DATA COMPRESSION SYSTEMS

Georges E. Husson, Dip.

Eng.

(Elec.)

TP T FOPSNPraly S coepe Sy o e o



DATA COMPRESSION SYSTEMS

Electrical Georges E. Husson, Dip. Eng.(Elec.) M.Eng.
ABSTRACT

Variouvs forms of the redundancy veducticn techniques
which incliude the zero-order and first-order predictors, are
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address encodexr and position encoder are analyzed and compared.
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ABSTRACT

Various forms of the redundancy reduction techni-
ques which include the zero-order and first-order predic-
tors, are applied to digital data compression. Different
schemes for supplying the timing information in a compressed
system are available, In particular, the run-length encocder,

single address encoder and position encoder are analyzed

and compared,

It is shown that these compression systems are more
sensitive to transmission errors than the conventional PCM,
However, when bandwidth compression alone is considered, the
performance of the compression systems can be made as good

as that of PCM,

Graphs showing the effect of noise on zero=-arder
and first-order predictors, for the three addressing schemes,

are included,
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CHAPTER I

DATA COMPRESSION SYSTEMS

Modern communication methods have rendered possible
the transmission of analog (contipuous) waveforms in digital
(discrete) form. The many advantages and disadvantages offe-
red by these techniques are now well known and have been ex-
tensively covered in the 1iteraturé. Pulse-code-modulation
is one way to achieve this transformation and has been applied
to voice, video and telemetering data for more thanm a decade,
thus causing a tremendous increzsc in the amount of digital
information which'must be transmitted from one point to an-
other. The capabilities of present-day communication channel

may not be sufficient to accomodate all the signals generated.

At reception, the information often appears in a for-
mat not suitable for immediate use and must, therefore, be
%
stored before it is processed and decoded. This results in a

waste of memory space and processor's time, both costly items,

Hence, excessive bandwidth occupancy and time requi-
red for sorting the "useful" information out of this large
amount of data are the two main factors that led engineers to

consider more efficient ways to process digital information,

Methods were devised to remove, at least partially,
the redundancy of the message by taking advantage of the de-

gree of "predictability" which exists among the sequences

* For some expected quantities of scientific data from deep-space

see reference (1).



which form the message.

Any data compression scheme that has been developed
is, therefore, directly related to how the input waveform
was originally sampled., We know that a bandlimited time func-
tion must be sampled at least at twice the highest frequency
contained in that signal in order to extract all the infor-

mation contained in the waveform, Most PCM systems are built

according to that rule,

However, in the case of many telemetry signals, there

aresome periods of low activity, and redundancy occurs during

these periods which are grossly oversampled., Since little or
no information is gained by sending the samples occurring

during a low activity period, these samples are redundant

and need not be sent,

Data compression or redundancy reduction consists
in processing the data prior to transmission so that the re-
ceived waveform can be reconstructed with a minimum number
of samplcs to any desired accuracy. For the purpose of com-
parison, we will take this tolerance to lie within one quan-

tization step of the A/D converter.

Since the occurrence of nonredundant samples is
random, the data compression techniques described in the se-
quel usually employ temporary buffer storage of compressed
data, which enables the actual transmission to be synchronous
and at a rate lower than the Nyquist rate. A simplified block

diagram of a data compression system is shown in Figure 1.1.
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In the course of this study we shall assume a binary

symmetric channel corrupted by additive Gaussian noise..

1.1 Definitions

A data compression system will be formally defined
as a communication system which zadapts itself to the time=~
varying information content of the.data and seeks to main=-
tain an output rate which is consistent with signal activity
without significantly affecting the efficiency of the trans-

fer of information,.

It appears from this definition that several systems
can fulrill these requirements, and hence, classification of
the data compressién systems is attempted in the next section..
Let us first define some technical terms that will be often

used in the sequel,.

It was implied in the above definition that a signal
can be regarded as having a varying effective bandwidth or a
quasi~ststionary spectrum, A Yquasi-stationary spectrum'" will
be defined as a short time spectrum, the mean of the signals
exhibiting discontinuities between samples ("“sample'" is taken
here in the statistical sense). It will be shown that this is a

minimum requirement if adaptive methods are to be used.

To evaluate compression algorithms, we must consider
some figures of merit which will serve as a basis of compa-
rison. All things being equal, a "good" system should exhibit

a high compression ratio. In the following, three compression



ratios, namely, sample compression ratio, bit compression
ratio and energy compression ratio, are defined, each taking

care of a different aspect of data compression.

1. Sample Compression Ratio

(1.1) c _ Total number of samples generated _ STT_
' s Number of nonredundant samples transmitted SR

This formula is useful to ascertain the amount of
redundancy inherent in a given message, for a specific com~

pression algorithm,

Although this figure of merit is oftem quoted, it
does not describe the efficiency of the overall system. This
efficiency can be reduced considerably if we take into accvount
the timing information that must be sent to the receiver in
order to obtain a proper reconstruction of the signal. We
have already stated that we are essentially concerned in this
study with synchronous systems. This entails sending the time
of occurrence of each sample as well as the sample amplitude,

and leads us to define a bit compression ratio.

2, Bit Compression Ratio

Number of bits to send (uncompressed data)

(1.2) o .

B Number of bits to send (same compressed data)

Notice that the numerator represents the number of
bits sent by a fixed sampling-rate PCM system, designed to

’ %
&g@ yield predetermined error fidelity criteria. Therefore, the

* The error is due mostly to the quantization noise..



ratio C_ 1is valid only if the waveform reconstructed from

B
the compressed data exhibits the same quantizing noise as
the PCM system, since higher bit compression ratio could be
obtained if we relaxed our fidelity requirement for the com=-

pressed data and maintained a more rigid one for the non-

compressed data.

The denominator of CB consists in the number of bits
necessary to represent both level and timing information.
However, in (l1.2), no mention has been made of synchroniza-
tion bits., In digital systems, it 1is indeed imperative to
maintain synchronization between transmitter and receiver,
and this is usually achieved by sending at regular intervals
a special word called the synchronization code-word. The re-
ceiver should be able to decode this word with as little am-
biguity as possible, so the code word should exhibit a pat-
tern not often encountered in the stream of information bits,
Preferably, the code word should be short and its frequency
of occurrence is chosen in an optimal way with respect to
parameters such as noise in the channel, speed of recovery
when synchronization is lost, acceptable number of synchro-
nization loss per unit-time. We shall call the interval bet-
ween two consecutive synchronization words a line, This ter=-
minology is taken from television where a line 1is indeed cha-
racterized by synchronization pulses marking its beginning
and ending. In the following we shall assume an error-free
synchronization procedure. Hence, error propagation is limi-

ted to one line, In many practical instances, this is a rea-



sonable assumption, because enough redundancy can be inserted
‘@@ in the sync word to ensure accurate decoding. It is also true
that the sync word will be short compared to the length of a
line, Hence, we have not included the sync word in any of tﬁe

expressions for the compression ratios.

We can now express formula (1.2) in the following

way
(1.3) c, = —%—Eﬁm - ng}?/’ﬁ'
where
N = number of bits per sample level
w = number of bits required for timing informatioun

Equation (l1.3) shows explicitely that Cs is an upper
bound for the compression rat:io of any system, The bit com-
pression ratio CB will approach this bound for small w. But,
w depends only on the addressing scheme devised to identify
nonredundant samples; we now consider the three following

addressing schemes

a) Run Length Encoding A run is defined as a seriecs of

consecutive redundant samples. The run length is then the num-
ber of redundant samples in a given run. Run length encoding
consists in transmitting the levels of ali nonredundant sam=-
ples together with binary words expressing the number cof re-
dundant samples following each nonredundant sample., The first
sample in each line is always nonredundant, If a line has L

samples, then w< logyL, If w<loggl , say w=log,T where

T<L , some run lengths will be truncated if they exceed T bits.



Choosing the right value for T depends essentially on the

@@9 bound Cs’ hence, on the source statistics.

The bit compression ratio for run length encoding is

Cs
(1.4) CB =
1 4+ logypT /N
b) Position Word Encoding The level and the address of’

each nonredundant sample are transmitted. The address refers
to the position of the sample in the line of data..

The bit compression ratio is (here w=P > S¢=L.)

Cs
(1.5) c = —
B 1+ P/N
where P = logzL = number of bits per address word
¢) Single Address Word Encoding The levels of all non=--

redundant samples in one line are transmitted as a block., This
is followed by a single address word consisting of a number. of’
bits equal to the total number of samples per line. This L-bit
word is such that a zero in the ith position indicates the.

redundancy of the ith sample, while a one in the same posdi=

. . . . th
tion indicates a nonredundant i sample,

The bit compression ratio is then given by

NL L Cqo
(1.6) Cp = s = ———— = ————
NSyg + L Syr + L/N 1 + Cs/N
S L
since C = —lL = e—,
S SNR SNR

-

%? Now we wish to select the encoding scheme to obtain




the largest CB possible., This is possible only if we can
assume a value for the sample compression ratio Cs’ and this
assumption depends on the source statistics. If the source
statistics are unknown, we must rely on intuition to guide

our choice,

In Figure 1.2, we have plotted the effects of the
three addressing schemes on the bit compression ratio versus

the sample compression ratio.

From this plot we see that for pracﬁical values of.
CS and L, the position word encoding gives the Jlowest bit
compression ratio., For small values of CS the single address
word encoding appears to be best, but run length encoding is
superior to both schemes for larger values of Cs” Because it.
is simple to implement, run length encoding is used more fre-
quently than any other coding methods (in particular for. di-

gital encoding of TV signals).

3. Energy Compression Ratio

Up to now, we have considered an errorless channel,
However, in the practical case of a noisy channel, the degra-
dation incurred by the compressed data may be more significant
than for corresponding non-compressed data. The cause for this
increased noise sensitivity can be intuitively deducted from
the fact that when comprecssion is introduced each transmitted
sample represents CS samples in the average. Thus, the recons-
truction procedure will propagate an error in the sample level

word over CS samples while with regularly sampled systems only
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one sample would be affected. This is the only type of error
propagation incurring in an asynchrénous data compression
system, It is easily evaluated and is given later. However,
for synchr&nous data compression, there is another kind of
degradation, which is due to errors occurring in the timing

information that must be sent to the receiver..

We have previously assumed that synchronization is
error~-free, so that errors do not propagate beyond a line
of data, But, an error in a run length word causes a shift
in data location within the line where it occurs (this is
true for any addressing scheme used). The variance of thi
location orror increases linearly with distance from the
synchronization code word. It is much more difficult to az-
sert the influence of this type of error on the reconstruc-
ted waveform, and often one must resort to subjective tests
rather than the conventional mean squared error criteria.
For example, timing errors can be disastrous for compressed

TV signals where entire lines are destroyed.

There are two ways to remedy this situation. First:
an increase in transmitter power will improve the signal-
to~noise ratio and result in fewer channel errors. But, the
bit compression ratio defined above does not take into ac-
count this extra energy in the signal. Davisson (2) has pro-
posed a figure of merit called the energy compression ratio.
This ratio, Ce, is defined as the ratio of the average ener-

gy required to send a sample in a non-compressed communica-
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tion system to that required in a compression system for the
same data quality at the receiver, and under the same noise
conditions and transmission scheme, Data quality could be

given in terms of r.m.s. error or probability of sample error.

The energy compression ratio is often difficult. to
compute; Davisson has attempted an analysis of a first-order

Markov source.

Now it may happen that the transmitter pow:r is fi-
xed, as is often the c¢: e in telemetering applications, and
the preceding trade-off cannot be accomplished. Since we are

concerned with digital transmission, an altermate solution

is to use error correcting codes. The insertion of some "or=-
ganized" redundancy back in the compressed data could hope=-
fully improve the signal~to-noise ratio, at the cost of de~
creasing the bit compression ratio. The effect of coding con

C, can be expressed as follows

B
NL Cg
SNR (N+w+R) 1 + (w+R)/N
where R = number of bits allowed for coding.
1.2 Classification

Realizable data compressors f£all into two main cate=-
gories, namely, Entropy Reducing (ER) and Information Preser=

ving (IP) transformations,.

l. Entropy Reducing Transformations

This type of transformation performs an irreversible
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operation which results in an “acceptable" deterioration with

respect to the fidelity criteria.

Examples of entropy reducing data compressors are
narrow-band filters, limitors, vocoders (compression of speech),
TV picture compressors. Generally, a special ER device must
be designed for each application and no interchange is possi=~
ble. An KR compressor usually operates directly on the darta

source, before sampling and quantization.

By definition, ER transformations reduce the fide~
lity of the source. But, to achieve data compression, they
must also reduce the entropy of the input signal. To show
that this is always true, we represent the analog source at
the input of the ER device as a discrete source X = Xy
with M levels. This representation is valid since the ther-
mal noise of the source and the imperfections of the instru-
mentation needed to measure the source characteristics limit
our measurement precision, Hence, we can only distinguish M
states of the source (M may be quite large but is bcunded).

