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ABSTRACT 

Various forms of the redundancy reduction techni-

ques which include the zerQ-order and first-order predi~-

tors, are applied to digital data compression •. Different 

schemes for supplying the timing information in a compressed 

system are available. In particular, the run-Iength encoder, 

single address encoder and position encoder are analyzed 

and compared. 

It is shown that these compression systems are mo~e 

sensitive to transmission errors than the conventional PCM •. 

However, when bandwidth compression alone is consid~red, the 

performance of the compression systems can be made as good 

as that of PCM. 

Graphs showing the effect of noise on zero-arder 

and first-ordcr predictors, for the three addressing achemes, 

are includcd. 
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CHAPTER l 

DATA COMPRESSION SYSTEMS 

Modern communication methods have rendered possible 

the transmission of analog (continuous) waveforms in digital 

(discrete) forme The many advantages and disadvantages offe-

red by these techniques are DOW well known and have been ex-

tensively covered in the literature. Pulse-code-modulation 

is one way to achieve this transformation and has been applied 

to voice, video and telemetering data for more than a decade, 

thus ca~sing a tremendous increc&c in the amount of digital 

information which must be transmitted from one point to an-

other. The capabilities of present-day communication channel 

may not be sufficient to accomodate aIl the signaIs generated. 

At reception, the information often appears in a for-

mat not suitable for immediate use and must, therefore, be 

* stored before it is processed and decoded. This results in a 

waste of memory space and proces50r's time, both costly items. 

Hence, excessive bandwidth occupancy and time requi-

red for sorting the "useful" information out of this large 

amount of data are the two main factors that led engineers to 

consider more efficient ways to process digital information. 

Methods were devised to remove, at least partially, 

the redundancy of the message by taking advantage of the de-

gree of " predictabilit y " which exists among the sequences 

* For some expected quantities of scientific data from deep-space 

see reference (1). 



which forro the message. 

Any data compression scheme that has been developed 

is, therefore, directly related to how the input waveform 

was originally sampled. We know that a bandlimited time Eunc-­

tion mUdt be sampled at least at twice the highest f~equency 

contained in that signal in order to extract aIl the inf~r­

mation contained in the waveform. Most peM systems are bQilt 

according to that rule. 

2 

However, in the case of many telemetry signaIs, ther0 

aresame periods of low activity, and redundancy occurs during 

these periods which are grossly oversampled. Since little or­

no information is gained by sending the samples occurring 

during a low activity period~ these samples are redundant 

and need not be sent. 

Data compression or rcdundancy reduction consists 

in processing the data prior to transmission 50 that the re­

ceived waveform can be reconstructed with a minimum number 

of sampl~s to any desired accuracy. For the purpose of co~­

parison, we will take this tolerance to lie within one quan-­

tization step of the AID converter. 

Since the occurrence of nonredundant samples is 

random, the data compression techniques described in the se­

quel usually employ temporary buffer storage of compressed 

data, which enables the actual transmission to be synchronous 

and at a rate lo\\'er than the Nyquist rate. A simplified block 

diagram of a data compression system i5 shown in Figure 1.1. 
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In the course of this study we shall assume a binary 

symmetric channel corrupted by additive Gaussian noise. 

1.1 Definitions 

A data compression system will be formally defined 

as a communication system which adapts itself to the time­

varying ~nformation content of thA data and seeks to main­

tain an output rate which is consistent with signal activity 

without significantly affecting the efficiency of the trans­

fer of information. 

lt appears from this definition that several systems 

can fultill these requirements, and hence, classification of 

the data compression systems is attempted in the next section., 

Let us first define sorne technical terms tbat will be often 

used in the sequel. 

lt was implied in the above definition that a signal 

can be regarded as having a varying effective bandwidth or a 

quasi-ststionary spectrum. A "quasi-stationary spectrum" \'lill 

be defined as a short time spectrum, the mean of the signaIs 

exhibiting discontinuities between samples ("sample" is taken 

here in the statistical sense). lt will be shown that this is a 

minimum requirement if adaptive methods are to be used., 

To evaluate compression algorithms, we must consider 

sorne figures of merit which will serve as a basis of compa­

rison. AlI things being equal, a "good" system should exhibit 

a high compression ratio. In the following, three compression 

4 



ratios, namely, sample compression ratio, bit compression 

ratio and energy compression ratio, are defined, each taking 

care of a different aspect of data compression~ 

1. Sample Compression Ratio 

(1. 1) C 
s = Total number of samples generated 

Number of nonredundant samples transmitted 

This formula is useful ta ascertain the amount of 

redundancy inherent in a given message, for a specifie Cûru-

pression algorithme 

A1though this figure of merit ls often quoted,. it 

do e s no t des cri b e th e e f fic i en c y 0 f the a ver a Il s ys te m.. Th i s 

efficiency can be reduced considerably if we take into account. 

the timing information that must be sent to the receiver in 

or der ta ohtain a proper reconstruction of the signal. Wc 

have already stated that we are essentially concerned in this 

study with synchronous systems. This entails sending the time 

of occurrence of each sample as weIl as the sample amplitude, 

and 1eads us to define a bit compression ratio. 

2. Bit Compression Ratio 

(1. 2) Number of bits to send (uncompressed data) 
= 

Number of bits to send (same compressed data) 

Notice that the numerator represents the number of 

bits sent by a fixed sampling-rate PCM system, designed ta 

* yield p~edetcrmined error fidelity criteria. Therefore, the 

* The error is due mostly to the quantization noise. 

5 



ratio CB is valid only if the ~aveform reconstructed from 

the compressed data exhibits the same quantizing noise as 

the PCM system, since higher bit compression ratio could be 

obtained if wc relaxed our fidelity requirement for the com­

pressed data and maintained a more rigid one for the non­

compressed data. 

The denominator of CB consists in the number of bits 

necessary to represent both level and timing information. 

However, in (1.2), no mention has been made of synchroniza­

tion bits. In digital systems, it is indeed Imperative to 

maintain synchronization between transmitter and receiver, 

and this is usually achieved by sending at regular intervals 

a special word called the synchronization code-word. The re­

ceiver should be able to decode this word with as little am­

biguity as possible, so the code word should exhibit a pat­

tern not often encountered in the stream of information bits. 

Preferably, the code word should be short and its frequency 

of occurrence is chosen in an optimal way with respect to 

parameters such as noise in the channel, speed of recovery 

when synchronization is lost, acceptable number of synchro­

nization loss per unit-time. We shall calI the interval bet­

ween two consecutive synchronization words a line. This ter­

minology is taken from television where a line is indeed cha­

ractcrized by synchronization pulses marking its beginning 

and ending. In the following we shall assume an error-free 

synchronization procedure. Hence, error propagation is limi­

ted to one line. In many practical instances, this is a rea-

6 



sonable assumption, because enough redundancy can be inserted 

in the sync word to ensure accurate decoding. lt is also true 

that the sync word will be short compared to the length of a 

line. Hence, we have not included the sync word in any of the 

expressions for the compression ratios. 

way 

(1.3) 

where 

We can now express formula (1.2) in the following 

:::: = 
1 + wIN 

N :::: number of bits per samp1e level 

W :::: number of bits requi~ed for timing informatio~ 

Equation (1.3) shows explicitely that C is an upper s 

bound for the compression ratio of any system. The bit com-

pression ratio C
B 

will approach this bound for small w. But, 

w depends only on the addressing scheme devised to identify 

nonredundant samples; we now consider the three following 

addressing schemes 

a) Run Length Encoding A run is defined as a seriee of 

consecutive redundant samples. The run length is then the num-

ber of redundant samples in a given rune Run length encoding 

consists in transmitting the levels of aIl nonredundant sam-

pIes together with binary '-lords exprcssing the number of, :::-e-

dundant samples follûwing each nonredundant sample. The first 

sample in each line is always nonredundant. If a line has L 

samples, then w ~ 10g2 L. If ,." < 10g2 L ,say w=10g2T where 

7 

T< L , some run lengths will be truncated if theyexceed T bits. 



Choosiug the right value for T depends essentia11y on the 

bound C , hence, on the source statistics. 
s 

The bit compression ratio for run Ieugth encoding is 

(1. 4) = 
1 + 10g2 TIN 

b) Position Word Encoding 'fhe leve 1 and the addre s s of.· 

e ach nonredund an t s amp le are tr ansmi t ted·.. Tht> addres s reie r s 

to the position of the sample in the 1ine of data. 

The bit compression ratio is (here w=P ,. ST.=L.) 

(1. 5) = 
1 + PIN 

where P = lo~L = number of bits per address word 
L. 

c) Single ~ddress Ward Encoding The leveis of aIT non-·· 

redundant sarnples in one line are transmitted as a block. This 

ls followed by a single address word consisting of· a· number of 

bits equal to the total number of samples pero rine. This· L--bit 

word is such that a zero in the i th position indicates the 

redundancy of the i th sample whil~ a one in the sarne posl~· 

tion indicates a nonredundant i
th 

sample. 

The bit compression ratio i5 then giveu by 

(1. 6) 

since C = 
s 

NL 
= = 

L 
= 

SNR + LIN L + Cs IN 

Now we wish to select the encoding scheme to obtain 

8 



the largest C
B 

possible. This i8 possible ouly if we cau 

assume a value for the sample compression ratio C , and this 
s 

assumption depends on the source statistics •. If the source 

statistics are unknown, we must rely on intuition to guide 

our choice. 

In Figure 1.2, we have plotted the effects of the 

three addressing schemes on the bit compression rat~o versus 

the sample compression ratio. 

From this plot we see that for practical values of. 

C and L, the position word encoding gives the lowest bit 
s 

compression ratio. For small values of C the singl~ address 
s 

word encoding appears to be best, but run length encoding is 

superior to both schemes for larger values of C •. Because it. 
s: 

is simple to implement, run length encoding is used more fre-

quently than any other coding methods (in particular for. di-

gital encoding of TV signaIs). 

3. Energy Compression Ratio 

Up to now, we have considercd an errorless channel. 

However, in the practical case of a noisy channel, the degra-

dation incurred by the compressed data may be more significant 

than for corresponding uon-compressed data •. The cause for. this 

increased noise sensitivity can be intuitively deducted from 

the fact that wheu compression is introcluccd each transmitted 

sample reprcsents C samples in the average. Thus, the recons­
s 

truction procedure will propagate an error in the sample level 

word over C samples while with regularly sampled systems only 
s 

9 





one sample woeld be affected. This i5 the only type of error 

propagation incurring in an asynchronous data compression 

system. lt ls easily evaluated and is given later. However, 

for synchronous data compression, there is another kind of 

degradation, which is due to errors occurring irr the timing 

information that must be sent to the receiver •. 

We have previously assumed that synchronization is 

error-free, so that errors do not propagate beyond a line 

of data. But, an error in a run length word causes a shift 

in data location within the line where it occurs (this ls 

true for any addressing scheme used). The variance of this 

location ~rror increases linearly with distance from the 

synchronization code word. lt is much more diff'icult to a~-' 

sert the influence of this type of error on the reconstruc-

ted waveform, and often one must resort to subjective tests 

rather than the conventional mean squared error criteria. 

For example, timing errors can be disastrous for compressed 

TV signaIs where entire lines are destroyed •. 

There are two ways to remedy this situation. Fi~st 

an increase in transmitter power will improve the signal-

to-noise ratio and result in fewer channel errors •. Rut, the 

bit compression ratio defined above does not take into ac-

count this extra energy in the signal. Davisson (2) has pro-

posed a figure of merit called the energy compression ratio. 

This ratio, c , 
e 

is defined as the ratio of the average ener-

gy required to send a sample in a non-compressed communica-

Il 
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tion system to that required in a compression system for the 

same data quality at the receiver, and under the same noise 

conditions and transmission scheme. Data quality could be 

given in terms of r.m.s. error or probability of" sample errot'. 

The energy compression ratio 1s often diff~cult. to 

compute; Davisson has attempted an analysis of a first-order 

Markov source. 

Now 1t may happen that the transmitter pOW".lr 1s fi-

xed, as 1s often the c: ,'e in telemetering applications, and 

the preceding trade-off cannot be accomplished. Since we are 

concerned with digital transmission, an alternate solution 

is to u:::e error. correcting codes. The insertion of sorne "or-

ganized" redundancy back in the compressed data could hope-

fully im~rove the signal-to-noise ratio, at the cost of de-

creasing the bit compression ratjo~ The effect of coding on 

CB can be expressed as follows 

NL 
(1. 7) = = 

SNR(N+w+R) 1 + (w+R) IN 

where R = number of bits allowcti for coding. 

1.2 Classification 

Realizable data COlilpressors fal1 into two main cate-

gories, namely, Entropy Rcducing (ER) and Information Preser-

ving (IP) transformations. 

1. Entropy Reducing Transfor~ations 

This tYPe of transformation performs an irreversible 
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operation which results in an "acceptable" deterioration with 

respect to the fide1ity criteria. 

Examples of entropy reducing data compressors are 

narrow-hand filters, limitors, vocoders (compression of speech), 

TV picture compressors. Generally, a special ER device must 

be designed for each application and no interchange is possi-

ble. An ~R compressor usually operates directly on the data 

source, before sampling and quantization. 

By definition, ER transformations reduce the fide-

lit y of the source. But, to achieve data compression, they 

mu s t aIs 0 r e duc eth e en t r 0 p y 0 f the in put sig na l. T 0 s h 0 \-1 

that this is always true, we represent the analog source at 

the input of the ER device as a discrete source X = x. 
l. 

with M levels. This representation is valid since the ther-

mal noise of the source and the imperfections of the instru-

mentation needed to measure the source characteristics limit 

our measurement precision. Rence, we can only distinguish M 

states of the source (M may be quite large but is bcunded). 

Now, the entropy of the source is 

M 

L: R(X) = P(x.) log P(x.) 
l. l. 

i=l 

and if we denote by Y the output of the ER device, we may 

write 

H(X,Y) = R(X) + R(Y/X) = R(Y) + R(X/Y) 

Noting that = f(x.) , we have R(Y/X) = o. Bu t, since 
l. 
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ER transformations are irreversible, H(X/Y) >0 •. It. folTows 

that 

H(Y) = H(X) - R(X/Y) < R(X) 

which proves that ER compression results in a reduction in 

entropy. 

