
UNIVERSITY OF ALBERTA 

SPARE CAPACITY DESIGN OF 

ATM VP-BASED RESTORABLE NETWORKS 

YONG ZHENG @ 

A thesis submitted to the Faculty of Graduate Studies and 

Research in partial fulfilment of the requirernents for the degree 

of Master of Science 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

EDMONTON. ALBERTA 

FALL 1997 



National Library ($1 of Canada 
Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services services bibliographiques 

395 Wellington Street 395. nie Wellington 
OttawaON K 1 A W  OîiawllON K 1 A W  
Canada canada 

Y o w  iu. v a n  rlfikrnu 

d v U I  NOhrlwmu 

The author has granted a non- L'auteur a accordé une licence non 
exclusive licence allowing the exclusive permettant à la 
National Library of Canada to Bibliothèque nationale du Canada de 
reproduce, loan, distribute or seU reproduire, prêter, distribuer ou 
copies of this thesis in microform, vendre des copies de cette thèse sous 
paper or electronic formats. la forme de microfichelfilm, de 

reproduction sur papier ou sur format 
électronique. 

The author r e t a .  ownershp of the L'auteur conserve la propriété du 
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. 
thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels 
may be printed or othenvise de celle-ci ne doivent être imprimés 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation. 



Dedicated to my parents Siming Weng and Qiaoai Ulang 

and my wife Tao Weng 



Abstract 

This thesis studies the capacity placement problem in ATM VP-based rcstorable networks. 

Previous work on this problern has been heuristic in nature and / or has treated the ATM 

spare capacity design problem with exact methods but in a manner that is essentially the 

same as for STM path restorabk networks. in this thesis. we develop an optimization 

approach which lets us exploit the inherently statistical nature of the tt-affic in ATM in 

capacity planning for restoration. Oversubscription factors are defined as the ratio of total 

VP bandwidth allocation aficr restoration to the total installed capacity of the span. An 

oversubscription largcr than 1 .O is one of the unique properties of ATM networks. Therc 

arc two pans in this thesis. Thc first pan is oricntcd towards capacity planning that would 

permit controlled oversubscription of bandwidth. Threc integer program formulations arc 

developed to achievc optimal capacity planning with a controlled ovcrsubscription. 

Results show that significant capztcity savings con be obtaincd rclativc to STM if ATM 

rcstoration is allowcd cven a modcst rcstoration-induccd oversubscription of bandwidth 

on surviving spans. Then the objective of the second part is to give quantitative guidelines 

towards dctcmining a realistic ovcnubscnption factor bascd on the resultant overload 

implication at the cc11 level. The ovcrload is the wont case oversubscription aftcr resiora- 

tion in ATM networks. Simulations arc completed with two traffic modcls: odoff fluid 

rnodel and auto-regressive rnodel. We find chat the tolerable overload depcnds on rnany 

factors, such as die class and traffic model. In conclusion. a restorablc ATM nctwork plan- 

ning frarnework is proposed to exploit the intrinsic differences between ATM and STM 

transport. 
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Chapter 1. ATM Restoration Problem 

1.1 Restoration Problem 

The requirements of today's telecommunication networks are changing rapidly with the 

introduction of high-capacity transmission links. the increased amount of data and voice 

traffic, and the role of tclecommunications as a major part of the world's infrastructure. A 

failure occumng in such a large nctwork can result in a huge loss of bandwidth. loss of 

service to users. and loss of revenue to operating companies. To ensure service continuity, 

service providen have incrcased their cffom to avoid failures if possible and rcstorc 

network failurcs quickly. At the centre of these efforts lies a challenging question: how 

can service providen ensure affordable service continuity? In modem ~elecommunications 

practice. this is formally called thc restoration prublem. Bccausc of thc huge economic 

impact rnadc by network failurcs. fast and automated nstoraiion has bccomc an cssential 

adjunct to the deployment of large scale telccommunication networks (1. 31. 

Restoration is nonnally achicved by rapid (wilhin 2 seconds (21) and accunte rcrouting of 

affected traffic over a set of replacement paths through the spare transmission capacity in 

the nctwork. Thcse nstoration paths should have enough capcity tu nstm thc failcd 

traffic. Also, thcsc paths necd to bc link disjoint. The restoration problem is significantly 

different from the well-studied packet routing and cal1 routing problems and. therefore, 

presents demanding real time computational challenges [ I l .  

An important network restoration objective is to reduce network redundancy. Network 

redundancy is defined as the ratio of spare to working capacity in a nctwork [ I  1. Networks 



with large redundancies are Iess econornical because the spare capacity rcquircd to protect 

them is expensive. Minimizing the capacity requirements of the networks while 

maintaining the ability to restore the most common types of failures quickly. is a key 

objective w hen solving the restoration problem. 

1.2 STM Restoration Schemes 

STM network restoration schemes are generally classified into two types: centralized and 

distributed. For centralized xhcmes. al1 restoration routes are precomputed by a ccntral 

controllcr, and thcn downloadcd to al1 DCS machines in thc network. In the case of a 

failure. affccted nodes implement predetermined restoration routes and switch lost traffic 

to those routes. Distributed schemes. notably the self-healing algon thm [ 1 1, cstablish a set 

of replacement paths without centralized control. Distribuied algorithms rely on the 

auionomous and indepcndcnt action of al1 nodes. When a transmission span failure occurs. 

rcstoration messages arc exchanged bc twccn nodcs to rcs ton: the paths con taining the 

failed span. The replacement connection is found by the nctwork elemcnts and rerouied 

depending on network resources available at the time of the failure. The primary 

advantage of distributed restoration is fast restoraiion and robustness cornparcd with other 

restoration schemes [ 2 ] .  Regardless of whether a network uses centralized or distributed 

rcstoration to restore a failure. sufficient sparc capacity must cxist to accommodate the 

restoration routes. 

The restoration routes and the associated capacity design problern may involve either span 

restoration or path restoration. Span restoration re-routes failcd working traffic over a set 
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FIGURE 1. Span and Path Restoration 

of replacement paths betwcen the two end nodes of a failed span. Path restorution re- 

routes failed working traffic over a set of mplacement paths betwecn each source and 

destination affecrrd by a fdure .  Figure I shows an example in which thc failurc of span 

CD affects two working routes: A to F and K to G. Span restoration finds replacement path 

scgments between nodcs C and D, whereas path restoration finds end-to-end replacement 

paths for the demand pairs A-F and KG. Path restoration c m  bc more capacity cfficicnt 

than span restoraiion because it sprcads the replacement paths over a larger portion of the 

network. increasing the alternatives available for making efficient use of network's sparc 



capacity. However. path restoration is more cornplex to implernent than span restoration 

because it may involve finding replacement paths for several source-destination pairs 

instead of only one node pair. 

1.3 ATM Technology 

Asynchronous Transfer Mode (ATM) is the transport technology of the B-ISDN nctwork 

proposed by the International Telecommunications Union (ITW). ATM defines the 

switching. multiplcxing and transmitting of information over B-ISDN networks. Instead 

of rcscrving time slots as in STM networks, information in ATM is packetized and placed 

in short 53-byte cells that are multiplexed and transmitted asynchronously on the 

transmission medium. ATM networks can suppon a variety of scrvices (cg.. ~clcphonc, 

imagc, vidco and data). with a guaranrced Qualiy of Service (QoS). 

A Virtuol Circuit Conneciion (VCC) in ATM is andogous to a virtual circuit in data 

networks, such as an X.25 or a framc rclay logical conncction. The VCC is the basic unit  

of switching in ATM networks. Aftcr a VCC is set up bctween two nodcs in the network. a 

variable rate. full-duplex Stream of cells maintains a co~ect ion.  For ATM. a second sub- 

laycr of processing has bccn invoduced to deal with the concept of a virtual path. A 

Virtual Path Connection (WC) is a bundle of VCCs that have the same endpoints. cg.. 

switching systems, LAN gateways. etc. Thus. cells flowing over dl of the VCCs in a 

single VPC may be switched together. Becausc VP switching is inherently more efficicni 

than VC switching [4], it is advantageous to switch a ceil in a VP. This ihtuai Path 

concept was developed in response to a trend in high-speed networking in which the 



control cost of the network is bccoming increasingly high in proportion to the ovcrall 

network costs. The Virtual Path technique helps reduce the control cost by grouping 

connections sharing cornmon paths through the nctwork into a single unit. Network 

management actions cm then be applied to a smail number of groups of connections 

instead of a large number of individual connections. 

The packets in an ATM network an called celLr. The length of an ATM ce11 is 53 bytes. 

consisting of a 48-byte information field and a 5-byte header. %O of the fields defincd in 

the header are che Virtual Path Identifer (VPI) and the Vïrtual Circuit Ideniijîer (VCI). 

VPI is a 12-bit ficld (8-bit in UNI), and the VC[ is a 16-bit ficld that togethcr definc the 

routing information ofa cell. As with any other packet-switching neiwork. routing of cclls 

is performed at every node for cach arriving cell. 

A diffemnce bctwccn STM and ATM networks is that ATM uscs siatisiical ntultipfexing. 

Statistical multiplexing is a schcmc that rnulUplcxcs traffic bascd on the strong law of 

large numbcrs [ 5 ] .  This law States that for a nurnbcr of unconrlated flows, the bandwidth 

necessvy to satisfy thc necds for al1 of the fiows stays nearly constant. evcn though the 

amount of traffic in individuai flows can Vary. The reason for this is that ai any given 

moment a few applications could be inmasing their trdfic while other applications could 

be rcducing their traffic. According to the strong law of large numbcrs. these changes 

roughly balance each other out. Compared with STM deteministic multiplexing, ATM 

statistical multiplcxing can offer an improvernent in bandwidth utilization [SI. 



1.4 ATM Restoration 

Recently algorithms for ATM network restoration have been studied actively and the VP 

has become the focus of ATM restoration (4.9. 101. When a VP is restored. al1 VCs inside 

the VP are restored automatically. Then is no need to restom individual VCs. Bccausc a 

VP can support up to 65536 VCs (recall that then are 16 bits in VCI field). restoration at 

the VP level can greatly reduce the network management burden. 

Another unique factor of VP-based restoration is that it is basicaily a path restoration 

technique instead of a span restontion technique shown in Figure 1 because a VP 

normally tnvencs scvcnl spans. As discusscd in Section 1.2, path rcsiontion has a 

significant advantage in t e m  of capacity efficiency compared with span restontion. 

VP-based restoration is distinct from STM path restoration because the path establishment 

and bandwidth assignment of a VP arc dcfincd rclativcly independentl y. Thc route is 

dcfincd in the VPI table of the ATM switch. whilc bandwidth is logically dcfined and 

rnanaged in the database of an ATM switch. In fact a VP route cm be established without 

dcfming its bandwidth. i.e., a zero bandwidth VP may bc cstablishcd. This unique 

property rnakes i t  possible to establish multiple backup VPs that share the spare capacity 

of a span. In  Figure 2. for example. t w o  k k u p  VPs i and j arc cstablishcd for rcsroration 

using span ab. The bandwidth rcquirement of each backup VP is 5 units. The routes of 

backup VPs are set before a failure. In the case of a failure. bandwidth is allocated to the 

needed backup VPs. If VP i fails. the backup VP for VP i uses the spare capacity on to 

restorc the traffic in VP i. If VP i and VP j arc mutually independcnt. we only nccd to 



allocate 5 units of spare capacity to span ab instead of 10 units. Thc sharing of spare 

capacity on a span allows spare capacity to be more efficiently utilized [4]. 

Span ab: 

spare: 5 

FIGURE 2. Spare Capacity Sharing in ATM networks 

Cornparcd with STM rcstoration. ATM msloration is more difficult due to the foilowing 

reasons (31. First. the average number of vinual paths accomrnodated in a link rnay be 

much largcr. The maximum number of VPs that can be nonnally handled by an ATM 

switch is 4096 (1 2 bits in the VCI field in the ATM ce11 header for at a NNI). Thus the 

number of restoration paths may be tremendously larger than that in STM nctworks. This 

also rnakes a distributcd restoration schemc difficult to irnplement. By any type of 

f l d i n g  method. the network rnay easily become saturated with route searching 

messages. The second difficulty cornes from ATM'S traffic characteristics. ATM networks 

support a variety of traffic types such as CBR. VBR, ABR and UBR. Thcse traffic types 

have their own quality of service requirements. For example, real time applications arc 

very sensitive to ce11 delay variance, while data communications are more sensitive to ce1 1 

loss. Consequcntly. ATM rcstoration must consider more factors than only bandwidth 



requirement as in STM restoration. The third difficulty is that ATM uses statistical 

multiplexing. in contrast to the trafic fiow in STM networks, there is no fixed bandwidth 

associated with traffic Rows in ATM networks. Therefore. if some traffic flow is induced 

on a link. without some engineered control and network design. the result could be a 

severe overload on that link. an issue overlooked by some ATM restoration schcmes. 

ln a previously proposed ATM restoration schemc [4]. a backup VP is pre-assigned for 

each working VP. In the restoration process. traffic in a working VP is normally restored 

to only one backup VP. This no-splitable propcrty can prevent VCs inside the VP from re- 

routing to diffcrcnt routes, which incrrases the complcxity of restontion significantly. In 

the backup VP. thcrc is no ce11 flow in normal operations. The nodes terminating the 

working VP are also the nodes terminating the backup VP. When a failurc occurs. the 

Sender nodc (downstrcarn sidc terminating nodc of thc failed VP) dctccts thc VP failurc 

and sends a restontion message along the backup route. The Sender node then switches 

the failed VP to the backup VP. Each node rhat nceives the restontion message captures 

the appropriate bandwidth on thc links, and rctransrnits the message to the next node on 

the backup route. When the Chooser node (upstrcam side terminating node of the failed 

VP) finally nceives the restoration message. it switchcs traffic from the failed VP to the 

backup VP. This completes. at lcast functionally. the rcstonition process for the failed VP. 

There are. however, issues of bandwidth coordination to make this simple scheme perform 

adequatel y. 



1.5 Problem Introduction 

Several spare capacity placement aigorithms for ATM VP-based restoration design have 

been proposed 14, 101. They may be classified into two general categories. The fint 

category of ATM capacity placement algorithms are basically heuristic in nature. In the 

algorithm proposed by NTT' [4]. the shonest route is first set as the initial backup route for 

each working VP. Then the aigorithm substitutes an alternative backup route for each 

working VP one at a tirne and the spare capacity is calculated with this modified set of 

backup routes. If a srndler total amount of spare capacity is achieved using this 

substitution. the altemate backup VP is kept. Every VP backup is tested in this manner to 

find which backup VP routes rcquire less spare capacity given the current statc of spare 

bandwidth allocations already placed for prcviously dccidcd backup VP routes. This 

process is repeated until no improvement cm bc made. In the resultant design. the spare 

capacity of a span is forccd by thc larges1 capncity VP whose backup routc traverscs it. 

This procedure is conccptually heuristic. 

Thc second category of ATM capacity placement algorithms [6]. treats the ATM capacity 

design problem with exact methods but in a manner that is essentially the same as for 

STM path restorable networks [a] .  This rncans that the span capacity plan aims to support 

al1 restoration demands with an exact match of restoration bandwidth io failed working 

VP bandwidth. This approach is certainly a valid and defensible bais for planning a 

practical ATM network today. However. one can observe that this mats the ATM spare 

capacity problem as esscntially equivalent to STM planning in that failed VPs are reroutcd 

over backup VPs of exactly equal bandwidth allocation regardlcss of actual VP utilization. 

This is analogous to STM type restoration of STS-n signais as integral entitics regardless 



of their actual payload fill. There is no way to take signal fil1 into account in STM 

restoration: each signal unit must be replaceci exactly or al1 services borne on the affected 

transport signals experiencc hard outage. This hard outage aspect of STM does not pertain 

to ATM because ATM uses statistical multiplcxing. however, two or more VPs of a unit 

bandwidth allocation could technically be re-routed for restoration and converge on the 

same link of unit spare bandwidth. Both VPs arc functionally or logically rcrouted as 

rcquired. but the link bandwidth is ovenubscribed at this point. Thus. there may be an 

overload effect in the link, Le.. the services in boih VPs rnay undergo a degradation on 

QoS. This degradation. though conceivably scvere, but. unlike STM. is soft and 

continuous. a degradation that aises if chc replacement bandwidth is not an exact match to 

the failed working bandwidth. Moreover. the actual degradation that occurs depends on 

the VP utilization at failurc time. If utilizations ;ire low. then the oversubscription of 

bandwidth on restoration may not causc QoS to dcgradc bclow acccptablc scrvicc Icvcls. 

ATM restoration planning could (if we wish to consider it) exploit a domain that is not 

available ro STM. This planning would allow us io contemplatc bandwidth planning thnt 

does not support strictly perfcct replaccmcnt of each VP's initial bandwidth allocation. 

While not dismissing or minimizing the potential impact on sewicc, which could be 

severe if oversubscription effccts are uncontrolled. it could bc of value to at least inspect 

the trade-off between network capacity requirements in dependcnce on a limited 

designed-in allowance for bandwidth oversubscription upon restoration. Specifically. our 

interest will be in recognizing the inhercntly statistical nature of the traffic Rows in ATM 

and fonulating the backup VP design process to permit a controllcd maximum amount of 

convergent fiow oversubscription on spans during restontion. A partial analogy for this 



linc of thinking is found in the airline business: most flights are slightly overbooked as 

part of an overall optimum economic policy for revenue maximization. Most often. the 

overbooking is unseen to users as some passengers almost always do not show up. 

Sirnilarly in an ATM network. could we not slightly (or even aggressively) overbook the 

restoration capacity we design into the network? Unless a failure occurs right when 

working VP utilizations arc simultaneously at their peaks. the slight overbooking of 

rcstoration capacity may be unnoticed by customers. Indecd. if the trade-off of nct 

capacity versus tolerable oversubscription is steep. ancilor if mechanisms can be built in to 

also prioritize VPs whcn restoration-induccd congestion is manifest. then ATM nctworks 

with a controllcd degrce designcd-in bandwidth ovenubscription upon restoration may 

well be part of an economically optimum ovenll strategy. 

1.6 Outline of Thesis 

The preccding discussions introduced the gcncral problem of ihis rcsearch, WC now 

procced in detail as follows: Chaptcr 2 prescrits diffcrent types of original integcr program 

fomulations and hcuristic algonthrns for the capacity placement problem in ATM 

networks. First. we will quantitativcly define the oversubscription factor bascd on the 

traffic nature in backup VP-based ATM restoration. Then. we will show that the 

oversubscription effect can be very seven in some prior work, illustrating that the spare 

capacity placement problem must be considcred cmfully. Three Integer Program (IP) 

formulations will be given for (a) minimum spare capacity with respect to design peak 

oversubscription. (b) minimum ovenubscnption with given spare capacity, and (c) 

minimum total capacity with respect ro design peak ovenubscnption. In addition to these 



IP formulations. two simpler algonthms are also presented to calculate reasonably tight 

upper and lower bounds on the required spare capacity. We will then use these 

fonulations to study the effect of spare capacity saving with various degrees of 

oversubscription allowed in ATM restorable network planning. From the results we will 

fi nd CI versubscription can bene fit the capacit y saving in ATM networks. 

Chapter 3. thercafter. presents a study to aâdress the logical ncxt question of what the 

tolerable overload factor can be based on the relateci cell-level overload implications. WC 

study cell-level overload from the viewpoint of ce11 loss ratio degradation. The idea is to 

dctemine a rcalistic level of cell-lcvel ovcrload effects and cell-lcvel performance 

dcgndation due to merging rcstoration flows. This work is oncntcd toward the ce11 level 

dependence on traffic types and numkr of VPs in merging rcstoration flows. Our aim is to 

produce quantitative guidclines on the tolerable ovcnubscription value with which to 

design a g ivcn backup VP-bascd rcstonble ATM nctwork. Two di ffcrcnt traffic modcls 

will be used in the respective simulations: an odoff fluid mode1 and an auto-rcgressive 

modcl. 

Chapter 4 is a concluding discussion which proposes and discusses a new ovcrall 

framework for ATM backup VP capacity design baxd  on the i d e s  and rcsults of the 

previous two chapters. Finally a summary of the whole thesis will be given. 



Chapter 2. Spare Capacity Placement 

2.1 Logical View of VP-based ATM Restoration 

To understand the traffic on an ATM span after restoration. a logical view of a span j is 

illustrated in Figure 3. Assume that span j has a total instalied bandwidth allocation that is 

based on its nominal working load and some reservation of spare capacity for restoration. 

Unii ke in an STM ne twork. these working and spare bandwidth allocations are not 

necessarily distinct integral transmission sub-units. e.g. DS3s or STS- 1 S. Rather. each 

link's total bandwidth is vicwed as having becn planned as two allocations from the total 

bmdwidth present. In case of another span i failurc. al1 VPs going through span i are rc- 

routed to other spans. During restoration. some working VPs on the failcd span i may use 

span j in their backup routes. These backup VPs werc logically prcseni on span j pnor io 

failure. but then consumed no bandwidth. Only upon failure does the re-directed cc11 

ATM span j 

Workin 

Working VPs 

FIGURE 3. Logicai N e w  of VP-based ATM Restoration 



stream appear in each backup VP. Additionally. part of the restoration reaction of the 

network may give span j a reduction in ce11 traffic: this occurs if one or more of the 

working VPs on span j is aiso affected by the failure event. either upstream or downstream 

of span j on the path of these working VPs. This is known as stub relcase here and was 

previously used in a similar content in (81. Therefore, surviving span j may see both a 

disappearancc of ce11 flows frorn some of its working VPs and a sudden onset of ncw cc11 

strearns for activated backup VPs that traverse it. 

In general. there are three types of traffic on an ATM span after restoration: 

1 .  traffic from working VPs. the undisturbed traffic drcady existing on thc span. 

2. traffic from stub rclcase VPs. the traffic rcrouted away from the span. and 

3. traffic from backup VPs. thc traffic choosing thc span in their backup routes. 

2.2 Oversubscription Factor 

We can now quantitatively define the restoration induced bandwidth oversubscnption 

factor. The oversubscription factor X of a span j in respome to failure of another spun 
j, i 

i is dcfined as the ratio of total VP bandwidth allocation aftcr restoration to thc total 

installcd capacity of the span. This cm be expressed as follows: 



w here 

Rrjmi is the total allocated bandwidth of VPS on span i whose backup route crosses 

span j. 

RsjSi is the total allocated bandwidth of VPs which disappear from span j because 

they traverse the failed span i which happens to be either upstream or 

downstream of span j. (This is called the stub release franc.) 

W j  is the total allocated bandwidth of working VPs on span j before failure. 

Si is the total sparc bandwidth allocation on span j. 

Note that XjOi is based on ollocated bandwidths of VPs throughout, but not the actual 

traffic. The t em "overload" c m  more prccisely dcscnbe the ratio of actual induccd traffic 

to the link bandwidth. The actud ccll-lcvel ovcrload that occurs depends on the actual 

utilization of cach VP involvcd, not thc bandwidth alIocations to the VPs. Thcrcforc, if 

cach factor in the numentor wcre to be multiplied by a known cell-level utilization factor. 

a m e  overload mcasure rcsults. Howcvcr. for planning purposes, the worst case ovcrload 

is obviously the sarnc as thc ovcnubscription factor. bus wc continue to rcfer to Xjei as thc 

restoration-induced ovenubscnption factor since a value XmI will represent the designed 

in maximum ovenubscnption of bandwidth and hence the maximum iolerable cell-level 

ovcrload that could occur in the network as dcsigned. 

