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After a stroke or spinal cord injury, the voluntary use of paralyzed iimbs may be 

partiaily restored with Functiond EIectrical Simulation (FES). To restore the use of 

paralyzed hands, it would be beneficiai to aiso recover the sensory signais originating 

from naturai receptors in the individuai fmgertips. Several approaches are possible for 

recording sensory nerve activity from multiple sources, including 1) implanting electrodes 

on individuai digit nerve branches in the hand, 2) implanthg multiple intrafascicular 

electrodes in larger nerve tmnks in the forearm, or 3) implanting cuffs containhg multiple 

electrodes around the forearm nerve trunks. 

The fmt approach is the least practid because it is surgicaily more time- 

consuming and has the greatest potential for nerve damage. In this thesis, 1 have 

evduated the other two approaches with Multi-Contact nerve Cuffs (MCCs) in acute and 

chronic experiments and with arrays of LongitudinaI IntraFascicular Electrodes (LïFEs) in 

the chronic situation. Hindlirnbs and forelimbs of mesthetized cats were used as models 

for the paralyzed human foream and hand. EIectricaI and mechanicai stimulation of the 

individual digits was used to test the seiectivity of multi-channel electrode arrays. The 

results from mechanical stimulation were m e r  anaiyzed to determine the accuracy of 

digit identification from features in the recorded neural activity. 

The results of electrical digit stimulation tests in acute and chronic situations 

showed improved levels of selectivity over other investigators' versions of MCCs. As 

could be expected fiom theu locations and geometries, LIFEs provided more selective 

recordings and more accurate digit identification than MCCs. In response to mechanicai 

stimulation of the individuai digit pads, the digits were correctly identified from their 

associated neural bursts with 70% to 90% accuracy for MCCs and 80% to 100% accuracy 

for LDEs. These results indicate that multi-channel neural recordings are a realistic 

solution for obtaining sensory feedback information for the control of FES systems in 

disabled humans. 
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This iittle piggy went tu market. 

This little piggy stayed home. 

This Iittle piggy had roast beef. 

This littie piggy had none. 

And this Little piggy went "wee-wee-wee" aiI the way home. 
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CHAPTER 1 : INTRODUCTION 

Purpose 

When a person becomes paralyzed from a spinal cord injury or stroke, there is a 

loss of voluntary control of the muscles whose motoneurons are located below the Iesion. 

Above the lesion, full conscious control is retained and below the lesion they system 

works improperly because it does not have nomal descending input. At the level of the 

lesion, the damaged motoneuron c d  bodies eventuaily die forming a "dead zone" of 

denervated muscles. Even though voluntary control of muscles has been lost, the sensory 

receptors are still active, but the information may be unable to reach the brain where it is 

normaily needed in the process of executing movements. 

One way to restore some voluntary control to a partially paralyzed person is with 

Functional Electrical Stimulation (FES), whereby select muscle groups may be 

electrically stimulated to provide some degree of mobility. Because the neural 

innervations and muscular attachments in the hurnan body are so complex, it is very 

difficult to return normal function although some cmde function may be restored such as 

standing, some waiking, and some reaching and grasping (Nathan, 1993; Franken, 

Veltink, and Boom, 1994). Nomaily the stimulation system is controlled by the person 

through some part of their body that still retains sorne voluntary motion, such as  the 

contralateral shoulder for quadriplegics (Buckett, Peckham, and Strother, 1980; Nathan, 

1993) or the han& for paraplegics (Franken, Veltink, and Boom, 1994). 

Currently, several implementations of FES systems are cmde due to their open- 

loop configuration. The user controls a joystick (Buckett, Peckham, and Strother, 1980) 

or presses a button and a programmed series of electrical stimulations to the muscles is 

executed to achieve the desired task. However, this type of system does not respond weli 

to disturbances and may cause trouble for the user as the system does not adapt to 

accommodate changes in surfaces, loading situations, or velocities of movement. 

With the use of feedback in a cIosed-loop FES system, fmer control may be 

achieved so a target force (Haugland and Hoffer, 1994; Crago, Nakai and Chizeck, 199 1) 



or position (Yoshida and Horch, 1996) rnay be rnaintained and fatigue rnay be reduced 

(Haugland and Hoffer, 1994). Closed-loop systems inherenuy accommodate to 

disturbances through the use of feedback to maintain a target position, force, or trajectory. 

Lemay et al. (1993) studied the improvements that can be achieved by using dosed-loop 

control over open-loop control systems in a hand neuroprosthesis. 

Feedback sensors rnay be of two types: electromechanical transducers that are 

mounted extemal or intemal to the body, such as force plates, length gauges and 

accelerometers, or transducers that tap into the body's intrinsic sensors, such as 

proprioceptors and cutaneous receptors (Hoffer, 1990; Hoffer and Haugland, 1992). 

When intrinsic sensors are used, a mapping between recorded activity and force or 

position must be made because natural activity is not encoded in easily identifiable units. 

By tapping into intrinsic sensors some of the problems associated with *cial sensors 

rnay be avoided, such as loading of the instrumented limb or digit, cosmesis, and 

changing sensor properties that occur as the transducers change position over t h e .  Crago 

et al. (1986) examined the different properties that various sensors must have to be 

effective for fedback in different neuroprostheses. 

The work contained within this thesis is a study within the field of FES to increase 

the amount of information that can be obtained from a single nerve or nerve branch in a 

chronic situation. Currently, a single channel of whole nerve or single nerve branch 

activity c m  be monitored and used as feedback input to an FES system with nerve cuffs 

(Sinkjaer, Haugland, and Haase, 1994). B y using multi-channe1 nerve cuffs, 1 hope to 

obtain more select information from the same number of implanted devices so that 

eventually more sophisticated FES controllers rnay be developed. For instance, reaching 

and grasping tasks rnay be augrnented so that individual finger control rnay be achieved 

rather than just the thumb and a grouping of fingers. In such situations, several channels 

of information could to be recorded and processed to detennine when a digit has made 

contact with an extemal surface and which digit had reached the surface. After contact, 

the FES controller could vary its output to the muscle that spans the joint of the limb 

segment that has made contact with the surface, but continue stimulating other muscles 

until all of the digits have made contact with the surface. This refmed control wouId 



result in Iess fatigue to the muscles responsible for moving the digits and allow more 

specific function. 

To achieve this future goal, members of the Neurokinesiology Laboratory at 

Simon Fraser University (SFU) hcluding myself have designed and constructed a Multi- 

Contact Cuff (MCC) and have studied its performance in long term experiments. The 

forelimb of the anesthetized cat was used as a mode1 of the human paralyzed forearm and 

hand because the anatomy, neural innervation, and dimensions are sirnilar in both cases. 

An anesthetized subject was necessary to remove voluntary or invoIuntary muscle activity 

that would occur in an awake animal and which does not occur in a paralyzed person. 

The members of the ND3 team included Yunquan Chen who helped design the 

new MCC, developed the theory for the selectivity measure presented in this thesis, and 

designed and constmcted low-noise high-gain amplifiers. Kevin Strange was responsible 

for design and construction of the MCCs, implanted the MCCs in the chronic 

experiments, recorded electroneurographic data, and analyzed the electrical stimulation 

studies in the later stages. Tiffany Blasak provided animal care throughout the 

experiments. Ken Yoshida designed, constmcted, and implanted the Longitudinal 

intraFascular Electrodes &IF'Es). Andy Hoffer acted as senior supervisor and oversaw ail 

aspects of the project including cuff and amplifier design, surgeries, and recording 

protocols. I helped design the new MCC, designed the digit rnanipulator, assisted in the 

recordings, and processed and malyzed the collected data in these experiments. 

The work contained within this thesis was conducted as part of and supported by a 

three year National Institutes of HeaIth research contract that was awarded to Dr. 

Andy Hoffer as Principal Investigator. The scope of the NIH contract is to develop new 

techniques to allow selective recordings from various digit sources and selective 

stimulation to different muscIe groups. I have limited my work to the fmt year of this 

contract. 

This thesis details my contribution to the different phases in the fmt year of the 

NM contract. A new and improved MCC was developed by the NM team, impIanted and 

evaluated. The degree of selectivity that could be achieved with the new and improved 



MCC was first determined by electricaüy stimuiating different nerve branches in acute 

experiments and then moved to chmnic experiments. An array of LIFEs, which were 

developed, constnicted at the University of Aiberta, and implanted at the SFU 

Neurokinesiology Laboratory by Dr. Ken Yoshida of the University of Alberta, 

Edmonton, was similarIy evaluated in the chronic situation. To conduct the experiments 

for the project, 1 developed a two dimensional digit rnanipulator that is capable of 

producing mechanical perturbations, in directions normal to and tangentid to the digit pad 

in the forelimb of a cat, The data analysis was conducted off-line using functions and 

routines in the Microsoft Excel, SPSS, and The Mathworks MatIab environments. 

The layout of this thesis presents in approximateIy chmnologicai order the 

background science and applications that my colIeagues and 1 developed using the new 

multi-contact cuff that we designed. A method to test the efficacy of the new recording 

cuff and any other sirniiar device or multichannel recording array is also presented. 1 

then discuss the results of three acute experiments that were perfonned to test the new 

MCC through direct electrical stimulation of various nerve branches. Subsequently in 

chronic experiments, the electricai stimulation experiment in the acutes was extended to 

electrical stimuiation of the digits that indirectiy stimulated the individual nerve branches 

in the forelimb, and a mechanical stimuIation protocol was used to test the selectivity of 

the cuff and to determine to what degree individuai digit identification could be possible. 

At the end of this thesis 1 outline future objectives and other processing techniques that 

may be applied to simiIar sets of data 

Sections of the work presented in this thesis will appear in papers accepted for 

publication at the Internationd Functional Electrical Stimulation Society's second annual 

conference to be held in Burnaby in August of 1997 (Hoffer et al., 1997; Chen et al., 

1997; Strange et al., 1997; and Christensen et al., 1997). 

Objectives 

At the start of this project, I planned to address and answer the following 

questions. 



To what degree can one make selective recordings with nt&-channel elecîroàè arrays? 

Other researchers (Lichtenberg and DeLuca, 1979; Struijk, Haugland and 

Thomsen, 1996; Sahin and Durand, 1996) had shown that it was possible to make 

selective recordings with a MCC in acute experiments, dthough the published results had 

not been spectacular. We developed a new MCC design that was evaluated in acute and 

chronic experiments that is detailed within this thesis. Prior to the current NIH contract, 

LIFEs had k e n  used as selective recording and stimulation devices with success and it 

was decided that the results of selective experiments with this electrode would be 

compared to our MCC. 

To what degree can rnuui-channel elecîrode arrays be used to îdentii individual digîts 

fiom recorded neural signah? 

MCCs and LIFEs were implanted in animal subjects for chronic expenments and 

electrical and mechanical stimulation experiments were designed to evaluate the 

selectivity of the two recording arrays. Further mechanical stimulation experiments were 

used to evaluate whether individuai stimulated digits could be identified from associated 

neural bursts arising in response to the stimuli. 

How are selectivüy and accuracy of digit identi@&n related? 

To detemine the expected accuracy of digit identification in a given expriment, 

the relationship between accuracy in digit identification and selectivity was analyzed. 



CHAPTER 2 : BACKGROUND 

Neural Anatomy 

In order to understand how electroneurographic (ENG) activity recorded by 

electrodes in the forelimb correlates with sensory activity arising from the individual 

digits, it is necessary to have some knowledge of the physioIogy and anatomy of the 

system. 

Neural pathways and anatomy 

Typically, a nerve is composed of a few fascicIes which are composed of hundreds 

of axons, the srnailest functional neural unit, that innervate tissue, organ, or muscle (see 

Figure 2.1). Motor nerve axons conduct from the ventral horn in the spinai cord to 

muscle units in the periphery. 

/' 
Axon 

,e bun 

Figure 2.1: Stylized cross section of a nerve 

Sensory nerve axons conduct centripetaily from the periphery and transmit information 

generated by individual muscle spindles, Golgi tendon organs, pain or temperature 

receptors, or mechanoreceptors in skin or joints. Sensory axons collect into one large 

nerve or several nerves which enter the dorsal horn of the spinal cord where the individual 



axons terminate on interneurons, motor nerves, or ascend through various pathways to the 

dorsal column nuclei in the brainstem or thalamus in the brain (see Figure 2.2). 

Central Nervous System 

B rain 

Spinal 
Cord 

Perip heral Nervous System 

Skin 

Muscle 

DCN: Dorsal Column Nuclei 

Figure 2.2: Some of the major neural pathways between the cortex and the 
periphery 

Neural receptors 

After mechanical stimulation is applied to the digit pads, rnost recorded neural 

activity is predominantly from cutaneous receptors and muscle spindles. Activity from 

muscle spindles is due to stretching of the muscles, whereas activity from cutaneous 

receptors is normally due to deformation of the skin from contact, vibration, and 



movements across the surface of the skin. Ih this project, spinde activity can be expected 

from the intririsic muscles of the forepaw: the lumbricales are innervated by the median 

nerve and other srnall palmar muscles are innervated by the uinar nerve (Crouch, 1969). 

Activity from cutaneous mechanoreceptors is expected from the t h e  of contact of the 

mechanical stimulus u n d  it leaves the surface of the digit pad. Direct and indirect 

electrical stimulation of nerve branches elicits responses in ail types of sensory ~ e r e n t  

nerves fiom type I and II muscle spinciles to AB mechanoreceptors. 

Cufaneous mechanorecep fors 

Cutaneous mechanoreceptors are responsive to touch and contact on the surface of 

the skin. As such, they are good indicators of when the skin reaches a surface because 

they release a burst of activity upon contact and often upon reiease as well with skin 

deformation. These types of receptors become active when the skin is rubbed across a 

surface to determine a texture (Srinivasan, Whitehouse and LaMotte, 1990) or when an 

object slips across the surface of the skin (Johansson and Westling, 1987). The cutaneous 

mechanoreceptors are located at the dennis and epidermis junction of the skin and lower 

in the subcutaneous tissue. 

There are four major types of cutaneous mechanoreceptors based on responses to 

mechanicd stimuli and sizes of receptive fields (Rothwell, 1994; Kandell, Schwartz and 

Jessel, 199 1; Westling and Johansson, 1987). FAT, which have Meissner corpuscles as 

their terminals, are fast adapting receptors whose responses are specific to a small patch 

of skin (about 10 mm2). The FAII, which terminate in Pacinian corpuscles, are deep 

receptors with large receptive fields that are responsive to high fiequency inputs like 

vibrations. The fast adapting receptors are suited to detect the rate of deformation in the 

skin as they release a burst of activity when the skin deforms upon indentation or release, 

such as when an object is grasped or released, or when an object slips through the fingers. 

Superficial SA1 units, with terminals in Merkel discs, and deep SAII units, with Ruffini 

endings, are responsive to prolonged indentations of the skin and to the rate of indentation 

of the skin. They release a burst of activity when the skin becornes deformed and they 



maintain their output discharge with constant deformation of the skin. SAII are also 

responsive to the direction of stretch. 

Muscle spindles are transducers that convert muscle fibre length, velocity, and 

acceleration to trains of electrical impulses. Generally, when a muscle is stretched, the 

spindles increase their output ENG activity and when it is shortened they reduce their 

activity . (Kandell, Schwartz and Jessel, 199 1). 

In this project, some activity from muscle spindles is expected after a normal input 

has been applied to the digit. This stimulus causes the digit flexor muscles and perhaps 

other palrnar muscles to be stretched. Activity from the radial lumbricaies is expected in 

the median nerve and activity from other palmar muscles in the ulnar nerve. 

