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Résumé 

Dans ce travail, nous essayons d'analyser l'allocation automatique de mémoire en 
Java. Nous présentons d'abord une étude sur des algorithmes de base d'allocation de 
mémoire et de ramasse-miettes. Puis, nous présentons des résultats de tests de six 
systèmes de ramasse-miettes implantés dans différentes machines virtuelles de Java. 
Nous avons constaté qu'un simple système de ramasse-miettes marque-balaye (" mark- 
sweep") dans LaTTe JVM donne des résultats égaux ou meilleurs que des systèmes 
très sophistiqués qui implantent un ensemble d'algorithmes de ramasse-miettes dans les 
machine virtuelles récentes de Sun. Afin d'expliquer cette excellente performance, nous 
avons analysé le code du système d'allocation de mémoire de LaTTe. Ceci nous a permis 
de mieux le comprendre et d'identifier les dispositifs qui augmentent son eEcacité. 
Nous suggérons des améliorations possibles à l'algorithme ainsi que des algorithmes 
alternatifs qui semblent intéressants à implanter et analyser. .4 l'avenir: nous voudrions 
implanter les améliorations et algorithmes proposés pour la gestion de mémoire dans 
LaTTe et comparer leur efficacité à l'algorithme actuel. 



Abstract 

In this work, we try to analyze the automatic memory management in Java. We 
first present a survey on basic allocation and garbage collection algorithrns. Then, we 
present benchmark results on six garbage collectors implemented in different Java vir- 
tua1 machines. We unexpectedlg found that a rather simple mark-and-sweep garbage 
collector in LaTTe JVM performs equally well or better than highly sophisticated 
collectors that implernent a set of garbage collection algonthms in recent Sun's Java 
implementations. In order to explain this excellent performance, we reverse engineered 
the code of LaTTe's memory management system, which enabled us to better under- 
stand it, to find the features that add to its efficiency, to suggest possible improvements 
on the present algori t hm and other garbage collection algorithms interest ing for imple- 
mentation and testing. In the future, we would like to be able to implement suggested 
improvements and algorithms for memory management in LaTTe and to compare their 
efficiency to the present one. 
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Chapter 1 

Introduction 

1.1 Motivation 

1.1.1 Automat ic Memory Management 
Dynamic memory management ' is an integral characteristic of every modem program- 
ming language. There are two types of dynamic memory management: manual and 
automatic. Manual memory management requires the programmer to evplicit ly return 
memory to the language when it is no longer needed. Automatic memory management 
(or garbage collection) frees the programmer from this burden; memory is automatically 
reclaimed when the run-time system can determine that it c m  no longer be referenced. 
Manual memory management is used in C, Cf+, Pascal, Ada, and Modula II. Au- 
tornatic memory management is used in LEP, Scheme, Eiffel, Modula III, and Java. 
Severai reasons lead to the integration of the automatic memory management into 
the programming languages. We will mention some of them: complexity and size of 
applications, size of language data structures, object-oriented progarnming. 

Complexity and size of applications .As a limited resource, memory has always 
been a great concem to programmers. At the beginning of computer science. when 
the memory was very expensive, it was necessary to carefully allocate and deallocate 
the memory. Progams were simple and predictable and the memory was explicitly 
allocated by programmer or compiler. As the price of the memory went dom,  the 
applications became larger and more memory demanding. More complex progams lead 
to more complex problems of deallocation of memory, and the need for an automatic 
memory allocation arose. 

Size of language data structures There are languages that use rather simple 
data structures, and manual memory management is sufficient to handle them. Other 
languages typically manipulate large data structures with complex inter-dependencies. 

- - -  

'The memory management of an application is said to be dynamic if its storage needs vary during 
the execution. 
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Functional and logicd languages have complex patterns of execution. -4utomatic mem- 
ory management seems necessary in those languages. 

Object-oriented programming Ob ject-oriented analysis and programming is a 
rapidly developing area in cornputer science. The keyword of object-oriented approach 
is encapsulation of objects that communicate through cleariy defined interfaces. Man- 
ual memory management contradicts this rnodularity by dispening the code for mem- 
ory deallocation throughout the application code. For this reason most modem object 
oriented languages support gaxbage collection. 

1.1.2 Java 
Among the languages that use automatic memory management. Java (developed by 
Sun Microsystems, Inc.) is the most popular today. It is an object-oriented language, 
but ais0 an imperative, parallel and distributeci language. Java gained popularity 
thanks to its mobile code: it permits the mobility of code through the Intemet. Java 
code is compiled to a binary code, called bytecode. which is recognized by a Java virtual 
machine (JVM). A JVM acts as an interface between the compiled Java binary code 
and the microprocessor (or "hardware platform" ) that actuallg executes the progam's 
instructions. Once a Java virtual machine has been provided for a platform, any Java 
progam (bytecode) can run on that platform. Java was designed to allow applica- 
tion programs to run on any platform without having to be r e h t t e n  or recompiled 
by the programmer for each separate platform. Thus, Java virtual machines make 
Java portability possible. Furthermore, The Java Application Progamming Interface 
(API) is rich in classes and easy to use. Java has also a reputation of being a safe lan- 
guage, wit h its exception handling, security policies and garbage collection. Al1 t hese 
characteristics make Java very popular today. 

1.1.3 Garbage Collection and Java 
Why did Java implernent a garbage collector? There are several reasons and we have 
already mentioned some of tbem. One of the security aspects of a programming lan- 
guage is good memory management. If it is left to the programmer, there is a high 
chance to create either a dangling reference or a garbage (see details in Section 2.1.2), 
which can lead to either premature lack of memory or an incorrect reference. Garbage 
collection takes care of al1 these problems. Furthermore, there is a belief that an object- 
oriented language should have garbage collection implemented. Indeed, Meyer places 
automatic memory management in third place in his iist of "seven steps to object-based 
happiness" [Il. Sun's Java illustrates the need for garbage collection in object-oriented 
languages. This project originally chose C++ as the implementation language, but 
the difficulties encountered with C++ grew over time to a point where the engineers 
felt that problems could be overcome only by designing a new language, Java. One 
important feature iacked by C++ but included in Java is a garbage collector. Java has 
brought garbage collection to the mainstream, being the first truly popular language 
in the C/C++ tradition that requires garbage collection. 
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Garbage collection can be implemented in several ways, and the reason why the 
research in this field is still active is that there is no perfect algorithm: one algorithm 
can be excellent for one kind of application and bad for another, depending on the 
allocation behavior of an application. Sun, for instance, changed several times the 
garbage collector algorithm in its JVMs in order to have a collector that is more 
efficient, having a satisfactory performance for more application types. First versions 
of Java Development Kit had a part ly conservative compacting mark-sweep collector. 
The newest Sun's JVM (Hotspot), has an accurate generational garbage collector, 
wbich is copying in the first generation and either marc-compacting or incremental in 
the second generation (see Section 3.2.1 for detailed description). Sun claims that , 
between these two collectors, the latter is much more efficient. The literature on 
garbage collection supports this claim, but there are some programmers who found 
that for some applications the older algorithm works better. It seems that a run-time 
decision on garbage collection algorithm is necessary to satisfjr al1 possible applications. 

1.2 Objectives 
The objectives of this work are to: 

understand the principles, the advantages and the disadvantages of basic memory 
management algorithrns; 

test the existing JVMs with several carefully chosen applications in order to 
make the assumptions on the efficiency of the implemented garbage collection 
algorithms: 

fully understand the garbage collecter's interface in a Java virtual machine of our 
choice, by a thorough analysis of its code (we chose LaTTe JVM ([2]) based on 
its pedormance and availability); 

discuss possible improvements of existing LaTTe's memory management systern, 
as well as a suitable garbage collection algorithm t hat could replace the existing 
one, without having to change the structure of the virtual machine. 

Organizat ion 
This document is organized as follows : Chapter 2 gives a review of the existing lit- 
erature on memory management algorithms (with an accent on garbage collection). 
Chapter 3 presents the evaluation of the efficiency of garbage collector systems in 
various JVMs. The results of the reverse engineering of LaTTe's memory manager 
code are presented in Chapter 4. Chapter 5 presents a discussion on LaTTe's memory 
management system, and its possible irnprovements. Finally, Chapter 6 concludes. 



Chapter 2 

Memory Management Algorit hms 

Our main objective was to study the most commonly used garbage collection algo- 
rithms. But memory management consists of both allocation and deallocation, and 
therefore we will present both allocation and deailocation techniques, with the accent 
on garbage collection. Much of this chapter is based on the following excellent reviews: 
Wilson's review on memory allocation [3], Jones and Lins' book on garbage collec- 
tion [4] from which the actual algorithms are taken and Wilson's uniprocessor garbage 
collection review [SI. 

2.1 Introduction 
In this section we present a short 
development of automatic memory 
disadvantages, as well as the issues 
garbage collection algorithms. 

history of storage allocation, the reason for the 
management (garbage collection) algori t hms, its 
that have to be considered when cornparing the 

2.1.1 History of Storage Allocation 
Wit h the apparition of hi&-level progamming languages, a compiler needed to ailocate 
resources of the target machine to represent the data objects manipulated by the user's 
progam. There are three ways in which storage can be allocated: static, stack and 
heap allocation. 

In the case of stutic allocation al1 the narnes in the program are bound to storage 
locations at compile-time and these bindings do not change at nui-tirne. Main dis- 
advantages of this type of allocation are that the size of e u h  data structure must be 
known at compile-time, that no procedure can be recursive and that data structures 
cannot be created dynamically. 

In stack allocution an activation record or frarne is pushed onto the system stack 
as each procedure is cailed, and popped when it returns. The characteristics of this 
allocation are: recuaive calls are possible, the size of local data structures su& as 
m a y s  may depend on a parameter passed to the procedure, a called activation record 
cannot outlive its d e r  and only an object whose size is known at compile-time can 
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be returned as the result of a procedure. 
Heap allocation allows data structures in a heap to be allocated in any order (not 

necessarily last in - first out). With this type of allocation, allocation records and 
dynamic data structures rnay outlive the procedure that created them, the size of data 
structures can vary dynamically, dynamically-sized objects may be returned as the 
result of a procedure and result of a function c m  be a data structure which outlives 
the activation of the function that created it. 

Today most high-ievel programming languages are able to allocate storage on both 
the stack and the heap. The allocation is explicit (the programmer allocates the mem- 
ory needed), but memory reclamation can be both explicit (the programmer is respon- 
sible for freeing unused objects) or implicit, or automatic (garbage collector searches 
and frees objects that are no longer used). Many languages (Pascal, C: C++) manage 
al1 data on heap explicitly. Functional, logic and most object-oriented languages use 
garbage collection to manage the heap automatically (Scheme, Dylan, ML, Haskell? 
Miranda. Prolog, Smalltalk, Eifell, Java, Oberon). Modula-3 offers both explicitly and 
automatically managed heaps. 

2.1.2 Reasons for Garbage Collection 

The need for garbage collection arose from the problems with explicit deallocation. but 
also h m  the language and problem requirements. as well as some software engineering 
issues. ünfortunately, garbage collection is not a universal solution. 

Problerns with explicit deallocation 

Manual mernory management can cause the apparition of garbage and dangling refer- 
ences which can lead to the obstruction of the running program : 

Garbage Dynarnically allocated storage may become unreachable. For example. the 
head of a linked list can be made to point to nil. In that case, al1 the other 
members of the list become unreachable, and cannot be deallocated. Such objects. 
that are not alive. but are not free either, are called garbage. With explicit 
deallocation garbage cannot be reused; the corresponding space has leoked away. 

Dangling references If the second member of a linked list is deallocated. the third 
member (together with the rest of the list) will become garbage like in the case 
above. However, a t  the same time, the pointer from the first member of the list 
to the second (deallocated) rnember will still refer to memory that has been deal- 
located and can possibly be reallocated: a dangling reference has been created. 

Garbage collection avoids both of these problems. 

O t her reasons for garbage collection 

Garbage collection may be a languoge requirement. If data structures may s u M w  
the procedure that created them, then it may be impossible for the programmer or 
compiler to determine the point a t  which it is sale to deallocate them. 
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Garbage collection may be a problem requirement. If a stack is irnplemented as  a 
linked list and the pop operation deallocates the first element (the top) of the stack, 
should it deallocate the data refereoced from this element ? The answer really depends 
on whether the data is staticaliy ailocated or not, whether it is the last pointer to the 
data etc. 

Garbage collection may be a software engineering issue. Abstraction and mod- 
ularity are amoog the key principles of the software engineering. Explicit memory 
management is not cornpliant with these principles. Automatic memory management 
gives increased abstraction to the programmer, the mode1 of memory allocation is less 
low-level? so that programmers are relieved of the burden of book-keeping detail. -4s 
for modularity, it should not be necessary to understand an entire prograrn before be- 
ing able to develop a single module. And as liveness is a global propeny, changes to 
book-keeping code might have an influence beyond the module being developed. 

Not a universal solution 

The garbage collection is not a perfect solution for the memory management. Programs 
with straightforward dynarnic memory requirements rnay be supported at louer run- 
time cost by esplicit deallocation (although the short-term gain may have a longer- 
term cost). 4lemory demands of hard real-time sptems cannot pt be solved without 
a hardware support. Garbage collection has its own costs. in terms of both time and 
space. Although garbage collection removes dangiing pointers and space leaks, it is 
vulnerable to other errors. Garbage collection has no solution for the problem of data 
stmctures that grow without bound (such as caching the intermediate results to avoid 
recomputation). Tracing garbage collectors identify live data by foliowing pointers 
from the roots of the computation including the prograrn stack. But the stack can 
become polluted by obsolete pointers and if these pointers are traced the space leaks 
might occiir. 

2.1.3 Comparing Garbage Collection Algorit hms 
Many garbage collection algorithms have been proposed and it is rather difficult to 
compare them. The reason is that the main principles that sbould be taken into account 
when comparing the algorithms (cost of reclaiming cells, allocation cost. overhead on 
user progam operations, delays caused by gaxbage collector. the amount of memory 
required for the collector etc.) depend on different parameters. These algorithms are 
usually tested on ddferent machines, with different processor and on different operating 
sysiems. the implementation of one algorithm could influence its performance, the 
topology and volume of live data on the heap can influence the execution time, the 
order in which a graph is traversed or copied may eEect the vinual memory behavior. 

2.2 Basic Allocation Mechanisms 
Although our work is concerned with garbage collection algorithms, in order to un- 
derstand the memory management as a whole (which will be especially needed when 
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analyzing the source code of a chosen memory management system, see Chapter 4, 
we will briefly mention the mostly used allocation mechanisms. This section is based 
on a review on dynamic storage allocation by Wilson et al. [3]. 

The main job of an allocator is to keep track of which parts of memory are in use, 
and which are free. An ideal allocator would spend negligible time managing mernory 
and waste negligible space. The main problem is an application program, which can free 
objects in any order, creating holes in memory. If these holes are numerous and smdl, 
than they cannot be used for larger blocks. This problem is known as fmgmentation. 

Dynamic aliocation has been studied for several decades, but it is still rather un- 
known field. In fact, it has been proven that any allocation algonthm in some cases 
can perform very badly causing a severe fragmentation, but some allocation algorithms 
have been shown in practice to work well with real progarns and are widely accepted. 

We will brieflp present the following basic allocator mechanisms : 

seqvential fits, including first fit, next fit, best fit, and worst fit, 

a segregated free lists, including simple segregated storage and segregated fits, 

a buddy systems, including conventional binary, weighted? and Fibonacci buddies, 
and double buddies, and 

bitmapped jits. 

2.2.1 Sequential Fits 
In this kind of allocator, al1 free blocks are linked in one linear list, that is often doubly- 
linked and/or circularly-linked. Tbis means that every block has to have at least one, 
and maybe two pointers. Besides, in order to support coalescing of adjacent free blocks, 
boundary tags are usually used which means that each block has both a header and 
a footer, containing the information on block size and whether it is in use. Several 
algorithms are possible, depending on the way the linked list is searched and memory 
allocated. üsing best fit allocator searches the free list to Bnd the smallest free block 
large enough to satisfy a request. The strategy iç to minimize wasted space. First fit 
searches the list from the beginning and uses the first block large enough to satisfy 
the request. If the block is larger, i t  is split and the remainder put into the free list. 
Several implementations are possible, conceming the order in which the blocks are put 
back into the list (LIFO, FIFO etc.). Nezt fit uses a roving pointer for aliocation. The 
pointer saves the position where the last search eoded, and next search begins €rom 
there trying to find the first block that satisfy the request. Usual explanation is faster 
allocation, but there are some disadvantages conceming locality of objects (objects of 
different phases of execution are interspersed in memory). Finally, worst fit allocates 
memory from the largest possible block, boping that the rest of the block will still be 
large enough for next allocation. 

The authors found that in practice best fit and address-ordered first fit (the free 
blocks in the list are sorted in order of addresses) work well in practice. 



2.2.2 Segregated Free Lists 
In this type of allocator, an array of free lists is used, and each free list holds blocks 
of particular size. We mention two variation of this allocation mechanism. Simple 
segregated stomge does not allow splitting of large objects in order to satisfy requests 
for smailer sizes (the opposite case, coalescing, is not allowed either). If no block of 
that size is available, memory is allocated from the operating system and split in equal 
blocks of that size (which means that one page contains block of only one size). In 
the case of segregated fits an array of free lists is used, each holding object of the same 
size class. Size class means that objects of similar sizes are put in the sarne hee list. 
When memory request is made, its size class is calculateà, and any block in the free 
list of that size class (or bigger) c m  satisfy the request. Size class schemes usually use 
sizes of power of 2, but other schemes are used also. If a block of that size class is 
not available, search is continued in larger size classes. Blocks are split and put into 
an appropriate free list. They can also be coaiesced, using boundary tags, mentioned 
above. 

