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ABSTRACT

After a stroke or spinal cord injury, the voluntary use of paralyzed limbs may be
partially restored with Functional Electrical Simulation (FES). To restore the use of
paralyzed hands, it would be beneficial to also recover the sensory signals originating
from natural receptors in the individual fingertips. Several approaches are possible for
recording sensory nerve activity from multiple sources, including 1) implanting electrodes
on individual digit nerve branches in the hand, 2) implanting multiple intrafascicular
electrodes in larger nerve trunks in the forearm, or 3) implanting cuffs containing multiple

electrodes around the forearm nerve trunks.

The first approach is the least practical because it is surgically more time-
consuming and has the greatest potential for nerve damage. In this thesis, I have
evaluated the other two approaches with Multi-Contact nerve Cuffs (MCCs) in acute and
chronic experiments and with arrays of Longitudinal IntraFascicular Electrodes (LIFEs) in
the chronic situation. Hindlimbs and forelimbs of anesthetized cats were used as models
for the paralyzed human forearm and hand. Electrical and mechanical stimulation of the
individual digits was used to test the selectivity of multi-channel electrode arrays. The
results from mechanical stimulation were further analyzed to determine the accuracy of

digit identification from features in the recorded neural activity.

The results of electrical digit stimulation tests in acute and chronic situations
showed improved levels of selectivity over other investigators' versions of MCCs. As
could be expected from their locations and geometries, LIFEs provided more selective
recordings and more accurate digit identification than MCCs. In response to mechanical
stimulation of the individual digit pads, the digits were correctly identified from their
associated neural bursts with 70% to 90% accuracy for MCCs and 80% to 100% accuracy
for LIFEs. These results indicate that multi-channel neural recordings are a realistic
solution for obtaining sensory feedback information for the control of FES systems in

disabled humans.
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QUOTATION

This little piggy went to market.
This little piggy stayed home.
This little piggy had roast beef.
This little piggy had none.

And this little piggy went “wee-wee-wee” all the way home.
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CHAPTER 1 : INTRODUCTION

Purpose

When a person becomes paralyzed from a spinal cord injury or stroke, there is a
loss of voluntary control of the muscles whose motoneurons are located below the lesion.
Above the lesion, full conscious control is retained and below the lesion they system
works improperly because it does not have normal descending input. At the level of the
lesion, the damaged motoneuron cell bodies eventually die forming a “dead zone” of
denervated muscles. Even though voluntary control of muscles has been lost, the sensory
receptors are still active, but the information may be unable to reach the brain where it is

normally needed in the process of executing movements.

One way to restore some voluntary control to a partially paralyzed person is with
Functional Electrical Stimulation (FES), whereby select muscle groups may be
electrically stimulated to provide some degree of mobility. Because the neural
innervations and muscular attachments in the human body are so complex, it is very
difficult to return normal function although some crude function may be restored such as
standing, some walking, and some reaching and grasping (Nathan, 1993; Franken,
Veltink, and Boom, 1994). Normally the stimulation system is controlled by the person
through some part of their body that still retains some voluntary motion, such as the
contralateral shoulder for quadriplegics (Buckett, Peckham, and Strother, 1980; Nathan,
1993) or the hands for paraplegics (Franken, Veltink, and Boom, 1994).

Currently, several implementations of FES systems are crude due to their open-
loop configuration. The user controls a joystick (Buckett, Peckham, and Strother, 1980)
or presses a button and a programmed series of electrical stimulations to the muscles is
executed to achieve the desired task. However, this type of system does not respond well
to disturbances and may cause trouble for the user as the system does not adapt to

accommodate changes in surfaces, loading situations, or velocities of movement.

With the use of feedback in a closed-loop FES system, finer control may be
achieved so a target force (Haugland and Hoffer, 1994; Crago, Nakai and Chizeck, 1991)



or position (Yoshida and Horch, 1996) may be maintained and fatigue may be reduced
(Haugland and Hoffer, 1994). Closed-loop systems inherently accommodate to
disturbances through the use of feedback to maintain a target position, force, or trajectory.
Lemay et al. (1993) studied the improvements that can be achieved by using closed-loop

control over open-loop control systems in a hand neuroprosthesis.

Feedback sensors may be of two types: electromechanical transducers that are
mounted external or internal to the body, such as force plates, length gauges and
accelerometers, or transducers that tap into the body’s intrinsic sensors, such as
proprioceptors and cutaneous receptors (Hoffer, 1990; Hoffer and Haugland, 1992).
When intrinsic sensors are used, a mapping between recorded activity and force or
position must be made because natural activity is not encoded in easily identifiable units.
By tapping into intrinsic sensors some of the problems associated with artificial sensors
may be avoided, such as loading of the instrumented limb or digit, cosmesis, and
changing sensor properties that occur as the transducers change position over time. Crago
et al. (1986) examined the different properties that various sensors must have to be

effective for feedback in different neuroprostheses.

The work contained within this thesis is a study within the field of FES to increase
the amount of information that can be obtained from a single nerve or nerve branch in a
chronic situation. Currently, a single channel of whole nerve or single nerve branch
activity can be monitored and used as feedback input to an FES system with nerve cuffs
(Sinkjaer, Haugland, and Haase, 1994). By using multi-channel nerve cuffs, I hope to
obtain more select information from the same number of implanted devices so that
eventually more sophisticated FES controllers may be developed. For instance, reaching
and grasping tasks may be augmented so that individual finger control may be achieved
rather than just the thumb and a grouping of fingers. In such situations, several channels
of information could to be recorded and processed to determine when a digit has made
contact with an external surface and which digit had reached the surface. After contact,
the FES controller could vary its output to the muscle that spans the joint of the limb
segment that has made contact with the surface, but continue stimulating other muscles

until all of the digits have made contact with the surface. This refined control would



result in less fatigue to the muscles responsible for moving the digits and allow more

specific function.

To achieve this future goal, members of the Neurokinesiology Laboratory at
Simon Fraser University (SFU) including myself have designed and constructed a Multi-
Contact Cuff (MCC) and have studied its performance in long term experiments. The
forelimb of the anesthetized cat was used as a model of the human paralyzed forearm and
hand because the anatomy, neural innervation, and dimensions are similar in both cases.
An anesthetized subject was necessary to remove voluntary or involuntary muscle activity

that would occur in an awake animal and which does not occur in a paralyzed person.

The members of the NIH team included Yunquan Chen who helped design the
new MCC, developed the theory for the selectivity measure presented in this thesis, and
designed and constructed low-noise high-gain amplifiers. Kevin Strange was responsible
for design and construction of the MCCs, implanted the MCCs in the chronic
experiments, recorded electroneurographic data, and analyzed the electrical stimulation
studies in the later stages. Tiffany Blasak provided animal care throughout the
experiments. Ken Yoshida designed, constructed, and implanted the Longitudinal
IntraFascular Electrodes (LIFEs). Andy Hoffer acted as senior supervisor and oversaw all
aspects of the project including cuff and amplifier design, surgeries, and recording
protocols. I helped design the new MCC, designed the digit manipulator, assisted in the

recordings, and processed and analyzed the collected data in these experiments.

The work contained within this thesis was conducted as part of and supported by a
three year National Institutes of Health (NIH) research contract that was awarded to Dr.
Andy Hoffer as Principal Investigator. The scope of the NIH contract is to develop new
techniques to allow selective recordings from various digit sources and selective
stimulation to different muscle groups. I have limited my work to the first year of this

contract.

This thesis details my contribution to the different phases in the first year of the
NIH contract. A new and improved MCC was developed by the NIH team, implanted and
evaluated. The degree of selectivity that could be achieved with the new and improved



MCC was first determined by electrically stimulating different nerve branches in acute
experiments and then moved to chronic experiments. An array of LIFEs, which were
developed, constructed at the University of Alberta, and implanted at the SFU
Neurokinesiology Laboratory by Dr. Ken Yoshida of the University of Alberta,
Edmonton, was similarly evaluated in the chronic situation. To conduct the experiments
for the project, I developed a two dimensional digit manipulator that is capable of
producing mechanical perturbatiens, in directions normal to and tangential to the digit pad
in the forelimb of a cat. The data analysis was conducted off-line using functions and

routines in the Microsoft Excel, SPSS, and The Mathworks Matlab environments.

The layout of this thesis presents in approximately chronological order the
background science and applications that my colleagues and I developed using the new
multi-contact cuff that we designed. A method to test the efficacy of the new recording
cuff and any other similar device or multi-channel recording array is also presented. I
then discuss the results of three acute experiments that were performed to test the new
MCQC through direct electrical stimulation of various nerve branches. Subsequently in
chronic experiments, the electrical stimulation experiment in the acutes was extended to
electrical stimulation of the digits that indirectly stimulated the individual nerve branches
in the forelimb, and a mechanical stimulation protocol was used to test the selectivity of
the cuff and to determine to what degree individual digit identification could be possible.
At the end of this thesis I outline future objectives and other processing techniques that

may be applied to similar sets of data.

Sections of the work presented in this thesis will appear in papers accepted for
publication at the International Functional Electrical Stimulation Society’s second annual
conference to be held in Burnaby in August of 1997 (Hoffer et al., 1997; Chen et al.,
1997; Strange et al., 1997; and Christensen et al., 1997).

Objectives
At the start of this project, I planned to address and answer the following

questions.



To what degree can one make selective recordings with multi-channel electrode arrays?

Other researchers (Lichtenberg and DeLuca, 1979; Struijk, Haugland and
Thomsen, 1996; Sahin and Durand, 1996) had shown that it was possible to make
selective recordings with a MCC in acute experiments, although the published results had
not been spectacular. We developed a new MCC design that was evaluated in acute and
chronic experiments that is detailed within this thesis. Prior to the current NIH contract,
LIFEs had been used as selective recording and stimulation devices with success and it
was decided that the results of selective experiments with this electrode would be

compared to our MCC.

To what degree can multi-channel electrode arrays be used to identify individual digits
Jfrom recorded neural signals?

MCCs and LIFEs were implanted in animal subjects for chronic experiments and
electrical and mechanical stimulation experiments were designed to evaluate the
selectivity of the two recording arrays. Further mechanical stimulation experiments were
used to evaluate whether individual stimulated digits could be identified from associated

neural bursts arising in response to the stimuli.

How are selectivity and accuracy of digit identification related?

To determine the expected accuracy of digit identification in a given experiment,

the relationship between accuracy in digit identification and selectivity was analyzed.



CHAPTER 2 : BACKGROUND

Neural Anatomy

In order to understand how electroneurographic (ENG) activity recorded by
electrodes in the forelimb correlates with sensory activity arising from the individual
digits, it is necessary to have some knowledge of the physiology and anatomy of the

system.

Neural pathways and anatomy

Typically, a nerve is composed of a few fascicles which are composed of hundreds
of axons, the smallest functional neural unit, that innervate tissue, organ, or muscle (see
Figure 2.1). Motor nerve axons conduct from the ventral horn in the spinal cord to

muscle units in the periphery.

Nerve bundle

Blood vessel

Fascicle
Figure 2.1: Stylized cross section of a nerve

Sensory nerve axons conduct centripetally from the periphery and transmit information
generated by individual muscle spindles, Golgi tendon organs, pain or temperature
receptors, or mechanoreceptors in skin or joints. Sensory axons collect into one large

nerve or several nerves which enter the dorsal horn of the spinal cord where the individual



axons terminate on interneurons, motor nerves, or ascend through various pathways to the

dorsal column nuclei in the brainstem or thalamus in the brain (see Figure 2.2).

Central Nervous System

Brain

Peripheral Nervous System
Skin

SN/ Cutaneous
j\ mechanoreceptor

Muscle spindle

DCN: Dorsal Column Nuclei

Figure 2.2: Some of the major neural pathways between the cortex and the
periphery

Neural receptors

After mechanical stimulation is applied to the digit pads, most recorded neural
activity is predominantly from cutaneous receptors and muscle spindles. Activity from
muscle spindles is due to stretching of the muscles, whereas activity from cutaneous

receptors is normally due to deformation of the skin from contact, vibration, and



movements across the surface of the skin. In this project, spindle activity can be expected
from the intrinsic muscles of the forepaw: the lumbricales are innervated by the median
nerve and other small palmar muscles are innervated by the ulnar nerve (Crouch, 1969).
Activity from cutaneous mechanoreceptors is expected from the time of contact of the
mechanical stimulus until it leaves the surface of the digit pad. Direct and indirect
electrical stimulation of nerve branches elicits responses in all types of sensory afferent

nerves from type I and I muscle spindles to Af mechanoreceptors.

Cutaneous mechanoreceptors

Cutaneous mechanoreceptors are responsive to touch and contact on the surface of
the skin. As such, they are good indicators of when the skin reaches a surface because
they release a burst of activity upon contact and often upon release as well with skin
deformation. These types of receptors become active when the skin is rubbed across a
surface to determine a texture (Srinivasan, Whitehouse and LaMotte, 1990) or when an
object slips across the surface of the skin (Johansson and Westling, 1987). The cutaneous
mechanoreceptors are located at the dermis and epidermis junction of the skin and lower

in the subcutaneous tissue.

There are four major types of cutaneous mechanoreceptors based on responses to
mechanical stimuli and sizes of receptive fields (Rothwell, 1994; Kandell, Schwartz and
Jessel, 1991; Westling and Johansson, 1987). FAI, which have Meissner corpuscles as
their terminals, are fast adapting receptors whose responses are specific to a small patch
of skin (about 10 mm?). The FAII, which terminate in Pacinian corpuscles, are deep
receptors with large receptive fields that are responsive to high frequency inputs like
vibrations. The fast adapting receptors are suited to detect the rate of deformation in the
skin as they release a burst of activity when the skin deforms upon indentation or release,
such as when an object is grasped or released, or when an object slips through the fingers.
Superficial SAI units, with terminals in Merkel discs, and deep SAII units, with Ruffini
endings, are responsive to prolonged indentations of the skin and to the rate of indentation

of the skin. They release a burst of activity when the skin becomes deformed and they



maintain their output discharge with constant deformation of the skin. SAII are also
responsive to the direction of stretch.

Muscle spindles

Muscle spindles are transducers that convert muscle fibre length, velocity, and
acceleration to trains of electrical impulses. Generally, when a muscle is stretched, the
spindles increase their output ENG activity and when it is shortened they reduce their

activity. (Kandell, Schwartz and Jessel, 1991).

In this project, some activity from muscle spindles is expected after 2 normal input
has been applied to the digit. This stimulus causes the digit flexor muscles and perhaps
other palmar muscles to be stretched. Activity from the radial lumbricales is expected in

the median nerve and activity from other palmar muscles in the ulnar nerve.

Neural innervation of the forelimb

From a review of a standard cat anatomy atlas (Crouch, 1969), we can see that,
similar to the human hand, the innervation of the cat forepaw is quite extensive with
several small branches to each of the digits. Figure 2.3 shows the palmar surface of the
right forepaw of the cat. For the purposes of this project, I concentrated on the median
and ulnar nerves and their patterns of branching. A review of a human anatomy text (e.g.,
Palastanga, Field, and Soames, 1994) verified that the median and ulnar nerves follow
similar branching patterns in the human forearm and hand, so the general results

discussed in this thesis can be transferred to the human.
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Figure 2.3: Cat forepaw innervation

Median nerve

Following the branching of the median nerve, it can be seen that it innervates the
medial aspects of the forepaw. Specifically, it enters the forepaw on the medial side of
the wrist and quickly makes three main branches that form part of the superficial palmar
metacarpal nerves, the other part being formed from the superficial branch of the ulnar
nerve. The first major branch of the superficial palmar metacarpal nerve branches twice
more. The first minor branch branches to innervate each side of the skin of digit I and the
second branch innervates the medial side of digit II. The second major branch has two
branches to the skin on the contiguous sides of digits II and III. The third branch sends
two branches to the skin of the contiguous sides of digits III and IV. These final branches
are known as the medial and lateral palmar digital nerves. The metacarpal nerves also
give branches to the trilobed palmar pad and to the three radial lumbricales muscles.
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Ulnar nerve

The ulnar nerve innervates both the palmar and dorsal surfaces of the forepaw.
Observing the ulnar nerve, we can see that it innervates the fourth and fifth digits, the
surface of the palm, and the volar surface of the wrist.

The palmar branch of the ulnar nerve enters on the lateral side of the wrist and
forms two major branches: the superficial palmar branch and the deep palmar branch.
The superficial branch enters the palm of the forepaw and also the skin of the ulnar side of
digit V and the contiguous sides of digits IV and V. The deep palmar branch bends
towards the radial side of the forepaw and gives off deep palmar metacarpal nerves to the
short muscles of the palm.

The dorsal cutaneous branch of the ulnar nerve comes from the palmar side of the
forearm to the dorsum on the lateral side of the wrist. It divides into two dorsal
metacarpal nerves, the first of which innervates the ulnar side of digit V and the second
forms digit nerves to the contiguous sides of digits [V and V.

Expected results

From this brief analysis, one should expect to see activity in the recording
electrode arrays on the median nerve due to perturbations in digits I through IV and to the
palm of the forepaw. Activity in the recording arrays on the ulnar nerve should be seen
when a disturbance is present on the palmar or dorsal surfaces of digits [V and V and to
the palm of the forepaw. The fact that two small branches innervate each digit may be
advantageous because more neural activity may lead to stronger signals and better chances

of correct digit identiftcation.

