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Abstract

We have studied the magnetic and structural properties of synthetic and meteoritic face
centred cubic (FCC) Fe-Ni alloys in an effort to understand the underlying mechanisms
responsible for the Invar and anti-Invar effects.

We have performed a detailed *Fe Mdssbauer spectroscopic and electronic imaging study
of the Santa Catharina meteorite, an FCC Fe-Ni meteorite with a bulk composition close to that
of Invar (FeNi,,). Its microstructure consists of islands of tetrataenite in a matrix of Fe-rich
antitaenite. Using Méssbauer spectroscopy (MS) and electron probe microanalysis (EPMA), we
have determined that antitaenite is a low moment alloy with an Fe content of 88 + 2 at. %.
Antitaenite appears to be stabilized in the FCC phase by its epitaxial relation with tetrataenite.
Its Néel temperature is ~60 K and its isomer shift (/S) is close to that of y-Fe. The effect of the
magnetic interaction with tetrataenite has been studied by Monte Carlo (MC) simulations and
have been shown to be consistent with the anomalous temperature dependence of the width of
the antitaenite’s Mssbauer spectrum.

Using electronic structure calculations (ESCs), we have studied the 7 = 0 K properties of
chemically ordered and disordered FCC Fe-Ni alloys in the ferromagnetic (FM), non-magnetic
(NM) and disordered local moment (DLM) states. A significant drop in the S and in the atomic
volume are shown to occur at the transition from the high moment (HM) FM phase to the NM
phase which occurs, according to our calculations, at 74.5 at. % Fe. Our calculations of the DLM
and FM states show that in Fe-rich Invar alloys, the FM order contributes to stabilizing large
moment magnitudes. Our systematic study of the hyperfine fields (HF) by ESCs supports the
phenomenological model of Dang and Rancourt (1996a). Calculations on a supercell of Fe; Ni,
show the effects of nearest neighbour (NN) chemical and magnetic environments on the local
magnetic moment magnitude and the HF distribution, thereby explaining the main observed
features in Fe-rich alloys.

Using the IS as a direct probe of the electronic structure, a HM/LM (low moment)
transition has been unambiguously observed to occur at ~70 at. % Fe. This is the first
experimental evidence of the HM/NM transition in FCC Fe-Ni which had been predicted by
ESCs. The presence of this transition explains the anomalous decrease of the atomic volume

observed at these compositions. High temperature Mdssbauer measurements have revealed a



thermal stabilization of the HM phase in anti-Invar alloys, the most Fe-rich FCC Fe-Ni alloys
that are in a LM phase at low temperatures. We have argued that the anti-Invar effect is due to
the entropic drive to increase the moment magnitude in systems which exhibit a magneto-
volume instability. Contrary to the present dominant view, our results have allowed us to
conclude that the Invar effect in Fe-Ni is not directly caused by HM/LM admixture or so-called
2-y-state like excitations.

MC calculations using a local moment model with a large volume dependence of the Fe-
Fe magnetic exchange parameter [Rancourt, 1996a] adequately reproduce the temperature and
composition dependence of the magnetic and structural anomalies in Invar alloys. The large
interatomic distance dependence of the NN Fe-Fe magnetic exchange parameter has been shown
to be corroborated by ESCs. The Invar effect in Fe-Ni must therefore be understood as a volume
expansion mediated by magnetic order in a predominantly HM local moment system having a

large Fe-Fe magneto-volume coupling.
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1. Introduction

1.1 Anomalous Properties of FCC Fe-Ni Alloys

Ever since the discovery of the Invar effect in the Fe,Ni,;, alloy by Guillaume in 1897
[(Guillaume97], the experimental quest for characterising and the theoretical quest for
understanding anomalies in Fe-Ni alloys has been a significant research topic in many fields
related to materials science. In 1920, Guillaume was awarded the Nobel Prize in Physics for his
discovery of the Invar effect. Guillaume’s work has since inspired many physicists, material
scientists and metallurgists to understand and exploit this discovery. Though much work has
been done to explain the effect, most of the early outcome of the discovery has been purely
experimental, as many other similar effects and anomalous properties of Fe-Ni alloys were being
examined.

The Invar effect, as characterized by Guillaume, occurs in FCC Fe-Ni alloys with a
composition of ~65 at. % Fe and is characterized by an unusually low linear thermal expansion
coefficient of &, s 2 x 10° K" over a broad range of temperatures around RT, as opposed to 13.4
x 10* K" for Ni and 11.8 x 10¢ K" for Fe, for example. In addition to the Invar effect,
systematic investigations of Fe-Ni alloys have resulted in the discovery of other similarly
anomalous effects: Elinvar is a material that has a very low thermoelastic coefficient (i.e.,
Young’s modulus is temperature independent) and permalloys (e.g., Permalloy 45:

Fe,, ,Ni,;Mn, ,) are materials that have a high magnetic permeability. When alloyed with other
elements (Mn, Al, Cu, ezc.) a great number of different alloys with unique and technologically
appealing properties can be manufactured. As in the case of steels, several derivatives have been
developed for technological purposes, such as stainless Invar, and are now of wide-spread use.
Apart from increasing at least ten-fold the precision of mechanical watches (which was one of

Guillaume’s motivations, being the son of watchmakers [Guillaume20]), Invar has found its place
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in many common-place and high-tech technologies such as in thermostats, shadow-masks in
televisions and computer screens, high-precision optical measuring devices and glass-to-metal
seals used in electronics packaging, to name a few [Wittenauer96]

Since the discovery of Invar alloys, apart from metallurgists and materials scientists who
were busy developing new exotic Fe-Ni based alloys through trial and error, many researchers
have also been looking for the physical explanation, at the microscopic level, for the anomalies
found in Fe-Ni alloys. The search for what was known as the Invar effect had begun and would
occupy the minds of many scientists throughout the 20* century. Now, a century after the
discovery, the Invar effect still receives much attention and, throughout the last decades, a
number of good reviews have been written of the experimental and theoretical progresses to
understand the anomalies [Sato78, Wassermann87, 90, Rancourt89, Russel90, Shiga93,
Witteauer96]. The first important observation about the Invar property is that it was directly
related to the magnetism of the alloy: the anomalous thermal expansion disappeared as the
material was heated above its Curie point [Guillaume20]. Apart from this assertion, it is still not
possible to get a consensus among researchers on what constitutes the cause of the Invar effect.

In addition to exhibiting the Invar effect at concentrations around 65 at. % Fe, Fe-Ni
alloys also exhibit magnetic anomalies as the Fe-content exceeds ~50 at. %, such as deviation
from the Slater-Pauling curve [see chapter 4}, a structural instability with respect to a martensitic
transition to the BCC phase [see for example Wassermann90] above ~70 at. % Fe and deviation
from Vegard’s law [see chapter 4] around ~60 at. % Fe. Though none of these anomalies were
directly related to the Invar effect, it seemed clear that most of the unusual properties in Fe-Ni
alloys were related to the properties of Fe in an FCC phase. Most of the theories to describe the
Invar effect are related to effects due to the occurrence of Fe in an FCC lattice. Several theories
have come and gone through time, as they failed to be compatible with the mass of experimental
data which was accumulated over time: Theories involving the importance of magnetic or
chemical inhomogeneities, “pre-martensitic effects” or the role of the martensitic transition have
been put aside.

To complicate things even further, an additional effect, the anti-Invar effect, was
observed in Fe-rich FCC Fe-Ni alloys above ~65 at. % [Acet94a, 94b, 97a, 97b]. Contrary to the
Invar effect, the anti-Invar effect is an anomalously high thermal expansion (.. = 20-30 x 10°

K") which occurs in the paramagnetic phase at high temperature. Its name comes from the fact
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that the anti-Invar effect is opposite to the Invar effect, even though there was no evidence that
the two are directly related by the same microscopic processes. It has nonetheless become yet
another important property of the FCC Fe-Ni alloys which must be understood before we can
claim to fully comprehend FCC Fe-Ni alloys.

Since the discovery of the Invar effect in Fe-Ni alloys, the term “Invar effect” has now
often become synonymous with “low thermal expansion”, which is now observed in a wide
range of materials. In some cases, such as Fe-Pt or Fe-Pd alloys, the similarities with Fe-Ni alloys
are striking and we can expect that the same microscopic processes are at play in all these alloys.
However, in other classes of materials such as laves and intermetallics [Wassermann90], it is not
as clear cut whether or not the low thermal expansion is due to the same processes. Throughout
this thesis, when we refer to the Invar effect, we are referring specifically to the effect in
ferromagnetic FCC Fe-Ni alloys. Extensions of our ideas to similar effects in other alloys will be

discussed when appropriate.
1.2 Models of the Invar Effect in Fe-Ni Alloys

In order to explain the deviation from the Slater-Pauling curve in Fe-Ni alloys, Carr Jr. ez
al. [Carr52, 79, Colling70] and Kondorskii et al. [Kondorskii59, 60a, 60b] developed the theory of
latent antiferromagnetism (LAF) which was a local-moment model based on having an
antiferromagnetic Fe-Fe magnetic exchange coupling (/... < 0), as opposed to the ferromagnetic
exchange couplings of Fe-Ni (J,, > 0) and Ni-Ni bonds (J,,;; > 0). This model was used to
explain why deviation from the Slater-Pauling curve occurs as Fe content was increased, since
antiparallel Fe spins would occur because of the antiferromagnetic Fe-Fe interactions in an
otherwise ferromagnetic Fe-Ni matrix. In order to explain the Invar effect, a large dependence of
the Fe-Fe exchange parameter with interatomic distance (Jz, = ./ Or) was assumed
[Menshikov77, 79], thereby providing a link between the magnetism of the alloy and its
structural properties and possibly explaining the Invar effect. Unfortunately, there was no
justification for the large ]F’e& required, so many researchers put aside this model in favour of
other options. Recently however, Rancourt and Dang [Rancourt96a] re-examined local moment
models and showed that such a local moment model can reproduce all the T = 0 K properties if
there is a large and positive ;.. . In particular, they recognized the importance of magnetic



Chapter 1. Introduction 4

frustration of Fe-Fe bonds and their role in reproducing the volume increase seen in Invar alloys
relative to the volume extrapolated from high temperatures where the effect has disappeared.

Another dominant model related to the occurrence of Fe in an FCC phase was put forth
by Weiss [Weiss63] and further refined by Chikazumi ez al. [Chikazumi68, 79, 80] and Matsui et
al. [Matsui78, 79, 80]. Known as the 2-y-state model, it assumes that Fe atoms in an FCC lattice
(the y phase, as opposed to the a or BCC phase) can be in either of two ionic states which are
associated with different magnetic moments and different atomic volumes (the LM state has a
smaller volume than the HM state). At the Invar composition, it is assumed that the energy
difference between the two states is only ~300 K (-25 meV) and that the HM state would be the
ground state. As temperature is increased (around RT), thermal excitation would occur such that
the LM state would be populated, thereby reducing the average volume in such a way that it
counters normal thermal expansion. This model provides a nice explanation for the Invar effect,
but the link between the effect and the magnetism of the alloy is less clear, in particular, why the
effect disappears around T,..

This model has been further developed with the advent, in the mid-70's, of ESCs of y-Fe.
Early calculations of y-Fe which included constrained collinear magnetism showed that y-Fe
could occur as a HM or NM phase. Similar calculations for Fe;Ni also showed an instability in
the moment: as the volume was reduced the HM phase was destabilized in favour of a NM or
LM phase. The prediction of two distinct phases at 7 = 0 K calculations was taken as providing
the theoretical grounds for accepting the Weiss 2-y-state model as valid [Williams82, 83,
Moruzzi86, 88, 89a, 89b, 90, 92, 93, Mohn89, 91, Entel93, Hoffmann95, Wassermann87, 90, 91],
even though these calculations are for extended phases (where all atoms are in HM or LM states)
while the Weiss model deals with “independent” atomic states. For example, even the stability of
a single LM atom in a HM phase has not been ascertained by ESCs.

More recent and elaborate calculations show that if the constraint of collinear magnetism
is lifted, or if more complicated magnetic structures are allowed in the calculation, then the two
minimum structure of the y-Fe energy curve disappears and instead there is only a single true
minimum (Schroter95, James99]. In light of the disappearance of the two minimum structure,
the 2-y-state picture is invalidated. Proponents of the 2-y-state model now appeal to fluctuations
between bonding and anti-bonding states, even though no physical information regarding the

types of fluctuations is given [Acet2000]. Even in this more modern version of the 2-y-state
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model, an ad nibilo link with the magnetism is required to explain why the Invar effect
disappears at T,.. It is important to note the difference between this view and the local moment
model of Rancourt and Dang [Rancourt96] is that in the 2-y-state model, the Invar effect is seen
as a contraction relative to the normal behaviour of the 7 = 0 K HM alloy, whereas the model of
Rancourt and Dang views the effect as an expansion, at low temperature relative to the normal
HM behaviour which occurs above T.. These views are thus fundamentally different in how
they describe the final high-temperature phase.

Another important model that was developed in the 70's is the theory of weak itinerant
ferromagnetism (WIF) of Wohlfarth {[Wohlfarth75, 79, 80). In this model, Invar is assumed to be
a weak itinerant ferromagnet according to the classification of Stoner and Wohlfarth, in which
the moment disappears at T through Stoner-type excitations. Because of the difference in the
kinetic energy of electrons in the various states, this could result in an Invar-like behaviour
which disappears at T,.. This theory predicts that the magnetic moment should disappear above
T,., which is incompatible with many measurements which indicate that the moment
magnitudes remain large at high temperatures [e.g., Tajima87, Acet00].

The most recent attempt at explaining the Invar effect came in the form of sophisticated
ESCs which allowed for non-collinear magnetic moments in a 32-atom supercell of the Invar
composition {vanSchlifgaarde99). As in the case of y-Fe, the calculation showed that the 2-state
(HM and LM) picture is invalid and instead a single minimum exists, with a continuing variation
from a HM phase at large volumes to a LM phase at lower volumes. In addition, as the volume
was decreased, some Fe moments started to align opposite to the bulk magnetization and if the
volume was further reduced, the Fe moments would have nearly random orientations, while the
Ni moments would remain fairly ferromagnetically ordered. The properties of the energy vs.
volume curve were such that one can calculate a very low thermal expansion coefficient at 7 = 0
K. Unfortunately, as precise as this calculation is, it remains a calculation valid only at 7= 0K
and not an explanation of the processes that cause the Invar effect at and around RT.
Extrapolation to finite temperatures is still done by hand-waving arguments, without the solid
foundations required by an acceptable theory. Several other statements by the authors are also
unfounded, such as non-collinearity being the source of the Invar effect, contrary to what is
observed in Fe;Pt [Wassermann90] or in films of FeNi;, [Lagarec00, Dumpich87, 88, 92,

Wassermann92] where no deviation from the Slater-Pauling curve is seen.
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Throughout this thesis, we will investigate, on new and existing theoretical and
experimental grounds the implications regarding these models and show how a global
understanding of the intrinsic properties of FCC Fe-Ni alloys leads to a clear and simple
explanation of the Invar and anti-Invar effects. As we shall see, it is using a combination of tools

that a clear picture of Fe-Ni alloys can emerge.
1.3 Choice of Experimental and Theoretical Tools

M@ssbauer spectroscopy (MS) has often been used in the study of Fe-Ni alloys because of
its sensitivity to changes in the magnetic or electronic environments of the probe atoms. For
example, MS has been used to study order-disorder transitions in Fe-Ni alloys [Larsen82], the
effect of substitution of Fe and Ni atoms in chemically ordered FeNi,; [Cranshaw87] and the
distribution of local hyperfine fields in Invar (Window?73, 74, Rancourt91]. It has also been used
to prove the existence of chemically ordered FeNi in synthetic samples [Grosé4, 68, 70a, 70b] as
well as meteorites [Petersen77, Albertsen78a, 78b], the low-temperature antiferromagnetic state
of y-Fe [Gonser63, Keune77] and many other peculiarities of the Fe-Ni system. In this work, we
have found the /S, one of the parameters obtained from the analysis of Mé&ssbauer spectra, to be
an invaluable tool to differentiate between HM and LM alloys and thus explore an entire field of
Fe-Ni alloys which had previously been unattainable by other experimental methods. In addition
to MS, we have also used theoretical methods such as ESCs and MC simulations. The possibility
of rapidly calculating the electronic structure of materials has proven invaluable and such 7 = 0
K calculations are now part of the modern tools used to further our understanding of materials.
As previously stated, ESCs have already played an important role in the Invar problem. MC
simulations, on the other hand, remain one of the most powerful ways of exploring finite

temperature properties of systems and have also been extensively used to study Fe-Ni alloys [e.g.,
Dang96a].

1.4  Organization of the Thesis

With all these theories and a century of experimental data, how can we improve and
refine the understanding of FCC Fe-Ni alloys? We have decided to combine many different and
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complimentary techniques for studying the properties of these alloys: Experimental
characterization of temperature dependent properties using MS combined with state-of-the-art
spectral analysis techniques, a systematic study of Fe-Ni alloy properties using ESCs, Monte
Carlo simulation of magnetic and structural properties as a function of temperature. Also, we
have analysed both synthetic Fe-Ni samples produced by rapid quenching techniques (cooling
rates of ~10°-10° K/s) as well as meteoritic material which cooled at rates of ~10 K per million
years.

This thesis has been organized as a logical progression leading to a comprehensive
understanding of the properties and microscopic processes involved in FCC Fe-Ni alloys. After
this introduction, we present the basis of the experimental work using MS, covering the
necessary theoretical background as well as the details of the experiments. The next chapter deals
with the study of the Santa Catharina meteorite, which is nearly a pure Fe-Ni meteorite with a
bulk composition which is the same as that of the Invar alloy. With time, it has decomposed
from a chemically uniform alloy to a two phase alloy of tetrataenite and antitaenite. The study
deals mainly with characterizing the antitaenite phase as it is a very Fe-rich LM phase that cannot
be duplicated in synthetic alloys. Chapter 4 proposes a review of Fe-Ni alloys in the Ni-rich
range where their magnetic and structural properties can be understood based on simple models
related to binary alloys. Chapter 5 is a detailed ESC study of chemically ordered and disordered
Fe-Ni alloys in collinear magnetic order or complete magnetic disorder. We have pushed the
limits of the ESCs to link the calculated electronic structure to physically measurable quantities
such as the /S and the HF. A detailed analysis of the differences between the HM and NM phases
in these alloys is put to the test in chapter 6 where MS is used to study Fe-rich alloys to show for
the first time that a HM/LM transition occurs in FCC Fe-Ni alloys as Fe content is increased
above ~70 at. %. Temperature dependent measurements show how one can further identify anti-
Invar bekaviour based on the IS and conclusively show that the anti-Invar and Invar effects are
two phenomena which have physically different origins. Finally, in chapter 7, MC simulations of
Fe-Ni alloys based on a simple local moment model with a distance dependent Fe-Fe magnetic
exchange coupling illustrate how the Invar effect occurs throughout the HM Fe-Ni alloys,
culminating at 65 at. % and leading to the known properties.

The combination and cooperation between these various experimental and theoretical

techniques allows us to develop a complete picture and understanding of the behaviour of FCC



Chapter 1. Introduction 8

Fe-Ni alloys and the microscopic processes that lead to it and, in particular, give a clear answer to

what causes the Invar and anti-Invar effects.



2. Experimental Methods:
Maéssbauer Spectroscopy

2.1 Introduction to Médssbauer Spectroscopy

Maéssbauer spectroscopy is the main experimental tool used in this research. Itis a
nuclear fluorescence technique which can be used to detect changes in the electronic
environment around the nucleus by measuring their effect on a specific nuclear transition.
Thanks to the Mé&ssbauer effect, it is possible to have recoilless emission and recoilless absorption
of a nuclear gamma-ray. By Doppler-shifting the energy of the source, we can scan a small range
of energies around the source transition energy and resolve nuclear energy shifts caused by
hyperfine interactions with the electrons or magnetic fields in the sample.

Since the absorption energy must be the same as the emission energy (plus or minus a

=172

Electron capture, 99.80%

=52

¥, 136.5 keV |y, 122.1 keV
1=3n2
Y. 14.4 keV =17

7Co 7Fe

Figure 1 Diagram of the decay of “Co into *Fe. The 14.4 keV transition used in *’Fe MS.

Table 1 Nuclear transitions in *Fe, the energy of the emitted y-rays and their relative intensity

3/251/2 14.413 9.16(15)
5/253/2 122.061 85.60(17)
5/2» 1/2 136.473 10.68(8)
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Figure 2 Conventional transmission MS setup.

small Doppler shift), only one isotope of one element can be probed using a specific source. The
most commonly studied isotope is “Fe. As a source, we use a material in which “Co atoms are
embedded in a rigid lattice (in our case Rh). “Co decays to “Fe with a half-life of 271.8 days
[Lide93). The resulting ’Fe nucleus appears in an excited state (/ = 5/2 with 99.80% probability),
from which it can decay to the / = 3/2 state which then decays to the / = 1/2 ground state by
emitting a gamma-ray of 14.4129 keV. The transition diagram of the complete transitions to the
ground state is shown in fig. 1. The / = 3/2 — 1/2 transition is MGssbauer active, which means
absorption or emission of a y-ray with the right energy can occur without recoil of the nucleus.

It is this transition that is used in *Fe Mdssbauer spectroscopy.
2.1.1 Transmission Méssbauer Spectroscopy

There are different methods for performing absorption or emission MS. In the course of
this research, we have used the transmission and conversion electron methods. In a transmission
geometry (fig. 2), the sample is placed between the oscillating source and a y-ray detector (in our
case a 1 atm. Kr-4% CO, sealed proportional counter). y-rays from the source are absorbed by
the sample’s *Fe nuclei which are in their ground state (/ = 1/2) and which can then decay,
emitting a y-ray in any direction. With a small sample/detector solid angle, we obtain a
transmission spectrum, where absorption peaks occur at the energies where the y-rays are
resonantly absorbed by the sample (very few reemitted y-rays are detected because of the small
solid angle of the detector). Non-resonant electronic absorption also occurs but it has no energy
dependence in the energy range we measure, so it does not interfere with the resonant absorption
signal because it simply uniformly attenuates the signal.
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Figure 3 Surface sensitive CEMS setup.

2.1.2  Conversion Electron Mdssbauer Spectroscopy

Contrarily to conventional transmission MS, conversion electron Méssbauer
spectroscopy (CEMS) is an emission spectroscopy, which means we are detecting a signal
produced by the sample after the absorption of the source y-ray. There are at least two ways in
which the ¥Fe nucleus can decay back to its ground state after having absorbed a y-ray:
® It can simply emit a y-ray with the same energy (14.4 keV). This process is used in

conventional emission MS where the emitted y-rays are detected. Nine percent of all

excited Fe nuclei decay through this process;

@ It can transfer its energy to the electrons in the Fe atom. If the energy is transferred to a
core 1s electron (the most common conversion process), the electron will be ejected from
the atom and possibly from the sample. This electron can also produce secondary
electrons with lower energy through collisions in the sample. Detection of the resulting
emitted electrons is the basis of CEMS (fig. 3). Since the atom has been ionized, it will
also revert to its ground state through x-ray fluorescence. In particular, a 5.6 keV K, x-
ray will also be emitted when the “Fe nucleus decays. Detection of such secondary x-rays
is the basis of conversion x-ray Mdssbauer spectroscopy.

Because the escape depth of low-energy electrons (<10 keV) is small in most materials, only

electrons emitted close to the surface (within ~100 nm) can be detected. For this reason, CEMS is

a surface-sensitive method. For example, we used CEMS to determine if our meteoritic sample

preparation techniques produced a surface that was the same as the bulk.
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2.2  Hyperfine Interactions and Their Effect on the M&ssbauer Spectrum
2.2.1  Electric Monopole Interaction and Second-Order Doppler Shift

2.2.1.1 The Isomer Shift

The isomer shift is due to the electric monopole interaction which results from the finite
volume of the nucleus and the different nuclear volumes of the excited and ground states of the
Maéssbauer transition. The treatment of the finite size of the volume can be carried out using a
perturbation approach, as is elaborated by Shirley [Shirley64] and reproduced here. We first
assume that the nuclear charge Ze is uniformly distributed in a sphere of radius R. In such a case,

the electric potential inside the nucleus is

Ze?| 3 1 r)?
Vir< R) = —[->+ | =] | 1
e<m - 22|20 (L) )
and we recover the normal Coulomb potential outside the nucleus:
V(r> R) = --Z:—'. ?)
The energy shift caused by this potential, as opposed to using only the Coulomb potential is
given, to first-order perturbation, as the average of the difference between the two potentials
weighted by the electron density.
In the non-relativistic treatment, only the s electrons contribute significantly to the
density inside the nucleus and it is nearly constant (| W(r< R) |* = | §,(0) |*), we obtain a shift
AE = §n28232|¢,(0)|2. 3)
The difference in the shift between the excited nuclear state and the ground state is thus
4nZe*R2 8R
BAE = =2 VO 1%, @)

where SR =R ., - Rpuea The Doppler shift, which must be applied to the source’s radiation

in order to get resonant absorption (or emission) in a MGssbauer experiment, is

A” = c(aAEnbmrlnr - bA’Emnrn) /%’ or
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The first two terms of the right-hand-side form a constant which depends only on the isotope
and the nuclear transition used in the experiment, through Z, R, E, and R /R. By comparing
calculated non-relativistic densities and experimentally observed shifts, these terms, which are
commonly grouped and denoted as a, give -0.24 4, mm/s [Akai86] for the 14.4 keV transition in
57Fe. The last term, the difference between the densities at the nucleus in the source and in the

absorber, constitute all the chemical information contained in the isomer shift.

When a full relativistic treatment is used, one can show that there is a simple correction
factor compared to the isomer shift obtained in the non-relativistic case. Since the electronic
structure calculations performed in this work were performed using the scalar relativistic
approximation, it is useful to show how the correction factor arises. We once again follow the
derivation by Shirley [Shirley64].

In the relativistic case, when a point aucleus is used, the electron density at the nucleus is
found to diverge as r -~ 0. Close to r =0, the density can be expressed as the product of the non-
relativistic density at the nucleus | y(0) |* with a divergent factor:

2(1+4) [ ZZr] 2-2
ey 4 |
where A = m (with a being the fine structure constant) and 4, is the Bohr radius, or 1

atomic unit of length. Relativistic effects increase as Z increases and A deviates from 1. In the

p(r) = [$O|?

(6)

a

perturbation approximation, as in the previous section, we must integrate the perturbing

potential weighted by this density over the nuclear volume to obtain the atomic energy shift:
61‘!R_a§(1+l) [ ZZR)ZA

ZA(2A+1) 2A+3) 224 +1)
R, is the Rydberg constant. Differentiation with respect to R and conversion to a Doppler shift

AE = |¥(©O)}? )

4,

result in the final expression for the fully relativistic isomer shift:

Ay = 4nze-R-:[6R

S T] S@) (W s O 12 1W,.,. O1). )

where



Chapter 2. Experimental Methods: Mdssbauer Spectroscopy 14

%-2
5@ = 30(1+A) { ZZR] o)

) (2A+1) 2A+3) T2 (2 +1)
is the relativistic correction factor. In the case of Fe, §(Z) = 1.32. A more detailed treatment

4

which takes into account the distortion of the electron wavefunctions by the finite volume of the
nucleus add another corrective factor of 0.98 in the case of Fe and Ni. As is the case in the non-
relativistic case, the only chemical information contained in the isomer shift is the difference in
(non divergent or Schrédinger) electron densities at the nucleus. The relativistic correction
factors only come into play when comparing calculated densities with experimental isomer
shifts.

The IS is independent of the azimuthal angular momentum /, of the nucleus and thus
shifts the energies of all transitions from the excited state to the ground state by the same amount
(fig. 4). In metals, at temperatures far below the Fermi temperature, the IS is not expected to be
temperature dependent since there is usually no significant change in the electronic structure of
the material with temperature. This thesis is in part concerned with an important exception to
this rule, when the /S is found to be temperature dependent, indicating a change in electronic

structure.

2.2.1.2 Second-Order Doppler Shift

In addition to the /S, thermal motion of the absorber atoms also contribute to a global
shift of the transition energies from one sample to another because of Doppler shifting. At any
temperature, the vibration of the Fe atoms result in an average Doppler shift of the transition
energies. Because the atomic vibration period is much shorter than the lifetime of the excited
state, first-order terms (and indeed all odd-order terms) in the atom velocities average to 0.
However, second order-terms of the velocity are also present in the relativistic expression for the

Doppler shifting of the radiation:

o1 [r-5) - 2-50((2)) .

Because the frequency of atomic oscillations is typically 10*-10"* Hz and the lifetime of the

"~

excited state is ~10” 5, the average shift AE over the lifetime of the excited state is thus
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(%) -5o()) o

This shift, which is named the second-order Doppler shift (SOD), also changes the energies of all
transitions by the same amount. The SOD is dependent on the material and the temperature
since it depends on {» 2). Within the Debye approximation of solids, the SOD can be calculated:

48/T ,
3.3 L [ ax=
8 eD 0 e*-1

The measured centre shift (CS or 8) is the total shift of all the transition energies relative to some

8,

SOD(T) = -% : (12)

*
Me

standard material (a standard calibration material is used to calibrate the source velocity in order
to provide a measured CS that is independent of the source used):
Cs = IS + SOD. (13)
Since the resulting CS is aiso temperature dependent, it must be given relative to a standard
material at a given temperature. The CS is an experimental parameter that is directly obtained
from the Méssbauer spectrum (fig 4). Without any assumptions about the absorber or
measurements at different temperatures, it is not possible to differentiate the /S from the SOD.

For this thesis, resolution of the /S and SOD was required.
2.2.2  Electric Quadrupole Interaction

Because the first excited state of the “Fe nucleus has a quadrupole moment Q, it interacts

with an electric field gradient (EFG) according to the following Hamiltonian:

_ e 2 2 2
HQ - 2{(21_1)(1/*[" * 17)’,11.:' * Vt{It)
: (14)
=92 (312 _[qe) + a2 - I
4[(21-1)( 2o ey <@ - 1),

where V, ( = eg), V,, and V, are the principal components of the EFG tensor. By convention,
the directions are chosen such that | Vel > IV 2 VL. The asymmetry parameter,
definedas n = (V- V) /V_,isthen between 0 and 1. The ground state has no quadrupole
moment and is thus unaffected by an EFG. When the “Fe nucleus is placed in an EFG, the 4-fold
degeneracy of its excited state will be partially lifted since the (/ = 3/2, 7, = 3/2) and (/ = 3/2, [,
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= 1/2) have different energies:
, 12
- _t90 312-I(I+1 [1+1f-J . 15)
2 41(21-1)[ <N )] 3 (
There will then be two possible transition energies between the first excited state and the ground
state, resulting in a two-line spectrum known as a doublet (fig 4). The energy difference berween
the two possible transitions is known as the quadrupole splitting (QS or A) which is related to V,

and n:

, L\ 12
Qs:ﬂg{1+%] i (16)

2.2.3 Magnetic Dipole Interaction

All degeneracies of the / = 1/2 and I = 3/2 states can be lifted if the nucleus is subjected

to a magnetic field. In such a case, the Hamiltonian of the magnetic dipole interaction is:

H, = -gu BT, (17)

which splits the / = 1/2 into two sublevels (/, = +1/2, E= E ,, ~g,,uy H I:) and the [/ = 3/2
into 4 sublevels, (I, = £3/2, £1/2, E = E, - g, by HI ). Since electric dipole transitions
(emission or absorption of a photon) can only occur between levels with Al =+1,0 (to firse
order), this results in a six line pattern known as a sextet (fig. 4), since the I . = 3/2-~-1/2 and
I, = -3/2~1/2 transitions are forbidden. The sextet is usually characterized by the hyperfine
magnetic field /1 or the Zeeman splitting of the excited state 7 = g, . H.

When a magnetic field and an EFG are present simultaneously, the spectrum can
comprise up to eight lines but calculating the line positions and their intensities becomes a non-
trivial task. However, in our situation, we are dealing with materials with cubic symmetry where
the EFG is usually small enough so FH,, can be treated as a perturbation of H,. In that case, the
spectrum is composed of 6 lines which are shifted relative to the EFG=0 case. The relevant
hyperfine parameters to describe that situation are the Zeeman splitting of the excited state z (or
the hyperfine magnetic field H) and the quadrupole shift e,

e = eZZQ 1+(1|c052¢-3)sin26 ’ (18)

2
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where ¢ and 0 are the azimuthal and polar angles describing A in the EFG principal axes

reference frame.
2.2.4 Calculating and Fitting the M6ssbauer Spectrum

In either transmission or emission experiments, the magnitude of the observed
Maéssbauer signal is related to the cross-section of the / = 1/2 - 3/2 transition and this cross-
section is simply the sum of the cross-sections for each of the “Fe atoms present in the sample. In
the absence of an EFG or hyperfine field, the cross-section for the transition has a Lorentzian
dependence on the energy, with a half-width related to the life-time of the excited state according
to Heisenberg’s uncertainty principle. For *Fe, the maximum cross-section is 6, = 2.56 barn and
the FWHM I' = 0.097 mm/s [Méssbauer Effect Data Center89]. If all *’Fe nuclei are in identical
environments (subjected to the same hyperfine interactions), their cross-sections are identical and
will simply be a sum or Lorentzians centred on the energies of all possible transitions (/ = 1/2, 1))
~ (P* = 3/2, I,). In the absence of a hyperfine field H, the two transition energies are
Y
2

v, =8 % (19)
whereas in the presence of a hyperfine field and within the first-order perturbation
approximation (& < 7), the six possible transition energies are:
v, =8+ B +az, (20)

where B, = {-1,1,1,1,1,-1} and @, = {-(Z+3)/2,-(Z+1)/2, (Z-1)/2, (Z-1)/2, (Z+1)/2, (Z+3)/2},
with Z = | g,/ &, =1.7509 in the case of “Fe [Mossbauer Effect Data Center89). The Zeeman

splitting z is related to A as
T = &pbyH, (21)

where g, , is the gyromagnetic ratio of the excited state, p,, is the nuclear magneton. The
Zeeman splitting z is usually expressed in mm/s, with z(mm/s) = 0.0679 H(T) in the case of “Fe
Spectroscopy.

When fluctuations of the hyperfine parameters are either much slower or much faster
than the lifetime of the excited state it is said that we are dealing with a “static” or “effectively
static” case, and a peak corresponding to each possible transition is observed. Whenever the

hyperfine parameters fluctuate at a rate where they vary over the lifetime of the excited state,
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dynamic effects are present in the spectrum and the analysis of the hyperfine parameters requires
more complex analysis methods which take these fluctuations into account and which result in

unusual lineshapes.
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Figure 4 Effect of the electric monopole (), electric quadrupole (H) and magnetic dipole (H,)
interactions on the nuclear levels and on the transmission Méssbauer spectrum. The relation
between the relevant hyperfine parameters and the energy levels are also given.
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2.2.4.1 Distributions of Hyperfine Parameters

By their nature, the hyperfine parameters are sensitive to local chemical and magnetic
environments. In an alloy, all sites have different local environments so the bulk Mdssbauer
measurement will actually result from a distribution of hyperfine parameters corresponding to
each individual site. If all sites are considered to be equivalent in terms of their average
orientation with respect to the incident y-ray radiation, then we can characterize all cthe
individual sites as a generalized site with an associated distribution of hyperfine parameters. For a
site which exhibits magnetic splitting, the general distribution would be given by a probability
density distribution (PDD) of the form P(8,¢, 7). Because of the arbitrary shape and complexity
of this distribution, it is difficult to extract it from the M&ssbauer spectrum, so simplified models
are used.

When predominantly concerned with HFs, the simplest analysis is to consider that only
the Zeeman splitting z is distributed and that 8 and € are the same for all sites, which means

P(&.e,2) = P(9 8(8-6,) b(e-¢,), (22)

where 8( is the Dirac delta-function. In this case, only P(g) needs to be extracted, along with
the values &, and €,. In many cases though, it is found that this is insufficient and it is necessary
to include distributions of the other parameters as well. The second approach and the most
common one, is to assume that at each site, d and € are linearly coupled to z,as 6 =8, + 6, 7 and
e = g, + &, 7, which means the distributions of & and € are also coupled to P(3):

P@.e,9 = P()8(8-(8,+5,9) 8(e-(e,+e,9) . (23)
This model is implemented in the Voigt-based fitting (VBF) method of Rancourt and Ping
[Rancourt91a), where P(2) is modelled as an arbitrary sum of Gaussian components.

A more general but still tractable approach has been developed to allow for
simultaneously independent distributions of the three parameters, where correlations between
parameters are allowed. This is implemented as the extended Voigt-based fitting (xVBF) method
of Lagarec and Rancourt [Lagarec97, see appendix A). Because there is no inherent reason for the
various parameters to be strictly linearly coupled together, this allows for more physically
realistic distributions of hyperfine parameters and usually provides better fits than the VBF
method.

When analysing the spectra of Fe-Ni alloys, it was always necessary to use distributions
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of parameters. Because both methods (VBF and xVBF) could produce slightly different results,

we have generally used them both to get a feel for the “true” range of the parameters.

2.2.4.2 Complexities Involved in Getting Accurate Hyperfine Parameters (CS in

Particular)

It is very important to realize that getting accurate and precise parameters from the
Méssbauer spectra of Fe-Ni alloys isn’t a simple task. One of the main reasons is that these are
alloys and, as such, are not characterized by a discrete set of hyperfine parameters but rather by a
distribution of each of the parameters. Among other things, the existence of such distributions
makes an exact and unique fit impossible. The reason for this is that the amount of information
one might want to extract (shapes of the distributions of the HF, CS and QS and how they are
correlated together, relative spectral areas of each line, etc...) is usually greater than the amount
of information contained in a spectrum (typically 512 data points of velocity and intensity) and is
made even less tractable because of the noise in the spectrum. Without getting into to much
detail, it is easy to see that one must make assumptions on the shapes of the distributions and
how they are correlated to each other in order to simplify and solve the problem. The VBF and
xVBF models do just that by defining a generalized site which establishes rules on building the
distributions. The two methods provide different methods of building the distributions and these
methods may or may not be well suited to describe the “true” distributions that characterise the
sample. Because of the inherent lack of information contained in the spectrum and the ever
present statistical noise, the problem of uncovering the true parameters is usually ill-defined
(there is no single solution) and these methods provide the best way of getting a solution which is

reliable (albeit constrained to the specific model).
22421 Correlation Between the CS and the HF

In the case of Fe-Ni alloys, it is generally admitted that the observed line broadening is
due mainly to a distribution of hyperfine field magnitudes on the various probe nuclei sites.
However, it is clear from the line asymmetries seen in figs. 5 and 6 that either (or both) the CS or

the QS must also be distributed and correlated to the HFD because the observed asymmetries can
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only arise because of such correlations. This implies that the method used to describe the joint
distribution of hyperfine parameters is critical in obtaining reliable averages of the parameters.
Consider a spectrum (such as the one of 65 at.% Fe at RT, shown in fig. 6} which yields a
strongly skewed HFD and requires a CS-HF correlation. The VBF model assumes a linear
coupling between the CSD and the HFD, which means that the CSD is forced to have the exact
same shape as the HFD (but on a different scale and offset to some different value). In such a
case, because of the skewness of the distribution, the average CS will be different from the most
probable CS. In the xVBF model, the distributions are built independently and then a correlation
is added. A good fit can be obtained by assuming the CSD is described by a Gaussian distribution
which is correlated to the skewed and more complicated HFD. In such a case, the average CS and
the most probable CS are the same and they will usually be very close to the most probable CS§
obtained from the VBEF fit. The two fits result in the same (or very similar) HFD, have
essentially the same statistical significance ()’ value) yet give significantly different average CSs
(the discrepancy between the values is significantly larger than the precision of each value as
obtained from the fit). There is generally no way of favouring one value over another, so both
must be accepted as possible. One could say that the “true” joint CSD and HFD does lie in
between these two models and so the “true” average CS could lie anywhere between the two

values obtained.
2.24.2.2 Dynamic Effects Near T,

The determination of hyperfine parameter distributions can also be complicated by the
existence of dynamic effects near T,. (in the case of these alloys). Such effects must be expected to
occur near T, [Rancourt96b]. These complicate the extraction of hyperfine parameters since
there effect (homogeneous broadening) is nearly impossible to distinguish from inhomogeneous
broadening. Also, a complete fitting model that admits distributions and dynamic effects is not

available. The simplifications used in the analysis also affect the accuracy of the extracted

parameters.
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22423 Average Quadrupole Shift

The EFG in a cubic environment is normally nil. However, because of the alloying,
none of the sites truly have a cubic symmetry and it is possible to have non-vanishing local EFG.
In the presence of an HF, the EFG contributes to the quadrupole shift €, which depends on the
angles between the local HF and EFG principal axes. Because of the alloying, the local chemical
environment (which results in the direction of the EFG principal axes) may be uncorrelated with
the magnetic domains (which is related to the direction of the HF), so the average € can be

expected to be 0, since

n .4

[ 46 [in84Be.6) =0. (24)
0 0

In most cases, when the sextet pattern is clearly resolved, a fit does produce a value of € s 0.008
mm/s. In such cases, the CS is not much affected by forcing € to be 0. When the sextet pattern
started to collapse (near but below T..), a free fit often produces values of & =0.01-0.02 mm/s.
These values are suspect and give corresponding values for the CS which are significantly
different from the ones obtained by forcing € = 0. In order to fit all spectra in the same fashion
and with the same reproducibility, the average value of € was always forced to be 0 mm/s. When
using the VBF model with a e-z coupling, the parameters g, and €, were first free, then €, was
manually adjusted such that <e> < 0.0001 mm/s: both €, and €, were frozen and the other

parameters were fit again.

All these factors (and more) are the reason for some of the large ranges of hyperfine
parameter values that are reported in this work and because so much of this work relies on
accurate measurements of the CS, we have had to be very careful in gauging the accuracy of the

CS obrtained from fitting a spectrum to any specific model.
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Figure 5 Transmission Mdssbauer spectrum of Fe,Ni,, illustrating the line depth asymmetry

due to correlations between hyperfine parameters (in this case it is mainly due to a &-z
correlation).
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Figure 6 Transmission Mdssbauer spectrum of Fe,Ni,; showing signs of 8-z correlations (left)
and the extracted and strongly skew HFD (right).
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23  Experimental Mdssbauer Setup
23.1 Physical Layout and Electronics for Data Acquisition

Most Fe Méssbauer spectroscopy measurements were performed in transmission
geometry with 40 to 50 mCi ¥Co source in a Rh matrix. A diagram of the complete
experimental setup for RT measurements is shown in fig. 7. The source-to-sample and sample-to-
detector distances are chosen to virtually eliminate geometrical effects such as cosine-smearing,
by taking into account the source size (~30 mm® active area), the absorber area (maximum of 1.27
cm’) and the detector window (-7 cm?). The source velocity, driven in constant acceleration
mode followed a triangular waveform which was calibrated using the spectrum of 95% *'Fe
enriched a-Fe taken in the same conditions. All CSs and ISs reported in this chapter are thus
relative to the CS of a-Fe at RT. A calibration spectrum was taken before and after each
spectrum, or series of spectra when the same absorber was used and only the temperature was
varied.

Fig. 7 distinguishes the three parts of the setup: the instruments, the electronics and the
computer hook-up for data acquisition and analysis. The instruments include the transducer (T)
which drives the source () in its oscillatory motion, according to a waveform provided by the
transducer driving unit (TDU). For radiation safety reasons, the source is encased in a lead box,
to which is affixed the absorber (A). In the RT setup, the TDU frequency is approximately 2 Hz,
which leads to a source displacement of +0.8 mm (assuming a velocity range of +8 mm/s). The
absorber, which is contained in a cylindrical holder that fits into a pre-aligned socket, is placed at
least 10 cm from the source to avoid cosine smearing and other similar geometrical artifacts (see
Appendix C for a description of the artefacts). The radiation which is transmitted through the
absorber is detected by a sealed 1 atm Kr(2% CO,) gas filled proportional counter (PC). The
high-voltage bias (-1700 V) necessary to detect the y-rays is supplied to the PC, through the pre-
amplifier (pA), by an external high voltage power supply (HV). The charge sensitive pA, which
is powered by a 12V supply from the spectroscopy amplifier (SA), accumulates the charge
produced by the detection of a y-ray, converts it to a voltage pulse, amplifies it (~ x 10) and relays
it to the SA. The SA further amplifies (~ x500) and shapes the pulse before feeding it to the single
channel analyser (SCA). The SCA is setup to output a fast TTL pulse only when it receives the
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pulse corresponding to a y-ray with an energy of 14.4 keV. By this filtering, we eliminate all
other detected radiation which cannot be resonantly absorbed and which would simply
contribute to the background and hence reduce the signal-to-noise ratio of the Mdssbauer
spectrum. The settings of the SCA window are determined by performing a puise height
analysis (PHA) of the SA output on a computer. Because the amplified pulse voltage is
proportional to the energy of the detected y-ray, the PHA system allows us to view the energy
spectrum of the detected radiation and set the SCA window to discriminate the 14.4 keV
radiation. The other undesired radiation detected by the proportional counter include the 6.4
keV conversion X-rays (Fe K,) from the source and inelastically scattered radiation from the 122
and 136.5 keV transitions. The acquisition of the M&ssbauer spectrum is performed using a
multichannel scaler (MCS) in a computer. The MCS channels, which accumulate a count for
each TTL pulse from the SCA, are synchronized with the source drive by a signal from the
TDU, such that the channels correspond to time and thus source velocity. All the electronics are
high-quality research grade devices and their settings and cables are optimized to reduce the
electrical noise in the system and produce the best possible Mdssbauer spectrum. Spectral
calibration, folding and analysis is performed using the Recoil software we have developed in
house and which is available commercially [http://www.physics.uottawa.ca/ ~recoil/).

In addition to the standard setup shown in fig. 7, we have the possibility to put the
sample in an oven in order to acquire M&ssbauer spectra from RT to ~900 K, or in a liquid N,
cryostat to perform measurements from ~80 K to RT. In both cases, the sample, in the oven or
the cryostat, is directly inserted between the source and detector which remain at RT. A third
possibility is to use a completely different setup for cryogenic measurements down to 4.2 K. We
now give a detailed description of the oven and cryostats, in addition to the calibration and

technical characteristics of the oven.
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Figure 7 Diagram of the experimental setup for Méssbauer spectroscopy. Solid lines represent a signal, dashed lines represent an applied voltage
and the arrows indicate where the signal is sent (or where the voltage is applicd)
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2.3.2  Oven for Mdssbauer Spectroscopy
2.3.2.1 Design and Construction

In order to perform Méssbauer measurements at temperatures up to ~900 K, it was
necessary to construct an oven suitable for such measurements. As shown in fig. 8, the oven
consists of a ceramic core in which the sample is inserted and which is enclosed in a vacuum-tight
water cooled stainless steel cylindrical shell with y-ray transparent Be windows. This shell is
clamped onto a solid base which contains the connections for the thermocouples and the heating
elements.

The core is made of Macor® machinable glass ceramic (code 9658) manufactured by
Corning Glass Works (rated for continuous operating temperature up to 1270 K) and is wound
with 25 gauge (0.020" diameter) Nichrome (80 % Ni, 20 % Cr) heating wire. The heating wire is
wound twice in opposite directions in order to cancel the magnetic field caused by the large
current in the wire. The sample, which is seated into a ring-shaped insert, is positioned in the
middle of the oven where the temperature is expected to be uniform. To minimize thermal
gradients, pure Al radiation shields are used on either side of the sample insert. To approximately
determine the temperature of the sample, two K-type thermocouples (Chromel-Alumel in a 304
stainless steel sheath, rated for temperatures between 4 K and 1150 K) are inserted in fine holes
drilled directly into the core, with the tip located close to the sample. A further calibration of the
temperature using measurements of a material with a known thermal behaviour is required to get
an accurate temperature and a measurement of thermal gradients. As the thermocouple hole and
the Be windows are simply glued in place, the external case must be water cooled to avoid a

deterioration of the vacuum-tight seals.
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Figure 8 Schematic view of the oven used for Mossbauer spectroscopy.



30

Chapter 2. Experimental Methods: Mdssbauer Spectroscopy

<« Vibration reduction system >

Flexible bowel tube Solid anchor Rubber tubing \\.\)

pump assembly

piffusionpomy g | U e e

Sl

Figure 9 Schematic view of the vacuum system and its vibration reduction components

s

T SR




Chapter 2. Experimental Methods: Massbauer Spectroscopy 31

2.3.2.2 Temperature Control

One thermocouple and the heating wires are connected to a temperature controller
(Eurotherm 840P) and thyristor (Eurotherm 425A) which produces the heating current. This
pair of instruments can generate and maintain a sample temperature which is stable to within 1 K
over the entire measurement time (usually 1 day). The second thermocouple is connected to a
secondary temperature controller which cuts the power to the main temperature controller in
case of failure of the primary thermocouple. Though the thyristor is rated to output up to 15 A,
its maximum current was set to -2 A, which yielded a maximum oven temperature of ~900 K
and prevented the Nichrome heating wires to melt when instantaneously subjected to the
maximum load. Because the melting point of the Al radiation shields is 933 K, this was chosen to
be a suitable maximum operating temperature. All other materials used in the construction of
the oven are rated for temperatures up to at least 1150 K. This simple oven design, however, is

not convenient for work at higher temperatures.
2.3.2.3 Vacuum System

In order to avoid oxidation of the sample and to reduce thermal conductivity with the
external case, the oven was operated at a pressure of less than 10° mbar, by using a diffusion
pump. Since line broadening in Méssbauer measurements is extremely sensitive to vibrations, we
have performed many tests to determine the best pumping mechanism. The turbo molecular
pump was found to produce high-frequency vibrations which we could not attenuate to
reasonable limits. We thus chose an oil diffusion pump coupled to a primary roughing pump. As
shown in fig. 9, this assembly was connected to a large boweled tube to remove high and
medium frequency vibrations. The next section was clamped to a heavy anchor to remove low
and medium frequency vibrations. A rubber tubing was finally used to connect to the oven inlet.
A section with a Piranni and a high-vacuum gauge could be inserted next to the oven to
determine the pressure in the oven. Under these conditions, it was determined that the
broadening caused by mechanical vibrations would be within the usual experimental uncertainty
of a linewidth (less than 5% of the intrinsic linewidth of the source).
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Table 2 Calibration of the sample temperature based on the thermocouple readings

71 17 40 23 0002 0.969

100 101 93 105 97 -0.050 0.955
200 206 202 204 203 -0.125 0.928
300 313 312 306 308 -0.201 0.895
400 422 423 414 417 -0.279 0.848
500 526 523 519 520 -0.350 0.785
550 578 569 571 571 -0.382 0.741

17 18 20 17 19 0.000 0.973

2.3.2.4 Testing and Temperature Calibration

In order to calibrate the sample temperature relative to the thermocouple temperature,
we performed a test run using a 20 um natural a-Fe foil. The thermal behaviour of a-Fe
hyperfine parameters is well-known and documented. We have used the CS and normalized
Zeeman splitting (2/z,) data reported by Kobeissi [Kobeissi81] and shown in fig. 10 to compare
the thermocouple reading to a calibrated temperature. The calibrated temperature we used was
the average of the calibrated temperatures based on the CS and 2/z;, weighted by their relative

precisions.

cal _
T = weTeg + wy, Tz/a,' (25)

with w . = 6, (CS)/ (07 (CS) +07 (/%)) and w o 0 (2/ %)/ 07 (CS) +67 (/%)) and
0-(CS) and 0,(z/,) are the relative uncertainties on the temperatures calculated from CS and
2/z,. For temperatures above RT, the main temperature dependence of the CS is from the SOD

and it is approximately linear, such that

-1
0 (CS) = o (36%5] = 0./7107. (26)

In the case of z/z,, the temperature dependence is non-linear but we can simply calculate

0.(z/%,) for any temperature, using

%] - 27)

“r%) - o*""‘[ aT

Because o, and o, are essentially equal to 0.005 mm/s and 0.005 respectively, we can calculate
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the weights for T, and T 7% and thus calculate T*. Table 2 gives the values of the
thermocouple readings (7, and 7)), the measured CS and 2/z,, the calculated temperatures T,

and T, and the calibrated temperature 7.

As one can see, the calibrated temperature is systematically between 7T, and 7, Based on
these results, we have calculated the following calibration equation for the sample temperature T
(in °C), given T, (in "C)
T = T, + 10(tanh(0.009 (T,-320)] + 1), (28)
and we have established that a conservative estimate of the uncertainty is ~ + 10°C at the highest

attainable temperature (the uncertainty increases with temperature). This uncertainty comes

CS (mm/s)

Figure 10 a-Fe M&ssbauer data [Kobeissi81] used for the calibration of the oven temperature. (l)
relative Zeeman splitting (relative to value at T = 0 K) and (®) centre shift (relative to value at
RT). The lines represent the calibration curves obtained from the data points, in the range of
interest.
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entirely from the calibration, as the thermocouple temperatures are reliable and repeatable to less
than 1°C. By analysing the widths of the peaks as a function of temperature, we have determined
that the total temperature gradient on the sample varies approximately linearly with
temperature, going from 0°C at RT to <10°C at 550°C. This is also probably an overestimation
since the sample is merallic and has very good thermal conductivity. The estimated gradient also
justifies that the uncertainty on the temperature should be ~10°C, though this might be a slight
underestimate for the highest temperatures reached (typically 600°C). Whenever the IS is
calculated by correcting the CS for the SOD, an uncertainty of 5°C in the temperature results in
an uncertainty of 0.0035 mm/s in the IS, which is close to the experimental uncertainty on the

CS obtained by fitting the spectrum.
2.3.3 Cryogenic Setups for Méssbauer Spectroscopy

Two different cryostats were used for low temperature MS measurements. The simplest
is a cold-finger liquid N, cryostat which enables us to make measurements at 82 K. In this setup,
the cold sample, which is in the cryostat, is inserted between the source and detector which are
kept at RT. The sample is cooled by contact using a cold-finger which is also in contact with the
liquid N, chamber.

The other cryostat is made for measurements down to liquid He temperature (LHeT =
4.2 K) and is an exchange gas chamber type cryostat. In this case, a completely different setup
than previously described is used. The source and sample are both refrigerated inside the
cryostat. The transducer, located on top of the cryostat drives the source in a vertical motion and
the detector is placed below the cryostat, as illustrated in fig. 11. The sample, sandwiched by heat
shields, is fixed to a brass block which houses two diodes (used to measure the temperature) and
is laced with heating wire. In this configuration, the sample’s temperature can be maintained
anywhere between RT and LHeT. The source’s temperature, while it is expected to be similar to
the measured sample temperature, is not directly measured and hence not known. It is only
known precisely at 4.2 K and 77 K where the entire system is in equilibrium at the boiling
temperatures of the liquid coolants. Because of the unknown source temperature, it is not
possible to relate the CSs measured at different temperatures as the source’s temperature is

changing. Because the source temperature changes (and is unknown) the SOD contribution to
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the source energy is unknown. As the source energy is changing, the measured CSs of the sample

at different temperatures cannot be compared or used to get an IS.

&— Transducer

He exchange
gas chamber

Liguid He
chamber

Liguid N,
chamber

Source and
sample holder

Figure 11 Schematic representation of the cryostat for variable temperature measurements from
42K toRT.
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3.1 Overview of Meteorites
3.1.1 Introduction

Meteorites are extraterrestrial objects that, after having travelled and cooled down in
space for millions of years or more, have fallen onto Earth. Technically speaking, the meteorite
is the object recovered on Earth. The original or parent object is named an asteroid as long as it
travels in space but becomes a meteor when it darts through the Earth’s atmosphere in a fiery
blaze. Asteroids come in all sizes, from several kilometres in diameter which could wreak havoc
if they collided with Earth (e.g. K/T mass extinction [Melosh97]) to very fine particles, space
dust, which deposit themselves uneventfully on Earth.

Because of the extreme heat generated upon their entry in the Earth’s atmosphere, not all
asteroids result in appreciably sized meteorites. The larger ones typically break up into smaller
pieces which can be scattered over great distances before they reach the ground. The much
smaller ones, because of their very large surface to volume ratio dissipate the heat very quickly
and as such are practically unaffected by their entry in the atmosphere, except for slowing down
considerably. Finally, medium-sized asteroids heat up, causing them to have an outer-shell which
is changed compared to the original asteroid, but the bulk of it is left in pristine condition until it
actually hits the ground. Even after impact, most of the meteorites show little signs of their
spectacular fall to Earth and are found in the same condition as the asteroid was. Once on Earth,
the meteorites will start to be weathered, that is they will show signs of oxidation and other

reactions to the Earth’s atmosphere.

36
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3.1.2  Origin and Classification of Meteorites

Most asteroids come from larger parent bodies that were either destroyed and scattered
into pieces by the collision with another large body, or simply had their surface chipped away by
a smaller collision. The second option is how, for instance, we can recover on Earth meteoritic
material which comes from the planet Mars or from our Moon. The typical geological evolution
of a small planetoid results in a structure similar to that of the Earth. A core, constituted
primarily of Fe is surrounded by an outer layer of rocky minerals such as silicates. When such a
planetoid is destroyed and scattered into asteroids, one usually obtains three types of asteroids
which we recover as meteorites. Iron meteorites, which come directly from the core of the
planetoid, are primarily a pure metal meteorite containing predominantly Fe and Ni. They
represent ~6 % of all meteorites found on Earth. Stony meteorites (~93 %) are rocky and contain
many of the minerals found in the Earth’s crust, as well as some inclusions of metals particles
(Fe-Ni). Stony meteorites are also sub-categorized as chondrites and achondrites depending on
whether or not they contain chondrules, millimetre-sized spheres of rocks formed during intense
heat. These meteorites come from the rocky crust of the parent body or from simple accretion of
space dust. A third, mixed category, called stony-iron (~1 %) meteorites comes from the region
between the core and the crust where separation of the iron and the rocky material is
incomplete.

