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ABSTRACT

There have been many developments in the area of data compression

during the past decade, with particulac emphasis on video data because of the rapid
o

increose in the amount of image transmission requirements. »

o

¢

Different schemes of redundancy reduction techniques are considered,
especially the run-length encoding ond differential pt;lse-code- modulation (DPCM).

They are found to be more sensitive to channel errors than the conventional PCM.

/

However, for channels with a low probability of bit error, bandwidth compression
is achieved while the*noise performance of these systems can be made as good as that
of PCM. The transform method of image coding has the attractive feature that it is

relatively immune to channel errors because of its inherent averaging property.

- Reduction of the number of quantization levels with a decrease in * *
-
the bit-rate will introduce false contours. An interpolation scheme has been suggested

L]

to combat this effect. The error analysis on the system shows that the method is

" acceptable in the mean square error sense for particular algorithms. Suggestions A
.9

4+ for future work are included. .

14
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@ ( / | CHAPTER | n -

INTRODUCTION

ll ~ Introduction,to Data Compression Systems

1

Communication of information consists basically of three operations: .

k3

the preprocessing of the signal, the transmission over the channel, and the reconstruction

of the signal at the destination. The past several years have seen notable advances in
y :

Tthe processing of signals before transmission, especially with the evolution of the
' digital computer and the reduction in price of integrated circuits. The processing

: P
might include, for example, any combination of modulotion,. data reduction, and

insertion of redundancy t6 combat the channel noise.

Modem communication techniques have made possible the transmission
of analog signals in digital form. Transmission in Higital form is attractive for several
reasons:

(1) A saving in transmission power over conventional analog FM for

high accuracy systems; . ' ‘\

Bl

(2) the ability to regenerate the digital signal accurately; -

- (3) the ease of handling ON-OFF or YES-NO signals; .

e

(4)  the ease of multiplexing digital signals;

2 (5) the possibility of being applied to some futyre transmission media

such as laser pipes.

Fid
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fransmission of voice, video and telemetry data. Recently, there is a tremendous

Pulse-code-modulation (PCM) is one way to achievé digital

increase in the amount of video data to be transmitted. This increase results from 7

the recent interest in digital picture transmission in the following areas:,

M

td]

- (3)

@

)

()

Deep space probes with bandwidth restrictions due to power

limitations, hence tequiring digital processing; -

i 7 .

meteorological satellites requiring qutomatic data processing

before and after transmission; . .

’
v
©

communication satellites for commercial television and picture-

phones;
the convenience of teleconferencing;

military applications where security méasures may require the

encryption of the information; -

applications in which digital memories become practical for

space use.

-
” j

Normally, a large amount of data are required for reasonably

v y .
acvurate digital vepresentation of the video signal, resulting in exceptionally high

bit-rate or bandwidth. It becomes apparent that new meahs of data processing must

*  be found to increase the information transmission capabilities of communicati®n

facilities.

.
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-To achieve a high communication efficiency, it is necessary to
maintain the channel capacity close to the information rate of the signal at all times

{1 1. This has led to the définition of the channel utilization index which is the

ratio of the information rate of a source through a channel to the channel capacity.
Many fermir;ologies have aris;n: data compréssion,gc!afq compaction, bandwidth
compression, redundancy removal, redundancy reduction, adaptive telemetry and
adaptive sampling. The foliov;ing is an cmemp‘f to clarify the meaning of these

terms.

7
s

- : Data compaction has a broad meaning and embodies both signal
€onditioning processes (analyzers, frequency discriminators, etc.) and data
compression. Data compression is the process of matching the channel capacity of
the system'fo the time-varying information rate of the signcl.’ The desired end
result is bandwidth compression. Adaptive sampling and redundancy reduction

are subsefs of data compression, where redundancy is defined as that fraction ofta
message or datum which is unnecessary in the sense that if it were omitted the
message ‘would still be essentially complete, or could be completed. Redundancy
removal implies the complete removal of all redundangy, an objective which cannot

be achieved. Adaptive telemetry is the mechanization of adaptive process, .

odaptive sampling or redundoncy reduction.
r

The sampling theorem states that a bandlimited time function must

-

. be sampled at least at twice the highest frequenéy contained in that signal in order

. to extract all’the information contained in the waveform., Most PCM systems are buift




A ' ’ !
according to this rule. However, in the case of TV data and most telemetry data,
there are some periods of low activity, and redtfndoncy occurs duting these periods
when the signal is grossly oversarr;pled. A!ion example, consider the fact that a
3 ke voice signal is normally converted“to a 64 kc PCM bit stream (8 bit samples or
an 8 ke rate) for digital transmission. This has aroused the interest of numerous

people who have developed schemes k;\mhieve more efficient communication.

Such systems are called data compression systems.

-

As has been defined before, ddta compression consists of processing
the data prior to transmission so that the received waveform can be reconstructed
with @ minimum number of samples to any desired ac;curacy. A buffer is usually
required for temporary storage of the compgessed data, so that the transmission can

be synchronized and be transmitted at a rate lower than the Nyquist rate. A

simplified block diagram of a data compression system is shown in Fig. 1.1, [2 ],

The cost of data transmission grows with the bit rate of the channel,
the distance between stations and the complexity of the system. Inaorporating data
_ .
compression will reduce the bit rate but increase the complexity of the system. Hence,

s,

the communicaﬁ;m engineers are confronted with the traaeoff problem in their design

of data c;rppression systems. |f the cost for installing data compression is acceptable, '
:iafa compression c.g:n be used in many applications to reduce the cost of data transmission,
storage and processing and at the same time improve the data quality. Much work has

been done and magnificent results were claimed. In fact, the true achievements are b

less than what is claimed, but they still are substantial. Whether any of these results

&
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gre practical is an economic question which has to be rerevaluated continually in
. . - -

»

the light of the technological evolution.

. -

, To evaluate compression algorithms, some figures of merit must be

used to serve as a basis of comparison. All things being equal, a "good" system

should exhibit a high compression ratio. However, the compression ratio itself

o
is quite meaningless unless it is relative to a well-defined basic system.
3

%

J

. , The type of compression technique used depends on (1) the user's
requirements; (2) the channel noise; (3) 'modulation technique; (4) implementation

restrictions; (5) the object material. Two fspects of datd compression are often

neglected. The first one is the intejface between the data compressor and the

remaining system [ 3 ]. The second one is the effect of channel noise on the

system performance. Errors in compressed data are less tolerable than errors in
- A A f;‘u
uncompresset! data because all the samples sent over a compressed system are

- essential and unprotected by redundancy. Two obvious solutions to combat channel

L]

errors are increase of signal power and adding controlled redundancy. However,

.~ —

both schemes will tend to reduce specific compression ratios .

1

~

1.2, Compression Ratios

%

Three co;\pressiOn ratios will be defined, using the fixed rate PCM

1

system as o reference.

o
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) Sample Compression Ratio

It is defined by
X o S e -
A total number of samples generated S 0.2.1)
S number of compressed samples transmitted SNR o

ke

\ | I ]

This formula is useful fo determine the amount of redundancy - oy
inherent in the mgs;age for a specific compre:sion algorithm. But, it does not
indicate the efficiency of the overall system which depends also on the timing

information, synchronization, the coding procedure and the error correcting code.

T\h‘iﬁ%ds to the definition of a bit compression ratio. ’ 0 -}

2 Bit Compression Ratio

C = number of bits to be sent in uncompressed data (1.2.2)
: ‘B number of bits to be sent in compressed data o

" ¢

The number 6F-bits in a compressed system consists of bits required
’ ¢ . 05

o

for level information, timing information, synchronization and also error-comrecting

codes. Hence CB c'c;n be expréssed as

°
~ N . R
< - \
.

STN + K'

C, = —
B S (N+WIEK

©
5 L]

Whel'c ¢ * 4 ’ e o h e
= number of bits to represent one sample level;

N:

W °=  pumber of bits to represent the timing information;

& s . . —: - . ;
¢

-



KI = bits for sync-word in uncompressed system;
K2 = bits for sync-word/in compressed systems;
P = bitsfor e%rqy}cowecﬁng code;
or
- K
. ( ’ 1+ 1 -
Sy N5 &
e =1
» B SNR ] +‘ﬂ+ K2'H’
N ° NS

The sync-words and error-correcting codewords are usually short compared with the

total number of bits in a line, therefore,

dl ~
c - Nk S
B w w -
1+ ¥ 1+ W

\
q

It can be seen that CS , the sample compression ratio, is an ‘upper bound for the

compression. ratio of ‘any system.

' ®
It is important to note that in defining the above ratios, the two

systems should exhibit the same signal-to-noise power ratios for a meaningful

-

comparison, since higher bit compression ratios are obtained by relaxing the

fidelity requirement for the compressed data.
X -

> ‘= As an example, let us consider the bit compression ratio for the

e

-

" run~length encoding scheme. Run-length enctding consists of transmitting the

levels of all non-redundant samples together with words expressing the number of

redyndant samples fol Io;:ing eacl; non-redundant samp‘le.' A run is defined as a

rd

(1.2.9)

(1.2.5

/.

2 o ey
Lol el
. gl‘g Y. mw‘%&



sequence of consecutive redundant samples and the run length is the number of
redundant samples ina given run. Assume that T is the maximum run length, then
u

the number of bits required to represent thé timing information is

<y

W=log, Te ’ ‘ . (.2.6
Hence, r o 7 ) ) | N
CS .
. CB =”——13_9—T_— 9 - (1.2.7)
1+ —2 -
N

3
Because it is easy to implement, run-length encoding is used very often, especially
v . B

in digital TV signal engoding. : .

3. Energy Compression Ratio

.

Since bit erro;'s are inevitable in transmission over noisy channels, it
is so’m'eﬁmes necessary to increase the transmitter power to remedy the situation. But,
koif compression ratio does not take into account this extra ;nérgy spent. This
leads to a new ysis of comparison, defined by the system energy compression ratio,
the ratio of the aveage energy required to send a sample in an uncompressed
caommunication system to that required fi\ a compressed system for the same data -
quality (4],[5] & This ratio isa fu;cfion of the pmbol;ility of bit error in the
compressed system. The fidelity criterion for data qﬁalify can be chosen as the average
of any cost furietion suited to the particular application. Usually the mean

2 »
square error or probability of bit error is chosen. ) B
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The energy compression ratio may be expressed as ’
1Eu | ‘
CE = CB—E-C— ' (1.2.9)
4 "
where ,
Eu = energy per bit for the uncompressed,system;
Ec = energy per bit for the compressed system,

both systems having._the same data quality, 1t tums out that this ratio isw\rler'y

difficult to co?te.

1.3 Classification of Data Compression Systems [ 6 ] - 13/]

There are basically two types of data compression: Entropy
Reducéﬁg (ER) ond ln(formaﬁon‘ Preselfving (IP) transformations. These two main
tmnsforn;oﬁons are described briefly in the following and more detailed description
of some specific applications to picture coding will be given in Chapter 11, A

schematic classificaﬁo> of data compression models by category of their effects on

the signal is given in Fig. 1.3.1. .

Q) Entropy Reducing Transformations ,

Entropy is defined as the average value of the self-information

and is given by k
H(xj= 5 P (a )l LN - (1.3.1)
kél x ‘97 989 F(xi'uks
J « ==Y P(x) log, P(x) (1.3.2)
x




Data
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Parameter Adaptive’ ﬁedundoncy Encoding
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Filterin Controlled M—— ——]
9 Self-Adanti Differential bit plane
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FIGURE 1.3.1  CLASSIFICATION OF DATA COMPRESSION MODELS, [ 6]
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An entropy-reducing (ER) data compression operation is a'n«
irreversible operation on the data source which results in an "acceptable” re-
duction in data quality. Generally, a special ER device must be designed for each
application ;md no interchange is possible. An ER compressor usua”y’operafes

‘

directly on the data soprce, before sampling and quantization. » Typical examples

of ER devices are filters and frequency discriminators.

It is relevant at this point to show that ER transformations 5
always reduce the entropy c;f the source. As;ume fhaffh? data source at the input
of the ER device has a basic limitation in measurement precision due to source
noise and measurement hardware design, then the input to the ER comi:re-ssor may
be expressed as a discrete source of K levels. If ‘{Xi } is the input and {Yi } the

output of the device, then
H(X,Y)=H(X)+H(Y|X)=H(Y)+H(X|€) (1.3.3)
Since Yi = I’(Xi ), we have

H(Y[X) =0 _ (1.3.4)

Also, ER transformation is irreversible, thus

H(X|Y) >0 (1.3.5)
Hence,
- . ‘ ﬂ . TN
N~ H(Y)=H(X)-H(X|Y)< H(X) (1.3.6) -
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which proves that ER compression results in a reduction in entropy. However, the

probability distributions are appreciably affected in some cases.

it is well know that if the events are equally probable, i.e.,

1

P(X)= % R (1.3.7)
then
! .
H = Hmax = log2 K = Llog2N . (1.3.8)
where
L. = dimensionality of the signal space,

| ‘N number of quantiZation levels used for each co-ordinate.
We, therefore, conclude that the maximum entropy of a source is proportional to
the dimensionality of the signal space and only logarithmically proportional to the

number of quantum Ia%e\r‘ co-ordinate. A narrow band low=-pass filter reduces the

dimensionality of the signalspace and hence is an ER device.

The compression ratio defined in terms of entropies is given by

‘ : Hmi L log, N "
. Cr= —T W 2 1 (1.3.9)
=) P(X)logyP (X)) L :

. i=]
o |

This ratio can be regarded as the ideal compression ratio. The

_relative redundancy is given by

o ' Hinax = 1 l o
. \ R= T_..: 1 - c (1'.3.100)
max R
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or

SR »
Cp = TR | (1.3.11)

The implementation of an ER system will be described below.

Non-Adaptive Encoder for Statistical Phenomena:

Let [Pi } represent the probability distribution of an observed
sequence, The resulting sequence must be transmitted only when the expected
statistical low is violated. Let S bé the number of observations and { )‘i } be

the empirical probabilities of the quantum states. The following equations result:

¢

X ki .
AH(S) =S Z N log = (1.3.12)
B ' . )
K
2 P =1 . (1.2.13)
- =)
> <5
K
v 2 A = )

; : (1.3.14)

The statistical law is that

32

AH(S) =< AH_ -~ expected law is confirmed

AH(S)> AHo-o' pegted law is violated

A block diagram realization of this system is given in Fig. 1.3.2.
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3 =
o Gate To Buffer
‘ .Memory
Data ‘
Stream | Distribution Entropy Calculate Decisio
| ] Analyzer {)\i} Compute 1 AH AHsAH
' [
Z )\i log Pi
Previ i
revious
‘Statistics {log Pi}
Accumulator
] Memory
(p.)
N /
FIGURE 1.3.2 STATISTICAL DATA SOMPRESSOR.
f. 7
®
(2) Information - Preserving (IP) Transformations (Exact Coding) .

An Information - Preserving data compression operation reduces the
number of samples that need to be transmitted in order to reconstruct the original wave-

form. Hence, the transformation is reversible. v
N

To realize the transformation, the source statistics must be known.

Consider a sampled, quantized dota stream {x },
{x}= {x (t )y (t +Aat),...ox (t +iat)...]  (1.3.15 :
where x is quontized. Another way of express%ng this sequence is,

{x}= {xo, ti X1 Wi Xor toieeei Xe ti;...} (1.3.16)



When these samples are fed into an' IP device, some of these do not appear at the
output. The missing data can later be re-inserted at the receiver according to a
reconstruction algorithm. Both the timing information and the amplitude information

must be sent in an IP data compressor.

Fig. 1.3.3 is a block diagram representation of operations on
message source at transmitter and receiver,

3

Message Entropy ] P " | Controlled
Source Reduction . ! Redundancy Insertion
M A Transformation Transformation Channel Coding
("
f
R o Entropy Inverse Channel
eceplor Transformation Transformation [ Decoder -

FIGURE 1.3.3 OPERATIONS ON MESSAGE SOURCE AT TRANSMITTER
AND RECEIVER.

In may cases, predictive mapping which is an IP transformation to

reduce redundancy is cascaded with another IP transformation called run-length
% ¢

. coding to achieve compression [ 14 ]. The outpyt of the run-length coder is a
compressed vérsion of the input message. This technique can be easily implemented

and is of practical interest, most oftenapplied to TV data. A detailed description

3
-

——’J———-—.—.—-—L——
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is given in Chapter Il

It is important to note that IP compressors can be cascaded
without loss of information. Since compressors require memory, it is possible™fo
* save memory by psing simple compression techniques and then cascading the simple
operations with more complex ones which require less memory. An-example of this
technique is sh0w;\ in Fig. 1.3.4 , where o simple coscaded predictor removes ~

sample~to sample correlations by previous value prediction and then uses previous

line prediction on the remainder for TV.

s

o
() | ,
' Mod-2 Mod-2 Run-Length | i
Adder ) Adder Coder °
h r '

~- -4
K-Bit, | (LK)-Bit .
Delay o Delay

FIGURE 1.3.4. CASCADED PREVIOUS SEQUENCE AND PREVIOUS
’ _ LINE COMPRESSOR FOR TV.

