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Abstract 

In t his t hesis we study the Hilbert funct ions of sets of distinct points in Pnl x x P k  

with k 2 2. This thesis extends the work of Giuffrida, Maggioni, and Ragusa (1992) on the 

Hilbert functions of points in IF1 x PL. The goal of this thesis is to establish the algebraic 

foundation for this topic. The main results of this thesis are: 

We describe the eventual behaviour of the Hilbert function of a set of distinct points 

in IFn' x - x Pnk . As a consequence of t his result , we show t hat the Hilbert function of 

a set of points in Pn' x . x IP can be determined by cornputing the Hilbert function 

at  only a finite number of values. The other values of the Hilbert function will then 

follow Foin Our description of the eventual behaviour of the Hilbert function. The 

values at  which we need to compute the Hilbert function c m  be determined from 

niimericsl information about the set. Our result motivates us to define the border of 

the Hilbert function of a set of points. This result extends the result that the Hilbert 

function of a set of points in Pn stabilizes at  the cardinality of the set of points. 

We show t hat H is the Hilbert funct ion of an arit hmet ically Cohen-Macaulay ( ACM) 

set of points in Pnl x . x P k  if and only if AH. the first difference function of H, 

is the Hilbert function of an ~ ~ - g a d e d  artinian quotient of a polynomial ring. This 

result generalizes a theorem of Geramita, Maroscia, and Roberts (1983) about points 

in P. 

We introduce a new necessary condition on the Hilbert function of a set of points in 

F" x IP1 by uncovering a link between sets of points in PL x !PL and (0. 1)-matrices. 

By using the Gale-Ryser Theorem. a classical result about (O. Z )-matrices, we can 

characterize al1 borders of points in IF1 x IPL. We also give a new characterization of 

the ACM sets of points in PL x IF1 which depends only upon numerical information 

describing the set of points. The ACM sets of points were first characterized by 

Giuffrida, Maggioni. and Ragusa (1992) via different rnethods. 
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CHAPTER 1 

Introduction 

The Point is a Being like ourselves, but conjïned to the non-dimensional 

Gulf. He is himself his own World, hzs own Uniuerse; of an9 other than 

himself he can form no conception: he knows not Length, nor Breadth, nor 

Height, for he has no experience of them; rie hus no cognizance even of the 

number Two; nor has he a thought of Plurality; for he is himself his One 

and All, being really Nothing. 

- The Sphere in Flatland 

1. Motivation and Overview 

Contrary to the above quotation from Edwin Abbott's novella Flatland [l], a point 

in F = Q, the n-dimensional projective space over the tield k. or more generally, a set 

of points in P is anything but "Notliing.'? Indeed, to provide cl complete listing of the 

literature devoted to the study of sets of points in IFn would prove to be a Herculean 

task.  One can. however. consult the conference proceedings [41] [20]. especially the survey 

article by Geramita [15], for motivation and for a Ravour of the past and present research 

about points in P. The lecture notes of Gerarnita [14] and Robbiano [44] provide a gentle 

introduction to the topic of points. Everi though this field has a long and deep history, 

many fascinating problems remain. 

The Hilbert function of a set of points in IPm is the b a i s  for many questions about 

sets of points. To any set of points, we can associate an algebraic object which we caIl 

the coordinate ring. The Hilbert function is used to obtain, among other things, algebraic 

information about the coordinate ring and geometric information about the set of points. 

The papers (161, [l?], [19], [34], 1361, [37]? and [49] are just a partial list of the papers 

that study the connection between a set of points and its Hilbert function. As a tool for 

st  udying sets of points, the Hilbert function is extremely useful due. in part, to a result of 

1 
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Geramita, Maroscia. and Roberts [l9J which gives a precise description of which functions 

can be the Hilbert function of a set of points in Pn. 

The goal of this thesis is to study sets of points in a more general ambient setting. 

Specificaliy, we wish to extend the study of collections of points in projective space to 

collections of points in the multi-projective space Pn' x x P. This is an area, to 

our knowledge, that has seen little exploration. The first foray into this territory, that 

we are aware of in modern times, appears to be a series of papers, authored by Gidrida,  

Maggioni, and Ragusa ([24],[25],[26]). on points that lie on the quadric surface Q C p. 
Because Q Z P1 x P I ,  some of the results of Giiiffrida, et  al. can be translateci into results 

about points in multi-projective space. However, there seems to be more questions about 

sets of points in Pl x . . x P k  than there are answers. 

To narrow the scope of this thesis, we will focus primarily nn the Hilbert functions of 

sets of points in Pl x - - x P k .  Because the characterization of Hilbert functions of points 

in iP due to Geramita. et al. 1191 plays such ari important rôie in the study of those sets, a 

generalization of tIiis characterization should be a primary objective. In fact. this problem 

is the underlying question t hat guides t his t hesis. We state t his question fornially: 

If k = 1, then, as already noted, a solution exists. If k 2 2. then the problem remains 

open. This thesis should be viewed as one attack (of hopefully many) on Question 1.1.1. 

Although we were not successN in providing a complete solution, we have made some 

progress. Some of our successes are detailed in the later sections of this chapter. 

There are many reasons to study sets of point in Pi x x P k  and their Hilbert 

functions. We give two such reasons. First. the vdue of the Hilbert function at certain sets 

of points in Pl x - - - x P n k  has shown up in connection with other problems. For example, 

Catalisano, Geramita. and Gimigliano [IO] have recently shown that a specific value of the 

Hilbert function of a collection of fat points in Pl x . - . x P k  is related to a classical problem 

of algebraic geometry concerning the dimension of certain secant varieties of Segre varieties. 

Catalisano, et  al. were able to compute the desired value for only some sets of points. A 

complete understanding of the Hilbert function of a set of points in Pl x - - - x P n k  might 
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provide us with some understanding about the Hibert functions of fat points, and thus. 

provide us with a compIete solution to this problem. 

A second motivation for studying the Hilbert function of points in Pl x . . . x Pnk is 

to provide a series of examples of Hilbert functions for multi-graded rings. Multi-graded 

rings appear throughout algebraic geometry and commutative algebra. Two examples of 

a multi-graded ring are: (1) the coordinate ring of a blow-up, and (2) a Rees Algebra 

(see [ i l ] ,  [27]? 1301, [SOI, [55] for these examples and more). However, we are still ody 

beginning to understand the structure of multi-graded rings. As a corisequence of this fact, 

there are many open problems concerning the Hilbert functions of multi-graded rings. Some 

results concerning the Hilbert function of multi-graded rings have been established, as is 

evident in [2], [5], [71, [33], [45], [52], [53], [54]. However, the question of what functions 

can be the Hilbert function of a multi-graded ring remains an open problem. except in the 

case of standard graded rings. For the case of standard graded rings, i.e.. rings graded in 

the usual sense, then we have hiacaulay's Theorem [35] which characterizes al1 functions 

that can be the Hilbert function of a finitely generated graded k-algebra. By studying the 

Hilbert functions of points in P1 x . x P n k  we can perhaps get an insight into a multi- 

graded version of Macaulay's Theorem. At the very least. such a study provides a nice 

stable of exampies. 

This thesis is divided into five chapters aad one appendix. In Chapter 1. we summarize 

the main results of this work. We will emphasize where we have been successful in answering 

Question 1.1.1. the underlying question of this thesis. We will also give a series of open 

problems. These unanswered question provide ample motivation for future work on points 

in PL x - -  x lfPnlt. 

In Chapter 2, we build the mathematical framework for the thesis. The topics introduced 

in this chapter are: multi-graded rings. Hilbert functions, points in Pn and iFnl x - x P n k ,  

resolutions and projective dimension, and the combinatorics of (0. 1)-matrices. With the 

exception of the material on points in PL x x !P. the contents of this chapter are well 

known. However, for the convenience of the reader, we have attempted to include as mnny 

of the proofs as possible. 

Our primary goal in Chapter 3 is to generalize a classical result about the eventual 

behaviour of the Hilbert function of a set of points in Pn to sets of points in Pnl x . . x P k .  
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Our result will motivate us to define the border of a Hilbert function of a set of points in 

PL x . . . x P k  . The border divides the values of the Hilbert funct ion into two sets: t hose 

values which need to be computed and those values which rely on our result describing 

the eventual behaviour of the Hilbert function. We also show how the notion of points in 

generic position generalizes to sets of points in PL x . . . x P k .  

In Chapter 4 we explore arithrnetically Cohen-Macaulay sets of points in PL x - x Pnk. 

One of the striking differences between sets of points in iP and IFn' x - - .  x P k  with k > 1 

is that the former are always arithmetically Cohen-Macaulay, while the latter can fail to 

have this property. We show that if we restrict to arithmetically Cohen-Macaulay sets 

of points in P1 x ... x P l .  then the characterization of Gerarnita, et al. 1191 given 

for the Hilbert functions of points in Pn can be generalized. We also characterize the 

Hilbert functions of al1 bigraded quotients of k[zl, y1 . . . . y,] and ~ ~ - ~ r a d e d  quotients 

of k[xl, .  . . , xk]. AS a consequence. we c m  completely describe the Hilbert functions of 

arithmetically Cohen-Macaulay sets of points in P1 x P and IP' x x P' for any k. Our - 
k 

results are a generalization of a result about points in x PL due to Giuffrida, et al. [26]. 

In the final chapter, Chapter 5, we continue the program first begun by Giuffrida, et 

dl.  ((241, (251.[261), by rcstricting sur focus tu paints in !PL x !Pl. If X is 2 set of points 

in P' x Pl, then we show that the border of the Hilbert function of X depends only upon 

the combinatorics of W. Moreover. we characterize al1 possible borders by uncovering a 

link between sets of points in PL x !Pl and (O. 1)-matrices. As a consequence, we give a 

rew necessary condition on the Hilbert function of points in P' x Pl. We &O give a 

combinatorial characterization of arithmetically Cohen-Macaulay points in PL x P'. This 

characterization is a new characterizat ion of arit hmetically Cohen-Macaulay sets of points 

iu x A non-conibinatorial characterization of arithmetically Cohen-Macaulay sets of 

points in P1 x PL is originally diie to Giuffiida, et al. 1261. 

Many of the results in this thesis have their genesis in exampIes. Instrumentai in gen- 

erating these examples was the computational commutative algebra program CoCoA [8]. In 

Appendix A the code used to compute the Hilbert function of points in P x Pm is provided. 

We also explain the mathematical underpimings of the code ancl give some examples of its 

use. 
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The following notation will be used for the remainder of this chapter. We dways use 

k to denote an algebraically closed field of characteristic zero. We let P = 5 be the n- 

dimensional projective space over k. Unless otherwise specified, W denotes a set of distinct 

points either in P or in the multi-projective space Pl x . . x P i .  We induce an Fik-grading 

on the polynoniial ring R = k [ ~ ~ , ~ ,  . . . , xi,,, . . . . . xk,o,  . . . , +r,. , ,]  by setting deg xi = ci, 

where ei is the i îh  standard basis vector of P. If X is a set of points in Fnl x . x P L ,  t hen 

we write Ix for the ~~-homogeneous  ideal of R that is generated by the @-homogeneous 

elements of R that vanish on W. The Hilbert function of W is the numerical function 

Hx : I@ + N defined by i = ( i l ,  . . . , i h )  ct dimk(R/Ix)i. Finally, if = ( i  i .  . . . , ik), i = 

(ji,. . . , jk) E WC? then we will write < j - if and only if i i  5 j[ for 1 = I l .  .. . k. A detailed 

account of these definitions is given in Chapter 2. Any definitions or terniinology used below 

which is not explicitly defined can be foiind in the latter chapters. 

2. The Border of the Hilbert Function of a Set of Points 

Let % be a set of distinct points in PnI x - .  x P L ,  and suppose that Hx is the Hilbert 

function of W. In this section we summarize the main results of Chapters 2 and 3 related 

to Question 1.1.1. 

Our quest to answer Question 1.1.1 begins in Chapter 2 where we place some necessary 

conditions on  the values of H x .  

Proposition 1.2.1. Let X be a set of distinct points in Pl x x P k  and suppose that 

Hx is  the Hilbert function of W .  

(i) (Proposition 2.2.13) Then for ail i = (il.. . . . ik) E Dlk we have 

( i i )  (Proposition 2.2.14) Fax an integer j E 11, . . . . k). I f  H X ( i )  = H X ( i  + ej), then 

It follows from this proposition that a large number of numerical functions H : IVk + N 
cannot be the Hilbert function of a finite set of points. 

If X C P. then Proposition 1.2.1 (a )  implies that Hx(i) 5 Hx( i  + 1) for al1 i E N. The 

following weil known proposition shows that Hx is &O bounded. 
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Proposition 1.2.2. (Proposition 2.3.4) Let X C iP 6e a coitection of s distinct points. 

Then 

This proposition has two consequences t hat makes it extremely interesting. First , to 

compute H x ( i )  for al1 i  E N, iit is su8icient to compute the value of Hx at only a finite 

number of d u e s .  Second, those d u e s  at which we need to comptite H x  can be derivcd 

from simple nurnerical information describing X. 

Using the case of points in P" as our inspiration, we are led to ask if the values of 

the Hilbert function of X C !P1 x x P n k  axe also bounded? If sol does Hx have an 

analog to Proposition 1.2.2? Moreover, does this analog have the same consequences as 

Proposition 1.2.2? In Chapter 3, we give an aiEirmative answer to al1 t hree questions. 

Because of the complexity of the notation in the generai case. we staiè the result only 

for sets of points in P x P. A complete discussion can be fotind in Chapter 3. We 

let ni : P x P + P be the projection morphism defined by P x Q t, P. We define 

7r2 : Pn x P + iP to be the other projection morphism. Our first major result is the 

fûtlûwing generalization of Propasition 1.2.2. 

Theorem 1.2.3. (Corollary 3.1.7) Let W C Pn x Pn be a set of s distinct points. Suppose 

that t = Ini(X)I and r = I;r.r(%)l. Then 

S if ( i , j )  2 ( t  - 1.r - 1) 

~ ~ ( t  - l,;j) if i 2 t - 1 and j < r -  1 . 
( -  i f j z r - 1  a n d i < t - 1  

This result has al1 the desired ingredients. Indeed, the value of the Hilbert function 

is bounded by 1x1 = S. From this t heorem. we deduce that we need to compute Hx(i. j )  

for only those (i. j )  5 ((?rl(X)( - 1, (n2(X)( - 1) to completeIy determine al1 values of Hx.  
Since Iri (X) 1 (respectively? Irq (X) 1) is the number of distinct first (respectively, second) 

coordinates of X, the values at which we need to calculate HX can be ascertained from 

numerical information about X. There exists a generalization of this result to points in 

Pl x -. x P k  as we show in Theorem 3.2.1 and Corollary 3.2.6. 
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For the present, we continue to consider points X C IfPn x P. Suppose that Inl (X)l = t 

and 17r2(X)I = r. We can represent Hx as an infinite rnatrix (m,J where mij := Hx(i, j). 

In light of Theorem 1.2.3 we have 

We define Bc := (mt-l,a, rnt-r ,~?.  . . ? 772t-1.,--1) and BR := (mo.r-l,mi,r-i,. . . ,rnt-l,,-i) 

and set Bx = ( Bc. BR). We cal1 Bx the border of the Hilbert function of %. Rom the 

rnatrix representation of Hx given above, the name is appropriate because the border, the 

bold numbers, separates those values (*) at  which we must compi?te H x ,  and those values 

which depend only upon Theorem 1.2.3. Note that if we know Bx,  then we know Hx at 

al1 but a finite number of values. The border of the Hilbert function of a set of points in 

Pi x . . x P L  is defined similarly (see Definition 3.2-8). 

Example 1.2.4. We illustrate some of the above results with the following example. Let 

Pi := [l : i] E PL for al1 i E N. Similarly, we define Qi := [1 : il E P' . Let X be the following 

collection of points in P1 x PL : 

Then the Hilbert function of %, expressed as a matrix. is 

We observe, that in accordance with Proposition 1.2.1, that the values in each row (re- 

spectively, column) strictly increase until they stabilize. For this example, Be = (4,6,8: 9) 

and BR = (4 , ï .  8: 9), and soo the border is Bx = ( Bc, BR). We have writ ten the values 
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in the border in bold. Since Jni(%)l = 4 and i7r2(%)1 = 4, only the values of H x ( i :  j )  with 

(2, j )  5 (3,3)  need to be calculated, and the remaining values can be computed by using 

Theorem 1.2.3. 

The fact that the Hilbert function of ariy set of points X C Pnl x . . x P n k  has a border 

places a new restriction on the numerical functions that can be the Hilbert function of a 

set of points. We weaken Question 1.1.1 to the folIowing question: 

Question 1.2.5. (Question 3.2.10) What can be the border of the Hilbert function of a set 

of points in Pnl x ... x P L ?  

An axiswer to the above question would impose a severe restriction on what could be 

the Hilbert function of a set of points. This question, although weaker, is still difficult. 

However, we can answer Question 1.2.5 for the case of points in PL x PL (we discuss this 

Section 4 of this chapter). We also show that there are a number of riecessary conditions 

on the values of the border (for example, Corollary 3.2.4). In general, this weaker question 

s t il1 requires furt her work. 

We can use the fact that every Hilbert function of a set of points in Pl x - x P n k  has 

a border to deduce the existence of sets of points in generic position. If X C PL x . x P n k  

is a set of s points, then X is said to be in generic position if 

~ x ( j ~ , .  . . ? jk) = min { ( n l J ~ J 1 ) - - ( n k ~ X ) , s }  O a . . .  . J * ) E @ .  

We, in fact. generalize a result of Geramita and Orecchia [21] about points in  generic 

position in !P to show that "most" sets of points in Pt x . . . x Pnk are in generic position. 

Theorem 1.2.6. (Theorem 3.3.2) The s-tuples of points of Pl x . - x Pnk, (Pl!. . . , 
conszdered as points of (Pl x . - - x which are i n  generic position fonn a non-empty 

open subset of (Pnl x . x P k ) ' .  

Because questions about generic sets of points in iP command a lot of interest in current 

research, it would be usefid to determine if generic sets of points in Pnl x - - x i P k  behave 

like generic sets of points in P .  For example. one can try to forniulate a Minimal Resolut ion 

Conjecture (see Lorenzini [34]) for generic sets of points in IF'" x - - x iP. We leave that 

problem for now but wiU return to it at a future date. 
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3. Arit hmetically Cohen-Macaulay S e t s  of Points in PL x . . . x P k  

It has already been noted that Question 1.1.1 has a cornplete answer for sets of points 

in P (see (191) .  This result is stated below. 

Proposition 1.3.1. (Proposition 2.3.10) Let H : N + N be a numerical function. Then 

H is the Hilbert function of a set of distinct points in iP i f  and only if the first diflerence 

function AH : N + N ,  iuhere A H ( i )  := H ( i )  - H(i  - 1 )  for ail i E N, is the Hilbert function 

of a gmded artznian quotient of k[xl, . . . . ln]. ( H ( i )  = O if i < 0.) 

The proof of Proposition 1.3.1 relies, in part, on the fact that the coordinate ring of a finite 

set of points in P is always Cohen-Macaulay. Unfortunately, any attempt to generalize this 

proof to sets of points in Pl x . . . x PW will be hampered by the fact that the corresponding 

coordinate ring may fail to be Cohen-Macaulay. We cal1 sets of points in Pnl x S . -  x P n k  

with a Cohen-Macaulay coordinate ring an an'thmetically Cohen-filacauLay (ACM for short) 

set of points. 

In Chapter 4. we study the following weaker version of Question 1.1.1: 

Question 1.3.2. What can be the Hilbert function of an ACM set of points in Pl x . . . x 

p k  f 

The main result of Chapter 4 is to show that if we restrict to ACM sets of points in 

Pnl x - . x P n k  . then there is a natural generalization of Proposition 1.3.1. 

Theorem 1.3.3. (Theorem 4.3.14) Let H : fVk + W be a numerical junction. Then H is 

the Hilbert function of an ACM set of points in P l  x . x P k  if and only if 

where H ( i l ,  . . . , it) = O i f  ( . . . . ) 2 Q, is the Hilbert function of some fVk -gmded 

ortinian quotient of S = k[~l,l, . . . . XI,., . - . . . xt,i, . . . , x t ,nk]  - 

For ACM sets of points in Pi x - . x Pt, Theorem 1.3.3 enablcs us to translate 

Question 1.3.2 into the following question: 

Question 1.3.4. What can be the Hilbert function of an I@-g-gmded ortinian quotient of 

k[xi,i:. .- , X l , n l - - - .  . X k . i ~  ? x k , n k ] f  
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Because there is no known analog of Macaulay's Theorem (see [35] or Theorem 2.1.2) for 

multi-graded rings, Theorem 1.3.3 turns one open problem into another open problem. 

However, the other main result of Chapter 4 is to show that we can answcr Question 1.3.4 

if (2) S = k[xl, y1 , . . . , y,] is bigraded, or if (ii) S = k[zi, z2,  . . . , zk] is P g a d e d .  

For (i), we suppose that S = k[xl. yl.. . . .y,] with degxl = (1.0) and degyi = (O. 1). 

In Chapter 4, we will give a much stronger result characterizing the Hilbert functions of al1 

bigraded quotients of S. As a corollary. we answer Question 1.3.4 for S. To prove (i) we 

will use some necessary conditions about bigraded rings given by Aramova. Crona, and De 

Negri [2].  

To state our result, we recall the notion of an i-binomial exparisiou of an integer. Let i 

and a be positive integers. Then the i-binoniial ezpansion of a is the unique expression 

where ai > ai-1 > > aj 3 j > 1. The function <" : W -t PI. som~times cal14 

Macaulay's function, is defined b y  

where ai, G - L , .  . . aj are as in the i-binomial expansion of a. 

Theorem 1.3.5. (Theorem 4.4.11) Suppose that S = k[x 1. y1 . . . . y,]. where deg xi = 

(1 ,O)  and deg yi = (0 , l )  for i = 1, . . . . m. und let H : PP + N be a numerical function. 

Then there exists a bihomogeneous ideal I Ç S = k[xl, yl.. . . . y,,,] such that the Hilbert 

function Ifsll = H if and onlg if 

( i )  H(O1 0) = 1: 

(ii) H ( 0 ,  1) 5 rn? 
(iii) H ( i  + 1,j) 5 H(il  j) for al1 ( i , j )  E M ,  and 

(iv) H( i ,  j + 1) 5 H(i,  j ) < I B  for a11 (i. j) E P(1 with j > 1 .  

As a corollary of this theorem, we c m  give a complete answer to Question 1.1.1 for the case 

of ACM sets of points in P' x P. 

Corollary 1.3.6. (Corollary 4.4.15) Let H : I@ + N be a numericol finction. Then H 

is the Hilbert function of an ACM set of points in PL x Pm if and only if the numerical 
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function 

where H ( i ,  j )  = O i f  ( 2 .  j )  2 ( O ,  O ) ,  sotisfzes: 

( i )  AH(O.0)  = 1. 

( 2 2 )  A H ( 0 . 1 )  5 nt, 
( i i i )  AH(2  + 1, j )  < A H ( i o  j )  for al2 (i. j )  E P, 
(iv) A H ( i ,  j + 1) < AH(; .  j )< j>  /or al1 (i. j )  E P@ with j 2 1 .  

( v )  there ezists a positive integer t such that A H ( t .  O )  = O. and 

( v i )  there ezists a positive integer r sucli that AH(0 ,  r )  = O. 

The above corollary generalizes the characterization of Hilbert functions of ACM sets of 

points in PL x PL fint given by Giuffrida. Maggionio and Ragusa [261. 

We also characterize the Hilbert functions of the P-gmded quotients of the ring k[ïi,. . . , xk]. 
As a corollary, we can answer Question 1.1.1 for the case of ACM secs of points in PL x . . x lP1 - 

k 
for any k E W. 

Theorem 1.3.7. (Theorem 4.4.16) Let S = k[xl, . . . . xk] be an N' -graded ring with 

deg xi = ei, the iLh standard baszs uector of Bik. and let H : N~ + N be a numerical 

finction. Then there exists a proper ideal I Ç S such that the Hilbert functioii Hsll = H if 

and only if 

( 2 )  H(0,  ... ! O )  = l ?  

( i i )  H ( i i , .  . . ,ik) = 1 o r  O if ( i l .  .. . . i k )  > (0 , .  .. . O ) ,  and 

( i i i )  i f  H ( i l ! .  . . .ik) = O ,  then H ( j l ,  .. . .jk) = O for al1 ( j l .  .. . . j k )  2 ( i l . .  - - . h ) .  

Corollary 1.3.8. (Corollary 4.4.18) Let H : @ + W be a numerieal function. Then H 

is the Hilbert function of a n  ACM set of distinct points in P' x . -  x P' if and only if the - 
k 

numerical function 

where H ( i l l . .  . , i k )  = O if ( i l . .  . . , i k )  2 Q, satisfies: 
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(2) AH(0, .  . . ,O) = 1: 

(ii) AH(i i , .  . . , ik)  = 1 or O if  ( i l , .  . . .ik) > (0,. .. , O ) ,  

(iii) if AH(il,.  . . , ik) = O, then H(ji , .  . . . jk) = 0 for al/ (jl.. . . , j k )  2 (il.. . . , ik), and 

(iv) for each integer I 5 i 5 k, there ezists an integer ti such that A H ( t l ,  O ,  . . . , O) = 

AH(0. t2 .0 , .  . . .O) = = AH(0 , .  . . .O. t k )  = 0. 

One question that is not answered within this thesis is whether Theoreni 1.3.3 classifies 

the ACM sets of points in Pnl x - -  x P L .  That is, 

Question 1.3.9. If Hx is  the Hilbert fvnction of a set of points X in Pn' x . - - x i F n k ,  and if 

AHx is the Hilbert fundion of an bP --gmded artinian quotient of k[zi, L, . . . , z i,,, , . . . , zk, 1, 

. . . , zt,,,], then is X necessady an ACM set of points? 

We can give a positive answer to Question 1.3.9 for sets of points in PL x !PL (see Theo- 

rem 5.4.4). This result is expanded upon in the next section. 

4. The Hilbert Function of Points in !Pl x PL 

Sets of points in P! x F! have eujuyad more rxyuoue tliaii sets ûf pûints in more general 

inulti-projective spaces. This is because Q Z PL x IP1. where Q is the quadric surface in p. 
As aiready noted, the Hilbert hnction of points in Q S PL x PL was first studied, aniong 

other things, by Giuffrida. Maggioni? and Ragusa [24], 1251, [26]. There has dso  been other 

work on  sets of points on 4. For example. Guardo studied fat points in Pl x PL [28], 1291: 

Pawia, Raciti, and Ragusa considered the uniform position property for points on Q [42]; 

and Ragusa and Zappalà have recently examined, ümong other things, Gorenstein sets of 

points on Q (431. So, unlike sets of points in an arbitrary multi-projective space. much 

more is undentood about points in PL x PL. 

Although Giuffrida, et  al. introduced a number of necessary conditions on the Hilbert 

function of points in P' x IF1 in 1261: it remains an open problem to give a complete charac- 

terizat ion even in t his case. Our goal in Chapter 5 is to continue and to extend the program 

begun by Giufnida, et al. by studying the Hilbert functions of points in P1 x PL. 

Our first contribution to this program is to introduce a new necessary condition on the 

Hilbert function of points in PL x by answering Question 1.2.5. 
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To answer Question 1.2.5, we demonstrate that the border of a HiIbert function of a 

set of points X in P1 x Pl can be determined fiom crude numerical information describing 

X. To state our result, we need to define some appropriate notation and introduce some 

concepts from cornbinatorics, specificaily. the notion of a partition and its conjugate. 

Suppose that X C PL x P' is a collection of s distinct points. Let : PL x PL -t PL 

be the projection morphism defined by P x Q ct P, and let rz : PL x PL + PL be the 
other projection rnorphism. We associate to X two tuples, nx and Px, as follows. For 

each Pi E r1(%) = {PL ,... , Pt)  we set ai := IX;'(P~)~. After relabelling the aios so 

that ai > a,+l for i = I,. .  . ! t - 1, we set a x  := (al,. . . ,at). Analogously, for every 

Qi E 7r2(X) = {Q l i . . .  ,Qr} we set pi := IT;'(Q~)[. ARer relabelling the 6,'s SQ that 

pi 1 fii+' for i = 1 ,... ,r  - 1. we let Px be the r-tuplefix := (pi .... .op). 
Definition 1.4.1. (Definition 2.5.1) A tuplc X = ( A t , .  . . . A t )  of positive integers is a 

partition of an integer s if X i  = s and A, 2 Xi+l for every i. We write A = ( X i , .  . . , A,) î- S .  

The conjugate of X is the Ai-tuple A*  = ( X i  .... .hi,) where A: = #(Aj  E X 1 X j  2 i). 

Furthermore, A' l- S.  

Example 1.4.2. Suppose X = (4 .4 .3 , l )  i- 12. Then the conjugate of X is A*  = (4,3,3.2). 

In Section 5 of Chapter 2: we wili show how to compute the conjugate of a partition from 

the Ferrers diagmm of the partition. 

The tuples a x  and Px are both partitions of the integer s = 1x1. For any tuple p = 

(pi, p 2 , .  . . , pk)  we define Ap := (pl? pz - pl, . . . . pk - pk- 1). With this notation we show 

Proposition 1.4.3. (Coroilary 5.2.3) Let W C PL x PL be s distinct points wath a X  and 

Bx.  Suppose that Bx = (Bc,  BR) is the border of the Hilbert filnction of X. Then 

(i) ABc = a;. 

( i i )  ABR = &. 

Example 1.4.4. Let X be the set of points from Exampie 1.2.4. That is, X is the following 

collection of points in P' x PI: 
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where P, = Qi := [1 : il E P'. For this example, ni (WJ = (Pi. P2, P3, Pd}. Furthermore, 

[ r ; ' ( ~ ~ ) l  = 4, 17r;'(9)1 = 3, ~rr;'(fi)l = 1, and l a ; l ( ~ ~ ) ~  = 1, and hence, crx = (4,3,1,1). 

The conjugate of crx is the tuple cri = (4,2,2,1). Hence, by Propositiori 1.4.3, we have 

ABc = (4,2,2, l ) ,  or equivaiently, Bc = (4.6,8,9). We see that this agrees with Exam- 

ple 1 .S.4. A similar computation will enable to us to cornpute BR directly from X. 

We show in Theorem 5.2.8 that there evists a link between sets of points in x PL and 

(O? 1)-matrices. Then, by using a classical result about (0. 1)-matrices due to Gale and 

Ryser (see Theorem 2.5.6) we can answer Question 1.2.5 for sets of points in P' x PL. But 

first, we need to define majorization. 

Definition 1.4.5. (Definition 2.5.4) Let X = (Xi.. . . . A t )  and 6 = (6  l... . , &) be two 

partitions of S. If one partition is longer. we add zeros to the shorter one uutil they have 

the same length. We say X majorizes 6 .  writ ten X p 6. if 

XI + + Xi  > dl + + d i  for i = 1 ,... .max{t,r).  

Example 1.4.6. Let X = (4 ,3 .2 .1)  and 6 = (4.2.2.1.1). Then X.0' i- 10. and X 6. Now 

let .y = (5,2,1,1, 1) t- 10. Theri y E X  because 4 5 5 but 4 + 3 + 2 2 5 + 2 + 1. It is also 

immediate t hat X ky. 

Theorem 1.4.7. (Corollary 5.2.11) Suppose Bc = (bo.. . . . br- ) and BR = (bh, . . . .6;- l )  

are two tuples svch that bo = t ,  bb = T ,  and ABc.ABR l- S. Then B = (Bc,  BR) is the 

boràer of a Hilbert funcfion of a set of s points % C P' x IP' if and only rf ABc (ABR)*. 

As one application of the above theorem, we can answer Question 1.1-1 for a particular 

elass of points in IPL x P'. In particular. we have 

Theorem 1.4.8. (Theorem 5.3.3) Let H : N2 + N be a numerical finction. Then H 

as the Hilbert finction of a set of points X C Pl x PL with ( x ~ ( X ) I  = 2 zf and only if the 

following conditions hold: 
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(ii) r 5 s, 

(iii) 2 5 m1,l < - - -  5 rnl,,-~> < s, and ml,, 5 2 ( j  + 1 )  for j = 1. ...  . r  - 2., and 

(iv) zf Bi = (2, rn1,l.. . . ,rnlt , -2,s)  and B;! = ( r . s ) .  then ABl. AB? F S. and ABl 

(AB2)**  

Exarnple 1.4.9. Consider the matrix 

The matrix H cannot be the Hilbert function of any set of points in P' x P' because it fails 

to meet condition (iu) of the above theorem. Indeed, from H, we have BI = (2,3,5), and 

thus. A B i  = (2 , l .  2). But t his is not a partition of 5, so this cannot be the Hilbert function 

of a set of points in P' x PL with Ini(X)l = 2. On the other hand. the matrix 

is the Hilbert function of a set of points in PL x P I .  

The second major result of Chapter 5 is a classification of the arithmetically Cohen- 

Macaulay sets of points in PL x PI. Giuffrida, et al. originally classified ACM sets of 

points in  Pl x P' via the fint difference function A H  where H is the Hilbert function of 

a set of points (see [26]). We present not only a new proof of this result. but we give a 

new characterization of ACM sets of points via the numerical information describing W. In 

particular, we show 
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Theorem 1.4.10. (Theorem 5.4.4) Let X C IF1 x PI be a set of s distinct points, let rrx 

and Px be constructed as above, and let H x  be the Hilbert fvnction of X. Then the following 

are equivalent: 

(i) X as A CM. 

(ii) The finction 

is the Hilbert funetion of a bigmded artinian quotient O/ k [ r l ,  yl]. 

(iii) a; = Px. 

T h e  equivalence of (i) and (ii) was first dernonstrated by Giuffrida. et al. (Theorem 1.1 [26]). 

By using Theorem 1.1.10, we show that  ACM sets of points in P1 x PL are similar, in 

some respects. to sets of points in PL. In particular. we show that like a set of pointe in PI .  

the  Hilbert function and the graded Betti tiumben in the resolution of an ACM set of points 

depend only upon crude numerical information abolit % and not upon the coordinates of 

the  set of points themselves. Our results are given below. 

Theorem 1.4.11. (Theorem 5.4.9) Let X be an A CM set o j  points in iF1 x PL un'th 

n x  = (cq. ... al). Then 
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Theorem 1.4.12. (Theorem 5.4.11) Suppose that X is an ACM set of points in Px x !Pi 

with crx = (ai, . . . . cq) . Define 

Cx := { ( t ,  O). (O, al)} U {(i - 1, ni) ( ai - ni-1 < O )  . 
and 

Then the bigraded minimal free resolt~tion of Ix is  giuen b y  



CHAPTER 2 

Preliminaries 

In t his chapter we lay the mathematical foundation for the thesis by collecting the 

definitions, results, and techniques that we require for the later chapters. As a consequence, 

most of the material in this chapter is weIl known. the main exception being the contents 

of Section 2 which introduces points in Pl x . . - x iF"k . 