Now, the entropy of the source is
M

HX) = = 2{: P(Xi) log P(xi)

i=1
and if we denote by Y the output of the ER device, we may

write

H(X,Y) = H(X) + H(Y/X) = H(Y) 4+ H(X/Y)

. Noting that y; = f(xi) , we have H(Y/X) = 0., But, since
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ER transformations are irreversible, H(X/Y) >0 . It. follows

that
H(Y) = H(X) - HX/Y) < HX)

which proves that ER compression results in a reduction in

entropy.

A narrow-band low-pass filter is often used to achie-
ve ER compression, Indeed, one can show that the maximum en-
tropy of a source is proportionzl to the dimensionality of’

the signal space and a filter reduces this dimensionality.

Before passing to IP compression methods, we briefly
describe some source encoding tcchniques. This will lead us.
to define an ideal compression ratio. We divide the coding

of information into two parts, as shown below

SOURCE CHANNEL

SOURCEL ! ENCODER > ENCODER CHANNEL

Y

=

Channel encoding consists in inserting some controlled redun-
dancy into the information flow so as to combat noise more

efficiently,

Source encoding directly influences the bit rate of
the transmission through the channel. Assume a band-limited
white Gaussian process, which is sampled at the Nyquist rate

and quantized optimally to M levels,

(i) Binary Encoding - The M quantization levels are enco=--

ded into r binary digits where M& 2T,



(ii) M~ary Encoding ~ Rather than encoding each sample
separately, a block of k samples is encoded at once, where

k is such that Mk = 2h for some h,

(iii) Entropy Encoding - The quantization levels do not
have the same probability, We take this into account by en=-
tropy encoding; it consists in what Oliver (3) has coined
as N-gramming. If a quantization level has probability of
occurrence p,, we assign log Py binary digits to its enco-
ding. Hence, shorter codes are assigned to the more proba-
ble levels. The Shannon-Fano code and the Huffman code are

typical examples of N-gramming.

Now, for each of these schemes, there is an opti-
mum number of quantization levels M for a given mean square
error, i.e.,, a value of M that will minimize the rate at
which it is necessary to transmit information. Goblick (4)
has analyzed these schemes and arrived at some curves which

are reproduced in Figure 1.3,

It is known that Shannon's rate distortion function
yields the minimum possible transmission rate for a given
data error. The rate distortion lower bound R(€¢) is also
plotted in Figure 1,3, thus showing that entropy encoding

requires only .25 bits per sample more than the lower bound.

However, the efficiency of entropy encoding depends
strongly on the source statistics, and hence, it can only be
applied safely to highly correlated stationary sources.,. A

time-varying signal could result in certain cases in a band-

15
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width expansion. To achieve au efficient coding, the desi-
gner must then resort to adaptive methods, and a sub~optimal
system is usually obtained. Adaptive coding is a sub-optimal
procedure which consists in monitoring continuously the
source statistics and updating the coding procedure accor--
ding tc these measurements., Hence, the past history of the
signal is used in the determinztion of future code assignr--
ments. The decision rule which performs this mapping need
not be adaptive itself and a fixed rule known to both the
transmitter and the receiver greatly facilitates the design
of the system, since it is then unnecessary for the trans-
mitter to send information on how and when this rule has
varied., However, the source musgst be quasi-stationary if we
expect a limited number of measurements to converge to some

useful statistics.

This procedure results, therefore, in a compromise
between the optimum value set by the rate distortion func--
tion (attainable when the signal statistics are completely
known) and the maximum entropy coding which transmits the

total information (straight PCM).

In the next section, a practical implementation of.
entropy encoding for picturial data 1is bfiefly described.
We simply observe here that the measurement of signal sta=
tistics can approach ideal coding for ergodic processes (like
TV signals). In the more practical case of quasi-stationary
processes, one should detect only the fast transients of

the data, since experiments have shown that coding assign-



ments are not influenced by neighbouring statistics (5).

Although the compléxity of entropy encoding has led
designers to prefer other methods of data compression, the
concept has proved useful in establishing some bounds with
respects to compression ratios. In particular, it is possi-

(S

ble to define an ideal compression ratio which does not

depend on the procedure used to perform the data compression..

The ideal compression ratio is defined as the maximum source
information rate in the absence of any compression algorithm,
divided by the entropy of the source, Now it is well known
that the maximum entropy of a source X = {xi}, where

i=1, 2, ..., M , is obtained when all symbols are equal~
ly probable, or equivalently, when there is no redundancy

in the signal, In that case P, = 1/M and

M
= 1 z -
Hmax = -7 logzM = logZM
i=1

But, the actual entropy of the source is

H = - P. log, P,

Hence, the ideal compression ratio can be expressed as

logzM

ideal
- Pi logzPi

1=1

* sometimes called "optimum compression ratio"

18
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When the source statistics are known, the ideal
compression ratio can be calculated and the performance of
various data compression algorithms can be compared to Cideal
which is an upper bound for all possible algorithms (note

that the sample compression ratio Cs is an upper bound only

for the bit compression ratio achieved by a given procedure).

Finally, we note that entropy coding, as well as the
information preserving transformations whiech will be defined
shortly, causes an increase in entfopy. Indeed, letting R

denote the redundancy of the source, we have

]

1 - Hx/log M

*x

and after compression

R

¥ 1l - HY/log M

But, we must have RYzRX ; thus HYZHX . This is due to the
fact that adjacént samples in the compressed data are less
correlated than before compression when prediction has been

successful,

The ideal compression ratio can be expressed in terms

of the source redundancy R , in the following way

Cideal = T= R,

For more information on this subject, the reader is

referred to the literature (6) (7).



2, Information~Preserving Transformations

Information-preserving (IP) transformations are a.
reversible mapping of a set of meésage symbols into a set of
sequences containing less binary digits. The signal can al-
ways be reconstructed exactly and the choice of the coding
procedure, if redundancy is to be remoﬁed, depends essen~:
tially on the signal statistics. However, the exact nature
of this dependency is not usually known and there is no uni=-
que solution for an optimum mapping. Often, a method of trial
and error will result in the desired procedure, but for cer=
tain input waveforms (e.g., voice and TV signals) a mathema~

tical model is found very useful.

20

Since IP data compression reduces the number of sam~-

ples that must be transmitted, it also reduces the energy

required to transmit the source information within some tole-

rated error criteria.

The basic types of compression exhibiting these fea-

tures are polyromial curve fitters, statistical predictors

and adaptive samplers (8-13).

A, Polynomial Curve Fitting

(i) Polynomial Predictors This method involves. the

approximation of the signal between sample points by a poly-

nomial and is mathematically equivalent to an interpolation

process, If we let Xt represent the predicted value of a sam=-

ple at time t, we can write the following difference equation
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A\
_ , 2, n
(1.8) X = X+ AX _,+ A o+ .o+ AKX
where xt~1 ie the value of the sample occurring at time t~1,

BXey = ¥eo1 = %o

2, _

Rpar = DXy - 8%

Xeaz ™ Fpop 7 X3

n _ A= n-2
X, =0 ]Xt-l AT X,

Equatior (1.8) implies that Xt ir predicted according to the

value of the (nt+l) previous samples.

The simplest form of predictor is the zero~-order

predictor (ZOP) given by (n=0)

It represents the largest possible set of consecutive data
samples within an accepted error tolerance, by a horizontal
straight line. In practice, a tolcrance band or "aperture'" K
is placed about the preceding sample, This aperture is usually
taken equal to or a multiple of the quantization step. If the
level of the sample at time t exceeds the level of the pre-
vious sample by an amount equal to the aperture K, then it is
judged nonredundant and is transmitted., This nonredundant sam-
ple forms now the new reference for comparing the ensuing sam~

ples. Otherwise, it is discarded as redundant, and hence, is
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not transmitted. The algorithm for the zero-order predictor

is illustrated in Figure 1.4,

Note that according to this algorithm, timing infor-
mation must be sent with each nonredundant samples. For the
signal shown above there are eight nonredundant samples, hence
eight timing words must be transmitted along with the eight
level words. It is possible, however, to modify the preceding
algorithm so that fewer timing words will be required for the
reconstruction of certain types of data., The modified algo-

rithm is shown in Figure 1.5.

It is easy to show that in no case will the modified
algorithm require more timing words than the preceding algo-
rithm., For the portion of signal given in Figure 1.5, two
timing words are transmitted (instead of eight). However, for
the modified algorithm, a f£lag is required to differentiate
level information from timing information and this could in-

crease the length of the timing and level words by one bit,

Another form of polynomisl predictor is the first-

order predictor. In this case, we have

N
X, = X,_;+ AX

where

AX, .y = X1 -%

There are several methods for representing redundant samples
‘by a straight line segment (15). We give here only one method,

as illustrated in Figure 1.6. The mechanization of this pro-
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cess will be given in the next section.

(ii) Polynomial Interpolator The difference bet~

ween interpolator and predictor is that for interpolators
the interpolation is affected by the sample values between

the last transmitted value and the present one.

Zero~Order Polynomial Interpolator As for the zero-

order predictor, the redundant portions of the input signal
are reprecsented by a straight lime, but the difference exists
in the choice of the reference sample to represent the redun-
dant set. The reference sample for the interpolator is deter-
mined at the end of the redundart set, whereas for the pro-
dictor it was the first sample. Also, the reference sample

X  in the interpolator is the average between the largest

t
sample X1 and the smallest Xs in the redundant set.

B. Statistical Predictors

Statistical predictors involve prediction of sam=-
ples by weighting a set of previcus samples in some speci~
fied manner. The difference between this method and the types
previously mentionned is that the prediction rule is self-
controlled., It is determined by a learning process which
makes use of a set of previous samples not necessarily imme-
diately prior to the predicted sample. An optimum predictor
is, in principle, possible if the power spectrum of the si=-
gnal is known exactly. If not, one can expect a sub-optimum

predictor.
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The prediction equation could be represented by

some linear combinations of past samples

This is the equation of a linear nonrecursive filter and the
coefficients could be obtained by solving the Wiener-Hopf

equation for discrete data,

More details on statistical predictors are to be
found in (14) and (15). This method is too complex for prac-
tical hardware implementation and the results have been ob-

tained by computer simunlation.

C. Adaptive Samplers

One way to eliminate redundancy in a sequence of’
samples is to adjust the sampling rate to the information
content of the source, since this would produce nonredundant
samples only. But this demands complete knowledge of the source
statistics and generally telemetry systems are greatly over-
sampled. Another drawback of this method is that after each
change in the sampling rate, there exists a period during
which the signal cannot be accurately reconstructed, This.
procedure, though theoretically interesting, has, therefore,

not been implcmented.

Before concluding this section, we shall add to the

preceding classification some methods which can, at least in

principle lead to data compression.
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1. Transformation Compressors A transformation is per~

formed on the analog or digital daté by nonlinear or linear
transformation. At the receiver, decompression is obtained by
applying aﬁ inverse transformation. Logarithmic amplifiers,
filters and compounders are practical examples of transfor-
mation compressors. Other types of transformation compressors
are Fourier filtering and Karhuncn-Loeve compressors. Because:

of their complexity, the last two methods have not been im-

plemented.

2, Parameter Extraction Compressors The method consists

in extracting a particular parameter from the signal and.
transmitting this parameter alone. This process is irrever=-
sible since the original data cannot be reconstructed from

the transmitted parameter.

3. Bit~Plane Encoding (16) This interesting method con=~-

sists in partitioning the information bits into subgroups so
that some of the subgroups can be encoded efficiently. We.
shall see in the next section how this method is implemented..
The method has proved useful wheu the amplitude spectrum of
the data is concentrated in different ranges in different:

time intervals, It is an information preserving method.

1.3 Implementation

We consider in this section the implementation of

‘some data compression systems based on redundancy reduction

and entropy reduction techniques.
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1. Redundancy Reduction’ A simplified block diagram

common to all redundancy reduction schemes is shown in Figu-
re 1.7. The reference memory stores all data which will ser-
ve to perform the compression; they are previous samples,
tolerance limits, slope limits, selection of a particular
algorithm, etc. The comparator determines then whether each
new sample is redundant or nonredundant, and updates the
reference memory accordingly. The nonredundant values are
sent to the buffer memory, which permits synchronous trans-
mission through the channel. The design of the output buffer
is an important and often difficult task. The size of the
buffer is proportional to the expected overall compression
efficiency of the system and to the maximum degradation
acceptable in the reconstructed waveform. Indeed, even for
stationary sources, the observation over a short interval

of the stream of redundant samples often indicates a large
deviation from the average flow, This will cause either over-
flow or underflow of the buffer. Overflow is the most serious
drawback because it causes the loss of nonredundant samples,
and since the redundancy of the data has already been redu-
ced. Several studies exist on the subject of optimum and
adaptive buffering. References (17) and (18) present an ex-

cellent coverage of the various techniques available,

The block marked as "timing and control" provides
the necessary signals to control the sequence of operations
which the data compression system must perform., The timing

signals are derived through logic circuitry from a clock.
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Figure 1.8 shows a more elaborate block diagram of

a typical telemetering data compression system, while Figurel.9

is a detailed description of the data compressor.