2.2.3 Buddy Systems 
Buddy systems are in fact a special case of segregated fits, using particular splitting 
and coalescing system. In the simple buddy scheme, the whole heap is split into two 
large areas, and those areas are further split in the same way, until the appropriate 
size hm been reached. Split blocks are put into free lists according to their size. When 
blocks are freed. the? are merged with its buddy, a unique neighbor in the same level 
in the binary hierarchical division. The merge is efficient, done by simple address 
computation. Several variations on buddy systems exist : binary buddies, Fibonacci 
buddies, weighted buddies, double buddies. Al1 of them are variations on the size of 
the split block, in order to eliminate as much as possible intemal fragmentation. 

2.2.4 Bitmapped Fits 
In this mechanism a bitmap is used to record which parts of the heap are in use, and 
which parts are not. A bitmap is an array of one-bit flags, one for each word (or 
double-word, depending on the architecture) of the heap area. Bitmap may have an 
advantage over headers, if the objects size is small (a bit per word incurs a 3% overhead, 
whereas for a 10-word object, a header incurs 10% overhead). 

2.2.5 Conclusion 
Memory allocation mechanisms differ mostly by the speed of search for a free block, and 
by flexibility of splitting and coalescing. It seems that segregated fits using boundary 
tags, or bitmapped techniques give rather satisfactory results. It is out of the scope of 
this work to enter into the details of advantages and disadvantages of each mechanisrn, 
the purpose of t his section was to give just a global overview. 
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2.3 Basic Garbage Collection Algorithms 
In t his section we first int roduce some base defini tions necessary for the understanding 
of garbage collection algorithms, and later we describe basic and advanced garbage 
collection techniques. 

2.3.1 Phases of Garbage Collection 
There are two phases of garbage collection: garbage detection and garbage reclamation. 
Garbage detection consists of distinguishing the live objects from the garbage in some 
way, while garbage reclamation deals with reclaiming garbage objects memory. so that 
the running program can use that memory space again. 

The liveness criterion is defined in terms of reachability from the active variables. 
These includes statically-allocated global or module variables, local variables in acti- 
vation records on the activation stack, and any variables currently in registers. These 
objects are called root set. Objects on directed path of pointers from the roots are 
considered alive: objects not reachable from the root set are considered garbage. 

Object representation is done assuming that it should be easy to determine the type 
of an object at run time. This can be accomplished using either hidden (unaiailable to 
the programmer) "header" fields on heap objects or tagged pointers. Header field is an 
extra field containing t-ype information: which is typical for statically typed languages. 
In order to represent tagged pointers, a shortened representation of the hardware ad- 
dress is used, with a small t-ype-identifying field in place of the rnissing address bits. 
which is typical for dynamically typed laquages. 

The garbage detection phase of garbage collection may be done in two ways: by 
reference counting or directly (maintaining a count of the number of pointers to each 
object), or by tracing or indirectly (traversing the pointers in order to End dl the 
objects the program might reach). There are several varieties of tracing collection 
(garbage reclamation phase included): mark-sweep? mark-compact. copying and non- 
copying implzcit reclamation. We now examine each of these techniques in turn, by first 
describing it ? and then pointing to the associated issues (advantages and limitations). 

2.3.2 Reference Count ing 
P hilosophy 

Each object has an associated reference count i.e. count of the references (pointers) to 
it. Ewry time a reference to the object is created, e.g. when a pointer is copied from one 
place to another by an assignment, the pointed-to object's count is incremented. and 
when an existing reference is destroyed, it is decremented. The memory is reclaimed 
when the object's reference count is O. 

Each object typically has a header field of information describing the object, which 
includes a subfield for the reference count. 
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When the object is reclaimed, its pointer fields are examined, and any object it 
points to also has its reference count decremented. Reclaiming one object may therefore 
leaà to reclaiming many other objects. 

Algorit hms 

In this section we present dgorithms that are most often used to implement reference 
counting, starting with simple recursive freeing. The second algorithm, non-recuaive 
fieeing, tries to avoid an overhead of the h s t  one. Finally, to optimize the reference 
counting, a deferred reference counting may be used. 

Simple recursive freeing 

Descript ion This is the simplest reference counting algorithm. At the begin- 
ning, d l  cells are piaced in a pool of free cells (usually implemented as a linked list), 
f r e e l i s t .  The cells are linked by the pointer to the next free cell, next. Function 
new() allocates a new cell, nevcell, from the free list using the function alocate(). 
Function update(R,S) updates a pointer from the cell R to the ce11 S? incrementing the 
reference count of S. The name of the algorithm cornes from the function delete(T), 
which deletes a pointer to T, decrementing its reference count. and, if its count is 0, it 
deletes al1 the pointers from T by calling reciirsively the function delete(T). 

The functions mentioned above are explained hereafter . 

Function new() Checking for the free mernory, calling of the function for the allo- 
cation of a new cell, and updating RC (reference count) field of the new ce11 to 
1: 

neu() = 
if free-list == n i l  

abort "Memory exhausted" 
nevcell = allocate () 
RC(newcel1) = 1 
return nevcell 

Function allocate() Allocation of a new ce11 from the list of free cells: 

allocate0 = 
nevcell = f r e e l i s t  
f ree-list = next (free-list) 
return newcell 



Function update() Updating the pointer fields under reference counting. First the 
old pointer is deleted ( c d  of delete), then the RC of the new pointed-to object 
is incremented and, finally, the pointer is updated. 

update(R.S) = 
delete (*R) 
RC(S) = RC(S) + 1 
*R = S 

Figiire 2.1: Update (lef t (R) , S) 

Function delete() Deleting of a pointer to an object T. First the object's RC is 
decremented, and checked if it is O. If so, the pointers to the object's children 
are deleted and the object is freed (cal1 of f ree). 

delete(T1 = 
RC(T) = RC(T) - 1 
i f  RC(T) == O 

for U in Children(T1 
delet e ( *U) 

f ree (Tl 

F'unction free() Putting the garbage object in the list of free objects: 

free(N) = 
next (NI = free-list 
freeJist = N 

Important Issues This algorithm has many advantages. It is simple to imple- 
ment, it liberates the non-used memory immediately, its overheads are distnbuted 
throughout the computation (which makes it suitable for real-time spstems). But. 
one of its disadvantages Iays in the overhead: the cost of removing the last pointer is 
unbounded since any descendants reachable only from that object must also be freed. 
The non-recursive freeing tries to solve this problem. 
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Description Simple recursive freeing distributes processing overheads unevenly: 
the cost of deleting the 1st pointer to an object is not constant, it depends on the 
size of the sub-graph rooted a t  that object. To avoid that, when the 1 s t  pointer to  
a node N is deleted by the function delete(N), N is simply pushed onto a free-stack. 
And when N is about to be reallocated fiom the top of the free-stack, any pointers in 
N are deleted by new(), and any immediate referent which would have a RC of zero 
is pushed back ont0 the free-stack. The reference-count field is used to chin  the free 
stack. 

Function new() Checking for the free memory, allocating of a new ce11 by the func- 
tion allocate() and deleting every child of the new ce11 by the function delete. 

new() = 
if free-atack == ni1 

abon ' ' Memory exhaustedJ ' 
neucell = allocate O 
f o r  N in Children(newcel1) 

delete (*NI 
RC(neucel1) = 1 
return nevcell 

Function delete(N) Checking for the N's reference count: if it is equal to 1, then 
put N on the free stack, else decrement its RC. 

delete(N) = 
if RC(N) == 1 

RC(N) = fme-~tack - RCfield wed to chuin the free stock 
free-stack = N 

else RC(N) = RC(N) - 1 

Important Issues This aigonthm preserves the advantages of the first one, and 
it gives a solution for the overhead of updating the reference counts when delet ing the 
last pointer to an object. But it leaves some problems unsolved. One of them is the 
efficiency problem. The cost of the reference counting is proportional to the amount 
of work done by the nuining program, with a fairly large constant of proportionality. 
When a pointer is created or destroyed, its reference count must be adjusted. In the case 
of short-lived stack variables, rebrence counts are incremented and then decremented 
back to their original value very soon. It is desirable to optimize it to avoid such an 
overhead. One of the ways to optimize it is to use deferred reference counting, which 
we detail in the next section. 



Deferred reference counting 

Description Rather than always adjusting reference counts and reclaiming o b  
jects whose counts become zero, references from the local variables are not included 
in this book-keeping most of the time. From time to time, the reference counts are 
brought up to date by scanning the stack for pointers to heap objects. The cost is still 
roughly proportional to the amount of work done by the running program, but with 
Iower constant of proportionality. 

One of the algorithrns for deferred reference counting is the Deutsch-Bobrow algo- 
rithm [6]. Here reference counts only reflect the number of references from other heap 
objects: references from the stack are not counted. This means that objects can no 
longer be reclaimed as soon as their reference count drops to zero since they might still 
be directly reachable from a local or temporary variable. Instead, cells with a reference 
count of zero are added to a zero count table (ZCT) by the function delete. Function 
update(R,S) updates the pointer from the object R to the object S, and the function 
reconczle() checks whether there are objects in the ZCT that are not present in the 
stack? and returns tbem to the free Iist. 

Function delete(N) This function decrements RC of the cell to be deieted, checks if 
RC is zero and in that case puts the ce11 to the zero count table. 

delete(N) = 
decrementRC (NI 
if RC(N) == O 

add N to ZCT 

Fùnction update(R,S) Entries in the ZCT are deleted and the RC incremented when 
a reference to the object is stored in another heap object. 

update(R,S) = 
delete (*RI 
incrementRC (SI 
remove S from ZCT 
*R = S 

Funct ion reconeile () Periodically the ZCT is reconciled to remove and coliect 
garbage. Any object with a reference in the ZCT that is not also found in 
the stack must be garbage and can be returned to the free-list. First the RC of 
the stack objects is incremented in order to mark the stack. Mter that, the RC 
of every object in ZCT is checked. If it is equal to zero, it means that the object 
is not in the stack, and it is therefore freed. 
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reconcile() = 
for N in stack - mark the stack 

incrementRC(N1 
for fi in ZCT -rechim gorbage 

if  RC(N) == O 
for M in Children(N1 

delete (*Ml  
f ree (N) 

for N in stack -unmark the stack 
decrementRC(N1 

Important issues Defened reference counts reduces the cost of pointer writes. 
On the other band, there is a space cost of ZCT and lack of immediate recycling of 
the memory (as the garbage is retained until the ZCT is reconciled). Tbere is also a 
question of stack ovedow: ZCT is reconciled when overflowed, but freeing of an object 
can push more objects to the ZCT, causing the overfiow again. This problem can be 
remedied by either canceling the freeing of the object until the next reconciliation. or 
implementing the stack as a bitmap (a bit for eves, word in the heap; a n  object is 
entered or removed from the bitmap by setting its bit). 

Other reference count techniques 

In order to save space required to store reference counts, which cm theoretically be 
large enough to hold the total number of pointers in the heap and in the roots. a 
limited-field reference counting can be used. Small reference count fields may ovedow, 
and precautions must be taken to avoid it. Besides, when the reference count reaches 
its maximum, it cannot be reduced, because the true count may be geater than its 
reference count. X backup tracing collector must be used to restore true reference 
counts. The use of a tracing collector is not burdensome since it is likely to be used to 
collect cyclic garbage (see Disadvantages below). There is a more radical modification 
of this technique, which uses a single bit to reference counts. The bit is used to 
distinguish the pointers that are unique from the shared ones. k in the previous case. 
the use of the tracing collector is necessary: shared cells can only be reclaimed by 
tracing. 

The execution time of the reference counting is generally greater than that of tracing 
techniques. In order to profit from the benefits of the reference counting and still have 
an acceptable execution time, hardware support must be included. Tbere is some work 
in that field (such as self-managing heap mernories based on reference counting), but 
we will not detail it here, because it is not widely used. 

Some researchers t ried to overcome the main disadvantage of the reference counting, 
the cyclic garbage (see Disadvantages below), by either treating a cycle as a single entity 
(under some restrictions), or by distinguishing the pointers intemal to the cycle from 
externai references. None of these schemes have been adopted for use by significant 
systems. 



Advantages and disadvantages of reference counting 

Advantages This system can perform with little degradation when almost al1 of the 
heap space is occupied by live objects. It is useful for finalization (clean-up actions, like 
closing files, when objects die). As for the usage, this system is not convenient for high- 
performance implementation of general-purpose programming languages. However, it 
is used by most file systems to manage filesldisk blocks and in simple interpretive 
languages and g a p  hical toolkits. 

Disadvantages Besides certain amount of optimization, there is a cost of book- 
keeping of the objects whose count is O (typically, one or more lists of reusable objects 
is created by linking the freed objects). Heclamation operation costs iew tens of in- 
structions per objects, which is proportional to the number of objects allocated by the 
running program. There is still an incapability of reclaiming circular structures. If the 
pointer in a group of objects creates a (directed) cycle, the objects' reference counts are 
never reduced to zero, even if there is no path to the objects from the root set (in the 
Fig. 2.3.2 after delete (right (RI I the cycle STU is neither reachable nor reclaimable). 
That means that some other kind of garbage collecter has to be included, which can 
compromise the real-time nature of the algorithm. 

Figure 2.2: 

2.3.3 Mark-Sweep 

P hilosophy 

afrcr 

Reference counting cyclic data structures 

Collection 

As we mentioned in Section 2.3.1, the first tracing technique for garbage collection 
is mark-sweep collection. The name cornes from two phases of garbage collection : 
garbage detection phase cailed mark phase, and garbage reclamation phase called sweep 
phuse. Mark phase consists of tracing Live objects by starting at  the root set and actu- 
ally traversing the graph of pointer relationships by either depth-first or breadth-tirst 
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traversa1 (see Fig. 2.3.3 : al1 unmarked cells (with unshaded mark-bits) are garbage). 
Reached objects are marked by toggling a bit in the header of the object or by recording 
them in a bitmap or in a table. Once the live objects have been marked, memory is 
swept (exhaustively examined) to find ail unmarked objects which are then linked into 
one or more free lists. 

Figure 2.3: The g a p h  after the marking phase 

Algorit hms 

The common characteristic of al1 mark-sweep algorithms is that a bit associated with 
each ceIl is reserved for marking. To mark dl the objects that are alive, the function 
mark is called on every member of the root set. After that the unmarked cells are 
returned to the free pool by the function sweep. 

mark-aveep () = 
for R in Roots 

mark(R) 
sveep (1 
if free-pool is empty 

return '<Memory exhausteda' 

Marking phase can be done in several ways, while not many algonthms exist for the 
sweeping phase. We first mention the marking a l g o r i t h ,  namely: simple recursive 
murking, using a rnarking stack, wing a pointer reversa1 and uszng a bitmap mark- 
ing. After that, we present bnefly a simple algorithm for the sweeping phase, and its 
modification, l u q  sweeping. 

Simple recursive marking The simplest and the least efficient marking algorithm 
is simple recursive marking. 
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Description Function mark(N) first checks if N is marked; if not, it marks it and 
calls recursively the function mark(N) for every child of N. 

mark(N) = 
if  mark,bit(N) == unmarked 

mark-bit (NI = marked 
for M in Children(N) 

mark(*H) 

Important issues The problem is the recursion which is neither tirne- nor space- 
efficient, and may cause the system stack to overflow. The "using of a rnarking stack" 
approach, explained below, maites space and time cost of the marking phase explicit 
(the maximum size of the marking stack depends on the size of the longest path that 
has to be traced through the graph; overflows in real tirne are rather rare). 

Using a marking stack 

Description .A standard method for improving the performance of recursively 
described algorithrns is to replace recursive calls by iterative loops and a h l i a -  data 
structures. In the case of marking, an auxiliary stack can be used to hold pointers to 
nodes that are known to be live but have not yet been visited. 

In the following algorithm the method traverses each node, stacking branch points 
only once: 

gco  = 
marklteap ( 
sweep () 

markheapo = 
mark-stack = empty 
for  R i n  Roots 

mark-bit (RI = marked 
push(ll, mark-stack) 
mark0 

mark0 = 
vhile mark-stack # empty 

N = p o p h r k - s t a c k )  
for  M in Children(N1 

i f  mark-bit (*U) == unmarked 
mark-bit (*M) = marked 
i f  not atorn(*M) 

push(*M, mark-stack) 
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In the alternative algorithm, the method traverses each arc. General directed graph 
usually contains more arcs than nodes, hence this algorithm is less efficient: 

mark0 = 
while markstack # empty 

N = pop(mark-atack) 
i f  mark,bit(*M) == unmarked 

mark-bit (*FI) = marked 
f o r  M in  Children(N1 

push(*M, mark-stack) 

A graph may contain large nodes, which is not a probiem if the nodes are atomic. 
but if they are not, pushing al1 its children can cause the stack to overflow. One 
solution is to put in the marking stack two pointers to the start and the end of each 
object pushed onto the stack. At each iteration of the marking loop these pointers are 
examined. If the object is srnall, then al1 of its children are pushed onto the stack. 
otherwise on- a portion is pushed and the two pointers are updated with the start 
and the end of the rest of the object. 

Important issues Attention must be paid to the stack overflow. It c m  be de- 
tected in two ways: either by an in-line check in each push operation or by counting 
the number of pointers containeci in the node popped from the stack at each iteration 
of the marking loop. An alternative is to use a write-protected page (guard page): the 
last page on the stack is set to be write-protected. Memory protection fault is triggered 
if a stack entry is pushed ont0 this page. This operation is quite expensive and not 
much in use. The other inconvenience is the additional space for the stack. Below we 
explain a method for marking in constant space: pointer reversal. 

Using a pointer reversal 

Description Previous algorithm needs the use of an extra space for the stack. 
Pointer reversal is a method of marking in constant space, without using additional 
space for marking stack. In order to record al1 branch points that it passes through, 
the marking algorithm has to store the back pointer to the previously marked node. 
One way to do that is to use a pointer reversal algorithm developed by Deutsch, Schorr 
and White [7]. This algorithm supposes that al1 branch-nodes are binary (with exactly 
two pointer fields: left and right). 

