
Marta Stojanovic

AUTOMATIC MEMORY MANAGEMENT IN JAVA

Mémoire
présenté

à la Faculté des études supérieures
de l'Université Laval

pour l'obtention
du grade de maître ès sciences (M.Sc.)

Département d'informatique
FACULTÉ DES SCIENCES ET DE GÉNIE

UNIVERSITÉ LAVAL

JUILLET 2001

@ Marta Stojanovic, 2001

Acquisitions and Acquisitions et
Bibligliiph'i Services services bibliraphiques

The author has granted a non- L'auteur a accordé une licence non
exclusive licence ailowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distnbute or seiî reproduire, prêter, distribuer ou
copies of this thesis in rnicrofom, vendre des copies de cette thèse sous
paper or elecaonic formats. la forme de microfiche/fiIm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of die L'auteur conserve la propriété du
copyright in this thesis. Neither the &oit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be p ~ t e d or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Remerciements

Mes études à l'Université Laval n'auraient pas été les mcrnes sans mes nombreux
amis. klême s'il y en a qui n'étaient pas directement liés a ma maîtrise, leur présence
m'a beaucoup aidé et facilité ma vie d'étudiante. Et comme cette partie de ma vie
finit maintenant, je trouve que ce chapitre est presque la seule opportunité de les
remercier.

Je tiens premièrement à remercier mon directeur de recherche Mourad Debbabi.
qui savait me pousser au bon moment et sans qui je n'aurais sûrement pas terminé
ma inaitrise. Merci pour votre support, pour nous avoir fait chanter en revenant
de Montréal, pour m'avoir appris comment écrire des messages électroniques. pour
écrire des lettres de référence si poétiques et pour me laisser faire des blagues avec vous.

.Je dois aussi remercier Nadia Tawbi, Jules Desharnais et Jean Bergeron, que
j'appelle "les trois mousquetaires" : ce qui a eu une note humoristique. mais aussi
parce que le travail qu'ils faisaient était très noble. Ils prenaient soin de nous, étudiants
de SI. Debbabi. lors de son absence, et ils faisaient cela avec beaucoup de plaisir et
volonté. Je vous remercie infiniment. En particulier. je dois remercier Madame Nadia
Tawbi. pour avoir accepté d'être mon évaluatrice, et pour partager avec moi ses
pensées et son bonheur de nouvelle mère.

Je remercie Mohammed Mejri, a l'époque mon collègue, avec qui j'avais du plaisir
à travailler sur le projet DYLINA, pour avoir accepté d'être mon évaluateur et pour
être un très bon ami.

Merci à Darko Stefanovic du Département d'informatique de l'Université du Nou-
veau Mexique et Ole Agesen de VhICVare Inc., que je ne connais pas personellement,
mais qui m'ont beaucoup aidél par la correspondance électronique' a comprendre les
problèmes liés aux les systèmes de ramasse-miettes.

Pendant mes études j'ai rencontré beaucoup d'étudiants, et beaucoup d7ent.re e u
ont eu un bon impact sur moi. Je vous remercie tous infiniment :

htlyriam Fourati, une fille exceptionnelle, pour être une si bonne amie, pour avoir
des bons conseils sur n'importe quel sujet de la vie, pour m'avoir toujours supporté et
pour m'avoir enduré dans le laboratoire à côté d'elle pour tout ce temps.

Mouetsie Molière, pour être toujours là pour moi, pour être prête a danser et sortir
avec moi en tout temps, pour me laisser des messages drôles, pour m'apprendre les
danses latinos, et pour m'avoir intéressée à la musique chorale.

Lamia Ktari, pour être toujours souriante et prête à faire des blagues, pour être
l'organisatrice invisible de toutes les fëtes surprises du labo, pour avoir toujours le
temps de m'écouter et pour m'aider à chaque fois que je le lui ai demandé (et même
sans demander).

Therrezinha Fernandez, pour son sens d'humour et pour supporter mes bêtises
pendant un gros travail que nous avons fait ensemble.

Yolaine Légaré et Nadine Côté, avec qui j'ai travaillé sur le projet DYMNA, pour
m'avoir supporté pendant les jours et les nuits de travail sous une pression énorme.
Un grand merci à Nadine, qui était ma première amie durant mes études à la maîtrise.

Béchir Ktari, qui est un logo du groupe LSFM et qui était un support pour tous
les étudiants du groupe, pour savoir répondre à mes nombreuses questions techniques,
pour des longues conversations au sujet de la situation politique dans le monde, pour
avoir joué au tennis avec moi. et pour avoir été courageux d'essayer de danser le swing
avec moi.

Bogdan Chalupa, avec qui je faisais une excellente équipe dans mes cours proba-
toires du baccalauréat, pour tout ce qu'il m'a appris, et pour être devenu un ami pour
la vie.

Mark Girard, "le macho man"? pour ses blagues quotidiennes qui me manquent
énormément, pour sa gentillesse et pour nous avoir montré comment être un parent
modèle.

Stéphane Doyon, un vrai génie, pour me rapprocher de Linux, pour son aide et sa
gentillesse, et juste pour sa présence et son énergie positive.

Kamel Adi, pour m'avoir supporté constamment et pour ses précieux conseils.

Mourad Erhioui pour être toujours prêt à aider et pour me rapprocher des
méthodes formelles.

Frédéric Massicote pour m'avoir toujours supporté pendant notre projet DYhIvl'lh
et pour m'avoir transmis une petite partie de sa passion pour les sports.

François Daigneault et Stéphane Larose pour avoir rendu mes pauses dîner
beaucoup plus intéressantes, pour m'avoir laissé entrer dans leur vie, et pour me
rajeunir un peu.

Emmanuel Giasson pour tester ma compréhension du français québécois et pour
sa grande gentillesse.

Et mes autres amis, pour m'avoir aidé et partagé leurs pensées avec moi ou juste
pour être là : Zaineb Ben Fredj, Yvan Lavoie, Hamdi Yahyaoui, Hakim Chambaz,
Denis Davesae, Frédéric Painchaud, Rédéric Michaud, Daniel Huot, Luc Poulin,
Vincent Labbe, Emna Menif, Elhachemi Alikacem ... Il en reste sûrement beaucoup
que j'ai oubliés. Je suis désolée si c'est le cas, c'est juste une question d'âge.

J'ai eu la chance d'avoir des très bons enseignants au Département de l'infor-
matique de l'université Laval (et, malheureusement, je n'ai pas eu la chance de
suivre tous les cours qui me semblaient intéressants). Jtai déjà mentionné quelques
enseignants, mais il y en a d'autres. Je pense que je n'oublierai jamais les excellents
cours de Mourad Debbabi et Denis Laurendeau, c'est vraiment un grand plaisir
d'assister aux cours offerts par les gens qui ont un talent pour l'enseignement comme
ces professeurs. On oublie souvent les chargés de cours, mais plusieurs fois il arrive
qu'ils donnent de meilleurs cours que certains professeurs. Je tiens à remercier en
particulier -4bderrahirn fikacem, Jacques Despatis et Louis Bastarache, qui sont
vraiment de très bons enseignants et en même temps très disponibles et très proches
des étudiants. En plus, M. Bastarache et son cours m'ont ouvert la porte vers le travail
que je fais maintenant, et je le remercie en particulier pour cela.

Le Département d'informatique de l'Université L a d a un excellent support
technique. Durant ma maîtrise, jYai travaillé surtout sur Unk et Linux. et j7aimerais
remercier Denis Poirier et Louis Demers pour m'avoir installé des milliers de logiciels.
pour répondre avec plaisir à un grand nombre de mes questions et pour être si
disponibles.

Je ne dois pas oublier les dames très gentilles du secrétariat, qui étaient toujours
souriantes et prêtes à aider : Lynda Goulet, Dons Laneuville-Ouellet, Rachel Légaré-
Lapierre et Anne Gosselin. Je vous remercie pour tout.

Peut-être il n'est pas encore temps de remercier les gens de CNRC, où je travaille
présentement, mais il y en a parmi e u sans qui cette maîtrise ne serait pas la même.
Je tiens à remercier premièrement mon superviseur Khded El-Emam, pour m'avoir
poussé à finir et pour me donner tout ce temps et support pour le faire. J'aimerais
remercier Roger Champagne, travailleur invité au CNRC et un très bon ami, pour
avoir corrigé mes textes en français (celui-ci inclus) et pour être toujours prêt a
m'aider. Je n'oublierai jamais les conseils et le support que j'ai reçus de Margaret
Dalziel, je la remercie énormément. Shadia Elgazzar et Moshe Kneger m'ont toujours
supporté pendant la rédaction de mon mémoire et la préparation de ma présentation,
et je les remercie égaiement. Merci à Charles-Antoine Gauthier pour avoir miraculeuse-
ment sauvé mes données à phsieures reprises. Et finalement, je dois remercier mon chef

d'équipe -4natol Kark, pour avoir été patient avec moi et m'avoir accordé du
temps pour travailler sur la maîtrise.

Enfin, je pense que les gens qui m'ont aidé et qui ont participé le plus à ma maitrise
sont les gens dans l'ombre : ma famille. Mon mari Milos, qui m'a toujours supporté
dans mon cheminement et qui a enduré les jours et les nuits que j'ai passés à étudier à
l'université ou à la maison, le stress qui allait avec chaque examen ou travail pratique
et les hauts et les bas de ma recherche ; mon fils Andrej, qui manquait maman souvent
durant les fins de semaine et les soirées; ma mère, ma belle-mère, mon père et ma
sœur qui sont venus de la Yougoslavie pour m'aider en gardant Andrej, en nettoyant,
en cuisinant et en me supportant, de l'aide que je n'oublierai jamais. Je vous remercie
de tout mon cœur, sans vous je ne serais jamais arrivée au bout.

Résumé

Dans ce travail, nous essayons d'analyser l'allocation automatique de mémoire en
Java. Nous présentons d'abord une étude sur des algorithmes de base d'allocation de
mémoire et de ramasse-miettes. Puis, nous présentons des résultats de tests de six
systèmes de ramasse-miettes implantés dans différentes machines virtuelles de Java.
Nous avons constaté qu'un simple système de ramasse-miettes marque-balaye (" mark-
sweep") dans LaTTe JVM donne des résultats égaux ou meilleurs que des systèmes
très sophistiqués qui implantent un ensemble d'algorithmes de ramasse-miettes dans les
machine virtuelles récentes de Sun. Afin d'expliquer cette excellente performance, nous
avons analysé le code du système d'allocation de mémoire de LaTTe. Ceci nous a permis
de mieux le comprendre et d'identifier les dispositifs qui augmentent son eEcacité.
Nous suggérons des améliorations possibles à l'algorithme ainsi que des algorithmes
alternatifs qui semblent intéressants à implanter et analyser. .4 l'avenir: nous voudrions
implanter les améliorations et algorithmes proposés pour la gestion de mémoire dans
LaTTe et comparer leur efficacité à l'algorithme actuel.

Abstract

In this work, we try to analyze the automatic memory management in Java. We
first present a survey on basic allocation and garbage collection algorithrns. Then, we
present benchmark results on six garbage collectors implemented in different Java vir-
tua1 machines. We unexpectedlg found that a rather simple mark-and-sweep garbage
collector in LaTTe JVM performs equally well or better than highly sophisticated
collectors that implernent a set of garbage collection algonthms in recent Sun's Java
implementations. In order to explain this excellent performance, we reverse engineered
the code of LaTTe's memory management system, which enabled us to better under-
stand it, to find the features that add to its efficiency, to suggest possible improvements
on the present algori t hm and other garbage collection algorithms interest ing for imple-
mentation and testing. In the future, we would like to be able to implement suggested
improvements and algorithms for memory management in LaTTe and to compare their
efficiency to the present one.

Contents

Remerciements

Résumé

Abstract vii

Contents

List of Tables

List of Figures

1 Introduction
. 1.1 Motivation

1.1.1 Automatic Memory Management
1-12 Java .
1.1.3 Garbage Collection and Java .

. 1.2 Objectives
. 1.3 Organization

2 Memory Management Algorit hms
. 2.1 Introduction

2.1.1 History of Storage Allocation
2.1.2 Reasons for Garbage Collection
2.1.3 Comparing Garbage Collectioc Algorit hms

2.2 Basic .4 ilocation blechanisms .
2.2.1 Sequential Fits .
2.2.2 Segregated Free Lists .

. 2.2.3 Buddy Systems

. 2.2.4 Bitmapped Fits
. 2.2.5 Conclusion

. 2.3 Basic Garbage Collection Algorithms
2.3.1 Phases of Garbage Collection

. 2.3.2 Reference Counting
. 2.3.3 Mark-Swetp Collection

. 2.3.4 Mark-Compact Collection

viii

xii

Con ten ts Lu

2.3.5 Copying Garbage Collection . 26
2.3.6 Non-Copying Implicit Collection 29
2.3.7 Choosing Among Basic Tracing Techniques 29
2.3.8 Important Issues . 30

2.1 Generational Garbage Collection . 31
2.4.1 Description . 31
2 . 4 2 Detailed Strategy . 31
2.4.3 Advantages and Disadvantages of Generational Garbage Collection 36

2.5 Incremental Tracing Collectors . 36
2.5.1 Description . 36

. 2.5.2 Detailed Strategy 37
2.5.3 Important Issues . 39

2.6 Conservative and Partially Conservative Garbage Collection 41
3.6.1 Introduction . 41
2.6.3 Boehm-Demers-Weiser Collecter 41
2.6.3 Mostly Copying Bartlett's Collecter 43
2.6.4 Cornparison of Two Algori t hrns 43

2.7 Conclusion . 44

3 Garbage Collection in Various JVMs 45
3.1 Introduction . 43
3.2 Choice of the Java Virtual Machine . 45

. 3.2.1 Sun'sJVM 46
. 3.2.2 Kaffe 47

. 3.2.3 LaTTe 48

. 3.2.4 Mach J 48
3.2.5 DynaFlex (TowerJ 3.0) . 48

. 3.2.6 Hewlett-Packard's JVM 48
3.2.7 IBM Runtime Environment for Windows, .Java Technology Edi-

tion, Version 1.1.7 . 49
. 3.2.8 Japhar 50
. 3.2.9 JOVE 50

3.2.10 Java Virtual Machines for Embedded Systems 50
. 3.2.11 Conclusion 53

3.2.12 Which of Them to Test . 55
3.3 Choice of benchmarking application . 55

3.3.1 What Kind of Application to Look for ? 55
3.3.2 What Sorts of Applications Are Amilable ? 55

3.4 Choice of profiling rnethods . 57
. 3.41 Java Flags 57

. 3.4.2 Java Classes 58
3.4.3 Some Kind of Heap Simulator 58

. 3.4.4 Profilers 58
. 3.5 Our Choice 60
. 3.6 Benchmarks 60

Contents

3.6.1 verbosegc Output . 60
. 3.6.2 CUP Benchmarks 63

3.6.3 MemoryAndTime Benchmarks 64
. 3.7 Conclusion 67

4 The LaTTe Java Virtual Machine 68
. 4.1 Introduction 68

. 4.2 Overview 68
1.3 Memory Management in LaTTe . 69

4.3.1 Memory Allocation . 69
4.3.2 Garbage Collection . 71

4.4 Conclusion . 19

5 Discussion and Possible Improvements of LaTTe9s Garbage Collector 8 1
. 5.1 Introduction 81

. 5.2 LaTTe's Algorithm 81
. 5.2.1 Reasons for Its Efficiency 81

5.2.2 Possible Improvements of LaTTe's Garbage Collector 82
5.3 Choice of the New .4 lgorithm . 82

5.3.1 Compact ing Garbage Collection ..\igon thms 82
5.3.2 Copying Garbage Collection and LaTTe 83
5.3.3 Other Algorithms . 85

. 5.4 Conclusion 85

6 Conclusion 86

Bibliograp hy 87

List of Tables

3.1 JVbIs and their correspoading garbage collection algonthms 54

4.1 The most used types and macros . 70
4.2 Important variables and funcctions for region manager 71
4.3 Important variables and functions for small object allocation 72
4.4 Important variables and functions for large object allocation 73
4.5 Important variables and hnctions for manual rnemory management . . 74

q- 4.6 Important garbage collector functions I a
4.7 Important variables and functions used for marking phase 76 -- 1.8 Important functions for finding pointers i I

4.9 Important variables and functions used for sweeping phase 78
4.10 Important variables and functioris used for object finalizing 79

List of Figures

2.1 Update(left(R). S) . 11
2.2 Referencecountingcyclicdatastructures 15
2.3 Thegraphafterthemarkingphaçe . 16
2.4 The advance phase . 20
2.5 The switch phase . 20
2.6 The retreat phase . 20
2.7 Copyingofthelist[O,l,O1l] . 28
2.8 E n t ~ tables . 34

3.1 Simple Java code for garbage collecter testing 59
3.2 -verbosegc output for JDK1.2.2-05 JVM 61
3.3 -verbosegc output for JDK1.2.2.001 classic JVM 61
3.4 -verbosegc output for JDK1.1.3 JVM 62
3.5 -verbosegc output for Kaffe JVM . 62
3.6 More verbose -verbosegc output for Kaffe JVM 62
3.7 œverbosegc output for LaTTe JVM . 63
3.8 GC time with the default heap size for each JVM 64
3.9 GC time as a function of the initial heap size 65
3.10 Minimal GC time and the corresponding initial heap size 66
3.11 Performance of the garbage collector for each JVM for Memo~AndTime

application . 66

Chapter 1

Introduction

1.1 Motivation

1.1.1 Automat ic Memory Management
Dynamic memory management ' is an integral characteristic of every modem program-
ming language. There are two types of dynamic memory management: manual and
automatic. Manual memory management requires the programmer to evplicit ly return
memory to the language when it is no longer needed. Automatic memory management
(or garbage collection) frees the programmer from this burden; memory is automatically
reclaimed when the run-time system can determine that it c m no longer be referenced.
Manual memory management is used in C, Cf+, Pascal, Ada, and Modula II. Au-
tornatic memory management is used in LEP, Scheme, Eiffel, Modula III, and Java.
Severai reasons lead to the integration of the automatic memory management into
the programming languages. We will mention some of them: complexity and size of
applications, size of language data structures, object-oriented progarnming.

Complexity and size of applications .As a limited resource, memory has always
been a great concem to programmers. At the beginning of computer science. when
the memory was very expensive, it was necessary to carefully allocate and deallocate
the memory. Progams were simple and predictable and the memory was explicitly
allocated by programmer or compiler. As the price of the memory went dom, the
applications became larger and more memory demanding. More complex progams lead
to more complex problems of deallocation of memory, and the need for an automatic
memory allocation arose.

Size of language data structures There are languages that use rather simple
data structures, and manual memory management is sufficient to handle them. Other
languages typically manipulate large data structures with complex inter-dependencies.

- - -

'The memory management of an application is said to be dynamic if its storage needs vary during
the execution.

Introduction 2

Functional and logicd languages have complex patterns of execution. -4utomatic mem-
ory management seems necessary in those languages.

Object-oriented programming Ob ject-oriented analysis and programming is a
rapidly developing area in cornputer science. The keyword of object-oriented approach
is encapsulation of objects that communicate through cleariy defined interfaces. Man-
ual memory management contradicts this rnodularity by dispening the code for mem-
ory deallocation throughout the application code. For this reason most modem object
oriented languages support gaxbage collection.

1.1.2 Java
Among the languages that use automatic memory management. Java (developed by
Sun Microsystems, Inc.) is the most popular today. It is an object-oriented language,
but ais0 an imperative, parallel and distributeci language. Java gained popularity
thanks to its mobile code: it permits the mobility of code through the Intemet. Java
code is compiled to a binary code, called bytecode. which is recognized by a Java virtual
machine (JVM). A JVM acts as an interface between the compiled Java binary code
and the microprocessor (or "hardware platform") that actuallg executes the progam's
instructions. Once a Java virtual machine has been provided for a platform, any Java
progam (bytecode) can run on that platform. Java was designed to allow applica-
tion programs to run on any platform without having to be r e h t t e n or recompiled
by the programmer for each separate platform. Thus, Java virtual machines make
Java portability possible. Furthermore, The Java Application Progamming Interface
(API) is rich in classes and easy to use. Java has also a reputation of being a safe lan-
guage, wit h its exception handling, security policies and garbage collection. Al1 t hese
characteristics make Java very popular today.

1.1.3 Garbage Collection and Java
Why did Java implernent a garbage collector? There are several reasons and we have
already mentioned some of tbem. One of the security aspects of a programming lan-
guage is good memory management. If it is left to the programmer, there is a high
chance to create either a dangling reference or a garbage (see details in Section 2.1.2),
which can lead to either premature lack of memory or an incorrect reference. Garbage
collection takes care of al1 these problems. Furthermore, there is a belief that an object-
oriented language should have garbage collection implemented. Indeed, Meyer places
automatic memory management in third place in his iist of "seven steps to object-based
happiness" [Il. Sun's Java illustrates the need for garbage collection in object-oriented
languages. This project originally chose C++ as the implementation language, but
the difficulties encountered with C++ grew over time to a point where the engineers
felt that problems could be overcome only by designing a new language, Java. One
important feature iacked by C++ but included in Java is a garbage collector. Java has
brought garbage collection to the mainstream, being the first truly popular language
in the C/C++ tradition that requires garbage collection.

Introduction 3

Garbage collection can be implemented in several ways, and the reason why the
research in this field is still active is that there is no perfect algorithm: one algorithm
can be excellent for one kind of application and bad for another, depending on the
allocation behavior of an application. Sun, for instance, changed several times the
garbage collector algorithm in its JVMs in order to have a collector that is more
efficient, having a satisfactory performance for more application types. First versions
of Java Development Kit had a part ly conservative compacting mark-sweep collector.
The newest Sun's JVM (Hotspot), has an accurate generational garbage collector,
wbich is copying in the first generation and either marc-compacting or incremental in
the second generation (see Section 3.2.1 for detailed description). Sun claims that ,
between these two collectors, the latter is much more efficient. The literature on
garbage collection supports this claim, but there are some programmers who found
that for some applications the older algorithm works better. It seems that a run-time
decision on garbage collection algorithm is necessary to satisfjr al1 possible applications.

1.2 Objectives
The objectives of this work are to:

understand the principles, the advantages and the disadvantages of basic memory
management algorithrns;

test the existing JVMs with several carefully chosen applications in order to
make the assumptions on the efficiency of the implemented garbage collection
algorithms:

fully understand the garbage collecter's interface in a Java virtual machine of our
choice, by a thorough analysis of its code (we chose LaTTe JVM ([2]) based on
its pedormance and availability);

discuss possible improvements of existing LaTTe's memory management systern,
as well as a suitable garbage collection algorithm t hat could replace the existing
one, without having to change the structure of the virtual machine.

Organizat ion
This document is organized as follows : Chapter 2 gives a review of the existing lit-
erature on memory management algorithms (with an accent on garbage collection).
Chapter 3 presents the evaluation of the efficiency of garbage collector systems in
various JVMs. The results of the reverse engineering of LaTTe's memory manager
code are presented in Chapter 4. Chapter 5 presents a discussion on LaTTe's memory
management system, and its possible irnprovements. Finally, Chapter 6 concludes.