In Figure 1.8, the block marked as ''queue monitor"
delivers a control signal which 1s a function of buffer oc-
cupancy. This signal is used to adjust the aperture tolerance
initially set for optimum performance in such é way as to
decrease the data rate at the compressor output. This method,
due to Massey (19), reduces the accuracy of the output data
regardless of the data activity, Buffer overflow can, how-
ever, be controlled by adaptive filtering of the input si-
gnals., (Input signals are often filtered prior to multiple-
xing to avoid aliasing errors due to sampling) Adaptive fil-
tering would cause additional degradation only in the high

activity part of the data, which would otherwise cause the

buffer to overflow,.

2. Adaptive Methods

Adaptive Predictor

The general block diagram of an adaptive predictor
compression system is given in Figure 1.10; this technique
was first suggested by Balakrishnan and applied to picturial
data via computer simulation (20). The system is essentially
an adaptive ER transformation, in this case a predictor,
which consists in an arithmetic unit, a memory and a control

signal generator, Each sample S, is compared with its predic=-
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ted value Sp and the prediction error ey = S, ~ Sp is cobtai-
ned. The value onf e 1s then compared to some predetermined
error threshold, Q; if ep2>Q the sample in question. is si~
gnificant and must be transmitted; if ep< Q the sample is
predictable and hence redundant. This part of the system is
similar to the preceding polynomial predictors described pre=-
viously. The fundamental difference is in the feedback frowm
the comparator output to the predictor which serves to update
the prediction mechanism, The updating can be accomplished
in several ways. For example, if we want to predict the kth
sample Sc, having observed the m preceding samples,, we could

try to obtzain the best nonlinear estimate for Sk in. the m.s.

sense, given by

A .
S, = E(Sk / Skl’ Sk?_* oo oy Skin)
or
m
A . . .
(1.9) Sk - .:1: 1 Pr( Sk = 1 / Skl’ Skz, si0te. 5. Skm)
l= .

where i denotes the ith quantum level,

The memory of the predictor should be updated so that
the conditional probability given in (1.9) be estimated from
the data., It follows that the predictor's efficiency will be
proportional to the storage capability of the memory; the lar-
ger the size m of the memory, the better will be the estimate
of the conditional probability, hence that of Qk' In practice,
since there are M" possible observations of the vector

S the size m of the memory is limited to three,

Skl’ LI Y km s
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Other methods to achieve prediction are given in (21).
We describe now an adaptive éoding procedure which can be used

in conjunction with the preceding method.

Adaptive Coding

Source encoding is this case by entropy encoding. The
adaptive method consists in measuriang the efficiency of the
coding procedure and determining a new procedure according to

the result of this measurement,

As for the previous method, an error signal must be
produced and fed back to the source encoder. This error can
be obtained in the ﬁollowing wayf Let {pi} be the probability
of occurrence of a sequence {xi} and{qi}the probability of
occurrence of {yi}. If the sequence {yi} occurs and is encoded
with -1og,.2pi bits per symbol, then the excess number of bits

used for the ith sequence is

6 = 1logy 93 = log, py = logy p;/q; .

The average number of bits per sequence in excess is

An = E 1;8; = :g: q; log, a;/p; «

Now, after the measurement of ST realizations, the
best estimate of the 94 is given by A= Si/ST , Where Si is
the number of occurrences of the ith sequence out of the ST
realizations. Initially, we code for maximum entropy (pi = 1/M),

Then the initial excess 1is

* This method has been suggested by Blasbalg and Van Blerkom (5).
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" : M

& AH. = E: log A M =.M1 Mo+ Z"l A

‘ I 1 og,AM =M log, — 14982 Mg o
i= =

If AIH_Z AHO , the maximum entropy coding is ineffi~
cient and we code with P; = Ai. If AIH.< AHO ,» we continue

with the initial code.

The new measurement now yields

M
= 2 : A
AH, et logzhi/pi

For samples of reasonable size, it has been shown that
AH has a chi-square distribution of (N-1) degrees of freedom.
The sensitivity of AH to variations of A can be obtained from

the following equation

1-X
l-p *

A = 1og2A/p + (1-))log,

The plot shown in Figure 1,11 illustrates the excess
bits as & function of p when the true probabilities are A. It
is seen from these curves that there is no excess when coding
matches the statistics. Also, the curves are flat near the
minimum, indicating that the coding is not semnsitive to small’
deviations from the exact probabilities X . Therefore,. the
statistical estimates Ai could be obtained from a relatively

small set of samples.

A functional block diagram of an adaptive coder is
shown in Figure 1.12, The output of each block is explicitely
stated and the overall operation follows the description given

above. A control line has been added to adjust the source en~
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Figure 1,11 Excess bits for the binary case,.

tropy in accordance with the channel status,. hence avoiding
excessive degradation of the data when the channel is over-
loaded.

The implementation of an adaptive data compression

for multiple sensor outputs is given in (5);. this reference

also considers the effect of adaptivity on the ideal compres=-
sion ratio.
For the simple case described above, it: is clear that

the upper bound of the bit compression ratio is (21)

logoM

A

(1.10) c
B I, . .. o M
P log,(5) + (1-p)log, (=)

where p is the probability of making an accurate prediction,
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3. Bit~Plane Encoding This method consists in

forming groups of M consecutive samples, and storing their
quantized values vertically in a buffer memory. Each group
contains, therefore, NM bits where N is the number of bits
necessary to describe each sample. Looking at the memory as
a rectangular array, we see that the least significant bits
of all the words in the group lie on the same horizontal
Iine. That is, the Nth-order bit of each sample is taken to
form an M-bit sequence, called a "bit=-=plane. The bit-plane
procedure iIs to encode and transmit the bits in each of the
planes sequentially. It is obvious that when the data con-
tain a high degree of predictability, the most significant
bit-planes should contain long runs of zeros or ones, Thus
these planes can be significantly compressed by some type

of run-length encoding.

The following table describes the arrangement of

bits in the memory, for M = 8 , N = 4 ,

M
1 2 3 4 5 6 7 8
N:
4 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
2 0 1 0 1 0 (1] 0 1
I 1 0 1 1 1 0 1 1

[ﬂ is the second-~order bit of the sixth word. The second-

40
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@% order bit=-plane is 01010101 .

The implementation of a bit~plane encoder is iljus-
trated in Figure 1.13. The monitor looks at each bit-plane to
determine hov each plane is to be treated, Essentially,. the
monitor distinguishes between four types of plane, depending
on the "count-of=-changes" C indicating the number of times
adjacent bits in a bit plane are different., Thus, if ' C =0 ,.
then the plane is momovalued and is described summarily (i.e.,
by transmitting only the value assumed by all the bits and
indicating that the plane is monovalued), We refer to these
planes as class A planes. Class B planes are those for:which
the number of runs is small enocugh to be profitably compresz-
sed, or more precisely, those planes for which 0< C<(M/10%1M)-1.
Run~length encoding could then be used, Finally, class C pla-
nes correspond to C 2 M/log2 M and the plane is. transmitted
bit by bit,

The preceding plane identification can be accompli-:
shed with three bits. An extra bit could be used for single
error detection. The best choice for the size M of a bit=plane

depends on many factors and should be determined for. each

particular application.

We shall study the effect of channel noise on this

technique in Chapter IV.
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CHAPTER I1

THE RANDOM VIDEO PROCESS

Compared to many forms of data transmission, picture
transmission requires a relatively large bandwidth, since con-~
siderably more data seem necessary to produce an adequate vi~

sual signal.

Yet it has been known for a number of years that video
signals exhibit a greater redundancy than any other information
sources, This redundancy appears to the viewer in the following
way; a large portion of the informationm cenveyed by the picture
seems to be concentrated in the contours of the objects rather
than in their intensity. Since contours are determined by sudden
variations of intensity, it is reasonable to assume that the video
signal could be efficiently represented by difference signals,.
i.e.,"jumps" between adjacent samples. Large differences chould

occur less frequently than small ones since it is more likely

that a randomly chosen point of an image lies in a "run" (i.e.,

an area of uniform or slowly varying intensity) than on a contour,
This property suggests the use of differential PCM coupled with
a Shannon-Fano coding procedure and some interesting results

concerning DPCM appear in (20) and (21).

Another solution would be to take advantage of the exis-

tence of the uniform runs lying between contours; one could think
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of implementing a system which minimizes the number of bits
describing those runs. The simplest method consists in a. zero-~
order predictor associated with a run-length encoder, as des~-
cribed previously. Whatever the method used, the statistical
correlation between neighboring elements sets a bound on the
final efficiency (i.e.,compression) of the system. Compression
techniques for a video source have been purely statistical, or
psychophysical, or a combination of the two. Im this study, we
shall be mostly concerned with the former method, but some. psy-

chophysical properties will be briefly discussed.

This chapter reviews some of the most fundamental results
obtained in picture bandwidth compression, It is divided in four-
sections; in the first section the statistical properties of a
video source are described. Thelchoice of appropriate coding tech-
niques depends strongly on these properties, Their efficiency is
usually measured against a standard which consists of PCM (unco--
ded) transmission, The second section, therefore, is concerned
with PCM television and the effeﬁts of noise on the reconstructed
image. Section 3 summarizes some forms of statistical coding and

the last section describes some aspects of psychophysical coding.

2.1 Statistics of video signals

The large quantity of experimental data which have now
been gathered to study the statistics of television signals allows
us to judge the efficiency of the various models proposed up to

date. The following results are mostly due to the work of Seyler



45
(22) , Franks (23), Estournet (24) and Kretzmer (25).

Any particular image can be modelled by a continuous
function of three variables I(x,y,t) where x and y are the spa-
tial coordinates and t is the time coordinate. The function
I(x,y,t) represents the light intensity distribution of the image

and can be written as
I=1(nAx, mAy, kT )

which corresponds to a discrete representation of the process,
Note that sampling is always present in a TV signal and is due
to line scanning which performs the mapping of a two~dimensional

process into a function of time,

Investigations have been mostly concerned with first-
order probability distribution of the levels of picture elements,
the second and third order probabilities between adjacent pictu-
re elements and with the autocorrelation function of television

signals. The main results are summarized below.

(i) Amplitude distribution is essentally non-stationary.
Indeed ditferent pictures yield different amplitude histograms
and it has also been observed that even a single image can pro-
duce different histograms when certain photographic paramaters
are varied (24). Since all forms of histograms can occur, one
can state that the first-order probability of picture levels
tends towards a uniform distribution if a sufficient number of
frames are considered. Thus knowledge of the amplitude distribu-~

tion alone gives no indication on the redundancy of the signal.
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(ii) This redundancy becomes apparent when conditional pro-
babilities are examined, i.e., when we consider the statistics
of "difference" level between adjacent samples (elements); for
a typical image the probability'distribution of difference level
is stationary and it is'found that small differences are more
probable than large ones., Morcover, the conditional probability
of two adjacent samples having the same amplitude is about 10
times that of having amplitudes differing by the maximum amount.

The distribution of sample differences is approximately lapla -
cian,

(iii) From the statistical distribution of power in the fre-
quency domain of the signal, we can deduce the correlations
existing between elements in space and time (i.e., between the
same spatial elements in successive frames). Franks (23) has shown
that the autocorrelation function of the three-dimensional tele-

vision process can be assumed separable, i.e., we can write

(2.1) é(r) = h(7) g(7) £(7)

The three component functions h(7), g(7) and £(7)
represent the influence of element-to-element, line-to-line
and frame-to~frame correlations, respectively. For typical pic-
ture material, there seem to be an extreme concentration of po-

wer near multiples of the line scan and frame scan rates.

A model characterizing the luminance process has been
proposed by Franks who identifies the video signal with a random

.step function (Figure 2.1) with Poisson distributed zero crossings
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and independant amplitudes having a rectangular probability dis-

@ tribution.

v(t)'

Vn+ 1

4

-+

——1 n nt+l 'f‘J-__

Figure 2,1 Random Video Signal

Assuming also that the random step function is a wide-sense
stationary Markov sequence, it can then be shown that the corre-

lation functions h(7) and g(7) are exponential..

Thus (2.1) becomes

(2.2)  #(Ax, Ay, T) = A exp(-alax]-glay[~rT)

¢(0,0,0) and @, 8, A are constants,

where A is given by A
Equation (2.2) can also be written in the following form (con-

sidering spatial correlations only)

(2.3) $(Ax,Ay) = A exp[- Yax?+ (A‘y)z:[

Equation (2.2) has been reasonably confirmed by several

correlation measurements and the average values of a = ,0256

.and B = .0289 were derived empirically (26).(0n the averagea = f)

The power spectrum of the process is given by the Fou-

rier transform of (2.2) and power spectral density measurements

performed by Deriugin (27) have also shown the validity of (2.2).
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The existence of a non-zero autocorrelaticn function
assures us that some compression is possible since, as shown
by Elias (28), the autocorrelation function furnishes a lower
bound to the redundancy of the signal, Thus for a high correla-
tion A between neighbouring picture elements, the lower-bound

redundancy is approximately equal to
~ 1 o
RZE - 5 log2 (1 - A) bits/sample

For typical picture material, the correlation between
two points along the spatial dimensions was found to be of the
order of .90 but this value decreases very rapidly with increase

in the distance between samples.(Nyquist rate assumed).

