OOWEKYALA SEGMENTAL PHONOLOGY
byDARIN MATHEW HOWE
B.A. (Hons.), University of Ottawa, 1994
M.A., University of Ottawa, 1995
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OFTHE REQUIREMENTS FOR THE DEGREE OFDOCTOR OF PHILOSOPHY

THE FACULTY OF GRADUATE STUDIES

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

OOWEKYALA SEGMENTAL PHONOLOGY
by

DARIN MATHEW HOWE
B.A. (Hons.), University of Ottawa, 1994
M.A., University of Ottawa, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENT5 FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

In

THE FACULTY OF GRADUATE STUDIES
(Department of Llnguistics)

THE UNIVERSITY OF ERITISH COLUMBIA December 2000

Darin Mathew Howe, 2000

Acquisitions et services bibliographiques

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Abstract

This dissertation treats the sound pattern of Oowekyala, a nearly extinct Wakashan language of British Columbia. Proposed analyses are set in Optimality Theory (Prince \& Smolensky 1993). Following an introduction to the language (its speakers, their location, adjacent languages, etc.) and to the adopted theory, the discussion focuses on three dimensions of Oowekyala phonology: intrasegmental, intersegmental, and correspondence-related.

The segment-internal (paradigmatic) phonology results from the interaction between lexical faithfulness and context-free markedness constraints. This interaction is discussed with respect to the various features that cross-classify the segment inventory of Oowekyala. For instance, it is argued that laryngeals are [+sonorant], that affricates are [-continuant], that [+voice] and [+constricted glottis] occur as floating elements and that these floaters may cause lenition (insertion of [+sonorant]), and that gutturals (uvulars and laryngeals) are [-ATR].

Intersegmental (syntagmatic) patterns result from the interaction between lexical faithfulness and context-sensitive markedness constraints. Patterns discussed include: rounding of obstruents, degemination, spirantisation/deocclusivisation, continuancy dissimilation, voicing neutralisation, allophonic vowel lowering and resonant debuccalisation.

Exceptional phonological patterns that cannot be explained through the interaction between input-output faithfulness constraints and markedness constraints are addressed last. It is proposed that these exceptional patterns reflect various correspondence relations (cf. McCarthy \& Prince 1995, 1999 on Correspondence Theory): base-reduplicant correspondence, output-to-output correspondence, and candidate-to-candidate correspondence.

Table of contents

Abstract ii
Table of contents iii
Acknowledgments v
Key to sources cited vi

1. Introduction 1
1.1. Language background 1
1.1.1. Speakers and location 1
1.1.2. Adjacent languages 3
1.1.3. Previous documentation 7
1.1.4. On "degenerate" syllables 9
1.2. Theoretical background 18
1.2.1. Optimality Theory 18
1.2.2. Correspondence Theory 19
2. Intrasegmental phonology 21
2.1. Introduction: the segment inventory of Oowekyala 21
2.2. Stricture features 22
2.2.1. Major class features 22
2.2.2. Continuancy 25
2.3. Laryngeal features 30
2.3.1. Laryngeal features in stops and affricates 30
2.3.2. Laryngeal features and fricatives 41
2.3.3. Laryngeal contrasts in sonorants 50
2.3.4. Laryngeal contrasts in vowels 53
2.4. Articulatory features 56
2.4.1. Introduction 56
2.4.2. Lips 56
2.4.3. Tongue Blade 60
2.4.4. Tongue Body 64
2.4.5. Soft Palate 70
2.4.6. Tongue Root 71
2.5. Intrasegmental phonology: conclusion 77
3. intersegmental phonology 80
3.1. Introduction 80
3.2. Rounding in consonants 80
3.2.1. Neutralisation after/u/ 81
3.2.2. Rounding assimilation between obstruents 89
3.3. Degemination 95
3.3.1. Introduction 95
3.3.2. OT analysis 99
3.3.3. Rounding stability in degemination 100
3.4. Spirantisation/deocclusivisation 104
3.4.1. Introduction 104
3.4.2. OT analysis 108
3.4.3. Special cases of spirantisation 111
3.4.4. Exceptions to spirantisation/deocclusivisation 117
3.5. Coronal fricative dissimilation 119
3.5.1. Description 119
3.5.2. OT analysis 124
3.5.3. Interaction with spirantisation 125
3.6. Voicing neutralisation 129
3.6.1. Description 129
3.6.2. Two OT analyses of voicing neutralisation 135
3.6.3. Voicing in loan word phonology 138
3.6.4. Evidence for [-voice] 145
3.7. Allophonic variation 153
3.7.1. Vowel lowering 153
3.7.2. Derived laryngeals 154
4. Segmental correspondence 158
4.1. Base-reduplicant correspondence 158
4.1.1. Underapplication of h deletion 158
4.1.2. Exceptions to spirantisation/deocclusivisation 159
4.1.3. Underapplication of rounding assimilation between obstruents 161
4.1.4. Deglottalisation in the reduplicant 162
4.2. Output-to-output correspondence 168
4.2.1. Overapplication of post-/u/ rounding 168
4.2.2. Overapplication of spirantisation 170
4.3. Candidate-to-candidate correspondence 174
4.3.1. On the change from $/ x /$ to $[n, r i]$ 174
4.3.2. Overapplication of dissimilation of [+continuant] 175
4.3.3. Overapplication of deocclusivisation 178
4.3.4. Sonorant glottalisation before voicing suffixes 181
5. Conclusion 185
References 186

Acknowledgments

I wish to express my most heartfelt gratitude to Mrs. Hilda Smith who has been so very kind and diligent in sharing her extensive knowledge of her native language with me.

My greatest thanks go to my brilliant co-chairs Patricia Shaw and Douglas Pulleyblank. I am very proud of the academic and professional training l've received under their guidance and support. I am also deeply appreciative of the great kindness they've shown toward my family and me over the last $51 / 2$ years.

I also wish to thank Emmon Bach, my third committee member, for sharing his great knowledge of Wakashan linguistics, for his companionship and practical assistance, and for setting such a wonderful example of professionalism.

Katie Fraser introduced me to the Wakashan family of languages and encouraged me to write a thesis on Oowekyala (after three years of working together on Ahousaht!). She has been a consistent source of sound advice throughout my studies and has been a very dear friend to my family.

The lively linguistics community in Vancouver has been a source of energy and inspiration for me. Many thanks especially to Tomio Hirose, Susan Blake, Laura Downing, Mary-Jane Dick, Dale Kinkade, Guy Carden, John Alderete, Su Urbanczyk, Charles Ulrich, Henry Davis, Strang Burton, Brian Gick, Joe Pater, Ted Pulleyblank, and Edna Dharmaratna.

My wife Julia's support, patience and sacrifice have been incalculable throughout my graduate studies. I also wish to thank my parents David and Maureen for their constant encouragement.

Finally, I gratefully acknowledge the financial support I received for my studies at UBC: three UBC Graduate Fellowships (one partial and two full), a one-year SSHRCC Doctoral Fellowship (no. 752-98-1702). I was also generously supported by a SSHRCC Research Grant "Asymmetric Patterns in Phonology" (no. 410-97-1369, Principal investigator: Douglas Pulleyblank).

Key to sources cited

HS Hilda Smith, p.c. (many glosses adapted from Rath 1981)
EW Evelyn Windsor (Lincoln \& Rath 1980)
WL Unpublished word list compiled by David Stevenson
DS Stevenson 1982
BC Compton 1992
HSS Hanuse, Smith \& Stevenson 1983
JSS 1 Johnson, Smith \& Stevenson 1983a
JSS2 Johnson, Smith \& Stevenson 1983e
JSS3 Johnson, Smith \& Stevenson 1984

1. Introduction

This dissertation treats the sound pattern of Oowekyala, a First Nations language of the mountainous west coast of British Columbia, Canada. Proposed analyses are set in the conceptual framework of Optimality Theory (OT, Prince and Smolensky 1993), especially as recently developed by McCarthy and Prince (1995, 1999).

This first chapter provides some background information both on the language of study (section 1.1) and on the adopted theory (section 1.2).

1.1. Language background

This section gives some background information on Oowekyala: its speakers and their location, adjacent languages, previous documentation, and its syllable structure.

1.1.1. Speakers and location

The name of the language of study is Oowekyala/Rawikala/. The term apparently consists of the root Zawik- 'back, inland' and the suffix -k'ala 'speech'. The root is also found in the tribal name of the original speakers of Oowekyala: Zawikinuẍ" (-inux̆w 'tribe'). The latter term, which is also frequently used to designate Oowekyala, has been anglicized in the literature as Oowekeeno (name adopted here, after Hilton \& Rath 1982), Oweekeno (McMillan 1999), Oweekano (name of the Band), Owikeno (name of the Lake), Wikeno, Awikenox, etc.

According to Thompson and Kinkade (1990), the Oowekeeno and their closely-related Heiltsuk neighbours originally lived in northern or northwestern Vancouver Island. From there, they expanded onto the mainland coast, isolating the Nuxalk from all other Salishan members, perhaps around 2500 BC (McMillan 1999:30-46). In contrast, Kinkade (1991) claims that the ancestors of the Oowekeeno (the Wakashans) occupied not only all of Vancouver Island, but also the south-central coast of British Columbia. On this account, the Nuxalk are the 'newcomers' in Oowekeeno-Heiltsuk territory: "[Wakashans] were supplanted by Salishans moving north and by Bella Coolas moving across from the interior" (Kinkade 1991:151). In support of this view, Kinkade (1991:149) shows that the Nuxalk vocabulary for local flora and fauna is mostly borrowed from Wakashan languages.

The Oowekeeno formerly inhabited several villages around Owikeno Lake and Wannock River. "The Owikeno were at one time perhaps the most numerous of the Kwakiutl-speaking tribes" (Olson 1950:78). They were the source of many important ceremonial elements (legends, names, masks, songs and dances) which spread (e.g. through marriage) to the Kwakwaka'wakw (Kwakiutl), the Heiltsuk (Waglisla, Klemtu), the Tsimshian, the Tlingit, the Haida, and the Nuxalk (Bella Coola) (Stevenson 1980). Most notably, Stevenson (1982) argues rather convincingly that the Oowekeeno at the mouth of Shumahant River (sumx̌utiť̌") originated the whole Cannibal Dance complex (hamaca), including the highly influential myth of the Cannibal Spirit (bax"bakwalan'usiwa).

Like other First Nations in British Columbia, the Oowekeeno were devastated by the European invasion. They were decimated physically by the introduction of foreign diseases and alcohol; they were removed from their traditional sociocultural structures and placed at the bottom of a new eurocentric hierarchy; their ancestral lands were seized illegally and reassigned to them in an apartheid system; they became economically repressed as underpaid labourers in a capitalist system of commercial fur trade, fishing, and logging; the potlatch, which gave material expression to their culture, was banned; children were removed from their families and placed in residential schools which alienated them from their language and traditional beliefs. According to Olson (1954), from the beginning of the 20th century the declining Oowekeeno population gradually amalgamated into a single village - kitit. This village, where the ceremonial materials of the Oowekeeno were kept, was destroyed by fire in 1935. The survivors eventually moved to the village of Rivers Inlet, where most Oowekeeno now live (approximately 100; Hilton \& Rath 1982:6).
(1) Map of study area ${ }^{1}$

[^0]By 1980, the number of Oowekyala speakers had decreased to "a handful" (ibid.). By the early summer of 1998, Emmon Bach (University of Northern British Columbia and University of Massachussetts, Amherst) learned that only one fluent speaker remained in Rivers Inlet. Later that summer, Patricia Shaw (University of British Columbia) learned that two speakers lived outside Rivers Inlet on nearby Vancouver Island (in Kwakwaka'wakw territory). In August, when I visited these speakers in their Port Hardy and Fort Rupert homes, ${ }^{2}$ I learned that two other speakers lived in Port Hardy. Two more speakers live in Waglisla (in Heiltsuk territory). One of them —Mrs. Evelyn Windsor- collaborated with the linguist John Rath in the late 1970's and early 1980's when both were employed at the Bella Bella Cultural Centre (Mrs. Windsor teaches the Heiltsuk language there).

Altogether, then, there are now (October 31, 2000) reportedly 7 speakers of Oowekyala living in four different localities. The geographic separation between them is such that they are unable to sustain their language through regular interaction. The three speakers who live in Port Hardy do not visit each other (mostly for health-related reasons). The speaker who lives in Fort Rupert occasionally visits Mrs. Hilda Smith (his older sister). They always speak in Oowekyala together.

Apparently there are no second language speakers of Oowekyala (at least according to fluent speakers). Mrs. Hilda Smith conducted Oowekyala classes in the school in Rivers Inlet from 1979-1986. Approximately 8 or 9 students ranging in age from 6 to 17 participated in these classes. More recently, Mrs. Smith tried holding classes in her own Port Hardy home for a small group of adults and children (approximately 8 or 9). These classes were held twice a week over a period of two months, but unfortunately were discontinued.

1.1.2. Adjacent languages

1.1.2.1. Adjacent unrelated languages

As mentioned in the previous section, Oowekeeno territory is geographically adjacent to that of the Nuxalk, a Salishan people (Bella Coola is about 30 miles northeast of Rivers Inlet). The Oowekeeno and Nuxalk use English to communicate together (the Nuxalk language, a.k.a. Bella Coola, is virtually as endangered as Oowekyala is; Dr. Ross Saunders, lecture notes 1998). However, according to Mrs. Hilda Smith, her people used Chinook Jargon as a lingua franca in their dealings with the Nuxalk, given the complete lack of mutual intelligibility of their languages. As an example, Mrs. Hilda Smith recalls that her late mother Maggie Bernard could speak some Chinook Jargon but no English. Stevenson (1982:27) calls into question the Oowekeeno's supposed knowledge of Chinook Jargon and claims instead that the Nuxalk and Bella Coola simply knew each other's languages: the Oowekeeno at the top of Owikeno Lake had regular contact with the Nuxalk of South Bentick Arm, and intermarriage between the two tribes was not infrequent (Mcllwraith 1948).

A dramatic story by Willy Gladstone (Heiltsuk) in Boas (1928:132-5) might be taken as evidence in favour of Stevenson's claim. According to the narrator, a vengeful Heiltsuk delega-

[^1]tion once visited Chief Walkus of the Oowekeeno in the evening. One of the Heiltsuk pointed at several Oowekeeno, saying "All are about to die!" in Chinook Jargon. The Oowekeeno, who did not understand, asked what he had said, and the Heiltsuk replied "You will have plenty to eat, is what I said." The next morning, several unsuspecting Oowekeeno were killed by the Heiltsuk. Crucially, in a footnote to this story, it is explained that "Chinook Jargon ... at that time [of war between the Oowekeeno and the Heiltsuk] was understood by the Bella Bella [Heiltsuk] but not by the Rivers Inlet people [Oowekeeno]" (ibid.:133, fn. 1).

There is another, perhaps more solid, piece of evidence that the Oowekeeno and Nuxalk had extensive and direct linguistic contact. The extremely rare consonant clustering property for which Nuxalk is notorious (see e.g. Nater 1984, Bagemihl 1991) is also found in Oowekyala, e.g. c'k'x̆xtخkc 'the invisible one here-with-me will be short'.

1.1.2.2. Closely-related languages

According to Lincoln \& Rath (1980), Oowekyala is one of four closely-related North Wakashan (previously known as Kwakiutlan) languages, all spoken in the same western coastal area of British Columbia. The others are Heiltsuk, Haisla, and Kwakwala (formerly Kwakiutl). The linguistic division between Kwakwala and Oowekyala is undisputed. Even Boas, who has been criticised by Hilton \& Rath (1980) and Stevenson (1982) for treating all North Wakashan languages as dialects of one language, acknowledges the reality of this division in the introduction to his Kwakiutl Grammar (1947:205):

North of the Kwakiutl area, beginning at Rivers Inlet another dialect of the language is spoken which differs considerably from the Kwakiutl here discussed. The languages are not easily mutually intelligible, partly on account of differences in vocabulary, partly on account of differences in grammatical forms.

The relation between Haisla and Oowekyala is somewhat more controversial. Lincoln and Rath (1980:2) claim that Haisla is not mutually intelligible with either Oowekyala or Heiltsuk (the latter are mutually intelligible) and they warn that " A great deal of intermarriage takes place within this northern area and the tendency is to minimize the very real differences which exist between Haisla and Heiltsuk-Oowekyala" (ibid.:4). The claim that Haisla and HeiltsukOowekyala are mutually unintelligible is abandoned, however, in the introduction to their Haisla dictionary (Lincoln \& Rath 1986). Mrs. Hilda Smith tells me that she is able to converse in "Indian" with her son-in-law from Kitimat (Haisla territory). Significantly, the Haisla are assumed to have originated from the Rivers Inlet area according to the Oowekeeno version of the Great Flood story. Legend has it that several canoes were carried away to the Kitimat area by the strong current. Bach (p.c.) notes, however, that a comparison between Henaksiala and Haisla origin and flood stories remains to be done. Moreover, Bach notes that Haisla shares some traits with Kwakwala not evident in Heiltsuk-Oowekyala, e.g. unrounding before u.

Finally, John Rath, who had prolonged experience working on both Heiltsuk and Oowekyala (Lincoln \& Rath 1980; Rath 1981; Hilton \& Rath 1982), proposes a linguistic division between these two languages which has generally been rejected by linguists. Oowekyala is not
listed separately from Heiltsuk by Jabobsen (1979), nor by Bach (1995:5). As McMillan (1999:10) writes, "the Oweekeno of Rivers Inlet speak a distinct dialect but are usually included [in Heiltsuk]". It is also noteworthy that in Lincoln \& Rath (1980), roots from Oowekyala and Heiltsuk are combined in a single column, while Haisla roots and Kwakwala roots are listed in separate columns. As Lincoln \& Rath (1980:4) explain, "since the Heiltsuk and Oowekyala languages had essentially the same roots, they could justifiably be combined in a single column." Moreover, in Hilton \& Rath (1982:33), we are told:

> For readers interested in checking the translation [of the Oowekyala texts] in more detail, the Heiltsuk vocabulary and syntax in Rath 1981 can be helpful because of the high degree of regular correspondence and mutual intelligibility of Oowekyala and Heiltsuk. ... Mindful of pronunciation and hence spelling difference between Oowekyala and Heiltsuk, one can find a listing of some of the pertinent morphemes in Rath (1981:70-73).

Nonetheless, there are two a priori reasons for linguists not to collapse Oowekyala and Heiltsuk into a single language. First, Oowekyala is definitely viewed by the speakers as a distinct language. "From the perspective of the Oowekeeno people themselves, the Kwakiutl are a Kwakwala speaking Indian subdivision with which they no more identify than with their Bella Bella [Heiltsuk] or Bella Coola [Nuxalk Salishan] neighbours" (Hilton \& Rath 1982:7). (Significantly perhaps, according to historical accounts in Boas (1928:124-135), the Oowekeeno and Heiltsuk were frequently at war with each other.) Apparently, the Heiltsuk feel the same way about Oowekyala. Thus, according to Stevenson (1982:3-4) "the term Heiltsuk can be rendered literally into English as 'those who speak correctly'. This term emphasizes their differences with their Oowekeeno neighbours".

Second, from a linguistic perspective Lincoln \& Rath (1980:2) state "Although the [North Wakashan] languages are undoubtedly very similar phonologically and, as is attested in the present work, in root structure, they are much less similar in their inventories of suffixes, in morphophonology, and in syntax." Lincoln and Rath do not identify these dissimilarities, but it is relatively easy to find even phonological differences between Oowekyala and Heiltsuk.

For example, Heiltsuk has tone (k "ás 'mussels' versus $k^{\text {wàs }}$ 'sit outside'), Oowekyala doesn't (Kortlandt 1975); Oowekyala has contrastive vowel and resonant length (yak' 'bad' vs. ta:x 'gun powder'; X'mq' 'yew tree' vs. sm:s 'mouth'), Heiltsuk doesn't; Oowekyala allows glottalization in syllable-final position (tl' 'dead') whereas Heiltsuk doesn't; and the extensive consonant clustering characteristic of both languages is broken in Heiltsuk by epenthetic schwas after glottalized stops and affricates, but not in Oowekyala (He textek'zas vs. Oo textk's 'fish hawk'; Lincoln \& Rath 1980:31).

There are also numerous idiosyncratic segmental differences between Oowekyala and Heiltsuk. There are differences in voicing, e.g. Oo kiskc'a vs. He giskc'a 'an unidentified edible shellfish'; Oo cuq"qəəla vs. He dzúq'ə əqəlá 'sleet'; Oo taqila 'to make an oolichan net' vs. He dáqał 'an oolichan net'. There are differences in continuancy, e.g. Oo tinəma vs. He J'inəmá 'to take back lent out property'; Oo $k^{\text {w }}$ uta vs. He $x^{\text {w }}$ uta 'to suspect, guess'; Oo $\mathrm{k}^{\text {w }} \mathbf{u m i t a l a}$ vs. He

 mans, men, people'. There are differences between the presence vs. absence of vowels, e.g. Oo ğiğis vs. He qqs 'eye'; Oo nixn'ika vs. He n'zxn'zká 'to say repeatedly', as well as between the presence vs. absence of consonants, e.g. Oo e'ttxa vs. He ćłxitit 'to squirt (clam)'; Oo k'əyus vs. He kús 'not the case, nonexistent'. There are differences in segment order (metathesis), e.g. Oo tíxsala ~ tíxsəla vs. He tisxálá ~ tisxəlá 'splashing'.

Lastly, it should be acknowledged more generally that linguistic comparison of Oowekyala with Kwakwala, Haisla or Heiltsuk is premature as there are poorly understood dialectal distinctions within Kwakwala, Haisla and Heiltsuk themselves. This is especially true of Kwakwala, which subsumes several dialects, including ğucala (Quatsino Sound Tribes), kwak'wala (Gilford Island, Knight Inlet, Kwakiutl and Nimpkish), lik wala (Lekwiltok Tribes), nakwala (Northern Tribes), X'a夫'asik ${ }^{\text {wala (Nahwitti Tribes). Only the first of these is well-documented (e.g. Boas }}$ 1947). Haisla is also used as a cover term for two divergent dialects: Henaksiala (Lincoln \& Rath 1986) and Haisla proper (Bach 1999). Bach (1995:5) lists these as two separate North Wakashan languages, alongside Heiltsuk and Kwakwala. Finally, Heiltsuk too has at least two divergent dialects, spoken in Bella Bella and Klemtu respectively. The differences between the various dialects in these languages clearly needs more detailed and extensive research before we are able to decide on their precise genetic relation with Oowekyala.

1.1.2.3. Distantly-related languages

As a Wakashan language, Oowekyala is distantly related to the so-called Nootkan (or South Wakashan) languages, which include Nootka-Nuuchahnulth (perhaps 50 speakers) and Ditidaht-Nuuchahnulth (Disti:d'aitx̌, Nitinat, perhaps 7 speakers) spoken along the west coast of Vancouver Island, as well as Makah spoken on Cape Flattery (the only Wakashan language spoken outside British Columbia; no. of speakers unknown). 'Nootka' is actually a cover term for at least twelve dialects: Ahousaht (§a:ћu:s?ath), Ucluelet
 Kyoquot (qa:yंu:k'ath), Mowachaht (muwač 'atћ), Nuchatlaht (nuča:łłath), Ohiaht (hu:Zi:?atћ), Tseshaht (ćiša:?ath), Clayo-
 (hu:čuq入is?ath). The genetic relation between these South Wakashan languages and the North Wakashan (Kwakiutlan) ones was recognised by Franz Boas in 1889 (see Jacobsen 1979 for a poignant account). The relation is most clearly evidenced by the locational lexical suffixes, e.g. -it 'indoors', -as 'outdoors on the ground', -is 'on the beach', -a 'on a rock', which are of tremendous frequency in all Wakashan languages. The differences between Nootkan and Kwakiutlan

are such that Swadesh (1953) estimates them to have separated 29 centuries ago, a time-depth which Jacobsen (1979:789) finds "plausible". ${ }^{3}$

The term Wakashan, like Nootka, may have originated from Captain James Cook's observations in Nootka Sound in 1778:

The word wakash ... was frequently in their mouths. It seemed to express applause, approbation, and friendship. For when they appeared to be satisfied, or well please with anything they saw, or any incident that happened, they would, with one voice, call out wakash! wakash!" (Cook 1784:337)

Cook suggested that the Nation he encountered in Nootka Sound be called Wakashians. According to Boas, the term Wakashan "probably derived from a Kwakiutl chief's name Wakash, Real River, which is used in this form by the Nootka" (Boas 1947:205).

Whatever its provenance, the term Wakashan became standard when J. W. Powell (1891) applied it to Boas' findings in his authoritative classification of 'Indian Linguistic Families of America North of Mexico.'

1.1.3. Previous documentation

Documentation of Oowekyala exists in the form of texts, word lists, sound recordings, and phonological descriptions.

1.1.3.1. Texts

There are eight Oowekyala texts interspersed throughout Boas' (1928) Bella Bella Texts. These texts, which are listed in (2), are likely the oldest ones available, having been collected by Boas in 1897. Unfortunately, they are problematic in terms of linguistic authenticity. Regarding them, Boas states:

> Conditions in Rivers Inlet in 1897 were exceedingly unfavorable because the majority of the people were away and only two sickly men could be found who were able to dictate. Since they did not know English and only a very short time was available at Rivers Inlet, the texts were laid aside. (Boas 1928:iv)

Some twenty-six years later, Boas read the texts to mainly one speaker of Heiltsuk, Willy Gladstone, who then repeated them for Boas. As already mentioned, Boas estimated the differences between Oowekyala and Heiltsuk to be "very slight" (ibid.). Mr. George Hunt, Boas' main Kwakwaka'wakw consultant, was evidently also involved in the translation of at least one of the Oowekyala texts, since Boas states: "Although on the whole the translation is accurate, there are a number of places in which the Kwakiutl informant misunderstood the Rivers Inlet words"

[^2](ibid.). In sum, the Oowekyala content of Bella Bella Texts cannot be considered fully authentic linguistically, having been 'processed' not only by Boas himself, but by a speaker of Heiltsuk as well as by a speaker of Kwakwala.
(2) Oowekyala texts in Boas (1928) [original transcription system]
a. Bax̣ubakwā'lanux̣"siwåyē (p. 58)
b. Wren and Grizzly Bear (p. 64)
c. A'sdas (p. 70)
d. Wā'walis (p. 90)
e. The Jealous Brother
f. War between the ${ }^{\varepsilon}$ wil' $^{\prime}{ }^{\prime}$!ēnox ${ }^{u}$ and Hë'łdzaqu
g. Hänı!ēkŭnas (p. 156)

The only other Oowekyala texts I am aware of, ${ }^{4}$ aside from those collected by Boas in 1897, are the stories and songs recorded by Susanne (Storie) Hilton in Rivers Inlet during the summers of 1968-1969 on behalf of the then British Columbia Indian Advisory Committee. Storie (1973) is an English rendition drawn from these materials. The stories ($N=12$) and songs $(N=3)$ recorded from Chief Simon Walkus, Sr. (1892?-1969) have been transcribed and translated by Mrs. Evelyn (Walkus) Windsor, the late Chief's daughter, and have been carefully edited in Hilton \& Rath (1982). One of these stories has been amalgamated with a story by the late Maggie Bernard, also recorded by Susanne (Storie) Hilton in 1969. The resulting text has been edited in Hanuse, Smith \& Stevenson (1983).

1.1.3.2. Word lists

Three types of Oowekyala word lists are available. First, upwards of 1000 Oowekyala words (identified "R") are included in Boas' (1928) Heiltsuk vocabulary list. Most Oowekyala words in this list are also identified as Heiltsuk. As explained in the previous section, Oowekyala materials in Boas (1928) are to be used with caution, since they were obtained through the intermediary of Heiltsuk and Kwakwaka'wakw speakers.

Second, Mrs. Evelyn (Walkus) Windsor provided approximately 1800 Oowekyala words to exemplify entries in Lincoln \& Rath's (1980) comparative listing of North Wakashan roots.

Third, didactic materials prepared under the (now defunct) Oowekyala Language Project in Rivers Inlet consisted of short word lists for children (Johnson, Smith \& Stevenson $1983 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$) and a short children's pictorial dictionary (Johnson, Smith \& Stevenson 1984).

1.1.3.3. Recordings

A single tape recording is archived at the British Columbia Provincial Museum which contains stories and songs collected during the summers of 1968 and 1969 by Susanne (Storie) Hilton (as mentioned above). This collection includes contributions from two consultants: Chief Simon Walkus, Sr., and Maggie Bernard. The Walkus materials have been transcribed and published under Hilton \& Rath (1982) (see above). Of the 3 texts and 5 songs recorded with Maggie Ber-

[^3]nard, only one text has been partially transcribed and translated in Hanuse, Smith \& Robinson (1983) (see above).

1.1.3.4. Descriptions

Lincoln \& Rath (1980) includes approximately 13 pages of technical notes on Oowekyala phonetics and phonology. Hilton \& Rath (1982:11-32) gives a non-technical guide to transcription and pronunciation.

1.1.3.5. Orthography

Oowekyala is a recently written language. The orthography was devised for Heiltsuk by John C. Rath, employed as a linguistic consultant at the Bella Bella Cultural Centre from the mid-1970's to the mid-1980's. This orthography was then extended to Rivers Inlet. The orthography is known and used by two of the speakers of Oowekyala, Mrs. Hilda Smith and Mrs. Evelyn Windsor, and forms the basis of Hilton \& Rath (1982), of Stevenson (1982), and of the teaching booklets developed in the 1980's by Johnson, Smith and Stevenson. However, it is not understood by or in general use in the community. The orthography's deviations from the americanist transcription adopted in this dissertation are listed here:
(3) Differences between orthography and thesis transcription system

Orth.	Thesis	Orth.	Thesis	Orth.	Thesis	Orth.	Thesis
z	C^{5}	kv	$k^{\text {w }}$	'à	$?$	el	(a)\|
th	λ	xv	$\mathrm{x}^{\text {w }}$	em	(a)m	ell	l:
dh	λ	qv	$q^{\text {w }}$	emim	m:	ell'	ə'
th	'	grv	$\mathrm{g}^{\text {w }}$	emm'	әm'	aa	a:
Ih	+	qv	$q^{\text {w }}$	en	(a) n	ii	i:
kv	$k^{\text {w }}$	¢ V	$\check{x}^{\text {w }}$	enn	n:	uu	u:
gv	$\mathrm{g}^{\mathbf{w}}$	hǎ	h	enn'	ən'		

1.1.4. On "degenerate" syllables

Although this dissertation focuses on the segmental phonology of Oowekyala, it seems important to remark on the special challenge that this language provides for syllable theory. One of the most striking properties of Oowekyala phonology is its high tolerance of obstruent clusters, indeed even of all-obstruent words. Some representative examples are given here:

[^4](4) Some two-obstruent words
a. $q^{w} \check{x}^{w} \quad$ powder HS, EW
b. $\mathrm{k}^{\mathrm{w}} \mathrm{c}^{\prime}$ leather, hide HS, EW
c. $\mathrm{k}^{\mathrm{w}} \mathrm{s}$ light (in weight) HS, EW
d. $\mathrm{t} \mathrm{\check{x}}$ thus (interjection) EW
(5) Some three-obstruent words
a. $\overline{\mathrm{x}}^{\mathrm{w}} \mathrm{tk} \quad$ (sth.) cut with a knife HS
b. tpk ${ }^{\mathbf{w}}$ something squeezed EW
c. $\mathrm{t}^{\mathrm{k}} \mathrm{k}^{\mathrm{w}}$ (sth.) clawed, (sth.) carried in or as if in claws or talons; suit- HS
case, luggage
EW, HS d. $k^{\prime \prime} p^{\prime} s$ loose dirt (not mud) EW, HS
e. $\mathrm{pk}^{\mathrm{w}} \mathrm{s}$ man-like animal with a hairy body, sasquatch; name of a dance DS126
in the λ awialax̆a Series; his penis is so long he must carry it around rolled up; name of a dance of Kwakwala speaking peo- ple at Alert Bay, the wild man of the woods
f. pix's to bend down to the ground (as branches) HS
g. $\mathrm{pq}^{\text {T' }}$ ' drowsy, sleepy EW
h. qckw hair seal meat that has been cut up JSS3, WL
 HS
j. $\lambda^{\prime k}$'s round and/or bulky thing (e.g. a boulder) in the woods or on HS
the field
k. $\lambda^{\prime} \mathrm{pk}^{\mathrm{w}}$ (sth.) closed (as e.g. a building or the door of a building) HS
(6) Some four-obstruent words
a. ck'k"x̀ short (said of a person) HS
b. えxx̌s canoe thwart HS
c. c't'k ${ }^{\mathrm{w}}$ plural of: short HS
d. $q^{w} s q^{w} s$ low mountain (dwarf) blueberry (Vaccinium ?caepitosum); fruits BC98
eaten
e. $k^{w} s k^{w}$ s refers to bluejay; mythical name of bluejay, the sister of Raven, DS98
from the story of how Raven obtained the salmon, story is located at $N u x^{w} n s$
(7) Some five-obstruent words
a. $k^{\text {ww'psps }}$ nice fine dirt, store-bought good earth HS
b. $k^{\text {w }} \check{x} k^{\prime \prime}{ }^{\prime}$'s just about daylight, early dawn (as when one begins to see one's HS way outdoors)
c. txtk fis fish hawk EW, HS
d. $x^{\prime} x x^{\prime} k$'s plural of: round and/or bulky thing (e.g. a boulder) in the woods HS
or on the field (this word used in Heiltsuk for strawberry)

Obstruent-only words can also be combined with obstruent-only lexical suffixes and obstruent-only enclitics, yielding obstruent-only 'sentences' (as Lincoln \& Rath 1980:31 remark).
(8)

a. tpa	to squeeze
b. $\mathrm{tpk}^{\mathbf{w}}$	something squeezed
c. tpx ${ }^{w} p s$	something that undergoes squeezing and that is nice or pleasant
d. tpx ${ }^{\text {c }} \mathrm{ps} \lambda$	(ib. future)
e. tpx ${ }^{\text {w }} p s^{\chi} k$	(subject specified: the-one-here-with-me)
f. $t p x^{W} p s^{\lambda} k c^{6}$	(ib. invisible)

In Bagemihl's (1991) well-known study of comparable strings in geographically-
 concluded that obstruent-only sequences are never syllabified. Bagemihl's evidence is as follows:

If the syllabicity of obstruents is phonologically significant, we would expect this to be reflected in the behavior of such words under reduplication. That is, we should expect to find syllables consisting only of obstruents to be copied, just as syllables containing sonorant nuclei can be copied. For example, a word such as $k ł-$ 'fall' consists of one syllable under the Obstruent Syllabicity Hypothesis (with k as onset and \nmid as nucleus), so we would predict that it could undergo CV-reduplication to yield kłkł-. Similarly, we should expect to find single consonant reduplications ..., since in words such as thext the first consonant constitutes a syllable all by itself and therefore should be able to be reduplicated as something like tiťxt. ... Not only are bare consonant and stop-fricative reduplications unattested; the majority of obstruent-only words do not even participate in reduplication at all. (Bagemihl 1991:606-7)

If the same standard of evidence is applied to Oowekyala, it can be concluded that obstruent sequences do get syllabified, since they do occur in reduplicants in this language (cf. Shaw 1992, 1993, 1995, 1996a,b on "degenerate" or "minor" syllables in Berber, Mon-Khmer, etc.; see also McCarthy \& Prince 1990). As the following examples illustrate, Oowekyala has both CC-shaped reduplicants as well as C -shaped reduplicants.

[^5]| (9) Some obstruent \& fricative reduplicants | | | |
| :---: | :---: | :---: | :---: |
| a. | | just about daylight, early dawn (as when one begins to see one's way outdoors) | HS |
| | $\mathrm{k}^{\text {wha }} \mathrm{qa}$ | daylight, to dawn, to become light in the morning | EW, HS |
| b. | | fish hawk | EW, HS |
| | tkwa | to scrape, scratch, claw, grab with the fingers or claws, to open a fish with the fingers | EW |
| c. | $\lambda^{\prime} x$ - $\chi^{\prime} \mathrm{k}^{\prime} \mathrm{s}$ | plural of: round and/or bulky thing (e.g. a boulder) in the woods or on the field (this word used in Heiltsuk for strawberry) | HS |
| | χ ̇ka | to put a round and/or bulky thing somewhere, e.g. to iron, to | |
| | | lay bricks, to roast shellfish by the side of the fire | JSS3 |
| d. | $c^{\prime} \ddagger-{ }^{\text {c }}$ ' ${ }^{\text {w }}$ | plural of: short | HS |
| | $\mathrm{c}^{\prime} \mathrm{k}^{\text {w }}$ | short | EW, HS |
| e. | p't-p'ta | to blink repeatedly | HS |
| | pła | to blink | EW, HS |
| f. | | brain | EW |
| | $t{ }^{\text {w }}$ a | to eat the inside of sea eggs (urchins) | EW |
| g. | k's-k'səyu | wrinkled forehead, to have a wrinkled forehead | Check |
| | k'sa | wrinkled | EW |
| (10) Some single-obstruent reduplicants | | | |
| | $\lambda \lambda \chi^{\text {w }}$ ma | to stroke the face with the flat of the hand | HS |
| | $\lambda \check{x}^{\text {w }} \mathrm{a}$ | to rub, stroke, or press with the flat of the hand | EW |
| | ttxstu | bulging eyes, to have... | HS |
| | txia | having the eyes open | EW |
| c. | ccxstwa | to wipe the eyes | HS |
| | cka | to rub | HS, EW |
| d. | $q^{\text {jw }} q^{\text {w }}$ ¢ma | to scratch an itchy face | HS |
| | q'ła | to scratch (an itch) | EW |
| e. | ttk"ma | to mark the face with scratches, by or as if by clawing | HS |
| | $\mathrm{t}^{\mathrm{k}}{ }^{\text {a }}$ | to scrape, scratch, claw, grab with the fingers or claws | EW |
| f. | qǧənm ${ }^{8}$ | plural of: woman | HS, SW |
| | ğənm | woman | HS |
| g. | pp'akn | overworked | HS |
| | pa:la | to work, to work on something, to fix, repair sth.; workers, crew | EW |
| h. | $q^{\text {w }} q^{\text {wasaskn }}$ | worn out with crying | HS |
| | $q^{\text {wasa }}$ | to cry, weep, wail; term refers to mourning songs sung at a memorial potlatch | $\begin{aligned} & \text { EW, } \\ & \text { DS138 } \end{aligned}$ |
| i. | ttaulikn | passed out (as e.g. after drinking too much liquor) | HS |
| | tulixla | drunk, intoxicated | EW |

[^6]Note that the CC-reduplicants show a process of spirantisation that occurs in what can arguably be described as the coda position of the reduplicative syllable. This process is treated in section 3.4, p. 104ff. With regard to the C-reduplicants, note that they are all obstruent stops/affricates. In the absence of evidence to the contrary, it is assumed that single fricatives and single sonorants cannot form C-reduplicants. This restriction is understandable if Creduplicants are interpreted as onset-only syllables. As Prince and Smolensky (1993, chap. 8) discuss at length, obstruent stops/affricates form the best onsets because they are the least sonorous segments; see especially Prince \& Smolensky's (1993:155) "Onset Inventory Parameter Value". It is possible, then, that only the best-formed onsets are licensed in single-C syllables in Oowekyala.

Speaker judgments also appear to support the possibility of one-obstruent and twoobstruent syllables. When I ask Mrs. Smith to "break up" all-obstruent words or to say them slowly, she "syllabifies" them as in the following examples:
(11) Native speaker judgements on syllabification
a. t.p.kw something squeezed HS
b. $\bar{\lambda} . x . \bar{x} s$ canoe thwart HS
c. čł.c'.kw plural of: short HS
d. ̀x $^{\prime}$ X.k's plural of: round and/or bulky thing (e.g. a boulder) in the HSwoods or on the field (this word used in Heiltsuk for strawberry)e. t.px*.ps.え.k.c something invisible here with me that is nice or pleasant will HSundergo squeezing

When asked whether e.g. tpk ${ }^{\mathbf{w}}$ is "more like" a monosyllabic word (e.g. ta), a disyllabic word (e.g. tata), or a trisyllabic word (e.g. tatata), Mrs. Smith chooses the trisyllabic form. Similarly for $\chi^{\prime} \times \chi^{\prime} k$'s. More detailed and controlled experimentation along these lines is needed to verify the systematicity of speaker judgements. ${ }^{9}$

Note that the onset appears to be an obligatory syllabic constituent in Oowekyala, such that there are no vowel-initial words. The obligatoriness of onsets is evident from epenthesis in loan adaptations, e.g. vowel-initial 'apples' is borrowed into Oowekyala as .?a.bls. (not *.a.pls.). In fact, the onset may be the only obligatory syllabic constituent in Oowekyala, if the reduplicants in e.g. (10) are construed as syllables (see discussion above).

Next, note that no prevocalic clusters are observed with sonorant consonants in Oowekyala. That is, none of the sequences in (12) are attested, where "." is a syllable boundary, " R " is a sonorant consonant (including glottalised ones), " O " is an obstruent, and " V " is a vowel.
(12) Some unattested clusters in Oowekyala
a. .ROV
e.g. */ba
b. .RRV
e.g. *m/a
c. .ORV
e.g. *b/a

[^7]The absence of .ROV in Oowekyala is unsurprising. The sonerant consonant in this sequence cannot be syllabic, as the syllable so formed (*.R.OV) would lack an onset -an intolerable deficiency as just mentioned. The R cannot form an onset either (*.R.OV), since (as noted above) obstruent stops/affricates are the only segments permitted in onset-only syllables in Oowekyala. Nor can the sonorant consonant form a branching onset with the following prevocalic obstruent (${ }^{*}$.ROV), as the resulting onset would stand in severe violation of the sonority sequencing principle.

(13) Sonority Sequencing Principle

Between any member of a syllable and a syllable peak, only sounds of higher sonority are permitted. (Clements 1990:285)

Regarding the absence of .RRV in Oowekyala, it is once again the case that the first sonorant consonant in this sequence cannot be syllabic (*.R.RV) without violating the onset principle. It is not the case, however, that a branching onset with two sonorants is impossible in principle. Branching onsets with two sonorant consonants, such those in Classical Greek mrotós 'mortal man' (Vennemann 1988:20), in Old Common Slavic mlëko 'milk' (Bethin 1998:35), or in French lien [ljé] 'link', each have appropriate rises in sonority (among sonorant consonants, nasals are less sonorous than liquids, which in turn are less sonorous than glides). Why, then, are such onsets not found in Oowekyala?

Before answering this question, let us consider the absence of .ORV in Oowekyala. ORshaped onsets are relatively frequent crosslinguistically, presumably because their cline constitutes an ideal submission to the sonority sequencing principle. In fact, according to Bagemihl (1991), such onsets are permitted in Nuxalk -Oowekyala's immediate geographic neighbour: "obstruent plus resonant clusters are tautosyllabic in prenuclear position" (Bagemihl 1991:616). Note that other possible types of branching onsets (obstruent-obstruent, sonorant-sonorant, sonorant-obstruent) do not occur in Nuxalk; that is, this language admits only the most harmonious type of branching onset (obstruent-sonorant), where relative harmony is determined by the sonority sequencing principle.

Since Oowekyala rejects what even its linguistic neighbour recognises as an ideal type of branching onset (obstruent-sonorant), we can only conclude that branching onsets tout court are inadmissible in this language. This also explains the absence of RR-shaped onsets. Specifically, all syllable-initial clusters involving sonorants -i.e., OR, RO, and RR- are apparently 'repaired' by schwa-epenthesis in Oowekyala.

	/mt-1	matuyala	northeast wind
	/mk ${ }^{\text {w }}$-/	mık ${ }^{\text {wila }}$	the changing of a boy's voice when reaching adolescence
	/np-1	nəpa	to break through a surface, to collapse or cave
	/n' ${ }^{\text {w }} \mathrm{a}-1$	n'ex wala	to be near, close
	/my-/	mәуа	fish
RO	/lk-/	laka	to play games with stones

	／l＇q－／	l＇zqa	to be，handle（said of moist materials such as putty，berry cake，bread dough，etc．）
	／wx－1	wə入m	to have antler or horns
	$1 y^{\prime}{ }^{\text {x }}$－$/ 1$	у＇ว $\bar{\chi}^{w}$ a	to rise（said of the tide），to flood
OR	／gm－／	gaminu ${ }^{\text {w }}$	clan，fellow clansmen
	／pn－／	pəna	to fill sth．up
	／ dın＇－／$^{\text {d }}$	czən＇asu	a frequented place，person whose company is preferred
	｜bl－｜	bela	to forbid，to prevent s．b．from doing sth．
	／sw－／	sowala	to get，take，hold，carry in one＇s hand
	／dy－／	dəyala	wiping
	／x＇y ${ }^{\text {c }}$／	̇̇əy＇ala	buying
RR	／my－／	məya	fish
	／min－／	m＇onaqa	to gather，pick up（small things）
	／nm－／	nəmał	a short while
	／n＇y－／	n＇әуа	to string up（fish，beads），thread（needle，rope）
	／lw－1	lowa	firmament
	／Yw－1	yawala	wind，draft
	／wl－／	wola	to arrest，imprison
	／wn－／	w＇ena	to hide，to sneak about

Turning now to prevocalic obstruent clusters，there are several reasons to doubt that they ever form a complex syllable onset in Oowekyala．First，in contrast to better－known lan－ guages which allow a maximum of three consonants in syllable onsets，there is no upper limit
 ＇this absent one will be a thwart＇．

Second，languages with complex onsets usually impose sequencing restrictions whereas Oowekyala imposes no such restriction，e．g．
（15）No sequencing restrictions on prevocalic obstruents
a．spa to flash，reflect，beam out，echo，reach（said of light or sound） EW
psa to clean and soften by soaking；to soften and clean herring eggs by EW，WLsoaking；to clear the way（as when walking through the bush）
b．pえa fin（of fish or sea mammal） EW
えpa to spread out，unfold，open up，split apart EW
c．$\lambda \times a \quad$ to put the crosspiece on（e．g．on the canoe） Check
x xa to move to another place EW
d．$\quad \mathrm{fk}^{\mathrm{w}} \mathrm{a}$ to slide something out（e．g．a drawer） EW
$k^{\mathrm{w}} \not \mathrm{a} \quad$ to collapse（said of a pile of something），become separated（salmon EW
eggs when about to be laid），disintegrate
e． $\mathrm{pk}^{\mathrm{w}} u$ to borrow a boat EW
kput to unbutton，unwedge，or untuck sth． HS

Third, OR onsets are universally less marked that OO onsets, because the former rise in sonority while the latter result in an (undesirable) plateau of sonority (Clements 1990:287-90). From this markedness relation, it follows that one expects to find languages with OR onsets, and languages with both OR and OO onsets, but no languages with only OO onsets (and without OR onsets). Now recall from our earlier discussion that Oowekyala disallows OR onsets. We do not, therefore, expect to find instances of the more marked type of onset -OO. This means that prevocalic obstruent clusters in Oowekyala should not be interpreted as complex onsets. 10

A fourth argument concerns laryngeal features. Obstruents in the same syllable onset typically agree in laryngeal features. This is not the case for prevocalic obstruents in Oowekyala, however, e.g.:
(16) No laryngeal agreement in prevocalic obstruents

plain-[voi]	$\mathrm{pg}{ }^{\mathrm{w}}$ is cdəwlkw	merman, mermaid dolphin
	kdau	form of address of one's female child (vocative form)
	$k^{\text {w }}$ dayn	goldeneye duck
	$\lambda \mathrm{g}^{\text {wit }}$	thick (in girth)
	$q^{\text {wg w }}$ ¢q ${ }^{\text {w }}$	swan
	qğiga	a species of white diving bird that says q'q'q'a
plain-[cg]	pćini	easy
	tki	female with a big belly (as when pregnant)
	tq*a	octopus
	tq̇ani	lake trout
	$c q^{\text {² }} \mathrm{lc}$	whetstone
	sk'auk ${ }^{\text {w }}$	five
	łk ${ }^{\text {wani }}$	old woman
	qcius	rack for drying things (e.g. seaweed, fish slices, etc.)
[cg]-plain	px'zəia	to be floating, sth. floating
	p'sa	to dent, dent
	p'qa	to taste
	tpa	to fish with baited hook and sinker
	tsa	to hit with a stone
	$\mathrm{t}^{\prime} \mathrm{k}^{\mathrm{w}}$	to scrape, scratch, claw, grab with the fingers or claws, to open
[voi]-plain	n/a	See section 3.6 below.
[cg]-[voi]	tg ${ }^{\prime \prime}$	kind of canoe (probably a funeral canoe)
	k'dlı̌̌la	dizzy

Note that this problem worsens with longer clusters, e.g. plain-glottalised-voiced tq'bawa 'chest', plain-glottalised-plain-voiced x^{w} 'čx̀ λ anu 'crosspiece of a set of halibut hooks'), glottal-
ised-plain-glottalised c'spala 'to smell unwashed, to smell sour (fish, from not being properly dried)', plain-glottalised-plain tqła 'to itch', etc.י1

In sum, it appears that syllables in Oowekyala may consist of just one stop/affricate or of two obstruents; in the latter case the second obstruent apparently must be a fricative.
(17) Degenerate syllables in Oowekyala
a.

stop/affricate
b.
 obstruent fricative

There are two reasons to interpret the single consonant in (17a) and the first consonant in (17b) as onsets. First, onsets are unmarked syllabic constituents whereas codas are marked syllabic constituents (Trubetskoy 1939, Prince \& Smolensky 1993); all else being equal, the single consonant in (17a) and the first consonant in (17b) therefore ought to be interpreted as onsets rather than as codas. Second, onsets are obligatory in Oowekyala whereas codas are not obligatory in Oowekyala (or in any language). Third, the fact that the single consonant in (17a) must be a stop/affricate and that the first consonant in (17b) can be a stop/affricate suggests that they are onsets, which tend to favour the least sonorous segments.

Shaw (1993, 1995, 1996a,b,c) claims (on the conceptual basis of a coherent "degenerate" syllable typology and on the empirical basis of Berber, Mon-Khmer, Semai, etc. -but not Oowekyala) that in any structure like (17b), the second consonant must be moraic. ${ }^{12}$ More research is needed to verify the validity of this claim with respect to Oowekyala. In the meantime, it is worth noting that obstruents are presumed to be consistently nonmoraic in all Wakashan languages (e.g., Stonham 1994, Zec 1995). In other words, it is possible that both consonants in (17b) are nonmoraic in Oowekyala. This leaves open the possibility that these two consonants may in fact form a branching onset, rather than an onset-coda complex. But there are at least two good reasons for not interpreting (17b) as a branching onset. First, as discussed above there is cause to believe that Oowekyala disallows branching onsets in general. Second, the apparent fact that the second consonant in (17b) must be a fricative is consistent with it being in coda position (see section 3.4, p. 104ff.). Closely-related Haisla actually requires that all coda obstruents be fricatives (Bach 1997), and a comparable generalisation holds for Nisga'a (Tarpent 1987, Shaw 1991).

The prosodic -not only syllabic but also moraic and metrical-phonology of Oowekyala clearly deserves more detailed research. However, since the focus of this dissertation is the segmental phonology of Oowekyala, syllable structure will not be discussed further. ${ }^{13}$

[^8]
1.2. Theoretical background

This section briefly introduces the theories that are assumed in this dissertaton.

1.2.1. Optimality Theory

Although an infinite number of (mutually incompatible) theories will be consistent with the finite set of Oowekyala facts to be introduced in this dissertation, Optimality Theory (OT, Prince and Smolensky 1993) will be adopted here since much recent work has rendered its propositions on phonology considerably more plausible than known alternatives (see, e.g., McCarthy and Prince 1993, 1995, 1999; Myers 1997; Pater 1999). For brief overviews of OT, see Burzio (1995), Sherrard (1997), Prince \& Smolensky (1997), Gilbers \& de Hoop (1998). Current texts on OT include Archangeli \& Langendoen (1997) and Kager (1999). The Linguistic Review 17(2-4), Dec. 2000, is a special triple issue of which focuses on a critical review of phonological OT.

OT derives from two basic observations about human language. First, grammars contain constraints on the well-formedness of linguistic structures, and these constraints are heavily in conflict, even within a single language. Second, there is a strength asymmetry between conflicting constraints in language: it does not matter how much or how little a weaker constraint is violated; only the success of the stronger constraint matters. Extending these two observations, Prince and Smolensky $(1993,1997)$ hypothesise that all humans share a set of linguistic wellformedness constraints, which are ranked in a strict dominance hierarchy on a languageparticular basis. A linguistic form is grammatical in a given language if it is optimal in terms of the constraint hierarchy of that language, and it is ungrammatical if it is suboptimal in terms of the constraint hierarchy.
(18) Central OT premises (cf. Tesar and Smolensky 2000:5)

- Oowekyala shares with other languages a set of constraints on phonological well-formedness. It differs from other languages only in which constraints have priority in case of conflict.
- Grammatical forms in Oowekyala are the optimal ones: each is a structural description of an input that least violates the higher priority constraints of Oowekyala.

Given the premises of OT, the goal of this dissertation is twofold: to characterise some of the covert segmental structures that underlie grammatical forms in Oowekyala, and to propose a hierarchy of constraints that explains well (if not best) why these forms are grammatical in Oowekyala. Note that a basic distinction is made between context-free and context-sensitive well-formedness conditions. These two kinds of well-formedness conditions are discussed with respect to Oowekyala in Chapters 2 and 3 , respectively.
which begins in January 2001 will focus on Wakashan prosody.

1.2.2. Correspondence Theory

Suppose Prince and Smolensky (1997:1605) are correct in assuming that
the set of well-formedness constraints is universal: not just universally available to be chosen from, but literally present in every language. Also universal is the function that determines, for each input to the grammar, the set of candidate output structures that compete for optimality; every language considers exactly the same set of options for realizing an input.

This raises an obvious issue, which Chomsky (1995:380, n. 4) describes as follows: "In Prince and Smolensky 1993 there seems to be no barrier to the conclusion that all lexical inputs yield a single phonetic output, namely, whatever the optimal syilable might be (perhaps /ba/)." In fact, Prince \& Smolensky (1993) as well as McCarthy \& Prince $(1993,1994)$ recognised and addressed this issue by adding input-output correspondence -termed "faithfulness"- to the set of universal constraints in OT. Prince \& Smolensky (1993:80) describe faithfulness as a "nonobvious assumption" which they have "found essential" (ibid.). Prince and Smolensky (1997:1605) further describe "faithfulness" as "a direct consequence of the optimization perspective." In other words, it looks as if Prince and Smolensky are begging the question. In order to accept the optimisation perspective (i.e., OT), we must already accept the conclusion that faithfulness exists.

The arbitrariness of the notion "faithfulness" is overcome by McCarthy and Prince (1995, 1999). They demonstrate that the notion of correspondence between two strings is independently motivated in the domain of prosodic morphology. The clearest cases of correspondence are found in reduplication. McCarthy and Prince discuss numerous parallels between the inputoutput relation and the base-reduplicant relation, including: completeness of mapping, dependence on input/base, contiguity of mapping, linearity of mapping, anchoring of edges, and feature identity. They use this wide range of parallels to motivate a unified theory of inputoutput and base-reduplicant relations, viz. Correspondence Theory.

The notion of correspondence also usefully extends to pairs of paradigmatically related outputs (output-to-output correspondence), as most recently argued by Benua (1999), Buckley (1999), Burzio (2000), and Tesar \& Smolensky (2000) among others. In this way, Correspondence Theory revives the notion of 'paradigm uniformity' that was influential in pre-generative phonological theory (e.g. Kuryłowicz 1949).

Finally, McCarthy (1999) argues that correspondence relations can also be established between pairs of candidates, where the latter are those output forms generated by the grammar, one of which is selected as optimal.

These three extensions of faithfulness -base-to-reduplicant correspondence, output-to-output correspondence, and candidate-to-candidate correspondence- are discussed with respect to Oowekyala segmental phonology in Chapter 4 of this dissertation.

Several kinds of correspondence relations between related strings ($\mathrm{S}_{1}, \mathrm{~S}_{2}$) are distinguished in this dissertation. They are given here, after McCarthy \& Prince (1995:122-4; 1999:293-6).
(19) Max(imality)

Every element of S_{1} has a correspondent in S_{2}.
Dep(endency)
Every element of S_{2} has a correspondent in S_{1}.
(20) $\{$ Right, Left $\}$-Anchor

Any element at the designated periphery of S_{1} has a correspondent at the designated periphery of S_{2}.
(21) Uniformity

No element of S_{2} has multiple correspondents in S_{1}.

Note that 'element' here may signify not only a segment (root node) but also a feature, i.e. correspondence constraints may refer directly to features, following Shaw (1994) and Pulleyblank (1998a) (among others). The sensibleness of such an interpretation is acknowledged by McCarthy \& Prince (1999:228): "[I]t is a reasonably straightforward matter ... to extend the correspondence relation to features as well as to segments." Indeed, at least some featurespecific Max constraints are needed to account for "floating" feature phenomena (e.g., tonal downstep; Pulleyblank 1986) and "stability effects" (e.g., high tone and nasal stability; ibid.). It is argued below that Oowekyala has floating laryngeal features (section 2.3, p. 30ff.) and shows rounding stability (section 3.3.3, p. 100ff.).

2．Intrasegmental phonology

2．1．Introduction：the segment inventory of Oowekyala

This chapter treats the paradigmatic component of Oowekyala phonology，that is，the part of Oowekyala grammar that establishes the inventory of Oowekyala segments．This inventory is given in（22）．
（22）Segment inventory of Oowekyala

tinventory of Oowekyala	$\begin{aligned} & \text { 苟 } \\ & \text { 毕 } \end{aligned}$	$\begin{aligned} & \frac{\pi}{\pi} \\ & \stackrel{2}{0} \\ & \stackrel{y}{\pi} \end{aligned}$		$\begin{aligned} & \text { 둔 } \\ & \text { \# } \end{aligned}$	$\frac{\stackrel{6}{0}}{\stackrel{1}{0}}$		$\frac{\text { 㐫 }}{5}$	$\begin{aligned} & \text { خ } \\ & \text { in } \\ & \text { in } \end{aligned}$	든
Plain stops and affricates	p	t	c	λ	k	$\mathrm{k}^{\mathbf{w}}$	q	$q^{\text {w }}$	
Voiced stops and affricates	b	d	d^{14}	λ	g	$\mathrm{g}^{\text {w }}$	g	$\mathrm{g}^{\mathbf{w}}$	
Glottalised stops and affricates	p^{\prime}	t	c＇	χ^{\prime}	k＇	k^{*}	q	$q^{\text {w }}$	
Fricatives			5	t	x	${ }^{\text {w }}$	$\dot{\mathbf{x}}$	$\check{x}^{\mathbf{w}}$	
Plain resonants	m	n		1	y	w			h
Glottalised resonants	m^{\prime}	n		$1 '$	y	w			？
Long resonants	m：	n：		I：					
Plain vowels					i	u	a		
Glottalised vowels					i＇	u＇	a＇		
Long vowels					i：	u：	a：		
Schwa						ว			

The chapter is organised according to the major phonological features that cross－classify the repertory of Oowekyala segments（22）．Stricture features are discussed first in section 2.2 （p． 22 ff ．）：［ \pm consonantal］，［ \pm sonorant］，［ \pm continuant］．Laryngeal features are treated next in sec－ tion 2.3 （p．30ff．）：［ \pm voice］，［ \pm constricted glottis］，［ \pm spread glottis］．The articulators（and re－ lated features）that implement the stricture features are considered in section 2.4 （p． 56 ff ．）： Lips，Tongue Blade，Tongue Body，Tongue Root，Larynx．

Note that all features are assumed to be binary in the traditional sense（Trubetzkoy 1939，Chomsky \＆Halle 1968，Lombardi 1996），excepting the primary articulator features which are considered terminal unary elements，after Sagey（1986）and Halle，Vaux \＆Wolfe（2000）．The Tonal node is not discussed as it is not directly relevant in Oowekyala（though it is in closely－ related Heiltsuk；see Kortlandt 1975）．

14 See fn． 5.

2.2. Stricture features

2.2.1. Major class features

Oowekyala segments are grouped by major class features in (23). This classification is uncontroversial except for the labeling of laryngeal glides as [+sonorant] which calls for some justification. 15
(23) Oowekyala segments by major class features
[sonorant] [consonantal]

obstruents	-	$+$	
nasals \& liquids	+	+	m, m, m: n, n, n:, l, li, li
glides	+	-	$y, y^{\prime}, w, w, h, ~ ? ~$
vowels	+	-	

The weakest evidence that laryngeals are [+sonorant] in Oowekyala may be drawn from the fact that laryngeals $/ \mathrm{h}, \mathrm{?} /$ are contrastive with respect to the feature [constricted glottis]. The laryngeals call for no special comment if they are assumed to be [+sonorant] in Oowekyala, as all sonorants in this language contrast for [constricted glottis] ($/ \mathrm{y}, \mathrm{y} /, / \mathrm{w}, \mathrm{w} /, / \mathrm{m}, \mathrm{m} /$, etc.) (see section $2.3 .3, \mathrm{p} .50$). But if laryngeals are treated as [-sonorant], $/ \mathrm{h} /$ is the only fricative with a glottalised counterpart, viz. /?/ (it will be shown below that /h/becomes [?] when glottalised). That is, the treatment of $/ \mathrm{h}, \mathrm{?} /$ as [+sonorant] contributes to the symmetry of laryngeal contrasts (reducing entropy) in Oowekyala phonology. This treatment should therefore be preferred, if all else is equal.