Chapter 2

Memory Management Algorit hms

Our main objective was to study the most commonly used garbage collection algo-
rithms. But memory management consists of both allocation and deallocation, and
therefore we will present both allocation and deailocation techniques, with the accent
on garbage collection. Much of this chapter is based on the following excellent reviews:
Wilson's review on memory allocation [3], Jones and Lins' book on garbage collec-
tion [4] from which the actual algorithms are taken and Wilson's uniprocessor garbage
collection review [SI.

2.1 Introduction
In this section we present a short
development of automatic memory
disadvantages, as well as the issues
garbage collection algorithms.

history of storage allocation, the reason for the
management (garbage collection) algori t hms, its
that have to be considered when cornparing the

2.1.1 History of Storage Allocation
Wit h the apparition of hi&-level progamming languages, a compiler needed to ailocate
resources of the target machine to represent the data objects manipulated by the user's
progam. There are three ways in which storage can be allocated: static, stack and
heap allocation.

In the case of stutic allocation al1 the narnes in the program are bound to storage
locations at compile-time and these bindings do not change at nui-tirne. Main dis-
advantages of this type of allocation are that the size of e u h data structure must be
known at compile-time, that no procedure can be recursive and that data structures
cannot be created dynamically.

In stack allocution an activation record or frarne is pushed onto the system stack
as each procedure is cailed, and popped when it returns. The characteristics of this
allocation are: recuaive calls are possible, the size of local data structures su& as
m a y s may depend on a parameter passed to the procedure, a called activation record
cannot outlive its d e r and only an object whose size is known at compile-time can

hlemory kfanagemen t Algori thms

be returned as the result of a procedure.
Heap allocation allows data structures in a heap to be allocated in any order (not

necessarily last in - first out). With this type of allocation, allocation records and
dynamic data structures rnay outlive the procedure that created them, the size of data
structures can vary dynamically, dynamically-sized objects may be returned as the
result of a procedure and result of a function c m be a data structure which outlives
the activation of the function that created it.

Today most high-ievel programming languages are able to allocate storage on both
the stack and the heap. The allocation is explicit (the programmer allocates the mem-
ory needed), but memory reclamation can be both explicit (the programmer is respon-
sible for freeing unused objects) or implicit, or automatic (garbage collector searches
and frees objects that are no longer used). Many languages (Pascal, C: C++) manage
al1 data on heap explicitly. Functional, logic and most object-oriented languages use
garbage collection to manage the heap automatically (Scheme, Dylan, ML, Haskell?
Miranda. Prolog, Smalltalk, Eifell, Java, Oberon). Modula-3 offers both explicitly and
automatically managed heaps.

2.1.2 Reasons for Garbage Collection

The need for garbage collection arose from the problems with explicit deallocation. but
also h m the language and problem requirements. as well as some software engineering
issues. ünfortunately, garbage collection is not a universal solution.

Problerns with explicit deallocation

Manual mernory management can cause the apparition of garbage and dangling refer-
ences which can lead to the obstruction of the running program :

Garbage Dynarnically allocated storage may become unreachable. For example. the
head of a linked list can be made to point to nil. In that case, al1 the other
members of the list become unreachable, and cannot be deallocated. Such objects.
that are not alive. but are not free either, are called garbage. With explicit
deallocation garbage cannot be reused; the corresponding space has leoked away.

Dangling references If the second member of a linked list is deallocated. the third
member (together with the rest of the list) will become garbage like in the case
above. However, a t the same time, the pointer from the first member of the list
to the second (deallocated) rnember will still refer to memory that has been deal-
located and can possibly be reallocated: a dangling reference has been created.

Garbage collection avoids both of these problems.

O t her reasons for garbage collection

Garbage collection may be a languoge requirement. If data structures may s u M w
the procedure that created them, then it may be impossible for the programmer or
compiler to determine the point a t which it is sale to deallocate them.

iLlemory Management Algorithms 6

Garbage collection may be a problem requirement. If a stack is irnplemented as a
linked list and the pop operation deallocates the first element (the top) of the stack,
should it deallocate the data refereoced from this element ? The answer really depends
on whether the data is staticaliy ailocated or not, whether it is the last pointer to the
data etc.

Garbage collection may be a software engineering issue. Abstraction and mod-
ularity are amoog the key principles of the software engineering. Explicit memory
management is not cornpliant with these principles. Automatic memory management
gives increased abstraction to the programmer, the mode1 of memory allocation is less
low-level? so that programmers are relieved of the burden of book-keeping detail. -4s
for modularity, it should not be necessary to understand an entire prograrn before be-
ing able to develop a single module. And as liveness is a global propeny, changes to
book-keeping code might have an influence beyond the module being developed.

Not a universal solution

The garbage collection is not a perfect solution for the memory management. Programs
with straightforward dynarnic memory requirements rnay be supported at louer run-
time cost by esplicit deallocation (although the short-term gain may have a longer-
term cost). 4lemory demands of hard real-time sptems cannot pt be solved without
a hardware support. Garbage collection has its own costs. in terms of both time and
space. Although garbage collection removes dangiing pointers and space leaks, it is
vulnerable to other errors. Garbage collection has no solution for the problem of data
stmctures that grow without bound (such as caching the intermediate results to avoid
recomputation). Tracing garbage collectors identify live data by foliowing pointers
from the roots of the computation including the prograrn stack. But the stack can
become polluted by obsolete pointers and if these pointers are traced the space leaks
might occiir.

2.1.3 Comparing Garbage Collection Algorit hms
Many garbage collection algorithms have been proposed and it is rather difficult to
compare them. The reason is that the main principles that sbould be taken into account
when comparing the algorithms (cost of reclaiming cells, allocation cost. overhead on
user progam operations, delays caused by gaxbage collector. the amount of memory
required for the collector etc.) depend on different parameters. These algorithms are
usually tested on ddferent machines, with different processor and on different operating
sysiems. the implementation of one algorithm could influence its performance, the
topology and volume of live data on the heap can influence the execution time, the
order in which a graph is traversed or copied may eEect the vinual memory behavior.

2.2 Basic Allocation Mechanisms
Although our work is concerned with garbage collection algorithms, in order to un-
derstand the memory management as a whole (which will be especially needed when

Memory Management Algori thms 7

analyzing the source code of a chosen memory management system, see Chapter 4,
we will briefly mention the mostly used allocation mechanisms. This section is based
on a review on dynamic storage allocation by Wilson et al. [3].

The main job of an allocator is to keep track of which parts of memory are in use,
and which are free. An ideal allocator would spend negligible time managing mernory
and waste negligible space. The main problem is an application program, which can free
objects in any order, creating holes in memory. If these holes are numerous and smdl,
than they cannot be used for larger blocks. This problem is known as fmgmentation.

Dynamic aliocation has been studied for several decades, but it is still rather un-
known field. In fact, it has been proven that any allocation algonthm in some cases
can perform very badly causing a severe fragmentation, but some allocation algorithms
have been shown in practice to work well with real progarns and are widely accepted.

We will brieflp present the following basic allocator mechanisms :

seqvential fits, including first fit, next fit, best fit, and worst fit,

a segregated free lists, including simple segregated storage and segregated fits,

a buddy systems, including conventional binary, weighted? and Fibonacci buddies,
and double buddies, and

bitmapped jits.

2.2.1 Sequential Fits
In this kind of allocator, al1 free blocks are linked in one linear list, that is often doubly-
linked and/or circularly-linked. Tbis means that every block has to have at least one,
and maybe two pointers. Besides, in order to support coalescing of adjacent free blocks,
boundary tags are usually used which means that each block has both a header and
a footer, containing the information on block size and whether it is in use. Several
algorithms are possible, depending on the way the linked list is searched and memory
allocated. üsing best fit allocator searches the free list to Bnd the smallest free block
large enough to satisfy a request. The strategy iç to minimize wasted space. First fit
searches the list from the beginning and uses the first block large enough to satisfy
the request. If the block is larger, i t is split and the remainder put into the free list.
Several implementations are possible, conceming the order in which the blocks are put
back into the list (LIFO, FIFO etc.). Nezt fit uses a roving pointer for aliocation. The
pointer saves the position where the last search eoded, and next search begins €rom
there trying to find the first block that satisfy the request. Usual explanation is faster
allocation, but there are some disadvantages conceming locality of objects (objects of
different phases of execution are interspersed in memory). Finally, worst fit allocates
memory from the largest possible block, boping that the rest of the block will still be
large enough for next allocation.

The authors found that in practice best fit and address-ordered first fit (the free
blocks in the list are sorted in order of addresses) work well in practice.

2.2.2 Segregated Free Lists
In this type of allocator, an array of free lists is used, and each free list holds blocks
of particular size. We mention two variation of this allocation mechanism. Simple
segregated stomge does not allow splitting of large objects in order to satisfy requests
for smailer sizes (the opposite case, coalescing, is not allowed either). If no block of
that size is available, memory is allocated from the operating system and split in equal
blocks of that size (which means that one page contains block of only one size). In
the case of segregated fits an array of free lists is used, each holding object of the same
size class. Size class means that objects of similar sizes are put in the sarne hee list.
When memory request is made, its size class is calculateà, and any block in the free
list of that size class (or bigger) c m satisfy the request. Size class schemes usually use
sizes of power of 2, but other schemes are used also. If a block of that size class is
not available, search is continued in larger size classes. Blocks are split and put into
an appropriate free list. They can also be coaiesced, using boundary tags, mentioned
above.

2.2.3 Buddy Systems
Buddy systems are in fact a special case of segregated fits, using particular splitting
and coalescing system. In the simple buddy scheme, the whole heap is split into two
large areas, and those areas are further split in the same way, until the appropriate
size hm been reached. Split blocks are put into free lists according to their size. When
blocks are freed. the? are merged with its buddy, a unique neighbor in the same level
in the binary hierarchical division. The merge is efficient, done by simple address
computation. Several variations on buddy systems exist : binary buddies, Fibonacci
buddies, weighted buddies, double buddies. Al1 of them are variations on the size of
the split block, in order to eliminate as much as possible intemal fragmentation.

2.2.4 Bitmapped Fits
In this mechanism a bitmap is used to record which parts of the heap are in use, and
which parts are not. A bitmap is an array of one-bit flags, one for each word (or
double-word, depending on the architecture) of the heap area. Bitmap may have an
advantage over headers, if the objects size is small (a bit per word incurs a 3% overhead,
whereas for a 10-word object, a header incurs 10% overhead).

2.2.5 Conclusion
Memory allocation mechanisms differ mostly by the speed of search for a free block, and
by flexibility of splitting and coalescing. It seems that segregated fits using boundary
tags, or bitmapped techniques give rather satisfactory results. It is out of the scope of
this work to enter into the details of advantages and disadvantages of each mechanisrn,
the purpose of t his section was to give just a global overview.

Ademory Management Algori t h

2.3 Basic Garbage Collection Algorithms
In t his section we first int roduce some base defini tions necessary for the understanding
of garbage collection algorithms, and later we describe basic and advanced garbage
collection techniques.

2.3.1 Phases of Garbage Collection
There are two phases of garbage collection: garbage detection and garbage reclamation.
Garbage detection consists of distinguishing the live objects from the garbage in some
way, while garbage reclamation deals with reclaiming garbage objects memory. so that
the running program can use that memory space again.

The liveness criterion is defined in terms of reachability from the active variables.
These includes statically-allocated global or module variables, local variables in acti-
vation records on the activation stack, and any variables currently in registers. These
objects are called root set. Objects on directed path of pointers from the roots are
considered alive: objects not reachable from the root set are considered garbage.

Object representation is done assuming that it should be easy to determine the type
of an object at run time. This can be accomplished using either hidden (unaiailable to
the programmer) "header" fields on heap objects or tagged pointers. Header field is an
extra field containing t-ype information: which is typical for statically typed languages.
In order to represent tagged pointers, a shortened representation of the hardware ad-
dress is used, with a small t-ype-identifying field in place of the rnissing address bits.
which is typical for dynamically typed laquages.

The garbage detection phase of garbage collection may be done in two ways: by
reference counting or directly (maintaining a count of the number of pointers to each
object), or by tracing or indirectly (traversing the pointers in order to End dl the
objects the program might reach). There are several varieties of tracing collection
(garbage reclamation phase included): mark-sweep? mark-compact. copying and non-
copying implzcit reclamation. We now examine each of these techniques in turn, by first
describing it ? and then pointing to the associated issues (advantages and limitations).

2.3.2 Reference Count ing
P hilosophy

Each object has an associated reference count i.e. count of the references (pointers) to
it. Ewry time a reference to the object is created, e.g. when a pointer is copied from one
place to another by an assignment, the pointed-to object's count is incremented. and
when an existing reference is destroyed, it is decremented. The memory is reclaimed
when the object's reference count is O.

Each object typically has a header field of information describing the object, which
includes a subfield for the reference count.

Memory Management Algori thms 10

When the object is reclaimed, its pointer fields are examined, and any object it
points to also has its reference count decremented. Reclaiming one object may therefore
leaà to reclaiming many other objects.

Algorit hms

In this section we present dgorithms that are most often used to implement reference
counting, starting with simple recursive freeing. The second algorithm, non-recuaive
fieeing, tries to avoid an overhead of the h s t one. Finally, to optimize the reference
counting, a deferred reference counting may be used.

Simple recursive freeing

Descript ion This is the simplest reference counting algorithm. At the begin-
ning, d l cells are piaced in a pool of free cells (usually implemented as a linked list),
f r e e l i s t . The cells are linked by the pointer to the next free cell, next. Function
new() allocates a new cell, nevcell, from the free list using the function alocate().
Function update(R,S) updates a pointer from the cell R to the ce11 S? incrementing the
reference count of S. The name of the algorithm cornes from the function delete(T),
which deletes a pointer to T, decrementing its reference count. and, if its count is 0, it
deletes al1 the pointers from T by calling reciirsively the function delete(T).

The functions mentioned above are explained hereafter .

Function new() Checking for the free mernory, calling of the function for the allo-
cation of a new cell, and updating RC (reference count) field of the new ce11 to
1:

neu() =
if free-list == n i l

abort "Memory exhausted"
nevcell = allocate ()
RC(newcel1) = 1
return nevcell

Function allocate() Allocation of a new ce11 from the list of free cells:

allocate0 =
nevcell = f r e e l i s t
f ree-list = next (free-list)
return newcell

Function update() Updating the pointer fields under reference counting. First the
old pointer is deleted (c d of delete), then the RC of the new pointed-to object
is incremented and, finally, the pointer is updated.

update(R.S) =
delete (*R)
RC(S) = RC(S) + 1
*R = S

Figiire 2.1: Update (lef t (R) , S)

Function delete() Deleting of a pointer to an object T. First the object's RC is
decremented, and checked if it is O. If so, the pointers to the object's children
are deleted and the object is freed (cal1 of f ree).

delete(T1 =
RC(T) = RC(T) - 1
i f RC(T) == O

for U in Children(T1
delet e (*U)

f ree (Tl

F'unction free() Putting the garbage object in the list of free objects:

free(N) =
next (NI = free-list
freeJist = N

Important Issues This algorithm has many advantages. It is simple to imple-
ment, it liberates the non-used memory immediately, its overheads are distnbuted
throughout the computation (which makes it suitable for real-time spstems). But.
one of its disadvantages Iays in the overhead: the cost of removing the last pointer is
unbounded since any descendants reachable only from that object must also be freed.
The non-recursive freeing tries to solve this problem.

Memory Management AIgoritbms

Description Simple recursive freeing distributes processing overheads unevenly:
the cost of deleting the 1st pointer to an object is not constant, it depends on the
size of the sub-graph rooted a t that object. To avoid that, when the 1 s t pointer to
a node N is deleted by the function delete(N), N is simply pushed onto a free-stack.
And when N is about to be reallocated fiom the top of the free-stack, any pointers in
N are deleted by new(), and any immediate referent which would have a RC of zero
is pushed back ont0 the free-stack. The reference-count field is used to chin the free
stack.

Function new() Checking for the free memory, allocating of a new ce11 by the func-
tion allocate() and deleting every child of the new ce11 by the function delete.

new() =
if free-atack == ni1

abon ' ' Memory exhaustedJ '
neucell = allocate O
f o r N in Children(newcel1)

delete (*NI
RC(neucel1) = 1
return nevcell

Function delete(N) Checking for the N's reference count: if it is equal to 1, then
put N on the free stack, else decrement its RC.

delete(N) =
if RC(N) == 1

RC(N) = fme-~tack - RCfield wed to chuin the free stock
free-stack = N

else RC(N) = RC(N) - 1

Important Issues This aigonthm preserves the advantages of the first one, and
it gives a solution for the overhead of updating the reference counts when delet ing the
last pointer to an object. But it leaves some problems unsolved. One of them is the
efficiency problem. The cost of the reference counting is proportional to the amount
of work done by the nuining program, with a fairly large constant of proportionality.
When a pointer is created or destroyed, its reference count must be adjusted. In the case
of short-lived stack variables, rebrence counts are incremented and then decremented
back to their original value very soon. It is desirable to optimize it to avoid such an
overhead. One of the ways to optimize it is to use deferred reference counting, which
we detail in the next section.

Deferred reference counting

Description Rather than always adjusting reference counts and reclaiming o b
jects whose counts become zero, references from the local variables are not included
in this book-keeping most of the time. From time to time, the reference counts are
brought up to date by scanning the stack for pointers to heap objects. The cost is still
roughly proportional to the amount of work done by the running program, but with
Iower constant of proportionality.

One of the algorithrns for deferred reference counting is the Deutsch-Bobrow algo-
rithm [6]. Here reference counts only reflect the number of references from other heap
objects: references from the stack are not counted. This means that objects can no
longer be reclaimed as soon as their reference count drops to zero since they might still
be directly reachable from a local or temporary variable. Instead, cells with a reference
count of zero are added to a zero count table (ZCT) by the function delete. Function
update(R,S) updates the pointer from the object R to the object S, and the function
reconczle() checks whether there are objects in the ZCT that are not present in the
stack? and returns tbem to the free Iist.

Function delete(N) This function decrements RC of the cell to be deieted, checks if
RC is zero and in that case puts the ce11 to the zero count table.

delete(N) =
decrementRC (NI
if RC(N) == O

add N to ZCT

Fùnction update(R,S) Entries in the ZCT are deleted and the RC incremented when
a reference to the object is stored in another heap object.

update(R,S) =
delete (*RI
incrementRC (SI
remove S from ZCT
*R = S

Funct ion reconeile () Periodically the ZCT is reconciled to remove and coliect
garbage. Any object with a reference in the ZCT that is not also found in
the stack must be garbage and can be returned to the free-list. First the RC of
the stack objects is incremented in order to mark the stack. Mter that, the RC
of every object in ZCT is checked. If it is equal to zero, it means that the object
is not in the stack, and it is therefore freed.

Memory Management Algori thms

reconcile() =
for N in stack - mark the stack

incrementRC(N1
for fi in ZCT -rechim gorbage

if RC(N) == O
for M in Children(N1

delete (*Ml
f ree (N)

for N in stack -unmark the stack
decrementRC(N1

Important issues Defened reference counts reduces the cost of pointer writes.
On the other band, there is a space cost of ZCT and lack of immediate recycling of
the memory (as the garbage is retained until the ZCT is reconciled). Tbere is also a
question of stack ovedow: ZCT is reconciled when overflowed, but freeing of an object
can push more objects to the ZCT, causing the overfiow again. This problem can be
remedied by either canceling the freeing of the object until the next reconciliation. or
implementing the stack as a bitmap (a bit for eves, word in the heap; a n object is
entered or removed from the bitmap by setting its bit).

Other reference count techniques

In order to save space required to store reference counts, which cm theoretically be
large enough to hold the total number of pointers in the heap and in the roots. a
limited-field reference counting can be used. Small reference count fields may ovedow,
and precautions must be taken to avoid it. Besides, when the reference count reaches
its maximum, it cannot be reduced, because the true count may be geater than its
reference count. X backup tracing collector must be used to restore true reference
counts. The use of a tracing collector is not burdensome since it is likely to be used to
collect cyclic garbage (see Disadvantages below). There is a more radical modification
of this technique, which uses a single bit to reference counts. The bit is used to
distinguish the pointers that are unique from the shared ones. k in the previous case.
the use of the tracing collector is necessary: shared cells can only be reclaimed by
tracing.

The execution time of the reference counting is generally greater than that of tracing
techniques. In order to profit from the benefits of the reference counting and still have
an acceptable execution time, hardware support must be included. Tbere is some work
in that field (such as self-managing heap mernories based on reference counting), but
we will not detail it here, because it is not widely used.

Some researchers t ried to overcome the main disadvantage of the reference counting,
the cyclic garbage (see Disadvantages below), by either treating a cycle as a single entity
(under some restrictions), or by distinguishing the pointers intemal to the cycle from
externai references. None of these schemes have been adopted for use by significant
systems.

Advantages and disadvantages of reference counting

Advantages This system can perform with little degradation when almost al1 of the
heap space is occupied by live objects. It is useful for finalization (clean-up actions, like
closing files, when objects die). As for the usage, this system is not convenient for high-
performance implementation of general-purpose programming languages. However, it
is used by most file systems to manage filesldisk blocks and in simple interpretive
languages and g a p hical toolkits.

Disadvantages Besides certain amount of optimization, there is a cost of book-
keeping of the objects whose count is O (typically, one or more lists of reusable objects
is created by linking the freed objects). Heclamation operation costs iew tens of in-
structions per objects, which is proportional to the number of objects allocated by the
running program. There is still an incapability of reclaiming circular structures. If the
pointer in a group of objects creates a (directed) cycle, the objects' reference counts are
never reduced to zero, even if there is no path to the objects from the root set (in the
Fig. 2.3.2 after delete (right (RI I the cycle STU is neither reachable nor reclaimable).
That means that some other kind of garbage collecter has to be included, which can
compromise the real-time nature of the algorithm.

Figure 2.2:

2.3.3 Mark-Sweep

P hilosophy

afrcr

Reference counting cyclic data structures

Collection

As we mentioned in Section 2.3.1, the first tracing technique for garbage collection
is mark-sweep collection. The name cornes from two phases of garbage collection :
garbage detection phase cailed mark phase, and garbage reclamation phase called sweep
phuse. Mark phase consists of tracing Live objects by starting at the root set and actu-
ally traversing the graph of pointer relationships by either depth-first or breadth-tirst

Memory Management Algorithms 16

traversa1 (see Fig. 2.3.3 : al1 unmarked cells (with unshaded mark-bits) are garbage).
Reached objects are marked by toggling a bit in the header of the object or by recording
them in a bitmap or in a table. Once the live objects have been marked, memory is
swept (exhaustively examined) to find ail unmarked objects which are then linked into
one or more free lists.