Relationship between neural innervation and implantation sites

One way to obtain selective channels of ENG information would be to implant
electrodes into each of the digits and record information from the small nerve branches
there. However this technique suffers many drawbacks. It requires very fine surgery
skills to implant the electrodes due to the small size of the nerve branches in the digits,

and the presence of surrounding small muscles and tendons further complicates the
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surgical procedure. Also the highest potential for nerve damage occurs when applying an
electrode to a very small nerve as the electrode is very large in comparison to the nerve
and may cause mechanical loading on the nerves. Finally, implanting electrodes on five

digits is very time consuming.

A second, less invasive technique which requires fewer implanted electrodes and
perhaps causes less injury to the nerve involves implanting a Multi-Contact Cuff (MCC)
about a large nerve. The cuff can be installed easily about the nerve and the electrodes
remain just outside the surface of the nerve. Although the signals detected at each of the
electrodes may not provide the same level of selectivity of recordings, the differences in
the sets of recorded signals may be sufficient to make source identification possible. Two
of these MCCs were implanted on the median and ulnar nerves to form an eight-channel

electrode array.

Another way to obtain selective ENG information is to put several small
electrodes that record activity from small regions inside a larger nerve. This technique
provides very selective information because only a single fascicle’s activity is recorded by
each electrode. However, this technique suffers from a long surgical procedure as well,
and the fine wires may break. Four Longitudinal IntraFascicular Electrodes (LIFEs) were
implanted in each of the median and ulnar nerves to form a second type of eight-channel

electrode array.

Information Content in Neural Recordings

Several research groups have studied the information contained within neural
signals arriving from the periphery for both basic and applied scientific reasons.
Johansson and Westling (1984, 1987) have investigated the relationship between grip
force and slip in the human fingertips from recordings made in the forearm. Haugland
and Hoffer (1994) used the information contained in slip signals in the central footpad of
the hindlimb of the cat under general anesthesia as feedback to an FES controller that

would prevent slip.
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Johansson and Westling (1987) analyzed cutaneous ENG activity arriving from
single mechanoreceptors in the fingertips after slips between the index finger and thumb
occurred while lifting an object. Microneurographic techniques were used to record
activity from individual neurons in the median nerve of human subjects. They discovered
that information from cutaneous origin can reflexively modify muscle force in the forearm
to prevent slip, without conscious effort. The time scale for the reflex is about 75 ms
whereas a conscious effort to prevent slip would require at least 175 ms for the person to

realize that a slip is occurring and then take appropriate action.

Milner et al. (1991) studied the relationship between cutaneous neural activity
recorded by a tripolar recording cuff implanted around the median nerve in the monkey
and the load and grip forces exerted. They discovered that the initial burst in neural
activity that occurred when an object was lifted was best related to the rate of change of
grip force and when the object was held in position the neural activity was related to the

mean grip force.

In an experiment by Haugland and Hoffer (1994), the cutaneous information that
is present when a slip occurs was analyzed and used in a closed-loop FES system to
control muscle force. In this study, the hindlimb footpad was placed against a block that
could slide freely in the vertical direction. Neural signals were recorded from the tibial
nerve with a tripolar nerve cuff implanted on the tibial nerve below the last motor
branches that innervate the calf muscles and neural activity was recorded and used to
control an FES controller for four ankle extensor muscles. When a slip was detected, the
muscle stimulator output was increased to increase the force in the implanted ankle
extensor muscles which would stop the block from sliding. In this study, it was found

that ENG recorded in the tibial nerve provided reliable signals for slip detection.

In a related study by Haugland, Hoffer and Sinkjaer (1994), the relationship
between perpendicularly applied force and ENG activity was examined in animals under
general anesthesia. A rubber probe (14 mm diameter) was pressed against a constrained
footpad with a controlled force, and ENG and displacement recordings were made. The
ENG recordings were made using a tripolar cuff electrode placed on the tibial nerve

below the last motor branches that innervate the calf muscles. The recorded nerve cuff
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signals were amplified and bandpass filtered between 1 and 10 kHz to retain the neural
signals while removing low frequency electromyographic (EMG) interference, which was
also recorded by the cuff electrode, and other high frequency interference. The results
from this study suggested that the total ENG activity in the tibial nerve is related to the
applied perpendicular force on the hindpad.

More recently, a two-channel system consisting of two tripolar circumnferential
cuffs implanted on the median and ulnar nerves in the forelimb was used to examine
signals arising from the five digits after electrical stimulation of the digits (Hoffer et al.,
1994). This thesis extends the work initiated in the last experiment by evaluating the
increased amount of information that can be obtained from a whole nerve by analyzing

the information content from multi-channel recording arrays.

Previous Research in Selectivity with Multi-Contact Cuffs

Selective recordings involve the ability to determine the source of an input signal
from amongst many possible signal sources. A couple of decades ago and again more
recently, different groups studied the issue of making selective recordings using a single
recording cuff (Lichtenberg and De Luca, 1979; Struijk, Haugland and Thomsen, 1996;
Sahin and Durand, 1996). They used similar preparations, electrode arrays, and recording
methods — all groups used anesthetized animals with direct electrical stimulation of
nerve branches. This preparation provides signal sources that have no noise
contamination from EMG interference and little natural background activity. Recordings
of the resulting compound action potentials were made with nerve cuffs located at sites

proximal to the stimulation sites.

However, the type of analysis and the definition of selectivity has varied from
group to group. The common definition of selectivity has been some sort of measure of
the difference in the amplitude of recorded signals that arise from different sources. Sahin
and Durand (1996) defined selectivity simply as the observed difference in normalized
signals. Lichtenberg and De Luca (1979) used a statistical difference to measure

selectivity and more complex mathematical modeling to calculate the centre of electrical
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activity in the cross section of a nerve. Struijk, Haugland and Thomsen (1996) used

comparisons of ratios of recorded signals to develop a selectivity measure.

Lichtenberg and De Luca
In 1979, Lichtenberg and De Luca studied the question of selective recordings in

the sciatic nerve of the rabbit. Six nerve branches - peroneal, plantaris, lateral
gastrocnemius, tibial, flexor digitorum longus, and soleus - were stimulated with hook
electrodes and recordings were made from five different sites along a 2.3 cm section of
the sciatic nerve. The electrode used was a nerve cuff 10 mm long and 2.3 mm in
diameter, which had slightly smaller cross section than the sciatic nerve and caused a tight
fit about the nerve. Eight wires were placed in the cuff with four in each of two
transverse planes separated by 2 mm. Circumferential recordings amongst pairs of wires

in the same plane were made, as well as recordings between the longitudinal pairs.

To analyze the data, the recordings made from each pair of electrodes were
averaged over all of the stimulation trials and then normalized to the maximum recorded
amplitude on a given channel for each nerve branch. Duncan’s multiple range test was
used to indicate significant differences in the means of the normalized amplitudes as a
function of the stimulated nerve branch. In both the longitudinal and circumferential
studies, the peroneal nerve could be most easily identified from the other extensor nerve
branches with less selectivity present amongst the other nerve branches. Later, the
longitudinal data was used to estimate the centres of electrical activity within a cross
section of the nerve. The results of the estimates “correlate[d] reasonably well with
anatomical data describing the location of the nerve fibres” (Lichtenberg and De Luca,
1979).

Struijk, Haugland, and Thomsen

More recently, Struijk, Haugland, and Thomsen {1996) performed their own
selective recordings and analysis. They also studied the sciatic nerve of the rabbit, but
only stimulated two branches - the peroneal and tibial nerves. Their nerve cuff was 25

mm long with a 4x2 mm? cross sectional area, which is much larger than the typical
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sciatic nerve at 3x1 mm?>. Twelve electrode contacts were located in the cuff with four

electrodes in each of three transverse planes separated by 10 mm.

Two recording configurations were used in Struijk, Haugland and Thomsen’s
experiments. In the first, a tripolar configuration was used in which three electrodes in a
longitudinal line were configured so that the outer electrodes were shorted together to
form a reference for the centre electrode. In the second configuration, the reference
electrodes from one longitudinal electrode array were tied to the reference electrodes of
the other electrode arrays. That is, all of the outermost electrodes were connected and the

four inner electrodes were used as signal sources.

In the analysis of the data, a “selectivity ratio” was defined as the ratio of RMS
amplitudes of the recorded CAPs after stimulation of the peroneal or tibial nerves. A
“selectivity indicator” was defined as the square root of the product of the two selectivity
ratios. Similar results were found for both recording scenarios, with a selectivity indicator

of 1.4 for the first configuration and 1.3 for the second configuration.

Sahin and Durand

Sahin and Durand (1996) also studied selectivity with their own electrode array.
They conducted studies on the hypoglossal nerve of the Beagle with a tight ﬁtting nerve
cuff that would exclude all fluids from inside the cuff. The cuff was 20 mm long, 2.5 mm
in diameter, and had twelve contacts in the walls of the cuff. The electrodes were spaced
in three transverse planes with 7 mm separation between the planes. Two recording
scenarios were used. In the first, tripolar recordings were made along longitudinal
sections of the cuff, as in the first Struijk, Haugland and Thomsen case, and in the second,

contacts on opposite sides of the cuff were shorted together.

To analyze their data, Sahin and Durand first normalized the recorded CAP data at
each contact set by the sum of all recordings at each contact set for a given nerve branch.
Next, a “selectivity index” was calculated by normalizing the data from the first step by
the sum of the normalized recordings of a given nerve branch. The term “selectivity” then
refers to the spread in the selectivity indices of a contact set for various fibre

subpopulations. The selectivity was found to be better for the second recording scenario.
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Sahin and Durand’s conclusion was that selective recordings are possible, “but the effects
are small” (Sahin and Durand, 1996).

Previous Research in Selectivity with Longitudinal Intrafascicular
Electrodes

Much work with Longitudinal Intrafascicular Electrodes (LIFEs) has already been
performed with stimulation of select nerve branches (Nannini and Horch, 1991; Yoshida
and Horch, 1993; Veltink, van Alste and Boom, 1989) and selective recording studies
performed by Horch and others. Goodall, Lefurge and Horch (1991) studied the
information content in ENGs recorded with LIFEs implanted chronicaily in the radial
nerve in the forelimb of cats by stimulating different cutaneous receptors in the digits.
More recently Yoshida and Horch (1996) used the ENG recorded in the peroneal and
lateral gastrocnemius nerves in the hindlimb to control the position of the ankle by
stimulating the tibial nerve to the lateral gastrocnemius muscle in a rabbit with the joint
placed under different loads. McNaughton and Horch (1994) classified individual action
potentials recorded by LIFEs in the radial nerve after stimulation of individual
mechanoreceptors using linear discriminant functions, neural networks, and other

classification techniques.
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CHAPTER 3 : ELECTRODES

Multi-Contact Cuffs

The Multi-Contact Cuff (MCC) that was used for this research is a proprietary
design by J.A. Hoffer, Y. Chen, K.D. Strange and myself. It is a specially designed
recording electrode capable of recording from multiple sites about a nerve. More details
about the MCC cannot be provided here as we are in the process of writing a patent
application. As opposed to a conventional nerve cuff with circumferential electrodes that
record the aggregate activity of all nerve fibres within a nerve, the MCC is able to record
activity from specific regions within the same nerve. A schematic example of a MCC

with several representative electrodes is shown in Figure 3.1.

Proximal end of cuff

Distal end of cuff

Figure 3.1: Example of a multi-contact cuff
Figure adapted with permission from a sketch by K.D. Strange

The MCCs used for this study had four pairs of recording electrodes placed
around the circumference of the cuff. Each pair was aligned along the longitudinal axis

of the nerve to record currents from action potentials traveling inside the cuff. Two
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MCCs were implanted in the left forelimb of each of three cats to form an eight-channel

recording array.

Longitudinal IntraFascicular Electrodes

The alternate recording array that was implanted into the forelimb of three other
cats was of a quite different configuration. Four separate electrode pairs were sewn into
each of the median and ulnar nerves at approximately the same locations where the
MCCs were placed. The original design of the Longitudinal IntraFascicular Electrode
(LIFE) is detailed in papers by Malagodi, Horch, and Schoenberg (1989) and Lefurge et
al. (1991). The LIFEs used in this series of experiments were modified from the original
design and constructed by K. Yoshida at the University of Alberta, Edmonton (personal
communication, 1997). A diagram of a LIFE implanted in a nerve is shown below (see
Figure 3.2). Each LIFE was composed of two separate wires each with a small
unshielded platinum-iridium section about 0.5 mm long that were separated by about 2
mm. The LIFE approached the nerve entry point from the proximal end, left a large loop
for strain relief, was sewn into the nerve in a distal to proximal direction, doubled back
on itself, and then sutured at the entry point to prevent motion of the electrode in the

nerve. The section of LIFE that was implanted within the nerve was about 6 mm long.
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Recording sites

Proximal end of nerve

Distal end of nerve

Figure 3.2: Longitudinal intrafascicular electrodes implanted in a nerve

Due to its small size and geometry, the LIFE had a very specific recording region.
Typically, the LIFE recorded from a few axons within a single fascicle, so it provided a
very selective recording. To obtain multiple sources of the ENG activity within a whole

nerve, several LIFEs were implanted into the same nerve.
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CHAPTER 4 : SELECTIVITY ANALYSIS

In order to quantify the results obtained with electrical or mechanical stimulation
of nerve branches or digits, a technique was developed in our laboratory to measure the
average selectivity of a particular experiment. When the electroneurographic (ENG)
signals appearing at the sets of electrodes changed dramatically with different stimulated
sources, a high degree of selectivity was achieved. A data set with optimal selectivity
would have perfect separation between all of the source recordings and would be
orthogonal, that is the dot product of any two different source vectors would be zero. On
the other hand, a data set with an average selectivity of zero would have no separation
between data vectors because they would all record the same signal. Thus, the term
selectivity is analogous to the concept of orthogonality in linear algebra. In the following

sections, I will describe how selectivity values were calculated.

Although other groups have developed their own methods to calculate selectivity
indices (see Chapter 2: Background), we derived our own definition of a selectivity index
that is based in linear algebra (Chen et al., 1997). Our selectivity measure uses the linear
distance between two normalized vectors to give an impression of the level of selectivity
of a recording set. The average distance between all pairs of recorded data then form the
selectivity measure for a particular cuff or electrode array. In our method, a selectivity of
100 is the maximum possible and a selectivity of O implies that there is no discernible
difference between any of the source recordings. The more selective a recording system
is, the more likely is one able to discriminate recorded neural signals from various nerve

branches, fascicles, digits, or other stimulated sites.

Data Vector Representation

A source data vector is comprised of a set of measurements, or features, taken
from all of the N-recording electrodes of interest at the same moment of time after that
source has been stimulated. These features include the peak-to-peak amplitude of the
compound neural signal, the peak of the rectified and smoothed electroneurographic
(ENG) signal, or the area of the rectified and smoothed ENG signal. The types of sources



in my project included individual sciatic nerve branches in the hindlimb and individual

digits in the forelimb. An N-element data vector is represented mathematically by

Equation 4.1 and a reduced two dimensional vector is represented graphically in Figure
4.1.

Equation 4.1: Data vector for source i

v, = (vn Vi, vw) , where 1 <i < number of nerve branches, digits, or

other sources and N is the number of electrodes in the array.

The axes e, and e; represent functions based on a combination of electrodes, for

instance, e; may represent the sum of the features of the measurement from the median

nerve and e; may represent the sum of the features taken from measurements on the ulnar
nerve.

vy <0.5 1.4>

vy <0.7 1.4>

<0 1>

v4'<0.8 0.4>
} vs <1.2 0.2>
<1 0> >
e1

Figure 4.1: Geometrical representation of five data vectors

In order to compare selectivities between different subjects or from the same

subject at different times, the data vectors were normalized. This normalization step was

included to minimize the dominance of a large signal over smaller signals in the analysis

and to reduce the effects of changes in electrode impedance that would change the

22
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amplitudes of the recorded signals. From viewing the vectors in Figure 4.1, one can see
that the average linear distance would be dominated by distances calculated from v, and
v3. By normalizing these vectors, all vectors in the recording session have the same
influence. Equation 4.2 details the normalization step and Figure 4.2 show the

normalized vectors from Figure 4.1.

Equation 4.2: Normalizing data vector i.

vi= i , where "v,“ = ng + VLV,
vl

Euler distance between
normalized vectors

h.v4' <0.8 0.4>

ivg' <12 0.2>

_————

<1 0> '

Figure 4.2: Geometrical representation of five normalized vectors

Calculation of the Selectivity Measurement

To calculate selectivity from the degree of separation of the various data vectors,
the linear distance between each pair of the vectors is found. Because all of the vectors lie

in the first quadrant, the maximum distance between two normalized vectors can be

shown to be 2 . To make the resulting intervector distance measures more readable, we



24

have further scaled this distance measure by multiplying the result by 100, Z This

calculation is outlined in Equation 4.3.

Equation 4.3: Euler distance between each of the vectors.

100 ’"
d; =|v,. —vJ.I:(—E)- g{(vik —vj,‘)" , where 1 < ij < the number of nerve

branches, digits, or other sources.