Three variables are used: current - the current node, previous - the node 
behind the current node, and n e a  - ahead the current. Initially current is set to 
the root of the graph to be marked and previous to nil. There are three phases in 
this algorithm. In the ôrst phase, a function calleci mark follows left pointers and 
marks nodes until it reaches a marked node or an atom. When it arrives there (second 
phase), it sets a flag-bit of the ptevious node (that indicates that its left subgraph is 
marked) and atternpts to start marking koom the r ight  node. The original value of 



the l e f t  field is restored. In the third phase, the orignal value of the r i g h t  field is 
restored and the algorithm retreats to the parent node. This phase is repeated until 
a node whose flag-bit is not set is found (its right subgraph is not yet marked). The 
algorithm terminates when previous becomes n i 1  again. 

mark(R) = 
done = false 
Curr8nt = R 
previous = n i 1  
uhi le  not  done 

- follow le/t pointers 
vh i le  current  # ni1 
and mark-bit (current  ) == unmarked 

mark-bit (current  ) = marked 
i f  not a tom(curent)  

next = l e f t  ( c u r e n t )  
l e f  t ( c u r e n t )  = previous 
previous = current  
current  = next 

-retrait 
vhi le  previous # n i 1  
and f lag-bit  (previous) == s e t  

f h g - b i t  (previous) = unset 
next = r i g h t  (previous) 
right (previous) = current  
current  = previous 
previous = next 

i f  previous == n i 1  
done = true 

else 
-switch to right subgraph 
f lag-bit  (previous) = set 
next = l e f  t (previous) 
lef t (previous) = current  
c u r e n t  = r ight(previous) 
r i g h t  (previous) = next 

Pointer reversal can be used for variable-sized nodes. Each node has two additional 
fields: one holds the number of pointers (n) contained in the node (which is necessary 
in any case) and the second is used for marking (i). Each time a child is marked, i is 
incremented. When i becomes equal to n, the algorithm retreats to the parent node. 

Important issues Pointer-reversal algonthms require constant space to operate, 
but they involve an overhead in each node of the heap. Their performance is consid- 
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Figure 2.5: The switch phase 

erably worse than that of "the pointer-stack method one, having to visit each node 
more times than stack-based marking. It should be used as a method of last resort. 
invoked only on pointer-stack overflow. 

Using a bitmap rnarking 

Description The mark bits are not placed in the objects they mark. They can be 
stored in a separate bitmap table. -4 bit in the table is associated with each address in 
the heap that  may contain an object. The maximum fraction of the heap occupied by 
the table is inversely proportional to the size of the smallest object (bigger the object , 
lesser the number of objects that can fit in tbe heap, and smaller the bitmap table). 

Important issues Bitmaps minimize the amount of memory needed to store 
mark information. If it is small it can be held in RAM (so that reading/writing of 
mark-bits does not cause page faults)' and 32 bits can be checked at once by ALU 
operation. Durhg the marking phase, the heap objects are not written into, and 
atomic objects are not even touched by the collector. The only disadvantage of the 
bitmaps is that mapping the address of an object in the heap to a mark-bit is more 
expensive than it would be if the mark were stored in the object. 

Lazy sweeping 

hn-5l 6 b 

Figure 2.6: The retreat phase 



Description One of the disadvantages of mark-sweep garbage collection is that its 
cost depends on the size of the heap, because the sweep phase must examine the whole 
heap. The pauses can be reduced if the sweep phase is done in parallel with program 
executioa. The simplest way to do this is to execute a fixed amount of sweeping at 
each allocation. Hughes's algorithm [BI is an example of such a lazy sweeping. At each 
allocation, the heap is swept and the memory returned by sweeping is used for the 
allocation. There is no use of free lists. 

allocate0 = 
vhile sweep < Heap-top 

if mark-bit (sueep) == marked 
mark-bit (sveep) = unmarked 
sweep = sveep + size(sweep) 

else  
result = sueep 
sweep = sweep + size(sveep) 
return result 

- heap is full 
markheap () 

Lack of free list manipulation is an advantage if mark bits are stored in the objects 
themselves. But in the case of a bitmap, there is no advantage in reloading and saving 
bitmap indexes and bitmasks at each cal1 to allocate. It is better to either use a 
free-list (the case of Boehm-Demers- Weiser conservative collector, see Section 2.6.2) or 
a fked-size vector (Zorn's generational mark-sweep collector. see Section LM). 

Important issues The cost of mark-seeep collection is likely to be dominated 
by marking and not by sweeping phase. Yet, there is no reason to sweep the entire 
heap, while the sweep phase can be done in parallel with program execution by lazy 
sweeping. 

Selective sweeping Chung (91 developed another algorithm that can improve the 
efficiency of the sweep phase : selective sweeping. We explain it in details in the section 
4.3.2, when describing its actual implementation. 

This algorithm avoids having to touch every object in the heap during the sweep 
phase by constructing a set of Iive objects during the marking phase. Objects in this 
set are then sorted by address and the gap between each two objects freed in a constant 
time. 

Important issues The efficiency of the selective sweeping depends on the number 
of live objects. If this number is srnail, selective sweeping obviously reduces sweeping 
time. If it is rather big, then traditional sweeping may be better (avoiding the sorting 
phase, for instance). In order to decide which algorithm to chose, the number of live 
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objects is tracked during marking phase, and if that number exceeds certain threshold, 
the set of live objects is not constructed and the traditional sweeping is performed. 

Advantages and disadvantages of mark-sweep collection 

The advantage of this technique over reference counting is that cycles are handled 
naturally and there is no overhead in pointer manipulations. On the other hand, there 
is a problem of fragmentation that is not unique for this type of collection. It is difficult 
to handle objects of varying sizes without fragmentation of available memory. This 
can be mitigated somewhat by separate lists for objects of varying sizes, and merging 
adjacent free spaces together (but difficulties rernain). The cost is proportional to the 
size of the heap, including both live and garbage objects, but if live objects tend to 
survive in clusters of memory, this can greatly diminish the constant of proportionah. 
Objects of very different ages are interleaved in memory (unsuitable for most virtual 
memory applications). 

2.3.4 Mark-Compact Collection 

The disadvantages of mark-sweep collection are reduced by mark-compact collection. 

P hilosop hy 

blark-compact collection remedies the fragmentation and allocation problems of mark- 
sweep coilection. It has three phases : matking, compacting and updating the pointers. 
Marking is done in the same way as for mark-sweep (see Section 2.3.3). After marking, 
live objects are slid to one side of the heap adjacent one to another, which creates a 
single contiguous free space at the end of the heap. Finally. the values of the pointers 
that referred to moved objects are updated. 

Algorit hms 

In this section we present the most frequently used algorithms for this garbage collection 
technique : two-finger algo rithm. the Lisp 2 algorithm and table-based methods. 

Two-Finger Algorithm 

Description This algorithm is generally applicable only to fked-size cells. Two 
pointers to the heap are used : one to point to the next free location (f ree). the other 
to the next active ce11 to be moved ( ï îve) .  The fonvarding address is left in their old 
location. 

First the live data is marked (using the function mark()), and the number of live 
cells is returned. 
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compact -2f inger O = 
no- l ive-ce l l s  = mark() - markhg of the live objects 
relocate  0 - miocution of the cells leaving 

the forwurding addms 
update-pointers (no-l ive-cel ls)  - upàuting the pointers to the newly 

reioccited celb 
free = no-i ive-cel ls  + 1 - fird free slot on the heup 

Then the first p a s  of the algorithm relocates cells from the upper part of the heap 
to the holes in the lower part of the heap, ovenvriting the fiat field of the vacated slots 
w i t h the forwarding addresses. 

relocate0 = 
free = Heap-bottom 
l i v e  = Heap-top 
vhile marked(free1 

free = free + 1 
while not marked(1ive) 

l ive  = l i v e  - 1 
uhi le  l i ve  > free 

move(live, f ree )  
HeapClive] = free 
uhi l e  marked(free) 

f r e e  = free + 1 
uhi le  not rnarked(1ive) 

l i v e  = live - 1 

- find the first hole 

- find the first live ce11 

- Ienve forwarding address 

The second pass scans the live cells, al1 of which are now at the bottom part of 
the heap. This pass updates the values of any pointer fields that refer to cells that 
have been evacuated (i.e. with addresses geater than nl ive) ,  by referring to the 
fonvarding addresses left by the first p a s .  

update-pointers (nl ive)  = 
for i = 1 t o  nlive 

f o r  j in Children(Heap C i ]  ) 
i f  Heaptj 1 > n l i v e  - points to reioccted area 

HeapCj] = HeapCHeap[j]] 
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Important issues This algorithm can be easily extended to deal with the case 
when variable-sized celis are allocated in different regions of the heap. Here the mark 
phase rnust calculate no-live-cel ls  for each region and the cells in each region must 
be relocat ed separately. 

The chief drawback of this algorithm is that the order in which the cells are re- 
located is arbitrary, so it is not suitable if the reason for compaction is to improve 
spatial locality. The Lisp 2 algorithm, presented in the next paragaph, outcomes this 
drawback, by preseming the ceil order. 

The Lisp 2 Algorithm 

Description This algorithm first marks all live cells (function mark()). After 
the marking, it consists of three phases (explained below) : first it computes the for- 
warding addresses of each ce11 and wntes them in a special field of each ce11 (function 
cornpute-addresseq")), then it updates the pointers to the cells to be relocated (func- 
tion update-pointers()) and finally relocates the ceils to their new addresses (function 
relocat e 0). 

CompactLISP2 0 = 
mark0  
cornpute-addresses 0 
update-pointers 0 
relocate O 

The first phase computes the new address of each active cell, and puts it in the 
f orwarding-address field of each object. If the object is not marked (i.e. if its 
f oruarding-address field is nil), the function combine() finds the next live object. 

cornpute-addresses0 = 
free  = Heap-bottom 
P = Heap-top 
vhile P < Heap-top 

if f oruarding-address (P) # ni1 
f oruarding-address (PI = free 
free = free + size(P1 

else combine (P) 
P = P + s ize(P)  

combine(P1 = 
- P is unmarked 
next = P + size(P1 
while f oniarding-address (next) == ni1 

size(P) = size(P1 + size(next1 
next = P +. size(P1 

-not marked 
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The second p a s  updates the values of pointer fields of active cells (including root 
pointers). 

update-pointers0 = 
for R in Roota 

R = f oniarding-address (RI 
P = Heap-bottom 
vhi le  P 5 Iieap-top 

if f orvarding-address (Pl # ni1 
for Q in Children(P1 

Heap [QI = f orvarding-address (Heap [QI 
P = P + size(P) 

The third pass clears the forvarding-address field and moves cells to their new 
address. At the end of this phase, al1 active data are compacted to the lower part of 
the heap, and f ree indexes the first free location in the heap. 

relocate0 = 
P = Heap-bottom 
vhile P 5 Heap-top 

temp = P + size(P) 
if f orwarding-address (P) # ni1 

f ree = f oruarding-address (Pl 
f oruarding-address (P) = ni1 
move (P, free) 

P = temp 
free = free + size(free) 

Important issues This algorithm is suitable for cells of variable sizes, it 
preserves their order, which improves spatial locality. On the other hand, it makes 
three passes instead of two, and it needs one more pointer-sized field that serves for 
storing the fonvarding addresses and for marking process. The table-based methods, 
presented below, preserve ce11 ordering without any space cost. 

Table-based methods 

Description These methods use b m k  table to keep account of the location of 
blocks of active data and the sue of holes, and use this information for updating 
pointers. 
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compact-table O = 
nlive = mark0 
relocate 0 
sort-table (1 
update-pointers (nlive) 

After marking the active graph, a break-table of telocation information is con- 
structed in the free area. The break table is built as each contiguous area of active 
data is cornpacted by determining the address of the start of the area (g), and the 
total amount of free space discovered so far ( s i ) .  The pair (u,, s i )  is written into the 
free slot at the end of the break table, -4s areas of active data are relocated toward 
the bottom of the heap, it may be necessary to move the break table in the opposite 
direction. If this movement causes the break table to be unsorted, the table must be 
sorted. Finally, the pointer fields have to be adjusted. To adjust a pointer p, the 
break table is searched for adjacent pairs (0,s) and (a ', s ') such that a 5 p < a '. The 
adjusted value of p will then be p - S. 

Important issues Table-based methods make two passes of the heap and require 
no extra space (the information is stored in holes themselves). The main concem is 
the time needed for searching of the break-table which depends on its size. The search 
can be improved by using a hash table. 

Advantages and disadvantages of mark-compact collection 

The elimination of fragmentation problems by compacting reduce the cost of alloca- 
tion: allowing an easy allocation of objects of various sizes. M ark-compact collection 
preserves the order of objects in rnemory, which arneliorates spatial locality. 

The execution of the compactor can be rather slow. At least two (and in one case. 
three) passes over the data are required (like in case of mark-sweep). Mark-compact 
collection can be significantly slower than mark-sweep if a large percentage of data 
survives to be compacted. 

2.3.5 Copying Garbage Collection 
P hilosophy 

Copying garbage collection is another kind of tracing collection. This kind of garbage 
collection is similar to mark-compact, but without marking: traversal of data and the 
copying process are integated, so that most objects need to be traversed only once. 
Like with mark-compact collection, there is no reai collection of garbage. The usual 
term for the copying traversai iç scauenging, since only the worthwhile objects amid 
the garbage are saved. 
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Algorit hms 

A Simple Copying Collector 

Description The most used copying collec tor is semispace coilector t hat imple- 
ments Cheney's algorithm ( "stop-and-copy") [IO]. The heap is divided into two con- 
tiguous semispaces. During normal execution only one of them is used (the allocation 
is simple and fast because of the large, contiguous free space). When the program 
dernands an allocation that will not fit in the unused area, the progam is stopped and 
the copying garbage collector is called to reclaim space. -411 the live data are copied 
from the current semispace (frompace) to the other semispace (tospace). After that, 
the tospace is made "current" semispace, and the execution is resumed. The roles of 
two spaces are reversed each time the garbage collector is invoked. 

The simplest algorithm for copying is Cheney's algorithm [IO]. The immediately 
reachable objects form the initial queue of objects for a breadth-first traversal. Each 
tirne a pointer into fromspace is encountered, the referred-to object is transferred to 
the end of the queue, and the pointer to the object is updated to refer to the new copy. 
The free pointer is then advanced and the scan continues. Eventually, the scan reaches 
the end of the queue, signifying that ail reached (and copied) objects have also been 
scanned for descendants. 

f l i p 0  = 
Fromspace, Tospace = Tospace, Fromspace 
scan = free = Tospace 
f o r  R in  Roots 

R = copy(R) 
while scan < f ree  

f o r  P i n  Children(scan) 
*P = copy(*P) 
scan = scan + size(scan) 

copy(P) = 
i f  f oruarded (P) 

return f oruarding-address (PI 
else 

addr = f ree  
move(P, free) 
f r e e  = free + size(P) 
f orwarding-address (Pl = addr 
return ad& 

In order to assure that the objects reached by multiple paths are not copied to 
tospace multiple times, a slightly more complev process is needed. When the object 
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Figure 2.7: Copying of the list [O, 1 ,O, 1. . ..] 

is copied, a forwarding pointer is installed in the old version. It indicates where to 
find a new copy of the object. Figure 2.7 shows the copying of the list [O.loO.l. ...]. 
Note that the forwarding addresses are shown only at the phase in which the object 
is copied (their presence should be assumed from then on). The copying proceeds in 
five phases. marked by numbers in the Fig. 2.7 : 1. the root node (A) is copied; 2. 
space is reserved for 8, and then B is copied completely; 3. C is copied; 4. left (C) is 
copied, space is reserved for D, and then D is copied and 5. right(C) is copied. and the 
collection is complet e. 

Important issues The work done at each collection is proportional to the amount 
of live data at the time of garbage collection, and not to the entire heap. If approx- 
imately the same amount of data is live at any given time during the program's ex- 
ecution, decreasing the frequency of garbage collections vil1 decrease the total effort. 
To do that, the amount of rnemory in the heap can be increased: program will run 
longer before filling it, and the average age of objects at garbage collection time d l  be 
increased, so the chance that an object will never have to be copied is increased. Here 
the paging costs are ignored (they can make the use of a larger heap area impractical 
if there is not correspondingly large arnount of MM). 

Advantages and disadvantages of copying collection 

Copying collection divides the heap into two semi-spaces, but it uses no further heap 
memory (mark-bits are not required, and forwarding addresses can usually be written 
over user data fields). The cost of the collection depends on the amount of live data 
either than the entire heap. 

One of the disadvantages of the copying collection is the copying of large objects, 
which is more expensive than their marking. This is the reason for having separate 
largesbject spaces in some collectors. 



2.3.6 Non-Copying Implicit Collection 
P hilosophy 

In the copying collector, the spaces are a particular implementation of sets. Tracing 
process removes live objects from one set, and everything that rests is a garbage and 
can be reclaimed. Given a pointer to an object it must be easy to determine which 
set it is member of, and it must be easy to switch the roles of the two sets (toset and 
/romset). The sets can be implemented as linked lists, and the objects 'inoved" from 
one set to another not by copying but by unlinking from one list and linking to another. 

Algorit hm 

Description In order to implement sets as linked lists, this system adds two pointer 
fields and a "color" field to each object. Pointer fields are for doubly-linked list (set), 
and a color field indicates which set an object belongs to. 

Initiaily, chunks of free space are linked in one list, and chunks holding allocated 
objects are linked together into another list. When the free list is exhausted, the 
collector traverses the live objects and "moves" them from the allocated set to the 
other one. In fact, the object is unlinked from the fromset list, its coior field is 
changed and it is linked into the toset 's doubly-linked list. 

Important issues The operation of this collector is simple and similar to that of 
the copying collector. This scheme can be optimized by making the ailocation faster: 
allocated and free lists can be made contiguous and separated only by an allocation 
pointer. In that case, instead of unlinking the object, allocator can simply advance the 
allocation pointer. 

Advantages and disadvantages of non-copying implicit collection 

Tracing cost for large objects is not as high as for the copying collection; the whole ob- 
ject need not be copied (as with mark-meep). It  does not require the actual language- 
level pointers between objects to be changed (there are fewer constraints on compilers). 