Typical examples of P transformations are polynomial predicfors, interpolators,

differential PCM, transform coding, run-length encoders and bit-plane encoders [15 ].

In many literature, information ~ preserving transformation is referenced

as redundancy removing data compression. This leads to the following view point. For

-

M quantization lévels, the redundancy is

L4




.
. 8
R=1- —1 ‘ i '
1092M ﬂ ) (1.3.17)
Thus, before compression
Hy ’
Rx =1 - TSFQ-M (1.3.18)

'\ H Yy .
RY = ] - 'O-EWQ (1 . 3.. 19)
But, RY < RX since it is a redundancy reduction protedure.

,

Hy = Hy | (1.3.20)

Therefore,

This increase in entropy is due to the reduction of dependence between successive

\
samples when prediction is successful. The ideal compression ratio is again given by

CR = ‘—-_-—'-i)-(— \ ' (].3.2])

Fig. 1.3,5 is a block diagram of redundancy type data compressor, and the oper;:;ion
is as follows: The reference memory stores all data which will serve to perform the
compression; they are previcus sample.s, tolerance limits, slope limits, selection of
a porfi;:ular algorithm, e;fc. The comparator determines whether each new sample is

redundant or non-redundant, and the reference memory is updated accordingly. The

L\
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4
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FIGURE 1.3.5

non-redundant samples are sent to the buffer memory which permits synchronous

) Timing
v Control
< / .
Buffer
7 ] Memory

19

£
SIMPLIFIED BLOCK DIAGRAM OF REDUNDANCY” -

REDUCTION TYPE COMPRESSOR.

transmission. Buffer design is always a difficult task und overflow is the most

serious problem because non-redundant samples will be lost, [16], [ 17].. The

Lo

"timing and control" provides the necessary

operations which the data compression system must perform. A more elaborate

)signals to control the sequence of

’

block diagramofa telemetry data compressor is shown in Figure 1.3.6.

\

( i .
.
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-DATA COMPRESSOR. ’
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An example of adaptive coding will be consideredonext. For TV signals, the
e

probgbility of obtaining’long consecutive runs of the same sequence is high. The

?

output of the mod -2 adder will contain long strings of zeros. Fig. 1.3.7 /
2
represents a predictive transformation which in€Tudes a decision device which gives

a "one" ¥ the prediction is correct and a "zero¥ otherwise. This is the Shannon-

3

Fano compressor

3 © J
. i Mod-2 ‘ .| Decision «
Input Data’l Adder ' Unit, : s
- L] Compressed
' Message
L3 y]
Prediction
Y2 ¢ Function
. i Control "One" and "Zero"
\ Y w Control
. prediction O
function store
| /\\ FIGURE 1.3.7. SHANNON-FANO COMPRESSOR. .
H i} - " - .
By combining the non-adaptive encoder described before in Fig. 1.3.2

with this Shannon - Fano compressor, the optimum adaptive compressor is obtained.

It is represented in Fig. 1.3.8. A control line has been added to adjust the source
. &
e B o
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entropy in accogdance with the channel status, hence avoiding excessive degradation

-

of the data during channel overload.

For a prediction process in which we wish to predict the K th

sample SK , having observed the m preceding samples, the best nonlinear estimate

-

for SK is

Wy

=E(SK|SK],SK'2,...,SK ) (1.3.22)
m

K]'SK ceeer S

i Pr(S =S ) (1.3.23)

t
i ~-13

i
where i denote/ée i th quantum level [18 ].

For the system described above, it can be shown [ 25 ] that the
» &

upper bound of the bit compression ratio is

Iog2 K
C, < ] z S (1.3.24)
p log, (2)+(1-p) log, N

¥

& -

where p is the probability of making an accurate prediction.

)

In this chapter, the bosic philosophy of data compression systems has

been discussed. Their importance, the economic factors which govern their design and

the criteria for comparing their performance have been presented. An attempt has been
made to classify them into categories. In the next chapter, the description of some of

their applications to video signa! compression will be given. Chapter HI will discuss

)

-
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CHAPTER 1I

PICTURE CODING

Nowadays most video information is transmitted over digital channels.
Basically th; method consists of line scanning the two-;limensional picture transforming
it into 1 - dimensiona! data which is sampled uniformly and quantized to one of the
_ 2k levels and is transmitted using the k bits [ 19 1. The function of an image
transmission system is to convey to the observer a "best" reproduction of the original
picture. But, ;vhq't gives the "best" represénfaﬁon vG\Les according to the application.
A 6 - 8 bits per sample PCM is used mostly as a standard for comparison. It has.
been shown that ;nost pictorial daf'a indicated an entropy of two to three bits per
sample [20 ] - [22 ]. Hence, o reduction in the number of bits representing
a picture Q;s possible by using some coding schemes. The reason that this reduction is
possible is twofold. Firstly, there is statistical redundancy in im;:ges. High

correlation exists between spatially close samples. The lower-bound redundancy is

approximately given by

Y R‘!—; |092 (1-A) bits{mmple

where A is the correlation between neighbouring pels. Secondly, there is
psychovisual redundancy in images. By intentionally altering the original image
in such a way soag not to cause a loss in its subjective quality, a saving is possible.

Fig. 2.1 gives a general block diagram representation of a transmission system.

v i
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h

Source Encoder Channel Decoder Sink

FIGURE 2.1. A GENERAL BLOCK DIAGRAM FOR A TRANSMISSION

SYSTEM.
/" .

In our case, the input is an image and the sink is a human observer.
The gia;\als ;re enc'oded to suit the channelcand the decoder transforms the channel
output into an image suitable for the human &b erv:r. A more detailed layout ofa
practical .r;ystem is given in Fig. 2.2. The filters, fh'e' sampler, the quantizer, and
the psychovisual and statistical encoders are designed according to the source
properties: hence called source encoding. | The channel coding inclodes the oper'a'tion
of the error-detection and correction coding and the modem which are designed to
suil: the chcmnelL propertfes. Due to the interaction between thé blocks, optimization
of the overall system is almost impossible. Hence, "good" systems are usually designed
instead,of optimal ones, based on particular op;:licafions and individuui‘i\udgemenf.

The properties of the soutce, which is the random video process in this casé, will be
M * ’

presented in the following section.
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2.1 A Model for the Random Video Process ?

>

The statistical characteristics of the video signal have been measured
»
by many workers and the following results are based mostly on the work by Franks [ 23],
¢
Kretzmer [21 ], Estournet [ 24 ][ 25 ], Seyler and Budrikis [ 26 ] and Deriugin

(27 1.

{ i
Any picture can be modelled by a luminance function of three

variables | (x,y,t ) wher.e x and y are the spatial co-ordinates and t the time
co-ordinate. It can be expressed in the form of a discrete representotiaon [ (mAx,
nAy, kT) which also indicates the sampling procgdure of TV signals. Angopﬁcal
scanner moving at constant velocity across the picture transforms a two-dimensional
process into a stationary function of time. Franks [ 23 ] prop;:>sed a mode! for the

-

luminance process which has the following characteristics:

-
m The probability of occurrences of a particular number of level

changes is not dependent on the position on the time axis;

“

(2) For o small interval, the p—robabilif‘y of-a jump in level is pro~
portional to the length of the interval, while probability of more

than one jump in a very short interval is zero;

3) The amplitudes are statistically independcnt with a rectangular
probability distribution.
Hence, it hos the characteristics of the random step function [ 28 ]

as shown in Fig.-2.1.1.

(19 -
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FIGURE 2.1.1 RANDOM VIDEO SIGNAL
]

L]

Pn (t++Ad =[(probability of nd fumps in t)
- (probability of no jump in A]
+[(probability of (n=1) jumps in 1)
- ( probability of 1 jump in At)]

Thus,*

Q

PL(t+AND=P (1)P (A)+P_ (1)P, (at)

From the chacacteristics in (2) the probability of a jump in ‘At is AAt .

o

: n n+l ——

Now the probability of n jumps in interval of t + At is given by

(2.1.1)
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1%
Pn(”A')=Pn(”(l"\A')+Pn-l (t) AAt . (2.1.3)
or B
Pn(f+At)-Pn(t) :
= AP (t)+AP () (2.1.4)
At
n .
r Hence,
- d K
- ) Fre Pn(1)=-)\Pn(i)+)\Pn_](f)as At-» 0 (2.1.5)
Since 'Pn (0) = 0,i.e., n = 1,2,... jumps in zero time is impossible,'
t
~ Po=x(t-7)
Pn(f)—)\J e . Pn_ll(r)drfornzl (2.1.6)
. °
andsi‘nce P°(0)=1—.Pn(0)=l,
-2t N ' :
Po(f)=e for t= 0 ’ (21.7)
Hence, by induction using (2.1.6) and (2.1.7),
(2.1.8)

t2 0

oW N
Pa(t) = —r e

Equation (2.1.8) shows that the { A } are Poisson distributed. '

If we assume that the random step function is g stationary, wide-

_sense Markov sequence, it can be shown that the correlation function is )
~

B(Ax, Ay, T)=Aexp [-a|Ax|-ﬁ‘Ay|~M‘]

w
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which has a separable property giving rise to three factors characterizing the
element-to-element, line-to-line and frame-to-frame correlation.. In (2.1.9),

A=§(0,0,0)and a, B, A are constants. Other authors [ 21 ] expressed

(2.1.9) @s

-

. ) '

B (ax, Ay)=exp [- (A% (Ay)2.] (2.1.10)
by considering only spatial correlation, and has been born out by measurements
with a = 0.0256 and B = 0.0289.

The average number of jumps occurred in an interval of t

can be derived. From previous discussions,

n

s po(1)= (M) M
n n' |
Thus,
®
Ey[n]‘—‘ Z n (Z""—f;ﬂem)‘t
n=o
- w m 1
NS Y
= Ate )3 (m:)
- m=o

= At (2.1.11)

Hence, X\ is a rate parameter equal to the probability of a jump at any instance.
&

~ With the above proposed model, Franks and others have reached ot

conclusions which are summarised below: - r
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M The amplitude distribution is uniformly distributed and upper

{

bounded;

(2) The three-dimensional TV process has a separable autocorrelation
function representing the element-to-element, line-to-line, and

frame-to-frame correlation in exponential form;
>

(3) The time of occurrences of jumps are Poisson distributed while the

distribution of level differences between runs is exponential;

(4) Probability of zero difference between two picture elements is large;

5) Successive jumps tend to be equal in magnitude if the first jump is

not too larde;

Y

(6) If the first jump is large, the next jump will more likely be small;

“«

(75 From power spectral density measurements, it has been shown [23 ]

[ 24 ] that large concentrations of power occur at multiples of frame

-

rate, line rote and sampling rate for RCM or DPCM coded pictures.
t

. &
The properties of the sink which is in our case the human visual

system will be presented in the next section.

2.2 Properties of the Human Visual ' System as an Image Evaluator

PR o
The results of video tronsmission schemes are well known to the

scientific and engineering community,*and even to the public through TV and the

availability of picture phones. However, the development of these schemes usually

2 -

1 4
.
- . AR SRR
A
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has not taken into account of the response of the human observers to the pictoriad

errors. The error criteria used to optimize the parameters of video transmission systems

" have been chosen primarily for their mathematical tractability. The most commonly,

used one is mean-square errﬂr. On the other hand, it has been demonstrated exper-
imentally that pictures of equal amounts of mean-square error are substantially different
in quality. In the following, a brief review of the properties of the human visual system

is given [30 ] - [38 ]. The conclusions here will have a large bearing on the design

of most pictorial data compression schemes.

(1) Resolution ¢ 4 -

v

(@) Spatial Resolution: The spatial frequency response of the human
visual system has been studied by De Palma and Lc;;;vr; 636 a They concluded that
the modulation transfer function of the visual system has a bell-shaped structure as
shown in Fig. 2.2.1. It has a maximum sensitivity at 20 lines/mm. and falls off at
both higher and lower frequencies. This is intuitively justified; for some objects
are too small to see and the eye cannot éistinguish easily a grc;dugl change in
brightness from one side of a scene to the other. The above is in contrary to the
previous theories thaf the sensiﬂvityofuncﬁon is @ monotonic decreasing response
with frequency. Hence, the eye c;cts more like a differentiator than an integrator

<

which is implied by the monotonic decreasing assumpfio<{ 39 ].

-
. ~ . \
(b) Temporal Resolution: There is a strong link between temporal and

spatial resolution which show similar responses. Both low frequency-and high frequency
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* varigtions are insensitive to the human eye. This fact is being exploited in psycho-¢

©

visual coding.

- 2 I3
i/ \ ,‘

’ o . x b

(2 Spatial Acisity

- 2
« ~

3

This“is a subjective effect of the sharpness present at the boundaries of

’ \ images. The rendition of line str;.:cture and boundary regions is of principal impottance in
: visual perception. 1t has been demonstrated 'fhct the width of tbe boundary transition
vari;as directly with subjective acuity, and that the subjective visual unsharpness

is inversely related to the maximum first derivative of the boundo-ry transition. The
Mach phenomenon has beQen postulated. The effect is best illustrated in the diagram

shown in Fig: 2.2.2, which shows that the-eye tends-to minimize the unsharpness

psychovisually. 2

&

A Actual Edge

B Visual Response To‘Edge
C Ideul Edge

et

4

v
) O -
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(3) Image Contrast

A lot of experiments have been conducted to test the contrast
sensitivity of the eye [34 ]. It is found that contrast sensitivity is interrelated
to resolution and, to a lesser extend, acuity. The observer is exposed to a uniform

field of brightness B0 with a sharp-edged region in the centre as shown in Fig. 2.2.3.

b -
7~

&?

FIGURE, 2.2.3  TEST PATTERN FOR CONTRAST SENSITIVITY

G 4

-~ * A

_The just noticeable difference A B is measured as a function of B, with the background

¢ v

brightness Bo as a parameter. It is_found that the eye has a dynamic range which is
quite similar to that of electronic imaging systems. It has also been found that the

" minimum contrast ratio necessary for perception is less for large areas than for small

- ones.,

e\
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(4)  Noise Visibility

) Since noise has a tremendous effect on the visual response, the

1
important facts known about it are summarised below. Additive Gaussian noise

interference is assumed.

+

a. The visual perception is dependent upon the noise contrast present
and also upon the spatial frequency response of the visual system

upon the scene;

b. Schreiber [ 39 1 concludes that noise is less vi}?ble in a complicated
picture;

c. Its presence reduces picture cantrast and edge sharpness;

d. Roberts [40 ] states that noise is more visible if it is correlated with

the picture than if it is random. Quantization noise results when the

image is quantized into too few levels, resulting in false contours. It
is more annoying than random noise of the same r.m.s. value;

« <
e. The eye is more sensitiye to noise with local structures (ih bursts) A

9

4

than scattered nbise. R

Although a large amount of work has been done, the way in which

the spectrum of the image affects the noise visibility is still unknown.

~



2.3 Image Rigitization and Coding

(1) Sampling:

3

Consider the sampling process shown in Fig. 2.3.1, [ 41)

2d- 2 d~-
N’Ut T 1 Prefilter >| Sampler » Post filter ——> Output

FIGURE 2.3.1  SAMPLING PROCESS

v
»

Suppose that each picture is sampled into an L x L square array of

. . s k . .
points, and each sample is quantized into 2 levels. In order to obtain a received

image withyresolution comparable to that of present-day commercial television pictures,
about 500 x 500 samples per frame are required, and 64 to 128 levels are used.
Therefore, L =500 and k =6o0or7 . A smaller L results in poorer resolution or
spurious poﬂe\r'ns genemally called moiré patterns. Small k will introduce false

contours. One bit per sample can be saved by logarithmic quantization which matches

4

more closely with the response of the human vision. A

Peterson and Middleton [42] have shown that, for a fixed number

of samples per frame, prefiltering and postfiltering with ideal low-pass filters gives
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minimum differen~e between the input and the output in the mean-square sense.
Huang and Tretiak [43] indicated that these same filters also yield reconstructed
pictures of the best subjective quality in the case of low resolution (L=64). For
" high resolution systems (L=256), high spatial frequency accentuation at the post-

filter will probably improve the output image.