An alternate and more precise measure would be to calculate the angle between
the normalized vectors. This would be achieved by taking the inverse cosine of the dot
product of the normalized vectors and then scaling them by '®/p». The angle method was
not used because I did not discover the discrepancy in the measurement until much later.
However, the error involved in using the Euler distance rather than the angular distance is

minimal and probably less than that attributable to noise in the system.

After each of the vectors has been normalized and the Euler distance between each
pair of vectors has been calculated and scaled, the average selectivity of a signal source
may be calculated. The average selectivity for a signal source is calculated by averaging

the linear distance from one vector to all other vectors (see Equation 4.4).

Equation 4.4: Selectivity for each source i.

1 M
\) Zd,.j , for 1 £i<M, where M is the number of sources.

TM-n4g
Because the distance from any vector to itself is 0, the term (M - 1) rather than M is used

to calculate the average selectivity for source i.

To obtain the overall average selectivity for all signal sources, the aggregate
average is taken. In our technique, this is achieved by averaging all of the individual
sources’ average selectivities to obtain one average selectivity for the whole electrode

array. Equation 4.5 shows how this is achieved.



Equation 4.5: Average selectivity for the multi-channel electrode array.
I M
S=—)§,
n %S

The selectivity measure presented in this chapter is the one that is referred to in
later chapters of this thesis when discussing the selectivity of a recording. Any other

selectivity measures will be noted appropriately.
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CHAPTER 5 : ACUTE RECORDINGS FROM HINDLIMB NERVES

In the suminer of 1996 we performed three terminal acute experiments under
anesthesia to test two alternate Multi-Contact Cuff (MCC) designs as a preliminary stage
to future chronic implantations (Chen et al., 1997). All protocols were approved in
advance by the Simon Fraser University Animal Experimentation Ethics Committee.
Although the details of the experiments differed slightly, the majority of the protocols of
the experiments were the same. In each of the experiments, the sciatic nerve of the
hindlimb of the cat was exposed and five to eight of its distal nerve branches were
dissected free. These nerve branches included the common peroneal, tibial, lateral
gastrocnemius-soleus, medial gastrocnemius, sural, perforant branch of biceps, and

plantaris.

Recording Scenario

In all of the acute experiments performed, the left hindlimb was used. To prepare
for the experiment the cat was sedated with ketamine, acepromazine and atropine,
intubated, and anesthetized with halothane gas mixed with oxygen. The nerve branches
from which recordings would take place were exposed and disconnected from their
muscles to eliminate the effects that stimulation of the muscle may cause, such as
contraction of the muscle causing electromyographic activity. The nerves were stimulated
with either hook electrodes or a small bipolar stimulating cuff was implanted on each
nerve branch. The MCCs were implanted in the mid-thigh region around the sciatic nerve

as shown in the lateral view of the hindlimb in Figure 5.1.
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Multi-Contact
Cuff

sciatic n.

muscular branch

tibial n.

lateral gastrocnemius common peroneal n.

& soleus nn.
medial gastrocnemius n.
sural n.

deep peroneal n.

superficial peroneal n.

Figure 5.1: Location of multi-contact cuff in the hindlimb

When stimulating the individual nerve branches, current pulses of 50 psec
duration were delivered by an isolated biphasic stimulator with 1 pulse per second
repetition rate controlled by a BAK Electronics BPG-2 Biphasic Pulse Generator (BAK
Electronics, 1981a). The neural Compound Action Potentials (CAPs) arising from the
stimulation, as detected by the electrodes in the MCC, were amplified 10,000 times by



28

chaining low-noise Leaf Electronics Dual QT-5SB Preamplifiers (Leaf Electronics) (gain of
100) and BAK Electronics MDA-1 AC Differential Amplifiers (BAK Electronics, 1981b)
(gain of 10x10), filtered between 500 Hz and 10 kHz by the amplifiers, and then stored
onto FM tape with a Honeywell MD96C FM tape recorder (Honeywell, 1982). During

the recording session, hard copies of the Tektronix TDS420 oscilloscope (Tektronix,
1993) screen displaying four channels of neural signals were printed. The same
equipment described here was used in subsequent chronic experiments, only the gain
settings on the BAK AC Differential Amplifiers were changed. When eight new low-
noise high-gain amplifiers were developed later in the project, they replaced the four Leaf-
BAK amplifier chains.

Measurements of the CAP peak-to-peak amplitudes were made later from the
paper copies and eventually used in the selectivity analysis described in Chapter 4.

Experiment #1 - June 14, 1996

In this experiment, the first version of our MCC design was installed on the sciatic
nerve and five nerve branches - the common peroneal, tibial, lateral gastrocnemius-soleus,
medial gastrocnemius, and sural nerves - were dissected free and severed from their distal
attachments about 2 - 8 cm from the recording cuff. Hook electrodes were used to
stimulate each of the nerve branches and simultaneous recordings were made from the

four contact pairs inside the MCC.

A plot of the selectivity of the MCC from Acute #1 is shown below. The
selectivity indices that are shown in Figure 5.2 were calculated by the method presented
by Sahin and Durand (1996) because we had not yet developed our selectivity measure at
the time of this experiment. The degree of selectivity is shown by the amount of spread of
the selectivity indices for a given contact set. If there were no selectivity, then each
selectivity index would just be given by 100% divided by the number of stimulated nerve
branches; in this case, 20%. In contrast, the spread seen in Figure 5.2 is quite large,
indicating that the four electrode pairs recorded rather different signals.
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Selectivity indicas from the multi-contact cuff. Jun 14/96.
Calculated with the Sahin-Durand method

25.00
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Contact set

Figure 5.2: Selectivity indices from new MCC in Acute #1 calculated with the
method presented by Sahin and Durand (1996)

Note for legend: CP - common peroneal; Tib - tibial; MG - medial gastrocnemius; LGS -
lateral gastrocnemius-soleus.

A useful metric to analyze the spread of the results when presented in this fashion
is to calculate the coefficient of variation, the standard deviation divided by the mean, of
each of the contact sets and then average all of these values to get the coefficient of
variation for the whole nerve cuff. For the data set shown, this value was found to be
40%. Figure 5.3 shows the results calculated with our selectivity analysis method. The
average selectivity for each of the nerve branches and the overall average selectivity is
displayed. The same abbreviations are used in Figure 5.2 and Figure 5.3. With our
selectivity measure, the overall selectivity in this experiment was calculated to be 38% out

of a theoretical maximum of 100.
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Acute #1: I-MCC Electrode
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Figure 5.3: Selectivity indices from new MCC from Acute #1 calculated with our
selectivity method

The resulits from this preliminary study showed that selective recordings can be
made with our MCC as the different bipolar pairs were selective to specific nerve
branches. Typically, the recording pair that was closest to the stimulated nerve branch
gave the highest amplitude signal. Figure 5.4 shows the approximate location of the
different nerve branches within the MCC. By comparing the results of the selectivity
analysis with the position of nerve branches inside the MCC, one can see that the
electrodes in the cuff usnally produced the highest amplitude recordings for the branches

that were closest to the electrode.
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Multi-contact cuff used on sciatic nerve of
NIH15,finalacute, June 14,1996

@

I 510 mm l

View from distal end of cuff
Figure 5.4: Cross section of sciatic nerve showing individual nerve branches within
the new multi-contact cuff
Figure adapted with permission from a figure by K.D. Strange.

Experiment #2 - August 13, 1996

In the second experiment, a similar surgical protocol was followed, but this time
eight branches of the sciatic nerve were exposed distally to the knee and stimulated. The
common peroneal and tibial nerves were each divided into two branches and the perforant
branch of biceps was also exposed. This time, stimulating cuffs were implanted onto each
of the nerve branches to facilitate stimulation. In this set of experiments, we tested two
alternative multi-contact cuff designs, an improved MCC and a conventional MCC (e.g.,
the design used by Lichtenberg and De Luca, 1979). The improved MCC design was
tested three times and then the conventional MCC two times. The results of from one of
the improved MCC tests and one of the conventional MCC tests are shown in Figure 5.5
below. Our selectivity measure calculated a value of 30 for the two trials on the improved

cuff and the selectivity of the conventional MCC was calculated by our method to be 14.
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Acute #2: C-MCC and I-MCC Electrodes
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Figure 5.5: Selectivity indices from an improved MCC and a conventional MCC in
Acute #2

Note for legend: SP - superficial common peroneal; DP - deep common peroneal; Perf -
perforant branch of biceps; other abbreviations as in Figure 5.2.

Experiment #3 - September 12, 1996

After completing the second experiment, we realized that the results of this
comparative study were inconclusive because we could not determine whether or not the
improved selectivity was due solely to a better MCC design. We could not rule out that
nerve conditions did not change over the course of the experiment that might have caused
the selectivity to diminish with time. So, in a third set of experiments we alternated
between using a conventional multi-contact cuff and an improved cuff. The first and third
tests were performed with the conventional cuff and the second and fourth tests were
performed with the improved cuff. By setting the experiment up in this manner we hoped
to counter any effects that may have occurred if the health of the nerve changed over the
course of the experiment and thus affected the measured selectivity. The results of the

selectivity analyses for the four tests have been plotted in the following graphs in Figure
5.6.
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Acute #3: Alternated Trials
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Figure 5.6: Selectivity indices from the improved MCC and conventional MCC in
Acute #3

Note for legend: PL - plantaris; other abbreviations as in figures above.

One can see from the charts that the recordings made from the two cuffs are
reproducible from test to test. For example, in test 2 and 4, which are the data from the
improved cuff, the average selectivities are very similar for both tests and the overall
selectivity remains constant. The results from tests 1 and 3 are similar too, but the
selectivity of the sural branch changed. The change in individual selectivities may be due
to the placement of the cuff changing relative to the nerve branches between the two
tests. However, the overall selectivity is similar and remains lower than that observed in

the improved cuff.

From the results of this experiment, we concluded that the changes that we made
to the conventional multi-contact cuff design did improve the selectivity of recordings
from nerve cuffs. We then decided to proceed with chronic implants using the improved

MCC design.
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CHAPTER 6 : ELECTRICAL STIMULATION OF FORELIMB DIGITS

After the acute experiments demonstrated that our Multi-Contact Cuff (MCC)
would provide selective recordings from cat sciatic nerves, we proceeded with implanting
similarly designed MCCs in chronic experiments to test how well the cuffs would
perform over a six month implant period (Hoffer et al., 1997; Strange et al., 1997). A
modified electrical stimulation protocol was used to test the selectivity of using a single
MCC implanted on the median or ulnar nerve and the selectivity of using two MCCs on
the two nerves. Longitudinal IntraFascicular Electrode (LIFE) arrays were implanted in
the same nerves in different subjects and their selectivity was analyzed in the same
manner (Hoffer et al., 1997; Strange et al., 1997). Figure 6.1 shows the approximate

implantation sites for all devices.

To act as a comparative recording array, tripolar circumferential cuffs were
implanted distal to the recording arrays on the median and ulnar nerves of all subjects.
Stimulating the median and ulnar nerves with the proximally implanted bipolar
circumferential cuffs and making recordings of the ENG activity in the distal cuffs and
recording arrays was used as a means to monitor the general health of the nerve and the

viability of the electrodes.

All protocols were approved in advance by the Simon Fraser University Animal

Experimentation Ethics Committee.
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Figure 6.1: Location of devices implanted in forelimb
Adapted with permission from a figure by K.D. Strange
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Recording Scenario

We used anesthetized subjects to perform the selectivity evaluation. Electrical
stimulation of the digits was performed by placing a cuff around each individual digit
with two circumferential electrodes placed 7 mm apart. A constant current stimulator
provided 10 mA amplitude and 50 ps duration monophasic current pulses to the digit at a
rate of 10 pulses/s. We found that an electrode - tissue impedance of approximately 10
kQ was necessary to securely stimulate the nerve fibres in the digits and to generate a
signal in the recording electrodes. If the impedance was too low, the current would shunt
between the two electrodes without stimulating the digit. If the impedance was much

higher, the stimulator would not be able to generate the necessary current.

The signals recorded by the two multi-channel arrays were amplified by a gain of
10,000, and stored to FM tape for archiving. Initially due to a limited number of available
amplifiers, only four channels of ENG activity occurring on either the median or the ulnar
nerve’s four-channel recording array were recorded at any one time. The activity from the
median and ulnar circumferential cuffs were amplified by a gain of 10,000 by chaining
two BAK Electronics AC Differential Amplifiers together. Because electrical stimulation
provided an invariant input, the recorded ENG activity did not change much between
stimulations when recording activity from the median or ulnar nerves. This fact was
verified by the simultaneous recordings from the median and ulnar circumferential cuffs
that were made for all recording sessions. The amplitude of the ENG signals from the
median and ulnar cuffs were used as controls between recordings from the median arrays
and ulnar arrays on the same digit. After a set of eight new amplifiers was constructed, all
eight channeis of ENG activity occurring on both nerves’ multi-channel arrays were

recorded simultaneously.

To make off-line measurements of peak-to-peak ENG activity, the FM tape was
played back and the signals from individual channels were displayed on the oscilloscope
and averaged 10 times. Since the amplitude of uncorrelated noise decreased
approximately by the square root of the number of samples used in the average, averaging
was used to increase the signal-to-noise ratio. Measures of peak-to-peak amplitude of the

compound signal that occurred between 1.5 and 4.0 ms after the stimulation of the digit
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were recorded. At times less than 1.5 ms, a significant stimulus artifact was present; after
4 ms there was typically no ENG signal remaining. These measurements were obtained
for each digit and then a selectivity analysis, as described in Chapter 4: Selectivity

Analysis, was performed.

Figure 6.2 shows the results of an electrical stimulation experiment on NIH19 on
day 0. The signals recorded on all eight channels from the two implanted MCCs after
stimulating each digit are shown with their characteristic ENG patterns. The channels
labeled 1 through 4 indicate the median MCC electrode recordings and channels 5
through 8 indicate the ulnar MCC recordings. From the figure, you can see that the
median nerve was active when digits I through IV were stimulated and the uinar nerve

was active only after simulation on digits IV and V.
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Figure 6.2: Compound neural signals obtained after stimulation of the individual
digits. NIH19, Day 0.

Figure used with permission from K.D. Strange.
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Results of Selectivity Analysis

There were three MCC implanted and three LIFE implanted cats; however, I only
closely monitored two of each. The first NIH implant (NIH18) was disregarded for this
project when the wires to the tripolar ulnar cuff were broken early in the experiment and
therefore I could not determine the performance of the eight-channel system compared to
the two-channel system. To balance the results, I only closely followed the last two LIFE

implanted subjects.

The results of detailed selectivity analyses performed on four subjects are
presented in the following tables (Table 6.1 to Table 6.4). The column labeled 8-channel
refers to the recording array composed of either two MCCs or eight LIFEs implanted on
the median and ulnar nerves. The column labeled 2-channel refers to the recording array
formed from two circumferential tripolar cuffs implanted on the median and ulnar nerves.
The selectivity values for these two columns was calculated after stimulation of all five
digits. The 4-channel columns are for the MCC and LIFE recording arrays that were
implanted on either of the nerves. The 4-channel median array had selectivities calculated
after stimulation was provided to the median innervated digits I through IV, and the 4-
channel ulnar array had selectivities calculated after stimulation was provided to digits IV
and V.



Table 6.1: Summary of selectivity results using electrical stimulation of digits on

NIH19
Day 8-channel 2-channel 4-contact MCC  4-contact MCC
(%) (%) median nerve (%) ulnar nerve (%)
0 61 26 9
4 59 21 12
7 54 46 20 10
15 51 43 19 9
22 50 39 17 5
40 59 35 21 2
49 56 34 27 8
61 56 47 17 3
77 43' 40 7! 8
103 42 35 10 22
126 40" 33k 5t 28%
154 43 31 12 45
180 45* 30 21 36
mean*s.d. 51.1%6.8 37.5%5.6 17.2£6.6 152+£129

Notes: *first simultaneous 8-channel recording day; 'broken wire on med3; “loss of
ulncirc, uln! & med3.

Table 6.2: Summary of selectivity results using electrical stimulation of digits on

NIH21
Day 8-channel 2-channel 4-contact MCC  4-contact MCC
(%) (%) median nerve (%) ulnar nerve (%)
0 55 46 10 8
2 55 48 9 29
14 49 45 15 5
35 55 48 14 13
63 47 42 1 6
84 46* 38 14 10
94 53 44 18 13
meant+sd. 514+3.7 444+3.3 13.0+29 120+£7.5

Notes: *first simultaneous 8-channel recording day
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Table 6.3: Summary of selectivity results using electrical stimulation of digits on

NIH22
Day 8-channel 2-channel 4 LIFEs 4 LIFEs
(%) (%) median nerve (%) ulnar nerve (%)
0 76 37 64 30
3 72 35 58 21
9 72 42 60 21
24 80 36 63 61
38 78 39 61 71
58 75% 31 63 8f
72 69 38 61 318
mean * s.d. 74.6+3.5 369+3.2 614+19 347 +21.2

Notes: *first simultaneous 8-channel recording day; ‘problem with new amplifier N3,
resulting in no signal for ulnar LIFE3; ®problem with amplifiers on N1 and N2

Table 6.4: Summary of selectivity results using electrical stimulation of digits on

NIH23
Day 8-channel 2-channel 4 LIFEs 4 LIFEs
(%) (%) median nerve (%) ulnar nerve (%)

0 64 37 41 31
2 64 43 40 49
9 62 42 44 14
16 64 38 43 4

29 58%* 38 30 15

43 49 36 29 20

mean * s.d. 60.2+54 390+2.6 37.8+6.0 222+ 144

Notes: *first simultaneous 8-channel recording day

Summary of results

From a brief analysis of the results, one can see that there were similar selectivity
values within the MCC and LIFE implanted subjects for the eight-channel electrode
arrays. The MCC subjects, NIH19 and NIH21, had average selectivities of 51.1 and 51.4
and the LIFE subjects, NIH22 and NIH23, had average selectivities of 74.6 and 60.2. In
all cases, the two-channel tripolar cuff arrays had fairly similar performances (37.5, 44.4,
36.9, and 39.0) in all of the subjects. '
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When reviewing the results for the eight-channel arrays, it became clear that the
LIFE arrays outperformed the MCC arrays, sometimes by a large margin. This fact was
probably due to their specific recording locations that allowed them to make very
selective recordings. Using both multi-channel systems, the extra channels of information

seemed to provide better selectivity over the two-channel system.