The cost is proportional to the number of live objects. The garbage objects are al1 
reclaimed in small constant time. The space costs are comparable to those of a copying 
collector. There are additional two pointer fields per object, but on the other side no 
space for both fromspace and tospace version is needed. In some cases fragmentation 
costs (due to the inability to compact data) may outweigh those saving. 

2.3.7 Choosing Among Basic Tracing Techniques 
Cost is similar till basic algorithms have roughly similar costs. Criterion for bigh- 
performance garbage collection is that its cost is comparable to the cost of allocating 
objects. Basic cost components of tracing collection are: 

the initial work, such as root set scanning, which is proportional to the size of 
the root set; 
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0 the work done at allocation, which is proportional to the number of objects 
allocated, plus an initialization cost proportional to their sizes: 

0 tracing (garbage detection), which is proportional to the amount of live data. 

The latter two costs are usually similar. the third one is usually some significant 
percentage of the second. That means that the algorithms whose cost is proportional 
to the amount of allocation (mark-sweep) may be competitive with those having a cost 
proportional to the amount of live data traced (copying). Currently copying collectors 
appear to be more efficient than current mark-sweep. 

Nonmoving vs. moving collectors In systems where memory is not much larger 
than the expected arnount of live data nonmoving collectors have the advantage of 
not needing two spaces. Reference counting collectors are also attractive in that case, 
because their performance is independent of ratio live dataltotal memory. 

Nonmoving collectors can be made conservative with respect to data values t hat 
may or may not be pointers. That is usehl in the case of the languages like C, and it 
simplifies the interfaces between modules written in diEerent languages and compiled 
using different compilers. 

Real high-performance systerns use hybrid techniques to adjust trade-offs for dif- 
ferent categories of objects. Many copying collectors use a separate large object area 
to avoid copying large objects from space to space. Ot hers use noncopying techniques 
most of the tirne, but occasionally compact some data (using copying techniques) to 
avoid fragmentation. 

2.3.8 Important Issues 
Every garbage collection technique raises questions concerning the use of rnemory. the 
locali ty of reference, the time efficiency and the conservatism. 

Memory If we consider only the copying cost, we could Say that it approaches zero 
as memory becomes very large. On the other hand, large amounts of memory are 
too expensive. Besides, the poor locality of the allocation and reclamation cycle will 
generally cause excessive paging. Therefore, it doesn't really pay to make the heap 
area larger than the available main memory. 

Locality The principle of locality has two components: tempoml and spatial locality. 
Temporal locality means that if a location X is accessed, then it is likely to be accessed 
again in the near future. Spatial locality means that if location X is accessed, other 
locations close to X are likely to be accessed in the near future. 

The problem is not with the locality of compacted data or with the locality of the 
garbage collection process itself. Large amounts of memory are touched between the 
collections. So, the problem is an indirect result of the use of garbage collection: by 
the time space is reclaimed and reused, it is likely to have been paged out, because too 
many other pages have been allocated in between the collections. The only way to have 



good locality is to ensure that memory is large enough to hold the regularly-reused area 
(see generational collectors) . 

Time Temporal distribution of tracing can be also troublesome: it can be dismptive 
for user to have the systern become unresponsive for some time while garbage collecting. 
Generat ional collecton aileviate t his problem, because most garbage collections only 
operate on a subset of memory. 

Conservatisrn The art of efficient garbage collector design is largely one of introduc- 
ing small degrees of conservatism which significantly reduce the work done in detecting 
garbage. The first conservative assumption most collectors make is that any variable 
in the stack, globais or register, is live even though the variable may actudly never be 
referenced again. Tracing collectors introduce a major temporal form of conservatism, 
simply by allowing garbage to go uncollected between collection cycles. Reference 
counting collectors are conservative topologacally, failing to distinguish between differ- 
ent paths that share an edge in the graph of pointer relationships. 

2.4 Generational Garbage Collection 

2.4.1 Description 

Garbage collection techniques introduced in the previous section were the basis for 
rnany improvements. One of the most used techniques developed from the basic ones 
is the generational garbage collection. 

Tracing techniques can be improved in several ways. Simple tracing collectors cause 
delays that can be obtrusive, and its locality of reference, which is important for cache 
behavior, can be rat her poor. Long lived objects are a burden to tracing algorithms be- 
cause they are repeatedly copied, or marked. On the other hand, researchers found that 
most objects die Young (this hypothesis is known as weak generational hgpothesis) and 
therefore storage reclamation is more efficient (in time and locality) by concentrating 
effort on reclaiming p u n g  objects. 

In this kind of garbage collection objects are segregated into two or more regions 
(generations). Different generations can be collected a t  different frequencies with the 
youngest generations being collected more frequently. Number of generations varies 
between implementations. Generational garbage collection is in widespread use in: 
Lisp, Xlodula-3. Standard M L  of New Jersey, Srnalltalk from Apple etc., but whether 
generat ional garbage collection is effective or not is application dependent. 

2.4.2 Detailed Strategy 

Ob ject lifetimes 

The age of an object can be measured in two ways: either by wall-clock time or 
by bytes of the heap allocated. The first one is machine-dependent, it depends on 
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the speed of particular machines and of particular implementations. The count of 
bytes of heap allocated is a better measure, because it is machine independent and 
it better reflects demands on the memory management, but it is not a perfect one. 
Virtual memory algorithms may consider time in their page eviction policy, and objects 
support ing human interaction have lifetimes determined by the user's activity. Also, 
some languages have higher rates of memory consumption. .4U of this make it difficult 
to rneasure the age of an object. 

Allocation 

Objects are first allocated in the youngest generation, but are promoted into the older 
one if they survive long enough. The youngest generation is collected more frequently. 
usually by copying, but ais0 by mark-sweep schemes, so pause times will be compar- 
atively short. CPU cycles are saved by not having to copy the older objects from 
one semi-space to another, although it is still necessary to scan some older objects for 
pointers into younger generations. 

Root set 

The root set consists of registers, stack and inter-generational pointers. The latter can 
be created in either of two ways: by storing a pointer in an object (which can be trapped 
by mite barrier, described later in Section 2.4.2), or when an object containing pointers 
is promoted to an older generation (which is easily recognized by garbage collector). 
The write barrier does not have to record assignments to local variables, because they 
are part of the root set. Also, if younger generations are collected whenever the older 
one is, only old-young pointers (which are fairly rare) need to be recorded. That 
means t hat younger generations can be collected independent ly of t heir elders, but 
not vice versa. Collection of the youngest generation is called minor collection, and 
it is frequent. Collection of several generations is called major collection and it is less 
frequent . 

Pause time 

Aims of generational garbage collection are: to reduce overall cost of dealing with long- 
Iived objects and to reduce garbage collection pause times. Pause time is dependent 
on the amount of data that survives the collection, i.e., the size of the youngest gen- 
eration. The smaller the generation is, the shorter the pauses wiil be, but the small 
generation is filled more rapidly. Consequently, the older generation would fil1 up too 
soon, resulting in a major collection with a longer pause time. This will also lead 
to greater nurnber of inter-generational pointers. Ungar and Jackson [11] argue that 
fixed-age tenuring policies are too restrictive: if the tenuring threshold (i.e., size of the 
youngest generation) is made too large, pauses will be long; but if very few objects are 
scavenged at  each minor collection, a kued-age policy wiii stiil promote objects even 
though there is no need to advance any. One way to resolve the problem of widely 
varying allocation rates is to invoke the collector when the volume of data allocated 
since the last garbage collection exceeds an allocation threshold. It is presumed that 



Meemory Ad anagem en t Algori thms 33 

the size of semi-spaces can be varied dynamically. Ungar and Jackson introduce a 
dynamic advancement mechanism which has two rules: 

1. Only tenure when it is necessary If few objects survive a scavenge it is prob- 
ably not worth advancing them, particularly if the cost of write-barrier is 
high. 

2. Only tenure as many objects as necessary If the number of survivors sug- 
gests that the maximum acceptable pause time would be exceeded at the 
next scavenge, the age threshold is set to a value designed to advance the 
excess data. 

Number of generations 

The number of generations can be greater than two. The use of multiple generations 
would allow new objects to be promoted quickiy, keeping the pungest generation fairly 
small. This would. on the other hand, introduce greater complexity and larger number 
of inter-generational pointers. It is found that very large difference in reclamation rates 
between very new and slightly older objects are not reflected in subsequent generations. 
so usually two to thfee generations are used. 

Promotion threshold 

What should be the promotion threshold, i.e., the number of minor collections that an 
object must survive before it is advanced to the next generation ? It is shown that the 
number of objects that survive two scavenges is much less than the number that survive 
just one scavenge. Increasing the number of scavenges beyond two reduces the number 
of survivors only slightly. The promotion threshold could be adjusted dgnamically. 

Handling inter-generational pointers (write barriers) 

As we saw, the inter-generational pointers arc part of the root set. Thus, it is necessary 
to find them and the simplest method is to scan older generation at the collection time. 
It is found that linear scanning is faster and gives better locality than tracing. This 
technique is used by couservative collectors. There are more precise methods which 
can be implemented by either hardware or software. 

Software bamers are provided by the compiler's instructions before each read and 
write. Hardware techniques do not require additional instructions and are advantageous 
in the presence of uncooperative compiles, but they mat; require hardware components 
that are not generally available. 

There are several met hods for t rapping and recording inter-generational pointers: 
entry tables, remembered sets, sequential store bufers, page murking and card murking. 

Entry tables Each generation has an entry table of references from older generations. 
Every time a reference from an old object to a young one is created, rather than to 
point directly to the ounger object, a new entry to the table is added. The old object 
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points to that entry, and the entry is a pointer to the young object. If the old object 
already contained a reference to an item in an entry table, that entry is removed. The 
advantage of this scheme is that when a younger generation is collected, it is only 
necessary to scavenge its entry table rather than to seaxch every older generation. The 
disadvantage is a possibility of multiple references to a single object, so the cost of 
scanning tables is proportional to the number of store operations rather than to the 
number of inter-generational pointers. 

Figure 2.8: Entry tables 

Remembered sets In contrat to entry tables which record pointed-to objects. re- 
membered sets record the old object that contains pointer. In fact, the write barrier 
intercepts the store to check two things: whether a pointer is to be stored and whether 
it is a pointer From old to o u n g  object. If so, the address of the old object is added to 
a remembered set. To avoid duplication, each object has a bit in its header indicating 
whether it is already a member of the remembered set. 

The disadvantage of this approach is that if an old object were stored into several 
times between collections. the checks would be repeated. And if the object were large. 
then it would have to be scanned in its entirety at the collection time, wbich has been 
observed to thrash Tektroniv Smalltalk [SI. 

Sequential store buffers This is a special kind of remembered set, where the wnte 
bamer unconditionally adds addresses that might contain pointers to younger gener- 
ations to the end of the sequential store buffer, and a 'no access' guard page is used 
to trap overflow. When the buffer is full (when the page is dirtied), then the special 
routine processes the list, using a fast hash table to remove duplicates. Sequential store 
buffers are used For Modula-3 and Smalltalk garbage collectors [El. 

Page marking Rather than recording which objects have inter-generational pointers 
stored into them, the virtual page which is stored into is recorded. Page marking can 
be done with hardware support or with virtual memory support. 

Page marking with h a r d w e  support was used for Symbolic 3600 machines. When- 
ever a reference to generational memory was stored in any page, the mite-barrier hard- 
ware set a bit in the garbage collecter page table of the corresponding page-frame of 
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physical memory. This methods prevents duplicates, because even if the bit is set many 
tirnes, the page is going to be scanned only once. As for swapped-out pages, to avoid 
unnecessary swapping-in, their details are held in the ephemerd space reference table 
(ESRT) which is maintaineci by software in non-pageable memory. The two tables 
are searched at collection time, swapping pages only if their bit in ESRT is set. This 
technique was Ceasible because of speciai tag hardware support to make generation 
checking fast and because pages were fairly small. 

Page marking with virtual memory support uses virtual memory dirty bits that 
are used to indicate whether the page has been changed in any way since it was last 
written out to disk. A copying collector only needs to scan those pages that were 
written to dunng or since the last garbage collection. The virtual memory mechanism 
must therefore be intercepted, which requires modifications of the operating system 
kernel, or? alternatively, pages may be write-protected by a system call. Reliance on 
virtual memory protection mechanisms makes t his met hod unsuit able for real- time 
applications. The problem is also that pages in modern systems are much larger than 
tbose of Symbolics 3600, and the cost is increased by recording any modifications to 
the page (not just inter-generationd pointer stores). 

Card marking The opposite of page marking would be word marking: when a 
location is modified a bit in a Modzficution Bit Table is set. The problem is that a 
bit-table would require a lot of space. The solution is to divide the heap into small 
regions called cards. The advantage of uird murking is that the scanning is reduced in 
comparison to page marking because of smaller size of cards, and the space necessary 
for a card table is reduced in comparison to word marking. As with word marking, a 
bit in the card table is set unconditionally whenever a word in a card is rnodified. To 
reduce the number of instructions needed. a byte-map, instead of bitmap, can be used. 
At the collection time, dirty cards are scanned for inter-generational pointers, and if 
none found. then the di- bit/byte is cleared. The dirty cards can be gathered onto 
the same virtual page, the number of pages holding cards to be scanned, and likely to 
be scanned again, cm be reduced. 

The most promising mite barrier systems For general purpose hardware se- 
quential store bufiers and card markzng seem the best. The cost of the write bamer is 
the same for both (two instructions), but cards' overhead is more predictable, because 
SSB can overflow. Remembered sets offer precision, but allow duplicates in SSB. One 
possibility is to use a hybrid, as in Srnalltdk interpreter [13]: write barrier uses card 
marking but older-younger pointers are saved in remembered sets. 

Non-copying generat ional garbage colîect ion 

Copy-based generational collectors are conceptually simpler, but it is possible to build 
mark-sweep based generational collectors. Zorn (141 found that his mark-and-deferred- 
sweep generational collector performed significantly better, than his copying collectors 
(.Ulegro Common Lisp on a Sun 41280). His collector had four generations, each of 
which containeci a mark bitmap, a fixed-sizeobject region and a variable sized-object 
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region. The Lxed-sized-object region is divided into regions for objects of dinerent size, 
and is collected by mark-and-deferred-sweep; the variable-sized-O bject region contains 
objects that do not fit in any of ked-sized-object regions and is collected with a two- 
space copying collector. There is no reason why al1 generatioas should be collected 
in the same way. This is particularly tme for the oldest generation. If the copying 
collection is used, the oldest generation can be divided into two semi-spaces. Or it can 
be handled by non-copying collector, or may not be collected at all. If a mark-sweep 
is used, occasional compacting could be done. 

2.4.3 Advantages and Disadvantages of Generational Garbage 
Collection 

Generational garbage collection is highly successful in a wide range of applications. 
Pause times can be reduced to a level where it is worth considering this kind of garbage 
collection instead of incremental (see Section 2.5). Cache and paging behavior of the 
application is made better by concentrating allocation and collection to a small region 
of the heap. The cost can be reduced by delaying collection of long-liwd objects. 
The programs which allocate a large number of short-lived objects and where non- 
initializing pointer writes are rare benefit the most. 

There are some disadvantages of this kind of collection. Short pauses are defeated 
y large root sets? Le.. unusually high number of global or local mriables. If objcct 
lifetimes are not sufficiently short, minor collections will reclaim too few objects, which 
will result in increased promotion, more frequent major collections and bad locality 
(if only the youngest generation can fit in real memory). The system must be able to 
distinguish older from ounger objects, by using the write barrier, and storing in an 
old object a pointer to a Young one becomes more expensive. Frequent pointer writes 
increase 

2.5 

2.5.1 

the overall cost of write barrier. 

Incremental Tracing Collect ors 

Descript ion 

In case of real-time applications garbage collection pauses have to be reduced to sat- 
ie the worst case performance. Hence. small units of garbage collection must be 
interleaved with small units of program euecution. Fine-grained incremental garbage 
collection appears to be necessary, and one of the techniques that is naturally incrernen- 
ta1 is reference counting. Unfortunately, reference counting has efficiency and efficacy 
problems (see Section 2.3.2), and therefore it is desirable to make tracing (copying or 
marking) collectors incremental. 

The main düficulty with the incremental collection is that while the collector is 
tracing out the g a p h  of reachable data, the graph may change. The running program 
is therefore called mutator which is, h m  the garbage collecter's point of view. sirnply 
a concurrent process that modifies data structures that the collector is attempting to 



traverse. There has to be some way of keeping track of changes related to the graph 
of reachable objects. 

There is therefore a variety of coherence problerns: having multiple processes at- 
tempt to share changing data, while maintaining some kind of consistent view. An 
incremental mark-sweep traversal poses a multiple readers, single writer coherence 
problem. Only the mutator writes to pointer fields and only the collector writes to 
mark fields. Copying collectors pose a more difficult problem: a multiple reuders, mul- 
tiple w' ters  problem. Both the mutator and the collector may modify pointer fields 
and each must be protected from the inconsistencies introduced by the other. 

The degree of conservatism is important for this kind of collection, dso. The 
garbage collecter's view of the reachability graph is typically not identical to the ac- 
tua1 reachability graph visible to the mutator. It is safe, conservative approximation 
of the true reachability graph. T-vpically, some garbage objects go unreclaimed for a 
while, which is unfortunate but necessary in order to avoid very expensive coordina- 
tion between the mutator and collector. The more we relax the consistency between 
those two graphs, the more conservative Our collection becomes, and the more floating 
garbage we must accept, but the more flexibility we have in details of the traversal 
algorithm. 

2.5.2 Detailed Strategy 

Garbage collection algorithms can be described as a process of traversing the graph of 
reachable objects and colorhg t hem. The objects subject to collection are conceptually 
colored white, and by the end of the collection the retained objects must be colored 
black. So, white objects are unreached objects in fromspace (in a mark-sweep collector, 
objects whose bit is not set); black objects are objects that are moved to  tospace (in 
mark-sweep, objects whose bit is set). To better understand the relationship between 
the mutator and the collector, a third color is introduced, gray: to signify that objects 
have been reached, but their descendants may not have been. The traversal proceeds 
in a wavefront of gray objects, shich separates the white (unreached) objects from the 
black ones. There are no pointers directly from black objects to white ones and if the 
rnutator creates a pointer from a black object to a white one, it must somehow notify 
the collector. 

