
UNIVERSITY OF ALBERTA

SPARE CAPACITY DESIGN OF

ATM VP-BASED RESTORABLE NETWORKS

YONG ZHENG @

A thesis submitted to the Faculty of Graduate Studies and

Research in partial fulfilment of the requirernents for the degree

of Master of Science

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EDMONTON. ALBERTA

FALL 1997

National Library ($1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. nie Wellington
OttawaON K 1 A W OîiawllON K 1 A W
Canada canada

Y o w iu. v a n rlfikrnu

d v U I NOhrlwmu

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or seU reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfichelfilm, de

reproduction sur papier ou sur format
électronique.

The author r e t a . ownershp of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels
may be printed or othenvise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Dedicated to my parents Siming Weng and Qiaoai Ulang

and my wife Tao Weng

Abstract

This thesis studies the capacity placement problem in ATM VP-based rcstorable networks.

Previous work on this problern has been heuristic in nature and / or has treated the ATM

spare capacity design problem with exact methods but in a manner that is essentially the

same as for STM path restorabk networks. in this thesis. we develop an optimization

approach which lets us exploit the inherently statistical nature of the tt-affic in ATM in

capacity planning for restoration. Oversubscription factors are defined as the ratio of total

VP bandwidth allocation aficr restoration to the total installed capacity of the span. An

oversubscription largcr than 1 .O is one of the unique properties of ATM networks. Therc

arc two pans in this thesis. Thc first pan is oricntcd towards capacity planning that would

permit controlled oversubscription of bandwidth. Threc integer program formulations arc

developed to achievc optimal capacity planning with a controlled ovcrsubscription.

Results show that significant capztcity savings con be obtaincd rclativc to STM if ATM

rcstoration is allowcd cven a modcst rcstoration-induccd oversubscription of bandwidth

on surviving spans. Then the objective of the second part is to give quantitative guidelines

towards dctcmining a realistic ovcnubscnption factor bascd on the resultant overload

implication at the cc11 level. The ovcrload is the wont case oversubscription aftcr resiora-

tion in ATM networks. Simulations arc completed with two traffic modcls: odoff fluid

rnodel and auto-regressive rnodel. We find chat the tolerable overload depcnds on rnany

factors, such as die class and traffic model. In conclusion. a restorablc ATM nctwork plan-

ning frarnework is proposed to exploit the intrinsic differences between ATM and STM

transport.

Ackno wledgments
1 would like to express rny sincere thanks to my supervisor. Dr. Wayne D. Grover for his

interest. advice. s u p p t and patience throughout my graduate program.

1 would like to thank my parents SiMing Zheng and Qiaoai Zhang and my wife Tao Weng

for their love and support during the work of this thesis.

1 would also like to thank thesc people of TRLabs for providing such a supportive envi-

ronment in which to carry out my research: Dr. Rainer irashko. Dr. Mike MacGregor.

Robert Hang and Dave Morley for thcir constructive suggestions. instructions and carcful

reading in this work. 1 lhank Dr. Bruce Cockbum and Dr. Ehab Elmailah for reviewing

this thcsis.

I would like to thank those people of T b b s for providing such a friendly environmcni:

Songsong Sun. Sing Cheng. Endy Ycung. Robert Hang. Huy Nguyen. Demetrios Stamatc-

lakis and Dmny Li.

Table of Contents

.............................*................................. Chapter 1 ATM Restoration Problem 1

1.1 Restoration Problem ... 1

1.2 STM Restot-ation Schemes 2

... 1.3 ATM Technology 4

1.4 ATM Restoration 6

... 1.5 Problem Introduction .. 9

Chapter 2 Spare Capacity Placement .. 13

2.1 Logical Vicw of VP-based ATM Restoration .. 13

2.2 Oversubscription Factor ... 14

2.3 Prior Work Involving Uncontrollcd Oversu bscription Effects 16

.. 2.4 Implcmentation of KST- Alg 19
2.4.1 Working VP Routing for KST-Alg .. 1 9

.. 2.4.2 Btickup VP Routing Assigrnent for KST-Alg 20

2.4.3 Calculation of Ovcrsubsctiption Faciors .. 21
2.4.4 Validation of Implcmcntation .. 23

.. 2.5 Results and Analysis of KST-Alg 25
2.5.1 Nctwork Invcstigatcd 25
2.5.2 Rcsulis .. 25

2.6 IP- 1 : Minimum Spare Capacity with Design Limits on Oversubscription 28

2.7 IP-2: Minimum Peak Oversubscnption with Given Spare Capacity 32

........... 2.8 IP-3: Minimum Total Capacity with Design Limits on Oversubscription 33

2.9 Related Bounds for Spare Capacity ... 35
2.9. i t'ppcr Bound Aigorithm ... 36
2.9.2 Lower Bound Algorithm ... 36

2.1 0 Results wi th iP Formulations and Bounding Algonthms 37
2.10.1 Test Nctworks 37
2.10.2 Rcsults of Spafe Capacity ... 3 8
2.10.3 IP-2 Resulis 39
2.10.4 IP-3 Rcsults ... 42

................. 2.1 1 S p m Capacity versus Tolerable Ovenubscription Design Trade-off 43

... 2.12 Comments on Tolerable Oversubscription 45

2.13 Conclusion .. 46

......................... Chapter 3 Toletable Overload Assessrnent .. 49

.........*...*....................... 3.1 Tolerable Overload Assessrnent Method 49

3.2 On/Off Fiuid Traffic Mode1 .. 52

3.3 Quivalent Bandwidth ... 54

.. 3.4 Cell Loss Ratio Consideration,,., 56

3.5 Simulation Design .. 57

3.6 Results 60
3.6.1 Simulation Paramcien ... 60
3.6.2 Effect of Pcak Rate ... 61
3.6.3 Effcct of Utilization ... 62
3 .6.4 Effcct of Mcan Burst Lcngth ,.. ... 63
3.6.5 Effect of Buffcr Sizc .. 63
3.6.6 Effect of Numbcr of Sourrcs ... 65

3.7 Buffer Fil1 Study .. 67

3.8 Au to-Regressivc Traffic Mode1 .. 70

.. 3.9 Guidclines for Tolcrablc Ovcrload Factor 71

3.10 Conclusion .. 74

Chapicr 4 Concluding Discussion ... 76

4.1 Compantivc Overview of ATM and STM Restowtion Dcsigns 76

4.2 ATM Rcstontion Design Methodology ... 77

... 4.3 Summary 80

Bibliography .. 84

Appendix A Abstract of Equivalent Bandwidth Calculation .. 86

................................ Appendix B Test Nctworks Topology and Demand Matrics Files 89

* Appcndix C KSTAIg P Formulation and Bounding Program 109

Appendix D Overload Assessrnent Simuiation Program .. 137

List of Figures

FIGURE 1 .
FIGURE 2 .
FIGURE 3 .
FIGURE 4 .
FIGURE 5 .
FIGURE 6 .
FIGURE 7 .
FIGURE 8 .
FiGURE 9 .
FIGURE 10 .

FIGURE 1 1 .
FIGURE 12 .
FIGURE 13 .

FIGURE 14 .
FIGURE 15 .
FIGURE 16 .
FIGURE 17 .
FIGURE 18 .
FIGURE 19 .
FIGURE 20 .
FIGURE 2 1 .
FIGURE 22 .

FIGURE 23 .

FIGURE 24 .

................................. Span and Path Restoration 3

.. Spare Capacity Sharing in ATM networks 7

Logical View of VP-based ATM Restoration ... 13

.................... KSrAlg Backup VP Capacity Allocation (Ideal Situation) 17

...................... KST-AIg Backup VP Capacity Allocation with Problems 18

... No Backup Routes in Working VP Design 20

....... KST-Alg Implementation Block Diagram ... 22

Oversubscription Factor Analysis of Net3 ... 27

.......................... Oversubscnption Analysis of Net3 with Xtol Set to 1.2 40

Oversubscription Factors in IP-2 Design for Net-3 with Sparing

.......*.*.............. from KST-Alg (3 1 4 sparc capaci ty) 41

............... . 9om Perccntilc Actual Ovenubscription vs Design Maximum 45

.................................... QoS venus Restoration Induccd Ovcrload Factor 51

............................ State Diagram of an On/Off Fluid ATM Traffic Mode1 53

Simulation Qucuing Mode1 .. 58

.......................... Tolerable Overload Factor vcrsus Peak Rate of Sources 61

Tolcrablc Ovcrioad Factor vcrsus Sourcc Utilization 62

..................... Tolerable Overload Factor versus Burst Length of Sources 64

........................ Tolerablc Ovcrload Factor vcrsus Buffcr Sizc of Sources 65

............................. Tolerable Overload Factor versus Number of Sources 66

............ Mean Buffer fil1 and CLR rcrsus Nurnkr of Sourccs (Traffrc I) 68

............ Mean Buffer fil1 and CLR versus Numbcr of Sources (Traffic 2) 69

Overload Factor vcrsus Number of Sources for AR Traffic

Mode1 (with buffer size of 1000) .. 72

Overload Factor versus Number of Sources for AR Traffic

Mode1 (with buffet size of 1000) .. 72

ATM Rcstoration Design Mcthodology ... 79

List of Tables

TABLE 1 .
TABLE 2 .
TABLE 3 .
TABLE 4 .
TABLE 5 .
TABLE 6 .
TABLE 7 .
TABLE 8 .
TABLE 9 .
TABLE 10 .
TABLE 1 1 .

Backup VP Design Validation for Span 8 of Net

Oversubscription Factor Validation .. 24

Test Network Characteristics 25

Span Capacity and Oversubscnption in Designs with KST-Alg 26

Spûre Capacity Requirement Comparison .. 38

Total Capacity Requirement Cornparison ... 42

S p a Capacity Requinment vs . Allowable Oversubscnption Factor 44

................................... Tolerable Overload Factor vs . Number of Sources 66

........................ Tolerable Ovcrload Asscssmcnt Factors 73

Comparative Overview of ATM versus STM Capacity Design Cases 77

......... IP Formulation Sizc for Al1 Testcd Networks 136

List of Abbreviations

ABR

AR

ATM

BER

B-ISDN

CAC

CBR

CLR

DCS

iP

ITU

ksp
LP

MIP

NNI

OAM

OC

QoS

STM

UBI

UNI

VBR

VC

VCC

VCI

VP

VPC

VPI

Available Bit Rate

Auto Regressive

Asynchronous Transfer Mode

Bit Error Rate

Broadband Integrated Services Digi ta1 Network

Cal1 Admission Control

Constant Bit Rate

Cell Loss Ratio

Digital Crossconncct Systcm

Integer Prognm

International Telecommunicatil s Union

k-successively-shortest link-disjoint paths

Linear Program

Mixed Linear Program

Nctwork Nc twork Interfacc

Operation. Administration and Management

Optical C h e r

Quality of Service

Spchronous Transfer Modc

Unspecific Bit Rate

Uscr Ncmork Interface

Variable Bit Rate

Knud Circuit

Virtual Circuit Connection

Vinual Circuit Identifier

Virtud Path

Vinual Path Connection

Virtual Path identifier

Chapter 1. ATM Restoration Problem

1.1 Restoration Problem

The requirements of today's telecommunication networks are changing rapidly with the

introduction of high-capacity transmission links. the increased amount of data and voice

traffic, and the role of tclecommunications as a major part of the world's infrastructure. A

failure occumng in such a large nctwork can result in a huge loss of bandwidth. loss of

service to users. and loss of revenue to operating companies. To ensure service continuity,

service providen have incrcased their cffom to avoid failures if possible and rcstorc

network failurcs quickly. At the centre of these efforts lies a challenging question: how

can service providen ensure affordable service continuity? In modem ~elecommunications

practice. this is formally called thc restoration prublem. Bccausc of thc huge economic

impact rnadc by network failurcs. fast and automated nstoraiion has bccomc an cssential

adjunct to the deployment of large scale telccommunication networks (1. 31.

Restoration is nonnally achicved by rapid (wilhin 2 seconds (21) and accunte rcrouting of

affected traffic over a set of replacement paths through the spare transmission capacity in

the nctwork. Thcse nstoration paths should have enough capcity tu nstm thc failcd

traffic. Also, thcsc paths necd to bc link disjoint. The restoration problem is significantly

different from the well-studied packet routing and cal1 routing problems and. therefore,

presents demanding real time computational challenges [I l .

An important network restoration objective is to reduce network redundancy. Network

redundancy is defined as the ratio of spare to working capacity in a nctwork [I 1. Networks

with large redundancies are Iess econornical because the spare capacity rcquircd to protect

them is expensive. Minimizing the capacity requirements of the networks while

maintaining the ability to restore the most common types of failures quickly. is a key

objective w hen solving the restoration problem.

1.2 STM Restoration Schemes

STM network restoration schemes are generally classified into two types: centralized and

distributed. For centralized xhcmes. al1 restoration routes are precomputed by a ccntral

controllcr, and thcn downloadcd to al1 DCS machines in thc network. In the case of a

failure. affccted nodes implement predetermined restoration routes and switch lost traffic

to those routes. Distributed schemes. notably the self-healing algon thm [1 1, cstablish a set

of replacement paths without centralized control. Distribuied algorithms rely on the

auionomous and indepcndcnt action of al1 nodes. When a transmission span failure occurs.

rcstoration messages arc exchanged bc twccn nodcs to rcs ton: the paths con taining the

failed span. The replacement connection is found by the nctwork elemcnts and rerouied

depending on network resources available at the time of the failure. The primary

advantage of distributed restoration is fast restoraiion and robustness cornparcd with other

restoration schemes [2] . Regardless of whether a network uses centralized or distributed

rcstoration to restore a failure. sufficient sparc capacity must cxist to accommodate the

restoration routes.

The restoration routes and the associated capacity design problern may involve either span

restoration or path restoration. Span restoration re-routes failcd working traffic over a set

Origin

Origin

(a) Original paths with failure

(b) S pan restoration

(c) Path rcstomtion

odcs selcctcd -1 En tocn A 8 œ
i Failcd span

tra c pa

FIGURE 1. Span and Path Restoration

of replacement paths betwcen the two end nodes of a failed span. Path restorution re-

routes failed working traffic over a set of mplacement paths betwecn each source and

destination affecrrd by a fdure . Figure I shows an example in which thc failurc of span

CD affects two working routes: A to F and K to G. Span restoration finds replacement path

scgments between nodcs C and D, whereas path restoration finds end-to-end replacement

paths for the demand pairs A-F and KG. Path restoration c m bc more capacity cfficicnt

than span restoraiion because it sprcads the replacement paths over a larger portion of the

network. increasing the alternatives available for making efficient use of network's sparc

capacity. However. path restoration is more cornplex to implernent than span restoration

because it may involve finding replacement paths for several source-destination pairs

instead of only one node pair.

1.3 ATM Technology

Asynchronous Transfer Mode (ATM) is the transport technology of the B-ISDN nctwork

proposed by the International Telecommunications Union (ITW). ATM defines the

switching. multiplcxing and transmitting of information over B-ISDN networks. Instead

of rcscrving time slots as in STM networks, information in ATM is packetized and placed

in short 53-byte cells that are multiplexed and transmitted asynchronously on the

transmission medium. ATM networks can suppon a variety of scrvices (cg.. ~clcphonc,

imagc, vidco and data). with a guaranrced Qualiy of Service (QoS).

A Virtuol Circuit Conneciion (VCC) in ATM is andogous to a virtual circuit in data

networks, such as an X.25 or a framc rclay logical conncction. The VCC is the basic unit

of switching in ATM networks. Aftcr a VCC is set up bctween two nodcs in the network. a

variable rate. full-duplex Stream of cells maintains a co~ect ion. For ATM. a second sub-

laycr of processing has bccn invoduced to deal with the concept of a virtual path. A

Virtual Path Connection (WC) is a bundle of VCCs that have the same endpoints. cg..

switching systems, LAN gateways. etc. Thus. cells flowing over dl of the VCCs in a

single VPC may be switched together. Becausc VP switching is inherently more efficicni

than VC switching [4], it is advantageous to switch a ceil in a VP. This ihtuai Path

concept was developed in response to a trend in high-speed networking in which the

control cost of the network is bccoming increasingly high in proportion to the ovcrall

network costs. The Virtual Path technique helps reduce the control cost by grouping

connections sharing cornmon paths through the nctwork into a single unit. Network

management actions cm then be applied to a smail number of groups of connections

instead of a large number of individual connections.

The packets in an ATM network an called celLr. The length of an ATM ce11 is 53 bytes.

consisting of a 48-byte information field and a 5-byte header. %O of the fields defincd in

the header are che Virtual Path Identifer (VPI) and the Vïrtual Circuit Ideniijîer (VCI).

VPI is a 12-bit ficld (8-bit in UNI), and the VC[is a 16-bit ficld that togethcr definc the

routing information ofa cell. As with any other packet-switching neiwork. routing of cclls

is performed at every node for cach arriving cell.

A diffemnce bctwccn STM and ATM networks is that ATM uscs siatisiical ntultipfexing.

Statistical multiplexing is a schcmc that rnulUplcxcs traffic bascd on the strong law of

large numbcrs [5] . This law States that for a nurnbcr of unconrlated flows, the bandwidth

necessvy to satisfy thc necds for al1 of the fiows stays nearly constant. evcn though the

amount of traffic in individuai flows can Vary. The reason for this is that ai any given

moment a few applications could be inmasing their trdfic while other applications could

be rcducing their traffic. According to the strong law of large numbcrs. these changes

roughly balance each other out. Compared with STM deteministic multiplexing, ATM

statistical multiplcxing can offer an improvernent in bandwidth utilization [SI.

1.4 ATM Restoration

Recently algorithms for ATM network restoration have been studied actively and the VP

has become the focus of ATM restoration (4.9. 101. When a VP is restored. al1 VCs inside

the VP are restored automatically. Then is no need to restom individual VCs. Bccausc a

VP can support up to 65536 VCs (recall that then are 16 bits in VCI field). restoration at

the VP level can greatly reduce the network management burden.

Another unique factor of VP-based restoration is that it is basicaily a path restoration

technique instead of a span restontion technique shown in Figure 1 because a VP

normally tnvencs scvcnl spans. As discusscd in Section 1.2, path rcsiontion has a

significant advantage in t e m of capacity efficiency compared with span restontion.

VP-based restoration is distinct from STM path restoration because the path establishment

and bandwidth assignment of a VP arc dcfincd rclativcly independentl y. Thc route is

dcfincd in the VPI table of the ATM switch. whilc bandwidth is logically dcfined and

rnanaged in the database of an ATM switch. In fact a VP route cm be established without

dcfming its bandwidth. i.e., a zero bandwidth VP may bc cstablishcd. This unique

property rnakes i t possible to establish multiple backup VPs that share the spare capacity

of a span. In Figure 2. for example. t w o k k u p VPs i and j arc cstablishcd for rcsroration

using span ab. The bandwidth rcquirement of each backup VP is 5 units. The routes of

backup VPs are set before a failure. In the case of a failure. bandwidth is allocated to the

needed backup VPs. If VP i fails. the backup VP for VP i uses the spare capacity on to

restorc the traffic in VP i. If VP i and VP j arc mutually independcnt. we only nccd to

allocate 5 units of spare capacity to span ab instead of 10 units. Thc sharing of spare

capacity on a span allows spare capacity to be more efficiently utilized [4].

Span ab:

spare: 5

FIGURE 2. Spare Capacity Sharing in ATM networks

Cornparcd with STM rcstoration. ATM msloration is more difficult due to the foilowing

reasons (31. First. the average number of vinual paths accomrnodated in a link rnay be

much largcr. The maximum number of VPs that can be nonnally handled by an ATM

switch is 4096 (1 2 bits in the VCI field in the ATM ce11 header for at a NNI). Thus the

number of restoration paths may be tremendously larger than that in STM nctworks. This

also rnakes a distributcd restoration schemc difficult to irnplement. By any type of

f l d i n g method. the network rnay easily become saturated with route searching

messages. The second difficulty cornes from ATM'S traffic characteristics. ATM networks

support a variety of traffic types such as CBR. VBR, ABR and UBR. Thcse traffic types

have their own quality of service requirements. For example, real time applications arc

very sensitive to ce11 delay variance, while data communications are more sensitive to ce1 1

loss. Consequcntly. ATM rcstoration must consider more factors than only bandwidth

requirement as in STM restoration. The third difficulty is that ATM uses statistical

multiplexing. in contrast to the trafic fiow in STM networks, there is no fixed bandwidth

associated with traffic Rows in ATM networks. Therefore. if some traffic flow is induced

on a link. without some engineered control and network design. the result could be a

severe overload on that link. an issue overlooked by some ATM restoration schcmes.

ln a previously proposed ATM restoration schemc [4]. a backup VP is pre-assigned for

each working VP. In the restoration process. traffic in a working VP is normally restored

to only one backup VP. This no-splitable propcrty can prevent VCs inside the VP from re-

routing to diffcrcnt routes, which incrrases the complcxity of restontion significantly. In

the backup VP. thcrc is no ce11 flow in normal operations. The nodes terminating the

working VP are also the nodes terminating the backup VP. When a failurc occurs. the

Sender nodc (downstrcarn sidc terminating nodc of thc failed VP) dctccts thc VP failurc

and sends a restontion message along the backup route. The Sender node then switches

the failed VP to the backup VP. Each node rhat nceives the restontion message captures

the appropriate bandwidth on thc links, and rctransrnits the message to the next node on

the backup route. When the Chooser node (upstrcam side terminating node of the failed

VP) finally nceives the restoration message. it switchcs traffic from the failed VP to the

backup VP. This completes. at lcast functionally. the rcstonition process for the failed VP.

There are. however, issues of bandwidth coordination to make this simple scheme perform

adequatel y.

1.5 Problem Introduction

Several spare capacity placement aigorithms for ATM VP-based restoration design have

been proposed 14, 101. They may be classified into two general categories. The fint

category of ATM capacity placement algorithms are basically heuristic in nature. In the

algorithm proposed by NTT' [4]. the shonest route is first set as the initial backup route for

each working VP. Then the aigorithm substitutes an alternative backup route for each

working VP one at a tirne and the spare capacity is calculated with this modified set of

backup routes. If a srndler total amount of spare capacity is achieved using this

substitution. the altemate backup VP is kept. Every VP backup is tested in this manner to

find which backup VP routes rcquire less spare capacity given the current statc of spare

bandwidth allocations already placed for prcviously dccidcd backup VP routes. This

process is repeated until no improvement cm bc made. In the resultant design. the spare

capacity of a span is forccd by thc larges1 capncity VP whose backup routc traverscs it.

This procedure is conccptually heuristic.

Thc second category of ATM capacity placement algorithms [6]. treats the ATM capacity

design problem with exact methods but in a manner that is essentially the same as for

STM path restorable networks [a] . This rncans that the span capacity plan aims to support

al1 restoration demands with an exact match of restoration bandwidth io failed working

VP bandwidth. This approach is certainly a valid and defensible bais for planning a

practical ATM network today. However. one can observe that this mats the ATM spare

capacity problem as esscntially equivalent to STM planning in that failed VPs are reroutcd

over backup VPs of exactly equal bandwidth allocation regardlcss of actual VP utilization.

This is analogous to STM type restoration of STS-n signais as integral entitics regardless

of their actual payload fill. There is no way to take signal fil1 into account in STM

restoration: each signal unit must be replaceci exactly or al1 services borne on the affected

transport signals experiencc hard outage. This hard outage aspect of STM does not pertain

to ATM because ATM uses statistical multiplcxing. however, two or more VPs of a unit

bandwidth allocation could technically be re-routed for restoration and converge on the

same link of unit spare bandwidth. Both VPs arc functionally or logically rcrouted as

rcquired. but the link bandwidth is ovenubscribed at this point. Thus. there may be an

overload effect in the link, Le.. the services in boih VPs rnay undergo a degradation on

QoS. This degradation. though conceivably scvere, but. unlike STM. is soft and

continuous. a degradation that aises if chc replacement bandwidth is not an exact match to

the failed working bandwidth. Moreover. the actual degradation that occurs depends on

the VP utilization at failurc time. If utilizations ;ire low. then the oversubscription of

bandwidth on restoration may not causc QoS to dcgradc bclow acccptablc scrvicc Icvcls.