Iron meteorites are made up of Fe-Ni alloys and contain from 5 to 60 at. % Ni (though
such high concentrations of Ni are extremely rare) and trace amounts of Co, P, S, C. As the core
of the parent body, they are isolated by the crust and thus cool very slowly, at rates between 5
and 500 K per million years [Goldstein90]. The vast majority of iron meteorites were single
crystal FCC (y) Fe-Ni at high temperature. As the parent body cools below 750 *C, the BCC ()
phase nucleates and a Widmanstatten pattern starts developing [Goldstein90]. As cooling
continues, the Ni-poor BCC phase grows at the expense of the FCC phase in which the Ni
accumulates until the temperature becomes so low that diffusion is effectively stopped. In
meteoritic materials, the mineral name for BCC Fe-Ni is kamacite and that for FCC Fe-Ni is
taenite. In some unusual cases, there is no Widmanstatten pattern, but a very small-scale
microstructure of various phases which cannot be resolved by optical microscopy. Such

meteorites are called ataxites because they have no visible microstructure.
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3.1.3 Fe-Ni Phases in Meteorites
3.1.3.1 Kamacite and Taenite

When the Fe is found in its metallic form, it is nearly always alloyed with Ni. In any
type of meteorite the Fe-Ni alloy can be found in the form of various phases. Kamacite is the
chemically disordered BCC Fe-Ni alloy which can contain up to 6 or 7 at. % Ni. When found as
a chemically disordered FCC phase, Fe-Ni is called taenite. The composition of taenite is found
to range from ~30 at. % Ni to 60 at. % Ni. The synthetic counterpart (disordered FCC Fe-Ni)

can be produced with concentrations up to 100 % Ni.
3.1.3.2 Tetrataenite

Tetrataenite was discovered in synthetic samples under special growth conditions
(irradiation, in a high magnetic field, of disordered Fe,,Ni,, by electrons or neutrons)
[Paulevé62a, 62b, Grosé4, 68, 70, Laugier65] but later found to occur naturally in meteorites
with the use of “Fe Mdssbauer spectroscopy [Petersen?7, Albertsen78a, 78b, 80, 81, Danon78,
79a, 79b, 80b, Clarke80]. It is a chemically ordered alloy with an FeNi stoichiometry in which
the Fe and Ni occur as layers in the (001) direction (fig. 36, chapter 5) which, being magnetic at
RT, results in a quadrupole shift € of ~0.2 mm/s [Albertsen80]. Because the chemical ordering
temperature of tetrataenite is ~320 "C [Paulevé62b], it only starts ordering when the diffusion of
Ni is already quite low, so very long cooling times, as found in meteorites, are required.
Tetrataenite is typically found in meteorites in a two-phase structure called a cloudy zone which
is made up of small islands of tetrataenite within a matrix of Ni-poor taenite [Goldstein80,
Albertsen78, 80b, 83, Danon83, Larsen84, Christiansen84). Observations in meteorites indicate
that tetrataenite can occur within a composition range of 46 to 52 at. % Ni [Albertsen83] and has
lattice parameters 4 = 3.5761 + 0.0005 A and ¢ = 3.5890 + 0.0005 A, resulting in a slight
tetragonal distortion (¢/2 = 1.0036 + 0.0002) [Albertsen80, Albertsen8t].
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3.2 The Santa Catharina Meteorite: Epitaxially Stabilized Tetrataenite and Antitaenite
3.2.1 Introduction

The Santa Catharina meteorite, which originates from the island of Santa Catharina in
Brazil and is classified as an anomalous ataxite, is composed primarily of Fe and Ni and hasa
bulk composition very close to the bulk composition of synthetic Invar alloys, 65 at. % Fe. Most
known samples have been severely weathered, resulting in controversies regarding the original
microstructure of the meteorite. The sample we have obtained from our collaborator Dr. Rosa
Scorzelli of the Centro Brasileiro de Pesquisas Fisicas (Rio de Janeiro, Brazil) is from the
collection of the Musée d’Histoire Naturelle (Paris, France). Unlike other samples of the
meteorite, this one is in pristine condition which enabled us to perform detailed measurement to
elucidate its microstructure and characterize the phases present.

Much work has already been done on the Santa Catharina meteorite and it is known to
be composed of a cloudy zone (CZ) where there is tetrataenite and disordered taenite [Danon78,
79a, 79b, 80a, Schroscher80, Jago82, Scorzelli82, 90, Goldstein90, 98, Miller89]. The
microstructure of the CZ in the meteorite had not yet been clearly seen. In order to better
characterize this meteorite, we have established a collaboration with Dr. Joseph Goldstein at the
University of Massachusetts to do some high resolution scanning electron microscopy (HRSEM)
and electron probe microanalysis (EPMA). In our own lab, we have performed transmission
CEMS, MS at temperatures between 4.2 K and RT and XRD characterization. As we will show
in this chapter, these analyses have revealed some very important insights on the properties of
the Ni-rich phase which have important implications regarding the understanding of all FCC Fe-
Ni alloys [Rancourt99].

3.2.2 Sample Preparation

The original sample we received from Dr. Scorzelli was shaped like a parallelepiped, with
dimensions of 3 mm x 4 mm x 10 mm. In order to make an absorber for transmission MS
experiments, four slices of ~100-120 pm x 3 mm x 4 mm were cut using a low-speed precision

saw equipped with a thin diamond coated blade. The saw dust was also recovered for analysis.
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The slices were arranged to form a rectangular absorber which was used to a take preliminary
spectrum. To obtain an absorber with a more optimal thickness for low-temperature
measurements, the slices were then sanded to a thickness of 52 + 5 pm using 400 grit SiC powder
and 600 grit alumina powder. Most Méssbauer measurements were performed on an absorber
made with these ~50 pm slices.

After preliminary work on an SEM done with Dr. Shehata at CANMET, we found that
the grounded surfaces of the slices were completely covered with embedded SiC and alumina
crystallites, so the true thickness of the meteoritic material was close but less than 50 um. Before
pursuing more detailed microscopy studies, the samples were sanded again on 1200 grit paper and
then etched using a mild solution of 5% hydrochloric acid (HCI) and 5% sulfuric acid (H,SO,) in
water. This solution removed the SiC and alumina layer and exposed fresh meteoritic material
free of defects induced by the mechanical stress of the polishing. We confirmed that the surface
was representative of the bulk by performing CEMS measurements (see fig. 14). These slices were
then used for more studies at CANMET and were then sent to Dr. Goldstein for HRSEM and

EPMA measurements.
3.2.3  Characterization Using MS and Electron Microscopy Methods
3.2.3.1 Méossbauer Spectroscopy
3.23.1.1 Interpretation of the M&ssbauer Spectrum

Fig. 12 shows the M&ssbauer spectrum of the thick slice of the meteorite, untreated after
they were cut. One can clearly distinguish three phases. Of the two magnetic phases, tetrataenite
is most noticeable by its sharp lines and significant quadrupole shift, both indicative of the
chemical order. The second magnetic phase corresponds to ordinary taenite which is chemically
disordered, has broad lines and a mean quadrupole shift of zero. Finally, the dominant singlet,
indicative of a paramagnetic phase is also attributed to antitaenite [Rancourt95b]. This name is
used to distinguish it from ordinary taenite, as it has significantly different properties. Based on
this spectrum, the meteorite appears to be free of oxides (in a measurable amount), even though

the original sample had some apparent magnetite on the surface.
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We have also recovered the powder which resulted from the sawing process (“saw-dust”)
and its spectrum is shown in fig. 13. The meteoritic phases have obviously been significantly
transformed, and based on the large hyperfine field of the dominant sextet (z = 2.22 mm/s), it
appears to be a BCC phase. As we shall see later, based on the known compositions of the
phases, it is expected that the antitaenite would transform to the BCC phase when it is not
epitaxially stabilized in an FCC structure by the tetrataenite. As had been found by Danon ez al.,
the meteorite microstructure is extremely sensitive to mechanical stress [Danon79]. Since the
chemical ordering temperature of tetrataenite is only ~320 "C, the microstructure is also
destroyed by heating the sample at, for example 800 'C for 24 h. [Danon80].

Because these samples are all considered thick in the M&ssbauer sense, it is not possible to
determine phase fractions without performing thickness corrections. To determine the
composition of each phase, it is also necessary to know the bulk composition of the meteorite,
obtained using EPMA. The following paragraphs detail some analyses that were conducted by

electron microscopy methods.
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Figure 12 Absorption Méssbauer spectrum of the thick (100 um) slices of the Santa Catharina
meteorite. Three separate phases are noticeable: tetrataenite which is magnetic and characterized

by a substantial asymmetry, ordinary taenite which is also magnetic and has broad lines and
antitaenite which is seen as a paramagnetic singlet.
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Figure 13 M&ssbauer spectrum of the powder produced during the cutting of the SC meteorite
slices. The sextet has parameters consistent with a BCC Fe-Ni alloy, indicating that most of the

microstructure has been destroyed. The small paramagnetic peak is probably due to residual
antitaenite which has not been transformed.
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Figure 14 CEMS spectrum of a slice of the SC meteorite after etching with an acid solution (5 %
vol. HCl, 5 % vol. H,SO, in water). The asymmetry of the lines of tetrataenite and the
paramagnetic line of antitaenite show that this surface is similar to the bulk. Cosine smearing due
to the closeness of the source and the sample and the low signal-to-noise ratio preclude us from
getting much more information from this spectrum.
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Table 3 Parameters of the xVBF fit of the RT spectrum of the SC meteorite (fig. 12). Antitaenite

is analysed as having a broad tail in its HFD.
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3.23.1.2 Extracting the Debye Temperatures of the Phases

Knowing the Debye temperatures of each of the phases of the meteorite is important for
several reasons. First, the spectral area of the phases is related to the recoilless fraction of the
phase, which can be calculated from the Debye temperature. Next, the thermal evolution of the
CS is due solely to the SOD, as long as the IS is temperature independent. The SOD can also be
calculated from the Debye temperature. It is possible to use either of these measurements
(spectral areas or CS) to determine the Debye temperature by taking measurements at various
temperatures. We have decided to use the CS since thickness corrections are needed to get
spectral areas which are proportional to the recoilless fractions.

We have thus taken several measurements at RT and 80 K (fig. 15) of an absorber placed
in a cold-finger liquid nitrogen cryostat (see chapter 2 for details). With this cryostat, the source
is kept at RT, so the CSs can be compared directly. The measurements were taken in the exact
same geometry to avoid geometrical artifacts. For measurements at 80 K, the sample was
subjected to external vibrations due to the roughing pump (in one case) and due to the boiling of
the liquid nitrogen in the cryostat. This causes broadening of the Méssbauer signal which
inhibits detailed analysis of the peak widths and (possibly) areas. The spectra are shown in fig. 15
and the resulting parameters are given in table 4. Assuming that the /S does not change between
these two measurements, we can caiculate the Debye temperatures of each phase. These are listed
in table 5. The value of 388 + 12 K for tetrataenite is consistent with the known values of
chemically disordered FCC Fe-Ni alloys (see chapter 4, fig. 35), while the value for antitaenite is
somewhat larger than expected. The uncertainty on the Debye temperature of the ordinary
taenite phase is much too large for it to be really meaningful, even though it close to the range of
expected values [chapter 4]. Once the Debye temperature is known, we can also extract the IS
from the CS. Again, the values for tetrataenite and taenite are consistent with the measured /Ss in
synthetic FCC Fe-Ni alloys [chapter 4]. The value for antitaenite is, however, very different and
can only be explained by antitaenite having a different electronic structure than ordinary taenites
[Rancourt99]. This will be discussed later as a proof that antitaenite is a new meteoritic mineral

that is different from taenite at the electronic structure level.
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Figure 15 Méssbauer spectra of the SC meteorite at 80 K and 295 K. The top two spectra are
taken with the roughing pump turned off, while the bottom two have the pump activated which
results in noticeable broadening. Notice also the broadening of the antitaenite’s signal at 80 K.
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Table 4 Parameters of the xVBF fits to the spectra of the SC meteorite shown in fig. 4. 2-0 (95 %)
fitting uncertainties are given in the second column of each parameter. Unless specified, the
correlations parameters were 0.
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Table 5 Extracted Debye temperature and isomer shift for the various phases of the SC
meteorite, based on the analyses in table 4. 2-0 (95 %) uncertainties are given in the second
column of the parameters.

388 24 02706 00034

taertte 340 94 02753 0.0133
antitaorte 435 14 0.1472 0.0020

In order to better understand the differences between the Debye temperatures of
tetrataenite and antitaenite, we have reanalysed the CS data published by De Grave et al.
[DeGrave92] which is reproduced in fig. 16. If the CS data is fit assuming the IS is temperature
independent,

CS(T) = IS + SOD@®,,T) (29)
with /S and @, as the only adjustable parameters, we get the results shown in table 6. The value
for tetrataenite is quite high, but the uncertainty in this calculation is most likely larger than
what is obtained from the fit. We will thus use the value of 8, = 388 + 12K (1-0) for
tetrataenite, as found by our own measurement and as is consistent with the Debye temperatures
of synthetic FCC Fe-Ni alloys [chapter 4]. On the other hand, the extracted @, for antitaenite is
again unrealistically high considering it is an FCC Fe-Ni alloy and so it cannot be much different
from other alloys. When investigating the residuals of the fit (fig. 17), we see systematic
deviations, which indicate that the fitting model (constant IS) is incorrect. We can also see in fig.
18 that the difference between the CS of tetrataenite, which does behave as expected, and the C§
of antitaenite is unusual and cannot be explained, even by a very large difference in Debye
temperatures of the two phases. In fact, as shown in fig, 18, a difference in Debye temperature
would be mostly noticeable at low temperature (below 200 K), whereas the difference between
the two CSs is practically constant up to 300 K. Based on this analysis, we thus estimate that the
Debye temperature of antitaenite is the same (or similar) as the Debye temperature of tetrataenite
and that the thermal evolution of the difference between the measured CSs of tetrataenite and
antitaenite (fig. 18) is actually due to a change in the /S of antitaenite with temperature. This
hypothesis is corroborated by measurements of the S at high temperature in synthetic Fe-rich

FCC Fe-Ni alloys, as presented in chapter 6. We shall thus also use a value of 8, = 388 K for
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CS (mm/s)

Temperature (K)

Figure 16 Temperature dependence of the centre shifts of the tetrataenite (®) and antitaenite (l)
phases of the Santa Catharina meteorite, as measured by De Grave et al. [DeGrave92]. The solid
lines represent the best fit to a model where the IS does not change with temperature.

antitaenite.

Table 6 Extracted Debye temperature and isomer shift for tetrataenite and antitaenite based on
the data from De Grave [DeGrave92] shown in fig. 16. 2-0 (95 %) uncertainties are given in the
second column of the parameters.

tarataonte 465 10 0282 0005
antitaente 595 10 0.186 0.005
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Figure 17 Residuals of the fit of the CS of antitaenite assuming a constant /S. In addition to
yielding an unrealistic value of @, = 595 K, the regularity of the deviations indicates the fitting
model is incorrect. [data from DeGrave92]
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Figure 18 Difference between the measured CS of tetrataenite (tt) and antitaenite (nt). The solid
line represents what the difference would be, assuming there ISs are independent of temperature
and there is a difference of 130 K in their Debye temperatures (8, , = 380Kand 8,,, =510K
chosen such that the highest and lowest temperature data match). [data from DeGrave92]
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Figute 19 SEM sccondary clectron image of the SC meteorite, showing the dominant CZ as well as some iron phosphide and oxide. Based on

other images, the presence of phosphides is not characteristic of th
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¢ sample, but is showed here as an illustration of the technique.
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Figure 20 HRSEM secondary electron image of the CZ microstructure which shows the tetrataenite islands (light) in an antitacnite honeycomb
matrix (dark).
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Figure 21 HRSEM sccondary electron imaging of the CZ microstructure. In this image, it is clear that the etching has preferentially removed the
antitaenite phase, as tetratacnite globules can be seen extruding from the surface.
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3.2.3.2 Imaging of the Tetrataenite/ Antitaenite Intergrowth

Figures 19, 20 and 21 show three images at different magnifications which were taken by
Rob J. Reisner (under the direction of Dr. J. I. Goldstein) using secondary electron imaging in an
HRSEM with a field emission electron gun. In Fig. 19, which is taken near the side of one of the
slices, one can see that the meteorite is entirely composed of a cloudy zone (CZ) microstructure
but also indicates the presence of iron phosphides and iron (with Ni substitution) oxides. As
stated earlier, the oxides are not clearly noticeable in the M&ssbauer spectrum, indicating that
they are not as abundant as it may seem based on this image. The second image (fig. 20) is a high
magnification image of the CZ. In this image one can clearly see two distinct phases: tetrataenite
appears as islands of 30-50 nm in diameters and antitaenite serves as a honeycomb matrix in
which the tetrataenite has grown. The typical thickness of this matrix is ~10 nm between the
tetrataenite grains. It is possible to identify the tetrataenite and the antitaenite based on their
compositions. Tetrataenite is roughly 50 at. % Ni, whereas the composition of antitaenite is
known to be at least more than 71 at. % Fe (otherwise it would be magnetic at RT, see chapters 4
and 6). Because of the greater average Z value (number of electrons per atom, Z, = 26 and Z; =
28) in tetrataenite, it appears slightly lighter in a secondary electron image. Fig. 21, taken with
the sample surface off-perpendicular also shows a similar magnification image of the CZ. When
comparing figs. 20 and 21, it is possible to see from fig. 21 that the acid etching used to prepare
the sample preferentially etched away the antitaenite, leaving mounds of tetrataenite protruding
from the surface. These images provide clear observation of the microstructure of the CZ in the
Santa Catharina meteorite [Rancourt99] and show how intricately linked the two phases are. As
will be explained later, the ordinary taenite phase is associated with chemically disordered
Fe,Ni,, which most likely is found within the tetrataenite islands (which would thus be
constituted of partially ordered tetrataenite) or on the edges of the tetrataenite islands as slow

diffusion prevented sufficient chemical ordering to occur.
3.2.3.3 Electron Probe Micro-Analysis

The bulk composition of the non-oxidized CZ in the SC meteorite was determined by
electron probe microanalysis (EPMA). The average of ten spot measurements yields a
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composition of 33.0 ¢ 0.3 wt. % Ni, 66.2 + 0.5 wt. % Fe, 0.54 £ 0.03 wt. % Co and 0.01 t0 0.43
wt. % P [Goldstein98, Rancourt99], which converts to 31.9 + 0.3 at. % Ni, 67.2 + 0.5 at. % Fe,
0.52 + 0.03 at. % Co and 0.48 + 0.5 at. % P. Because of the small scale of the microstructure, it is
not possible to obtain EPMA measurements of the individual tetrataenite or antitaenite phases.
With a thick slice such as the ones used here, the interaction volume in which x-rays are
produced is much larger than the size of each phase (and indeed much larger than the spot size of
the electron beam). Such a measurement would be possible with a sample prepared for TEM use,
as it would have a very fine thickness and the EPMA spatial resolution would be the same as the
electron beam size. Unfortunately, the sample preparation for such a measurement is difficult

and we could not arrange for these measurements to be performed.
3.2.4 Composition of Antitaenite

One of the strengths of Mdssbauer spectroscopy is that the spectral areas can directly be
related to the proportions of the phases in a sample. Knowing the bulk composition of the
meteorite and the composition of tetrataenite, it is thus possible to determine the composition of
the antitaenite phase.
In the case of a thin absorber (in the M&ssbauer sense), the spectral area A, of a phase is
directly proportional to the product of the recoilless fraction/, , and the number of *Fe atoms
n, ; present in the phase:
A< S (30)
If two phases i and j have the same recoilless fractions, then
AlA =n,In,, , (31)
and it is sufficient to know their relative spectral areas to compare the amount of Fe in each of
them. In order to determine the composition of antitaenite, it is thus necessary to determine the
recoilless fractions (which can be calculated based on the Debye model) and the spectral areas of
each phase present in the spectrum, in the thin absorber limit. Because the 50 um slices are thick
(¢, = 11), it is necessary to perform thickness corrections on the spectrum, before determining
relative spectral areas. In particular, because the antitaenite phase is a sharp singlet, its area is
underestimated (because it saturates more than the other phases) in the measured spectrum. Since

we already determined that all phases have essentially the same Debye temperature (8, = 380
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Table 7 Fitted phase fractions (Fe content) of the various phases of the SC meteorite based on
¥Fe MS. The spectra were corrected for thickness effects using the method of Rancourt
[Rancourt89].

Sckid16* 295 250 157 594

Sckio10 * 7 279 170 55.0
Sckio17 * 42 304 175 5222
mevage 27.8 16.7 55.5

K), their relative spectral areas will be directly proportional to their relative Fe contents.

To perform thickness corrections, it is necessary to know the number of “Fe atoms per
area in the absorber. Based on XRD measurements, the atomic volume of the tetrataenite and
antitaenite phases is the same, V' = 11.475 A*/atom. The measured average thickness of the slices
is 52 + 5 pym. Knowing that the atomic fraction of Fe is 67.2 % and the natural isotopic fraction
of “Fe is 2.1 % [M&ssbauer Effect Data Center89], this leads to #, = 6.5 x 10" “Fe atoms/cm’.
Because these slices were found to be embedded with SiC and alumina particles, it is fair to
estimate the true number to be between 5.5 and 6.0 x 10" “Fe atoms/cm’. Table 7 shows the
results of the analyses of three thickness corrected spectra, taken at RT (295 K), LN, T (77 K) and
LHeT (4.2 K) but in otherwise identical conditions in an exchange-gas type cryostat [chapter 2).
Thickness corrections were performed using 7, = 5.5 x 10" “Fe atoms/cm’. Using »_ = 6.0 x
10" ¥Fe atoms/cm’ results in the antitaenite phase proportion to be at most 1% larger. Complete
details regarding these spectra will be given in section 3.2.6 which deals specifically with low-
temperature measurements.

Based on these results, we attribute the phase fraction (of Fe content) of antitaenite to be
55.5 + 2 %. The Zeeman splitting (z = 2.12 mm/s at RT) and extrapolated T (data from
[DeGrave92)) of the ordinary taenite phase indicate that it has a Fe content of approximately 55
at. %. Since we know the total Fe content of the meteorite, we can determine the Fe content of
antitaenite, the only phase with an unknown composition. Let N, be the total number of Fe
atoms in the meteorite sample and ¢, be the bulk atomic fraction of Fe. Let ¢, ¢, and ¢, be the
Fe content of antitaenite, tetrataenite and the ordinary taenite phases, respectively. Let N, N,
and N, be the numbers of atoms in the three phases. Then the measured thin limit relative “Fe

Ma&ssbauer phase fractions are:
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Using ¢, = 67.2%, ¢,, = 50%, ¢, = 55 %, p,, = 55.5%, p, = 27.8% and p, = 16.7 %, we find
that the atomic fraction of Fe in antitaenite is 88 %. Without more knowledge, we must assume
that the balance is Ni, Co and P in the same relative amounts as in the bulk. The phosphorus
likely only occurs as phosphides, so the metal fraction would only contain Fe and Ni with trace
amounts of Co. The uncertainty on this calculation is ~5 % and is primarily due to the
uncertainty on the compositions of tetrataenite, which can occur with concentrations between
48 and 54 at. % Fe [Albertsen83), and of the ordinary taenite (the uncertainty on ¢, is most likely
3 %), as well as the uncertainty in the Fe phase fractions based on the three spectra which were
analysed. The variability between the various measurements of the Fe phase fractions shown in
table 7 is most likely due to inaccurate thickness correction because of various artifacts such as
inhomogeneous thickness and crystallographic texture. Even with such problems, it is possible to
get reasonably precise phase fractions. We also calculate that antitaenite represents 43 % of the
total atomic fraction of the meteorite (N_,/N =¢,p_,/¢,,), which is reasonable based on the SEM
image in fig. 20.

It is quite extraordinary that antitaenite, being so Fe rich can exist in the FCC phase, as it
is known that Fe-Ni alloys with compositions above ~70 at. % Fe usually undergo a martensitic
transition at or below RT. Is is quite remarkable also that it does not undergo the martensitic
transition, even after cycling down to 4.2 K. The extremely small scaled intergrowth between
tetrataenite and antitaenite, as seen in fig. 20, provides an explanation. Just as y-Fe can be

stabilized as a precipitate in an FCC Cu matrix [Newkirk57] or as a thin film [Keune77], the
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epitaxial intergrowth with FCC tetrataenite keeps the antitaenite in the FCC phase. However, as
stated previously, mechanical stress can destroy the microstructure, which results in most of the
meteorite undergoing the martensitic transition. We should also mention that antitaenite is most
likely not a uniform phase (composition-wise), but might exhibits a composition gradient as is
often found in the CZ of meteorites [Goldstein90].

As previously stated, tetrataenite is often found in combination with Ni-poor taenite
{Albertsen83, Rancourt95b}, which we call antitaenite. The actual composition of the antitaenite
phase will probably vary from meteorite to meteorite and also within each meteorite, but
antitaenite is always characterized by having the same lattice parameter as tetrataenite and being
paramagnetic at RT. As will be explained in chapter 6, these Fe-rich (Ni-poor) FCC Fe-Ni alloys
are found to be low moment alloys (the moment magnitude on the Fe and Ni atoms is
significantly smaller than in ordinary taenite) which exhibit antiferromagnetic order at low
temperatures. This is the reason for giving these alloys a different name than ordinary taenite
[Rancourt95b].

3.2.5 Saturation Magnetization of Antitaenite

Dr. Scorzelli, the collaborator who provided us with the meteorite samples, also did,
with the help of Dr. Rechenberg, some interesting measurements on SC samples when subjected
to an external magnetic field. We present here the measurement of the saturation magnetization
of the sample, which will enable us to determine the saturation magnetization of antitaenite.

Using the data measured by Dr. Rechenberg, we have determined the saturation
magnetization to be 112 emu/g or 1.14 p,/atom (calculated using the measured bulk
composition of our sample). Based on ESCs, the saturation magnetization in tetrataenite is
roughly 5 % larger than in disordered Fe, Nig, for which p_, = 1.69 p;/atom (see fig. 32,
chapter 4). We thus estimate the saturation magnetization in tetrataenite to be p_, (tt) = 1.77
Hz/atom. The saturation magnetization of the ordinary taenite phase (Fe,;Ni,j) is also p_, (t) =
1.77 @, Since we have determined the atomic phase fractions of each phase, we can calculate the
saturation magnetization of antitaenite as being u_,(nt) = 0.30 £ 0.05 u,/atom, which is
consistent with reported values of Fe-rich LM alloys. Keep in mind that we have not taken into

account iron oxides or phosphides which are present in the meteorite and which can carry a large
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magnetic moment. The indicated value is thus an upper range for the saturation moment of

antitaenite.
3.2.6 Temperature Dependence of the Méssbauer Parameters

We have performed Méssbauer measurements on the SC meteorite at temperatures
between 4.2 K (LHeT) and 295 K (RT) in order to determine if and at what temperature
antitaenite would exhibit magnetic order. The measurements were performed using the same
sample as previously (using four 50 pm slices) in the helium cryostat described in chapter 2. In
this cryostat, the source is also refrigerated, but is most likely at a slightly different temperature
than the sample. Because only the sample temperature is known, it is not possible to use the
measured CSs to determine the /S, since the SOD correction is unknown. The spectra are shown
in figs. 22 and 23. Because of the relatively low signal-to-noise ratio, only a simple analysis model
was used. The xVBF model was used with HFD for all three phases, with area ratios 3:2:1 fixed
except for tetrataenite (4, /A, was free). Also, only tetrataenite was allowed a quadrupole shift.

Tables 8 list the results of the analyses. These results show that the only phase which
shows any significant change with temperature is the antitaenite phase. The Zeeman splittings in
both tetrataenite and ordinary taenite increase slightly with temperature, as expected and shown
in fig. 24a and b, and the quadrupole shift of tetrataenite seems to remain constant throughout
the temperature range (fig. 24c). The important change evident from these measurements is the
onset of magnetic order in the antitaenite phase, as manifested by an increased width below -60
K. In fig. 25, we have plotted the FWHM of the antitaenite peak as a function of temperature. As
in Y-Fe, even at 4.2 K, the Zeeman splitting is insufficient to produce a well resolved sextet
[Keune77), thereby showing that like y-Fe, antitaenite is a low-moment phase which exhibits a
reduced Fe magnetic moment (p.._ = 0.5 ;) compared to the ordinary taenites which have large

Fe moment magnitudes (4. = 2.8 ).
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Figure 22 Méssbauer spectra of the SC meteorite from LN,T to RT, as indicated.
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Figure 23 Massbauer spectra of the SC meteorite from LHeT to 50 K, as indicated.
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Table 8 Parameters of the xVBF fits of the low temperature MS spectra of the SC meteorite. 2-0 (95
%) fitting uncertainties are given in the second column for each parameter.

i

Scklo16 294 Q.73 704703 183 0.129 0.009
Sckio15 249 0.65 246038 83 0.148 0.012
Sckiot4 198 0.62 227504 97 0.153 0.016
Scklo13 148 0.68 236146 58 0.129 0.006
Sckio12 123 079 287905 38 0.139 0.005
Scklo11 98.7 0.85 264708 65 0.142 0.010

Sckio10 78 0.62 252793 68 0.144 0.014
Sckio25 50 0.85 52875 55 0.123  0.019
Scklo24 35 093 42928 19 0.125 0.018
Sckl023 25 093 37384 49 g.108 0.021

Sckl022 20.1 0.82 38493 75 0.141 0.018
Scklo21 14.8 0.81 38009 57 0.119 0.016
Sckio18 9.1 0.79 38445 42 0.130  0.032
Sckio17 4.2 1.22 480508 174 0.148 0.013
Sckl020 4.2 085 139624 33 0.140 0.029

Scklote 32290 1778 202 0.2 0.0423 0.0045 0.1873 0.0050 1.9490 0.0020 0.0328 0.0081
Scklo15 12906 1213 207 0.16 0.0290 0.0050 0.189¢ 0.008! 1.9693 0.0035 0.0333 0.0087
Sckiot4 13369 1000 211 012 00112 0.0061 0.1988 0.0072 1.9861 0.0033 0.0251 0Q.0126
Scklo13 14189 787 205 008 0.0228 0.0047 0.1940 0.0065 1.9916 0.0035 0.0388 0.0067
Scklo12 18807 600 196 007 00176 0.0029 0.1867 0.0022 2.0012 0.0014 0.0428 0.0028
Scki011 16959 1012 208 0.09 00267 0.0044 0.1892 0.0055 2.0015 0.0032 0.0303  0.0088
Sckio10 15854 1305 212 Q.13 00336 0.0050 0.1921 0.0062 2.0028 0.0028 0.0317 0.0077

Sckio2s 3607 295 2.18 027 00293 0.0069 0.1901 0.0112 2.0078 0.0054 0.0431 0.0091
Sckio24 2918 218 2.13 019 0.0309 0.0067 0.1851 0.0077 2.0091 0.0045 0.0359 0.0183
Scklo23 2343 326 221 033 0.0361 0.0109 0.1928 0.0141 2.0052 0.0065 0.0416 0.0139
Sckio22 3jo1g 328 2.10 0.18 0.0286 0.0082 0.1873 0.0098 2.0106 0.0042 0.0306 0.011Q
Sckl021 2766 383 212 022 0.0392 0.0108 0.1993 0.0109 2.0067 0.0066 0.0527 0.0126
Sckl018 2680 436 1.83 023 0.1390 0.0107 0.1859 0.0156 2.0038 0.0073 0.0385 0.0124

Scklo17 35989 2437 220 012 0.1377 0.0045 0.1877 0.0056 2.0014 0.0029 0.0331 0.0073
Scki020 2988 519 226 028 0.0340 0.0104 0.1881 0.0128 2.0093 0.0062 0.0309 0.0152
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Scki01e

Scki015 8920 1456 0.010 0.025 2175 0.030 0.188 0.030
Sckio14 9971 959 -0.022 0023 2209 0022 019 0017
Scklo13 9629 1146 -0.017 0.014 2223 0022 0.184 0018
Scklo12 11526 713 0.028 0011 2247 0012 0.179 0009
Scklotl 12013 938 0.006 0.019 2257 0.022 0.190 0015
Scklo10 11616 1320 0.021 0.022 2258 0.028 0.192 0.023
Sckio25 2188 450 -0.021 0049 2235 0.037 0.178 0.031
Scklo24 2360 309 -0.016 0021 2240 0.034 0.190 0.021
Scklo23 2715 881 0.024 0047 2244 0.054 0265 0.065
Scklo22 2631 576 0.019 0.031 2283 0.044 0207 0042
Scklo21 2373 516 0.007 0.037 2256 0.038 0210 0.052
Scki018 1870 518 0.129 0.030 2280 0034 0.171 0.050
Scklo17 26261 2682 0.121 0015 2246 0018 0.193 0.021
Scklo20 2392 460 0.028 0.034 2257 0.047 0.192 0.035

0.0026
0.052t  0.0029 0.0132 0Q.0112
0.0528 0.0185 0.0244 0.0228
0.0018 0.0175 0.0837 0.0037
0.06C2 0.0015 0.04iC  0.0079
0.0009 0.0291 0.0862 0.0098
0.0340 0.0332 0.0841 0.0286
0.0781 0.0096 C.0622 (C.0135
0.0969 0.0090 0.0758 0.0228
0.1201 0.0156 0.0885 0.0335
0.1096 0.0082 0.0745 0.0148
0.1194 0.0076 0.0749 0.0136
0.1296¢ 0.0108 0.0863 0.0305
0.1272  0.0059 0.0756 0.0101
0.1265 0.0139 0.0761 0.0284

Sckloie

Sckiols 18917 1199 -0.0895 0.0025 0.614
Sckloi4 18671 2266 -0.1124 0.0044 0.625
Scklo13 19461 455 -0.1040 0.0017 0.659
Sckio12 28676 515 -0.1048 0.0013 0.554
Sckiot1 23871 618 -0.0978 0.0029 0.644
Scklo10 22937 990 -0.0890 0.0033 0.656
Sckl025 5184 548 -0.0944 0.0076 0.590
Scki024 4509 273 -0.1099 0.0061 0.594
Sckl023 3828 688 -0.0881 0.0114 0.632
Scki022 4488 1620 -0.0989 0.0084 0.593
Scklo21 4189 1074 -0.0887 Q.0101 0.598
Sckio18 4494 741 0.0007 0.0119 0.546
Scklo17 50236 1362 0.0051 0Q.0048 0.492
Scklo20 4586 214 -0.1027 0.0118 0.520

0000000000000 OO0

Sckiole “ 0411 0039 009 036 104 021

Sckl015 0386 Q.045 067 045 0.89 039
ScklO14 0375 0.063 0.15 0.63 1.03 029
Scklo13 0341 0.018 021 025 099 0.12
Scklo12 0.446 0.015 eec 0.17 132 Q.07
Scklo11 0.356 0.031 C48 Q.24 086 0.18
Scklo10 0344 0.034 035 0.J39 093 020
Sckl025 0.410 0.051 004 026 061 036
Sckio24 0.406 0.097 000 032 061 0.28
Sckl023 0.368 0Q.184 028 070 042 0.66
Sckl022 0407 0.089 0.02 0.69 067 C.29
Sckl021 0.402 0.084 0.05 0.61 0.62 032
Scklo18 C454 0.166 084 044 086 0.61
Scklo17 0.508 0Q.043 .18 0.09 049 0.09

Scki020 0.480 0.161 022 040 049 021
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Figure 24 Temperature variation of the Zeeman splittings in tetrataenite (a, @) and ordinary

taenite (b, @), as well as the average quadrupole shift in tetrataenite (c, W) (1-o fitting
uncertainties are illustrated). The line in (c) corresponds to the average value of € = 0.19 mm/s.
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Figure 25 Temperature variation of the FWHM of the antitaenite peak (1-0 fitting uncertainties
are displayed). The inset shows the data from 75 to 300 K on a different scale. The solid line in
the inset corresponds to a slope of -0.00035 mm/s/K.

3.3 Effect of the Epitaxial Relation Between Tetrataenite and Antitaenite on the Magnetism

of Antitaenite
3.3.1 Anomalous Temperature Dependence of the FWHM of Antitaenite

The inset in fig. 25 also shows an interesting feature. Even before the onset of magnetic
ordering, from T = 300 K down to 75 K, the FWHM of antitaenite increases regularly with
decreasing temperature at a rate of ~3.5 x 10* mm/s/K. At first, we thought this might be due

to thickness effects: As the temperature was reduced, the recoilless fraction increased and caused
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an increase in thickness broadening. If the cross-section is a single Lorentzian line with the
intrinsic width (y = 0.0485 mm/s), this would produce the maximum thickness effects. Even in
these conditions, the FWHM of the thickness broadened peak would only change by ~10*
mm/s/K, three times less than what is observed. In our case, the whole signal is much less
affected by thickness because the cross-section is distributed over a broad range of peaks and
velocities, not just in one narrow Lorentzian peak. It is thus impossible that the increase arises
from thermal changes in thickness broadening.

A more natural explanation is provided by the nature of the tetrataenite/antitaenite
intergrowth, From the SEM photograph of the intergrowth, we know that the antitaenite matrix
walls are roughly 10 nm wide, which corresponds to ~50 interatomic layers in the (001) direction
(c = 3.6 A, [Albertsen80]). Because antitaenite is surrounded by magnetic material (tetrataenite
and the ordinary taenite), we can consider that either

1) there is an effective field in antitaenite due to long-range dipolar interactions with the
magnetic taenite, or

2) the magnetic inter-atomic exchange interaction at the interface between antitaenite and
the magnetic taenites results in partial magnetic order in the antitaenite, even above its Néel
point.

The first point could be seen as simply applying an external magnetic field, and the
result, in both the case of a ferromagnet above T or an antiferromagnet above T, is to produce
a residual magnetization which decreases asymptotically to 0 as the temperature increases.

The second point produces a different result but which could also explain the
temperature dependence of the FWHM of antitaenite. We have simulated the effect of the
interaction with tetrataenite by freezing the end-points of a slab of antitaenite, as if they were
constrained by their interaction with tetrataenite. Because we don’t know much about the
interface (composition gradient, etc), we don’t presume that we are truly simulating the
magnetism of the intergrowth, but we simply want to examine the effect of a magnetic

interaction with at the interface on the magnetism of the antitaenite phase.
3.3.2 Simulated Effect of Epitaxial Interaction of Antitaenite with Tetrataenite

We have modeled antitaenite as a slab of 50 atomic layers in the [001] direction, with
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periodic boundary conditions in the [100] and [010] directions (10x 10x 25 unit cells, or 10000
atoms). An FCC structure was imposed with NN Ising interactions only. We fixed the Fe-Fe
exchange parameter (/. = -40 K) corresponding to a value of T, = 67 K (the experimental
value for y-Fe, [Johanson70)) in pure y-Fe and we assumed that the Ni atoms did not interact
with each other or with the Fe atoms. Since the Fe content composition of antitaenite is very
high, the Ni should have very little effect on the magnetism. The same Monte Carlo code as
described in chapter 7 (listed in Appendix E) was used.

The effect of tetrataenite is simulated by forcing the end moments along the [001]
direction to remain fixed, as if they were polarized by a direct interaction with tetrataenite. We
have chosen this method because we have no real knowledge regarding the interface or the
magnetic interactions between the two phases.

The simulation was started at T = 10 K in the antiferromagnetic configuration along the
[001] direction (the ground state for NN antiferromagnetic interactions in an FCC lattice), and
temperature was increased up to 300 K. At each temperature, the average staggered
magnetization and thermal average moment magnitudes were calculated. As a comparison, the
same calculation was done for a system where the end moments are not fixed, simulating bulk
antitaenite. Based on the model proposed by Dang and Rancourt to describe the hyperfine fields
in Fe-Ni alloys (see chapter 4), the hyperfine field at a given site will be directly related to the
average local moment and the average NN moments. Because we do not know precisely how the
local and NN moments combine to produce the hyperfine field in the low moment phase (in the
HM phase, H, = A< p,> +B£< W> ,withA = 20 mm/s/p, and B = 0.3 mm/s/ ), we
can’t directly generate the HFD However, we can simply look at the average moment
magnitudes to see if the modelled interaction with tetrataenite has an effect above T ..

The site-specific average moment is calculated by averaging the moment over several MC
steps (for each sampling step, 5 MC steps are dropped to avoid correlations between
measurements):

| &
HL T ; MGH (36)
where p, is 0.88 (we assume the Ni moment is 0, the Fe moment 1 p;, and we use a composition
of 88 at. % Fe) and N is the number of samples used. The average staggered magnetization, m,

which serves as a long-range order parameter for this system is
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2 >0 (37)
where M is the number of sites in the lattice and ! is the number of the atomic layer in the [001]
direction (/ = 0..49). We are also using the local moment magnitude instead of the sample
magnetization to eliminate the effect of the magnetic structure by only focussing on the time
averaged moment magnitude and not its direction. The sample average of the magnetic moment

magnitude is the average over all the sites in the sample (or in a specific layer):

M
1
< |u|> = Y |<p>,1.
nl>, My, MI B>, (38)

Figs. 26 and 27 show the temperature variation of the average staggered magnetization
and the average Fe moment magnitude in the slab and in the bulk (unconstrained) antitaenite.
Below T, = 60K, the epitaxial interaction doesn’t change much. However, above T, it is clear
that the interaction stabilizes the antiferromagnetic structure which also leads to finite moment
magnitudes up to 300 K. In the case of bulk antitaenite, above T, the moments are randomly
oriented in space (m = 0) and time (MC steps, < |@|> |~ 0). Because we are looking only at the
magnitude (and not the orientation), the average value will be non-zero because of the finite
sampling in time. The time averages of a set of moments which are randomly distributed
between +1 and -1 and which are sampled N times (N > 1) are normally distributed with a width
o = 1/{/N. The average moment magnitudes are then distributed as a half-Gaussian (from 0 to ).
The spatial average of the time averaged moment magnitudes will thus be < |u|> = V2/% /N
(which goes to 0 as N, the sampling time, increases). This is in fact the case for the unconstrained
antitaenite, as shown for N = 3900. The slight deviation below 100 K is due to finite size effects.
Notwithstanding the effect of finite time sampling, we clearly see that in the constrained case,
the average moment is systematically higher than the unconstrained average moment magnitude,
and that the difference decreases slowly with temperature. Because the local hyperfine field is
related to the average local moment, this shows that a direct exchange mechanism at the
tetrataenite/antitaenite interface is capable of causing a significant change in the width of the
antitaenite peak as seen from 75 K to 300 K.

To better understand the effect of the interface, we also show in figs. 28 and 29 the
average moment per [0C1] layer as well as the average moment magnitude per [001] layer. We see

clearly that even above T, the effect of the interface is to stabilize the moments in their low-
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temperature (below T} antiferromagnetic arrangement. The average moment magnitudes are
found to drop to 0 exponentially as the distance from the interface increases. As temperature
increases, the drop is more sudden, as the interface only has an effect on near-interfacial
moments. This is illustrated in fig. 30 which shows the penetration depth at which the average
moment magnitude is half of its saturation value. As temperature increases above 150 K, the
depth is significantly reduced (less than 1 atomic layer), illustrating that any stabilization of the
moment only happens in the first few layers next to the interface. Because the interface effects is
reduced with increasing temperature, the average bulk moment also shows a systematic decrease
as the temperature increases. We can also guess what the HFD would look like, since it should
resemble the distribution of moment magnitudes which is shown in fig. 31. The tail of the high-
field side of the distribution comes from moments located close to the interface.

Based on these calculations, it is entirely possible that the change in the width of the peak
of antitaenite is mainly due to a direct exchange mechanism between tetrataenite and antitaenite
at the interface between the two phases. If the antitaenite occurred as a thicker matrix, such an
effect would not necessarily be visible as it primarily occurs at the interface rather than in the
bulk. The visibility of the effect is thus related to the ratio between the surface (interface) and the

volume (bulk) of the antitaenite phase.
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Figure 26 Effect of the tetrataenite/antitaenite interface on the normalized staggered

magnetization (long-range order parameter) in antitaenite. ll antitaenite epitaxially linked to
tetrataenite, @bulk antitaenite.
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Figure 27 Effect of the tt/nt interface on the average moment magnitude. Same symbols as
above. The line at y = 0.013 represents the theoretical result for randomly distributed moments
(non-zero because of finite sampling time).
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Figure 28 Average moment magnitude in the atomic layers in the [001] direction as a function of
temperature. Line symbols represent different temperatures: (solid) T = 50 K, (dash) 7 = 70 K,
(dot) T = 100 K, (dash-dot) T = 150 K, (dash-dot-dot) T = 200 K, (short dash) 7 = 250 K and
(short dot) 7 = 300 K ((b) is a blow -up for small magnitudes of (a))
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Figure 29 Average moment per layer at 7 = 100 K in constrained antitaenite. The bottom plot
shows a rescaled version (+ |< p> |/ is displayed to show the spatial variation of both the
large and small moments) which illustrates how the antiferromagnetic structure is preserved well
into the bulk of the antitaenite, even far above T,
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Figure 30 Penetration depth of the tt/nt interaction as a function of temperature. The average
moment magnitude is reduced to half of its saturation value at the given depth (layer in [001]
direction).
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Figure 31 Simulated distribution of moment magnitudes in antitaenite at 7 = 100 K, after N =
3900 time samples. The moment magnitude with maximum probability eventually converges to
0, but the tail at higher values remains even for large N.
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3.4  Antitaenite as a New Mineral

The presence of a tetrataenite/antitaenite intergrowth is relatively common in iron
meteorites [Goldstein80, Albertsen78, 80b, 83, Danon83], yet very little is known about the
nature of antitaenite [Rancourt95, 97]. Most people simply assume it is an Fe-rich alloy which is
like ordinary taenites found with lower Fe content. There are however important differences
between ordinary taenite and antitaenite and in fact, antitaenite resembles more LM y-Fe than it
does the HM taenites. Its lattice parameter is very similar to that of y-Fe. Though there is no
evidence regarding the nature of the magnetic ordering, it orders magnetically at temperatures
below ~60 K (T, = 67 K in y-Fe [Gonser63, Johanson70]). Measurements of the Néel
temperature of various LM Fe-rich FCC Fe-Ni alloys show it to vary linearly with composition,
rising from O K at 52. at % Fe to 67 K in y-Fe [Rancourt89). Based on the calculated composition
of antitaenite (88 at. % Fe), the interpolated Néel temperature would be 50 K, similar to what is
experimentally observed. Finally, the measured RT *Fe CS of antitaenite (-0.090 mm/s) and y-Fe
(-0.088 mm/s [Keune77]) are nearly identical, indicating that the electronic structure is most
likely very similar. In fact, the very large difference between the CS in antitaenite and ordinary
taenites (CS = 0.12-0.15 mm/s [see chapter 4]) is the definitive argument that the Fe-rich phase
found in meteorites is a LM phase akin to y-Fe which has a different electronic structure than the
HM ordinary taenites [Rancourt99). Because of its similarities with other LM phases, it is
assumed that it has predominantly antiferromagnetic couplings and is hence given the name
antitaenite [Rancourt95, Rancourt97, Rancourt99].

The observation that antitaenite is indeed a new mineral which differs from taenite only
by its electronic structure (they have the same crystallographic structure) has lead to much of the
work presented in the following chapters regarding the existence of HM and LM phases of FCC

Fe-Ni alloys from both a theoretical and experimental point of view.



4. Overview of Fe-Ni Alloys as
Collinear Ferromagnets

Ni-rich FCC Fe-Ni alloys which exhibit collinear magnetism at 0 K has been extensively
studied by Rancourt and Ping [Rancourt91b, Rancourt92, Ping92, Rancourt93, Rancourt96] and
Dang et al. [Dang95, Dang96a, Dang96b, Dang96c], so we will simply present the most relevant
information. The purpose of this recapitulation is to inform the reader of the properties of these
alloys so one may better understand the basis of magnetism in Fe-Ni alloys and the complexities
and difficulties involved in describing the Fe-rich alloys. We shall focus primarily on the
concentration dependence of hyperfine parameters, magnetic properties, and the lattice

parameter.
4.1  Bulk Magnetic Moment: The Slater-Pauling Relation

In the case of a binary alloy of two magnetic species, if both species of atoms have an
electronic and magnetic structure that is independent of the composition of the alloy, then the
average magnetic moment will follow a simple linear relation with respect to the composition,
known as the Slater-Pauling relation [Slater37, Pauling38]. This relation is illustrated in fig. 32,
which shows several experimental measurements of the average saturation magnetic moment per
atom, measured at or extrapolated to 4.2 K. One clearly sees that in the Ni-rich region, the
moment follows a linear relation, < p> =0.6 + (2.8~0.6) ¢, for compositions below
approximately 50 at. % Fe. This is thus consistent with the expected moment based on the Slater-
Pauling relation, assuming that g, = 0.6, and p., = 2.84,. The validity of the Slater-Pauling
curve indicates that the moments are stable and independent of the composition and that the
magnetic structure is collinear. In fact, upon closer examination, one finds that there may be a

slight curvature in the relation (dashed curve) which can be attributed to a slight composition
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dependence of the Fe magnetic moment, as elucidated by electronic structure calculations [see
chapter 5]. Based on the compositional stability of the electronic structure of Fe and Ni atoms
and the magnetic structure of the alloy, it is possible to construct a simple model to explain the

Massbauer results described in the following paragraphs.
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composition (at. % Fe)

Figure 32 Experimental determinations of the average saturation magnetic moment in Fe-Ni
alloys at 4.2 K and the Slater-Pauling relation. Filled symbols represent the FCC phase, whereas
open symbols are for the BCC phase. Similar symbols (open and filled) correspond to the same
reference: @ Kondorskii and Fedotov [Kondorskii52], # Crangle and Hallam [Crangle63], a
Cochrane and Graham [Cochrane70], v Peschard [Peschard25], @ Brando [Brando64], % Asano
[Asano69]. The solid line represents the Slater-Pauling relation, the dashed line represents a

situation where the Fe moment is assumed to decrease linearly with the composition, as
calculated in chapter 5.
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42  Atomic Volume: Deviation from Vegard’s law

In binary alloys where the electronic and magnetic structure of the atoms is not affected
by composition and when there are no magneto-volume effects, the concentration dependence of
the volume is expected to obey Vegard’s law [Vegard28, Thorpe91] which states that the average
atomic volume varies linearly with the concentration of either species. In fact, Vegard originally
stated that the lattice parameter should depend linearly with the concentration (Vegard28] and
later Zen [Zen56] suggested that it should be the volume that scales linearly with the
composition. Because the Fe and Ni endpoints have similar volumes, there is not noticeable
distinction berween these two statements, and we hereafter use Vegard’s name as he was the first
to introduce the concept. In Fe-Ni, below ~50 at. %, where the Slater-Pauling relation is
respected, one should thus expect Vegard’s law to hold. Fig. 33 shows many experimental
measurements of the concentration dependence of the mean atomic volume at RT, in the FCC
and BCC phases, including new measurements which are described later in chapter 6.

In addition to the data, we have plotted a linear relation based on the data in the Ni-rich
region (< 20 at. % Fe) where there are no anomalies in the thermal expansion curves. Although
in general Vegard’s law is seemingly obeyed up to ~60 at. %, there is a clear deviation towards
larger volumes. Based on the results presented here and based on what is known about Fe-Ni
alloys below 50 at. %, this deviation from Vegard’s law does not come from a change in
electronic structure (the slight drop in the Fe moment would be associated with a decrease in
volume) or magnetic structure (these alloys exhibit collinear ferromagnetism at 7 = 0 K). It must
be due to a magneto-volume effect. These deviations from Vegard’s law may only occur at non-
zero temperatures, so one should investigate this behaviour at 7' = 0 K. Based on the
composition dependence of the thermal expansion of these alloys [Hayase73], it is in fact possible
to extrapolate these measurements to 7 = 0 K, where one actually sees no change below ~30 at.
% and an increase in the deviation above ~40 at. %, indicating that this positive deviation is not
due to thermal effects but is inherent to the T = 0 K properties of the alloys. In fact, ESC
calculations (chapter 5] also show a deviation from linearity in the FM HM alloys. This deviation
is of extreme relevance to the Invar problem and will correspondingly be discussed later in more
derail [chapters 6 and 7). Above ~60 at. %, a very large deviation to smaller volumes is
inexplicable in terms of FIM alloys. This feature will also be discussed later, in chapters 5 and 6.
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Figure 33 Composition dependence of the atomic volume in Fe-Ni alloys at RT. Solid symbols
represent measurements of the FCC phase, open symbols are for the BCC phase. The straight
line corresponds to Vegard’s law, extrapolated from the Ni-rich (< 20 at. % Fe) data. Symbols
are: @ Bradley ez a/. [Bradley37), #Phragmén [Phragmen31), @Owen et al. [Owen37d], &
Newkirk [Newkirk57], % Dang [Dang96a] and Lagarec [see chapter 6].
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43  Hyperfine Parameters: Analysis of Mdssbauer Spectra
43.1 Analysis Methodology

Most of the Mdssbauer spectra of FCC Fe-Ni alloy series taken in the lab of Dr.
Rancourt have been consistently analysed using the xVBF method (see appendix A), to provide a
consistent set of hyperfine parameters. The sample preparation, data acquisition and spectral
folding for these samples have been described elsewhere [Dang96a]. The limits of the VBF
method of fitting the spectra of FCC Fe-Ni alloys have been extensively described by Ping ez a/.
[Ping92a). [ have found that the xVBF model could consistently produce better fits (lower x7)
than other methods such as the VBF method, so we decided to re-analyse all spectra using this
method. In cases where the VBF method yielded a similar quality of fit, it was also used to
provide results based on a different model.

For spectra with fewer than 60 at. % Fe, a model which includes an arbitrarily shaped
HFD (usually described by two or three Gaussian components) correlated to a Gaussian shaped
QSD was found to produce the best fit. In this scenario, the CS is not distributed or correlated to
the other hyperfine parameters. For alloys with more than 60 at. % Fe, a correlation between the
CS and the HF is needed and is in fact the correlation which produces the largest effect on the
spectra. In these cases, the VBF model was also applied, as it yields similar fits as the xVBF
model. In addition, for these alloys (> 60 at. % Fe), it was found that some parameters are
strongly dependent on the analysis model, so the use of two different models provides a
complementary set of data. Even though these alloys have an average cubic symmetry, the site of
each Fe atom does not necessarily have a cubic symmetry because of the alloying of Fe and Ni
atoms, It is thus normal that there be a local EFG on each site, with a finite (but small)
magnitude and a random orientation with respect to crystal axes and the hyperfine field. The
average quadrupole shift (€) was thus always forced to be 0 mm/s in order to avoid systematic
effects on the centre shift (8). However, in the xVBF model, the width of the QSD was allowed
to be non-zero. A description of the specific problems encountered in fitting such spectra to
extract accurate hyperfine parameters explains the choices made in fitting these spectra [chapter
2] . Some additional hyperfine parameters, such as the average centre shift <>, the widths of
the CSD (o) and QSD (a,), three parameters describing the Zeeman splitting distribution (the



Chapter 4. Overview of Fe-Ni Alloys as Collinear Ferromagnets 81

average of its magnitude |z|, its standard deviation 0, and its skewness x,) have also been

calculated from the parameters of the analysis model.

4.3.2 Results and Discussion

Tables 9 through 17 lists all the fitting parameters for compositions up to 70 at. %, at RT
and LN,T along with a concise list of calculated parameters used to describe the distributions of
hyperfine parameters. For all alloys, it is found that the width of the QSD (o,) increases slightly
with Fe concentration up to ~40 at. % Fe. It is not known whether this composition dependence
is real or whether it is an artefact of the fitting model because of increasing thickness effects
(which were not corrected for). [n any case, the magnitude of the width is reasonable when
compared to € in tetrataenite, which is ~0.2 mm/s [see chapter 3] and which could be taken as an
extreme value. These results show that the fitting method produces physically realistic

parameters. We will now examine in more detail the data relating to the HF and the /8.
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Table 9 Parameters of the xVBF fit of the RT M&ssbauer spectra of a series of splat quenched
alloys (SQ #1). 2-0 (95 %) fitting uncertainties are given in the second column of the parameter.
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Table 10 Compiled parameters of the fits of SQ #1.

15
25
30
35
40
45
50
55
60
65
68
70

e

0.157
0.415
0.557

0.007

0.083
0.034
0.010

0

0012 0
0.019 0
0.028 0
0.030 0
0.030 0
0.033 0
0.031 0
0.028 0
0.023 0.034
0.004 0.031
-0.038 0.040

2.161
1.611
1.150

0.019
0.024
0.014

0.071
0.247
0.377

0.022
0.014
0.007

0082 048

0 0.052 1.881

0 0.064 1980 0Q.108 033
0 0068 2026 0.123 0.27
0 0.082 2050 0Q.125 0.25
0 0.09 2083 0.127 0.00
0 0076 2119 0.135 0.00
0 0.09 2109 O0.119 0.5
0 0098 209 O0.166 -2.85
0 0062 2024 0.151 -090
0 0041 1575 0449 -1.05
0 0111 106} 0514 -0.12
0 0 0497 0429 1.06

83



Table 11 Parameters of the xVBF fit of a second series of SQ alloys (SQ #2).
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Table 12 Compiled parameters of the fits of SQ #2.
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Table 13 Parameters of the xVBF fit of a third SQ series (SQ #3) and a series of three roller

quenched alloys (RQ #1 - 50, 55 and 60 at. % Fe).
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Table 14 Compiled parameters for the fits of SQ #3 and RQ #1.
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Table 15 Parameters of the VBF fits to the RT Mdssbauer spectra of alloys from the SQ #1, #2,
#3 and RQ #1 series. 2-0 (95 %) fitting uncertainties are given in the second column of the

parameter. Paramet h an uncertainty of 0 were kept fixed during the fit.
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Table 16 Compiled parameters of the VBEF fits of SQ #1, #2, #3 and RQ #1 series.

68
70

55
60
65
68
68
68

65
70

60

-0.009
-0.016

0.031
0.028
0.025
0.001
-0.006
-0.006
-0.006

-0.003
-0.024

0.022

o o

o 0O 00000

oo

1.078
0.497

2.120
2.117
2.010
1.600
1.048
1.060
1.060

1.576
0.526

2.007

0.507
0.416

0.111
0.106
0.189
0.415
0.518
0.511
0.510

0.439
0.441

0.166

-0.18
1.03

-0.05
-0.13
-2.27
-1.02
-0.12
-0.14
-0.14

-1.01
111

-1.26

91



Chapter 4. Overview of Fe-Ni Alloys as Collinear Ferromagnets

92

Table 17 Parameters of the xVBEF fits of the LN, T Méssbauer spectra of the alloys of the SQ #1

series. 2-0 (95 %) fitting uncertainties are given in the second column of each parameter.
Parameters with O uncertainty were kept fixed during the fit.
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4.3.2.1 Modelling the Hyperfine Field Distribution Using a Binomial

Distribution of Nearest Neighbours

Figures 34a through c illustrate the average, standard deviation and skewness of the HFD
at RT. The composition dependence of these parameters can be explained by a simple model for
the local hyperfine field and a binomial distribution of nearest neighbours. In the saturated
magnetic collinear regime (at low temperature), if we assume that the moments on the Fe and Ni
atoms are composition independent, a simplified version of the model proposed by Rancourt and
Ping [Rancourt91b] and by Dang [Dang96a] can be used to calculate the hyperfine field at an Fe

nucleus, as a function of the number 7 (which can be from 0 to 12) of Fe nearest neighbours:

H(n) = Apg, + B[n g, + (12-m)py]

= Ach * 123"‘!‘11 * B(“Fc - pNx) n (39)
where A and B are (nearly) composition independent parameters. Because H(n) depends linearly
on 7, the distribution P(H) of H will have the same shape as the distribution P(#) of »:
d
P(H) = P(n) 2= = P(n) / Blbe, = Bys) (40)

In fact, this will also hold if the moments on Fe and Ni vary slowly and linearly with
composition, as seems to be the case for Fe, based on electronic structure calculations [chapter 5).
If we assume that the nearest neighbours are distributed according to a binomial
distribution, we can thus evaluate the characteristics of the HFD. Let 4(», ) be the probability of
finding n Fe nearest neighbours around the atom, when the bulk concentration of Fe atoms is c:
bne) = [ ’ ]c 1 et (1 (41)
12 121 (12-n)!
The first three moments of this distribution result in:

<n> () = 12¢

o,() = 2/3/c(1-)

1-2¢ (42)

x(Q) =

If we choose B(uy, - By;) = 15 mm/s, we calculate the three curves also shown in figures 34a
through c for the properties of the HFD. The concordance between these calculations and the
observations indicates that the phencmenological model of the hyperfine field proposed by
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Rancourt ez al. and the binomial distribution of nearest neighbours seem valid for concentrations
up to 50 at. % Fe. A more detailed model, as shown by Dang {[Dang96a] is capable of explaining
even more subtleties regarding the properties of the HFD (e.g. the average is not exactly a linear
function of composition), but this simple model is sufficient to understand that these
assumptions are generally respected in Ni rich Fe-Ni alloys.