It can bc appreciated that X,, 5 1.0 V ÿ, i) is a basic propeny of STM rcstoration 

because this implies that the total bandwidth of paths available for replacement of failed 

vanspon signals is always cqual to or greater than thc failcd bandwidth. In STM. therc is 

no option of 'partly' replacing one or more failed STS-n signals. Either each is replliced 



exactly by a rnatching restoration path or d l  services borne by the givcn STS-n experience 

immediate total outage. In ATM, however, the concept X,, > 1 .O is definitely conceivable 

and technically meaningful. As argued. it simply means that span j's total bandwidth is 

technically oversubscribed when span i fails. Unlike STM. this is a state of 'partial' 

restoration in which al1 services may be affectcd to a degree in terms of ce11 loss and delay. 

However. no service is imrncdiately tenninated or disconnccted because the restoration 

path bandwidths do not exactly match the pre-failurc bandwidths. Whether cell-Ievel 

performance exceeds QoS requirements under X,, > 1 .O will depend on the actual VP 

utilizaiions and uaffic paramciers at the time of failure. 

2.3 Prior Work Involving Uncontrolled Oversubscription 
Effects 

A heuristic algorithm of capacity placement in ATM backup VP-based restoration wüs 

prcviously proposed by NTT in [4]. The main problcm of this mcthod, dcscri bed bclow. is 

that while every working VP is assigned a backup VP route to yield a near-minimum in 

total backup capacity allocations. there is no designed-in control to coordinate the backup 

VPs with respect to oversubscription ax-ising from the set of working VPs that arc cut by 

the sarne physical failures. The result is that while a logical replacement route exists to 

functionally replace each failed working VP, the total cell-level traffic impinging on other 

nc twork spans is uncontrolled. 

In the algorithm described in [4], hereafter called KSrAlg, the shortest route is first set as 

the initial backup route for each working VP. Then the algorithm substi tutes an altcmativc 



backup route for one working VP. The spare capacity is calculated with this set of backup 

routes. If a smaller total amount of spare capacity is achieved by using this substitution, 

the substitution is kept. Every VP is tested in this manner to find which of al1 its possible 

disjoint altemate routes requires less spare capacity given the current state of spare 

bandwidth allocations akeady placed for previously decided backup VP routes. This 

process is repated until no improvcment can be made. In the resultant design. the sparc 

capacity of a span is forced by the largest VP whosc backup route traverses it. 

. - 

working-9 D - e VPi (capacity- 5 )  . . 
y * * .  spare: to bc usigncd O . . 

I 

FIGURE 4. KST-Alg Backup VP Capacity Allocation (Ides1 Situation) 

Fioure 4 illustrates the capacity minimization principle and how ir results in uncontrollcd 

oversubscription. In the example. span ab serves on the backup routes for both VP i 

(capacity 5) and VP j (capacity 7). Assume KST-Alg has first considercd VP j and. 

accordingly, then assigns span ab a spare capacity of 7 units. Once spm ab has 7 units of 

restoration capacity assigned to it, KST-Alg will later realize that it can efficiently route the 

backup VP for working VP i over span ab as well because more than enough capacity is 



already reserved on ab to serve VP i which needs only 5 units of'bandwidth. This rcuse of 

span ab in the example assumes that KmAlg also finds that the rest of the backup VP 

route for VP i is suitably efficient on other spans as wcll. KST-Alg chooses a completc sct 

of backup VPs which are efficient in this sense of muse of capacity. 

Thus. functionaily speaking, a logical backup VP is planned for each working VP. Such 

backup VPs would be fully adequate if one VP fails at a tirne. What is missing. howcvcr. 

is consideration that if VP i and VP j happn to share the same physical span. for instance. 

xy. then in case of its failure. VP i and VP j will be re-routed simultaneously onto backup 

VPs which vavcrsc span ab as illustrated in Figure 5.  Thcrefore. omitting any 'stub 

Spm ab: 
working-9 

spare: to be assigned 
j V '  f 

Wj (capacity- 7) 

FIGURE 5. KST-Afg Backup VP Capacity Allocation with Problems 

rclease' cffects for the example. and assuming a W, of 9 units on ab. the rcsult of span cut 

xy is a restoration-induced total allocation of 9 +5+7 - 21 units of capacity on span ab. 

which only has a total capacity allocation of 9+7 - 16 units. Thus the restomtion induccd 

oversubscription factor XdJy is 1.3 1 - 2 1/ 16. What is missing. thcn. are considcriitions on 



how to coordinate the set of backup VPs from each physical span failure as a 

simultaneously instantiated group of backup VPs. The npaned capacity results given by 

KSrAlg arc extremely attractive and widcly publicized predictions of very low spare 

capacity levels. In what follows. we will see that these low levels will be accompanied by 

essentially uncontrolled restoration oversub~cription on the surviving spans. 

2.4 Implementation of KST-Alg 

In this section, KST-Alg was implemented to rcproduce and to test thc predictions of vcry 

low spare capacity and to validate Our conccms of uncontrolled restoration induccd 

oversubscription effects. The programs arc written in the C language and presented in 

Appcndix C. In the rcst of this section. we first discuss thc working VP rouiing mclhod. 

and then movc on io cxplain how CO use KST-Alg to design Ihc backup VP route for cach 

working VP. Next, the oversubscription factor is calculated. Finally. wc givc a validation 

to our calculation. 

2.4.1 Working VP Routing for KST-Alg 

Given a network topology and working dernands. we use the shonest path method to 

design the working VP routes and working capacity on each span. For every dcmand. we 

find the shortest path betwecn the end node pair, set up a VP dong the path and place thc 

demand on dl traversing spans. If therc are several 'equal' distance shonest paths. WC set 

up one VP on each. and split the demand into these VPs equally. Sumrning al1 VPs 

requirernents on a span, WC gct the working capacity. 



2.4.2 Backup VP Routing Assignment for KST-Al' 
First. a subset of al1 distinct backup routes for every VP is found. i.e.. a subset of al1 span 

disjoint routes between the end nodes of the working route. Considering that the number 

of distinct routes in a network of S spans is 0(ZS). the number we use to test the result 

typically has to be rcstricted in practice. Because of the properties of diffèrent networks. 

we find that hop-lirnited or disiance-Iimited methods typically used are not realistic. For 

example. with a given hop limit. there may be thousands of backup routes for some VPs. 

while no routes can bc found for other VPs in somc networks. Conscqucntly, a k- 

succcssive shonest distinct routes method is adopted to generatc a useful set of distinct 

backup routc options for cach VP. Wc selcct several shortest eligible routes from this 

su bsec in the rcsults prcscnted subscqucntly. 

It is interesting to note that in some situations. there are no backup route options at ail. For 

cxample. in thc samplc nctwork in Figure 6. if a VP (the dottcd line) terminates ai nodcs A 

and B. thcn there are no span disjoint backup routes between thcm evcn though this 

network is 2 or more connected throughout. To avoid this situation, we change the 

working VP design as necded if such a situation is cncountercd. A VP with the shortest 

FIGURE 6. No Backup Routes in Working VP Design 



path is checked to see if it has any backup path. If not, we choose anothcr route for this VP 

which. aithough it is not the shortest path, has a span disjoint backup VP. In this case 

working & backup VPs are always possiblc to find as long as a cycle exists in the network 

graph between their end nodes. 

With these preliminaries completed, KST-Alg is then applied to chwse the best backup 

route set to minirnize the total spare capacity. In the iteration for one VP. we substitute its 

backup route with ali alternatives. The spare capacity of a span is forced by the largest VP 

whose backup route traverses the span. If one route set leads to less total spare capacity. 

this substitution is kept. This process is mpcatcd until no improvemcnt c m  be made by 

substituting backup routes for al1 VPs. A block diagram of KST-Alg irnplcmentation is 

illustrated in Figure 7 on page 22. 

2.4.3 Calculation of Oversubscription Factors 

Aftcr dcsigning backup VPs with KST-Alg. WC check the oversubscription factors on ali 

other spans for each possible physical span cut. Oversubscription data is obtained by 

actual rerouting experiments on each designed network based on al1 possible span cuts. 

Each affected working VP is remuted to its designed backup VP. We then apply al1 traffic 

(including working. stub relcase and backup) in the definition in Equation 1 to obtain the 

restontion-induccd ovenubscription on al1 spans for each span cut. For a nctwork 

containing S spans. each of S-1 other spans has an ovenubscription factor upon a span 

failure. Therefore, the total data set of oversubscription factors is an (S-1 ) by S matrix. 
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2.4.4 Validation of Irnplementation 

The irnplementation of KST-Alg was venfied by checking some program results with 

manual calculations. 

In the backup design, the spare capacity of a span is forced by thc largest capacity VP 

whose backup route traverses the span. in the process. we Save chosen backup routes into 

a file. Later, WC check the file and compare it with our manual calculaiion. For one span, 

WC find al1 backup routes which use it. thcn verify if the sparc capacity is equal to the 

largest backup VP. One of the five sarnple networks introduccd in Section 2.5.1 on 

page 25. Net 3. was chosen to validate the results. For example. in Net 3. span 8 is picked. 

We find the following VP's which usc this span. Thcir capacities an: shown in Tablc 1 : 

TABLE 1. Backup VP Design Validation for Span 8 of Net 3 

Apparently. the largcst VP in Table 1 is VP 78 and its capacity is 39.0. This is cxactly thc 

spare capacity which we get from the program. Other cases were also used to validate the 

program and we always cnded with the samc rcsults. 

VP 
19 

76 

84 

In the ovenubscription factor validation, to calculate the ovcrsubscription on span j upon 

a span i cut. we considered the following VPs which use: 

(a) span i as working route and span j as backup route; 

1 9 0 1  30.0 191 1 6.0 1 1 I I 1 

capacity 

30.0 

28 .O 

7.0 

(b) both span i and j as working route: 

VP 
55 

78 

85 

capacity 

17.0 

39.0 

10.0 

VP 

72 

79 

87 

capacity 

37.0 

5.0 

26.0 

VP 
75 

8 1 

89 

capacity 
4.0 

4.0 

4 .O 



(c) span j as working route, regardless of span i. 

Then these items are put in the oversubscription factor definition. 

Item (a) is rcstoration traffic in Equation 1. item (b) is stub release traffic and item (c) is 

original working ttaffic on span j. After detennining (a), (b). and (c). we put them in 

Equation 1 to calculate the overioad factor. For example, in Net 3, the oversubscription 

factor of span 6 upon span 7 cut is considered. VP 37 (whose capacity is 4.0) traverses 

span 6 and its backup route traverses span 7. Thus. span 7 has 4.0 extra uni& of traffic after 

restoration. Table 2 surnmarizes al1 VPs which use span 7 as backup route and span 6 as 

working route. 

TABLE 2. Oversubscription Factor Validation 

The sum of al1 traffic is 828. Ncxt we find stub rclease ~affic. In this case. only VP 55 

(whose capacity is 17) uses both span 6 and 7 in its working route. It uses span 8 as 

backup. Thus, this traffic is taken from span 7 u p n  failing span 6. Span 7 has a working 

traffic 684. Its working and s p ~ c  capacity arc 684 and 441 nspectively. Givcn thcsc 

values we cm get an oversubscription factor using Equation 1 of 

684 - l 7  + 828 - 1.3288, which is what we get from the program. 
684 + 441 

. 
VP 

, 

37 

75 

8 1 

85 

9 1 

capncity 

37.0 

39.0 
4 

7 .O 

30.0 

capacity 

4.0 

4.0 

4.0 

10.0 

6.0 

VP 
46 

77 

84 

' 63 

VP 

38 

76 

82 

87 

capacity 

44 1 .O 

95 .O 

7 .O 
.-- 

4.0 

capacity 

6.0 

28.0 

82.0 

26.0 

VP 
72 

78 

84 

90 



2.5 Results and Analysis of KST-Alg 

2.5.1 Network Investigated 

Five networks and demand matrices previously studied for STM restoration [8] were used 

to test KSl-A@. The characteristics are detailed in Table 3. Snrallnet is a test network 

which has a unifonn point-to-point demand matrix with two demand units between a11 

node pairs. Net 1 is a U.S. rnetropolitan m a  mode1 (afso known as the "Bellcore" study 

network). Net 2 is a rnetropolitan m a  mode1 in the Telus system. Canada. Nct 3 and 4 

topologies and demands are based on European and US interexchange networks. 

respecti vel y. 

TABLE 3. Test Network Charactcristics 

2.5.2 Results 

Table 4 shows thc sparc capacity rcquircrnent with KSrAlg and the data for the 

consequent oversubscnption cffecu. The spare capcity expressed in percentage 

rcpresents the ratio of distance-weighted spare capacity to the distance-weighted working 

capacity. Average oversubscription is the mean oversubscription value of al1 cases wherc 

network 

Smallnct 

# node 

10 

# span 

22 

# demand pairs 

45 

# Working VPs 
79 



oversubscription factors arc greater than or equal to 1 .O. Maximum oversubscription is the 

case with the largest oversubscription factor. 

TABLE 4. Spare Capacity and Oversubscription in Designs with KST-Alg 

1 Netî 1 54.3% 1 I .37 1 3.32 1 

Network 

Smallnet 

The table shows that KmAlg generates a low rcdundancy. Smallnet has about 298  

sparing. In metropolitan networks. sparing is up to 55%. white in long haul networks. 

sparing is only up io 39%. 

Thcse spare capacity prcdictions arc indeed much lowcr than those requircd by STM 

nctworks [8]. This finding has gained much industry attcniion contributing to a gcncrd 

notion that ATM-bascd restoration will require vcry much lcss capxity than STM-bascd 

restoration. Ir is important. however. to note that these particularly low spare capacity 

levels arc accompanied by significant and stnctly unconuollcd ovcnubscription effec~s on 

surviving spans. W~th thc levels of oversubscription reaching 3 to 10 times nominal ~ a f f i c  

load. ce11 loss and ceil delay in ATM networks would very likely be intolerable for many 

applications [6]. 

KST- Alg 
28.6% 

Figure 8 iliustrates the dctailed ovenubscription factor andysis of Net3. The upper 

diagram shows the oversubscription overall surviving spans when a span is cut. Its 

stnicrure is as follows: for each spm considered as the failurc span i. on the x-axis. the (S- 

Average 
Oversubscription 

1.14 

Maximum 
Oversubscription 

1.42 



Ovenubscription Factor vs. Failed Span in Net3 
4.5 9 

pdflcdf vs. Ovenubscription Factor in Net3 

C 
~ v e t S u  bscription dctor 4 

FIGURE 8. Oversubscription Factor Analysis of Net3 

1 )  Xjei values expericnced by other spans are plotted left to right with a vertical line for 

each value. Therefore, in the figure, the x-ais  is labelled with the failure span namcs ünd 



in the fine scale the oversubscription factors of al1 the surviving spans are shown. For 

example. in a network of 10 spans. there would k ten clusters of nine Xjei values displayed 

sidc by side to form the plot. The lower plot shows the probability density and cumulative 

probability density functions of oversubscription values. These two diagrams demonstrate 

that a large number of oversubscription cases is involved in KST-Alg design. The largest 

oversubscription is about 4.16 in Net3. 

2.6 IP-1: Minimum Spare Capacity with Design Limits on 
Oversubscription 

The capacity savings implication in Kfl -Alg  relative to STM networks is very attractive. 

but thc uncontrolled ovcnubscription implications ;ire probably unacccptable in practice. 

Our aim now is to formulatc optimal capacity allocation mclhods that will still pain as 

much ATM-relatcd capaci ty savings as may be sûfely possible givcn an allowed maximum 

of restontion-induced ovenubscription. In Appcndix C. the C-language proprarns. werc 

which written to gcneratc the lntcger Rognm tablenus, arc listcd. 

The fint IP formulation optimizcs the sparc capacity placement of a rcstonble ATM 

network given a peak iillowablc oversubscription factor in the network. The objective 

funaion is: 

Minimize: i 1 c j . s j }  

Subject CO: 



1. Sparing is sufficient to keep restoration ovenubscnption below the design limit. XmI. 

for al1 failutes: 

( X j , i ' x m l )  W , j )  E S  U f j )  (3) 

2. Backup VPs are sufficient to meet the target restoration levels (Rf'Q) for al1 working 

VPs : 

3. Only one backup VP can be used for each working VP. i.e. VP flows are not split: 

where akr' - 1 if the k'h route for backup of g r * q  is chosen. othenvise ak r * 4  - 0. 
The tnffic in a working VP c m  not bc split in restoration. i.c. only one backup route to 

restore a working VP. This rcquircment is the general industrial practice because splitting 

a VP cntails a r cmgcmcn i  of al1 individual VCs insidc the VP and can bc poicntially 

very complicated. 

The definition of variables is as follows: 

- the cost of span j pcr unit bandwidth (the lcngth of a span may be includcd 

here) 

W, - the working capacity bandwidth allocation on span j 

S, -. the spare capacity bandwidth allocation on span j 



S - the set of al1 spans in the network 

gr* ' = the working VP on route q for dcmand pair r 

pr' - the portion of demand traffic going through working VP gr' 

P" - the set of al1 distinct backup VP routes eligible for restoration of working 

vp gr 'q  

( ' - the ph backup VP of the working VP gr' 

a** ' - the portion of restontion traffic going through backup VP f' ' 

I g r *  '1 - the bandwidth of the working VP gr*q  

' 1  - thc bandwidth of the backup VP /' 

51' 1 1 if the route of working VP gr' ' crosses span i. othenvise O 

6rv - 1 if the ICh route available for backup of g r * q  crosses span j 
k~ 

R" - the target restorability Ievel of working VP gr* (1 .O used here) 

D - total number of non-zero demand pain in the demand matrix 

dr - nurnbet of dcmand units betwcen end-node pair r 

Qr - total numbcr of working routes available to satisfy the dcmand bctwcen node 

pair r 



The main output variables arc S.. the spare capacity bandwidth allocation on al1 s p m .  
J 

Also obtained in the solution is the set of values (tL '1 which are the total bandwidth used 

on rcstoration routc k for working VP gr* '. The 4 information effectively details the 

restoration plan for the whole network which accompanies the optimai spare capacity 

values. The '1 values stipulate for thc qrh working VP scrving part of the total dernand 

on relation r. which of the k possible routes for its backup VP is actually used in the 

design. To implcment Constmint 1 on X,, i .  the ovcrsubscription levcl on span j in 

response to the failun of span i. the above variables arc substituied for Xjei as shown 

bclow: 

Bccause the number of constraints and variables is large. it is gcncrally vcry timc- 

consuming and memory-consuming to solve this mixed integer formulation. Several 

methods have been iaken to accelerate the solving process. First. f," is eliminaied by 

substituting Equation 4 for Equation 6. because the foxmer states the relation between 

fkr* and utr*'. Thus WC c m  only use akr* in the final iP formulation. This eliminaics 

half of the variables and constraints and greatly decrcases the complexity. Second. several 

features of the MIP solver prognm am taken advantage of. such as the meihod of branch- 



and-bound [23], setting the priority of a: according to its traffic volume. Le. larger 

capacity VPs are decided first. Because larger VPs dominate the spare capacity of a span. 

if larger VPs are chosen first we do not have to significantly adjust the spare capacity to 

accommodate srnaller VPs. Additionally. because only one route c m  be chosen to restore 

the failurc VP, we set the branch parameter to 'up' which causes the selected branching 

variable to be set to one, and then forces ail the rest of the variables in the constraint to 

zero, which eliminates al1 the infeasibilities in that consiraint [23]. Thcse techniques 

greatly improve the speed of solving IP programs. 

2.7 IP-2: Minimum Peak Oversubscription with Given Spare 
Capacity 

The second formulation applies to the case whce  an existing set of sparc capacity 

allocations has bccn givcn and the problcm is to find a set of backup VP allocations that 

rcsults in the smallcst pcak ovcrsubscription of a rcstonblc ATM nctwork working within 

the given pattern and mounts of available spare capacity. Al1 the variables are the same as 

in IP-1. but S. is now an input instead of an output. This formulation can be used in 
1 

general to minirnize the maximum impact of mstoration in situations where there is not 

enough spare capacity for cornpletc restoration without ovcrsubscnption. 

The objective is: 

Minimize: 



where rna~(X,,~) is the peak restoration-induced ovenubscription resulting over al1 spans 

for al1 span cuts from the assignment of backup VP routes with given spare capacity 

allocations. XjVi is given by Equation 6. In order to achieve this minimum of maximum 

value. which is not a linear formulation directly, a new variable Y is addcd. Y is defined as 

the maximum value of XjBi. Therefore the objective is changed to minimize Y and the 

following ncw constrainis an: addcd: 

The objective is subject to thc following constraints: 

1. Backup VPs art sufficient to meet the target restoration for al1 working VPs: 

f tr .q - lgr.qlakreq - Rr*4 ~k E P q  v ( r , q )  (9 

2. Only one backup VP c m  bc uscd for each workinp VP, i.c. VP flows are not split: 

where akr* - 1 if the ph route for backup of gr* ' is chosen. ohenvise akr* - 0. 

2.8 IP-3: Minimum Total Capacity with Design Limits on 
Oversu bscrip tion 

nie constraint system iP-1 pwnted  in Section 2.6 is adequate for VP restorable designs 

without jointiy considcring the routing of working demands before a failure. IP- 1. 

however. can bc extendeci to simultaneously optimize ihe working VP routes and the 



backup spare capacity placement. An IP formulation which minimizes the sum of working 

and spare capacity must not only determine the spare capacity per span and the routing of 

al1 backup VPs, but also the working capacity per span and the routing of al1 working VPs. 

By adding the following two constraints to the IP- 1 formulation presented previously. the 

solution will include the values of W,. and 4 which will now minimize the rotal 

capacitycost required in a path restorable network. 

The objective function now becomes: 

Minimizc: 

Subject io: 

1 .  The total capacity on the working VPs a1loca;ed to node pair r can carry al1 the requirc- 

ment of tnffic dcmand rclation r: 

2. Span j's working capacity is sufficient to meet the prc-failure dcmands of al1 working 

VPs which cross it: 

3. Only one working VP cm be uscd for each demand pair. 



where f3c" -1 if working VP gr*q  is used to carry the demand r, othcrwise B:' - 0. 

Here we require that there is only one working VP for one demand pair. If therc is no 

restriction of the working routes for each demand pair, there are too rnany working VPs in 

the network. This inevitably increases the network management burden. 

4. Sparing is sufficient to keep restoration ovenubsmiption below the design limit. XmI. 

for al1 failures: 

(X,, < X,,,) v ( i ,  j )  E S ( i f  j )  (15) 

5. Backup VPs arc sufficient to meet the t q e t  restoration levels (Rr*q) for al1 working 

VPs: 

6. Only one backup VP can bc uscd for its working VP. i.c. VP flows are not split: 

where a: - 1  if the ph r o u ~  for backup of gr'q is chosen, otherwise ak r * q -  0. 

2.9 Related Bounds For Spare Capacity 

In addition to KS7-Aig and the IP formulations above. two mon: simple algorithms an: 

presented here to calculate reasonably tight upper and lower bounds on the required sprirc 

capacity of a backup VP-based restorable ATM network. Thcse bounds also provide a 

check on the IP-based rcsults io follow. niey may also be useful as rclativcly quick 



procedures yielding fairly tight bounds on the sparing requirements of a giwn network 

and working path VP routings in advance of detailed optimization. The lower bounding 

procedure in particular may be useful to rapidly generate starting point dcsigns for large 

networks, wilh the iP -based optimization used subsequently to reach a final complete 

design. 