A stronger piece of evidence is that $/ \mathrm{h} /$ is phonetically voiced (i.e., [f]) in Oowekyala and the other North Wakashan languages. Indeed, Lincoln and Rath (1980:9, 21) describe /h/ as "voiced" in Oowekyala as well as in Heiltsuk and Kwakwala. Similarly, according to Lincoln and Rath (1986:13) /h/ is always pronounced with "breathy vibration of the vocal cords" in Henaksiala (but not in Haisla according to Bach, p.c.). This phonetic property is surprising if $/ \mathrm{h} /$ is construed as a fricative, since all fricatives are voiceless in North Wakashan (see Table 1), i.e., $/ s, \nmid, x, x^{w}, \check{x}, \check{x}^{w} /$ are never pronounced $\left[z, \beta, \gamma / \alpha, \gamma^{w}, b, b^{w}\right]$. On the other hand, we expect $/ \mathrm{h} /$ to be voiced if it is [+sonorant], as sonorants are inherently voiced. ${ }^{16}$

A third piece of evidence that $/ \mathrm{h}, \mathrm{?} /$ are [+sonorant] is that they pattern with sonorants in the following way: word-initially, they are always separated by schwa from a following obstruent (Lincoln \& Rath 1980:9-11, 13-4, 19, 28; Hilton \& Rath 1982:14). Examples are given in (24) and (25). (Roots and examples from Lincoln \& Rath 1980.) The necessity of schwa in these

[^9]cases is arguably a product of constraints on syllabification, such as: syllables must have onsets (e.g., *${ }_{\sigma}[\mathrm{n}]$), sonorants must not be onsets to headless syllables (e.g., ${ }_{\sigma}[n \varnothing]$), onsets must not be more sonorous than rhymes (e.g., *o[ms]) (see Prince \& Smolensky 1993, chap. 8). ${ }^{17}$
(24) Word-initial sonorant+obstruent clusters

a. $\sqrt{ } \mathrm{m} \times \mathrm{s}-$	maxsaq" (*mxsaq")	rainbow	EW, JSS3
b. $\sqrt{\text { mis- }}$	m'əstqa (*mistqa)	to drop something, let go of something	EW
c. $\quad \sqrt{ } \mathrm{nk}^{\mathrm{w}}-$		to pick salal berries	EW; DS
d. $\sqrt{ } \mathrm{n}^{\prime}{ }^{w}-$	n'zx"ala (*n'x ${ }^{\text {wala) }}$	in the vicinity, near to, close to sth.; closely related or connected to s.o. or sth.	EW
e. $\sqrt{ } \mathbf{l k}-$	laka (*\|ka)	to play the stone throwing game	EW
f. Vl'q-	l'zqa (*'qa)	to be, to handle (said of moist materials such as putty, berry cake, bread dough, etc.); to mash and dry berries, to spread berries on a surface for drying, to putty	EW
g. $\sqrt{\text { yp }}-$	уәра (*ypa)	to arrange strips of cedar bark into a mat	EW
h. $\sqrt{ } \dot{y}^{\underline{x}}-$		rising of the water, rising of the tide	HS
i. $\sqrt{ } \mathbf{w} \times$	wox̆a (*wx̆a)	to split	EW

(25) Word-initial laryngeal+obstruent clusters

$\sqrt{ } \mathrm{hp}-$	həpx̆tai (*hpx̌tapi)	moustache, chin-beard	EW
b. $\sqrt{ } \mathrm{h}+\mathrm{-}$	həłaqa (*hłaqa)	to pay (salary), to pay for	EW
c. $\sqrt{ } \mathrm{hx} \mathrm{w}^{-}$	həx"əwa (*hx"əwa)	to howl (dog, wolf, coyote)	EW
d. $\sqrt{ } \mathrm{H} \check{x}^{\mathbf{w}}-$	həx̆wa (*hx̆wa)	to climb (tree, rope, or steep rock)	EW
e. $\sqrt{ } 7 \mathrm{~b}-$	Pabuk" (*?buk ${ }^{\text {m }}$)	mother	EW, HS
f. $\sqrt{ } \mathrm{p} p-$	Pәра (*?pa)	to go after abalone	EW
g. $\sqrt{ } \mathrm{Pd}$ -	Padai (*?dai)	son! (term of endearment, always used in direct address and limited to males)	EW, HS
h. $\sqrt{ } \mathrm{P}$ dz-	Packi (*? ${ }_{\text {cki }}$)	sasquatch; the child-snatching monster with the basket	EW
$\sqrt{ } 7{ }^{\text {x }}$ -		when, if	EW

Crucially, obstruents do not behave in this way. The sequence $\mathrm{C}_{\mathrm{i}} \partial \mathrm{C}_{\mathrm{j}}$ is impossible where C_{i} and C_{j} are obstruents, e.g., (26). The fact that laryngeals are banned from initial position in obstruent clusters suggests that they are not obstruents.
(26) Word-initial obstruent+obstruent clusters

a.	$\sqrt{ } p x-$	pxa (*pəxa)	to warm, to heat, hot (like metal)
b.	$\sqrt{x^{w}} t-$	$\left.\bar{x}^{w} t a ~^{*} \bar{x}^{w} \partial t a\right)$	to cut with a knife
c.	$\sqrt{ }+k^{w}-$	$ł k^{w} a\left({ }^{*} \ngtr k^{w} a\right)$	to slide something out (e.g. a drawer)

[^10]| d. $\sqrt{t} \mathrm{x}-$ | t'xa (*ṫəxa) | game of springing things away with the fingers |
| :---: | :---: | :---: |
| e. $\sqrt{\lambda} \check{x}^{w}-$ | $\bar{\lambda} \bar{x}^{w} \mathrm{a}$ ($\left.{ }^{\star} \lambda \partial \bar{x}^{w} \mathrm{a}\right)$ | to rub, stroke, or press with the flat of the hand |
| f. $\sqrt{ } \mathrm{kp}-$ | kpa (*kəpa) | to plug (hole), tuck in, jam in, to button up, insert (lever) |
| g. $\sqrt{ } \times \lambda$ - | xえа (*xəえа) | to move to another place |

A final piece of evidence that laryngeals are [+sonorant] is that a morphologically provided [+constricted glottis] feature which otherwise targets sonorants only, also targets the laryngeals. The relevant pattern occurs in the plural, which involves not only CV-reduplication typically with [i] as a fixed vowel in the reduplicant-but also glottalisation of root-initial modal (i.e. plain, unmarked) sonorants, as shown in (27).
(27) Sonorant glottalisation in Oowekyala plural forms
singular plural

a. mam	mim'am	blanket, bedding, bedcover	EW, HS, JSS3
b. nusa	nin'usa	to tell stories, legends, myths	EW, DS1 12
c. lanca	lilanca	to go underwater	HS
d. wi:k $^{\mathbf{w}}$	wiwi: $^{\mathbf{w}}$	eagle	EW, HS, BC, JSS3
e. yľ̆a	yiy'l̆a	to rub, smear (body part)	EW, HS

Observe that laryngeals pattern with sonorants in this respect, i.e. root-initial /h/ changes to [?] in the plural.
(28) Laryngeal glottalisation in Oowekyala plural forms
singular plural
a. husa hi?usa to count, to tally EW
b. haxćas hilaxćas singing for the dancers JSS3
c. hmigila hi?mgila ${ }^{18}$ to cook JSS2, JSS3

The following examples illustrate that root-initial obstruents are unaffected by the process of glottalisation, in spite of the fact that they are (i) glottalisable segments in Oowekyala in general (cf. inventory (22) on p. 21 ; also section 2.3.1), and (ii) glottalisable segments in the plurals where the reduplicated consonant is glottalised in the base.
(29) No glottalisation of obstruents in plural forms
singular plural

a. pais	pipais	flounder	EW
b. təwa	titəwa	to walk	EW, DS146
c. qsu	qiqsu	it is you	EW

[^11]| d. tiłami | Łmi | to anchor, to moor, to tie up boat | EW |
| :---: | :---: | :---: | :---: |
| f. ス'a: | X'ix'a: | black bear | EW, HS, BC |
| g. $k^{w w} x^{w}{ }^{\text {a }}$ | $k^{w i k} k^{w} x^{w}{ }^{\text {a }}$ | to suck the skin (as when hurt) | EW, HS |
| e. spa | sispa | to flash, reflect, beam out, echo, reach (said of light or sound) | EW |

The treatment of Oowekyala laryngeals as [+sonorant] is consistent with Chomsky \& Halle's (1968:303) conception of this feature (see also Halle \& Clements 1983), ${ }^{19}$ but is contrary to Hyman's (1975:45) suggestion that laryngeals are always [-sonorant] (see also Lass 1984:83, Lombardi 1997, Gussenhoven \& Jacobs 1998). As Trask (1996:327) reports, "many [analysts] now prefer to regard [h] and [?] as [+obstruent]" (i.e. [-sonorant]). To be sure, laryngeals are classified as [-sonorant] in many languages, e.g. Nuxalk (Nater 1984:6), Dakota (Shaw 1980:26-7), Odawa (Piggott 1980), Yowlumne (Archangeli 1988), Athapaskan in general (Rice 199520), Oromo (Lloret 1995), and Hawaiian (Elbert \& Pukui 1979), but this assumption does not appear to be critical in any of the relevant phonological analyses.

Kean (1980:29) argues that there is an implicational relation between the two major class features (\bigcirc means 'implies').
(30) [-consonantal] כ [+sonorant]

Whether this implication is ever violated is an interesting empirical question. If violable, (30) may be viewed as an OT-type constraint, i.e. a well-formedness condition that can be outranked on a language-particular basis by other constraints that conspire to give laryngeals an obstruent analysis (e.g., [glottal] $\supset[-s o n o r a n t]$). While the general issue cannot be resolved here, the strong position will be adopted (on the basis of the Oowekyala evidence) that laryngeals are always [+sonorant].

Oowekyala laryngeals are discussed again in section 2.4.6.3 on p. 74 as well as in chapter 3. The next section focuses on continuancy contrasts in the Oowekyala inventory (22).

2.2.2. Continuancy

Oowekyala phonology presents no evidence for [\pm continuant] specification in sonorants. Suggestive phenomena such as intervocalic spirantisation, postnasal occlusivisation, debuccalisation of stops to [7] and/or of fricatives to [h], etc., are absent in this language. Among obstruents, however, the phonological feature [\pm continuant] supplies a basic contrast between stops and affricates on the one hand, and fricatives on the other. This contrast is illustrated by the following pairs.

[^12](31) Some [\pm continuant] contrasts in Oowekyala

| a. | cixa | to run, flow, flood (water) |
| :--- | :--- | :--- | :--- |
| sixa | | |
| to peel (fruits, sprouts, etc.) | | |$\quad \mathrm{HS}, \mathrm{EW}$,

The status of affricates $/ c, d z, c^{\prime}, \lambda, \lambda, \lambda^{\prime} /$ in Oowekyala calls for special comment. In all these segments, the tongue tip or blade and the alveolar ridge first come together for a 'stop' and then separate slightly so that a homorganic 'fricative' is made -except perhaps in λ, where a homorganic approximant [I] appears to be made (rather than a homorganic voiced fricative [k]). ${ }^{21}$ In spite of their phonetics, there are strong indications that affricates are single segments in Oowekyala phonology.

First, in spite of their phonetic compositionality, affricates are audibly distinguished from corresponding stop+fricative sequences. In the case of laryngeally unmarked

(32)	c	$\left[t s^{h}\right]$	vs.	$t s$	$\left[t^{h} s\right]$
	λ	$\left[t^{h}\right]$	vs.	$t t$	$\left[t^{h} t\right]$

In the case of glottalised affricates, the fricative release and the ejective release appear to be simultaneous, while in the

(33)	c^{\prime}	$\left[t s^{\prime}\right]$	vs.	t's	$[t ' s]$
	x^{\prime}	$\left[t t^{\prime}\right]$	vs.	t' t	$\left[t^{\prime}\right]$

In the case of voiced $d z$, the 'fricative' component has no \quad (34) $d z$ [dz] vs. $d * z$ independent status in Oowekyala. That is, the sound [z] does not occur independently of [dz] (cf. inventory (22) on p. 21; also section 2.3 below). This provides a robust argument in favour of the affricate dz being a single segment.

In the case of λ, the 'sonorant' component [I] immediately follows the stop release. By contrast, the corresponding
(35) λ [dl] vs. dl [dal]

[^13]$d+\mid$ sequence is always separated by schwa (in compliance with the Sonority Sequencing Principle and with the Syllable Contact Law; see also section 1.1.4, p. 9 ff).

Note, too, that impressionistically affricates appear to be significantly shorter in duration than their corresponding stop+fricative sequences. Actual differences in duration have not yet been measured instrumentally, though.

The phonetic differences just described, combined with the relatively permissive phonotactics of Oowekyala, allow lexical contrasts between affricates and matching stop-fricative sequences, as the following pairs illustrate:
(37) Word-initial contrasts between affricate vs. stop+fricative sequence

a. cela	to cut through water	EW	
	tsəla	pushing	HS, EW
b. c'a:	flow of water, creek flowing	DS55	
t'sa	to hit sth. with a rock, to bang rocks together, to chip pieces	EW	
	from rocks (as by banging the rocks together)		
c. ccila22	to do what somebody else does or did	EW	
	tstsa	push repeatedly	WL

(38) Word-final contrast between affricate vs. stop+fricative sequence

wac'	dog	JSS3
q'at's	crowded together on the field	EW

Plural reduplication also gives evidence that affricates are single segments in Oowekyala. ${ }^{23}$ Recall from section 2.2 .1 above that the plural normally consists of a one-syllable reduplicative prefix, frequently with a fixed vowel [i]. Crucially, affricates may occur in the onset of the prefix syllable, while no stop+fricative sequence may occur in this position, as illustrated in (39) and (40). The reduplication of forms with unambiguous clusters, e.g. /Red-sp-a/ \rightarrow [sispa] 'plural of: to flash', make it clear that reduplication copies only one segment, so that copied affricates must be interpreted as single segments.

22 A sequence like cc is doubly released ($\left[t^{\prime} s^{h} t^{h}\right]$). The only singly-sequenced long consonants in Oowekyala, i.e. true geminate consonants, are [m: $n:$, i]. These consonants are a peculiarity of Oowekyala (Lincoln \& Rath 1980:10). Examples include: cim: 'index finger'; smis 'mouth'; tnix 'hard knot of wood'; łn:x̆ 'wild crabapple'; ti:s 'high bush cranberries'. These double length sonorants contrast with normal length ones, e.g. tmc' 'bunchberries'; X'mq' 'yew tree'; $k^{\prime \prime} n q$ 'wet, damp'; glt 'long, tall'.
23 The significance of plural reduplication for the status of affricates in Oowekyala is noted by Hilton and Rath (1982:31).
(39) Plural reduplication with stop+fricative sequence vs. affricate

/Redpl-t s-a/	/Redpl-c a i n a/	$/$ Redpl-s p-a/
	$\downarrow \downarrow$	$\downarrow \downarrow$
[titsa]	[cicain a]	[s is pa]
ural of: 'to push'	plural of: 'Chinese’	plural of: 'to flash'

(40) Plural form with word-medial contrasts between affricate vs. stop+fricative
a. sicaina plural of: chinese HS
b. titsa plural of: to push HS, hr
c. cicim: plural of: index finger HS
d. titła plural of: to bait EW
e. tatita plural of: to slice fish parallel to the backbone EW, JSS3
f. Xỉخa: plural of: black bear HS
g. tititła plural of: to soak dried fish EW

The same point can be made with other types of prosodic morphology in Oowekyala. For example, the lexical suffix -axsala 'aimlessly' regularly triggers the emplacement of a long vowel [a:] in otherwise vowelless roots, e.g.:
(41) -axsala 'aimlessly'
a. $\check{x}^{\text {wa a }}$ taxsala cut any way, carelessly HS
$\check{x}^{\text {w}}$ ta to cut with a knife EW
b. ga:laxsala to crawl aimlessly WL
gela to crawl, to go on all fours EW
c. ya: \check{x}^{w} axsala dance any way with no order/pattern HS
yax \check{x}^{w} to dance, to make dancing movements EW

Crucially, the 'stop' and 'fricative' components of affricates such as /c'/ do not get separated (*[ta:s...]) by the morphologically-inserted long vowel, e.g. (42a,b), whereas stop+fricative sequences such as /ts/ do get separated, e.g. (42).

(42) -axsala 'aimlessly'

a. ca:maxsalaglił to point around indoors HS
c'əma to point HS
b. c'a:naxsala to proceed all over the place HS
cima to walk in a group, go in the same direction as others, to move EW in a procession, to march, to parade
c. ta:saxsala push here and there HS
tsa to push, press against EW

The advent of nonlinear phonology (Goldsmith 1976) made possible a conception of affricates as contoured segments. For example, according to Sagey (1986) each affricate is char-
acterised by both values of continuancy: [-continuant] and [+continuant]. This conception persists even in current phonological theory, e.g., Roca (1994), Steriade (1993, 1994), Schafer (1995), van de Weijer (1996), Gussenhoven \& Jacobs (1998:195-6), Zoll (1998:95), Elzinga (1999:46-7), Morelli (1999:108-110). As Clements (to appear, p.2) observes, "the current literature continues to treat these sounds [i.e. affricates] as contour or complex segments". 24
it is doubtful that the affricates $/ c, c_{2}, c^{\prime}, \lambda, \lambda, \lambda^{\prime} /$ in Oowekyala are [[-cont][+cont]], since affricates never pattern with fricatives as a natural class with respect to [+continuant] in this language (or in any language, according to LaCharité 1995). For instance, fricatives shun laryngeal contrasts, but affricates (like obstruent stops) do not (see inventory (22) on p. 21; also section 2.3 below). Moreover, as will be discussed in Chapter 3, fricatives are permitted sylla-ble-finally but affricates like other obstruent stops are avoided in this position.

It is also significant that the feature [+continuant] is not necessary or sufficient to characterise affricates in Oowekyala since they are distinguishable from nonaffricated stops (esp. $/ \mathrm{t}$, $\mathrm{d}, \mathrm{t} /$ /) in terms of two independently-needed features: [+strident] and [+lateral]. As will be discussed in section 2.4 below (see also (22) on p. 21), Oowekyala has three distinct series of coronal segments: an unmarked series $/ t, d, t^{\prime}, n, n^{\prime} /$, a series specified [+ strident] $/ c, d z, c^{\prime}, s /$, and a series specified [+lateral] $/ \lambda, \lambda, \lambda^{\prime}, t, I, I \prime$. Crucially, affricates $/ c, \notin, c^{\prime}, \lambda, \lambda, \lambda^{\prime} /$ are properly included in the [+strident] and [+lateral] series, so that the 'fricatives' associated with the release of affricates can be understood as phonetic implementations of these features, not of [+continuant]. The conclusion is that, phonologically, affricates are just stops (Shaw 1989, 1991b). Here is Clements (to appear, p. 2):

The fact that affricates consist of stop + fricative sequences phonetically is best accounted for at the phonetic level, where phonological feature combinations such as [-continuant, +strident] are spelled out sequentially as a succession of acoustic events.

Having resolved the status of affricates as [-continuant] in Oowekyala, consider again the pairs listed in (31) on p. 30. In OT these can be analysed as indicating that faithfulness to lexical values of continuancy (43) dominates context-free structural markedness contraints against instances of the phonological feature [continuant], such as (44).
(43) Faith-IO[continuant] (McCarthy \& Prince 1995, 1999)

Every input feature [α continuant] is realised in the output; every output feature [α continuant] is realised in the input.

$$
*\left[\begin{array}{l}
- \text { son } \tag{44}\\
+ \text { cont }
\end{array}\right] \quad \text { The feature [+continuant] is prohibited on obstruents. }
$$

[^14](45)

Contrast between stop/affricates and fricatives in Oowekyala

$$
\text { Faith-IO[cont] } \gg *\left[\begin{array}{l}
- \text { son } \\
+ \text { cont }
\end{array}\right]
$$

Fricatives indeed appear to be more marked than stops (Chomsky \& Halle 1968:406; Roca \& Johnson 1999:585). While all languages have stops, there are languages with no fricatives at all. Maddieson (1984) reports 18 such languages in his sample of 317 languages; Lass (1984:151) reports 21 such languages. Also suggestive is the fact that among normal children "[s]egments specified [-continuant] are acquired earlier than those specified as [+continuant]" (Ueda 1996:17 on Child Japanese; see also Beers 1996 on Child Dutch; Halle \& Clements (1983) illustrate the substitution of stops for fricatives in Child English) (see also Moreili 1999:186).

2.3. Laryngeal features

The Larynx feature [glottal] is assumed to be an articulator feature, in the sense of Halle, Vaux \& Wolfe (2000). As such, [glottal] will be discussed in section 2.4 below, along with the other articulator features ([labial], [coronal], etc.). But glottal activity such as voicing and glottalisation in segments should not, perhaps, be considered a 'secondary articulation', since such activity actually provides the 'source wave' which is 'filtered' by the articulators of the vocal tract (Fant 1960). Laryngeal features are therefore treated here in a separate section.

As previewed in the Oowekyala inventory (22) on p. 21, obstruent stops and affricates participate in a three-way laryngeal contrast (unmarked, voiced, and glottalised), while fricatives do not. There are also two laryngeally-differentiated series of sonorants (unmarked and glottalised).

2.3.1. Laryngeal features in stops and affricates

The following words illustrate the three-way laryngeal contrast of obstruent stops and affricates in Oowekyala.
(46) Laryngeal contrasts in Oowekyala obstruent stops and affricates

d.	$\lambda a q^{w} \mathrm{a}$		to pat	EW
	$\lambda a \bar{x}^{w} \mathrm{a}$	[dlax̃wa] ~ [tłax̌a]	to stand	DS64
	X'ax ${ }^{\text {w }}$	[tłax wa]	to mark (with paint or by frequent rubbing)	EW
e.	kisa	[kxisa]	to strike (match)	EW
	gisa	[gisa] ~ [kisa]	to make love to one's sister-in-law	EW
	kita	[k'it ${ }^{\text {ha] }}$	to catch herrings with a rake	EW
f.	$k^{\text {wasa }}$	[kx"asa]	to trample, stamp the feet, push with the feet	EW
	g wasa	[${ }^{\text {wasa }}$] $\sim\left[k^{\text {wasa }}\right.$]	to fray, chafe, rub	EW
	$k^{\text {waxas }}$	[${ }^{\text {w/was }}$]	mussel	EW
g.	qapa	[$\mathrm{q}^{\text {axapa] }}$	to rise and come towards one (said of steam, haze, smeli), steam, smell, air	EW
	ğa夫${ }^{\text {a }}$	[ğattha] ~ [qatt'a]	to gaff, to hook, to crochet	EW, HS
	q'apa	[q'apa]	to hit a target, to be to the point (words), follow a route	EW
h.	$q^{\text {wida }}$	[$\chi^{\text {x"ijia] }}$	to untie, to loosen (a rope)	EW
	ğwisa $^{\text {a }}$	[${ }^{\mathbf{w}} \mathbf{i s a}$] $\sim\left[q^{\mathbf{w}} \mathbf{i s a}\right]$	dried salmon that has not been soaked yet, to eat (cook?) unsoaked dried salmon	EW
	$q^{\text {w }}$ iła.	[$q^{\text {wi }}$ ita]	to break, crumble, grind up, crush, shatter, mince	EW

The three laryngeal types of stops and affricates in Oowekyala have previously been characterised as plain (unaspirated nonglottalised), aspirated, and glottalised (Lincoln \& Rath 1980, Hilton \& Rath 1982). Lincoln and Rath (1980:6-8) describe each type as follows:

The plain plosives ... are pronounced as lenis stops and affricates with occasionally a slight degree of voicing ${ }^{[25]}$... The aspiration of the aspirated plosives is very strong and in the case of $/ \lambda, k, k^{w}, q, q^{w} /$ is realised as harsh affrication... The glottalised plosives give the phonetic impression of lenis stops and affricates pronounced with accompanying closure of the glottis. The glottal release is lenis.

Notwithstanding these phonetic descriptions (which seem valid impressionistically but have yet to be verified instrumentally), there is compelling evidence that the 'aspirated' stops of Oowekyala are phonologically unmarked, while the phonetically 'plain' stops are phonologically voiced. Thus those obstruents which Lincoln \& Rath (1980) and Hilton \& Rath (1982) regard as 'aspirated' and 'plain' are here treated instead as 'unmarked' and 'voiced', respectively. This treatment is the same as Bach's 1991, 1997 for related Haisla, in which stop voicing is phonetically more obvious. See also Howe 1998 on Heiltsuk.

[^15](47) Oowekyala obstruent stops and affricates

Lincoln \& Rath (1980), Hilton
\& Rath (1982)
plain
aspirated
glottalised

	This dissertation (cf. Bach 1991, 1997)
\Leftrightarrow	voiced
\Leftrightarrow	unmarked glottalised

Under this view of laryngeal contrasts, it is claimed that aspiration is no more than a phonetic property of stops and affricates with unmarked laryngeal specification in Oowekyala, contra Lincoln \& Rath (1980) and Hilton \& Rath (1982). 26 Conversely, it is claimed that the "lenis" pronunciation of unaspirated stops and affricates (both plain and glottalised), which Lincoln and Rath (1980:7-8) describe, reflects the fact that these segments are phonologically marked ([voice] or [constricted]) in Oowekyala. 27 These interpretations of the phonetics of laryngeal distinctions in Oowekyala conform with Keating's (1984) polarisation principle: languages tend to maximise differences in Voice Onset Time between contrastive series of obstruents. As Ladefoged and Maddieson (1996:46) put it: "If a language contrasts a [phonologically marked] voiced stop series with one other [phonologically unmarked] stop series, then that second series will probably be slightly aspirated".

In other words, it is claimed that [\pm voice] and [\pm constricted glottis] are distinctive and active phonological features in Oowekyala grammar, as represented here:
(48) Laryngeal specifications and realisations of Oowekyala stops and affricates

unmarked	p	t	c	λ	k	$k^{\text {w }}$	9	$q^{\text {w }}$
	[$p^{\text {h }}$]	[$\mathrm{t}^{\text {n }}$]	[ts ${ }^{\text {b }}$]	[$t^{\text {h] }}$]	[x^{\times}]	[kx^{*}]	[${ }^{\text {¢ }}$]	[$\mathrm{m}^{\times 1}$]
[+voi]	b	d	dz	λ	g	$\mathrm{g}^{\text {w }}$	g	$\check{g}^{\text {w }}$
	[p~b]	[t $\sim d]$	[ts~dz]	[tı~dl]	[$\mathrm{k}^{\boldsymbol{\gamma}} \sim \mathrm{g}^{\boldsymbol{\gamma}}$]	[$\mathrm{k}^{\mathbf{w}} \mathrm{g}^{\mathrm{w}}$]	[q~ğ]	[$q^{\text {w }} \sim_{\text {g }}{ }^{\text {w }}$]
[+c.g.]	$\mathrm{p}^{\text {' }}$	t	c'	x	k'	$\mathrm{k}^{\text {w }}$	q'	$q^{\text {w }}$
	[${ }^{\prime}$]	[\dagger]	[t's]	[t']	$\left[k^{2}\right]$	[${ }^{\text {w/] }}$]	[${ }^{\text {] }}$	[${ }^{\text {"w] }}$]

The label 'unmarked' in (48) is purposely ambiguous. On the one hand, 'unmarked' can mean that this series is specified with the more common values of laryngeal features, i.e. [-voice] and [-constricted]. On the other hand, 'unmarked' can also mean that this series is devoid of laryngeal specification, i.e. it has no [\pm voice] or [\pm constricted] features. This ambiguity is exploited below in section 3.6.4, p. 145 ff .

In sections 3.6 and 4.1.4 evidence that [+voice] and [+constricted glottis] are active in the second and third series of (48) will be provided on the basis of neutralisation patterns and phonologically-conditioned allomorphy. For now, consider the distributional fact that voiced stops and affricates are found only before tautosyllabic sonorants in Oowekyala (section 3.6). By contrast, the stops and affricates which Lincoln \& Rath (1980) and Hilton \& Rath (1982) treat

[^16]as phonologically aspirated have an unrestricted distribution. They occur not only where voiced stops occur (before tautosyllabic sonorants) but also everywhere else. In fact, 'aspirated' stops and affricates occur even in all-obstruent words, e.g.:
(49) Phonetically aspirated stops and affricates in all-obstruent words

a. $\mathrm{tpk}^{\mathrm{w}}$	[$t^{\text {h }} p^{\text {h }} k^{\text {c] }}$]	something squeezed	EW
b. tıx	[t^{h}]]	thus (interjection)	EW
c. $q^{w \check{x}^{m}}$	[$q^{\overline{\mathrm{x}}{ }^{\text {x }} \text {] }}$	powder	EW
d. $\breve{\mathrm{x}}^{\mathrm{w}} \mathrm{t} \mathrm{k}^{w}$		(sth.) cut with a knife	HS
	[$\chi^{h} \times$ x $_{\text {c }}$]	canoe thwart	HS
f. $q^{w} s q^{w} s$		low mountain (dwarf) blueberry (Vaccinium ?caepitosum); fruits eaten	BC98

A simple explanation for the difference in distribution between voiced (and glottalised obstruents) on the one hand, and 'aspirated' obstruents on the other, is that Oowekyala avoids voiced stops and affricates because they are marked segments (Halle 1959, Chomsky and Halle 1968, etc.), and only tolerates them in a particular structural context (before a tautosyllabic sonorant; see explanation in section 3.6.3, p. 138ff.). In contrast to the limited distribution of voiced stops and affricates, aspirated stops and affricates are permitted everywhere, presumably because they are not marked in the phonology. That is, aspirated obstruent stops are in fact 'plain' (unmarked) stops which are aspirated in the phonetics. (Keating 1988 argues that a segment may remain unspecified for a feature, even at the output of the phonology.)

Strong verification that [+voice] and [+constricted glottis] are active in Oowekyala phonology also comes from the effects of what Boas (1947) called 'weakening' and 'hardening' suffixes. Some of these suffixes are listed in (50) and (51). These suffixes cause stem-final plain stops and affricates to become voiced and glottalised, respectively. (The effect of these special suffixes on stems ending in other types of segments are discussed in later sections.)
(50) Some 'weakening' suffixes

| a. -aci | instrument, receptacle |
| :--- | :--- | :--- |
| b. -ad | having |
| c. -ayu | instrument, passive |
| d. -is | beach |
| e. -it | indoors |
| f. - m | nominal |
| g. - nakwola | gradually |
| h. - nu | side |

(51) Some 'hardening' suffixes
a. -a
on a rock
b. -ax̆sm
woman of a tribe
c. -inux̆w expert at, good at
d. -ix̌st to desire
e. $-u \check{x}^{w} \quad$ price
f. $-m$ nominal
g. -məy'a cheek
h. -s on ground

The voicing effect of 'weakening' suffixes on stem-final plain stops and affricates is illustrated in (52)-(59) with -aci 'instrument, receptacle'.
（52） ．．．p＋aci \rightarrow ．．．bací
a．cbaci wooden object？（e．g．duck） JSS3
cpa meaning not remembered but had something to do with cedar EWbark
b．c＇baci grease dipping dish，bowl where food is dipped into grease HS
c＇pa to dip food（in oil，syrup，or water） EW
c．kibaci elderberry basket；home－made basket for storing things BC90：DS
kipa to pick elderberries EW
d．$q^{\text {wa ałubaci }}$ ashtray HS
$q^{\text {whałupa }}$ to burn to cinders EW
（53）．．．t＋aći－．．．daci
a．Max̌wadaci bobbing up and down；name of a mountain goat hunting DS118 place near the first narrows on Owikeno Lake
max́wata to bob EW
b．łudaci toboggan，slide JSS3
tuta to slide JSS3
（54）．．．c＋acii \rightarrow ．．．dzaći
a．ti：czacii container for high bush cranberries BC91
tl：c high bush cranberry（Viburnum edule）（Curtis 1970：332：EW，HS， tulls） BC91
（55）．．．え＋aci－．．．入aći
a．maýu入aci womb HS
mayiuxa to give birth EW
（56）．．．k＋aci \rightarrow ．gaci
a．？əmagacii toilet，W．C． JSS3
Zəmaka to defecate EW
b．smgaci box for cooking oolichan grease；name of Ben Hanuse DS143，JSS3
smka to extract oil from oolachens EW，DS143
c．k＇gaci frame for stretching skins HS
k＇ka to stretch skins EW
d．mngaci anus HS
mənak manure，excrement EW
a. dug"aci troller JSS3
dukwa to troll; Lyall's American stinging nettle (Urtica dioica): EW,harmful with contact; young plants eaten; fibrous tissue BC120:BC1 20:
for cordage, bow strings, nets ${ }^{28}$ HS, BC
b. bax"bagwaci a mythical box with unlimited contents; synonymous with DS53Kawaci, a box that contains an endless supply of food,ceremonial regalia where also stored in this box
baxwbakwa to stay filled EW
c. $\lambda a g ̆ m{ }^{w}$ aci $\quad \log$ barrier in water to keep other logs from floating away? JSS3
$\lambda a g ̆ m k^{w} \quad a \log$ or tree that's been felled BC506: DS
d. ṫənig ${ }^{w}$ aci fridge JSS3
tenikw feeling cold EW
(58) ...q+aći \rightarrow...ğaci
a. ća'ğaći
c'áqa to drip EW, HS
b. c'aiǧaći house for Indian dancing, esp. for the Cannibal dancer HS
ćaiqa shaman, medicine man; Indian dancer EW, HS
c. kaçənağaći spoon basket (made of red-cedar bark) BC63
kaćan'aq wooden spoon HS
d. k'ğać log transporter; container for packing; fish packing boat JSS3k'qa to be somewhere (said of a pile or load of things), to put, EWmove, or deliver a pile, load, or cargo of things
e. $\mathrm{k}^{\text {'wǧac'i }}$ window HS, JSS3
kwqa daylight, to dawn, to become light in the morning EW, HS
f. l'əğaći box to make mortar in HS
l’aqa to be, to handle (said of moist materials such as putty, EW
berry cake, bread dough, etc.); to mash and dry berries, tospread berries on a surface for drying, to putty
g. nağacii cup JSS3
naqa to drink, to swallow a liquid EW, JSS2
(59)a. $x^{w} a x^{w} m a l a g{ }^{w} a c i$bee-hiveHS
x $^{\text {w }} \mathrm{ax}^{\mathbf{w}} \mathrm{malaq}^{\text {w }}$ bee EW

The same voicing effect on stem-final plain stops and affricates is illustrated in (60)(66) with -it 'indoors'.

[^17]（60） p＋it \rightarrow ．．．b
a．lubit unoccupied（said of a building） HS
lupa contentless（as a boat，or as a person with an empty stomach） EW
b．tibił feet on floor WL
tipa to step，tread onto sth．；to find fern roots or cockles by feeling HSwith the feet
c．dzubit sth．soft（e．g．coat）thrown onto the floor HS
czupa to fill，stuff，or plug up with soft material EW
（61） ．．．t＋it \rightarrow dif
a．cidif in listing position indoors HS
cita to tilt，lean，list，to slope EW
b．ğm＇ẍudif left－hand side of a house HS
ğmix̆ut（－i）（it＇s the）left－hand side EW
c．kadit log on the floor of the house HS
kata to be somewhere（said of something long，such as a log），to EW use a long thing or put it somewhere
（62）．．．$\lambda+$ it \rightarrow ．．．λ it
a．mu入it heap on the floor HS
muxa to have risen，to have become a lump EW
b．n＇ə入if to lean backwards or lie on the back indoors HS
n＇əえa to lean back（as in a chair）or to lie on one＇s back，to lay things EW on the back（e．g．split fish on the side with the skin）
c．\quad x $\lambda i \nmid \quad$ indoors and upright（pole，stick） HS
ẍえa to shove something with a pole EW
（63）．．．k＋if \rightarrow ．．．git
a．yagił a dirty floor HS
yak（－i）（he／she／it＇s）bad，spoiled，evil，vicious，sick，not as it should be EW，HS
b．dzigił a stick sticking in the floor HS
czika to push or poke with a stick EW，DS 183
c．tagił bed mat，mattress HS
taka to use padding，use sth．soft EW
d．$\grave{\text { dif }}$ round and／or bulky thing on the floor of the house HS
X＇ka to put a round and／or bulky thing somewhere，e．g．to iron，to EW，JSS3
lay bricks，to roast shellfish by the side of the fire
（64）$\ldots k^{w}+$ ił $\rightarrow \ldots g^{w i t}$
a．$g^{w} u g^{w}$ if to be in a house HS
$g^{w} \mathrm{uk}^{\mathrm{w}}(-\mathrm{i}) \quad$（that－over－there is a）house EW，JSS3
b．$k^{2 w} u g^{w} i \nmid \quad$ to set a flat thing on edge of the floor EW
$k^{{ }^{w}} u k^{w} a \quad$ to chop with an axe EW
c. $q^{\prime \prime}{ }^{w}$ if to lie in bed (said of animate beings) EW
qlkwa to lie on sth. (said of animate beings) HS
(65)a. X'ağiłstretched out, uncoiled, unbent indoorsHS
X'aqa to stretch out a line, go deep-sea fishing (with line and multiple EW hooks)
b. Tağił wide or spacious room HS
Taqa to open wide (as e.g. a mouth), to widen EW
c. ǧlğił container placed on the floor HS
ğlqa to grasp with the fingers, lift container (e.g. a pail, a pan, a cof- EWfin); to push water away with the hands (as when swimming), topaddle in the water with the hands, to crawl (as when learninghow to swim)
(66) ... $q^{w}+i \nmid \rightarrow . . g^{w}$ ił
a. hağwit to lie face down in bed HS
haq"la to lie face down EW
b. k'lğwit to urinate in bed (said of a male) HS
$\mathrm{k}^{\prime} \mathrm{lq}^{\mathrm{w}} \mathrm{a}$ to urinate (said of a male) EW
c. loğwit fire on the floor of the building (e.g. the smokehouse) HS
leqwa wood, firewood JSS3
Note that 'weakening' suffixes have no audible effect on stem-final consonants that are either glottalised, e.g. (67), or underlyingly voiced, e.g. (68).
(67)
a. X'auq' ${ }^{\text {waci }}$ tobacco can or any container for tobacco BC117
X'auq'w tobacco (Nicotiana tabacum); also possibly western dock (Ru- BCl 07 mex occidentalis) (also possibly "wild rhubarb"): stems, leaves, sprouts and shoots eaten (?)
b. qwatił crowded together in a house EW
$q^{\text {watüs }} \quad$ overcrowded on the boat HS
(68)
a. kábudaći oven, bread pan, oven pan? JSS3
ka'budənug"a I roast(ed) sth. in the oven HS
b. $k^{\text {'w }} u k^{w}$ ay'udaci fishing boat JSS3
$k^{w} u{ }^{w}$ wayudon I fish(ed) with the gillnet HS
c. Pucził in an awkward or uncomfortable situation/position in the house HS
Puczala to go wrong, suffer misfortune, have trouble EW
d. Pagif all indoors HS
Pagala all together HS
e. yugwilaci rain house; name of a small creek east of Sowick Creek, flowing DS1
into Owikeno Lake 82
yug ${ }^{w}$ a to rain, the rain JSS3
The glottalising effect of 'hardening' suffixes on stem-final stops and affricates is illustrated in (69)-(75) with -inux̌w 'expert, good at'.
(69) $\ldots p+i n u \check{x}^{w} \rightarrow \ldots$ pinu \check{x}^{w}
a. dapinux̌ ${ }^{w}$ tow boat JSS3
dapa to tow EW, HS
b. lipinu \bar{x}^{w} gambler HS
lipa to roll dice EW
(70) ...t+inux̌ ${ }^{w} \rightarrow$...ṫinux̆
a. wutinux̌w ${ }^{w}$ person good at piercing HS
wuta to prick, pierce, pin, perforate EW, HS
b. matinux̆ ${ }^{w}$ flyer, pilot HS
mata to fly JSS3
c. $\mathrm{k}^{\mathrm{w}} \mathrm{a}$ autinux ${ }^{\mathrm{w}}$ musician HS
$k^{w a}$ apata to play a musical instrument EW
d. q'ntinux ${ }^{w}$ person good at shooting with the gun, a good shot, good HS marksman, good hunter with the gun
qunta to use a firearm, to shoot EW, HS
(71) ...c+inu $\check{x}^{w} \rightarrow$...ćinux̆
a. qu'cinux̌x ${ }^{w}$ grease monkey, person who greases the engines HS
qlea oil, gas, to oil, grease, to lubricate EW

a. ǧa夫̇inux̌w ${ }^{\mathbf{w}}$ s.o. good at hooking WL
ğaえa to gaff, to hook, to crochet EW, HS
(73) ...k+inu $\bar{x}^{w} \rightarrow$...kinux
a. skinu $\bar{x}^{w} \quad$ person who is always spearing HS
ska to spear, to harpoon EW
b. hailikinu $\check{x}^{\mathbf{w}}$ healer, expert in taking out "bad medicine" HS
hailika to cure s.o. (esp. by taking out "bad medicine") HS
c. w’wik'inux̌w person from Rivers Inlet JSS3
d. manikinux̌ ${ }^{\text {w2 }}$ name of a lineage of Oowekeeno, a man from Bella Bella DS121
married into the Manik'inux̆w lineage

[^18](74)a. m'əkwinu \check{x}^{w} blacksmithHS
m'əkwa to hammer EW
b. qitk ${ }^{\text {win }}{ }^{\text {b }}{ }^{w}$ person always wearing a hat or cap HS
qitk $^{w} \quad$ person that has put on a cap or hat HS
(75)
a. tmq ${ }^{\text {winux }}{ }^{w}$ good plunger HS
$t m q{ }^{w}$ a to kick with the feet when swimming, to plunge into the water EW to chase the fish back into the net
The same glottalising effect on stem-final plain stops and affricates is illustrated in (76)-(82) with -s 'on ground'.
(76) ...p+s \rightarrow...p's
a. tnp's soft ground HS
tnpa saggy, loose, soft, wrinkled EW
b. łup's muddy ground HS
tupa mud HS
c. nəp's something that has collapsed on the ground outside (e.g. a house) EW
nəpa to hammer; to break through a surface (e.g. wall, a deadfall); to collapse EW
or cave in (as a roof)
d. tip's one's feet touching the ground (as when feeling for fern roots) WL
tipa to step, tread onto sth.; to find fern roots or cockles with the feet HS
(77) ...t+s \rightarrow...ts
a. cit's leaning over, tilted, or in listing position on the ground outdoors HS
cita to tilt, lean, list, to slope EW
b. kat's long thing lying on the ground outdoors HS
kata to be somewhere (said of something long, such as a log), to use a long EW thing or put it somewhere
c. x^{w} It's fire outdoors on the ground WL
x^{w} Ita to burn (said of a fire, coals, offerings) EW
(78) ...え+s \rightarrow... $\lambda^{\prime} s$
a. miux's lump on the ground outside; small hill HS
m'ux̃ala heaping full EW
b. n'əᄎ̀'s to lean backwards or lie on one's back on the ground outdoors, to lay HS things on the back on the ground outdoors
n'əえa to lean back (as in a chair) or to lie on one's back, to lay things on the EW back (e.g. split fish on the side with the skin)
c. pax's something strung out on the ground (e.g. a root) EW
p’axuyala sth. hanging out of sth. (as a shirt tail out of pants) HS
(79) ...k+s \rightarrow...k's
a. dzik's (sth.) stuck into the ground HS
deika to push or poke with a stick EW,
DS1 83
(80)a. $g^{w} u k^{w} s$ house on the groundHS
$g^{w} u k^{w}(-i) \quad$ (that-over-there is a) house EW, JSS3
b. $k^{w} u k^{2} w_{s} \quad$ to stand a board on its edge on the ground outside HS
$k^{\prime w} u k^{w} a \quad$ to chop with an axe EW
c. lứx ${ }^{w} k^{w} s \quad$ rocky ground strewn with boulders EW
lu'x ${ }^{w} k$ wela boulders; place with boulders HS
d. $q \mid k^{w} s \quad$ to lie on the ground outside (said of animate beings) HS
qlkwa to lie on sth. (said of animate beings) HS
(81)
a. łaq'sa to build a tent, shed, or shelter on the ground outdoors HS
łaqa to build a shelter (shed, tent, etc.) EW
b. m'nc'q's one cylindrical th. on ground WL
minćq one long thing (e.g. cigarette, log, tree, bottle) HS
c. paq's sth. flat on the ground HS
paqa flat, to be flat, to put a flat object somewhere (e.g. to lay shingles EW on a roof)
d. X'aq's to have one's legs stretched out on the ground outside EW
X'aqa to stretch out a line, go deep-sea fishing (with line and multiple EW hooks)
(82)a. haq"s to lie face down on the ground outdoorsEW
haqwola to lie face down EW
b. ləq"sa to build a fire on the ground outdoors HS
ləqwa wood, firewood JSS3
c. tlqwsa to lay down branches or moss in order to make a soft spot, to HS soften a place on the ground
tlqwa to soften, make soft as a pillow DS146
d. tuq's trail, valley, or lot of ground that is narrow HS
tuq ${ }^{\text {w }}$ narrow gap, small opening, narrow, slim EW
After Howe (1996) it is assumed that 'weakening' and 'hardening' suffixes carry floating laryngeal features: [+voice] and [+constricted glottis], respectively. Upon affixation, these floating features dock onto stem-final plain obstruent stops/affricates, causing either voicing or glottalisation.
(83) m'ək ${ }^{\mathrm{w} a}$ 'to hammer'

Such linking of autosegmental [+voice] or [+constricted glottis] is driven by a wellformedness condition recognised since Goldsmith (1976) and which can be adapted to OT with the correspondence constraint Max (Pulleyblank 1998a; cf. Akinlabi's 1996 family of constraints against floating features: Parse).
a. Max-lO[voice]

Every input feature [voice] must be realised in the output.
b. Max-IO[cg]

Every input feature [cg] must be realised in the output.

The crucial point here is that [+voice] and [+constricted glottis] are phonologically active in Oowekyala, while there is no phonological evidence for the feature [+spread glottis] being active in obstruent stops and affricates (contra Lincoln \& Rath 1980, Hilton \& Rath 1982). In particular, there is no (vowel-initial) suffix which causes a stem-final "plain" stop or affricate to become "aspirated".

2.3.2. Laryngeal features and fricatives

Oowekyala fricatives are repeated here, from (22) above.
(85) Oowekyala fricatives

alveol.	alveolar	velar	labio- velar	uvular	
strident	lateral			uvular	
\mathbf{s}	f	\mathbf{x}	$\mathbf{x}^{\mathbf{w}}$	$\check{\mathbf{x}}$	$\check{\mathbf{x}}^{\mathbf{w}}$

There are no voiced fricatives in Oowekyala, i.e. one never finds ${ }^{*}\left[z, \xi, \gamma / \mathcal{s}, \gamma^{w}, s, \iota^{w}\right]$, nor are there any glottalised fricatives [$\left.s^{\prime}, t^{\prime}, x^{\prime}, x^{w}, \vec{x}, \ddot{x}^{w}\right]$. These gaps reflect universal tendencies for fricatives not to support contrasts in voicing or glottalisation. The second tendency is especially strong among the world's languages, likely because glottal constriction impedes the high pressure airflow needed for frication.
$*\left[\begin{array}{l}- \text { sonorant } \\ + \text { continuant } \\ \alpha \text { voice }\end{array}\right]$

VOI/FRIC No voicing contrasts in fricatives.
$*\left[\begin{array}{l}- \text { sonorant } \\ + \text { continuant } \\ \text { } \\ \text { constricted }\end{array}\right]$ CG/FRIC No glottalisation contrasts in fricatives.

Note that these constraints express an incompatibility of fricatives with voicing and glottalisation contrasts, so that, e.g. fricatives are incompatible not only with [+voice] but also with [-voice] (cf. Steriade's 1997 context-sensitive constraints on voicing contrasts, e.g. *[גvoice][-sonorant]). This interpretation of the constraints in (86) will be important in later analyses, esp. section 3.6 .4, p. 145 ff .

Regarding voicing contrasts in fricatives, Lass (1984:154) remarks that crosslinguistically " $[t]$ he number of voiceless fricatives is likely to be greater than that of voiced; and there is likely to be an implicational relation between a voiced fricative and its voiceless cognate". Importantly, Lass notes that the latter implicational relation is "truer for fricatives than for stops" (ibid.). As Ohala (1983) explains, voicing occurs preferentially with low air pressure while frication occurs preferentially with high air pressure. Elzinga (1999:52) concludes that "voicing in fricatives is antagonistic to the production of noisy airflow which make fricatives perceptually salient."

That Oowekyala lacks glottalised fricatives [s', $\left.\ddagger^{\prime}, x^{\prime}, x^{\prime w}, \ddot{x}, \ddot{x}^{\prime \prime}\right]$ is even less surprising given the highly marked status of these segments (see, e.g., Maddieson 1984, Ladefoged \& Maddieson 1996). The crosslinguistic rarity of glottalised fricatives almost certainly results from the articulatory antagonism between the glottal constriction required for glottalisation and the glottal aperture favourable to frication. As Vaux (1998) discusses, voiceless fricatives are normally produced with a glottal width comparable to that of voiceless aspirated stops.

Specifically, then, it is assumed that the markedness constraints in (86) are undominated in Oowekyala grammar. From this perspective, it is interesting to consider what happens to stem-final fricatives when they are adjoined by the voicing and glottalising suffixes that were introduced in the preceding section. As shown in (87), the effects of voicing and glottalising suffixes vary depending on the type of stem-final fricative involved.
(87) Effects of voicing and glottalising suffixes on stem-final fricatives

Stem-final fricativebefore voicing suffix ...before glottalising suffix

/s/	[y] or [¢ k]	[y] or [c]
/ $/ 1$	[I]	[1]
$\|x\|$	[n]	[n]
$\mid \mathrm{x}^{\mathbf{w}} /$	[w]	[w]
$\left\|\dot{x}^{\mathbf{w}}\right\|$	[w]	[w]
$\mid \stackrel{x}{\text { \| }}$	[${ }_{\text {x }}$]	[X 7]

These effects are first illustrated in (88)-(94) with the voicing suffix -aci 'instrument' (see examples with stops in preceding section).
(88) ...s +acii \rightarrow...yaci
a. cayaći funnel HS
casa to pour water on, throw out water EW, JSS2
flea b. tup'yaci EW
(-'s 'outdoors')
tupa to give s.o. a black spot (as when playing blackjack) HS
c. X̌myaci box for smoke-dried salmon HS
x̆ms-x̌asa to eat dried salmon EW
(89) ..s + aći \rightarrow...czaći
a. $k^{\mathrm{w}} \mathrm{i}$ zači spittoon, cuspidor HS
$k^{\text {wisa }}$ to spit EW
b. gackaci container for gas JSS3
gas gas HS
c. hmezaci dishes, plates, bowls JSS3
hmsa to eat EW
d. $k^{w} u k^{w i d z a c i ~ c o o k i e ~ j a r ~(f r o m ~ E n g l i s h ~ ' c o o k i e ') ~}$ JSS3
$k^{w} u k^{w i s}$ cookies
e. tn丸zaci the ceremonial house of the cannibal dancers EW,DS145
tanis term used to refer to the Hamac'a Dancer during the dance; also EW, used for those who have already reached the rank of Hamacia DS145Dancer
(90) $. . t+a c i i \rightarrow$ laći
a. ?mlaci game house? JSS3
Tamła to play EW, HS
b. ćik'alaći warship HS
cik'ałla. war, fighting EW
c. gwulayu salmon trap in the creek HS
$\mathbf{g}^{\text {w }}$ uła to gather and preserve food staples (meat, berries, and especially EWsalmon), to prepare food for later, make travelling provisions, towill something to somebody
d. k'laci dustpan JSS3
k’ła to move (brush, sweep, shake) particles from a surface EW
e. Iğwilaci stove JSS3
lğ ${ }^{\text {wit }}$ fire on the floor of the of the building (e.g. the smokehouse) HS
f. tilaci box for soaking smoked salmon HS
tiła to soak dried fish EW
g. Xilaci banquet hall, community hall HS
Xiła to invite to a feast EW,
(9I) ...x+aci \rightarrow...naci
a. cinaci water main, water pipe, gutter HS
cixala running, flowing, flooding (water); brook, stream EW
b. minaci porcupine house EW
mixt porcupine EW,
c. mənaci drum (of any kind) JSS3HS, BC
m×a punch, strike with the fist, knock (on the door), beat (a drum) EW
(92) waci
a. Taliwac'i seal hunter's canoe HS
7alix"a to hunt for sea mammals EW
b. cawaci container for catching drips from a leaking roof HS
caxwa to leak, drip EW
c. ćəwaći sifter? ("tamis") JSS3
cx ${ }^{w a}$ to stab, stick into EW
d. dənəwaci palette of a painter EW
cf. Kw dnx wała standing in a row LR92 LR92
(93) $. . \check{x}^{w}+a c i i \rightarrow$ waċi
a. ywaci dance hall? (for ceremonies) JSS3
$y \bar{x}^{w} a$ to dance, to make dancing movements EW
(94) ... $\bar{x}+a c i i \rightarrow . . . \check{x} a c i$
a. wax̆aci chimney, smoke pipe of a stove, pipe for smoking tobacco JSS3
wax̌a to impregnate with smoke
wax̌a to impregnate with smoke EW EW
b. $\check{g}^{\mathrm{w}} \mathrm{ix̌aci} \quad$ flour container? JSS3
ğwix̌ila $^{\text {wix }}$ to bake bread HS
c. hnx̆ači mirror? JSS3
hnx̌a to look at one's reflection (in water or mirror) EW
d. tn:x̌aci crabapple box BC109: DS
łn: $\check{\mathrm{X}} \quad$ wild crabapple (Malus fusca) fruit (Curtis 1970:332 hlinnh) EW, HS; BC
e. tix̆aci bile bag (as of a fish) EW
tix̌a to suffer from indigestion HS
f. X’ix̌ači chiton (a large Chinese slipper) WL
The same effects are illustrated in (95)-(100) with the voicing suffix -if 'indoors' (already illustrated for stops in the preceding section).
(95) ...s + it \rightarrow...dzit
a. Tikackił upper room HS
?ik'as place that is high; ground that is high HS
b. hamdzif to eat in a restaurant HS
hmsa to eat EW
c. Mu:dził name of Ada Hanuse-Clegg DS120
mus- destroy
LR
(96) ... $\uparrow+$ it \rightarrow...lił

a. k'alił	to take a nap indoors	HS
k'ała	to sleep, to dream	EW, DS
b. Xiliła	to invite a person into the house	HS
入iła	to invite to a feast	EW, DS1 50
c. y jolif	spread out indoors	HS
ẏəła	to spread apart (canoe, jaws of a spring trap, legs)	EW
d. hulił	hump on the floor of the house or room	HS
huła	to heap up, rise, uprising, riot (a wave)	EW, HS

(97) ...x+it \rightarrow...nit
$\begin{array}{lll}\text { a. p'ənił pit in the floor of the house (as e.g. the fireplace of the longhouse) } & \text { HS } \\ \text { p'xala dented, grooved }\end{array}$
b. tinił to lie or lean back in the house WL
tixa to lie on one's back, to lean back on something EW
(98) ... $x^{w}+$ it \rightarrow...wit
a. c'xc'əwit inside totem poles, indoor houseposts [reduplicated form] EW;

C'X ${ }^{w}$ a to stab, stick into EW
(99) $. . \breve{\mathrm{x}}^{\mathbf{w}}+\mathrm{i} \rightarrow \rightarrow \ldots$ wił
a. 入awił to stand on the floor of the house, in the room (said of animate be- WL ings)
$\lambda a \bar{x}^{w} \mathrm{a}$ to stand DS64
b. qwawiła to bring out in the open in the house or room; to make easy to see, EW reach, or grab in the house or room
$q^{w} a \check{x}^{w} a$ to take or bring out goods that have been stored for a long time HS
(100) ... $\check{x}+$ it $\rightarrow \ldots$.. \bar{x} it

The changes in (87) are illustrated in (108)-(112) with the glottalising suffix -'a 'try to (get)', which also triggers Ca-reduplication.
(101)a. kakuya to try to shave or scrapeHS
kusa to shave, scrape off with a knife (skin, fur, fish scales) EW, HS
b. yayidaya to try to get oarlock HS
yidas oarlock HS
(102) ...s +'a - ća
a. Ialacंa to try to plant HS
lasa to plant HS
b. yayimiac'a to try to get a chief HS
yim'as chief EW, HS
(103) ...ł+'a \rightarrow...l'a
a. $\check{g}^{w} a{ }_{g}{ }^{w} a l{ }^{\prime} a \quad$ to try to end or finish sth. HS
\check{g}^{w} ał finished, completed, ready; to stop, end, quit, finish doing sth. EW, HS
b. wawul'a to try to heap up HS
wuła to heap up, rise, uprising, riot (a wave) EW, HS
c. yahiğml'a to try to get masks HS
yiğmł mask EW, HS, JSS3
(104) ...x+'a \rightarrow...n'a
a. maman'a to try to punch HS punch, strike with the fist, knock (on the door), beat (a drum) EW
mxa
mxa
(105) ... $x^{w}+{ }^{\prime} a \rightarrow$...w'a
a. dzackaw'a to get oolichans, to try to catch oolichans HS
ctax ${ }^{w}$ oolichan (candlefish) EW,
DS1 83
(106) ... $\bar{x}^{w}+{ }^{\prime} \mathrm{a} \rightarrow$...w'a
a. Yayawa to try to dance, to have a penchant for dancing HS
$y x^{w} a \quad$ to dance, to make dancing movements EW

a. gagix̌7a to get ready for grinding or filing, to be about to grind, to try to HS grind
gix̌a to grind, to file, to sharpen EW
b. nanix̆?a to try to pull s.o. or sth. HS
nix̆a to pull (hair) EW
The changes in (87) are also illustrated in (108)-(112) with the glottalising suffix -inux̆w 'expert'.
(108) ...s+'inux̌x ${ }^{w} \rightarrow$...yinux̄ ${ }^{w}$
a. hauyinu $\breve{x}^{\mathbf{w}}$ tallyman HS
hausa to count, to tally EW
b. Payinux̌ ${ }^{w}$ person good at longlining for halibut HS
Tasa to use the longline to catch halibut EW, HS
(109) ...s + 'inu $\check{x}^{w} \rightarrow$...c'inux̄ ${ }^{w}$
a. powicinu \bar{x}^{w} person who is always hungry HS
pawis hungry DS126
b. laćinu $\check{x}^{\mathbf{w}}$ farmer HS
lasa to plant HS
(110) \ldots x $^{w}+$ 'inux̌w \rightarrow...winux̌w
a. Paliwinux̌w expert sea mammal hunter DS
?alixwa to hunt for sea mammals EW
(111) ... $\check{\mathrm{x}}^{w}+$ 'inu $\check{x}^{w} \rightarrow$...winu \bar{x}^{w}
a. hawinux̌ ${ }^{w}$ person good at climbing trees or poles (as a "high-rigger") HS
hax̌wa to climb (tree, rope, or steep rock) EW
b. k'iwinux̌ ${ }^{w}$ professional runner, good at running WL
k'iẍwa to run away, escape, flee from EW
c. X'owinux ${ }^{w}$ person good at pointing (e.g. playing the Lahel game) HS to indicate one's guess by pointing (in Lahel or other game) EW
$\lambda^{\prime} \check{x}^{w} a$.
$\lambda^{\prime} \check{x}^{w} a$.
d. yowinu \check{x}^{w} person good at dancing WL
yə \bar{x}^{w} a to dance, to make dancing movements EW

a. hl戸̈Pinu \check{x}^{w} killer whale, blackfish HS, EW, BC
HIx̌a "to go after killer whales"; name of Raven's wife, from the DS81 story of Raven and Dog"
 barber HS
qlx̆a to cut with scissors, to use scissors EW
The various changes tabulated in (87) and illustrated in the above data can be understood as consequences of the constraints against voicing and glottalisation in fricatives; see
(86) on p. 41. Indeed, given VOI/FRIC (86a) and CG/FRIC (86b), there are various possibilities for a stem-final fricative followed by a voicing or glottalising suffix.