Neural innervation of the forelimb 

From a review of a standard cat anatomy atlas (Crouch, 1969), we can see that, 

similar to the human hand, the innervation of the cat forepaw is quite extensive with 

several smail branches to each of the digits. Figure 2.3 shows the palmar surface of the 

right forepaw of the cat. For the purposes of this project, 1 concentrated on the median 

and ulnar nerves and their patterns of branching. A review of a human anatomy text (e.g., 

Palastanga, Field, and Soames, 1994) verified that the median and ulnar nerves follow 

similar branching patterns in the human foream and hand, so the general results 

discussed in this thesis can be transferred to the human. 



Figure 23: Cat forepaw innervation 

Median nerve 

Following the branching of the median nerve, it can be seen that it innervates the 

medial aspects of the forepaw. Specificaily, it enters the forepaw on the medial side of 

the wrist and quickly makes three main branches that form part of the supeficial palmar 

metacarpal nerves, the other part king formed from the superficial branch of the ulnar 

nerve. The frrst major branch of the superficiai palmar metacarpal nerve branches twice 

more. The first minor branch branches to innervate each side of the skin of digit 1 and the 

second branch innervates the medial side of digit II. The second major branch has two 

branches to the skin on the contiguous sides of digits II and III. The third branch sends 

two branches to the skin of the contiguous sides of digits III and IV. These find branches 

are known as the medial and laterd palrnar digital nerves. The metacarpal nerves also 

give branches to the triiobed palmar pad and to the three radiai lumbricales muscles. 



UInmnerve 

The ulnar nerve innervates both the palmar and dorsal surfaces of the forepaw. 

Observing the ulnar nerve, we can see that it innervates the fourth and fdth digits, the 

surface of the p h ,  and the volar surface of the wrist. 

The palmar branch of the ulnar nerve enters on the Iaterai side of the wrist and 

forms two major branches: the superficiai palmar branch and the deep palmar branch. 

The superficial branch enters the palm of the forepaw and aiso the skin of the ulnar side of 

digit V and the contiguous sides of digits TV and V. The deep palmar branch bends 

towards the radial side of the forepaw and gives off deep palrnar metacarpal nerves to the 

short muscIes of the palm. 

The dorsal cutaneous branch of the ulnar nerve comes from the palrnar side of the 

forearm to the dorsum on the laterai side of the wrist. It divides into two dorsal 

metacargai nerves, the first of which innervates the ulnar side of digit V and the second 

forms digit nerves to the contiguous sides of digits IV and V. 

Expected resulfs 

From this brief analysis, one should expect to see activity in the recording 

electrode arrays on the median nerve due to perturbations in digits 1 through IV and to the 

paim of the forepaw. Activity in the recording arrays on the ulnar nerve should be seen 

when a disturbance is present on the palmar or dorsal surfaces of digits IV and V and to 

the p h  of the forepaw. The fact that two small branches innervate each digit may be 

advantageous because more neural activity may lead to stronger signais and better chances 

of correct digit identification. 

Relationship between neural innervation and implantation sites 

One way to obtain selective channels of ENG information would be to implant 

electmdes into each of the digits and record information from the small nerve branches 

there. However this technique suffers many drawbacks. It requires very fine surgery 

skilts to implant the electrodes due to the smaii size of the nerve branches in the digits, 

and the presence of surrounding smali muscles and tendons further complicates the 



surgical procedure. AIso the highest potential for nerve damage occurs when applying an 

electrode to a very smaii nerve as the electrode is very large in comparison to the nerve 

and may cause mechanical loading on the nerves. Finaily, implanting electrodes on five 

digits is very time consuming. 

A second, less invasive technique which requires fewer implanted electrodes and 

perhaps causes Iess injury to the nerve involves implanting a Multi-Contact Cuff (MCC) 

about a large nerve. The cuff can be installed easily about the nerve and the electrodes 

remain just outside the surface of the nerve. Although the signais detected at each of the 

electrodes may not provide the same level of selectivity of recordings, the ciifferences in 

the sets of recorded signals may be sufficient to make source identification possible. Two 

of these MCCs were implanted on the median and ulnar nerves to form an eight-channel 

electrode may. 

Another way to obtain selective ENG information is to put several srnail 

electrodes that record activity from s m d  regions inside a larger nerve. This technique 

provides very selective information because only a single fascicle's activity is recorded by 

each electrode. However, this technique suffers from a long surgicd procedure as well, 

and the f i e  wires may break. Four Longitudinal IntraFascicular Electrodes (LIFEs) were 

implanted in each of the median and ulnar nerves to form a second type of eight-channel 

electrode array. 

Information Content in Neural Recordings 

Several research groups have studied the information contained within neural 

signals arriving from the periphery for both basic and applied scientific reasons. 

Johansson and Westling (1984, 1987) have investigated the relationship between grip 

force and sIip in the human fmgertips from recordings made in the forearm. Haugland 

and Hoffer (1994) used the information contained in slip signais in the central footpad of 

the hindimb of the cat under general anesthesia as feedback to an FES controuer that 

would prevent slip. 



Johansson and Westiing (1987) andyzed cumeous ENG activity amving fiom 

single mechanoreceptors in the fingertips after slips between the index fmger and thumb 

occurred while lifting an object. Microneurographic techniques were used to record 

activity from individual neurons in the median nerve of human subjects. They discovered 

that information fiom cutaneous origin cm reflexiveIy modify muscle force in the forearm 

to prevent slip, without conscious effort. The time scale for the reflex is about 75 ms 

whereas a conscious effort to prevent slip would require at Ieast 175 ms for the person to 

realize that a slip is occuning and then take appropriate action. 

Milner et al. (1991) studied the relationship between cutaneous neural activity 

recorded by a tripolar recording cuff implanted around the median nerve in the monkey 

and the load and grip forces exerted. They discovered that the initial burst in neural 

activity that occurred when an object was lifted was best related to the rate of change of 

grip force and when the object was held in position the neural activity was related to the 

mean grip force. 

In an experirnent by HaugIand and Hoffer (1994), the cutaneous information that 

is present when a slip occurs was analyzed and used in a closed-loop E S  system to 

control muscle force. in this study, the hindlimb footpad was placed against a block that 

could slide freely in the verticd direction. Neural signais were recorded from the tibial 

nerve with a tripolar nerve cuff implanted on the tibial nerve below the 1 s t  motor 

branches that innervate the calf muscles and neural activity was recorded and used to 

control an FES controller for four ankle extensor muscles. When a slip was detected, the 

muscle stirnulator output was increased to increase the force in the implanted ankle 

extensor muscles which would stop the block from sliding. in this study, it was found 

that ENG recorded in the tibiai nerve provided reliabIe signals for slip detection. 

In a related study by Haugland, Hoffer and Sinkjaer (1994), the relationship 

between perpendicularly applied force and ENG activity was examined in animais under 

general anesthesia. A rubber probe (14 mm diameter) was pressed against a constrained 

footpad with a controlled force, and ENG and displacement recordings were made. The 

ENG recordings were made using a tripolar cuff electrode placed on the tibial nerve 

below the last motor branches that innervate the cdf muscles. The recorded nerve cuff 



signals were amplified and bandpass filtered between 1 and 10 kHz to retain the neural 

signais while removing low frequency electromyographic (EMG) interference, which was 

also recorded by the cuff electrode, and other high frequency interference. The results 

from this study suggested that the total ENG activity in the tibiai nerve is related to the 

appiied perpendicular force on the hindpad. 

More recently, a two-channel system consisting of two tripolar circumferential 

cuffs impIanted on the median and uinar nerves in the forelimb was used to examine 

signals arising from the five digits after electrical stimulation of the digits (Hoffer et ai., 

1994). This thesis extends the work initiated in the last expriment by evaluating the 

increased amount of information that can be obtained from a whole nerve by anaiyzing 

the information content from multi-channe1 recording arrays. 

Previous Research in Selectivify wifh Multi-Contact Cuffs 

Selective recordings involve the ability to determine the source of an input signal 

from arnongst many possible signa1 sources. A couple of decades ago and again more 

recentiy, diierent groups studied the issue of making selective recordings using a single 

recording cuff (Lichtenberg and De Luca, 1979; Struijk, Haugland and Thomsen, f 996; 

Sahin and Durand, 1996). They used similar preparations, electrode arrays, and recording 

methods - al1 groups used anesthetized animals with direct electrical stimuIation of 

nerve branches. This preparation provides signai sources that have no noise 

contamination fiom EMG interference and littie natural background activity . Recordings 

of the resulting compound action potentials were made with nerve cuffs located at sites 

proximai to the stimulation sites. 

However, the type of analysis and the definition of selectivity has varied from 

group to group. The common definition of selectivity has been some sort of rneasure of 

the difference in the amplitude of recorded signals that arise from different sources. Sahin 

and Durand (1996) defined selectivity simply as the observed difference in normalized 

signais. Lichtenberg and De Luca (1979) usai a statistical difference to measure 

selectivity and more complex mathematicai modeling to caiculate the centre of electrical 



activity in the cross section of a nerve. Struijk, Haugland and Thomsen (1996) used 

cornparisons of ratios of recorded signais to develop a selectivity measure. 

Lichtenberg and De Luca 

Ln 1979, Lichtenberg and De Luca studied the question of selective recordings in 

the sciatic nerve of the rabbit. Six nerve branches - peroneal, plantaris, lateral 

gastrocnemius, tibial, flexor digitonun Iongus, and soleus - were stimulated with hook 

electrodes and recordings were made from five different sites dong a 2.3 cm section of 

the sciatic nerve. The electrode used was a nerve cuff 10 mm Iong and 2.3 mm in 

diameter, which had slightly smaller cross section than the sciatic nerve and caused a tight 

fit about the nerve. Eight wires were placed in the cuff with four in each of two 

transverse planes separated by 2 mm. Circumferential recordings amongst pairs of wires 

in the same plane were made, as weil as recordings between the longitudinai pairs. 

To analyze the data, the recordings made fiom each pair of electrodes were 

averaged over all of the stimulation tri& and then normalized to the maximum recorded 

amplitude on a given channel for each nerve branch. Duncan's mdtiple range test was 

used to indicate significant differences in the means of the normalized amplitudes as a 

function of the stimulated nerve branch. in both the longitudinal and circumferential 

studies, the peroneai nerve could be most easily identifîed fiom the other extensur nerve 

branches with less selectivity present amongst the other nerve branches. Later, the 

longitudinal data was used to estimate the centres of electrical activity within a cross 

section of the nerve. The results of the estimates bbcorrelate[d] reasonably well with 

matornical data describing the location of the nerve fibres" (Lichtenberg and De Luca, 

1979). 

Struÿk, Haugland, and Thornsen 

More recently, Struijk, Haugland, and Thomsen (1996) performed their own 

selective recordings and analysis. They aIso studied the sciatic nerve of the rabbit, but 

only stimulated two branches - the peroneal and tibial nerves. Their nerve cuff was 25 

mm long with a 4x2 mm2 cross sectional are& which is much larger than the typical 



sciatic nerve at 3x1 mm2. Twelve electrode contacts were Iocated in the cuff with four 

electrodes in each of three transverse planes separated by 10 mm. 

Two recording configurations were used in Struijk, Haugland and Thornsen's 

experiments. In the fmt, a tripolar configuration was used in which three electrodes in a 

longitudinal line were configured so that the outer electrodes were shorted together to 

form a reference for the centre electrode. In the second configuration, the reference 

electrodes from one 1ongitudina.i electrode array were tied to the reference electrodes of 

the other electrode arrays. That is, all of the outemost electrodes were connected and the 

four inner electrodes were used as signal sources. 

In the analysis of the data, a "selectivity ratio" was defined as the ratio of RMS 

amplitudes of the recorded CAPS after stimulation of the peroneai or tibia1 nerves. A 

"selectivity indicatof' was defined as the square root of the product of the two selectivity 

ratios. Sirnilar results were found for both recording scenarios, with a selectivity indicator 

of 1.4 for the fmt configuration and 1.3 for the second configuration. 

Sahin and Durand 

Sahin and Durand (1996) also studied seIectivity with their own electrode array. 

They conducted studies on the hypoglossal nerve of the Beagle with a tight fitting nerve 

cuff that would exclude ai i  fluids from inside the cuff. The cuff was 20 mm long, 2.5 mm 

in diameter, and had twelve contacts in the walls of the cuff. The electrodes were spaced 

in three transverse planes with 7 mm separation between the planes. Two recording 

scenarios were used. In the first, tripolar recordings were made dong longitudinal 

sections of the cuff, as in the fmt Stmijk, Haugland and Thomsen case, and in the second, 

contacts on opposite sides of the cuff were shorted together. 

To andyze their data, Sahin and Durand first normalized the recorded CAP data at 

each contact set by the sum of al1 recordings at each contact set for a given nerve branch. 

Next, a "selectivity index" was calcuiated by norrnalizing the data from the first step by 

the sum of the normalized recordings of a given nerve branch. The term "selectivity" then 

refers to the spread in the selectivity indices of a contact set for various fibre 

subpopulations. The selectivity was found to be better for the second recording scenario. 



Sahin and Durand's conclusion was that selective recordings are possible, "but the effects 

are smali" (Sahin and Durand, 1996). 

Previous Research in Selectivity with Longitudinal lnfrafascicular 

Electrodes 

Much work with Longitudinal Intrafascicular Electrodes (LIFEs) has aIready been 

performed with stimulation of select nerve branches (Nannini and Horch, 199 1; Yoshida 

and Horch, 1993; Veltink, van Alste and Boom, 1989) and selective recording studies 

performed by Horch and others. Goodall, Lefurge and Horch (199 1) studied the 

information content in ENGs recorded with LIFEs implanteci chronically in the radial 

nerve in the forelimb of cats by stimulating different cutaneous receptors in the digits. 

More recently Yoshida and Horch (1996) used the ENG recorded in the peroneal and 

lateral gastrocnemius nerves in the hindlimb to control the position of the anMe by 

stimulating the tibia1 nerve to the lateral gastrocnemius muscle in a rabbit with the joint 

placed under different loads. McNaughton and Horch (1994) classfied individual action 

potentials recorded by LIFEs in the radial nerve after stimulation of individual 

mechanoreceptors using Iinear discriminant functions, neural networks, and other 

classification techniques. 



CHAPTER 3 : ELECTRODES 

Multi-Contact Cuffs 

The Multi-Contact Cuff (MCC) that was used for this research is a proprietq 

design by J.A. Hoffer, Y. Chen, K.D. Strange and myseif. It is a specialiy designeci 

recording electrode capable of recording from multiple sites about a nerve. More details 

about the MCC cannot be provided here as we are in the process of writing a patent 

application. As opposed to a conventional nerve cufT with circumferential electrodes that 

record the aggregate activity of al1 nerve fibres within a nerve, the MCC is able to record 

activity from specific regions within the same nerve. A schernatic example of a MCC 

with several representative electrodes is shown in Figure 3.1. 

Proximal end of cuff - 

w - 
Distal end of cuff 

Figure 3.1: Example of a muiti-contact cuff 

Figure adapted with permission from a sketch by K.D. Strange 

The MCCs used for this study had four pairs of recording electrodes pIaced 

around the circumference of the cuff. Each pair was aligned dong the longitudinal axis 

of the nerve to record currents from action potentials traveling inside the cuff. Two 



MCCs were implanted in the left f o r e h b  of each of three cats to form an eight-channel 

recording array. 