A narrow-band low-pass fil ter is often used to achie-· 

ve ER compression. Indeed, one can show that the maximum en-· 

tropy of a source is proportion&l to the dimensionality of 

the signal space and a fiiter reduces this dimensionality. 

Before passing to IP compression methods, we brief.ly 

describe sorne source encoding techniques. This will le.ad us. 

to define an Ideal compression r~tio. We div ide the coding 

of information into two parts, as shown below 

SOURCE 
ENCODER 

CHANNEL 
ENCODER 

~. CHANNEL 

Channel encoding consists in inserting sorne controlled redun--

clancy into the information flow so as to combat noise more 

efficiently. 

Source encoding directly influences the bit rate of 

the transmission through the channel. Assume a band-limited 

white Gaussian process, which is sampled at the Nyquist rate 

and quantized optimally to M levels. 

(i) Binary Encoding - The M quantization levels are enco-­

ded into r binary digits where M {" 2 r • 



(ii) M-ary Encoding - Rather than encoding each sample 

separately, a block of k samples is encoded at once, where 

k is suchthat 
k h 

M = 2 for some h. 

(iii) Entropy Encoding - The quantization levels do not 

have the same probability. We take this into account by en-

tropy encoding; it consists in what Oliver (3) has coined 

as N-gramming. If a quantization level has probab~Iity of 

occurrence Pi' we assign log Pi binary digits to its enco­

ding. Rence, shorter codes are assigned to the more proba-

ble levels. The Shannon-Fano code and the Huffroan code are 

typical examples of N-gramming. 

Now, for each of these schemes, there ls an opti-

mum number of quantization levels M for a given mean square 

error, i.e., a value of M that will minimize the rate at 

which it is necessary to transmit information •. Goblick (4) 

has analyzed these schemes and arrived at sorne curves which 

are reproduced in Figure 1.3. 

It is known that Shannon's rate distortion functjon 

yields the minimum possible transmission rate for a given 

data error. The rate distortion lower bound R(f) is aiso 

plotted in Figure 1.3, thus showing that entropy encoding 

requires only .25 bits per sample more than the lower bound. 

Rowever., the efficiency of entropy encoding depends 

strongly on the source statistics, and hence, it can only be 

applied safely to highly correlated stationary sources •. A 

time-varying signal could result in certain cases in a band-

15 
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width expansion. To achievc au efficient coding" the desi-, 

gner must then resort ta adaptive methods, and a sub-optimal 

system is usually obtained. Adaptive coding is a sub-optimal 

procedure which consists in monitoring continuouBly the 

source statistics and updating the coding procedure accor­

ding te these measurements. Hence, the past hist'.or.y of the 

signal 18 used in the determination of future code assig"-" 

ments. The decision rule which performs this mapping need 

not be adaptive itself and a fixed rule known ta bath the 

transmitter and the receiver greatly facilitates the design 

of the system, since it is then unnecessary for the trans-· 

~itter ta send information on hnw and when this rule. has 

varied. However, the source must be quasi-stationary if we 

expect a limitcd number of measurernents ta converge ta snme 

useful statistics. 

This procedure results, therefore, in a compromise 

between the optimum value set by the rate distortion func-· 

tian (attainable when the signal statistics are cnmpletely 

known) and the maximum entropy coding which transmits the 

total information (straight PCM). 

In the next section, a practical Implementation of 

entropy encoding for picturial data is briefly dcscribcd. 

We simply observe here that th~ measurement of signal sta~' 

tistics can approach Ideal coding for ergodic processes (like 

TV signaIs). In the more practical case of quasi-stationary 

processes, one should detect only the fast transients of 

the data, since expcrimcnts have shawn that coding assign-
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ments are not influenced by neighbouring statistics (5). 

Although the complexity of entropy encoding has lad 

designers to pre fer other methods of data compression, the 

concept has proved useful in establishing sorne bounds with 

respects to compression ratios. lu particular, it 18 possi-

ble to define an ideal compression ratio which does not 

depend on the procedure used to perform the data compression. 

The ideal compression ratio is defined as the maximum source 

information rate in the absence of any compression algorithm, 

divided by the entropy of the source. Now it is weIl known 

that the maximum entropy of a source X = {xii, where 

i = l, 2, ••• , M ,is obtained when aIl symbols are equal-

ly probable, or equivalently, when there is no redundancy 

in the signal. In that case P . == liN and 
l. 

M 

H 
1 L 1Og2 M l0Gz M = = max M 

i=1 

Bu t, the actual entropy of the source ls 

R = 

Renee, the ideal compression ratio can be expressed as 

== 

~\. sometimes called "optimum compression ratio" 
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When the source statistics are known, the ideal 

compression ratio can be ca1cu1ated and the performance of 

various data compression a1gorithms can be compared to COd 1 
1. e a 

which is an upper bound for ~ possible a1gorithms (note 

that the sample compression ratio C is an upper bound on1y 
s 

for the bit compression ratio achieved by a given procedure). 

Final1y, we note that entropy coding, as lve1l as the 

information preserving transformations which will be defined 

shortly, causes an increase in en tropy. Indeed, le t t in g R 

denote the redundancy of the source, we have 

= 

and after compression 

= 

But, we must have Ry ~ Rx. ; thus Hy ~ HX • This is due to the 

fact that adjacent samples in the compressed data are less 

corre1ated than before compression when prediction has been 

successfu1. 

The ideal compression ratio can be expressed in terms 

of the source redundancy R , in the fo11owing way 

1 
= 

For more information on this subject, the reader is 

referred to the 1iterature (6) (7). 



2. Information-Preserving Transformations 

Information-preserving (IP) transformations are a 

reversible mapping of a set of message symbols into a se~' of. 

sequences containing less binary digits •. The signal can a1-

ways be reconstructed exactly aud the choice of the coding 

procedure, if redundancy is to be removed, depends essen­

tially on the signal statistics. However, the exact nature 

of this dependency is not usually known and there is no uni-· 

que solution for an optimum mapping. Gften, a method of" tr.ial 

and error will result in the desired procedure, but for' cer-· 

tain input waveforms (e.g., voice and TV signaIs) a mathema­

tical model is found very useful. 

Since IP data compression reduces the number of s.am­

pIes that must be transmitted, it also reduces the energy 

required to transmit the source information within sorne tole-· 

rated error criteria. 

The basic types of compression exhibiting these fea­

tures are polycomial curve fitters, statistical predictors 

and adaptive samplers (8-13). 

A. Polynomial Curve Fitting 

(i) Polynomial Predictors This method involves the 

approximation of the signal between sample points by a poly-· 

nomial and is mathematically equivalent ta an interpolatiou 

process. If we let Xt represent the prcdicted value of a sam­

pIe at time t, we can write the following diffcrence equation 

-
20 



(1. 8) " X
t = 

where X 1 is the value of the sample occurring at time t-l, 
t-

L\x 
t-l 

. . . . . . . . . . . . 
X :-: X X 

t-2 t-2 - t-3 

. . . . . . . . . . 

Equation (1.8) implies that X
t 

i~ predicted according to the 

value of the (n+l) previous samplcs. 

The simplest forro of predictor is the zero-order 

predictor (ZOP) given by (n=O) 

= X 
t-l 

lt represents the largest possible set of consecutive data 

samples within an accepted error tolerance, by a horizontal 

straight line. In practice, a tolcrance band or "aperture" K 

is placed about the preceding sample. This aperture is usually 

taken equai to or a multiple of the quantization step •. If the 

lavel of the sample at time t exceeds the level of the pre-

vious sample by an amount equal to the aperture K, then it is 

judged uouredundant aud is transmitted. This nonredundant sam-

ple forms now the new reference for comparing the ensuing sam--

pIes. 0 therwise, it is discarded as redundant, and hence, is 

21 
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not transmitted. The algorithm for the zero-order predictor 

is illustrated in Figure 1.4. 

Nqte that according to thi~ algorlthm, timing infor-

mation must be sent with each nonredundant samples •. For the 

signal shown above there are eight nonredundant samples, hence 

eight timing words must be transmitted along with the eight 

level words. It is possible, however, to modify the preceding 

algorithm 50 that fewer timing words will be required. for the 

reconstruction of certain types of data. The modified algo-

rithm is shown in Figure 1.5. 

lt is easy to show that in no case will the modified 

algorithm require more timing words than the preceding algo-

rithm. For the portion of signal given in Figure 1 •. 5, two 

timing words ar~ transmitted (instead of eight). However~ for 

the modifjed algorithm, a flag is required to diff~rentiatA 

level information from timirig information and this could in-

crease the length of the timing· and level words by one bi~. 

Another form of polynomi~l predictor is the firs t·· 

order predictor. In this case, we have 

= 

where 

= 

There are several methods for representing redundant samples 

by a straight line segment (15). We give here only one method, 

as illustrated in Figure 1.6. The mechanization of this pro-
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cess will be given in the next section. 

(ii) Polynomial Interpolato~ The difference be~-

ween interpolator and predictor is that for interpolators 

the interpolation is affected by the sample values between 

the last transmitted value and the present one •. 

~.ero-Order Polynomial .!!!.tc;rpolator As for the zero-

order predictor, the redundant portions of the input signal 

are reprcsented by a straight line, but the difference exists 

in the choice of the reference sample to represent the redun-

dant set. The reference sample for the interpolator is deter-

mined at the end of the redundaLt set, whereas for the pr~-' 

dictor lt was the first sample. Also, the reference sample 

X
t 

in the interpolator is the average between the largest 

sample Xl and the smallest X
s 

in the redundant set. 

B. Statis~ical Predictors 

Statfstical predictors involve prediction of sam-

pIes by ueighting a set of previ~us samples in sorne speci-

fied manner. The difference between this method and the types 

previously mentionned is that the prediction rule is self-

controlled. It is determined by a learning process which 

makes use of a set of previous samples not necessarily imme-

diately prior to the predicted sample. An optimum predictor 

is, in principle, possible if the power spectrum of the si-

gnal is known exactly. If not, one can expect a sub-optimum 

predictor. 
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The prediction equation could be represented by 

sorne linear combinations of past samples 

= 

This is the equation of a linear nonrecursive filter and the 

coefficients cou1d be obtaincd by' solving the Wiener-Hopf 

equation for discrete data. 

More details on statistical predictors are ta be 

found in (14) and (15). This method is too complex for. prac-· 

tical hardware Implementation and the results have been ob-· 

tained by computer simulation. 

c. Adaptive Samplers 

One way to eliminate redundancy in a sequence of' 

samples is to adjust the sampling rate to the informat.ion 

content of the source, since this would prnduce nonredundant 

samples only. But this demands complete knowledge of the source 

statistics and generally telemetry systems are greatlj over-

sampled. Another drawback of this method is that after e.ach 

change in the samp1ing rate, there exists a period during 

which the signal cannot be accurately reconstructed •. This. 

procedure, though theoretica11y ~nteresting, has, theref.ore, 

not been implcmented. 

Before conc1uding this section, we sha1l add to the 

preceding classification sorne methods which can, at. least. in 

principle lead to data compression. 
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1. Transformation Compressors A transformation ts per.-· 

formed on the analog or digital data by nonlinear or l.inear 

transformation. At the receiver, decompression is obtained by 

applying an inverse transformation. Logarithmic amplifie~s, 

filters and compounders are practicaJ. examples of transfor-· 

mation compressors. Other types of transformation compressors 

are Fourier filtering and Karhuncn-Loeve compressors., Be(.!él.use· 

of their complexity, the last two methods have n~t been im-· 

plemented. 

2. Parameter Extraction Compres~ The method consists 

in extracting a particular parame ter from the signal and_ 

transmitting this parameter aloni::. This process is irrever-· 

sible since the original data cannot be reconstructed f~om 

the transmitted parame ter. 

3. Bit-Plane Encoding (16) This interesting' method. con-· 

sists in partitioning the information bits into subgroups so 

that sorne of the subgroups can be encoded ef~iciently. We 

shall see in the next section how this method. is implemented. 

The method has proved useful wheu the amplitude spectrum of 

the data is concentrated in different ranges in diff~rent: 

time intervals. It is an information preserving method •. 

1.3 Implementation 

We consider in this section the implementation of 

sorne data compression systems based on redundancy reduction 

and entropy reduction techniques. 

=-r=c 
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1. !!;.dund ancy Reduc t ion A simplified black diagra~ 

common to Q11 redundancy reduction schemes is shown in Figu-

re 1.7. The reference memory stores aIl data which will ser-

ve to perform the compression; they are previous samples, 

tolerance limits, slope limits, selection of a particular 

algorithm, etc. The comparator determines then whether each 

new sam~le is redundant or nonreJundant, and updates the 

reference memory accordingly. The nonredundant values are 

sent to the buffer memory, which permits synchronous trans-

mission through the channel. The design of the output buffer 

ls an important and often difficult task. The size of the 

buffer 18 proportional to the expected overall compression 

efficiency of the system and to the maximum degradation 

acceptable in the reconstructed waveform. Indeed, even for" 

stationary sources, the observation over a short interval 

of the stream of redundant samples often indicates a larse 

deviation from the average flow. This will cause either" over-

flow or underflow of the buffer. Overflow i8 the most serious 

drawback because it causes the loss of nonredundant samples, 

and since the redundancy of the data has already been redu-

ced. Several studies exist on the subject of optimum and 

adaptive buffering. References (17) and (18) present an ex-

cellent coverage of the various techniques available. 

The block marked as "timing and control" provides 

the necessary signaIs to control the sequence of operations 

~ \?'~ 
which the data compression system must perform. The timing 

signaIs are derived through logic circuitry from a clock. 
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Figure 1.8 shows a more elaborate block diagram of 

a typical telemetering data compression system, while Figurel.9 

is a detailed description of the data compressor. 

In Figure 1.8, the block marked as "queue monitor" 

delivers a control signal which is a function of buffer oc­

cupancy. This signal is used to adjust the aperture tolerance 

initially set for optimum performance in such a way as to 

decrease the data rate at the compressor output. This method, 

due to Massey (19), reduces the accuracy of the output data 

regardless of the data activity. Buffer overflow can, how­

ever, be controlled by adaptive filtering of the input si­

gnals.(Input signaIs are often filtered prior to multiple­

xing to avoid aliasing errors due to sampling) Adaptive fil­

tering would cause additional degradation only in the high 

activity part of the data, which would otherwise cause the 

buffer to overflow. 