In order to make garbage coilection invalid the mutator has to both: a) write a 
pointer to a white object into a black object and b) destroy the original pointer before 
the collector sees it. Read and write barriers are implemented in order to prevent these 
two events to happen simultaneously. 

Coordinating the collector with the mutator 

There are two basic approaches: implementing either read or m * t e  bumer. Read 
bamer detects when the mutator attempts to access a pointer to a white object, and 
immediately colon the object gray. One of the algorithms that uses a read barrier is 
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Baker's algorithm [lj]. In the case of mite barrier, when the program attempts to 
write a pointer into an object, the write is trapped and recorded. There are two basic 
methods for write banier: snapshot-at-beginning and incremental update. Below we 
give more details about these three read and wnte barriers methods. 

Read barriers 

Baker's algorit hm The best known red- t ime gar bage collector is Baker's incre- 
mental copying scheme. It uses a read barrier for coordination with the mutator. .4ny 
fromspace object that is accessed by the mutator must first be copied to tospace. Al1 
new objects are allocated at the top end of tospace (they are bfack when allocated), so 
the new cells cannot be reclaimed in this cycle. In order to ensure that the collector 
finds al1 of the live data and copies them to tospace before the free area in new space 
is exhausted, each time an object is allocated, an increment of scanning and copying is 
done. In terms of tricolor marking the scanned area of tospace contains black objects, 
and the copied but unscanned objects are gray. .As-yet unscanned objects in fromspace 
are wbite. Whenever the mutator reads a (potential) pointer from the heap, it imme- 
diately checks to see if it is a pointer into fromspace; if so, the referent is copied to 
tospace, Le., its color is changed from wbite to gray. The read barrier may be imple- 
mented in software, by preceding each read (of a potential pointer from the heap) with 
a check and a conditional cal1 to the copjing-and-updating routine. Alternatively. it 
may be implemented with a specialized hardware checks and/or microcode routines. 

The main limitation of Baker's algorithm is that it is closely coupled to mutator. 
therefore expensive on hardware. The time to access an object depends on whether 
the object is in tospace or in fromspace, so pauses are inpredictable. 

Write barriers 

Snapshot-at-beginning To avoid overwriting of pointers without collector!~ 
knowledge, at the beginning of garbage collection a copy-on-write virtual copy of the 
graph of reachable data structures is made. The simplest and best-known snapshot 
collection algorithm is Yuasa's [16]. If a location is written to, the overwritten d u e  is 
first saved and pushed on a marking stack for later examination. This way al1 objects 
which are live at the beginning of garbage collection will be reached, even if the point- 
ers to them are overwritten. This algorîthm is very conservative, it allows the tricolor 
invariant to be broken, because al1 overwritten pointer values are saved and traversed 
and no object can be freed during collection. Newly allocated objects are considered 
black, for coliector the reachability graph is a set union of the graph at the beginning 
of garbage collection plus ali of those allocated during tracing. 

Incremental Update Incremental update records when pointer to a white object 
is stored into a black object (either the black or the white object is grayed). There are 
two similar algorithms: one which is due to Dijkstra et al. (171 and the other due to 
Steele [18]. Dijkstra'a algorithm attempts to retain the objects that are live at the end 



of garbage collection. Objects that die during garbage collection - and before being 
reached by the marking traversal - are not traversed and marked. Precisely, an object 
will not be reached by the collector if al1 paths to it are broken at a point that the 
garbage collector has not yet reached. Objects are allocated white, so at some point 
the stack must be traversed to preserve the objects reachable at that time. The tricolor 
invariant is preserved by blackening the pointed-to white object , rat her than reverting 
the stored-into black object to gay. Steele's algonthm, on the other hand, reverts 
the stored-into black object to g r .  It is l e s  conservative than Dijkstra's, because 
the pointer might be later overwritten, freeing the object. Therefore, it reduces the 
amount of floating garbage. 

2.5.3 Important Issues 

The choice of the barrier 

The choice depends on relative frequency of reads and writes, how often the barrier is 
invoked (on every read or just once per page per cycle) and on the amount of work 
the barrier has to do. Mi te  barriers are usually used for mark-sweep algorithms? 
and read barrien for copying ones. The cost of write barrier is less rhaa that of the 
read barrier, without specialized hardware support. a write harrier appears easier to 
implement efficientlq: because heap pointer writes are much less common than pointer 
t raversak. 

The amount of floating garbage (conservatism) 

-4s for conservatism, snapshot-at-beginning barrier is the most conservative, and incre- 
mental update is less conservative. The amount of floating garbage depends aiso on 
the treatment of new cells (black or white allocation). The black allocation is more 
conservative than white. 

Real- t ime 

There are two types of real-time applications. In the case of hard real-lime applications 
atomic actions of garbage collector must complete within guamnteed time (which is 
possible only with hardware support). For soft real-time applications, atomic garbage 
collector actions complete within some reasonable period of time (al1 of the presented 
algont hms sat isfjr this constraint ) . 

The criterion for real time garbage collection is often stated as imposing only srnall 
and bovnded delays on any particular program operation. The problern is that the no- 
tion of "small" delay is inevitably dependent on the nature of an application. Besides, 
this cntenon unrealisticaily emphasizes the smallest progam operations. -4 more re- 
alistic requirement for real time performance is that the application should always be 
able to use the CPU for a given fraction of the time at a timescale relevant to the 
application. 

Some copy collectors use Wtual memory protections to tngger pagewise scanning 
and this may lead to failing to respect reai-the guarantees. 
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Baker's is the best known incremental algorithm, but it rnay not be suitable for 
most real-time applications, because its performance is very unpredictable at smail 
timescales. Algorithms with a weaker coupling between the mutator and the collector 
(such as most d t e -bamer  algorithms) rnay be more suitable. 

Nonsopying algorithms have the convenient property that their time overheads are 
more predictable, their space costs are much more difficult to reason about because of 
the fragmentation. 

An important determinant of real-tirne performance is the time required to scan 
the root set. The pauses caused by scanning the root set occur in Baker's incremental 
collector at the time of a flip, and in incremental update tracing algorithm at the time 
of termination. One way to bound the work required is to keep the root set small. 
Some of the local and global variables rnay be treated like objects on the heap. Reads 
or mites to these variables will be detected by the read or wtite banier, but there is 
a cost of the barrier to pay. 

As the collector tries not to use too much of CPU to meet reai-time deadlines, it 
bas a real-time deadline of its own to meet: it must finish its traversal and free up more 
memory before the currently-free memory is exhausted. In order to achieve this, it is 
necessary to quantify the wont case, to put some bound on what the collector could be 
expected to do. The usual strategy is to use an allocation dock each time an object is 
allocated, a proportional amount of garbage collection work is done. When allocating 
black new objects do not need to be traversed, and in the worst case the same objects as 
in a snapshot-at-beginning are retained. The minimum safe tracing rate is proportional 
to the amount of live data and inversely proportionai to the amount of free memory: 
it approaches zero as mernory becomes very large relative to the mawimum arnount of 
live data. When allocating white, it is necessary to traverse reachable white objects, 
and in the worst case we traverse everything we allocate before it becomes garbage. 
The worst case s d e  traversa1 rate therefore approaches the allocation rate. 

At the end of the collection, the collector can determine how much live data was 
in fact traced, and revise downward its worst-case estimate of what could be live in 
the next collection. Alternatively, if the collector determines that it has less than the 
worst-case amount of work to do, it rnay avoid garbage collection activity entirely for 
a while, then re-activate the collector in time to ensure that it will meet its deadline 
(in case that read and mite barrier can be efficiently disabled). 

Choosing an incremental algorithm 

The overd  average performance and worst-case performance should be considered 
when choosing an algorithm. Less conservative algorithms rnay not be more attractive, 
because they are just as conservative in the worst case. And moreover, they can be 
more consenative in practice, because of their high overhead (costly mite barrier) 
which rnay keep it from being nin as often. 

Generational techniques make the overheads of incremental collection unnecessa- 
for many systems where hard real-time response is not necessary. For other systems, 
it rnay be desirable to combine incremental and generational techniques, and careful 
attention should be paid to how they are combined. 
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2.6 Conservative and Part ially Conservat ive 
Garbage Collection 

2.6.1 Introduction 
Languages are usually not implemented with garbage collection in mind, so it is im- 
portant to know how type accurate garbage collectors are. Three types of coliectors 
can be distinguished, depending on their type accuracy: type accurate, conservative 
and partially accurute, partially conservative. Type accurate garbage collector can de- 
termine unambiguously the layout of any object in registers, the stade, the heap or 
any other memory area; the collector requires cooperation with the compiler. Conser- 
vative garbage collector must assume that every word is a pointer and may not alter 
the value of any user program data; the collector has no help from the compiler. The 
third category, partially accurate? partially conservative collector, assumes knowledge 
of the format of collectible data structures on the heap? but not of the stack Iayout or 
of register conventions; the collector requires the programmer or compiler to observe 
certain convent ions for heap allocated data. 

A type accurate garbage collector is not possible for languages iike C or C++. be- 
cause they are not made with garbage collection in mind and the collector does not 
have al1 the necessary information from the compiler. On the other hand. Boehm- 
Demen- Weiser collector (consemat ive) and mostly copying Bartlet t 's collector (par- 
tially accurate, partially conservative) were successfully introduced in these languages. 
Xext sections give more details about these collectors. 

2.6.2 Boehm-Demers- Weiser Collecter 

The best known consemative collector is the Boehm-Demers- Weiser collector (191. This 
collector is fully conservative and does not rely on any cooperation from the compiler. 
Values held in data structures used by the user program and its run-time system, 
including registers ans stack frames may be scanned for potential pointers but are 
never altered. Therefore the collector must be based on a non-moving algorithm, Le.. 
on mark-sweep algorithm. 

Descript ion 

Allocation A program can be thought of using two logically distinct heaps: one 
maintained by garbage collector and its allocator and one maintained by evplicit calls 
to standard routines (malloc/free). Objects in standard heap do not point to objects 
in collected heap. The heap is made of b loch  (4Kb): eacb block containing objects of 
different sizes. There are separate free lists for each common object's size. Each block 
has a separate block header held on a linked list. 

The heap can be expanded by requesting further blocks. Objects larger than half 
a block are allocated to their own chunk of blocks; if no free chunk of sufficient size is 
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available the allocat or invokes the garbage collector or expands the heap, depending 
on the amount of the allocation done. 

Small objects are ailocated by popping the first member of the free list to that size 
of the object; if the free list is empty the sweep phase is resumed and if no space is 
reclaimed by the sweep the allocator invokes a garbage collection. If the collection is 
unsuccessfu~ a new block is obtained from the low-level allocator. 

Root and pointer finding Roots can be found in registers. in the stack and in 
the static areas. The problem is to find these axes,  and it is highly system specific. 
Marking from registers requires assembly code. but its structure is not difficult. For 
many architectures it consists of pushing the content of a register ont0 the stack and 
then calling a C routine to mark from the top of the stack. The next problem is to 
discover the bottom of the stack and to determine in which direction it grows. It is 
done either by using explicit knowledge of the mn-time system or by taking the address 
of the first local variable of maino. Finally for the static areas the collector is able 
to handle dynamic link libraries on some systems, in which case the libraries must be 
re-registered in each collection. 

-1s for pointers, the collector must treat any word it encounten as a pointer unless 
it can prove otherwise. It has to be able to determine the validity of a pointer accu- 
rately and cheaply. with caution not to reclaim a valid data. but without an access 
in conservacivity An object is only markecl as a pointer if it passes each of the three 
tests: 

Does a potential pointer p refer to the heap ? 

Has the heap block that supposedly contain this object been allocated ? 

1s the offset of the supposed object from the start of its (first) block a multiple 
of that block's object size ? 

If the pointer passes these tests, the corresponding bit in t be block header is set. and 
the object is pushed onto a mark stack (the same as in mark-sweep collection). 

Important issues The main problem of conservative garbage collection are space 
feaks, caused by misidentifying data as heap pointers, thereby retaining memory that 
could otherwise be recycled. The usuai case of retaining a large piece of memory are 
linked lists: if a false pointer points toward an element of the list? al1 the following 
elements will also be falsely retained (if the list is to be recycled). There is also 
a possibility that small integers could be mistaken for pointers: if pointers are oot 
required to be properly aligned, the collector must consider al1 possible aiignments. 

The efficiency of Boehm-Demers-Weiser collector was tested on the versions 1.6 and 
2.6 and not with the most recent versions. That means that the obtained results do not 
represent the most optimized collector. Nevertheless, the old version showed a good 
efficiency (execution t h e  overhead of some 20% above the best of the explicit alloca- 
tors), altough actual tirnes varied considerably depending on the application program 
running. The performance of the collector was the best with a program that primarily 
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allocate and dedlocate very small objects, but for some programs the overd execution 
time overhead was up to 57%. 

2.6.3 Mostly Copying Bartlett's Collecter 

One of the collectors that is not fully conservative is the mostly copying Bartlett's 
collector [20]. This algorithm is originally designed to support high level languages 
that used C as an intermediate language. It still assumes no knowledge of register, 
stack or static area layouts, but does assume that al1 pointers in a heap allocated area 
can be found accurately. Objects that may be referred to Erom the stack, registers or 
the static area are treated conservatively and are not moved. Objects only accessible 
from other heapallocated objects are copied. 

Description The heap is divided on a nurnber of equal-sized blocks. Blocks compris- 
ing each semi-space do not have to be contiguous: each block contains a space identifier. 
In order to move an object from one semi-space to another, eitber the objects can be 
copied or the identifier of the block changed. Within a block, allocation is done by 
incrementing a free space pointer. If there is not enough space in a block, the heap 
is searched for a new free block. Larger objects are allocated over as many blocks as 
necessary. Garbage collection is initiated when the heap is haif full. First the roots are 
scanned for potential pointers into the heap. The block that contains the pointed-to 
object is added to tospace by changing the value of the block's space identifier. The 
block is also appended to the tospace list for scanning. In the next phase al1 objects 
in ail blocks in tospace are scanned, and each reachable fromspace object is moved 
into a block in tospace leaving behind a forwarding address. Once tracing is complete, 
the fromspace identifier is changed to tospace identifier and the garbage collection is 
corn piete. 

Important issues blostly copying incurs a small space overhead to store space iden- 
tifier~, type information and to link the blocks of a space. The collector can be made 
generational, by using the space identifiers to encode the age of the object. The decrease 
in performance due to rnaintaining of remembered sets is compensated by reduction of 
tirne spent on garbage collection, at le& for larger progams. 

2.6.4 Cornparison of Two Algorithms 
There have not been thorough studies of the efficiency of Bartlet's collector, nor of the 
comparative performance of the two collectors. The rnostly copying collector would 
perform better in an environment with high allocation rate of short-lived objects (but 
it is not sure whether it is tjpical for C). Consemative garbage collection performs 
well, errors caused by pointer misidentification are unlikely to be an issue. 
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2.7 Conclusion 
This chapter gave an overview of basic memory allocation and garbage collection al- 
gorithms. As Java implements garbage collection, we wanted to check which of these 
numerous algorithm are typicdly used in Java garbage collectors, and, if possible, to 
test the efficiency of each such irnplementation. Next chapter presents garbage collec- 
tors in various JVMs, the methodology used to test them and the results obtained. 



Chapter 3 

Garbage Collection in Various 
JVMs 

3.1 Introduction 
It  is in fact Java programming langage that brought garbage collection into the main- 
Stream. by mandating garbage collection. The efficiency of garbage collection algori thm 
is one of the main factors that influence the overall efficiency of Java application. In 
order to improve it, Sun's JDK (Java Development Kit) changed its garbage collection 
algorithm several times. Many other Java virtual machines have the same or different 
garbage collectors as Sun's implementations. 

This chapter presents the preliminary garbage collector benchmarks made on several 
JVbls. First. we present the difficulties encountered while choosing a virtual machine 
(Section U ) ,  an application(s) to use (Section 3.3), an operating system and a profiler 
(Section 3.4). Then, we present and motivate Our final choice (Section 3.5). Finally? 
we present the benchmarks themselves (Section 3.6.2) and conclude. 

3.2 Choice of the Java Virtual Machine 
First of all, the choice of Java Mrtual machines to test has to be made. A JVM has 
to be available? has to have a garbage collection sp tem (preferably well documented): 
has to be portable if we want to test it on severai platiorms (which it should be by 
definition, but that is not always the case) and has to be able to run the applications 
chosen for profiling. 

Here we present the virtual machines found searching exhaustively the Internet. 
.As we are particularly interesteri in their garbage collection system we briefly present 
an overall JVM architecture and then p a s  to a detailed architecture of a garbage 
collection system. The amount of information depends on its availability : many 
JVMs are not well documented, or have not a well documented garbage collector. We 
can separate the found JVMs in two groups : for normal and for embedded systems. 
Those for embedded systems have either no garbage coilector or a not very developed 
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one. Xevertheless, we mention both kinds of JVMs, but we consider for testing 
just the first one. 

3.2.1 Sun's JVM 
Sun was the first to develop a JVM, so their JVM is the most robust one. There are 
several versions of JDK, which corne with several JVMs. To our knowledge, tbere are 
three types of JVM with different garbage collection systems : 

JDK1.O - JDK1.l - JDK1.2.2 (classic) 

JDK1.2.1 (ResearchVM, ExactVM) 

Al1 of the Sun's virtual machines are freely down-loadable from Sun's site. We will 
consider the t hree of t hem separately. 