Based on these results, we expect that if the magnetic structure remains ferromagnetic
and collinear and if the moments do not change much with composition, the observed trend
would continue at higher Fe concentrations. The breakdown of the agreement between the
model and the observed HFD characteristics above 50 at. % Fe indicates that either the ground
state magnetic structure shows deviation from collinear ferromagnetism or the moment
magnitudes are changing, or both. This question has in part been resolved by several methods,
including polarized M&ssbauer spectroscopy which has shown that in Fe,Ni,,, non-collinear, or
at least anti-parallel, spin configurations occur in the ground state [Ulirich84, 85], resulting in the
broadening of the HFD as the disordered magnetic structures produces a wide range of local
magnetic environments. It is not yet clear, based on experimental evidence, if there is a
distribution of moment magnitudes in Fe rich alloys. This will be discussed in greater detail

when we explicitly analyse the results for Fe-rich alloys in chapter 6.
4.3.2.2 The Isomer Shift

Based on the CS (8) measurements at various temperatures, it is possible to extract the /S
and a Méssbauer effective Debye temperature 8, of the Fe sites as a function of composition,
assumning that the /S is temperature independent:

CS(T) = Is + SOD@®,,T) . (43)

The results for @, are reported in fig. 35b. Given two CS measurements with an uncertainty of
0.003 mm/s, the uncertainty on 6y, is about 20 K (assuming 6, = 380 K and measurements are
taken at RT and LN,T). Based on this large uncertainty, it is reasonable to say that the extracted
6, for alloys in the collinear regime is approximately constant at 380 K. This figure is the same
as had previously been calculated by Rancourt ez al. [Rancourt92). For alloys above 60 at. % Fe,
the calculated 6, drops dramatically. It is not clear at this point whether this drop is real, or

whether the assumption that the /S is temperature independent is incorrect and this will be
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discussed in greater detail when specifically inspecting the /S of Fe-rich alloys in chapter 6. When
considering only Ni-rich alloys, we can assume that @, = 380 K and extract the /S for each
spectrum using eq. 43 (SOD(8, =380 K, RT) = -0.23309 mm/s). The resulting ISs are reported in
fig. 35a.

It is very difficult to predict the composition dependence of the /S based on a simple
model for several reasons. 1) The /S is related to the charge density at the nucleus, which can
behave quite differently from the total s-electron density. 2) It is hard to predict if charge transfer
occurs between the Fe and Ni atoms as they are alloyed, making it difficult to predict even
changes in the total s-electron density. 3) One must take into account the change in lattice
parameter due to the alloying, which also affects the charge density. The latter link can be
naively modelled by assuming that the overall s-electron charge density scales with the inverse of
the volume. Irrespective of the other factors, this would mean that an increase in volume (as the
Fe concentration is increased) would cause a drop in the charge density and hence an increase in
the /S. In fact, for alloys with less than 50 at. % Fe, the IS of the Fe atoms is seen to increase
quasi-linearly, as shown in fig. 35, as is the atomic volume, shown in fig. 33.

At compositions above ~50 at. % Fe, deviations from the behaviour predicted from the
models of collinear ferromagnetism start to appear. This is seen in the average moment, which
starts dropping below the Slater-Pauling curve, before collapsing at around 70 at. % Fe (fig. 32).
The RT HFD also exhibits an unusual behaviour, with a growing contribution at low field
values which contributes to its increased width and abnormal skewness, until it also collapses
around 70 at. % Fe. Even the /S departs from its Ni-rich composition dependence, although this
might be also due to errors in calculating the IS due to changing Debye temperature. Taken
together, these properties indicate a departure from the collinear ferromagnetism observed at

lower Fe concentration.

In the following chapters, we explore the complex behaviours of Fe-rich Fe-Ni alloys and
investigate its relations to the Invar effect and to moment-volume instabilities. Through this we
will discover the intricacies of non-collinear magnetism, moment volume instability and how a
complete and coherent picture of the 7 = 0 K and temperature dependent properties of the Fe-
Ni alloys can be understood based on the results of ESCs, MC simulations and comparison with

experiment.



Chapter 4. Overview of Fe-Ni Alloys as Collinear Ferromagnets 97

T =1 T T =1
1a < ]
20- 8 4
1 1
N
£ -
3 4
A
N -
' 4
ﬁ
M | v I v | B L) v ¥ 1 v ] v
064 p -
L . 1
 oal §e
)
E
E ] 2
N
b 0.2" ‘ -
X |
0.0 — ] v 1] L N v
- . -
0od ¢ o -
E 2e -
a
g ’2"‘ . -
3 1 o4
[7/]
4- -
A P
A l v ' r LJ
0 20 40 60 80
composition (at. % Fe)

Figure 34 Properties of the HFD for RT SQ and RQ samples (the inset in (a) shows an expanded
version). The solid line corresponds to the model described in the text. The deviation from the
model line becomes apparent above ~50 at. % Fe and is at first mainly due to a deviation from
collinear ferromagnetism. Symbols are for different series of synthetic alloys: @SQ series #1, @
SQ series #2, 9SQ series #3, A RQ series #1.
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Figure 35 Calculated IS and 8y, in FCC Fe-Ni alloys, assuming IS and 8, are temperature
independent. The solid and dashed lines in (b) corresponds to @, = 380 + 20 K. The square and
diamond symbols indicate different evaluations of 8, from two different pairs of CS data.



5. Electronic Structure Calculations
of Fe-Ni Alloys

5.1 Introduction

Electronic structure calculations (ESCs) have been used more and more since the late
1970's to try to provide a theoretical understanding of the Invar and anti-Invar properties of
FCC Fe-Ni alloys [Wasserman90 and references therein]. Most work has been focussed on
finding the ground state properties of chemically ordered y-Fe and Fe-Ni alloys [Wang85,
Moruzzi86a, 86b, 88, Krasko87, Moroni89] and, more recently, in chemically disordered alloys
[Akai89a, 89b, Abrikosov95], primarily in terms of the volume and moment. More recently yet,
several studies were performed where non FM magnetic or non-collinear structures were
considered [Pinski86, Mryasov92, Akai93, Wang97, Wang98, vanShilfgaarde99]. In this study, we
have performed ESCs to provide direct predictions of other experimentally accessible parameters
such as the HF and the /S. In addition, we have decided to characterize trends that give us a
better understanding of the complex nature of these materials. We do not presume to be able to
calculate the true properties of these alloys because of the limitations of ESC methods but we are
confident that these calculations provide a strong foundation for understanding most of the

perplexing properties of these alloys.
52  ESCs Using the LMTO Method

The linear muffin-tin orbitals LMTO) method [Andersen75, Andersen77] is a first-
principles method of calculating the electronic structure based on the density functional theory
(DFT). It is applied here in the local spin-density approximation (LSDA) using the exchange
potential of von Barth and Hedin [vonBarth72]. Using such a method, it is possible to calculate

99
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the map of the spin and charge densities in a given periodic lattice. Also, by calculating the
energy as a function of the lattice parameter, it is possible to obtain predictions on many
experimentally accessible ground-state (T = 0 K) properties of the material.

This section is composed of three parts. The first describes how these properties can be
calculated once the total energy as well as spin and charge densities are known as a function of
volume. The second and third parts present and discuss the results of various calculations on Fe-
Ni alloys in chemically ordered and chemically disordered phases. These calculations will be used
in a subsequent section to understand the relevance of experimental observations with regards to

the Invar effect.
5.2.1 Calculating T = 0 K Equilibrium Properties
5.2.1.1 The Lattice Parameter and Volume

The T = 0 K equilibrium volume for a material is the one at which the total energy is
minimized. At this value, the internal pressure P = ~3E/3dV is nil. In our application, all
materials have cubic symmetry, so it is sufficient to minimize the energy with respect to a single
lattice parameter. Because the precision of an ESC is about 0.1 mRy, it is not sufficient to find
the lattice parameter which results in the lowest energy. A high precision of the equilibrium
lattice parameter is obtained by performing several calculations around the equilibrium lattice
parameter, spanning about 0.5 4, and fitting the resulting energy curve to a fourth-order
polynomial which is used to calculate precisely the equilibrium lattice parameter. Using this
method, a precision of about 0.001 4, can be obtained, based on the 0.1 mRy precision on the
energy.

The lattice parameter calculated by a local density approximation (LDA) method is
usually smaller than the experimentally observed lattice parameter. Also, this calculation does
not include the volume expansion (- 1%) which arises from the zero-point motion in, for
example, the Debye model of lattice vibration. In the Debye model, the free energy due to
phonons has a T = 0 K contribution should be taken into account for a more rigorous
comparison between the experimental and theoretical results [Moruzzi88, Herper99], but we

have decided not to include it here because there are more important problems which hinder an
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exact comparison between experiment and calculations, such as the use of the LSDA, as opposed

to a non-local generalized gradient method.

5.2.1.2 The Bulk Modulus

The T = 0 K bulk modulus, B, is related to the volume dependence of the internal

pressure of the system:

p--v®P . PE

FI R %2 (44)
This parameter, which is also the inverse of the isothermal compressibility ., is readily

available experimentally and can be easily be calculated from the curvature of the energy curve.

It characterizes the ability of a material to resist compression under the application of an

isotropic hydrostatic pressure, and is thus partially related to the rigidity of the lattice.
5.2.1.3 The Magnetic Moment

The magnetic moment is automatically calculated in the program by integrating the net
spin density inside the Wigner-Seitz radius (WSR) for all energies up to the Fermi energy:

&
B o= f de[n_(e) - n_(e)], (45)

-a

where n, (€) is the energy density of the number of majority (+) and minority (}) electrons of
energy € found inside the WSR of a specific atom. The Fermi energy €, is calculated such that
the unit cell is charge neutral when all levels below the €, are occupied.

5.2.1.4 The Contact Hyperfine Field

There are several contributions to the HF at the nucleus of an atom: the Fermi contact
term, which is due to the polarization of the electrons inside the nucleus; the spin-orbit term,
which is due to the atomic angular momentum of the electrons; and the magnetic dipole term,

which is due to the dipole interaction with all the electrons’ spins (including those from



Chapter 5. Electronic Structure Calculations of Fe-Ni Alloys 102

neighbouring atoms). The contact term is the dominant one in our case and is generally the only
one that can be simply calculated in an ESC. Whenever we mention the calculated HF, we only
take into account the contact term. Other terms most often account for only 10-20% of the total
HF.

In a non-relativistic calculation, the contact HF is simply proportional to the spin

density at the nucleus (r = 0) [Fermi30]:
8
Hopr = = W3 [0,0) - 9,01 . (46)

where p,, (0) are the majority and minority spin charge volume densities at the nucleus. When
expressed in ¢ "/a, , the conversion factor between the spin-density and the contact HF in T is
52.4303 T a,/e".

When performing a relativistic (or scalar-relativistic) calculation, the contact term is no
longer limited to the spin-density at the nucleus. Bliigel e 4/. [Blugel87] have shown that the
contact term can be calculated by integrating the spin density within the Thompson radius of the

atom, r.=Ze’/ (4me))>m ¢, 0r rp= Z&ay = 2.817 Z fm:

T
8 >
H,ff;:“ = —SEQB f41rr'dr[p,(r) -p,(n] . 47)
0

Because the Thompson radius is typically much larger than the nuclear radius (for Fe, r./r,, =
18), the error due to the use of a point-like nucleus in the calculation is relatively small
(Battocletti96].

5.2.1.5 The Isomer Shift

As in the case of the contact HF, the method for calculating the IS in the non-relativistic
and relativistic cases are different. In the non-relativistic case, the charge density is approximately

constant inside the nuclear volume, so the /S is simply proportional to the calculated charge

density at the nucleus:
IS = ap() + IS, (48)
where @ = -0.24 a: /e “mm/s for the 14.4 keV transition in “Fe, according to comparisons

between calculated non-relativistic charge densities and experimental data [Akai86).
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In the relativistic case, if a point nucleus is used, the charge density diverges at the
nucleus, so eq. (48) cannot be used explicitly. It can be shown [see chapter 2] that the diverging
relativistic charge density p(r) can be associated with a non-divergent charge density p_, (r)
equivalent to the non-relativistic one. We can then use eq. (48) using p,, (0) instead of p(0),
using the same value for . The typical difference in charge density at the nucleus found between
various compounds is of the order of 0.1 ¢ “/a; , whereas the charge density itself is of the order
of 10* ¢ "/a; . This means a very high precision is needed in the calculation to notice minute
changes in the S, and also that ways of performing the calculations (exchange potential
parametrization, relativistic corrections, etc.) will produce slightly different results. The use of
additional approximations, such as the CPA can also lead to less accurate results than LMTO on
ordered structures.

Because all experimental /Ss are given relative to the CS of «-Fe at RT, we also calculated
P, .5 (0) at its calculated equilibrium position in order to compare the calculated and the
experimental /Ss. We thus used

IS, = -ap, 50 - SOD@®), , =432K, T=295K) )
= 0.24p, (0) *+ 0.23809 mm/s.
The Debye temperature for a-Fe is taken as 432 K [Rancourt99). Because the type of calculation
(NRA or SRA) affects the equilibrium volume and thus the charge density at equilibrium, for
each type of calculation,p,_, (0) was recalculated using the same method. This means that even
though the magnitudes of the charge densities might be very different in NRA and SRA
calculations, the /S can generally be compared because it is a measure of the difference with

respect to another material, not a measure of the absolute density as is the HF.
53  ESC of Chemically Ordered Phases

5.3.1 Description of the Crystallographic Structure

To calculate the properties of chemically ordered phases of the Fe-Ni system, we have
used the LMTO code written by the group of O. Andersen at the Max-Planck Institute in

Stuttgart. This code was provided to us by Dr. Bose, with permission from the Stuttgart group.

This program allows us to calculate the electronic structure of chemically ordered structures
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without magnetic moment or with collinear magnetic moments. It is also possible to impose
collinear antiferromagnetic structures where the atoms have the same potential parameters, but
opposite moments. We have performed calculations in both the NRA and the SRA. In the case
of the SRA, a fully relativistic treatment (including the wavefunction) was used, instead of simply
adding the relativistic Hamiltonian terms (mass-velocity, Darwin, etc.) to the non-relativistic
Schridinger equation. As previously stated, the von Barth and Hedin local exchange potential
was used. Combined corrections for errors in the ASA were turned on. The same Wigner-Seitz
radius (WSR) was used for both Fe and Ni atoms, and it was chosen such that the volume of all
the atomic spheres was equal to the volume of the unit cell. 4s, 4p and 3d orbitals were taken into
account in the calculation as valence orbitals. All lower orbitals are considered as core orbitals
and do not contribute to the formation of 2 moment. Around 1000 k-points per irreducible

Brillouin zone were used to ensure convergence of the energy (to s0.1 mRy) and of the moment
(to s0.01 u,).

Five FCC phases (illustrated in fig. 36) with simple stoichiometries were investigated.
Pure Ni and pure y-Fe, of space group Fm-3m (n" 225) are the end members. FeNi, and Fe,Ni
have 4 atoms per primitive unit cell in the AuCu; structure (space group Pm-3m, n* 221, or L7,).
FeNi has a tetragonal AuCu structure (space group P4/mmm, n° 123, or L1;) with 2 atoms per
unit cell. Though FeNi is experimentally found to have a slight tetragonal distortion compared
to the cubic structure (c/a =1.0036, [Albertsen81]), we have only performed calculations on
purely cubic phases. a-Fe, which was used as the reference material for the calculation of the /S
has a BCC structure (space group /m-3m, n"229).
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Figure 36 Chemically ordered structures in FCC Fe-Ni alloys with simple stoichiometries. The
black and white atoms represent the two different species.

5.3.2 Calculated ESC in Ferromagnetic and Non-Magnetic Configurations

Since much of the recent work on Fe-Ni alloys has been focussed on the HM/LM (or
HM/NM) transition, we have performed calculations for a wide range of lattice parameters for
which we have a stable HM phase in all alloys at the high-end, and a NM phase at the low end.
This permits us to follow the evolution of key parameters through the transition. It also allows
us to investigate how the parameters vary with the lattice parameter within a stable (HM or NM)
region to possibly predict their behaviour with temperature. This is possible because at the
temperatures of interest (below 1000 K), we are far from the Fermi energy of these materials, and
the main changes in their electronic structures are expected to come from the changes in lattice
parameter due to thermal expansion. We have also performed calculations by imposing a non-
magnetic electronic structure even when the ferromagnetic phase is more stable in order to
compare the properties of the material at the equilibrium lattice parameter in the FM and NM
phases. Many similar calculations have been performed on ordered phases of the Fe-Ni system
[Moruzzi90, Mohn91, Entel93], so we will present our important results without describing the
specifics of the ESC and the density of states (DOS) in detail. Our results agree with previously
published calculations which used the same methods. In previous calculations, some parameters
such as the charge density at the nucleus or the hyperfine field had not necessarily been
calculated, so it was necessary to repeat them in this study.
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5.3.2.1 Ground States and Magnetic Moments

Figures 37 through 41 show (a) the energy, (b) the magnetic moments, and () the charge
density at the nucleus for the five ordered structures of the Fe-Ni system in the FM and NM
states. When the HM FM state is not stable, the figures also show its properties based on
extrapolations from the volume range where it is stable. The extrapolated energy curve is
obtained from fourth-order polynomial approximation to E(V) where the HM state is stable.
Other extrapolated properties are the result of second-order approximations. In y-Fe, an
antiferromagnetic (AF) configuration in the (001) direction was also explored.

All figures show a transition from a HM FM state at high volume to a NM state at lower
volumes. In the case of Fe and FeN:i (figs. 37 and 39 respectively), an intermediate moment (IM)
state is also found to be stable (or metastable) close to the HM/NM transition volume. In the
case of Fe,Ni, no distinct IM state is observed, but rather there is a continuous decrease of the
magnetic moments of the Fe and Ni atoms (fig. 38). In fact, in this case, the ground state is
observed in the region where the moments are collapsing. In FeNi; and pure Ni (figs. 40 and 41),
the moment collapse is sudden but continuous, indicating there are no distinct metastable states
with different moment values. This situation is different from the one in y-Fe where for a given
volume, the AF, IM FM and HM FM states are all stable (or metastable), or in FeNi, where the
IM and HM states can also both be stable at the same volume.

One must remember that when a mention is made of a HM “state”, it is in the context of
an extended and uniform phase. These calculations cannot simply be made to show there are
distinct ionic states for the Fe (and Ni) atoms, because the phase must be uniform. An ionic state
of an atom should exist independently (or nearly independently) of the other atoms or the
magnetic structure. Anytime the word szate is used, it is understood that it is in the context of a

phase and cannot necessarily be separated from that context.
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Figure 37 ESC results for y-Fe. The solid line represents the HM FM state, the dash-doted line
the IM FM state, the dashed line the NM state, the sort-dash-dotted line is the AF state and the

dotted line the extrapolated HM FM state.
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Figure 38 ESC results for Fe;Ni. The solid line represents the FM state, the dashed line the NM
state and the dotted line the extrapolated HM FM state.
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Figure 39 ESC results for cubic FeNi. The line styles represent the same states as in fig. 37.
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Figure 41 ESC results for Ni. The line styles represent the same states as in fig. 37.
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5.3.2.2 Systematics of the Charge Density at the Nucleus

As seen in figures 37¢/d through 41c/d, the charge density at the Fe and Ni nuclei
normally decreases regularly with the volume. However, the exact volume dependence is quite
different in the HM FM and NM cases, which leads to a discontinuity of the charge density
through the HM/NM transition. In the case of p._ (0), there is an increase of ~0.2-0.3 ¢~ Ja,
between the FM and NM states in y-Fe, Fe,Ni and FeNi, but it becomes less noticeable in FeNi,.
The same can also be said of p,, (0), but the magnitude of the jump is much smaller and
practically negligible given the precision of the calculation. When comparing p__(0) at the
equilibrium positions of the NM and FM states, an additional increase when going from the FM
state to the NM state is due to the lower volume of the NM ground state. This difference in
volume accounts for an additional ~0.4-0.5 ¢ */a, in y-Fe, and lower values for decreasing Fe
content, since the volume difference between the NM and FM ground states decreases.

If we assume that the charge density at the nucleus is independent of the magnetic order,
but only depends on the spin state (HM or NM), and that thermal effects only affect the lattice
parameter, it is possible to estimate the temperature dependence of the charge density. In the
NM or FM states, we have 3p.(0) / 3z ~ ~1¢ /a, . lf we use & = 0.24 mm/s a, /e ~ [Akai86] to
convert to an /S, and assume that the thermal expansion is ~ 10 K", we get

oIs -
— - +1.5x107° K
T mm/s/ (50)

for the Fe nuclei. Any measured rate of change IS / 8T which is noticeably larger than
107 mm/s/K must then be associated with a separate phenomenon, such as thermal evolution
from a NM to a HM state (or vice-versa), since it cannot be entirely accounted for by changes

due directly to thermal expansion.
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Figure 42 Valence (p,(0)) and core (p,(0)) charge densities at the Fe nucleus in NM (dotted line)

and HM FM (solid line) y-Fe.
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Figure 43 Valence (p,(0)) and core (p.(0)) charge densities at the Fe nucleus in NM (dotted line)

and HM FM (solid line) FeNi.
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Figures 42 and 43 also show the explicit volume dependence of the core and valence
charge densities at the Fe nucleus in y-Fe and FeNi. One clearly sees that i) the main volume
dependence of the total charge density at the nucleus comes from the valence contribution, and
ii) the discontinuity seen at the HM/NM transition volume is mainly due to the core
contribution. This illustrates the necessity of using a fully relaxed (core +valence) charge density
in order to see the full effects related to the HM/NM transition. In many calculations, the core
contribution is assumed to be frozen, and only the valence charge density is calculated. In such
cases, the discontinuity at the HM/NM transition would not be seen. It is also interesting to see
that the valence charge density at the nucleus does approximately follow an inverse volume law,
as if the shape of the distribution of total valence charge was volume independent. In y-Fe, the
total valence charge on the atom is always constant (8 electrons), so it would seem the shape of
the charge distribution is approximately volume independent. For the case of FeNi, this is also
true for the NM phase, where the valence charges on the Fe and Ni atoms remain constant. In
the FM case however, the valence charge on the Fe atoms decreases with increasing volume,
indicating that there is a charge transfer to the Ni. This leads to a stronger deviation from an

inverse volume law in the FM case.
5.3.2.3 Systematics of the Hyperfine Field

In her thesis regarding magnetism in Fe-Ni alloys, Dr. Dang used a phenomenological
model to describe the HF {Dang96a, Dang96b), which in the case of collinear magnetism at 0K,

reduces (in its simplest form) to:

H . =Ap +B) B,
§\'J (51)

where H, is the HF at site ; and the sum is on nearest-neighbours (NNs) of site £. It is

worthwhile to investigate if this relation holds for the HFs and moments calculated in this study.
First of all, we consider the HF due to core electrons, H_ . Based on figs 45 and 46, we

find that in both Fe and Ni atoms, it is generally proportional to the local magnetic moment:

H, = (-11 T/pp . This result is well established [Freeman64], and is also seen to be independent

of the magnetic structure, as it applies to FM Fe as well as AF Fe. On the other hand, the

dependence of the HF due to valence electrons, H, , is not as straightforward. This is due
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primarily to the presence of a transferred term, in which the HF is related to the moments of the
atoms in nearest-neighbour shells. It is important to recall here that the HF we calculate is only
the Fermi contact term, which does not include the field due to dipolar interactions or due to
spin-orbit interactions [Bliigel87]. Although there is no clear dependency of H, to the local
magnetic moment, fig. 44 shows that there is a good general linear relation between the total HF,
H, and < p> , the average magnetic moment in the structure:
H = (-15.5T/pp < p> . (52)

It is also interesting to note that both these relations seem universal as they apply to HFs at the
Fe and Ni nuclei.

It is possible to reconcile this model of Dang and Rancourt with eq. 52. Assuming
parameters A and B in the model are independent of the concentration, we can write equations
relating the HF to the individual moments on the Fe and Ni atoms for all the calculated

structures (we use C = -15.5 T/ )

in FM Fe Hp = (A + 12Byp, = Ciy

in AF Fe H, = (4 -4Bpg =0

in FM Fe,Ni Hg, = (A +8Bpug +4Bpy = CO.75u, + 0.25p,)
Hy, = Apy, + 12Bpg = C0.75u, + 025

in FM FeNi Hg = (A +4Bp, + 8Bpy, = C05p, +05u,)
Hy = (A + 4By + 8Bu, = CO05p; + 0.5,

in FM FeNi, Hy = Apg + 12Bpy = C(025 g + 0.75p5y)
Hy; =(A+8Bpy + 4Bu, = C0.25p, + 075,

in FM Ni Hy = (A + 12Bpy = Cuy

Whatever the values of p. andp,; , all these equations are solved simultaneously by 4 = 4B
and 4 = C/4, or numerically A = 4 T/, and B = -1 T/ . This must be compared with |4]| =
9T/ pg and | B| = 0.4 T/ 4, as obtained by Dang by fitting experimental results. Although these
parameters are significantly different, it does not invalidate the model. The calculated HF is only
the contact term, and even this term is very sensitive to the details of calculations [Battocletti96],

but these results do show that there are inherent systematics which can be exploited by
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phenomenological models. We should also note the slight problem for the case of AF Fe. Since
the average moment is 0 in AF Fe, this model would also lead to a nil HF. Though this is not the
case, the calculated values of the HF in this case are small (the magnitudes of the total HF are
found to be less than 5 T) as the core and valence contributions almost cancel out (fig. 45a and b),
indicating that the model should be fairly good for any magnetic structure.

Even though accurate calculations of the HF in transition metal alloys are difficult
[Bliigel87, Battocletti96), these calculations do seem to validate, in addition to the direct

comparison with the experiments, the phenomenological model proposed by Dang to describe
the HF values obtained in Fe-Ni alloys.
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Figure 44 Calculated total hyperfine field at the Fe (a) and Ni (b) nuclei, as a function of the
average magnetic moment per atom in the structure. 8 FM y-Fe, A Fe,Ni, ®FeNi, ¥ FeNi,, @
Ni. The solid line is / = -15.5 .



Chapter 5. Electronic Structure Calculations of Fe-Ni Alloys 119

H.(M

+

A
\

-10 .

Figure 45 Calculated core (a, H) and valence (b, H,) hyperfine fields at the nuclei as a function
of the moment on the Fe atoms. B FM y-Fe, (1 AF y-Fe, & Fe,Ni, ® FeNi, ¥ FeNi,. The solid
linein (a) is H, = -11 p.



Figure 46 Calculated core (a, H) and valence (b, F,) hyperfine fields at the Ni nuclei as a
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function of the moment on the Ni atoms. @Ni, ¥ FeNi,, #FeNi, & Fe,Ni. The solid line in a.

isH, = -11 .
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5.3.2.4 Site to Site Variations in Fe-Rich Alloys

In every structure considered up to now, all Fe atoms are equivalent, as are all Ni atoms.
This means that while we can establish relations between parameters at different concentrations
and volumes, we cannot identify correlations between parameters that can occur in a true alloy
of a given composition at a given volume. In an alloy, all atoms are in different local
environments which lead to possibly different local hyperfine parameters such as the HF and the
IS. To identify how these parameters are distributed and correlated in Fe-rich alloys, we have
also performed calculations in an Fe,,Ni, (68.75 at. % Fe) supercell where there are 11 distinct
sites for Fe atoms (listed in Table 18). This enables us to study possible links between parameters.

Because of the time required for the calculation, the ESC of this structure was only
calculated at one lattice parameter (¢ = 6.66 a,), as opposed to other calculations where the
energy was minimized with respect to the lattice parameter. The lattice parameter in question is
approximately the one expected for the HM FM phase based on the calculations at other
concentrations. At this lattice parameter, we find that the site to site moment magnitudes are
quite diverse, with one Fe moment actually opposite to the bulk magnetization (negative
moment). We should note that while such collinear antiferromagnetism is characteristic of the
true alloy at 7 = 0 K, we also expect moment non-collinearity to occur in such Fe-rich alloys
{vanSchilfgaarde99, Wang95). However, we could not take non-collinearity into account in our
calculation.

Based on this calculation, the single most important local environment parameter that
affects all parameters of the Fe atoms is the number of Fe atoms in the NN shell. The data given
in table 19 and illustrated in fig. 47 shows that the moment magnitudes of both Fe and Ni atoms
are directly related to it (the more NN Fe atoms, the lower the moment magnitude) and that
anti-parallel alignment of Fe moments can actually occur in a sufficiently rich Fe environment.
In fact, it also seems that the anti-parallel alignment of the moment actually stabilizes its large
magnitude, compared to other moments in an Fe-rich environment (9 Fe NNs). One might
expect that, in more Fe-rich alloys, there would simply be more anti-parallel moments but that
their magnitude would remain that of the HM alloys. This calculation clearly suggests that the
observed deviation from the Slater-Pauling curve is due to both a slight decrease of the moments

in more Fe-rich environments which leads to a small and slow deviation and the appearance of
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anti-parallel Fe moments which is the main cause of the dramatic decrease of the average bulk
moment (see fig. 32, in chapter 4). Also, in such a structure, the existence of anti-parallel Fe
moments in sufficiently Fe-rich environments is a clear indication of the negative
(antiferromagnetic) magnetic exchange between Fe moments in Fe-Ni alloys.

Upon further inspection of fig. 47, we also find that the number of valence electrons
(integration of the valence charge density within an atom, defined by the WSR) is directly linked
to the local chemical environment. In previous calculations, because the WSR of Fe and Ni
atoms changed with concentration (at the equilibrium volume), it was difficult to establish when
charge transfer occurs, as the “true” radii of the atoms are not known. However, because all Fe
atoms in this calculation have different local environments but the same WSR, it is possible to
say that electrons are transferred from the Fe atoms to the Ni atoms, since Fe atoms with more
Ni NN have less valence electrons than Fe atoms in an Fe-rich environment (fig. 47a). There
also seems to be a clear correlation between the number of valence electrons and the charge
density at the nucleus and we find in fact that the valence contribution to the charge density at
the nucleus is directly proportional to the number of s-valence electrons (fig. 49), as if the total s-
electrons charge density was simply scaled uniformly by the number of s-electrons,
independently of the charge transferred. There doesn’t seem to be any simple correlation
between the local environment (number of Fe NNs, charge transfer, etc.) and the core
contribution to the charge density at the nucleus, as is expected since these electrons are less
sensitive to the environment outside of the atom. Because both the moment and the number of
valence electrons are closely linked to the local chemical environment, it is obvious they should
also be linked together. Figure 48 shows the relation between the number of valence electrons
and the local moment. The moment seems to drop and become unstable when the number of
valence electrons becomes too large, indicating that the local density of valence electrons may be
a key to understanding the instability of the Fe moment, as opposed to the average density of
valence electrons. For a given material, the moment is rendered unstable by decreasing the
volume, yet in Ni-rich alloys, where the mean atomic volume is much lower than in Fe-rich
alloys, a large moment is stable. This could be due to the fact that charge is transferred to the Ni
atoms, so that the local valence charge density is actually lower in these alloys, even though the
average number of valence electrons is larger and the volume in smaller.

The local HF also seems very dependent on the local environment. As previously stated,
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the core contribution to the contact HF is proportional to the moment and since the moment
magnitude is strongly correlated with the number of Fe NN, so is the core HF. The valence
contribution to the HF is not as clearly linked, though there is evidence of some dependence
with the local environment. Most importantly though, is the local magnetic environment. As
seen in table 19, the HF of the moment which is aligned opposite to the bulk has a very large
contribution from the valence electrons, compared with this contribution for other Fe moments.
Based on this examination, it thus seems that the valence HF has a component proportional (or
dependent) to the local moment and a component proportional (or dependent) to the NN
moments. In a FM material, both these components nearly cancel each other out but in the case
where the NN moments are aligned opposite to the local moment, the contributions add up to a
large valence contribution which is opposite in sign relative to the core contribution, resulting in
a low effective contact HF. This is also compatible with the model of Dang and Rancourt
presented previously. At this specific composition, we find that the model can be applied locally
to each atomic site. In fact, as shown in table 20, we also obtain nearly identical parameters, since
a fit to the data of the Fe,Ni, alloy resultsin A = -5 T/, and B = -0.9 T/, If the total HF is
linearly dependent on the local and NN moments and the core HF is proportional to the local
moment (with A’ = -10.8 T/u;), then, as stated, the valence HF will also depend linearly on the
local and NN moments (with A”= A -A" = 5.5 T/p, and B” = B = -0.85 T/p,). It is thus
evident that in a material which has moments aligned opposite to the bulk magnetization, the
HF distribution will contain a low-field component (as shown in fig. 50) because the transferred
field from the NN almost cancels out the field due to the local moment. This has been described
in great detail by Ping and Rancourt {Ping92] based on experimental measurements of HFDs in
Fe-Ni alloys. The resulting link between the local environment and the HF also results in a
strong correlation between the HF and the charge density at the nucleus (or the /5). The
correlation parameter between the two is 0.004 mm/s/T (fig. 51) and the implications of this will
be discussed in greater detail in the next chapter when we will analyse Méssbauer spectra of Fe-
rich alloys in which this correlation can be seen experimentally.

This single calculation for this small supercell has clearly shown the influence of the local
chemical (number of Fe NNs) and magnetic (orientation of magnetic moments) environments on
several parameters in these alloys and has established grounds for understanding experimental

observations.
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Table 18 Atomic positions (in units of 4 = 6.66 a,) of the Fe and Ni atoms in the Fe,Nis

supercell. The NN are also given, as well as the total number of Fe NNG.

Fe

<‘V‘

1 1 1 8

Fel 0 05 05| 2 1 1 2 2 l 9
Fe2 05 0 05| 2 1 1 2 1 1 2 9
Fe3 1 05 05] 2 1 1 2 1 2 2 5
Fe¢ 15 0 05 1 { 2 1 2 1 2 7
Fes 05 15 0 2 1 2 2 1 1 6
Fe6 15 15 0 2 2 2 1 2 t 1 8
Fe7 1 15 05 1 2 2 1 t 2 2 7
Fe8 1.5 1 05 1 1 2 1 2 2 1 2 7
Fe9 0 0 o L 2 2 1 1 12 9
FelQ 0 1 of t 2 1 1 2 1 2 2 7
Ni 1.5 0.5 0 2 2 2 2 1 1 1 10
Niz 0 15 05 1 2 2 1 2 1 11
Ni2 05 1 05| 2 1 1 2 I 2 1 2 9
N3 1 0 o] 1t 2 2 1 12 1 11
Ni4 1 1 ol 1 2 1 1 2 2 1 2 9
a =666 a,.

11597.24

AU R
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8 . 11602.92
Fel 9l 0631 0777 6576 7984 1482 -1595 -0.49 -16.44| 11597.25 572 1160298 0.2279
Fe2 9] 0.630 0770 6.597 7.9% 0990 -1075 -4.17 -14.93| 11597.29 571 1160299 0.2241
Fe3 5{ 0.610 0742 6.498 7.850 2.306( -24.84 170 -23.14| 11597.24 552 1160275 0.2817
Fed 7| 0.621 0757 6.337 7915 1.948] -20.88 349 -17.38) 11597.25 5.63 11602.87 0.2530
Fes 6| 0616 0752 6511 7.879 2.100] -22.55 388 -18.67| 11597.26 5.57 11602.83 0.2624
Fe6 8] 0626 0765 6570 7961 1.704] -18.40 -3.19 -21.59] 11597.23 5.67 11602.90 0.2463
Fe7 71 0621 0.758 6539 7918 2057 -22.20 -1.98 -24.18] 11597.22 5.63 11602.84 0.2601
Fe8 71 0.622 0759 6.534 7915 2.133] -23.01 -055 -23.57| 11597.20 5.64 11602.84 0.2606
Fe9 9] 0639 0796 6.499 7934 -1.886| 1939 -24.14 -4751 1159732 5.83 11603.14 0.1882
Fe10 7| 0619 0759 6543 7921 1980] -21.44 -2.13 -23.57| 11597.22 5.59 11602.82 0.2665
Nt 10} 0701 0.852 8.602 10.155 0.480] -6.14 -11.58 -17.72] 14505.38 631 14511.69
Nil  11] 0707 0.860 8.610 10.177 0.430| -547 -9.39 -14.85{ 1450537 6.37 14511.74
N2 9] 0695 0.838 8597 10.130 0.537| -6.87 -13.13 -19.99] 14505.39 6.24 14511.63
Ni3 11| 0707 0.865 8.609 10.182 0.535] -6.98 -14.80 -21.78| 14505.37 6.36 14511.73
Ni4 9| 0697 0840 8.600 10.137 0.596] -7.60 -13.05 -20.65] 14505.38 6.26 14511.65
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Table 20 Core and valence hyperfine fields on local sites in Fe;;Ni;. The model of Dang and

Rancourt is used to calculate the HF contributions based on the local and NN moments,
according to H, = Ap, + BY . W, where the A and B best fit parameters are listed at the

bottom.

"1.807

Fe .
Fel 1.482 10.371 -1595 -0.49 -16.44 -16.01 -0.61 -16.69
Fe2 0.990 11.387 -10.75 -4.17 -14.93 -10.69 -4.18 -15.16
Fe3 2.306 12.444 -24.84 1.70 -23.14 <2491 2.17 -22.64
Fes 1.948 7943 -20.88 349 -17.38 -21.04 4,01 -16.81
Fes 2.100 9.254 -22.55 388 -18.67 -22.68 373 -18.75
Fe6 1.704 14.361 -18.40 -3.19 -21.59 -18.40 277 -21.38
Fe7 2.057 15.477 -22.20 -1.98 -24.18 -22.22 -1.77 -24.13
Fe8 2.133 15.796 -23.01 -0.55 -23.57 -23.03 -1.62 -24.80
Fe9 -1.886 15.792 19.39 -24.14 -4.75 20.36 -23.74 -4.86
Fel0 1.980 15.255 -21.44 -2.13 -23.57 -21.38 -2.01 -23.55
Ni 0.480 16.963 -6.14 -11.58 -17.72 -5.19 -11.71 -17.65
Nit 0.430 13.404 -5.47 -9.39 -14.85 -4.65 -8.97 -14.20
Ni2 0.537 19.240 -6.87 -13.13 -19.99 -5.80 -13.32 -19.98
Ni3 0.535 20.694 -6.98 -14.80 -21.78 -5.77 -14.56 -21.28
Ni4 0.596 20.157 -7.60 -13.05 -20.65 -6.44 -13.77 -21.10
A= -10.8 5.5 -5.0
Ba 0.0 -0.85 -09
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Figure 47 Effect of the local chemical environment on (a) the number of valence electrons, (b)
the Fe moment and (c) the isomer shift. The open symbol represents the atom whose moment is
aligned opposite to the others.



Chapter 5. Electronic Structure Calculations of Fe-Ni Alloys 127

25 - . ' '
) ® .
o IR U
] ® ]
: o y
154 o -
“3 9 d
3 p
£ 1.01- Py .
] )
0.5 j
: a
00 : : . .
78 79 8.0
n,(e)
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Figure 49 Correlation between the valence contribution to the charge density at the nucleus and
the total number of valence electrons at the Fe atoms.



Chapter 5. Electronic Structure Calculations of Fe-Ni Alloys 128

Number of occurences

8 12 16 20 24 8
HM

Figure 50 Hyperfine field distribution on the Fe atoms in Fe,;,Ni;. The low field component is
due to the atom whose moment is aligned opposite to the others.

IS (mm/s)

0.15 1 L
0 5 10 15 2 25 0

H(T)

Figure 51 Correlation between the hyperfine field and the isomer shift of Fe atoms in Fe Ni,.
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5.3.2.5 Composition Dependence of the Ground State Properties

Figs. 52 and 53 plot several key properties as a function of composition, as calculated
from the plots in figs. 37 through 46. Fig 52a shows the mixing energy for the various structures,
which is relative to the energies of the FM Ni and NM Fe endpoints. The mixing energy for a
structure with composition Fe_Ni,__ is defined as E_, () = E(¥) - [xE +(1-2) Eyj]. This mixing
energy indicates the relative stabilities of the phases and indicates the true ground states in the Fe-
Ni binary phase diagram (at 7 = 0 and P = 0). Within the LSDA, y-Fe is found to be more stable
than a-Fe, even though experimentally this is not the case. We thus limit our discussion to the
FCC phases but, in fact, a-Fe is the stable Fe end-member phase. FeNi, and FeNi both lie below
the £ = 0 line, indicating that they are more stable than equivalent amounts of pure Ni and Fe.
However, FeNi lies above the line joining FeNi, and Fe, indicating that an alloy with more than
25 at. % Fe should separate into distinct phases of FeNi, and Fe. An alloy with less than 25 at. %
Fe should separate into Ni and FeNi,. Of course, we have not yet included the results for the
disordered alloy, so we can only describe the relative stability of the ordered phases. The CPA
calculations described later will provide the mixing energies of the disordered phases, enabling us
to get a complete picture. It does however suggest that FeNi is only a metastable phase in the Fe-
Ni phase diagram. This plot also shows how the difference in energy between the FM and NM
phases varies with composition.

Fig. 52b shows the composition dependence of the equilibrium volumes of each of the
phases. As previously stated, the HM values for Fe;Ni and Fe are extrapolated, so they are not
necessarily as precise as for the other phases. For both the HM FM and NM phases, we observe a
linear behaviour of the volume reminiscent of Vegard’s law [Vegard28]. Also, the accuracy of the
calculation is off, as the calculated volumes are lower than the experimentally observed volumes
because primarily of the LSDA. Finally, fig 52c shows that the NM phase is less compressible
than the HM FM phase, primarily because of the lower volumes. It is interesting to note that the
true ground state of Fe;Ni has a lower bulk modulus than the HM FM and NM phases. This
softening of the lattice is due to the added degrees of freedom stemming from the instability of
the magnetic moment around the equilibrium volume. As in the case of the volume, this
calculation produces inaccurate results when compared to experimental values (James92] (BS? =
180 GPa, By\" = 254 GPa, B.”._ = 170 GPa, B = 251 GPa). This discrepancy can be due to
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the smaller calculated volume, as the bulk modulus tends to increase as the volume decreases (a
material becomes less compressible as its density increases).

Fig. 53a, which represents the IS on the Fe atoms, is interesting because it shows the large
difference between the HM and NM at large Fe content, which could serve to identify a
HM/LM transition. In particular, one sees that the equilibrium point for Fe;,Ni, which occurs at
an Fe moment of 1.5 u,, deviates strongly from the HM values and tends to the NM ones. This
indicates that the /S might be used to gauge the degree of HM or NM character of an alloy. This
feature of the ISs will be discussed in more detail in chapter 6 based on experimental results. Fig.
53b shows that in both Fe and Ni, in the HM FM phase, the HF’s magnitude increases linearly
with composition, as is seen experimentally within the collinear magnetism domain of Fe-Ni
alloys [chapter 4]. Departure from this linear trend must thus come from i) a reduced moment, as
in the equilibrium case of Fe;Ni, or ii) non-collinearity or anti-parallel alignment, as seen in AF
Fe. Finally, fig. 53c shows the actual moment magnitudes on the Fe and Ni atoms, as well as
their average. Though not exactly a straight line, the average is consistent with the Slater-Pauling
relation. Deviation from linearity comes from the fact that the Fe moment does in fact change
with the composition, as has been established by James et al. {James99]. This also shows that any
dramatic deviation from the Slater-Pauling curve at high Fe-content must come from a reduced

moment, or non-collinearity.
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Figure 52 Calculated composition dependencies of the energy (a), atomic volume (b) and bulk

modulus (c) of the ordered phases. 8 FM HM, O NM, * equilibrium. In (a), at each
composition, E, is the linear interpolation between the energies of pure Ni and pure Fe.
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Figure 53 Calculated composition dependencies of (a) the isomer shifts, (b) the hyperfine fields
and (c) the magnetic moments of the ordered phases. In (a) 8 HM FM, 0 NM, * equilibrium. In
(b) and (c) 8/0 HM FM, %/+¢ equilibrium. Filled symbols are for Fe atoms, open symbols for
Ni atoms and half filled for the average.
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5.4  ESC of Chemically Disordered Phases Using the CPA

5.4.1 Constrained Collinear Magnetic Structure Calculations

To treat chemically disordered systems such as Fe-Ni alloys, the coherent potential
approximation (CPA) is used to perform electronic structure calculations on small sized systems
[Kudrnovsky94). In this approximation, instead of having distinct Fe and Ni atoms at various
crystal positions, each crystal position is occupied by an “average” atom. This is thus a mean field
approximation that is calculated in the following manor:

) Assuming a starting electronic structure for the Fe and Ni atoms, the
compositional average of the transfer matrix is used to calculate an CPA average
atom.

if) The calculation of the transfer matrix of an Fe or an Ni atom embedded in the
structure containing only CPA average atoms is performed

i1) The new transfer matrices of the Fe and Ni atoms are used to recalculate the
CPA atom.

iv) The calculation is repeated until the ESC has converged, i.e. the CPA average
results in individual Fe and Ni acoms that, when averaged, reproduce the CPA
average.

This approximation thus treats all Fe (or Ni) atoms identically such that only average parameters
of the Fe or Ni atoms can be obtained. This is different from a supercell calculations in which
the alloy is treated as a regular crystal with a large (32 atoms or more) unit cell. In a supercell
calculation, each atom has a (possibly) distinct environment and thus different properties,
resulting in a true alloy-like distribution of parameters. Such a calculation is unfortunately
computationally very time consuming when dealing with large supercells. We have thus used the
CPA calculation to treat Fe-Ni alloys.

It is important to understand the implications of the CPA. In a real alloy, each atom has
a distinct environment with leads to distinct parameters (moment, HF, etc.) which, when dealing
with the alloy as a whole, must be dealt with as distributions. It is often useful to use the average
of the distribution to characterize the alloy. In the CPA approximation, an average electronic
structure (characterized by its transfer matrix) is calculated, resulting in the CPA averages of
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parameters such as the moment and HF. However, the CPA averages of the parameters might
not be the same as the averages of the true alloy, even if the LMTO calculation was exact. This is
because of the non-linear correspondence between the electronic structure and the resulting
parameters. We must thus always be careful when dealing with CPA averaged parameters.
Despite the possibility of error from using a2 mean field approximation, the CPA has been
proven to be a reliable means of treating alloyed systems {Faulkner82, Ducastelie91]. In the case
of Fe-Ni alloys, a direct comparison between supercell and CPA calculations has shown that the
CPA reproduces the average moment magnitudes of the supercell calculation [James99].

The CPA calculations were all performed by our collaborators Dr. Bose and Dr. Sanyal
of Brock University. In order to deal with the Madelung term which results from the charge
transfer from one species to the next, the atomic radii of both species were systematically
optimized to guarantee charge neutrality of the spheres (to better than 0.001 ¢ °). The sphere
overlap was checked and remained within the limit of validity of the ASA (no overlap correction
was used in these calculations). Although the calculation was non-relativistic, first order

relativistic corrections (mass-velocity and Darwin terms) were included in the energy values.
5.4.2 Disordered Local Moment Calculations

The disordered local moment model was introduced to investigate the properties of
magnetic materials above their critical temperatures, when no magnetic order is thought to be
present but where local moments are still present [Pindor83). The concept is simple. In the case
of a single species material such as y-Fe, one performs a CPA calculation of Fe Fe, where the
spin 1 and | atoms are assumed to be identical (same potential parameters) but with opposite
moments, as would be the case at high temperature. Unfortunately, the analogy with high-
temperature materials is limited because the calculation doesn’t take into account the entropy of
the phase which takes on a critical importance at high temperature. Another use of the DLM

calculation is to investigate the stability of the magnetic moment, irrespective of the magnetic

Table 21 Calculated equilibrium properties of Fe,Ni,, in various phases

M 11.050 0.0 2543 0.631 11861.14 0.304
DLM 10.653 4.8 1.968 0.000 11861.43 0234

NM 10.177 77 0.000 0.000 11861.66 0.178
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structure. In a true local moment material the moment magnitude is independent of the magnetic
configuration but in the case of itinerant magnetism, the magnetic order is of great importance to
stabilize the moment. Ni is a good example of this. In the absence of magnetic order at 0K (ina
DLM calculation), the Ni moment vanishes [Pindor83]. When a FM order is imposed, a moment
of ~0.6 p, is found. In y-Fe, a moment persist in the DLM state, even though it is slightly
different from the one in the FM case [Pinski86]. The inherent stability of the magnetic moment
can thus be evaluated by 2 DLM calculation and the distinction between the energy of
stabilization of the moment (internal to each atom) and the energy of interaction with the other
atoms (external, or between atoms) can be made [Rosengaard97].

In the case of an Fe-Ni alloy with concentration ¢ of Fe, this is treated by a four-
component CPA calculation (Fe,Fe,){Ni;Ni ),.. In fact, as in the case for pure Ni, in the DLM
model, Ni atoms always have vanishing moments, so the DLM can be treated as a three
component system (Fe,Fe,) Ni,, where the Ni is non-magnetic. Akai and coworkers have also
pushed this type of analysis further by allowing different concentrations of up and down atoms,
such as Fe, Fe, Ni, Ni,,  [Akai93] to deal with partial antiferromagnetic alignment. This
treatment should not, however, be considered as a replacement (or an analogue) to a large-scale
supercell calculation with anti-parallel moments, since it does not distinguish between various
local environments: all Fe atoms have the same mean-field environment and simply have a finite

probability of being in a parallel or anti-parallel configuration.
5.4.3 CPA Calculations of FeNi,

Before presenting the ground state properties for the complete series of alloys, we will
illustrate the differences between FM, NM and DLM calculations in the case of FeNi,,. Such
calculations have already been performed by Akai [Akai93] using the Korringa-Kohn-Rostoker
(KKR) method. The results can be slightly different in these LMTO calculations because of the
different methods. Fig. 54 shows the energy, magnetic moments and charge density at the
nucleus in FeNi;; as a function of volume. As in the ordered compound, there is a transition
from a HM FM state at large volume to a NM state at low volume. The drop in the moment at
the transition volume is sudden in both Fe and Ni atoms. As in the ordered structures, a

discontinuity in the charge density at the nucleus is observed at the transition volume. The DLM
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phase has an equilibrium energy which is lower than the NM phase but higher than the FM
phase, indicating that this alloy favours the presence of a moment on the Fe atom {(compared to
the NM phase) but is even more stabilized by ferromagnetic interactions between large Fe and
Ni moments. In fact, supercell calculations that admit non-collinearity (or at least anti-parallel
alignment) find that the lowest energy phase has large Fe and Ni moments but that some Fe
moments are antiparallel to the bulk magnetization when they are in an Fe-rich local
environment [YangWang97, vanSchilfgaarde99]. Of course, such configurations are not
attainable in the CPA calculations we have performed, or in the CPA treatment for partial
antiferromagnetic proposed by Akai ez 4. [Akai93].

In table 21, we see that even though the FM and DLM equilibrium moments are
suggestive of a HM state, p;, (0) and the /S are quite different. Part of this is due to the difference
in equilibrium volumes of the two phases but fig. 54c shows that, at the same volume, p¢, (0) is
quite different in the DLM and FM phases.

Another important note is regarding the equilibrium volumes. The DLM equilibrium
volume is found to be quite smaller than the FM equilibrium volume. In a local-moment material
where the exchange interactions are volume independent, the DLM phase should have the same
moment and a similar energy curve as the FM phase, with a volume-independent offset
corresponding to the magnetic interaction energy, AE_ = Z ],! W, B, (assuming a Heisenberg
Hamiltonian). In our case, we find that although the moments in the DLM and FM phases are of
similar magnitude, the energy curve is clearly shifted towards lower volumes, indicating that the
difference AE_ in magnetic interaction energy between the FM and DLM changes with the
volume. Since the moments are similar, this suggests that the exchange interaction parameters ],
are strongly volume dependent.

We can also discuss the difference between the NM and DLM phases. The increase in the
volume from the NM to the DLM ground state gives an idea of the difference in volume that
results from creating a large moment, as is postulated in the 2-y-state model of Weiss [Weiss63].
In this respect, it is interesting to compare our LMTO result to the KKR result of Akai et /.
[Akai93]. In their work, Akai and coworkers found that the DLM state actually had the lowest
energy of all three states considered but that its equilibrium volume was very close to the NM
equilibrium volume, indicating that the creation of a large moment is accomplished without a

change in volume, thereby breaking the Weiss hypothesis. In any case, both calculations show a
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large volume difference between the FM and DLM solutions, which we interpret as being due to
a dramatic volume dependence of the magnetic exchange interaction parameters. The

implications of such a volume dependence of the exchange parameters on the Invar problem are

discussed in chapter 7.
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Figure 54 CPA results for Fe,Ni,; in the FM (solid line), DLM (dashed line) and NM (dotted
line) phases. The arrows indicate the equilibrium volumes for each phase (a). In (b) the Ni

moment in the DLM phase is 0.



Chapter 5. Electronic Structure Calculations of Fe-Ni Alloys 139

20 T | T ' ' | *
o a J
15 -
< 10- . ) -
€ ‘
~ 54 q
Y -4 |
w 0 ﬁ j —
T
Sq " -
115 1 L 1 L 4 T — ' |
1 b
11.0 <
T A
2 - - -
8 i v
%5 10.5 -t '.
> ] X .
10.0 -
L} u ' . :
4 C
300 -
- . -
© —_— J
%3 250 - g ._-_l-.,=‘-...‘_.‘ /
- * -
a1] .N\ |
200 4 . -
\.\
- .\ -
1& T v 1 ] * T ’ _— i '
0 20 40 T - -
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5.4.4 Composition Dependence of the CPA FM, DLM and NM Equilibrium

Properties

Figs 55 and 56 highlight several of the properties resulting from the CPA FM and DLM
calculations as a function of composition. As in fig. 52a for the ordered compounds, fig. 55a
shows the energy of the chemically ordered and disordered alloy, relative to an idealized mix of
pure Ni and pure y-Fe, thereby indicating the stability of the homogeneous alloy relative to
segregation into separate phases. This figure shows that at no composition is the chemically
disordered alloy stable with respect to segregation into FeNi, and y-Fe, as their energies all fall
above the dotted line. One can also see that the chemically ordered phase FeNi has a slightly
lower energy than its disordered alloy, Fe,Ni,, indicating that it is metastable and may form if
the mobility of the atoms is insufficient for them to segregate into FeNi; and y-Fe.

We should be careful in ascribing too much value to these comparisons between
chemically ordered and disordered compounds, as the calculations were not performed in the
exact same context. As previously mentioned, the CPA calculations included relativistic
corrections in a non-relativistic treatment, whereas the calculations for the ordered compounds
were fully scalar-relativistic. Small differences in energies might be due to the treatment used
rather than to real differences between the compounds. It is however possible to compare all
CPA calculations with each other.

We find that the FM state is more stable than the NM or DLM state up to 83.5 at. % Fe.
Above this composition, the DLM state is more stable, until it converges with the NM state as
the moment drops continuously to 0 u; at ~91 at. % Fe. Based on these results, calculations
which include non-collinear magnetism and partial anti-parallel spin arrangements (which
require a supercell treatment) can potentially produce lower energies at compositions in the Fe
rich region. This has in fact been shown for Fe; Ni,, , [vanSchilfgaarde99], where a non-collinear
ground state is found, having a non-collinear ground state less than 1 mRy lower than the FM
ground state. When considering only the collinear magnetic structures, we find that the FM state
becomes less stable than the NM state at 84.5 at. % Fe. This is similar to the value of 74 at. %
obtained by Abrikosov ez 4. [Abrikosov95] who performed similar calculations, but using a
Green’s method instead of the LMTO method. Because of the very small energy difference

between the two phases around these compositions, it is not unexpected that different methods
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produce different results.

In the disordered alloy, the concentration dependence of the equilibrium volume (fig.
55b) is similar to the one obtained in the ordered phases: the HM FM phase has a volume which
increases quasi linearly with concentration, whereas the volume of the NM phase decreases
linearly with the concentration, as would be expected from Vegard’s law [Vegard28]. It is
worthwhile to point out that the ordered phase calculations and disordered phase calculations
(CPA) do not give the same result for the end-members (Fe and Ni), since different
approximations were used (fully scalar-relativistic vs. non-relativistic with relativistic
corrections). However, the behaviour of both ordered and disordered phases are similar and in
fact A/ ¢ is the same at ¢ = O at. % Fe (dashed and dotted lines in fig. 55b). Experimentally,
chemically ordered FeNi, has nearly the same volume as chemically disordered Fe,;Ni,, (11.205
+0.007 A’ s, 11.226 + 0.002 A®, [Wakelin52], AV/V = -0.2 %) but FeNi has a more
significantly lower volume than its disordered alloy (11.475 + 0.005 A’ [Albertsen81] vs. 11.531
+ 0.003 A’ [Owen37], AV/V = -0.5 %, ), as is predicted by the ESCs. Comparisons for Fe,Ni
and HM y-Fe are not possible as these phases are not observed experimentally. Compared to the
HM FM phase, the DLM phase results in a concentration dependence of the volume which is
quite unusual, linking the HM FM volume at low Fe concentration to the NM volume at high
Fe concentration, as the DLM’s phase’s moment drops continuously from the HM value to 0
(fig. 56¢). It is also interesting to note that, as is experimentally observed and reported in the
previous section, there is, for Fe-rich alloys, a deviation from Vegard’s law towards larger
volumes. This feature is disturbing since one would expect that as the Fe moment drops (albeit
slightly) with increasing Fe content, the volume would also drop because of the moment ws.
volume relation. The fact that there is a positive deviation can only be understood in terms of a
magneto-volume effect due to the Fe-Fe magnetic exchange parameter. This very important
point and its relation to the Invar effect will be discussed in greater detail in the next chapter.

The calculated bulk moduli B of the chemically ordered and disordered alloys agree well
with each other in the FM and NM phases (fig. 55¢). As seen in the ordered phase, B drops very
slightly as Fe content is increased in the FM phase and tends to rise in the NM phase. A large
difference between the FM and NM phases is clear and is mainly attributed to the difference in
equilibrium volume between the two phases (the drop in volume is associated with an increase in

compressibility). Even though the volume of the DLM phase is lower than that of the HM phase,



Chapter 5. Electronic Structure Calculations of Fe-Ni Alloys 143

B has a tendency to decrease, especially as the Fe content is increased and as the Fe moment
deviates more strongly from the HM value. At 80 at. % Fe, the value is lowest and then starts
rising up to the NM value at larger Fe content. This clearly shows that the magnetic disorder
generally increases the compressibility of the lattice (lowers B) compared to constrained FM and
NM situations, as was calculated by van Schilfgaarde et 4/. [vanSchilfgaarde99]. Experimentally,
the decrease in B between 40 and 65 at. % Fe is substantially larger than expected from data
below 40 at. % Fe indicating it is most likely due to the onset of non-collinear magnetism.

