsizes in clifferent 

directions and still keep H approximately constant. To see this. ive first note that. if  me 

rewrite the leapfrog equations in terms of Pi pi/@. they become: 



We set the stepsizes ei c l f i .  and rewrite the leapfrog updates as: 

rve work in terms of rescaled rnornenta. Shoiild we choose to. we can always recover the 

olil niomenta aftrr sri iipdate. But rather than using the original leapfrog upclates. we 

can work iri  terms of pi using the new mas-absorbed updates. CVe note the following 

important facts about one mas-absorbed update of q and p tising Eqns. 2.20: 

Fact 1 Each mas-nbsorbed leupjmg update Ceeps H(q. p)  = E ( q )  + c<=[ Pi>/? apprr~r i -  

nlntrly incariarit. Th is  is  because it keeps H(q.  p )  = E ( q )  + xfGI pf/.Lrni upprorirrlafcly 

irirnriant. und the t i ~ w  H > are equal. 

Fact 2 Earh rnass-ubsorbed leapjrog irpdate conserves phase spacr colurne in the s taic  

spact (q. p)  sinre pi is relatcd t o  pi merely b t ~  the scale fuctor fi. This ho1d.s if thr c ,  S 

are a t t  indeperideritlg of the currenl value o j q  or  p. 

Fact 3 Each mass-(~bsorbed leapfrog update is reuersible su long as the c, 2 are set i~yithout 

us i rq  the current  values of q and p. since these are different at  the beginnirrg and ai the 

end of each s t c p .  

In view of these three facts. 

instead of p. Before the leapfrog 

we have the following revised algorit hm that stores 0 

updates. ive estirnate the stepsize ci: 

independently of the current state using some probiern-dependent heuristic. The leapfrog 

trajectory now consists of rnass-absorbed updates. at the end of which we apply the 

Metropolis rejection test using the Harniltonian H(qt fi) = E ( q )  + c:=, j : /2 .  Since the 



proposais in the (q, p) state space are reversible and conserve phase space volume. the 

Metropolis rejection test can be used to produce an update t hat keeps exp(- H(q. p)) 

invariant. Thus. me have a Markov chain that leaves erp(- E(q) - CI=, j;?/.2) i n~wian t .  

We summarize hybrid Monte Carlo rvith stepsize selection in Algorithm 3. where the 

funct ion Stepsizes( ) cornputes the appropriate stepsize to use for each componrnt. We 

cal1 the function LeapfrogUpdate() rvith a vector for its stepsize parameter unlike the 

scalar in Algorithm 2 .  but what ive mean here should be clear. The çetting of the stepsizes 

depentls on the exact problem at  hand. For a neural network model. Xeal (1996) sets 

them based on the current values of the hyperparameters. These do not change over 

the course of a leapfrog trajectory in the scheme presented in his book. so t hat leapfrog 

t rajectories are reversi ble. 

2.3.3 Convergence of Hybrid Monte Carlo 

In t his section. ive disciiss t h r  conditions iinder ivhich t his llarkov chain algorit hm cori- 

verges to a unique invariant clistribiition. 

Thm. i tells us that. in order For hybrid Monte Carlo to converge to a unique 

distribution. it must be both irreducible and nperiodic. Whether or riot this is true 

depends on the details of the Hamiltonian. the leapfrog trajectory length. and the stepsize 

adjustment factor. Althoiigh ive have no formai proof. we have strong reasons to believe 

that both conditions are satisfied in most neural network applications. rvhose Hamiltonian 

dynamics are highly nonlinear and whose Harniltonians have values that are finite for 

finite values of the state parameters. 

Let us first discuss peridocity. For most problems involving cornplex nonlinear Hamil- 

tonians such as the ones we encounter in neural network applications. we expect that 

periodicity is unlikely and. if it should appear, is pathological rather than typical. .An 

example of such an unlikely periodicity is a case where the Hamiltonian dynamics takes 

us exact ly halfway or completely around a hypershell of constant H ,  and t his periodicity 



Algorithm 3 HybridblonteCarloWit hStepsizes(nsan~ples.  1. TI. q inl t )  

qU + qinir 

t .V(mean = O. variance = 1) 

for i = 1 to nsarrrples do 

p' t .V(mean = 0. variance = I )  

end for 

if C'[O. 11 > rnin[l.esp(-H(qt. p') + H(qf - ' .  p'-l))] then 

9' + ci1-' 

P' + P' 

end if 

end for 
naumplea Return {qL. 



persists in hypershells of al1 values of H so that  momentiim resampling does not avail 

LIS of a n  escape from periodicity. Such a situation appears very unlikely for the  highly 

nonlinear neural network Hamiltonians that  we use. so ive expect tha t  we tvill probably 

always have aperiodicity in practice. Still. if one wishes to be on the  safe side. one can 

Vary the stepsize adjustment factors randomly over a srnall range. a n d  t ha t  shoiild re- 

move anv periodicities (Mackenzie. 19891. This modification was not implemented in oiir 

version of the  algorithm. 

Irreducibility depends on the esact shape of the potential energy surface. Let ris 

assume for now that our hybrid Monte Carlo algorithm is able to sirnulate Hamiltonian 

dynamics perfectly. Then it seems intuitively clear that. so long as t h e  potential energy 

does not become infinity for finite values of q. hybrid Monte Carlo shoiilcl be irrediicible. 

In particiilar. while moving aroiind in a local minimum. it alivays has some probability 

of gaining a siifficient ly large kinet ic energy from momentiim replacement to leave it ancl 

visit other parts of s ta te  space. This can only be preventecl i f  t ha t  local minimum is 

botindecl by walls of infinite potential energy. And since oiir neural network Hamiltonian 

is always finite for finite values of q. ive espect that ive will alivays have irrediicibility. 

Homever. hybrid !Amte Carlo really only simulates Hamiltonian dynarnics approsirnately. 

so it is conceivable that a finite potential well corild be a trap like an infinite one. Yever- 

theless. t h e  fact that  hybrid Monte Carlo does simulate Hamiltonian dynarnics is reason 

to believe that  the above argument for irreducibility should ustially apply. 



Chapter 3 

Hyperparameter Updates Using 

Gibbs Sampling 

3.1 Neural Network Architecture 

[ri this thrsis. we concern oiirselves with a neural netivork wit h one hidclen layer on ly  

The techniques descri bed here can readily be esteridecl to networks ivit ti more hidcferi 

layers. 

The neural network mode1 used here will have .V, input. iinits. .Vh hidden units and 

.Vg output units. The parameters of the neural network are referred to collectively as O .  

.As shown in Fig. 3.1. they are: 

.vu 
Input-to-hidden weights i- = { u i I i = [  

Hidden-to-output weights = { U } b f r ~  t i=i 

LVe will sometimes use the alternative notation: 



output units  

hidden units  

input units 

Figure 3.1: ?leural network architecture used in this work 

input-to-hidclen weight from unit i to  unit j t3 

Hidden-to-output weight from unit j to unit k C;I ;  

Bias on hidden ilnit j -43 

Bias on  output  unit k Bk 
In this netirai nettvork. we use t h e  t a n h ( - )  nonlinearity. and it occurs only at t h e  single 

hidden laper. Thiis. for input vector {s;)$ the  j ' th hidden unit output  is: 

h, = tanh (1 lÏijri  + 4) 

while the  oiitput a t  uni t  k has no nonlinearity: 

3.2 Neural Network Mode1 of the Data 

The neural network mode1 of the  d a t a  is as lollonrs. Let 6 be the e n o r  in the  output  OF 

t h e  neural network for training input x a n d  target y: 



We assume that each component of 6 has precision (or inverse variance) TJ. Then. 

given an input case x. the parameters of the netivork B. and rj. the probabiiity of ob- 

serving the  target y is: 

The prior distributions of the four groups of parameters are normal with means O and 

precisions r.. The asterisk indicates the corresponding group of network parameters. and 

niay be i l .  P .  (1 or 6.  For instance. for the inpiit-to-hidden weights I ' :  

The prior distribution of the pararneters 6) is simply the joint distribution: 

wliere -; denotes { r i .  7,. L,. 7,. 71,). -! is the set of hyperparameters whicti controi the prior 

distribiit ion of each groiip of parameters. These prior distri but  ions keep the network 

parameters small. and arnoiint to a principled formidation of the weight decay terms 

found in t he  neural network training literattire (see Bishop. 19%). 

Rather than fixing the hyperparameters. we allow them to var- also. and we let them 

each have gamma distributions. For instance. for ru: 

which is a gamma distribution with mean wu and shape parameter a, for each 7,. The 

prior distribut ion of the hyperparameters P ( y  ) is simply the joint distribution: 

In this work, a. and ~ t .  are  fked by hand. 



3.3 Posterior Distributions of the Parameters and 

the Hyperpararneters 

LVe can infer the posterior distributions for the parameters 8 = { L r .  C: -4. B }  and the 

hyperparameters y = {TA. ru. ru, T,. i5} when the training data is observeci. In the Monte 

Carlo approach. we do this bv obtainino samples from the distribution PlB. ~ l x .  cd. where 

.P = {xC}E1 and IJ = { J T ' } ~ ~  are the training data. 

Neal (1996) samples From P(B. 71s. y )  by obtaining a series of Markov chain samples 

{ O , .  where Ti - P(71eJ = O i - l .  r. y )  is obtained by Gibbs sampling. and O ,  is obtainctl 

From O,-1 as a hybrid hionte Carlo update that leaves the distribution P(8 /7  = 3,. x. y )  

invariant. During the first iteration. is set to some moderate values. We discuss the 

convergence properties of t his biarkov chain in Section 3.4.1. 

In the remainder of this section. we give the distributions P(Bl-(. r. y )  and P(7  10. s. y ). 

which are reqiiired for the above sampling scheme. 

Using Bayes' Rule. ive obtain the posterior distribution for 0 as: 

The reader is referred 

sion. 

to Eqns. 3.4 and 3.5 for the full expansion of the above expres- 

The posterior distribution for 7. P(-y 16. x. y )  is the probability of the hyperparameters 

conditioned on 8. x and y: 

Consider the hyperparameter 7.. Since each r. is the precision of its group of pa- 

rameters. it can be inferred solely from those parameters independently of x and y. For 



instance. for r,: 

rj. on the other hand. is the noise in each component of y'. rr is inferred from the 

errors 6' = f(xC: O )  - y': 

Sote t h a t  Eqns. 3-11 and 3.12 are gamma distributions. 

3.4 Sampling From the Posterior Distributions of 

the Parameters and the Hyperparameters 

Since Eqns. 3.11 and 3-12 are gamma distributions. independent samples for the hyper- 

parameters can be drawn using well-known techniques (Devroye. 1986). 

Drawing samples from the posterior distribution of the  parameters is more difficult. 

For instance. standard Gibbs sampling cannot be used because the conditional distribu- 

t ion of each network parameter can be a very complicated function due to the training 

error terms. A simple hIetropolis met hod suffers from random walks as previously de- 

scribed. So instead. Neal (1996) obtains samples from the network parameters using 

the hybrid Monte Carlo technique with stepsize selection as described in Algorithm 3 of 

Section 2.3. To sample from the posterior distribution for 6 .  the  potential energy is set 



as follows: 

w h ~ r e  t h e  r n r i s t a n t  I s  i r n m a t w i a !  heraiire it dnec 'nt affect 

.la LVb 

C a! + C b; + const 

that gives rise to the desired probability distribution. This constant corresponds to 

prefactors in the distribution P(0ly.x.y) that do not depend on U.  The parameters 61 

correspond to q in Algorithm 3. 

3.4.1 Convergence of the Algorit hm 

In t his section. ive rlisciiss the  conditions iirirler which this hlarkov chain nlgori t hni  con- 

verges to a unique invariant distribution. 

Recall that our algorithm alternately updates the hyperparameters by Gibhs sarnpling 

and the parameters using hybrid Monte Carlo. In Section 2.3.3. rve have alreaciy disciissed 

the reasons why hybrid hlonte Carlo by itself should converge to a unique distribution. 

The question is. combined wi t h the hyperparameter Ci b bs sampling update st ep. does 

the resulting Sfarkov chain converge'! 