Looking at the single four-channel MCCs, we can see that they performed
similarly in the subjects on both the median and ulnar nerves. The average selectivity
values ranged from 12.0 to 17.2 which is a tight spread given the calculated standard
deviations. The LIFEs were much more variable in their selectivity with values ranging
from 22 to 61 and the ulnar nerve implanted LIFE arrays had larger standard deviations.
In both of the LIFE implanted subjects, the median nerve selectivities were considerably

higher than the ulnar nerve arrays.

Improvement of eight-channel over two-channel system

The eight-channel systems provided more selective recordings than the two-
channel systems. This fact may be explained through the increased separation in multi-
dimensional space of the median innervated digits. For example, in the two-channel
system, the cuffs implanted about the median and ulnar nerves should see similar results if
any of the first three digits are stimulated because theoretically only the median nerve
would be active (i.e., data vector =< 1 0 >); therefore, the selectivity amongst those
digits would be 0. The fourth digit is distinct because it would have similar levels of
activity on the median and ulnar nerves (i.e., data vector =< 0.707 0.707 >). And the
fifth digit is again distinct because it would have activity only on the ulnar nerve with
little activity on the median nerve (i.e., data vector =<0 1 >). Thus, the following

theoretical selectivities could be expected:
Individual selectivities: S; = 39, S, =39, S3 =39, S; =54, S5=89
Overall selectivity: S =52

Because we did not have perfect all-or-none signals, the observed selectivity for the two-

channel system was reduced.
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On the other hand, the eight-channel system should be able to provide some extra
distinction among the first three digits with little gained separation of the signals from the
fourth and fifth digits. By improving the selectivity in the median innervated digits, the

overall selectivity was increased.

Improvement of selectivity when using two nerves as opposed to one

The large improvement that is seen with the selectivity measures for the five-digit,
eight-channel system versus the two- or four-digit four-channel system may be attributed
to the fact that the overall spacing between data vectors in eight dimensional space

became greater, even though the selectivity amongst the first three digits did not change
significantly.

Drop in selectivity for single MCC in chronic compared to acute experiments

The apparent drop in selectivity values that was observed from the acute
experiments to the chronic experiments may be explained by the fact that the nerves in the
forelimb may not follow similar distinct branching as was observed in the sciatic nerve in
the hindlimb. The nerve branches in the hindlimb were located on the surface of the
nerve, were very distinct and could be separated easily, whereas the fascicles in the
forelimb may be located more deeply as thus harder to make clear recordings by the
electrodes. Another reason may be due to intermingling. At the site of the MCCs, a
distance away from where most of the branching takes place in the paw, the fascicles may
be less distinct due to the intermingling that occurs between various fascicles as they
approach the spinal cord. A third reason may be that not all of the axons in a digital nerve
branch were stimulated as they were in the acute experiments. The reduction in signal
amplitude narrowed the margin between signal and noise and may have caused the

lowered selectivity.



CHAPTER 7 : MECHANICAL STIMULATION OF FORELIMB
DIGITS

Data Collection

Recording protocols

The mechanical stimulation experiments were performed directly after each
electrical stimulation experiment, while the subject was still under anesthesia during a
recording session. The wrist of the cat was atraumatically supported with a brace formed
of plexiglass and tape to prevent the paw from drooping and the forearm was secured to
the recording table with a half section of tubing and tape (see Figure 7.1). After the
forelimb was secured, the manipulator (described below) was positioned under the
forepaw. For normal input experiments, the tip of the lever arm was located a few
millimetres below the digit pad; for slip inputs, the lever arm was raised to just indent the
surface of the digit pad. The manipulator then went through its programmed sequence of
stimulations.

Digit manipulator

The digit manipulator is a device that I designed capable of producing controlled
mechanical stimulations in two dimensions to the individual digit pads of the forepaw of
an anesthetized cat. Mechanical stimulation in the direction perpendicular to the digit pad
was possible, as were stimuli tangential to the pad. The former stimulation is referred to
as a normal input and the latter a slip input. These stimulations caused activity in sensory
fibres, cutaneous and proprioceptive, which was recorded by electrodes placed around, by,

or in forelimb nerves.

In the final version of the digit manipulator, five lever arms were aligned under the
forepaw with one lever arm tip placed under each digit to produce inputs in one of two
dimensions. The various manipulators were constructed in SFU’s Science Technical

Centre by Alex Szolnoki.
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The single digit manipulator

The basic manipulator element was capable of perturbing one digit in one of two
dimensions as shown in Figure 7.1, set up for a slip stimulation experiment. Solenoids
were used in the design because they were easy to use, easy to control with a computer,
and relatively inexpensive. The magnitude of the applied stimulation was controlled by
limiting the solenoid’s return to their resting position. For the slip input, a return spring
and hard stop located at the rear of the lever arm were utilized. For the normal input, a

special cylinder was constructed to stop the return of the piston in the vertical solenoid.

Digit

Paw support

#1

Figure 7.1: The single digit manipulator in position for a slip experiment

Solenoid #1 was a pull-type solenoid that was responsible for the slip input.
When it was energized, the tip of the manipulator lever arm was pulled tangentially across
the digit pad, creating a slip. When the solenoid was de-energized, a return spring pushed
the manipulator’s lever arm out of the solenoid and back against a hard stop. The position
of the hard stop could be changed with a couple of small nuts and bolts located at the back
of the arm, which controlled the length of the slip input.

Solenoid #2 was a push-type solenoid that was responsible for the normal input
against the digit pad. When it was energized, the piston pushed the manipulator's lever
arm up to contact the digit pad. Because the solenoid was located about half-way along
the lever arm, the end of the arm traveled twice the distance of the piston. This was a

good configuration for the solenoid because the solenoid was able to generate greater
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force at a shorter stroke length. However, the amount of end point force of the solenoid

was halved when used in this configuration.
The specifications of the single digit manipulator were as follows:

solenoid force (at 5 mm stroke length): 2N

power: up to 36W (12 V, 3A), DC power
size (LxHxW): approximately IScmx8cmx 3 cm
The five-digit manipulator

At a later stage of the project, I designed a five-digit manipulator capable of
perturbing any one of the digits. This design was based on the working version of the
single-digit manipulator and included five copies of the single-digit manipulator placed
side by side (see Figure 7.2). The manipulator was capable of delivering sequential inputs
to any one of the five digits — either a slip stimulation along the long axis of the digit by
energizing one of the outer solenoids or a normal stimulation against the digit pad by

energizing one of the inner solenoids.

Because the manipulator was computer controlled, any sequence of individual
stimulations could have been applied to the digits. I limited the experiments to series of
slip inputs or series of normal inputs that were applied to the digits sequentially at a rate

of one stimulation per digit per second (five stimuli/s distributed over five digits).
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2 cm

Figure 7.2: The five-digit manipulator in position

Data acquisition

Initially, recordings could only be made simultaneously from four recording
channels using the chained Leaf and BAK amplifiers, so electroneurographic (ENG)
activity was separately recorded from median and ulnar nerves. In later stages of the
study, eight new amplifiers were constructed and the results from these recording sessions
are provided below. The full recording scenario allowed better recordings to be made
because all neural signals were recorded in paralle! so the total activity in both of the
nerves could be simultaneously monitored. As in the electrical stimulation cases, the
median and ulnar circumferential cuffs were recorded concurrently by chaining two BAK

amplifiers together.

Due to the very small amplitude of ENG signals, a gain of 100,000 was used to
amplify the recorded ENG activity before recording the signal to FM tape. Even after
amplification, a typical signal had a peak-to-peak amplitude of 300 mV which indicated a
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neural signal of about 3 uV. The ENG was bandpass filtered between 500 Hz and 10 kHz
to accentuate the neural response and remove high and low frequency electromagnetic

interference.

After an experiment was completed, the data that was stored on the FM tape was
played back, digitally sampled at 20,000 samples per second, and stored on writeable CD.
The sampling rate was selected to be twice the bandwidth of the recording channels on the
FM tape machine (i.e., 10 kHz) and approximately twice the highest frequency component
of the filtered ENG signal. Storing the data digitally allowed for manipulation of the data

off-line with various software packages.

Processing

Matlab processing and feature extraction

Due to the small amplitude and brief duration of the neural burst that occurred in
the median and ulnar nerves after mechanical stimulation was applied to one of the digits,
some signal processing was necessary in order to obtain useful features for further
analysis. The processing included removing the DC offset found on the analog FM tape,
further high-pass filtering the signal to remove 60 Hz interference, rectifying the neural
signal, and low-pass filtering the signal with a Kaiser window Finite Impulse Response
(FIR) filter with cutoff at 400 Hz to obtain the envelope of the ENG burst. The following
block diagram (i.e., Figure 7.3) shows these steps. A Kaiser window filter was selected
because it is a near-optimal FIR filter for a given mainlobe width and sidelobe area. A
FIR filter has a constant delay of one half the window length that can be accommodated
more easily when implementing hardware for real-time situations (Oppenheim and

Schafer, 1989).
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AC Coupling HP Filter Rectification LP Filter at 400 Hz
400 Hz Kaiser Window

Figure 7.3: Steps used to filter recorded ENG activity after mechanical stimulation

Three features were extracted from the filtered signal: (1) the peak of the filtered
ENG burst, (2) the time from the onset of the stimulation to the peak of the ENG burst,
and (3) the area of the burst over a baseline level integrated over a 50 ms duration. Figure

7.4 shows these features on a filtered ENG burst.

Synchronizing pulse

Amplitude

Filtered ENG burst

-20 -10 0 10 20 30 40 50 60 70 80
Time (ms)
Figure 7.4: Filtered ENG burst showing peak, time to peak, and area features

Data from a normal stimulation experiment from both before and after processing
is shown in Figure 7.5. For clarity only one channel is shown, along with the
synchronizing pulse that shows when the solenoid was energized. The synchronizing
pulse shows two pulses: (1) when the lever arm first made contact with the digit pad and
(2) when the lever arm left the surface of the skin.
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Figure 7.5: Sequence of processing on one channel of ENG data. Data recorded
from NIH21 on day 99 using normal inputs applied to digit 3

In Figure 7.5, one can see that variability occurred from trial to trial. This
variability may have been due to changes in the input, as the lever arm did not always
provide an identical stimulus to the digit pad. Changes in the input may have been due to
the solenoid tending to heat up with repeated use, the lever arm becaming slowed in the
manipulator due to friction between the lever arm the guides, or the lever arm contacting a
different part of the digit pad. Other sources of variability may have included changes in
the mechanoreceptor electrochemical responses because some adaptation may have
occurred with repeated presentations of the same mechanical input and the output

response is not constant for every stimulus (Westling and Johansson, 1987).
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Results

Selectivity analysis

Two features that were generated from the Matlab processing, ENG burst peak
and area, were used in a selectivity analysis similar to the one used for responses to
electrical stimulation of the digits. The full set of average selectivities collected with the
single-digit and five-digit manipulators and analyzed with burst peak and area features
appears in Appendix C. I chose the burst areas over the burst peaks because areas
provided slightly better results than peaks. The results are provided in Table 7.1 for the
four NIH subjects. I only included here the results obtained using the area features from
normal and slip experiments that used the five-digit manipulator as an input device. The
selectivity values for the eight- and two-channel arrays were calculated after mechanical
stimulation of all five digits. The selectivity of the four-channel array on the median
nerve was calculated for stimulation of the four median innervated digits, I through IV.
The selectivity of the four-channel array on the ulnar nerve was calculated for stimulation

of the fourth and fifth digits.
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Table 7.1: Summary of mechanical selectivity results using ENG burst area features.

Subject Day 8-channel 2-tripolar  4-channel array 4-channel array

selectivity (%) selectivity (%) onmedian  on ulnar nerve
nerve (%) (%)
NIH19 154-S 16 15 2
(MCC) 180-N 14 4 2
180-S 20 19 5
NIH21 84-N 14 6 5 10
MCC) 84-S 6 4 3 1
94-N 7 7 3 3
94-S 9 5 7 5
99-N 13 7 4 2
99-S 7 5 2 4
NIH22 58-N 25 6 27 4
(LIFE) 58-S 28 10 34 6
65-N 25 12 29 26
65-S 28 8 34 1
72-N 32 10 30 17
72-S 28 6 30 9
NIH23 29-N 18 10 12 7
(LIFE) 29-S 18 8 9 9
43-N 28 11 11 10
43-S 17 10 11 4

Note: N - normal stimulation. S - slip stimulation

The average eight-channel MCC selectivities were 16.7 and 9.3 and the average
LIFE selectivities were 28.5 and 20.3, both of which are better than the two-channel
average selectivities obtained from the two tripolar cuffs located on the two nerves (5.7,
8.7, and 9.8). Of the two four-channel arrays, the results obtained on the median nerve
(MCC: 12.7 and 4.0; LIFE: 30.7 and 10.8) were typically higher than the arrays implanted
on the ulnar nerve (MCC: 3.0 and 4.3; LIFE: 12.2 and 7.5). In most cases, the LIFE
recording arrays outperformed the MCC recording arrays.

Normally, the eight-channel selectivity was greater that either of the four-channel
selectivity values. The relationship between the two four-channel arrays and the
aggregate eight-channel array is not clear and would appear to be non-linear as is

evidenced by the results of NIH22. For some cases, the four-channel array on the median
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nerve has greater selectivity on the four digits than the full eight-channel system on the
five digits. However, one should remember that for the different selectivity calculations,
a different number of digits were used as the inputs. The eight-channel array measured
the overall selectivity to identify five digits using information from the median an dulnar
arrays, the four-channel median array measured the selectivity to identify the first four
digits, and the four-channel array on the ulnar nerve measured the selectivity for the last
two digits.

The modest mechanical stimulation selectivities, relative to the electrical
stimulation selectivities, may be accounted by the larger variability in the ENG signals
from variability in the input, variability in mechanoreceptor output, and the low signal-to-
noise ratio that is seen with the neural bursts where the signal amplitude has a peak only
about 3 times greater than the RMS amplitude of the background activity. The electrical
stimulation experiments did not suffer from this variability as the electrical stimulation
was essentially constant over all of the stimulated trials, the neural response to electrical
stimulation was fixed, and the signal was about ten times larger than the noise that was

observed.

Digit identification analysis

Discriminant analysis

A discriminant analysis classifies different individual cases based upon criteria
that have been selected as the categorizing inputs. The individual cases in a discriminant
analysis can be regarded as single points in multi-dimensional space. Unlike a cluster
analysis that forms groups from the data without regard to relations that may occur in the
data, a discriminant analysis classifies new cases into groups based on prior knowledge of
the groupings. For the discriminant functions that were used in the analysis, it was
assumed that the different groups had similar statistical properties of normal Gaussian
distribution and equivalent covariance within groups. I made these assumptions because
the same inputs were used on all digits and data was collected from all digits similarly,

although these assumptions may not have been completely correct.
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To perform the discriminant analysis individual samples are mapped from the N-
dimensional measurement space (where N is the number of recording channels) to a
reduced space spanned by K-1 orthogonal canonical functions (where K is the number of
stimulated digits). Only K-1 lines, planes, or hyperplanes are necessary to separate K
different groups (Cooley and Lohnes, 1971). The SPSS program derived the canonical
functions to optimally separate the centroids of the K different groups by maximizing the
ratio of between-groups sum-of-squares to the within-groups sum-of-squares
(Noru3is/SPSS, 1993). These functions were applied to sample cases and the individual
cases were classified into the different groups based upon proximity of the case to each of
the centroids. To test the accuracy of classification, a comparison was made between the
predicted group classification to the actual grouping. Development of canonical functions
used for discriminant analysis is discussed in detail in multivariate data analysis texts such

as Cooley and Lohnes (1971).

Although not identical to the methods presented in the SPSS manual, Andrews
(1972) and Young and Calvert (1974) provide good examples of how to develop linear
discriminant functions and perform discriminant analyses. In these methods K linear

discriminant functions are derived for the K groups.

When I ran the mechanical stimulation experiments, the stimulated digit was
always coded in the synchronizing pulse train that was put onto FM tape. During Matlab
processing, the pulse was decoded and the digit identification was stored with the
extracted features for that digit. The actual stimulated digit information was entered into
the discriminant analysis as the dependent grouping variable and the selected features

were used as the independent categorizing variables.

