
LEARNIXG HYPERP.AR.~~IETERS FOR NEURAL NETWO RI< DELS

USING HAAIILTONI,\N DYNXMICS

L a m Choo

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Gradiiate Depart ment of Computer Science
University of Toronto

Copyright @ 2000 by Kiam Choo

Abstract

Learning Hyperparameters for Neural Xetwork !dodels Using Hamiltonian Dynamics

L a m Choo

Master of Science

Gr2cJ~Jat- Denart ment cf Cîrriputer science r --"'-"-

University of Toronto

2000

L k consider a feedforward neural network mode1 rvith hyperpararneters controlling grotips

of weights. Civen some training data. the posterior distribution of the weights and the

hyperpararneters can be obtainecl by alternately updat ing the weights wit h hybrid Nonte

Carlo and sarnpling from the hyperparameters iising Gibbs sampling. Homever. t tiis

methori becomes slow for networks rvith large hidden layers. We address this prohlem

by incorporating t h e hyperparameters into the hybricl .\Ionte Carlo update. However.

the region of state space under the posterior witti large hyperparameters is tiuge and

has low probability density. ivhile the region with small hyperpararneters is ver- small

and verp higti density. -4s hybrid !donte Carlo inherently does not move ivell between

siicli regions. we reparameterize the weights to make the two regions more compatible.

only to be hampered by the resulting inability to compute good stepsizes. Yo definite

improvement results from our efforts. but we diagnose the reasons for that. and suggest

future direct ions of research.

NationaI Library I*i of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. nie Wellington
OttawaON KIAON4 OttawaON K1A ON4
Canada Canada

Y w r fi& Votre relerutua

Our II& Notre leterence

The author has granted a non-
exclusive Licence ailowing the
National Library of Canada to
reproduce, loan, distribute or seIl
copies of this thesis in microform,
paper or electronic formats.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliotheque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyight in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be p ~ t e d or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Canada

Dedication

I dedicate this thesis to my family, who have accepted rny wanderings over the years. I

especially dedicate this to my mother. whose strength and will 1 carry on.

Acknowledgement s

1 thank Prof. Radford Yeal for his invaluable guidance on this thesis. I also thank Faisal

Qureshi for his helpfiil suggestions and friendship during this thesis. Thanks also to the

other inhabitants of the Artificial Intelligence Laboratory who have helped me in some

way to cornplete this thesis.

Contents

1 Introduction 1

. 1.1 Overview L

1.2 The Neural Network Learning Problem *) -
. 1 . .3 Bayesian Approach to Xeural ?let Learning 3

1 .Y. 1 Bayesian Inference . 3

. 1.3.2 A Siniplr Example -1

1 . . 3 Making Predictions -
-3 .

1 . . 4 Determining the Hyperparameters From the Data5

. 1.4 Motivation 6

2 The Hybrid Monte Car10 Method 10

2.1 Background on Markov chain Monte Carlo Sampling 10

2.2 The Met ropolis Algorit hm wit h Simple Proposals 14

. 2.3 The Hybrid 'vlonte Carlo Method L7

'1.3.1 Leapfrog Proposais . 19

. 2.3.2 Stepsize Selection 21

. 2.3.3 Convergence of Hybrid hlonte Carlo 26

3 Hyperparameter Updat es Using Gibbs Sarnpling 29

3 . 1 NeuralNet~vorkArchitecture. 29

. 3 . 2 NeuraI Nettvork Mode1 of the Data 30

3.3 Posterior Distributions of the Parameters and the Hyperpararneters . . . 32

3.4 Sampling From the Posterior Distributions OF the Parameters and the Hy-

. perparameters 3 3

3.1.1 Convergence of the .-\ lgorithm . :3-!

. 3.5 Inefficiency Due to Gibbs Sampling of Hyperparameters 35

4 Hyperparamet er U p dates Using Hamilt onian Dynamics 37

. 4.1 The New Scheme 37

. 4.L.1 The Idea 37

4 . 1 . TheYewSchemeinDetai l . :3S

- 2 Reparameterizat ion of the H!*perparameters -II

4.3 Reparameterization of the CVeights . 42

. 4.4 First Derivatives of the Potential Energy

4.41 First Derivatives with Respect to Parameters -15

4.4.2 First Derivatives with Respect to the Hyperparameters -I;

4.5 Approsimations to the Second Derivatives of the Potential Energy -18

-4 ..i .l Second Derivatives with Respect to the Parameters -IS

4 - 5 2 Seconcl Derivatives with Respect to the Hyperparameters 50

. 4.6 Stimmary of Compiite Times 52

. 4.7 Computation of Stepsizes 54

4.8 Compute Times for the Dynamical .A Method 54

5 Results 57

w- . 5.1 Training Data sr

. 5.2 Verificat ion of the New Met hods 50

. 5.2.1 ResuIts From Old Met hod 60

5 .22 Results of New Methods Compared with the Old 60

. 5 -3 Met hodology for Evaluat ing Performance 64

. 1 The Variance of Means Measurement of Performance 68

. 5.3.2 Error Estimation for Variance of Means 71

. 5.3.3 Geometric LClean of Variance of hleans 71

3 . 4 [t erat ions .'\ 1Iowed for Each Met hod 72

. 5.4 Starkov chain start states 753

. - 1 hlasterKuns 13

-- . 5.4 . 2 Starting States Üsed i;>

- -. 5 4 . 3 11odified Performance Measures Due to Stratification I r

- " . 4.2 Number of Leapfrog Steps Allowed 79

5.6 Resiilts of Performance Evaluation . 79

. - . a.. Pairwise Bootstrap Comparison S5

6 Discussion 91

6.1 Has the Reparameterization of the Network Weights Been I~seftilm! 91

. 6.2 Liaking the Dynamical B Methoci Go Faster 93

. 6.2.1 Esplanation for the Rising Rejection Rates 93

. 6.2.2 The .\ ppropriateness of S tepsize Heiirist ics SS

. 6.2.3 Different Settngs for r) h / r l , 9S

6 . 2 4 Fine Splitting of Hyperparameter Updates 100

. 6.2.5 Why the Stepsize Heuristics are Bad LOP

. 6.2.6 Other Implications of the Current Heuristics 103

. 6.3 Conclusion 10:3

A Preservation of Phase Space Volume Under Hamiltonian Dynamics 105

B Proof of Thorem 2: Deterministic Proposais for Metropolis Algorithml07

C Preservation of Phase Space Volume Under Leapfrog Updates

Bibliography

vii

Chapter 1

Introduction

1.1 Overview

:\ ftedforward rietiral nettvork is a nonlinear rnodel that maps an input to a n oiitpiit. It

cari be viervetl as a nonparamet ric mode1 iri the sense t hat its parameters canriot easily

be interpreted to provide insight into the problem that it is being used for. Neverthrless.

leedforward neural networks are porverful as with sufficient hidden tinits they can learn to

approsimate any nonlinear mapping arbitrarily closely (Cybenko. 1989). Partly because

of this Hesibility. the- have becorne widespread tools used by many practitioners in

the sciences and engineering. These pract it ioners typically use well-established learning

techniques like backpropagation (Rumelhart et al.. 1986) or its variants. But despite the

multitude of learning met hods already in existence. learning for feedforward networks

remains an area of active research.

:\ recent approach to feedforward neural net learning is Bayesian learning (Buntine

and Weignd. 1991: MacKay. 1991. 1999: Xeal. 1996: Müller and Insua. 1993). This new

approach can be viewed as a response to the problern of incorporating pnor knowiedge

into neural networks. However, the cornputational problems in Bayesian learning are

cornplex. and none of the existing techniques are perfect. In the interests of computational

tractability, both the works of MacKay (1991; 1999) and Buntine and LVeigend (1991)

assume Gaussian approximations to the posterior distribution over network weights.

.A more general and Aesible approach is to sample from the posterior distribution of

the weights. as has been done by Neal (1996) and Blüller and insua (199s). Neal obtains

samples by alternating hybrid Monte Carlo updates of the weights with Gibbs snmpling

updates of the hyperparameters. Miller and h u a also alternately update the weights

and Gibbs-sample the hyperparameters. but in addition. t hey observe t hat. given al1

weights ercept for the hidden-to-output ones. the posterior distribution of the latter is

simply Gaussian rvhen the data noise is Gaussian. While the other weights still rieed

to be updated by a more complicated Metropolis step. this does allow thern to sarnple

direct ly from the Gaussian distribution of the hidden-to-output weights. Howevrr. as

will be described later. both methods are expected to become slow for large networks.

possibly to the point where they become unusable.

This thesis addresses the above inefficiency for large networks. Specificaily. it is

concerned with improving on the hybrid Monte Carlo technique used by Neal so that

both parameters and hyperparameters are updated using hybrid Monte Carlo.

1.2 The Neural Network Learning Problem

The rest of this thesis is about feedforward neural networks oniy. so we drop the "feeci-

forward'* for simplicity.

in this section. we define the neural network learning problem tliat underlies this

t hesis.

Given a set of inputs X = {xc}z, and targets Y = {yc)z,. a neural network c m be

used to mode1 the relationship between them so that:

where f(-: GV) is the function computed by the neural network with weights W . This

modeling is achieved by .'trainingq' the weights I.V using the training data consisting of

the inputs S and the targets Y . Once training is complete. the neural net can be used

to predict targets given previously unseen values of inputs.

Conventionally? the learning process is viewed as an optirnization problem where the

weights are learned using some kind of gradient descent method on an error function such

The result of this procedure is a single optimal set of weights CC:,, that minimizes

the error. This single set of weights is then used for future predictions from a new input.

Tlir convent ionnlly-t rained network predict ion is t hus:

1.3 Bayesian Approach to Neural Net Learning

The Bayesian approach to neural network !earning differs fundamentally from the con-

ventional optirnization approach in that. rather than obtaining a single "best" set of

weights from the training process. a probability distribution over the weights is obtained

instead.

1.3.1 B ayesian Inference

Cenerally speaking. Bayesian inference is a way by which unknown properties of a system

may be inferred from observations. In the Bayesian inference framework. we mode1 the

obserlations z as being generated by some mode1 mit h unobserved parameters <. Specif-

ically. we corne up with a likelihood function p (: (i) . the probability of the observable

state z given a particular setting for the parameter i. Nest, we decide on p (i) . the prior

probability distribution over parameters C.

With these two functions in han& ive use Bayes' rule to infer the posterior probability

that the parameters have the value < when we observe the state z :

Bayesian learnirig can be applied to neural networks in the

the targets as the neural network output f(x; IV) plus some

folloiving way. W e tnodel

noise, which defines the

likelihood p(1-1 CI;. S). and we assume some lorm for the prior distribiition of t h e weights

p(LCV). The posterior distribution of the weights is then:

where we have set p (C Ip IS) = P (W) since the prior distribution of the rveights does not

depend on the inputs. p(CVIS. \.*) in Eqn. 1.5 is the probability distribution over weights

t hat we infer in the Bayesian frarnework.

1.3.2 A Simple Example

As a simple esample. assuming that the noise in the output of each unit is Gaiissian with

fised standard deviation a. we get for a net with iV, oiitpiits:

And assuming a simple priot ivhere al1 the weights CC' = iWi}>, have Gaussian

dist ribitt ion of ftxed inverse variance r:

This gives the posterior distribution for CV:

1 IV,

w: - -Clf(xC: CV) - y c 1 2
i=t

?a2
c=l

Here, the symbol cc denotes proportionality. CVe have dropped t h e normalizing con-

s tant l/p(Yl.Y) as well as factors not dependent on the weights. This is because we are

considering the posterior distribution over the weights only in this simple model. with a

and r fised.

The predict ion of the net trained using Bayesian inference is obtained as the espected

oittpiit over al1 possible weight settings. weighted hy t heir posterior probabilitirs:

Cornparecl to Eqri. 1.3.

1.3.4 Determining

J

Bayesian predict ion is clearly more complicated.

the Hyperparameters From the Data

The inverse variance of the weights r is called a hyperparameter because it is a parameter

tliat coritrols the prior distribution of the parameters I V ; . In practice. it is reasorinble to

let the huperparanieters be determined from the data. For instance. the input-tu-hidden

weights for one training set might need to be larger t han for anot her training set hecaiise

its otitputs Vary more rapidly. Evidently. it is possible to infer the hyperparameters from

the training data.

But we infer the hyperparameters not just because it is possible. but because it is

desirable as w l l . This is because it is difficult for a human operator to guess a good sett ing

of the hyperparameters. but it is easier to guess a prior distri but ion for hyperparameters.

e-g.. in terms of its mean and some measure of its spread. Moreover. allowing the precision

r t o Vary in Eqn. 1.7 couples the weights in t heir prior distribution and allows for a richer

prior. whereas al1 the weights would be independent in t heir pnor if r were fised. Details

of the incorporation of the hyperparameters into the sampiing procedure will be given in

later chapters.

Once we have the posterior distribution of the weights and the hyperparameters. the

network has been -trained". Predictions from the net now involve the joint posterior

distribution of the weights and the hyperparameters Q:

fs(x) = E[f (x: kt: Q)] ~ ~ - , a l s , y = f (x: Cv)p(CK 9 1-y- l-)dCC-dQ 1
T hc aborc intcgïa! ü ~ ü î ! ! : i cznnot Y c ~iid:;t ically ûbtai ricd Li rieu r d iirtivur k iiiuJrls.

Xote that a. the variance of the data. is often also regarded as a hyperparameter

because the role it plays in controlling the network error is sirnilar to that played by

ot her hyperparameters in controlling t heir respective iveights.

1.4 Motivation

The practicality of the Bayesian frameivork hingcs on the existence of compiitationally

efficient ways to evaluate or approximate Eqn. 1.10. The main problem is that the

posterior distribution p(LK QIS. Y) is often such that the integral in Eqn. 1.10 cannot

be performed analyt ically.

In the interests of computationai feasibility. Buntine and Weigend (1991) and .\lacIiay

(1991; 1999) approximate the posterior distribution of the weights and hyperpararneters

as a Gaussian distribution. L'nfortiinately, it usually cannot be seen in advance from the

training data if a Gaussian clistribut ion is a teasonable approximation to the posterior

distribution. For instance. for a small network that has just enough hidden units to rnodel

some given data. we would espect that. ignoring multiple modes due to units swapping

roles. the posterior distribution is peaked at a single mode because each unit has a well-

constrained role to play in the mapping. In such a case, one might reasonably espect the

posterior to be approximately Gaussian. Hoivever. when there are more hidden units.

units are no longer so constrained, and the posterior distribution will be broader in ways

that do not necessarily retain a Gaussian appearance.

Neal's (1996) and Müller and Insua's (1998) approach to the problern is to sample from

the posterior distribution using àlarkov chain Monte Carlo ('VICMC) techniqiies. hICh[C

techniques do not approximate the posterior distribution as a Gaussian. but instead

sample faithfully froni its true form. With n samples frorn the posterior distribution. ive

can obtain the espected output of the net as:

In order for this method to be effective. each sample (CC;. Q i) must be as inclependent

of the previous sample as possible. A common problem of hICSIC techniques is that

samples can be highly correlatrd. in which case even though they are drawn from the

correct dist ribiit ion. t hey sample the distribution very slowly. and a litige numbrr of

saniples might be rieeded For reliable estirnates. In severe cases. the method becomes

irifeasible for practical use. The LICSIC technique iised by Neal faces ttiis problem wheri

the niimber of hiciden units becomes large. His method alternates between iising hybrid

SIonte Carlo to update the network parameters. and Gibbs sarnpling to sample the

hrperparameters. Cn fort iinately. it is t his alternat ion between tipdat ing t h e parameters

and the hyperparameters that causes high correlations from one sample to the nest as

the niirnber of hidden units becornes large.

The root of this inefficiency is that. tluring each hybrid Monte Carlo process thar

yields one sarnple of the weights. the hyperparameters are held fixed. This would not

be a problem if. to obtain the nest sample of the weights. the hyperpararneters can be

shifted to an uncorrelated value. However. because the hyperparameters are updated

using Gibbs sampling given the current values of the weights. t hey are "pinneci" and

unable to move much. The iarger the number of hidden units. the greater t h e pinning

effect is.

Müller and Insua's method suffers from the same inefficiency as it also alternates

Gibbs sampling of the hyperparameters with Markov c h a h updates of the network pa-

rameters.

This problem is the motivation for this thesis. In this thesis. we propose antl inves-

tigate a modification to the hybrid Monte Carlo technique used by Neal. Specifically.

rather than updating the weights by hybrid Monte Carlo and the hyperparameters by

Gibbç sampling, rve update both the weights and the hyperparameters using hybrid

Monte Carlo. The idea is that, because both the weights and the hyperparameters are

now changing at the sarne time, ive no longer have the pinning effect. and hvbrid Monte

Carlo shoiild t hen be able to produce sarnples t hat move miich more efficient ly t hrough

the posterior distribution.