.\ LIarkov chain update is periodic so long as it is periodic in one of the  parameters 

of its state space. so the fact that Gibbs sampling of the hyperparameters has non-zero 

probability of producing any value does not irnmediately imply aperiodicity. However. 

when the hyperparameters are updated from one iteration to the next. hybrid Monte 

Carlo sees a random modification of the potential energy surface that. if anything. would 

prevent spstematic behaviour like ~eriodicity. Thus, the Gibbs sampling step renders 

periodicity even more unlikely than ever. 

When the hyperpararneters change from one iteration to the n e a t  hybrid Monte Carlo 

sees a modification of the potential energy surface that does not introduce any infinite 



barriers. so the argument from Section 2.3.3 still applies. and me expect that.  with 

sufficient iterations. al1 regions of the network parameters' state space can be visited 

regardless of the valiles the hyperparameters have. Thus. we expect that al1 regions of 

the joint state space containing both parameter and hyperparameter can be visitecl after 

a siifficient number of iterations. and our algorithm should be irreducible. 

.\!tCoügh x c  ha*;c no Fo:c;a! -,roof. L u c d  ûn thc aYoïc 2igüir.ci;tS. x c  c:;pcct that 

oiir hlùrkov çhain does converge to a unique distribotion. 

3.5 Inefficiency Due to Gibbs Sampling of Hyperpa- 

rameters 

Despite the fact that ive nvoid random walks i n  network parameter space given the tiy- 

pcrparamaters. Gibbs sampling of the hyperparameters can lead to a slow randoni walk 

iri t h e  joint state space of the hyperparameters and the network parameters. This is be- 

cause the dist ribiit ion of the parameters conditional or1 the hyperparanieters is restricted 

by the contiit ioning on the hyperparameters: this rest ricts t be possible values the  param- 

rters are likely to visit. and so the distribution of the hyperparameters conditional on 

the parameters are iinlikely to change much from the previous iteration in orcler to be 

consistent wit h the parameters. 

This is especially apparent ivhen there are many hidden iinits. Consider sampling 

the input-tehiciden weights u; given 7,. When there are many of them. they represent 

their distributiori well. with a variance close to I/r,. Thus. when ru is Gibbs-sarnpled. 

we are likely to obtain a value close to ru again. and so the Markov c h a h  becomes highly 

correlated from sarnple to sample. 

This problern can be alleviated when there are many training cases. In Eqn. 3-13. the 

prior terms will be of order (ZI, + Y, + ;Va + &)/'2. When ;L:;V, > .Vu + .Vu + .Va + .Yh7 

the likelihood term has a stronger effect in determining the shape of the potential energy 



bowl sampled from. and so the weights moire mostly to fit the data rather than to satisfy 

the prior constraints imposed by their precisions. and so in this case. the hyperparameters 

become slaved to the weights. ivhich in turn are well-determined by the data. 

CVhen we do not have the option of obtaining more training cases. and we use large 

numbers of hidden iinits. the random walk described above becomes an issue. and may 

slow the method clown so rnuch as to render it impractical to use. The next chapter intro- 

duces the solution t hat is considered in this t hesis: t hat of iipdating the hyperparameters 

using hybrid Monte Carlo as opposed to Gibbs sampling. 



Chapter 4 

Hyperparameter Updat es Using 

Hamilt onian Dynamics 

4.1 The New Scheme 

To overcorne the slow movernent of the hyperparameters when using Gibbs samplirig. Ive 

propose to iipdate the hyperparameters using Hamiltonian tlynamics in t lie same way as 

the parameters. 

4.11 The Idea 

The problem wit h the old scheme is that the alternating updates of the hyperparameter 

and its associated parameters cause them to pin each other down. resulting in hlarkov 

cliain moves that are small compared to t he  overall distribution. and which can double 

back since hlarkov chains have only s tate  memory and no mornentum memory. This 

doubling back is sirnilar to the random rvalk behaviour of the bfetropolis algorithm with 

simple proposais. Since hybrid Monte Carlo is our way of overcorning that. ive hope that 

hybrid Monte Carlo. by producing trajectories that can keep going in the same general 

direction for long distances. may also ailorv h-yperpararneters to travel long distances in 



a single leapfrog trajectory without doubling back. This should lead to gains in hom 

rapidly the parameters and the hyperparameters sample the posterior distribution. 

4.1.2 The New Scheme in Detail 

ce versa. Rather t han updat ing the parameters conditional on the hyperparameters. ancl \ i 

. . 
3ü: a;m :S Z O : ~  t o  ïpdatc the  paramctcrs 0 x d  thc h : ; p ~ i p ~ ~ ~ i i i ~ t ~ i j  j. j~irit!:i zc~ûidinlij~ig 

to the joint posterior distribution: 

where rve have dropped the norrnalizing constant P ( y l x )  and tised the fact that. given 8. 

y's tlependence on the hyperparameters 7 is restricted to jost the noise hypcrparameter 

TJ. 

Froni Eqns. 3.4. 3.6 and 3.8. we get: 

E(B. 7) = - log(P(0. Y I + .  y) )  

where YJ = Z<',.V, ( the total niimber of target variables in  the training data). and: 

and Eu. E, and Eb are similarly defined. 

The above is the netv potential energy that hybrid Monte Carlo must use in its 

simulation. Accordingly we nom expand the s tate  space to include the hyperparameters. 

We denote the position and momenturn wriables corresponding to  the parameters and 

hyperparameters wit h the subscripts 0 and y respectivety: 



However. some complications now arise due to the necessity for the leapfrog proposais 

to be symmetric. The main problem is that the hyperparameters at  the beginning and 

at the end of a leapfrog trajectory are now different. so setting the parameter stepsizes 

based ori the hyperparameters at  the beginning does not lead to reversible dynamics. 

i.e.. by reversing the momentiim and following the leapfrog dynamics backwards from 

The soliitioti is to first update just the parameters by one step using stepsizes based 

on the ciirrent value of the hyperparameters. This is the same dynamical iipdate wit h 

stepsize selection as before. and duc to Fact 3 of Section 2.3.2 .  it is reversible. as ttie 

hyperpararneters have not changed. Theri. ive update the hyperparameters by one step 

iisirig stepsizes based only on the newly-computed value of the paranieters. This is also 

reversiblr as the parameters do not change over the step. These two tipdates comprise 

one step in the new leapfrog trajectory iipclating both parameters and tiyperpararnrter?;. 

By repeating this 1 times. we obtain a leapfrog trajectory of length 1 that. by being 

reversible in each step. is fiilly reversible end to end. 

Due  to Fact 1. each step leaves H(q.p)  = E ( q )  + approximately constant. 

and so H is left approximately constant over the entire trajectory for small enough r l .  

Also. phase space volume is conservecl by each step due to Fact 2. and so it is conserïed 

over the entire trajectory. Thus. we see that Ive have a trajectory that keeps H roughly 

constant. and is a valid .LIetropolis proposal due to reversibility and phase space voliime 

conservation. 

There is actually a slight complication: if we update first the parameters. then the 

hyperparameters. the reversed trajectory is the one that updates first the hyperparame- 

ters and then the parameters. ivhich is not actually the one ive are using. To overcome 

this problem. at the beginning of a trajectory. we choose rvith equal probability to  update 

either the parameters or the  hyperparameters first. Thus. a trajectory that goes from 

point A to point B is proposed with 50% probability, while one that goes in reverse from 



B to  A is proposed also with 50% probability. and sa we have symmetric proposais. We 

summarize this algorithm in -Algorithm 4. There is a different stepsize for each corn- 

ponent of q, including the expanded portion of the state. and we denote the  set of 

stepsizes for the parameters as ve and the stepsizes for the hyperparameters as c,. 

Algorithm 4 Lcrrpfrog trajcctory thut zpdatcs hoth paramctcrs and t:~;i>c:pn;amctcrs 

using Hamiitonian dynamics 
r t [:[O. 11 

if r < 0.5 then 

for i = 1 t o l  do 

for i = 1 to 1 do 

?in alternative way of achieving reversibility is to always start and end a Ieapfrog 

trajectory with either a parameter update or with a hyperparameter update. The exact 

method used should not significantly affect the performance of the algorithm. 



4.2 Reparameterization of the Hyperparameters 

Numerically, it is inconvenient to work with the hyperpararneters as precisions. as neg- 

ative valiies of precisions are invalid. Thus. we reparameterize the hyperparameters by 

working with log precisions instead: 

A ,  = log(r,) 

A h  = log(q)  

We let the set 3 denote the repararneterized hyperparameters: 

T lie posterior probability density is changecl by t his reparameterizat ion. The new 

ilensity is obtairied by multiplying by the appropriate Jacobian of each variable transfor- 

mation iri tiirn: 

And so the new potential energy is: 

E ( 0 . J )  = - log P(B.31r. y )  

w here: 

and E U .  E l  and E t  are similarly defined. 



4.3 Repararneterization of the Weights 

The  current pararneterization scherne has a weakness that can be seen by considering 

the potentiai energy as a. function of the weights I i  and their hyperparameter A,. In 

the absence of data. t h e  potential energy depends on li and A. simply through E:. and 

we see that it is shallow and broad for low values of A, and narrow and deep for higher 

vaiues (but not too higbj. This is because. for h'teci A,. Ë;' is qiiadratic in tii m i t h  micith 

proportional to l/~x. This rnakes sense as 11- = L/G is the prior standard 

deviittion of ui. When there is data. the landscape will be changed somewhat. bu t  the 

tendencies imposed by the priors will still be there. 

The effect of this shape of the  potent ial energy function is to make it unlikely for n 

sarnple t hat starts in the broad. shallow region to end up in the narrow. deep region. The 

reason is becaiise. since H is (approsimately) conserved during a leapfrog trajectory. a 

particle that enters the narrow. deep region frorn the stiallow region has enough energy to 

escape oiit to the shallow region again. and will indeed likely clo so before we catch it in 

the  deep region. since the latter has a comparatively small volume. Similarly. a particle 

t hat starts o f  in a narrow. deep region will likely not have enoiigh total energy to escape 

iinless it acqiiired an iinusually large amount of energy during momentum resampling. 

This situation is suboptimal as it increases autocorrelations. To rnove aroiind more 

easily in state space. we introduce the following reparameterization of the weights: 

A. = Io&.) where * = u. v, a, b 



The notation of Chapter 3 will continue to apply. except we will use a tilde to inciicate 

a reparameterized parameter. For instance. fi will represent the group of reparameter- 

ized input-to-hidden weights {ui};V=. and &, will represent a reparameterized weight 

from input unit i to  hidden unit j. We mi11 also use the following naming For al1 t h e  

reparameterized weights: 

Due  to the  reparameterization. the posterior probability of t h e  parameters and the 

hyperpararneters must change accordingly. The  complete reparameterization is obtained 

from Eqn. 4.7 as: 

P(0. J ( x .  y )  = P(0.  JI,. y )  x 

:\ nci so under the reparameterizat ion. the  potent ial enerçy becomes: 

E ( 0 .  .j) = - log P(o .  3 1 ~ .  y) 

LV here: 

and similarly for E:. E i  and E?. 

It can be seen that the the quadratic term ü: in E; now has a constant coefficient. 

so t his reparameterization is effective at removing the variation wit h its hyperparameter 

of the width of ui 's potential bowl. 



To distinguish between the new methods with and without the reparameterization 

of the weights. we d l  cal1 the new method before the tveight reparameterization the 

Dynamical -1 method. and the new method with the weight reparameterization the  Dy- 

namical B method. 

4.4 First Derivatives of the Potential Energy 

Each leapfrog step update requires the first derivatives of the Hamiltonian with respect 

to the parameters and the hyperparameters. To take steps t hat are appropriately scaled 

in the tarious directions for stability and efficiency. we need the second derivati\-es as 

well. rvhich we give in Section 4.5. Here. rve give the expressions for the first deri\?itives. 

LVe first define: 

which is the  negative log likelihood of one training case. less the norrnalizing terrn. We 

then obtain frorn Eqn. -1.14: 

Derivatives for the other weight t-ypes are obtained from 

by the corresponding parameter. 

Eqn. 4.19 by replacing ITij 

To compute the derivative 8E/aXs using Eqn. 4.12, we need to compute the net- 

work outputs for every training case. This involves performing a fonvard pass through 



the net for each training case. each pass requiring compute time of order the number 

of connections in the  network. The fact that we do a forward pass means that using 

backpropagation to compute other first derivatives will be efficient. We now esplain how 

t hese ot her derivatives are cornputed. 