Figure 2.3: The g a p h after the marking phase

Algorit hms

The common characteristic of al1 mark-sweep algorithms is that a bit associated with
each ceIl is reserved for marking. To mark dl the objects that are alive, the function
mark is called on every member of the root set. After that the unmarked cells are
returned to the free pool by the function sweep.

mark-aveep () =
for R in Roots

mark(R)
sveep (1
if free-pool is empty

return '<Memory exhausteda'

Marking phase can be done in several ways, while not many algonthms exist for the
sweeping phase. We first mention the marking a l g o r i t h , namely: simple recursive
murking, using a rnarking stack, wing a pointer reversa1 and uszng a bitmap mark-
ing. After that, we present bnefly a simple algorithm for the sweeping phase, and its
modification, l u q sweeping.

Simple recursive marking The simplest and the least efficient marking algorithm
is simple recursive marking.

Ademory Management .Ugorithms 17

Description Function mark(N) first checks if N is marked; if not, it marks it and
calls recursively the function mark(N) for every child of N.

mark(N) =
if mark,bit(N) == unmarked

mark-bit (NI = marked
for M in Children(N)

mark(*H)

Important issues The problem is the recursion which is neither tirne- nor space-
efficient, and may cause the system stack to overflow. The "using of a rnarking stack"
approach, explained below, maites space and time cost of the marking phase explicit
(the maximum size of the marking stack depends on the size of the longest path that
has to be traced through the graph; overflows in real tirne are rather rare).

Using a marking stack

Description .A standard method for improving the performance of recursively
described algorithrns is to replace recursive calls by iterative loops and a h l i a - data
structures. In the case of marking, an auxiliary stack can be used to hold pointers to
nodes that are known to be live but have not yet been visited.

In the following algorithm the method traverses each node, stacking branch points
only once:

gco =
marklteap (
sweep ()

markheapo =
mark-stack = empty
for R i n Roots

mark-bit (RI = marked
push(ll, mark-stack)
mark0

mark0 =
vhile mark-stack # empty

N = p o p h r k - s t a c k)
for M in Children(N1

i f mark-bit (*U) == unmarked
mark-bit (*M) = marked
i f not atorn(*M)

push(*M, mark-stack)

Memory kfanagemen t Algori tbms 18

In the alternative algorithm, the method traverses each arc. General directed graph
usually contains more arcs than nodes, hence this algorithm is less efficient:

mark0 =
while markstack # empty

N = pop(mark-atack)
i f mark,bit(*M) == unmarked

mark-bit (*FI) = marked
f o r M in Children(N1

push(*M, mark-stack)

A graph may contain large nodes, which is not a probiem if the nodes are atomic.
but if they are not, pushing al1 its children can cause the stack to overflow. One
solution is to put in the marking stack two pointers to the start and the end of each
object pushed onto the stack. At each iteration of the marking loop these pointers are
examined. If the object is srnall, then al1 of its children are pushed onto the stack.
otherwise on- a portion is pushed and the two pointers are updated with the start
and the end of the rest of the object.

Important issues Attention must be paid to the stack overflow. It c m be de-
tected in two ways: either by an in-line check in each push operation or by counting
the number of pointers containeci in the node popped from the stack at each iteration
of the marking loop. An alternative is to use a write-protected page (guard page): the
last page on the stack is set to be write-protected. Memory protection fault is triggered
if a stack entry is pushed ont0 this page. This operation is quite expensive and not
much in use. The other inconvenience is the additional space for the stack. Below we
explain a method for marking in constant space: pointer reversal.

Using a pointer reversal

Description Previous algorithm needs the use of an extra space for the stack.
Pointer reversal is a method of marking in constant space, without using additional
space for marking stack. In order to record al1 branch points that it passes through,
the marking algorithm has to store the back pointer to the previously marked node.
One way to do that is to use a pointer reversal algorithm developed by Deutsch, Schorr
and White [7]. This algorithm supposes that al1 branch-nodes are binary (with exactly
two pointer fields: left and right).

Three variables are used: current - the current node, previous - the node
behind the current node, and n e a - ahead the current. Initially current is set to
the root of the graph to be marked and previous to nil. There are three phases in
this algorithm. In the ôrst phase, a function calleci mark follows left pointers and
marks nodes until it reaches a marked node or an atom. When it arrives there (second
phase), it sets a flag-bit of the ptevious node (that indicates that its left subgraph is
marked) and atternpts to start marking koom the r ight node. The original value of

the l e f t field is restored. In the third phase, the orignal value of the r i g h t field is
restored and the algorithm retreats to the parent node. This phase is repeated until
a node whose flag-bit is not set is found (its right subgraph is not yet marked). The
algorithm terminates when previous becomes n i 1 again.

mark(R) =
done = false
Curr8nt = R
previous = n i 1
uhi le not done

- follow le/t pointers
vh i le current # ni1
and mark-bit (current) == unmarked

mark-bit (current) = marked
i f not a tom(curent)

next = l e f t (c u r e n t)
l e f t (c u r e n t) = previous
previous = current
current = next

-retrait
vhi le previous # n i 1
and f lag-bit (previous) == s e t

f h g - b i t (previous) = unset
next = r i g h t (previous)
right (previous) = current
current = previous
previous = next

i f previous == n i 1
done = true

else
-switch to right subgraph
f lag-bit (previous) = set
next = l e f t (previous)
lef t (previous) = current
c u r e n t = r ight(previous)
r i g h t (previous) = next

Pointer reversal can be used for variable-sized nodes. Each node has two additional
fields: one holds the number of pointers (n) contained in the node (which is necessary
in any case) and the second is used for marking (i). Each time a child is marked, i is
incremented. When i becomes equal to n, the algorithm retreats to the parent node.

Important issues Pointer-reversal algonthms require constant space to operate,
but they involve an overhead in each node of the heap. Their performance is consid-

Memory Management Algorit hms

llb

Figure

b -m

2.4: The advance

$n

phase

Figure 2.5: The switch phase

erably worse than that of "the pointer-stack method one, having to visit each node
more times than stack-based marking. It should be used as a method of last resort.
invoked only on pointer-stack overflow.

Using a bitmap rnarking

Description The mark bits are not placed in the objects they mark. They can be
stored in a separate bitmap table. -4 bit in the table is associated with each address in
the heap that may contain an object. The maximum fraction of the heap occupied by
the table is inversely proportional to the size of the smallest object (bigger the object ,
lesser the number of objects that can fit in tbe heap, and smaller the bitmap table).

Important issues Bitmaps minimize the amount of memory needed to store
mark information. If it is small it can be held in RAM (so that reading/writing of
mark-bits does not cause page faults)' and 32 bits can be checked at once by ALU
operation. Durhg the marking phase, the heap objects are not written into, and
atomic objects are not even touched by the collector. The only disadvantage of the
bitmaps is that mapping the address of an object in the heap to a mark-bit is more
expensive than it would be if the mark were stored in the object.

Lazy sweeping

hn-5l 6 b

Figure 2.6: The retreat phase

Description One of the disadvantages of mark-sweep garbage collection is that its
cost depends on the size of the heap, because the sweep phase must examine the whole
heap. The pauses can be reduced if the sweep phase is done in parallel with program
executioa. The simplest way to do this is to execute a fixed amount of sweeping at
each allocation. Hughes's algorithm [BI is an example of such a lazy sweeping. At each
allocation, the heap is swept and the memory returned by sweeping is used for the
allocation. There is no use of free lists.

allocate0 =
vhile sweep < Heap-top

if mark-bit (sueep) == marked
mark-bit (sveep) = unmarked
sweep = sveep + size(sweep)

else
result = sueep
sweep = sweep + size(sveep)
return result

- heap is full
markheap ()

Lack of free list manipulation is an advantage if mark bits are stored in the objects
themselves. But in the case of a bitmap, there is no advantage in reloading and saving
bitmap indexes and bitmasks at each cal1 to allocate. It is better to either use a
free-list (the case of Boehm-Demers- Weiser conservative collector, see Section 2.6.2) or
a fked-size vector (Zorn's generational mark-sweep collector. see Section LM).

Important issues The cost of mark-seeep collection is likely to be dominated
by marking and not by sweeping phase. Yet, there is no reason to sweep the entire
heap, while the sweep phase can be done in parallel with program execution by lazy
sweeping.

Selective sweeping Chung (91 developed another algorithm that can improve the
efficiency of the sweep phase : selective sweeping. We explain it in details in the section
4.3.2, when describing its actual implementation.

This algorithm avoids having to touch every object in the heap during the sweep
phase by constructing a set of Iive objects during the marking phase. Objects in this
set are then sorted by address and the gap between each two objects freed in a constant
time.

Important issues The efficiency of the selective sweeping depends on the number
of live objects. If this number is srnail, selective sweeping obviously reduces sweeping
time. If it is rather big, then traditional sweeping may be better (avoiding the sorting
phase, for instance). In order to decide which algorithm to chose, the number of live

iV1ernoz-y Management Algorithms 22

objects is tracked during marking phase, and if that number exceeds certain threshold,
the set of live objects is not constructed and the traditional sweeping is performed.

Advantages and disadvantages of mark-sweep collection

The advantage of this technique over reference counting is that cycles are handled
naturally and there is no overhead in pointer manipulations. On the other hand, there
is a problem of fragmentation that is not unique for this type of collection. It is difficult
to handle objects of varying sizes without fragmentation of available memory. This
can be mitigated somewhat by separate lists for objects of varying sizes, and merging
adjacent free spaces together (but difficulties rernain). The cost is proportional to the
size of the heap, including both live and garbage objects, but if live objects tend to
survive in clusters of memory, this can greatly diminish the constant of proportionah.
Objects of very different ages are interleaved in memory (unsuitable for most virtual
memory applications).

2.3.4 Mark-Compact Collection

The disadvantages of mark-sweep collection are reduced by mark-compact collection.

P hilosop hy

blark-compact collection remedies the fragmentation and allocation problems of mark-
sweep coilection. It has three phases : matking, compacting and updating the pointers.
Marking is done in the same way as for mark-sweep (see Section 2.3.3). After marking,
live objects are slid to one side of the heap adjacent one to another, which creates a
single contiguous free space at the end of the heap. Finally. the values of the pointers
that referred to moved objects are updated.

Algorit hms

In this section we present the most frequently used algorithms for this garbage collection
technique : two-finger algo rithm. the Lisp 2 algorithm and table-based methods.

Two-Finger Algorithm

Description This algorithm is generally applicable only to fked-size cells. Two
pointers to the heap are used : one to point to the next free location (f ree). the other
to the next active ce11 to be moved (ï îve) . The fonvarding address is left in their old
location.

First the live data is marked (using the function mark()), and the number of live
cells is returned.

Memory ikfanagernen t Algori thms

compact -2f inger O =
no- l ive-ce l l s = mark() - markhg of the live objects
relocate 0 - miocution of the cells leaving

the forwurding addms
update-pointers (no-l ive-cel ls) - upàuting the pointers to the newly

reioccited celb
free = no-i ive-cel ls + 1 - fird free slot on the heup

Then the first p a s of the algorithm relocates cells from the upper part of the heap
to the holes in the lower part of the heap, ovenvriting the fiat field of the vacated slots
w i t h the forwarding addresses.

relocate0 =
free = Heap-bottom
l i v e = Heap-top
vhile marked(free1

free = free + 1
while not marked(1ive)

l ive = l i v e - 1
uhi le l i ve > free

move(live, f ree)
HeapClive] = free
uhi l e marked(free)

f r e e = free + 1
uhi le not rnarked(1ive)

l i v e = live - 1

- find the first hole

- find the first live ce11

- Ienve forwarding address

The second pass scans the live cells, al1 of which are now at the bottom part of
the heap. This pass updates the values of any pointer fields that refer to cells that
have been evacuated (i.e. with addresses geater than nl ive) , by referring to the
fonvarding addresses left by the first p a s .

update-pointers (nl ive) =
for i = 1 t o nlive

f o r j in Children(Heap C i])
i f Heaptj 1 > n l i v e - points to reioccted area

HeapCj] = HeapCHeap[j]]

i\femory hfanagement Algori thms 24

Important issues This algorithm can be easily extended to deal with the case
when variable-sized celis are allocated in different regions of the heap. Here the mark
phase rnust calculate no-live-cel ls for each region and the cells in each region must
be relocat ed separately.

The chief drawback of this algorithm is that the order in which the cells are re-
located is arbitrary, so it is not suitable if the reason for compaction is to improve
spatial locality. The Lisp 2 algorithm, presented in the next paragaph, outcomes this
drawback, by preseming the ceil order.

The Lisp 2 Algorithm

Description This algorithm first marks all live cells (function mark()). After
the marking, it consists of three phases (explained below) : first it computes the for-
warding addresses of each ce11 and wntes them in a special field of each ce11 (function
cornpute-addresseq")), then it updates the pointers to the cells to be relocated (func-
tion update-pointers()) and finally relocates the ceils to their new addresses (function
relocat e 0).

CompactLISP2 0 =
mark0
cornpute-addresses 0
update-pointers 0
relocate O

The first phase computes the new address of each active cell, and puts it in the
f orwarding-address field of each object. If the object is not marked (i.e. if its
f oruarding-address field is nil), the function combine() finds the next live object.

cornpute-addresses0 =
free = Heap-bottom
P = Heap-top
vhile P < Heap-top

if f oruarding-address (P) # ni1
f oruarding-address (PI = free
free = free + size(P1

else combine (P)
P = P + s ize(P)

combine(P1 =
- P is unmarked
next = P + size(P1
while f oniarding-address (next) == ni1

size(P) = size(P1 + size(next1
next = P +. size(P1

-not marked

Memory Management Algorithms 25

The second p a s updates the values of pointer fields of active cells (including root
pointers).

update-pointers0 =
for R in Roota

R = f oniarding-address (RI
P = Heap-bottom
vhi le P 5 Iieap-top

if f orvarding-address (Pl # ni1
for Q in Children(P1

Heap [QI = f orvarding-address (Heap [QI
P = P + size(P)

The third pass clears the forvarding-address field and moves cells to their new
address. At the end of this phase, al1 active data are compacted to the lower part of
the heap, and f ree indexes the first free location in the heap.

relocate0 =
P = Heap-bottom
vhile P 5 Heap-top

temp = P + size(P)
if f orwarding-address (P) # ni1

f ree = f oruarding-address (Pl
f oruarding-address (P) = ni1
move (P, free)

P = temp
free = free + size(free)

Important issues This algorithm is suitable for cells of variable sizes, it
preserves their order, which improves spatial locality. On the other hand, it makes
three passes instead of two, and it needs one more pointer-sized field that serves for
storing the fonvarding addresses and for marking process. The table-based methods,
presented below, preserve ce11 ordering without any space cost.

Table-based methods

Description These methods use b m k table to keep account of the location of
blocks of active data and the sue of holes, and use this information for updating
pointers.

Memory Management Ngorithms

compact-table O =
nlive = mark0
relocate 0
sort-table (1
update-pointers (nlive)

After marking the active graph, a break-table of telocation information is con-
structed in the free area. The break table is built as each contiguous area of active
data is cornpacted by determining the address of the start of the area (g), and the
total amount of free space discovered so far (s i) . The pair (u,, s i) is written into the
free slot at the end of the break table, -4s areas of active data are relocated toward
the bottom of the heap, it may be necessary to move the break table in the opposite
direction. If this movement causes the break table to be unsorted, the table must be
sorted. Finally, the pointer fields have to be adjusted. To adjust a pointer p, the
break table is searched for adjacent pairs (0,s) and (a ', s ') such that a 5 p < a '. The
adjusted value of p will then be p - S.

Important issues Table-based methods make two passes of the heap and require
no extra space (the information is stored in holes themselves). The main concem is
the time needed for searching of the break-table which depends on its size. The search
can be improved by using a hash table.

Advantages and disadvantages of mark-compact collection

The elimination of fragmentation problems by compacting reduce the cost of alloca-
tion: allowing an easy allocation of objects of various sizes. M ark-compact collection
preserves the order of objects in rnemory, which arneliorates spatial locality.

The execution of the compactor can be rather slow. At least two (and in one case.
three) passes over the data are required (like in case of mark-sweep). Mark-compact
collection can be significantly slower than mark-sweep if a large percentage of data
survives to be compacted.

2.3.5 Copying Garbage Collection
P hilosophy

Copying garbage collection is another kind of tracing collection. This kind of garbage
collection is similar to mark-compact, but without marking: traversal of data and the
copying process are integated, so that most objects need to be traversed only once.
Like with mark-compact collection, there is no reai collection of garbage. The usual
term for the copying traversai iç scauenging, since only the worthwhile objects amid
the garbage are saved.

Memory Management illgorithms

Algorit hms

A Simple Copying Collector

Description The most used copying collec tor is semispace coilector t hat imple-
ments Cheney's algorithm ("stop-and-copy") [IO]. The heap is divided into two con-
tiguous semispaces. During normal execution only one of them is used (the allocation
is simple and fast because of the large, contiguous free space). When the program
dernands an allocation that will not fit in the unused area, the progam is stopped and
the copying garbage collector is called to reclaim space. -411 the live data are copied
from the current semispace (frompace) to the other semispace (tospace). After that,
the tospace is made "current" semispace, and the execution is resumed. The roles of
two spaces are reversed each time the garbage collector is invoked.

The simplest algorithm for copying is Cheney's algorithm [IO]. The immediately
reachable objects form the initial queue of objects for a breadth-first traversal. Each
tirne a pointer into fromspace is encountered, the referred-to object is transferred to
the end of the queue, and the pointer to the object is updated to refer to the new copy.
The free pointer is then advanced and the scan continues. Eventually, the scan reaches
the end of the queue, signifying that ail reached (and copied) objects have also been
scanned for descendants.

f l i p 0 =
Fromspace, Tospace = Tospace, Fromspace
scan = free = Tospace
f o r R in Roots

R = copy(R)
while scan < f ree

f o r P i n Children(scan)
*P = copy(*P)
scan = scan + size(scan)

copy(P) =
i f f oruarded (P)

return f oruarding-address (PI
else

addr = f ree
move(P, free)
f r e e = free + size(P)
f orwarding-address (Pl = addr
return ad&

In order to assure that the objects reached by multiple paths are not copied to
tospace multiple times, a slightly more complev process is needed. When the object

Memory Management Algori thms

Figure 2.7: Copying of the list [O, 1 ,O, 1. . ..]

is copied, a forwarding pointer is installed in the old version. It indicates where to
find a new copy of the object. Figure 2.7 shows the copying of the list [O.loO.l. ...].
Note that the forwarding addresses are shown only at the phase in which the object
is copied (their presence should be assumed from then on). The copying proceeds in
five phases. marked by numbers in the Fig. 2.7 : 1. the root node (A) is copied; 2.
space is reserved for 8, and then B is copied completely; 3. C is copied; 4. left (C) is
copied, space is reserved for D, and then D is copied and 5. right(C) is copied. and the
collection is complet e.

Important issues The work done at each collection is proportional to the amount
of live data at the time of garbage collection, and not to the entire heap. If approx-
imately the same amount of data is live at any given time during the program's ex-
ecution, decreasing the frequency of garbage collections vil1 decrease the total effort.
To do that, the amount of rnemory in the heap can be increased: program will run
longer before filling it, and the average age of objects at garbage collection time d l be
increased, so the chance that an object will never have to be copied is increased. Here
the paging costs are ignored (they can make the use of a larger heap area impractical
if there is not correspondingly large arnount of MM).

Advantages and disadvantages of copying collection

Copying collection divides the heap into two semi-spaces, but it uses no further heap
memory (mark-bits are not required, and forwarding addresses can usually be written
over user data fields). The cost of the collection depends on the amount of live data
either than the entire heap.

One of the disadvantages of the copying collection is the copying of large objects,
which is more expensive than their marking. This is the reason for having separate
largesbject spaces in some collectors.

2.3.6 Non-Copying Implicit Collection
P hilosophy

In the copying collector, the spaces are a particular implementation of sets. Tracing
process removes live objects from one set, and everything that rests is a garbage and
can be reclaimed. Given a pointer to an object it must be easy to determine which
set it is member of, and it must be easy to switch the roles of the two sets (toset and
/romset). The sets can be implemented as linked lists, and the objects 'inoved" from
one set to another not by copying but by unlinking from one list and linking to another.

Algorit hm

Description In order to implement sets as linked lists, this system adds two pointer
fields and a "color" field to each object. Pointer fields are for doubly-linked list (set),
and a color field indicates which set an object belongs to.

Initiaily, chunks of free space are linked in one list, and chunks holding allocated
objects are linked together into another list. When the free list is exhausted, the
collector traverses the live objects and "moves" them from the allocated set to the
other one. In fact, the object is unlinked from the fromset list, its coior field is
changed and it is linked into the toset 's doubly-linked list.

Important issues The operation of this collector is simple and similar to that of
the copying collector. This scheme can be optimized by making the ailocation faster:
allocated and free lists can be made contiguous and separated only by an allocation
pointer. In that case, instead of unlinking the object, allocator can simply advance the
allocation pointer.

Advantages and disadvantages of non-copying implicit collection

Tracing cost for large objects is not as high as for the copying collection; the whole ob-
ject need not be copied (as with mark-meep). It does not require the actual language-
level pointers between objects to be changed (there are fewer constraints on compilers).

The cost is proportional to the number of live objects. The garbage objects are al1
reclaimed in small constant time. The space costs are comparable to those of a copying
collector. There are additional two pointer fields per object, but on the other side no
space for both fromspace and tospace version is needed. In some cases fragmentation
costs (due to the inability to compact data) may outweigh those saving.

2.3.7 Choosing Among Basic Tracing Techniques
Cost is similar till basic algorithms have roughly similar costs. Criterion for bigh-
performance garbage collection is that its cost is comparable to the cost of allocating
objects. Basic cost components of tracing collection are:

the initial work, such as root set scanning, which is proportional to the size of
the root set;

Memory ihagement Algorithms 30

0 the work done at allocation, which is proportional to the number of objects
allocated, plus an initialization cost proportional to their sizes:

0 tracing (garbage detection), which is proportional to the amount of live data.

The latter two costs are usually similar. the third one is usually some significant
percentage of the second. That means that the algorithms whose cost is proportional
to the amount of allocation (mark-sweep) may be competitive with those having a cost
proportional to the amount of live data traced (copying). Currently copying collectors
appear to be more efficient than current mark-sweep.

Nonmoving vs. moving collectors In systems where memory is not much larger
than the expected arnount of live data nonmoving collectors have the advantage of
not needing two spaces. Reference counting collectors are also attractive in that case,
because their performance is independent of ratio live dataltotal memory.

Nonmoving collectors can be made conservative with respect to data values t hat
may or may not be pointers. That is usehl in the case of the languages like C, and it
simplifies the interfaces between modules written in diEerent languages and compiled
using different compilers.

Real high-performance systerns use hybrid techniques to adjust trade-offs for dif-
ferent categories of objects. Many copying collectors use a separate large object area
to avoid copying large objects from space to space. Ot hers use noncopying techniques
most of the tirne, but occasionally compact some data (using copying techniques) to
avoid fragmentation.