2. Adaptive Methods 

Adaptive Predictor 

The general block diagram of an adaptive predictor 

compression system is given in Figure 1.10; this technique 

was first suggested by Balakrishnan and applied to picturial 

data via computer simulation (20). The system is essentially 

an adaptive ER transformation, in this case a predictor, 

which consists in an arithmetic unit, a memory and a control 

signal generator. Each sample Sa is compared with its predic-
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ted value Sp and the prediction error e p = Sa - Sp ls obtai~­

ned o The value of c ls then compared to sorne predetermined 

error threshold, Q; if e > Q the s amp le in que stion is s1.-­
p 

gnificant and must be transmitted; if e < Q the sample is 
p 

predictable and hence redundanto This part of the system is 

similar to the preceding polynomial predictor~ descr~bed pre-· 

viouslyo 'J.'he fundamental difference is in che f"eedback f_r.oUt 

the comparator output to the predictor which serves t.O u_pd_ate 

the prediction mechanismo The updating can be accomplished 

in several wayso For example, if we want to pred-iet the k
th 

sam p le S k' h a vin g 0 b s e r v e d the m pre c e d in g sam p 1" es" w e co u 1 d 

try to obtain the best nonlinear estiruate for Sk in the m.s-. 

sense, given by 

= 

or 
m 

(1. 9) 
1\ L Sk = i Pr ( Sk = i / SkI ,. Sk ,- .,.' .. ,. S ) 

i= 1 
2_ km 

where i denotes the i th quantum level. 

The memory of the prcdictor should be updated so that. 

the conditional probability given in (1 0 9) be estimated from 

the data. It follows that the predictor's ef~iciency wil_l be 

proportional to the storage capability of the memory; the lar-

ger the size m of the memory, the better will be the estimate 

Â 
of the conditional probability, hence that of Sko In practice, 

since there are Mm possible observations of the vector 

000' SI ,the size m of the memory is limited to three. 
<ru 
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Other methods to achieve prediction are given in (21). 

Wc describe now an adaptive coding procedure which can be used 

in conjunction with the preceding method. 

Adap t ive Cod ing 

Source encoding is this case by entropy encoding. The 

adaptive method consists in measuring the efficiency of the 

coding procedure and determining a new procedure according to 

the result of this measurement. 

As for the previous method, an error signal must be 

produced and fed back to the source encoder. This error can 

* be obtained in the following way. Let {Pil be the probability 

of occurrence of a sequence {xi} and{qi}the probability of· 

occurrence of {Yi/. If the sequence {Yi} occurs and is encoded 

with -lo~p. bits per symbol, then the excess number of bits - ~ 

used for the i th sequence is 

= = log 2 p./ q. • 
~ ~ 

The average number of bits per sequence in excess is 

= L = L 
i i 

Now, after the measurement of ST realizations, the 

best estimate of the qi is given by À = Si/ST' where Si is 

the number of occurrences of the i th sequence out of the ST 

realizations. Initially, we code for maximum entropy (Pi = I/M) •. 

Then the initial excess 1s 

* This method has been suggested by Blasbalg and Van Blerkom (5). 

-
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AH 1 - L 10g2 ÀiM = " M .J~g2 1-1 + L À.log
2 

À . . ' 
1. 1. 

i= 1 i= 1 

If L\ Hl ~ L\ HO ' the ma.x imum en tropy cod ing is ine f f i-

cient and we code with Pi = Ài. If 

with the initial code. 

L\ Hl < AHO ,. we c.on tinue 

The new measurement now yields 

M 

= L 
i= 1 

Àl." 10g2 À '/ P . _ 1. 1. 

For samples of reasonable size, it has been shown that 

L\H has a chi-square distribution of (N-l) degrees of" freedom. 

The sens itivity of 6H to variatio:::.s of À. can be obtained fr.om 

the following equation 

.1H = 
1- À 

10g2 À /p + (l-À) 10g2 l-p 

The plot shown in Figure 1.11 illustrates the excess. 

bits as a function of p when the true probabilities are À. It. 

is seen from these curves that there is no excess when. coding 

matches the statistics. Also, the curves are fIat near the 

minimum, indicating that the coding is not sensitive tn small 

dev ia t i071S fr om the exac t pro b ab il i t ie s À .. Theref ore.,. the 

statistical estimates À. 
1. 

small set of samples. 

could be obtained f~om a relativelY 

A functional block diagram of an adaptive coder is 

shown in Figure 1.12. The output of each b10ck is cxplicite1y 

stated and the overall operation fol1ows the description given 

abovc. A control line has been added to adjust the source en-
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Figure 1.11 Excess bits for the binary case. 

tropy in accordance with the channel status,. hence avoiding 

excessive degradation of the data when the channel is over-

loaded. 

The implementation of an adaptive data compression 

for multiple sensor outputs is gi7en in (5);. this reference 

also considers the effect of adaptivity on the ideal compres-

sion ratio. 

For the simple case described above, it. is clear that 

the upper bound of the bit compression ratio is (21) 

(1.10) 

where p is the probability of making an accurate prediction. 

rr""'W 
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3 •. Bit-Plane Encoding This method consists in 

forming groups of M consecutive samp1es, and storing their 

quantized values vertica11y in a buffer memory. Each group 

contains~ therefore, NM bits where N is the number of bits 

necessary to describe each samp1e. Looking at the memory as 

a rectangular array, we see that the least significant bits 

of aIl the words in the group lie on the same horizontal 

line. That is, the Nth-order bit of each sample is taken to 

form an. M-bit sequence, cal1ed a "bit-plane. The bit-plane 

pro c e du r e ls t 0 en cod e and t r ans mit the bit sin e a c h 0 f the 

planes sequentially. It is obvious that when the data con-

tain a high degree of predictability, the most significant 

bit-planes should contain long runs of zeros or ones. Thus 

these planes can be significant1y compressed by sorne type 

of run-·leng th encoding. 

The following table describes the arrange men t of 

bits in the memory, for M = 8 N = 4 , 

M 
1 2 3 4 5 6 7 8 

N: ----_ ...... - _._.-----_._-----
4- 0 0 0 0 0 0 0 0 

3: 0 0 0 0 0 0 0 0 

2: 0 1 0 1 0 [1] 0 1 

l 1 0 1 1 1 0 1 1 

[1] 1s the second-order bit of the sixth word. The second-

40 
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order bit-plane is o 1 0 1 0 1 0 1 •. 

The implementation of a bit-plane encoder is illus-

trated in Figure 1.13. The monitor looks at each bit-plane to 

de termine ho .. - each plane is to be treated •. Essentially, the 

monitor distinguishes between four types of plane, depending 

on the "count-of-changes" C indicating the number of' times 

adjacent bits in a bit plane are different. Thus, if.' C' =c. 0 , 

then the plane is monovalued and is described summarily (i.e., 

by transmitting only the value assumed by arl' the bits and 

indicating that the plane i8 monovalued). We refer. to these 

planes as class A planes. Class B planes are. those for~'lvhich 

the numbe l' 0 f runs is small enough to be pr.ofi tably compr c::: ... 

sed, or more precisely, those planes for which 0 < C «M/lo~H)-l • 

Run-length encoding could then be used. F~nal'ly, cl.ss C pl~-

nes correspond to C ~ M/log 2 M 

bit by bit. 

and the prane is. transmi t ted 

The preceding plane identification can be accompli-

shed with three bits. An extra bit could' be used for single 

error detection.. The best choice for t.he size M of." a bit~fJlane 

depends on mar..y factors and should be de.termined for.' each 

particular application. 

We shall study the effect of channel noise on this 

technique in Chapter IV. 



1 

j---;' 

. 
Input SeriaI to ... 
data :------ - - _. 

Para11eI 
7' 

Converter 

N 1ines 

Figure 1.13 BIT-PLANE ENCODER 

Monitor -

Memory r--

42 

Con tr.o 1 

1 Encoder ). 

to 

channel 



43 

CHAPTER II 

THE RANDOM VIDEO PROCESS 

Compared to many forms of data transmission, picture 

transmission requires a relatively large bandwidth, since con-

siderably more data seem necessary to produce an adequat~ vi-· 

sual signal. 

Yet it has been known for a number of years that video 

signals exhibit a greater redundancy than any other information 

sources. This redundancy appears to the viewer in the f6l~owing 

way; a large portion of the information conveyed by the picture 

seems to be concentrated in the contours of the objects ~ather 

than in their intensity. Since contours are determined by sudden 

variations of intensity, it is reasonable to assume that the video 

signal could be efficiently represented by difference signals, 

Le. ,"jumps" between adjacent samples. Large differences should 

occur less frequently than small ones since it i5 more likely 

that a randomly chosen poin t of an image lies in a "run" (L e. , 

an area of uniform or slowly varying intensity) than on a contour. 

This property suggests the use of differential PCM coupled with 

a Shannon-Fano coding procedure and sorne interesting results 

concerning DPCM appear in (20) and (21). 

Another solution would be to take advantage of the exis-

tence of the uniform runs lying between contours; one could think 
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of implementing a system which minimizes the number of bits 

ê· . ~ . 
• • < describing those runs. The simplest ~ethod consists in a_ zero-

order predictor associated with a run-Iength encoder, as des--

cribed prevtously. Whatever the method used, the statistical 

correlation between neighboring elements sets a bound on the 

final efficiency (Le.,compression) of the system., Compression 

techniques for a video source have been purely statistical', or 

psychophysical, or a combination of the two. In this study, we 

shall be mostly concerned with the former method, but, some_ psy,-' 

chophysical properties will be briefly discussed~ 

This chapter reviews sorne of the most ftindamental results 

obtained in picture bandwidth compression! It is divided in four' 

sections; in the first section the statistical properties ofa 

video source are described. The choice of appropriate coding tech-, 

niques de pends strongly on these properties. Their efficiency is 

usually rneasured against a standard which consists of PCM (unco--

ded) transmission. The second section, theref~re, is concerned 

with PCM television and the effects of noise on the re~onstructed 

image. Section 3 summarizes sorne forms of statistical coding and 

the last section describes sorne aspects of psychophysical coding. 

2.1 Statistics of video signaIs 

The large quantity of experimental data which have now 

been gathered to study the statistics of television signal~ allows 

us to judge the efficicncy of the various models proposed up to 

date. The follo\o,1ing results are mostly due to the work of Seyler 
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(22) , Franks (23), Estournet (24) and Kretzmer (25). 

Any particular image can be modelled by a continuous 

function of three variables I(x)y,t) where x and y are the spa--

tial coordinates and t is the time coordinate. The function 

I(x,y,t) represents the light intensity distribution. of the image 

and can be written as 

1 = 1 ( n ~ x, rn ~ y, kT ) 

which corresponds to a discretc representation of the process. 

Note that sampling is always present in a TV signal and ls dUB 

to line scanning \.,hich performs the mapping of a two-dimensional 

process into a function of time. 

Investigations have been mostly concerned w~th first-

order probability distribution of the levels of picture elements, 

the second and third arder probaLilities between adjacent pictu-

re elements and with the autocorrelation function of television 

signaIs. The main results are summarized below. 

(i) Amplitude distribution is essentally non-stationary. 

Indeed ditferent pictures yield ctifferent amplitude histograms 

and it has also been observed that even a single image can pro-· 

duce different histograms when certain photographie pararnaters 

are varied (24). Sinee aIl forros of histograms can occur,. one 

can state that the first-order probability of picture levels 

tends towards a uniform distribution if a suffieient number of 

frames are considered. Thus knowledge of the amplitude distribu-

tion alone gives no indication on the redundancy of the signal. 
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( ii) This redundancy becomes apparent when conditional pro-

babilities are examined, i.e., when we consider the statistics 

of "difference" level between adjacent samples (elements); for 

a typical image the probability distribution of difference level 

is stationary and it is found that small differences are more 

probable than large ones. Morcover, the conditional probability 

of two adjacent samples having the same amplitude ls about 10 6 

times thst of having amplitudes differing by the maximum amount. 

The distribution of sample differences is approximately lapla -

ciano 

(l11) From the statistical distribution of power in the fre-

quency domain of the signal, we can' deduce the correlations 

existing between elements in space and time (i.e., between the 

same spatial elements in successive frames). Franks (23) has shown 

that the autocorrelation function of the three-dimension~l tele-

vision process can be assumed separable, i.e., we can write 

(2. l) <P(T) == h(r) g(r) fer) 

The three component functions h(r), g(r) and fer) 

represent the influence of element-to-element, line-to-line 

and frame-to-frame correlations, respectively. For typi~al pic-

ture material, there seem to be an extreme concentration of po-

wer near multiples of the line scan and frame scan rates. 

A model characterizing the luminance process has been 

proposed by Franks who identifies the video signal with a random 

.step function (Figure 2.1) with Poisson distributed zero crossings 
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and independant amplitudes having a rectangular probability dis-· 

tribution. 

V(t)1I 

V 
n V 

n+l 

~----------------'r-~--~-----~--~---+'-------> 
t n+ 1 t. 

Figure 2.1 Random Video Signal 

Assuming also that the random step function is a wide-sense 

stationary Markov sequence, it can then be shown' t.hat the corre-· 

lation functions h(r) and g(r) are exponential.. 

Thus (2.1) becomes 

(2.2) q,( ~x, ~y, T) = A exp( -œl~xl-,BI~YI-'À T ) 

where A is given by A = cP(O,O,O) andœ,.{3, À are c.onstants. 

Equation (2.2) can also be writt~n in the ~ollowing form (con-· 

sidering spatial correlations only) 

(2.3) 

Equation (2.2) has been reasonably confirmed by several 

correlation measurements and the average values of œ = .0256 

.and ,B = .0289 were derived empirically (26). (On the average œ = {3) 

The power spectrum of the process is givan by the Fou-· 

rier transform of (2.2) and power spectral density measurements 

performcd by Deriugin (27) have also shown the validity of (2.2). 