4.4.1 First Derivatives with Respect t o  Parameters 

To compute the derivatives with respect to the parameters (Eqn. -1.19). me need to finrl 

the corresponcling derivatives of the  output L'. They are most efficiently computed using 

backpropagat ion provided certain results are storeci diiring a preceding fortvard pass siic ti 

as the  one required by the above computation of i9 E/aXs .  

The backpropagation works as folloivs. Consider Figure 4.1. which represerits two 

arbit rnry adjacent Iayers in the rietwork. 

l ,D 

gr  

Figure -1.1: Two adjacent layers. 

CIere. i;,e--"- is t he  weight connecting a source unit i to a destination unit j. We lise 

y, to denote the total activation of unit i before the tanh(.) nonlinearity. and h i  to denote 

the output of unit i after the nonlinearity. Source unit values are denoted by superscript 

S. while destination unit values have superscript D. The total input into destination 

unit j is: 



where A' is the hyperpararneter controlling the biaseç Thus. the first derivative of t h e  

potential energy with respect to cj can be cornputed as follows: 

actually an output iinit. then gf = J j .  so: 

The outpiits I;(xc: Q. 3) can once again be considered to have already been obtained 

*'freeg0 from the forward pass. .As in standard backpropagation. w e  start with the above 

error derivatives at the output layer and propagate them backwards iising: 

If gi was stored for eïery iinit during the forward pass. the above derivat ives can be 

compiited rapidly in a backward pass taking time of order the number of connections in 

the network for each training case. .\ctiially. rve will see below that. if we can Save only 

one qiiantity. the most usefiil one is: 

which is the total input going into unit j from ail the units feeding into it. From p,. gj can 

easiiy be obtained in constant time. Furthermore. it will be useful in other calculations 

tha t  will be presented in the subsequent discussion. 

?lote that, thus far. we have seen how the computation of aE/3Xs and the first 

derilatives with respect to al1 the parameters is dorninated by a forward pass and a 

backward p a s  through the network. 



4.4.2 First Derivat ives wit h Respect to  the Hyperparamet ers 

The computation of i)E/i)As has already been described. To compute BEIdX.. we need 

to compute the corresponding derivatives of LC(dy  J). In a similar fashion as the weights' 

computation. we can write for the hyperparameter X in Eqn. 4.20 that controls weights: 

rvhi le for the hyperparameter A': 

LVe alreatiy compiited the derivatives i) LC/ i )g j  during the backward pass for the rieriva- 

tives of the parameters. By ensiiring that we save p, during the lorward pas .  the first 

derivatives of L' wit h respect to the u. v. n and b hyperparameters can be  efficiently corn- 

putecl in time of order the number of units in the network. Summed over al1 cases. the 

compiitational cost is O(.\i,(:Vh + .V,)): 

Because the number of units is considerably smaller than the number of parameters. 

calculating these first derivatives with respect to the u. u. a and b hyperparameters is 

considered to add negligible cost to the fonvard and back~vard passes we have already 

done. Therefore. the computation of al1 the first derivatives is dominated by the fonvard 

and backrvard passes through the net. each of which takes O(iVcV,IdI) 



4.5 Approximations to the Second Derivatives of the 

Pot ent ial Energy 

The second derivative of the potential energy with respect to the weights and the hyper- 

parameters are needed to compute stepsizes for each leapfrog step update. Unlike the 

f i r s t  r l c r i r i r t i t c s .  ive caiiiiut iui i iputç ~ i i ç  arcuiid derivalivcs rxactiy Iwcaiisr. i i i  urd r r  LU 

preserve phase  space conservation and reversi bility of leapfrog steps. the stepsizes used 

for. sa'. hyperpararneters. cannot depend on t h e  current values of the hyperparameters. 

CVe will also tise additional simplifications to make evaliiation easier anci faster. 

From Eqn.  4.14. we see t ha t  the problem is to obtain for t h e  parameters: 

and sirnilarly for fi,.;, and hi; and for the hyperpararneters: 

and for + taking the values u .  u. a and 6: 

4.5.1 Second Derivatives with Respect to the Parameters 

To obtain the derivative 8LC/6ùT.  ive follow the heuristic given by Neal (1996. Appendix 

A ) .  which we include here for completeness. The heuristic operates by approsirnately 

backpropagating the 2nd derivative of Lc with respect to  the output units back through 

the net. Its details are as foILows. 



Referring to Fig. 4.1. Neal uses the following approximation: 

d2 L C ( a  3)  -,\ (x;')' for i an input unit. 
25 

)? 
ot herwise. 

Correspondingly. for biases: 

L i é  see that it is necessary to compute the derivatives tY~ ' / a (~ f ) ' .  CVe will do so i c i  

ii way analogous to the  backpropagation of the Rrst derivative i l ~ ' / i l ( ~ ~ )  as tlescriberl in 

Section -!.-1.L. In the  case that unit j is an otitptit unit .  the cierivatitpe is fised. namely: 

This i s  propagated backwarcls to obtain the  second derivatives of L" with respect to 

al1 t h e  inputs gili's except for the input iinits*. whose derivatives are not needetl. .\ml 

propagates the deriwt ives using: 

* 

Because ive are not allowed to use the current value of the parameters. we replace Ci: 
in the above by the estirnate 1. since <: has variance 1 at equilibriurn. Thiis. ive actiially 

use: 

From Eqns. -4.32 and 4-34? we see that the  second derivatives are the same for al1 

training cases. Thus. the backpropagation pass is done only once regardless of t he  number 

of training cases. after which the second derivatives with respect to the parameters can 

be estimated in time of order equal to the number of parameters. 



4.5.2 Second Derivatives with Respect to  the Hyperparameters 

To obtain ~ 2 ,  Lc in Eqn. 4.28. we need to calculate the network output for each training 

case. Like the computation for i?E/aXs. this can be done with a lorward pass for each 

case. Unlike t hat computat ion. we cannot use the current values of the hyperparameters. 

In this thesis. ive replace 3 by 3. the prior hyperparameter means: 

As = log idS 

A, = logw. 

A, = log&" 

A, = log w, 

Xi, = 

Thiis. we really comptite: 

For the second derivat ives wit h respect to the ot her hyperparnmeters. we sirnilady 

replace ail occurrences of .3 by 3. From Eqn. 4.29. we see that we need to estimate 

B'LC(e. j ) / i ) ~ ? .  For this. we will use the sarne kind of backpropagation as when estimat- 

ing the second derivatives with respect to the parameters. 

Once again referring to Fig.4.l. for X being either a hyperparameter for the weights 

or the biases that contribute to the calculation of the gp's: 



where we have made the replacement aZgP/D~' = -(l/2)ag?/t3A. which can easily be 

checked. Thus: 

For t h e  second term. following Xeal (1996. Appendis A) .  Ive ignore multiple con- 

\\é have already seen how ive cari est imate d' L ' / 3 ( y ~ ) 2  tising t lie approsirnate hack- 

propagation ( Eqn. 4.34) of Section 4.5.1. The difference here is that Ive (:an use the 

actiial values of t h e  parameters. but not the hyperparameters. Thus. ive replace by its 

estimate h E .j i n  the backpropagation qi iat ion:  

-4s before. Ive compiite the above quantity in a backward pass only down to the first 

hitlden Iayer. and these derivatives are a11 independent of the training case. 

For the second factor in a surnmation term in Eqn. 4.39. evaliiation is straightforward. 

From Eqn. 4.20. ive have: 

For a  hyperparameter controlling biases. and: 

for a hk-perparameter controlling weights. Once again. if we save pj during the forward 

pass to obtain the network outputs for est imating a2E/DA;. t h e  above factors can be 



obtained almost for free. We emphasize here that the t his pj differs from the pj iised in 

first derivat ive calculations in that the forward pass during which p, is saved uses the 

estimates ,a instead of 3. 

Thus far. the dominating computation in estimating the second derivative of E wit h 

respect to the hyperparameters is the estimation of LI2 E/i)Xa. tvhich reqiiires a forward 

pass for everv training case. 

Let us notv turn our attention to the first derivative t3Lc/aA in Eqn. 4 . 3  [ts 

computation rvas already discussed in Section -1.4.2. escept that it uses the estimates .j 

instead of 3 .  and the error propagated backwards cornes from the forwarcl pass tised in 

estimating d2 EIBX:. 

The estimation of this derivative reqiiires one backward pass. which mtist be dorie 

for each training case. Thus. combined mith the lorward passes of i ) 'E /ahi .  two passes 

throitgh the net are necessary to estimate the second derivatives of E with respect to the 

hyperparameters. 

4.6 Summary of Compute Times 

In t his section. ive siimrnarize the corn pute t ime reqiiired by the Dynamical B met hoc1 per 

leapfrog update of both the parameters and hyperparameters. Recall that t.he Dynamical 

B met hod incltides the reparameterization of the weights. 

First. we summarize the compute times retqiiired to calculate each group of derivat ives 

in Table 4.t. The compiite times are dominated by passes through the network for each 

training case. which takes time O(:V&l)). and ive consider ot her operat ions as essent ially 

free. 

Esamining a leapfrog update in detail. we see that it looks like Table 4.2. 

When the parameters are changed (step 2), the first derivatives of both parameters 

and hyperpararneters need to be recalculated in order ta  update the rnomenta in steps 



Group of Derivatives 1 Cornpute tirne 

Step 1 Description 

1st with respect to parameters and hyperparameters 

2nd with respect to parameters 

2nd with respect to hyperparameters 

2 x O(LVcV,lol) 

"free" 

2 x O(.V&l) 

:1 and 4. The cost is one forward-backward pass pair. Also. at the end of step 2. the 

second derivatives with respect to the hyperpararneters need to be recalctilated for use 

in steps 4 through 6. taking a second forward-backward pass pair. After the iipdate of 

t h e  h~perpararneters at  step 5. the first derivatives need to be recalciilated again for the 

momentiim updates at  step 6 and step 1 of the nest complete leapfrog update. This 

requires a t hird Forward-backward pass pair. Finally. the second derivatives n i th  respect 

t o  the parameters also need to be recalculated for use in step i of the next iteration. but 

this is essentialIy free. 

Table 4.1: Cost of computing various groups of derivatives for the Dynamical B method. 

I 

2 

3 

4 

5 

6 

Thus. each leapfrog update costs 3 forward-backward pass pairs. This result will 

be used later in determining how Iong to let the parameterized new method run rvhen 

comparing its performance to the old method. 

Update rnomentum of parameters 

Cpdate parameters 

Update momentum of parameters 

Update momentum of hyperparameters 

Update hyperpararneters 

Update momentum of hyperparameters 

1 (Step 1 is then repeated for the next leapfrog iipdate) 

Table -1.2: The steps in one complete leapfrog update in the Dynamical B methocl. The 

Dynatniçal .-\ niethod has the  same seqtience of steps cornprising one leapfrog iipdate. 



4.7 Computation of Stepsizes 

We have described our heuristic for appro'timating the second derivative of the potential 

energy with respect to the hyperparameters. The stepsize is then computed as the inverse 

square root of that second derivative. as in Eqn. 2.21. But because this heuristic uses 

Eqn. 4.39. second derivatives have t h e  possibility of being negative. and square roots 

would then be imaginary Lve note that when the second derivative becomes negative, 

it merely indicates that the potential energy surface is now concave downwards. but its 

magnitude should still be indicative of the length scale of the surface variations in t h e  

region. Thus. the negative sign is really no problem. and we take absolute ~aliies to 

obtain the stepsize as: 

Similarly. the  stepsize for the parameters ari r obtained CU: 

and similarly for the other parameter types. 

4.8 Compute Times for the Dynamical A Method 

We also give the compute time for one leapfrog update for the Dynarnical A method 

as this has to be taken into account later in performance cornparison. Recall that the 

Dynarnical .\ met hod is the new met hod before the weight reparameterization. 

The computation of the first and second derivatives 116th respect to the weights in this 

scheme are not significant ly  different from Dynarnical B k  The algorit hmically demand- 

ing portions of these computations are the derivatives of LC mith respect to a weight. 

and the backpropagation algorithms given above work the same way except t hat the 

factors of e-"12 t hat always go wit h the reparameterized weights are missing. Thus. first 



derivatives with respect to the weights also require one forward and one backward pass 

for each training case. while second derivatives are essentially free. 