ATM restoration planning could (if we wish to consider it) exploit a domain that is not

available ro STM. This planning would allow us io contemplatc bandwidth planning thnt

does not support strictly perfcct replaccmcnt of each VP's initial bandwidth allocation.

While not dismissing or minimizing the potential impact on sewicc, which could be

severe if oversubscription effccts are uncontrolled. it could bc of value to at least inspect

the trade-off between network capacity requirements in dependcnce on a limited

designed-in allowance for bandwidth oversubscription upon restoration. Specifically. our

interest will be in recognizing the inhercntly statistical nature of the traffic Rows in ATM

and fonulating the backup VP design process to permit a controllcd maximum amount of

convergent fiow oversubscription on spans during restontion. A partial analogy for this

linc of thinking is found in the airline business: most flights are slightly overbooked as

part of an overall optimum economic policy for revenue maximization. Most often. the

overbooking is unseen to users as some passengers almost always do not show up.

Sirnilarly in an ATM network. could we not slightly (or even aggressively) overbook the

restoration capacity we design into the network? Unless a failure occurs right when

working VP utilizations arc simultaneously at their peaks. the slight overbooking of

rcstoration capacity may be unnoticed by customers. Indecd. if the trade-off of nct

capacity versus tolerable oversubscription is steep. ancilor if mechanisms can be built in to

also prioritize VPs whcn restoration-induccd congestion is manifest. then ATM nctworks

with a controllcd degrce designcd-in bandwidth ovenubscription upon restoration may

well be part of an economically optimum ovenll strategy.

1.6 Outline of Thesis

The preccding discussions introduced the gcncral problem of ihis rcsearch, WC now

procced in detail as follows: Chaptcr 2 prescrits diffcrent types of original integcr program

fomulations and hcuristic algonthrns for the capacity placement problem in ATM

networks. First. we will quantitativcly define the oversubscription factor bascd on the

traffic nature in backup VP-based ATM restoration. Then. we will show that the

oversubscription effect can be very seven in some prior work, illustrating that the spare

capacity placement problem must be considcred cmfully. Three Integer Program (IP)

formulations will be given for (a) minimum spare capacity with respect to design peak

oversubscription. (b) minimum ovenubscnption with given spare capacity, and (c)

minimum total capacity with respect ro design peak ovenubscnption. In addition to these

IP formulations. two simpler algonthms are also presented to calculate reasonably tight

upper and lower bounds on the required spare capacity. We will then use these

fonulations to study the effect of spare capacity saving with various degrees of

oversubscription allowed in ATM restorable network planning. From the results we will

fi nd CI versubscription can bene fit the capacit y saving in ATM networks.

Chapter 3. thercafter. presents a study to aâdress the logical ncxt question of what the

tolerable overload factor can be based on the relateci cell-level overload implications. WC

study cell-level overload from the viewpoint of ce11 loss ratio degradation. The idea is to

dctemine a rcalistic level of cell-lcvel ovcrload effects and cell-lcvel performance

dcgndation due to merging rcstoration flows. This work is oncntcd toward the ce11 level

dependence on traffic types and numkr of VPs in merging rcstoration flows. Our aim is to

produce quantitative guidclines on the tolerable ovcnubscription value with which to

design a g ivcn backup VP-bascd rcstonble ATM nctwork. Two di ffcrcnt traffic modcls

will be used in the respective simulations: an odoff fluid mode1 and an auto-rcgressive

modcl.

Chapter 4 is a concluding discussion which proposes and discusses a new ovcrall

framework for ATM backup VP capacity design baxd on the i d e s and rcsults of the

previous two chapters. Finally a summary of the whole thesis will be given.

Chapter 2. Spare Capacity Placement

2.1 Logical View of VP-based ATM Restoration

To understand the traffic on an ATM span after restoration. a logical view of a span j is

illustrated in Figure 3. Assume that span j has a total instalied bandwidth allocation that is

based on its nominal working load and some reservation of spare capacity for restoration.

Unii ke in an STM ne twork. these working and spare bandwidth allocations are not

necessarily distinct integral transmission sub-units. e.g. DS3s or STS- 1 S. Rather. each

link's total bandwidth is vicwed as having becn planned as two allocations from the total

bmdwidth present. In case of another span i failurc. al1 VPs going through span i are rc-

routed to other spans. During restoration. some working VPs on the failcd span i may use

span j in their backup routes. These backup VPs werc logically prcseni on span j pnor io

failure. but then consumed no bandwidth. Only upon failure does the re-directed cc11

ATM span j

Workin

Working VPs

FIGURE 3. Logicai N e w of VP-based ATM Restoration

stream appear in each backup VP. Additionally. part of the restoration reaction of the

network may give span j a reduction in ce11 traffic: this occurs if one or more of the

working VPs on span j is aiso affected by the failure event. either upstream or downstream

of span j on the path of these working VPs. This is known as stub relcase here and was

previously used in a similar content in (81. Therefore, surviving span j may see both a

disappearancc of ce11 flows frorn some of its working VPs and a sudden onset of ncw cc11

strearns for activated backup VPs that traverse it.

In general. there are three types of traffic on an ATM span after restoration:

1 . traffic from working VPs. the undisturbed traffic drcady existing on thc span.

2. traffic from stub rclcase VPs. the traffic rcrouted away from the span. and

3. traffic from backup VPs. thc traffic choosing thc span in their backup routes.

2.2 Oversubscription Factor

We can now quantitatively define the restoration induced bandwidth oversubscnption

factor. The oversubscription factor X of a span j in respome to failure of another spun
j, i

i is dcfined as the ratio of total VP bandwidth allocation aftcr restoration to thc total

installcd capacity of the span. This cm be expressed as follows:

w here

Rrjmi is the total allocated bandwidth of VPS on span i whose backup route crosses

span j.

RsjSi is the total allocated bandwidth of VPs which disappear from span j because

they traverse the failed span i which happens to be either upstream or

downstream of span j. (This is called the stub release franc.)

W j is the total allocated bandwidth of working VPs on span j before failure.

Si is the total sparc bandwidth allocation on span j.

Note that XjOi is based on ollocated bandwidths of VPs throughout, but not the actual

traffic. The t em "overload" c m more prccisely dcscnbe the ratio of actual induccd traffic

to the link bandwidth. The actud ccll-lcvel ovcrload that occurs depends on the actual

utilization of cach VP involvcd, not thc bandwidth alIocations to the VPs. Thcrcforc, if

cach factor in the numentor wcre to be multiplied by a known cell-level utilization factor.

a m e overload mcasure rcsults. Howcvcr. for planning purposes, the worst case ovcrload

is obviously the sarnc as thc ovcnubscription factor. bus wc continue to rcfer to Xjei as thc

restoration-induced ovenubscnption factor since a value XmI will represent the designed

in maximum ovenubscnption of bandwidth and hence the maximum iolerable cell-level

ovcrload that could occur in the network as dcsigned.

It can bc appreciated that X,, 5 1.0 V ÿ, i) is a basic propeny of STM rcstoration

because this implies that the total bandwidth of paths available for replacement of failed

vanspon signals is always cqual to or greater than thc failcd bandwidth. In STM. therc is

no option of 'partly' replacing one or more failed STS-n signals. Either each is replliced

exactly by a rnatching restoration path or d l services borne by the givcn STS-n experience

immediate total outage. In ATM, however, the concept X,, > 1 .O is definitely conceivable

and technically meaningful. As argued. it simply means that span j's total bandwidth is

technically oversubscribed when span i fails. Unlike STM. this is a state of 'partial'

restoration in which al1 services may be affectcd to a degree in terms of ce11 loss and delay.

However. no service is imrncdiately tenninated or disconnccted because the restoration

path bandwidths do not exactly match the pre-failurc bandwidths. Whether cell-Ievel

performance exceeds QoS requirements under X,, > 1 .O will depend on the actual VP

utilizaiions and uaffic paramciers at the time of failure.

2.3 Prior Work Involving Uncontrolled Oversubscription
Effects

A heuristic algorithm of capacity placement in ATM backup VP-based restoration wüs

prcviously proposed by NTT in [4]. The main problcm of this mcthod, dcscri bed bclow. is

that while every working VP is assigned a backup VP route to yield a near-minimum in

total backup capacity allocations. there is no designed-in control to coordinate the backup

VPs with respect to oversubscription ax-ising from the set of working VPs that arc cut by

the sarne physical failures. The result is that while a logical replacement route exists to

functionally replace each failed working VP, the total cell-level traffic impinging on other

nc twork spans is uncontrolled.

In the algorithm described in [4], hereafter called KSrAlg, the shortest route is first set as

the initial backup route for each working VP. Then the algorithm substi tutes an altcmativc

backup route for one working VP. The spare capacity is calculated with this set of backup

routes. If a smaller total amount of spare capacity is achieved by using this substitution,

the substitution is kept. Every VP is tested in this manner to find which of al1 its possible

disjoint altemate routes requires less spare capacity given the current state of spare

bandwidth allocations akeady placed for previously decided backup VP routes. This

process is repated until no improvcment can be made. In the resultant design. the sparc

capacity of a span is forced by the largest VP whosc backup route traverses it.

. -

working-9 D - e VPi (capacity- 5) . .
y * * . spare: to bc usigncd O . .

I

FIGURE 4. KST-Alg Backup VP Capacity Allocation (Ides1 Situation)

Fioure 4 illustrates the capacity minimization principle and how ir results in uncontrollcd

oversubscription. In the example. span ab serves on the backup routes for both VP i

(capacity 5) and VP j (capacity 7). Assume KST-Alg has first considercd VP j and.

accordingly, then assigns span ab a spare capacity of 7 units. Once spm ab has 7 units of

restoration capacity assigned to it, KST-Alg will later realize that it can efficiently route the

backup VP for working VP i over span ab as well because more than enough capacity is

already reserved on ab to serve VP i which needs only 5 units of'bandwidth. This rcuse of

span ab in the example assumes that KmAlg also finds that the rest of the backup VP

route for VP i is suitably efficient on other spans as wcll. KST-Alg chooses a completc sct

of backup VPs which are efficient in this sense of muse of capacity.

Thus. functionaily speaking, a logical backup VP is planned for each working VP. Such

backup VPs would be fully adequate if one VP fails at a tirne. What is missing. howcvcr.

is consideration that if VP i and VP j happn to share the same physical span. for instance.

xy. then in case of its failure. VP i and VP j will be re-routed simultaneously onto backup

VPs which vavcrsc span ab as illustrated in Figure 5. Thcrefore. omitting any 'stub

Spm ab:
working-9

spare: to be assigned
j V ' f

Wj (capacity- 7)

FIGURE 5. KST-Afg Backup VP Capacity Allocation with Problems

rclease' cffects for the example. and assuming a W, of 9 units on ab. the rcsult of span cut

xy is a restoration-induced total allocation of 9 +5+7 - 21 units of capacity on span ab.

which only has a total capacity allocation of 9+7 - 16 units. Thus the restomtion induccd

oversubscription factor XdJy is 1.3 1 - 2 1/ 16. What is missing. thcn. are considcriitions on

how to coordinate the set of backup VPs from each physical span failure as a

simultaneously instantiated group of backup VPs. The npaned capacity results given by

KSrAlg arc extremely attractive and widcly publicized predictions of very low spare

capacity levels. In what follows. we will see that these low levels will be accompanied by

essentially uncontrolled restoration oversub~cription on the surviving spans.

2.4 Implementation of KST-Alg

In this section, KST-Alg was implemented to rcproduce and to test thc predictions of vcry

low spare capacity and to validate Our conccms of uncontrolled restoration induccd

oversubscription effects. The programs arc written in the C language and presented in

Appcndix C. In the rcst of this section. we first discuss thc working VP rouiing mclhod.

and then movc on io cxplain how CO use KST-Alg to design Ihc backup VP route for cach

working VP. Next, the oversubscription factor is calculated. Finally. wc givc a validation

to our calculation.

2.4.1 Working VP Routing for KST-Alg

Given a network topology and working dernands. we use the shonest path method to

design the working VP routes and working capacity on each span. For every dcmand. we

find the shortest path betwecn the end node pair, set up a VP dong the path and place thc

demand on dl traversing spans. If therc are several 'equal' distance shonest paths. WC set

up one VP on each. and split the demand into these VPs equally. Sumrning al1 VPs

requirernents on a span, WC gct the working capacity.

2.4.2 Backup VP Routing Assignment for KST-Al'
First. a subset of al1 distinct backup routes for every VP is found. i.e.. a subset of al1 span

disjoint routes between the end nodes of the working route. Considering that the number

of distinct routes in a network of S spans is 0(ZS). the number we use to test the result

typically has to be rcstricted in practice. Because of the properties of diffèrent networks.

we find that hop-lirnited or disiance-Iimited methods typically used are not realistic. For

example. with a given hop limit. there may be thousands of backup routes for some VPs.

while no routes can bc found for other VPs in somc networks. Conscqucntly, a k-

succcssive shonest distinct routes method is adopted to generatc a useful set of distinct

backup routc options for cach VP. Wc selcct several shortest eligible routes from this

su bsec in the rcsults prcscnted subscqucntly.

It is interesting to note that in some situations. there are no backup route options at ail. For

cxample. in thc samplc nctwork in Figure 6. if a VP (the dottcd line) terminates ai nodcs A

and B. thcn there are no span disjoint backup routes between thcm evcn though this

network is 2 or more connected throughout. To avoid this situation, we change the

working VP design as necded if such a situation is cncountercd. A VP with the shortest

FIGURE 6. No Backup Routes in Working VP Design

path is checked to see if it has any backup path. If not, we choose anothcr route for this VP

which. aithough it is not the shortest path, has a span disjoint backup VP. In this case

working & backup VPs are always possiblc to find as long as a cycle exists in the network

graph between their end nodes.

With these preliminaries completed, KST-Alg is then applied to chwse the best backup

route set to minirnize the total spare capacity. In the iteration for one VP. we substitute its

backup route with ali alternatives. The spare capacity of a span is forced by the largest VP

whose backup route traverses the span. If one route set leads to less total spare capacity.

this substitution is kept. This process is mpcatcd until no improvemcnt c m be made by

substituting backup routes for al1 VPs. A block diagram of KST-Alg irnplcmentation is

illustrated in Figure 7 on page 22.

2.4.3 Calculation of Oversubscription Factors

Aftcr dcsigning backup VPs with KST-Alg. WC check the oversubscription factors on ali

other spans for each possible physical span cut. Oversubscription data is obtained by

actual rerouting experiments on each designed network based on al1 possible span cuts.

Each affected working VP is remuted to its designed backup VP. We then apply al1 traffic

(including working. stub relcase and backup) in the definition in Equation 1 to obtain the

restontion-induccd ovenubscription on al1 spans for each span cut. For a nctwork

containing S spans. each of S-1 other spans has an ovenubscription factor upon a span

failure. Therefore, the total data set of oversubscription factors is an (S-1) by S matrix.

Next workin VP PP
1

The shortest route is set as initial backup VP route

No
backup VP s d t d d -

r

1
Alternative backup rouies i thrt saiisfy route condition

is found

I
1

Network rcsource amount s calculated when backup
VP route is changed to alternative route i

a

The oltcmative rouie i is odopicd c
ave al1 altcmativc routcs k e n chcckc .

**

No
set to minimum?

FIGURE 7. KST-Aig Implementation Block Diagram

2.4.4 Validation of Irnplementation

The irnplementation of KST-Alg was venfied by checking some program results with

manual calculations.

In the backup design, the spare capacity of a span is forced by thc largest capacity VP

whose backup route traverses the span. in the process. we Save chosen backup routes into

a file. Later, WC check the file and compare it with our manual calculaiion. For one span,

WC find al1 backup routes which use it. thcn verify if the sparc capacity is equal to the

largest backup VP. One of the five sarnple networks introduccd in Section 2.5.1 on

page 25. Net 3. was chosen to validate the results. For example. in Net 3. span 8 is picked.

We find the following VP's which usc this span. Thcir capacities an: shown in Tablc 1 :

TABLE 1. Backup VP Design Validation for Span 8 of Net 3

Apparently. the largcst VP in Table 1 is VP 78 and its capacity is 39.0. This is cxactly thc

spare capacity which we get from the program. Other cases were also used to validate the

program and we always cnded with the samc rcsults.

VP
19

76

84

In the ovenubscription factor validation, to calculate the ovcrsubscription on span j upon

a span i cut. we considered the following VPs which use:

(a) span i as working route and span j as backup route;

1 9 0 1 30.0 191 1 6.0 1 1 I I 1

capacity

30.0

28 .O

7.0

(b) both span i and j as working route:

VP
55

78

85

capacity

17.0

39.0

10.0

VP

72

79

87

capacity

37.0

5.0

26.0

VP
75

8 1

89

capacity
4.0

4.0

4 .O

(c) span j as working route, regardless of span i.

Then these items are put in the oversubscription factor definition.

Item (a) is rcstoration traffic in Equation 1. item (b) is stub release traffic and item (c) is

original working ttaffic on span j. After detennining (a), (b). and (c). we put them in

Equation 1 to calculate the overioad factor. For example, in Net 3, the oversubscription

factor of span 6 upon span 7 cut is considered. VP 37 (whose capacity is 4.0) traverses

span 6 and its backup route traverses span 7. Thus. span 7 has 4.0 extra uni& of traffic after

restoration. Table 2 surnmarizes al1 VPs which use span 7 as backup route and span 6 as

working route.

TABLE 2. Oversubscription Factor Validation

The sum of al1 traffic is 828. Ncxt we find stub rclease ~affic. In this case. only VP 55

(whose capacity is 17) uses both span 6 and 7 in its working route. It uses span 8 as

backup. Thus, this traffic is taken from span 7 u p n failing span 6. Span 7 has a working

traffic 684. Its working and s p ~ c capacity arc 684 and 441 nspectively. Givcn thcsc

values we cm get an oversubscription factor using Equation 1 of

684 - l 7 + 828 - 1.3288, which is what we get from the program.
684 + 441

.
VP

,

37

75

8 1

85

9 1

capncity

37.0

39.0
4

7 .O

30.0

capacity

4.0

4.0

4.0

10.0

6.0

VP
46

77

84

' 63

VP

38

76

82

87

capacity

44 1 .O

95 .O

7 .O
.--

4.0

capacity

6.0

28.0

82.0

26.0

VP
72

78

84

90

2.5 Results and Analysis of KST-Alg

2.5.1 Network Investigated

Five networks and demand matrices previously studied for STM restoration [8] were used

to test KSl-A@. The characteristics are detailed in Table 3. Snrallnet is a test network

which has a unifonn point-to-point demand matrix with two demand units between a11

node pairs. Net 1 is a U.S. rnetropolitan m a mode1 (afso known as the "Bellcore" study

network). Net 2 is a rnetropolitan m a mode1 in the Telus system. Canada. Nct 3 and 4

topologies and demands are based on European and US interexchange networks.

respecti vel y.

TABLE 3. Test Network Charactcristics

2.5.2 Results

Table 4 shows thc sparc capacity rcquircrnent with KSrAlg and the data for the

consequent oversubscnption cffecu. The spare capcity expressed in percentage

rcpresents the ratio of distance-weighted spare capacity to the distance-weighted working

capacity. Average oversubscription is the mean oversubscription value of al1 cases wherc

network

Smallnct

node

10

span

22

demand pairs

45

Working VPs
79

oversubscription factors arc greater than or equal to 1 .O. Maximum oversubscription is the

case with the largest oversubscription factor.

TABLE 4. Spare Capacity and Oversubscription in Designs with KST-Alg

1 Netî 1 54.3% 1 I .37 1 3.32 1

Network

Smallnet

The table shows that KmAlg generates a low rcdundancy. Smallnet has about 298

sparing. In metropolitan networks. sparing is up to 55%. white in long haul networks.

sparing is only up io 39%.

Thcse spare capacity prcdictions arc indeed much lowcr than those requircd by STM

nctworks [8]. This finding has gained much industry attcniion contributing to a gcncrd

notion that ATM-bascd restoration will require vcry much lcss capxity than STM-bascd

restoration. Ir is important. however. to note that these particularly low spare capacity

levels arc accompanied by significant and stnctly unconuollcd ovcnubscription effec~s on

surviving spans. W~th thc levels of oversubscription reaching 3 to 10 times nominal ~ a f f i c

load. ce11 loss and ceil delay in ATM networks would very likely be intolerable for many

applications [6].

KST- Alg
28.6%

Figure 8 iliustrates the dctailed ovenubscription factor andysis of Net3. The upper

diagram shows the oversubscription overall surviving spans when a span is cut. Its

stnicrure is as follows: for each spm considered as the failurc span i. on the x-axis. the (S-

Average
Oversubscription

1.14

Maximum
Oversubscription

1.42

Ovenubscription Factor vs. Failed Span in Net3
4.5 9

pdflcdf vs. Ovenubscription Factor in Net3

C
~ v e t S u bscription dctor 4

FIGURE 8. Oversubscription Factor Analysis of Net3

1) Xjei values expericnced by other spans are plotted left to right with a vertical line for

each value. Therefore, in the figure, the x-ais is labelled with the failure span namcs ünd

in the fine scale the oversubscription factors of al1 the surviving spans are shown. For

example. in a network of 10 spans. there would k ten clusters of nine Xjei values displayed

sidc by side to form the plot. The lower plot shows the probability density and cumulative

probability density functions of oversubscription values. These two diagrams demonstrate

that a large number of oversubscription cases is involved in KST-Alg design. The largest

oversubscription is about 4.16 in Net3.

2.6 IP-1: Minimum Spare Capacity with Design Limits on
Oversubscription

The capacity savings implication in Kfl -Alg relative to STM networks is very attractive.

but thc uncontrolled ovcnubscription implications ;ire probably unacccptable in practice.

Our aim now is to formulatc optimal capacity allocation mclhods that will still pain as

much ATM-relatcd capaci ty savings as may be sûfely possible givcn an allowed maximum

of restontion-induced ovenubscription. In Appcndix C. the C-language proprarns. werc

which written to gcneratc the lntcger Rognm tablenus, arc listcd.

The fint IP formulation optimizcs the sparc capacity placement of a rcstonble ATM

network given a peak iillowablc oversubscription factor in the network. The objective

funaion is:

Minimize: i 1 c j . s j }

Subject CO:

1. Sparing is sufficient to keep restoration ovenubscnption below the design limit. XmI.

for al1 failutes:

(X j , i ' x m l) W , j) E S U f j) (3)

2. Backup VPs are sufficient to meet the target restoration levels (Rf'Q) for al1 working

VPs :

3. Only one backup VP can be used for each working VP. i.e. VP flows are not split:

where akr' - 1 if the k'h route for backup of g r * q is chosen. othenvise ak r * 4 - 0.
The tnffic in a working VP c m not bc split in restoration. i.c. only one backup route to

restore a working VP. This rcquircment is the general industrial practice because splitting

a VP cntails a r cmgcmcn i of al1 individual VCs insidc the VP and can bc poicntially

very complicated.