2.9.1 Upper Bound Algorithm 

The uppcr bounding aigorithm is based on KSï-Alg with a simple modification to strictly 

eliminatc my rcstoration induced ovcrsubscription. In KSrAlg, the spare capacity of a 

span is set as the largest VP requirernent. If scvcnl VPs sirnultaneousIy fail upon one span 

cut. the nctwork may suffcr from very high ovcrsubscription. The sparc capacity on cach 

span in this uppcr bounding algorithm is sct to the sum of al1 the working VP capacitics 

that traverse it, rather than thc maximum of such values. For cxarnplc. in Figure 5 on 

page 18. the upper bounding algorithm det-ived frorn KSTAlg says that span ab needs 7+5 

- 12 units of capacity, rather than mar(75) -7 uni& as KST-Alg does. This results in an 

over-provisioncd design with a guaranteed maximum oversubscnption factor of 1 .O. 

2.9.2 Lower Bound Algorithm 

The lower bounding algorithm is based on IP-1 with the constraint in Equation 5 relaxed 

to allow real valued a. This converts the Mixed Integer Program as prcsented into a rcal- 

valued Linear Program (LP) which c m  be solved much more quickly in genenl. Whilc 

serving as an LP relaxation of an IP problem. this MIP also represents a class of 

rcstoration sysicm where VPs would bc arbitrarily decomposable for rcstoration rerouting. 



This can be more concretely represented by letting individual VCs in a VP take diffcrent 

routes in restoration. Thus, the LP formulation would assume that we are to use several 

backup VPs to handle the total flow of each working VP. The sparing achieved is thus a 

lower bound for the practical case where only one backup VP is available to restore each 

working VP. 

2.10 Results with IP Formulations and Bounding Algorithms 

2.10.1 Test Networks 

Thc nctworks uscd in tcsting KSrAIg arc now also used in the IP and bounding 

algondims. In addition, two more networks used in other ATM rcstoration works [6] arc 

used here. One is the metropolitan area network of Toronto. Canada while the other one is 

a US long-haul nctwork. Note thnt the demand matriccs for thcse two modcls arc 

artificially set and. therefore. are clearly unredistic. The dernands were assurned to be thc 

sarne betwecn any IWO nodc pair. 



2.10.2 Results of Spare Capacity 

Table 5 summarizes the results of using the four capacity design and bounding algorithms. 

TABLE 5. Spare Capacity Requirement Cornparison 

1 1 1 IP-1 1 1 lower bound 

1 Toronto ( 14.2% 1 53.7% 1 56.4% 1 49.2% 

Network 

Smallne t 

I US 1 5.4% 1 60.9% 1 64.2% 1 60.4% 

a. Solving IP- l for Smallnct is cxmmcly complicatcd. No tcsult can bc achicvcd within rca- 
sonablc tirne. 

KST-Alg 
28.6% 

The results wiih IP- 1 are based on an allowable oversubscription factor XtOI of 1 .O. KST- 

M g  has the minimum sparc capacity but has scvcrc and frcqucnt ovcrsubscription cascs. 

IP- 1 falls bctwccn two bounding algorithms which providc a quick chcck and potentilil 

starting points for the exact problem. The requircd spare capacity for P- 1 incrcascs 

grcatly cornparcd with KSTAlg in ordcr to clirninate the ovcrsubscription cffec~.. In 

metropditan networks such as Net l and Net2, sparc capacity found in IP- l incrcascs 

about 60% from Kfl -Ab,  while in long haul networks such as Net3 and Net4 the capacity 

incmases about 100%. It is also noted that thc spare capacity requircmcnt for Toronto and 

US networks given by KST-Alg is vcry low due to the fact that the demand rnatrix is 

unifom and that there is one unit of demand for every node pair. Therefore. in each span. 

the spare capacity is ai most one demand and shatcd by several VPs. In thcsc highly 

shared capacity networks thc requircd spm capacity is very low. 

@ X&-O 

N/ka 

upper bound 
39.1 % 

x , ~ , = ~ . o  
24.9% 



Another interesting result is the lower bound on spare capacity when we decomposc the 

VP and distribute the traffic over severai routes. It is not surprising that it achieves a better 

result than IP- 1. because tnffic is shmd by more spans and spare capacity is shared to a 

greater extent. However. we find that thex is only a small reduction of the sparc capacity 

by 1 % to 5% h m  P- 1. Less than 196 capaciiy is saved especiaily in Net4. This implies 

that we do not have very much room to Save the spare capacity. even if some elcgant 

mechanisms wen to bc used to decompose and distribute the VP traffic at the VC level. 

Spliting the VP traffic can be potentially very complicatcd. would not likely provide any 

big advan tage. 

Figure 9 shows the oversubscnption analysis in Net3 whcn using IP-1 with thc tolerablc 

oversubscnption factor at 1.2 as an illustrated test case. The Xjmi data in cach is obtained 

from scparaic prognms that conductcd rcstontion cxpcrirnents for cach span failurc using 

the assigncd backup VP routes in cach design. The structure of this figure is the samc as 

that in Figure 8 on page 27. Thus. the tight c lmp  on Xjei valucs of 1.2 in this figure 

validates IP-1 for its intendcd properties. The IP-l design ai X,01=I.2 has about 50% more 

spare capacity than the KmAlg design and 30% spuc capacity lcss than thc equivalent 

STM design. This capacity saving benefit cornparcd with Xmr=l .O is discussed in detail in 

the next section. 

2.103 IP-2 Results 

Since KST-Alg allocates the lcast total spare capacity. it is of intcrcst IO sec how low the 

peak oversubscription can be capped within this sparing if IP-2 is applied to the KST-AIR 



Oversubscnp~ion Factor vs. Failed Span in Net3 (X,$ .2) 
1.4 

pdVcdf vs. Ovenubscripiion Factors in Net3 ( X , p  1.2) 

Ovenubscription Factor 

FIGURE 9. Ovenubscription Analysis of Net3 with XmI Set to 1.2 

spare capacity design to improve the coordination of backup VP assignments to rcducc [tic 

peak ovcrsubscription factor. Figure 10 shows this result for Net-3 which illustrates the 



application of IP-2 to improvc on the worst-case oversubscription of the KST-Alg spare 

capacity design but with cxactiy the same spare capacity placement that KST-Alg placed in 

the first instance. By rearranging the backup VP assignments, I f - 2  manages to reduce the 

peak ovenubscription of the KSï-Alg design to 3.04 kom 4.16 (in Figure 8 on page 27) 

while retaining 3 1% spare capacity. The side effect of reallocating backup VPs to reduce 

the peak ovenubscription is that there are more individual overload cases. When we 

squeeze the maximum oversubscripiim down by applying iP-2. the restoration flows are 

distributed more extensively over ail spans and then morc spans suffer from 

ovenubscnption effects although the peak factor is lowcred. 

Failcd Span 

FIGURE 10. Oversubscription Factors in IP-2 Design for Net3 with Sparing 
Fmm KmAlg (31 % spare capacity) 



2.10.4 IP-3 Results 

Before presenting the results of IP-3. a simple complexity analysis must be given of the 

IP-1 formulation as related to P-3. Suppose a network has D demand pairs. W possible 

working routes for a demand and B possible backup routes for cach working VP. The 

complexity of P- 1 is o ( B ~ )  because cach working VP (or demand) has B choiccs and 

the total nurnber of working VP is D. The complcnity of IP-3 is O( because for 

evcry combination of working VP arrangement the complexity is the s m e  as IP- 1. There 

are O(@) working VP arrangement combinations in total. F m  this analysis. we can 

deduce that it is hard to obtain completed IP-3 nins on networks of any signifiant size. 

Thcreforc. only threc resulu of the tested nctworks are given hcrc. In Table 6, ihc capacity 

shows the working. spye and total capacity in the testcd networks. Note that the total 

capacity is normalizcd to the case of IP- 1 and shown as a pcrcentagc. Wc find that total 

capacity savcd can be up to 10%. 

TABLE 6. Total Capacity Requirement Cornparison 

1 Toronto 1 100% 1 90.6% 1 

Network 

Net4 

1 

When the P is allowed to jointly optimize the placement of working and spare capacity in 

a network. i t  chooscs working paths which arc coordinatcd with the nctwork rcstoration 

IP-1 
@ X,,= 1 .O 

100% 

W-702758 1 S-646108 

IP-3 
@ X,O1= 1 .O 

97.3% 
W-737197 1 S-575858 

* 



process. This means that demands may sometimes be routed via paths longer than the 

shortest path. This increases the working capacity in the network. but more spare capacity 

can potentially be saved. For exarnple. in the Toronto network. the working capacity in IP- 

3 is 7 100 units more than that in IP- 1. On the other hand. the spare capacity is 1 8866 less. 

Overall. the total required rnay be reduced if working and spare capacity are jointly 

minimized. 

2.11 Spare Capacity versus Tolerable Oversu bscription Design 
nade-off 

Using IP- 1 it is possible to explore how the total span: capacity of the network rcsponds io 

increasing Xmr. Table 7 summarizes the designs for cach of our test networks for X,oI 

ranging up to 2.0. For comparative prcsentaiion. dl sparc capaciiy totals arc normalizcd to 

that of Xmi= I .O casc for cach nciwork. The total sparc capacity decrcases rathcr quickly as 

the design tolerance for restoraiion-induccd oversubscription increases. With 10% design 

maximum oversubscnption of bandwidth on rcstoration (X,, - 1.1 ). spare capacity is 



reduced by a range of 17% to 23%. At a more aggressive X,oI - 1.5. a full 60% to 70% 

reduction of the spare capacity is obtained. 

TABLE 7. Spare Capacity Requirement vs. Mowable Oversubscription Factor 

XmI is. however. the strict peak oversubscription lcvel that WC will tolerate in the IP-l 

Design Xmr 
, 

1 .O0 

designs. This maximum Xj,i=Xml may occur for only one spccific combination of failure 

span and restontion span in the design. It is. therefon. worth inspecting the number of 

spans thai actually cxpcricnce a given level of ovenubscription within a design tolcrancc 

of Xmr. Figure 1 1 considers this in tems of the 90th percentile of actual ovenubscription 

Net 1 

levels enperienced by spans over dl spsn cuts versus the dcsign ,Ym1. Ttic data shows. for 

example. that at XmI - 1.4.90Z of the spans octually expericnce oversubscription no 

grcatcr than 1.06. 1.08. 1.21 and 1.28. 1.33, 1.36 in Nets 3.4.2. 1, US and Toronto 

respective1 y. This adds to the expectation that fairly significant capacity savings could be 

Net 2 
100% 1 100% 1 100% 

Net 3 
100% 

Net 4 

100% 100% 

Toronto US 



possible in practise without severe restoration-induced side-effects. through judicious 

choice of X,,,[ as a parameter for the basic design of the network [IO]. 

XmI. Design Ovcrsubscription Limit 

FIGURE II. 9oth Pcrcentile Actual Oversubscription vs. Design Maximum 

2.12 Comments on Tolerable Oversubscription 

Here. we discuss the irnponant issue of the oversubscription factor which is tolenble in 

network planning. The maximum acceptable icvcl of restoration-induced ovenubscription 

would depend on whcther wont or average case VP utilizations and traffic statistics are 

assumed for determining such a guideline. It may aiso be in part a policy or business issue; 

if there is to bc strictly no degradation on restoration. then mar(Xj,i) = XmI = 1 .O and the 

network restontion planning is equivalent to STM (i.e.. prfect bandwidth replacement). 

In a network that is lightly loaded in terms of ce11 level utilization of the installed 



bandwidth. some Xii> 1 could clearly be tolerated before QoS guarantees are affected 

greatly. An altemate business point of view might be that al1 VPs should be allowed to 

suffer to a degree during a network restoration event. The QoS impact also depends on the 

time of the failure relative to the busy period and the equipment provisioning interval. At 

the Pme of an acnial failure, each surviving span would assess its actual cell-level 

utilization after allowing enough time for backup VP switching to occur. It would then 

either do nothing. in which casc utilizadons were low enough to provide restoration for al1 

services. or it would mark the lower priority VPs traversing it with a throttling indication 

to be acted upon either by the VP sources themsclves or neighboring switches. All bis 

considercd. r rclativcly high X,, might actudly bc practical. In practise the aggrcssivcncss 

of each nctwork providcr in designing ATM rcstorable networks would be expected to 

vary in this regard. Some quantitative guidelines as to the acceptable XmI will be obiained 

from sub-studies of the theorcrical queuing delay and cell loss increasc cffccts for diffcrent 

merging traffic types discusscd in the next chaprer. What is useful at this stage. howevcr. is 

to provide a design formulation that would allow us to explore the capacity savings that 

are obtainable in ATM restoration depending on thc maximum restontion-induced 

overload factor that is considered admissible. 

2.13 Conclusion 

Based on a logical view of traffic in backup VP-based ATM restoration. the restoration 

induced flow convergence oversubscnption factor wa quantitatively defined. The 

oversubscription factor was defined as the ratio of presumed bandwidth for restoration to 



the actual link bandwidth allocation. The technical property of an oversubscription largcr 

than 1 .O is one of the unique properties in ATM networks. 

The spare capacity placement algorithm KST-Alg proposed by NTT was implemented to 

test it for the restoration induced ovenubscription effects. The spare capacity requirement 

produced by KST-Aig is indeed much lower thm required by STM networks. It is 

important to note that these particularly low spare capacity lcvels an accompanicd by 

significant and strictly uncontrolIed oversubscription effects on surviving spans. Witb very 

high levels of oversubscription. ce11 loss and ce11 delay in ATM networks would very 

likely bc intolcnble for many applications. 

The capacity savings rclativc to STM networks arc vcry attractive. but the uncontrollcd 

oversu bscription implications arc probabl y unacceptable in practise. There fore. WC 

lomulatcd optimal capacity allocation mcthods that w il1 still gain as much ATM-relatcd 

capacity savings as safcly possible by giving us a controlling input on thc maximum 

extent of the rcstontion-induced ovenubscription. The first IP formulation optimizes the 

spare capacity placement of a rcstonblc ATM network given a peak allowablc 

oversubscription factor in the network. The second fomulation applies to thc casc whcrc 

an existing set of spare capacity allocations has becn given; the problem. then. is to find a 

sct of backup VP allocations that results in the smallcst maximum ovcnubscription factor. 

The third formulation tries to minirnizc the total (working + sparing) capacity of a 

restorable ATM network with a given design peak ovenubscription factor. In addition to 

these IP formulations. two sirnpler algorithms werc prescnted to calculate rcasonably tight 



upper and lower bounds on the required spare capacity of a backup VP-bascd restorablc 

ATM network. 

The rcsults obtained indicated that the total spare capacity decreases rather quickly as thc 

design tolerance for restoration-inducd oversubscription incrrases. With a 10% design 

maximum oversubscription of bandwidth on restoration (Xlol - 1.1 ). spare capacity is 

reduced by a range of 1 7% to 23%. At a more aggressive XlOI - 1 S. a full 60% to 70% 

reduction of the spare capacity is obtained. This suggests that significant capacity swings 

cm bc obtaincd relative to STM if ATM restoration is allowed evcn modcst rcstoration- 

induced oversubscnption of bandwidth on surviving spans. 

Thc tolerable oversubscription factor dcpcnds on sevcral considcrations. In part. this 

factor is a nctwork operation policy. An aggrcssive nctwork operator may use a large 

ovcrsubscription to Save more valuable capacity in the network. As the Iogical next stcp in 

this study. a guidclinc govcming the choice of ovenubscription factors will be givcn bascd 

on thc theorctical study of a qucuing mode1 of traffic. In the next chaptcr. somc 

simulations are mn to find what XmI might actudly bc feasible. 



Chapter 3. Tolerable Overload Assessment 

3.1 Tolerable Overload Assessment Method 

In the previous section, we found that a fairly significant amount of capacity can be savcd 

if even a modest ovenubscription factor is allowed in the restoration spare capacity 

placement design. The oversubscription factor X i j  is only for network planning purposes 

bccausc whelher a rcal failure causes an actual overload of traffic and a QoS degradation 

depends on severai factors. If VPs are not simultaneously utilized at their peak levels. an 

actual cell-level overload may not occur. Only in the worst case whcre al1 VPs arc fully 

loadcd. docs the oversubscription factor indicatc the actual ovcrload in the nctwork. Thc 

overload O can be defined as following: 

O is the tolerable overload of thc nctwork. 

X i j  is the ovenubscription factors in the network, 

U is the utilization factors of VPs in the possible failure cases. 

T is the traffic type. e.g., CBR. VBR, ABR, UBR. in VPs. and 

P is the traffic parameten, e.g., rate, burstiness. 

Here we can find that lots of factors are involved to decide the tolerable overload. The 

ovcrload illustrates the ability of allowing overload traffic for an givcn traffic. 



The next question facing network designers/operators is, then, what is a reasonable 

theoretical level of overload. Because spare capacity saving increases with a large 

overload factor. we should use as large an overload factor as possible. Convencly. since 

overload inevitably degrades network performance, it should not be arbitrarily large. A 

design method should be provided which identifies the largest overload factor that does 

noi degrade QoS beyond a manageable level. We therefore note that: 

1.  The network traffic types affect the tolerable overload factor greatly. 

2. Different networks have their own characteristics. 

3. Somc networks rnainly carry bursty traffic. whilc othcn rnainly carry 

continuous traffic. 

Thc tolcrablc ovcrload, of coursc, is not thc sarne in diffcrcnt nctworks. 

In order io get the tolerable overload factor. let us first recall the definition of overload in 

Section 2.2 on page 14. It is dcfincd as ihc ratio of allocûted tnffic to the link bandwidth. 

As we know. tmffic multiplexing in STM networks is deterministic. On the contrary. 

tmffic in ATM networks is statistically multiplexed. There is no easy way to get the traffic 

volume directly. To overcomc this problem, WC borrow the conccpt of Equivalent 

Bandwidth frorn Cali Admission Control (CAC) algon thms [ 1 91. Equ ivalent bandw idth is 

defined as the effective bandwidth rcquirement of connections multiplexed into one link 

which meets the required QoS. When a new traffic source is added. the network c m  

decide to accept this new connection based on its equivalent bandwidth and available 

bandwidth. Note that cquivalcnt bandwidth only depcnds on the traffic source. The link 



bandwidth into which the traffic is induced is not relevant here. Equivaleni bandwidth of 

the trafic shows the required bandwidth to accommodate the t r a c .  

To illusirate how to apply the concept of equivalent bandwidth to the overload calculation. 

consider a group of ATM uaffic sources that an: aggregated into a link. The trafic volume, 

or the cquivalent bandwidth of the traffic. is 1 IOMbps. If we route this traffic to a link 

whose capacity is 1lOMbps. it is obvious that QoS is normal and no performance 

degndation occun. In this casc. thc overioad factor is 1 .O. Howcver if we routc this traffic 

to a link whose capacity is IOOMbps. more cells are lost and thc delay increases due io the 

qucuing ovcrfiow. In this casc. thc ovcrload factor is 1.1 (- I IOMbps/ IOMbps). If thc 

capacity of the link is Icss. it is expectcd that ovcrload will bc high and the QoS 

degndation will be more severc. as illustrated in Figure 12. Our overall objective in 

planning ATM nctwork with ovenubscription is io find thc largest ovcrload factor so that 

QoS is still at a tolerabk Icvel. This largcst overload value. ihcn. is callcd the tolerablc 

overioad. 

Not tolcrabk 

Toltxabte 

Nonna1 

FIGURE 12. QoS versus Restoration Induccd Overload Factor 



To gain some idea of the tolerable overload in practical circumstances. a group of traffic 

sources and a finite queuing buffer are given. We first calculate the equivalent bandwidth 

for those traffic sources whcn QoS is normal. Then we calculate the bandwidth when QoS 

is still tolerable. Using the definition of overload. the tolerable overload factor for this 

group of traffic sources is obtained by dividing the equivalent bandwidth by the least 

tolerable bandwidth. How to calculate the bandwidth requirement to cnsure a givcn QoS 

bccomcs the new problem. As therc is no analytical method to get the equivaient 

bandwidth and least bandwidth 1191. we have to use extensive simulations to get these two 

valucs. 

To study the effect of traffic characteristics on the overload factor. we will change 

individual system description variables. such as sourcc utilization and buffer size. while 

kccping al1 othcr factors constant. Thcn. WC anaiyzc how the tolcnble ovcrload factor 

rcsponds to these individual factors. For example. to study the effcct of sourcc utilization. 

we uw a group of traffic sources. The overload factors are calculatcd in several cases 

using utilization of cvcry source cqual to 0.1.0.2. up to 0.9. Analyzing the result. WC cm 

find how thc overload factor changes with the source utilization. Using this method. we 

c m  get the effect of other traffic descripton. 

3.2 On/Off Fluid Traffic Mode1 

Scvcral rnodcls of ATM traffic have k e n  under active tescarch. Hcrc we use the on/off 

Ruid rnodel due to its simplicity and adequacy [II]-[I 31. This rnodel is also used in 

cquivalcnt bandwidth bascd cal1 admission control schcmes [l  1 1. as illustrateci in 



Figure 13. In the odoff Ruid model. there is a continuous altemation of active and idle 

periods. In active penods. the source constantly transmits at its peak bit rate. In idle 

periods. no ce11 amivals occur. The durations of two periods arc exponentially distributed 

(i.e., in poisson fashion). Such a source model has the advantages of king both simple 

and flexible as it can be used to either represent connections ranging from bursty to 

continuous bit streams or approximatc more complcx sources. 

FIGURE 13. Stste Diagram of an OnlOff Fluid ATM ltaffic Mode1 

Thc on/off fiuid modcl uses threc tnffic descriptors: 

1 .  R .  the peak bit rate. which is the bit ntc in active mode. 

2. p .  utilization. which is the percentagc of time in active mode. and 

3. b. mean burst length. which is the mean length of the active mode. 

Othcr descripton c m  be dcrived from the abovc. 

ni : mean bit ratc. m - Rp ; 

p: transition rate out of active state. p - 1 /p ; 

)c : transition ratc out of idle state. A - p/  ( b  ( l - p) ) . Thc mcan idlc lcngth is 



3.3 Equivalent Bandwidth 

Besides the parameters of the traffic model. the following factors are also involvcd in the 

equivalent bandwidth calculation: 

1. c , the link bandwidth, 

2. B , size of the finite buffer, and 

3. E, ce11 loss ratio (CLR). 

Considcr n traffic sources ( R ,  pi,bi) i - I ... n king rnultiplexed into a link with a finitc 

qucuc (sizc B ) and r link bandwidth c. In gcncrai, Ict Z be a rmdom variable dcnoting the 

aggregatc bii ntc of al1 sources. Thcn, thc dynarnics of h e  qucuc in thc sysrem arc dcfined 

as follows: 

1 .  If Z <  c and 

a. the buffcr is cmpty. then 

it remains empty; 

b. the buffèr is not empty, then 

its content dccrcases at a constant rate of c - 2. 

2. If Z c ,  then 

the buffer content does not change. 



% I f  Z > c  and 

a. the buffer is not full, then 

the buffer content increases at a constant rate of Z - c ; 

b. the buffer is full, then 

the buffcr is still full, the cells are lost at a constant rate of Z - c . 

The equivalent bandwidth E is defined as the minimum link bandwidth c. wherc the 

probability of ceIl loss is less than sorne desind Cell Loss Ratio E .  

The analytical derivation of cquivalcnt bandwidth for several rnutually independent 

identical sources is sumrnarized in Appendix A. A decailed analysis c m  be found in [13] 

and [19]. 