48 

The existence of a non-zero autocorrelation function 

assures us that sorne compression is possible since, as shown 

by Elias (28), the autocorrelation function furnishes a lower 

bound to the redundancy of the signal. Thus for a high correla-

tion A between neighbouring picture elements, the lower-bound 

redundancy is approximately equal to 

R - - ~ 10g2 (1 - A) bits/sample 

For typical picture material, the correlation between 

two points along the spatial dimensions was found to be of the 

order of .90 but this value decreases very rapidly with increase 

in the distance between samples.(Nyquist rate assumed). 

Also measurements made on adjacent frames of motion 

picture films have resulted in a correlation factor of .80 • 

Using the random step function described above to 

model the analog video process, Narayanan and Franks (29) have 

recently derived the power spectral density of digitally enco-

ded video signaIs. The expression obtained consists of a product 

of four factors characterizing the effects of the digital pulse 

shape, quantizing and coding, scanning raster, and the bandwidth 

of the analog signal. It is also shown that large concentrations 

of power occur at multiples of frame rate, line rate and sampling 

rate when the video signal is encoded by PCM or DPCM. Various 

measurements have confirmed this periodic concentration of power. 

In summary, the model proposed by Franks fits the sta~ 

tistical measurements of first and second or der distributions. 

In particular this model permits us to have a better insight 
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into the statistics of runs, which are analyzed next. 

The transition matrix of the difference signal obtained 

from an image shows explicitely the dependence between levels 

and difference levels; the predictability of the signal lies in 

this dependence which manifests itself in the following way 

(i) Successive jumps are likely to be of equal magnitude 

(or to differ by a small amount) if the first jump is not too 

large. 

(ii) Given that the first jump is large, it will more likely 

be followed by a small jump. 

Note that this process is upper-bounded since the si-

gnal has finite amplitude. However the probability of no jump 

(zero difference) between two picture elements is larger and 

implies the existence of large picture areas (runs) where levels 

are constant within a small tolerance T} •• We a.re interested here 

in the statistical behaviour of the run lengths. We know that 

the amplitudes S. of the samples are 
] 

consisting of n samples {Sij} , (j = 

that the amplitudes of runs {Sij} , 

ry and that they occur randomly and 

dependent. Consider a run 

1, ••• ,n ). One can assume 

(i = 1,2, ) are stationa-

independently in time.( the 

level difference between runs consisting of a dependent random 

variable with an exponential probability distribution). 

We are interested in obtaining the epected value of the , 

run length, i.e., we want to compute 

E (w) : 1= p(w) dw 
o 



where w. (i = 1,2, ••• ) i5 the random variable denoting the 
~ 

5.0 

run length and p(w) is the probability density of the run length. 

Now we have assumed that the distance frum an arbitrary 

point ta to the next random point t
i 

is a r •. v •. independent of 

what happened outside the interval (tO,t
i
). But this is equi~a­

len t to 

It is shown in probability calculus that the only function 

satisfying the ab ove condition is an exponential. Furthermore, 

since the autocorrelation function of the vid~o process is 

given by 

cp ( T) = À e -À T 

it can be shown that 

() \e-Àw p w = 1\ 

and the probability distribution of the run length is therefDre 

given by 

J? (w) 

w 

= f À e - À z dz :: 1 

o 

-.h. w 
- e 

Since we are supposing that the video signal is s.ampled 

at a fixed rate, we must define a Poisson process for a quanti-

zed system, i.e., the r.v. w. can assume discrete values- only; 
~ 

in other words we consider the case where the occurence of runs 

takes place at times n 6t, where n i5 an integer and 6t is the 

minimum duration of the run. For convenience we set ât = 1. The 

minimum run l~ngtll is therefore composed of one sample at least, 

and to obtain the discrete probability density pCn), the area 
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under the continuous density furiction p(w) between points 

w = (n-1) and w = n , is lumped at point n. Thus 

(2.4) pen) ::= p ( w<n ) - p ( w~' n-1 ) 

( 1 
-Àn 

) ( 1 
-À' (ri-·l) 

) ::= - e _. 
-- e. 

( À 1 ) -- À n = e - e 

where 1 ~ n< 00 • 

This expression represents the probability <iistr_ibution of run 

length in discrete form, and the expected val~e of- run length 

i8 given by 

E(n) = L:n ( e À 1 ) -
n 

(2.5) = ( e À _ 1 ) L:n 
n 

Noting that 

d -Àn n e = ---

and that 

n 

we obtain from (2.5) 

dn 

1 
-À 

1 - e 

-kn e 

e -Àn 

= 
L 

-'À e. 

The probability distribution of run length given by (244) can 

therefore be written as 

(2.6) p (n) ::= 
1 

(

ECn) - 1)n 
- 1 E(n) ECn) 

This result is in agreement with the statistical mea-
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surement of run length performed by Cherry (31) •. 

lt is sometimes convenient to write Equation (2.6) in 

the fo11owing way 

p (1) 
(2.7) p (n) = 

1 - p ( 1) 

wh e r e p ( 1) i s the pro b ab i 1 i t Y 0 fa' ru n con sis tin g 0 f' a~ s in g te 

element. 

Considering now a jump ~ of amplitude 

x varies from 0 to k), it is possible to derive the relation 

which exists between the statistics of runs and those of jumps~. 

lndeed, it can be shown that (21) 

2x _1 

L p2x(i/i) 1 - p (1) 
1 

= 

i=O 

where p(i/i) is the probabi1ity of a samp1e with amplitude L 

given that the preceding samp1e has the same amplitude. 

2.2 PCM Encoding of Video SignaIs 

Before compressing digita11y encoded video signals, it. 

is important to know the effects of changes in system parameterE 

on the picture quality when PCM transmission i8 used. Given a 

certain picture quality, the designer wishes ta choose the sys-

tem parameters such that the number of bits per frame ta be 

transmitted is a minimum. The effect of samp1ing and quanti-

zing on picture quality has been studied by many authors, and 

this section is based main1y on the works of T.S. Huang (30), 

R.E.Graham (32), Sey1er(33) and Roberts (34). 
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2.2.1 Visibility of Noise 

Visual response to noise is an important factor of 

any picture coding system, since noise is due both co channel 

imperfections (additive Gaussian noise), and the encoding pro-

cedure, which yields an output within sorne finite error. For 

example, the finite number of quantization steps of peM pro-

duces what is usually called the quantizing noise. However, it 

is important to predict noise visibility under a wide variety 

of conditions. 

What is known can be summarized in the following 

facts (35) 

1) Noise is less visible in a complicated picture. 

2) Noise is more visible if it is correlated with the 

picture than if it is random. Rence, quantizing noise is more 

visible than additive random noise of the same r.m.s. value. 

3) The presence of noise in a picture reduces its con-

trast and its sharpness. 

4) The spectrum of the image affects the visibility of 

noise in a way w~ich is not yet fully.understood. 

5) Randomly scattered noise is usually less visible than 

noise with local structures (i.e., noise which occurs in bursts). 

The quality of the received picture is clearly affec-

ted by the visibility of noise and other distortion occurring 

during the transmission. The influence of various system para-

meters on the noise visibility has been investigated, and we 
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outline next sorne of the results. 

2.2.2 Sampling 

Consider first the case of a noiseless channel and 

assume L samples are taken to describe a rine •. Each sample 18 

quantizcd into one of 2
k 

distinct leveIs .. For commercial: tele---

vision, about 500 samples per Line (1 ~ 500) and 50. to 12D 

* br 19b tne s s leve ls (k ~ 6 or 7) are requ iree to ach ieve a' r.es 0-' 

lution comparable to present-day analog system. A smal'l~r L 

results in poorer resolution whiLe smaller k introduces art~-· 

ficial contours. The total number of bits per picture is 

N = L L k. Consider now the following sampling process (32) 

Two-dimensional 

Prefiter 

J 
Sampler 

,l, 

Two-dimensional 

Postfilter 

Peterson and Middleton (36) have shown that for a fixed number 

of samples per frame, prefiltering and postfiltering with idesl 

low-pass filters yield the least rn.s. difference between the 

output and the input. Subjective tests performed by Huang have 

* This istrue if uniform quantization is used, However, one bit 

can be saved by using logarithmic quantization, thus matching 

more closely the propcrties of human vision. 
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consolidated that theory. 

Huang (37) has also shown that the sampling pattern 

affects the output picture quality. Moreover, he showed that, 

given N, the total number of bits per picture, there seems to 

be an optimum choice for the values of Land k. R~om a series 

of subjective tests, isopreference curves were drawn (the. points 

on these curves represent pictures of equal subjec.tive quality, 

for various values of Land k), indicating strong dependence 

on the picture type. Hence, for pictures with a large amount 

of details, k can be small (only a few brightness l~vels are 

needed), but L should be large. In this case, the op~imum valtie 

1s picture dependent. In general L should be large f~r a pic--

ture with a large amomt of detail, while in a picture with a 

small amount of detail, k should be large •. 

2.2.3 Quantization 

Quantization noise can be reduced by placing a ~rs-· 

filter and a postfilter around the quantizer,. and D.N~Graham 

(38) has obtained with this method a picture esseritially ftee 

of artificial contours using only three bits per sampl~. Gene~' 

rally, a smaller number of quantization levels can be used if 

the quantization noise can be transformed into random noise. 

An interesting technique has been proposed by L •. G.Roberts (34). 

It consists in a pseudo-random noise modulation technique, in 

which a noise with rectangular spectrurn and peak-to-peak value 

equal to one quantum step is added to a picture before quanti-

zation, the same noise being substracted from the quantized 
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received picture. Roberts showed that this procedure would result 

in an unquantized output to which has beeu added a random noise 

with the same r.m.s. value. With this method, four bits per sam-

ple have been found acceptable. 

2.2.4 Coding and Channel Noise 

For a noiseless channel, the particular cod"e chosen 

to represent the 2
k 

brightness levels has no bearing on the re-

ceived picture. However, in the case of a noisy channel," the 

amount of noise in the received picture depends on the code 

chosen. For the k-bit straight binary code, the noise power 1s 

* given by 

= 

where PB ls the channel error probability, and for a k-b1t re­

flected binary Gray code, it is equal to 

= 

lt is clear that 

1-2PB 
2 

4k _ (1_2p)n 

4 - (1-2p) 

for PB ~ 1/2 

Thus a Gray code results in a larger average noise power. 

Generally speaking, the subjective effect of noise is 

not the same for digital transmission and analog transmission. 

It has been found (37) that for high SNR, white Gaussian noise 

is more annoying than the noise arising from a binary symmetri-

cal channel, while for low SNR the reverse is true, the cross-

over point being about 20 dB. 

* This expression is derived in Chapter III (Section 3.1) 



2.3 Psychophysical Coding 

The coding methods proposed in Section 1.1 all rcly 

on the statistical constraints which exist among the picture 

elements. To improve the effieiency (in tarms of compression 

ratio) of picture coding, one can take advantage of the pro-

perties ot human vision. In other words,. the fidelity cr.ite-

ria are ma tehe d mor e clos e ly t 0 the psycho -phy sic s 0 f: vis iOll. 

Thus psychophysieal coding eonsists in altering the original 

picture in such a way that it can be described by a smaller· 

number of bits. Note that this process is irreversible sinee 

what has been discarded from the original signal cannot be. 

recovered. This distortion of the signal should, however, not 

be noticeable by the human viewer. Briefly, what i5 discarded 

ls what would not have been seen anyhow. Experiments conduc-

ted at the M. 1. T. and by Seyler (39) have confirmed the f.ol.-

lowing facts. 

- In vision, spatial and contrast resolutions are ex-

changed 50 that the number of contrast levels that can be dis-

tinguished in small objects is sl1bstantially smaller than in 

large, almost uniform areas. Thus, if run length encoding is 

used, the 1eve1 of short runs could be quantized more coarsely 

than that of long runs, resulting in a smaller overa1l bit rate. 

- Motion resolution is a1so exchanged for detail reso-

lution, i.e., the resolution of spatial details in moving ob-

jects deteriorates. Rence, the number of samples per f~ame 

could be reduced. 
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Spatial resolution is considerab1y reduced when the 

observer is confronted by a sudden change of scene •. Extensive 

tests performed by Seyler (39) have shown that the human obser-

ver would not perceive a temporary reduction of spatial detail 

for an average of 750 milliseconds after a scene change .. The 

experiment consisted in reducing temporarily the bandwidth of 

standard television signaIs after ~cene change by means of ~ 

transient controlled low-pass filter. It was found that the 

initial bandwidth could be set at one twentieth of the system 

bandwidth reached at the end of the recovery transient. 

This result is particularly useful when frame diffe-

rence codiag is applied. This method takes advantage of the 

statistical correlation which exists between adjacent f~ames 

(40) and results in wllat Seyler has called frame run coding. 

The coding procedure consists in transmitting a new frame on1y 

when consecutive frames display a sufficient number of' different 

elements. However, to obtain a reasonable compression ratio with 

this method, it would be necessary to take large averaging in-

tervals in view of accomodating scene change. This drawback can 

be overcome by ~ubjecting the picture to a resolution transient 

when the scene changes. During the first quarter of a second, 

only 20% of the total samples need be sent, thus reducing the 

bit rate even unrler sudden and complete scene change in the 

flow of pictures. 

AlI forms of coding described above have a common pro-

pert y, which becomes more apparent in a noisy channel. It con-

sists in the fact that an error occurring in one of the coding 
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words propagates beyond the time of occurrence of this error. 

In other wor.ds, there is a shift in the position of aIl data 

following the error. This shift usually persists until a sync 

pulse resets the system. In the case of television signaIs, 

the length of the data between sync pulses constitutes a line; 

hence error will propagate over an cntire line. In the next: 

chapter, we compute the magnitude cf this error. 



CHAPTER III 

EFFECT OF CHANNEL NOISE ON 

ZERO-aRDER PREDICTOR 

We have seen in Chapter l that the standard by which 

to compare data compression techniques is taken as a constant 

rate, time-sampling PCM system. Therefore, we first de termine 

the effect of noise on the reconstructed waveform in a PCM 

system. We assume that the channel is corrupted by additive 

white Gaussian noise with a zero mean and one-sided spectral 

density NO. 