2.3.8 Important Issues
Every garbage collection technique raises questions concerning the use of rnemory. the
locali ty of reference, the time efficiency and the conservatism.

Memory If we consider only the copying cost, we could Say that it approaches zero
as memory becomes very large. On the other hand, large amounts of memory are
too expensive. Besides, the poor locality of the allocation and reclamation cycle will
generally cause excessive paging. Therefore, it doesn't really pay to make the heap
area larger than the available main memory.

Locality The principle of locality has two components: tempoml and spatial locality.
Temporal locality means that if a location X is accessed, then it is likely to be accessed
again in the near future. Spatial locality means that if location X is accessed, other
locations close to X are likely to be accessed in the near future.

The problem is not with the locality of compacted data or with the locality of the
garbage collection process itself. Large amounts of memory are touched between the
collections. So, the problem is an indirect result of the use of garbage collection: by
the time space is reclaimed and reused, it is likely to have been paged out, because too
many other pages have been allocated in between the collections. The only way to have

good locality is to ensure that memory is large enough to hold the regularly-reused area
(see generational collectors) .

Time Temporal distribution of tracing can be also troublesome: it can be dismptive
for user to have the systern become unresponsive for some time while garbage collecting.
Generat ional collecton aileviate t his problem, because most garbage collections only
operate on a subset of memory.

Conservatisrn The art of efficient garbage collector design is largely one of introduc-
ing small degrees of conservatism which significantly reduce the work done in detecting
garbage. The first conservative assumption most collectors make is that any variable
in the stack, globais or register, is live even though the variable may actudly never be
referenced again. Tracing collectors introduce a major temporal form of conservatism,
simply by allowing garbage to go uncollected between collection cycles. Reference
counting collectors are conservative topologacally, failing to distinguish between differ-
ent paths that share an edge in the graph of pointer relationships.

2.4 Generational Garbage Collection

2.4.1 Description

Garbage collection techniques introduced in the previous section were the basis for
rnany improvements. One of the most used techniques developed from the basic ones
is the generational garbage collection.

Tracing techniques can be improved in several ways. Simple tracing collectors cause
delays that can be obtrusive, and its locality of reference, which is important for cache
behavior, can be rat her poor. Long lived objects are a burden to tracing algorithms be-
cause they are repeatedly copied, or marked. On the other hand, researchers found that
most objects die Young (this hypothesis is known as weak generational hgpothesis) and
therefore storage reclamation is more efficient (in time and locality) by concentrating
effort on reclaiming p u n g objects.

In this kind of garbage collection objects are segregated into two or more regions
(generations). Different generations can be collected a t different frequencies with the
youngest generations being collected more frequently. Number of generations varies
between implementations. Generational garbage collection is in widespread use in:
Lisp, Xlodula-3. Standard M L of New Jersey, Srnalltalk from Apple etc., but whether
generat ional garbage collection is effective or not is application dependent.

2.4.2 Detailed Strategy

Ob ject lifetimes

The age of an object can be measured in two ways: either by wall-clock time or
by bytes of the heap allocated. The first one is machine-dependent, it depends on

Memory Management -4lgorithms 32

the speed of particular machines and of particular implementations. The count of
bytes of heap allocated is a better measure, because it is machine independent and
it better reflects demands on the memory management, but it is not a perfect one.
Virtual memory algorithms may consider time in their page eviction policy, and objects
support ing human interaction have lifetimes determined by the user's activity. Also,
some languages have higher rates of memory consumption. .4U of this make it difficult
to rneasure the age of an object.

Allocation

Objects are first allocated in the youngest generation, but are promoted into the older
one if they survive long enough. The youngest generation is collected more frequently.
usually by copying, but ais0 by mark-sweep schemes, so pause times will be compar-
atively short. CPU cycles are saved by not having to copy the older objects from
one semi-space to another, although it is still necessary to scan some older objects for
pointers into younger generations.

Root set

The root set consists of registers, stack and inter-generational pointers. The latter can
be created in either of two ways: by storing a pointer in an object (which can be trapped
by mite barrier, described later in Section 2.4.2), or when an object containing pointers
is promoted to an older generation (which is easily recognized by garbage collector).
The write barrier does not have to record assignments to local variables, because they
are part of the root set. Also, if younger generations are collected whenever the older
one is, only old-young pointers (which are fairly rare) need to be recorded. That
means t hat younger generations can be collected independent ly of t heir elders, but
not vice versa. Collection of the youngest generation is called minor collection, and
it is frequent. Collection of several generations is called major collection and it is less
frequent .

Pause time

Aims of generational garbage collection are: to reduce overall cost of dealing with long-
Iived objects and to reduce garbage collection pause times. Pause time is dependent
on the amount of data that survives the collection, i.e., the size of the youngest gen-
eration. The smaller the generation is, the shorter the pauses wiil be, but the small
generation is filled more rapidly. Consequently, the older generation would fil1 up too
soon, resulting in a major collection with a longer pause time. This will also lead
to greater nurnber of inter-generational pointers. Ungar and Jackson [11] argue that
fixed-age tenuring policies are too restrictive: if the tenuring threshold (i.e., size of the
youngest generation) is made too large, pauses will be long; but if very few objects are
scavenged at each minor collection, a kued-age policy wiii stiil promote objects even
though there is no need to advance any. One way to resolve the problem of widely
varying allocation rates is to invoke the collector when the volume of data allocated
since the last garbage collection exceeds an allocation threshold. It is presumed that

Meemory Ad anagem en t Algori thms 33

the size of semi-spaces can be varied dynamically. Ungar and Jackson introduce a
dynamic advancement mechanism which has two rules:

1. Only tenure when it is necessary If few objects survive a scavenge it is prob-
ably not worth advancing them, particularly if the cost of write-barrier is
high.

2. Only tenure as many objects as necessary If the number of survivors sug-
gests that the maximum acceptable pause time would be exceeded at the
next scavenge, the age threshold is set to a value designed to advance the
excess data.

Number of generations

The number of generations can be greater than two. The use of multiple generations
would allow new objects to be promoted quickiy, keeping the pungest generation fairly
small. This would. on the other hand, introduce greater complexity and larger number
of inter-generational pointers. It is found that very large difference in reclamation rates
between very new and slightly older objects are not reflected in subsequent generations.
so usually two to thfee generations are used.

Promotion threshold

What should be the promotion threshold, i.e., the number of minor collections that an
object must survive before it is advanced to the next generation ? It is shown that the
number of objects that survive two scavenges is much less than the number that survive
just one scavenge. Increasing the number of scavenges beyond two reduces the number
of survivors only slightly. The promotion threshold could be adjusted dgnamically.

Handling inter-generational pointers (write barriers)

As we saw, the inter-generational pointers arc part of the root set. Thus, it is necessary
to find them and the simplest method is to scan older generation at the collection time.
It is found that linear scanning is faster and gives better locality than tracing. This
technique is used by couservative collectors. There are more precise methods which
can be implemented by either hardware or software.

Software bamers are provided by the compiler's instructions before each read and
write. Hardware techniques do not require additional instructions and are advantageous
in the presence of uncooperative compiles, but they mat; require hardware components
that are not generally available.

There are several met hods for t rapping and recording inter-generational pointers:
entry tables, remembered sets, sequential store bufers, page murking and card murking.

Entry tables Each generation has an entry table of references from older generations.
Every time a reference from an old object to a young one is created, rather than to
point directly to the ounger object, a new entry to the table is added. The old object

hf em ory Management Algori t hms 34

points to that entry, and the entry is a pointer to the young object. If the old object
already contained a reference to an item in an entry table, that entry is removed. The
advantage of this scheme is that when a younger generation is collected, it is only
necessary to scavenge its entry table rather than to seaxch every older generation. The
disadvantage is a possibility of multiple references to a single object, so the cost of
scanning tables is proportional to the number of store operations rather than to the
number of inter-generational pointers.

Figure 2.8: Entry tables

Remembered sets In contrat to entry tables which record pointed-to objects. re-
membered sets record the old object that contains pointer. In fact, the write barrier
intercepts the store to check two things: whether a pointer is to be stored and whether
it is a pointer From old to o u n g object. If so, the address of the old object is added to
a remembered set. To avoid duplication, each object has a bit in its header indicating
whether it is already a member of the remembered set.

The disadvantage of this approach is that if an old object were stored into several
times between collections. the checks would be repeated. And if the object were large.
then it would have to be scanned in its entirety at the collection time, wbich has been
observed to thrash Tektroniv Smalltalk [SI.

Sequential store buffers This is a special kind of remembered set, where the wnte
bamer unconditionally adds addresses that might contain pointers to younger gener-
ations to the end of the sequential store buffer, and a 'no access' guard page is used
to trap overflow. When the buffer is full (when the page is dirtied), then the special
routine processes the list, using a fast hash table to remove duplicates. Sequential store
buffers are used For Modula-3 and Smalltalk garbage collectors [El.

Page marking Rather than recording which objects have inter-generational pointers
stored into them, the virtual page which is stored into is recorded. Page marking can
be done with hardware support or with virtual memory support.

Page marking with h a r d w e support was used for Symbolic 3600 machines. When-
ever a reference to generational memory was stored in any page, the mite-barrier hard-
ware set a bit in the garbage collecter page table of the corresponding page-frame of

h h o r y Management Algon'tbms 35

physical memory. This methods prevents duplicates, because even if the bit is set many
tirnes, the page is going to be scanned only once. As for swapped-out pages, to avoid
unnecessary swapping-in, their details are held in the ephemerd space reference table
(ESRT) which is maintaineci by software in non-pageable memory. The two tables
are searched at collection time, swapping pages only if their bit in ESRT is set. This
technique was Ceasible because of speciai tag hardware support to make generation
checking fast and because pages were fairly small.

Page marking with virtual memory support uses virtual memory dirty bits that
are used to indicate whether the page has been changed in any way since it was last
written out to disk. A copying collector only needs to scan those pages that were
written to dunng or since the last garbage collection. The virtual memory mechanism
must therefore be intercepted, which requires modifications of the operating system
kernel, or? alternatively, pages may be write-protected by a system call. Reliance on
virtual memory protection mechanisms makes t his met hod unsuit able for real- time
applications. The problem is also that pages in modern systems are much larger than
tbose of Symbolics 3600, and the cost is increased by recording any modifications to
the page (not just inter-generationd pointer stores).

Card marking The opposite of page marking would be word marking: when a
location is modified a bit in a Modzficution Bit Table is set. The problem is that a
bit-table would require a lot of space. The solution is to divide the heap into small
regions called cards. The advantage of uird murking is that the scanning is reduced in
comparison to page marking because of smaller size of cards, and the space necessary
for a card table is reduced in comparison to word marking. As with word marking, a
bit in the card table is set unconditionally whenever a word in a card is rnodified. To
reduce the number of instructions needed. a byte-map, instead of bitmap, can be used.
At the collection time, dirty cards are scanned for inter-generational pointers, and if
none found. then the di- bit/byte is cleared. The dirty cards can be gathered onto
the same virtual page, the number of pages holding cards to be scanned, and likely to
be scanned again, cm be reduced.

The most promising mite barrier systems For general purpose hardware se-
quential store bufiers and card markzng seem the best. The cost of the write bamer is
the same for both (two instructions), but cards' overhead is more predictable, because
SSB can overflow. Remembered sets offer precision, but allow duplicates in SSB. One
possibility is to use a hybrid, as in Srnalltdk interpreter [13]: write barrier uses card
marking but older-younger pointers are saved in remembered sets.

Non-copying generat ional garbage colîect ion

Copy-based generational collectors are conceptually simpler, but it is possible to build
mark-sweep based generational collectors. Zorn (141 found that his mark-and-deferred-
sweep generational collector performed significantly better, than his copying collectors
(.Ulegro Common Lisp on a Sun 41280). His collector had four generations, each of
which containeci a mark bitmap, a fixed-sizeobject region and a variable sized-object

Memory Management Algorithm 36

region. The Lxed-sized-object region is divided into regions for objects of dinerent size,
and is collected by mark-and-deferred-sweep; the variable-sized-O bject region contains
objects that do not fit in any of ked-sized-object regions and is collected with a two-
space copying collector. There is no reason why al1 generatioas should be collected
in the same way. This is particularly tme for the oldest generation. If the copying
collection is used, the oldest generation can be divided into two semi-spaces. Or it can
be handled by non-copying collector, or may not be collected at all. If a mark-sweep
is used, occasional compacting could be done.

2.4.3 Advantages and Disadvantages of Generational Garbage
Collection

Generational garbage collection is highly successful in a wide range of applications.
Pause times can be reduced to a level where it is worth considering this kind of garbage
collection instead of incremental (see Section 2.5). Cache and paging behavior of the
application is made better by concentrating allocation and collection to a small region
of the heap. The cost can be reduced by delaying collection of long-liwd objects.
The programs which allocate a large number of short-lived objects and where non-
initializing pointer writes are rare benefit the most.

There are some disadvantages of this kind of collection. Short pauses are defeated
y large root sets? Le.. unusually high number of global or local mriables. If objcct
lifetimes are not sufficiently short, minor collections will reclaim too few objects, which
will result in increased promotion, more frequent major collections and bad locality
(if only the youngest generation can fit in real memory). The system must be able to
distinguish older from ounger objects, by using the write barrier, and storing in an
old object a pointer to a Young one becomes more expensive. Frequent pointer writes
increase

2.5

2.5.1

the overall cost of write barrier.

Incremental Tracing Collect ors

Descript ion

In case of real-time applications garbage collection pauses have to be reduced to sat-
ie the worst case performance. Hence. small units of garbage collection must be
interleaved with small units of program euecution. Fine-grained incremental garbage
collection appears to be necessary, and one of the techniques that is naturally incrernen-
ta1 is reference counting. Unfortunately, reference counting has efficiency and efficacy
problems (see Section 2.3.2), and therefore it is desirable to make tracing (copying or
marking) collectors incremental.

The main düficulty with the incremental collection is that while the collector is
tracing out the g a p h of reachable data, the graph may change. The running program
is therefore called mutator which is, h m the garbage collecter's point of view. sirnply
a concurrent process that modifies data structures that the collector is attempting to

traverse. There has to be some way of keeping track of changes related to the graph
of reachable objects.

There is therefore a variety of coherence problerns: having multiple processes at-
tempt to share changing data, while maintaining some kind of consistent view. An
incremental mark-sweep traversal poses a multiple readers, single writer coherence
problem. Only the mutator writes to pointer fields and only the collector writes to
mark fields. Copying collectors pose a more difficult problem: a multiple reuders, mul-
tiple w' ters problem. Both the mutator and the collector may modify pointer fields
and each must be protected from the inconsistencies introduced by the other.

The degree of conservatism is important for this kind of collection, dso. The
garbage collecter's view of the reachability graph is typically not identical to the ac-
tua1 reachability graph visible to the mutator. It is safe, conservative approximation
of the true reachability graph. T-vpically, some garbage objects go unreclaimed for a
while, which is unfortunate but necessary in order to avoid very expensive coordina-
tion between the mutator and collector. The more we relax the consistency between
those two graphs, the more conservative Our collection becomes, and the more floating
garbage we must accept, but the more flexibility we have in details of the traversal
algorithm.

2.5.2 Detailed Strategy

Garbage collection algorithms can be described as a process of traversing the graph of
reachable objects and colorhg t hem. The objects subject to collection are conceptually
colored white, and by the end of the collection the retained objects must be colored
black. So, white objects are unreached objects in fromspace (in a mark-sweep collector,
objects whose bit is not set); black objects are objects that are moved to tospace (in
mark-sweep, objects whose bit is set). To better understand the relationship between
the mutator and the collector, a third color is introduced, gray: to signify that objects
have been reached, but their descendants may not have been. The traversal proceeds
in a wavefront of gray objects, shich separates the white (unreached) objects from the
black ones. There are no pointers directly from black objects to white ones and if the
rnutator creates a pointer from a black object to a white one, it must somehow notify
the collector.

In order to make garbage coilection invalid the mutator has to both: a) write a
pointer to a white object into a black object and b) destroy the original pointer before
the collector sees it. Read and write barriers are implemented in order to prevent these
two events to happen simultaneously.

Coordinating the collector with the mutator

There are two basic approaches: implementing either read or m * t e bumer. Read
bamer detects when the mutator attempts to access a pointer to a white object, and
immediately colon the object gray. One of the algorithms that uses a read barrier is

Memory Management Algorithms 38

Baker's algorithm [lj]. In the case of mite barrier, when the program attempts to
write a pointer into an object, the write is trapped and recorded. There are two basic
methods for write banier: snapshot-at-beginning and incremental update. Below we
give more details about these three read and wnte barriers methods.

Read barriers

Baker's algorit hm The best known red- t ime gar bage collector is Baker's incre-
mental copying scheme. It uses a read barrier for coordination with the mutator. .4ny
fromspace object that is accessed by the mutator must first be copied to tospace. Al1
new objects are allocated at the top end of tospace (they are bfack when allocated), so
the new cells cannot be reclaimed in this cycle. In order to ensure that the collector
finds al1 of the live data and copies them to tospace before the free area in new space
is exhausted, each time an object is allocated, an increment of scanning and copying is
done. In terms of tricolor marking the scanned area of tospace contains black objects,
and the copied but unscanned objects are gray. .As-yet unscanned objects in fromspace
are wbite. Whenever the mutator reads a (potential) pointer from the heap, it imme-
diately checks to see if it is a pointer into fromspace; if so, the referent is copied to
tospace, Le., its color is changed from wbite to gray. The read barrier may be imple-
mented in software, by preceding each read (of a potential pointer from the heap) with
a check and a conditional cal1 to the copjing-and-updating routine. Alternatively. it
may be implemented with a specialized hardware checks and/or microcode routines.

The main limitation of Baker's algorithm is that it is closely coupled to mutator.
therefore expensive on hardware. The time to access an object depends on whether
the object is in tospace or in fromspace, so pauses are inpredictable.

Write barriers

Snapshot-at-beginning To avoid overwriting of pointers without collector!~
knowledge, at the beginning of garbage collection a copy-on-write virtual copy of the
graph of reachable data structures is made. The simplest and best-known snapshot
collection algorithm is Yuasa's [16]. If a location is written to, the overwritten d u e is
first saved and pushed on a marking stack for later examination. This way al1 objects
which are live at the beginning of garbage collection will be reached, even if the point-
ers to them are overwritten. This algorîthm is very conservative, it allows the tricolor
invariant to be broken, because al1 overwritten pointer values are saved and traversed
and no object can be freed during collection. Newly allocated objects are considered
black, for coliector the reachability graph is a set union of the graph at the beginning
of garbage collection plus ali of those allocated during tracing.

Incremental Update Incremental update records when pointer to a white object
is stored into a black object (either the black or the white object is grayed). There are
two similar algorithms: one which is due to Dijkstra et al. (171 and the other due to
Steele [18]. Dijkstra'a algorithm attempts to retain the objects that are live at the end

of garbage collection. Objects that die during garbage collection - and before being
reached by the marking traversal - are not traversed and marked. Precisely, an object
will not be reached by the collector if al1 paths to it are broken at a point that the
garbage collector has not yet reached. Objects are allocated white, so at some point
the stack must be traversed to preserve the objects reachable at that time. The tricolor
invariant is preserved by blackening the pointed-to white object , rat her than reverting
the stored-into black object to gay. Steele's algonthm, on the other hand, reverts
the stored-into black object to g r . It is l e s conservative than Dijkstra's, because
the pointer might be later overwritten, freeing the object. Therefore, it reduces the
amount of floating garbage.

2.5.3 Important Issues

The choice of the barrier

The choice depends on relative frequency of reads and writes, how often the barrier is
invoked (on every read or just once per page per cycle) and on the amount of work
the barrier has to do. Mi te barriers are usually used for mark-sweep algorithms?
and read barrien for copying ones. The cost of write barrier is less rhaa that of the
read barrier, without specialized hardware support. a write harrier appears easier to
implement efficientlq: because heap pointer writes are much less common than pointer
t raversak.

The amount of floating garbage (conservatism)

-4s for conservatism, snapshot-at-beginning barrier is the most conservative, and incre-
mental update is less conservative. The amount of floating garbage depends aiso on
the treatment of new cells (black or white allocation). The black allocation is more
conservative than white.

Real- t ime

There are two types of real-time applications. In the case of hard real-lime applications
atomic actions of garbage collector must complete within guamnteed time (which is
possible only with hardware support). For soft real-time applications, atomic garbage
collector actions complete within some reasonable period of time (al1 of the presented
algont hms sat isfjr this constraint) .

The criterion for real time garbage collection is often stated as imposing only srnall
and bovnded delays on any particular program operation. The problern is that the no-
tion of "small" delay is inevitably dependent on the nature of an application. Besides,
this cntenon unrealisticaily emphasizes the smallest progam operations. -4 more re-
alistic requirement for real time performance is that the application should always be
able to use the CPU for a given fraction of the time at a timescale relevant to the
application.

Some copy collectors use Wtual memory protections to tngger pagewise scanning
and this may lead to failing to respect reai-the guarantees.

Memory Management Algon'thms 40

Baker's is the best known incremental algorithm, but it rnay not be suitable for
most real-time applications, because its performance is very unpredictable at smail
timescales. Algorithms with a weaker coupling between the mutator and the collector
(such as most d t e -bamer algorithms) rnay be more suitable.

Nonsopying algorithms have the convenient property that their time overheads are
more predictable, their space costs are much more difficult to reason about because of
the fragmentation.

An important determinant of real-tirne performance is the time required to scan
the root set. The pauses caused by scanning the root set occur in Baker's incremental
collector at the time of a flip, and in incremental update tracing algorithm at the time
of termination. One way to bound the work required is to keep the root set small.
Some of the local and global variables rnay be treated like objects on the heap. Reads
or mites to these variables will be detected by the read or wtite banier, but there is
a cost of the barrier to pay.

As the collector tries not to use too much of CPU to meet reai-time deadlines, it
bas a real-time deadline of its own to meet: it must finish its traversal and free up more
memory before the currently-free memory is exhausted. In order to achieve this, it is
necessary to quantify the wont case, to put some bound on what the collector could be
expected to do. The usual strategy is to use an allocation dock each time an object is
allocated, a proportional amount of garbage collection work is done. When allocating
black new objects do not need to be traversed, and in the worst case the same objects as
in a snapshot-at-beginning are retained. The minimum safe tracing rate is proportional
to the amount of live data and inversely proportionai to the amount of free memory:
it approaches zero as mernory becomes very large relative to the mawimum arnount of
live data. When allocating white, it is necessary to traverse reachable white objects,
and in the worst case we traverse everything we allocate before it becomes garbage.
The worst case s d e traversa1 rate therefore approaches the allocation rate.

At the end of the collection, the collector can determine how much live data was
in fact traced, and revise downward its worst-case estimate of what could be live in
the next collection. Alternatively, if the collector determines that it has less than the
worst-case amount of work to do, it rnay avoid garbage collection activity entirely for
a while, then re-activate the collector in time to ensure that it will meet its deadline
(in case that read and mite barrier can be efficiently disabled).