(2 Quantization

The output from the sampler consists of samples wit.h a continuous
brightness range . These samples have. fo be digitized before they can be transmitted.
The quantizer assigns a discrete level to each sample and by doing so introduces the
so called'quantization noise. The quantizer can be uniform or non-uniform, but .
enough levels must be used to avoid obvious discontinyity. If a d‘isconﬁnuity is visible
in an area where the subject has no detail, such as a sky or a face area, o false contour
is produced. 6 bits are usually required for contour-free PCM transmission. D.N. =
Graham [44] has shown ﬂ:af by placing a prefilter and a postfilter around the
quantizer, quantization noise can be reduced and a contour-free picture can be
reproduced using only 3 bits per sample. The fact that quantization noise is more visible
than additive noise of the same r.m.s. value has been pointed oub by Roberts [ 40] who
proposefi a pseudo-random nojse modulation scheme. It essentially consists of adding
a noise of flat amplitude distribution, with peak-to-peak 'vclue equal to one quantum -

step, to the analog signal before quantization and an identical noise being subtracted

at the receiver. Good contour-free pictures are produced with 4 bits per sample. Since



< ,

Aihen, a fair amount of work has been devoted to the study of ordered dither [45] ~ ' ﬁ

[47]. The |dea of the dlfher design IS)fO concenfrate the error in the high frequency
parts of the picture to which the eye is less sensitive. It has been pointed out [ 45]
that dither can do more than hiding quantization effects behind a mask of noise or
change the pattern of quantization errors to reduce their visual annoyance; it is
capable of restoring some of the information which the coarse quantizer without dither
would remove. Tf;e effect of dither is best illustrated in Fig. 2.3.2. The dither
provides rapid switching between the quantizer levels on either side of the time

input signal, hence it has the effect of breaking up the contours.

£

" 0._.%‘_‘“ —
/\IL/ -
— . T t
_.l-i_a_n.’-a—c-.-_“._‘
- —_— Output
(a) Without Dither eere.. Observed
Luminance
(b) With Dither
FIGURE 2.3.2 EFFECT OF DITHER
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¢

in the following, we shall consider the effect of quantization noise

. . . k . .
. on a constant rate, time sampling PCM system with 2" levels in the quantizer.

Assume that the amplitude of the source is uniformly distributed
between 0 and 1 , and that each sample is quantized into q levels where
q= 2k . Thus, k is fhe length of the PCM word. The mean square quonﬁzﬁﬁon

error is given by

! -
_ 2 _ 2 '
cq2 = f f(x)x dx B (2.3.1)
] s
2q . (
i -

where f (x) is the distribution of the sompies. N

Asiumingﬂuniform distribution, i.e. f(x ) =qfor - -i]a— £x < 7‘q— , we have

‘ s [}
2q ' ‘
ec2| = i[ qx2dx .
. T
) J
. 1
0 /= xa ‘z t
= q ..3_ .|
N
s/
= __‘___2_ /
u 2.3.
o 3(2q) ‘ - ( 32)

But .
) q = 2°° . (2.3.3)




~ for both compressed and uncompressed systems.

£ .

42

Hence, . ’ g !
oo, '
<= L Lo (2.3.4)
; q 12.2 k , ' ' )

Note that 62 depends on k which is the number of bits per word.

Since data compression is usually applied after the quantizer, this quantity is common

3

) o

(3) Coding and Channel Noise:

For a noiseless channel, the received picture quality is independent
of the particular code word. For noisy channels, however, coding has a definite
effect on the amount of noise in the picture. It will be shown in Chapter 11l that

for k-bit gtraight binary code, the mean-square error due to channel noise is

1
Gz = -39' (l - —2‘:) (2.3.5)
2
where Pg is the probability of bit error in the channel.

in general, the effect of channel noise is different for different
transmission and coding systems. This will be studied in some detail in‘Chupfer .
In the following, we shall present some methods which lead to compression in picture

~—

transmission .- These include redundancy reduction (run-length encoding, differential

-

pulse~code modulation and psychovisual coding), contour coding and transform coding,
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2.4 Redundancy Reduction

As have been pointed out before, high redundancy is found in
video data. Long runs of the same brightness levels are present quite often. This
suggests the use of run-length encoding and the zero-order prediction.

* ¥

2.4.1  Zero-Order Predictor (ZOP) and Run-Length Encoding [ 7] [ 48]

Zero~-order prediction is the simplest case of palynomial prediction.

If we let ;(t represent the predicted value of a sample at time t, it is given by
T

.

(2.4.1).

is the value of the previous sample, the sample occurring at time

Q

where Xy
t-1. Practically an aperture (tolerance) is set usually equal to a multiple of the
quantum step. If the value of the sample ot time t exceeds the ZOP by the toler-
ance, this sample is considered non-redundant and is sent. The next prediction will
be based on this non-redundant sample. If the tolerance linjit is not exceeded, that
particular sample is considered redundant and hence discarded. Note that the timing
information must be supplied in order to reconstruct the waveform at the receiver. A

flag is required to distinguish between level information arnd= time information. Figs.

7
2.4.1 and 2.4.2 illustrate how this can be done.

Before transmission, the level information must be quantized and o
coded. Hence, it is subjected to both quantization error and transmission error. The

transmission error is dependent on the coding scheme used and the quantization error is
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FIGURE 2.4.1 ZERO-ORDER PREDICTOR
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the same as that in PCM system. However, ap additional error called "aperture

error” results from the aperture used to compare samples in the prediction process.

Let us suppose that K is the aperture magnitude. Hence, SiH

is non-redundant if | Si+l - Si | > K. Let q be the magnitude of a.quantum

step, and let }
K=mq , m=0,1,2,... T \ (2.4.2)

Note that if m = 0, we have no aperfure error. We shall assume that the error

is uniformly distributed in the whole interval of - mc} to + mq. Hence,
, \

] m . .
P(K)= oy (2.4.3)
3
and s ) ’
2. & 2 1 © /2.9
E[K°] = Z P(K)K® = gy Z q°i \ SR
P i=-m W j=m ) ‘
. ,
2 m 2 .
- %" v .2 _ 29° m(mtl)(2mH)
ol L] "2 mA 3
. i=1
2 1]
~ = -‘35- m (m+ ) \ (2.4.4)
] 1 4
Since q =~t~ + we have ' ‘
2 . : L
T 2 m ( m+l ) ' y
E[K°]) = . (2.4.5)
ek . 2

which gives the m.s.e due to aperture error.




~4

A most commonly used coding scheme for ZOP is run-length
er;coding where the levels of all non-redundant samples together with binary w«.:>rds
expressing the run-lengths are transmitted. It is also known as differential co-
ordinate encoding. A run is defined as a series of’ consecutive redundant samples.

The statistics of runs will be studied'below.

5

The autocorrelation function of a video process: is -

(1) =2 M (2.4.6)
» . ﬁ"’/

Let. w, (i=1,2, ...)be arandom voriable denoting the run-length and P (mi )

4

be the probability density of the run-length. Let us assume that the distance from
an arbitrary point t, fo the next random point t is a' r.v. independent of what

happened outside the interval ( to' t. ), then
plalaz 1) = p(wt) . @47

which together with (2.4.6) will give

( i
1 v v

4

,

pluw)= e ™ (, (2.4.8)
The probability distribution can easily be derived. i . <
o ' B . )
P ()= j e ax = re™ (2.4.9)
¢ .

3 ; ) y
-, ., i B . . - -;é
) : ’ o N
- k -« - * !f ; 2};
“ - N bt g on
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For a discrete proc;ss, the probability density is derivéd as
p(n)=P(us<n)-P(u<n-1)
- -\ (n~1
= (1= - g7 M)
=(eM1)e™ 1en<w (2.4.10)

Therefore, the discrete probability distribution for the run length is

n
‘ Y
L P(n)= Y (eM1ye™ A ,
) i=1 |
L J ,".
-\n )
- 1-
= (et ey -
a ‘-e
“ BRI R : P (2.4.11)

The expecoted vglue of the run-length is given by

2

©® ‘ o \ o
E[n]=z np(n): = Zn(e-l)e‘
- ’ n=] ¢ n=1 . .
A - e")‘ ) ‘e
= (e-1)[ S W 3 ] » e s
(Y-e ™) .
Q_ Hence, the expec}ed valu; of run-length is ) , . ' -~y ..
- 1 -
Eln)= Y (2.4.12)
1- :
e
.
) } Y
YT
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The}:omp'ression.i'aﬁomol’fered by run-length encoding is given by

r .
the average length of the run, E [n ). A relotiomship between the compression

ratio CS and the pn_obagility p that a sample will have a different brightness
level from the previous one can be derived. 3 E 1
J 0 L _ _ n-1
Probabilityofa runoflength n=p (n) =p (1-p) . (2.4.13)
| “e oL - ;” ’
- . - Average length of run = 2 np(n) ) - N
v R ‘ ) € n
. -1
= Z np( ]-—p’)n . ,,
n .
] < o
= - 2.4.]4 *
7 ( y
) Hence, - :; >
\ ’ . . Y
* ] - 4 "3 -
= — = E- .. : . 2.4.15
C, = 5 = En] | | (2.4.15)
. i @
— or, - } v - . LN
~ , p =f‘_ . k (2.4.16) .~
“S ‘
3 This value of p is approximate and i'mplies that it does not
[ I'd
W‘\L depend on the size of the initial jump. Also p ( n ) can be written as
'- g 1 w1 . (E[nl-17" '
: E[n) (1 E[n]) l. , Eln] 4 E [n]-1 (2.4.17)
) which agrees with the result derived by Cherry [49].- - . ¢ (

o
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Also, L] ‘
_ _ 1
P(]): P - ETn]
,)Hence,l
- em = 2 a-e))
-p
] s,
where p (1) is the probability of a run consisting of a single element. This
. .- s ° ‘
result is in agreement with that derived by Estournet [ 24]. From (2.4.12)
’ K E [n ] = C = ] '
¢ - S ] -x
-e .
“By expanding e-)‘ as a series and taking first-order approximations, we can °
approximate CS as
_ 1 . .
Cs T x ’
» .
or,
Ce ]
A P W= L . "
CS .

in general, the analysis of run-length encoding does not takeinto

account all the dependence which exists among the various pels in the picture,
A
thus the results conceming information ratio and savings in channel capacity are

only firstorder approximations. ’ . .

It has also been shown that, for Markov processes, run-length

encading sys'fev}(aiieve the lower bound in entropy as the number of bits fo code

PER

(2.4.18)

»

(2.4.19)

(2.4.20)

(2.4,2)

(2.4.22)
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a picture by non~statistical methods approaches infinity [40].

2.4.2 Psychovisual Coding ) -

The intention of these coding techniques is to alter the signal
in such a way that within acceptable degradation of the picture, some advantage
in transmission is gained through the exploitation of the properties of the human
vision. Statistical encoders can be inserted at the output of the psychovisual
coders to further reduce statistical redundancy. Schreiber [ 39] has s:eferred to
such a combination as psychostatistical coding. Tl;e main results of psychovisual

coding are summarised below.

(M Many experiments have been berformed to improve picture quality
by high frequency accentuation [ 517 and sngw removal [ 41]. It is found that
most people prefer the’band above 350 k Hz to be emphasized in commercial

telelvision.

2) Spatial and contrast resolutions are exchanged in vision so that a
smaller number of brightness levels can be distinguished in small objects than in
large or uniform areas. Hence, in run-length encoding, the levels of short runs

>

could be quantized more coarsely than those of long runs, yielding bit reduction.

(3) The resolution of spatial details in moving objects also deteriorates. E‘

Therefore, the number oFsémples per frame can be reduced.

/ o

\f‘\ s o
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4) If some of the wasted channel capacity is used for the colour

¢ °

information of the scene, substantial improvement in quality is possible.

(5) Seyler and Budrikis [ 26] showed that the human observer would
not perceive a temporary reduction of spatial detail for an average of 750 milliseconds
after a scene change. This part of wasted ch;:nnel capacity can then be applied to some
aspects of the original scene, resultingin an overall improvement of quality. Alter-
natively, a large reduction in baridwidth can be achieved by distegarding the spatial
details during the scene changes. °This enables TV transmission at around 30 frames

per second.

This result also justifies the use of frame-difference coding [52],
where a new frame is transmitted if a sufficient number of different picture elements
exists between consecutive frames. Other frame-to-frame coding methods also

exist where only the difference’between frames are transmitted, by taking advantage .

of the frame~-to-frame correlation.

2.4.3 Differential PCM

Redundancy reduction is also achieved by a technique known as

differential pulse-code~modulation (DPCM) [53], [ 54], which offers bit rate

reduction over straight PCM as shown in Fig. 2.4.3. It aims at removing the
inherent signal redundancy through a feedback prediction around the quantizer.

1t will be shown later that this feedback feature is essential for improvement over

N

J

/
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o ) "
straight PCM. If the quantizer is pladed outside the feedback lo;)p, no improvement
is possible. It should be noted as well that the quantizer must be an _instantaneous
device. The following is an analysis of the operation of the system, based on various

papers on the same fop‘c [55] - [63)].

) In DPCM shown in Fig. 2.4.9, the difference bf:fween the actual
signal and an estimote“of the signal, bosed on its past, is transmitted The receiver
adds the estimate to the received dHference yielding the true signal. It is hence
obvious that highly redundant signals such as TV, are well suited for DP.CM systems due

to the possibility of accurate prediction. We shall first review the prediction process

and we shall restrict ourselves to linear prediction.

¢)) Optimum Linear Prediction [ 61], [ 64] -

& Assume that S (t) be a stationary random signal with zero mean

L

and variance 0’2 , sampled at times f], t2,. .y fn’ ... yielding samples of
S] , 52,, . "Sn’ ..., respectively. A linear estimate of the next sample So can be .‘

. made from the knowledge of the n previous samples. o

o

~

S°=a‘ Sl + q252+... +onSn ‘ (2.4.2?)

i
™o, v

~

where So is,the linear estimate of So and ai's and .S"s are realV

~ The error generated is given by

A
'

H
N, . t o :

"e =§ - § | - (2.4.24)



We wish to find the set of ai's such that So is the best estimate of So in the meon

. LY N2, .
square sense, i.e. E [( Sq,/- So )" 1 isto be a minimum. Now

E [(So-go )2] =E[(S- (c] S]*’u2$2+...+aiSi+...+an5u))2:l (2.4.25)

Partial differentiating the above with respect to the ai's «and setting the result to

" zero for minimum gives ] !

E[(Sq-(cal S] +...+anSn))SiJ= 0, i=1,2,...n (2.4.26)
or

E[(SO—SO)Si]=0, i=1,2,...,n (2.4.27)
Hence, ~

E{s s, 1=€ls s.), i=1,2 ...n (2.4.28)

If we write Rii as the covariance of Si and Si, then (2.4.28) becomes
R, = ay Rli + 02R2i' 1:...+anR. i=1,2,...n (2.4.29)

" yielding a set of n simultaneous linear equations in the n unknowns ai's, provided
of course that the covariances Rii’s are known. With the best linear estimate of

So' the error resulted is
\ .

%
2 a 2 “*
o, =.E[(S°-So) ] = E[(SO-SO)SOJ

= Roo - (a‘ R@l +q2 Ro2+‘”+°|{ Ro ) ~ , (2.4.30)

. ’ n

2]
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) [] - 2 . . ’ . »
where Roo is the variance ¢~ of the original sequence. From (2.4.30), it is
obvious that the error sequence is less correlated and has o smaller variance than

the sequence {Si }.

T

th .
Foran n° order Markov process, only n samples are required
for the best prediction. Television signals are very close to first-order Markov"
. -AT * . .
process and have an qutocorrelation of e . Hence, the best estimate is from

the previous sample given by

(2.4.31)

However, if access to samples on gdjacent lines and frames are possible, it has been

4

shown th%f the prediction can be improved.

|
{\ >

(2} _ Operation of the DPCM System

Let us refer back to Fig. 2.4.4 which shows & block diagram

representation of the DPCM system, where x. is a random signal of zero mean, The

primed quantities differ from the unprimed ones only from channel noise.

From the diagram we have the following relations

ST A (2432
which is the quantization error, e .
4 z = x - f : ' . (2.4.33)
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X T A Y; (2.4.34)
@‘ ‘ .
fi = 2_‘ hi ‘xi_i : . : (2.4.35)
j=! - | k
. The hi's -are characteristic of the gredictor. Note that the predictor introduces
e e ) ,
delay around the loop. From (2.4.32) - (2.4.34), we get Ve
P e, = (xi—fi) - (xi-—f;)= X = &, (2.4.36)

" A very important conclusion reggglts, the quantization error samples are’ identical
fo the error samples for the overall system, assuming error-free channe! transmission.

The input to the quantizer is ii ‘

z, ¥ x, - f
i i i
o
- % T E h|;(i--|
=1
( @
\
- xi - Z h'(x' .—ei_i) ~ e !
- i=
or
z F ox- ) hox* ) e (2.4.37)
i=1 = |




<]

i

%

The output from the quantizer, which is the sequence sent over the digital

channe} is

@ > -
= x. - e - hi xi—i + }_‘ b e, . (2.4.38)
‘ i=1 i=1 ’

”‘b

Now, let us construct a simple table giving the data streams. This will enable us to
see more clearly the operation of the DPCM. Assume that we shall use a simple,

non-optimal system where,

hy =1 | ,
b= 0, A1 @43
Xi X‘ x2 ‘ ) x3 x4 xi
% Xy xp= (x1=e))  xg-(xyrep)  xg-(xgreq) x=0x =g y)
1\ *27%2 *37%3 X4 %4 %% d
i 1T (xgep)  (xgreg): (xge,) (x;e;)
=(xmey ) “(xgep)  -lxgeg)  -(xmey) -

N



(2 Quantization Noise and Signal-to-Noise Ratio Improvement
Over PCM

L3

.