The definition of variables is as follows:

- the cost of span j pcr unit bandwidth (the lcngth of a span may be includcd

here)

W, - the working capacity bandwidth allocation on span j

S, -. the spare capacity bandwidth allocation on span j

S - the set of al1 spans in the network

gr* ' = the working VP on route q for dcmand pair r

pr' - the portion of demand traffic going through working VP gr'

P" - the set of al1 distinct backup VP routes eligible for restoration of working

vp gr 'q

(' - the ph backup VP of the working VP gr'

a** ' - the portion of restontion traffic going through backup VP f' '

I g r * '1 - the bandwidth of the working VP gr*q

' 1 - thc bandwidth of the backup VP /'

51' 1 1 if the route of working VP gr' ' crosses span i. othenvise O

6rv - 1 if the ICh route available for backup of g r * q crosses span j
k~

R" - the target restorability Ievel of working VP gr* (1 .O used here)

D - total number of non-zero demand pain in the demand matrix

dr - nurnbet of dcmand units betwcen end-node pair r

Qr - total numbcr of working routes available to satisfy the dcmand bctwcen node

pair r

The main output variables arc S.. the spare capacity bandwidth allocation on al1 s p m .
J

Also obtained in the solution is the set of values (tL '1 which are the total bandwidth used

on rcstoration routc k for working VP gr* '. The 4 information effectively details the

restoration plan for the whole network which accompanies the optimai spare capacity

values. The '1 values stipulate for thc qrh working VP scrving part of the total dernand

on relation r. which of the k possible routes for its backup VP is actually used in the

design. To implcment Constmint 1 on X,, i . the ovcrsubscription levcl on span j in

response to the failun of span i. the above variables arc substituied for Xjei as shown

bclow:

Bccause the number of constraints and variables is large. it is gcncrally vcry timc-

consuming and memory-consuming to solve this mixed integer formulation. Several

methods have been iaken to accelerate the solving process. First. f," is eliminaied by

substituting Equation 4 for Equation 6. because the foxmer states the relation between

fkr* and utr*'. Thus WC c m only use akr* in the final iP formulation. This eliminaics

half of the variables and constraints and greatly decrcases the complexity. Second. several

features of the MIP solver prognm am taken advantage of. such as the meihod of branch-

and-bound [23], setting the priority of a: according to its traffic volume. Le. larger

capacity VPs are decided first. Because larger VPs dominate the spare capacity of a span.

if larger VPs are chosen first we do not have to significantly adjust the spare capacity to

accommodate srnaller VPs. Additionally. because only one route c m be chosen to restore

the failurc VP, we set the branch parameter to 'up' which causes the selected branching

variable to be set to one, and then forces ail the rest of the variables in the constraint to

zero, which eliminates al1 the infeasibilities in that consiraint [23]. Thcse techniques

greatly improve the speed of solving IP programs.

2.7 IP-2: Minimum Peak Oversubscription with Given Spare
Capacity

The second formulation applies to the case whce an existing set of sparc capacity

allocations has bccn givcn and the problcm is to find a set of backup VP allocations that

rcsults in the smallcst pcak ovcrsubscription of a rcstonblc ATM nctwork working within

the given pattern and mounts of available spare capacity. Al1 the variables are the same as

in IP-1. but S. is now an input instead of an output. This formulation can be used in
1

general to minirnize the maximum impact of mstoration in situations where there is not

enough spare capacity for cornpletc restoration without ovcrsubscnption.

The objective is:

Minimize:

where rna~(X,,~) is the peak restoration-induced ovenubscription resulting over al1 spans

for al1 span cuts from the assignment of backup VP routes with given spare capacity

allocations. XjVi is given by Equation 6. In order to achieve this minimum of maximum

value. which is not a linear formulation directly, a new variable Y is addcd. Y is defined as

the maximum value of XjBi. Therefore the objective is changed to minimize Y and the

following ncw constrainis an: addcd:

The objective is subject to thc following constraints:

1. Backup VPs art sufficient to meet the target restoration for al1 working VPs:

f tr .q - lgr.qlakreq - Rr*4 ~k E P q v (r , q) (9

2. Only one backup VP c m bc uscd for each workinp VP, i.c. VP flows are not split:

where akr* - 1 if the ph route for backup of gr* ' is chosen. ohenvise akr* - 0.

2.8 IP-3: Minimum Total Capacity with Design Limits on
Oversu bscrip tion

nie constraint system iP-1 pwnted in Section 2.6 is adequate for VP restorable designs

without jointiy considcring the routing of working demands before a failure. IP- 1.

however. can bc extendeci to simultaneously optimize ihe working VP routes and the

backup spare capacity placement. An IP formulation which minimizes the sum of working

and spare capacity must not only determine the spare capacity per span and the routing of

al1 backup VPs, but also the working capacity per span and the routing of al1 working VPs.

By adding the following two constraints to the IP- 1 formulation presented previously. the

solution will include the values of W,. and 4 which will now minimize the rotal

capacitycost required in a path restorable network.

The objective function now becomes:

Minimizc:

Subject io:

1 . The total capacity on the working VPs a1loca;ed to node pair r can carry al1 the requirc-

ment of tnffic dcmand rclation r:

2. Span j's working capacity is sufficient to meet the prc-failure dcmands of al1 working

VPs which cross it:

3. Only one working VP cm be uscd for each demand pair.

where f3c" -1 if working VP gr*q is used to carry the demand r, othcrwise B:' - 0.

Here we require that there is only one working VP for one demand pair. If therc is no

restriction of the working routes for each demand pair, there are too rnany working VPs in

the network. This inevitably increases the network management burden.

4. Sparing is sufficient to keep restoration ovenubsmiption below the design limit. XmI.

for al1 failures:

(X,, < X,,,) v (i , j) E S (i f j) (15)

5. Backup VPs arc sufficient to meet the t q e t restoration levels (Rr*q) for al1 working

VPs:

6. Only one backup VP can bc uscd for its working VP. i.c. VP flows are not split:

where a: - 1 if the ph r o u ~ for backup of gr'q is chosen, otherwise ak r * q - 0.

2.9 Related Bounds For Spare Capacity

In addition to KS7-Aig and the IP formulations above. two mon: simple algorithms an:

presented here to calculate reasonably tight upper and lower bounds on the required sprirc

capacity of a backup VP-based restorable ATM network. Thcse bounds also provide a

check on the IP-based rcsults io follow. niey may also be useful as rclativcly quick

procedures yielding fairly tight bounds on the sparing requirements of a giwn network

and working path VP routings in advance of detailed optimization. The lower bounding

procedure in particular may be useful to rapidly generate starting point dcsigns for large

networks, wilh the iP -based optimization used subsequently to reach a final complete

design.

2.9.1 Upper Bound Algorithm

The uppcr bounding aigorithm is based on KSï-Alg with a simple modification to strictly

eliminatc my rcstoration induced ovcrsubscription. In KSrAlg, the spare capacity of a

span is set as the largest VP requirernent. If scvcnl VPs sirnultaneousIy fail upon one span

cut. the nctwork may suffcr from very high ovcrsubscription. The sparc capacity on cach

span in this uppcr bounding algorithm is sct to the sum of al1 the working VP capacitics

that traverse it, rather than thc maximum of such values. For cxarnplc. in Figure 5 on

page 18. the upper bounding algorithm det-ived frorn KSTAlg says that span ab needs 7+5

- 12 units of capacity, rather than mar(75) -7 uni& as KST-Alg does. This results in an

over-provisioncd design with a guaranteed maximum oversubscnption factor of 1 .O.

2.9.2 Lower Bound Algorithm

The lower bounding algorithm is based on IP-1 with the constraint in Equation 5 relaxed

to allow real valued a. This converts the Mixed Integer Program as prcsented into a rcal-

valued Linear Program (LP) which c m be solved much more quickly in genenl. Whilc

serving as an LP relaxation of an IP problem. this MIP also represents a class of

rcstoration sysicm where VPs would bc arbitrarily decomposable for rcstoration rerouting.

This can be more concretely represented by letting individual VCs in a VP take diffcrent

routes in restoration. Thus, the LP formulation would assume that we are to use several

backup VPs to handle the total flow of each working VP. The sparing achieved is thus a

lower bound for the practical case where only one backup VP is available to restore each

working VP.

2.10 Results with IP Formulations and Bounding Algorithms

2.10.1 Test Networks

Thc nctworks uscd in tcsting KSrAIg arc now also used in the IP and bounding

algondims. In addition, two more networks used in other ATM rcstoration works [6] arc

used here. One is the metropolitan area network of Toronto. Canada while the other one is

a US long-haul nctwork. Note thnt the demand matriccs for thcse two modcls arc

artificially set and. therefore. are clearly unredistic. The dernands were assurned to be thc

sarne betwecn any IWO nodc pair.

2.10.2 Results of Spare Capacity

Table 5 summarizes the results of using the four capacity design and bounding algorithms.

TABLE 5. Spare Capacity Requirement Cornparison

1 1 1 IP-1 1 1 lower bound

1 Toronto (14.2% 1 53.7% 1 56.4% 1 49.2%

Network

Smallne t

I US 1 5.4% 1 60.9% 1 64.2% 1 60.4%

a. Solving IP- l for Smallnct is cxmmcly complicatcd. No tcsult can bc achicvcd within rca-
sonablc tirne.

KST-Alg
28.6%

The results wiih IP- 1 are based on an allowable oversubscription factor XtOI of 1 .O. KST-

M g has the minimum sparc capacity but has scvcrc and frcqucnt ovcrsubscription cascs.

IP- 1 falls bctwccn two bounding algorithms which providc a quick chcck and potentilil

starting points for the exact problem. The requircd spare capacity for P- 1 incrcascs

grcatly cornparcd with KSTAlg in ordcr to clirninate the ovcrsubscription cffec~.. In

metropditan networks such as Net l and Net2, sparc capacity found in IP- l incrcascs

about 60% from Kfl -Ab, while in long haul networks such as Net3 and Net4 the capacity

incmases about 100%. It is also noted that thc spare capacity requircmcnt for Toronto and

US networks given by KST-Alg is vcry low due to the fact that the demand rnatrix is

unifom and that there is one unit of demand for every node pair. Therefore. in each span.

the spare capacity is ai most one demand and shatcd by several VPs. In thcsc highly

shared capacity networks thc requircd spm capacity is very low.

@ X&-O

N/ka

upper bound
39.1 %

x , ~ , = ~ . o
24.9%

Another interesting result is the lower bound on spare capacity when we decomposc the

VP and distribute the traffic over severai routes. It is not surprising that it achieves a better

result than IP- 1. because tnffic is shmd by more spans and spare capacity is shared to a

greater extent. However. we find that thex is only a small reduction of the sparc capacity

by 1 % to 5% h m P- 1. Less than 196 capaciiy is saved especiaily in Net4. This implies

that we do not have very much room to Save the spare capacity. even if some elcgant

mechanisms wen to bc used to decompose and distribute the VP traffic at the VC level.

Spliting the VP traffic can be potentially very complicatcd. would not likely provide any

big advan tage.

Figure 9 shows the oversubscnption analysis in Net3 whcn using IP-1 with thc tolerablc

oversubscnption factor at 1.2 as an illustrated test case. The Xjmi data in cach is obtained

from scparaic prognms that conductcd rcstontion cxpcrirnents for cach span failurc using

the assigncd backup VP routes in cach design. The structure of this figure is the samc as

that in Figure 8 on page 27. Thus. the tight c lmp on Xjei valucs of 1.2 in this figure

validates IP-1 for its intendcd properties. The IP-l design ai X,01=I.2 has about 50% more

spare capacity than the KmAlg design and 30% spuc capacity lcss than thc equivalent

STM design. This capacity saving benefit cornparcd with Xmr=l .O is discussed in detail in

the next section.

2.103 IP-2 Results

Since KST-Alg allocates the lcast total spare capacity. it is of intcrcst IO sec how low the

peak oversubscription can be capped within this sparing if IP-2 is applied to the KST-AIR

Oversubscnp~ion Factor vs. Failed Span in Net3 (X,$.2)
1.4

pdVcdf vs. Ovenubscripiion Factors in Net3 (X , p 1.2)

Ovenubscription Factor

FIGURE 9. Ovenubscription Analysis of Net3 with XmI Set to 1.2

spare capacity design to improve the coordination of backup VP assignments to rcducc [tic

peak ovcrsubscription factor. Figure 10 shows this result for Net-3 which illustrates the

application of IP-2 to improvc on the worst-case oversubscription of the KST-Alg spare

capacity design but with cxactiy the same spare capacity placement that KST-Alg placed in

the first instance. By rearranging the backup VP assignments, I f - 2 manages to reduce the

peak ovenubscription of the KSï-Alg design to 3.04 kom 4.16 (in Figure 8 on page 27)

while retaining 3 1% spare capacity. The side effect of reallocating backup VPs to reduce

the peak ovenubscription is that there are more individual overload cases. When we

squeeze the maximum oversubscripiim down by applying iP-2. the restoration flows are

distributed more extensively over ail spans and then morc spans suffer from

ovenubscnption effects although the peak factor is lowcred.

Failcd Span

FIGURE 10. Oversubscription Factors in IP-2 Design for Net3 with Sparing
Fmm KmAlg (31 % spare capacity)

2.10.4 IP-3 Results

Before presenting the results of IP-3. a simple complexity analysis must be given of the

IP-1 formulation as related to P-3. Suppose a network has D demand pairs. W possible

working routes for a demand and B possible backup routes for cach working VP. The

complexity of P- 1 is o (B ~) because cach working VP (or demand) has B choiccs and

the total nurnber of working VP is D. The complcnity of IP-3 is O(because for

evcry combination of working VP arrangement the complexity is the s m e as IP- 1. There

are O(@) working VP arrangement combinations in total. F m this analysis. we can

deduce that it is hard to obtain completed IP-3 nins on networks of any signifiant size.

Thcreforc. only threc resulu of the tested nctworks are given hcrc. In Table 6, ihc capacity

shows the working. spye and total capacity in the testcd networks. Note that the total

capacity is normalizcd to the case of IP- 1 and shown as a pcrcentagc. Wc find that total

capacity savcd can be up to 10%.

TABLE 6. Total Capacity Requirement Cornparison

1 Toronto 1 100% 1 90.6% 1

Network

Net4

1

When the P is allowed to jointly optimize the placement of working and spare capacity in

a network. i t chooscs working paths which arc coordinatcd with the nctwork rcstoration

IP-1
@ X,,= 1 .O

100%

W-702758 1 S-646108

IP-3
@ X,O1= 1 .O

97.3%
W-737197 1 S-575858

*

process. This means that demands may sometimes be routed via paths longer than the

shortest path. This increases the working capacity in the network. but more spare capacity

can potentially be saved. For exarnple. in the Toronto network. the working capacity in IP-

3 is 7 100 units more than that in IP- 1. On the other hand. the spare capacity is 1 8866 less.

Overall. the total required rnay be reduced if working and spare capacity are jointly

minimized.

2.11 Spare Capacity versus Tolerable Oversu bscription Design
nade-off

Using IP- 1 it is possible to explore how the total span: capacity of the network rcsponds io

increasing Xmr. Table 7 summarizes the designs for cach of our test networks for X,oI

ranging up to 2.0. For comparative prcsentaiion. dl sparc capaciiy totals arc normalizcd to

that of Xmi= I .O casc for cach nciwork. The total sparc capacity decrcases rathcr quickly as

the design tolerance for restoraiion-induccd oversubscription increases. With 10% design

maximum oversubscnption of bandwidth on rcstoration (X,, - 1.1). spare capacity is

reduced by a range of 17% to 23%. At a more aggressive X,oI - 1.5. a full 60% to 70%

reduction of the spare capacity is obtained.

TABLE 7. Spare Capacity Requirement vs. Mowable Oversubscription Factor

XmI is. however. the strict peak oversubscription lcvel that WC will tolerate in the IP-l

Design Xmr
,

1 .O0

designs. This maximum Xj,i=Xml may occur for only one spccific combination of failure

span and restontion span in the design. It is. therefon. worth inspecting the number of

spans thai actually cxpcricnce a given level of ovenubscription within a design tolcrancc

of Xmr. Figure 1 1 considers this in tems of the 90th percentile of actual ovenubscription

Net 1

levels enperienced by spans over dl spsn cuts versus the dcsign ,Ym1. Ttic data shows. for

example. that at XmI - 1.4.90Z of the spans octually expericnce oversubscription no

grcatcr than 1.06. 1.08. 1.21 and 1.28. 1.33, 1.36 in Nets 3.4.2. 1, US and Toronto

respective1 y. This adds to the expectation that fairly significant capacity savings could be

Net 2
100% 1 100% 1 100%

Net 3
100%

Net 4

100% 100%

Toronto US

possible in practise without severe restoration-induced side-effects. through judicious

choice of X,,,[as a parameter for the basic design of the network [IO].

XmI. Design Ovcrsubscription Limit

FIGURE II. 9oth Pcrcentile Actual Oversubscription vs. Design Maximum

2.12 Comments on Tolerable Oversubscription

Here. we discuss the irnponant issue of the oversubscription factor which is tolenble in

network planning. The maximum acceptable icvcl of restoration-induced ovenubscription

would depend on whcther wont or average case VP utilizations and traffic statistics are

assumed for determining such a guideline. It may aiso be in part a policy or business issue;

if there is to bc strictly no degradation on restoration. then mar(Xj,i) = XmI = 1 .O and the

network restontion planning is equivalent to STM (i.e.. prfect bandwidth replacement).

In a network that is lightly loaded in terms of ce11 level utilization of the installed

bandwidth. some Xii> 1 could clearly be tolerated before QoS guarantees are affected

greatly. An altemate business point of view might be that al1 VPs should be allowed to

suffer to a degree during a network restoration event. The QoS impact also depends on the

time of the failure relative to the busy period and the equipment provisioning interval. At

the Pme of an acnial failure, each surviving span would assess its actual cell-level

utilization after allowing enough time for backup VP switching to occur. It would then

either do nothing. in which casc utilizadons were low enough to provide restoration for al1

services. or it would mark the lower priority VPs traversing it with a throttling indication

to be acted upon either by the VP sources themsclves or neighboring switches. All bis

considercd. r rclativcly high X,, might actudly bc practical. In practise the aggrcssivcncss

of each nctwork providcr in designing ATM rcstorable networks would be expected to

vary in this regard. Some quantitative guidelines as to the acceptable XmI will be obiained

from sub-studies of the theorcrical queuing delay and cell loss increasc cffccts for diffcrent

merging traffic types discusscd in the next chaprer. What is useful at this stage. howevcr. is

to provide a design formulation that would allow us to explore the capacity savings that

are obtainable in ATM restoration depending on thc maximum restontion-induced

overload factor that is considered admissible.

2.13 Conclusion

Based on a logical view of traffic in backup VP-based ATM restoration. the restoration

induced flow convergence oversubscnption factor wa quantitatively defined. The

oversubscription factor was defined as the ratio of presumed bandwidth for restoration to

the actual link bandwidth allocation. The technical property of an oversubscription largcr

than 1 .O is one of the unique properties in ATM networks.

The spare capacity placement algorithm KST-Alg proposed by NTT was implemented to

test it for the restoration induced ovenubscription effects. The spare capacity requirement

produced by KST-Aig is indeed much lower thm required by STM networks. It is

important to note that these particularly low spare capacity lcvels an accompanicd by

significant and strictly uncontrolIed oversubscription effects on surviving spans. Witb very

high levels of oversubscription. ce11 loss and ce11 delay in ATM networks would very

likely bc intolcnble for many applications.

The capacity savings rclativc to STM networks arc vcry attractive. but the uncontrollcd

oversu bscription implications arc probabl y unacceptable in practise. There fore. WC

lomulatcd optimal capacity allocation mcthods that w il1 still gain as much ATM-relatcd

capacity savings as safcly possible by giving us a controlling input on thc maximum

extent of the rcstontion-induced ovenubscription. The first IP formulation optimizes the

spare capacity placement of a rcstonblc ATM network given a peak allowablc

oversubscription factor in the network. The second fomulation applies to thc casc whcrc

an existing set of spare capacity allocations has becn given; the problem. then. is to find a

sct of backup VP allocations that results in the smallcst maximum ovcnubscription factor.

The third formulation tries to minirnizc the total (working + sparing) capacity of a

restorable ATM network with a given design peak ovenubscription factor. In addition to

these IP formulations. two sirnpler algorithms werc prescnted to calculate rcasonably tight

upper and lower bounds on the required spare capacity of a backup VP-bascd restorablc

ATM network.

The rcsults obtained indicated that the total spare capacity decreases rather quickly as thc

design tolerance for restoration-inducd oversubscription incrrases. With a 10% design

maximum oversubscription of bandwidth on restoration (Xlol - 1.1). spare capacity is

reduced by a range of 1 7% to 23%. At a more aggressive XlOI - 1 S. a full 60% to 70%

reduction of the spare capacity is obtained. This suggests that significant capacity swings

cm bc obtaincd relative to STM if ATM restoration is allowed evcn modcst rcstoration-

induced oversubscnption of bandwidth on surviving spans.

Thc tolerable oversubscription factor dcpcnds on sevcral considcrations. In part. this

factor is a nctwork operation policy. An aggrcssive nctwork operator may use a large

ovcrsubscription to Save more valuable capacity in the network. As the Iogical next stcp in

this study. a guidclinc govcming the choice of ovenubscription factors will be givcn bascd

on thc theorctical study of a qucuing mode1 of traffic. In the next chaptcr. somc

simulations are mn to find what XmI might actudly bc feasible.

Chapter 3. Tolerable Overload Assessment

3.1 Tolerable Overload Assessment Method

In the previous section, we found that a fairly significant amount of capacity can be savcd

if even a modest ovenubscription factor is allowed in the restoration spare capacity

placement design. The oversubscription factor X i j is only for network planning purposes

bccausc whelher a rcal failure causes an actual overload of traffic and a QoS degradation

depends on severai factors. If VPs are not simultaneously utilized at their peak levels. an

actual cell-level overload may not occur. Only in the worst case whcre al1 VPs arc fully

loadcd. docs the oversubscription factor indicatc the actual ovcrload in the nctwork. Thc

overload O can be defined as following:

O is the tolerable overload of thc nctwork.

X i j is the ovenubscription factors in the network,

U is the utilization factors of VPs in the possible failure cases.

T is the traffic type. e.g., CBR. VBR, ABR, UBR. in VPs. and

P is the traffic parameten, e.g., rate, burstiness.

Here we can find that lots of factors are involved to decide the tolerable overload. The

ovcrload illustrates the ability of allowing overload traffic for an givcn traffic.

The next question facing network designers/operators is, then, what is a reasonable

theoretical level of overload. Because spare capacity saving increases with a large

overload factor. we should use as large an overload factor as possible. Convencly. since

overload inevitably degrades network performance, it should not be arbitrarily large. A

design method should be provided which identifies the largest overload factor that does

noi degrade QoS beyond a manageable level. We therefore note that:

1. The network traffic types affect the tolerable overload factor greatly.

2. Different networks have their own characteristics.

3. Somc networks rnainly carry bursty traffic. whilc othcn rnainly carry

continuous traffic.

Thc tolcrablc ovcrload, of coursc, is not thc sarne in diffcrcnt nctworks.

In order io get the tolerable overload factor. let us first recall the definition of overload in

Section 2.2 on page 14. It is dcfincd as ihc ratio of allocûted tnffic to the link bandwidth.

As we know. tmffic multiplexing in STM networks is deterministic. On the contrary.

tmffic in ATM networks is statistically multiplexed. There is no easy way to get the traffic

volume directly. To overcomc this problem, WC borrow the conccpt of Equivalent

Bandwidth frorn Cali Admission Control (CAC) algon thms [1 91. Equ ivalent bandw idth is

defined as the effective bandwidth rcquirement of connections multiplexed into one link

which meets the required QoS. When a new traffic source is added. the network c m

decide to accept this new connection based on its equivalent bandwidth and available

bandwidth. Note that cquivalcnt bandwidth only depcnds on the traffic source. The link

bandwidth into which the traffic is induced is not relevant here. Equivaleni bandwidth of

the trafic shows the required bandwidth to accommodate the t r a c .