Of course one might ask mhy we would want to ilse large hidden layers in the first

place. There are several reasons for this. Firstly. since a neural network is a nonpara-

metric model. it makes sense when modelling some data to ilse a lot of hidden iinits in

order to maximize the network's porver of representation. Ttiat is. we want the functioti

compiiteci by the neural network to not be constrained by there bcing too few iinits. antl

be deterrnined instead by the clata. Secondly. small numbers of hiclden iinits often leacls

to local masima in the posterior distribution of the weights because the fcw available

hitlden units can get trapped into representing stiboptimal feattlres in the data. leaving

no spare *buniised" iinits to seek out the important featiires. Using a larger hidden layer

tends to connect the multiple modes into ridges and thus improves mobility. Finally. in

his book. Xeal (1996) has shown that the prior distribution of a neural network becornes

tractable for infinite-sized hidden Iayers. So. using many hidden units allows For a more

precise specification of a neural network's prior distribution. Incidentallp. overfitting is

not a problem in the first justification given above because Neal's results show hoiv to

assign appropriate priors for increasing network size.

This thesis is organized as follows. As an effort to make this a self-contained work.

Chapter 2 Iays down the background material on hIarkov chains and the hybrid Monte

Carlo met hod that is necessary and hopefully sufficient to undentand the test of what

follows. Chapter 3 describes the original method of Neal. Chapter 4 presents the new

method that is the subject of this thesis. Results of the investigations of the new method

are presented in Chapter 5. followed by the discussions and conclusions in the final

chapter.

Chapter 2

The Hybrid Monte Carlo Method

In this chapter. we introdiice the hybrid Monte Carlo method. which is the main methocl

by which ive sample from the posterior distribution of a neural network.

2.1 Background on Markov chah Monte Carlo Sam-

pling

In th is section. ive present sorne necessary background on 4Iarkov chains a t a level of

technical detail sufficient t o esplain the rest of this work. More detailed presentations

may be focinci elsewhere. such as Feller's (1966) book.

Definition 1 (Markov chah) .4 Markou chain is a series of random variables Su. Si.

-Y2. etc. . such that:

That is. gioen .Yi-i. Si is independent of al1 "earlier' -Y 'S.

A LCfarkov chah is defined by the dute space S i n which the Xi 's live. the distribution

over the initial state P (X a) , and the transition probability Iunction P (X i laYi-,).

For us. t h e utility of blarkov chains lies in the fact that, under the right conditions.

t hey converge to some probability distribution regardless of starting state. In ot her

words. independent of starting state. in the limit of large n. Sn will become a sample

from a particular distribution Q(r). This allows us to obtain samples from posterior

distributions that arise in probabilistic inference.

3çluii. rrc prcaaiit a ilirurriii ub~a i i i r r l Iruiii Ruscii~iiai (i39Çi ~ i i a ~ kiis u s ~ i i r coii-

ciitions iinder which a àlarkov chain converges to a distribution. In this presentation.

probability density functions will be used in two ways: wi th a state as an argument. or

rvitti a set as an argument. Thus. p (x) will refer to the probabiiity density at r. while

p(.-l) rvill mean t h e total probability mass in the set -4. First. we need the following

definitions. Let S be the state space of the hIarkov chain.

Definition 2 (Multitransition probability) For x E .S and .4 C .S. ii7e d+tc t h e

rnultitrarisition probnbility Tn(s. -4) as the probulility of eriding u p in the set .-I after n

transitions uccortiing to the .\larkou transition probabilities yioen that toe starttd a t stutr

r . Tn(x. -4) is really P(.Yn E .-Il.Yu = J) . Fur one transition. tue ulso rrrite T(x. .-\)

rather thun TL(x . -4).

Definition 3 (Invariant distribution) n(r) is an invariant distribution of n .Markoc

chain taîth transitions T(s. -4) if. Jor al1 sets -4 C Sr

where dg is a set of infinitesimal volume at date y. CFe also say that the .Clarkoc chain

letlws ~ (s) inuariant.

Xote that a blarkov chah may not have an invariant distribution. and if it has one.

it rnay not be unique.

Definition 4 (Total variation distance) The total variation distance l e t ween t rro

probability distributions p und q on S is giuen by:

Suppose we start a hlarkov chain from state x E S. Then. depending on the history

of transitions it takes. it will take varying numbers of steps to enter the set -4 C S of

nonzero volume. if it does at all. Let r;l be the history-dependent random variable that

denotes the first time the Markov chain enters -4. i.e.. r.4 = inf{n 2 L; .Y, E A). Note

that 7.4 coiild eqiial infinity. Then. we have the following important definitions about the

mixing properties of a Markov chain:

Definition 5 (Irreducibility) -4 .Ilarkou chain is irreducible $/or un9 set .-I C 01
nonrero iwlurn~. P,(T..\ < x) > O /or al1 stnrting points x E S . Thnt is. nny stnrtirlg

point s hns some probability of going to a n y nonzero colume uiithin n finiir rrurnbcr 01

s t eps .

Definition 6 (Aperiodicity) -4 .Ilarkov chain is aperiodic i f there does no[erist a

partition of the d a t e space S = Si U & U ... U Sm /or sonle m 2 2 such that T (r . SE+,) =

L for ail r E S, roith i = 1 to n - 1. and T (x .S i) = 1 for al1 x E -C,.

If a hlarkov chain has an invariant distribution. and it is both irreducible and ape-

riodic. t hen it converges to t hat invariant distri but ion. This t heorem, presented below

withoiit proof. is a slightly modified version of the one given by Rosenthal (L999). who

also proves it.

Theorem 1 (Markov Chain Convergence) Let T (x . -4) be the transition probabilities

for an irreducibie. apen'odic Markou chain having inoariant distribution n(x) on n state

space S . Then. for al1 x E S such that ~ (x) fi O:

lim ITn(x, -) - n(-) 1 = O
n+oa

That is. as the number of transitions goes to infniity, the total variation distance

betuieen the invariant distribution and the distribution of the .\.larkov chain started j?om

ariy date x such that ~ (x) # O goes to O.

Usirig the above theorern. we can construct Markov chains that converge to a clesired

distribution by ensuring that it is aperiodic. irreducible and has the target distribution as

a n invariant distribution. However. whiie the above theorern giiarantres convergence in

ttieory. it does not say anything about the speed with which convergence is achieved. This

is important as the initial portion of a Xlarkov chain is typically not representative of the

invariant distribution, and needs to be discardecl in order not to bias the distribution.

lloreover. a badly-constructed Markov chain can converge far too slowly to be cisefiil

iri practice. Yevertheless. having one that converges to the correct distribution. a n d

knowing t hat it does. is a good start.

:\ Ilarkov ctiain t hat is const ructed to generate samples from sonie target distribution

is kriown in t h e literatiire as a hlarkov cliain Monte Carlo (!vIChIC) method. An esample

of an SICSIC method that is commonly used for rniiltivariate distributions is Gibbs

sampling. Gibbs sarnpling consists of iipdate steps where each variable is iipdated in

turn. During each update. a variable is replaced by a sample frorn its target rlistributiori

conditional on al1 the other variables having their current values. ?lote that the new

\allie of the variable is chosen mithout reference to the old value it replaces. This leaves

the desired distribution invariant because the resiilting rnultivariate state is an outcome

drawn according to the t a g e t distribution. Furthermore. because al1 values of a variable

have non-zero probability of being generated. the met hod is irreduci ble and aperiodic so

long as al1 the variables get updated at some point.

Although it is conceptually simple. Gibbs sampling requires that one is able to sample

frorn the conditional distribution of each variable. For complicated distributions like the

neural network posteriors in this thesis. this is usually not possible. Other schemes exist

that do not have this requirement. Beloiv. we present the Metropolis algorithrn with

simple proposals. which requires only that we be able to evaluate the target probability

density at a given state, but whose weaknesses will motivate the more sophisticated

hybrid Monte Car10 method used in this thesis.

2.2 The Metropolis Algorithm with Simple Propos-

als

The Metropolis algorithm (Metropolis e t al.. 1953) is a well-known algorithm for con-

structing a Markov c h a h w i t h a desired invariant distribution.

Let ?(S) be the desired invariant distribution. Suppose oiir hIarkov chain ciirrently

has stnte .Y,. The Met ropolis algorithm amounts to the following 4larkov chain transit ion

ride. First. propose a transition to a new state .Y: from the current state Si. where the

proposa1 probability density .II(.\',. .Y:) must be symmetric. thrrt is:

.i.I(S,. S,') is the probability density of going to Si given that ive were originally nt S,.

Yext. accept the proposed state as the next Markov chain state S,+, with the following

probability:

Qaccept) = min

I l we reject. the state .Y,+, is set to b e the previous state -Yi.

One can show that the hIetropolis algorithm guarantees that the target distribution

+Y) is an invariant distribution of the Markov chain. However. it does not guarantee

t hat the Markov chah is irreducible and aperiodic.

Let us consider t he performance of the Metropolis algorithm in sampling From some

target distribution when we use a simple Gaussian proposal with a fixed covariance E

centred on t he current point -Y;:

P(?i () =
1

exp --(A': - s ~ ~ ~ ~ - ~ (J I - si>
(~ T I X I) J / ~ [: 1

mhere d is the dimensionality of the state space. This example will illuminate the key

issues in sampling a distribution with the Metropolis algorithm.

If the variance of' the Gaussian proposals are too large compared with the width of the

target clist ri but ion. the Met ropolis algorit hm almost always rejects. as proposals iisually

end iip in regions of lotv target probability. Clearly. this may lead to a slow exploration of

the state space. and a proposal with a srnaller variance and higher acceptance rate may be

better. Indeed. with the exception of special cases like two-dimensional Gaussian target

distributions. fairly high acceptarice rates (z 0.5) are better than very low acceptance

rates. But in order to keep the acceptance rate high. the standard deviation of the

proposai distribution must be of a size comparable to the distribution's thinnest cross

sectiori. and JO the steps taken rnust be very small cornpared to the overall tlistribiition

if t he distribution is very thin in one direction. but very long in others.

Thus. the first problem is that the presence of a long. thin regiori in a distribution

constrains such a scheme to take steps which may be ver- sniall conipared to the size

of the overall distribution. This by itself is not so bad if the direction of the next

step is somehuw correlated ivith that of the first. However. it is not. and that is the

second problem: the next step is chosen independently of the first. and because it has

the possibility of doubling back on the first step. a randorn walk results. This effect is

illustrateci in Fig. 2.1.

ive eespect that the posterior distribution of a neural network's weights is cornplicated

under most circumstances. and might potent ially have long. narrow regions. Thus. to

sample from the posterior distribution of a neural network using the Metropolis algo-

rithm with Gaussian proposals. ive would need to use proposal distributions with small

tariances, This leads to inefficient random walks as described above.

A rnethod that is more appropriate for the complicated posteriors seen in neural

Figure 2.1: tlltistration of random walk when iising the 'vletropolis algorithm with sim-

ple Gaussian proposals to esplore a two dimensional Gaussian distribution. Mere. the

standard deviation of the Gaussian proposals was 0.05. and of the 200 samples obtained.

there were 14 rejections. (Large steps are actually more efficient for the special case of

a two-dimensional Gaussian target distribution: this figure serves as an illustration of

random walks o n l .)

network models is the hybrid Monte Carlo algorithm. which addresses the randorn rvalk

problem by having auxiliary momentum variables that allow it to keep going in the

same direction for many steps. This rneans that. in the case of hybrid Monte Carlo. the

Metropolis rejection test is applied only after many steps to give it a chance at travelling

a long distance.

2.3 The Hybrid Monte Carlo Method

The tiybricl hlonte Carlo niethod. first iised in physics by Duane el al. (19s;). can br

thoiight of as a .LIetropolis algorithm with a sophisticated proposal. Ir i this section.

i v e describe how the hybrid Monte Carlo method works. Neal (1993. 1996) has rvritten

releiant expositions of ttiis technique. but we incliide it here for completeriess. LVe d l

lise t tie synibols C and C' to denote normalizing constants.

In hybrid LIonte Carlo. we associate a physical system with the distribirtiori that

Ive want to sample from. In esserice. we simulate t h e movement of a particle movirig

in a potetitial energy well eqiial to the negative log of the probabiiity density for the

distribution that we want to sample Frorn. Each iteration consists of randomizing the

velocity of this particle. simulating its motion for sorne time. and tlien obtaining its

position. which becomes a nerv sample.

Suppose that Ive wish to sample lrom the distribution P(q). where q E !Rd. !Rd is

then the state space of Our associated physical system. and q is a s tate of t h e system.

LVe augment each state variable qi with a momentum variable pi . and we define the

Karniltonian:

W b p) = E(q) + h'(p)

where the potential energy E(q) is obtained from the desired distribution as:

E(q) = - log P(q) - log Z

for any choice of 2. and the kinetic energy K(p) is defined rvit h the set of masses {mi):=, :

Hybrid Monte Carlo allows us to set up a Markov chain that converges to C1esp(- E(q)-

Ii(p)) as its iiniqiie invariant distribution. By ignoring the values of p, ive obtain samples

of q drawn from the target distribution P(q). since this is the marginal distribution.

In the hybritl Monte Carlo met hod. we simulate the time evoliition of the physical

system mith the above Hamiltonian using Hamiltonian dynamics. which is given by:

nt ?ni

Let ils assume for nom that we have the ability to do the simulation 114th perfrçt

acciiracy. Since Hamiltonian dynamics leaves H invariant and keeps phase space volume

constant (see :\ppendis A) . simttlating the system over anp fised length of time yields

a new pair (q. p) that leaves any distribtition that is a function of H invariant. In

particiilar. it leaves C1esp(-H(q. p)) = Ciexp(- E(q) - l\'(p)) invariant.

However. a 5larkov chain that consists of only this update is not irrediicible. as al1

points generated from a starting point never leave a hypershell of constant K. thiis rio-

lating the irredocibility requirement for Thm 1. To rectify this situation. we tipdate the

momentum variables in siich a rvay that the Markov chain has some chance OF reaching

al1 the other values of H after some number of iterations. Specifically. before the simu-

lation of Hamiltonian dynamics. we replace al1 the mornentum variables by new values

drawn from the distribut ion C exp(-K(p)). Again. t his update Ieaves the distribution

Cr exp(- E(q) - Iï(p)) invariant since it draws p from the correct conditional distribution.

which happens to be independent of q.

So the joint update consisting of the momentum update followed by the Hamiltonian

dynamics simulation is a Markov c h a h that leaves Cfexp(-E(q) - K(p)) invariant. If

we can construct such a Markov chain and prove that it is irreducible and aperiodic,

then we have a LIarkov chain that converges to the desired distribution C'expi-E(q) -

I i (p)) . and we can obtain the desired samples by ignoring p. Moreover. if. during the

Hamiltonian simulation. n e follow the dynamical trajectory of a state for a long time. ive

rnight obtain a s tate that is much less correlated with the original state than a !vletropolis

algorit hm wit h simple proposals.

L7.e The mcth~d pr~scntcd thüs hr is zct the actüa! h:;Srid !.lon:c Cx!o dgcrithm. ,.,,

it contains al1 the essential ideas. What is different about hybrid Monte Carlo is that. in

reality ive are unable to simulate Hamiltonian dynamics perfectly. Owing to the fact that

neural netivork models are bighly complez and so lead to non-inteçrable Haniiltonians.

rve ha\-e to settle for an approsimate discretized simulation of Hamiltonian dyriamics.

followed by a 'rletropolis rejection test tha t ensures that C'exp(- H) is kept invariaut.

A s before. t tie update consisting of moment um resarnpling followed by the simiilat ion

keeps the desired distribution C' esp(- H) invariant. The conditions uncler whicli t his

SIarkov ctiain is irrediicible and aperiodic depends on its details. and ive delav disciissing

t his tint i l Section 2.3.3.

Finally. we note that the discretized simulation is now also a Metropolis proposal.

with the probability of rejection increasing as the simulation error as measured by the

rise in H increases. When we do the simulation well. me keep H alrnost invariant over long

trajectories. so it is in Our interests to do the simulation as well as we c m in order to have

a high acceptance rate. even though simulation errors are corrected by the Sletropolis

rejectiori test to give the esact desired distribution.

2.3.1 Leapfkog Propos&

Because the discretized simulation used as a Met ropolis proposal is determinist ic. the

standard reversi bility condit ion for Metropolis proposals (Eqn. 2.5) does not apply.

Instead. the equivalent reversibility conditions for deterministic proposals are t hat the

mapping that is the Metropolis proposa1 is its omn inverse, and that it has Jacobian 1.

That is:

Theorem 2 (Deterministic Proposals for Metropolis Algorithm) IfY = M(X)

is a deterministic mapping that satisfies the truo conditions:

= 1 (volume conservation)

then by accepting the update X + M(X) with probability rnin(l. n(M(X))/;;(X)) and

rejecting it othencise. the distribulion r;(X) is le f i in pariant.