The chapter is divided into five sections. In Section 1 we discuss multi-graded rings 

S with a special emphasis on the case that S is the quotieut of a polynomial ring, or 

more generally. a finitely generated k-algebra. We also extend the definition of the Hilbert 

function to this context. In Section 2 we introduce the main object of study in this thesis? 

namely, points in Pl x x Pn'. Because we periodically require results about points 

in P? we assemble in Section 3 the needed propositions. Section 4 is a collectiori of facts 

concerning resoIutions and projective dimension that we use in Chapter 5. The final section 

introduces some concepts from combinatorics, specifically the notions of a partition and a 

(Ot 1)-matrix. These results are required in Chapter 5. 

Throughout this thesis k will denote an algebraically closed field of characteristic zero. 

1. Multi-graded Rings and Hilbert F'unctions 

In this section we extend the theory of graded rings to the theory of multi-graded rings. 

Although a more general theory exists, we have elected to only describe multi-graded rings 

in the case t hat the ring S is a finitely generatad k-algebra. We -also define a rnulti-graded 

analog of the Hilbert function. 

Let N := {Ot 1.2, .  . . ). If (il,. . . i k )  E Pik. then we denote (i i .  . . . , i k )  b y  i. We set 

lil := Ch ih. If & j - E fVk. then + j - := (il + j i , .  . . . ik + j k )  We mi t e  i > j - if ih 2 jf, 

for every h = 1. . . . , k. This ordering is a partial ordering on the elements of p. We also 

18 
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observe that BP is a semi-group generated by {el, . . . , ek 1 where ei is the Ph standard basis 

vector of @ , t hat is, e, := (0, . . . , 1 ,  . . . ,O) with 1 being in the i th ~osition. 

An P - g a d e d  Rng (or simply a multi-gmded h g  if k is clear from the context) is a ring 

R that has a direct sum decornposition R = @ 4 such that &RI C i$+i for al1 i, j E ISk . - - 
i€ Nk 

WP sornetirnes writn R(i ,,..+ ,ik) := 8, as KI,-. .  ,i, to simplify mir notation. An element x E R 

is said to  be ~ ~ - h o r n o ~ e n e o u s  (or simply homogeneous if it is clear that R is ~ & - ~ r a d e d )  if 

z E l& for some i E IVk. If x is homogeneous, t hen deg t := i. If k = 2, then we sometimes 

Say that R is bigmded and x is bihomogeneous. 

We nOW will assume that R = k [ ~ ~ , ~ .  . . . . f l ,n i  ? x2,0< . . . ? 22,n2. . . . 2 1 , 0  . . . , X k , n r ]  We 

induce an  gadin^ on R by setting deg 2 i . j  = ei. If k = 2. tlien we sornetirneç write R as 

R = k[za,. . . . Z n ,  yo, . . . ,ym] with degxi = (1,O) and degyi = (0.1). 

If m E R is a monomial, then 

We sometimes denote m by xrl x:* - . X? where o, E It follows that deg m = 

(ltz,l, 191,. . . , lai). If F E R. then we can write F = Fi + + Fr where each Fi is 

homogeneous. The F,'s are called the homogeneous t e m s  of F .  

For every i E N\ the set R, is a finite dimensional vector space over k. A b a i s  for R, as a 

vectorspaceisthesetofmonomials{m = x ~ ' x ~ ~ . - - , Y ~  E RI degm = (lgll,lgzl, ... ,lai) =i l .  
It ~OUOWS t hat dimk Ri = ("'la') ("';'') . ( n k z ' k ) .  

Suppose that I = (Fi, . . . , Fr) 2 R is an ideal. If each F, is IVk- homogeneous, t hen we 

Say I is an Wk-homogeneous ideal (or simply, a homogeneous ideal). It can be shown that I 

is homogeneous if and only if for every F E I ,  al1 of F's homogeneous terms are in I. 

If I C R is any ideal, then we define I, := I n R, - for every i E IVk. It follows that each 

I ,  is a subvector space of &. Clearly I 2 @ I,. If I is ~ ~ - h o m o ~ e n e o u s .  then 1 = @ Ii 
if Plk i~ rik 

because the homogeueous terms of F belong to f if F E I. 

Let I C R be a homogeneous ideal and consider the quotient ring S = R/I. The 

ring S inherits an Plk-graded ring structure if we define Si = (R/I)i  := &-/IL, and hence, 

s = @ ( W O i  
@ik 
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Example 2.1.1. Let R = k[xo?xl, yo, yl] with degxi = (1, O) and deg yi = (0,I). n i e n  R 

is Pf-graded, i.e., R = @ Rj. The elernent F = 28y00yf + x ~ + ~ ~ :  E R2s, and hence, 
( i  j ) E V  

F is a bihomogeneous element of R. The degree of F is deg F = (2.3) .  The element 

G = xiyo + x ~ x l ~ y l  is not N2-homogeneous because zXyo E R3,1 and zozp~~/oy~ E R2;2. 
Note, however? that G is a hornogeneous element of R of degree 4 if we give R the normal 

grading. 

Suppose that the polynomial ring R is being considered as an ~ & - ~ r a d e d  ring. For every 

i E N, define R, : = @ R j .  - We can t hen consider R as an W1 -graded ring as well. 

(LE N~ 1 Irl=i) 
Similarly7 an ~ ~ - h o r n o ~ e n e o u s  ideal I of R is also an PI1-homogeneoiis ideal of R. Note 

Iiowever, that an N1 -homogeneous ideal iieed not be an ~ ~ - h o t n o ~ e n e o u s  ideal. It follows 

t hat the multi-graded quotient S = R/ I is also IV1 -graded. 

For the reinainder of this thesis we restrict Our focus to multi-graded rings of the form 

S = R / I ,  where R is the @-graded polynomial ring and I is an  ~ ~ - l i o m o ~ e n e o u s  ideal of R. 

In the later chapters we restrict our study even further to the case that 1 is the homogeneous 

ideal defining a set of points in Pl x x P k .  For the rernainder of this section we simply 

assume that 1 is a homogeneous ideal of R. We now introduce the multi-graded analog of 

the Hilbert funct ion. 

Let S = RI1 be an @-graded ring. The numerical function Hs : Pik + N dcfined by 

is the Hilbert fvnction of S. The Hilbert-Poincaré series of S is the infinite series 

HPs(t l . .  . . . t k )  = ~ ~ ( i ) t i  where ti := t;' t:. 
LE Mk 

If we can compute HPs. then we know Hs. For a comprehensive account on the compiitation 

of HPs, one can consult Bigatti (31. 

If H : IVk + N is a numerical function. then we c d  AH : + N the first diflemnce 

finction of H where 
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where H(jJ  = O if j 2 o. If CE = 1, then our definition reverts to the cIassicaI definition. - d 

Indeed, 

AH(i) = ( - l ) f ~ ( i - i )  = ( - l ) O ~ ( i  - 0 )  + ( - I ) ~ H ( ~  - 1) = H ( i )  - H(i  - 1). 
O < l <  1 

If k = 2, then we write AH as  

We fix, once and for all, a monomial orden'ng > on the monomials of R (see Definition 

2.2.1 of Cox. et al. [13]). If F E R, then the lerzding monomial of F. denoted Lm>(F)! is 

the monomial term in the support of F that is maximal with respect to >. The coefficient 

of Lrn>(F) is 1. The leading coeficient of F .  denoted Lc>(F). is the coefficient of Lrn>(F) 

in F. We set Lt>(F)  = Lc>(F)Lm>(F). and we cal1 Lt>(F) the leading term of F. If the 

monomiai ordering is clear, then we shall simply write Lt (F). If I C R is an ideal, t hen 

Lt(1) := ({Lt (F) 1 F E 1)) is the leading term ideal of I. If I is any Nk-homogeneous ideal 

of the multi-gaded ring R. then HRII  = HRI (see Caboara. et al. [7] and Stanley [52]). 

The Hilbert functions of finitely generated FiL -graded k-algebras. i.e., rings of the form 

R!I where 1 is homogeneous. were originallv characterized bv Macaulav. To state the result 

we require some notation. Let i and a be positive integers. Then the i-banomiul expansion 

of a is the unique expression 

where ai > ai- 1 > . . . > aj > j > 1. The function <" : M + M. sometimes cailed 

Macaulay's function, is defined by 

where a,, ai-1,. . . . aj are as in the à-binomial expansion of a. 

Theorem 2.1-2. (Macaulay) Let H : M + W be a numerical function. Then there exists 

a hornogeneous ideal I in the Kgmded ring R = k[xat.. . . z,,] such that HR/[ = H if and 

only if H ( 0 )  = 1, H(1) = n + 1, and H(i  + 1) 5 H(z)<'> for ail i 2 1. 

PROOF. See the paper of Macaulay [35] or Chapter 4 of Bruns and Herzog [6]. O 
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Remark 2.1.3. It rernains an open probIem to find an anaIog of MacauIayTs resuIt for 

~ ~ - g r a d e d  rings with k 2 2. Aramova, et al. [2] give some results in this direction by 

demonstrating some necessary conditions in the case that k = 2. In Chapter 4, we will give 

a Macaulay-type result for I@-gaded quotients of k [ x l ,  y1 , . . . , y,] and ~ ~ - ~ r a d e d  quotients 

of k [ x 1 ,  ... , x k ] .  

2. The Multi-Projective Space Pl x . . x P k  and Subsets of Points 

The goal of this t hesis is to understand sets of distinct points in Pnl x . . . x P k  . In 

this section we set up the needed algebraic and geometric structures ûssociated to sets of 

points in Pl x . x lPn'. To define these points, we proceed in a manner analogous to the 

definition of points in IPn. We begin by extending the classical definition of projective space 

to multi-projective space. 

We define the multi-projective space Pnl x x P n k  to be 

where (gl, . . . . %) (il . . . , &) if there exists non-zero Al, . . . , At E k siich t hat for al1 

i = 1, ... ? k  

bi = (biVo, .  . . ? bi, , , )  = . . . Xiai,,,) where 3 = (a iso . .  . . ,ai . , , ) .  - 

An element of Pnl x . . - x Pnk is called a point. We sometimes denote the equivalence class 

of ( (a lIo ,  . . , a l ,n , ) : .  . . ( a k . 0 ,  . a k l n k ) )  by [a1,0 : . . ' : a l ln i ]  X . - ' X [ ahIo  : '. ' : a k , n , ]  It 

follows that [aivo : . . . : ai.n,] is a point of Pnl for every 2 .  

We give the polynomial ring R = k [ ~ ~ , ~ .  . . . ,21,nl , . . . , xk.0,  . . . . Zk ,nk]  an Pik-grading 

by setting degxi,j = ei, where ei is the ith standard basis vector of Rfk. If F E R is an 

N~ --homogeneous element of degree ( d l ,  . . . . dk ) and P = [a : . . : al., ,  ] x . . . x [aklo : . . : 

u ~ , ~ , ]  is a point of P L  x . x P k  , then 

To Say that F vanishes at a point of "1 x x P k  is. therefore. a well-defined notion. 
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V(T) := {P E Pl x x Pnk 1 F(P) = O for al1 F E 2'). 

If I is an p-homogeneous ideal of R. then V ( I )  = V ( T )  where T is the set of ail homoge- 

neous elements of I .  If I = ( F I , .  .. . F r ) .  then V ( I )  = V(Fi, . .  . . F r ) .  

The multi-projective space Pnl x . . x F n k  car1 be eudowed witii a topology by defining 

the closed sets to be al1 subsets of P n l  x - . x P k  of the form V ( T )  where T is a collection 

of ~ ~ - h o m o ~ e n e o u s  elements of R. If Y is a subset of Pnl x x P n k  that is closed and 

irreducible with respect to t his topology, then we say Y is a mufti-projective variety? or 

simply, a variety. 

If Y is any subset of Pl x - x P n k ,  thcn we set 

I ( Y )  := { F  E R 1 F ( P )  = O for al1 P E Y}. 

The set I ( Y )  is an ~ ~ - h o r n o ~ e n e o u s  ideal of R. We call I ( Y )  the ~ ~ - h o r n o g e n e o u s  ideal 

associated to Y .  or simply. the ideal associated to 1'. I f  Y C Bnl x . . . x P n k  . t hen we set 

Il. := I ( Y ) ,  and we call R / I y  the Plk-homogeneous coordinate ring of Y .  or simply, the 

coordinote ring of Y .  If HRII, ,  is the Hilbert function of R/I ) . .  then we sometimes write 

Hk- for HRI I V .  ûnd Te 933. H;. is the HiIber! /mc!inr! n/ Y 

By adopting the proofs of the well known homogeneous case. it can be shown that 

Proposition 2.2.1. 

(i) If Il C I2 are IVk -homogeneous ideals, then V ( I l )  > V(12). 

(ii) If Y i  C Y' ore subsets of PL x - - . x P k ,  then I ( & )  3 I ( Y Ï ) .  

(iii) For any two subsets Pi. Y2 of PL x . . x Pk ?(Yl  U Y 2 )  = I (Y1)  T; I(Y2). 

The p-graded analog of the Nulistellensatz also holds in this context. Again, the proof 

follows as in the graded case. 

Theorem 2.2.2. ( ~ ~ - h o m o ~ e n e o u s  Nullstellensatz) If I C R is an ~ ~ - h o r n o ~ e n e o u s  ideal 

and F E R is an w-homogeneous polynomial with deg F > > such that F ( P )  = O for oll 

P E V ( I )  Ç P n l  x . . x Pl, then Ft E I some t > 0. 

Set mi := ( Z ~ , ~ , X ~ . , .  . . . ,+ iVn, )  for 2 = 1.. .. . k. An @-homogeneous ideai I of R is 

called pmjectively irrelevant if ma I for some i E {l, . . . . k} and some positive integer 
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a. An ideal I R is projectively relevant if it is not projectively irreIevant. By empIoying 

the M-homogeneous Nullsteilensatz, t here is a one- to-one correspondence between the non- 

ernpty closed subsets of Pni x .. + x P k  and the ~ ~ - h o r n o ~ e n e o u s  ideals of R that are radical 

and projectively relevant. The correspondence is given by Y H I(Y) and I I+ V ( I ) .  This 

is analogous to the well known graded case. For the case k = 2, this correspondence can be 

found in Van der Waerden [53] ,[54]. Van der Waerden also asserts tliat for arbitrary k the 

results are analogous to the case k = 2. 

Remark 2.2.3. Our construction of Pt x . . . x P k  and its subsets follows the classical 

definition of the projective space P" as described, for example, in Section 1.2 of Hartshorne's 

book [31]. The paper of Van der Waerden [53] gives a construction similar to the approach 

we have given above. The mult i-projective space PI x . . . x P k  can also be constructed via 

the modern methods of schemes. For de tds .  see the thesis of Vidal [55]. We will not use 

the language of schemes because we wish to focus on sets of distinct points. In the language 

of schemes, a set of distinct points is a reduced scheme, and hence. the classical approach 

is equivalent to the schematic approach. 

We now restrict our attention to subsets X of Pl x . x P k  such that X is a finite 

collection of distirict pnintr. If P E Pi y . y P k ,  WP define 

I p  := I (P)  = {F E R 1 F ( P )  = O ) .  

If Ix is the ideal associated to X, t hen the goal of t his t hesis is to study the Hilbert function 

of the coordinate ring of X, that is, of the ring R / I x .  The remainder of this section is a 

collection of results concerning the structure of the ring R / l x  that wilt be used throughout 

the thesis. 

We begin by describing the generators of Ip .  To do sol we require some results about 

Groebner bases. Our primary reference is Cox. Little, and O'Shea [13]. 

Theorem 2.2.4. (Division Algorithm? [13] Theorem 2.3.3) Let R = k[xl.. . . . x,]. Fix a 

monomial ordering > and let (FI,. . . , Fr) be an ordered tuple of polynomials in R. Then 

every F E R can by -tten as 
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where Ci, H E R and either H = O, or H a's a linear com6hathn, with coeficients in k, of 

monomials, none of which is divisible by any of Lt (Fi), . . . , Lt (Fr). We cal1 H a remainder 

of F on division by (F i , .  . . , Fr). 

Definition 2.2.5. Fix a monomial ordering. A finite subset G = {Gl . .  . . ? G r )  of an ideal 

1 is said to be a Groebner basis if (Lt(Gi),  . . . !Lt(G,)) = (Lt(1)). 

Theorem 2.2.6. (1131 Theorem 2.6.6) Let I be an ideal u fR  = k[xl. . . .  ,zn] .  Then a 

basis G = {Gi , . . . , Gr for I  is a Gmebner basis for 1 if and only z f for al1 pairs i # j ,  the 

remainder on division of 

where M = LCM(Lm(Gi). Lm(G,)). by the tuple (Gl. .  . . . Gr) is zero. 

Proposition 2.2.7. For any point P E Pnl x . . x P n k ,  let I p  be the ideal associated to 

the point P. Then 

PROOF. (i)  If F G  E If, then ( F G ) ( P )  = F ( P ) G ( P )  = O. Hence. either F or  G niust 

vanish a t  P, and thus is an element of I p .  

(i i)  Suppose that P = [aivo : : a iqn l ]  x - - - x [akvo : - : akqnk].  For each i E {l,. . . , k}  

tliere exists ai, # O. Assume for the moment that ai,,, # O for al1 i. We can then assume 

that P = [al,o : : al,,,,-1 : 11 X [Q ,~  : . . . : CiZ,n2-l : II x . . X [akvO : . . . : akqn,- L : II. Set 

Then I C I p  because al1 of the generators of I  Mnish at P. If we show that C p  C 1, t hen we 

will be finished because deg(xij - ai,jXiyn, ) = ei. TO accomplish t his. we need two daims. 

Clairn 1. The generators of I are a Groeboer b a i s  for I .  
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Proof of the Claim. Let xi,j - ai,jxi,n, and Xiljt - ail,jtxit,n,, be ~ W O  distinct generators of 

1. By Theorem 2.2.6, we need to check that the division of 

by the generators of I  has a remainder of zero. A routine calculation will verie that 

Hence, division of S by the generators of I results in a remainder of zero. 

Claim 2. I  is a prime ideal. 

Proof of the Clainr. Suppose that F. G 6 I .  Since F. G 4 1. the division of F and G by 

the generators of I yields 

F = Ft + F" and G = G' + G" 

where Ft ,  G' E I  and Fu, G" e I .  hirthermore. since the generators of 1 are a Groebner 

b a i s  by Claim 1. F", G" m u t  be polynoniials in the indeterminates zil,, . Q,, . . . . , xrvnk 

alone. If F G  = FtG' + FttG' + FtG" + FItG" E I ?  then this would imply that Ft'G" E I .  
.P. Bu1 Liir Ieaclilig teriii of P"'" is a m~ncirnial only in thc indctcrninotcs zi,,,, , . . . . ,,?,,, , 

and so Lt(FtG") fi! Lt(1). But this contradicts the fact F"G" E I .  So FG 6 I and hence, 

I is prime. O 

We now demonstrate that I p  C I .  Let F E Ip .  Because V ( I )  = V ( I p )  = P, the 

Nullstellensatz (Theorem 2.2.2) implies that Ft  E I for some positive integer t .  By Claim 

2. we then have F E I .  as desired. 

TO complete the proof of (ii). if a,,,, = O. then there exists an integer O 5 j < ni such 

that a i j  # O. We then repeat the above argument. but use z i j  instead of xiqn, to form the 

generators of I ,  and use a monomial ordering so that x,, > xi.j if r > i arid if r = i, then 

xi,, > X i j  for ail s E { O , .  . . .;'. . . ,ni}- CI 

Definition 2.2.8. Let g be a prime idealof a ring S. The hezght of p. denoted hts(g). is the 

integer t such that we can find prime ideals pi of S such that g = pl > pl- 1 3 - - > gl > go 
and no longer siich chain can be found. If S is a ring, then the Kru11 dimension of$- denoted 

K- dim S, is the number K- dim S := sup(ht (p) 1 g a prime ideal of S). 
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Proposition 2.2.9. Let X = ( P t , .  . . , P,] C IFn' x . x P L  be a set of s distinct points 

and suppose that I f ,  is the ideal associated to  the point Pl. Then 

( a )  I~ = rp, n r f i  n . - n r p , .  
( i i )  K-  dim R / l x  = k. 

PROOF. Statement ( i )  is an immediate consequence of statement ( i i i )  of Proposition 2.2.1. 

For (ii), the grading of a ring S does not affect the Kru11 dimension. We therefore 

consider the multi-graded ring R/ lx as N1 -graded. 

For each i E ( 1 . .  . . . k}, it follows from Proposition 2.2.7 that the ideal Ip, , as an N1 - 
graded ideal in the NL-graded ring R, is generated by Iinear polynoniials. Furthermore, 

the polynomials are also litiearly independent. Thus, the variety V(Ip,)  C P"-' where 
k 

N = x(nj + 1): is a linear variety. Moreover. 
j = I  

The ideal Ix ,  as an W1 -homogeneous ideal. corresponds to the variety V ( I x )  E pN- l  where 
s 

V ( I x )  = U V(lp , ) .  Thus, dirnV(Ix) = max { d i m ~ ( ~ ~ , ) } : = ,  = k - 1. But then 
1 = 1  

This is the desired result. 

For each i  E { 1, . . . . k). we define the projective morphisrn rr, : Pl x - - - x P k  + Pl 
by 

If X is a finite collection of distinct points in Pl x . . x P, then r i (X)  C Pn* is the finite 

set of distinct ith coordinates that appear in X. The Hilbert function of r i (X)  can be read 

fiom the Hilbert function of % as we show below. 

Proposition 2.2.10. Suppose that X Pl x . . - x P" is a finite set of points with Hilbert 

finction Hx := HRIk FLZ an integer i E { l ,  . . . . k } .  Then the sequence H = {hj}jtN, 
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where h, := Hx(O, . . . , j, . . . ,O) with j in the irh position, is the Hilbert function of rr, (X) C 
P l .  

PROOF. We will prove the statement for the case i = 1. The other cases follow similarly. 

Let I = I(rrl(X)) C S = k[xlYo,. . . .ziVnl]. We wish to show that ( R / I x ) j , o  ..., 0 2 (S/I)j for 

al1 j E N. Since Rjlo ,... Sj for al1 j E K, it is etmugh to show that ( I x ) j b o  ,.., ,O 2 Ij for al1 

j E N. 

If P is a point of X C Pi x - - x P k  ? t hen, by Proposition 2.2.7, the ideal associated to 

P is I p  = . . . . Li,,, . L2,1'. . . . Lzqn2.. . . . L k 7 ~ .  . . . . Lken,) where deg L i ,  = ei. Let P' 

denote r i ( P )  E Pl. Then the ideal associated to Pt in S is I p  = . . . LlTnl)  where 

we consider . . . . Li,,, as N1 -gaded elements of S. There is then an isomorphism of 

Thus. if W = {PI,.. . . P,) ,  then 7r1(X) = {?rl(Pl) .... J ~ ( P , ) ) .  and hence 

We end this section by giving some necessary conditions on the Hitbert function of a 

set of points X in Pnl x . . x P k .  We will first require the foiiowing Iernmas. 

Lemma 2.2.11. Let V be a vector space over a field k with /kl = m. Let C V be any 
n 

proper subvector space. Then V # U V, for any collection o/ n < m subvector spoces. 
i= 1 

PROOF. We consider the cases n = 2 and n > 2 separately. Suppose that t here exists 

VI' V2 Ç V such that V = VI ü V2. Then there exists elements xi E V\Vi and x2 E V\V2. 

Since V = VI U V2, 2 2  E Vl and X I  E b. But now consider the element zl + 22 E V. 

If x1 + x2 E V1, then xl E Vlo which is a contradiction. Hence, X I  + 22 4 VI. Similady, 

X I  + 2 2  # V2. SO x1 + x2 E V\(Vl U V2), a contradiction. 

Now suppose there are n subvector spaces VI,. . . , V, V .  with 2 < n < oc, such that 
n 

V = U V,. We assume that n is minimal. that is. there is no j E il. . . . . n} such that 
i=l 
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U 6 = U K. Thus, for each i we c m  find a i  element xi E \ . B e c a w  V is a 
i i # j  

vector space, clxl  + ~ 2 2 2  E V for a l  ~ 1 . ~ 2  E k. 

Proof of the Claim. If ~ 1 x 1  + ~ 2 x 2  E Vl . then c p 2  f . If c2 # O. then 2 2  E VI which 

contradicts our choice of 12. The second statement is proved similarly. O 

Let X := {xl + dxz 1 d E k) C V. By the above claim. no element of S can be in either 
n 

V I  or fi. On the ot her hand. because k is infinite and V = U K. thcre exists a subvector 
1= L 

space V,, with i 2 3. such that contains an idn i t e  number of elements of ,Y. Thus, 

within this Vi there exists xl + d l x 2  and xi + d2x2 with dl # d2.  It then follows that 

n 

But this contradicts our choice of 22, and hence V # U V,. 
i= 1 

Lemma 2.2.12. Suppose X C Pn' x . .. x P ' k  as a finite set of distinct points. Then there 
- 

czists a fi;7n L E R a,! d c g m  ci ~ u c h  that L 13 c no*.-zero dit.'scr ?'I? RIIx. 

P ROOF. The primary decomposition of Ix is Ix = p 1 fi . . . n p, w here pi is an Plk - 
homogeneous prime ideal associated to a point of K. The set of zero divisors of R / l x t  

denoted Z(R/Ix) .  are precisely the elements of Z ( R / I x )  = Ut,, pi. We want to show 
3 

Z ( R / I x ) , ,  E (RII')., , or equivalently: U(pi)c, C R,, . By Proposition 2.2.7 it is clear 
i=1 

t hat (pi),, Ç Re, for each i = 1 .  . . . . S. and t bus. by Lemma 2-2-11, the desired conclusion 

Proposition 2.2.13. Let X be a set of distinct points in PnL x . - + x Pnk and suppose that 

Hx is Ihe Hilbert finction of X .  Then for all i = ( i l . .  . . . it) E N~ iue have 

PROOF. We will only demonstrate that H x ( i )  < H x ( i  + e l )  = &(i l  + l l i2 , .  . . . ik) 
since the other cases follow similarly. By Lemma 2.2.12 there exists a form L E R such that 
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deg L = el and is a non-zero divisor is R/ lx. Hence. for any i E Pik. the multiplication 
XE map ( R / I x ) i  -+ (R/Ix)i+,l is an injective map of vector spaces. Therefore 

Hx(~) = dimk(R/lX)i  5 dimk(RIIx)(ii+i,il ,  ..., i k )  = H x ( i  + e l ) .  

O 

Proposition 2.2.14. Let X be a set of distinct points in Pnl x x P k  and suppose that 

Hx  is the Hilbert funetion of X .  FLz an integer j E { 1 . . . . k) . If H x ( i )  = H x ( i  + ej ), for  

rome j E 11, . . . , k}, then H x ( i  + e j )  = H x ( i  + 2 e j ) .  

PROOF. We will only consider the case that j = 1 since the other cases are proved 

similarly. By Lemma 2.2.12 there exists a form L E R such that deg L = el and is a 

non-zero divisor in R/Ix .  Thus. for each i = ( i l , .  . . .ik) E Dik. we have the following short 

exact sequence of vector spaces: 

If H x ( i )  = Hx (i + e l )  then t his implies t bat the morp hism XE is an isomorphism of vector 

spaces, and thus. ( R / ( I x ,  L))i+., = O .  So ( R / ( I X ,  L)) j+z,t = O as well. Hence, from the 

short exact sequence 

we dcduce that (RI (R/IX) i+2c i  - O 

Remark 2.2.15. The above proposition is a generalization of a result for points in P 

found in Geramita and Maroscia (cf. Proposition 1.1 (2) of 1181). 

3. Some Results about Points in Pn 

Although sets of points in P1 x . * x Pnk are our primary object of study, we occasionaUy 

need sorne results about sets of points in P. In this section we coUect the needed facts. 

Many of these results, if not ail, are weU known. However, for the convenience of the reader, 

we have included most of the proofs. 

It follows fiom Proposition 2.2.7 that if P is a point of P, then the ideal associated to 

P, say I p ,  is a prime ideal that is generated by n linear forms. If % = { P l , .  . . P,) is a 
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collection of s distinct points, then the ide& associated to X is Ix = Tp, n n ïp,. More 

properties of the ideal Ix are found in the paper of Geramita and Maroscia [18]. 

Proposition 2.3.1. Let X = {Pi,. . . . P,] C P, R = k[xa,. . . . z,], and Ix Ç R the ideal 

of f o m s  that vanish on X .  For any j 2 O ,  let {ml, . . . . rn(.:, ) } be the ("f J )  monomials of 

R of degree j .  Set 

Then rkiM, = H x ( j )  where Hx 2s the Hilbert function of R / l x .  

PROOF. To cornpute H x ( j ) .  we need to determine the number of lin early independ ent 

forms of degree j that pôss t hrough W. A general iorm of degree j looks like F = clm 1 + 
. - + c n + ~  m .+J where c, E k. if F ( P i )  = O, we get a linear relation amoncg the ci's, 

( 1 )  ( J I  

namely 

The d w w n t s  nf !lx);  are givan by solutions of the system of linear equations FI Pi)  = . - . = 

F(P,) = O. The matrix of this system of equations is 

which is M j .  Now the number of linearly independeut solutions = dimk(Ix),. Hence 

Sinee dimk Rj = ("y),  we have H x ( j )  = rk hI,. as desired. 0 

Remark 2.3.2. This proposition is generalized to points in P1 x - - . x P i  in Proposi- 

tion 3.2.2. 

Proposition 2.3.3. Suppose W = {Pl,. . . P,) Ç P, R = k [ ~ ,  . . . . zn]: and Ix C R is 

the ideal of f o n n s  that vanish on W. Then there ezists polynorna'als Fi, . . . , Fs of degree s - 1 
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such that Fi(Pj) = O if i # j ,  but CCPi) # O .  Furthemore, the F, are ZinearZy independent 

rnodulo Ix . 

PROOF. This result is found in the proof of Theorem 3.1 of Sabourin [49]. 0 

Proposition 2.3.4. Let W = (Pi:. . . . P,) Ç iP be a collection of s distinct points. Let Ix 

be the ideal in R = k[zo,. . . , xn] of forms that vanish on X .  If Hx is the Hilbert function 

of R / I x ,  then H x ( i )  = s for al1 i 2 s - 1. 

PROOF. Let M, be the matrix from Proposition 2.3.1. It theii follows that H x ( j )  < s 
for d l  j becaiise rk A I j  5 S .  

By Proposition 2.3.3 there exists s forois Fi. . . . . F, of degree s - 1 that are linearly 

independent modtilo Ix. But this implies that dimk(R/Ix),-l = H x ( s  - 1) 2 S.  Now let 

i € N besuch that i > s-1. Then, by Proposition 2.2.13. we have s 5 H x ( s -  1) 5 H x ( i )  5 S .  

Hence, the conclusion holds. O 

Remark 2.3.5. The main result of Chapter 3 is a generalization of the above result to sets 

of points in Pnl x - 6 .  x U D n C  . 

Proposition 2.3.6. Let X = {Pi.. . . . P,) C P. R = k[xo.. . . . zn]. and Ix C R the 

ideal of forms vaniahing at  X .  Suppose H x ( j )  = k .  Then we can find a subset X" C % of k 

elements, sa3 X' = {Pi.. . . , Pk} (after a possible reordefing), such that there ens t  k fonns 

G i , .  . . , Gç of degree j with the pmperty that for evenj 1 1 5 k. G,(P i )  = O if i # 1 ,  and 

Gi(Pi) # 0- 

PROOF. Let {ml , .  . . . ,m(n3 } be the (":;) monomials of degree j in R. By Proposi- 

tion 2.3.1 the matriv 
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has rank rk Mj = H x ( j )  = k. Without loss of generality. we can assume that the first k 

rows are linearly independent. So, let X' = {Pl,. . . , Pk) C X, and let 

A 

Fix an a E {l. . . . . k )  and let = { P l ,  . . . . Pi , .  . . , Pk}. If we rernove the ith row of 

then the rank of the resulting matrix decreases by one. Since the rank of the new rnatrix 

is equal to the Hilbert function of q. it follows that dimk(Ixt)j + 1 = dimk(Ixt),. Thus. 
1 

there exists an element Gi E such that Gi passes through the points of but not 

Pi. We repeat this argument for each i E { 1. . . . . k )  to get the desired forrns. O 

Remark 2.3.7. This result is generalized in Proposition 3.2.3 to points in Pnl x . - x P n k .  

Proposition 2.3.8. Let X = {Pi.. . . . P,} C PL. Then 

PROOF. If Pi E X. then Ip, = (LPi ) C R = k[xo. x 11 where deg Lp, = 1. Since eacli Ip, is 
S 

a principal ideal' Ix = r) Ip, = (LR L p 9 ) .  Because Ix is a principal ideal. Rj - ,  ( l x ) ]  
i= 1 

via the map F r F ( L p t  . . Lpa) .  But then 

i f i  5 s - 1  
dimk(R/lx)i = dimk - dimk &, = 

2 + 1  - ( à - s f 1 )  = S  if . i  2 s  

This cornputes Hx for al1 i. 

The Hilbert functions of finite sets of distinct points in P have been characterized. To 

state the result, we require a definition. 

Definition 2.3.9. A liomogeneous ideal I C R = k[q,  . . . , z,] is an artinian ideal if any 

of the following equivalent s tatements hold: 

(2) K-dimR/I  = 0. 

(ii) J? = (xo,. . . -2n). 
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(iii) x$ fi I for some positive integer t and al1 O 5 j 5 n. 

( i v )  H R I l ( i )  = O for al1 i » 0. 

A ring S = R/ I  is a gruded artinian quotient if the homogeneous ideal I is an artinian ideal. 

Proposition 2.3.10. Let H : N -+ W be a numerical finction. Then H is the Hilbert 

junction of a set of distinct points iri Pn if und only if the Jirst diiference function A H  : 

M -t N ,  where A H ( i )  := H(i) - H(i - 1) for al1 i E N ,  is the Hilbert function of a gmded 

artinian quotient of k[xi, . . . . z,]. ( H ( i )  = O if i < 0.) 

PROOF. See Geramita, Maroscia, and Roberts [lg], or Corollary 2.5 of Geramita. Gre- 

gory, .and Roberts [16]. O 

Remark 2.3.11. The result of Geramita. Maroscia, and Roberts [19] is a generaliza- 

tion of w l i e r  results due to Maroscia [37] and Roberts (471. The original formulation of 

Proposition 2.3.10 in (191 makes no reference to artinian qdotients. but instead classifies 

the Hilbert function of points via the properties of AH. The connection between Hilbert 

functions of points and artinian quotients appears to be Çst  made in Geramita. Gregory, 

and Roberts [Io]. 

4. Resolutions and Projective Dimension 

For t his section we assume t hat R = k[zo, . . . , x,] is an Nt -graded ring. In Chapter 5 we 

will require some results about the resolution a ~ d  projective diniension of an R-module. In 

t his section we will recall the necessary results and definitions. Cox, Little. and O'Shea 1121, 

Geramita and Small [22], and Weibel [SB] are o u  main references for this material. 

Definition 2.4.1. An R-module M is a gmded R-module if (i) the module M has a direct 

sum decomposition M = @ Mi where each Mi is an additive abelian group. and (ii) the 
i EZ 

decomposition of il1 in (i) is compatible with the multiplication of R in the sense that 

RMj C Mi+j for all i E N and al1 j E Z. 