Longifudinal lntraFascicular Elecfrodes 

The altemate recording array that was irnplanted into the forelimb of three other 

cats was of a quite different configuration. Four separate electrode pairs were sewn into 

each of the median and ulnar nerves at approximately the same locations where the 

MCCs were placed. The original design of the Longitudinal IntraFascicular Electrode 

(LIFE) is detaded in papers by Malagodi, Horch, and Schoenberg (1989) and Lefurge et 

al. (199 1). The LIFEs used in this series of experirnents were modified from the original 

design and constructed by K. Yoshida at the University of AIberta, Edmonton (personal 

communication, 1997). A diagram of a LIFE implanted in a nerve is shown below (see 

Figure 3.2). Each LIFE was composed of two separate wires each with a srnail 

unshielded platinum-iridium section about 0.5 mm long that were separated by about 2 

mm. The L I E  approached the nerve entry point from the proximd end, left a large loop 

for strain relief, was sewn into the nerve in a distal to proximal direction, doubled back 

on itself, and then sutured at the entry point to prevent motion of the electrode in the 

nerve. The section of LIFE that was implanted within the nerve was about 6 mm long. 



Distal end of nerve 

Figure 3.2: Longitudinal intrafascicdar electrodes implanted in a nerve 

Due to its smaii size and geornetry, the LIFE had a very specific recording region. 

Typically, the LlFE recorded from a few axons within a single fascicle, so it provided a 

very selective recording. To obtain multiple sources of the ENG activity within a whole 

nerve, several LIFEs were implanted into the same nerve. 



CHAPTER 4 : SELECTIVIW ANALYSE 

In order to quant@ the results obtained with electrical or mechanical stimulation 

of nerve branches or digits, a technique was developed in our laboratory to measure the 

average selectivity of a particuiar experiment. when the electroneurographic (ENG) 

signals appearing at the sets of electrodes changed dramaticaiiy with different stimulated 

sources, a high degree of selectivity was achieved. A data set with optimal selectivity 

would have perfect separation between all of the source recordings and would be 

orthogond, that is the dot product of any two different source vectors would be zero. On 

the other hand, a data set with an average selectivity of zero would have no separation 

between data vectors because they would ali record the same signal. Thus, the term 

selectivity is analogous to the concept of orthogonality in linear aigebra. In the following 

sections, 1 will describe how selectivity values were calculated. 

Although other groups have developed their own rnethods to caiculate selectivity 

indices (see Chapter 2: Background), we derived our own definition of a selectivity index 

that is based in linear aigebra (Chen et al., 1997). Our selectivity measure uses the linear 

distance between two normalized vectors to give an impression of the Ievel of selectivity 

of a recording set. The average distance between ail pairs of recorded data then form the 

selectivity measure for a particular cuff or electrode array. In our method, a selectivity of 

100 is the maximum possible and a selectivity of O irnplies that there is no discemible 

difference between any of the source recordings. The more selective a recording system 

is, the more likely is one able to discriminate recorded neural signals from various nerve 

branches, fascicles, digits, or other stimulated sites. 

Data Victor Representation 

A source data vector is compnsed of a set of measurernents, or features, taken 

from al1 of the N-recording electrodes of interest at the same moment of time aiter that 

source has been stimulated. These features include the peak-to-peak amplitude of the 

compound neural signal, the peak of the rectified and smoothed electroneurographic 

(ENG) signal, or the area of the rectified and smoothed ENG signal. The types of sources 



in my project included individual sciatic nerve branches in the hindlimb and individuai 

digits in the forelimb. An N-element data vector is represented mathematicdly by 

Equation 4.1 and a reduced two dimensional vector is represented graphicaiiy in Figure 

4.1. 

Equation 4.1: Data vector for source i 

vi = (v, v, - - - v,) , where 1 5 i 5 number of nerve branches, digits, or 

other sources and N is the number of electrodes in the array. 

The axes el and e2 represent functions based on a combination of electrodes, for 

instance, el may represent the sum of the features of the measurement from the media. 

nerve and e2 may represent the sum of the features taken fiom measurernents on the ulnar 

nerve. 

Figure 4.1: Geometrical representation of five data vectors 

Ln order to compare selectivities between different subjects or from the sarne 

subject at different times, the data vectors were normalized. This normalization step was 

included to rninirnize the dominance of a large signal over smaller signals in the anaiysis 

and to reduce the effects of changes in electrode irnpedance that would change the 



amplitudes of the recorded signals. From viewing the vectors in Figure 4.1, one can see 

that the average linear distance would be dominated by distances calculated from v2 and 

v3. By nomalking these vectors, al1 vectors in the recording session have the same 

influence. Equation 4.2 details the normalization step and Figure 4.2 show the 

nonnalized vectors from Figure 4.1. 

Equation 4.2: Normalizing data vector i. 

Figure 4.2: Geometrical representation of five normalized vectors 

Calculation of the Selectivity Measurement 

To calcuiate selectivity frorn the degree of separation of the various data vectors, 

the linear distance between each pair of the vectrirs is found. Because al1 of the vectors lie 

in the first quadrant, the maximum distance between two normalized vectors can be 

shown to be . To make the nsulting intervector distance measures more readable. we 



have further scaled this distance measure by multiplying the result by lYfi. This 

calculation is outlined in Equation 4.3. 

Equation 4.3: Euler distance between each of the vectors. 

dv =I V ,  - v j l = [ ~ ) - , / ~ ,  where 1 6 i j i  the number of nerve 

branches, digits, or other sources. 

An altemate and more precise measure would be to calculate the angle between 

the nomalized vectors. This would be achieved by taking the inverse cosine of the dot 

product of the normalized vectors and then scaiing them by '''/,. The angle method was 

not used because 1 did not discover the discrepancy in the masurement until much later. 

However, the error involved in using the Euler distance rather than the angular distance is 

minimal and probably less than that attributabte to noise in the system. 

After each of the vectors has been norrndized and the Euler distance between each 

pair of vectors has been calculated and scaled, the average selectivity of a signal source 

may be calculated. The average selectivity for a signd source is calculated by averaging 

the Iinear distance from one vector to ail other vectors (see Equation 4.4). 

Equation 4.4: Selectivity for each source i. 

1 Af 

Si = du , for 1 i i < M, where M is the number of sources. 
( M - 1) ,=, 

Because the distance from any vector to itself is 0, the term (M - 1) rather than M is used 

to caiculate the average selectivity for source i. 

To obtain the overall average selectivity for ail signal sources, the aggregate 

average is taken. In Our technique, this is achieved by averaging aU of the individuai 

sources' average selectivities to obtain one average selectivity for the whole electrode 

array. Equation 4.5 shows how this is achieved. 



Equation 45: Average selectivity for the multi-channel electrode array. 

The selectivity measure presented in this chapter is the one that is referred to in 

later chapters of this thesis when discussing the selectivity of a recording. Any other 

seIectivity measures wiil be noted appropriately. 



CHAPTER 5 : ACUTE RECORDINGS FROM HlNDLlMB NERVES 

In the summer of 1996 we perfomed three terminal acute experiments under 

anesthesia to test two aiternate Multi-Contact Cuff (MCC) designs as a preliminary stage 

to future chronic implantations (Chen et al., 1997). Al1 protocols were approved in 

advance by the Simon Fraser University Animal Experirnentation Ethics Cornmittee. 

Although the details of the experirnents differed slightly, the majority of the protocols of 

the experhents were the same. In each of the experirnents, the sciatic nerve of the 

hindlimb of the cat was exposed and five to eight of its distai nerve branches were 

dissected free, These nerve branches included the common peroneal, tibiai, lateral 

gastrocrtemius-soleus, rnedial gastrocnemius, surai, perforant branch of biceps, and 

plantaris. 

Recording Scenario 

In al1 of the acute experirnents performed, the left hindlimb was used. To prepare 

for the experiment the cat was sedated with ketarnine, acepromazine and atropine, 

intubated, and anesthetized with halothane gas mixed with oxygen. The nerve branches 

from which recordings would take place were exposed and discomected from their 

muscles to eliminate the effects that stimulation of the muscle may cause, such as 

contraction of the muscle causing electromyographic activity. The nerves were stirnulated 

with either hook electrodes or a small bipolar stirnulating cuff was implanted on each 

nerve branch. The MCCs were implanted in the rnid-thigh region around the sciatic nerve 

as s h o w  in the Iateral view of the hindlirnb in Figure 5.1. 



Mntti-Contact 

lateral gastrocnemius corn m on peroneal n. 

& soleus m .  
media1 gastrocnemius n. 

superficial peroneal n. 

Figure 5.1: Location of multi-contact cuff in the hindlimb 

When stimdating the individuai nerve branches, current pulses of 50 p e c  

duration were delivered by an isolated biphasic stimulator with 1 puise per second 

repetition rate controlled by a BAK EIectronics BPG-2 Biphasic Pulse Generator (BAK 

Electronics, 198 la). The neural Compound Action Potentials (CAPS) arising from the 

stimulation, as detected by the electrodes in the MCC, were amplified 10,000 times by 



chaining low-noise Leaf Electronics Dual QT-SB Preamplifiers (Leaf EIectronics) (gain of 

100) and BAK Electronics MDA-1 AC Differentiai Amplifiers (BAK Electronics, 198 1 b) 

(gain of 1 0 ~ 1 0 ) ~  Ntered between 500 Hz and 10 kHz by the ampW~ers, and then stored 

ont0 F'M tape with a Honeywell MD96C FM tape recorder (Honeywell, 1982). During 

the recording session, hard copies of the Tektronix TDS420 oscilioscope flektronix, 

1993) screen displaying four channels of neural signais were printed. The same 

equipment described here was used in subsequent chronic experiments, only the gain 

settings on the BAK AC Differentiai Amplifiers were changed. When eight new Iow- 

noise high-gain amplifiers were developed Iater in the project, they replaced the four Leaf- 

BAK amplifier chains. 

Measurements of the CAP peak-to-peak amplitudes were made later from the 

paper copies and eventuaily used in the selectivity anaiysis described in Chapter 4. 

Experiment #7 - June 14, 7996 

In this experirnent, the first version of Our MCC design was instailed on the sciatic 

nerve and five nerve branches - the common peroneai, tibial, lateral gastrocnemius-soleus, 

medial gastrocnemius, and surai nerves - were dissected free and severed from their distal 

attachments about 2 - 8 cm from the recording cuff. Hook electrodes were used to 

stimdate each of the nerve branches and simultaneous recordings were made from the 

four contact pairs inside the MCC. 

A plot of the selectivity of the MCC from Acute #l is shown below. The 

selectivity indices that are shown in Figure 5.2 were caiculated by the method presented 

by Sahin and Durand (1996) because we had not yet developed our selectivity measure at 

the time of this expriment. The degree of selectivity is shown by the amount of spread of 

the selectivity indices for a given contact set. If there were no selectivity, then each 

selectivity index would just be given by 100% divided by the number of stirnulated nerve 

branches; in this case, 20%. In contrast, the spread seen in Figure 5.2 is quite large, 

indicating that the four electrode pairs recorded rather different signals. 



I Selectlvity indices from the multi-contact cuff. Jun 14/96. 
Calculated with the Sahin-Durand method 

ch1 ch2 ch3 ch4 
Contact n t  

Figure 5.2: Selectivity indices from new MCC in Acute #1 calculated with the 
method presented by Sahin and Durand (1996) 

Note for legend: CP - common peroneal; Tib - tibial; MG - medial gastrocnernius; LGS - 
lateral gastrocnemius-sofeus. 

A useful metric to analyze the spread of the results when presented in this fashion 

is to calculate the coefficient of variation, the standard deviation divided by the mean, of 

each of the contact sets and then average a11 of these values to get the coefficient of 

variation for the whole nerve cuff. For the data set shown, this value was found to be 

40%. Figure 5.3 shows the results calculated with Our selectivity analysis method. The 

average selectivity for each of the nerve branches and the overall average selectivity is 

displayed. The sarne abbreviations are used in Figure 5.2 and Figure 5.3. With Our 

selectivity measure, the overali selectivity in this experiment was calculated to be 38% out 

of a theoretical maximum of 100. 



I Acute a1 : 1-MCC Oectrode 
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Figure 53: Selectivity indices from new MCC from Acute #l calcuIated with our 
selectivity method 

The results from this prelirninary study showed that sdective recordings cm be 

made with our MCC as the different bipolar pairs were selective to specific nerve 

branches. Typicaiiy, the recording pair that was closest to the stimulated nerve branch 

gave the highest amplitude signal. Figure 5.4 shows the approxirnate location of the 

different nerve branches within the MCC. By comparing the results of the selectivity 

aridysis with the position of nerve branches inside the MCC, one can see that the 

electrodes in the cuff usuaüy produced the highest amplitude recordings for the branches 

that were ciosest to the eIectrode. 



Mnlti-contact cuff nsed on sciatic nerve of 
NIH15, final acnte, June 14,1996 

View from distal end of cuff 

Figure 5.4: Cross section of sciatic nerve showing individuai nerve branches within 
the new multi-contact cufT 

Figure adapted with permission from a figure by K.D. Strange. 

Experiment #2 - August 13,1996 

In the second experiment, a similar surgicai protocol was followed, but this time 

eight branches of the sciatic nerve were exposed distally to the knee and stimulated. The 

common percineal and tibiai nerves were each divided into two branches and the perforant 

branch of biceps was also exposed. This time, stirnulating cuffs were implanted ont0 each 

of the nerve branches to facifitate stimulation. In this set of experiments, we tested two 

alternative multi-contact cuff designs, an improved MCC and a conventional MCC (e.g., 

the design used by Lichtenberg and De Luca, 1979). The improved MCC design was 

tested three times and then the conventionai MCC two times. The results of from one of 

the improved MCC tests and one of the conventional MCC tests are show in Figure 5.5 

below. Our seIectivity measure calculated a value of 30 for the two trials on the improved 

cuff and the selectivity of the conventionai MCC was calcuIated by our method to be 14. 
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Acute #2 GMCC and EMCC Eiecbodes 

Figure 5.5: Selectivity indices from an irnproved MCC and a conventionai MCC in 
Acute #2 

Note for legend: SP - superficiai comrnon peroneal; DP - deep common peroneal; Perf - 
perforant branch of biceps; other abbreviations as  in Figure 5.2. 

Experiment #3 - September 12, 1996 

M e r  completing the second experiment, we realized that the results of this 

comparative study were inconclusive because we could not determine whether or not the 

improved selectivity was due solely to a better MCC design. We could not nile out that 

nerve conditions did not change over the course of the experiment that might have caused 

the selectivity to diminish with tirne. So, in a third set of experiments we alternated 

between using a conventional multi-contact cuff and an improved cuff. The fmt and third 

tests were performed with the conventional cuff and the second and fourth tests were 

performed with the improved cuff. By setting the experiment up in this marner we hoped 

to counter any effects that may have occurred if the health of the nerve changed over the 

course of the experiment and thus affected the measured selectivity. The results of the 

selectivity analyses for the four tests have k e n  plotted in the following graphs in Figure 

5.6. 



Awte #: Altemted Trials 

Figure 5.6: SeIectivïty indices from the improved MCC and conventionai MCC in 
Acute #3 

Note for legend: PL - plantaris; other abbreviations as in figures above. 

One can see from the charts that the recordings made fiom the two cuffs are 

reproducible fiom test to test. For example, in test 2 and 4, which are the data from the 

improved cdf ,  the average selectivities are very similar for both tests and the overd 

selectivity remains constant. The resdts from tests 1 and 3 are similar too, but the 

selectivity of the sural branch changed. The change in individual selectivities may be due 

to the placement of the cuff changing relative to the nerve branches between the two 

tests. However, the overaii selectivity is similar and remains lower than that observed in 

the improved c e .  