Also measurements made on adjacent frames of motion

picture films have resulted in a correlation factor of .80 .

Using the random step function described above to
model the analog video process, Narayanan and Franks (29) have
recently derived the power spectral density of digitally enco-
ded video signals. The expression obtained consists of a product
of four factors characterizing the effects of the digital pulse
shape, quantizing and coding, scanning raster, and the béndwidth
of the analog signal. It is also shown that large concengrations
of power occur at multiples of frame rate, line rate and sampling
rate when the video signal is encoded by PCM or DPCM. Various

measurements have confirmed this periodic concentration of power.

In summary, the model proposed by Franks fits the sta-
tistical measurements of first and second order distributions.

In particular this model permits us to have a better insight
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into the statistics of runs, which are analyzed next,

The transition matrix of the difference signal obtained
from an image shows explicitely the dependence between levels

and difference levels; the predictability of the signal lies in

this dependence which manifests itself in the following way

(i) Successive jumps are likely to be of equal magnitude

(or to differ by a small amount) if the first jump is not too

~large.

(ii) Given that the first jump is large, it will more likely
be followed by a small jump.

Note that this process is upper-bounded since the si-
gnal has finite amplitude., However the probability of no jump
(zero difference) between two picture elements is larger and
implies the existence of large picture areas (runs) where levels
are constant within a small tolerance?” .. We are interested here
in.the statistical behaviour of the run lengths. We know that
the amplitudes Sj of the samples are dependent. Consider a run
consisting of n samples {Sij} , (j =1, ... ,n ). One can assume
that the amplitudes of runs {Sij} , (i =1,2, ... ) are stationa-
ry and that they occur randomly and independently in time_( the
level difference between runs consisting of a dependent random

variable with an exponential probability distribution).

We are interesteg in obtaining the epected value of the

run length, i.e., we want to compute

o0
E (w) = /WP(W) dw
0
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It

where W, (i 1,2, ... ) is the random variable denoting the

run length and p(w) is the probabilit& density of the run length,.
Now we have assumed that the distance from an arbitrary

point tO to the next random point ti is a r.v. independent. of

what happened outside the interval (tO’ti>” But this is equiva-

lent to

P (( w/ w>t =p(w-t0)

0 )

It is shown in probability calculus that the only function
satisfying the above condition is an exponential., Furthermore,
since the autocorrelation function of the video process is
given by

d(r) =re AT

it can be shown that

p(w) = )\e-)‘w

and the probability distribution of the run length is therefore

given by
w

P(w) = /)\e-'\z dz = 1 = e-.)"W

0
Since we are supposing that the video signal is sampled

at a fixed rate, we must define a Poisson process for a quanti-
zed system, i.,e., the r.v. w, can assume discrete values only;
in other words we consider the case where the occurence of runs
takes place at times n At, where n is an integer and At is the
minimum duration of the run. For convenience we set At = 1, The
minimum run length is therefore composed of one sample at least,

and to obtain the discrete probability density p(n), the area
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under the continuous density function p(w) between points

w = (n-1) and w = n , is lumped at point n, Thus
(2.4) p(n) = P (wg<n ) -P (w<n=-1)
= (1 - e-An y - (]___e—k(n~x))
= ( e)\_ 1 ) e"'An

where 1< n<>,
This expression represents the probability distribution of run
length in discrete form, and the expected value of run length

is given by

E(n) = Zn ( eh- 1) e~)\(n'

n
(2.5) =(e)‘—1) Zn e'-)\n
n
Noting that
n e~AmD =-é~—( e~ AR )
dn
and that
:E:e-kn _ 1
n 1 - e_A
we obtain from (2.5)
~X. _
Bn) = (et 1) —2 s - A
(1 -e™) 1L —e

The probability distribution of rum length given by (2.4) can

therefore be written as

1 E(n) - 1 n

E(n) - 1 E(n)

(2.6) p(n) =

This result is in agreement with the statistical mea-
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surement of run length performed by Cherry (31).

It is sometimes convenient to write Equation (2.6) in

the following way

p(1) n
(2.7) p(n) = (1 - p(l))
1 - p(1)

where p(l) is the probability of a run consisting of a single

element.

X .
Considering now a jump ¢ of amplitude giiri (where

x varies from 0 to k), it is possible to derive the relation
which exists between the statistics of rumns and those of jumps..

Indeed, it can be shown that (21)

2¥.1
1 - p(l) = -zlx- Z p?X(1/1)
i=0

where p(i/1) is the probability of a sample with amplitude i:

given that the preceding sample has the same amplitude.

2,2 PCM Encoding of Video Signals

Before compressing digitally encoded video signals, it.
is important to know the effects of changes in system parameters
on the picture quality when PCM transmission is used, Given a
certain picture quality, the designer wishes to choose the sys-
tem parameters such that the number of bits per frame to be
transmitted is a minimum, The effect of sampling and quanti-
zing on picture quality has been studied by many authors, and
this section is based mainly on the works of T.S. Huang (30),

R.E.Graham (32), Seyler(33) and Roberts (34).
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2.2,1 Visibility of Noise

Visual response ta noise is an important factor of
any picture coding system, since noise is due both to channel
imperfections (additive Gaussian noise), and the encoding pro-
cedure, which yields an output within some finite errér. For
example, the finite number of quantization steps of PCM pro-
duces what is usually called the quantizing noise. However, it
is important to predict noise vigsibility under a wide variety

of conditions.

What is known can be summarized in the following

facts (35)
1) Noise is less visible in a complicated picture.

2) Noise is more visible if it is correlated with the
picture than if it is random. Hence, quantizing noise is more

visible than additive random noise of the same r.m.,s. value.

3) The presence of noise in a picture reduces its con-

trast and its sharpness.

4) The spectrum of the image affects the visibility of

noise in a way which is not yet fully.understood.

5) Randomly scattered noise is usually less visible than

noise with local structures (i.ec., noise which occurs in bursts).

The quality of the received picture is clearly affec-
ted by the visibility of noise and other distortion occurring
during the transmission. The influence of various system para-

meters on the noise visibility has been investigated, and we



54.

outline next some of the results.

2.2,2 Sampling

Consider first the case of a noigseless channel and
assume L samples are taken to describe a line. Each sample is
quantized into one of Zk distinct levels. For commercial tele--
vision, about 500 samples per line (1 = 500) and 50 to 120
brightness levels (k = 6 or 7)*are requiree to achieve a reso=
lution comparable to present=-day analog system. A smaller L
results in poorer resolution while smaller k introduces arti-
ficial contours. The total number of bits per picture is

N = L L k., Consider now the following sampling process (32)

Input

\!/

Two-dimensional

Prefiter

J

Sampler

v

Two-dimensional

Postfilter

Peterson and Middleton (36) have shown that for a fixed number
of samples per frame, prefiltering and postfiltering with ideal
low~pass filters yield the least m.s. difference between the

output and the input., Subjective tests performed by Huang have

* This is true if uniform quantization is used, However, one bit
can be saved by using logarithmic quantization, thus matching

more closely the properties of human vision.
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consolidated that theory.

Huang (37) has also-shown that the sampling pattern
affects the output picture quality. Moreover, he showed that,
given N, the total number of bits per picture, there seems to
be an optimum choice for the values of L and k. From a series.
of subjective tests, isopreference curves were drawn (the points
on these curves represent pictures of equal subjective quality,
for various values of L and k) , indicating strong dependence
on the picture type. Hence, for pictures with a large amount
of details, k can be small (only a few brightness levels are
needed), but L should be large. In this case, the optimum value
is picture dependent. In general L should be large for a pic--
ture with a large amount of detail, while in a picture with a

small amount of detail, k should be large.

2.2.,3 Quantization

Quantization noise can be reduced by placing a pre-
filter and a postfilter around the quantizer, and D.N.Graham
(38) has obtained with this method a picture essentially free
of artificial contours using only three bits per sample.. Gene-
rally, a smaller number of quantization levels can be used if
the quantization noise can be transformed into random noise,

An interesting technique has been proposed by L.G.Roberts (34).
It consists in a pseudo~random noise modulation technique,. in

which a noise with rectangular spectrum and peak~to-peak value
equal to one quantum step is added to a picture before quanti-

zation, the same noise being substracted from the quantized
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received picture. Roberts showed that this procedure would result
in an unquantized output to which has been added a random noise
with the same r.m.s. value. With this wmethod, four bits per sam-

ple have been found acceptable.

2,2.4 Coding and Channel Noise

For a noiseless channel, the particular code chosen
to represent the 2k brightness levels has no bearing on the re-
ceived picture. However, in the case of a noisy channel, the
amount of noise in the received picture depends on the code
chosen. For the k~bit straight binary code, the noise power is

given by“

where PB is the channel error probability, and for a k-bit re-

flected binary Gray code, it is equal to

k n
k 1-2Pg 4= (1-2p)
N = 47= 1)/6 -~
b ( )/. 2 4 - (1-2p)
It is clear that
N, > Ng for P, £ 1/2

Thus a Gray code results in a larger average noise power.

Generally speaking, the subjective effect of noise is
not the same for digital transmission and analog transmission.
It has been found (37) that for high SNR, white Gaussian noise
is more annoying than the noise arising from a binary symmetri-
aal channel, while for low SNR the reverse is true, the cross-

over point being about 20 dB.

* This expression is derived in Chapter III (Section 3.1)
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2.3 Psychophvsical Coding

&

The coding methods proposed in Section 1.1 all rely
on the statistical constraints which exist among the picture
elements, To improve the efficiency (in terms of compression
ratio) of picture coding, one can take advantage of the pro~-
perties or human vision. In other words, the fidelity crite-
ria are matched more closely to the psycho-physics of vision.
Thus psychophysical coding consists in altering the original
picture in such a way that it can be described by a smaller
number of bits. Note that this process is irreversible since
what has been discarded from the original sigmal cannot be
reéovered, This distortion of the signal should, however, not
be noticeable by the human viewer. Briefly, what is discarded.
is what would not have been seen anyhow. Experiments conduc~-
ted at the M.I.,T. and by Seyler (39) have confirmed the fol-

lowing facts.

-~ In vision, spatial and contrast resolutions are ex~
changed so that the number of contrast levels that can be dis=-
tinguished in small objects is swhstantially smaller than in
large, almost uniform areas. Thus, if rum length encoding is
used, the level of short runs could be quantized more coarsely

than that of long runs, resulting in a smaller overall bit rate.

-~ Motion resolution is also exchanged for detail reso~-
lution, i.e., the resolution of spatial details in moving ob-
jects deteriorates. lence, the number of samples per frame

could be reduced.
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@% - Spatial resolution is considerably reduced when the

g observer is confronted by a sudden change of scene. Extensive
tests performed by Seyler (39) have shown that the human obser-
ver would not perceive a temporary reduction of spatial detail
for an average of 750 milliseconds after a scene change. The
experiment consisted in reducing temporarily the bandwidth of
standard television signals after séene change by means of =2
transient controlled low-pass filter. It was found that the

initial bandwidth could be set at one twentieth of the system

bandwidtnh reached at the end of the recovery transient.

This result is particularly useful when frame diffe-
rence codiang is applied. This method takes advantage of the
statistical correlation which exists between adjacent frames
(40) and results in what Seyler has called frame run coding.

The coding procedure consists in transmitting a new frame only
when consecutive frames display a sufficient number of different
elements. However, to obtain a reasonable compression ratio with
this method, it would be necessary to take large averaging in-
tervals in view of accomodating scene change. This drawback can
be overcome by subjecting the picture to a resolution transient
when the scene changes, During the first quarter of a second,
only 20% of the total samples need be sent, thus reducing the
bit rate even under sudden and complete scene change in the

flow of pictures.

All forms of coding described above have a common pro-

@%@ perty, which becomes more apparent in a noisy channel. It con-

sists in the fact that an error occurring in one of the coding
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words propagates bevyond the time of occurrence of this error.
In other words, there is a shift in tﬁe position of all data
following the error., This shift usually persists until a sync
pulse resets the system., In the case of television signals,
the length of the data between sync pulses constitutes a line;
hence error will propagate over an entire line. In the next

chapter, we compute the magnitude cf this error.
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CHAPTER III

EFFECT OF CHANNEL NOISE ON

ZERO-ORDER PREDICTGR

We have seen in Chapter I that the standard by which
to compare data compression techniques is taken as a constant
rate, time-sampling PCM system, Therefore, we first determine
the effect of noise on the reconstructed waveform in a PCM

system., We assume that the channel is corrupted by additive

white Gaussian noise with a zero mean and one-sided spectral

density NO.