To illusirate how to apply the concept of equivalent bandwidth to the overload calculation.

consider a group of ATM uaffic sources that an: aggregated into a link. The trafic volume,

or the cquivalent bandwidth of the traffic. is 1 IOMbps. If we route this traffic to a link

whose capacity is 1lOMbps. it is obvious that QoS is normal and no performance

degndation occun. In this casc. thc overioad factor is 1 .O. Howcver if we routc this traffic

to a link whose capacity is IOOMbps. more cells are lost and thc delay increases due io the

qucuing ovcrfiow. In this casc. thc ovcrload factor is 1.1 (- I IOMbps/ IOMbps). If thc

capacity of the link is Icss. it is expectcd that ovcrload will bc high and the QoS

degndation will be more severc. as illustrated in Figure 12. Our overall objective in

planning ATM nctwork with ovenubscription is io find thc largest ovcrload factor so that

QoS is still at a tolerabk Icvel. This largcst overload value. ihcn. is callcd the tolerablc

overioad.

Not tolcrabk

Toltxabte

Nonna1

FIGURE 12. QoS versus Restoration Induccd Overload Factor

To gain some idea of the tolerable overload in practical circumstances. a group of traffic

sources and a finite queuing buffer are given. We first calculate the equivalent bandwidth

for those traffic sources whcn QoS is normal. Then we calculate the bandwidth when QoS

is still tolerable. Using the definition of overload. the tolerable overload factor for this

group of traffic sources is obtained by dividing the equivalent bandwidth by the least

tolerable bandwidth. How to calculate the bandwidth requirement to cnsure a givcn QoS

bccomcs the new problem. As therc is no analytical method to get the equivaient

bandwidth and least bandwidth 1191. we have to use extensive simulations to get these two

valucs.

To study the effect of traffic characteristics on the overload factor. we will change

individual system description variables. such as sourcc utilization and buffer size. while

kccping al1 othcr factors constant. Thcn. WC anaiyzc how the tolcnble ovcrload factor

rcsponds to these individual factors. For example. to study the effcct of sourcc utilization.

we uw a group of traffic sources. The overload factors are calculatcd in several cases

using utilization of cvcry source cqual to 0.1.0.2. up to 0.9. Analyzing the result. WC cm

find how thc overload factor changes with the source utilization. Using this method. we

c m get the effect of other traffic descripton.

3.2 On/Off Fluid Traffic Mode1

Scvcral rnodcls of ATM traffic have k e n under active tescarch. Hcrc we use the on/off

Ruid rnodel due to its simplicity and adequacy [II]-[I 31. This rnodel is also used in

cquivalcnt bandwidth bascd cal1 admission control schcmes [l 1 1. as illustrateci in

Figure 13. In the odoff Ruid model. there is a continuous altemation of active and idle

periods. In active penods. the source constantly transmits at its peak bit rate. In idle

periods. no ce11 amivals occur. The durations of two periods arc exponentially distributed

(i.e., in poisson fashion). Such a source model has the advantages of king both simple

and flexible as it can be used to either represent connections ranging from bursty to

continuous bit streams or approximatc more complcx sources.

FIGURE 13. Stste Diagram of an OnlOff Fluid ATM ltaffic Mode1

Thc on/off fiuid modcl uses threc tnffic descriptors:

1 . R . the peak bit rate. which is the bit ntc in active mode.

2. p . utilization. which is the percentagc of time in active mode. and

3. b. mean burst length. which is the mean length of the active mode.

Othcr descripton c m be dcrived from the abovc.

ni : mean bit ratc. m - Rp ;

p: transition rate out of active state. p - 1 /p ;

)c : transition ratc out of idle state. A - p/ (b (l - p)) . Thc mcan idlc lcngth is

3.3 Equivalent Bandwidth

Besides the parameters of the traffic model. the following factors are also involvcd in the

equivalent bandwidth calculation:

1. c , the link bandwidth,

2. B , size of the finite buffer, and

3. E, ce11 loss ratio (CLR).

Considcr n traffic sources (R , pi,bi) i - I ... n king rnultiplexed into a link with a finitc

qucuc (sizc B) and r link bandwidth c. In gcncrai, Ict Z be a rmdom variable dcnoting the

aggregatc bii ntc of al1 sources. Thcn, thc dynarnics of h e qucuc in thc sysrem arc dcfined

as follows:

1 . If Z < c and

a. the buffcr is cmpty. then

it remains empty;

b. the buffèr is not empty, then

its content dccrcases at a constant rate of c - 2.

2. If Z c , then

the buffer content does not change.

% I f Z > c and

a. the buffer is not full, then

the buffer content increases at a constant rate of Z - c ;

b. the buffer is full, then

the buffcr is still full, the cells are lost at a constant rate of Z - c .

The equivalent bandwidth E is defined as the minimum link bandwidth c. wherc the

probability of ceIl loss is less than sorne desind Cell Loss Ratio E .

The analytical derivation of cquivalcnt bandwidth for several rnutually independent

identical sources is sumrnarized in Appendix A. A decailed analysis c m be found in [13]

and [19].

In generd. the distribution of ihc buffcr content is of the fom:

where the zi and mi are. rcspectively, gcncralizcd cigenvalues and cigenvcctors

associated with the solution of ihc diffcrcniial equation satisfied by the staiionq

probabilities of the systcm. and the ai's are coefficients determincd from boundary

conditions [191.

The distribution of F (x) is completely determined from the values of the associatcd

cigenvalues. eigenvectors, and corresponding coefficients. There arc no expl icit

expressions for these quanti ties. so they must be detcrmined numericall y.

An important aspect of this problem is numerical stability. The inevitable errors incurrcd

during numerical integration. no matter how smail. are liable to excite the unstable modes

and lead to solutions of F (x) that biow up.

The anaiysis in previous paprs [Il]-[14] has shown that the most important factors

affecting equivalent bandwidth are the ratio of peak bit rate to link bandwidth. ~raffic

source u tilization. and mean burst length.

3.4 Ce11 Loss Ratio Consideration

Cell Loss Ratio (CLR) is an important factor in thc calculetion of cquivalent bandwidtli. 11

is obvious that cquivalcnt bandwidth is liugcr if the CLR requircrnent bccomes more

stringent. In this section. we discuss CLR in normal working conditions and a tolenblc

CLR to allow in a restored nctwork statc. In this simulation. we only considcr CLR due to

ihc qucuing buffcr ovcrflow (i.c., bit error rate cffccts arc ignorcd).

In a real nerwork. sevenl factors arc involved in the final system overail CLR. such as the

BER of the transmission mcdia. losscs in the ATM conccntrator/switch, and software.

Combining a11 thesc factors. thc overall CLR can be obtained which is dominated by the

worst factor. In our simulation. CLR is only due to queuing saturation. It is expected that

our CLR is of the sarne ordcr of magnitude as the overdl CLR. Thcrcfore. Our CLR should

be neither unnccessarily low nor ioo high.

Assumed values for some of the of major factors affecting the overdl CLR include bclow

O for the BER of fibrc optics. 1 0 - ~ for the end-to-end objective of thc undcrlying

physical Iayer DS-3 circuits, 1 O-'* for ATM concentrator or switch. and 1 O-' for queuing

of application level software [17]. Difierent values are adopted in their simulations for

equivalent bandwidih. such as the rnost stringent CLR service objective of 1 0 ~ ' ~ in (1 I l ,

more relaxed vduc of IO-' in [12]-[14]. lo4 [II] and IO-' in (181. In (1 11 . the authors

studied the effeci of the required ceIl loss probability ninging from IO-^ to 1 o - ~ . These

numbers give us a gcneral vicw of CLR requircment due to buffer saturation. In Our

simulation. l C 9 is used as the nominal working objcctive io calculate the quivalent

bandwidth. In case of ovcrload. a iolcrablc CLR of L O - ~ is assurncd. This is consisicni

with prcvious research [13, 16, 15.20j.

Let c-, and c - ~ denote the equivalent bmdwidth when CLR is IO-^ and o - ~

rcspcctivcly. The physical explmation is that a uaffic volume c - ~ is routcd io a link whose

nominal design capacity is ceS. Accordingly the ovcrload is:

3.5 Simulation Design

The system mode1 used in our simulation consists of a group of mffic sources. a finite

queue and a transmission link. Cells arrive asynchronously to the queue from the sources.

Thcy arc multiplexed on a FLFO basis and transmitted out onto the link. Thc finite queue is

served by the link.

C R w Phi' bN)
traf fic sources

FIGURE 14. Simulation Queuing Model

It should be cmphasizcd that this simulation can only obtain the CLR if a link capacity is

given. The opposite is not feasible by ninning only one simulation (Le.. to obtain the

cquivalcnt bandwidth with a given CLR requirement). Consequently. to get the bandwidth

rcquircmcnt for a givcn CLR. this simulation has to be run sevcral times with a set of

differing link capacity values. The capacity of the nearest CLR is regarded as the

bandwidth required for that given CLR. Based on this mechanism. we get the equivalent

bandwidth c - ~ and bandwidth cWS with the target CLR of IO-^ and IO-' . Thc

conrsponding overload factor is ciiiculiiied using Equation 20.

The traffic sources are rnutudly independent. Each source is a continuous altemation of

active and idle periods. The length of the active pend is a poisson process whose mcan

value is b. whereas the length of idle pend is a poisson disuibution whosc mcan value is

b (1 - p) /p. Within one period. the traffic is constant. It is either at its peak bit rate or

zero depcnding on its statc.

In this simulation. an event-driven mode1 is also used. The simulation is not driven by

"timer". but by "events". An event is any transition of any traffic source. The transition

can either move from idle to active or from active to idle. Between any two adjacent

events. the state of dl traffic sources is unchanged. During these events the aggregated

traffic rate of al1 sources is constant. A series of transition events is generated for al1

sources over the whole simulation time. The length of active and idle pcriods conforms to

the respective poisson process mcan values. After verifying al1 transition evcnts and tnffic

in al1 periods. we can calculate the buffer content. total uaffic. and cell losses according to

the analysis in Section 3.3.

The observation window of the whole simulation is set large enough to hold at les t

200.000 transitions of any source. Having lned sevcnl valucs for the window sizc. wc

have found that this number is large cnough to make the rcsults rcasonably stable. The

simu lai ion process was repeated sevcral timts wirh di ffercnt random number seeds ruid

the averagc ovcrload factor which raiscs CLR fmn IO-^ to IO-' was uscd as the final

result.

This simulation program is written using the C language in a UNiX environment. Its

correcuiess was checked by a separate Matlab implernentation which is. of course. much

slower.

3.6 Results

3.6.1 Simulation Parameters

The parameters for the on/off Buid mode1 used in this simulation were adopted from [I l] .

In [Il], sevcral Cali Admission Control (CAC) schemes are compared based on the sarnc

set of traffic descriptors. Traffic models are characterized by three descripton: peak rate.

utilization and mean burst length. The peak rate is normalized to a reference link

bandwidth. The burst length is in the unit of time intervals. A three-element vector (R . p ,

b) is used to npnseni them. For example. (0.08. 16%. 72) denotes a trafic mode1 whose

peak ratc is 0.08. utilization is 16% and rncan bunt lcngth is 72. In the simulation in [I l]

and Our simulation. two basic classes of traffic arc uscd. (0.05.208.80) class 1 and (0.1,

20%. 50) class 2. The nurnbers of class 1 and 2 traffic sources are 70 and 35, respectivcly.

In ordcr to calculatc the ovcrload factor for our purposes. the buffer sizc nomally choscn

is 100. Using thcsc values as basic panmeten. wc can change any one of thcm to analyzc

the cffect on the tolerable ovcrload factor. We will discuss the implications of the

following rcsults in Section 3.9. Ir is worthwhile to rcitcrate that the tolcrablc overload

factor is determincd for a traffic with a nomd CLR of 1 O-' and a CLR of lV5 during

restomtion. Before going on. it should be noted that tolerable overload factor inherently

shows the tolennce for a newly induced traffic of an existing traffic. For the existing

traffic. if wc can inducc more traffic along with it before dcgrading the QoS significantly.

the tolerable overload factor is high.

3.6.2 Effect of Peak Rate

To study the effect of peak rate, using 70 traffic sources whose utilization is 20% and

mean burst lcngth is 80. we varied the peak rate from 0.05 to 0.1 1. in Figure 15, we find

that by increasing peak rate. the tolerable overload factor incnases from 1 .O70 at peak rate

0.05 to 1.103 at peak rate 0.1 1. When the peak rate is low, it is expected that we may only

induce a low peak rate traffic. If a higher peak rate traffic is induced. CLR can easily

becorne intolerable. On the other hand. if the peak rate is high, the tolemce of high peak

rate traffic is increased. Consequentl y. the tolerablc overload factor is high. Therefore. for

nctwork planning. if the pcak rate of the network traffic is high. a high tolerablc ovcrload

factor should be chosen. On rhc othtr hand, if the network traffic has a low bit rate, a low

FIGURE 15. Tolerablc Ovetload Factor vcrsus Peak Rate of Sources

tolerable overload factor should be used. For example, an overload of 1.19 could be uscd

with peak rate of 0.10. while an overload of 1 .O8 could be used with peak rate of 0.06.

3.63 Effect of Utilization

Next we change the utilization for two classes of traffic. For class 1. whose peak rate is

0.05 and mean burst length is 80. and class 2. whose peak rate is 0.1 and mcan burst lcngth

is 50. the utilization was varied from 10% to 90%. In Figure 16. it is shown that when the

FIGURE 16. Tolerable Overload Factor versus Source Utilization

utilization is increased from 10% to 90%. the overload factor decreases from 1.1 14 and

1.152 to 1.002. When the utilization increases to 100% (i.e.. a constant rate tnffic). wc c m

expect the tolerable overload factor ta approach 1 .O. the rcason king that with low

utilization, and thus more idle pends in the network, we can induce more traffic.

Consequentiy a high tolerable overload factor may be used for ATM network planning.

In network planning, if the network is loaded with low utilization traffic, we can use a high

tolerable overload factor which would reduce the sparc capacity in the network. In the

case where the utilization is 100%, the tolerable overload factor is close to 1 .O.

3.6.4 Effect of Mean Burst Length

Next wc change the mcan burst lcngth for two classcs of traffic. For class 1 whosc pcak

rate is 0.05 and utilization is 20%. and class 2 whosc pcak rate is 0.1 and utilization is

20%. the mean burst length was varied from 30 to 100. In Figure 17, WC find that with the

incrcase of mcan burst Icngth. the ovcrload factor increases from 1 .O27 to 1 .O82 and 1.068

to 1.160 respectivcly. When the bunt length is high. the idle burst length is also high. This

implies that a long idle pcriod so chat more traffic can bc induced into the nctwork. For

nctaork planning. if thc network trnffic hm a long burst lcngth and thc idle burst length is

also high. we may use a high iolerable overload factor. Othewise. a low tolerable

overioad factor may be used.

3.6.5 Effect of Buffer Size

Ncxt we change the buffcr size for two classes of traffic. For class 1. whosc peak rate is

0.05. utilization is 206 and mean bursi length is 80. and class 2. whose peak rate is O. 1.

utilization is 202, mean bunt length is 50. the buffer size is varied from 30 to 100. In

Figure 1 8. as the buffer size is increased. the overload factor decreases from 1 . I l 9 to

FIGURE II . Tolerable Overload Factor versus Burst Length of Sources

1 .O70 and 1.173 to 1.1 15 rcspectivcly. This is consistent with the change of burst length. A

buffer size increase is equivalcnt to a dccrease in burst length. Ir is wonhwhilc to note thc

diffcrcncc bctween C.5 and C.9 and tolcrablc ovcrload which is thcir ntio. If thc buffcr

size is largcr. the equivalcnt bandwidth is smallcr but the tolerablc overload is also smallcr

as shown in Figure 18. T h i s is because the traffic becomes smwth if the buffer is larger. If

the buffer is infinite. the traffîc is constant and almost no ovcrload is allowcd. Thercforc,

the iolerancc to overlod. expresscd as a multiplier of thc baseline traffic is more limited

because the system is more efficient in the first place. if the buffer is large. For network

planning, if we have the sarne network traffic but the buffer s i x inside ATM switchcs is

enlarged, a low tolerable overload factor should be used. If the buffer size becomcs

smaller, a higher tolerable overload factor may be used.

FIGURE 18. Tolerable Overload Factor versus Buffer Size of Sources

3.6.6 Effect of Number of Sources

Thc cffect of the numbcr of traffic sources on the ovcrload factor is investigaicd hcrc. Thc

panmeters of traffic types uscd in the simulation is surnrnarized in Table 8. Each row

represents one simulation case. For examplc, row 1 shows the source type (peak of 0.05.

utilization of 20% and burst of 80) with number of sources ranging from 10 to 70. The

"Number of Sources" column shows the range of traffic sources. The "Source Traffic

w" column shows the characteristics of the traffic used in the simulation.

TABLE 8. Tolerable Overload Factor vs. Number of Sources

Source lkaffic Q p e

Figure 19 shows the founh row of the rcsults. In this graph. the pcak rate of the traffic

I Traffic (O. 1, 10%. 50). Buffcr 100

€rom
10

10

5

5

1'0 1's 20 25 30
Number of Sources

1 60 1 70 1 0.05 1 20% 1 80 1

pePk
0.05

0.05
0, 1

O. 1

to

70

70

35

35

FIGURE 19. Tolerable Overload Factor versus Number of Sourccs

sources is 0.1. utiiization is 10%. and mean burst length is 50. The buffer B is 100. In this

graph. wc show noi only the mean value of tolcrable overload factors. but also ihc

utiiization
20%

10%

20%

10%

burst
80

80

50
50

standard dcviation of the tolerable overload factors with different initiai random sccds.

From this example and the other four sets of results, we find that the tolerable overload

factors is not significantly affecied by the number of sources compared with other factors.

This implies. then, that in network planning. the tolerable overload factor is independent

of the number of traffic sources, and relies more on the other factors, such as source

utilization and source peak rate. From Our analysis. the tolerable overload is likely to

decrease with a large number of sources becausc the aggregated tnffic becomes more

constant.

3.7 Buffer Fil1 Study

In this phase. we study the buffer fiIl changes during simulation with respect to thc systcm

descriptions. Becausc the buffcr fil1 is nceded to compute the cell delay and delay

variance, we record it to show overload effccts on QoS. The mean buffer fil1 and cell loss

ratio arc studied when the numbcr of sourccs changes. The traffic descriptors uscd in this

simulation are pcdc ratc 0.05. utilization 20%. and burst length 80. The nominal nurnber

of sources arc 60 and 39. The respective link capacity is 0.95 and 0.55. The numbers of

sourccs change from 60 to 70 and from 39 to 46. Results are illustratcd in Figure 20 and

Figure 21 respectively. When the number of sources increases from 60 to 68 in Figure 20.

the CLR increascs from 1 O-' to 1 0 - ~ . Mcanwhile. thc overload incrcases to about 1. I 1.

and the mean buffcr fil1 incrcases from 0.7 to 2.9. show ing that the mean buffer fil1

increases when the overload factor increases due to more traffic induced. Al1 traffic will

suffer from a longer delay in the buffcr as well as a larger ceIl loss ratio. This rcsult is nlso

Mean Buffer Fil1 vs. Number of Sources (Traffic (0.05.20%.80), Buffer 100)
4.5

i

Numbcr of Sources

QoS vs. Numbcr of Sources (Trafic (0.05.20%.80). Buffcr 100)
-3.0

FIGURE 20. Mean Buffer fil1 and CLR versus Number of Sources (Traffic 1)

I
Vean Buffer Fil1 vs. Number of Sources (Traffic (0.05.20%, 80). Buffer 100)

QOS vs. Number of Sources (Tnffic (0.05.208.80). Buffer 100)

FIGURE 21. Mean Buffer f iI l and CLR versus Number of Sources ('ïkaffic 2)

confimed in Figure 21. In this figure, when the number increases from 39 to 44, the CLR

-6
increases from 10 to 1 0 - ~ . Meanwhilc, the overload factor increases to about 1.13. and

the mean buffer fil1 increases from 0.7 to 3.3. From these analyses, we find that the ce11

delay as well as the ce11 loss ratio increases whcn the overload occun after the restoration

induced flow convergence. Because the sensitivity of ceIl delay is different with different

traffic types, appropriate methods should be used in ATM switches to decrease the delay

of delay-sensitive traffic. For example, diflerent buffer sizes may be employed for

different types of uaffic.

3.8 Auto-Regressive Traffic Mode1

In thc prcvious study. WC uscd the on/off fluid modcl to sirnulate the ATM traffic. To

supplement this rescarch. the auto-regressive (AR) rnodel was also used to study the

overload factor. A very different modcl from the odoff fluid model. this model. having an

exponential autocovariance. is well suited to model thc variablc bit rate (VBR) vidco

traffic [2 1 1.

In the AR model. within a frame n. traffic is generated at a constant bit rate)c (n) . A fint-

order autoregressive process h (n) c m be expresscd recursively as follows:

h (n) - a A (n - 1) + b w (n) (21)

whcrc w(n) is a Gaussian random variablc and a and b are constant coefficients. Assuming

that w(n) has mean q and variance I . the bit rate of the current f m e is calculated froni

the bit rate of the last framc adjusicd by a weight and a Gaussian random variable. Assume

la1 c i . and the process achieves steady siate with large n 121 1. The steady-state average

E (A) and discnte autocovariance C (n) are as follows [Zl]:

b2 n
C (n) - -

2a (23)
1 - a

This is an elegant mathematical mode1 ihat has bcen fomed to match rcal-world traffic.

Therc is no physical cxplanation of thcse parameters. The values of o. b, and q are

calculrted by matching the average bit rate E (1) and discrete autocovariance C (n)

measured from real world traffic. For the experirnental data in [2 11. we have the following

values:

a a 0.878 1 b - 0.1 108 tl a 0.572 (24)

-0.13 " E (k) - 0 . 5 2 C (n) - 0 . 0 5 3 6 ~ (c) (2 5)

Ncxt. WC investigaie the impact of the traffic source number on the ovcrload factor. The

number of sources is changed from 60 to 70 and 10 to 20. as recorded in Figure 22 and

Figure 23. In this graph. we give the mean value and standard deviation of the overload

factors across with diffcrent secds* We find the tolcrable overload factor is around 1.01 5

and 1 .O25 respectively, regardless of the number of sources.

3.9 Guidelines for Tolerable Overload Factor

Detcrmining the tolerable overioad factor is a very complicated issue in ATM network

rcstoration. The traffic charactcristics in a rcal nctwork at the timc of rcstoration will affect

FIGURE 22. Overload Factor versus Number of Sourccs
for AR IkafTic Model (with buffcr sizc of 1000)

FIGURE 23. Overload Factor versus Number of
Sources for AR 'Ikaffic Model (with buffcr size of 1000)

the tolcrable overload factor. From extensive simulations, however, general guidelines of

a realistic expectation for a tolerable design overload factor can be detemined, a guideline

that would not degrade the QoS significantly (Le., if CLR was initially less than IO-'. i t

wouid not rise to more than IO-').

Among the factors. the traffic source model is the most important. For Constant Bit Rare

(CBR) traffic (e.g.. uncompressed voice traffic). the tolerable overload factor is almost 1 .O.

When the traffic is more bursty. the tolerablc overload becomes larger, because more

traffic can be induced in the idle periods. For AR model based Variable Bit Rare (VBR)

traffic. the factor is approximately 1 .O1 to 1.03, while in on-off fluid model based VBR

traffic. the factor is approximately 1 .OS to 1.15. Even for the sarne type of VBR traffic, thc

detailed d f i c chatacteristics can greatly affect the overload factor. The following table

summarizes thc simulation resul ts.

TABLE: 9. Tolerable Overload Assesrnent Factors

1 Factor Trend 1 Tolerable Overload Trend 1
1

Peak Bit Ratc 1 A 1 A

Utilization I

1 Buffer Size 1
Burst Length

1 Number of Sources 1 A 1 - I
With the increasc of pcak bit rate and burst length. the tolcrable overload becomcs largcr.