From the results of this expriment, we concluded that the changes that we made 

to the conventional multi-contact cuff design did improve the selectivity of recordings 

from nerve cuffs. We then decided to proceed with chronic impIants using the improved 

MCC design. 



CHAPTER 6 : ELECTRICAL STIMULATION OF FORELIMB DIGITS 

After the acute experiments demonstrated that our Multi-Contact Cuff (MCC) 

would provide selective recordings from cat sciatic nerves, we proceeded with implanthg 

similarly designed MCCs in chronic experiments ?O test how weiI the cuffs would 

perform over a six month implant period (fIoffer et al., 1997; Strange et al., 1997). A 

modified electrical stimulation protocol was used to test the selectivity of using a single 

MCC implanted on the mediau or ulnar nerve and the selectivity of using two MCCs on 

the two nerves. Longitudinal IntraFascicular Electrode (LEE) arrays were implanted in 

the sarne nerves in different subjects and their selectivity was analyzed in the sarne 

manner (Hoffer et al., 1997; Strange et al., 1997). Figure 6.1 shows the approximate 

implantation sites for ail devices. 

To act as a comparative recording array, tripolar circumferential cuffs were 

implanted distal to the recording arrays on the median and ulnar nerves of al1 subjects. 

Stimulating the median and ulnar nerves with the proximaily implanted bipolar 

circumferentiai cuffs and making recordings of the ENG activity in the distal cuffs and 

recording arrays was used as a means to monitor the generai health of the nerve and the 

viability of the electrodes. 

Al1 protocols were approved in advance by the Simon Fraser University Animal 

Expenrnentation Ethics Conmittee. 



U h r  Neri Median Nerve 

/ Proximal UInar 

\' \ \  // Proximal Median /" 

M edian Multi- 

DistaI Median 

Figure 6.1: Location of devices impïanted in foreiimb 

Adapted with permission from a figure by K.D. Strange 



Recording Scenario 

We used anesthetized subjects to perform the selectivity evaluation. Electrical 

stimulation of the digits was perfomed by placing a cuff around each individuai digit 

with two circumferential electrodes pIaced 7 mm apart. A constant current stimtdator 

provided 10 mA amplitude and 50 p duration monophasic current pulses to the digit at a 

rate of 10 pulses/s. We found that an electrode - tissue impedance of approximately 10 

kR was necessary to securely stimulate the nerve fibres in the digits and to generate a 

signal in the recording electrodes. If the impedance was too low, the current would shunt 

between the two electrodes without stirnulating the digit. If the impedance was much 

higher, the stimulator would not be able to generate the necessary current. 

The signals recorded by the two multi-channel arrays were amplifred by a gain of 

10,000, and stored to FM tape for archiving. Initially due to a limited number of available 

ampwers, only four channeIs of ENG activity occurring on either the median or the ulnar 

nerve's four-channel recording array were recorded at any one tirne. The activity from the 

median and ulnar circumferential cuffs were amplified by a gain of 10,000 by chaining 

two BAK Electronics AC Differential Amplif~ers together. Because electrical stimulation 

provided an invariant input, the recorded ENG activity did not change much between 

stimulations when recording activity from the median or ulnar nerves. This fact was 

verified by the simultaneous recordings fiom the median and ulnar circumferential cuffs 

that were made for al1 recording sessions. The amplitude of the ENG signals from the 

median and ulnar cuffs were used as controls between recordings from the median arrays 

and ulnar arrays on the same digit. After a set of eight new amplifiers was constructed, all 

eight channels of ENG activity occurring on both nerves' multi-channel arrays were 

recorded simultaneously. 

To make off-line measurements of peak-to-peak ENG activity, the FM tape was 

played back and the signals from individual channels were displayed on the oscilloscope 

and averaged 10 times. Since the amplitude of uncorrelated noise decreased 

approximately by the square root of the number of samples used in the average, averaging 

was used to increase the signal-to-noise ratio. Measures of peak-to-peak amplitude of the 

compound signal that occurred between 1.5 and 4.0 rns after the stimulation of the digit 



were recorded. At times less than 1.5 ms, a significant stimulus artifact was present; after 

4 rns there was typicaliy no ENG signal remaining. These measurements were obtained 

for each digit and then a selectivity analysis, as  described in Chapter 4: Selectivity 

Analysis, was performed. 

Figure 6.2 shows the results of an electrical stimuIation experirnent on ME119 on 

day 0. The signals recorded on al l  eight channels from the two implantai MCCs after 

stimulating each digit are shown with their characteristic ENG patterns. The channeIs 

labeled 1 through 4 indicate the median MCC electrode recordings and channels 5 

through 8 indicate the ulnar MCC recordings. From the figure, you c m  see that the 

median nerve was active when digits 1 through IV were stimulated and the ulnar nerve 

was active only after simulation on digits IV and V. 
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Figure 6.2: Compound neural signals obtained after stimulation of the individuai 
digits. NIEî9, Day O. 

Figure used with permission from K.D. Strange. 



Results of Selectivity Analysis 

There were three MCC implanted and three LIFE implanted cats; however, 1 only 

closely monitored two of each. The first NM implant (NM18) was disregarded for this 

project when the wires to the tripolar uinar cuff were broken eady in the expriment and 

therefore 1 could not determine the performance of the eight-channel system compared to 

the twbchannel system. To balance the resuIts, 1 only closely followed the last two LIFE 

implanted subjects. 

The results of detailed selectivity andyses performed on four subjects are 

presented in the following tables (TabIe 6.1 to TabIe 6.4). The column labeled 8-channel 

refers to the recordhg array composed of either two MCCs or eight LlFEs implanted on 

the median and ulnar nerves. The coIumn labeled 2-channel refers to the recording array 

formed from two circurnferentiai tripolar cuffs impianted on the median and ulnar nerves. 

The selectivity values for these two columns was calculated afler stimulation of al1 five 

digits. The 4-channel columns are for the MCC and LIFE recording arrays that were 

implanted on either of the nerves. The 4-channei median array had selectivities calculated 

after stimulation was provided to the median innervated digits 1 through IV, and the 4- 

channel ulnar array had selectivities calculated after stimulation was provided to digits IV 

and V. 



Table 6.1: Summary of selectivity r d t s  using electrical sümulation of digits on 
NIHI9 

l Day 

8-c hanne1 2-channe1 kontact MCC 4-contact MCC 
(w (a) median nerve (9%) uhar nerve (%) 

lmean f s.d. 51.1 f 6.8 37.5 + 5.6 17.2 -t 6.6 15.2 + 12.9 
Notes: *first simu~tanmus 8channel recording day; 'broken wire on me&; kloss of 
ulncirc, uln 1 & me&. 

Table 6.2: S m m a r y  of selectivity results using electncal stimulation of digits on 
NIH21 

D ~ Y  8-chaanel 2-channel 4-contact MCC 4contact MCC 
(w (%) median nerve (%) ulnar nerve (%) 

O 55 46 1 O 8 
2 55 48 9 29 

2 4 49 45 15 5 
3 5 55 48 14 13 
63 47 42 11 6 
84 46" 3 8 14 1 O 
94 53 44 18 13 

1rneanks.d. 51.4I3.7 44.4 f 3.3 13.0 k 2.9 12.0 f 7.5 1 
Notes: *first simdtaneous &channe1 recording day 
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Table 63: Summary of selectivity results using electrical stimulation of digits on 

I Day 

$-charme1 2-channel 4LIFEs 4- 
(a) m l  median nerve (%) dnar nerve (9) 

Notes: * f i t  simultaneous lchannel recording day; 'problem with new amplifier N3, 
resulting in no signal for ulnar LIFE3; $roblem with amplifiers on NI and N2 

Table 6.4: Summary of selectivity resuits using electrical stimulation of digits on 

D ~ Y  8-channel 2-channel 4 LIES 4LlFEs 
(%) (%) rnedian nerve (95) ulnar nerve (%) 

- . . -. . - . - . -. - - . -  

Notes: *first simÜltaneous 8-channel recording day 

Summary of resuits 

From a brief analysis of the results, one can see that there were similar selectivity 

values within the MCC and LIFE implanted subjects for the eight-channel electrode 

mays. The MCC subjects, NM19 and NTH2 1, had average selectivities of 5 1.1 and 5 1.4 

and the LIFE subjects, NiH22 and NIH23, had average selectivities of 74.6 and 60.2. In 

ail cases, the two-channel tripolar cuff arrays had fairly sirnilar performances (37.5,44.4, 

36.9, and 39.0) in all of the subjects. 



When reviewing the results for the eight-channel arrays, it became clear that the 

L E  arrays outperformed the MCC arrays, sometimes by a large margin. This fact was 

probably due to their specific recording locations that allowed them to make very 

selective recordings. Using both multi-channel systems, the extra charnels of information 

seemed to provide better selectivity over the two-channel system. 

Looking at the single four-channel MCCs, we can see that they perfomied 

similarly in the subjects on both the median and ulnar nerves. The average selectivity 

values ranged from 12.0 to 17.2 which is a tight spread given the caiculated standard 

deviations. The LIFEs were much more variable in their selectivity with values ranging 

from 22 to 61 and the ulnar nerve implanted LIFE arrays had larger standard deviations. 

In both of the LIFE implanted subjects, the median nerve selectivities were considerably 

higher than the ulnar nerve arrays. 

Improvement of eight-channel over two-channel system 

The eight-channel systems provided more selective recordings than the two- 

channel systerns. This fact may be explained through the increased separation in multi- 

dimensional space of the median innervated digits. For example, in the two-channel 

system, the cuffs implanted about the median and ulnar nerves should see s i d a r  resuIts if 

any of the first three digits are stirnulated because theoreticaiiy only the median nerve 

would be active (Le., data vector = < 1 O >); therefore, the selectivity arnongst those 

digits would be O. The fourth digit is distinct because it would have similar levels of 

activity on the median and ulnar nerves (Le., data vector = < 0.707 0.707 >). And the 

fifth digit is again distinct because it would have activity only on the dnar nerve with 

little activity on the median nerve (Le., data vector = < O 1 >). Thus, the following 

theoretical selectivities could be expected: 

Individual selectivities: SI = 39, S2 = 39, S3 = 39, S4 = 54, S5 = 89 

Overall selectivity: S = 52 

Because we did not have perfect ail-or-none signals, the observed selectivity for the two- 

channel system was reduced. 



On the other hand, the eight-channel system should be able to provide some extra 

distinction among the fmt  three digits with little gained separation of the signais from the 

fourth and fifth digits. By improving the selectivity in the median imervated digits, the 

overall selectivity was increased 

Irnprovement of selectivity when using two nerves as opposed to one 

The large improvement that is seen with the selectivity measures for the five-digit, 

eight-channel system versus the two- or four-digit four-charnel system rnay be attributed 

to the fact that the overall spacing between data vectors in eight dimensionai space 

becarne greater, even though the selectivity arnongst the first three digits did not change 

significantly. 

Drop in selectivity for single MCC in chronic compared to acute experiments 

The apparent drop in selectivity values that was observed frorn the acute 

experiments to the chonic experirnents rnay be explained by the fact that the nerves in the 

forelimb rnay not foilow sirnilar distinct branching as was observed in the sciatic nerve in 

the hindlimb. The nerve branches in the hindlimb were located on the surface of the 

nerve, were very distinct and could be separated easily, whereas the fascicles in the 

forelimb rnay be located more deeply as thus harder to make clear recordings by the 

electrodes. Another reason rnay be due to intermingling. At the site of the MCCs, a 

distance away from where most of the branching takes place in the paw, the fascicles may 

be less distinct due to the intermingling that occurs between various fascicles as they 

approach the spinal cord. A third reason rnay be that not al1 of the axons in a digital nerve 

branch were stimulated as they were in the acute experiments. The reduction in signa1 

amplitude narrowed the margin between signal and noise and rnay have caused the 

lowered selectivity. 



CHAPTER 7 : MECHANICAL STIMULATION OF FORELIMB 

DIGITS 

Data Collection 

Recording protocois 

The mechanical stimulation experiments were performed directly after each 

electrical stimulation expriment, while the subject was still under anesthesia during a 

recording session. The wrist of the cat was atraumatically supported with a brace fomed 

of plexiglass and tape to prevent the paw from drooping and the forearm was secured to 

the recording table with a haif section of tubing and tape (see Figure 7.1). After the 

forelimb was secured, the manipulator (described below) was positioned under the 

forepaw. For normal input experiments, the tip of the lever arrn was located a few 

miliimetres below the digit pad; for sIip inputs, the lever a m  was raised to just indent the 

surface of the digit pad. The manipulator then went through its programrned sequence of 

stimulations. 

Digit manipulator 

The digit manipulator is a device that 1 designed capable of producing controlled 

mechanical stimulations in two dimensions to the individual digit pads of the forepaw of 

an anesthetized cat. Mechanical stimulation in the direction perpendicular to the digit pad 

was possible, as were stimuli tangentid to the pad. The former stimulation is referred to 

as a normal input and the latter a slip input. These stimulations caused activity in sensory 

fibres, cutaneous and proprioceptive, which was recorded by electrodes placed around, by, 

or in forelimb nerves. 

In the final version of the digit manipulator, five lever arms were aligned under the 

forepaw with one lever arrn tip placed under each digit to produce inputs in one of two 

dimensions. The various manipulators were constnicted in SFU's Science Technical 

Centre by Alex Szolnoki. 



The single digit manipulafor 

The basic manipulator element was capable of perturbing one digit in one of two 

dimensions as shown in Figure 7.1, set up for a slip stimulation expriment. Solenoids 

were used in the design because they were easy to use, easy to control with a computer, 

and relatively inexpensive. The magnitude of the applied stimulation was controiied by 

limiting the solenoid's return to their resting position. For the slip input, a return spring 

and hard stop located at the rear of the lever arm were utilized. For the normal input, a 

special cylinder was constructed to stop the return of the piston in the vertical solenoid. 

Figure 7.1: The single digit manipulator in position for a slip experiment 

Solenoid #1 was a pull-type solenoid that was responsible for the slip input. 

When it was energized, the tip of the manipulator Iever arm was pulled tangentially across 

the digit pad, creating a slip. When the solenoid was de-energized, a return spring pushed 

the manipulator's lever arm out of the solenoid and back against a hard stop. The position 

of the hard stop could be changed with a couple of srnaIl nuts and bolts located at the back 

of the arm, which controlled the length of the slip input, 

Solenoid #2 was a push-type solenoid that was responsible for the normal input 

against the digit pad. When it was energized, the piston pushed the manipulator's lever 

arrn up to contact the digit pad. Because the solenoid was located about haif-way dong 

the Iever arm, the end of the arm travekd twice the distance of the piston. This was a 

good configuration for the solenoid because the solenoid was able to generate greater 



force at a shorter stroke length. However, the amount of end point force of the solenoid 

was halved when used in this configuration. 

The specifications of the single digit manipulator were as follows: 

solenoid force (at 5 mm stroke length): 2 N 
power: up to 36W (12 V, 3A), DC power 
size (LxHxW): approxhately 15 cm x 8 cm x 3 cm 

The five-digit manipulàtor 

At a later stage of the project, 1 designed a five-digit manipulator capable of 

perturbing any one of the digits. This design was based on the working version of the 

single-digit manipulator and included five copies of the single-digit manipulator placed 

side by side (see Figure 7.2). The manipulator was capable of delivering sequential inputs 

to any one of the five digits - either a slip stimulation dong the long axis of the digit by 

energizing one of the outer solenoids or a normai stimulation against the digit pad by 

energizing one of the inner solenoids. 