Several analyses were performed to assess the performance of individual four-
channrel recording arrays operating on the individual nerves and associated digits and the
overall performance of the eight-channel systems to identify all five digits. The first set
of analyses determined the results of identifying which one-of-five digits was stimulated
based on area, peak, and combined area and peak features from all of the eight recording
electrodes. The second set of analyses evaluated the individual recording arrays on the

median and ulnar nerves by identifying either one of digits I through IV based on features
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collected for the median nerve or one of digits IV and V based on the features collected
from the ulnar nerve array. Finally, the two-channel two tripolar cuff recording array was
evaluated with the same three sets of features so that a comparison of the eight-channel
system to the two-channel system could be made. Once all of these analyses were
completed, the above analyses were reperformed using normalized data so that relations
could be made between the digit identification accuracy and the selectivity data. The

results from all of these canonical discriminant analyses are included in Appendix D.

Two different types of discriminant analyses were performed on the raw and
normalized sets of data. A jackknife analysis technique was applied to the raw data to
make predictions of group membership. The jackknife method, also known as a leave-
one-out method, is used to determine how a single case would be classified based on the
functions derived using the n-1 other data cases. By using raw data, the differences in the
magnitudes of the source signals could be used to advantage to identify different groups.
In the analysis method applied to the normalized data, all of the cases were left in to
derive the canonical discriminant functions so that comparisons to the selectivity
measures could be made. From reviewing the results in Appendix D, one can see that the

results obtained from the two types of discriminant analyses are similar.

Summary of discriminant analysis results

The results of the discriminant analyses performed with the jackknife method on

the raw data collected with the five-digit manipulator is provided in Table 7.2.
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Table 7.2: Summary of digit identification accuracy using ENG burst area features

and leave-one-out analysis

Subject  Day 8-channel 2-channel 4-channel array 4-channel array

accuracy (%) accuracy (%) on median  on ulnar nerve
nerve (%) (%)
NIH19 154-S 76.3 94.4 50.0
(MCC) 180-N 76.7 41.5 70.4
180-S 95.5 93.4 100
NIH21 84-N 79.7 43.6 80.2 87.0
(MCC) 84-S 722 40.6 59.0 35.2
94-N 83.3 42.1 60.0 89.4
94-S 89.5 67.7 84.8 96.4
99-N 97.7 554 84.9 88.9
99-S 925 50.0 84.9 100
NIH22 58-N 99.2 65.6 100 90.7
(LIFE) 58-S 99.2 63.6 98.1 90.9
65-N 82.0 75.6 76.2 94.4
65-S 97.0 61.8 91.4 100
72-N 925 50.8 99.0 80.0
72-S 99.2 56.9 100 100
NIH23 29-N 99.2 64.7 79.2 100
(LIFE) 29-S 100 62.4 85.8 96.3
94.0 64.9 86.8 94.3
96.2 61.5 88.6 77.8

Note: N- normal stimulation; S- slip stimulation

Table 7.2 shows that a high degree of accuracy was achieved using the canonical

functions derived by the discriminant analysis. The eight-channel MCC array results

averaged 82.8% and 85.8% and the LIFE results averaged array 94.9% and 97.4% for the

four subjects tested. These results are considerably better than chance (i.e., 20%) and

better than the results obtained using the two-nerve, two-channel systems (49.9%, 62.4%,

and 63.4%). The four-channel systems also performed well with the median arrays

averaging 76.4% and 75.6% for the MCCs and 94.1% and 85.1% for the LIFEs. The
ulnar four-channel system also showed high accuracy (MCC: 73.5% and 82.8%; LIFE:

92.7% and 92.1%), although chance in this case was 50%.
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Individual discriminant analysis results

The following tables and figures show the individual results from each subject
from the discriminant analyses that provided the highest accuracy. The tables, also known
as confusion matrices, show the predicted versus actual group classification for a single
set of raw data in which a leave-one-out analysis had been performed. The correct
identifications were placed on the diagonal with the off-diagonal elements representing
the misgrouped cases. The figures show the group “clouds” of data that are formed after
the individual cases had been transformed by the derived canonical discriminant functions
and then plotted in two dimensions. The first two canonical functions (i.e., the x and y
axes of the following figures) represent the greatest variability in the data with less
variability accounted for with the third and fourth functions. On average 71.6% of the
variability of the data was accounted for by the first canonical function and 94.7% was

accounted for by adding the second function.

The standardized canonical discriminant function coefficients are the coefficients
of the canonical functions after the variables have been standardized to a mean of 0 and a
standard deviation of 1. The magnitude of the coefficients show how strongly a variable
affects the output of the given function. In all of the cases, the coefficients are listed in

order of the four median electrodes and then the four ulnar electrodes.
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Table 7.3: Classification results for NIH19 on day 180 using ENG burst area

features and slip inputs
Predicted Group Membership
Digit 1 2 3 4 5 Total
Count I 27 0 0 o 0 27
2 0 24 2 o 0 26
3 0 1 23 2 0 26
4 0 0 1 26 0 27
5 0 0 0 0 27 27
% 1 100.0 0.0 0.0 0.0 0.0 100.0
2 0.0 923 7.7 0.0 0.0 100.0
3 0.0 3.8 88.5 7.7 0.0 100.0
4 00 0.0 3.7 96.3 0.0 100.0
5 0.0 0.0 0.0 0.0 100.0 100.0
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Figure 7.6: Scatter plot of ENG burst area feature data used in digit identification

analysis for NTH19 on day 180 using slip inputs. 95.5% accuracy

Standardized canonical discriminant function coefficients:
Fl: 0420 0549 0.092 0.182 0.078 0.189 0.180 0.277
F2: -0.243 -0.193 0.012 -0.201 0.155 0.398 0.210 0.713
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Table 7.4: Classification results for NIH21 on day 94 using ENG burst area features

and slip inputs
Predicted Group Membership
Digit 1 2 3 4 5 Total
Count 1 26 0 0 0 0 26
2 0 23 3 0 0 26
3 0 8 17 1 0 26
4 0 0 0 26 1 27
5 0 0 0 1 27 28
% 1 100.0 0.0 0.0 0.0 0.0 100.0
2 0.0 88.5 11.5 0.0 0.0 100.0
3 0.0 30.8 654 38 0.0 100.0
4 0.0 0.0 0.0 96.3 3.7 100.0
5 0.0 0.0 0.0 3.6 96.4 100.0
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Figure 7.7: Scatter plot of ENG burst area feature data used in digit identification
analysis for NIH21 on day 94 using slip inputs. 89.5% accuracy

Standardized canonical discriminant function coefficients:
Fl1: 0.762 0.294 -0.048 0.310 0.261 0.208 -0.047 0.086
F2: -0.457 0.008 -0.226 -0.206 0.514 0.155 0.247 0.653
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Table 7.5: Classification results for NIH22 on day 58 using ENG burst area features

and slip inputs
Predicted Group Membership
Digit 1 2 3 4 5 Total
Count 1 27 0 0 0 0 27
2 0 26 0 0 0 26
3 0 0 25 0 0 25
4 0 0 1 26 0 27
5 0 0 0 0 28 28
% 1 100.0 0.0 0.0 0.0 0.0 100.0
2 0.0 100.0 0.0 0.0 0.0 100.0
3 0.0 0.0 100.0 0.0 0.0 100.0
4 0.0 0.0 37 96.3 0.0 100.0
5 0.0 0.0 0.0 0.0 100.0 100.0
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Figure 7.8: Scatter plot of ENG burst area feature data used in digit identification

Standardized canonical discriminant function coefficients:

F1: 0.642 0.159 0.057
F2: -0.185 0.152 0.090 0.715

-0.615 0.166 0.449 0.054 0.139

-0.183 0.290 -0.011 0.791

analysis for NIH22 on day 58 using slip inputs. 99.2% identification
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Table 7.6: Classification results for NIH23 on day 29 using ENG burst area features

from slip inputs
Predicted Group Membership
Digit 1 2 3 4 5 Total
Count 1 26 0 0 0 0 26
2 0 27 0 0 0 27
3 0 0 26 0 0 26
4 0 0 0 27 0 27
5 0 0 0 0 27 27
% i 100.0 0.0 0.0 0.0 0.0 100.0
2 0.0 100.0 0.0 0.0 0.0 100.0
3 0.0 0.0 100.0 0.0 0.0 100.0
4 0.0 0.0 0.0 100.0 0.0 100.0
5 0.0 0.0 0.0 0.0 100.0 100.0
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Figure 7.9: Scatter plot of ENG burst area feature data used in digit identification
analysis for NIH23 on day 29 using slip inputs. 100% accuracy

Standardized canonical discriminant function coefficients:
F1: -0.018 -0.058 0.005 -0.413 0471 -0.067 0.579 0.091
F2: 0.316 -0.378 0.810 -0.006 0.783 0.209 -0.359 -0.076
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Relation to Selectivity Index

In order to determine relations between the selectivity measure and the accuracy
measure, it was necessary that the same data be used in both. Because the selectivity
measure relied on normalizing the data vectors as one of its first steps, the discriminant
analysis was recalculated with normalized values and all data were included in the
classification. The results from the leave-all-in discriminant analysis performed with
normalized data can be found in Appendix D. Table 7.7 shows the selectivity indices and
digit identification accuracy for normalized ENG burst area feature data for the eight-

channel and two-channel systems.

Table 7.7: Selectivity index and accuracy of identification using eight- and two-
channel nerve recording arrays

Subject Day 8-channel 8-channel 2-channel 2-channel
selectivity index accuracy (%) selectivity index accuracy (%)
(%) (%)

NIH19 154-S 16 76.3

(MCC) 180-N 14 82.0
180-S 20 925

NIH21 84-N 14 85.0 6 444

MCC) 84-S 6 70.7 4 34.6
94-N 7 77.2 7 39.8
94-S 9 84.2 5 36.8
99-N 13 88.7 7 338
99-S 7 71.4 5 37.7

NIH22 58-N 25 100 6 49.6

(LIFE) 58-8 28 99.2 10 54.5
65-N 25 87.2 12 56.5
65-S 28 98.5 8 49.6
72-N 33 95.5 10 51.5
72-S 32 97.7 6 40.8

NIH23 29-N 18 99.2 10 52.6

(LIFE) 29-S8 18 98.5 8 474
43-N 28 95.5 11 56.5
43-S 17 94.0 10 35.4

Note: N - normal stimulation; S - slip stimulations
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Assuming a linear relationship between selectivity and accuracy, the correlation
between eight-channel selectivity and eight-channel accuracy values using ENG burst area
features was calculated to be 0.79. The plotted data are shown in Figure 7.10. This value
indicated a moderately strong correlation, so the selectivity measure can be taken to be a
good predictor of the expected accuracy of digit identification. The plot also indicates
what level of selectivity would be necessary to achieve a desired level of accuracy in digit
identification using canonical discriminant functions. It is apparent that mechanical
selectivities of 25% will result in digit identification of about 95% accuracy. The
correlation of two-channel selectivity to two-channel accuracy showed a moderate

correlation of 0.71.
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Figure 7.10: Scatter plot of relationship between selectivity and digit identification
accuracy for eight-channel electrode arrays using ENG burst area features showing
actual accuracy and predicted accuracy based on linear regression analysis.

A linear regression between the mechanical selectivity and percent correct digit
identification showed that a minimum digit identification accuracy of approximately 72%
would occur when there was no selectivity, and would be greater than 100% at full
selectivity. This result is not expected in theory. Rather, a selectivity of 0 should indicate
that the probability of correctly identifying a stimulated digit is chance or 20%, if there are

five digits in the system. This observation indicates that a curvilinear relationship might
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exist between the two variables, such as a line that started at (0, 20%) passed through (10,
90%) and then continued to (100, 100%).

Assuming that a non-linear relationship existed between mechanical selectivity
and digit identification accuracy, I tested several alternative functions of the two variables
and performed a regression analysis of the different combinations. The comparison of the
results are shown in Table 7.8. The columns labeled f(e) represent the different functions
that were applied to the selectivity and digit identification accuracy values. The column
titled correlation coefficient using raw data shows the results of the regression analysis
using the same data as in Figure 7.10. The last column shows the results of the regression
analysis after two new data points were inserted to force the data through the points (I,
21%) and (100, 100%). The point (0, 20%) was not used because the logarithm of O does

not exist.

Table 7.8: Comparison of relationships between selectivity and digit identification
accuracy for eight-channel electrode arrays using ENG burst area features

f(Selectivity) f(Accuracy) Correlation Correlation

coefficient using coefficient using

raw data increased data
selectivity accuracy 0.80 0.48
selectivity log(accuracy) 0.80 0.40
selectivity (accuracy)® 0.80 0.54
log(selectivity) accuracy 0.84 0.90
log(selectivity) log(accuracy) 0.85 0.85
log(selectivity) (accuracy)2 0.84 0.90
(selectivity)® accuracy 0.74 0.26
(selectivity)? log(accuracy) 0.73 0.20
(selectivity)® (accuracy)® 0.74 0.31

From the table above, it appears that a logarithmic function would better describe

the relationship between selectivity and accuracy.
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CHAPTER 8 : OTHER ANALYSIS TECHNIQUES AND FUTURE
DIRECTIONS

Other Analysis Techniques

Other techniques that can be used for classification and identification are
presented here. Statistical classification relies upon prior knowledge of the system’s
parameters and is useful for systems that are not well characterized by theory but do have
a lot of data that can be used to characterize the various groupings. Neural networks are
used when a nonlinear mapping of inputs to outputs exists and a highly adaptive
classification system is desired. Fuzzy expert systems require a programmer to derive a
list of functions or rules that will lead to the proper identification. The relationship
between these various classification techniques is shown in Figure 1.38 of Kasabov
(1996, p. 67).

Statistical Classification

The discriminant analysis discussed in the previous chapter was a statistical
classification scheme in which all of the groups’ parameters were assumed to be
uniformly distributed. If that is not the case or there is no known theoretical basis for the
classification scheme, then more rigorous statistical approaches may be employed to
classify the different cases into K distinct groups. A statistical classification scheme can
be regarded as hypothesis testing in a system with K different means and K different
distributions, where K is the number of groups to be classified. Unlike the discriminant
function analysis which distinctly placed a case into a single group, a statistical approach
allows the probability of a case to belong in any group. Prior to a Bayesian classifier
being developed the conditional density functions (the probability of a case belonging to a
particular group), costs for misclassification, and prior probabilities of any group
occurring must be known for each group to determine the different decision regions.

Young and Calvert (1974) provide a good discussion of the statistical approach to



66

classification. Most communication systems use statistical methods to identify different

input signals.

The identification of new cases by a statistical classifier depends on the data that
has been collected previously and their statistical distributions. No inferences are
required about the data, just the probability of a certain group occurring and the
probability that the new case belongs to a particular group. Figure 8.1 shows an example
of a classification system that takes a new input, X, and classifies it based on the
probability of a certain group being occurring, Py and the probability of the input
belonging to a particular group (P(x/Dy)). The most probable outcome is selected as the
predicted group or digit.

Select most
probable

Predicted digit

Figure 8.1: Example of a statistical classification system

Neural Networks

Neural networks are good classification systems to use when a non-linear mapping
from the inputs to outputs exists. Not much prior knowledge about the relationship
between the inputs and outputs is required as the relationship is generated by the neural
net during its training session. Future cases are grouped based on the input-output
relationship derived in the training sets. During training, the predicted group

classification is compared to the actual group classification and the error rate is
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determined. To reduce the error, back propagation techniques are used to change the
weighting of the coefficients in the layers between the input stage and the output stage. A
neural network that may have been used to analyze the eight recording channel and five
digit classification is shown in Figure 8.2. Five different trees are constructed for the
functions that identify the five digits. The tree that most likely identifies the input is
selected as the predicted digit.

Predicted digit

AR A AR AN

Figure 8.2: Neural network used to identify one-of-five digits from recordings from
eight-channel recording array

Fuzzy Logic and Fuzzy Expert Systems

Fuzzy logic (Zimmermann, 1991) is based in the concept that a continuous
distribution of possible in‘puts exists and then best matches the given input to an output;
however, it is not based in probabilities (even though probabilistic theory is a subset of
fuzzy theory) but possibilities or degrees of membership. A fuzzy logic system can be

used when a known relationship between the inputs and the outputs is known or can be
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assumed and expressed in words. Several rules can be made based on observations by an
“expert” and these rules can be represented by mathematical functions that represent
degrees of truth between 0 and 1, rather than strictly O or 1. Use of fuzzy systems
assumes that the programmer knows most of the possible outcomes and that new cases
can be accounted for through interpolation, therefore certain knowledge about the system

must be known.

A series of IF - THEN statements, also known as fuzzy rules, are required to
describe the system so that a proper identification can be made and then these can be
represented graphically and algebraically. An example of fuzzy rules to describe a four-
input, one-output system is shown below (Equation 8.1). The four input x;’s and the
output y represent five different fuzzy variables defined on five different universes of
discourse and high, medium, and low represent three different fuzzy sets to which the x;’s

membership is calculated.

Equation 8.1: Fuzzy rules for a four-input one-output system

(1) IF (x1 is high) AND (x2 is medium) AND (x3 is low) AND (X4 is medium),
THEN (y is approximately Group 1).

(2) IF (x1 is medium) AND (x2 is high) AND (x3 is medium) AND (x4 is low),
THEN (y is approximately Group2).