It has been shown [ 65] for PCM that the variance of the

-

quantization error of an L step quontizer of step sizes A i is given by

| L af -
ECe,”Y | pepy Lok T (2. 4.40)
= 1
where Pi is the probability of the jth step. A similar e‘xpression; for DPCM is
, L a2 :
E teizj lopem = Z Py T G (2.4.41)
= |
We shall assume for comparison purposes that pxi = Py and the step sizes Ai L
and A 'i are ch¥sen at a ratio equal to the ratio of the r.m.s values of the two
inputs. ] ~
a E [ei:] bew txizj
E[e"] IDPCM Elz"] (2.4.42)

This ratio is defined as the SNR IMPROVEMENT RATIO.

It can be seen from (2.4.37) that the statistical properties of z, depend on the
joint statistics of the input and past samples of the input, which is still unknown up
to date. However, we shall assume that the spectrum of X, and that of z, are
very similar for simplified analysis (this holds ve;y well for both voice and TV

signals). We further assume that the error samples are uncorrelated. Then,

(o] [0 o]
ECz20= EQ(x- ) hox )20E le.2] ) hiz " (2.4.43)
i=] '=l o R

®
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At this point, it is worth pointiog out that the optimal linear *

predictor derived earlieris optimal only for a set of statistics and does not necessarily

.

' . - - ! . L3 L3
perform well for other signals. Hence, we shall first consider a simple case.

-

(A) Simple Delayed Feaed.backﬂ(singlé integrator feedback)

) _In this simple .ca;s,
i ' ° h] = ], -
h' = 0, i 20 (2.4.44)
Y v - .
; ) Predictor | From .
T6 Su ' 1 redictor - " Quantizer
biactor ) Tsample | 1 [ )
< | delay D . +
- J -
FIGURE 2.4.5 PREVIOUS SAM?LE PREDICTOR
o X N PeN
. M ¢. " -
Then, ' \
% T KT T e
. and A .
. 2, _ 2 : 2 4 ’
*E [:zi l1=E (:xi J{2( l-p‘ )1 +E [ei_] ] (2.4.45)

~ & ‘w .
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where o
g Elx, x ) :
p, = _ ’ : (2.4.46)
TR
Neglegting the last term i (2.4.45), we get - ,
E [xi~2] ‘ ‘ - S’ Ce )
(2.4.47)

£ [;32] 2(1-py) .

Hence, the SNR improvement is greater than unity if the

normalized adjacent sample correlation of the input signal is greater than 0.5.

The above system,though non<optimal, is simple to implement.

The predictor parameters are independent of signal statistics. Note that if

Py < 0.5, the system performance is worse than PCM. \

~ N ,

. (B) Optimal Linear Feedback

The result of the previous discussion on optimal linear prediction is not
directly applicable here because the input to the predictor is x.~e. ‘instead of X o
Note that the SNR improvement is defined by the ratio of the variance of x. to

that of z, hence we could optimize this figure of merit by minimizing the variance

of z., Now, -

Elz7] = EE(x, -

L8

@
2 2. T .2
hox )1+ ECe™] ) h
i i
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from (2.4.43). For a minimum,

JE [ziz] - ® ' L 2
T .?-25[(xi-§:h|xi_l)xi_i] +2h E (e ]
; I=1
= 0 -
\,M‘/ '
- <
s ,“ﬂ ‘ 2 Q@
By d=h Bl 1 +EQ( Y ) %, )
. =1
Defining
Elx x .]) .
_ i Tisj
p. & 9
! E [xi J
and -
E [x,zl
J R= SNR = — L
v . E (e, ]

We can rewrite (2.4.49) as a set of*linear algebraic equ::ﬁons:

e 1 .
p = (l+-§ )h]+h2p] +h3p2+...+h P._1

n n-

1 . .
pp =P () pythyoy+oth )

. e ] l.‘
Po=h Py thy P g thyn, gt (Ttp) b

This set of equations has the same form as (24_29) exéepf for the coefficients in

62"

(2.4.48) -

(2.4.49)

~ (2.4.50)

(2.4.51)

(2.4.52)

the diagonal terms. Divide through by 1 + 1 fo normalise the set of equations. .

R

Hence the error in the prediction, by analogy with (2.4.30), is gi‘ve‘n by

S

.. E [2.2]
' "m

i=t

n . i
_ 2 . ]
=B 1 - Zhi(pi/(“"i))l

. (2.4.53),

-
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- Therefore; ‘ . -
[ o K
SNR Improvement |optimc|l: _— ! < (2.4.54)
N ‘ |
/ . ]-.L‘hi(pi/(]-}‘ﬁ)). -
« ) l::

- It can be seen that the SNR improvement ‘o ' increases for larger n since each past

-sample can only add information to a better-prediction. However, both speech and
. . P )
video processes are not totally predictable from past samples and a limit will reach

when the figure of merit remains constant. The following is an example which

~

illustrates this situation for voice [ 56].

i s
Autocor?elaﬁong::oefficienfs - P, ™
‘, “ = S _
n 8.0 kHz samples - '
- 0 ’ 1.0000 ‘
_ 1 0.8644 -
B 2 4 0.5570 " g
; 3 0.2274 -ty ~
. 4 ‘ ~0.0297 = /
, . *5 -0.1939 e
F 6 ~0.2788 y
-0.3030 - :
. 8 ~0:2823 ;/
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Assuming that R - a for high signal-to-noise ratio, the set of hi 's can be found.
Using (2.4.54), the SNR inprovement is plotted as a function of n. This is shown
in Fig. 2.4.6. ’ch'ibi [66] has also shown the similar resulis for a particular

picture, where he used poinfs from previous lines as well, Fig. 2.4.7.

Let us consider the simple cose when only 1 delay elementis | -
¥ uvsed, i.e. n=1. Then, ;
L r
Py
h, = — _ . - .
1 H':'g - (2.4.55)
- Tl \./
' and ¥ .
’ \ ] ‘, .
SNR improvement‘N=l = 7 ) (2.4.56)
o 1= Loy / 14z ]
Assuming that R » ©, S )
SNR improvement N=1= ""L_z' (2.4.57)
1-p
1

From (2.4.57), we may conclude that the optimal system always hdlds an advantage
over PCM whereas the non-optimal cases has advantage over PCM only when
‘pl > 0.5. However, the characteristics of the predictor for the optimal case

isdependent on the signal statistics (hi's are dependent on p, 's).
: r i

(4) Analysis of System with Quantizer Outside the Feedback Loop

QN .
. A block diagram representation of the system with the quantizer out-
1 r =~ N ?

'«‘"' “ side the feedback loop is shown in Fig. 2.4.8.
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We shall neglect channel noise for the analysis, i.e. n, = 0. The following algebraic

. relations result

2. = x. -f (2.4.58)
] ] ]
- % ,
f. = Y h x, . - (2.4.59)"
] - i I'|
i=1
= o - ' 2.4.60
i TORTS : ( )
N X, = y. +f! : . (2.4.61)
. . [] 3 ]
S )
- 1 = b3 2.4.62
fi z hi xi'i ( ,
=

Let hy =1 and h.=0for j#1. Then,

o e (xi__'--xi__I ) : (2.4.63)
or, -
TR T oxex e ’ (2.4.64)

Hence,

EU(%%,_)70= E Ly )2 J+E (e’ @469

- &

where we have assumed the error samples are uncorrelated.

613712 (10, ) = E[x212(1-0;) +E e ] (2.4.66)
. " where, | _ s
Elxx. ;] E [%;:‘Ei_i] , )
P S e, p" T —— . (2-—4.6
1 Hxizl P uEthi )
‘ - ' & : v -
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Further assume g\at Py =~ pi , then
2 g Elel
ECx") = E[x ]+ (2.4.68)
i i .
o] 2(1-p) “

. ) )
which essentially says that the error signal power is amplified at the decoder by

a factor of ———-]——-—— _
% z(l_pi) i . .
Now,'ot the transmitter end, we have <
z = x, - x > C(2.4.69)
i i i-1 ] e
and l
2. L2 :
E [ zi‘ ] = E [ (xi Axi__‘ ) ] . - - - - ] —
) _ 2 '
= E [:xi ] 2¢( l-p] ) (2.4.70)
or , L]
Elz2) . ‘ :
i C ey, .
—— = 2(1-p ) ’ » (2.4.71)
E [xi ] 1 .
” @

This factor will exactly cancel the factor introduced gt the decoder. Hence , the

-overall performance is the same as that of PCM. We conclude, therefore, that the °

quantizer must be placed within the feedback loop in order to attain superior

performance over PCM. However, the operation of the subtractor and the feedback -

at the tronsmitter may be separated at a very slight increase in complexity. This will

be shown below. -
. ' 4 . ‘

~ €

]
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) Equivalent Systems {67] - [6’% .

Such a system is shown in Fig. 2.4.9, for the simplest case when

h, =1 and. hi=0 for j#1.

. 1 -3
»
x. . z, noe " Yi
— > Q > Quantizer - >
x. (
Delay +;<,5-
. Delay <
(l
FIGURE 2.4.9 EQUIVALENT SYSTEM s
The corresponding relame
. . z, = X7 %, + e._ =X - (xi_] -e ) . (2.4.72?:‘
- - ) 2.4.73) *
T e T (gme) = (gt ‘ , (2.4.73)
\\ which essentially is the same data stream sent over the digital channel as that in.
the DPCM caose. The piésent system however, allows the subtraction operation . .
: and the feedback quantization be separated. Y )
' , s} i - / ) .
4
&,
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It has been shown that there is an equivalence between a noise -
o ’ 4

feedback system with pre-distortion and post-distortion filters and a DPCM system

with a similar pair of filters.

(%) Design of the Quantizer

In order to design the Optin\nl system a criterion must be setl. We
shall use the minimum mean-squared-error for such a purpose. It will be noticed that
_thre dnal;sis of the DPCM system is complicated by the non-linear characteristic of
the quantizer. To getaround this difficulty, we shall seek the optimal solution in
the following manner. First, a best predictor is designed ignoring the quantizer,

then an optimal quantizer which matches with the statistics of the difference signal

(o - _k

i is built. This procedure will give a suboptimal system instead of an optimal one.

The best linear predictor has been discussed before and we shall
limit ourselves here to the quantizér design for video input. The probability density of

the difference signal z, isa hﬁded exponential'. Smith [ 70] showed that the

least m.s.e. quantizer is a uniform quantizer with pre- and post- quantization transforms

y(z)and z* (’y* ) defined as

§

E, [ 1-exp (-mz/E )] .
Toy(d) =T Texp(-m) ., y(-z)=-y(z) (2.4.74)

and
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,// :

where

Eo = moximum value of 2z

m ="2E,

do
z

y* = the quantized value of y

and
. o, = variance of the difference signal.
A

PN

-y N
Now, the operation of the DPCM has been explained in detail. We

P ad shall study some of its applications to TV signal processing. |t is found that the

amplitude density function of the quantizer input in a well:designg‘_d DPCM is
approximately Laplacian. The quantization noise has a flat spectrum, highly

cor(elofed with the deriviative of the signal.

" A DPCM can be modified to include the previous sample plus the
AN o 8 .
- adjacent sample on the pre\v_ious line. This is shown in Fig. 2.4.10 and Fig. 2.4.11,

Hence, X P

S':> = a]S] +a, S6 e " (2.4.76)

4

Such a system is known as a previous line~and-sample feedback system. Additional

improvement of 4.9 db at best in S/N ratio is reported by this odditional feature.
. : r
,./\Qy analogy, the concept can be extended fo include frame feedback where frame-to~

L - T e
frame correlation is made use of. In this case, L v
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~

So = a]S1 +0256+03 £ . R { (2.4.77)4 \
/ -

where S is the sample value which is in the same location as S, in the
-]

previous frame. Such a system is called a frame-line-and sample féedback

system. However, the investigation of this system would be quite difficult due
p :
to the lack of information on frame-to-frame correlations. Fig. 2.4.12 shows a

comparison of previous sample feedback DPCM with standard PCM and the delta

modulation (DM) [ 60] for a particutar picture with a fixed bit rate [ 61]. It

- -

can be seen that a well-defined‘DPﬁholds a 12 db advantage over PCM for the.

same bit rate.

}

. A lot of effort has also been spent on investigating frame~to- -

frame coding, infraframe coding and picture ré}:ler;ishmet;f. Details of these

techniques can be found in references given in [ 71 ]%

Other m;dificaﬁons of the method include adaptive dual-mode
co::{er-decoder [72], where a cornbinationwo’f delta-modulation and DPCM is
used qfor TV signals. The switching between the two mode; depends on the slope
of the signal. 1t was found that further bit<rate reduction by a factor of two from‘
DPCM is posgible by making use of the statistical properties of video signals and by
choosing a sli{ghrly different tradeoff between ogranular and slope overload noise.

4 - ﬁl

2.5 Coantour Coding

5 .
In the case of graphical images, the important information is the

contour which are usually points of sharp brightness changes. From the statistical’ -

)

3 <

R
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point of view, these are the significant samples. By fransrq;ﬁtting only the outline
info.rmation, graphical images can be reconstructed exactly. The information which
eeds to be transmitted about the outline or'contours in an image consists simply of
the location of the contl)urs. W'!:en continuous-tone images are considéred, the
location of the contours plus the gradient informa;ion of the a'rea are both significant.
Some of the contour coding techniques are described in [ 79] [ 741 . Their schemes
make use'‘of the fact that human obsecy{{s e sensitive to abrupt changes in brightness
over the edges. In areas of uniform brightness, the quantization noise is easily

seen. This will create false contours. This subject is pursued in detail in Chapter

V.

i

common. They are more sensitive to channel errors. . We shall analyse this effect
in Chapter I1l. The transform\method of coding picture pas an advantage over most
< /’ . -

of the other data compression systems in that it is more immyne to channel errors.
i . - . S

N .
The following presents a brief description of this technique.

="\

2,6 Transform Image Coding [ 757]

Recent advancements in Qptical-processing fecﬁniqu s and computer
software matle possible the codingof pictures in the frequency domain.\ Transform

coding is a method which accomplishes to some extent both statistical anid psychovisual
! oy _

coding. A unitary tronsfg;m operates on the set of statistically deperidem\{:icture
elements resulting in a set of "more independent" coefficients. The unifary\

>
1
i

o &
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(2]

B
" where a (x, y, u, v) is the forward transformation kemel. The kemel_is said to be

-
a

transform operator has thecorthogonal property. The coefficients are then quantized

and coded before transmission. The number of bits assigned to each coefficient depends

)

on the variance of that coefficient and the number of quantization levels which in

turn is determined by the psychovisual property of the human eye. At the receiver,

-

an inverse transform operation is done on the received data to derive the best

treplica of the original image.

We shall assume that an image array is represented by a square array

»

of N x N intehsity samples described by the funcfion f(x,y) where (:::’)‘r) are
spghol co-ordinates. The two dlmensuonal forward f}gnsform of the i image array

F(v, v), ( u, v) being spatial Frequencnes, is |tse|f an N x N square array:

N-1 N-1. L

It ZF(x,y) @l y, v, v) (2.6.1)

. x=0 y=0 \\\\\\ . -
T

separable symmetric if -

aJ

a(x,y, u,v)=o] (xfé)o] (y, v)

<

For most images, the statistical intensity variations are nearly

a

equal in the vertical and horizontal directions. We will hence consider only separable

symmetric ernpls. Such cases are particularly easy to impleL;nent because the image

. . 5 )
can be first processed along each row, and then along each column. A reverse
(-4

operation is done at the receiver to re&o\ny:ct the original image, .

4 o ) s -
¢ . ﬂ
.

L ’ | \ L | . \

o
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N:] N‘] - ‘ J

Fa)= ) ) Fluv) bluyuy) - (2.6.3)
\ ' u=0 v=0 . — t
- ‘ It can be shown that an equivalence in energy in the two domains

L} r . - ? {",‘
exists [Z5]. We shall outline the proof below. Now, -

1 o

o~ y ' -
*n - N-1 N-1 - N-1 N-1 :
q v T
, F(uv)F*(u,v)=( /) 7 L f(x,y)a(x,y,u,v) ] xZ Z f(a,ﬁ)aﬁ*(a,ﬁ,u,v) (2.6.4)
‘ ‘ x=0 y=0 : «=0 B=0 ‘ |
. . g o \ ’ f

which on eﬁgonsiOn, yields

Ty - N\ﬁ\k N:-l , , “

-u‘ R 2
" }1 Fr(u,v) F* (u,v) = z P Z (Fx,y)] “a (x,y,u,v) a* (x,y,0,v)
oy . X0y ’ > .
oe " : |\v1~_1 N-1 |%|-1 N-1" ‘ ,
a + Zn 2 L /\_; f(x'yw(qlp)a(XIYIUIV,)U*(GIB,U,V) (2.6.5)
x0 y=0 ao=0 B=0 .o . :

- | Fayrp S : -

w\ \ . Yoo .