A first possibility is that nothing should happen, i.e. the morphologically-provided laryngeal feature might remain unrealised, in violation of Max[$+\mathrm{voi} /+\mathrm{cg}]$ (84). This is the case when stem-final \check{x} is followed by a voicing suffix, as illustrated in (94) and (100) above. The fact that x does not change to a stop (which could acquire the floating [+voi]; see section 2.3.1) indicates that Faith-IO[continuant] (43) outranks Max-IO[voi] (84). This is illustrated in the following tableau.
(113) tix̆+aci 'bile bag'

| | /tix̆-, +voiaci/ | $*\left[\begin{array}{l}\text {-son } \\ + \text { cont } \\ \alpha v o i\end{array}\right]$ | Faith-lO[cont] | Max-IO[voi] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \Rightarrow a. | tix̆aci | | | $*$ |
| b. | tiraci | $*!$ | | |
| c. | tiğaci | | $*!$ | |

Another possibility is to fulfill Max-IO[voi/cg] (84) (and satisfy VOI/FRIC (86a) or CG/FRIC (86b) vacuously) by substituting [+sonorant] for [-sonorant], resulting in a modal or glottalised sonorant -a permissible segment type in Oowekyala (cf. inventory (22) on p. 21; also next section). This is in fact the major pattern in (87), which suggests that Max-IO[voi $/ \mathrm{cg}]$ (84) dominates Faith-IO[sonorant] in Oowekyala grammar, as illustrated in tableaux (115) and (116). (The peculiar change of stem-final $/ x /$ to $[n, n$ '] before voicing and glottalising suffixes, respectively, is discussed later in section 2.4.5, p. 70.)
(114) Faith-IO[sonorant]

Every feature [α sonorant] in the input has an identical correspondent in the output; every feature [α sonorant] in the output has an identical correspondent in the input.
(115) k'ał+ił 'nap indoors'

/kał-, +voiit/		$*\left[\begin{array}{l}\text { son } \\ + \text { cont } \\ \alpha v o i\end{array}\right]$	Faith-IO[cont]	Max-IO[voi]	Faith-IO[son]
a.	K'atił			*!	
	kabis ${ }^{\text {a }}$	*!			
b.	ka入ił		*!		
\Rightarrow c.	Kalił 30		,		*

[^19](116) Palix ${ }^{w}+$ 'inu \breve{x}^{w} 'seal hunting expert'

/Ralix ${ }^{\text {- }}$-, +cginux̌ ${ }^{\text {/ } /}$		$*\left[\begin{array}{l}\text { son } \\ + \text { cont } \\ \alpha<g\end{array}\right]$	Faith-IO[cont]	Max-10[cg]	Faith-IO[son]
a.	7alix ${ }^{\text {winux }}{ }^{\text {w }}$			*!	
b.	Talirwinux ${ }^{\text {w }}$	*!			
c.	Talik'minux ${ }^{\text {w }}$		*!		
$\Rightarrow d$.	Paliwinu ${ }^{\text {w }}$				*

Next, consider that the floating feature [+cg] of a glottalising suffix can also be realised as [?] if it is provided with a segmental root node (cf. Kim 1999). This indeed occurs when stem-final $/ \check{x} /$ is adjoined by a glottalising suffix, which suggests that Max-IO[cg] (84b) outranks Dep-IO[root].
(117) Dep-IO[root]

Each segmental root in the output has a correspondent in the input.

The fact that this change occurs only after $/ \check{x} /$, which has no sonorant counterpart ${ }^{31}$, suggests that Dep-IO[root] outranks Faith-IO[son]. The complete ranking is illustrated in the following tableau.
(118) ql̆̈x+'inu ${ }^{\text {w }}$ 'barber'

/qlı̆,$-+c s i n u \bar{x}^{w} /$		$*\left[\begin{array}{l}- \text { son } \\ + \text { cont } \\ \alpha c g\end{array}\right]$	Faith-IO[cont]	Max-IO[cg]	Dep-IO[rt]	Faith-IO[son]
a.	glx̆inux ${ }^{\text {w }}$			*!		
b.	glyinux ${ }^{\text {w }}$	*!				
c.	glginux ${ }^{\text {w }}$		*!			
$\Rightarrow \mathrm{d}$.					*	

Technically the floating [+voice] of voicing suffixes might also be provided a segmental root after / $\check{\mathrm{x}} /$, yielding perhaps [... $\check{\mathrm{x}} \mathrm{F}$...]. But in Oowekyala (and in other Wakashan languages) h is generally permitted only at the beginning of words. Assume the following constraint:
(119) *Xh

Nothing may precede h. (h must be word-initial) ${ }^{32}$
The effect of this undominated constraint is shown in the following tableau. As shown, it is more important to avoid a word-internal h than it is to satisfy Max-lO[voi] (84a).

[^20](120) tix̆+aći 'bile bag'

	/tix̌̌-, +voiacil/	*Xh	$\star\left[\begin{array}{l}- \text { son } \\ + \text { cont } \\ \alpha v o i\end{array}\right]$	Faith-IO [cont]	$\begin{gathered} \text { Max-IO } \\ \text { [voi] } \end{gathered}$	$\begin{gathered} \text { Dep-IO } \\ {[\mathrm{r}]} \end{gathered}$	Faith-IO [son]
$\Rightarrow \mathrm{a}$.	tix̆aći				*		
b.	tizaci		*!				
c.	tiğacii			*!			
d.	tix̆faci	*!				*	

There are two remaining problems. First, whereas some stem-final /s/'s follow the general pattern of changing sonorancy (i.e., $s \sim y, y$), there is the fact that other stem-final $/ \mathrm{s} / \mathrm{s}$ change in continuancy in order to fulfill Max-IO[voi/cg] (84) (i.e. s ~ dz, c). This is unexpected because Faith-IO[cont] outranks not only Max-IO[voi/cg] (84) but also Faith-IO[son] (which is violated in the change to affricates). This problem will be dealt with later in the section on coronals (section 2.4.3, p. 60ff.). Second, the peculiar change of stem-final $/ x /$ to [n, n'] before voicing and glottalising suffixes (respectively) is also discussed later in section 4.3.1, p. 174 ff . (see also section 2.4.5, p. 70ff.).

2.3.3. Laryngeal contrasts in sonorants

Laryngeal contrasts in Oowekyala sonorants are shown word-initially in the following pairs.
(121) Laryngeal contrasts in Oowekyala resonants

An important first issue to address is whether modal (nonglottalised) resonants in Oowekyala are specified [+voice]. Several studies suggest that unmarked material, such as voicing in plain resonants, is underspecified in (lexical) phonological systems (e.g., Kiparsky 1982, Puileyblank 1986, Shaw 1991b). On the other hand, Prince \& Smolensky (1993:188) propose that OT 'abandon underspecification in favor of markedness theory'. There are at least two good reasons to believe that sonorants are not underspecified for [+voice] in Oowekyala phonology. First, as described in the preceding section, sonorants result from stem-final fricatives being targeted by a morphologically-provided floating [+voice]. Second, a number of suffixes show a pattern of allomorphy suggesting that sonorants have laryngeal specification. This pattern is discussed in the next chapter, in section 3.6.4.3, p. 149ff.

Turning to sonorant glottalisation, recall from section 2.2.1 on p. 22 that the plural involves not only CV-reduplication -typically with [i] as a fixed vowel in the reduplicant- but also glottalisation of root-initial modal sonorants, as shown here (repeated from (27)).
(122) Sonorant glottalisation in Oowekyala plural forms
singular plural

a. mam	mimam	blanket, bedding, bedcover	$\begin{aligned} & \text { EW, HS, } \\ & \text { JSS3 } \end{aligned}$
b. nusa	ninusa	to tell stories, legends, myths	EW, DS 112
c. lanca	lilanca	to go underwater	HS
d. wi:k ${ }^{\text {w }}$	wiwisk ${ }^{\text {w }}$	eagle	$\begin{aligned} & \mathrm{EW}, \mathrm{HS}, \\ & \mathrm{BC}, \mathrm{JSS} 3 \end{aligned}$
e. ylx̆a	yiy'lǐa	to rub, smear (body part)	EW, HS
f. husa	hiłusa	to count, to tally	EW
g. haxcias	hiłaxças	singing for the dancers	JSS3
h. hrigila	hilmgila ${ }^{33}$	to cook	JSS2, JSS3

The following examples illustrate that root-initial obstruents are unaffected by the process of glottalisation, in spite of the fact that they are (i) glottalisable segments in Oowekyala in general (123a-e), and (ii) glottalisable segments in the plurals where the source of glottalisation is a lexical specification on the root (123f-g), not the affix.
(123) No glottalisation of obstruents in plural forms
singular plural
a. pais pipais flounder EW
b. tawa titawa to walk EW, DS146
c. qsu qiqsu it is you EW
d. tiłtmi łmi to anchor, to moor, to tie up boat EW
e. spa sispa to flash, reflect, beam out, echo, reach (said of EW light or sound)

[^21]| f. | X'a: | X'ix'a: $^{\prime}$ | black bear |
| :--- | :--- | :--- | :--- |
| g. | $k^{w} x^{w} a$ | $k^{w} k^{w} x^{w} a$ | to suck the skin (as when hurt) |

Now recall that glottalisation is also triggered by some lexical suffixes. These suffixes cause stem-final obstruent stops and affricates to become ejective (section 2.3.1), and stemfinal fricatives to become glottalised sonorants or (in the case of some stem-final $/ \mathrm{s} /$'s) ejective affricates (section 2.3.2). Stem-final resonants are predictably glottalised before such glottalising suffixes, as exemplified here:

(124) -'inux̄ ${ }^{w}$

a. təwinu $\check{x}^{\text {w }}$
towa
good at walking WL
to walk
EW, DS146

mythological name of loon HS
loon
EW, HS, BC

(125) -'a 'to try'

a. caċəmia	to try to point	HS
ċma	to point, to poke with the finger	EW
b. dadəria	to try to pull or haul	HS
dəna	to pull, haul, drag something with a rope	EW

Because there are two different patterns of glottalisation it is apparent that the constraint against floating [+cg] (84b) must be relativised to morphemes. In particular, it is assumed that the floating [+cg] of lexical suffixes is conditioned by Max-IO[cg]Lex, whereas the floating [+cg] of the plural prefix is conditioned by Max-IO[cg]pL (see Akinlabi 1996).
(126) a. Max-lO[cg]lex

A lexical-suffix feature [constricted glottis] in the input must be realised in the output.
b. Max-IO[cg]pL

A plural-prefix feature [constricted glottis] in the input must be realised in the output.

To explain the fact that only sonorants are targeted by the [+cg] feature of the plural, it is claimed that faithfulness to cg-specification in sonorants ranks lower than Max-IO[cg]pL while faithfulness to cg-specification in obstruents ranks higher than this constraint. The effect of the ranking \{Dep-IO(obs, +cg) $\gg \mathrm{Max}-\mathrm{IO}[$ voi] $\mathrm{pL} \gg$ Dep-IO(son, +cg)\} is illustrated in the following two tableaux. As shown, only root-initial sonorants are targeted by the floating glottalisation feature (since the plural is a prefix).
(127) wiwi:k ${ }^{w}$ 'plural of: eagle'

/RedPL ${ }^{+c 9}-$ wis $^{\text {w }}$ / $/$		Dep-IO(obs, +cg)	Max-IO[cg] ${ }_{\text {PL }}$	Dep-IO(son, + cg $)$
a.	wiwi:k ${ }^{\text {w }}$		*!	
$\Rightarrow b$.	wiwizk ${ }^{\text {w }}$			*

(128) pipais 'plural of: flounder'

Finally, to explain the fact that both sonorants and obstruents are targeted by the [+cg] feature of the lexical suffixes, it is claimed that Max-IO[cg]Lex outranks both types of faithfulness to cg-specification. The effect of this ranking, i.e. \{Max-IO[voi]LEx \gg Dep-IO (obs, +cg) \gg Dep-IO (son, +cg$)\}$ is illustrated in the following two tableaux. As shown, stem-final sonorants as well as stem-final obstruents are targeted by the floating glottalisation feature.
(129) təwinu \bar{x}^{w} 'expert at walking'

/tw-+csinu ${ }^{\text {w }}$ /		Max-IO[cg] Lex	Dep-10(obs, +cg)	Dep-1O(son, +cg)
a.	təwinu $\bar{x}^{\text {w }}$	*!		
$\Rightarrow \mathrm{b}$.	tawinux ${ }^{\text {w }}$			*

(130) matinu \bar{x}^{w} 'pilot'

/mat-+cginu x $^{\text {w }}$ /		Max-10[cg] ${ }_{\text {Lex }}$	Dep-IO(obs, +cg)	Dep-1O(son, +cg)
a.	matinu $\bar{x}^{\mathbf{w}}$	*!		
$\Rightarrow b$.	matinu ${ }^{\text {w }}$		*	

By transitivity, we have Max-1O[cg]Lex $\gg \operatorname{Max}-10[c g]_{\text {PL. }}$. This relative ranking may reflect a more general asymmetry between prefixes (like the plural) and lexical 'suffixes' which often display root-like phonological properties (cf. Blake 2000 on lexical suffixes in Salish). That is, by treating lexical 'suffixes' as root-like morphemes, the ranking just given is in accord with McCarthy \& Prince's (1995) proposed metaconstraint Faith ROor $^{>}>$Faith $_{\text {AFFIX }}$.

2.3.4. Laryngeal contrasts in vowe/s

Oowekyala is the only Wakashan language with overt glottalised vowels. Their distribution is extremely restricted, as they appear only as the first syllabic sonorant in a word. Some words with / $a^{\prime}, i^{\prime}, u^{\prime} /$ are listed here.
(131) Glottalised [a]
a. c’àqa
to drip
EW, HS
b. cácaus church-building HS
c. da'łola to laugh EW

d． $\mathrm{g}^{\text {w }}$＇st	to come down（tears）	EW
e．ğáglszla	to go out early in the morning	EW
f．ğáxsala	to carry fish by hooking one finger in the gill	EW
g．kȧbudacii	oven，bread pan，oven pan？	JSS3
h．Kȧsa	to pinch with the fingernails	EW
i．małłla	two people working together	EW
j．náx ${ }^{\text {w }}$	vulva；unidentified flounder－like fish	EW
h．quàsa	to eat any kind of meat	HS
i．qwàa	to pick sprouts（e．g．of salmonberry thimbleberry）	BC114
j．えása	to slap	EW
k．X＇a＇s	animal fat，oil，grease，blubber	EW
I．wa＇q ${ }^{\prime \prime} \mathrm{a}$	sibling of the opposite sex	EW
m．wa＇̇xwəla	colleague，fellow－worker	EW
n．$x^{\text {w}}$ a＇sa	to sway，shake	EW
o．х̌ápk ${ }^{\text {w }}$	young；child	SW77，80

（132）Glottalised［i＇］
a．x wisa to whip，to make a whipping movement EW
b．xisala to show the teeth，to grin EW
c．Xisa to slap（a ball），to strike at something with a flicking move－EW
ment，to flip
d．qiwisa to squeeze with the hand EW
e．qisa to wipe a dish out with the finger EW
f．líx red cedar EW
（133）Glottalised［u＇］
a．X＇u＇xwala pain，ache，sickness；to be sick，to ache（said of a body EW part）
b．n＇u＇si moon，month EW
c．$g^{w} u$ isi Irish white potato（Solanum tuberosum）：introduced food，HS；
tubers eaten（possibly from English＂good seed＂？）BC1 19：DS
d．$g^{\text {w }} \mathbf{u x}^{w}$ baえala factory？JSS3
e．cu＇usai boil，pimple EW，HS
cu＇saiğm to have a boil on the face HS
f．búx ${ }^{W}{ }^{W} b u q^{\text {wa }}$ a unidentified sea anemone EW
g．λ u＇la（to do）again HS

Glottalisation in the examples just given is lexical，in the sense that it is not predictable， hence pairs like małłla＇two people working together＇vs．małるla＇swimming＇；X＇a＇s＇animal fat， oil，grease，blubber＇vs．X＇as＇far out at sea or seaward＇；x wisa＇to whip，to make a whipping movement＇vs． $\mathrm{x}^{\text {wita }}$＇to stick out，to raise（log，head）＇．In a large number of cases，however， glottalisation in the vowel is nonlexical．For example，the glottalising suffix－＇s＇on the ground
outside' (previously illustrated in section 2.3.1) is responsible for vowel glottalisation in the following words:
(134) Derived from lexical suffix [+cg]

a. bi's	rarely used camping place, old abandoned village	EW
b. gís	to be on the ground outside	EW
c. $k^{\text {wa's }}$	to sit on the ground outdoors	HS
d. na's	snow on the ground outside	JSS3
e. qu's	pond, pool, puddle, lake	EW
f. wius	surface of the ground, soil	JSS3

The fact that Oowekyala admits both underlying and derived glottalised vowels suggests that Max-IO[cg] outranks *v, the markedness constraint against glottalised vowels, as illustrated in the following tableau.
(135) $\mathrm{k}^{\text {'w }} \mathrm{a}$ səla 'to be sitting on the ground outside'

$/ \mathrm{k}^{\mathrm{W}} \mathrm{a}-+\mathrm{cg} \mathrm{s}-\mathrm{la} /$	Max-IO[cg]	* ${ }^{\prime}$
$\Rightarrow \mathrm{a}$. $\mathrm{k}^{\text {w'a }}$ asola		*
b. $\mathrm{k}^{\text {wasala }}$	*!	

To account for the distribution of glottalised vowels in Oowekyala, we can adopt Zoll's (1998:96) proposal that highly marked structure is aligned with the left edge of the word. In our case, glottalised vowels must be leftmost in the word.
(136) Align-Left(v, Wd)

A glottalised vowel must be at the left edge of the word.

This analysis is illustrated in the following tableau (with an imaginary input). As shown, glottalisation is eliminated from all vowels but the first.
(137) ka'budaci' 'oven'

/ka'bu'da'ci'/	Align-Left(V', Wd)	Max-1O[cg]	* ${ }^{\text {V }}$
a. kảbu'dáci' ${ }^{\prime}$	***		****
b. kảbu'dáci	**	*	***
c. ka'bu'dacii	*	**	**
$\Rightarrow \mathrm{d}$. ka'budaci		***	*
e. kabudaci		****!	

2.4. Articulatory features

2.4.1. Introduction

Some consensus exists among phonologists and phoneticians that there are just six articulators involved in the sounds of the world's languages (e.g., Pulleyblank 1988a, 1995; Halle 1992, 1995; Clements and Hume 1995; Ladefoged and Maddieson 1996:44, 371; Halle, Vaux \& Wolfe 2000). These articulators and their related features are listed in (138) and discussed with regard to Oowekyala in the sections that follow.
(138) Articulators and related features
a. Lips:
[labial], [\pm round]
b. Tongue Blade: [coronal], [\pm anterior], $[\pm$ distributed], $[\pm$ strident], $[\pm$ lateral]
c. Tongue Body: [dorsal], $[\pm$ high], $[\pm$ low], [\pm back]
d. Tongue Root: [\pm ATR]
e. Soft Palate: [\pm nasal]
f. Larynx: [glottal], [\pm constricted], [\pm spread], [\pm voice]

Note that the unary features in (138) designate major articulations, i.e. the articulators that realise the stricture features [\pm cons], $[\pm$ son], and [\pm cont] (section 2.2 above). Halle, Vaux \& Wolfe (2000) propose to treat each such articulator feature as terminal, thereby replacing the pointing arrow of Sagey (1986) and Halle (1992, 1995).

2.4.2. Lips

Two features depend on the Lips: [labial] and [\pm round].

2.4.2.1. [labial]

Oowekyala consonants with [labial] as their major Place articulator feature are $/ \mathrm{p}, \mathrm{b}, \mathrm{p}, \mathrm{m}, \mathrm{m} /$.
a. baえa to fathom, measure by using the extended arms or fingers EW, HS
b. paえa to flatten EW, HS
c. pax's sth. strung out on the ground EW
d. maxa to shake hands, take by the hand EW
e. mixa to miss a shot, to dodge, avoid, or escape from sth., dislike contact EW

Observe that labial fricatives are absent (cf. section 2.2.2 above on continuancy). This gap in Oowekyala is not haphazard but rather reflects a universal markedness constraint on the feature combination [labial, +continuant]. ment.

Note that [labial] here is a terminal articulator feature à la Halle, Vaux \& Wolfe (2000) which is crucially absent from segments where labialisation (i.e. [+round]) is only secondary. Thus segments may not be specified both [labial] and [+continuant], while segments can be specified both [+round] and [+continuant], as in $/ \mathrm{x}^{\mathrm{w}}, \check{\mathrm{x}}^{\mathbf{w}} /$ (discussed in next section). ${ }^{34}$

That (140) is markedness-based is evident typologically. For instance, consider the marking implication in (141), which Sherzer (1976:258) gives on the basis of a large survey of North American Indian languages. Here, $X \rightarrow Y$ signifies that "if a language has X, then that same language also has Y and that it is the case that X is marked with respect to $Y^{\prime \prime}$ (Sherzer 1976:256).
(141) A marking implicational (Sherzer 1976:258, 1.3.1)
$f, v, \phi, \beta \rightarrow p$
There is also acquisitional evidence that labial fricatives are relatively complex. For example, Beers (1996:36-7) reports that Dutch children acquire labial fricatives (f) 3 to 8 months later than they acquire coronal fricatives (s) and velar fricatives (x).

In OT, a plausible analysis is that faithfulness to input values of continuancy -FaithIO[continuant] (43), p. 29- outranks the markedness constraint (140) in languages like (adult) Dutch or English. By contrast, the opposite ranking holds in Oowekyala. Recall from section 2.2.2 that Faith-IO[continuant] outranks the markedness constraint against fricatives. The Oowekyala ranking is therefore the following.
(142) No labial fricatives in Oowekyala

$$
*\left[\begin{array}{l}
\text { labial } \\
+ \text { cont }
\end{array}\right] \gg \text { Faith-IO[cont] } \gg *\left[\begin{array}{l}
\text { - son } \\
+ \text { cont }
\end{array}\right]
$$

To illustrate the effect of this ranking in Oowekyala grammar, consider the adaptation of English labial fricatives into Oowekyala, as illustrated by the words in (143). ${ }^{35}$
(143) Loan adaptations of labial fricatives in Oowekyala

	Oowekyala	English	
a.	pelawas	flawz(ı)	'flowers'
b.	$k^{*}{ }^{\text {abi }}$	kJfi/kafi	'coffee'
b.	sdup	stov	'stove'
c.	bankwuba	væ引kuva(ı)	'Vancouve

[^22]The initial adaptation of Vancouver > bankwuba is illustrated in the following constraint tableau. The labial fricatives of the English input ${ }^{36}$ are optimally changed into homorganic stops, in compliance with higher-ranked *[lab, +cont] and in violation of lower-ranked Faith-IO[cont].
(144) Vancouver $>$ bank wuba

Eng: væŋkuva(ı)	* [labial $\left.\begin{array}{l}\text { la cont }\end{array}\right]$	Faith-IO[cont]	*[$\left[\begin{array}{l}\text { son } \\ + \text { cont }\end{array}\right]$
a. Oo: vank ${ }^{\text {wiuva }}$	*!		**
\Rightarrow b. Oo: bank ${ }^{\text {wibba }}$		**	

2.4.2.2. [\pm round]

Oowekyala has a large number of labialised segments, i.e. segments specified with the Lipsdependent feature [+round]. These include the back vowels $/ u, u$, $u: /$, the back glides $/ w, w /$, and the back obstruents $/ k^{w}, g^{w}, k^{w}, x^{w}, q^{w}, \check{g}^{w}, q^{w}, \check{x}^{w} /$. The latter are vividly exemplified in the following words.
(145) Oowekyala labiovelars and labiouvulars

a. $q^{\text {w }} \check{x}^{w}$	powder	EW
b. $\check{\mathrm{x}}^{\mathbf{w}} \mathrm{tk}{ }^{\mathrm{w}}$	(sth.) cut with a knife	HS
c. $k^{w} x^{w} \mathrm{a}$	hot	HS
d. $k^{w} \check{x}^{w}$ bis	noiseless fart, cushion creeper	HS
e. $k^{w} k^{w} \check{x}^{w}$ sja k^{w}	sth. chopped up, kindling	HS
	powdery blueberry (Vaccinum ovalifolium)	BC99
g. $k^{\prime} q^{\prime \prime} \check{x}^{\prime \prime} \lambda \mathrm{\lambda}$	incessantly urinating (said of a male)	HS
h. $x^{w \prime m}{ }^{\text {maxaći }}$	bee-hive	EW
	Raven-at-the-North-End-of-the-World	DS78
	plural of: to eat bread	HS

The fact that [+round] combines only with back consonants, not with labials (e.g., *pw) or coronals (e.g., ${ }^{*}{ }^{*}$), is a recurrent state of affairs crosslinguistically. In fact, there appears to exist a synergistic relation (cf. Stevens, Keyser, \& Kawasaki 1986) between backness and rounding. As Ladefoged and Maddieson (1996:356) remark, "[labialisation] is especially common with velar obstruents and, relative to their frequency, with uvulars." Likewise, the fact that [+round] occurs only with back nonconsonantal segments, not with front vowels (*ü) or glides (* 4), represents an unmarked state of affairs.

Archangeli and Pulleyblank (1994) argue that sympathetic relations between features, such as that holding between [+round] and [+back], are encoded in the phonological module of grammar as positive implicational statements. The sympathetic condition in (146) captures the 'enhancement' relation between rounding and backness (Archangeli \& Pulleyblank 1994:78;

[^23]447, n. 93; 458, n. 89). ${ }^{37}$ The basic effect of this condition in Oowekyala is that only back segments may be labialised.
(146) A sympathetic grounding condition [+round]ว[+back]
(146) applies to both consonantal segments ($\left.k^{w}, g^{w}, k^{w}, x^{w}, q^{w}, \check{g}^{w}, q^{w}, \check{x}^{w}\right)$ and nonconsonantal segments ($u, u^{\prime}, u:, w, w$). Of course, the status of $[+r o u n d]$ differs in consonantal versus nonconsonantal segments. Rounding is marked in the former class, hence the following constraint from Roca and Johnson (1999:585).

$$
*\left[\begin{array}{l}
+ \text { consonantal } \tag{147}\\
+ \text { round }
\end{array}\right]
$$

The features [+consonantal] and [+round] must not cooccur within a segment.

By contrast, in the nonconsonantal class of segments, rounding is predictable from the backness and height features of the Tongue Dorsum (see section 2.4 .4 below on [\pm back] and [\pm low]). Indeed, crosslinguistically the feature [+round] tends to accompany (nonlow) back (semi-)vowels while this feature tends to be absent from other (semi-)vowels. ${ }^{38}$ As Ladefoged and Maddieson (1996:292-3) state:

The great majority of the world's languages have a predictable relationship between the phonetic Backness and Rounding dimensions. Front vowels are usually unrounded and back vowels are usually rounded. ... Rounding and Height are also related in that higher vowels are usually more rounded than lower vowels.

These robust tendencies can be summed up as a 'sympathetic' condition, in the sense of Archangeli \& Pulleyblank (1994). The condition in (148) (cf. Chomsky \& Halle 1968, chap. 9; Kean 1980; Calabrese 1995:383, fn. 12; Roca \& Johnson 1999:585) requires that back (semi) vowels be rounded. Thus any glide that is not one of $/ \mathrm{y}, \mathrm{w} /$ (or $/ \mathbf{y}, \mathbf{w} /$) will fatally violate it.

$$
\left[\begin{array}{l}
- \text { cons } \tag{148}\\
+ \text { back }
\end{array}\right] \supset[+ \text { round }] \quad \text { Back (semi-)vowels must be rounded. }
$$

In Oowekyala grammar (148) is presumably dominated by an antagonistically grounded constraint against the cooccurrence of [+round] and [+low] (see above statement by Ladefoged and Maddieson), so that [b] is excluded.

[^24] segment.

2.4.3. Tongue Blade

Consonants whose major articulator is the Tongue Blade are $/ t, d, t, n, n^{\prime}, c, d z, c^{\prime}, s, \lambda, \lambda, \lambda_{i}^{\prime}, t, l$, $l^{\prime}, \mathrm{y}, \dot{\mathrm{y}} /$. Several classes can be distinguished among these. The first, consisting of $/ \mathrm{t}, \mathrm{d}, \mathrm{t}, \mathrm{n}, \dot{\mathrm{n}} /$, may be simply specified [coronal]. As such, this class is relatively unmarked. 39
(150) [coronal]

a. tix̌a	green, yellow; any type of green algae (Chlorophyta), like Sea Hair (Enteromorpha intestinalis) or Sea lettuce (Ulva lactuca)	BC45 : BC
b. $\mathrm{diq}^{\mathrm{w}} \mathrm{k}^{\mathrm{w}}$	peg(s), pole(s), or pile(s) driven into sth.; deadfall	HS
c. tipx̌s	set foot into canoe	WL
d. nix̆a	to pull (hair)	WL, EW
e. nik	to say, to tell	EW

A second class, consisting of $/ \lambda, \lambda, \chi^{\prime}, f, I, I / /$, is crucially specified with the marked feature [+lateral] ${ }^{40}$, in addition to being [coronal]. ${ }^{41}$ Roca \& Johnson (1999:585) give the markedness prohibition *[+lateral], which obviously ranks low in Oowekyala grammar. Lateral obstruents appear to be more highly marked than lateral sonorants (Maddieson 1984, Ladefoged \& Maddieson 1996), suggesting a markedness constraint against the combination [-sonorant, +laterall. If such a constraint existed, it too would be lowly ranked in Oowekyala. ${ }^{42}$
(151) [coronal, +lateral]

a. λ amu	ocean perch, shiner	EW
b. $\lambda \mathrm{a}$:	to wedge, to split with a wedge	EW
c. X'a:	black bear	EW, HS, BC
d. łağis	a tent	JSS3
e. lasa	to plant	HS
f. lapa	to spread apart with the thumbs	EW

[^25]A third class of [coronal] segments is crucially specified with the marked feature [+strident] ${ }^{43}$: /c, dz, c, s/. This feature is assumed to be geometrically dependent on the Tongue Blade, as argued by Shaw (1991b) (see also Archangeli \& Pulleyblank 1994; contra e.g. Halle 1992, 1995, Halle, Vaux \& Wolfe 2000).
(152) [coronal, +strident]

The glides $/ \mathrm{y}, \dot{\mathrm{y}} /$ define the last class of [coronal] segments; they are specified with the marked feature [-anterior] (e.g. Halle, Vaux \& Wolfe 2000:433), unlike the other coronal segments which are either specified [+anterior] or else unspecified for [anterior] (it is suggested below that Oowekyala has both types of segments).
(153) [coronal, -anterior]

a. yuduk ${ }^{\text {w }}$ three	EW, HS, BC
b. y'ug ${ }^{\text {a }}$ to rain, the rain	JSS3

As Chomsky and Halle $(1968: 406,407)$ observe, [-anterior] is more highly marked than [+anterior] (see also Morelli 1999:128-9; Roca \& Johnson 1999:585; Lombardi 2000). The universal markedness hierarchy is therefore *[-anterior] \gg *[+anterior]. The fact that Oowekyala normally excludes consonants that are specified [-anterior] (e.g., s̆, č, $\mathfrak{j}, \mathrm{n}, \kappa$) indicates that *[-anterior] ranks higher than Faith-IO[anterior] in Oowekyala phonology. The fact that $/ \mathrm{y}, \dot{\mathrm{y}} /$ are nonetheless [-anterior] in Oowekyala can be explained through a hypothesised higher ranked universal constraint:

$$
\star\left[\begin{array}{l}
- \text { consonantal } \tag{154}\\
+ \text { anterior }
\end{array}\right] \quad \text { A vowel or glide must not be [+anterior]. }
$$

In sum, Oowekyala has the ranking: *[-cons, +ant] > *[-ant] > Faith-lO[ant], *[+ant]. This ranking still allows for two possible interactions between the lower ranked member of the universal markedness hierarchy, i.e., *[+anterior] and Faith-IO[anterior]. On the one hand, *[+anterior] may outrank Faith-IO[anterior], as in *[-cons, +ant] > *[-ant] > *[+ant] > Faith$10[a n t]$. According to this ranking, segments in Oowekyala cannot be lexically specified either [+anterior] or [-anterior], i.e. segments must be lexically unspecified for [anterior]. On the other hand, Faith-IO[anterior] may outrank *[+anterior], as in *[-anterior] > Faith-IO[anterior] >

[^26]*[+anterior]. According to this ranking, Oowekyala segments cannot be specified *[-anterior] (155), but they may be specified [+anterior] (156) or else be unspecified for [anterior] (157).
(155) [-anterior] segments disallowed

$\begin{gathered} / \stackrel{c}{c} / \\ {\left[\begin{array}{c} \text { cor } \\ - \text { ant } \end{array}\right]} \end{gathered}$	*[l $\left.\begin{array}{l}\text { consonantal } \\ + \text { anterior }\end{array}\right]$	*[-anterior]	Faith-IO[anterior]	*[+anterior]
a. $\begin{gathered} \mathrm{t} \\ {\left[\begin{array}{c} \mathrm{cor} \\ +\mathrm{ant} \end{array}\right]} \end{gathered}$			*	*!
b. $\left[\begin{array}{c}c \\ \stackrel{c}{c} \\ {\left[\begin{array}{c}\text { cor } \\ - \text { ant }\end{array}\right]}\end{array}\right.$		*!		
			*	

(156) [+anterior] segments allowed

$\begin{gathered} / \mathrm{t} / \\ {\left[\begin{array}{c} \mathrm{cor} \\ + \text { ant } \end{array}\right]} \end{gathered}$	$\star\left[\begin{array}{l} - \text { consonantal } \\ + \text { anterior } \end{array}\right]$	*[-anterior]	Faith-IO[anterior]	*[+anterior]
$\begin{array}{cc} \Rightarrow \mathrm{a} & \left.\begin{array}{c} \mathrm{t} \\ \\ \\ \\ \left.\hline \text { cor } \begin{array}{c} \text { ant } \end{array}\right] \end{array}\right] \end{array}$				*
b. $\begin{gathered} \stackrel{c}{c} \\ \vdots \\ {\left[\begin{array}{c} \text { cor } \\ - \text { ant } \end{array}\right]} \end{gathered}$		*!	*	
c. $\stackrel{\stackrel{1}{1}}{\stackrel{1}{1}}$			*!	

$\begin{gathered} \text { it/ } \\ \text { [cor] } \end{gathered}$	*[l $\left.\begin{array}{l}\text { consonantal } \\ + \text { anterior }\end{array}\right]$	*[-anterior]	Faith-IO[anterior]	*[+anterior]
a. $\begin{gathered} \stackrel{t}{1} \\ {\left[\begin{array}{c} \text { cor } \\ + \text { ant } \end{array}\right]} \end{gathered}$			*!	*!
b.		*!	*	

In other words, even with *[-anterior] excluded, a two-way distinction in terms of [anterior] remains possible: a segment may be lexically specified [+anterior] or else be lexically unspecified for [anterior] (cf. Archangeli \& Pulleyblank's 1994 analyses of Barrow Inupiaq and Ainu). The possibility of such a distinction seems important in at least one area of Oowekyala phonology.

Recall from section 2.3.2 that the voicing and glottalising suffixes of Oowekyala cause mostly predictable changes in fricatives. The effects on stem-final /s/'s are unpredictable, however. Some stem-final /s/'s change to $[y, y$ '] before weakening and hardening suffixes, respectively. But other stem-final /s/'s change to [Lz, c] before weakening and hardening suffixes, respectively. For example, from hausa 'to tally' we get hauyayu 'tallying machine' (-ayu 'instrument') and hauyinu $\bar{x}^{\mathbf{w}}$ 'tallyman' (-inu $\breve{x}^{\mathbf{w}}$ 'expert'), whereas from hmsa 'to eat' we find hm\&ayu 'utensil' and hmcimas 'leftover food' (-imas 'leftovers').

It is proposed that those /s/'s which change to [$y, y]$ are unspecified for [anterior], as in (157), while those /s/'s that change to [Cz, c] are specified [+anterior], as in (156). The fact that stems ending in this second type of $/ \mathrm{s} /$, that specified [+anterior], do not show the change to [y, y '] before voicing and glottalising suffixes, is presumably related to the fact that such a change necessarily involves a violation of Faith-IO[anterior]; cf. (154). Specifically, then, it is assumed that Faith-IO[ant] ranks above Faith-IO[cont]. The result is illustrated in the following two tableaux.

In general it is better to fulfill Max-IO[voi/cg] by changing a fricative into a sonorant rather than by changing a fricative into a stop/affricate (i.e. Faith-IO[cont] > Faith-IO[son]). Thus a stem that ends in the first type of $/ \mathrm{s} /$, which is unspecified for [anterior], shows the regular fricative-to-sonorant change. (As suggested above, both [+cons]/s/ and [-cons] [y, y] can be unspecified for [anterior].)
(158) hauyayu 'tallying machine' (-ayu 'instrument')

/haus-, +voiayu/	}$\left.\begin{array}{l}\text { +cont } \\ \text { גvoi }\end{array}\right]$	Faith-IO[ant]	Max-IO[voi]	Faith-IO[cont]	Faith-IO[son]
a. hausayu			$*!$		
b. hauzayu	$\star!$				
c. hauczayu				$*!$	
\Rightarrow d. hauyayu					$*$

But when the stem ends in /s/ specified [+anterior], high-ranking Faith-IO[ant] blocks the change to nonanterior [$\left.y, y^{\prime}\right]$ (cf. (154)), so that [$\left.\dot{z}, ~ c '\right]$ surface instead.
(1 59) hmdzayu 'utensil' (-ayu 'instrument')

	$*\left[\begin{array}{l}- \text { son } \\ + \text { cont } \\ \alpha v o i\end{array}\right]$	Faith-IO[ant]	Max-IO[voi]	Faith-IO[cont]	Faith-IO[son]
a. hmsayu +ant			*!		
b. hmzayu +ant	*!				
				*	
d. hmyayu		*!			*

With regard to a possible historical origin of the two types of /s/in Oowekyala, it is worth mentioning Swadesh's (1953) proposal that Salish, Chimakuan and Wakashan derive from a common ancestor, termed Mosan. Crucially, Swadesh reconstructs Mosan as having a [\pm anterior] contrast in its obstruent series. Tentatively, then, those stem-final /s/'s that are specified [+anterior] in present-day Wakashan may be said to derive historically from Mosan */s/, while those stem-final /s/'s that are unspecified for [anterior] may be said to derive from Mosan */š/. In fact, however, the hypothesised contrast is not dependent on Mosan (which has gained little support among historical linguists). It is possible that proto-Wakashan simply had this contrast.

2.4.4. Tongue Body

The Tongue Body feature [dorsal] is the most important articulator feature in Oowekyala. It defines the major articulation of vowels /a, i, u, etc./, of velar glides $/ w, w /$, of velar obstruents $/ k, g, k^{\prime}, x, k^{w}, g^{w}, k^{w}, x^{w} /$ and of uvular obstruents $/ q, \check{g}, q^{\prime}, \check{x}, q^{w}, \check{g}^{w}, q^{w}, \check{x}^{w} /$.

2.4.4.1. Vowels

A basic linguistic function of the tongue dorsum is to define vowels. The standard features associated with dorsal gestures, along with their values for Oowekyala vowels, are listed in (160). ${ }^{44}$ (The status of schwa in Oowekyala is discussed later in this section.)
(160) Basic vowel features

	i, i, i:	a, á, a:	u, ú, u:
$[$ high]	+	-	+
$[$ low $]$	-	+	-
$[b a c k]$	-	+	+

Focussing first on the height dimension, the distinction between [+low] /a/ and [+high] /i, u/ is essential in Oowekyala, as illustrated in (161).
(161) Height contrast in Oowekyala vowels
a. $k^{\text {mwata }} \begin{aligned} & \text { movement of pulling towards oneself with a stick, to strike a EW }\end{aligned}$
$k^{\text {wita }}$ to pry open or loose, to lever up EW
$k^{\text {k"uta to nail EW }}$
b. kasa to have a strong bend (as a tree or some people's chin) EW
kisa to drain water off EW
kusa to bend (finger or body) EW
c. maq̈əla dusk EW
miq"əla dirty, muddy (said of water); to darken, when they sky becomes EW, dark DS119
muqºla to hide sth. (as in one's clothes) HS
The lack of mid-vowels (e, o) in Oowekyala arguably reflects a markedness constraint against the combination [-high, -low] (Kean 1980; Calabrese 1995:383, fn. 12; Roca \& Johnson 1999:585).45

$$
*\left[\begin{array}{l}
- \text { high } \tag{162}\\
- \text { low }
\end{array}\right] \quad \text { The features [-high] and [-low] must not cooccur within a segment. }
$$

That some constraint like (162) dominates Faith-IO[high] in Oowekyala phonology is evident from adjustments that only appear in loanwords. English words with mid vowels such as

[^27]table [tebl], cherries [č̌uiz], stove [stov] and soda [sodə] are adapted into Oowekyala with high vowels: tibl (HS), cilis (BC, HS), sdup (HS), and suda (WL), respectively. ${ }^{46}$ That (162) blocks the surfacing of English non-high vowels in Oowekyala is illustrated in the following tableaux. (English forms are here treated as inputs only to illustrate the initial nativisation process. It is assumed that once English words are adapted into Oowekyala, underlying representations with high vowels are selected.)
(163) cherries \rightarrow cilis

	/čediz	$*\left[\begin{array}{c}- \text { high } \\ - \text { low }\end{array}\right]$	Faith-IO[high]
a. celis	$*!$		
\Rightarrow b. cilis		$*$	

(164) stove \rightarrow sdup

/stov/	$*\left[\begin{array}{l}\text {-high } \\ - \text { low }\end{array}\right]$	Faith-IO[high]
a. sdop	$*!$	
\Rightarrow b. sdup		$*$

Concentrating now on the backness dimension, the pairs in (165) show that the [\pm back] distinction is contrastive in Oowekyala high vowels.
(165) Backness contrast in Oowekyala vowels
a. miìa to miss, dodge, avoid, escape, dislike contact EW
miuxa to have risen, to have become a lump EW
b. cik ${ }^{w}$ a to shovel EW
cukwa to crumble or break to pieces (said of sth. brittle such as corn flakes) EW
c. X'ipa to roll up, turn inside out EW
X'upa to roast, barbecue EW
d. kisa to drain water off EW
kusa to bend (finger or body) EW
e. qiwita to embrace EW$q^{\text {iw }}$ uta to eat berry cake or berries boiled until a jam-like consistency is ob- EWtained

Backness is not contrastive in low vowels, i.e. Oowekyala makes no distinctions such as [ba] vs. [bæ]. 47 This indicates that the markedness constraint responsible for backness in low

46 See fn. 35.
47 [æ] occurs noncontrastively after the front glides $/ \mathbf{y}, \dot{y} /$ and also after the velar obstruents $/ \mathbf{k}, \mathrm{g}, \mathbf{k}, \mathrm{x} /$ which are palatalised in Oowekyala phonetics (see next section).
vowels (Chomsky \& Halle 1968, chap. 9; Calabrese 1995:383, fn. 12; Roca \& Johnson 1999:585) ranks high in Oowekyala grammar.

$$
\star\left[\begin{array}{l}
+ \text { low } \tag{166}\\
- \text { back }
\end{array}\right] \quad \text { Low vowels are back. }
$$

The status of schwa (a) in Oowekyala phonology calls for special comment. Schwa is articulatorily unmarked as a vowel in Oowekyala: it is the neutral vowel as it requires no special movement of the tongue dorsum. More formally, ∂ avoids all structural markedness breaches associated with place features (*[+back], *[+low], *[+high], etc.), since it is not specified for any of these features (Borowsky 198?, Kager 1990, Shaw 1996b). It is remarkable that in spite of its unmarked status, ∂ is excluded from contexts in which other vowels appear freely, e.g. *र'əpa,
 is otherwise the default epenthetic segment in syllabification, as discussed in the introduction (∂ is used to break up obstruent+sonorant sequences that violate the Sonority Sequencing Principle, and sonorant+obstruent sequences that violate the Syllable Contact Law). In other words, there is independent evidence that ∂ is unmarked in Oowekyala (assuming that epenthetic segments are typically unmarked; see Archangeli 1988, Pulleyblank 1988a,b, Steriade 1995, Shaw 1991b, 1996b, Alderete et al. 1999), yet a is not a contrastive vowel in this language.

It is proposed that ∂ is avoided because of a general requirement that syllables be properly headed.
(167) Syllable Headedness (*ə)

The head (nucleus) of a syllable must be a segment specified with Place-features.

This constraint is inspired by van Oostendorp's (2000:3) Headedness hypothesis:
The structure of a syllable can be determined by the feature structure of its head, and the structure of a head segment in a syllable can be determined by the structure of the syllable.

The ranking of Syll-Headedness over Max-IO[root] ensures that schwa would not always be realised in Oowekyala. The following tableau illustrates the deletion effect with a possible (but not actual) input for $\mathrm{t}^{\mathrm{m}} \mathrm{n}$ 'funeral canoe'. Schwa deletion is also illustrated in the adaptation of English 'Japan’ [J̌pæn] into Oowekyala as [cpan].
b. plqg[æ] (*plqg[a])
flat dish
EW, JSS3
c. qK'ææ]la (*qk'[a]la) to speak (said of a woman) EW, HS

EW
e. $Q^{w u y[æ] t ~(* Q " u y[a] t) ~ c h a n n e l ~ b e t w e e n ~ E l i z a b e t h ~ L a g o o n ~ w i t h ~ F i s h ~ E g g ~ I n l e t ~}$
f. tatay'[æ] (*tatay'[a])

DS137
WL
(168) Avoidance of a in Oowekyala

/ṫog ${ }^{\text {w }}$ /	Syll-Headedness	Max-10[root]
a. ta.g ${ }^{\text {m }} \mathrm{n}$	*!	
\Rightarrow b. t.g ${ }^{\text {m }}$ n		*

On the other hand, the fact that a appears in Oowekyala outputs for phonotactic reasons indicates that well-formedness constraints on syllabification and syllable contact (for present purposes abbreviated as Syll-Mark) outrank Syll-Headedness. This can be illustrated with the word polawas 'flower', from English.
(169) Necessary ə in Oowekyala

	Syll-Mark	Syll-Headedness
\Rightarrow a. pe.la.was		$*$
b. p.la.was	$*!$	
c. pla.was	$\star!$	

The choice of ∂ in epenthesis is predicted by the markedness approach adopted here. Indeed, a lacks an input counterpart (because it is inserted), so it is not subject to featural faithfulness constraints, e.g. Faith-IO[high], Faith-IO[back], Faith-IO[low]. As such, ∂ is fully compliant with markedness constraints against the occurrence of place features, e.g. *[+high], *[+back], *[+low]. As Kager (1999:124) remarks, "[e]penthetic segments tend to be 'minimally marked' qua feature composition."

2.4.4.2. Dorsal contrasts: consonants

In Oowekyala velar obstruents $/ k, g, k, x /$ are strongly palatalised $\left[k^{\nu}, g^{\gamma}, k^{\gamma}, x^{\gamma} \sim \varsigma\right]$.

	usa	[$\mathrm{x}^{\times 1}$ usa]	to shave, scrape with knife	EW, HS
	guyala	[$\mathrm{g}^{\text {y }}$ yjæıla $\sim \mathrm{k}^{\text {y }}$ uẏæla]	to be careful	EW
c.	kudis	[$k^{\frac{1}{y}}$ udis $\sim k^{\frac{1}{y}}$ utis]	any kind of log, lying down	BC506: D
	xusa	[x^{y} usa \sim çusa]	tired	HS

Of special interest is the fact that independent of Oowekyala, palatalised velars are more marked than plain velars. Plain velars occur in approximately 99.4% of the worid's languages (Maddieson 1984) and relatively few languages have both plain velars and palatalised velars (examples include Russian, Chaha, and Japanese mimetics). As Gussenhoven and Jacobs (1998:30) explain: "The articulation of [k] allows organs of speech other than the back of the tongue to take the line of least resistance, requiring no accompanying action ... of the front of the tongue (palatalisation)." Why is it, then, that Oowekyala seems to have the more marked
segments $k^{\nu}, g^{\gamma}, k^{\gamma}, x^{\gamma}$ but not the lesser marked ones k, g, k, x ? The same question arises with respect to neighbouring Kwakwala (Grubb 1977), Heiltsuk (Rath 1981), Nuxalk (Nater 1984), Nisga'a (Tarpent 1987), Coast Tsimshian (Dunn 1995), Comox (Blake 1992), and Haisla (Lincoln \& Rath 1986, Bach 1999), i.e. velar palatalisation is an areal feature.

The answer probably lies in the fact that in all these languages velars contrast with uvulars (which are discussed in the next section)..88 This can be illustrated with some minimal pairs.
(171) Oowekyala (palato)velars vs. uvulars

a.	kapəla qapala	lifting a lid, blanket, etc. rising and coming towards one (said of steam, haze, smell), steam, smell, air	$\begin{aligned} & \mathrm{EW} \\ & \mathrm{EW} \end{aligned}$
b.	kix̌a	to use a saw	$\begin{aligned} & \text { EW, JSS2, } \\ & \text { JSS3 } \end{aligned}$
	qix̌a	to fade (colour)	EW
c.	gənala	getting more (money), adding to what one already has	EW
	ğznala	carrying on the arm; a game, like tug-of-war played on the fourth night of the λ əwilax̆a Dances	EW, DS73
d.	k'ła	to move (brush, sweep, shake) particles from a surface	EW
	q'ła	to lift, pick up, hold, carry a person (esp. a baby)	EW

Specifically, it is likely that velar fronting is a property of the (language-particular) phonetics, serving to enhance the phonetic distance between (unrounded) velars and (unrounded) uvulars (cf. Keating's 'polarisation' principle mentioned in section 2.3.1). (Note that rounding blocks fronting.)

Note, finally, that velar fronting in Oowekyala is probably an ancient property of Wakashan, since it may have contributed to the alleged historical change of Proto-Wakashan velars to palatoalveolars in South Wakashan languages. Some Oowekyala-Nuuchahnulth correspondences are listed here: ${ }^{49}$

[^28](172) Palatovelar-palatoalveolar correspondences in Wakashan Oowekyala Nootka-Nuuchahnulth

a.	tkii	taič'a	belly
b.	Tik'	Tič'a	high
c. K'əya	č'i-latap	to carve, cut off	
d. n'an'akila	nan'ačmap	to keep an eye on sth. or s.o.	
e. skia	suč'a	five	

2.4.5. Soft Palate

The unmarked value for [nasal] is orality, i.e. [-nasal] (Chomsky \& Halle 1968:405). The fact that Oowekyala has nasals shows that faithfulness to lexical nasality outranks the prohibition on the marked value [+nasal]. Interestingly, the opposite ranking holds in distantly related Ditidaht and Makah, which generally exclude the feature [+nasal] (e.g. Klokeid 1975). ${ }^{50}$ So for example the Oowekyala root naq- 'to drink' has the cognate daq-in these other languages.
(173) Typological variation in nasality
a. Oowekyala has nasals

Faith-lO[nasal] > *[+nasal] > *[-nasal]
b. Ditidaht \& Makah lack nasals
*[+nasal] > Faith-IO[nasal], *[-nasal]

Oowekyala has no velar nasal, a fact that reflects the markedness of this segment type in comparison to alveolar/dental nasals and labial nasals. As Maddieson (1984:69) reports, the presence of $/ \mathrm{g} /$ in a language implies the presence of both $/ \mathrm{m} /$ and $/ \mathrm{n} /(197 / 200=98.5 \%)$, but not vice versa. We can formalise this implicational relation as a universal markedness hierarchy: velar nasals are more strongly prohibited than either labial nasals or coronal nasals (174).

$$
*\left[\begin{array}{l}
+ \text { nasal } \tag{174}\\
\text { dorsal }
\end{array}\right] \gg *\left[\begin{array}{l}
+ \text { nasal } \\
\text { labial }
\end{array}\right] \gg *\left[\begin{array}{l}
+ \text { nasal } \\
\text { coronal }
\end{array}\right]
$$

The absence of velar nasals in Oowekyala is accounted for by ranking *[+nas, dor] above faithfulness, arguably Faith-IO[Place].
(175) Faith-IO[Place] (McCarthy \& Prince 1995, 1999)

Let α be a segment in the input and β be a correspondent of α in the output. If α is Place-specified F, then β is Place-specified F.

For example, English 'king' is adapted as kin in Oowekyala (HS). This change is illustrated in the following tableau.

[^29](176) English kIn \rightarrow Oowekyala kin

	$*\left[\begin{array}{l}+ \text { nasal } \\ \text { dorsal }\end{array}\right]$	Faith-IO[Place]	$*\left[\begin{array}{l}+ \text { nasal } \\ \text { labial }\end{array}\right]$	$*\left[\begin{array}{l}+ \text { nasal } \\ \text { coronal }\end{array}\right]$
a. kin	$*!$			
b. kim		$*$	$*!$	
\Rightarrow c. kin		$*$		$*$

Now recall from section 2.3.2 that Oowekyala has voicing and glottalising suffixes that change some stem-final fricatives to sonorants: /s/changes to homorganic [y, y]; lateral /t/ changes to homorganic $[I, I] ; / x^{w}, \check{x}^{w} /$ change to homorganic $[w, w]$. The fact that $/ x /$ changes to $[n, n$ '] (e.g., /tix-+voiit/ \rightarrow [tinit] 'to lie or lean back in the house') suggests a prior stage in Wakashan history in which $/ \mathrm{x} /$ changed to homorganic sonorants *[n , n$]$. An analysis of $/ \mathrm{x} / \rightarrow$ [n, n n] along these lines is proposed below in section 4.3.1.

2.4.6. Tongue Root

This section treats two types of segments as being specified [-ATR] in Oowekyala: uvulars and laryngeals. Vowels are first briefly discussed with respect to [$\pm A T R]$.

2.4.6.1. Vowels

In the Oowekyala vowel system (see section 2.4.4.1 above) the low vowel/a/ is normally [-ATR] while the nonlow vowels $/ \mathrm{i}, \mathrm{u} /$ (and their contextual allophones $/ \mathrm{e}, \mathrm{o} /$, to be discussed below) are always [+ATR]. This reflects a universal tendency that Archangeli and Pulleyblank (1994) relate to phonetic grounding. Tongue root retraction ([-ATR]) enhances tongue dorsum lowering ([+low]), while tongue root advancement ([+ATR]) enhances tongue dorsum raising ([-low]). As Hall and Hall (1980:207) remark, "as the tongue root is retracted, the tongue body is pulled down and therefore lowered." Archangeli and Pulleyblank (1994:176) formalise this gestural antagonism as a grounding condition: "[-ATR] implies [+low], not [-low]" (see also Calabrese 1995:383, fn. 12; Roca \& Johnson 1999:585).

$$
*\left[\begin{array}{l}
- \text { low } \tag{177}\\
-\mathrm{ATR}
\end{array}\right]
$$

The features [-low] and [-ATR] must not cooccur in the same segment (i.e. be under the same root).

That such a markedness constraint is active in Oowekyala phonology is apparent from the nativisation of English words. As the following examples show, English vowels that are [+high, -ATR] are adapted into Oowekyala as [+high, +ATR], in accord with (177).51

[^30](178) English loans in Oowekyala English

Oowekyala

a. pussy	[${ }^{\text {h }}$ usi]	busi ('cat')	JSS3, WL
b. book	[buk]	bugw-i, buk ${ }^{\text {w }}$	HS
c. slippers	[slippa(ı)z]	solibas	HS
d. sugar	[šuge($($)]	sugwa	HS, pic
e. matches	[mæčız]	ma:dzis	pic
f. cookies	[kukiz]	$k^{w_{u}} u k^{w_{i}} z_{z}{ }^{\prime} i$	pic

2.4.6.2. Uvulars

Nonlabialised uvulars have already been illustrated in (171) above. The pairs in (179) illustrate the contrast between labiovelars and labiouvulars.
(179) Oowekyala labio-velars vs. labio-uvulars

a.	$k^{\text {wasa }}$	to trample, stamp the feet, push with the feet	EW
	q"asa	to be startled	EW
b.	$\mathrm{g}^{\text {w }}$ uluk ${ }^{\text {w }}$	snacks for trip	HS
	ǵwuluq $^{\text {w }}$	animal fat, suet, tallow	EW
c.	$\mathrm{k}^{\text {² }}$ ala	land otter	EW, HS, BC
	q'ala	to live, be alive, survive	EW, DS138
d.	x wasa	to get ready to do sth., to prepare for doing sth.	HS
	$\check{x}^{\text {wasa }}$	maggot infested	EW

It is claimed that uvulars are specified with the Tongue Root-dependent feature [-ATR], in addition to being specified with the Dorsal features [+back], [-high] and [-low] (Chomsky and Halle 1968:305, 307; Halle, Vaux \& Wolfe 2000:409). The Tongue Root-specification of uvulars follows Cole (1987), Elorrieta (1991), Pulleyblank (1995:12), etc. 52

[^31]

Uvulars are marked consonants, a fact that we can relate to the antagonistic relation in (177). It is apparent that *[-low, -ATR] is outranked by faithfulness to the lexical input specification for [ATR] and [low] in consonants.

$\mid \bar{x} /$	$\begin{align*} & \text { Faith-IO } \tag{181}\\ & \text { (cons, ATR) } \end{align*}$	$\begin{gathered} \text { Faith-1O } \\ \text { (cons, low) } \end{gathered}$	* $\left[\begin{array}{l}\text { - low } \\ - \text { ATR }\end{array}\right]$
$\Rightarrow \mathrm{a} . \quad \check{\mathrm{x}}$			*
b. x	*!		
c. $\quad 1$		*!	

It is interesting to note that in Oowekyala-related South Wakashan languages plain uvular stops /q, $q^{w /}$ have remained intact (compare e.g. Oowekyala naq- 'drink' and NootkaNuuchahnulth naq- 'ibid.'), but ejective uvulars $/ \mathrm{q}^{\prime}, \mathrm{q}^{\mathbf{w}} /$ have changed to a glottalised pharyngeal approximant $/ \varsigma$ '/ in both Ditidaht and Nootka-Nuuchahnulth, and uvular fricatives / $/ \check{x}, \check{x}^{w} /$ have changed to a voiceless pharyngeal fricative / h / in Nootka-Nuuchahnulth but not in Ditidaht (Jacobsen 1969).
(182) Uvular-to-pharyngeal changes in South Wakashan

Proto-South Nootka- Ditidaht Makah
Wakashan Nuuchahnulth
a. q’apa:k
b. $q^{\text {wiča: }}$

S'apa:k
S'apa:k qua:k
willing
b.

S'iča:k
c. miqa: mis'a:t
d. qix̄̈ak

Sihak
e. х̈amup hamup
f. x̆upt-
hupta:
g. čìīwat-
čithata
f'iča:k $\quad q^{\text {wičǎa:k }}$ rotten
bif'a:t biqast

个ax̌ak qiẍak to cry, howl
x̌abup x̆abup knowing
x̌u:bitad x̆u:bitad snoring
č'ix̄watšえ čixixwatšix to be scared

These historical changes in South Wakashan are relevant to our understanding of Oowekyala in at least two ways. First, they show that the interpretation of Oowekyala uvulars as Tongue Root-specified is independently-motivated in Wakashan. Unless uvulars are specified with the Tongue Root feature [-ATR], it is difficult to explain the change of uvulars to pharyngeals in South Wakashan, e.g., Oowekyala cī̈wa 'sour' vs. Nuuchahnulth ciћuk 'ibid.'; Oowekyala hux̆wa 'to whistle' vs. Nuuchahnulth huћa: 'ibid.'.