With the increase of utilization and buffer size, the overload factor decreascs. The numbcr

of sources does not significantly affect the tolerable overload. From O u r analysis, the

tolcrablc overload is likely to dccnase with a larger number of sources because ovcrall

traffic becomcs more constant.

A A

It is anticipated that for UrupeciJied Bit Rate (UBR) and Avuilable Bit Rate (ABR) traffic,

the tolerable overload factor can be very large because the UBWABR trafic is designed to

incnase network utilization. UBWABR trafiic sources are designed to be vcry adaptive io

the network load. If the network is not busy, UBRIABR traffic sources generate more

traffic into the network. If then is failure and network becornes congested, UBWABR

sources dccrease the traffic gcneration speed accordingly. Only minimum performance

levels are guatanteed for UBR uaffic and nothing is guaranteed for ABR traffic (221.

thenfore they can be expected to tolerate large overload.

It should bc emphasized that this discussion only gives a general range for factors of

tolerable overload. The practical value of an ovcrload factor for a particular network c m

not always be determined exactly. Network operaton must study the traffic nature in their

nctworks comprehcnsivcly. and carry out extensive simulaiions io gci a practical tolcrablc

overload factor for their particular network. As a genenl guideline. an overload factor of

I . 1 is acceptable.

3.10 Conclusion

In this chapter. a general pidelinc of the tolerable overlod a.sccsrnent was given and the

concept of Equivalent Bandwidlh in Cal1 Admission Control was used. To asscss the

overload tolerance of a group of traffic sources. the equivaient bandwidth of the traffic

must be obtained. Then, if this traffic is carried on a link whosc capacity is smaller ban i ts

equivalent bandwidth. the resulting QoS inevitably degrades. The smaller the link

capacity, the more severe the QoS degradation. The overload obtained by dividing

equivalent bandwidth by the link capacity at the critical QoS level is regarded as the

tolerable overload for this group of WC. In our simulation, "tolerable" is defined as the

cases when CLR goes frorn 1 o - ~ to 1 O-' .

Extensive simulations were done to analyre how traffic and network factors affect the

tolerable overload. For CBR traffic. any overload is almost unacceptable. While at the

other extreme. UBRIABR trafic has a large overload factor. Overload for VBR traffic is

found between the two extremes. For on/off traffic mode1 based traffic, the toterable

overload factor is approximately 1 .OS to 1.15 depending on the vaffic characteristics.

while for Auto-Rcgrrssive mode1 based traffic, the value is approximately 1.02.

Nctwork opcntors should analyzc the traffic naturc of ihcir network comprehcnsively and

do extensive simulations to determine the pnctical tolerable overload factor for their

paticular networks.

Chapter 4. Concluding Discussion

4.1 Comparative Overview of ATM and STM Restoration
Designs

ATM VP-based restoration is inhercntly similar to STM path-restoration if the ATM

network design case is approached on a pure VP replacement bandwidth basis. For any

given network. two stcps are involved in the dcsign of backup path for STM and ATM

based restoration. These arc working Path/VP design and backu p Pa WVP dcsign.

In the working VP design. VPs cm have equal or unequal bandwidth and each demand

pair can havc ondmultiplc VPs. In the second stcp. e k h working VP c m eithcr havc

single equal-sized backup VP or can split thc VP over multiple routes. Also. the

bandwidth replacement schemc can bc perfect or more aggmsive whcrc the

ovcrsubscription factor is grcater than 1 .O.

With thc combination of thcsc factors. WC gct the comparative ovcrvicw of ATM vcrsus

STM design cases in Table 10. In cases 1 and 2. each demand pair has one working VP

wi th a bandwidth replaccmeni that is pcrfect. Thcse two cases arc equivalcnt to the STM

path restoration with stub release. In cax 3. the bandwidth for e3ch VP is variable m d a

backup VP cannot be split ta several routes. This is equivalent io STM path restontion

with single backup route constraint. In case 4. each demand has several working routes.

This is equivalent to having multiple pseudodemand pairs for each demand pair in STM

path restoration. i.e.. one dcmand divided in several working routes are treated as sevenl

dernûnds in restoration. In case 5. bandwidth is not perfectly replaced and a fiow

oversubscription is allowed.

TABLE 10. Comparative Ovcwiew of ATM versus STM Capacity Design Cases

1 ATM Restoration Mode1

1 " 1 ~outesper 1 VP's

Demand Splitable for

--

Perfect
Bandwidth

Replace-
ment Case

t

Relation to STM
Capaci ty Formulation

STM path nstoraiion
with stub release

constant

STM with stub release
plus single backup route

constraint
- --- -

STM with ~ t u b rclcasc,
and single backup VP

route & multiple
"pseudodcmand" pairs

Pais

one

as per above with flow
oversubscnption con-

straint

Restoration

no

4.2 ATM Restoration Design Met hodology

Designing for controlled convergence of restoration flows is a proposed approach which

would let thc nctwork planner mediate a controllcd trade-off of tcmponry pst-rcstoration

ATM performance for significantly reduced network capacity. The bcnefit of the proposcd

design fnmework is that it allows a network operator to first determine an acceptable

rcstontion stress levcl and then to design exactly for that grade of restoration performance

with a known minimum of total capacity for restoration. This design approach contributes

to recognizing and enabling the exploitation of the intrinsic differences betwcen ATM and

STM transport methods from a restoration viewpoint.

In addition, when designing a network with acceptable restoration-induced

oversubscription of bandwidth. the potential reduction in QoS could be minimized by a

restoration oriented pnority congestion control scheme. in this approach, the network

spare capacity design could bc based on a reasonably aggressive X,oI value to obtain

signifiant capacity savings; then. at the timc of an actual failurc. each surviving span

would assess its actual cell-level utilization after ailowing enough time for backup VP

switching. In case utilizations were high, ATM switches would mark the lower priority

VPs tnvcrsing them with a throttling indication to bc actcd upon either by either the VP

sources themselves or neighboring switches. This gives several attractive propenies:

dcspite the numbcr of logical VPs uaversing the span after restontion. al1 VPs w il1

inhcrcntly cnjoy tramparcnt continuation of service if actual conditions permit rcstontion

of a11 VPs. On the other hand, if the net cell-level utilization does constitute a sufficient

ovcrload. then priority VPs can be restoxd selectively without QoS reduction by

throttling lower prionty scrvice class VPs. In this way the benefits of ATM capacity

design to exploit restoration-induced oversubscription of bandwidth can be pursued with a

protective mechanism to ensurc QoS for wlected services while still gianting al! ~rv ices

restoration on a best-effort basis whcncver actual network circumstances permit.

Based on this study, the proposed framework for ATM backup VP capacity design would

allow network operators to determine both the traffic assumptions they wish to adopt and

the acccptablc QoS impacts during an assumed busy-hour restoration event. Through

Theoretical Modelling:
S tudies of convergent wost case

flow ce11 loss effects and
queuing delay 1

Practical Factors ~ssessment:
Achial VP utilization levels
Probability of failure at design
busy hour
Provisioning interval considera-
tions
Cornpetitive aggressiveness &
risk tolerance

l

Theoretical Guide-
lines for X,,/

Operator
Specific Policy
re: Xror

I 1 Analyze distribution

.
Isolate exceptions

l * XmI Design
revise XmI overall
revise X,, for spe- Recornmendation

FIGURE 24. ATM Restoration Design Methodology

1

theoretical study o f the queuing model. a guideline of Xml should first be determincd. In

addition. sornc practical operation considerations contributing to XroI should be

investigared. Thesc includc actual VP ut ilization Icvels. probabili ty of failurc ai design

Assess risWbenefit
acccptability

of oversubscriptions
per span

- cific spans

IP l /3 Formulation
4

busy hour, provisioning intervd considerations. competitive aggressiveness and nsk

tolerance. For example, if busy hour effecu are not coincident in the network (i.e.. the VP

utilization are not simultaneously at their peak), the network c m tolerate a large

oversubscription. All these factors lead to an XmI ncomrnendation. Once XmI is

detemined, IP-I I3 can realize the comsponding minimum capacity nstorable network.

By analyzing the actual oversubscription cases in the network in detail. the exact X,*[can

be determincd. This ncw value is once again put in the IP-113 formulation. Through

itcrating several times. we finally achieve a satisficd network specific capacity

provisioning. The ovenll process is illustxated in Figure 24.

If the capacity placemcni has bcen given in a network. P-2 cm be used to optimizc thc

restontion VP routing to achieve the minimum peak oversubscription in the network.

4.3 Summary

In chapter 2. the restontion induccd flow convergence oversubscription factor was

quantitativcly defined bascd on thc logical vicw of thc traffic characteristics in backup VP

based ATM restoration. An allowable oversubscnption larger than 1 .O is one of the unique

propcnics in ATM nctworks. Nexr a heuristic afgoriilim proposrd in a Iiterdturc was

implcmented to verify the sevcre rcstoration induced oversubscription if we do not

consider the design carefuliy. The implications of uncontrolleci oversubscription will

likely be unacceptable in practise. Therefore, we formulate optimal capacity allocation

mechods that will still gain as much ATM-rclated capacity savings as safely possible by

giving us a controlled input on the maximum extent of the restoration-induced

oversubscription. The first IP formulation optimizes the spare capacity placement of a

restorable ATM network given a peak allowable oversubscription factor in the network.

The second formulation applies to the case when an existing set of spare capacity

allocations has been given. The problern is to find a set of backup VP allocations that

results in the smallest maximum oversubscription factor. The third formulation tries to

minimize the total capacity (working + sparing) of a restorable ATM nctwork with a given

design peak oversubscnption factor. in addition to these Lhree IP formulations. two

simpler algorithms were also presented to calculate reasonably tight upper and lower

bounds on the requircd spare capacity of a backup VP-based mtorable ATM network. Our

rcsults showed that the total spare cnpacity decreascs rather quickly as the design

tolerance for restoration-induced oversubscnption incrcases. This suggests that significant

capacity swings can bc obtaincd relative to STM if ATM rcstoration is allowcd even

modest restontion-induccd ovcrsubscription of bandwidth on surviving spans.

Tolenble oversubxription factors dcpcnd on several considentions. Partly it is a network

operation policy. An aggressivc network opcrator can use a largc ovcrsubscription to save

more valuable capacity in the network. In chapter 3. the theoretical study of a qucuing

model of traffic gave a guideline for the oversubscnption factor. Extensive simulations

wcre done to analyze how traffic and network factors affect the tolerablc ovcrload. For

CBR traffic, the overload is almost intolerable. On the other extrcmc, ABR traffic has a

large overload factor, while the overload for VBR traffic is between CBR and ARB traffic

tolerable overloads. For odoff mode1 based traffic, the factor is approximately 1 .O5 to

1.15 depending on the traffic characteristics, while for auto-regressive model bascd traffic.

the tolenble overload is approximate l y 1.02.

It is highly recornmended that network operators analyze the nature of their traffic

comprehensively and do extensive simulations to detennine what is the practicai tolerable

ovcrload value in their network.

In chapter 4, we gave a new fnimework for ATM backup VP capacity design. Network

operators would determine the traffic assumptions they wish CO adopt and the acceptable

QoS impacts during an assumed busy-hour restoration event. This leads to a tolerable

oversubscription factor recommendation. Integer programs cm realize the corrcsponding

minimum capaciiy restorable network. By analyzing the actud oversubscription cases in

the network in detail. WC can rcvisc the tolerablc oversubscription factor rccommendation.

This ncw value is put in the IP formulation again. We can achieve a saiisfactory nctwork

specific capacity provisioning by iterating several times as shown in Figure 24.

4.4 Future Work

In this rcscarch, WC studied thc spare capaci ty placement problem in ATM rcstonblc

networks. We found that a signifiant amount of spare capaciiy can be saved if even a

rnodest level of ovenubscription is allowed in ATM restonble networks. This work shows

one of the basic distinctions between ATM and STM restorable networks:

oversubscription can be larger than 1 .O in ATM networks. As we know. ATM networks are

more complicated than STM networks. ATM nstontion requires further research to

detenninc how the restoration mechrinism is implemented using OAM cells/messages to

detect, notify, and re-route failed VP. Another m a of research requires using real-time

simulation to study the effect of failed VP traffic on working VPs. The question of

whcther restomtion should be done of the STM OC level or the ATM VP leveI to achicve

the largest benefit in the network planning is must aiso be answered.

Bibliography

W.D. Grover. "Disûibuted Restoration of the Transport Network". Book Chapter
1 I , Telecommunications Network Munugemenf into the 2Ist Century: Techniques,
Standards. Technologies and Applicationr. IEEE Press. 1994, pp. 337-41 7.

W.D. Grover. "The Self-healing Network: A fast distributed restoration technique
for networks using digital cross-connect machines". Proceeding of lEEE Global
Communications Conference. 1987, pp. 1090- 1095.

T.H. Wu, "Emerging Technologies for Fiber Network Survivability", IEEE comnru-
nication magazine. Febniary. 1995, pp. 58-74.

R. Kawarnura. K. Sato, and 1. Tokizawa, "Self-hcaling ATM Networks Based on
Virtual Path Concept". IEEE J o u r ~ l on selected areai in communications. Vol. 12.
NO. 1. 1994. pp. 120-127.

C. Partridgc. "Gigabit Networking". Addison-WesIcy. 1994.

Y. Zheng, W.D. Grover. M. MacGngor. "Dependence of network capacity require-
mcnts on the allowablc flow convcrgcnce overloads in ATM backup VP restora-
tion". Elcctronics Leitcrs. Vol. 33. No. 5, Fcbruary 27, 1997. pp.362-363.

Y. Xiong. L. Mason. "Rcstoration straiegies and sparc capacity rcquircmcnts in sclf-
hcaling ATM Nctworks". Infocom 97. Kobe. Japan, April. 1997.

R. R. Iraschko. M.H. MacGrcgor. W.D.Grovcr. "Optimal Capacity Placcmcnt for
Path Rcstomtion in Mesh Survivablc Nctworks", IEEE ICC'96, Junc 1996,
pp. 1568- 1574.

W.D. Grovcr. V. Rawat. M. MacGrcgor. "A Fast Heuristic Principle for Spare
Capacity Placement in Mesh-Restorable SONET I SDH Transport Networks". Elec-
tronics Lctters. Vol. 33, No. 3, January 30, 1997. pp. 195-1 96.

Y. Zheng, W.D. Grover. M. MacGregor. "Broadband Network Design with Con-
trolled Exploitation of Fiow Convergence Overloads in ATM VP-based Restora-
tion". Canadian Conference on Broadband Rescarch, April 16- 17. 1997. Ottawa.
Canada.

H.G. Perros. K.M.Elsayed. "Cal1 Admission Control Schcmes: A Rcview". IEEE
Communication Magazine. November. 1996. pp. 82-9 1.

R. Guerin. H. Ahmadi. M. Naghshinch. "Equivalcnt Capacity and its Application to
Bandwidth Allocation in High-Speed Networks". IEEE JSAC. Novembcr. 199 1. pp.
968-8 1 .

R.O. Onvural. "Asynchronous Transfer Mode Networks. Performance Issues",
Artech House, 1994. pp. 1 19-33.

G. Gallassi. G. Rigolio. L. Vem. "Resource Management and Dimensioning in
ATM Networks", IEEE Network Magazine, May. 1990. pp. 8-17.

F. Vakil. H. Saito. "On Congestion Control in ATM Networks". IEEE LTS. August.
1991. pp. 55-65.

J.W. Roberts, "Variable-Bit-Rate Traffic Control in B-ISDN", IEEE Communica-
rions Magazine, Septernber. 199 1. pp. 50-56.

C.A. Cooper, K.I. Park, "Toward a Broadband Congestion Control Strategy". IEEE
Network Magazine. May. 1990, pp. 18-23.

H. Saito. "Cal1 Admission Control in an ATM Network Using Upper Bound of Ce11
Loss Probability", 1EEE Transactions on Communicarionr. vol. 40. 1992, pp. 15 12-
21.

D. Anick. D. Mitra. M.M. Sondhi. "Stochastic Theory of a Data-Handling Sysicm
with Multiple Sources". Bell Sys. Tech. J . vol. 6 1. 1982, pp. 187 1-94.

M. Decina and T. Toniatti. "On Bandwidth Allocation io Bunty Virtual Conncc-
tions in ATM Networks", Proc. ICC'90. paper 3 18.6.1. pp. 844-85 1.

B. Maglaris. D. Anastassiou, P. Sen. G. Karlsson. and J. Robbins. "Pcrformancc
Models of Statistical Multiplexing in Packet Video Communications". IEEE Trans-
actions on Communica~ionr. Vol. 36. No. 7, July, 198. pp. 834844.

K. Schulz. M. Incollingo, and H. Uhng. "Taking Advantrige of ATM Services and
Tariffs: The Importance of Transport Laycr Dynamic Ratc Adaptation". IEEE Net-
work. Vol. 1 1. No. 2, MarchIApnl. 1997. pp. 10- 17.

"CPLEX Manual", CPLEX Optimization Corp. 1995

Appendix A: Abstract of Equivalent
B andwidth Calculation

The following abstract of equivalent bandwidth calculation is based on the analysis in

[191.

Suppose there are N mutually independent identical sources. The unit of time is selected

to be the average "on" priod. Within this unit of time. the average "off' pend is denoted

by W h .

Let Pi (t. x) , (O < i S N. t 2 O. x 2 O) dcnote the stationary probability that at timc t. i

sources are on and the buffer content does not excecd x. If at time t the number of on

sources equals i. two elementq evcnts can tnkc place during thc ncxt intcrval A r . i.e.. a

source cm tum on or turn off. Since the "on" and "off* periods arc exponentially distrib-

uicd. the probabilities are (N - i) hAt and iAr rcspectively. Cornpound evenis have prob-

abiliiies 0(&r2 J. Thc probabiliiy of no chüngc is 1 - { (N - i) A + i} A i + O(A? J .
Now,

P i (î + A t T x) - {fi- (i - l) } i A t p i - , (f , x) + (i + 1) A t P i + , (f , x)

Passing to the lirnit A t 4 O , yields the following partial diffenntial cquations:

Let Fi (x) be the equilibrium probability that i sources are on and buffer content docs not

exceed x,

Lim
Fi(')

t - + -
Pi ('9 X)

Therefore. we obtain. for i E [O, N] .

Equation 29 can be ~wnttcn in matrix notation as:

whcre D - diag {-c. I - c , 2 - c , ..., N - c) and

1
2

M a (N- I) A - { (N - 2) A + 2) 3

2)c- (A+ (N - 1)) N
A -A

By solving Equation 30. we gci

whcrc thc zi and Qi are, respectivcly. generalized cigenvalues and cigcnvcctors associ-

atcd with the solution of the diffcrential equation satis fied by the stationary probabilitics

of the system. and the ai 's are cocfficicnts determincd from boundary conditions.

Let

fv

G (x) = P r (buffercontent > x) - 1 - F (x)
i - O

We refer G (x) as the probability of overfiow beyond x.

The distribution of F (x) is completely dctermined from the values of the associated

cigenvalues. eigenvecton. and componding coefficients. There are no explicit cxpres-

sions for these quantitics. which must thcn be detemincd numerically.

An important aspect of this problem is numerical stability. The inevitable errors. no matter

how small. incurrcd during numcricai intcgration arc linblc to excite the unstablc modes

and lcad to solutions that blow up.

Appendix B: Test Networks Topology and
Demand Matrics Files

In this appendix. the network topology and demand matrics of a11 seven tested networks

are listed. The topology files are in SNIF format. The detail description of SNIF format

c m be found in TRLabs intemal technical report. Briefly. it includes four description lines

siarting with: Date. File Name. Network. Program. Then the positions of network nodes

are listed. Finally is the span description. which includes span tag. end nodes. distance.

working capacity and sparc capacity of the span. The demand matrix is rclatively simple.

fini indicates the numbcr of dcmands and thcn list each demaand bctwccn two nodc pair.

SmallNet SNIF file

D a t e : Jan 30, 1995
File Name: S r n a l l N e t . s n r f f
Network: SmallNot
Proqrarn:
8
Node
O
i
2
3
4
5
6
7
0
9

Span
1
2
3
4
5
6
7
8
9
10
11
1 2
13
1 4
15
1 6
1 7
18
19
20
2 1
2 2

Distance Working Spare
1 8 O

SrnailNet Demand File

The demand matrix has 45 demands. One unit of demand exists between every node pair

Net1 Snif File

D a t e :
F i l e N a m e : bellcore.snfff
Network: bellcore
Program:

Node
O
1
2
3
4
5
6
7
8
9
10
I l
12
13
14

Span
1
2
3
4
5
6
7
8
9
IO
1 1
12
13
14
15
16
17
18
19
20
21
22
23
2 4
2 5
26
27
28

Xcwrd
3 5
76
4 2
56
57
76
4 4
7 3
4 4
28
17
73
39
76
27

NodeA
O
O
O
1
1
1
2
3
3
4
4
5
5
5
6
6
6
6
7
7
7
9
9
9
10
10
11
13

Net1 Demand File

Ycoord
84
77
76
6 9
27
5 1
5 4
36
4 3
4 4
3 3
18
18
62
6 3

DistanccWorkFng Spare
9 2 4

Date: May 2 7 , 1994
F i l e Narne: Telus.nwk
Network: netF
Prograrn:
8
Node Xcwrd Ycoord
O 100 100
1 O O
2 O 80
3 50 80
4 70 80
5 O 100
6 C 20
7 20 50
8 100 O
9 30 80
10 70 100
1 I O 6 0

1 2
1 3
1 4
15
1 6
17
18
19
8
Span
1
2
3
4
5
6
7
8
9
10
11
12
13
1 4
1 5
16
17
18
19
20
2 1
2 2
2 3
24
2 5
26
27
28
29
3 O
3 1

Net2 Dcmand File

Distance Working Spare
264 O

Net3 Snif File

D a t e June 2 3 , 1994
File Namc: British-long-haul.snif
Network: British Tclccom study nctwork
Proqrarn : None

Nodc Xcoord Ycwrd
27662 58733

Span NodeA NodeB Distance Working Spare

1 O 1 10 958 O
2 0 2 9 8 0 0
3 O 6 21 2016 O
4 1 3 75 813 O
5 1 2 1 6 6 0 0
6 3 10 34 1279 O
7 2 4 42 684 O
8 2 3 8 8 0 0
9 5 6 78 2008 O
10 6 7 56 80 O
11 2 6 45 448 O
12 4 5 50 139 O
13 5 8 5 0 2468 O
1 4 4 10 10 3 4 3 O
1 5 4 9 45 961 O
16 9 10 99 O O
17 10 il 23 1254 O
18 9 11 56 5 0 O

Net3 Demand File

Net4 Snif File

Date:
File Narne: US-Lang-haul
Network :
Program :

Xcoord
i67.751000
193.225000

Ycoord
4 3.902400
67.479700

Span NodeA NodeB DistanceWorkinq Spare
1 O 2 5.00000029 O
2 O 1 76.0000000 O
3 1 2 46.00000039 O
4 1 12 209.00000030 O
5 20 3 8 299.00000066 O

Net4 Demand File

Toronto Snif File

Thc following is thc SNIF file for toronto mctro network uscd in [6] . To makc ihc result

companblc to that in [6]. only the first 15 nodcs and respective spans are used in the IP

formulations.

Date : March 27, 1997
File Name: toronto.snif
Network : toronto m e t ro

8

Nodc
O
1
2
3
4
5
Ci
7
8
9
10
11
i 2
1 3
1 4
1 5
16
17
18
19
20
21
2 2
23
24

Span
1
2
3
4
5

NodeB D i s t Working Spare
1 5 O O

Toronto Demand File

The demand rnauix has 300 dcmands. One unit of demand exists bctwcen cvcry nodc pair

uni forml y.