T h e  computation of the first derivatives and second derivatives with respect to t h e  

hyperparameters differ substantially. however. because the hyperparameters do not ap- 

pear in  the cornputation of the network output f ( - )  in this case. The first derivatives 

;t rpf. 

and: 

ancl similarly for tiyperpararneters of L I .  a and b. 

The comp~ite  times for hyperpararneters of first derivatives of A.. where * = I L .  P .  n 

and b take time of order the number of parameters and is independent of the riumber 

of training cases. This makes it of lower order time complesity t hari that t h e  forward 

and backtvard passes for computing the Arst derivatives of the parameters. The compri- 

tatiori of i l E /BXs  requires al1 the network oiitputs for each training case. but which tvere 

already computed during the forward passes for the first derivat ives wit h respect to the 

parameters. so ive essentially get this derivat ive for free as well. 

The second derivatives tvith respect to the hyperparameters are: 

and: 

dZ E (e. ,d) 
ah: 

and similarly for hyperparameters of o. a and 6 .  

The compute tirnes for each second derivative is essentially t he  same as that for t h e  

first derivative with respect to the sarne h-verparameter. Once again, we can use the 



network outputs already computed for the first derivatives with respect to the parameters. 

Note that this differs from the case of the reparameterized weights because. there. the 

hyperparameters are involved in comput ing the network outputs. and so the the out piits 

computed during the forward passes for the first derivatives cannot be ~ised. as the 

second derivatives with respect to the hyperparameters cannot ilse the current values 

of the hyperparameters. That forced us to redo the passes through the netivork rvith 

estimates for the hyperparameters. but ive do not have to do that here. thereby saving 

computation. 

W e  sumrnarize the varioiis compute costs in the Table 4.S 

Ctroiip of Derivat ives 1 Cornpiite tirne 

Table -M Cost of cornpiiting varioiis groiips of derivat ives for the Dynamical :\ met hod. 

1st mi th  respect to parametersand hyperparameters 

2nd  with respect to parameters 

2nd wi th  respect to hyperparameters 

Like before. one leapfrog update requires the computation of al1 the first derivatives 

twice. Therefore. one leapfrog uptlate reqtiires tmo formarcl-backward p a s  pairs in t his 

c~ase. 

2 x O(.\Jol) 

Yree" 

.-iree" 



Chapter 5 

Result s 

5.1 Training Data 

To verify the new methods and compare their performance rvith the old met hod. the 

aynt hetic data set of Table 5 .  l was used. We u s e  a smail data set to recliice the compiite 

time reqiiired to  obtain the results for t his thesis. Even then.  mont hs passed before al1 

the nrcessary riins were completed. 

1 Input r Input 9 

7.5 1483SOe-O 1 

4.746 119Se-01 

-72696252e-O 1 

-9.764S663e-O1 

7Sï79593e-O 1 

-6.0 1123Sle-O 1 

--!.OXSKlSe-O 1 

3.22885 l5e-0 1 

Output z 

1.999252%+00 

1.40434î5e+00 

9.329S996e-0 1 

5.478 127.k-O 1 

1.9S5S707e-0 1 

4.66STSS le-0 1 

6.46S2705e-O3 

-1.Ïl532LYe-01 

Table 5.1: Training data  has two inputs and 1 output. These data are piotted in Fig. 



Figure 5.1: Y points comprising the synthetic data set iised. There are 2 inputs ( r  and 

9) and I target (2). The training data are shown using asterisks. The circles represent 

the training data before the addition of Gaussian noise. while the crosses are the  i n p i ~ t  

data drawn on the plane z = 0. 

Figure 5.2: The surface frorn which the synthetic data was taken. 



The training da ta  was synthesized as folloms. The  inputs (ri, y i )  were uniformly 

drarvn from [- 1. l] x [- 1.11. The mapping used on each input pair was calculated using 

the function below: 

This mapping is illustrated in Fig. 5 . .  Gaussian noise with standard deviation 0.1 

was added to mch lunctiori output to obtain the  target. 

5.2 Verification of the New Methods 

To verif? the correctness of the new methods. the posterior distribution was obtained 

iising d l  the  mettiocls for a network of Y hidclen iinits on the above training data. Tlir 

old Gibbs sarnplirig program as impiementeri by Neal was treated as t he  standard against 

which the  new progrsms were compared. 

The priors for the hyperparameters are specified as gamma distributions as in Eqn. 

3.7 iising a and parameters. For the demonstration of the  correctness of the new 

methods. they were set as in Table 5 .2 .  

Setting 

o. 10 

1.00 

0.45 

1.00 

0.30 

Setting 

Table 5.2: Settings for parameters specifying the priors of the hyperparameters 

Fairly long runs tvere done with al1 three methods at the settings in Table 5.3. 



CHXPTER 3. RESULTS 

5.2.1 Results From Old Method 

/ Method 1 p 1 I 1 Saved every 

Tab 

For 

Gibbs 

Dynamical A 

Dynamical B 

l e  5.3: Set tings for the various met hods in order to  verify correct ness of new prograrns. 

the new methods. we set the parameter and hyperparameter stepsize atljiistment 

factors equal to each other. and indicate their value by q in this table. 

The outpiit surface as predicted from 5000 samples obtained iising the Gibbs iipdate 

met hod is shown in Fig. 5.3.  CVe see t hat the data points are being fittecl reasonably. The 

fact that the points are being fitted implies that the posterior distribution has changed 

from the prior. Incleed. from Fig. 5.4. we see that the marginal posterior distributions of 

the hyperparameters differ from the marginal prior distributions. 

Lié show in Fig. 5.5 the correlation between the input-to-hiclden and the hiclden bias 

hyperpararneters. As espected. when larger input-to-hidden weights are ailorved. larger 

biases ( m i t h  the opposite sign) are required to cornpensate. This is because the oiitpiit 

fiinction cannot be composed of hidden units that ail saturate. so the input into at least 

some of the hidden units must be kept small. 

:\lso. we show in Fig. 6.6 how. as the number of hidden units increases. the hidclen 

bias hyperparameter becomes more pinned to the actual standard deviation of the hidden 

biases. and vice versa. This is manifested as an increased correlation between t hem. This 

is a direct demonstration of the problem we set out to solve. 

0.35 

0.43 

0.08 

5.2.2 Results of New Methods Compared with the Old 

400 / 
100 

300 

To verify the correctness of the programs implementing the new methods. nre compare 

the posterior distributions obtained using the new programs against that from the old. 



Figure 5.9: The surface predicted by the sarnples obtained for the master riin for Y hiclden 

ttnits. Ttie training data are shown using asterisks. rvhile the crosses are t h e  input data 

i.irnwri ori the plarie z = 0. 

To obtairi t tie posterior distribution. any samples near t lie begirining founcl by visiial iri- 

speçtion not to be in equilibrium were frst  dropped. 950 sarnples from each metliocl werr 

t hen iisecl to plot the histograrn of each hyperparameter. Here. we look at the histograni 

of log CL. which is the log of each hyperparameter specified as a standard deviatiori. Each 

such histogram approsimates the marginal distribution of a hyperpararneter. 

CVr need to be able to compare the joint distribution over hyperparameters for two 

methods. Because we are unable to plot a distribution over the joint *5-dimensional space 

of al1 the hyperparameters. we compare marginal distributions instead. This cornpari- 

son is valid because. if the marginal distributions of the hyperparameters match for two 

met hods. t hen t hey almost certainly have the same joint distribution over hyperparame- 

ters. While it is true that. in principle. equal marginal distributions does not impiy equal 

joint distributions. the fact that the marginals match is too amazing a coincidence to be 

esplained any other way than by concluding that the joint distributions match. 



Figure 5.4: Dotted lines represent prior densit ies (obtained analytically ) mhi le solid lines 

represent posterior marginal distributions obtained from the Gibbs sampling method. 

These plots. obtained using Y hidden units. show that the posterior distributions of t h e  

hyperparameters have changed from the priors. 



I 
ta" loJ 1 O' 1 0; 10' 

au 

Figure 5.5: Correlation between input-to-hidden and hidden bias hyperparamrters ob- 

tained iising t h e  old method. 

(a) 13 hidden units (b) 20 hidden units 

Figure 5.6: Correlation between the standard deviation of t h e  hidden biases and the t heir 

hyperparameter becomes stronger as the hidden Iayer size increases. 



As can be seen in Figs. 5.8 and 5.7. the marginals for al1 the hyperpararneters 

obtained by the programs running both the new methods match those of the original as 

implemented by Neal. 

5.3 Met hodology for Evaluating Performance 

Having shown that the new methods have been correctly implemented. ive are norv ready 

to assess t heir performance. 

-4 4larkov chain Monte Carlo method typically goes through a "burn in" phase before 

settling down to eqiiilibriiim. Before reaching eqiiilibrium. its samples are not reprcsenta- 

tive of its invariant distri but ion. :\s t hese non-representat ive samples shoiild be rliscarcled 

in orcler not to skew later estimates. the speed with which a Slarkov chain eqiiilibrates 

is a matter of interest. Mowever. due to time constraints. ive will not hta considering 

this question. Instead. ive will only assess the relative performances of the olcl and t tic 

new methods in moving about in the posterior distributions of the hyperpararnetrrs once 

eqiiilibrittni has  been reached. We do not consider the speecl witti which the posterior of 

the parameters is esplorecl as there can be large nurnbers of parameters. and it is difficiilt 

to know which parameters to compare as they can sometimes taken on tlifferent roles. 

In addition to examining the performances of the original rnethod and the Dynamical 

B method. we also look a t  the performance of the Dynamical .-\ method to ascertain if 

the reparameterization of the weights is indeed beneficial. 

The performance of t he  methods depends on the number of leapfrog steps allowed in 

one t rajectory and the stepsize adjustment factor. These can be viewed as tuning param- 

eters that affect the efficiency of each method. Since performance can vary drarnatically 

depending on the setting of these tuning parameten. it is only fair to compare how well 

the methods work when optimally tuned. 

For the old method. the  tuning parameters are Z. the number of leapfrog steps allowed 



F i e  - 5 :  Crosses represent the distribution obtained from t h e  original Gibbs update 

method. mhile circles represent that of the Dynamical .A update method. Each distribu- 

tion has been normalized to have area 1. 



Figure $3: Crosses represent t h e  distribution obtained from the original Gibbs update 

method. while circles represent that  of the Dynamical B update method. Each distri- 

bution has been normalized to have area 1. Note that the distribution for the original 

method looks slightly different from that of the plots for the previous cornparison with 

the D-mamical A method because the binning for the histograms is slightly different. 



in one trajectory. and 0. the stepsize adjustment factor. For the new methods. 1 is also 

a tuning parameter. but we now have two stepsize adjustment factors: q, for the param- 

eters. and qh for the hyperparameters. We have two stepsize adjustment factors because 

we might wish to control how fast the parameters move compared to the hyperparameters 

in order to obtain the best performance. Moreover. the different heuristics with which 

t he  stcpsizcs arc cvmpztcd for t he  paramctcis and t hc  h~;pcïpsïamctcïs mcam that thcir  

relative magnitudes might be quite different. mhich also suçgests separate stepsize ad- 

jiistment factors. Horvever. due to time constraints. ive rvill nut esplore the problem of 

how to set the two adjustment factors separately. and will instead set t hem eqiial to each 

othrr ( r l p  = q h )  and cal1 it r!. rvith the understanding that the performance of the new 

rnettiods could be increased if the two 0 's  are not set equal to each other. 

The performace of a method on a hyperparameter is assesseci using the variance of 

nirans rneasiirc. whose presentation we  clelay t i l l  the next section. For a given ietting 

of the tiioing parameters. this measurtl can be compiiteci for each hyperparameter. The 

srnaller the measure is. the more eficient ly t lie met hod explores the niargirial posterior 

clistribution of that hyperparameter. Since we rvish to compare the methods when the- 

are operating optimally. we will compare their variance of means meastires a t  optimal 

sr t t  ings of 1 and q .  

To find the optimal setting of 1 and q for a given method. we run it over a grid 

of settings in tuning parameter space. measuring its variance of means performance at 

each setting. The geometric mean of the  variance of means of the hyperparameters is 

computed to obtain a single measure that combines the performances over the different 

hyperparameters. In computing the geometric mean. we leave out the variance of means 

measure for the output bias hyperparameter as that h-verparameter controls only one 

parameter for this network and is therefore not that meaningful. The  optimal setting of 

the tuning parameters is then picked as the setting that rninimizes the geometric mean. 