Second, these changes show that the antagonistic grounded condition *[-low, -ATR] (177) is independently-motivated in Wakashan. It ostensibly played a role in the loss of [dorsal] specification in uvular ejectives and uvular fricatives in South Wakashan. A possible OT explanation of these changes might run as follows. In both Ditidaht and Nootka-Nuuchahnulth, the grounded condition *[-low, -ATR] was promoted in conjunction with *[cgl, a context-free markedness constraint against glottalisation, as illustrated in (183). In Nootka-Nuuchahnulth, *[-low, -ATR] was also promoted in conjunction with *[+cont], a context-free markedness constraint against fricatives, as illustrated in (184).
(183) $q^{\prime}>S^{\prime}$ in Ditidaht and Nootka-Nuuchahnulth

/q/	* $\left[\begin{array}{l}\text { - low } \\ - \text { ATR }\end{array}\right] \& *[+\mathrm{cg}]$	$\begin{gathered} \text { Faith-IO } \\ \text { (cons, ATR) } \end{gathered}$	Faith-IO (cons, low)	*[$\left.\begin{array}{l}\text { - } \mathrm{low} \\ - \text { ATR }\end{array}\right]$
a. g'	*!			*
b. k		*!		
\Rightarrow c. Υ^{\prime}			*	

(184) $\check{x}>\hbar$ in Nootka-Nuuchahnulth

$/ \check{x} /$	$*\left[\begin{array}{l}- \text { low } \\ - \text { ATR }\end{array}\right] \& *[+$ cont $]$	Faith-IO (cons, ATR)	Faith-1O (cons, low)	$*\left[\begin{array}{l}- \text { low } \\ - \text { ATR }\end{array}\right]$
a. \check{x}	$*!$			$*$
b. x		$*!$		
\Rightarrow c. $\quad \hbar$			$*$	

2.4.6.3. Laryngeals

The laryngeals /h, $\boldsymbol{\imath}$ / pattern as a natural 'guttural' class with uvulars /q, g., q', $\check{x} /$ in Oowekyala, in the following way: both cause a following vowel to become lowered. The following data illustrate the lowering of $/ \mathrm{i}, \mathrm{u} /$ to $[\mathrm{e}, \mathrm{o}]$ after gutturals. ${ }^{53}$
(185) Nonhigh vowels in Oowekyala
a. 入iqila
[dliqèla]
to give a name to s.o.
HS
b. ka:qu [$\left.k^{y} æ q^{\circ} o\right]$
to collide EW
c. łağis [łağes] ~ [łaqes]
a tent JSS3
d. ta:niğu [tha:niğo] ~ [tha:niqo]
close to each other (as two people pass- EW
ing)
e. tqiila [t ${ }^{\mathrm{h}} \mathrm{q}^{\prime} \mathrm{ela}$]
to advise
EW
f. waqut [waq'ot ${ }^{\text {h }}$]
g. $\check{x} i k^{w} a \quad$ [x̌ekx"a]
to feed a visitor, give a feast of welcome
EW
h. メ̈uć [̌ัoc']
i. hit [het]
to sweep, brush off EW
sledgehammer EW
to set right, to heal DS85

[^32]

Laryngeals also cause lowering in an adjacent schwa. This effect is illustrated in the data below (repeated from (25)). Note that schwa varies between [a] and [1] (the latter quality being more common when a [coronal] segment is present). Crucially, the same effect on schwa occurs with uvulars, e.g. ǧənm [ğanm ~ ğ^nm] 'woman'.
(186) Word-initial laryngeal+obstruent clusters

a. $\sqrt{\mathrm{hp}}$ -	h[a]px̌ta>i	moustache, chin-beard	EW
b. $\sqrt{\text { ht }}$	h[a]łaqa $\sim h[\Lambda] ł a q a$	to pay (salary), to pay for	EW
c. $\sqrt{ } \mathrm{h} \mathrm{x}^{\mathrm{w}}$ -	h[a]x ${ }^{\text {w }}$ \%wa	to howl (dog, wolf, coyote)	EW
d. $\sqrt{\mathrm{h}} \check{\mathrm{x}}^{\mathbf{w}}-$	h[a] ${ }^{\text {x }}{ }^{\text {a }}$	to climb (tree, rope, or steep rock)	EW
e. $\sqrt{ } \mathrm{b}-$?[a]buk ${ }^{\text {w }}$	mother	EW, HS
f. $\sqrt{ } \mathbf{p}-$?[a]pa	to go after abalone	EW
g. $\sqrt{ } \mathrm{d} \mathrm{d}-$	P[a]dai ~ P[^]dai	son! (term of endearment, always used in direct address and limited to males)	EW, HS
h. $\sqrt{7 c k}-$	P[a]dzi \sim P[Λ]czi	sasquatch; the child-snatching monster with the basket	EW
	了 $[a] \bar{x}^{\text {w }} \mathrm{a}$	when, if	EW

The parallel lowering effect on /i, $u, z /$ of uvulars and laryngeals is reported for Oowekyala by Hilton \& Rath (1982:15-6, 19-20); it is also reported for Heiltsuk by Lincoln \& Rath (1980:15-6) and by Rath (1981:9-11), for Haisla by Lincoln \& Rath (1986:17, 20-1), and for Kwakwala by Lincoln \& Rath (1980:20). By contrast, this effect is completely absent from South Wakashan languages (e.g., Sapir \& Swadesh 1939, Fraser \& Howe 1996).

In their explanation of a similar lowering pattern elsewhere, Halle, Vaux and Wolfe (2000:406) propose that [-high] spreads from a uvular to a following vowel. Reference to [high] fails to explain lowering in Oowekyala, however, because laryngeals are not specified [-high] and yet they still cause vowel lowering. Rather, the feature responsible for this natural class behaviour of laryngeals and uvulars is [-ATR]. 54 An analysis of vowel lowering relying on [-ATR] is offered in the next chapter.

[^33]It is proposed that laryngeals are specified [-ATR] according to a grounding condition, in the sense of Archangeli \& Pulleyblank (1994).
[glottal] $\supset[-A T R] \quad$ Laryngeals are specified [-ATR]

The feature [glottal] is adopted as an articulator feature after Halle, Vaux \& Wolfe (2000).
Note, finally, that there is an exception to the vowel lowering pattern described above. Vowel lowering does not occur after rounded uvulars.
(188) High vowels after labiouvulars
a. Cəyuq" $[i] m u \check{x}^{w}$
name of the people at the mouth of the K'syaNwa River DS58 not far from C'yu
b. $q^{w}[u] \ln$
beaver
EW, HS,
BC
c. tlğw[i]sa to eat beforehand (before a trip or before main course) EW
d. ciğ"[u]t boiled, curdled, coagulated blood EW
e. $q^{\text {waxq" }}$ [i] barrel EW
g. $q^{w}[u] d a y u$ spoon for eating berries (flat wooden spoon), soapberry BC94:
h. ス̇u $\check{x}^{w}[i] l a c i ~ f r e e z e r ~ J S S 3 ~$
i. $c^{\prime} k^{\omega} \check{x}^{w}[u]$ short neck(ed) HS

This exception may indicate that labio-uvulars are not specified [-ATR], perhaps due to a constraint on the combination of [-ATR] and [+round]. There is in fact a probable grounded rationale for such a cooccurrence constraint. As noted above, tongue root retraction ([-ATR]) and tongue raising ([-low]) are antagonistic gestures; cf. (177). On the other hand, secondary rounding in consonants ([+round]) is normally associated with tongue raising ([-low]). As Ladefoged \& Maddieson (1996:356) remark:

In the great majority of cases where lip rounding is employed as a secondary articulation, there is an accompanying raising of the back of the tongue, i.e. a velarization gesture.

By transitivity, then, the features [-ATR] and [+round] ought to be antagonistic.
The notion that [-ATR] is absent from labialised uvulars is suspect in at least one respect. As mentioned in the previous section, historically uvular ejectives changed to pharyngeal $/ \Sigma /$ in Nuuchahnulth and Ditidaht, and uvular fricatives changed to pharyngeal / $\hbar /$ in Nuuchahnulth. The fact that labialised uvulars $/ q^{w}, \breve{x}^{w} /$ fully participated in these historical changes (e.g., Oowekyala cix्x ${ }^{\text {a }}$ 'sour' vs. Nuuchahnulth cihuk 'ibid.') suggests that uvulars are uniformly specified [-ATR]. It is concluded that all uvulars are [-ATR]. The next chapter, which focuses on

[^34]the syntagmatic segmental phonology of Oowekyala, will provide an alternative explanation for the fact that labialised uvulars fail to induce lowering in a following vowel.

2.5. Intrasegmental phonology: conclusion

In classical generative phonology (Chomsky and Halle 1968, hereafter SPE), intrasegmental combinations of features were banned by 'linking' rules. For example, the combination of features for a labial fricative could be banned by (189).
(1 89) An SPE-style Oowekyala-particular constraint

As Chomsky and Halle recognised, linking rules such as the one just given cannot be wholly language-specific since they normally reflect universal tendencies, i.e. markedness (see Trubetskoy 1939, Jakobson 1939, 1941 on Markedness Theory). For example, compare the rule in (189) with Sherzer's (1976:258) implicational statement (141) on p. 57. Since only languages without (189) can have labial fricatives, it is apparent that this rule contributes to making the segment inventory of Oowekyala relatively less marked cross-linguistically, at least from the perspective of the marking implication in (141).

Chomsky and Halle cautioned that while the theory of markedness is absolute (i.e. shared by all languages), its application is relative (i.e. depends on particular languages). To continue with our example: the markedness of labial fricatives remains constant, whether it is apparent in grammar, as in Oowekyala, or not, as in English. In SPE, therefore, markedness is not used to ban marked feature combinations directly. Rather, it is used to assess the 'naturalness' of language-specific rules affecting feature combinations from a system-external point of view. The rule in (189) is thus a good candidate for grammaticalisation because it results in a relatively less marked phonological system (Sherzer 1976:258). In contrast, an equally logical rule such as (190) is less likely to become grammaticalised because it would result in an increase of relative markedness (a system with labial fricatives but no labial stops).
(190) A logically possible but implausible SPE-style rule

$$
[- \text { sonorant }] \rightarrow[+ \text { continuant }] /\left[\begin{array}{l}
--\cdots-1 \\
- \text { coronal } \\
+ \text { anterior }
\end{array}\right]
$$

Suppose, then, that Oowekyala grammar includes a markedness-motivated languageparticular rule like (189) above. This rule contributes to a relatively less marked inventory of segments ("no labial fricatives") in Oowekyala, but ironically it also adds to the grammar's complexity. This illustrates a basic contradiction in the SPE approach to segment inventories: the
complexity (markedness) of a segment decreases only if the complexity (number of languageparticular rules) of the grammar increases, and vice versa. This contradiction persists even in modern SPE-style theories where rules like (189) are reinterpreted as 'persistent' featurechanging rules (Mohanan 1991, Myers 1991, Halle, Vaux \& Wolfe 2000:409): such rules render phonological segments less complex (less marked) but their host grammar becomes more complex (it has more rules).

A partial solution to this problem was offered by the markedness-based Radical Underspecification theories of the 1980's (esp. Kiparsky 1982, 1985, Pulleyblank 1986). 55 On the starting assumption that "underlying representations must reduce to some minimum the phonological information used to distinguish lexical items" (Steriade 1995:114), underspecification theories postulate redundancy rules such as (191) (cf. (189)) that simplify the segment inventory by allowing unmarked values (such as [-continuant] in labial obstruents) to be absent from underlying segments. Crucially, those redundancy rules which prove to be cross-linguistically valid (because they are based on markedness) are assumed to be part of Universal Grammar. Consequently, redundancy rules simplify segment inventories without necessarily adding to the complexity of the language-specific portion of grammars.
(191) An underspecification-theoretic redundancy rule

$$
[] \rightarrow[- \text { continuant }] /\left[\begin{array}{l}
--------- \\
- \text { sonorant } \\
- \text { coronal } \\
+ \text { anterior }
\end{array}\right]
$$

As Mohanan (1991) remarks, however, the redundancy rules of underspecification theories introduce some formal redundancy into phonological theory, because they exist alongside 'linking' rules that work against marked combinations of features (see Roca 1994:82 for more discussion). Indeed, redundancy rules like (191) do not simply replace SPE-style rules like (189). To see this, consider again the alleged adaptation of English labial fricatives into Oowekyala, e.g. (143). The redundacy rule (191) fills in underspecified features, but it does not require labial fricatives to change to stops. In order to account for the initial adaptation of e.g. Vancouver > bankwuba in Oowekyala, one needs to posit the independent existence in Oowekyala grammar of some structure changing rule like (189) (see Mohanan 1991, Myers 1991).

To recapitulate, a basic contradiction of derivational phonology is that rules render phonological segments less complex (less marked) but their host grammar is more complex (it has more rules). This problem stems from the fact that markedness is not incorporated directly into the grammatical analysis. OT (Prince and Smolensky 1993) avoids this problem by recognising the grammatical status of markedness constraints. So for instance, prohibitions on labial fricatives are understood as the effect of a markedness constraint on the feature combination [labial, +continuant] that is literally present in every grammar (see section 2.4.2.1).

[^35]The OT approach to segmental inventories differs from derivational approaches (e.g. Kiparsky 1985, Archangeli \& Pulleyblank 1994) in at least two other ways. First, within derivational Lexical Phonology (e.g. Kiparsky 1985) a language's segment inventory fixes the melodic content of underlying representations but must also be stipulated as a general condition on the output of (lexical) rules -this is 'structure preservation' (Kiparsky 1985:92). Archangeli and Pulleyblank (1994) avoid this stipulation by making the claim that the conditions making up the inventory hold to the maximal extent possible, i.e. in both underived and derived lexical representations, as well as in (lexical) rules. In contrast, OT imposes no restrictions on underlying representations and instead makes the strong claim that output constraints are not only necessary but sufficient in explaining phonological patterns, including the segmental inventory of a language.

Second, to the extent that segmental inventories are discussed in derivational theory (esp. Kiparsky 1985, Archangeli \& Pulleyblank 1994), they are treated as arbitrary (i.e. extragrammatical) selections of phonological features and arbitrary selections of featural cooccurrence conditions. By contrast, in OT a language's segmental inventory is strictly determined by its constraint grammar. Specifically, each segment inventory derives from a particular interaction between 'markedness' constraints that militate against featural complexity, and 'faithfulness' constraints that aim to preserve lexical featural specifications.

3. intersegmental phonology

3.1. Introduction

In current operational derivational phonology (e.g. Halle, Vaux \& Wolfe 2000), the deterministic role of constraints in establishing segmental inventories is acknowledged, but constraint-based explanation of segmental distributional patterns is denied. Take Calabrese (1995:457):
[M]arking statements or prohibitions or other phonotactic conditions cannot be used to account for language-particular distributional facts, but only to account for restrictions on the structure of phonological elements -that is, in the paradigmatic component of language.

OT may be seen as an attempt to extend the constraint-based approach to the syntagmatic component of phonology. This chapter applies OT to the following intersegmental patterns in Oowekyala: rounding of consonants after/u/ and after rounded consonants (section 3.2), degemination (section 3.3), patterns affecting continuancy including spirantisation/deocclusivisation (section 3.4) and dissimilation of continuancy (section 3.5), patterns of voicing neutralisation (section 3.6) and vowel lowering (section 3.7.1). An allophonic pattern of sonorant debuccalisation is described last (section 3.7.2).

3.2. Rounding in consonants

The feature [+round] is distinctive in Oowekyala consonants, e.g. cik'w 'bird' vs. nik' 'siphon, penis'; $q^{\text {wuta }}$ 'full' vs. quła 'bent'. ${ }^{56}$ Contrastiveness results from the following ranking.

$$
\text { Faith-IO(C, round) } \gg *\left[\begin{array}{l}
+ \text { cons } \tag{192}\\
+ \text { round }
\end{array}\right]
$$

The distinction between rounded and unrounded consonants can be neutralised under two circumstances: when a consonant follows /u/, and (optionally) when a consonant follows a rounded consonant. This section discusses these two neutralising contexts in turn.

[^36]
3.2.1. Neutralisation after/u/

3.2.1.1. Description

A (pan-Wakashan) constraint illustrated in (193) requires that velars and uvulars be rounded after /u/.
(193) Rounding of velars and uvulars after /u/

a. duk ${ }^{\text {w-a }}$ (*duka)	to troll; Lyall's American stinging nettle (Urtica	EW,
		BC120:
		HS, BC
b. y'ug ${ }^{w}-\mathrm{a}$ (*yuga)	to rain	JSS3
c. $\chi^{\prime} u k^{\prime w}-p a$ (*X'ukipa)	to get spruce roots (for making baskets)	BC507: DS
d. bux ${ }^{\text {w }}$-ls (*buxls)	illegitimately pregnant	EW
e. cuq ${ }^{w}-\mathrm{a}$ (*cuqa)	to beg, to go and ask for something	EW
f. huğ ${ }^{\text {w }}$-ix (*huğix)	to run into the house (with a group of people)	HS
g. luq ${ }^{\text {w }}$-as (*luqjas)	Western or Lowland hemlock tree (Tsuga heterophylla)	EW; BC71
h. lux̆w-a (*lux̆a)	to roll (said of a round thing)	EW, HS

This constraint may be stated informally as follows.
(194) A vowel /u/ must share the feature [+round] with a following velar or uvular obstruent.

That this is not simply a morpheme structure constraint (e.g. (193)), but a more general constraint in Oowekyala, is apparent from alternations. For example, the initial segment of the inchoative suffix -xpit, illustrated in (195), becomes rounded after u-final stems, as illustrated in (196).
(195) -xpit 'to become, to start'
a. H1-xiit to become dead HS
H' dead, inactive, paralysed EW, HS
b. $p q^{\text {'w' }} \mathrm{c}^{\prime}-x$ Pit to become sleepy or drowsy HS
$p q^{\text {w' }} c^{\prime}$ drowsy, sleepy EW
c. pusqia-x?it to become very hungry, to get a very hungry feeling EW
pusq'a very hungry feeling (as when starved), to feel very hungry HS
(196) $-x^{w}$ Tit 'to become, to start'
a. Tl^{w} stu- x^{w} 7it
to assume the colour of blood
HS
Plxwstu colour of blood, having the colour of blood HS

[^37]b. X'u' ${ }^{w}$ alasu- $x^{w} 7 i t$ to fall ill, to become sick WL
X'úx"alasu to suffer from a disease, to be ill, sick WL
c. tu-x ${ }^{w}$ it to take a walk, to start to walk HS
taw-a to walk EW, DS146
d. su-xw?it to take, grab, pick up, grasp with the hand HS
sawa to carry, get, take, hold in one's hand EW
Similarly, the initial segment of the suffix -gila 'to make', illustrated in (197), becomes rounded after u-final stems, as illustrated in (198).
(197) -gila 'to make'
a. Panm-gila-x?it to make a sling HR36
Zanm sling HS
b. ǧiní-gila to cook fish eggs WL
ğin'i salmon roe, salmon eggs EW
c. məya-gila draw/carve a fish WL
тәуа fish (esp. salmon) EW
(198) $-\mathrm{g}^{\mathrm{w} i l a}$ 'to make'
a. mu:-gwila to get, catch, receive, obtain, acquire four items (e.g. HS four animals, furs, salmon)
mu:p’nista four round trips, to make four round trips EW
b. Pamastu-g ${ }^{\text {wila }}$ to make kindling HS
?amastu kindling HS
c. Tu-gwila beginning of one's Indian dances; name of the younger DS146 brother of Muudana, who was Peter Chamberlain's great-uncle; term used for the second series of the Həmaća Dances
tawa to walk EW,

The initial obstruent of the suffix -k'ala 'noise, sound', illustrated in (199), also becomes rounded after /u/, as illustrated in (200).
(199) -k'ala 'noise, sound'
a. nan-kiala sound of a grizzly bear HS
nan grizzly bear; name of Ray Johnson EW, HS,
b. waka-k'ala sound of barking HS
waka to bark (dog), to woof EW, HS
c. nut-k'ala sound of foolish talk EW
nuła to behave in an odd, crazy, or foolish way, as if possessed EW,
(200) $-k^{\text {w }}$ ala 'noise, sound'
a. tu- $k^{\text {walala }}$ sound of footsteps HS
towa to walk EW,
b. lə $\check{x}^{w} u-k^{w}$ ala sound of coughing
(* $\left.{ }^{2} \check{x}^{w} u k k^{2} a\right)$
bəẍºwa to cough EWDS146
The initial segment of the suffix -ğu 'together', illustrated in (201), becomes roundedafter /u/, as illustrated in (202).
(201) -ğu 'together'
a. bri-ğut to put things close together EW
bana close to sth. HS
b. la:-ğu to go (fit) together (as e.g. the pieces of a jigsaw puzzle), to HS fuse together
labut to go to the end of sth. HS
c. Pak-ğu all together (as for a meeting, a job) HS
?ak all, in full, every(thing), any(thing), each; entire(ly), com- EW plete(ly); to finish sth. up completely
(202) $-\mathrm{g}^{w} u$ 'together'
a. mu:-ğwow-ala four people walking together HS
mu:p’ənax̆a four times down WL
Likewise, the initial segment of the suffix -x̌s 'aboard', illustrated in (203), becomes rounded after / u /, as illustrated in (204).

(203) - $\check{x} s$ 'aboard'

a. win-x̆s to stow away, to sneak onto a boat WL
wंəna. to hide, to sneak about EW
b. $k^{\prime 2} \mathrm{a}^{\prime}-\check{x}^{\prime} s$ to sit in a boat HS
k^{w} w's to sit outside HS
c. $x^{w i t-x} s$ fire (stove) on the boat WL
x^{w} Ita to burn (said of a fire, coals, offerings) EW
(204) - xws w 'aboard'
a. mu:- $\check{x}^{w} s$ four people aboard the boat, to be four aboard HS
mu:p’ənax̆a four times down WL
b. quatu- $\bar{x}^{w} s$ to assemble, gather or meet together on the boat HS
qatu meeting HS

Finally, rounding also occurs across the prefix-root boundary. Recall that the most common form of the plural in Oowekyala is a CV-shaped reduplicative prefix. The data in below show that a root initial obstruent becomes rounded when the copied vowel in the reduplicative prefix is /u/. (Note that syncope applies within the base, such that /u/deletes after being copied).
(205) Rounding in Oowekyala plural forms
singular plural
a. kusa ku-k"sa to shave, scrape off with a knife (skin, fur, fish EW, HS scales)
b. qułəla qu-q"łəla bend, crooked, warped EW
c. qu $\check{x}^{w} a \quad q u-q^{w} \bar{x}^{w} a$ to scrape HS , EW
d. ğulas ğu-ğwəlas salmonberry (Rubus spectabilis) bush HS;
e. ğumia ğu-ğ"əm’a paddle; propeller EW, HS, JSS3

3.2.1.2. Analysis

In operational terms, one might say that the feature [+round] spreads from the vowel/u/ onto a following consonant in Oowekyala. But it is problematic to state a rule of rounding assimilation involving /u/. First, the rule in question would effectively apply during morpheme concatenation, e.g. (196), (198), (200), (202), (204), (29); but in doing so, the rule would duplicate the structural conditions holding of all morphemes in Oowekyala, e.g. (193). That is, rounding assimilation -if treated by rule- typifies the Duplication Problem (Kenstowicz \& Kisseberth 1977).

A second problem comes from the fact that [\pm round] is predictable from the backness and height features of vowels in Oowekyala (as in most languages). Steriade (1987) points out that when lip rounding is predictable (as in the Oowekyala vowel system), it serves mainly to 'enhance' the perceptual saliency of backness and height in vowels (cf. Stevens, Keyser and Kawasaki 1986). This implies that in a language like Oowekyala, backness and height are contrastive vowel features while rounding is redundant. The vowels of Oowekyala are indeed sufficiently distinguished by [high] and [back], or else by [low] and [back], as shown in (206).
(206) Oowekyala vowels specifications

	\mathbf{i}	\mathbf{a}	\mathbf{u}		ilow]	i
[high]	+	-	+	u		
[back]	-		+	$[$ back]	-	+

On the assumption that only contrastive features are present in lexical representations, contrastive underspecification theories (see Steriade 1987, Clements 1988, \& Mester \& ltô 1989) make the strong prediction that rounding cannot be an active vowel feature in Oowekyala (lexical) rules. In fact, of course, the noncontrastive feature [+round] of /u/ is one of the mosf
cal) rules. In fact, of course, the noncontrastive feature [+round] of /u/ is one of the most active features in the phonology of Oowekyala (and indeed of Wakashan in general); see (196), (198), (200), (202), (204), (29).

A similar failed prediction is made by Calabrese (1995) who also argues that in a language like Oowekyala, where vowels are unmarked with respect to [\pm round], only backness and height features are contrastive, as shown in the first three rows of (207). The contrastive feature specifications are enclosed in squares, following Calabrese (1995:436). Calabrese does not believe that noncontrastive and unmiarked features, such as [\pm round] in (207), are underspecified in lexical representations (cf. Steriade 1987), but he claims that phonological operations are not sensitive to such features. The prediction of contrastive underspecification theories (see above) therefore remains: backness and height are active features in Oowekyala rules, but rounding is not (contrary to fact). ${ }^{58}$
(207) Oowekyala vowels specifications (Calabrese 1995:436)

To be fair, most derivational theories accept that rules may refer to noncontrastive features in the postlexical phonology. It could be claimed, therefore, that rounding assimilation in Oowekyala is a postlexical rule. This is not the case, however. Not only is rounding assimilation structure-preserving (hence lexical-looking), but it also generally fails to apply to enclitics. As (208) and (209) illustrate, [+round] does not 'spread' from word-final /u/ to enclitic-initial consonants; e.g. compare (198b) and (208b). ${ }^{59}$ If rounding assimilation were really a postlexical rule, we would expect it to apply after encliticisation.
(208) -ki '3rd person, gone, absent enclitic'
a. k'adayu-ki
$a /$ the pen that is gone/absent HS (*k'adayu-k ${ }^{w_{i}}$)
b. Pamastu-ki
some/the kindling that is gone/absent HS
(*)amastu-k ${ }^{\mathrm{w}_{\mathrm{i}}}$)

[^38](209) -gask ' 3 rd pers. poss. enclitic (owner \& object both located near speaker)
a. Kadayu-gask his/her pen (owner and object both located near HS (*k'adayu-g"ask) speaker)
b. Pamastu-gask his/her kindling (owner and object both located near HS (*?amastu-gwask) speaker)

In sum, a rule-based account of rounding assimilation in Oowekyala (and in Wakashan in general) faces two embarrassments. First, it treats as coincidental the fact that a spreading rule creates output representations that correspond exactly to the independently-attested static phonology of Oowekyala (morpheme structure constraints): a vowel /u/ always shares the feature [+round] with a following velar or uvular obstruent. Second, the rule-based account paradoxically involves the spreading in lexical phonology of a nonlexical (i.e., noncontrastive, redundant) feature.

These problems can be overcome in an output-oriented constraint-based approach that formally recognises the connection between feature redundancy and feature underspecification. To see this, first recall the following universal implication from chapter 2.

$$
\left[\begin{array}{l}
- \text { cons } \tag{210}\\
+ \text { back } \\
- \text { low }
\end{array}\right] \supset[+ \text { round }]
$$

Nonlow back (semi-)vowels must be rounded.

This constraint ${ }^{60}$ is part of a family of constraints that Itô, Mester and Padgett (1995:579) describe as
...familiar phonetic-realizational constraints (involving "grounding," in the terminology of Archangeli and Pulleyblank 1994), where representations are required to be richly specified for phonetically required or desirable properties. These include the redundant properties for each segment class; they may be physically inherent, or serve to enhance contrasts, or in other ways be favored (see Stevens, Keyser, and Kawasaki 1986). Thus, sonorants are voiced, back (nonlow) vowels are round, high vowels are [+ATR], and so on. (emphasis added)

Now, suppose we follow Itô, Mester and Padgett (1995) in assuming that Universal Grammar includes a family of featural "licensing" constraints that fit the following general schema.

[^39](211) Licensing Cancellation (Itô, Mester and Padgett 1995:580)

If $F \supset G$, then \neg ($F \lambda G$)
"If the specification [F] implies the specification [G], then it is not the case that [F] licenses [G]."

From (210) and (211), it follows that the feature [+round] is not licensed when it is linked to the vowel [u] (because the [+round] specification is predictable from the backness and height of this vowel). On the other hand, [+round] is licensed when linked to the consonant $\left[\mathrm{k}^{\mathrm{w}}\right]$, since [+round] specification is not predictable in this segment (e.g., nikwa 'to catch salmon at night' vs. nika 'to retaliate'; 夫'aq"a 'copper' vs. X'aqa 'to stretch out a line, go deep-sea fishing'). In fact, rounding in this case is undesirable, since $[k]$ is less marked.

Note that Itô, Mester and Padgett's (1995) notion of licensing does not imply that the feature [+round] is incompatible with a nonlow back vowel. In fact, there is real pressure from (210) that a nonlow back vowel should be [+round]. To illustrate the relation between licensing and grounded implicational statements like (210), consider the following tableau for nusa 'tell (a story)'. The first candidate with the vowel u specified for rounding satisfies (210) but violates Licensing. By contrast, the candidate with the vowel u unspecified for rounding violates (210) but satisfies Licensing.
(213)

Turning now to the cases described in (193), consider the following tableau for duqwa 'to look' (-a 'completive'). The first two candidates violate either (210) or Licensing. By contrast, the third candidate with doubly linked rounding violates neither constraint: (210) is fulfilled because the vowel u is specified [+round], and Licensing is fulfilled because this feature is linked to an obstruent.

	License[round]	$\left[\begin{array}{l}\text { - consonantal } \\ \text { + back } \\ - \text { low }\end{array}\right] \supset[+$ round $]$
a. duqa		*!
b. $\quad \begin{gathered}\text { duqa } \\ +r d\end{gathered}$	*!	
c. $d u q^{w} a$ +rd		

The alternations exemplified in (196), (198), (200), (202), (204) and (205) can be similarly explained and further suggest that Faith-IO(C, round) ranks lower than Licensing and (210). This is shown for tuk ${ }^{\text {'w }}$ ala 'sound of footsteps' in the following tableau.
(215)

	License[round]	$\left[\begin{array}{l}\text { - consonantal } \\ \text { +back } \\ - \text { low }\end{array}\right] \supset[+$ round $]$	Faith-IO(C, round)
a. tukala		*!	
b. tukala	*!		
			*

An issue remains: why does a vowel/u/ share the feature [+round] with a following consonant, but not with a preceding consonant? For instance, why isn't quła 'bent' pronounced *q"uła (cf. $q^{\text {whta }}$ 'full')? A possible answer is that Oowekyala does not permit the feature [+round] (or perhaps any feature) to be doubly linked across the onset and the nucleus of the same syllable.
(216) No CV Linkage

Noske (1997:223) gives a similar constraint to explain that VC sequences share [+back], while CV sequences do not, in German. The crucial effect of No-CV-Linkage is shown in the following tableau for kusa 'to shave'.
(217)

kusa	No-CV Link	License [round]	$\left[\begin{array}{l}\text { - consonantal } \\ \text { + back } \\ - \text { low }\end{array}\right] \supset[+$ round $]$	Faith-IO (C, round)
$\Rightarrow \mathrm{a}$. kusa			*	
b.			*	*!
c.		*!		
d. $\begin{gathered} \mathrm{k}^{\mathrm{w}} \text { usa } \\ +\mathrm{r}+\mathrm{r} \\ \hline \end{gathered}$		*!		*
e. $V_{+r d}^{k^{w} u s a}$	*!			*

In sum, rounding assimilation in Oowekyala (and in Wakashan in general) can be understood in OT as the result of two conflicting general tendencies. On the one hand, there are grounded conditions that ensure rich featural representations such as "nonlow back vowels must be round", "nasals must be voiced", etc. (Archangeli \& Pulleyblank 1994). On the other hand, there are licensing constraints against featural redundancy such as "nonlow back vowels do not license rounding", "nasals do not license voice", etc. (Itô, Mester \& Padgett 1995). Consequently, optimal representations can be those in which segments are specified for a redundant feature that is shared and licensed by another segment. See Itô, Mester \& Padgett (1995) for more examples and further discussion.

3.2.2. Rounding assimilation between obstruents

3.2.2.1. Description

Oowekyala also displays a variable pattern of assimilation whereby a velar or uvular obstruent becomes labialised if it immediately follows a labiovelar or a labiouvular. For example, the initial segment of the suffix -'ẍ λ a 'back', which is illustrated in (218), variably becomes rounded after rounded consonants, as shown in (219).
(218) -'x̀ λa 'back'
a. q'k'x̌入ala motor boat JSS3
q'ka to bite (mosquito) JSS3
b. yip $\check{x} \lambda a 7 a i t \quad$ the binding around the bottom edge of the basket BC65: DS
yipa to make a cedar bark mat (i.e. one with a special kind of HS weave)

a. $\mathrm{k}^{\prime} \mathrm{q}^{\mathrm{W}} \dot{x}^{w} \lambda \mathrm{~A} \sim \quad$ incessantly urinating (said of a male) HS
$k^{\prime} q^{\text {™ }}{ }^{\text {x }} \lambda a$
k'l $^{\text {w }}$ a to urinate (said of a male) EW
b. $g^{w} u k^{w} \check{x}^{w} \lambda a l a$ boat with a cabin on the stern HS

$g^{\mathbf{w}} \mathbf{u k}^{\mathbf{w}} \quad$ to live in a place, reside, dwell, settle EW, JSS3
c. buq ${ }^{\text {w }} \check{x}^{w} \lambda a \sim$ person who always farts HS

buq'wala to fart EW
d. duq" ${ }^{\text {w }}-\check{x}^{w} \lambda a \sim$ to look back sw71
$d u q^{w} a \quad$ to look for sth. HS

Similarly, the initial segment of the inchoative suffix -xpit, which is illustrated in (220), variably becomes rounded after a labialised consonant, as shown in (221).
(220) -x?it Inchoative
a. p'a-x?it begin to work WL
pa:la working HS, EW
b. H1-x?it to become dead EW, HS
(221) $-x^{w}$?it Inchoative
a. czaq ${ }^{\text {ww }}-x^{\text {w }} 7$ it \sim to begin to blow (said of the dzaq ${ }^{\text {w }}$ ala wind) HS
czaq" ${ }^{\text {T}}$ Pit
dzaq"-ala north wind off the sea (also W, SW depending on location) EW, DS 183
b. qak ${ }^{\text {w }} x^{w} 7 i t \sim$ to begin to lose in the game HS
qak ${ }^{*} x$?it
qak ${ }^{\text {w }} \mathrm{a}$ to suffer a loss (as in a game) EW

Likewise, the initial segment of the suffix -'xuu 'neck', which is illustrated in (222), variably becomes rounded after a labialised obstruent, as shown in (223).
a. tq'ľixu itching throat, to have an... HS
tałła to itch EW
b. glť̌u long neck, having a long neck HS
glt long, tall EW
(223) $-\check{x}^{w} u \sim-\bar{x} u{ }^{\prime}$ 'neck'
a. $\quad c^{\prime} k^{w} \check{X}^{w} u \sim c^{\prime} k^{w} \check{\mathrm{X}} \mathbf{u}$ short neck(ed); name of a portage on the Sumẍulh, HS, DS59 exact location unknown
$c^{\prime} k^{w}$ short
b. $\quad q^{w}\left|q^{w} \bar{x}^{w} u \sim q^{w}\right| q^{w} \check{x} u \quad$ to sprain the neck sw90
$q^{w} \mid q^{w} a$ to sprain, wrench EW
c. $\quad m^{\prime} k^{\prime w} \breve{x}^{w} u \sim m^{\prime} k^{\prime w} \check{x} u$ to choke on something solid EW
mik ${ }^{w}$ - EW

There are some exceptions to this pattern. First, rounding assimilation does not apply between obstruents across a reduplicative prefix boundary, e.g.:
(224)
a. K'I $\check{x}^{w}-k^{\prime} \mid q^{w} a \quad$ refers to a man urinating repeatedly; name of the water-DS96(${ }^{*} K^{\prime}\left|\bar{x}^{w} k^{w}\right| q^{w} a$) falls at Wu'x ${ }^{w} \lambda a$ in is or the old Rivers Inlet Cannery site
$k^{\prime} \mid q^{w} \mathrm{a} \quad$ to urinate (said of a male) EW
b. $k^{\prime} i \check{x}^{w}-k^{\prime} i \check{x}^{w} a$ run, stop, run (repeatedly) WL
kixix ${ }^{w}$ to run away, escape, flee from EW
c. $\check{g} u \check{x}^{w}-\underline{g} u \chi^{w} a$ to scoop repeatedly HS
(*ğux̌w $\left.{ }^{w}{ }^{w} u \check{x}^{w} a\right)$ğux̌wa to scoop up loose things (such as seed, sand, or berries) EW, HSwith one's hand
d. $q^{\prime} c x^{w}-q^{\prime} c k^{w} a$ to eat meat WL
$q^{\prime} \mathrm{ck}^{w}$ hair seal meat that has been cut up JSS3Second, there are lexical exceptions to rounding assimilation between obstruents, e.g.:
(225) -x̆s 'aboard'
a. qik ${ }^{w} \check{x} s \quad$ to lie in the boat (said of animate beings) HS
(${ }^{(q i k}{ }^{w} \check{x}^{w} s$)
qikwa to lie on sth. (said of animate beings) HS
b. \quad suk $^{w} \mathrm{x}$ sa to pick up, lift, grab sth. in the boat HS
(*suk ${ }^{w}{ }^{\mathbf{x}}{ }^{w}$ sa)
$\begin{array}{ll}\text { suk }^{w} \text { a } & \text { to take hold of with } \\ \text { grab with the hand }\end{array}$

```
    c. loq"\check{xsa to light the stove in the boat HS}
    (*ləq"}\mp@subsup{}{}{\mathbf{x}}\mp@subsup{}{}{w}sa
    ləqwa wood, firewood JSS3
    d. \check{x}\mp@subsup{}{}{W}\mp@subsup{isiq}{}{w}\mp@subsup{}{}{*}\check{\textrm{x}}\mathrm{ (on) the other (or: the far) side of the boat one is in HS}
```



```
    \mp@subsup{}{\mathbf{x}}{\mathbf{w}}\mp@subsup{\mathrm{ isiq}}{}{\mathbf{w}}\textrm{a}}\mathrm{ (to travel on the other (or: the far) side of the channel HS
(226) -qәуа 'forehead'
    a. \lambda'uq"qya bald head, to be bald-headed EW
    (*X'uq**q"ya)
    X'uq"a to make bald or bare, to cut off all hair, to remove eve- HS
    rything from an island or a piece of land
    b. \lambda'aq"qya red hair(ed) HS
    (*X'}\mp@subsup{}{}{\prime
    \lambda'aq"a red EW, DS156
    c. mukwqyaut to tie sth. to the top of the head HS
    (*mukwqwyaut)
    muk"a to tie a rope to something, to tie a knot in a rope, to EW
    hand somebody
    d. buq*qya toque JSS3
    (*buq"q"ya)
(227) -(k)ga 'inside'
    a. c'uc' ' w ga to wash the inside of things (e.g. of a pail), to do dishes HS
    b. wuk"ga inside of sth. hollow (e.g. of a boat, cup, dish) HS
    (*wukwgwa)
(228) -kaswu 'plural'
```


3.2.2.2. Analysis

```
The rounding assimilation pattern just described bears some resemblance to the pattern discussed in section 3.2.1 above. There are some important differences, however. First, obstruent rounding is obligatory after \(u\) whereas rounding assimilation between obstruents is optional. Second, post-u obstruent rounding applies across reduplicative prefix boundaries, e.g. (29), whereas rounding assimilation does not apply between obstruents across a reduplicative prefix boundary, e.g. (224). Another point of difference is that there are lexical exceptions to rounding assimilation between obstruents, whereas none appear to exist for obstruent rounding after
```

u. For instance, the initial obstruent of -qəya 'forehead' does not become rounded after rounded obstruents, e.g. (226), but it does so after /u/ in e.g. wu-qwzya 'top of one's head'. Compare also (225) and (204) on p. 83.

To account for the dynamic rounding of obstruents following rounded obstruents, the following syntagmatic constraint is posited:
(229) $[+$ round $] /\left[\begin{array}{l}+ \text { cons } \\ + \text { round }\end{array}\right]$--- \quad A segment must be [+round] if it occurs after a labialised consonant.

This constraint directly encodes the fact that rounding assimilation operates exclusively from left to right. For example, the suffix $-g^{w} u t$ 'ago' does not cause rounding when it attaches to nik' 'siphon': n'ik'gwuł (*n'ik ${ }^{\mathbf{w}} \mathrm{g}^{\mathrm{w}} \mathrm{u}$) (SW75). The nominaliser $-\mathrm{k}^{\mathrm{w}}$ also fails to induce rounding in a preceding (labialisable) consonant, as exemplified here:
(230) $-k^{w}$ 'nominaliser'

a. ṫmakk ${ }^{\text {w }}$	(door) locked with a key	HS
tımaka	to lock up with a key (door, trunk, etc.); to tie shoelaces	EW
b. Panqk ${ }^{\text {w }}$	stripped from a branch with the fingers (as berries)	HS
?anqa	to strip berries off the branches with the fingers	EW, HS
c. $\mathrm{kix}^{\text {k }}{ }^{\text {w }}$	(sth.) sawn, lumber, board	BC508: DS
kix̆a	to use a saw	EW, JSS2, JSS3

In terms of explaining the rightward bias of rounding assimilation in Oowekyala, it is surely significant that in terms of timing, rounding is heavily skewed to the right edge of a consonant. As Ladefoged and Maddieson (1996:357) describe, in consonants rounding "is typically concentrated on the release phase of the primary articulation that it accompanies." Similarly, Watson (1999:298):

In labialization, protrusion of the lips tends to occur on or after the hold phase of the primary articulation... As a result, the second formant of a vowel following a labialized consonant is lower than the second formant of a vowel preceding a labialized consonant.

In a phonological theory that is not constrained by phonetic factors, the positional formulation of (229) is a stipulation. In such a theory ${ }^{61}$ it is unclear why there should exist a constraint like (229) but not one like, say, (231).

[^40](231) $[+$ round $] /--\left[\begin{array}{l}+ \text { cons } \\ + \text { round }\end{array}\right]$

A segment must be [+round] if it occurs before a labialised consonant.

But in a phonetically-constrained phonological theory (esp. Archangeli \& Pulleyblank 1994) the positional formulation of (229) can be understood as appropriately reflecting the physical fact that rounded consonants are post-labialised, such that a following (labialisable) consonant is naturally rounded. That is, by (229) a representation in which a (post)rounded consonant is followed by a rounded consonant is less "complex" than a representation in which a (post)rounded consonant is followed by an unrounded consonant. (229) is thus solidly grounded; in this sense, it is a "constrained constraint" (while (231) is not). 62

Next, to explain the fact that consonants variably resist rounding assimilation, it is assumed that (229) is crucially unranked relative to faithfulness, i.e. Faith-IO(C, round). Free ranking is interpreted as in (232), after Kager (1999:406) (see also Prince and Smolensky 1993:51, Kiparsky 1993, Reynolds 1994 and Antilla 1995).
(232) Interpretation of free ranking of constraints:

Evaluation of the candidate set is split into two subhierarchies, each of which selects an optimal output. One hierarchy has
$[+$ round $] /\left[\begin{array}{l}+ \text { cons } \\ + \text { round }\end{array}\right]-->$ Faith-IO(C, round) and the other
Faith-IO(C, round) $\gg[+$ round $] /\left[\begin{array}{l}+ \text { cons } \\ + \text { round }\end{array}\right]-$

The conflict between (229) and Faith- $10(C$, round) is illustrated in the following two constraint tableaux. The [+round] feature of stem-final $/ \mathrm{k}^{\mathrm{w}} /$ is optimally shared with the following suffix-initial consonant when (229) ranks higher; [+round] is not shared in this way when Faith-IO(C, round) ranks higher.
(233) Variable rounding assimilation across consonants

	$/ c^{\prime} k^{w}-\dot{x} u /$	$[+r d] /\left[\begin{array}{l}+ \text { cons } \\ +r d\end{array}\right]---$	Faith-IO(C, round)	$*\left[\begin{array}{l}+ \text { cons } \\ + \text { round }\end{array}\right]$
\Rightarrow a. $\quad c^{\prime} k^{w} \bar{x}^{w} u$		$*$	$* *$	
b. $\quad c^{\prime} k^{w} \bar{x} u$	$*!$		$*$	

[^41](234) Variable rounding assimilation across consonants

$/ c^{\prime} k^{w}-\dot{x} u$ /		Faith-IO(C, round)	$[+\mathrm{rd}] /\left[\begin{array}{l}+ \text { cons } \\ +\mathrm{rd}\end{array}\right]-$ -	* $\left[\begin{array}{l}+ \text { cons } \\ + \text { round }\end{array}\right]$
a.	$c^{\prime} k^{\prime W} \dot{x}^{w} u$	*!		**
$\Rightarrow b$.	$c^{\prime} k^{\prime \prime}{ }^{\text {x }}$ u		*	*

Finally, the fact that rounding assimilation does not occur across reduplicative boundaries (224) is addressed in the next chapter. The fact that rounding assimilation fails to occur with certain suffixes, e.g. -x̆s 'aboard' (225), is taken up below in section 3.4.4 on p. 117.

3.3. Degemination

This section discusses a process of deletion that affects stem-final plain (i.e. voiceless nonglottalised) segments that are followed by identical or similar segments (cf. McCarthy 1986).

3.3.1. Introduction

A first example of the deletion pattern appears in (235). (235a) exemplifies the suffix -piq 'pole, stick', which begins in a labial stop. (235b) shows this suffix in combination with a root ending in a labial stop, viz. t'p- 'to fish...'; the root-final segment appears to delete before the suffix-initial segment.

(235) -piq 'pole, stick'

a. dn-piq crane JSS3
dən-a to pull, haul, drag something with a rope EW
b. t-piq fishing rod JSS3
tp-a to fish with baited hook and sinker EW

Similarly, when the suffix -bala 'in passing', e.g. (236a), is combined with a root ending in a labial stop, e.g. Pip- 'to pinch', the root-final segment apparently deletes before the suffixinitial segment, as shown in (236b). Note that this suffix causes a Ca-reduplication of the root.

(236) -bala 'in passing'

a. q'aqix ${ }^{w}$-bala ${ }^{63}$	a liar, to be in the habit of lying	HS
dik ${ }^{w}$-a	to lie, to tell a lie, to deceive; to call deer with a whistle	EW
b.	Ta?i-bala	to pinch in passing
Tip-a	to pinch	HS
		EW, HS

a. q^{w} m'bis	dry snow	HS
$q^{w} p a$	powdery snow, wood that has turned into powder (as by	HS

[^42](237) illustrates what happens when the suffix -n'ak"əla 'gradually', e.g. (237a), is combined with a root ending in /n/, e.g. c'an- 'to walk in a group...'. As (237b) shows, the root-final segment is again deleted before the suffix-initial segment.
(237) -n'ak"əla 'gradually'
a. gl-n'akwla crawling WL
gal-a to crawl, to go on all fours EW
b. ćə-n'ak"la to parade, to march; procession HS
con-a to walk in a group, go in the same direction as others, to EW move in a procession, to march, to parade
(238) illustrates the result of combining a suffix beginning in $/ \mathrm{g}^{\mathrm{w}} /$, viz. $-\mathrm{g}^{\mathrm{w}}$ aut 'ago' (238a), with a stem ending in a similar stop, e.g. Tabuk ' 'mother'. The stem-final stop apparently deletes before the suffix-initial one, as shown in (238b).
(238) - $\mathrm{g}^{\text {waut 'former' }}$
a. qcxw ${ }^{w} g^{w}$ aułdəya
flesh-former
sw5 8
qcx ${ }^{w}$ flesh sw75
b. Pabu'-gwaułdəya late mother
sw77, 78
?buk ${ }^{w}$
mother
EW, HS, JSS3
(239) shows the result of combining a suffix beginning in /g/, viz. -ganm 'perhaps' (239a), with a stem ending in a similar segment, e.g. nik 'to say'. The stem-final segment apparently deletes before the suffix-initial one, as shown in (239b).
(239) -ganm 'perhaps'
a. məya-ganm
maybe a fish
WL
məуa fish
EW, HS
b. ni-ganm
to perhaps say
SW126
nik
to say, to tell
EW
(240) and (241) illustrate the result of combining suffixes beginning in /k/, viz. -kas?u 'plural' (240a) and -ka7u 'big' (241a), with stems ending in the same segment. In each case, a single output $/ \mathrm{k} /$ corresponds to the two input segments, as shown in (240b) and (241b).
(240) -kas?u 'plural'

a. mayas-kas?u	plural of: raccoon	HS
mayas	raccoon	EW, HS, BC, JSS3
b. cı'cıl-kas?u	the feathers	hr93
cle'lk	feathers	hr93

a. qanas-ka?u
a large sea prune WL q'anas sea prune, cryptochiton EW, WL
b. ?i-ka?ulisanał Weather spirit dance of the λ əw'əlax̆a series of DS dances; making much good all over
Pik good, nice, well, fine, causing satisfaction EW, HS

Likewise, (242) shows the result of combining a suffix beginning in / $\overline{\mathrm{x}} /$, viz. $\overline{\mathrm{x}}$ s 'aboard' (242a), with a stem ending in / $\bar{x} /:$ gax̆- 'to come'. A single output segment again corresponds to the two identical input segments, as shown in (242b).

a. tip-x̌s	set foot into canoe	WL
tip-a	to step, tread onto sth.; to find fern roots or cockles by feeling with the feet	HS
b. ga- $\overline{\mathrm{x}}$ s	to come aboard the boat	HS
gax̆	come!	EW

(243) illustrates the result of combining a suffix beginning in /c/, viz. -cq 'across, through' (243a), with a root ending in /c/: wnc- 'to be submerged'. Again, a single output segment corresponds to the two identical input segments, as shown in (243b).
(243) -cq 'across, through'
a. wa-cq's wide (said of a space) ('s 'outdoors') HS
wa-git (having a) certain thickness, diameter (of tree, etc.) EW
$\begin{array}{ll}\text { b. wn-cqa wet through, soaked (said of a person) } \\ \text { wnc-a to be submerged } & \text { WL } \\ \text { EW }\end{array}$
(244) shows the result of combining a suffix beginning in /s/, viz. -sǧm 'round and/or bulky thing' (244a), with a root ending in /s/: 7 ms 'thick'. Again, a single output segment corresponds to the two identical input segments, as shown in (244b).
(244) -sğm 'round and/or bulky thing'

a. di-sğmt	to wipe sth. round	WL.
	dəy-a to wipe	EW, HS
b.	Tm-sğm	thick in shape (as a box)
	?ms	thick (box, snow, a layer of something), dense (fog, brush)

(245) shows the result of combining a suffix beginning in / $\lambda /$, viz. - xi^{\prime} 'on water' (245a), with a root ending in $/ \lambda /$: ba - 'to measure by extending the arms'. A single output segment again corresponds to the two identical input segments, as shown in (245b).

(245) - i 'on water'

a.		to stop on the water (said of a canoe)	WL
	Paukwa	to stop (engine)	EW, HS
b.	ba-xi	fathom	HS
	bax-a	to measure by using the extended arms or fingers	EW

As a last example, (246) illustrates the result of combining a suffix beginning in $/ \lambda /$, viz. - λ əya 'on roof' (246 a), with a root ending in $/ \mathrm{t} /: \mathrm{x}^{\mathrm{w}} / \mathrm{t}$ - 'to burn'. The root-final segment deletes before the suffix-initial one, as shown in (246b).
(246) - גәуas 'on roof'

a. $\lambda a \bar{x}^{w}-\lambda$ - $2 y a s$	to stand on the roof (said of animate beings)	HS
$\lambda a \bar{x}^{w}-a$	to stand	DS64
b.	$x^{w} l-\lambda$ ayas	fire on the roof
$x^{w} l t-a$	to burn (said of a fire, coals, offerings)	WL
	EW	

There are two classes of exceptions to the degemination pattern illustrated in (235)(246). First, stem-final obstruents that are laryngeally specified do not delete; this fact is exemplified and discussed later in section 3.6 . Second, adjacent identical segments that arise as a result of reduplication do not delete. For instance, the data in (247) illustrate a type of Creduplication which tends to accompany the use of the suffixes -m 'face' and -stu 'eyes'. 64 This type of reduplication results in a sequence of two identical consonants, yet no deletion occurs.
(247) C-reduplication: degemination fails
a. $\lambda \lambda \check{x}^{w}$ ma to stroke the face with the flat of the hand HS

X $\check{x}{ }^{w} a$ to rub, stroke, or press with the flat of the hand EW
b. ttxstu bulging eyes, to have... HS
txla having the eyes open EW
c. coxstwa to wipe the eyes HS
cka to rub HS, EW

The data in (248) illustrate the result of applying plural reduplication to reduplicated forms (Careduplication is here 'triggered' by the presence of the suffix: -a 'to try to; to hunt'). As shown, doubly-reduplicated forms involve sequences of adjacent identical consonants that fail to undergo degemination.

[^43]| a. $q^{w} q^{\text {w}}$ łəma | to scratch an itchy face |
| :---: | :---: |
| $q^{\text {wh }}$ ¢ | to scratch (an itch) |
| b. ttik"əma $t^{\mathbf{t}} \mathbf{k w}^{\mathrm{w}}$ a | to mark the face with scratches, to mark the face by or as if by clawing to scrape, scratch, claw, grab with the fingers or claws |

(248) Double reduplication: degemination fails
a. tattasax̆uta plural of: to try to push sth. or s.o. down from a higher level HS tatasax̆uta to try to push sth. or s.o. down from a higher level HS
b. caccawayu plural of: container for catching drips from a leaking roof HS cacawayu container for catching drips from a leaking roof HS
c. kakkadik'ayu plural of: unbaited deadfall HS
kakadik’ayu unbaited deadfall HS
e. $q^{\text {waqw }} q^{\text {wla }}$ plural of: to hunt for beaver HS
$q^{\text {waq"la to hunt for beaver EW, }}$
f. qaqqmla plural of: to hunt for deer HS
qaqmla to hunt for deer HS,
g. $\check{x}^{w}{ }^{2} \check{x}^{w} \tilde{x}^{w}$ ata plural: on the verge of cutting; to (try to) cut? HS
$\check{x}^{\mathbf{w}} \mathrm{a} \check{x}^{\mathrm{w}}$ ata on the verge of cutting; to (try to) cut? WL

3.3.2. $O T$ analysis

The degemination pattern illustrated in (235)-(246) is assumed to be caused by a constraint against adjacent matching consonants.
(249) Antigemination
${ }^{*} \mathrm{C}_{i} \mathrm{C}_{i} \quad$ A sequence of identical consonants is disallowed (where laryngeal features and laterality are irrelevant to identity). ${ }^{65}$

Since the consequence of Antigemination is segment deletion, it is apparent that it outranks Max-IO.
(250) Max(imality)-IO

Every segment of the input has a correspondent in the output.
('no deletion of segments')
The fact that the first, rather than the second, segment undergoes deletion arguably reflects the on-line processing of morphemes. As Pulleyblank (1998b:5) remarks:

Frequently, indeed typically, lexical access is achieved prior to arrival at the right edge of a lexical item. As such, disruption at the left edge of a form will inhibit lexical access, whereas disruption at the right edge will in many cases have no serious effect since lexical access has already been achieved.

[^44]For relevant discussion, Pulleyblank (ibid.) recommends Cutler, Hawkins \& Gilligan (1985) and Hall (1992).

Specifically, then, it is here assumed that the second segment in a sequence of segments violating (249) is protected by left-edge anchoring (McCarthy \& Prince 1999, Pulleyblank 1998b):
(251) Left-Anchor(ing)-IO

Every segment at the left periphery of a morpheme in the input has a correspondent at the left periphery of that morpheme in the output.
('no deletion of segments at the left edge of a morpheme')

Altogether, then, we have the ranking \{Antigemination, L-Anchor-IO $\gg \mathrm{Max}-1 \mathrm{O}$, the degemination effect of which is illustrated in the following tableau.
(252) $x^{\text {w }} I t-\lambda ə y a s ~ \rightarrow x^{\text {w }}$ Iえəyas 'fire on the roof' (246b)

	Antigemination	Left-Anchor-IO	Max-10
a. $x^{w} 1 t \lambda$ ayas	*!		
b. $x^{w} 1 t-\varnothing$ zyas		*!	*
$\Rightarrow c . \quad x^{\mathrm{w}} \mid \varnothing$-גəyas			*

Finally, the fact that degemination fails to apply to $C_{i} C_{i}$ sequences resulting from reduplication, e.g. (247)-(248), plausibly reflects a higher requirement that morphologicallydifferentiated forms be also phonologically-differentiated. Indeed, if degemination were applied to the reduplicated forms in (247)-(248), the latter would in fact be indistinguishable from nonreduplicated forms.

3.3.3. Rounding stability in degemination

The analysis just presented assumes that the stem-final consonant simply deletes in degemination. There is evidence, however, that the feature [+round] may "survive" stem-final consonant deletion. To see this, consider again the suffix -x̌s 'aboard' illustrated here:
(253)-x̌s 'on boat'

a. $x^{\prime \prime} 1 t-{ }^{\text {crs }}$	fire (stove) on the boat	WL
$x^{W} \mid t-\mathrm{a}$	to burn (said of a fire, coals, offerings)	EW
b. Ralc-x̌sa	...on a boat	HS
Palc-a	to go and pick sea slugs, sea cucumber	EW, HS
c. ğlq-x̆s	container placed aboard the boat	HS
ğlq-a	to grasp with the fingers, lift container (e.g. a pail, a pan, a coffin)	EW
d. Zigis-x̆sala	loaded with sand (said of boat)	HS
?igis	sand	HS, E

Of special interest is what happens when - $\bar{x} s$ is added to stems ending in $/ x^{w} /$ or $/ \check{x}^{w} /$ (cf. /... $\check{\mathbf{x}}+\check{x} . . . /$ in (242b)). In such instances, the initial / $/ \bar{x} /$ of the suffix surfaces with the [+round] feature of the deleted stem-final segment, as illustrated here:
(254) -x̌s 'boat'
a. $/ \ldots \mathrm{x}^{\mathrm{w}}-\check{\mathrm{x}} . . . / \rightarrow\left[. . \overline{\mathrm{x}}^{\mathrm{w}} \ldots\right]$ $\mathrm{cm}-\breve{x}^{\mathrm{w}}$ sala flowing into the boat (said of water) HS cmx ${ }^{w}$-ala to flow (water) EW
b. $\quad / . . \bar{x}^{w}-\bar{x} . . . / \rightarrow\left[. . \bar{x}^{w} \ldots\right]$
$\dot{C u} \dot{x^{w}}$ sa to wash the boat HS
c'u $\bar{x}^{\mathbf{w}}$-a to wash, launder; to give a feast "to wash off" an event EW
c. $/ \ldots \check{x}^{w}-\check{x} . . . / \rightarrow\left[. . . \check{x}^{w} \ldots\right]$
$\lambda a-\check{x}^{w} s$ to stand (i.e. be upright) on a boat HS
$\lambda a \bar{x}^{\mathbf{w}}-\mathrm{a}$ to stand DS64

The same phenomenon can be observed with the suffix -x̆sa 'flat object', which is exemplified in (255).
(255) -x̌sa 'flat object'
$\begin{array}{ll}\text { a. haiłux }{ }^{\text {w }} \text { pn-x̌sa } & \text { to put ten things aboard the boat; ten flat things (e.g. HS } \\ \text { sheets, halibuts) }\end{array} \quad \begin{array}{ll}\text { haiłux }{ }^{\text {w }} \text { pron-a } & \text { ten times; to do sth. ten times }\end{array}$
b. Pup'nxstis-x̆sa a hundred flat things (e.g. sheets, halibuts) HS

Tup'nxstis one hundred HS
c. Palut-x̌sa new, renewed, or remodeled flat thing HS

Taluł new, fresh (as a supply of sth.) HS

When this suffix is added to stems ending in $/ x^{w} /$ or $/ \bar{x}^{w} /$, its initial segment surfaces with the [+round] feature of the deleted stem-final segment, as shown in (256).

```
(256) -\check{xsa 'flat object'}
    a. /...xw-x̆x.../ }->[...\mp@subsup{\check{x}}{}{w}\ldots..
    yut-\mp@subsup{\overline{x}}{}{\mathbf{w}}\mathrm{ sa three flat things (e.g. sheets of paper, halibuts) HS}
    yutxw-p'əna three times, to do sth. three times WL
b. /...\check{x}}\mp@subsup{}{w}{-
    y'- - wwsm reef covered by tide water (-m 'nom') HS
    y'\check{x}}\mathbf{w}-\textrm{a}\mathrm{ to rise to a certain level (as the tide) HS,
```

 ds 182
 Similarly, consider the case of -ka?u 'big', illustrated in (257).

a. maya-ka?u	big fish	WL
məya	fish	HS, EW
b. qanas-ka?u	a large sea prune geanas	sea prune, cryptochiton great chief's wife; married woman; term used for new bride of the nobility, or upper class chief's wife; refers to holding up a bowl of food as in a ceremony; name of the sister of Galğmkas; "belonging to the nobility"

When this suffix is added to stems ending in $/ k^{w} /$, its initial $/ k /$ surfaces with the [+round] feature of the stem-final segment. This is illustrated in (258).

```
(258) -kaPu 'big'
    a. x̌ảp-kwa?u husky young person HS
    \check{xa'pkww young; child SW77,80}
b. məPalu-kwa?u two big ones hr115
    maPalukw two, both, second HS
```



```
    g"ukw house HS, EW
d. wi:-kwa?wa\check{x}}\mp@subsup{}{}{\mathbf{w}}\mathrm{ the eagle hr89
    wi:kw eagle EW,HS
e. dzowi-kwa?wax̌i big pit hr57
    czowikw a hole dug HS
f. ləkwsta-kwə?u kind of very strange sw172
    lak}\mp@subsup{}{}{w}\mp@subsup{s}{t}{\prime
```

The appearance of [+round] on suffix-initial obstruents in e.g. (254), (256) and (258) resembles the phenomenon of tonal stability described by Goldsmith (1976:147):

In tone languages we find that when a vowel desyllabifies or is deleted by some phonological rule, the tone it bore does not disappear; rather, it shifts its location and shows up on some other vowel.