3.1 PCM Systems 

Let the amplitude of the source be uniformly dis tri-

buted between 0 and +1 volt, and suppose that each sample is 

quantized into q levels as shown in Figure 3.1. 

o +/ 

Figure 3.1 

Then q=2k, where k is the length of the PCM word. The mean 

2 square (m.s.) error EpCM in the reconstructed data can be 

expressed as the sum of three independent errors. Thus, 

= 

60 
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where 

2 
El expected squared quantization error, 

expected squared transmission error, 

expected squared thresho1d error. 

The error due to quantization is easily found ta be 

a/2 

E~ = f a ,hx = 

-a12 

(3. 1) l 
12 2 2k 

where a = 1/2
k

• This error is independent of the channel 

characteristics and the modulation scheme emp1oyed, and 

represents a 
2 

lower bound for the overall error E pCM ' We 

regard il as an implementation error since it de pends on1y 

on the number of bits, k, per word which is initially chosen 

by the designer. Thus the quantization error is common t.o bath 

compressed and non-compressed systems. 

E~ 1s due to channel noise; we assume that PB' the 

probability of bit error is small enough that only one error 

need be considered in each word consisting of a sequence oE k 

bits, and that the probability of a given bit in. error 18 uni--

form over the length k of the ward. We rnay then write 

2 
E 2 1 

error in a 
peM ward = 

1 
k t 

j= 1 

The probability of one error in a sequence of k bits is 

P ( ) k PB ( 1 - PB) k-l -r one error = 
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Thus the transmission 
2 is given by error: E
2 

k PB 
k 

PB 
e 2 L: -2j 1/22k) (3.2) = 2 = (1 -2 

k 3 j= 1 

Note that this relation holds for straight binary encoding 

only. 

Karp (41) has shown that (3.2) hold~ even when we 

consider the possibility of more than one error in a k-bit· 

word. 

3.2 Bit Error Probabilities 

The expres sion (3.2) foun.:! for the ffi •. S •. error. of. n.. 

PCM system depends on the parame ter PB' the bi~ error· pr.obabi-· 

lity. Theoretical expressions have been derived for bit. error. 

probabilities; essentially PB depends on the mode of tr.ansmis­

sion (i.e., the modulation technique used at the transmitter),. 

the propagation medium (fading or nonfading) type and· the dètec--

tion technique used at the receiver. TableIII-l summarizes sorne. 

values of PB. 

In this study we shall concentrate on ~he E6llowing 

scheme; matched filtcr-coherent detection f~r nonfading medium. 

We also assume binary antipodal signal. 

We define the signal power to be S watts; E is the 

signal energy per bit, and the data rate is R bits/sec. Then 

for binary transmission T = llR , and we have 

E = S T = SiR 
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Then with coherent reception, PB ls minimized for antipodal 

signaIs and is given by 

~(2E 
= erfc,,~ 

64 

We can now ,following Viterbi (42), express P
R 

in 

terms of S/NOB, the channel SNR in the bandwidth oE the modu­

lation, and q, the number of quantization levels .. 

If the sampling period is T , we have 

B = 
1 

2r 

But, if each sarnple is quantized into 2
k 

levers, k bLts must: be 

sent every r seconds. Rence 

r = kT = kiR = 

and 
R 

B = 

Thus we obtain for coherent reception 

= erfc .../,. S/NoB 
., log 2, q • 

We now derive a useful approximation due t.O the asymp-

totic expression for the complementary error function. 

where 

erfc x = 
2 

~ 

00 ! e-
y2

dY 

o 

2 -x e 
- e 

- indicates an order of magnitude. 

2. 
-x x» 1. 
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Hence, for coherent bipolar transmission we have 

(3.3) P = erfc --- -~8 
. B NOR 

exp( _ 28 ) 
~R 

where only the dominant exponential factor has been retained •. 

In particular, this expression shows clearly the effect of che 

transmission rate on PB' Suppose we know PB for a given R. Then 

if we wish to transmit information at a lower rate, say RI= R/a, 

we obtain the error probability 

(3.4) 2S [ P~ = exp(- NoRIa) = exp(-

If P
B
« l, the bit error probability for the slower rate can ba 

many order of magnitude smaller than PB: 

This is a fundamental result in digital communication 

that has been often neglected when data compression is consi-

dered. 

3.3 Data Compression Systems 

Similar to the PCM systems, data compression systems 

are subjected to bath quantization and transmission er~ors, but 

the output of a compressor can also be further degraded by an 

implementation error caused by the talerance chosen to compare 

the data sample at the output of the fixed-rate sampler. We 

calI this type of error "aperture error" and compute the rasul-

ting m.s. error. 

3.3. 1 Aperture Error 

For a zero order system, each sample is declared either 
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redundant or nonredundant, depending on the relative value of 

the actual sample with respect to the value of the preceding 

sample. Denote the aperture magnitude by y and let S. be the 
~. 

1 . d f ' . th 1 amp ~tu e 0 tee ~ samp e. 

Then, if 

s. + y 
~ 

Si+l is redundant and is not sent. 

If > y , i. e •. ,. if the sample S. 1 value l.+ 

falls outside the Si:!:Y bounds, then it i5 nonredundant and 

must be transmitted. 

Let a denote the magnitude of a quantization step, and 

suppose that the signal has been quantized before ente~ing the 

data compressor. Then the amplitude difference between two s1-

gnals are multiples of a and we can express the ape~ture y as a 

function of a 

y = :!: ma , m = 0,.1,2,. , .•.•. 

If we set m = 0 , (i.e., a sample is nonredundant unless it 

exactly equals the preceding sample) there 15 no ape~ture error 

and the m.s. error of the reconstructed waveform depends only on 

the quantization error (defined in preceding sect.ion) and the 

transmission errors. 

The error introduced by an aperture of ma is then 

:!;a, :!: 2a, ! 3a, •.• ) :tma and we assume that it is uniformly dis-

tributed in the 1nterval (-ma, •••. , 0, •.•.•. ,. +ma). 

Hcnce 

1 
2m+l 



where y. = ia 
~ 

1 = 0, :!: l, .•• ,:!: m. 

The mean square aperture error for a redundant samp1e ls then 

m m 

(3.5) E ( 2) L: P (Yi) 
2 1 L 2.2 = Yi = a l. Y , 2m+ 1 

i=-m i=-m 
m 

2a 
2 

L .2 
2 

m(m+l) a = l. = 2m+ l 3 
1=1 
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But a = 1/2
k

, where k is the 1ength of the quantized 

word. Also for a nonredundant samp1e E(y2) = 0 sinee the 

aetual value of the sample ls transmitted. Errors will oecur 
1 

only ln (C -1) 
sm 

redundant samples and the m.s. aperture error 

for the reeonstructed waveform is thus 

(3.6) 2 
'Yaperture = 

where C is the average samp1e compression ratio measured sm 

when the eompressor has an aperture m (i.e., the compression 

ratio is a function of the aperture). 

3.3.2 Transmission Errors 

Transmission errors (due to white Gaussian noise) in 

data compression systems fall in two categories; namely, the 

errors in level informations and that in timing informations. 

Errors in level information 

We consider first an asynchronous compression system; 

th en no timing information need be sent and errors occur in 

the leve1 words on1y. However, in this case, an error affects 

an average of C words. This propagation of the error over C 
s s 



=e.,"7' V 

68 

samples can therefore be exp~ess~d in function of the trans-

mission error of a non-compressed system, and referring to 

Equation (3.2) we have 

(3.7) 

where 

2 
Ecompressed 
asynchronous 

= C s 

PB = exp( _ 2S ) 
NOR 

E 2 
2 

= C 
s 

is the error probability of the 

non-compressed PCM system. Note that here C = C since no 
5 B 

addressing scheme i5 used. 

a. 

b. 

Figure 3.2 

Source 
~ 

Sampler .. 
& 

Quantizer 

Redundant 

5amples 

<----"--- -- -!) 

_ ... ... 

-

-

Data 

Compressor 

..---:> 
Channel 

Redundant 

samples 

5 i S i+ 1 

a. Asynchronous Data Compression 

b. Possible sample pattern sent through the channel 

Referring to Figure 3.2-a, it is evident that an asyn-

chronous system does not result in bandwidth compression. In the 

pattern of samples shown (one of many possible), samples s. and 
l. 

si+l are adjacent and nonredundant, hence they appear at the 
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compressor output as they would in a PCM system. The bandwidth 

of transmission in an asynchronous system, being determincd by 

the time interval between the "closest" significant samples, 

must therefore be the same as the PCM bandwidth if the pulses 

representing si and si+l are to be transmitted with no additio-

nal distortion. 

~hus, although the average rate of the asynchronous 

system is smaller than the rate of the non-compressed system, 

the bit error probability PB must depend on the highest rate 

which could possibly appear during the transmission of the 

whole message. Clearly, the maximum rate is that of the non-

compressed system, i.e., R. 

The m.s. error due to transmission errors in an asyn-

chronous comp~ession system is C 
s times the m.s. error of a 

non-compressed system. To improve the performance of the com-

pression system, we can 

a) increase the quantization iesolution, hence increase k, 

b) decrease PB by increasing the signal energy, 

c) use coding tachnique by adding back sorne controlled 

redundancy. 

Note that the three methods result in a smaller over-

aIl compression ratio, i.e., C
B 

departs from Cs 

The first two methods are analyzcd next. 

(a) Suppose we increase the quantization resolution by x 

bits. Then the word length bccomes (k+x) bits and the m.s. error 



due to quantization is now 

E
2 1 

= 1 22 (k+x) 
. 

3 

For a word length of k bits, the m.s. error is 

f'2 1 
= 1 3 22k 

Rence, de::.oting by Â E
2 the decrc:ase in 

2 
resulting fJ::om 

l El 

the use of (k+x) bits per 117ord, we can write 

1 1 
= = 3 2 2 (k+x) 

But, the increase in the bit rate causes the following 

(i) A decrease in compression ratio. Indeed, with a word 

1 e n g t h 0 f ( k+ x) bit s , we 

= 

have 

c s 

l + x/k 

(ii) An increase in the bit rate R. The new rate is now 

k+x 
RI = R • 

x 

(iii) An increase in the m.s. error due to transmission 

errors, i.e., 

(3.8) = 
pl ( 

--! (1 - 1/2 2 k+x» c 
3 s 

Note that the bit error probability is increased since we now 

have 

= 
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The 10ss incurred by this mcthod is thus 

(3.9) = (1 _ 1/2 2 (k+ x» C 
s 

The problem is now, given PB' k and Cs' what 15 the 

value of x which yields 

(3.10) 

This value of x must then be inserted in (1.2) to obtained 

the bit compression ratio and see if C
B 

is large enough ta 

make compression still worthwhile. 

By varying a wlde range of values (2 to Il) 
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and computing 

"k' through 

2 
and L\ ( l ' it is seen that inequallty (3 •. 10) 

ls satisfied for x = 1. In this case C
B 

is given by 

k = k+ 1 
C 

s 

(b) We assume here that the value of PB is such that the 

quantlzatlon error ls the dominant term in the equation for 

the m. s" error 
2 

( d" We wish to determine the non-compresse 

lncrease in signal energy necessary to obtain 

(3.11) E 2 
2 compressed 

= 

Referring to (3.8) we see that the value of PB must decrease 

to PB = PB/Cs ; but 

, (2S)0. "ex 
P - exp - - P B NOR B 

Therefore we must have 



or 

and 

yielding 

Hence 

(3.12) 

1 cr - -

pl = B 

log Cs 
log PB 

exp( 

- p Ic B s 

= 1 + 

-

For s ma Il Cs an d PB « 0.5 

> 1 

the increase in signal 

power is small and the choice between method (a) or (b) wilL 

depend on the particular application of the system and the 

available transmitter power. 

We now consider the effect of transmission errors in. 

level words on synchronous compression systems. 

Figure 3.3-b i11ustrates a typical set of- samples as 
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it '-lould appear at the output of the compressor. In an asynchro-·· 

nous system, the samples would be fed directly into the channel •. 

To obtain bandwidth compression, the samples are buff~red and read 

out at a fixed rate into the channel. The effect of buffering, 

as can be seen in Figure 3.3-b is to eliminate aIl indication 

pertaining to the location of the nonredundant samples; hence 

timing words must accompany the level words r thus enabling the 

receiver to restore the non-transmitted samples. The bit com-

pression ratio CB de pends on the scheme used to transmit. this 



a) 73 

1 Ana;;~~--l f;:-rnPle~HrC~-·----}{:B ff ~ r' omprc ssor .... _u __ e_r_.

L

' Channe 1 source ,analyser . , 
._-_., 

b) 

~ n 

c) 

L n rJ~ 1 .é 
\ 

, 
1 

\ \ 
1 \ 

,- - -

~ 
/ 

r 
- -- --

\ \ 1 

n 
1 

~ / 

0 1 
1 ~é 

Figure 3.3 a. Synchronous Compression System 

b. Pattern of samples at output of compressor 

c~ Same information at output of buffer 

extra information and determines the rate of the compressed' 

data. As in the asynchronous case, bit errors propagate ovar 

an average of C samples, and since the rate of ~ransmission 
s 

is now llC B that of the non-compressed system, we may write 

(3.13) E2 
2 leve 1 

= 
Cs 

3 

The total m.s. error due to channel noise is 

= E2 
2 
level 

+ E 2 
2 .. 
t~mJ.ng 

We shall determine E 2 
2 .. 
t~m~ng 

in the following paragraph. We 

observe lhat c: 2 
2 

level 
increases linearly with C and decreases 

s 

exponentially with CB. Hence, for small PB and close values of 



2 
E 2 is smaller than the 

level 

2 
E 2 0 f the n on - c 0 m-

pressed system. We have 

CB 1 
log Cs 2 ~2 ~ - E 2 ~ 
log PB level 2 

non~compressed 

log CS 
E 2 e: 2 CB < 1 - >-

log PB 2 2 non _·C ompre s se d level 

Errors in Timing Information 

We will analyse here the effect of bit error in the 

address word for zerQ order systems, and consider Eirst the 

case of run length encoding. 

A. Run Length Encoding 

This addressing technique identifies the position of 

the data elements along a line by keeping a running total of aIl 

received run lengths. Let L be the number of elements in a Line 

(recall that a line is framed by synchronous pulses which are 

assumed error-free). 