Choosing an incremental algorithm

The overd average performance and worst-case performance should be considered
when choosing an algorithm. Less conservative algorithms rnay not be more attractive,
because they are just as conservative in the worst case. And moreover, they can be
more consenative in practice, because of their high overhead (costly mite barrier)
which rnay keep it from being nin as often.

Generational techniques make the overheads of incremental collection unnecessa-
for many systems where hard real-time response is not necessary. For other systems,
it rnay be desirable to combine incremental and generational techniques, and careful
attention should be paid to how they are combined.

Memory Management Algori t hms 41

2.6 Conservative and Part ially Conservat ive
Garbage Collection

2.6.1 Introduction
Languages are usually not implemented with garbage collection in mind, so it is im-
portant to know how type accurate garbage collectors are. Three types of coliectors
can be distinguished, depending on their type accuracy: type accurate, conservative
and partially accurute, partially conservative. Type accurate garbage collector can de-
termine unambiguously the layout of any object in registers, the stade, the heap or
any other memory area; the collector requires cooperation with the compiler. Conser-
vative garbage collector must assume that every word is a pointer and may not alter
the value of any user program data; the collector has no help from the compiler. The
third category, partially accurate? partially conservative collector, assumes knowledge
of the format of collectible data structures on the heap? but not of the stack Iayout or
of register conventions; the collector requires the programmer or compiler to observe
certain convent ions for heap allocated data.

A type accurate garbage collector is not possible for languages iike C or C++. be-
cause they are not made with garbage collection in mind and the collector does not
have al1 the necessary information from the compiler. On the other hand. Boehm-
Demen- Weiser collector (consemat ive) and mostly copying Bartlet t 's collector (par-
tially accurate, partially conservative) were successfully introduced in these languages.
Xext sections give more details about these collectors.

2.6.2 Boehm-Demers- Weiser Collecter

The best known consemative collector is the Boehm-Demers- Weiser collector (191. This
collector is fully conservative and does not rely on any cooperation from the compiler.
Values held in data structures used by the user program and its run-time system,
including registers ans stack frames may be scanned for potential pointers but are
never altered. Therefore the collector must be based on a non-moving algorithm, Le..
on mark-sweep algorithm.

Descript ion

Allocation A program can be thought of using two logically distinct heaps: one
maintained by garbage collector and its allocator and one maintained by evplicit calls
to standard routines (malloc/free). Objects in standard heap do not point to objects
in collected heap. The heap is made of b loch (4Kb): eacb block containing objects of
different sizes. There are separate free lists for each common object's size. Each block
has a separate block header held on a linked list.

The heap can be expanded by requesting further blocks. Objects larger than half
a block are allocated to their own chunk of blocks; if no free chunk of sufficient size is

Memory hfanagemen t .4lgori thms 42

available the allocat or invokes the garbage collector or expands the heap, depending
on the amount of the allocation done.

Small objects are ailocated by popping the first member of the free list to that size
of the object; if the free list is empty the sweep phase is resumed and if no space is
reclaimed by the sweep the allocator invokes a garbage collection. If the collection is
unsuccessfu~ a new block is obtained from the low-level allocator.

Root and pointer finding Roots can be found in registers. in the stack and in
the static areas. The problem is to find these axes, and it is highly system specific.
Marking from registers requires assembly code. but its structure is not difficult. For
many architectures it consists of pushing the content of a register ont0 the stack and
then calling a C routine to mark from the top of the stack. The next problem is to
discover the bottom of the stack and to determine in which direction it grows. It is
done either by using explicit knowledge of the mn-time system or by taking the address
of the first local variable of maino. Finally for the static areas the collector is able
to handle dynamic link libraries on some systems, in which case the libraries must be
re-registered in each collection.

-1s for pointers, the collector must treat any word it encounten as a pointer unless
it can prove otherwise. It has to be able to determine the validity of a pointer accu-
rately and cheaply. with caution not to reclaim a valid data. but without an access
in conservacivity An object is only markecl as a pointer if it passes each of the three
tests:

Does a potential pointer p refer to the heap ?

Has the heap block that supposedly contain this object been allocated ?

1s the offset of the supposed object from the start of its (first) block a multiple
of that block's object size ?

If the pointer passes these tests, the corresponding bit in t be block header is set. and
the object is pushed onto a mark stack (the same as in mark-sweep collection).

Important issues The main problem of conservative garbage collection are space
feaks, caused by misidentifying data as heap pointers, thereby retaining memory that
could otherwise be recycled. The usuai case of retaining a large piece of memory are
linked lists: if a false pointer points toward an element of the list? al1 the following
elements will also be falsely retained (if the list is to be recycled). There is also
a possibility that small integers could be mistaken for pointers: if pointers are oot
required to be properly aligned, the collector must consider al1 possible aiignments.

The efficiency of Boehm-Demers-Weiser collector was tested on the versions 1.6 and
2.6 and not with the most recent versions. That means that the obtained results do not
represent the most optimized collector. Nevertheless, the old version showed a good
efficiency (execution t h e overhead of some 20% above the best of the explicit alloca-
tors), altough actual tirnes varied considerably depending on the application program
running. The performance of the collector was the best with a program that primarily

Memory Management Algori t h 43

allocate and dedlocate very small objects, but for some programs the overd execution
time overhead was up to 57%.

2.6.3 Mostly Copying Bartlett's Collecter

One of the collectors that is not fully conservative is the mostly copying Bartlett's
collector [20]. This algorithm is originally designed to support high level languages
that used C as an intermediate language. It still assumes no knowledge of register,
stack or static area layouts, but does assume that al1 pointers in a heap allocated area
can be found accurately. Objects that may be referred to Erom the stack, registers or
the static area are treated conservatively and are not moved. Objects only accessible
from other heapallocated objects are copied.

Description The heap is divided on a nurnber of equal-sized blocks. Blocks compris-
ing each semi-space do not have to be contiguous: each block contains a space identifier.
In order to move an object from one semi-space to another, eitber the objects can be
copied or the identifier of the block changed. Within a block, allocation is done by
incrementing a free space pointer. If there is not enough space in a block, the heap
is searched for a new free block. Larger objects are allocated over as many blocks as
necessary. Garbage collection is initiated when the heap is haif full. First the roots are
scanned for potential pointers into the heap. The block that contains the pointed-to
object is added to tospace by changing the value of the block's space identifier. The
block is also appended to the tospace list for scanning. In the next phase al1 objects
in ail blocks in tospace are scanned, and each reachable fromspace object is moved
into a block in tospace leaving behind a forwarding address. Once tracing is complete,
the fromspace identifier is changed to tospace identifier and the garbage collection is
corn piete.

Important issues blostly copying incurs a small space overhead to store space iden-
tifier~, type information and to link the blocks of a space. The collector can be made
generational, by using the space identifiers to encode the age of the object. The decrease
in performance due to rnaintaining of remembered sets is compensated by reduction of
tirne spent on garbage collection, at le& for larger progams.

2.6.4 Cornparison of Two Algorithms
There have not been thorough studies of the efficiency of Bartlet's collector, nor of the
comparative performance of the two collectors. The rnostly copying collector would
perform better in an environment with high allocation rate of short-lived objects (but
it is not sure whether it is tjpical for C). Consemative garbage collection performs
well, errors caused by pointer misidentification are unlikely to be an issue.

Memory Management Algon thms

2.7 Conclusion
This chapter gave an overview of basic memory allocation and garbage collection al-
gorithms. As Java implements garbage collection, we wanted to check which of these
numerous algorithm are typicdly used in Java garbage collectors, and, if possible, to
test the efficiency of each such irnplementation. Next chapter presents garbage collec-
tors in various JVMs, the methodology used to test them and the results obtained.

Chapter 3

Garbage Collection in Various
JVMs

3.1 Introduction
It is in fact Java programming langage that brought garbage collection into the main-
Stream. by mandating garbage collection. The efficiency of garbage collection algori thm
is one of the main factors that influence the overall efficiency of Java application. In
order to improve it, Sun's JDK (Java Development Kit) changed its garbage collection
algorithm several times. Many other Java virtual machines have the same or different
garbage collectors as Sun's implementations.

This chapter presents the preliminary garbage collector benchmarks made on several
JVbls. First. we present the difficulties encountered while choosing a virtual machine
(Section U) , an application(s) to use (Section 3.3), an operating system and a profiler
(Section 3.4). Then, we present and motivate Our final choice (Section 3.5). Finally?
we present the benchmarks themselves (Section 3.6.2) and conclude.

3.2 Choice of the Java Virtual Machine
First of all, the choice of Java Mrtual machines to test has to be made. A JVM has
to be available? has to have a garbage collection sp tem (preferably well documented):
has to be portable if we want to test it on severai platiorms (which it should be by
definition, but that is not always the case) and has to be able to run the applications
chosen for profiling.

Here we present the virtual machines found searching exhaustively the Internet.
.As we are particularly interesteri in their garbage collection system we briefly present
an overall JVM architecture and then p a s to a detailed architecture of a garbage
collection system. The amount of information depends on its availability : many
JVMs are not well documented, or have not a well documented garbage collector. We
can separate the found JVMs in two groups : for normal and for embedded systems.
Those for embedded systems have either no garbage coilector or a not very developed

Garbage Collection in Vm'ous JWs 46

one. Xevertheless, we mention both kinds of JVMs, but we consider for testing
just the first one.

3.2.1 Sun's JVM
Sun was the first to develop a JVM, so their JVM is the most robust one. There are
several versions of JDK, which corne with several JVMs. To our knowledge, tbere are
three types of JVM with different garbage collection systems :

JDK1.O - JDK1.l - JDK1.2.2 (classic)

JDK1.2.1 (ResearchVM, ExactVM)

Al1 of the Sun's virtual machines are freely down-loadable from Sun's site. We will
consider the t hree of t hem separately.

JDK1.O - JDK1.l - JDK1.2.2 (classic)

First versions of Java virtual machine released by Sun had the simplest garbage col-
lection system. The details on its implementatioa can be found in Java Tutorial [21].
Here we cite the part that explains the mark-sweep algorithm used in these versions of
Java virt uai machine :

"... The Java garbage collector is a mark-sweep garbage collector. A mark-
sweep garbage collector scans dynamic memory areas for objects and marks
those that are referenced. After al1 possible paths to objects are investigated,
unrnarked objects (unreferenced objects) are known to be garbage and are col-
lected. A more com plete description of Java's garbage collection algorithm
rnight be " a compacting, mark-sweep collector with sorne conservative scan-
ning."

The garbage collector runs in a lapr ior i ty thread and runs either synchronously
or asynchronously depending on the situation and the system on which Java
is running. It runs synchronously when the system runs out of memory or in
response to a request from a Java program.

The Java garbage collector runs asynchronously when the system is idle, but it
does so only on systems, such as Windows 95/NT. that allow the Java runtime
environment to note when a thread has begun and to interrupt another thread.
As soon as another thread becornes active, the garbage collector is asked to
get to a consistent state and terminate"

Java 2 SDK Production Release for Solaris (ExactVM or ResearchVM)

This is the JVM developed by Java Topics group in Sun Labs under the name of
ExactVM (lately changed to ResearchVM) and incorporated into Sun's Java 2 SDK

Garbage Collection in k j o us JC7&Is 47

Production Release for Solaris 1221. It uses a generational memory system with two
generations [23]. Generation O uses a copying collection with two semi-spaces, while
generation 1 uses a single mark-compact space. The memory system sometimes allo-
cates very large objects directly in the oldest generation (essentially this happens when
they don't fit in the youngest generation) . A card table is used as a write barrier.

JDK1.2.2 (Hotspot)

Sun recently released a new virtual machine for Java, named Hotspot, which is claimed
to have higher general performance due to handleness (object references are imple-
mented as direct pointers), faster thread synchronization, significantly reduced code
space and an accurate garbage collector. Hotspot's garbage collector is possibly coded
in C++ because Sun mentions its clean object-oriented design which provides a high-
level garbage collection framework that can easily be instrumented, experimented with,
or extended to use new collection algori thms.

The Java Hotspot garbage collector is a fully accurate eollector, so it can make
several strong design guarantees that a conservative collector cannot make. For ex-
ample, al1 inaccessible object memory can be reclaimed reiiably and al1 objects can
be relocated, allowing objec t memory compaction, which eliminates objec t rnemory
fragmentation and increases memory locality.

This collector uses several garbage collection algorithms. First of ail. it employs a
state-of-t he-art generational garbage collector. In the Hotspot's white paper [XI no
details are given on the number of generations, but as only the nursery is mentioned. we
suppose that there are only two generations. The second generation is probably what
is cailed "old object'' memory area. It employs a standard mark-compact collection
algorithm. which eliminates memory fragmentation. Supposedly, for the nursew a
copying algorithm is used, as for the ResearchVM (Section 3.2.1). In order to eliminate
garbage collection pauses in the second generation, proponional to the amount of live
data? an alternative old-space garbage collector is introduced. It is a full. incremental
collector based on the " train" algorithm [25]. Since this algorithm is not a hard-real
time algorithm. it cannot guarantee an upper limit on pause times; however, in practice
much larger pauses are extremely rare, and are not caused directly by large data sets.
To our knowledge, the Hotspot and the ResearchVM garbage collectors differ over this
incremental collec tor.

Sun's Hotspot is available for download from Sun's Java CVeb site (261. Its source
is also available under the Sun Slicrosystems Community Source Licensing program.

3.2.2 Kaffe
Kaffe [27] is a cleanroom, open source implementation of a Java virtual machine and
class libraries. KaEe mostly complies with JDK 1.1, except for a Few missing parts.
Some of its parts are aiready JDK 1.2 (Java 2) compatible.

Despite recent significant improvements, K d e does not have a state-of-the-art
garbage collector. The current collector is simply a non-incremental? non-generational,

Garbage Collection in V ' O I J S JVMs 48

conservative mark-sweep collector wit h a Boehm-like allocator. Despite being non-
incremental, it uses linked lists to keep track of objects. .4s a result, Kaffe spends a
larger amount of its execution time t han necessary collecting garbage.

What is needed is one or more high-performance collecton for Kaffe. Fortunately,
the interface to the garbage collection subsystern is clearly defined, which should allow
for independent development of faster collectors.

3.2.3 LaTTe
LaTTe is a Java virtual machine developed starting from Kaffe v. 0.92. It includes a
novel JIT compiler targeted to RISC machines (specifically the UltraSPARC). Addi-
tionally, the runtime components of LaTTe, including thread synchronization, excep
tion handling, and garbage collection, have been optimized. Like Kaffe? LaTTe also
uses a mark-sweep garbage collector which is partially conservative but the intemal
structure of LaTTe's garbage collector is totally different, frvm Kûffc's. LaTTe mns on
Solaris 2.5+ running on UltraSPARCs. Currently, there are no plans to port LaTTe
to other architectures. It is freely downloadable from LaTTe's site 121.

3.2.4 Mach J
Mach J 1281 is a Java virtual machine developed by Mach J Company. It is written in
C++. It does not include a JIT compiler, it relies on its very efficient execution engiae.
Mach J supports native threads. "Green" threads are not supported or planned. Mach
J has a realtime incremental garbage collector. A license fee of $75.000 is required in
order to use it.

3.2.5 DynaFlex (TowerJ 3.0)
T0wer.l [29] is a multi-platform native Java compiler and runtime environment for
process-intensive, senier-side Java applications. TowerJ includes new DynaFlex Java
virtual machine. It allows application specific performance tuning allowing developers
to specify garbage collection, threads, and optimization parameters. No details are
given on the garbage collection aigorithm. Licence fee for TowerJ is $5.000.

3.2.6 Hewlet t-Packard's JVM
Hewlett-Packard (HP) developed two Java virtual machines : one, HP-LX VM v. 1.1, is
for normal (not memo-constrained) and the other, ChaiVM, is for embedded systems.

HP-UX v.l.1

The first onet H P - U I Virtual Machine with JIT for Java, v. 1.1.. was made for Java
1.1. Later HP licensed Hotspot (see Section 3.2.1), which is used as HP JVM for Jam
1.2.

Garbage Collection in Various JVMs 49

HP-UX v . l . 1 . ' ~ release notes [30] states that this virtud machine has an improved
garbage collection by automatically discarding unused classes. No details on the
garbage collection algorithm are given.

An interesting new option was introduced in this JVM : -compactIntervaï=<num>.
It forces a Java heap compaction when the tirne since the previous garbage collections
is less than mm, where num is a time specified in milliseconds. Use of compact Interval
minimizes heap fragmentation by compacting the Java heap before the GC algonthm
would normally trigger compaction. Minimizing fragmentation extends the t ime pe-
riod between required garbage collections, but incurs the cost of the more frequent
compactions. Generally, the net effect on the program is reducing the total time re-
quired to do garbage collections by the application. The garbage collector does not
have a specific thread. Instead, whichever thread triggers the collection is the one
that is used to perform the collecticn. The asynchronous collector (available only on
green-threaded JVMs with the -asyncgc Bag) is basically a very low priority thread
which periodically calls java. lang . Runt ime . gc O.

The other HP virtual machine. made for embedded systems is called ChaiVM [31]. It
is fdly compatible with Java Virtual Machine Specification and provides support for
the Java Native Interface (JNI). Chai VM has a concurrent garbage collector that uses
mark-sweep algorithm that is capable of running in the background thus minimizing
overhead on memory operations. It ensures simultaneous operation without preempting
application code. It is available for download under a license agreement. Recently, HP
released MicrochaiVM, a virtual machine for mobile devices [32], with no details on
possible garbage collector.

3.2.7 IBM Runtime Environment for Windows, Java Technol-
ogy Edition, Version 1.1.7

IBM has developed its own version of JDK based on Sun's JDK. The latest venion
is 1.1.8 (Developer Kit and Runtime Environment). It includes the IBM just-in-time
compiler version 3.5. It also includes a garbage collector. but no details on its aigo-
rithms are given. In the F.4Q, however, it is explained that the Java heap organization
has been optimized to reduce fragmentation, thus increasing rnemory utilization effi-
ciency and reducing garbage collection activity. .41so, the improvements have reduced
the duration of the garbage collection-related application program delays sometimes
referred to as pause-times; such delays are troubling for transactional systems and their
reduction is an important advance.

Different versions of IBM JDK are freely available for download on its Web site (331.
The following platforms are covered : Linux, Windows, .\LX, .AS/400, OS/2, OS/390
and VMIESA.

Garbage Collectjon in Various JVMs 50

3.2.8 Japhar
Japhar is a Java virtual machine developed by Hungry Programmers [34]. It is a clean-
room implementation, compatible with Java 1.1.5. It is licensed under the GNC' LGPL,
so it can be freely distributed. There are patches for Win32 and Solaris. No details
are given on the garbage collection, except that it has been worked on. We have not
been able to get the details in personal communications with Japhar developers. Our
assumption is that, for the moment, Japhar does not implement a garbage collector.

3.2.9 JOVE
JOVE (351 is not a virtual machine in the sense that the term is most commonly
used, but we mention it here for its garbage collection system. It does not interpret
or translate Java bytecode as the Java program executes. Instead, JOVE is more
like a standard compiler. Using JOVE, a Java program is translated to optimized
native machine code before the progam is distnbuted to its users. JOVE diffen from
compilers for languages such a C in that it does not process Java source code. Instead.
JOVE accepts as input the same Java class files that would be used with a Java virtual
machine. Because JOVE operates upon class files it preserves Java's "write once,
run everywhere" characteristic. .4n application is created in class file format using
any conventional Java IDE. Those class files may then be distributed to run on ang
platform using a Java virtual machine. The very same class files can be processed by
JOVE to create an optimized native progam for specific platforms.

Programs deployed using JOVE do not use a mntime virtual machine. Instead,
such programs utilize the senices of the JOVE ~ n t i m e environment which consist of a
small set of su broutines t hat define the runtime representation of objects and provide
services for creating and managing objects. JOVE object references are represented
by direct pointers to objects. A typical JOVE object requires only 4 bytes of overhead
memory over and beyond the actual fields of the object that were defined by the Java
programmer.

The JOVE runtime is structured around a high-performance, multi-generational
garbage collec tor. 1 t is a precise, copying, multi-generation collector [36]. The nurnber
of generations, size of each generation, and promotion thresholds are al1 dynamically
adaptable to the behavior of individual programs. Special handling is provided to
minimize copying overhead for large objects. Inter-generation references are tracked
by remember sets. The JOVE garbage collection system is claimed to be significaotly
faster then existing collectors.

3.2.10 Java Virtual Machines for Embedded Systems

Besides already mentioned ChaiVM from HewlettPackard, there is a nurnber of ot her
Java Mrtual machines for embedded systems. Below we present four virtuai machines
from Sun (JavaGard, KVM, PersonalJava and Embedded Java), and JVMs developed
by Charis (picoVM), Newmonics (PERC VM) and Oberon (JBed).

Garbage Collection in Vario us JVMS 51

Sun's JavaCard

Java Card technology [37] enable using of Java technology on smart cards. The virtual
machine (Vhl), the language definition, and the core packages have been made more
compact to bring Java technology to the resourcôconstrained environment of srnart
cards. The Java Card specification does not mandate the garbage collection. Its white
paper further mentions that more memory on the smart card will also enable more
complete implementations of the Java Card specification, plus additional benefits out-
side the standard, such as automatic garbage collection and advanced services similar
to Java's object-oriented Remote Message Invocation to allow Java Cards to commu-
nicate more easily with Java terrninals by relieving programmers from dealing with
low-level protocols.

Sun's KVM

K Virtual Machine is a new virtual machine from Sun, highly optimized for small-
memory, limited-resource connected devices such cellular phones, pagers, PD&, set-
top boxes, and point-of-sale terminals.It is implemented in C programming language,
and has a memory footprint of the virtual machine core in the range 40 kilobytes to
80 kilobytes (depending on the target platfonn and compilation options). It is part of
Java 2 Micro Edition (J2ME) Connected Limited Device Configuration and is available
for download from its site [38].

This virtual machine has r simple, handle-free, non-moving, single-space mark-
sweep garbage collector. It operates with heap sizes of just a few tens of kilobytes.

Sun's EmbeddedJava and PersonalJava

The EmbeddedJava [39] and PersonalJava [40] are both designed to accommodate
devices with severely limited memory. The diflerence is that EmbeddedJava does not
include libraries for we b-connection. Developers can use the EmbeddedJava application
environment to create a variety of products including non web-based mobile phones,
network routen and switches, industrial controllers, printers etc., whereas PersonalJava
can be used for building web-connectable consumer devices for home, office! and mobile
use. such as set-top boxes or web phones.

Both of these application environments include a Java virtual machine, but no
details are given on its garbage collection algorithrns. CVe suppose that they use the
same system as Javal.1. (see Section 3.2.1). For now, there is no red-time support in
these virtual machines, but Sun released a specification of a real-time system [-LI], so
we suspect that it will be soon included in these virtual machines. It is interesting to
cite the part of the specification that deals with memory management :

" ... This section contains classes that:

0 Allow the definition of regions of memory outside of the traditional Java
heap.

Garbage Collection in Various JVAIs 52

Allow the definition of regions of scoped memory, that is, memory regions
with a lirnited tifetime.