US Snif File

The following is the SNIF file for Toronto mctro network uscd in [6] . To makc the rcsult

comparable to that in [6] . only the first 20 nodes and respective spans are used in the IP

formulations.

Date: March 2 7 , 1997
File Name: us.mif

Network: u s long haul
Program:

Node
O
1
2
3
4
5
6
7
8
9
10
11
12
13
1 4
15
16
1 7
1 8
19
20
2 1
22
23
2 4
25
26
27
8
Span
1
2
3
4
5
6
7
8
9
10
11
12
1 3
1 4
1 5
16
1 7
!0
1 9
20
2 1
2 2
2 3
2 4
25
26
9-
I I

28
29
3 0
3 1
3 2
3 3
3 4
3 5
36
37
38
3 9
4 0
4 1
4 2
4 3
4 4
4 5

Dfst
4 8
38
3 3
3 3
4 2
4 O
40
4 O
23
3 2
62
53
58
2 1
16
1 5
20
35
4 6
20
60
17
15
21
18
32
32
3 6
16
29
18
27
3 3
25
20
1 7
22
20
10
2 1
26
11
2 1
15
25

Workfng Spare
O

US Demand File

The demand matrix has 378 demands. One unit of demand exists betwecn every nodc pair

unifomly.

Appendix C: KST-Alg, IP Formulation and
Bounding Program

File structure

Al1 files related to capacity planning algorithms are groupcd in one directory. Under
this directory. several modules in their respective subdirectones are uscd imple-
ment the algorithms. They am listed as follows:

1. snif: supporting library. Snif is the network topology description format uscd
throughout this research. This module includes the procedures to read and write
snif files.

2. route: supponing library. This module includes the procedures to read and writc thc
VP file. which includes the information of ATM VP working routes. backup
routes. And in this module therc arc procedure to find Ilic k-shortest path according
io the criteria of numbcr limit of rouie. hop limit and distance limit.

3. kway: utility program. This module includes the program to generate. working
capacity for cach span. the working VP routes and possiblc backup routes set.

4. vpbk: uiility program. This module includcs the program to implement KST-Alg and
upper bound algorithms.

S. oversubscription: utility progm. This modulc includcs ihc program to calculatc the
ovcrsubscription factors of a particular capacity planning for a given nctwork.

6. ip: utility progrm. This module includes the program io generate the IP-1. IP-2. IP-
3 and lower bound program. Bccause somc parts of constrainis in thesc IP formu-
lations arc vcry similu. the progrms are groupcd into one filc with macro 'IF' IO

generate different pars for each fomuhtion.

7. txt2snif: utility program. This module includes the program to read the result from
the IP solving prograrn. CPLEX. and writc the result to a VP description file.

8. test: This module includes the script to generate the capacity planning for each tested
sample network.

Only sornc important programs which would help the understanding of thc algorithms
are listed in this appendix. i.e.. vpbk. ip and ovenubscription modules.

KST-Alg and upper bound algorithm irnplementation

Makefile: JvpbWMakefile

N I - . . / . . / i n c l u d e
NS - . . / . . / l i b
BfN- . . / . . / b i n
CC - gcc
CFLAGS - - I S (N I) -L$(NS) - g -Wall
LINTFLAGS- - I S (N I)

a l 1 : vpbk v p s p a n

v p s p a n : v p b k . 0 s p a n c u t . 0
$(CC) S(CFLAGS) -O v p s p a n v p b k - O s p a n c u t . 0 - 1 n s - l m
cp v p s p a n $(BIN)

vpbk : v p b k . 0 s 1 n g l e v g . o
$ (C C) S(CFLAGS) -O vp k v p b k . 0 s i n g l e v p . 0 - 1 n s - l m
c p vpbk S(BfN)

t delete a l 1 e x e c u t a b l e s
c l e a n :

i n d e n t :

r e p o r t :

rm - f + . O core vpbk v p s p a n +BAK

f n d e n t -i4 vpbk.c
i n d e n t - i 4 spancut. c
i n d e n t - i 4 s i n g 1 e v p . c

+ . c Makefile Readme
e n s c r i p t + . c Makef i l e Readme
e c h o > report

Main module: JvpbWvpbk.~

L n c l u d e c s t d i o . h>
t i n c l u d e < s t d l i b . h >
B i n c l u d e < m a l l o c . h >
a t n c l u d e < v a l u e s . h >

i n c l u d c < s t r i n g . h>

r i n c l u d e c s n i f . h>
t F n c l u d e " r o u t e . h a

/+ f u n c t l o n p r o t o t y p e s * /

e x t e r n i n t m e t hod ;

e x t e r n v o i d n i c e m e () ;

e x t e r n f l o a t
calculate-capdciLy(VP n e t V P s , i n t numVPs, i n t *backupVP,

f l o a t + s p a r e C a p a c i t y , ROUTE * + a l 1 - r o u t e s ,
S P A N + n e t s p a n s , int n u m s p a n s) ;

i n t
m a i n (i n t argc, char * a r g v [])
I

NODE + n e t N o d e s ; / + a l 1 t h e n o d e s i n t h e n e t w o r k * /
SPAN + n e t s p a n s ; / * a l 1 t h e s p a n s i n t h e n e t w o r k * /
A D J L I S T +adj;/* (heads o f) a d j a c e n c y lists * /
V P + n e t V P s ; / * al1 VPs i n t h e n e t w o r k */

i n t + t a g 2 n o d e , * n o d e 2 t a g , * t a q 2 s p a n , + s p a n 2 t a q ;

i n t nuniNodes, n u m s p a n s , numVPs;

ROUTE **ail-routes;
int *num-route;
f loat *BkSpare, bestcapacity, totalworking;
int *BkRoute, updateVP;

char stamp(i024);

if (argc !- 6) [
printf("Usage: vpbk snifFile vpFile routeFile outFile rvp-

File\na
"\tsnffFile\tnetwork file in snif format.\na
'\tvpFile\tworking v capacity and route.\nR
*\trouteFile\tpossib ! e restoration route.\nN
u\toutFile\tsnif file filled with spare capacity\nw
~\trvpFile\trestaration vp capaclty and route\nw);

exit(1);
i

/* search for the best route +/
BkSpare - (float *) malloc(numSpans sizeof(float));
BkRoute - (L n t .) malloc(nurnVPs sizeof(int));

for (i - 0; i < numVPs; i++)
BkRoute[i] - (num-route[i] -- 0) ? -1 : 0;

bcs tCapaci ty - MAXFLOAT;
for (i - O, updatcVP - -1; i !- updateVP; i - (i + 1) 0 numVPs) [

i n t best - BkRoute[i];
prfntf('0s: considering VP %d path Od\na,

(method -- O 3 "single" : 's ancut"),
netVPs[i].tag, netVPs[il.pat) ;

for (j - O; j < num-route[i]; j + +) (
f l o a t tcmp ;
BkRoute[L - 1;

niceme() ;
temp - calculate-capacity(netVPs, numVPs, BkRoute, BkS-

pare .
all-routes, netspans, numspans);

if (temp < bestcapacity) [
bestCapacit - ternp;
updateVP -
best - j; '1,
printf('0s: got best route %d to Bf\nw,

(method -- O 3 'single" : "spancutw), j , b c s t C a -
pacity;,

1
1
BkRoute(i1 - best;

1

bestcapacity - calculate-capacity(netVPs, nurnVPs, ~ k R o u te, B ~ S -
pare ,

all-routes, n e t s p a n s , numspùns);

/* record the restoration selection to file for performance
analysis * /

ChoiceWriteFile(argv[3],
(method -- O ? *.single.choice" : ".sean-

cut-choice"),
nctVPs, nurnVPs, BkRoute);

/+ record the restoration info to file +/

RVPWriteFile(argv[S], netVPs, numVPs,
all-routes , num-route, BkRoute,
tag2span, tag2node, span2tag, nodeltag);

for (i - 0, totalworking - 0 ; i < numspans; i++) [
totalworking +- netSpans[i).working netSpans[i].distance;
netSpans[i] .spare - BkSpare[i];

1
sprintf (stamp,

"backup VP usfng %s\na
"Unetwork tapology: Ps\na
" W P description: %s\na
" Ubackup route : %s\nR
"#backup VP file: %s\n"
"#DISTANCE WEIGHTED working - 01.2f, sparing - 01.2f, "
"redundency - %1.2f0%\na,
(method -- O 3 *single cuta : 'span cuta),
argvfl], argv[21, argv(31, argv(51,
totalworking , bestlapacity , bestcapacity 100 / total -

working) ;

SNXFProgramStamp (stamp) ;
SNIFWriteNetFile(argv[4], netNodes, netspans, nurnNodes, nurn-

Spans,
node2tag, tag2node, span2tag, tag2span) ;

printf (* % s a , stamp) ;

/ * free up memory +/
free(BkRoute);
free(BkSpare) ;

return (O);
1

KST-Alg capacity calculaiion module: Jvpbk/singlevp.c

include <snLf. h>
8 lnclude "route. h"

/+ only consider each VP cut every time +/

/+
+ backupVP Fs a (O . . numVPs-11 array to record the backup route
index of
+ each working VP, so the backupVP[i] is the ith working VP's
backup r o u t e
+ index in the ail-route table. so all-route(i l [backupVP(i]] is
the actual
+ backup r o u t e . al1 backup r o u t e s for ith worktng VP
+
+/

/ + sparecapacity is a [O . . numspans-l] array to rccord the s p a r e
c a p a c i t y +/

in t method - O;/+ single VP backup * /

f loat
calculate-capacity(VP netVPs. int numVPs, i n t *backupVP,

f loat *spareCapacity, ROUTE * * all-routes,
SPAN netspans, int numspans)

int i, j, span;
f loat temp - 0;
/* initial span spare capacity * /
for (i - numSpans - 1; i >- 0; i--)

spareCapacity[i] - 0;
/* try al1 backup VPs */
for (i - numVPs - 1; i >- 0 ; i - -) {

/* skip the un-restorable VP */
if (backupVP[f] -- -1)

continue;
/* try spans of that backup VP +/
for (j - (all,routes[iJ(backupVP[i~J).num - 1; j >- O; j - -) [

span - (all,routes[iJ[backupVP[iJ]).span[jJ;
if (spareCapacity[span] < netVPs[i].capacity) [

spareCapaclty[spanl - netVPs[iJ.capacity;
1

/ * add up total capacity togcther * /
for (i - numspans - 1; i >- O ; L - -)

temp + - spareCapacity[F] netspans [i l .distance;
r e t u r n (temp) ;

Uppcr bound capacity calculaiion module: JvpbWspancut.~

/ * consider span cut each time */

/ *
backupVP is a [O . . numVPs-l] array to record the backup route

index of
each workinq VP. so t h e b a c k i i p V P f L] Is the ith wcrkfng Y P ' s

backup route
index Ln the all-route table. so all-route[i][backupVP(L1] is

the actual
backup route. a n n n ^ n A " A n A A al1 backup routes for i t h working VP

* /
/ * sparecapacity is a [O . . numspans-l] array to record the spare
capac i ty * /

int method - 1;/+ span cut backup * /

f loat
calculate-capacity(VP netVPs, int numVPs, i n t *backupVP,

f loat *spareCapacity, ROUTE * * ail-routes ,
SPAN netspans, int numspans)

(
i n t
f loa t
f loat

1, j, 1, m;
temp = 0;

*tempCapa;

tempCapa - (float *) malloc(numSpans + sizeof(f1oat));

for (i - numSpans - 1; i >- 0; i--)
spareCapacfty[iJ - 0;

/* try to cut a l 1 spans +/
for (m - numspans - 1; m >- O; m--) (

/* init spare capacity +/
for (i - numSpans - 1; i >- O; i--)

tempCapa[i] - 0;
/* y al1 backup VPs through this span +/
for (- 0; i < numVPs; i++) [

for (1 - netVPs[i).num - 1; L >- 0; 1 - -) (
/*

+ if the original route goes through this span, or
Say,

+ working span Ls cut
+/

if (netVPs[i].span[l] -- m) [
/+ add capacity to al1 spans of backup VP + /
for (j - (all,routes[i][backupVP[i]]).num - I ; j

>- O ; j - -) [
/* add capacity to al1 backup route spans * /

#ifdef DEBUG
printf("add: cut span ad, cut VP ad, spare

span %d, Capa $f\na,
m, i , (all-routes[i][back-

upVP[i]J).span[f], netVPs[L].capacity);

rendif DEBUC
tempCapa((al1-routes[i] [back-

upVP[i]]).span[j]] + - netVPs[i].capacity;
1
/+ stub release all other segments of the workinq

VP * /
for (j - netVPs[i].num - 1; >- O; j - -) (

int span - netVPs[t].span[j];
i f (span ! - m)

i f d e f DEDUG
printf (*sub: cut span Od, cut VP 0d, s p a r e

span 0d , Capa 0 f \ n " ,
m, i , span, netVPs[i].capacity);

#endif
tempCapa[spanl - - netVPs[i].capacity;

1
break;

/* compare this span cut with others */
for (i - numSpans - 1; L >- 0; i - -)

sparecapacity [i] - rnax(spareCapacity[i 1 , tempCapa [i]) ;

/* add up total capacity together + /
for (i - numSpans - 1, temp - 0; i >- 0; i - -)

temp +- spareCapacity(i1 netSpans[i].distance;
free(tempCapa);
return (temp);

IP-1, IP-2, IP-3 and lower bounding algorithrns implementation

Because these four programs are vely sirnilar, they are grouped into one single file.
There is a conditional compile for each algorithm. TSPARE. TOVER. TïOTAL
and TVCSPLIT are symbals for IP-1, IP-2, P - 3 and lower bound algorithrns.
respec tivel y.

Makefile: l i p f Makefile
NI - ../../include
NS - ../../lib
SIN- . . / . .&in
CC - gcc
CFLAGS - -IS(NI) -LS(NS) -g -Wall
LINTFLAGS- -IS(NI)

a l l : vpipt vplps vpipv vpipo

vp ipv : vpipv.0
$ (C C) ~(CFLAGS) -O vpipv vpipv.o -1ns -lm
cp vpipv S(B1N)

vpips : vpips . O
$(CC) S(CFLAGS) -O vpfps vpfps.o -1ns - l m
cp vpips S(B1N)

vpipt : vpfpt.0
S(CC) S(CFLAGS) - O vpipt vpipt.0 -1ns - L m
cp vpipt S (B I N)

vpipv.0: vpip. c
$(CC) S(CFLAGS) -DTVCSPLIT -c - O vpipv.0 vpip.c

vpips.0: vpip. c
$(CC) S(CFLAGS) -DTSPARE - C -O vp1ps.o vpip.c

vpipt. O: vpip. c
S(CC) S(CFLACS) -DTTOTAL -c -O vp1pt.o vpip-c

delete al1 executables
clean :

rm - f * . O cor@ vpipv vpips vpllr, *BAK

indent:
indent -il vp1p.c

report: *.c Makefile Readme
enscript +.c Makefile Readme
echo >report

main module: Jiplvpip.~

ninclude cstdi0.b
Fnclude <stdlfb. h>
sinclude <values.h>
ninclude <malloc.h>
rinclude <string.h>

a i n c l u d e a n i f . h>
U i n c l u d e <route.h>

/+
+ F o u r p o s s i b l e executive f i l e s
+
+
+ # d e f i n e TOVER g e t t h e minimum OVER w i t h g i v e n s p a r i n g
+
+ # d e f i n e TSPARE g e t t h e minimum SPARE c a p a c i t y w i t h a n u p p e r l i m i t
o f o v e r l o a d
+
+ # d e f i n e TTOTAL ge t t h e minimum TOTAL w o r k i n g and s p a r i n g c a p a c i t y
w i t h a n u p e r l i m i t

o f o v e r f o a d

d e f i n e TVCSPLIT get t h e minimum SPARE c a p a c i t y w i t h a n upper
l i m i t of
+ o v e r l o a d BUT i n s t e a d of u s i n g a I P p rogram, a LP p roqram is gen-
e r a t e d .
+ (o n l y i n t d v a r i b l e s a r e n o t I n c l u d e d)
+
+ One o f t h e s e s h o u l d be d e f i n e d i n the M a k e f i l e
+/

/*
+ v a r i a b l e format:

w 1 2 3 : work ing c a p a c i t y f o r s p a n 8 123
s 1 2 3 : s p a r i n g c a p a c i t y f o r s p a n 8 123
gv12p3: t r a f f i c i n work ing VP f o r demand R12 r o u t i n q p a t h 3
c v l 2 p 3 : c o e f f i c i e n t f a c t o r , O f o r no t r a f f i c , 1 for yes
f v 1 2 p 3 r 4 5 6 : t r a f f i c i n VP 812 p a t h 3 a t backup route r456

+ dv12p3r456: c o e f f i c i e n t f a c t o r , O f o r n o traffic, 1 f o r y e s
+/

I n t
m a i n (i n t a r g c , char * a r q v [])

NODE
SPAN
ADJLIST
VP

i n t

i n t

ROUTE
i n t

FILE

F n t

f l o a t
f loa t

R i f nde f TVCSPLIT
c h a r
c h a r

a e n d i f TVCSPLXT

8 i f ndef TOVER
f l o a t
f l o a t

+ne tNodes ; /* a l 1 t h e n o d e s i n t h e network * /
+ n e t s p a n s ; / + a l 1 t h e s p a n s i n t h e n e t w o r k * /
+ a d j ; / * (heads o f) a d j a c e n c y I f s t s +/
+netVPs ; /* a l 1 VPs i n t h e network * /

+ + a l 1-routes ;
+num-mu te;

r i g h t s i d e ;
f l a q r e s t ;

t o t a l c n p a ;
overload - 1 . 0 ;

#endi f TOVER

Il i f de f TTOTAL
f loat edernand;

#endif

#ifdei TOVER

if (argc ! - 5) (
printf("Usage: vpip snifFile vpFile routeFile outipFile\na

"\tsnifFFle\tnetwork file in snif format.\nW
"\tvpFLle\tworking v capacity and route.\nR
"\trouteFile\tpossib f. e restoration route.\na
'\toutipFile\trestoratFon IP formulation file.\nw);

exit(1);
1

#else TOVER

i f ((argc ! - 5) 66 (argc ! - 6)) (
printf("Usage: vpip snifFile vpPile routeFile outipFfle

[overload]\nR
'\tsnifFile\tnetwork file in snif format .\nw
u\tvpFLle\tworkLng vp capacity and route.\nw
"\trouteFile\tpossible restoration route.\nw
"\toutipFfle\trestoration IP formulation fi1e.\nH
"\toverload\toverload factor (should >- 1.0) default

1.0\nN);
exit(1) ;

1
i f (argc -- 6)

overload - atof(argv[S]);
rendif TOVER

if ((fp - fopen(argv[4], "wa)) -- NULL)
fprintf (stderr, V a F 1 to open the IP formulation f ilc:

Os\na, argv(4)) ;
exit(1) ;

Uifdef TTOTAL
/+ get the capacity for each demand pair +/

demand - malloc(numVPs + sizeof (float));
for (i - 0; i < numVPs; L + +) (

drmand(i) - Q.0;
1
for (i - 0; i < numVPs; i++) (

demand[netVPs[i].taq] +- netVPs[F].capacity;
1

u end i f TTOTAL

/+ write header * /

/+ write objective */
tifdei TOVER

fprintf(fp, " - overload");
telse TOVER
a i f de f TTOTAL

for (i - 0; i < numspans; i++) (
fprintf(fp, '- 09 w0ld " , netSpans[lJ

span2tag[ij);
distance,

1
rendif TTOTAL

for (i - O; i c numspans; i++) [
fprintf(fp, " - %g s8ld ", netSpans[i].distance,

span2tagri));
1

#endi f TOVER
fprintf(fp, ";\n\nR);

t L f de f TTOTAL

/* write the constrafnt 6 , radio button of workinq VPs for e a c h
dernand */

printf("writing constraint 6...\nN);

for (i - O, m - netVPs[O].tag; i < numVPs; i++) (
if (m ! - netVPs[i].tag) (

fprintf(fp, " - 1;\na);
m - netVPs[iJ.tag;

1

/* write the constrafnt 4, working VP Ls caeffient (O or 1) of
each demand * /

rifdef verbose
printf("writing constraint 4...\na);

for (I - O; i c numVPs; i + +) (
fprintf(fp, ' 8 g cv%ldp\ld - gvtldpald - O;\nm,

demand(netVPs(i1 .taq), netVPs[i] .taq, netVPs[i] .pa th ,
netVPs(L].tag, netVPs(l].path);

1

/ * writc canstrafnt 5 in I P - 3 , for working c a p a c i t y > dcmand * /

printf (*writing constraint 5.. .\na);

fprintf(fp, *\n\n\nW);
for (i 0; i < numspans; f++) (

for (k - O; k < numVPs; k + +) (
for (1 - 0; 1 < netVPs[k].num; l + +) (

if (i -- netVPs[k].span[lJ) (
aifdef verbose

fprintf(fp, '+ qv%ldp%ld ", netvPs[kl.tag,
nctVPs(k].path;;

r c l s c verbose
fprintf(fp, " + %q cv%ldp%td ",

demand(netVPs[k].tag], netVPs(kl.tag.
netVPs(k].path);

rend i f verbose
break;

1
1

1
fprintf(fp, " - w0ld - O.O;\n\nn, span2tagIiJ);

1

 endi if TTOTAL

/ * write the constraint 3, radio button for a l 1 possible backup
rou te */

printf("writing constraint 3...\nR);

for (i - 0; i < numVPs; i++) (
for (j - O; j < n u m ~ o u t e f i l ; j++) (

fprintf(fp, "+ dv01dp0ldr003d ", netVPs[f].tag,
netVPs[i].path, j);

1
i f de f TTOTAL

fprintf(fp, " - cv%ldp%ld - O;\nU, netvPç(i].tag,
netVPs(ij .path);

#else TTOTAL
fprintf(fp, " - l;\nn);

#endif
1
fprintf(fp, "\n\nn);

/* write constraint 1, actual overload < design peak */

prFntf("writ1ng constraint l...\nR);
f f lush(stdout) ;

/* try to cut span i +/
for (1 - 0; 1 c numspans; i++) (

printf("formulatLng overload in case of failure span 0d\n",
spanLtag[i]);

/ * try to formulate overload of span j * /
for (j - O; j < numSpans; j + +) (

if (i -- j) (
/* don't care about span j overload in case of span i

failure + /
continue;

1
/ + overload of span i in case of failure span i * /
rightside - 0.0;
flagrest - FALSE;
for (k - O; k < numVPs; k++) (

/ * check if VP k is cut in case of span i failure * /
for (1 - 0; 1 c netVPs(k].num; l + +) (

i f (i -- netVPs[k].çpan[l])
break;

if (1 -- netvPs[k].num)
continue;

/ *
l check i f the VP k went throuqh span j , if yes, it

stub traf f ic and re-routed elsewhere
* /

for (1 - 0; 1 c netVPs(k].num; 1++) [
if (j -- netVPs[k].span[l])

break;
1
i f (1 : - netVPs[k).num) [

R i f de f TTOTAL
r i f de f verbose

fprintf(fp, " - gv0ldptld " , nctVPs[kj.tag,
netVPs[kj .path);