It is also interesting to note that, although other parameters vary continuously from the
HM value to the NM value as Fe content is increased (volume, moment, etc.), B exhibits a
strange behaviour and suddenly the concentration of 80 at. % Fe is physically associated with
some form of discontinuity. One should note that the calculation of the bulk modulus requires
the second derivative of the E(V) curve, so it is sensitive to round-off errors in the energy. We
took all precautions to correctly evaluate the curvature of the energy curve in order to get a
value of the B which is precise to about 5-10 GPa for the HM/NM calculations and 10-15 GPa
for the DLM calculation.

Following Moruzzi [Moruzzi88] and Herper et a/. [Herper99a), the Debye temperature
can be calculated from the ESC according to:

r B 172
e, = 41.63[“7] : (533)

where r, is the WSR in a.u., Bis in kbar (1 kbar = 0.1 GPa) and M is the atomic mass. When
using this formula, we find (fig. 57) that the ©,, = 350 K and varies very little with the
composition (~10 K over the entire range), as is experimentally observed based on the Méssbauer
measurements from the previous section. We also find that 8, in the NM phase is also
composition independent and higher than in the FM phase (8, = 405 K).

The calculated /S (fig. 56a) in the HM chemically disordered phase does show a
systematic discrepancy with the chemically ordered phase, possibly due to the CPA. In any case,
it also shows a large drop at the HM/NM transition. The drop is due both to the decrease in
volume and the difference between the charge densities at the nucleus in both phases. The DLM
result is interesting as it shows the /S drops continuously away from the HM value as the Fe
content is increased. Even when the moment is still large (around 65 at. %), the IS in the DLM

phase is closer to that of the NM phase than the HM phase. This seems to indicate that magnetic
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ordering substantially affects the IS in Fe-Ni alloys, contrary to what is expected in a pure local
moment material. As in the case of the HM/NM drop, part of the HM/DLM drop is due to the
decrease in volume but another part is due to the difference between the DLM and HM charge
densities at the nucleus, as shown in fig. 54 for Fe,Ni,,;. Temperature-induced magnetic
disordering effects can thus possibly be seen in these alloys, as is investigated experimentally in
chapter 6.

The contact hyperfine field (fig. 56b) in both Fe and Ni vary linearly with Fe content in
the HM FM phase, though their behaviour is quite different than that calculated for the ordered
compounds. This is most likely due to the use of a full-relativistic treatment in the ordered
phases’ calculations. The effect of the ESC parameters on the HF has been extensively studied by
Bliigel (Blugel87] and Battocletti [Battocletti96]. As in the case of the IS, the HF is always smaller
(in magnitude) in the DLM phase compared to the HF in the HM FM phase. The HF on the Ni
atoms is always zero in the DLM phase and the HF on the Fe atoms drops monotonously to 0 as
the moment drop to 0. Previously, we showed that the HF could be calculated based on the local
and NN moments as H = .4p + BXp.. When using the SRA calculations on the ordered
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Figure 57 Calculated 6, for Fe-Ni alloys based on the CPA calculations in the FM (B) and NM
Q) phases.



Chapter 5. Electronic Structure Calculations of Fe-Ni Alloys 145

phases, we found 4 = -4 T/, and B = -1 T/,. In these non-relativistic calculations, we have
already seen that the HF is different from the HF in the SRA calculations, so we can expect the
coefficients A and B to be different. In the case of a disordered alloy, the NN moments should be
taken as the average moment and we find that the model still holds but with A = 4.5 T/p; and
B = 0.7 T/p,. In the DLM case, the NN moment should be taken as nil and we find that we
still have H = Ap with A = 4.8 T/, a value very similar to that obtained in the FM
configuration. As in the case for the calculations of ordered phases, these results all tend to
support the use of the phenomenological model proposed by Dang and Rancourt [Dang96a,
Dang96b] to explain the HFD in Fe-Ni alloys.

The final and very important properties we have represented are the magnetic moments
on the Fe and Ni atoms (fig 56¢). The HM FM results compare well with those in the chemically
ordered phases, both in terms of the individual moments on the Fe and Ni atoms and the average
moment of the bulk material. We find that although the Ni moment remains nearly constant
over the range of stability of the HM phase, the Fe moment drops slightly as the Fe
concentration is increased. This results in an average moment which is nearly linear, as predicted
by the Slater-Pauling relation but has a slight curvature resulting is a sub-linear relation with Fe
concentration. The drop in the Fe moment can be associated with a drop in the Fe moment
based on the NN environment, as shown by James et 4/. {James99]. If the moment of an Fe atom
varies linearly with 7, the number of Fe NNs, as p () = p.% +  n, then the average Fe
moment in a random binary alloy of Fe concentration ¢ will be p (¢) = p.[,); + 12ac, alinear
dependence with the Fe concentration. In fact, the concentration dependence of u_ is not quite
linear but the idea has been shown to be valid. In the DLM case, the Ni moment is always 0.
This is because the energy of formation of a moment (internal, or intra-atomic, energy) is always
positive, meaning that the Ni atom on its own will not develop a moment at O K (since we do
not take entropy into account at 0 K). When the magnetic ordering (external or inter-atomic)
energy of the FM phase is taken into account, 2 moment occurs, of magnitude around ~0.6 .
In the DLM case, no magnetic ordering energy is present, so the moment always collapses. The
Fe moment, however, behaves quite differently. At low Fe content a high moment is found,
similar to the one found in the HM FM phase. This clearly shows that the internal energy of
formation of the moment is negative. The FM magnetic ordering only slightly stabilizes the
moment close to the DLM value (fig. 56c). As the Fe content is increased, the moment drops
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monotonously but only substantially above 70-75 at. % Fe. Below this concentration, the DLM
moment should still be considered a HM. The collapse of the moment as the concentration
increases is akin to its collapse as the volume is reduced (when considering a fixed concentration).
Based on both the FM and DLM calculations, one can argue that, in a phase with partially non-
collinear moments, the Fe moment is expected to remain high but slightly less than in the FM
phase.

There are very interesting yet puzzling relations between the various calculated
parameters presented in this section. For example, the volume increase in the DLM phase relative
to the HM phase, (I~ Ve / (Vi = Vaar) » is found to be directly proportional to the square
of the Fe moment in the DLM phase, 7, (fig. 58). This type of relation is unexplained though an
attempt can be made. We assume Vegard’s law holds for the HM FM and NM phases and that
the volume of the Ni atom is independent of its state (I, = Vpy)- If the equilibrium volume of
any alloy of concentration c is semi-universal, i.e. V) = Ve (@ + f(1(0), then we would have
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Figure 58 Relation between the DLM moment squared and the relative volume between the
DLM and NM phases in Fe-Ni alloys.
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If f(u) = aW?, then we would have the relation we have described. However, the volume-
moment relation observed in the DLM phases of Fe,Ni,; and y-Fe do not behave this way (we
actually have f(u, 0.65) = u*° and f(, 1.0) = u*2, indicating that f(,¢) does in fact depend on
both  and ¢, not just p. Such relations can thus only be elucidated when a complete analysis of
the volume dependence of the internal and external energies related to the moment are known.
The CPA calculations of HM FM alloys indicate that Fe-Ni alloys can to some degree be
considered as simple binary alloys which obey Vegard’s law and the Slater-Pauling relation but
upon closer inspection, deviations from these relations are at the heart of the complexities
involving these alloys. The DLM calculations shed new light on the nature of the magnetic
moment and the electronic structure (through the /S) when the magnetic order is changed. The
dramatic differences between magnetically ordered (HM FM) and disordered (DLM) phases
clearly indicate that the alloys are quite complex and that many of their properties will be
intrinsically linked to the magnetic order of the alloys. Though extensions to finite temperatures
are uncertain, these calculations seem to show that the loss of (long-range) magnetic order at T
will certainly be accompanied with unusual changes in properties, like the /S or B, which are
usually very well behaved and understood. Further inspection of experimental results in light of
these calculations can reveal new and very important information regarding the Invar and anti-

Invar effects, as will be manifested in the following chapter.
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55  Magnetism of y-Fe: FM, AF and DLM Calculations

The magnetism of y-Fe has long been discussed in terms of constrained equilibrium states
which are obtained from ESCs [Anderson77, Kubler81, Wang85]. In particular, the initial
calculations which imposed FM magnetic coupling found that three states were obtained as a
function of the lattice volume. At low volumes, the NM phase is found to be more stable than
any FM phase but upon increasing the volume, one would find an IM FM phase with a moment
~1 W, and at higher volumes, a HM FM phase with a moment 22.5 . Based on these

calculations, many others concluded that y-Fe could occur in one of two states, as earlier
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Figure 59 Calculated moments in y-Fe for different magnetic structures: — DLM phase, - - HM
FM phase, -+ IM FM phase, - - AF-1 phase, - -~ AF-2 phase. The DLM calculation was non-
relativistic, with some relativistic corrections while the other calculations were fully scalar-
relativistic. The phase which is most stable at the given lattice parameter is indicated at the top
(this excludes the DLM phase because the energies cannot be directly compared).
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proposed by Weiss [Weiss63] and that many of its finite temperature properties could be

explained by thermal excitation between the states.
More refined calculations, which for example treated AF order, also found an AF

constrained minimum with a small moment ~1 p,. Spin-spiral and more complex AF structures

(James99 and references therein] found even more possible states for y-Fe with moments which
range from 0 to the HM value. Finally, as shown in fig. 59, DLM calculations of y-Fe show that

the stable DLM moment shows a continuous increase from the NM value at low volume, to a

HM value at large volume {these calculations, Pinski86]. Several other solutions are also plotted
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Figure 60 Illustrations of (a) NM and (b) HM
states. - - internal energy (of formation of the
moment), - magnetic ordering energy (= -Ju?
in 2 NN Heisenberg model), — total energy. In
the HM case, the moments in the DLM case
(Mpra) and with magnetic order (j,,o) are
indicated.

in fig. 59, showing that the stable moments in
each structure are usually close to the DLM
moment but they may be stabilized to slightly
higher or lower values, depending on the
magnetic structure (as illustrated in fig. 60). This
tends to indicate that, as a function of the
volume, y-Fe stabilizes a finite moment which
varies continuously from 0 to a HM value and
which is partially affected by the imposed
magnetic order. As commented by James et al.
(James99), one should also note that the
equilibrium volumes for each of the considered
phases also increases with volume, indicating
that there are not only two equilibrium phases
(in the sense of energy minima) but a large
number of phases associated with various
magnetic configurations. The continuity of the
magnetic moment from the NM phase to the
HM FM phase thus tends to indicate that the
transition from a HM to a NM atom is of
second-order as a function of volume, as opposed
to the first-order transition presented in the 2-y-

state model.
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Table 22 Effective Heisenberg magnetic exchange interactions with the first 3 NN shells, for the
various magnetic structures considered (the total exchange interaction should be maximum when
the structure is stable)

NN +12 /0 -4 [0 +4 /0 0

NNN +6/f0 +6]cz +2!qz 0
N? +24 [ o3 -8/ -8/0 0

Also shown in fig. 60 are the volume ranges where the various phases have the lowest
energy. Since the HM FM phase is stable at large volume, the magnetic exchange interaction (J)
parameter must be positive. At lower volume, the AF-1 structure (which corresponds to
individual planes in the (001) direction with up and down moments) is more stable, indicating
that the at least the NN exchange interaction parameter (J,,) must be negative, according to table
22, For intermediate volumes, the AF-2 structure (which corresponds to individual planes in the
(001) direction with up and down moments) is more stable, indicating that there might be
negative long-range magnetic exchange interaction constants. The fact that different magnetic
structures are stable at slightly different volumes indicates that the magnetic exchange interaction
parameter is changing dramatically with the volume, as has been calculated by Sabiryanov ez al.
[Sabiryanov95]. This also explains the collapse of the moment in the FM calculation: because J,
is negative and too large, the magnetic ordering energy in the constrained FM phase exceeds the
internal energy of formation of the moment, so the moment vanishes. In the AF-2 structure, the
same collapse is seen but at lower volume. In the AF-1 structure, at small enough volume, the
magnetic ordering energy seems relatively small, such that the stable moment is simply given by
the minimum in the internal energy (calculated by the DLM method).

When alloyed with another species, the state of the Fe atoms (the magnitude of its
moment) that will be stable will be dependent on the atomic volume of the other species but also
on the magnetic interaction between the Fe moments and the other species. For example, in Fe-
Pt alloys, the large atomic volume of Pt will result in a large average Fe-Fe distance and the large
volume HM FM state is stabilized. Of course, because of charge transfer, the alloying will also
affect the moment-volume relation shown in fig. 59. As previously stated, in Fe-Ni alloys the
HM state is also stabilized because of charge transfer, even though the atomic volume is smaller

than where the HM is stable in y-Fe.

The complex magnetism of y-Fe is thus due to two distinct phenomena: the instability of
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the moment at low volume (or large valence electron density) which causes a collapse of the
DLM moment and a change in the magnetic exchange parameter with volume, which results in
the stabilisation of various magnetic configurations as a function of volume. In this view, the
concept of two states disappears as there is a continuous evolution from a NM phase at low

volume (which, if there was a moment would be AF) to a HM FM phase at larger volume.

5.6 Conclusion

The study of Fe-Ni alloys has always been supported by many different types of
experimental observations. Since the end of the 1970's the use of ESCs in providing a theoretical
explanation to the Invar effect has rapidly grown to be the major source of insight on Fe-Ni
alloys. We have decided to take advantage of the enormous predictive capabilities of current
ESCs to investigate in more detail than ever before certain aspects and properties related to the
magnetism of Fe-Ni alloys. These calculations are proven to be reliable in explaining some
known aspects of Fe-Ni magnetism, most notably within the context of Ni-rich collinear
magnetism. A careful study of alloys in the Fe-rich region illustrates the extremely complex
nature of the magnetism of FCC Fe. Even though these calculations only give information on
idealized systems at T = Q K, they provide insight on how various parameters are linked and
how one might expect to characterize finite temperature properties.

The precision of the calculation of the charge density at the nucleus is now good enough
to predict what can be observed experimentally through the IS, ineasured by Méssbauer
spectroscopy. We have found that the /S can be used as a sensitive probe of the nature of the
magnetic moment in Fe-Ni alloys. The analysis of HFs in these calculations also shows that the
HFDs measured experimentally can be conclusively linked to various intrinsic features of the
alloys which are otherwise hard to grasp.

It is on the basis of these calculations that we will present in the next chapter a review of
experimental data pertaining to Fe-Ni alloys in the collinear magnetic regime and advance new
experimental data which will be used to shed light on the problems of Invar and anti-Invar

properties of alloys.



6. Experimental Observation of a
HM/LM Transition in Fe-Rich FCC Fe-
Ni Alloys. Implications Regarding
the Invar and Anti-Invar Effects

6.1 Introduction

In order to better understand the anomalous properties of FCC Fe-Ni alloys in the range
of 60 to 80 at. % Fe, we have performed a detailed MS study of rapidly quenched samples. Unlike
bulk measurements such as magnetisation or dilatometry, with this experimental method it is
possible to distinguish the FCC and BCC phases that might coexist in a sample, therefore
enabling us to study the properties of the FCC phase up to 78 at. % Fe. There were two main

purposes to this study:

1) To examine the RT IS (and other hyperfine parameters) and possibly relate them to
the composition-driven HM/LM transition predicted by ESC calculations;

2) To examine the thermal evolution of the /S in FCC Fe-Ni alloys and its implications

regarding the Invar and anti-Invar phenomena.

This chapter comprises three main parts which deal with the sample preparation and
experimental methods, the RT measurements (MS and XRD) and their analysis, and the high
temperature MS measurements and their analysis. The analysis of the /S of the RT measurements
unambiguously identifies a composition-driven HM/LM transition occurring around 70 at. %

Fe. On the other hand, the higher temperature measurements show two distinct effects: the

152
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reduction of the HM magnitude with loss of magnetic order in Invar alloys, and the increase of
the moment magnitude with temperature in anti-Invar alloys. Discussions relating these
observations to the thermal expansion properties of such alloys are given, leading to an
explanation of the anti-Invar effect. On the other hand, the questions relating to the Invar effect

will be resolved in the next chapter.
6.2  Experimental Procedures
6.2.1 Sample Preparation

The samples were prepared by Prof. R. A. Dunlap from Dalhousie University. They
were prepared by melting stoichiometric mixtures of Fe and Ni then quenching them by the
twin roller quench method. The estimated quench rate from the melt is 10°-10° K/s. This allowed
samples that had enough retained FCC phase at RT to be produced up to 78 at.% Fe. The
resulting flakes, which have thicknesses which varied between 50 and 200 pm, show some signs
of oxidation on the surface but none of our measurements revealed any oxides, indicating that
the bulk of the flakes were pure Fe-Ni. For MS, we chose flakes in order to produce a sample
with an approximately uniform thickness of ~100 um. The same flakes were also used for the
XRD. The samples were not analysed to determine their composition. The nominal composition
of the Fe-Ni melt was used. Actual compositions should vary by at most 0.5 at.% Fe, as can be
inferred from the correlations berween measurements at various compositions, and the

comparison between our measurements and other published measurements.

6.2.2  X-ray Diffraction

Because of the proximity of the martensitic transition in these Fe-rich samples, the FCC
phase is often unstable when the sample is filled or polished. For this reason, we had to use the
flakes in their original state to do “powder” XRD measurements. For these measurements, we
chose flat flakes which could be fixed onto a low-background holder using double-sided tape. As
this inevitably leads to an error in the reference position of the absorber, some fine Si powder

(SRM 604b) was sprinkled on the flakes to provide a calibrated reference height. We performed
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the measurements on a Philips X'Pert PW3710 system 6-20 powder diffractometer equipped
with a Kevex® solid state Si(Li) detector. A copper target was used for the source, and Cu Ka
radiation was used by electronic filtering using a single channel analyser (SCA). Both Ke, and
Ka, were present and accounted for in the analysis, using A, = 1.540585 Aand A, = 1.544413
A, with an intensity ratio I Ka, /1 Xa, ™ 0.509 (Lide93]. All measurements were perforr;xed atRT
using a spinning absorber to attenuate preferred orientation effects. The data was typically
acquired in 26 steps of 0.02° from 30° o 110°.

Each diffractogram was analysed by the full pattern Rietveld method to obtain accurate
lattice parameters. For this purpose, the program DBWS-9411 produced by R.A. Young
[Young95] was used. In all cases, only a minimal number of parameters were used to fit the
diffractogram. In all Rietveld analyses, the known lattice parameter of the Si powder were fixed,

and the sample displacement parameter was allowed to vary.
6.2.3 Mdssbauer Spectroscopy

The details regarding the setup for Massbauer spectroscopy are described in chapter 2.
RT measurements were performed on all samples (67 at. % to 78 at. %) in the normal
transmission geometry. High-temperature measurements were only performed on some of the
samples, using the oven described in chapter 2. In addition, we performed measurements on
three splat quenched samples (30, 50 and 60 at. % Fe) that had been used in the work of M.-Z.
Dang [Dang96a]. Various models were consistently used to determine the CS.

Because the spectra show a wide range of characteristics such as broad HFDs, CS-z or &-z
coupling, dynamic spin flipping effects near T, several models were used to obtain CSs so that
we get the range of plausible CSs, independent of the model used. This is an important point
since using a specific model can usually yield a different CS than another model because of
couplings betrween parameters, distribution shapes, or other characteristics. Here is a list of all
the models considered in the case of spectra showing magnetic splitting (see description of Recoil
at hup://www physics.uottawa.ca/ ~recoil and appendix A for details on the analysis models):

1. HFD (VBF analysis). ¢, 8, and Lorentzian HWHM are free parameters.
a. No coupling
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b. r-z coupling
c. 8-z coupling
d. €-z and 8-z couplings
2. HFD and other distributions (xVBF analysis). <e¢>, <8>, and Lorentzian
HWHM are free parameters.
a. ¢ distribution (1 Gaussian), with &-z correlation
b. & distribution (1 gaussian), with 8-z correlation
c. ¢ and & distributions, with -z, 8-z and e-8 correlations
3. When close to T,.. Dynamic lineshape analysis, using the model of Blume and
Tjon. ¢, 6, and Lorentzian HWHM are free parameters. p = 0 is fixed but fis
free.
4. Above T, QSD (VBF analysis). 8, A, and Lorentzian HWHM are free
parameters
a. No coupling
b. 8-A coupling
5. When close to and above T,.. Fit to a single Voigt peak with variable Lorentzian
and Gaussian widths and area. This is equivalent to 2 CSD of Voigt shape.
When the spectrum was a singlet, above T, the spectrum was fit using a single Voigt peak, or
using a VBF model with a QSD. Only fits that lead to physically acceptable parameters were
considered. Situations which lead to unphysical parameters, such as large € or 8 distributions, or

a poor quality fit were discarded.
6.3  Description of the RT M&ssbauer Spectra

Figs. 61 and 62 show the RT Mdssbauer spectra of the RQ samples. As revealed by these
spectra, pure FCC samples were produced up to 72 at. % Fe, whereas the BCC phase is present
and dominant for more Fe-rich samples. The spectrum of the 78 at. % Fe alloy shows that the
FCC phase has practically totally disappeared and in fact no meaningful analysis of the FCC
phase could be performed on this spectrum. In addition to the passage through the martensitic
start boundary which causes this FCC/BCC behaviour, we also see that as the Fe concentration

increases, we are gradually going past the magnetic ordering temperature (T ) in the FCC phase.
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This results in the collapse of the sextet and the narrowing of the peak as we go past T,.. Though
several analyses have shown that the broad lines in spectra like the one for 67 at. % are due to
inhomogeneous broadening (static broadening caused by a distribution of hyperfine parameters)
[Ullrich84, 85, Dang96a, 96b], homogenous broadening (due to dynamic effects) is also present
for alloys close to T, [Rancount85, 91b, Ping92]. Homogenous broadening is the result of
fluctuations of hyperfine parameters during the lifetime of the excited state of the Mdssbauer
transition. In this case, the predominant fluctuation is that of the HF which changes direction as
the local magnetic moment changes direction near and above T .. Far above T, fluctuations are
so fast that an effectively static (nil) HF is observed.

Because of the complexity of the spectra which exhibit such homogeneous and
inhomogeneous broadening, we have found it necessary to use many plausible fitting models in
order to determine the range of possible values for the hyperfine parameters. This is required
because of the intrinsic degeneracy of valid solutions of the fitting, which arises because similar
spectral features can be produced by various parameters or combinations of parameters. In
particular, from a single spectrum, it is impossible to distinguish between homogeneous and
inhomogeneous broadening. We must therefore consider both possibilities, within physical
limits that we set ourselves. Tables 23 through 28 give the results from fitting the spectra shown
above using the models described in the previous section. It becomes clear that a single precise
value of the CS cannot be obtained for spectra below but close to T,. (all samples with less than
72 at. % Fe). As an example, consider the analyses of the spectrum of Fe,Ni,,. Fits which do not
include a coupling of the CS to the Zeeman splitting yield a value around 0.015 mm/s, whereas
those that include such a coupling yield a value around -0.012 mm/s. On inspection of the * we
should favour the values around -0.012 mm/s, but the other group of results also have a
statistically significant x>. Within the context of these analyses, we can only conclude that the
“true” average CS is within this range of values. The same can be said of other spectra, which
yield widely varying CSs, though they are not always grouped according to simple systematics.
In producing figs. 66, we have therefore indicated the range of plausible values by a solid bar, to
which we add the statistical fitting uncertainty. For Fe;Ni,,, the range of values is large even
though the fitting uncertainty is small, but for Fe,,Ni,;, all fits give approximately the same

result, but the fitting uncertainty is large.
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Figure 61 RT Mdssbauer spectra of RQ Fe-Ni alloys with compositions from 67 to 72 at. % Fe.
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Figure 62 RT Massbauer spectra of RQ Fe-Ni alloys with compositions from 73 to 78 at. % Fe.
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6.4  Observation of a HM/LM Transition Occurring Around 70 at. % Fe

6.4.1 The Hyperfine Field

Fig. 63 illustrates the range of the average HF for the complete composition series of
FCC alloys, including the ones analysed in the previous chapter. One can clearly see a
continuous drop of the HF, indicating that the nominal compositions of the prepared Fe-rich
alloys are quite accurate. The only exception is alloy Fe,Niy, #2, which, according to its
spectrum and average HF, seems to have a true composition of ~70.5 at. % Fe. However,
without a more precise characterization, we will still represent it in figures as having 70 at. %.
The drop in the average HF comes primarily from two factors: 1) the presence, above ~50 at. %,
of antiparallel spin configurations in the ground state, and 2) the fact that these measurements are
taken at RT, and that the T, of Fe-rich alloys drops dramatically with increasing Fe content
such that, at RT, as we increase the Fe content, we get closer to T and indeed are above it,
above ~70.5 at. % Fe (fig. 64). Broadening due to dynamic effects occurs for compositions where
the measurement temperature is close to T, resulting in a non-vanishing average HF (up to ~73
at. % Fe) when an analysis assuming a static HF is used. This effect may also be seen in fig. 65
where the FWHM of the FCC signal is illustrated. Apart from the dramatic decrease when
passing above 70 at. % Fe, the width remains larger than its true paramagnetic value up to 73 at.
% where dynamic effects due to spin fluctuations are still present. Incidentally, this figure also
illustrates the difference between the two alloys which have a nominal composition of 70 at. %

Fe. Again, the #2 alloy seems to have a true composition around 70.5 at. % Fe.
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Figure 63 Range of values of the average Zeeman splitting as a function of composition, for
different analysis models. The dark symbols represent data presented in the previous chapter,
whereas the light columns represent data for Fe-rich alloys presented in this chapter.
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Figure 64 Variation of the Curie temperature of Fe-Ni alloys as a function of composition. The
data are from [Wassermann90]. The horizontal dashed line represents RT. Alloys with
compositions below 70.5 at. % Fe are magnetic at RT, while alloys with an Fe content above this
composition are paramagnetic.
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absence of thickness effects in the absorber or the source and hyperfine parameter distributions,
the theoretical FWHM would be 0.2 mm/s.
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6.4.2 The Isomer Shift

Upon examination of the parameters in tables 23 through 28, in addition to the Zeeman
splitting, the CS seems to be dramatically affected by the change in compostion above 60 at. %
Fe. As found in the case of collinear Fe-Ni alloys [chapter 4], the Debye temperature of these
alloys is fairly independent of the composition at @, = 380 K, which permits us to extract the /S
from the CS by subtracting the SOD. Without the SOD, the S is a more characteristic property
of the alloy since it is related to the electron density at the nucleus, and hence is a direct measure
of the electronic structure of the material.

As seen in chapter 4, the IS of alloys which exhibit collinear magnetism tends to increase
linearly with Fe content in the Ni-rich region, but reach a plateau at a value of 0.265 mm/s for
alloys with compositions around 50 at. % Fe. Fig. 66 shows that upon further increasing the Fe
concentration, the /S undergoes a dramatic drop over a small composition range with a midpoint
around 70 at. % Fe. The total magnitude of the drop (~0.1 mm/s) can only be associated with a
substantial increase in the charge density at the nucleus in the Fe atoms which must be associated
with some reorganisation of the electronic structure. Because the IS is calculated by subtracting
the SOD contribution from the measured CS, we must be sure that this drop can’t be due to a
change in the Debye temperature of the alloy. Given that 8, = 380K for alloys below ~50 at.
% Fe, even if @, dropped to an unphysical value of 0 K in more Fe-rich alloys, this would only
lead to a drop of 0.023 in the CS. In light of the known properties of these materials at RT, the
maximum amplitude of change in 8, (if there is one) could be around 100 K, resulting in a drop
of the CS of only 0.01 mm/s. The observed drop in the CS can thus entirely be attributed to a
drop in the /S, as we have assumed in the previous sections.

We can also clearly associate this drop in the /S as being due to a transition from a HM
alloy to a LM alloy as Fe content is increased above ~70 at. %. In chapter 5, ESCs which assumed
a collinear FM ground state predict a first-order transition from a HM phase to a NM phase at
74.5 at. % Fe and also predict that this transition can be observed through three key parameters:
a drop in the moment magnitude (hence the name HM/LM transition), a drop in the lattice
parameter, and a drop in the charge density at the nucleus or, equivalently, the S. Because of
antiparallel spin configurations (and possibly some amount of non-collinearity), a direct measure

of the moment magnitude in these alloys is not feasible. However, we do in fact observe the drop
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in IS, as predicted by the ESCs. Fig. 67 illustrates more clearly the comparison between the
measured IS in FCC and BCC Fe-Ni alloys and the results of the ESCs. In addition, we have also
plotted the extracted IS of y-Fe which is known to be a LM material (g = 0.7 4,
[Abrahams62]), the IS of antitaenite (c = 0.88 at. % Fe), also a known LM material [see chapter 3]
and measured /S of nanophase Fe-Ni produced by mechanical alloying {Rancourt99].

First of all, the observed drop in the IS is the same order of magnitude as the drop
predicted by the ESCs, and we can thus unambiguously identify this drop as a transition from a
HM phase to a LM phase, because only such a dramatic change in the electronic structure can
account for this drop in /S. The said transition is predicted to be of first-order when treating only
collinear ferromagnetic phases, whereas the observed transition is clearly continuous and thus
second-order in nature. This discrepancy can be attributed to the limited applicability of the ESC
prediction because of the constraint to collinear ferromagnetism. When considering the DLM
phase or a phase with anti-parallel spin configurations, the /S is seen to be reduced relative to a
purely FM phase. A second-order transition from a HM FM phase to a NM phase driven by
both non-collinearity (or antiparallel spin configurations) and moment magnitude reduction
would thus produce the observed smooth composition dependence of the drop in the /S. In fact,
both ESCs which use supercells and allow for non-collinearity [Wang97, vanSchlifgaarde99] and
experimental evidence [Ullrich85, Dang96a] indicate that deviations from collinear
ferromagnetism do occur, and that this is the mechanism for smoothing out the transition.

We can also compare the IS of the FCC alloys to other ISs extracted from measurements
performed on BCC and known LM alloys. As in the case of HM FCC alloys, the BCC alloys,
which exhibit a Fe moment of ~2.2 u, (making it a HM alloy), have an IS which is always
around 0.25 mm/s and tends to increase with the Ni content. On the other hand, measurements
of the IS in y-Fe give a value of ~0.15 mm/s. This same value is found in antitaenite, an Fe-rich
meteoritic Fe-Ni alloy which exhibits LM properties. The fact that the observed /S in our
synthetic FCC Fe-Ni alloys drops from 0.25 mm/s at ~60 at. % to 0.17 mm/s at ~72 at. % seems
to show a clear transition from a HM phase to a LM phase. We can also compare these values to
those obtained in nanophase Fe-Ni obtained by mechanical alloying [Rancourt99]. All alloys
produced by mechanical alloying consisted of two phases: the HM FCC or BCC phase which is
magnetically split, and a paramagnetic phase (usually less than ~5 % fraction) whose IS is

reported in fig. 67. We do not know what the composition of the paramagnetic phase is, so it is
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reported in this figure as the bulk composition of the alloy. Nonetheless, the extracted /Ss also
appear around ~0.14 mm/s, as is characteristic of the LM alloys.

We have thus unambiguously determined that in FCC Fe-Ni alloys at RT, there is a
second-order composition-driven transition from a HM phase to a LM phase, with a mid-point
around 70 at. %. Also, it is clear from these results that this transition is due to a change in the
electronic structure which leads to the reduction of the moment magnitudes on both the Fe and
Ni atoms and the increase in the charge density at the nucleus (or drop in the /S). This is the first
unequivocal observation of this transition that was first predicted by Moruzzi [Moruzzi86b] and
whose supposed presence is a corner stone of 2-y-state like models of Invar. The moment
magnitudes in the LM phase are not known, except in the case of pure y-Fe, because the
disordered magnetic structure and chemical alloying, in addition to the coexistence with the
BCC phase, make its experimental determination very difficult, if not impossible.

In regards to the composition variation of the Curie temperature, this transition may
also explain, to some extent, the sharpness of the decrease of T in Fe-rich alloys, as MC
simulations have shown that while it is possible to explain it to some extent based on a negative
Fe-Fe magnetic exchange, it is difficult to properly reproduce the steepness of the drop. If the
moment magnitude was collapsing around 70 at. %, then the effective exchange would also be

weakened, leading to an accentuated drop in T..
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Figure 66 Average RT IS of FCC Fe-Ni alloys as a function of composition. The column
represents the range of possible values obtained from satisfactory fits using different models, and
the error bars represent the 1-0 statistical uncertainty due to the fitting. Again, the dark columns
represents previously reported data, and the light columns the results of analysis of new Fe-rich
alloys.
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Figure 67 Experimental and calculated /S in various HM and LM Fe-Ni alloys. Vertical columns
with error bars represent the synthetic FCC Fe-Ni alloys described in this chapter. Other
symbols for experimental RT data are: (8) BCC Fe-Ni alloys [Dang%6a and this work], (v) LM y-
Fe [Keune?7, Halbauer83], (o) meteoritic antitaenite [chapter 3], (O) nanophase FCC material
[Rancourt99]. Theoretical results based on ESCs using the CPA are represented by solid lines,
ESC results on ordered structures are given by (%) and (%), where the solid symbols represent
the HM solution, and the open symbol the NM solution. The dashed lines are for presentation
clarity only as they link the values calculated for chemically ordered alloys in the HM and NM
phases.
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6.4.3 The Lattice Parameter

Having established the existence and the nature of a HM/LM transition in the FCC Fe-
Ni alloys around 70 at. % Fe, it is possible to understand one of the most puzzling anomalies in
the alloys’ properties: its lattice parameter. As in MS, the BCC and FCC phases can be separately
analyzed in XRD, making it a useful tool for exploring the Fe-rich region of FCC alloys where
there is coexistence with the BCC phase. Many investigations of the composition dependence of
the lattice parameter have been performed in the past, so, contrarily to the novelty of our CS

measurements, our XRD measurements are simply a complement to a vast collection.
6.4.3.1 Identifying the HM/LM Transition

Fig. 68, which was already given in chapter 4, provides a compilation of the average RT
atomic volume as a function of concentration, for both FCC and BCC alloys. Before analysing it
in detail, it is necessary to understand what a “normal” plot would look like. In the case of a
binary alloy, if the two atomic species have comparable atomic volumes, it is possible to get a
wide range of composition over which a single phase may be stable. In the absence of large
magneto-volume effects or phase transitions, the composition dependence of the volume will
obey Vegard’s law which states that there should be a linear dependence of the average atomic
volume on composition [Vegard28, Thorpe91]. Upon inspection of fig. 68, we see that for
compositions up to 60 at. % Fe, this is approximately respected but above 60 at. % Fe there is a
significant deviation to lower volumes with a transition midpoint at ~70 at. %. In the previous
paragraphs, we have shown that at these compositions, there is a HM to LM transition, as
predicted by ESCs and observed by MS. In fact, the ESCs also show that the volume of the LM
phase should have a smaller volume than that of the HM phase, as is observed in fig. 55 [chapter
5]. This is clear evidence that drops in both /S and atomic volume around 70 at. % are due to an

electronic transition from a HM phase to a LM phase.
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Figure 68 Composition dependence of the RT volume in FCC (solid symbols) and BCC (open
symbols) Fe-Ni alloys. The straight line represents Vegard’s law, as obtained by extrapolating
from volumes of alloys with compositions less than 20 at. % Fe. See chapter 4 for the references
regarding all the data points.
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6.4.3.2 Distinction Between the HM/LM Transition and the Invar Effect

The reason for the reduction in the atomic volume relative to the expected Vegard’s law
behaviour has been one of the most puzzling aspects of the Fe-Ni system’s properties, as it could
not be reconciled with the expansion observed in alloys which exhibit the Invar effect. The
HM/LM transition causes the T = 0 K ground state volume to be contracted compared to
expected behaviour, while the magneto-volume expansion which is the Invar effect is an
expansion relative to normal behaviour at high temperature, where the effect disappears. Clearly
these two phenomena, the HM/LM transition and the Invar effect, must be distinct, even though

they might occur simultaneously over some range of compositions.

To better accept that the two effects are distinct, one simply has to inspect alloys whose
Fe content is such that they are unaffected by the HM/LM transition, yet still exhibit an Invar
effect. Fig. 69 shows w;, the spontaneous volume expansion at 7 = 0K, and @, the RT

thermal expansion coefficient, of fcc Fe-Ni alloys. w , is the relative expansion between the

T T T 15
- 10
*
®
=
x
L 5 :!E
— ———r 0
0 20 40 60 80

composition (at. % Fe)

Figure 69 Spontaneous volume expansion @ at T = 0 K (solid line) and RT thermal expansion
coefficient & (dotted line) of FCC Fe-Ni alloys (data taken from {Wassermann90)).
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observed T = 0 K volume and the 7 = 0 K volume extrapolated from high-temperatures, where
there are no more magneto-volume effects and where a “normal” Griineisen-type behaviour is
observed. One clearly sees that w_, and @, are strongly correlated, and are such that, at 65 at.
% Fe, they result in a near zero thermal expansion over a wide range of temperatures, known as
the Invar effect. Although the spectacular effect is observed only close to 65 at. % Fe, the
microscopic process which leads to it at 65 at. % Fe is present and active in alloys with as little as
30 at. % Fe. This fact is clear since the deviation from normal behaviour (w,, = 0 and

@, = 13107 K ') is continuous from ~30 at. % Fe up to ~65 at. % Fe.

Upon closer inspection of fig. 68 in the 0-60 at. % Fe range, we do in fact find that there
is a deviation from linearity, as had once been pointed out by Bradley et /. [Bradley37], but was
since neglected. Considering that Ni-rich alloys with compositions below 25 at. % Fe do not
exhibit significant magneto-volume effects, we calculated the Vagard’s law reference for non
magneto-volume active Fe-Ni alloys by extrapolating from the data below 25 at. % Fe. When this
reference volume is subtracted, one finds that there is an expansion, relative to non magneto-
volume active alloys which increases with Fe content and which is of the same order of

magnitude as w , as seen in fig. 70. Above -50 at. % Fe, w,, is found to be larger than the

VN (%)
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Figure 70 T = 0 deviation from Vegard’s law and comparison with w .
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deviation from our Vegard’s law reference, but this is to be expected, as the reference volume
starts decreasing as the HM/LM transition starts. There is thus a clear distinction between the
volume reduction, seen in Fe-rich alloys, which is due to the HM/LM transition, and the volume
expansion, seen in less Fe-rich alloys, which is the main cause of the Invar effect. These concepts

are illustrated in fig. 71 which distinguishes the two effects.
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Figure 71 llustration of the difference between the Invar expansion and HM/LM transition
contraction of the atomic volume in FCC Fe-Ni alloys, relative to Vegard’s law. Symbols are the
same as used in fig. 68. Solid Symbols represent RT measurements, and open symbols represent
extrapolation to 7 = 0 K based on thermal expansion curves between 0 K and RT (from
[Hayase73]). As seen, the HM/LM contraction (left scale), which has a midpoint around 70 at. %
Fe is an order of magnitude larger than the Invar expansion seen in alloys of lower Fe content

(right scale).
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6.4.4 Differentiating the Observation of the HM/LM Transition from the Normal IS

and Volume Correlation

Because the /S is related to the charge density at the nucleus, a change in the volume will
result in a change in the /8. It is therefore important to further investigate the relation between
the drop in IS and the drop in the atomic volume. As seen in chapter 5, the average slope of the
IS with a change in volume is 9I5/91 = ~0.1 mm/s/A>. At 70 at. %, the drop in volume is
~0.2 A*, which results in a drop in /S of ~0.02 mm/s, or less than half of the observed drop. It is
thus clear that the observed drop in the /S must be due to a change in the electronic structure,
and that the observed drop in the volume cannot explain it entirely. It is difficult to prove that
the drop in the volume is due to the HM/LM transition but the observed drop in the IS is
conclusively attributed to the change in electronic structure which constitutes the HM/LM

transition.
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Table 23 Parameters of the magnetic phase of the xVBF fits of RT Mdssbauer spectra of Fe-rich

RQ Fe-Ni alloys. 2-6 (95 %) fitting uncertainties are given in the second column for each
parameter. For alloys with ¢ > 73 at. %, the parameters of the BCC phase are given

67
69
69
69
70
70

70 #2
70 #2

70
71
71
71
72
72
73

74
75
76
77

#2

1294190

1.15
0.92
0.81
0.81
Q.72
0.71
0.70
0.68
0.67
0.71
0.71
0.70
071
0.67
2.41

3.18
241
7.46
19.37

1294190
3202230
3202220
3202200
3801790
3801810
629935
629997
630068
1134580
1134600
1134580
584740
584746
1249360

1022380

598095
1399260
5387510

226
235
196
205
152
115
110
84

110
323
102
124
47

81

382

315
170
636
1026

0.107
0.134
0.130
0.126
0.140
0.140
0.140
0.140
0.140
0.152
0.155
0.153
0.156
0.167
0.145

0.112
0.112
0.118
0.106

448919
448926
658139
657855
657178
873525
873750
207485
208419
209512
109122
109461
109263

74089

74256

94409

330704
214863
635958
1830780

3546
3079
2875
3034
1940
1409
1417
1128
1494
6135
1009
1728
495

776

2191

4670
2728
10121
16626

2.542
2.533
2.555
2.558

W ot W Lo o (e W e e e W W W e W
OO O0OO0CO0OO00DO0O0O0O0OO0O O O OfEE

0.081
0.065
0.074
0.024

N RN NNRNRDRN RN RN NN NSNS

1.790
1.807
1.890
1.818

OO0 0000000 0 O0OO0O0O0O0CO0

0.058
0.043
0.057
0.015

67
69
69
69
70
70
70
70
70
71
71
71
72
72
73

74
75
76
77

#2
#2
#2

o

o o

0.50

0.223

0.336
1.000

0.265

0.837
0.576

0910
1.000

0.934

O O o0 o

0.081

0.083
0.285

0.017

0.084
0.092

0.291
0.299

0.157

0o 0O OO

-0.028
-1.000
-0.062

-0.171
-0.991

0.C46
0.982
0.338

0O O -

-0.420
-0.397
-0.478
-0.333

0.057
0.182
0.067

0.027
0.021

0.140
0.109
0.622

o O O

0.059
0.046
0.095
0.074

0.0048
-0.0273
-0.0131
-0.0113
-0.0171
-0.0210
-0.0419
-0.0310
-0.0291
-0.0315
-0.0346
-0.0341
-0.0375
-0.0374
-0.0517

0.0425
0.0419
0.0419
0.0358

0.0054

0.0047
0.0051
0.0053
0.0051
0.n021
0.0012
0.0018
0.0044
0.0041
0.0052
0.0026
0.0036
0.0013
0.0026
0.0047

0.0021
0.0022
0.0026
0.0010

0.091

0.066
0.026
0.041
0.108

0.131
0.115

0.069
0.096

0.062

0.027
0

0.025

0.022
0.0t7
0.003
0.006

0.027
0.020

0.020
0.032

0.015

0.012
Q



Chapter 6. Experimental Observation of a HM/LM Transition in Fe-Rich FCC Fe-Ni Alloys

(Table 23 continued)
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(Table 23 continued)

67
67
69
69
69
70
70
70 #2
70 #2
70 #2
71
71
71
72
72
73

74
75
76
77

0.156
0.152
0.159
0.288
0.219
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0.072

0.034
0.302
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0.049
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0.253

0.338
0.363
0.327
0.292
0.239
0.239
0.252
0.279

0.054
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Table 24 Parameters of the VBF fits to the RT Méssbauer spectra of Fe-rich RQ Fe-Ni alloys. 2-

a (95 %) fitting uncertainties are given in the second column of each parameter.
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(Table 24 contibued)

67
67
67
67
67
67
69
69
69
70
70
70
70 #2
70 #2
70 #2
1
71
71
72
72
73

67
67
67
67
67
69
69
69
70
70
70
70 #2
70 #2
70 #2
71
71
71
72
72
73

0.165

0.196
0.169
0.169
0.192
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0.738
0.730
0715
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0.541
0.536
C.169
0.257
0.152
0.308
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0.306
0.721
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1.0C0

0.401
C.418
0.418
0.402
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0.005
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0.368
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0.036
0.046

1.824
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1.824
1.824
1.822
1.823
0.533
0.529
0.521
0.289
0.212
0.202
0.067
0.088
0.084
0.069
0.076
0.069
0.065
0.067
0.000

0.342
0.322
0.322
0.315
0.323

0.415
0.435
0.441
0.397
0.503
0.546
0.101
0.496
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0.015

0.012
0.022
0.011
0.009
0.008
0.024
0.022
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0.045
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0.038
0.005
0.005
0.007
0.005
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0.002
0.002
0.002
0.000
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0.027
0.028
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0.145
0.144
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0.426
0.416
0.274
0.308
0.312
0.041
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0.041
0.037
0.038
0.040
0.037
0.059

1.521
1.548
1.548
1.539
1.541

0.867
0.840
0.831
0.650
0.273
0.020
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0.353
1.267

0.012
0.010
0.032
0.008
0.008
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0.025
0.021
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0.039
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0.021
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0.015
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0.062
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Table 25 Parameters of the DLS fit of the RT spectra of Fe-rich RQ Fe-Ni alloys with T, close
to RT.

BN

395 02734 00632 953141

. LT .

2.20 3806045
70#2 251 630584 101 0.1784 0.0077 221574 2104 1 0
7 1.50 1134561 133 0.1573 0.0151 110742 2394 1 0

0 o 0918 0018 190 007
70 #2 -0.0540  0.0043 0 0 1267 0068  6.10 0.60
71 -0.0449  0.0079 0 0 1317 0.098 8.8 1.16

70 T .0.0450 0.0014

Table 26 Parameters of the xVBF fit of the paramagnetic FCC phase of the RT spectra of Fe-rich
RQ Fe-Ni alloys.

73 2.2 1249240 349 0.142 0.010 93150 1786

1 0
74 3.2 1022380 315 0.112 0.008 40662 1007 1 ¢
75 2.4 598095 170 0.112  0.006 14419 474 1 0
76 7.5 1399260 636 0.118 0.010 9717 777 1 0
77 19.4 5387510 1026 0.106 0.006 13824 529 1 0

.0.0508 0.0045

73 [ 0 0 0 0 0.241

74 0 ¢ -0.0616 0.0043 0 0 o 0 0.175 0.016
75 0 o -0.0617  0.0060 o 0 0 0 0.163 0.022
76 0 0 -0.0663 0.0134 0 0 0 0 0.116 0.053
77 0 0 -0.0540 0.0077 0 0 0 0 0.185 0.016
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Table 27 Compiled results (FCC phase) of the xVBF fits of the RT spectra of Fe-rich RQ Fe-Ni

alloys.

67
69
69
69
70
70
70
70
70
71
71
71
72
72
73
73
74
75
76
77

0.0044

0.0048
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-0.0374
-0.0517
-0.0508
-0.0616
-0.0617
-0.0663
-0.0540

0.087
0.091

0.066
0.026
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Table 28 Compiled results of the VBF fits of the RT spectra of Fe-rich RQ Fe-Ni alloys.

67
67
67
67
67
67
69
69
69
70
70
70
70
70
70
71
71
71
72
72
73

#2
¥2
#2

0.0109

0.0117
-0.0139
-0.0140
-0.0133
-0.0133
-0.0271
-0.0184
-0.0130
-0.0128
-0.0328
-0.0213
-0.0414
-0.0032
-0.0246
-0.0430

0.0152
-0.0320
-0.0448
-0.0386
-0.0516

1.249
1.266
1.248
1.248
1.275
1.275
0.788
0.788
0.790
0.537
0.534
0.534
0.390
0.401
0.620
0.386
0.404
0.388
0.154
0.155
0.047

0.513
0.506
0.513
0.513
0.496
0.496
0.498
0.498
0.499
0.432
0.428
0.427
0.394
0.418
0.664
0.424
0.454
0.428
0.208
0.208
0.036

-0.409
-0.462
-0.406
-0.406
-0.463
-0.463
0.377
0.376
0.380
0.956
0.936
0.936
1.440
1.642
1.609
1.505
1.706
1512
2.695
2.681
0.995
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Figure 72 High-temperature Mdssbauer spectra Figure 73 High-temperature Méssbauer spectra
of Fey,Niy, (T, = 860 K). of FeyNiy, (T, = 790 K).
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Figure 74 High-temperature Mdssbauer spectra Figure 75 High-temperature Mdssbauer spectra
of FegNi,, (T, = 665 K). of Fe,Niy; (T, = 460 K).
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Figure 76 High-temperature M&ssbauer spectra Figure 77 High-temperature Méssbauer spectra
of Fe,Ni;, (T, = 370 K). The cooled RT

spectrum (top) shows that the sample has
undergone a spinodal decomposition into

phases of slightly different compositions, as is

evidenced by the increase in the Zeeman

splitting.

of Fe;Niy (T, = 270 K). The high temperature
and cooled RT (top) spectra show important
signs of oxidation (this was the first series taken,
before the leak in the oven was discovered and

fixed).
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Figure 78 High-temperature Massbauer spectra Figure 79 High-temperature Méssbauer spectra
of Fe;Niy, (T, < RT). The BCC phase of Fe,Niy (T < RT). Again wesee a
disappears at the austenitic end temperature  disappearance of the BCC phase above 800 K,
(~800 K). The cooled sample is nearly pure and a recovered sample which has a higher
FCC. proportion of the FCC phase.
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6.5  High-Temperature Measurements

Using the IS, it is possible to characterize the ground state electronic structure of FCC
Fe-Ni alloys and to follow the composition-driven HM/LM transition. In the interest of better
understanding these alloys, it is also necessary to investigate if and how changes in the electronic
structure occur at temperatures above RT. We have thus measured the Mossbauer spectra of
several Fe-Ni samples, ranging in composition from 30 at % Fe to 75 at. % Fe, which span the
region of the stable HM phase through the transition to the LM phase, including compositions
where the Invar effect is maximum. Similar measurement have already been performed for an
alloy with 65 at. % Fe by Rancourt et a/. [Rancourt85] as well as Willgeroth er a/. [Willgeroth84]
in the case of more Fe rich materials in the paramagnetic phase. The data of Kobeissi [Kobeissi81]
and Kovats and Walker [Kovats69] were also used for y-Fe. Our oven could not reach the
temperatures where the latter phase is stable. Because of their size, all the parameters from the

analyses are listed in tables in appendix D.
6.5.1  Analysis Method

As in the case of RT spectra, the xVBF and VBF models were used to obtain the CS, in
addition to a simple Voigt line when appropriate. The IS could then be obtained by removing
the SOD contribution by using the Debye model, with ®,, = 380K for FCC alloys and 8, =
430 K for BCC alloys [Rancourt99). At the temperatures of interest (300-900 K), the temperature
dependence of the SOD is nearly linear and is not very sensitive to 8, especially at the higher
temperatures. For this reason, our choice of ©,, does not significantly affect the results. The
largest source of error was the calibration of the sample temperature, as the thermocouple in the
oven is not in direct contact with the sample. The uncertainty from the sample temperature is
included in the uncertainty displayed in the figures, whereas the uncertainty given in the tables is

strictly due to the fitting statistics.
6.5.2 Observation of a Correlation Between the IS and z in Invar Alloys

The analysis of the spectra of the sample with 30 at. % Fe shows that the IS is not
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temperature dependent, as would be expected in a material where the electronic structure does
not change with temperature, as we are well below the Fermi temperatures in these alloys. The
slight variations that are observed in the extracted /S [Appendix D] can be due to errors in the
estimated temperature which are underestimated. It is clear, however, that we cannot ascribe a
systematic temperature dependence to the IS.

However, for other Invar alloys with compositions 50, 60 and 67 at. %, fig. 80 shows
there is a systematic temperature variation of the /5, as it is seen to drop moderately but
concurrently with the Zeeman splitting z, which is related to the magnetization. Above T, the
IS seems relatively stable. The magnitude of the drop is very small at 50 at. % Fe compared to the

uncertainties involved, but increases with the Fe concentration.

L v v v 1 v V

Fe_Ni

0 "0

Rt

FoN, o *l

0.02 mmvs
A . S A T
0 200 400 600 800 1000
Temperature (K)

Figure 80 Hlustration of the correlation between the /S (columns) and < |z| > (solid lines) in
Invar alloys. The given scale is for the IS and is the same for all alloys. The IS of each alloy is
vertically offset for more clarity. The < |z| > data is rescaled for each alloy to match the range
of the IS and is displayed zs a continuous curve for comparative purposes. The arrows indicate
T, for each of the alloys.
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In light of the ESCs presented in the previous chapter, this correlation can be well
understood. ESCs of Fe rich Fe-Ni alloys in the DLM phase have shown that the ground state
moment and /S were lower than in the FM phase, indicating that the HM state is partially
stabilized by the ferromagnetic interactions. The observed drop in the IS which is correlated
with the magnetization simply illustrates this small drop in the moment as the system goes from
a ferromagnetic phase below T,. to a paramagnetic (magnetically disordered) phase above T_. As
seen from the values of the IS, the magnitude of this drop is quite small, much smaller in fact
than the difference between the HM and LM values of the /S. In Invar alloys, there thus seems to
be a small reduction of the magnetic moment magnitude as the system loses long-range
ferromagnetic correlations. [t is nevertheless important to note that the DLM phase does not
correctly describe the high-temperature phase of the Fe-Ni alloys, as it neglects entropic
contributions to the free energy, as well as short-range magnetic correlations. Both the entropic
contributions and the short-range correlations will tend to stabilize the moment magnitude, thus
limiting its reduction. Based on the value of the /S, it seems clear that these alloys remain within
the scope of HM alloys, even in the paramagnetic regime, and that the observed effects are
simply mild corrections due to the growing instability of the magnetic moment with increasing

temperature, which results in the HM/LM transition at higher Fe concentrations.
6.5.3 Thermal Stabilization of a HM Phase in Anti-Invar Alloys
6.5.3.1 Description of the Experimental Data

Compared to Invar alloys, alloys which exhibit primarily LM qualities and which are
paramagnetic anywhere above RT are seen to have a different yet equally systematic temperature
dependence of the /S. As seen in fig. 81, alloys with compositions above 70 at. % Fe show an
increasing /S with increasing temperature, which would be consistent with the stabilization of a
larger moment magnitude (correlated to a larger /§) at high temperatures. This analysis is also
compatible with experimental measurements of the magnetic moment in the paramagnetic and
pure FCC phases of the alloys by Acet et al. [Acet2000].

This systematic behaviour is clearly observed in Fe-rich alloys such as the one with 75 at.
% Fe, where the IS is seen to vary linearly with the temperature with a slope of 6-10 x 10*
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mm/s/K. According to the ESC calculations of the previous chapter, the increase in /S due to
thermal expansion (and the correlated drop in p, (0)) could at most account for a change of 5 x
10® mm/s/K. Once again, this clearly indicates that the observed change is due to a more
substantial change in the electronic structure, such as the evolution towards a phase with larger
moment magnitudes. This behaviour is also observed in antitaenite, as measured but not
recognized by De Grave et a/. [DeGrave92, see chapter 3}, and in the thermally stable high-
temperature y phase of Fe. In fact, if the IS of y-Fe within its high-temperature region of stability
is back-extrapolated to RT, one obtains the measured /S of epitaxially or structurally stabilized
low-temperature y-Fe (fig. 82). This would explain why, although they are the same phase, high-
temperature neutron measurements indicate a large moment magnitude [Boni85), whereas the
low-temperature phase is known to be a low moment (p = 0.7 p, [Abrahams62]) material.

In alloys which exhibit residual effects of magnetic order, we find that the /S does not
immediately increase with temperature. This is again consistent with the stabilization of a larger
moment magnitude (associated with a larger /5) by the ferromagnetism, compared to a
magnetically disordered alloy of the same composition. With the disappearance of magnetic
correlations, the moment would tend to drop, but the opposite effect of thermal stabilization of
the moment seen in higher Fe-concentration alloys results in a moment (and /S) which is
unchanged around RT. Once the short-range magnetic order has vanished, the IS is seen to

increase again, with a similar slope as found in Fe,(Ni,;.
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Figure 81 Thermal evolution of the /S in anti-Invar alloys (from top to bottom at RT: 69 - dark
and solid, 71 - ///, 73 - light and solid and 75 at. % Fe - \\\).
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Figure 82 IS in the various phases of pure Fe. The Curie point of a-Fe is shown by an arrow.
The equilibrium & (BCC), y (FCC), and 8 (reentrant BCC) phase regions are separated by
vertical dotted lines. The original CS data is from Kobeissi [Kobeissi81] (filled circles), Kovats et
al. [Kovats69] (filled squares), and Keune et al. [Keune77] and Halbauer ez a/. [Halbauer83]
(half-filled squares). The solid lines are guides to the eye.
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6.5.3.2 Entropic Drive Towards a Larger Moment Magnitude and the Anti-Invar
Effect

Though it is clear from the above experimental measurements that there is thermal
evolution towards a phase with larger moments, we have not yet given any physical explanation
for this phenomenon. Proponents of a 2-y-state model of Invar and anti-Invar explain it as a
thermal excitation of a HM state of the Fe atoms from the LM ground state. The high
temperature phase would thus consist of a mixture of atoms in a HM or LM state in thermal
equilibrium. This picture originates in part from ESC of y-Fe in constrained FM configurations
which show two minima corresponding to LM and HM phases [Moruzzi86). More complex
calculations find that many more phases can be stabilized when various magnetic configurations
are imposed [Schréter95] , invalidating the idea of distinct ground states which will be thermally
populated. Instead, it seems possible to have a continuum of states between the LM and HM
extremes. It is with this perspective that we shall explain our observations.

Since the relevant observations all pertain to the paramagnetic phase, it is more realistic
to investigate ground states in a DLM configuration, rather than a magnetically ordered phase.
As seen in the previous chapter, the ground state of DLM phases of FeNi,; and y-Fe as a
function of lattice parameter yield a continuous range of Fe magnetic moments which increases
with lattice parameter, as snown in fig. 83. Although the DLM is limited in its representation of
the true paramagnetic phase, it does give an idea of the internal energy minima as a function of
lattice parameter in a phase which resembles the paramagnetic phase. Based on this model of the
energy curve, we shall show that is it possible to explain the observed stabilization of an
increasingly large moment, and that it is directly responsible for the anti-Invar effect.