Because the manipulator was cornputer controlIed, any sequence of individuai 

stimulations could have been applied to the digits. I limited the experiments to series of 

slip inputs or senes of normal inputs that were applied to the digits sequentiaily at a rate 

of one stimulation per digit per second (five stimuli/s distributed over five digits). 



Figure 7.2: The five-àigit manipulator in position 

Data acquisition 

Initially, recordings could only be made simu1taneously from four recording 

channels using the chained Leaf and SAK amplifiers, so electroneurographic (ENG) 

activity was separately recorded from median and uInar nerves. In later stages of the 

study, eight new amplifiers were constructed and the resuits from these recording sessions 

are provided below. The full recording scenario aIIowed better recordings to be made 

because al1 neural signals were recorded in parallel so the total activity in both of the 

nerves could be simultaneously monitored. As in the electricai stimulation cases, the 

median and ulnar circurnferentiai cuffs were recorded concurrently by chaining two BAK 

amplifiers together. 

Due to the very small amplitude of ENG signals, a gain of 100,000 was used to 

amplify the recorded ENG activity before recording the signal to FM tape. Even after 

amplification, a typical signal had a peak-to-peak amplitude of 300 mV which indicated a 



neural signal of about 3 W. The ENG was bandpass filtered between 500 Hz and 10 kHz 

to accentuate the neural response and remove high and low frequency electromagnetic 

interference. 

After an expriment was completed, the data that was stored on the FM tape was 

played back, digitaily sampled at 20,000 samples per second, and stored on writeable CDCD. 

The sarnpling rate was selected to be twice the bandwidth of the recording channels on the 

FM tape machine (i.e., 10 kHz) and approximately twice the highest frequency component 

of the filtered ENG signal. Storing the data digitaily allowed for manipulation of the data 

off-line with various software packages. 

Processing 

Matlab processing and feature extraction 

Due to the smdi amplitude and brief duration of the neural burst that occurred in 

the median and ulnar nerves after mechanical stimulation was applied to one of the digits, 

some signal processing was necessary in order to obtain useful features for further 

analysis. The processing included removing the DC offset found on the analog FM tape, 

further high-pass filtering the signai to remove 60 Hz interference, rectifiing the neural 

signal, and low-pass filtering the signal with a Kaiser window Finite impulse Response 

(F'IR) filter with cutoff at 400 Hz to obtain the envelope of the ENG burst, The foIlowing 

block diagram (Le., Figure 7.3) shows these steps. A Kaiser window filter was selected 

because it is a near-optimal FIR fdter for a given mainlobe width and sidelobe area A 

FI. filter has a constant delay of one half the window length that can be accommodated 

more easily when irnplementing hardware for real-time situations (Oppenheim and 

Schafer, 1989). 
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Figure 7.3: Steps used to fiiter recorded ENG activity after mechanical stimulation 

Three feahues were extracted from the fiItered signal: (1) the peak of the filtered 

ENG burst, (2) the time from the onset of the stimulation to the peak of the ENG b u t ,  

and (3) the area of the burst over a baseline level integrated over a 50 ms duration. Figure 

7.4 shows these features on a filtered ENG burst. 

Filtered E N G  burst 

-20 -10 O 1 O 2 O 30 4 O 5 O 6 O 70 80 

Time (ms) 
Figure 7.4: Fiitered ENG burst showing peak, t h e  to peak, and area features 

Data fiom a normai stimulation experiment from both before and after processing 

is s h o w  in Figure 7.5. For clarity only one channe1 is shown, dong with the 

synchronizhg pulse that shows when the solenoid was energized. The synchronizing 

pulse shows two pulses: (2 )  when the lever arm f ~ s t  made contact with the digit pad and 

(2) when the lever arm Ieft the surface of the skin. 
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Figure 7.5: Sequence of processing on one channei of ENG data. Data recorded 
from NEZ21 on day 99 using normal inputs appIied to digit 3 

In Figure 7.5, one can see that variability occurred from trial to trial. This 

variability may have been due to changes in the input, as  the lever arm did not always 

provide an identical stimuIus to the digit pad. Changes in the input may have been due to 

the solenoid tending to heat up with repeated use, the lever arm becaming slowed in the 

manipulator due to friction between the Iever arm the guides, or the lever arm contacting a 

different part of the digit pad. Other sources of variabifity may have included changes in 

the mechanoreceptor electrochemical responses because some adaptation may have 

occurred with repeated presentations of the same mechanical input and the output 

response is not constant for every stimulus (Westling and Johansson, 1987). 
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Resulfs 

Selectivity analysis 

Two features that were generated from the Matlab processing, ENG burst peak 

and area, were used in a selectivity analysis similar to the one used for responses to 

electrical stimulation of the digits. The fuil set of average selectivities collected with the 

single-digit and five-digit manipulators and analyzed with burst peak and area features 

appears in Appendix C. 1 chose the burst areas over the burst peaks because areas 

provided slightly better results than peaks. The results are provided in Table 7.1 for the 

four NIH subjects. 1 only included here the results obtained using the area features from 

normal and slip experiments that used the five-digit manipulator as an input device. The 

selectivity values for the eight- and two-channel arrays were calculated after mechanical 

stimulation of all five digits. The selectivity of the four-channel array on the median 

nerve was calculated for stimulation of the four median innervated digits, 1 through IV. 

The selectivity of the four-channel array on the ulnar nerve was calculated for stimulation 

of the fourth and fifth digits. 



Table 7.1: Siimmary of mechanid selectivity r d t s  d g  ENG burst ares feahires. 

Subject Day 8-channel 2-îripolar 4-channel m y  4-c hanne1 arrq 
selectivity (%) selectivity (%) on median on ulnar nerve 

nerve (%) (%> 

NIH19 154-S 16 15 2 
(MCC) 180-N 14 4 2 

1 80-S 20 19 5 

MHî1 84-N 14 6 5 10 
(MCC) 8 4 s  6 4 3 1 

94-N 7 7 3 3 
9 4 s  9 5 7 5 
99-N 13 7 4 2 
99-S 7 5 2 4 

NlH22 58-N 25 6 27 4 
(LIFE) 58-S 28 10 34 6 

65-N 25 12 29 26 
6 5 4  28 8 34 I l  
72-N 32 10 30 17 
7 2 4  28 6 30 9 

43-S 17 10 11 4 
Tote: N - normai stimulation. S - slip stimulation 

The average eight-channel MCC selectivities were 16.7 and 9.3 and the average 

LEE selectivities were 28.5 and 20.3, both of which are better than the two-channel 

average selectivities obtained from the two tripolar cuffs located on the two nerves (5.7, 

8.7, and 9.8). Of the two four-channel amays, the results obtained on the median nerve 

(MCC: 12.7 and 4.0; LEE: 30.7 and 10.8) were typicaily higher than the arrays implanted 

on the ulnar nerve (MCC: 3.0 and 4.3; LIFE: 12.2 and 7.5). In most cases, the LIFE 

recording arrays outperformed the MCC recording arrays. 

Normaiiy, the eight-channel selectivity was greater that either of the four-channel 

selectivity values. The relationship between the two four-channel arrays and the 

aggregate eight-channel array is not clear and would appear to be non-linear as is 

evidenced by the results of NIH22. For some cases, the four-channel array on the mediari 



nerve has greater selectivity on the four digits than the fidl eight-channel system on the 

five digits. However, one should remember that for the different selectivity calculations, 

a different number of digits were used as the inputs. The eight-channel amy measured 

the overall selectivity to identify five digits using information h m  the median an dulnar 

arrays, the four-channel median array measured the selectivity to idenm the fmt four 

digits, and the four-channel array on the ulnar nerve measured the selectivity for the Iast 

two digits. 

The modest mechanical stimulation selectivities, relative to the electrical 

stimulation selectivities, may be accounted by the larger variability in the ENG signais 

from variability in the input, variability in mechanoreceptor output, and the low signai-to- 

noise ratio that is seen with the neural bursts where the signal amplitude has a peak only 

about 3 times greater than the RMS amplitude of the background activity. The electncai 

stimulation experiments did not suffer from ttiis vaiability as the electricai stimulation 

was essentiaily constant over aU of the stimulated trials, the neural response to electrical 

stimulation was fixed, and the signai was about ten times larger than the noise that was 

observed. 

Digit identification analysis 

Discriminant analysis 

A discriminant analysis classifies different individual cases based upon criteria 

that have been selected as the categorizing inputs. The individud cases in a discriminant 

analysis can be regarded as single points in multi-dimensional space. UnIike a cluster 

anaiysis that forms groups from the data without regard to relations that may occur in the 

data, a discriminant analysis classifies new cases into groups based on prior iaiowledge of 

the groupings. For the discriminant functions that were used in the anaiysis, it was 

assumed that the different groups had similar statistical properties of normal Gaussian 

distribution and equivalent covariance within groups. 1 made these assumptions because 

the same inputs were used on ail digits and data was collected from ail digit. similarly, 

aithough these assumptions may not have been completely correct. 



To perfom the discrirninant analysis individual sarnples are mapped h m  the N- 

dimensionai measurement space (where N is the number of recording channels) to a 

reduced space spanned by K-1 orthogonal canonical functions (where K is the number of 

stimulated digits). Only K-1 lines, planes, or hyperpianes are necessary to separate K 

different groups (Cooley and Lohnes, 1971). The SPSS program derived the canonical 

functions to optimally separate the centroids of the K different groups by maximiWng the 

ratio of between-groups sum-of-squares to the within-groups sum-of-squares 

(NoruSidSPSS, 1993). These functions were applied to sarnple cases and the individual 

cases were classified into the different groups based upon proxirnity of the case to each of 

the centroids. To test the accuracy of classfication, a cornparison was made between the 

predicted group classification to the actual grouping. Development of canonical functions 

used for discriminant analysis is discussed in detail in multivariate data analysis texts such 

as Cooley and Lohnes (197 1). 

Although not identical to the methods presented in the SPSS manual, Andrews 

(1972) and Young and Calvert (1974) provide good examples of how to develop linear 

discriminant functions and perform discriminant analyses. In these methods K linear 

discriminant functions are derived for the K groups. 

When 1 ran the mechanical stimulation experiments, the stimulated digit was 

aiways coded in the synchronizing pulse train that was put ont0 FM tape. During Matlab 

processing, the pulse was decoded and the digit identification was stored with the 

extracted features for that digit. The actual stimuIated digit information was entered into 

the discriminant analysis as the dependent grouping variable and the selected features 

were used as the independent categorizing variables. 

Several analyses were performed to mess the performance of individual four- 

channel recording arrays operating on the individuai nerves and associated digits and the 

overail performance of the eight-channel systerns to identify all five digits. The first set 

of analyses determined the results of identifying which one-of-five digits was stimulated 

based on area, peak, and combined area and peak features from al1 of the eight recording 

ekctrodes. The second set of analyses evaluated the individual recording arrays on the 

median and ulnar nerves by idenming either one of digits I through IV based on features 



collected for the median nerve or one of digits IV and V based on the features collected 

from the ulnar nerve array. Finally, the two-channel two tripolar cuff recording m a y  was 

evaluated with the same three sets of features so that a comparison of the eight-channel 

system to the two-channel system could be ma&. Once all of these analyses were 

completed, the above analyses were reperformed using normalized data so that relations 

could be made between the digit identification accuracy and the selectivity data. The 

results from al1 of these canonical discriminant analyses are included in Appendix D. 

Two different types of discriminant analyses were performed on the raw and 

norrnalized sets of data. A jackknife analysis technique was appiied to the raw data to 

make predictions of group membership. The jackknife method, dso known as a leave- 

one-out method, is used to determine how a single case would be classified based on the 

functions derived using the n-1 other data cases. By using raw data, the differences in the 

magnitudes of the source signals could be used to advantage to identify different groups. 

In the analysis method applied to the normalized data, d l  of the cases were left in to 

derive the canonical discriminant functions so that cornparisons to the selectivity 

measures could be made. From reviewing the results in Appendix D, one can see that the 

results obtained from the two types of discnminant analyses are similar. 

Summary of discriminant analysis results 

The results of the discriminant analyses performed with the jackknife method on 

the raw data collected with the five-digit manipulator is provided in Table 7.2. 
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Table 7.2: Summary of digit identification accuracy using ENG burst area features 
and leave-onesut d y s i s  

Subject Day 8-charnel 2-charnel khanne1 array 4-channel array 
accuracy (%) accuracy (%) on median on ulnar nerve 

nerve (%) (a) 
NIHI9 154s 76.3 94.4 50.0 
(MCC) 180-N 76.7 41.5 70.4 

180-S 95.5 93 .4 100 

NIE221 84-N 79.7 43.6 80.2 87.0 
(MCC) 84-S 72.2 40.6 59.0 35.2 

94-N 83.3 42.1 60.0 89.4 
9 4 4  89.5 67.7 84.8 96.4 
99-N 97.7 55.4 84.9 88.9 
99-S 92.5 50.0 84-9 100 

NIH22 58-N 99.2 65.6 100 90.7 
(LIFE) 58-S 99.2 63.6 98.1 90.9 

65-N 82.0 75.6 76.2 94.4 
65-S 97.0 6 1.8 9 1.4 100 
72-N 92.5 50.8 99.0 80.0 
7 2 4  99.2 56.9 100 100 

Note: N- normal stimulation; S- slip stimulation 

Table 7.2 shows that a high degree of accuracy was achieved using the canonical 

functions derived by the discriminant analysis. The eight-channel MCC array results 

averaged 82.846 and 85.8% and the LIFE results averaged array 94.9% and 97.4% for the 

four subjects tested. These results are considerably better than chance (Le., 20%) and 

better than the results obtained using the two-nerve, two-channel systerns (49.9%,62.4%, 

and 63.4%). The four-channel systerns also perforrned well with the median arrays 

averaging 76.4% and 75.6% for the MCCs and 94.1% and 85.1% for the LIFEs. The 

ulnar four-channel system also showed high accuracy (MCC: 73.5% and 82.8%; LIFE: 

92.7% and 92.1 %), although chance in this case was 50%. 



Individual discriminant analysis results 

The following tables and figures show the individual results from each subject 

fiom the discriminant analyses that provided the highest accuracy. The tables, aiso known 

as confusion matrices, show the predicted versus actuai group classification for a single 

set of raw data in which a leave-one-out analysis had been perfonned. The correct 

identifications were placed on the diagonal with the off-diagonal elements representing 

the rnisgrouped cases. The figures show the group "clouds" of data that are fomed after 

the individual cases had been transformed by the derived canonicai discriminant functions 

and then pIotted in two dimensions. The first two canonical functions (i.e., the x and y 

axes of the foIIowing figures) represent the greatest variability in the data with less 

variability accounted for with the third and fourth functions. On average 71.6% of the 

variability of the data was accounted for by the first canonical function and 94.7% was 

accounted for by adding the second function. 

The standardized canonicai discriminant function coefficients are the coefficients 

of the canonicai functions after the variables have k e n  standardized to a mean of O and a 

standard deviation of 1. The magnitude of the coefficients show how strongly a variable 

affects the output of the given function. In ail of the cases, the coefficients are Iisted in 

order of the four median electrodes and then the four ulnar electrodes. 