JDK1.O - JDK1.l - JDK1.2.2 (classic) 

First versions of Java virtual machine released by Sun had the simplest garbage col- 
lection system. The details on its implementatioa can be found in Java Tutorial [21]. 
Here we cite the part that explains the mark-sweep algorithm used in these versions of 
Java virt uai machine : 

"... The Java garbage collector is a mark-sweep garbage collector. A mark- 
sweep garbage collector scans dynamic memory areas for objects and marks 
those that are referenced. After al1 possible paths to objects are investigated, 
unrnarked objects (unreferenced objects) are known to be garbage and are col- 
lected. A more com plete description of Java's garbage collection algorithm 
rnight be " a  compacting, mark-sweep collector with sorne conservative scan- 
ning." 

The garbage collector runs in a lapr ior i ty thread and runs either synchronously 
or asynchronously depending on the situation and the system on which Java 
is running. It runs synchronously when the system runs out of memory or in 
response to a request from a Java program. 

The Java garbage collector runs asynchronously when the system is idle, but it 
does so only on systems, such as Windows 95/NT. that allow the Java runtime 
environment to note when a thread has begun and to interrupt another thread. 
As soon as another thread becornes active, the garbage collector is asked to 
get to a consistent state and terminate ...." 

Java 2 SDK Production Release for Solaris (ExactVM or ResearchVM) 

This is the JVM developed by Java Topics group in Sun Labs under the name of 
ExactVM (lately changed to ResearchVM) and incorporated into Sun's Java 2 SDK 
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Production Release for Solaris 1221. It uses a generational memory system with two 
generations [23]. Generation O uses a copying collection with two semi-spaces, while 
generation 1 uses a single mark-compact space. The memory system sometimes allo- 
cates very large objects directly in the oldest generation (essentially this happens when 
they don't fit in the youngest generation) . A card table is used as a write barrier. 

JDK1.2.2 (Hotspot) 

Sun recently released a new virtual machine for Java, named Hotspot, which is claimed 
to have higher general performance due to handleness (object references are imple- 
mented as direct pointers), faster thread synchronization, significantly reduced code 
space and an accurate garbage collector. Hotspot's garbage collector is possibly coded 
in C++ because Sun mentions its clean object-oriented design which provides a high- 
level garbage collection framework that can easily be instrumented, experimented with, 
or extended to use new collection algori thms. 

The Java Hotspot garbage collector is a fully accurate eollector, so it can make 
several strong design guarantees that a conservative collector cannot make. For ex- 
ample, al1 inaccessible object memory can be reclaimed reiiably and al1 objects can 
be relocated, allowing objec t memory compaction, which eliminates objec t rnemory 
fragmentation and increases memory locality. 

This collector uses several garbage collection algorithms. First of ail. it employs a 
state-of-t he-art generational garbage collector. In the Hotspot's white paper [XI no 
details are given on the number of generations, but as only the nursery is mentioned. we 
suppose that there are only two generations. The second generation is probably what 
is cailed "old object'' memory area. It employs a standard mark-compact collection 
algorithm. which eliminates memory fragmentation. Supposedly, for the nursew a 
copying algorithm is used, as for the ResearchVM (Section 3.2.1). In order to eliminate 
garbage collection pauses in the second generation, proponional to the amount of live 
data? an alternative old-space garbage collector is introduced. It is a full. incremental 
collector based on the " train" algorithm [25]. Since this algorithm is not a hard-real 
time algorithm. it cannot guarantee an upper limit on pause times; however, in practice 
much larger pauses are extremely rare, and are not caused directly by large data sets. 
To our knowledge, the Hotspot and the ResearchVM garbage collectors differ over this 
incremental collec tor. 

Sun's Hotspot is available for download from Sun's Java CVeb site (261. Its source 
is also available under the Sun Slicrosystems Community Source Licensing program. 

3.2.2 Kaffe 
Kaffe [27] is a cleanroom, open source implementation of a Java virtual machine and 
class libraries. KaEe mostly complies with JDK 1.1, except for a Few missing parts. 
Some of its parts are aiready JDK 1.2 (Java 2) compatible. 

Despite recent significant improvements, K d e  does not have a state-of-the-art 
garbage collector. The current collector is simply a non-incremental? non-generational, 
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conservative mark-sweep collector wit h a Boehm-like allocator. Despite being non- 
incremental, it uses linked lists to keep track of objects. .4s a result, Kaffe spends a 
larger amount of its execution time t han necessary collecting garbage. 

What is needed is one or more high-performance collecton for Kaffe. Fortunately, 
the interface to the garbage collection subsystern is clearly defined, which should allow 
for independent development of faster collectors. 

3.2.3 LaTTe 
LaTTe is a Java virtual machine developed starting from Kaffe v. 0.92. It includes a 
novel JIT compiler targeted to RISC machines (specifically the UltraSPARC). Addi- 
tionally, the runtime components of LaTTe, including thread synchronization, excep 
tion handling, and garbage collection, have been optimized. Like Kaffe? LaTTe also 
uses a mark-sweep garbage collector which is partially conservative but the intemal 
structure of LaTTe's garbage collector is totally different, frvm Kûffc's. LaTTe mns on 
Solaris 2.5+ running on UltraSPARCs. Currently, there are no plans to port LaTTe 
to other architectures. It is freely downloadable from LaTTe's site 121. 

3.2.4 Mach J 
Mach J 1281 is a Java virtual machine developed by Mach J Company. It is written in 
C++. It does not include a JIT compiler, it relies on its very efficient execution engiae. 
Mach J supports native threads. "Green" threads are not supported or planned. Mach 
J has a realtime incremental garbage collector. A license fee of $75.000 is required in 
order to use it. 

3.2.5 DynaFlex (TowerJ 3.0) 
T0wer.l [29] is a multi-platform native Java compiler and runtime environment for 
process-intensive, senier-side Java applications. TowerJ includes new DynaFlex Java 
virtual machine. It allows application specific performance tuning allowing developers 
to specify garbage collection, threads, and optimization parameters. No details are 
given on the garbage collection aigorithm. Licence fee for TowerJ is $5.000. 

3.2.6 Hewlet t-Packard's JVM 
Hewlett-Packard (HP) developed two Java virtual machines : one, HP-LX VM v. 1.1, is 
for normal (not memo-constrained) and the other, ChaiVM, is for embedded systems. 

HP-UX v.l.1 

The first onet H P - U I  Virtual Machine with JIT for Java, v. 1.1.. was made for Java 
1.1. Later HP licensed Hotspot (see Section 3.2.1), which is used as HP JVM for Jam 
1.2. 
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HP-UX v . l . 1 . ' ~  release notes [30] states that this virtud machine has an improved 
garbage collection by automatically discarding unused classes. No details on the 
garbage collection algorithm are given. 

An interesting new option was introduced in this JVM : -compactIntervaï=<num>. 
It forces a Java heap compaction when the tirne since the previous garbage collections 
is less than mm, where num is a time specified in milliseconds. Use of compact Interval 
minimizes heap fragmentation by compacting the Java heap before the GC algonthm 
would normally trigger compaction. Minimizing fragmentation extends the t ime pe- 
riod between required garbage collections, but incurs the cost of the more frequent 
compactions. Generally, the net effect on the program is reducing the total time re- 
quired to do garbage collections by the application. The garbage collector does not 
have a specific thread. Instead, whichever thread triggers the collection is the one 
that is used to perform the collecticn. The asynchronous collector (available only on 
green-threaded JVMs with the -asyncgc Bag) is basically a very low priority thread 
which periodically calls java. lang . Runt ime . gc O. 

The other HP virtual machine. made for embedded systems is called ChaiVM [31]. It 
is fdly compatible with Java Virtual Machine Specification and provides support for 
the Java Native Interface (JNI). Chai VM has a concurrent garbage collector that uses 
mark-sweep algorithm that is capable of running in the background thus minimizing 
overhead on memory operations. It ensures simultaneous operation without preempting 
application code. It is available for download under a license agreement. Recently, HP 
released MicrochaiVM, a virtual machine for mobile devices [32], with no details on 
possible garbage collector. 

3.2.7 IBM Runtime Environment for Windows, Java Technol- 
ogy Edition, Version 1.1.7 

IBM has developed its own version of JDK based on Sun's JDK. The latest venion 
is 1.1.8 (Developer Kit and Runtime Environment). It includes the IBM just-in-time 
compiler version 3.5. It also includes a garbage collector. but no details on its aigo- 
rithms are given. In the F.4Q, however, it is explained that the Java heap organization 
has been optimized to reduce fragmentation, thus increasing rnemory utilization effi- 
ciency and reducing garbage collection activity. .41so, the improvements have reduced 
the duration of the garbage collection-related application program delays sometimes 
referred to as pause-times; such delays are troubling for transactional systems and their 
reduction is an important advance. 

Different versions of IBM JDK are freely available for download on its Web site (331. 
The following platforms are covered : Linux, Windows, .\LX, .AS/400, OS/2, OS/390 
and VMIESA. 
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3.2.8 Japhar 
Japhar is a Java virtual machine developed by Hungry Programmers [34]. It is a clean- 
room implementation, compatible with Java 1.1.5. It is licensed under the GNC' LGPL, 
so it can be freely distributed. There are patches for Win32 and Solaris. No details 
are given on the garbage collection, except that it has been worked on. We have not 
been able to get the details in personal communications with Japhar developers. Our 
assumption is that, for the moment, Japhar does not implement a garbage collector. 

3.2.9 JOVE 
JOVE (351 is not a virtual machine in the sense that the term is most commonly 
used, but we mention it here for its garbage collection system. It  does not interpret 
or translate Java bytecode as the Java program executes. Instead, JOVE is more 
like a standard compiler. Using JOVE, a Java program is translated to optimized 
native machine code before the progam is distnbuted to its users. JOVE diffen from 
compilers for languages such a C in that it does not process Java source code. Instead. 
JOVE accepts as input the same Java class files that would be used with a Java virtual 
machine. Because JOVE operates upon class files it preserves Java's "write once, 
run everywhere" characteristic. .4n application is created in class file format using 
any conventional Java IDE. Those class files may then be distributed to run on ang 
platform using a Java virtual machine. The very same class files can be processed by 
JOVE to create an optimized native progam for specific platforms. 

Programs deployed using JOVE do not use a mntime virtual machine. Instead, 
such programs utilize the senices of the JOVE ~ n t i m e  environment which consist of a 
small set of su broutines t hat define the runtime representation of objects and provide 
services for creating and managing objects. JOVE object references are represented 
by direct pointers to objects. A typical JOVE object requires only 4 bytes of overhead 
memory over and beyond the actual fields of the object that were defined by the Java 
programmer. 

The JOVE runtime is structured around a high-performance, multi-generational 
garbage collec tor. 1 t is a precise, copying, multi-generation collector [36]. The nurnber 
of generations, size of each generation, and promotion thresholds are al1 dynamically 
adaptable to the behavior of individual programs. Special handling is provided to 
minimize copying overhead for large objects. Inter-generation references are tracked 
by remember sets. The JOVE garbage collection system is claimed to be significaotly 
faster then existing collectors. 

3.2.10 Java Virtual Machines for Embedded Systems 

Besides already mentioned ChaiVM from HewlettPackard, there is a nurnber of ot her 
Java Mrtual machines for embedded systems. Below we present four virtuai machines 
from Sun (JavaGard, KVM, PersonalJava and Embedded Java), and JVMs developed 
by Charis (picoVM), Newmonics (PERC VM) and Oberon (JBed). 



Garbage Collection in Vario us JVMS 51 

Sun's JavaCard 

Java Card technology [37] enable using of Java technology on smart cards. The virtual 
machine (Vhl), the language definition, and the core packages have been made more 
compact to bring Java technology to the resourcôconstrained environment of srnart 
cards. The Java Card specification does not mandate the garbage collection. Its white 
paper further mentions that more memory on the smart card will also enable more 
complete implementations of the Java Card specification, plus additional benefits out- 
side the standard, such as automatic garbage collection and advanced services similar 
to Java's object-oriented Remote Message Invocation to allow Java Cards to commu- 
nicate more easily with Java terrninals by relieving programmers from dealing with 
low-level protocols. 

Sun's KVM 

K Virtual Machine is a new virtual machine from Sun, highly optimized for small- 
memory, limited-resource connected devices such cellular phones, pagers, PD&, set- 
top boxes, and point-of-sale terminals.It is implemented in C programming language, 
and has a memory footprint of the virtual machine core in the range 40 kilobytes to 
80 kilobytes (depending on the target platfonn and compilation options). It is part of 
Java 2 Micro Edition (J2ME) Connected Limited Device Configuration and is available 
for download from its site [38]. 

This virtual machine has r simple, handle-free, non-moving, single-space mark- 
sweep garbage collector. It operates with heap sizes of just a few tens of kilobytes. 

Sun's EmbeddedJava and PersonalJava 

The EmbeddedJava [39] and PersonalJava [40] are both designed to accommodate 
devices with severely limited memory. The diflerence is that EmbeddedJava does not 
include libraries for we b-connection. Developers can use the EmbeddedJava application 
environment to create a variety of products including non web-based mobile phones, 
network routen and switches, industrial controllers, printers etc., whereas PersonalJava 
can be used for building web-connectable consumer devices for home, office! and mobile 
use. such as set-top boxes or web phones. 

Both of these application environments include a Java virtual machine, but no 
details are given on its garbage collection algorithrns. CVe suppose that they use the 
same system as Javal.1. (see Section 3.2.1). For now, there is no red-time support in 
these virtual machines, but Sun released a specification of a real-time system [-LI], so 
we suspect that it will be soon included in these virtual machines. It is interesting to 
cite the part of the specification that deals with memory management : 

" ... This section contains classes that: 

0 Allow the definition of regions of memory outside of the traditional Java 
heap. 
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Allow the definition of regions of scoped memory, that is, memory regions 
with a lirnited tifetime. 

0 Allow the definition of regions of memory containing objects whose lifetime 
matches that of the application. 

a Allow the definition of regions of memory mapped to specific physical 
add resses. 

O Allow the specification of maximum memory area consumption and max- 
imum allocation rates for individual real-time threads. 

O Allow the programmer to query information characteriring the behavior 
of the garbage collection algorithm. and to some limited ability, alter the 
behavior of that algorithm. ... " 

The real-time garbage collection was not a subject of this work, but it is interest- 
ing to see that Java community had to let go of the heaponly allocation, as well to 
introduce C-like static memory in order to accommodate real-time systems. 

A n  interesting link on Sun's Java Web site points to PersonalJava emulator [42]: a 
tool that verifies whether a Java application made in JDK would work in PersonalJava 
application environment. 

The source code for both EmbeddedJava and PersonalJava is provided as part of 
the Sun Microsystems Community Source Licensing program. 

PERC Virtual Machine 1.0 

PERC [43] was designed specifically to meet the needs of embedded real-time develop 
ers. The PERC virtual machine is a clean-room implementation of the Java platform, 
independently developed, but fully compatible wit h the Java Virtual Machine Specifi- 
cation. The PERC virtual machine uses accurate incremental real-time defragmenting 
garbage collection. No details on the algorithm are given except that it uses a hybrid of 
classic garbage collection algorithms. The garbage collector is scheduled aggressively, 
so as to stay ahead of application requirernents to allocate memory The amount of 
CPü time dedicated to garbage collection is configured as a function of the s-tem 
workload. There are no memory leaks resulting from conservative scanning and live 
objects are copied incrementally to contiguous memory locations so as to coalesce free 
segments. After gaibage collection is preempted by higher-priori ty tasks, garbage col- 
lection resumes where it left off. PERC's API aggressivel y schedules garbage collection. 
A programmer can tell PERC the amount of memory needed and PERC treats garbage 
collection as a real-time task. This ensures that a temporary lack of rnemory does not 
stall forward progress of real-time tasks. 

A free PERC 2.2 Evaluation Kit is available upon request. Academic licenses are 
available at a discounted price. 

Charis pico Virtual Machine (pVbI) 

Charis (441 has developed a full function Java-cornpliant Virtual Machine (pico Virtual 
Machine) of less than 25K byte in size. It is used in micro-controller based embedded 



systems employed in pagers, smart card readers, cell-phones, hand-held toys, intelligent 
appliances and hand- held t eminals. 

The pic0 Virtual Machine supports garbage collection. It offers support for multi- 
segment memory management (buddy system) with simple incremental (usage-counter 
based) garbage collection. There is, &O, a support for optional mark and sweep on 
demand garbage collection. pVM minimizes memory usage by sharing the structures 
between the memory allocator and garbage collecter. This sharing allows for collection 
without using the stack when traversing object references. 

A demo is available upon request. 

Jbed 

Jbed is a clean-room application environment for embedded systems. Jbed white paper 
[45] explains the differences between above-mentioned JVMs and Jbed, as well JbedTs 
place in the world of embedded systems : 

"ln particular, JavaCard and Embedded Java appear as candidates for using 
Java in embedded and real-tirne systems. JavaCard is too limited for most 
applications, it doesn't support threads. garbage collection, floating point num- 
bers, etc. Embedded Java on the other hand is still too close to the original 
Java platforrn and its slightly reduced Personal Java version. It doesn't ad- 
dress any real-time issues,. such as real-time rnernory management, real-time 
exception handling. or real-time thread management. JBed is the missing link 
between JavaCard and Embedded Java. It addresses the mentioned problems 
of Java by providing real-time memory management (garbage collection!), a 
library that allows to write device driven cornpletely in Java, a process periph- 
erals framework, a hard real-time thread library, and of course the dynamic 
loading and replacement of code." 

.As for garbage collection J bed runtime system supports real-time memory allocation 
and real-t ime garbage collection. 