If I is a homogeneous ideal of R, then I can be viewed as a graded R-module if we take 

I,  = O for i < O. Similarly, for any homogeneous ideal I C R. the ring R/I  is a graded 
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R-module. If M is any R-graded module, and d is any integer. we let M ( d )  denote the 

direct surn M ( d )  = @ Md+i. Shen M ( d )  is also a graded R-module. and it is sometimes 
tfZ 

referred to as the twisted gmded module. 

Definition 2.4.2. Let Al and N be graded R-modules. A homomorphism cp : M + 1V is 

said to be a graded homomorphism of degree d if cp(M,) C for d l  i E Z. 

Definition 2.4.3. If M is a graded R-module, then a graded free resolution of 11.1 is an 

exact sequence of the form 

where each JF, = R( -diVi) 8 . $ R(-diqp, ) for some integers diqi ? . . . . d i sp l ,  and each Vi  is 

a graded homomorphism of degree zero. If there exists an 1 such that 3,~ # O? but F,,, = O 

for al1 i 2 1, then we say the resolution is finite of fength 1 .  

If M is a finitely generated graded R-module. then a classicat theorem of Hilbert, specif- 

ically, the Hilbert Syzygg Theorem (see Theorem 6.3.8 of Cox, e t  ai'. [12]). says that there 

exists some graded free resolution of M of lengt h at most n + 1. the number of indetermirztes 

of R. We give a name to the minimal length in the next definition. 

Definition 2.4.4. Let be a finitely generated graded R-module. We Say that the 

projective dimension of iM is d. and we mite proj. dimR M = d if (i) there is a graded free 

resolut ion of M 

and (ii) there is no shorter graded fiee resolution. If R is cIear, then we may simply write 

proj. dim M = d.  

Example 2.4.5. Let d E Z and let M be the graded R-module In,I = R(d) .  Then 

proj. d h R  M = O because we have the graded Free resolution O + R(d) + hl + O. 

Suppose that O + Mi 3 M2 + M3 + O is an exact sequence of graded R-modules. 

Furthermore, suppose that we know the graded f i e  resolutions of Ml and &, i-e., 

- - .  + F2 3 3 .& -% Ml + 0 
- - -  Ç* E, Ço ", 1 + o. 
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The mapping cone construction enables ils to buiId a graded fiee resolution of M3 fiom the 

graded free resolutions of Mi and M2. The main idea behind this construction is as follows: 

for each i E N? define Ni = Fi- CB Çi where F- = O. Then, fiom the maps # : Ml + Ad2, 

<pi-[, and t,bi we c m  construct a map di : Ri + Ri-l .  (We omit the details behind the 

construction of the maps 4 since we do not require the maps.) Then the sequence 

is a graded free resolution of M3. See Section 1.5 of Weibel (561 for more details. 

The following proposition gives some well known properties about the projective dimen- 

sion of a finitely generated graded R-module that we will require in this thesis. 

Proposition 2.4.6. 

( i )  If I is a hornogeneous ideal of R? then proj. dim,(R/ I )  = proj. dimR I + 1 

(ii) If O + Ml + 1L12 4 hl3 -+ 3 is an exact sequence of graded R-modules vith 

degree zero maps. and if proj. dimR Ml < proj. dimR hl2, then proj. dimR !VI2 = 

proj. d h R  M3. 

(iii) If iVl and N are graded R-modules, then 

proj. dirnR(M G3 N )  = max {proj. dimR(hI), proj. diniR(N)) . 

PROOF. To prove (i), one needs to consider the cases that I is free and I is not free 

separately. The case that I is free is shown in Example 17.9(2) of Geramita and Small [22]. 

The other case is a consequence of Theorem 18.1 of [22]. Statement (ii) is one part of 

Theorem 18.1 of [22]. Statement (iii) is a standard exercise of most homological algebra 

texts. See. for example, Exercise 4.1.3 of Weibel [56]. [7 

5. Some Combinatorics 

We end this chapter by introducing some definit ions and results from combinatorics. 

These facts are used in Chap ter 5. Our main reference is Ryser [48]. 

Definition 2.5.1. A tuple X = (Xi.. . . ? A r )  of positive integers is a partition of  an integer 

s if C X i  = s and Xi  2 X i + l  for every i. We mi te  X = ( X i , .  . . .A,) k S. The conjugate of X  

is the tuple A* = ( X i , .  . . , A;, ) where = # { A j  E X 1 Xj 2 i } .  Furthermore. A* i- S.  
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Definition 2.5.2. To any partition X = (Xi, . . . , A,) t- s we can associate the following 

diagram: on an r x X1 grid, place Al  points on the first line, X2 points on the second, and 

so on. The resulting diagram is called the Ferrers diagram of A. 

Example 2.5.3. Suppose X = (1,4.3,1) k 12. Then the Ferrers diagram is 

The conjugate of X can be read off the Ferrers diagram by counting the number of dots in 

each column as opposed to each row. In this example A* = (4 .3 .3 .2) .  

Definition 2.5.4. Let X = (A1,. . . ? A t )  and 6 = (dl!. . . ,&) be two partitions of S.  If one 

p'wtition is longer. we adrl zeros to the  shorter one until they have the same length. We 

say X nzujorizes 5, written X 6, if 

Majorization induces a partial ordering on ciie set uC al1 par.litiuiis uf 3. 

Definition 2.5.5. A rnatrix A of size rn x n is a ( O ,  1) -matriz if al1 of its entries are either 

zero or one. The sum of the entries in  column j will be denoted by aj, and the sum of the 

entries of row i will be denoted by Pl. U'e cal1 the vector a.4 = ( a l ,  . . . , a,) the column 

sum uector and the vector = (Ol,. . . ,O,) the row sum uector. 

Given a (0, 1)-matrix, we c m  rearrange the rows and columns so that 0.4 (respectively, 

Ri) has the property ai _> ai+* (respectively 2 } for every i. Observe tbat a - 4  and 

are partitions of the number of 1's in A. Unless otherwise specified, we assume that any 

(0,l)-matrix has been rearranged into this form. 

If a and p are any two partitions of S. then we define 

M (a, 6) := {(O. 1) -matrices A ( a;i = a, @ci = f l ) .  

It is not evident that such a set is nonempty. The following result is a classical result, due 

to Gale and Ryser, that gives us a criterion to determine if M ( a .  8) = 0. 



Theorem 2.5.6. (Gale-Ryser Theorem) Let cr and @ be two partitions of S .  T'lie class 

M(a.  8) i s  nonempty if and only if a* 8. 

PROOF. See Theorem 1.1 iu Chapter 6 of Ryser's book [48]. 

The proof given by Ryser to dernonstrate that cl* p @ implies M(a. P )  is nonempty is 

a constructive proof. We illustrate this construction with an example. 

Example 2.5.7. Let a = (3,3,2,1) and B = (3 ,3 , i ,  1.1). A routine check will show that 

CF' = (3 ,3 ,2)  (3,3,1.1.1) = p. FVe construct a (0. 1)-matrix with columa surn vector û 

and row surn vector p. Let iM be an ernpty I@( x In1 = 5 x 4 matrix. On top of the jth 

column place the integer 0,. Beside the ith row, place /i, 1's. For our exarnple we have 

Starting with the rightmost coIumn, we see that this column needs one 1. Move a 1 from 

the row with the largest number of 1's to t his column and fil1 the remainder of the cotumn 

with zeroes. If two rows have the sarne number of ones. we take the first such row. So, after 

one step, 

We now repeat the above procedure on the next to last column. CVe place two 1's in the 

third column, taking our 1's from the rows that contain the Iargest number of ones. Thus, 
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our exampIe becomes 

We continue the above method for the rernaining columns to get 

It follows irnnediately that our matrix is an elernent of M(a,/3).  The proof of the Gale- 

Ryser Theorern shows t hat if a* p. then this algorithm always works. 



CHAPTER 3 

The Border of a Hilbert Function of a Set of Points 

The goal of this chapter is to generalize the following resuit for sets of points in P to 

sets of points in Pnl x . . . x P n k .  

Proposition 3.0.1. Let X C Pn be n collection of s distinct points. Let Ix be the 

homogeneous ideai in R = k[xoy.. . .q,] of forms that vanish on W .  If HX is the Hilbert 

Junction of R / l x ,  then H x ( i )  = s for  all i 2 s - 1. 

This proposition was proved in Chapter 2 (cf. Proposition 2.3.4). We observe that the 

above proposition has t w ~  consequences for the Hilbert function of a set of points in P. 
First, to calculate H x ( i )  for al1 i E N. we need to calculate H x ( i )  for only a finite number 

of i. Second, nunierical information about X. in this case the cardinality of X, tells us for 

which i we need to compute H X ( i )  in  order to determine the Hilbert function for al1 i € N. 

The geueralization for a set of distinct points X C PL x . . . x P ' k  that we present 

in this chapter will d so  have analogous consequences. Specifically. we dernonstrate that 

to compute H x ( l )  for al1 E IVk, we need to compute H x ( i )  for only n finite number of 

i E IVk. The other values of H x ( i )  are then easily determiried from our generalization of 

Proposition 3.0.1. Moreover, the , for which we need to cornpute Hx (i) can be determined 

from the combinatorial properties of W. 

The proof of the generalization of Proposition 3.0.1 for sets of points in Pl x x P n k ,  

while similar to the proof for points in P. is more complicated notationally. Hence. to 

prevent the reader from drowning in notation, we have decided to consider the case of 

points in IP x Pm separately so that the reader c m  follow the idea of the proof. Then. for 

completeness, we give a proof for sets of points in Pnl x . . x P n k .  In both cases. the proof 

is a variation on the original proof for Proposition 3.0.1. 

In this chapter we also define the border of the Hilbert function for a set of points. The 

border of the Hilbert function divides the values of the Hilbert function into two sets. The 



1. THE BORDER OF THE HILBERT FUNCTION FOR POINTS IN Pn x Fm 4 1 

first set, which consists of an i d n i t e  number of elements. contains the vaIues of the HiIbert 

function which depend only upon our description of the everitual growth of the Hilbert 

function. The second set, which is finite, is the set of values at  which the Hilbert function 

has not attained this eventual growth. and therefore, must be calculatcd. 

In the final section we introduce sets of points in Pnl x . . . x P n k  in yeneric position. 

Since the Hilbert function of a set of points has a border, we deduce that there are only a 

finite number of distinct Hilbert functions for sets of s points in Pnl x . - .  x P n k .  This leads 

us to calculate an expected Hilbert function. Proceeding as in the case of points in Pn! we 

Say that those points in Pnl x x P k  which satisS> this expected Hilbert function are in 

generic position. 

1. The Border of the Hilbert Function for Points in Pn x Pm 

Let X C Pn x P be a collection of s distinct points. Let Ix be the bihoniogerieous ideal 

associated to X in the bigraded ring R = k[zo,. . . .r,? '/O.. . . . Ym] where deg x, = (1.0) and 

degyi = (O1 1). 

If .rrl : Pn x IP -+ P is the projection morphism, then ri(X) C P is a collection of 

t 5 s pointa. Tiir sel ni(X)  is the jet ùf distinct Srst ccordinates thnt appcar in X. For 

every Pi E nl(X), we have 

That is. rr;l(pi) is the subset of X consisting of al1 the points which have Pi as its first 

coordinate. Observe that ai := [T;'(P,)I > 1 for al1 Pi E ai(X). We also note that the sets 

rr; ' (Pi) partition X, specifically. 

Let r p  : P x Pm + Pm be  the other projection map. For each Pi f r1 (X), the set 

is a collection of ai distinct points in P. With the above notation, we have 

Proposition 3.1.1. Let X C P x Pm be a set of s distinct points und suppose that 

rrl (X) = { P l ,  . . . . Pt is the set of t 5 s distinct first coordinates in X .  Fix any integer 
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j 10. Then, /or oll integers 12 t - 1 = [ni(X)a)[- 1, 

where HQ, is the Hilbert fundion of the set of points Qp, = 7r2(n;'(P,)) C Pm. 

PROOF. Fix a j E N and set 

(*) = HQp,(j).  
P,En(X) 

We will first show that dimk(R/Ix)c,, 5 ( * )  for al1 1 E W. Let { X i . .  . . . X(n:l)} be al1 the 

rnonornials of degree (1, O )  in R and let {Yi. . . . Y( rn:,) } be the (m:') monomials of degree 

( 0 , j )  in R. For any I E N, an element L E Ri hm the form 

withcoefficients~,,~,~k.BysettingA,:=ci~iX1+~--+c. , + i X  f o r z = l  , . . . ? ( m ~ ) ,  4 1 1 (Y )  
we can rewrite L as L = AiYi + A& + . . +  + A(m;i)Y(m:,). 

Chim. Each subset n;' (Pi) C X puts at rnost HqpI ( j )  linear restrictions on the forrns of 

RlYj t hat pass through X. 

Proof of the Claim. Suppose R;'(P,) = {Pi x Q i t : . .  . ,Pi x Q i , , }  C Xi B I I ~  t h ~ ~  the set 

Q p ,  = {Qti '.. . . Qim, 1 C P. If L E RIJ vanishes at the s points of %. then it vanishes ou 

T; ' (P , ) ,  ~ L I L ~  t h ~ ~  

We can rewrite this system of equations as 



t. T H E  BOROER OF THE HILBERT FUNCTION FOR POINTS IN PR x Pm 43 

The maximum number of liuear restrictions x;'(Pi) can place on the elements of R l j  that 

pass through X is simply the rank of the matrix on the left. But by Proposition 2.3.1, the 

rank of this matrix is equal t o  HQpi ( j ) .  This gives the desired result . O 

By the clairn, for each Pi E ri(%), the set %;'(pi) imposes at most H q p i ( j )  linear 

restrictions on the forms of R l j  that pass through X. Hence, the set X imposes a t  most 

1 H Q p  ( j )  linear restrictions. It then follows that 

or equivalently, dimk(R/IX)l,j < (*) for al1 integen 1. 

We now show that if 1 = t - 1, then the bound (*) is attained. The set ni (X) = 

{Pi,. . . , Pt}  is a subset of P. By Proposition 2.3.3. there exist t forms Fp, , . . . , Fpt of 

degree t - 1 in k[xo, . . . , x,] such t hat FpI ( P t )  # O and Fpl (P, ) = O if i # j. Undcr 

the natural inclusion k[xo. . . . ! r,] ~t k[z0. . . . , x., y0, . . . ym] we c m  consider the forms 

Fp, . . . . , Fp, as forms of degree ( t  - 1.0). 

For our fixed j, we partition the points of nl (X) as follows: 

Pick a point Pi E ni (X) and suppose that Pi E Sk. Furthermore, suppose that QpI = 

( Q i , i y . .  . , Qi,a, ) C P. Proposition 2.3.6 implies the existence of a subset Q Ç Qp, of k 

elements, say Q = { Q i q l . .  . . . Q i q k }  after a possible reordering, such that for every QiWd E 

Q we can find a forni GQI,  E k[yo, . . . . ym] of degree j such that Gq,,, (Q iVd)  # O but 

G Q ~ , ~ ( Q ~ , . )  = O if Q i , c  # QiTd and Q i ,  E Q. Under the natiiral inclusion k[yo,. . . , y,] L, 

k[xo,. . . . x,, yo,. . . .y,] we consider each G q , ,  as an element of R of degree (O. j ) .  With 

this  Pi and subset Q C Qp, we canstruct the set of forms 

We observe that each Fp,GqI, # Ix for d = 1,. . . , k because it fails to vanish a t  Pi x QiVd 

Moreover, each element of BPI has degree ( t  - 1. j )  and lBp, 1 = Hqpl ( j )  = k. 

We repeat the above construction for every P, f ?ri (X) and let 
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Claim. The  elements of B are Iinearly independent modulo I x .  

Proof of the Claàm. I t  is enough to show that for each Fp,Q;,I E B. the point Pi x QiVi  does 

iiot vanish at FPIQi,I but vanishes at ail the other elements Fpl, Qi,,ll E B. But this follows 

irnrnediately from our construction of B. Cl 

By this claim. the elements of B are linearly independent rnociulo Ix  of degree ( t  - 1. j ) .  

and hence, dimk(R/Ix)r- 2 1 BI. Because 

we have d i ~ n ~ ( R / I ~ ) ~ - ~ , ,  2 (* ). Cornbining this inequality wit h our earlier inequality gives 

To complete the proof we note that we can always pick a form L in R of degree ( 1 , O )  

tha t  does not vanish a t  any Pi E R I  (X). Then for any 1 > t - 1. the set 

is a set of (*) clernents of dcgree (i, j) that is linearlv independent niodtilo I x .  0 

Remark 3.1.2. Fix an integer j 2 O. let T I  (X) = {Pi, . . . . Pt }, and let (*) = HqPl ( j ) .  
P , € m ( X )  

It is sometimes useful to note that  (*) is eqtial to 

a n d  that (*) is also equal to 

Corollary 3.1.3. Let X C Pn x Pm be a set of s distinct points and suppose thot 

rri(X) = {Pi. .. . . f i }  zs the set of t 5 s distinct first coordinates in X. Then 

( i )  for al2 antegers 1 > t - 1 ,  Hx(l.O) = t .  

(ai) for  j > O  and 1 2 t - 1 :  Hx(l . j i )  = S .  

( i i i )  Hx(t  - 1, 1 )  - H x ( t  - 1.0)  2 # {Pi E * i ( X )  1 ai = [x;'(pi)~ 2 2} - 
(iv) AHx(i .  j )  = O if i 2 t .  
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PROOF. For ( i )  it is sufficient to note that for every Pi E nL(Jh), HQ,,, (O) = 1 .  To prove 

( i i )  we observe that for every Q p , ,  the Hilbert function H Q p l ( j )  = IQpl[ = ai for j » O. 
t 

Since C cri = s, the result follaws by applying Proposition 3.1.1. 
i= 1 

To prove ( i i i )  we use Remark 3.1.2 to show that 

The only Pi E al (X) that are not counted in the set on the right are those in the set 

(Pi  E r l ( X )  1 H Q ,  ( 1 )  = 1 ) .  Since HqPl ( 1 )  = 1 if and only if ai =  la;'(^,)^ = 1 ,  the resiilt 

now follows. 

For ( i v ) ,  we recall that 

If i 1 t ?  then H x ( i ,  j) = H x ( i - 1 ,  j )  and H x ( i ?  j -  1) = H x ( i -  1,j- 1 ) .  A simpIecalculation 

wi11 then show that AHx(i,  j) = O. O 

If we partition the set of points X C Pn x P with respect to the second coordinates 

rather tban the tirst coordinates, then we can cierive a resuit ideriticai tu PruposiLiori 3.1.1. 

Indeed, let n2(X) = { Q I , .  . . , Q,} be the r 5 s distinct second coordinates of %. For every 

Qi E n2(X), the subset 

contains the := 1~ ( Q ~ ) I  points of X whose second coordinate is Qi.  Define Pq, to be 

the set of points PQ, := n I  (îr;' (Q~)) = {Pi,. . . . . Pt,, } C P. With this notation we have 

Proposition 3.1.4. Let Pb P x Pm be a set of s distinct points. and suppose that 

7r2 ( X )  = (Qi, . . . . Qr } is the set of r 5 s distinct second coordinates in X .  Fix ang integer 

i 2 O .  Then, for al1 integers 1 > r - 1 = [-(X)I - 1 ,  

dimk(R/I~)i,f = 

where HPpt as the Hilbert function of the set 

In this context Corollary 3.1.3 becomes 

of points PQ, C P. 
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CoroIIary 3.1.5. Let X C P x iP be a set o f s  distinct points. Let 7r2(X') = (Qil .  . . , Qr ) 

be the set of r 5 s distinct second coordinates in X .  Then 

( 2 )  for ail a'ntegers i 2 r - 1, Hx(O, 1 )  = r . 
( i i )  for i » O and 1 2 r - 1, H x ( i , l )  = S .  

(iii) Hx(l,  r - 1) - Hx(0,r - 1) > # { ~ i  E r2(X) 1 13, = IT;'(QJ 3 2 }  . 
( i v )  A H x ( i , j )  = O if j 2 r. 

Remark 3.1.6. Corollary 3.1.3 ( i i )  and Coroüary 3.1.5 ( i i )  can be combined to show that 

H x ( z y j )  = s for al1 ( L j )  2 ( t  - 1,r - 1). 

By combining Propositions 3.1.1 and 3.1.4 we derive a generdization of Proposition 2.3.4 

for sets of points in Pn x P. We state this generalization formally as a corollary. 

Corollary 3.1.7. Let X C P x P be a set of s distinct points, and s e t  t = Ir i (X)[  and 

r = lîr2(X)l. Then 

Remark 3.1.8. This corollary has the two desired properties that we wanted uur gener- 

alization to have. First, to compute H x ( i .  j )  for ail ( a ?  j )  we need to compute the Hilbert 

function for only a finite number of ( a .  j )  E N2, specificaily, t hose ( i .  j )  5 ( t  - 1. r - 1). 

Second. since t = Iri (X)i and r = 17r2(X) 1 ,  the values for which we need to compute the 

Hilbert function c m  be detemined solely fiom numerical information about W. 

The above corollary implies that if we know Hx( t  - 1, j )  for j = O, . . . . r - 1 ,and 

H x ( i , r  - 1 )  for i = O , .  . . ,t - 1: then we know the Hilbert function for al1 but a finite 

number of ( 2 ,  j) E Fbl . This observation motivates the next definition. 

Definition 3.1.9. Suppose X C P x F is a set of s distinct points and let t = lnl ( X )  1 
and r = 17r2(X) 1 .  Suppose t hat Hx is the Hilbert function of W. We cal1 the tuples 
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and 

BR := (Hx(O, r  - 1). Hx(1.r - 1). . . . . H x ( t  - l? r - 1)) 

the eventual colvmn vector and eventual row vector respectively. Let Bx := (Bc, BR). We 

cal1 Bx the border of the Hilbert function of X C P x P. 

The term border is inspired by the "picture" of Hx if we visualize Hx as an i n h i t e  

niatrix ( m i j )  where mi,, = H x ( i T  j ) .  Indeed. if X C P x I$" with lai (X)I = t and laz(X)I = 

The bold numbers form the border Bx.  The entries - m l ,  with ( a .  j )  5 ( t  - 1,r - 1) are 

eit her "inside' the border or entries of the border, and need to be determined. Ent ries wit h 

jt , J j > - i t ,  ü j or ji, j j 3 jli, r j are 'outside- tiie border. Tiiese visiues deperid uiiiy uu values 

in the border Bx. 

The term eventiial coltimn vector is given to Bc = (mt - i,o, . . . . ml - 1 ,,- r ) because the 

ith entry of Bc is the value a t  which the (i - ilth column stabilizes (because our indexing 

starts at zero). We christen BR the eventual row vector to capture a similar result about 

the rows. F'rom Corollaries 3.1.3 and 3.1.5 we always have 

Moreover, part (iii) of Corollaries 3.1.3 and 3.1.5 also impose a necessary condition on 

mt-1.1 md m1.r-1- 

A naturai question about the entries in the border arises: 

Question 3.1.10. M a t  tuples con be the border of a set of points in iP x P? 

We would like to classrfy those tuples that arise as the border of a set of points in 

P x Pm. If we can answer the above question. then we will have a new necessary condition 
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on the Hilbert functions of sets of points in P x P. In Chapter 5 we answer Question 3.1.10 

for sets of points in PL x pl. Our aaswer depends on forging a link between sets of points 

in PI x PL and the theory of (0, 1)-matrices. 

2. The Border of the Hilbert Function for Points in PnI x x P k  

In this section we demonstrate a generalization of Proposition 3.0.1 for sets of points 

Pl x - x P k  with k 2 2. The proof is similar to the proof of Proposition 3.1.1. We begin 

by introducing some suitable notation. 

Suppose X Ç Pnl x . .. x P n k  is a collection of s distinct points. Let Ix be the Rik- 

homogeneous ideal associated to X in the Fik-gaded ring R = k [ ~ ~ , ~ .  . . . . ~ 1 , ~  [. . . . , z k . 0 :  . . . , 
x ~ , ~ ~ ]  where deg x i ,  = ei. the ith standard basis vector of f@. 

Let ?rl : BnL x . . x P k  + !Pi be the projection morphism. The image of rl (X) in Pl 
is a collection of t := Irl ( X )  ( 5 s points. The set of points nl (W)  is the set o f  distinct first 

coordinates that appear in X. For every Pi E ~ t ( % ) ?  we have 

~rhere Q,, E "2 u . . . ! P k  Srt r*: -= !a;'( P.)! 2 1 for al1 P! F T !  (X). Note that the 

sets n;' (Pi) partition %. Let r*,... ,>t : Pl x . - . x IP" ! P z  x - - x P n k  be the projection 

niorphism. For each P, E ?r l (W) .  the set 

is a collection of ai distinct points in Pn? x . . . x P k  . 

I f i  = (jl,;i2. - - .  . jk) E Plk: then we sometimes write j - as ( j 1 : j t )  - where j' - = ( j 2 . .  . . ?jk) E 

. Also! recall that we mi t e  R,, ,-.. , jk for R(j ,,.-. .,,). If j - = (ji . j ' ) ,  then we denote - 
R(j,,i) = Ri by RjIVi. With the above notation, we have 

Proposition 3.2-1. Let X be a set of s distinct points in Pl x . - x P n k  wath k 2 2 ,  and 

suppose that r i ( X )  = {Pl , .  . . , P t , )  is the 

any tuple j  - = ( j 2 , .  . . . jk) E Fik-'. Set N 

al1 integers 1 2 tl - 1 = lnl(X)( - 1. 

dimr ( W x  ) rd  

set of t l  5 s distinct first coordinates in X .  Fix 
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where Hg,,, is  the Hilbert function of the set of points Qp, C IP x - x P k  . 

To prove this proposition we require the following two results. 

Proposition 3.2.2. Let X = {PI?. . . , P.} Ç P1 x . x P k  be a set of s distinct points. 
n k  + j k  For any j - = ( j l , .  . . . jk) E @, let {ml..  . . , m ~ }  be the N = ("c2) . ( jk ) 

monomiais of R of degree j .  - Set 

Then rk M, = H x ( j )  where Hx is the Hilbert function of R / I X .  - - 

PROOF. To cornpute H x ( j ) ,  - we need to determine the number of linearly independent 

forms of degree j - that pass through X. An element of R of degree j - has  the form F = 

ctml + + C,vTfLN where c, E k. If F(P,) = O, we get a h e a r  relation among the ci's: 

namely, c imt (Pi )  + . . . + cNm1v(Pi)  = O .  The eiements of (Ix), - are given by the solutions 

of the system of linear equations F ( P i )  = . = F(Ps) = O. ive can rewrite this system of 

cqurrtioas XI 

The matrix on the left is M,. - Now the nurnber of linearly independent solutions is equal to 

dimk (lx) j .  - and hence, 

Since dimk Rj = N .  we have H x ( j )  - = rk hl, , as desired. O - - 

Proposition 3.2.3. Let X = {Pi,. . . . P,) C IF'" x - x P k  and suppose that H x ( j )  - = h. 

Then zue can find a subset X' C X of h elements? say X' = {P l , .  . . y Ph) (aber a possible 

.mordering), such that there exists h fonns Gi, . . . ? Gh of degree j - with the property that for 

evefy 1 5 1 5 hl  G i ( 4 )  = O ifi # 1. and Gi (P i )  # O .  
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nt PROOF. Let {ml, . . . , m , ~ ]  be the fi- = ( j ;  ) . . (Rk,yk) m ~ a ~ m i a b  of degree j - in R. 
By Proposition 3.2.2 the matrix 

has rank rk llfj = H x ( r )  = h. Without loss of generality, we can assume that the first h - 
rows are linearly independent. So. let X' = (PL ? .  . . ,Ph}  C X. and let 

A 

Fu< an i E 11.. . . . h }  and let = {Pl . .  . . , Pi,. . . .Ph) .  If WC remove the àth row of 3, - 
then the rank of the resulting matrix decreases by one. Since the rank of the new rnatrix 

is equal to the Hilbert function of x, it follows that dirnk(Ixl), - + 1 = dimk(Ixf)j. a -  Thiis, 

there exists an element Gi E (IXt)j such that Gi passes through the points of Xi but not 
I ,  

t hrough Pi. We repeat this argument for each i E { 1, . . . , h )  to get the desired forms. O 

PROOF. (of Proposition 3.2.1) Fix a j - = (h,. . . .jk) E @ - l .  let N = N ( i ) .  and set 

We will first show that dimk(R/Ix)c ,  - < (*) for ail I E W. Let { . Y i 7 . .  . . X(nIIL~)} be al1 the 

monomials of degree (1 .  Q) in R and let {Yl.. . . . f i )  be the N rrionomials of degree ( 0 . j )  - 

in R. For any 1 E Mo a general form L E R I ,  looks like - 

with coefficients î j  E k. By setting Ai := qVlXi + - - + ci,[nLt+t) X(nL;l1 for i = 1,. . . . N7 
we can rewrite L as L = AiYl + A2Y2 + + ANY;V. 

Claim. Each subset IF;'(P~) C X puts at most HQp, (j) lineaf restrictions on the forms of 

R l j  that p a s  through X. - 
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Pmof of the Claim. Suppose rr; ' ( P , ]  = { P ,  x Qi l  . . . . . P, x Qi, c X. and hence. the set 

QPi = {Qi i  ? . .  . Qi,, } C P l  x . x Pnk. If L E R l j  vanishes a t  the s points of W, then it 

vanishes on x; ' (P , ) ,  and thus 

L(p,  x Q i , )  = AI(P~)Y~(Q~~)+...+AN(P~)Y.v(Q~~)=O 

L(pi x  Q i . , )  = A I ( P ~ ) Y L ( Q ~ , ,  ) + . . . + A n ( P i ) W Q I , , )  = 0. 

We can rewrite this system of equations as 

The maximum number of linear restrictions ~ ; ' ( e )  c m  place on the forrns of R i ,  - that 

pass through X is simply the rank of the matrix on the left. By Proposition 3.2.2 the rank 

of this matrix is equal to H Q p , ( i ) .  O 

By the claim. for each P, E xi (X). the set T;' (P, )  imposes at most HQp, (i) linear 

restrictions on the elements of Ri- t hat pass through X. Hence the set X imposes z? most 

or equivalently. dimk(R/Ix)r,j - 5 (r) for al1 integers 1. 

We will now show that if I = t  - 1 .  then the bound (*) is attained. The set ni (X) = 

{Pi,. . . , Pt, } is a subset of Pl. By Proposition 2.3.3, there exist t 1 forms Fp, , . . . ? FPtl of 

degree t l  - 1 in k[xo .... .r,,] such that Fp,(P,) # O and Fp, (P j )  = O  if i # j .  Under the 

naturai inclusion k[zo,. . . , xn1]  v R we can consider the forms Fp,. . . . . Fptl as foms of 

R of degree ( t l , Q ) .  

For our £ixed j, - we partition the points of nl (X) as  follows: 

Sh := { p i  E ri@) I H ~ , , ( ~ _ )  = h )  for h = 1 ,... . N .  

Pick a point Pi E T I  ( X )  and suppose that Pi E Sh and suppose that Qpl = {Qi,1 , .. . QiVal } C 
PZ x . . x P k .  By using Proposition 3.2.3, there exists a subset Q C Qp, of h ele- 

ments, Say Q  = { Q i , i l - - -  , QiVh}  after a possible reordering, such that for every QiTd E Q 
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there exists a form G Q , ,  E k [ ~ ~ , ~ , . . .  , ~ 2 , ~ ~  , . . . , x t , 0 , . . .  : xkTnk 1 of degree j - sucfi that 

GQiVd(Qi,d) # O but GQ,,,(Q~&) = O if Qi, # Qi,d and Qi, E Q. Under the natural in- 

clusion k[xz,o,. . . , ~ 2 , ~ ~ ~ .  . . . x k , ~ ,  . . . ! zi;lnk] - R we can consider each G q , ,  as an element 

of R of degree (0, j )  - . From this Pi and subset Q E Qp, we construct the set of forms 

We observe that FplGQl,, e Ix for d = 1.. .. , h because it fails to vanish at Pi x Qiqd. 

Moreover. each element of BPI has degree ( t  1. j )  - and IBp, 1 = Ifqp, (i) = h. 

We repeat the above construction for every Pi E TI(%) and let 

Claim. The elements of B are linearly independent modulo Ix .  

Proof of the Claim. It is enough to show that for each Fp,Qi,l E B. the point Pt x QiYr does 

not vanish at FP,QiVi but vanishes at al1 the other elements F P . , Q z ~ . I ~  E B. But this follows 

immediately from our construction of the elements of 13. O 

Because the elements of B are linearly independent elements moduio Ix  of dcgree ( t  1 - 1. i), 
it follows that dimk(R/lx)r,-i,j - 2 (01. But since 

the claim implies that dimk(R/ - i,i $ (*). Combining this inequality with the previous 

iriequality gives dimk(R/Ix)t, - 1 ,  - = (*). 

To complete the proof we note t hat we can dways pick a form L of degree ( 1, Q) where 

Q E P-l, such that L does not vanish at any P; E ni (X) . Then for any 1 > t - 1. the set 

is a set of (*) forms of degree (1, j )  - that is linearly independent rnodulo Ix. IJ 

For i = 1,. . . , k we let xi : iF'" x - . -  x P r  -+ P l  be the projection rnorphism. Set 

ti := Iri(X)I. If we partition X with respect to a.ny of the other (k - 1) coordinates, then a 

result identical to Proposition 3.2.1 holds. Indeed, if j  - = (ji,. . . . j k )  E IVk, and if we fuF ail 
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but the ith coordinate of j ,  - then for al1 integers I 2 ti - 1 

Corollary 3.2.4. Let X be a set of s distinct points in Pl x.  . . x P R k  . Fix an i E (1, . . . ! k ) .  

Let x , ( X )  = {Pi.. . . , P t , )  be the set of t i  5 Y distinct ith coordinates in W .  Tlien 

( i )  for d l  integers 1 2 ti - 1 ,  Hx(Lei) = ti. 

( 2 2 )  if jh > O for al1 h # i  and ji 2 ti - 1. then Hx(ji,. .. , j i . .  . . . jk) = S .  

(i2i) A H x ( j l ? .  . . , j k )  = O i f j i  2 t i -  

PROOF. To prove statements ( i ) - ( i i i ) ,  we consider only the case that i = 1. The other 

cases will folIow similady. 

Set Qpl := Q , . . . , ~ ( T ; ' ( P , ) )  C Pn? x . . . x iP for every P, E si(X): and let cri = IQp, 1. 
For al1 sets Qp, ,  HQpt (0) = 1. The conclusion of ( 2 )  will follow if we use Propasition 3.2.1 

to compute H x ( l e l ) .  

To prove ( i i )  we observe that by induction on k and Proposition 3.2.1. if jh » O for 
t 1 

h # 1, then H q p , ( j z , . - . .  . j k )  = I Q p , l  = ai for every Pi E r 1 ( K ) .  Since Gai = S. the 
: - l r- L 

result is now a consequence of Proposition 3.2.1. 