-~ N .
As a result of the orthonormal property of the transformation kemels, we gef, by
_

;’r/ . t, ’ * - {
* - sulmming both sides over u, v, ot . .
- ' i\ (4 V/ ‘ 1 d
- - S N=1 N2 o N-T N1 ) .
M L vad \ . .
: 'i Z IF(u,v) ™ = ) ) [f(xy)] . ; (2.6.6)
v=0 v=0 ] x0 y=0 ) )
" ) / \ ‘ =
e which proves that there is.an energy equivalence between the spatial o/*d transf?‘rm ‘
domains. v £
. , ‘ N

*
v : 1
‘ . 0 : | ’ L :
o
v . B ’
L)
. .
AN i - ’ . .
?h:“w e o .
-
3
1
r
/

. \
i ] ° e \
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H 4
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, ' Transform image coding has two potential advantages: It provides
\

, S -

good quality picture reproduction with the same number of bits as conventional

PCM. Furthermpre, it offers a certain immunity fo channel errors and a po&gibility
™ - & s
of bandwidth compression. Both of these issues will be discussed in greater detail
{ o

in Chapter 1lI. . / P K

\
/ ‘ !

1 N
{

O3

Fig. 2.6.1 shows a block diagram of aogeneralized fiansf%rm. .

y “ ’

image coding system. In principle, the transforms can be implemented by optical,

electrical or digital means. i
EY . ~

Quantizer Coder . B o

Transform =S
»

, ’ \ ) O y )
bl T
. ~_ - . P
. . . o Channel ~ |e———Error
N I d ’ : ) '
¥

*y

4

v Reconstructed
Image

Inverse- -
Tr@s orm |

[ © "

)

Decoder

. " FIGURE2.6.1  IMAGE TRANSFORM CODING SYSTEM
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S Note that in (2.6.1), although the variances of the picture

. -
LY - °

elemenfs f(x,y ) are the ame, the variances of the fronsfor'm samples F (u,v)
are not. This is one of the primary motivations for using transform coding techniques
for redundancy reduction [ 66} . Since the i;aformoinn content in a sample is
proportional to its variance, the samples with small variofce can be c}iscdrded with

a slight degradation. If we eliminafe'N2 - K2 samples, the' m.s.e. becomes

-

Z

-

[\/1

el- {}I]P [F (x,y) - P (x;)1% ) (2.6.7)

~
&

x

il
o

-
¢ °

where” f* (x,y ) is the reconstructed image.

Substituting (2.6.1) into (2.6.7), it can be shown that

' ° K-1 K- ; L
2 1. 2 :
e =R(0,0,0,0)-— ) . (2.6.8)
N
] v=0 v=0
p - _ N

where Ouvz is the variance of the ( uxv ) coefficient and .R (0,0,0,0 ) is the

—

. o T . ! .
autocorrelation at the origin. This expression represents the esror due to neglecting
“ !
n

N2 v K2 sc?es and does not include the quantization error and channel error.

The secondource of error is the error due to quantization. If one c;ssigns binary v
digits tQ each coefficient in pr(;;;ortion to logz‘(variance) ,‘fhen the: quantization error
in the (i, ) coefficient is , v ' :

z . N %2 T 2.6.9

e Cqif ‘N ;ﬁl B ; - (2.6.9)

-1 N-1 , SN



o

n.. = number of binary digits used for the (i,j) th coefficient

K.. = constant expressing the consequence of the scaling and

companding associated with the quantization

M

0..“= variance of the (i, j) th coefficient.-

This topic together with channel noise will be presented in greater detail in

Chapter 1.

%

t

In the following, we shall describe three transform methods: the

A
Karhupen-Loeve which is the optimal method, the Fourier and Hadamard tramsforms

which pods.?:ass fast computdtional algorithms. -~

2.6.1 ‘Rarhunen-Loeve ‘Transform [751-[77) — .

a
©

-

This transform consists of eigenvectors of the rorrelation matrix

’

of the original image. ‘Suppase H\oj the N x N original picture is scanned and

. 2 . . . .
transformed into a N~ vector. The correlation matrix of the image in an

2

N™ x N2 “matrix of the form

-

. '[R]‘:E[zizi] i=1,2,...,N°; .

%7 . ’ ‘ i=,,", 2' --c’N

‘ The f%wurd Karhunen-Loeve transform is the orthogonal matrix such



2 8
[AJLRI[A)= o (2:61)

| 0 w2,

ces 2)\N2 are the eigenvalues of [R] arranged in decréosing

where A, 2 A, 2)

1 2

- order. Hence, the K-\ transform F'(w ) of the origingl image ‘s

[F(w)l=0f(z)] [A] o (2.6.12)
The inverse frqnsfo,r:n matrix is - p
- o : _ \
(81 = [A) h (2.6.13)
Hence, if we truncate the’ sequence into K2 terms, the m.s.e. is §\
2 ‘\ ’ { Y
N )
el A, .4 n (2.6.14)
’ i=K2+‘ P
r * ) \ o ,
But, the sum of 'the eigenvalues is equal fT the suw of the variances of the original
randomvariable, i.e. . Y |
2 -2 !
K - s ]
Y +.'§ A = N?R(0,0,0,0) 65
| =1 k24 . , '
’ ‘& ) * . -
Therefore, |
N K2 ) .
X _ ' 2 : st o ’
- ) A, = N“R(0,0,0,0)- A . 2.8.16)
l i=kZ = :

-
’ N ¢ - . -



W

Y
and the mean-square error is
n 2_ 1 N
¢ m.s.e —'; = —-—i Z A
N 2. '
“ =K 241,
a . ‘ , K2
= R(0,0,0,0)-=, ) A\
g N™

82

Since the >‘i 's are monotonically decreasing in value, the resulting m.s.e. will

be minimum for any K. This is to be expected because the’ transform samples are

. 0
uncorrelated, hence all the redundancy fds been removed.
Y .

Ll

»

v

‘However, -there are two major problems associated with the K-L
/

transform: Firstly, ‘a great amount of computatidn has to be performed. Secondly,

(8]

2.6.17)

although the m.s.e. is a minimum for K-L transforms, it is not a valid error criterion

: for most pictorial data. ' . \\

4

- 2.6.2  Fburier Transform Coding [75] [76]), [ 78]

L N . :
expressed as * .

'

N-1 N-1 g N \
Flov)=g ) . Lo FOay) exe (= 5 (wxtwy)]
x=0 y=0 N 3 N ,
' where |=‘(—\. v ' ]

The two-dimensional Fourier transform of an image f ( x,y ) is

(2.6.18)
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& ¢ .
and the inverse Fourier transform is /

2wi
f(x,y) N Z Z ﬁF(u,v)exp{N—‘ (ux +vy) }I
v=0 v=0 o \gQ

I

Although f ( x,y ) is a real_function, the Fourier transform’given i)y (2.6.18) is in

"general complex which may be rewritten as

]

L

'N-l N-T1 . .
F(u,v)-‘——]ﬁ z Z‘f(x,y){coi Tz‘—n—(ux+vy)~isin-?N-E’ (tfx+4vy?} | (2.6.20)
x=0 y=0 ' /
=F, (u,v)-iF (u,v) (2.6.2H
R‘ | ’ > \
where ’ . ’.\\\ ' "\\T\>
N-1 N-1 x S
F (u,v)= 'ﬁ z 2_' f(x,y)cos (ux+vy) (2.6.22) .
x=0 y=0 " '
“ , et e 2 o
H F| (u,v)=-t\T Z Z: f(x,y) sin -I\—F (ux +vy) . 52.6.23)
‘x=0 y=0
But, cosine is an even"funﬂ‘ion andsine is odd in (u,v ). Therefore,
' . ) L
FR‘(U’ v)= R “o ‘(2{6. 24)
Fl (U,(V)z-- ¢ ~ (2-6.25)
1‘: - . _ ‘ ’ N .\ . "
and - ‘ T ’
Fu, v)2F* (~u, -v) . ' . (2.6.26)
- ¢ ' ’

. ¢ ’ . o Dl
so that only N2~ samples fromone halfof the transform plane havs to, be transmitted.
- . ‘" A

°
< 0

f
. .
,
2
o ° . .
i
2 ¢ N . o
\ . M/ .

(2.6.19)



Fast camputational algorithms exist for the Fourier transform [79] -
[ 85]). Only 2 N2 |092 N computations are required as opposed to 2 N3 operations

requited for K-L transforms. This‘becomes a considerable saving for large~size images.

o

[ 4 r ' ’
2.6.3 Hadamard Transform Coding [75], [86]

i

The Fourier transform is a natural operator for most image coding

o

-

ause of its widespread use in other fie‘ds. But, there is another operator which
{ 1
possesses fast computation algorithms and the same properties of ‘se averaging
and bit compression as offered by the Fourier transform method. The symmetric

=¥
Hadamard matrix fylfills all these requirements and éven has the advantage over
F; 4 \" *
Fourier transform coding in a saving of speed of an order of magnitude by storage

I "

of intermediate results [87]. - ‘ ) \ y

’

The Hadamard matrix is a square array of plys and minus ones with

rows and columns of the matrix orthogpnol to each other. Thus

L .
HHT = NI . , L (26.27)
j ' o
Since H is symmetric, then > )
. HH = NI . (2.6.28)
(\ . ) . , ‘
The lowest-order Hadargrd matrix is . e
" 1 11« - ) -/ .
Lo H= ' “ (2.6.29)
' o RS I | - .
. .



) t. 5 A
/ :

The Hadamard matrix G t;f order 2 N may be built up from the th order

o

‘Hadamard matrix H by . S
H* H ~
G = (2.6.30)
H -H| : -
" 4 '

S A

Hence, the two dimensional Hadamard transform may be written as

‘o .
/ g N"] N-] _ ! 5
) ) = Y ? P(x,y,u,v )
F(o,v)= Z ) F(x/y) (-1)P Xy (2.6.31)
o .
x=0 y=0
where ‘ . ~
> N-1 / % »\\’\
p(x,y,u,v)= z ('Ui X, +vi Y; ) ' ‘*}I\ (2.6.3)
i=0 . ’

»

Fast computational algorithms also exist requiring only ‘2 N 1092 N operations.

Fig. 2.6.2 is a graph showing the sample variances of the 256

A

coefficients arranged in order of magnitude, of the 256 subpicturé of o sp'echiﬂc

picture { 88] e ﬂ o
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’ CHAPTER i

EFFECTS OF CHANNEL NOISE ON SOME DATA COMPRESSION SYSTEMS

As we have pointed out before, dattr compression systems ate usually

v

more sensitive to the effect of channel errors than the corresponding uncompressed
systems. This is due to the fact that redundancy has been redsced from the signal
and thus all the safigles transmitted are considered significant in the reconstruction of

the original waveform at the receiver. In some cases, an error occurring in one of the

~

codewords propagates beyond the time of occurrence of this error, until a sync pulse

-

resets the system. For o fixed number of quantization levels, therg are two ways to
R . ) - . @ a , *

remedy the situation : either by increasing the transmitter power or by adding back
some controlled redundancy. However, the two methods will reduce the energy com-
pression ratio and the bit compression ratio, respectively. Trans@r'm coding method

0 v 4

. . " 6
has the attractive feature that it is more immune to chorpel errors. -

t
the fixed rate time-sompling PCM system. We assume that the channel noise is an

additive white Gaussian process with zero mean and one sided spectral density of No'

[ »

We shall use as a standard for comparing data compression techniques

3.1 Effect of Channel Noise on PCM Systems p . AR

¢ In general, the total mean-square error in the reconstructed PCM

signal can be expiessed as a sum of three independent terms, .

q c m

{

N

(8]

62 = 52‘+’e2r + e2 . (3.1.1)

a



IS 3 88"
- 2
‘ «
\ -
where |~
1
!
. 2 . " ) 4 ’
€ = mean square quantization error .
ot 7 o7 q
: *e T2
) , ' € = mean square channel error
4, » .
L2 ¢ ;
“e = gean square mutual error

It can be shown that for @ w‘ell-designed system [89],‘% last tem in (3.1.1),is zero.
. ' R ; S \ B
The expression for e§ has been derived in Chapter 11 {2.3). Thus, we shall consider

o

2
only €. here. ' R

Let Pg be the probability of bit error, and asjume that each w%d
has k bits. A k-bit word represents the number

] : ' .

Y o1 -2 : i & '
X272 T X2 L 2 (3.1.2)

\ L] °
<

where - o

X. =0 orl ] : T(3.1.3)

Suppose that P_ is small enough that we con restrict ourselves to

B

one error per word. Assuming that the probability of a given bit in errorjs uniformly

I
o

distributed over the' length k of the word, we may write

Pr (one error in a word of length k)

_ k-1
é = kPy (1 =Py EAN
¢ ' \ o
and ‘ AN .
¢ N ) B \
2 . Y .
¢_ (given that an error occurs in a word) ,
k ‘ ‘
o ‘ -t 2 o * s N (3-] 05)
. = F Z (2 l) | | .
. . i=1 . o '
) r“‘\/c"w\ . * .
- i *» B
v L4 ~ g

o
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| 2. : '
Therefore the channel error €~ is given by ‘
P o "
kP, (1-P ) ko
e2- 8 8 N . @18
c k 4
, i= /. ‘

1 h -
=2 (1 - L) *—«! e @.1.7)
. 2 \{"‘ )
N '

§ince PB is usually small, we may-approximate PB (1 - PB) _ as PB'

1

Hence

B a-d, ST ' ~(3.1.8)

¥ .

3

b
. Equation (3.1.8) represents the m.s. channel noise for straight binary encoded PCM,

. ¢ ! It
It may be shown that the same result holds for more than one bit error in the codeword
. \.7\,1 . a

[90]. -
The ‘probability of bit error PB depends on the modulation technique
. used, the channel and the detection technique. For matched fi Iter, nonfading chonnel

-4

and coherent detection of m_ﬂfpodal signals,

R
i} /25
= PB - Ql’fc ———N‘O\R 3 ‘ K “ (3"'£ .9)
7 - , | ﬂ
where o
N = 5‘9“°"'°-n6?se ratio in the band
R = transmission bit-rate. ~ . S .
\ o] /> h’\&. B (
- -» o |
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’ @ 90
& .
. ond Vs ) . Lo
. - “ . ] lo 0] 2. - \ , . ) ]
erfc x = 5= exp (-y"/2) dy - (3.1.10)
N2u .k ,
- X

o
&1 . a, N -
' .

© >

The bandwidth B is related to the sumphng period T by

. o N T o
o, Y ' % A ‘ . (3.‘_‘.],])

- : . . |
For'a k=bit PCM word, N :
L - \4 ’ ' *
° o i s k l;ogz q e ‘ o
. . R = T TR © e ~ (3.1.12)
/ _ “-" e ‘ k '
. ’ . , ot '( + 4
4 where q is the number of levels equal to 2" . . , :
~» ' 'v ”
. 3 [ ]
Hence, .
'4 B

/ / /25 L Co
; = erfe N R . [ : .
5 ' - ‘ R
= erf i 3.1.13
0 er/; ). Blogzqq > 1 ( )3

i€

' Now, if we let y=y-x in (3.1.10);" we get ,‘ - ; ( . p
’ T s | ) i - - .
© ( ‘;‘)2 ) s . .
¢ : a ] ( -—Z——- L)
erfc x = : v 2 - .
W7 J o °© dy - ) .
1 L - +xy
. = 2 2
4 m e e Iy dy » (30] ‘4)
0 o ;
5
, \ ]
' c . 1+ q : . .
N, i \
8 f oo
R ' [
. f ¢
/ \ AN
’ .\lo“.‘*’. R S .-



, L For y >x and x>0, then

kd

(3.1.9) becomes

e

> .
xy > %
L)
? of .
2 2:
X s X
A M
Hence, “
* ~ 7
Werfcx < !
,(7’« .
//
2
x
. ‘ ' 7
- — e
» 2.
s x2
o e

/

A

-

. o~ o - . f25 25
. .o PB erfc Nfo-ﬁ exp (-ﬁ-o-ﬁ)

~

where ~ means the same otder of magnitude as. With the above approximations,

k}

o

°

(3.1.15)

v

(3.1.16)

From this equation, we can see-that for fixed signal-to-noise ratio, the probability of

o~ ‘

bit error decreases with bit-

»
A4

v . %

' : ¢
rate. This is an important result which’ must not Be neglected.