In generd. the distribution of ihc buffcr content is of the fom: 

where the zi and mi are. rcspectively, gcncralizcd cigenvalues and cigenvcctors 

associated with the solution of ihc diffcrcniial equation satisfied by the staiionq 

probabilities of the systcm. and the ai's are coefficients determincd from boundary 

conditions [ 191. 

The distribution of F (x) is completely determined from the values of the associatcd 

cigenvalues. eigenvectors, and corresponding coefficients. There arc no expl icit 

expressions for these quanti ties. so they must be detcrmined numericall y. 



An important aspect of this problem is numerical stability. The inevitable errors incurrcd 

during numerical integration. no matter how smail. are liable to excite the unstable modes 

and lead to solutions of F (x) that biow up. 

The anaiysis in previous paprs [Il]-[14] has shown that the most important factors 

affecting equivalent bandwidth are the ratio of peak bit rate to link bandwidth. ~raffic 

source u tilization. and mean burst length. 

3.4 Ce11 Loss Ratio Consideration 

Cell Loss Ratio (CLR) is an important factor in thc calculetion of cquivalent bandwidtli. 11 

is obvious that cquivalcnt bandwidth is liugcr if the CLR requircrnent bccomes more 

stringent. In this section. we discuss CLR in normal working conditions and a tolenblc 

CLR to allow in a restored nctwork statc. In this simulation. we only considcr CLR due to 

ihc qucuing buffcr ovcrflow (i.c., bit error rate cffccts arc ignorcd). 

In a real nerwork. sevenl factors arc involved in the final system overail CLR. such as the 

BER of the transmission mcdia. losscs in the ATM conccntrator/switch, and software. 

Combining a11 thesc factors. thc overall CLR can be obtained which is dominated by the 

worst factor. In our simulation. CLR is only due to queuing saturation. It is expected that 

our CLR is of the sarne ordcr of magnitude as the overdl CLR. Thcrcfore. Our CLR should 

be neither unnccessarily low nor ioo high. 

Assumed values for some of the of major factors affecting the overdl CLR include bclow 

O for the BER of fibrc optics. 1 0 - ~  for the end-to-end objective of thc undcrlying 



physical Iayer DS-3 circuits, 1 O-'* for ATM concentrator or switch. and 1 O-' for queuing 

of application level software [17]. Difierent values are adopted in their simulations for 

equivalent bandwidih. such as the rnost stringent CLR service objective of 1 0 ~ ' ~  in ( 1  I l ,  

more relaxed vduc of IO-' in [12]-[14]. lo4 [II] and IO-' in (181. In ( 1  11 .  the authors 

studied the effeci of the required ceIl loss probability ninging from  IO-^ to 1 o - ~  . These 

numbers give us a gcneral vicw of CLR requircment due to buffer saturation. In Our 

simulation. l C 9  is used as the nominal working objcctive io calculate the quivalent 

bandwidth. In case of ovcrload. a iolcrablc CLR of L O - ~  is assurncd. This is consisicni 

with prcvious research [13, 16, 15.20j. 

Let c-, and c - ~  denote the equivalent bmdwidth when CLR is  IO-^ and o - ~  

rcspcctivcly. The physical explmation is that a uaffic volume c - ~  is routcd io a link whose 

nominal design capacity is ceS.  Accordingly the ovcrload is: 

3.5 Simulation Design 

The system mode1 used in our simulation consists of a group of mffic sources. a finite 

queue and a transmission link. Cells arrive asynchronously to the queue from the sources. 



Thcy arc multiplexed on a FLFO basis and transmitted out onto the link. Thc finite queue is 

served by the link. 

C R w  Phi' bN) 
traf fic sources 

FIGURE 14. Simulation Queuing Model 

It should be cmphasizcd that this simulation can only obtain the CLR if a link capacity is 

given. The opposite is not feasible by ninning only one simulation (Le.. to obtain the 

cquivalcnt bandwidth with a given CLR requirement). Consequently. to get the bandwidth 

rcquircmcnt for a givcn CLR. this simulation has to be run sevcral times with a set of 

differing link capacity values. The capacity of the nearest CLR is regarded as the 

bandwidth required for that given CLR. Based on this mechanism. we get the equivalent 

bandwidth c - ~  and bandwidth cWS with the target CLR of  IO-^ and IO-' . Thc 

conrsponding overload factor is ciiiculiiied using Equation 20. 

The traffic sources are rnutudly independent. Each source is a continuous altemation of 

active and idle periods. The length of the active pend is a poisson process whose mcan 

value is b. whereas the length of idle pend is a poisson disuibution whosc mcan value is 

b ( 1 - p)  /p. Within one period. the traffic is constant. It is either at its peak bit rate or 

zero depcnding on its statc. 



In this simulation. an event-driven mode1 is also used. The simulation is not driven by 

"timer". but by "events". An event is any transition of any traffic source. The transition 

can either move from idle to active or from active to idle. Between any two adjacent 

events. the state of dl traffic sources is unchanged. During these events the aggregated 

traffic rate of al1 sources is constant. A series of transition events is generated for al1 

sources over the whole simulation time. The length of active and idle pcriods conforms to 

the respective poisson process mcan values. After verifying al1 transition evcnts and tnffic 

in al1 periods. we can calculate the buffer content. total uaffic. and cell losses according to 

the analysis in Section 3.3. 

The observation window of the whole simulation is set large enough to hold at les t  

200.000 transitions of any source. Having lned sevcnl valucs for the window sizc. wc 

have found that this number is large cnough to make the rcsults rcasonably stable. The 

simu lai ion process was repeated sevcral timts wirh di ffercnt random number seeds ruid 

the averagc ovcrload factor which raiscs CLR fmn  IO-^ to IO-' was uscd as the final 

result. 

This simulation program is written using the C language in a UNiX environment. Its 

correcuiess was checked by a separate Matlab implernentation which is. of course. much 

slower. 



3.6 Results 

3.6.1 Simulation Parameters 

The parameters for the on/off Buid mode1 used in this simulation were adopted from [ I l ] .  

In [Il], sevcral Cali Admission Control (CAC) schemes are compared based on the sarnc 

set of traffic descriptors. Traffic models are characterized by three descripton: peak rate. 

utilization and mean burst length. The peak rate is normalized to a reference link 

bandwidth. The burst length is in the unit of time intervals. A three-element vector (R . p , 

b ) is used to npnseni them. For example. (0.08. 16%. 72) denotes a trafic mode1 whose 

peak ratc is 0.08. utilization is 16% and rncan bunt lcngth is 72. In the simulation in [ I l ]  

and Our simulation. two basic classes of traffic arc uscd. (0.05.208.80) class 1 and (0.1, 

20%. 50) class 2. The nurnbers of class 1 and 2 traffic sources are 70 and 35, respectivcly. 

In ordcr to calculatc the ovcrload factor for our purposes. the buffer sizc nomally choscn 

is 100. Using thcsc values as basic panmeten. wc can change any one of thcm to analyzc 

the cffect on the tolerable ovcrload factor. We will discuss the implications of the 

following rcsults in Section 3.9. Ir is worthwhile to rcitcrate that the tolcrablc overload 

factor is determincd for a traffic with a nomd CLR of 1 O-' and a CLR of lV5 during 

restomtion. Before going on. it should be noted that tolerable overload factor inherently 

shows the tolennce for a newly induced traffic of an existing traffic. For the existing 

traffic. if wc can inducc more traffic along with it before dcgrading the QoS significantly. 

the tolerable overload factor is high. 



3.6.2 Effect of Peak Rate 

To study the effect of peak rate, using 70 traffic sources whose utilization is 20% and 

mean burst lcngth is 80. we varied the peak rate from 0.05 to 0.1 1. in Figure 15, we find 

that by increasing peak rate. the tolerable overload factor incnases from 1 .O70 at peak rate 

0.05 to 1.103 at peak rate 0.1 1. When the peak rate is low, it is expected that we may only 

induce a low peak rate traffic. If a higher peak rate traffic is induced. CLR can easily 

becorne intolerable. On the other hand. if the peak rate is high, the tolemce of high peak 

rate traffic is increased. Consequentl y. the tolerablc overload factor is high. Therefore. for 

nctwork planning. if the pcak rate of the network traffic is high. a high tolerablc ovcrload 

factor should be chosen. On rhc othtr hand, if the network traffic has a low bit rate, a low 

FIGURE 15. Tolerablc Ovetload Factor vcrsus Peak Rate of Sources 



tolerable overload factor should be used. For example, an overload of 1.19 could be uscd 

with peak rate of 0.10. while an overload of 1 .O8 could be used with peak rate of 0.06. 

3.63 Effect of Utilization 

Next we change the utilization for two classes of traffic. For class 1. whose peak rate is 

0.05 and mean burst length is 80. and class 2. whose peak rate is 0.1 and mcan burst lcngth 

is 50. the utilization was varied from 10% to 90%. In Figure 16. it is shown that when the 

FIGURE 16. Tolerable Overload Factor versus Source Utilization 

utilization is increased from 10% to 90%. the overload factor decreases from 1.1 14 and 

1.152 to 1.002. When the utilization increases to 100% (i.e.. a constant rate tnffic). wc c m  

expect the tolerable overload factor ta approach 1 .O. the rcason king that with low 



utilization, and thus more idle pends  in the network, we can induce more traffic. 

Consequentiy a high tolerable overload factor may be used for ATM network planning. 

In network planning, if the network is loaded with low utilization traffic, we can use a high 

tolerable overload factor which would reduce the sparc capacity in the network. In the 

case where the utilization is 100%, the tolerable overload factor is close to 1 .O. 

3.6.4 Effect of Mean Burst Length 

Next wc change the mcan burst lcngth for two classcs of traffic. For class 1 whosc pcak 

rate is 0.05 and utilization is 20%. and class 2 whosc pcak rate is 0.1 and utilization is 

20%. the mean burst length was varied from 30 to 100. In Figure 17, WC find that with the 

incrcase of mcan burst Icngth. the ovcrload factor increases from 1 .O27 to 1 .O82 and 1.068 

to 1.160 respectivcly. When the bunt length is high. the idle burst length is also high. This 

implies that a long idle pcriod so chat more traffic can bc induced into the nctwork. For 

nctaork planning. if thc network trnffic hm a long burst lcngth and thc idle burst length is 

also high. we may use a high iolerable overload factor. Othewise. a low tolerable 

overioad factor may be used. 

3.6.5 Effect of Buffer Size 

Ncxt we change the buffcr size for two classes of traffic. For class 1. whosc peak rate is 

0.05. utilization is 206  and mean bursi length is 80. and class 2. whose peak rate is O. 1.  

utilization is 202, mean bunt length is 50. the buffer size is varied from 30 to 100. In 

Figure 1 8. as the buffer size is increased. the overload factor decreases from 1 . I l  9 to 



FIGURE II .  Tolerable Overload Factor versus Burst Length of Sources 

1 .O70 and 1.173 to 1.1 15 rcspectivcly. This is consistent with the change of burst length. A 

buffer size increase is equivalcnt to a dccrease in burst length. Ir is wonhwhilc to note thc 

diffcrcncc bctween C.5 and C.9 and tolcrablc ovcrload which is thcir ntio. If thc buffcr 

size is largcr. the equivalcnt bandwidth is smallcr but the tolerablc overload is also smallcr 

as shown in Figure 18. T h i s  is because the traffic becomes smwth if the buffer is larger. If  

the buffer is infinite. the traffîc is constant and almost no ovcrload is allowcd. Thercforc, 

the iolerancc to overlod. expresscd as a multiplier of thc baseline traffic is more limited 

because the system is more efficient in the first place. if the buffer is large. For network 

planning, if we have the sarne network traffic but the buffer s i x  inside ATM switchcs is 

enlarged, a low tolerable overload factor should be used. If the buffer size becomcs 

smaller, a higher tolerable overload factor may be used. 



FIGURE 18. Tolerable Overload Factor versus Buffer Size of  Sources 

3.6.6 Effect of Number of Sources 

Thc cffect of the numbcr of traffic sources on the ovcrload factor is investigaicd hcrc. Thc 

panmeters of traffic types uscd in the simulation is surnrnarized in Table 8. Each row 

represents one simulation case. For examplc, row 1 shows the source type (peak of 0.05. 

utilization of 20% and burst of 80) with number of sources ranging from 10 to 70. The 



"Number of Sources" column shows the range of traffic sources. The "Source Traffic 

w" column shows the characteristics of the traffic used in the simulation. 

TABLE 8. Tolerable Overload Factor vs. Number of Sources 

Source lkaffic Q p e  

Figure 19 shows the founh row of the rcsults. In this graph. the pcak rate of the traffic 
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FIGURE 19. Tolerable Overload Factor versus Number of Sourccs 

sources is 0.1. utiiization is 10%. and mean burst length is 50. The buffer B is 100. In this 

graph. wc show noi only the mean value of tolcrable overload factors. but also ihc 
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standard dcviation of the tolerable overload factors with different initiai random sccds. 

From this example and the other four sets of results, we find that the tolerable overload 

factors is not significantly affecied by the number of sources compared with other factors. 

This implies. then, that in network planning. the tolerable overload factor is independent 

of the number of traffic sources, and relies more on the other factors, such as source 

utilization and source peak rate. From Our analysis. the tolerable overload is likely to 

decrease with a large number of sources becausc the aggregated tnffic becomes more 

constant. 

3.7 Buffer Fil1 Study 

In this phase. we study the buffer fiIl changes during simulation with respect to thc systcm 

descriptions. Becausc the buffcr fil1 is nceded to compute the cell delay and delay 

variance, we record it  to show overload effccts on QoS. The mean buffer fil1 and cell loss 

ratio arc studied when the numbcr of sourccs changes. The traffic descriptors uscd in this 

simulation are pcdc ratc 0.05. utilization 20%. and burst length 80. The nominal nurnber 

of sources arc 60 and 39. The respective link capacity is 0.95 and 0.55. The numbers of 

sourccs change from 60 to 70 and from 39 to 46. Results are illustratcd in Figure 20 and 

Figure 21 respectively. When the number of sources increases from 60 to 68 in Figure 20. 

the CLR increascs from 1 O-' to 1 0 - ~ .  Mcanwhile. thc overload incrcases to about 1. I 1. 

and the mean buffcr fil1 incrcases from 0.7 to 2.9. show ing that the mean buffer fil1 

increases when the overload factor increases due to more traffic induced. Al1 traffic will 

suffer from a longer delay in the buffcr as well as a larger ceIl loss ratio. This rcsult is nlso 
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FIGURE 20. Mean Buffer fil1 and CLR versus Number of Sources (Traffic 1) 



I 
Vean Buffer Fil1 vs. Number of Sources (Traffic (0.05.20%, 80). Buffer 100) 

QOS vs. Number of Sources (Tnffic (0.05.208.80). Buffer 100) 

FIGURE 21. Mean Buffer f iI l  and CLR versus Number of  Sources ('ïkaffic 2) 



confimed in Figure 21. In this figure, when the number increases from 39 to 44, the CLR 

-6 
increases from 10 to 1 0 - ~ .  Meanwhilc, the overload factor increases to about 1.13. and 

the mean buffer fil1 increases from 0.7 to 3.3. From these analyses, we find that the ce11 

delay as well as the ce11 loss ratio increases whcn the overload occun after the restoration 

induced flow convergence. Because the sensitivity of ceIl delay is different with different 

traffic types, appropriate methods should be used in ATM switches to decrease the delay 

of delay-sensitive traffic. For example, diflerent buffer sizes may be employed for 

different types of uaffic. 

3.8 Auto-Regressive Traffic Mode1 

In thc prcvious study. WC uscd the on/off fluid modcl to sirnulate the ATM traffic. To 

supplement this rescarch. the auto-regressive (AR) rnodel was also used to study the 

overload factor. A very different modcl from the odoff fluid model. this model. having an 

exponential autocovariance. is well suited to model thc variablc bit rate (VBR) vidco 

traffic [2 1 1. 

In the AR model. within a frame n. traffic is generated at a constant bit rate )c ( n  ) . A fint- 

order autoregressive process h ( n )  c m  be expresscd recursively as follows: 

h ( n )  - a A ( n -  1 )  + b w ( n )  (21) 

whcrc w(n) is a Gaussian random variablc and a and b are constant coefficients. Assuming 

that w(n) has mean q and variance I .  the bit rate of the current f m e  is calculated froni 

the bit rate of the last framc adjusicd by a weight and a Gaussian random variable. Assume 



la1 c i . and the process achieves steady siate with large n 121 1. The steady-state average 

E (A)  and discnte autocovariance C ( n )  are as follows [Zl]: 

b2 n 
C ( n )  - - 

2a (23) 
1 - a  

This is an elegant mathematical mode1 ihat has bcen fomed to match rcal-world traffic. 

Therc is no physical cxplanation of thcse parameters. The values of o. b, and q are 

calculrted by matching the average bit rate E (1) and discrete autocovariance C ( n )  

measured from real world traffic. For the experirnental data in [2 11. we have the following 

values: 

a a 0.878 1 b - 0.1 108 tl a 0.572 (24) 

-0.13 " E ( k )  - 0 . 5 2  C ( n )  - 0 . 0 5 3 6 ~ ( c  ) ( 2 5 )  

Ncxt. WC investigaie the impact of the traffic source number on the ovcrload factor. The 

number of sources is changed from 60 to 70 and 10 to 20. as recorded in Figure 22 and 

Figure 23. In this graph. we give the mean value and standard deviation of the overload 

factors across with diffcrent secds* We find the tolcrable overload factor is around 1.01 5 

and 1 .O25 respectively, regardless of the number of sources. 

3.9 Guidelines for Tolerable Overload Factor 

Detcrmining the tolerable overioad factor is a very complicated issue in ATM network 

rcstoration. The traffic charactcristics in a rcal nctwork at the timc of rcstoration will affect 



FIGURE 22. Overload Factor versus Number of Sourccs 
for AR IkafTic Model (with buffcr sizc of 1000) 

FIGURE 23. Overload Factor versus Number of 
Sources for AR 'Ikaffic Model (with buffcr size of 1000) 

the tolcrable overload factor. From extensive simulations, however, general guidelines of 

a realistic expectation for a tolerable design overload factor can be detemined, a guideline 



that would not degrade the QoS significantly (Le., if CLR was initially less than IO-'. i t  

wouid not rise to more than IO-' ). 

Among the factors. the traffic source model is the most important. For Constant Bit Rare 

(CBR) traffic (e.g.. uncompressed voice traffic). the tolerable overload factor is almost 1 .O. 

When the traffic is more bursty. the tolerablc overload becomes larger, because more 

traffic can be induced in the idle periods. For AR model based Variable Bit Rare (VBR) 

traffic. the factor is approximately 1 .O1 to 1.03, while in on-off fluid model based VBR 

traffic. the factor is approximately 1 .OS to 1.15. Even for the sarne type of VBR traffic, thc 

detailed d f i c  chatacteristics can greatly affect the overload factor. The following table 

summarizes thc simulation resul ts. 

TABLE: 9. Tolerable Overload Assesrnent Factors 

1 Factor Trend 1 Tolerable Overload Trend 1 
1 

Peak Bit Ratc 1 A 1 A 

Utilization I 

1 Buffer Size 1 
Burst Length 

1 Number of Sources 1 A 1 - I 
With the increasc of pcak bit rate and burst length. the tolcrable overload becomcs largcr. 

With the increase of utilization and buffer size, the overload factor decreascs. The numbcr 

of sources does not significantly affect the tolerable overload. From O u r  analysis, the 

tolcrablc overload is likely to dccnase with a larger number of sources because ovcrall 

traffic becomcs more constant. 

A A 



It is anticipated that for UrupeciJied Bit Rate (UBR) and Avuilable Bit Rate (ABR) traffic, 

the tolerable overload factor can be very large because the UBWABR trafic is designed to 

incnase network utilization. UBWABR trafiic sources are designed to be vcry adaptive io 

the network load. If the network is not busy, UBRIABR traffic sources generate more 

traffic into the network. If then is failure and network becornes congested, UBWABR 

sources dccrease the traffic gcneration speed accordingly. Only minimum performance 

levels are guatanteed for UBR uaffic and nothing is guaranteed for ABR traffic (221. 

thenfore they can be expected to tolerate large overload. 

It should bc emphasized that this discussion only gives a general range for factors of 

tolerable overload. The practical value of an ovcrload factor for a particular network c m  

not always be determined exactly. Network operaton must study the traffic nature in their 

nctworks comprehcnsivcly. and carry out extensive simulaiions io gci a practical tolcrablc 

overload factor for their particular network. As a genenl guideline. an overload factor of 

I . 1 is acceptable. 

3.10 Conclusion 

In this chapter. a general pidelinc of the tolerable overlod a.sccsrnent was given and the 

concept of Equivalent Bandwidlh in Cal1 Admission Control was used. To asscss the 

overload tolerance of a group of traffic sources. the equivaient bandwidth of the traffic 

must be obtained. Then, if this traffic is carried on a link whosc capacity is smaller ban i ts  

equivalent bandwidth. the resulting QoS inevitably degrades. The smaller the link 

capacity, the more severe the QoS degradation. The overload obtained by dividing 



equivalent bandwidth by the link capacity at the critical QoS level is regarded as the 

tolerable overload for this group of WC. In our simulation, "tolerable" is defined as the 

cases when CLR goes frorn 1 o - ~  to 1 O-' . 

Extensive simulations were done to analyre how traffic and network factors affect the 

tolerable overload. For CBR traffic. any overload is almost unacceptable. While at the 

other extreme. UBRIABR trafic has a large overload factor. Overload for VBR traffic is 

found between the two extremes. For on/off traffic mode1 based traffic, the toterable 

overload factor is approximately 1 .OS to 1.15 depending on the vaffic characteristics. 

while for Auto-Rcgrrssive mode1 based traffic, the value is approximately 1.02. 

Nctwork opcntors should analyzc the traffic naturc of ihcir network comprehcnsively and 

do extensive simulations to determine the pnctical tolerable overload factor for their 

paticular networks. 



Chapter 4. Concluding Discussion 

4.1 Comparative Overview of ATM and STM Restoration 
Designs 

ATM VP-based restoration is inhercntly similar to STM path-restoration if the ATM 

network design case is approached on a pure VP replacement bandwidth basis. For any 

given network. two stcps are involved in the dcsign of backup path for STM and ATM 

based restoration. These arc working Path/VP design and backu p Pa WVP dcsign. 

In the working VP design. VPs cm have equal or unequal bandwidth and each demand 

pair can havc ondmultiplc VPs. In the second stcp. e k h  working VP c m  eithcr havc 

single equal-sized backup VP or can split thc VP over multiple routes. Also. the 

bandwidth replacement schemc can bc perfect or more aggmsive whcrc the 

ovcrsubscription factor is grcater than 1 .O. 

With thc combination of thcsc factors. WC gct the comparative ovcrvicw of ATM vcrsus 

STM design cases in Table 10. In cases 1 and 2. each demand pair has one working VP 

wi th a bandwidth replaccmeni that is pcrfect. Thcse two cases arc equivalcnt to the STM 

path restoration with stub release. In cax  3. the bandwidth for e3ch VP is variable m d  a 

backup VP cannot be split ta several routes. This is equivalent io STM path restontion 

with single backup route constraint. In case 4. each demand has several working routes. 

This is equivalent to having multiple pseudodemand pairs for each demand pair in STM 

path restoration. i.e.. one dcmand divided in several working routes are treated as sevenl 



dernûnds in restoration. In case 5. bandwidth is not perfectly replaced and a fiow 

oversubscription is allowed. 