For ( i i i )  we recaIl that 

Let C. := ( ( 1 1 , .  . . ? l k )  E @ 1 ( L , .  L )  ( 1 . .  1 We partition L into the two sets 

Lo := ((LI,. . . . L k )  E L:[ I l  = 0) and Li := { ( L I , .  . . .Lk) E LI I r  = 1 )  There is an obvious 

bijection cp : Co + CL given by map 

Let i, E Co and let i2 = v( i l )  E L i .  Now ( - l ) ( ~ ~ + l ' ~ ) ' ~ ~ ~ ( j ~  -O. j2-LY. ... & - I L )  is the 

term of A&(j) - corresponding to l 1  E L and ( - I ) ( ~ J + L  ' ~ ) + l ~ ~ ( j ~  - 1'. j2 - 1 2 , .  . . ,A - Lr) 

is the term of A H x ( j )  - corresponding to l2 E C. If jl 2 t l ,  then Proposition 3.2.1 impiies 
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Since one of (- l ) ( r ~ + t  '>)+' and (- I ) ( E J # ~  is - 1 and the 0 t h  is 1, the two terms 

cancel each other out. But then every terni of A H x ( j )  - corresponding to I, E Lo is killed 

by the term <p(iI) E Li. Because cp is a bijection, it then follows that AHx(;j) - = 0. O 

Remark 3.2.5. By Corollary 3.2.4 (ii) we have H x ( j )  = s for al1 j > ( t l  - 1 , .  . . , tk - 1). - - 

. . If j = (jl: . . . . j k )  E IYk, then we denote the vector ( j i  . . . . . j,- 1. ;*. J i + i , .  . . , j k )  E Mt-' - 
by j .. Using this notation. we have the following consequence of Proposition 3.2.1. 

-1 

Corollary 3.2.6. Let % be a set of s distinct points in Pl x . - -  x Pnk and let ti = I r i ( X ) 1  

/or 1 j i 5 k .  Define Li := ( t l  - 1 . .  . . . t ,  - 1.. . . , tk - 1 )  for i = 1.. . . .k. Then 

I ( i l - . . .  . j k )  > ( t l  - l . t 2  - 1 .... . t k  - 1) 

= l : ( j . .  . . 1 ,  t  - 1 + ,  . . . if ji 2 ti - 1 and j 2 Li -1 

( H x ( j 1 . .  . . . j k+  tk - 1)  if jk > t k  - 1 and Jk 2 

Remark 3.2.7. Suppose W is a set of distinct points in Pl x . x B n k  . Let j - = ( ; i l ,  . . . ? j k )  E 

Pik a n d s u p p o ~ e t h a t j ~  > r i - 1  = liri(%)l. aridj2 2 t2-1 = In2(A)l-1. ThenCorollary3.2.6 

implies t hat 

More generally, to compute H x ( j ) ,  - the above corollary implies t hat if j, > ti - 1, t hen we can 

replace ji with t ,  - t and compute the Hilbert function at the resulting tuple. Therefore, 

to completely determine Hx for al1 j - E N ~ .  we need to cornpute the Hilbert hinction 

only for j  - < ( t  - 1, . . . , tt - 1). Since there are only n t i  k-tuples in Pik t hat have ) 
this property, we therefore need to  compute only a finite number of values. Furthermore, 

since ti = Ini (X) 1, the k-tuples of P for which we need to cornpute the Hilbert hinction 

is determined fiom crude numerical information about X. nameiy the sizes of the sets 

ni (X). Hence: Corollary 3.2.6 is the desired generalization of Proposition 3.0.1 to points in 

P*' X --• X P k .  
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By the previous remark it follows that if we know the d u e s  of Hx (t  1 - 1 ,  j2,  . . . , jk) for 

al1 ( j 2 ,  . . . , j k )  5 (t2 - 1,. . . , tk  - l), H x ( j i ,  t 2  - 1 ,  . . . , jk) for al1 ( j l ,  j 3 .  - . . , j k )  5 ( t l  - 1 ,  t 3  - 

1,. . . , tk - l), . . . , and H x ( j r , .  . . , jk-i ,  t k  - 1 )  for al1 ( j l ,  . . . , j k - l )  5 ( t i  - 1,. . . , tk-1- l ) ,  

then we know the Hilbert function of X for ai1 but a finite number of j E N ~ .  F'rom this - 
observation we can extend the definition of a border of a Hilbert function to sets of points 

in P ~ L  x . . . x Fnk.  

Definition 3.2.8. Let X be a set of s distinct points in Pnl x - .  x iP. and let t i  = Ir, (K) 1 
for i = 1,. . . , k. Suppose that Hx is the Hilbert function of X. For each 1 5 i 5 k, let 

Bi := (bjL - ,... J ~ , . . .  jr: 
) be the (k - 1)-dimensional array of size t l  x . . - x i, x - - - t k  where 

We cal1 Bi the ith border array of the Hilbert function of Pb. We define Bx := ( B I  : . . . . Bk) 
to be the border of the Hilbert function of X. 

Remark 3.2.9. If k = 2, then Bi and Bd2 are 1-dimensional arrays. i.e.. vectors It is a 

simple exercise to verify that B i  is equal to the eventual column vector Bc, and B2 = BR, 

khi  vint tu al rnw v~ctnr :  as defineri in Definition 3.1.9. 

We end this section by extending Question 3.1.10 to this setting. 

Question 3.2.10. Suppose B = ( B i . .  . . , Bk) zs a tvp le  where each Bi is a (k - 1)- 

dimensional a m y .  Under what condztions is B the border of the Hilbert function of a set 

of points in Pl x x P n k ?  

3. Generic Sets of Points in P l  x - x P n k  

In this section we wish to extend the notion of generic sets of points to P"1 x . . x P n k  . 
Our discussion iollows that of Geramita and Orecchia [21] and Geramita [14). 

If X is any set of distinct points in Pl x x P k .  then we denote its Hilbert function 

by Hx.  For every integer s we define 

R, := (HxI W Pnl x x Pnk and 1x1 = s) . 
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If Hx E X,, then, by Lemma 2.2.13. for auy j - = ( j l , .  . . ,&) E @ we have HX(j) $ - 
Hx(j - +el) ,  Hx(j) - 5 H x ( j  - + e l ) ,  etc. By Corollary 3.2.6. if j - (?ri (X) - 1, . . . , irk(%) - 1) 5 
(S - 1,. . . , s - l ) ,  then H x ( j )  is determined by the border. It follows that 31, is a finite set. - 

Since the number of possible Hilbert functions for s points is finite, but the number of 

sets X in Pl x x P k  with 1x1 = s is infinite. we can ask if tliere exists an expected 

Hilbert function for s points. We first fix some notation. 

Let R = k[ielto, . . . . xi,,, , . . . . r l , ~ ,  . . . . rk.,,] with deg Xi, = ei be an ~ ~ - ~ r a d e d  ring. 

For every j E N ~ ,  we define 
. - 

Note that dimi R, = N, . Let {mi Y . . . . .rn,v, } be the N, nionomials of degree j in R. If - - - - - 
F E R,, then we can write F as - 

Suppose that P = [alvo : . -  : alqnl] x . - .  x [am,o : . : akVnk] E Pl x 

to vanish at P we require 

If we consider the ci's as unknowns. the above equation give 

x I P n k .  For F E Rj - 

Ine linear condition. 

Suppose that X = {Pi Y . . . . P, }. For F E R, to vanish on X we t herefore require t hat - 
F(Pl) = = F(P,  ) = O. We then have a linear system of equations represented as 

The number of IiriearIy independent solutions is the rank of the matrix on the left. For a 

generd enough set of points, we expect this matrix to have rank as large as possible. By 

Proposition 3.2.2. the rank of this matrix is equal to Hx(j). - Hence. we expect a general 

enough set of s points X C Pl x . . - x P k  to have the Hilbert fknction 

H x ( ~ ) = m i n { i ~ j y . s )  - f o r a U j € @ .  - 

Proceeding analogously as in the case of points in P. we make the following definition. 
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Definition 3.3.1. Let X = {Pl, . . . , P, ) Pr x . . . x Pt and suppose that f i  is the 

Hilbert function of W. If 

Hx(j_) = min {N, ,  s) for d l  j E F"lt, - 

then the Hilbert function is called maximal. If W has a maximal Hilbert function, t hen X is 

said to be in generic position. 

We have yet to show the existence of a set of points in generic position in Pi x . . x 
P k  . As the next t heorem demons trates. "most" sets of s points in Pl x . . x P k  are in 

generic position. The proof is adapted from the case of points in P due to Geramita and 

Orecchia (211. We first set some notation. Define 

Set 

Min D>, - := min {j - 1 j - E D?,) and Min D,, := min { j  - ( j - E D,,) 

with respect to our partial ordering > on fVk. Note that both Min D>, - and Min D>, are 

finite sets. We will also denote ( P l  x - - .  x P k )  x . x ( P i  x x P L )  (S times) by 

(P X . . X PL)? 

Theorem 3.3.2. The s-tuples of points of Pl x . x P n k  , (Pi. .  . . . P, j, considered as 

points of (Pl x . . . x Pk)'? which are in generic position form a non-emptg open subset of 

(Pn' X X P k ) 3 .  

PROOF. Let R = k [ ~ ~ , ~ ,  . . . .xi,,, , . . . . zk.0 ,  . . . . ~ t . ~ ~ ]  be an ~ ~ - g r a d e d  ring. If j - E N&, 
then let (mi, ... , m ~ , }  be the N, - monomials of degree j - of R. We have a morphism - 
vj : Pl x . x P k  + PL-' defined by - 

This induces a morphism 
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We can view an ebment of 5 as an s x AT, matrix. Notice that the s-tupie ( P l ,  . . . , P,) E - - 
(Pl x x PL)' is sent to the "matrix" 

Let Tj be the collection of equations describing the situation that every maximal minor of - 
an s x Nj matrix is zero. Every element of Tl is Ns-homogeneoiis. that is. the elements are - - 
Iiomogeneous in each set of variables corresponding to a factor of 4. It lollows that Cj := - - 
V ( T j )  is a closed subset of V,' and hence. 9; l (V,\Cj) is an open subset of ( P l  x x P ' k  )'. - - - - - 
Set 

If (Pi, . . . P,) E U 1  then for al1 j  E N~ the niatrix hl, (P l  . . . . P,)  hüs maximal rank, i.e., 

rk M,(Pi , .  . . . P,) = min {IVi, s: By Proposition 3.2.2. the Hilbert functian of the tuple 

(Pi,. . . , P,), considered as a subset of Pl x . x P. is maximal. 

To finish the proof we need to show that U is open and non-empty. To show that Li is 

open we require the foilowing ciaim. 

Claim 1. Suppose t hat j - E N* . If t here exists j' - E Min D,, such t hat j - > j'. - t hen 

Pmof of the Claim. Let (PL,. . . . P,) E ~ ' ( l +  - \Cjt). - After a suitable change of coordinates - 
we can assume that each Pi E { P l ? .  . . . P,) can be written as 

If { m l ,  . . . , r n , ~ , .  } are the Njt - monomials of degree j', - t hen the matrix - 

has rank = min {N-, s) = S. Since j  - > j'. - we have ( j  - - j ' )  - > Q. Let rn be the monomial 

m = x f , h ~ i : ~  - - x::,, of degree ( j  - - j') - = ( a o o .  . . . ait) .  The monomial rn does not vanish at 
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any of Pl, . . . ? P,. It follows that 

is a sub-matrix of Mj(Pl:. . . . P,). Therefore. the tuple (Pl?.  . . , P,) E pl-1 (V,\Ci) because - - - 
the maximal rninors describing this sub-matrix fail to vanish at this tuple. O 

In light of the clairn. we have 

j<l t  for some 

The set {j - E Rik 1 j 5 j' for some j' E Miil Db,} is a finite set, and so LI is open in (Pl x - - - 
. . x P k ) 3 .  

To show that U is non-empty, we will show that there exists a tupte (Pi,. . . . P,) f 
( P l  x . . .  x Pnk)' such ttiat (Pl, ... .P,) E < p ; l ( ~ \ ~ , )  for al1 j E N ~ .  We proceed by - - - 
induction on s; the case s = 1 is trivial. 

So, let Pl. . . . . P,- 1 be (s - 1) generic points in ! P l  x . . x P n k .  Furtlierrnore, suppose 

that j_,. . . . .& is a complete list of elenients in MinD,,. - For each j E (2,. . . . 
4 

j ) we 
1 

define a morphism v, : Pnl x . - x iP + P"L. - by 
-1 

whae f m i ! .  . . r n N .  } are the N, monomiais of degree j .. Let Lj be the h e u  sub-variety 
LI -1 -1 -1 

spanned by vj (Pl),.  . . , uil(Ps-1). Because vj (Pl x - - .  x P') is not contained in any 
-1 -8 

linear subvariety of P'~L.- ' ,  the set vil(Pl x x iP"*)\{vj (Pnl x --• x P) n L, } is a 
-1 -t 

non-empty set. 

From the above morphism we obtain a morphism 
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Let L = Lj x . . . x L4 P'B-i-' x - . x B*'~-~. Frorn OU constrwtion of L, it fol1ows that 
-1 

:= 4i1_,,... J; (p' x . . x P t )  p L. Hence. the set Y := Z\{Z n L} is non-empty. Pick any 

P, E $,:f-.. ,& (Y). Note that for our choice of P,, uj (Ps) fC Lj  for any j .  E ( i l . .  . . ,&}. 
-t -I -1 

We claim that the set {Pr, . . . , Ps) is in generic position. I t  is sufficient to check that 

rk Mj(Pi,. . . P,) is maximal for d l  j E IVk. - d 

Case 1. j is such that N, < S. - - 

The matrix Mj(Pi.. . . , P,) can have at most rank N j .  The sub-matrix Mi(Pi,. . . , P,-1) - - 
has this rank by induction. This cornpietes this case. O 

Case 2. j - is si~ch that Nj 2 S. i.e., j E D>,, - - - 
Because j E D>,. there exists j' E Min D>, such that j 2 j'. It follows from the proof - - - - - - 
of Claim 1 that if rk Ml# (Pi. . . . . P3 ) = S. then rk M, (Pi. . . . . P,) = S .  But by our choice - - 
of P,, ujt (P,) L,!. But this is equivalent to  saying that P3 is riot in the Iinear spaii of - - 
ujt(Pi) ,..., vj~(Ps-~).andhence,rkhlI~(Pi . . . .  P3)=rk1L( , t ( f i  ..... P , - l ) + l = s .  O - - - - 

Corollary 3.3.3. Let s and k be positive integers. For each i E (1.. . . . k } ,  let Bi 

be a ( k  - 1)-dimensional a m y  of site s x . . . x s such that e v e q  e n t r j  of Bi as S. Then - 
h- i  

B = ( B I ,  . . . , Bk) zs the border of a set of points in Pl x x IPnk . 

PROOF. A set X of s points in generic position has border Bx = B. O 

Remark 3.3.4. For "most" sets W of s points in P l  x x P k .  Theorem 3.3.2 shows that 

the Hilbert function of % is simply a function of nl , .  . . ,nk, and S. The Hilbert function, 

however, provides us with very coarse information about W. A weidth of information about 

X is contained within the minima1 free resolution of ix. This teads us to ask if there is an 

expected resolution for a set of s points in generic position in P l  x . - x P n k  . For points in 

P this question is known as the Minimal Resolution Conjecture which was first formulated 

by Lorenzini 1341. An interesting problem is to determine a minimal resolution conjecture 

for points in generic position in IP1 x x P t .  As we will see in the next chapter, points 

in generic position in Pl x . x IP fail to be arithmetically Cohen-Macaulay. This fact 

prevents us from passing to the artinian case and formulating the conjecture in this set ting 

as was done in [347. However, because we know the Hilbert function of a set of points in 
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generic position, we rnay be able to make a conjecture about the generators of the defining 

ideal. In other words, we can make a conjecture about some of the graded Betti numbers 

in the resolution. We are currently considering this problem. 

Remark 3.3.5. Because #R, < m. we can ask if it is possible to explicitly determine 

#'H, for al1 s E M. This turns out to be a difficult probleni. L. Roberts posed exactiy this 

problem for points in Pn in (461. Little progess, however. has been made on this question. 

Carlini, Hà, and Van Tuyl [BI point out that by using the n-type vectors of Geramita, 

Harima, and Shin [l?] then the problem of computing #31, for s points in P is equivalent 

to computing the number of sequences of strictly increasing integers that sum to S.  We give 

a lower bound for #X, for points in PL x PL (cf. Proposition 5.3.1). 



CHAPTER 4 

The Hilbert Functions of Arithmetically Cohen-Macaulay 

Sets of Points 

Cohen-Macaulay rings are the "workhorse of commutative algebra' (page 57 of [6)). If X 

is any colection of points in IF"? t hen the gradecl ring R/ lx  is afways Cohen-Macaulay. This 

fact is used, eit her directly or indirectiy. to prove many results that dcscribe the properties 

of points in P. Unfortunately, when we extend our study to sets of points in P1 x 6 .  x P n k  

with k > 1, we encounter the unpleasant fact that the tnulti-graded ring R/ lx may fail to 

be Cohen-Macaulay. The following example, which is found in Giuffrida. Maggioni, and 

Ragusa [26], and which is generalized in Lemma 4.2.1. illustrates thet even the coordinate 

ring of a very simple set of points can fail to be Cohen-Macaulay. 

Example 4.0.1. Let R = k[xo.rl. yo. yl] with degzi = (1,O) arid dpgyi = (O. 1), and let 

x = {[O : 11 x [O : 1]'[1 : O] x [1 : O]} C x PI. 

Then Ix  = ( x o , ~ )  n (x l ,y l )  = ( 2 0 x 1 7 x g ~ ~ ~ ~ ~ ~ l y ~ l j ~ )  C R. The element r ~ o  + xi is a non- 

zero divisor in R/Ix because the form xo + X I  does not vanish at either point in X. The 

non-zero elements g of R / ( I x ,  xo + x 1 ) (Ire eit her g = h(yo, y l  ) where deg h = (O, d) and 

d > 0, or g = Zo. Both types of elements are annihilated by Zo. Hence. depth R / f x  = 1 < 
2 = K- dim R/ I x .  It t hen follows Çom Definition 4.1.6 that R/ Ix  is not Cohen-Macaulay. 

(An alternative proof is to observe that the ideal I x ,  as a homogeneous ideal of R. is the 

defining ideal of two skew lines in p. and hence. R/ lx is not Cohen-Macaulay. (cf. [23])) 

A set of points whose coordinate ring is Cohen-Macaulay will be called an arithmetically 

Cohen-Macaulay (ACM for short) set of points. Because of the importance of Cohen- 

Macaulay rings in commutative algebra and algebraic geometry. it is natural to ask the 

following variation on Question 1.1.1: 

62 
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Question 4.0.2. What can 6e the HzBert f v n c t h  of an ACM set of points in ipn* x . . . x 

P k  ? 

If k = 1, then this question is equivalent to Question 1.1.1 because all sets of points in P are 

ACM sets of points. Hence, Question 4.0.2 has been answered by Geramita, Maroscia. and 

Roberts [19] for the case k = 1. In light of the above example, if k > 1 ? then Question 4.0.2 

is weaker than Question 1.1.1. 

The main result of this chapter is the following theorem: 

Theorem 4.0.3. (Theorem 4.3.14) Let H : Rik + N be o numerical function. Then H is 

the Hilbert function of an -4 CM set of points in Pl x + . . x P k  if und only if 

where H( iL ,  . . . . ik) = O if ( i l . .  . . , à k )  2 Q: is the Hilbert fvnction of some muCti-graded 

artinian quotient of S = k [ ~ ~ , ~ ,  . . . , cl,,, . . . . , x r , , ~ .  . . . , xk,,,]. 

As a consequence of t his result, the answer to Question 4.0.2 is equivalent to the answer of 

the following qiiestion: 

Question 4.0.4. What can be the Hilbert function of u mufti-graded nrtinàan quotient of 

k[x1.1,... , X l , n , , . . .  *Zk,L,..* , X k , n J f  

In this chapter we will also give an answer to Question 4.0.4 for the cases: ( 2 )  S = 

k[xi ,L,  xz, 1, . . . . Xztm] and (ii) S = k[xt, 1, X ~ J  , . . . . xk, 11. A s  a corollary. we give a complete 

answer to Question 4.0.2 for ACM sets of points in IPL x Pm and lPL x . . x IPL. In each case, - 
k 

our resdb is a generalization of an earlier result about ACM sets of points in !PL x PL due 

to Giuffrida, Maggioni, and Ragusa [26]. 

This chapter is structured as follows. In the first section, we recalI the definition of a 

Cohen-Macaulay ring and describe some of its properties. In the second section we make 

some generd remarks about the depth of R/Ix where R / I x  is the coordinate ring of a 

set X of distinct points in Pl x x P k .  In the third section, we restrict our focus to 

ACM sets of points in Pl x - - .  x P L .  The main result of this section (Theorem 4.3.14) 

demonstrates that the numerical function H : l@ + N is the Hilbert function of an ACM 



1. COHEN-SIACAULAY RINGS 64 

set of points in P T  x - x P a  if and o d y  if A H ?  the Erst bifference function of H, is the 

Hilbert function of an IVk-graded artinian quotient of k[xi, ',. . . . x i , n L .  . . . , x h , i ,  . . . , z k , , , ] .  

This characterization is similar to the characterization of Hilbert functions of points in iP 
given by Geramita, Maroscia, and Roberts (191 (also see Proposition 2.3.10). In the fourth 

section we characterize the Hilbert funct ions of bigraded quotients of k[xl, y1 . . . . , y,]. As 

a corollary, we have a precise description of the Hilbert functions of ACM sets of points in 

PL x P. We also answer Question 4.0.4 for the IVk-graded ring S = k[x 1 , i  , q, 1,  . . . , z k t i ] .  In 

the last section we give the proof of a technical lemma used in the proof of Theorem 4.3.14. 

1. Cohen-Macaulay Rings 

In this section we define Cohen-Macaulay (CM for short) rings and collect the facts we 

need in the later sections. A general theory of CM rings is developcd in the wonderful book 

of Bruns and Herzog [6]. We use 161, Balcerzyk and Jozefiak 141, and Matsumura [38] as 

our primary references for the material of this section. 

Unless stated otherwise. we assume that R = k [ ~ ~ , ~ ,  . . . .xi,,, , . . . . Z k . 0 , .  . . ,xk,,,]. We 

induce ari Nk-grading on R by set ting deg x i j  = êi where ei is the i th standard basis vector 

in M .  We detine m to be the ideai m := $ R j .  We rrecail rhai R is iiiuethrriau. We - 
o + j ~ N ~  

will use A to denote an arbitrary Noetherian ;ing. We recall Definition 2.2.8. 

Definition 4.1.1. Let g be a prime ideal of A. The height of p is the integer t such that we 

can find prime ideals pi of A such that g = pc 3 pt- 1 2 - 2 pi ,3 go and no longer such 

c h a h  can be found. We mite  htB4(p) = t. If I is any ideal of A. then ht 4 1 )  is defined to 

be the number ht .4 (1) := inf(ht ,4 (g) 1 p 3 1 ). If the ring A is clear from the context. then 

we shdl omit the subscript A and sirnply mite ht (1). The Krull dimension of A, denoted 

K- dim A, is the number K- dim A := sup{ht (p) 1 g a prime ideal of A). 

Definit ion 4.1.2. Let Fi ,  F2, . . . , F, be a sequence of non-constant elements of R and let 

I be an ~ ~ - h o m o ~ e n e o u s  ideal. Then we say Fi '. . . . Fr is a regular sequence modulo I or 

give rise to a regular sequence in R/I  if and only if 
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(i i i)  Fi is not a zero divisor in Rf (T, Fi. . . . . F,- 1) for I < i < r. 

The sequence FI, . . . , Fr is called a rnmirnal regular sequence rnodulo I if Fi,. . . , Fr is a 

regular sequence which cannot be made longer. 

Remark 4.1.3. A more general notion of a regular sequence exists for R-modules M .  See. 

for example, Definition 1.1.1 of [6]. Since we do not require this generality, we omit it. For 

an arbitrary ring it is not true that al1 maximal regular sequences have the same length. 

However, since we shall only consider N~-homogeneous ideals of R. the following theorem 

applies. 

Theorem 4.1.4. ([6] Theorem 1.2.5) Suppose that I C m is an ~ ~ - h o r n o ~ e n e o u s  ideal of 

the Noetherian ring R. Then al1 maximal reyular sequences rnodvlo I have thc same lertgtir. 

Because al1 niaxirnal regular sequences modulo I have the same length, we give a riame 

to t his common value. 

Definition 4.1.5. Let I C m he an w-homogeneoiis ideal of R. Tlien the depth of R / I .  

m i t  ten dept h R / I ,  is the length of a maximal regular sequence rnodulo I .  

One can show. using Krull's Principal Ideal Theorem (see Tlieorem 15.2 of Sharp (51)). 

that depth R/I  < K- dim R/I  aiways holds. If equality occurs. then we give the ring R/ I a 

special name. 

Definition 4.1.6. Let I C m be an @-homogeneous ideal of R. Then the ring R / I  is 

d l e d  Cohen-Macaulay (or CM for short) if depth RI1 = K-dim R/I .  

Example 4.1.7. The polynomial ring R = k [ ~ , , ~ ,  . . . . xi,,, , . . . . rk .0 .  . . . . zk.,, ] is a Cohen- 

Macaulay ring because the indeterminates zl ,o. . . . , x,,, L, . . . ? 2 k . 0 .  . . . . ~ k , . , ~  give rise to a 
k 

regular sequence in R of lengt h C (ni + 1) = K- dim R. 
i= 1 

Definition 4.1.8. Let RI be a module over the commutative Noetherian ring A? and let 

p be a prime ideal of A. Then we Say p is an associated prime ideal of hi' precisely when 
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there exists an element m E M with (O : nt) = p. The set of associated prime ideals of hl 

is denoted by Ass-~(M). 

Remark 4.1.9. Suppose that 1  is a proper ideal of a commutative Noetherian ring A and 

suppose that I = Ql fi. .. f~ Q, is the primary decomposition of 1. Set pi = a. Then 

Ass.4 ( A / I )  = {pi,  . . . p, } . See' for example. Remark 9.33 ( 2 )  of Sharp [5 11. 

Definition 4.1.10. Let -4 be a commutative Noetherian ring, I a n  ided of A, and suppose 

that Asse4(A/I)  = {pi:. . . , gr}. We Say that 1 is unmixed if htV4 ( p i )  = hta4 (1 )  for al1 i. 

As the next theorem shows! if I is a homogeneous ideai of a pded polynomial ring 

k [ x o , .  . . !r,] with the property that the quotient ring k[xo,  .. . .+,]/l is CM. then the 

associated primes of I al1 have the sarne height. 

Theorem 4.1.11. Let I he a homogeneous ideal of R = k[q.  . . . . zn] and suppose thnt 

I C m := (xo,. . . .z,). Then 

( 2 )  ht R ( I )  + K- dim R/ I = K- dim R. 
( i i )  If R/I  is a C M  ring. then the ideal I is unmixed. 

This result appears to be well known. However, we could find no reference for the 

graded version that we stated above. For completeness, we will prove Theorem 4.1.1 1. To 

prove this result, we will require the following results about Cohen-Macaulay local rings. 

We will only give a reference to their proofs. 

Lemma 4.1.12. ([4] Property 10, page 122) If (Am) is a local CM ring, then for üny 

ideal I Ç A, we have h ta4(I )  + K-dimA/I = K-dimil. 

Lemma 4.1.13. ([4] Property 1, page 118) If A is u CM ring, and if S is any multiplica- 

tàvely closed subse t S ,  then S- L A  is also CM. In other words, the CM pmperty is preserved 

under localization. 

Lemma 4.1.14. ([38] Lemma 7.C, page 50) Let S be a multzplzcative oubset of A, and let 

1CI be a finitely genemted A-module. Put A' = S-LA and Mt  = S-LiI.I. Then the= exists a 

1-1 correspondence between the sets 

Ass.~(M) n {g A 1 p prime. p n S = O} a Assa4t(Mt) 
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via the map p r, ~ I S - ' A .  

Proposition 4.1.15. ((381 Theorem 30. page 104) Let ( A .  m) be a Noetherian local ring, 

and let M # O be a finitely generated CM A-module. Then 

dept h M = K- dirn A/ y for every p E Assm4 ( M ) .  

PROOF. (of Theorem 4.1.11) (i) Let (R,. mR,) denote the local ring formed by local- 

king R at the maximal ideal m. By Lemma 4.1.13. the ring (R,? mR,) is CM because R is 

a CM ring. Since I C m, it follows t hat h t ~ ,  (IR,) = ht R (  I) and K- ciim R, = K- dirn R. 

Furthermore, since (R,/IR,) 2 ( R / i ) = ,  K- dimR,/IR, = K-dim RII.  By applying 

Lemma 4.1.12, we thus have 

li tR(I) + K-dim R l ï  = htR,(IRm) + K- diniR,/IR, 

= K- dirn R, = K- dirn 3. 

(2'2) Let p E A s s R ( R / I ) .  We need to show t h a t  htR(p) = htR(I).  Becaiise I C m. p is 

homogeneous, i.e.. p C m. and hence p E {p C R 1 g prime, y n (R\m)  = 0). Thus. by 

Lemma 4.1.14. pR, E A s s ~ ,  (R,/IR,). 

The ring RIn/IR, Z (R / l )=  is CM by Lerrima 4.1.13. So. by Theorem 4.1.15 we 

deduce that K- dirn Rm/gRm = depth R,/IR,. But since the ring Rm/IR, is CM, we in 

fact have 

On the other hand, we use Lemma 4.1.12 to compute K- dirn R,/gR,: 

K- dirn R,/pR, = K- dirn R, - ht R, (PR,) = K- dirn R - ht ~ ( g ) .  

If we substitute this value for K- dirnR,/pR, into our previous expression and simplify 

the resulting expression, then we find that htR(g) = ht R ( I ) .  Because this is true for any 

p f AssR(R/I). the ideal 1 is unmixed as desired. O 

Definition 4.1.16. -4 variety X C P is arithrnetically Cohen-Macaulay (ACM for short) 

if the graded coordinate ring RITx is CM. More generally. a variety X C Pnl x . . . x P* is 
ACM if the multi-graded coordinate ring R/Ix is CM. 
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Remark 4.1.17. Suppose X Ç Pt x x iP is a variety. The multi-homogeneous îded Tx 

in the IVk-graded polynornial ring R corresponding to X is aiso a homogeneous ideal in the 

normal sense. CVe let 2 denote the variety in P", where N = 

by Ix .  The condition of being C M  is a condition on the depth of R / I x .  Because the grading 

of a ring does not influence the depth of a ring, 

X Ç B n L  x . - -  x P n k  is ACM W%CP"   SAC M. 

Note that the dimension of the m i e t y  % is bigger than dirn X. Specifically. if % C Pl x 

. x P k  is a variety, then dirn # = dirn X + k. 

The following results about CM rings will be required in the later sections. 

Lemma 4.1.18. ([4] Property 4, page 119) If A is a CM ring and r is a non-zero divisor 

in A, then the ring A / ( z )  i s  also CM hloreover. K-dimA/(x) = K-dimA - 1. 

Lemma 4.1.19. Let J = (F i , .  . . , Fr)  C rn C R be an IVk -homogeneous ideal. Suppose 

that Fi, .  . . , Fr gave rise to ci regular sequence in R. Then RI J is CM. 

PROOF. By Theorem 4. i .4. the regular sequence Fi, . . . ! F, cau te ex te~ided tu a ma- 

imal regular sequence, Say Fi, . . . Fr. Gr+ i . .  . . . Gt ,  in R. Because R is Cohen-Macaulay, 
k 

t = C(ni + 1)  = K- dim R. Rom Lemma 4.1.18 we have 
i= L 

K - d i m R / J =  K - d i m R - r =  t - r  =depthR/J.  

The conclusion now follows. 0 

Definition 4.1.20. Suppose that X C Pnt x . . . x P k  is a variety. If the Pik-homogmeous 

ideal Ix  is generated by a regular sequence in R, then we Say X is a complete intersection. 

By Lemma 4.1.1g0 a complete intersection is dways ACM. 

We have defined Cohen-Macaulay rings in terms of the depth of the ring. Alterna- 

tively? Cohen-Macaulay rings can be characterized via the projective dimension (see Defini- 

tion 2.4.4) of the ring. To demonstrate this characterization, we will require the following 

special case of the Auslander-Buchsbaum formula. 
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Theorem 4.1.21. (Audander-Buchsbaum) Let r 6e a homogeneous ideal in the Nt -gmded 

ring R = k[xo.. . . , x,]. Then 

proj. dimR RI  I  + depth R/ I = K- dim B. 

PROOF. This is a very special case of the Auslander-Buchsbaum formula. See Theorem 

44.15 of Weibel [56] or Theorem 1.3.3 in Bruns and Herzog [el. O 

Theorem 4.1.22. Let I be a homogeneous ideal in the W1 -graded ring R = k[xo, . . . . z.1. 
Then RI I is Cohen-Macaulay if and only if proj. dimR R / I  = rr + 1 - K- dim R/I .  

PROOF. The ring R I I  is Cohen-Macaulay if and only if depth RjI  = K-dim RII .  

Hence, by the Aiidander- Buchsbaum formula we have 

proj. dimR RI1 + K- dim R / I  = proj. dimR R / I  + depth R / I  = n + 1. 

Remark 4.1.23. The above result will be used in Chapter 5. 

2. The Depth of the Coordinate Ring Associated to a Set of Points 

Let R = k [ ~ ~ , ~ ,  . . . . ri,n, ' .  . . , x h , ~ ,  . . . . z p , , , ]  where deg xi,] = ei wliere e, is the ith 

standard b a i s  vector of fYk. In this section we study the depth of R/Ix, where X is a set of 

distinct points in Pnl x . . x P i .  Rom the next lemma, it folIows that the depth of R/ lx 

is always at l e s t  one. 

Lemma 4.2.1. (Lemma 2.2.12) Suppose Pa C Pl x - - - x P* is a finite set of distinct 

points. Then there e n d s  a jorm L E R of degree el such that as a non-rem divisor in 

R/Ix * 

Corollary 4.2.2. 1 5 depth R/Ix 5 k. 

PROOF. The result folIows fkom the fact that depth R/Ix  5 K-dim R/Ix = k. 
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Remark 4.2.3. RecaII bom Proposition 2.2.9 that if X is a set of distinct points in 

P7'l x x P k ,  then K- dim R/Ix  = k. So, suppose that X is a set of points in Pn. Then 

Corollary 4.2.2 implies that 1 5 depth R/Ix 5 1 = K- dim R / I x .  Thus. sets of points 

in P are always ACM. However, if W C iP1 x . . x P n k  wit h k 2 2, t hen X may fail to 

be ACM. In fact. as we show below. for every integer 1 E ( 1 . .  . . . k} there exists a set of 

points X C irni x - x P k  with depth RI Ix = 1. We begiri with a Iernnia tliat gemralizes 

Example 4.0.1. 

Lemma 4.2.4. Fix a positive integer k .  tVe denote by XL and ,Y2 the two points 

Xl : = [ l  : O ]  x [l : O ]  x x [1 :O] .  and ,YÎ:= [ O :  11 x [ O :  11 x x [ O :  11, 

in P' x . . -  x P L .  Set X : =  {Xi.X2}.  ThendepthR/lx = 1. - 
k 

PROOF. The defining ideal of X is 

in the Plk-gaded ring R = k[xis. ~2.0. q l ?  . . . . zklo, rk,,]. The element z1,0 + zl,l E 

RITx is a non-zero divisor because x1.0 +  JI,^ does not vanish at either point of Pa. Thus 

depth R/Ix  2 1. To complete the proof, it siiffices to show that every non-zero elernent of 

R/(lx,  xl,o + ~ 1 . 1 )  is a zero divisor. 