(3) IF (x1 is low) AND (x2 is medium) AND (x3 is high) AND (x4 is medium),
THEN (y is approximately Group 3).

(4) IF (x1 is medium) AND (x2 is low) AND (x3 is medium) AND (x4 is high),
THEN (y is approximately Group 4).

An example of the fuzzy membership functions for the low, medium, and high
functions are all plotted on the same axes in Figure 8.3 with the high membership
function being highlighted. All of the functions have been normalized so that easy
comparisons can be made between the various functions and variables. The figure shows

the output of 0.4 corresponding to an input of 0.4 to the membership function high.
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10 Low Medium High

04

0 4 1.0
Figure 8.3: Membership functions for fuzzy sets low, medium, and high

The next figure shows all of the fuzzy rules for the four-input one-output system
described by the IF-THEN rules in Equation 8.1. An input of <0.4 0.4 0.7 0.6> has been
entered in the system. The first step in the analysis is to determine the degree of
membership of the various variables for all of the rules. The degree of membership is
calculated at the intersection of vertical dotted lines from the input line to each of the
functions. Next, the AND part of the rules is calculated by taking the minimum of all of
the membership functions for all of the variables. AND in fuzzy logic can be represented
mathematically in various forms but it is typically represented by 2 minimum or a product.
The degree of membership of the output y for the various rules is shown by the shaded
regions in each of the possible outputs. In the final step, the union of all of the possible
outputs is calculated and then the moment of the union is calculated. The final step
(defuzzification) is to convert this fuzzy value 0.6 to one of the four possible outputs. If a

linear distance measure is used, then it is closest to Group 3 for this example.
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Fuzzy Variables
X3 X4 y

Rule 4: % [~ i
AND ] AND

ji Fuzzy
Output

Figure 8.4: Plot of inference rules for an example of a four-input one-output fuzzy
system

Zimmermann (1991), Ulieru (1996), and Kasabov (1996) all present methods to
develop fuzzy sets, rules and inference methods and provide some applications of fuzzy

theory.

Future Improvements

In order to increase the accuracy of source identification, a couple techniques that
may be employed are improved feature selection and further nerve instrumentation. In the
first, features more characteristic of the signals they represent can be used in the pattern
recognition problem (see Chapter 2 of Andrews, 1972; Chapter 6 of Young and Calvert,
1974). Instead of using peak values or area values, different features may be used to
greater effect. I calculated whether using both of these features for digit identification
would increase the accuracy, but it did not seem affect the results too much. See the

tables in Appendix D for more details.
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Another way to increase the identification rate may be to instrument the radial
nerve along with the median and ulnar nerves with multi-channel recording arrays. The
radial nerve innervates the dorsal surface of the forelimb of the same digits as the median
nerve. By using the information from the radial and median nerves, identification of
digits I through IV may be improved and thus increase the overall identification rate.
However by increasing the number of electrodes other problems may arise, such as the
need to implant more wires and devices into the forelimb, the need for larger external
connectors, and the identification system may become plagued with the “curse of
dimensionality” (Andrews, 1972). The curse appears as the dimension of the system
increases and the storage and processing needs increase. By reducing the number of
electrodes per recording array, this curse may be avoided and a higher identification rate

may still be achieved.
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CHAPTER 9 : SUMMARY

Through the course of this thesis I have built the argument that the identification
of digits from their specific neural patterns is possible. The work started with the
development of a new Multi-Contact Cuff (MCC) and the selectivity analysis technique
that was required to determine the efficacy of the recording cuff in acute and chronic
situations. The studies in acute experiments showed that the MCC design performed well
and that selective recordings could be made from different nerve branches. The electrical
stimulation experiments of the forelimb digits in chronic experiments also showed that
selective recordings could be made from both MCC and Longitudinal IntraFascicular
Electrode (LIFE) arrays and thus individual source identification should be possible.

Because people are not usually presented with electrical shocks every time their
finger tips touch or rub across a surface or their finger is moved out of place, a series of
mechanical stimulation experiments was designed and executed to try to mimic two types
of inputs that would occur in a natural setting — these were the normal and slip inputs
discussed in the mechanical stimulation chapter. A selectivity analysis was performed
and showed that selective recordings could be made although the selectivity values were

rather low due to the variable nature of the input and the small amplitude ENG signal.

However, when the focus moved to identifying which were the mechanically
stimulated digits, the results were promising. The digit identification rate when canonical
discriminant functions were employed showed results that were considerably better than
chance. The digit accuracy results from MCCs ranged from 70% to 90% depending upon
the subject and the results from the LIFE subjects ranged between 80% and 100%. A
relationship between mechanical selectivity and digit identification accuracy was found
indicating there is a moderately strong correlation, although a plot of the data showed that

the relationship might not be strictly linear.

In the next phase of the research, real-time digit identification will be attempted
and if so, improved feature extraction may be necessary to increase the selectivity and
identification rates and some other scheme to detect when a disturbance has taken place

will need to be determined. Other pattern recognition and classification techniques such
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as neural network analysis, fuzzy expert systems, and statistical methods may lead to

improved results in the classification problem.

Because this thesis contained a series of controlled experiments with known inputs
and simplified recording scenarios, the results of the experiments were easier to interpret
and explain than might occur in awake recordings. Only five possible input sources were
considered at any one time in the identification problem; however, in a real-life situation
any number of the different digits could be stimulated at any time which would make
identification of stimulated sources more complicated. Due to the specific recording
regions of LIFEs and the binary-type of coding with these electrodes, one might expect
the gap between the MCC and LIFE recording array digit identification rates to become
wider. If more than one digit is stimulated and recorded with the LIFE array, one might
expect the superimposed signals to indicate that two sources were stimulated. With the
MCC recording array, it might be more difficult to identify how many sources were

actually stimulated.

Contamination of the electroneurographic (ENG) signal may occur from
electromyographic (EMG) activity that occurs with muscle motion, the stimulus artifact
that occurs after stimulation of nerve or muscle, and other electromagnetic interference.
EMG contamination can be removed with low-pass filtering techniques as the EMG has a
lower frequency range than ENG. Specialized electrode configurations, such as tripolar
electrode recordings, can also be used to remove EMG interference. The contamination
due to stimulus artifact can be removed by blanking the inputs to the amplifiers during
stimulation or recording only during intervals immediately preceding stimulation periods
(Haugland and Hoffer, 1994). Other electromagnetic interference may also play a role in
the contamination of the recorded neural signal and, if its frequency content does not
overlap with the neural signal, may be removed by similar techniques as with EMG

contamination.

Because the synchronizing pulse was recorded with the neural activity, there was
no difficulty in determining when a stimulation was applied to one of the digits. In areal-
life scenario, the onset of a disturbance is not known. To accommodate for the lack of a

synchronizing pulse, the source identification may be calculated constantly with an extra
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input to account for noise artifacts, thus requiring K+1 groups for the K possible sources
and one extra for non-source signals. Another method could employ a trigger to start the
identification calculation when the amplitude of the ENG activity is greater than some
preset threshold or when the rate of rise of the filtered neural burst is greater than normal
background activity.

Armed with the knowledge contained in this thesis, the field of functional
electrical stimulation can benefit from knowledge that finer recordings are possible in the
chronic situation. The selective recordings should allow more sophisticated Functional
Electrical System (FES) controllers to be developed that can stimulate muscles more
specifically. Hopefully, in the long run, paralyzed humans will benefit from these refined
FES stimulation systems.
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APPENDIX A : DIGIT MANIPULATOR CONTROLLER

Hardware

The next page contains the schematic for the hardware for the five-digit
manipulator. The design shows the 74138 decoding chips that were used to select one of
the ten LM1949 injector drive controllers from National Semiconductor. The transistors
were high power TIP120s. The solenoids that are shown are TSP45-3V and TPO45-3V

push- and pull-type solenoids purchased from Electro-Mechanisms of San Dimas,
California.



Software
Single.c
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This program was written to run the mechanical stimulation experiments with the

five-digit manipulator.

/*
*
«

*/

single2.c

#include <stdio.h>
#include <nidaq.h>
#include <dos.h>

#include
#include
#include

<conio.h>
<stdlib.h>
<ctype.h>

// AT-MIO-16F-5 acquisition board constants

#define

0x320 /7
/!

ATMIO_BASE

Base address of the AT-MIO-16F-5
acquision board on the EXCO machine

// The following registers have addresses w.r.t. the AT-MIO-16F-5 base

$#define EXT_STROBE_REGISTER Ox0E /7
#define DIGOUT_REG O0xlc //
#define DIGIN_REG oxlc [t/
#define PORTDIOA 0 /7
#define PORTDIOB 1 //
#define Ton 48 2
//#define Tstep 8 /7
//
#define NumOfSources S /7
int brdCode;
int brdNum = 1;

External strobe register address

Digital outport register

bigital inport register

Digital port A

Digital port B

48 ms perturbation

1/6th of Ton. Necessary for
triggering timing

Number of Sources (i.e., digits)

/***t******t**"***t*'***t***tt*i*k****t**ttt*t**t****tt***t******ttfttt*****t/

/* INIT */
/* */
/* Initializes the interface port to initial values and configures the */
/* digital and analog output channels. */

/**ifi*t****tttt*tt***it*t**ifft*ii*t*t*t*t**tt*t*tﬂ'ttt*ti*****t*t*******t**t/

void Init ( void )

{

clrscr();

Init_DA_Brds (brdNum, &brdCode):;
DIG_Prt_Config (brdNum, PORTDIOB, O,
DIG_Prt_Config (brdNum, PORTDIOA, 0,

DIG_Out_Port (brdNum,
DIG_Out_Port (brdNum,

PORTDIOA, 0);
PORTDIOB, 15);

} /* Init */

1);
1);

// Turn off trigger pulse
// Turn off all solenoid pulses

/****t*t*********Qt**t'***tt*!****t*ttt*t**t**t*****’*t****t**t*t*tt*********,



/*® REFRESH ./
/™ */
VA A e ety

int SRQ ( void )

(
int continu = 0Q;
int option = 0;
int choice = (;
do
{

clrscr(};

printf ("Choose an option.\n"
* 1l: Trigger one solenoid.\n"
* 2: Run the experiment.\n"
o \nl
" Q: Quit.\n"):

scanf(*%s”*, &option):;

option = toupper(option);

switch (option) {
case ‘1l‘: choice = 1; continu = 1; break;
case ‘2°': choice = 2; continu = 1; break;
case ‘Q': choice = -1; continu = 1; break;
default: printf(*"Bug in SRQ!\n-*
* %d was an illegal option. Try again.\n®,
option); delay(2000); continu = 0; break:;
}
}

while (!continu);

return {choice);

} /* SRQ */

/***********‘**l'***********‘k********************t‘******’*f‘l‘*f'**i!I*****Q*t't*/

/> VALID SOLENOID ? */
/™ */
/t**’i*f!*fkt*****tf***f**tif*f!’l‘*tfii**fi*itfi**f**ft*ttt*t****w***w*ft*?***/
int validSclencid ( int solenoid )
{

if { (solencid>0) && {(solenoid<ll) )

return 1;
else
{

printf ("You entered an invalid solenoid value (%d). Try
again.\n", sclenoid};
printf ("Press any key to continue...\n");
getch{);
return 0;
}

} /* ValidSolenoid */

/t**t***tt*ttkt******t*'4'ttf**********#*t*tt*t*t*****t*t**i’*tt***t*i*****t#t*#/

VA TURN ON SOLENOID x7
V fad . */
/* This procedure turns on the solenoid given by the input parameters */

/* 'source' and 'perttype’'. The source is normaly limited to one of the */
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five digits and the perttype is limited to either a normal perturbation
(perttype = () or a slip (perttype = 1).

The trigger pulse is HIGH to signal the rising egde of the pulse and
HIGH (1) at the end to signal the end of the pulse. The length of the
first HIGH pulse signals which of the five soruces was signaled. The
different trigger signals are listed here:

U W =

e e e e

/f*#************i**i*tt*****’tttt****t*******t*ttt***t*t**t***t**t**t********/

void TurnOnSolenoid ( int source, int perttype, int onTime, int offTime )

{

int solenoid;
int Tstep;

solenoid = 2*(source-1l) + perttype:
Tstep = onTime/6;

// Turn on trigger; turn on solenoid
outport (ATMIO_BASE+DIGOUT_REG, ((1l6*solenoid)+0x0F));

delay (source*Tstep):
// Turn off trigger; leave solenoid on
outport (ATMIO_BASE+DIGOUT_REG, (l6*solenoid)+0);

delay ((5-source) *Tstep);
// Turn on trigger; leave solenoid on
outport (ATMIO_BASE+DIGOUT_REG, ((16*solenoid)+0x0F)});

delay (Tstep);
// Turn off trigger; turn off solenoid
outport (ATMIO_BASE+DIGOUT_REG, O0xFO);

// Leave off for specified time
delay(offTime) ;

} /* TurnOnSolenoid */

/*************t*tt'k**t*t**'k*’***ttt*************ti***t**t*************tt*****t/

/"
/*
/*
/*
/t
/*
/t

SETUP

This procedure is run when the user wishes to calibrate one of the

solenoids for an experiment. The user is prompted for which solenoid to

trigger and then that solenoid is triggered 'perts' times at a rate of
2 pulses per second to avoid burning out the solenoid.

/t**************t*t**t*t*t*ﬁ*********t*t**t*i’k****t**t***********it**ttt**tt*/

void SetUp ( void )

{

int perts = 50;
int halt = 0;

int option = 'z';
int continu = 0;
int i;
div_t x;

int digit;
int perttype;
int vlocation;
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clrsex();
do

{
printf ("Pick a solenoid to calibrate (0 - 9) or 'Q' to quit.\n");

scanf (*%s®, &koption):;
option = toupper(option);

switch (option) {

case 'Q':

case *1°':

case '2':

case '3':

case ‘'4':

case 'S':

case '6':

case '7':

case 'B':

case '9': option = option - '0’'; continu = 1; halt = 0;
break;

case 'Q': option = -1; continu = 1; halt = 1; break;

default: printf(*Bug in SetUp!\n"

* %d was an
illegal option. Try again.\n*, option); delay({2000}; continu = 0; halt = 0;
break:;
}

while (!continu):

if (thalct)

{
x = div{option,2);
digit = (int)x.quot+l;
perttype = (int})x.rem;

// Draw markers indicating the number of perturbations to occur
ylocation = wherey();
gotoxy (1, viocation+l):;

for (i=0; i<perts; i++)
princf(*.*);

gotoxy(l,vlocation+l);

// Allow the perturbations to begin. Mark off the perts. as they

occur.
i=20;
while ( (i<perts) & !kbhit() )
(

TurnOnSolenoid{(digit, perttype, Ton, (500-Ton));
printf ("**};
i++;

}

} /* SetUp */

/**ﬂ'*f*if#'k*********t*************wr***w************‘k*#**tl‘i***t*'k***tt**t*ti/
/> RUN EXPERIMENT */
/* */
/* This procedure prompts the user for whether they wish to run a ‘normal’' */
/* or a 'slip' perturbation experiment. The digits are then perturbed one */
/* at a time in a cycle so that each digit gets perturbed once per second. */
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/® */

/**i**ttt***'t**t****ttt**ttti**tt*t*it*t*tttitttt*****ttttt*t**tt*t**t**'ﬁ*tt/

void RunBExp ( void )

{
int perttype = -1:
int continu = -1;
int halt = -1;
int ilj;
int perts = 50;
int digit;
int ylocation;
do
{
clrscr();
printf (*"Pick a perturbation type.\n*
. 1: Normalin"
- 2: Slip\n*
a \n'
" Q: Quit\n");
scanf ("%$s", &perttype);
perttype = toupper (perttype);
switch (perttype) {
case 'l':
case '2': perttype = perttype - 'l'; continu = 1; halt =
0; break;
case 'Q': perttype = -1; continu = 1; halt = 1; break;
default: printf(*Bug in RunExp!\n*"

* %d was an
illegal option. Try again.\n", perttype): delay(2000); continu = 0; halt = 0;
break;
}

}
while (!continu);

if (!halt)
// Draw markers indicating the number of perturbations to occur

ylocation = wherey():
gotoxy(l, ylocation+l);

for (i=0; i<perts; i++}
printf(".");

gotoxy(1l,ylocation+l) ;

i=20;
while ( (i<perts) & !kbhit() )
{

for (digit=1l; digit<=NumOfSources; digit++)
TurnOnSolenoid(digit, perttype, Ton, (200-Ton));

printf("**);

14+

}
} /* RunExp */

R R s e e e e e e LY
/> MAIN .y
/% */

void main ()



int option;

Init();
do
option = SRQ():

if (option == 1)
SetUp()};

if (option == 2)
RunExp();

}
while (option f= -1);

Init();
exit(0);

} /* single2 */
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APPENDIX B : MATLAB PROCESSING FILE

This is the Matlab .m file that I used to process the raw digitized data from the two

tripolar, circumferential electrodes located on the median and ulnar nerves. The

processing that was performed on the multi-channel electrode arrays was identical, except

that there were more channels to process and plot, and from which to generate peak, area,

and time-to-peak features.