TABLE 10. Comparative Ovcwiew of ATM versus STM Capacity Design Cases 

1 ATM Restoration Mode1 

1 " 1 ~outesper  1 VP's 

Demand Splitable for 

-- 

Perfect 
Bandwidth 

Replace- 
ment Case 

t 

Relation to STM 
Capaci ty Formulation 

STM path nstoraiion 
with stub release 

constant 

STM with stub release 
plus single backup route 

constraint 
- --- - 

STM with ~ t u b  rclcasc, 
and single backup VP 

route & multiple 
"pseudodcmand" pairs 

Pais 

one 

as per above with flow 
oversubscnption con- 

straint 

Restoration 

no 

4.2 ATM Restoration Design Met hodology 

Designing for controlled convergence of restoration flows is a proposed approach which 

would let thc nctwork planner mediate a controllcd trade-off of tcmponry pst-rcstoration 

ATM performance for significantly reduced network capacity. The bcnefit of the proposcd 

design fnmework is that it allows a network operator to first determine an acceptable 

rcstontion stress levcl and then to design exactly for that grade of restoration performance 

with a known minimum of total capacity for restoration. This design approach contributes 



to recognizing and enabling the exploitation of the intrinsic differences betwcen ATM and 

STM transport methods from a restoration viewpoint. 

In addition, when designing a network with acceptable restoration-induced 

oversubscription of bandwidth. the potential reduction in QoS could be minimized by a 

restoration oriented pnority congestion control scheme. in this approach, the network 

spare capacity design could bc based on a reasonably aggressive X,oI value to obtain 

signifiant capacity savings; then. at the timc of an actual failurc. each surviving span 

would assess its actual cell-level utilization after ailowing enough time for backup VP 

switching. In case utilizations were high, ATM switches would mark the lower priority 

VPs tnvcrsing them with a throttling indication to bc actcd upon either by either the VP 

sources themselves or neighboring switches. This gives several attractive propenies: 

dcspite the numbcr of logical VPs uaversing the span after restontion. al1 VPs w il1 

inhcrcntly cnjoy tramparcnt continuation of service if actual conditions permit rcstontion 

of a11 VPs. On the other hand, if the net cell-level utilization does constitute a sufficient 

ovcrload. then priority VPs can be restoxd selectively without QoS reduction by 

throttling lower prionty scrvice class VPs. In this way the benefits of ATM capacity 

design to exploit restoration-induced oversubscription of bandwidth can be pursued with a 

protective mechanism to ensurc QoS for wlected services while still gianting al! ~rv ices  

restoration on a best-effort basis whcncver actual network circumstances permit. 

Based on this study, the proposed framework for ATM backup VP capacity design would 

allow network operators to determine both the traffic assumptions they wish to adopt and 

the acccptablc QoS impacts during an assumed busy-hour restoration event. Through 
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busy hour, provisioning intervd considerations. competitive aggressiveness and nsk 

tolerance. For example, if busy hour effecu are not coincident in the network (i.e.. the VP 

utilization are not simultaneously at their peak), the network c m  tolerate a large 

oversubscription. All these factors lead to an XmI ncomrnendation. Once XmI is 

detemined, IP-I I3 can realize the comsponding minimum capacity nstorable network. 

By analyzing the actual oversubscription cases in the network in detail. the exact X,*[ can 

be determincd. This ncw value is once again put in the IP-113 formulation. Through 

itcrating several times. we finally achieve a satisficd network specific capacity 

provisioning. The ovenll process is illustxated in Figure 24. 

If the capacity placemcni has bcen given in a network. P-2 cm be used to optimizc thc 

restontion VP routing to achieve the minimum peak oversubscription in the network. 

4.3 Summary 

In chapter 2. the restontion induccd flow convergence oversubscription factor was 

quantitativcly defined bascd on thc logical vicw of thc traffic characteristics in backup VP 

based ATM restoration. An allowable oversubscnption larger than 1 .O is one of the unique 

propcnics in ATM nctworks. Nexr a heuristic afgoriilim proposrd in a Iiterdturc was 

implcmented to verify the sevcre rcstoration induced oversubscription if we do not 

consider the design carefuliy. The implications of uncontrolleci oversubscription will 

likely be unacceptable in practise. Therefore, we formulate optimal capacity allocation 

mechods that will still gain as much ATM-rclated capacity savings as safely possible by 

giving us a controlled input on the maximum extent of the restoration-induced 



oversubscription. The first IP formulation optimizes the spare capacity placement of a 

restorable ATM network given a peak allowable oversubscription factor in the network. 

The second formulation applies to the case when an existing set of spare capacity 

allocations has been given. The problern is to find a set of backup VP allocations that 

results in the smallest maximum oversubscription factor. The third formulation tries to 

minimize the total capacity (working + sparing) of a restorable ATM nctwork with a given 

design peak oversubscnption factor. in addition to these Lhree IP formulations. two 

simpler algorithms were also presented to calculate reasonably tight upper and lower 

bounds on the requircd spare capacity of a backup VP-based mtorable ATM network. Our 

rcsults showed that the total spare cnpacity decreascs rather quickly as the design 

tolerance for restoration-induced oversubscnption incrcases. This suggests that significant 

capacity swings can bc obtaincd relative to STM if ATM rcstoration is allowcd even 

modest restontion-induccd ovcrsubscription of bandwidth on surviving spans. 

Tolenble oversubxription factors dcpcnd on several considentions. Partly it is a network 

operation policy. An aggressivc network opcrator can use a largc ovcrsubscription to save 

more valuable capacity in the network. In chapter 3. the theoretical study of a qucuing 

model of traffic gave a guideline for the oversubscnption factor. Extensive simulations 

wcre done to analyze how traffic and network factors affect the tolerablc ovcrload. For 

CBR traffic, the overload is almost intolerable. On the other extrcmc, ABR traffic has a 

large overload factor, while the overload for VBR traffic is between CBR and ARB traffic 

tolerable overloads. For odoff mode1 based traffic, the factor is approximately 1 .O5 to 

1.15 depending on the traffic characteristics, while for auto-regressive model bascd traffic. 

the tolenble overload is approximate l y 1.02. 



It is highly recornmended that network operators analyze the nature of their traffic 

comprehensively and do extensive simulations to detennine what is the practicai tolerable 

ovcrload value in their network. 

In chapter 4, we gave a new fnimework for ATM backup VP capacity design. Network 

operators would determine the traffic assumptions they wish CO adopt and the acceptable 

QoS impacts during an assumed busy-hour restoration event. This leads to a tolerable 

oversubscription factor recommendation. Integer programs cm realize the corrcsponding 

minimum capaciiy restorable network. By analyzing the actud oversubscription cases in 

the network in detail. WC can rcvisc the tolerablc oversubscription factor rccommendation. 

This ncw value is put in the IP formulation again. We can achieve a saiisfactory nctwork 

specific capacity provisioning by iterating several times as shown in Figure 24. 

4.4 Future Work 

In this rcscarch, WC studied thc spare capaci ty placement problem in ATM rcstonblc 

networks. We found that a signifiant amount of spare capaciiy can be saved if even a 

rnodest level of ovenubscription is allowed in ATM restonble networks. This work shows 

one of the basic distinctions between ATM and STM restorable networks: 

oversubscription can be larger than 1 .O in ATM networks. As we know. ATM networks are 

more complicated than STM networks. ATM nstontion requires further research to 

detenninc how the restoration mechrinism is implemented using OAM cells/messages to 

detect, notify, and re-route failed VP. Another m a  of research requires using real-time 

simulation to study the effect of failed VP traffic on working VPs. The question of 



whcther restomtion should be done of the STM OC level or the ATM VP leveI to achicve 

the largest benefit in the network planning is must aiso be answered. 
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Appendix A: Abstract of Equivalent 
B andwidth Calculation 

The following abstract of equivalent bandwidth calculation is based on the analysis in 

[ 191. 

Suppose there are N mutually independent identical sources. The unit of time is selected 

to be the average "on" priod. Within this unit of time. the average "off' pend is denoted 

by W h .  

Let Pi  (t. x) ,  ( O  < i S N. t 2 O. x 2 O) dcnote the stationary probability that at timc t. i 

sources are on and the buffer content does not excecd x. If at time t the number of on 

sources equals i. two elementq evcnts can tnkc place during thc ncxt intcrval A r .  i.e.. a 

source cm tum on or turn off. Since the "on" and "off* periods arc exponentially distrib- 

uicd. the probabilities are ( N  - i )  hAt and iAr rcspectively. Cornpound evenis have prob- 

abiliiies 0(&r2 J. Thc probabiliiy of no chüngc is 1 - { (N - i )  A + i} A i  + O(A? J . 
Now, 

P i ( î + A t T x ) -  {fi- ( i -  l ) } i A t p i - ,  ( f , x )  + ( i +  1 ) A t P i + ,  ( f , x )  

Passing to the lirnit A t  4 O ,  yields the following partial diffenntial cquations: 

Let Fi (x) be the equilibrium probability that i sources are on and buffer content docs not 



exceed x, 

Lim 
Fi( ' )  

t - + -  
Pi ('9 X) 

Therefore. we obtain. for i E [O, N] . 

Equation 29 can be ~wnttcn in matrix notation as: 

whcre D - diag {-c. I - c ,  2 - c ,  ..., N - c )  and 

1 
2 

M a (N- I ) A  - { ( N - 2 ) A + 2 )  3 

2)c- (A+ ( N -  1 ) )  N 
A -A 

By solving Equation 30. we gci 

whcrc thc zi  and Qi are, respectivcly. generalized cigenvalues and cigcnvcctors associ- 

atcd with the solution of the diffcrential equation satis fied by the stationary probabilitics 

of the system. and the ai 's are cocfficicnts determincd from boundary conditions. 



Let 

fv 

G ( x )  = P r  (buffercontent > x )  - 1 - F (x) 
i - O  

We refer G ( x )  as the probability of overfiow beyond x. 

The distribution of F ( x )  is completely dctermined from the values of the associated 

cigenvalues. eigenvecton. and componding coefficients. There are no explicit cxpres- 

sions for these quantitics. which must thcn be detemincd numerically. 

An important aspect of this problem is numerical stability. The inevitable errors. no matter 

how small. incurrcd during numcricai intcgration arc linblc to excite the unstablc modes 

and lcad to solutions that blow up. 



Appendix B: Test Networks Topology and 
Demand Matrics Files 

In this appendix. the network topology and demand matrics of a11 seven tested networks 

are listed. The topology files are in SNIF format. The detail description of SNIF format 

c m  be found in TRLabs intemal technical report. Briefly. it includes four description lines 

siarting with: Date. File Name. Network. Program. Then the positions of network nodes 

are listed. Finally is the span description. which includes span tag. end nodes. distance. 

working capacity and sparc capacity of the span. The demand matrix is rclatively simple. 

fini indicates the numbcr of dcmands and thcn list each demaand bctwccn two nodc pair. 

SmallNet SNIF file 

D a t e :  Jan  30, 1995 
File Name: S r n a l l N e t . s n r f f  
Network: SmallNot 
Proqrarn: 
8 
Node 
O 
i 
2 
3 
4 
5 
6 
7 
0 
9 

Span 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
1 2  
13 
1 4  
15 
1 6  
1 7  
18  
19 
20 
2 1 
2 2  

Distance Working Spare 
1 8 O 



SrnailNet Demand File 

The demand matrix has 45 demands. One unit of demand exists between every node pair 

Net1 Snif File 

D a t e :  
F i l e  N a m e :  bellcore.snfff 
Network: bellcore 
Program: 

Node 
O 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I l  
12 
13 
14 

Span 
1 
2 
3 
4 
5 
6 
7 
8 
9 
IO  
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
2 4 
2 5 
26 
27 
28 

Xcwrd 
3 5  
76 
4 2 
56 
57 
76 
4 4 
7 3 
4 4 
28 
17 
73 
39 
76 
27 

NodeA 
O 
O 
O 
1 
1 
1 
2 
3 
3 
4 
4 
5 
5 
5 
6 
6 
6 
6 
7 
7 
7 
9 
9 
9 
10 
10 
11 
13 

Net1 Demand File 

Ycoord 
84 
77 
76 
6 9  
27 
5 1  
5 4  
36 
4 3 
4 4 
3 3 
18 
18 
62 
6 3 

DistanccWorkFng Spare 
9 2 4 



Date: May 2 7 ,  1994 
F i l e  Narne: Telus.nwk 
Network: netF 
Prograrn: 
8 
Node Xcwrd Ycoord 
O 100 100 
1 O O 
2 O 80 
3 50 80 
4 70 80 
5 O 100 
6 C 20 
7 20 50 
8 100 O 
9 30 80 
10 70 100 
1 I O 6 0 



1 2  
1 3  
1 4  
15 
1 6  
17 
18 
19 
8 
Span 
1 
2 
3 
4  
5 
6 
7 
8 
9 
10 
11 
12 
13 
1 4  
1 5  
16 
17 
18  
19 
20 
2 1 
2 2  
2 3  
24 
2 5  
26 
27 
28 
29 
3 O 
3 1 

Net2 Dcmand File 

Distance Working Spare 
264 O 





Net3 Snif File 

D a t e  June 2 3 ,  1994 
File Namc: British-long-haul.snif 
Network: British Tclccom study nctwork 
Proqrarn : None 

Nodc Xcoord Ycwrd  
27662 58733 



Span NodeA NodeB Distance Working Spare 

1 O 1 10 958 O 
2 0 2 9 8 0 0  
3 O 6 21 2016 O 
4 1 3 75 813 O 
5 1 2 1 6 6 0 0  
6 3 10 34 1279 O 
7 2 4 42 684 O 
8 2 3 8 8 0 0  
9 5 6 78 2008 O 
10 6 7 56 80 O 
11 2 6 45 448 O 
12 4 5 50 139 O 
13 5 8 5 0  2468 O 
1 4  4 10 10 3 4 3  O 
1 5  4 9 45 961 O 
16 9 10 99 O O 
17 10 il 23 1254 O 
18 9 11 56 5 0  O 

Net3 Demand File 









Net4 Snif File 

Date: 
File Narne: US-Lang-haul 
Network : 
Program : 

Xcoord 
i67.751000 
193.225000 

Ycoord 
4 3.902400 
67.479700 

Span NodeA NodeB DistanceWorkinq Spare 
1 O 2 5.00000029 O 
2 O 1 76.0000000 O 
3 1 2 46.00000039 O 
4 1 12 209.00000030 O 
5 20 3 8 299.00000066 O 



Net4 Demand File 











Toronto Snif File 

Thc following is thc SNIF file for toronto mctro network uscd in [6] .  To makc ihc result 

companblc to that in [6]. only the first 15 nodcs and respective spans are used in the IP 

formulations. 

Date :  March 27, 1997 
File Name: toronto.snif 
Network : toronto m e t  ro 

8 

Nodc 
O 
1 
2 
3 
4 
5 
Ci 
7 
8 
9 
10 
11 
i 2 
1 3  
1 4  
1 5  
16 
17 
18 
19 
20 
21 
2 2  
23 
24 
# 

Span 
1 
2 
3 
4 
5 

NodeB D i s t  Working Spare 
1 5 O O 



Toronto Demand File 

The demand rnauix has 300 dcmands. One unit of demand exists bctwcen cvcry nodc pair 

uni forml y. 

US Snif File 

The following is the SNIF file for Toronto mctro network uscd in [6] .  To makc the rcsult 

comparable to that in [6] .  only the first 20 nodes and respective spans are used in the IP 

formulations. 

Date: March 2 7 ,  1997 
File Name: us.mif 



Network: u s  long haul  
Program: 

Node 
O 
1 
2 
3 
4  
5 
6 
7 
8 
9 
10 
11 
12 
13 
1 4  
15 
16 
1 7  
1 8  
19 
20 
2 1 
22 
23 
2 4  
25 
26 
27 
8 
Span 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10  
11  
12 
1 3  
1 4  
1 5  
16 
1 7  
!0 
1 9  
20 
2 1 
2 2  
2 3  
2 4  
25  
26 
9- 
I I 

28 
29 
3 0  
3 1 
3 2 
3 3 
3 4  
3 5 
36 
37 
38 
3 9  
4 0 
4 1 
4 2 
4 3 
4 4  
4  5 

Dfst 
4 8  
38 
3 3 
3 3 
4 2 
4 O 
40 
4 O 
23 
3 2 
62 
53 
58 
2 1 
16  
1 5  
20 
35  
4 6  
20 
60 
17 
15 
21 
18 
32 
32 
3 6  
16 
29 
18 
27 
3 3 
25 
20 
1 7  
22 
20 
10 
2 1 
26 
11 
2 1 
15 
25 

Workfng Spare  
O 



US Demand File 

The demand matrix has 378 demands. One unit of demand exists betwecn every nodc pair 

unifomly. 



Appendix C: KST-Alg, IP Formulation and 
Bounding Program 

File structure 

Al1 files related to capacity planning algorithms are groupcd in one directory. Under 
this directory. several modules in their respective subdirectones are uscd imple- 
ment the algorithms. They am listed as follows: 

1. snif: supporting library. Snif is the network topology description format uscd 
throughout this research. This module includes the procedures to read and write 
snif files. 

2. route: supponing library. This module includes the procedures to read and writc thc 
VP file. which includes the information of ATM VP working routes. backup 
routes. And in this module therc arc procedure to find Ilic k-shortest path according 
io the criteria of numbcr limit of rouie. hop limit and distance limit. 

3. kway: utility program. This module includes the program to generate. working 
capacity for cach span. the working VP routes and possiblc backup routes set. 

4. vpbk: uiility program. This module includcs the program to implement KST-Alg and 
upper bound algorithms. 

S. oversubscription: utility progm.  This modulc includcs ihc program to calculatc the 
ovcrsubscription factors of a particular capacity planning for a given nctwork. 

6. ip: utility progrm. This module includes the program io generate the IP-1. IP-2. IP- 
3 and lower bound program. Bccause somc parts of constrainis in thesc IP formu- 
lations arc vcry similu. the progrms are groupcd into one filc with macro 'IF' IO 

generate different pars for each fomuhtion. 

7. txt2snif: utility program. This module includes the program to read the result from 
the IP solving prograrn. CPLEX. and writc the result to a VP description file. 

8. test: This module includes the script to generate the capacity planning for each tested 
sample network. 

Only sornc important programs which would help the understanding of thc algorithms 
are listed in this appendix. i.e.. vpbk. ip and ovenubscription modules. 

KST-Alg and upper bound algorithm irnplementation 

Makefile: JvpbWMakefile 



N I  - . . / . . / i n c l u d e  
NS - . . / . . / l i b  
BfN- . . / . . / b i n  
CC - gcc 
CFLAGS - - I S ( N I )  -L$(NS) - g  -Wall 
LINTFLAGS- - I S  ( N I )  

a l 1  : vpbk  v p s p a n  

v p s p a n  : v p b k . 0  s p a n c u t . 0  
$(CC)  S(CFLAGS) -O  v p s p a n  v p b k - O  s p a n c u t . 0  - 1 n s  - l m  
cp v p s p a n  $(BIN) 

vpbk  : v p b k . 0  s 1 n g l e v g . o  
$ ( C C )  S(CFLAGS) -O  vp k v p b k . 0  s i n g l e v p . 0  - 1 n s  - l m  
c p  vpbk S(BfN) 

t delete a l 1  e x e c u t a b l e s  
c l e a n  : 

i n d e n  t : 

r e p o r t  : 

rm - f  + . O  core vpbk  v p s p a n  +BAK 

f n d e n t  -i4 vpbk.c 
i n d e n t  - i 4  spancut. c 
i n d e n t  - i 4  s i n g 1 e v p . c  

+ . c  Makefile Readme 
e n s c r i p t  + . c  Makef i l e  Readme 
e c h o  > report 

Main module: JvpbWvpbk.~ 

# L n c l u d e  c s t d i o .  h> 
t i n c l u d e  < s t d l i b . h >  
B i n c l u d e  < m a l l o c . h >  
a t n c l u d e  < v a l u e s . h >  

i n c l u d c  < s t r i n g .  h> 

r i n c l u d e  c s n i f .  h> 
t F n c l u d e  " r o u t e .  h a  

/+ f u n c t l o n  p r o t o t y p e s  * /  

e x t e r n  i n t  m e  t hod ; 

e x t e r n  v o i d  n i c e m e ( )  ; 

e x t e r n  f l o a t  
calculate-capdciLy(VP n e t V P s ,  i n t  numVPs, i n t  *backupVP, 

f l o a t  + s p a r e C a p a c i t y ,  ROUTE * +  a l  1 - r o u t e s ,  
S P A N  + n e t s p a n s ,  int n u m s p a n s ) ;  

i n t  
m a i n ( i n t  argc, char  * a r g v [ ]  ) 
I 

NODE + n e t N o d e s ; / +  a l 1  t h e  n o d e s  i n  t h e  n e t w o r k  * /  
SPAN + n e t s p a n s ; / *  a l 1  t h e  s p a n s  i n  t h e  n e t w o r k  * /  
A D J L I S T  +adj;/* (heads o f )  a d j a c e n c y  lists * /  
V P  + n e t V P s ; / *  al1 VPs i n  t h e  n e t w o r k  */  

i n t  + t a g 2 n o d e ,  * n o d e 2 t a g ,  * t a q 2 s p a n ,  + s p a n 2 t a q ;  

i n t  nuniNodes, n u m s p a n s ,  numVPs; 



ROUTE **ail-routes; 
int *num-route; 
f loat *BkSpare, bestcapacity, totalworking; 
int *BkRoute, updateVP; 

char stamp(i024); 

if (argc !- 6) [ 
printf("Usage: vpbk snifFile vpFile routeFile outFile rvp- 

File\na 
"\tsnffFile\tnetwork file in snif format.\na 
'\tvpFile\tworking v capacity and route.\nR 
*\trouteFile\tpossib ! e restoration route.\nN 
u\toutFile\tsnif file filled with spare capacity\nw 
~\trvpFile\trestaration vp capaclty and route\nw); 

exit(1); 
i 

/* search for the best route +/ 
BkSpare - (float * )  malloc(numSpans sizeof(float)); 
BkRoute - ( L n t  .) malloc(nurnVPs sizeof(int)); 

for (i - 0; i < numVPs; i++) 
BkRoute[i] - (num-route[i] -- 0) ? -1 : 0; 

bcs tCapaci ty - MAXFLOAT; 
for ( i  - O, updatcVP - -1; i !- updateVP; i - (i + 1) 0 numVPs) [ 

i n t  best - BkRoute[i]; 
prfntf('0s: considering VP %d path Od\na, 

(method -- O 3 "single" : 's ancut"), 
netVPs[i].tag, netVPs[il.pat ) ;  

for  ( j  - O; j < num-route[i]; j + + )  ( 
f l o a t  tcmp ; 
BkRoute[ L - 1; 

niceme() ; 
temp - calculate-capacity(netVPs, numVPs, BkRoute, BkS- 

pare .  
all-routes, netspans, numspans); 

if (temp < bestcapacity) [ 
bestCapacit - ternp; 
updateVP - 
best - j; '1, 
printf('0s: got best route %d to Bf\nw, 

(method -- O 3 'single" : "spancutw), j ,  b c s t C a -  
pacity;, 

1 
1 
BkRoute(i1 - best; 

1 

bestcapacity - calculate-capacity(netVPs, nurnVPs, ~ k R o u  te, B ~ S  - 
pare , 

all-routes, n e t s p a n s ,  numspùns); 