3.1 PCM Systems

Let the amplitude of the source be uniformly distri-
buted between 0 and +1 volt, and suppose that each sample is

quantized into q levels as shown in Figure 3.1.

“"72&

Figure 3.1

Then q=2k, where k is the length of the PCM word., The mean

square (m.s.) error €PCM in the reconstructed data can be

expressed as the sum of three independent errors. Thus,
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where
2 P a . .
61 expected squared dquantization error,
2 ] .
62 expected squared transmission error,
2
63 expected squared threshold error.

The error due to quantization is easily found to be

a2

12 22k
of2

(3.1) €

= N

where a = 1/2k. This error is independent of the channel
characteristics and the modulation scheme empleyed, and
represents a lower bound for the overall error EPCM' Ve

regard it as an imblementation error since it depends cnly

on the number of bits, k, per word which is initially chosen
by the designer. Thus the quantization error is common to both
compressed and non-compressed systems.

2 . N
€_ is due to channel noise; we assume that PB,.the

2
probability of bit error is small enough that only one error
need be considered in each word consisting of a sequence of k
bits, and that the probability of a given bit in error is uni--
form over the length k of the word. We may then write

2 error in a _ 1 ~2]
€2 / PCM word - 3 Z 2
=1

The probability of one error in a sequence of k bits is

Pr(one error) = k Py (1 - PB)k_l

1t}

k.PB
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Thus the transmission error Eg_ is given by
k
k P . P .
(3.2) e§ Sp—— I 2723 o B (1 - 1722
k 3
. J=1

Note that this relation holds for straight binary encoding
only.

Karp (41) has shown that (3.2) holds even when we
consider the possibility of more than one error in a k-bit

word.

3.2 Bit Error Probabilities

The expression (3.2) found for the m.s. error of a
PCM system depends on the parameter PB, the bit error probabi--
lity. Theoretical expressions have been derived for bit. error.
probabilities; essentially PB depends on the mode o¢f transmis~
sion (i.e., the modulation technique used at the transmitter),.
the propagation medium (fading or nonfading) type and the detec--
tion technique used at the receiver, TableIILI-1 summarizes some.

values of PB.

In this study we shall concentrate on the following.

scheme; matched filter-coherent detection for nonfading medium,

We also assume binary antipodal signal.

We define the signal power to be S watts; E is the
signal energy per bit, and the data rate is R bits/sec. Then

for binary transmission T = 1/R , and we have

E=S8ST = S/R
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shift keying

DPSK

Differential

shift keying

( Phase )

Matched Filter-Differentially

Coherent Detection

s T o s v B, P, e 8 e 2 A g, L= e e aven B u e

1 -.R/NO
5 e

SIGNALLING Receiver Nonfading Fading
METHOD Characteristics Medium Medium
FSK y
Matched Filter-Coherent 1 1 E/Ng 2
Frequency . = (1 - erf E/Ny) =1 |
(shift keying ) Detection 2 2 E/I\O +2
sk Matched Filter-Incoherent l.e'E/ZNo 1
Detection 2 E/NO-+2
PSK L
' Matched Filter=~Coherent 1 1 E/Ng b
( Phase ) Detection 5 (1 - erf E/NO) 2 - E/Nj+ 1f

Table III-1

Note

M.Schwartz, W.R.Bennett, S.Stein

Pl [ 1

BIT ERROR PROBABILITIES

The information in this table I1s to be found in

"Communication Systems and Techniques”

€9
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Then with coherent reception, PB is minimized for antipodal

signals and is given by

We can now ,following Viterbi (42), express PB in
terms of S/NOB , the channel SNR in the bandwidth of the modu-

lation, and q, the number of quantization levels..

If the sampling period is r , we have

But, if each sample is quantized into Zk levels, k bits must: be

sent every r seconds. Hence

kT

i
]
I

=

~
=]
}

and

Thus we obtain for coherent reception

P_ = erfc 25 = erfc —Elﬁﬂg—-.
B NOR . 1og2 q

We now derive a useful approximation due to the asymp-

totic expression for the complementary error function.

oo 2
e -x"

2
erfc x = 2 ~/re-y dy &= ——= ~ e , x>,
\/‘n' o X\lﬂ'

where ~ indicates an order of magnitude.



Hence, for coherent bipolar transmission we have

_ ) 28 _ 28
(3.3) PB = erfc NOR exp( —EER )

where only the dominant exponential factor has been retained..

In particular, this expression shows clearly the effect of the
transmission rate on PB. Suppose we know PB for a given R. Then
if we wish to transmit information at a lower rate, say R'= R/a,

we obtain the error probability

. 25 T 23 a
(3.4) PB = exp(- W ) —[exp(- Wﬁ. )] ~ PB

1f PB<<1, the bit error probability for the slower rate can be

many order of magnitude smaller than PB.

This is a fundamental result in digital communication
that has been often neglected when data compression is consi-

dered,

3.3 Data Compression Systems.

Similar to the PCM systems, data compression systems
are subjected to both quantization and transmission errors, but
the output of a compressor can also be further degraded by an
implementation error caused by the tolerance chosen to compare
the data sample at the output of the fixed-rate sampler. We
call this type of error "aperture error'" and compute the resul-

ting m.s, error.

3.3.1 Aperture Error

A

oty
©

- For a zero order system, each sample is declared either
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redundant or nonredundant, depending on tlie relative value of

the actual sample with respect teo the value of the preceding

sample. Denote the aperture magnitude by Y and let Si be the
. . .th

amplitude of the i sample,

Then, if

Si.7Y € 841 € Sty

S, is redundant and is not sent.
i+1

If Si+1 - Si >y , i.e., if the samp,le.Si_+1 value

falls outside the Sit)/ bounds, then it is nonredundant and
must be transmitted,

Let a denote the magnitude of a quantization step, and
suppose that the signal has been quantized before entering the
data compressor. Then the amplitude difference between two si-

gnals are multiples of a and we can express the aperture y as a

function of a
y=%tma, m= 0,1,2, ...

If we set m =0, (i.e.,, a sample is nonredundant unless it
exactly equals the preceding sample) there is no aperture error
and the m.s. error of the reconstructed waveform depends only on
the quantization error (defined in preceding section) and the

transmission errors.

The error introduced by an aperture of ma is then

*a, +2a, +3a, ..., +ma and we assume that it is uniformly dis-
tributed in the interval (-ma, ..., 0, ..., +ma).

Hence

1
PCY) = —oord
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where Yy = ia , 1i=0,%1, ..., *m,

The mean square aperture error for a redundant sample is then

m m
2, Z‘ 2 1 2.2
(3.5) ECyT) = 4 By vy = s E : a’i
i=-m i==m
m
. 2a° _5_ 12 _ aim(mb1)
2mt 1 - 3
i=1

But a = 1/2k, where k is theﬁlength of the quantized
word. Also for a nonredundant sample E(yz) = 0 since the
actual value of th sample is transmitted. Errors will occur
only in (Csm—l) redundant saméles and the m.s, aperture error

for the reconstructed waveform is thus

(3.6) Y , =

2 m(mt+ 1) ( Csm - 1
aperture 3(22K)

Csm
where Csm is the average sample compression ratio measured

when the compressor has an aperture m (i.e., the compression

ratio is a function of the aperture).

3.3.2 Transmission Errors

Transmission errors (due to white Gaussian noise) in
data compression systems fall in two categories; namely, the

errors in level informatioms and that in timing informations,

Errors in level information

We consider first anm asynchronous compression system;
then no timing information need be sent and errors occur in
the level words only. However, in this case, an error affects

an average of CS words. This propagation of the error over CS
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samples can therefore be expressed in function of the trans~

mission error of a non-compressed system, and referring to

Equation (3.2) we have
P

2 ~ 2 B 2k
(3.7) €compressed €s €2 = G 3 (1 -1/277)
asynchronous
28 . s
is the error probability of the

where Py = exp( - —ﬁgﬁ )

non-compressed PCM system. Note that here Cs = CB since no

addressing scheme is used.

Sampler - Data ——
a. Source - & - Ch 1
Quantizer Compressor anne
- Redundant Redundant
samples samples
i
b. B
51 i %ig1 St
Figure 3.2 a., Asynchronous Data Compression

b. Possible sample pattern sent through the channel

Referring to Figure 3.2-a, it is evident that an asyn-

chronous system does not result in bandwidth compression. In the

pattern of samples shown (one of many possible), samples s and

s are adjacent and nonredundant, hence they appear at the

it+t1
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compressor output as they would in a PCM system, The bandwidth
of transmission in an asynchronous sjstem, being determined by
the time interval between the "closest" significant samples,
must therefére be the same as the PCM bandwidth if the pulses
representing i and Sip1 are to be transmitted with no additio~
nal distocrtion,

Thus, although the average rate of the asynchronous
system is smaller than the rate of the non-compressed system{
the bit error probability PB must depend on the highest rate
which could possibly appear during the transmission of the

whole message. Clearly, the maximum rate is that of the non-
compressed system, i.e., R,

The m.s. error due to transmission errors in an asyn-
chronous compression system is Cs times the m.s. error of a
non-compresscd system. To improve the performance of the com-

pression system, we can

a) increase the quantization resolution, hence increase k,
b) decrease PB by increasing the signal energy,

c) use coding tachnique by adding back some controlled

redundancy.

Note that the three methods result in a smaller over-

all compression ratio, i.e., CB departs from C .,
s

The first two methods are analyzed next,

(a) Suppose we increase the quantization resolution by x

bits. Then the word length becomes (k+x) bits and the m.,s. error



. due to quantization is now
L) 2 1
€ = .
1 3 22(k+x)

For a word length of k bits, the m.s. error is

1
Gi = -——-——2-1?—
3 2

Hence, dezoting by A€§ the decrcase in ei resulting from

the use of (k+x) bits per word, we can write

2 1 1 2¥ - 1
6 = et et - =
1 3 92k 3 22(k+x) 3 22(k+x)

But, the increase in the bit rate causes the following

(i) A decrease in compression ratio. Indeed, with a word

length of (k+x) bits, we have

C
s

1 + x/k

(ii) An increase in the bit rate R, The new rate is now

k+x
R' = e R ,
x

(iii) An increase in the m.s. error due to transmission

errors, i.e,,

2 _ Pg
(3.8) € = —= (1-1/2

2(k+x)') c
S

Note that the bit error probability is increased since we now

have

70



71

The loss incurred by this method is thus

P! P
(3.9) A - ~B .22y o L By L q02K
3 s 3

The problem is now, given PB’ k and Cs’ what is the

value of x which yields
2 2
>
(3.10) Acl > A .
This value of x must then be inserted in (1.2) to obtained

the bit compression ratio and see if CB is large enough to

make compression still worthwhile,

By varying'R'Ehrough a wide range of values (2 to 11)

and computing AE; and A(i, it is seen that inequality (3.10)

is satisfied for x = 1., In this case CB is given by
_ k
3 = "1 S
(b) We assume here that the value of PB is such that the

quantization error is the dominant term in the equation for

2 . .
the m.s. error ¢ . We wish to determine the
non~compressed

increase in signal energy necessary to obtain

(3.11) e - e
compressed PCM

Referring to (3.8) we see that the value of PB must decrease

v . .
to PB = PB/CS ;3 but

‘ 28 a o
' ~ -~ -~ P
PB exp( NOR ) IB

Therefore we must have
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(3
Py ~ .Pp/C_

B
or
exp( @ log PB) ~ PB/Cs
and
oalog PB ~ log PB - log Cs
yielding :
log Cg log Cg4
azl-—-—-——logPB = 1+—-——7-—-log1PB>l
Hence
28 [1 + log C /log(l/PB)]
(3.12) Py = exp( - J »)
NOR

For small CS and PB<< 0.5 the increase in signal
power is small and the choice between method (a) or (b) will
depend on the particular application of the system and the

available transmitter power,

We now consider the effect of transmission errors in.

level words on synchronous compression systems,

Figure 3.3-b illustrates a typical set of samples as
it would appear at the output of the compressor. In an asynchro--

nous system, the samples would be fed directly into the channel..

To obtain bandwidth compression, the samples are buffered and read

out at a fixed rate into the channel. The effect of buffering,.
as can be seen in Figure 3.3-b is to eliminate all indication
pertaining to the location of the nonredundant samples; hence
timing words must accompany the level words, thus enabling the
receiver to restore the non-transmitted samples. The bit com-

pression ratio CB depends on the scheme used to transmit. this



a) 73

(S St "l r——A-—‘.
: Analeg | Sampler & , e _
; é source  analyser \ Comprefuor Ly Buffer [ Channel
b) ;"
; |
: \ \ r—r—> £
| \ l’ !
c) : \ P !
v

\ ;e

\
\ Y e
| 004 _ 3

Figure 3.3 a. Synchronous Compression System

b. Pattern of samples at output of compressor

c, Same information at output of buffer

extra information and determines the rate of the compressed
data. As in the asynchronous case, bit errors propagate over
an average of Cs samples, and since the rate of trangmission

is now l/CB that of the non-compressed system, we may write

2 Cs 2k C
(3.13) €5 = (1 - 1/277)(Pp) "B
level 3

The total m.s. error due to channel noise is

level timing

We shall determine €2 in the following paragraph. We
timing

observe that 52 increases linearly with CS and decreases

level

é%@ exponentially with C Hence, for small P_ and close values of

B* B
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C and C_, ez is smaller than the € 2 of the non-com-
A s B 2 2

é& level

pressed system. We have

log C
Gy > 1 = ———S e’ < €2
log Pg level non-compressed
o log C
Cg < 1 - —= e; >e§
log Pp level non-compressed

Errors in Timing Information

We will analyse here the effect of bit error in the
address word for zero order systems, and consider first the

case of run length encoding,.