3.2.11 Conclusion 
Different JVMs use ver). difEerent (or none) garbage collection algorithms. It seems 
t hat Sun's HotSpot has the most sofisticated garbage collection system, although 
there are not many reports on its efficiency. M a y  JVMs use some kind of real-time 
algorithm : most of those JVMs are embeddeù, i.e. support applications made for a 
limited memory environment. Some JVM specifications mention garbage collection 
but give no details on its algorithms. Severai JVMs implement consenative garbage 
collection (Kaffe and partly Sun's JVM), and some of them do not mandate any 
garbage collection (Japhar, JavaCard). Table 3.1 presents all found JVMs and their 
garbage collet t ion algori t h m .  
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JVM 
Sun's JDK 1 .O - 
JDK1.1 - JDK1.2.2 
(classic) 

Garbage Coliection algorithm 
Compacting, mark-sweep collector wit h some con- 
servative scanning 

Sun's Java 2 Produc- 
tion Release for So- 

(Hot Spot) 1 fi l ly incremental "train" aigorithm 
Kaffe 1 Non- incremental, non-generat ional, conservat ive 

lenerational copying colleetor 
Standard mark-compact collection algorithm 

laris 

Sun's JDK1.2.2 
üenerational copying collector 
Standard mark-compact collection algorit hm 

1 tor 
LaTTe 

mark-sweep collector with a Boehm-like allocator 
Partially consemative mark-sweep garbage collec- 

Mach J 
DpnaFlex (TowerJ 
3.0) 
Hewle tt-Packard's 
HP-UX vl.1 

Real-time incrementai garbage collector 
Supports different gc schemes (algorithms not de- 
t ailed) 
Supports garbage collection (algorithm not de- 
t ailedl 

Hewle tt-Packard's 
ChaiVM 
IBM Runtime Envi- 
ronment for Windows 

I 

Concurrent mark-sweep garbage collection 

Supports gc (algorithm not detailed) 

Japhar 
JOVE 
Sun's JavaCard 
Sun's KVM 

No garbage collection 
Copying, multi-generation collecter 
No garbage collection 
Simple, handle-free, non-moving, single-space 

Sun's EmbeddedJava 
mark-sweep garbage collector 
v. Sun's JDK1.O 

and PersonalJava 
PERC VM 

1 garbage collection 

Accurate incrernental real-time defragmenting 

Charis pic0 Viriual 
Machine (pVM) 

1 Support for optional mark-sweep on demand 

garbage collection 
Multi-segment memory management (buddy sys- 
tem) wi t h simple incremental ( reference-counting) 

Table 3.1 : JVMs and their corresponding garbage collection algont hms 

Jbed 
garbage collection 
Real- time garbage collection 
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3.2.12 Which of Them to Test 

1s it available ? 

Not al1 of mentioned Java virtual machines are interesting or available for testing. 
First of d l ,  we excluded for the moment JVMs for embedded systems, as we wanted 
to have no memory limitations. A h ,  there are some Java virtual machines that are 
not available on the Internet (either the Iicencing fee was very big, or there was no 
response to the mail asking for an evaluation copy). The list shortened also because of 
the problems with installation (see below). 

Where does it work ? 

Sun's JDK is naturally the most portable and certainly available, but there is also a 
limit here : Hotspot is available only for Win 32 and Solaris. So testing on Linux was 
out of question. IBM's JDK 1.1.7 works only on Windows, whereas LaTTe works only 
on Solaris. Kaffe and Japhar (Japhar is interesting because it is open source, which 
means that the garbage collector could be easily added to it) do not compile on Win32. 
So that leaves Solaris. Japhar still doesn't compile on Solaris. So it leaves us with JDK 
(1.1, 1.2 (classic and hotspot)), Kaffe and LaTTe as Java virtual machines available 
for testing. 

3.3 Choice of benchmarking application 

3.3.1 What Kindof Application to Lookfor? 
An application that is to be used to test a garbage collector should allocate a lot of 
objects, and preferably have a well-documented allocation behaviour. The application 
should execute on al1 of chosen virtual machines. 

3.3.2 What Sorts of Applications Are Available ? 

There are two kinds of interesting applications. The first one is an application that 
is at the same time a profiler. These are usually applets, and not applications, which 
cal1 several programs subsequentiy and measure the time of execution of each of them, 
dong with some other parameter (quantity of free merno-, for instance). 

The other type of application is just some application that dlocates fairly enough 
to be used for testing garbage collecton. We mention those that we found interesting, 
although some of them were not used in Our benchmarks for portability reasons. 

The following sections present mentioned applications. 

Applicat ions-Profilers 

Here we mention some applications/applets that are at the same t h e  profilers. These 
are : Caffeinehlark, the Benchmark .4pplet, UCSD Benchmarks for Java and Java 
Grande Forum Benchmark Suite. 
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CafKeineMark 3.0 CaEeineMark [46] is an applet that runs a series of tests, which 
measure the speed of Java programs running in various hardware and software config- 
urations. CatFeineMark scores roughly correlate with the nwnber of Java instructions 
executed per second, and do not depend significantly on the the amount of memory in 
the system or on the speed of a cornputen disk drives or Intemet connection. Caffeine- 
Mark uses nine tests to measure various aspects of Java virtual machine performance. 
Each test mns for approximately the same length of t h e .  The score for each test is 
proportional to the number of times the test was executed divided by the time taken 
to execute the test. This test measure the overail performance of a JVM, but not the 
performance of the garbage collector itself. 

The Benchmark Applet The Benchmark Applet [47] rneasures the time it takes to 
do an operation thousands (or even millions) of times, subtracts the time spent doing 
operations other than the test, such as the loop overhead, and then uses this information 
to compute how long each operation took. It runs each test for approxirnately one 
second. In an attempt to eliminate randorn delays from other operations the computer 
may perfonn during a test, it runs each test three times and uses the best result. There 
are 10 individual benchmarks included in The Benchmark Applet, and it is up to the 
user to make a choice. Similarly as the previous one, this benchmark application does 
not have a possibility to test specifically the garbage collector. 

UCSD Benchmarks for Java This is a collection of methods that test different as- 
pects of JVM : garbage collection, method invocation, loops, etc. It can be downloaded 
and compiled, or it can be mn as applet from its site (481. On the contrary to the pre- 
vious applications, UCSD Benchmarks include a garbage collection benchmark. Two 
types of GC measurements have been perforrned. The first requests that the runtime 
perform a full GC. Both the time and the space recovered (and perhaps added) are 
reported. The second "randomly" allocates sewral thousand objects into a small m a y  
(the time for looping and array access are probably a small part of the overall time.). 
causing most to be made available for reclamation by the garbage collector. Because, 
for example, Sun's Java runtime has an incremental collector, many of these may be 
collected without a hl1 GC occuring. The aut hors state aiso that the garbage collection 
benchmark seems to have widely v q i n g  behavior depending upon the environment, 
including crashing (Sun's appletviewer) and thrashingjhanging (Netscape). 

Java Grande Forum Benchmark Suite Java Grande Forum (JGF) Benchmark 
Suite [49] is a collection of benchmarking applications fkom EPCC, University of Edin- 
burgh. The applications are gouped into three sections : low level operations, kemels 
and applications. Low level operation section, in version 1.0, contains Garbage bench- 
mark, that assess the performance of the system garbage collector. Objects are created 
with a randomly chosen size in the range zero to (total available memory)/1000. Ini- 
tially, sufficient objects are created to consume al1 available memory: this part is not 
timed. Subsequent object creation proceeds for a fixed time period. -411 objects are 
assigned to the same reference, so that al1 objects except the most recently created are 
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available for collection. The number and total size of the objects collected is recorded. 
Performance units are references per second and bytes per second. The Garbage bench- 
mark is excluded in the recent version of JGF Benchmark Suite. 

Other benchmark application There is an excellent source of benchmark applica- 
tions on the Java Grande Forum site [49], but hardly any of them is useful for garbage 
collection benchmarking. 

Applications that allocate a lut of memory 

Other possibility to test garbage collectors in Java virtual machines is to execute a p  
plications that allocate a lot of objects, and to use either a -verbosegc flag or some 
other method (see Section 3.4) to measure the performance of a garbage collector. We 
searched the Internet again to find the applications that meet our needs, and we found 
some on the benchmark sites. Here we mention CUP and JLex. 

CUP CUP (Constructor of Useful Parsen) is a system for generating LALR parsers 
from simple specifications. It serves the sarne role as the widely used program YACC 
and in fact offee most of the features of YACC. However, CC'P is written in Java, 
uses specifications including embedded Java code, and produces parsers which are 
implemented in Java. There are some grammars downloadable from the CUP site [SOI, 
which we used as an input. 

JLex JLex [51] is a lexical analyzer generator, written for Java, in Java. The JLex 
utility is based upon the Lex (lexical analyzer generator) model. JLex takes a spec- 
ification file similar to that accepted by Leu, then creates a Java source file for the 
corresponding lexical analyzer. We were not able to find a sample of the gramrnar that 
is large enough to cause garbage collection while evecuting $Leu, so we mention it just 
as a reference. 

3.4 Choice of profiling methods 
After we decided on the applications to use, we had to choose the profiling method. 
Le., the way to measure the performance of the garbage collector. We mention Java 
Bags, Java methods, heap simulators and profilers. 

3.4.1 Java Flags 
One could Say that using of Java flags aimed for profiiing (Java application launcher 
-prof option) is the most universal choice, but unfortunately it is not. JDK changed 
its runtime options or the way the options work with every new version. Kaffe does 
not support -prof option. So, we usually used -verbosegc option, which is not imple- 
mented in the same way for al1 the JVMs, but still gives rather similar informations. 
For al1 the Java virtual machines, -verbosegc gives the amount of freed memory (in 
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KB/MB or %), and the total heap before and after each collection. Al! of them, except 
Kaffe, give the time needed for each collection. We instrumented KaIfe (with the help 
of LaTTe's code) to obtain timing information. 

We mention a useful application for analysing the -prof option's output : Hyperprof 
[52] . 

Hyperprof This is a program written in Java that ailows the user to view and 
analyse the execution profile of Java program. It parses java.prof files obtained using 
the -prof option to give a list of methods, list of methods that called selected rnethod, 
iist of methods that are called by selected method and mctrnory used by program. The 
problem is that it works with JDK1.O and JDK1.1, but not with Kaffe (which does not 
implement -prof option) or JDK1.2 (which changed the format of the .prof file). 

3.4.2 Java Classes 
àlethod freeHemory() of the class java.lang.Runtime retums the amount of free 
memory in the system. We could use it, along with the call to garbage collector 
(System.gc0) to measure the quantity of merno- before and after the call to the 
application, or before and after the call to the gc (Fig. 3.4.2). The problem is that 
Kaffe does not implement this method the same way JDK does. Kaffe's method returns 
RAY (therefore before and after are same and constant always) and JDK's method 
returns free portion of the heap. 

Vie can use a simple application that allocates an array of a given number of Inte- 
gers, then nulls it and calls the garbage collector. Of course, this ciil1 to the garbage 
collector may not be the only one. The garbage collector cm be called by the JVhl 
itself, if the array is too big. This is not how the usual Java program works. there are 
surely some objects that die faster and other that die slower. but it can show us how 
the coliector works in these cases. An example of such an application is s h o w  in Fig. 
3.4.2 below. 

3.4.3 Some Kind of Heap Simulator 
Some researchers use their own instrumentation to simulate heap allocation. Darko 
Stefanovic [53] uses an accurate simulator that models al1 heap objects and pointers 
among them. Jonathan Moore et al. [54] use Oscar? a GC testbed that compares GC 
performance across different langages. Both of them instniment a language imple- 
mentation to gather snapshots of its heap. .in instrumentation of a N Y  requires the 
source code of the JVM. which was not available for al1 tested JVMs, so we dropped 
this approach. 

3.4.4 Profilers 
There is a number of Java profilers available. They are usually expensive, but there are 
almost ahays  free, time-limited evaluation copies. The most popular are : OptimizeIt 
[55] and P r o b e  [56]. Al1 of them have a user-friendly graphie interface, with plenty of 
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publicstatic void main(Stringn args) ( 
int count; 
Runtime n O b j  = Runtime.getRutime0; 

// - begtn time 
long begTime = System. currentTimeHillis O ; 
long fml,fm2, endTime; 
if ( args.length < 1 { 

count = 1000; 
} else { 

count = Integer .parseInt (args [O] ; 

1 
System.out.print~n("nemory printed in K bytes . ..9; 
System. out. println("1ntegera to be allocated: + count ) ; 

// - creote on a m y  
Integer someints [] = nev Integer [countl ; 

/ /  - total heap memoy 
System. out. println('"ïota.1 memory : Il + 

rtObj . totalMemory O / l O X )  ; 
/ /  - jree rnemory afler the army creation 

System. out. println("Free memory : " + rt0bj . f reeMemory( 1 /l024) ; 
// - cal1 to garbage collector 

rtObj .gcO ; 
// - free memory after garbage collection 

System. out. println( "Free memoryafter CC : " + 
rtDb j . f reeMemory0 /l024) ; 

// - allocate a m y  mernbers 
for (int i = O; i i count; i++ ) 

// - free memory ofter initiakation O/ army members 
System.out.println("Free after al loc  of ints: " + 

rt0bj. f reeMemory O /IO241 ; 
// - nulis the array 

for (int i = O; i < count; i++ ) someints[i] = null; 
// - cal2 to garbuge collector 

rtObj .gcO ; 
// - end tame 

endTime = System. currentTimeMillis ; 
// - free memory after the second garbage collection 

System.out.println(''Free memoryafter CC : " + 
rt0bj .  freeUemory0 /l024) ; 

// - total time 
System. out .println("Total time :" + (endTime - begTime) + "ms") ; 

Figure 3.1: Simple Java code for garbage collector testing 
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functions that are very useful. Unfortunately, they are always destined to a particular 
JVM. JProbe is compatible with Java2 (JDK1.2)' because JProbe use its profiling 
API, which is not present in JDK1.l. As for JDK1.1, it uses a specially instrumented 
version of JDK1.l, that is included in JProbe. Xormal JVMs 1.1 are not compatible 
with JProbe, because of the lack of that instrumentation. Logically, it does not work 
with Kaf'Fe nor with LaTTe. 

Opt imizeIt for Solaris is compatible wit h Sun's JDK1.2 reference implementat ion, 
but not with Sun's JDK1.2.2, nor with Kafie or LaTTe (OptimizeIt for Win32 does 
not work with IBM JDK1.1.7 either). 

For these evident reasons, we did not make use of the profilers. 

3.5 Our Choice 
Ué chose to test JDK1.2.2-0.0.1 (classic and Hotspot), JDK-1.2.2-05, JDK1.1.3, Kaffe 
and LaTTe on Solaris using a Java flag -verbosegc while executing either CL'P sepa- 
rately, or CUP inçtalled in a piece of code that verses the quantity of free rnemory 

This choice is obvious from the above analysis : Kaffe compiles on Solaris. and 
not CVin32; Hotspot is available for Solaris and Win321 LaTTe is made exclusiveiy for 
Solaris; the rest of JVMs either do not work on Solans (IBM's JDK1.1.7) or are not 
available for testing. Neither of available profilers recognizes Kaffe nor LaTTe. Most 
benchmarking applets/application do not include garbage collecter tests. 

CUP was compiled using JDK1.2.1, and the class files obtained that way are used 
for testing al1 JVMs. 

.Ill the test are done on Sparc SunOS 5.6. 

3.6 Benchmarks 

3.6.1 verbosegc Output 

Here we present the examples of the verbosegc outputs for al1 the Java virtual ma- 
chines tested. It is interesting to compare the information obtained using this flag for 
each JVM. 

JDK1.2.2-05, which is also known as ExactVM or ResearchVM? has two -verbosegc 
options. One is a standard option, which gives less verbose output, stating the gc time. 
the total heap, and the percentage of the free portion of the heap : 

GCCO] in 23 ms: (8Mb, 75% free) -> (8Mb, 94% free) 

The other one is a triple -verbosegc option, Le., "java -verbosegc -verbosegc 
-verbosegc . . . " . It gives more verbose output. and the details on the collections 
of each of its two generations. For the Gen O' which has two semi-spaces and uses 
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a copying collector, it Qves the size of the semi-spaces, its occupancy and the free 
memory. Fig. 3.2 presents the same output as above, but with the triple verbosegc 
option. 

- - - .  - 

Starting GC at Wed Apr 19 18:16:38 2000; euspending threads. 
GenCO] (semi-spaces) : size4096kb(SOX overhead) , f reedlkb, marAlloc=Okb. 
space [O] : size=2048kb, f ree=Okb, maxAlloc=Okb. 
space [l] : size=2048kb(100~ overhead) , f ree=Okb, maxAlloc=Okb. 

GenO(semi-spaced-CC #l tenius-threshs31 26ms 0%->7Tl, free 
Cen [O] (semi-spacea) : size=4096kb(50# overhead) , f ree=l586kb, maxAlloc=l586kb. 
space [O] : size=2048kb( 100% overhead) , f ree=Okb, maxAlloc=Okb. 
space Cl] : size=2048kb, f ree=1586kb, maxAlloc=l586kb. 

resuming threads. 
CCCO] in 28 ms: (8Hb, 75% free) -> (8Mb, 94% free) 
Total GC the :  28 ms 
Processing 26 referenco objects. 
++ GC added 26 finalizers++ Pending finalizers = 26 
++ Finalizer Q = O 

Figure 3.2: -verbosegc output for JDK1.2.2-05 JVbl 

JDK1.2.2-001 classic 

JDK1.2.2 classic has the same output, and consequently and probably the same garbage 
coilector system as the previous versions of JDK (v. JDK1.1.3). It gives a number of 
freed objects, freed memory in bytes, the time of each phase of garbage collection, and 
the percentage of the free memory (see Fig. 3.3). 

CGC: managing allocation failure: need 1032 bytes, type=l, action=D 
CGC: O millisecoads since last GC) 
<CC: freed 12345 objects, 530552 bytes in 13 ms, 63% free (531272/838856)> 
<CC: inittscém: O ms, scan handles: 8 ma, sueep: 5 ms, compact: O ms> 
CGC: O register-marked objects, 13 stack-marked abjects> 
<CC: O register-marked handles, 68 stack-marked bandles> 
<CC: ref s : soft O (age >= 32) , veak 0, final 17, phantom O> 

Figure 3.3: -verbosegc output for JDK1.2.2-001 classic JVM 

JDK1.2.2-001 hotspot 

Hotspot has a rather non-verbose -oerbosegc option. Nevertheless, it gives enough 
information : allocated memory before and after the collection. total heap, and the gc 
time : 
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[CC 2048K->422K (5 l84K) , 0.0456488 secs] 

As Hotspot uses a generational gc, when the whole heap is collected it is mentioned: 

When the incrementai collections is enabled the output has the same form. 