Goldsmith (ibid.) remarked that tonal stability seems to require "a derivational constraint or conspiracy to move around the tonal specifications from vowel to vowel in order to find on the surface the underlying tone melody" (p. 147, emphasis added). At the time, Goldsmith rejected the possibility of such a "constraint" noting that it would represent "a whole new object which is global and applies anywhere in the course of a derivation, outside the set of ordered rules" (p. 149). But this kind of constraint now finds a natural expression within Correspondence Theory (McCarthy \& Prince 1995, 1999):

(259) Max-IO[round]

Every input feature [round] must be realised in the output.

The effect of adding Max-IO[round] to the foregoing analysis is illustrated in the following tableau. As shown, Max-lO[round] ensures that the underlying [+round] specification of the stemfinal consonant "survives" on the suffix-initial consonant. ${ }^{66}$
(260) $\mathrm{cmx} \mathrm{x}^{\mathrm{w}}-\overline{\mathrm{x}} \mathrm{s}$-ala $\rightarrow \mathrm{cm} \check{x}^{\mathrm{w}}$ sala 'flowing into the boat' (254a)

/cmx ${ }^{\text {w }}$-x̆s-ala/	Max-10[+rd]	Antigem.	L-Anchor-10	Max-10
a. $c m x^{w}-\check{\text { x }}$ sala		*!		
b. $\quad \mathrm{cmx}{ }^{\mathrm{w}}-\varnothing_{\text {sala }}$			*!	*
c. $\mathrm{cm} \varnothing$-㐅̆sala	*!			*
$\Rightarrow \mathrm{d} . \mathrm{cm} \varnothing$ - ex $^{\text {w }}$ sala				*

Finally, consider briefly the possibility of explaining the appearance of [+round] on the suffix-initial segment in e.g. (254), (256) and (258) without the notion of stability. It might be claimed that [+round] is spread from the stem-final segment to the suffix-initial segment before the stem-final segment deletes.

Input:	$/ c m x^{w}-\check{x} s-a l a /$
Round spread:	$c m x^{w}-\breve{x}^{w}$ sala
Degemination:	$\mathrm{cm} \varnothing-\bar{x}^{w}$ sala
Output:	$\left[\mathrm{cm} \check{x}^{w}\right.$ sala]

This derivational analysis without stability seems convincing at first, since indeed rounding assimilation occurs independently between adjacent obstruents; see previous section (3.2.2). However, a derivational analysis of (254) falsely presupposes that [+round] is spread from a stem-final obstruent to the suffix-initial obstruent of --̌̌s before the stem-final obstruent deletes (e.g., $c m x^{w}-\check{x} s \rightarrow c m x^{w}-\breve{x}^{w} s \rightarrow c m \varnothing-\check{x}^{w} s$). In fact, the initial segment of $-\check{x} s$ is special in being exempt from rounding assimilation, as shown in (225) on p. 91 . More generally, rounding assimilation between obstruents is variable (e.g., (219), (221), (223)) whereas the appearance of [+round] on suffix-initial obstruents in e.g. (254), (256) and (258) is regular. Overall, therefore, a stability analysis is needed. Such an analysis has traditionally been captured in derivational autosegmental phonology (e.g. Goldsmith 1976) but an OT analysis in terms of Max-lO[rd] (as encapsulated in tableau (260)) seems at least as plausible (if not improved).

[^45]
3.4. Spirantisation/deocclusivisation

3.4.1. Introduction

The contrast between stops/affricates and fricatives is not uniformly preserved in Oowekyala. The main source of neutralisation is a very general process of spirantisation that affects plain obstruent stops and affricates when they are in coda position and are followed by a heterosyllabic consonant. (The fact that laryngeally-specified stops and affricates are exempt from spirantisation is discussed below in section 3.6.) The actual changes are tabulated in (262) and are illustrated in the data that follow.
(262) Spirantisation in Oowekyala

Underlying	Derived	Examples
\mathbf{k}	\mathbf{x}	(263)
$\mathrm{k}^{\mathbf{w}}$	$\mathbf{x}^{\mathbf{w}}$	(264)
\mathbf{q}	$\check{\mathbf{x}}$	(265)
$\mathbf{q}^{\mathbf{w}}$	$\check{\mathrm{x}}^{\mathbf{w}}$	(266)
c	s	(267)
χ	\mathbf{t}	(268)

(263) $k \rightarrow x /$ __[
a. Tixpáa
good or sweet taste, to have a good or sweet taste
WL, JSS3
?ik
good, nice, well, fine, causing satisfaction
EW, HS
b. q'xn'a to keep sth. long (such as e.g. one's finger) between one's HS
teeth
q'kala holding in the mouth (dog) EW
c. sx7it to throw a spear or harpoon; to start spearing, harpooning HS
ska to spear, harpoon EW
d. wanaxえəyasa to change the roof of the house EW
wanaka to take over s.o.'s job (e.g. because he is tired or because HS one is working in shifts)
e. loxsut to peck a hole through stone HS
laka to play the stone throwing game EW
f. dzixsut to push through sth. with a stick HS
dika to push or poke with a stick EW,
g. k'xćəwala a fur on a stretch board HS
k'ka to stretch skins EW
h. yaxstawala sore, infected eye; to have ... HS
yak bad, spoiled, evil, vicious, sick, not as it should be EW, HS

(264) $\mathrm{k}^{\mathrm{w}} \rightarrow \mathrm{x}^{\mathrm{w}} /$ __[σ
a．吕ix̆apx ${ }^{w}$ m＇ənix̆ ${ }^{w}$ x̌ix̌apkw ${ }^{w}$
b．tonix ${ }^{w}$ sila（ $-x$ sila） t’ənikw
c．X＇mix wsut
天́mkwa
d．Zalx ${ }^{\text {w }}$ ċzwa
Zalkwa
e．bax ${ }^{w}$ c＇awa bakwala
f．dzix ${ }^{w}$ c＇əwa
丸ikwa
g．nawalax＂sista

little children
HR137
plural of：young；child SW41，152
too cold
WL
feeling cold EW
to tap through sth．，to tap a knot out of wood HS
to play pool；to tap，pound，or poke with a stick EW
to bleed heavily（as when a vein has been cut）HS
blood，to lose blood，to bleed（as when hurt）EW，HS
person who always gathers and preserves food HS
to gather and preserve things for winter EW
person（esp．a child）who is always in motion EW
to move，function，operate EW
＂power is now present＂；name of a potlatch given at DS108 the end of a feast when all the food and gifts are seemingly gone，and the hosts＇ancestors arrive and do their dances
name of the spirits from the story of Y＇aakas；name
DS 108
is applied to items possessed with supernatural power such as the whistles of the C＇aiqa Dance Se－ ries，the spirits of the λ dowlax̆a Dances；term for su－ pernatural power
h．dzixwsistalasu
bicycle
JSS3
dzikwa
to push with the feet；to move，function，operate
EW
i．$\quad c \dot{x}{ }^{w} s m$
$c^{\prime}{ }^{w}$
j．Zalx ${ }^{w}$ sisəla
Zalkwa
tmx ${ }^{w}$ ？it
tmk ${ }^{w}$ a

（265）q $\rightarrow \check{\mathbf{x}} /$＿＿［ σ

a．nax̌ps	alcoholic person	HS
naqa	to drink，to swallow a liquid	EW，JSS2
b． $\mathrm{k}^{\text {w }} \mathrm{n}$ ẍṗala	to smell like mink ，	EW
$k^{\mathbf{w}}$ nğaci	den of mink	HS
c．malix̆－sistala	to swing around	HS
maliqa	to swing in a circle	EW
d． $\mathrm{x}^{\text {wix }} \mathbf{x}-$ sistalay ${ }^{\text {a }}$	skipping－rope	HS
$x^{\text {wiqua }}$	to swing a line，throw a rope	EW
e．X＇ijx－sista	to spawn all over the area（said of herring）	HS
̇̇iqa	to spawn（said of herrings）	HS

f. p’ǎ̌̌sta "flat in the water" like water lillies; name of a swamp be- DS125hind Zawyas or Oolichan Town
paqa flat, to be flat, to put a flat object somewhere (e.g. to lay EW
shingles on a roof)
g. kmẍsk'ana to jam or bruise the hand or the fingers EW
kmq's something collapsed outside (e.g. a house) EW
h. $k^{w} r{ }^{\prime \prime}$ sdana sth. caused by dampness (e.g. rheumatism) HS
$k^{w} n q$ wet HS
(266) $q^{w} \rightarrow \check{x}^{w} /$ __[σ
a. $\check{g}^{w} u l u \check{x}^{w} n u k^{w}$to have tallowWL
$\check{g}^{w}{ }^{\text {uluq }}{ }^{\text {w }}$ animal fat, suet, tallow EW
c. k'll"w bis urine of a male HS
$k^{\prime}{ }^{\text {w }}{ }^{\text {w }}$ a to urinate (said of a male) EW
d. Psíx ${ }^{w}$ そalił (on) the other (the opposite) side of the fire in the long- HSPsiqwahouse
to travel on the other (the opposite) side of the channel HS
e. $g^{w a s i x^{w} \chi a l a ~}$ (on) this side of the fire HS
$g^{w}{ }^{w}$ iq w a to travel on this side of the channel HS
f. $\check{x}^{w i s i}{ }^{\mathbf{x}}{ }^{\mathbf{x}} \boldsymbol{\lambda}$ ala (on) the other (or: the far) side of the fire HS
$\bar{x}^{w} i s i q^{w}{ }^{\text {a }}$ to travel on the other (or: the far) side of the channel HS
g. woni ${ }^{w}$ wiwa to scorch through EW
woniq"aEW
h. dzíx wsiwa to stick the feet through sth., to go through sth. with HS
ctiq"ai. wənix̆wsiwawəniqwa
j. Psix ${ }^{\mathrm{w}}$ c'əwił7siq"a
k. tīx ${ }^{w}$ ćawa$t q^{w}$
I. hiłcza \bar{x}^{w}-sistut
one's feet
to push with the feet HS
to scorch through HS
to scorch EW
(on) the other (the opposite) side of the interior of the HS
house of the room
to travel on the other (the opposite) side of the channel HS
thing that is soft inside, sock, stocking HS
soft EW, HS
to translate into the native language; to translate into HS
Heiltsuk
hisłctzaqw ${ }^{w}$HeiltsukDS
m. $\lambda^{\prime}{ }^{\prime} \check{x}^{w}$ stəwa to cover the eyes with the hands HSn. $q^{w} \mid \check{X}^{w} s i s$.$q^{w} \mid q^{w} a$.
خ ${ }^{2 q}{ }^{w}$ a to cover an object with the hand (e.g. for taking the object EW
away unnoticed)to have a ticklish, oversensitive, touchy foot, to be afraid HSto touch sth. with the foot; a ticklish footto tickle, to be afraid to touch, to be ticklishEW
(267) c \rightarrow s / __[σ
a. qnskiana to scald the hand, to have a scalded hand; a scalded hand HS
qinca (3) to scald HS
b. qilsn'a to grease a pole HS
qilca oil, gas, to oil, grease, to lubricate EW
c. plsp'iga moss on tree trunk BC51
pilca to become covered with moss EW
d. tilssit to start to get high bush cranberries HS
tilc high bush cranberry (Viburnum edule) (Curtis 1970:332: tulls) EW,
e. Pans?it to make a slight move, to start to move over (up) a bit; to make a HS move in a game of chess or checkers
Panca to shove, to move towards sth. little by little; to play chess or EW, HS checkers
(268) $\lambda \rightarrow \dagger / \ldots$ _-
a. miłćəwa mistake, to make a mistake; to miss (fail to get into) the HS container (as drips from the tap)
mixa to miss a shot, to dodge, avoid, or escape from something, EW, DS123
to dislike contact; name of a dance of the λ әw'zlax̆a Series, whistle found in the box made by M'asm'asalanawa; name of one of the Winter Ceremonial Dances; name of a man who travels to the moon ...
b. qंəyutcंawa far spent (said of the morning), late in the morning HS
qंวyux to get, acquire, obtain, catch a lot HS
c. n'ł-cista to bend over backwards HS
n’əぇa to lean back (as in a chair) or to lie on one's back, to lay EW things on the back (e.g. split fish on the side with the skin)
d. pałtem beetle; things that is round and flat (as a flat whiskey bottle) HS
pa入a to flatten EW
e. ǧałpiq pole for hooking HS
ğaxa to gaff, to hook, to crochet EW, HS

Another source of neutralisation is a process of spirantisation that affects word-final plain obstruent stops and affricates in the same way as tabulated above in (262), but only variably. This variable process is illustrated in (269)-(273).
(269) k \rightarrow x / __\#
a. c'lc'lk ~ c'lc'lx
long feather
SW92,93
b. $\dot{g}^{\text {wo }}$ lik $\sim \check{g}^{w}$ əlix
spruce pitch, chewing gum made out of spruce pitch;
EW, BC64:
used as medicine
DS
c. nik ~ nix to say, to tell EW, SW79,
(270) $\mathrm{k}^{\mathrm{w}} \rightarrow \mathrm{x}^{\mathrm{w}} /$ __\#
a. q'ck ${ }^{\mathrm{w}} \sim$ q'cx $^{\mathrm{w}}$ meat WL
b. X'upk ${ }^{\text {w }} \sim$ X'upx $^{\prime \prime}$ (sth.) barbecued on an open fire WL, HS
c. ğa $\mathrm{K}^{\mathrm{w}} \sim$ ğa $\mathrm{x}^{\mathrm{w}}{ }^{\mathrm{w}}$ sth. hooked or crocheted

WL
d. モ̈ápk ${ }^{w} \sim$ ẍàpx ${ }^{w}$ young; child

SW77,80,
150
(271) q $\rightarrow \bar{x} /$ __\#
a. $\check{x} a: q \sim \check{x} a: \check{x}$
bone
EW, HS
maćq ~ maćx
two long and cylindrical things (e.g. trees, logs, bottles, WL cigarettes)
(272) $q^{w} \rightarrow \check{\mathrm{x}}^{w} / ~ \ldots \#$
a. gacqw \sim gac \check{x}^{w}
this invisibie one here with me HS

animal fat, suet, tallow
EW, WL
c. $q^{w} g^{w} u q^{w} \sim q^{w g^{w}} u \check{x}^{w}$
swan
EW, HS
(273) c \rightarrow s / __\#

3.4.2. OT analysis

There are some principled exceptions to the changes just described which are treated in later in section 3.6 and in chapter 4 . In the meantime, the trigger for the spirantisation process can be formulated as a context-sensitive markedness contraint against the occurrence of [-continuant] in coda position.
(274) *[-cont]] $]_{\sigma}$

An obstruent stop or affricate must not occur in coda position.
It is apparent that the context-sensitive markedness contraint (274) dominates Faith-IO[cont].
(275) Neutralisation of [-cont] in Oowekyala
$*[-c o n t]]_{\sigma} \gg$ Faith-IO[cont]

The effect of this constraint ranking is illustrated in the following constraint tableau. As shown, the root-final feature [-cont] of $/ q^{w} /$ (cf. niqwa 'dirty') is optimally delinked/deleted before syllable-initial / $\dot{p} /$, in compliance with $*[-c o n t]]_{\sigma}$ but in violation of Faith-IO[cont].
(276) Regular neutralisation of [continuant] in Oowekyala

/niq ${ }^{\text {w }}$-pa/	*[-cont]] ${ }_{\text {o }}$	Faith-IO[cont]
a. niq ${ }^{\text {w }}$ ' ${ }^{\text {a }}$	*!	
\Rightarrow b. nix ${ }^{\text {w }}$ p'a		*

To explain the fact that plain obstruent stops and affricates variably resist spirantisation in word-final position, it is assumed that the feature [-continuant] is preserved through right-edge-anchoring (McCarthy and Prince 1995, 1999) and that this faithfulness constraint is crucially unranked relative to the markedness constraint responsible for spirantisation.

(277) Right-Anchoring-IO[cont]

Let α be a segment in the input and β be a correspondent of α at the right periphery of the word in the output. If α is [ycontinuant], then β is [γ continuant].

Free ranking is interpreted as in (278), after Kager (1999:406). (See also Prince and Smolensky 1993:51, Kiparsky 1993, Reynolds 1994 and Antilla 1995.)
(278) Interpretation of free ranking of constraints:

Right-Anchor-IO[cont], *[-cont]] σ
Evaluation of the candidate set is split into two subhierarchies, each of which selects an optimal output. One hierarchy has Right-Anchor-1O[cont] \gg *[-cont] $]_{\sigma}$ and the other *[-cont]] $\sigma \gg$ Right-Anchor-IO[cont].

The conflict between Right-Anchor-IO[cont] and *[-cont]] $]_{\sigma}$ is illustrated in the following two constraint tableaux. The [-cont] feature of word-final $/ q^{w} /$ is optimally preserved when Right-Anchor-IO[cont] ranks higher; it is optimally delinked/deleted when *[-cont]]o ranks higher.
(279) Variable word-final spirantisation in Oowekyala

	/ğ wiuqu'/	$\begin{gathered} \text { R-Anchor-IO } \\ \text { [cont] } \end{gathered}$	*[-cont]] ${ }_{\sigma}$	Faith-IO [cont]
$\Rightarrow \mathrm{a}$.	$\check{g}^{\text {w }}$ uluq ${ }^{\text {w }}$		*	
b.	$\check{g}^{\text {w }}{ }^{\text {l }}$ lux ${ }^{\text {w }}$	*!		*

(280) Variable word-final spirantisation in Oowekyala

/9ّ ${ }^{\text {wiluq }}$ "/	*[-cont] $]_{\sigma}$	$\begin{gathered} \text { R-Anchor-10 } \\ \text { [cont] } \end{gathered}$	Faith-IO [cont]
a. $\check{g}^{\text {w }} \mathrm{uluq}{ }^{\text {w }}$	*!		
$\Rightarrow b . \quad \check{g}^{w} u l u \chi^{w}$		*	*

The next two tableaux show that the variable ranking of *[-cont] $]_{\sigma}$ and Right-Anchor10 [cont] has no effect on the regular process of word-medial spirantisation, since Right-Anchor-IO[cont] is irrelevant in this case (cf. (276) above).
(281) Word-medial spirantisation in Oowekyala

/niq ${ }^{\text {w-pa/a/ }}$	$\begin{gathered} \text { R-Anchor-10 } \\ \text { [cont] } \end{gathered}$	*[-cont] $]_{\sigma}$	Faith-IO [cont]
a. niquwpa		*!	
\Rightarrow b. ni ${ }^{\text {w/ppa }}$			*

(282) Word-medial spirantisation in Oowekyala

/niq"-pa/	*[-cont] $]_{\sigma}$	$\begin{gathered} \text { R-Anchor-10 } \\ \text { [cont] } \end{gathered}$	Faith-IO [cont]
a. ${ }^{\text {niq }}{ }^{\text {w }}$ p'a	*!		
\Rightarrow b. ni ${ }^{\text {x }}$ p ${ }^{\text {a }}$			*

Two general properties of the analysis just given are worthy of note. First, spirantisation in Oowekyala exemplifies the notion of relative domination, whereby each lower constraint is violated in order to avoid a violation of a higher-ranking constraint. The faithfulness constraint Faith-IO[cont] is violated in order to avoid a violation of higher-ranking *[-cont] $]_{6}$, and the latter markedness constraint is violated in order to avoid a violation of Right-Anchor-lO[cont] (when the latter ranks higher).
(283)

Lexical contrasts of continuancy are preserved, except in coda position, except (variably) in word-final position.

constraint

Faith-IO[cont]
*[-cont] $]_{\sigma}$
Right-Anchor-IO[cont]
(284) Constraint ranking for spirantisation in Oowekyala

Another interesting aspect of this analysis is that the driving force behind spirantisation is a context-sensitive markedness constraint, viz. *[-cont]]. This makes the strong prediction that no language can have a contrast [\pm continuant] only in coda position. That is, the current analysis predicts that the following hypothetical language should not occur (cf. Kager 1999:42):
(285) A possible language that is predicted not to occur
a. a contrast of continuancy in syllable codas
yak.li vs. yax.li, x̆aえ.wa vs. x̆ał.wa, wac vs. was
b. but no contrast of continuancy elsewhere xa: (*ka:), ya.łum (*ya.えum), su.wa (*cu.wa)

In such a language，continuancy would be regularly neutralised in onset position，so that distinct morphemes like／kaخ／and／xax／would be neutralised as［xaえ］．This hypothetical state of affairs would run contrary to the widely documented fact that lexical contrasts are normally preserved in syllable onset position while they are frequently neutralised in syllable coda posi－ tion（see e．g．Lombardi 1999）．

To the extent that the type of language just described is not attested，the markedness－ driven nature of OT is vindicated．On the other hand，the absence of such languages cannot be explained in rule－based theories that treat markedness as external to the phonological system． In particular，a rule that neutralises continuancy in onset position（i．e．［－son］$\rightarrow[+$ cont $]$／$\sigma \ldots$ ） might be judged complex from the phonology－external viewpoint of markedness，but it should nevertheless be possible（cf．（285））．

3．4．3．Special cases of spirantisation

The basic analysis presented in the preceding section is sufficient for all cases of spirantisation in which $/ k, k^{w}, q, q^{w}, c, \lambda /$ change to their fricative counterparts $\left[x, x^{w}, \check{x}^{2}, \check{x}^{w}, s, \dagger\right]$ ，respectively； see e．g．（263）－（268）and（269）－（273）above．But what happens with obstruent stops that have no direct fricative counterparts，viz．／p／and／t／？The actual changes are tabulated here；some examples follow．
（286）Deocclusivisation in Oowekyala

Underlying	Derived	Word medial examples	Word final ex－
p	mples		
t	t	(287)	(289)
		(288)	(290)

（287） $\mathrm{p} \rightarrow \mathrm{m} /$＿＿$^{[\sigma}$
d．nm＇sut ${ }^{67}$ to break through a surface（e．g．a wall）HS
nəpa to hammer；to break through a surface（e．g．wall，a dead－EW fall）；to collapse or cave in（as a roof）
b． $\mathrm{k}^{\text {w}}$ zwimba broken at the end（said of sth．long and horizontal，as a HS pole）
k^{w} upa to snap，to break（said of a stick or long stick－like thing）EW
c．sal＇mbayu bit（for drilling）HS
slpa to twist，to turn（as in drilling）EW
f．えrmi－sista to burst open EW
えpa to spread out，unfold，open up，split apart EW

[^46]e. t'כým-sistala riding a bicycle? JSS2, JSS3
tipa to step, tread onto sth.; to find fern roots or cockles by HS
feeling with the feet
g. ğalm-sistala to pull sth. in order to turn it; to steer a boat HS
ğlpa to grasp, hold on, pull towards oneself (esp. with a EWhooked finger or hand, e.g. gun)
h. sol'm-sistala to crank, to rotate HS
sipa to twist, to turn (as in drilling) EW
i. kmistut to tuck or jam into a hole or opening, to stuff up an open- HS
ing
kpa to tuck, etc.
j. $q^{\text {ww }}$ n'stu. dirt in the eye; to have HS
q"pa. to scatter (ashes, etc.), to drop (crumbs) EW
(288) t \rightarrow ł / __[
a. dabnł?it become dark WL
dabnt dark (as the night) EW
b. ciq'ikn baffled, stupefied by what was said HS
c'iq" ${ }^{\text {wh }}$ to miss the point of what is said, to misunderstand sth. HS
c. galłknmas to make too long HS
glt long, tall EW
d. lautćəwala taking things out of a container; going out of a long inlet HS
laut to remove sth. HS
e. pəriułćəwa to empty a container or bottle HS
penut to fill a bottle HS
f. małtu twitching of the eye; to have a HS
mota to twitch, to suffer from twitching EW
g. c'tcm to burst open (said of sth. round and/or bulky, such as a HS
paper bag or a box)
cta. EW
h. \bar{x}^{W} łcis a cut or knife wound in the foot or leg, to have a cut or knife WL
$\bar{x}^{w} t a$wound in the foot or leg, to cut the foot or leg with a knifeto cut with a knifeEW
i. mołkiana twitching of the hand and/or forearm, to have HS
məta to twitch, to suffer from twitching EW
j. $\check{x}^{w} \nmid k{ }^{\prime} a n a$ a cut or knife wound in the hand or forearm, to have a cut WL
or knife wound in the hand or forearm, to cut in the hand orforearm with a knife
$\check{\mathbf{x}}^{w}$ ta to cut with a knife EW
k. wa’łcis
wata
to have cramps in the foot or leg, cramps in the foot or leg to lead by the hand, to pull HS
I. \mathbf{x}^{w} Ifp’ala
smell of fire, smell of sth. burning HS
x^{w} Ita EW

```
    m. qawał7axla to come to hear (after trying), to succeed in hearing HS
    qawata to use a hearing aid or stethoscope HS
(289) p -> m / __#
    a. p'\partiallup ~ p'əl'zwm sister-in-law (according to Franz Boas the precise EW
        meaning is: "husband's sister" and "woman's
                brother's wife")
    b. X'ukN'p ~ X'uk'mm root; licorice fern (Polypodium glycyrrhiza); "root" EW, SW73,
        (rhizome) chewed, possibly for medicinal purposes BC59: LJ
    c. hap ~ ham
        cry of the cannibal
        EW
    d. q'wałup ~ qwałowm ash HS
    e. ğup ~ ğúm fish scales
        EW
(290) t -> † / __#
    a. nək\mp@subsup{k}{}{w}t~n\mp@code{nkw}
    b. kibat ~ kibał red elderberry (Sambucus racemosa) fruit
    HS; BC90
Focusing first on the case of \(/ \mathrm{p} /\), recall from section 2.4.2.1 on p .56 that Oowekyala has no labial fricatives, because *[lab, +cont] is undominated. The simple change \(/ p / \rightarrow[f]\) is therefore not a possible response to *[-cont] \(l_{\sigma}\). In fact, /p/changes to [m] in the environments of deocclusivisation, as shown in (287) and (289) above. In order to understand the insertion of [+nasal] in these environments, it is important to recognise that the feature [-continuant] may be underspecified in nasals. That is, both of the following representations of nasals are assumed to be phonetically interpretable. \({ }^{68}\) (Keating 1988 argues that a segment may remain unspecified for a feature, even at the output of the phonology.)
```

(291) Two possible representations for nasals
a. Nasal specified for continuancy
im
-cont

As the following constraint tableau shows, the deocclusivisation of syllable-final /p/as [m] (see e.g. (287) above) is optimal given two available options: that of inserting [+nasal]

[^47](*[-cont] $]_{\sigma} \gg$ Dep-IO[nas]), and that of underspecifying [m] for [continuant]. (Note that freeranking Right-Anchor-IO[cont] is irrelevant in this instance.)
(292) Deocclusivisation of word-medial /p/in Oowekyala

$\begin{gathered} \text { /גp-sista/ } \\ \mid \\ \text { [-cont] } \end{gathered}$	*[-cont] $]_{\sigma}$	$\begin{gathered} \text { Dep-IO } \\ \text { [nas] } \end{gathered}$	Faith-10 [cont]
a. $\quad \lambda p]_{\sigma} s i s t a$ \| [-cont]	*!		
b. λ m] ${ }_{0}$ sista 1 [-cont]	*!	*	
\Rightarrow c. λ milosista		*	*

The variable deocclusivisation of word-final /p/ (see e.g. (289)) is illustrated in the next two constraint tableaux. When Right-Anchor-1O[cont] dominates *[-cont]] σ, as in (293), wordfinal [-cont] must be preserved. Because deocclusivisation (293c) fails anyway, the addition of [+nasal] in (293b) is unwarranted: it unnecessarily violates Dep-IO[nas]. The optimal candidate is thus fully-faithful (293a).
(293) Preservation of word-final /p/ in Oowekyala

/X'uk'p/ I [-cont]	$\begin{aligned} & \text { R-Anchor-IO } \\ & \text { [cont] } \end{aligned}$	*[-cont] $]_{\sigma}$	$\begin{gathered} \text { Dep-IO } \\ \text { [nas] } \end{gathered}$	Faith-10 [cont]
\Rightarrow a. $\quad x^{\prime} u k^{\prime \prime} p$ $\underset{\substack{\text { [-cont] }}}{\mid}$		*		
b. $\lambda^{\prime \prime} u k^{\prime \prime} m$ [-cont]		*	*!	
c. $\chi^{\prime} u k^{\prime \prime} \mathrm{m}$	*!		*	*

When *[-cont] $]_{\sigma}$ dominates Right-Anchor-IO[cont], as in (294), word-final [-cont] must be delinked/deleted. The optimal candidate is then (294c): it involves the insertion of [nasal] (*[-cont]] \gg Dep-IO[nas]), which in turn facilitates the delinking/deletion of [-cont], through underspecification.
(294) Deocclusivisation of word-final/p/in Oowekyala

$\begin{gathered} \text { / } x^{\prime} u k^{\prime w} p / \\ \text { \| } \\ \text { [-cont] } \\ \hline \end{gathered}$	*[-cont]] ${ }_{\sigma}$	$\begin{gathered} \text { R-Anchor-10 } \\ \text { [cont] } \end{gathered}$	$\begin{gathered} \text { Dep-IO } \\ \text { [nas] } \end{gathered}$	Faith-10 [cont]
a. $\lambda^{\prime} u k^{\prime \prime} p$ \qquad	*!			
b. $x^{\prime} u k^{\prime \prime \prime} m$ [-cont]	*!		*	
$\Rightarrow c . \begin{aligned} & \text { 'uk } \\ & \text { m }\end{aligned}$		*	*	*

Finally, consider the case of syllable-final /t/ which changes to [\dagger]. Like the other cases of spirantisation, this change is regular word-medially, e.g. (288) above, and variable wordfinally, e.g. (290) above. Of special interest here is that $/ t /$ changes to a lateral fricative ((4);
(295) $t \rightarrow+69$

it does not change to a nasal (n) (cf. /p/ $\rightarrow[\mathrm{m}]$),
(296) $t \rightarrow n$

nor does it change to a sibilant (s).

69 It is sometimes argued that [+lateral] implies [-continuant] (e.g. Katamba 1989, Kaisse 1999), but this cannot be true here. That is, if there is a constraint [+laterall] $[-$ continuant], it must be violable. In OT: Max-IO[lateral], Max-IO[continuant] \gg [+lateral] $\supset[-c o n t i n u a n t]$.

It would seem that the insertion of [+lateral] represents a less serious offence in Oowekyala grammar than either the insertion of [nasal] or the insertion of [+strident]. This state of affairs can be formalised with Dep-IO constraints as follows.
(298) Dep-IO[nasal], Dep-IO[strident] > Dep-IO[lateral]

The result of adding this constraint subhierarchy to the foregoing analysis of spirantisation is illustrated in the following tableaux. (For simplicity, the constraints License[cont] and [nas]ว[-cont] are omitted from these tableaux, and free-ranking Right-Anchor-IO[cont] is omitted from the first.)
(299) Spirantisation of word-medial /t/ in Oowekyala

/mət-k'ana/	$*[\text {-cont] }]_{\sigma}$	Dep-IO [nas]	Dep-IO [strid]	Dep-IO [later]	Faith-IO [cont]
a. mətk'ana	$*!$				
b. mənk'ana		$*!$			$*$
c. məsk'ana			$*!$		$*$
\Rightarrow d. məłk'ana				$*$	$*$

(300) Preservation of word-final /t/ in Oowekyala

/kibat/	R-Anchor-10 [cont]	$*[$ cont]]	Dep-10 [nas]	Dep-10 [strid]	Dep-10 [later]	Faith-10 [cont]
\Rightarrow a. Kibat		$*$				
b. Kiban	$*!$		$*$			$*$
c. Kibas	$*!$			$*$		$*$
d. Kibat	$*!$				$*$	$*$

(301) Spirantisation of word-final /t/ in Oowekyala

/kibat/	*[-cont]]	R-Anchor-IO [cont]	Dep-IO [nas]	Dep-IO [strid]	Dep-IO [later]	Faith-IO [cont]
a. kibat	$*!$					
b. kiban		$*$	$*!$			$*$
c. kibas		$*$		$*!$		$*$
\Rightarrow d. kibat		$*$			$*$	$*$

In sum, the two special changes treated in this section, viz. $/ \mathrm{p} / \rightarrow[\mathrm{m}]$ and $/ \mathrm{t} / \rightarrow[\dagger]$, appear to be functionally related to the regular cases of spirantisation treated in the previous section, viz. $/ k / \rightarrow[x], / k^{w} / \rightarrow\left[x^{w}\right], / q / \rightarrow[\check{x}], / q^{w} / \rightarrow\left[\check{x}^{w}\right], / c / \rightarrow[s], / \lambda / \rightarrow[f]$. The shared goal of these changes is to avoid the output configuration *[-cont] l . This 'conspiracy' is easily captured in OT , because it is an output-oriented theory, and also because it formally separates the 'trigger' -the markedness constraint *[-cont] $]_{\sigma}$ - from the actual changes -the faithfulness constraints: RAnchor[cont], Faith[cont], Dep[nas], Dep[lateral]).

By contrast, the changes described above cannot be uniformly explained in rule-based phonology, with its input-orientation and its focus on structural change. Indeed, the diverse changes themselves, viz. $\varnothing \rightarrow$ [+nasal], $\varnothing \rightarrow[+$ lateral], and [-cont] $\rightarrow \varnothing$, offer no insight into the fact that they converge on avoiding a specific output configuration.

3.4.4. Exceptions to spirantisation/deocclusivisation

There are obstruent-initial suffixes that inexplicably fail to induce deocclusivisation in preceding stops and affricates. One such suffix is -x̆s 'aboard (boat)'. The data in (302) and (303) first illustrate the unremarkable use of this suffix after stems that end in sonorants and fricatives, respectively.
(302) Sonorant-final stems, --x̆s 'aboard (boat)'
a. gncax̆s how many on board the boat HS
gnca how many? EW
b. ğgla:x̌s to wait on the boat EW
ǧəla:la to wait for sth. HS
c. $k^{\text {wwax̃ }}$ to sit in a boat HS
$k^{\text {wads }} \quad$ to sit outside HS
d. $k^{\text {wlixs }}$ sala to lie on a boat (said of animate beings) HS
$k^{\text {w}}$ ela to lie somewhere, to lie down (said of animate beings) EW
e. wix̌s to stow away, to sneak onto a boat WL
w’na. to hide, to sneak about EW
(303) Fricative-final stems, -x̌s 'aboard (boat)'
a. Rigisx̌sala loaded with sand (said of boat) HS
?igis sand HS, EW
b. kisx̌sala empty boat, nothing aboard HS
kisax?it to become deprived of EW
c. Palułx̌sa to remodel a boat HS
?aluł new, fresh (as a supply of sth.) HS
 ceiling of a boat cabin HS
likiq $^{\text {w }}{ }^{\text {wif }}$ if ceiling of a room HS
e. kaxx̌sa to lift sth. that is on the boat by hand HS
kaxəla to lift, hold up, or carry on the hands and/or the forearms EW
f. $\lambda x \times \check{x}$ canoe thwart EW
خxa to put the crosspiece on (e.g. on the canoe) HS

Of interest here is that when --xs occurs after stems ending in stops and affricates, the stem-final segments fail to undergo regular spirantisation/deocclusivisation.
(304) Stop/affricate-final stems, -x̌s 'aboard (boat)'
a. tipx̆s set foot into canoe WL
tipa to step, tread onto sth.; to find fern roots or cockles by feeling HS
with the feet
b. $x^{w l t}$ fiss (stove) on the boat WL
x^{w} Ita to burn (said of a fire, coals, offerings) EW
c. Talcx̌sa to go and pick sea slugs, sea cucumber on a boat HS
Talca to go and pick sea slugs, sea cucumber EW, HS
d. sukw̌̌sa to pick up, lift, grab sth. in the boat HS
sukwa to take hold of with the hand; to pick up, lift, grasp, grab with the HS
hand
e. qiik ${ }^{\mathrm{w}}$ x̀s to lie in the boat (said of animate beings) HS
qik ${ }^{\text {wa }}$ to lie on sth. (said of animate beings) HS
f. ğlqx̌s container placed aboard the boat HS
ğlqa to grasp with the fingers, lift container (e.g. a pail, a pan, a coffin) EW
g. $\bar{x}^{w}{ }^{i s i q}{ }^{w}$ a to travel on the other (or: the far) side of the channel
$\check{x}^{w}{ }^{\text {isiq}}{ }^{w} \check{\mathrm{x}} s \quad(o n)$ the other (or: the far) side of the boat one is in HS

To account for such exceptions to spirantisation/deocclusivisation, it is hypothesised that some abstract phonological structure intervenes between the suffix -x̌s and preceding stem-final segments. In particułar, suppose that this suffix begins in a phonetically null vocalic root node (cf. Roberts-Kohno 1999 on the need for empty consonantal root nodes in Kikamba). ${ }^{70}$ Positing such an empty node accounts for the fact that spirantisation/deocclusivisation fails before this suffix, in the following way: all stem-final segments are syllabified with the following empty vocalic node such that the structural description of spirantisation/deocclusivisation (*[-cont]]) is never met. ${ }^{71}$
(305)

[^48]or

The hypothesis that -x̌s is preceded by a phonetically null vocalic root node receives some confirmation from the fact that its initial \check{x} exceptionally fails to participate in rounding assimilation following a rounded obstruent, as already noted in section 3.2.2.1. The fact that $-\overline{\mathrm{x}} \mathrm{s}$ nonetheless participates in rounding assimilation after /u/ (e.g., /mu: $+\varnothing$ x̆s/ \rightarrow [mu:x ${ }^{\mathbf{w}} \mathrm{s}$] 'four aboard'; see section 3.2.1.1) is expected; the vowel/u/ would presumably merge with the empty vocalic root note, as other vowel hiatus contexts are generally resolved (e.g., $/ \lambda n+b a+u t / \rightarrow[\lambda n b u t]$ 'to bite the end off sth.'). Finally, the fact that $-\bar{x} s$ participates in degemination (e.g., /gax̆ $+\varnothing$ x̆s/ \rightarrow [gax̌s] 'to come aboard'; see section 3.3) is also expected; the empty vocalic root node fails to avert degemination between identical consonants precisely because it is phonetically empty.

3.5. Coronal fricative dissimilation

This section describes and analyses a process of dissimilation that concerns the feature [+continuant] in coronals.

3.5.1. Description

Oowekyala has a dissimilation process that affects adjacent coronal consonants specified [+continuant]. The effect is clearest when a suffix that begins in /s/ is added to a stem that ends in $/ \mathrm{s}$ / or $[\ddagger]$: the suffix-initial segment changes to [c].

As a first example, consider the suffix -sm 'round and/or bulky object'. The initial segment of this suffix is realised simply as [s] after stems ending in non-coronal fricatives whether these fricatives are underlying, e.g. (306), or derived from spirantisation (section 3.4.3), e.g. (307).
(306) Stems ending in underlying noncoronal fricatives, -sm 'round and/or bulky object'
a. qax ${ }^{\text {w }}$-sm sth. round and/or bulky that has become visible after the tide EW has gone out (such as e.g. a rock); to emerge from the water, reef, place that is high and dry
q'ax wola becoming visible, showing itself (as e.g. a rock when the tide HS goes out)
b. txw-smt to jump onto sth. round and/or bulky (e.g. rock) HS
tx"əla jumping HS
c. tix̆-sm sth. round and/or bulky (clumsy) that is green or yellow; green EW mountain, green rock
tix̌ala having a green or yellow colour HS
d. lu $\tilde{x}^{w}-s m$ round thing (such as a drum) HS
lux̌wa to roll (said of a round thing) EW, HS
(307) Stems ending in derived noncoronal fricatives, -sm 'round and/or bulky object'
a. c $x^{w}-s m \quad$ thing that is round and/or bulky and that is short: short box, HSshort house, short hill
c'k whort EW, HS
b. ta'x̄w -sami sheet or sheet-like thing over a round and/or bulky thing HS(e.g. over a box)taq ${ }^{\mathrm{w}} \mathrm{a}$ to cover (especially a sheet)EW
c. $\lambda a a^{\prime}{ }^{w}-s m t$ to cover sth. round and/or bulky (such as a box, a rock) with HS
the hand$\lambda a q^{w}$ a to cover an object with the hand (e.g. for taking the object EWaway unnoticed)
d. lim-sema to wrap or fold sth. so that it assumes a round and/or bulky HS shape
lipa to roll dice EW
In contrast, the initial segment of -sm is realised as [c] after stems ending in [\dagger], whether the latter is underlying, e.g. (308), or derived from spirantisation, e.g. (309).
(308) Stems ending in underlying $/ \nmid /$, -sm 'round and/or bulky object'
a. Talut-cm round and/or bulky thing (e.g. a cooking stone) that is new or HS that has been renewed, remodeled, renovated
Talut new, fresh (as a supply of sth.) HS
(309) Stems ending in derived $[\ddagger]$, -sm 'round and/or bulky object'
a. $k^{\text {'w }} \ddagger-\mathrm{cmt}$ to stick, glue, weld, or solder sth. onto a round and/or bulky HS thing (such as a box)
$k^{\text {ww ta }} \quad$ to stick, glue, weld, or solder on EW
b. c't-cm to burst open (said of sth. round and/or bulky, such as a paper HS bag or a box)
c'ta to split something, crack, burst, fissure EW
Similarly, the initial segment of $-s m$ is realised as [c] after stems that end in underlying /s/. However, in such cases the dissimilation process is not surface apparent, because the stem-final segment is actually deleted by the independently-motivated process of degemination (section 3.3). This is exemplified in the following data.
(310) Stems ending in /s/, -sm 'round and/or bulky object'
a. dəna-cm sth. that is round and/or bulky (such as a box) and that is BC63: DS made of red cedar bark danas inner bark of red cedar BC63: DS
b. pi-cm thing that is round and/or bulky and that is hard HS pisa hard EW
c. qika-cm thing that is big and round and/or bulky HS
qikas big, large, important, considerable HS
d. dmix-cm beetle HS
drn'xs saltwater, sea; salt EW, JSS3

The same effects can be illustrated with the suffix -sista 'around'. The initial segment of this suffix is pronounced [s] after noncoronal fricatives, whether underlying (311) or derived from spirantisation (312).
(311) -sista 'around'
a. cix-sistalakw waterpower, hydroelectric power HS
cixala flowing of water; brook, stream JSS3
b. Ǧač̌-sistalał name of the son of Waawalis DS72
ğacx̆ starfish EW, JSS3
c. ${ }^{k} \dot{x}^{w}$-sistala running around sth. (e.g. an island), running in a circle WL
kix"a to run away, escape, flee from EW
d. lux̆w-sistala to turn around (as a wheel), to revolve HS
lux̃́a to roil (said of a round thing)EW, HS
e. qly̆-sistala to cut around sth. with scissors (e.g. around a pattern), to HStrim the hair
qlăa to cut with scissors, to use scissors EW
(312) -sista 'around'
a. malix-sistala
maliqa
to swing around HS
to swing in a circle EW
b. nawalax ${ }^{\text {w }}$-sista "power is now present"; name of a potlatch given at DS108 the end of a feast when all the food and gifts are seemingly gone, and the hosts' ancestors arrive and do their dances
nawalak ${ }^{\text {w }}$ name of the spirits from the story of Y 'aakas; name is DS108 applied to items possessed with supernatural power such as the whistles of the C'aiqa Dance Series, the spirits of the λ əw'əlax̆a Dances; term for supernatural power
c. hiłcka $\breve{x}^{\mathbf{w}}$-sistut to translate into the native language; to translate into HS Heiltsuk
hiłłczaq" ${ }^{\text {w }}$ Heiltsuk DS
d. $q l x^{w}$-sistif to move from a sitting to a lying position; to lie in a HScircle indoorsqlkwstił to lie on the floor of the house (said of animate be- HSings)
e. dzix ${ }^{\mathrm{w}}$-sistalasu bicycle JSS3
dzikwa to push with the feet; to move, function, operate EW
f. X'X̌-sista to spawn all over the area (said of herring) HS
Xiqa to spawn (said of herrings) HS
But the initial segment of -sista is pronounced [c] after stems ending in $[\ddagger]$, whether the latter segment is underlying (313) or derived from spirantisation (314).
(313) -sista 'around'
a. Zaجamt- to jumble up s.th. (as a child playing with sth.) HS
cistalayu
Pamła to play EW, HS
b. cikał-cista to riot, a riot HS
cikałəla war, fighting EW
c. hit-cista to take a turn for the better HS
Hiłayu good or right; the term for one's soul, "that thing which DS86
causes you to be alive"
d. mamał-cistala swimming around an island HS
małəla swimming EW
f. nut-cista to act the fool EW, WL
nuła to behave in an odd, crazy, or foolish way, as if pos- EW, DS110 sessed
g. $\mathrm{x}^{\mathrm{w} i ł \text {-cista } \quad \text { to return, to turn back }}$ HS
$x^{\text {wita }}$ to return, turn back, back out, to pitch fish, to wrestle EW
h. wət-cistalas mixer? JSS3
$\check{\mathrm{x}}^{\text {widayu }}$
wta to happen by itself, to move by itself, to move without or HSas if without cause (as a car)
i. $q^{\text {wa }}{ }^{\text {qu }}$ ut-cista fence? JSS3
j. ğlu'łtcista to somersault EW, DS73
(314) -sista 'around'
a. n'əł-cista to bend over backwards HS
n'əХa to lean back (as in a chair) or to lie on one's back, to lay things on EW the back (e.g. split fish on the side with the skin)
b. Tał-cista to go back around again (as e.g. for picking up people who did HSnot show up)

Taえala landwards, towards the woods; away from the open (hence away EW from the centre of the house and towards the wall, away from the beach and towards the land, away from sea and towards mainland, inland, shorewards, behind the house

The initial segment of -sista is also realised as [c] after stems that end in underlying /s/. As described earlier, dissimilation is less obvious in such cases due to the deletion of the stemfinal $/ \mathrm{s}$ / (degemination). This is shown in the following examples.
(315) -sista 'around'

a. cu-cista	drought	HS
cusa	dried out, brittle	EW
b. Q'a'-cistala	name of the father of Mazlx, from the story of Wren and the Grizzly Bear; name of the son of Waawalis, from the story of the adventures of Waawalis	DS130
q'àsa	sea otter	EW
c. qu-cistala	travelling around sth. on the water (e.g. around an island), paddling around sth.	HS
qusa	to paddle, travel on water, go by boat	EW
d. cii-cistala	winding rope around sth.	HS
ctisa	to wind up, tangle up	EW
e. t-cistaut	to push sth. or s.o. over with the hands	HS
tsa	to push	EW, HS

The same effects occur with the personal subject ending -su 'you' (cf. Rath ($1981: 83$) on Heiltsuk). The initial segment of this enclitic surfaces without change after vowels (316), after stops (derived from underlyingly voiced segments so that they do not spirantise) (317), and after noncoronal fricatives (318).
(316) -su 'you'
a. ’̀a:-su you pour(ed) grease into sth. HS
Pa: to add grease to one's cooking EW, HS
b. Jikqu-su you reconcile, make peace HS
Jikqu to reconcile (as a couple), to make up after quarreling, to make HSpeace

```
(317) -su 'you'
    a. Pak-su you finish(ed) sth. up completely HS
    Pag-nc we (incl.) are finished HS
    k-su and then you... HS
    g-nc and then we (incl.) ... HS
    tux"Fit-su you take a walk HS
    tux"`id-i he/she over-there takes a walk HS
(318) -su 'you'
    a. Pix-su you are good HS
    ?ik good, nice, well, ok EW,HS
    b. Pabuxw-su you are a mother HS
    Pabukw mother EW, HS
But the enclitic -su is pronounced [cu] after words that end in [ 4 ], whether the latter is underlying (319) or derived (320).
```

```
(319) -su 'you'
```

(319) -su 'you'
g"wat-cu pa:la you stop working HS
g"wat-cu pa:la you stop working HS
g}\mp@subsup{}{9}{wat-i pa:la he/she over-there stops working HS
g}\mp@subsup{}{9}{wat-i pa:la he/she over-there stops working HS
(320) -su 'you'
(320) -su 'you'
qaut-cu you know HS
qaut-cu you know HS
qau\lambda to know HS
qau\lambda to know HS
a. glł-cu you are tall HS
a. glł-cu you are tall HS
glt tall EW, HS

```
    glt tall EW, HS
```

The enclitic is also pronounced [cu] after words that end in /s/in their underlying representation (321). Again, note that word-final/s/deletes before [c] in this case.
(321) -su 'you'
a. Pa-cu ... you belong to ... HS

Tas to belong to him, her, it, them EW

3.5.2. $O T$ analysis

The fact that $/ s /$ changes to [c] only after coronal fricatives (not after (labio)velar or (labio)uvular fricatives) implies that dissimilation of the feature [+continuant] affects only (adjacent) coronals in Oowekyala. This accords with the finding of many researchers (e.g. Padgett 1991, Selkirk 1988, 1991, 1993, Yip 1989, Pierrehumbert 1993) that featural dissimilation tends to apply only between segments that also share one or more other features.

The following constraint is held responsible for continuancy dissimilation in Oowekyala. (It may actually be a conjunction of OCP(Cor) and OCP(+cont); see Suzuki 1998.)

A sequence of two segments, both Coronal and both [+continuant], is disallowed.

Because it triggers a loss of [+continuant], OCP(cor, +cont) (322) must outrank FaithIO[cont]. Recall that *[-cont] $]_{\sigma}$ also outranks Faith-IO[cont] (see section 3.4.2 on spirantisation). Together, then, OCP(cor, +cont) and *[-cont]]. ensure that in a sequence of two coronal fricatives, the second (rather than the first) will lose its [+continuant] specification, as illustrated in the following tableau.
(323) Continuancy dissimilation in coronals

/ğ ${ }^{\text {wat-su/ }}$	$*$ Cor Cor I I $[+$ cont $][+$ cont $]$	*[-cont] $]_{\sigma}$	Faith-IO[cont]
	*!		
b. $\check{g}^{\text {w }}$ a λ-su		*!	*
\Rightarrow c. $\check{g}^{\text {wa }}$ a $-c u$			*

Turning now to the change ...s+s... \rightarrow...c... illustrated in (310), (315) and (321), it is evidently related to the dissimilatory change ...ł+s... \rightarrow...tc.... (e.g., (308), (309), (313), (314), (319), (320); cf. tableau (323)). But stem-final /s/ -while integral to the structural description of dissimilation in (310), (315) and (321)- is in fact deleted before suffix-initial [c], via a separate degemination process that elides the first consonant in a sequence of two (near) identical segments (section 3.3). This opaque interaction of processes will be discussed separately along with other comparable cases in section 4.3.

3.5.3. Interaction with spirantisation

Two constraints affecting continuancy have been postulated, one prohibiting [-cont] in a coda segment (esp. one that immediately precedes a syllable) (section 3.4), and the other prohibiting [+cont] in a coronal that immediately follows a coronal fricative. So far it has been observed that both of these constraints result in simple feature switches: in response to the constraints, a segment changes from [-cont] to [+cont], or vice versa. Because the constraints that trigger the changes are considered separate from the changes themselves, one is left wondering why other possible 'repairs' are not invoked. For instance, the sequence ...ł+s... violates OCP(cor, +cont) (322) and so a feature-change occurs: ...t+c.... But what of other conceivable outcomes? In particular, why doesn't Oowekyala grammar resort to deletion, e.g. ... $\uparrow+$ s... \rightarrow... $\uparrow+\varnothing$..., a move that would equally well resolve the OCP(cor, +cont) violation?

The answer is that (in Oowekyala) feature switching represents a less drastic measure than segment deletion, so all else being equal, economy dictates that a feature change is the preferred strategy. In correspondence-theoretic terms, violating Faith-IO[cont] (43) is a less serious offense than violating Max-IO:
(324) Max-IO (McCarthy \& Prince 1999:225)

Every segment of the input has a correspondent in the output.
(325) Feature switch preferred to segment deletion

Max-IO > Faith-IO[cont]

In other words, segment deletion is overkill, where a simple featural change otherwise fixes the problem (i.e. a violation of $\left.{ }^{[}[-c o n t]\right]_{\sigma}(274)$ or of OCP(Cor+cont) (322)).

In this regard, the current OT analysis makes the singular prediction that segment deletion might occur when a simple feature switch is insufficient to resolve a violation of *[-cont]]o (274) or of OCP(Cor+cont) (322). Remarkably, this prediction is borne out in Oowekyala, as will now be shown.

The relevant data involve suffixes that begin in -sCV..., e.g. -stu 'round hole, eye'. The basic form of this suffix is shown in the following examples.
(326) -stu 'round hole, eye' (Boas 1947)

a. di-stut	wiping the eyes	HS
dәya	to wipe	EW, HS
b. λ əwil-stu	to wake up and fall asleep again; to stand in for, to replace, to fill in	HS
λ 2wala	again, to do sth. again	HS
c. gax̆-stu	to come towards a hole, an opening, or one's eye	HS
gax	come!	EW
d. K'mi-stu kpa	to show discontent by closing eyes or turning the face away to tuck, etc.	EW
e. Pan x^{w}-stu	bruised eye, black and blue eye	HS
Panx ${ }^{\text {wa }}$	bruise, bruised	EW, HS
f. ccx-stawa	to wipe the eyes	HS
cka	to rub something (excluding body parts), scrub, knead	EW, HS

The same suffix has the form -tu after stems ending in [$\ddagger]$, as shown in the following data. Note that stem-final $[\ddagger]$ may derive from $/ \hbar /$ / / $\lambda /$, or $/ \mathrm{t} /$.
(327) -tu 'round hole, eye' (Boas 1947)
a. wit-tu narrow, slim (said of an opening, hole, eye, diameter of sth.)HS
wit thin (said of something tall such as a tree or person) EW
b. $k^{\prime *} \neq-t \leq t$ to stick, glue, weld, solder sth. over a hole, an opening, a wound,HS or one's eye k^{w} ta to stick on, to be sticky EW

Likewise, this suffix has the form -tu after stems ending in [s], as the following data illustrate.
(328) -tu 'round hole, eye' (Boas 1947)
a. Xas-tut to slap s.o. on the eye HS
خa’sa to slap EW
b. pus-tu (to have a) swollen eye, to swell (said of the eye) HS
pusa to swell EW
c. czas-tu dark of colour HS
dzasa to have a dark skin EW
d. mayas-tawala to have a stripe across the eyes (as a raccoon) HS
mayas raccoon EW, HS, BC, JSS3
As another example, consider the suffix -sta 'water', illustrated in the following data.
(329) -'(s)ta 'water'
a. cix-stala waterfall pouring into a lake or the sea HS
cixala running, flowing, flooding (water); brook, stream EW
b. $k^{w} u x^{w}-$ sta warm or hot (said of water) HS
$k^{w} u x^{w} a$ warm, hot EW
c. gncapon-sta how many times into the water? HS
gncap'nista how many round trips? HS
d. ga:l-stut to be the first to set the net, to be first to put the line into HS the water
galx?it to become the first, first to, ahead EW
e. páx̆-sta "flat in the water" like water lillies; name of a swamp behind HS, Zawyas or Oolichan Town DS125
paqa flat, to be flat, to put a flat object somewhere (e.g. to lay HS, EW shingles on a roof)
f. qux ${ }^{w} \sim$ sta?ais calm, still, or placid water in the bay, lake or inlet HS
quq"əla calm, free from wind (said of the weather) EW

The initial /s/ of this suffix is dropped after stem-final [\dagger], as the following data show. (Again, [\dagger] derives from stem-final $/ 4 /$, / $\lambda /$ or /t/.)
(330) -ta 'water'

a. $k^{w} \nmid-t a$	to tumble down into the water (said of things piled up)		
$k^{w} \neq a$	to collapse (said of a pile of something), become separated		
	(salmon eggs when about to be laid), disintegrate	\quad	EW
:---			

b. quł-ta to fall forwards or dive head first into the water HS
$q^{\text {wh }}$ uła to bend or fall forwards EW
c. kał-tala paint HS
k'ata to write, paint, draw pictures EW

Likewise, the initial /s / of -sta 'water' is dropped after s-final stems, e.g.:

(331) -ta 'water'

a. ts-taut	to push sth. into the water	HS
tsa	to push, press against	EW
b. tins-ta	cold water	
tinsa	to go get hard knots of wood; (to chill sth., to add cold water to	HS
	sth.?)	

The deletion of suffix-initial [s] in these cases is a direct consequence of the OT analysis developed so far, as the following tableau illustrates. The fully-faithful candidate (332a) fulfills *[-cont] $]_{\sigma}$ (274) but fatally violates OCP(cor, +cont) (322). The candidates (332b,c) fulfill OCP(cor, +cont) (322) through feature switches (violations of Faith-IO[cont]) but they fatally violate *[-cont]] (274). Candidate (332d) overcomes this "no win" situation via deletion (violation of Max-IO). ${ }^{72}$
(332) Continuancy dissimilation in coronals

/wit-stu/	*Cor Cor [+cont] $[+$ cont $]$	$*[- \text { cont }]]_{\sigma}$	Max-IO	Faith-IO[cont]
a. wits.tu	*!			
b. wiìs.tu		*!		*
c. witc.tu		*!		*
\Rightarrow d. wiłØ.tu			*	

[^49]
3.6. Voicing neutralisation

Voicing contrasts in Oowekyala are found only in the environment of a following tautosyllabic vowel or resonant (which may be glottalised, e.g. bn'ğu 'close together'). This limited distribution results from an exceptionless process of neutralisation that is described and analysed in the next few subsections.

3.6.1. Description

The Oowekyala process of voicing neutralisation is especially clear in plural forms. Recall that the most common form of the plural in Oowekyala is a CV-shaped reduplicative prefix. Consider first what happens when the base of reduplication has a short vowel: the base vowel deletes upon copying. The outcome of this vowel-deletion process is that the first two consonants of the base become adjacent.
(333) Vowel deletion in the base of plural reduplication

$$
/ \operatorname{Red}_{p L}-C_{1} \vee C_{2} \ldots /
$$

$$
\begin{aligned}
& \mathrm{c}_{1} v-\mathrm{c}_{1} \oslash \mathrm{c}_{2} \ldots \\
& {\left[\mathrm{c}_{1} \mathrm{v} \mathrm{c}_{1} \mathrm{c}_{2} \ldots\right]}
\end{aligned}
$$

The data in (29) show that voicing contrasts in C_{1} are neutralised before C_{2} when the latter is an obstruent.