0 Allow the definition of regions of memory containing objects whose lifetime
matches that of the application.

a Allow the definition of regions of memory mapped to specific physical
add resses.

O Allow the specification of maximum memory area consumption and max-
imum allocation rates for individual real-time threads.

O Allow the programmer to query information characteriring the behavior
of the garbage collection algorithm. and to some limited ability, alter the
behavior of that algorithm. ... "

The real-time garbage collection was not a subject of this work, but it is interest-
ing to see that Java community had to let go of the heaponly allocation, as well to
introduce C-like static memory in order to accommodate real-time systems.

A n interesting link on Sun's Java Web site points to PersonalJava emulator [42]: a
tool that verifies whether a Java application made in JDK would work in PersonalJava
application environment.

The source code for both EmbeddedJava and PersonalJava is provided as part of
the Sun Microsystems Community Source Licensing program.

PERC Virtual Machine 1.0

PERC [43] was designed specifically to meet the needs of embedded real-time develop
ers. The PERC virtual machine is a clean-room implementation of the Java platform,
independently developed, but fully compatible wit h the Java Virtual Machine Specifi-
cation. The PERC virtual machine uses accurate incremental real-time defragmenting
garbage collection. No details on the algorithm are given except that it uses a hybrid of
classic garbage collection algorithms. The garbage collector is scheduled aggressively,
so as to stay ahead of application requirernents to allocate memory The amount of
CPü time dedicated to garbage collection is configured as a function of the s-tem
workload. There are no memory leaks resulting from conservative scanning and live
objects are copied incrementally to contiguous memory locations so as to coalesce free
segments. After gaibage collection is preempted by higher-priori ty tasks, garbage col-
lection resumes where it left off. PERC's API aggressivel y schedules garbage collection.
A programmer can tell PERC the amount of memory needed and PERC treats garbage
collection as a real-time task. This ensures that a temporary lack of rnemory does not
stall forward progress of real-time tasks.

A free PERC 2.2 Evaluation Kit is available upon request. Academic licenses are
available at a discounted price.

Charis pico Virtual Machine (pVbI)

Charis (441 has developed a full function Java-cornpliant Virtual Machine (pico Virtual
Machine) of less than 25K byte in size. It is used in micro-controller based embedded

systems employed in pagers, smart card readers, cell-phones, hand-held toys, intelligent
appliances and hand- held t eminals.

The pic0 Virtual Machine supports garbage collection. It offers support for multi-
segment memory management (buddy system) with simple incremental (usage-counter
based) garbage collection. There is, &O, a support for optional mark and sweep on
demand garbage collection. pVM minimizes memory usage by sharing the structures
between the memory allocator and garbage collecter. This sharing allows for collection
without using the stack when traversing object references.

A demo is available upon request.

Jbed

Jbed is a clean-room application environment for embedded systems. Jbed white paper
[45] explains the differences between above-mentioned JVMs and Jbed, as well JbedTs
place in the world of embedded systems :

"ln particular, JavaCard and Embedded Java appear as candidates for using
Java in embedded and real-tirne systems. JavaCard is too limited for most
applications, it doesn't support threads. garbage collection, floating point num-
bers, etc. Embedded Java on the other hand is still too close to the original
Java platforrn and its slightly reduced Personal Java version. It doesn't ad-
dress any real-time issues,. such as real-time rnernory management, real-time
exception handling. or real-time thread management. JBed is the missing link
between JavaCard and Embedded Java. It addresses the mentioned problems
of Java by providing real-time memory management (garbage collection!), a
library that allows to write device driven cornpletely in Java, a process periph-
erals framework, a hard real-time thread library, and of course the dynamic
loading and replacement of code."

.As for garbage collection J bed runtime system supports real-time memory allocation
and real-t ime garbage collection.

3.2.11 Conclusion
Different JVMs use ver). difEerent (or none) garbage collection algorithms. It seems
t hat Sun's HotSpot has the most sofisticated garbage collection system, although
there are not many reports on its efficiency. M a y JVMs use some kind of real-time
algorithm : most of those JVMs are embeddeù, i.e. support applications made for a
limited memory environment. Some JVM specifications mention garbage collection
but give no details on its algorithms. Severai JVMs implement consenative garbage
collection (Kaffe and partly Sun's JVM), and some of them do not mandate any
garbage collection (Japhar, JavaCard). Table 3.1 presents all found JVMs and their
garbage collet t ion algori t h m .

Garbage Collection in Vkious JVMs

JVM
Sun's JDK 1 .O -
JDK1.1 - JDK1.2.2
(classic)

Garbage Coliection algorithm
Compacting, mark-sweep collector wit h some con-
servative scanning

Sun's Java 2 Produc-
tion Release for So-

(Hot Spot) 1 fi l ly incremental "train" aigorithm
Kaffe 1 Non- incremental, non-generat ional, conservat ive

lenerational copying colleetor
Standard mark-compact collection algorithm

laris

Sun's JDK1.2.2
üenerational copying collector
Standard mark-compact collection algorit hm

1 tor
LaTTe

mark-sweep collector with a Boehm-like allocator
Partially consemative mark-sweep garbage collec-

Mach J
DpnaFlex (TowerJ
3.0)
Hewle tt-Packard's
HP-UX vl.1

Real-time incrementai garbage collector
Supports different gc schemes (algorithms not de-
t ailed)
Supports garbage collection (algorithm not de-
t ailedl

Hewle tt-Packard's
ChaiVM
IBM Runtime Envi-
ronment for Windows

I

Concurrent mark-sweep garbage collection

Supports gc (algorithm not detailed)

Japhar
JOVE
Sun's JavaCard
Sun's KVM

No garbage collection
Copying, multi-generation collecter
No garbage collection
Simple, handle-free, non-moving, single-space

Sun's EmbeddedJava
mark-sweep garbage collector
v. Sun's JDK1.O

and PersonalJava
PERC VM

1 garbage collection

Accurate incrernental real-time defragmenting

Charis pic0 Viriual
Machine (pVM)

1 Support for optional mark-sweep on demand

garbage collection
Multi-segment memory management (buddy sys-
tem) wi t h simple incremental (reference-counting)

Table 3.1 : JVMs and their corresponding garbage collection algont hms

Jbed
garbage collection
Real- time garbage collection

Garbage Collection in Vàrjous JVMs

3.2.12 Which of Them to Test

1s it available ?

Not al1 of mentioned Java virtual machines are interesting or available for testing.
First of d l , we excluded for the moment JVMs for embedded systems, as we wanted
to have no memory limitations. A h , there are some Java virtual machines that are
not available on the Internet (either the Iicencing fee was very big, or there was no
response to the mail asking for an evaluation copy). The list shortened also because of
the problems with installation (see below).

Where does it work ?

Sun's JDK is naturally the most portable and certainly available, but there is also a
limit here : Hotspot is available only for Win 32 and Solaris. So testing on Linux was
out of question. IBM's JDK 1.1.7 works only on Windows, whereas LaTTe works only
on Solaris. Kaffe and Japhar (Japhar is interesting because it is open source, which
means that the garbage collector could be easily added to it) do not compile on Win32.
So that leaves Solaris. Japhar still doesn't compile on Solaris. So it leaves us with JDK
(1.1, 1.2 (classic and hotspot)), Kaffe and LaTTe as Java virtual machines available
for testing.

3.3 Choice of benchmarking application

3.3.1 What Kindof Application to Lookfor?
An application that is to be used to test a garbage collector should allocate a lot of
objects, and preferably have a well-documented allocation behaviour. The application
should execute on al1 of chosen virtual machines.

3.3.2 What Sorts of Applications Are Available ?

There are two kinds of interesting applications. The first one is an application that
is at the same time a profiler. These are usually applets, and not applications, which
cal1 several programs subsequentiy and measure the time of execution of each of them,
dong with some other parameter (quantity of free merno-, for instance).

The other type of application is just some application that dlocates fairly enough
to be used for testing garbage collecton. We mention those that we found interesting,
although some of them were not used in Our benchmarks for portability reasons.

The following sections present mentioned applications.

Applicat ions-Profilers

Here we mention some applications/applets that are at the same t h e profilers. These
are : Caffeinehlark, the Benchmark .4pplet, UCSD Benchmarks for Java and Java
Grande Forum Benchmark Suite.

Garbage Collection in Vanous JVMs

CafKeineMark 3.0 CaEeineMark [46] is an applet that runs a series of tests, which
measure the speed of Java programs running in various hardware and software config-
urations. CatFeineMark scores roughly correlate with the nwnber of Java instructions
executed per second, and do not depend significantly on the the amount of memory in
the system or on the speed of a cornputen disk drives or Intemet connection. Caffeine-
Mark uses nine tests to measure various aspects of Java virtual machine performance.
Each test mns for approximately the same length of t h e . The score for each test is
proportional to the number of times the test was executed divided by the time taken
to execute the test. This test measure the overail performance of a JVM, but not the
performance of the garbage collector itself.

The Benchmark Applet The Benchmark Applet [47] rneasures the time it takes to
do an operation thousands (or even millions) of times, subtracts the time spent doing
operations other than the test, such as the loop overhead, and then uses this information
to compute how long each operation took. It runs each test for approxirnately one
second. In an attempt to eliminate randorn delays from other operations the computer
may perfonn during a test, it runs each test three times and uses the best result. There
are 10 individual benchmarks included in The Benchmark Applet, and it is up to the
user to make a choice. Similarly as the previous one, this benchmark application does
not have a possibility to test specifically the garbage collector.

UCSD Benchmarks for Java This is a collection of methods that test different as-
pects of JVM : garbage collection, method invocation, loops, etc. It can be downloaded
and compiled, or it can be mn as applet from its site (481. On the contrary to the pre-
vious applications, UCSD Benchmarks include a garbage collection benchmark. Two
types of GC measurements have been perforrned. The first requests that the runtime
perform a full GC. Both the time and the space recovered (and perhaps added) are
reported. The second "randomly" allocates sewral thousand objects into a small m a y
(the time for looping and array access are probably a small part of the overall time.).
causing most to be made available for reclamation by the garbage collector. Because,
for example, Sun's Java runtime has an incremental collector, many of these may be
collected without a hl1 GC occuring. The aut hors state aiso that the garbage collection
benchmark seems to have widely v q i n g behavior depending upon the environment,
including crashing (Sun's appletviewer) and thrashingjhanging (Netscape).

Java Grande Forum Benchmark Suite Java Grande Forum (JGF) Benchmark
Suite [49] is a collection of benchmarking applications fkom EPCC, University of Edin-
burgh. The applications are gouped into three sections : low level operations, kemels
and applications. Low level operation section, in version 1.0, contains Garbage bench-
mark, that assess the performance of the system garbage collector. Objects are created
with a randomly chosen size in the range zero to (total available memory)/1000. Ini-
tially, sufficient objects are created to consume al1 available memory: this part is not
timed. Subsequent object creation proceeds for a fixed time period. -411 objects are
assigned to the same reference, so that al1 objects except the most recently created are

Garbage Collection in Various JVMs 57

available for collection. The number and total size of the objects collected is recorded.
Performance units are references per second and bytes per second. The Garbage bench-
mark is excluded in the recent version of JGF Benchmark Suite.

Other benchmark application There is an excellent source of benchmark applica-
tions on the Java Grande Forum site [49], but hardly any of them is useful for garbage
collection benchmarking.

Applications that allocate a lut of memory

Other possibility to test garbage collectors in Java virtual machines is to execute a p
plications that allocate a lot of objects, and to use either a -verbosegc flag or some
other method (see Section 3.4) to measure the performance of a garbage collector. We
searched the Internet again to find the applications that meet our needs, and we found
some on the benchmark sites. Here we mention CUP and JLex.

CUP CUP (Constructor of Useful Parsen) is a system for generating LALR parsers
from simple specifications. It serves the sarne role as the widely used program YACC
and in fact offee most of the features of YACC. However, CC'P is written in Java,
uses specifications including embedded Java code, and produces parsers which are
implemented in Java. There are some grammars downloadable from the CUP site [SOI,
which we used as an input.

JLex JLex [51] is a lexical analyzer generator, written for Java, in Java. The JLex
utility is based upon the Lex (lexical analyzer generator) model. JLex takes a spec-
ification file similar to that accepted by Leu, then creates a Java source file for the
corresponding lexical analyzer. We were not able to find a sample of the gramrnar that
is large enough to cause garbage collection while evecuting $Leu, so we mention it just
as a reference.

3.4 Choice of profiling methods
After we decided on the applications to use, we had to choose the profiling method.
Le., the way to measure the performance of the garbage collector. We mention Java
Bags, Java methods, heap simulators and profilers.

3.4.1 Java Flags
One could Say that using of Java flags aimed for profiiing (Java application launcher
-prof option) is the most universal choice, but unfortunately it is not. JDK changed
its runtime options or the way the options work with every new version. Kaffe does
not support -prof option. So, we usually used -verbosegc option, which is not imple-
mented in the same way for al1 the JVMs, but still gives rather similar informations.
For al1 the Java virtual machines, -verbosegc gives the amount of freed memory (in

Garbage Collection in Vario us JVMs 58

KB/MB or %), and the total heap before and after each collection. Al! of them, except
Kaffe, give the time needed for each collection. We instrumented KaIfe (with the help
of LaTTe's code) to obtain timing information.

We mention a useful application for analysing the -prof option's output : Hyperprof
[52] .

Hyperprof This is a program written in Java that ailows the user to view and
analyse the execution profile of Java program. It parses java.prof files obtained using
the -prof option to give a list of methods, list of methods that called selected rnethod,
iist of methods that are called by selected method and mctrnory used by program. The
problem is that it works with JDK1.O and JDK1.1, but not with Kaffe (which does not
implement -prof option) or JDK1.2 (which changed the format of the .prof file).

3.4.2 Java Classes
àlethod freeHemory() of the class java.lang.Runtime retums the amount of free
memory in the system. We could use it, along with the call to garbage collector
(System.gc0) to measure the quantity of merno- before and after the call to the
application, or before and after the call to the gc (Fig. 3.4.2). The problem is that
Kaffe does not implement this method the same way JDK does. Kaffe's method returns
RAY (therefore before and after are same and constant always) and JDK's method
returns free portion of the heap.

Vie can use a simple application that allocates an array of a given number of Inte-
gers, then nulls it and calls the garbage collector. Of course, this ciil1 to the garbage
collector may not be the only one. The garbage collector cm be called by the JVhl
itself, if the array is too big. This is not how the usual Java program works. there are
surely some objects that die faster and other that die slower. but it can show us how
the coliector works in these cases. An example of such an application is s h o w in Fig.
3.4.2 below.

3.4.3 Some Kind of Heap Simulator
Some researchers use their own instrumentation to simulate heap allocation. Darko
Stefanovic [53] uses an accurate simulator that models al1 heap objects and pointers
among them. Jonathan Moore et al. [54] use Oscar? a GC testbed that compares GC
performance across different langages. Both of them instniment a language imple-
mentation to gather snapshots of its heap. .in instrumentation of a N Y requires the
source code of the JVM. which was not available for al1 tested JVMs, so we dropped
this approach.

3.4.4 Profilers
There is a number of Java profilers available. They are usually expensive, but there are
almost ahays free, time-limited evaluation copies. The most popular are : OptimizeIt
[55] and P r o b e [56]. Al1 of them have a user-friendly graphie interface, with plenty of

Garbage Collection in Various JVMs

publicstatic void main(Stringn args) (
int count;
Runtime n O b j = Runtime.getRutime0;

// - begtn time
long begTime = System. currentTimeHillis O ;
long fml,fm2, endTime;
if (args.length < 1 {

count = 1000;
} else {

count = Integer .parseInt (args [O] ;

1
System.out.print~n("nemory printed in K bytes . ..9;
System. out. println("1ntegera to be allocated: + count) ;

// - creote on a m y
Integer someints [] = nev Integer [countl ;

/ / - total heap memoy
System. out. println('"ïota.1 memory : Il +

rtObj . totalMemory O / l O X) ;
/ / - jree rnemory afler the army creation

System. out. println("Free memory : " + rt0bj . f reeMemory(1 /l024) ;
// - cal1 to garbage collector

rtObj .gcO ;
// - free memory after garbage collection

System. out. println("Free memoryafter CC : " +
rtDb j . f reeMemory0 /l024) ;

// - allocate a m y mernbers
for (int i = O; i i count; i++)

// - free memory ofter initiakation O/ army members
System.out.println("Free after al loc of ints: " +

rt0bj. f reeMemory O /IO241 ;
// - nulis the array

for (int i = O; i < count; i++) someints[i] = null;
// - cal2 to garbuge collector

rtObj .gcO ;
// - end tame

endTime = System. currentTimeMillis ;
// - free memory after the second garbage collection

System.out.println(''Free memoryafter CC : " +
rt0bj . freeUemory0 /l024) ;

// - total time
System. out .println("Total time :" + (endTime - begTime) + "ms") ;

Figure 3.1: Simple Java code for garbage collector testing

Garbage Collection in Various JVMs 60

functions that are very useful. Unfortunately, they are always destined to a particular
JVM. JProbe is compatible with Java2 (JDK1.2)' because JProbe use its profiling
API, which is not present in JDK1.l. As for JDK1.1, it uses a specially instrumented
version of JDK1.l, that is included in JProbe. Xormal JVMs 1.1 are not compatible
with JProbe, because of the lack of that instrumentation. Logically, it does not work
with Kaf'Fe nor with LaTTe.

Opt imizeIt for Solaris is compatible wit h Sun's JDK1.2 reference implementat ion,
but not with Sun's JDK1.2.2, nor with Kafie or LaTTe (OptimizeIt for Win32 does
not work with IBM JDK1.1.7 either).

For these evident reasons, we did not make use of the profilers.

3.5 Our Choice
Ué chose to test JDK1.2.2-0.0.1 (classic and Hotspot), JDK-1.2.2-05, JDK1.1.3, Kaffe
and LaTTe on Solaris using a Java flag -verbosegc while executing either CL'P sepa-
rately, or CUP inçtalled in a piece of code that verses the quantity of free rnemory

This choice is obvious from the above analysis : Kaffe compiles on Solaris. and
not CVin32; Hotspot is available for Solaris and Win321 LaTTe is made exclusiveiy for
Solaris; the rest of JVMs either do not work on Solans (IBM's JDK1.1.7) or are not
available for testing. Neither of available profilers recognizes Kaffe nor LaTTe. Most
benchmarking applets/application do not include garbage collecter tests.

CUP was compiled using JDK1.2.1, and the class files obtained that way are used
for testing al1 JVMs.

.Ill the test are done on Sparc SunOS 5.6.

3.6 Benchmarks

3.6.1 verbosegc Output

Here we present the examples of the verbosegc outputs for al1 the Java virtual ma-
chines tested. It is interesting to compare the information obtained using this flag for
each JVM.

JDK1.2.2-05, which is also known as ExactVM or ResearchVM? has two -verbosegc
options. One is a standard option, which gives less verbose output, stating the gc time.
the total heap, and the percentage of the free portion of the heap :

GCCO] in 23 ms: (8Mb, 75% free) -> (8Mb, 94% free)

The other one is a triple -verbosegc option, Le., "java -verbosegc -verbosegc
-verbosegc . . . " . It gives more verbose output. and the details on the collections
of each of its two generations. For the Gen O' which has two semi-spaces and uses

Gar bage Collection in Various JVkIs 61

a copying collector, it Qves the size of the semi-spaces, its occupancy and the free
memory. Fig. 3.2 presents the same output as above, but with the triple verbosegc
option.

- - - . -

Starting GC at Wed Apr 19 18:16:38 2000; euspending threads.
GenCO] (semi-spaces) : size4096kb(SOX overhead) , f reedlkb, marAlloc=Okb.
space [O] : size=2048kb, f ree=Okb, maxAlloc=Okb.
space [l] : size=2048kb(100~ overhead) , f ree=Okb, maxAlloc=Okb.

GenO(semi-spaced-CC #l tenius-threshs31 26ms 0%->7Tl, free
Cen [O] (semi-spacea) : size=4096kb(50# overhead) , f ree=l586kb, maxAlloc=l586kb.
space [O] : size=2048kb(100% overhead) , f ree=Okb, maxAlloc=Okb.
space Cl] : size=2048kb, f ree=1586kb, maxAlloc=l586kb.

resuming threads.
CCCO] in 28 ms: (8Hb, 75% free) -> (8Mb, 94% free)
Total GC the : 28 ms
Processing 26 referenco objects.
++ GC added 26 finalizers++ Pending finalizers = 26
++ Finalizer Q = O

Figure 3.2: -verbosegc output for JDK1.2.2-05 JVbl

JDK1.2.2-001 classic

JDK1.2.2 classic has the same output, and consequently and probably the same garbage
coilector system as the previous versions of JDK (v. JDK1.1.3). It gives a number of
freed objects, freed memory in bytes, the time of each phase of garbage collection, and
the percentage of the free memory (see Fig. 3.3).

CGC: managing allocation failure: need 1032 bytes, type=l, action=D
CGC: O millisecoads since last GC)
<CC: freed 12345 objects, 530552 bytes in 13 ms, 63% free (531272/838856)>
<CC: inittscém: O ms, scan handles: 8 ma, sueep: 5 ms, compact: O ms>
CGC: O register-marked objects, 13 stack-marked abjects>
<CC: O register-marked handles, 68 stack-marked bandles>
<CC: ref s : soft O (age >= 32) , veak 0, final 17, phantom O>

Figure 3.3: -verbosegc output for JDK1.2.2-001 classic JVM

JDK1.2.2-001 hotspot

Hotspot has a rather non-verbose -oerbosegc option. Nevertheless, it gives enough
information : allocated memory before and after the collection. total heap, and the gc
time :

Garbage Collection in Vàrious JVMs

[CC 2048K->422K (5 l84K) , 0.0456488 secs]

As Hotspot uses a generational gc, when the whole heap is collected it is mentioned:

When the incrementai collections is enabled the output has the same form.

JDK1.1.3

JDK1.1.3 gives the output sirnilar to the one given by JDK1.2.2 classic (Fig. 3 . 4 .

CGC: managing allocation failure. need 24 bytes, type=2, action=l>
CGC: freed 17597 objects , 378152 bytes in 18 ma, 66% free (560112/838856)>

CGC: initkscan: O ms, scan handles: 11 m s , sueep: 7 ms, compact: O ms>

Figure 3.4: -verbosegc output for JDK1.1.3 JVM

Iiaffek verbosegc output gives the total heap, mernory allocated before and after the
collection, the percentage of the heap that is free, but it lacks the gc time (Fig. 3.5).