#else verbose
fprintf(fp, " - 0g cv%ldp$ld " ,

demand[netVPs(k].taq], netVPs[k].tag,
netVPs [k] . path) ;

rendi f verbose
#else TTOTAL

rightside + - netVPs [k j .capacity;
#endi f TTOTAL

continue;
1
/ * check if the backup route go throuqh span j * /
for (1 - O; 1 < num-route(k1; L + +) [

for (m - O ; m < all-routesrk J [l] .num; m.+) (

F f (j -- all~routes[k][l].span(m]) [
flagrest - TRUE;

t i f de f verbose
fprintf(fp, "+ fv%ldpUdr%03d ",

netVPs[k].tag, netVPs[k].path, 1);
telse verbose

fprintf(fp, "+ %g dv%ldp%ldr003d * ,
L f de f TTOTAL

demand[netVPs[k).tag],
telse TTOTAL

netVPs[k].capacity,
#endif TTOTAL

netVPs[k].tag, nctVPs[k].path, 1);
tendif verbose

break ;
1

1
1 /* try next possible route */

1 /* try next VP +/

if (flagrest -- TRUE) (
/*

finish a l 1 backup route, now write working and
s t u b

+ traffic
* /

/ * write overload factor */
8 ifdef TOVER

rightside -- netSpans[j] .workinq;
fprintf(fp, * - 8g overload " ,

netSpans[j] .workinq netspans[j .spare);
Belse TOVER
aifdef TTOTAL

if (overload ! - 1.0) (
fprintf(fp, '- tg w U d ',

overload - 1.0, spanZtag[j 1) ;
1

iprinti(fp, '- ag çtld " ,
overload, span2tag[j]):

#else TTOTAL
fprintf(fp, '- tg s % l d w ,

overload,-s an2tagljj);
rightside +- (over oad - 1 . 0) netSpans[j].workinq;

rendif TTOTAL
P

Rendi f TOVER

fprintf(fp, ' <- $g;\n\nU, rightside);
1

/+ try next overload span * /
/* try next cut span */

/* write the constraint 2, backup route is sufficient to support
working VP * /

r i fdef verbose
printf("writing constratnt 2...\na);
fflush(stdout);

for (i - O; i < numVPs; i + +) [
for (j - O; j c num-route[i]; j + +) [

fprintf(fp, 'fv%ldp%ldr003d ', netVPs[iJ.tag,
netVPs[i] .path, j);

fprinti(fp, ' - 'hg dv%ldpBldr003d - O;\na,
i f de f TTOTAL

demand[netVPs[f] . tagj,
#else TTOTAL

netVPs[i].capacity,
rendif TTOTAL

netVPs[i].taq, netVPs[i].path, j);

tendif verbose

/* write bounds for link capacity, just for quick solving * /

t! i f de f TOVER
fprintf(fp, 'overload C- 100.0;\nn);

telse TOVER
for (i - 0, totalcapa - 0.1; 1 < numVPs; i++) (

totalcapa +- netVPs[i].capacity;
1
for (i - O; i < numspans; i++) (

wifdef TTOTAL
fprintf(fp. ' w%ld <- Og;\nu. span2tag[i], totalcapa);

rendif TTOTAL
fprintf(fp, " s0ld <- %g;\nw. span2tag[i], totalcapa);

1
rendif TOVER

/ * write constraint for exclusive coefficient <- 1 */
#if O
if ndef TVCSPLIT

fprintf(fp, "\n\nR);
for (i - O; i < numVPs; i++) [

uifdef TTOTAL
fprintf(fp, ' cv%ldpl ld <- l;\na, netVPs[i].tag,

netVPs[i] .path);
rcndi f TTOTAL

for (j - O; j < num,route[i]; j++) {
fprintf(fp, 'dv0ldpUdr%03d <- l;\n*,

netVPs[i).tag, netV~s[fj.path, j);
1

1
fprintf(fp, *\n\n");

#endi f TVCSPLIT
rcndif O

/ * write intcqers for exclusive coefficient * /
8 i f ndef TVCSPLIT

fprintf(fp. '\n\nint ") ;
for (i - 0; i < numVPç; i++) (

i f d e f TTOTAL
fprintf(fp, ucv%ldp%ld ', netVPs[lj.taq, netVPs[i].path);

a end i f TTOTAL
for (j - O; j c num-route[i]; j + +) (

fprintf(fp, 'dv01dp0ldr003d " ,
netVPs[i].tag, netVPs[i].path, j);

1
1
fprintf (fp, ";\n\n0);

tend i f TVCSPLIT

/ * write end * /
fclose(fp);

UifndefTVCSPLIT
/* write order file for a l 1 binary variables * /

/+ record the restoration selection to file for performance
analysis * /

i - - strlen(argv(4]) + strlen(suffix) + 1;
if ((filename - (char *) malloc(i sizeof(char))) -- NULL) [

fprintf(stderr, " f a i l to allocate memory for choice file
name\nm) ;

exit(1);
1

strcat(f ilename, suf f ix) ;

if ((fp - fopen(filename, "wa)) -- NULL) [
fprintf(stderr. Y a i l to open the order file: %s\nw. file-

name) ;

for (L - O; 1 c numVPs; i++) (
U i f de f TTOTAL

fprlntf(fp, " UP cv%ldp$ld
netVPs[i].tag, netVPs(i].path);

fprfntf(fp. *%d\nw,
(int) (dernand(netVPs(i].tag] + 1));

for (j - O; -/ < num-routeri]; j++) (
fprintf(p , UP dvUdp%ldr%03d

netVPs(i].tag, netVPs[i].path. 1);
fprintf(fp. "%d\na,

(int) (netVPs[f].capacity / 10 + 1));
1

#else TTOTAL
for (j - O; j < num-route(i]; j++) [

fprintf(p , ' UP dvUdp%ldr003d
netVPs[i].taq, netVPs(L].path. j) ;

fprintf (fp, '0d\n".
(i n t) (netVPs[i] .capacity / 10 + 1));

1
n end i f TTOTAL

1

Bendi f TVCSPLIT

/+ free tip memory + /

return (0);

Oversubscription calculation module

Makefile: doversu bscrîption/Makefile

BIN- . . / . .fiin
CC - gcc
all: overload

overload : over1oad.o
$(CC) S(CFLAGS) -O overload overload
cp overload S(BIN)

u deletc al1 executables

clean :
rm - f *.O core overload +EAU

indent:
indent -i4 over1oad.c

report: * . c Makefiie Readme
enscript *.c Makefiie Readme
echo > report

Main module: Joversubs~ptionloverload.c

/ * oversubscription calculation utility program, the result of this
file can be read by gnuplot */

Ilinciude <stdio.h>
Uinclude <assert.b
#include <stdlib.h>
#lnclude <math.h>
Uinclude <malloc.h>
winclude <alloca.h>
xinclude <values.h>

Uinclude <snif.h>
ainclude <route.h>

f n t
main(int argc, char *argv[J)
(

NODE +netNodes;/* a11 the nodes in t h e network * /
SPAN +netspans;/* al1 the spans in the network +/
ADJLIST +adj ; /* (heads of) adjacency 1Fsts * /
VP *netVPs;/* a l 1 VPs in the network +/

Fnt +tag2node, *node2tag, *tag2span, + s p ù n 2 t a q ;

int numNodes, numspans, numVPs;

i n t i , j , 1, m, totalover - 0;
f loat
f loa t

*temp, overaver - 0 . 0 ;
ovennln - KAXFLOAT, overmax - -MAXFLOAT;

int *hist, ind, total, numhist;

i f (argc ! - 5) (
printf("Usage: overload snifFile vpFile rawoutFile pdfout-

File\na
"\tsnifFile\tsnif file describing network struc-

ture. \na
"\tvpFile\tworking and backup vp capacity and

route. \ne
'\trawoutFile\tflle contaLning raw overload fac-

tors. \na
"\tpdfoutFile\tfile containhg overload PDF and

CDF.\na) ;

rifdef DEBUG
for (f - 0; i < numVPs; i++)

printf("%d %d 0d ad U.2f\nW, netVPs[i].tag,
netVPs[il.source,

/* record the restoration info to file +/
if ((fp - fopen(arqv[3], * w w)) -- NULL) (

fprintf(stderr, 'fail to open overload raw data file 0s.\nn,
a r g v U 1) ;

exit(1);
1
/+ write header of overload factors file */
fprintf(fp, "#Title:\toverload factors\nw);
fprintf(fp, "tSnif:\t$s\n", argv[l]);
fprintf(fp, 'fiVP:\tOs\na, argv[2]);
fprintf(fp, "Uspan k\t8d\na, numspans);
fprintf(fp, '#Comment:\trow - cut span, column - overload

span\n\nU);
*if O

for (i - 0; i c nurnspans; i++) (
fprintf(fp, "\tOdœ, span2tag[i]);

1
fprintf(fp, '\nW);

Uendif

tcmp - (float *) malloc(numSpans + sizeof(f1oat));

h i ç t - (int +) malloc((MAX0VER FACTOR + 1) sizeof(int));
for (i - 0 ; 1 c- MAXOVER FACTOR; i++)

hist[i] - 0;
/ * try to cut every span * /
for (rn - O; m < numspans; m + +) (

r i f d e f DEBUG
printf("Now considering span cut Od\nW. spùnStaq(m]);

*end i f DEBUG

/+ init spare capacity +/
for (i - numSpans - 1; i >- O; i - -)

templil - 0 ;

/* try a l 1 backup VPs through this span * /
for (i - O; F < numVPs; i++) (

for (1 - netVPs(i].wnum - 1; 1 >- 0; 1--) (
/ *

i f the original route qoes through this span, or
say ,

* xurktng span Is c u t
* /

if (netVPs[i].wspan(lJ -- m) {
8 ifdef DEBUG

printf("VP I d path ad found tranversing span
Od\na,

netVPs[i].tag, netVPs[i].path,
span2tag[m]);

#end i f DEBUG
/+ add capacity to al1 spans of backup VP +/
for (j - netVPs[i].num - 1; j >- O; j - -) (

int span - netVPs[i].span[j];
/* add capacity to al1 backup route spans * /

uifdef DEBUG
printf("add: c u t span ad, cut VP % d , spare

span Nd, Capa %f\nR,
rn, i , span2tag[span], netVPs[i] . c a p a c -

ity);

J
/+ stub release al1 other segments of the working

VP +/
for (j - netVPs(i].wnum - 1; j >- O ; j - -) (

int span - netVPs [i] . wspan [j] ;
if (span 1 - m) {

i f de f DEBUG
printf ("sub: cut span ad, cut VP %d, spare

span 0d, Capa %f\nR,
m, f , span2tag[span],

n e t V P s [i j . capacity) ;
rendif

temp[spanj -- netVPs[i].capacity;
1

1
break;

1
1

1

for (i - 0 ; i < numspans; i++) (
if (i -- m) [

continue ;
1
temp[i] - max(temp[i], 0.0);
tempIi] - (netSpans[i].working + netSpans[i].spare) --

0.0 ?
1.0 : ((tempii] + netSpans[i].workinq) /

(netSpans[F].working + netSpans[i].spare));
overmin - mln(overmin, temp[l]);
overmax - max(overmax, temp[i]);
if (temp[ij > 1 . 0) (

totalover++ ;
overaver +- temp[i) ;

1
fprintf(fp, "\f\ttf\nm, (span2tag(m] + 1.0 i / num-

Spans), templi]);

ind - mLn((int) (0.99999+temp[i] FACTOR), MnXOVER
FACTOR) ;

hist[ind] + - 1;

fprintf(fp, "r\n8\nm);
fprintf(fp, "rmax:\tOf\nR, overmax);
fprintf(fp, "rnurn of overload:\tOd\na, totalover);
fprintf(fp, "raverage:\tOf\nm, (totalover -- 0) 3 0.0 : overavcr

/ totalover);

i f (overmax > HAXOVEP)
fprintf(stderr,

"Err: MAXOVER 10 is less than actual maximum over-
1oad.\na);

numhist - (int) (overmax +.99999) + FACTOR;

f o r (i - O, total - O; i c- numhist; i++) (
total. +- histfi];
if (total >- (.9 numSpans + (numspans - 1))) {

fprintf(fp, "s9008 a c t u a l overload is: 0l.2f\na,
(float) i / FACTOR);

break;
1

1
fprintf(fp, " # \ n # \ n W) ;

/* writing PDF file +/
if ((fp - fopen(argv[4], " w u)) -- NULL) (

fprintf(stderr, V a i l to open the overload pdf file: 0 s \ n W ,
argvD1) ;

for (i - O, total - 0; i c- numhist; i++) (
fprintf(fp, "01.2f\tw, (float) i / FACTOR);
fprintf(fp, "%1.3f\tw, (float) hist[i] / numSpans / (num-

Spans - 1));
total +- hist [il ;
fprintf(fp, .%l:3f\nm, (float) total / numSpans / (numspanç

- 1));

/ * free up memory +/
StopVP ;

return (O);
1

Sample network TINY and the resualtant IP-1, IP-2, IP-3

D a t e : February 2 , 1995

F i l e Name: TINY

Network: V e r y tiny sample network

Program: Test Network Worktng-509 , Spùre-532

Node Xcoord Ycoord
1 47.00000077.000000
2 34.00000083.000000
3 22.00000076.000000
4 20.00000050.000000
5 43.00000054.000000
6 85.00000074.000000

Span NodeA NodeB D i s tancework ingSpare
1 1 2 20.00 74 53
2 1 3 30.00 71 74
3 1 4 70.00 71 68
4 1 5 35.00 53 71
5 1 6 50.00 55 48
6 2 3 20.00 53 74
7 3 5 40.00 16 18
8 4 5 35.00 68 7 1
9 5 6 55.00 48 55

tiny.dmd: demand mauix

+ 3.55 dvlpOrOOl - 1 sl <- 6 . 9 ;

+ 3.55 dvlpOrOOl + 3 . 4 9 dv2pOr000 + 3 . 4 9 dv2pOr001 + 3.41 dv3pOr000
+ 3.41 dv3pOr001 4 3.41 dv3pOr002 - 1 s6 cm 0;

+ 3.55 dvlpOrOOO + 3 . 5 5 dvlpOrOOl + 3.49 dv2pOr001 + 3.41 dv3pOr000
- 1 s7 <- 0;

int dvOpOrOO0 dvOplrOO0 dvOplrOOl dvOplr002 dvOplr003 dvlpOrOOO
dvlpOrOOl dvlpOr002 dvlpOr003 dv2pOr000 dv2pOr001 dv2plrOOO
d v 2 p l r 0 0 1 dv2p l r002 dv3pOr000 dv3pOr001 dv3pOr002 dv4pOr000
dv4pOr001 dvQpOrOO2 dvSpOr000 dv5pOr001 dv6pOr000 dv6pOr001
dv6pOr002 dv7pOr000 ;

- o v e r l o a d ;

+ 3 . 4 9 dv2pOr000 + 3 . 4 9 dvZpl r001 + 3.49 dv2p l r002 + 3 . 4 1 dv3pOr001
+ 3 . 4 1 dv3pOr002 + 7 . 9 2 dv4pOrOOl + 7 . 9 2 dv4pOr002 - 4 . 8 1 overload
<- - 3 . 4 4 ;

3 .49 dv2pOr000 + 3 .49 dv2pOr001 + 3 .41 dv3pOr002 + 7 . 9 2 dv4pOr002
- 9.615 overload c - -1.115:

3 . 4 9 dv2plrOOl + 7 . 9 2 dv4pOr001 - 11.565 o v e r l o a d <- - 3 . 6 6 5 ;

+ 3 . 4 9 dv2pOrOOl + 3 .49 dv2pl r002 + 3.41 dv3pOr001 - 1 6 . 3 7 overload
c - - 3 . 4 4 ;

+ 3.49 dv2pOr000 + 3 .49 dv2pOr001 + 3.49 dv2p l r000 + 3 .49 dv2p l r001
+ 3 - 4 9 dvZpl r002 + 3 . d l dv3pOr000 + 3 .41 dv3pOr001 + 3 . d l dv3pOr002
+ 7 . 9 2 dv4pOr000 + 7 . 9 2 dv4pOr001 + 7 . 9 2 dv4pOr002 - 7 . 9 2 overload
<- 0 ;

+ 3.49 dv2pOr001 + 3 . 4 9 dv2p l r000 + 3 . 4 1 dv3pOr000 + 7 . 9 2 dv4pOr000 - 4.25 overioad <- -1.37;

+ 3 .49 dv2p l r000 + 3 . 4 9 dvSp l r001 + 3.49 dv2p l r002 + 3.41 dv3pOr002
+ 7 . 9 2 dv4pOr002 - 14 .475 o v e r l o a d <- -7 .495;

+ 3 .49 dv2pOr001 + 3.49 dv2plrOO2 + 3 . 4 1 dvJpOr001 + 7 . 9 2 dv4pOr000
+ 7 . 9 2 dv4pOr001 + 7 . 9 2 dv4pOr002 - 12.93 o v e r l o a d <- - 5 . 0 1 ;

3 . 4 4 dv6pOr001 + 3.44 dv6pOr002 - 1 8 . 3 1 o v e r l a a d <- -18 .31 ;

+ 3 . 4 4 dv6pOr002 - 9 . 6 1 5 o v e r l o a d <- -4 .605 ;

+ 3 . 4 4 dv6pOr001 - 1 1 . 5 6 5 o v e r l o a d <- -11 .565 ;

+ 3.44 dv6pOr001 + 3.44 dv6pOr002 - 7 . 9 2 o v e r l o a d <- 0 ;

+ 3 . 4 4 dv6pOr000 - 9 . 2 9 o v e r l o a d <- - 1 . 3 7 ;

+ 3.44 dv6pOr002 - 14.475 overload <- -10.985;

+ 3.44 dv6pOr000 + 3.44 dv6pOr001 + 3.44 dv6pOr002 - 12.93 overload
<- -5.01;

+ 1.115 dvOplr002 - 18.31 overload <- -14.82;

+ 1.115 dvOplrOOl + 3.49 dv2plr001 + 3.49 dv2plr002 - 4.81 overload
<- -3.44;

+ 1.115 dvOplrOOO + 3.49 dv2plr001 - 11.565 overload c- -11.565;

+ 1.115 dvOplr003 + 3.49 dv2plr002 - 16.37 overload <- -11.36;

+ 1.115 dvOplr002 + 3.49 dvSplr000 + 3.49 dv2plr001 + 3.49 dv2plr002
- 7.92 overload <- O;

+ 1.115 dvOplr001 + 1.115 dvOplr002 + 3.49 dv2plr000 - 9.29 overload
c- -1.37;

+ 1.115 dvOplrOOO + 1.115 dvOplrOOl + 1.115 dvOplr002 + 1.115
dvOplr003 + 3.49 dv2plr000 + 3.49 dv2plr001 + 3.49 dv2plr002 -
14.475 overload c- -10.985;

+ 1.115 dvOplr003 + 3.49 dv2plr002 - 12.93 overload <- -5.01;

+ 3 - 5 5 dvlpOrOOl - 18.31 overload <- -11.41;

+ 3.55 dvlpOrOO0 + 3.49 dv2pOr000 + 3.11 dv3pOr001 + 3.41 dv3pOr002
- 4.81 overload <- -3.44;

+ 1.115 dvOpOrOOO + 3.55 dvlpOr003 + 3.49 dv2pOrOOO + 3.49 dv2pOr001
+ 3.41 dv3pOr002 - 9.615 overload c- -4.605;

+ 3.55 dvlpOrOO2 + 3.49 dv2pOr001 + 3.41 dv3pOr001 - 16-37 overload
<- -11.36;

+ 3.55 dvlpOr001 + 3.49 dv2pOrOOO + 3.49 dv2pOrOOL + 3.41 dv3pOr000
+ 3.41 dv3pOr001 + 3.41 dv3pOr002 - 7.92 overload <- 0;

+ 3.55 dvlpOr003 + 3.41 dv3pOr002 - 14.475 overload <- -6.38;

+ 3.55 dvlpOr002 + 3.49 dv2pOr001 + 3.41 dv3pOr001 - 12.93 overload
<- -5.01;

+ 3 -44 dv6pOr001 + 3.44 dv6pOr002 - 10.31 overload <- -10.39;

4 7.92 dv4pOr001 + 7.92 dv4pOr002 - 4.81 overload c- 0;

+ 7.92 dv4pOr002 + 3.44 dv6pOr002 - 9.615 overload <- -4.605;

+ 7.92 dv4pOr001 + 3.44 dv6pOrOOl - 11.565 overload <- -11.565;

+ 7.92 dv4pOr000 + 7.92 dv4pOr001 + 7.92 dv4pOr002 + 3.44 dv6pOr001
3.24 dv6pOr002 - 7.92 overload <- 0;

+ 7.92 dv4pOr000 + 3.44 dv6pOr000 - 9.29 overload <- -1.37;

+ 7.92 dv4pOr002 + 3.44 dv6pOr002 - 14.475 overload <- -10.985;

+ 7.92 dv4pOr000 + 7.92 dv4pOr001 + 7.92 dv4pOr002 + 3.44 dv6pOr000
+ 3.44 dv6pOr001 + 3.44 dv6pOr002 - 12.93 overload c- -5.01;

+ 1.37 dvSpOr001 - 18.31 overload <- -18.31;

+ 1.37 dvSpOr000 - 4.81 overload <- -3.44;

+ 1.37 dv5pOr000 + 1.37 dv5pOr001 - 9.615 overload <- -4.605;

+ 1.37 dv5pOr001 - 7.92 overload c- 0;

+ 1.37 dvSpOr001 - 18.31 overload <- -14.82;

+ 3.49 dv2pOr000 + 1.37 dvSpOr000 - 4.81 overload <- -3.44;

+ 1.115 dvOpOrOO0 + 3.49 dv2pOr000 + 3.49 dv2pOr001 + 1.37 dvSpOr000
+ 1.37 dv5pOr001 + 5.01 dv7pOr000 - 9.615 overload <- -4.605;

+ 3.49 dv2pOr001 + 5.01 dv7pOr000 - 16.37 overload c- -11.36;

+ 3.49 dv2pOr000 + 3.49 dv2pOrOOl + 1.37 dvSpOr001 - 7.92 overload
<- 0;

+ 3.49 dv2pOr001 - 9.29 overload <- 0;

+ 3.49 dv2pOrOOl - 12.93 overload c- 0;

+ 5 - 0 1 dv7pOr000 - 9.615 overload c- -4.605;

+ 5.01 dv7pOr000 - 16.37 overload <- -11.36;

overload <- 100.0;

fnt dvOpOrOOO dvOplrOO0 dvOplrOOl dvOplr002 dvOplr003 dvlpOrOOO
dvlpOrOOl dvlpOr002 dvlpOr003 dv2pOr000 dv2pOr001 dv2plr000
dv2plr001 dvSplr002 dv3pOr000 dv3pOr001 dv3pOr002 dv4pOr000
dv4pOr001 dvdpOr002 dvSpOr000 dv5pOr001 dv6pOr000 dv6pOrO01
dv6pOr002 dv7pOr000 ;

cvopo + cvOpl +

+ cvlp0 + cvlpl +

+ cv2po + cv2pl +

+ cv3po + cv3pl +

+ cv4pO + cv4pl +

+ cv5pO + cv5pl +

cv6pO + cv6pl +
+ cv7pO + cv7pl +

+ 2.23 cvOp2 + 3.55 cvlpl + 3.41 cv3p2 + 7.92 cv4p l + 1 . 3 7 cv5pl +

1.37 cvSp2 + 3.44 cv6pO - w2 - 0.0;

+ 2.23 cvOp2 + 3.55 cvlpl + 3.55 cvlp2 + 6.98 c v 2 p 2 + 3 . 4 1 c v 3 p l
1.37 cv5pO + 3.44 cv6p2 - w 7 - 0.0;

10 - cvopo - O;
10 + dvOplrOOl + dvOplr002 + dvOplr003 - cvOpl - 0;
10 - cvop2 - O;
10 + dvlpOrOO1 + dvlpOr002 + dvlpOr003 - cvlpO - 0;
10 + dvlplrOOl + dvlplr002 - cvlpl - 0;
10 + dvlp21-001 + dvlp2r002 - cvlp2 - 0;
O + dv2pOr001 - cv2p0 - 0;
10 + dv2plr001 + dv2plr002 - cv2pl - 0;
O - cv2p2 - 0;
O + dv3pOr001 + dv3pOr002 - cv3p0 - 0;
O + dv3plrOOl + dv3plr002 - cv3pl - 0;
O + dv3p2r001 - cv3p2 - 0;
O + dv4pOr001 + dv4pOr002 - cv4p0 - 0;
O + dv4plr001 - cv4pl - 0;
O + dv4p2r001 - cv4p2 - 0;
O + dvSpOr001 - CVSPO - 0;

- 2.23 cvOp2 - 3.55 cvlpl + 1.37 dvSplr001 + 1.37 dv5p2r000 + 3.44
dv6pOr000 - 1 s7 <- 0 ;

- 2.23 cvOp2 - 3.55 cvlpl + 1.37 dvSpOr000 + 3.44 dv6p2r000 - 1 s 2
<- O ;

int cvOpO dvOpOrOO0 cvOpl dvOplrOOO dvOplrOO1 dvOplr002 dvOplr003
cvOp2 dvOp2r000 cvlpO dvlpOrOO0 dvlpOrOOl dvlpOrOO2 dvlpOr003
c v l p l dvlplrOO0 dvlplrOOl dvlplrOO2 c v l p 2 dvlp2rOOO dv lp2r00 1
dvlp2r002 cv2pO dv2pOrOOO dv2pOrOOl c v 2 p l dv2plrOOO dv2p lr00 1

Summary of IP-1 formulation size of tested networks

In the following table. the number of variables and constraints used in al1 tested net-
works.