Table 7.3: Classincation results for NIH19 on day 180 using ENG burst area 
features and slip inputs 

Predicted Group Membership 

Digit 

1 

Figure 7.6: Scatter plot of ENG burst area feature data used in digit identification 
analysis for M H 1 9  on day 180 using slip inputs. 95.5% accuracy 
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Standardized canonical discriminant function coefficients: 
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Table 7.4: C l d c a t i o n  results for NIH21 on àay 94 using ENG burst a r a  features 
and slip inputs 

-6 1 
-8 -6 -4 -2 O 2 4 6 

Function 1 
O * v + o  a 

DIGIT 1 2 3 4 5 Group Centroids 

Predicted Group Membership 

Figure 7.7: Scatter plot of ENG burst area feature data used in digit identification 
analysis for NIE21 on day 94 using slip inputs, 89.5% accuracy 

Count 

Q 

Standardized canonical discriminant function coefficients: 
F1: 0.762 0.294 -0.048 0.3 10 0.261 0.208 -0.047 0.086 
F2: -0.457 0.008 -0.226 -0.206 0.514 0.155 0.247 0.653 

Digit 

1 
2 
3 
4 
5 
1 
2 
3 
4 
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1 2 3 4 5 Total 

26 O O O O 26 
O 23 3 O O 26 
O 8 17 1 O 26 
O O O 26 1 27 
O O O 1 27 28 

100.0 0.0 0.0 0.0 0.0 100.0 
0.0 88.5 11.5 0.0 0.0 100.0 
0.0 30.8 65.4 3.8 0.0 100.0 
0.0 0.0 0.0 96.3 3 -7 100.0 
0.0 0.0 0.0 3.6 96.4 100.0 



Table 75: ClaSSifc~cation results for NIH22 on day 58 using ENG bu& area features 
and slip inputs 

Predicted Group Mernbership 

Digit 
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Figure 7.8: Scatter plot of ENG burst area feature data used in digit identiacation 
analysis for NIH22 on day 58 using slip inputs. 99.2% idenafication 

Standardized canonical discriminant function coefficients: 
FI: 0.642 0.159 0.057 -0.615 0.166 0.449 0.054 0.139 
F2: -0.185 0.152 0.090 0.715 -0.183 0.290 -0,011 0.791 



Table 7.6: CIassif'ication resuits for NIE23 on day 29 using ENG burst area features 
from slip inputs 

M c t e d  Group Membership 

1 Digit 1 1 2 3 4 5 Totai 1 
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Figure 7.9: Scatter plot of ENG burst area feature data used in digit identification 
analysis for MHz3 on day 29 using slip inputs. 100% accuracy 

Standardized canonical discriminant function coefficients: 
FI: -0.018 -0.058 0.005 -0.413 0.47 1 -0.067 0.579 0.091 
F2: 0.316 -0.378 0.810 -0.006 0.783 0.209 -0.359 -0.076 



Relation to Selectivity Index 

In order to determine dations between the seIectivity measure and the accuracy 

mesure, it was necessary that the same data be used in both. Because the selectivity 

mesure relied on nomalizing the data vectors as one of its fmt steps, the discriminant 

analysis was recalcuIated with nomalized values and al1 data were included in the 

classification. The results h m  the leave-al-in discriminant analysis performed with 

normalized data can be found in Appendix D. Table 7.7 shows the selectivity indices and 

digit identifkation accuracy for normalized ENG burst area feature data for the eight- 

channel and two-charme1 systems. 

Table 7.7: SeIectivity index and accuracy of identification using eight- and two- 
channel nerve recording arrays 

Subject Day 8-channel 8-c hannel 2-channel 2-c hannel 
selectivity index accuracy (%) seIectivity index accuracy (96) 

(96) (%) 

NM19 154s  16 76.3 
(MCC) 180-N 14 82.0 

180-S 20 92.5 

NM2I 84-N 14 85.0 6 44.4 
(MCC) 84-S 6 70.7 4 34.6 

94-N 7 77.2 7 39.8 
9 4 s  9 84.2 5 36.8 
99-N 13 88.7 7 33.8 
99-S 7 71.4 5 37.7 

NM23 29-N 18 99.2 1 O 52.6 
(LIFE) 29-S 18 98.5 8 47.4 

43-N 28 95.5 I l  56.5 



Assuming a Linear relationship ktween selectivity and accuracy, the correlation 

between eight-channel selectivity and eight-channel accuracy values using ENG burst area 

features was calcdated to be 0.79. The ploned data are s h o w  in Figure 7.10. This value 

indicated a moderately strong correlation, so the selectivity measure can be taken to be a 

good predictor of the expected accuracy of digit identification. The plot also indicates 

what level of selectivity would be necessary to achieve a desired level of accuracy in digit 

identification using canonical discriminant functions. It is apparent that mechanical 

selectivities of 25% will result in digit identification of about 95% accuracy. The 

correlation of two-channel selectivity to two-channel accuracy showed a moderate 

correlation of 0.7 1. 

accuracy 

+ RedCted accuracy 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 

Mechanical selsctivity 

Figure 7.10: Scatter plot of relationship between selectivity and digit identification 
accuracy for eight-channel electrode arrays using ENG burst area features showing 

actual accuracy and predicted accuracy based on iinear regression analysis. 

A linear regression between the mechanical selectivity and percent correct digit 

identification showed that a minimum digit identifkation accuracy of approximately 72% 

would occur when there was no selectivity, and would be greater than 100% at full 

selectivity. This result is not expected in theory. Rather, a selectivity of O should indicate 

that the probability of correctly identifying a stimulated digit is chance or 20%, if there are 

five digits in the system. This observation indicates that a curvilinear relationship rnight 



exist between the two variables, such as a line that started at (0,20%) passed through (10, 

90%) and then continued to (100, 100%). 

Assuming that a non-hear relationship existed between mechanicd selectivity 

and digit identification accuracy, 1 tested severai alternative functions of the two variables 

and performed a regression analysis of the different combinations. The cornparison of the 

results are shown in Table 7.8. The columns labeled f (0)  represent the different functions 

that were applied to the selectivity and digit identification accuracy values. The column 

titled correlation coefficient using raw data shows the results of the regression analysis 

using the same data as in Figure 7.10. The last column shows the results of the regression 

analysis afler two new data points were inserted to force the data through the points (1, 

21%) and (100, 100%). The point (0,20%) was not used because the logarithm of O does 

not exist. 

Table 7.8: Cornparison of relationships between selectivity and digit identification 
accuracy for eight-channel electmde arrays using ENG burst area features 

f (Selectivity) f (Accuracy) Correlation Correlation 
coefficient using coefficient using 

raw data increased data 

selectivity 
selectivity 
selec tivity 

(se le~t ivi t~)~ 
(se~ectivity)~ 
(selec tivi ty12 

accuracy 
log(accurac y) 
(=-y l2 
accuracy 

log(accuracy ) 
( a ~ c u r a c ~ ) ~  

accuracy 
log(accurac y) 
( a c c u r a ~ ~ ) ~  

From the table above, it appears that a logarithmic function would better describe 

the relationship between selectivity and accuracy. 



CHAPTER 8 : OTHER ANALYSIS TECHNIQUES AND FUTURE 

Other Analysis Techniques 

Other techniques that can be used for classification and identification are 

presented here. Statistical classification relies upon prior knowledge of the system's 

parameters and is useful for systems that are not well characterized by theory but do have 

a lot of data that can be used to characterize the various groupings. NeuraI networks are 

used when a nonlinear mapping of inputs to outputs exists and a highIy adaptive 

classification system is desired. Fuzzy expert systems require a programmer to derive a 

list of functions or rules that wili lead to the proper identification. The reiationship 

between these various classification techniques is shown in Figure 1.38 of Kasabov 

(1996, p. 67). 

Statistical Classification 

The discriminant analysis discussed in the previous chapter was a statistical 

classification scheme in which al1 of the groups' parameters were assumed to be 

uniformly distributed. If that is not the case or there is no known theoreticai bais  for the 

classification scheme, then more rigorous statisticai approaches may be employed to 

classify the different cases into K distinct groups. A statisticai classification scheme can 

be regarded as hypothesis tes.ting in a system with K different means and K different 

distributions, where K is the number of groups to be classified. Udike the discriminant 

function anaiysis which distinctly placed a case into a singIe group, a statistical approach 

dlows the probability of a case to belong in any group. Prior to a Bayesian classifier 

k i n g  developed the conditional density functions (the probability of a case belonging to a 

particular group), costs for misclassification, and prior probabiiities of any group 

occuning must be known for each group to determine the different decision regions. 

Young and Caivert (1974) provide a good discussion of the statistical approach to 



classification- Most communication systerns use statistical methods to identiQ different 

input signals. 

The identification of new cases by a statisticai classifier depends on the data that 

has k e n  coiiected previously and their statistical distributions. No inferences are 

required about the data, just the probability of a ce& group occurring and the 

probability that the new case klongs to a particular p u p .  Figure 8.1 shows an example 

of a classification system that takes a new input, x, and classifies it based on the 

probability of a certain group king occuning, Pk and the probability of the input 

belonguig to a particular group (P(xiD,J). The most probable outcome is seIected as the 

predicted group or digit. 

Predicted digit 

Figure 8.1: Example of a sbtisticd dassification system 

Neural Networks 

N e d  networks are good classification systems to use when a non-iinear mapping 

from the inputs to outputs exists. Not much prior knowledge about the relationship 

between the inputs and outputs is required as the telationship is generated by the neural 

net during its training session. Future cases are grouped based on the input-output 

relationship denved in the training sets. During training, the predicted group 

~Iassification is compared to the actual group classification and the error rate is 



determineci. To reduce the error, back propagation techniques are used to change the 

weighting of the coefficients in the layers between the input stage and the output stage. A 

neural network that may have been used to analyze the eight recording channel and five 

digit classification is shown in Figure 8.2. Five different trees are constructed for the 

functions that identify the five digits. The tree that most likely identifies the input is 

selected as the predicted digit. 

Predicted digit 

Figure 8.2: Neural network used to identify one-of-five digits from recordings from 
eight-channel recording array 

Fuzzy Logic and Fuzzy Expert Systems 

Fuzzy logic (Zimmermann, 199 1) is based in the concept that a continuous 

distribution of possible inputs exists and then best matches the given input to an output; 

however, it is not based in probabilities (even though probabilistic theory is a subset of 

fuzzy theory) but possibilities or degrees of membership. A fuzzy logic system can be 

used when a known relationship between the inputs and the outputs is known or can be 



assumed and expresseci in words. Several rules c m  be made based on observations by an 

"expert" and these niles can be represented by mathematical functions that represent 

degrees of tnith between O and 1, rather than stnctly O or 1. Use of fuzzy systems 

assumes that the programmer knows most of the possible outcomes and that new cases 

can be accounted for through interpolation, therefore certain knowledge about the system 

must be known. 

A series of IF - THEN statements, also known as fuzzy rules, are required to 

describe the system so that a proper identification can be made and then these can be 

represented graphicaiiy and algebraicaiiy. An example of fuzzy rules to describe a four- 

input, one-output system is s h o w  below (Equation 8.1). The four input xi's and the 

output y represent five different fuzzy variables defmed on five different universes of 

discourse and high, medium, and low represent three different fÙzq sets to which the xi's 

membership is calculated. 

Equation 8.1: Fuzzy rules for a four-input one-output system 

(1) IF (xl is high) AND (xî is medium) AND (x3 is low) AND (X4 is medium), 
THEN (y is approximately Group 1). 

(2) IF (xl is medium) AND (x2 is hi&) AND (x3 is medium) AND (x4 is Iow), 
THEN (y is approximately Group2). 

(3) IF (xl is low) AND (xî is medium) AND (x3 is high) AND (x4 is medium), 
THEN (y is approximately Group 3). 

(4) IF (xl is medium) AND (x2 is low) AND (x3 is medium) AND (x4 is high), 
THEN (y is approximately Group 4). 

An example of the fuzzy membership functions for the low, medium, and high 

functions are al1 plotted on the same axes in Figure 8.3 with the high rnembership 

function being highlighted. Al1 of the functions have been norrnalized so that easy 

cornparisons can be made between the various functions and variables. The figure shows 

the output of 0.4 corresponding to an input of 0.4 to the membership function high. 



Figure 8.3: Membership functions for fuzzy sets low, medium, and high 

The next figure shows aiI of the fuzzy niles for the four-input one-output system 

descrfbed by the IF-THEN rules in Equation 8.1. An input of 4 . 4  0.4 0.7 0.6> has been 

entered in the system. The first step in the andysis is to determine the degree of 

membership of the various variables for ail of the rules. The degree of membership is 

calcuIated at the intersection of vertical dotted lines from the input line to each of the 

functions. Next, the AND part of the mies is caiculated by taking the minimum of al1 of 

the rnembership functions for a l i  of the variables. AND in fuzzy logic can be represented 

mathematically in various foms but it is typically represented by a minimum or a product. 

The degree of membership of the output y for the various rules is shown by the shaded 

regions in each of the possible outputs. In the final step, the union of al1 of the possible 

outputs is caiculated and then the moment of the union is calculated. The final step 

(defuzzification) is to convert this fuzzy value 0.6 to one of the four possible outputs. if a 

linear distance measure is useci, then it is closest to Group 3 for this example. 
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Figure 8.4: Plot of inference d e s  for an example of a four-input one-output fuzzy 
system 

Zimmermann (1991), Ulieru (1946), and Kasabov (1996) ai l  present methods to 

develop fuzzy sets, niles and inference methods and provide some applications of fuzzy 

theory. 

Fufure lmprovemenfs 

In order to increase the accuracy of source identification, a couple techniques that 

may be employed are improved feature selection and further nerve instrumentation. In the 

first, features more characteristic of the signals they represent can be used in the pattern 

recognition problem (see Chapter 2 of Andrews, 1972; Chapter 6 of Young and Calvert, 

1974). Instead of using peak values or area values, different features may be used to 

greater effect. I calculated whether using both of these features for digit identification 

would increase the accuracy, but it did nut seem affect the results too much. See the 

tables in Appendix D for more details. 



Another way to increase the identification rate may be to instrument the radial 

nerve dong with the median and ulnar nerves with multi-channel recording arrays. The 

radial nerve innervates the dorsal surface of the forelimb of the same digits as the median 

nerve. By using the information from the radial and median nerves, identification of 

digits 1 through IV may be improved and thus increase the overall identification rate. 

However by incfeasing the number of electrodes other problems rnay arise, such as the 

need to implant more wires and devices into the forelirnb, the need for larger extemai 

connectors, and the identification system may become plagued with the "curse of 

dimensionaiity" (Andrews, 1972). The curse appears as the dimension of the system 

increases and the storage and processing needs increase. By reducing the number of 

electrodes per recording array, this curse may be avoided and a higher identification rate 

may still be achieved. 



CHAPTER 9 : SUMMARY 

Through the course of this thesis 1 have built the argument that the identification 

of digits from their specific neural patterns is possible. The work started with the 

development of a new Multi-Contact Cuff (MCC) and the selectivity anaiysis technique 

that was required to determine the efficacy of the recording cuff in acute and chronic 

situations. The studies in acute experiments showed that the MCC design performed well 

and that selective recordings could be made from different nerve branches. The electrical 

stimulation experiments of the forelimb digits in chronic experiments also showed that 

selective recordings could be made from both MCC and Longitudinal uitraFascicular 

Electrode (LIFE) arrays and thus individual source identification should be possible. 

Because people are not usually presented with electrical shocks every time their 

finger tips touch or rub across a surface or their finger is moved out of place, a series of 

mechanical stimulation experiments was designed and executed to &y to rnimic two types 

of inputs that would occur in a natural setting - these were the normal and dip inputs 

discussed in the mechanical stimulation chapter. A selectivity analysis was performed 

and showed that selective recordings could be made although the selectivity values were 

rather low due to the variable nature of the input and the smaü amplitude ENG signal. 