It is not safe to directly use the variance of means at  this optimal setting to compare 



the performances of the methods. however. as they are biased downwards as a result of 

this selection process. Instead. the programs are then re-run with different random seeds 

to re-obtain the variance of means measures so as to avoid the bias. In the next section. 

we describe the variance of rneans measure in greater detail. 

5.3.1 The Variance of Means Measurement of Performance 

The variance of means rneasitre characterizes how well a methocl explores the posterior 

distribution of a hyperpararneter at a fixed setting of the tuning parameters. To obtain 

this measure. ive run several Markov chains. each started from an independent point 

drawn from the  posterior distribution of the parameters and hyperpararneters. Each 

chairi is riin for a fixed number of .Vl leapfrog steps regardless of what 1 is. 

For a given setting of the ttining parameters. we obtain the means of the hyperpa- 

rameters sampled by each chnin. The entire chain of .VI leapfrog steps c m  b e  thoiight 

of as being divided iip into a fixed nurnber of .L; super-transitions each comprisecl of 

leapfrog steps. Although each leapfrog trajectory yields a sample from the  cor- 

rect distribution. tvve use only one sample per super-transition to compute the means of 

the hyperpararneters for each chain. Thiis. regardless of the value of 1. the same nimber 

of samples .V, is iised to compiite the means as shown in Table 5.4. For the i'th chain. 

the hyperparameter means obtained are: 

-- --- 
(log ai, log ai. log a;, log a:, log O;)  

where. for instance. each mean log ai is computed as follows: 

a refers to a hyperparameter expressed as a standard deviation. We take the log 

before computing the mean as experience shows that the standard deviation can vary 

over several orders of magnitude, and yet variations on a small scale are as interesting as 

~ r i a t i o n  on a scale a few orders of magnitude larger. 



1 Chain 1 

Table 5.4: Each chain is run for .Y, super-transitions at some setting of 1 and rl. The 

sarnples obtained from the super-transitions are used to cornpute the means of each 

hyperparameter. 



If we run Xm Markov chains. we will have !V, values of log a.. The variance of means 

measure that we have been talking about is then just the variance of these values of 

log a.. W e  define p. to be t hese variance of means rneasures: 

p ,  = Var [log a,] 

p. = Var[log a,] 

Each variance is calculateci using the mean estirnated From a very long run of the  old 

niethocl. mhich we assume to be very close to the triie mean. For esarnple. i f  the mean for 

log O,, obtained from a \.ery long riin of the old met hod is < log 0, >. t hen we compcite 

the variance from .PTm Markov chains as: 

This is the tnriance of means 

bet ter performance. 

measure of performance. wit h lower variance indicat ing 

Let T,  be the inefficiency factor in units of super-transit ions for .V, samples of log a,. 

Tu measures the worth in computing logc, of each super-transition of logo,, relative 

to  one independent sample of log a,. For example. if Tu is 2 .  then it takes twice as 

many super-transitions to obtain a given variance of logo, as would be needed iising 

independent samples. Mathematically. the variance of means measures are related to 

inefficiency factors as follows: 

Since Var[log cru] is a constant property of the posterior. and we are using the same 

.V, for al1 tuning parameter settings. our estirnate of Var[log a,] is proportional to Tu. 

A t  hough t his Tu is for t his part icular number of samples iVS only. ive would espect t hat . 



if a method has a lower Tu than another for this .V,. then it really is more efficient at  

esploring the posterior distribution. and so it should remain better for a different LV,. 

Thus. this measure is indicative of performance in general. 

5.3.2 Error Estimation for Variance of Means 

Error bars on  the variance of the means are obtained as follows. Since the  variance of pu 

is calculatecl as the mean of the square deviations (logo;- < logo, >)'. its variance is 

Var[(loga:- < logo, >)'] 
Var[pu] = 

- v m  

which is valid so long as the chains are independent. We ensure this by picking ttieir 

start ing points sufficiently far apart from a long master run and by iisirig a different 

random ntirnber seeci for each chain. 

5.3.3 Geometric Mean of Variance of Means 

Rat her t han  cfiaracterizing performance by the variance of the hyperparameter menns for 

al1 the hyperpararneters. we define the following single geornet ric mean scalar measure of 

performance: 

CVe obtain error bars for g by bootstrapping (see Efron and Tibshirani. 1993) as 

follows. Let Z be the original set of .V, Markov chains. Thus. Z determines a single value 

of g. -4 bootstrap realization 2' is a set of .V, Markov chains sampled uniformly with 

replacement from the original chains. During bootstrapping. many bootstrap realizations 

Z' are generated from 2. The idea is that the empirical distribution represented by Z 

contains wit hin it the natural variations that g has over the true distribution from which 

Z is drawn. So. a value of g can be calculated from each 2'. and the histograrn of these 



resulting g's gives an estimate for the actual distribution of g. We quote error bars as 

the 90% confidence interval of the histogram of g. i.e.. we quote the error bar [g io .gh i ] .  

where gl, and gh, are such that 5% of the values of g obtained from 2' are below gr,. and 

5% are above gh;. We use LOO0 bootstrap samples to obtain these error bars. 

5.3.4 Iterations Allowed for Each Method 

-4s shown in Eqn. 5.6. p. is proportional to the inefficiency factor of the method in iinits 

of super-transitions. In order for comparisons of variances between two methods to make 

sense. the amount of compute tirne iised per stiper-transition shoulcl be  the same in both 

cases. However. the compute time of a program is tricky to calculate from things such as 

number of multiplications. as programming style can affect it. Thus. in this thesis. the 

arnount of "tvork" that goes into a super-transition is estimated in algorithmic terms in 

which we assume that the niimber of training cases .V, is large. and the number of tiidderi 

units .Vh is also large so that the niimber o l  weights 1 0 1  is large. This resiilts in terms of 

order '1,101 dominating the time cornplexity. which cornes entirely from cornplete sweeps 

t hroiigh the neural nettvork for each training case. 

In the old method. each trajectory is composed of 3 steps: sampling the hyperparam- 

eters. compiiting t h e  stepsizes. and performing the leapfrog steps. First. we note that 

each leapfrog step requires the etaiutaion of the derivative of the potential energy with 

respect to a parameter: 

which is most efficiently computed for each training case using a forward sweep through 

the network for f(x2: O )  -yc and a backward sweep For af(xC: t ) ) /aui .  Each of the 2 sweeps 

takes O(:Vclol) compute time for al1 the training cases. By cornparison. the sampling of 

the hyperparameters is dorninated by the computation of the sum of the square of the 

tveights, as can be seen in Eqn. 3.11, and by the computation of the total squared error 



of the network output (Eqn. 3.12). The former takes O(161). while the latter costs only 

O(.\;,) since the network error has already been computed at the end of the last leapfrog 

step for the Metropolis rejection test. So. both can be neglected when compared to the 

compute time required for a leapfrog step. The computation of the stepsizes is also free 

by comparison because its summation over training cases (Neal. 1996. hppendis  A )  can 

h~ far tnr~d mit  nnf! r a m p i i t 4  at  t h p  <-Pr!! higinninp cf the prcgrm~.  Thw. --ch s-per- 

transition in the old met hod is approximately dominated by the leapfrog steps. each of 

which takes 1 pair of forrvard-backward srrreeps. each of which takes O(.V,lol) compute 

time. We surnmarize this dong  with the compute times for the new methotls in Table 

Gibbs 

Dynamical A 

Hyperparameter updates by Network passes per leapfrog step 

For n. detailed esplanation of the niirnber of passes required for ttie two 

Dynamical 6 

clynamical met hods. please refer to Section 4.Y. 

6 

Because of the results in Table 5.5. the Dynamical B method is only allowed a third 

as many leapfrog steps per super-transition as the old method. while the Dynarnical .A 

met hod is allowed haif. These measures ensure t hat each super-transit ion uses approxi- 

mately the same amount of compute time regardless of rnethod. 

5.4 Markov chainstart states 

5.4.1 Master Runs 

As mentioned earlier. each chain is started from a state chosen from equilibrium. To 

obtain the  starting points for a particular network. a very long run was done using the 



old method. typically resulting in several hundred thousand to a million or more samples. 

.\ny initial portion of the run not in  equilibrium was discarded. and starting points were 

then obtained from the remaining samples. These starting states were spaced many 

inefficiency factors apart so that they are likely to be nearly independent points that 

represent the posterior distribution well. 

The !onp rrn ~ 2 s  d 0 ~ -  ~ i t h  2 :e!ztl-.~!:; srna!! stcysizc adj::stmczt facto; ;O that tkc 

rejection rate is low (aroiind 5%). This is because chains using large stepsize adjiistment 

factors may sometimes be unable to enter certain regions of state space where its rejection 

rate is high. The reason for this is because. once it enters. it is likely to s t a y  t here for a 

long time chie to its high rejection rate. Because it  remains stuck there for a long time. 

it folloivs that it is iinlikely to enter that region in the first place. Thus. iising a low 

rejection rate rediices the risk of overlooking such regions. 

Long runs were obtained for networks with S. i2. L6 and 20 hiddcn rinits. Tahlc 5.6 

shows the  prior settings used for these networks. while table 5.7 tabulates the farious 

riin set tings iised. the number of sarnples obtained. and the resulting reject ion rate. 

Table 5.6: Prior settings for the neural net architectures tested. 

Hidden units 

In order to ensure that our start states are h m  the equilibrium distribution. the 

hyperparameters from the master runs were visually checked for the absence of long 

t erm trends. 

t I 1 
-d r -1 -- -- - - 

d~ ' J,' ' 1 3 

&Vu - da - d3 as au C I ,  ci., ab 



Table 5.7: Tuning parameter settings. number of samples collected and rejection rates. 

Rejection rates were chosen to be relatively low to reduce the risk of not being able to 

enter regions where the rejection rates are bigh. For al1 the riins. only one sample rvas 

saved for rvery LOO samples collected. 

Hidden units 

8 

12 

16 

20 

5.4.2 Starting States Used 

Leariance of rrieans rneasures were obtained for networks with S. 12. 16 and 20 tiidclen 

uriits. This requires several hlarkov chnin starting states for each nimber of hidden units. 

This section stiotvs in detail how these states were obtained. 

Table 5.3 shows the inefficiency factors of log au. as that was found to be t he  slowest 

rnoving hyperparameter. Le.. it had the highest inefficiency factor. We use a. to denote 

1 

400 

400 

400 

400 

I 
d - 

7. '. It is the hyperparameter expressed as a standard deviation and is often easier to 

iinderstand. We compiite the inefficiency factor of log g. rather than sirnply a. as the 

inefficiency factor is t hen the same regardless of what power a. is raised to. t hus removing 

any questions as to whether it is more appropriate to measure the inefficiency factor of 

the variance or the standard deviation. 

As each chain used in the mriânce of means measure shoiild be  started from an 

independent point. we use samples from the master run spaced many inefficiency factors 

apart. 

r\ll the variance of means measures were computed using 50 chains. The s tar t  states 

of the first 40 chains are evenly spaced according to Table 5.3. It rvas decided to add 10 

more chains because it was ernpirically observed that the  differeot methods seem to  do 

Rejection rate 

6.16% 

7.22% 

-5.71% 

v5.9574 

q 

0.35 

0.32 

0.26 

0.23 

No. of samples 

500000 

800000 

:3.500000 

100000 



very differently on chains starting a t  large log 0, and log os, large meaning greater than 4 

in this case. Specifically. it appeared from the first 40 chains that the old method and the 

Dynamical -A method do badly on chains starting at large values of these hyperparam- 

eters: whereas the  Dynamical B method does well. Because such large hyperparameter 

values appear rarely in the posterior distribution. there are  feiv of them among the -10 

chains. so assuming that they do have an important effect on the resuits. it is necessary 

to  oversample the region with large values of log a, and logo, and then downweight 

those points accordingly in the computation of the variance of the means. Otherwise. 

one might by chance cornpute the variance of means without any chain start ing at  large 

values of t hose hyperpararneters. and erroneously conclude that al1 the met hods perform 

Table 5.3: First 40 starting states are  drawn so that they are many inefficiency factors 

Tu apart .  Tu is the  inefficiency factor of log a.. 