CVe give the proof of this in Appendix B.

To satisfy the two conditions of voliime conservation and reversibility. we use a detcr-

rninistic proposal composed of *'leapfrog updates" to simulate the Hamiltonian dynamics

by performing a trajectory of 1 steps each lasting r tirne. .At the end of each trajectory.

ive negate the rnomenttim p. Each leapfrog iipdate consists of:

€ r a E
pi(t + = pi(t) - .-(q(t)) for each i = l..d - L dqi .

r d E
~ i (t + c) = p i (t + ,) - r-(q(t + c)) for each i = L..d - ? d q i

Note that. in the above scheme. all the components are updated before rnoving on

to the next line. For instance. al1 the components of p i (t + $) are calculated before t h e

update for q is computed.

To see that the Leapfrop update satisfies the volume conservation condition. Ive note

that t h e change in each component of each state variable does not depend on itself. and

so each component's update amounts to a shear. which is a volume-preserving trans-

formation. and which therefore has Jacobian 1. This is discussed in greater detail in

Appendix C.

Also. it is easy to check that the negation of the momentum at the end of a leapfrog

trajectory of multiple leapfrog steps means that. if a trajectory takes us from point .A to

point B. then starting at B takes us back to -4. Thus. leapfrog trajectories also satisfy

the reversibitity condition.

We summarize the algorithm for the hybrid Monte Carlo in Algorithm 1 and Algo-

replaceci by resampling before the next leapfrog t rajectory anyways.

The algorithm disciissed thus far avoids random walks by allowirig long trajectory

lerigths. However. t tie actiial algorit hm implemented by Neal (1996) has a n aclditional

optimization of the stepsizes that estimates the local second derivative of the potential

energ? in order to take steps t hat are appropriatrly scaled in the varioils cliniensiori. This

is disciissed nest .

2.3.2 Stepsize Selection

In iising the hybrid Monte Carlo methoci. the question of what values to choose for the

stepsize c and for the masses 171, naturally arises. -4s we stiall see. it turns out that

choosing t h e masses is eqiiivalent to choosing different stepsizes in different dimensions

of the state variable. and the careful choice of these stepsizes is necessary for hybrid

Monte Carlo to perform well.

I t is clear frorn Eqn. 2.14 that. since 6 is the tirnestep of a discretized simulation

of Harniltonian dynamics, large values of c cause an inaccurate simc!ztion so that H

can wander Far from its initial value. In particular. such an inïkccurate sirnulation will

typically land the proposed state in a region of Iow target probabilitp. This is analogous to

using a Gaussian proposa1 with too large a variance in the Metropolis algorit hm evample

of Section 2.2. and so having to reject frequently. Thus. keeping rejection rates low

requires careful selection of e that is Low enough, and yet not so low that we explore the

distribut ion laboriously.

Algorithm 1 HybridblonteCarlo(nsamples. 1. E. q i n i l)
*

for each component J do

p: t :V(rnean = O. variance = m,)

end for

for i = 1 to nsnmples do

for each component j do

p: t N(mean = O. variance = mj)

end for

pL - pl

9' +- qL-l

for j = I to I do

(q'. p') t Leap/rogC'pdate(ql. pl. E)

end for

if (-[O. 11 > min(1. exp(- H(qb. p') + H(ql-l . pi-'))] then

q1 + q4-'

P' + PI

end if

end for

nsomplcs Return {q'. pi)i=o

Algorithm 2 LeapfrogUpdate(q, p, E)

for each component i do

end for

for each component i do

end for

for each component i do

pi t pi - (€ 1 2) x il(E/ i I q ;) (q)

end for

Ret urn q. p

-4s clescribed by Yeal (1990). for a toy quadratic Hamiltonian of the forni:

H diverges iinder the leapfrog discretization if a stepsize é > 20 is used. whereas H stays

bountlell if c < ?a. To transfer this result to a general non-quadratic H(q. p) . we note

t hat . near equilibrium. samples are usually obtained near local minima of E (q) . where it

can be approximated by its Taylor expansion to second order. Thus. ive expect a stepsize

e - (i)'E/&&'12 to be appropriate near equilibrium.

In the case tvhere the state space is multi-dimensional but the Taylor expansion to

second order has no correlations between its dimensions. we could set:

in order to prevent the leapfrog simulation from diverging. But if the Taylor expansion

has correlations between its dimensions. the above might not be srnall enough. as the

s t ability of the leapfrog updates is const rained by the narrowest cross-sect ion. w hich

might not be axis-aligned at all. In general. the stepsize r has to be adjusted dotvnwards

by different arnounts depending on the shape and orientation of the energy function. To

take this into account. we introduce an operator-defined tuning parameter O. which we

cal1 the stepsize adjustment factor. and which controls the stepsizes as follows:

. ..
tiowever. choosing the same st epsize to use in ail direct ions may cause slow. random

waik-like esplorat ion in t hose direct ions unless we use ver- long trajectories. wliich ni-

be unnecessarily computationally intensive. The underlying problem is that of making a

move t hat is compatible mith the local length scales of the distribution. It is the same

problem t hat we encountered earlier in considering the blet ropolis algori t hm wit h simple

proposais. but iincler a slightly different guise.

Clearly. i t is preferab le t O I ise different and appropriate stepsizes for eac ti direct im.

the \aliies of which ive choose by looking st the local length scales of t he distribution.

Ideùlly. ive woiild like to set the stepsize for direction i. r, . basecl on the rviclth of the

potential energy bowl in the direction

Horvever. one may wonder i f the leapfrog iipdate with different stepsizes for tlifferent

components still simdates Hamiltonian dynamics. The answer is that the masses are

the extra degrees of freedom t hat enable us to implement different stepsizes in clifferent

directions and still keep H approximately constant. To see this. ive first note that. if me

rewrite the leapfrog equations in terms of Pi pi/@. they become:

We set the stepsizes ei c l f i . and rewrite the leapfrog updates as:

rve work in terms of rescaled rnornenta. Shoiild we choose to. we can always recover the

olil niomenta aftrr sri iipdate. But rather than using the original leapfrog upclates. we

can work iri terms of pi using the new mas-absorbed updates. CVe note the following

important facts about one mas-absorbed update of q and p tising Eqns. 2.20:

Fact 1 Each mas-nbsorbed leupjmg update Ceeps H(q. p) = E (q) + c<=[Pi>/? apprr~r i -

nlntrly incariarit. Th is is because it keeps H(q. p) = E (q) + xfGI pf/.Lrni upprorirrlafcly

irirnriant. und the t i ~ w H > are equal.

Fact 2 Earh rnass-ubsorbed leapjrog irpdate conserves phase spacr colurne in the s taic

spact (q. p) sinre pi is relatcd t o pi merely b t ~ the scale fuctor fi. This ho1d.s if thr c , S

are a t t indeperideritlg of the currenl value o j q or p.

Fact 3 Each mass-(~bsorbed leapfrog update is reuersible su long as the c, 2 are set i~yithout

us i rq the current values of q and p. since these are different at the beginnirrg and ai the

end of each s t c p .

In view of these three facts.

instead of p. Before the leapfrog

we have the following revised algorit hm that stores 0

updates. ive estirnate the stepsize ci:

independently of the current state using some probiern-dependent heuristic. The leapfrog

trajectory now consists of rnass-absorbed updates. at the end of which we apply the

Metropolis rejection test using the Harniltonian H(qt fi) = E (q) + c:=, j : /2 . Since the

proposais in the (q, p) state space are reversible and conserve phase space volume. the

Metropolis rejection test can be used to produce an update t hat keeps exp(- H(q. p))

invariant. Thus. me have a Markov chain that leaves erp(- E(q) - CI=, j;?/.2) i n~wian t .

We summarize hybrid Monte Carlo rvith stepsize selection in Algorithm 3. where the

funct ion Stepsizes() cornputes the appropriate stepsize to use for each componrnt. We

cal1 the function LeapfrogUpdate() rvith a vector for its stepsize parameter unlike the

scalar in Algorithm 2 . but what ive mean here should be clear. The çetting of the stepsizes

depentls on the exact problem at hand. For a neural network model. Xeal (1996) sets

them based on the current values of the hyperparameters. These do not change over

the course of a leapfrog trajectory in the scheme presented in his book. so t hat leapfrog

t rajectories are reversi ble.

2.3.3 Convergence of Hybrid Monte Carlo

In t his section. ive disciiss t h r conditions iinder ivhich t his llarkov chain algorit hm cori-

verges to a unique invariant clistribiition.

Thm. i tells us that. in order For hybrid Monte Carlo to converge to a unique

distribution. it must be both irreducible and nperiodic. Whether or riot this is true

depends on the details of the Hamiltonian. the leapfrog trajectory length. and the stepsize

adjustment factor. Althoiigh ive have no formai proof. we have strong reasons to believe

that both conditions are satisfied in most neural network applications. rvhose Hamiltonian

dynamics are highly nonlinear and whose Harniltonians have values that are finite for

finite values of the state parameters.

Let us first discuss peridocity. For most problems involving cornplex nonlinear Hamil-

tonians such as the ones we encounter in neural network applications. we expect that

periodicity is unlikely and. if it should appear, is pathological rather than typical. .An

example of such an unlikely periodicity is a case where the Hamiltonian dynamics takes

us exact ly halfway or completely around a hypershell of constant H , and t his periodicity

Algorithm 3 HybridblonteCarloWit hStepsizes(nsan~ples. 1. TI. q inl t)

qU + qinir

t .V(mean = O. variance = 1)

for i = 1 to nsarrrples do

p' t .V(mean = 0. variance = I)

end for

if C'[O. 11 > rnin[l.esp(-H(qt. p') + H(qf - ' . p'-l))] then

9' + ci1-'

P' + P'

end if

end for
naumplea Return {qL.

persists in hypershells of al1 values of H so that momentiim resampling does not avail

LIS of a n escape from periodicity. Such a situation appears very unlikely for the highly

nonlinear neural network Hamiltonians that we use. so ive expect tha t we tvill probably

always have aperiodicity in practice. Still. if one wishes to be on the safe side. one can

Vary the stepsize adjustment factors randomly over a srnall range. a n d t ha t shoiild re-

move anv periodicities (Mackenzie. 19891. This modification was not implemented in oiir

version of the algorithm.

Irreducibility depends on the esact shape of the potential energy surface. Let ris

assume for now that our hybrid Monte Carlo algorithm is able to sirnulate Hamiltonian

dynamics perfectly. Then it seems intuitively clear that. so long as t h e potential energy

does not become infinity for finite values of q. hybrid Monte Carlo shoiilcl be irrediicible.

In particiilar. while moving aroiind in a local minimum. it alivays has some probability

of gaining a siifficient ly large kinet ic energy from momentiim replacement to leave it ancl

visit other parts of s ta te space. This can only be preventecl i f t ha t local minimum is

botindecl by walls of infinite potential energy. And since oiir neural network Hamiltonian

is always finite for finite values of q. ive espect that ive will alivays have irrediicibility.

Homever. hybrid !Amte Carlo really only simulates Hamiltonian dynarnics approsirnately.

so it is conceivable that a finite potential well corild be a trap like an infinite one. Yever-

theless. t h e fact that hybrid Monte Carlo does simulate Hamiltonian dynarnics is reason

to believe that the above argument for irreducibility should ustially apply.

Chapter 3

Hyperparameter Updates Using

Gibbs Sampling

3.1 Neural Network Architecture

[ri this thrsis. we concern oiirselves with a neural netivork wit h one hidclen layer on ly

The techniques descri bed here can readily be esteridecl to networks ivit ti more hidcferi

layers.

The neural network mode1 used here will have .V, input. iinits. .Vh hidden units and

.Vg output units. The parameters of the neural network are referred to collectively as O .

.As shown in Fig. 3.1. they are:

.vu
Input-to-hidden weights i- = { u i I i = [

Hidden-to-output weights = { U } b f r ~ t i=i

LVe will sometimes use the alternative notation:

output units

hidden units

input units

Figure 3.1: ?leural network architecture used in this work

input-to-hidclen weight from unit i to unit j t3

Hidden-to-output weight from unit j to unit k C;I ;

Bias on hidden ilnit j -43

Bias on output unit k Bk
In this netirai nettvork. we use t h e t a n h (-) nonlinearity. and it occurs only at t h e single

hidden laper. Thiis. for input vector {s;)$ the j ' th hidden unit output is:

h, = tanh (1 lÏijri + 4)

while the oiitput a t uni t k has no nonlinearity:

3.2 Neural Network Mode1 of the Data

The neural network mode1 of the d a t a is as lollonrs. Let 6 be the e n o r in the output OF

t h e neural network for training input x a n d target y:

We assume that each component of 6 has precision (or inverse variance) TJ. Then.

given an input case x. the parameters of the netivork B. and rj. the probabiiity of ob-

serving the target y is:

The prior distributions of the four groups of parameters are normal with means O and

precisions r.. The asterisk indicates the corresponding group of network parameters. and

niay be i l . P . (1 or 6. For instance. for the inpiit-to-hidden weights I ' :

The prior distribution of the pararneters 6) is simply the joint distribution:

wliere -; denotes { r i . 7,. L,. 7,. 71,). -! is the set of hyperparameters whicti controi the prior

distribiit ion of each groiip of parameters. These prior distri but ions keep the network

parameters small. and arnoiint to a principled formidation of the weight decay terms

found in t he neural network training literattire (see Bishop. 19%).

Rather than fixing the hyperparameters. we allow them to var- also. and we let them

each have gamma distributions. For instance. for ru:

which is a gamma distribution with mean wu and shape parameter a, for each 7,. The

prior distribut ion of the hyperparameters P (y) is simply the joint distribution:

In this work, a. and ~ t . are fked by hand.

3.3 Posterior Distributions of the Parameters and

the Hyperpararneters

LVe can infer the posterior distributions for the parameters 8 = { L r . C: -4. B } and the

hyperparameters y = {TA. ru. ru, T,. i5} when the training data is observeci. In the Monte

Carlo approach. we do this bv obtainino samples from the distribution PlB. ~ l x . cd. where

.P = {xC}E1 and IJ = { J T ' } ~ ~ are the training data.

Neal (1996) samples From P(B. 71s. y) by obtaining a series of Markov chain samples

{ O , . where Ti - P(71eJ = O i - l . r. y) is obtained by Gibbs sampling. and O , is obtainctl

From O,-1 as a hybrid hionte Carlo update that leaves the distribution P(8 /7 = 3,. x. y)

invariant. During the first iteration. is set to some moderate values. We discuss the

convergence properties of t his biarkov chain in Section 3.4.1.

In the remainder of this section. we give the distributions P(Bl-(. r. y) and P(7 10. s. y).

which are reqiiired for the above sampling scheme.

Using Bayes' Rule. ive obtain the posterior distribution for 0 as:

The reader is referred

sion.

to Eqns. 3.4 and 3.5 for the full expansion of the above expres-

The posterior distribution for 7. P(-y 16. x. y) is the probability of the hyperparameters

conditioned on 8. x and y:

Consider the hyperparameter 7.. Since each r. is the precision of its group of pa-

rameters. it can be inferred solely from those parameters independently of x and y. For

instance. for r,:

rj. on the other hand. is the noise in each component of y'. rr is inferred from the

errors 6' = f(xC: O) - y':

Sote t h a t Eqns. 3-11 and 3.12 are gamma distributions.

3.4 Sampling From the Posterior Distributions of

the Parameters and the Hyperparameters

Since Eqns. 3.11 and 3-12 are gamma distributions. independent samples for the hyper-

parameters can be drawn using well-known techniques (Devroye. 1986).

Drawing samples from the posterior distribution of the parameters is more difficult.

For instance. standard Gibbs sampling cannot be used because the conditional distribu-

t ion of each network parameter can be a very complicated function due to the training

error terms. A simple hIetropolis met hod suffers from random walks as previously de-

scribed. So instead. Neal (1996) obtains samples from the network parameters using

the hybrid Monte Carlo technique with stepsize selection as described in Algorithm 3 of

Section 2.3. To sample from the posterior distribution for 6 . the potential energy is set

as follows:

w h ~ r e t h e r n r i s t a n t I s i r n m a t w i a ! heraiire it dnec 'nt affect

.la LVb

C a! + C b; + const

that gives rise to the desired probability distribution. This constant corresponds to

prefactors in the distribution P(0ly.x.y) that do not depend on U. The parameters 61

correspond to q in Algorithm 3.

3.4.1 Convergence of the Algorit hm

In t his section. ive rlisciiss the conditions iirirler which this hlarkov chain nlgori t hni con-

verges to a unique invariant distribution.