A, Run Length Encoding

This addressing technique identifies the position of
the data elements along a line by keeping a running total of all
received run lengths. Let L be the number of elements in a line
(recall that a line is framed by synchronous pulses which are

assumed error-free).

Then the position of the nth transmitted sample will be
in error if any run length word (RL)i’ (l1<€£ign), is in error..
Also, if an error is made in (RL)n, then the position of all
samples Sm where ng¢mgL will be in error, i.e., errors in
position propagate to the end of the line. Hence, the affected
reconstructed samples are shifted in’position by an amount equal
to the errér.'Consider, for example, an error. in the least signi-
ficant bit of (RL)n' This will cause a displacement of 1 sam-

ple for the remaining segments, that is, only one sample per n
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reconstructed samples is affected by this error. Also, assuming
that the run length word consists of r bits, an error in the
most significant bit of (RL)n will cause a displacement of

+ 2r-1 samples for the remaining segments, thus resulting in. a.

loss of synchronization for the remainder of the line..

Note that when CS is the average compression ratio
*.,
per line, then exactly CS run-length words must be- sent: per. line

and we can take the number of nonredundant samples per. line to

be L/CS (a fixed number). .

If, however, Cs has been obtaingd by averaging the
redundancy over a whole frame, then the exact number of: non-
redundant samples per frame is LM/CS where M. is the number of:
lines per frame, but the number of nonredundant samples per

line is a random variable whose expected value must: be deter=--

mined.

In Chapter II, we found that the run length had an
expounential distribution p(w) = Ae-hw, The expected value of.

w yields the average sample compression ratio Cs" Hence.

o

E(w) = Cs = /w}\e-)t'w dw = 1I/\.
or 0
A= 1/cs .

Since the video line has a finite length L, the number. N of:
runs 1is a r.v, having a Poisson distribution with mean AL =<L/CS..

9
’ In practice a value slightly smaller than CS is chosen, to

avoid frequent buffer overflows.
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Indeed, referring to Figure 2,1, we form the following r.v.

ZN = Wl + ‘Vz + eee + ‘JN

whose probability density is given by

N
fN(z) = ———A—~— zN-l e_'\z s N = i, Z,,...; 2> 0

(N=-1)!

as can easily be shown by mathematical induction. The probabi-
lity distribution FN(z) given by

N N~1 ~Au
FN(Z) - A f u e du
(N=-1)! o

is the gamma distribution of order N and parameter A .,

Now the number N of runs in a line of length L is a

positive integer and implies that zy < L and ZN+L.2 L.. Thus
and L L
N - - N+1 [
P(N) = -——é———— uN 1 e Au du - A‘ , uN e-Au'du
(N-1)! N '
0 (7]
Integrating by parts yields
N -L/C )
_ “AL A B e 5 N
(3.14) P(N) = e -—N-:_ = ———1-\]:—'—' (L/Cs)

which is a Poisson distribution with mean L/Cs’

We can start now calculating the m.s. error due to
channel noise., We consider the following random variables
n number of affected samples per erroneous nonredundant
sample

n. number of erroneous nonredundant samples given that an
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error has occurred in a run-length word

epy  error in sample level due to an error in a run-length

word.

The total squared error in one line of data given an

erroneous run-length word is

e2 = n e2
line snr RL

Since there are L samples in a line, the error per sample is

2
2 sy ®RL
e = et
sample 1

v

We can therefore write

. 2
2 / error in ) E(nsnreRL)
L

EC e RL word

or
2 2, error in x run-~length
= . )
ECe™) :E: E(e "/ RL word ) Pr( words in error’
X

Assuming that the r.v. ng, n. and e are uncorrelated, and. that:

no more than one run-length word is in error in any given line,

we may write

, 2
E(ns) E(nr) E\eRL) one run-length )

4, 2 =
(3.15) E(e®) L Pr( Cord in error

We compute the first factor of 3.15).The actual sam=-
ple displacement due to an error in the j?h bit of a run-length
word is Zj-l samples, The number of affected samples out of the
n total samples in a run varies with the significance of the
bit in error. To obtain the average value of this quantity,.
we note that when 2Ji-1> n, all samples in that run are affec-
= Zj-l. The expected

ted and ng= n . When ZJ-H:n, we have n
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value of n, given the run=~length n, is tlierefore

(3.16) E(ns/ n) = :;2 P(ns)nS

where n varies from 1 to 2° and P(ns) denotes the probability
of n, or, equivalently, the probability that a given bit. in-
the r-bit run length word is in error, given that there is an
errorl We can assume that the error is equally probable in any

bit., Thus
P(ns) = 1/r
Defining
w o= El + log, nJ

where [x] denotes the integral part of x, Equation (3.16) can

then be written as

w r

; - 1 PN j-1 v
E(ns/n) = < : 2; 2 + z: n]
~-j=1 w+l :

But we have .
2%
(3.17) E(n) = }_? E(n_/ n) p(n)
n=1

where p(n) is the probability density of the run length given

by (2.7)
T'C I wn.
1 ' s~
(n) =
P c_-1 || ¢
Thus we can write
r
: -11 <, -1 i 1 N
2o ) F [T+ T |
j=1 j=w+l 1 s s 4
n=1

or
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r
— I\ A C.- 1
@ (3.18) E(n ) = 1 E ZZJ_I 4+ nr - wn L s :
s r . CS- 1 Cs
n=1 j=1

Belver and Hoffman (43) have established the following

equation for E(ns)

(3.19) E(n) = —— + 1 - %

They obtained (3.19) dy replacing the actual run length with the
average run length CS. This is a valid procedure only when.CS is:
a fixed quantity per line of data. This can happen only when
averaging has been performed over one line only. If, however,.

Cs has been obtainee by storing several lines or a whole frame,
the compression ratio per line is a r.v. and (3.18) nmust then

be used to obtain E(ns).

To obtain E(nr), we note that the average number of
nonredundant samples per line is given by L/Cs” Let N be the.
Poisson distributed r.v. representing the actual number of non-
redundant samples in a line. Now, according to the model des~
cribed at the beginning of this section, the r.v. n_ depends
of the position of the run length word in error. Thus an crror
occurring in the last run length word (i.e., in the N-I)th word)
will cause one erroneous nonredundant sample in the line. An
error occurring in the (N-2)th word results in two erroneous
nonredundant samples. Similarly, the number of affected non-
redundant samples due to an error in the first run length word
is (N-1), The probability of an erroneous nonredundant sample,

given that there is a run length word error, is 1/N (the pro=~

bability of error is assumed to be uniformly distributed over
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@ the N words). Thus
- N=1
(3.20) E(a_/ N) = 1 ZE: g o= X2
i=1
But
(3.21) E(nr) = Z E(nr/ N) P(N)

N

where P(N) is given by (3.14) and N varies from L/(Zr—l)
to L, thus ensuring that there is a minimum of L/(Zr-l) runs

in a line, or equivalently, a maximum run length equal to 2%-1.

Equations (3.20) and (3.21) yield

L
( N-1
2

N=L/2%-1 = s .

(3.22) E(nr) =

which can be simplified in the following way.

-L/C
_ MO N-1 (LN
E(nr) B 2 2;: N! (Cs)
_ oM Y inase)t | @sent
. 2 N N N!
[~
_ MG S ase) e e

For large N we can write

-L/C
lim E(n_ ) = e S [% eL/Cs - eL/CS]
N 00 r 2 s
- L/CS -1
2
and
(3.23) E(n,) ] E(nr) ) 1 - Cg/L

E(N) L/cg 2
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Thus, if N is Poisson distributed and L is large, the
actual number N of nonredundant samples can be replaced by the
average number of nonredundant samples L/Cq. Indeed, in this

case E(nr)/E(N) is readily obtained by the following equation

L/Cg-1 :
_ 1 CS . _ 1 - Cs/L
E(n_)/E(N) = T7C. - Zl if = S8

which is identical to (3.23).

The mean square error due to‘a run length word error is

2 sample 1is _ 2
ECepr / in error ) © E{(xl %5 } )

where X, "%, is the difference .between two adjacent nonredundant

samples. Then
2 _ 2 s
E{(xl-xz) } = E(xl) - 2E(x1x2) + E(xz).

E(xlxz) is a function of the correlation between samples, and
depends, therefore, on the source statistics, If the statistics

are not known, an upper bound to {(2.1) is obtained by assuming

ry
that the random variables xl and x2 are uncorrelated . Uander

this assumption, we have

2 2 : 2
E{(xl-xz) } = E(xl) -2E(x1)E(x2) + E(xz)
2 E(xi) - Ez(xl) .

The r.v. x, can have any discrete values j/2k where 0<£ 3j<€2 -1,

Assuming that x, is uniformly distributed in the interval (0,1)

1

we may write



P, = 1/2
3 /
Then 2k’_1
2 - 3
E (xl) = Pj K
j=0
2k
- 1
2ZE
j=0
(2*- 1y?
22(k+1)
We also have
2k
T2y = 2 : 2792k =
E(xl) = Pj j</2
j=0
_ 1 (2k- 1)(2k+1_ 1)
6 22k
Therefore,
2k
0, 2 2 _ 1 277~ 1
n\xl) - E (xl) = 13 IR
and
2k
1lv —_— \2) = -:!'- -2_._:___
(3.24) “1(“1 ~27 } 6 22k

PR AR
2K o

'

2
J

Suppose now that successive nonredundant samples. are

correlated and let p be their correlation coefficient

cov (x1x,)

E(X]_Xz) - E(Xl)z

p: =

a-xl GXZ o-x.l_ O.XZI
We have
. 2k
2 2 2 2 1 27 =1
= a = - = ——
“x; X2 E(xp) = En(xp) 12 52k
and

82
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. - 2 2
E(xlxz) = pqx1 + E(xly

E(xi) - ZE(xlxz) + E(x%)

E{(%l-xz)z}

it

2 E(xi) - E(xlxz)

Hence,

2k ‘
(3.25) E{(xl-xz)z} = 2(1-p)<r§1 = 1gp l:z ngll

The last factor of (3.15) is the probability F(RLE)

that one run length word is in error in a line. If the bit

error probability is PB’

L
_ rL rL T~ ~ rLPp
(3.26) P(RLE) = T Pa (1 -5 P T o=
for small values of PB (PB< 10~3).

Note that the expected number of run length words in

2{: N (L£CS> (2" (1-re )™ %s7F

error is given by

]

E(N)
N
rLPy
Cs

Hence, for values of PB< 10-3, the expected number of RL words

in error is smaller than 1; thus it is reasonable to assume no

more than one error per line for most practical channels,.

Substituting (3.26), (3.24) and (3.23) into (3.15) yields

the m.s., error caused by channel noise in the case of run length

encoding

2 | riPy | a2k 1 ]]2v. w 1 Com 1
(3-27) e ’[lzcs:][ 24K nr + 1 - T CS_ 1 qcs
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B, Single Address Word Encoding

4@9 As explained in Chapter I (Section 1l.1), the address
word consists of L bits in this cése, a zero in the iﬁh bit

of the address word indicating that the ith sample is redun=-

dant while a one indicates that the sample is nonredundant.

For example, suppose that the following samples have
been transmitted (the number below indicates the value of the

sample level)

together with the following address word
000101001 I1IO00O0T1

At the receiver, a 0 is interpreted as a repeat. indi=--

cation and a 1 as a call for a new sample level..
Thus the restored data will take the following form
22 223344431111
00010100110001

Moreover, we suppose that the receiver has some decoding
ability when there is a disagreement between the received
binary sequence and the number of received sample levels.. The
address word must be modified so as to use all sample levels;

the following decoding rule is then applied by the receiver

1. If there are excess 1's, the terminal excess l's: are

changed to 0's.

é%b 2. If there are excess 0's, the terminal excess 0's are

changed to 1l's.
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In this manner, there are no excess samples which
cannot be inserted in the flow of data, or empty slots which

are left without data.