Then the position of the n
th 

transmitted sample will be 

in error if any run length ,v-ord (RL)., (1 ~ i ~ n) ,. is in error •. 
~ 

Also, if an error is made in (RLl , then the position of aIL 
n 

samples S ,v-here n ~ m~ L will be in error, i.e •. ,. errors in 
m 

position propagate to the end of the line. Hence, the affected 

reconstructed samples are shifted in position by an amount equal 

to the error. Consider, for example, an error.in the least signi-

fic an t bit of ( R L ) • Th i s will cause a d 15 P lacement of :t-l 5 a ln­
n 

pIe for the remaining segments, that ls, only one sample per n 
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reconstructed samples is affected by this error. Also, assuming 

that the run length word consists of r bits, an er~o~ in the 

most significant bit of (RL) will caUGe a displacement of 
n 

! 2 r - l samples for the remaining segments, thus ~esul~ing in a. 

loss of synchronization for the remainder of the LUle •. 

per 

and 

Note that when C is the average eompress ion' r.atio s . 

line, 

we can 

*. 
then exaetly C run-length words must be s~nt per.· line 

s 

take the number of nonredundant samples pero line to 

be L/C (a fixed number). 
s 

If, however, Chas been obtained by averaging the 
s 

redundancy over a whole frame, then the exac t number' of: non-· 

redundant samples per frame is LM/c where M. is the number·of. 
s 

lines per frame, but the number of nonredundant ~arnples per 

line is a random variable whose expected value must. be deter.--

mined. 

In Chapter II, we found that the run length had an 

exponen t ial dis tr ibu t ion p (w) = Àe -Àw., The expee ted value of. 

w yields the average sample compreasion ratio C .' Henee s 

E(w) = 

or 

C 
s 

0:: 

= f w À e -À,w d w l/À'. 

o 

À = II c .' s 

s in cet h e v id e 0 1 in e h as a f in i tel e n g th L,. th e nu m ber. N 0 f . 

runs is a r.v. having a Poisson distribution with mean ÀL = L/c • 
S. 

In practice a value slightly smaller than C is chosen, to 
s 

avoid frequent buffer overflows. 
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Indeed, referring to Figure 2.1, we form the fol1owing r •. v. 

= 

whose probabi1ity density is given by 

(N -1) ! 
N-l -,\z . 

z e ;: N = ~, 2., .•.•.•. ; z. > O. = 

as can easily be shown by mathematical induction •. The probabi-

lit y distribution FN(z) given by 
z 

= 
(N-l) ! f N-l -Àu u e du 

o 
is the gamma distribution of order N and parameter À •. 

Now the number N of runs in a line of 1ength L is a 

positive integer and implies that zN < Land Z ~ 1 •. Thus 
N+l 

P(N) 

and 

P(N) = 

= F N ( L) - F N+ 1 (L) 

L 

,\N -Àu 
(N -1) ! f u

N
-

1 

o 
e du-

Integrating by parts yie1ds 

(3.14) peN) = -'\L e = 
-LIe e s 

N! 
(L/ e ) N 

s N! 

which is a Poisson distribution with mean LIe. s 

-Àu. d e u. 

We can start now calculating the m.s. error due to 

channel noise. We consider the fol1owing random variables 

n number of affected samples per erroneous nonredundan~ 
s 

sample 

n number of erroneous nonredundant samples given that an 
r 



. ; 
1 

, 1 

1 
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error has occurred in a run-lcngth ward 

eRL : error in sample level due to an error in a run-length 

word • 

The total squared error in one line of data given an 

erroneous run-length word ls 

2 
e line = 

Since there are L samples in a line, the error per sample is 

2 
2 nsnreRL 

e = sample L 

We can therefore write . 

or 

E( e 2 / error in ) 
RL word = 

2 E(n n e RL ) s r 
L 

E( e 2) = ~ E(e 2/ error in) Pr( x run-length '\ 
~ RL word words in error' 
x 

Assuming that the r.v. n , n and e are uncorrelated,. and tha.t. s r 

no more than one run-length word Is in error in any given Line, 

we may write 

(3.15) = Pr( one run-length ) 
word in error. 

We compute the first factor of O.15).The actual sam­

pIe displacement due to an error in the jth bit of a r.un-length 

. 1 
word is 2 J - samples. The number of affectcd samples out of the 

n total samples in a run varies with the significance of the 

bit in error. To obtain the average value of this quantity, 

we note . 1 that when 2J- ~ n, aIl samples in that run are affec-

ted and 
j-l 

n s = n • loi h en 2 < n , we h a ven = 
. 1 

2 J - • The expected 



value of n ) given the run-length n,. is therefore 
s 

(3.16) E (n 1 n) 
s = Pen )n 

s s 
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where n varies from 1 to Zr and pen ) denotes the probability 
s s 

of n or, equivalently, the probability that a given ~i~. irr 
s 

the r-bit run length word is in error" given that there. is an 

error. We can assume tbat the error" is eq~ally probable in any 

bit. Thus 

Defining 

P (n ) = 11 r 
5 

w = [1 + 10gZ nJ 

where [x] denotes the integra1 part of x, Equation (3.16) can 

then be written as 

But we have 

(3.17) 

E(n ln) 
s 

E (n) = 
s 

= 1 
r 

2 r_l 

w 

f L" ZJ-l + 
~j=l 

L ECnsl n) pen) 
n= J. 

r" 

L:' J w+l n . 

where pen) is the probabi1ity density of the run length given 

by (Z.7) 

p (n) 

Thus we can write 

or 

E(n ) 
s 

Zr -1 w 

="; [:L 2j
-

1 

L.J J=1 
n=1 

n. 

-C-S-:-l-] [_C_~_:_1_r 



(3. 18) E(n ) = 
s 

79 

1 
r 

Belver and Hoffman (43) have established the following 

equation for E(n ) 
s 

(3.19) E(n ) 
s = + l w 

r 

They obtalned (3.19) by replacing the actual run. 1ength wit.h t·he 

average run length e . This is a valid procedure only when e ia s . s 

a fixed quantity per line of data. This can happen only when 

averaging has been performed over one line only. If,. however, 

Chas been obtainee by storing several lines or a whole frame, 
s 

the compression ratio per line is a r.v. and (3.18) must t~cn 

be used to obtain E(n ). 
s 

To obtain ECn ), we note that the average number of 
r 

nonredundant samples per line is given by Lie _ Let N be tha 
s 

Poisson distributed r.v. representing the actual number of non-

redundant samples in a line. Now, according to the model des-

cri b e d a t the b e gin n in g 0 f th i s sec t ion, the r. v., n r de pen ds 

of the position of the run length word in error. Thus an a~ror. 

occurring in the las t run leng th word (i. e. 2 in the N-l) th wo.r.d) 

will cause one erroneous nonredundant sample in the line •. An 

error occurring in the (N_2)th word results in two err~neous 

nonredundant samples. Similarly, the number of affected non-· 

redundant samples due to an error in the first run length word 

is (N-l). The probability of an erroncous nonredundant sample, 

given that thcre is a run length word error, is liN (the pro-

bability of error is assumed to be uniformly distributed over 

=cr; 
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the N words). Thus 

N-l 

(3.20) E (n 1 N) 
1 L i N-1 = = ---z-r N 

i=l 

But 

(3.21) E(n ) = L E (n 1 N) peN) 
r r 

N 

where peN) is given by (3.14) and N varies from L/(2 r _1) 

to L, thus ensuring that there is a minimum of r 
LI (2 -1) runs 

in a 1 ine , r or equiva1ently, a maximum run 1ength equa1 to 2 -1. 

(3.22) 

Equations (3.20) and (3.21) yie1d 

E(n ) 
r 

N-l 
2 

which can be simplified in the fo11owing way. 

-L/C L N-1 (l!. )N E(n ) 
e s 

= 
r 2 N N! Cs 

-L/c L [N(L/Cs.t e s 
= 

2 N N! 
(L/C.)N J 

N! 

-L/C L [(L/CSl (L/Cs)N-l (L/Cs)N e s 
= 

2 N . (N-1)! N! 

For large N we can write 

and 

1im E(n) 
N~ r 

(3.23) 

= 

= 

-L/c e s 

2 

LIC s - 1 

2 

- e s 
[ 

L LIC 
Cs 

... ~. 
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Thus, if N is Poisson distributed and L is large, the 

actual number N of nonredundant samp1es can be replaced by the 

average number of nonredundant samples L/C. Indeed, in this 
s 

case E(n )/E(N) is readily obtained by the fo1lowing equation 
r 

[~ 
L/C",-l 

iJ 
... 

E(n )/E(N) 
1 L 1 - Cs/L = = r L/C s 2 

i=l 

which is identicaJ. to (3.23). 

The mean square error duc tO'a run length word error is 

2 
E (e

RL 
/ sample is ) 

in error 
= 

where x
l
-x

2 
is the difference ,between two adjacent nonredundant 

samples. Then 

= 

E(X
l

X
2

) is a function of the correlation between samp1es, and 

depends, therefore, on the source statistics. If the statistics 

are not known, an upper bound to (2.1) is obtained by assuming 

* that the random variables xl an~ x
2 

are uncorrclated • Cnder 

this assumption, we have 

E{(X l -X2 )2} = E(xi) -2E(x l )E(x 2 ) + E(X~) 

= 2 E(xi) - E2 (x l ) 

The r.v. xl can have any discrete values j/2 k where 0 ~ j ~ 2k_l. 

Assuming that xl is uniformly distributed in the interval (0,1) 

we may "lr i te 



P. = J./2
k 

J 

Then 

2 [~l i r E (xl) = p. 
J 2 k 

2k_1 

[zh 
2 _ [zk (2k_ r = L j] 1) 

_. 2 k 2. 
j=O 

= 
(2 k _ 1)2. 

22 (k+ 1) 

We a1so have 
2k_1 2k_1 

E(xi) L P. j2/22k 1 L', .2' 
= = z:rr J. 

J 
j=O j=O 

1 (2 k _ 1) (2 k+ 1_ 1) = "6 2 2k 

Therefore, 

_ , 2) 2 1 22k _ 1 
.t.\X 1 E (xl) = Tf 2 2k 

and 

(3.24) F.J(v _~ ,2} 1 22k_ 1 = "6 -' 1 "1 ~2 J 1 22k 

Suppose now that successive nonredundan~ sarnplsB are 

corre1ated and let p be their correlation coef~icient. 

We have 

and 

p = 

= (T2 
x2 = 

= 
E (xl x 2) - E (x 1) 2. 

er Xl (J" x2 

2 1 22k_ 1 
E (xl) = -12. 

2.2k 
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E(X
1

X
2

) = 

E {( ~ l-x 2) 2 } = 

= 

Hence, 

(3.25) 

2 
PO"XI + E(X

1
)2 

2 
2E (xl x 2 ) E (xl) -

2 
2 

- E(x X ) E (xl) 1 2 

2 
2(1-p) (T 

xl 
= 

+ 
2 

E(x2 ) 

[ 
2k 1" l-P 2 _. l 

6 22k 

The last factor of (3.15) is the probability P'(RLE) 

that one run length word is in error in a line. If the bLt· 

error probability is PB' 

(3.26) P(RLE) = 
rL rL rL 
Cs PB (1 - Cs PB) Cs 

-3 for small values of PB (PB < 10 ). 

~ rLPB 
Cs 

Note that the expected number of run length WO~dB in 

error is given by 

E (N) = 

= 

83 

Bence, for values of f
B

< 10-3 , the expected number of RL words 

in error is smaller than 1; thus it is reasonable to assume no 

more than one error per line for most practical channels. 

Substituting (3.26), (3.24) and (3.23) into (3.15) yields 

the m.s. error caused by channel noise in the case of ~un length 

encoding 

(3.27) 
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B. Single Address Word Encoding 

As explained in Chapter l (Section 1.1), the address 

d . f Lb· . h· . h . th b· wor cons1sts 0 1tS 1n t 1S case, a zero 1n teL 1t 

of the address word indicating that the i
th 

sample is redun-

dant while a one indicates that the sample is nonredundant. 

For exaœple, suppose that the following samples have 

been transmitted (the number below indicates the value of. the 

sample level) 

2 3 431 

together with the following address word 

0001010 0 110 0 0 1 

At the receiver, a 0 is interpreted as a repeat. indi~-

cation and a 1 as a calI for a new sample levei.. 

Thus the restored data will take t.he f.ollowing f:orm 

2 2 223 3 444 3 1 1 1 1 

0001010 0 1 1 0 001 

Moreover, we suppose that the receiver has sorne decoding 

ability when there is a disagreement between the received. 

binary sequence and the number of received sarnple levels •. The 

address word must be rnodified so as to use all'sample levels; 

the fo11owing decoding rule ls then applied by the receiver 

1. If there are excess l's, the terminal excess l'~ are 

changed to OlS. 

2. If there are exccss OlS, the terminal excess OlS are 

changed to l's. 
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In this manner, there are no excess samples which 

cannat be inserted in the flow of data, or empty slots which 

are left without data. 

It is evident from this examp1e that, as in the run 

length encoding technique, a single error in the address. ward 

affects not only the samp1e that it represents , but also the 

remaindec of the line. This error propagation can, theref_ore, be. 

ana1yzed in the same manner as for run length encoding .• _ Thus 

we have 

ward is 

2 given an error 
E(eSAI in address ward) 

E(n ) 
r = 

= .!. (22k_ 1) 
6 2k ,2 .. 

The avera~e number of errors in the single address 

E( ~ddress words) 
ln error 

(l-P ) L--L: 
B 

Ta calcu1ate the expected number of affected redundant 

samples ,er redundant sample, we observe that the maximum amount. 

of affected samples in a run of length n i8 n,. Le. ,. aIT samp-les 

are erroneous; this happens if a one marking the beginning of-

the run has becn changed ta zero. ln general there will be 

1, 2, erroneous samples if the 
th 

(n-1) , .•.• ,." second, . ~ . , n-l 

first zero respectively, arc interpreted as one. This ls il1us--

trated by Figure 3.4 for a received sequence of three nonredun--

dant samples of values 4, 3, 2. We look at the second run whose 

length is 8 and which consists of samples of amplitude 3. 
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Given that there is an'e~ro~' in the address word, it 

i3 reasonable to assume that the location of the bit in error 

ls uniformly dis tribu ted be tween the n' locations .•. Renee, 

Pr(j,th b;t ' ) ... ~n erro~' 

from which wc obtain 

and 

E(n / error in address wcrd) 
sand run length n 

L 

error in 
E(n s / address word) L' 

n=1 

n + 
2 

l/n 

1: 
n 

l' 
p(n) 

where p(n) is the probability or t.he r.un length •. 

n' + 1 -- 2. 