Recall that our algorithm alternately updates the hyperparameters by Gibhs sarnpling

and the parameters using hybrid Monte Carlo. In Section 2.3.3. rve have alreaciy disciissed

the reasons why hybrid hlonte Carlo by itself should converge to a unique distribution.

The question is. combined wi t h the hyperparameter Ci b bs sampling update st ep. does

the resulting Sfarkov chain converge'!

.\ LIarkov chain update is periodic so long as it is periodic in one of the parameters

of its state space. so the fact that Gibbs sampling of the hyperparameters has non-zero

probability of producing any value does not irnmediately imply aperiodicity. However.

when the hyperparameters are updated from one iteration to the next. hybrid Monte

Carlo sees a random modification of the potential energy surface that. if anything. would

prevent spstematic behaviour like ~eriodicity. Thus, the Gibbs sampling step renders

periodicity even more unlikely than ever.

When the hyperpararneters change from one iteration to the n e a t hybrid Monte Carlo

sees a modification of the potential energy surface that does not introduce any infinite

barriers. so the argument from Section 2.3.3 still applies. and me expect that. with

sufficient iterations. al1 regions of the network parameters' state space can be visited

regardless of the valiles the hyperparameters have. Thus. we expect that al1 regions of

the joint state space containing both parameter and hyperparameter can be visitecl after

a siifficient number of iterations. and our algorithm should be irreducible.

.\!tCoügh x c ha*;c no Fo:c;a! -,roof. L u c d ûn thc aYoïc 2igüir.ci;tS. x c c:;pcct that

oiir hlùrkov çhain does converge to a unique distribotion.

3.5 Inefficiency Due to Gibbs Sampling of Hyperpa-

rameters

Despite the fact that ive nvoid random walks i n network parameter space given the tiy-

pcrparamaters. Gibbs sampling of the hyperparameters can lead to a slow randoni walk

iri t h e joint state space of the hyperparameters and the network parameters. This is be-

cause the dist ribiit ion of the parameters conditional or1 the hyperparanieters is restricted

by the contiit ioning on the hyperparameters: this rest ricts t be possible values the param-

rters are likely to visit. and so the distribution of the hyperparameters conditional on

the parameters are iinlikely to change much from the previous iteration in orcler to be

consistent wit h the parameters.

This is especially apparent ivhen there are many hidden iinits. Consider sampling

the input-tehiciden weights u; given 7,. When there are many of them. they represent

their distributiori well. with a variance close to I/r,. Thus. when ru is Gibbs-sarnpled.

we are likely to obtain a value close to ru again. and so the Markov c h a h becomes highly

correlated from sarnple to sample.

This problern can be alleviated when there are many training cases. In Eqn. 3-13. the

prior terms will be of order (ZI, + Y, + ;Va + &)/'2. When ;L:;V, > .Vu + .Vu + .Va + .Yh7

the likelihood term has a stronger effect in determining the shape of the potential energy

bowl sampled from. and so the weights moire mostly to fit the data rather than to satisfy

the prior constraints imposed by their precisions. and so in this case. the hyperparameters

become slaved to the weights. ivhich in turn are well-determined by the data.

CVhen we do not have the option of obtaining more training cases. and we use large

numbers of hidden iinits. the random walk described above becomes an issue. and may

slow the method clown so rnuch as to render it impractical to use. The next chapter intro-

duces the solution t hat is considered in this t hesis: t hat of iipdating the hyperparameters

using hybrid Monte Carlo as opposed to Gibbs sampling.

Chapter 4

Hyperparameter Updat es Using

Hamilt onian Dynamics

4.1 The New Scheme

To overcorne the slow movernent of the hyperparameters when using Gibbs samplirig. Ive

propose to iipdate the hyperparameters using Hamiltonian tlynamics in t lie same way as

the parameters.

4.11 The Idea

The problem wit h the old scheme is that the alternating updates of the hyperparameter

and its associated parameters cause them to pin each other down. resulting in hlarkov

cliain moves that are small compared to t he overall distribution. and which can double

back since hlarkov chains have only s tate memory and no mornentum memory. This

doubling back is sirnilar to the random rvalk behaviour of the bfetropolis algorithm with

simple proposais. Since hybrid Monte Carlo is our way of overcorning that. ive hope that

hybrid Monte Carlo. by producing trajectories that can keep going in the same general

direction for long distances. may also ailorv h-yperpararneters to travel long distances in

a single leapfrog trajectory without doubling back. This should lead to gains in hom

rapidly the parameters and the hyperparameters sample the posterior distribution.

4.1.2 The New Scheme in Detail

ce versa. Rather t han updat ing the parameters conditional on the hyperparameters. ancl \ i

. .
3ü: a;m :S Z O : ~ t o ïpdatc the paramctcrs 0 x d thc h : ; p ~ i p ~ ~ ~ i i i ~ t ~ i j j. j~irit!:i zc~ûidinlij~ig

to the joint posterior distribution:

where rve have dropped the norrnalizing constant P (y l x) and tised the fact that. given 8.

y's tlependence on the hyperparameters 7 is restricted to jost the noise hypcrparameter

TJ.

Froni Eqns. 3.4. 3.6 and 3.8. we get:

E(B. 7) = - log(P(0. Y I + . y))

where YJ = Z<',.V, (the total niimber of target variables in the training data). and:

and Eu. E, and Eb are similarly defined.

The above is the netv potential energy that hybrid Monte Carlo must use in its

simulation. Accordingly we nom expand the s tate space to include the hyperparameters.

We denote the position and momenturn wriables corresponding to the parameters and

hyperparameters wit h the subscripts 0 and y respectivety:

However. some complications now arise due to the necessity for the leapfrog proposais

to be symmetric. The main problem is that the hyperparameters at the beginning and

at the end of a leapfrog trajectory are now different. so setting the parameter stepsizes

based ori the hyperparameters at the beginning does not lead to reversible dynamics.

i.e.. by reversing the momentiim and following the leapfrog dynamics backwards from

The soliitioti is to first update just the parameters by one step using stepsizes based

on the ciirrent value of the hyperparameters. This is the same dynamical iipdate wit h

stepsize selection as before. and duc to Fact 3 of Section 2.3.2 . it is reversible. as ttie

hyperpararneters have not changed. Theri. ive update the hyperparameters by one step

iisirig stepsizes based only on the newly-computed value of the paranieters. This is also

reversiblr as the parameters do not change over the step. These two tipdates comprise

one step in the new leapfrog trajectory iipclating both parameters and tiyperpararnrter?;.

By repeating this 1 times. we obtain a leapfrog trajectory of length 1 that. by being

reversible in each step. is fiilly reversible end to end.

Due to Fact 1. each step leaves H(q.p) = E (q) + approximately constant.

and so H is left approximately constant over the entire trajectory for small enough r l .

Also. phase space volume is conservecl by each step due to Fact 2. and so it is conserïed

over the entire trajectory. Thus. we see that Ive have a trajectory that keeps H roughly

constant. and is a valid .LIetropolis proposal due to reversibility and phase space voliime

conservation.

There is actually a slight complication: if we update first the parameters. then the

hyperparameters. the reversed trajectory is the one that updates first the hyperparame-

ters and then the parameters. ivhich is not actually the one ive are using. To overcome

this problem. at the beginning of a trajectory. we choose rvith equal probability to update

either the parameters or the hyperparameters first. Thus. a trajectory that goes from

point A to point B is proposed with 50% probability, while one that goes in reverse from

B to A is proposed also with 50% probability. and sa we have symmetric proposais. We

summarize this algorithm in -Algorithm 4. There is a different stepsize for each corn-

ponent of q, including the expanded portion of the state. and we denote the set of

stepsizes for the parameters as ve and the stepsizes for the hyperparameters as c,.

Algorithm 4 Lcrrpfrog trajcctory thut zpdatcs hoth paramctcrs and t:~;i>c:pn;amctcrs

using Hamiitonian dynamics
r t [:[O. 11

if r < 0.5 then

for i = 1 t o l do

for i = 1 to 1 do

?in alternative way of achieving reversibility is to always start and end a Ieapfrog

trajectory with either a parameter update or with a hyperparameter update. The exact

method used should not significantly affect the performance of the algorithm.

4.2 Reparameterization of the Hyperparameters

Numerically, it is inconvenient to work with the hyperpararneters as precisions. as neg-

ative valiies of precisions are invalid. Thus. we reparameterize the hyperparameters by

working with log precisions instead:

A , = log(r,)

A h = log(q)

We let the set 3 denote the repararneterized hyperparameters:

T lie posterior probability density is changecl by t his reparameterizat ion. The new

ilensity is obtairied by multiplying by the appropriate Jacobian of each variable transfor-

mation iri tiirn:

And so the new potential energy is:

E (0 . J) = - log P(B.31r. y)

w here:

and E U . E l and E t are similarly defined.

4.3 Repararneterization of the Weights

The current pararneterization scherne has a weakness that can be seen by considering

the potentiai energy as a. function of the weights I i and their hyperparameter A,. In

the absence of data. t h e potential energy depends on li and A. simply through E:. and

we see that it is shallow and broad for low values of A, and narrow and deep for higher

vaiues (but not too higbj. This is because. for h'teci A,. Ë;' is qiiadratic in tii m i t h micith

proportional to l/~x. This rnakes sense as 11- = L/G is the prior standard

deviittion of ui. When there is data. the landscape will be changed somewhat. bu t the

tendencies imposed by the priors will still be there.

The effect of this shape of the potent ial energy function is to make it unlikely for n

sarnple t hat starts in the broad. shallow region to end up in the narrow. deep region. The

reason is becaiise. since H is (approsimately) conserved during a leapfrog trajectory. a

particle that enters the narrow. deep region frorn the stiallow region has enough energy to

escape oiit to the shallow region again. and will indeed likely clo so before we catch it in

the deep region. since the latter has a comparatively small volume. Similarly. a particle

t hat starts o f in a narrow. deep region will likely not have enoiigh total energy to escape

iinless it acqiiired an iinusually large amount of energy during momentum resampling.

This situation is suboptimal as it increases autocorrelations. To rnove aroiind more

easily in state space. we introduce the following reparameterization of the weights:

A. = Io&.) where * = u. v, a, b

The notation of Chapter 3 will continue to apply. except we will use a tilde to inciicate

a reparameterized parameter. For instance. fi will represent the group of reparameter-

ized input-to-hidden weights {ui};V=. and &, will represent a reparameterized weight

from input unit i to hidden unit j. We mi11 also use the following naming For al1 t h e

reparameterized weights:

Due to the reparameterization. the posterior probability of t h e parameters and the

hyperpararneters must change accordingly. The complete reparameterization is obtained

from Eqn. 4.7 as:

P(0. J (x . y) = P(0. JI,. y) x

:\ nci so under the reparameterizat ion. the potent ial enerçy becomes:

E (0 . .j) = - log P(o . 3 1 ~ . y)

LV here:

and similarly for E:. E i and E?.

It can be seen that the the quadratic term ü: in E; now has a constant coefficient.

so t his reparameterization is effective at removing the variation wit h its hyperparameter

of the width of ui 's potential bowl.

To distinguish between the new methods with and without the reparameterization

of the weights. we d l cal1 the new method before the tveight reparameterization the

Dynamical -1 method. and the new method with the weight reparameterization the Dy-

namical B method.

4.4 First Derivatives of the Potential Energy

Each leapfrog step update requires the first derivatives of the Hamiltonian with respect

to the parameters and the hyperparameters. To take steps t hat are appropriately scaled

in the tarious directions for stability and efficiency. we need the second derivati\-es as

well. rvhich we give in Section 4.5. Here. rve give the expressions for the first deri\?itives.

LVe first define:

which is the negative log likelihood of one training case. less the norrnalizing terrn. We

then obtain frorn Eqn. -1.14:

Derivatives for the other weight t-ypes are obtained from

by the corresponding parameter.

Eqn. 4.19 by replacing ITij

To compute the derivative 8E/aXs using Eqn. 4.12, we need to compute the net-

work outputs for every training case. This involves performing a fonvard pass through

the net for each training case. each pass requiring compute time of order the number

of connections in the network. The fact that we do a forward pass means that using

backpropagation to compute other first derivatives will be efficient. We now esplain how

t hese ot her derivatives are cornputed.

4.4.1 First Derivatives with Respect t o Parameters

To compute the derivatives with respect to the parameters (Eqn. -1.19). me need to finrl

the corresponcling derivatives of the output L'. They are most efficiently computed using

backpropagat ion provided certain results are storeci diiring a preceding fortvard pass siic ti

as the one required by the above computation of i9 E/aXs .

The backpropagation works as folloivs. Consider Figure 4.1. which represerits two

arbit rnry adjacent Iayers in the rietwork.

l ,D

gr

Figure -1.1: Two adjacent layers.

CIere. i;,e--"- is t he weight connecting a source unit i to a destination unit j. We lise

y, to denote the total activation of unit i before the tanh(.) nonlinearity. and h i to denote

the output of unit i after the nonlinearity. Source unit values are denoted by superscript

S. while destination unit values have superscript D. The total input into destination

unit j is:

where A' is the hyperpararneter controlling the biaseç Thus. the first derivative of t h e

potential energy with respect to cj can be cornputed as follows:

actually an output iinit. then gf = J j . so:

The outpiits I;(xc: Q. 3) can once again be considered to have already been obtained

*'freeg0 from the forward pass. .As in standard backpropagation. w e start with the above

error derivatives at the output layer and propagate them backwards iising:

If gi was stored for eïery iinit during the forward pass. the above derivat ives can be

compiited rapidly in a backward pass taking time of order the number of connections in

the network for each training case. .\ctiially. rve will see below that. if we can Save only

one qiiantity. the most usefiil one is:

which is the total input going into unit j from ail the units feeding into it. From p,. gj can

easiiy be obtained in constant time. Furthermore. it will be useful in other calculations

tha t will be presented in the subsequent discussion.

?lote that, thus far. we have seen how the computation of aE/3Xs and the first

derilatives with respect to al1 the parameters is dorninated by a forward pass and a

backward p a s through the network.

4.4.2 First Derivat ives wit h Respect to the Hyperparamet ers

The computation of i)E/i)As has already been described. To compute BEIdX.. we need

to compute the corresponding derivatives of LC(dy J). In a similar fashion as the weights'

computation. we can write for the hyperparameter X in Eqn. 4.20 that controls weights:

rvhi le for the hyperparameter A':

LVe alreatiy compiited the derivatives i) LC/ i)g j during the backward pass for the rieriva-

tives of the parameters. By ensiiring that we save p, during the lorward pas . the first

derivatives of L' wit h respect to the u. v. n and b hyperparameters can be efficiently corn-

putecl in time of order the number of units in the network. Summed over al1 cases. the

compiitational cost is O(.\i,(:Vh + .V,)):

Because the number of units is considerably smaller than the number of parameters.

calculating these first derivatives with respect to the u. u. a and b hyperparameters is

considered to add negligible cost to the fonvard and back~vard passes we have already

done. Therefore. the computation of al1 the first derivatives is dominated by the fonvard

and backrvard passes through the net. each of which takes O(iVcV,IdI)

4.5 Approximations to the Second Derivatives of the

Pot ent ial Energy

The second derivative of the potential energy with respect to the weights and the hyper-

parameters are needed to compute stepsizes for each leapfrog step update. Unlike the

f i r s t r l c r i r i r t i t c s . ive caiiiiut iui i iputç ~ i i ç arcuiid derivalivcs rxactiy Iwcaiisr. i i i urd r r LU

preserve phase space conservation and reversi bility of leapfrog steps. the stepsizes used

for. sa'. hyperpararneters. cannot depend on t h e current values of the hyperparameters.

CVe will also tise additional simplifications to make evaliiation easier anci faster.

From Eqn. 4.14. we see t ha t the problem is to obtain for t h e parameters:

and sirnilarly for fi,.;, and hi; and for the hyperpararneters:

and for + taking the values u . u. a and 6:

4.5.1 Second Derivatives with Respect to the Parameters

To obtain the derivative 8LC/6ùT. ive follow the heuristic given by Neal (1996. Appendix

A) . which we include here for completeness. The heuristic operates by approsirnately

backpropagating the 2nd derivative of Lc with respect to the output units back through

the net. Its details are as foILows.

Referring to Fig. 4.1. Neal uses the following approximation:

d2 L C (a 3) -,\ (x;')' for i an input unit.
25

)?
ot herwise.

Correspondingly. for biases:

L i é see that it is necessary to compute the derivatives tY~ ' / a (~ f) ' . CVe will do so i c i

ii way analogous to the backpropagation of the Rrst derivative i l ~ ' / i l (~ ~) as tlescriberl in

Section -!.-1.L. In the case that unit j is an otitptit unit . the cierivatitpe is fised. namely:

This i s propagated backwarcls to obtain the second derivatives of L" with respect to

al1 t h e inputs gili's except for the input iinits*. whose derivatives are not needetl. .\ml

propagates the deriwt ives using:

*

Because ive are not allowed to use the current value of the parameters. we replace Ci:
in the above by the estirnate 1. since <: has variance 1 at equilibriurn. Thiis. ive actiially

use:

From Eqns. -4.32 and 4-34? we see that the second derivatives are the same for al1

training cases. Thus. the backpropagation pass is done only once regardless of t he number

of training cases. after which the second derivatives with respect to the parameters can

be estimated in time of order equal to the number of parameters.