It is evident from this example that, as in the run
length encoding technique, a single error in the address. word
affects not only the sample that it represents , but also the
remainder of the line. This error propagation can, therefore,. be.

analyzed in the same manner as for rum length encoding.. Thus

we have
. .2k
E(e2 / given an error y = 1(2 -1
SA" in address word 6 22k
E(n ) = Lt Cs/L +2C {L
The average number of errors in the single address
word 1is
L L=-i
E( éddress words) - 2 : i <P) pl (1-PB) - LP.
in error i B B
i=1

To calculate the expected number of affected redundant
samples mwer redundant sample, we observe that the maximum amount
of affected samples in a run of length n is n, i.e., all samples.
are erroneous; this happens if a one marking the beginning of’
the run has been changed to zero. In general there will be

. 1y Eh
1, 2, ..., n-1 erroneous samples if the (n=-1) 5 e.ee.5. S€CoORd,
first zero respectively, are interpreted as one. This is illus--

trated by Figure 3.4 for a received sequence of three nonredun-

dant samples of values 4, 3, 2, We look at the second run whose

length is 8 and which consists of samples of amplitude 3,
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Given that there is an error in the address word, it

o
&
is reasonable to assume that the location of the bit in error
is uniformly distributed between the n locations. Hence,
th . . A
Pr(j bit in erwror) = 1/n
from which we obtain
n.
error in address wcrd _ 1 v . n+ 1
E(ns /and run length n ) = n ;;; J. = 2
and L
error in _ ). n+ 1
E(ng/ address word) = ji: 57— P(n)
where p(n) is the probability of the run length..
Hence, for large values of L we obtain the following
approximation
error in ~. .
(3.28) E(ns/ address word) = (Csfl)/z”
Since the m.s. error due to channel noise can be.expres-
sed as
L
2 _ E E(n,) E(ng) 2  given error, y address wds
E(eSA) B 5=1 L/Cs Cq E(eSA/in address,) Pr'(in'error )
we obtain by substitution
LP 2k _ I+ Cy/L  Ce +
(3.29) E(e‘gA) - B, 2 L s/L Cs + 1
6 22k 2 2Cs
C. Position Encoding
it We have seen in Chapter I that this encoding method

is less efficient regarding the compression ratio than run-
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length encoding. However, position encoding is much less sensi-
tive to noise than ény other addressing scheme and, in many
practical applications, might need little or no coding to yield
an acceptable m.s. error. Also, its performance does not'depeﬁd
heavily on the length of the Iine, as is the case with run-length
encoding or single-bit encoding. Ian the case of picturial. data,
this means that several f?ames couid be stored and some "reple-
nishment" technique be performed without serious picture degré--
dation., However, this addressing scheme has not. been studied in.
the 1literature, due perhaps to the fact that it. is less effi--
cient than others for deep space telemetry. In. the following,

we will compute the m.s. error due to the effect. of. noise. on-

the timing word.

Figure 3.5 shows a typical pattern of nonredundant.
(i.e., transmitted) samples. For convenience, the samples are
shown in their unquantized form. Each nonredundant: sample. is.
tagged by an h-bit word, where h = logZL,.describing the ppéi--
tion of the sample along the line. There are B'=-L/Cs.nonre-~
dundant samples in a line and thus B8 position words; as in the
preceding case, the sample level is described by a k-bit.word.
We suppose that the receiver performs in the following way
(see Figure 3,6). It transfers the synchronous information:
stored in buffer A to buffer B, placing each sample in buffer B
according to their indicated position.(In this way the receiver
has reconstructed -assuming error-free transmission -- the asyn-
chronous data as it appeared at the output of the compressor)

Je also assume that the box called "address decoder" has a
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certain error-correcting ability; it reads the three consecu~

tive timing words at a time, say Ri’ RL+I’ Ri+2 pertaining
to samples si, Si+1’ Si+2 respectively. Thus the following
three cases arise

R the address decoder assumes.

Case 1, If Ri < Ri+1 < it

that the words are correct and thus allows the samples Si,

Si+1’ Si+2 to be positionned accordingly.

Case 2, If R ‘ < Ri<< R the address decoder performs

i+1

again as above (since it .is impossible for the decoder to know

it+2 °?

which word is in error, Ri or Ri+l)’

Case 3. If Riv1 < Ry < Ry the decoder assumes R, is in.

error (since this inequality can be true only if both conse~-

i imi ds R. . e in error,, event. i
cutive timing words i+1 and Rr+2 gr ror, an event. which

has a very small probability of occurrence)., The decoder then
. PR ' . Vo

assigns to Si a position Ri such that Ri-1<" Ri_<\Rt+Lh One.

way of implementing this inequality is to place Ri half-way"

between Ri- and R, Thus, with this method, the average

1 i+1°
error displacement of a given sample does not exceed ZCSD

.

The expected squared error due to a position word

error is given by

E(ng/error)
Cs

a position word)
is in error.

(3.30) E(ei) E(ep/error) Pr(

where

number of erroneous samples due )

= E . LT
E(ns /error) ( to an error in the position word

22k _

2 . )2 = L, 2 -1
E(ep/error) = E{(xl-xz) } = - I
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Pr(1?051t10n word) = 1.-(L-"P Lh/CS ~ Lh

in error B) Cg B 10

)
N
IN

where h is the length of the address word.

Note that an error in a position word does not cause
any propagation of erroneous samples as in the case of run-

length encoding, but is limited to a fixed number of samples.

The average number of affected samples given an error

must account for the three possibilities listed above. Hence

we must have

3
(3.31) E(ns/error) = % E Pr(case i) E(nSi/error)
i=1
where
Pr(case i) = Probability of being in state i
E(nS /error) = Expected displacement for case i
i

on a per sample basis

Now the displacement due to an error on the jth‘btt
of the position word is Zj-l. Let n represent the run length
and w=1[1+ log, n] be the number of digits in the posi=-
tion word such that an error occurring in any of the w digits

would cause a displacement less than n, thereby fulfilling

the requirements of state 1. Then

w
R - w_ oo
E(n._ / gLven.an error) - 1 E P 93 1 _ 2 1
s1° and given n n j nw
j=1
Since we know p(n), we obtain
2hoy
Z 2¥- 1
E(nSI/error) = —3;——-p(n)
n=1

or
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(3.32) E(nsl/error)

where w = [1 + 1og2n].

Since an error is equally likely in. each of the_h bits

of a position word, state 1 will occur with probability

Pr(case 1)n = w/h for each n.
Case 2 occurs when j = w + 1 , yielding
given an error - oW
E(nsZ/and given n ) 2°/n
and
2h_g
(3 33) kK(ng,/error) = 1 2¥ p(n)
° 52 n
n=1]
2he
1 . - n
_ %{ ,[logy n + 1] - L - (CSE Ly
n=1 s s
The probability of occurrence of state 2 is
Pr(case 2) = 1/h independent of n.

Finally, in case 3, the error is detected and correc~
ted by the receiver, which assigns to the erroneous position

the value

Position(n=~1) + Position(n+1)
2

Assuming that the r.v. representing the correct value
of position n is uniformly distributed from Position(n-~1l) + 1.

to Position(n+l) + 1 , we obtain



n=-1
given an error . 2 E —_— n-1
E(ns3/and given n ) n(2n-1) =1 J 2n-~1
and |
_ n-1 1 ¢ -1."
E(ngg/error) = :E: a-1 Co- 1 (G5
n=1
The probability of being in state 3 1is
Pr(case 3) = 1 - 4 ; L for n = 15.2;_.,,,.2?;11

and (3.31) can now be expressed in the following manner

h -
_5 : 1 Co-1.0]2"F1 wh 1
(3.34) E(ns/error) = TooT ( 2 ) [ I + (1=~ = )(zn 1)

s
n=1

Combining (3.30) and (3.34), we obtain the m.s.. error.

due to itiming error for position encoding systems..

2k n [, ,wtl
2, . LPg 2°°-1 2 : 1 Cg-1 27 7=1 | (h=wt+1)(n=1)
(3.33) E(ep) ~ eC, g2k c -1 ¢ Cg ) [ n + 2n-1.

n

The total r.m.s. error in the reconstructed data is
the sum of the four independent errors. We have considered in
this chapter quantization, aperture, level word and timing word

errors due to channel noise.

Combining the expressions found for each of these errors
we obtain the following result for the three addressing schemes

described in this study.

1. Run length enceding

52Kk
1 m(m+1) (Cq~1) Py -1
.36 = + S + =B (Z_—Z2
(3.36) epys 3 12.22K 3C,(2F-1)2 3 92k
@% - Zr-l %
rLPg 2°%-1 1- CS/L y (Cazly®
6 ¢ 22k CS~1 Cs
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2. Single address word encoding

1 m(m+1) (Cs 1) p, 22¥ 1
(3.37) ePMS = —-—-———Z—E + T b + SB.L =
} 12.2 3cg(2k-1y2 3 22k
+ LPg R 22k~1 . 1+Cs/L _‘(CS'-].') %
6 22k 2 2Cg
3. Position word encoding
(3.38) e .. = 1 . m(mr1) (Cg-1) + Py 2%%oy
| RMS 12,22F - 3Cg(2k-1) 3 27k
2 r-l -
Leg 2251 E : 1 Gg-1 [ 2%, (h—w+1)(n--1)]
6Ccg 22k Cg-1  Cg4 n 2n-1. _
- n=1
Each of the above equations is expressed in terms of
the ratio of r.m.s. error to full scale amplitude,. The r.m,s,.
error in a non-compressed signal is used to evaluate the effect
of the compression scheme on the reconstructed data,., The r.m.s.
error for a PCM signal is given by (see (3.2))
Kk 2
B py 27K | %
e = ———— .
RMS 12,22k 3 22k
Equations (3.36), (3.37) and (3.38) have been calcula-
ted for certain practical wvalues of the parameters. k,. h,. r:and CS
Thus all the curves have been plotted for k=6 bits,. and zero
aperture error. The total number of samples per line is- taken
as 1000 and the run lengths have been restricted to a maximum
of 32 samples. Thus 1 = 5. For the position encoding scheme,
the word length is h = 1og21000 = 10, The size k of the level
ety word yields a r.m.s. quantization error of C.45 %. This error

is not a function of the bit error probability and, therefore
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the curves of Figures 3.7 and 3.8 illustrate the magnitude of
the error versus both sample compression ratio and bit error
probability. It is seen that errofs in run length encoding

and single address encoding systems vary significantly as a
function of Cs. Position encoding systems give clearly a better
performance than the other techniques (at the expense, however,
of a smaller bit compression ratio). It is interesting to note
that the r.m.s, error decreases with Cs for the run Iength

encoding technique while it increases with Cs for position

encoding.
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CHAPTER IV

EFFECT OF CHANNEL NOISE ON

FIRST~ORDER PREDICTOR

4,1 Introduction

We have seen in Chapter I that. a. first=-order polyno--

100

mial predictor performs a prediction of the amplitude of a gi-

ven sample by considering both amplitude and slope. obtained
from previous samples. In this chapter, we shall use. a simple.
first-order predictor which uses two adjacent samples to pre--
dict the amplitude of succeeding samples, and transmits the.
starting and end points of a straight line., The end point.of
line j constitutes the starting point of lime- (j+1).. Thus. the

original analog waveform is approximated by a succession of’

lines as shown in Figure 4.1. We wish to calculate now the. dif--

ference between the true value of a sample, say sample Xi,.and'

the interpolated value Xi obtained at the receiver. The trans-:

mitter stores the values of Xl and Xéiand draws a line. passing
through these two points. If the amplitude of sample~X3:falls.
within a distance ¥ /2 from this line, then X3 is: considered
redundant, and sample X4 is compared next, The process conti=--
nues until a sample is found exceeding the given tolerance..

Suppose that N samples Xl’ X2, e a s Xﬁ fall within the aper--

ture y (see Figure 4.2). The true value of the ith sample is
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given by
X1 - Xp .
Xi = X1 --—jrtfif-(l-l)i- Ai
where Ai = ma 1s a zero mean discrete r.v, (m=10,%1, ...
(i=1, 2, ..., 1)
a = quantization step
n = length of the run

The transmitter sends samples X1 and Xn to the receiver; it is

clear that

X = X'+A
n n n

Therefore, at the receiver, the value of sample X is calcula~-

ted as
X7 = X
1 n .
1 - - ————— -
Xi = Xl 7 (i-1)
X1 = X_ - A
= x, - 2L Tm o 7m oyl
1
n=-1
We can assume that the r.v. Ai_(i = 1, e+, N) are ipdependent.

Therefore the error in the reconstructed data is

Ah1-ﬂ

1
A i i n-1

Since E(A)E(i) = 0 , the m.s. error due to an aperture 1is

an(A?'/n) + E(Az/n)E(iz)
(n-l)2

(4.1)  E(e/n)

2 + E(iz)
(n-1)2

E(A%n) -

n

and
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(4.2) E(el) = Zn:E(ei/n) p(n)

where p(n) is the run length distribution for a first-order-
predictor. In order to determine p(n), however, we must know

the statistical structure of the source.

4.,1.1 Run Length Distribution

The determination of the run length distribution of’

a first-order system requires knowledge of
a) the power density spectrum of the data, and
b) the probability density of the amplitude of. the data.