-

when .data compression is considered.
L] [ .
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3.2, Effect of Channel Nois€ on Run-length Encoded ZOP Systems

/ Usually, transmission errors cause both errors,in the level information

and the timing information in data compression systems. Hence, the m.s. channel .

L ~

error is given by

2 _ 2 2 c 7 °
‘ eclcomp. = € level . € ime (3.2.1)
\ -
‘[} 3.2.1.  Errars in the Level Information
! . .
m For an asychronous system, only the level information is trahsmitted.

But for this kind of system, ong can only reducéd the number of bifs and no bandwidth
reduction is possible. This is due to the fact that the highest freqiency components

still exist in the signal. Fig. 3.2.1 will clarify the situation.

- o
«

‘Analog — ‘
Signal . Sampler Quanti zer |Dota ) > Channel
— Compressor

~

(a)

v

> _Redundont So;nples

.+ & Redundant / ,
€ Samples ' ’ ;o
-(-———:—1 .
) ‘ | 1. . t
3 \ % %4 L ‘
. . ' "~ (b) ' ~ ‘

»

FIGURE 3.2.1: (a) ASYNCHRONOUS SYSTEM
‘ s (b) SAMPLE PATTERN FROM DATA COMPRESSOR
& - OF AN ASYNCHRONOUS SYSTEM
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We have derived in Cth;ter Il (2.4.1) the average value of the run~length and this

is given by CS which is the somple compression ratio.  An error in the level infor=-

mation will thus affect an average of C_words. Hence, for an asynchronous system

S
2 _ 2 ‘
'eclasyn. = Csec \),
P 1
= cs.é_ 4 '"'2}') ‘ (3.2.2)

v L

J

Note that tLhe maximum transmission rate is the same as in uncompressed’ gystem, hence
the bit error probability is unchanged. The m.s. channel noise is simply CS times
that of the PCM sysfém. Since no addressing scheme is used here, the bit compression
ratio CB is equal to the sample compression ratio CS. One might, however, improve
. K the performance of the compression S).rsterr'w by increasing the quantization resolution,
increasing the signal power ond using coding techniques [2]. We shall not pursue

this any further here.

, (2) For a sychronous system, timing words are necessary and buffers are
required to adjust the sample pattem from the corﬁpressor to achieve o bit rate reduction.

This is shown in Fig. 3.2.2. The bit rate is reduced as a result of the buffering. Thus,

\

1

transmission bit rate = c— bit rate of PCM system (3.2.3)
‘ B ‘ .o
. -~
Therefore, j
T, ’ . ( -
(- 28 o Vs - \
Pg = exp ("N';Tz Cp) ‘ oA .
. C
S
- [exp ( - NZ.Q_R)] g 13
Cp- ° ’ ,
e = P ' . (302.4)

B -
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A - -
® ' h :
l " Anclog - - ' - S ‘
Signal—— 3! Sampler s Quantizer Dato ) Buffer L
N o Compressor Channel
: g . . '
(a)
l st
2 *
| 5, S S .5
\ .
(b) .
4 ¢ 3 -\‘V/\ .
| o
1% S .
' o
« ¢ (e) :
’ v
. ’ ’
o - ? . . , .
\ * - ‘ ® ) . w 2
\FIGURE 3.2.2: (a) SYNCHRONOUS SYSTEM
. {b) SAMPLE PATTERN AT OUTPUT OF DATA COMPRESSOR
(c) SAMPLE PATTERN AT OUTPUT OF BUFFER
o ’
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Hence, the m.s. error due to an error in the level information is
g 4
- 2 ___E§,P|(]_ 1
~level 3 B 22[2 . e )
)
Ci'* Cp ’ . .
s> S : ~
s ?
x i ] Ld ' . .
TR Ut (3-2.5)
» 7 .
) K , . »
3.2,2 Errors in the Timing Information - .
In this analysis, we shall assume the following : |
(a) . Probability of more than 1 run-length word per line in error is very
- ¢
‘ small. : )
’ (b) Bit error is uniformly distributed in a word.’ '
2 % 7
’ (c)\ The non~redundant samples are uncorrelated.
Let us define ' . , :
ny = number of affected samples per erroneous non~redundant sample, -
ny = number of erroneous non-redundant samples due to an error in a run- ’
) v lengyth word, '
eRL( = error in the sample level due to an error in a run-length word,
. 1

r - = number of bits in a run-length word,

‘

Z
]

actual number of non-reduhgdan‘t samples in a line,
o .,
»*

- )

o,
number of samples in a line, : o

,..
u

n . = number of samples in a run.

3
*
H

- s . ‘ -
Now, the squared error per sample given that a tun-length word is in error is given by

: E

s -
" <

. %
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[ 2 . “
.2 _ M2 -
sample L ‘ o, ‘ (3.2.6)
Hence, = o - <
’ ‘ 2
¥ ] r
cr2 7. oo |
sample] L " (3.2.7)
o . A A -

We may write the m.s. emor in run-length endoding as

. i 2
e[.7] - E{“I]E{:ﬂﬁz-em]

Pr (! run-length word in error) (3..‘?.8)

because of assumption (a). Our task is t'o find the f.our factors in (3.2.8), The number -

O

of non-redundant samples in a line is Cl:g , and total number of bits in the run-length

words in a line is TL. . Thus, the probability of a run-length in error is

-E_; * . ) ‘ ’
. t‘i-] o
é—L Py (1-PY s . L (3.2.9)
S
Y ] : ) . - !—‘: ;]
where PB is the probability of o bit error. This is eqt{al to L P (1-P.) CS .
' C B -B
. S .
. ) -4 rlL 3
In practical channels, PB <10~ andalso < > 1. Therefore,
’ )
Pr (1 run-length word in en;)r) ‘= é—l-'- PB (3.2.10)
' ’ S p

-

Suppose that there is an error in the i'h bit of the ‘run-length word as represented
\ .
below :

/~

2i-~ +.ooc-..+"x .20 .
- 0




4

The number of displac

e

g
- % e

eﬁamplés i ZI-‘. Thus, .,
- '

o-'] -
2! “2 n, all samples in the run are affected
: «

1 if
© i 1 )
if 270 < n, 2! samples are affected.
Now; -
- T : .
'y p"(ff]) = 'probability that a certain bit is in error =: =

-

because of the ufiform distribution.

-
M ¢

Hence,
o

Efpyln]

¢

£
-3
‘.3
\ .
3
|

-~

= expecTed number of affected samples per erroneous

»
»  non-redundant sample for.a run of n samples

=Z nyplny)
.r,..] ) .
= ‘l Z n] L) R '
r n] -
‘ s @
w 1 =r
= l Z 2'- +‘ ™~ N
r '=I iw"’]

= the integral part of 1 + !ogzn
-1

-‘ E.fn‘J = z E"[r.\] fn]p(n)°
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(3.2‘:’11)

(3.2.12) )

2

(3.2.13) /‘

(3.2.14)

thré pln) is fhé probability density of the run=length. From Chaéfer I, (2.4.1)

v

~/

g 7 -]
ptn} =pQ-p)"

¢

RS

(3.2.15)
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N\ . : : .
- ' . ‘ 098 '
b .

Substituting (3.2.15Dinto (3.2.14), we get

\-/'N—

b

' 2" l"" - fCe=1 n-1 .
i-1- N 1 S

. , |=w+1
But, ’ ) 9 L . R
T il
V = \14 3
L, 270 = 2% 3 /
i= 4 |
3 Vi
¥ ’ “ X‘n/ //
and 7
: r
v _. _ C
VA = (r-w)n = nr-nw - ‘ /
|=W+] / : - '
. r ; ) )
Hence,
. rl) ! n-1
e, ]= ) < (2¥-T+nr=nw) S— "@.2:17)
n Lo nr 2 nw r -2:17)

To find E[bz] , note that the-number of non-redundant samples per line ‘N is _é__for,
' S

* large L.

\ . ‘
. Suppose that an error occurs in a run-length 'wgrd. The distribution

N ¥ N
for this error is uniform over the L  run-length words. The first non-redundont sample
P i o |
in a line is always unaffected but the last sample is always affected regardless of the

location of the error in the run- Ierigth word The probability that a non-redmdaﬂ

1]

sample being affected increases linearly wnh its location on a line. Hence, on rhe

average, the number of affected non-redundant samples on

é"-'--l
E[nz] = 52 N . e

This result ;grées with that derived in (2], ) L

Vage



Now we shall find E [eiL 1. Let X and' X, be random variables denoting the

i+l

[

levels of the two consecutive non-redundont samples.
\

E[e ] =E[(xi—x )2]

i+1 " -

N .
E [xin-gE [xx., 1+ E fxifl ] (3.2.19)

i

We assume that %, ond x, . are uncorrelated (this is true in practice because

it]

adjacent non-redundont samples are very wedkly correlated).* Also x, and X1

f .
are random variables identically distributed, hence 4
T e = AT = ELP) ' (3.2.20)
ond
‘ Ele. ] = Elx, ] = Elx] . - v (3.2.21)
" Therefore, f *
Eleg) = 2[E6D) - )] ;\( . (3.2.22)
The random variable x ‘can take on any discrete values T O < ’S\ZL//} T
-and assume fha_f x is unifomly distributed over the 2I< levels, i.e. p(x) = JT(- .
@ . R 2
Then, .
2'< 1 -
e [x 3= ( ; p(x)—;—) )
; F -
. x
\/ :
' ) (2"-1)
+
2% (3.2.23) -
4 ! , -



\ : K// L .‘°°'

\
, 2) 2 ) .
E [x = (x) ,
\ r% d ;ﬂz & /
2k -] ' ‘ K -7 ‘

='§F%

1 (2-])(2 -1)

¢ 2% " (3.2.24)
Substituting (3.2.23) and (3.2.24) into (3.2.22), we get A =~
R 17 I DAY= Y. el
. - . © RL . L 6 - 22k 2 (+ !
A : 2k :
- 1%y
S ey , (3.2.25)

Combining (3.2.8), (3.2.10), (3.2.17), (3.2.18) and (3.2.25), e get the m.s.

channel error for'the run-length encoding

2 (rLP B i B .
time = ) ( )()( 2= (S L@ = 1+nr-nw)
6 2k '—-—2—-— né] r .
L St )n-}
Cs G
P 2% 2'-1 Ce.-1
B 271 L o w S n~1
= ( ) ( - 1) (27 =1 +nr-nw) ( )
12¢2 2% Cs & Cs
‘ (3.2.26)

Combining the m.s.e. in the level information and the timiing information gives the
m.s. channel error'of a ZOP, run-length encodad system.

e e
2 _|%s B 1, .
“ ¢ {‘5" i -

- ]
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N ) . »
) , .
¢ w2k e r-1 . : c. -1 \
+ B 5 (;2 2,:]) (EL- ~.1) /. (2w -T+nr-nw)( CS )n-l}
oedd S n=1 3 ’
) . : o (3.2.27)
The total error in the system is
62 = e? + e2 + ie 2
q c ‘ aperture

[\]

c
_ ] m(m+1) SpC 0
‘ {"""2‘1 * % 3 et (o)

122 3(27%) ’
u I o N = G5y n-ll7
o [ + P ( T 9k ) (C = ]) L (2 -1 +pr—nw) ( C ) J
: 12¢g 2 S n=l , - b5
) ° g (3.2.28)

v
i

We shall plot the r.m.s. error’ € against P& for some ‘practical values of the para-

- meters CS, k, rand L. Asimilar curve is plottéc! for the PCM system, Fig. 3.2.3. .

It is apparent that for practical channels where PB is of the order of 10-6, bondwidth
compression can be achieved with only a slight degradation in the signal quality com-

pared to PCM trasmission.

3.3 DPCM System: Channel Noise and Bit Compression

2
o

We have seen in Chc;;ter 11 (2.4.3) that the quantization error in
a DPCM system is reduced from its corresponding value in PCM systems by a factor
"equal to the ratio of the variance of the difference signal to the variance of the

input signal. But, the analysis thus far is restricted to noise free channels. Here,
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-we shall analyse the DPCM system over noisy channels cdrrupted by additive white

Gaussian noise of zero mean. Consider the model shown in Fig. 3.3.1.

y

X,
I+ ¥V IQuantizer
| —-A

1‘}141'

Y

Predictor

N

FIGURE 3.3.1 : DPCM WITH CHANNEL NOISE

Xy >

Coder

&

Decoder

s

¢

9,

103

l

-

Predictor

With the notations in Fig. 3.3.1, the pri“med quantities differ from the unprimed ones

. only in the channel errors. Now,

-

where hj's are the characteristics of the predictor. At the receiver,

x!

-

14

L} +f.l

L]

1

(3.3.2
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e . - L
! Let a M
x'o= X toe, ' . (3.3.3)
i i i : o
° Then, ,rv ( . . : !
< = + g hox. . + ) h -—-.!-_\ - ~
¢ y xib"f e] - Yi iZJ‘ lxl-l {_‘ ' 6i-i ﬂi . ) (3:3-4)
Combining (3.3.1) and (30.5.4), we get ’ X
‘ X, + €. = X, + Zr' hl ei‘i + n, ‘ (3.3.5)
? A
or . )
d e = Z h“’ei:i x+ n, (3.3.6)
. ‘ Therefore,
~ EC21= ) hh Ele . o ] + Efn2) (3.3.7)
X ) i k i-f ik i
”, , ’ < o
- °4 * ~ ) I
. 3.3.1 One-sample Feedback Qptimal Prediction

Suppose that we cohsider the one-sample feedback optical predic-

9

tor whi_ch is simple inimplementation. From our 'c!isi:ussion in Chapter Il (2.4.3), the

a

parometers in the pfedictor are given by . . .
. N . . ¢ ' °
h" = A . (3.3.8)
® ‘ o h =0 Jor [ £ 1 . o (3.3.9)
@ s ’
: \ ° *
* - ‘ ' o //

X

[




®

&

Hence,
ELe;] = p2 Ele, 21 + E o]
= P B2+ Bl
assuming sfationarity of €. dor‘ ‘ P
« E'[;in _ E[an

2

i ]_o‘

Assuming that ;(i and e, are uncorrelated, then

Erx?) = E[;fJ + Ele2]

or v
6 (521 D (%71 el
. = +
E [n?] Elc?)  EDxZ]
But, | -
S T £ +fl
= z, ~e +f
! ! 1
s r
=g oh)-e
=x -0
1 !

105

(3.3.10)

)

(3.3.17)

(3.3.12)

(3.3.14) ’ ‘

-
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EL’) = EL] + Ele’] (3.3.15)
_assuming that X, and e are uncorrgloted. Hence, (;3.3.13) becomes
ELx2] ELZI+Elel]  ELe2) ,
— = 4 e (3.3.%) .
El:xi ] E[xi] E‘:xi ] - .
E [eiz] E [eiz]
=1 + + «
£ (<2 E [x2]
o el E[2) ERZD
. = ] b o i + i

E [zi?'] T E [xi2] . E [xizj . 1-012
(3.3.17)

. We have derived in Chapter 11 (2.4.3) that for DPCM with an optimal prediction,

E [z.lzJ T . '
w——z= = 1=p° . Then we may write ' ’
‘ E x] ‘ S
’ E [x,+2] E [o2] E [n2] '
. ey e L
, © B Bl Elx’]  1-8
(3.3.18)
g "
Now, . , . R
h E [ein :
- 2] = nomqlized quontization errpr ' o
z »

»
o
=
il
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and _ s ’

E[f'IJ ’ o

= nomalized channel error in a PCM system.

i : | \

We therefore conclude that the quantization noise is reduced by a factor of (1 -plz), but the
<

channel noise is amplified by a factor of If the quantization noise is

5 -
reduced by kdb, then the channel noise is‘ir:cfelased also by kdb. This result agrees
with the conclusion drawn by O'Neal [61 1, [62], but differs from that cloimec;l in

- [59] where the authors concluded that the effect of channel noise on DPCM is no
more severe thdn‘;)n PCM. It is worth pointing out that the mathematical results in
[59] are basically the same as that derived here although the cmclusioqs differ due
to different interpretations. |f one, however, increases the output power of the trans-
mitter such that the ;Jower of the difference signal is the‘ same as that of the ‘inpuf

4

signal, then the conclusion drawn in [59 J hoids.

W

’

3.3.2 Two-sample Feedback

Suppose the parameters of the predictor network are such that

<§ 9

hi =0 if j# 1,2 . (3.3.19)
From (3.3.7), we get i ‘ ~
Y E [eizj 2“ h, h E [e. e. ] + E [n ] .