4.5.2 Second Derivatives with Respect to the Hyperparameters

To obtain ~ 2 , Lc in Eqn. 4.28. we need to calculate the network output for each training

case. Like the computation for i?E/aXs. this can be done with a lorward pass for each

case. Unlike t hat computat ion. we cannot use the current values of the hyperparameters.

In this thesis. ive replace 3 by 3. the prior hyperparameter means:

As = log idS

A, = logw.

A, = log&"

A, = log w,

Xi, =

Thiis. we really comptite:

For the second derivat ives wit h respect to the ot her hyperparnmeters. we sirnilady

replace ail occurrences of .3 by 3. From Eqn. 4.29. we see that we need to estimate

B'LC(e. j) / i) ~ ? . For this. we will use the sarne kind of backpropagation as when estimat-

ing the second derivatives with respect to the parameters.

Once again referring to Fig.4.l. for X being either a hyperparameter for the weights

or the biases that contribute to the calculation of the gp's:

where we have made the replacement aZgP/D~' = -(l/2)ag?/t3A. which can easily be

checked. Thus:

For t h e second term. following Xeal (1996. Appendis A) . Ive ignore multiple con-

\\é have already seen how ive cari est imate d' L ' / 3 (y ~) 2 tising t lie approsirnate hack-

propagation (Eqn. 4.34) of Section 4.5.1. The difference here is that Ive (:an use the

actiial values of t h e parameters. but not the hyperparameters. Thus. ive replace by its

estimate h E .j i n the backpropagation qi iat ion:

-4s before. Ive compiite the above quantity in a backward pass only down to the first

hitlden Iayer. and these derivatives are a11 independent of the training case.

For the second factor in a surnmation term in Eqn. 4.39. evaliiation is straightforward.

From Eqn. 4.20. ive have:

For a hyperparameter controlling biases. and:

for a hk-perparameter controlling weights. Once again. if we save pj during the forward

pass to obtain the network outputs for est imating a2E/DA;. t h e above factors can be

obtained almost for free. We emphasize here that the t his pj differs from the pj iised in

first derivat ive calculations in that the forward pass during which p, is saved uses the

estimates ,a instead of 3.

Thus far. the dominating computation in estimating the second derivative of E wit h

respect to the hyperparameters is the estimation of LI2 E/i)Xa. tvhich reqiiires a forward

pass for everv training case.

Let us notv turn our attention to the first derivative t3Lc/aA in Eqn. 4 . 3 [ts

computation rvas already discussed in Section -1.4.2. escept that it uses the estimates .j

instead of 3 . and the error propagated backwards cornes from the forwarcl pass tised in

estimating d2 EIBX:.

The estimation of this derivative reqiiires one backward pass. which mtist be dorie

for each training case. Thus. combined mith the lorward passes of i) 'E /ahi . two passes

throitgh the net are necessary to estimate the second derivatives of E with respect to the

hyperparameters.

4.6 Summary of Compute Times

In t his section. ive siimrnarize the corn pute t ime reqiiired by the Dynamical B met hoc1 per

leapfrog update of both the parameters and hyperparameters. Recall that t.he Dynamical

B met hod incltides the reparameterization of the weights.

First. we summarize the compute times retqiiired to calculate each group of derivat ives

in Table 4.t. The compiite times are dominated by passes through the network for each

training case. which takes time O(:V&l)). and ive consider ot her operat ions as essent ially

free.

Esamining a leapfrog update in detail. we see that it looks like Table 4.2.

When the parameters are changed (step 2), the first derivatives of both parameters

and hyperpararneters need to be recalculated in order ta update the rnomenta in steps

Group of Derivatives 1 Cornpute tirne

Step 1 Description

1st with respect to parameters and hyperparameters

2nd with respect to parameters

2nd with respect to hyperparameters

2 x O(LVcV,lol)

"free"

2 x O(.V&l)

:1 and 4. The cost is one forward-backward pass pair. Also. at the end of step 2. the

second derivatives with respect to the hyperpararneters need to be recalctilated for use

in steps 4 through 6. taking a second forward-backward pass pair. After the iipdate of

t h e h~perpararneters at step 5. the first derivatives need to be recalciilated again for the

momentiim updates at step 6 and step 1 of the nest complete leapfrog update. This

requires a t hird Forward-backward pass pair. Finally. the second derivatives n i th respect

t o the parameters also need to be recalculated for use in step i of the next iteration. but

this is essentialIy free.

Table 4.1: Cost of computing various groups of derivatives for the Dynamical B method.

I

2

3

4

5

6

Thus. each leapfrog update costs 3 forward-backward pass pairs. This result will

be used later in determining how Iong to let the parameterized new method run rvhen

comparing its performance to the old method.

Update rnomentum of parameters

Cpdate parameters

Update momentum of parameters

Update momentum of hyperparameters

Update hyperpararneters

Update momentum of hyperparameters

1 (Step 1 is then repeated for the next leapfrog iipdate)

Table -1.2: The steps in one complete leapfrog update in the Dynamical B methocl. The

Dynatniçal .-\ niethod has the same seqtience of steps cornprising one leapfrog iipdate.

4.7 Computation of Stepsizes

We have described our heuristic for appro'timating the second derivative of the potential

energy with respect to the hyperparameters. The stepsize is then computed as the inverse

square root of that second derivative. as in Eqn. 2.21. But because this heuristic uses

Eqn. 4.39. second derivatives have t h e possibility of being negative. and square roots

would then be imaginary Lve note that when the second derivative becomes negative,

it merely indicates that the potential energy surface is now concave downwards. but its

magnitude should still be indicative of the length scale of the surface variations in t h e

region. Thus. the negative sign is really no problem. and we take absolute ~aliies to

obtain the stepsize as:

Similarly. the stepsize for the parameters ari r obtained CU:

and similarly for the other parameter types.

4.8 Compute Times for the Dynamical A Method

We also give the compute time for one leapfrog update for the Dynarnical A method

as this has to be taken into account later in performance cornparison. Recall that the

Dynarnical .\ met hod is the new met hod before the weight reparameterization.

The computation of the first and second derivatives 116th respect to the weights in this

scheme are not significant ly different from Dynarnical B k The algorit hmically demand-

ing portions of these computations are the derivatives of LC mith respect to a weight.

and the backpropagation algorithms given above work the same way except t hat the

factors of e-"12 t hat always go wit h the reparameterized weights are missing. Thus. first

derivatives with respect to the weights also require one forward and one backward pass

for each training case. while second derivatives are essentially free.

T h e computation of the first derivatives and second derivatives with respect to t h e

hyperparameters differ substantially. however. because the hyperparameters do not ap-

pear in the cornputation of the network output f (-) in this case. The first derivatives

;t rpf.

and:

ancl similarly for tiyperpararneters of L I . a and b.

The comp~ite times for hyperpararneters of first derivatives of A.. where * = I L . P . n

and b take time of order the number of parameters and is independent of the riumber

of training cases. This makes it of lower order time complesity t hari that t h e forward

and backtvard passes for computing the Arst derivatives of the parameters. The compri-

tatiori of i l E /BXs requires al1 the network oiitputs for each training case. but which tvere

already computed during the forward passes for the first derivat ives wit h respect to the

parameters. so ive essentially get this derivat ive for free as well.

The second derivatives tvith respect to the hyperparameters are:

and:

dZ E (e. ,d)
ah:

and similarly for hyperparameters of o. a and 6 .

The compute tirnes for each second derivative is essentially t he same as that for t h e

first derivative with respect to the sarne h-verparameter. Once again, we can use the

network outputs already computed for the first derivatives with respect to the parameters.

Note that this differs from the case of the reparameterized weights because. there. the

hyperparameters are involved in comput ing the network outputs. and so the the out piits

computed during the forward passes for the first derivatives cannot be ~ised. as the

second derivatives with respect to the hyperparameters cannot ilse the current values

of the hyperparameters. That forced us to redo the passes through the netivork rvith

estimates for the hyperparameters. but ive do not have to do that here. thereby saving

computation.

W e sumrnarize the varioiis compute costs in the Table 4.S

Ctroiip of Derivat ives 1 Cornpiite tirne

Table -M Cost of cornpiiting varioiis groiips of derivat ives for the Dynamical :\ met hod.

1st mi th respect to parametersand hyperparameters

2nd with respect to parameters

2nd wi th respect to hyperparameters

Like before. one leapfrog update requires the computation of al1 the first derivatives

twice. Therefore. one leapfrog uptlate reqtiires tmo formarcl-backward p a s pairs in t his

c~ase.

2 x O(.\Jol)

Yree"

.-iree"

Chapter 5

Result s

5.1 Training Data

To verify the new methods and compare their performance rvith the old met hod. the

aynt hetic data set of Table 5 . l was used. We u s e a smail data set to recliice the compiite

time reqiiired to obtain the results for t his thesis. Even then. mont hs passed before al1

the nrcessary riins were completed.

1 Input r Input 9

7.5 1483SOe-O 1

4.746 119Se-01

-72696252e-O 1

-9.764S663e-O1

7Sï79593e-O 1

-6.0 1123Sle-O 1

--!.OXSKlSe-O 1

3.22885 l5e-0 1

Output z

1.999252%+00

1.40434î5e+00

9.329S996e-0 1

5.478 127.k-O 1

1.9S5S707e-0 1

4.66STSS le-0 1

6.46S2705e-O3

-1.Ïl532LYe-01

Table 5.1: Training data has two inputs and 1 output. These data are piotted in Fig.

Figure 5.1: Y points comprising the synthetic data set iised. There are 2 inputs (r and

9) and I target (2). The training data are shown using asterisks. The circles represent

the training data before the addition of Gaussian noise. while the crosses are the i n p i ~ t

data drawn on the plane z = 0.

Figure 5.2: The surface frorn which the synthetic data was taken.

The training da ta was synthesized as folloms. The inputs (ri, y i) were uniformly

drarvn from [- 1. l] x [- 1.11. The mapping used on each input pair was calculated using

the function below:

This mapping is illustrated in Fig. 5 . . Gaussian noise with standard deviation 0.1

was added to mch lunctiori output to obtain the target.

5.2 Verification of the New Methods

To verif? the correctness of the new methods. the posterior distribution was obtained

iising d l the mettiocls for a network of Y hidclen iinits on the above training data. Tlir

old Gibbs sarnplirig program as impiementeri by Neal was treated as t he standard against

which the new progrsms were compared.

The priors for the hyperparameters are specified as gamma distributions as in Eqn.

3.7 iising a and parameters. For the demonstration of the correctness of the new

methods. they were set as in Table 5 .2 .

Setting

o. 10

1.00

0.45

1.00

0.30

Setting

Table 5.2: Settings for parameters specifying the priors of the hyperparameters

Fairly long runs tvere done with al1 three methods at the settings in Table 5.3.

CHXPTER 3. RESULTS

5.2.1 Results From Old Method

/ Method 1 p 1 I 1 Saved every

Tab

For

Gibbs

Dynamical A

Dynamical B

l e 5.3: Set tings for the various met hods in order to verify correct ness of new prograrns.

the new methods. we set the parameter and hyperparameter stepsize atljiistment

factors equal to each other. and indicate their value by q in this table.

The outpiit surface as predicted from 5000 samples obtained iising the Gibbs iipdate

met hod is shown in Fig. 5.3. CVe see t hat the data points are being fittecl reasonably. The

fact that the points are being fitted implies that the posterior distribution has changed

from the prior. Incleed. from Fig. 5.4. we see that the marginal posterior distributions of

the hyperparameters differ from the marginal prior distributions.

Lié show in Fig. 5.5 the correlation between the input-to-hiclden and the hiclden bias

hyperpararneters. As espected. when larger input-to-hidden weights are ailorved. larger

biases (m i t h the opposite sign) are required to cornpensate. This is because the oiitpiit

fiinction cannot be composed of hidden units that ail saturate. so the input into at least

some of the hidden units must be kept small.

:\lso. we show in Fig. 6.6 how. as the number of hidden units increases. the hidclen

bias hyperparameter becomes more pinned to the actual standard deviation of the hidden

biases. and vice versa. This is manifested as an increased correlation between t hem. This

is a direct demonstration of the problem we set out to solve.

0.35

0.43

0.08

5.2.2 Results of New Methods Compared with the Old

400 /
100

300

To verify the correctness of the programs implementing the new methods. nre compare

the posterior distributions obtained using the new programs against that from the old.

Figure 5.9: The surface predicted by the sarnples obtained for the master riin for Y hiclden

ttnits. Ttie training data are shown using asterisks. rvhile the crosses are t h e input data

i.irnwri ori the plarie z = 0.

To obtairi t tie posterior distribution. any samples near t lie begirining founcl by visiial iri-

speçtion not to be in equilibrium were frst dropped. 950 sarnples from each metliocl werr

t hen iisecl to plot the histograrn of each hyperparameter. Here. we look at the histograni

of log CL. which is the log of each hyperparameter specified as a standard deviatiori. Each

such histogram approsimates the marginal distribution of a hyperpararneter.

CVr need to be able to compare the joint distribution over hyperparameters for two

methods. Because we are unable to plot a distribution over the joint *5-dimensional space

of al1 the hyperparameters. we compare marginal distributions instead. This cornpari-

son is valid because. if the marginal distributions of the hyperparameters match for two

met hods. t hen t hey almost certainly have the same joint distribution over hyperparame-

ters. While it is true that. in principle. equal marginal distributions does not impiy equal

joint distributions. the fact that the marginals match is too amazing a coincidence to be

esplained any other way than by concluding that the joint distributions match.

Figure 5.4: Dotted lines represent prior densit ies (obtained analytically) mhi le solid lines

represent posterior marginal distributions obtained from the Gibbs sampling method.

These plots. obtained using Y hidden units. show that the posterior distributions of t h e

hyperparameters have changed from the priors.

I
ta" loJ 1 O' 1 0; 10'

au

Figure 5.5: Correlation between input-to-hidden and hidden bias hyperparamrters ob-

tained iising t h e old method.

(a) 13 hidden units (b) 20 hidden units

Figure 5.6: Correlation between the standard deviation of t h e hidden biases and the t heir

hyperparameter becomes stronger as the hidden Iayer size increases.

As can be seen in Figs. 5.8 and 5.7. the marginals for al1 the hyperpararneters

obtained by the programs running both the new methods match those of the original as

implemented by Neal.

5.3 Met hodology for Evaluating Performance

Having shown that the new methods have been correctly implemented. ive are norv ready

to assess t heir performance.

-4 4larkov chain Monte Carlo method typically goes through a "burn in" phase before

settling down to eqiiilibriiim. Before reaching eqiiilibrium. its samples are not reprcsenta-

tive of its invariant distri but ion. :\s t hese non-representat ive samples shoiild be rliscarcled

in orcler not to skew later estimates. the speed with which a Slarkov chain eqiiilibrates

is a matter of interest. Mowever. due to time constraints. ive will not hta considering

this question. Instead. ive will only assess the relative performances of the olcl and t tic

new methods in moving about in the posterior distributions of the hyperpararnetrrs once

eqiiilibrittni has been reached. We do not consider the speecl witti which the posterior of

the parameters is esplorecl as there can be large nurnbers of parameters. and it is difficiilt

to know which parameters to compare as they can sometimes taken on tlifferent roles.

In addition to examining the performances of the original rnethod and the Dynamical

B method. we also look a t the performance of the Dynamical .-\ method to ascertain if

the reparameterization of the weights is indeed beneficial.

The performance of t he methods depends on the number of leapfrog steps allowed in

one t rajectory and the stepsize adjustment factor. These can be viewed as tuning param-

eters that affect the efficiency of each method. Since performance can vary drarnatically

depending on the setting of these tuning parameten. it is only fair to compare how well

the methods work when optimally tuned.

For the old method. the tuning parameters are Z. the number of leapfrog steps allowed

F i e - 5 : Crosses represent the distribution obtained from t h e original Gibbs update

method. mhile circles represent that of the Dynamical .A update method. Each distribu-

tion has been normalized to have area 1.