Consider the entropic contribution due only to the magnetic moment magnitude. For
simplicity, we shall consider a classical model to describe magnetic moments: the moments can
take any orientation and any magnitude. This model is not necessarily realistic, but it will show
the effect of entropy and moment magnitudes. We shall also consider that each moment is
uncorrelated to the others such that they can be treated as independent, as is approximately the
case in the paramagnetic regime. In this classical model, the phase space Q () accessible to a
moment of magnitude W is proportional to the surface of the sphere of radius u in phase-space,

hence Q) ~ 4wp?. The entropy contribution of these states, S(u) = £1n Q(y), is thus
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proportional to In p, which increases with the moment magnitude. The one-particle free energy
(at O pressure) of a system composed of non-interacting moments can be written
F=E-TS

* Eyia®) =~ TSig) * ELu V) - {Tlap (55)
where the first two terms represent the lattice contribution. The other terms include the energy
of the moment and its entropy, and { is simply a constant. The distinction between the E,
and E_,_ is arbitrary, as only the total binding energy is calculated, but we assume it can be
separated into a component which has no dependence on the moment, and one that includes the
difference with the total energy. We shall now concentrate on the last two terms of eq. 55,
knowing that the lattice contributions lead to a “normal” thermal expansion. The average

moment B, (T) and volume I/,(T) of the system are obtained by minimizing the free energy, as
in
=0. (56)

°1d Vet o -

These equations are minimized when there is a balance between the minimization of the internal

energy E, and a maximization of the entropy S. Based on ESCs, we already know that the 7= 0
K minimization of the energy leads to a positive correlation between the volume and the
moment, that is, energy is minimized such that a larger moment corresponds to a larger volume
(fig. 83). As temperature increases, the entropic contribution to the free energy becomes more
and more important, and since the entropy increases with the moment magnitude, it will favour
a larger moment, which in turn leads to a larger volume. The positive correlation between the
moment magnitude and the volume, combined with the entropic contribution of the moment
will thus lead to a thermal expansion, in addition to the normal lattice thermal expansion. This
additional thermal expansicn causes (is) the anti-Invar effect.

In order to evaluate it quantitatively, a more rigorous evaluation of the entropy is
necessary, yet within the scope of this model, it is possible to get an order of magnitude estimate
and show this moment-induced thermal expansion is of the correct magnitude. At 500K, a
material with a normal thermal expansion shows a volume increase of -2 % over the T = 0 K
value. What would it take to have an additional expansion of 5 %? Based on the ESC
calculations, this corresponds roughly to 2 mRy/atom, or ~300 K. Consider a moment which
has a value of ~0.7 w, at T = 0 K. Based on fig. 83, normal thermal expansion would, by
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increasing the volume, also increase the moment to ~0.9 ;. An additional 5% increase in
volume would increase the moment to ~1.5 @, which correspond to an increase in entropy of
AS =24In(1.5/0.9) = &. The increase in internal energy AE = 300K is thus entirely
compensated by an increase in entropy of TAS = 500 K. This simple model thus predicts a larger
thermal expansion and it shows that the order of magnitude of the expected volume increase is in
line with what is measured as the anti-Invar effect. Experimentally, we know the increase in the
moment is not as large (roughly 0.3-0.5 ), and we don’t have an exact formulation for the
entropy due to the moment magnitude but this shows that at temperatures around 500-1000 K, it
is entirely reasonable that the entropy of the moment causes its increase, which in turn leads to a
volume expansion comparable to that measured in anti-Invar systems.

Within this model, it is necessary to consider two possible scenarios, depending on the
magnitude of the low temperature moment.

i) For a system where the moment at 7 = 0 K is small, because du /31 and 35/3dp are
large for small y, it is easier for those moments to increase to a medium or large magnitude
moment, because the chemical bonding (lattice) energy associated with the resulting small
volume increase is easily overcome by the large gain in entropy.

if) For a system where the 7 = 0 K moment is fairly large, as du /91 and 45/dp are
smaller for larger moments, they will not tend to increase much, since the gain in entropy is
limited. Even a small increase in p must be accompanied with a substantially larger increase in V,
which would incur a large increase in bonding energy which is not balanced by the gain in
entropy.

These two situations clearly indicate why a substantial thermal increase of the moment
magnitude would only occur in materials which are LM at 7 = 0 K . The anti-Invar effect, which
is closely linked to this increase in moment magnitude will thus also occur only in materials
which are LM at low temperatures. In addition, because this process is entropy driven, it will
only occur at high enough temperatures and in the paramagnetic regime, when entropic effects
(maximization of entropy) become dominant, compared to low temperature, where energetics
(minimization of energy) play the dominant role.

Although we have used a classical moment to model the observed behaviour, the basic
results are compatible with more realistic theories such as spin-fluctuation theories in itinerant

systems, which also point to an increase of the magnetic moment magnitude with temperature in
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initially weak itinerant magnetic materials such as the LM Fe-Ni alloys [Moriya85). The
Maéssbauer measurements have thus shown how we can follow the thermal evolution of the
magnitudes of the moments, as they are intricately linked to the IS through the general electronic
structure. These measurements make it possible to distinguish between materials where the large
moment is partially stabilized by ferromagnetic interactions and materials where a larger
moment magnitude can be thermally stabilized. This last observation, in conjunction with

results from ESCs, provides a simple yet conclusive model for the anti-Invar behaviour in these

materials.
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Figure 83 Calculated magnetic moment in the DLM state in y-Fe as a function of volume [see
chapter 5 for details].
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6.5.3.3 Analysis of Peak Widths for Evidence of Thermal Excitations

In the event of dynamic fluctuations of a hyperfine parameter, the resulting effect on the
Méssbauer spectrum can be quite varied. We shall now investigate if it is possible to obtain
information on fluctuations of hyperfine parameters in the paramagnetic phase, based on the
width of the signal. Specifically, we shall investigate the model of excitations between two states,
as in the Weiss hypothesis, and see if it is or isn’t compatible with observations. In the Weiss
hypothesis, the high-temperature phase consists of a thermal population of Fe atoms in either the
LM state (which is assigned an IS of 0.16 mm/s) and a HM state (assigned an /S of 0.26 mm/s).
Consider separate cases: 1) The fluctuations from one state to the other are quick compared to
the lifetime <, of the excited state of the Mdssbauer transition. In such a case, the signal would
consist of an effectively static signal with average parameters (IS = 0.21 mm/s, if the populations
are equal) and no dynamic broadening. 2) The fluctuations between the states are slow compared
to T,.. In this case, one would see a superposition of the two signals, as if they were each static.
3) Fluctuation times are of the same order of magnitude as t,,. In such a case, the spectrum
would exhibit dynamic broadening, with as limiting possibilities, the spectra of cases 1) and 2).
Can differences between these scenarios be seen?

To investigate this, we have simulated spectra consisting of two subspectra of equal areas
as in case 2), with identical parameters, except for different ISs. The FWHM of the resulting peak
is then compared to the FWHM of the peaks of each phase (fig. 85). Experimentally, we have
measured the FWHM of the signals of the paramagnetic phases, as shown in fig. 84.
Unfortunately, because of the broadening due to the chemical alloying (which results in a QSD),
the reference FWHM is quite large and the increase, if any, cannot be observed given the existing
thermal broadening and the limited precision of the measurement. Because of the strong
dependence of the /S with composition for these compositions, any spinodal decomposition
would also increase the broadening through a static distribution of S as a result of the
composition gradient. In the end, these measurements of the widths cannot be used to prove or

disprove models of thermal excitations of states such as the Weiss hypothesis.
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Figure 84 Thermal evolution of the FCC signal’s FWHM in paramagnetic alloys. () 69 at. %
Fe, (@) 71 at. % Fe, (A) 73 at. % Fe, (¥) 75 at. % Fe. The hollow symbols at RT correspond to
measurements taken on the sample after cooling from the highest temperature. The theoretical
FWHM in the absence of thickness effects, hyperfine parameter distributions or thermal

gradients is 0.2 mm/s.
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Figure 85 Increased linewidth (AFWHM) of a peak resulting from the superposition of two
overlapping peaks of a given FWHM and separated by an IS of 0.1 mm/s.
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6.5.3.4 Austenitic Transformation

Fe-Ni alloys with compositions above 68 at. % Fe are known as martensitic alloys,
because under normal cooling they undergo a martensitic transition from the FCC phase to the
BCC phase as they are cooled from high temperatures. This transition occurs in a range of
temperatures below the martensitic start temperature, as shown in fig. 88. On the other hand,
when these materials are heated from RT, they will undergo the reverse transition, known as the
austenitic transition, as they revert to an FCC phase. Again the process occurs within a range of
temperatures known as the austenitic start and stop temperatures.

When measuring Mdssbauer spectra of “thin” absorbers, the spectral area of each phase is
proportional to its relative content of Fe atoms multiplied by its recoilless fraction or f-factor
£, Within the context of the Debye model, f, can be calculated as a function of the temperature,
so we can determine if the proportions of each phase are changing. Only samples with 73 and 75
at. % had some BCC phase, so they were compared to see if there were any differences between
the two. In figs. 86 and 87, we have plotted the ratio between the spectral area and the
background, and compared them with calculated thermal variations due solely to /.. Even
though these samples are not thin in the Mdssbauer sense (¢, = 25), their areas do follow the
theoretical Debye-model behaviour, with Debye temperatures of 370-380 K for the both the
FCC and BCC phases. These numbers agree well with the values established for the FCC phase
based on CS variations and reported in chapter 4, but are slightly lower than the value of ~430 K
expected for the BCC phase. We start seeing an increase in the FCC proportion at temperatures
as low as 600 K in Fe,;Ni,,, and 700 K in Fe,;Ni,, but the BCC-FCC transition effect becomes
obvious around 800 K, where it is nearly complete in Fe,;,Ni,, but only halfway in Fe, Ni,. (fig.
87). The transition is complete at 900 K in both alloys. Without more data points, it is impossible
to determine precisely the austenitic start and stop temperatures for these alloys, but we can say
that they are slightly lower in Fe,;Ni,, than in Fe,Ni,q, as expected from other measurements
(fig. 88). We should also note that precise start and stop temperatures depend strongly on the
sample’s thermal history and microstructure, so variations between different studies are to be
expected. We also notice similar effects in the reverse martensitic transition. For example, the
amount of retained austenite (FCC phase) in both the 73 and 75 at. % samples is greater after the

sample has been heated and cooled compared to when it was originally quenched. There is no
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evidence that these heated samples are homogeneous in composition, so it is better to deal with

the quenched samples for detailed studies.
6.6  Conclusion

Based on the prediction of a HM/LM transition in Fe-Ni alloys from ESCs, we have
measured the Méssbauer spectra of Fe-rich FCC alloys and extracted the /S at RT. A drop in the
IS measured as the composition ranged from ~60 to 80 at. % showed conclusively that a
transition from a HM phase to a LM phase was taking place as Fe content was increased. This
validates the existence of distinct phases, as had been required for 2-y-state models of Invar. On
the other hand, analysis of the RT atomic volume shows a positive deviation from Vegard’s law,
of the same magnitude as the spontaneous magneto-volume expansion which leads to the Invar
effect. This also showed that the Invar effect was an expansion relative to normal behaviour
(Vegard’s law), while the HM/LM transition caused a contraction of the volume. High-
temperature measurements of the /S in Invar alloys also showed that, although the HM phase
was slightly destabilized by the disappearance of magnetic order, Invar alloys remained HM
alloys and as such, thermal excitation of the LM phase (or a similar phenomenon) was not the
cause of the Invar effect. In anti-Invar alloys with higher Fe content, it was shown that the /S
increases with temperature, indicating the stabilization of higher moment phases with increased
temperature. It was demonstrated that based on the entropy of the larger moments, such a
stabilization would happen because of the moment-volume instability and that it would result in

the abnormal volume expansion known as the anti-Invar effect.
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The lines are fits to a Debye model. The arrows indicate how the proportions of the phases at
high temperature evolved as they were cooled back to RT.
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Figure 87 Variation of the normalized areas of the FCC (W) and BCC (®) phases of Fe,Ni...
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The lines are fits to a Debye model. The arrows indicate how the proportions of the phases at
high-temperature evolved as they were cooled back to RT.
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Figure 88 High-temperature phase diagram of the Fe-Ni systems. The ranges of stability of the y
(FCC) and a (BCC) phase are indicated, as well as the martensitic start temperature (M, dotted
line) [data from Reuter88). The diamonds indicate the approximate temperatures at which the
austenitic transition was half complete.



7. Monte Carlo Simulation of
Magneto-Volume Effects in Fe-Ni
Alloys

We have investigated the effects of a large volume dependence of the Fe-Fe magnetic
exchange parameter on several key structural and magnetic parameters as a function of
temperature and applied pressure over the entire field of Fe-Ni alloys. In order to combine
magnetic and atomic degrees of freedom, we have developed a code to perform isothermal-
isobaric Monte Carlo (MC) simulations of alloys whose chemical energy is described by Lennard-
Jones pair-wise interactions and where the magnetic energy is described by an Ising Hamiltonian.

Only NN interactions are taken into account in both the chemical and magnetic Hamiltonians.
7.1 Model Hamiltonian of the System

We assume that the atomic and magnetic degrees of freedom can be treated separately
and that all interactions are between pairs of NN atoms and spins only. The general Hamiltonian

used in this study is:
H=Y UWU7-7) - X JF7-7 o0, (57)

<> < iy>
In this expression, the i and j indices represent Fe or Ni atoms located at positions 7, and 7, and
the sums are on NN pairs only. For simplicity, Ug ¢ (), Ug;(n) and Uy, (r) are chosen to be
Lennard-Jones potentials. The magnetic exchange parameter J, (r) is allowed to be dependent on
the interatomic distance and, in this formalism, it includes the magnitudes of the spins, so that

we have 0, =+ 1.

Lennard-Jones potentials are characterized by two parameters each, the equilibrium

203
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position r° and the dissociation energy U®:

0 6 0 12
U, = -U; 2[ﬁ] - (Q] . (58)
r

r

The values of g, = 2.482 A and Ug,,, = 5000 K (431 meV) are chosen so that the simulated
volume and thermal expansion of pure Ni at 300 K coincide with the known experimental values
(et = 13.4 x 10 K", [Lide93]). We have chosen to reproduce the values at RT since this semi-
classical simulation does not correctly reproduce the thermal expansion at low temperature
(below ~100 K). We have also chosen that the dissociation energy U° be the same for all types of
pairs to minimize the number of variables in the model. This means that, in the absence of
magnetism, there would be no preferred chemical ordering and the thermal expansion
coefficients of pure Ni and pure y-Fe would be similar. This is partially justified by the fact that
the melting and boiling temperatures of both Fe (1811 K and 3134 K, respectively {Lide93]) and
Ni (1728 K and 3186 K, respectively [Lide93]) are similar, indicating that the dissociation energy
is similar. rg, ;. = 2.561 A is chosen such that the simulated volume of pure y-Fe at 300 K
coincides with the linearly extrapolated volume (following Vegard’s law) of Fe from the
experimental volumes of alloys with less than 20 at. % Fe, since these alloys are known to exhibit
no magneto-volume anomalies. Finally, r5.,; = 2.5187 A is determined by the requirement that,
at T = 100 K and in the absence of magnetism and magneto-volume effects, the equilibrium
volumes of the alloys follow Vegard’s law, that is, their volumes depend linearly on the
concentrations of either species.

In the case of the magnetic interaction, J;,; and J;_,; are assumed to be independent of
the interatomic distance. Though this is clearly not true for Ni which has a known magneto-
volume effect around T, the magnitude of the effect is approximately 100 times smaller than the
Invar effect, so we can safely neglect magneto-volume effects due to the interatomic distance
dependence of J,..,, compared to those seen in Invar alloys. The assumption that J,_,, is volume
independent can also be made from the fact that Ni-rich (less than 20 at. % Fe) Fe-Ni alloys do
not show significant magneto-volume effects. A more rigorous substantiation will be given later
when we investigate the exchange parameters obtained from ESCs of Fe-Ni alloys. It is also
assumed that ], ... and [, .. are independent of the concentration of the alloy. This assumption

is unfounded but represents a first approximation to this problem. In these circumstances, the
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value of .. = 65 K (5.6 meV) is used to reproduce the measured Curie point in Ni, which is
631 K [Lide93]. The value of ., can similarly be obtained by equating the measured and
simulated Curie points of chemically ordered FeNi, (T = 954 K, [Lagarec00]), since only Ni-Ni
and Fe-Nii interactions exist in the chemically ordered structure, when taking into account only
NN interactions. Using ], = 65 K (5.6 meV), these constraints result in [, = 127K (10.9
meV). If these parameters were expressed independently of the moment magnitudes

(],.j =f,j W/ (4p.,z,)), and using p,, = 0.6 g, and u._ = 2.8 W, , then we would have ]-’Ni -
722K and J_,, = 302 K. These values are quite similar to the ones used by Dang and Rancourt
when they studied the magnetism of Fe-Ni alloys by MC simulation U-NiNi = 700 K and f-mu =
355 K) [Dang95, Dang96a, Dang96b]. We will discuss the choice of the Fe-Fe magnetic exchange

parameter in more detail later.
7.2 Simulation Method

Combined molecular dynamics and Monte Carlo have already been used to study a
single species system with ferromagnetic interactions only (Grossmann96). We have, however,
decided to determine average thermal properties by Monte Carlo simulation only, but one which
includes freedom of the atomic positions and of the volume. This has the advantage of removing
the assumptions about different time scales in the magnetic and structural dynamics because MC
simulations are not based on dynamics but only on the sampling of the phase space.

In MC simulations, average parameters of the system are obtained by efficiently sampling
the phase space of the system and performing the average at a given temperature and pressure. In

an isothermal-isobaric ensemble with atomic and spin degrees of freedom, averages are calculated

as

<A> = _;. {'JV!;J?%:A(a{o}) exp{-{PV/+ E(7{o})]/ £;T}, (59)

where Q is the accessible space of all atomic coordinates (given a volume V'), Q, is the space of all
magnetic coordinates (spin states), and E(F,{0}) is the total internal energy of the system in a

specific configuration. If we express the particle coordinates in reduced units (§, = 7,/ 1"'/?), then
the average <A > can be written as
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< A> = E%g: fd[ff dp A(V'7*B,{0}) VN exp(-PV/ k,T) cxp[-E(V'”", {o})/kBT], (60)
T 0 w

where w is now the unit cube (if a cubic volume is used), N is the number of atoms in the system
and Z” is the partition function in reduced coordinates (which reduces to a normalization
constant at a given temperature). We can then apply a Metropolis algorithm to accept or reject
the moves to new configurations, where the change from configuration w to configuration w’ is
accepted depending on
AH(w~w'y = NP(V, ~V,)/ kT - NIn(V,./V,) + AE(w~w ")/ &,T, (61)
where AE(w~w ') is the change in internal energy. In the standard Metropolis algorithm, the
change is accepted if AH < 0 or exp(-AH) is larger than a random number uniformly sampled
between 0 and 1. In the simulation, instead of uniformly sampling the volume V, we sampled the
length L = ' of the box, which causes a biassed sampling of the volume. This is corrected by
using
AH(w-w') = NP(V,~V.,)/ #,T - (N+2/3)la(V,./V,) + AE(w-w ")/ kT (62)
instead of the expression given in eq. 61. The additional term of 2/3 comes from the change of
variable from V'to L in the integrand of eq. 60: N4l =3LN"24L =3 1N 4L,
The system must first be equilibrated, that is, a certain number n,,,,.,, of MC loops must
be performed until the system has reached its thermal equilibrium. Once equilibrated, a number
Rampliag Of MC loops are performed 1o sample the phase space in order to calculate the averages of
selected parameters. Because configurations from subsequent loops are strongly correlated to

each other, only every n__’s configuration is used in the average. One MC loop is performed as

follows:

» repeat N .. times
» randomly select a box length change from [-AL, AL] (uniform sampling)
» calculate AX corresponding to the change in volume
» accept or reject the new volume using the Metropolis selection criterion

» repeat N, ;. times

atomic

» repeat N times (so that each atom is selected, on average, at random)
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v

randomly select an atom

» calculate a new displacement A7 by randomly sampling a cube of length
L gicplacemen: (centred on (0,0,0))

» calculate AH corresponding to the change in displacement from its current
position

» accept or reject the new atomic position using the Metropolis selection

criterion

» repeat N, times
» repeat N times (so that each atom is selected, on average, at random)
» randomly select an atom
» calculate AH corresponding to a change of its spin (spin flip)
» accept or reject the new spin direction using the Metropolis selection
criterion

The parameters N, .nes Niomic a0d Nypgreiic

have been chosen such that the equilibration time is
optimized. They each permit the volume, atomic positions and magnetic configuration to
stabilize independently. In the limit where atomic motion is quick relative to transverse spin
fluctuations, the calculation should, as it does, permit the volume and atomic positions to reach
equilibrium for each new magnetic configuration. Of course, since this is a MC simulation, true
dynamics are not included in the calculation and the MC loops are simply meant to provide a
method for sampling phase space. The MC simulation is most precise when the sampling is
expansive so it requires efficient sampling. The efficiency of the sampling has also been
optimized by the choice of AL (the change in the box length) and L, . o.. Both these
parameters were chosen such that approximately half the new volumes and atomic positions are
accepted. To ensure that this is true at all temperatures, the parameters are scaled by 7'V2.

It is important to note that the statistical averages described above are semi-classical. The
magnetic formalism (Ising model) is truly based on quantum mechanics since the sampled
configurations are actually eigenvectors of the magnetic Hamiltonian. On the other hand, the
lattice contribution is treated as a classical system, since the eigenstates of the quantum lattice

Hamiltonian are not known. For this reason, the simulated lattice properties at low temperature
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(T 5 100 K) are not expected to reproduce experimental results. The most important feature
missing will thus be the drop in thermal expansion at low temperature which is observed
experimentally and which is due to quantization of lattice excitations (phonons). We have chosen
to use an Ising system because, since we can treat it in a true quantum formalism, it is better
suited to reproduce experimentally observed magnetisation curves than a classically treated
Heisenberg system, which, at low temperature, exhibits a substantial drop in magnetization that
is linear with temperature. The Ising model, on the other hand produces no drop in
magnetization (OM /T = 0) at T = 0 K in a (single specied) ferromagnetic system. This more
closely resembles the slow 7** dependence experimentally observed in most alloys (the 7*”
dependence is due to spin-waves, which are the primary form of magnetic excitation in the

quantum Heisenberg system).
7.3 Details of the Simulations

Simulations were performed on systems with 1372 atoms (7° unit cells of 4 atoms) with
periodic boundary conditions in three dimensions. Population samples were taken every n,_ =
20 MC loops to minimize the auto-correlation of the configurations (fig. 71). Typically, 7., =
10000 MC loops are performed to reach equilibrium and 7, = 30000-100000 MC loops to
calculate averages. In all cases, the simulation was started at low temperature from an ideal FCC
lattice of the approximate volume, in a magnetic configuration where the Ni spins are aligned
ferromagnetically, and the Fe spins are randomly oriented (up or down). In most cases, we
checked that the results obtained by raising the temperature are the same as those obtained by

reducing the temperature.
7.3.1 Sample Averages Calculated in the Simulation

The averages for the following parameters were obtained from the simulation: the
volume V of the system, the total energy E, the specific heat ¢, the reduced magnetization of the
Fe and Ni spins, the bulk magnetization (assuming u., = 2.8 p, and p,; = 0.6 ), the reduced
magnetic zero-field susceptibilities of the Fe and Ni spins, the bulk magnetic zero-field
susceptibility x,,, the average NN distance, the average Ni-Ni, Fe-Ni and Fe-Fe NN distances,
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the average Fe-Fe NN distances for parallel and anti-parallel spin configurations (Fe!-Fe! and
Fe!-Fe!). The thermal expansion coefficient &, and the bulk modulus B_ were also calculated
directly from the simulation.
By virtue of its definition, ¢, = (9E/T),, », the specific heat could be calculated as
¢, = N(< E(E+PV)> -< E> < E+PU> )/ k,T? (63)
from a single simulation, or as
cp =A< E> /AT (64)
from two simulations performed at different temperatures. The zero-field suscepribility
Xa = (6M/3H) p .o can also be calculated from a single simulation as
Xy = (< MP> =< M>?)/ &y T. (65)
We could also have calculated it from y,, = A< M> /AH from simulations at /f =~ Cand H =
AH. The thermal expansion can also be calculated directly from a single simulation, since
@ = (81//3T)y p/ 3V can be expressed as
@, =N(< (E+PV)> -< V> < E+PUV> ) /34, T?< ">, (66)
but we preferred to calculate it as
o.=AV/AT)/3V (67)
from the volume thermal expansion curve obtained at various temperatures. It was found that
the first expression (which uses the variance of the volume fluctuations) converged very slowly
to the correct value and thus required a large number of MC loops. The average volume, on the
other hand converges quite rapidly. The same can be said about the bulk modulus,
B = -1/(8P/3V),, , which can be calculated as
B=k,T< V> /N(< V?> -< /> %), (68)
is more readily calculated as
B=-< V> (AP/A< I/>) (69)
after performing simulations at P = 0 and P = AP. All the averages used above are averages per
atom, for example,< > is considered to be the average volume per atom. The average NN
distances are calculated as the sample averaged distances (over the N sample atoms or 6N sample
NN bonds) between MC averaged atomic positions (over many MC loops), as is understood

experimentally.



Chapter 7. MC Simulations of Magneto-Volume Effects in Fe-Ni Alloys 210

7.3.2  Avoiding Sampling Autocorrelation Effects

In most MC methods, because the new configuration at each step is derived from the
previous one, there is usually a strong correlation between successive parameters. Because MC is
based on finite sampling of the phase space, it is necessary to perform averages using
uncorrelated, or weakly correlated, configurations to avoid biases. We have thus calculated the
autocorrelation function of various parameters, as a function of the “distance” (number of MC
loops performed) between successive samples. For a parameter p evaluated at each of the »
samples, the autocorrelation function S(/) is calculated as:

< (pn+h-p)(p(m)-p)>,

’ 70
7 79

where the average is performed over all sampled configurations and a; =< (p-p)> isthe

S =

variance of p. $(0) is always 1 (self-correlation) and S(/) typically decays to O as / increases. This
functions has been calculated for three important parameters of the simulation: the energy (E),
the volume (V) and the magnetization (M;_ and M,;,). Fig. 89 shows the results, for a simulation
of Fe,Nig, at 700 K. Based on these types of results, we have chosen to sample new
configurations every 20 MC loops to avoid correlations (5(/) < 10 %).
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Figure 89 Autocorrelation functions of V' (solid line), E (dashed line), £ x V (dotted line), M
(dash-dotted line) and M, (dash-double dotted line).

7.4  Choice of the Fe-Fe Magnetic Exchange Parameter
7.4.1 Theoretical Calculations of J; .. ()

Until recently, there was no way of determining the interatomic distance dependence of
the magnetic exchange interaction in magnetic materials. With the development of ESCs which
include magnetism, two separate methods have been applied to determine the magnetic exchange
parameters between local moments. The first is to calculate a map of the energy as a function of

relative angles between moments which are ordered as spin spirals and to fit the exchange
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parameters according to a given model (for example, a Heisenberg model with NN interactions
only) [Rosengaarde97]. The second is to directly calculate the effective Heisenberg parameters
from the scattering matrices obtained during the ESC. This method, which is based directly on
the LSDA was developed by Liechtenstein ez al. [Liechtenstein84] and was recently reviewed by
Gubanov et al. [Gubanov92].

It is using this method that Sabiryanov et a/. [Sabiryanov95] have calculated the total
effective exchange interaction parameter J, in pure y-Fe as a function of the interatomic distance.
This J, represents the sum of all the magnetic interactions (it includes the moment magnitudes)
for a given atom. Fig. 90 shows their result, converted into units of Kelvins and divided by 12
(assuming only the 12 NN interactions contribute to the total interaction). In y-Fe, a HM to NM

transition occurs as the volume is reduced, so only the data from the region where the HM phase
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Figure 90 Effective Fe-Fe NN magnetic exchange parameter, based on the calculation by
Sabiryanov et 4/, [Sabiryanov95].
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is stable is shown in fig. 90. One clearly finds that there is a large drop from a positive value at
large volumes to a negative value at lower volumes, even before the HM/NM transition which
occurs at 2.52 A.

The same type of calculation was performed for us by Dr. Bose (one of the co-authors of
Sabiryanov95) for Fe,Ni. There are several interesting results of these calculations that should be
given. Here again, the calculation was performed in the region where the HM phase is stable.
Fig. 91 illustrates the resulting moments, total exchange parameter (], ; and J, ) and
interatomic exchange parameters J, . The calculated exchange parameters already include the
product of the moment magnitudes, but since the moment changes, it is difficult to distinguish
between changes in the exchange constants (moment independent) and changes in the moment
magnitudes. We have thus renormalized the exchange constants by dividing them by the
products of the calculated moment, and multiplying them by the products of fixed HM moment
magnitudes (arbitrarily chosen as 0.61 for Ni and 2.63 for Fe, which are the moment magnitudes
at the largest volume considered). This results in fig. 92, in which we have also illustrated the
renormalized Jo.ni/12. In Fe;Ni, all NNs of the Ni atom are Fe, so, if there are only NN
interactions berween Fe and Ni, we should have J, \; = 12 J. ;. This is indeed the case and in
fact we find that ], .is also nearly independent of the interatomic distance. The situation is
more complicated for Fe-Fe interactions, as both NN (J;.;.) and next-NN (/& ) are large. We
can say, however, that the main contribution to the dependence with interatomic distance comes
from the NN term, and from fig. 91b (J; ;.), it is justified again to use + 100 K as bounds for a
“generalized” NN exchange parameter for Fe. The fact that the next-NN (and indeed higher
order) exchange parameter is non-negligible illustrates a breakdown of local moment magnetism
(characterized by interactions between strongly localized points in space though j(7,7%) and a
transition to itinerant magnetism (characterized by interactions at strongly localized wavevectors
in reciprocal space through J(7,7)). To keep the model simple, we will use only NN
interactions, even though this means we will not correctly reproduce the magnetism. Because the
NN interaction is the dominant contribution to the dependence with the interatomic distance,

this should not greatly affect the results due to the magneto-volume coupling.



Chapter 7. MC Simulations of Magneto-Volume Effects in Fe-Ni Alloys 214

L v B2 L 1—' L] L v l' v L L: L ' v v L ) .f
254 a g—u—8 .
L ./. Fe o
20- ./l’ o
- ./ b
q 1.5 - -
=" o4
2 104 -
N -
T 1
0-0 T e v L v v 1 L I v L | v v v v
20004 b -
o0 ® __—® @ @ ®
./ a /.
10004 o i
- Ni
5 b
- 0
Fe
) .‘_s
-1@ - l\. -
—B
L L] LJ ‘ v L] LJ L4 l L v ' Ll
4004 . -
- .'__’___’
- / " )
—
2m - / \’ /. -
3 ] 0""’/‘4-4 A—aA——a
—,= 1m - ‘/‘ -
0 e
L ._____‘. -) -
-100 - \./ -
v v L L v LS v L] l L A v L v Ld LJ v
245 250 255 260 265

interatomic distance (A)

Figure 91 Calculated magnetic moment and magnetic exchange parameters in Fe;Ni. In (c), the
symbolsare: B J. ., AJcr and @] .



Chapter 7. MC Simulations of Magneto-Volume Effects in Fe-Ni Alloys 215

"\ l' v l L v L v l LA L g v v '
400 4 4
. -
00- \/ .
¢ ./._—-I—l ]
g 2“)-1 ‘——‘\‘_‘\‘ -
= | o—e¢—e-0-0 a—g—g |
3 1004 4
N
£
g 04 n
o s ]
0] / .
f J
0] "—s— ]
T[T
245 250 255 2.60 265
interatomic distance (A)

Figure 92 Renormalized (see text) magnetic exchange parameters in Fe,Ni. @ J. . , @ o . A
Jpoy; a0d @ [, /12,

742 Model J; . (r) Used in the Simulations
7.4.2.1 Interatomic Distance and Composition dependence of J. . (r)

To perform the simulations, we made several simplifying choices regarding the volume

and concentration dependence of [, . :

@ Je. (r) is simplified and broken into 3 parts, as shown in fig. 93. Upon setting the upper
and lower limits to + 100K, J. ;. () is characterized by two parameters, the distance 4,

and the slope J'c .. = 9] /9r with which is rises from -100 to +100 K. This
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simplification is due to our inexact knowledge of the interaction, apart from its basic
shape. Also, because of its simplicity, it permits us to understand more clearly how and

why magneto-volume effects arise.

JFeFe
+100 K A

0 pPrerrccccngfncnacacacacas

-100 K

Figure 93 Effect of the NN distance on J;;._ as used in the simulation.

Jege (r) 1s assumed to vary with the composition. Without an exact calculation, we can
only guess how it is affected by the composition, which changes the number of valence
electrons and thus most likely changes the exchange. We have chosen J. . (r) to vary

with composition only by changing 4, and in such a manner that the crossover volume
(= dy ) scales with the average simulated volume of the paramagnetic and non magneto-

volume active alloy (me ()

WOV
dy (c=1)  Viarle=1)

71)

Within this assumption, the interaction between Fe atoms, in the absence of magneto-
volume effects is approximately the same at each composition. As we shall see later, the
Fe-Fe distance does not scale exactly with the average NN distance, so the average
exchange will be slightly different for different compositions. A discussion regarding the
implications of this choice of scaling with concentration will be given once the results of

the simulation are analysed.

@ Even though NNN (and longer range) interactions are important in y-Fe, there is reason

to believe only the NN interaction has a large volume dependence. We have chosen to
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assume the complete interaction is due to NN interactions. The neglected longer range
interactions should contribute with respect to the magnetic solution but, because they

lack a volume dependence, they should not significantly affect the magneto-volume

properties that we are trying to simulate.
7.4.2.2 Choice of J'; ¢ and d,(c=0.65)

We have shown that our model Fe-Fe exchange parameter (fig. 93) does in fact roughly
describe the calculated parameter based on ESCs (fig. 90). However, the calculated J ... is more
rounded than our model exchange parameter and there is no precise way of determining what
slope we should use. In fact, the exchange parameter calculated for pure Fe has a range of slopes
from ~9000 K/A to ~500 K/A depending on the interatomic distance. We have investigated the
effect of various combinations of [’; ;. and 4,(c=0.65) on the thermal expansion and
magnetization at 7 = 300 K.

Fig. 94 shows the contour plots of the thermal expansion and reduced magnetization
(with respect to the Slater-Pauling value at Q K) at 300 K as a function of J'; . and 4,(c=0.65).
Experimentally, the values for Invar are 2 x 10° K" and ~0.65. Although it is not possible with
this model to get exactly those values, there is a wide range of values of ]/, . and 4, (-=0.65)
which can produce results similar to the experimental measurements. One very interesting
feature seen in fig. 94 is that the magnetization and the thermal expansion are very strongly
correlated, making it difficult to choose. For example, if we were to decide to have 0.80 < M <
0.85and 4 x 10° < a, < 6 x 10°, we find that we can choose any value of ]’ .. between 4000
and 20000 K/A, with d,(¢=0.65) ranging (not independently) from 2.54 to 2.56 A. It is thus clear
that the value of J', __ is not required to be specific, but that a wide range of values can produce
effects such as a reduced thermal expansion.

Somewhat arbitrarily, we have chosen the values J 'F e = 5000 K/ A and dy(¢=0.65) =
2.545 A. This value of J'c, is well within the range of values as calculated by ESCs and results
in a sufficiently large range of interatomic distances where J_ . is not constant (Ar = 200/ e

=004 Aor Ar/r = 1.6 %).
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d, (c=065) (A)

Figure 94 Simulated reduced magnetization (relative to the Slater-Pauling value, solid line) and
linear thermal expansion coefficient (x 10° K", dashed line) at 7 = 300 K in Fe,Niy; as a
function of gz, and d,(c=0.65).

7.5 Simulation Results
7.5.1 Simulated Properties as a Function of Composition
7.5.1.1 Pure Ni
MC simulations were initially performed on pure Ni to determine a reference point, as

Ni is, within the parameters of this simulation, non-magnetovolume active. Also, as it is not an

alloy but a single species crystal, some T = 0 K properties can be calculated exactly and
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compared with the simulations’ results. Fig. 95 shows the variation of the volume V' with
temperature and the resulting linear thermal expansion & . At T = 0 K, because this is not an
alloy, we know that the equilibrium volume is 1} = (ram)’/ V2 = 10.812 A’/atom. Indeed, the
simulated volume does tend towards this value as the temperature goes to 0. We observe that the
thermal expansion increases slightly with temperature, as is the case experimentally. Finally, the
simulated thermal expansion is ~13.6 x 10 K™, close to the experimental value of 13.4 x
10 K™ we were targeting. In fig. 95b, we can compare the values obtained by differentiating
the thermal dependence of the volume (eq. 67) and by direct calculation in the simulation (eq.
66). Clearly, the differentiation method is better suited when temperature series are performed.
In fig. 96, we have reported the bulk modulus B and the lattice contribution to the
specific heat ¢, as calculated by differentiation (eqs. 69 and 64) and directly (eqgs. 68 and 63).
Again, the differentiation method is more precise. In both cases, it is also possible to calculate the
expected T = O K result analytically. In the case of a Lennard-Jones potential with 6 NN
interactions per atom, in the equilibrium configuration (r = ry,y;), the bulk modulus is

0
UNiN'L

B=-viE - w3
v (’z?xm‘.)

Using the parameters listed above, this results in B (0) = 22198 K/A’ = 306.5 GPa, which is
where the simulated values converge as T goes to 0. It is interesting to note that this comparison

between theoretical value and simulated value is what lead to the choice of N,yme = Nyomie = 1in

the simulations. When using a larger value for N, the volume at 7 > 0 was found to be
larger than with N_,,,. = 1. At finite temperature, we do not know what the theoretical volume
should be and there was no way of favouring one result over another. The bulk modulus, on the
other hand, was found to be lower than the theoretical value for N,,,,., even at T = 0, thus
enabling us to chose N,,... = 1 so that the simulated result be compatible with the theoretical
value. Like the thermal expansion coefficient, the specific heat shows little variation with
temperature, and converges to the value 3/2 &, at T = 0 K, as expected based on the
equipartition theorem, which states that each degree of freedom contributes 1/2 £, to the
specific heat. Because the simulation allows 3 degrees of freedom (x, y and 2), the simulated value
of 3/2 &, is correct.

Figs. 97 and 98 show several properties related to the magnetism of Ni. The average
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magnetization shows that the long-range magnetic order vanishes at T, = 630 K, with some
finite size effects (due to the finite size of the lattice and the periodic boundary conditions). The
magnetic susceptibility also follows the expected Curie-Weiss law above T,. [Ashcroft76]. In fig.
98, the magnetic contribution to the specific heat is given, also showing the expected “lambda”-
type discontinuity at T,. [Ashcroft76).

We can also note that in general, the magnetic contribution to ¢, is smaller than the
lattice contribution, excepr close to T,.. Because there is no simulated magneto-volume coupling
(8fyini / Or = 0) in this system, it is possible to distinguish the magnetic and lattice
contributions. In general, however, the internal energy is dependent on both the magnetic state

and lattice state of the system and they cannot be separated, so only the total ¢, will be given.
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7.5.1.2 Alloy Properties in the Absence of Magneto-Volume Coupling

Before simulating the properties of Fe-Ni alloys when a large magneto-volume coupling
is present, we have determined the baseline, or reference, properties of these alloys when no
magneto-volume coupling is present. Specifically, we have performed simulations, as a function
of concentration, for T = 275 and T = 325 K, without any form of magnetism. This way, we can
extract the “normal” composition dependence of specific parameters at T = 300 K (near RT).
When necessary, the average of the parameter at 7 = 275 and 300 K is taken and in other cases
(to compute @ and ¢,), a numerical differentiation with respect to temperature is performed by
a discrete numerical derivative.

Fig. 99 shows that the average atomic volume does indeed follow Vegard’s law, that is, it
has a linear relation with the composition [Vegard28, Zen56, Thorpe91]. In fig. 99b, we see that
the deviation from perfect linearity is very small, less than 0.015 % throughout the composition
range. When the simulation will include magneto-volume coupling, we will be able to investigate
the differences with respect to this plot.

Fig. 100a shows the variation of the chemical potential energy as a function of
composition, relative to 6 U, = 30000 K, the ground state chemical energy of both pure Ni and
pure y-Fe. The offset of ~450 K is due to the thermal expansion which is such that the average
interatomic distances are (at least for pure Fe and pure Ni) larger than the equilibrium distances,
thus increasing the potential energy. The specific shape, on the other hand, is related to the
different expansions or contractions of the different types of bonds relative to their equilibrium
values. The change in the interatomic distances with composition shown in fig. 102 is consistent
with what is expected. That is, the lengths of each type of bond increases linearly as the average
volume increases, even though the Ni-Ni bonds remain slightly shorter than the Fe-Fe bonds.

Figs. 100b and 101 on the other hand show that the bulk modulus, the thermal expansion
and the specific heat show little variation with composition, at least none that can be identified
within the precision we have obtained. This is expected since the chemical potentials are the
same for all types of bonds, except for slightly different equilibrium distances. We thus consider
that the scatter observed in figs. 100 and 101 are representative of the precision we obtain from
the MC simulation. Also, we note that the bulk modulus is approximately 50% larger than
experimentally determined (8,,, (Ni) = 262 GPa, B,,, (Ni) = 180 GPa [James92]). This is in part
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due to the use of the Lennard-Jones potential, as the repulsive term (O (» %)} is too strong to

correctly reproduce the bulk modulus in metallic systems.
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Figure 99 Simulated atomic volume (a) and deviation from Vegard’s law (b) at 7 = 300 K in the
absence of magneto-volume effects. In (b), we see that the deviation is at most +0.015 %
throughout the composition range.
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lattice only) at 7 = 300 K in the absence of magneto-volume effects.
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7.5.2 Properties with Magneto-Volume Coupling
7.5.2.1 Simulating the Invar Effect in Fe,Ni;,

One of the main purposes of this study was to see if a simple model such as the one
described is capable of reproducing the main structural and magnetic properties that occur in
Fe,Ni,;, (the Invar alloy) as a function of temperature and pressure.

The main effect we investigated was the anomalous near-zero volume expansion at low
temperatures, which quickly returns to normal above the Curie temperature. As seen in fig. 105,
the simulation does indeed produce a flattening out of the volume expansion at low
temperatures. Because the simulated expansion at low temperature (below 100-200 K) is
incorrect, it is better to compare the difference between the non-magneto-volume active
simulation and the simulation with magneto-volume coupling. This is shown in fig. 105b for the
atomic volume and is compared to experimental data. Because the simulated T, ( = 700 K) is
somewhat larger than the real T, (= 500 K [Wassermann90)), we have plotted all graphs as a
function of T/ T, for comparison with experimental results. In this way it is also easy to see if
an effect is related to T, or not. As seen in fig. 105b, the comparison berween experiment and
simulation is quite good, indicating that the magneto-volume coupling through a volume
dependent Fe-Fe exchange parameter is capable of reproducing the Invar volume anomaly.

More specific properties can also be investigated to determine if the model correctly
reproduces them. The linear thermal expansion coefficient is seen in fig. 104 and compared to
experiment in fig. 104b. As seen experimentally, the anomalous thermal expansion which leads
to the Invar effect disappears above T as in the simulation. Though the exact shape of the curve
is not retained, the order of magnitude and general reduced temperature dependence are
reproduced.

The same is found for the specific heat (fig. 106) which exhibits a peak at T, and remains
slightly above the value simulated in the absence of magnetism of magneto-volume effects above
T.. The bulk modulus (fig. 107) also shows an Invar related anomaly which exists only below
T,. In this case however, the concordance between the simulated result and the experimental
result is less than perfect, showing a larger drop at low temperature. Nonetheless, the order of

magnitude is correct, except at very low temperatures.



Chapter 7. MC Simulations of Magneto-Volume Effects in Fe-Ni Alloys 232

Finally, it is interesting to see the average magnetization as a function of temperature (fig.
108). Not only is the saturation value less than the Slater-Pauling value (u,_, = 2.03 ;) but the
reduced temperature dependence is noticeably different from what is observed in Ni. Both these
features are also observed experimentally but are due to the presence of mixed exchange (positive
Juins and Jp;» Negative average J. . - at least below T ) and are not related to magneto-volume
coupling.

Within the simulation, it is also possible to calculate the average bond lengths based on
chemical species (Fe-Fe, Fe-Ni or Ni-Ni), but also based on spin pair orientations (parallel - I t or
| 1, or antiparallel - 7| or |1). Because the magnetic exchange coupling for the Fe-Fe bond is
distance-dependent, the spin-pairs whose orientations are due to their inter-spin bond and to
their bonds to other atoms will have different bond-lengths whether they are parallel or anti-
parallel. The average (spin-independent) bond length is shown in fig. 109 along with the spin-
dependent distances for Fe-Fe. Overall, the anomalous expansion due to the magneto-volume
coupling affects all types of bonds, but the Fe-Fe bonds are obviously more affected. The effect
on other types of bonds is secondary and occurs because of the Fe-Fe bond expansion (Fe-Fe
bonds represent 42.25 % of all bonds). To minimize strain in the lattice, the other bonds also
expand slightly compared to their “normal” length.

It is also very interesting to investigate the effect of spin-pair orientations on the bond-
length. In fig. 109, the average bond length is assigned to either group (parallel or antiparallel)
based on the average spin orientations. Note that this is different from calculating the average of
the bond lengths grouped by the instantaneous spin orientations (in the specific sampled
configuration). In this simulation, J . = 5000 K/A and 4, = 2.545 A, s0 atd = 2.565 A, J, .. =
0 K. At low temperature, antiparallel Fe-Fe spin pairs have a distance which corresponds to J; ..
< 0 and they actually contract more than their “normal”(in the absence of magneto-volume
coupling) length to minimize the bond energy (U, = -J ;. 0,0, = +J; ¢ s0 0U,/dd> 0 and
AU, < 0 if Ad < 0). On the other hand, paralle: Fe-Fe spin pairs are expanded, and even to the
point where [ . becomes positive (U, = ~Jp, 9,0, = ~Jpg 50 0U, /34 < 0 and AU, < 0 if
Ad > 0). Because of the string ferromagnetic interaction with Ni spins, the majority of Fe-Fe
bonds are parallel which results in a net volume expansion relative to the volume in the absence
of magneto-volume coupling. It is more difficult to understand the behaviour of the bonds

lengths at higher temperatures (but below T ), since we see the bond length of the pairs with
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antiparallel spin orientations actually expand more than the for pairs with parallel spin
orientations. We have yet no clear explanation of this behaviour which might, in fact, be an
artefact due to the way the averages are performed (calculate the averages, then group the pairs as
opposed to grouping and taking the averages in each group). Above T, the average spin
directions are completely random and there is no difference between the two cases. It is also
interesting to note that for temperatures of interest to the Invar problem, the interatomic Fe-Fe
distances are such that we never reach the plateau of +100 K in J_ . . This means that the choice
of +100 K as bounds to ], ;. is not very important to this mode! (it does however become

important if a larger J._. is chosen).

This model, as simple as it is, is thus capable of reproducing to some degree all of the
anomalous structural and magnetic properties associated with Invar at the composition of 65 at.
% Fe. In the following section, we shall see how it also reproduces similar anomalous properties
which are observed as a function of composition, such as deviation from Vegard’s law and the

Slater-Pauling curve.
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Figure 104 Simulated linear thermal expansion in Fe,Ni,; in the presence (a, @) and in the
absence (a, A) of magneto-volume coupling. In (b), the difference is shown (®), as well as the
experimentally observed difference (dashed line) [after data from Hayase73].
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Figure 105 Simulated atomic volume in Fe ,Ni,, in the presence (a, @) and in the absence (a, &)
of magneto-volume coupling. In (b), the difference between the two volumes (#®) is shown to
disappear at T, as is observed experimentally (dashed line) [data from Hayase73].
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(b, A) of magneto-volume coupling. In (b), the difference is shown (@), as well as the
experimentally determined difference (dashed line) [data from Wassermann90].
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of magneto-volume coupling. In (b), the difference is shown (®), as well as the experimentally
determined difference (dashed line) [data from Wassermann90).



Chapter 7. MC Simulations of Magneto-Volume Effects in Fe-Ni Alloys 238

20 ryrrrrry ML T T ¥
Ab
“A“' ]
A .
) ‘k“:. .
154 A -
] a, J
w LN ‘
e LA :
§ 10l i
§ . A .
A A j
a A .
0.5 -
4 : ]
a 1
00 ) Sy
e
0.0 05 1.0 15 20 25
composition (at. % Fe)

Figure 108 Simulated average magnetization in Fe,Ni,, in the presence of magneto-volume
coupling. The experimental data for Feg;Ni,, , are shown as a dotted line [Crangle63]. T.. is
found to be ~700 K. The slight increase at very low temperature is due to the mixed interactions
(some positive and some negative exchange constants) and the use of the Ising model. It does not
occur in the measured data.
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Figure 109 Simulated average interatomic distances in Fe,Ni,; grouped by the type of bond (@
Fe-Fe, @Fe-Ni and A Ni-Ni, the solid line is the average bond length). In addition, the Fe-Fe
bonds are distinguished based on the average spin pair orientations (half-filled symbols, solid on
the right for parallel bonds, solid on the left for anti-parallel bonds).
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7.5.2.2 Invar Effect at Other Compositions

In the previous section, we have shown that a simple model which uses an interatomic
distance dependent Fe-Fe exchange parameter is capable of reproducing the main magnetic and
structural properties of FeNi,; Invar. We shall now show that the same model is also capable of
explaining the magnetic and structural Invar related anomalies found at other compositions.

Simulations were performed at 7 = 300 K throughout the entire composition range for
chemically disordered alloys. Fig. 110a shows the average energy per atom (chemical + magnetic)
in the presence of magnetic interactions. When compared to the energy when neglecting
magnetic interactions, one realizes that the difference resides primarily in the magnetic energy
(the change in chemical energy due to the magneto-volume coupling is less important), especially
in the Ni-rich composition range where the moments are ferromagnetically aligned and the
dominant interactions are Ni-Ni (J,,\; = 65 K) and Fe-Ni (J,; = 127 K). The drop in the bulk
magnetization above 60 at. % (fig. 110b) and the reduction of the exchange interaction (J; .. is
relatively small) as the number of Fe-Fe pairs increases cause the energy to increase back towards
its non-magnetic value at higher Fe concentration.

Fig. 110b also shows how this model reproduces some of the deviation from the Slater-
Pauling curve. Again, this is not linked to the magneto-volume coupling, but has only to do with
the negative average Fe-Fe exchange interaction which causes antiparallel Fe spin orientations. In
addition, since we are at T = 300 K, the drop in the T, in very Fe-rich alloys can contribute to
the reduction of the average magnetization. When compared to the experimental measurements
at 4.2 K, we find that the drop at high Fe content is much quicker than the simulated drop, even
though the simulated data is taken at 300 K and is systematically lower than the saturated (7' = 0
K) data would be. This is most likely due to the reduction of the magnetic moment magnitude,
in addition to antiparallel spin orientations (or spin canting). In our model, we assume that p__
= 2.8, and p,, = 0.6, throughout the composition range, thereby avoiding any effects to to
the HM/LM transition in Fe-rich alloys.

One of the most intriguing features of the Fe-Ni system is the atomic volume. As shown
in chapters 4 and 6, before the HM/LM transition occurs beyond ~70 at. %, there is a small
positive deviation from Vegard’s law which is not properly understood. Within the context of
this model of magneto-volume coupling, such a deviation is natural since the Fe-Fe bond !ength
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enhancement which occurs at 65 at. % to produce the Invar effect is also present in more Ni-rich
alloys. Because of the low number of Fe-Fe bonds in Ni-rich alloys, this effect is not as significant
as at 65 at. %, but it is still present, as shown in fig. 111. In fig. 111b, the difference between the
volume in the presence and absence of magneto-volume coupling is compared to 1) the positive
deviation from linearity observed in experimental measurements of the atomic volume at RT and
2) the spontaneous volume enhancement at 7 = 0 K, calculated as the difference between the
measured 7 = 0 K volume and the 7 = 0 K volume extrapolated from high temperature data
where there are no magneto-volume effects [Wassermann90]. In our model, because the
composition dependence of the volume without magneto-volume coupling is linear and the high
temperature volumes with and without magneto-volume coupling are the same, the two
quantities are identical, except for the difference in temperatures (one should use the spontaneous
volume enhancement at RT). In the real alloy, effects of the HM/LM transition appear from ~60
at. %, so they will not be identical, but one does find there is a strong correlation between the
simulated and the measured expansions below ~60 at. %. Our model successfully explains this
anomalous behaviour of the volume even though it overestimates the effect at low Fe conten:.
This can be due to the fact that _/l,'d:c might not be identical throughout the composition range. If
Joge Was half as small at 30 at. % than it is at 65 at. % Fe, then the agreement would be much
better.

Similar conclusions can be made regarding the RT linear thermal expansion coefficient
(fig. 112) and the bulk modulus (fig. 113). In each case, the simulated composition dependence is
consistent with what is observed experimentally, except that the effect is overestimated at low Fe
content. The general tendency is correct, illustrating the validity of this model for understanding
the Invar effect in Fe-Ni alloys. The experimentally measured thermal expansion coefficient (fig.
111) is another perfect example that shows that the Invar effect is not specific to the composition
of 65 at. % but that the effect is present at all compositions, though maximal at 65 at. % as
simulated by this model.

In all cases, the effect is related to the expansion of Fe-Fe bonds with parallel spins and as
such will increase with the number of Fe-Fe pairs, as long as the material is ferromagnetic. At
compositions above 65 at. %, because of the negative ] ., the number of pairs of anti-parallel
Fe-Fe moments increases, thus reducing the effect. It is important to note that in Fe-Ni alloys,

Jer. must be negative to explain the deviation from the Slater-Pauling curve in chemically
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disordered alloys. However, in other FCC Fe-based alloys, it is possible that J. . be positive, in
which case an Invar effect could also occur at higher Fe content than in Fe-Ni. This, for example,
is the case in Fe-Pt and Fe-Pd alloys. In both these systems, the atomic volume is larger than in
Fe-Ni, resulting in J. .. > 0 (but Ji.5 is still large!) and no deviation from the Slater-Pauling
curve. When discussing the properties Fe-Ni Invar alloy, Rancourt and Dang [Rancourt96a}
showed that the frustration of magnetic Fe-Fe bonds was a key to understanding the Invar effect.
In general, however, one must simply consider the magnetic order (difference between the
numbser of aligned and anti-aligned Fe-Fe bonds) and the sign of J;;. rather than specifically at
bond frustration (the sign of J,.;, is not really important). As J..c. > 0 based on ESCs,
expansion will occur for pairs of spins with parallel alignment. In the case of Fe-Ni alloys,
because at the volumes of interest . .. < 0, it is necessary that the bonds be frustrated to have
an Invar effect. In cases where ... > 0, no frustration is necessary.

The model presented in this chapter and these concepts have also been applied to explain
why an Invar effect also occurs in Fe,Niy;, films which exhibit Fe,Ni-type chemical ordering
[Lagarec00], even though there is no deviation from the Slater-Pauling curve in these films.
Again, the cause of the expansion is due to a majority of pairs of Fe spins with parallel alignment
and is otherwise not directly related to the magnetic or chemical structure of the material. In this
paper, we show that MC simulation of chemical ordering in Fe-Ni alloys using the method of
Dang and Rancourt [Dang96a, 96c] produces an alloy which would show no deviation from the
Slater-Pauling curve and a higher T, as is observed experimentally in films grown by
evaporation at RT [Dumpich87, 88, 92, Wassermann92]. In addition, MC simulations of
magneto-volume effects show that an Invar effect would arise in both the chemically ordered

films and the chemically disordered films, as is observed experimentally.
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Figure 110 Average energy per atom (potential + magnetic) at 7 = 300 K in the presence (a, ®)
and in the absence (a, A) of magnetism and magneto-volume coupling. Average moment per
atom at T = 300K (b, ®) with the Slater-Pauling relation (dashed line) and the T = 42K
measured magnetic moments (b, dotted line [Crangle63, Brando64]).
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Figure 111 Simulated atomic volume at 7 = 300 K in the presence (a, ®) and in the absence (a,
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A) of magneto-volume coupling. The relative difference between the two is plotted in (b), as well

as the experimental deviation from the linear composition dependence of the volume which
occurs below 20 at. % Fe (dashed line, data from [Bradley37]) and the 7 = 0 K volume

enhancement relative to the volume extrapolated from high temperatures (dotted line, data from

[Wassermann90]).
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Figure 112 Simulated linear thermal expansion coefficient at 7 = 300 K in the presence (#) and
in the absence (A) of magneto-volume coupling. The dashed line represents experimental results
at RT (295 K) [Wassermann90]).



Chapter 7. MC Simulations of Magneto-Volume Effects in Fe-Ni Alloys 246

300 T o T A | v T LA
[o%heah o, A
o o
250 < @ -
A /’
N S
- ®
E 2@4 \.,./ -
g --T - -
® RN
| N T
\ -
150 \\ , ~e -
\ /
] 7
N 1
1m L} M 1 A L v ¥ L |}
0 20 40 60 80 100
composition (at. % Fe)

Figure 113 Simulated bulk modulus at 7 = 300 K in the presence (#) and in the absence (&) of
magneto-volume coupling. The dashed line represents the experimental results at RT [Tan;i83).
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7.5.3  Effect of the choice of [, ()

We should also briefly discuss the effect of the concentration dependence of J. .. As
stated initially, we chose ;. to vary with the alloy’s composition such that, at the T = 0K
volume in the absence of magneto-volume coupling and assuming an undistorted lattice, J;. ..
would be the same for all alloys (d; (¢) scales with V. e ©). We will now see how other
choices would have affected the results, considering that they should be the same at ¢ = 65 at. %:

@ IfJ,z, Was not composition dependent. Based on fig. 102, at 7 = 300 K, for all
concentrations below ~60 at. % the average Fe-Fe interatomic distance would be smaller than 4,
= 2.545 A and there would be no Invar effect (in the plateau, J; .. = 0). Alloys with
compositions of less than 50 at. % would likely show no Invar effect at all, then the effects would
increase rapidly and give the same result at ~65 at. % as already calculated. All more Fe-rich
alloys would exhibit the same effects since saturation (J; ;. = + 100 K) is never reached around T
= 300 K.

QIf .do3 (¢) scaled with the volume at which the HM/LM transition occurs (see chapter
5). The transition volume also varies approximately linearly with composition, but in pure Ni, it
is much lowerthan I/, (c).In this case, at T = 300 K, in alloys with less than some Fe
content, ] . would be saturated (J,.;, = +100K and J;.;, = 0) resulting in no effect. As the Fe
content increased, /. .. at V,, _ (¢} would slowly drop from +100 K to -100 K within some
range (which includes 65 at. % Fe). Possibly, in very Fe-rich alloys, J. . could saturate in the
lower value of -100 K. Again, in such a situation, the effect would only occur within a certain
concentration range around 65 at. %, rising from no effect (when J, .. is saturated) to the
calculated value at 65 at. % Fe.