CGC: heap 5120K, t o t a l before 4705K, after 2142K (104084/33383 objs)
58.2% f ree , al loced 17130K (#1311?4) , marked XOK, suept 2563K (t70701)
42 ob j s (1K) avait ing f inalizat ion>

Figure 3.5: -verbosegc output for Kaffe JVM

In order to have the timing information, we instrumented Kaffe, by incorporating
the code from LaTTe that gives the gc time. The changed output is showed in Fig. 3.6

<CC: uQL% root = O ms>
CGC: walk mark stack = 188 ms>
CGC: streep = 70 ms>
CGC: t o t a l = 260 ms>
CGC: heap 5120K. total before 4694K. af ter 2174K (102770/33545 objs)
57.5% f ree , ailoced 17344K (#133159) , marked 726K, s e p t 2519K (#69225)
46 objs (1K) auaiting f inalization>

Figure 3.6: More verbose -verbosegc output for Kaffe JVM

Garbage Collection in C'wious JVMs

LaTTe

LaTTe has rather verbose -verbosegc output. It shows time for each garbage collec-
tor's phase, the total heap and the amount of freed memory (Fig. 3.7).

CGC: ualk root = 1 ms>
CGC: ualk mark stack = 1 ms>
(CC: process finalizers = O ms>
<CC: sveep = 3 ms>
<CC: total = 7 ms>
<CC 1: heap 8192K, total 8192K. marked 171K, freed 5323K. fixed 253SK>

Figure 3.7: -verbosegc output for LaTTe JVM

Analysis and presentation of the verbosegc output

Al1 the verbosegc outputs from different JVM give the following numbers : amount of
total heap, amount of freed memory and total gc time. When executing a benchmark
application, we use the verbosegc output to show : the total gc time for each JVhI
with standard options, gc tirne and number of collections as a function of the initial
heap size (set by the -ms option), and the total gc time as a function of maximal heap
size found by previous analysis.

3.6.2 CUP Benchmarks
The first application that we used was CUP. CUP uses as input a Java grarnmar: we
used javalO.cup, a file that contains the Java 1.0 gammar. Here we present the results
obtained. First we executed the application and measured the total gc time for each
JVM (see Fig. 3.8).

We can see that, with default start heap size, specific for each JVM, JDK1.2.2
(ExactVM) has the best performance, and Kaffe is the least performant. LaTTek
garbage collecter performs surprisingly well.

In order to compare the obtained results more objectively. we ran the application
changîng the initial heap size (using the -ms option of java runtime). We were able to
find the heap size for each JVM for which only 1 or O garbage collections are performed,
and the gc time is, therefore, minimal. Fig. 3.9 shows gc time as a function of the
initial heap size for each JVM.

Minimal values for gc time correspond almost always to the minimal heap for which
only one garbage collection is performed. The only exception is JDK1.2.2 (ExactVM)
where the number of garbage collections is always 12, independently on the heap size.
The reason is its generational garbage collection algonthm, which forces frequent col-
lection in the nursery, whose size is constant (i.e. independant on the total heap size).
In order to veri& the results for gc time obtained by standard execution (with the

Garbage Collection in Various JVMs

Figure 3.8: GC time with the default heap size for each JVM

initial heap size heing a default value, difierent for each JVM) (see Fig. 3.8), we corn-
pared the minimal values for gc time for each JVM, and its corresponing heap size.
The result is sbown in Fig. 3.10.

If we compare graphics in Fig. 3.8 and Fig. 3.10, we can see that, when we exclude
the heap size factor, LaTTe performs the best, and Hotspot, JDK1.2.2 classic. JDK1.2.2
(ExactVbl), and JDKl.l.3 follow it closely. KafFe still has the worst performance, but
the difference is somewhat reduced.

3.6.3 MemoryAndTime Benchmarks
In section 3.1.2 we mentioned that we could use a simple application that allocates an
array of Integers, to measure the garbage collector activity. We used the class Mem-
oryAndTime (see Fig. 3.4.2) creating an array of 1000000 Integers. While allocating
the array, each JVM made several calls to the garbage collector in order to find the
needed memory; the heap is therefore augmented sewral times. At the end, when the
array is nulled out, we placed a c d to the garbage collector to see what tirne it takes
to free the allocated memory (we used the -verbosegc output). Fig. 3.11 shows the
obtained results : number of KB deallocated per rns of GC tirne.

This kind of benchmarking is not at al1 the way real Java programs deallocate mem-
ory, and that should be kept in mind. Under these conditions, Hotspot shows the best
performance, with LaTTe close by, incremental Hotspot and the ExactVM are rather
efficient &o. JDK1.1.3, JDK1.2.2-classic and K d e have a lot worse performance.

Garbage Collection in Various JVMs

h p sin [KB)

Figure 3.9: GC time as a function of the initiai heap size

Garbage Collection in Vijous J VMs

O GC tirne (rns)

O Start heap (KB)

JDKl .t .3 JOK1.22 JDK1.2.2- JOK1.2.2- Kaffe Latte
cfassic hotspot

Figure 3.10: Minimal GC time and the corresponding initial heap size

Figure 3.11: Performance of the garbage collecter for each JVM for MemoryAndTime
application

Garbage Collection in Vhxious JVMs

3.7 Conclusion
The choice of Java virtuai machines, applications, profilen and operating systems to
test garbage collectors is not always obvious. It depends on the virtual machine's
availability for a specific operating system(s), or the application's or profiler's avail-
ability for a specific JVM. We have chosen to test different Sun's JVMs, as weil as
Kaffe and LaTTe on Solaris, with -verbosegc output as a source for benchmarking
results.The results showed that LaTTe, Sun's Hotspot and Sun's ExactVM have the
best performing garbage collector systems.

As LaTTe's garbage collector performed very well, and as its source code is available,
we analyzed its code to better understand it. This was important both for understand-
ing the garbage collecter's algorithm and for understanding the memory management
system as a whole, thus making it easier to introduce different algorithm, and compare
it to the present one. In the next chapter, we analyze the source code of LaTTe's
memory management system.

Chapter 4

The LaTTe Java Virt ual Machine

4.1 Introduction
LaTTe garbage collection system showed very good performance, so we wanted to go
into details of its algorithm, to be able to explain that performance. First, we give a
short ovemiew of LaTTe, based on the information from its web site (21, and then we
present LaTTe's memory management.

4.2 Overview

LaTTe was created by the MASS (Micro-Architecture and System Software) Labora-
tory of the School of Electrical Engineering at Seoul National University [57], as joint
work with the VLIW research group at IBM T.J. Watson Research Center [58].

It #:as built starting with the code from Kaffe 0.9.2, a freely available Java virtual
machine [Ti']. However, the core parts were re-written : the bytecode execution engines.
the garbage collector, the exception manager, and the thread synchronization mech-
anisrn. The execution engines of LaTTe (i.e., the JIT compiler and the interpreter)
were written from scratch. Both compiler and interpreter are more elaborate than
Kaffe's, since LaTTe does not provide multi-platform support, which makes it easier to
implement more powerful execution engines. Additionally, the JIT compiler and the
interpreter c m be used concurreatly in LaTTe, while Kaffe can use only one of the
two execution engines. As for the garbage collector, L a m e uses a similar algonthm
as is used by Kaffe : a mark-sweep garbage collector. Lame's collector h a , however,
completely different interna1 structure, and the implementation used in LaTTe is a
great deal faster (see Section 3.6). LaTTe uses Kaffe's user-level thread system with
little modification, but the thread synchronization mechanism supporting Java moni-
tors is newly designed to be much faster than that of K d e . This new design of the
synchronization primitives results in a different object model.

However, compared to other commercial Java tirtual machines, LaTTe has the
following la& of features:

0 Yo AWT or Swing.

The LaTTe Java t'jrîual Machine

a Not Java 2 (only supports 1.1).

a No bytecode verifier.

a Lacks JNI support.

a Incomplete class library.

No support for JAR or compressed ZIP archives.

4.3 Memory Management in LaTTe
LaTTe's memory management changed a little from the version that we tested. The
new version, 0.9.1 uses an irnproved garbage collection system. The details about
LaTTe's memory management are given in [59]. Here we present a shorter description
based on Chung's paper [59], as well as our ideas and further explanations, along with
a thorough code analysis. Our idea was to introduce a new garbage collector in LaTTe.
or to instrument the existing one, so the code analysis was a necessary step.

The following two sections describe, respect ively, memory allocation and garbage
collection in LaTTe. In order to make the code fragments easier to read? we present in
Table 4.1 the most used types and rnacros.

4.3.1 Memory Allocation
LaTTe manages three types of heaps separately: a small object area, a large object
area. and an explicitly managed heap. The small object area contains objects that
are smaller than one kilobyte, while the large object area contains objects that are
larger than one kilob-yte. Objects in both of these heaps are deallocated automatically
by the garbage collector when no longer needed. The explicitly rnanaged heap, on
the other hand, contains objects that must be deallocated manually by the virtual
machine programmer. Such explicitly managed objects include class objects, register
map tables, code fragments, etc. Allocating explicitly managed objects. or "fiued"
objects, never triggers a garbage collection. Memory for these heaps is obtained from
the operating system by the region manager.

Region manager

Each heap aliocates memory through the region manager, by allocating regions
(gc-region) of about 2MB. Each region has its type for distinguishing different heaps.
Region information is held in the region table (struct gcxegion *regions a)? which
holds the information sorted in order of increasing addresses. The size of the region
table array is 1024, which means that the total available memory would be about 2GB.
which seems more than enough. The table is searched using binary search to Sind a
region that contains a particular address.

The La T'Te Java Virtud Machine

gcstats

Defini t ion

5truct gcstats
size-t srnzdlsize , Sizes of various heap areas
largesize , f ixedsize
size-t sma l ld loc , Various docation statistics
l a r g e ~ l o c , f i x e d d l o c
size-t smallloarked , Garbage coiiector statistics
smallf reed, large~arked,
large3 reed
int iterat ions Number of GC done so far
double mark, sort, Timings for the garbage col-
sweep , gc , total . mark, lect or
to ta l sort , totalsweep,
to ta lgc

*HEADER(p) & SIZEMASK
aizeof (double)

Source
file

gc. c

gc.c
gc. h
gc. h

-

gc. h
gc.c
gc.c

Table 4.1: The most used types and macros

The LaTTe Java Virt ual .Machine

Variable/Function 1 Description 1 Source file

gcregion

s ta t i c struct
gcxegion *regions
CGCMGION-TABLE-SIZEl

- -

struct gcxegion 1 p .

void *s ta r t , *end address range of region
int type type of memory contained

*prev, *next list of regions
void *data other data used by exter-

O

in region (type of heap)
struct gcxegion links for a doubly-linked

na1 components 1

gc.c

region table

Table 4.2: Important variables and functions for region manager

gc.c

-

s t a t i c struct
gcxegion*
region-allocate (size-t .
int 1

As it is a mark-sweep collectort there is little chance that a region would be corn-
pletely free, so freeing of regions is not yet implemented. The same goes for region
nierging.

Table 4.hshows data structures and functions used for region manager.

Smdl object area

allocates a new region

O bjec ts t hat are automatically managed and smaller t han one kilobyte are allocated
in the small object area. They are allocated using lazp worst fit. In fact, objects are
allocated using pointer increments (using small-cursor and small-bound pointers in a
function vo id* gc_malloc-small (size-t s i z e)) and if the allocation pointer would
go over the bound pointer, the worst fit is used to find a new free space area (func-
tion void* slow-small-allocate (s h e d) . Worst fit is accommodated by taking
the fint free memory chunk (gc-small-chunk) in a free list (small-chunks) soned in
decreasing order of size. The free list is built after the sweep phase. Worst fit has its
advantages and disadvantages : a single cornparison suffices to find out whether there
is a node in the free list that satisfies the memory demand (first fit and best fit require
many comparisons); on the other hand, worst fit results in more fragmentation, which
can lead to smaller heap sizes. If there is no free chunk available. the function void*
get-small-block (void) is called, and the allocation is made from the newly allocated
block from the list of blocks (small-blocks). And if the list of blocks is empty, the
small heap is expanded (new region allocated and put in the region k t) by calling
void erpaad-small-area(void) .

Important variables and functions for smdl object allocation are given in Table 4.3.

gc.c

The LaTTe Java Virtual Machine

Variable/Function 1 Descript ion 1 Source file
static gchead
*small,cursor
static gchead

pointer to the free area

* small-bound

1 size-t sire size of memory oceupied 1

gc.c

pointer to the end of the free area

struct gcsmall-chunk
size-t size size of chunk
struct gcsmall-chunk pointer to the next chunk
*next

gc.c

g c . ~

by adjacent blocks
struct gcsmallhlock pointer to the next group

*next of blocks
void* 1 allocate small object using pointer increments

Table 4.3: Important variables and functions for small object allocation

~ C . C

gc.c

(size-t size)
static void*
s low-small-allocate
(size-t)
static void
expand-amall-area
(void)

allocator used when pointer incrernents faii to sat-
isfy the request

expand the small object area

gc.c

gc.c

The LaTTe Java trirtual Machine 73

Variable/Function 1 Descript ion 1 Source file
static struct

large-set mode

I

information for the large object area F gc.c
gcheap largelieap

void *abject the address of the object
atruct largeset aode chained Links

struct largeset mode

s ta t i c int

large-set-add
(void*, size-t)

large-set hash
(void*)
s ta t i c void

Table 4.4: Important variables and functions for large object allocation

*prev, *next
gets hash value for object

Large object area

gc.c

adds a pointer to the object to the hash table

Automatically managed objects larger than one kilobyte are allocated in the large
object area (iargeheap). Large object area uses the same allocator as the explic-
itly managed area (see function void* mem-allocate (struct gcleap* , size-t)
in Section 4.3.1). üpon allocation a pointer to the object is added to a hash table. .411
objects in this area are referenced by nodes a hash table (large-setnode) in order to
support conservative pointer marking. The overhead associated with this is not large
since al1 objects are larger than one kilobyte.

Important variables and functions for large object allocation are given in Table 4.4.

gc.c

Explicit ly managed heap

Manual memory manager is used both for explicitly managed heap and large object
area. Data structures and functions used for manual memory manager can be found in
Table 4.5. Heaps are distinguished by their t-ypes (field type in the structure gcheap).
The allocator uses segregated free lists (see Section 2.2.2). Memory is divided into free
lists (field l i s t s) , one for each size-class, determined from the object size. For size
classes the linear distribution is used for smaller sizes (up to 1024 b) and a power of
two distribution is used for bigger sizes. Each free list is sorted in increasing order of
size, which is ensured when nodes are entered into each free list (using the function
void i n s e r t f reelump(struct gcheap. void* , int)) .

Wheoever an object is to be allocated, first its size class is determined (hnction
i n t size-class (size-t)) . Then. the free list of that size class is searched in order
to find a free lump that would fit the best (function void* findfreelump (struct
gcheap , size r int))). If some space in the free lump is left free after the allocation,
it is put back to the appropriate free list. If no fiee lump is found in that list? the search
is continued in the next size class. If even after that the memory demand is not satisfied,
the heap is expanded (function int mem-expand (struct gcheap* . s i t e - t 1).

The LaTTe Java Virtual Machine 74

gcheap

Variable/Function

void segregated Eree lists
*lists [SIZEXUSSES+1]
size-t *size , *al loc placeholders for statistics

Description
struct gcheap

1

static void* 1 allocate memory from heap 1 gc.c

Source file

static int

I I

s ta t i c void 1 insert free lump into a free list 1 gc.c
insertf reehmp 1 I

- --

int type region type
calculate size class

(struct gcheap*, 1 I

gc.c

f i n d f reelump 1 1

void*, int)
static voici*

(struct gcleap*, 1 I
size-t , int) I I

find a suitable free lump

Table 4.5: Important variables and functions for manual merno- management

gc.c

4.3.2 Garbage Collection
LaTTe uses a non-increment al partially conservative mark and sweep garbage collector.
Partially conservative means that LaTTe is not able to ascertain the types of local
variables or stack operands. Thus, the garbage collector must be conservative with
respect to the execution stack. In the case of heap objects, al1 objects have a class
pointer which indicate their type. Thus the garbage collector can treat the heap in
a type-accurate manner. A garbage collector that is partly conservative and partly
precise in t his manner is called a part ially conservative garbage collec tor.

Garbage collection is done in a thread separate from the other normal threads
(with for mutex quickLock gcMan). Table 4.6 lists the important garbage collector
functions. The main garbage collector function is g c a a i n o which calls the marking
function mark-phase 0 and sweeping function sveep-phase (1.

Marking phase

The hnctions used for the marking phase are listed in Table 4.7. Marking is done by
first marking the objects referenced by the root objects, which are class objects and
the execution stacks for each thread (using the function void vaik-roots ()). Root
objects are registered separately using gc-attach0 and maintained using a linked list.
To avoid overhead for linking each root object (which never reverts to normal, and
therefore there is no bound to its number), root objects are grouped into root bundles

The LaTTe Java tlrtual Machine

Func tion
void gc-invoke
(i n t lack)
void gcmain
(void)
void mark-phase
(void)

Descript ion 1 Source file
wake up the garbage collection t hread 1 gc-c

the loop for the garbage collection thread gc.c

execute the mark phase .

Table 4.6: Important garbage collector functions

gc.c

sweep the heap for garbage

(stnict gczoot-bundle) and a linked list of root bundles holds al1 root objects.
The objects thus marked are pushed onto the marking stack void **mark-stack.

The size of the rnarking stack is checked and if it has less objects than a certain
limit, a flag to selective sweeping is set. Then, the objects on the marking stack are
"walked", that is, al1 the objects pointed-to by each object in the stack are marked
and pushed ont0 the stack (it is a modification of Cheney's algorithm). If the number
of marked objects is still less than a certain limit, the sweeping phase is entered.
If not. the objects are marked by depth-first traversal using the marking stack : as
object is popped from the stack, its children are put onto the stack. and the process
repeated until the stack is empty. Marking function is made for each object of a
certain class with void makeWalkFunc (H j ava-lang-Class *class) . It c d s void
mark0 for each reference field (Le. for each child of an object), so d l the childrea
are pushed onto the marking stack. Detection of stack overflow is done by an expiicit
bound check, before pushing an object on the stack. If the stack overflow occurs,
it is bandled by traversing al1 the objects in the heap. and marking the unmarked
ones (functions void ualk-small-ob jec t s () and void valk-large-ob j e c t s 0). This
process is rather slow7 but it seems to occur rarely, so it has no big impact on the
performance.

gc.c

Finding pointers

Before marking, the garbage collector makes sure that the pointer to the object to be
marked points really to a heap object using the function i n t is-ob ject (void *pl.
This function first finds a region to which the object belongs. Then, if the region
is in the small object area it calls function in t is-small-object (void*, struct
gcxegion). This function first checks whether the block containing the pointer is in
use, and if yes, it goes from object to object in the block, and checks if the pointer
points to the beginning of an object. If 'es, it is a pointer, if not, it is ignored by the
garbage collec tor .

If the region is in a large object area, the function int large-set-existsboid*)
is called. This function searches through the large objects hash table in order to find
if the object is there or not. If it is there, then it could indeed be a pointer, and the
object is marked. Otherwise, it is ignored.

The LaTTe Java Virtual Machjne

void **mark-stack
void gc-attach (void
*root, gc-type *type)
void walkiroots
(void)
void walknark-stack
(void)
inline void mark
(void*)
WALK(p)

void makeWalkFunc
(H j avalmg-Class
*class)
void
handie-stack-overf low
(void)
void
walk-small-objects
(void)
void
ualk-large-ob j e c t s
(void)

Description

i n t sizs number of objects in
bundle

struct gcxoot,bunùïe next node in root bundle
mext List

- - - - - - - - - .

struct
void the object itself

*ob j ect
void the walking root s [ROOTBUNDLESIZE]

(*vaiit) function for the
(void*) ob iect

the mark stack
attach a root object to the garbage collecter

mark root objects

mark reachable objects

mark an object

(((Hjavhlang-Ob ject*) (pl) ->dtable->
class->ualk) (pl
create a walk function for a class

handle mark stack ovedow

walk marked objects in srnall object area

walk marked objects in large object area

Source file

gc.c
gc-c

gc-c

gc-c

Table 1.7: Important variables and functions used for marking phase

The LaTTe Java Virtual Macbine 77

h n c t ion 1 Description 1 Source file

large-set-exists
(void *pl

int is-object
(void*)
in t
is-small-ob ject
(void*, struct
gcxegion*)
int

Table 1.8: Important functions for hding pointers

If the region is in the explicitly managed heap, or there are no regions containing
the pointer, then it is ignored by the garbage collector.

Rinctions used for finding pointers are listed in Table 4.8.

check if the reference is valid

check whether a pointer points to an object in the
small object area

check if pointer is in large object table

Sweeping phase

gc.c

gc.c

gc.c

After the marking phase is completed, the sweeping phase takes place, freeing the
unused memory (see Table 4.9). Sweeping is done separately for small and large object
area.

For srna11 area two possible sweeping algonthms are used : selective sweeping (void
sveep-small-selective (void ** , in t)), used when heap occupancy is low, and tra-
ditional sweeping (void sveep~smallsormal O) used when the number of live objects
is bigger than a certain threshold. The algorithm are chosen at run-time, thus im-
proving garbage collection time, according to the authors. Select ive sweeping takes
as an input a set of live objects, sorts them by increasing addresses and frees space
between them in constant time. Free memory is put back into free iists of blocks
or chunks (depending on its size) using the function void insertf reemem (struct
small-chunk-table* , struct gcsmall-block** , void* , void*) . In the case of tra-
dit ional sweeping, objects are visited one by one, and if they are not marked, t heir space
is reclaimed. While sweeping, contiguous fiee memory (pointed to by *slack) is co-
alesced. It is put on one of the free lists (chunks or blocks) according to its size. In
fact, lists of free chunks are made by the sweeping phase. Chunks are put in the appro-
priate list using the function void insertf reechuak (struct small-chunk-table ,
g c l e a d , size-t), and after the sweeping d l the lists are merged into one in order of
decreasing object sizes (function struct gc-small-chunk* mergef reeindex (stnict
small-chunk-table)) to be able to accommodate worst-fit allocation.

The large object area is swept by looking at each object in the large object hash
table large-objects. If the object is not marked, it is freed using the function void
memfree(stnict gc-heap, void *) fkom manual memory manager. For both the
small and large object ares, marked objects are unmarked so that the marking process
in the next garbage collection works properly.