Hidden 

iinits 

s 

12 

16 

20 

To ensure that  w e  have a decent number of points frorn the region G' satisfying 

logo. > 4 or logo, > 4 or both. it was decided to stratiFy the starting points so that 40 

of them are outside G and 10 are inside. Of the first 40 points chosen according to the 

separations in Table 5.8. some are already in G. So. t h e  choice of points Il through 50 

was done as follows: for each number of hidden unitsi' we chose enough additional points 

in G so as to  make them total 10 in number. and we also chose enough points outside of 

CZ so as to obtain 40 of thern. 

T u  
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S tart state separat ion 
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30000 
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Star t  s ta te  
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13 

Initial samples 

drop pecl 

O 

O 

O 
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To obtain these 10 new points. a long sequence of many points was obtained from 

the master file at fixed separations (always at least 3 inefficiency factors). For t2 and 16 

hidden units. the 10 new points rvere obtained past the end of the portion of the rnaster 

run used to obtain the first 40 starting states: for Y and '20 hidden units. the new points 

used the portion already used for the first 40 states. and beyorid if available. taking care 

[vas then uriiformly sampled to obtain the desired number of points in G ancl points 

outside of G. 

5.4.3 Modified Performance Measures Due to  Stratification 

Ttic stratification of the starting states does change the calculation of the variance of 

rneans rneasiire and its error somewhat. For .Yc equal to the nuniber of points takrn 

frorn regiori G' and % the number of points taken frorn outside. the variance of means 

within eacli stratum for hyperparameter a,, is: 

so that the overall tariance of means that takes stratification into account is: 

where p is the fraction of the posterior distribution in region G. 

For error estimates of the variance of the means. we compute the variance of the 

above as before. which is similarly computed as the weighted sum of the error variances 

cornputed separately for each stratification: 



-P labie 5 . ~ :  Estimated fraction oi the posterior distribution in region G t'or each number 

of hidden iinits. Region G is defined as t h e  region for which log a. > -t or log a, > -1 or 

bot h. 

The above expressions correct for the oversampling of G iising p. Table 5.9 gives 

estimates of these qiiantities from each master riin. 

It shoiild be noted that  we bave assiimed that p is known in the calciilation of the 

error bars of t hc ~ ~ r i a n c e  of means measures: but really. al1 we have are estimates. This 

simplification introduces some inacciiracies into the error calctilations. but it is not likely 

to change otir conclusions much. as ~ v e  will see later. 

One might question why the various values of p in Table 5.9 are qtiite different. The 

atithor has sorne empirical esperience showing that C; is a region of somewhat higher 

rejection rate than normal (aroiind 12% for 20 hidden tinits). It is possible that some of 

the master riins have q's that are high enough that they enter C: rarely enoiigh to make 

a clifference in the estirnates of p. This aspect of the esperiment is difficult to control. as 

it is usually not possible to tell in adnnce  what the regions tvith high rejection rates are 

going to be. and i f  t hey will make a difference to the final variance of means estimates in 

the end. Furt hermore. if such regions are identified after obtaining master runs. it can 

be very costly compiitationwise to redo the master runs a t  a smaller setting of q .  

Final15 the bootstrap procedure takes the stratification into account as follows: the 

first -10 chains in Z' are sampled uniformly with replacement from the first 40 chains in 

2. while the last 10 chains in 2' are sampled uniformly with replacement frorn t h e  last 



LO chains in 2. This ensures that each realization 2' is obtained from the same empirical 

distribution represented by 2. 

5.5 Number of Leapfrog Steps Allowed 

In accordance with the deemed ratios of computation involved in each super-transition 

for t h e  various methods (Table 5 . 5 ) .  different numbers of leapfrog iterations ivere used 

for each 11arkov chain. These are listed in Table 5.10. 
- - 

1 Hyperpararneter updates by 1 Leapfrog steps per chain 

Gibbs 

Dynarnical A 

Dyriamical B 

Table 3.10: The ~ar-ing numbers of leapfrog steps t hat were allorved per Markov chain 

in accorciance wit h t tie ratios of cornputation involved in each super-transition for the 

various methods as listed in Table 5.5 

5.6 Results of Performance Evaluation 

The optimal tuning parameter settings for each method and for each number of hidden 

itnits ivere assessed lrom Figs. 5.9 to 5.12 The optimal tuning parameters thus obtained 

are given in Table 5.Ll. The corresponding g's and variance of means and rejection rates 

obtained at these optimal settings but in nem runs ivith new randorn seeds are given in 

Table 5.1'2. 

-4s can be seen from Table 5.11. the optimal setting of q for the Gibbs and Dy- 

namical .\ methods tends to drecrease with increasing hidden Iayer size. Dynamical B. 

interestingly. increases with increasing hidden layer size. 



(a) Gibbs update (b) Dynamical -4 ripdate 

( c )  Dynamical B update 

Figure 5.9: S hidden units: a circle is drawn at the optimum point. and the surface as 

a function of 1 and q are backprojected on to the wa11s at optimal q and i respectively. 

Xote that the vertical scale is inverted. 



(a) Gibbs update (b )  Dynarnical .4 update 

(c) Dynamical B update 

Figure 5.10: 12 hidden units: a circle is drawn at the optimum point. and the surface as 

a fiinction of 1 and q are backprojected on to the walls at optimal q and 1 respectively. 

Yote that the vertical scale is inverted. 



(a) Gibbs update (b) Dynamical :\ upclate 

( c )  Dynamical B update 

Figure 5-11: 16 hidden units: a circle is drawn at the optimum point. and t h e  surface as 

a fiinction of [ and q are backprojected on to  the walls at optimal and I respectively. 

Xote that the vertical scale is inverted. 



(a) Gibbs update ( b )  Dynarriical X update 

( c )  Dynamical B update 

Figure 5.1'1: '20 hidden units: a circle is drawn at t h e  optimum point. and the surface as 

a function of I and rl are backprojected on to the walls at optimal q and 1 respectively. 

Xote t hat the verticai scale is inverted. 



1 Hyperpararneter updates by 

Gibbs 

Dynamical A 

Dynamical B 

Gibbs 

D y x m  i cal -1. 

Dynamical B 

Gibbs 

Dynamical .A 

Dynamical B 

Gibbs 

Dynamical .A 

Dynamical B 

Hidden units q Rejection rate 

0.400 8.2% 

O. 640 42.9% 

0.040 . r r  -7% 

Table B. 1 1: The optimal tiining parameters for each met hod and each niimber of tiidden 

units. 

The values of g are plotted for each number of hiciden units in Fig. 5-13. The error 

bars are big. and it is possible that there is essentially no difference in al1 the three 

methods. However. there is some evidence that when the niimber of hidden iinits .VA is 

increased to 16. the Dynarnical B method begins to work better than the old method. 

Note that the error bars in the figure are 90% confidence intervals of the performance 

measures. and do not take into account inaccuracies in assessing the optimal settings of 

the tiining parameters. Thus. the real error bars are actually bigger by sorne iinknotvn 

amount . 

Frorn the graph. the D-ynamical A method does not seem to perform that differently 

from the other rnethods. except at  16 hidden units. The cause of this seeming anomaly 

at 16 hidden units is discussed in the next chapter. 



The graph also shows that the Dynamical B method does not show any improvement 

over the old method that is rneasurable given the size of the error bars. This is unfor- 

tunate. However. the old method does seem to show a noticeable upward trend. while 

the tivo new methods do not. This suggs ts  that the old method is becoming more and 

more inefficient as the number of hidden units .b increases even though the compute 

cornpute t ime reqtiired to maintain the same level of performance as measured by y groms 

s~iperlinearly ivith .Vh for the old met hod. On the other hancl. the two new methods ap- 

penr more likely to be either linear or sublinear. although it is dific~ilt  to tell for certain 

with the limited nunibrr of data points and the noise. 

The size of the rrror bars impedes our analysis of the results. In the  next section. 

we show hoiv we can perform bootstrapping on pairwise coniparisons to obtain clearer 

indications of how one method does compared to another. 

5.7 Pairwise Bootstrap Cornparison 

To more sensitively compare how two methods perform. ive can compute the ratio of y's 

for two different methods. and use bootstrapping to obtain a confidence intenaal for that 

ratio. Here. a bootstrap realization is a choice of 50 hlarkov chah  start states rather 

than 5larkov chains. as the chains themselves differ for the two methods. This couples 

the g's for the 2 methods together. causing them to be evaluated at the same hlarkov 

chain start state for each bootstrap realization. In this way. ive might be  able to better 

distinguish between good and bad methods. For esample. we might see that one method 

always has a higher g than another when started from the same point even though their 

individual g's ivander over a large range for different bootstrap realizations so that the 

error bars in the 2 g's overlap significantly. 

[n Fig. 5.15. ive show these ratios with 90% confidence intervals obtained using 500 
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N u d r  01 hidden units 

Figure 5.13: Comparison of g between t h e  three methods a t  the optimal setting of t h e  

tuning parameters as the nimber of hidden units increases. Crosses are the old method. 

triangles are the Dynarnical .A method. and circles are the Dynarnical B method. Error 

bars terminate with the same symboi that represents each point. These error bars rep- 

resent 90% confidence intervals. and do not take into account the error in the estimation 

of the optimal tuning parameters. Thus. the true error bar is greater than those shown. 



Figure 5.14: Comparison of optimal performance of the three methods as the number 

of hidden units increases. Error bars terminate with the same s-mbol that represents 

each point. These error bars are the standard deviation in the each variance of means 

measure. and do not take into account the error in the estimation of the optimal tuning 

parameters. Thus, the true error bar is greater than those shown. 



boostrap samples. From Fig. 5.15a. it seems fairly convincing that Dynamical B works 

better than the old method for 20 hidden iinits. Fig. L i 5 b  suggests that Dynamical 

B tends also to work better than Dynamical A, while Fig. 5. l k  is inconclusive on the 

relative performances of Dynamical A and the old Gibbs method. However. we shoulcl 

note that that there is some uncertainty in the error bars due to the fact that w e  might 

not realiy have Found the true optimal settings of the timing parameters. Also. the 50 

SIarkov chains we used might not have been enough to capture al1 the important regions. 

Thus. even thoiigh the pairwise cornparisons rnight suggest that Dynarnical B works 

better than the Gibbs rnethod for 20 hidden units. it is better to be cautious and conclucle 

ttiat Dynamical B may work Letter than Gibbs. and if  it does. it is not hy miich. 

Now that it is clear that Dynamical B is not as good as one might hope. the question 

is. mhy is that. and can it be made to go fasterl C V e  aciclress these questions. as ivell 

as the qiiestion of Dynamical :\'s large error bars in g at 16 hiclden iinits. in the nest 

chapter. 



(a) Gibbs vs. Dynarnical B 
(b) Dyrianiical B vs. Dynaniicnl 

:\, 

( c )  Dynarnical A vs. Gibbs 

Figure 5-15: Pairwise cornparisons of the various methods obtained by taking the ratio 

o .  Error bars represent 90% confidence intervals obtained using 500 bootstrap realiza- 

tions. Dashed lines have been drawn at the level of 1. mhich signifies equal performance. 



Method 

Gibbs 

Dynamical 

A 

Hidden 
P 5 

un i t s  

Dynarnical 1 1 0.0909 f U.l4B:3 i- 0.0551 i 

0.0479 i 
Gibbs 12 

O.OOS0 

Dynamical 0.0-4IS k 
L 2 

-4 0.0093 

Dynamical 0.1420 k 
12 

B 0.OÏO'i' 

0.0.509 k 
Gibbs 16 

0.0 102 

Dynamical 0.0637 
16 

A 0.0 124 

Dynamical 0.0571 k 
16 

B 0.0 12 1 

0.0630 & 
Gibbs 20 

0.0 134 

Dynarnical 0.0764 I 0.1576 * 0.0163 * 
1 2 0 1  I l 

Dynamical 0.0749 k 0.1.579 k 0.0207 + 
20 

B 0.0 15G 0,0331 0.0037 

Table 5.12: Variance of means performances obtained by te-running t h e  various methods 

rvith new ra~clom seeds at the optimal tuning parameter settings. Each error bar is the 

standard deviation of its variance of means measure, 



Chapter 6 

Discussion 

6.1 Has the Reparameterization of the Network Weights 

Been Useful? 