In any case, in the scenario we chose, at each composition, the Fe-Fe non-magneto-
volume active interatomic distance 4 _, is such that Je, (d,, ) is non-zero (Jo . (., ..) is
not on the +100 K plateaus) so the Invar effect will take place at all compositions and its
magnitude will depend on the number and state of the Fe-Fe bonds. In the other scenarios, there
are ranges of composition where the Fe-Fe distance is such that J, ., = 0 so no Invar effect can
occur. The composition range over which the large magneto-volume effect occurs would thus be
reduced if d,(c) behaved differently. Also, since the effect is directly related to J;.;, a change in

Ji.. with composition would reduce or enhance the effect we have already calculated. It thus
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seems clear that although this model is a rough approximation of the true situation, it provides

the grounds for understanding and reproducing the magneto-volume anomalies related to the

Invar effect.
7.6 Conclusion

The idea of a J; ;. that is dependent on interatomic distance has long been thought as a
possible cause of the Invar effect [Kondorskiié0]. However, two main hurdles prevented this idea
from being widely accepted: (1) the magnitude of the slope J;.-. was much larger than what
would be expected and (2) the expected positive Jy.z. should lead to a contraction if Jege Was
negative, not the expansion that is observed. The first point was only recently resolved by a
calculation of [ based on ESCs [Sabiryanov95), though its relation to the Invar problem was
not immediately recognized. The second point was also recently resolved by Rancourt and Dang
[Rancourt96a] who showed that the frustration due to the strong ferromagnetic interaction with
Ni would in fact cause the desired expansion. By using MC simulations which combined
magnetic and atomic degrees of freedom, we have illustrated for the first time how such a simple
model could explain the magnetic and structural anomalies associated with the Invar effect in Fe-
Ni alloys. This model is also applicable to other Invar alloys such as Fe-Pt or Fe-Pd and, contrary
to other models, naturally provides the direct relationship between the Invar effect and the

magnetic order which is well established.



8. Conclusion

When I started working on this project, my intent was to study the antitaenite and other
unusual Fe-Ni minerals found in meteorites. After the first MS experiments, it became clear that
antitaenite was no ordinary alloy and that the IS could be a reliable criterion to differentiate HM
and LM alloys. With this information, we would perfcrm new and meaningful experiments
which enabled us to collect more information on Invar and anti-Invar alloys, at RT as well as at
high temperatures where the effects take place (anti-Invar) or disappear (Invar). In order to
understand and fully exploit this wealth of information, we established a collaboration with Dr.
Bose to perform ESCs of Fe-Ni alloys in various chemical and magnetic configurations. Though
this theoretical and experimental work on the HM/LM transition helped us understand many
features of Fe-rich alloys, including the anti-Invar effect, it was clear that the Invar effect was not
directly related to this transition but caused by something else. In light of recent calculations of
the magnetic exchange parameter, we performed simple yet convincing tinite temperature MC
simulations based on the local moment model of Rancourt and Dang [Rancourt96a] and found it

to successfully explain the Invar effect.
8.1 Summary of Results

The study of the Santa Catharina meteorite resulted in two important yet very different
points. First of all, it provided us with detailed information about an Fe-rich FCC material,
antitaenite, which is found to be stabilized by an epitaxial relation with a stable FCC phase,
tetrataenite. Tetrataenite is also an extraordinary alloy in that it is a chemically ordered phase
that cannot be synthesised by traditional methods. A detailed MS study and state-of-the-art
electron microprobe imaging and analysis led us to determine the chemical composition of

antitaenite which had previously been a source of debate. The Néel temperature of antitaenite

299
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was determined by MS, and a simulation of the magnetic interplay between tetrataenite and
antitaenite has lead to a simple explanation of the unusual temperature dependence of the width
of the Mdssbauer signal of antitaenite. On a note more related to the rest of the work in this
thesis, on the basis of MS, antitaenite was shown to have a distinct electronic structure from
traditional HM alloys. This use of MS in differentiating HM and LM alloys would prove to be
invaluable and represents the main experimental contribution of this thesis.

The rest of the work dealt with understanding, from a more general point of view, the
properties of FCC Fe-Ni alloys as a whole. After reviewing the known and well understood
properties of FCC Fe-Ni alloys, we have performed several types of ESCs to gather information
on HM-FM and NM phases of the alloys as well as investigate the stability of the magnetic
moment in these alloys using the DLM model. We used the ESCs to calculate precisely and
accurately the /S observed in MS as well as to determine systematics of the HF in FM alloys. The
composition-driven HM/LM transition, which is predicted on the basis of ESCs, was then
indisputably observed for the first time in Fe-rich alloys. The use of the IS as a marker made it
possible to clarify when the transition was occurring and how it affected the lattice parameter of
Fe-Ni alloys, a feature that for a long time had not been understood. High temperature MS
measurements provided first-hand evidence for thermally induced moments in anti-Invar alloys,
whereas Invar alloys were found to remain HM above T,.. Further evidence that the Invar effect
was unrelated to the HM/LM transition was found from the deviation from Vegard’s law which
was interpreted to show that the volume of Invar alloys is in fact, at low temperature, expanded
relative to “normal” non-magneto-volume active alloys. While the anti-Invar effect could be
understood on the basis of the moment-volume instability in Fe-rich alloys, the Invar effect
needed a different interpretation. Using a simple local moment model with magneto-volume
coupling, we simulated the magnetic and structural properties of Invar alloys within the context
of a HM local moment model. We showed that all properties could be satisfactorily explained by
this model and that the assumptions of the model were actually justified on the basis of the
previously published and new results of the volume dependence of the Fe-Fe magnetic exchange
parameter. This work has thus enabled us to answer the two major questions regarding FCC Fe-

Ni alloys: What causes the Invar effect? and What causes the anti-Invar effect?
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8.2 What Causes the Invar Effect?

Based on the evidence presented in chapters 5, 6 and 7, it is now clear that the Invar
effect is mainly due to the disappearance, as temperature increases, of a volume expansion caused
in HM alloys by a strong volume dependence of the Fe-Fe magnetic exchange parameter /. . . In
alloys with concentrations far from where the HM/LM transition occurs, the HM phase is stable
throughout the temperature range and one finds that the Invar effect is a true local moment
magneto-volume effect. This volume expansion, relative to the non-magneto-volume active alloys
is clearly seen as a deviation from Vegard’s law that is of the same order of magnitude as the
spontaneous volume magneto-expansion relative to the high temperature phase. The existence of
a large volume dependence of J. .., which is required to produce this effect, is obtained from
ESCs and occurs within the stability range of the HM phase. MC simulations using a very simple
model of this volume dependence of J; ... are quite capable of reproducing the anomalous
magnetic and structural properties. The magnetism itself is correctly explained by the simple
local moment model that was originally put forth as the latent antiferromagnetism model.

In alloys with compositions closer to the HM/LM transition composition, the HM
phase remains stable at low temperature by the presence of ferromagnetic order, but the moment
magnitudes are seen to be slightly dependent on the magnetic configuration. This behaviour is
consistent with calculations given in chapter 5 and experimental evidence in chapter 6 that shows
a minor drop of the /S as the temperature exceeds T,.. In these conditions, the high temperature
phase (above T ) is not, in terms of magnetic moment magnitudes the same as the low
temperature phase. Even though Invar alloys should generally be considered as HM alloys, there
is some effect of moment instability with temperature which can contribute to the anomalous
thermal expansion of the alloys. Because these alloys are already experiencing effects of the
HM/LM transition, the reference volume of their high temperature phases do fall below
Vegard’s law, as extrapolated from the volumes of Ni-rich alloys. We should note, however, that
if this thermal instability of the moment has an effect on the thermal expansion of the alloy, it is
not of great importance compared to the true Invar effect, which is due solely to the volume
dependence of J_ . .

In short, the Invar effect is due to the large volume dependence of ] .. and is directly
mediated by the magnetic order of the alloy, thus disappearing around T .. The anomalously
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large volume dependence of J. .. most likely arises as a precursor sign of the moment-volume
instability in FCC Fe which occurs at reduced volumes. The Invar effect is not due to thermal
excitation of a low moment phase or state or thermal fluctuations of the moment, as the

accumulated evidence shows that a large moment is stable above T .
8.3  What Causes the Anti-Invar Effect?

Whereas the Invar effect is a low temperature effect driven primarily by energetics of the
alloy as a magnetic and structural ensemble, the anti-Invar effect is a high temperature effect
driven primarily by entropy.

The anti-Invar effect occurs in alloys whose ground state is a LM phase and at a volume
where there is 2 moment-volume instability and for which there is a positive correlation between
the moment magnitude and the volume where the system with such a moment is most stable. In
these conditions, at high temperature, the entropic drive towards increasing the moment
magnitude and hence the moments contribution to entropy also results in an increased volume
compared to the volume expected in the absence of this entropic-driven effect. This leads to an
anomalously high thermal expansion which subsides as the energy increase from the enlarged

moment magnitude becomes harder to compensate with a gain in entropy.

8.4 What Can We Learn From This Work?

Because of the complexity of the system and the large number of different effects which
arise within a short range of compositions, it has been difficult to associate experimentally
observed effects to a specific cause. Within the range of ~50 to ~75 at. % Fe, there is:

° a drop in the magnetic moment due to anti-ferromagnetic Fe-Fe magnetic exchange,

. a peak in the magneto-volume anomalies below T,. related to the Invar effect (due to a
large magneto-volume coupling),

. an instability with respect to a martensitic transition because of competition between
two lattice structures which have very similar energies,

o a drop in the atomic volume due to a transition from a HM material to a LM material

° and the appearance of the anti-Invar effect at high-temperatures due to the a moment
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volume instability.

Fortunately, by combining various theoretical and experimental methods, we have been able to
discriminate these effects and find their intrinsic causes. This represents a conclusive step in the
evolution of the problem. Unlike many researchers in the past, we have not only attempted to
understand a specific measurement or a specific feature but rather to get a global picture which is
compatible with all known experimental results. It is still necessary to investigate how this
understanding can be transferred to other materials that exhibit Invar or anti-Invar behaviour. As
stated in the introduction, the term “Invar effect® has now become a general way of saying “low
thermal expansion”, and the causes of the anomalies in various materials need not be the same. It
is for this reason we have decided to focus primarily on Fe-Ni alloys, the original and most
studies Invar alloys. As a result we now provide a comprehensive understanding of the magnetic
and structural properties of FCC Fe-Ni alloys. We can also state with confidence that in similar
materials such as Fe-Pt or Fe-Pd alloys, which also exhibit Invar-like properties in the FCC
phase, the causes are most likely the same as in Fe-Ni alloys. In other cases, such as in laves
phases, it is more tenuous to expect that the cause be the same.

From an application standpoint, an understanding of the microscopic processes that
cause anomalous properties is of great value, because it becomes possible to predict the properties
of new alloys and new matertals on physical grounds, rather than through trial-and-error.
Because Invar and Elinvar alloys are still widely used in precision time pieces and industrial and
technological applications, this knowledge can help material scientist tailor-make new materials

with targeted properties by using a combination of ESCs and MC simulations, in light of our

results.

More than ever before, more than a century after the discovery of the Invar effect, with
the help of decades of experimental data and decades of sifting through various theoretical
hypotheses, we can finally say that we not only know how FCC Fe-Ni alloys behave but more
importantly fundamentally understand why they behave the way they do.



Appendix A

The Extended Voigt-Based Fitting
Method

A new model [Lagarec97] for distributions of hyperfine parameters in Méssbauer
spectroscopy is presented and is applied to the spectrum of a synthetic taenite. The method is
based on the Voigt-based fitting (VBF) method introduced by Rancourt and Ping [Rancourt91a]
and generalizes VBF to handle the more realistic cases of correlated distributions of several
hyperfine parameters. For this reason, it is named the extended Voigt-based fitting method
(xVBF). The degree of correlation can be nil, giving simultaneous independent distributions, or it
can be varied, up to a perfect linear correlation or anti-correlation. The proposed
multidimensional probability density distribution of xVBF produces a Méssbauer spectrum
which can be expressed analytically as a sum of Voigt lines, making it amenable to non-linear
fitting. The paramagnetic and magnetic cases are treated, along with an example of a magnetic

alloy with a comparison to the linear coupling model used in VBF.

A.l Introduction

It is very common when analysing Mdssbauer spectra of complex phases such as those
found in clays, soils or sediments, to make use of distributions of hyperfine parameters. In these
materials, distributions of hyperfine parameters arise from subtle variations in the local
environments of the probe nuclei, including but not restricted to structural variations or
modulations (e.g. in bond lengths), chemical environment variations (e.g. due to alloying) and

differences in the local spin structure. Even though such variations are present, the probe nuclet

254
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can still be conceptually considered to be in the same “site”, characterized by a set of similar
parameters which may or may not be distributed. Most of the models used to describe these
complex materials use this concept of a “site” to analyse and interpret their MGssbauer spectra.

In particular, Rancourt [Rancourt94a] has shown that the usual approach using
Lorentzian doublets to fit the room temperature spectra of paramagnetic minerals such as layer
silicates is incorrect and that distributions of quadrupole splittings must be taken into account
[Rancourt94c). Here the VBF method with linear coupling between the quadrupole splitting and
the centre shift seems adequate but the present xVBF approach will allow one to test the extent
to which simultaneous correlated distributions of both quadrupole splitting and centre shift are
required.

It should be noted that such analyses — with distributions of hyperfine parameters — are
only easily applicable in the static or effectively static case, when time-dependent fluctuations in
the local environment occur outside the time frame of the measurement (lifetime of the excited
level in Méssbauer spectroscopy). When this is not true, as is often the case near a phase
transition, a more comprehensive and complicated analysis must be performed [Rancourt96).
The analysis of spectra in the presence of time-dependent fluctuations in these situations is
beyond the scope of this discussion.

We shall thus consider methods used to determine static distributions of the hyperfine
parameters involved in Mdssbauer spectroscopy. The numerous methods which have been
developed to obtain such distributions have recently been reviewed [Rancourt96,
Vandenberghe94] and can be loosely categorized as follows: (i) direct extraction methods by
deconvolution (Fourier methods, combined partial deconvolution), (ii) direct extraction by
matrix methods (step functions — direct or with refinements, using Bayesian inference theory),
(iii) fitting to an analytical model of the distribution (simple Gaussian or binomial distribution,
more general VBF method for arbitrary distribution shapes [Rancourt91a). In general, these
methods are all used to model the spectrum with a single primary parameter whose distribution
is desired and other parameters which aren’t distributed or are linearly coupled with the primary
parameter, thus being slzve parameters.

The model we present in this article is of the third type, and actually extends the VBF
method. For this reason, it has been named the xVBF model, or the extended Voigt-based fitting
model. Instead of extracting the distribution of a single hyperfine parameter, with which slave
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parameters can be linearly correlated, this model admits simultaneous independent distributions
of several parameters. Additionally, they can be partially or completely linearly correlated with
each other. This model provides a more “realistic” representation of the hyperfine parameter
distributions, since it has long been known that the correlations between distributed parameters
are often not perfect couplings [Lines83]. This is the first model to provide an analytical solution
to the modelling of this general case.

A brief mathematical description of the model is followed by an example where the

model is used to analyse a spectrum of a synthetic taenite which exhibits magnetic splitting.
A.2  Mathematical Description

In the rest of this article, we will only treat spectra which exhibit no experimental
artifacts such as thickness effects, and no dynamic effects. In such a case, the elemental multiplet
associated with a discrete set of hyperfine parameters 5 is a sum of Lorentzian lines of area A4,,
centred at positions w,(5)and whose full width at half maximum (FWHM) is the intrinsic line

width 7. At velocity v, it is given by
Ewp) = L ALV-0@Wy. (73)

Inhomogeneous broadening occurs when a distribution of sites is probed at the same time, and
the resulting signal is the convolution of the elemental multiplet of each site with the

distribution of hyperfine parameters:
Sv) = f E(v.p) P() dp (74)
9,

where P(p) is the total distribution of hyperfine parameters. We propose a model for extracting a

true multidimensional distribution in both the paramagnetic and the magnetic case.

A.2.1 Paramagnetic Case

In the paramagnetic case, the only relevant hyperfine parameters are the quadrupole
splitting A and the centre shift 8. The combined probability density distribution (PDD) is
modelled by the following expression:
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where p is a correlation parameter between the centre shift and the quadrupole splitting. The

exp

partially integrated probability densities (PIPD) of the centre shift P,(8)and of the quadrupole

splitting P, () are obtained by integrating out the other variable. This results in:

ay (6 _60’)2]

P,®) = E % exp,
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These PIPDs do not depend on the correlation parameter p which is removed by the partial
integration. As in the VBF method they are expressed as sums of Gaussians. In addition, in the
total distribution, they are independent or correlated via the parameter p. This can result in
linear coupling when p=+1.

When using the proposed PDD, the convolution with the elemental doublet of “Fe (or
any Mossbauer isotope with a 3/2-1/2 transition) results in a sum of Voigt lines which, though
they have no analytical expression, can be effectively approximated by several analytical
functions [Rancourt89]. The final lineshape is given by:

2w

UOREDIDIDY Aipy Py V1Y -5, '“Ao;oi,.ﬁ Wy (77)

=1 =1 s=t
where a,=+1/2 and

2 _ 2 24 2
9, = 06, +a; OA/ +2pap5'aaj (78)

Figs. 114 and 115 (a) through (¢} illustrate the effect of the correlation on the spectrum and the
probability density distribution.

The paramagnetic case is of great importance in the analysis of spectra of clay minerals,
whose M6ssbauer “signatures” reside not only in the average values of the hyperfine parameters

but also in the shapes of their multi-parameter distributions. Since these distributions contain a
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great deal of information regarding a mineral’s structure and crystal chemistry [Rancourt94a,
94b, 94c], a method such as the one presented must be used to obtain reliable and, if possible,
accurate distributions. The proposed PDD used is versatile enough to model a broader range of
physical solutions and it can be used to explore the domain of solutions obtained from a

Maossbauer spectrum in more detail than most other practical methods.
A.2.2 Magnetic Case

Within the perturbation limit, three hyperfine parameters suffice to describe the
elemental sextet of “Fe. The centre shift 8, the quadrupole shift € and the Zeeman splitting z
produce a sextet whose lines are centred at w(8.e,29) = 8 + e + B,z, where @, and B, are
constants. The general PDD we propose in this case is a natural extension to the previous 2-

dimensional case:

Ry B, 8 Pb P:P&

P@d,e, 9 =
;,}z‘; g (21:)3/2050 \[_

1 _(6-6 ) -€ )- L &%)
exp‘ Xi-p 0)((1 Per) 6 a pf) ” (1-Pe) o
(6-8,)(e-g,) (6-50')@-%.)
-2(py, - pbpgg_":‘:——’(pat Pagpgg———;:i—
€-e)(2-2)
-2(p,." PaPog_‘o—o—) ,
%% (79)

with p; = g’ *+Ps. +P,. ~2PPy P, Here, when a single component is used for each distributed
parameter, the 2D surface of equiprobability is an ellipsoid in 3D parameter space.

Once again, the PIPDs for each parameter is simply the sum of their Gaussian
components, irrespective of the correlation parameters. Also, the convolution with the elemental
sextet can be expressed as a sum of Voigt functions where only the Gaussian width is affected by

the correlations:

By %, =%

) = ):AE):ipaP.P Nv-3, ) Bﬁo' ier Wo (80)

1=l i=l =t k=1

with
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The effect of each correlation is more complicated than in the paramagnetic case, because the six
lines are affected differently, depending on the type of correlation. Figs. 116 (a) through (c)
provide a description of the effect of the correlations and thus how to identify which ones are
present from a visual inspection. It should also be noted that the effect of a correlation depends
not only on the magnitude of the correlation parameter p, but also on the widths of the

parameter distributions.
A3 Application to a Synthetic Taenite

To illustrate the power of this new model, we have chosen a spectrum of an Fe,Ni;,
alloy (Invar) at 77 K. This is a simulated thin-limit spectrum obtained by correcting the measured
spectrum for thickness effects by the method described by Rancourt [Rancourt95). For
comparison, results using the linear coupling VBF method are presented. Based on a visual
inspection of the spectrum (fig. 117), it can be seen that the correlation between the quadrupole
shift and the Zeeman splitting (p,,) is dominant, so both these parameters will be distributed and
correlated to measure the importance of each effect. We also assume the Zeeman splitting
distribution will be the one with the most structure: in the xVBF model, only one Gaussian
component will be used for the quadrupole shift distribution. In every case, the Lorentzian
FWHM is frozen at W, but the background is allowed to vary for each fit. The centre shift is
fitted but is not-distributed. Whatever the fitting model, the average quadrupole splitting was
found to be 0 mm/s, as expected from the cubic symmetry of the crystal.

Table 29 shows the evolution of the fit with various fitting conditions, giving the
parameters used, the number of fitted parameters and the resulting reduced x*. Table 30 gives a
comparison of the parameters obtained from each method’s best fit. It should be noted that when
no correlations or couplings are present and only the Zeeman splitting is distributed, both
models are identical. From Table 29, we see that a pure distribution of Zeeman splittings (HFD)
is not adequate, but both a coupling or correlation and an independent QSD significantly
improve the fit. The VBF fit cannot be further improved. Adding a correlation between the

distributions in the xVBF model provides a statistically significant fit, and converges to a

(81)
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physically sound distribution of parameters.

Fig. 117 also gives the residuals obtained from the best fit of each method, clearly
showing that the linear coupling fails to provide accurate width for all the peaks. The xVBF
method fits them more adequately because the distributions are only partially correlated.

In addition, the PIPDs of the Zeeman splitting and quadrupole shift from each method’s
best fit are given (figs. 118 and 119), along with the contour plot for the total PDD, as obtained
from the xVBF method (fig. 120). One notes that whereas the HFD-PIPDs are essentially
identical, the QSD-PIPDs for xVBF and VBF are significantly different.

A4 Conclusion

It is obvious from the example presented that linear coupling is not in general adequate
to model multidimensional distributions of hyperfine parameters. We propose an analytical
model to deal with such cases. This model is also useful to explore distributions with varying
degrees of complexity by changing the number of Gaussian components. An elementary
assessment might use only pure Gaussian distributions, while a more detailed study can, in a
controlled way, admit more and more complexity to any of the distributions. This versatility
also allows it to better explore the often extremely degenerate solution to the problem of

extracting hyperfine parameter distributions from Méssbauer spectra.



Table 29 Evolution of the fit quality with the complexity of the xVBF and VBF models.

Table 30 Comparison of the fitted parameters from the best fits using the xVBF and VBF

models.

VBF

bkg (counts) 328740 100
A; (counts mm 12910 140
A,/A, 2207 23
<5> (mm/s) 00249 15
<g> (mm/s) -00002 17
o, (mm/s) 0088 38
P1(%) 74.1

z, (mm/s) 23475 23
6y (Mm/s) 0.1286 42
P2 (%) 156 47
z, (mm/s) 2092 91
62 (mm/s) 0267 33
23 (%) 102 16
z; (mm/s) .13 12
3 (mm/s) 064 78
Pez -0341 22
€0 (mm/s) N/A

€1 N/A
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IHFD
IHFD +1QSD
IHFD +1QSD +p,
2HFD

2HFD +1QSD
2HFD +1QSD +p,,
3JHFD +1QSD +Pez
2HFD

2HFD +coupling
3HFD

3HFD +coupling

95
79
57
57

19

12
57
4.1
5.1
34

328260

12170

2232

0.0252
N/A

N/A
777
23469
0.1341
126
2.047
0.239
96
113
0.653
N/A
034
-145

250

180

34

36
30
18
53
28
19
18
71

91
38
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Figure 114 Effect of the 8-A correlation on the Méssbauer spectrum. All spectra use a single
Gaussian distribution for the quadrupole splitting (<A> = 3 mm/s, 0, = 0.8 mm/s) and the
centre shift (<> = 0 mm/s, 0, = 0.2 mm/s).
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Figure 115 xVBF probability density contour plots corresponding to the spectra in fig. 114. (a)
Psa = 0, (b) psa = 0.5 and (c) psa=0.9 (instead of 1). In the case where p,, =1, the contour plot
would simply yield a straight line.
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Figure 116 Effect of the various correlations on magnetically split Mdssbauer spectra, compared
to the spectra in the absence of correlations (p = 0). All spectra were generated using PIPDs with
only a single Gaussian component for the Zeeman splitting (< 8> =0 mm/s and 6,=0.05
mm/s), the quadrupole shift (<&> =0 mm/s and 0,=0.05 mm/s) and the centre shift (<6> =0
mm/s and 0,=0.05 mm/s) with the following correlation parameters: (a) ps=0 and 1, (b) ps, =0
and 1 and () p.=0 and 1. The difference spectra between the spectra with uncorrelated and
correlated distributions are also plotted on the same scale.
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Figure 117 Thickness corrected Mossbauer spectrum of Fe,Ni,, at 77 K. The residuals spectra
correspond to the best fits of the xVBF and VBF models, as explained in the text. Notice how

the VBF model, which uses linear coupling, cannot correctly model all the peaks’ widths,
whereas the xVBF model does so correctly.
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Figure 118 Partially integrated probability density (PIPD) of the Zeeman splitting z of the
spectrum in fig. 117, as obtained by the xVBF (solid line) and VBF (dashed line) models.
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Figure 119 Partially integrated probability density (PIPD) of the quadrupole shift € of the
spectrum in fig. 117, as obtained by the xVBF (solid line) and VBF (dashed line) models. Notice
the artificial “tail” in the distribution obtained by the VBF model, which is due to the coupling
with the Zeeman splitting distribution.
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Figure 120 Contour plot of the total probability density distribution (PDD) of Zeeman splitting

and quadrupole shift, obtained by the xVBF method.



Appendix B

A General Method for Removing
Non-Uniform Thickness Effects in
Méssbauer Spectra

In this section, we present a novel method for correcting spectra which were taken with
absorber that have non-uniform thicknesses. The basic principles are the same as in the method

of Rancourt and Ping [Rancourt96] which corrects for uniform thickness effects.

B.1  The Transmission Integral Formulation

If a source with recoilless fraction /, emits y-rays with a spectral distribution L(£) onto a

sample characterized by:
® a thickness ¢ (in cm)
® 1, Méssbauer active nuclei per volume (in cm”)
® a recoilless fraction f,
® a resonant cross-section 0,,(E) (in cm’)
® 2 non-resonant mass absorption coefficient , (in cm*g")
® a density p (in g-cm”)

then the transmission spectrum is

5wy = ¢ PP f)n NS, f dEL(E-v) e "B’ (82)

268
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where n,, and1, are the number of y-rays from the Méssbauer transition (14.4 keV for “Fe
spectroscopy) and from other (non 14.4 keV) transitions that impinge on the absorber. These

numbers include any correction due to detector response and absorption in air.

B.2  Assumptions and Limitations

Before proceeding, here is a list of the assumptions that are made in deriving the
following expressions and the limits of applicability:
1) Absence of geometrical or other experimental artefacts (cosine smearing, detector
saturation, etc...).
2) Each granule of the absorber is non-polarizing (it is not too large to cause problems).
3) The absorber is thin enough so that multiple-absorption effects are not present.
Most of these conditions can be satisfied by correctly preparing the absorber. In some cases,

however, it is not possible, and it will be impossible to correct for thickness effects.

B.3  Dealing with Non-Uniform Thickness

The absorber is modelled as a series of cylinders along the direction of the y-ray. In each
cylinder, the y-ray must pass through a certain amount of material.

We will distinguish two physical situations:

@ There is only resonantly absorbing material (any non-resonantly absorbing material must

have a uniform thickness over the area of the absorber)

@ The absorber is made of resonantly absorbing material (particles) in a non-resonantly

absorbing matrix. The thickness of the absorber is considered uniform over its area.

In both cases, P(z), the probability distribution of the thickness is sufficient to characterize the

sample’s non-uniformity. The transmission integral becomes, in each case:

® S = fd:p(r)e‘“"" Mo+ (1~£) My Mo, deL(E—v)e-"f‘a"‘(a' (83)
0 -a
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T -

@ S(v) = fdt P(t)e -u,,p_,('l'-t)‘ ialad 1"0-1»(1 _f:)nM"ﬂMf;deL(E'V) ¢ -8, f,0(B¢ (84)
0 -ca

where the nr subscript refers to the non-resonantly absorbing matrix. T is the uniform absorber
thickness. By making use of the Laplace transform of the thickness distribution,

F(s) = f dtP(2)ye ™", (85)
1]
we can simplify these equations as
®  Sw) = Fp,p) (S ny/, [ dELE-v) Flup +n f,0,(E) (86)
® 50 - ,"'-M[p(u,p-u.p.)[no+(l £

p (87)
Ny, [ dELE-») Fup-1,p,,+n [9,(E)

In both cases, the first term of the RHS is a constant (the background), and all the spectral
information is contained in the second term. These fundamental equations can now be used to

treat many true physical scenarios
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B.3.1 Some Physical Examples

® Absorber with holes (otherwise uniform thickness)

t
® Wedge-like absorber
< mm
t

® Randomly distributed uniform sized particles (Poisson distribution)

P(t)

@ Randomly distributed random sized particles (Normal distribution)

In each of the cases shown here, the Laplace transform can be calculated analytically. Otherwise,

it might need to be evaluated numerically.
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B.3.2 General Method to Correct for Non-Uniform Thickness Effects
B.3.2.1 Prior Knowledge About the Absorber

In order to apply the following method to correct for thickness effects, it is necessary to know:

Q The thickness distribution P(t) of the absorber. This might be inferred from knowledge
of the absorber or it may be necessary to measure it experimentally.

Q Some physical characteristics about the absorber and the matrix (if applicable): the
density p, the mass absorption coefficient u,,

Since the total spectral area is known experimentally, and the total cross-section f dEo,(E) is

also known, a normalisation condition can be applied to determine either

Q n_f,, the Méssbauer properties of the absorber (which otherwise can be determined by
the stoichiometry and a reasonable guess of f,), or

Q 1,,/,, the number of recoilless y-rays that can be resonantly absorbed (which can
otherwise be determined experimentally separately)

One of these parameters must be known in advance.
B.3.2.2 Pattern Smoothing using the Voigt Lineshape

Before trying to extract the intrinsic cross-section of the absorber, it is necessary to obtain a
smooth spectrum, free of noise. A natural way of smoothing the spectrum is to fit it to an
arbitrary number of Voigt lines, until one gets a statistically perfect fit, as is done in the method
for correction of uniform thickness effects. Since the source spectral shape is a Lorentzian
function with half-width at half maximum y,, it can be deconvoluted analytically from a sum of
Voigt lines.

B.3.2.3 Self-Consistent Solution to the Problem

In both cases presented above, the calculated spectrum is of the form:

S(v) = A+B f dEL(E-v,Y,) Fg(E)) (88)
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and we wish to determine g(E). If the spectrum is expressed as a sum of Voigt lines,

SE) = A+Z V(v-v,.Y,,0,) (89)

and we directly get
1
Fe(v)) = 5 X VI -2,Y7¥0,0) (90)

by using the fact that the convolution of a Voigt line with the source Lorentzian simply increases

its Lorentzian y parameter by v,,.

Q If B is known, we can determine F(g(v)) at any velocity, and hence solve for g(v) (and thus
oM()). If F(s) is an analytic function, this is very quick. The normalization condition on

oM(v) will determine , £,

Q If Bis not known, using an estimate, we solve for aM(v), and use the normalization

condition to improve the estimate of B. This is done iteratively until B and oM(v) are

determined.

B.3.2.4 Generating a Thickness-Effect Free Spectrum

Once the cross-section 0,,(») of a material is known, it can be used to generate a spectrum which
has no thickness effects, usually referred to as a thin-limit spectrum. A thin-limit spectrum is one

where the first-order Taylor expansion of the exponential is valid, i.e.

e-..f,a_u(ﬂr =1 -”J‘OM(E)t- (91)

If we chose to generate a spectrum with the same background as the original spectrum, we can

simply use

S6) = bhg - ¢ *Pyfn f.7 [ dELE-1)0,(E) (%2)
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Now, if we add noise with the correct statistics, this spectrum can be analysed to get precise
hyperfine parameters distributions and spectral areas with whatever model or program we want

to use.
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Correcting for Geometrical Artifacts
in Mdssbauer Spectra

C.1 Introduction

Geometrical effects are those which are due to the lateral dimensions of the source and
absorber, as opposed to their thickness. They come from the fact that the Doppler shifting of the
source does not shift the energy of the y-ray independently from its direction, but rather by a
factor » cos, where v is the velocity of the source and 0 is the angle between the source
direction and the direction of the emitted y-ray. If the source and the absorber have large lateral

dimensions or are put too close to each other, the measured signal actually results from an

Source Absorber Detector
d I}
<« - ' o
- \ e a

Figure 121 Schematic drawing of the MS geometrical specifications.
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intrinsic signal modulated by many different velocities corresponding to all the possible angles
linking points on the source to points on the absorber and on the detector. Assuming that the
source and absorber are positioned as described in fig. 121, this is expressed mathematically as

follows:

S(du)——fd" [ 44, L

‘ sonrce absorber [(d +I) /cos e]

Both integrations are performed on the areas of the source and absorber. $°(») is the true signal

r(l/cose) 5% cosB) . (93)

that would be obtained in the absence of geometrical artefacts (if both the source and the
absorber were points along the direction of motion of the source). t(» is a function which
describes the amount of signal generated by a relative thickness x of the absorber as compared to
the signal along the direction of motion of the source. For a thin sample in transmission
geometry, T() = x, that is the signal is proportional to the thickness of the material. The
explicit separation of t(x) and $°(v) in eq. 93 assumes that there are no thickness effects or
distributions of thickness which would otherwise link the signal to thickness of the absorber in a
non-linear way. 0 is the angle between the direction of motion of the source and the line joining

two positions on the source and absorber:

8 v (F‘-r,)
cosy = —=———1 94
TEREAL (44

The factor 1/[(d+/)/cos0]* takes into account the decrease of the intensity of the source with
distance from the source to the detector (/ is the distance between the sample and the detector).
I, is the total intensity of the source, emitted isotropically from every point on an area A4,.
Based on this formalism, we can see that the integrand is linear in the intrinsic signal,
which means that is we could decompose the intrinsic signal into a sum of peaks, then the

resulting signal is a sum of the independently integrated modified peaks:
if $°0) = ): A p,.(u, {m})

then S(d,v) = EA — da, —-——r(l/cosﬂ) P.(v cos®, (m })
4, m{n m:!:m ((@+/)/cosBF (95)
= ZA; Pi (V,d, {M,)) .

If we fit the signal to a sum of modified peaks P, (v,d, {m ]}, then we can recover the intrinsic
signal 5°(v) and analyse it by whichever method we want. We shall now give an example to
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show what geometrical effects can be in simple situations.
Consider a point source, such that there is no need to integrate over the source area., and
a cylindrical absorber, such that integration over its area can be reduced to integration over its
radius. cos @ can be expressed as
d 1

cosO = = , 9
\/dz +r? \/l +(r/d)? (%)

such that the observed signal is:

R‘

2zl 1 ( v
drr /17 50 —-———] : (97)
d+1)? { 1+(r/d)? [ V1+(r/d)?

Sd,v) =

If we assume that t(x) = x (the situations where this assumption is valid will be discussed later),

then
R
S, v) = 21:102[ r—t 5“[ 2 ] (98)
@+n° 4 V1 +(r/d)? V1 +(r/d)?

A change of variable x = 1/y/1 +(r/d)* further clarifies this expression:

2nl, d? ! 1
dx—S° .
| e 9

i1-R, /47

If we take the limit of infinitely small or infinitely distant absorber (R « 4), we retrieve
S@>R,,v) = n R,2 I, 5°(v) /(d+/)* as expected. Eq. 99 shows that it is the ratio R, /4 which

determines how much the spectrum will be distorted by geometrical effects.

S, vy =

C.2  Geometrical Effects on a Folded Spectrum

When a spectrum is accumulated in real time, the transmitted or emitted intensity is
recorded as a function of time. Depending on the driving waveform, the velocity of the source
can be expressed as a linear function of time (constant acceleration mode) or a sinusoidal function
of time (sinusoidal mode). Because of the back-and-forth motion of the source, there are two
points in space where the source has the same velocity, as seen in fig. 122 for a constant

acceleration mode. In order to generate an intensity versus velocity spectrum, the velocity versus
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time function is determined via calibration and the raw spectrum is “folded” such that channels
corresponding to the same velocity are binned together. The folded spectrum will thus be
expressed as

Shided(yy = §(D+z,0) + S(D-2,v) (100)
since the equal velocity positions correspond to opposite positions around the average source
position. D is the distance from the average source position to the absorber along the source

direction of motion (taken as the z axis).
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Figure 122 lllustration of the time dependence of the acceleration, velocity and source position
in a “constant acceleration” mode.
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C.2.1 Effect on the Background

If we assume there is no resonant absorption or emission (no Mssbauer active nuclei in
the sample), then we can set 5°(») to a constant and calculate the observed background after

folding for an identical setup with a Méssbauer active sample:

[ 2 ! 2 !
sfollld(”) = 2“10 (D+ﬂ- f ﬂ + (D_?) f E

D+l+g)? x? D+l-2)* x?
.( 0 1J1+R, /(D) ( 9 V1R, /(D-2) (101)

- 2np,| P (AR /Depy-1) » ((—D‘—*’)z—z(‘/1+(nu/(u-@)2-1)].

[ (D+1+2)? D+/-3)

A series expansion in R_/D gives:

2

e O 1,1 |R
2nl +]+2)? -2l 2
(1] (D 1+® (D +/ @ . . (102)
[ 1 1 R, [ R,}
- . v 0] =2 .

[(D+g? +ie9?  (D-9?(D+-9%] 8\ D
Even if we keep only the leading term, we find that the background is not necessarily flat but
does depend on the velocity (since z depends on the velocity):

SPdwy 1,1 E_
2l 2 -2 2

2 s| R?
IR
D+/ D+l) | (D+H?

The exact form of the background depends on z(v), but the following conclusions can be drawn:
z = 0 occurs at the maximum (positive and negative) velocities, whereas z is maximum when v =
0. The background thus has a bell-shaped curve with a maximum at the zero-velocity point, as
shown in fig. 123. The amount of curvature depends on the extent of the motion of the source
relative to the source-detector distance, z___ /(D +/). This type of background is rarely
encountered in transmission geometries where the users usually set conditions to avoid
geometrical artefacts, but it is more common in CEMS where the source can be positioned and

moving very close to the absorber. It is interesting to note that the background shape depends
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more on the extent of the motion of the source, rather than the actual size of the absorber. Even
for a small absorber, if the source motion is large, there will be this effect. The reason this effect
should be taken into account, is that when spectral areas are compared, features that occur at
different velocities are modulated by a different amount, so precise area ratios might be affected

(only when dealing with precisions of better than 1%).

C.2.2 Effect on the Peak Shape

To show how a peak can be distorted, we will use a simplified version of eqs. 99 and 100.
We first assume that the source motion is infinitely small compared to the source-sample distance
(%, € D> d = D) and that the detector is directly located behind the absorber (/ = 0). In this

case, the folded spectrum becomes

!
S(v) = 4nl, f dxs—o@;—xl

22 (104)
t7\/t+®,/D}
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Figure 123 Effect of source motion on the background in a folded spectrum. The solid and
dashed lines represent cases where z__/(D+) =1/20 and z___/(D+/) =1/10, respectively, for a
constant acceleration waveform with a frequency of 1 Hz, and a range of +10 mm/s.
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Neglecting the source-sample distance simply avoids the artifact described in the previous
section. Setting / = 0 simply changes the pre-factor, and doesn’t affect the shape of the spectrum.
Let us now consider the effect of the relative absorber radius (R, /D) on a Lorentzian peak
centred on v, = 5mm/s, witha HWHM y = 0.1 mm/s:

ey =Y 1
O (105)
The folded spectrum can be evaluated analytically as
S@) = [v s tan"( ”-yo) -tan"[ u/a-uo]
- Yougla|— |+ Yos ) @-b|/[r s 1]
@e/a-v)’+Y]

where a = W Figs. 124 through 126 show the effect of the ratio of finite size of the
absorber to the distance from the sample. In fig. 126, we see that an increase absorber size causes
a shifting to higher velocities (because the effective velocity seen at the edge of the absorber is
lower, where resonant absorption does occur), and also a broadening of the peak. The actual shift
in position and broadening of the peak is shown in fig. 125. We see that the position has an
approximately quadratic dependence on R /D, whereas the FWHM has a quartic dependence.
However, to get accurate peak positions and widths, it is necessary to use small absorbers, or to
correct for this effect. Finally, from fig. 124, we also see that the effect becomes more

pronounced for peaks at larger velocities, so all the peaks of a spectrum will be affected
differently.



Appendix C. Correcting for Geometrical Artifacts in MGssbauer Spectra 283

LN I LA B | | 1
15- J
K] “
& 1.0 -
Nl A
3 &
1 l
3 Iy . 1
@ Iy o
§ 05- ' ' 'u -
[ N
I coN
T ' \ . . J
! \ . \
/ ~ .‘ .~
00 L § v " L ?.. ] v
0 1 2 3 4 5 6
v (mnvs)

Figure 124 Effect of cosine smearing at different peak positions. All peaks are calculated with
R,/D =1/2.
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Figure 125 Effect of R /D on the position of the maximum {—) and on the FWHM () of a
peak located at v, = 5 mm/s.
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Mossbauer signal

Figure 126 Effect of R_/D on a peak located at v, = 5 mm/s. R,/ D ratios are (—) 1/100, (- -)
1/10, (- =) 1/4, () 1/2.

C.3  Correcting for Geometrical Artifacts

Now that we have established the potential for errors from fitting a spectrum which
exhibits geometrical artifacts, we will show how it is possible to correct the effects and generate a
“clean” spectrum which can be analysed by any suitable method.

First of all, as previously stated, the M&ssbauer signal must be proportional to the cross-
section, so only spectra of thin absorbers can be treated. This, fortunately, includes CEMS
spectra, since the short escape depth of electrons results in an effectively thin sample. It is also
necessary to have a calibration 1) relative to the source velocity, as opposed to a calibration
relative to a standard material (a simple offset of the velocities can be applied) and 2) that is free
of geometrical effects. This second point means that the calibration spectrum couldn’t be taken
in the same condition as the distorted spectrum. This is important because if the calibration
spectrum includes geometrical effects, the peak positions won’t be correct, and the calibration

will artificially (and incorrectly) “correct” for erroneous peak positions. It is, however, also
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possible to treat an unfolded calibration spectrum to get the “true” calibration. But if a spectrum
is already folded, it must be folded from the true velocity of the source.

So assume we have such a folded spectrum of a thin sample but which was taken in a
non-ideal geometry. Eq. 100 shows that the folded signal is comprised of two terms which
depend on the motion of the source. Either we assume the motion is negligible (7___<D) or we
must use the function 4(v) giving the position of the source as a function of velocity, which is
given from the calibration v (¢), as

%

dv,) = fdt’v(t’), (107)
0

where » (1) = v,. Now if the true Mdssbauer signal is given by a sum of some function, as
expressed in eq. 95, then we can calculate, using eqgs. 95 and 100 the resulting distorted signal,
assuming the geometry of the source and sample are known. The solution is thus to simply fit
the observed signal with an arbitrary number of distorted peaks, such that the fit is statistically
significant (x* = 1). The original Mé&ssbauer signal is simply the sum of the undistorted peaks, it is
merely necessary to add noise according to its statistical distribution, and we have a distortion
free spectrum which can be analysed by whatever means we want.

There is, of course, the problem of the function t(»), which related the amount of signal
to the thickness x of the sample (in the direction of the y-ray). As previously stated, for a thin
transmission absorber, T(x = x. For a CEMS signal, it is necessary to know the relation between
the intensity and the depth at which the emitting site was located. Although this problem can be
complicated, it is in general tractable, so we could still calculate the integral in eq. 95 and correct

the spectrum.



Appendix D

Tables of Results of Analyses of
High Temperature MS Spectra

The following tables list the parameters which result from various analyses of the high-
temperature MS spectra dealt with in chapter 6. Table 46 lists the resulting extracted average /S
and z from these various analyses. In all cases, a 2-0 (95 %) fitting uncertainty is given in the
second column for each parameter, except for the average IS (table 46) where the 1-0 (67 %)
uncertainty includes the uncertainty due to the fitting and the uncertainty due to the
temperature calibration. The temperatures for each spectrum are given in table 46. In some cases,
the parameters for magnetically split and paramagnetic spectra are listed in the same table. In
those cases, the quadrupole shift and quadrupole splitting, as well as the widths of their

distributions, are given in the same column but should not be considered equivalent.
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Table 31 Parameters of the xVBF fits of Méssbauer spectra of Fe,Niy,
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Table 33 Parameters of the xVBF fits of Mdssbauer spectra of FeNi,,.

Fife6000 076 221816 95 055 002 34913 1271

257 0.12 0 0
Hife6000 ) 074 221771 75 0104 0009 34020 1113 3 ] 223 005 0 0
Hife6001 085 1221590 199 0130 0018 176601 2680 3 0 2.16 004 0 ]
Hefe6002 079 1329760 140 Q153 0023 156114 2117 3 0 244 09 097 050
Hife6003 0.66 1279550 90 0098 0014 120400 9%8 3 0 286 055 ] o
Hife6003 (2) 0.66 1279550 83 0097 0016 120536 886 3 0 286 o041 Q 0
Hife6004 081 698887 59 0155 0009 38282 785 1 0 0 ! 0 0
Hife6004 () 068 698854 67 0123 0016 34429 2503 1 0 Q 0 ¢ 0
Hife6005 079 2035260 108 0129 0012 97327 4396 1 0 Q 0 0 0
Hefe6006 068 773409 71 0131 0012 36052 950 1 0 0 0 0 0
Hfe6007 088 1352260 110 0097 0002 187505 1527 3 0 188 003  -089 0.10

Hife6000 0 0 -4 038 00311 00036 0 0 0 ¢ 0050 0020
Hife6000 (2) 0 0 02 006 00310 0.0037 0 0 0 0 0087 0012
Hife6001 0 0 -033 0.13 -00357 00037 0 0 0 0 0078 0029
Hife6002 0.1 021 -033 019 -0.1068 00057 0038 0029 0 0 0o o022
Hife6003 -0.08 0.17 0 0 01867 00078 0090 0045 0 0 0 0
Hfe6003 (2) Q 0 0.11 023 -0.1817 00080 0 0 ] 0 0088 0038
Hife6004 0 0 0 0 Q2752 00035 0 0 0 o 219 0018
Hife6004 (2) 0 0 0 0 -02823 0.0037 0 e ¢ 0 0252 0018
Hife6005 0 0 0 0 03516 00029 0 0 0 0 06 0015
Hife6006 0 0 0 0 04216 00022 0 0 0 0 0267 0017
Hife6007 Q01 009 045 004 00318 00018 Q032 0.003 Q 0 0072 0005

Hife6000 0,806

2066 0017 0109 0012 019 013 1862 0073 0183 0051

0

Hife6000 (2) 0757 0 2065 0006 Q119 0005 0210 Q043 1839 0066 0230 0039
Hife6001 0556 0 1877 0010 0123 0006 0340 0063 1668 0039 0195 0018
Hife6002 0.155 0 0675 0140 0288 0066 0507 0091 1536 0019 0149 0015
Hife6003 08626 0 075 0047 0341 0022 (0374 0075 Q342 0023 0210 0023
Hife6003 (2) 0629 0 0753 Q055 Q345 0014 0371 Q097 0344 0018 0211 0053
Hife6004

Hife6004 (2)

Hife6005

Hife6006

Hife6007 0675 0 208 0003 Q119 0002 0275 0020 1930 0012 0.188 0009
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Table 34 Parameters of the xVBF fits to Méssbauer spectra of Fe,Ni,,.

1883 0063

Hife6700 082 461872 73 0098 0003 96625 993 3 0 0 o0
Fife6701 063 1550560 68 0097 Q001 281767 930 300 1958 006l 0 0
Hefe6702 (2) 076 2127180 142 0158 0008 186257 1835 30 20 0 0
Fife6702 087 2127010 125 0191 0005 184257 1654 1 0 0% 006
Hefe6703 087 2169960 149 0172 0004 168454 1154 1 0 10 10
Hife6703 (2) 068 2169910 94 0160 0004 162571 1445 1 o0 077 o1
Hife6704 076 993687 68 0175 0005 71309 811 1 0 0% 170
Hife6704 (2) 066 993638 87 0158 0005 683419 822 1 0 100 032
Hefe6705 063 1969820 80  0.162 0004 128182 1056 1 0 011 065
Hife6706 062 1479390 97 0162 0007 91718 1331 10 100 019
Hife6706 (2) 064 1479370 96 0156 0006 89764 1518 1 o 0 ¢
Hife6707 083 3093040 299 0098 0006 632072 3712 30 1661 0050 0 0

Hefe6700 @ Ol64 0073 0 0O 00163 00071 0101 0015 0

0
Hife6701 0125 0043 0 O 00471 00M2 008 0008 0 0 0 o0
Hife6702 (2) 1000 0101 0 0  -01330 00016 009 0013 0 0 0 o
Hife6702 01358 00015 0063 0016 0152 0019 0061 0016
Hife6703 02130 00012 0014 0020 0154 0009 0113 0050
Hife6703 (2) 02179 00015 0009 0002 0163 0008 0113 0021
Hife6704 02928 00019 0001 0005 0163 0007 0035 004
Hife6704 (2) 02967 00021 0004 0003 0168 0007 0092 0025
Hefe6705 03665 00011 0024 0011 0168 0006 0034 0023
Hife6706 04251 00021 0008 0004 0155 0029 Ol41 0035
Hife6706 (2) 04299 00026 0027 0027 0151 0035 0146 0021
Hife6707 0082 007 o o 00210 00036 0.154 0009 0 o 0 0

Hife6700 U066 0 1O 0024 0519 0016 0334 0024 1743 0007 0205 0010
Hife6701 0483 0 LI74 0016 0319 0008 0517 0020 0485 0011 0273 0007

Hife6702 (2) 0893 0 0041 0006 0013 0004 0107 0021 0159 Q20t 0535 Q0%
Hife6702

Hife6703

Hefe6703 (2)

Ffe6704

Hife6704 (2)

Hife6705

Hife6706

Hife6706 (2)

Hife6707 0573 0 1027 002 0498 0013 0395 0.109 1839 0054 0217 Q021

0032 01 1434 0130 0110 006l
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Table 35 Parameters of the VBF fits of the Méssbauer spectra of Fe,,Nij;.

Fife6700 0822 461946 118 0129 0008 98041 1504 300 187 oM

Hefe6701 0614 1550660 136 0125 Q009 283976 1668 3 0 208 0.1l
Fafe6707 0978 3094600 492 0.167 0005 657587 5809 J 0 162 006

Hhfe6700 U004 0023 0038 0012 0 0 o 0
Hife6701 0070 0008 002 0007 0 o 0 0
Hife6707 0032 0013 003 0007 0 0 0 0
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Hefe6700 0320 0 1746 0008 019 0016 0680 0049 1062 0052 0523
Hife6701 0463 0 1199 0025 0305 004 0537 0034 0490 0020 0281
Hefe6707 0391 O 1830 0005 0224 0007 0609 0024 1069 0025 0511
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Table 36 Parameters of the xVBF fits of Méssbauer spectra of FeNi,,.

0 0

Hife6901 0756 1214360 104 0173 0002 171083 1048

3 0
Hife6902 0681 1819660 83 0160 0006 187446 B458 1 0 072 012
Hife6902 1312 1819610 99 0.152 0006 184280 1926 1 0 0o 0
Hife6903 0698 1328470 115 0154 0004 123639 1241 | S 002 100
Hife6904 0722 1188810 93 0.148 0006 101028 3283 1 ¢ o 0
Hife6905 062 1871020 97 0.149 0003 152677 1365 1 0 0 0
Hife6906 0727 1216720 81 0156 0005 93198 834 t 0 ¢ 0
Hefe6907 0691 2947730 259 0103 0014 699772 3805 3 0 168 010 o 0

Hife6%01 100 002 0 0  -00655 00015 00552 ##A#4 G O 00

Hife6902 0.142¢ 00093 00270 ####4 Q149 0140 0035
Hife6902 0.1496 00028 0 0 0.145 Q165 0053
Hife6903 02301 Q0013 Q0245 ##### 0153 0049 0050
Hefe6904 02993 00020 0 0 0.157 0082 0020
Hife6905 -03610 00013 0o 0 0.160 0078 0017
Hife6906 04252 00016 0 9 0.151 0.107 0029
Hife6907 28 Q.10 0 0 00035 00031 0094 (0024 0 0 0 0

Hife6901 0677 0 0053 0001 0021 0004 0323 0009 0172 O 0642 0030
Hife6902
Hife6902
Hife6903
Hife6904
Hife6905
Hefe6906

Hife6507 1% 0 1567 0010 0257 0010 0793 0019 0733 0019 0528 0024

Table 37 Parameters of the VBF fits of the Mdssbauer spectra of Fe,,Ni,,.

EFife6901 0793 1214370 162 O34 0009 170646 1877 3 o0 2
Hfe6307 077 29479% 245 0132 0010 705692 3658 30 175

Hife6901 0113 0007 0806 Ol4 0 0 0 0
Hife6907 0033 0005 0035 0004 0 0 0 0

Hife6901 058 0 0063 0002 0037 0004 0415 0020 0015 0051 0625 0037
Hife6907 022 0 1553 0013 0267 0012 0774 002 0693 0020 0504 0020
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Table 38 Parameters of the xVBF fits of spectra of Fe, Niy,.

I-ifelOl 062 166773 ‘ 30 0213 0019 12366 284

3 0
Hife7102 069 2990090 148 0187 0003 175450 1083 1 0 087 015
Fife7103 062 886017 69 0143 0012 45243 668 1 0 081 009
Hife7104 069 109256 21 0145 0 4983 2 1 0 099 019
Hife7105 053 166093 31 0147 0014 7583 205 1 0 100 025
Hife7106 057 1088610 81 0158 0007 47076 5% 1 0 022 086
Hfe7107 067 1132850 80 0158 0008 42155 733 t 0 100 0I5
Hife7108 062 2738400 132 Qd6l 0007 99959 1875 1 0 093 0
Hefe7109 066 4242770 165 0148 0010 157608 4676 1 0 066 0.1
hdfe7110 078 2986320 317 013 0 14270 159 3 0 2 0 0 0
hefe7111 104 6507260 102 0168 0001 421246 1730 3 0 2 0 0 0

Hife7101 100 Q.06 0 Q0 00162 00075 0064 Q015 0 0 0 ¢

Hife7102 00760 00017 Q{48 Q005 Q.I78 0008 0097 0011
Hife7103 -0.1458 00040 0071 0021 Q101 0029 Q230 Q025
Hife7104 02258 00134 Q108 0015 0048 0057 Q100 0071
Hife7105 03000 00051 Q017 0012 Q169 0034 0105 0056
Hefe7106 Q3726 00030 0005 0008 0160 0006 0068 0034
Hfe7107 04362 00035 0012 0005 Q148 00l6e Q110 004
Hifc7108 04383 00043 0010 0007 0149 0032 0149 0043
Hife7109 04293 00102 0065 0035 Q073 0041 249 0036
hdfe7110 075 Q.13 0 Q -00674 00026 0.126 0007 ] 0 0 e
hde7111 089 0.08 0 0 00133 00019 0108 0004 0 0 0 0

081634 0 00498 000656 002786 000887 0.18366 004284 053489 0.17925 043607 0.13627

Hefe7101
Hefe7102
Hife7103
Hife7104
Hefe7105
Hife7106
Hife7107
Hife7108
Hife7109
htfe7110 082545 0 004553 000428 002799 0.00936 0.17455 0.02044 000083 0.1152 049596 0.10703
hde7111 053228 0 004592 000303 002132 000271 046773 000411 001384 Q04794 065312 000968

Table 39 Parameters of the fit of the spectra of Fe,,Ni,, using a single Voigt line.

Hife7101 288 -00304 00066 0283 0052 0594

Fife7102 74 00850 00046 0.192 Q.111 0523
Hife7103 45 01597 00050 0.188 0085 0467
Hife7104 581 02323 00078 0204 0.000 0408
Hife7105 689 03052 0.0064 0.141 0112 0445
Hife7106 792 Q377 0.0039 0.146 0.105 0437
Hife7107 893 04424 Q00X 0.133 0113 0435
Hife7108 893  -04413 00026 0133 0126 0471

Hife7109 893 04472 00024 0.154 0.120 0480
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Table 40 Parameters of the xVBEF fits of the FCC phase of Fe,;Ni,,.

Fife7300 100 17 0138 0009 29007 438

1 0 0 0
Hife7301 101 446007 144 Q119 0017 21849 637 1 9 ¢ 0
Hife7302 088 526912 106 0.148 0009 23685 456 1 ¢ 0 0
Hife7303 102 1151430 200 0.130 0011 48617 1021 1 0 0 o
Hife7304 082 358460 96 0158 0008 23275 397 1 0 0 o
Hife7305 068 900101 89 0.157 0010 58007 2552 1 0 (s ]
Hife7306 075 731869 74 0175 0009 45512 779 1 0 ¢ 0

Hife7300 00285 00030 0131 Q008

0o 0° 0 0
Hife7301 00862 00035 Q132 0014 0 0 ¢ 0
Hife7302 -0.1593 00034 0091 0010 0 0 0 O
Hife7303 02334 00016 Q104 0008 0 0 0o 0
Hife7304 03002 00024 0080 00C8 0 0 0 0
Hife7305 03708 Q0027 0113 Q006 o 0 0 0
Hife7306 04337 00022 Ql10 0009 0o 0 e 0

Table 41 Parameters of the fits of spectra of Fe,,Ni,, using a single Voigt line.

P e P PR
faa. RS

’ 288 00305 00030 0155 0120 0482

Hife7301 374 -00892 0.0041 0.148 o111 0455
Hife7302 475 01618 00037 0.186 0052 0410
Hife7303 581  -02352 00019 0.163 0078 0412
Hife7304 689  -03016 0Q.L016 0.188 0052 0414
Hife7305 792 Q3688 00023 0.191 0.086 0473
Hife7306 893  -04335 0.0023 0.176 0.110 0494

Hife7307 288 00316 00039 0.126 0.162 0534



Table 42 Parameters of the xVBF fits of the BCC phase in Fe,;Ni,,.

Hefe7300
Hife7301
Hefe7302
Hife7303
Hife7304
Hife7305
Hefe7307
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Table 43 Parameters of the xVBF fits of the FCC phase of Fe,Ni,;.

Hfe7500
Hife7501
Hife7502
Hife7503
Hife7504
Hife7505
Hife7506
Hefe7507

er7500

Hefe7501
Hife7502
Hefe7503
Hife7504
Hife7505
Hfe7506
Hefe7507
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Table 44 Parameters of the fits of spectra of Fe,Ni, using a single Voigt line.

il

374
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689
792
893
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02995
03601
04198
00378
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0.0057
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0173
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0.161
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Table 45 Parameters of the xVBEF fits of the BCC phase of Fe,;Ni,;.