(334) Voicing neutralisation in Oowekyala plural forms singular plural

a. buxwls bu-pxwls illegitimately pregnant EW
pux ${ }^{w}$ a pu-pxwa to inflate, blow with the mouth EW
b. daqa da-tqa to get sheets of red-cedar bark for roofing BC63: DS
$\operatorname{taq}^{w} \mathrm{a}$ ta-tqwa to cover (especially a sheet) EW
c. dzikwa dzi-ckwa to push with the feet EW
cikwa ci-ckwa to shovel EW, JSS3
d. $\lambda a \check{x}^{w} a \operatorname{\lambda a-\lambda \check {x}wa~to~stand~DS64~}$
 or animals, to cheer
e. gix̆a gi-k״̈a to grind, to file, to sharpen EW
kix̌a ki-kx̆a to use a saw EW, JSS2,
f. $g^{w} u t a \quad g^{w} u-k^{w} t a \quad$ to stack, pile things up EW
$k^{w} u \lambda a \quad k^{w} u-k^{w} \lambda a \quad$ to bend something long (e.g. a piece of wire); EW to break a branch

g. ${ }^{\text {gra }} \mathrm{a} a$	ğa-q入a	to hook, gaff, or crochet	EW, HS
qaka	qa-qka	to cut off heads of fish, animals, or people; to behead, to decapitate	EW, DS129
h. $\breve{g}^{w} u \overline{u x}^{w} \mathrm{a}$		slender, thin, lean, skinny	HS
qwuta	$q^{\mathbf{w}} \mathbf{u}-q^{\text {wita }}$	full, loaded	EW, HS

Next, consider plural reduplication when the base is shaped / $C_{1} C_{2} \ldots /$, i.e. when the base has no vowel. In that case, the reduplicative prefix contains C_{1} and a vowel [i].
(335) Vowel deletion in the base of plural reduplication
Red PL $-C_{1} C_{2} \ldots /$
$C_{1} \mathrm{i}-\mathrm{C}_{1} \mathrm{C}_{2} \ldots$
$\left[\mathrm{C}_{1} \mathrm{C}_{1} \mathrm{C}_{2} \ldots\right]$

When C_{2} is a sonorant consonant, lexical voicing in C_{1} surfaces normally in both the base (before C_{2}) and in the reduplicant (before [i]), as shown here: ${ }^{73}$

singular plural

a. briğut bi-bnğut
b. dixa di-dlxa white eruption on skin (because of dampness) EW
c. deľ̌a dzi-कl|ẍa to crawl, to go under something while stooping EW
d. $\lambda n b u t \quad \lambda i$ - λ nbut to bite the end of sth. HS
e. glwia gi-glwia canoe EW, JSS3
f. ğm̌̌ut ği-ğmx̆ut left-hand side EW
g. \check{g}^{w} nbut $\quad \breve{g}^{w_{i}} \mathbf{i} \breve{g}^{w}$ nbut to make a partial payment on a loan (i.e. down HS
payment or installment payments, and in money or otherwise)

In contrast, when C_{2} is an obstruent, lexical voicing is neutralised in the base -where C_{1} immediately precedes $\mathrm{C}_{2}-$ but not in the reduplicant -where C_{1} precedes [i]. This is exemplified by the following pairs. ${ }^{74}$

[^50]（337）Voicing neutralisation in Oowekyala plural forms singular plural

a．	pg wanm	bi－pg ${ }^{\text {wanm }}$	person	EW，HS
	pcini	pi－pcini	easy	EW
b．	えx̌a	$\lambda i-\lambda$ x̆a	to shove，slide，slip sth．long（e．g．canoe）；to plane	EW
	$\lambda \check{x}^{\text {w }} \mathrm{a}$	$\lambda i-\lambda \check{x}^{\prime \prime}{ }^{\prime \prime}$	to rub，stroke，or press with the flat of the hand	EW
c．	$\lambda g^{w_{i t}}$	$\lambda i-\lambda g^{w i t}$	thick（in girth）	EW
	خka	えi－えka	to maneuver the boat to another direction（as by working with the paddle）	EW
d．	qkala	ği－qKala	to speak（said of a woman）	EW，HS
	qċm	qi－qćm	knife for cutting salmon	EW

Observe how，in each case，consonants that cannot be distinguished at the beginning of the singular forms can in fact be distinguished－in voicing－at the beginning of the plural forms．
（338）Singular forms：neutralisation of voicing contrast
a． $\mid \lambda \check{x}-a /$

［ $\lambda \bar{x} \mathrm{a}$ ］
b．$/ \lambda \check{x}^{w}-a /$

［ $\lambda \check{x}^{\mathrm{x}} \mathrm{a}$ ］
（339）Plural forms：preservation of voicing contrast
a．

［ $\lambda i \lambda \ddot{x} a$ ］
b．

［ $\boldsymbol{\lambda} \boldsymbol{i} \check{x}^{\mathbf{x}} \mathrm{a}$ ］

This special interaction of voicing neutralisation with prosodic morphology is also ap－ parent in other areas of Oowekyala grammar．In all Wakashan languages certain suffixes cause modifications in the roots such as vowel insertion，vowel lengthening or reduplication．（Bach （1997）suggests that these suffix－triggered modifications of roots are the＇Case＇requirements of particular suffixes．）Consider，for instance，the suffix－axsala＇aimlessly＇which＇triggers＇the insertion of［a：］in CC－shaped roots in Oowekyala．The forms in（340）illustrate this suffix－ triggered a：－insertion effect．${ }^{75}$

[^51](340) -axsala 'aimlessly'
a. ta:saxsala push here and there XL
ts to push, press against EW
b. $\bar{x}^{\text {waitaxsala }}$ cut any way, carelessly XL, HS
$\bar{x}^{\text {w }}$ ta to cut with a knife EN
c. ba:kwaxsala to talk nonsense (as when delirious) HS
pkwala to talk, to speak HS
d. ğa:kaxsala to talk nonsense (said of women) HS
qk̉ala to speak (said of a woman) EN, HS
e. $\lambda a:$ x̆axsala to slide here and there HS
えх̌a to shove, slide, slip sth. long (e.g. canoe); to plane LW

Especially revealing are ($340 \mathrm{c}, \mathrm{d}$): the insertion of [a:] in roots where C_{1} is lexically voiced circumvents the voicing neutralisation process that affects unmodified roots in the stems with suffix -(k)ala 'noise, sound' (pk'wala, qk'ala).
(341) Ablaut averts voicing neutralisation
a. /bk ${ }^{\text {w }}-(k)$ 'ala/ 'to talk'

b. $\quad / b k^{w}$-axsala/ 'to talk nonsense'

[$\mathrm{pk}^{\text {ww ala }}$]
[ba:kwaxsala]

Next consider the suffix -'a 'to try to' which causes roots shaped $C_{1} C_{2} \ldots$ to be realised as $\mathrm{C}_{1} \mathrm{aC}_{1} \mathrm{aC}_{2} \ldots$ This effect is exemplified in (342).
(342) - 'a 'to try to'
a. ta-tac'a to try to push HS
ts to push, press against EW
b. qa-qap'a to try to capsize HS
gpa to capsize HS, EW
c. ğa-ğak'a to try to get a wife ${ }^{76}$ EN, HS
qkiala to speak (said of a woman) EW, HS

As shown in (342c), the presence of [a] both in the base and in the reduplicant completely presvents voicing neutralisation.

[^52](343) Reduplication + ablaut in Oowekyala
a. /ğk-(k)'ala/

[q k ala]
b. $\quad \operatorname{Red}_{T R Y}-\mathrm{g} \mathrm{k}$-'a/

[ğağak'a]

The fact that some underlying voicing contrasts are revealed only in modified roots (via reduplication, vowel insertion, vowel lengthening) gives the Oowekyala phonological system an 'outside-in' character, in the sense of Hayes (1995, 1999) and Kenstowicz (1996). The underlying representation of some individual morphemes such as /ğk-/ 'woman' can only be learned on the basis of morphologically complex forms.
(344) Root modifications show underlying voicing contrast

/ǧk-/	qk'ala
'woman	to speak (said of a woman)
glural of: to speak (said of a woman)	
ğa:kaxsala	to talk nonsense (said of women)
ğağak'a	to try to get a wife

The polysynthetic nature of Oowekyala makes the phonology marked in this respect, at least according to Hayes (1999:193) who argues, "phonological systems tend to organize themselves in ways that permit derived forms ... to be predicted from the base forms" (and not vice versa, as in Oowekyala).

The Oowekyala process of voicing neutralisation is further illustrated in the data below. Each of these sets exemplifies a lexically voiced segment —/g, g. dz, $g^{\mathbf{w}}, \mathrm{d} /-$ which surfaces unchanged (a) preceding a tautosyllabic sonorant, but which becomes devoiced (b) word-finally, (c) preceding an obstruent (regardless of its laryngeal specification, e.g. (349c); also (337a,c,d), etc.), and (d) preceding a heterosyllabic sonorant. Note that unlike their lexically unmarked counterparts, devoiced stops/affricates fail to undergo regular spirantisation (section 3.4 above).
(345) /7ag/ \rightarrow [Tak]/__\{\#, C\} 'all, complete'
a. Jag-nc we (incl.) are finished HS
yak-nc we (incl.) are bad HS
b. Tak all, complete HS, EW
y'ak ~ y'ax bad, spoiled, evil, vicious, sick, not as it should be EW, HS
c. Tak-su you are finished HS
ya'x-su you are bad HS
d. Tak-nuk ${ }^{\text {w }}$ to have all HS
(346) /c'ağ/ \rightarrow [ćaq]/__\{\#, C\} 'mountain goat'
a. cağ-i that-over-there is a goat HS
ca'q-i that-over-there drips/dripped (as water) HS
b. ćaq mountain goat EW, HS, BC
c. ćaq-ki this-near-me is a goat HS
d. ćaq-nuk ${ }^{w}$ to have a goat HS
(347) /wa:dz/ - [wa:c]/__\{\#, C\} 'watch, clock (from English "watch")'77
a. wa:cz-i that-over-there is a watch, clock JSS3, HS
ti:c-i that-over-there is high bush cranberry EW, HS, BC91
b. wa:c watch, clock (from English "watch") JSS3
til:c ~ til:s high bush cranberry (Viburnum edule) EW, HS, BC91
c. wa:c-ki that absent/gone thing is a watch, clock HS
ti:s-ki that absent/gone thing is highbush cranberry HS
d. wa:c-nuk ${ }^{w}$ to have a watch HS
(348) $/ \mathrm{bug}^{\mathrm{w}} / \rightarrow\left[\mathrm{buk}^{\mathrm{w}}\right] /$ __\{\#, C\} 'book (from English)'
a. bugw-i that-over-there is a book HS
$g^{w} u k^{w}-i \quad$ that-over-there is a house HS
b. bukw book HS
$g^{w} u k^{w} \sim g^{w} u x^{w}$ house EW, HS
c. buk ${ }^{\text {w}}$-ki that-one (absent, gone) is/was a book HS
$g^{w} u x^{w}-k i \quad t h a t-o n e$ (absent, gone) is/was a house HS
d. $b u k^{w}-n u k^{w}$ to have a book HS
(349) /y'ugww-/ \rightarrow [y'ukw]/__\{\#, C\} 'to rain'
a. yug ${ }^{\mathrm{w}}-\mathrm{a}$ to rain, the rain JSS3
$d^{\prime}{ }^{w}-\mathrm{a}$ to troll EW, BC120: HS,
BC
b. y'ukw-bis rain, rainwater HS
dux"piq crane? JSS3
(350) $/ . .$. id $/ \rightarrow[. . . i t] / \ldots\{\#, C\}$ 'to start '
a. damid-i he/she over-there started towing HS
canit- \mathbf{i} that-over-there is a fish tail EW, HS
b. damit to start towing HS
c'anit tail of a fish EW
c. damit-ki he/she (absent, gone) started towing HS

[^53](351) /-ad/ \rightarrow [-at]/__\{\#, C\} 'to have'

a. X ${ }^{\prime} k^{\prime}{ }^{\text {w }}$ bad-i	that-one-over-there has roots	HS
kibat-i	that-over-there is red elderberry	HS; BC90
b. X'uk'bat	to have roots	HS
kibat ~ kibał	that-over-there is red elderberry	HS; BC90
c. X'uk'bat-ki	that-one (absent, gone) has/had roots	HS

A final, rather unique, example of voicing neutralisation is offered by the syntactic element g - 'and further, and then' which is always followed by personal subject enclitics. As shown in (352), the underlying voicing of \mathbf{g} - is preserved before (tautosyllabic) sonorant-initial enclitics but it is neutralised before obstruent-initial enclitics. Note that enclitics beginning in RV (e.g., -nug"a '1st pers. sing.) are separated from g-by an epenthetic schwa, e.g. g+nugwa \rightarrow ganug"a 'and then l...', such that devoicing does not occur.
(352) /g-/ 'and further, and then'

a.	g-i	and then he/she/it (over there) ...	EW
b.	g-nc	and then we (incl.) ...	HS
c. $k-k i$	and then he/she/it (absent, gone) ...	HS	
d.	k-su	and then you ...	HS

3.6.2. Two OT analyses of voicing neutralisation

There are two approaches to voicing neutralisation in the current OT literature. In the first approach, voicing in obstruents is preserved through faithfulness (353) in spite of a universal tendency to avoid voiced obstruents. The relevant context-free markedness contraint is given in (354), after Halle (1959), Chomsky and Halle (1968:406), Kiparsky (1985), etc.
(353) Faith-lO[voice]

Every input feature [voice] has an identical correspondent in the output (Max); every output feature [voice] has an identical correspondent in the input (Dep).
(354) *[+voice, -sonorant]

An obstruent must be voiceless.

Voicing neutralisation occurs nonetheless because Faith-IO[voice] is dominated by a high ranking context-sensitive markedness constraint against voiced obstruents. The best known such constraint is given in (355) (Pulleyblank 1997, Inkelas, Orgun \& Zoll 1997:408, Kager 1999:14, etc.). ${ }^{78}$

[^54]An obstruent must not be voiced in coda position.

This constraint accounts for all cases (exemplified in section 3.6.1) in which voicing in an obstruent is neutralised word-finally (e.g., ?ak, cf. 7ag-i) and preceding a heterosyllabic sonorant (e.g., buk ${ }^{w}{ }^{n} k^{w}$, cf. bug ${ }^{w}-\mathrm{i}$). This is illustrated in the two constraint tableaux in (356). In (356a), the optimal candidate (i) violates Faith-IO[voice] while the suboptimal candidate (ii) violates highest-ranked ${ }^{*}+$ voice] $]_{\sigma}$. In (356b) ${ }^{[}+$+voice] $]_{\sigma}$ is irrelevant. In that case, the optimal candidate (i) only violates lowest-ranked *[-sonorant, +voice].
(356) Voicing neutralisation in coda position
a. /'ağ-/ \rightarrow [ćaq] 'goat'

	$*[\text { +voice }]_{\sigma}$	Faith-lO[voice	$*[$-son, +voi]
$\Rightarrow \mathrm{i} . \quad$ caq		$*$	
ii. ćağ	$*!$		$*$

b. /c'ağ-i/ 'the-one-over-there is a goat'

		$*[+ \text { voice }]_{\sigma}$	Faith-IO[voice]
	$*[$-son, + voi $]$		
\Rightarrow i. ćaǧi			$*$
ii. ćaqi		$*!$	

However, the constraint *[+voice] $]_{\sigma}$ apparently fails to account for some cases (presented in section (3.6.1)) in which lexical voicing becomes neutralised preceding an obstruent. Especially problematic are the cases illustrated in (352) and in (337) (cf. (340c, d), (342c)); see also fn. 74. For example, $/ \mathrm{g}+\mathrm{su} / \rightarrow \mathrm{ksu}$ 'and then you...'; /bkw-(k)ala/ $\rightarrow \mathrm{pk}^{\text {'wala }}$ 'to talk'. The problem is that the word-initial consonants in ksu, pkwala, etc. are not transparently in coda position (unless they are somehow "stranded codas", but no independent evidence exists for this interpretation), yet voicing is neutralised in them (/bk'w/ $\left.\ldots / \rightarrow k^{w} \ldots\right], / \lambda \check{x} \ldots / \rightarrow[\lambda \check{x} \ldots .$.$] ,$ $/ \lambda g^{w} \ldots / \rightarrow\left[\lambda g^{w} \ldots\right]$, ${ }^{\text {g }} \mathrm{k} . . . / \rightarrow[q k . . .$.$\left.] , etc. \right)$.

To account for these cases of voicing neutralisation which would be exceptional under an account assuming (355), it seems necessary to recognise another context-sensitive markedness constraint against voiced obstruents, this one syllable-independent. The following is given by Steriade (1997).
(357) *[+voi] [-son]

An obstruent must be voiceless preceding an obstruent.

The effect of this constraint is illustrated in the following tableau, which parallels (356a). In (358), the optimal candidate (i) violates Faith-IO[voice] while the suboptimal candidate (ii) violates highest-ranked ${ }^{\text {[[+voi] [-son]. }}$
(358) Voicing neutralisation before an obstruent

/ğk-(k)'ala/	[+voi] [-son]	Faith-IO[voice]	${ }^{*}$ [-son, +voi]
(i. qk'ala		$*$	
ii. ǧk'ala	$*!$		$*$

Note that *[+voice] $]_{\sigma}$ is still needed, since *[+voi][-son] does not account for voicing neutralisation that occurs word-finally or preceding a heterosyllabic sonorant. In sum:
(359) Voicing neutralisation via context-sensitive markedness constraint
*[+voi] [-son], *[+voice] $]_{\sigma} \gg$ Faith-IO[voice] > *[-sonorant, +voice]

In a different approach to voicing neutralisation (e.g. Lombardi 1999, Tesar \& Smolensky 2000; cf. Howe \& Pulleyblank, to appear), the context-free markedness constraint against voiced obstruents (354) dominates faithfulness (353), i.e. *[-sonorant, +voice] > FaithIO[voice]. But the prohibition on voiced obstruents is itself overridden by a context-sensitive faithfulness constraint, viz. (360).
(360) *OnsFaith-IO[voice] (Lombardi 1999:270)

Consonants in the position stated in the Laryngeal Constraint (361) should be faithful to underlying laryngeal specification.
(361) The Laryngeal Constraint ${ }^{79}$

(362) Voicing neutralisation via context-sensitive faithfulness constraint

OnsFaith-IO[voice] > *[-sonorant, +voice] > Faith-IO[voice]

This approach to voicing neutralisation is exemplified in the two constraint tableaux in (363). In (363a), OnsFaith-IO[voice] is irrelevant to the stem-final consonant; the optimal candidate (i) violates only lowest-ranked Faith-IO[voice] while the suboptimal candidate (ii) violates higher ranked *[-sonorant, +voice]. In (363b), the optimal candidate (i) violates *[-sonorant, +voice] while the optimal candidate (ii) violates highest ranked OnsFaith-IO[voice].

[^55](363) Voicing neutralisation with context-sensitive faithfulness
a. /c'ağ-/ \rightarrow [ćaq] 'goat'

	OnsFaith-1O[voice]	*[-son, +voi]	Faith-IO[voice]
\Rightarrow i. ćaq			$*$
ii. cağ		$*!$	

b. /c'ağ-i/ 'the-one-over-there is a goat'

	OnsFaith-IO[voice]	$*[-$ son, +voi]	Faith-IO[voice]
\Rightarrow i. c'aği		$*$	
ii. c'aqi	$\star!$		$*$

Note that this approach also seems to account for the special cases of voicing neutralisation presented in section (3.6.1): (352), (337) (cf. (340c, d), (342c)); see also fn. 74. Though these initial consonants may be in onset position (see section 1.1.4, p. 9ff.) yet they still un-
 because they are not followed by a sonorant, as required by (361).

To summarise, each of the above analyses of voicing neutralisation relies on contextsensitivity. In the first approach (e.g. Pulleyblank 1997, Steriade 1997, etc.), context-sensitive markedness bans voiced obstruents everywhere except before a tautosyllabic sonorant. In the other approach (Lombardi 1999, Tesar and Smolensky 2000, etc.), context-sensitive faithfulness preserves voicing in obstruents only before a tautosyllabic sonorant.

3.6.3. Voicing in loan word phonology

Stops and affricates that are voiceless in English regularly become voiced when (English) words are borrowed into Oowekyala. This gives the peculiar impression that stop voicing is phonologically unmarked in loans. Some examples are listed in (364). 80 In the last few examples, the $3^{\text {rd }}$ person subject enclitic /-i/ is added to the loan words in order to show that voicing has been added to stem-final obstruents that were voiceless in the source language.
(364) English loans in Oowekyala

English
a. Peter
b. tea
c. pussy
d. apple(s)
e. slippers
[slipe(„)z]

Oowekyala

bida
di:
busi
Tabls
səlibas

HS
BC1 19, JSS3
JSS3, WL
BC100: EW, HS,
BC
HS

[^56]| f. matches | [mæčiz] | ma:dzis | JSS3 |
| :---: | :---: | :---: | :---: |
| g. stove | [stov] | sdub-i, sdup | HS |
| h. boat | [bot] | bud-i, but | HS |
| i. book | [buk] | bug $^{\text {w }}$-i, buk $^{\text {w }}$ | HS |
| j. watch | [wač] | wa:cz-i, wa:c | HS, pic |

To explain this pattern, it is here claimed that a universal preference exists for segments to be voiced before tautosyllabic sonorants. This preference may be stated as a contextsensitive markedness constraint:
(365) [+voi]/[б___[+son] A segment must be voiced before a tautosyllabic sonorant.

Before considering the place of (365) in Oowekyala grammar, it is important to note that this constraint is grounded in phonetic factors. That one should find segments becoming voiced before sonorants - which are inherently voiced- is phonetically unsurprising. At the same time, (365) remains a phonological constraint because stop voicing is relativised to a strictly phonological constituent -the syllable- and because its consequences vary from language to language, i.e. it participates in individual phonological systems -construed as ranked constraints in OT.

The typological evidence in favour of (365) comes from languages in which obstruents are systematically voiced before tautosyllabic sonorants. Mohawk (Iroquoian), in which all and only prevocalic stops are voiced, is a textbook example of such a language (e.g. Halle and Clements 1983:59, 121-3). Other examples include Tsimshianic Nisga'a (Tarpent 1987) and Smałgyax (Dunn 1995). As Dunn (1995:1:5) describes:

The letters $b, d, d z, g$, and g generally occur between vowels and before vowels ... The letters k, \underline{k}, p, and t generally occur at the end of words and in clusters.

Yet another example is Amele (spoken in Papua New Guinea) which Roberts (1987) describes as having only voiced stops prevocalically. 81 The fact that fricatives do not voice in the context of (365) is presumably related to their mode of production, which disfavours voicing contrasts (see discussion in previous chapter regarding the absence of voiced fricatives in Oowekyala).

Apart from the typological evidence, it is noteworthy that (365) also seems to be substantiated in developmental phonology. Young children tend to voice stops in prevocalic context. 82 The following data are from child English (Henry Davis, p.c., confirms that the prevocalic voicing of stops is common in child English).

[^57](366) Stop voicing in child English (Halle and Clements 1983:151)

a.	tent	$[\mathrm{d} \varepsilon \mathrm{t}]$
b.	sock	$[g \partial \mathrm{k}]$
c.	table	$[$ bebu]
d.	spoon	$[b u: n]$
e.	skin	$[g i n]$
f.	play	$[b e:]$
g.	tickle	$[g i g u]$

Crucially, it is frequently the case that child language displays unmarked sound sequences (e.g., Jakobson 1941, Stampe 1979). As Smolensky (1996:720) remarks (not uncontroversially), "the same configurations that are marked (in the sense of disfavored) in adult languages tend also to be avoided in child language". The systematic voicing of stops exemplified in (366), if true, would therefore argue in favour of the markedness constraint (365).

Returning now to Oowekyala, it is not the case that all stops and affricates are voiced before a tautosyllabic sonorant (unlike in Iroquoian, Tsimshianic, Amele, and perhaps child English), e.g. ${ }^{\text {wasasa }}$ 'to trample, stamp the feet' vs. g"asa 'to fray, chafe, rub'. To explain this, it is assumed that (365) ranks lower than faithfulness in Oowekyala grammar. Specifically, if the analysis in (359) is assumed, then Faith-IO[voice] outranks (365); if the analysis (362) is assumed, then Lombardi's (1999:270) OnsFaith-IO[voice] (360) outranks (365). Lombardi's approach is adopted below; it is more important to avoid changes in voicing in onset position than it is to have voiced stops/affricates before tautosyllabic sonorants.

OnsFaith-lO[voice] > [+voi]/[σ_{\ldots} [+son]
Stop/affricates are not specified with non-lexical [+voice] when preceding tautosyllabic sonorants.

From this ranking, it follows that the context-sensitive markedness constraint (365) is satisfied only when a [+voice] feature is included in the input. This is illustrated in the following two constraint tableaux with the minimal pair giẍa/kix̆a. Note in particular that the mapping of /kix̆-a/ as [gix̌a] is blocked by high-ranking OnsFaith-IO[voice].
(368)
a. gixa 'to grind, to file, to sharpen'

	/gix̆ $-\mathrm{a} /$	OnsFaith-IO[voice	$[+$ voi $] /\left[\sigma_{\ldots} \quad[+\right.$ son $]$
$\Rightarrow \mathrm{i}$.	gix̆a		$*$
ii.	kix̆a	$*!$	$* *$

b. kix̌a 'to use a saw'

	/kiẍ-a/	OnsFaith-IO[+voice]	[+voi]/[$\sigma_{\ldots} \ldots[+$ son]
i.	gix̆a	$*!$	$*$
\Rightarrow ii.	kix̆a		$* *$

(The opposite ranking, i.e. [+voi]/[c___[+son] > OnsFaith-IO[voice], presumably holds in Iroquoian, Tsimshianic, Amele, and child English, where it is more important that obstruent stops and affricates be voiced before a tautosyllabic sonorant than it is to avoid onset changes in voicing.)

Based on the fact that voiced obstruents 'emerge' in Oowekyala loan phonology, it is further assumed that the context-sensitive markedness constraint (365) outranks the contextfree markedness constraint against voiced obstruents in general (354). The complete constraint hierarchy is thus as follows; cf. (362).

OnsFaith-IO[voice $] \gg\left[+\right.$ voi] $/\left[\sigma_{\ldots} \ldots[+\right.$ son $] \gg *\left[\begin{array}{l}- \text { son } \\ + \text { voi }\end{array}\right] \gg$ Faith-lO[voice $]$
"Voicing in obstruents is avoided, except before a tautosyllabic sonorant, except if an obstruent in onset position is not lexically specified [+voice]."

This overall interaction is illustrated in the next two tableaux. As shown, the initial segment of λ a:x̌axsala ($370 \mathrm{a} . \mathrm{i}$) is optimally voiced, in violation of general markedness (354), but in conformity with higher-ranking contextual markedness (365). By contrast, ta:saxsala (370b.ii) optimally violates contextual markedness (365) because the initial segment of this form is not lexically-specified [+voice] and highest-ranked OnsIndent-IO[voice] prevents this feature from being inserted.
(370)
a. λ a:x̆axsala 'to slide here and there' (cf. λ x̆a 'to shove, slide; to plane')

/ λ ¢̈-axsala/	$\begin{gathered} \text { OnsFaith-IO } \\ \text { [voice] } \end{gathered}$	[+voi]/[o___[+son]	*[$\left[\begin{array}{l}\text { son } \\ + \text { voi }\end{array}\right]$	Faith-IO [voice]
\Rightarrow i. λ a:x̆axsala		**	*	
ii. 入a:x̆axsala		***!		*

b. ta:saxsala 'to push here and there' (cf. tsa 'to push')

/ts-axsala/	$\begin{gathered} \text { OnsFaith-IO } \\ \text { [voice] } \end{gathered}$	[+voi]/[a___ [+son]	* $\left[\begin{array}{l}-\mathrm{son} \\ + \text { voi }\end{array}\right]$	Faith-IO [voice]
i. darsaxsala	*!	**	*	
\Rightarrow ii. ta:saxsala		***		*

Returning now to the voicing pattern illustrated in (364), note that the analysis encapsulated in (369) predicts that stop voicing (before a tautosyllabic sonorant) will occur whenever OnsFaith-IO[voice] is put 'out of control'. (Actually, this prediction holds generally of OT. To the extent that language is a conflict between markedness and faithfulness constraints, unmarked configurations emerge wherever faithfulness is silent (Kager 1999:47).) This allows us to understand the voicing process in loan adaptation as follows:

The highest-ranked constraint in (369) is OnsFaith-IO[voice]. But this input-output faithfulness constraint is not important in loan adaptation, because Oowekyala has no underlying representations for English words before these are borrowed (see Kaye 1974, 1975 for re-
lated general discussion). Moreover, because the loans are intended for use by Oowekyala speakers, not for the benefit of English speakers, there is little pressure for Oowekyala speakers to select underlying representations for loan words that will result in 'proper' English pronunciations. Rather, in choosing underlying representations for English words, Oowekyala speakers may select ones whose usage will incur the least markedness violations, taking into account the constraint hierarchy. This is 'lexicon optimisation', as recently reformulated by Tesar and Smolensky (2000) (cf. Prince \& Smolensky 1993, chap. 9):

The underlying form of a morpheme is the one, among all those that give the correct surface forms, that yields the maximum-Harmony paradigm. (Tesar and Smolensky 2000:80)

Since [+voi]/[σ_{-}_[+son] (365) is the second highest-ranked constraint (after Faith10 [voice]) in (369), it is the primary determinant in the selection of underlying representations for English loans. So, for instance, the choice of /bugw/ for 'book' ensures that the stem-final stop will be voiced in suffixed and encliticised forms, e.g. bugwi 'that is a book'. In contrast, if $/ b u k^{w} /$ were chosen as the underlying representation, some resulting suffixed and encliticised forms would violate $\left[+\right.$ voi] $/\left[\sigma_{\ldots} \ldots\left[+\right.\right.$ son] (365), e.g. ${ }^{*}{ }^{\text {buk }}{ }^{w_{i}}$. The fact that transparadigmatically /bugw/ results in more harmonic forms than /bukw/ -where 'harmony' is evaluated according to (369) - is illustrated in the following two tableaux.
 \& Smolensky 2000:81). Both $/ \mathrm{bug}^{\mathrm{w}} /$ and $/ \mathrm{buk}^{\mathrm{w}} /$ are mapped so that they surface with the correct paradigm, \{[bukw], [bugwi]\}. In the first candidate paradigm, the alternation results from deleting the underlying voice feature of the final $/ \mathrm{g}^{\mathrm{w}} /$-a violation of Faith-

IO[voice]; in the second candidate paradigm, the alternation results from adding a voice feature to the underlying $/ \mathrm{k}^{\mathrm{w}} /$-a violation of OnsFaith-IO[voice]. Since OnsFaith-IO[voice] ranks higher than Faith-IO[voice], the second candidate (b) is less harmonic than the first candidate (a). Lexicon optimisation thus picks /bugw/ as the underlying form because it gives rise to the most harmonic structural description of the paradigm.
(373) Lexicon optimisation tableau for [buk $\left.{ }^{W}\right] \sim\left[b^{\prime}{ }^{w_{i}}\right]$

	OnsFaith-IO[voice]	[+ voi]/[$\sigma_{\text {_ }}$ [$[$ son]	*[-son, +voi]	Faith-10[voice]
$\Rightarrow \mathrm{a}$. \mid bug $^{\omega} /+\left\{\begin{array}{l}0 \\ i\end{array}\right\} \rightarrow\left\{\begin{array}{c}{\left[\text { buk }^{w_{i}}\right.} \\ {\left[\text { bug }^{\prime}\right]}\end{array}\right\}$			*	*
			**	
b. $\quad /$ buk $^{w} /+\left\{\begin{array}{l}\varnothing \\ i\end{array}\right\} \rightarrow\left\{\begin{array}{l}{\left[b^{\left[k^{w}\right]}\right.} \\ {\left[\text { bug }_{\text {wi }}\right]}\end{array}\right\}$			*	
	*!		**	

To summarise, while both analyses given in section 3.6 .2 ensure that voicing is preserved in obstruent stops/affricates before tautosyllabic sonorants, neither can explain the fact that voicing is systematically added to obstruent stops in this structural context in such languages as Mohawk, Smałgyax, Nisga’a, Amele, and child English. Nor can these approaches explain the fact that English voiceless stops and affricates become voiced in this context when they are borrowed into Oowekyala, e.g. (364). To account for such cases, it seems necessary to recognise a markedness constraint that favours voicing in segments in the environment of a following sonorant in the same syllable, as proposed in this section.

3.6.4. Evidence for [-voice]

The following question remains: does voicing neutralisation in Oowekyala involve a value change from [+voi] to [-voi], or does it involve feature deletion resulting in a laryngeally unspecified stop/affricate?
(374) Two interpretations of voicing neutralisation
a. Input
Output
b. Input Output'

This question is addressed below by considering the interaction of voicing neutralisation with spirantisation, degemination, and with phonologically-conditioned allomorphy.

3.6.4.1. Spirantisation revisited

Of immediate relevance is the (above noted) fact that devoiced obstruents fail to participate in spirantisation (section 3.4) whereas lexically unmarked (i.e. voiceless nonglottalised) obstruents regularly undergo this process. For example, the root-final lexically voiced stop of / $\mathrm{Tag} /$ 'all, every' is invariably pronounced [k] syllable-finally whereas the root-final lexically unmarked stop of /y'ak/ 'bad' is pronounced [x] syllable-finally (word-finally, only variably so).

l Pag/ 'all'	lyak/ 'bad'	
Pak (*?ax)	y'ak ~ y'ax	
Paksta (*?axsta)	y'axsta (*'jaksta)	-sta '(in) water'
Pag-nc	y'ak-nc	-nc 'we (incl.)

```

The reason for this asymmetry, it is here suggested, is that (in Oowekyala at least) voicing neutralisation does not completely remove the Laryngeal specification; it only switches the voicing value (from [+voi] to [-voi]). Specifically, it is argued that phonetically-identical obstruents may correspond to two different phonological outputs. For example, the stem-final stop of e.g. Tak 'all' (which derives from underlying [+voi] \(/ \mathrm{g} /\) ) is specified [-voi] in the output (Type A), whereas the stem final stop of e.g. yak 'bad' is unspecified for [voice] (Type B).


Crucially, Oowekyala fricatives do not license voicing contrasts, that is (by hypothesis) a fricative cannot be specified either [+voi] or [-voi] in this language (*[ \(\alpha\) voi, -son, +cont]; see section 2.3.2 on p. 41). This entails that [-cont] can switch to [+cont] in an obstruent that is unspecified for [voice] (Type B), but not in an obstruent stop that is specified [-voi] (Type A). Altogether, then, it is claimed that obstruent stops that are voiceless as a consequence of voic-
ing neutralisation fail to undergo spirantisation because they are specified [-voi] and this laryngeal specification cannot cooccur with [-son, +cont] in Oowekyala.

To ensure that voicing neutralisation results in [-voi], it is claimed that the change schematised in (377a) amounts to a lesser violation of faithfulness than the change schematised in (377b). Specifically, it is proposed that while both (377a) and (377b) violate Faith-IO[voice] (see
 (353) on p. 135), only (377b) additionally violates Max-IO[Lar].

\section*{(378) Max-IO[Lar]}

Every [Lar] in the input has a correspondent in the output.
Spirantisation applies normally to syllable-final stops that have no [voice] specification (e.g., /Yak-sta/ \(\rightarrow\) yaxsta 'dirty water'), since both *[-son, +cont, \(\alpha\) voi] (i.e. (86), p. 41) and Max-IO[Lar] are irrelevant in such cases. By contrast, the combined effect of *[-son, +cont, \(\alpha\) voi] and Max-IO[Lar] is illustrated in the following tableau for 7aksta 'all in the water'. On the one hand, spirantisation (i.e. satisfaction of *[-cont] \(]_{a}\) ) is blocked by the presence of [-voi] (here derived from underlying [+voi]), because the latter specification cannot cooccur with [+cont] in Oowekyala, as shown in (379b). On the other hand, the wholesale deletion of underlying [Lar] (and [+voice]) that would facilitate spirantisation (i.e. satisfaction of *[-cont] \(]_{\sigma}\) ) is blocked by Max-IO[Lar], as shown in (379c,d). In this "no win" situation, spirantisation simply fails (379a).
(379) /Rag-sta/ \(\rightarrow\) ?aksta (*?axsta) 'all in the water'
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
/7ag-sta/ \\
Lar +voi
\end{tabular} & \[
*\left[\begin{array}{l}
- \text { sonorant } \\
+ \text { continuant } \\
\alpha \text { voice }
\end{array}\right]
\] & Max-IO[Lar] & *[-cont] ] \({ }_{\sigma}\) & Faith-IO[cont] \\
\hline \(\Rightarrow \mathrm{a}\). & & & * & \\
\hline b. Paxsta & *! & & & * \\
\hline c. Taksta & & *! & * & * \\
\hline d. Paxsta & & *! & & * \\
\hline
\end{tabular}

Note that the analysis in (379) can supplement either of the two analyses of voicing neutralisation encapsulated in (359) and (362).

\subsection*{3.6.4.2. Degemination revisited}

As noted in section 3.3 on p. 98, only stem-final plain (i.e. voiceless nonglottalised) consonants delete in degemination context. For example, (380) shows that glottalised stem-final consonants do not delete before a similar/identical consonant.
(380) No degemination with stem-final glottalised C
a. \(q a k^{w}-k^{w} n \sim q a k^{w}-k n\)
to be completely beaten in the game
HS
qakwa to suffer a loss (as in a game) EW
b. \(\begin{array}{ll}\text { Tik'-kyiala } & \text { high above the top of sth. } \\ \text { lik'-ba } & \text { higher (in place or rank) than; to be at the end of a se- } \\ & \text { ries; top of a vertical pole }\end{array}\)

Voiceless stops/affricates that result from voicing neutralisation also fail to participate in degemination, as the following data illustrate.
(381) No degemination with stem-final devoiced C
a. Takgls
all have left
HS
7ag-ala
all together
b. y'uk \({ }^{w}-k^{w}\) ala \(\sim\) juk \(^{w}{ }^{\prime}\) k'ala \(^{2}\)
sound of the rainHS
y'ug \({ }^{w}\) a to rain, the rain

It is proposed that stem-final segments resulting from voicing neutralisation are specified [-voi], as in (377a), and that this specification makes them different from laryngeallyunmarked stem-final segments, which undergo degemination as described above in section 3.3. For example, the stem-final [k] of 7ak 'all' (which derives from underlying \(/ \mathrm{g} /\) ) is specified [-voi] and as such, it fails to undergo deletion before -gls 'outside', hence 7akgls (*7agls). By contrast, the stem-final \(k\) of /nik/ 'say' is laryngeally-unmarked and as such it undergoes deletion before /-ganm/ 'perhaps': nii-ganm 'to perhaps say' (*n'ikganm).

The fact that [-voi]-specified stem-final consonants resist deletion in degemination contexts may also be explained with high-ranking Max-IO[Lar] (378) (see previous section).
(382) 7ag-gls \(\rightarrow\) Takgls 'all have left'
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
/7ag-gls/ \\
Lar Lar
\[
+v+v
\]
\end{tabular} & Max-IO[Lar] & Left-Anchor-10 & Antigemination & Max-10 \\
\hline \[
\Rightarrow \text { a. }\left.\right|_{\text {Lar }} ^{\text {Tak-gls }} \mid
\] & & & * & \\
\hline b. \(\underset{\sim}{\text { Lag }}\) & *! & *! & & * \\
\hline c. \(\mathrm{Pa} \varnothing\)-gls & *! & & & * \\
\hline
\end{tabular}
(383) nik-ganm \(\rightarrow\) niganm 'to perhaps say'
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
/nik-ganm/ \\
Lar \\
+V
\end{tabular} & Max-IO[Lar] & Left-Anchor-10 & Antigemination & Max-10 \\
\hline a. nik-ganm Lar
+v & & & *! & \\
\hline b. nik- danm \(^{\text {a }}\) & & *! & & * \\
\hline \begin{tabular}{l}
\(\Rightarrow c\). ni \(\varnothing\)-ganm \\
+v
\end{tabular} & & & & * \\
\hline
\end{tabular}

\subsection*{3.6.4.3. Laryngeally-conditioned allomorphy}

It has been argued that Oowekyala grammar differentiates between two types of 'unmarked' obstruent stops/affricates: ones that lack Laryngeal specification, and others that are specified with the unmarked value [-voice]. This section will further this argument by showing that Oowekyala actually makes lexical contrasts between obstruents on the basis of presence vs. absence of unmarked features. The evidence comes from a phonologically-conditioned pattern of allomorphy.

As a first example, consider the 'continuative' suffix -ala. This fully-productive suffix has the shape -ala after voiced obstruent stops and affricates, after glottalised stops and affricates, after (voiced) modal resonants, and after glottalised resonants.
(384) -ala after voiced obstruents
    a. ki \(\ddot{x}^{w}\) bud-ala running to the end of sth. long and horizontal (e.g. a float, a HS
            wharf)
    kíẍwbut to run to the end of sth. long and horizontal (e.g. a float, a HS
        wharf)
    b. yug"-ala to be raining HS
    yuk \({ }^{\text {w }} x^{\text {w }}\) 3it to start to rain EW
    c. Tag-ala all together HS
    Zakğu all together HS, EW
(385) -ala after glottalised obstruent
\begin{tabular}{llll} 
a. daaq"wala & north wind off the sea (also W, SW depending on location) & EW, DS183 \\
& dzaq" \(x^{\text {w }}\)
\end{tabular}
c. Pik'ala high, something which is high up ..... EW
?ik' high ..... EW, HS
(386) -ala after sonorants (whether glottalised or not)
a. ban'-ala keeping close to sth. ..... HS
briğut to put things close together ..... EW
b. c'ən-ala to walk around in a group, marching, parading; procession ..... HS
c'nx?it to begin marching or parading, to begin walking (said of a pro- ..... EWcession of people)
c. wam'-ala to have one's belongings with one ..... HS
wam'a to move one's belongings ..... EW
d. x̆cam-ala red-cedar storage box ..... BC65
x̌cm cedar storage box ..... EW
e. hal'-ala unwilling or reluctant to do something because one feels that it is ..... EW too difficult
halka to stop trying, to give up ..... HS
f. gal-ala going on all fours, crawling (as of a baby) ..... HS
glx?it to start to go on all fours, to start crawling (as a baby) ..... WL
By contrast, the continuative is pronounced -ola after stems ending in voicelessnonglottalised stops and affricates, and after fricatives.
(387) -ala after 'plain' C
a. qutəla bracing, shoring up, supporting sth. with a pole ..... HS
quta to make use of a pole (to shore up, support, poke, push) ..... EW
b. qakəla cutting off heads of fish, animals, or people; beheading, HS (*qakala) decapitating
qaka to cut off heads of fish, animals, or people; to behead, to de- EW, capitate ..... DS129
c. \(g^{w} u k^{w}\) əla to camp, dwell, reside somewhere, a camp ..... EW
(*g"uk"ala)
\(g^{w}{ }^{\text {u }}{ }^{w}\) ila to build a house ..... HS
d. duqwola to see, look ..... EW
(*duq"ala) duqwa to look for sth. ..... HS
(388) -əla after fricatives
a. casəla pouring, dumping out (said in connection with liquid) ..... WL
casa to pour water on, throw out water ..... EW,
b. dlxzla covered with dampness-caused white skin eruption ..... HS
(dlxala)
dlxa white eruption on skin (because of dampness) ..... EW
c. \(g^{\text {w }}\) ułəla gathering and preserving staple food; gathering and smoking ..... HS
(* \({ }^{\text {w }}\) utala)
salmon
salmon
g"uła to gather and preserve food staples (meat, berries, and espe- ..... EWcially salmon), to prepare food for later, make travelling provi-sions, to will something to somebody
d. \(k^{w} n x^{w}\) əla to rumble ..... EW
(*k \({ }^{w n} n{ }^{w}\) ala)
\(k^{w} n x^{w}\) a to vibrate, to cause rumbling ..... HS
e. \(k^{\text {wixazala }} \quad\) requesting, asking for help, coaxing s.o. into doing sth. ..... HS
(*k \({ }^{\text {wixixala) }}\)
 to request something, ask a favour ..... EW,DS102
f. mə \(\check{x}^{w}\) əla wet, damp ..... EW
( max \(^{w}\)
to bathe ..... JSS2
Next consider the 'inchoative' suffix -x7it. Its initial consonant is realised after glottal-ised stops and affricates (389), after devoiced stops/affricates (390), and after sonorants (391).
(389) -x?it after glottalised obstruent
a. \(p q^{\text {w' }} \mathrm{c}^{\prime} \times\) it to become sleepy or drowsy ..... HS
\(p q^{\text {w }}{ }^{\prime}\) drowsy, sleepy ..... EW
b. Tik'xis to make higher, to raise, to heighten, to elevate ..... HS
Pik'ba higher (in place or rank) than; to be at the end of a series; top ..... HS of a vertical pole
(390) -x7it after devoiced obstruent
a. Pakx?it to become complete ..... HS
Tagala all together ..... HS
b. \(g^{w} u{ }^{w}\) atx?it to become a home owner ..... HS
\(g^{w}\) ugwad-i \(^{\text {w }}\) he/she owns a house ..... HS
c. caqxit to become a goat ..... HS
c’ağ-i it's a mountain goat ..... EW,
HS, BC
(391) -xiit after sonorants
a. \(H^{\prime}-x\) iit to become dead ..... HS
fr dead, inactive, paralysed ..... EW, HS
 to assume the colour of blood ..... HS
?lix \({ }^{w}\) stu colour of blood, having the colour of blood ..... HS
\begin{tabular}{lll} 
c. tu-xw7it & to take a walk, to start to walk & HS \\
taw-a & to walk & EW, DS146 \\
d. pusq'a-x?it & to become very hungry, to get a very hungry feeling & EW
\end{tabular}

However, the initial / \(x\) / of this suffix is dropped after fricatives, and also after 'plain' stops and affricates which become fricatives via regular spirantisation. This is illustrated here:
(392) - ?it after fricatives and aftel 'plain' stops and affricates, which spirantise to fricatives
\begin{tabular}{|c|c|c|}
\hline a. Pans?it & to make a slight move, to start to move over (up) a bit; to make a move in a game of chess or checkers & HS \\
\hline Panca & to shove, to move towards sth. little by little; to play chess or checkers & EW, HS \\
\hline b. c'm \(\check{x}^{w} 7 \mathrm{it}\) & to swallow at once without chewing & HS \\
\hline cimqwa & to bolt food, to swallow whole (e.g. pills) & EW \\
\hline c. cuł?it & to become black & HS \\
\hline cıuła & black & EW \\
\hline d. tsPit & to give a push, to start pushing with the hands & WL \\
\hline tsa & to push, press against & EW \\
\hline e. dabn+7it & become dark & WL \\
\hline dabnt & dark (as the night) & EW \\
\hline
\end{tabular}

If we assume that modal sonorants are specified [+voice] (see section 2.3 .3 , p . 50 ff .) and that devoiced obstruents are specified [-voice] (see immediately preceding sections), these allomorphic patterns can be simply analysed: the disappearing segments (/a/ for -ala; /x/for -x7it) are realised after consonants with Laryngeal specification, but deleted elsewhere. Though the actual constraint(s) responsible for this alternation will not be discussed here, the pattern is compelling. Interestingly, there are a few exceptional roots and suffixes which end in 'plain' stops/affricates or fricatives, yet which pattern as if they had Laryngeal specification, in the sense that they are followed by -ala (not -ala), -x7it (not -7it), etc.
(393) Some irregular stem-final 'plain' stops/affricates
a. X'up-x?it to start falling, going out (said of the tide) ..... HS
خ’upan'ak \({ }^{\text {wola }}\) to fall or go out gradually (said of the tide) ..... EW
b. TaX-ala landwards, towards the woods ..... EW
Paえgila to travel inland; inland-bound ..... HS
c. bax-ala measuring, fathoming, measuring by using the extended arms or ..... EW fingers
baxgiwala spreading out from the front (as trolling poles from the front part ..... HS of the boat)
d. Pau' \(\ddot{x}^{w} \boldsymbol{x}-x\) Pit to lift sth. onto one's back and carry it ..... EW
アau'̃̄̃ \(\boldsymbol{\chi}\)-ala carrying sth. on one's back ..... HS
e. \(7^{2} q^{w}\)-ala to be cloudy ..... HS
 foggy season ..... HS
(394) Some irregular stem-final fricatives
a. X'úx wala pain, ache, sickness; to be sick, to ache (said of a body EW part)
\(\lambda^{\prime} u^{\prime} x^{w} x^{w}\) 7it ~ \(X^{\prime} u^{\prime} x^{w} x\) ? it to develop, turn into a pain or disease HS
b. X'asala situated or happening seaward EW
X'asxPit to go further seaward HS
c. \(\dot{x}^{\text {wisisala }} \quad\) that direction, far, on the far side, far away
\(\check{x}^{\text {w}}\) isx \({ }^{\text {it }} \quad\) to go further away, to move the other way HS
d. wixala going slow, delayed, delaying EW
wixsuk"əla to go slowly HS

It is proposed that unlike their regular homophonic counterparts (exemplified earlier), these irregular stem-final segments are specified with unmarked Laryngeal features: [-voice] for the stops/affricates (393), and [+spread glottis] for the fricatives (394). In the case of stops/affricates, this proposal also helps to explain why they fail to undergo spirantisation in e.g. ( \(393 \mathrm{a}, \mathrm{b}\) ); see explanation above in section 3.6 .4 .1 , p. 145 ff .

\subsection*{3.7. Allophonic variation}

This section discusses two patterns of allophony: vowel lowering, and sonorant debuccalisation.

\subsection*{3.7.1. Vowel lowering}

Recall that mid vowels are avoided in Oowekyala, allegedly because faithfulness (Faith-IO[high]) is outranked by the (paradigmatic) markedness of their featural compositionality (Kean 1980; Calabrese 1995:383, fn. 12; Roca \& Johnson 1999:585). It was remarked that English words with mid vowels such as table [tebl], cherries [č̌」iz], stove [stov] and soda [sode] are adapted into Oowekyala with high vowels: tibl (HS), cilis (BC, HS), sdup (HS), and suda (WL), respectively.
\[
*\left[\begin{array}{l}
- \text { high }  \tag{395}\\
- \text { low }
\end{array}\right] \gg \text { Faith-IO[high] }
\]

Recall too, however, that only nonhigh vowels are permitted after (unrounded) gutturals, i.e. after / \(q, \check{g}, q\) ', \(\check{x}, h, \gamma /\). The incidence of mid vowels after gutturals indicates that the grammar fragment in (395) is itself outranked by a (syntagmatic) markedness constraint that prohibits high vowels after segments specified [-ATR].
(396) *[-ATR] \(\left[\begin{array}{l}- \text { cons } \\ + \text { high }\end{array}\right] \quad\) Vowels must not be high after [-ATR] segments.

The effect of this contextual constraint is illustrated in the following tableau. As shown, nonhigh vowels are generally avoided except after a consonant specified [-ATR].
(397) \(\lambda i q\)-(g)ila 'to give a name to s.o.'
\begin{tabular}{|c|c|c|c|}
\hline & *[-ATR][ \(\left[\begin{array}{l}- \text { cons } \\ + \text { high }\end{array}\right]\) & * \(\left[\begin{array}{l}- \text { high } \\ - \text { low }\end{array}\right]\) & Faith-lO[high] \\
\hline  & *! & & \\
\hline \(\Rightarrow b\). [dliq \({ }^{\text {cola }}\) ] & & * & * \\
\hline c. [dieqxela] & & **! & ** \\
\hline d. [dleqxila] & *! & * & * \\
\hline
\end{tabular}

Note that although (396) results in a form of assimilation it cannot be substituted by a feature-spreading operation. While the structural change involves [ \(\pm\) high], the structural context crucially involves [-ATR]. In particular, laryngeals are not specified [-high] yet they still trigger the change of a following high vowel to [-high]. It cannot be, therefore, that [-high] is "spread" in this pattern. Nor does it appear to be the case that [-ATR] is spread, since/i, u/ are lowered to [e, o], not [ \(\varepsilon, \nu\) ].

Finally, recall that vowel lowering is blocked after rounded uvulars. This exception to lowering may suggest that the context-sensitive markedness constraint in (396) is outranked by another context-sensitive markedness constraint, one that disfavours nonhigh vowels after rounded segments.
(398) \(*[+\) round \(]\left[\begin{array}{l}- \text { cons } \\ - \text { high } \\ - \text { low }\end{array}\right] \quad\) Nonlow vowels must be high after rounded segments.

The effect of this last constraint is illustrated in the following tableau. As shown, nonhigh vowels are generally avoided except after a consonant specified [-ATR], except after a consonant specified [+round].
(399) ğ \({ }^{w i x i x i l a ~ ' t o ~ b a k e ~ b r e a d ' ~}\)
\begin{tabular}{|c|c|c|c|c|}
\hline & * [+ round \(]\left[\begin{array}{l}- \text { cons } \\ - \text { high } \\ - \text { low }\end{array}\right]\) & \(*[-A T R]\left[\begin{array}{l}- \text { cons } \\ + \text { high }\end{array}\right]\) & * \(\left[\begin{array}{l}- \text { high } \\ - \text { low }\end{array}\right]\) & Faith-IO [high] \\
\hline a. \(\breve{g}^{\text {wixixila }}\) & & **! & & \\
\hline b. ǧx \(^{\text {exexila }}\) & *! & * & * & * \\
\hline \(\Rightarrow\) c. \({ }_{\text {g }}{ }^{\text {wixixela }}\) & & * & * & * \\
\hline d. ğ'exēela & *! & & ** & ** \\
\hline
\end{tabular}

\subsection*{3.7.2. Derived laryngeals}

This subsection briefly introduces a second type of laryngeals in Oowekyala. In contrast to the ones discussed so far, these laryngeals are evidently not specified [-ATR], since they do not trigger lowering in adjacent vowels (including schwa), e.g. [?ita] (*[?eta]) 'to row'; [fiəna]
(*[โ^na], *[hana]) 'to sing' (Lincoln \& Rath 1980:119). (Note here that [ K ] is voiced \({ }^{83}\), just like the \(/ \mathrm{h} /\) which is specified [-ATR].)

Lincoln and Rath (1980) suggest that laryngeals in such words derive from underlying (nonglottal) sonorants. Specifically, starting from the observation that one never finds any phonetic sequence of homorganic sonorants, i.e. *lyi, yi, wu, wiu, m(ə)m, m(ə)m, \(n(\partial) n, n^{\prime}(\partial) n, I(\partial) \mid\), \(\left.l^{1}(\partial) \mid\right]\), Lincoln and Rath ( \(1980: 10,14,19\) ) propose that these sequences are simply pronounced
 Illustrative examples are given in (400) and (401). Note that this analysis does not give rise to surface ambiguity, since underlying sequences of /hi, \(\mathrm{i} i, h u, \gamma u, h(\partial) m, ~ \gamma(\partial) m, h(\partial) n, ~ \gamma(\partial) n, h(\partial) \mid\),
 section; also subsection 2.4.6.3, p. 74).
(400) Sonorant dissimilation: \(R_{i}(\partial) R_{i} \rightarrow h(\partial) R_{i}\)
a. \(/ \mathrm{mmk}-/ \rightarrow\) [hmk-] grouse LR
e.g. hmkls (*mmkls) grouse hr26
b. /nn-/ \(\rightarrow\) [hn-] sing LR
e.g. həna (*nəna) to sing along with hr26
c. \(/ \mathrm{yi}-/ \rightarrow[\mathrm{hi}-]\)
e.g. himas (*yimas) chief hr26
d. /wut-/ \(\rightarrow\) [hut-]
e.g. huła (*wuła) heaping full hr26
(401) Sonorant dissimilation: \(R_{i}^{\prime}(\partial) R_{i} \rightarrow P(\partial) R_{i}\)
a. \(/ \mathrm{rn} \mathrm{n}-/ \rightarrow[\mathrm{nn}-]\)
e.g. Zəna (*n'əna) to use a sling
b. /Pit-/ \(\rightarrow\) [ \(\mathrm{Pit}-]\)
e.g. ita (*yita) to row
c. /wut-/ \(\rightarrow\) [?ut-]
e.g. Puta (*wiuta) to pierce

Independent evidence (not discussed by Lincoln and Rath) for this proposal comes from reduplication. Recall that the CV-reduplicant of the plural typically has a default vowel [i], especially when the root-initial segment is a sonorant. Recall too that in plural forms the initial resonant of the base becomes glottalised (if it isn't already).

\footnotetext{
\({ }^{83}\) As in Heiltsuk; see Rath (1981:16).
}
\begin{tabular}{|c|c|c|c|}
\hline a. mam & mimam & blanket, bedding, bedcover & EW, HS, JSS3 \\
\hline b. nusa & nin'usa & to tell stories, legends, myths & EW, DS112 \\
\hline c. lanca & lilanca & to go underwater & HS \\
\hline d. wisk \({ }^{\text {w }}\) & wiwiskw & eagle & EW, HS, BC, JSS3 \\
\hline e. ylx̆a & yiylixa & to rub, smear (body part) & EW, HS \\
\hline f. minca & miminca & to measure & EW \\
\hline g. l'ux w?it & lilux w?it & to faint & HS \\
\hline h. \(\mathrm{Puk}^{w}\) & ZiPuk \({ }^{\text {w }}\) & to pity, to have mercy & HS \\
\hline
\end{tabular}

This type of reduplication can serve to demonstrate the derivation of laryngeals in two ways. First, as shown in (403), the initial glide \(y\) of a singular form is realized as \(h\) in the reduplicant, as it becomes adjacent to the homorganic fixed vowel of the reduplicant (i.e., i). Similarly, the initial y' of a singular form is realized as \(\boldsymbol{?}\) in the reduplicant, as it becomes adjacent to the \(i\)-vowel.
(403) Default [i] in Oowekyala plural forms
singular plural
a. yapa [hi]yapa to send s.o.
b. ylx̆a [hi]y'lx̆a to rub
c. yusa [hi]yusa to sip
d. yak [?i]yak bad
e. y'lxa [?i]y'lxa to pour

Second, as shown in (404), a resonant may surface as a laryngeal in the singular form and in the base of the plural form, since in both cases it is followed by a homorganic sonorant. Yet the (nonpalatal) resonant may surface unchanged in the reduplicant, where it is not followed by a homorganic sonorant.
(404) Default [i] in Oowekyala plural forms singular plural
a. [hu:] \(\check{x}^{w} a \quad[w i P u:] \check{x}^{w} a \quad\) to hoot
(/wu: \({ }^{\text {x }}-1\) )
b. \([7 u] q^{\prime W} a \quad\left[w^{\prime} i 7 u\right] q^{\prime w} a \quad\) to believe
(/wuq \({ }^{\text {w }}-\) /)
c. [hm]kala [mi?m]kala buzzing sound
(/mmk-/)

Another type of reduplication results in a related pattern. The suffix -'a 'to try to...' is accompanied by Ca-reduplication, as shown in (405).
(405) 'to try' reduplication
basic form to try to...
a. dukwa dadukwa to troll
b. c'əma c'ac'ər'a to point
c. \(\check{g}^{\text {wisa }} \quad \check{g}^{\text {w }}\) ağ \({ }^{\text {wića }}\) dried salmon
d. lita lalita to uncover
e. nix̆a nanix̌ła to pull

A resonant may surface as a laryngeal in the nonreduplicated form and in the base of the reduplicated form, since in both cases it is followed by a homorganic sonorant, as exemplified in (406). The underlying resonant may nonetheless surface in the reduplicant, because there it is not followed by a homorganic sonorant but by [a].
```