Renee, for large values of" L we. o.b.tain the fô110wing 

approximation 

(3.28) E(n / error in ) 
s address word 

_. 
(C + 1:) /2 •. 

s-
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S ince the m .. s.. er-ror due t.O c.hanne 1 no ise c an'. be . expre 9-

sed as 
L 

2 
E (e SA) }: 

j=l 

E(ns) 
c;-

E( 2' /given error) P (Y' address '''ds) 
e SA in address r in error = 

we obtain by substitution 

(3.29) = 1 + Cs/L Cs + 1 .. --.:::..-._-

6 22k 2... 2.Cs: 

C. Position Encoding 

We have seen in Chapter I that this encoding method 

is less efficient regarding the compression ratio than run-
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length encoding. However~ position encoding is much less sensi-

tive ta noise than any other addressing scheme and, in many 

practical applications, might need little or no coding tO'yield 

an acceptable m.s. error. Also, its performance d6es not depend 

heavily on the length of the line, as ls the case with run~length 

encoding or single-bit encoding. In the case of. picturial data, 

this means that several frames could be stor.ed and s.ome "rcple-

nishment" technique be performed without serious picture degra-· 

dation. However, this addressing scheme has not. been studied in. 

the literature, due perhaps ta the facto that Lt.ls less. effi-

cient than others for deep space telemetry., In the f6l16wing, 

we will compute the m.s. error due to the effect. of. noise on 

tm timing ward. 

Figure 3.5 shows a typical pattern of" nonredundànt 

(i.e., transmitted) samples~ For convenience, the. sBmples are 

shown in their unquantized for"lIl. Each nonr.edundant. sample is. 

tagged by an h-bit ward, where h = 10g2L." desc.ribing the pùsi­

t ion of the samp le along the 1 ine., There are IJ = LI C. nonre _. 
s. 

dundant samples in a line and thus P position words; as in the 

preceding case, the sample level is described by a k-bit.word. 

We suppose that the receiver performs in the fol.l~wing way 

(see Figure 3.6). It transfers the synchronous information 

stored in buffer A to buffer B, placing each sample in buffer B 

according to their indicated position.(In this way the receiver 

has reconstructed -assuming error-free transmission _ .. the asyn-

chronous data as it appeared at the output of the compressor) 

~le also assume that the box called "address decoder ll has a 
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certain error-correcting ability; it reads the three consecu-· 

tive timing words at a time, say Ri" Ri+l" Ri+2 per.taining 

to samp1es Si' Si+1' Si+2 respective1y. Thus t.he f.o1.1.owing 

three cases arise 

Case 1. If Ri < Ri+1 < Ri+2' t.he address dacodér. assumes. 

that the words are correct and t.hu~ a1lows the samples S., 
J. .. 

Si+1' Si+2 to be positionned accordingly. 

91. 

Case 2. If Ri+l < Ri < Ri+2·' the address decoder performs 

again as above (since it .is impossible for the decoder. to know 

which word is in error, Ri or Ri + I ). 

Case 3. If Ri + I < Ri + 2 < Ri: the de cod e ras su me s Ri. i sin. 

error (since this inequa1ity can he true ouly' iT both conse-

cutive timing words Ri+l and Ri+2 are in error',: an avent. vlhich 

has a very smaii prohability of occurrence). The decoder then 

assigns to Si a position Ri such that R i _ l <: Ri <: Ri.+r.· One 

way of implementing this inequa1ity is to place Ri haIf_-way 

between Ri _
1 

and Ri+l" Thus, with this method, t.he average 

error disp1acement of a given sample does not exceed 2C .• ' s: 

The expected squared error due to a pusition worrl 

error is given by 

(3.30) 

where 

E(n /error) 
s 

2 
E(e /error) 

p 

E(ns/error) 

Cs 

E(e /error) Pr(~ p~sit.ion word) 
p J.S J.n error. 

number of erroneous samp1es due 
- E( to an error in the position ~.,ord) 

1 22k - 1 - .. 
6 22k 



Pr(~osition word) _ 1 _ (1 _ PB)Lh/C s ~ 
l.n error 

where h is the 1ength of the address word. 

No~e that an error in a position word does no~ cause 

any propagation of erroneous samp1cs as in the case of· rurr~ 

1ength encoding, but is 1imited to a fixed number of s.amp1es. 

The average number of affected samp1es given an error 

must account for the three possibi1ities listed above •. Renee 

we mus t have 

(3.31) 

where 

E(n ferror) s 
= 

1 
n 

3 

2: Pr(case i) E(nSiferror) 

i= 1 

Pr(case i) = Probability of being in state i 

E(n ferror) = Expected displacement for case L 
si 

on a per sample basis 

N h d · 1 d h . th b· ow t e l.Sp acement ue to an error on t e J Lt 

of the position word is 2 j
-

l • Let n represent the run length 

and w = [ 1 + 10g2 nJ be the number of digits in. the posi­

tion word su ch that an error occurring in any of the w· digit.s 

wbu1d cause a displacement less than n, thereby fulfil.1ing 

the requirements of state 1. Then 

E(n f given an error) 
sI and given n 

Since we know p(n), we obtain 

2h_1 

= 2: 
n=l 

or 

= 

nw 

1 
n 

j -1 
2 = 

92 
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(3.32) 1 

where w = [1 + 10~n]. 

Since an error is equa11y like1y in. each oE the;..""h bits 

of a position word, state 1 will occur with probability 

Pr(case 1) = w/h for each n~ 
n 

Case 2 occurs when j = w + 1 " yielding 

and 

2 h -1 

(3.33) }<~ (n s 21 e r r 0 r ) 
1 L: 2w 

pen) = n 
n=1 

1 2I: 2 [10g 2 n +. 1] l Cs- 1 n: 
= (- ) 

n C.g.- 1. Cs 
n=l 

The probabi1ity of occurrence of state 2 ls 

Pr(case 2) = 1/h independent of n •. 

l'ina11y, in case 3, the error ia detected and corr·ec-· 

ted by the receiver, which assigns to the erroneous posi~ion 

the value 

Position(n-l) + Position(n+1) 

2 

Assuming that the r.v. representing the correct value 

of position n is uniformly distributed from Position(n-l) + 1. 

to Position(n+l) + 1 , we obtain 



ua. 

and 

E(n ,Biven.an error) 
s3 and gl.ven n 

n-l 
2il-ï 

2 
n(2n-iT 

l 

The probabi1ity of being in state 3 is 

Pr(case 3) 
n = 1 -

lV + 1 
--h- for 

n-1 

L: j 
j=1 

C --1 n (_.) 
Cs 

= n-1 
2n-·1 

n. = L, 2:,. • '. '. ',. 2~-.J. 

and (3.31) can now be expressed in the Eo11owing manner 

94-

~ll C 1 n r~ w+ 1 1 
(3.34) E(ns/error) = ~ Cs-l ( ~:) [ hn- + (1- w+l) ( n-1)]'''1 

h 2n-l 

Combining (3.30) and (3 •. 3!;), we obtain the m.s., error. 

due to timing error for position encoding syste.ms., 

n 

The total r.ID.S. error in the reconstructed data. is 

the sum of the four independent errors. We have considered in 

this chapter quantization, aperture, level word and. t~ming word 

errors due to channel noise. 

Combining the expressions found f~r each of' these errors 

we obtain the fo11owing result for the three addressing schemes 

described in this study. 

1. Run length encoding 

(3.36) = 
1 

l2.2 2k + 
m(m+l) (Cs-l) 

3C s (2 k-l)2 

a_e= 
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2. Single address ward encoding 

(3.37) 

1 
l + m(m+l) (Cs-l) .!:n. 2 2k -·1 

e m·1S 
= + 

12.22k 3Cs (2k_l) 2 3 2.2k 

1 
~. 

22k_l l+Cs/L 
~ 

+ ..(cs-r) 
6 22k 2 2C s 

3. Position word encoding 

(3.38) 1 + m (m+ 1) (Cs -1) + !.Ji 2 2.k - l' 
e

RMS = 
l2.2 2k 3C s (2 k-l) 3::' 2Jk 

2 r _l 
~ 22k_l LI [ 2

W

:

1
_1 (h-lv+l) (n-l)J + LPB Cs-I + -. 

6Cs 2 2k Cs -1 Cs 2.n-1. _ 
n=1 

Each of the above equations is expressed in terres of. 

the ratio of r.m.s. errorto full scale amplitude •. The r .• m.s. 

error in a non-compressed signal is used ta evaluate the effect 

of the compression scheme on the reconstructsd data~ The r.m.s. 

error for a PCM signal is given by (see (3 •. 2» 

Equations (3.36), (3 •. 37) and (3 •. 38) have been calcula-

ted for certain practical values of the parame.ters. k,. h.,. r:' and C • 
s 

Thus aIl the curves have beeu plotted for k=6 bits.,. and zero 

aperture error. The total number of samples per line is· taken 

as 1000 and the run lengths have bean restricted to a maximum 

of 32 samples. Thus r = 5. For the position encoding scheme, 

t:he word length is h = log
2

1000 = 10 •. The size k of. the level 

ward yields a r.m.s. quantization error of 0.45 %. This error 

is not a function of the bit error probability and, therefore 
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the curves of Figures 3.7 and 3.8 illustrate the magnitude of 

the error versus both sample compression ratio and bit error 

probability. It is seen that errors in run length encoding 

and single address encoding systems vary significantly as a 

function of Cs. Position encoding systems give clearly a better 

performance than the other techniques (at the expense, however, 

of a smaller bit compression ratio). It is interesting to note 

that the r.m.s. error decreases with C for the run length 
s 

encoding technique while it increases with C for position 
s 

encoding. 
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CHAPTER IV 

EFFEeT OF CHANNEL NOISE ON 

FIRST-ORDER PREDICTOR 

4.1 Introduction 

l'le have seen in Chapter l t.hat. a. Li.rs.t-·or~der. polyno-' 

mial predictor performs a prediction of the amplitude of. a gi-· 

ven samplc by considering both amplitude and slope. obtained 

from previous samples. In this chapter'" we shalT use a. simple 

first-order predictor which uses two adjacent. samples to' pre-·· 

dict the amplitude of succeeding samples,. and transmits the. 

starting and end points of a str~ight line. The end pnintof 

line j constitutes the star-ting point of line (j+l) •. Thus the 

original analog waveform is approximated by a succession of 

lines as shown in Figure 4.1. We wish t.o calculate now the. dif-· 

ference be t\\leen the true value of a s'amp le, say samp le X ~, and 
1.. 

the interpolated value X~' obtained at. the receiver:~ The. trans-· 
1. 

mitter stores the values of Xl and X and draws a line. passing 
2. 

through these two points. If the amplitude of s.ample. X3~ falls 

within a distance Y/2 from this line, then X~ is· considered 

redundant, and sample X
4 

is compared next.. The process conti-' 

nues until a sample is found excecding the given tolerance. 

Suppose that N samples Xl" X
2

, •.••. , XN fall within the aper-' 

ture y (see Figure 4.2). The truc value of the i
th 

sample is 

hW 
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a) Approximation of Data by a Firsr-Ord~r Predictor 

,-(Nfl. Ih }"I , 

/ .' 
X", 

J- ............ 

~ 
i' '. 

..... , 
'--L.. 
1 

.... 
....... 

1 "-
.......... 

1 

b) Transmittcr Operation 

Figure 4.1 FIRST-ORDER PREDICTOR ALGORITHM 
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(A) Line at transmitter 

(B) Line at receiver 

Figure 4.2 RECEIVER OPERATION 
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given by 

where 

X. 
1. 

~i 

a 

n 

= 

= 

= 

= X -1 
Xl - Xz\ 

n _ 1 (i-l) + [\i 

ma is a zero mean discrete 

quantization step 

length of the run 

r.v. (m = 0, t 1, . . . 
(i = 1 , 2, ... , 

The transmitter sends samples Xl and Xn to the receiver; it is 

clear that 

X = X'+L\ 
n n n 

Therefore, at the receiver, the value of sample X is calcula-

ted as 

Xl - Xn X' = Xl - ( i-l) 
i n-l 

Xl - Xn - L\ n 
= Xl - ( i-l) 

n-l 

We can assume that the r.v. L\ i (i = 1, ••. , n) are independent. 

Therefore the error in the reconstructed data is 

= - S~ 
1. 

= L\[n- iJ 
n-l 

Since E(L\)E(i) = 0 , the rn.s. error due to an aperture is 

(4. 1) 

~ and 

= 

= 

n 2 E ( [\2/ n) + E ( L\ 2/ n) E ( i 
2

) 

(n-l)2 

E( L\~n) n
2 

+ E(i
2

) 
(n-l) 2 

) 

n) 
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(4.2) = L: E(e!/n) pen) 
n 

where pen) is the run length distribution for a f±rst-order 

predictor. In order to determine p(n), however,: we mus,t know 

the statistical structure of the source. 

4.1.1 Run Length Distribution 

The determination of the run length distribution cf' 

a first-order system requires knowledge of 

a) the power density spectrum of the data, and' 

b) the probability density of the amplitud~ of the. data. 

M.Bruce (46) has computed the theoretical compression 

ratio for a first-order predictor operating on' four types, of. 

input data; the probability density of the amplitude of the. 

data is Gaussian with a zero mean and the standard deviat1~u 

is (T • The following amplitude spectra were examined •. 