Spitcire.m

function spitcirc(newdr)

% an m-file to load the agscii data (*.vt) files, remove their DC offsets,
% rectify the signals, filter the data, decimate the data, and then spits
% out the peak amplitudes, the time of the peak amplitude, and the area of
% the neural activity burst. The data is “spit out* to a file named s.dat,
% where s is the name of the directory for the data. The data in s.dat is
% arranged in three groups of five columns. The area data is in the first
% set of columns, peak data in the second group of five columms, and the

% timing data in the third set of columns. The 1lst - 4th columns contain
% the data from the lst - 4th multi-electrode data.

olddir = ed

$newdr = input(’'Enter the new directory: ',‘'s');

newdir = ['cd ',newdr]

eval (newdir)

decvalue = 10;

filterlength = 44;

filterdelay = filterlength/2;

kw = kaiser(filterlength, 7.8573);
samprate = 20000/decvalue;
$ontime = 0.050;

fonsamp = samprate*ontime;
thalfonsamp = onsamp/2;

filtdelaysamp = filterdelay/decvalue;

$solenoid = 0.0023;

solenoid = Q;
transduction = 0.001;

conduction = 0.0005;

I

conductdelay

Tstep = 0.008;
synctime = 6*Tstep*samprate;

Wn = 0.04;

decimation value
Kaiser window length

Kaiser window with -80 dB sidelobes
and cutoff frequency = 400Hz =
0.04*pi

sampling rate = 20000/decvalue S/s

perturbation pulse width = 50 ms

perturbation time in samples

half width of the perturbation

filter delay in decimated sample

counts

2.3 ms to move the solenoid 3 mm

(3mm/ (0.35"/6.7ms) = 3mm/1.33m/s)
in the vertical direction

Set to 0 for slips; there is no

movement delay for a slip input

1 ms for transduction in the

mechanoreceptor

0.5 ms conduction time in the nerve

(100 m/s * 0.05 m)

0P dF oP OF 0P OF OF 0P OP OP OF OP OP OP OF OP df P e op

(solenoid+transduction+conduction) *samprate;

% total delay, not including filtering
% delays, in samples

$ 8 ms
% perturbation pulse width = 6*Tstep =
about 48 ms

%
% Cutoff frequency in pi radians for the
% High-pass Butterworth filter
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{B,A] = butter(10, Wn, ‘high'); % Coefficients for a 10" order,
% high-pass Butterworth filter

% Set the gains for the various channels.
medcircgain =100000;
ulnciregain =100000;

$figure;
clE:

% load the sync pulses and process it
load syncirc.vt;

syncdec = decimate({syncirc, decvalue};
syncdiff = diff (syncdec);

syncthresh = mean(syncdec};

clear synecire;

% plot the sync pulse
subplot(3,1,1}), plot(syncdec);
disp('syncirc loaded'):

% process the tripolar data from the circumferential data from the median cuff
load medcirc.vt;

medl = medcirc/medcircgain;

medloff = medl-mean(medl); % remove DC offset

medloff = £iltfilt(B,A,medloff); % filter out low-frequency interference
clear medl:

clear medcirc;

medlabs = abs{medloff); % rectify the signal

clear medloff;

medllp = conv(medlabs, kw):; % low-pass filter the signal
clear medlabs;

medldec = decimate(medllp, decvalue);

clear medllp;

medlavg = 0.75*mean(medldec);

subplot(3,1,2), plot(medldec); % plot the median cuff data

disp('medecirc loaded');

% process the tripolar data from the circumferential data from the ulnar cuff
load ulncirc.vt;

ulnl = ulncirc/ulncircgain;

ulnlcff = ulnl-mean(ulnl}; % remove DC offset

ulnloff = £iltfilt(B,A,ulnloff); % filter out unwanted noise

clear ulncirc;

clear ulncirce;

ulnlabs = abs(ulnloff}); $ rectify the signal

clear ulnloff;

ulnllp = conv{ulnlabs, kw): % low-pass filter the signal
clear ulnlabs;

ulnldec = decimate(ulnllp, decvalue);

clear ulnilp;

ulnlavg = 0.75*mean(ulnldec);

subplot(3,1,3), plot(ulnldec); % plot the ulnar cuff detail

disp(‘*ulncirc loaded’);

Yarray = [le-4 max{medldec) maxf{ulnldec)];
Ymax = max(Yarray):

Xlength = length(syncdec);

t = [1 Xlengthl:;



88

subplot(3,1,1), set(gca, 'X1im’', [0 Xlengthl]):;
subplot(3,1,2), set(gca,'Xlim', [0 Xlengthl]),
plot(t,medlavg*ones (size(t}), ‘r');
subplot(3,1,3), set(gca,'Xlim', [0 Xlength]), set(gca, 'Ylim', [0 Ymax]), hold on,
plot(t,ulnlavg*ones{size(t)), 'r'};

set(gca, 'Ylim', [0 Ymax])}, hold on,

% find the perturbation onset points and determine which digit was perturbed

perts = 0;
k=1;
looplength length(syncdiff) -synctime-filtdelaysamp-1;

datalength = synctime;

$for i=1l:looplength,
i=1;
while (i < looplength),
if ( {syncdiff(i)>0.5) & (syncdec(i+5.5*Tstep*samprate)>0.5) ),
onset = i;
if ( (syncdec(i+4.5*Tstep*samprate) > 0.5) ),

digit = 5;

elseif ( (syncdec(i+3.5*Tstep*samprate} > 0.5} ),
digit = 4;

elseif ( (syncdec(i+2.5*Tstep*samprate) > 0.5} ),
digit = 3;

elseif ( (syncdec(i+l.S5*Tstep*samprate) > 0.5) },
digit = 2;

else
digit = 1;

end; % if syncdec

if { ((onset+filtdelaysamp+datalength) < looplength) &
( (onset+filtdelaysamp) > 0) ),
medlarray =
medldec ( (onset+conductdelay+£filtdelaysamp) : (onset+filtdelaysamp+datalength))} ';
ulnlarray =
ulnldec{ (onset+conductdelay+filtdelaysamp) : (onset+filtdelaysamp+datalength))';
perts = perts+l;

disp('channels chopped'):;

% calculates the areas, peaks, and time to peak information
for all of the

% nerve recordings

medlarea = max(le-15, (sum(medlarray)-(datalength-
conductdelay) *medlavg) ) ;

fmedlpeak, medlindex] = max(medlarray):

medltime = (medlindex-filtdelaysamp-conductdelay)/samprate;

medldata = [medlarea medlpeak medltime];

subplot(3,1,2), hold on,
plot(onset+filtdelaysamp+conductdelay+medlindex,medlpeak, ‘ro');

ulnlarea = max(le-15, (sum{ulnlarray)-{(datalength-
conductdelay) *ulnlavg) ) ;

[ulnlipeak, ulnlindex] = max(ulnlarray):

ulnltime = (ulnlindex-filtdelaysamp-conductdelay)/samprate;

ulnldata = [ulnlarea ulnlpeak ulnltime];

subplot(3,1,3), hold on,
plot(onset+filtdelaysamp+conductdelay+ulnlindex,ulnlpeak, 'ro');

areadata = [medlarea ulnlarea];
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areadatan = areadata/norm{areadata);
peakdata = [medlpeak ulnlpeak];
peakdatan = peakdata/norm(peakdata) ;
timedata = [medltime ulnltimel;

digit
areadata
peakdata
timedata
areadatan
peakdatan

alldata(k,:} = [digit areadata peakdata timedata areadatan
peakdatan] ;

k+l;
i+(1.5*synctime);

end; % if onset

end; % if syndiff
end; % while i
savefile = [newdr,'c.txt'];
savestuff = ['save ..\',savefile,' alldata -ascii -tabs'};
eval (savestuff);

perts

olddir = ('cd ',o0lddir]
eval (olddir)
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APPENDIX C : MECHANICAL PERTURBATION SELECTIVITY
RESULTS

NOTE: how to interpret these numbers

o All numbers give the average selectivity for a particular recording setup with the vector

analysis or clustering method
¢ The four recording setups are as follows:
column labeled 8-channel: 8 channel recordings on 3 stimulated digits
column labeled median only: 4 channel recordings on 4 stimulated digits (I - IV)
column labeled ulnar only: 4 channel recordings on 2 stimulated digits (IV & V)
column labeled 2xTripolar: 2 channel recordings on 5 stimulated digits

¢ The first data element in the selectivity analysis columns represent the results using the
peak feature of the rectified-smoothed-averaged neural burst; the second data element
shows the results using the area feature of the rectified-smoothed-average neural burst.

From 14 to 30 individual mechanical perturbations are averaged in the measure.

o The shaded sections of the 8-channel column indicates that days on which the 8-
channel value was obtained by combining data from the two 4-channel recording

sessions.

e A “-1”in the day column represents the selectivity value obtained after using the
single-digit manipulator and a “*-5” indicates the value obtained after using the five-

digit manipulator.
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Table C.1: Selectivity indices for NIH19: A Multi-Contact Cuff subject

Day | 8-channel jmedian only ulnar only | 2xTripolar Notes
22 10/12 8/33 11/26 normal only. ulnar nerve
activity not recorded on digits
I&II. Signal from dII was used]
to fill in.
40 B9 13/15 5/16 9/6 normal only
103 § 3/6 4/100 10/33 € bad uln3; normal only
126 /8 /4 /12 € normal perturbation
s /13 /14 /25 € slip perturbation (out; #1)
/21 117 /38 € slip perturbation (in; #2)
: Bad Ulnar circumferential
154 8/15 2/2 < /% |Slips only; very noisy signal on
ulnar 1, gain set to 10,000 for
that channel to avoid clipping
on FM tape
180-1] 15/14 711 3/1 /P @ normal perturbation
9/11 5/6 3/2 @ slip perturbation (out; #1)
Bad Ulnar circumferential
180-5| 14/14 5/4 2/2 /% € normal perturbation
10720 8/19 5/5 @ slip perturbation (out; #1)
Bad Ulnar circumferential
Table C.2: Selectivity indices for NIH21, a MCC subject
Day | 8-channel {median only| uinar only | 2xTripolar Notes
14 7/14 1/10 5/13 normal only
35 7729 5/23 5729 € normal perturbation
4/38 3/6 5/28 € slip perturbation (out; #1)
; 7123 3/16 4/33 @ slip perturbation (in; #2)
84 12/ 14 7/5 13710 7/6 € normal perturbation
4/6 5/3 1/1 2/4 4= slip perturbation (out; #1)
94-1 577 2/2 4/5 4/5 @ normal perturbation
5/8 3/4 2/4 2/5 € slip perturbation (out; #1)
94-5 3/7 2/3 2/3 5/7 € normal perturbation
3/9 3/7 3/5 3/5 €= slip perturbation (out; #1)
99-1 8/8 7/6 2/4 3/5 @ normal perturbation
11/8 717 5/3 2/4 €@ slip perturbation (out; #1)
99-5 8/13 4/4 2/2 517 € normal perturbation
4/7 2/2 7/4 3/5 € slip perturbation (out; #1)




Table C.3: Selectivity indices for NIH22, a LIFE subject
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8-channel jmedian only| ulnar only | 2xTripolar Notes
e M 27/36 16/ 14 8/35 € normal perturbation
36/57 12724 5/52 € slip perturbation (out; #1)
28 /45 7178 4/35 € slip perturbation (in; #2)
/46 /13 /23 € normal perturbation
/55 /8 /20 € slip perturbation (out; #1)
ERAT /56 /25 /39 € slip perturbation (in; #2)
24-1 ) 22/23 21/20 9/13 3/4 slips only
5851 21/25 21/27 7/4 5/6 € normal perturbation
11/28 16/ 34 5/6 5/10 € slip perturbation (out; #1)
65-1| 20/21 28/28 16/11 6/7 € normal perturbation
14722 25/32 5/3 4/6 € slip perturbation (out; #1)
65-5| 16/25 20729 19/26 10/12 € normal perturbation
15728 17/34 13/11 4/8 € slip perturbation (out; #1)
72-1| 30/33 18/18 16712 9/9 € normal perturbation
25731 15720 4/8 4/6 € slip perturbation (out; #1)
flakey amp for medl, ulni&
uln2
72-5| 22/32 23730 11717 8/10 € normal perturbation
17728 16/30 11/9 4/6 <€ slip perturbation (out; #1)
flakey amp for medl, ulnl&
uln2
Table C.4: Selectivity indices for NIH23, a LIFE subject
Day | 8-channel [median only| ulnar only | 2xTripolar Notes
29 17/18 12/12 1177 9/10 € normal perturbation
10/18 5/9 5/9 4/8 € slip perturbation (out; #1)
43-1 13716 5/4 14/9 5/8 € normal perturbation
16/ 17 11/7 12/15 2/4 € slip perturbation (out; #1)
43-51 19/28 7/11 11/10 9/11 € normal perturbation
9/17 7/11 6/4 3/10 € slip perturbation (out; #1)
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APPENDIX D : RESULTS OF DIGIT IDENTIFICATION ANALYSIS
NOTE: how to interpret the numbers in the following tables

¢ All numbers give the percentage of correctly identified digits from the mechanical

stimulations.
e The four recording setups are as follows:
row labeled 8: 8 channel recordings on 5 stimulated digits
row labeled 2: 2 channel recordings on 5 stimulated digits
row labeled 4m: 4 channel recordings on 4 stimulated digits (I - IV)
row labeled 4u: 4 channel recordings on 2 stimulated digits (IV & V)
e Symbols used in this document:
—: Not recorded

+: High impedance signal; too noisy to be useful
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Table D.1: Digit identification accuracy for NIH19 using leave-one-out analysis

Raw data Normalized
Day Area Peak Area & Area Peak Area & | Perts
(%) (%) Peak (%) (%) (%) Peak (%)
154S| 8 76.3 63.2 86.0 72.8 56.1 71.1 23
2 L L 5 L o L L +
4m 944 74.4 92.2 85.6 65.6 85.6
4u 50.0 71.7 76.1 54.3 69.9 76.1
180N 8 879 80.7 914 83.6 83.6 88.6 28
1 2 L 3 L L < de L o
4m 75.9 64.3 84.8 73.2 74.1 84.8
4u 83.9 100 100 100 100 100
180S-] 8 829 77.1 81.4 814 72.1 78.6 28
| 2 L < L oo L o
4m 67.0 61.6 64.3 759 65.2 75.0
4u 78.6 100 100 98.2 100 100
180N 8 76.7 74.4 82.0 774 78.2 84.2 27
5 2 o L + & < +
4m 415 52.8 60.4 72.6 71.7 79.2
4u 70.4 59.3 64.8 98.1 92.6 100
180S-| 8 95.5 76.7 97.7 90.2 774 88.0 27
5 2 L % o L o % <*
4m 93.4 65.1 94.3 84.9 70.8 83.0
4u 100 92.6 100 92.6 92.6 96.3

Note: N-1 = stimulation provided by normal inputs with ore-digit manipulator; N-5 =

stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation

provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip
inputs with five-digit manipulator.
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Table D.2: Digit identification accuracy for NIH19 using leave-all-in analysis

Raw data Normalized
Day Area Peak Area & Area Peak Area & |Perts
(%) (%) Peak (%) (%) Peak
(%) (%)
154S| 8 81.6 71.9 939 76.3 63.2 84.2 23
2 L 3 + < L 2 L
4m 95.6 77.8 989 87.8 71.1 91.1
4u 60.9 76.1 84.8 674 73.9 84.8
180N 8 914 85.7 93.6 87.9 87.9 95 28
1 2 L < < . L L
4m 76.8 73.2 88.4 76.8 76.8 90.2
4u 76.8 100 100 100 100 100
180S-{ 8 87.1 82.1 92.1 85.7 77.9 86.4 28
1 2 + 3 + L < +
4m 67.9 67.0 75.0 78.6 69.6 83.9
4u 83.9 100 100 98.2 100 100
I8ON-{ 8 85.7 774 90.2 82.0 83.5 88.7 27
5 2 + L o+ L < +
4m 55.7 61.3 67.0 78.3 76.4 83.0
4u 72.2 64.8 74.1 100 96.3 100
180S-] 8 98.5 84.2 98.5 92.5 79.7 95.5 27
5 2 L 2 % L 3 L
4m 96.2 67.0 98.1 87.7 78.3 89.6
4u 100 96.3 100 94.4 94.4 96.3

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 =

stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation

provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip
inputs with five-digit manipulator.
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Table D.3: Digit identification accuracy for NIH21 using leave-one-out analysis