(406) 'to try' reduplication
basic form to try to...

```
a. [hu:] \(\check{x}^{w} a\) [wahu:]wa to hoot (/wu: \({ }^{\text {x }}-1\) )
b. [Tu]q" \(a \quad[w a ? u] q^{\prime w} a \quad\) to believe
(/w'uq후 \(-/\) )
c. [?ən]a [n'ałər']a to use a sling
(/n'n-/)

The laryngeals just described are anomalous in that they are purely derivative segments and their status in Oowekyala phonology is at present not fully understood. In particular, it is unclear why they are not automatically assigned the feature [-ATR] through the following constraint (provided earlier in section 2.4.6.3).
(407) [glottal] \(\supset[-A T R] \quad\) Laryngeals are specified [-ATR]

Derived laryngeals will not be discussed further here. They are compared by Howe (1999) with similar phenomena in Nisga'a (Shaw 1991a) and Totonac (MacKay 1994); see also Akinlabi (1991) on Yoruba.

\section*{4. Segmental correspondence}

This chapter extends the notion of input-output faithfulness (which has played an essential role in analyses so far) to the relation between base and reduplicant, between words, and (most tentatively) between candidates.

\subsection*{4.1. Base-reduplicant correspondence}

\subsection*{4.1.1. Underapplication of \(h\) deletion}

Recall that, in general, the laryngeal /h/is permitted only word-initially in Oowekyala (as in all Wakashan languages). This restriction is plausibly formalised as a markedness prohibition on the occurrence of \(h\) after any segment.
(408) *Xh \(\quad \mathrm{h}\) must not occur after a segment. (Domain = word)

This context-sensitive markedness constraint, which may reflect the acoustic difficulty in perceiving [h] immediately after another segment, evidently outranks Max-IO[h] in Oowekyala.
(409) Max-IO[h]

Every \(h\) in the input has an identical correspondent in the output.
(410) *Xh >> Max-IO[h]

But /h/ exceptionally occurs word-medially in reduplicated forms. For example, the iterative form of hausa 'to count' is haushausa, with word-medial \(/ \mathrm{h} / . \mathrm{Next}\), consider the lexical suffix -'a 'to try' which is always accompanied by Ca-reduplication; recall e.g. (432), p. 165; (342), p. 132; (405)-(406), p. 157. As shown in (411), a word-medial /h/ surfaces when this suffix is attached to words that begin in /h/.
(411) Word-medial/h/in reduplicated forms
a. hahmba to try to hold the end of sth. long HS
hmba to hold the end of sth. long (as e.g. a pen) between one's lips HS
b. hahnX'a to try to shoot with bow and arrow HS
hnᄎa to shoot with a bow and arrow EW, HS

This shows that Dep-BR[h] is high ranking, such that it can compell violation of *Xh (408). This is illustrated in the following simple tableau. As shown, word-medial /h/deletion 'underapplies' because of high ranking Dep-BR[h].
(412) Dep-BR[h]

Every \(h\) in the reduplicant has an identical correspondent in the input.
(413) /RED-hn \(\begin{gathered}\text { - } \mathrm{a} / \rightarrow \text { hahn } \lambda^{\prime} \text { ' 'to try to shoot with bow and arrow' }\end{gathered}\)
\begin{tabular}{|c|c|c|c|c|}
\hline /RED-hnत-a/ & Onset & Dep-BR[h] & * \(\times\) h & Max-IO[h] \\
\hline \(\Rightarrow\) i. \(\quad\) ha-hnx'a & & & * & \\
\hline ii. ha- \(\varnothing\) n \(\chi^{\prime}{ }^{\text {a }}\) & & *! & & * \\
\hline iii. \(\varnothing \mathrm{a}-\varnothing \mathrm{n} \chi^{\prime} \mathrm{a}\) & *! & & & \\
\hline
\end{tabular}

\subsection*{4.1.2. Exceptions to spirantisation/deocclusivisation}

In section 3.4 (p. 104 ff .) it was proposed that spirantisation/deocclusivisation applies regularly because the context-sensitive markedness condition that triggers this process outranks inputoutput faithfulness (cf. (275)).
(414) Neutralisation of [-cont] in Oowekyala
\(*[- \text { cont] }]_{\sigma} \gg\) Faith-IO[cont]

Interestingly, spirantisation/deocclusivisation fails to apply to obstruent stops and affricates in coda position in reduplicated forms. This is illustrated here.
(415) Underapplication of spirantisation/deocclusivisation
a. pupsa (*pumsa) plural of: to swell HS pusa to swell EW
\(\begin{array}{lll}\text { b. cuck }{ }^{\text {wola (*cusk }} \text { ºla) } & \text { plural of: brittle, easy to break (as cornflakes) } & \text { HS } \\ \text { cuk }^{\text {w }} \text { ) } & \text { brittle, easy to break } & \text { EW }\end{array}\)
c. kaktu (*kaxtu) plural of: to meet a person HS
katu to meet somebody EW
f. \(k^{w}{ }^{w}{ }^{w} s a\left({ }^{*} k^{w} i x^{w} s a\right) \quad\) plural of: to spit HS
\(k^{w}\) isa to spit EW
g. qiqx̆əla (*qix̆x̆əla) plural of: having a forked shape HS
qx̌əla having a forked shape EW
h. \(q^{w} u q^{w} t a\left({ }^{*} q^{w} u \bar{x}^{w} t a\right)\) plural of: full, loaded HS
qwuta full EW

The fact that spirantisation/deocclusivisation fails in reduplicative contexts suggests an analysis in which *[-cont] \(]_{\sigma}\) is dominated by high-ranking base-reduplicant faithfulness. Specifically, it appears that spirantisation/deocclusivisation is suspended by a requirement that base-reduplicant correspondents be identical in their specification for [continuant].
(416) Faith-BR[continuant]

Let \(\alpha\) be a segment in the base and \(\beta\) be a correspondent of \(\alpha\) in the reduplicant. If \(\alpha\) is [ \(\gamma\) continuant], then \(\beta\) is [ \(\gamma\) continuant].

As McCarthy and Prince \((1995,1999)\) demonstrate (building on earlier work by Wilbur 1973 and Shaw 1980, 1987), in fact phonologies have two ways of satisfying a BR-faithfulness constraint like (416). The first is underapplication, as actualised in Oowekyala and illustrated in (415) above. A regular process -spirantisation- fails to apply in reduplicated forms even when its structural description is met, in order to avoid violating Faith-BR.
(417) Underapplication as Anchor-BR[cont]


The other, equally effective, response to BR-faithfulness is overapplication. In order to avoid a violation of Faith-BR, the process of spirantisation could apply twice: once in the base, where its structural description is met, and again in the reduplicant, where its structural description is not met.
(418) Overapplication as Anchor-BR[cont]


Overapplying spirantisation is initially appealing: it would avert not only a violation of Faith-BR[cont] (like underapplication) but also a violation of *[-cont] \(]_{\sigma}\) (unlike underapplication). However, overapplication also introduces a violation of Left-Anchoring-IO.
(419) Left-Anchoring-IO[continuant]

Let \(\alpha\) be a segment at the left periphery of the input and \(\beta\) be a segment at the left periphery of the output. If \(\alpha\) is [ [ycontinuant], then \(\beta\) is [ \(\gamma\) continuant].


Altogether, then, the exceptional behaviour of reduplicative forms in terms of spirantisation can be attributed to two high-ranking faithfulness constraints: Faith-BR[cont] and Left-Anchor-1O[cont].
(420) Ranking for underapplication of spirantisation

Faith-BR[cont], Left-Anchor-IO[cont] > *[-cont] \(]_{\sigma} \gg\) Faith-IO[cont]

The effect of this hierarchy is illustrated in the following constraint tableau. As shown, the base-initial feature [-cont] of \(/ q^{w} /\) is optimally preserved before syllable-initial \(/ \mathbf{t} /\), in accord with Faith-BR[cont] but in violation of lower-ranked *[-cont] ]. Faith-BR[cont] and *[-cont] \(]_{\sigma}\) can both be satisfied by removing [-cont] from the base-initial \(/ \mathrm{q}^{\mathrm{w}} /\) as well as from the pre-fix-initial \(/ \mathrm{q}^{\mathrm{w}} /\), but that involves an unacceptable violation of Left-Anchor-IO[cont].
(421) Underapplication in Oowekyala
\begin{tabular}{|c|c|c|c|c|}
\hline /Redpl-q \({ }^{\text {witita/ }}\) & Faith-BR[cont] & L-Anchor-10[cont] & *[-cont] \(]_{\sigma}\) & Faith-10[cont] \\
\hline \(\Rightarrow\) a. \(q^{\text {when }} \mathrm{c}^{\text {wita }}\) & & & * & \\
\hline  & *! & & & * \\
\hline c. \(\check{x}^{w} u{ }^{\text {x }}\) "ta & & *! & & ** \\
\hline
\end{tabular}

\subsection*{4.1.3. Underapplication of rounding assimilation between obstruents}

A similar case of underapplication concerns the optional pattern of rounding assimilation between obstruents discussed in section 3.2.2. As the following data (repeated from (224) on p. 91) illustrate, rounding assimilation fails to apply to obstruents across reduplicant-base boundaries.
(422)
 the waterfalls at \(W u^{\prime} \dot{x}^{w} \lambda a\) ais or the old Rivers Inlet Cannery site
\(\mathrm{k}^{\prime} \mathrm{q}^{\mathrm{wa}}\) a to urinate (said of a male) EW

\(\mathrm{k}^{\prime} \ddot{x}^{w}\) a to run away, escape, flee from EW

ğux̆wa to scoop up loose things (such as seed, sand, EW, HS or berries) with one's hand
d. \(q^{\prime} c x^{w}-q^{\prime} c k^{w} a\left({ }^{*} q^{\prime} c x^{w} q^{w} c k^{w} a\right)\)
\(q^{q}{ }^{\text {w }}{ }^{\text {w }}\)
to eat meat WL
hair seal meat that has been cut up JSS3

The fact that rounding assimilation is suspended in this reduplicative environment indicates that the constraint responsible for this pattern ([ +rd\(] /[+\) cons, +rd\(]\) ___; section 3.2.2) is outranked by both Faith-BR[round] and Left-Anchor-IO[round] (cf. (161)).
(423) Faith-BR[continuant]

Let \(\alpha\) be a segment in the base and \(\beta\) be a correspondent of \(\alpha\) in the reduplicant. If \(\alpha\) is [ \(\gamma\) continuant], then \(\beta\) is [ \(\gamma\) continuant].
(424) Left-Anchoring-IO[round]

Let \(\alpha\) and \(\beta\) be input-output correspondent segments at the left periphery of the word. If \(\alpha\) is [ \(\gamma r\) round], then \(\beta\) is [ \(\gamma r\) round].
(425) Ranking for underapplication of rounding assimilation Faith-BR[rd], Left-Anchor-lO[rd] \(\gg[+r d] /\left[\begin{array}{l}+ \text { cons } \\ + \text { rd }\end{array}\right]--\ldots\) Faith-IO[rd]

This effect of this ranking is illustrated in the following constraint tableau.
(426) Underapplication of rounding assimilation across consonants in reduplication
\begin{tabular}{|c|c|c|c|c|}
\hline Redmer-kix̌ \({ }^{\text {w }}\) a & Left-Anchor-IO[rd] & Faith-BR[rd] & \(\left.[+\mathrm{rd}] / \mathrm{l}+\begin{array}{l}+ \text { cons } \\ +\mathrm{rd}\end{array}\right]\) ]-- & Faith-10[rd] \\
\hline  & & & * & \\
\hline  & & *! & & * \\
\hline  & *! & & & * \\
\hline
\end{tabular}

\subsection*{4.1.4. Deglottalisation in the reduplicant}

\subsection*{4.1.4.1. Introduction}

Glottalisation is profuse in Oowekyala, as words like q'aq'ap'c'a 'to shoot at a target' and c'acik'ałqंən'əwa 'to butt in on a fight' make clear. Moreover, unlike their voiced counterparts (recall section 3.6), glottalised obstruent stops and affricates are largely unrestricted in distribution. They may occur word-finally, e.g. (427), before another obstruent, e.g. (428), and even in all-obstruent words, e.g. (429).
(427) Word-final glottalised stops and affricates
\begin{tabular}{|c|c|c|}
\hline a. miesaqmt & "throwing the spirit back and forth"; name of a ceremony at the beginning of a feast, as a way of welcoming guests; term is also used to throw a curse on to someone as in witchcraft & SS121 \\
\hline b. wac' & dog & JSS3 \\
\hline c. Pax' & in the forest, to be up in the woods, to do something in the woods (esp. boat-building) & EW \\
\hline d. nik & penis & EW, HS \\
\hline e. \(k^{\text {mw}} u \mathrm{k}^{\text {w }}\) & skunk cabbage (Lysichiton americanum); used medicinally by bears; leaves used to line berry baskets and as drinking cups & \[
\begin{aligned}
& \mathrm{EW}, \mathrm{HS} ; \\
& \mathrm{BC} 76
\end{aligned}
\] \\
\hline f. cik \({ }^{\text {m }}\) & bird & EW, HS \\
\hline g. X'auq \({ }^{\text {w }}\) & tobacco (Nicotiana tabacum); also possibly western dock (Rumex occidentalis) (also possibly "wild rhubarb"): stems, leaves, sprouts and shoots eaten (?) & BC107 \\
\hline
\end{tabular}
(428) Glottalised stops and affricates preceding obstruents
\begin{tabular}{|c|c|c|}
\hline a. \(\mathrm{k}^{\text {w}} u\) p'gat & sound of a stick breaking & WL \\
\hline b. t'ka & to spring things away with the fingers and thumb & EW \\
\hline c. mu:čğais & four strands & WL, HS \\
\hline d. pax'sa & to string sth. out on the ground outdoors (e.g. a line) & EW \\
\hline e. Pik'ba & higher (in place or rank) than; to be at the end of a series; top of a vertical pole & HS \\
\hline f. \(\lambda^{\prime} u k^{\prime \prime} p \mathrm{pa}\) & to get spruce roots (for making baskets) & BC507: DS \\
\hline g. naq'bu & thirsty & HS \\
\hline h. \(\lambda a q^{\text {W }} \mathrm{dn}\) & shoulder blade & EW \\
\hline
\end{tabular}
(429) Glottalised stops and affricates in all-obstruent words
a. \(k^{\text {ww }} s\) light (in weight) EW
b. loose dirt (not mud) EW, HS
c. pik's to bend down to the ground (as branches) HS
d. pq"c' drowsy, sleepy EW
e. c'k"״̈t short (said of a person) HS
f. t'xtk's fish hawk EW, HS
g. \(x^{\prime} \times \lambda^{\prime}\) p's to squat on the ground outdoors HS not sure
h. \(k^{w} \check{X} k^{w} q\) 's just about daylight, early dawn (as when one begins to HS see one's way outdoors)

The free distribution of glottalised obstruents is plausibly related to the phonetic status of these segments as ejectives. Ejectives tend to be perceptually salient by the very nature of their production, as Howe and Pulleyblank (in press) describe:

The glottal articulation in such segments [glottalised stops and affricates] results in a build-up of air pressure, usually a function of raising the sealed larynx and constricting the pharyngeal walls. At the time of oral release, this results in a high level of acoustic energy.

Specifically, then, the diversity of contexts in which glottalised stops and affricates occur in Oowekyala (e.g. (427)-(429)) may be explained by the fact that glottalisation can be recovered from segment-internal acoustic cues of ejection.

Though appealing at first, this phonetic explanation of the free distribution of glottalised obstruents in Oowekyala is insufiicient. An initial complicating factor is that ejection is phonetically weak in Oowekyala, something that comes as a surprise if the segment-internal acoustic cues of glottalisation are indeed critical in this language. Consider Lincoln and Rath's (1980:8) description of these segments:

The glottalised plosives give the phonetic impression of lenis stops and affricates pronounced with accompanying closure of the glottis. The glottal release is lenis.

In fact, glottalisation in obstruent stops is easily mistaken for voicing. \({ }^{84}\) Another complicating factor is that a process of neutralisation affects glottalisation in obstruents in reduplicative prefixes. This neutralisation process is discussed in the next section. It may already be remarked, however, that a phonetic (as opposed to phonological) account cannot explain the morphological (prefixal) conditioning of neutralisation.

\subsection*{4.1.4.2. Deglottalisation in the reduplicant}

Recall from section 3.6 .1 that the most common form of the plural in Oowekyala is a CVshaped reduplicative prefix. When the base of reduplication has a short vowel, this vowel syncopates after being copied. The outcome of this vowel-deletion process is that the first two consonants of the base become adjacent.
(430) Vowel deletion in the base of plural reduplication
\(/\) Redpl \(_{1} \mathrm{C}_{1} \vee \mathrm{VC}_{2} \ldots /\)


The following examples illustrate this process with \(C_{1}\) as an ejective and \(C_{2}\) as an obstruent. For comparison, examples are also included in which \(C_{1}\) is a voiced stop/affricate, to remind us that voicing —unlike glottalisation- is neutralised in this environment (see section 3.6.1).
(431) Plural reduplication: ejective-initial stems (cf. voiced C-initial stems)
singular plural
a. pixwa pi-p'x wa to grope, feel with the hands, to palpate (sick EW person)
bux \({ }^{w}\) ls bu-pxwls illegitimately pregnant EW
b. tała ta-tła to slice fish EW, JSS3,
daqa da-tqa to get sheets of red-cedar bark for roofing BC63: DS
c. ćikwa cli-c'k wa EW, JSS3
dzikwa dzi-ckwa to push with the feet EW
d. X'ata X'a-天'ta to oil the hair EW
\(\lambda a \check{x}^{w} a \quad \lambda a-\lambda \check{x}^{w} a \quad\) to stand \(\quad\) DS64
e. \(k i \check{x}^{w} a \quad k i-k{ }^{\prime} \check{x}^{w} a \quad\) to run away, escape, flee from EW
gix̌a gi-kx̌a to grind, to file, to sharpen EW
f. \(k^{2 N} u t a \quad k^{2 w} u-k^{\prime N}\) ta to nail EW
\(g^{w} u t a \quad g^{w} u-k^{w} t a \quad\) to stack, pile things up EW

\footnotetext{
84 ...mistaken by linguists (as proofreading of my transcription notes sometimes reveals), not necessarily by speakers.
}
\begin{tabular}{|c|c|c|c|}
\hline g. q̇ata & q'a-q'ta & to cut with a chisel, to chisel & EW \\
\hline ğa入a & ğa-qえa & to hook, gaff, or crochet & EW, HS \\
\hline h. quxta & \(q^{\text {m/ }} u-q^{\text {w/ta }}\). & to eat berry cake or berries boiled untul jamlike consistency is obtained & EW \\
\hline  &  & slender, thin, lean, skinny & HS \\
\hline
\end{tabular}

Now consider the case of plurals where the base of reduplication is itself a reduplicated form, as exemplified in (432). (Reduplication in singular forms is usually triggered by the presence of specific suffixes, e.g. -(ğ)u 'together', -'a 'to try to'.)
(432) Plural reduplication of reduplicated forms
singular
plural
Red-C \(\mathrm{C}_{1} . . \quad\) PL-Red-C \(\mathrm{C}_{1} .\).
a. \(k^{\text {w }} u-k^{\text {wwatawa }} k^{\text {ww }} u-k^{w}-k^{w}\) atəwa to nail together HS
b. q̣a-qंacंəwa qंa-q-qंacंəwa to imitate, copy, replicate, redupli- HS cate; to demonstrate
c. qंa-q'ğu qंa-q-q'ğu to come together HS
d. pa-p'ğəwa pa-p-p'zgəəwa to put together sth. taken apart with- HS out nailing (as a jigsaw puzzle)
e. ta-tik ta ta-t-tik \({ }^{\text {wh }}\) a to fish for trout with a pole EW

g. \(k^{\text {ww }} a-k^{\text {wh }}\) l'a \(k^{\text {wa }} a-k^{w}-k^{\text {wola }}\) la to hunt for land otter HS
h. pa-p'agila p'a-p-p'agila to have the hands stretched out HS
i. ća-ćẋəmala cंa-c-ćx̆əmala person who always picks out the easy HS jobs
j. cii-ćxPalit cii-c-ćx?alił to report in turns, to tell stories in EW, HS turns
k. \(q^{\text {ww }} u-q^{\text {wa }}\) ni \(\quad q^{w w} u-q^{w}-q^{\text {ww }}\) əni one's neck EW
I. tu-ṫəw'a tu-t-ťawa stars EW

As usual, the base of plural reduplication loses a vowel, such that the first two consonants of this base become adjacent. But here the first consonant of the base of plural reduplication is itself a copy (of the stem-initial segment). Interestingly, in this case glottalisation is neutralised in the copied consonant that immediately precedes the (otherwise identical) root-initial consonant.
(433) Plural reduplication of a reduplicated form
\[
\text { / PL - RED - } C_{i \ldots . .}^{\prime} /-\underbrace{C_{i}^{\prime} V-C_{i}-C_{\text {Stem }}^{\prime} . . .}_{\text {Prefixes }}\left({ }^{*} C_{i}^{\prime} V-C_{i}^{\prime}-C_{i}^{\prime} . . .\right)
\]

It is proposed that the neutralisation of glottalisation in this context is due to a contextsensitive markedness constraint that bans the glottalisation feature from syllable coda position.
(434) *[cg] \(]_{\sigma} \quad\) (cf. Howe \& Pulleyblank in press)

The feature [constricted glottis] must not occur in coda position.

That [cg] neutralisation takes place in the coda, and not simply wherever a glottalised consonant precedes an identical glottalised obstruent, is suggested by examples like the following. Note that each singular form includes a sequence of identical glottalised obstruents yet neutralisation does not occur. \({ }^{85}\) Neutralisation occurs only in the plural forms, where a prefixal glottalised obstruent is evidently avoided in coda position.
(435)
singular plural
a. \(c\)-c'n ci-c-c'n tidal rapids HS
b. p'-p'kn pit-p-pakn overworked HS

The constraint *[cg] \(]_{\sigma}\) (434) must be ranked below Faith-lO[cg], in order to ensure that glottalisation contrasts are generally preserved in syllable coda positions in Oowekyala, e.g. \(k^{\text {ww }} u \underline{k}^{2 w}\) ta 'plural of: to nail' (* \(\left.k^{W w} u k^{w} t a\right)\).
(436) [cg] preserved in coda position
\begin{tabular}{|c|c|c|}
\hline /PL-k \({ }^{\text {w }}\) ut-a/ & Faith-10[cg] & *[cg] \(]_{\sigma}\) \\
\hline \(\Rightarrow \mathrm{i} . \quad \mathrm{k}^{\mathrm{N}} \mathrm{u}-\mathrm{k}^{\text {² }}\) ta & & * \\
\hline ii. \(k^{\text {w/w}} \mathbf{u}-k^{\text {w }}\) ta & *! & \\
\hline
\end{tabular}

To explain the neutralisation of [cg] in reduplicative prefixes, e.g. (432), it is crucial that *[cg] ] \(]_{\sigma}\) be ranked above Faith-BR[cg].
(437) Faith-BR[cg]

Every feature [constricted glottis] in the base has a correspondent in the reduplicant (associated with the presence of certain suffixes, e.g. -(ğ)u 'together', -'a 'to try to'.).

The complete hierarchy is thus
(438) Faith-IO[cg] \(\gg\) *[cg] \(]_{\sigma} \gg\) Faith-BR[cg]

\footnotetext{
85 Other examples with sequences of identical glottalised stops include:
a. \(q^{\text {w }} q^{\text {waskn }} \quad\) worn out with crying HS
b. titaulikn passed out (as e.g. after drinking too much liquor) HS
c. k'kiala squeaking noise EW
d. k'kंəlm's "tongue on ground"? Cone-headed Livenwort (Conocephalum conicum) BC51
e. \(k^{w} k^{w} \check{x}^{w}\) sayak \(^{w}\) sth. chopped up, kindling HS
}
as illustrated in the following tableau for e.g. \(k^{\prime W} u k^{w} k^{\text {w }}\) atawa 'plural of: to nail together'. \({ }^{86}\)
(439) [cg] neutralisation in coda position
\begin{tabular}{|c|c|c|c|}
\hline /PL-R- \(\mathrm{k}^{\text {Tu }} \mathrm{ut}-(\mathrm{g}) \mathrm{u}-\mathrm{a} /\) & Faith-10[cg] & *[cg] \(]_{\sigma}\) & Faith-BR[cg] \\
\hline  & & *! & \\
\hline \(\Rightarrow\) ii. \(k^{\text {m }} u-k^{w}-k^{\text {w }}\) atawa & & & *87 \\
\hline
\end{tabular}

Note that this interaction fits the 'emergence of the unmarked' schema of McCarthy and Prince (1994, 1995, 1999).

A structural constraint rendered inactive in the language as a whole because of IO Faithfulness may nonetheless emerge as visibly active in situations where I-O Faithfulness is not relevant. In particular, it may determine the form of the reduplicant, which is subject to constraints on B-R Identity rather than I-O Faithfulness. (McCarthy and Prince 1999:261)

\subsection*{4.1.4.3. Distribution of glottalised stops and affricates: conclusion}

It has been observed that glottalised stops and affricates have a relatively free distribution in Oowekyala. In fact, these segments are disallowed only in coda position within reduplicative prefixes.

The process of deglottalisation that affects stops and affricates in this specific position -as illustrated in (432)- is of general interest in two ways. First, it supports the OT conception of structural constraints as ranked, rather than parametrised. If the driving force behind the deglottalisation process, viz. *[cg] \(]_{\sigma}(434)\), were parametrised, its effects (or lack thereof) should be uniform throughout Oowekyala. But in fact, this constraint is enforced only in reduplicative prefixes. This state of affairs follows from the 'emergence of the unmarked' schema (438).

Another point of interest is that deglottalisation (432) results in 'aspirated' stops and affricates. These segments thus appear to be phonologically 'plain' -since they are the consequence of a neutralisation process. By contrast, if Lincoln \& Rath (1980) and Hilton \& Rath (1982) were correct in assuming that voiced stops and affricates are phonologically 'plain' in Oowekyala, we would (incorrectly) expect deglottalisation to result in voiced stops and affricates instead.

\footnotetext{
\({ }^{86}\) Another possible candidate, \(k^{w} u k^{\omega} k^{w}\) atəwa, is ruled out presumably because it violates lowly-ranked Max-IR[cg] twice rather than just once (to satisfy \({ }^{[ }[\mathrm{cg}] \mathrm{l}_{\mathrm{c}}\) ).
\({ }^{87}\) Max- \(\mathrm{BR}(\mathrm{cg})\) is specific to the reduplicant that accompanies particular suffixes. It is assumed that a separate Max-BPL(cg) moderates correspondence between the base and the plural prefix.
}

\subsection*{4.2. Output-to-output correspondence}

This section presents two cases in which a pattern overapplies.

\subsection*{4.2.1. Overapplication of post-/u/rounding}

Recall that Oowekyala has a very general process whereby back obstruents (i.e. velars and uvulars) are rounded after / \(\mathrm{u} /\) (see section 3.2.1). For instance, consider again the inchoative suffix -x?it, illustrated in (440) (repeated from (195) above); its initial / \(x /\) becomes rounded [ \(x^{w}\) ] after /u/, as illustrated in (441) (repeated from (196) above).
(440) -x7it 'to become, to start'
a. \(\mathrm{Hl}-\mathrm{x}\) Pit to become dead
HS
H' dead, inactive, paralysed EW, HS
b. pq" \({ }^{\text {c'-xpit to become sleepy or drowsy } H S ~}\)
\(p q^{W} c^{\prime}\) drowsy, sleepy EW

(441) -x"'3it 'to become, to start'
\begin{tabular}{|c|c|c|}
\hline a. tu-x"7it & to take a walk, to start to walk & HS \\
\hline taw-a & to walk & EW, DS146 \\
\hline b. su-xw7it & to start to go fetch & HS \\
\hline sow-a & to fetch & HS \\
\hline c. \(31 \times{ }^{\text {w }}\) stu- \(\mathrm{x}^{\mathrm{w}} \mathrm{Pit}\) & to assume the colour of blood & HS \\
\hline Plxwstu & colour of blood, having the colour of blood & HS \\
\hline d. X'u'x"alasu-x"3it & to fall ill, to become sick & WL \\
\hline X'u'x \({ }^{\text {²alasu }}\) & to suffer from a disease, to be ill, sick & WL \\
\hline
\end{tabular}

The interaction of this rounding effect with reduplication-related syncope gives rise to an opacity effect. As shown below, the plural forms of (441a, b) have rounded [ \(x^{w}\) ] even though regular plural reduplication syncope has removed the base vowel/u/that triggers the rounding of \(\left[x^{w}\right]\).
(442) - \(x\) " \(7 i t\) 'inchoative'
a. tu-t-x \({ }^{\text {wit }}\) (*tutx?it)
tu-x"7it
b. su-s-x"it (*susx?it)
su-x"7it
plural of: to start to walk HS
to start to walk HS
plural of: to start to fetch HS
to start to fetch HS

Similarly, the initial segment of the lexical suffix -k'ala 'sound' (e.g. nan-k'ala 'sound of a grizzly bear') undergoes rounding in plural reduplication even when the /u/-trigger is syncopated.
(443) -k'ala 'sound, speech'
a. tu-t-k'wala (*tutk'ala)
plural of: sound of walking HS
tu-k \({ }^{\text {whala }}\)
sound of walking HS
taw-a
to walk HS

In derivational phonology, this opacity effect could be handled by ordering rounding assimilation before plural-reduplication syncope, e.g.:
(444) Derivational account of rounding opacity
\begin{tabular}{|c|c|c|}
\hline Reduplication & tu-tu-xpit & tu-tu-k'ala \\
\hline & \(\downarrow\) & \(\downarrow\) \\
\hline C rounding & tu-tu-x \({ }^{\text {w }}\) it & tu-tu- \({ }^{\text {wwala }}\) \\
\hline & 1 & \(\downarrow\) \\
\hline \(V\) syncope & tu-t-x wit & tu-t-kwala \\
\hline & \(\downarrow\) & \(\downarrow\) \\
\hline Output & tutx \({ }^{\text {\% }}\) it & tutk \({ }^{\text {wwala }}\) \\
\hline & begin to walk' & 'to take place' \\
\hline
\end{tabular}

A plausible alternative analysis in a surface-oriented theory like OT might invoke rounding stability. Recall from section 3.3 .3 (p. 100ff.) that rounding stability has already been established for degemination contexts; when \(x^{w}\) (or \(\check{x}^{w}\) ) deletes under degemination, its [+round] feature 'survives' via Max-IO[round] (repeated here from section 3.3.3).
(445) Max-IO[round]

Every feature [round] of the input has a correspondent in the output.

In a comparable fashion, it might be claimed that / u / has a [+round] feature which 'survives' on a nearby consonant (via Max-10[round]) following the \(V\)-syncope operation in plural reduplication. As illustrated here, no derivation is needed on this account.
(446) 'Stability' account of rounding opacity

Input:

'to begin to walk'

However, if the analysis of rounding presented in section 3.2.1.2 (p. 84ff.) is correct, the vowel /u/ is specified [+round] only if it shares this feature with a following consonant. It is not the case, therefore, that the vowel in e.g. /tu-/ 'to walk' or /su-/ 'to fetch' is necessarily speci-
fied [+round] in the input. Consequently, a consistent stability effect like that illustrated in (446) is not predicted. An alternative solution must be sought.
it is here proposed that the 'overapplication' of obstruent rounding in plural forms reflects the paradigmatic relatedness of these forms with their singular bases which show the normal application of obstruent rounding. For instance, overapplication in tutx"7it (*tutx7it) 'plural of: to start to walk' may be due to its relatedness with the paradigmatic base, tux"7it (*tux?it). This relatedness can be formalised as an output-output correspondence constraint, after Benua (1999), Buckley (1999) and Burzio (2000) among others.
(447) Faith-OO( \(C\), round)

Let \(\alpha\) be a consonant in the base form and \(\beta\) be a correspondent of \(\alpha\) in the plural form. If \(\alpha\) is [ \(\gamma\) round], then \(\beta\) is [Yround].
(448) Overapplication as Faith-OO[round]
/tu-x?id/

Faith-IO(C, round)

That is, rounding assimilation applies normally in the non-reduplicated word and outputoutput correspondence arguably forces the "overapplication" of rounding assimilation in the reduplicated form. (The normal application of rounding in the base /tu-kala/ \(\rightarrow\) [tukwala] can be seen in tableau (215), p. 88.)
(449)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Input: /Red-tu-k'ala/ \\
Base: [tuk \({ }^{\text {wala] }}\)
\end{tabular} & Faith-OO(C, round) & Faith-IO(C, round) & \(*\left[\begin{array}{l}+ \text { cons } \\ + \text { round }\end{array}\right]\) \\
\hline a. tutkala & *! & & \\
\hline \(\Rightarrow\) b. tutk \({ }^{\text {wala }}\) & & * & * \\
\hline
\end{tabular}

\subsection*{4.2.2. Overapplication of spirantisation}

Recall from section (3.4) that word-final spirantisation is variable, as shown here (see additional examples in (269)-(290) above).
(450) Variable word-final spirantisation


c. \(\check{g}^{\text {wu }}{ }^{\text {uluqw }} \sim \check{g}^{\text {wulux }}{ }^{\text {w }}\) animal fat, suet, tallow EW
d. \(X^{\prime} u k^{\prime W} p \sim X^{\prime} u k^{W} m\) root; licorice fern (Polypodium glycyrrhiza); "root"

EW, SW73, (rhizome) chewed, possibly for medicinal purposes BC59: LJ
\begin{tabular}{lll} 
e. p'əlup ~ p'əl'zw'm & \begin{tabular}{l} 
sister-in-law (according to Franz Boas the precise EW \\
meaning is: "husband's sister" and "woman's
\end{tabular} & \\
brother's wife")
\end{tabular}\(\quad\)\begin{tabular}{l} 
red elderberry (Sambucus racemosa) fruit
\end{tabular}

It is argued in section 3.4 that the feature [-continuant] is preserved through right edge-anchoring (Right-Anchor-IO[cont]) and that this faithfulness constraint is crucially unranked relative to the markedness constraint responsible for spirantisation, viz. *[-cont] ]o. This analysis predicts that spirantisation should only affect obstruent stops and affricates in coda position, and only when *[-cont] ] outranks Right-Anchor-IO[cont], as in the following constraint tableau (repeated from section 3.4).
(451) Word-final spirantisation in Oowekyala
\begin{tabular}{|c|c|c|c|}
\hline /ğwuluq \({ }^{\text {/ }}\) & *[-cont] ] \({ }_{\sigma}\) & \[
\begin{gathered}
\text { R-Anchor-1O } \\
\text { [cont] }
\end{gathered}
\] & Faith-10 [cont] \\
\hline a. g'muluq \(^{\text {w }}\) & *! & & \\
\hline \(\Rightarrow\) b. \(\check{g}^{\text {w }}\) ulux \({ }^{\text {w }}\) & & * & * \\
\hline
\end{tabular}

In fact, this prediction fails when vowel-initial enclitics are considered. Such enclitics include -i ' 3 rd person distal indicative' and -ax̆i ' 3 rd person distal demonstrative'. When these endings are added to words like (450), variable spirantisation persists, as shown here:
(452) Overapplication of spirantisation
a. \(\check{g}^{w}\) əliki \(\sim \check{g}^{w}\) əlíxi
that-over-there is spruce pitch HS
b. メ̌a:qi ~ x̌a:x̆i bone HS
c. \(\check{g}^{w} u l u q^{w i} \sim \check{g}^{w} u l u \check{x}^{w} i \quad\) that-over-there is animal fat, suet, tallow HS
d. \(x^{\prime} u k^{\prime \omega} p a x ̌ i \sim x^{\prime} u k^{\prime \omega}\) max̆i the/a root over-there HS

Variable spirantisation is unexpected in these forms because nothing overtly triggers it. Indeed, when a vowel-initial enclitic follows a word-final obstruent stop, the latter is in onset position and so it does not meet the structural description of spirantisation. \({ }^{88}\) In particular, the analysis developed in section 3.4 does not foresee the variable spirantisation illustrated in (452) which involves an apparently unmotivated violation of Faith-IO[cont], as shown in the following tableau.

\footnotetext{
\({ }^{88}\) Pulleyblank (p.c.) suggests that syllabification over a clitic boundary might be optional (e.g., Onset and AlignL(clitic, \(\sigma\) ) could be variably ranked). Though initially appealing, this analysis incorrectly predicts that root-final or stem-final voiced stops will variably devoice before vowel-initial enclitics, e.g. / \(7 \mathrm{ag}+\mathrm{i} / \boldsymbol{\rightarrow} \mathbf{~ 7 a g i}\) ~ *?aki (7ag- 'all, every'; -i '3rd pers. sing. nomin.').
}
\begin{tabular}{|c|c|c|c|}
\hline /ǧuluq \({ }^{\text {w }} /+/ \mathrm{i} /\) & \({ }^{*}[\text {-cont }]_{\sigma}\) & \[
\begin{gathered}
\text { R-Anchor-lO } \\
\text { [cont] }
\end{gathered}
\] & Faith-10 [cont] \\
\hline \(\Rightarrow\) a. \(\check{g}^{\text {w }}\) uluq \({ }^{\text {wi }}\) & & & \\
\hline b. \(\check{g}^{\text {w }} u l u \check{x}^{w_{i}}\) & & & *! \\
\hline
\end{tabular}

To solve this problem in parallelist (as opposed to derivational) OT, it must be formally recognised that the output forms in (450) and those in (452) are paradigmatically related. It may indeed be argued that the normal application of variable spirantisation in (450) is responsible for the 'overapplication' of variable spirantisation in (452). For instance, overapplication in [ğwulux \({ }^{w}{ }^{i}\) ] may be due to its relatedness to the paradigmatic base [g\(\left.{ }^{w} u l u \check{x}^{w}\right]\). This relatedness can be formulated as an output-output correspondence constraint, after Benua (1999), Buckley (1999) and Burzio (2000) among others.
(454) Faith-OO[cont]

Let \(\alpha\) be a segment in the base and \(\beta\) be a correspondent of \(\alpha\) in the encliticised form of A. If \(\alpha\) is [ \(\gamma\) continuant], then \(\beta\) is [ \(\gamma\) continuant].
(455) Overapplication as R-Anchoring-BP[cont]
/ğwuluqw/

Faith-IO[cont]
1
[ \(\left.\check{g}^{w} u l u \check{x}^{w}\right] \Leftrightarrow\left[\check{g}^{w} u l u \check{x}^{w} i\right]\)
Faith-OO[cont]

To see how this analysis works, consider first the subhierarchy which results in wordfinal spirantisation (section 3.4), with R-Anchor-BP[cont] added.


This interaction is illustrated in the following two tableaux. Note first in tableau (457) that \(/ \check{g}^{\text {w }} u l u q^{w /} /\) is optimally mapped as \(\left[\check{g}^{w} u l u \check{x}^{w}\right]\) because *[-cont] \(l_{\sigma}\) dominates R-AnchorIO[cont]. Next observe in tableau (458) that \(/ g^{w} u l u q^{w}+i / i s\) is optimally mapped as [g\({ }^{w} u l u \check{x}^{w}{ }^{\mathbf{w}}\) ] because Faith-OO[cont] dominates Faith-IO[cont] and this output is closer than [ğ \({ }^{\mathbf{w}}{ }^{\mathbf{w}} \mathrm{luq}^{w_{i}}\) ] to its paradigmatic base - [ğwulux̆w] in this subhierarchy.
\begin{tabular}{|c|c|c|c|c|}
\hline /ğ \({ }^{\text {wiluluqw }}\) & *[-cont] ] \({ }_{\sigma}\) & R-Anchor-IO
[cont] & \begin{tabular}{l}
Faith-OO \\
[cont]
\end{tabular} & Faith-10 [cont] \\
\hline a. \({ }^{\text {g }}\) 'uluq \({ }^{\text {w }}\) & *! & & & \\
\hline \(\Rightarrow\) b. \(\check{\mathrm{g}}^{\text {w }}\) ulu \(\check{\mathrm{x}}^{\text {w }}\) & & * & & * \\
\hline
\end{tabular}
(458)
\begin{tabular}{|c|c|c|c|c|}
\hline  & *[-cont] ] \({ }_{\sigma}\) & \[
\begin{gathered}
\text { R-Anchor-IO } \\
\text { [cont] }
\end{gathered}
\] & Faith-00 [cont] & Faith-10 [cont] \\
\hline a. \(\check{g}^{\text {w }} u l u q^{w_{i}}\) & & & *! & \\
\hline  & & & & * \\
\hline
\end{tabular}

Now consider the alternative subhierarchy in which R-Anchor-IO[cont] dominates *[-cont] ]; Faith-OO[cont] still dominates Faith-IO[cont].
(459) \(\left\{\begin{array}{c}\text { R-Anchor-1O[cont] > } \gg \text { [-cont] }]_{\sigma} \\ \text { Faith-OO[cont] }\end{array}\right\} \Rightarrow\) Faith-IO[cont]

This interaction is illustrated in the next two tableaux. Observe that /g"wluqw/ is optimally mapped as fully-faithful [ \(g^{w}{ }^{w} l_{u q}{ }^{w}\) ] (R-Anchor-IO[cont] \(\gg\) *[-cont] \(]_{\sigma}\) ) and, similarly, \(/ \check{g}^{w} u l u q^{w}+i /\) is optimally mapped as [g\({ }^{\mathbf{w}}{ }^{w} u l u{ }^{\text {wid }}\) ] because this output is maximally faithful to its input as well as to its paradigmatic base -[ \(\left.\check{g}^{w} u l u q{ }^{w}\right]\) in this subhierarchy.
(460)
\begin{tabular}{|c|c|c|c|c|}
\hline /ğwuluqw/ & \[
\begin{gathered}
\text { R-Anchor-10 } \\
\text { [cont] }
\end{gathered}
\] & \({ }^{*}[\) cont \(\left.]\right]_{\sigma}\) & Faith-OO [cont] & Faith-IO [cont] \\
\hline \(\Rightarrow \mathrm{a}\). g'wluq \(^{\text {w }}\) & & * & & \\
\hline b. \(\check{g}^{\text {™ }}\) ulux̆ \({ }^{\text {w }}\) & *! & & & * \\
\hline
\end{tabular}
(461)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Input: /ğ"uluq"/+/i/ \\
Base: [ğwuluqw]
\end{tabular} & \[
\begin{gathered}
\text { R-Anchor-IO } \\
\text { [cont] }
\end{gathered}
\] & \({ }^{*}\) [-cont] \(]_{\sigma}\) & Faith-00 [cont] & Faith-10 [cont] \\
\hline \(\Rightarrow\) a. \(\breve{g}^{\text {winluqu }}{ }^{\text {m }}\) & & & & \\
\hline b. \(\breve{g}^{\text {w }} u l u \breve{x}^{w_{i}}\) & & & *! & * \\
\hline
\end{tabular}

The foregoing analysis makes the assumption that each enclitisised form and its paradigmatic base are evaluated within the same subhierarchy of grammar. In the hierarchy that has *[-cont] \(]_{\sigma} \gg\) Right-Anchor-IO[cont], both the enclitisised form and its paradigmatic base involve spirantisation. In the hierarchy that has Right-Anchor-IO[cont] > *[-cont] \(]_{\sigma}\), neither the enclitisised form nor its paradigmatic base involve spirantisation. This assumption may ultimately be unnecessary (the free evaluation of pairs ought to give results that are attested on the surface anyway), but its validity can be tested: it makes a prediction of perseverance (or concord).
'Perseverance' describes situations in which the use of a free-variant results in the use of the same free-variant in some domain (e.g. within a phrase). This phenomenon is well documented for numerous cases of variation (see e.g. Poplack 1979, Labov 1994:557-60). In
our case, the expectation is that when an encliticised form is used with its paradigmatic base in the same domain (say, a phrase), both forms will agree in terms of the (non) application of spirantisation. The crucial finding is that the grammar remains constant within limited domains (like phrases). Whether this prediction of perseverance is actually borne out in Oowekyala is left here for future research.

\subsection*{4.3. Candidate-to-candidate correspondence}

This final section discusses four cases involving opacity, i.e. output forms that are shaped by non-surface true generalisations. The most recent OT tactic against opacity is McCarthy's (1999) Sympathy Theory which concedes (rather abstract) candidate-to-candidate correspondence relations.

\subsection*{4.3.1. On the change from \(/ x\), to [ \(n, n\) ']}

Recall from section 2.3.2 that Oowekyala shows peculiar changes from \(/ x /\) to \([n, n ']\) before voicing and glottalising suffixes, respectively. For example, when the root of p'xa 'dented, grooved' is combined with the voicing suffix -ił 'indoors', the result is p'enit 'pit in the floor of the house'. When the same root is combined with the glottalising suffix -'s 'outdoors', the result is p'r's 'pit in the ground outdoors'. It is here proposed that such changes from \(/ x /\) to \([n, n\) '] are unusual because they implicate abstract intermediate representations: *[ \(n, \eta\) n]. Specifically:

On the one hand, it is recognised that \(/ x /\) corresponds to the homorganic sonorants *[ \(n\), \(\eta^{n}\) ] before voicing and glottalising suffixes, respectively, in the same way that/s/corresponds to the homorganic sonorants \([y, y]\) in these contexts, that \(/ t /\) corresponds to the homorganic sonorants \([l, \eta]\) in these contexts, and that \(/ x^{w}, \check{x}^{w} /\) correspond to the homorganic sonorants [w, \(w\) ] in these contexts (see section 2.3.2). As shown in the following tableau (adapted from section 2.3.2), Max-IO[voi/cg] is satisfied by changing a fricative to a sonorant, i.e. by violating Faith-lO[son]. Moreover, since a velar nasal is the only (homorganic) sonorant counterpart of \(/ \mathrm{x} /\), Dep-IO[nas] must also be violated in order to satisfy Max-IO[voi/cg].
(462) /məx-+voiaci/ \(\rightarrow\) *mə \({ }^{\text {* }}\) aci 'drum’
\begin{tabular}{|c|c|c|c|}
\hline & /max-, +voiaci/ & Max-IO[voi] & Faith-IO[son] \\
Dep-IO[nas] \\
\hline a. maxaci & \(*!\) & & \\
\hline\(\Rightarrow\) b. mənaci & & \(*\) & \(*\) \\
\hline
\end{tabular}

On the other hand, it is recognised that [ \(n, n\) n] correspond to *[n, \(n\) '] in Oowekyala since velar nasals are prohibited in this language, presumably via the ranking *[+nas, dor] \(\gg\) Faith-
\begin{tabular}{|cc|c|c|}
\hline (463) & /kin/ & [ [+nas, dor] & Faith-IO[Place] \\
\hline a. & {\([\mathrm{kin}]\)} & \(*!\) & \\
\hline\(\Rightarrow\) b. & {\([\mathrm{kin}]\)} & & \(*\) \\
\hline
\end{tabular} 10 [Place]. Recall that e.g. English 'king' is realised as [kin] in Oowekyala (section 2.4.5, p. 70).

In other words, the mapping of \(/ x /\) to \([n, n]\) before voicing and glottalising suffixes (respectively) can be understood once abstract intermediate representations with velar nasals are admitted. Indeed, the mapping from input / \(x /\) to 'intermediate' homorganic \([\eta, r\) ] is independ-ently-motivated (see section 2.3.2 on fricatives changing to homorganic sonorants), as is the mapping from 'intermediate' \([n, n\) '] to \([n, n\) '] (see section 2.4.5).

McCarthy (1999) proposes to formalise the notion of abstract 'intermediate' representations as 'sympathetic' candidates toward which other outputs must be faithful. A candidate is 'sympathetic' if it fails while otherwise being more faithful to the input than the successful candidate itself. For instance, consider the tableau in (465), which combines the constraints from tableaux (462) and (463), and which also includes Max-\$O[nas], a constraint demanding that outputs match the nasal specification of the sympathetic candidate.
(464) Faith-\$O[nasal] (McCarthy 1999)

Let \(\alpha\) be a segment in the sympathetic candidate and \(\beta\) be a correspondent of \(\alpha\) in an output. If \(\alpha\) is [үnasal], then \(\beta\) is [үnasal].

The sympathetic candidate, marked \$, is (465b). It fatally violates *[+nas, dor] but otherwise fulfills Max-IO[voi] while being Place-faithful to the input \(/ \mathrm{x} / .(465 \mathrm{a}\) ) is also Place-faithful, but it fatally violates higher-ranking Faith- \(\$ 0[n a s]\). (465c) thus emerges as the winning candidate because it fulfills both *[+nas, dor] and Faith-\$O[nas].
(465) /məx-+voiaci/ - *mənaci 'drum'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline /max-, \({ }^{\text {voiací/ }}\) & *[+nas, dor] & \begin{tabular}{c} 
Faith-\$0 \\
[nas]
\end{tabular} & \begin{tabular}{c} 
Faith-IO \\
[PI]
\end{tabular} & \begin{tabular}{c} 
Max-IO \\
[voi]
\end{tabular} & \begin{tabular}{c} 
Dep-IO \\
[nas]
\end{tabular} & \begin{tabular}{c} 
Faith-IO \\
[son]
\end{tabular} \\
\hline a. məxaci & & \(*!\) & & \(*!\) & & \\
\hline\(\$\) b. manacii & \(*!\) & & & & \(*\) & \(*\) \\
\hline\(\Rightarrow\) c. mənaci & & & \(*\) & & \(*\) & \(*\) \\
\hline d. məyaci & & \(*!\) & \(*\) & & \(*\) & \(*\) \\
\hline
\end{tabular}

\subsection*{4.3.2. Overapplication of dissimilation of [+continuant]}

Recall from section 3.5 that Oowekyala has a dissimilation process that affects adjacent coronal consonants specified [+continuant]. For example, the initial segment of the suffix -sm 'round and/or bulky object' is pronounced [s] after q'axw- 'to be visible' (q'axwsm 'sth. round and/or bulky that has become visible in the water') but [c] after Palut 'new' (Palutcm 'round and/or bulky thing (e.g. a cooking stone) that is new') (see section 3.5 for additional examples). The following constraint is held responsible for continuancy dissimilation in Oowekyala.
(466) OCP(Cor+cont)

A sequence of two segments, both [coronal] and both [+continuant], is disallowed.

Because it triggers a loss of［＋continuant］，OCP（Cor＋cont）must outrank Faith－IO［cont］． Recall that \({ }^{*}[-\) cont \(\left.]\right]_{\sigma}\) also outranks Faith－IO［cont］（see section 3.4 .2 on spirantisation）．To－ gether，then， \(\mathrm{OCP}(\text { Cor }+ \text { cont } \text { ）and } *[- \text { cont }]]_{\sigma}\) ensure that in a sequence of two coronal fricatives， the second（rather than the first）will lose its［＋continuant］specification，as illustrated in the following tableau．
（467）Continuancy dissimilation in coronals
\begin{tabular}{|c|c|c|c|}
\hline ／Zalut－s（ğ）m／ & OCP（Cor＋cont） & ＊［－cont］\(]_{\text {d }}\) & Faith－IO［cont］ \\
\hline a．Talut－sm & ＊！ & & \\
\hline b．Palù⿱亠䒑－sm & & ＊！ & ＊ \\
\hline \(\Rightarrow c\) ．Ralut－cm & & & ＊ \\
\hline
\end{tabular}

Now recall what happens when－sm is added to a stem that ends in／s／．As exemplified in（468）below，a single［c］results．The same pattern is illustrated with other suffixes／enclitics in section 3.5 （（310），（315），（321））．
（468）．．．s＋sm＇round and／or bulky object＇
\begin{tabular}{|c|c|c|}
\hline a．dənacm & sth．that is round and／or bulky（such as a box）and that is made of red cedar bark & BC63：DS \\
\hline denas & inner bark of red cedar & BC63：DS \\
\hline b．piem & thing that is round and／or bulky and that is hard & HS \\
\hline pisa & hard & EW \\
\hline c．qikacm & thing that is big and round and／or bulky & HS \\
\hline qikas & big，large，important，considerable & HS \\
\hline
\end{tabular}

This transformation ．．．s＋s．．．\(\rightarrow\) ．．．c．．．has two components：the featural change of suffix－initial ／s／to［c］，and the deletion of stem－final／s／．Crucially，both processes are independently－ motivated in Oowekyala．
－The occlusivisation of suffix－initial／s／to［c］is evidently related to the dissimilatory change ．．．\(\ddagger+s \ldots \rightarrow \ldots \nmid c . . .\). ，which is exemplified in（308），（309），（313），（314），（319）and （320），and which is analysed in e．g．tableau（323）in section 3.5 ；see also（467）above．
－On the other hand，the deletion of stem－final／s／before suffix－initial［c］is part of a general degemination process that elides the first consonant in a sequence of two（near） identical segments．This process was discussed in section 3．3．It suffices to note here that the sequences［ss］，［sc］，［cs］，［cc］are generally excluded in Oowekyala．

In derivational phonology，the correct outputs can be obtained if these two independ－ ently motivated structural changes are interpreted as rules arranged in counterbleeding order， as illustrated in（469）．Crucially，in（469b）the coronal fricative that triggers continuancy dissimilation gets deleted by degemination．
a. \(/ g^{w} \mathrm{a} \downarrow-\mathrm{su} /\)
b. /7as-su/
\begin{tabular}{|c|c|c|}
\hline g'wał-cu & 3as-cu & Coronal continuancy dissimilation (section 3.5) \\
\hline n/a & Pa-cu & Degemination (section 3.3) \\
\hline  & [Pacu] & \\
\hline
\end{tabular}

The fact that the trigger for continuancy dissimilation is not always surface-apparent poses a basic challenge to the OT analysis of this phenomenon. To address this, McCarthy's (1999) Sympathy Theory is again invoked. Specifically, the intermediate form in (469b) resulting from continuancy dissimilation (e.g. Pas-cu) is considered a 'sympathetic' candidate, i.e. an abstract representation that mediates between the input and the (opaque) output. As noted in the previous section, the sympathetic candidate is always a failed candidate that is otherwise maximally faithful to the input. Consider the tableau below, which also includes Faith-\$O[cont], a constraint requiring that outputs match the continuancy specification of the sympathetic candidate.
(470) Faith-\$O[continuant] (McCarthy 1999)

Let \(\alpha\) be a segment in the sympathetic candidate and \(\beta\) be a correspondent of \(\alpha\) in an output. If \(\alpha\) is [ \(\gamma\) continuant], then \(\beta\) is [ \(\gamma\) continuant].
(471) 'Overapplicaton' of continuancy dissimilation in coronals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Antigem. & Left Anchor 10 & \begin{tabular}{l}
OCP \\
(Cor,
\[
+ \text { cont) }
\]
\end{tabular} & \({ }^{*}[-\) cont \(\left.]\right]_{\sigma}\) & Max-IO & Faith \(\$ 0\) [cont] & \[
\begin{aligned}
& \text { Faith } \\
& \text { IO } \\
& \text { [cont] }
\end{aligned}
\] \\
\hline a. Pas-su & *! & & *! & & & * & \\
\hline b. Pac-su & *! & & & *! & & * & * \\
\hline \$c. Tas-cu & *! & & & & & & * \\
\hline d. Pas- \(\varnothing u\) & & *! & & & & & \\
\hline e. \(7 \mathrm{ac}-\varnothing \mathrm{u}\) & & *! & & & & & \\
\hline f. \(7 \mathrm{a} \varnothing\)-su & & & & & * & *! & \\
\hline \(\Rightarrow \mathrm{g}\). \(\mathrm{7a} \varnothing\)-cu & & & & & * & & * \\
\hline
\end{tabular}

The 'sympathy' candidate (471c), marked \$, fatally violates Antigemination but otherwise incurs the least constraint violations. Of the various other candidates, only (471g) fulfills Faith\(\$ 0\) [cont]. Note that the latter outranks Faith-IO[cont] which would have selected (471f) had Faith-\$O[cont] not been included. Indeed, without Faith-\$O[cont], the optimal candidate would necessarily be *?asu (471f) which has one fewer violation of Faith-IO[cont] than Pacu (471f). In fact, the violation marks associated with candidate (471f) are a proper subset of those associated with candidate (471g), so no amount of constraint reranking (or conjunction; Smolensky
1995) will ensure that the correct output (Pacu) is chosen. This clearly establishes the need for a sympathy-output faithfulness constraint Faith- \(\$\) O[cont].

\subsection*{4.3.3. Overapplication of deocclusivisation}

Recall from section 3.6.4.3 that the inchoative suffix has the form -7it after plain (i.e. voiceless, nonglottalised) obstruents; cf. (392). Because this suffix begins a new syllable, it triggers regular spirantisation in the preceding consonant, as the following data illustrate.
(472) Spirantisation before Inchoative -7it
a. sit-7it to start to poke through an opening with a stick or stick-like ..... HS

thing
sit-a to poke, push through an opening ..... EW
b. miuc-zla to round the mouth ..... EW
mus-?it to round the mouth, to pucker the lips ..... HS
c. waiłłit to become weak, to become too weak to do sth. ..... HS
waix weak, feeble ..... HS, EW
d. qंxit to start to bite ..... HS
q'ka to bite (e.g., mosquito) ..... EW, JSS3
e. \(\quad\) dmx" \({ }^{\text {mit }}\) to start to chew sth. brittle noisily ..... HS
qmk"a to bite something hard or brittle; to eat (said of animals) ..... EW
f. m'əx̄it to discard, throw away, drop (ceremonial word) ..... EW
mieqa to throw away (ceremonial word only) ..... HS
g. cm \(\check{x}^{w}\)-Tit to swallow at once without chewing ..... HS
c'mq"a to bolt food, to swallow whole (e.g. pills) ..... EW

Next recall from section 3.4 .3 (p. 111 ff .) that /p/ deocclusivises as [m]. Root-final /p/ also deocclusivises as [m] before the inchoative suffix - Pit. A complicating factor here, however, is that the resulting [m] merges with the initial [?] of the inchoative suffix, yielding [m']. This pattern is illustrated in the following data.
(473) \(p \rightarrow\) m' before inchoative suffix
a. damit to start towing ..... HS
dapa to tow ..... EW, HS
b. \(\mathrm{k}^{\mathrm{w}}\) umit to start to break (as a stick) ..... WL
\(\mathrm{k}^{\mathrm{w} u p a}\) to snap, to break (said of a stick or long stick-like thing) ..... EW ..... EW
c. x̌umit to become rough, to lose smoothness; to start to gather debris, ..... HS pieces of wood (for firewood)
xupa rough (said of lumber); to gather (debris, pieces of wood for the ..... EW
d. yamit to (start to) send on an errand ..... HS
yapa to send somebody ..... EW, HS
e. dzumit to start to plug soft material in holes, to start to stuff with a cloth ..... HS
czupa to fill, stuff, or plug up with soft material ..... EW
f. Tamit to begin to show maggots, to become maggoty, to become mag- ..... HSgot-infested
EW
Papa maggoty
g. x̌lmit to start to scrape up sth. with the fingers using a clawing move- ..... HS
ment
x̌lpa to rake, to scrape with the fingers ..... EW
h. c'əmit to start to dip grease from a dish ..... HS
с́pa to dip food (in oil, syrup, or water) ..... EW
i. \(\lambda\) amit to start digging clams ..... HS
\(\lambda a p a\) to dig for clams or cockles ..... EW,
j. ğlmit to give a pull towards oneself with the hands, to pull the triggerJSS1of a gun, to beckon a person with the finger that he should comeover
ğlpa to grasp, hold on, pull towards oneself (esp. with a hooked finger ..... EW
or hand, e.g. gun)
h. kemit to start to tuck, jam or button up ..... HS
kpa to plug (hole), tuck in, jam in, to button up, insert (lever) ..... EW
i. \(k^{\text {wamit }}\) to start to tear fabric (e.g. a mat) or a flat thing ..... HS
\(k^{\text {jwapa }} \quad\) to tear fabric (e.g. a mat) or a flat thing ..... EW
j. l'amit to start to spread open with one's thumbs (as e.g. a deck of ..... HScards)
lapa to spread apart with the thumbs ..... EW
k. łnmit to become soft ..... HS
tnpa saggy, loose, soft, wrinkled ..... EW

The merger of \(m+?\) in the data above is a general property of Oowekyala. / \(7 /\) is generally disallowed after resonants, i.e. the sequences \(/ \mathrm{m} 7, n 7,17, w 7\) ( \(u 7\) ), \(y ?\) (i?)/ are forbidden. The high incidence of word-medial glottalised resonants, and the overall absence of resonant + glottal stop sequences, together suggest that / // regularly coalesces with preceding resonants. In correspondence-theoretic terms, coalescence can be achieved through the ranking *R? > Uniformity-10.
(474) *R? ? must not occur after a resonant. (Domain = word)
(475) Uniformity-IO (McCarthy \& Prince 1995:371)

No segment of the output has multiple correspondents in the input.

Coalescence in (473) creates some difficulty for a surface-oriented theory like OT, as the application of coalescence removes the surface-apparent need for deocclusivisation (/p/ \(\rightarrow \mathrm{m}]\) ).

This problem does not arise in derivational phonology, where coalescence can be sequenced after regular deocclusivisation (in counterbleeding order), as illustrated in (476b).
(476)
a. /sit-(x)?id/ b. /dap-(x) id /
siłfit damPit Deocclusivisation (section 3.4.3, p. 111)
\(\mathrm{n} / \mathrm{a} \quad\) damit \(\quad R ? \rightarrow R^{\prime}\) (coalescence)
[sił7it]
[damit]

The problem for OT can be resolved by admitting sympathetic correspondence relations, after McCarthy (1999). The 'sympathetic' candidate that influences the pattern in (473) is one that fatally violates *R? but is otherwise the most harmonic in terms of the constraint hierarchy of Oowekyala. The grammar requires that each output be faithful to this sympathetic candidate in terms of continuancy.

\section*{(477) Faith-\$O[continuant] (cf. McCarthy 1999)}

Let \(\alpha\) be a segment in the sympathetic candidate and \(\beta\) be a correspondent of \(\alpha\) in an output. If \(\alpha\) is [ \(\gamma\) continuant], then \(\beta\) is [ \(\gamma\) continuant].

The relevant interaction of constraints is illustrated in the following tableau. (Continuancy is shown only for the root-final consonant.) (478a) fatally violates *[-cont] lo; (478b) fatally violates *R?. These context-sensitive markedness constraints are fulfilled by (478c) and (478d) which both violate lower-ranked Uniformity. (478d) wins because it also fulfills Faith- \(\$ 0\) [cont]. Note that Dep-IO[nas] and Faith-IO[cont], which otherwise select (478c) as optimal, are crucially dominated by Faith- \(\$\) O[cont]. That is, the sympathetic faithfulness constraint is crucial, since without it, (478c) would incorrectly be chosen.


\subsection*{4.3.4. Sonorant glottalisation before voicing suffixes}

Recall from section 2.3 that Oowekyala has voicing suffixes that cause stem-final obstruent stops and affricates to become voiced (see section 2.3.1, p. 30ff. for examples) and stem-final fricatives to become homorganic sonorants (see section 2.3.2, p. 41 ff . for examples). Consider now what happens when voicing suffixes are added to stems ending in sonorants. As Boas (1911) first observed, stem-final sonorants become glottalised before voicing suffixes. This pattern is exemplified in (479) and (480) with the voicing suffixes -it 'indoors' and -aci 'container'.
(479) -+voiił 'indoors'
\begin{tabular}{lllll} 
a. & mamił & bedding & HS \\
mam & blanket, bedding, bedcover & EW, HS,
\end{tabular}
```