The LaTTe Java Virt ual ilfachine

Variable/Function/Macro 1 Description [Source file

1 tween two marked srnall objects 1
gchead *slack

void 1 selectively sweep the small object area gc.c

1

points to the beginning of the free area be- 1 gc.c

sueep-small-select ive 1 1

void 1 sweep the small object area traditionally

(struct 1 chunk and blocks list 1

gc.c
sveep-smallnormal (1
void insert-f reemem

struct
gc-small-block** ,
void* ,void*) 1 1

insen a range of free memory into the free g . c

void i n s e r t f reechunk
(struct
small-ch-,t able,
g c l e a d , s ize-t)
struct gc-small-chunk*

1

merge f reeindex (s tn i c t
small-chunk-table)

Table 4.9: Important variables and functions used for sweeping phase

insert a free chunk into the free chunk list
index table

merge the free chunk index table into a single
list sorted in decreasing order of size

void memf ree (struct
gcheap, void *)

gc.c

gc.c

manudly free a memory chunk gc.c

The LaTTe Java Virtual Machine 79

Variable/Function /Macro 1 Descri~tion 1 Source file

f i n a l i z e ~ o d e

struct f inalizenode
*hasf inal
struct f inal izeaode
*do3 inal
void v a l k f inals (void)

. --

veld invokef lnal izer

1 struct finalizenode 1
void *object object with the balizer
void finalizer

(*f inal) (void*)
struct next node in linked list

f inalizenode I
*next

list of live objects that have finalizers gc.c

list of dead objects that have finalizers

(H j ava-lang-Ob j ec t 1 1

gc.c

mark objects with finalizers
invoke the finalizer for an object

*abject , void
(*final) (void*))

gc.c
gc.c

Table 1.10: Important variables and functions used for object finalizing

Finalizers

In Java, the finalizer of an object is executed, even if the object is unreachable. The
execution of a finalizer can make that object and its children reachable again. so a
special care is needed for objects with finalizers. During the allocation, such objects
are put in a linked list called hasf inal. After al1 the reachable objects are marked.
the function void w a l k f inals 0 rernoves the unmarked (dead) objects in that list
and puts them in the d o 2 inal list. -4s the objects in a d o 3 inal list can be revived,
they are put on the marking stack, and the marking (function void walk-mark-stack
O) is called again, in order to mark al1 the objects with finalizers and their children.
The finalizer itself is invoked after the sweeping phase (with void invokef ina l i zer
(void *object, void (*final) (void*))), on the objects from the d o f ina l iist :
objects that are dead, but have a finalizer.

Finalizers are executed in a separate thread, protected by f inal - l i s t - lock mutex.

4.4 Conclusion
LaTTe's memory manager uses a rather elaborate allocator and garbage coilector.
Memon, allocator uses different algorithms for different object types/sizes : pointer
increments and free lists for small objects, free lists as hash tables for large objects,
and free lists for different sizes for both explicitly managed heap and large objects area.
Garbage collector uses mark and sweep algorithm, and ditrerent methods for sweeping
of small objec ts (select ive and tradit ional sweeping) , based on heap occupancy.

The code of LaTTe memory manager is well written, commented and localized (files

The LaTTe Java Virtual Machine 80

gc.h and gc.c cover it ail, although they use some other parts of the JVM : like general
types, exception and error handling and threads).

In the next chapter we will discuss possible reasons for the efficiency of LaTTe's
memory manager, some improvements that can be introduced, as well as different
algorithms that could be implemented, in order to test thern and possibly improve the
present algorithm.

Chapter 5

Discussion and Possible
Improvements of LaTTe's Garbage
Collect or

5.1 Introduction
In this chapter. we discuss possible improvements to the existing LaTTe's garbage
collector, as well as algorithms that could replace the existing one (while using some
of its data structures). This is more a discussion on the algorithms, and not the exact
implementation. It would have been nice to have an actuai implementation. but it is
unfortunately (because of lack of time) beyond the scope of this work.

5.2 LaTTe9s Algorit hm

5.2.1 Reasons for Its Efficiency

LaTTe's garbage collector performs much better than other mark-sweep collectors (see
Section 3.6). As we did not enter into details of other mark-sweep implementations,
we cannot compare them, but we wiil notice few things that possibly make LaTTe's
more efficient.

One of the biggest issues of mark-sweep garbage collection is fragmentation. AI-
though our benchmarks were insufficient to prove whether the heap expansion is due
to the fragmentation or to real lack of rnemory, we think that the fragmentation may
not be an issue here after dl.

LaTTe has a well defined allocator, using the segregated lists and size classes for
large and fixed objects (which is a sort of best fit), and pointer increments and lazy
worst fit for small objects. Chung [60] indeed shows that pointer increments with fits
as a backup (lazy fits) cm give better performance than conventional fits. ..Uthough
worst fit tends to add to fragmentation, LaTTe's garbage collector reconstmcts from
the scratch the free iist alter every sweep phase, therefore eliminating the fragmentation
introduced in the previous allocation.

Discussion and Possible Improvemen ts of La TTe 's Garbage Collec tor 82

Besides, Johnstone [61] found t hat objects allocated at the same time tend to die at
the sarne time, which explains a good behavior of the lazy worst fit : objects allocated
in one free chunk using pointer increments, and just if there is no space in a free chunk,
a new chunk is taken fiom the free list (using the worst fit); in average, al1 the objects
being allocated in one free chunk would die at the same time, thus returning the whole
chunk to the free list.

As for the marking phase, Lane uses customized marking function for every class.
LaTTe's authors show [59] that it gives much better performance thaa using generic
marking functions.

We already mentioned (see Section 4.3.2) the LaTTe's selective sweeping, which
makes sweeping phase faster by visiting only live objects, and not the whole heap,
when the heap occupancy is low. For more details see [9].

Finally, LaTTe uses the following heap expansion heuristics : the heap is expanded
only when the arnount of live objects exceeds the amount of objects allocated (the
amount expandeci being the difference between the two quantities). LaTTe9s tearn
compared this heuristics with "expand when needed" one and concluded that garbage
collection time can significantly be irnproved using their heuristic.

5.2.2 Possible Improvements of LaTTe's Garbage Collector
Many possible improvements have already been mentioned by LaTTe's team [59]. We
will mention just the ones that we noticed, and which concern the algorithm itseif and
not the actual implernentation.

LaTTe uses lazy worst fit for small object allocation. It is surely the most efficient
one, but it leads to fragmentation faster. It wodd be interesting to compare the
performance of first or best fit with the present one.

Pointers to large objects are held in a hash table. During the marking phase, the
hash table is searched, and every object in the heap marked, by changing a mark bit in
its header. It would probably be better to hold mark bit in the hash table. so that there
is no unnecessaq access to the ob jects t hemselves (thus improving cache behavior) .

5.3 Choice of the New Algorithm
LaTTe's collector proved to be very efficient and it seems hard to make a faster col-
lector. .4t first sight, fragmentation does not seem to be an issue: but it has to be
thoroüghty tested and preferably on long-running applications, to be able to say that
the fragmentation problem is not present. Even if it is not the case, it would still be
interesting to use LaTTe to compare its mark-sweep with some compacthg algorithm.
The alternatives are mark-compact , copying and generational collector.

5.3.1 Compacting Garbage Collection Algorit hms
Generational collection (Section 2.4) seems to be the most robust one, but the write
barrier demands global changes in the JVM code, which makes the implementation

Discussion and Possi Me Irn provernen ts of LaTTe 's Garbage Collecter 83

more difficult. Mark-corn pact collection (Section 2.3.4) would be interesting, because
the marking phase is already implemeated in LaTTe's collector, so we would have to
implement only the compacting phase, but it lacks performance due to number of passes
that mark-compact algorithms do (2 to 3). Copying collection (Section 2.3.5) is mostly
used in generational collectors, so implementing a copying collector would be the first
step to it (first generations are lrequently implemented as a copying collector). On the
other hand, not much of an existing code can be reused for the copying collector. so
we would have to make it from scratches.

5.3.2 Copying Garbage Collection and LaTTe
Conservatism and block size

LaTTe uses a partially conservative collector. That means that the collector knows the
type of the heap objects, but not the type of the local variables and stadc operands.
So, if we were to use a copying collector, we would have to pay attention not to move
objects pointed to by stack objects, as we are oot certain of their type. .-\ copying
collector that is partially consemative is Bartlett's collector (Section 2.6.3). It leaves
in place the objects referenced by stack objects, and copies al1 the others.

Bartlett's collector does not divide the heap into two semi-spaces? as an ordinary
copying collector does. Instead. it divides the heap into blocks (or "pages". the term
used by Bartlett. which should not be mistaken for virtual memory page) of 512 bytes
each. Every block has a space identifier : a small field which identifies the space to
which an object belongs (fromspace or tospace)'. During the collection. objects are
copied from fromspace to tospace, as in standard copying collection. Only for the
objects that cannot be copied. the agcopying" is done by changing the space identifier
of the block to which they belong. Unf~rtunately~ this way al1 the objects on that block
are retained regardless of whether they are live or not.

This leads to an important question of the block (page) size : as the block size
gets bigger, more garbage is retained. On the other hand, smaller blocks make the
allocation more difficult. The size of 512 bytes is chosen in regard to these two issues.
Bartlett's collector is initially made for Lisp, which has small, equally sized cells and
this choice of size seems to work well for Lisp. Java objects are much bigger than
Lisp's cells, so this block size seems to be too small for Java. LaTTe's block size is
4K, and the limit between small and large objects is 1K (objects larger than 1K are
considered large). The actual size of the block should be determined by experimenting
with several sizes.

Cost of copying large objects

The other problem are large objects : the cost of copying large objects is bigger than
that of srnaller ones, which can be obtrusive. One solution is not to copy them. but
to keep them in place, changing just the space identifier (just like it does for objects

'This identifier can hold the age information, thus making it easy to prornote Bartlett's cop-ying
collector to generationai

Discussion and Possible Improvernen ts of Lame 's Garbage Colleetor 84

that are treated conservatively). This means that al1 other objects in that block would
be kept alive, although they could be dead. -4nother solution is to keep large objects
in a separate large objects space (which already exists in LaTTe, for objects bigger
than 1K) and to collect that space differently : mark-sweep would be a good choice,
because it is already present in LaTTe, but occasional mark-compact collection would
be necessary if we want to completely avoid fragmentation.

Heap organization and pointer iinding

LaTTe divides the heap in three parts : explicitly managed, large object and small
object heap. In view of previously mentioned problem of copying large objects, Our
mostly copying collector for LaTTe could use the same scheme. Fked objects can be
treated in the same way, being allocated in the explicitly managed part and not garbage
collected. Large objects c m be allocated in large object heap and occasionally garbage
collected, ei t her by mark-sweep or mark-compact collection. Smdl objects, whose size
should be determineci. would be allocated in small object heap, and garbage collected
by mostly copying collector.

In fact, we could have a pool of free blocks and allocate al1 the objects from them.
but paying attention on a space identifier, whicli c m be different for fixed, large and
small objects. So if an object is the first to be allocated in a certain block. at that
moment the block identifier would be set and the block put on one of three lists (for
three types of objects). The objects would then be allocated from the appropriate
block, by incrementing the pointer. If the allocation fails, a new block would be issued
from the free pool, its identifier changed accordingly (free, large or small area) and the
allocation cont inued.

The main problem with this kind of heap organization is the same as with the
generational collection : as small and large object heap would not be collected at the
same time, pointers from one to another heap must be updated with each copying
collection so some kind of treatment for this case should exist. The easiest way is to
scan al1 large objects for pointers to small objects, and to update their values : it
means that both large and srnali object heap would be collected at the same time. It
would be faster if large objects were divided into header and body, and if by scanning a
separated list of headers, the pointer values could be updated. Or, we could maintain
a remembered set : a set of al1 pointers from large to small objects. This would put an
overhead on each store and would require changes in existing object formats, which is
rat ber complicated.

Bartlett 's collector originally uses breadt h-ûrst traversa1 (see Cheney 's algorit hm' sec-
tion 2.3.5) while scanning live objects : after "moving7 the objects pointed by roots (in
fact, just changing the space identifier of the corresponding block), these objects are
scanned for pointers and the pointed objects are copied to tospace. Tospace objects
are hrther scanned for pointers to the objects that are not yet copied, and the process
is repeated until al1 live objects are copied. Cheney's algorithm is elegant, but it is

Discussion and Possible Improvemen ts of La TTe 's Gar bage Collecter 85

found that a breadth-first traversal yields worse locality of references t han a depth first.
The locality is important for performance, because a good locdity avoids frequent page
eviction. Breadth-first traversal is typically implemented using a mark queue (FIFO)
and depth traversal using a mark stack (LIFO).

5.3.3 Other Aigorithms
Having a mark-sweep algorithm, it should possibly be easier to the Java virtual machine
programmer to irnplement incremental mark-sweep collection. The changes to the
overall virtual machine would be required, because of the wnte barrier that has to be
implemented to register each pointer write, so we did not consider it. We suppose that
LaTTe's team has it in mind for future work.

5.4 Conclusion
LaTTe bas an efficient garbage collector. It is a well implemented mark-sweep algo-
rithm, with selective sweeping and a good allocation policy. But, as it is not a copying
collector, fragmentation still can be a problern.

It would be interesting to compare the performance of a copying collector with
LaTTe's mark-sweep, and see if some irnprovements are possible. Not only for the
fragmentation issue, but also because copying collector is the first step to generational
one. which should be more efficient. The only copying collector that can be used in a
serni-conservative way is the Banlett's coilector. We discussed the issues concerning
this collector : block size. copying of large objects. traversing aigorithm, and proposed
ai ternatives.

The ne-xt step would be to implement those alternative algorithms, and to compare
their performance to that of LaTTe's present collector.

Chapter 6

Conclusion

Memory management is a highly complex issue, having been under development for
almost forty years, but still being rat her mysterious. The allocation and deallocation
algorithms are fairly known. but their combination, implernentation and sophisticated
details may influence greatly their performance. Java raised again the question of
automatic memory management (garbage collection) efficiency by being among the
most used language today. having a high allocation rate and having a mandatory
garbage collection system.

In order to get some insight on memory management (with an accent on Java), we
first tried to understand the basic allocation and garbage collection algorithms. Then
we tested garbage collectors in SLX Java virtual machines, known for having imple-
mented different garbage collection algorithms. We showed that a well-implemented
simple garbage collection algorithm (LaTTe's) can have the same performance as a
highly sophisticated, complex set of algorithms (Hotspot). Our benchmarks were rather
simple, and more thorough analysis should be performed (using more applications, and
more sophisticated profiling methods, such as having heap snapshots by instrument ing
each JVM), but our results correspond to the results found by LaTTe's team, and we
tried to give some possible explanation for this unexpected efficiency (which is much
better than the same algorithm implemented in other JVMs).

This could have been done only by the analysis of the source code of LaTTe's
memory manager. By reverse engineering of LaTTe's memory management code. we
were able to understand in details the algorithms used, to find points for possible
improvements, and to discuss other algorithms that could be implemented instead of
the present one. That wouid in fact be possible future work : to implement several
memory allocatioa and garbage collection dgorithms in LaTTe and to test them. Some
of that work has already been done by LaTTe's team? and we assume that they ni11
further improve it. possibly going toward incremental collection (to satisfy red-time
applications).

Bibliography

[l] B. Meyer. Object-Oriented Software Construction, Second Edition. Prentice-Hall,
Englewood Cliffs (NJ), USA; 1997.

[2] Latte web site. h t t p : / / latte .mu. ac .W.

[3] P. Wilson, hl. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation: A
survey and critical review. In Proceedings of International Workshop on Memoy
Management, Sept 1995.

[-Il R. E. Jones and R. Lins. Garbage Collection: Algorithms for ilutornatic Dynamic
lblemonj il.lanagernent. Wiley, 1996.

[5] P. R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of Inter-
national Llrorlisliop on Memory Management, Saint-Malo (France). 1992. Springer-
Verlag.

[6] L. P. Deutsch and D. G. Bobrow. An efficient incremental automatic garbage
collector. Communications of the il 19(9) :XZ!-Zi26. September 1976.

[7] H. Schorr and W. Waite. A n efficient machine independent procedure for garbage
collection in various list structures. Communications of the A CM, lO(8) :tiOl-j06,
.\ugust 1967.

[8] R. John M. Hughes. A semi-incrementd garbage collection algorit hm. Software
Practice and Ezperience, 12(11) : 1081-1084, November 1982.

[9] Y. C. Chung, S. Moon, K. Ebcioglu, and D. Sahlin. Reducing sweep time for
a nearly empty heap. In 27th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programrnzng Languages (POPL 'OO), Boston, MA, 2000. ..\CM
Press.

[IO] C. J. Cheney. h non-recursive list compacting algorithm. Communications of the
.4CM, 13(11) :677-8, November 1970.

[Il] D. Ungar and F. Jackson. Tenuring policies for generation-based storage recla-
mation. In Norman Meyrowitz, editor, Proceedings of the Conference on Object-
Oriented Programmzng Systems, Languages, and Applications (OOPSLA). volume
23(11), pages 1-17, New York, NY, 1988. K M Press.

[12] R. Hudson and A. Diwan. Adaptive garbage collection for Modula-3 and Smalltalk.
In ECOOP/OOPSLA '90 Workshop on Garbage Collection, 1990.

1131 -4. L. Hosking and R. L. Hudson. Remembered sets can also play cards. In
OOPSLA 1993 Workshop on Mernory Management and Garbage Collection, 1993.

[14] B. Zorn. The measured cost of conservative gatbage collection. Software Proctice
and Ezperience, 23:733-756, 1993.

[15] H. G. Baker. List processing in real-time on a serial computer. Communications
of the AChI, 21(4):28û-94, 1978. Also AI Laboratory Working Paper 139: 1977.

[16] S. Yuasa. Real-time garbage coilection on general-purpose machines. Journal of
Software and Syslems, 11 (3): 181-198, 1990.

[l?] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. LI. Steffens.
On- t he- Ay garbage collection: An exercise in cooperation. In Lecture Notes in
Cornputer Science, No. 46. Springer-Verlag, New York, 1976.

[18] G. L. Steele. Multiprocessing compactifying garbage collection. Comrnunicntions
of the .4Chf1 18(9):493-308, September 1976.

[19] H-J. Boehm and M. CVeiser. Garbage collection in an uncooperative environment.
Soflware Proctice and Ezperience, 18(9):807-820, 1958.

[20] J. F. Bartlett. Compacting garbage collection with ambiguous roots. Technical
Report 8812, DEC Western Research Laboratory, Pa10 Alto, CA, 1988.

(211 M. Campione and K. Walrat h. The Java Tutonal: Object-Oriented Programrning
for the Internet. Addison-Wesley, Reading, 1996.

[22] 0. -4gesen GC Mailing List Archive, Mar& 1999. h t t p : //lists . t u e s . org/
archives/gclist/1999-March/001550.html.

[23] 0. Agesen. Personal communication.

[24] Sun Microsystems Inc. The Java Hotspot Performance Engine Architecture :

A White Paper About Sun's Second Generation Performance Technoiogy, April
1999. http://wu.javasoft.com/products/hotspot/vhitepaper.html#5.

(25) R. L. Hudson and J. E. B. Moss. Incrementai garbage collection for mature objects.
In Pmceedzngs of International Workshop on Memory Management, volume 637,
University of bIassachusetts, C'SA, 1992.

[26] Sun's Java Hotspot web site. ht tp: //java. sun. com/products/hotspot/index.
html.

[27] Kaffe web site. h t t p : //wu. kaff a . org/.

[28] MachJ web site. http : //wu .machj . comhore . htm.

[29] TowerJ white paper. http: //wu. touerj . com/productsservices/
whitepaperf orm. htm.

[30] HP JDK release notes for version 1.1.8.03. ht tp : //wu. unix . hp . corn/ j ava/
javal/jdk,jre/infolibrary/jdk-rnotes-l1805.~~tml.

[31] HP ChaiVM web site. http : //wu. embeddad. hp. com/products/platf orm/
chaivm. html.

(321 Press release : HP introduces microchaiVM software for mobile devices, Feb
2001. http://uvu.hp.com/communications/neus~events/press~releases/
f eb,2001/ 12%f ebO1a. html.

[33] IBM JDK web site. http : //wu-106. ibn. com/developervorks/ j aval jdk/.

[34] Hungry Programmers web site. http: //WIN. hungry . corn/.
[35] JOVE web site. http://vvw.instantiations.com/jove/product/

thejovesystem.htm.

[36] M. Johnson. Jove optimizing native compiler for java technology. Technical report.
Instantiations, Inc.. 1999. http: //wu. instantiations . corn/ jove/ jovereport .
htm#TheJOVERuntimeEnvironment.

[37] JavaCard web site. http: //java. sun. com/products/ javacard/.

[38] J2bIE Connected Limited Device Configuration (K Virtual Machine) download
site. http://wv.sun.com/softuare/communitysource/j2me/cldc/dovnload.
html.

[39] EmbeddedJava web site. h t t p : / / v w . javasoft.corn/products/embeddedjava/.

[40] PersonalJava web site. ht tp : //wu. javasoft . com/products/personaI j ava/.

[41] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull.
The Real Tzme Specification for Java. Addison-Wesley, 2000.

[42] PersonalJava Emulator web site. http://java.sun.com/products/
persona1 j ava/p j -emulat ion. html.

[43] PERC web site (Newmonics). http : //m. newmonics . com.

[44] Charis web site. http : //m. charis . corn/.

[4] Jbed product line: Whitepaper. http: //wu. esmertec . com/p-vhitepaper .
html.

[46] CaffeineMark web site. http : //wu. pendragon-sof tuare. com/pendragon/cm3/
inf o. htmï.

[47] The Benchmark Applet web site. h t t p : //WU. cts . com/browse/uholder/Doug/
Benchmark/Benchmark . html.

[48] UCSDBenchrnarks web site. h t t p : //m-cse . ucsd. edu/users/vgg/ JavaProf /
j avaprof . html.

[49] Java Grande Forum Benchmark Suite web site. http : //m. epcc . ed . ac . uk/
j avagrande/.

[50] CIjP web site. (http://www.cs.princeton.edu/ appel/modern/java/CIiP/.

[51] JLex web site. http : / / u w . cg. princeton. edu/-appel/modem/ j ava/ JLex/.

[S] Hyperprof web site. http: //wu .physics . orst . edu/'bulatov/HyperProf /.

[53] D. S tefanovic, K. S. McKinley, and J. E. B. MOSS. Age- based garbage collection. In
A CM SIGPLA N Con ference on Object- Onented Programming Syst ems. Languages
d Applications (OOPSLA '99). pages 370-381, Denver, Colorado, 1999.

[54] SI. W. Hicks, J. T. Moore, and S. M. Nettles. The measured cost of copying
garbage collection mechanisms. In Proceedzngs of International Con ference on
Functional Programming. Amsterdam, 1997.

[55] Optimizelt web site. http : //uni. optimizeit . corn/.

[56] P r o b e web site. h t t p : //wu. sitraka. com/softuare/ jprobe/.

[57] bIicroprocessor Architecture and System Software Laboratory, School of Electrical
Engineering, Seoul National University. web site. ht tp: //altair . snu. ac . kr/.

(581 VLIW (Very Long Instruction Word) at IBLI Research. web site. h t t p : //wu.
research.ibm.com/vliw/.

[59] Y. Chung, J. Lee, S. Moon, and K. Ebcioglu. Memory management in the LaTTe
Java virtual machine, 2000. In preparation.

(601 Y. Chung and S. Moon. hfemory allocation with lazy fits. In submission, 2000.

[61] M. S. Johnstone. Non-Compacting Memory Allocation and Real- Tirne Garbage
Collection. PhD thesis, The University of Texas at Austin, December 1997.