L spectrum 

F (w) = k
1 <- 0 ~: W ~, o~ .. r w ) 

m 

F(w) = 0.001 k
l 

( 0.,1 wm ~, w ~ w ) 
m 

F(w) = 0 elsewhere 

Exponential spectrum 

F (w) k2 exp(- 5 w 
) ( 0 ~. <.. ) = w w 

Wm " m 

F(w) = 0 e1sewhere 

Tr iangular spectrum 

F (w) k3 (1 
w 

) ( 0 ~ ~ ) - -- W \17 
wm m 

~ ,~~~ 
F (w) 0 else\17here '!('. = 
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Rectangular spectrum 

F(w) = k4 ( 0 ~. w ~ w ) m 

F(w) o elsewhere 

Figure 4.3 is a plot of the theoretical compression 

ratio on the four types of input data. The abscissa K is the 

magnitude of the tolerance. Clearly, there is a trade-off bet-

ween the ~~ount of compression ratio and the width of the aper-

ture. Morcover, the compression ratio depends on the spectrum 

of the input data. 

If the statistics of the input data are not avaLlable, 

one can still assume a certain data structure; for example, the 

data coul.! be a Markov process, ane! we have seen in. Chapter II. 

that TV signaIs are approximately first-order Markov whe~e the 

highest transition probability is from the present levei to the 

same level. Thus the input data can efficiently be app~oximated 

by a succession of straight horizontal lines, which is exact~y 

what a zero order predictor does. But then, as noted by Davisson 

(47), for a large value of the transition probability p, the 

performance of a first-order system is inferior to that of the 

zero-order system. Most interpolating lines are indeed ho~izon-

tal and the former transmits two samples for each run,. while 

the latter transmits only one (i.e., the start of the line only) 

per rune On the other hand, for small values of p (p<O.5), the 

first-order method gives better results than the zero-order one, 

but the resulting compression ratio is smaii when PCM encoding 

is taken as the standard of comparison. However, a first-order 

method may not be inferior for aIl kinds of data •. In particuIar, 
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Davisson has shown that its performance improves fbr. data having 

statistical dependence beyond the previous sample, as ls the 

case for a second-arder Markov process. These data can be appro-

ximated by a sequence of non.-level s traight. 11ne runs. and one 

expects that first-order schemes would have sorne advantage. 

Denote by Py the probabilit.y that. a jump· in the. an:pli­

tu de of two adjacent samples is fol1owed by a jump of:' the SP.Il1e 

magnitude, within a given tolerance Y •. 

Py = Pr(Jump of s Ize. j LO.llolve.d. by' jump of:· s Ize h. y ) 

Then the probability of a run of:" length n·. is. given by 

(we drop the subscript) 

(4.3) pen) = pn(l_p) 

and the average 

Recognizing that 

we obtain 

(4.4) 

Therefore 

length "of the 

E{n) 

E (n) 

C s 

= 

L 
n 

= 

= 

L n. 

n 
np _. 

(l-p) 

E (n) 

runs ïs 

npn (l-p) 

:p ( L pn) p 

n 

Lnpn 

n 

= 1-
l-p 

= 2...... 
l-·p· 

If Cs is the only parameter that can be measured, we can then 

calculate the value of p 

(4.5) 
Cs 

p = 



Note that this value of p is app~oximate and imp1ies the fo1~· 

10wing property of the process; p does not depend on the size 

of the initial jump. A1though this may fit certain te1~metry 

data, it does not describe TV signaIs. In the f-011owing, we 

assume that (4.3) ho1ds for the run 1ength distr~bution •. 

4.1.2 Aperture error 

We can proceed now ta calcu1ate the aperture error_ 

given by (4.1). We have 

E(Y/n) = 

and since n 

L k
2 

k=O 

we can write 

= 

m(m+ 1) n-1 (see (3 •. 6» 
3.2 2k n 

= n(n+1) (2n+1) 
6 

= 
(n-1) (2n-1) 

6 

Substituting the value of E(i2 ) into (4.,1) ,. we obt.ain 

(4.6) m(m+1) n-1 6n 2+(n-1)(2n-1) 
3 22k n 6(n-1)2 

Therefore 2r _ 1 

2 m(m+l) L 2 
E(eA) = (n-1)6n +(n-1)(2n-1) 

22k 2 
3 n=1 6n.(n-1) 

or 
2 r -1 

2 
(4.7) 2 m(m-/- 1) L 6n +2n-1 n E(eA) = p (l-p) 

3 22k 
n=l 6n (n-1) 

pen) 

When m = 0, we have 2 E(eA) = 0; thus there is no error between 

the reconstructed and original quantizcd value. 

108 
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A computer calculation of (4.7) has shown that this expression 

does not depend strongly on C when 2 < C < 10. 
s s 

4.2 Bffect of Transmission Errors 

As for the zero-order predictor, channel noise reaults 

in amplitude error and timing errer. 

4.2.1 Level word error 

We assume that a single error in a level word. ~s eq~al~· 

ly likely in each bit. An error in level word j affects the re-

constructed samples in run j and run j+l, as shown in F~gure 4.3' 

-- -- --:-. ;;/j 
~ ~ / L\ 

-/ .. _-- -:;;;-~ /- ~_. 

,e:­
! 
i 
1 

........ It\; 

<:---_._---~~ , ____ . _______ ~ .... l _______ > 

Figure 4.4 First-Order Level Word Error 

Let X. denote the amplitude of the i th nonredundant 
1. 

sample S. and X~ the amplitude of the sample in error. In FL-
1. 1. 

gure 4.4, sample S. is erroneous since its amplitude 1s X! in--
J J 

stead of X .• This error is propagated over (n+n'-l) samples 
J 

and on the average the error is propagated over 2C -1 samples. 
s 

No' .... , givcn an error of.1 steps ( 0~.1!::2k) in sample S., 
J. 

an error Âi will result for aIl redundant samples from S to 
j -1 

S • Moreover, 
j 
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for j; = l,. ••••• l , n-·l. 

sinee the nonredundant samp1e S. 
J 

th 
is the n sample in the run 

and elearly displays the largest error, as shown in Figure 4.4. 

In faet, sinee the errors . decrease linearlv when i 
~ J 

varies from (n-1) to 1 (at i=1 we have 6. .. =0), wc. c:an write 
~ 

E (L\.) 
:t 

= A/2. 

If these were the on1y errors resulting f~om an erro-

neous nonredundant sample, the m.s. error result.ing f:r.om a 

first-order scheme wou1d he ha1f that of a zero-order predic-· 

tor, hence, ha1f that of a PCM (non-compressed) system •. However~ 

as i Il u s t rat e d in Fig ure 4. 2 , the e r r 0 r pro p a g a te s t·o the ne x t 

adjacent rl!n. For this run the errors LX.~ (i=1,. 2., .•.•.•. ,n l --1) are 
1. 

a1so smal1er than 6 and independent of the run length ni, and. 

their average value is 

E (L\i) = 11/2 

Consequently, given an error A in sample S., the average error 
J 

for the resu1ting (n+n l -l) erroneous samples of a first~order 

predictor is equa1 to â. 

The m.s. error per samp1e is, theref~re,. the same as 

that of a zero-order system (or that of a non-compressed sys-' 

tem) and is given hy 

(4.9) = E (X. -x ~ ferror) 
J J 

= 

Since Pr(error in level word) - kP B r we have 

(4.10) E(ei) 

l" 22k_l 

3. k 22k 
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4.2.2 Timing word error 

The m.s. error of the reconstructed waveform depends 

on the addressing scheme used to inform the receiver on the 

location of the nonredundant samples. We shall consider here, 

the case of run l~ngth encoding. Every level word is accompa-

nied by a timing word which indicates the distance d separa-

ting two adjacent nonredundant sa~ples. The receiver recnno-· 

tructs the data by joining with a straight line the. two. sam-

pIes d units apart. Note that for aIl non-level runs,. d can 

be constituted of at most 2
k 

steps, where k is the length of 

an amplitude word, since this would correspond to a signal 

starting from 0 volt and reaching its maximum value of l voLt-

(we recall that the signal has been normalized) •. 

Figure 4.5 illustrates the effect of an error in'. a 

run-length lvord. 

ce 

1 i ~-

- -. "'-
"'-

Figure 4.5 Run-Length Word Error 

---Correct valu.e of 
amp.I i tude s, 

-- --Value of' amplitude 
due to displacement 

Due to an error in the (n_l)th run-length word, sample 

is displaced and becomes now S~. In this exarnple, the distan-

between S' and S is taken as d=5. AlI succeeding nonredun-n n 
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dant samp1es are disp1aced by the same amount. If we denote 

by n the number of affected nonredundant samp1es, we have, 
r 

simi1ar1y to the zero-order case 

(4. Il) = 
1 + Cs/L 

2 

The error due to samp1e disp1acement varies from 0 step t0 

2 k _2 x steps, where x is such that . 2 x /2 k is the amplitude of 

samp1e S • Here x is a r.v. assumed to be uniform1y distri­
n 

buted between 0 and (k-1). Thus, 

(4.12) P r ex = i) = 1/ k i = 0, 1, •..• , k-l 

Assuming also that the error has the conditional 

uniform probability 

pee/x) l 
= 

it is possible to write the fo1lowing expression for the con-

ditional m.s. error (note that the error can assume the fol-

lowing values e = j/2 k 
where j = 0, 

2 
E(e /x,error) 

k x 
l, ••• ,2 -2 ) •. 

2 k -2x 

~ j2 

j=O 

This expression simplifies to 

2 
E(e /x,error) 

or 

2 E(e /x,error) 

S ince 

= 

= 

= 

1 

( 2 k _ 2 x + 1) (2 k+ 1 _ 2 x+ 1 + 1) 

6 2 k 

L E(e 2 /x,error) Pr(x) 
x 

112 
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we obtain from (4.12) 

k-l 

(4. 13) 
2 

E(c /error) 
1 L = 

x=o 

Denoting the expression un der the summation by f(k,x),. we have 

(4. 14) E(e~ierror) ~1 E(k ,.x) 

~O 

N ow i t is eviden t from Figure 4 •. 1 th a t: aIT redundant 

s amp le s excep t Olle (s amp le S,) are aff eC.ted., Renee.,. if' n is: 
L s 

the number of affeeted samples per run, we have 

Sille e 

and 

E(ns/error) 
Cs 

E(nr/error) 
= 

LIC s 

Pr(one timing) 
error -

-
E(ns/error) 2 t' , 

E( / ) Pr( one ~mmg) 
1 e error 

er.ror 

we may write 

(4.15) = 1 + CS IL 
2 

rPB(Cs-l) 
Cs 

k-l 
1 2: 

x=o 6k·,2 k 

The overal1 r.m.s. error in the reeonstructed data 

is therefore (assuming no aperture error, i..e.,. m =, O. ) 

! 1 PB 22k_ 1 
(4.16) e = + --rrns 12 22k 3 22k 

1 % 
k-l 

+ 
1 + Cs/L rPn(Cs-l) 1 L f(k,x) 

2 Cs 6k 2 k 
x=O 
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where 

This equation is p10tted in Figure 4 •. 6 f.or k =. 6 bits, 

r = 5 bits. It is seen that the r •. m •. s. error' increases exp onen­

tia11y when PB >10-
6

, and does Qot vary appreciably with Cs 
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CHAPTER V 

CONCLUSION 

In the course of this study~ we have sesn how the 

redundcncy reduction can be obtained by various f~rms of' 

coding. A statistica1 ana1ysis of the effects of channel 

noise on zero-order and first-order predictorB has been 

presented in Chapters III and IV. 

We showed that, in the absence of correlation, 
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the vu lner ab i 1 i ty of the signal incre as es., It is app aren t" 

from the curves illustrated by figures 3 •. 7 and. 4 •. 6" that,. 

given a channel ldth a bit error probability of" lO-7bits/sec. 

or more, the resulting r.m.s. error of the compressed sys­

tems may not be acceptable. However, of the three addres­

sing techniques considered, the position word e.ncodîng 

technique yields the smallest error in the reconstructed 

data. Moreover, with this scheme, the error propagat.ion 

is limited to one rune 

We have seen that more elaborate coding methods 

can be devised; however, it appears that efficient encoding 

often implies excessive complexity of the transmitting and 

receiving equipments, and much work remains to be done to 

find a "practical" optimum coding. 

It should be emphazised here that the data com-



pression systems studied in Chapters III and IV are imple--

mented in such a way as to yield both bandwidth c~mpression 

~ energy compression. Thus, the average compression ratio 

C def ined in th ls s tudy imp 1 ies that the compressed data s 

require a bandwidth BIc s and signal energy E/C " where s. 

Band E denote the bandwidth and signal energy f~r' the non-

compressed system, respectivelyo 
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For certain applications, such as- te1:e.metry in deep 

space, the energy compression i5 a prime requirement~. On the. 

other hand, in mcny applications, such as videophone, it- may 

be more important to reduce the bandwidth rather than the 

power. Therefore, if the power E used for the non-cnmpressed 

system is available for the compressed system,. the compa-· 

rison between the two systems must be made under the aSBump-

tion of equal energy. 

The bit-error probability of the non-compressed 

system is given by 

exp ( -
2S "NR) 
o 

where R is the transmission bit rate~ 

The bit rate of the compression syste.m. i:s_ RI C~ •. s_ 

Thus the bit-error prabability pl of the compression system 
B 

is 

pl =A r;;;;;;;- exp( _ 2SC s ) 
B \,Ts- NoR 

Replacing this value of PB in (3.36), (3.8) and (4.16) 
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yields the new equations for the r.m.s. error of the com-

pression system. The results are plotted in Figure 5.1 and 

show clearly that for practical channels, bandwidth compres-

sion can be achieved with only a small signal degradation 

compared to PCM transmission. 

When the power necessary for PCM transmission is 

not available, one can resort to error-correcting codes to 

reduce the error rate. Sever al coding procedures have been 

described in the literature (48) (53). lt is shown that. 

protection on the address words only can be sufficient. 

Block coding minimizes the bit error rate but not 

necessarily the magnitude of the m.s. error, and therefore 

is not efficient for most compression systems. Majority 

vote coding (51) yields better results~ lt is possible that 

"significant bit" coding could provide an efficient way to 

cope with this problem. This coding procedure consists in 

protecting the most significant bits of a word thus mini-

mizing the errors which are the most costly. 

However, any form of coding results in lowering 

the bit compression ratio and an optimum procedure has 

yet to be found. 
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