Hede7500 2302 595565 267 0119 0012 163150 4124 2568 0058 1824 Q042
Hefe7501 2513 1477290 397 0.121 0009 377683 6520 2578 0058 1850 0040
Hife7502 1884 1259130 288 0.116 0008 288296 4125 2669 0056 1894 0042
Hefe7503 1585 1562790 280 0.112 0008 323048 3987 2750 005 1914 0043
Hife7504 2883 2227430 208 0.153 0005 428243 2274 2497 0046 1733 Q035
Hefe7505 1111 1541940 164 0114 0006 116602 1511 2309 01206 1528 0069
Hefe7507 209 943487 229 0173 0007 172841 2525 2157 0043 1583 0031

O oo o oo of

0275 0043 00389 00029

Fife7500

0 0 0 0 0 0 0088 0012
Hife7501 ¢ 0 0348 0041 -00201 00023 0 0 0 0 0.114 0009
Hife7502 0 0 0345 Q045 -00877 00020 0 0 ¢ @ 0095 0008
Hife7503 0 0 0250 0038 -0.1669 Q0017 0o 0 0 0 0.106 0009
Hife7504 c 0 Q311 0043 -02486 Q0018 0o o0 0 0 0093 0010
Hife7505 0 o 0331 0113 -03313 00026 0 0 0o 0 0091 0011
Hefe7507 o 0 0454 0077 0QQ343 00017 0o 90 0 0 0068 0012

]
Hife7501 0249 0 2305 0007 Q004 0015 0751 0073 2218 0009 0078 0005
Hife7502 019 O 2215 Q0006 Q003 0016 0804 0053 2126 0007 0080 0004
Hefe7503 0261 0O 2092 Q007 0000 0016 0739 006+ 2003 Q008 0085 0004
Hife7504 0321 0 1954 0004 0000 0008 0679 0038 1858 Q006 Q075 Q004
Hefe7505 0351 0 i788 Q005 0005 0008 0449 0092 1711 0014 0055 Q009
Hife7507 1 0 2285 0001 0065 0002



Table 46 Compiled parameters of the fits of the high temperature Méssbauer spectra of Fe-Ni

alloys.
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Hife3000
Hife3001
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xVBF
xVBF
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"~ xVBF
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475
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689
792
843
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581
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00044
00009
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0901

2037

2137
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2021
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1.196

o O o
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(Table 46 continued)

Hife6700
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— s
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Hife7109

xVBF

xVBF
xVBF
xVBF
xVBF
xVBF
xVBF
xVBF
xVBF
xVBF
xVBF
xVBF
VBF
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(Table 46 continued)
Hife7300 xVBF
Hife7301 xVBF
Hife7302 xVBF
Hife7303 xVBE
Hife7304 xVBF
Hife7305 xVBF
Hife7306 xVBF
Hife7300  Voigt
Hife7301 Voigt
Hefe7302 Votigt
Hife7303  Voigt
Hife7304 Voigt
Hife7305 Voigt
Hefe7306 Voigt
Hife7307  Voigt

PRV

Hife7500
Hife7501
Hife7502
Hife7503
Hrfe7504
Hife7505
Hrfe7506

Hife7507

xVBF

xVBF
xVBF
xVBF
xVBF
xVBF
xVBF
xVBF

288
374
475
581

792
893
288
374
475
581

288
374
475
581
689

893
288

02001
02007
0.1989
02004
02111
02148
02247
0.1981
0.1977
0.1965
0.1986
02097
02168
02250
0.1969

" 0.1800

0.1866
0.1976
02030
02170
02267
02416

0.1924

00015
00018
0.0021
00022
00030
00038
0.0044
0.0015
00021
00022
00022
0.0029
00037
0.0045
00020

0.0031
00041
0.0032
0.0027
00030
0.0037
0.0044
0.0007
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Appendix E. Source Code for MC Simulations

Source Code for MC Simulations

301

The following C+ + code was used to perform the MC simulations in chapter 3 and 7. It is

written to be portable and efficient yet simple enough to modify.

File:
Author:
Purpose:

#define USE_STD_METROPOLIS

mc_ntp.cpp
Ken Lagarec

isothermal-isobaric MC simulation on a FCC lattice with magnetic and
atomic degrees of freedom

// Borland compiler has __int8 type but GNU compiler doesn't

$if !defined(__BORLANDC_ )
f#define _ int8 char

#endif

// do chemical MC (volume changes) unless otherwise specified

#if !defined (NO_VOLUMEMC)
$define DO_VOLUMEMC

fendif

// do atomic MC (atomic position changes) unless otherwise specified

#if !'defined (NO_ATOMICMC)
#define DO_ATOMICMC

#endif

// applied H can only be used if doing magnetic MC

#if defined(DO_APPLIEDH)
#if !defined(DC_MAG)

#error DO_MAG must be set to use DO_APPLIEDH

fendif
#endif

#include
#include
#include
$include
#include
#include

#if defined(_ WIN32_ )
#include <windows.h>

<stdio.h>
<stdlib.h>
<fstream.h>
<math.h>
<values.h>
<time.h>

#édefine GetTime ()

telse

#define GetTime ()

( (double)GetTickCount () /1000.)
$tdefine time_t double
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$endif

#include "random.h"
#include "mcprob.h"”
#include "mcspin.h”

#if defined(DO_TRACE)
#define TRACE (x) cout << x << endl;

telse
#define TRACE (x)
#endif
#if defined(DO_MAG)
#if defined(DO_VOLUMEMC) || defined (DO_ATOMICMC)
const char fnprefix{] = "mc NTP";
#else
const char fnprefix{] = "mc":
#endif
#else
const char fnprefix[] = "mc NTP no mag";
#endif

typedef unsigned _ int8 species_t;

ofstream os_main;
const unsigned NUMSITESPERCELL = 4;
const int NUMNNPERSITE = 12;

const int NUMNNPERSITE 2 = 6;

const int NUM2NNPERSITE
const int NUM2NNPERSITE_
const int NUM3NNPERSITE
const int NUM3NNPERSITE_
const unsigned NUMSPECIES

12

4

[ I SR 1]
nuwNin o

3;
12;
2;

#if defined(DO_MAG)

const unsigned NUM_MCMAGSTEPS = 1; // number of steps of magnetic annealing
between steps of volume adjustments

telse

const unsigned NUM_MCMAGSTEPS = 0; // number of steps of magnetic annealing
between steps of volume adjustments

#endif

const unsigned NUM_MCVOLSTEPS = 1;

const double SCALE_DNN = 7.0e-5;

const double SCALE NNDEV = 3.5e-4;

#if defined(DO_HDISTRIBUTION)

// <H> = A*<mu> + B*SumNN(<mu>)

const double Hhf A = 20;

const double Hhf_ B 0.3;

#endif

const double MU[NUMSPECIES] = (2.8, 0.6};

struct position_t {
int8 i;

inline position_t
operator + (const position_té& p, const position_t& dp) |
position_t ppdp;

ppdp.i = p.i + dp.i;
ppdp.i = p.j + dp.j;
ppdp.k = p.k + dp.k;
ppdp.l = dp.1l;
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return ppdp:
}

// Nearest-neighbour positions
position_t nn{NUMSITESPERCELL] (NUMNNPERSITE] = ({
//1 =20
({01 Or 0, 1}, (-1, 0, 0, 1}, {0: 01 On 2}1 (’1: Or 01 2, {0: 0, 0, 3}5 {01 -1,
0, 3%,

{or -1, Ol 1, (-1, -1, 0O, 1t, {01 01 _1: 2}, ('11 01 -1, 2}, {0' 0, -1, 3}:

{0, -1, -1, 3}1},
//1 =1

{{1, 1, 0, 0O}, {0, 1, 0, O}, (O, O, O, 2}, {O, 1, O, 2}, {O, O, O, 3}, {1, O, Q,
3},

{o, o, o, o}, {1, 9, 0, O}, (0, O, -1, 23, {0, %, -1, 2}, {0, O, -1, 3}, i, O,
-1, 3}}1
// L =2

((lr 01 11 D}l {0' 01 ll 0}1 (Or 0' 1, 1}, (0: 'l' lr l)' {0, 0; 0' 3}: {l, 0,
0, 31,

(of 0, 0, 0}: llp Q, a, 0t, (01 0, 0, 1}, [or -1, 0, 1}, (0, -1, 0! 3}1 {1, -1,

Q, 3tt,

// 1L =3

({ol ol 1l 0;1 {or ll 1' O}l (0: 0' l' 1}: {'11 ol l' 1}, {Gl lf Ov z)r (-ll 1)
0, 2},

{Ol 0, 0, 0}1 {0, 1, 0, 0}, {0, On 0, 1}, {-1, 0, 0: i}, (o, Q, 0: 2}: {-1, 0,
0, 2}}
}:
// Next nearest-neighbour positions
position_t nnn(NUMSITESPERCELL] [NUM2NNPERSITE] = {

// 1 =20

l{ll 0, 0, g, (o, 1, o, 0}' {OI 0' 1, 0}1 ('10 0, 0' 0}, [Or -1, Or oy, (0, Q,
-1, 0}}0

// 1L =1

({1, o, O, 1}, {0, 1, 0, 1}, {0, 0' 1, 1}, (-1, g, 0, 1i, {0, -1, o, 1}, {0, O,
-1, 1}},

// 1 =2

{(1' ol OI 2}' [0' 1, O' 2}; {Op 0, lr 2}1 ('11 0, Or 2)! {0, '1: ¢, 2y, (0, 0'
'1r 2}}1
// 1 =3

({x, o, 0, 3}, {0, 1, 0, 3}, {0, O, 1, 3}, {-1, O, G, 3}, (0, -1, 0O, 3}, {0, O,
-1, 3}}1
b

struct atom |

spin_t s; // spin
species_t el; // type of atom (0 = Fe, 1 = Ni)
float dr([3]: // displacement relative to true fcc position
float avgdr{3}; // sum of displacements (eventually stores the average)
spinf_t avgs; // sum of spin state (eventually stores the average)
static unsigned nsum;
atom() {
s = 0;
el = Q;

dr{0] = dr(l] = dr[2] = Q;
avgdr(0] = avgdr{l] = avgdr(2] = 0;
avgs = 0;
}
atomé operator = (const atom& a) |
s = a.s;
el = a.el;
dr([0] a.dr[0};
dr(l] a.dr(l}]:
dr(2] a.dr(2];
avgdr (0] a.avgdr{0];
avgdr(l] a.avgdr(l];

]

nw

[ ]
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avgdr[2] = a.avgdr(2];
avgs = a.avgs;
return *this;

}

void calc_avg() {
avgdr (0] /= nsum;
avgdr(l] /= nsum;
avgdr{2] /= nsum;
avgs = avgs/nsum;

}

void sample_avg(double a) (
avgdr[0] += a*dr[0]:
avgdr[l] += a*dr(l]:
avgdr (2] += a*dr(2]:
avgs += s;

}

void reset_avg() {

avgdr (0] = 0;
avgdr(l] = 0;
avgdr (2] = 0Q;
avgs = 0;

}
i
unsigned atom::nsum = 0;

inline ostreams&
operator << (ostresam& os, const atom& a) {
#if defined(HEISENBERG)

0s << (int)a.el << '\t' << a.s << "\t' << a.dr(0] << '"\t' << a.dr(l] << *'\t' <<
a.dr(2] << '\t' << a.avgdr(0] << '\t' << a.avgdr[l] << '\t' << a.avgdr{2] << ‘'\t'
<< a.avgs;
telse

0s << (int)a.el << '\t' << (int)a.s << '\t' << a.dr[0] << '\t' << a.dr[l] <<
"\t' << a.dr(2] << '\t' << a.avgdr{0] << '\t' << a.avgdr(l] << '\t' << a.,avgdr{2]
<< '\t' << a.avgs;
#endif

return os:
}
inline istream&
operator >> (istream& is, atom& a) |

double t3;
#if defined (HEISENBERG)

int tl1;

is >> tl1 >> a.s >> a.dr(0] >> a.dr([l] >> a.dr(2] >> a.avgdr{0] >> a.avgdr[l] >>
a.avgdr(2] >> a.avgs:;

a.el = (species_t)tl;
telse

int tl1, t2;

is >> tl >> t2 >> a.dr{0] >> a.dr{l] >> a.dr[2] >> a.avgdr(0] >> a.avgdr{l] >>
a.avgdr(2] >> a.avgs:;

a.el = (species_t)tl;

a.s = (spin_t)t2;
#endif

return is;

}

// chemical potential parameters for a Lennard-Jones potential

// U(d) = U0*((d0/d)~12-2*(d0/d)"6)

/7 U(d0) = -Uo

// g'(da) = 0

double UO(NUMSPECIES] [NUMSPECIES]; // U{0]([0] = UFeFe, U(l]([1l] = UNiNi, U[0][1]
= U[1)[0] = UFeNi

double d0[NUMSPECIES] [NUMSPECIES]; // equilibrium positions for Fe-Fe, Fe-Ni and
Ni-Ni bonds

double d02 [NUMSPECIES] [NUMSPECIES]; // squared equilibrium positions for Fe-Fe,
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Fe-Ni and Ni-Ni bonds
// Lennard-Jones potential using d as the argument (interatomic distance)
inline double
U(species_t al, species_t a2, double d} ({
double rho6 = d0(al][a2]/d;
rho6 *= rhoé*rhoé6;
rho6 *= rhoé;
return U0(al}[a2]*rho6* (rho6-2);
H
// Lennard-Jones potential using d*2 as the argument (instead of d)
// more efficient since d2 is calculated when getting r. Eliminiates the call
to sqrt()
// and two multiplies
inline double
U2 (species_t al, species_t a2, double d2) ({
double rho6 = d02{al](a2]/d2;
rho6é *= rhoé*rho6;
return UO({al](a2]*rho6*(rha6-2);
}

// magnetic exchange parameters
double JO[NUMSPECIES] (NUMSPECIES]); // (0](0] = JFeFe, [1](l] = JNiNi, [0][1] =
[1]{0] = JFeNi
double dJ_dr (NUMSPECIES] [NUMSPECIES]; // [0][0) = dJFeFe/dr, (1][1] = dJNiNi/dr,
(01 (1] = [1]([0] = dJFeNi/dr
double dJ_dr2 [NUMSPECIES] [NUMSPECIES]; // [0](0] = dJFeFe/dr, [l][1l] =
dJNiNi/dr, [0][1l] = [1}1({0] = dJFeNi/dr
double dnn0, dnn02, dnnl2; // linear Taylor expansion around
dnnC (up to dnnl if JFEFE_MINMAX)
double dFeFe_dnn02;
#if defined(DO_VOLUMEMC) (| defined(DO_ATOMICMC)
inline double
JFeFe (double d2) {
$#if defined(JFEFE_BOSE)
d2 *= dFeFe_dnn02;
return d2<6.909 ? -16379*d2+86651*sqrt(d2)~114555 : 49;
#elif defined(JFEFE_MINMAX)

return d2 < dnn02 ? -100 : d2 < dnnl2 ? -100+dJ_dr2(0]{0]*(d2-dnn02) : 100;
telse
return JO[0] {0]+dJ_dr2[0] (0]~ (d2-dnn02);
tendif
}
telse

inline double

JFeFe (double d2) {
return JO(0] (O]

}

#endif

struct dnnlnfo (
double avg{3];
double stdev(3];
float pup;
unsigned n;

bi

class lattice
{
public:
enum spinorder {ferro, antiferro, para, Niferroj}:
enum chemorder {Fe3Ni, FeNi, FeNi3, disordered}:

atom**** atoms; // array of atoms in the system
double dnn, dnn2x2, avgdnn; // near neighbour distance and 2*dnn*2
unsigned Nx, Ny, Nz; // size of box (number of unit cells)

unsigned N, NO; // total # of atoms + # of atoms of species 0
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double c; // concentration of species 0

chemorder chemlro;

double T, P, H; // P is in units of K/A"3 (1 K/A"3 = 0.0138 GPa}
mutable double Energy:

lattice (unsigned Nx_, unsigned Ny , unsigned Nz_, double c_):
~lattice();

void setup():

void reset_atomavg():

void setTemp(double T_):

void setPressure(double P_);
void setH{double H_);

void setdnn{double dnn_);

void resetE(double E_);

void initialize(spinorder state);
void initialize (chemorder state):
bool saveSystem(char* £fn);

bool readSystem(char* fn);

double calcE() const:;

double calcMagE () const;

double calcChemE() const;

spinsum_t calcM(species_t el) const;

spinsum_t calzMaf() const;

double calcSROP_AF (double* sig=Q) const;

defined (DO_HDISTRIBUTION)

double calcHhf(unsigned i, unsigned j, unsigned k, unsigned 1) const;
double calcHhfDistribution(double** PHhf, unsigned n, double dHhf);
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#endif

double calcd(int il, int j1, int k1, int 11, int i2, int j2, int k2, int 12)
const;

double calecd2(int il, int jl1, int k1, int 11, int 12, int 32, int k2, int 12)
const;

12,

12)

double calcavgd(int il, int j1, int k1, int 11, int i2, int j2, int k2,
double avga) const;

int

double caleJ(int i1, int j1, int ki, int 11, int i2, int j2, inc k2, int 12)
const;

spinf_t calcJds2(int il, int jl, int ki, int 11, int i2, int j2, int k2,
const;

double calcChemE(unsigned i, unsigned j, unsigned k, unsigned 1) const;
double calcMagE(unsigned i, unsigned j, unsigned k, unsigned l) const;

unsigned calcFrustratedFeBonds (unsigned& nFeFe) const;

double calcChemSROP(species_t el, double* sig=0) const;

double calcChemLROP(double* sig=0) const;

double calcMagSROP(species_t el, double* sig=0) const;

double calcMagLROP(double* sig=0) const:;

double calcAvgdnn(double avga, species_t al, species_t a2, dnnlInfo-

dnninfo=0} const;

unsigned getNumAtoms () const:;

unsigned getNumAtoms({species_t el) const;

double getdnn() const:;

spin_t& getSpin{int i, int j, int k, int 1l):

const spin_t getSpin(int i, int j, int k, int 1)} const;
species_t& getSpecies(int i, int j, int k, int 1}:

const species_t getSpecies{int i, int j, int k, int 1) const;
atom& getAtom(int i, int j, int k, int 1);

const atom& getAtom{int i, int j, int k, int 1) const;

int

void sumNNSpins(unsigned i, unsigned j, unsigned k, unsigned 1, spinsum_t
sumSpins [NUMSPECIES]) const;
void sumNNAtoms(unsigned i, unsigned j, unsigned k, unsigned 1, species_t



Appendix E. Source Code for MC Simulations 307
sumSpecies [NUMSPECIES]) const;

float calcVolProb(double d, double& dE):;

float calcMoveProb(unsigned i, unsigned j, unsigned k, unsigned 1, flocat
dr{3], double& dE);

float calcFlipProb(unsigned i, unsigned j, unsigned k, unsigned 1, const
spin_t& news, doubles& dE) const;

void run(unsigned nsteps, unsigned startsampling, unsigned samplingstep,
const char* fn);

static bool areNN(unsigned il, unsigned jl, unsigned kl, unsigned 11,
unsigned i2, unsigned j2, unsigned k2, unsigned 12):
b2

template <class TR, class TF> TR

doNNCalc(lattice& lat, unsigned i, unsigned j, unsigned k, unsigned 1, TF F);
template <class TR, class TEF> TR

doNNCalc({const lattice& lat, unsigned i, unsigned j, unsigned k, unsigned 1, TF
F):

lattice::lattice(unsigned Nx_, unsigned Ny_, unsigned Nz_, double c_):
Nx(Nx_), Ny(Ny_), Nz(Nz_), c(c_)
{

setup();
dnn = 0;
dnn2x2 = 0;
P =20;
H= 0;
}
void
lattice::setup()
{
N = NUMSITESPERCELL*Nx*Ny*Nz;
NO = 0;
atoms = new atom*** [Nx+2]; // use periodic boundary conditions in x and y
(using only nn or nnn)
atoms += 1; // if 0 .. N-1 are valid, then -1 maps to N-1

and N maps to 0
for (unsigned i=0; i<Nx; i++) {
atoms (i] = new atom**(Ny+2];
atoms (1] += 1;
for (unsigned j=0; j<Ny; j++) |{
atoms[i][(j] = new atom* (Nz+2];
atoms (1] (3] += 1;
for (unsigned k=0; k<Nz; k++)
atoms{i] [j] [k] = new atom(NUMSITESPERCELL]:
atoms{i][j]1[-1] = atoms[i][j] [Nz-1];
atoms (1] [j] [Nz] = atoms(i](j](0};
}
atoms (11 {-1] = atoms(i] [Ny-1}];
atoms (i} [Ny] = atoms([i] [0];
}
atoms[-1]
atoms [Nx}
}

= atoms [Nx-1];
= atoms[0];

lattice::~lattice()

for (unsigned i=0; i<Nx; i++) {
for (unsigned j=0; j<Ny; j++) {
for (unsigned k=0; k<Nz; k++)
delete(] atoms([i] (3] (k]:
delete[] (atoms[i][j]-1);
}



delete([] (atoms{il-1);
}
deletel] (atoms-1);
}

void
lattice::reset_atomavg()
{

Appendix E. Source Code for MC Simulations

for (unsigned i=0, j, k, 1l; i<Nx; i++)

for (j=0; j<Ny: j++)
for (k=0; k<Nz; k++)

for (1=0; l<NUMSITESPERCELL:
getAtom(i, j, k, 1l).reset_avg():

}

inline unsigned

lattice::getNumAtoms () const {
return N;

}

inline unsigned

1++)

lattice::getNumAtoms (species_t el) const {

return (el == 0 2 NOQ : N-NQO);
}

inline double

lattice::getdnn() const {
return dnn;

}

inline spin_ts&
lattice::getSpin(int i, int j,

return atoms(i] (3} (k] (1l].s;
}

inline const spin_t
lattice::getSpin(int i, int j,

return atoms({i] (ji{k]([1].s;
}

inline species_t&
lattice::getSpecies(int i, int

return atoms(i] (jI(k][1l].el:
}

inline const species_t
lattice::getSpecies(int i, int

return atoms{i] (j] (k] (1].el;
}

inline atom&

lattice::getAtom(int i, int j,
return atoms(i] (j](k]1[1]:

}

inline const atom&

lattice::getAtom(int i, int j,
return atoms[i] {3] [(kl(1]:

}

inline double
lattice::calcE() const
{

#if defined (DO_MAG)

int k,

int k,

j, int

j. int

int k,

int k,

Energy = calcMagE()+calcChemE();

int 1)

int 1)

k, int

k, int

int 1)

int 1)

const {

1

1) const |

const |
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telse

Energy = calcChemE(}:
#endif

return Energy:
}

double
lattice::calcMagE() const
{
#if !defined(DO_ATOMICMC)
double E = 0;
species_t a;
spinsum_t sumSpins [NUMSPECIES];
double Jr(2][2];
Jr{0](Q0) = JFeFe(dnn*dnn);
Jr(0]) (1) Jr(i](0] = JO(0](1];//(0, 1,
Jril]il] Jof11{11;//32(1, 1, dnn*dnn):
for (unsigned i=0, j, k, 1l; i<Nx; i++)
for (j=0:; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; 1<NUMSITESPERCELL; l++)
a = getSpecies(i,j,k,1);:
sumNNSpins (i, j,k,1l,sumSpins):;
#if defined(DO_APPLIEDH)

E -= getSpin{i,j,k,1)*(Jr(a] [0)*sumSpins([0]+Jr(a] (1]} *sumSpins[1]+H);

#else

E -= gecSpin(i,j,%,1)=(Jr(a] (0] -sumSpins(0]+Jr(a][1]*sumSpins{1l])};

#endif
}

return E/2.;
#else

double E = 0;

spinf_t Ei;

for (unsigned i=0, j, k, 1l; i<Nx; i++)

for (j=0; j<Ny; j++)
for (k=0; k<Nz; k++} {

// only count nn pairs once if swept through completely

1l =0;
Ei = caleJds2(i, 3.k, 1,i,3.k, 1)
caleJs2(i,j,k,L,i-1,3,k, 1)
caleds2(i,j,k,1,1i,3,k,2}
calcJds2(i,j.k,1,i-1,3,k,2)
caleJs2(i,j,k,1,i,3,k,3)
calcJs2(i,j,%k,1,1i,3-1,k,3):
#if defined(DO_APPLIEDH)

E -= (Ei+H)*getSpin(i,j,k,1);

[ SR

#else
E_

Ei*getSpin(i,j.k,1);
fendif

1 =1

Ei = caleJds2(i,j,k,1,1i+1,3+1,k,0)
caleJs2(i,j,k,1,i,3+1,k,0)
calcJs2(i,j.k,1,i,3,k,2)
calcJs2(i,j,k,1,1i,3+1,k,2)
calcds2(i,j,k,1,1i,3,k/ 3

+ caleJs2(i,3,k,1,i+1,3,k,3);

#if defined(DO_APPLIEDH)

E -= (Ei+H)~getSpin(i,j,k,1):

+ + + +

#else

m

-= Ei*getSpin(i,j,k,1);
#endif

1 =2;

Ei = caleJds2(i,j,k,1,i+l,3,k+1,0)}
+ caleds2(i,j,k,1,1i,3,k+1,0)
+ calcJs2(i,3j,.k,1,i,3,k+1,1)

dnn*dnn) ;

{
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+ caleJs2(i,j,k,1,1,3-1,k+1,1)

+ caleds2(i,j, k,1,1i,3.k,3)

+ calcJds2(i,j,k,1,i+1,3,k,3);
$if defined(DO_APPLIEDH)

E -= (Ei+H)*getSpin(i,j,k,1):
felse

E -= Ei*getSpin(i,j,k,1);
fendif

1 = 3;

Bi = calcJs2(i,j,k,1,i,3,k+1,0)
calcJs2(i,j,k,1,1,3+1,k+1,0)
caleds2(i, i, k,1,1,3,k+1,1)
calcts2(i,j,k,1,i~1,3,k+1,1)
caleJds2(i,j.k,1,1i,3+1,k,2)

+ caleds2(i,j,k,1,i-1,3+1,k,2):
#if defined(DQ_APPLIEDH)
E -= (Ei+H)*getSpin(i,j, k,1);

+ 4+ + +

#else
E -= Ei*getSpin(i,j,k,1l);
#endif
}
return E;
#endif
}

double
lattice::calcChemE{) const

{
#if !defined (DO_ATOMICMC)
// In this case, all bond lengths are equal, so we only need to know
// how many near-neighbours of each type there are
/* species_t a;
int sumSpecies [NUMSPECIES];
int N{2}(2] = {{0,0},{0,0}};
for {(unsigned i=0, j, k, l; i<Nx; i++)
for (j=0:; j<Ny; j++)
for (k=0; k<Nz; k++)
for (l=0; 1<NUMSITESPERCELL; l++) {
a = getSpecies(i,j.k,1);
sumNNAtoms (i, j, k, 1, sumSpecies) ;
N[a][0] += sumSpecies[0];
N(a] (1] += sumSpecies(l]:

}
double E = U(0,0,dnn)*N{0] (0]
E += U(0,1,dnn)*(N{O](1}+N[1]}(0]);
E += U{(1l,1,dnn)*N{1](1];
return E/2.;*/
return 0;
#else
long double E = 0;
species_t el;
for (unsigned i=0, j, k, l; i<Nx; i++)
for (3=0; j<Ny: j++)
for (k=0; k<Nz; k++) |
// only count nn pairs once if swept through completely
1 =20;

el =
E += U2(el,

(]
n
-
~e

getSpecies(i,j,k,1);

getSpecies(i,j,k,1), caled2(i,j,k,1,1,3,k,1})}
+ U2(el, getSpecies(i-1,3j,k,1), calecd2(i,j.k,1,i-1,3,k,1))
+ U2(el, getSpecies(i,j,k,2), caled2(i,j,k,1,1i,3.,k.2))
+ U2(el, getSpecies(i-1,j,k,2), caled2(i,j,k,1,1-1,3,k,2))
+ U2 (el, getSpecies(i,j.k.,3), calcd2(i,j,k,1,1i,3,k,3))
+ U2(el, getSpecies(i,j-1,k,3), caled2(i,j,k,1,1i,3-1,k,3));
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el = getSpecies(i,j,k,1);
E += U2(el, getSpecies(i+l,j+1,k,0), caled2(i,j,k,1,i+1,3+1,k,0))

+ U2(el, getSpecies(i,j+l,k,0), caled2(i,j,k,1,1i,3+1,k,0))
+ U2(el, getSpecies(i,j,k,2), caled2(i,j,k,1,i,3,k,2))
+ U2(el, getSpecies(i,j+l,k,2), caled2(i,j,k,1,i,3+1,k,2))
+ U2(el, getSpecies(i,j,k,3), caled2(i,j,k,1,1i,3,k,3))
+ U2{el, getSpecies(i+l,j,k,3), calcd2(i,j,k,1,1i+1,3,k,3));
1 =2;
el = getSpecies(i,j,k,1l):
E += U2(el, getSpecies(i+l,j,k+l,0), calcd2(i,j,k,1l,i+1,],k+1,Q))
+ U2(el, getSpecies(i,j,k+1,0), calcd2(i,j.k.1,1i,3,k+1,0))
+ U2(el, getSpecies(i,j,k+1,1), caled2(i,j, k,1,i,j,k+1,1))
+ U2(el, getSpecies(i,j-1,k+1,1), caled2(i,j,k,1,i,3-1,k+1,1)}
+ U2(el, getSpecies(i,j,k,3), caled2(i,j,k,1,i,3,k,3))
+ U2(el, getSpecies(i+l,j,k,3}, calcd2(i,j,k,1,i+1,3,k,3));
1 =23;
el = getSpecies(i,j,k,1);
E += U2(el, getSpecies(i,j+1,k+1,0), caled2(i,j, k,1,1i,3+1,k+1,0))
+ U2(el, getSpecies(i,j,k+1,0), calecd2(i,j,k,1,1i,3,k+1,0))
+ U2(el, getSpecies(i,j,k+1,1), calcd2(i,j,k,L1,1i,3,k+1,1))
+ U2(el, getSpecies(i-1,j,k+l,1), caled2(i,j,k,1,i-1,j,k+1,1))
+ U2(el, getSpecies(i,j+l1,k,2), caled2(i,j,k,1,i,3+1,k,2))
+ U2(el, getSpecies(i-1l,j+1,k,2), caled2(i,j,k,1,1i-1,3+1,k,2)):

}
/* for (unsigned i=0, j, k, 1, m; i<Nx; i++)
for (j=0:; j<Ny: j++)
for (k=0; k<Nz; k++)
for (1=0; 1<NUMSITESPERCELL; l++) {
el = getSpecies(i,j,k,1):
for (m=0; m<NUMNNPERSITE 2; m++) ({
e2 getSpecies (i+nn{l] [m].i,j+an (1) (m}.j, k+nn (1] (m].k,nn(l] (m].1};
r2
caled2(i,j,%k,1,i+nn[l){m}.i,j+nn{l} [m).j, k+on[l]) [m].k,nn{l] (m].1);
E += U2(el, e2, r2):

)

|
/* for (m=0; m<NUM2NNPERSITE_2; m++) ({
e2 =
getSpecies (i+nnn(l] {m].i, j+nnn(l} [m].j, k+nnn(1l] [m].k,nan(1l] [m].1);
r2 =

calcd2(i,j,k,l,i+nnn(l) (m].i,3+nnn{l) [m].j,k+nan(l] [m].k,nan{l] [(m}.1);
E += U2(el, e2, r2):

}r/
// }
return E;
#endif
}
spinsum_t

lattice::calcM(species_t el) const
{
spinsum_t M = 0;
for (unsigned i=0, j, k, 1l; i<Nx; i++)
for (3=0; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; l<NUMSITESPERCELL; l++)
if (getSpecies(i,j,k,l) == el)
M += getSpin(i,j, k,1);
return M;
}

// Calculated staggered (along 001 direction) magnetization
spinsum_t
lattice::calcMaf() const
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{
spinsum_t M = 0;
for (unsigned i=0, j, k, 1l; i<Nx; i++)
for (j=0; j<Ny; j++)
for (k=0; k<Nz; k++) {
for (1=0; 1<2; 1l++)
M += getSpin(i,j.k.1);
for (1=2; 1<4; 1l++)
M -= getSpin(i,j.k,1):
}

return M;

}

template <class TR, class TF> TR
doNNCalc(lattices lat, unsigned i, unsigned j, unsigned k, unsigned 1, TF F)
{
TR retval = 0;
for (unsigned m; m<NUMNNPERSITE; m++)
retval += F(lat.getAtom(i+an([l](m].i,j+nn(l](m].j, k+nn[l)[m].X,nn(l](m].1));
return retval;
}

template <class TR, class TF> TR
doNNCalc(const lattices lat, unsigned i, unsigned j, unsigned k, unsigned 1, TF
F)
{
TR retval = 0;
for (unsigned m=0; m<NUMNNPERSITE; m++)
retval += F(lat.getAtom(i+an{l](m}.i,j+nn(l)[mj.j, k+nn(l](m].k,nn(l](m].1)):
return retval;

}

bool
lattice::areNN{(unsigned il, unsigned jl, unsigned kl, unsigned 11, unsigned iZ2,
unsigned j2, unsigned k2, unsigned 12)
{
double p{3]:;
pi0] = i1 - i2;
pl{1l] = j1 - j32;
pl2] = k1 - k2;
if (11 == 1) {
p(0] += 0.5;
pil] += 0.5;
} else if (11 == 2) {
pl(0] += 0.5;
p(2] += 0.5;
} else if
p(il] +=
p(2] +=

}

if (12 ==
pl0] -=
pll] -=

} else if
pl0] ==
pl2] —=

} else if
pl(l] -=
pl(2] ==
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.
e v

}
double d2 = p[0]*p[0] + pl[l]*p[i] + pl(2]*pP[2];
return (d2 < 0.501 && d2 > 0.499);

}

inline double
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lattice::calcd2(int i1, int jl, int k1, int 11, int i2, int j2, int k2, int 12)

const

{
double p[3];
const atomg al
const atom& a2

getAtom(il,jl,k1,11);
getAtom(i2,j2,k2,12);

p(0] = i1 + al.dr(0] ~ (i2 + a2.dr(0]):
pll] = j1 + al.dr(l] - (j2 + a2.dr(l]);
pl(2] = kl + al.dr(2] ~ (k2 + a2.dr(2]);

if (11 == 1) {
p(0] += 0.5;
pll] += 0.5;

} else if (11 == 2) {
p(0] += 0.5;
pl2] += 0.5;

} else if (11 == 3) {
pll}] += 0.5;
p(2] += 0.5;

}

if (12 == 1) {
p{0] -= 0.5;
p{l) -= 0.5;

} else if (12 == 2) {
p[0] -= 0.5;
pl2] -= 0.5;

} else if (12 == 3} {
pil] -= 0.5;
pl2] == 0.5;

}
// no need to check for periodic boundary condition since spin after N is
referred
// to as N+1, and i2-il, etc are used in this calculation

return dnn2x2* (p(C0]*p(0] + p(li*p(l] + p{2]*p[2]):
}

inline double
lattice::caled(int il, int jl1, int k1, int 11, int i2, int j2, int k2, int 12)
const
{
return sqrt(caled2(il, j1,k1,11,i2,32,k2,12));
}

inline double
lattice::calcavgd(int il, int jl1, int k1, int 11, int i2, int j2, int k2, int 12,
double avga) const
{
double p(3}]:
const atoms al
const atoms a2

getAtom(il, ji,k1,11):;
getAtom(i2, j2,k2,12);

+ 4+ 4+ 0N

p{0} = i1 - i2 (al.avgdr{0] - a2.avgdr[0Q])/avga;
pil] = j1 - j2 (al.avgdr[1l] - a2.avgdr(l])/avga;
pl2] = k1 - k2 (al.avgdr (2] - a2.avgdr(2])/avga:;
if (11 == 1) {

pld] += 0.5;

p[l] += 0.5;
} else if (11 == 2) {

p(0] += 0.5;

p(2] += 0.5;
} else if (11 == 3) {

pll] += 0.5;

pl2] += 0.5;
}
if (12 == 1) {

p{0] -= 0.5;
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p[l] -= 0.5;

} else if (12 == 2) {
pf0] -= 0.5;
pl(2] -= 0.5;

} else if (12 == 3) {
pl(l] -= 0.5;
pl2} ~-= 0.5;

}
// no need to check for periodic boundary condition since spin after N is
referred
// to as N+1, and i2-il, etc are used in this calculation

return avga*sqrt(p(01*p(0] + p(ll*p[l] + p(2]*p(2])):
}

inline double
lattice::caleJd(int il, int jl1, int k1, int 11, int i2, int j2, int k2, int 12)
const
{
species_t al = getSpecies{il,jl,kl,11);
species t a2 = getSpecies(i2,j2,k2,12);
if (al 1 a2)
return J0fal] {a2];
double d2 = caled2(il,ji,kl,11,1i2,32,k2,12);
return JFeFe (d2);
}

inline spinf_t
lattice::caleds2(int il, int jl, int k1, int 11, int i2, int j2, int k2, int 12)
const
{
return caleJ(il,3j1,k1,11,i2,32,k2,12)*getSpin{i2,j2,k2,12);
}

double
lattice::calcChemSROP (species_t el, double* sig) const
{
// simple SROP for FeNi ordering
// simply returns the average number of Fe nn's
int s = 0;
int s2 = 0;
species_t sum[NUMSPECIES];
for (unsigned i=0, j, k, 1; i<Nx; i++)
for (j=0; j<Ny: j++)
for (k=0; k<Nz; k++)
for (1=0; 1<NUMSITESPERCELL; 1l++) {
if (getSpecies(i,j,k,l) == el) {
sumMNAtoms (i, j,k,1,sum);
s += sum(0];
s2 += sum[0]*sum{0];
}
}
if (sig)
*sig = sqrt (fabs(s2* (double)getNumAtoms (el)-s*s))/getNumAtoms (el);
return s/ (double)getNumAtoms(el):
}

double
lattice::calcChemLROP (double* /*sig*/) const
{

int s = 0;

switch (chemiro) {

case FeNi3:
for (unsigned i=0, j, k; i<Nx; i++)
for (3=0; j<Ny; j++)
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for (k=0; k<Nz; k++) {

s += (getSpecies(i,j,k,0) ==0 21 : -1);
s += (getSpecies(i,j,k,1) ==1 21 : -1);
s += (getSpecies(i,j,k,2) == 121 : -1);
s += (getSpecies(i,j,k,3) == 12 1 : -1);
}
return (s/{double)getNumAtoms(});
}
case FeNi: (
for (unsigned i=0, j, k; i<Nx; i++)
for (3=0; j<Ny: j++)
for (k=0; k<Nz; k++) {
s += (getSpecies(i,j,k,0) == 0 7 1 : -1);
s += (getSpecies(i,j,%,1) == 0 2 1 : -1);
s += (getSpecies(i,j,k,2) ==1721 : -1);
s += (getSpecies(i,j,k,3) ==1 21 =1);
}
return (s/(double)getNumAtoms());
}
case Fe3Ni: {
for (unsigned i=0, j, k: i<Nx; i++)
for (3=0; j<Ny; j++)
for (k=0; k<Nz; k++) {
s += (getSpecies(i,j,k,0) ==1 21 : =-1);
s += (getSpecies(i,j,k,1) == 0 2 1 : -1);
s += (getSpecies(i,j,k,2) == 0 2 1 : -1);
s += (getSpecies(i,j,k,3) == 0?2 1 : -1):

}
return (s/(double)getNumAtoms()}:

}

return 0;
// Fe3Ni ordering
//
/* int s = 0;

for {(unsigned i=0, j, k; i<Nx; i++)

for (j=0; Jj<Ny; j++)
for (k=0; k<Nz; k++)
if (getSpecies(i,j,k,Q) == 1)
S++;

return (4*s/(double)getNumAtoms() - (l-c)}/c;*/

}

double
lattice::calcSROP_AF (double* /*sig*/) const
{
double s = 0;
spinsum_t sumSpins[NUMSPECIES]:
for (unsigned i=0, j, k, 1; i<Nx; i++)
for (j=0; j<Ny; j++) {
for (k=0; k<Nz; k++)
for (1=0; L<NUMSITESPERCELL; l++)
sumNNSpins (i, j, k, 1,sumSpins};
s += getSpin(i,j,k,1l)* (sumSpins{0]+sumSpins(1})/(double) NUMNNPERSITE;
}
}
return -3*s/(4*Nx*Ny*Nz);
}

unsigned
lattice::calcFrustratedFeBonds (unsigned& nFeFe) const
{

unsigned nf = 0;

nFefFe = 0;

spin_t s;



atom a;
double Jr;
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position_t p, pnn:

}

for (p.i=0; p.i<Nx; p.i++)
for (p.3=0; p.j<Ny; p.j++)
for (p.k=0; p.k<Nz; p.k++)

for (p.1=0; p.l<NUMSITESPERCELL; p.l++)
if (getSpecies(p.i,p.j,p.k,p.1l) == 0} {
s = getSpin{p.i,p.j,p.-k/p.1):
for (unsigned m=0; m<NUMNNPERSITE_2; m++) {

pnn = p + nn(p.l](m];

a = getAtom(pnn.i, pnn.j, pnn.k, pnn.l);

if (a.el == 0) {
nFeFe++;

Jr = caleJ(p.i, p.3j, p.k, p.1, pnn.i, pnn.j, pnn.k, pan.l);
if (Jr*(a.s*s) < Q)

nf++;
}
}

}
return nf;

double

lattice::calcAvgdnn(double avga, species_t al, species_t a2, dnnInfo* dnninfo}

const

{

species_t a, ann;
double d = 0, d2 = 0, di;
double sd{2] = (0, 0};
double sd2(2] = {0, 0};
unsigned n = Q, sn0 = 0;
position_t p, pnn;
for (p.i=0; p.i<Nx; p.i++)

for (p.j=0; p.j<Ny: p.j++)

for (p.k=0; p.k<Nz; p.k++)

for (p.l=0; p.l<NUMSITESPERCELL; p.l++) {
a = getSpecies(p.i,p.j,p.-k,pP.1):
for (unsigned m=0; m<NUMNNPERSITE_2; m++) {

pnn = p + nn[p.l][m];

ann = getSpecies(pnn.i, pnn.j, pnn.k, pan.l):

if ((a == al && ann == a2) ||

di = calcavgd(p.i, p.j, p-k, p.1, pon.i, pnn.j, pan.k, pnn.l,

(a == a2 && ann == al))

{

316

if (getAtom(p.i, p.j, P.k, p.l}).avgs*getAtom(pnn.i, pnn.j, pnn.k,

avga)
pnn.l) .avgs > 0) {
sd[0] += di;
sd2{0] += di*di;
snO++;
} else {

}
}

sd[1l] += di;
sd2([1] += di+di;
}

d += di;
d2 += di*di;
n++;

}

if (n == 0)
n=1;
d /= n;

if (dnninfo} (

dnninfo->avg (0}
dnninfo->avg (1]

d;
sn0 ? sd[0]/sn0 : @

r
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dnninfo->avg[2} = n-sn0 ? sd[1]/(n-sn0) : O;
dnninfo->stdev(0] = sqrt(fabs(d2/n - d*d));
dnninfo->stdev{l} = sn0 ? sqrt{fabs(sd2(0]/sn0 -
dnninfo->avg[l}*dnninfo->avg(1])) : 0;
dnninfo->stdev(2] = n-snQ ? sqrt(fabs(sd2(1]/(n-sn0) -
dnninfo->avg(2] *dnninfo->avg(2})) : 0;
dnninfo->pup = (float)snO/{float)n;
dnninfo->n = n;
}
return d;
}

#if defined(DO_HDISTRIBUTION}
double
lattice::calcHhf (unsigned i, unsigned j, unsigned k, unsigned l) const
{

double Hhf = Hhf A*MU(0]*getSpinSum(i,j, k,1l)/(double)atom::nsums;

int sum = 0;

switch(l) |

case 0: sum += MU[getSpecies (i, ], k,1)]*getSpinSum(i,j, k, Ly;
sum += MU[getSpecies(i-1,j,k,1)]*getSpinSum(i-1,3,k,1);

sum += MU[getSpecies(i,j-1,k,1)]*getSpinSum(i,j-1,k,1);

sum += MU[getSpecies(i-l,j-l,k,1)]'qetSpinSum(i-l,j-l,k,l);
sum += MU[getSpecies(i, j,k,2)]*getSpinSum(i,j, k,2);

sum += MU([getSpecies(i-1,j,k,2)]*getSpinSum(i-1,j,k,2);

sum += MU{getSpecies(i,j,k-1,2)]*getSpinSum(i,j,k-1,2):

sum += MU[getSpecies(i-1,j,k-1,2)]*getSpinSum(i-1,3, k-1,2);
sum += MU[getSpecies(i,J,k,3)]*getSpinSum(i, ], k, 3);

sum += MU(getSpecies(i,j-1,k,3)]*getSpinSum(i,j-1,k,3):

sum += MU[getSpecies(i, j,k—l 3) i*getSpinSum(i, j, k-1,3);

sum += MU([getSpecies (i, j-1,k-1,3)]*getSpinSum(i,j-1,k-1,3);

break;
case l: sum += MU[getSpecies(i,j,k,0)]*getSpinSum(i,j, k,0);

sum += MU[getSpecies(i+l,]j,k,0)]*getSpinSum(i+l,j, k,0);

sum += MU[getSpecies(i,j+l,k,0)]*getSpinSum(i,j+1,k,0};

sum += MU[getSpecies(i+l,j+1,k,0)]"getSpinSumi{i+l,j+1,k,0);

sum += MU[getSpecies(i,j,k,2)])*getSpinSum(i,j, k,2};
sum += MU[getSpecies(i,j+1,k,2)]*getSpinSum(i,j+l, k,2)
sum += MU[getSpecies(i,j, k-1,2})]*getSpinSum(i,j, k-1,2);
sum += MU{getSpecies(i,j+1,k-1,2)]*getSpinSum(i,j+1, k-
sum += MU[getSpecies{i,j,k,3)]*getSpinSum(i, j, k,3);
sum += MU[getSpecies(i+1,j,k,3)]*getSpinSum(i+1l,j.k,3);
sum += MU[getSpecies(i,j,k-1,3)]*getSpinSum(i,j, k~1,3);

sum += MU(getSpecies(i+l,3j,k-1,3)]*getSpinSum(i+l,j, k-1,3);

break;

case 2: sum += MU[getSpecies(i,j,k,0)]~getSpinSum(i,j.,k,0);
sum += MU[getSpecies(i+l,j,k,0)]*getSpinSum(i+l,]j, k,0);
sum += MU[getSpecies(i,j, k+1,0)]*getSpinSum(i,j,k+1,0).

sum += MU[getSpecies(i+l,j,k+1,0)]*getSpinSum(i+1, j, k+1,0);

sum += MU[getSpecies(i,j,k,1l)]*getSpinSum(i,j,k,1);
sum += MU(getSpecies(i,j-1,k,1)]*getSpinSum(i,j-1,k,1):
sum += MU[getSpecies(i,j, k+1,1)]*getSpinSum(i,j, k+1,1):

MU([getSpecies (i, j,k,3)1*getSpinSum(i, j, k,3);
MU(getSpecies(i+l,Jj,k,3)]*getSpinSum(i+1, j, k,3);
sum += MU[getSpecies(i,j-1,k, 3)]'get8pin5um(i,j -1,k,3);
sum += MU[getSpecies(i+l,j-1,k,3)]*getSpinSum(i+l,j-1,k,3);

case 3: sum += MU{getSpecies(i,j,k,0)]*getSpinsum(i,j,k,0);
sum += MU[getSpecies(i,j+1l,k,0)]*getSpinSum(i, j+1,k,0);

sum += MU[getSpecies(i,j, k+1,0)]*getSpinSum(i,j, k+1,0);

sum += MU(getSpecies(i,j+1,k+1,0)]*getSpinSum(i,j+1,k+1,0);
sum += MU[getSpecies(i,j,k,1)]*getSpinSum(i,j, k,1};

sum += MU[getSpecies(i-1,3j,k,1l)]*getSpinSum(i-1,3,k,1);

sum += MU[getSpecies(i,j,k+1,1)]*getSpinSum(i,j, k+1,1);

1,2):

sum += MU[getSpecies(i,j-1,k+1,1)]}*getSpinSum(i,j-1,k+1,1);

317
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sum += MU[getSpecies(i-1,3j,k+1,1)]*getSpinSum(i-1,]j,k+1,1);
sum += MU[getSpecies(i,j,k,Z)]'getSpinSum(i,j,k,2):

sum += MU[getSpecies(i—l,j,k,2)]'getSpinSum(i—l,j,k,Z):

sum += MU[getSpecies(i,j+1,k,2)]*qetSpinSum(i,j+1,k,2);

sum += MU[getSpecies(i-l,j+1,k,2)]'getSpinSum(i-l,j+l,k,2):
break;

Hhf += Hhf B*sum/(double)atom::nsums;
return fabs (Hhf):
)

double
lattice::calcHhfDistribution(double** PHhf, unsigned n, double dHhf)
{
if (getNumAtoms(0) == 0)
return 0;

double Hhfavg = 0;
unsigned ni:
for (unsigned j=0; j<13; j++)
for (unsigned i=0; i<n; i++)
PHhE(j] (L] = O;
double Hhf;
int sum[NUMSPECIES]:;
for (unsigned i=0, j, k, l; i<Nx; i++)
for (j=0; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; 1<4; l++)
if (getSpecies(i,j,k,1) == 0) {
Hhf = calcHhf(i,j,k,1):
Hhfavg += HhE;
ni = floor(Hhf/dHhf);
if (ni <) |
sumNNAtoms (i, j, k, 1, sum);
PHhf (sum(0]] (nif++;
}
}
for (unsigned j=0; j<13; j++)
for (unsigned i=0; i<n; i++)
PHhE[j) [i] /= getNumAtoms (0);
return Hhfavg/getNumAtoms (0);
}
#endif

inline void
lattice::setTemp (double T_)
{

T =T_:

reset_atomavg();
}

inline void
lattice::setPressure(double P_)
{

P=P_;

reset_atomavg({();
}

inline wvoid
lattice::setdnn(double dnn_) {
dnn = dnn_;
dnn2x2 = 2*dnn*dnn;
}

inline void
lattice::resetE(double E_) {
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Energy = E_;
}

inline float
lattice::calcVolProb(double d, double& dE) {
// remember current values
double prevE = Energy:
double prevd = dnn;
double prev2d2 = dnn2x2;
// set new values
dnn = d;
dnn2x2 = 2*dnn*dnn:;
dE = calcE() - prevE;
float p;
if (P != 0) (
double prevd3 = prevd*prevd*prevd;
double d3 = dnn*dnn*dnn;
double dV = N*(d3-prevd3)*M_SQRT_2;
// we use N+2/3 because we are uniformly sampling the length (biased sampling)
// as opposed to the volume, in which case we would use N
p = metropolisProb(-(dE+P*dV)/T + (N+0.6666666666666666667)*log(d3/prevd3));
} else
p = metropolisProb(-dE/T + (3*N+2)*log(d/prevd));
// return to initial values
dnn = prevd;
dnn2x2 = prev2d2;
Energy = prevE;
return p;
}

inline float
lattice::calcMoveProb{(unsigned i, unsigned j, unsigned k, unsigned 1, float
dr (3], doubles dE)
{
atom& at = getAtom(i,j,k,1l);
$if defined(DO_MAG)
double Eprev = calcChemE(i,j,k,l)+calcMagE(i,j,k,1);

#else

double Eprev = calcChemE(i,j,k,1):
#endif
/* float prevdr(3]:

prevdr (0] = at.dr{0};

prevdr([l] = at.dr(1l]:

prevdr (2} = at.dr{2]):*/

at.dr (0] += dr{0};

at.dr(l] += drf{l];

at.dr(2] += dr(2];
#$if defined(DO_MAG)

dE = calcChemE(i,j, k,1l)+calcMagE(i,]j,k,1l)-Eprev;
telse

dE = calcChemE(i,j, k,1l)-Eprev;
#endif
/* at.dr[0] = prevdr(0];

at.dr([l] = prevdr[l];

at.dr{2] = prevdr(2]:*/

return metropolisProb(-dE/T);
}

inline float
lattice::calcFlipProb(unsigned i, unsigned j, unsigned k, unsigned 1, const
spin_t& news, double& dE) const
{
#$if defined (HEISENBERG)
spin_t olds = getSpin(i,j,k,1);
getSpin(i,j, k,1l) = news-olds;
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dE = calcMagE(i,j,k,1l):

getSpin(i,j,k,1) = olds;
#else

dE = -2*calcMagE(i,j,k,1)s
fendif

return metropolisProb(-dE/T):
}

void
lattice::initialize(spinorder state)
{
switch(state) {
case ferro: {
for {unsigned i=0, j, k, 1l; i<Nx; i++)
for (j=0; j<Ny: j++)
for (k=0; k<Nz; k++)
for (1=0; l<NUMSITESPERCELL; l++)
gecSpin(i,j.k,1) = 1:
}
break;
case Niferro: {
for (unsigned i=0, j, k, 1l; i<Nx; i++)
for (j=0; j<Ny: j++)
for (k=0; k<Nz; k++)
for (1=0; l<NUMSITESPERCELL; l++) {
if (getSpecies(i,j,k,1l) == 1)
getSpin(i,ji,k,1) = 1;
else {
#if defined (HEISENBERG)
float ct = 2*ranf()-1;
float phi = 2*M_PI*ranf():
getSpin{i,j,k,1).x = cos(phi)*sqrt(l-ctrct);
getSpin(i,j, k,1) .y sin(phi) *sgrt(l-ct*ct);
getSpin(i,j,k,1).2 ct;

)

felse

getSpin(i,j, k, L) = ranf() < 0.5 2 1 : -1;
#endif

}
break;
case antiferro:
for (unsigned i=0, j, k; i<Nx; 1i++)
for (j=0; Jj<Ny: j++)
for (k=0; k<Nz; k++) {
getSpin(i,j, k,0)

.
¢

getSpin(i'j'k, 1) = 1;
getSpin(i,j, k,2) = -1;
getSpin(i,j,k,3) = -1;
}
break:
default: {

for (unsigned i=0, j, k, 1l; i<Nx; i++)
for (j=0; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; l<NUMSITESPERCELL; l++) {

#if defined(HEISENBERG)

float ct = 2*ranf()-1;

float phi = 2*M PI*ranf();

getSpin(i,j,k,1) .x = cos(phi)*sqgrt(l-ct*ct);

getSpin(i,j,k,1).y = sin(phi) *sqrt(l-ct=ct);

getSpin(i,j.k,1) .z = ct;
$else

getSpin(i,j,k,1) = (ranf() < 0.5 2 -1 : 1);

320



Appendix E. Source Code for MC Simulations 321
#endif

}
break:
}
}

void
lattice::initialize(chemorder state)
{
chemlro = state;
switch(state) {
case Fe3Ni: {
NO = C;
if (c <= 0.75) {
for (unsigned i=0, j, k; i<Nx; i++)
for (j=0; j<Ny; Jj++)
for (k=0; k<Nz; k++) |
getSpecies(i,j,k,0) = 1;
if (ranf() < ¢/0.75) {
getSpecies(i,j,k,1) = 0;
NO++;
} else
getSpecies(i,j,k,1) = 1;
if (ranf() < ¢/0.75) {
getSpecies(i,j, k,2) = 0;
NO++;
} else
getSpecies (i, j, k,2) = 1;
if (ranf() < ¢/0.75) {
getSpecies(i,j,k,3) = 0;
NO++;
} else
getSpecies(i,j,k,3) = 1;
1
} else {
for (unsigned i=0, j, k; i<Nx; i++)
for (j=0; j<Ny; j++)
for (k=0; k<Nz; k++) |
if (ranf() < (c-0.75)/0.2%5) |
getSpecies(i,j,k,0) = 0;
NO++;
} else
getSpecies(i,j,k
getSpecies(i,j,k,1
getSpecies (i, j,k,2
getSpecies(i,j,k,3)
NO += 3;

0

—
e

)
)

nin~

oOQOoO

Ne we e

}
}
break;
case FeNi: {
NO = 0;
if (c >= 0.5) {
for (unsigned i=0, Jj, k; i<hx; i++)
for (j=0; j<Ny; j++)
for (k=0; k<Nz; k++) {
getSpecies(i,j, k,0)
getSpecies (i, j, k,1)
NO += 2;
if (ranf() < (c=~0.5)/0.5) {
getSpecies(i,j,k,2) = 0;
NO++;
} else

0;
Q;



}
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getSpecies(i,j, k,2) = 1;

if (ranf() < (c-0.5)/0.5) {

getSpecies(i,j,k,3) = 0;
NO++;

} else
getSpecieS(i.j,k, 3 =1;

} else {

for (unsigned i=0, j, k; i<Nx;

for (j=0; j<Ny; j++)

for (k=0; k<Nz;

}

}
break:
case FeNi3: {

NO = 0;

k++) |
getSpecies (i, j, k,0)
getSpecies{i,j,k,1)
NO += 2;

0
0:

if (ranf() < (0.5-¢)/0.5) |

getSpecies(i,j, k,2) = 0;
NO++;

} else
getSpecies(i,j,k,2) = 1;

if (ranf() < (0.5-c)/0.5) |

getSpecies(i,j,k,3) = 0:
NO++;

} else
getSpecies(i,j,k,3) = 1;

if (¢ >= 0.25) {

for (unsigned i=0, j, k;

i<Nx;

for (3=0; j<Ny; j++)

for (k=0; k<Nz;

}

} else {
for (unsigned i=0, 3, k;

k++) |
getSpecies(i,j,k,0) = 0;
NO++;
if (ranf{) < (c-0.25)/0.75)
getSpecies(i,j,k,1) = 0;
NO++;
} else
getSpecies(i,j,k,1) = 1;
if (ranf() < (c-0.25)/0.75)
getSpecies(i,j,k,2) = 0;
NO++;
| else
getSpecies(i,j.k,2) = 1:
if (ranf() < (c-0.25)/0.75)
getSpecies(i,j,k,3) = 0;
NO++;
} else
getSpecies(i,j,k,3) = 1;

1<Nx;

for (j=0; j<Ny; j++)

for (k=0;

k<Nz; k++) {

if (ranf() < (0.25-c)/0.25)
getSpecies{i,j,k,0} = 1;

else (
getSpecies(i,j,k,0) = 0;
NO++;

}

getSpecies(i,j,k,1) = 1;
getSpecies (i, j,k,2) = 1;
getSpecies(i,3,k,3) = 1;

i++)

i++)

{

{

{

i++)
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}
}
break;
default: {
NO = 0;
for (unsigned i=0, j, k, l:; i<Nx; i++)
for (j=0; j<Ny; Jj++)
for (k=0; k<Nz; k++)
for (1=0; L<NUMSITESPERCELL; l++)
if (ranf() < ¢) |
getSpecies(i,j,k,1) = 0;
NO++;
} else
getSpecies(i,j, k,1) = 1;
}
break;
}
unsigned NOc = floor (getNumAtoms () *c+0.5);
unsigned i, j, k, 1;
while (NO > NOc && NO > 0) {
i Nx*ranf();

j = Ny*ranf();
k = Nz*ranf():
1 = NUMSITESPERCELL*ranf();
if (getSpecies(i,j,k,1l) == 0) {
getSpecies (i, j,k,1) = 1;
NO--;
}
}
while (NO < NOc && NO < N) {
i = Nx*ranf():;
j = Ny*ranf():;
k = Nz*ranf(};
1 = NUMSITESPERCELL*ranf(};

if (getSpecies(i,j,k,1l) == 1) {
getSpecies(i,j,k,1) = 0;
NO++;