Figure $3: Crosses represent t h e distribution obtained from the original Gibbs update

method. while circles represent that of the Dynamical B update method. Each distri-

bution has been normalized to have area 1. Note that the distribution for the original

method looks slightly different from that of the plots for the previous cornparison with

the D-mamical A method because the binning for the histograms is slightly different.

in one trajectory. and 0. the stepsize adjustment factor. For the new methods. 1 is also

a tuning parameter. but we now have two stepsize adjustment factors: q, for the param-

eters. and qh for the hyperparameters. We have two stepsize adjustment factors because

we might wish to control how fast the parameters move compared to the hyperparameters

in order to obtain the best performance. Moreover. the different heuristics with which

t he stcpsizcs arc cvmpztcd for t he paramctcis and t hc h~;pcïpsïamctcïs mcam that thcir

relative magnitudes might be quite different. mhich also suçgests separate stepsize ad-

jiistment factors. Horvever. due to time constraints. ive rvill nut esplore the problem of

how to set the two adjustment factors separately. and will instead set t hem eqiial to each

othrr (r l p = q h) and cal1 it r!. rvith the understanding that the performance of the new

rnettiods could be increased if the two 0 's are not set equal to each other.

The performace of a method on a hyperparameter is assesseci using the variance of

nirans rneasiirc. whose presentation we clelay t i l l the next section. For a given ietting

of the tiioing parameters. this measurtl can be compiiteci for each hyperparameter. The

srnaller the measure is. the more eficient ly t lie met hod explores the niargirial posterior

clistribution of that hyperparameter. Since we rvish to compare the methods when the-

are operating optimally. we will compare their variance of means meastires a t optimal

sr t t ings of 1 and q .

To find the optimal setting of 1 and q for a given method. we run it over a grid

of settings in tuning parameter space. measuring its variance of means performance at

each setting. The geometric mean of the variance of means of the hyperparameters is

computed to obtain a single measure that combines the performances over the different

hyperparameters. In computing the geometric mean. we leave out the variance of means

measure for the output bias hyperparameter as that h-verparameter controls only one

parameter for this network and is therefore not that meaningful. The optimal setting of

the tuning parameters is then picked as the setting that rninimizes the geometric mean.

It is not safe to directly use the variance of means at this optimal setting to compare

the performances of the methods. however. as they are biased downwards as a result of

this selection process. Instead. the programs are then re-run with different random seeds

to re-obtain the variance of means measures so as to avoid the bias. In the next section.

we describe the variance of rneans measure in greater detail.

5.3.1 The Variance of Means Measurement of Performance

The variance of means rneasitre characterizes how well a methocl explores the posterior

distribution of a hyperpararneter at a fixed setting of the tuning parameters. To obtain

this measure. ive run several Markov chains. each started from an independent point

drawn from the posterior distribution of the parameters and hyperpararneters. Each

chairi is riin for a fixed number of .Vl leapfrog steps regardless of what 1 is.

For a given setting of the ttining parameters. we obtain the means of the hyperpa-

rameters sampled by each chnin. The entire chain of .VI leapfrog steps c m b e thoiight

of as being divided iip into a fixed nurnber of .L; super-transitions each comprisecl of

leapfrog steps. Although each leapfrog trajectory yields a sample from the cor-

rect distribution. tvve use only one sample per super-transition to compute the means of

the hyperpararneters for each chain. Thiis. regardless of the value of 1. the same nimber

of samples .V, is iised to compiite the means as shown in Table 5.4. For the i'th chain.

the hyperparameter means obtained are:

-- ---
(log ai, log ai. log a;, log a:, log O;)

where. for instance. each mean log ai is computed as follows:

a refers to a hyperparameter expressed as a standard deviation. We take the log

before computing the mean as experience shows that the standard deviation can vary

over several orders of magnitude, and yet variations on a small scale are as interesting as

~ r i a t i o n on a scale a few orders of magnitude larger.

1 Chain 1

Table 5.4: Each chain is run for .Y, super-transitions at some setting of 1 and rl. The

sarnples obtained from the super-transitions are used to cornpute the means of each

hyperparameter.

If we run Xm Markov chains. we will have !V, values of log a.. The variance of means

measure that we have been talking about is then just the variance of these values of

log a.. W e define p. to be t hese variance of means rneasures:

p , = Var [log a,]

p. = Var[log a,]

Each variance is calculateci using the mean estirnated From a very long run of the old

niethocl. mhich we assume to be very close to the triie mean. For esarnple. i f the mean for

log O,, obtained from a \.ery long riin of the old met hod is < log 0, >. t hen we compcite

the variance from .PTm Markov chains as:

This is the tnriance of means

bet ter performance.

measure of performance. wit h lower variance indicat ing

Let T, be the inefficiency factor in units of super-transit ions for .V, samples of log a,.

Tu measures the worth in computing logc, of each super-transition of logo,, relative

to one independent sample of log a,. For example. if Tu is 2 . then it takes twice as

many super-transitions to obtain a given variance of logo, as would be needed iising

independent samples. Mathematically. the variance of means measures are related to

inefficiency factors as follows:

Since Var[log cru] is a constant property of the posterior. and we are using the same

.V, for al1 tuning parameter settings. our estirnate of Var[log a,] is proportional to Tu.

A t hough t his Tu is for t his part icular number of samples iVS only. ive would espect t hat .

if a method has a lower Tu than another for this .V,. then it really is more efficient at

esploring the posterior distribution. and so it should remain better for a different LV,.

Thus. this measure is indicative of performance in general.

5.3.2 Error Estimation for Variance of Means

Error bars on the variance of the means are obtained as follows. Since the variance of pu

is calculatecl as the mean of the square deviations (logo;- < logo, >)'. its variance is

Var[(loga:- < logo, >)']
Var[pu] =

- v m

which is valid so long as the chains are independent. We ensure this by picking ttieir

start ing points sufficiently far apart from a long master run and by iisirig a different

random ntirnber seeci for each chain.

5.3.3 Geometric Mean of Variance of Means

Rat her t han cfiaracterizing performance by the variance of the hyperparameter menns for

al1 the hyperpararneters. we define the following single geornet ric mean scalar measure of

performance:

CVe obtain error bars for g by bootstrapping (see Efron and Tibshirani. 1993) as

follows. Let Z be the original set of .V, Markov chains. Thus. Z determines a single value

of g. -4 bootstrap realization 2' is a set of .V, Markov chains sampled uniformly with

replacement from the original chains. During bootstrapping. many bootstrap realizations

Z' are generated from 2. The idea is that the empirical distribution represented by Z

contains wit hin it the natural variations that g has over the true distribution from which

Z is drawn. So. a value of g can be calculated from each 2'. and the histograrn of these

resulting g's gives an estimate for the actual distribution of g. We quote error bars as

the 90% confidence interval of the histogram of g. i.e.. we quote the error bar [g io .gh i] .

where gl, and gh, are such that 5% of the values of g obtained from 2' are below gr,. and

5% are above gh;. We use LOO0 bootstrap samples to obtain these error bars.

5.3.4 Iterations Allowed for Each Method

-4s shown in Eqn. 5.6. p. is proportional to the inefficiency factor of the method in iinits

of super-transitions. In order for comparisons of variances between two methods to make

sense. the amount of compute tirne iised per stiper-transition shoulcl be the same in both

cases. However. the compute time of a program is tricky to calculate from things such as

number of multiplications. as programming style can affect it. Thus. in this thesis. the

arnount of "tvork" that goes into a super-transition is estimated in algorithmic terms in

which we assume that the niimber of training cases .V, is large. and the number of tiidderi

units .Vh is also large so that the niimber o l weights 1 0 1 is large. This resiilts in terms of

order '1,101 dominating the time cornplexity. which cornes entirely from cornplete sweeps

t hroiigh the neural nettvork for each training case.

In the old method. each trajectory is composed of 3 steps: sampling the hyperparam-

eters. compiiting t h e stepsizes. and performing the leapfrog steps. First. we note that

each leapfrog step requires the etaiutaion of the derivative of the potential energy with

respect to a parameter:

which is most efficiently computed for each training case using a forward sweep through

the network for f(x2: O) -yc and a backward sweep For af(xC: t)) /aui . Each of the 2 sweeps

takes O(:Vclol) compute time for al1 the training cases. By cornparison. the sampling of

the hyperparameters is dorninated by the computation of the sum of the square of the

tveights, as can be seen in Eqn. 3.11, and by the computation of the total squared error

of the network output (Eqn. 3.12). The former takes O(161). while the latter costs only

O(.\;,) since the network error has already been computed at the end of the last leapfrog

step for the Metropolis rejection test. So. both can be neglected when compared to the

compute time required for a leapfrog step. The computation of the stepsizes is also free

by comparison because its summation over training cases (Neal. 1996. hppendis A) can

h~ far tnr~d mit nnf! r a m p i i t 4 at t h p <-Pr!! higinninp cf the prcgrm~. Thw. --ch s-per-

transition in the old met hod is approximately dominated by the leapfrog steps. each of

which takes 1 pair of forrvard-backward srrreeps. each of which takes O(.V,lol) compute

time. We surnmarize this dong with the compute times for the new methotls in Table

Gibbs

Dynamical A

Hyperparameter updates by Network passes per leapfrog step

For n. detailed esplanation of the niirnber of passes required for ttie two

Dynamical 6

clynamical met hods. please refer to Section 4.Y.

6

Because of the results in Table 5.5. the Dynamical B method is only allowed a third

as many leapfrog steps per super-transition as the old method. while the Dynarnical .A

met hod is allowed haif. These measures ensure t hat each super-transit ion uses approxi-

mately the same amount of compute time regardless of rnethod.

5.4 Markov chainstart states

5.4.1 Master Runs

As mentioned earlier. each chain is started from a state chosen from equilibrium. To

obtain the starting points for a particular network. a very long run was done using the

old method. typically resulting in several hundred thousand to a million or more samples.

.\ny initial portion of the run not in equilibrium was discarded. and starting points were

then obtained from the remaining samples. These starting states were spaced many

inefficiency factors apart so that they are likely to be nearly independent points that

represent the posterior distribution well.

The !onp rrn ~ 2 s d 0 ~ - ~ i t h 2 :e!ztl-.~!:; srna!! stcysizc adj::stmczt facto; ;O that tkc

rejection rate is low (aroiind 5%). This is because chains using large stepsize adjiistment

factors may sometimes be unable to enter certain regions of state space where its rejection

rate is high. The reason for this is because. once it enters. it is likely to s t a y t here for a

long time chie to its high rejection rate. Because it remains stuck there for a long time.

it folloivs that it is iinlikely to enter that region in the first place. Thus. iising a low

rejection rate rediices the risk of overlooking such regions.

Long runs were obtained for networks with S. i2. L6 and 20 hiddcn rinits. Tahlc 5.6

shows the prior settings used for these networks. while table 5.7 tabulates the farious

riin set tings iised. the number of sarnples obtained. and the resulting reject ion rate.

Table 5.6: Prior settings for the neural net architectures tested.

Hidden units

In order to ensure that our start states are h m the equilibrium distribution. the

hyperparameters from the master runs were visually checked for the absence of long

t erm trends.

t I 1
-d r -1 -- -- - -

d~ ' J,' ' 1 3

&Vu - da - d3 as au C I , ci., ab

Table 5.7: Tuning parameter settings. number of samples collected and rejection rates.

Rejection rates were chosen to be relatively low to reduce the risk of not being able to

enter regions where the rejection rates are bigh. For al1 the riins. only one sample rvas

saved for rvery LOO samples collected.

Hidden units

8

12

16

20

5.4.2 Starting States Used

Leariance of rrieans rneasures were obtained for networks with S. 12. 16 and 20 tiidclen

uriits. This requires several hlarkov chnin starting states for each nimber of hidden units.

This section stiotvs in detail how these states were obtained.

Table 5.3 shows the inefficiency factors of log au. as that was found to be t he slowest

rnoving hyperparameter. Le.. it had the highest inefficiency factor. We use a. to denote

1

400

400

400

400

I
d -

7. '. It is the hyperparameter expressed as a standard deviation and is often easier to

iinderstand. We compiite the inefficiency factor of log g. rather than sirnply a. as the

inefficiency factor is t hen the same regardless of what power a. is raised to. t hus removing

any questions as to whether it is more appropriate to measure the inefficiency factor of

the variance or the standard deviation.

As each chain used in the mriânce of means measure shoiild be started from an

independent point. we use samples from the master run spaced many inefficiency factors

apart.

r\ll the variance of means measures were computed using 50 chains. The s tar t states

of the first 40 chains are evenly spaced according to Table 5.3. It rvas decided to add 10

more chains because it was ernpirically observed that the differeot methods seem to do

Rejection rate

6.16%

7.22%

-5.71%

v5.9574

q

0.35

0.32

0.26

0.23

No. of samples

500000

800000

:3.500000

100000

very differently on chains starting a t large log 0, and log os, large meaning greater than 4

in this case. Specifically. it appeared from the first 40 chains that the old method and the

Dynamical -A method do badly on chains starting at large values of these hyperparam-

eters: whereas the Dynamical B method does well. Because such large hyperparameter

values appear rarely in the posterior distribution. there are feiv of them among the -10

chains. so assuming that they do have an important effect on the resuits. it is necessary

to oversample the region with large values of log a, and logo, and then downweight

those points accordingly in the computation of the variance of the means. Otherwise.

one might by chance cornpute the variance of means without any chain start ing at large

values of t hose hyperpararneters. and erroneously conclude that al1 the met hods perform

Table 5.3: First 40 starting states are drawn so that they are many inefficiency factors

Tu apart . Tu is the inefficiency factor of log a..

Hidden

iinits

s

12

16

20

To ensure that w e have a decent number of points frorn the region G' satisfying

logo. > 4 or logo, > 4 or both. it was decided to stratiFy the starting points so that 40

of them are outside G and 10 are inside. Of the first 40 points chosen according to the

separations in Table 5.8. some are already in G. So. t h e choice of points Il through 50

was done as follows: for each number of hidden unitsi' we chose enough additional points

in G so as to make them total 10 in number. and we also chose enough points outside of

CZ so as to obtain 40 of thern.

T u

:120

470

2500

770

S tart state separat ion

(sarnples)

10000

10000

30000

10000

Star t s ta te

separation (Tu's)

:3 1

2 1

'20

13

Initial samples

drop pecl

O

O

O

O

To obtain these 10 new points. a long sequence of many points was obtained from

the master file at fixed separations (always at least 3 inefficiency factors). For t2 and 16

hidden units. the 10 new points rvere obtained past the end of the portion of the rnaster

run used to obtain the first 40 starting states: for Y and '20 hidden units. the new points

used the portion already used for the first 40 states. and beyorid if available. taking care

[vas then uriiformly sampled to obtain the desired number of points in G ancl points

outside of G.

5.4.3 Modified Performance Measures Due to Stratification

Ttic stratification of the starting states does change the calculation of the variance of

rneans rneasiire and its error somewhat. For .Yc equal to the nuniber of points takrn

frorn regiori G' and % the number of points taken frorn outside. the variance of means

within eacli stratum for hyperparameter a,, is:

so that the overall tariance of means that takes stratification into account is:

where p is the fraction of the posterior distribution in region G.

For error estimates of the variance of the means. we compute the variance of the

above as before. which is similarly computed as the weighted sum of the error variances

cornputed separately for each stratification:

-P labie 5 . ~ : Estimated fraction oi the posterior distribution in region G t'or each number

of hidden iinits. Region G is defined as t h e region for which log a. > -t or log a, > -1 or

bot h.

The above expressions correct for the oversampling of G iising p. Table 5.9 gives

estimates of these qiiantities from each master riin.

It shoiild be noted that we bave assiimed that p is known in the calciilation of the

error bars of t hc ~ ~ r i a n c e of means measures: but really. al1 we have are estimates. This

simplification introduces some inacciiracies into the error calctilations. but it is not likely

to change otir conclusions much. as ~ v e will see later.

One might question why the various values of p in Table 5.9 are qtiite different. The

atithor has sorne empirical esperience showing that C; is a region of somewhat higher

rejection rate than normal (aroiind 12% for 20 hidden tinits). It is possible that some of

the master riins have q's that are high enough that they enter C: rarely enoiigh to make

a clifference in the estirnates of p. This aspect of the esperiment is difficult to control. as

it is usually not possible to tell in adnnce what the regions tvith high rejection rates are

going to be. and i f t hey will make a difference to the final variance of means estimates in

the end. Furt hermore. if such regions are identified after obtaining master runs. it can

be very costly compiitationwise to redo the master runs a t a smaller setting of q .

Final15 the bootstrap procedure takes the stratification into account as follows: the

first -10 chains in Z' are sampled uniformly with replacement from the first 40 chains in

2. while the last 10 chains in 2' are sampled uniformly with replacement frorn t h e last

LO chains in 2. This ensures that each realization 2' is obtained from the same empirical

distribution represented by 2.