Raw data Normalized
Day Area Peak Area & Area Peak Area & |Perts
(%) (%) Peak (%) (%) Peak
(%) (%)
14N | 8 —_ —_ — — — — 14
2 — _— —_ — — —
4m 63.1 70.8 66.2 46.2 67.7 58.5
4u 78.6 67.9 60.7 714 75.0 75.0
35N | 8 — — — —_ — 14
2 — — — —_ — _
4m 67.9 62.5 66.1 51.8 446 55.4
4u 82.1 78.6 85.7 57.1 75.0 67.9
35S | 8 — — —_ — — — 14
2 — —_ — —_— — —
4dm 35.7 33.9 48.2 41.1 41.1 53.6
4u 92.9 71.4 82.1 60.7 53.6 67.9
84N | 8 79.7 75.2 83.5 79.7 74.4 82.0 27
2 43.6 459 474 43.6 36.8 40.6
4m 80.2 72.6 82.1 774 72.6 79.2
4u 87.0 87.0 87.0 87.0 85.2 85.2
84S | 8 72.2 30.1 68.4 60.2 31.6 59.4 27
2 40.6 29.3 39.8 32.3 27.8 27.1
4m 59.0 35.2 61.9 53.3 38.1 57.1
4u 35.2 48.1 51.9 70.4 51.9 68.5
94N-1| 8 72.1 59.3 66.4 60.7 579 61.4 28
2 43.4 37.7 40.9 32.1 28.3 32.1
4m 50 42.0 49.1 58.0 49.1 64.3
4u 73.2 71.4 76.8 66.1 69.6 67.9
94S-1] 8 76.4 69.3 80.0 70.7 65.7 70.7 28
2 35.2 28.9 36.5 27.0 27.0 34.0
4m 58.0 52.7 59.8 70.5 52.7 76.8
4u 76.8 62.5 76.8 75.0 60.7 75.0
94N-5) 8 83.3 64.9 83.3 72.8 54.4 71.9 23
2 42.1 42.1 48.1 39.1 353 429
4m 60.0 41.1 65.6 72.2 46.7 70.0
4u 89.4 80.9 93.6 76.6 66.0 70.2
94S-5] 8 89.5 60.2 88.7 78.2 48.1 77.4 26
2 67.7 44 4 66.2 33.1 23.3 30.1
4m 84.8 50.5 85.7 70.5 48.6 76.2
4u 96.4 72.7 96.4 87.3 67.3 80.0
99N-1|{ 8 64.7 51.8 68.3 63.3 45.3 64.7 28
2 30.8 27.6 28.8 35.3 26.3 29.5
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4m 550 54.1 62.2 60.4 52.3 65.8
4u 67.3 43.6 72.7 70.9 41.8 78.2
99S-1§ 8 70.7 68.6 1.4 59.3 614 62.1 28
2 33.8 31.9 294 325 28.8 319
4m 74.1 70.5 71.7 64.3 714 70.5
4u 554 64.3 33.6 58.9 60.7 53.6
99N-5] 8 97.7 86.5 98.5 85.7 69.9 87.2 27
2 554 42.3 523 315 34.6 26.9
4m 84.9 65.1 85.8 82.1 65.1 82.1
4u 88.9 79.6 87.0 79.6 59.3 83.3
99S-5] 8 92.5 63.9 89.5 63.9 504 66.2 26
2 50.0 39.2 49.2 37.7 254 36.9
4m 84.9 62.3 85.8 65.1 45.3 69.8
4u 100 90.6 100 71.7 88.7 83.0

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 =
stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip
inputs with five-digit manipulator.
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Table D.4: Digit identification accuracy for NIH21 using leave-all-in analysis

Raw data Normalized
Day Area Peak Area & Area Peak Area & |Perts
(%) (%) Peak (%) (%) Peak
(%) (%)
I4N| 8 — — — — — — 14
2 — — _ — J— —_
4m 69.2 754 78.5 52.3 69.2 72.3
4u 92.9 82.1 100 78.6 82.1 92.9
35N| 8 —_ — — — — — 14
2 — — — — — —
4m 76.8 69.6 85.7 57.1 62.5 75.0
4u 92.9 92.1 96.4 64.3 82.1 82.1
358 8 — — — — — — 14
2 —_ —_ _ — — —_
4m 46.4 48.2 64.3 48.2 57.1 64.3
4u 92.9 85.7 85.7 75.0 78.6 78.6
84N | 8 85.0 78.2 88.7 85.0 78.9 86.5 27
2 46.6 474 54.1 444 444 46.6
4m 84.0 74.5 86.8 78.3 76.4 83.0
4u 88.9 87.0 88.9 87.0 88.9 90.7
84S | 8 80.5 45.9 86.5 70.7 45.1 72.2 27
2 444 34.6 46.6 346 31.6 35.3
4m 64.8 41.0 70.5 61.0 43.8 61.0
4u 50.0 59.3 66.7 72.2 61.1 77.8
94N-1| 8 76.4 68.6 81.4 67.1 66.4 72.9 28
2 453 40.3 48.4 34.0 30.8 39.0
4m 51.8 46.4 58.0 62.5 57.1 75.9
4u 80.4 75.0 83.9 69.6 71.4 75.0
94S-1| 8 85.0 72.9 90.0 77.1 68.6 82.9 28
2 38.4 32.7 434 314 29.6 38.4
4m 64.3 59.8 70.5 75.0 57.1 83.0
4u 85.7 66.1 85.7 75.0 66.1 87.5
94N-5] 8 89.5 75.4 94.7 77.2 66.7 88.6 23
2 4.4 46.6 51.9 39.8 383 48.1
4m 64.4 50.0 76.7 76.7 55.6 84.4
4u 93.6 80.9 95.7 80.9 74.5 85.1
94S-5| 8 93.2 66.9 95.5 84.2 55.6 85.7 26
2 69.2 474 72.2 36.8 34.6 38.3
4m 89.5 61.0 89.5 74.3 54.3 81.9
4u 98.2 78.2 96.4 89.1 70.9 87.3
99N-1| 8 734 64.0 79.9 734 59.7 75.5 28
2 35.3 30.1 34.6 38.5 28.2 36.5
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4m 60.4 60.4 68.5 64.0 595 72.1
4u 67.3 56.4 80.8 80.0 564 83.6
99S-1} 8 80.7 75.0 83.6 64.3 69.3 70.0 28
2 35.0 33.8 350 32.5 30.6 36.3
4m 75.0 73.2 83.0 68.8 73.2 75.9
4u 62.5 73.2 67.9 66.1 67.9 73.2
99N-5| 8 98.5 91.0 100 88.7 79.6 94.0 27
2 56.2 43.8 56.2 33.8 36.2 38.5
4m 86.8 68.9 90.6 84.9 73.6 88.7
4u 94.4 79.6 96.3 79.6 63.0 90.7
99s-5] 8 94.7 71.4 97.0 714 60.9 82.7 26
2 54.6 40.8 53.8 377 26.9 40.0
4m 86.8 67.0 89.6 67.0 472 75.5
4u 100 94.3 100 73.6 88.7 90.6

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 =
stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip
inputs with five-digit manipulator.



100

Table D.5: Digit identification accuracy for NIH22 using leave-one-out analysis

Raw data Normalized
Day Area Peak Area & Area Peak Area & |Perts
(%) (%) Peak (%) (%) Peak
(%) (%)
3N | 8 — — — — — — 14
2 —_ — — — — —
4m 94.4 74.1 94.4 90.7 79.6 92.6
4u 100 96.4 100 100 100 100
3 | 8 — — — — — — 14
2 — — — — — —
4m 98.2 96.4 100 96.4 96.4 98.2
4u 100 100 100 96.4 100 96.4
SN | 8 — — — — — — 14
2 — — — — — —
4m 94.6 89.3 94.6 91.1 82.1 929
4u 100 96.4 100 82.1 100 100
9S | 8 — — — — — — 14
2 — — — — —_ —
4m 76.8 732 804 67.9 73.2 75.0
4u 92.9 85.7 92.9 60.7 85.7 75.0
24S-1] 8 99.3 91.3 98.7 98.7 89.3 97.3 30
2 38.9 38.3 41.6 33.6 33.6 33.6
4m 79.2 73.3 80.8 94.2 80.0 97.5
4u 100 95.0 100 100 98.3 100
58N-5§ 8 99.2 89.5 100 97.7 85.7 99.2 27
2 65.6 61.1 79.4 48.9 435 489
4m 100 80.2 100 99.1 85.8 99.1
4u 90.7 83.3 87.0 100 90.7 100
58S8-5] 8 99.2 78.2 99.2 99.2 74.4 99.2 27
2 63.6 44.7 59.1 538 38.6 52.3
4m 98.1 81.0 95.2 99.0 77.1 99.0
4u 90.9 78.2 89.1 90.9 76.4 90.9
65N-1] 8 97.9 98.6 100 95.7 95.0 96.4 28
2 51.6 . 50.9 57.9 40.9 43.4 44.7
4m 92.9 87.5 92.9 89.3 91.1 97.3
4u 100 100 100 100 100 100
65S-1] 8 92.9 97.9 100 93.6 95.0 97.9 28
2 47.8 37.1 47.8 35.8 34.6 42.1
4m 82.1 82.1 84.8 81.3 97.3 95.5
4u 98.2 98.2 100 100 98.2 100
65N-5| 8 82.0 82.0 81.2 83.5 78.9 78.9 27
2 75.6 62.6 76.3 50.4 534 50.4
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4m 76.2 81.9 76.2 76.2 81.9 76.2
4u 944 96.3 94.4 98.1 96.3 98.1
65S8-5] 8 97.0 83.5 99.2 97.7 85.0 98.5 27
2 61.8 427 64.1 413 30.5 45.8
4m 914 83.8 95.2 99.0 85.7 99.0
4u 100 89.1 100 100 90.9 100
72N-1] 8 98.6 99.3 99.3 100 100 100 28
2 494 46.9 52.5 444 43.8 47.5
4m 84.8 95.5 96.4 96.4 92.9 99.1
4u 100 100 100 100 100 100
725-1} 8 99.3 98.6 100 97.9 100 100 28
2 43.0 32.9 41.1 39.2 342 42.4
4m 83.9 92.9 95.5 92.0 89.3 97.3
4u 98.2 100 100 94.6 100 100
72N-5| 8 925 86.5 91.7 93.2 87.2 92.5 26
2 50.8 53.8 58.5 50.8 40.8 53.8
4m 99.0 924 99.0 98.1 95.2 100
4u 80.0 80.0 76.4 76.4 76.4 74.5
728-5] 8 99.2 82.0 99.2 97.7 81.2 98.5 27
2 56.9 . 40.0 59.2 385 34.6 38.5
4m 100 77.4 99.1 972 774 94.3
4u 100 100 100 100 100 100

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 =
stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip
inputs with five-digit manipulator.
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Table D.6: Digit identification accuracy for NIH22 using leave-all-in analysis

Raw data Normalized
Day Area Peak Area & Area Peak Area & |Perts
(%) (%) Peak (%) (%) Peak
(%) (%)
3N | 8 — — — — — — 14
2 — — — — — —
4m 94.4 77.8 100 944 79.6 98.1
4u 100 100 100 100 100 100
35 | 8 — — — — — — 14
2 _— — — — — —
4m 100 96.4 100 96.4 98.2 100
4u 100 100 100 96.4 100 100
ON | 8 — — — — — — 14
2 — — — — — —
4m 98.2 929 96.4 94.6 87.5 98.2
4u 100 100 100 85.7 100 100
9S | 8 — — — — — — 14
2 — — — — — —
4m 85.7 80.4 89.3 73.2 78.6 82.1
4u 100 92.9 100 78.6 92.9 92.9
24S-1] 8 100 92.7 100 98.7 92.7 98.7 30
2 40.9 40.3 443 342 342 36.2
4m 81.7 75.8 86.7 95.0 85.0 99.2
4u 100 95.0 100 100 98.3 100
S8N-5| 8 100 93.2 100 100 90.2 100 27
2 65.6 62.6 84.0 49.6 443 49.6
4m 100 82.1 100 99.1 86.8 100
4u 92.6 90.7 94 .4 100 92.6 100
58S8-5] 8 99.2 82.7 99.2 99.2 81.2 99.2 27
2 63.6 50.8 62.1 54.5 40.2 538
4m 98.1 84.8 99.0 99.0 79.0 99.0
4u 96.4 80.0 94.5 92.7 81.8 92.7
65N-1| 8 99.3 99.3 100 96.4 95.7 100 28
2 528 522 61.0 40.9 453 478
4m 95.5 89.3 94.6 929 93.8 98.2
4u 100 100 100 100 100 100
65S-1| 8 95.0 98.6 100 96.4 96.4 99.3 28
2 48.4 384 51.6 37.1 36.5 42.8
4m 84.8 82.1 85.7 83.0 98.2 96.4
4u 98.2 08.2 100 100 100 100
65N-5| 8 86.5 85.0 88.0 87.2 84.2 87.2 27
2 77.1 62.6 80.9 56.5 55.0 56.5
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4m 78.1 83.8 83.8 78.1 84.8 81.9
4u 96.3 98.1 100 100 98.1 100
65S-5| 8 99.2 90.2 100 98.5 89.5 99.2 27
2 63.4 48.9 66.4 49.6 33.6 51.1
4m 93.3 88.6 97.1 99.0 86.7 99.0
4u 100 96.4 100 100 96.4 100
72N-1| 8 99.3 100 100 100 100 100 28
2 50.0 494 57.5 45.6 45.0 51.3
4m 88.4 95.5 97.3 97.3 93.8 99.1
4u 100 100 100 100 100 100
725-1| 8 99.3 100 100 99.3 100 100 28
2 44.3 354 45.6 39.2 34.2 43.0
4m 84.8 95.5 97.3 92.0 91.1 97.3
4u 98.2 100 100 96.4 100 100
72N-5| 8 93.2 88.7 93.2 95.5 88.0 96.2 26
2 50.8 54.6 61.5 515 40.8 54.6
4m 99.0 95.2 99.0 98.1 95.2 100
4u 83.6 80.0 81.8 81.8 78.2 85.5
725-5] 8 99.2 85.0 100 97.7 85.0 99.2 27
2 58.5 44.6 63.8 40.8 39.2 41.5
4m 100 79.2 100 98.1 80.2 98.1
4u 100 100 100 100 100 100

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 =
stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation
provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip
inputs with five-digit manipulator.
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Table D.7: Digit identification accuracy for NIH23 using leave-one-out analysis

Raw data Normalized
Day Area Peak Area & Area Peak Area & |Perts
(%) (%) Peak (%) (%) Peak
(%) (%)
29N | 8 99.2 94 99.2 98.5 93.2 98.5 27
2 64.7 54.1 70.7 46.6 51.9 54.1
4m 79.2 75.5 79.2 96.2 91.5 97.2
4u 100 98.1 100 96.2 98.1 98.1
29S| 8 100 69.9 100 97.7 90.2 98.5 27
2 624 38.3 60.9 45.9 42.1 45.1
4m 85.8 50.9 87.7 96.2 575 97.2
4u 96.3 81.5 98.1 100 79.6 100
43N-1] 8 88.6 84.3 93.6 843 81.4 92.9 28
2 48.8 45.0 50.6 43.1 375 45.0
4m 51.8 51.8 61.6 67.9 75.9 86.6
4u 98.2 92.9 98.2 100 94.6 100
438-1] 8 90.0 86.4 92.1 89.3 85.7 90.7 28
2 34.0 27.0 358 25.8 25.8 314
4m 71.4 65.2 679 839 76.8 86.6
4u 100 89.3 100 100 98.2 100
43N-5] 8 94.0 84.2 94.7 95.5 88.0 95.5 27
2 64.9 59.5 69.5 56.5 49.6 51.9
4m 86.8 68.9 83.0 97.2 86.8 97.2
4u 94.3 77.4 92.5 96.2 774 92.5
438-51 8 96.2 79.7 97.7 94.0 76.7 94.7 26
2 61.5 38.5 59.2 30.8 26.9 29.2
4m 88.6 63.8 88.6 94.3 60.0 95.2
4u 77.8 759 83.3 77.8 75.9 81.5

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 =

stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation

provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip
inputs with five-digit manipulator.
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Table D.8: Digit identification accuracy for NIH23 using leave-all-in analysis

Raw data Normalized
Day Area Peak Area & Area Peak Area & |Perts

(%) (%) Peak (%) (%) Peak
(%) (%)

29N | 8 99.2 94.7 100 99.2 93.2 100 27
2 66.9 57.1 74.4 52.6 52.6 57.1
4m 84.0 77.4 84.0 97.2 934 99.1
4u 100 98.1 100 100 98.1 100

298| 8 100 76.7 100 98.5 92.5 100 27
2 63.2 40.6 64.7 474 42.9 48.9
4m 86.8 57.5 91.5 97.2 61.3 98.1
4u 98.1 85.2 100 100 81.5 100

43N-1] 8 90.0 87.9 97.9 879 87.9 97.1 28
2 53.1 46.3 55.6 43.1 394 475
4m 554 54.5 70.5 732 804 89.3
4u 98.2 94.6 100 100 96.4 100

43S-1| 8 93.6 90.7 95.7 94.3 89.3 96.4 28
2 37.1 333 40.3 30.8 29.6 36.5
4m 73.2 70.5 75.0 89.3 81.3 90.2
4u 100 92.9 100 100 98.2 100

43N-5| 8 94.7 88.0 94.7 95.5 91.7 96.2 27
2 67.2 59.5 73.3 56.5 51.1 59.5
4m 91.5 71.7 89.6 99.1 94.3 99.1
4u 94.3 79.2 98.1 96.2 83.0 96.2

43S-5] 8 98.5 85.7 99.2 94.0 81.2 97.0 26
2 64.6 39.2 63.8 354 30.0 37.7
4m 91.4 68.6 914 96.2 65.7 96.2
4u 81.5 81.5 88.9 83.3 75.9 85.2

Note: N-1 = stimulation provided by normal inputs with one-digit manipulator; N-5 =

stimulation provided by normal inputs with five-digit manipulator; S-1 = stimulation

provided by slip inputs with one-digit manipulator; S-5 = stimulation provided by slip
inputs with five-digit manipulator.
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