\ )

% ]+é‘(hh E[e..e. J+E[n]
(3320)

a
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‘ o Using (3:3.19) and the stationary property of €., we get
29 _ ,2,.2 2 , .o 2
Efe] = (hy +hy) ELe”] t2hhEle, je o]+ Eln”]
’ © (3.3.21)
Now, using (3.3.6), . e
E [ei_] ei_2] = E [ei-2 ('Z hiei_l__i + ni_])J
i
. = E[ % hiei_zei_d_i] ~
=/ hi E [ei-2 ei-]-iJ
i o
_ 2
-dh| E [61-2] + h2 E [ei;2ei_3] (3.3‘.22)
] -
assuming that € and n, are uncorrelated. ’
Invoking the stationary property of the ei's again, (3.3.22) becomes
J 2 J
) E [ei_] ei-ZJ = h] E [65_2] + h2 E [ei_‘ € o
or
° (V-h)Ele, e .1 =h Ele, 2] ’
. 2 i-17i-2" 1 i-2 B )
K N .
. . - = h ELe?] Y Y 3.3.29)
Then, (3.3.21) may be written as
— 2h.2h ‘
o 29 _ ,.2,,2 2 2 2 24, .
ELd = (W2+hDEL2) + o ELe2]+ El]] (3324

2
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E [n.ZJ 't . ..
2 }
Ele] = 2h 2h... (3.3.25)
S .-
1 TR TR

Suppase that we shall use the optimal predictor.  Using (2.4.52) in Chapter Il ond

‘assuming that R >> 1,

¢

k)

p] = !j] +h2p] (3.3.26)
P, = h]p] + P, ) /"""”‘_ (3.3.2~7~)
Thus, h.' and h2 can be\ solyed to give
py (1 -0,)
hy = et (3.3.28)
1-p
1
and '
. 2
oo 2Th | ﬁ (3.3.29)
2 . 2 e
e 1- p‘ .
Qbstitutring in (3.3.25), it simplifies to
2 - 2
E [ei ] = 5 5 V] E l'!i ] (3.3.30) ¢

H

h&q-;b+2q%

Again Hwe‘ channiel noise is(g’;eater than that in PCM. This agrees also wiﬂ:a the math-
ematical result derived in [59]. '

The above conclusion, however, does not imply tb‘agQPCM provides, .
. no advantage. Since'chcmnel noise in digital systems con eosi!y be made extremely

small and the degradation is usually due primarily from quantization, it is desirable

A\ (x '
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¢

P

3}

to decrease the quontizaﬁon'noise by kdb even though the channel noise is increased
by the same amount. We would like to s.tress again at ﬂ'/ﬁs point that the super}or per-
formance of DPCM over PCM depends on the design being matched to the signal sta-
tistics., For the non-optimal case (h‘ =vl), the digital channel, errc;rs introduce a
permanent change in the d.c. level of ;ci' which will then execute an unrestricted
random walk until the output saturates. Whereas for the optimal system, the prediction
is essentially a delay in series with an attenuator.. Hence, the effect of transmission
error decays exponentially and no random walk is executed.

We may write the total r.m.s. error in the one-sample optimal

L4

system' as | ]
: o1 2 . % a1, 1 ]2
/ N , r.m.s. efror = | ———pp (- p] ) + 5 ( -—fk_) 3
- . ]2 * 2 2 ] - p‘
(3.3.31)

This is plotted for typical values of P ond k in Figs. 3.3.2 and 3.3.3 together

with that for PCM for a comparison .

3.3.3 Bit Compression

It con be seen from the plot in Fig. 3.3.2 that at low probability *
of bit error, the r.m.s. error is reduced significantly from that of PCM. Thus, we
can redesign the DPCM system, neglecting channel noise, so that the number of bits

required to represent each sample is reduced while maintaining the same r.m.s. error

as that in PCM.
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$/N ratio improvement l' sample = — p2 .‘
1
1
10 Iog.lo — db
e ] - p‘

(3.3.32),

For Py =0.8644 (particular example given for voice in [57]), then

S/N ratio improvement = 3.95 , or
> 6db.
If we wish to reduce the bit rate instead, we let the quantizot%on
noise of the DPCM system equal to that in PCM system. Define M to be number of
bits per samg;le for PCM systém and M' to be number of bits per sc;mple for DPCM

system. We may write

2 2
o _ (0
rcm M “oecm  J2M A33.33)

where 02 ond o2 are the variance of the input signal to the quantizer for PCM end

DPCM, respectively, and KPCM ond KDPCM are constants denoting the conequence

of scaling.

’ .
Let KDPCM = KPCM' then
. ‘ ol 2 / l
M =M*+ 7 |092 ( "a') : . (3.3.34)
‘ v2  E@) 2 | : '
where (-(—,—) = —y = 1- Py as derived before for o one-sample feed-
' E (x.) .. ﬂ q
i

*back case. ‘ ' -
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For p, = 0.8644, M = 7 bits,
M >~ 6 bits -

Thus approximoteiy 1 bit per sample is saved for this system.
For'TGZignals sampled at 9 Mc/sec, o, ‘is typically 0.95. [61]
In that case S/N ratio nmprovement is approximately 12 db, and about 2 buts per

sample can be saved by used DPCM. Fig. 3.3.4 shows the r.m.s. error for different

2
(4

quantizer levels. - .

E)

The performance could be improved by using variable length coding
schemes to encode ﬂie s%ci before transmission. Since the probability density of the
signal levels is uniform, the ove’roge number of bits required for their representation

~can be reduced by using variable-length coders s;Jch as the Huffman Coder [91]. it
was shown [66], that 3 bit DPCM can be reduced to 2.28 bits per picture element
for a particular example. The drawback in using variable Ienéfh coding is that of buffer
requirment and the delay in transmission introduced from bufféring.“ L

» The bit compression ratio can be derived as follows :

i,

5

. 1 0'2
. M =M+ 5 |°92('5) ) )
The bit compression ratio is . &
o=t - M
B . ,
M+ T o')i"
2 4%
- =, 1 ) '
) - ‘ o f . a N (3.3035)

a7/
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3.4 Fourier Transform Coding : Effect of Errors and Bit Compression

s We have mentioned before that an attractive feature <;f transform .
coding method is its immunity to chonnel errors. V Each of the reconstructed samples
isa we,ighted sum of all p‘oints in the spatial frequency domain. Thus, an error in a
particular sample affects all the reconstructed samples slightly instec’:dJ of a big error
in one sample. The human eye is sensitive to the large errors instead of small averoged-
out errors, resulting in’ a noise immunity property. We shall consider the one-dimensional
Fourier transform to illustrate the situation. Fig. 3.4.1 is a block diagram representation
of a Fast Fourier Trc;nsfo;rn (FFT) coding; system [_92]. One-dimensional transform
consists of scanning the picture and bl;cks of N samples are coded each time .'
) .
Let us dénote s and f as the sample vector and the transform

vector, respectively, ond FN be an Nth order Fourier transform matrix. We can

write

f=F (3.4.1)

NS
5 ond fi (i=0, ..“., N-1) are the elements of the two vectors. The discrete

Fourier transform ond its inverse are expressed as

‘ ‘ N-1 .
N k. ‘ ’
f. = w =0 ] cesy N"] 3.4.2
o RPN (=0, 1, ) @4
N-1

; =_t'¢,20 W =0,1,.0, N-D) (3.4.3)

where

L =4 - YW,
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. . ]
%?’- {f} as a real sequence {f'} as follows : N
N N-1
[ f - o
o 0° -k=0 %

- .y
is pure real because sk's are‘real .

k]

< .
C ‘ 9 N=1

- ikw .
‘ fﬁ k‘;‘o % © ' )
2 .
g N-1
c SRR
. °, k=
~ w

o , '
is also real.

\ N-1 :

u ; s i [N - iy 223
Ki-i =/ e - N

k=0 :

N-1 2
B Za | 20 i
. k ’

, NS 3
\ ' ={ Z e N )
: . Lk=0 N ’

-

# \ ) - R .: N
AN T e e
1 ‘: . ,
where {*} denotes the complei; conjugate. ‘Therefote, -

In general, {f} is a complex-valued sequence although {s} is real. We shall express

(3.4.5)

(3.4.6)



' ‘ 19

" N3 2
2+ . SNk S
+ 2‘ ?.* e N
S
But, 4 '
- ,\ PN -i(N-k 3%
f,.e = f.*e
N-j [
~ *
® 2 2w
- ik =— ikj = -
_ =£* o N - : N
¢ . . ‘ (3.4.8)
l'ience,
¢ N .
- -1 2x
7  JRA T .
1 k N
{ = . - .
{ S TR ] fotfy (D +2 Z] Re lfe ] (3.4.9)
o N 2 I .
Where Re [ ] means the real part of. Let us define the following elements of the
vector f' by S . &
fo =f .
) iy = Re lF] '
. _ .
| o Im [fi]
‘ N TN N
2 =1, 2 ey 5-D) (3.4.10)
~ ‘
Then, o N :
. - "2'
6, = let e ()RR v 2 [ cos(kdE)
N {0 N-1 ~ ¢ 2j-1 N
< ';-_
/) . e Yoer e 2x . ’
. ‘ N + f2i sin ('ikﬂ-)l . - @.4)

-
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\

Therefore, one can transmit the real-valued sequence {f'} over the thannel and get

the reconstructed signal at the receiver by using the operation (3.4.11). The recgn-f
¢

structed signal differs from the original one due ta quantization noise and channel,

noise.

.

— .
Let ¢ .be the quantization noise vector, n be the chonnel noise

vector, f' tye the exact tranform vector. The received sequetice f is given by
> .
f=fre+n

and § = reconstructed signal
=F7) (¥
=FL (P te+n ) - _ (3.4.12)

Whe¥e F-' is the inverg FFT operator. Since FT operation is linear,

&
=F e+ F el + T )

[w>
|

1

s +F7 e} +F

o —

{n} * (3.4.13)

" Thetefore, the error in the reconstucted signal is

e=t-s=F o+ F

{n} (3.4.14)

<

We shall consider quantization noise first. The some development applies to channel

noise. 4
"




f
3.4.1 Quantization Noise [92]

Consider the kth term in the quantization error sequence. From

3.4.11),
) L 2"
a 1 k . 2n
e, % N l‘o FED eyt zi% ¢2j-1 <k )
.y 20
+ 52] sin(jk -N-) . (3.4.15)

Since each €. is equally likely, the mean square quantization error in the recon-

structed signal is

e

N-1 . -
2 _ 1 7 ’
. - (3.4.16)
3 o ‘ -

ei can be weitten as - o
| i N 1
: _ T-l .

2 1 . 2 2,, 2u,- 2 .2,,2

& -;;-2 € + €N-] + 4 Z ezi_] cosm(|k Tﬂw‘) + eZism (ik-—& (

L3

—
=

l—n
— (3.4.17)

where we have assumed that the error samples are uncorrelated. Therefore,
3 (4

N
» — s N-] -1
RN e+ el v 4 5 e 4 oz(ikh)+ in (kS
2 { €0 N-1 7T 2 Z Z 2._16 s (kg €p5in ik N ‘
' N N . |
k=0 =1
- atm o T— -] N-I v
1 2 2 4 2 2,. %
= - + e 4+ — €. cas (*.—.)
2 1% 7 °N-1 TN 21 ) N
N z ! k=0

. i i=1
. v . _:* g L N-T ] ’

Y 2 . 2,, 2%
+i£1 i éo sin (|kﬁ-)

N

(3.4.18)

o alaws n a o
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It can be shown that [93], after some manipulation, ’
N-1 ‘ N-1
ké) C°§2 (ikgﬂt = -k; sinz(ikg'-:-;-) = -';— o " (3.4.19)
’ Equctfon (3.4.18) becomes . "N
—-1
- 2 -
2 1 2 2 2 7
e = ;—i o + €N-1 + 2 Z‘ 62i_] + ezi (3.4.20)
. l=
- Lf -
1f the jth sample is coded with k. bits, the quantization error in the ith sample is
y ! 5
given by

. — o.l

2

3 :
D= K b : 3.4.21
€ | | ( )

2 . . * [ . L3
where Oi' is the variance of the jth coefficient fi', ond Ki is a constant expressing

the effect of scaling and companding. Hence, by assuming-all Ki equal to”K
N

2 ., Har .2 2
2.k % L WNa L (%, %
2V TE R ; 2%, %,
J 2 2 ' 2 4 2
(3.4.22)
'

This expression gives the quantization grror in the systemﬂ. It has been shown (94]
that this quontity is a minimum when the contributions of all the terms in (3.4.22)

are equal while keeping the bit rate equal to that of PCM transmission.

3.4.2 Channel Noise R

}

Suppose that each of the coefficients are encoded with the same
v { -
number of bits as in PCM system and denote this number by M. Then each of the

L3

b}




term may be dif;erenf.
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coefficients are equ;lly likely to moke an error. We can apply (3.4.20) to evaluate

the channel noise. Let Orj denote the channel noise power, Then the m.s. chcnnelu\

noise in a FFT system is

2
e
n
2(N—1)o'3 :
= ———T—— ) o T (304023)
- N
where
P
2 _ B _ 1
ON - = —3- (] —277“—) (3.4.24)

Thus if the same bit rate os PCM is used, the m.s chqnngl erfor in a Fourier transform
encoding is reduced from the ’corresponding value %\"’ PCM by a factor of 2(N-1)/ N2.
However, the quantization érror in this case is given by

2

'
oz = K L 7 ' (3.4.25)
[ i 9 e

ald (3.4.20), and it would not be o minimum since now the confribution from e&

13

o If the coefficients are encoded according to the following rule

(95 ] by equating the quantization noise to that of PCM system, =+

Ld
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] ‘c’i.2
N ki = M + 7 |092( _i) (3.4.26)
- No

where 02 is the signal power, then we can achieve reduction in bit rate. The m.s.
channel error in this case is different from (3.4.23) and is not easy to compute. How-
ever, the inherent property of Fourier transform distributes the error evenly ;Jver all
samples rather than Jocalized on one particular sample. This makes the noise be-
have like a low frequency noise structure which is not as annoying to the human eye

as the high frequency "salt and pepper" pattem caused by the localised errors. This

aspect has been discussed and demonstrated by experimental evidence [75]. For high

rerror channels, error-correcting codes: have been found to improve the performance

significantly.

3.3.3 Bit Compression

Suppose that the jth coefficient is coded with ki bits. The total’

m.s. quantization error is given by

N-1 o2 | % ‘
2; K. —L— (3.4.27)
o 27

&

If each term has the some contribution, the quantization error is a minimum. If we

constraint this to equal the quantization noise for the PCM.case, then each must equal

elz’CM/N . Wemayv;rite |
———————— ' . ' a,
Z-1 2 7 @.4.28)
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ond,
k. = M + 1 log,, (N Ki ) + log" (_—0;' (3.4.29)
i 2 72 KPCM : 2 'No ;

lfssyme that the scaling factor Ki' = KPCM':hen

12
‘ q

k. = M+ 5 log, (;"'i) (3.4.30)
o

The nearest integer of ki is the number of bits used to code the jth coefficient. If
‘ .
this method is to reduce the.bit-rate, it is necessary that the average bit assignment

be less than M, i.e.
N-1 .
] .
N i; ko< M (3.4.31)
9 - . Iad

Due to the lack of data for video signals; an example for 56 K bits/sec. (voice}
, - SR
PCM is used for illustration [95]. N‘= 16 ond 0 = 1024, This is shown in Table

I. A comparison of the PCM, DPCM and transform methods are given in Table Il.
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@ . "FOURIER TRANSFORM (N = 16) 0 = 1024 .
RPCM = 5§ k bits/sec.
01 ¢ is
' N No k,
0 336 0.328 7
d 1 544 " 0.530 8
) 548 0.540 8
3 306 0.298 7
4 352 0.343 7
5 162 0.158 - 6
6 181 0.176 6
A 7 118 0.115 6
- 8 119 0.114 6
» 9 106 0.103 5
10 %0 0.088 5
n 8 0.079 5
12 46 0.045 4
13 76 0.074 4
14 23 0.023 4
15 51 0.050 4 )
Total bits 92
Ro k bits/sec. 46.0
Bit rate reduction = 10 k bits/sec.