}

}
¢ = NO/(double)N;
// expected volume from Vegaard's law
double d =
pow (c* (d0(0] [0]*d0(0](0]~d0([0]{0])+(1-c)~(dO(1](1]*dO[1](1]*dO{1] (1]},
0.333333333333333333);
double dé65 =
pow (0.65*(d0{0] (0]1*d0O([0] {0]*d0([0] [0])+0.35~(d0(1][1]*dO(1] (1]*dO{1}[L]),
0.333333333333333333);
// set dnn0 to the paramagnetic wvolume at T=0
dnn0 = dnn0*d/dé65;
#if defined(DO_MAG)
$if defined(JFEFE_BOSE)
dFeFe_dnn02 = d0(0] [0]*d0(Q] [0]/(d*d):

#else
dnn02 = dnn0*dnn0;
dJ_dr2(0] (0] dJ_dr(0](0]/(2*dnn0);
dJ_dr2(1] (0] dJ_dr(1l](0]/(2*dnn0);
dJ_dr2(0] (1] dJ_dr(0]1(1l]1/(2*dnn0);
dJ_dr2{1][1] dJ_dr(1] {1]/(2*dnn0);
#if defined(JFEFE_MINMAX)
dnnl2 = dJ_dr2(0]([0] != 0 ? dnn02 + 200/dJ_dr2[0}([0] : 1000*dnn02;
TRACE("dnn0 = " << dnn0 << ", dnnl = " << sqrt{dnnll)):
#endif
tendif // JFEFE_BOSE
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#endif // DO_MAG
}

bool
lattice::saveSystem(char* fn)
{

ofstream os(fn);

if (los)

return false;

os << "constant pressure, constant temperature MC system” << endl;

0s << Nx << '\t' << Ny << '\t' << Nz << '\n';

08 << "N = " << getNumAtoms() << "\tc = " <<
getNumAtoms (0) / (double) getNumAtoms () << endl;

0s << "magnetic exchange parameters:\t" << JO[0] (0] << '\t' << JO[0][1] << '\t’
<< JO[1)([1] << '\t' << dJ_dr[0][0] << '\t' << dJ_dr(0](1] << '\t' << dJ_dr(l][1]
<< '\t' << dnn0 << endl;
// os << "magnetic exchange parameters:\t" << JO[0] (0] << '\t' << JO[O]({1l] <<
'\g' << JO[1][1] << '\t' << alphaJ << '\t' << betaJd << '\t' << dnn0J2 << '\t' <<
r0J2 << endl;
// os_main << "chemical exchange parameters:\t" << UO0[0] (0] << '\t' << d0{0] (0]
<< '\t << UO{O0][1] << '\t*' << dO[0]{1] << '\t' << UO[1}{1] << '\t' << dO[1]([1]
<< endl;

0s << dnn << '\t' << avgdnn << endl;

for (unsigned i=0, j, k, l:; i<Nx; i++)

for (3=0; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; l<NUMSITESPERCELL; l++)
os << getAtom(i,j,k,l) << '\n’;

return l!os.fail();

}

bool
lattice::readSystem(char* fn)
{
ifstream is(fn):
if (!is)
return false;
char buf[255]}];
is.getline(buf, sizeof (buf)):
int format = 0;
TRACE ("loading system from " << fn});
if (strcmp(buf, "constant pressure, constant temperature MC system") == 0)
format = 1;
else
is.seekg (0, ios::beg);
for (unsigned i=0; i<Nx; i++) {
for (unsigned j=0; j<Ny; j++) {
for (unsigned k=0; k<Nz; k++)
delete[] atoms({i]([j][k];
delete(] (atoms(i][j]-1):

delete{] (atoms[i]-1):

}

delete[] (atoms-1);

is >> Nx >> Ny >> Nz;

is.ignore():

if (format == 1) ({
is.getline(buf, sizeof (buf));
is.getline(buf, sizecf(buf)):;
is >> dnn >> avgdnn;
is.ignore (255, '\n'):
dnn2x2 = 2*dnn*dnn;

}

setup()

NO = 0;
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int tl, t2;
for (unsigned i=0, j, k, 1l; i<Nx; i++)
for (3=0; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; 1<NUMSITESPERCELL; 1++) ({
if (format == 1) {
is >> getAtom(i,j,k,1);
is.ignore (255, '\n'}):
} else {
is >> tl >> t2;
getSpecies(i,j,k,1) = (species_t)tl;
getSpin{(i,j,k,1) = (spin_t)t2;
}
if (getSpecies(i,j,k,1l) == 0)
NO++;
}
c = NO/(double)N;
double d =
pow{c* (d0 [0} (01 *d0 (0] (0]*dQ[0] [0))+(1-c)*(dO{1]({1]*dO[L][1]"dO[1]([1]),
0.333333333333333333)»
double d&5 =
pow(0.65* (d0[0] [0)*d0([0)[0)*d0([0) [0))+0.35*(d0[1]{1])*dO(L]}(1]~dO(1]}([1]),
0.333333333333333333);
// set dnn0 to the paramagnetic volume at T=0
dnn0 = dnn0*d/d65;
#if defined(JFEFE_BOSE)
dFeFe_dnn02 = d0(0] [(0}~d0O(Q} [0}/ (d*d):
#else
dnn02 = dnn0*dnn0;
dJ_dr2(0] (0] dJ_dr (0] (0] /(2*dnn0);
dJ_dr2[1](0] dJ_dr (1} [(0}/(2*dnn0);
dJ_dr2(0] (1] dJ_dr[0) (1]/(2*dnn0);
dJ_dr2(1] (1] dJ_dr(1]{1)/(2*dnn0};
#$if defined(JFEFE_MINMAX)
dnnl2 = dJ_dr2({0]([0] != 0 ? dnn02 + 200/dJ_dr2(0) (0] : 1000*dnn02;
fendif
#endif
return !is.fail():;
}

void

latrtice::sumNNSpins(unsigned i, unsigned j, unsigned k, unsigned l, spinsum_t

sumSpins [NUMSPECIES]) const
{

sumSpins([0] = 0:

sumSpins{1l] = 0Q;

switch(l) {

case 0: sumSpins(getSpecies(i,j,k,1)] += getSpin(i,j,k,1);
sumSpins (getSpecies(i-1,j,k,1)] += getSpin(i-1,j,k,1
sumSpins [getSpecies (i, j-1,k,1)] += getSpin(i,j-1l,k,1
sumSpins [getSpecies(i-1,j-1,k,1)] += getSpin(i-1,j-1
sumSpins[getSpecies(i, j, k,2)] += getSpin(i,j,k,2):
sumSpins (getSpecies(i-1,3,k,2)] += getSpin(i-1,j,k,2
sumSpins (getSpecies (i, j,k-1,2)] += getSpin(i,j,k-1,2
sumSpins(getSpecies (i-1,3j,k-1,2)] += getSpin(i-1,3j.,k%
sumSpins(getSpecies(i,j,k,3)] += getSpin(i,j,k,3);
sumSpins{getSpecies (i, j-1,k,3)] += getSpin(i,j-1,k,3)
sumSpins [getSpecies (i, j, k-1,3)] += getSpin(i,j,k-1,3)
sumSpins{getSpecies (i, j-1,k-1,3)] += getSpin(i,j-1,k-
break;
case l: sumSpins[getSpecies(i,j,k,0)] += getSpin(i,j,%k,0);

sumSpins [getSpecies(i+l,3j,k,0)] += getSpin(i+1,j,k,0):
sumSpins (getSpecies (i, j+1,k,0)] += getSpin(i,j+il,k,0);
sumSpins{getSpecies(i+l,j+1,k,0)] += getSpin(i+l,j+1,k,0);
sumSpins [getSpecies(i,j, k,2)] += getSpin(i,j,k,2);:

)¢
):
K1)

)
)

= e v

' 2);

1,3):
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case 2:

case 3:

}

void

lattice::sumNNAtoms (unsigned i, unsigned j, unsigned k, unsigned 1, species_t
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sumSpins(getSpecies(i,j+1,k,2)] += getSpin(i,j+1,k,2);
sumSpins|[getSpecies(i,j,k-1,2)] += getSpin(i,j,k-1,2);

sumSpins{getSpecies (i, j+1,k-1,2)] += getSpin(i,j+1,k-1,2);

sumSpins[getSpecies(i, j, k,3)] += getSpin(i,j,k,3);
sumSpins[getSpecies(i+l,3,k,3)] += getSpin(i+l,j,k,3):
sumSpins[getSpecies(i,j, k-1,3)] += getSpin(i,j,k-1,3);:

sumSpins [getSpecies(i+l,j,k-1,3)] += getSpin(i+l,j,k-1,3);

break;

sumSpins[getSpecies(i,j,k,0)] += getSpin(i,],k,0);
sumSpins[getSpecies(i+1,3,k,0)] += getSpin(i+l,j,k,0);
sumSpins[getSpecies(i,j, k+1,0)] += getSpin(i,j,k+1,0};

sumSpins [getSpecies(i+1,j,k+1,0)] += getSpin(i+l,j,k+1,0);

sumSpins(getSpecies(i,j, k,1)] += getSpin(i,j,k,1):
sumSpins([getSpecies(i,j-1,k,1)] += getSpin(i,j-1,k,1):
sumSpins{getSpecies(i,j, k+1,1)] += getSpin(i,j,k+1,1);

sumSpins [getSpecies(i,j-1,k+1l,1)] += getSpin(i,j-1,k+1,1);

sumSpins[getSpecies(i,j, k,3)] += getSpin(i,j,k,3):
sumSpins[getSpecies(i+l,j, k,3)] += getSpin(i+l,j, k,3):
sumSpins[getSpecies(i,j-1,k,3)] += getSpin(i,j-1,%k,3);

sumSpins(getSpecies{i+l,j-1,k,3)] += getSpin(i+l,j-1,k,3);

break;

sumSpins [getSpecies(i,j,k,0)] += getSpin(i,j,k,0);
sumSpins{getSpecies(i,j+1,k,0)] += getSpin(i,i+l,k,0);
sumSpins [getSpecies(i,j, k+1,0)] += getSpin(i,]j, k+1,0);

sumSpins(getSpecies (i, j+1,k+1,0)] += getSpin(i,j+1,k+1,0);

sumSpins(getSpecies(i,j, k,1)] += getSpin(i,j,k,1):
sumSpins (getSpecies(i-1,3j,k,1)] += getSpin(i-1,j,k,1);
sumSpins(getSpecies(i, i, k+1,1)] += getSpin(i,j, k+1,1);

sumSpins (getSpecies(i-1,j,k+1,1)] += getSpin(i-1,j,k+1,1);

sumSpins(getSpecies({i,j, k,2)] += getSpin(i,j,k,2);
sumSpins [getSpecies(i-1l,3j,k,2)] += getSpin(i-1,j,k,2);
sumSpins(getSpecies (i, j+1,k,2)] += getSpin(i,j+l,k,2);

sumSpins [getSpecies(i-1,3+1,k,2)] += getSpin(i-1,j+1,k,2};

break;

sumSpecies (NUMSPECIES]) const

{

sumSpecies (0]
sumSpecies([1]

switch(l)
case 0:

case 1:

non

Q;
Q;

{

sumSpecies (getSpecies(i,j, k, 1) )++;
sumSpecies[getSpecies{i-1,j,k,1)]++;
sumSpecies [getSpecies (i, j-1,k,1) }++;
sumSpecies[getSpecies(i-1,j-1,k, 1) ]++;
sumSpecies[getSpecies (i, j, k,2) ] ++;
sumSpecies (getSpecies (i-1, i, k,2) ] ++;
sumSpecies{getSpecies (i, j, k=1,2) ]++;
sumSpecies[getSpecies (i-1,3j,k-1,2) 1++;
sumSpecies[getSpecies(i,j,k,3)]++;
sumSpecies[getSpecies(i, j-1,k,3)1++;
sumSpecies[getSpecies(i,j, k=1,3)]++;
sumSpecies[getSpecies(i,j-1,k-1,3)]1++;
break;
sumSpecies[getSpecies(i, j,k,0) ]++;
sumSpecies (getSpecies(i+l,j,k,0) ]++;
sumSpecies [getSpecies (i, j+1,k,0)]++;
sumSpecies [getSpecies (i+l,j+1,k,0) 1++;
sumSpecies[getSpecies(i,j, k,2) 1++;
sumSpecies [getSpecies (i, j+1,k,2)} ]++;
sumSpecies[getSpecies (i, j,k-1,2) ]++;
sumSpecies[getSpecies (i, j+1,k-1,2) ]++;
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case 2:

case 3:

}
}

double
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sumSpecies[getSpecies (i, j,k,3) ]1++;
sumSpecies[getSpecies(i+l,],k,3) 1++:
sumSpecies[getSpecies (i, j, k-1,3) ]++;
sumSpecies [getSpecies(i+l,]j, k-1,3}]++;
break;

sumSpecies [getSpecies (i,]j, k, 0} ]++;
sumSpecies[getSpecies(i+l,],k,0)]++;
sumSpecies(getSpecies{i,j,k+1,0) ]++;
sumSpecies(getSpecies(i+l,j, k+1,0} ]++;
sumSpecies [getSpecies (i, j, k, 1) ] ++;
sumSpecies [getSpecies(i, j-1,k, 1) ]J++;
sumSpecies[getSpecies (i, j, k+1l,1)]++;
sumSpecies [getSpecies(i, j-1,k+1l,1)]++;
sumSpecies[getSpecies (i, j, k,3) ] ++;
sumSpecies[getSpecies(i+l, ], k,3}]++;
sumSpecies [getSpecies (i, j-1,k,3)]++;
sumSpecies [getSpecies (i+l,j-1,k,3)]++;
break;

sumSpecies|[getSpecies (i, j,k,0)]1++;
sumSpecies(getSpecies (i, j+1,k,0)]++;
sumSpecies [getSpecies (i, j, k+1,0)]++;
sumSpecies [getSpecies (i, j+1,k+1,0)]++;
sumSpecies[getSpecies(i, j, k,1)}++;
sumSpecies (getSpecies(i-1,j,k,1) ]++;
sumSpecies(getSpecies (i, j, k+1,1) ]++;
sumSpecies [getSpecies (i-1,],k+1,1)]++;
sumSpecies [getSpecies(i,j,k,2)]1++;
sumSpecies [getSpecies(i-1,],k,2) ]++;
sumSpecies [getSpecies (i, j+1,k,2)}++;
sumSpecies [getSpecies(i-1,j+1,k,2)]++;
break:
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lattice::calcChemE{unsigned i, unsigned j, umnsigned k, unsigned l) const

{

const species_t el = getSpecies(i,j,k,1};
double E = 0Q;

switch(1l)
case 0:

case 1l:

{

E += U2(el, getSpecies{(i,j,k,1),
U2(el, getSpecies(i-1,j,k,1),
U2(el, getSpecies(i,j-l.,k,1),
U2(el, getSpecies(i-1,j-1,k,1),
U2 (el, getSpecies(i,j,k,2},
U2(el, getSpecies(i-1,3j,k.,2),
U2(el, getSpecies(i,j,k-1,2),
U2(el, getSpecies(i-1,3j,k-1,2),
U2(el, getSpecies(i,j,k,3),

U2 (el, getSpecies(i,j-1,k,3),
U2(el, getSpecies(i,j,k-1,3),
U2 (el, getSpecies({(i,j-1,k-1,3),
break:;

E += J2(el, getSpecies(i+i,j+l,k,0),
U2(el, getSpecies(i,j,k,0),
U2(el, getSpecies(i+1,j,k,0),
U2(el, getSpecies(i,ij+l,k,0),
U2(el, getSpecies(i,j+l,k,2),
U2 (el, getSpecies(i,j,k,2),
U2(el, getSpecies(i,j,k-1,2),
U2(el, getSpecies(i,j+1,k-1,2),
U2{el, getSpecies({i+l,j,k,3),
U2 (el, getSpecies(i+l,j,k-1,3),
U2 (el, getSpecies(i,j,k,3}),
U2(el, getSpecies(i,]j,k-1,3),
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break;

E += U2(el, getSpecies(i+l,j,k+1,0),
U2(el, getSpecies(i,3j,k,0),
U2(el, getSpecies(i+l,j,k,0),
U2(el, getSpecies(i,j,k+1,0),
U2 (el, getSpecies(i,j,k+Ll,1},
U2(el, getSpecies(i,j-1,k+1,1)},
UZ(el, getSpecieS(i'j~luk,1)c
U2(el, getSpecies(i,j,k,1),

U2 (el, getSpecies(i+l,j,k,3),
U2(el, getSpecies(i+l,j-1,k,3),
UZ(el, getSpecieS(i,j'lyk,3):
U2(el, getSpecies(i,j,k,3),
break;

E += {U2(el, getSpecies(i,j+l,k+1,0),
U2 (el, getSpecies(i,j,k,0),
U2(el, getSpecies(i,j,k+1,0),
U2(el, getSpecies(i,j+1,k,0},
U2(el, getSpecies(i,j,k+1,1),
U2 (el, getSpecies(i-1,j,k+1,1),
U2(el, getSpecies(i-1,3,k,1),
U2(el, getSpecies(i,j,k,1),
U2({el, getSpecies(i,j+1l,k,2),
U2 (el, getSpecies(i-1,j+1,k,2},
U2(el, getSpecies{i-l1,j,k,2),

+ U2(el, getSpecies(i,j,k,2),
break;

case 2:

+++t+ T

case 3:

+ + + 4+ + + + 4+ + 4

}
// much slower code
/* double E2 = 0;
for (unsigned m=0; m<NUMNNPERSITE; m++) {
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caled2(i,j, k,1,i+1,3,k+1,0)}

caled2(i,j, k,1,i,3,k,Q))
calecd2(i,j,k,1,i+1,3,k,Q))
caled2(i,j,k,1,i,3,k+1,0)}))
caled2(i,j,k,1,1,3,k+1,1})
caled2(i,j,k,1,1i,3-1,k+1,1))
caled2(i,j,k,1,1i,3-1,k, 1))
caled2(i,j,k,1,i,3,k, 1))
calcd2(i,j.k, l, i+1!jlkl 3))
caled2(i,j .k, 1,i+1,3-1,k,3))
caled2(i,j,k,1,1i,3-1,%,3))
caICdZ(i'j:kr lr i'j: k: 3) |

caled2(i,j,k,1,i,3+1,k+1,0))

caled2(i,j,k,1,1i,3,k,0))
caled2(i,j,k,1,1i,3,k+1,0))
caled2(i,j,k,1,1i,3+1,k,0))
caled2(i,j,k,1,1i,3,k+1,1))
calecd2(i,j,k,1,i-1,3,k+1,1)}
caled2(i,j,k,1,i-1,3,k. 10}
caled2(i,j,k,1,1i,3,k, 1))
Calch(i,j,k, j+lfk12))
caled2(i,j,k, 1,3+1,k,2))
caled2(i,]j,k, 1,3,k,2))
caled2(i,j,k jok,2))

1,
L,
1,
1

Ry

i,
i-
i-

4

e2 = getSpecies(i+nn(l][m].di,j+nn(1l][m].dj, k+nn(l] (m].dk,na(l] (m].1);
r2 = caled2(i,j,k,l,i+nn(l] [m].di,j+nn[1l} {m].d]j, k+nn{l] {m].dk,nn(l} [m].1);

E += U2(el,
b/
for (unsigned m=0; m<NUM2NNPERSITE; m++)} {

e2, r2);

/'
//
r2 =

e2 = getSpecies{i+nn{l][m].i,j+nn(l) (m].j,k+nn(l] (m].k,an(l])(m].1);

caled2(i,j, k,1,i+ann{l] [(m].di, j+nnn(l] (m].dj, k+ann(l] (m].dk,nnn{l] (m].L1};

E += U2(el,
}e/
return E;
}

e2, r2);

double

lattice::calcMagE (unsigned i, unsigned j, unsigned k, unsigned l) const

{
spinf_t E;
switch(l) {
case 0: E calcJs2{(i,j,k,1,i,3,k, 1)
caleJds2(i,j,k,1,1i-1,3,k,1)
caleJds2(i,j,k,1,1i,3-1,k, 1)
calcJs2(i, i, k,1,i-1,3-1,k,1)
caleds2(i,j, %k, 1,1,
calcds2(i,j.k,1l,1i-
calcds2(i,j.,k,1
calcJs2(i,j,k,1
caleJs2(i,j,k,1
calcJs2(i,j,k,1
caleds2(i,j.k,1
+ caleJs2(i,j,k,1,1,3-1,k-1,3);
break;
E = calcds2(i,j,k,1,i+1,j+1,k,0)
+ caleJds2(i,j,k,1,i,3,k,0)
+ caleJds2(i,j,k,1,i+1,3,k,0)

R |

~ &~

case 1:
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caleJs2(i,j,k,1,1i,j+1,k,0})
caleJs2(i,j.k,1,1i,3+1,k,2)
caleds2(i,j,k,1,i,3,k,2)
calcds2(i,j,k,1,1i,3,k-1,2)
caleJs2(i,j,k,1,i,j+1,k-1,2)
caleJds2(i,j,k,1,i+1,3,k,3)
caleJs2(i,j.k,1,i+1,3,k-1,3)
calcJs2(i,j, k,1,1i,3,%k,3)
CalCJSZ(iyj:kyll iljlk_ll 3):
break;

E = calcJs2(i,j,k,1,i+1,3,k+1,0)}
caleJs2(i,j,k,1,1i,3.%,0)
calcJs2(i,j,k,1,i+1,3,k,0)
caleJs2(i,j, k,1,1i,3,k+1,0})
caleJs2(i,j,k,1,1i,j,k+1,1)
caleds2(i,j,k,1,1i,3-1,k+1,1)
caleJgs2(i, i, k,1,i,j-1,%k/ 1)
caleJs2(i,j,k,1,i,3.k,1)
calcJs2(i,j.k,1,i+1,3,k,3)
caleJs2(i,j,k,1,i+1,j-1,k,3)
calcJs2(i,j,k,1,1i,3-1,k.3)
calcJs2(i,j, k,1,1i,3.,k.3);
break:

E calcds2(i,j,k,1,1i,3+1,k+1,0)
caleds2(i,j,k,1,1i,3,k,0)
caleJs2(i,j,k,1,i,3,k+1,0)
caleJs2(i,j,k,1,1i,3+1,k,0)
caleJds2(i,j,k,1,1,3,k+1, 1}
caleJs2(i,j, k,1,i-1,3,k+1,1)
caleJds2(i,j,k,L,i-1,3.%,1)
calcJs2(i,j,k,1,i,j5,k. 1)
caleJds2(i,j.k,1,1i,3+1,k,2)
caleJs2(i,j,k,1,i-1,j+1,k,2)
caleJds2(i,j,k,1,i-1,3,k,2)

+ caleJs2(i,3,k,1,i,3,k,2):
break;

+ 4+ ++ 4+

case 2:

++++ A

case 3:

P Ik A I B

// much slower code

/* position_t p, pnn:
p.i = i;
p.J = 3:
p.k = k;
p.1 = 1;
for (unsigned m=0; m<NUMNNPERSITE; m++) |
pnn = p+an(p.1l] (m];

E -= getSpin(pnn.i, pnn.j, pnn.k, pnn.l)

pan.j, pnn.k, pan.l));

Y/
#if defined(DO_APPLIEDH}

return -((E+H) *getSpin(i,j,k,1});
telse

return ~(E*getSpin(i,j,k,1l)):
#endif
}

voic

lattice::run(unsigned nsteps,

const char* fn)

{
char buf[255];

#if defined (DO_HDISTRIBUTION)
sprintf (buf, "%$s.Hhf", £n);
ofstream os_H(buf);

#endif // DO_HDISTRIBUTION

#if defined(DO_DETAILS)

®* caleJ(p.i, p.3, P.-k, p.l, pnn.i,

unsigned startsampling, unsigned samplingstep,

329



sprintf(buf, "%$s.mc”, fn);
ofstream os_mc (buf};

#endif // DO_DETAILS
double Etot = calcE():;

#if defined(DO_MAG)
spinsum_t MFe = calcM(0);
spinsum_t MNi = calcM(l);
spin_t news;

fendif

#if defined(DO_DETAILS)
os_mc.precision(10);

os_mc << "initial configuration” << '\t' << Etot/getNumAtoms() << '\t' << dnn

<< "\t';
#if defined(DO_MAG)
if (getNumAtoms(0))
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os_mc << MFe/(double)getNumAtoms(0) << ‘\t';

else
os_mc << "N/A\t";
if (getNumAtoms(l))

os_mc << MNi/(double)getNumAtoms (1) <<

else
os_mc << "N/A\n";
telse
os_mc << '\n';
#endif

int details = 0;

#endif // DO_DETAILS
const unsigned atommc =
unsigned mc, magmc:
unsigned m;
unsigned i, j, k, L;
double p;
double dd, dE;
float dr(3];

endl;

getNumAtoms () ;

double sigdnn = dnn*SCALE_DNN*sqrt(T);
double signnpos = dnn=SCALE_NNDEV*sqrt(T):
// First, reach thermal equilibrium for the volume+magnetic system

//
unsigned successVol = 0;
unsigned successMove = 0;
for (mc=0; mc<startsampling:; mc++)
$if defined(DO_VOLUMEMC)
for (m=0; m<NUM_MCVOLSTEPS; m++)
dd = sigdnn*symranf ()
sqrt (T) *dnn)

if (testProb(calcVolProb(dnn+dd,

dnn += dd;
dnn2x2 = 2*dnn*dnn;
Etot += dE;

1

}
$if defined(DO_ATOMICMC)

for (m=0; m<atommc; m++)

// select an atom at random
i = Nx*ranf();
j = Ny*ranf():
k Nz*ranf():
1 NUMSITESPERCELL*ranf ()

// select
dr(0]

signnpos*symranf () ;

drl] signnpos*symranf () ;

dr(2] signnpos*symranf();

if (itestProb(calcMoveProb(i,j
atom& at = getAtom(i,j.k,1l);
at.dr{0] -= dr(0]:

{
{

// trial dnn change (gaussian deviate propto

dE))) |

random gaussian displacements

'k, 1,dr,4E))) |
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at.dr(l] -
at.dr(2] -
}

}
tendif // DO_ATOMICMC
for (magmc=0; magmc<NUM_MCMAGSTEPS; magmc++) {
$#endif // DO_VOLUMEMC
#if defined(DO_MRG)
for (m=0; m<getNumAtoms():; m++) {

dr(l]:
dr(2];

i = Nx*ranf();
j = Ny*ranf():
k = Nz*ranf():;
1 = NUMSITESPERCELL*ranf():

spin_t& s = getSpin(i,j,k,1):
#if defined(HEISENBERG)
float ct = 2*ranf()-1:
float st = sqrt(l-ct*ct);
float phi = 2*M_PI*ranf();
float cp = cos(phi);
news.x = cp*st;
news.y = phi > M PI ? -sqrt(l-cp*cp)*st : sqrt(l-cp*cp) = st;
news.z = ct;
kelse
news = -s;
tendif
p = calcFlipProb(i,j,k,Ll,news,dE);
if (testProb(p)) |
if (getSpecies(i,j,k,1) == 0}
MFe += news-s;
else
MNi += news-s;
S = news;
}
}
#endif
kif defined(DO_VOLUMEMC)

}
#¢endif // DO_VOLUMEMC
Etot = calcE();
#if defined(DO_DETAILS)
os_mc << (mc+l) << '\t' << Etot/getNumAtoms() << '\t' << dnn << '\t';
#if defined(DO_MAG)
if (getNumAtoms (Q)})
os_mc << MFe/ (double)getNumAtoms (0) << ‘'\t';
else
os_mc << "N/A\t";
if (getNumAtoms (1))
os_mc << MNi/(double)getNumAtoms(l) << endl;
else
os_mc << "N/A\n";
telse
os_mc << '\n';
#endif // DO_MAG
#endif // DO_DETAILS
i
unsigned sampl = samplingstep;
double tl1, t2:
long double Eavg = 0, E2 = 0;
long double EpV = 0, EpV2 = 0;

long double Vavg = 0, V2 = 0;
leng double VEpV = 0;
long double davg = 0, d2 = 0;
$if defined(DO_MAG)
long double MFeavg = 0, MFe2 = 0, MFe3 = 0, MFeq4 = 0;
long double MNiavg = 0, MNi2 = 0, MNi3 = 0, MNi4 = 0;
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long double M = 0, M2 =
long double nf = 0, nf2
#endif
atom: :nsum Q;
unsigned n 0;
for (i=0, j, k, 1; i<Nx; i++)
for (3=0; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; 1<NUMSITESPERCELL; l++)
getAtom(i, j, k,1) .reset_avg();
sigdnn = dnn*SCALE_DNN*sqrt(T);
signnpos = dnn*SCALE_NNDEV*sqrt(T}:
for (; mc<nsteps; mc++, sampl++) {
$#if defined(DO_VOLUMEMC)
resetE(Etot);
for (m=0; m<NUM_MCVOLSTEPS; m++) |
dd = sigdnn*symranf():; // trial volume change
if (testProb(calcVolProb(dnn+dd, dE))) {
dnn += dd:
dnn2x2 = 2*dnn*dnn;
Etot += dE;
successVol++;
}

o

, M3 =0, Md = Q;
0:

non

}
$if defined(DO_ATOMICMC)
for (m=0; m<atommc; m++) {
// select an atom at random
i = Nx*ranf();
Ny~ranf():
Nz*ranf();
NUMSITESPERCELL*ranf ()
// select random gaussian displacements
dr{0] = signnpos*symranf(};
dr{l] = signnpos*symranf();
dr(2] = signnpos*symranf();
if (!testProb(calcMoveProb(i,j, k,1l,dr,dE))) {
atoms& at = getAtom(i,j,k,1l);
at.dr(Q] =-= dr(0]:

Ay e
W

at.dr{l] =-= dr(l):

at.dr(2] -= dr[2}:
} else

successMove++;

}
#endif // DO_ATOMICMC
for (magmc=0; magmc<NUM_MCMAGSTEPS; magmc++) {
#endif // DO_VOLUMEMC
$if defined(DO_MAG)
for (m=0; m<getNumAtoms(); m++) {
i = Nx*ranf();
j Ny*ranf():
k Nz+*ranf();
1 NUMSITESPERCELL*ranf () :
spin_t& s = getSpin(i,j,k,1);
#if defined(HEISENBERG)
float ct = 2*ranf()-1;
float st = sgrt(l-ct*ct):;
float phi = 2*M PI*ranf():
float cp = cos(phi};
news.x = cCp*st;

news.y = phi > M_PI ? -sqrt(l-cp*cp)*st : sqrt(l-cp*cp)*st;
news.z = ct;

telse
news = -s;

tendif

if (testProb(calcFlipProb(i,j,k,1l,news,dE))) {
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if (getSpecies(i,j,k,1) == 0)
MFe += news-s;
else
MNi += news-s;
S = news;
}
}
#endif
#if defined(DO_VOLUMEMC)

}
#endif // DO_VOLUMEMC
Etot = calcE();

//
// sample the desired properties
//

if (sampl == samplingstep) (

davg += dnn;
d2 += dnn*dnn;
tl = Etot/getNumAtoms();
Eavg += tl;
E2 += tl*tl;
double V = dnn*dnn*dnn*M_SQRT_2;
tl += P*V;
EpV += tl;
Epv2 += tl*tl;
Vavg += V;
V2 += V*V;
VEpV += V*tl;
#if defined(DO_MAG)
spinf_t atomM = (MU[Q]*MFe+MU[1]*MNi)/getNumAtoms();
#if defined (HEISENBERG)
tl = atomM.norm();
telse
tl = fabs(atom¥);
tendif
M += tl;
t2 = tl*cl;
M2 += t2;
M3 += tl*t2;
M4 += t2*t2;
#if defined (HEISENBERG)
atomM.normalize();
telse
atomM = atomM > 0 2 1 : -1;
#endif
if (getNumAtoms{(0)) {
tl = (atomM*MFe)/getNumAtoms (0):;
MFeavg += tl;
t2 = tl*tl;
MFe2 += t2;
MFe3 += t2*tl;
MFe4 += t2*t2;
}
if (getNumAtoms (1)) {
tl = (atomM*MNi)/getNumAtoms(l);
MNiavg += tl;
t2 = tl*ti;
MNi2 += t2;
MNi3 += t2*tl;
MNig4 += t2*tZ;
}
unsigned nFeFe;
unsigned nfcalc = calcFrustratedFeBonds (nFefFe);
nf += nfcalc;
nf2 += nfcalc*nfcalc:;
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kendif
double a = dnn*M_SQRT2;
for (i=0; i<Nx; i++)
for (j=0; j<Ny:; j++)
for (k=0; k<Nz; k++)
for (1=0; 1<NUMSITESPERCELL; l++) ({
getAtom(i,j,k,1l).sample_avg(a);
#if defined(DO_SPINAVG)
7/ count the "spin" as being the component along the average
magnetization for that species
if (getSpecies(i,j,k,1) == 0}
getSpinSum(i,j, k,1) += MFe > 0 ? getSpin(i,j,k, 1) :
-getSpin(i,j,k.1);
else
getSpinSum({i,j, k,1) += MNi > 0 ? getSpin(i,j,k,1) :
-getSpin(i,j,k,1);
#endif
t
atom: :nsum++;
n++;
sampl = 0;

I
#if defined(DO_DETAILS)
os_mc << (mc+l) << '\r' << Etot/getNumAtoms() << '\t' << dnn << "\t';
#if defined(DO_MAG)
if (getNumAtoms(0))
os_mc << MFe/(double)getNumAtoms (0) << '\t';
else
os_mc << "N/R\t";
if (getNumAtoms (1))
os_mc << MNi/(double)getNumAtoms(l) << endl;
else
os_mc << "N/A\n";
telse
os_mc << ‘\n';
#endif // DO_MAG
#endif // DO_DETAILS
}

// cout << 100*successVol/{double) (NUM_MCVOLSTEPS* (nsteps-startsampling}) <<

endl;
// cout << 100*successMove/ (double) (atommc* (nsteps-startsampling)) << endl;
//
// results are in. calculate averages and output them to file
//

if (n == 0)

n=1;

davg /= n;

avgdnn = davg:;

d2 /= n;

Eavg /= n;

E2 /= n;

EpV /= n;

EpVZ /= n:

Vavg /=n;

V2 /= n;

VEpV /= n;
#if defined(DO_MAG)

nf /= n;

nf2 /= n;

M /= n;

M2 /= n;

M3 /= n:

M4 /= n;

if (getNumAtoms{0}) {

MFeavg /= n;
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MFe2 /= n;
MFe3 /= n;
MFe4 /= n;
/7 MFeAFavg /= (n*getNumAtoms(0));
// MFeAF2 /= (n*getNumAtoms(0)*getNumAtoms{0));

}
if (getNumAtoms(l)) {

MNiavg /= n;
MNi2 /= n;
MNi3 /= n;
MNi4 /=

// MNiAFavg /= (n*getNumAtoms(l));
// MNiAF2 /= (n*getNumAtoms (1) *getNumAtoms(1));

}
#endif
if (atom::nsum)
for (i=0, j, k, Ll; i<Nx; i++)
for (3=0; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; 1<NUMSITESPERCELL; l++)
getAtom(i,j,k,1l).calc_avg(};
os_main.precision(10);
os maln << T &< '"\t' << P << '\t' << davg*M_SQRT2 << '"\t' <<
sqrt(fabs (d2- davgrdavg)) *M_SQRT2 << '\t' << Eavg << '\t' <<
sqrt (fabs (E2-Eavg*Eavg));
$if defined(DO_MAG)
cout << T << '\t' << P << '\t' << davg*M_SQRT2 << '\t' <<
M/ (c*MU(0)+(1l-¢c)*MU[1]) << endl;
telse
cocut << T << '\t' << P << '\t' << davg*M_SQRT2 << endl;
$endif
os_main << '\t' << EpV << '\t' << EpV2 << '\t' << Vavg << '"\t' << V2 << '\t' <<
VEpV:
0s_main << '\c' << getNumAtoms () * (VEpV-Vavg*EpV) / (3*T*T*Vavg) << '"\t' <<
getNumAtoms()'(EpVZ - EpV*EpV) /(T*T) << '\t' <<
T*Vavg/ (getNumAtoms () * (V2-Vavg*Vavg});
// os_main << '\t' << (E2-Eavg*Eavg)/(T*T) << '\t' <<
sqrt (fabs (E4+Eavg* (-4*E3+8*E2*Eavg-4*Eavg*Eavg*Eavg) -E2*E2) )/ (T*T) ;
$if defined(DO_MAG)
os_main << '\t' << M << '\t << M2 << 'A\t' << M3 << '\t' << M4;
os_main << '\t' << (M2-M*M)/T;// << '\t' <<
sqrt(fabs (MFe4+MFeavg* (-4 *MFe3+8 *MFe2*MFeavg-4 *MFeavg*MFeavg*MFeavqg) -MFe2 *MFe2) ) /
T;
if (getNumAtoms(0)) {
os_main << '\t' << MFeavg << '\t' << MFe2 << '\t' << MFel << '\t' << MFe4;
os_main << '\t' << (MFe2-MFeavg*MFeavqg)/T;// << '\t' <<
sqrt (fabs (MFed+MFeavg* (- 4*MFe3+8*MFe2*MFeavg-4*MFeavg*MFeavg*MFeavg) -MFe2 *MFa2) )/
T:
} else
os_main << "\tN/A\tN/A\tN/A\tN/A\tN/A";
if (getNumAtoms(l)) {
os_main << '\t' << MNiavg << '\t' << MNi2 << '\t' << MNi3 << ‘'\t' << MNi4;
os mazn << '\t' << (MNi2-MNiavg*MNiavqg)/T;// << '\t' <<
sqrt(fabs(MN14+MN1avg (-4*MNi3+8*MNi2*MNiavg-4*MNiavg*MNiavg*MNiavg) -MNi2 *MNi2))/
T ,
} else
os_main << "\tN/A\tN/A\tN/A\tN/A\tN/A";
os_main << '\t' << nf << '\t' << sqrt(fabs(nf2-nf*nf));
tendif
dnnInfo dnninfo[3]:
calcAvgdnn (davg*M_SQRT2, 0, 0, &dnninfo(0]);
calcAvgdnn (davg*M_SQRT2, 1, 0, s&dnninfo(l]);
calcAvgdnn (davg*M_SQRT2, 1, 1, &dnninfo(2]);
os_main << '\t' << dnninfo(0].avg[0] << ’'\t' << dnninfo(l].avg[0] << '\t' <<
dnninfo(2].avg(0];
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os_main << *'\t' << dnninfo[0].stdev[0] << '\t' << dnninfo[l].stdev[(] << '\t'
<< dnninfo(2].stdev([0];
os_main << '\t’ << dnninfo[0].pup << '\t' << dnninfo[l].pup << '\t' <<
dnninfo (2] .pup;
os_main << '\t' << dnninfo[0].n << ’'\t' << dnninfo(l].n << '\t' <<
dnninfo(2].n;
os_main << '\t' << dnninfo[0].avg({l] << '\t' << dnninfo([0].avg{2];
os_main << '\t' << dnninfo{0].stdev{l] << '\t' << dnninfo([0].stdev[2];
$if defined(DO_HDISTRIBUTION)
unsigned nHhf floor ((MU[O]*Hhf_A + 12*MU[O]*Hhf_B)/0.5+0.5)+1;
double** PHhf = new double*([13];
for (unsigned i=0; i<13; i++)
PHhf (1] = new double(nHhfl;
double Hhfavg = calcHhfDistribution (PRhf, nHhf, 0.5);
for (unsigned j=0; j<13; j++)
os_H << "\t' << j;
os_H << endl:
for (unsigned i=0; i<nHhf; i++) {
os_H << i*0.5;
for (unsigned j=0; j<13; j++)
os_H << '\t' << PHhE[(j](i];
0s_H << endl;
}
delete(] PHhf;
os_main << '\t' << Hhfavg;
kendif
os_main << endi;
#if defined (DO_SPINAVG)
sprintf (buf, "%s.mom"”, fn);
ofstream os_mom(buf):
for (unsigned 1=0, j, k, l; i<Nx; i++)
for (j=0:; j<Ny; Jj++)
for (k=0; k<Nz; k++)
for (1=0; 1<NUMSITESPERCELL; 1l++) {
double m = getSpinSum(i,j,k,l)/{double)atom::nsums;
os_mom << i << '\t << j << '\t’ << k << "\t' << 1 << A\tf << m << '\t
<< sqrt(l-m*m) << *‘\n';

]

#endif
#if defined(DO_FENNINFO}

sprintf (buf, "%s.FeNN", fn):;

ofstream os_nn(buf);

int sum(NUMSPECIES]:

for (unsigned i=0, j, k, 1; i<Nx; i++)

for (j=0; j<Ny; j++)
for (k=0; k<Nz; k++)
for (1=0; l<NUMSITESPERCELL; l++) {
sumNNAtoms (i, j, k,1,sum);
0s_nn << 1 << "\g' << F << "\t << k << "A\L' << 1 << '\t <«

{(int)getSpecies(i, j, k,1) << '"\t' << sum([0] << '\n';

#endif
}

#if 1
int
main({int argc, char* argv{])
{
// warm up the random number generator
#if defined (USE_RANI)

idum = -1;
#else

seedMT (43570) ;
#endif

for (unsigned i=0; i<1000Q; i++)



ranf():
if (argc < 4) {
cout << "Invalid

Appendix E. Source Code for MC Simulations 337

number of parameters” << endl << endl;

cout << "Usage: mc_NTP [at.% Fe] [flalp] [Fe3Ni|FeNi|FeNi3|d] (ini file)" <<

endl << endl;

cout << " where
endl;
cout << "
structure"” << endl;
cout << “
structure” << endl <
cout << "
Fe3Ni structure” <<
cout << "
structure” << endl;
cout << "
FeNi3 structure” <<
cout << "
structure" << endl;
return 1;

)
char inibuf[256];
if (argc == 5)

f initializes the lattice with a ferromagnetic structure" <<
a initializes the lattice with an antiferromagnetic(001)

p initializes the lattice with a random nonmagnetic
< endl;

Fe3Ni initializes the lattice with a chemically ordered
endl;

FeNi initializes the lattice with a chemically ordered FeNi

FeNi3 initializes the lattice with a chemically ordered
endl;
d initializes the lattice with a chemically disordered

strepy (inibuf, argv(4]):

else
strcpy(inibuf, "

mc_NTP.ini"):

ifstream is(inibuf);

unsigned N;
double d, dnnQ_65;
char buf[255];

is >> N >> d >> dnn0_65;

dnn0 = dnn0_65;
is >> JO(Oj[0] >>

JO[1]([0] >> JO([L11(1];

JO[0) (1] = JOo([1][0];

is >> dJ dr (0] [0}

>> dJ_dr(1]1(0] >> dJ_dr(1](1]:

dJ_dr(0]{1] = dJ_dr(1] [0};

is.ignore();
is >> 00[0](0] >>

Uo(l] (0] > UO(L11(1l};

Uo (0] (1] = UO(1j(0];

is >> d0(0] (0] >>

do(1](0} >> d0[1]([1]:

d0[0]) (1] = 40[1](0]:

d02(0] [0] = d0[0])¢
d02(01{1] = do{0](
do2([1]1([0] = dO[1l][
d02(1] (1] =

0]*do(aQ] (0]
1]*d0 (0] [1];
0j*d0(1](01;

do(i](1]~dO(1] 1]

time_t timer = GetTime();

lattice lat(N, N,
lat.setdnn({(d) ;
bool read = false;
bool load lattice
if (strcmp(argv[3]

N, atof(argv(i])):

= false;
, "Fe3Ni") == ()

lat.initialize(lattice::Fe3Ni);

else if (strcmp(argv{3], "FeNi") == 0)
lat.initialize(lattice::FeNi);

else if (strcmp(argv(3], "FeNi3") == Q)
lat.initialize(lattice::FeNi3};

else if (stremp(argv({3], "d") == 0)

lat.initialize(l

attice::disordered);

else if (strcmp(argv(3]l, "load") == 0)
load_lattice = true;

else

if (!lat.readSystem{argv(3])) {
cerr << "unable to open file " << argv({3] << endl;

return false;
} else
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read = true;

1f (!'read)
switch (argv([2] (0]) |
case '"f': lat.initialize(lattice::ferro); break:
case 'a': lat.initialize(lattice::antiferro); break:;
case 'n': lat.initialize(lattice::Niferro); break;
default: lat.initialize(lattice::para);
}
double P;
is >> PB;

lat.setPressure(P);
#if defined (DO_MAG)

#if defined (JFEFE_BOSE)

sprintf(buf, "%s c=%.3f %c %s Bose.P=ig.dat", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2](0}, argv{3], latc.p, T);

#else

sprintf(buf, "%s c=%.3f %c %s %g %g.P=%g.dat", fnprefix,
lat.getNumAtoms (0) / (double) lat .getNumAtoms (), argv(2]([0], argv[3], dJ_dr(0] (0],
dnn0_65, lat.Pp);

#endif
telse

sprintf(buf, "%s c=%.3f %s.P=%g.dat”, fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(3], lat.P}:;
#endif

os_main.open (buf);

if (!'os_main) {

cout << "unable to open " << buf << endi;
return 1;

}

int nsteps;

int startsampling:

int samplingstep;

is >> nsteps >> startsampling >> samplingstep;

unsigned nFeFe;

lat.calcFrustratedfFeBonds (nFefe) ;

cout << "N = " << lat.getNumAtoms() << "\tc = " <<
lat.getNumAtoms (0) / (double) lat.getNumAtoms () << endl;
os main << "N = " << lat.getNumAtoms () << "\tc = " <<

lat.getNumAtoms (0) / (double) lat.getNumAtoms () << endl;
#if defined(DO_MAG)

#if defined(JFEFE_BOSE)

cout << "magnetic exchange parameters:\tFit to Bose JFefFe data" << endl:

os_main << "magnetic exchange parameters:\tFit to Bose JFeFe data" << endl:;

telse

cout << "magnetic exchange parameters:\t" << JO[0][0] << '\t' << JO[0Q]{1] <<
'\t' << JO(1) (1] << '\t' << dJ dr(0]([0] << '\t' << dJ_dr(0][1] << "\t' <<
dJ_dr(1]{1] << '\t' << dnn0_65 << endl;

os_main << "magnetic exchange parameters:\t" << JO[0] [0] << ‘'\t' << JO[O][1l] <<
"\t' << JO[1]J[1] << "\t' << dJ_dr[0]([0] << "\t' << dJ_dr{0][1] << '"\t' <<
dJ_dr([1](1] << '\t' << dnn0_65 << endl;

#endif
telse

cout << "no magnetic interactions"” << endl;

os_main << "no magnetic interactions"” << endl;
#endif

cout << "chemical potential parameters:\t" << UQ[0][0] << '\t" << dO[{0][0] <«
'\t'<< U0[0]{1] << '\t' << dO[0]f1l] << '\t' << UO([1][1] << '"\t' << dO[1]([1l] <<
endl;
// cout << "initial conditions:\t" << lat.calcE{() << '\t' << lat.calcM(0) <<
'\t' << lat.calcM(l) << '\t' << nFeFe << endl;

os_main << "chemical potential parameters:\t" << UO[O0][0] << '\t' << dO(0] (0]
<< '"\t'<< UO[0][1] << '\t' << d0[0][1l] << *\t' << UO{1]([1l] << '\t' << dO{1l][1l] <<
endl;

os_main << "initial conditions:\t" << lat.calcE() << '\t' << lat.calcM(0) <<
*\t' << lat.calcM(1l) << '\t' << nFeFe << '\t' << argv[2] << '\t' << argv(3] <<
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endl;

os_main << nsteps << " steps, start sampling at " << startsampling << ", sample
every " << samplingstep << endl:

os_main << "T (K)\tP (K/A3)\t" << "a (A)\tsa\t" << "<E> (K)" << '\t' << "sE" <<
'\t

os_main << "<E+pV> (K)" << "\t' << "< (E+pV)"*2>" << '\t';

os_main << "<V> (A3)" << '\t' << "QVA>" << '\t';

os_main << "<V(E+pV}> (KA3)" << '\t';

os_main << "alpha (K-1)" << '\t' << "Cp" << '\t' << "B_T (K/A3)" << '\t';
#if defined(DO_MAG)

0s main << "<M>” << '\t' << "<M2>" << l\tr << "<M3>" << '\t' << "(M4>" << '\C'
<< "Ehi" << I\tl;

0s_main << “"<MFe>" << '\t' << "<MFe2>" << '\t' << "<MFe3>" << '\t' << "<MFe4>"
<< '\t' << "chiFe" << '\t';

os_main << "<MNi>" << '\t' << "<MNi2>" << '\t' << "<MNi3>" << '\t' << "<MNi4>"
<< '\t' << "chiNi" << '\t';

os_main << "nFefrust\t\t”;
#endif

os_main << "dFeFe (A)\tdFeNi (A)\tdNiNi (A)";
#if defined(DO_HDISTRIBUTION)

os_main << '\t' << "<Hhf>";
#endif

os_main << endl;

cout << lat.calcChemE()/lat.getNumAtoms () << endl;
#¥if defined(DO_MAG)

cout << lat.calcMagE()/lat.getNumAtoms() << endl:;
#endif

long t = time(0);
struct tm* tblock = localtime(&t);
cout << "starting calculation on " << asctime(tblock):
double T:
double TG, T1, dT;
is >> TQ >> T1 >> dT;
if (dT < 0)
for (T=T0; T>T1l:; T+=dT) {
if (leoad_lattice) {
dnn0 = dnn0_65;
sprintf(buf, "%s c=%.3f $c %s %g %g.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2][0], argv(3], dJ_dr(0} (0],
dnn0_65, lat.P, T);
if (!lat.readSystem(buf)) {
cerr << "unable to read " << buf << endl;
continue;
}
}
$if defined(DO_MAG)
#if defined(JFEFE_BOSE)
sprintf(buf, "%s c=%.3f %c %s Bose.%g.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat .getNumAtoms (), argv(2] (0], argv(3], lat.P, T):
#else
sprintf(buf, "%s c=%.3f %c %s %g %g.%g.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv([2] (0], argv(3], dJ_dr(¢] (0],
dnn0_65, lat.P, T):
#endif
telse
sprintf(buf, "%s c=%.3f %s.%g.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv([3], lat.pP, T);
#endif
lat.setTemp(T);
lat.run(nsteps, startsampling, samplingstep, buf);
t = time(0):
tblock = localtime (&t):
cout << (GetTime()-timer) << " seconds elapsed, " << asctime({tblock);
#$if defined (DO_MAG)
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#1f defined(JFEFE_BOSE)
sprintf (buf, "%s c=%.3f %c %s Bose.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / {double) lat.getNumAtoms (), argv(2] (0], argv(3], lat.P, T);
telse
sprintf(buf, "$s c=%.3f %c %s %q %g.P=%g.T=%g.lattice"”, fnprefix,
lat.getNumAtoms (0) / (double}lat.getNumAtoms (), argv({2] (0], argv(3], dJ_dr[0](Q],
dnn0_65, lat.P, T);
#endif
felse
sprintf (buf, "%s c=%.3f %s.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv({3], lat.P, T):
#endif
lat.saveSystem(buf};
}
else
for (T=TQ: T<Tl; T+=dT) |
if (load_lattice) {
dnn0 = dnn0_65;
sprintf (buf, "%s c=%.3f %c %s %g %g.P=%g.T=%qg.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2][0], argv{3], dJ_dr[0](C],
dnn0_8&5, lat.P, T);
if (!lat.readSystem(buf)) (
cerr << "unable to read " << buf << endl;
continue;
}
}
#if defined(DO_MAG)
#if defined(JFEFE_BOSE)
sprintf(buf, "%s c=%,3f %c %s Bose.%g.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms ()}, argv(2]{0], argv{3}, lat.®, T);
#else
sprintf{buf, "%s c=%.3f %c %s %g %g.%g.%g", fnprefix,
lat.getNumAtcms (0) / (double) lat.getNumAtoms (), argv(2] (0], argv(3], 4J_dr([0}([Q],
dnn0_65, lat.P, T):
#endif
felse
sprintf(buf, "%s c¢=%.3f %s.%g.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(3], lat.P, T):;
fendif
lat.setTemp(T);
lat.run(nsteps, startsampling, samplingstep, buf):;
t = time(Q);
tblock = localtime(&t};
cout << (GetTime()-timer) << " seconds elapsed, " << asctime(tblock);
$if defined(DO_MAG)
#if defined(JFEFE_BOSE}
sprintf(buf, "%s c=%.3f %c %s Bose.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (Q) / (double) lat.getNumAtoms (), argv{2] (0}, argv[3], lat.P, T):
#else
sprintf(buf, "%s c=%.3f %c %s %g %g.P=%g.T=%g.lattice”, fnprefix,
lat.getNumAtoms (0) / (double) lat .getNumAtoms (), argv(2] (0], argv(3], dJ_dr([C][0],
dnn0_65, lat.P, T);
#endif
telse
sprintf(buf, "%s c=%.3f %s.P=%g.T=%g.lattice”, fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(3], lat.P, T):
#endif
lat.saveSystem(buf) ;
}
is >> T1 >> dT;
while (is) {
if (dT < 0)
for (; T>T1; T+=dT) {
if (load_lattice) ({
dnnQ@ = dnn0_65;



Appendix E. Source Code for MC Simulations 341

sprintf (buf, "%s c=%.3f %c %s %g %g.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv([2)[0], argv{3], dJ_dr[0] (0],
dnn0_65, lat.P, T):
if (!lat.readSystem(buf)) {
cerr << "unable to read " << buf << endl;
continue;
}
}
#if defined(DO_MAG)
#if defined(JFEFE_BOSE)
sprintf(buf, "%s c=%.3f %c %s Bose.%qg.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2] (0}, argv(3], lat.P, T);
#else
sprintf(buf, "%s c=%.3f %c %s %g %g.%g.%g", fnprefix,
lat.getNumAtoms (Q) / (double) lat .getNumAtoms (), argv(2][0), argv(3], dJ_dr{0] (0],
dnn0_€5, lat.P, T);
#endif
#else
sprintf(buf, "%s c=%.3f %s.%g.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(3], lat.P, T);
fendif
lat.setTemp(T);
lat.run(nsteps, startsampling, samplingstep, buf);
t = time(0);
tblock = localtime(&t):;
cout << (GetTime()-timer) << " seconds elapsed, " << asctime(tblock}:;
#if defined(DO_MAG)
#if defined(JFEFE_BOSE)
sprintf(buf, "%s c=%.3f %c %s Bose.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (Q) / (double) lat.getNumAtoms (), argv(2](0], argv[3], lat.P, T);
kelse
sprintf(buf, "%s c¢c=%.3f %c %s %g %g.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2] (0], argv(3], dJ_dr(0][Q],
dnn0_65, lat.P, T):
#endif
#else
sprintf(buf, "%s c=%.3f %s.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv([3], latc.P, T):;
#endif
lac.saveSystem(buf);
}
else
for (; T<T1l; T+=dT) {
if (load_lattice) {
dnn0 = dnnQ_65;
sprintf(buf, "%s c=%.3f %c %s %g %g.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2] (0], argv(3], dJ_dr(0](0Q],
dnn0_65, lat.P, T):
if (!lat.readSystem(buf))
cerr << "unable to read " << buf << endl;
continue;
}
}
#if defined(DO_MAG)
#if defined (JFEFE_BOSE)
sprintf(buf, "%s c=%.3f %c %s Bose.%g.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2][0], argv(3], lat.P, T):
telse
sprintf (buf, "%s c=%.3f %c %s %g %g.%9.%g", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2]([0], argv(3], dJ _dr(0j([0],
dnn0_65, lat.P, T):
#endif
telse
sprintf(buf, "%s c¢=%.3f %s.%g.%g"”, fnprefix,
lat.getNumAtoms (0) / (double) lat .getNumAtoms (), argv[3], lat.p, T):
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#endif
lat.setTemp(T);
lat.run(nsteps, startsampling, samplingstep, bui);
t = time(0);
tblock = localtime(&t);
cout << (GetTime()-timer) << " seconds elapsed, " << asctime(tblock);
#if defined(DO_MAG)
#if defined(JFEFE_BOSE)
sprintf(buf, "%s c=%.3f %c %s Bose.P=%g.T=%g.lattice”, fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2](0], argv(3], lat.P, T);
#else
sprintf (buf, "%s c=%.3f %c %s %g %g.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(2] [0}, argv[3], dJ_dr(0]{0],
dnn0_65, lat.P, T);
#endif
#else
sprintf(buf, "%s c=%.3f %s.P=%g.T=%g.lattice", fnprefix,
lat.getNumAtoms (0) / (double) lat.getNumAtoms (), argv(3), lat.P, T);
$endif
lat.saveSystem(buf);
}
is >> T1 >> dT;
}
return 0;
}
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File: mcprob.h, included in mc_ntp.cpp
Author: Ken Lagarec

$if !defined(mcprob_h)
$define mcprob_h

inline bool
testProb(float p) |

return (ranf() < p):;
}

inline float
metropolisProb (double mdE_T) {

return mdE_T < FMINEXP ? 0 : mdE_T > 0 2 1 : exp(mdE_T);
}

#$endif
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File: mcspin.h, included in mc_ntp.cpp

Author: Ken Lagarec
$if !'defined(mcspin_h)
#define mcspin_h

#$if defined (HEISENBERG)
struct vector

float x, Yy, z;

vector(): x(0), y(0), z(0)

vector (float x_, float y_, float z_): x(x_), y(y_), z2(z_) (}

vector(float a) |

x = 0;

y = 0;

z = (a != 0) ? a/fabs(a)
}

vector& operator = (float a)

x = 0;
y = 0;
z = (a !'= 0) ? a/fabs(a)

return *this;
}

vector&s operator += (const vector& v) |

X += V.X7

y += v.y;

zZ += vV.Z;

return *this;
}

vector& operator ~= (const vectors v) |
X == V.X;
y -= vV.y;
zZ -=V.2;

return *this;
}
float norm() (
return sSqrr(x*x+yTy+z*z};
}
void normalize() {
float n = norm();
if (n == Q)
return;
x /= n;
y /= n;
z /= n;
}
}:
inline vector

operator + (const vector& vl, const vector& v2) {
return vector (vi.x+v2.x, vl.y+v2.y, vl.z+v2.2};

}
inline vector
operator - {(const vector& vl,

const vector& v2) {

return vector{vl.x-v2.x, vl.y-v2.y, vl.z-v2.2);

i

inline vector

operator ® (const float a, const vectors v) {

return vector(a*v.x, a*v.y,

}
inline vector

arwv.z);

operator / (const vector& v, const float a) {
return vector(v.x/a, v.y/a, v.z/a);

inline float

operator ® (const vector&s vl, const vectors v2) {
return vl.x*v2.x + vl.y*v2.y + vl.z*v2.2z;

344



}

inline ostreams

operator << (ostream& os, const vector& v)
0S8 << v.X << '\t' << v,y << "\t' << v.2;
return os;

}

inline istreams&

operator >> (istream& is, const vectors v)
is >> v.x >> v.y > v.z2;
return is;

}

typedef vector spin_t;
typedef vector spinsum_t;
typedef vector spinf_t;

felse

typedef signed __ int8 spin_t;
typedef int spinsum_t;
typedef double spinf_t;
tendif

$endif // mecspin_h
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