(480) -+voiaci 'container'

```
\begin{tabular}{|c|c|c|}
\hline a. X'bamáa & door frame & HS \\
\hline \(\lambda^{\prime \prime} \mathrm{bm}\) & door & JSS3, HS \\
\hline b. pay \({ }^{\text {a }}\) waci & toolbox & HS \\
\hline payu & tool, instrument & JSS3 \\
\hline  & seine boat & JSS3 \\
\hline dnk \(\mathrm{I}^{\text {i }}\) & to fish with the seine; seine boat & HS \\
\hline
\end{tabular}

It is proposed that this pattern reflects an abstract intermediate representation in which a glottal stop follows stem-final resonants before voicing suffixes, e.g. mamPił, X'bmPaci. In OT these abstract representations are 'sympathetic' candidates (McCarthy 1999); see below. In derivational phonology, the abstract representations in question would be sequenced before the outputs are realised, e.g.:
(481) Derivational analysis
a. / mam-+voiit/ \(\downarrow\)
mampił Glottal stop formation
1
mamił \(\quad R 7 \rightarrow R^{\prime}\) (coalescence) (see preceding subsection)
!
[mamitit]

The glottal stop in the alleged 'intermediate' representations is actually realised following stem-final [a], as the following examples show.
(482) -+voiił 'indoors'
\begin{tabular}{llll} 
a. & kiwarił & to sit (indoors) & WL, JSS2, \\
& k"wa:la & \begin{tabular}{l} 
sitting; term is used to refer to the marriage ceremony \\
"seated together"
\end{tabular} & EW, DS100
\end{tabular}

The glottal stop in question is also realised when resonant-ending stems are followed by cognate 'weakening' suffixes in South Wakashan languages (Rose 1976). Crucially, unlike
their North Wakashan relatives, South Wakashan languages allow resonant+glottal stop sequences. The following data are from Ahousaht Nuuchahnulth (Dick et al., in prep.).
(483) -it 'indoors' in Ahousaht Nuuchahnulth
a. čum-7ił bed
b. ?apwin- Tit living area in middle
c. timałsu-7it to wash the walls indoors
d. łu-Tiłum flooring

It is unclear why the floating [+voice] feature of voicing suffixes should ever be realised as [?] in Wakashan languages, including Oowekyala (482). One possibility is that even a floating laryngeal feature is dominated by a Laryngeal node. In that case, the grammar may insert a segmental root in order to parse the Laryngeal node (though not its dependent [+voice]). That is, Max-IO[Lar] outranks Dep-IO[root] and also Dep-IO[cg] (since [?] necessarily implies [+cg]). This interaction is illustrated in the following tableau. As shown, the optimal output (484b) fulfills Max-IO[Lar] by realising the floating [Lar] as [?], not as [f] (484a) which fatally violates *Xh.
(484) \(/ k^{\text {wwa-+voiij } / ~} \rightarrow k^{\text {wapalił 'sit indoors' }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \mathrm{k}^{\mathrm{w}} \mathrm{a}-\mathrm{if/} \\
\mid \\
\text { Lar Lar } \\
\text { | | } \\
+\mathrm{voi}+\mathrm{voi}
\end{gathered}
\] & *Xh & Max-IO[Lar] & Dep-IO[root] & Dep-IO[+cg] \\
\hline  & *! & & * & \\
\hline \begin{tabular}{ccc}
\(\Rightarrow\) b. & \(\mathrm{k}^{\mathrm{k} a \mathrm{a}}\) & \(?\) \\
& l & it \\
& Lar & Lar \\
& l & l \\
& +voi +cg
\end{tabular} & & & * & * \\
\hline c. \(\mathrm{k}^{\mathrm{w}} \mathrm{a}\) if & & *! & & \\
\hline
\end{tabular}

Returning to the glottalisation pattern in e.g. (479) and (480), the 'sympathetic' candidate that provokes each instance of dynamic glottalisation is one that fatally violates *R? but is otherwise the most harmonic in terms of the constraint hierarchy of Oowekyala. The grammar requires that each output be faithful to this sympathetic candidate in terms of glottalisation.
(485) Max- \(\$ 0[+c g]\) (cf. McCarthy 1999)

Every [+constricted glottis] in the sympathetic candidate has a correspondent in the output.

The effect of Max- \(\$ \mathrm{O}[+\mathrm{cg}]\) is shown in the following tableau for /mam++voiit/ \(\rightarrow\) mamił 'bedding (indoors)'. (486a) fulfills Max-IO[Lar] by realising the floating [Larj] as f , but the latter fatally violates *Xh. Similarly, (486b) fulfills Max-IO[Lar] by realising the floating [Larj] as ?, but the latter fatally violates *R?. The other candidates, (486c) and (486d), both satisfy the highranking contextual markedness constraints *Xh and *R2, and they both violate Max-IO[Lar] (because they fail to realise [Lar \(\mathrm{r}_{\mathrm{j}}\) ). ( 486 c ) is chosen over ( 486 d ), however, because the latter is unfaithful to the glottalisation feature of the sympathetic candidate mam7ił. Note that sympathy is crucial here. Had Max- \(\$ 0[+\mathrm{cg}]\) not been included above Dep-IO[ +cg ], the latter faithfulness constraint would have selected (486d) as optimal.
(486) /mam++volił/ \(\rightarrow\) mamił 'bedding (indoors)'
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { mam - ił/ } \\
\text { I } \\
\operatorname{Lar}_{\mathrm{i}} \text { Lar }_{\mathrm{j}} \\
\text { I I } \\
\text { +voi +voi }
\end{gathered}
\] & *Xh & *R? & Max-IO[Lar] & Dep-IO[root] & Max-\$O[+cg] & Dep-IO[+cg] \\
\hline a. mam \(f\) if 1 I \(\operatorname{Lar}_{i}\) Lar \(_{j}\) | | + voi + voi & *! & & & * & * & \\
\hline  & & *! & & * & & * \\
\hline \[
\begin{array}{cc}
\hline \Rightarrow \text { c. } & \text { mamit } \\
& 1 \\
& \operatorname{Lar}_{i} \\
& 1 \\
& +\mathrm{cg} \\
\hline
\end{array}
\] & & & * & & & * \\
\hline d. mamił Lar \(_{i}\) I +voi & & & * & & *! & \\
\hline
\end{tabular}

\section*{5. Conclusion}

Perhaps because OT was first developed in the study of prosodic phonology (and morphology) (Prince \& Smolensky 1993, McCarthy \& Prince 1993), the application of OT to segmental phonology has been met with skepticism. For instance, Chomsky (1995:224, 380) notes that OT's surface orientation seems appropriate enough for prosodic processes but he predicts that OT will fail to account for segmental processes. Indeed, most arguments levelled against OT so far draw on segmental phonology (e.g., Roca 1997). The view that OT is adequate only for prosodic phonology exists even among avowed OT practioners. Here is Hammond (1999:vii):

OT has grown out of much work which leads to the conclusion that a surfaceoriented constraint-based approach is appropriate for the theory of prosody. Other domains of phonology are not so readily treated or so obviously best treated in terms of such a theory.

Not surprisingly, perhaps, whole prosodic systems have now been analysed in OT (e.g., Hammond 1999 on English, van Oostendorp 2000 on Dutch) while OT has not yet been used to treat whole segmental phonologies (but cf. Elzinga's 1999 OT treatment of Gosiute consonants). An important realisation of this dissertation has been to show that OT can be used effectively to describe and analyse a whole segmental phonology.

This dissertation has treated the sound pattern of Oowekyala, a nearly extinct Wakashan language of the west coast of British Columbia, Canada. The segment-internal (paradigmatic) dimension of Oowekyala phonology was discussed first. This part of grammar results from the interaction between input-output faithfulness and context-free markedness constraints. This interaction was discussed with respect to the various features that crossclassify the segment inventory of Oowekyala. Among other things, it was argued that laryngeals are resonants, that affricates are noncontoured segments, that voicing and glottalisation features not only crossclassify the segment inventory but also occur as floating elements and that these floaters cause lenition.

The intersegmental (syntagmatic) phonology was treated next. These are patterns that result from the interaction between input-output faithfulness constraints and context-sensitive markedness constraints. Patterns discussed included: rounding of consonants, degemination, spirantisation/deocclusivisation, continuancy dissimilation, voicing neutralisation, and allophonic variation.

Exceptional phonological patterns that could not be explained through the interaction between input-output faithfulness constraints and markedness constraints were addressed last. It was argued that these exceptional patterns reflect various correspondence relations (cf. McCarthy \& Prince 1995, 1999): base-reduplicant correspondence, output-to-output correspondence, and candidate-to-candidate correspondence.

\section*{References}

Akinlabi, Akinbiyi M. 1991. Supraglottal deletion in Yoruba glides. West Coast Conference on Formal Linguistics 10:13-26. Stanford: CSLI publications.
Akinlabi, Akinbiyi M. 1996. Featural affixation. Journal of Linguistics 32:239-89.
Alderete, John, Jill Beckman, Laural Benua, Amalia Gnanadesikan, John McCarthy, \& Suzanne Urbanczyk. 1999. Reduplication with fixed segmentism. Linguistic Inquiry 30:327-364.

Antilla, Arto. 1995. Deriving variation from grammar: a study of Finnish genitives. Ms., Stanford University. [http://ruccs.rutgers.edu/roa.html]
Archangeli, Diana. 1988. Underspecification in Yawe/mani Phonology and Morphoiogy. Garland Publishing, New York.
Archangeli, Diana \& Douglas Pulleyblank. 1994. Grounded Phonology. Cambridge, Mass: MIT Press.
Archangeli, Diana \& Terrence Langendoen (Eds.). 1997. Optimality Theory: An Overview. Oxford: Blackwell.
Bach, Emmon. 1991. Representations and operations in Haisla phonology. Proceedings of the Western Conference on Linguistics 4:29-35.

Bach, Emmon. 1995. Word-internal semantic relations in Wakashan. In Clifford S. Burgess, Katarzyna Dziwirek, \& Donna Gerdts (Eds.), Grammatical Relations: Theoretical Approaches to Empirical Questions. Stanford: CSLI. 1-14.

Bach, Emmon. 1997. Some questions from Haisla morphology and phonology. Paper presented at the University of British Columbia, Dec. 12, 1997.
Bach, Emmon. 1999. Haisla Dictionary. Ms., University of Massachusetts, Amherst.
Bach, Emmon and Reed Bates. 1971. Some notes on Xa'isla. In James E. Hoard \& Thos. M. Hess (Eds.), Studies in Northwest Indian Languages. Sacramento, CA: Publications of the Sacramento Anthropological Society 11.1-11.
Bagemihl, Bruce. 1991. Syllable structure in Bella Coola. Linguistic Inquiry 22:589-646.
Beckman, Mary E. 1998. Positional Faithfu/ness. PhD dissertation, University of Massachusetts, Amherst.

Beers, Mieke. 1996. Acquisition of Dutch phonological contrasts within the framework of feature geometry theory. In Bernhardt, Barbara H., John Gilbert and David Ingram (Eds.). 1996. Proceedings of the UBC International Conference on Phonological Acquisition. Somerville, MA: Cascadilla Press. 28-41.
Benua, Laura. 1999. Transderivational Identity: Phonological Relations between Words. New York: Garland.
Bessell, Nicola J. 1998. Local and non-local consonant-vowel interaction in Interior Salish. Phono/ogy 13:1-30.
Bethin, Christina Y. 1998. Slavic Prosody: Language Change and Phonological Theory. Cambridge, UK: Cambridge University Press.
Blake, Susan J. 1992. Two Aspects of Sliammon Phonology. Masters thesis, University of British Columbia.

Blake, Susan J. 2000. Lexical suffixes are bound roots: Phonological evidence from Lillooet and Sliammon. Paper presented at the 5th Workshop on Structure and Constituency in the Languages of the Americas, University of Toronto, March 24-6, 2000.
Blevins, Juliette. 1993. Klamath laryngeal phonology. International Journal of American Linguistics 59:237-279.
Blevins, Juliette. 1994. A place for lateral in feature geometry. Journal of Linguistics 30:301348.

Boas, Franz, ed. 1911. Handbook of American Indian Languages. Washington: Bureau of American Ethnology, Bulletin 40.
Boas, Franz. 1928. Bel/a Bella Texts. New York, N.Y.: Columbia University Press.
Boas, Franz. 1947. Kwakiut/ Grammar. Philadelphia, PA: American Philosophical Society.
Borowsky, T. 1986. Topics in the Lexical Phonology of English. PhD dissertation, University of Massachusetts, Amherst.
Buckley, Eugene. 1999. Uniformity in extended paradigms. In Ben Hermans and Marc van Oostendorp (Eds.), The Derivational Residue in Phonological Optimality Theory. Amsterdam: John Benjamins. 81-104.
Burzio, Luigi. 1995. The rise of Optimality Theory. Glot International 1 (6):3-7.
Burzio, Luigi. 2000. Surface constraints vs. underlying representations. In Jacques Durand and Bernard Laks (Eds.), Current Trends in Phonology: Models and Methods. Paris: CNRS. 6996.

Calabrese, Andrea. 1995. A constraint-based theory of phonological markedness and simplification procedures. Linguistic Inquiry 26:373-463.
Campbell, Lyle, \& Mithun, Marianne (Eds.). 1979. The Languages of Native America: Historical and Comparative Assessment. Austin, TX: University of Texas Press.
Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT Press.
Chomsky, Noam \& Morris Halle. 1968. The Sound Pattern of English. New York: Harper \& Row.
Clements, George N. 1988. Toward a substantive theory of feature specification. In Proceedings of North East Linguistic Society 18:79-93. GLSA, University of Massachusetts, Amherst.
Clements, George N. 1990. The role of the sonority cycle in core syllabification. In John Kingston \& Mary E. Beckman (Eds.), Papers in Laboratory Phonology I. Cambridge, MA: Cambridge University Press. 283-333.
Clements, George N. to appear. Affricates as noncontoured stops. To appear in O. Fujimura, B. Joseph, and B. Palek (Eds.), Item Order in Language and Speech. Prague: Charles University Press.
Clements, George N. and Elizabeth Hume. 1995. The internal organization of segments. In John A. Goldsmith (Ed.), Handbook of Phonological Theory. Cambridge, MA: Blackwell. 245306.

Cole, Jennifer. 1987. Planar phonology and morphology. PhD dissertation, MIT.
Compton, Brian. 1992. Ethnobotanical Knowledge of the Haisla, Haihais, Oweekeno, and Coast Tsimshian. PhD dissertation, University of British Columbia.
Cook, Captain James. 1784. A Voyage to the Pacific Ocean: Undertaken by the Command of His Majesty, For Making Discoveries in the Northern Hemisphere; Performed Under the Di-
rection of Captain Cook, Clerke, and Gore, in His Majesty's Ships the Resolution and Discovery, in the Years 1776, 1777, 1778 and 1780. London: W. and A. Strahan.
Curtis, Edward Sheriff. 1970. The North American Indian, being a series of volumes picturing and describing the Indians of the United States and Alaska. Ed. by Frederick Webb Hodge. New York: Johnson Reprint Corp, 1970 reprint of 1907-30.
Cutler, Anne, John A. Hawkins, \& Gary Gilligan. 1985. The suffixing preference: a processing explanation. Linguistics 23:723-758.
Dick, Mary Jane, Catherine Fraser, Darin Howe \& Douglas Pulleyblank. (In prep.) Ahousaht Dictionary. Ms., University of British Columbia.
Duinn, John A. 1995. Sm'algyax: A reference dictionary and grammar for the Coast Tsimshian language. Sealaska Heritage Foundation, Juneau.
Elbert, S. H. \& M. K. Pukui. 1979. Hawaiian Grammar. Honolulu: University of Hawaii.
Elorrieta, Jabier. 1991. The feature specification of uvulars. West Coast Conference on Formal Linguistics 10:139-149. Stanford: CSLI publications.
Elzinga, Dirk Allen. 1999. The Consonants of Gosiute. PhD dissertation, University of Arizona.
Embleton, Sheila M. 1985. Lexicostatistics applied to the Germanic, Romance, and Wakashan families. Word 36:37-60.
Embleton, Sheila M. 1986. Statistics in Historical Linguistics. Quantitative Linguistics 30:1-194.
Fant, G. 1960. Acoustic Theory of Speech Production. The Hague: Mouton.
Fraser, Catherine \& Darin Howe. 1996. Introduction to Nuu-chah-nulth phonology. Ms., University of British Columbia.
Gilbers, Dicky \& Helen de Hoop. 1998. Conflicting constraints: An introduction to Optimality Theory. Lingua 104:1-12.
Goldsmith, John A. 1976. An overview of autosegmental phonology. Linguistic Analysis 2(1). Reprinted in John A. Goldsmith (Ed.), 1999, Phonological Theory: The Essential Readings. Oxford, UK: Blackwell. 137-161.
Grijzenhout, J. 1995. Feature geometry and coronal transparency. In H. van der Hulst and J. van der Weijer (Eds.), Leiden in Last. HIL Phonology Papers 1. The Hague: Holland Academic. 165-1 85.
Grubb, David McC. 1977. A Practical Writing System and Short Dictionary of Kwakw'ala (Kwakiut/). Ottawa: National Museums of Canada.
Gussenhoven, Carlos \& Haike Jacobs. 1998. Understanding Phonology. London: Arnold.
Hall, B. L. \& R. M. R. Hall. 1980. Nez Perce vowel harmony: An africanist explanation and some theoretical questions. In R. M. Vago (Ed.), Issues in Vowe/ Harmony. Amsterdam: John Benjamins. 201-36.
Hall, Christopher J. 1992. Morphology and Mind: A Unified Approach to Explanation in Linguistics. London: Routledge.
Halle, Morris. 1995. Feature geometry and feature spreading. Linguistic Inquiry 26:1-46.
Halle, Morris. 1959. The Sound Pattern of Russian. The Hague: Mouton.
Halle, Morris. 1992. Phonological features. In Bright, W. (Ed.), International Encyclopedia of Linguistics 3:207-12. New York: Oxford University Press.
Halle, Morris \& George N. Clements. 1983. Problem Book in Phonology. Cambridge, MA: MIT Press.

Halle, Morris, Bert Vaux \& Andrew Wolfe. 2000. On feature spreading and the representation of place of articulation. Linguistic Inquiry 31:387-444.
Hammond, Michael. 1999. The Phonology of English: A Prosodic Optimality Theoretic Approach. Cambridge, UK: Cambridge University Press.
Hanuse, R., Sr., Smith, H., \& Stevenson, D. (Eds.) 1983.89 The Adjee and the Little Girl. Rivers Inlet, BC: Oowekyala Language Project.
Hayes, Bruce. 1995. On what to teach the undergraduates: Some changing orthodoxies in phonological theory. In Ik-Hwan Lee (Ed.), Linguistics in the Morning Calm 3. Seoul: Hanshin. 59-77.
Hayes, Bruce. 1999. Phonological restructuring in Yidin and its theoretical consequences. In Ben Hermans and Marc van Oostendorp (Eds.), The Derivational Residue in Phonological Optimality Theory. Amsterdam: John Benjamins. 175-206.
Herzog, George, Stanley S. Newman, Edward Sapir, Mary Haas, Morris Swadesh, and Charles F. Voegelin. 1934. Some orthographic recommendations. American Anthropologist, n. s., 36:629-31.
Hilton, Suzanne \& John C. Rath. 1982. Oowekeeno Oral Traditions. Ottawa: National Museums of Canada.
Howe, Darin. 1996. Lenition and glottalization in Nuuchahnulth. Paper presented at the 31 st International Conference on Salish and Neighboring Languages, University of British Columbia, Vancouver.
Howe, Darin. 1998. Aspects of Heiltsuk laryngeal phonology. Ms., University of British Columbia.
Howe, Darin. 1999. On debuccalization and the Pharyngeal specification of laryngeals. Paper presented at the 73 rd Annual Meeting of the Linguistic Society of America, Los Angeles, CA, Jan. 5-9, 1999.
Howe, Darin \& Douglas Pulleyblank. In press. Patterns and timing of glottalisation. Phonology 18.2.

Hualde, Juan I. 1988. Affricates are not contour segments. West Coast Conference on Formal Linguistics 17:77-89.
Hualde, Juan I. 1991. Basque Phonology. London: Routledge.
Hyman, Larry M. 1975. Phonology: Theory and Analysis. New York: Holt, Rinehart \& Winston.
Inkelas, Sharon, Orhan C. Orgun \& Cheryl Zoll. 1997. The implications of lexical exceptions for the nature of grammar. In Roca (Ed.), 393-418.
Itô, Junko, Armin Mester \& Jaye Padgett. 1995. Licensing and underspecification in Optimality Theory. Linguistic Inquiry 26:571-614.
Jacobsen, William H., Jr. 1969. Origin of the Nootka pharyngals. International Journal of American Linguistics 35: 125-33.
Jacobsen, William H., Jr. 1979. Wakashan comparative studies. In Campbell \& Mithun (Eds). 76691.

Jakobson, Roman. 1939. Signe Zéro. Mélanges Bally, Geneva. Jakobson, Roman. 1941 . Kindersprache, Aphasie und Allgemeine Lautgesetze, Uppsala.

\footnotetext{
\({ }^{89}\) This work is not dated but was likely produced in the mid-1980's.
}

Johnson, S., Smith, H., \& Stevenson, D. 1983a. 90 What time is it? Rivers Inlet, BC: Oowekyala Language Project.
Johnson, S., Smith, H., \& Stevenson, D. 1983b. Fishing at Rivers Inlet. Rivers Inlet, BC: Oowekyala Language Project.
Johnson, S., Smith, H., \& Stevenson, D. 1983c. Qaquthanugva uikala. Rivers Inlet, BC: Oowekyala Language Project.
Johnson, S., Smith, H., \& Stevenson, D. 1983d. Sisa'kvimas. Rivers Inlet, BC: Oowekyala Language Project.
Johnson, S., Smith, H., \& Stevenson, D. 1983e. 'Katemxvs 'Wuik'ala. Rivers Inlet, BC: Oowekyala Language Project.
Johnson, S., Smith, H., \& Stevenson, D. 1984. Oowekyala words. Rivers Inlet, BC: Oowekyala Language Project.
Kager, René. 1990. Dutch schwa in moraic phonology. Chicago Linguistic Society 26, Vol. 2, 241-256.
Kager, René. 1999. Optimality Theory. Cambridge, UK: Cambridge University Press.
Kaisse, Ellen. 1999. /I/ is [-continuant]. Paper presented at the Department of Linguistics Colloquium Series, University of British Columbia.
Katamba, Francis. 1989. An Introduction to Phonology. London \& New York: Longman.
Kaye, Jonathan. 1974. Opacity and recoverability in phonology. Canadian Journal of Linguistics 19:134-149.
Kaye, Jonathan. 1975. A functional explanation of rule ordering in phonology. Papers from the Parasession on Functionalism, 244-252. Chicago: Chicago Linguistic Society.
Kean, Mary-Louise. 1980. The Theory of Markedness in Generative Grammar. Bloomington, Indiana: Indiana University Linguistics Club.
Keating, Patricia A. 1984. Phonetic and phonological representation of stop consonant voicing. Language 60:286-319.
Keating, Patricia A. 1988. Underspecification in phonetics. Phonology 5:275-92.
Kenstowicz, Michael. 1994. Phonology in Cenerative Grammar. Cambridge, MA: Blackwell.
Kenstowicz, Michael. 1996. Base-Identity and Uniform Exponence: Alternatives to Cyclicity. In J. Durand and B. Laks (Eds.), Current Trends in Phonology: Models and Methods. Paris: CNRS. 363-393.
Kenstowicz, Michael, and Charles Kisseberth. 1977. Topics in Phonological Theory. New York: Academic Press.
Kim, Eun-Sook. 1999. Glottalization in Nuuchahnulth and Nitinaht in Optimality Theory. Paper presented at the Northwest Linguistics Conference, University of Victoria, BC.
Kinkade, M. Dale. 1991. Prehistory of the Native Languages of the Northwest Coast. In Proceedings of the Great Ocean Conferences, vol. 1. Portland: Oregon Historical Society Press. 137-158.
Kiparsky, Paul. 1982. Lexical Phonology and Morphology. In I.-S. Yang (Ed.), Linguistics in the Morning Calm 1. Seoul, Korea: Hanshin. 3-91.
Kiparsky, Paul. 1985. Some consequences of Lexical Phonology. Phonology Yearbook 2:82-138.

\footnotetext{
90 This work as well as the next few are not dated but were likely produced in the mid 1980's.
}

Kiparsky, Paul. 1993. Variable rules. Handout of presentation at the Rutgers Optimality Workshop (ROWI).
Klokeid, Terry J. 1975. The Nitinat feature system: A reference paper. Lektos: Interdisciplinary Working Papers in Language Sciences 1:81-95.
Kortlandt, F. H. H. 1975. Tones in Wakashan. Linguistics 146:31-4.
Kuryłowicz, Jerzy. 1949. La nature des procès dits 'analogiques'. Acta Linguistica 5:15-37.
Labov, William. 1994. Principles of Linguistic Change: Internal Factors. Cambridge, MA: Blackwell.
LaCharité, Darlene. 1995. The Internal Structure of the the Affricate. PhD dissertation, University of Ottawa.
Ladefoged, Peter \& lan Maddieson. 1996. The Sounds of the World's Languages. Oxford, UK: Blackwell.
Lass, Roger. 1984. Phonology: An Introduction to Basic Concepts. Cambridge, UK: Cambridge University Press.
Lincoln, Neville J. \& John C. Rath. 1980. North Wakashan Comparative Root List. Ottawa: National Museums of Canada.
Lincoln, Neville J. \& John C. Rath. 1986. Phonology, Dictionary and Listing of Roots and Lexical Derivates of the Haisla Language of Kitlope and Kitimaht, B.C. Ottawa: National Museums of Canada.
Lloret, Maria-Rosa. 1995. The representations of glottals in Oromo. Phonology 12:257-80.
Lombardi, Linda. 1990. The nonlinear organization of affricates. Natural Language and Linguistic Theory 8:375-426.
Lombardi, Linda. 1996. Postlexical rules and the status of privative features. Phonology 13:138.

Lombardi, Linda. 1997. Coronal epenthesis and markedness. University of Maryland Working Papers in Linguistics 5:156-75.
Lombardi, Linda. 1999. Positional faithfulness and voicing assimilation in Optimality Theory. Natural Language and Linguistic Theory 17:267-302.

Lombardi, Linda. 2000. Second language data and constraints on Manner: explaining substitutions for the English interdentals. Ms., University of Maryland, College Park. [http://ruccs.rutgers.edu/roa.html]
MacKay, C. J. 1994. A sketch of Misantla Totonac phonology. International Journal of American Linguistics 60:369-419.
Maddieson, lan. 1984. Patterns of Sound. Cambridge: Cambridge University Press.
McCarthy, John J. 1986. OCP Effects: Gemination and antigemination. Linguistic Inquiry 17:207263.

McCarthy, John J. 1988. Feature geometry and dependency: A review. Phonetica 43:84-108.
McCarthy, John J. 1994. The phonetics and phonology of Semitic pharyngeals. In Patricia A. Keating (Ed.), Phonological Structure and Phonetic Form: Papers in Laboratory Phonology III. Cambridge, UK: Cambridge University Press. 191-233.

McCarthy, John J. 1999. Sympathy and phonological opacity. Phonology 16:331-399.
McCarthy, John J. and Alan S. Prince. 1990. Prosodic morphology and templatic morphology. In Mushira Eid and John McCarthy (Eds.), Perspectives on Arabic linguistics // (Papers from
the Second Annual Symposium on Arabic Linguistics). Amsterdam: John Benjamins. 154.

McCarthy, John J. \& Alan S. Prince. 1993. Prosodic Morphology I: Constraint Interaction and Satisfaction. Ms., University of Massachusetts, Amherst, and Rutgers University. [To appear, MIT Press, Cambridge, MA] [http://ruccs.rutgers.edu/roa.html]
McCarthy, John J. and Alan S. Prince. 1994. The emergence of the unmarked: optimality in prosodic morphology. North East Linguistic Society 24:333-379. GLSA, University of Massachusetts, Amherst.
McCarthy, John J. \& Alan S. Prince. 1995. Faithfulness and reduplicative identity. In Jill Beckman, Laura Walsh-Dickey \& Suzanne Urbanczyk (eds.) Papers in Optimality Theory. Amherst: University of Massachusetts, Graduate Student Association.
McCarthy, John J. and Alan S. Prince. 1999. Faithfulness and identity in Prosodic Morphology. In René Kager, Harry van der Hulst, \& Wim Zonnefeld (eds.), The Prosody-Morphology Interface. Cambridge, UK: Cambridge University Press. 218-309.
Mcllwraith, Thomas Forsyth. 1948. The Bella Coola Indians. Toronto : University of Toronto Press.
McMillan, Alan D. 1999. Since the Time of the Transformers: The Ancient Heritage of the Nuu-chah-nulth, Ditidaht, and Makah. Vancouver: UBC Press.
Mester, Armin. 1986. Studies in Tier Structure. PhD dissertation, University of Massachusetts, Amherst.
Mester, Armin and Junko Itô. 1989. Feature predictability and underspecification: Palatal prosody in Japanese mimetics. Language 65:258-93.
Mohanan, K.P. 1991. On the Bases of Radical Underspecification. Natural Language and Linguistic Theory 9:285-325.
Morelli, Frida. 1999. The phonotactics and phonology of obstruent clusters in Optimality Theory. PhD dissertation, University of Maryland.
Myers, Scott. 1991. Persistent rules. Linguistic Inquiry 22:315-44.
Myers, Scott. 1997. OCP effects in Optimality Theory. Natural Language and Linguistic Theory 15:847-92.
Nater, Hank F. 1984. The Bella Coola Language. Ottawa: National Museums of Canada.
Noske, Manuela. 1997. Feature spreading as dealignment: the distribution of [ç] and [x] in German. Phonology 14:221-34.
Ohala, John. 1983. The Origin of Sound Patterns in Vocal Tract Constraints. In MacNeilage, Peter (Ed.), The Production of Speech. New York City: Springer Verlag. 189-216.
Olson, Ronald Leroy. 1950. Black market in prerogatives among the northern Kwakiutl. Kroeber Anthropological Society. p. 78-80.
Olson, Ronald Leroy. 1954. Social life of the Owikeno Kwakiutl. Berkeley, CA: University of California Press. p. 213-259.
Oostendorp, Marc van. 2000. Phonological Projection: A Theory of Feature Content and Prosodic Structure. Berlin: Mouton de Gruyter.
Padgett, Jaye. 1991. Stricture in Feature Geometry. PhD dissertation, University of Massachusetts, Amherst. [CSLI/University of Chicago Press, 1995.]

Paradis, Carole, \& Jean-François Prunet, eds. 1991. Phonetics and Phonology 2: The special Status of Coronal. Internal and External Evidence. San Diego: Academic Press.
Pater, Joe. 1999. Austronesian nasal substitution and other NC effects. In René Kager, Harry van der Hulst, \& Wim Zonnefeld (eds.), The Prosody-Morphology Interface. Cambridge, UK: Cambridge University Press. 310-342.
Pierrehumbert, Janet. 1993. Dissimilarity in the Arabic verbal roots. Northeast Linguistic Society 23:367-381. GSLA, University of Massachusetts, Amherst.
Piggott, Glyne L. 1980. Aspects of Odawa Morphophonemics. New York: Garland.
Poplack, Shana. 1979. Function and process in a variable phonology. PhD dissertation, University of Pennsylvania.
Powell, J. W. 1891. Indian Linguistic Families of America North of Mexico. Bureau of American Ethnology, Annual Report 7:1-142.
Prince, Alan S., \& Paul Smolensky. 1993. Optimality Theory. Constraint Interaction in Generative Grammar. Ms., Rutgers University, New Brunswick, and University of Colorado, Boulder. [Forthcoming, MIT Press, Cambridge, MA]
Prince, Alan S., \& Paul Smolensky. 1997. Optimality: From Neural Networks to Universal Grammar. Science 275:1604-1610.
Pulleyblank, Douglas. 1986. Tone in Lexical Phonology. Dordrecht: D. Reidel Publishing.
Pulleyblank, Douglas. 1988a. Vocalic underspecification in Yoruba. Linguistic Inquiry 19:233270.

Pulleyblank, Douglas. 1988b. Underspecification, the feature hierarchy and Tiv vowels. Phonology 5:299-326.
Pulleyblank, Douglas. 1989. Patterns of feature cooccurrence: The case of nasality. Coyote Working Papers 9:98-115.
Pulleyblank, Douglas. 1994. Underlying mora structure. Linguistic Inquiry 25:344-353.
Pulleyblank, Douglas. 1995. Feature geometry and underspecification. In Jacques Durand \& Francis Katamba (Eds.), Frontiers of Phonology: Atoms, Structures, Derivations. London, England: Longman. 3-33.
Pulleyblank, Douglas. 1997. Optimality Theory and features. In Diana Archangeli and Terrence Langendoen (Eds.), Optimality Theory. Oxford: Blackwell. 59-101.

Pulleyblank, Douglas. 1998a. Markedness-based feature-based faithfulness. Paper delivered at SWOT 4, University of Arizona, April 5, 1998.
Pulleyblank, Douglas. 1998b. Yoruba vowel patterns: deriving asymmetries by the tension between opposing constraints. Ms. University of British Columbia. [http://ruccs.rutgers.edu/roa.html]
Rath, John C. 1981. A Practical Heiltsuk-English Dictionary. Ottawa: National Museums of Canada.
Reynolds, William T. 1994. Variation and Phonological Theory. PhD dissertation, University of Pennsylvania, Philadelphia.
Rice, Keren. 1995. The representation of the perfective suffix in the Athapaskan language family. International Journal of American Linguistics 61:1-37.

Roberts, John R. 1987. Ame/e. London: Croom Helm.
Roberts-Kohno, R. Ruth. 1999. Derivationalism in Kikamba vowel hiatus phenomena. In Ben Hermans and Marc van Oostendorp (Eds.), The Derivational Residue in Phonological Optimality Theory. Amsterdam: John Benjamins. 269-293.
Roca, Iggy. 1994. Generative Phonology. London \& New York: Routledge.
Roca, Iggy (Ed.). 1997. Derivations and Constraints in Phonology. Oxford: Clarendon Press.
Roca, Iggy and Wyn Johnson. 1999. A Course in Phonology. Oxford, UK: Blackwell.
Rogers, Henry. 2000. The Sounds of Language. Essex, UK: Pearson Educatio،I Limited.
Rose, Suzanne M. 1976. Lenition and glottalization in Nootka. MA thesis, University of Victoria.
Sagey, Elizabeth. 1986. The Representation of Features and Relations in Non-Linear Phonology.
PhD dissertation, MIT, Cambridge, MA
Sapir, Edward \& Swadesh, Morris. 1939. Nootka Texts. American Philosophical Society, Philadelphia.
Schafer, Robin. 1995. Headedness in the representation of affricates. Linguistic Review 12:6187.

Selkirk, Elisabeth O. 1988. Dependency, Place and the Notion "Tier". Ms, University of Massachusetts, Amherst.
Selkirk, Elisabeth O. 1991. Vowel Height features: evidence for privativity and dependency. Paper presented at UQAM, Montreal.
Selkirk, Elisabeth O. 1993. Labial Relations. Ms, University of Massachusetts, Amherst.
Shahin, Kimary N. 1997. Postvelar harmony: An examination of its bases and crosslinguistic variation. PhD dissertation, University of British Columbia.
Shaw, Patricia A. 1980. Theoretical Issues in Dakota Phonology and Morphology. New York: Garland.
Shaw, Patricia A. 1987. Non-conservation of melodic structure in reduplication. In CLS 23. Part 2, Parasession on Autosegmental and Metrical Phonology. Chicago Linguistic Society, University of Chicago, Chicago, IL. 291-306.
Shaw, Patricia A. 1989. The complex status of complex segments in Dakota. In Donna B. Gerdts \& Karin Michelson (eds.), Theoretical Perspectives on Native American Languages. Albany, NY: State University of New York Press. 3-37.
Shaw, Patricia A. 1991a. The laryngeal/post-velar connection. Paper presented at the Conference on Phonological Feature Organization, LSA Summer Linguistic Institute, UCSC.
Shaw, Patricia A. 1991b. Consonant harmony systems: The special status of Coronal harmony. In Carole Paradis and Jean-François Prunet (Eds.), The Special Status of Coronals. New York: Academic Press. 125-57.
Shaw, Patricia A. 1992. Templatic evidence for the syllable nucleus. Northeast Linguistic Society 23. Amherst: GSLA.

Shaw, Patricia A. 1993. The prosodic constituency of minor syllables. In Proceedings of the \(12^{\text {th }}\) West Coast Conference on Formal Linguistics. University of California, Santa Cruz.
Shaw, Patricia A. 1994. Paper presented at OTS/HIL Workshop on Prosodic Morphology, held at the University of Utrecht, The Netherlands, June 24.
Shaw, Patricia A. 1995. On syllabic obstruents. Paper presented at the Annual Meeting of the Canadian Linguistics Association, 3 June, 1995.

Shaw, Patricia A. 1996a. On syllabic obstruents in Berber. Paper presented at the Linguistic Society of America, San Diego, CA.
Shaw, Patricia A. 1996b. Headless and weightless syllables. Paper presented at the Annual Meeting of the Canadian Linguistics Association, May, 1996.
Shaw, Patricia A. 1996c. Degenerate syllables. Paper presented at the \(8^{\text {th }}\) International Phonology Conference, Vienna, 1 November 1996.
Sherrard, Nick. 1997. Questions of priorities: an introductory overview of optimality theory in phonology. In lggy Roca (Ed.), 43-89.
Sherzer, Joel. 1976. An areal-typological study of American Indian languages north of Mexico. Amsterdam: North-Holland Publishing Company.
Smolensky, Paul. 1993. Harmony, markedness, and phonological activity. Handout to talk presented at Rutgers Optimality Workshop 1, 23 October 1993, New Brunswick, NJ. [http://ruccs.rutgers.edu/roa.html]
Smolensky, Paul. 1996. On the comprehension/production dilemma in child language. Linguistic Inquiry 27:720-31.
Stampe, David. 1979. A Dissertation on Natural Phonology. New York: Garland.
Steriade, Donca. 1987. Redundant Values. In Papers from the Twenty-third Regional Meeting of the Chicago Linguistic Society: Parasession on Autosegmental and Metrical Phonology, 339-362. Chicago Linguistics Society, University of Chicago, Chicago, III.
Steriade, Donca. 1993. Closure, release, and nasal contours. In M. K. Huffman and R. A. Krakow (Eds.), Phonetics and Phonology, vol. 5: Nasals, Nasalization and the Velum. New York: Academic Press. Pp. 401-470.
Steriade, Donca. 1994. Complex onsets as single segments: the Mazateco patte n. In J. Cole and C. Kisseberth (Eds.), Perspectives in Phonology. Stanford, CA: CSLI Publications, 203291.

Steriade, Donca. 1995. Underspecification and Markedness. In John A. Goldsmith (Ed.), Handbook of Phonological Theory. Cambridge, MA: Blackwell.
Steriade, Donca. 1997. Phonetics in phonology: the case of laryngeal neutralization. Ms., Unitversity of California, Los Angeles: PDF version available at her homepage.
Stevens, Kenneth N. 1994. Phonetic evidence for hierarchies of features. In Patricia A. Keating (Ed.), Phonological Structure and Phonetic Form: Papers in Laboratory Phonology III. Cambridge, UK: Cambridge University Press. 242-258.
Stevens, Kenneth N., Samuel J. Keyser \& H. Kawasaki. 1986. Towards a Phonetic and Phonological Theory of Redundant Features. In J. Perkell \& D. H. Klatt (Eds.), Symposium on Invariance of Speech Processes. Hillsdale, NJ: Lawrence Erlbaum Assoc. 426-49.
Stevenson, David. 1980. (unpublished) The Oowekeeno people: A cultural history. Ottawa, Ontario: National Museum of Man (now Hull, Quebec: Museum of Civilization)
Stevenson, David. 1982. (unpublished) The ceremonial names of the Oowekeeno people of Rivers Inlet. Ottawa, Ontario: National Museum of Man (now Hull, Quebec: Museum of Civilization)
Stonham, John T. 1994. All moras are not created equal. Cahiers Linguistiques d'Ottawa 21:125.

Storie, Susanne. (Ed.) 1973. Oweekano Stories. Victoria: British Columbia Indian Advisory Committee. [Spec. Coll.: E99 094094 1973]
Suzuki, Keiichiro. 1998. A Typological Investigation of Dissimilation. PhD dissertation, University of Arizona.
Swadesh, Morris H. 1953. Mosan I: A problem of remote common origin, International/Journal of American Linguistics 19:26-44.
Tarpent, Marie-Lucie. 1987. A grammar of Nisgha. PhD dissertation, University of Victoria.
Tesar, Bruce and Paul Smolensky. 2000. Learnability in Optimality Theory. Cambridge, MA: MIT Press.
Thompson, Laurence C., and M. Dale Kinkade. 1990. Languages. In Wayne Suttles (Ed.), Handbook of North American Indians, vol. 7, Northwest Coast. Washington: Smithsonian Institution. 30-5 1.
Tranel, Bernard. 1995. Current issues in French phonology. In John A. Goldsmith (Ed.), Handbook of Phonological Theory. Cambridge, MA: Blackwell.
Trask, Robert Lawrance. 1996. A Dictionary of Phonetics and Phonology. London, New York: Routledge.
Trommelen, N. \& W. Zonnefeld. 1983. Generatieve fonologie van het Nederlands. Muiden: Coutinho.
Trubetzkoy, Nikolai S. 1939. Grundzüge der Phonologie. Traveaux du Cercle linquistique de Prague. 7. [Reprinted 1958, Vandenhoeck \& Ruprecht, Göttingen, Germany.]
Ueda, Isao. 1996. Segmental acquisition and feature specification in Japanese. In Barbara H. Bernhardt, John Gilbert and David Ingram (Eds.). 1996. Proceedings of the UBC International Conference on Phonological Acquisition. Somerville, MA: Cascadilla Press. 15-27.
Urbanczyk, Suzanne. 1996. Patterns of Reduplication in Lushootseed. PhD dissertation, University of Massachussetts, Ahmerst.
van de Weijer, J. M. 1996. Segmental Structure and Complex Segments. Tübingen: Niemeyer. van Eijk, Jan. 1997. The Lillooet Language. University of British Columbia Press, Vancouver. Vaux, Bert. 1993. The origins of Altaic labial attraction. Harvard Working Papers in Linguistics 2:228-37. Department of Linguistics, Harvard University, Cambridge, MA
Vaux, Bert. 1998. The laryngeal specification of fricatives. Linguistic Inquiry 29:497-511.
Vennemann, Theo. 1988. Preference Laws for Syllable Structure and the Explanation of Sound Change. Amsterdam: Mouton.
Watson, Janet C. E. 1999. The directionality of emphasis spread in Arabic. Linguistic Inquiry 30:289-300.
Wilbur, Ronnie Bring. 1973. The Phonology of Reduplication. Bloomington: Indiana University Linguistics Club.
Yip, Moira. 1989. Feature geometry and cooccurrence restrictions. Phonology 6:349-74.
Zec, Draga. 1995. Sonority constraints on syllable structure. Phonology 12:85-130.
Zoll, Cheryl. 1998. Parsing Below the Segment in a Constraint-based Framework. Stanford, CA: CSLI.```


[^0]:    I Thanks to David Burhoe (Dept. of Geography, Univ. of Ottawa) for this map.

[^1]:    2 I was accompanied by Mrs. Katie Fraser (Nuuchahnulth speaker-linguist) during this visit.

[^2]:    3 The time-depth is calculated to be much larger (5505/6099 years) in Embleton (1985, 1986). This lexicostatistical work seems overly speculative, however.

[^3]:    4 There may well also be some "missionary" materials on Oowekyala but I have not come across any.

[^4]:    5 Lincoln \& Rath (1980) use $z$ to represent the voiced affricate d in North Wakashan, seeing that these languages lack voiced fricatives. The digraph will be used here instead to avoid confusing nonWakashanist readers. On the other hand, c is used for ts following Herzog et al.'s (1934:631) widely accepted recommendation (see section 2.2.2 below for some minimal pairs with c versus ts in Oowekyala). Note that the IPA use of $c$ for 'palatal stop' is rarely needed in American linguistics (Quechua is an exception in this regard; it distinguishes palatal, velar, and uvular stops; see Rogers 2000:201 for some examples).

[^5]:    6 Lincoln \& Rath (1980:31) give tpx ${ }^{w} p s \lambda k t s k t s$ (from Mrs. Evelyn Windsor). The repetition of $k t s$ is evidently a mistake, as is the use of ts for c (Mrs. Hilda Smith).
    7 The influence of Oowekyala (and Heiltsuk) on neighbouring Nuxalk has not been acknowledged in the literature on obstruent clusters. As Nater (1984:xvii) remarks, "Substantial lexical influence has been exercised by neighboring North Wakashan languages, more noticeably Heiltsuk; some 30\% of the Bella Coola roots and stems with etymological counterparts in other Amerindian tongues are of Wakashan origin."

[^6]:    8 The devoicing of initial-/g/t to [q] is discussed below in section 3.6, p. 129 ff.

[^7]:    ${ }^{9}$ Shaw (p.c.) points out that [tatata] is prosodically ambiguous: it has three syllables and three moras.

[^8]:    ${ }^{11}$ To be fair, it should be noted that Oowekyala has a general process of preobstruent devoicing which may appear to block voicing agreement between obstruents (see section 3.6, p. 129ff). Still, voicing agreement could be achieved by devoicing obstruent clusters uniformly, e.g. /bga/ $\rightarrow$ [pka] (cf. pg ${ }^{w}$ is 'merman, mermaid').
    12 E.g., Shaw (1995:11): "Obstruent-only syllables are maximally binary, non-nuclear, and monomoraic. Obstruent-only syllables are therefore constrained to occur only in languages where obstruents are moraic."
    13 My postdoctoral research (Social Sciences and Humanities Research Council Award No. 756-2000-0272)

[^9]:    15 This classification is implicit in Lincoln and Rath (1980) where /h, $7 /$ are referred to as 'laryngeal resonants'. Zec (1995:106) classifies closely-related Kwakwala laryngeals as obstruents.
    $16 / 7 /$ is here considered [+son] even though it is not voiced (it is [+cg]). Note that treating /?/ as [-son] is also problematic, since the $[+c g]$ specification of $/ ? /$ (for which there is phonological evidence in Oowekyala) is also marked in combination with a [-son] specification.

[^10]:    17 Schwa-less roots are used here to illustrate that the grammar actively bans RO-initial roots; in reality, it may be that schwas are part of the input.

[^11]:    ${ }^{18}$ Glottalisation is lost on syllabic sonorants in the second syllable. See section 2.3.4, p. 53 below.

[^12]:    19 Other languages in which laryngeals are classified as [+sonorant] include Klamath (Blevins 1993:238-9), Statimcets Salish (van Eijk 1997), and Dutch (Trommelen \& Zonnefeld 1983).
    20 Rice treats [sonorant] as a privative feature which is absent from laryngeals.

[^13]:    ${ }^{21}$ In the Northwest Coast linguistic area, $/ \lambda /$ is found only in North Wakashan. Sherzer (1976:67) reports $/ \lambda$ / in Nadene and in Penutian, but in these linguistic groupings the sound is actually $/ \lambda /$, the plain counterpart of phonologically aspirated $/ \lambda^{h} /$ and glottalised $/ x^{\prime} /$ (Campbell \& Mithun 1979, Blevins 1993). Sherzer's claim that/ $\lambda /$ developed in North Wakashan "due to contact with neighboring Nadene languages" (ibid.) also lacks evidence (see Jacobsen 1979).

[^14]:    ${ }^{24}$ Note that this conception is not dependent on binary-valued continuancy: affricates are complex segments specifled both [stop] and [continuant] according to Hualde (1988, 1991) and Lombardi (1990). And Steriade ( 1993,1994 ) argues that each affricate is a sequence of phonological aperture nodes Ao, Afr representing the stop and fricative components respectively.

[^15]:    $\mathbf{2 5}$ Similarly in Heiltsuk: "plain ... occlusives have voiced allophones, but the voiceless variants are more frequent" (Kortlandt 1975:31). See also Rath (1981).

[^16]:    26 Also contra Rath (1981) and Kortlandt (1975) on Heiltsuk, and Lincoln \& Rath (1986) on Kitlope-Haisla (Henaksiala).
    27 Ejectives are 'lenis' in Oowekyala, but this is not the case in all languages.

[^17]:    ${ }^{28}$ An alternate form for 'stinging nettle' is dux"a.

[^18]:    29 manik- is posited here, though I have not recorded it independently.

[^19]:    ${ }^{30}$ Both /f, I/ are assumed to be [+cont] here, so there is no violation of Max-IO[cont].

[^20]:    ${ }^{31}$ A possible sonorant counterpart for $/ \overline{\mathrm{x}} /$ might be [+son] $₹$ but this would be ruled out by high-ranking *[radical] (or *[pharyngeal]).
    32 An alternative equally effective constraint might be Align-Left(h, Word): "h must be word-initial".

[^21]:    ${ }_{33}$ Glottalisation is lost on syllabic sonorants in the second syllable. See section 2.3.4, p. 53 below.

[^22]:    ${ }^{34}$ Alternatively, Shaw (p.c.) suggests having [+round] dependent on the Tongue Body.
    ${ }^{35}$ It is a supposition that these English words were adapted directly into Oowekyala. In fact, some words might have been borrowed via Chinook Jargon. The general point remains valid nonetheless, as Chinook Jargon also lacked labial fricatives.

[^23]:    36 The input væŋkuvə( $\lrcorner$ ) is chosen to illustrate the initial (historical) nativisation process. It is assumed that the input for present-day Oowekyala [bankwba] is actually /bankwuba/.

[^24]:    ${ }^{37}$ Cf. Archangeli \& Pulleyblank (1994:170): LAB/DOR "If [labial] then [dorsal]".
    ${ }^{38}$ In particular, the primary Cardinal nonlow back vowels / $u, 0, j /$ are [+round], while the other primary Cardinal vowels $/ \mathrm{i}, \mathrm{e}, \varepsilon, \mathrm{a}, \mathrm{a} /$ are [-round]. Nonback vowels that are [+round] (e.g. $/ \mathrm{y}, \varnothing /$ ) and nonlow back vowels that are [-round] (e.g. $/ m, \gamma /$ ) are relatively infrequent in the world's languages.

[^25]:    ${ }^{39}$ it is widely agreed that coronals are universally less marked than labials (Paraais \& Prunet 1991), a fact that Prince \& Smolensky (1993) formalise through a universal markedness hierarchy: *[labial] $\gg$ *[coronal]. 40 [lateral] is an "articulator-free feature that is appended as a modifier to the feature [+consonantal]... For a consonant that is [+lateral], the airstream is directed around one or both sides of the tongue blade" (Stevens 1994:244).
    ${ }^{4}$ The feature [lateral! is normally implemented by the Tongue Blade, but it is independent of this articulator in feature geometry; see Sagey (1986), Shaw (1991b), Kenstowicz (1994:156), Clements and Hume (1995:293), Hall (1997). For a different view, see McCarthy (1988), Blevins (1994) and Grijzenhout (1995). 42 Oowekyala-related Nuuchahnulth constitutes a blatant counterexample to putative *[-son, +lat]. This South Wakashan language has a full set of lateral obstruents ( $\lambda, \chi^{\prime}, \nmid$ ) but no lateral sonorants (I, I).

[^26]:    43 [+strident] is standardly assumed to be an acoustic feature, defined through higher intensity noise, but it can also be defined articulatorily as "rough-edge articulation" (Hyman 1975:39).

[^27]:    44 The spreading of the lips with /i/ and their rounding with / $u$ / were addressed in section 2.4.2. 45 This widely-adopted constraint is not obviously grounded in Archangeli \& Pulleyblank's (1994) sense. The effects of this constraint may in fact derive from more basic grounded constraints. For example, Archangeli and Pulleyblank argue that [-low] favours [+ATR] while [-high] favours [-ATR]. In this respect, the specification [-high, -low] favours a contradictory specification in terms of [ATR].

[^28]:    ${ }^{88}$ Ladefoged and Maddieson (1996:35, 45) erroneously report that these languages contrast palatovelars with 'back' velars. In the case of Kwakwala, Ladefoged and Maddieson (1996:35, 45, 79) were misled by Grubb's (1977) terminology and by his orthographic use of underlined $/ \underline{k}, \mathbf{g}, \underline{\mathbf{k}}, \underline{\mathbf{x}} /$ for uvulars. Ironically, they later correctly use Kwakwala examples (also from Grubb 1977) to illustrate "contrasting plain velar and uvular consonants" (Table 10.9, p. 356). Even in these examples, they fail to recognise that Grubb's /e/ corresponds to IPA / / / It is also worth noting that Ladefoged and Maddieson describe Kwakwala glottalised nasals as having "creaky voice ... in the middle part of the nasal" (p. 109), not "at the beginning or the end of the nasal" (ib.), apparently because Grubb writes glottalised nasals with a straight apostrophe in the middle of the nasal. In fact, Grubb (1977:19-20) explains that he writes the glottal diacritic in the middle of the sonorant because the glottal constriction is sometimes at the beginning and sometimes at the end of the nasal. Specifically, Grubb (1977:46-7) explains that each glottalised resonant is "normally realised as preglottalized ... except in word-final position (rare) where it is postglottalized."
    ${ }^{49}$ Comparable changes have swept across Salishan languages, e.g. Lillooet, Thompson, Halkomelem, Squamish (Henry Davis, p.c.).

[^29]:    50 This is an areal feature, also shared by Twana and Lushootseed.

[^30]:    ${ }^{51}$ See fn. 35.

[^31]:    52 The treatment of uvulars as involving the Tongue Root is similar to McCarthy's (1994) treatment of these segments as Dorsal-Pharyngeal, except that he defines Pharyngeal as an 'orosensory region', not an articulator. McCarthy's definition of Pharyngeal is primarily motivated by his belief that guttural laryngeals in Arabic are articulated without involvement of the tongue root. Shahin (1997) provides strong evidence against this view, however, showing for instance that Arabic laryngeals are actively involved in tongue root retraction harmony. The Tongue Root feature [-ATR], not the orosensory feature Pharyngeal, is assumed here in keeping with an articulator-based model of features.

[^32]:    ${ }^{53}$ The lowering effect is strictly local, e.g. qput 'to overturn, tilt' is pronounced [ $q^{\bar{x}} p^{h} u t^{h}$ ], not [ $\left.q^{\bar{x}} p^{h} 0^{h}\right]^{h}$.

[^33]:    54 In the phonological literature, the feature [-ATR] has been used to characterize not only gutturals, but also emphatic nonback segments, e.g. /t, s, etc./, which are found in some Semitic and Salishan languages (see e.g. van Eijk 1997, Bessell 1998; also McCarthy 1994 on [pharyngeal]). Interestingly, the option of specifying nongutturals as [-ATR] turns out to be important for Haisla, which is closely-related to Oowekyala. As Lincoln \& Rath (1980:25) report: "It is a peculiarity of Ha[isla] that [some instances of] /t/ and /it/ ... cause a following vocalic resonant to sound like after a plain uvular, for example: tiła [terła] 'to
     imsdu [t'amsdu] 'stye'. Lincoln \& Rath (1986:46) also suggest some possible cases of emphatic /p, p'/. The

[^34]:    fact that these consonants have the same effect on an adjacent vowel as uvulars and laryngeals suggests a common feature, arguably [-ATR].

[^35]:    55 Because they assumed the segment as phonological primitive, contrastive underspecification theories contributed little to our understanding of feature cooccurrence restrictions within segments (see Archangeli 1988 for some critical discussion).

[^36]:    56 Oowekyala and Heiltsuk are apparently unique to their general area in allowing rounding contrasts before /u/. In the other Wakashan languages (including Haisla, Kwakwala, and Nuuchahnulth), only unrounded obstruents are permitted before /u/, while the opposite is true of Nuxalk: "Before $u$, unrounded postvelars and palatovelars ( $K$ ) are not found." (Nater 1984:6; see also p. 4).

[^37]:    57 An alternate form for 'stinging nettle' is dux"a.

[^38]:    58 The connection between contrastivity and phonological activity has been reiterated most recently by Halle, Vaux and Wolfe (2000:398): "Unless specifically noted [meaning, in marked cases -dh], only contrastive features are visible to a phonological rule." (See also Vaux 1993.)
    59 In this regard, Oowekyala differs from Heiltsuk, where rounding assimilation applies even to enclitics, e.g. kadayu- $\mathbf{k}^{w_{i}}$. Even among Oowekyala speakers, there appears to be some speaker variation.

[^39]:    60 The formulation in (210) has the disadvantage of requiring that all nonlow back (semi-)vowels be specified [-low]. In section 2.4.2.2 this stipulation was avoided by formalising (210) as two constraints: one that favours rounding in back (semi-)vowels (148) and another that disfavours rounding in low vowels (149).

[^40]:    61 Consider, for instance, the position of Gussenhoven and Jacobs (1998:197):

    The two place nodes in a segment with secondary articulation are not sequenced in time. Although in the IPA symbols the superscripts indicating labialization, velarization, etc. conventionally appear to the right of the consonant symbol, the two components of a secondary articulation segment are phonologically simultaneous. That is, a side-view would show a straight line.

[^41]:    62 Archangeli \& Pulleybiank (1994:166): "We are led to ask, "What are the conditions on the conditions?" ... conditions used in natural language directly reflect physical correlates of the F-elements involved. Thus, such conditions are physically grounded."

[^42]:    63 The spirantisation of root-final $/ \mathrm{k}^{\mathbf{w}} /$ is a general process, treated in section 3.4 below.

[^43]:    64 Some other examples of C-reduplication with -m 'face' are given here:

[^44]:    ${ }^{65}$ Shaw (1980:339-341) describes a similar process of degemination that affects identical consonants across a root+reduplicant boundary in Dakota, e.g. lut + lut $+\mathbf{a} \rightarrow$ luluta 'to be red'. Shaw gives the rule as $C_{i} \rightarrow \varnothing / \ldots+C_{i}$ (where $i=$ identity). She also observes that "aspiration and glottalisation is irrelevant to the establishment of identity" (p. 340).

[^45]:    66 The easy expression of 'stability' through Correspondence is remarkable, given that this theory was developed independently of the notion of stability.

[^46]:    ${ }^{67}$ Some of the examples below show a concomitant process of sonorant glottalisation．This phenomenon is presumably related to the fact that $/ \mathrm{m} / \mathrm{is}$ moraic in rhyme position while $/ \mathrm{p} /$ and $/ \mathrm{m} / \mathrm{are}$ not moraic in this position．In other words，glottalisation arguably avoids the need to add a mora in the change from／ $\mathrm{p} / \mathrm{d}$ to $/ \mathrm{m} /$ ．See Zec（1995）on the status of the mora in Wakashan．This potential functional conspiracy will not be further discussed here．

[^47]:    68 The highly marked status of nasal continuants motivates a universal redundancy implication, [nasal] $\supset[-c o n t i n u a n t]$ (cf. Pulleyblank 1997:18), which in turn motivates the underspecification of [-continuant] in nasals, given Itô, Mester and Padgett's (1995) demonstration that output segments do not license redundant features (cf. section 3.2.1.2); recall Licensing Cancellation (Itô, Mester and Padgett 1995:580): If $F \supset G$, then $\neg$ ( $F \lambda G$ ) "If the specification [F] implies the specification [G], then it is not the case that [F] licenses [G]." By contrast, [continuant] cannot be underspecified in obstruents, since there is no strong implication that obstruents be [-continuant].

[^48]:    70 Another obvious application of empty root nodes is ' $h$-aspiré' in French (cf. Tranel 1995). According to Roberts-Kohno (1999), languages that tolerate empty root nodes are characterised by low-ranking of *Silence, a markedness constraint against phonetically empty root nodes: *Silence "Segments may not lack phonetic content" (Roberts-Kohno 1999:292).
    71 Alternatively, if moras were permitted on obstruents in Oowekyala (contra e.g. Stonham 1994, Zec 1995), the initial fricative of -x̆s could be lexically specified with a mora. This would effectively require the preceding segment to be an onset (thanks to Doug Pulleyblank for this suggestion).

[^49]:    72 Two possible candidates that otherwise might be selected as optimal are not considered here: wi.خs.tu and wił.c.tu, with the "degenerate" syllables .Xs. and .c., respectively. Although the possibility of such syllable types was recognised in section 1.1.4, more needs to be learned about their nature and distribution in Oowekyala. For instance, it may be that such syllables are excluded from word-medial positions like wi..ไs.tu and wit.c.tu.

[^50]:    ${ }^{73}$ Glottalisation on syllabic sonorants is lost in the plural forms of (a) and (f); this is discussed in the next chapter.
    74 One exceptional plural form is worth mentioning here. The plural of ǧznm 'woman, girl, wife, daughter' involves a reduplicative prefix lacking a vowel: qğənm. Note the voicing neutralisation in the copied consonant.

[^51]:    75 Each citation root is listed with the completive－a or the continuative－ala；the ending of－axsala may perhaps be further analysed as－axsal－a（with completive－a），but not as＊－axs－ala since the continuative meaning is lacking．

[^52]:    76 This is probably a different suffix -'a meaning 'to try to get'. It has the same effect on the root as the suffix -'a meaning 'to try'.

[^53]:    77 The fact that the stem final segment of this borrowed word is underlyingly voiced in Oowekyala is discussed below.

[^54]:    ${ }^{78}$ This constraint may derive from the conjunction of two basic markedness constraints: *[-voi, +son] (354) and NoCoda. See Smolensky (1995) on constraint conjunction.

[^55]:    79 This formulation is Lombardi's. A non-exhaustive domination interpretation is intended, i.e. the syllable may dominate material other than that given in (361).

[^56]:    80 There are a few exceptions, e.g. cherries > cilis (BC111: LJ; JSS3), flowers > pelawas (BC506: EW, HS, $B C$ ), coffee $>\mathbf{k}^{\mathbf{w}}$ abi (HS, JSS3). However, note in the latter that voiceless [f] becomes voiced [b].

[^57]:    ${ }^{81}$ Thanks to Laura Downing for drawing my attention to Amele. She points out that non-prevocalic stops may also be voiced word-medially in Amele, apparently through regressive voicing assimilation, i.e. VCÇV $\rightarrow$ VÇCV. Word-final stops are always voiceless, however. (Amele thus contradicts Lombardi's (1999:269) claim that languages do not exist "which devoice word-final but not word-internal syllable-final consonants.")
    82 Pulleyblank (p.c.) cautions that segments which adults categorise as voiced segments may in fact correspond to voiceless unaspirated segments in Child Phonology.