TABLE | :° EXAMPLE OF BIT-RATE REDUCTION [95]

+ /"




2'- d TRANSFORM (N'" order) 1 - d TRANSFORM (N)
PCM DPCM - K.L. H.T. F.T. K.L. H.T. F.T.
No. of bits/pel to ﬁ
obtain approximately { - )
the some quantity of 8 3 2 2 ‘ 2 2.3 2.3 2,3
a particular picture
g— SIS GUNVEIE SIS P —
- . ~
'S‘m!hvny fo Plc’fure none large r moderate small small moderate small small
o-picture variation
Delay none 1 sample N lines 1 line <
on 1 line
L e o g o e —
Complexity very simple complicated| moderate moderate || complicated | moderate l moderate
et simple L .
, SENURRS NEDUURUR | BN RIS R
Cost of coding small small large moderate large large moderate large
TABLE Il : COMPARISON OF PCM, DPCM AND TRANSFORM CODING
. >
N
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»
CHAPTER IV

IMAGE RECONSTRUCTION BY INTERPOLATION

4.1 Contouring Effect

- The transmission of digital ;ignuls through PCM has been used for
more than one decade.- The extension to TV signals has also been investigated. One
of the difficulties encountered is in the choice of the number of quantization levels.
ExperiTents have shown that a seven-bit encoder is good enough\ for all black and
whitelpiectures. A six-bit encoder is just sufficient to produced fair pictures. A
five-bit encoder allows proper reproduction of half-tone pictures but introduces false
contours [96] . This effect is due to the small number of:;yffnﬂzaﬁon levels used
and the sensitivity of the eye to sharp variations in the b/rightness. The encoder
has to maké‘o decision as to where to switch between the two St;cc;essive levels
when the brighthgss of the image is progressively'changing. Th\e‘ decision line

appears as a contour on the reconstructed image.

¥

The zero-order-predictor which we have considered in Chapter 11
(2.4.1) operates by looking for those parts of the images where the brightness is
constant and transmitting only the location of the transition. Hence, it transmits

the position of the confours.

3

Previous experiments have shown that most observers are unable to
distinguish ??ré than eight to ten half-tones between full black and full white.

Therefore, a four-bit encoder should be more than sufficient if one could neglect
the contouring effect. However, even for a five-bit quantizer, this effect is still

|

1
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very significant. |t becomes imperceptible for a seven-bit encoder. It is obvious,
however, that the number of contours increases and the distance between fheym
decreases wi;h the number of bits. Hence, t.he ZOP ‘renders a higher compression
ratio if the number of bits used is small.

\ —

4,2 Reduction -of Contouring Effect ~

Basically there are two methods which can combat the effect of

contours. -y,

M Pseudo- Random Noise ‘ . : ‘

N

> This technique’ has been suggested by Roberts [40]%. A "noise"
is superirr;posed to the or:alog signal before encoding. The noise has a uniform
distribution over the range between two successive levels and has the effect of
breaking up the contours. Experiments ?:ave been performed ané are found to be
successful [55], [56]- Tl;e only disadvantage of this technique is slight

degradation of the picture quality due to the increase in background noise . Well-

designed dither pattems improve the result.

(2) Interpolation .
In most images, the brightness varies progressively between levels.

Hence, a linear interpolation should resemble the original signal quite well. In

-
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essence, the method replaces a step jump by a ramp function which has a low and

‘unnoticeable slope. This has the effect of replacing the contour by a low frequency

structure which is less objectionable to the eye.

The interpolation sta‘ts before the transition and depends on the
value of the transition before triggering the interpolator. A transmission delay

results and memorizing of at least one line is necessary.

The above technique is suggested in [96] and no published analysis
or eXpenmenfal work has been done at fhus time although some people in the Bell
Northern Research lnsﬁfufe are ‘considering a-simulation. We shall present an error

analysis of the interpolation process fdtithree algorithms in the next section. .
A . ., . L]

The transmitting part of the system contains only the zero-order-
predictor followed by a run length encoder, while at the receiver, an interpolating
equipment is implemented together with the decoder. The operation of the system
is as follows: The image is encoded with five-bits per sample . (thus without the
interpolation the contouring effect is slfill quite significant). At t‘he receiYer, the
interpolator reconstructs the signal by drawing q, st;night line ;:ccording to the

predesigned algorithms, which aim at suppressing the contouring effect. We assume

that with the present day technology, generation of points at very fine quantized

Is

values are possible. Thus the operation is equivalent to creating additional bits

_per sample to those portions of the sigial. These operations must be performed at

the sampling rate (10-Mc/sec. for convenfional TV).

-
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If the interpolation succeeds in reducing contouring effect,.

/

bit rate reduction is possible. A bit compression ratio of about five comparing

with conventional PCM TV transmission is predicted [ 96]

-7

.

4.3 Anolysis of the Interpolation Process

It is obvious that sb‘ne error is introduced by interpolating across
the contour. The amount of this error in the root mean square sense depends on the-

particular algorithm chdsen fo implement the process. .

)

o ° lq
Suppose that x is the original signal, X is the quantized

»

version.of the signal (the same signal is obtained after decoding if we assume error-
free transmission), and X, is the interpolated signal. Let e, be the error
y

introduced by the interpolation process. The mss. error is -

~

2
EL(xx) 1= E{Dx- (3%,).2% )

9

i

E [(x-x )2]+ E [eizi

where we have assumed that e, and (x-R) are uncorrelated. But E [ x-% )2]
is the qUantization error present in- the system even if there is no interpolation. Thus

E [%2] is the f.s. error introduced by the interpolaiion process. S

We shall make the following ommp}ionsw(i). The signal process %
‘ N . )
is Markov, hence the increments are\mdependent, (2) The dlfference in levels isa
/f , .
random variable of a stoﬂonary process a\q is mdependent of the run~ lengfh dlstnbuhon-
- LY
N

il
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’

(3) The procéss is bounded; (4) The random step function model as described in

-

Chapter 1l is assumed.

i3

<

The interpolation detects the contours whose transition is unity

(for higher fronsmens, no interpolation is performed since in most cases they are

N
real contours). It ‘evaluates the size of the transition and selects the up or down °

modfe for the interplator and follows the afgorithm selected. .

[}

For our analysis, we shall assume fhat mterpoluhon is only triggered

if two consecutive rins are at least three with a umfy transition in between. Such a

p
choice is intuitively reasonubleQ. We sl’mlf derive the pmbability that the inter

¥
polation is being triggered. ".“/

o,

According the the above description,

N\

—/‘

‘Pr (interpolation) = Pr {run-length*2 3; transition = 1 unit, mn‘\ienglh 23 j,/ (4.3.2) x

1
hl . ' |

? Q -

Fig. 4.3.1 shows such a situation.

©

FIGURE 4.3.1 SITUATION WHEN INTERPOLATION IS
. .. BEING TRIGGERED
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A

. With the notations shown in Fig. 4.3.1, the probability of inteq;olafion is

Pr (ﬂi x> 3, A= 1 unit,ni 5) Since the jump in level is independent of

e

the run lengths,

Pr (ni 23, A‘ =l’. unit, niﬁl"?3)=Pr (ﬂi 23, n_i+'| {3)Pr(A1 =1 unit) | (4.3.3)

-«

Also the run-lengths are independent. Therefore, we have probability of interpolo-

+ tion = [Pr (n, 23)fpr (A, =1 unit) ‘ | (4.3.4)

Let p denote the probability of a jump in level. Thus the probability that

level remains the same as the pievious one is (1#p ). Hence, the probability

-

_ of obtaining a run of three is p (1-p )2 , -where we haye assumed the stqtionary

~

property of the incremental process.

Thus, the probability of run of at least three is ’

p(1-p) 2 +p(1p) 3+ .. +p(1-p)" : (4.3.5)

.

I
"where T is the maximum run length. Hence,

’

[Pr(n,23)12 = [p(1-p)2+p (1p)° oo v p(1-p) " 32 :
= L) ()3 + (1) 1 2
_ p2 (1-p * ¢ i’-.((|].fp);r2 32 o RN
=(-p)Yn-0-p) 22 — 7 (4.3.&)‘ -

Thus the probgbility that.interpolation is performed is given by




3

134

(-p) 11 - (-p) T2 P (8 Mumit) - \ ©4.3.7)

Typical vaives are p=0.2, T =32 .and Pr( A‘ =1 unit)= 0.15. Hence,
.
Pr ( interpolation ) =~ 0.06144.

We shall next derive the m.s. error introduced by three different algorithms.

m Suppose we interpolate by constructing a stroight line betwee.
| sample before and 1 sample after the contour as shown in Fig. 4.3.2, independent

of the size of the run lengths.

FIGURE 4.3.2 . ALGORITHM 1

§

Let A denote the size of 1 unit jump. Then, error in the ith

A )

auméle is -g— . The m.s. emor is

LT T g
- ,m.s.e.'=ELe323=2 eiz[Pr(ni“i) J2Pr(A)‘ (4.3.8)-
. 1=3 ) .
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Since the present algorithm constructs the straight line independently of the run-lengths,

ei2 is a constant equal to (= 4 )2. Thus,

ms.e. = & ) (Pr(n=1) P (a)
i "1=3 .
’ 2 '

=...%_ . Pf)( interpolation )

xPr(A) | (4.3.9)

2
= () - ()82 4

’

If we assume that there is no aperature error in the zero order predictor, then A
< 1 — k. L
has the size of 1 quantum step equal to T where 2 is the number of quantizer

levels.

For p=0.2, T=32, k=5 and Pr( A) =0.15,

0. 06]44
m.s.e. >

x "Tb‘ ~ 0.01536 x “‘ﬁs'
2%
r.m.s. error = 0, 00388 ‘

The quantization error is the system is Jﬂz and the
12

r.m.s. value == 0.00902

Interplation error is about 40% of the quantization error, which is acceptable if it

succeeds in suppressing the contouring effect.

(2) Supposg that we now change our, interpolation algorithm such that

the reconstructed line is dependent on the run-lengths n. and n, as denoted in

t

Fig. 4.3.3.

<
¥
25
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-
R
-
_-|a 2 |
'Y ol /‘
"
FIGURE 4.3.3  ALGORITHM 2
i’he shorter of the two runs is determined. Suppose that ny is
n ‘ .
smaller than ny- Let n equal to [-2]-] where [ x] denotes the integral part of
n n
x. Start interpolation from [—2—]- ] back from contour to *[71 ] after the contour
using linear inferp;olaﬁou. It is obvious that for all cases the interpolation cuts
the contour at the half point. As an example, suppose ny = 5, n, = 7. R .
Then nl> is chosen and n = [-g] = 2. Thus the interpolator would start at
2 samples back from the contour and end at 2 samples after the contour.
Let
_ n ny ~
n = [-2- Jor [-2—] ) (4.3.10)
The probability of a run of ni followed by a run of ny with one unit jump in
between is )
» / |
n]-l n2-l -
tp(1-p) 1p (1-p) IxPr(A) (4.3.11)
o w{; )
Y
A P




| _ o
‘ The square error made in this case is
]

. . _ - .2 '

(L2 (s () A7
7 - ()
- 2 ‘
4 =8 L 2 e (7)) A2
4w
2 .2 r
=..é‘.‘__,+ _A___2 [h (R-1) (2n-1) ]
3(%n)
3 ¢ . ° l —
. Hence, |

n,tn,-2. 1 1

m.s.e. =

3n, =3

n27°M

l\’u g E

o
-~

The computer has been used to generate the result for p = 0.2, Pr(4)=0.15,

T = 32. The result is

~

m.s.e. =0.0244 x -—%E—
2

* r.m.s. =0.156 x -}( -
2

\

For k=35, Yy

r.m.s. error = 0.00488
. . w . .
— This algorithm offers more flexibility than the first algorithm and yet maintaining

. an acceptable level of the r.m.s, error

. L
' N 2’\
.
B "

\% 2 12 . - i~ 2
(1-p) Pr(A) [+ 5 (n)(n-1)(2n-1)]A
L P P { 4 3(2n)2 nj\n - |
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(4.3.12)

(4.3.13)

(4.3.14)\

(4%. 15)




3) Suppose that we use the following algorithm:
n n,-
2
Let n and n, be the run-lengths Let [-— ] and [”-—f- ] be the

n n n
mtegral parts of —éland -?g . respechvely Start from [-——] samples back and

interpolate till [ T] samples after the contour. As an example, n‘ =35,
n,

ny= 9. Hence [-2—] = 2 and [-—-—_] 4, Thus the interpolation starts from two

samples back and ends at 4, somples after the contour, as shown in Fig. 4.3.4.

. a2
A __——"7
. ™M
2 o
FIGURE 4.3.4 LALGORITHM 3
Let o "
nl i
=[5]+ [TJ \ (4.3.16) '
The square error one makes in this cose is
(1 3102 | 22
2= (124 (2P e -_—-:2_—7-—5—]+[(-—) +(2P e o nalea
n n (n') n n )

]
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-
N i
{

Thus the m.s.e. is

L |
: 2
AR AS IS AV IS (4.3.18)
2:3 n]’-‘: ‘ .

Avcomputer program has been written to generate the result for p=0.2, Pr( A) =
0.15, T=32.

L

.o 1
m.s.e., =0,4075 x ;ﬂi

. For k=35,

_ 1
r.m.s error = 0,638 x —;5—

= 0.0199

Thus thé increase in r.m.s. error is quite significant. From the standpoint of r.m.s
error, the second glgorifhm is more acceptable than this one. But, one must not
forget that the sink in the system is the human observer. Hence, even though a
large r.m.s.v error is introduced in the third algorithm, its qbil}ty rtcfmbaf
contouring effect might be superior. No definite conclusion can be drawn at this

point unless o subjective test is done to test the different methods.

The effect of channel errors on the zero~order predictor has been

discussed in Chapter 1. It\is more sensitive to transmission errors like most data

e
kY

compression systems. But, it is possible to improve the situation by toking
. ’ advantage of the line=to-line correlation. If an error is detected in a line, we

simply have to repeat the previous line. ¢

. \ .
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/

The total m.s.e. of the system can be obtained by adding the
interpolation error to the system error of a run-length encoded system obtained in
Chapter 111, equation 3.2.28. The resulting r.m.s. error is plotted as g function

R

of the bit error probability in Fig. 4.3.5. " .

4.4 Sensitivity Weighted Error

As has been pointed out before, the root-mean-squafe error is not
the correct fidelinfy%'dé}'jfn forpictures. It has been shown that pictures wﬁi;:h are
subjectively optimcl\are quite different from pictures opfimized in the mean squal:e
errc;r sense. Thus one may conclude that the sensitivity function of the human eye
has to be taken into consideration, re;ulting in the definition of the "weighted
system error". It is calculated for any system by averaging the product of the
power spectral density of the system error and a non-negative weighting function
over a certain frequency band. The weighting function scales the power'.f.;)ectral
density of the error so that at each frequency the contributian of the erroni power
to the fidelity criterion depends on the sensitivity of the human observer to the

picture noise at that frequency.

Suppose that the frequency response of the human visual system is
S (f) and the power spectral density of the noise is G ( f), then the weighted

power is given by .

[0 )
E=j‘ S(f) G(f)df

=Q0

@.4.1)
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Pl

It may be seen that the use of interpolation replaces the contour by a

a lower frequency'structure. Since the sensitivity function has an attenuation effect

v

at low frequencies, the actual weighted error power at the eye is expected to be

»

less than the weighted error power. This corresponds to the reduction of the contouring

, effect in a subjective test.
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. CHAPTER V

CONCLUSION ‘
Certain techniques which achieve data compression have been con-

sidered in this thesis. Chapter | introduced the significance of data compression. *

{
Three compression ratios which have been most commonly used as figures of merit for

) v

compression systems were defined. Classifications of data compression systems according
‘ L
. A\ . . . . .
to technique and their effect on the signals were given. Picture coding was discussed
in Chapter Il in the light of bit-rate and bandwidth reduction. Particular emphasis

has been placed on zero-order prediction-run length encoded systems,” DPCM systems

-

ond transform coding. ¢
The effect of trapsmission errors on these systems were analysed in
Chapter HI. Most data compression schemes were found to be more vulnembl; to
transmission errors. Although well-designed DPCM systems will reduce quantization
noise from the corresponding PCM system, they suffer more frbm channel errors than
PCM. For bit error probabilities of 10-6 or more, the r.m.s. error of the compressed
systems starts to increose almost expm;ntially, and is therefore unacceptable. For

o~

practical channels where P, < 10-6 , it is possible to achieve bandwidth reduction

B

_with only a small signal degradation as compared to the uncompressed system. Trons-

form picture coding, however, offers a certain immunity to channel errors by averaging
out each error over the whole ensemble of picture elements, thus producing a less
onnoyi;ug effm the eye thon the "salt-ond~pepper" pattem present in ;mventid\al
PCM transmission. The use of transform methods in con it.‘vnction with block coding

also reduces the bit rate to a level comparable to that of DPCM systems.

€y
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. One could, in principle, reduce the bit rate by quantizing the

signal with fewer levels. Quantizdtion with fewer than 64 levels will introduce a

[y

contouring effect which is particularly noticeable in large areas of uniform brightness.

A reconstruction algorithm using linear interpolation at the contours has been intro~-

e

r

duced in Chapter IV. Although this technique might suppress the contouring effect,

[

it would also introduce a new source of error. Statistical onalysis of this error source

is presented. For certoin algorithins, the r.m.s. error does not significantly differ

-

from that of uninterpolated cases.

It wgs also noted that although r.m.s. error gives indications of

system performance in some cases, it isnot a proper criterion for most pictorial data .

Because the human observer is the sink in the system, subjective evaluation of the

technique is indispensable for further investigation.

by

A\

o
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