So, set J = ( I x .  xl,o + xlI i )  and suppose that F is a non-zero element of RI J. Without 

loss of generality. we can take F to be IVk-homogeneous. We write F as 

Since xipxi,l E I x ,  it follows that zft0 = zl,o(xl.o + x ~ , ~ )  - z ~ , o Î ~ , L  E J .  Hence. we 

can assume that F = Fo + Flxl,o. The element z1,o $! J. For each integer 1 5 b 5 k, 

x1,0xb,1 E Ix J .  Furthermore, for each integer 1 5 a 5 k. the element xl,~x,,o = 

za,O + x i , l  ) - x,,oxl, 1 E J .  Hence. each term of Fox L,o is in J ,  so Foxl,o E J .  Moreover, 

since x:lo E J .  we therefore have Fxiso = Foxllo + FLx:,, E J. So. every non-zero element 

of R / J  is a zero divisor because it is annihilated by the non-zero elernent Zlbo. 0 
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Proposition 4.2.5. Fik a posftiue infeger k, and let nl , . . . ni, be any positive infegers. 

Then for every integer Z E (1,. . . , k )  there exists a set % of points in Pl x . . . x  P k  such 

that depth R / l x  = 1. 

PROOF. For every integer Z E {1, . . . . k} we will show how to construct a set X & 
Pl x  . . x  P k  with the desired depth. Define Pi := [l : 0 : - - : O] E Pt for 1 < i 5 k and 

Qi := [O : 1 : O... : O] E iPnl  for 1 < i < k. Let 1 be an integer in {l,.  . . , k} and let Xi and 

,Y;! be the following two points of Pnl x - x  P k :  

If we let & := {Xi,  X2), tben we will show that depth R / I x ,  = 1. 

The defining ideal of & is 

in the @-graded ring R = k[lci,ol.. . ri, , ,  , . . . . xk.0:. . . ~ k , . , ~ ] .  It then follows that 

R / l x ,  S S / J  where 

The indeterminates xl,o,z2,0 .... .xl-i ,o give rise to a regular sequence in S I J .  Thus, 

depth R/Ix,  = depthS/J > 1 - 1. Set K = ( J . x i , o , .  . . . x i - i ,o ) .  Then 

The ring SI K is then isomorphic to the @-'+l -gaded coordinate ring of the set of points 

{ [ i : O j ~  [ l : O ] x . . .  x [l:0IY[O: 11 x [O: 11 x . . . x  [ O :  il} 

in IP1 x ... x pl. It therefore follows from Lemma 1.2.4 that depth S / K  = 1. and hence. - 
k-l+L 

The final result of this section calculates the depth of a set of points in generic position. 

The proof will require the following combinatorial lemma. 
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Lemma 4.2.6. Let n, 1 3 1 be integers. Then (RT:y ') 5 ("Tt) (n + 1). 

PROOF, B~ definition, ("::: l) = ("+If l)(rl+l)-s-(l+ 2, and (71;') = (n+L)(n+f- L)- - - (L+~)  
n! n! . It 

n+l+l)  t hen follows that (":"Tl) = ("Tl) . &- = (nT1)  (1 + a) . But because 1 2 1, (1 + &) 2 
( 1  + n). The inequality now follows. O 

Proposition 4.2.7. Suppose that X is a set of points in genen'c position in Pnl x . x P n k  

with k > 1 and 1x1 = s > 1. Then depthR/Ix = 1. 

PROOF. By Corollary 4.2.2 we know depth R/ lx 2 1. We show that eqiiality holds. 

Without loss of generality, we assume that ni < n2 5 . . . < nk. Let 1 be the minimal 

integer such 

Claim. I f j  - 

Proof of the 

If jl > l  

that ("'T') > S .  Then 

E P@ and j - > ( l  - 1.0, ... 'O). then H x ( j )  - = S .  

Claim. There are two cases to consider: (1) ji > 1 - 1. and (2) jl = 1 - 1. 

- 1. then ("'2") 2 ("l:'). Thus 

and hence, H x (  j )  - = S .  

So? suppose ji = 1 - 1. Since j - > ( 1  - 1.0,. . . O). there exists m E {2 , .  . . . k} such that 

j, > O. Since nl 5 n,, we have the foHowing inequalities: 

By Lemma 4.2.6, we also have ( " l f i ' )  (ni + 1) 2 Hence. 

Therefore, Hx( j )  - = s, as desired. O 

By Lemrna 2.2.12 t here exists a non-zero divisor, say z, of R/ lx such t hat deg L = e l .  

Let J = (h. L ) .  From the short exact sequence 

O + ( R / I x )  (-1. O,.  . . , O )  3 R/Ix -+ R/( Ix ,  L) = R / J  + O 
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it follows that the Hilbert function of HRI J is 

wiiere H x ( j )  = O if j  2 Q. - - 
Fkom the claim, it follows that if j > (1.0. . . . , O), then - 

On the other hand, if j = (1,0,. . . ?O). then - 

Hence, t here exists an element F E RI,, siich that O # F E RI J .  

We claim that all the non-zero elements of R / J  are aniiihilated by F.  and hence, 

depth R / J  = O. So, suppose that G E R is stich that O # G E R / J .  Without loss of 

generality we can take G to be an ~ ~ - h o m o ~ e n e o i i s  element. with deg G = (ji . . . . . jk) > Q. 
We need to check that F G  E J .  Now degFG = (jl + l , j 2 , .  . . .jk) > ([?O.. . . ,O). Since 

HRI J (jl + l ,  j2, . . . . jk) = O .  if f~ilows t hat FG G EJ. i.e.. G is annihilated by F. Ttius. 

depth R / I x  = 1. O 

Remark 4.2.8. F'rom the above proposition it follows that a set of s points in generic posi- 

tion in P l  x . x P k  with s, k > I is not ACM because depth R / I x  = L < K- dim R/Ix  = k. 

By the Auslaxider-Buchsbaum formula, sets of points in generic position will also have the 
k 

Iargest possible projective dimension, specificdly. proj. dimR R/ lx = C ( n i  + 1) - 1. We 
,= 1 

need to omit the case that 1x1 = s = I in the previous proposition because a point is a 

complete intersection. and hence, is ACM. 

3. Hilbert Functions of ACM Sets of Points in Pnl x ... x P k  

Theorem 2.3.10 characterizes the Hilbert fitnctions of sets of distinct points in P. 

We r e c d  that if H : N + N is a numerical function, theu H is the Hilbert function 

of a set of distinct points in P if and only if the first difference functioa AH, where 

h H ( i )  := H ( i )  - H(i - 1) for dl à E M. is the Hilbert function of a graded artinian 

quotient of k[x . . . . x,] . This result was first demonstrated by Geramita, Maroscia, and 
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Roberts [19] (also see CoroIIary 2.5 of Gerhta, Gregory, and Roberts [le]). The proof of 

the necessary condition relies on the fact that any set of distinct points X C iP is ACM, 

and hence, there exists a regular sequence of length K- dim R/ lx = 1 in RI I x .  As we saw 

in the previous section, sets of points in Pl x . . x P k  need not be ACM. so we do not 

expect a similar result for arbitrary sets of points in Pl x . x Pnk. However, we will show 

in this sectiou t hat if we restrict to the ACM sets of points in Pl x - - x F k  . an arialogous 

result holds. We begin with a preparatory lemma. 

Lemma 4.3.1. Let X be a set of distinct points in Pl x x Pnk and let R / l x  be the 

N~ -gmded coordinate ring associated to X .  Suppose that L i , .  . . . Lt give rise to a regular 

sequence i n  R / Ix  with t 5 k .  Furthemore, suppose that deg Li = et .  where ei is the ith 

standard basis uector for P('1. Then there e n s t ~  an 1 E W such that 

PROOF. Because L i ,  . . . , Lt give rise to a regular sequence in R / I X ,  and because deg L, = 

e, for 1 5 i < t t  we have the foiiowing short exact sequences wit h degree (O, . . . , O )  maps: - 
k 

O + ( R / I ) ( - 1 0 .  0 5 R/Ix + R / J I  + O 

O + ( R )  0 - 0 .  0 5 R / J I  -t R/J2 - O 

where Ji := ( I x ,  L I ? .  . . , L i )  for i = 1,. . . . t .  

We derive a formula for dimk(R/Jt)  - = dimk(R/( ix ,  L i .  . . . . Lt ) ) - for each tuple = 

(il,. . . ,ik) E RIk from the short exact sequences. Specifically. we have 

where we take dinik(R/Ix)i = O if i 2 o. 
For each integer 1 5 j 5 t ,  set [, = Irr,(X) 1. By Corollary 3.2.4. if ij 2 l j .  then 
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Hence, if ij = l j ,  t hen 

This fact implies that & ,... -1, ,... ,O = ( I x .  L i .  . . . . Lt )o  ,... -1, ,...,O. or equividently, the ideai 

( x ~ , ~ , .  . . . xj,,,, )'J C ( I x ,  L I . .  . . ! L t ) .  Since this holds true for each integer 1 5 j < t' there 

exists an integer 1 >> O such that 

This is the desired conclusion. Cl 

Lemma 4.3.2. ([51] Lemma 3.55) Let p be a prime ideal of a commutative ring A? und 

let I l ,  . . . , In be ideais of A. Then the folfouring are equivaient: 

( 2 )  1, C g for some j w-ith I 5 j < rr. 
n 

(ii) n Ii p. 
i= t 

Proposition 1.3.3. 5 q p s c  thrrt X C - Ft  x . x Pk io 22 -AC-41  et cf d l s t i ~ c t  p?'n!,c, 
- 

Then there exzsts elements E l ,  . . . , Ls in R!Ix such that L i , .  . . . Lk give rise to a reguiar 

sequence in R / I x ,  and deg Li = ei ,  where ei is the ith standard basis vector of P. 

PRUOF. By Lemma 2.2.12 there exists a form L L  E R such t hat Zi is a non-zero divisor 

of the ring R / I x  and deg L i  = e l .  

So, suppose that t is an integer such that 2 5 t 5 k and that we have shown that there 
- 

exists forms El. .  . . Lt- i  in R / I x  such that deg L, = ei and such that L i . .  . . . Lt-1 give rise 

to a regular sequence in R / I x .  To complete the proof. it is sufficient to show that there exists 

an element Lt E Re, such that Et is a non-zero divisor of the ring R / ( I x .  Li, . . . , Lt-  1 ). 

Let ( I x ,  L i ,  . . . . Lt, 1 ) = Q 1 n* .nQr be the primary decomposit ion of (lx? L 1 ,  . . . , Lt - 1 ). 

Set pi := JiS; for i = 1. . . . , r. Then the set of zero divisors of R / ( I x T  L I , .  . . . LI- 1 ), de- 

noted Z ( R / ( I x ,  L 1  ! . . . ? L t , i ) ) ,  is precisely the elements of 
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We want to show that Z(R/(Tx, Li, . . . . Lt - 1 J),, (R/(rx, L 1 ,  . . . ! Lt- 1 J J e t ,  or equiva- 
r 

lently. U(pi),, Ç Re,. If we can dernonstrate that (p i ) , ,  S ReI for each i, then we can use 

Lemma 2.2.11 to show that U(gi)et S Re,.  It would then follow that there exists a form 
i = l  

Lt E Re, such t hat Et is non-zero divisor in R/ ( lx ,  L 1. . . . . Lt - 1 ) . 

So, suppose there exists an i in (1, . . . . r ) such that (pi),, = Re,, and hcnce, the ideal 

( z t . 0 , .  . . . xt,nt ) C pi. BY Lemrna 4.3.1 there dso  exists a positive integer 1 such that 

The ideal pi also coiitains the ideal I x ,  and hence Ip,  fl . . . n Ip, C pz where Ip, is the 

prime ideal associated to the point of P, E X. By Lemma 4.3.2. at least one of the p r i ~ e  

ideals Ipl  , . . . . Ip, is contained in p,. We assume, after a possible relalielling, that Ip, C p,. 

By Proposition 2.2.7 we have 

where deg Lm,, = e, . But then, since Ip, C pi and (r i,o. . . . . xi.n, ) C pi, the prime ideal 

is containeci within p i  The hsigit of t i r  prime ideai p ir h R ( p )  = (& i i i )  + t. and 
i= 1 

t herefore, hta (pi) 2 

On the other hand. because X is an ACM set of points. the ring R / ( I x ,  L .. . . , Lt- 1 )  

is Cohen-Macaulay by Lemma 4.1.18. Since the p-homogeneous ideal ( I x ,  L .. . . . Lt- l )  

is also homogeneous with respect to the usual Ngrading, we can use Theorern 4.1.1 1 to 
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compute the height of ( I x ,  L 1,. . . . Lt- 1): 

Because pi E A s s R ( R / ( I ~ ,  L I . .  . . , Lt-l)), from Theorem 4.1.1 1 it follows tliat 

But this is a contradiction. Therefore (pi),, C Re, for al1 i = 1, . . . , r. O 

We can generalize the notion of a graded artinian quotient to an ~ ~ - g r a d e d  artinian 

quotient in the natural way. 

Definition 4.3.4. An N~-homogeneoiis ideal I C R = k[xiqo, . . . .xi .,, . . . . . xi.0, . . . . xi.,,,] 
is an artinian ideal if any of the following equivalent statements hold: 

( i )  K -  dim R / I  = 0. 

(ii) fi /?= (xlV0,. .. . ~ 1 , ~ , , .  .. ,z~,o?. . . .x>tvnr). 

( i i i )  For each integer 1 5 à 5 k, there exists a positive integer ti such that the ideal 

( x i , ~ , .  . < ~ i . n , ) ~ '  C 1- 

(iv) H R I l ( i l i O , .  . . '0) = O for ail i l  » O. HRII(O. i z ,O . .  .. .O) = O for al1 i2 » O, ... . and 

HRII(O. . . . , O .  i k )  = O for al1 ik » 0. 

A ring S = R/I  is an Fik-gmded artinian quotient if the @-homogeneous ideal I is an 

artinian ideal. 

Remark 4.3.5. An IVk -graded artinian quotient of R is always Cohen-Macaulay. Indeed. 

if R / I  is such a ring, then O 5 depth RI1 5 K- dim RII  = 0. 

Corolary 4.3.6. Suppose that W is an ACM set of distinct points in iF'" x . - x !P with 

Hilbert fvnction Elx. Then 
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where H x ( i l , . .  . . il.) = O 2 ( i l  , . . 2 2 Q, is  the Hilbert function of some Nk-gmded 

artinion quotient of the ring k [ ~ ~ , ~ ,  . . . , zl,,, . . . . , x k , ~ ,  . . . , zk,,,]. 

PROOF. By Proposition 4.3.3 there exist k forms L i , .  . . , Lk that give rise to a regular 

sequence in R/Ix  and which have the property that deg Li = ei. After making a linear 

change of variables in the z l , , ' s .  a linear change of variables in the ~ - 4 , ' s .  etc.. we can 

assume that { L i . .  . . , L k }  = {qO,. . . . x ~ , ~ } .  Set J := ( I x ,  q0.. . . , Q , ~ ) / ( X ~ , ~ ,  . . . .xk,o). 

Then J is an ideal of S = k [ x i Y l , .  . . ,XI,,, . . . . . x k , ~ . .  . . ,xk,.,]. Set A := S / J .  Then 

Using the fact that z 1.0. . . . . zk.0 give rise to a regular sequence in R/ lx we have k short 

exact sequences of graded R-modules with degree ( 0 . .  . . ,O) morphisms: - 
k 

where Ji := ( I x ,  x1,o. . . . , for i = 1. . . . . k. F'rom the k short exact sequences it follows 

t hat 

where H x ( i )  = O if i 2 Qo for al1 ( i l . .  . . . i k )  E N ~ .  That is, AHx is the Hilbert function of 

the @ -graded ring A. 

By Lemma -1.3.1 there exists 1 > O such that (zl,o,. . . : z ~ , ~ , : .  . . :xk,o, .  . . .xkBnr) '  C 
( l x ,  x lqO,  . . . y z k , ~ ] ) .  Therefore, 

and hence, A i R / ( I x ,  z l , o ,  . . . ? zk,-J) is an art inian quotient. 0 

In light of the previous corollary. it is uatural to ask if the converse is true. We show 

t hat this is indeed the case. To demonstrate that the converse statement holds, we need to 

describe how to lift an ided. 
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Definition 4.3.7. Let R = kk1.0,. . . ,xi7,, , . . . ,xk,oo.. . ,xk7,,I and S = k [ ~ ~ , ~ ,  . . . .xi,,, , 
. . . , z k ,  1 , .  . . . xkInk] be Plk-gaded rings. Let I C R and J C S be IVk - homogeneous ideals. 

Then we Say I is a lifting of J to R if 

( 2 )  I is radical in R 

(iii) xi,o, . . . , xk,o give rise to a regular sequence in RI?. 

If J is a monomial ideal in S = k[xt.. . . , +,] (here S is considered as an Kgraded 

ring), then Hartshorne [32] was the first to show that J could be lifted to an ideal I C R = 

k[xl Y . . . . z,: u 1. This result was reproved by Geramita, Gregory. and Roberts (161 to show 

that if J C S is an artinian monomial ideal. then the lifted ideal I is the ideal of a reduced 

set of points in P. Recently, Migliore and Nage1 1401 have generdized the construction 

iised by Geramita. et al. [le] to show that after making some general choices, if J is a 

iiionomial ideal of S. then J can be lifted to an ideal I C k[zi . . . . . r,. ui , . . . . ut] for any 

t (cf. Theorem 3.4 of (401). They also show. among other things. how some properties, for 

example the graded Bet ti numbers, are passed from J to the lifted ideal 1. 

By using the method of (401 we will construct from a monomial ideal J iri S = 

k[z i, . . . , 2  1 , . . . , ~ h ,  1 ,  . . . , Xkvnr] an N~ - homogeneous ideal C R = k[z . . . r 1 ,n ,? , . . . 
. . . , x p l o , .  . . ? +>t ,nk]  that has properties (ii) and (iii) of Definition 4.3.7. The main idea is 

to use [40] to make a homogeneous ideal from .J that is dso  ~~- t iorno~eneoi i s .  We begin 

hy giving some notation and by describing the construction and results of [40] that we will 

require. 

Let N = {O. 1.2.. . . }, and suppose that S and R are as above. but that they are N1- 

graded. For each indeterminate xi, with 1 5 i 5 k and 1 5 j 5 ni. choose infinitely many 

linear forms Li,,,[ E k[xia, z 1 7 0 ,  q , o .  . . . ~ ~ , ~ j  with i = 1.2. . . . . We only assume that the 

coefficient of z1j in L i j q l  is not zero. The infinite matrix A, where 
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is called a lifting matriz. By usiug the lifting matrix. we associate to each monomial 
0 1 , ~  al . r i  ak.1 a k . n k  m = x l B l  + - - x l  ,,t, - - - x ~ , ~  . . . x t , n k  of the ring S the element 

Note that depending on our choice of Li,J,l's, 5 may or rnay not be ~ ~ - h o m o ~ e ~ i e o u s .  

However. 5 is homogeneous. If J = ( m l ? .  . . . m,) is a monomial ideal of S, thm we use I 

to denote the homogeneous ideal (Ri,. . . . TE,) C R. Migliore and Nagel gave the following 

propert ies. among ot hers. about S / J  and R/  I .  

Proposition 4.3.8. ([40] Corollary 2.10) Let J = (mi .  . . . , rn,) C S be a monomial ideal, 

and let I = (ml.. . . .Er) be the ideal constnicted from J via any lifting rnatrlz. Then  

( i )  S/ J i s  CM if and only if RI I is CM. . . 

(ii) (17 Xl,O,. w d  2 J 
(ZI .O? .  . . - z k , 0 )  

(iii) xl,o, . . . . z k . 0  give rise to  a regular sequence in RII. 

Remark 4.3.9. Note that the construction of I h m  J that we have given abovc does 

not guarantee that I is a lifting of J since we do uot know if i is reduced. Migliore and 

Nagel 1401, however, ais0 give some condit ions on to ensure t hat I is also reduced. 

We wiil now show how to lift a monomial ideal of S to an Pik-hornogeneous ideal of R. 

The main idea is to pick the Li,j ,r~ witli euough care so that X is also PP-homogeneous. 

We begin by describing the needed notation. If 
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then we define xL1 - . X? := 5:' . xat'"' "'1' . . . 2 % * ~ .  Since xfl . . . x:& is @- 
1 ,ni ' ' ' *k,l ktnk 

homogeneous. deg x:' . X? = (lal 1, . . . , lai). Let P be the set of al1 monomials of S 

including the monomial 1. It foliows that there exists a bijection between P and Wl x . x 

W"k given by the map xfl . . ,Y? C) ( a l ! .  . . ,a). We also partially order the elements of 

PI"' x . x W k  as foilows: If ( 8 , :  . . . , &) := ( ( b l Y l , .  . . , bi,,, ). . . . . (bkV1, . . . , bk,,,)), then 

wesay tgl ,... ,CI*) 5 (2 ,,... ,&) ifaiqj < b i j  for ail i . j  with 15  i 5 k and 1 6  j 5 ni. 
The statement ( g l , .  . . ,a) 5 ( P l ,  . . . , &) is equivalent to the staternent that xF1 . . X? 

P a 

divides xfl . X? . 
Q 

To each m = .Yi' - . . ,Y? E P we associate the following Pik- homogeneous forrn of R: 

We observe that d e g E  = degm = ( I c Y ! ~  .... ,[al). If J = (ml ,... .m,) is a monomial 

ideal of S, then we use I to denote the ~ ~ - h o r n o ~ e n e o u s  ideal (?El, . . . . 5,) C R. Then, by 

Proposition 4.3.8, we have 

Proposition 4.3.10. Suppose J = (mi.. . . . m,) as a monomial ideal in the Nk -gmded 

ring S .  Let I = ( E l . .  . . .Zr) le the IVk -hornogeneous ideal of R constructed fmm J via the 

method descn'bed abozle. Then 

(4 
( i i )  

(iii) 

S / J  is  CM i f  and ontg if R/I is CM. 
(1,  x l , ~ , .  . : z k . 0 )  _ 

( ~ 1 ~ 0 ,  .- ~ x k . 0 )  
x l , ~ , .  . . . xk.0  gzue rise to a regufar sequence in R/I .  

PROOF. The crucial point is to reaiize that our construction of E Erom a monomial 

rn E S is identical to the method described by Migliore and Nagel [40] using the lifting 
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matrix 

The conclusions now follow from Proposition 4.3.8 because this proposition describes the 

properties of ideals constructed fkom a monomial ideaI J via any lifting matrix. O 

TO each tuple ( e l ? . . .  ,%) = ( ( u ~ J , . . .  .ai,,,,) ,... ,( a k . ~ ~  ... . a ~ , , , * ) )  ERPI x --• x PP* 

we associate the point ( g l , .  . . .a) E Pnl x . . x Pn* where 

We defiue deg(ct l l . .  . , a k )  := degxF1 ---Je = ( 1 ~ ~ ~ 1 , .  .. .lgkl). We note that if m = 

xp1 .. . A'tk E P and if E is constructed from x F ~  . . ,Y? as above. then E((crL, .  . . .a)) # 
O. The following lernma is also a consequence of the definition of (9, . . . . %) and K. 

Lemma 4.3.11. Let rn = xF1 . x:' E P .  Then 

(i) =((El , .. . $)) = O if and onh if (gl,. . . . %) É ( E L , .  . . . &.), that is. some coordz- 

nate of (@ . . . . . &) is strictiy less thon some coordinate of (al. . . . . a). 
-1 

( i i )  TE((&. . . . . &)) = O for al1 (@,, . . . . & ) "th the pmpertg: there en'sts an integer i 

in 1 5 i _< k such that the tuple B .  -4 E (el,. . . O &) sutiSfes I&I = ,8i,~ + - - . + fi,,, 5 
a i , l  + . - + ai,,, = leil (ezcept for the case that & = gi). 

PROOF. Statement ( 2 )  foUows immediately from the construction of m. 

(ii) Suppose t hat the point (8, . . . &) E PL x . - - x P k  has the property t hat the 

t uple E (Pl, . . - , 8,) is such t hat & # ai and tg, 1 5 Ini 1. Then. because -1 B., 3 E Wt 

there is B i j  with 1 5 i < ni in the tuple 8. -1 := (Bill, ... .A..,) such that P i j  < ai,j 
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where ai ,j is the jfh coordinate of 3. But then (gl, . . . ,a) $ (El . .  . . , _* /? ). and so by fi), 

77w1,. - -  ?P,H = 0. O 

If J is a monomial ideal of S, then let N be the set of monomiais in J. Set R/I := P\N. 

The elements of hl are representatives for a k-basis of the Pik-graded ring S / J .  Set 

- 
M : = ( ( g  l y . . . , ~ ) ~ P 1 x - - - x P k  / , Y f 1 - - - X 2 ~ M } .  

We mimic the proof of Geramita. et al. [16] to show: 

Lemma 4.3.12. Let J = (rn i .  . . . .7n,) be u a monornial ideal of S ,  and let I = 

(El , .  . . ,Zr) R and M be constructed as above. Theri 

r = {j E R 1 f ( ( g l  .... .nk)) =O, (gl .... ,%) E ;CT) . 

In particular, I is a reduced ideal. 

Because the proof of this lemma is very technical, we will postpone the p;aof until the 

last section of this chapter, Section 5. As a corollary. we have 

Corollary 4.3.13. Suppose J = (ml , .  . . . m,) is a monornial ideal in the @ -gmded ritkg 

S.  Let I = (El.. . . ,Er) be the ~ ~ - h o r n o ~ e n e o u s  ideal of R constructed /rom J via the 

rnethod described above. Then I is a lifting of J to R. 

We now state and prove the main result of the chapter. 

Theorem 4.3.14. Let H : @ + N be o numerical function. Then H is the Hilbert 

function of an ACkI set of distinct points in  Pl x . . . x P k  if and onlv if 

wliere H ( i i ?  . . . . ik) = O if ( i l ,  . . . ik) 2 Q, is the Hilbert furrction of some ~ " ~ r n d e d  

artinian quotient of S = k[x l , i .  . . . y XI,,, ! . . . , ~ k . 1 ,  . . . . X b t n i ] .  

PROOF. Because of Corollary 4.3.6, we only need to show one direction. So, suppose 

A H  is the Hilbert hnction of some I@-gaded art inian quotient of S. There then exists an 

~ ~ - h o m o ~ e n e o u s  ideal J C S with A H ( - )  = H s / j ( i )  for al1 i E fVk. By replacing J with the 

leading term ideal of J (see Section 1 of Chapter 2). we can assume t hat J = (ml . . . . m, ) 

is a monomial ideal of S. 
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Let I  = (El , . . . , m,) C R, where mi is the #-homogeneous form constructed from 

the monomial mi via the method described after Proposition 4.3.8. By Proposition 4.3.10: 

(1, si ,O, . . . , X ~ , ~ ) / ( X ~  . . . , zkto) 2 J and zi,o, . . . . xk.0 give rise to a regular sequence in 

R/I .  Because deg = ei, where ei is the ith standard basis vector of P. we have the 

following k short exact sequences wit h degree (0, . . . , O )  maps: - 
k 

where Ji := (I ,z l ,o , .  . . . for i = 1.. . . . k .  Furthermore, 

We then use the ti. short exact sequences to cornpute the Hilbert function of R / I .  This 

calculation will show that H(ii , .  . . , i t )  = H R I I ( i l i . .  . ,iL) for al1 (il.. . . ,it) E N'. 

To complete the proof, we only need to  show that I is the reduced ideal of a finite set of 

points in Y"' x . . . x Pnk . It :triil thcn fdow from Propcsition 4.3. !n that t his set nf points 

will also be an ACM set of points because S/J is artinian, and hence, CM. If N is the set 

of monomials in J, then hl = P\N is a finite set of monomials because the ring S/J is 

artinian. Hence 

is a finite collection of points in Pl x . x P t .  By Lemma 3.3.12. the ideal I is the reduced 

ideal of the set of points M C Pl x . . x P k .  O 

Remark 4.3.15. Rom Theorem 4.3.14, we see that characterizing the Hilbert functions of 

ACM sets of points in PL x . x P k  is equivalent to characterizing the Hilbert functions 

of mdti-graded artinian quotients of . . . Xi,nl  :. . . , xa,i, . . . , xk,nr]. Since we do 

not have a theorem like Macaulay's Theorem (Theorem 2.1.2) for ~ ~ - g a d e d  rings, the 

above theorem translates one open problem into another open problem. However, we will 

show in the next section that there is a Macaday-type theorem for bigraded quotients 

of k[xi, yl,. . . ,y,] and ~ k - ~ r a d e d  quotients of ~ [ x ~ J , x ~ , ~ ,  . . . ,x~J]. As a consequence, 
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we can explicitly describe al1 the Hilbert functions of ACM sets of points in P' x Pm (cf. 

Corollary 4.4.15) and P' x x P' (cf. Corollary 4.4.18) for any positive integer k. - 
k 

In Proposition 4.2.7 we showed that if X is a set of points in generic position in P l  x 

- .  x P n k ,  then depthR/fx = 1. Since K-dimR/Ix = k, if A: > 1, then X cannot be  an 

AChI set of poirrts. We show that this result is also a corotlary of the above theorem. 

Corollary 4.3.16. Let s, k E N be such that S. k > 1. If X is a set 0 1 s  distinct points in 

Pl x - x P n k  that as in generic position, then X is  not an ACM set of points. 

PROOF. Without Ioss of generality, we assume that nl 5 7 ~ 2 .  Let 1 be the minimal 

integer such that ("'TL) < s but ("'2:') 2 S .  Since nz 2 n t ,  lrorn Lenima 4.2.6 it follows 

t hat 

Because W is in generic position, the above inequalities imply: 

~ ~ ( 1 . 0  .... , O )  = min { s, (nl:l)} = (yL), 

HX(l, 1,. . . .O) = min (S. ') ("': ') ) = S. 

~ ~ ( l . 0 . .  .. . O )  = min {S. (n~::: l )  (n2: ')} = s. 

If X is an ACM set of points, then AHx(it . .  . . . ik)  2 O for al1 ( i i , .  . . , i k )  E Pik. But from 

the ahove d u e s  for &, one fin& that 

Therefore X cannot be an ACM set of points. 
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Remark 4.3.17. We need to omit the case that s = 1 in the above coroIIary because a 

single point is a complete intersection, and hence, ACM. 

4. The Hilbert hinctions of Some @ -gradeci Artinian Quotients 

The goal of this section is to characterize the Hilbert functions of F@-graded artinian 

quotients in two special cases. The first case is the case that S = k[xi, y1 . . . . , y,] where 

deg xi = (1,O) and deg y* = (0.1). The second case is the case t hat S = k[x L ,  x2, . . . xi] 

wit h deg xi = ei, where ei is the ith standard b a i s  vector of Wt , for any k. As a consequence, 

we can completely characterize the Hilbert functions of ACM sets of points in either IPL x iP 
for any positive integer rn or in P' x x P' for any positive integer k. - 

k 

4.1. Artinian Quotients of  k[xl, y l ,  . . . . y,] and their Hilbert Punctions. If S = 

k[xi, . . . . y,] with deg xi = (1: 0) and deg Yi = (0' 1), then in this section we characterize 

not only the Hilbert functions of the bigraded artinian quotients of S, but the Hilbert 

functions of al1 bigraded quotients of S. As a consequence. we can determine if a numerical 

function H : @ + N is the Hilbert function of an ACM set of points in P' x P. 

Remark 4.4.1. Suppose that T = k [ ~ ~ . t / ~ ,  . .. .y,] withdegyi = (1.0) anddegr i  = (0, l), 

that is, T is the coordinate ring associated to iF x Pl. The ring S iind T are identical except 

that we have swapped the degres of indeterminates. Hence, if I is any l@-homogeneous 

ideal of S, then I can ais0 be considered as an M-homogeneous ideal of T. Because we 

have switched the degrees of the indeterminates, it follows t hat 

Hsll(i. j )  = H T I I ( j ,  i) for al1 (2 .  j )  E N2. 

Hence, to classify the Hilbert functions of quotients of T, it is enough to classify the Hilbert 

functions of quotients of S. Furthermore. any result that we give about the Hilbert functions 

of sets of points in PL x F is &O a result about the Hilbert functions of sets of points in 

IP x PL by using the above identiûcation. 

To characterize the Hilbert functions of quotients of S ,  we need to r e c d  some more 

general results about the Hilbert function of a bigraded ring. These results are due primarily 

to Aramova. Crona, and De Negri [Z]. 
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Suppose t hat S = k[x . . . , x,, y1 , . . . . y,,,] wit h deg xi = (1 ,O)  and ùeg yi = (0,I). 

If x<;' - z m  y:1 T J ~  is a monomial of S. then we write this monomial as ,-%Y& where 

a := (ai,. . . ,an)  E W and := ( b i , .  .. , b , )  E P. Note that d e g ~ ~ ~ o  = (Io!, Io!). We - 
let >, denote the degree-lexicographical monomid ordering on S induced by X I  >, x2 >, 

. . . >, x, >, y1 >, . - >, y,. Similarly? we let >, denote the degree-lexicographical 

monomial ordering ou S induced by y1 >, >y - -  >y y, >y ri >, - -  >, r,. Li'e let 

LM,,, be the set of al1 monomials of S of degree ( 2 ,  j). 

Definition 4.4.2. A subset of monomials L C M i ,  is called bilex if for every mononiial 

PY~ E L, the following conditions are satisfied: 

(i) if X E  E MQ and .Yg >, XE. then X ~ Y ~ E  L. 

(ii) if yd E M o j  and Y -  >, Y&, then X E Y ~  E L. 

Definition 4.4.3. A monomid ideal J R is called a bilex ideal if .JI, ,  is generated, as a 

k-vector space, by a bilex set of monomials for every ( 2 ,  j) E  p. 

For every integer 1 5 1 < IMi,jI, there exists a bilex subset L C hli,, with ILI = 1. 

Indeed, order the elements of Mi ,j with respect to the monomial ordering >,, and let L be 

the 1 largest elements of Mi, jli,. Suppose that X ~ Y &  E L, and suppose t hat X' >, XE. Then, 

because >, is a monomial ordering, X C Y ~  >, P Y ~ .  Since L consists of the ILI Iargest 

elements of M i j  with respect to >,, ,PY~ E L. A similar argument will verify the other 

condition of Definition 4.4.2 is satisfied, and thus, L is a bilex subset of size 1. We give this 

special set a name. 

Definition 4.4.4. If L is any bilex subset consisting of the IL1 largest monomials of iCT,,j 

with respect to the ordering >=, then we cd1 the bilex subset L the lexsegment with respect 

tu >,. 

Remark 4.4.5. Suppose that the elemeuts of Mij are instead ordered with respect to >y. 

For each integer 1 < 1 5 IMi.jll the subset L' of M i j  consisting of the 1 largest elements is 

a bilex subset with respect to the ordering >y. that is. if X S Y ~  E L', then 

(i)  if XE E Mi,o and X E  >, X4. then x ~ Y ~ E  L. 