M,Bruce (46) has computed the theoretical compression
ratio for a first-order predictor operating on four types: of.
input data; the probability density of tHe amplitude of the.
&ata is Gaussian with a zero mean and the standard deviation

is o . The following amplitude spectra were examined,.

L spectrum

= 4 L. . 0.1 .
F(w) k1 (0<% w 0.1 v )
F(w) = 0.001 kl ( 0.1 Wm £ w £ wm )
F(w) = 0 elsewhere

Exponential spectrum
5 w

F(w) = kyexp(- o ) (0 & w g w )
F(w) = 0 elsewhere
Triangular spectrum
= - Y . .
F(w) ky(1 v ) (0 ¢ wg w )
F(w) =0 elsewhere



105

Rectangular spectrum

k, (0\<:w\<wm)

0 : elsewhere

F(w)

F(w)

Figure 4.3 1s a plot of the theoretical compression
ratio on the four types of input data. The abscissa K is the
magnitude of the tolerance, Clearly, there is a trade-off bet~-
ween the acmount of compression ratio and the width of the aper-
ture, Morcover, the compression ratio depends on the spectrum

of the input data.

If the statistics of the input data are not available,
one can still assume a certain data structure; for example, the
data could be a Markov process, and we have geen in Chapter IT
that TV signals are approximately first-order Markov where the
highest transition probability is from the present level to the
same level. Thus the input data can efficiently be approximated
by a succession of straight horizontal lines, which is exactly
what a zero order predictor does. But then, as noted by Davisson
(47), for a large value of the transition probability p, the
performance of a first-order system is inferior to that of the
zero-order system, Most interpolating lines are indeed horizon=-
tal and the former transmits two samples for each run, while
the latter transmits only one (i.e., the start of the line only)
per run. On the other hand, for small values of p (p<0.5), the
first-order method gives better results than the zero-order one,
but the resulting compression ratio is small when PCM encoding
is taken as the standard of comparison. However, a first-order

method may not be inferior for all kinds of data. In particular,
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Davisson has shown that its performance improves for. data having
statistical dependence beyond the previous sample, as. is the
case for a second-order Markov process. These data can be appro-
ximated by a éequence of non~level straight line runs:and one

expects that first-order schemes would have some advantage.
Denote by Py the probability that a. jump in the. ampli-
tude of two adjacent samples is followed by a jump. of’ the some

magnitude, within a given tolerance V..

py = Pr(Jump of size j followed by jump of size jry)

Then the probability of a run of length n.is. given by

(we drop the subscript)
(4.3) p(n) = p"(1-p)

and the average length “of the runs is

E(n) = Z np" (1-p)

Recognizing that
}E: n ) d [ 2 : n
np = P H < p )
n : " Vn

we obtain

(4.4) () = (1-p) ) m" = &
n
Therefore
= F = =P
Cs E(n) Tp

If Cg is the only parameter that can be measured, we can then

calculate the value of p

Cs
(4.5) p = Cr 1



Note that this value of

lowing property of the process;

of the initial jump,
data,

assume that (4.3) holds

4,1.2 Aperture error

it does not describe TV signals.

We can proceed

given by (4.1). We have

m(mtl) n-1

108

p is approximate and implies the fol-

p does not depend on the size

Although this may fit certain telemetry

In the following, we.

for the rum length distribution..

now to calculate the aperture. error.

E(Y/n) 3.22k = (see (3.6))
and since n
:E: 2 n(n+1) (2n+1)
6
k=0
we can write
. n-1
E(iz/n) . 1 i2 - (n-1) (2n-1)
n 6.
k=0

Substituting the value

of E(iz) into (4.1), we obtain

m(m+1) n-1 6n2+(n-1) (2n-1)

2
(4.6 E(e/n
) (ep/n) 3 22K n T 6(a-1)?
Therefore
X1 )
E(ei) - m(m;i) E (n-1)6n +(n-1;(2n-1) p(n)
3 2 n=1 6n(n-1)
or
2 -1 )
2 mt 1 6n"+2n-1
(4.7)  Ee) - RlmL B eniZacloag
‘ 3 2 =1 6n(n=-1)
When m = 0, we have E(ei) = 0; thus there is no error between

the reconstructed and original quantized value,
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A computer calculation of (4.7) has shown that this expression

does not depend strongly on‘CS when 2<:CS< 10.

4,2 Effect of Transmission Errors

As for the zero=-order predictor, channel noise results

in amplitude error and timing errcr,

4,2,1 Level word error

We assume that a single error inm a level word is equal-
ly likely in each bit., An error in level word j affects the re=-

constructed samples in run j and run j+1l, as shown in Figure 4.3

. N | -
< ,lf i >

Figure 4.4 First-Order Level Word Error

Let Xi denote the amplitude of the ith nonredundant
sample Si and Xi the amplitude of the sample in error, In Fi-
gure 4.4, sample Sj is erroneous since its amplitude is X3 in~--
stead of Xj' This error is propagated over (n+n'-1l) samples

and on the average the error is propagated over ZCS-l samples.,

Now, given an error of A steps ( OéA’:Zk) in sample Sj’

an error Ai will result for all redundant samples from §, 1 to
J—

§ . Moreover,
J .
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— © o Ai(A for i = I,- 000y II-']..
since the nonredundant sample Sj is the nth sample in the run

and clearly displays the largest error, as shown in Figure 4.4.

In fact, since the errors i decrease linearly when i

varies from (n-1) to 1 (at i=1 we have Ai=0>’ we. can write
E(A) = Ay2.

If these were the only errors resulting from an erro-
neous nonredundant sample, the m.s. error resulting from a
first-order scheme would be half that of a zero-order predic-
tor, hence, half that of a PCM (non~compressed) system..However;
as illustrated in Figure 4.2, the error propagates to the. next
adjacent run. For this run the errors A{ (i=1, 2, +..,n'=1) are
also smaller than A and independent of the run length n', and.

their average value 1is
E(A) = 472

Consequently, given an error A in sample Sj’ the average error

for the resulting (n+n'~1l) erroneous samples of a first-~order
predictor is equal to A.

The m.s. error per sample is, therefore, the same as
that of a zero-order system (or that of a non-compressed sys=

tem) and is given by

(4.9) E(ezllgsgirwggd) = E(X,-X'! ferror) = —E—-»gii:i
i 3k 22k

Since Pr(error in level word) = kPB , we have

2k

r

2 _ B2 -1
(4.10) E(el) = —3——?;ﬁ;—
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4,2,2 Timing word error

The m.s. error of the reconstructed waveform depends
on the addressing scheme used to inform the receiver on the
location of the nonredundant samples. We shall consider here.
the case of run length encoding. Every level word is accompa-
nied by a timing word which indicates the distance d separa-
ting two adjacent nonredundant sawples. The receiver recons=-
tructs the data by joining with a straight line the two sam-
ples d units apart. Note that for all non-level runs, d can
be constituted of at most 2k steps, where k is the length of
an amplitude word, since this would correspond to a signal
starting from 0 volt and reaching its maximum value of 1 volt.

(wve recall that the signal has been normalized).

Figure 4.5 illustrates the effect of an error in. a

run~-length word,

i T

Correct value of’
amplitudes.

- ===-Value of amplitude
due to displacement

Figure 4.5 Run~Length Word Error

- th 1
Due to an error in the (n-1) run-length word, sample

S is displaced and becomes now Sd. In this example, the distan-

@ n

ce between Sh and S, is taken as d=5, All succeeding nonredun-



dant samples are displaced by the same amount, If we denote
by n_ the number of affected nonredundant samples, we have,

similarly to the zero-order case

1 + Cg/L

E(ny) _
(4.11) “f?E?‘ = >

The errcr due to sample displacement varies from 0 step to
k x . X, a k. . A

27-2" steps, where x is such that 27/27is the amplitude of

sample Sn' Here x iIs a r.v. assumed to be uniformly distri-

buted between 0 and (k-1). Thus,
(4.12) Pr(x = i) = 1/k ; i=0,1, eu., k=1

Assuming also that the error has the conditional

uniform probability

P(e/x) = Eﬁii; R
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it is possible to write the following expression for the con-

ditional m.,s, error (note that the error can assume the fol-

lowing values e = j/2k where j =0, 1, ...,2k-2x),
2k.2x%
.2
E(e2/x,error) = —E—-%—-;— 3
27(27-27)  3=0
This expression simplifies to
1 k k+1

E(ezlx,error) (2.-2x)(23-2x+1)(2

6 2k(2k.2x)

or
k ,x k+1 x+1
E(ez/x,error) . (27-2 +1)(2k -2 +1)
6 2
Since
E(ez/error) = § :E(ez/x,error) Pr(x) ,

X

_2x+54)
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we obtain from (4.12)

k-1
(4.13) E(ez/error) = ——l—g E (zk-2x+1)(zk+1;2*+1+1)
‘ 6k-2 %=0

Denoting the expression under the summation by £f(k,x), we have

(=1
(4.14) E(ezierror) = EZLZE— 2;: £(k,x)
. =

Now it is evident from Figure 4.1 that all redundant
samples except one (sample Si) are affected.. Hence,.ifiné is:
the number of affected samples per run, we have

E(ng/error) ~ Cs-1
Cs - G

Since
E(n,./error) E(ns/error)
E(e2) = L . 2 E(ez/error) Pr(~ _
L/Cs CS error

and

one timing ~
= P_.
( error ) ¥

we may write

k-1

2, _ 1+ Cg/L xPB(Cs-1)  _ 1 -
(4.15)  E(e") - o Y :E: £(k,x)

The overall r.m.s. error in the reconstructed data

is therefore (assuming no aperture error, i,e., m = 0 )

2k

1 Pg 24%- 1

(4. 16) erms = m— 4 -—3-- -—2-2—12—-—-

k-1 %
P -
o L Co/t IPp(Cenl) 1 N g
2 Cq 6k 2k

t=0

one t iming)
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where £(k,x) = (zk_2x+1)(2k+1_2x+l+l)

This equation is plotted in Figure 4.6 for k = 6 bits,
r = 5 bits, It is seen that the r.m.s. error increases exponen-

tially when PB >10-6, and does not vary appreciably with.Cé
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CHAPTER V

CONCLUS ION

In the course of this study, we have seen how the
redundcancy reduction can be obtained by various forms of’
coding. A statistical analysis of the effects of channel
noise on zero-order and first-order predictors has been

presented in Chapters III and IV,

We showed that, in the absence of correlation,
the vulnerability of the signal increases. It is apparent
from the curves iliustrated by figures 3.7 and 4.6 that,
given a channel with a bit error probability of"IO-7bits/sec
or more, the resulting r.m.s. error of the compressed sys-
tems may not be acceptable. However, of the three addres-
sing techniques considered, the position word encoding
technique yields the smallest error imn the reconstructed
data. Moreover, with this scheme, the error propagation

is limited to one run.

We have seen that more elaborate coding methods
can be devised; however, it appears that efficient encoding
often implies excessive complexity of the transmitting and
receiving equipments, and much work remains to be domne to

find a "practical" optimum coding.

It should be emphazised here that the data com-
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pression systems studied in Chépters I1TI and 1V are imple-
mented in such a way as to yield both bandwidth compression
and energy compression. Thus, thé average compression ratio
CS defined in this study implies that the compressed data
require a bandwidth B/CS and signal energy E/Csr,,where
B and E denote the bandwidth and signal energy for the non-

compressed system, respectively.

For certain applications, such as telemetry in deep
space, the energy compression is a prime requirement.,. On the
other hand, in many applicatioms, such as videophone, it: may
be more important to reduce the bandwidth rather than the
power. Therefore, if the power E used for the non-compressed
system is available for the compressed system, the compa-~

rison between the two systems must be made under the assump-

tion of equal energy.

The bit=-error probability of tlhe non-compressed

system is given by

P, = exp( - 28 )

B o
NOR
where R is the transmission bit rate..

The bit rate of the compression system. is K/Cé..

Thus the bit-error probability Pé of the compression system

is
i/NoRﬂ 25Cg
! =R -
Fp ZS exp( - {1

Replacing this value of PB in (3.36), (3.8) and (4.16)
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yields the new equations for the r.m.s. error of the com~
pression system, The results are piotted in Figure 5.1 and
show clearly that for practical channels, bandwidth compres-
sion can be achieved with only a small signal degradation

compared to PCM transmission,

When the power necessary for PCM transmission 1is
not available, one can resort to error-correcting codes to
reduce the error rate. Several coding procedures have been
described in the literature (48) (53). It is shown that

protection on the address words only can be sufficient.

Block coding minimizes the bit error rate but not
necessarily the magnitude of the m.s. error, and therefore
is not efficient for most compression systems, Majority
vote coding (51) yields better results, It is possible that
“"significant bit" coding could provide an efficient way to
cope with this problem. This coding procedure consists in
protecting the most significant bits of a word thus mini-

mizing the erxrrors which are the most costly.

However, any form of coding results in lowering
the bit compression ratio and an optimum procedure has

yet to be found.
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