-4s we saw in the last chapter. the Dynamical .A method seems to perform comparably to 

Dynamical B escept for 16 hidden units. Upon closer examination. we see that the large 

value of g for the Dynamical A method at 16 hidden units is d u e  to it not performing 

well for some 4tarkov chain starting states with large hyperparameter values for loga,, 

and log o,. Le.. the second stratum. This can be seen in Fig. 6.1. and is a manifes- 

tation of Dynamical A's inability to rnove efficiently between large and srnall va1ues of 

hyperparameters. This etfect is less pronounced for '20 hidden units probably because 

the starting states in the second stratification are less extreme in value. As mentioned 

before. this is an aspect of the experiment that is difficult to control. Nevertheiess. Our 

present results indicate that the Dynamical h rnethod should be avoided because it may 

move estremely slowly from some starting states. 



(a) Gibbs update (b) Dynarnical .4 updnte 

(c) Dynarnical B update 

Figure 6.1: These plots compare how the various method fare on the 10 Markov chain 

starting states mith large h ~ ~ e r p a r a m e t e r s  for 16 hidden units. The circles show the 10 

starting states rvith large hyperparameters. the  crosses show the hyperparameter means 

of all 50 chains, while t he  dots show the  means for the  10 Markov chains tha t  started 

a t  the  large h-yperparameter values. Dashed lines connect each starting s ta te  with its 

resulting mean. 



6.2 Making the Dynamical B Method Go Faster 

-4s we saw in the last chapter. the Dynamical B method offers only a small improvernent 

over the old method. if any at all. The question then is. why. 

The key may lie in the rejection rates. -4s can be seen in Fig. 6.2. the rejection rates 

of the Dyriamical B method differ from those of the old method and the Dynamical .A 

rnethotl in that it shows a significant increase with leapfrog trajectory length 1. 

The prirnary motivation for the new methods is to aIlow the hyperparameters to be  

updated with the parameters during the course of a leapfrog trajectory. For this to 

esplore the posterior distribution efficiently. long trajectory lengths are riecessar).. A s  

we cari see from Fig. 6.2. the Dynamical B method ended iip having rejection rate 

çharaçterist ics t hat penalizes long t rajectorp lengt hs rvit ti high rejection rates. Thus. the 

optimal setting of 1 is not as long as we rnight like. 

Wt t i  this observation in mind. if  we can find out why t h e  Dynamical B method has 

this behavioiir. we might be able to fis it. The next section formillates a simple rnotlel 

that accounts for this increase in rejection rate with 1. 

6.2.1 Explanat ion for the Rising Rej ect ion Rat es 

If the stepsizes mere infinitesimally small. the leapfrog trajectories would simulate Hamil- 

tonian dynamics perfectly. and the rejection rate ivould be zero. However. they are not. 

and are fiirtherrnore calculated by heuristics that may yield inappropriate values some- 

times. This leads to rejection behaviour t hat affects the rate at tvhich the .l[arkov chain 

explores the state space. 

There are two qualitatively different ways by tvhich a leapfrog proposa1 under the 

Dynamical B method may be rejected. In the first way. the leapfrog simu 

Hamiltonian dynamics is stable and H varies over a small range due to 

nature of the simulation. At the end of the trajectory, the distribution of 

iation of the 

the discrete 

' N over this 



(a) Gibbs iipdate (b) Dynarriical .-\, iiptiste 

( c )  Dynamicat B update 

Figure 6.2:  Rejection rates versus trajectory length L for 20 hidden units. 



small range determines the rejection rate. In the second way. the leapfrog sirntilation 

becornes unstable at some point during the trajectory due to the heuristics yielding 

stepsizes inappropriate for that region of state space. The effect of this is catastrophic 

because the simulation is almost never able to recover: the value of H either diverges 

or moves to a much higher value. resulting in near certain rejection. H has a much 

are inappropriatel- large may still be stable in a wider orbit. 

To illustrate this instability. H is plotted in Fig. 6.3 for 10 trajectories started From 

the same state but with different randomly-selected initial momenta. We see that once 

an iristability can occiir at an? time. and once it oçcurs. recovery is virtiially impossible. 

and will lead to near-certain rejection at the end of the trajectory. The ciirntilativr etfect 

of riskin; a grossly wrong stepsize with each step is that. for very long trajrctories. the 

probability that we manage to get to the  end without once having experiencecl a catas- 

trophic instabili ty is tiny. Therefore. the rejection rate should increase rvit h trajectory 

length. This explains the observed increase of the rejection rate rvith 1 for Dynamical B. 

h o t h e r  viecv of the instability of H is shorvn in Fig. 6.4. which shows how the 

distribution of H broadens wit h increasing number of leapfrog steps. 

The old method. which iipdates the hyperparameters by Gibbs sampling. is not prone 

to this cumulative rejection effect as its stepsize is not being constantly recalculated 

during a trajectory. Even if its stepsize heuristic gives inapporpriate stepsizes with too 

high a probability. the stepsizes are computed only once at the beginning of t he trajectory. 

and a good stepsize will tend to lead to a stable trajectory no matter how long it is. Such 

long t rajectories t hen become unstable only by entering a region for which its stepsizes are 

inappropriate. This effect leads to rejection rates that increases mith I as. the longer the 

trajectory the more likely such regions are encountered. However. the fact t hat rejection 

rates for the old method show rrery little dependency on 1 (see Fig. 6.2) indicates that 

entry into such regions happens very rarely. Thus. for the old method. most rejections 



Figure 6.3:  H plotted over LO trajectories started from the same state  but tvith different 

initial momenta. Each t rajectory has '20000 leapfrog steps. :ls each trajectory progresses. 

it may hecome iinstable. i f  it does. H iisiially rises catastrophically. :\ transition to 

infinite H is shown here as a transition to O. q was set at 0.040. and a network of S 

hicfderi units was iised. 

are due to the normal deviation of H away from its initial value. 

That the repeated stepsize calculations handicaps the Dynarnical B method with its 

cumulative rejection efFect might be cause for pessimism. However. the k t  that the 

Dynamical A method achieves fairly Rat rejection rates (Fig. 6.2) shows that the rise 

in rejection rates is not an inescapable cost of calculating the stepsizes before each step: 

rather. with appropriate stepsize heuristics. it might be possible to achieve flat rejection 

rates even in the Dynarnical B method. 

The stepsize heuristics used in the Dynamical B method for the  parameters are the 

same as that used in the old method. so they are unlikely to be the cause of the catastroph- 

icaliy mong stepsizes. CVe e'rpect that it is the stepsize heuristics for the  hyperparameters 

that is a t  fault. The  ne.xt section seeks to confirm this, 



(a)  Before any leapfrog steps 

1 , n n n ,  - ,  , 

: :1 4 3  (P 'CO '20 '10 '10 

( c )  X fter 10000 leapfrog steps 

(b )  After *5000 leapfrog steps 

(d) Xfter 20000 leapfrog steps 

Figure 6.4: The distribution of H broadens as a trajectory progresses. Infinity is binned 

at O in these histograms. 50 trajectories. al1 started at the same state but with different 

initial momenta. were used to generate t hese histograms. rj~ \vas set at 0.040. A network 

of 8 hidden units was used. 



6.2.2 The Appropriat eness of S t epsize Heuristics 

If a stepsize is inappropriately large and leads to instability. then perhaps a smaller 

stepsize half as large might not. If. for example. the parameter stepsizes are sometimes 

inappropriate, t hen under a leapfrog discretization where the hyperparameter update re- 

mains the same but where each parameter update is split into two consecutive iipdates. 

each rvit h half the stepsize adjust ment factor. the acceptance probability p shotild in- 

crease. since the parameter update is now closer to the true Hamiltonian dynnmics. On 

the  other hand. if the parameter stepsizes are usually appropriate and it is the hyperpa- 

rameter stepsizes t hat are at fault. t hen the rejection rate shoiild not change miich. 

:\s shown in Fig. 6.5. when the parameter iipdates were split. the  rejection rates 

did not change. rvhile they dropped when the hyperparameter iipclates were split. This 

indicates that the hyperparameter stepsizes calculated according to the ciment heiirist ics 

are often inappropriate. Fig. 6.5 was obtained by averaging the rejection rates o w r  a 

small niimber of hlarkov chains run at varioiis settings of 1 with q = 0-OLO.  :\ network 

with S hidcien iinits was itsed. along with the training data from the last c h a ~ t e r .  The 

hlarkov chain starting states were chosen from the ones used in the tests in the last 

chapter. with momenta randomly initialized from the unit normal distribiition. 

To remedy the  inappopriateness of the hyperparameter stepsizes. it is possible that 

the stepsize heuristics for the hyperparameters needs to be changed. On the ot her hand. 

it is also possible that some setting of q h  < rl, rather than r)h = q., is al1 that is necessary. 

In the nest two sections. ive e'rplore these two possibilities. 

6.2.3 DifFerent Settngs for qh/r], 

In this section. ive report the results of sorne experiments to test the possibility that 

some setting of q h  < 11, can flatten the rejection rate versus 1 curves without us having 

to change the stepsize heuristics. 



Figure (i .5: Effeci. on rejection rates of splitting either the parameter updates or thc 

hyprrparameter iipdatrs into two while using ttie Dynamical B method. Here. rp, = rj ,  = 

0.010. This plot was obtained iising a network with 3 hiddrn units. 

We used a network with 16 hidden units and the training data from the last chapter. 

20 Uarkoï çhairis were rtin at various trajectory lengths 1 with rl, = 0.32 and 0.64. and 

rlh = r l p /  LOO. The 'rlarliov chain starting states were taken frorn the states iised for the  

tests in  t h e  last chapter. and the rnomenta were randomly initialized from a unit normal 

distribution. The resulting rejection rates averaged over the 2û chains are plotted in Fig. 

6.6. Compared to t h e  case rvhen rlh = q p .  the rejection rates do not rise as fast as the 

t rajectory lengt h increases. 

This suggests that. by decreasing the ratio rlh/q, .  it may be possible to gain enough of 

the advantage of having long trajectory lengths to offset the smaller distances travelled 

in each step due to the smaller rp,. 

The geometric mean performance measure g [vas also calculated at each setting of 1. 

it was found that the best value of g is 0.14. which occurs at i = li067.rl, = 0.32. This 

value of g is considerably worse than the optimal one (0.0131) found for the D-parnical B 



(a) q h  = qp = 0.32 and qh = qp = 0.64 

Figure 6.6: These pictiires show rejection rates for 16 hidden units when different ratios 

of ~ ~ 1 %  are used. The rejection rates do not rise as fast with increasing trajectory length 

tvhen qh is set to be smaller t han rl , .  The first set of rejection rates were averagecl over 

50 Markov chains while the second were obtained iising 20. 

method at this number of hidden units. So we see that. even though ive are able to take 

much longer trajectories with smaller q h / q p .  the smallness of qh rnay rrase our advantage. 

It is possible that some other setting of q,. or some other ratio of q h / q p  does better thnn 

setting g = O . O X  1. but this question tvill not be explored further in this thesis diie to 

time constraints. The key concltision of t his section is that smaller ratios of ph/q,  can 

ff atten t h e  rejection curve and rnay be more advantageous than simply setting qh = qp.  

6.2.4 Fine Splitting of 

.-\part from setting a lom ratio 

Hyperparameter Updat es 

O .  ive conjecture that,  with sufficiently good 

heuristics. we should also be able to  get the rejection rate to s tay  flat as i increases. To 

test this. we split the hyperparameter updates into 100 fine updates (many more than 

the two before). The reason for doing this is that the more stable trajectory obtained by 

the splitting may roughly mode1 what a good heuristic gives. 



Figure 6.7: Effect on rejection rates of splitting the hyperpararneter iipdates into 100 

iipilrites rvhile using the Dynamical B met hoci with = r lp  = 0.200. Compared t the 

riurrrial iirisplit iipilates. rejection rates are now much lower. The network used here has 

S hiciden units. 