(ii) if yd E and k'd >, Y L .  then x ~ Y ~ E  L. 
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But note that if Xg,XE E Mi,o, then Xi X E  i h n d  only if XE >, XE. Similady, if 

Y&, Y A  E Moj, then >Y if and only if yd >= Yh. So L' is also a bilex subset of M, 

wit h respect to the monornial ordering >,. or simply, L' is a bilex set. For this reason, if L 

is a bilex subset of M i ,  that consists of the ILI largest elements of AdivJ with respect to >Y? 

then L is a bilex set, and we Say L is the lexsegment with respect to >y. 

Exarnple 4.4.6. If l is an integer such that 1 5 1 5 1 LM, I? then t h e  may be more than one 

bilex subset of Mij with cardinality equal to 1. For example, suppose S = k[xl, xz, yi, y?]. 

Then MiTi = {zigl,  xlyz ,z2yl ,  x 2 w } .  The subsets Li = {z ly l , z l / 2 }  and Lz = {xly17 x2y1} 

are two different bilex subsets of fili, that contain tivo elements. Note that Li is the 

lexsegrnent with respect to >, and L2 is the lexsegrnent with respect to >,. 

Definition 4.4.7. If L is a bilex subset of iCI,,j. then we denote by (L) the k-vector 

subspace of Siqj spanned by the elements of L. We denote by So,, (L) the k-vector subspace 

of spanned by the elements of the set {FG F E Soqi and G E (L)}. We define 

SI (L) similarly. 

Lemma 4.4.8. 

( a )  Let L be a fexsegment with respect to >, in Mi , j .  Define Y L = {y 1 .  . . . . y,) L := 

{ ~ J ~ X E Y ~  1 1 5 i < rn, X"Y~ E L}. Theri 

( 2 ' )  Y L  is a lexsegment with respect to >, in hIi,J+l. 

(ii) Y L  is a monomial basis for So,i(L) as a k-vector subspace of Si,j+l. 

( b )  Let L be a fexsegment with respect to >Y in 114,,. Define XL = { x i . .  . . , x , ) L  := 

{x~x'Y' 1 1 5 i < n. X E Y ~  E L}. Then 

( 2 )  Xt zs a f e z sepen t  with msped J!O >Y tn Mi+r , j -  

(ii) X L  is a monomial basis for Sl,o(L) as a k-vector subspace of 

PROOF. For ( i )  of ( a ) .  this is Lemma 4.6 of [2]. The second conclusion of (a) is imme- 

diate. The proof of ( b )  is the same. O 
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If i and a are two positive integers, then we recaii that the 2'-binomial expansion of a is 

the unique expression 

w here ai > ai- 1 > . . > a, 2 j 2 1. The function <'> : W + N is defined by 

where a,, ai- 1 . . . . cij are as in the i-binomial expansion of a. Wit h t his notation we have: 

Proposition 4.4.9. Let S = k[xl, . . . , z,. y1 , . . . , y,]. 

( a )  Let L be a lexsegment with respect to >, in hli,,. Let 

be the Eucl*dean division of dimk S,, / (L) by (m-j +;). Then 

( 6 )  Let L be a lexsegment with respect to >y in Let 
i .\ 

Be the Euclidean division of dimk S,, , /(L) b y  ("-:+'). Then 

PROOF. This is Proposition 1.16 of [2]. O 

With these definitions and results, among others, Aramova, et al. were able to place 

bounds on the values of the Hilbert function of a bigraded ring S / I .  This result is given 

below. 

Theorem 4.4.10. ([2] Theorem 4.18) Let I be a bihomogeneous ideal of the bigmded ring 

S = k[zl, . . . zn. y!?. . . gm]. Also, let HslI( i ,  j )  = dimk(S/I)i, be the Hilbert h n c t i o n  of 

S/I. M ~ r e o v e r ~  let 
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be the Eudidean division o f K s l I ( i ,  j )  by (y*) and (*;LM), respectivefy. m e n  

We our now in position to prove the first major result of this section. 

Theorem 4.4.11. Let H : + N be a numerical finction. Then there exists a 

bihomogeneous ideal I Ç S = k[xl, yl, . . . .hl such that the Hilbert function HslI = H if 

and on19 if  

( 2 )  H (O, O) = 1. 

( i i )  H ( O ,  1 )  < m, 
(iii) H (i + 1. j )  5 H ( i .  j )  for al1 ( 2 ,  j )  E f@, and 

( i v )  H ( i .  j + 1 )  5 H ( i ,  j ) < j >  for al1 ( 2 .  j )  E Ff with j > 1 .  

PROOF. Let I be the bihomogeneous ideal of S with Hilbert function ilslI = H .  Then 

assertions (i) and ( i i )  are immediate. For ( i i i ) .  we observe that ("-!+') = ('-:+') = 1 for 

~ a r h  pnsitiw integer i. Hence. the Euclidean division of Hr!!( i . j )  by ('-,!") is 

From Theorem 3.410: it follows t hat 

To prove that ( i v )  holds. we need to first recall that 

If dimr I i j  = 0: then the Euclidean division of H s l I ( i . j )  by (m)+l) is 

Using Theorem 4.4.10 to calculate an upper bound for HslI( i .  j + 1 ) .  we get 



4.  THE HILBERT FUNCTIONS OF SOh4E Nk-GRADED ARTINIAN QUOTIENTS 9 1 

On the other hand, if dimk I i j  > O, then the Euclidean division of Hslr (i, j )  by ('"]'j) 

yields 

By applying Theoreru 4.4.10 we t herefore have 

This completes the proof t hat conditions (2)-(iv) are riccessary. 

To prove the converse. we require some lemmas that describe some of the properties of 

bilex subsets in S = k[q. y[, . . . .y,]. 

Lemma 4.4.12. Let Mi,, be the set of monomials of degree ( 2 .  j )  in S = k[zi, yi, . . . , gr/,,]. 

Then, for each integer 1 5 1 < 1 M i j  1, there is ezactly one bilez subset L C ll.I,,, with 1 LI = 1 .  

PROOF. Let L be the 1 largest elements of M l j  with respect to >,. Then. as noted 

earlier, L is a bilex set with 1 elements. Now suppose tbat there exists a bilex set L' C Mij 

aith L' f L, but IL'! = ;Li = !. 9ccwsc L' # L' thcre exists a monomial m E Let such that 

m L. Let 6 be any element of L. Then ni >, m. Because 6 . m  E Mt.1. we therefore 

have 

Since Lt is bilex, it follows that 5 f LI. Hence, L Ç L'. But then 1 = 1 LI < 1 L'1 = 1. O 

Lemma 4.4.13. Let Li ,  La be two bilex subsets O/ Mij in S = k[x 1. 41. . . . , y,]. If 

ILiI 5 IL21, then Li C L2. 

PROOF. The only bilex subset consisting of 1 Li  1 (respectively, 1 L2 1 )  elements is the bilex 

subset consisting of the 1 L 1 (respectively. 1 L21) largest elements of Mi,, with respect to >,. 
The conclusion follows Erom this observation. 

We now return to the proof of the theorem. Assertions ( 2 2 )  and (iv) imply that H(0 .  j )  5 
("-;+j) for al1 j. Tt follows bom (iii) that H ( i .  j) 5 H ( 0 .  j )  5 (m-:il) for ail (i. j) E Pf . 
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Let S = k[zl ,yi ,  .. . and let Milj  be the Clf') monomials of degree (i, j) in S. 

For e ~ h  (i, j) E PP, let L i j  be a bilex subset of M i j  consisting of [(m-:+j) - ~ ( i ,  j ) ]  3 O 
elernents. Because of Lemma 4.4.12, there is only choice for Lisj. 

Pmof of the Claim. A buis  for So , i (L iJ )  is the set of monomials YLi - l .  If we can show 

that lYLi j l  5 ILi,j+ll, it wodd then f0110~ £rom Lemma 44.13 that Y L i  ,j Li,j+i. or 

equivalently, So, i (L , j )  C ( L i j + i ) .  

Let dimk S i , j / ( l i . j )  = ( m - j + j ) q  + r be the Euclidean division of dimk Si , j / (L i , j )  by 

("-?+j). Because Li?, is also the lexsegnient with respect to >,. we calculate nom Propo- 
I 

sition 4.4.9 that 

Hence 

Thus IYLi,jl 5 lLi,j+ll desired. 

Similady, a basis for Sl ,o (Li , j }  is the set of monornials X L i J .  The set X L i ,  is a bilex 

set because of Lemrna 4.4.8. Moreover, since there is only one bilex set of size IXLi,,l, the 

set X Lilj must also be the Iexsegrnent with respect to >y. By wing Proposition 4.4.9' we 

calculate t hat 

Because lXLij l  5 1 Li+l,jl! we conclude from Lemma 4.4.13 that Si,o ( L i j )  C O 

Let I be the ideal generated by ail the monomials in al1 the bilex sets L i ,  where 

(2 '  j )  E @ . Since I is generated by monomials, i t is bihomogeneoiis. We daim t hat for every 

(i. j) E Pl I i ,  = ( L i a ) ,  that is, 1 is a bilex ideal. Indeed, let F E 1 be bihomogeneous 
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of degree (i, jJ . Then, either F E (L i I j )  and then cIearIy F E ri,;, or F = HG where 

G E (Li t j t )  with (i', j ' )  < (i, j) and H E Si-i. j - j t .  But from the above claini, it f0110w~ 

t hat 

Thus, F E I i j -  This then cornpletes the proof because the Hilbert function of S / I  is 

Corollary 4.4.14. Let H : N2 + N be a numerical function. Then H is the Hilbert 

fmction of a bigmded artinian quotient of k [ z l ,  y l ,  . . . ,y,] if and only if 

( 2 )  H(0,O) = 1 ,  

( 2 2 )  H ( 0 , l )  < m, 

( i i i )  I . ( i  + 1, j) 5 II(i. j )  iûr  d l  ( i ,  j) E Pl2: 

( iu)  H ( i ,  j + 1 )  5 H ( i . j ) < j 3  for aU (2 .  j) E Pf with j 2 1, 

(u)  there exists a positive integer t svch that H ( t t  O )  = 0 ,  and 

(oui) there em'sts a positive integer r such that H(0 .  r )  = 0. 

PROOF. Suppose that I C S = k [ x L ,  y 1 !. . . y,,,] is a bihomogeneous artinian ideal such 

t hat Hsll = K. Then conditions ( i ) - ( i v )  are a consequence of Theoreni 4.4.11. Assertions 

( v )  and (uF) follow fiom the  definition of an aftinian quotient. 

Conversely. conditions ( i ) - ( i v )  imply the existence of a bihomogeneous ideal I in the 

ring S = k[xt, yi, . . . . y,] such t hat the Hilbert function of S/ I is equal to H. The final 

two conditions would then imply that I is an artinian ideal. O 

By coupling the above corollary with Proposition 43-14? we get a complete description 

of the Hilbert functions of ACM sets of points in IPL x P. We express this formally as a 

coroilary. 
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Corona ry  4.4.15. Let H : @ + W lie a numeRcol fincfion. Then H is lhe Hiiherf 

function of an ACM set of points in IP1 x Pm if and only if the numerieal function AH 

satisfies conditions ( 2 )  -(?Ji) of Coroh-tj  4.4.14. 

4.2. Artinian Quotients of k[xI. . . . . zk] and the i r  Hilber t  F'unctions. Suppose 

that S = k[xi ! . . . , rk] and deg X i  = ei, where ei is the ith standard b a i s  vector of Nk . 
Just as in the previous section, we will show a stronger result by cliaracterizing the Hilbert 

functions of al1 quotients of S, not only the artinian quotients. 

T h e o r e m  4.4.16. Let S = k[xi:. . . zk]  be an l@ -gmded n'ng with deg xi = ei,  the i th 

standard basis vector of fYk.  and let H : Pik + N Ne a numerical function. Then there ezists 

a proper ideal I Ç S such that the Hilbert function Hs/[ = H i f  and only ij 

( 2 )  H ( O ? .  . . .O) = 1: 

( i i )  H ( i )  = 1 o r  O if Y > Q, and 
( i i i )  if H ( i )  = O ,  then H ( j )  - = O for al1 j - 2 i. 

PROOF. Suppose that I S S and that H s l f  = H. Then condition ( 2 )  is a consequence 

of the fart tha.t r Ç S .  Fnr ( i i ) :  wir rwall the definition of Hs;!(U: 

Heoce, Hslr (i) = 1 or O. Finally. if H s I l ( i )  = O. t his implies that 2;' . . . x t  E 1. or 

equivalently, Si C I because xi1 x: is a monomial basis for Si. - But tiien. if j - 2 i, then 

Sj C 1, that is, H s l r ( j )  = 0. - - 
Conversely, suppose that H is a numerical function that satisfies conditions ( 2 )  - ( i i i ) .  

If H ( i )  = 1 for al1 i E IVk. then the ideal I = ( O )  C S = k[;c i ,  . . . zi] has the property t hat 

Hsll = H .  

So, suppose H ( i )  # 1 for al1 i. Set 1 := { ( i l , .  . . , i k )  1 H ( i )  = 0)  . Note that I # Mk 
because Q # Z. In the ring S = k[xil.. . .xk], let I be the ideal I := ({zil x;* 1 i E I)). 
We c l a h  that Hsl i ( i )  = H(1) for all i E p. It is immediate that HsI f (Q)  = H(Q) = 1. 

Moreover. if H ( i )  = O? then HslI (i) = O because xy . . z;C E Ii C 1. Le.. S, - C I .  

So, we only need to check: if H ( i )  = 1. then Hsll(i)  = 1. Suppose H s l I ( i )  = O. This 

implies that x;' . - x: E I.  But because i $! Z' there is a monomial ~' . J$ E I with 
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j - E Z, such that 4' - $ divides zil - . +p. But this is equivalent to the staternent that 

j - 5 i. But this contradicts hypothesis ( i i i ) .  So Hsl l ( i )  = 1. CI 

Corollary 4.4.17. Let S = k[xl, . . . . zk]  be an Dlk q m d e d  ring where deg xi = e i ,  and 

let H : l@ + M be a numericol /unetion. Then H is the Hilbert function of an N~ -graded 

ortinian quotient of S if and on19 if 

( 2 )  H (0 , .  . . .O)  = 1, 

( i i )  H ( i )  = 1 or O if > ( O ,  . . . , O ) ,  

(iii) zf H ( 4 )  = 0, then H ( j )  - = O for all ( j )  - 2 (i), and 

( i v )  for each integer 1 < i 5 k ,  there ezists an integer t ,  such that H ( t i .  O , .  . . . O )  = 

H(0,t2.0 ,... , O )  = - - a  = H ( 0 , .  . . .O.  t k )  = O. 

PROOF. This result follows From Theorem 1.4.16 and the definition of an Fik-gaded 

artinian quotient of S. 3 

Corollary 4.4.18. Let H : IVk + N be a nume~col  function. Then H is the Hdbert 

junction of an  A C M  set of distinct points in P' x . x P' i/ and only AH sotisfies conditions - 
k 

(i) - ( i v )  of Corollary 4.4.17. 

Remark 4.4.19. It follows from the previous corollaries that H is the Hilbert function of 

an ACM set of points in P1 x P1 if and only if 

(é) A H ( i , j )  = 1 oro .  

(ii) i f  A H ( i .  j )  = O ,  then AH(i t ,  j ' )  = O for al1 (i'! j') E with (il. j') > ( i .  j ) ,  and 

(iii) there exists integers t and r such that A H  (t, O )  = O and A H  (O. r )  = 0. 

Gidhida, Maggioni, and Ragusa proved precisely this result in Theorem 4.1 and Theorem 

4.2 of [26]. 

5. The Proof of Lemma 4.3.12 

For this section we will use the standard notation ( i l , .  . . : & ? .  . . . i k )  to denote the tuple 

(i l ,  . . . , ii - 1 , ii+ , . . . . ik ) . In t his section we prove Lemma 4.3.12. The proof of t his lemma 

relies on the following lemma. 
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Lemma 4.5.1. Suppose thal R = k[x 1 . . . x 1 ,,, , . . . , x>t,o , . . . , Xkynk  1 and that R i s  

~ ~ - ~ r n d e d .  Let f E R be a f o m  of degree (dl, .. . ,dk).  If f ((ni, .  . . ,gk)) = O for a11 

(gl,. . . , a) E Pl x x P k  of degree 5 (dl , .  . . , dk), then f = 0. 

PROOF. If k = 1 and ni is ang: positive integer, then this lcmma is Lemma 2.3 of 

Geramita, Gregory, and Roberts [16]. We will generalize this result to al1 positive k E N 

Set 

- 
Pd, ,..., dk := {(-(. . . . .%) E PnL x . . x Pnk / deg (al.. . . ,a) 5 (di ? .  . . , dk))  . 

The set Fdl,... ,d, consists of . . . (dkck) points. 

If k is any positive integer, n 1 .  . . . . nn: arbitrary positive integers, and (cli ,  . . . , clk) = 

(0' . . . , O), then Pd, ,... ,d, consists of exactly 1 point. The only forms of degree (0. . . . . O )  

in R are the constants; hence, if f vanishes at the single point of Pd, ,... ,di. we must have 

f = o. 

Let k 2 1 be a positive integer, and suppose that nl = . . . = nk = 1, and that di > O but 

d l  = . . . = <i, = . . . = dk = O. Then the set Po ,..., d ,,... ,O consists of exactly 4 + 1 points. If 

f E RQ ,... ,d .,... ,O, then f is a form of degree (O.. . . . di, . . . , O )  in the indeterminates x i , o ,  zl,l. 

So. if f vanishes at the di + 1 distinct points of Po ,.., .d ,,... .O, then / = 0. 

We now want to show that for any k E Fi. if n i  = . . . = n k  = 1 and (dl ' .  . . .dk) E N~ is 
arbitrary, then the lemma holds true. We proceed by induction on k and ( d l ,  . . . , dk), Chat 

is, we assume that the lemma holds for dl sets F,,,-.. ,,, C IPt x . - .  x pi if either 1 5 1 < k, - 
1 

or if i = k and (di! . . . . dk) >les (cl,. . . . ck) >lez Q: where >te, denotes the lexicographicd 

ordering. We will then show that the lemma is also true for pdi,... .dk E Pl x . . x Pl. 

So, suppose that f E Rd ,,... .d, aud that f vanishes on Pd ,,.... d k .  Since (d l , .  . . , d k )  > l e ,  0, 
t here is at least one coordinate of ( d l . .  . . , dk)! Say 4 , such that di > O. If d j  = O for a11 j 

in 1 5 j 5 k with j # i, then, as already ooted. f must be zero if f w i s h e s  on p d i , . . . , d  k .  

So, we can assume that at Ieast two coordinates of (dl,. . . . dk), Say d, and dj  with i # j 
are such t hat cf,, dj  > 0. 
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Now consider the subset 

that di > 0. The elements of 

[l : a l ]  x . - .  x [l :d*]  

We write f as f = - &siTo)g + r  where d e g g  = (4,. . . di - 1.. . . . dk) and r is a degree 

o f  Pd[ ,... ,dr that w i s h e s  on x i , ~  - dizito. We are assuming 

t his subset are precisely the points: 

(d l , .  . . , d k )  potynomial such that na term of r is divisible b y  z,,~. Since nl = - . = n k  = 1, 

x - . -  x [l :ak] 

d '. A the term r = rozi,',, where ro is a polynomial in R' = k [ ~ ~ , ~ ,   XI,^, . . . . zi.0. zi.1,. . . , rk,~, x k , l ] .  

- 
( ( a l ) ,  . . . . (ai).. . . , ( a k ) )  E N x . . . x W 

t - 1  

( a L 7 . .  . ,&,. . . . ak )  5 ( d l , .  . . .d*, . . . , d k )  

But because r must vanish at the points in Pi, this implies that ro vanishes at the ( d l  + 
l)...(di + l ) . . + ( d k  + 1 )  points in the set 

The above set is the set of points pdi ,-.. ,J, ,... .dk E IF" x . . x P I .  and t hus. by the induction - 
k-  1 

hypothesis, Q = 0. and hence. r = 0. 

[i : a l ]  x . . x [1 : a,] x . . x [l : ak]  

Because of our assumption on ( d i , . .  . . d k ) ?  degg = ( d l , .  . . . d, - 1, .  . . , d k )  > l e ,  Q. 

( ( a l ) .  . . . . ( a i ) ,  . . . . ( a k ) )  E W x - x N 
k -1  

( a l l . .  . . âl.. . . . a k )  5 ( d l . .  . . , di. . . . . dk) 

M o r w w r ,  g rniist vanish a t  the points of P d : , .  ,,J. that do not vanish on (2;,1 - di2 i .n )  

These points are 

Thus, g is a form in Rd, ,... ,dl 1  ,... ,dk t hat vanishes at d l  the points of ,.-. ,d, - 1 ,... .dk. Since 

( d l , .  . . . d k )  >lez (di,. . . . d, - 1,. . . , d k ) ,  we have g = O by the induction hypothesis. So 

f = 0, and thus the lemma holds for al1 positive integers k and al1 ( d i .  . . . . d k )  E Plk in 

P' X  ... X I P L *  
7 

k 

We will now show that for any k > 1. i f  ni, . . . . n k  are arbitréwy positive integers, and 

( d l ,  . . . d k )  E Pik is arbitrary. then the lemma holds for Fdl ,... ,dk C P x x P k .  We 

proceed by induction on the tuples (n t .  . . . , n k )  and ( d l , .  . . . dk) and on k ,  that is, we assume 

that FcI ,--. , C P L  x - - - x Pl satisfies the lemma if either ( 2 )  1 5 1 < k. (ii) if k = 1 and 
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(n l , .  .. , nkJ >le, (mi , .  . . ,mk)  > l e ,  I, or (iiiJ if k = I and (ni. .  . . , nk) = (mi, .  . . , mk), 
and (di, rdk) > t e l  (ci, - * .  ?lez Q. 

So, suppose pdl ,... ,dk C PL x + 
x Pk y f E Rdl,...  ,dk and f vanishes a t  all the points 

of Pd ,,... ,d, .  If there is a d, in (dl.. . . , dk) such that di = O, then we can consider f 

as ari N ~ - ~  -homogeneous element in the ring R' = k[,xivo. . . . . . . . Pi,,, . . . . z k V n  , ] .  Le., 

/ E R >  - . But then f vanishes at al1 the points of 
1,-.. ,d, ,-a. tdk 

-t Cpn' x . . .  x s  x - . .  .pn4, 
P d ,  ,. . . .di ,... .di 

and hence, by the induction hypothesis. f = O. Thus, we can assume that (di. . . . , dk) 31,, 

1. - 
By assumption, the tuple (n i , .  . . n t )  >lez ( I o . .  . , 1). so there is an ni in (n i , .  .. ? n k )  

such that ni > 1. Since f vanishes on the points of p d i , . . . , d k .  the fcrm f must dso vanish 

at the "l) . . ( d l f  nt- l )  . . . (dk+nk) points of pdi ,... ,dk that vanish on the degree ei = 
nt n, -1 nk 

( O , . .  . , I l . . .  ,O) for rnql  = O. We write f = +i,ig+r wheredegg = (dl .... ! d , - ! .  ... -4) 
and r is a form of degree (dl! .  . . , dk) in the indeterminates  ri,^, . . . , 2i11y.. . . sa,,,. Note 

that from our assumption about (dl..  . . .dk). degg >te, Q. 

l \  !dk::k) points of Pd, ,... ,d; Noir. the form r must nuiish et thp ( Q 1 ~ : L )  , 
that vanish at z , ~  = O .  But we can consider this subset of points as the set of points 
- 
Pd,,... ,dk C Pl x . x Pl-l x x P*. Thus, by the induction hypothesis. r = 0. 

It then follows that the form g must vanish on the points of Fd, . . . . ,4  uot on the form 

r i , i  = O, that is, if (gl. . . . . s) E Fdi ,... ,dk and if the coordinate ai, 1 E gi is nonzero, then 

g ( ( g i , .  . . ,a)) = 0. We set 

We define G to be the forrn of Rd, ,.+. ,d,  - 1 .... ,dk such that 

Clnim. The form G ~ni shes  at al1 the points of p d i  , . . .  , da - l , . . - ,  4 C PL x . . x P k .  

- 
Pmof of the Claim. If (gl: . . . a) E P d l  ,..- .da - 1  .... , dk .  then 
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The point [I : al,l : ..- :al,,,] x S . -  x [I : ai,l + I : ai,? : : ai,,,) x S . -  x [I : ak, l  : - - -  : 
atVn,] E F2 because ai, 1 + 1 # O and the degree of t his point < (di, . . . . d* - 1 + 1 , . . . , dk). 
Hence, G((cY~, . . - , a.)) = 0. O 

By the induction hypothesis, G = O <and thus, g = O because G is constructed from g 

by making a linear change of variables. Thus the form f = O, as desired. U 

PROOF. (of Lemma 4.3.12) Recall that := P\N where P is the set of al1 monomials, 

including 1. in the polynornial ring S: and N is the set of al1 monomials contained in the 

nionornial ideal J. We aiso define 

d 3 
Suppose that .Y:' E hl and that mi := XTCa1 ,Yitmk is one of the minimal 

generators of J : = (ml ,  . . . , ni,). Then. because x?' - x,"~ E P\ N .  it follows t hat 

mi f X?' - x:'! and hence (&,,, . . . , &) É (el.. . . . a). Thiis. by Lemma 4.3.11, 

( (  . . . , a)) = O. This is true for al1 mi E {EL, . . . , TE, ) . Because t his set of N ~ -  

homogeneous elements is the set of generators for the ideal 1. we have 

Conversely. suppose that j E R is an ~~lk-horno~eneous element of degree ( d l ,  . . . . d k )  

and that f variishes at  al1 the points of 2. Let 

be the points of pdl ,... , dk \M,  where pdi ,... ,di is defined as in Lemme 4.5.1. Furtherrnore, 

order the elements of pdl,... ,dr\M so that for each positive i E PI. 

that is, (lai,i 1 , .  . . ! (gi,nl) siez (Igt+l.l 1 ,  . . . , l ~ , ~ + l ) .  Those points that have the same de- 

gree may be put in any order. 

Since (Q, . . . . E pdl .... ,dk \My it follows that h = x:'.' . x:'.' E J ,  and hence 
B 8 

h = Xi1.'  XFLqkmi for mrne minimal generator mi E J. So h = x$' . - - ~ ; ' . ~ m ,  is a 

multiple of Ki, and therefore h E 1 and h vanishes at ail the points of v. 



5. THE PROOF OF LEMiLf.4 4.3.12 1 O0 

On the oot her hand, by Lemma 4.3.1 1, h((crl ,1 ,  . . . : u ~ , ~  )) # O because h = ,Y?.' . . .Y:'.'. 
Thus A I  := f . . , o l p ) ) / h ( ( g l , l y .  . - . sl,t)) E k. NOW consider the form f i  := 

/ - ~ l h z : : ~  . where (t l ,  . . . . tt ) = deg f - deg h By construction. f 1 vanishes at 

al1 the points of B and at  the point (glll . . . , g ~ , ~ ) .  

We now repeat this process by replacing f with f 1 and using the elernent (CI,, , , . . . , G * , ~ )  E 
- 

,dk\M to construct a form f2,  and so on. until we have used al1 the elements of 
- 
P ~ , ~ . . . , ~ ~ \ M  . Our ordering of the elements ensures t h a t  when we change f,-i to vanish at 

the new point (ajTl, . . . , e j , k ) .  the form fj vanislies a t  al1 the previous points and on ;M. 

I n d e e d ,  suppose that fj- 1 vanishes at ;M and at the points in the set 

- - 
Since (a , , , ,  . . . . g j l k )  E Pdl ,... . d k \ M l  hj = - ,Y:.* E J .  Thus h, E I .  But since 
- 

0 ))/h,((gjTl .... .qk))  E k. Set h j ( ( i Z j , l , . - -  > G J , k ) )  # 01 the number A j  = f ( ( ~ ~ ~ l . . * .  ,-j,k 

fj := f,-1 - A.h,zti I 3 1,0 ztk &,O where ( t l .  .. . . t a )  = d e g f j - i  - degh,. Because hi E I ,  f, 

vanishes a t  al1 the points of B. Because of the ordering of the clements in pd , , . . . ,d i  \M. if 

When we have completed the above process. we end up with a form f - G E I such 

that f - G vanishes a t  al1 the points of pd, .... J,. By Lemma 1.5.1 we must thercfore have 

j - G = 0, and so f = G E 1, as  desired. O 



CHAPTER 5 

The Hilbert Function of Sets of Points in Pl x Pl 

The Hilbert function of a set of points on the quadric surface Q C was first studied 

by Giuffrida. Maggioni, and bgusa (see [26] but also [24]. [251). Because Q s P1 x Pl. 

Giuffrida, et al. pioneered the study of Hilbert functions of sets of points in rnulti-projective 

space. Giuffrida. et al. [26] demonstrated a n~imber of necessary conditions for the Hilbert 

function of a set of points in P' x PL. However, a complete characteriznt ion of t hese funct ions 

continues to be elusive. 

The aim of this chapter is to extend the work of Giuffrida. et al. by using the results of 

the earlier chapters to study the Hilbert functious of sets of points in P" x PI. This chapter 

is structured as follows. We begin this chapter by specidizing some of our previous results 

to points in P1 x PL and by recalling some of the results of Giuffrida. et al. found in [26]. 

We also describe how one can birisualizen sets of points in iP1 x P'. 

In the second section we give a characterization of the tuples that can be the border of a 

Hilbert function of a set of points in PL x IPL (cf. Theorem 5.2.8 and Corollary 5.2.11). The 

proof of t his result relies on a connect ion between points in PL x Pl and (0, 1)-matrices. This 

result answers Question 3.1.10 for points in PL x PL. By answering this question, we have 

introduced a new necessary condition on the Hilbert function of a set of points in PL x PL. 

In the third section we demonstrate some applications of the border. Specifically, we 

canr (1) compute a lower bound for the number of distinct Hilbert functions for s points 

in IP1 x PI ;  (2) characterize the Hilbert functions of those sets of points X in P' x IP1 with 

either Ixl(X)I = 2 or 17r2(%)l = 2: and (3) compute the Hilbert function of certain subsets 

V C X Fom knowledge about Hx. 

In the last section we characterize the arit hrneticaliy Cohen-Macaulay sets of points in 

PL x PL (cf. Theorem 5.4.4). Arithmetically Cohen-Macaulay sets of points in PL x PL were 

first classi6ed via their Hilbert function by G i a i d a ,  et al. 1261. We provide a new proof of 

this result. We also give a new characterization of ACM sets of points in Pl x P' that only 



1. GENERAL REMARKS ON POINTS IN P1 x PL L 02 

relies upon combinatoric information about W. As a consequence, both the Hilbert function 

and the Betti numbers of the resolution of an ACM set of points in P1 x PL depend o d y  

upon the codguration of the points of %, that is, how the points are arranged in P' x P'? 
and not upon the coordinates of the points (cf. Theorem 5.4.9 and Theorem 5.4.1 1). 

1. General Remarks on Points in P' x lP1 

Let X be a finite set of .s distinct points in PL x Pl, and let Hx be the Hilbert function 

of X. In this section we study of the Hilbert function of X by applying some of the earlier 

results of this thesis, and by describing the results of Giuffrida. et  al. [26]. 

Let rrl : !PL x P' + PL be the projection rnorphism defined by Pl x fi u Pl .  It 

follows that T I  (X) is a finite set of points in CI. If we suppose that Irl (X)I = t 5 S .  then 

Propositioti 2.2.10 and Proposition 2.3.8 can be combined to show 

Similady, if rr? : IP x PL + IPL is the other projection rnorphisrn. and if lrr?(X)J = r. then 

For this chapter we shall write H x  as an infinite matrix ( m i j )  where mi,, = H x ( i . j )  

and (i, j )  E Bf . By the above observations, and the fact that every Hilbert function of 

points has a border (see Corollary 3.1.7). we therefore have 
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where the bold numbers are the border and the entries denoted by * need to be calculated. 

If AHx is the first difference function of Hx, i.e.. 

where Hx(i, j) = O if ( i .  j )  2 (0. O), then we also write AHx as an infinite rnatrix. Moreover, 

by (5.1.1), we have 

The properties of the matrix Mx = (mlyJ) with mij = H x ( i .  j )  were studied in [26]. In 

that paper the matrix Mx was cailed the Hilbert mat r i z  however. we will refrain fiom using 

this name to prevent any confusion with the Hilbert-Burch matriz. We recall the definition 

of an admissible matrix. as defined in [26]. in order to state a necessary condition on the 

Hilbert hinction of a set of points in Pl x PI. 

Definition 5.1.1. Let M = (mi,)  be a matrix with ( i ,  j )  E Pf2 and mi,, E N. For every 

(i. j )  E FtlL? let G j  = mi-j - mi-1.j - mi.j-1 + n i i - i , j - i  where mi, = O if ( i , j )  2 (0,O). Set 

AM = ( q j ) .  The matrix M is an admissible matriz if A M  = ( q Y j )  satisfies the following 

conditions: 

(iii) for every ( 2 ,  j ) E . 
3 
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Theorem 5.1.2. ([26J Theorern 2.11) Let X k a set of points in P1 x Pi with Hilbert 

function Hx.  Then H x ,  wn'tten as a mat*, is  an admissible mut*. 

Remark 5.1.3. The conclusion of the previous theorem is only a necessary condition. 

Example 2.14 of [26] is an example of an admissible matrix that is not the Hilbert function 

of any set of points in PL x PL. Example 5.3.7 helow shows that there exists an infinite 

family of such examples. 

In this chapter we Idraw" examples of sets of points in P1 x PL. We end this section 

by providing a justification for such "pictures". Because PL x PL 2 4, where Q is the 

quadric surface of P, from Exercise 1.2.15 of Hartshorne [31] it follows that there exist two 

families of lines { L p }  and {L(p} ,  each parameterized by P E PL. with the property that if 

~ # R ~ P ~ , t h e n L ~ n ~ ~ = @ a n d L > n L ~ = 0 ? a n d f o r a l l P . R ~ P ~ .  L p n L R = P x R ,  

a point on Q. In other words, Q is a ruled surface. 

Hence, we can visualize a collection of points X in IP1 x PL as points on Q. By first 

drawing Ini (X)[ = t lines in one ruling and indexing the Iines by the elernents of ni(X), and 

then by drawing the In2(W) ( = r lines in the second ruling and indexing t hese line by 7r2 (X)? 
the set X is contained in the complete intersection (Definition 4.1.20) defined by these lines. 

For example, if X = {Pi x QI,  Pi x Q2,  P2 x Q3, P3 x Q2, P4 x Q I }  C IF1 x Pl, then there 

are 1 r1 (X) 1 = 4 lines from one ruling w hich are indexed by {Pl  ? Pz. i3, P4 } , and t here are 

]rrz (X) 1 = 3 lines fiom the other ruling indexed by {QI, Q2, Q3 ). We visualize this set as 

X =  g: 
Pl P2 P3 P4 

where the dots represent the points in %. 

2. Classifying the Borders of Hilbert F'unctions of Points in PL x PL 

In Chapter 3 we defined the border of a Hilbert hinction for points X C PL x . . . x P. 

Question 3.1.10 asks what tuples can be the border of a Hilbert fitnction of a set of points. 