5.5 Number of Leapfrog Steps Allowed

In accordance with the deemed ratios of computation involved in each super-transition

for t h e various methods (Table 5 . 5) . different numbers of leapfrog iterations ivere used

for each 11arkov chain. These are listed in Table 5.10.
- -

1 Hyperpararneter updates by 1 Leapfrog steps per chain

Gibbs

Dynarnical A

Dyriamical B

Table 3.10: The ~ar-ing numbers of leapfrog steps t hat were allorved per Markov chain

in accorciance wit h t tie ratios of cornputation involved in each super-transition for the

various methods as listed in Table 5.5

5.6 Results of Performance Evaluation

The optimal tuning parameter settings for each method and for each number of hidden

itnits ivere assessed lrom Figs. 5.9 to 5.12 The optimal tuning parameters thus obtained

are given in Table 5.Ll. The corresponding g's and variance of means and rejection rates

obtained at these optimal settings but in nem runs ivith new randorn seeds are given in

Table 5.1'2.

-4s can be seen from Table 5.11. the optimal setting of q for the Gibbs and Dy-

namical .\ methods tends to drecrease with increasing hidden Iayer size. Dynamical B.

interestingly. increases with increasing hidden layer size.

(a) Gibbs update (b) Dynamical -4 ripdate

(c) Dynamical B update

Figure 5.9: S hidden units: a circle is drawn at the optimum point. and the surface as

a function of 1 and q are backprojected on to the wa11s at optimal q and i respectively.

Xote that the vertical scale is inverted.

(a) Gibbs update (b) Dynarnical .4 update

(c) Dynamical B update

Figure 5.10: 12 hidden units: a circle is drawn at the optimum point. and the surface as

a fiinction of 1 and q are backprojected on to the walls at optimal q and 1 respectively.

Yote that the vertical scale is inverted.

(a) Gibbs update (b) Dynamical :\ upclate

(c) Dynamical B update

Figure 5-11: 16 hidden units: a circle is drawn at the optimum point. and t h e surface as

a fiinction of [and q are backprojected on to the walls at optimal and I respectively.

Xote that the vertical scale is inverted.

(a) Gibbs update (b) Dynarriical X update

(c) Dynamical B update

Figure 5.1'1: '20 hidden units: a circle is drawn at t h e optimum point. and the surface as

a function of I and rl are backprojected on to the walls at optimal q and 1 respectively.

Xote t hat the verticai scale is inverted.

1 Hyperpararneter updates by

Gibbs

Dynamical A

Dynamical B

Gibbs

D y x m i cal -1.

Dynamical B

Gibbs

Dynamical .A

Dynamical B

Gibbs

Dynamical .A

Dynamical B

Hidden units q Rejection rate

0.400 8.2%

O. 640 42.9%

0.040 . r r -7%

Table B. 1 1: The optimal tiining parameters for each met hod and each niimber of tiidden

units.

The values of g are plotted for each number of hiciden units in Fig. 5-13. The error

bars are big. and it is possible that there is essentially no difference in al1 the three

methods. However. there is some evidence that when the niimber of hidden iinits .VA is

increased to 16. the Dynarnical B method begins to work better than the old method.

Note that the error bars in the figure are 90% confidence intervals of the performance

measures. and do not take into account inaccuracies in assessing the optimal settings of

the tiining parameters. Thus. the real error bars are actually bigger by sorne iinknotvn

amount .

Frorn the graph. the D-ynamical A method does not seem to perform that differently

from the other rnethods. except at 16 hidden units. The cause of this seeming anomaly

at 16 hidden units is discussed in the next chapter.

The graph also shows that the Dynamical B method does not show any improvement

over the old method that is rneasurable given the size of the error bars. This is unfor-

tunate. However. the old method does seem to show a noticeable upward trend. while

the tivo new methods do not. This suggs ts that the old method is becoming more and

more inefficient as the number of hidden units .b increases even though the compute

cornpute t ime reqtiired to maintain the same level of performance as measured by y groms

s~iperlinearly ivith .Vh for the old met hod. On the other hancl. the two new methods ap-

penr more likely to be either linear or sublinear. although it is dific~ilt to tell for certain

with the limited nunibrr of data points and the noise.

The size of the rrror bars impedes our analysis of the results. In the next section.

we show hoiv we can perform bootstrapping on pairwise coniparisons to obtain clearer

indications of how one method does compared to another.

5.7 Pairwise Bootstrap Cornparison

To more sensitively compare how two methods perform. ive can compute the ratio of y's

for two different methods. and use bootstrapping to obtain a confidence intenaal for that

ratio. Here. a bootstrap realization is a choice of 50 hlarkov chah start states rather

than 5larkov chains. as the chains themselves differ for the two methods. This couples

the g's for the 2 methods together. causing them to be evaluated at the same hlarkov

chain start state for each bootstrap realization. In this way. ive might be able to better

distinguish between good and bad methods. For esample. we might see that one method

always has a higher g than another when started from the same point even though their

individual g's ivander over a large range for different bootstrap realizations so that the

error bars in the 2 g's overlap significantly.

[n Fig. 5.15. ive show these ratios with 90% confidence intervals obtained using 500

0.041 1 I 1 I 1 1 I 1
6 8 10 12 14 f 6 18 20 22

N u d r 01 hidden units

Figure 5.13: Comparison of g between t h e three methods a t the optimal setting of t h e

tuning parameters as the nimber of hidden units increases. Crosses are the old method.

triangles are the Dynarnical .A method. and circles are the Dynarnical B method. Error

bars terminate with the same symboi that represents each point. These error bars rep-

resent 90% confidence intervals. and do not take into account the error in the estimation

of the optimal tuning parameters. Thus. the true error bar is greater than those shown.

Figure 5.14: Comparison of optimal performance of the three methods as the number

of hidden units increases. Error bars terminate with the same s-mbol that represents

each point. These error bars are the standard deviation in the each variance of means

measure. and do not take into account the error in the estimation of the optimal tuning

parameters. Thus, the true error bar is greater than those shown.

boostrap samples. From Fig. 5.15a. it seems fairly convincing that Dynamical B works

better than the old method for 20 hidden iinits. Fig. L i 5 b suggests that Dynamical

B tends also to work better than Dynamical A, while Fig. 5. l k is inconclusive on the

relative performances of Dynamical A and the old Gibbs method. However. we shoulcl

note that that there is some uncertainty in the error bars due to the fact that w e might

not realiy have Found the true optimal settings of the timing parameters. Also. the 50

SIarkov chains we used might not have been enough to capture al1 the important regions.

Thus. even thoiigh the pairwise cornparisons rnight suggest that Dynarnical B works

better than the Gibbs rnethod for 20 hidden units. it is better to be cautious and conclucle

ttiat Dynamical B may work Letter than Gibbs. and if it does. it is not hy miich.

Now that it is clear that Dynamical B is not as good as one might hope. the question

is. mhy is that. and can it be made to go fasterl C V e aciclress these questions. as ivell

as the qiiestion of Dynamical :\'s large error bars in g at 16 hiclden iinits. in the nest

chapter.

(a) Gibbs vs. Dynarnical B
(b) Dyrianiical B vs. Dynaniicnl

:\,

(c) Dynarnical A vs. Gibbs

Figure 5-15: Pairwise cornparisons of the various methods obtained by taking the ratio

o . Error bars represent 90% confidence intervals obtained using 500 bootstrap realiza-

tions. Dashed lines have been drawn at the level of 1. mhich signifies equal performance.

Method

Gibbs

Dynamical

A

Hidden
P 5

un i t s

Dynarnical 1 1 0.0909 f U.l4B:3 i- 0.0551 i

0.0479 i
Gibbs 12

O.OOS0

Dynamical 0.0-4IS k
L 2

-4 0.0093

Dynamical 0.1420 k
12

B 0.OÏO'i'

0.0.509 k
Gibbs 16

0.0 102

Dynamical 0.0637
16

A 0.0 124

Dynamical 0.0571 k
16

B 0.0 12 1

0.0630 &
Gibbs 20

0.0 134

Dynarnical 0.0764 I 0.1576 * 0.0163 *
1 2 0 1 I l

Dynamical 0.0749 k 0.1.579 k 0.0207 +
20

B 0.0 15G 0,0331 0.0037

Table 5.12: Variance of means performances obtained by te-running t h e various methods

rvith new ra~clom seeds at the optimal tuning parameter settings. Each error bar is the

standard deviation of its variance of means measure,

Chapter 6

Discussion

6.1 Has the Reparameterization of the Network Weights

Been Useful?

-4s we saw in the last chapter. the Dynamical .A method seems to perform comparably to

Dynamical B escept for 16 hidden units. Upon closer examination. we see that the large

value of g for the Dynamical A method at 16 hidden units is d u e to it not performing

well for some 4tarkov chain starting states with large hyperparameter values for loga,,

and log o,. Le.. the second stratum. This can be seen in Fig. 6.1. and is a manifes-

tation of Dynamical A's inability to rnove efficiently between large and srnall va1ues of

hyperparameters. This etfect is less pronounced for '20 hidden units probably because

the starting states in the second stratification are less extreme in value. As mentioned

before. this is an aspect of the experiment that is difficult to control. Nevertheiess. Our

present results indicate that the Dynamical h rnethod should be avoided because it may

move estremely slowly from some starting states.

(a) Gibbs update (b) Dynarnical .4 updnte

(c) Dynarnical B update

Figure 6.1: These plots compare how the various method fare on the 10 Markov chain

starting states mith large h ~ ~ e r p a r a m e t e r s for 16 hidden units. The circles show the 10

starting states rvith large hyperparameters. the crosses show the hyperparameter means

of all 50 chains, while t he dots show the means for the 10 Markov chains tha t started

a t the large h-yperparameter values. Dashed lines connect each starting s ta te with its

resulting mean.

6.2 Making the Dynamical B Method Go Faster

-4s we saw in the last chapter. the Dynamical B method offers only a small improvernent

over the old method. if any at all. The question then is. why.

The key may lie in the rejection rates. -4s can be seen in Fig. 6.2. the rejection rates

of the Dyriamical B method differ from those of the old method and the Dynamical .A

rnethotl in that it shows a significant increase with leapfrog trajectory length 1.

The prirnary motivation for the new methods is to aIlow the hyperparameters to be

updated with the parameters during the course of a leapfrog trajectory. For this to

esplore the posterior distribution efficiently. long trajectory lengths are riecessar).. A s

we cari see from Fig. 6.2. the Dynamical B method ended iip having rejection rate

çharaçterist ics t hat penalizes long t rajectorp lengt hs rvit ti high rejection rates. Thus. the

optimal setting of 1 is not as long as we rnight like.

Wt t i this observation in mind. if we can find out why t h e Dynamical B method has

this behavioiir. we might be able to fis it. The next section formillates a simple rnotlel

that accounts for this increase in rejection rate with 1.

6.2.1 Explanat ion for the Rising Rej ect ion Rat es

If the stepsizes mere infinitesimally small. the leapfrog trajectories would simulate Hamil-

tonian dynamics perfectly. and the rejection rate ivould be zero. However. they are not.

and are fiirtherrnore calculated by heuristics that may yield inappropriate values some-

times. This leads to rejection behaviour t hat affects the rate at tvhich the .l[arkov chain

explores the state space.

There are two qualitatively different ways by tvhich a leapfrog proposa1 under the

Dynamical B method may be rejected. In the first way. the leapfrog simu

Hamiltonian dynamics is stable and H varies over a small range due to

nature of the simulation. At the end of the trajectory, the distribution of

iation of the

the discrete

' N over this

(a) Gibbs iipdate (b) Dynarriical .-\, iiptiste

(c) Dynamicat B update

Figure 6.2: Rejection rates versus trajectory length L for 20 hidden units.

small range determines the rejection rate. In the second way. the leapfrog sirntilation

becornes unstable at some point during the trajectory due to the heuristics yielding

stepsizes inappropriate for that region of state space. The effect of this is catastrophic

because the simulation is almost never able to recover: the value of H either diverges

or moves to a much higher value. resulting in near certain rejection. H has a much

are inappropriatel- large may still be stable in a wider orbit.

To illustrate this instability. H is plotted in Fig. 6.3 for 10 trajectories started From

the same state but with different randomly-selected initial momenta. We see that once

an iristability can occiir at an? time. and once it oçcurs. recovery is virtiially impossible.

and will lead to near-certain rejection at the end of the trajectory. The ciirntilativr etfect

of riskin; a grossly wrong stepsize with each step is that. for very long trajrctories. the

probability that we manage to get to the end without once having experiencecl a catas-

trophic instabili ty is tiny. Therefore. the rejection rate should increase rvit h trajectory

length. This explains the observed increase of the rejection rate rvith 1 for Dynamical B.

h o t h e r viecv of the instability of H is shorvn in Fig. 6.4. which shows how the

distribution of H broadens wit h increasing number of leapfrog steps.

The old method. which iipdates the hyperparameters by Gibbs sampling. is not prone

to this cumulative rejection effect as its stepsize is not being constantly recalculated

during a trajectory. Even if its stepsize heuristic gives inapporpriate stepsizes with too

high a probability. the stepsizes are computed only once at the beginning of t he trajectory.

and a good stepsize will tend to lead to a stable trajectory no matter how long it is. Such

long t rajectories t hen become unstable only by entering a region for which its stepsizes are

inappropriate. This effect leads to rejection rates that increases mith I as. the longer the

trajectory the more likely such regions are encountered. However. the fact t hat rejection

rates for the old method show rrery little dependency on 1 (see Fig. 6.2) indicates that

entry into such regions happens very rarely. Thus. for the old method. most rejections

Figure 6.3: H plotted over LO trajectories started from the same state but tvith different

initial momenta. Each t rajectory has '20000 leapfrog steps. :ls each trajectory progresses.

it may hecome iinstable. i f it does. H iisiially rises catastrophically. :\ transition to

infinite H is shown here as a transition to O. q was set at 0.040. and a network of S

hicfderi units was iised.

are due to the normal deviation of H away from its initial value.

That the repeated stepsize calculations handicaps the Dynarnical B method with its

cumulative rejection efFect might be cause for pessimism. However. the k t that the

Dynamical A method achieves fairly Rat rejection rates (Fig. 6.2) shows that the rise

in rejection rates is not an inescapable cost of calculating the stepsizes before each step:

rather. with appropriate stepsize heuristics. it might be possible to achieve flat rejection

rates even in the Dynarnical B method.

The stepsize heuristics used in the Dynamical B method for the parameters are the

same as that used in the old method. so they are unlikely to be the cause of the catastroph-

icaliy mong stepsizes. CVe e'rpect that it is the stepsize heuristics for the hyperparameters

that is a t fault. The ne.xt section seeks to confirm this,

(a) Before any leapfrog steps

1 , n n n , - , ,

: :1 4 3 (P 'CO '20 '10 '10

(c) X fter 10000 leapfrog steps

(b) After *5000 leapfrog steps

(d) Xfter 20000 leapfrog steps

Figure 6.4: The distribution of H broadens as a trajectory progresses. Infinity is binned

at O in these histograms. 50 trajectories. al1 started at the same state but with different

initial momenta. were used to generate t hese histograms. rj~ \vas set at 0.040. A network

of 8 hidden units was used.

6.2.2 The Appropriat eness of S t epsize Heuristics

If a stepsize is inappropriately large and leads to instability. then perhaps a smaller

stepsize half as large might not. If. for example. the parameter stepsizes are sometimes

inappropriate, t hen under a leapfrog discretization where the hyperparameter update re-

mains the same but where each parameter update is split into two consecutive iipdates.

each rvit h half the stepsize adjust ment factor. the acceptance probability p shotild in-

crease. since the parameter update is now closer to the true Hamiltonian dynnmics. On

the other hand. if the parameter stepsizes are usually appropriate and it is the hyperpa-

rameter stepsizes t hat are at fault. t hen the rejection rate shoiild not change miich.

:\s shown in Fig. 6.5. when the parameter iipdates were split. the rejection rates

did not change. rvhile they dropped when the hyperparameter iipclates were split. This

indicates that the hyperparameter stepsizes calculated according to the ciment heiirist ics

are often inappropriate. Fig. 6.5 was obtained by averaging the rejection rates o w r a

small niimber of hlarkov chains run at varioiis settings of 1 with q = 0-OLO. :\ network

with S hidcien iinits was itsed. along with the training data from the last c h a ~ t e r . The

hlarkov chain starting states were chosen from the ones used in the tests in the last

chapter. with momenta randomly initialized from the unit normal distribiition.

To remedy the inappopriateness of the hyperparameter stepsizes. it is possible that

the stepsize heuristics for the hyperparameters needs to be changed. On the ot her hand.

it is also possible that some setting of q h < rl, rather than r)h = q., is al1 that is necessary.

In the nest two sections. ive e'rplore these two possibilities.

6.2.3 DifFerent Settngs for qh/r],

In this section. ive report the results of sorne experiments to test the possibility that

some setting of q h < 11, can flatten the rejection rate versus 1 curves without us having

to change the stepsize heuristics.