The split hyperparameter iipdates were tried on a network with 15 hidden iinits. iising 

the same training data as in the last chapter. and using 10 Markov chain starting states 

taken also from the tests conducted in the previous chapter. lIomenta were randomly 

initialized from a unit normal distribution. The 10 hlarkov chains were run at rl = 0.20 

rvith various values of 1. Fig. 6.7 shows that the resulting rejection rates for riins with 

split hyperparameter updates still increases with i .  but its rate of increase is much gentler 

now. increasing about one order of magnitude from about 1%. This is much better than 

the rejection rate obtained from the normal unsplit updates, mhich we contrast in the 

same figure. The unsplit updates do worse even for q less than half the size. 

This suggests that, with sufficiently pood heuristics. trajectories might be able to go 

far enough to truly reap the advantages of updating the hyperparameters dynamically. 



CHAPTER 6. DISCUSSION 

6.2.5 Why the Stepsize Heuristics are Bad 

A possible explanation for why the hyperparameter stepsize heuristics do not work well is 

that we cannot use the current values of the h-yperparameters to compute their stepsizes. 

-4s we are unable to get a n  estimate of them from the weights due to their reparame- 

terization. ive are forced to use their prior means, which are not necessarily very good 

estirnates. 

In retrospect. this should have been obvious. The backpropagation of the  second 

derivative of the likelihoods multiplies together the hyperparameter variances of each 

layer of weights that it propagates derivatives t hrough. For instance. the second derira- 

tive of the likelihood with respect to the input to hidden weight hyperparameter A,, is 

proportional to l / ( ~ l u ~ , ) .  the product of t h e  prior variances of the hidclen to oiitpiit 

weights ancl the input to hidden weiglits. In an Y hidden unit riin. oiir settings were siich 

t hat 1  YI,^^,,) = 0.2. k t .  from Fig. 5.S. it is clear t hat. as the  bIarkov chain ranges over 

the posterior distribution. the product of these two variances can actiially range lip to 

el2 z 1.6 x 10' or more. Clearly O.:! as an estimate of 1.6 x 10' is bad. This c m  lead to 

stepsizes which are ( O . ' Z / ~ - ' ' ) - " . ~  z 1000 times larger than rvhat they would have been 

if we had used the actiial d u e s  of the hyperparameters. 

The Dynamical A method does not siiffer from this multiplicative effect of wrong 

hyperparameter estimates as its neural network function does not depencl on the hyper- 

parameters. so there is no  need to do backpropagation of second derivatives. Indeed. the 

second derivative of the potential energy in Eqn. 4.9 is proportional to  just the precision 

of the hyperparameter. so if our estirnate of the hyperparameter is k times too small. the 

stepsize is only going to  go up by a factor of Jjc. Furthemore. the parameters contain 

information about the value of the hyperparameter: the Dynamical A method estimates 

a hyperparameter as its posterior mean given its weights. 



6.2.6 Ot her Implications of the Current Heuristics 

The fact that the current heuristics uses the prior means of the hyperparameters as esti- 

mates of the hyperparameters thernselves during stepsize calculations has the implication 

t hat. rvhen the Dynamical B met hod is used. the prior means must be carefully selected 

to be close to values where the hyperparameters have high posterior probability. This 

allorvs the stepsizes to be accurate when moving about in areas of high posterior proba- 

bility. If  the prior rneans are badiy set. exploration of the posterior is expected to become 

very inefficient. 

.-\ hybriti &Ionte Car10 niethod that çompiites bad stepsizes in sorne region of state 

space rnay iisually be unable to enter that region because it rejects once a trajectory 

eriters it. Furt herrnore. once having entered that region. it is obliged to stay in there a 

long time ittirough its high rejection rate in that region) in order to cornpensate for its 

inabiiity to enter that region in the first piace. This leads to high autocorrelations. 

LI> might ask if t h e  B method actually siiffers from this problem. If it does. it 

is small. as an effect like this was not noticed: the marginal posterior distributions of 

the hyperparameters obtained by the B method matches t hose from t tie old (Fig. 5.8). 

However. this is no guarantee that it will work similarly well for other problems. 

6.3 Conclusion 

In this thesis. we have introduced a new way of learning the hyperparameters in a neural 

network mode1 using Hamiltonian dynamics. We have presented two versions of the new 

rnethod: the Dynamical -4 method. and the Dynamical B method. which is the former 

with weights reparameterized to enhance movement between large and srnail values of 

the hpperparameters. We have also developed performance evaluation met hodologies 

that measure the rate of exploration of the posterior while accounting for the different 

compute times required for the different methods. The observation that some parts of 



state  space might have a large effect on the results then led us to a stratified version 

of the performance measures. .-ifter estensive testing. we have found that these same 

regions of state space can cause Dynamical .\ to becorne very inefficient for the reasons 

that led us to formulate Dynamical B. However. we have also shown that Dynamical B 

does not show a measurable performance improvement over the old method. 

The Dynamical A method as it currently stands siiffers from expectetl inefficiencies. 

but it was hopeci that Dynamical B would overcome them and yield better performance. 

Instead. there is currently no reason to recommend either new rnethocl over the old one. 

CVe strongly believe that the Dynamical B rnethod's Achilles' heel is the fact that 

its rejection rate increases wit h trajectory lengt h. If longer trajectories can be achieved 

while keeping rejection rates low. it is espected that the Dynamical B method can becorne 

significantly faster. To achieve this. future work rnight focus on an improved parameteri- 

zat ion OF the weights and /or more acciirate hyperparameter stepsize heiirist ics. A lso. the 

stepsize heuristics can potentially be simplifieci to aIlow more leapfrog steps to be tnken. 

C:ltimately. our efforts are being hampered by the fact that the volume of the stnte 

space iincler the posterior having large hyperparameter iariance is huge and low density. 

while the region having small hyperparameter variance is small and very high density. 

and hybrid Monte Carlo does not move well between these two types of regions. Doing 

nothing about this leads to the Dynamical -4 rnethod. which we have shown can have 

severe inefficiencies in certain regions. On the other hand. our effort to reparameterize 

the weights to tackle this problern leads to the hyperpararneters being confounded with 

the weights in the computation of the netmork output. and that is the cause of our 

inability to have long trajectories while keeping rejection rates doivn. It may be that we 

are pushing against the inherent limitations of the hybrid Monte Carlo met hod here. but  

we nevertheless hope that further ivork will overcome the present difficulties. 



Appendix A 

Preservation of Phase Space Volume 

Under Hamiltonian Dynamics 

Here. ive show the well-known resiilt t hat Hamiltoriian clynarnics keeps the Hamiltonian 

H as well as phase space volume constant. 

Hamiltoriian dynamics is characterized by: 

where q and p are the state and the rnomentum variables respectively. 

The following shows that Hamiltonian dynamics keeps II constant: 

To show that Harniltonian dynamics conserves phase space volume. consider the phase 

space fiow ( q . p ) ,  which defines a vector field in the phase space (q,  p). The fact that phase 



space volume is conserved is due to the fact that the divergence of this vector field is O: 



Appendix B 

Proof of Thorem 2: Deterministic 

Proposals for Metropolis Algorit hm 

Here. we prove Theorern 7 From Section 2.3.1. 

First. WC need the  following definit ion: 

Definition ï (Detailed Balance) LCé say thnt the transition prohabililies T ( r .  -4) dt- 

firtcd /or al1 points r and al1 sets d satisfies detailed balance with respect to the density 

~ ( x )  1f. gicerr any  truo sets .4 and B: 

In words. the detailed balance condition says that. in equilibrium. the probability of 

starting in -4 and moving to B in one transition is exactiy equal to the probability of 

starting in B and rnoving to -4. 

Recall that to say that a Markov update leaves a distribution ~ ( x )  invariant is to say 

tliat the total probability mass ;r(;l) in some arbitrary set .4 is unchanged by the Markov 

transition. That is: 



APPENDIX B. PROOF OF THOREM 2: DETERMINISTIC PROPOSALS FOR -~/IETROPOLIS -ALGORITH 

Figure B.1: -4 maps to -4' under M. and B maps to B' iinder .Ci. 

rvhere R is the state space. 

It is easy to see that if a hlarkov transition satisfies detailecf balance wit h respect to 

~ ( r ) .  then it leaves ~ ( r )  invariant: we need only set B to  R to see this. Thus. we orily 

need to prove that the hletropolis algorit hm with deterministic proposais satisfying the 

two conditions in Theorem 2 yields Markov updates that satisfy cletaileci balance rvith 

respect to the desired distribution n(x). That is Our aim in the below discttssion. 

Consider the deterministic mapping .bf : R -t R. Let .4 Ç R and B Ç R. Under .CI. 

the image of .4 rnight in general have some part otitside B, and the image of B might 

have some part outside -4. as shown in Fig. B.1. 

Assiime that the mapping .LI(-) is the inverse of itself so that .CI(M(x)) = x. me must 

have that the M(.i n BI) = B n .-Y. Suppose not. Then. there is a point x E -4 n B' 

that maps into B n  A'. which we show as "M(r ) "  in Fig. B.2. (M(z) m u t  be in -4' as 

r E -4.) But the fact that x is in B' means that it is the image under .\.I(-) of some point 

y in B. so that M ( y )  = x. If indeed x maps on to the point " M ( x ) " ,  then :I.l(M(y)) + y. 

for y is in B but " M ( x ) "  is not. Since this violates the assumption that  LW(.) is its own 



-APPENDIX B. PROOF OF THOREM 2: DETERMINISTIC PROPOSALS FOR ~ IETROPOLIS -ALGORITH 

Figure B.?: i E -4 n B' must map onto B n Ar. 

inverse. Ive concliide that  .CI(.-\ ri B r )  = B n A'. Note that JI( B . - Ir)  = -4 n Br also due 

to the self-inverting assiimption on .II(-). 

W i t h  t his fact in tiantl. rve are ready to show how to achieve detailed balance for the 

Lletropolis algorithm. We assume self-inverting deterministic proposals. Since the  total 

probability mass Howing from -4 to B takes place in the fiow from .4n Br. we can rewrite 

t h e  left hand side of Eqn. B. 1: 

where we have used the Metropolis transition probability T ( x ,  B) = min[l. T ( ~ ~ ~ ( x ) ) / T ( x ) ] .  



APPENDIX B. PROOF OF THOREM 2: DETERXIINISTIC PROPOSALS FOR ~ ~ E T R O P O L I S  -ALGORITH 

We can then rewrite the right hand  side of Eqn. B.1: 

Cornparing t h e  expressions resulting from manipitlating the left a n d  t h e  right hand 

sides of the detailrd balance condition. we see that they are equal i f  the .Jacobiari 

i l  = 1. Thiis. detailed balance with respect to T ~ X )  is achieved if t h e  lIetropolis 

nlgorit hm is iised with cieterministic proposals t hat are reversible (self-in\*& ing) and ttiat 

have .Jacobian 1, and tire are done. 



Appendix C 

Preservation of Phase Space Volume 

Under Leapfrog Updates 

In this  Appenclis.  we show that leapfrog updates preserve phase space voliinir. 

Consicler the simultaneous iipdate of 2 variables siich that eacti tiprlate does not 

depend on the variable it updates. but  depends on the value of the ot tier variable: 

[t can easily be shown tha t  the Jacobian of such an t~pdate is 1 - Y ( ~ ) g ' ( x ) .  so the 

iiptlate does not preserve phase space volume in  general. On the other hand. consider 

two sequential tipdates where each update also depends on the variable updated by the 

other only. but the updates are performed one after another: 

The Jacobian of such an update can be shown to be identically equal to 1. and so 

it preserves phase space volume. This is simply a demonstration of the fact that each 

sequential update of a variable that does not depend on itself amounts to a shear in the 



direction of t hat variable. Thus. each sequential update preserves phase space volume. 

and indeed. a chain of such updates does as well. 

The leapfrog updates are: 

€ € i3E 
p i ( t  + ,) = p i ( t )  - -- (q(t)) for each i = L..d - 2 asi 

p i ( t  + €12)  
q i ( t  + e) = q i ( t )  + for each i = l..d 

mi 
€ d E  

p i ( [  + 6 )  = p i ( t  + .) - _ - ( q ( t  + 6 ) )  for each i = L..d - 2 dgi 

The update for p appears to be simultaneoiis in that pi is updated without reference 

to an- newly-iipdated components of p. However, in the leapfrog update. the iipclate of 

each pi cloes not actually depend on any other component of p. so t h e  update of each pi 

can be viewetl as being sequential and conserving phase space volume. The same applies 
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