For points X C iP x Pm this question reduces to describing al1 possible eventual column 
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vectors Bc and eventud row vectors BR. We wish to answer this question for points in 

IF1 x PL. 

So, suppose that X C IF1 x P1 is a collection of s distinct points. We associate to X two 

tuples, crx and Px, as follo~s. For each Pi E r1(X) = {Pl,. . . . P t }  we set ni := IX;~(P,)I. 

After relabelling the cri's so that ai 3 a,+ 1 for i = 1, . . . , t - 1, we set a x  := (al, . . . . at ) .  

Analogously, for every Qi E a2(W) = {QI y . . . , Q,} we set Bi := (TT' (Qi) 1. After relabelling 

the Bi's so that pi 2 for i = 1,. . . ,r - 1, we let ,& be the r-tuple Px := (Pl,... ,a). 
We note that a~ and Px are both partitions (sce Definition 2.5.1) of the iuteger s = [XI. 

Thus, we can write ax F s and Px l- S. I f  we denote the length of crx (resp. Px) by lax[ 

(resp. Iflxl), then we also observe that Ini(X)I = laxl and laz(X)I = IPx[ 

As an  application of Propositions 3.1.1 and 3.1.1, we demoustrate that for points Ta C 

IP1 x P1 the eventual column vector Bc and the eventual row vector BR can be cornputeci 

directly fiom the tuples a X  and Px. 

Proposition 5.2.1. Let X C P1 x P1 be n set of s distinct points and suppose thal a x  = 

(al, . . at )  and Px = (81 , B r ) .  Let Bc = (bo, bi. . . . , b,- 1 )  where b, = Hx(t - 1, j). be 
the euentual colurnn vector of the Hilbert function Hx. Then 

PROOF. After relabelling the elements of nl(X), we can assume that I~;'(P~)[ = ai. 

By Proposition 3.1.1 and Remark 3.1.2 we have 

Now Qp, = T~(B;'(P~)) is a subset of ai points in PL. If 1 5 k 5 j + 1. then Hppl (j) 2 k if 

and only if la;' (P,)I 2 k. This is a consequence of Proposition 2.3.8. This in turn implies 

that the sets {pi E al (X) 1 HQp, (j) 2 k )  and {Pi E ni (X) 1  la;'(^,) 1 2 k) are the same, 

and thus. the numbers #{Pi E ni(X) 1 H q p , ( j )  > k) and #(cri E a x  1 ai > k} are equal. 
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The desired identity now follows from this resdt. The statement about the eventuaI row 

vector BR is proved similarly. Cl 

We can rewrite the above result more succinctly by invoking the language of corn- 

binatorics. Recall that the conjugate of a partition X = (XI.. . . . X k )  is the tuple A *  = 

( X i ' .  . . ,A;,) where A; := #{Xi E X 1 X i  2 j}. 

Definition 5.2.2. If p  = ( p l , p 2 , .  . . ' p k ) .  then Ap := @ [ ? p z  - p l . .  . . .pk - p k - 1 ) .  

Corollary 5.2.3. Let K C P1 x PL be s distinct points with a* and Px. Then 

( 2 )  ABc = c r i .  

(ii) ABR = BK. 

PROOF. Using Proposition 5.2.1 to calcuiate ABC we get 

The concIusion follows by noting t hat #{ai E crx 1 cri 2 j }  is by definit ion the j th  coordinate 

of c r i .  The proof of (ii) is the same as  ( 2 ) .  O 

Remark 5.2.4. For each positive integer j we have the following identity: 

it folhws from the above identity that 

Thus. for each integer 1 5 j < r there is precisely [Hx( t  - 1, j - 1)  - Hx( t  - 1, j - 2)] - 
[Hx( t  - 1. j )  - H x ( t  - 1. j - l ) ]  lines of degree (1,O) t hat p a s  through X that contain exactly 

j points of X. This is the statement of Theorem 2.12 of Giuffrida. et al. [26]. Of course. a 

similar result holds for the lincs of degree (O. 1) that pass through W. 
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CoroIIary 5.2.5. Let W C PL x Bk be any collection of s distinct points uith a x  and 

Bx, and suppose that cri = (a;, . . . ,a:,) and 8; = (pi,. . . ,p i , ) .  Let AHX be the first 

difference function of Elx,  and set î j  := A H x ( i ,  j ) .  Then 

(2) for euerg O 5 j 5 r - 1 = In2(X)I - 1 

( i i )  for eueriJO 5 i 5 t -  1 = Inl(%)l - 1 

PROOF. We begin by noting that we have the following identity: 

Fix an integer j such that O 5 j 5 17r2(X)( - 1 and set t = Inl(X)I. Using Proposition 5.2.1 

and the above identity to compute we nave 

The proof for the second statement is the same. 

Remark 5.2.6. Let X C P1 x PL be a set of distinct points. and suppose that ox = 

(cq, . . . , at ) and Px = (81, . . . . &). Suppose that j is an integer such t hat al 5 j r .  (We 

will see below that ai 5 r = Ifil dways holds.) Then, by the definition of cri ,  = 0. 

Hence, by the above coroUaxy, the entries in the j th row of A H x ,  considered as a matrix 

where the top row is the oth row, must sum to zero. 

Example 5.2.7. We illustrate how to use Corolhy  5.2.3 to compute the Hilbert function 

for a set of points X C lP1 x PL for aU but a finite number (2. j) E p. Suppose that 
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624  

Q3 
X =  

Q2 

Ql 

Pt p2 p3 p4 p5 p6 

For this example a x  = (4,s' 2,2,1,1) because I T ; ' ( P ~ ) ~  = 1, [ 7 r ; ' ( ~ 2 ) 1  = 4, ~n;'(&)l = 1, 

ln;'(p4)1 = 2. IT;'(S)I = 2, and (T; ' (P~)~ = 3. The conjugate of crx is rr ;  = (6,4,2. l), 

and hence, by Corollary 5.2.3 we know that Bc = (6.10' 12.13). Similady. Px = (4 .3 ,3 ,3) ,  

and thus = (4,4,4.1). Using Corollary 5.2.3 we have BR = (4,8,12,13, 13.13). (Note 

that we need to add some 13:s to the end of BR to ensure that BR has the correct tength of 

JBRI = Inl(X)I = 6.) Visualizing the Hilbert iiinction Hx as a rnatrix and using the tuples 

BR and Bc, we have 

H=: = 

Al1 that remains to be calculated are the entries in the upper left-hand corner of Hx denoted 

by *. 

As is evident from Corollary 5.2.3 and Remark 5.2.4? the border of the Hilbert function 

for points X C PL x IF'' is linked to combinatorial information describing some of the geometry 

of X, e.g., the number of points wliose first coordinate is Pi the number of points whose 

first coordinate is P2? etc. By utilizing the Gale-Ryser Theorem (Proposition 2.5.6) we show 

that the geometry of X forces a condition on ax  and & As a corollary. we can answer 

Question 3.1.10 for points in PI x PL. 

Theorem 5.2.8. Let o,/3 t- S .  Then there ezists  a set of points % C P1 x P' such that 

0, = a  and Bx = f i  if and only ifa* ofl.  
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PROOF. Suppose that there exists a set of points X such that ax  = a and Px = p. 
Suppose that q ( X )  = {Pl ,... , P t )  with t  = 101. For i = 1 ,... , t ,  let Lp, be the line in 

P' X P ~  defined by a (1,O)-form such that T;'(P,) C Lpi. Similady. if rrz(X) = {QI, .  . . . Q,). 

where r = I,C3I? let LQ, be the line defined by (OI 1)-form such that I ~ ; ' ( Q ~ )  C LQ,. Foi each 

pair (i, j) where 1 5 i $ t and 1 5 j < r? the lines Lp, and LQJ intersect at a unique point 

Pi x Qj .  We note that % C {Pi x Qj 1 1 5 i 5 t ,  1 5 j 5 r}. We define an r x t (O. 1)-matrix 

A = ( a i j )  where 

By construction this (O, 1)-matrix has colurnn sum vector cr.4 = ctx and row sum vector 

= Px. Hence, M ( n ,  B )  # 0 because A E M(a .  f i ) .  The concIusion a* f i  foiiows from 

the Gale-Ryser Theorem (Proposition 2.5.6). 

To ptove the converse. it is suaicient to construct a set W C P1 x IF" with a x  = n and 

Bx = p. Since ab ,B there exists a (0. 1)-matrix A E M ( a .  8). Fix such a matrix -4. Let 

Lp, . . . . , L E  be ! = la! dntinct lines in " !P1 definec! hy hrms nf degwr ( 1 ; n); and k t  

tQL , . . . , Lq, be r = 181 distinct lines in P' x PL defined by forms of degree (O. 1). For every 

pair ( 2 ,  j ) ,  with 1 5 i 5 t and 1 5 j 5 r. the lines Lpl and LQ, intersect a t  the distinct point 

Pi x Q, = Lp, n LOJ.  We define a set of points X C PL x PL using the matrix A = (a,,,) as 

follows: 

Fkom our construction of W we have crx = a and Px = B. 

Remark 5.2.9. Suppose that a,/3 i- s and a* p 8. Then by adopting the procedure 

described in Example 2.5.7: we can construct a set of points X in PL x pL with crx = (I aud 

= 8. For example, if a = (3 ,3 ,2 .1)  and @ = ( 3 . 3 , l .  1,1) are as in Example 2.5.7, then 

we saw how to construct a (1, O)-matrix fkom cr and p. We then identiQ this matrix with 
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a set of points as in the 
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proof of Theorem 5.2.8. For that example 

Remark 5.2.10. We will show that if ni = 8, then the set X is also arithmetically 

Cohen-Macaulay (cf. Theorem 5.4.4). 

Corollary 5.2.11. Suppose Bc = (bo, . . . , b,- 1 ) and BR = (bb, . . . . bi-, ) are two tuples 

such that bo = t .  6; = r .  and ABc, ABR i- S .  Then Bc is the eventual column vector and 

BR is  the eventual row vector of a Hilbert function of a set of s points in P L  x PL if und 

only if ABC (ABR)* .  

PROOF. For any partition A, we have the identity (A')' = A. If Bx = (Bc. BR) is the 

border of a set of points, then ABc = np = ( p i ) *  = ( A B R )  . 

Conversely. suppose that ABc (ABR)*. Let a = (ABc)* and /3 = (ABR)*. Sirice 

a* B,  there exist a set of points X Ç 8' x !PL with nX = a and a = 8. But then 

ABc = AB& where Bb is the eventual column vector of the Hilbert function of W. Since 

1 Bk1 = 181 = r, and because first element of the tuple Bk is t. we have Bc = Bk. We show 

that the eventual row border Ba of the Hilbert function of X is equal to BR via the same 

argument. O 

Remark 5.2.12. It is possible for two sets of points to h a e  the sime border, but not the 

same Hilbert hinction. For example, let Pl' Pz' P3 be three dktinct points of PL, and let 

QI' Q2< and Q3 be another collection of three distinct points in PL. Let Xi = {P l  x QI. P2 x 

Q 2 .  Pz x Q 3 , 4  x QI). and let % = {Pl x Q3,P2 x Q I ,  P2 x Q2? Pî x QI}. We can visuaiize 

t hese sets as 
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For this example. a x ,  = CYX, = ( 2 . 1 , l )  and Px, = Px? = (2,1, l ) ,  and hence, both sets of 

points have the same border. However. using CoCoA to compute the Hilbert function of Xl 

and X2, we find t hat that the Hilbert functions are not equd. Spccifically, 

3. Applications of the Border 

Corollary 5.2.1 1 characterizes the borders of the Hilbert functions of sets of points in 

!PL r !Pi, and thiis, prnvirlrs 11s with a nnw neîessary condition on the Hilbert function 

of a set of points in PL x Pl. In this section we examine some further consequences of 

Corollary 5.2.11. Specifically, we will show the following: (1) we give a lower bound on 

the number of distinct Hilbert functions for s points in PL x PL: (2) we characterize the 

Hilbert functions of points X 2 PL x PL with either Irl (X)I = 2 or Iir2(X)l = 2; and (3) if 

Y is a. subset of X, we show that under some conditions the Hilbert function of Hy can be 

determined from H x .  

3.1. Counting Hilbert Functions. Let X be a set of points in Pi x . . x I P R C  and 

Hx its Hilbert function. Recall that for each s E we define 

Fkom Remark 3.3.5 we know that R ( s )  is a finite set, but we do not know how many 

elements are in the set. 

By applying Corollary 5.2.11 we can calculate a lower bound for #3L(s) if R ( s )  = 

{ Hx 1 W C Pl x IPL and 1x1 = s). We h s t  set some notation. For every positive integer 
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s E N we Iet P, denote the set of aII partitions of S. For each X = (All . . . . X,j E P,, we 

define 

Proposition 5.3.1. Fix a positive integer S .  Then 

Moreover, #TA is equd to Ihe number of distinct borders. 
XEPS 

PROOF. Fix a partition X E P,. For each 6 f TA, it follows from Tlieorem 5.2.8 that 

there exists a set of points X C P' x PL with (LX = A. = 6, and /XI = S. Suppose that XA,* 

is such a set. By Corollary 5.2.11, it follows that H x , , ,  # Hx,+, ,  for any 6,d' E TA with 6 # d' 

because they cannot have the same borders. We can thus define a mûp <pr : TA + R ( s )  by 

6 cr HxASJ. It follows that ~ ~ ( 6 )  = P A ( # )  if and only if 6 = 6'. and thus. < p ~  is an injective 

If A # A' E P,, t hen we claim that (O,! (TA) n (TA' ) = 0 .  Indeed. if Hx is in the 

intersection, then tliis would mean that W has a x  = X and A'. So. we have the following 

disjoint union U < p A  (TA) C 'W(s). Since # < p A  (TA) = #TA, we get 
AEP, 

The 1 s t  statement is immediate. 

Remark 5.3.2. Because X = (1:. . . . 1) E P,, we have T(l ,..- , i l  = ( ( 5  E Ps 1 ( s )  0 a} = 'P,. - 
s 

Thus, #R(s)  > #Ps where #P, is the number of partitions of S. The nuinber #P, grows 

rapidly, so # R ( s )  also grows rapidly. 

3.2. Sets of Points with Iri(X)I = 2. We consider al1 sets 36 of s points in IP1 x PL with 

Irl (X)I = 2, although everything we Say will also hold if 17r2(X)( = 2. Hence. we c~nsider  

sets of points which contain only two distinct &st coordinates. Suppose that Ir2(X) 1 = r. 
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If follows from (5.1.1) t hat 

where mi j = H x ( i , j ) .  Hence, if we know ox and Px, we can cornpute the border of Hx,  

<and thus, completely determine Hx.  In fact. we have even a stronger result: 

Theorem 5.3.3. Let H : + N be a numeReal function. Theii H is the Hilbert fvnction 

of a set of points X C P L  x IP1 with lxl ( X )  1 = 2 if and only if  the following conditions hold: 

(ii) T 5 s, 

( i i i )  2 5  mi,^ 5 - -  rni,,-î < s and m l , ,  5 2 ( j  + 1 ) .  and 

(iv) if B I  = ( 2 , m i , ~ . .  . . . rnlvr-2,s)  and B2 = ( r . s ) ,  then ABi.AB2 are partitions of s ,  

and ABl (AB?)'. 

PROOF. If H is the Hilbert Function of a set of s points with ]7rI (W)  1 = 2: then ( i )  

follows from (5.1.1).  Furthermore. Ir2 (X)1 = r 5 S .  The first part of ( i i i )  is a consequence 

of Lemma 2.2.13. The second part of ( i i i )  holds because 

for 1 5 j 5 r - 2. Finally, ( i v )  is simply Corollaq 5.2.11. 

Conversely, suppose H is a numerical funct ion t hat satisfies (2)-(i-u) . Because (iu) holds, 

by Corollary 5.2.11 there exists a set of points X C x Pl with border equal to Bi and 

B2. But since the first coordinate of B I  is 2 and the first coordinate of B2 is r ,  we have 

Ir1 (X)I = 2 and Ir2(%) 1 = r. It then follows from our constructiou of X that H = Hx.  O 



3. APPLIC.4TfONS OF THE BORDER 114 

3.3. Subsets of W and their Hilbert Function. Let W be a set of s points in P1 x Pr 
and let Hx denote its Hilbert function. Suppose that î f  is a subset of X. We can then ask 

if the Hilbert function of Y, that is H i .  is re1ated to Ifx. We will consider the case that 

Y is a subset of X that lies on either on a (1! 0)-line or on a (0. 1)-line of P' x Pl .  We will 

investigate this problem using the results of the previous section. 

So, suppose that X C PL x PL is a set of s distinct points with a x  = (al,. . . , ar)  and 

Bx = (81,. .. ,A). Suppose that irl(X) = {PI,. . . .Pt} and 7r2(X) = {QI , .  . . .Q , ) .  After a 

possible relabelling, we can assume that ~rr;' ( p l ) (  = ai and ln;' (Q,) 1 = /3,. 

If Pt = [a, : a,2] E rri (X). then let L pl be the ( 1. 0)-line that contains the points of 

r; l (P,). We sometimes abuse notation by letting Lp, also denote t lie form of degree (1.0) 

Lp,  = at2x0 - ailx1 E k[xO, xl, y ~ .  yl] that defines Lp,. Similarly. i l  Qj E a2(X),  then we 

let LQ, denote both the (0.1)-line that contains 7 r g L ( ~ , )  and the degree (0.1) form that 

defines the line. It follows that if P, x Q, E X, then Ipl XQ, = (Lp,. LQ, ). 

For each Pt E (W),  we define 

The ideal associated to X p t  is t herefore 

Analogously. we define XQ, := X îi LQ, for each Qi E rrz(X). If XQ, := {P,, x Q,, . . . Pidl x 

Qi}, then it follows that IXpl := ( L e ,  - - -  LeSI. Lg,). 

Because a x p 1  = (ai) and Px,, = (1'. . . . 1). the Hilbert iunction of Xpl can be computed - 
QI 

directly fkom Proposition 5.2.1. The same holds true for H x P /  Indeed. 

w- 1 

ai- 1 
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and 

1 

2 

Bi- 1 

Bi 
Bi 

Tf we remove the points of Wpt (respectively. Q, ) from fa. then the next proposition shows 

t hat we can compute the Hilbert funct ion of X\&, (respectively. SC\%, ) for some (i. j )  E N2 
from Hx and H x  ,, (respectively. Hxo,  ). This proposition is also the basis for some of our 

subsequent results. 

Proposition 5.3.4. Using the notation above, jix a P E ri(X) and let X p  := X n Lp. 
Then for ail (i, j )  E Pf walh j < (Xpl = a. 

Hx\x, ( i , j )  = H x ( i  + 1. j )  - Hx,(i  + 1. J ) .  

PROOF. Because the second statement is similar to the first. we show only the first 

conclusion. As we observed above, the defining ideal of X p  is Ix , = ( Lp. LQ, - - LQ, ). We 
have a short exact sequence with degree (O. 0) maps: 

because Ix C Ix ,. This sequence induces a short exact sequence of vector spaces 

for all (i, j )  E p. 

Clairn 1. For ail ( i . j )  E M with j < a, ( I x p ) i , j  1 4 - 1 j .  
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Proof of the Claim. Since j < a, ( Ixp ) iT j  = ( L p ,  LQI LQ,)i , j  = ( L P ) i , J .  The claim now 

foiiows because the vector space morphism &-l , j  + (Lp)ia given by F tl F . Lp is an 

isomorphism. O 

Ciairn 2. For d l  ( i , j )  E PP with j < a. ( I x ) i , j  2 (lx : I X p ) i - l , j .  

Proof of the Claim. We define a map of vector spaces via multiplication by Lp, i.e., 

This map is defined since H E ( I x  : I x p ) i -  i,j implies H I x ,  C Ix .  and in particular, 

H . Lp E ( I x ) i  J. The rnorphism rp is also injective because multiplication is defined in R. 

TO show is onto. let H E ( I x ) i , j .  But then H E ( I x p ) i , j  becaiise Ix  2 lx,. Moreover, 

from the proof of Claim 1. H E ( IxP)* , ;  = ( L P ) i T J ,  and thus, H = Lp H' where deg H' = 

(2  - 1 j ) .  Since Lp H' E Ix and because Lp  vanishes only at those points of X in Xp, 

we have H' must vanisli on X\Kp. Hence, H' E Ix ixP.  The da im now follows because 

Ix\xp = ( Ix  : I x p ) -  cl 

In Iight of Clairn 1 and Claim 2, the exact sequence of vector spaces can be rewritten as 

for dl (i, j) E with j < a. If we now consider the dimension of each vector space, then 

the conclusion follows. O 

Example 5.3.5. Set Pi := (1 : i] E PL and Q i  := ( 1  : il E PL. Let X be the followi~ig set of 

points: 
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Using CoCoA to compute the Hilbert function of W we find: 

Suppose that we remove X p 2  frorn W. Since IXpJ = 30 for al1 ( i . j )  E N2 with j < 3. we 

have 

We focus on the case t hat we remove the ( 1. O)-line (respectively. the (O? 1)-line) with the 

largest nuniber of points. That is, we remove the al (respectively. Pt)  points of W that lie 

on Lpl (respectively, Lp, ). By Proposition 5.2.1. we can compute the Hilbert function of 

X\Xp, (respectively. .Y\+, ) for al1 but a finite number of (i, j) E N2 if we know crx\x,, 
and (respectively. crx\xQl and F j X \ X q ,  ). Therefore, a natural starting point is to ask 

if these two tuples can be cornputed from a x  and &. We consider only X\\Xpl, although 

analogous results kold for X\%, . 

So. let Y = Ji\&, , where lxpl 1 = al. It  follows immediately that a y  = (aao. . . . a,). 
What cannot be easily determined is &. When we remove the al points of Xpl , we are 

removing al points fiom X with cq distinct second coordinates. Thus, fiy is constructed 

from Px by subtracting one from al coordinates of Bx. This is dways possible, because 

(Ox)' a x ,  and hence (Px); = (>Oxl = r 2 al, However, if r > cri. then it is not dways  

evident from which entries of Px we can subtract one. We therefore would like to  know 

what @y's are possible. 
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Determining the possibk PYrs cm be translaf ed in€ O a conibinatoriai quest ion about 

( O ?  1)-matrices, Indeed, let A be an r x t (O, 1)-matrix with column sum vector cr.4 = 

(a1 ? . . . , C Y ~ )  and row sum vector = (Dl. . . . ? Dr). We construct a new (0,l)-matrix, say 

A', by removing the column with al ones. Then a.41 = (aal . . . a,). The question of 

describing al1 the Dy's is equivalent to giving a complete list of possible row sum vec tors for 

A'. This probleni appears to be unexplored. 

If we consider the extremal case t hat a 1 = r = 1, it follows fiom the above discussion 

t hat t here is only one possibility for &, namely. @y = (BI - 1. & - 1. . . . . Pt - 1). In this 

case, we have 

Proposition 5.3.6. Let X C PL x Pl with nx = (al. . . . . cri) and Px = (Dl..  . . ,a,). Let 

Xp, = 26 n Lp, where '(P~)I = al. Suppose tbat c q  = r = I/&l. Then 

PROOF. Let K = X\Xp,. By Proposition 5.3.4 we have H y ( i .  j )  = Hx(2 + 1. j )  - 

HXP, (i + 1, j )  for al1 j < 01. So. suppose (i. j )  E with j > 01 . Now. because ai = r ,  

we have Py = (Bi - 1, . . . . ,& - 1). Hence. Ins (Y) 1 = l/!Iyl 5 r.  By Corollary 3.1.7. because 

j 2 Ir2W)l - L 

But because 1r2(X) 1 = 1r2(XPL ) 1 = P .  t hen Corollary 3.1.7 also implies that the right hand 

side of the above equation is equal to H x ( i  + 1. j )  - Hx ,(i + 1. j )  for any j > T - 1. The 

conc1usion now follows. 

Example 5.3.7. LVe will use Propositions 5.3.3 and 5.3.4 to show that there exists an 

infinite family of admissible matrices (see Definition 5.1.1) such that no matrix in the 

family is equal to the Hilbert hinction of a set of points in PI x Pl. 
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Fix an integer s 2 4 and let iM, = (mi l j )  with ( i ' j )  E RP be the following i d n i t e  

matrix: 

y1 2 3 . . *  s - 3  s - 2  s - l  s s .-1 

(4 j )  2 ( 0 , O ) .  Hence 

O s- 1 

1 1 1 O - . .  
1 O ... O O -1 O . . -  
1 O S . *  O -1 O O . . .  
O O - . -  O O O O - . -  
f . .  . . . . . . . . .  . . . . . . a  . . 

The reader can veriEy that M, is an admissible matrix. 

Ciaim. There is no set of points X P1 x P1 with H x  = iCI,. 

Suppose. for a contradiction. that X is a set of points such that H x  = K. Then from 

A[, we calculate that c r i  = (3.1,. . . . l )  and & = (s). and hence. nx = (s - 2.1.1) and - 
s-3 "=(W. 

s 

R o m  ax!  we deduce t hat there is (1' 0)-line. say L, such that L contains the s - 2 points 

of X that have the sanie first coordinate. Set Y = X\L. It then follows from a x  and @x 

that tzy = (1: 1) and & = (1 , l ) .  From Theorem 5.3.3. the Hilbert function of Y is 
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On the other hando when we use Proposition 5.3.4 to cdcuIate Ky (i. jJ for a11 (i, i) E FI2 

with j < 2 5 s - 2. we find 

Since s - 2 > 2 we have KY # Hy. Thus, hls is not the Hilbert function of clny set of points 

in P1 x P1. 

4. Characteriring ACM Sets of Points in !Pl x P' 

Arithrnetically Cohen-Macaulay sets of points in Pl x P1 werc first characterized via 

t heir Hilbert function by Giuffrida, Maggioni, and Ragusa [26]. In this section, we will give 

a new proof of this characterization. We will also demonstrate a new characterization for 

ACM sets of points in P' x P' via the tuples crx and [jx as defined in Section 2 of this 

chapter. As a consequence, the Hilbert function and the Betti ntimbcrs in the resolution 

of an ACM collectiori of points in PL x IP' is completely determined by the combinatorial 

information about X contained within a x  and Px. 

Before proceeding? we will require the following lemmas. 

Lemma 5.4.1. Let O =  (al  ,... ,a,). /3 = ( P i  .... .A)? andsuppose t h a t a , @ F s .  If 

a* = 0, then 

( 2 )  al = IPI- 
(22) pi = Ial. 

(iii) if a' = (a2' : a,) and P' = (pl - 1.. . . JO? - 1). then (a')' = 8'. 

PROOF. The proof of (i) and (ii) are the same. We do (ai). By definition' a; = #(ai E 

a 1 ai 2 1). Because o i- s, ai 2 1 for every i. and so ai = n = Inl. But a' = @ implies 

a; = pi, thus completing the proof. 
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For ( i i i ) ,  because cr; = Pj ,  for every 1 5 j 5 al we have # (ni E a j ai 2 j ]  = Bj. Now 

01 2 ai for every coordinate ai of a' = (a2, . . . . a,). Thus, we can rewrite oi; as 

Hence 

The conclusion now follows. R 

Lemma 5.4.2. Let X C Pl x IP1 and suppose that a i  = k .  Let P be n point of a i (X)  

srich that IT;'(P)I =al .  Set X p  := n r 1 ( p ) .  Then r 2 ( X p )  = 7 r 2 ( X ) .  

PROOF. Since Xp C X, it is clear that 7r2(WP) C R?(W) .  NOW. by oiir choice of P, 

Iq (Xp) l  = al. But since 17r2(X)I = lPxl and a i  = p, it follows from Lemuia 5.4.1 that 

Inz(X)l = IrBxl = 01 = Im(Wp)l, and hence r2(Xp)  = n ( X ) .  O 

Lemma 5.4.3. Let X C PL x IP1 be a set of s dàstinct poiratu. If o~ = (s) and Bx = 

PROOF. Because laxl = 1. there is only one distinct first coordinate, say P. We deduce 

from a x  and Bx that X = {P x QI,. . . . P x Q,} E Pl x P1 where the Qi are distinct points 

in Pl. T h e  ideal corresponding to the point P x Qi E X is the bihornogenwus prime ideal 

I p x Q ,  = (Lp, Lq,), where Lp is the form ofdegree (1.0) that vanishes at P and the Lq, is 

the form of degree (0.1) that vanishes at Qi. But then 

We observe the generators of Ix give rise to a regular sequence in R. Therefore. X is a 

complete intersection (see Definition 4.1.20), and thus, X is .4ChI. O 

Theorem 5.4.4. Let X PL x PL be a set of s distinct points, let nX and i;lx be constructed 

fmrn X as above, and let Hx  be the Hilbert function of X .  Then the follouing are equivalent: 

(i) X is A CM. 
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( i i )  AHx i s  the Kifiert Friction of a bigraded ar tn ian quotient of k[xl, yl 1. 
( i i i )  nX = Bx. 

PROOF. The implication ( i )  + ( i i )  is Corollary 4.3.6. So, let us now suppose that (ii) 

holds. Because AHx is the Hilbert function of a bigraded artinian quotient of k[xl, y,], 

CoroUary 4.4.14, Remark 4.4.19, and (5.1.2) give 

where t = Ini(X)I and r = 17r2(X)I. We have written AHx as an infinite matrix whose 

indexing starts from zero rather than one. 

R o m  Corollary 5.2.5. the number of 1's in the (i - I ) ' ~  row of A H x  for each integer 

1 5 i  5 t is simply the ith coordinate of 4. Similady, the nurnber of ones in the ( j  - l ) t h  

column of AHx for each integer 1 5 j 5 r is the jth coordinate of 0:. Now AHx can be 

identified with the Ferrers diagram (cf. Definition 2.5.2) of /3j( by associati~ig to each 1 in 

A H x  a dot in the Ferrers diagram in the natural way, t hat is, 
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By using the Ferrers diagram and CoroiIary 5.2.5, if is now straightforwaxd to cdcuIafe 

that the conjugate of Bi( is (&) = Px = cri, and so (iii) holds. 

To dernonstrate that (iii) implies (i), we will do a proof by induction on the tuple 

( 1  (X), X ) .  For any positive integer s, if (lnl (X)l, 1x1) = (1. s ) ,  then a x  = (s) and 

fix = (1, . . . , 1). But t hen a; = fix: and by Lemma 5.4.3, X is also ACM. - 
S 

So, suppose that (lr(X)), 1x1) = (t, s) and that result holds true for ail Y C P' x P' with 

0; = and ( t .  s) >lez (Iri (Y) 1, IY 1) where >lez is the lexicographical ordering on P f  , i.e.. 

(a, b) >lez (c ,d)  if a > c. or if a = C, then b > d. 

Suppose that Pl (after a possible relabelling) is the element of ri (X) such that lx;' (Pi)l = 

n i .  Let Lp, be the form of degree (1. O )  that vanishes at Pl. By abiising notation. we also 

let Lp, deuote the (1,O)-line in P' x P' defined by L p , .  

Set Xp1 := X fl Lpl  = rr1(p1) and Z := X\Kq. It follows that az = (az, ... . n t )  

and pz = (pl - 1.. . . ,Pa, - 1). NOW ( t .  S) >lez (Irl  (Z)l, IZI) M~ceover! ai = by 

Lemrna 5.4.1. Tlius, by the induction hypothesis. 2 is ACM. 

Suppose that r2(X) = {QI,. . . Qr }. Let LQ, be the degree (0.1) form that vanishes 

at Q i  E x~(X) and set F := Lq, Lq, . . Lq.. Because a: = &, fiom Lemrna 5.1.2 we have 

r2(Xpi ) = 7r2(%). SO, %pl = {Pl x Ql , . . . . Pl x Q,}, and hence 

Furthermore, if P x Q E Z. then Q E ?rz(Z) C 7 r 2 ( X )  , and thus F(P x Q) = O. Therefore 

F E Iz Because F is in Iz and is also a generator of Ix we will be able to show t hat the 

following clairn holds. 

Claim. Let I = Lpl  . IZ + (F). Then I = lx. 

Pmof of the Claim. Since Ix = IzUxpl = IZ n I x P l ,  we will demonstrate that Iz n IxPl  = 

L P ~  ' Iz + (FI. 
So, suppose that G = Lp, Hl + Hz F E Lp, . IZ + (F) with Hl E IZ and H2 E R. Because 

L and F are in Ix we have G E I x P l .  On the other hand. because Hi. F E Iz ,  G is 

dso in Iz . Hence L p, . Iz + (F) C Ix.  
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ConverseIy, let G E Iz n Tx Since G E Tx ,, , G = L pi Hl + FR2. If we can show 

that Hi E IZ, then we will have completed the proof. Now because G, F E Iz, we also 

have L p , H l  E Iz. But for every P x Q E Z, P # Pi, and thus L p L ( P  x Q) # O. Hence 

Lp,  Hl E Iz if and only if H L ( P  x Q) = O for every P x Q E Z. O 

By Remark 4.1.17. X C PL x P' is ACM if and only if the variety 16. C defined by 

Ix? considered as a homogeneous ideal of k[xo, zl yo, yi], is ACM. So, W is ACM if and 

only if the NI-graded ring R/Ix  is Cohen-Macaulay. Because we wish to show that R/Ix  is 

Cohen-Macaulay, by Theorem 4.1.22 t his is equivalent to showing t hat proj. dimR R/  lx = 

4 - K- dim R/Ix  = 2. On the ot her hand. since proj. dimR Ix = proj. dim, R/Ix  - 1 (see 

Theorem 2.4.6 (i)). it is enough to  show that proj. dimR Ix = 1. 

Now because Ix  pl = ( L s  F )  where deg L p, = ( 1.0) and deg F = (O. r ) (recall r = 

17r2(X) 0, when we consider I x P l  as a homogeneous ideal we have deg Lpl = 1 and deg F = r. 

The graded resolution of Ix ,, is therefore 

F 
where r$i = ILp, FI and 5b2 = . We note that for every G E R(-(1 + r ) ) .  we 

have &(G) = (FG, -Lp ,G) .   BU^ because F E Iz, we in fact have in142 C Iz(-1)$ R(-r).  

This fact, coupled wit h the claim. gives us the following short exact sequence of graded 

R-modules: 

where 4i and $2 are the same as the maps above. 

The projective dimensions of R(- ( 1 +r ) ) and R( -r) are zero. B y  the induction hypothe 

sis, proj. dimR Iz(-1) = 1. W e  therefore have proj. dimR R( - ( l+r ) )  < proj. dimR(Iz(-1)$ 

R(-r)) .  From the above short exact sequence and Theorem 2.4.6 (ii). it follows that 

proj. dimR rx = proj. dimR(Iz(- 1) $ R(- r ) )  

= max {proj. dimR Iz(-1). proj. dim, R( - r ) }  = 1. 

Therefore X is ACM. and so (iii) ( 2 ) .  as desireci. 
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Remark 5.4.5. Arit hrneticdy Cohen-Macaulay sets of points in PL x IP' were 6rst  classXed 

by Giuffrida, et al. (see Theorem 4.1 of [26]). They showed that X is an ACM set of points 

if and only if H x ,  considered as an infinite matrix, is an admissible matrix such that the 

entries of AHx are either 1 or O. By Remark 44-19, this condition on A H x  is equivalent to 

the statement that AHx is the Hilbert function of a bigraded axtinian quotient of k[xi ? yl]. 