However, when the focus moved to identieing which were the mechanically 

stimulated digits, the results were prornising. The digit identification rate when canonicai 

discriminant functions were employed showed resutts that were considerably better than 

chance. The digit accuracy results from MCCs ranged from 70% to 90% depending upon 

the subject and the results from the LIFE subjects ranged between 80% and 100%. A 

relationship between mechanical selectivity and digit identification accuracy was found 

indicating there is a moderately strong correlation, although a plot of the data showed that 

the relationship might not be strictly linear. 

In the next phase of the research, real-time digit identification will be attempted 

and if so, improved feature extraction may be necessary to increase the selectivity and 

identification rates and some other scheme to detect when a disturbance has taken place 

will need to be determined. Other pattern recognition and classification techniques such 



as neural network andysis, fuzzy expert systems, and statistical rnethods may lead to 

improved results in the classification problem. 

Because this thesis contained a series of controlled experiments with known inputs 

and simplified recording scenarios, îhe results of the experiments were easier to interpret 

and explain than might occur in awake recordings. Only five possible input sources were 

considered at any one time in the identification problem; however, in a reai-life situation 

any number of the different digits codd be stimulated at any tirne which would make 

identification of stimulated sources more complicated. Due to the specific recording 

regions of LIFEs and the binary-type of coding with these electrodes, one might expect 

the gap between the MCC and LIFE recording array digit identification rates to become 

wider. If more than one digit is stirnulated and recorded with the LIFE array, one rnight 

expect the superirnposed signais to indicate that two sources were stimulated. With the 

MCC recording array, it might be more difficult to identdy how many sources were 

actually stimulated. 

Contamination of the eIectroneurographic (ENG) signai may occur from 

electromyographic (EMG) activity that occurs with muscle motion, the stimulus artifact 

that occurs after stimulation of nerve or muscle, and other electromagnetic interference. 

EMG contamination can be removed with low-pass filtering techniques as the EMG has a 

Iower frequency range than ENG. SpeciaIized electrode configurations, such as tripolar 

electrode recordings, can also be used to remove EMG interference. The contamination 

due to stimulus artifact can be removed by blanking the inputs to the amplifiers during 

stimulation or recording only during intervals irnrnediately preceding stimulation periods 

(Haugland and Hoffer, 1994). Other electromagnetic interference rnay also play a role in 

the contamination of the recorded neural signal and, if its frequency content does not 

overlap with the neural signal, rnay be removed by sirnilar techniques as with EMG 

contamination. 

Because the synchronizing pulse was recorded with the neural activity, there was 

no dificulty in determining when a stimulation was applied to one of the digits. In a reai- 

life scenario, the onset of a disturbance is not known. To accommodate for the lack of a 

synchronizing pulse, the source identification may be calculated constantly with an extra 



input to account for noise artifacts, thus requiring K+1 groups for the K possible sources 

and one extra for non-source signais. Another method could employ a trigger to start the 

identification calculation when the amplitude of the ENG activity is greater than some 

preset threshold or when the rate of rise of the filtered neural burst is greater than normal 

background activity . 

Armed with the knowledge contained in this thesis, the field of fùnctionai 

electrical stimulation cm benefit from knowledge that finer recordings are possible in the 

chronic situation. The selective recordings should aiiow more sophisticated Functionai 

Electrical System (FES) controllers to be developed that can stimulate muscles more 

specifically. Hopefully, in the long run, paralyzed humans wiU benefit from these refined 

FES stimulation systems. 
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APPENDIX A : DlGlT MANIPULATOR CONTROLLER 

Hardware 

The next page contains the schematic for the hardware for the five-digit 

manipulator. The design shows the 74138 decoding chips that were used to select one of 

the ten LM1949 injector drive controiiers from National Serniconductor. The transistors 

were hi@ power TIPlSOs. The solenoids that are shown are TSP45-3V and TP045-3V 

push- and pull-type solenoids purchased frorn Electro-Mechanisms of San Dimas, 

Californi a. 



Software 

This program was written to nin the mechanical stimulation experiments with the 

five-digit manipulator. 

/ /  AT-MIO-16F-5 acquisition board constants 
idef ine ATMIO-BASE 0x3 2 0 /; Base address of the AT-MIO-16F-5 

/ /  acquision board on the EXCO machine 

/ /  The following registers have addresses W .  the AT-MIO-16F-5 base 
#de f ine EXT-STROBE-REGISTER OxOE / /  External strobe register address 
#def ine DIGOUTUTREG OxlC / /  Digital outport register 
#def ine DIGIN-REG OxlC / /  Digital inport register 
#def ine PORTDIOA O / /  Digital port A 
fdef in@ PORTDIOB 1 / /  Digital port B 
#def ine Ton 48 / /  48 m s  perturbation 
/ /#de£ ine Ts tep 8 / /  1/6th of Ton. Necessary for 

/ /  triggering timing 
#de fine NumOfSources 5 / /  Number of Sources i .  digits) 

int brdCode; 
int brdNum= 1; 

M I T  

/ *  Initializes the interface port to initial values and configures the * /  
/ *  digital and analog output channels. * /  
/****************************************************************************/ 
void fnit ( void ) 

{ 
clrscr ( ) ; 

Init-DrCBrds (brdNum, &brdCode); 
DIG-Prt-Con£ ig (brdNum, PORTDIOB, O, 1) ; 
DIG-Prt-Conf ig (brdNum, PORTDI OA, O, I ) ; 

DIG-Out-Port (brCLNum, PORTDIOA, O ) ; / /  Turn off trigger pulse 
DIG-Out-Port (brdNum, PORTDIOB, 15) ; / /  Turn off al1 solenoid puises 



/ REFRESH / 
/ * / /*******************************+********+**************************+********/ 
int SRQ ( void 1 
{ 

int continu = 0; 
int option = 0; 
int choice = 0; 

do 
I 

clrscr ( 1 ; 

printf ( 'Choose an option. \nm 
1: Trigger one solenoid.\n' 
2 : Run the experiment. \nu 
\nu 
Q: Quit.\nm); 

scanf [*%s*, &option) ; 
option = toupper(option) ; 

switch (option) { 
case '1': choice = 1; continu = 1; break; 
case '2': choice = 2; continu = 1; break; 
case 'Q': choice = -1; continu = 1; break; 
default: printf('BuginSRQ!\nm 

%d was an illegal option 
option) ; delay(2000) ; continu = 0; break; 

> 
1 
while ( !continu) ; 

T r y  again. \n' , 

return (choice) ; 

/***************+**********f******+*********+***********r***********/ 

/ * VALID SOLENOIÛ ? + / 
/ * / 
/*****i********C**u***u+**i*u*u*********+****u+**++**~*********************+*/ 

int validSolenoid ( int solenoid ) 
{ 

if ( (solenoid>O) && (solenoid41) ) 
return 1; 

else 
{ 

printf ('ïou entered an invalid solenoid value (%dl. Try 
again. \nD , solenoid) ; 

printf ('Press any key to continue.. .\nu ; 
getch I 1 ; 
return O; 

1 

} / *  Validsolenoid */ 

.............................................................................. 
/ * TüFN ON SOLENOID * / 
/ . * /  
/ *  This procedure rurns on the solenoid given by the input parameters * /  
/ *  'source' and 'perttype'. The source is normaly limited to one of the +/  



/*  five digits and the perttype is limited to either a normal perturbation */  
/*  (perttype = O) or a slip (perttype = 1). / 
/ / 
/*  The trigger pulse is HIER to signal the rishg egde of the pulse and * /  
/*  HIGH (1) at the end to signal the end of the pulse. The length of the * /  
/*  first HIGH pulse sign~ls which of the £ive soruces was signaled. The */ 
/ *  different trigger signals are listed here: * / 
/ * * /  
/*  1: 1-0-0-0-0-1 * /  
/*  2: 1-1-0-0-0-1 * / 
/*  3: 1-1-1-0-0-1 * / 
/ *  4: 1-1-1-1-0-1 * / 
/*  5: 1-1-1-1-1-1 * /  
/* / 
.............................................................................. 
void TurnûnSolenoid ( int source, int perttype, int onTime, int of f T h e  ) 
i 

int solenoid; 
int Tstep; 

solenoid = 2*(source-1) + perttme; 
Tstep = onTime/6; 

/ /  Turn on trigger; turn on solenoid 
outport (ATMIO-BASE+DIGOüT-REG, ((16*solenoid)+OxOF)); 

delay (source*Tstep) ; 
/ /  Turn off trigger; leave solenoid on 
outport (ATMIO-wE+DIGOUT-REG, ( 16*solenoid) +O ; 

delay ( (5-source) *Tstep) ; 
/ /  Turn on trigger; leave solenoid on 
outport (ATMIO-BASE+DIGOUT-REG, ( (16*solenoid) +OxOF) ; 

delay (Ts tep) ; 
/ /  Turn off trigger; turn off solenoid 
outport (ATMIO-BASE+DIGOUT-REG, OxFO); 

/ /  Leave off for specified time 
delay(offTime) ; 

.............................................................................. 
/ SETUP / 
/ * * / 
/ *  This procedure is run when the user wishes to calibrate one of the / 
/*  solenoids for an experiment. The user is prompted for which solenoid to */  
/ *  trigger and then that solenoid is triggered 'perts' times at a rate of * /  
/ *  2 pulses per second to avoid burning out the solenoid. * / 
/ * / 
.............................................................................. 
void SetUp i void 
{ 

int perts = 50; 
int halt = 0; 
int option = ' z '  ; 
int continu = 0; 
int i; 
div-t x ; 
int digit ; 
int perttype; 
int ylocation; 



clrscr ( 1 ; 
do 

printf ('Pick a solenoid to calibrate (O - 9 )  or 'Q' to quit.\nn); 

scanf ( %se, &option1 ; 
option = toupper(option); 

switch (option) { 
case '0': 
case '1': 
case '2': 
case '3 ' : 
case ' 4 '  : 
case ' 5 ' :  
case '6': 
case '7': 
case ' 8 '  : 
case ' 9 ' : option = option - 'O' ; continu = 1; halt = 0; 

break; 
case 'Q': option = -1; continu = 1; halt = 1; break; 
default: printf ( 'Bug in SetUp! \nu 

%d was an 
illegal option. Try again.\nm, option); delay(2000); continu = O; halt = O; 
break; 

1 
1 
while (!continu) ; 

if (!hait) 
( 

x = div(option,S) ; 
digit = (int)x.quot+l; 
perttype = iint)x.rem; 

/ /  Draw markers indicating the number of perturbations ta occur 
ylocation = whereyo ; 
gotoxy (1, ylocation+l) ; 

for (i=O; icperts; i++) 
pri.ntf(g.m); 

/ /  Allow the perturbations t o  begin. Mark off the perts. as they 
occur . 

i = O; 
while ( (iqerts) & !kbhitO ) 
C 

-0nsolenoid (digit, perttype, Ton, (500-TO~) ; 
printf ('*') ; 
i++; 

1 
1 

1 /* SetUp * /  

.............................................................................. 
/ * RUN EXPERIMENT * /  
/* * / 
/* This procedure prompts the user for whether they wish to run a 'normal' * /  
/* or a 'slip' perturbation experiment. The digits are then perturbed one * /  
/ *  at a t h e  in a cycle so that each digit gets perturbed once per second. * /  



/ * / 
/****************************************************************************/ 
void R u n E x p  ( void ) 
{ 

int perttype = -1; 
int continu = -1; 
int halt = -1; 
int i, j; 
int perts = 50; 
int digit; 
int ylocation; 

do 
c 

clrscr ( ) ; 

printf ('Pick a perturbation type.\nm 
" 1: Normal\nD 
* 2: Slip\na 

\nM 
Q: Quith') ; 

scanf ('%sg, &parttype); 
perttype = toupper (perttype) ; 

switch (perttype) { 
case '1' : 
case ' 2 ' : perttype = perttype - '1'; continu = 1; halt = 

O ; break; 
case 'Q' : perttype = -1; continu = 1; halt = 1; break; 
default: printf ('Bug in RunExp ! \nm 

%d was an 
illegal option. Try again.\nn, perttype); delay(2000); continu = O; halt = 0; 
break; 

1 
1 
while ( !continu) ; 

if ( !hait) 
/ /  Draw markers indicating the number of perturbations to occur 
ylocatian = wherey ( ; 
gotoxy( 1, ylocation+li ; 

for (i=O; icperts; i w )  
printf(- :) ; 

gotoxy (1, ylocation+l) ; 

i = 0; 
while ( (icperts) & !kbhit ( )  1 
{ 

for (digit=l; digitc=NumOfSources; digit++) 
TurnûnSolenoid(digit, perttype, Ton, (200-Ton)); 

printf ( ' * ' )  ; 
it+; 

void main ( 1  



{ 
int option; 

do 
ï 

opt ion = SRQO ; 

i f  (option == 11 
SetUp ( 1 ; 

i f  (option == 21 
RunExpO; 

1 
while (opt ion ! = -1) ; 

Init ( )  ; 
exit(0) ; 



APPENDIX B : MATLAB PROCESSING FILE 

This is the Matlab .m file that 1 used to process the raw digitized data from the two 

tripolar, circumferential electrodes located on the median and ulnar nerves. The 

processing that was performed on the multi-channel electrode mays was identical, except 

that there were more channels to process and plot, and from which to generate peak, area, 

and tirne-to-peak features. 

function spi tcirc (newdr) 
% an m-file to load the ascii data (* .vt)  files, remove their Dc offsets, 
% rectify the signals, f ilter the data, decimate the data, and then spits 
% out the peak amplitudes, the t h e  of the peak amplitude, and the nrea of 
$ the neural activity burst. The data is 'spit out' to a file named s-dat, 
% where s is the name of the directory for the data. The data in s-dat is 
% arranged in three groups of five columns. The area data is in the first 
% set of columns, Peak data in the second group of £ive colunms, and the 
% timing data in the third set of columns. The 1st - 4th columns contain 
% the data from the 1st - 4th multi-electrode data. 
olddir = cd 
%newdr = input('Enter the new directory: ','s'); 
newdir = [ ' cd ' , newdr] 
eval ( newdir ) 

demalue = 10; 
filterlength = 44; 
filterdelay = filterlength/2; 
kw = kaiser(filterlength, 7 . 8 5 7 3 ) ;  

samprate = 20000/decvalue; 
%ontime = 0.050; 
%onsamp = s~mprate*ontime; 
%halfonsamp = onsw/2; 
filtdelaysamp = filterdelay/decvalue; 

transduction = 0.001; 

conduction = 0.0005; 

% decimation value 
% Kaiser window length 

% Kaiser window with -80 dB sidelobes 
% and cutof f frequency = 400Hz = 
% O.O4*pi 
% sampling rate = 20000/decvalue S/s 
% perturbation pulse width = 50 m s  
% perturbation t h e  in samples 
% half width of the perturbation 
% filter delay in decimated sample 
% counts 
% 2.3 ms to move the solenoid 3 mm 
% ( 3 m /  (0.35"/6.7ms) = 3mm/1.33m/sl 
% in the vertical direction 
% set to O for slips; there is no 
% movement delay for a slip input 
% 1 ms for transduction in the 
% mechanoreceptor 
% 0.5 ms conduction time in the nerve 
?i (LOO m/s * 0.05 m) 

conductdelay = (solenoid+trunsduction+conduction) *samprate; 
% total delay, not including filtering 
% delays, in samples 

% 8 m s  
% perturbation pulse width = 6*Tstep = 
% about 48 m s  

% Cutoff frequency in pi radians for the 
% ~igh-pass ButterWorth filter 



[B,A] = butter(l0, Wn, 'high'); % Coefficients for a 10* oxder, 
% high-pass Butterworth filter 