Figure (i .5: Effeci. on rejection rates of splitting either the parameter updates or thc

hyprrparameter iipdatrs into two while using ttie Dynamical B method. Here. rp, = rj , =

0.010. This plot was obtained iising a network with 3 hiddrn units.

We used a network with 16 hidden units and the training data from the last chapter.

20 Uarkoï çhairis were rtin at various trajectory lengths 1 with rl, = 0.32 and 0.64. and

rlh = r l p / LOO. The 'rlarliov chain starting states were taken frorn the states iised for the

tests in t h e last chapter. and the rnomenta were randomly initialized from a unit normal

distribution. The resulting rejection rates averaged over the 2û chains are plotted in Fig.

6.6. Compared to t h e case rvhen rlh = q p . the rejection rates do not rise as fast as the

t rajectory lengt h increases.

This suggests that. by decreasing the ratio rlh/q, . it may be possible to gain enough of

the advantage of having long trajectory lengths to offset the smaller distances travelled

in each step due to the smaller rp,.

The geometric mean performance measure g [vas also calculated at each setting of 1.

it was found that the best value of g is 0.14. which occurs at i = li067.rl, = 0.32. This

value of g is considerably worse than the optimal one (0.0131) found for the D-parnical B

(a) q h = qp = 0.32 and qh = qp = 0.64

Figure 6.6: These pictiires show rejection rates for 16 hidden units when different ratios

of ~ ~ 1 % are used. The rejection rates do not rise as fast with increasing trajectory length

tvhen qh is set to be smaller t han rl , . The first set of rejection rates were averagecl over

50 Markov chains while the second were obtained iising 20.

method at this number of hidden units. So we see that. even though ive are able to take

much longer trajectories with smaller q h / q p . the smallness of qh rnay rrase our advantage.

It is possible that some other setting of q,. or some other ratio of q h / q p does better thnn

setting g = O . O X 1. but this question tvill not be explored further in this thesis diie to

time constraints. The key concltision of t his section is that smaller ratios of ph/q, can

ff atten t h e rejection curve and rnay be more advantageous than simply setting qh = qp.

6.2.4 Fine Splitting of

.-\part from setting a lom ratio

Hyperparameter Updat es

O . ive conjecture that, with sufficiently good

heuristics. we should also be able to get the rejection rate to s tay flat as i increases. To

test this. we split the hyperparameter updates into 100 fine updates (many more than

the two before). The reason for doing this is that the more stable trajectory obtained by

the splitting may roughly mode1 what a good heuristic gives.

Figure 6.7: Effect on rejection rates of splitting the hyperpararneter iipdates into 100

iipilrites rvhile using the Dynamical B met hoci with = r lp = 0.200. Compared t the

riurrrial iirisplit iipilates. rejection rates are now much lower. The network used here has

S hiciden units.

The split hyperparameter iipdates were tried on a network with 15 hidden iinits. iising

the same training data as in the last chapter. and using 10 Markov chain starting states

taken also from the tests conducted in the previous chapter. lIomenta were randomly

initialized from a unit normal distribution. The 10 hlarkov chains were run at rl = 0.20

rvith various values of 1. Fig. 6.7 shows that the resulting rejection rates for riins with

split hyperparameter updates still increases with i . but its rate of increase is much gentler

now. increasing about one order of magnitude from about 1%. This is much better than

the rejection rate obtained from the normal unsplit updates, mhich we contrast in the

same figure. The unsplit updates do worse even for q less than half the size.

This suggests that, with sufficiently pood heuristics. trajectories might be able to go

far enough to truly reap the advantages of updating the hyperparameters dynamically.

CHAPTER 6. DISCUSSION

6.2.5 Why the Stepsize Heuristics are Bad

A possible explanation for why the hyperparameter stepsize heuristics do not work well is

that we cannot use the current values of the h-yperparameters to compute their stepsizes.

-4s we are unable to get a n estimate of them from the weights due to their reparame-

terization. ive are forced to use their prior means, which are not necessarily very good

estirnates.

In retrospect. this should have been obvious. The backpropagation of the second

derivative of the likelihoods multiplies together the hyperparameter variances of each

layer of weights that it propagates derivatives t hrough. For instance. the second derira-

tive of the likelihood with respect to the input to hidden weight hyperparameter A,, is

proportional to l / (~ l u ~ ,) . the product of t h e prior variances of the hidclen to oiitpiit

weights ancl the input to hidden weiglits. In an Y hidden unit riin. oiir settings were siich

t hat 1 YI,^^,,) = 0.2. k t . from Fig. 5.S. it is clear t hat. as the bIarkov chain ranges over

the posterior distribution. the product of these two variances can actiially range lip to

el2 z 1.6 x 10' or more. Clearly O.:! as an estimate of 1.6 x 10' is bad. This c m lead to

stepsizes which are (O . ' Z / ~ - ' ') - " . ~ z 1000 times larger than rvhat they would have been

if we had used the actiial d u e s of the hyperparameters.

The Dynamical A method does not siiffer from this multiplicative effect of wrong

hyperparameter estimates as its neural network function does not depencl on the hyper-

parameters. so there is no need to do backpropagation of second derivatives. Indeed. the

second derivative of the potential energy in Eqn. 4.9 is proportional to just the precision

of the hyperparameter. so if our estirnate of the hyperparameter is k times too small. the

stepsize is only going to go up by a factor of Jjc. Furthemore. the parameters contain

information about the value of the hyperparameter: the Dynamical A method estimates

a hyperparameter as its posterior mean given its weights.

6.2.6 Ot her Implications of the Current Heuristics

The fact that the current heuristics uses the prior means of the hyperparameters as esti-

mates of the hyperparameters thernselves during stepsize calculations has the implication

t hat. rvhen the Dynamical B met hod is used. the prior means must be carefully selected

to be close to values where the hyperparameters have high posterior probability. This

allorvs the stepsizes to be accurate when moving about in areas of high posterior proba-

bility. If the prior rneans are badiy set. exploration of the posterior is expected to become

very inefficient.

.-\ hybriti &Ionte Car10 niethod that çompiites bad stepsizes in sorne region of state

space rnay iisually be unable to enter that region because it rejects once a trajectory

eriters it. Furt herrnore. once having entered that region. it is obliged to stay in there a

long time ittirough its high rejection rate in that region) in order to cornpensate for its

inabiiity to enter that region in the first piace. This leads to high autocorrelations.

LI> might ask if t h e B method actually siiffers from this problem. If it does. it

is small. as an effect like this was not noticed: the marginal posterior distributions of

the hyperparameters obtained by the B method matches t hose from t tie old (Fig. 5.8).

However. this is no guarantee that it will work similarly well for other problems.

6.3 Conclusion

In this thesis. we have introduced a new way of learning the hyperparameters in a neural

network mode1 using Hamiltonian dynamics. We have presented two versions of the new

rnethod: the Dynamical -4 method. and the Dynamical B method. which is the former

with weights reparameterized to enhance movement between large and srnail values of

the hpperparameters. We have also developed performance evaluation met hodologies

that measure the rate of exploration of the posterior while accounting for the different

compute times required for the different methods. The observation that some parts of

state space might have a large effect on the results then led us to a stratified version

of the performance measures. .-ifter estensive testing. we have found that these same

regions of state space can cause Dynamical .\ to becorne very inefficient for the reasons

that led us to formulate Dynamical B. However. we have also shown that Dynamical B

does not show a measurable performance improvement over the old method.

The Dynamical A method as it currently stands siiffers from expectetl inefficiencies.

but it was hopeci that Dynamical B would overcome them and yield better performance.

Instead. there is currently no reason to recommend either new rnethocl over the old one.

CVe strongly believe that the Dynamical B rnethod's Achilles' heel is the fact that

its rejection rate increases wit h trajectory lengt h. If longer trajectories can be achieved

while keeping rejection rates low. it is espected that the Dynamical B method can becorne

significantly faster. To achieve this. future work rnight focus on an improved parameteri-

zat ion OF the weights and /or more acciirate hyperparameter stepsize heiirist ics. A lso. the

stepsize heuristics can potentially be simplifieci to aIlow more leapfrog steps to be tnken.

C:ltimately. our efforts are being hampered by the fact that the volume of the stnte

space iincler the posterior having large hyperparameter iariance is huge and low density.

while the region having small hyperparameter variance is small and very high density.

and hybrid Monte Carlo does not move well between these two types of regions. Doing

nothing about this leads to the Dynamical -4 rnethod. which we have shown can have

severe inefficiencies in certain regions. On the other hand. our effort to reparameterize

the weights to tackle this problern leads to the hyperpararneters being confounded with

the weights in the computation of the netmork output. and that is the cause of our

inability to have long trajectories while keeping rejection rates doivn. It may be that we

are pushing against the inherent limitations of the hybrid Monte Carlo met hod here. but

we nevertheless hope that further ivork will overcome the present difficulties.

Appendix A

Preservation of Phase Space Volume

Under Hamiltonian Dynamics

Here. ive show the well-known resiilt t hat Hamiltoriian clynarnics keeps the Hamiltonian

H as well as phase space volume constant.

Hamiltoriian dynamics is characterized by:

where q and p are the state and the rnomentum variables respectively.

The following shows that Hamiltonian dynamics keeps II constant:

To show that Harniltonian dynamics conserves phase space volume. consider the phase

space fiow (q . p) , which defines a vector field in the phase space (q, p). The fact that phase

space volume is conserved is due to the fact that the divergence of this vector field is O:

Appendix B

Proof of Thorem 2: Deterministic

Proposals for Metropolis Algorit hm

Here. we prove Theorern 7 From Section 2.3.1.

First. WC need the following definit ion:

Definition ï (Detailed Balance) LCé say thnt the transition prohabililies T (r . -4) dt-

firtcd /or al1 points r and al1 sets d satisfies detailed balance with respect to the density

~ (x) 1f. gicerr any truo sets .4 and B:

In words. the detailed balance condition says that. in equilibrium. the probability of

starting in -4 and moving to B in one transition is exactiy equal to the probability of

starting in B and rnoving to -4.

Recall that to say that a Markov update leaves a distribution ~ (x) invariant is to say

tliat the total probability mass ;r(;l) in some arbitrary set .4 is unchanged by the Markov

transition. That is:

APPENDIX B. PROOF OF THOREM 2: DETERMINISTIC PROPOSALS FOR -~/IETROPOLIS -ALGORITH

Figure B.1: -4 maps to -4' under M. and B maps to B' iinder .Ci.

rvhere R is the state space.

It is easy to see that if a hlarkov transition satisfies detailecf balance wit h respect to

~ (r) . then it leaves ~ (r) invariant: we need only set B to R to see this. Thus. we orily

need to prove that the hletropolis algorit hm with deterministic proposais satisfying the

two conditions in Theorem 2 yields Markov updates that satisfy cletaileci balance rvith

respect to the desired distribution n(x). That is Our aim in the below discttssion.

Consider the deterministic mapping .bf : R -t R. Let .4 Ç R and B Ç R. Under .CI.

the image of .4 rnight in general have some part otitside B, and the image of B might

have some part outside -4. as shown in Fig. B.1.

Assiime that the mapping .LI(-) is the inverse of itself so that .CI(M(x)) = x. me must

have that the M(.i n BI) = B n .-Y. Suppose not. Then. there is a point x E -4 n B'

that maps into B n A'. which we show as "M(r) " in Fig. B.2. (M(z) m u t be in -4' as

r E -4.) But the fact that x is in B' means that it is the image under .\.I(-) of some point

y in B. so that M (y) = x. If indeed x maps on to the point " M (x) " , then :I.l(M(y)) + y.

for y is in B but " M (x) " is not. Since this violates the assumption that LW(.) is its own

-APPENDIX B. PROOF OF THOREM 2: DETERMINISTIC PROPOSALS FOR ~ IETROPOLIS -ALGORITH

Figure B.?: i E -4 n B' must map onto B n Ar.

inverse. Ive concliide that .CI(.-\ ri B r) = B n A'. Note that JI(B . - Ir) = -4 n Br also due

to the self-inverting assiimption on .II(-).

W i t h t his fact in tiantl. rve are ready to show how to achieve detailed balance for the

Lletropolis algorithm. We assume self-inverting deterministic proposals. Since the total

probability mass Howing from -4 to B takes place in the fiow from .4n Br. we can rewrite

t h e left hand side of Eqn. B. 1:

where we have used the Metropolis transition probability T (x , B) = min[l. T (~ ~ ~ (x)) / T (x)] .

APPENDIX B. PROOF OF THOREM 2: DETERXIINISTIC PROPOSALS FOR ~ ~ E T R O P O L I S -ALGORITH

We can then rewrite the right hand side of Eqn. B.1:

Cornparing t h e expressions resulting from manipitlating the left a n d t h e right hand

sides of the detailrd balance condition. we see that they are equal i f the .Jacobiari

i l = 1. Thiis. detailed balance with respect to T ~ X) is achieved if t h e lIetropolis

nlgorit hm is iised with cieterministic proposals t hat are reversible (self-in*& ing) and ttiat

have .Jacobian 1, and tire are done.

Appendix C

Preservation of Phase Space Volume

Under Leapfrog Updates

In this Appenclis. we show that leapfrog updates preserve phase space voliinir.

Consicler the simultaneous iipdate of 2 variables siich that eacti tiprlate does not

depend on the variable it updates. but depends on the value of the ot tier variable:

[t can easily be shown tha t the Jacobian of such an t~pdate is 1 - Y (~) g ' (x) . so the

iiptlate does not preserve phase space volume in general. On the other hand. consider

two sequential tipdates where each update also depends on the variable updated by the

other only. but the updates are performed one after another:

The Jacobian of such an update can be shown to be identically equal to 1. and so

it preserves phase space volume. This is simply a demonstration of the fact that each

sequential update of a variable that does not depend on itself amounts to a shear in the

direction of t hat variable. Thus. each sequential update preserves phase space volume.

and indeed. a chain of such updates does as well.

The leapfrog updates are:

€ € i3E
p i (t + ,) = p i (t) - -- (q(t)) for each i = L..d - 2 asi

p i (t + €12)
q i (t + e) = q i (t) + for each i = l..d

mi
€ d E

p i ([+ 6) = p i (t + .) - _ - (q (t + 6)) for each i = L..d - 2 dgi

The update for p appears to be simultaneoiis in that pi is updated without reference

to an- newly-iipdated components of p. However, in the leapfrog update. the iipclate of

each pi cloes not actually depend on any other component of p. so t h e update of each pi

can be viewetl as being sequential and conserving phase space volume. The same applies

Bibliography

C. SI. Bishop. .\:eurd .L'etmorks jor Pattern Recognition. Oxford University Press. 1'395.

CV. L. Bunt ine and :\. S. LVeigend. Bayesian back-propagat ion. Cornp[er Spdenrs. .i:(i03-

6-!:3. 1991.

Ci. Cybenko. Approximation by suprrposi tions of a sigmoid funct ion. .\,luthe rnirtirs oJ

firitroi. Sigriafs and Sgsterns. 2::103-3 14. 1 9%.

L. Devroye. .V«ri-C-riiform Random I'ariate Generation. Springer-Verlag. LSSG.

S. Diiane. A . D. Kennedy. B. J . Pendleton. and D. Roweth. Hybrid monte carlo. Physiw

Letters B. LY5(2):216-22. September 1987.

B. Efron and R. Tibshirani. .-ln introduction to the Bootstrap. Chapman and Hall. 1993.

W . Frller. .-ln [ntroduction to Probability Theory and lis A pplicatiorcs. John CViley and

Sons. Inc.. 1'366.

D. J . C . 1IacKa. Bayesian .Ifethods for -4daptive .Ilodels. PhD thesis. California Institute

of Technology. 1991.

D. J . C. MacKay. Cornparison of approximate methods for handling hyperparameters.

3eural Computation. 11:1033-1068. 1999.

P. B. Slackenzie. An improved hybrid monte car10 method. Physics Letters B. 226:369-

371. .-\ugust 1989.

N. ,l[etropolis, A. W. Rosenbluth. M. N. Rosenbluth. A. H. Teller. and E. Teller. Equa-

tion of s ta te calculations by fast computing machines. Journal O/ Chernicd Physics.

21: 1087-109'2. 1953.

P. Müller and D. R. h i a . Issues in bayesian analysis of neural network models. .Yeuraf

Cornputut ion. 10:749-770. 1998.

R. 'vI. 'leal. Probabilistic inference using markov chain monte carlo methods. Technical

Report CRG-TR-93-1. Ijniversity of Toronto. September 1993.

R. .LI. Neal. Bayesian L e a n i n g for .Veural .Vetioorks. Sppringer-Verlag. 19%.

J. S. Rosenthal. A review of asymptotic convergence olgeneral state space markov chains.

' thrch 1'399.

D. E. Riimelhart. G. E. Hinton. and R. J . Williams. Learning representations b ~ . back-

propagat ing errors. .Vat rr re. 3'23 :.î33-.%6. 1956.