/* record the restoration selection to file for performance 
analysis * /  

ChoiceWriteFile(argv[3], 
(method -- O ? *.single.choice" : ".sean- 

cut-choice"), 
nctVPs, nurnVPs, BkRoute); 



/+ record the restoration info to file +/ 

RVPWriteFile(argv[S], netVPs, numVPs, 
all-routes , num-route, BkRoute, 
tag2span, tag2node, span2tag, nodeltag); 

for (i - 0, totalworking - 0 ;  i < numspans; i++) [ 
totalworking +- netSpans[i).working netSpans[i].distance; 
netSpans[i] .spare - BkSpare[i]; 

1 
sprintf (stamp, 

"backup VP usfng %s\na 
"Unetwork tapology: Ps\na 
" W P  description: %s\na 
" Ubackup route : %s\nR 
"#backup VP file: %s\n" 
"#DISTANCE WEIGHTED working - 01.2f, sparing - 01.2f, " 
"redundency - %1.2f0%\na, 
(method -- O 3 *single cuta : 'span cuta), 
argvfl], argv[21, argv(31, argv(51, 
totalworking , bestlapacity , bestcapacity 100 / total - 

working ) ; 

SNXFProgramStamp (stamp) ; 
SNIFWriteNetFile(argv[4], netNodes, netspans, nurnNodes, nurn- 

Spans, 
node2tag, tag2node, span2tag, tag2span) ; 

printf ( * % s a ,  stamp) ; 

/ *  free up memory +/ 
free(BkRoute); 
free(BkSpare) ; 

return (O); 
1 

KST-Alg capacity calculaiion module: Jvpbk/singlevp.c 

# include <snLf. h> 
8 lnclude "route. h" 

/+  only consider each VP cut every time +/  

/+ 
+ backupVP Fs a ( O  . . numVPs-11 array to record the backup route 
index of 
+ each working VP, so the backupVP[i] is the ith working VP's 
backup r o u t e  
+ index in the ail-route table. so all-route( i l  [ backupVP( i ]  ] is 
the actual 
+ backup r o u t e .  al1 backup r o u t e s  for ith worktng  VP 
+ 
+/ 

/ +  sparecapacity is a [ O  . . numspans-l] array to rccord the s p a r e  
c a p a c i t y  +/ 

in t method - O;/+ single VP backup * /  



f loat 
calculate-capacity(VP netVPs. int numVPs, i n t  *backupVP, 

f loat  *spareCapacity, ROUTE * *  all-routes, 
SPAN netspans, int numspans) 

int i, j, span; 
f loat temp - 0; 
/*  initial span spare capacity * /  
for (i - numSpans - 1; i >- 0; i--) 

spareCapacity[i] - 0; 
/* try al1 backup VPs */ 
for (i - numVPs - 1; i >- 0 ;  i - - )  { 

/* skip the un-restorable VP */ 
if (backupVP[f] -- -1) 

continue; 
/* try spans of that backup VP +/  
for ( j  - (all,routes[iJ(backupVP[i~J).num - 1; j >- O; j - - )  [ 

span - (all,routes[iJ[backupVP[iJ]).span[jJ; 
if (spareCapacity[span] < netVPs[i].capacity) [ 

spareCapaclty[spanl - netVPs[iJ.capacity; 
1 

/ *  add up total capacity togcther * /  
for ( i  - numspans - 1; i >- O ;  L - - )  

temp + -  spareCapacity[ F ]  netspans [ i l  .distance; 
r e t u r n  ( temp) ; 

Uppcr bound capacity calculaiion module: JvpbWspancut.~ 

/ *  consider span cut  each time */ 

/ *  
backupVP is a [O . .  numVPs-l] array to record the backup route 

index of 
each workinq VP. so t h e  b a c k i i p V P f  L ]  Is the ith wcrkfng Y P ' s  

backup route 
index Ln the all-route table. so all-route[i][ backupVP(L1 ] is 

the actual 
backup route. a n n n ^ n A " A n A A  al1 backup routes for i t h  working VP 

* /  
/ *  sparecapacity is a [ O  . . numspans-l] array to record the spare 
capac i ty * /  

int method - 1;/+ span cut backup * /  

f loat 
calculate-capacity(VP netVPs, int numVPs, i n t  *backupVP, 

f loat *spareCapacity, ROUTE * *  ail-routes , 
SPAN netspans, int numspans) 

( 
i n t  
f loa t  
f loat 

1, j, 1, m; 
temp = 0; 

*tempCapa; 



tempCapa - (float * )  malloc(numSpans + sizeof(f1oat)); 

for (i - numSpans - 1; i >- 0; i--) 
spareCapacfty[iJ - 0; 

/* try to cut a l 1  spans +/  
for (m - numspans - 1; m >- O; m--) ( 

/* init spare capacity +/ 
for (i - numSpans - 1; i >- O; i--) 

tempCapa[i] - 0; 
/* y al1 backup VPs through this span +/ 
for ( - 0; i < numVPs; i++) [ 

for (1 - netVPs[i).num - 1; L >- 0; 1 - - )  ( 
/*  

+ if the original route goes through this span, or 
Say, 

+ working span Ls cut 
+/ 

if (netVPs[i].span[l] -- m) [ 
/+ add capacity to al1 spans of backup VP + /  
for ( j  - (all,routes[i][backupVP[i]]).num - I ;  j 

>- O ;  j - - )  [ 
/* add capacity to al1 backup route spans * /  

#ifdef DEBUG 
printf("add: cut span ad, cut VP ad, spare 

span %d, Capa $f\na, 
m, i ,  (all-routes[i][back- 

upVP[i]J).span[f], netVPs[L].capacity); 

rendif DEBUC 
tempCapa((al1-routes[i] [back- 

upVP[i]]).span[j]] + -  netVPs[i].capacity; 
1 
/+ stub release all other segments of the workinq 

VP * /  
for ( j  - netVPs[i].num - 1; >- O; j - - )  ( 

int span - netVPs[t].span[j]; 
i f  (span ! -  m )  

# i f d e f  DEDUG 
printf (*sub: cut span Od, cut VP 0d, s p a r e  

span 0d ,  Capa 0 f \ n " ,  
m, i ,  span, netVPs[i].capacity); 

#endif 
tempCapa[spanl - -  netVPs[i].capacity; 

1 
break; 

/*  compare this span cut with others */  
for (i - numSpans - 1; L >- 0; i - - )  

sparecapacity [ i] - rnax(spareCapacity[ i 1 , tempCapa [ i ] ) ; 

/* add up total capacity together + /  
for ( i  - numSpans - 1, temp - 0; i >- 0; i - - )  

temp +- spareCapacity(i1 netSpans[i].distance; 
free(tempCapa); 
return (temp); 



IP-1, IP-2, IP-3 and lower bounding algorithrns implementation 

Because these four programs are vely sirnilar, they are grouped into one single file. 
There is a conditional compile for each algorithm. TSPARE. TOVER. TïOTAL 
and TVCSPLIT are symbals for IP-1, IP-2, P - 3  and lower bound algorithrns. 
respec tivel y. 

Makefile: l i p f  Makefile 
NI - ../../include 
NS - ../../lib 
SIN- . . / .  .&in 
CC - gcc 
CFLAGS - -IS(NI) -LS(NS) -g -Wall 
LINTFLAGS- -IS(NI) 

a l l :  vpipt vplps vpipv vpipo 

vp ipv : vpipv.0 
$ ( C C )  ~(CFLAGS) -O  vpipv vpipv.o -1ns -lm 
cp vpipv S(B1N) 

vpips : vpips . O  
$(CC) S(CFLAGS) -O vpfps vpfps.o -1ns - l m  
cp vpips S(B1N) 

vpipt : vpfpt.0 
S(CC) S(CFLAGS) - O  vpipt vpipt.0 -1ns - L m  
cp vpipt S ( B I N )  

vpipv.0: vpip. c 
$(CC) S(CFLAGS) -DTVCSPLIT -c - O  vpipv.0 vpip.c 

vpips.0: vpip. c 
$(CC) S(CFLAGS) -DTSPARE - C  -O vp1ps.o vpip.c 

vpipt. O:  vpip. c 
S(CC) S(CFLACS) -DTTOTAL -c -O vp1pt.o vpip-c 

delete al1 executables 
clean : 

rm - f  * . O  cor@ vpipv  vpips vpllr,  *BAK 

indent: 
indent -il vp1p.c 

report: *.c Makefile Readme 
enscript +.c Makefile Readme 
echo >report 

main module: Jiplvpip.~ 

ninclude cstdi0.b 
# Fnclude <stdlfb. h> 
sinclude <values.h> 
ninclude <malloc.h> 
rinclude <string.h> 



a i n c l u d e  a n i f .  h> 
U i n c l u d e  <route.h> 

/+ 
+ F o u r  p o s s i b l e  executive f i l e s  
+ 
+ 
+ # d e f i n e  TOVER g e t  t h e  minimum OVER w i t h  g i v e n  s p a r i n g  
+ 
+ # d e f i n e  TSPARE g e t  t h e  minimum SPARE c a p a c i t y  w i t h  a n  u p p e r  l i m i t  
o f  o v e r l o a d  
+ 
+ # d e f i n e  TTOTAL ge t  t h e  minimum TOTAL w o r k i n g  and s p a r i n g  c a p a c i t y  
w i t h  a n  u p e r  l i m i t  

o f  o v e r  f o a d  

# d e f i n e  TVCSPLIT get t h e  minimum SPARE c a p a c i t y  w i t h  a n  upper  
l i m i t  of 
+ o v e r l o a d  BUT i n s t e a d  of u s i n g  a I P  p rogram,  a LP p roqram is gen- 
e r a t e d  . 
+ ( o n l y  i n t  d . . . . . . .  v a r i b l e s  a r e  n o t  I n c l u d e d )  
+ 
+ One o f  t h e s e  s h o u l d  be d e f i n e d  i n  the M a k e f i l e  
+/ 

/*  
+ v a r i a b l e  format: 

w 1 2 3 :  work ing  c a p a c i t y  f o r  s p a n  8 123 
s 1 2 3 :  s p a r i n g  c a p a c i t y  f o r  s p a n  8 123 
gv12p3:  t r a f f i c  i n  work ing  VP f o r  demand R12  r o u t i n q  p a t h  3 
c v l 2 p 3 :  c o e f f i c i e n t  f a c t o r ,  O f o r  no  t r a f f i c ,  1 for yes 
f v 1 2 p 3 r 4 5 6 :  t r a f f i c  i n  VP 812 p a t h  3 a t  backup route r456 

+ dv12p3r456:  c o e f f i c i e n t  f a c t o r ,  O f o r  n o  traffic, 1 f o r  y e s  
+/ 

I n t  
m a i n ( i n t  a r g c ,  char * a r q v [ ] )  

NODE 
SPAN 
ADJLIST 
VP 

i n t  

i n t  

ROUTE 
i n t  

FILE 

F n t  

f l o a t  
f loa t  

R i f  nde  f TVCSPLIT 
c h a r  
c h a r  

a e n d i f  TVCSPLXT 

8 i f  ndef  TOVER 
f l o a  t 
f l o a t  

+ne tNodes ; /*  a l 1  t h e  n o d e s  i n  t h e  network * /  
+ n e t s p a n s ; / +  a l 1  t h e  s p a n s  i n  t h e  n e t w o r k  * /  
+ a d j ; / *  (heads o f )  a d j a c e n c y  I f s t s  +/ 
+netVPs ; /*  a l 1  VPs i n  t h e  network * /  

+ + a l  1-routes ; 
+num-mu te; 

r i g h t s i d e ;  
f l a q r e s t ;  

t o t a l c n p a ;  
overload - 1 . 0 ;  



#endi f TOVER 

Il i f de f TTOTAL 
f loat edernand; 

#endif 

#ifdei TOVER 

if (argc ! -  5 )  ( 
printf("Usage: vpip snifFile vpFile routeFile outipFile\na 

"\tsnifFFle\tnetwork file in snif format.\nW 
"\tvpFLle\tworking v capacity and route.\nR 
"\trouteFile\tpossib f. e restoration route.\na 
'\toutipFile\trestoratFon IP formulation file.\nw); 

exit(1); 
1 

#else TOVER 

i f  ((argc ! -  5 )  66 (argc ! -  6)) ( 
printf("Usage: vpip snifFile vpPile routeFile outipFfle 

[overload]\nR 
'\tsnifFile\tnetwork file in snif format .\nw 
u\tvpFLle\tworkLng vp capacity and route.\nw 
"\trouteFile\tpossible restoration route.\nw 
"\toutipFfle\trestoration IP formulation fi1e.\nH 
"\toverload\toverload factor (should >- 1.0) default 

1.0\nN); 
exit(1) ; 

1 
i f  (argc -- 6) 

overload - atof(argv[S]); 
rendif TOVER 

if ((fp - fopen(argv[4], "wa)) -- NULL)  
fprintf (stderr, V a F 1  to open the IP formulation f ilc: 

Os\na, argv(4 ) ) ; 
exit(1) ; 

Uifdef TTOTAL 
/+ get the capacity for each demand pair +/  

demand - malloc(numVPs + sizeof (float)); 
for (i - 0; i < numVPs; L + + )  ( 

drmand(i) - Q.0; 
1 
for (i - 0; i < numVPs; i++) ( 

demand[netVPs[i].taq] +- netVPs[F].capacity; 
1 

u end i f TTOTAL 

/+ write header * /  

/+ write objective */  
tifdei TOVER 

fprintf(fp, " -  overload"); 
telse TOVER 
a i f de f TTOTAL 

for ( i  - 0; i < numspans; i++) ( 
fprintf(fp, '- 09 w0ld " ,  netSpans[lJ 

span2tag[ij); 
distance, 



1 
rendif TTOTAL 

for (i - O; i c numspans; i++) [ 
fprintf(fp, " -  %g s8ld ", netSpans[i].distance, 

span2tagri)); 
1 

#endi f TOVER 
fprintf(fp, ";\n\nR); 

t L f de f TTOTAL 

/* write the constrafnt 6 ,  radio button of workinq VPs for e a c h  
dernand */  

printf("writing constraint 6...\nN); 

for ( i  - O, m - netVPs[O].tag; i < numVPs; i++) ( 
if (m ! -  netVPs[i].tag) ( 

fprintf(fp, " - 1;\na); 
m - netVPs[iJ.tag; 

1 

/*  write the constrafnt 4, working VP Ls caeffient ( O  or 1 )  of 
each demand * /  

rifdef verbose 
printf("writing constraint 4...\na); 

for  ( I  - O; i c numVPs; i + + )  ( 
fprintf(fp, ' 8 g  cv%ldp\ld - gvtldpald - O;\nm, 

demand(netVPs(i1 .taq), netVPs[i] .taq, netVPs[i] .pa th ,  
netVPs(L].tag, netVPs(l].path); 

1 

/ *  writc canstrafnt 5 in I P - 3 ,  for working c a p a c i t y  > dcmand * /  

printf (*writing constraint 5.. .\na); 

fprintf(fp, *\n\n\nW); 
for ( i  0; i < numspans; f++) ( 

for (k - O; k < numVPs; k + + )  ( 
for (1 - 0; 1 < netVPs[k].num; l + + )  ( 

if (i -- netVPs[k].span[lJ) ( 
aifdef verbose 

fprintf(fp, '+ qv%ldp%ld ", netvPs[kl.tag, 
nctVPs(k].path;; 

r c l s c  verbose 
fprintf(fp, " +  %q cv%ldp%td ", 

demand(netVPs[k].tag], netVPs(kl.tag. 
netVPs(k].path); 

rend i f verbose 
break; 

1 
1 

1 
fprintf(fp, " -  w0ld - O.O;\n\nn, span2tagIiJ); 

1 

 endi if TTOTAL 

/ *  write the constraint 3, radio button for a l 1  possible backup 
rou te  */  



printf("writing constraint 3...\nR); 

for (i - 0; i < numVPs; i++) ( 
for (j - O; j < n u m ~ o u t e f i l ;  j++)  ( 

fprintf(fp, "+ dv01dp0ldr003d ", netVPs[f].tag, 
netVPs[i].path, j); 

1 
# i f de f TTOTAL 

fprintf(fp, " - cv%ldp%ld - O;\nU, netvPç(i].tag, 
netVPs(ij .path); 

#else TTOTAL 
fprintf(fp, " - l;\nn); 

#endif 
1 
fprintf(fp, "\n\nn); 

/* write constraint 1, actual overload < design peak */ 

prFntf("writ1ng constraint l...\nR); 
f f lush(stdout) ; 

/*  try to cut span i +/ 
for ( 1  - 0; 1 c numspans; i++) ( 

printf("formulatLng overload in case of failure span 0d\n", 
spanLtag[i]); 

/ *  try to formulate overload of span j * /  
for (j - O; j < numSpans; j + + )  ( 

if ( i  -- j )  ( 
/* don't care about span j overload in case of span i 

failure + /  
continue; 

1 
/ +  overload of span i in case of failure span i * /  
rightside - 0.0; 
flagrest - FALSE; 
for (k - O; k < numVPs; k++) ( 

/ *  check if VP k is cut in case of span i failure * /  
for ( 1  - 0; 1 c netVPs(k].num; l + + )  ( 

i f  (i -- netVPs[k].çpan[l]) 
break; 

if (1 -- netvPs[k].num) 
continue; 

/ *  
l check i f  the VP k went throuqh span j ,  if yes, it 

stub traf f ic and re-routed elsewhere 
* /  

for ( 1  - 0; 1 c netVPs(k].num; 1++) [ 
if (j -- netVPs[k].span[l]) 

break; 
1 
i f  (1 : -  netVPs[k).num) [ 

R i f de f TTOTAL 
r i f de f verbose 

fprintf(fp, " -  gv0ldptld " ,  nctVPs[kj.tag, 
netVPs[kj .path); 

#else verbose 
fprintf(fp, " -  0g cv%ldp$ld " ,  

demand[netVPs(k].taq], netVPs[k].tag, 
netVPs [ k ]  . path) ; 

rendi f verbose 
#else TTOTAL 

rightside + -  netVPs [ k j  .capacity; 
#endi f TTOTAL 

continue; 
1 
/ *  check if the backup route go throuqh span j * /  
for (1 - O; 1 < num-route(k1; L + + )  [ 

for  (m - O ;  m < all-routesrk J [ l ]  .num; m.+) ( 



F f  ( j  -- all~routes[k][l].span(m]) [ 
flagrest - TRUE; 

t i f de f verbose 
fprintf(fp, "+ fv%ldpUdr%03d ", 

netVPs[k].tag, netVPs[k].path, 1); 
telse verbose 

fprintf(fp, "+ %g dv%ldp%ldr003d * ,  
# L f de f TTOTAL 

demand[netVPs[k).tag], 
telse TTOTAL 

netVPs[k].capacity, 
#endif TTOTAL 

netVPs[k].tag, nctVPs[k].path, 1); 
tendif verbose 

break ; 
1 

1 
1 /*  try next possible route */ 

1 /* try next VP +/ 

if (flagrest -- TRUE) ( 
/*  

finish a l 1  backup route, now write working and 
s t u b  

+ traffic 
* /  

/ *  write overload factor */  
8 ifdef TOVER 

rightside -- netSpans[j] .workinq; 
fprintf(fp, * -  8g overload " ,  

netSpans[j ] .workinq netspans[ j .spare); 
Belse TOVER 
aifdef TTOTAL 

if (overload ! -  1.0) ( 
fprintf(fp, '- tg w U d  ', 

overload - 1.0, spanZtag[j 1 ) ;  
1 

iprinti(fp, '- ag çtld " ,  
overload, span2tag[j]): 

#else TTOTAL 
fprintf(fp, '- tg s % l d w ,  

overload,-s an2tagljj); 
rightside +-  (over oad - 1 . 0 )  netSpans[j].workinq; 

rendif TTOTAL 
P 

Rendi f TOVER 

fprintf(fp, ' <- $g;\n\nU, rightside); 
1 

/+  try next overload span * /  
/*  try next cut span */  

/*  write the constraint 2, backup route is sufficient to support 
working VP * /  

r i fdef verbose 
printf("writing constratnt 2...\na); 
fflush(stdout); 

for  ( i  - O; i < numVPs; i + + )  [ 
for ( j  - O; j c num-route[i]; j + + )  [ 

fprintf(fp, 'fv%ldp%ldr003d ', netVPs[iJ.tag, 
netVPs[i] .path, j); 

fprinti(fp, ' - 'hg dv%ldpBldr003d - O;\na, 
# i f de f TTOTAL 

demand[netVPs[f] . tagj, 
#else TTOTAL 

netVPs[i].capacity, 
rendif TTOTAL 

netVPs[i].taq, netVPs[i].path, j); 



tendif verbose 

/* write bounds for link capacity, just for quick solving * /  

t! i f de f TOVER 
fprintf(fp, 'overload C- 100.0;\nn); 

telse TOVER 
for (i - 0, totalcapa - 0.1; 1 < numVPs; i++) ( 

totalcapa +- netVPs[i].capacity; 
1 
for (i - O; i < numspans; i++) ( 

wifdef TTOTAL 
fprintf(fp. ' w%ld <- Og;\nu. span2tag[i], totalcapa); 

rendif TTOTAL 
fprintf(fp, " s0ld <- %g;\nw. span2tag[i], totalcapa); 

1 
rendif TOVER 

/ *  write constraint for exclusive coefficient <- 1 */  
#if O 
# if ndef TVCSPLIT 

fprintf(fp, "\n\nR); 
for ( i  - O; i < numVPs; i++) [ 

uifdef TTOTAL 
fprintf(fp, ' cv%ldpl ld  <- l;\na, netVPs[i].tag, 

netVPs[i] .path); 
rcndi f TTOTAL 

for ( j  - O; j < num,route[i]; j++) { 
fprintf(fp, 'dv0ldpUdr%03d <- l;\n*, 

netVPs[i).tag, netV~s[fj.path, j); 
1 

1 
fprintf(fp, *\n\n"); 

#endi f TVCSPLIT 
rcndif O 

/ *  write intcqers for exclusive coefficient * /  
8 i f ndef TVCSPLIT 

fprintf(fp. '\n\nint " ) ;  
for (i - 0; i < numVPç; i++) ( 

i f d e  f TTOTAL 
fprintf(fp, ucv%ldp%ld ', netVPs[lj.taq, netVPs[i].path); 

a end i f TTOTAL 
for (j - O; j c num-route[i]; j + + )  ( 

fprintf(fp, 'dv01dp0ldr003d " ,  
netVPs[i].tag, netVPs[i].path, j); 

1 
1 
fprintf (fp, ";\n\n0); 

tend i f TVCSPLIT 

/ *  write end * /  
fclose(fp); 

UifndefTVCSPLIT 
/* write order file for a l 1  binary variables * /  

/+ record the restoration selection to file for performance 
analysis * /  

i - -  strlen(argv(4]) + strlen(suffix) + 1; 
if ((filename - (char * )  malloc(i sizeof(char))) -- NULL) [ 

fprintf(stderr, " f a i l  to allocate memory for choice file 
name\nm ) ; 

exit(1); 
1 



strcat(f ilename, suf f ix) ; 

if ((fp - fopen(filename, "wa)) -- NULL) [ 
fprintf(stderr. Y a i l  to open the order file: %s\nw. file- 

name ) ; 

for ( L  - O; 1 c numVPs; i++) ( 
U i f de f TTOTAL 

fprlntf(fp, " UP cv%ldp$ld 
netVPs[i].tag, netVPs(i].path); 

fprfntf(fp. *%d\nw, 
(int) (dernand(netVPs(i].tag] + 1)); 

for (j - O; -/ < num-routeri]; j++)  ( 
fprintf( p ,  UP dvUdp%ldr%03d 

netVPs(i].tag, netVPs[i].path. 1); 
fprintf(fp. "%d\na, 

(int) (netVPs[f].capacity / 10 + 1)); 
1 

#else TTOTAL 
for (j - O; j < num-route(i]; j++) [ 

fprintf( p ,  ' UP dvUdp%ldr003d 
netVPs[i].taq, netVPs(L].path. j ) ;  

fprintf (fp, '0d\n". 
( i n t )  (netVPs[i] .capacity / 10 + 1)); 