TABLE 11. IP Formulation Size for Al1 Tested Nctworks

1 Toronto (858 1 1339 1

Network
Smallnet

Net 1

I iiny 1 60 l 35 1

of constraints # of variables
54 1

610

1332
1

738

Appendix D: Overload Assessrnent
Simulation Prograrn

ïkaRic generation module

This module cm simulaie both the onloff fluid model and AR model using a condi-
tional compile option. IPP and AR respectively.

Makc file: Itraffidmakc file

NI - ../../include
NS - . . / . . / l i b
CC a gcc
CFLAGS - -LS(Nf) -tS(NS) -g -Wall
OPT- - 0 3

0 . 0 : % . c traffic-h
$(CC) S(CFLAGS) -03 - C S*.c
ar r c v S(NS)/libns.a S*.o
ranlfb S(NS)/libns.a

all: S(NX)/traff ic. h artraffic.0 traf fic.0

S(NI)/traffic. h: traff ic.h
cp traffic-h $(NI)

artraff ic.0: traffic.~
S(CC) S(CFLAGS) -DAR -03 -O S*.o -c traffic.~
ar rcv S(NS)/libns.a S*.o
r a n l i b S(NS)/libns.a

traff lc.0: trafflc.~
S(CC) S(CFLAGS) -DIPP -03 -O $*.O -c traffic.~
a r rcv S(NS)/libns.a S*.o
r a n l i b S(NS)/libns .a

clean:
rm - f * . O core *BAK

indent:
indent - 1 4 traffic-h
indent - 14 traf f ic . c

report: * . h *.c Makefile Readme
enscript *.h *.c Makefile Readme
e c h o >report

Main module: 1traffidtraffic.c

a include
u include
n include
u include
rt include
8 include
ir include
r include
t include
ir include
8 include

<s td io . h>
<stdlib. h>
<ma lloc . h>
cassert. h>
<va 1 ues . h>
<sys/tirnes.h>
csys/tirne. h>
Cunistd. h>
<math. h>
<string.h>
*traffic.ha

edef i n c L ~ ~ ~ ~ L E * s i m u ~ a t i o n . loga

/* state options +/
sdefine I D L E O
#define ACTIVE (! I D L E)

tdef ine FRAMESPERSECOND30. O
#def ine PERIOD (lOOO.O/FRAMESPERSECOND)
#def ine DEFAULT O. 54 /+ a Little higher than mean
value */

Udef ine LOWCLR le-5
Bdef ine HIGHCLR le-9

Udef ine upround(x) ((double) ((int) (x PRECISION + 1)) / PRECISION
\
I

Rdeflne downround(x)((double) ((int) (x PRECISION)) / PRECISION)
d e i fneind(x) ((((int) (X PRECISXON)) > histtop) ?
histtop : ((int) (x + PRECISION)))

adefine inc(k)++k; if (k > histtop) k - histtop;
rdefine d e c (k) - - k ; If (k c O) k - 0;
gifdef IPP
udcfinePRINTSOURCE(\

int Lnd; \
printf ("current of, unttl ai, next Od\na, lasttime, simul-

tirne, next); \
printf ('active # r d , rate 0 f . traffic %f\n", numactive.

rateactive, totalcell) ; \
for (ind - O; ind sourcenum; ind++) (\

printf("s UOd: as , t t f , p If, u tf, b 0f, i 0 f \ n w , \
ind, (sources[ind].state -- IDLE) 3 'IDLE ' : 'ACTIVE".

sourcesfind].endtime, \
sources[ind].peak, sources[ind].utilization, \
sources [ind] . burst, sources [ind] . Fdleburs t) ; \

1 \
i f (totalceil - 0.0) \
for (ind - O; ind < queuenum; ind++) (\

printf("q rad: cont 0f, lost a € , clr OfO%\nR. \
ind, queue[lnd].bufcontent, queue[indl.totallost. \

queue(ind).totallost/tota1ce11*100); \
1 \

1
Relse /* AR +/
rdef ine PRINTSOURCE[\

int fnd; \
printf ('\n\n\ncurrcnt t f , until t f , n e w t %J\o", i d s t L i n i e .

sirnultirne, next); \
printf ('active ttd, rate t f , traffic %€\na, numactive.

rateactive, totalcell) ; \
for (ind - O; ind < sourcenum; ind++) (\

printf('s Rad: t 0f. rate 0 f , a 0f, b 0 f , mean 0f\nU. \
ind, sources(ind~.endtime, sources[ind].peak,

sources(Fnd].a, \
sources[ind].b, sources[ind].mean); \

1 \
i f (totalcell !- 0.0) \
for (ind - O; ind c queuenum; ind++) (\

printf("q #0d: cont 0f. lost 0f, cl r OfOO\na, \
ind, queue[ind].bufcontent, queue(ind].totallost. \

queue[ind].totallost/totalceL1*100); \
1 \

struct imodel [
Lnt
double

double
tirne of active +/

double
double
int
double a, b,
double

state +/

] +sources;

tag;/* keep a tag, as the entries are sorted * /
peak;/* IPP: peak rate +/

/+ AR: current +/
utilization;/+ IPP: utilization, pexcentage of

burst;/+ IPP: m a n length of active * /
idleburst;/+ IPP: mean length of i d l e +/
state;/+ IPP: current state +/
mean; /+ AR: parameters +/

endtirne;/+ end of simulation time of current

static char
+

currentdate(v0id)

struct timeval tp;
struct tirnezone tzp;

gettimeofday(&tp, 6 t z p) ;
return (a ~ ~ t i m e (i ~ ~ ù l t i r n e (b (t p ~ t ~ - ~ e ~)))) ;

1

/+ get current time and set as the seed of random list * /
static long
SEEDRANDOM(1ong s e e d)
(

struct tms current;
static tirne-t lastseed;

i f (seed -- 01) (
while ((seed - times(6current)) -- Lastseed)

sleep(1);
1
l a s t s e e d - seed;
srand48(seed) ;
return (seed);

1

t i f O
static double
poisson(doub1e mean)
{

return (-log(RANDûM()) mean);
/ * the following i s t h e conterpart t e s t Ln K4TLAB * /
/ *

+ clear m - 80 a - [0.00000001:0.000001:1]; b- -Log(a) m;
mean(b)

std(b)
+
* /

/ * the following is for the integer poisson variable * /
i f O

double u, p , f ;
i - 0;
f - p - exp(-mean);
u - RANDOM() ;
while (f <- u) [

p *- (mean / (i + 1 . 0)) ;
f +- p;
i++;

1
r e t u r n (i);

e n d i f

/* g e n e r a t e t h e rate of n e x t p e r i o d + /

s t a t i c d o u b l e g a u s s i a n (d o u b l e a , d o u b l e d)

s t a t i c d o u b l e t - 0 . 0 ;
d o u b l e x , v l , v 2 , r ;
i f (t -- 0 . 0) [

do (
v l - 2 . 0 + RANûOM() - 1 . 0 ;
v2 - 2 . 0 RANDOM() - 1 . 0 ;
r ' v 1 v 1 + v2 v 2 ;

) w h i l e (r >- 1 . 0) ;
r - s q r t ((- 2 . 0 l o g (r)) / r) ;
t - v2 r ;
r e t u r n (a + v l r + c f) ;

else [
x - t ;
t - 0 . 0 ;
r e t u r n (a + x d) ;

1

s t a t i c d o u b l e n e x t s p e e d (t n t k) {
d o u b l e n e x t ;

n e x t - sourccs[k].a s o u r c c s [k] . p e a k + sourc~s(kJ.b + g a u s s -
ian(sources[kJ.mean, 1 . 0) ;

r e t u r n (n c x t < 0 . 0) ? 0.0 ; ncxt ;
1

s t a t i c l o n g sced[lOl - i Ox7123056789ab1, Ox987345abd3011,
Ox310284Sba7df1 , Oxab7269e640831,
O x 1 9 7 6 2 9 e f Z a 8 ~ 1 , Ox981234fc83211,
Ox9234985178ca1 , Oxabc837e91f381 ,
O x l f 8 7 1 6 7 e a 9 8 1 1 , O x 2 3 7 4 5 7 9 8 c e a f l) ;

s t a t i c double + h i s t ;
statir i n t histtop:

i r i f d e f I P P
v o i d
s i m u l - h i s t (l n t t r a f n u m , s t r u c t t r a f f i c t r a f f l c (] , double c a p a c i t y .

i n t h i s t n u m , d o u b l e h i s t t o t a l [])
reLse /+ AR * /
v o i d
a r - h i s t (l n t t r a f n u m , s t r u c t t r a f f i c t r a f f f c [J , d o u b l e c a p a c i t y .

i n t h i s t n u m , d o u b l e h i s t t o t a l [J)
gendf f

{
i n t seednum;

F 1 LE * i p ;
i n t 1 , j;
struct qucuc queue;

/+ open log file +/
fp - fopen(LOGFILE, "a+");
assert(fp) ;

fprintf(fp, "Histogram analysis starts now . . . \ n");

seednum - sizeof(seed) / sizeof(seed(0));

histtop - histnum;
hist - (double +) malloc ((hFsttop+l) sizeof(hist[O]));
assert (hist) ;

for (i - histtop; i >- 0 ; i - -) (
histtotal(i1 - 0.0;

1
queue-capacity - c a p a c l t y ;

/ * run simulation with each seed */
for (i - 0; i < seednum; i++) (

/* simulation, ahha */
uifdef IPP

simul,cap2clr(seed[l], trafnum, traffic, 0 , q u e u e) :
w l s e /+ AR +/

ar_cap2clr(seed[i], trafnum, traffic, O, &queue);
acndif

for (j - histto - j >- 0; - -) (
histtotall ,y4 +- hist[j 3 ;

1

fp - fopen(LOGF1LE. 'a+*);
assert(fp) ;
fprintf(fp, "\n\t Total result is as follows\na);
for (j - histtop; j >- 0; j - -) (

histtotal[j J /- seednum;
fprintf(fp, "\t01.2f\t%e\na, l.O*F/PRECISION, histtotal(j1);

1

fprintf(fp, "Histoqram analysis ends now . . . \ n\n\n\nR);
fclose(fp);

Uifdef IPP
f loat
simul-overload(int trafnum, struct traffic traffic(1,

doublc capahigh, double câpaiow, doulie capastep,
double bufsize)

Relse / * AR * /
f loat
ar,overload(int trafnum, struct traffic trafficl],

double capahigh, double capalow, double capastep,
double bufsize)

#end i f

seednum;

in t queuenum;
s truct queue *queue;
double clrlowcapa, clrhighcapa;
double highest - 0.0, lowest - 100.0;
f loat over load;

FILE *fp;
int i, j;

/* open log file +/
fp = fopen(LûGFILE, "a+") ;
assert(fp);

fprintf(fp, "Overload analysis starts now.,.\nR);

seednum - sLzeof(seed) / sizeof(seed[O));
queuenum - (capahigh - capalow) / capastep + 1;
queue - (struct queue *) malloc(queuenum * sizeof(queue[O]));
assert(queue);

for (i - 0; i < queuenum; i++) (
queue[i].capacity - capalow + i capastep;
queue[i].bufsize - bufsize;

1

/ * run simulation with each seed + /
for (i - O, overload - 0.0; i < seednurn; i + +) [

/* simulation, ahha +/
ltifdef IPP

simul-cap2clr(seed[ij, trafnum, traffic, queuenum, queue);
#else /* AR +/

ar,cap2clr(seed[ij, trafnurn, traffic, queuenum, queue);
#endif

f p - fopen(LOGFILE, "a+*);
assert(fp);
fprintf(fp, " a n a l y s i s of last simulation. \ n a) ;

i f (ueue[O].clr < LOWCLR) (
qprintf (fp. ' FATAL error, capacity lov bound is too

biq\nR) ;
fclose(fp);
free(queue);
return (0.0) ;

1 else (
if (queue[queuenum - l] . clr > HIGHCLR) (

fprintf(fp, " FATAL error, capacity high bound is too
small\nm) ;

fclose(fp);
free(queue);
return (0.0);

1 else (
/+ find the overload treshhold capacities +/
for (j - 0; j < queuenum; j++) (

if (queue[j] . c h < LOWCLR)
txea k ;

1
clrlowcapa - queue(j).capacity;
lowest - MIN(lowest, queue[j - l].capacity);
for (; j < queuenum; j++) [

if (queue[j].clr < HIGHCLR)
break;

1
clrhighcapa - queue[j] .capacity;
highest - MAX(highest, clrhighcapa);
/* get overload factor */
overload +- (clrhighcapa / cfrlowcapa);

fprintf(fp, * when clr - Be, capacity is %1.3f\nw,
LOWCLR, clrlowcapa);

fprintf(fp, " when clr - %e, capacity is %1.3f\ne,

HIGHCLR, clrhighcapa) ;
fprintf(fp, " thus the overload is 0l.3f\n\n\nW,

clrhighcapa / clrlowcapa) ;
fclose(fp);

1

overload /- seednum;

fp - fopen(LOGFILE, ' a + ") ;
assert(fp);
fprintf(fp, ' final overload is 01.3f\nR, overload);
fprintf(fp, ' lowest is 01.3f, highest is 01.3f\n\n\n", lowest,

highest) ;
fprintf(fp, nOverload analysis ends now . . . \ n\n\n\nR);
fclose(fp);

return (overload);

int srccomp(const void +src l . const void *src2) (
return (((struct lmodel +) src1)->endtirne - ((struct imodel *)

src2)->endtirne);
1

/ + record history of queue if queuenurn is O +/

aifdef IPP
void
simul~cap2clr(long seed,

Int trafnum, struct traff ic trafficl] ,
int queuenum, struct queue queue[])

telse /* AR +/
vo id
ar,cap2clr(long seed,

int trafnum, struct traff ic trafficl J ,
int queuenum, struct queue queue(1)

Bendi f

(
in t i, j, m, k, next, g;
lnt sourcenum, numactive;
double rateactive;
dauDi c thistotal, t, r a t e t l , tl, totalceii;

double simuhime - 0.0, lasttime, duration:
double curren t ;
FILE *fp;
char hostname(l61, domainname(l6];

extern qetdomainname(char + , int) ;

/ * open log file */
fp - fopen(LOGFILE, ' a+") ;
assert(fp);

/ * write log file +/
gethostname(hostname, 16);
getdomainname(domainname, 16);
fprintf(fp, "\nStarting simulation in a s . 0 ~ at 0 s " .

hostnarne, domainname, currentdate());

/* plant the seed +/

if (seed -- 01)
fprintf(fp, " seed not specified.\nu);

seed - SEEDRANDOM(seed);
fprintf(fp, " using seed Ox%lxR, seed);

/+ calculate the number of individule sources */
for (i - O, sourcenum - 0; i < trafnum; i++) (

for (j - O; j < traffic[i].num; j++) (
sourcenum +- traffic[i].qroup(j].num;

1
1

/* set up each source in the simulation context */
sources - (struct Imodel *) malloc(sourcenum sizeof(struct

imodel)) ;
assert (sources) ;

fprintf(fp, *\n %d source(s1 as following:\nw. çourcenum):

/* Lnitialize each traffic * /
for (i - O, k - O, numactive - O, rateactive - 0.0; i < trafnum;

i + +)
/+ try each group */
for (j - O; j < traffic[i].num; j++) (

/* try each source mode1 * /
for (m - O: m < traffic[i].group[j].nurn; m.., k + +) (

/ * constant paramcter * /
sources[k] .tag - k;

a ifdef IPP
sources[k].peak - traffic[i].group[jJ.model.peak;
sources[k].utilization - traf-

fic[F].group[j].modeI.utilization:

(sources[k].burst (1 - sources[k].utllization)
/ sources[k].utilization);

ff ((sources[kj.utilizatlon ! - 0.0) 6 6
(s~multime < sources[k].burst / sources[k].utili-

zation))
sfmultime - sources[k].burst / sources[k].utili-

za t ion ;
fprintf(fp, "\ttd: peak 0 f , util tf, bwrst ai, idlc-

burst %f\na,
k, sources[k].peak, sources[k].utilization,
sources[k].burst, sources[k].idleburst);

/+ initial s t a t e of variables +/
sources[k].state - (RANDOM() < sources[kJ.utiliza-

tion) 3 ACTIVE : IDLE;
sources[kj.endtime - poisson((sources[kj.state --

ACTIVE) ? sources[k].burst :
sourccs[k).idleb~r~tj;

if (sources[k].state -- ACTIVE) (
nurnact ive++ ;
rateactive +- sources[k].peak;

1
t e i se / * AR * j

sources[kj.a - traffic[F].group[j].model.a;
sources[k].b - traffic[i].group[j].model.b;
sources[k].mean - traffic[i].group(j].model.mean;
fprintf(fp, * \ t l d : a tf, b % f , mean 0f\nW,

k, sources(k].a, sources[k].b.
sources[k].mean);

/ + initial state of variables +/
sources[k].peak - DEFAULT;
sources[k].peak - nextspeed(k);
sources[k].endtime - (RANDOM() PERIOD);
rateactive += saurces(k].peak;

nifdef IPP
simultime 4- (queuenum -- 0) ? SIMULHIST : SIHULPERIODS;

#else /* AR */
simultime - (queuenum -- 0) 7 PERIOD 10000 : PERIOD 50000;

#endif

if (queuenum -- 0) (
fprintf(fp, '\n this is to record histogram when capacity is

Of\nn, queue[O).capaclty);
1 else (

fprintf(fp, -\n ad queue(s) as following:\n', queuenum);
for (g - O; g < queuenum; g++) (

ueue[gJ.clr - 0.0;
qprintf (f p , '\t r l d : capacity \f, size %f\nn,

g, queue[g].capacity, queue[g].bufsize);

for (g - O; g < queuenum; g++) (
queue[g].totallost - 0.0;
queue[q].bufcontent - 0.0;

I
i f (queuenum -- 0) (

ueue[O].bufcontent - 0.0;
?or (i - h i s e t o p ; i >- 0; i--) [

hist[i] - 0;
1

1
totalcell - 0.0;
lasttime - 0.0;

rifdef AR
/ * sort * /
qsort(sources, sourcenum, sizeof(sources[O]). srccornp);
next - - 1 ;

/ * start real simulation * /
while (1) (

/+ find the next event tirne +/
tifdef IPP

for (i - sourcenum - 1, next - O, current - sources(O].end-
time; i >- 1; i - -) (

if (current > sources[i].endtime) [
next - i;
current - sourccsfncxt~.cndtime;

\
1

1
telse /* AR * /

i f (*+next >- sourcenum) [
next - 0 ;

/+ check simulation end +/
i f ((lasttime >- sirnultirne) b b (sources(next].endtime ! -

lasttirne))
break ;

/* update buffer content and statistics until current event
+/

duration - sources[next].endtime - lasttirne;
thistatal - rateactive duration;

if (queuenum -- 0) (
if (rateactive > queue[O].capacity) (

/* rate is greater than capacity */
t - (upround(queue(O].bufcontent) - queue[OJ.bufcon-

tent) /
(rateactive - queue[O].capacity);

k - ind(queue[O].bufcontent);
if (t >- duration) (

hist [k] +- thistotal;
totalcell +- thistotal;

) else (
hist[k] +- t l rateactive;
totalcell +- t rateactive;
inc(k) ;
tl - 1.0 / PRECISION / (rateactive -

queue[O] .capacity) ;
ratetl - rateactive + tl;
t += tl;
while (t < duration) (

hist[k] +- ratetl;
totalcell +- ratetl;
inc(k) ;
t +- tl;

histlk] +- (duration - t + tl) rateactive;
totalcell +- (duration - t + tl) + rateactive;

1
1
if (rateactive -- ueue[Oj.capacity) (

/+ rate is q u a ? to capacity +/

hist[Lnd(queue[0].bufcontent)J +- thistotal;
totalcell +- thistotal;

1
I f (rateactive c queue[Oj.capacity) (

/ * rate is less than capacity */
t - (queue[Oj.bufcontent - downround(queue[0].buf-

content)) /
(queue[O].capacity - rateactive) ;

k - ind(downround(queue[O].bufcontent));
I f (t >- duration) (

hfst[k] +- thistotal;
totalcell +- thistotal;

) else [
hist[k) +- t + rateactive;
totalcell +- t + rateactive;
dec(k) ;
tl - 1.0 / PRECISION / (queue[O].capacity - ratc-

active) ;
ratetl - rateactive + tl;
t +- tl;
while (t < duration) (

hist[k] +- ratetl;
totalcell +- ratetl;
dec(k) ;
t +- tl;

1
hist[k] +- (duration - t + tl) + rateactive;
totalcell +- (duration - t + tl) rateactive;

1
1
/+ upda te bu f f er con tent */
queue[g].bufcontent - - duration + (queue[g].capacity -

rateactive) ;
if (queue[g].bufcontent < 0) (

queue[g].bufcontent - 0;
1

) else (
totalcell +- thistotal;
for (g - queuenum - 1; g >- O; q - -) (

queue[gJ.bufconrent - - duration (queue[g].capacity
- rateactive);

1
lasttime - sources[next].endtime;
/ * update the transient traffic +/

ir ifdef IPP
if (sources[next].state -- ACTIVE) (

numactive- - ;
rateactive -- sources[next].peak;
sources[next].endtime +- poisson(sources[next].idle-

burs t) ;
) else (

numactf ve++;
rateactive +- sources[next].peak;
sources[next].endtime +- poisson(sources[next].burçr):

1
sources[next].state - !sources[next].state;

Uelçe /+ AR * /
rateactive - - sources[next].peak;
sources[next).peak - nextspeed(next);
rateactive +- sources[next].peak;
sources[next].endtirne +- PERIOD;

*end i f
1

/* gather clr */
I f (queuenurn ! - 0) (

fprintf(fp, " \n \ t clr in this simulatfon\nR);
for (g - O; q < queuenum; y + +) (

ueue[g].clr - queue[g .totallost / totalcell;
qprintf (fp. '\t capacity t1.3f. 0c\nw.

queue(g].capacity, queue[g].totallost / t o t a l -
c d l) ;

/* print bufcontent * /
fprintf(fp, "\n\t total traffic %f\na, totalcell);
fprlntf(fp, "\n\t buffer content histograrn in thFs simula-

tion\nW) ;
for (i - 0; i <- histtop; L+ +) (

fprintf(f , '\t01.2f\t%e\t0f\nR, l.O*i/PRECISION,
hist(ij/totalcell. R ist(i.1);

hist(t1 /- totalcell;
1

fprintf(fp, '\n\nEnding simulation Os\na. currentdateo);
fclose(fp);

return;
1