Our contribution is to show that the ACM sets of points are also characterized by the tuples 

OX P x .  

Remark 5.4.6. In light of the previous result, i t  is natural to ask if Theorem 4.3.14 

classifies ACM sets of points in PL x x P .  We phrase this more precisely in the 

following question: 

Question 5.4.7. Suppose that X is set of distinct points in Pnl x - - -  x P n k  with 

Hilbert function H x .  If AHx is the Hilbert finction of a IVk - p d e d  artinian quotient of 

k [ ~ ~ , ~ . . . .  'xi,,,.. .. . X ~ , J . .  .. . x k , , , ] ?  then is  X an ACblse t  ofpoints! 

As wc have just seen. this question has a positive answer if % C P 1  x P L .  Althnugh we 

do not have an answer to this question in the general case, we suspect that the answer is 

yes . 

Corollary 5.4.8. Let % be a set of points in PL x P' with a~ = (ai . . . , ar ), and 

1 ( X )  = { P . .  . , P 1. Suppose (afier n possible relabelling) that In;'(Pi)J = ai. Fsr each 

integer O 5 i 5 t - 1 define 

where XQ = W .  If X is A CM, then Xi is -4Ch.l for each integer O 5 i 5 t - 1. Moreover, 

W. = f a i + ~ . ~ i + ~ o . .  - . ~ t ) *  

PROOF. It is s a c i e n t  to show that for each integer O i 5 t - 2, if P& is ACM, then 

Xi+' is ACM. So, suppose that & is ACM. Then. by construction ex,  = ( a i + i , .  . . , a t ) .  

Suppose that Bx, = (Pl . .  . . .A) .  Because & is ACM, a i ,  = Px,. 

Since & + L  = &\{n;' &+i is constructed Erom 36, by removing the ai+l points 

of Xa which have Picl as its first coordinate. The tuple &.+, is constructed fÎom BxBx, by 

subtracting 1 from ai+i  coordinates in Px,. But because ai, = Px,, we have r = a i + l ,  
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and thus Bx.+, = (81 - 1,.-+ ,W. - 1) = (81 - I , . .  . .@a,+2 - 1). But by Lemma 5.4.1, 

a%,+, = Px,+, , and hence, &+ is ACM by Theorem 5.4.4. O 

I t  is well known that if X is a set of points of PI, then the Hilbert function and the 

graded Betti numbers in the resolution depend only upon the number s = 1x1 and not upon 

the coordinates of the points themselves. As we will show below. the Hilbert functiori arid 

the graded Betti numbers in the resolution of an ACM set of points in PL x pl share the 

property that they depend only upon the combinatorics of % and not upon the coordinates 

of the points. 

Theorem 5.4.9. Let % be an ACM set O/ points in PL x PL with (IX = ( a l . .  .. R L ) .  Then 

PROOF. Our proof will be by induction on the tuple (Ini (Pb) l.lXI). For any s E N if 

. . .  (Irl(X),  1x1) = (1,s): then ox = (s) and Px = (1,. 1). The Hilbert function of X, which - 
Y 

can be computed direct ly fiom Proposition 5.2.1, is 

Hx = 

which is the desired outcorne. 

[ 
1 2  3 - . .  

... 
s - 1  s s . - -  

1 2 3 s - l  s s - - a  

S . .  . . .  . . .  
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Now suppose that (Ilri (W) I,IXI) = ( t ,  s) and that the theorem holds for dl ACM sets of 

points Y C IF1 x PL with ( t . s )  >I, ( I A ~ ( Y ) ~ .  lYl). 

After a possible relabelling, we can assume that Pl is an elernent of lrl  (X) with ln;' (Pi) 1 = 

ni. Set Xp, := n l l ( ~ ~ )  and Z := X\Xp,. Because 16 is ACM. af = ,dx. and hence, 

al = 1 & ( .  Therefore, from Proposition 5.3.6, the Hilbert function of X is 

H x ( i ,  j )  = H X P l ( i 7  j )  +HZ(* - 1 .  j )  for al1 (i. j )  E IV2. 

where we adopt the convention that Hz( i ,  j )  = O if i < O. 

It follows Erom the construction of Z and Corollary 5.4.8 that Z is ACPVI. Since ( t ,  s )  > l e ,  

(InI(Z)17 1231) = ( t  - 1 .  ( Z l ) .  by the induction hypothesis we have 

The conclusion iiow follows because Xp, is an ACM set of points with ux,, = (ni). Cl 

We will require the following result to describe the resolution of an ACM set of points 

in IF1 x Pl. 

Proposition 5.4.10. Let % 6e a set of s = tr points in P' x Pl such that ux = ( r . .  . . . r )  - 
I 

and = ( t ,  . . . . t ) .  Then X a's ACM. In fact. X is a complete intersection. Furthemore, - 
r 

the minimal free resolution of Ix is 

where the morpiiisms have degree (0 .0 ) .  

PROOF. The set Ih is ACM because ai = (t. . . . , t)  = Px. Because Iox( = t and lBxl = r ,  - 
7' 

it follows that  x I ( X )  = { P l  ,... . P t }  a n d x 2 ( X )  = { Q  l ? . . .  .Q,) where Pi'Qj E P. Since 

1x1 = t r .  the set X must be the set of points {Pi x Qj 1 1 5 i 5 t ?  1 5 j 5 r }  . Hence, if 
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Ip, ,Q, = (Lp i ,  LQ, ) is the bihornogeneous prime ideal associated to the point Pi x Q,, then 

the defining ided of X is 

Since deg Lp, Lp, - - Lp, = ( t ;  O) and deg LQ, Lq, . LQ, = (O. r ) .  t hc two generators of Ix 

form a regular sequence on R, and hence, X is a comp1ete intersection. 

Because Ix is generated by a regular sequence, the minimal free resolution of Ix is given 

by a Koszul resolution (see page 35 of Migliore 1391 or Corollary 4.5.5 of Weibel 1561). 

Taking into consideration that Ix is bigaded, we get 

where $1 = [ L p , L p 2  . - .  LP, L q l  Lq2 - -  Lq,] and 42 - L~~ L ~ 2  ' ' . L Q ~  
-Lp, LP.. . . Lp, 

To state our result about the resolution, we require the following notation. Suppose 

that X C P L  x PL is a set of points with ax = ( a l , .  . . , c r i ) .  Define 

and 

We take = O. With this notation, we have 

Theorem 5.4.11. Suppose that X is an ACM set O/ points in PL x wzth ax = 

( a ,  . . , a). Let Cx and Vx be constructed fmm a x  as above. Then the grnded minimal 

free resolution 01 Ix is 

O +  @ R(-vio-vz)-+ @ R(-cl,  -cz) -+ Ix + 0. 
( V I  , u z ) € ~ x  (cl ,cz)ECx 

where the morphisms have degree (@ 0) .  

PROOF. We wiil do a proof by induction on the tuple (Iri (X) 1,IXI). If s is any integer, 

and (InL(%), 1x1) = (1 , s ) '  then ax = ( s )  and Px = (1). The conclusion now follows 
S 

from Theorem 5.4.10 because Cx = { ( i . O ) ,  (0,s)) and Vx = { ( l . ~ ) } .  
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Su, suppose (Irrl(W), 17) = (t, sJ and the theorem fiords for a11 Y C P' x PL with 

( t , s )  >le, (Irri(Y)I, l'YI). Suppose that a x  = (a l , .  . . ,o l ,a l+l , .  . . .at),  i.e.. cq+l < al, but - 
1 

0 1  = al. 

If 1 = t, t hen X is a complete intersection and the resolution is given by Theorem 5.4.10. 

The conclusion now folIows because Cx = ((1, O), (O, al )) and Vx = {(l? al ) ). 

So, suppose that 1 < t. Let Pl, . . . , f i  be the 1 points of ni (X) that have ln;' (Pi)I = ni. 

Set Y = 7r;'(lj) U m  U n r 1 ( ~ ) .  Because X is ACM. ai = Ifixl. Hence, 

SO. cri. = (a l .  .. . . O , )  and By = (1,. . . .[). Also, Iy = (LpL S . -  Lpl .  LQ, - .  - L p , )  where Lp, is - 
1 Q t  

the form of degree (1,O) that vanishes at al1 the points of PL x PL which have Pi as t heir first 

coordinate, and Lq, is the form of degree (O. 1) that vanishes at al1 points P x Q E PL x P1 

S U C ~  that Q = Qi. 

Let F := Lp, . . . Lq and G := LQ, . - .  LQ,. From the proof of Theorem 5.4.10 we have 

where = [F G] and 42 = 
G . Let Z := W\Y. Since r 2 ( Z )  C rr2(X). it follows that I -FI 

G = LQ, . .. Lg, E IZ. Hence. irn6* C 12(-1.0) @ R(0. -al) since r = cri. We also require 

the following claim. 

Claim. Ix = F IZ + (G) 
Proof of the Claim. By construction, X = Z U Y, and thus Ix = IZ n Iy  . Hence. we want 

to show that Iz n Iy = F IZ + (G). 
So, if K F-Iz+(G),  then thereexists Hl E Iz and H2 E R such that K = FHl+GH2. 

Since F,G E Iy, K E Iy. But Hi,G f Iz,  so we have K E Iz n Iy. 

To show the reverse inclusion, let K E Iz fl Iy. Since K E Ir. there exists Hl,  H2 E R 

such that K = F H 1  + GH2. If we can show that Hl E Iz, we will be finished. Since 

K, G E Iz, we have FHl E lz. So. FHl m u t  vanish at  aii P x Q E Z. By construction, 

no point in Z can have P,, where 1 5 i 5 1. as its first coordinate. So. if P x Q E 23. then 

F(P x Q) = (Lpl Lq ) (P  x Q) # O. Hence H r ( P  x Q) = O. and thus Hl E 12. O 
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Rom the above resolution for iy ,  the daim, and the fact that im C Tz(-1, O) $ 

R(0, -ai), we have the following short exact sequence of R-modules 

where #i and #2 are as above. 

By Corollary 5.4.8 the set of points Z is ACM with as = (ai+L!.  . . . q). Thefo re ,  

the induction hypothesis holds for Z. With the above short exact sequence, we can use the 

rnapping cone construction (see Section 1.5 of Weibel [S6], and Section 4 of Chapter 1) to 

construct a resolution for lx. In particular. we get 

$ R(-  (aui + 1 ) ,  -vz )  @ R ( 4 ,  -ai) + 
( W  .u?)Ebi  1 

@ R - c  + 1 ) .  - )  $ R(O. ni) + Ix + O. 
(c i  ,C?)€CZ 1 

Since the resolution has length 2. and because X is ACM. the resolution of Ix cannot be 

made shorter by the Auslander-Biichsbaurn formula (cf. Theorem 4.1.22) 

To show that this resolution is minimal, it is enough to show that no tuple in the set 

((ci + 1 , ~ ~ )  1 (c1.c2) E CZ}  u{(Oiai)}  is in the set {(vl + 1. y )  1 ( V I .  u z )  E Vz} u {(1,cri)}. 
B y  the induction hypothesis. we can assume that no (cl ,  c2) E CZ is in Vz. and hence. if (cr + 
1. cz) E {(ci + 1. c2) 1 (cL.c2) E CZ}. then (ci + 1 . 4  is not in {(zq + i. v z )  1 (ul ,  oz) E VZ} 

If (ci + 1 . ~ ~ )  = ( 1 . ~ 1 )  for some (ci .c2) E Cz, then this implies that (0.01). But this 

contradictions the induction hypothesis. Similady, if (O, ai ) E {(q + 1. v 2 )  1 (vr .  v2) E Vz} . 
this implies (-1. a * )  E Vz, which is again a contradiction of the induction hypothesis. So 

the resolution given above is also minimal. 

To complete the proof we only need to veriSf that 

((i - l,cri) ai - ai-1 < O )  and Cz = { ( t  - 1.0): (O?al+l)}u{(k - l , a i + k )  I a i + k  - al+k-i < 01 

since q = ( a L ,  . . . . cul, c q + 1 ,  . . . . CQ) and CYZ = . . . . ab) - 
f 
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We check that Cx 2 Cr. Tt is immediate that the elements (O, cri) and (t, O) are in C. 

So, suppose (d1,d2) E {(i - Ilai) 1 ai - ni-1 < O}. For i $ 1. ai = ai. SO, if (di,d2) E 

{(i - 1, ai) 1 ai - a i - 1  < O), then (dl,  d2) = (1. al+ l), or there exists some positive k such 

that (dl ,  d2) = (1 + k - 1, a l C k )  and cq+k - q + k -  1 < O. But in either case, (dl - 1, 4 )  E Cz, 

and herice, (dl ,  dz) E C'. 

Conversely, we only need to check that (cl + 1, c2) E Cx for every ( c ~  c2) E CZ. It 

is straightforward to check that ((t  - 1) + 1,O) E Cx. Also, as noted, (L.cul+l) E Cx. If 

(c1,c.l) E {(k - 1, n l + k )  1 al+k - a l+-k-1  < O}, then (cl + 1, ~ 2 )  = (k + 1 - 1, ai+k) E CZ 
because ai+& - a l + k -  1 - Thus Cx = Cl. 

The proof of (ii) is similar in nature. However, for cornpleteness. we will veriQ the 

details. Let VI denote the set {(vl + 1 , ~ ~ )  1 (1)1,~u2) E Vz) U ((1. cri)). By definition, Vx = 

We will check that Vx Ç V'. The element (t.  q) E VI because ( t  - I .  et) E Vz. So, 

suppose (dl ,  dz)  E {(i - 1, cri-1) 1 ai - ai-1 < O) .  Because cri = al for 1 5 i 5 1 ,  it is either 

the case that (dl,  d2) = (1, ai) = (1, a l ) ,  or (di,d2) = ( 1  + i - 1. cri+,-l) with i > 1. But in 

the tirst case, it is immediate t hat (dl,  ci2 j E V!. Zn the second case. becüuse (dl ,  d2 j < Vx, 

al+j - crl+i-i < O. But then (i - 1: c ~ [ + , - ~ )  E VZi and hence, (dl. d 2 )  f V'. 

Conversely, because ( 1 , a ~ )  E Vx, we only necd to check that (.vl + 1, %) E Vx for al1 

(ul, u2) E VZ. It  is immediate that (t - I + L! at ) f Vx. So. suppose that ( V I .  v2)  E {(i - 

Because crx = (al, .  . . , al?. cq+l,. . . . at), we must have ( ( 2  + 1 - 2 .  atc1-l) / a j+ l  - cri+l-i < - 
1 

O} = Vx\{(t, al ) ) ,  which completes the proof. O 

Remark 5.4.12. The resolution of an ACM set of points in x PL was first computed by 

GiuErida, et al. (Theorem 4.1 [26]). GiufErida, et al. showed that the graded Betti numbers 

for an AChd set of points W C Pl x Pl could be determined fi-om the first difference function 

AHx, i.e-, 
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O r- t 

An eIement of Cx, which they called a corner of AHx, corresponds to a tuple (i, j) that is 

either ( t .O) ,  (O.ai) = (O.r), or has the property that A H x ( i , j )  = O. but AHx(L' - l , j )  = 

h H x ( i ,  j - 1)  = 1 .  We have labelled the corners of AHx with a c in the above diagrarn. An 

element of Vx is a vertex. A tuple (i, j) is called a vertex if AHx( i .  j) = A Hx(i - 1, j )  = 

A H x ( i ,  j - 1) = O, but AHx(z - l? j - I )  = 1. We have labelled the vertices of A H x  with a 

v in the above diagrarn. Our contribution, besides giving a new proof for the resolution of 

an ACM set of points in x !Pi, is to show that the graded Betti numbers can be computed 

directly from the tuple CYX. 

Example 5.4.13. The set of points X in Example 5.2.7 is not ACM. Indeed, for that 

example, we saw that ox = (4.3,2,2,1.1) and & = (4.3.3.3). Since c r i  # P x ,  X cannot 

be an ACM set of points. 

Example 5.4.14. Let X be the set of points in Example 5.3.5. Then a x  = (4,3,1,1) and 

Px = (4.2.2.1). It is an easy exercise to verify that ai  = (4 .2 ,Z. i )  = Px.  Thus. X is ACM. 

Because W is ACM. the Hilbert function of X can be computed using Theorem 5.4.9. We 

have 
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We can also compute the resolution of I x  by iising Theorem 5.4.11. We compute the sets 

Cx aiid Vx from a x  = ( 4 . 3 , l .  1) to get: 

The resolution of Ix is then 

O + R(-1. -4) $ + ( 0  -4) ( - 4  O )  @ -+ Ix + 0. 

R ( 4 .  -1) @ R(-2? -3) R(-1. -3) @ R(-2. - 1) 



APPENDIX A 

Using CoCoA t o  Compute the Hilbert Function of a 

Multi-graded Rings 

The goal of this appendix is to describe how one can compute the Hilbert function of a 

multi-graded ring using CoCoA. Alt hough the procedure t hat we describe is straightforward, 

using CoCoA to implement this method requires some care. We will begin by giving the 

mathematics behind the algorithm. We will then provide a stepby-step account of how to 

implement this procedure into CoCoA. In the 1 s t  sectiou of the appendix, we will provide 

some output of our algorithm. We will eniphasize examples dealing with points in P l  x 

x P k .  

We have written our code using CoCoA 4.0 for Linux. CoCoA can be obtained for free 

via anonymous FTP at cocoa. dima. unige . it or via the CoCoA home page: 

http : //cocoa.dima.unige.it 

There is also a comprehensive manual and a series of tutoriak at this web address. 

1 want to thank John Abbott, Anna Bigatti. and Massimo Caboara for helping me with 

al1 my CoCoA related questions and problems. 1 would especially like to thank Anna Bigatti, 

who read an easlier version of this appendix, for rnaking some very helpful suggestions to 

increase the readability of the appendix, and for bringing to my attention some features of 

CoCoA that sirnplified the following discussion. 

1. The Mathematics of the Algorithm 

Suppose t hat k is a field and let R = k [ q o .  . . . : XI,, , , . . . xk.0 , . . . . ZC..,~]. We suppose 

that deg zij  = ei where ei is the ith standard b a i s  vector of W". The ring R is then IVk- 

graded. Suppose that I Ç R is an Wk -homogeneous ideal. Then the quotient ring S = RI 1 

134 
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is an ~ k - ~ r a d e d  ring, i.e., S = @ Si where Si = R/I, - - for al1 i := (ilo.. . 'ik) E IVk. 
i€ Nk 

Furthemore, Si is a finite dimensional vector space over k for al1 i E Rlk. 

The numerical function Hs : Nk + N defined by 

is the Hilbert function of S = R/ I .  To compute the Hilbert function of a multi-graded ring 

iising CoCoA, we wili use the Hilbert-Poincaré series. Recall t hat the  Hilbert-Poincaré series 

of S = R/I  is the infinite series 

HPs( t i ,  . . . t t )  = ~ ~ ( i ) t i  where ti := tfl . . . tk .  

'E Mk 

Using the Hilbert-Serre theorem (see [?]) we have 

(A. 1.3) 

where Q(tl,  . . . t ~ )  E Z[ti,. . . . t k ] .  

The CoCoA ftiriction Poincare is able to compute the Hilbert-Poincaré series of a multi- 

graded ring. A description of the algorithm used by CoCoA is found in Bigatti (31. The 

rûutine Poincare i c tms  thc rationd function giwn in cquation (-4.13). We, therefore, 

need to extract the Hilbert function of S = R / I  frorn the rational function. 

Because 

to compute Hs( j )  for any i E Ffk .  we need to compute the coefficient of t i  in the expression 

on the right. From the identity 

it follows that 
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By expanding out the right hand side, we can compute Rs(i) for aII i E M. However. this 

approach is not feasible because it requires an infinite number of operations. 

To get around this difnculty, we decide a prion' on a finite number of i E N~ for which 

we wish to compute Hs (i). We shall usualiy fix a j = ( j i  , . . . . jk ) E IVk and compute H s ( i )  - 
for al1 i = ( 2  L . . . .  . i k )  5 1 = ( j  l , . . .  , j k )  R e d 1  that we say i 5 j if and only if il 5 jl - 
for al1 1. Thus. we need to compute the coefficients of t i  of HPs ( t  ,. . . . , tk ) for only t hose 

1 5 j .  Hence, for each integer 1 5 1 5 k, we need to write out only the first jl terms of - 
1 

because the larger terms do not contribute to any coefficient of t? with i 5 j. 
( 1  + ti)"i+' - 
We. t herefore, on1 y expand out 

to calculate the value of Hs(i)  for al1 i _< j .  Moreover. there are only a finite number of - 
calculat ions requircd. 

The following algorithm is a sumrnary of the above discussion. The algorithm is also 

the b a i s  for the actual implementation we give in the next section. 

Algori thm A.1.1. 

Input: An IVk --graded ring S = RI I and j - = ( j l  , . . . . j k )  E IVk. 

Output: H s ( f ) ,  the Hilbert function of S = R / I .  for all 5 j .  - 

2 .  For each integer 1 5 15 k, set 

3. K ( t L , .  . . . t k )  := Q ( t l . .  . . , t k ) L 1 L 2  ' " L k .  

4 .  For each i 5 j ,  - return the coeficient of t l=  t;' . .- t;' in K(ti.. . . , t k ) .  



2. THE IMPLEhIENTATION OF THE ALGORITHXI 

2. The ImpIementation of the AIgorithm 

To simpli8 our notation, we will only describe how to implement Algorit hm A.l.l for 

bigraded quotients of the N2 -graded ring R = k[xl, . . . , x,, y1 , . . . , y,] with deg xi = (1 ,O)  

and degyi = (0, l ) .  Moreover, we will also assume that k = Q. We cannot work in 

an algebraically closed field of characteristic zero. for example. @ because all computers 

have to store nurnbers as finite pieces of information. Fortunately, if al1 the coordinates 

of the points that we consider are in Q, t hen the computations over any extension, and in 

particular, over C, are the same and will give the same result. 

Before implementing Algorithm A.1. l  into CoCoA. we need to dcscribc how to overcome 

the folIowing two problems: (1) CoCoA does not allow one to give an indeterniinate a degree 

of (O, 1); and (2) the output of the Poincare function is not returned as a rationai function. 

We will start by showing how to give our polynomial ring the appropriate grading. 

Suppose that T = k[xl,. . . , x,]. It is then possible in CoCoA to assign eack, indeterininate 

xi a non-standard degree, that is, degxi := (ai,i, u ~ J , .  . . ,ai,,) where r 5 n and aij E % via 

the Weights function. For example, ifT = Q[xl,. .. ,z3] anddegxl = (1.2). degxî = (2 .3) ,  

and deg x3 = (3,4), then the commands to define this multi-graded ring are: 

W:= Mat([[1,2,3], 

C2,3,413); 

Use T::= Q[x[1. ,311 ,Weights(U); 

However, if we were to use t his example as a guide to give R = Q[x 1 . zz: yi, fi] a bigrading 

with deg xi = (1' 0) and deg Yi = (0, 1), the corresponding comrnands 

W:= ~at([[l,1,0,01, 

C0,0,1,~31~; 

Use R: := Q[x[i. .2] , y [ l .  -211 ,Weights(W); 

will result in an error. This is because CoCoA requires the first row of the matrix to contain 

only positive integers. To circumvent this problem, we give R a tri-grading, that is. an 

N3 -grading, by defining deg xi = (1,1,0) and deg Yi = ( 1,0,1). T herefore, the command to 

define the ring above would be 
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C1,1,O,Ol, 

CO,O,i,~lI); 

Use R::= Q[x[l. .2] ,y[l. ,211 ,Weigbts(W); 

Alt hough we no longer have a standard bigraded ring, we can stil1 use this ring t~ make 

our calculations. Indeed, F E R is hornogeneous with respect to t his @-gading if and only 

if F is homogeneous with respect to the Pf-grading. Hence. if I is any Rf homogeneous 

ided of R, it will dso  be I@-homogeneous with respect to this grading. 

To use Algorithm A.l. l ,  we need to compute the Hilbert-Poincaré series of the bi- 

graded ring S = R / I .  Even though CoCoA will not d o w  us to define such a bigraded 

ring, the following proposition enables us to use the above non-statidard grading on R = 

k[xl. . . . , z,, y,, . . . y y,] to compute the desired Hilbert-Poincaré series. 

Proposition A.2.1. Let R = k[x1,.  . . ,ln, yi, . . . ,y,] with deg xi = (1 , l .  0) and degyi = 

( 1  1 ) .  Suppose thut I is a hornogeneous ideal of R with respect tu  this grading and that 

where Q(to, t 1, t 2 )  E Z[ta, t t p ] ,  is the Hilbert-Poincaré series of S = RI I .  Then I is also a 

homogeneous ideal O/ R with respect to the gmding on R induced by setting degx, = ( 1 . 0 )  

and deg yi = (0.1). Furthemore, let Q1(tl t 2 )  = Q(1. t 1 ,  t 2 )  Then the Hilbert-Poincaré 

series of S = RI I with respect to this new gmding is 

PROOF. Since F is homogeneous with respect to the non-standard N3-gading if and 

only if F is homogeneous wit h respect to the N2 grading, t hen one needs to only verify t hat 

the coefficient of tbt'; ti of H Ps(ta, t 1. t 2 )  is equal to the coefficient of t i t i  if i = j + k and 

zero ot herwise. 

From the above proposition, we see t hat we need to manipulate the numerator of the 

Hilbert-Poincaré series of the non-standard graded ring S = RII in order to get the desired 

numerator. However, when we wish to implement this step, we encounter our second diffi- 

cultly. The CoCoA Function Poincare which computes the Hilbert-Poincaré function returns 

an object that is not a ration4 function. 
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For example, suppose we use the ring R = Q[xl, Q, y1 , y2] where deg xi = (1,1,0) and 

deg y, = (1,0,1) and we wish to compute the Hilbert-Poincaré series of the ring RII where 

I = (xl + x2, y1 ). Then the needed commands are: 

W : =  ~ a t ( [ C 1 , 1 , 1 , 1 ] ,  

C1,1,0,01,  

C O , O , i , ~ l I ) ;  

Use R :  :=Q[x[1. .2] ,y[1.  .2Weights(w) ; 

1 :=Ideal(x  [ i l  +x C21 ,y  [I l  ) ; 

P:=Poincare(R/I); P ;  

The output is: 

--- Non-simplified HilbertPoincarel S e r i e s  --- 
(xC11a2xt21yC11 - xClJxC23 - xCiIyC11 + 1)  / 

( (1-x C i 3  x c23 1 (1-x Cil x c21) (1-x Cil y [il 1 (1-x Cil y c i 3  1 

Although CoCoA outputs the result as  rational function, it is not storeci as such. However, 

we use the function HP .ToRatFun to turn the output of Poîncare into a rational function. 

Cont inuing with our above example. we have: 

Note that the output that is returned is simplified. We can aow multiply the above output 

by the denominator to isolate the numerator. 

Below is our code for the function BiHilbert t hat is based upon Algorithm A. 1.1. We 

assume that the appropriate mdti-graded ring has ben defineci. The function BiHilbert  

has been written to output the Hilbert function as a matrix (m,,j) where mIqJ := H R l r ( i . j ) .  

Note that we adopt the convention that the indexing of the matrix starts a t  (O, 0). 
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-- BiHilbert(I,Kl.K2) 
-- 
-- (Assume that the appropriate ring R has been defined) 
-- BiHilben computes the Hilbert function of the bigraded ring S = R/I 

-- for al1 (1, J) <= (Kl,K2) 
------------------*---------------------------------------------------- 

Define BiHilbert(I,Kl,K2) 

-- N = Xindeterminates of degree (1.1.0) in R 

-- b¶ = #indeterminates of degree (1.0.1) in R 

N:= Len([X In IndetsO I HDeg(X) = C 1 , 1 , 0 ~ ~ ~  ; 

U:= Humfadeta0 - N; 
-- Compute Hilbert-Poincare Series 
P:=Poincare(CurrentRingO/I); 

BiHiRing : :=Q [t Cl. .3fj ; 

Using BiHiRing Do 

-- Determine the numerator (Nud of the HP-series 
RationalP:+$cocoa/hp.ToRatFun(P); 

Num :- RationalW(1-t Cl] t 121 IœN*(1-t Cllt [3l)-M; 

-- Derivs t h e  correct numerator by substitutino 1 into Num 

Num: =Subst (Nrim,t Cl] , 1) ; 
-- Write out the appropriate number of terms of the denominator 
-- and multiply by the numerator. We use the 

-- routine Expansion 
Erpandad:=Num*Expansion(N,M,Kl,K2); 

-- Read off the coefficient of the term t [2] -Il*t[3]^12 
-- for al1 (11.12) <= (Kl.K2). Store result in a matrix 

HilbertUatrix : =NewMat (K1+1 , K2+1 , O) ; 

Foreach K In Konomials(Expanded) Do 

If Deg(K,t [2]! <= K1 And Deg(M,t C31) <= K2 Then 

HilbertHatrixCDeg(M, t CZ] ) +1 ,Deg(H, t C33 )+Il := LC(M) ; 

End ; 

End; 

-- Retutn desired values as a matrix 
Retnrn (HilbertHatrix) ; 

End ; 

End ; 
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-- Expansion(N,H,Kl ,K2) 
-- 
-- Expansion comptates the first Ki terms of l/ (1-t [2]) 'N and 

-- the first K2 terms of 1/(1-t 131 7 4 .  It then returns 

-- the product of these t u o  polynomials. 

Def ine Expansion(N,U ,KI ,K2) 

Ll:=[Bin(D+N-1,~-f)*t [2] -D I D In O. .KI] ; 

~2:=(~in(~+~-l,~-l)*t[31'D I D In O..K21; 

Pl:=Sum(Ll) ; 

P2 :=Sum(L2) ; 

Return(Pl*P2) ; 

End; -- Expansion 

3. Examples of the Algorithm 

In this section, we will demonstrate how to use the function BiHilbert to compute the 

Hilbert function of a bigradeci quotient of the ring R = kjzl , .  . . . 2,. yl, . . . . , i .  

Example A.3.1. Let R = qxi ,z2 ,x3 .zr '  y l , ~ ]  where degxi = (1 .0)  and degyi = (0.1). 

As observed in Chapter 2, 

We use B i H i l b e r t  to compute the Hilbert function of R for all (2.j) 5 (10.10) to veri& 

that our algorithm has been properly coded. 

U:=Uat(lCl,l,l,l,l,l~, 

C1.1,1,1,0,~1, 

~0,0,0,0,1,111~ ; 

Use R: :=Q[xCl. .4] ,y[1. .211 ,Ueights(W) ; 

1 : =Ideal (O) ; 

BiHilbert (1,10,10) ; 

Hat [ 

Ci, 2, 3 , 4 ,  5, 6, 7 , 8 , 9 .  10, il], 

14, 8, 12, 16, 20, 24, 28, 32, 36, 40, 441 , 
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Example A.3.2. Let R = Q[xi.x2, y ~ ~ & ]  with degxi  = (1.0) and degyi = (O. 1). Then R 

is the bigraded coordinate ring of Pb x P.b. Let Pi = [l : il E PQ and Qi = [l : il E Pb and 

suppose that % is the following set of points: 

It follows that Ilri(X)l = 3 and Ina(%)l = 4. From Corollary 3.1.7. we need to compute 
those ( 2 ,  j )  5 (3  - 1.4 - 1) = (2 ,3)  to determine ail the values of the Hilbert function. Our 
c~rnputati~n nf f i  using BiHilbert shows that this is indeed the case. 

W:=Mat([[l , l , l , l I ,  

C l , i , o ,o I ,  

C 0 , 0 , 1 , ~ 1 1 ~ ;  

Use R: :=QCxll. .2] ,yCl. .211 ,Weights(W); 

1,P t x Q i  : =Ideai  (x [il -x [2] ,y Cl1 -m ) ; 
1-Pixq2: =Ideai  (x C l ]  -x C21.2~ C l ]  -pC21) : 

1 , ~ 1 x ~ 3 : ~ I d e a l ( x C l ~  -xC21,3y 111 -yC21 : 

I,P2xQl: -Ideai  (2% C l 3  -x [21 ,y C l ]  -y C21) ; 

I,P3xQ4 : =Ideai  (3x Cil -x C21.4~ C l ]  -y 121 ) ; 
1:=1ntersection(1,~1xQ1,1~P1xQ2,1,PI*Q3,1~P2xQ1,1~P3xQ41; 

BiHilbsrt  (1 ,4 ,5)  ; 

Mat C 

C i ,  2 ,  3, 4 ,  4 ,  41, 

t2, 4 ,  5 ,  5 ,  5 ,  53, 

C3. 4, 5 ,  5 ,  5 ,  51, 

CS, 4, 5, 5, 5, 51, 

CS. 4, 5.  5 ,  5 ,  51 
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We are now able to read off the border (see Definition 3.2.8) of the Hilbert function. For 

this example, the border Bx = ((3,4,5,5) ! (4,5,5)). 

Example A.3.3. Let R = ax, y] with degx = (1.0) and deg!/ = (0.1). and let I = 
(z3, xZy, xy4, y5). We use B i H i l b e r t  to compute the Hilbert function of R/I: 

w:=~at([[l,il, 

Ci,03, 

C0,111); 

Use R: : aQ Cr, y3 , Weights (U) ; 

1: =fdeal(x*3, x'2y,xya4.y'S) ; 

BiEilbert(I,S,Jl; 

BiHilbert (1.5.5) ; 

Hat [ 

Cl, 1, l* 1, 1, 01, 

Cl, II 1, 1, O, 018 

Cl, O, O, O, O ,  01, 

CO, O, O, O, O, 03, 

CO, O, O, O, O, 01, 

CO, O, O, O, O, O1 

1 

Fkom Corollary 4.4.14 it follows that RI1 is a bigraded art inian quotient. Thus: by Corol- 

Iary 4.4.15 there exists an ACM set of points in P,& x Pb with Hilbert function H such that 

AH is equal to the above Hilbert function. We claim that the set of points 

is such a set. From Theorem 5.4.4, the set X is ACM. Using B i H i l b e r t  to cornpute Hx we 

find 
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14:=Ideal(x[l]-xC21 ,4y[lI-yC21) ; 

15 :=1deai (x Cil -x C21, Sy 111 -y C2f ) ; 

16 : -1deai (2x [il -x C2l ,y 113 -y C2J ) ; 

I?:=Ideal(2xCll -xC21,2yClI-y C21) ; 

18 :=Ideal(2x Cl1 -1 C23,3yE11 -y C21) ; 

19 : =Ideai ( 2 1  cl] -x C23 ,4y ILi -y C21) ; 

110:=Ideal(3xCi~ -xC2I ,y  Ill -9121 ) ; 

1:=1ntersection(11,12,13,14,15,16,17,18,19,110~ ; 

BiHilbert(I,S,S) ; 

Hat C 
Cl, 2, 3, 4, 5,  51, 

C2, 4, 6, 8, 9, 93,  

c3, 5, 7, 9, 10, 101, 

13, 5, 7, 9, 10, 101, 

C3, 5, 7, 9, 10, 101, 

C3, 5, 7, 9, 10, 101 

1 

A routine calculat ion will now verify t hat 

is equal to Hilbert function of the above 

the first difference function of this Hilbert function 

bigraded artinian ring. 
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