1 
n end i f TTOTAL 

1 

Bendi f TVCSPLIT 

/+ free tip memory + /  

return (0); 

Oversubscription calculation module 

Makefile: doversu bscrîption/Makefile 

BIN- . . / .  .fiin 
CC - gcc 
all: overload 

overload : over1oad.o 
$(CC) S(CFLAGS) -O overload overload 
cp overload S(BIN) 

u deletc al1 executables 



clean : 
rm - f  *.O core overload +EAU 

indent: 
indent -i4 over1oad.c 

report: * . c  Makefiie Readme 
enscript *.c Makefiie Readme 
echo > report 

Main module: Joversubs~ptionloverload.c 

/ *  oversubscription calculation utility program, the result of this 
file can be read by gnuplot */  

Ilinciude <stdio.h> 
Uinclude <assert.b 
#include <stdlib.h> 
#lnclude <math.h> 
Uinclude <malloc.h> 
winclude <alloca.h> 
xinclude <values.h> 

Uinclude <snif.h> 
ainclude <route.h> 

f n t  
main(int argc, char *argv[  J ) 
( 

NODE +netNodes;/* a11 the nodes in t h e  network * /  
SPAN +netspans;/* al1 the spans in the network +/ 
ADJLIST +adj ; /*  (heads of) adjacency 1Fsts * /  
VP *netVPs;/* a l 1  VPs in the network +/ 

Fnt +tag2node, *node2tag, *tag2span, + s p ù n 2 t a q ;  

int numNodes, numspans, numVPs; 

i n  t i ,  j ,  1, m, totalover - 0; 
f loat 
f loa t 

*temp, overaver - 0 . 0 ;  
ovennln - KAXFLOAT, overmax - -MAXFLOAT; 

int *hist, ind, total, numhist; 

i f  (argc  ! -  5 )  ( 
printf("Usage: overload snifFile vpFile rawoutFile pdfout- 

File\na 
"\tsnifFile\tsnif file describing network struc- 

ture. \na 
"\tvpFile\tworking and backup vp capacity and 

route. \ne 
'\trawoutFile\tflle contaLning raw overload fac- 

tors. \na 
"\tpdfoutFile\tfile containhg overload PDF and 

CDF.\na) ; 



rifdef DEBUG 
for (f - 0; i < numVPs; i++) 

printf("%d %d 0d ad U.2f\nW, netVPs[i].tag, 
netVPs[il.source, 

/*  record the restoration info to file +/ 
if ((fp - fopen(arqv[3], * w w ) )  -- NULL) ( 

fprintf(stderr, 'fail to open overload raw data file 0s.\nn, 
a r g v U 1 ) ;  

exit(1); 
1 
/+  write header of overload factors file */ 
fprintf(fp, "#Title:\toverload factors\nw); 
fprintf(fp, "tSnif:\t$s\n", argv[l]); 
fprintf(fp, 'fiVP:\tOs\na, argv[2]); 
fprintf(fp, "Uspan k\t8d\na, numspans); 
fprintf(fp, '#Comment:\trow - cut span, column - overload 

span\n\nU); 
*if O 

for (i - 0; i c nurnspans; i++) ( 
fprintf(fp, "\tOdœ, span2tag[i]); 

1 
fprintf(fp, '\nW); 

Uendif 

tcmp - (float * )  malloc(numSpans + sizeof(f1oat)); 

h i ç t  - (int + )  malloc((MAX0VER FACTOR + 1) sizeof(int)); 
for (i - 0 ;  1 c- MAXOVER FACTOR; i++) 

hist[i] - 0; 
/ *  try to cut every  span * /  
for (rn - O; m < numspans; m + + )  ( 

r i f d e f  DEBUG 
printf("Now considering span cut Od\nW. spùnStaq(m]); 

*end i f DEBUG 

/+ init spare capacity +/ 
for (i - numSpans - 1; i >- O; i - - )  

templil - 0 ;  

/* try a l 1  backup VPs through this span * /  
for (i - O; F < numVPs; i++) ( 

for (1 - netVPs(i].wnum - 1; 1 >- 0; 1--) ( 
/ *  

i f  the original route qoes through this span, or 
say , 

* xurktng span Is c u t  
* /  

if (netVPs[i].wspan(lJ -- m )  { 
8 ifdef DEBUG 

printf("VP I d  path ad found tranversing span 
Od\na, 

netVPs[i].tag, netVPs[i].path, 
span2tag[m]); 

#end i f DEBUG 
/+ add capacity to al1 spans of backup VP +/ 
for (j - netVPs[i].num - 1; j >- O; j - - )  ( 

int span - netVPs[i].span[j]; 
/*  add capacity to al1 backup route spans * /  

uifdef DEBUG 
printf("add: c u t  span ad, cut VP % d ,  spare 

span Nd, Capa %f\nR, 
rn, i ,  span2tag[span], netVPs[i] . c a p a c -  

ity); 



J 
/+ stub release al1 other segments of the working 

VP +/ 
for (j - netVPs(i].wnum - 1; j >- O ;  j - - )  ( 

int span - netVPs [ i ] . wspan [ j ] ; 
if (span 1 -  m) { 

i f de f DEBUG 
printf ("sub: cut span ad,  cut VP %d, spare 

span 0d, Capa %f\nR, 
m, f ,  span2tag[span], 

n e t V P s  [ i j . capacity) ; 
rendif 

temp[spanj -- netVPs[i].capacity; 
1 

1 
break; 

1 
1 

1 

for (i - 0 ;  i < numspans; i++) ( 
if (i -- m) [ 

continue ; 
1 
temp[i] - max(temp[i], 0.0); 
tempIi] - (netSpans[i].working + netSpans[i].spare) -- 

0.0 ? 
1.0 : ((tempii] + netSpans[i].workinq) / 

(netSpans[F].working + netSpans[i].spare)); 
overmin - mln(overmin, temp[l]); 
overmax - max(overmax, temp[i]); 
if (temp[ij > 1 . 0 )  ( 

totalover++ ; 
overaver +- temp[i) ; 

1 
fprintf(fp, "\f\ttf\nm, (span2tag(m] + 1.0 i / num- 

Spans), templi]); 

ind - mLn((int) (0.99999+temp[i] FACTOR), MnXOVER 
FACTOR ) ; 

hist[ind] + -  1; 

fprintf(fp, "r\n8\nm); 
fprintf(fp, "rmax:\tOf\nR, overmax); 
fprintf(fp, "rnurn of overload:\tOd\na, totalover); 
fprintf(fp, "raverage:\tOf\nm, (totalover -- 0) 3 0.0 : overavcr 

/ totalover); 

i f  (overmax > HAXOVEP) 
fprintf(stderr, 

"Err: MAXOVER 10 is less than actual maximum over-  
1oad.\na); 

numhist - (int) (overmax +.99999) + FACTOR; 

f o r  ( i  - O, total - O; i c- numhist; i++) ( 
total. +- histfi]; 
if (total >- (.9 numSpans + (numspans - 1)) ) { 

fprintf(fp, "s9008 a c t u a l  overload is: 0l.2f\na, 
(float) i / FACTOR); 

break; 
1 

1 
fprintf(fp, " # \ n # \ n W ) ;  



/*  writing PDF file +/ 
if ((fp - fopen(argv[4], " w u ) )  -- NULL) ( 

fprintf(stderr, V a i l  to open the overload pdf file: 0 s \ n W ,  
argvD1) ;  

for ( i  - O, total - 0; i c- numhist; i++) ( 
fprintf(fp, "01.2f\tw, (float) i / FACTOR); 
fprintf(fp, "%1.3f\tw, (float) hist[i] / numSpans / (num- 

Spans - 1)); 
total +- hist [ il ; 
fprintf(fp, .%l:3f\nm, (float) total / numSpans / (numspanç 

- 1)); 

/ *  free up memory +/  
StopVP ; 

return (O); 
1 

Sample network TINY and the resualtant IP-1, IP-2, IP-3 

D a t e :  February 2 ,  1995 

F i l e  Name: TINY 

Network: V e r y  tiny sample network 

Program: Test Network Worktng-509 , Spùre-532 

Node Xcoord Ycoord 
1 47.00000077.000000 
2 34.00000083.000000 
3 22.00000076.000000 
4 20.00000050.000000 
5 43.00000054.000000 
6 85.00000074.000000 

Span NodeA NodeB D i s  tancework ingSpare 
1 1 2 20.00 74 53 
2 1 3 30.00 71 74 
3 1 4 70.00 71 68 
4 1 5 35.00 53 71 
5 1 6 50.00 55 48 
6 2 3 20.00 53 74 
7 3 5 40.00 16 18 
8 4 5 35.00 68 7 1 
9 5 6 55.00 48 55 

tiny.dmd: demand mauix 





+ 3.55 dvlpOrOOl - 1 sl <- 6 . 9 ;  

+ 3.55 dvlpOrOOl + 3 . 4 9  dv2pOr000 + 3 . 4 9  dv2pOr001 + 3.41 dv3pOr000 
+ 3.41 dv3pOr001 4 3.41 dv3pOr002 - 1 s6 cm 0; 

+ 3.55 dvlpOrOOO + 3 . 5 5  dvlpOrOOl + 3.49 dv2pOr001 + 3.41 dv3pOr000 
- 1 s7 <- 0; 



int dvOpOrOO0 dvOplrOO0 dvOplrOOl dvOplr002 dvOplr003 dvlpOrOOO 
dvlpOrOOl dvlpOr002 dvlpOr003 dv2pOr000 dv2pOr001 dv2plrOOO 
d v 2 p l r 0 0 1  dv2p l r002  dv3pOr000 dv3pOr001 dv3pOr002 dv4pOr000 
dv4pOr001 dvQpOrOO2 dvSpOr000 dv5pOr001 dv6pOr000 dv6pOr001 
dv6pOr002 dv7pOr000 ; 

- o v e r l o a d ;  

+ 3 . 4 9  dv2pOr000 + 3 . 4 9  dvZpl r001  + 3.49 dv2p l r002  + 3 . 4 1  dv3pOr001 
+ 3 . 4 1  dv3pOr002 + 7 . 9 2  dv4pOrOOl + 7 . 9 2  dv4pOr002 - 4 . 8 1  overload 
<- - 3 . 4 4 ;  

3 .49  dv2pOr000 + 3 .49  dv2pOr001 + 3 .41  dv3pOr002 + 7 . 9 2  dv4pOr002 
- 9.615 overload c -  -1.115: 

3 . 4 9  dv2plrOOl + 7 . 9 2  dv4pOr001 - 11.565  o v e r l o a d  <- - 3 . 6 6 5 ;  

+ 3 . 4 9  dv2pOrOOl + 3 .49  dv2pl r002  + 3.41  dv3pOr001 - 1 6 . 3 7  overload 
c -  - 3 . 4 4 ;  

+ 3.49  dv2pOr000 + 3 .49  dv2pOr001 + 3.49  dv2p l r000  + 3 .49  dv2p l r001  
+ 3 - 4 9  dvZpl r002  + 3 . d l  dv3pOr000 + 3 .41  dv3pOr001 + 3 . d l  dv3pOr002 
+ 7 . 9 2  dv4pOr000 + 7 . 9 2  dv4pOr001 + 7 . 9 2  dv4pOr002 - 7 . 9 2  overload 
<- 0 ;  

+ 3.49  dv2pOr001 + 3 . 4 9  dv2p l r000  + 3 . 4 1  dv3pOr000 + 7 . 9 2  dv4pOr000 - 4.25 overioad <- -1.37; 

+ 3 .49  dv2p l r000  + 3 . 4 9  dvSp l r001  + 3.49 dv2p l r002  + 3.41 dv3pOr002 
+ 7 . 9 2  dv4pOr002 - 14 .475  o v e r l o a d  <- -7 .495;  

+ 3 .49  dv2pOr001 + 3.49  dv2plrOO2 + 3 . 4 1  dvJpOr001 + 7 . 9 2  dv4pOr000 
+ 7 . 9 2  dv4pOr001 + 7 . 9 2  dv4pOr002 - 12.93  o v e r l o a d  <- - 5 . 0 1 ;  

3 . 4 4  dv6pOr001 + 3.44 dv6pOr002 - 1 8 . 3 1  o v e r l a a d  <- -18 .31 ;  

+ 3 . 4 4  dv6pOr002 - 9 . 6 1 5  o v e r l o a d  <- -4 .605 ;  

+ 3 . 4 4  dv6pOr001 - 1 1 . 5 6 5  o v e r l o a d  <- -11 .565 ;  

+ 3.44  dv6pOr001 + 3.44 dv6pOr002 - 7 . 9 2  o v e r l o a d  <- 0 ;  

+ 3 . 4 4  dv6pOr000 - 9 . 2 9  o v e r l o a d  <- - 1 . 3 7 ;  



+ 3.44 dv6pOr002 - 14.475 overload <- -10.985; 

+ 3.44 dv6pOr000 + 3.44 dv6pOr001 + 3.44 dv6pOr002 - 12.93 overload 
<- -5.01; 

+ 1.115 dvOplr002 - 18.31 overload <- -14.82; 

+ 1.115 dvOplrOOl + 3.49 dv2plr001 + 3.49 dv2plr002 - 4.81 overload 
<- -3.44; 

+ 1.115 dvOplrOOO + 3.49 dv2plr001 - 11.565 overload c- -11.565; 

+ 1.115 dvOplr003 + 3.49 dv2plr002 - 16.37 overload <- -11.36; 

+ 1.115 dvOplr002 + 3.49 dvSplr000 + 3.49 dv2plr001 + 3.49 dv2plr002 
- 7.92 overload <- O; 

+ 1.115 dvOplr001 + 1.115 dvOplr002 + 3.49 dv2plr000 - 9.29 overload 
c- -1.37; 

+ 1.115 dvOplrOOO + 1.115 dvOplrOOl + 1.115 dvOplr002 + 1.115 
dvOplr003 + 3.49 dv2plr000 + 3.49 dv2plr001 + 3.49 dv2plr002 - 
14.475 overload c- -10.985; 

+ 1.115 dvOplr003 + 3.49 dv2plr002 - 12.93 overload <- -5.01; 

+ 3 - 5 5  dvlpOrOOl - 18.31 overload <- -11.41; 

+ 3.55 dvlpOrOO0 + 3.49 dv2pOr000 + 3.11 dv3pOr001 + 3.41 dv3pOr002 
- 4.81 overload <- -3.44; 

+ 1.115 dvOpOrOOO + 3.55 dvlpOr003 + 3.49 dv2pOrOOO + 3.49 dv2pOr001 
+ 3.41 dv3pOr002 - 9.615 overload c- -4.605; 

+ 3.55 dvlpOrOO2 + 3.49 dv2pOr001 + 3.41 dv3pOr001 - 16-37 overload 
<- -11.36; 

+ 3.55 dvlpOr001 + 3.49 dv2pOrOOO + 3.49 dv2pOrOOL + 3.41 dv3pOr000 
+ 3.41 dv3pOr001 + 3.41 dv3pOr002 - 7.92 overload <- 0; 

+ 3.55 dvlpOr003 + 3.41 dv3pOr002 - 14.475 overload <- -6.38; 

+ 3.55 dvlpOr002 + 3.49 dv2pOr001 + 3.41 dv3pOr001 - 12.93 overload 
<- -5.01; 

+ 3 -44 dv6pOr001 + 3.44 dv6pOr002 - 10.31 overload <- -10.39; 

4 7.92 dv4pOr001 + 7.92 dv4pOr002 - 4.81 overload c- 0; 

+ 7.92 dv4pOr002 + 3.44 dv6pOr002 - 9.615 overload <- -4.605; 

+ 7.92 dv4pOr001 + 3.44 dv6pOrOOl - 11.565 overload <- -11.565; 

+ 7.92 dv4pOr000 + 7.92 dv4pOr001 + 7.92 dv4pOr002 + 3.44 dv6pOr001 
3.24 dv6pOr002 - 7.92 overload <- 0; 

+ 7.92 dv4pOr000 + 3.44 dv6pOr000 - 9.29 overload <- -1.37; 

+ 7.92 dv4pOr002 + 3.44 dv6pOr002 - 14.475 overload <- -10.985; 

+ 7.92 dv4pOr000 + 7.92 dv4pOr001 + 7.92 dv4pOr002 + 3.44 dv6pOr000 
+ 3.44 dv6pOr001 + 3.44 dv6pOr002 - 12.93 overload c- -5.01; 

+ 1.37 dvSpOr001 - 18.31 overload <- -18.31; 

+ 1.37 dvSpOr000 - 4.81 overload <- -3.44; 

+ 1.37 dv5pOr000 + 1.37 dv5pOr001 - 9.615 overload <- -4.605; 



+ 1.37 dv5pOr001 - 7.92 overload c- 0; 

+ 1.37 dvSpOr001 - 18.31 overload <- -14.82; 

+ 3.49 dv2pOr000 + 1.37 dvSpOr000 - 4.81 overload <- -3.44; 

+ 1.115 dvOpOrOO0 + 3.49 dv2pOr000 + 3.49 dv2pOr001 + 1.37 dvSpOr000 
+ 1.37 dv5pOr001 + 5.01 dv7pOr000 - 9.615 overload <- -4.605; 

+ 3.49 dv2pOr001 + 5.01 dv7pOr000 - 16.37 overload c- -11.36; 

+ 3.49 dv2pOr000 + 3.49 dv2pOrOOl + 1.37 dvSpOr001 - 7.92 overload 
<- 0; 

+ 3.49 dv2pOr001 - 9.29 overload <- 0; 

+ 3.49 dv2pOrOOl - 12.93 overload c- 0; 

+ 5 - 0 1  dv7pOr000 - 9.615 overload c- -4.605; 

+ 5.01 dv7pOr000 - 16.37 overload <- -11.36; 

overload <- 100.0; 

fnt dvOpOrOOO dvOplrOO0 dvOplrOOl dvOplr002 dvOplr003 dvlpOrOOO 
dvlpOrOOl dvlpOr002 dvlpOr003 dv2pOr000 dv2pOr001 dv2plr000 
dv2plr001 dvSplr002 dv3pOr000 dv3pOr001 dv3pOr002 dv4pOr000 
dv4pOr001 dvdpOr002 dvSpOr000 dv5pOr001 dv6pOr000 dv6pOrO01 
dv6pOr002 dv7pOr000 ; 

cvopo + cvOpl + 

+ cvlp0 + cvlpl + 

+ cv2po + cv2pl + 

+ cv3po + cv3pl + 

+ cv4pO + cv4pl + 

+ cv5pO + cv5pl + 

cv6pO + cv6pl + 
+ cv7pO + cv7pl + 

+ 2.23 cvOp2 + 3.55 cvlpl + 3.41 cv3p2 + 7.92 cv4p l  + 1 . 3 7  cv5pl + 

1.37 cvSp2 + 3.44 cv6pO - w2 - 0.0; 

+ 2.23 cvOp2 + 3.55 cvlpl + 3.55 cvlp2 + 6.98 c v 2 p 2  + 3 . 4 1  c v 3 p l  
1.37 cv5pO + 3.44 cv6p2 - w 7  - 0.0; 



10 - cvopo - O; 
10 + dvOplrOOl + dvOplr002 + dvOplr003 - cvOpl - 0; 
10 - cvop2 - O; 
10 + dvlpOrOO1 + dvlpOr002 + dvlpOr003 - cvlpO - 0; 
10 + dvlplrOOl + dvlplr002 - cvlpl - 0; 
10 + dvlp21-001 + dvlp2r002 - cvlp2 - 0; 
O + dv2pOr001 - cv2p0 - 0; 
10 + dv2plr001 + dv2plr002 - cv2pl - 0; 
O - cv2p2 - 0; 
O + dv3pOr001 + dv3pOr002 - cv3p0 - 0; 
O + dv3plrOOl + dv3plr002 - cv3pl - 0; 
O + dv3p2r001 - cv3p2 - 0; 
O + dv4pOr001 + dv4pOr002 - cv4p0 - 0; 
O + dv4plr001 - cv4pl - 0; 
O + dv4p2r001 - cv4p2 - 0; 
O + dvSpOr001 - CVSPO - 0; 



- 2.23 cvOp2 - 3.55 cvlpl + 1.37 dvSplr001 + 1.37 dv5p2r000 + 3.44 
dv6pOr000 - 1 s7 <- 0 ;  



- 2.23 cvOp2 - 3.55 cvlpl + 1.37 dvSpOr000 + 3.44 dv6p2r000 - 1 s 2  
<- O ;  



int cvOpO dvOpOrOO0 cvOpl dvOplrOOO dvOplrOO1 dvOplr002 dvOplr003 
cvOp2 dvOp2r000 cvlpO dvlpOrOO0 dvlpOrOOl dvlpOrOO2 dvlpOr003 
c v l p l  dvlplrOO0 dvlplrOOl dvlplrOO2 c v l p 2  dvlp2rOOO dv lp2r00 1  
dvlp2r002  cv2pO dv2pOrOOO dv2pOrOOl c v 2 p l  dv2plrOOO dv2p lr00 1  



Summary of IP-1 formulation size of tested networks 

In the following table. the number of variables and constraints used in al1 tested net- 
works. 

TABLE 11. IP Formulation Size for Al1 Tested Nctworks 

1 Toronto ( 858 1 1339 1 

Network 
Smallnet 

Net 1 

I iiny 1 60 l 35 1 

# of constraints # of variables 
54 1 

610 

1332 
1 

738 



Appendix D: Overload Assessrnent 
Simulation Prograrn 

ïkaRic generation module 

This module cm simulaie both the onloff fluid model and AR model using a condi- 
tional compile option. IPP and AR respectively. 