3 Set the gains for the various channels. 
rnedcircgain = 100000; 
uïncircgain = 100000; 

%figure; 
clf; 

% load the sync pulses and process it 
load syncirc-vt; 
syncdec = decimate (syncirc, decvalue) ; 
syncdiff = diff(syncdec1; 
syncthresh = mean(syncdec) ; 
clear syncirc ; 

% plot the sync pulse 
subplot (3,l.l). plot (syncdec) ; 
disp ( ' syncirc loaded ' 1 ; 

% process the tripolar data from the circumferential data from the median cuff 
load medcirc . vt ; 
medl = medcirc/medcircgain; 
medlo f f = medl-mean (medl ) ; 
medloff = filtfilt(B,A,medloff); 
clear medl; 
clear medcirc; 
medlabs = abs(med1off); 
clear medlof f ; 
medllp = conv (medlabs, kw) ; 
clear medlabs ; 
medldec = decimate (medllp , decvalue) ; 
clear medllp; 
medlavg = 0 .7S*mean (medldec) ; 

subplot(3,1,2), plothedldec); 
disp ( ' medcirc loaded' ) ; 

% remove DC offset 
% filter out low-frequency interference 

% rectify the signal 

% low-pass filter the signal 

% plot the median cuff data 

% process the tripolar data from the circumferential data from the ulnar cuff 
load ulncirc .vt; 
ulnl = ulncirc/ulncircgain; 
ulnloff = ulnl-mean(uln1); % remove DC offset 
ulnloff = filtfilt(B,A,ulnloff); % filter out unwanted noise 
clear ulncirc; 
clear ulncirc ; 
ulnlabs = abs (ulnlof f ) ; % rectify the signal 
clear ulnlof f; 
ulnllp = conv (ulnlabs, kw) ; % low-pass filter the signal 
clear ulnlabs; 
ulnldec = decimate(ulnllp, decvalue); 
clear ulnllp; 
ulnlavg = 0.75*mean(ulnldec); 

subplot (3,1,3) , plot (ulnldec) ; % plot the ulnar cuff detail 
disp('u1ncirc loaded'); 

Yarray = [le-4 max(med1dec) max (ulnldec) 1 ; 
Ymax = max(Yarray); 
Xlength = length (syncdec) ; 
t = [l Xlengthl; 



subplot(3,1,1), set(gca, 'Xlim', [O Xlength] 1 ; 
subplot(3,1,2), set(gca, 'Xlim', [O Xlength]). set(gca,'Ylim',[O Y m a x ] ) ,  hold on, 
plot (t,medlavg*ones (size (t) ) ,'r' ) ; 
subplot (3,1,3), set (gca, 'Xlim* , [O Xlength] ) . set (gca, *~lim'. [O ~max] ) , hold on, 
plot(t,ulnlavg*ones(size(t)),'r'); 

% find the perturbation onset points and determine which digit was perturbed 
perts = 0; 
k = 1; 
looplength = length(syncdiff)-synctime-filtdelaysamp-1; 
datalength = synctime; 

%for i=l:looplength, 
i = 1; 
while (i < looplength) , 

if ( (syncdiff(i)>O.S) & (syncdec(i+5.5*Tstep*samprate)~0.51 1 ,  
onset = i; 
if ( (syncdec (it4.5 *Tstepfsamprate) > 0.5 1 , 

d i g i t  = 5; 

elseif ( (syncdec(i+3.5*Tstep*samprate) > 0.5) ) , 
d i g i t  = 4; 

elseif ( (syncdec (i+2, 5*Tstep*samprate) > 0 . 5 )  , 
d i g i t  = 3;  

elseif ( (syncdec (i+l. 5*~step*samprate) > O. 5 )  1 , 
d i g i t  = 2; 

else 
digit = 1; 

end; % if syncdec 

if ( ((onset+filtdelaysamp+datalength) < looplength) & 
( (onset+filtdelaysamp) > 0) 1 , 

medlarray = 
medldec~(onset+conductdelay+filtdelaysamp):(onset+fi1tdelaysamp+datalength) 1 '; 

ulnlarray = 
ulnldec( ( o n s e t + c o n d u c t d e l a y + f i l t d e l a y s ~ g t h )  1 '; 

perts = perts+l; 

disp ( ' channels chopped' ) ; 

% calculates the areas, peaks, and t h e  to peak information 
for al1 of the 

% nerve recordings 
medlarea = max ( le-15, (sum(medlarray) - (datalength- 

conductdelay) *medlavg) ) ; 
[medlpeak, medlindex] = max (medlarray) ; 
rnedl time = (medlindex-f il tdelaysamp-conductdelay) /samprate; 
rnedldata = [medlarea medlpeak medltimel; 
subplot (3,1,21, hold on, 

plot(onset+filtdelaysamp+conductdelay+me~ind~~medlpeak~'ro8 1 ;  

uïnlarea = max ( le-15, (sum(uln1array) - (datalength- 
conductde~ay)*ulnlavg) 1 ;  

[ulnlpeak, ulnlindex ] = max (ulnlarray) ; 
ulnltime = (ulnlindex-filtdelaysamp-conductdelay)/s~rate; 
ulnldata = [ulnlarea ulnlpeak ulnltimel ; 
subplot (3,1,3) , hold on, 

p l o t ( o n s e t + f i l t d e l a y s a m p + c o n d u c t d e l a y + ~ ,  'rom 1 ;  

areadata = [medlarea ulnlarea 1 ; 



peakdatanl ; 

areadatan = areadata/nom(areadatal ; 
peakdata = [medlpeak ulnlpeakl ; 
peakdatan = peakdata/norm(peakdatal; 
t h d a t a  = [medltime ulnltimel; 

digit  
areadata 
peakdata 
timedata 
areadatan 
peakda tan 

alldata (k, : ) = [digit areadata peakdata timedata areadatan 

end; % if onset 
i = i+l; 

else 
i = i+l; 

end; % i f  syndiff 

end; % while i 

savef ile = [newdr, ' c . txt ' ] ; 
savestuff = ['save ..\',savefile,' alldata -ascii -tabs11; 
eval (saves tuff) ; 

perts 

olddir = [ ' cd ' , olddirl 
eval (olddir) 



APPENDIX C : MECHANICAL PERTURBATION SELECTIVITY 

RESULTS 

NOTE: how to interpret these numbers 

AI1 numbers give the average selectivity for a particular recording setup with the vector 

analysis or clustering method 

The four recording setups are as follows: 

column Iakled 8-charnel: 8 channei recordings on 5 stimulated digits 

column labeled median oniy: 4 channel recordings on 4 stimulated digits (1 - IV) 

colurnn labeled uinar only: 4 channe1 recordings on 2 stimulated digits (TV & V) 

column labeled 2xTripoIar: 2 channel recordings on 5 stirnulated digits 

The fmt data element in the selectivity analysis colurnns represent the results using the 

peak feature of the rectified-smoothed-averaged neural burst; the second data element 

shows the results using the area feature of the rectified-smoothed-average neural burst. 

From 14 to 30 individual mechanical perturbations are averaged in the measure. 

The shaded sections of the 8-channel column indicates that days on which the 8- 

channe1 value was obtained by combining data from the two khanne1 recording 

sessions. 

A "-1" in the day column represents the selectivity value obtained after using the 

single-digit manipulator and a "-5" indicates the value obtained after using the five- 

digit manipulator. 



Table C.1: Selectivity indices for NIHl9: A Multi-Contact C a  subject 

Day 1 Bchannel lmedian onli uinar only 1 2 x ~ r i ~ o l a r  1 Notes 

Slips only; very noisy signal on 
uInar 1, gain set to 10,000 for 
that channel to avoid clipping 

on FM tape 
normal perturbation 

slip perturbation (out; #1) 
Bad Ulnar circumferential 
+ normal perturbation 
slip perturbation (out; #1) 

Bad Ulnar circumferential 

Table C.2: Selectivity indices for NXH21, a MCC subject 

Day 1 8-channel (median o d i  ulnar only Notes 

+ normal perturbation + slip perturbation (out; #1) 
slip perturbation (in; #2) 

C. normal perturbation 
C sIip perturbation (out; #t) 

normal perturbation 
C slip perturbation (out; #Z) 

+ normal perturbation 
G slip perturbation (out; #1) 

normal perturbation 
slip perturbation (out; #1) 
C normal perturbation 

C slip perturbation (out; #1) 



Table C3: Selectinty indices for NIH22, a LIFE subject 

uinar only 
16 / 14 
12 124 
7 / 8  

2xTri~oiar 1 Notes 
8/35 C normal perturbation 
5 1 52 4k slip perturbation (out; #1) 
4 / 3 5  4k s l i ~  mrturbation (in: #2) 

ç normal perturbation 

3 / 4  slim onlv 
5 / 6  1 C nomal perturbation 
5 / 10 C s i i ~  ~erturbation (out: #II 
6 / 7 1 C nomai perturbation 
4 / 6  slip ~erîurbation (out: #1) 

- - - -- - - - - 

C normal perturbation 
C slip perturbation (out; #1) 

C normal perturbation 
C slip perturbation (out; #1) 
fiakey amp for medl, uln 1 & 

uln2 
8 1  10 C normal perturbation 
4 1 6 C slip perturbation (out; #1) 

flakey amp for medl, uln l& 
1x1112 

Table C.4: Selectivity indices for NIH23, a LIFE subject 

1 Day 1 lchannel 1media.n onld ulnar only 1 2xTripola.r Notes I 
C normal perturbation + s l i ~  ~erturbation (out; # f )  1 
C normal perturbation 

C normal perturbation 



APPENDIX D : RESULTS OF DIGIT IDENTIFICATION ANALYSE 

NOTE: how to interpret the numbers in the following tables 

Ail numbers give the percentage of correctly identified digits from the mechanical 

stimulations. 

The four recording setups are as follows: 

row labeled 8: 8 channel recordings on 5 stimulated digits 

row Iabeled 2: 2 channel recordings on 5 stimulated digits 

row Iabeled 4m: 4 channel recordings on 4 stimulated digits (1 - IV) 

row labeled 4u: 4 channel recordings on 2 stimulated digits (IV Br V) 

Symbols used in this document: 

-: Not recorded 

+: Eligh impedance signal; too noisy to be useful 



Ta 

D ~ Y  

154 

l8ON 
1 

180s 
1 

l8ON 
5 

l8OS, 
5 

. 
Note: 

.: Digit identification accuracy fi 

Raw data 

Area Peak Area & 
(%) (%) Peak (%) 

76.7 74.4 82.0 
+ + + 

41.5 52.8 60.4 
70.4 59.3 64.8 
95.5 76.7 97.7 
+ + + 

93.4 65.1 94.3 
100 92.6 100 

itimulation provided by normal in1 

NIHI9 nsing leave-one-out anal 

Area Peak Area & 
('w (%) Peak(%) 

[ts with one-digit manipulator; N-5 
stimulation provided by normal inputs with five-digit rnanipulator; S-1 = stimulation 
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip 
inputs with five-digit rnanipulator. 



Table D.2: Digit identitication accnracy for MH19 using Ieave-aïI-in analysis 

1 1 Raw da6 1 Nonnalized 

Area Peak Area & 
(%) (%) Peak 

(%) 

Perts 

- 
23 

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 = 
stimulation provided by normal inputs with five-digit rnanipulator; S-1 = stimulation 
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip 
inputs with five-digit manipulator. 



Table D.3: Digit identification accuracy for NIH21 using leaveonesat analysis 



inputs with five-digit manipulator. 

99s-1 

99N-5 

99s-5 

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 = 
stimulation provided by normal inputs with five-digit manipulator; S-1 = stimuIation 
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip 

4m 
4u 
8 
2 

4m 
4u 
8 
2 

4m 
4u 
8 
2 

4m 
4u 

55.0 54.1 62.2 
67.3 43.6 72.7 
70.7 68.6 71.4 
33.8 31.9 29.4 
74.1 70.5 77.7 
55.4 64.3 53.6 
97.7 86.5 98.5 
55.4 42.3 52.3 
84.9 65.1 85.8 
88.9 79.6 87.0 
92.5 63.9 89.5 
50.0 39.2 49.2 
84.9 62.3 85.8 
100 90.6 100 

60.4 52.3 65.8 
70.9 41.8 78.2 
59.3 61.4 62.1 
32.5 28.8 31.9 
64.3 71.4 70.5 
58.9 60.7 53.6 
85.7 69.9 87.2 
31.5 34.6 26.9 
82.1 65.1 82.1 
79.6 59.3 83.3 
63.9 50.4 66.2 
37.7 25.4 36.9 
65.1 45.3 69.8 
7 1.7 88.7 83.0 

28 

27 

26 



Table D.4: Digit identification accuracy for NIE21 using leave-A-in analysis 

Raw data 

Area Peak Area & 
(%'a) (%) Peak 

(W 

Area Peak Area & 
(%> (a) Peak 

(%'a) 



56.2 43.8 56.2 
86.8 68.9 90.6 
94.4 79.6 96.3 
94.7 7 1.4 97.0 
54.6 40.8 53.8 
86.8 67.0 89.6 
100 94.3 100 

timulation provided by normal inp 

99s-1 

99N-5 

99s-5 

73.6 88.7 90.6 1 
i t s  with one-digit manipulator; N-5 = 

4rn 
4u 
8 
2 
4m 
4u 
8 
2 
4m 
4u 
8 
2 
4m 
4u 

stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation 
provided by sIip inputs with one-digit manipulator, S-5 = stimulation provided by slip 
inputs with five-digit manipulator. 

Vote: N-1 = 



Table D.5: Digit identification accuracy for NIH22 ashg leave-one-out analysis 

Raw data 



Note: N-1 

- 

m .  

m .  

-. 

- - 

> 100 100 100 I 100 100 100 
= stimuIation provided by normal inputs with one-digit manipulator; N-! 

stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation 
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip 
inputs with five-digit manipulator. 



Table D.6: Digit identification accuracy for -2 using leave-alLin anaiysis 

Raw data 

Area Peak Area & 
(%) (%> Peak 

(%) 



Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 = 
stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation 
provided by slip inputs with one-digit manipuIator; S-5 = stimulation provided by slip 
inputs with five-digit manipuIator. 



104 

Table D.7: Digit identification accuracy for MHZ3 using leave-one-out analysis 

stimulation 
provided by 
inputs with f 

D ~ Y  

29N 

29s 

43N-1 

43s-1 

43N-5 

433-5 

Note: 

Raw data I 

8 
2 

4m 
4u 
8 
2 

4m 
4u 
8 
2 

4m 
4u 
8 
2 

4m 
4u 
8 
2 

4m 
4u 
8 
2 

4m 
4u 

N-1 = 

Area Peak Area & 
(%) (%) Peak 

(%) 

96.2 79.7 97.7 
61.5 38.5 59.2 
88.6 63.8 88.6 
77.8 75.9 83.3 I 

timulation provided by normal inputs with one-digit manipulator; N-5 = 
yovided by normal inputs with five-digit manipulator; S-1 = stimulation 
lip inputs with one-digit rnanipuiator; S-5 = stimulation provided by slip 
ve-digit manipulator. 



Table D.8: Digit identification accuracy for NlH23 using leave-aii-in analysis 

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 = 
stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation 
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip 
inputs with five-digit manipulator. 

Raw data 

Area Peak Area & 
(w m l  Peak 

(%> 

99.2 94.7 100 
66.9 57.1 74.4 
84.0 77.4 84.0 

Nomalized 

Area Peak Area & 
(w ('w Peak 

(W 
99.2 93.2 100 
52.6 52.6 57.1 
97.2 93.4 99.1 
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