Makc file: Itraffidmakc file 

NI - ../../include 
NS - . . / . . / l i b  
CC a gcc 
CFLAGS - -LS(Nf) -tS(NS) -g -Wall 
OPT- - 0 3  

0 . 0 :  % . c  traffic-h 
$(CC) S(CFLAGS) -03 - C  S*.c 
ar r c v  S(NS)/libns.a S*.o 
ranlfb S(NS)/libns.a 

all: S(NX)/traff ic. h artraffic.0 traf fic.0 

S(NI)/traffic. h: traff ic.h 
cp traffic-h $(NI) 

artraff ic.0: traffic.~ 
S(CC) S(CFLAGS) -DAR -03 -O S*.o -c traffic.~ 
ar rcv S(NS)/libns.a S*.o 
r a n l i b  S(NS)/libns.a 

traff lc.0: trafflc.~ 
S(CC) S(CFLAGS) -DIPP -03 -O  $*.O -c traffic.~ 
a r  rcv S(NS)/libns.a S*.o 
r a n l i b  S(NS)/libns .a 

clean:  
rm - f  * . O  core *BAK 

indent: 
indent - 1 4  traffic-h 
indent - 14  traf  f ic . c  

report: * . h  *.c Makefile Readme 
enscript *.h *.c Makefile Readme 
e c h o  >report 

Main module: 1traffidtraffic.c 

a include 
u include 
n include 
u include 
rt include 
8 include 
ir include 
r include 
t include 
ir include 
8 include 

<s td io . h> 
<stdlib. h> 
<ma lloc . h> 
cassert. h> 
<va 1 ues . h> 
<sys/tirnes.h> 
csys/tirne. h> 
Cunistd. h> 
<math. h> 
<string.h> 
*traffic.ha 

edef i n c L ~ ~ ~ ~ L E * s i m u ~ a t i o n .  loga 



/* state options +/ 
sdefine I D L E  O 
#define ACTIVE ( ! I D L E )  

tdef ine FRAMESPERSECOND30. O 
#def ine PERIOD (lOOO.O/FRAMESPERSECOND) 
#def ine DEFAULT O. 54 /+ a Little higher than mean 
value */  

Udef ine LOWCLR le-5 
Bdef ine HIGHCLR le-9 

Udef ine upround(x) ( (double) ( (int) ( x  PRECISION + 1)) / PRECISION 
\ 
I 

Rdeflne downround(x)( (double) ((int) ( x  PRECISION)) / PRECISION ) 
# d e i  fneind(x) ( ( (  (int) (X PRECISXON) ) > histtop) ? 
histtop : ( (int) ( x  + PRECISION) ) ) 

adefine inc(k)++k; if (k > histtop) k - histtop; 
rdefine d e c ( k ) - - k ;  If (k c O) k - 0; 
gifdef IPP 
udcfinePRINTSOURCE( \ 

int Lnd; \ 
printf ("current of, unttl ai, next Od\na, lasttime, simul- 

tirne, next); \ 
printf ('active # r d ,  rate 0 f .  traffic %f\n", numactive. 

rateactive, totalcell) ; \ 
for ( ind - O; ind sourcenum; ind++) ( \ 

printf("s UOd: as ,  t t f ,  p If, u tf, b 0f, i 0 f \ n w ,  \ 
ind, (sources[ind].state -- IDLE) 3 'IDLE ' : 'ACTIVE". 

sourcesfind].endtime, \ 
sources[ind].peak, sources[ind].utilization, \ 
sources [ ind] . burst, sources [ ind] . Fdleburs t )  ; \ 

1 \ 
i f  (totalceil - 0.0) \ 
for (ind - O; ind < queuenum; ind++) ( \ 

printf("q rad: cont 0f, lost a € ,  clr OfO%\nR. \ 
ind, queue[lnd].bufcontent, queue[indl.totallost. \ 

queue(ind).totallost/tota1ce11*100); \ 
1 \ 

1 
Relse /*  AR +/  
rdef ine PRINTSOURCE[ \ 

int fnd; \ 
printf ('\n\n\ncurrcnt t f ,  until t f ,  n e w t  %J\o",  i d s t L i n i e .  

sirnultirne, next); \ 
printf ('active ttd, rate t f ,  traffic %€\na, numactive. 

rateactive, totalcell) ; \ 
for (ind - O; ind < sourcenum; ind++) ( \ 

printf('s Rad: t 0f. rate 0 f ,  a 0f, b 0 f ,  mean 0f\nU. \ 
ind, sources(ind~.endtime, sources[ind].peak, 

sources(Fnd].a, \ 
sources[ind].b, sources[ind].mean); \ 

1 \ 
i f  (totalcell !- 0.0) \ 
for (ind - O; ind c queuenum; ind++) ( \ 

printf("q #0d: cont 0f. lost 0f, cl r  OfOO\na, \ 
ind, queue[ind].bufcontent, queue(ind].totallost. \ 

queue[ind].totallost/totalceL1*100); \ 
1 \ 



struct imodel [ 
Lnt 
double 

double 
tirne of active +/  

double 
double 
int 
double a, b, 
double 

state +/ 

] +sources; 

tag;/* keep a tag, as the entries are sorted * /  
peak;/* IPP: peak rate +/ 

/+ AR: current +/  
utilization;/+ IPP: utilization, pexcentage of 

burst;/+ IPP: m a n  length of active * /  
idleburst;/+ IPP: mean length of i d l e  +/ 
state;/+ IPP: current state +/ 
mean; /+ AR: parameters +/  

endtirne;/+ end of simulation time of current 

static char 
+ 

currentdate(v0id) 

struct timeval tp; 
struct tirnezone tzp; 

gettimeofday(&tp, 6 t z p )  ; 
return ( a ~ ~ t i m e ( i ~ ~ ù l t i r n e ( b ( t p ~ t ~ - ~ e ~ ) ) ) ) ;  

1 

/+ get current time and set as the seed of random list * /  
static long 
SEEDRANDOM(1ong s e e d )  
( 

struct tms current; 
static tirne-t lastseed; 

i f  (seed -- 01) ( 
while ((seed - times(6current)) -- Lastseed) 

sleep(1); 
1 
l a s t s e e d  - seed; 
srand48(seed) ; 
return (seed); 

1 

t i f  O 
static double 
poisson(doub1e mean) 
{ 

return (-log(RANDûM()) mean); 
/ *  the following i s  t h e  conterpart t e s t  Ln K4TLAB * /  
/ *  

+ clear m - 80 a - [0.00000001:0.000001:1]; b- -Log(a) m; 
mean(b) 

std(b) 
+ 
* /  

/ *  the following is for the integer poisson variable * /  
# i f  O 

double u, p ,  f ;  
i - 0; 
f - p - exp(-mean); 
u - RANDOM( ) ; 
while ( f  <- u) [ 



p *- (mean / ( i  + 1 . 0 ) ) ;  
f +- p; 
i++; 

1 
r e t u r n  (i); 

# e n d i  f 

/* g e n e r a t e  t h e  rate of n e x t  p e r i o d  + /  

s t a t i c  d o u b l e  g a u s s i a n  ( d o u b l e  a ,  d o u b l e  d )  

s t a t i c  d o u b l e  t - 0 . 0 ;  
d o u b l e  x ,  v l ,  v 2 ,  r ;  
i f  ( t  -- 0 . 0 )  [ 

do ( 
v l  - 2 . 0  + RANûOM() - 1 . 0 ;  
v2  - 2 . 0  RANDOM() - 1 . 0 ;  
r ' v 1  v 1  + v2 v 2 ;  

) w h i l e  ( r  >- 1 . 0 ) ;  
r - s q r t ( ( - 2 . 0  l o g ( r ) )  / r ) ;  
t - v2 r ;  
r e t u r n  ( a  + v l  r + c f ) ;  

else [ 
x - t ;  
t - 0 . 0 ;  
r e t u r n  ( a  + x d ) ;  

1 

s t a t i c  d o u b l e  n e x t s p e e d ( t n t  k )  { 
d o u b l e  n e x t ;  

n e x t  - sourccs[k].a s o u r c c s [ k ] . p e a k  + sourc~s(kJ.b + g a u s s -  
ian(sources[kJ.mean, 1 . 0 ) ;  

r e t u r n  ( n c x t  < 0 . 0 )  ? 0.0 ; ncxt ;  
1 

s t a t i c  l o n g  sced[lOl - i Ox7123056789ab1,  Ox987345abd3011,  
Ox310284Sba7df1 ,  Oxab7269e640831,  
O x 1 9 7 6 2 9 e f Z a 8 ~ 1 ,  Ox981234fc83211,  
Ox9234985178ca1 ,  Oxabc837e91f381 ,  
O x l f 8 7 1 6 7 e a 9 8 1 1 ,  O x 2 3 7 4 5 7 9 8 c e a f l ) ;  

s t a t i c  double + h i s t ;  
statir i n t  histtop: 

i r i f d e f  I P P  
v o i d  
s i m u l - h i s t ( l n t  t r a f n u m ,  s t r u c t  t r a f f i c  t r a f f l c ( ] ,  double c a p a c i t y .  

i n t  h i s t n u m ,  d o u b l e  h i s t t o t a l [ ] )  
reLse /+ AR * /  
v o i d  
a r - h i s t ( l n t  t r a f n u m ,  s t r u c t  t r a f f i c  t r a f f f c [ J ,  d o u b l e  c a p a c i t y .  

i n t  h i s t n u m ,  d o u b l e  h i s t t o t a l [  J ) 
gendf  f  

{ 
i n t  seednum;  

F 1 LE * i p ;  
i n t  1 ,  j; 
struct qucuc queue;  



/+ open log file +/ 
fp - fopen(LOGFILE, "a+"); 
assert(fp) ; 

fprintf(fp, "Histogram analysis starts now . . . \  n"); 

seednum - sizeof(seed) / sizeof(seed(0)); 

histtop - histnum; 
hist - (double + )  malloc ((hFsttop+l) sizeof(hist[O])); 
assert (hist) ; 

for (i - histtop; i >- 0 ;  i - - )  ( 
histtotal(i1 - 0.0; 

1 
queue-capacity - c a p a c l t y ;  

/ *  run simulation with each seed */  
for (i - 0; i < seednum; i++) ( 

/* simulation, ahha */ 
uifdef IPP 

simul,cap2clr(seed[l], trafnum, traffic, 0 ,  q u e u e ) :  
w l s e  /+ AR +/ 

ar_cap2clr(seed[i], trafnum, traffic, O, &queue); 
acndif 

for (j - histto - j >- 0; - - )  ( 
histtotall ,y4 +- hist[j 3 ;  

1 

fp - fopen(LOGF1LE. 'a+*); 
assert( fp) ; 
fprintf(fp, "\n\t Total  result is as follows\na); 
for ( j  - histtop; j >- 0; j - - )  ( 

histtotal[ j J /- seednum; 
fprintf(fp, "\t01.2f\t%e\na, l.O*F/PRECISION, histtotal(j1); 

1 

fprintf(fp, "Histoqram analysis ends now . . . \  n\n\n\nR); 
fclose(fp); 

Uifdef IPP 
f loat 
simul-overload(int trafnum, struct traffic traffic(1, 

doublc capahigh, double câpaiow, doulie capastep, 
double bufsize) 

Relse / *  AR * /  
f loat 
ar,overload(int trafnum, struct traffic trafficl], 

double capahigh, double capalow, double capastep, 
double bufsize) 

#end i f 

seednum; 

in t queuenum; 
s truct queue *queue; 
double clrlowcapa, clrhighcapa; 
double highest - 0.0, lowest - 100.0; 
f loat over load; 



FILE *fp; 
int i, j; 

/* open log file +/ 
fp = fopen(LûGFILE, "a+" ) ;  
assert(fp); 

fprintf(fp, "Overload analysis starts now.,.\nR); 

seednum - sLzeof(seed) / sizeof(seed[O)); 
queuenum - (capahigh - capalow) / capastep + 1; 
queue - (struct queue * )  malloc(queuenum * sizeof(queue[O])); 
assert(queue); 

for ( i  - 0; i < queuenum; i++)  ( 
queue[i].capacity - capalow + i capastep; 
queue[i].bufsize - bufsize; 

1 

/ *  run simulation with each seed + /  
for (i - O, overload - 0.0; i < seednurn; i + + )  [ 

/* simulation, ahha +/ 
ltifdef IPP 

simul-cap2clr(seed[ij, trafnum, traffic, queuenum, queue); 
#else /* AR +/  

ar,cap2clr(seed[ij, trafnurn, traffic, queuenum, queue); 
#endif 

f p  - fopen(LOGFILE, "a+*); 
assert(fp); 
fprintf(fp, " a n a l y s i s  of last simulation. \ n a ) ;  

i f  ( ueue[O].clr < LOWCLR) ( 
qprintf (fp. ' FATAL error, capacity lov bound is too 

biq\nR ) ; 
fclose(fp); 
free(queue); 
return (0.0) ; 

1 else ( 
if (queue[queuenum - l ] . clr > HIGHCLR) ( 

fprintf(fp, " FATAL error, capacity high bound is too 
small\nm) ; 

fclose(fp); 
free(queue); 
return (0.0); 

1 else ( 
/+  find the overload treshhold capacities +/  
for (j - 0; j < queuenum; j++) ( 

if (queue[j] . c h  < LOWCLR) 
txea k ; 

1 
clrlowcapa - queue(j).capacity; 
lowest - MIN(lowest, queue[j - l].capacity); 
for ( ;  j < queuenum; j++) [ 

if (queue[j].clr < HIGHCLR) 
break; 

1 
clrhighcapa - queue[ j ] .capacity; 
highest - MAX(highest, clrhighcapa); 
/* get overload factor */  
overload +- (clrhighcapa / cfrlowcapa); 

fprintf(fp, * when clr - Be, capacity is %1.3f\nw, 
LOWCLR, clrlowcapa); 

fprintf(fp, " when clr - %e, capacity is %1.3f\ne, 



HIGHCLR, clrhighcapa) ; 
fprintf(fp, " thus the overload is 0l.3f\n\n\nW, 

clrhighcapa / clrlowcapa) ; 
fclose(fp); 

1 

overload /- seednum; 

fp - fopen(LOGFILE, ' a + " ) ;  
assert(fp); 
fprintf(fp, ' final overload is 01.3f\nR, overload); 
fprintf(fp, ' lowest is 01.3f, highest is 01.3f\n\n\n", lowest, 

highest) ; 
fprintf(fp, nOverload analysis ends now . . . \  n\n\n\nR); 
fclose(fp); 

return (overload); 

int srccomp(const void +src l .  const void *src2) ( 
return ( ((struct lmodel + )  src1)->endtirne - ((struct imodel * )  

src2)->endtirne); 
1 

/ +  record history of queue if queuenurn is O +/ 

aifdef IPP 
void 
simul~cap2clr(long seed, 

Int trafnum, struct traff ic trafficl ] , 
int queuenum, struct queue queue[]) 

telse /* AR +/ 
vo id 
ar,cap2clr(long seed, 

int trafnum, struct traff ic trafficl J ,  
int queuenum, struct queue queue(1) 

Bendi f 

( 
in t i, j, m, k, next, g; 
lnt sourcenum, numactive; 
double rateactive; 
dauDi c thistotal, t, r a t e t l ,  tl, totalceii; 

double simuhime - 0.0, lasttime, duration: 
double curren t ; 
FILE *fp; 
char hostname(l61, domainname(l6]; 

extern qetdomainname(char + , int) ; 

/ *  open log file */ 
fp - fopen(LOGFILE, ' a+" ) ;  
assert(fp); 

/ *  write log file +/ 
gethostname(hostname, 16); 
getdomainname(domainname, 16); 
fprintf(fp, "\nStarting simulation in a s . 0 ~  at 0 s " .  

hostnarne, domainname, currentdate()); 



/* plant the seed +/ 

if (seed -- 01) 
fprintf(fp, " seed not specified.\nu); 

seed - SEEDRANDOM(seed); 
fprintf(fp, " using seed Ox%lxR, seed); 

/+ calculate the number of individule sources */ 
for (i - O, sourcenum - 0; i < trafnum; i++) ( 

for (j - O; j < traffic[i].num; j++) ( 
sourcenum +- traffic[i].qroup(j].num; 

1 
1 

/*  set up each source in the simulation context */  
sources - (struct Imodel * )  malloc(sourcenum sizeof(struct 

imodel) ) ; 
assert (sources) ; 

fprintf(fp, *\n %d source(s1 as following:\nw. çourcenum): 

/* Lnitialize each traffic * /  
for ( i  - O, k - O, numactive - O, rateactive - 0.0; i < trafnum; 

i + + )  
/+  try each group */ 
for ( j  - O; j < traffic[i].num; j++) ( 

/*  try each source mode1 * /  
for (m - O: m < traffic[i].group[j].nurn; m.., k + + )  ( 

/ *  constant paramcter * /  
sources[k] .tag - k; 

a ifdef IPP 
sources[k].peak - traffic[i].group[jJ.model.peak; 
sources[k].utilization - traf- 

fic[F].group[j].modeI.utilization: 

(sources[k].burst (1 - sources[k].utllization) 
/ sources[k].utilization); 

ff ((sources[kj.utilizatlon ! -  0.0) 6 6  
(s~multime < sources[k].burst / sources[k].utili- 

zation) ) 
sfmultime - sources[k].burst / sources[k].utili- 

za t ion ; 
fprintf(fp, "\ttd: peak 0 f ,  util tf, bwrst ai, idlc- 

burst %f\na, 
k, sources[k].peak, sources[k].utilization, 
sources[k].burst, sources[k].idleburst); 

/+  initial s t a t e  of variables +/ 
sources[k].state - (RANDOM() < sources[kJ.utiliza- 

tion) 3 ACTIVE : IDLE; 
sources[kj.endtime - poisson((sources[kj.state -- 

ACTIVE) ? sources[k].burst : 
sourccs[k).idleb~r~tj; 

if (sources[k].state -- ACTIVE) ( 
nurnact ive++ ; 
rateactive +-  sources[k].peak; 

1 
t e i se  / *  AR * j  

sources[kj.a - traffic[F].group[j].model.a; 
sources[k].b - traffic[i].group[j].model.b; 
sources[k].mean - traffic[i].group(j].model.mean; 
fprintf(fp, * \ t l d :  a tf, b % f ,  mean 0f\nW, 

k, sources(k].a, sources[k].b. 
sources[k].mean); 

/ +  initial state of variables +/ 
sources[k].peak - DEFAULT; 
sources[k].peak - nextspeed(k); 
sources[k].endtime - (RANDOM() PERIOD); 
rateactive += saurces(k].peak; 



nifdef IPP 
simultime 4-  (queuenum -- 0) ? SIMULHIST : SIHULPERIODS; 

#else /* AR */  
simultime - (queuenum -- 0 )  7 PERIOD 10000 : PERIOD 50000; 

#endif 

if (queuenum -- 0) ( 
fprintf(fp, '\n this is to record histogram when capacity is 

Of\nn, queue[O).capaclty); 
1 else ( 

fprintf(fp, -\n ad queue(s) as following:\n', queuenum); 
for (g - O; g < queuenum; g++) ( 

ueue[gJ.clr - 0.0; 
qprintf ( f p ,  '\t r l d :  capacity \f, size %f\nn, 

g, queue[g].capacity, queue[g].bufsize); 

for (g - O; g < queuenum; g++) ( 
queue[g].totallost - 0.0; 
queue[q].bufcontent - 0.0; 

I 
i f  (queuenum -- 0) ( 

ueue[O].bufcontent - 0.0; 
?or ( i  - h i s e t o p ;  i >- 0; i--) [ 

hist[i] - 0; 
1 

1 
totalcell - 0.0; 
lasttime - 0.0; 

rifdef AR 
/ *  sort * /  
qsort(sources, sourcenum, sizeof(sources[O]). srccornp); 
next  - - 1 ;  

/ *  start real simulation * /  
while (1) ( 

/+ find the next event tirne +/ 
tifdef IPP 

for (i - sourcenum - 1, next - O, current - sources(O].end- 
time; i >- 1; i - - )  ( 

if (current > sources[i].endtime) [ 
next - i; 
current - sourccsfncxt~.cndtime; 

\ 
1 

1 
telse /* AR * /  

i f  (*+next >- sourcenum) [ 
next - 0 ;  

/+ check simulation end +/ 
i f  ((lasttime >- sirnultirne) b b  (sources(next].endtime ! -  

lasttirne) ) 
break ; 

/*  update buffer content and statistics until current event 
+/ 

duration - sources[next].endtime - lasttirne; 
thistatal - rateactive duration; 



if (queuenum -- 0 )  ( 
if (rateactive > queue[O].capacity) ( 

/* rate is greater than capacity */  
t - (upround(queue(O].bufcontent) - queue[OJ.bufcon- 

tent) / 
(rateactive - queue[O].capacity); 

k - ind(queue[O].bufcontent); 
if (t >- duration) ( 

hist [k] +- thistotal; 
totalcell +- thistotal; 

) else ( 
hist[k] +- t l rateactive; 
totalcell +- t rateactive; 
inc(k) ; 
tl - 1.0 / PRECISION / (rateactive - 

queue[O] .capacity) ; 
ratetl - rateactive + tl; 
t += tl; 
while (t < duration) ( 

hist[k] +- ratetl; 
totalcell +- ratetl; 
inc(k) ; 
t +- tl; 

histlk] +- (duration - t + tl) rateactive; 
totalcell +- (duration - t + tl) + rateactive; 

1 
1 
if (rateactive -- ueue[Oj.capacity) ( 

/+ rate is q u a ?  to capacity +/ 

hist[Lnd(queue[0].bufcontent)J +- thistotal; 
totalcell +- thistotal; 

1 
I f  (rateactive c queue[Oj.capacity) ( 

/ *  rate is less than capacity */ 
t - ( queue[Oj.bufcontent - downround(queue[0].buf- 

content) ) / 
(queue[O].capacity - rateactive ) ;  

k - ind(downround(queue[O].bufcontent)); 
I f  (t >- duration) ( 

hfst[k] +- thistotal; 
totalcell +- thistotal; 

) else [ 
hist[k) +- t + rateactive; 
totalcell +- t + rateactive; 
dec(k) ; 
tl - 1.0 / PRECISION / (queue[O].capacity - ratc- 

active ) ; 
ratetl - rateactive + tl; 
t +- tl; 
while (t < duration) ( 

hist[k] +- ratetl; 
totalcell +- ratetl; 
dec( k) ; 
t +- tl; 

1 
hist[k] +- (duration - t + tl) + rateactive; 
totalcell +- (duration - t + tl) rateactive; 

1 
1 
/+ upda te bu f f er con tent */ 
queue[g].bufcontent - -  duration + (queue[g].capacity - 

rateactive) ; 
if (queue[g].bufcontent < 0) ( 

queue[g].bufcontent - 0; 
1 

) else ( 
totalcell +- thistotal; 
for (g - queuenum - 1; g >- O; q - - )  ( 

queue[gJ.bufconrent - -  duration (queue[g].capacity 
- rateactive); 



1 
lasttime - sources[next].endtime; 
/ *  update the transient traffic +/ 

ir ifdef IPP 
if (sources[next].state -- ACTIVE) ( 

numactive- - ; 
rateactive -- sources[next].peak; 
sources[next].endtime +- poisson(sources[next].idle- 

burs t ) ; 
) else ( 

numactf ve++; 
rateactive +- sources[next].peak; 
sources[next].endtime +- poisson(sources[next].burçr): 

1 
sources[next].state - !sources[next].state; 

Uelçe /+  AR * /  
rateactive - -  sources[next].peak; 
sources[next).peak - nextspeed(next); 
rateactive +- sources[next].peak; 
sources[next].endtirne +- PERIOD; 

*end i f 
1 

/* gather clr */  
I f  (queuenurn ! -  0 )  ( 

fprintf(fp, " \n \ t  clr  in this simulatfon\nR); 
for ( g  - O; q < queuenum; y + + )  ( 

ueue[g].clr - queue[g .totallost / totalcell; 
qprintf (fp. '\t capacity t1.3f. 0c\nw. 

queue(g].capacity, queue[g].totallost / t o t a l -  
c d l )  ; 

/*  print bufcontent * /  
fprintf(fp, "\n\t total traffic %f\na, totalcell); 
fprlntf(fp, "\n\t buffer content histograrn in thFs simula- 

tion\nW ) ; 
for (i - 0; i <- histtop; L+ + )  ( 

fprintf(f , '\t01.2f\t%e\t0f\nR, l.O*i/PRECISION, 
hist(ij/totalcell. R ist(i.1); 

hist(t1 /- totalcell; 
1 

fprintf(fp, '\n\nEnding simulation Os\na. currentdateo); 
fclose(fp); 

return; 
1 