JDK1.1.3 

JDK1.1.3 gives the output sirnilar to the one given by JDK1.2.2 classic (Fig. 3 . 4 .  

CGC: managing allocation failure. need 24 bytes, type=2, action=l> 
CGC: freed 17597 objects ,  378152 bytes in 18 ma, 66% free (560112/838856)> 

CGC: initkscan: O ms, scan handles: 11 m s ,  sueep: 7 ms, compact: O ms> 

Figure 3.4: -verbosegc output for JDK1.1.3 JVM 

Iiaffek verbosegc output gives the total heap, mernory allocated before and after the 
collection, the percentage of the heap that is free, but it lacks the gc time (Fig. 3.5). 

CGC: heap 5120K, t o t a l  before 4705K, after  2142K (104084/33383 objs) 
58.2% f ree ,  al loced 17130K (#1311?4) , marked XOK, suept 2563K (t70701) 
42 ob j s (1K) avait ing f inalizat ion> 

Figure 3.5: -verbosegc output for Kaffe JVM 

In order to have the timing information, we instrumented Kaffe, by incorporating 
the code from LaTTe that gives the gc time. The changed output is showed in Fig. 3.6 

<CC: uQL% root = O ms> 
CGC: walk mark stack = 188 ms> 
CGC: streep = 70 ms> 
CGC: t o t a l  = 260 ms> 
CGC: heap 5120K. total before 4694K. af ter  2174K (102770/33545 objs) 
57.5% f ree  , ailoced 17344K (#133159) , marked 726K, s e p t  2519K (#69225) 
46 objs (1K) auaiting f inalization> 

Figure 3.6: More verbose -verbosegc output for Kaffe JVM 
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LaTTe 

LaTTe has rather verbose -verbosegc output. It shows time for each garbage collec- 
tor's phase, the total heap and the amount of freed memory (Fig. 3.7). 

CGC: ualk root = 1 ms> 
CGC: ualk mark stack = 1 ms> 
(CC: process finalizers = O ms> 
<CC: sveep = 3 ms> 
<CC: total = 7 ms> 
<CC 1: heap 8192K, total 8192K. marked 171K, freed 5323K. fixed 253SK> 

Figure 3.7: -verbosegc output for LaTTe JVM 

Analysis and presentation of the verbosegc output 

Al1 the verbosegc outputs from different JVM give the following numbers : amount of 
total heap, amount of freed memory and total gc time. When executing a benchmark 
application, we use the verbosegc output to show : the total gc time for each JVhI 
with standard options, gc tirne and number of collections as a function of the initial 
heap size (set by the -ms option), and the total gc time as a function of maximal heap 
size found by previous analysis. 

3.6.2 CUP Benchmarks 
The first application that we used was CUP. CUP uses as input a Java grarnmar: we 
used javalO.cup, a file that contains the Java 1.0 gammar. Here we present the results 
obtained. First we executed the application and measured the total gc time for each 
JVM (see Fig. 3.8). 

We can see that, with default start heap size, specific for each JVM, JDK1.2.2 
(ExactVM) has the best performance, and Kaffe is the least performant. LaTTek 
garbage collecter performs surprisingly well. 

In order to compare the obtained results more objectively. we ran the application 
changîng the initial heap size (using the -ms option of java runtime). We were able to 
find the heap size for each JVM for which only 1 or O garbage collections are performed, 
and the gc time is, therefore, minimal. Fig. 3.9 shows gc time as a function of the 
initial heap size for each JVM. 

Minimal values for gc time correspond almost always to the minimal heap for which 
only one garbage collection is performed. The only exception is JDK1.2.2 (ExactVM) 
where the number of garbage collections is always 12, independently on the heap size. 
The reason is its generational garbage collection algonthm, which forces frequent col- 
lection in the nursery, whose size is constant (i.e. independant on the total heap size). 
In order to veri& the results for gc time obtained by standard execution (with the 
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Figure 3.8: GC time with the default heap size for each JVM 

initial heap size heing a default value, difierent for each JVM) (see Fig. 3.8), we corn- 
pared the minimal values for gc time for each JVM, and its corresponing heap size. 
The result is sbown in Fig. 3.10. 

If we compare graphics in Fig. 3.8 and Fig. 3.10, we can see that, when we exclude 
the heap size factor, LaTTe performs the best, and Hotspot, JDK1.2.2 classic. JDK1.2.2 
(ExactVbl), and JDKl.l.3 follow it closely. KafFe still has the worst performance, but 
the difference is somewhat reduced. 

3.6.3 MemoryAndTime Benchmarks 
In section 3.1.2 we mentioned that we could use a simple application that allocates an 
array of Integers, to measure the garbage collector activity. We used the class Mem- 
oryAndTime (see Fig. 3.4.2) creating an array of 1000000 Integers. While allocating 
the array, each JVM made several calls to the garbage collector in order to find the 
needed memory; the heap is therefore augmented sewral times. At the end, when the 
array is nulled out, we placed a c d  to the garbage collector to see what tirne it takes 
to free the allocated memory (we used the -verbosegc output). Fig. 3.11 shows the 
obtained results : number of KB deallocated per rns of GC tirne. 

This kind of benchmarking is not at al1 the way real Java programs deallocate mem- 
ory, and that should be kept in mind. Under these conditions, Hotspot shows the best 
performance, with LaTTe close by, incremental Hotspot and the ExactVM are rather 
efficient &o. JDK1.1.3, JDK1.2.2-classic and K d e  have a lot worse performance. 
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h p  sin [KB) 

Figure 3.9: GC time as a function of the initiai heap size 
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O GC tirne (rns) 

O Start heap (KB) 

JDKl .t .3 JOK1.22 JDK1.2.2- JOK1.2.2- Kaffe Latte 
cfassic hotspot 

Figure 3.10: Minimal GC time and the corresponding initial heap size 

Figure 3.11: Performance of the garbage collecter for each JVM for MemoryAndTime 
application 
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3.7 Conclusion 
The choice of Java virtuai machines, applications, profilen and operating systems to 
test garbage collectors is not always obvious. It depends on the virtual machine's 
availability for a specific operating system(s), or the application's or profiler's avail- 
ability for a specific JVM. We have chosen to test different Sun's JVMs, as weil as 
Kaffe and LaTTe on Solaris, with -verbosegc output as a source for benchmarking 
results.The results showed that LaTTe, Sun's Hotspot and Sun's ExactVM have the 
best performing garbage collector systems. 

As LaTTe's garbage collector performed very well, and as  its source code is available, 
we analyzed its code to better understand it. This was important both for understand- 
ing the garbage collecter's algorithm and for understanding the memory management 
system as a whole, thus making it easier to introduce different algorithm, and compare 
it to the present one. In the next chapter, we analyze the source code of LaTTe's 
memory management system. 



Chapter 4 

The LaTTe Java Virt ual Machine 

4.1 Introduction 
LaTTe garbage collection system showed very good performance, so we wanted to go 
into details of its algorithm, to be able to explain that performance. First, we give a 
short ovemiew of LaTTe, based on the information from its web site (21, and then we 
present LaTTe's memory management. 

4.2 Overview 

LaTTe was created by the MASS (Micro-Architecture and System Software) Labora- 
tory of the School of Electrical Engineering at  Seoul National University [57], as joint 
work with the VLIW research group at IBM T.J. Watson Research Center [58]. 

It #:as built starting with the code from Kaffe 0.9.2, a freely available Java virtual 
machine [Ti']. However, the core parts were re-written : the bytecode execution engines. 
the garbage collector, the exception manager, and the thread synchronization mech- 
anisrn. The execution engines of LaTTe (i.e., the JIT compiler and the interpreter) 
were written from scratch. Both compiler and interpreter are more elaborate than 
Kaffe's, since LaTTe does not provide multi-platform support, which makes it easier to 
implement more powerful execution engines. Additionally, the JIT compiler and the 
interpreter c m  be used concurreatly in LaTTe, while Kaffe can use only one of the 
two execution engines. As for the garbage collector, L a m e  uses a similar algonthm 
as is used by Kaffe : a mark-sweep garbage collector. Lame's collector h a ,  however, 
completely different interna1 structure, and the implementation used in LaTTe is a 
great deal faster (see Section 3.6). LaTTe uses Kaffe's user-level thread system with 
little modification, but the thread synchronization mechanism supporting Java moni- 
tors is newly designed to be much faster than that of K d e .  This new design of the 
synchronization primitives results in a different object model. 

However, compared to other commercial Java tirtual machines, LaTTe has the 
following la& of features: 

0 Yo AWT or Swing. 
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a Not Java 2 (only supports 1.1). 

a No bytecode verifier. 

a Lacks JNI support. 

a Incomplete class library. 

No support for JAR or compressed ZIP archives. 

4.3 Memory Management in LaTTe 
LaTTe's memory management changed a little from the version that we tested. The 
new version, 0.9.1 uses an irnproved garbage collection system. The details about 
LaTTe's memory management are given in [59]. Here we present a shorter description 
based on Chung's paper [59], as well as  our ideas and further explanations, along with 
a thorough code analysis. Our idea was to introduce a new garbage collector in LaTTe. 
or to instrument the existing one, so the code analysis was a necessary step. 

The following two sections describe, respect ively, memory allocation and garbage 
collection in LaTTe. In order to make the code fragments easier to read? we present in 
Table 4.1 the most used types and rnacros. 

4.3.1 Memory Allocation 
LaTTe manages three types of heaps separately: a small object area, a large object 
area. and an explicitly managed heap. The small object area contains objects that 
are smaller than one kilobyte, while the large object area contains objects that are 
larger than one kilob-yte. Objects in both of these heaps are deallocated automatically 
by the garbage collector when no longer needed. The explicitly rnanaged heap, on 
the other hand, contains objects that must be deallocated manually by the virtual 
machine programmer. Such explicitly managed objects include class objects, register 
map tables, code fragments, etc. Allocating explicitly managed objects. or "fiued" 
objects, never triggers a garbage collection. Memory for these heaps is obtained from 
the operating system by the region manager. 

Region manager 

Each heap aliocates memory through the region manager, by allocating regions 
(gc-region) of about 2MB. Each region has its type for distinguishing different heaps. 
Region information is held in the region table (struct gcxegion *regions a)?  which 
holds the information sorted in order of increasing addresses. The size of the region 
table array is 1024, which means that the total available memory would be about 2GB. 
which seems more than enough. The table is searched using binary search to Sind a 
region that contains a particular address. 
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gcstats 

Defini t ion 

5truct gcstats 
size-t srnzdlsize , Sizes of various heap areas 
largesize , f ixedsize 
size-t sma l ld loc  , Various docation statistics 
l a r g e ~ l o c ,  f i x e d d l o c  
size-t smallloarked , Garbage coiiector statistics 
smallf reed, large~arked, 
large3 reed 
int iterat ions Number of GC done so far 
double mark, sort, Timings for the garbage col- 
sweep , gc , total .  mark, lect or 
to ta l sort ,  totalsweep, 
to ta lgc  

*HEADER(p) & SIZEMASK 
aizeof (double) 

Source 
file 

gc. c 

gc.c 
gc. h 
gc. h 

- 

gc. h 
gc.c 
gc.c 

Table 4.1: The most used types and macros 
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Variable/Function 1 Description 1 Source file 

gcregion 

s ta t i c  struct 
gcxegion *regions 
CGCMGION-TABLE-SIZEl 

- - 

struct gcxegion 1 p .  

void *s ta r t ,  *end address range of region 
int type type of memory contained 

*prev, *next list of regions 
void *data other data used by exter- 

O 

in region (type of heap) 
struct gcxegion links for a doubly-linked 

na1 components 1 

gc.c 

region table 

Table 4.2: Important variables and functions for region manager 

gc.c 

- 

s t a t i c  struct 
gcxegion* 
region-allocate (size-t . 
int 1 

As it is a mark-sweep collectort there is little chance that a region would be corn- 
pletely free, so freeing of regions is not yet implemented. The same goes for region 
nierging. 

Table 4.hshows data structures and functions used for region manager. 

Smdl object area 

allocates a new region 

O bjec ts t hat are automatically managed and smaller t han one kilobyte are allocated 
in the small object area. They are allocated using lazp worst fit. In fact, objects are 
allocated using pointer increments (using small-cursor and small-bound pointers in a 
function vo id* gc_malloc-small (size-t s i z e )  ) and if the allocation pointer would 
go over the bound pointer, the worst fit is used to find a new free space area (func- 
tion void* slow-small-allocate ( s h e d ) .  Worst fit is accommodated by taking 
the fint free memory chunk (gc-small-chunk) in a free list (small-chunks) soned in 
decreasing order of size. The free list is built after the sweep phase. Worst fit has its 
advantages and disadvantages : a single cornparison suffices to find out whether there 
is a node in the free list that satisfies the memory demand (first fit and best fit require 
many comparisons); on the other hand, worst fit results in more fragmentation, which 
can lead to smaller heap sizes. If there is no free chunk available. the function void* 
get-small-block (void) is called, and the allocation is made from the newly allocated 
block from the list of blocks (small-blocks). And if the list of blocks is empty, the 
small heap is expanded (new region allocated and put in the region k t )  by calling 
void erpaad-small-area(void) . 

Important variables and functions for smdl object allocation are given in Table 4.3. 

gc.c 
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Variable/Function 1 Descript ion 1 Source file 
static gchead 
*small,cursor 
static gchead 

pointer to the free area 

* small-bound 

1 size-t sire size of memory oceupied 1 

gc.c 

pointer to the end of the free area 

struct gcsmall-chunk 
size-t size size of chunk 
struct gcsmall-chunk pointer to the next chunk 
*next 

gc.c 

g c . ~  

by adjacent blocks 
struct gcsmallhlock pointer to the next group 

*next of blocks 
void* 1 allocate small object using pointer increments 

Table 4.3: Important variables and functions for small object allocation 

~ C . C  

gc.c 

(size-t size) 
static void* 
s low-small-allocate 
(size-t) 
static void 
expand-amall-area 
(void) 

allocator used when pointer incrernents faii to sat- 
isfy the request 

expand the small object area 

gc.c 

gc.c 
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Variable/Function 1 Descript ion 1 Source file 
static  struct 

large-set mode 

I 

information for the large object area F gc.c 
gcheap largelieap 

void *abject the address of the object 
atruct largeset aode chained Links 

struct largeset mode 

s ta t i c  int 

large-set-add 
(void*, size-t ) 

large-set hash 
(void*) 
s ta t i c  void 

Table 4.4: Important variables and functions for large object allocation 

*prev, *next 
gets hash value for object 

Large object area 

gc.c 

adds a pointer to the object to the hash table 

Automatically managed objects larger than one kilobyte are allocated in the large 
object area (iargeheap).  Large object area uses the same allocator as the explic- 
itly managed area (see function void* mem-allocate (struct gcleap* , size-t) 
in Section 4.3.1). üpon allocation a pointer to the object is added to a hash table. .411 
objects in this area are referenced by nodes a hash table (large-setnode) in order to 
support conservative pointer marking. The overhead associated with this is not large 
since al1 objects are larger than one kilobyte. 

Important variables and functions for large object allocation are given in Table 4.4. 

gc.c 

Explicit ly managed heap 

Manual memory manager is used both for explicitly managed heap and large object 
area. Data structures and functions used for manual memory manager can be found in 
Table 4.5. Heaps are distinguished by their t-ypes (field type in the structure gcheap). 
The allocator uses segregated free lists (see Section 2.2.2). Memory is divided into free 
lists (field l i s t s ) ,  one for each size-class, determined from the object size. For size 
classes the linear distribution is used for smaller sizes (up to 1024 b) and a power of 
two distribution is used for bigger sizes. Each free list is sorted in increasing order of 
size, which is ensured when nodes are entered into each free list (using the function 
void i n s e r t f  reelump(struct gcheap. void* , int ) ) .  

Wheoever an object is to be allocated, first its size class is determined (hnction 
i n t  size-class (size-t)) .  Then. the free list of that size class is searched in order 
to find a free lump that would fit the best (function void* findfreelump (struct 
gcheap , size r int)  ) ). If some space in the free lump is left free after the allocation, 
it is put back to the appropriate free list. If no fiee lump is found in that list? the search 
is continued in the next size class. If even after that the memory demand is not satisfied, 
the heap is expanded (function int mem-expand (struct gcheap* . s i t e - t  1 ). 
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gcheap 

Variable/Function 

void segregated Eree lists 
*lists [SIZEXUSSES+1] 
size-t *size , *al loc  placeholders for statistics 

Description 
struct gcheap 

1 

static  void* 1 allocate memory from heap 1 gc.c 

Source file 

static  int 

I I 

s ta t i c  void 1 insert free lump into a free list 1 gc.c 
insertf  reehmp 1 I 

- -- 

int type region type 
calculate size class 

(struct gcheap*, 1 I 

gc.c 

f i n d f  reelump 1 1 

void*, int) 
static  voici* 

(struct gcleap*, 1 I 
size-t ,  int) I I 

find a suitable free lump 

Table 4.5: Important variables and functions for manual merno- management 

gc.c 

4.3.2 Garbage Collection 
LaTTe uses a non-increment al partially conservative mark and sweep garbage collector. 
Partially conservative means that LaTTe is not able to ascertain the types of local 
variables or stack operands. Thus, the garbage collector must be conservative with 
respect to the execution stack. In the case of heap objects, al1 objects have a class 
pointer which indicate their type. Thus the garbage collector can treat the heap in 
a type-accurate manner. A garbage collector that is partly conservative and partly 
precise in t his manner is called a part ially conservative garbage collec tor. 

Garbage collection is done in a thread separate from the other normal threads 
(with for mutex quickLock gcMan). Table 4.6 lists the important garbage collector 
functions. The main garbage collector function is g c a a i n o  which calls the marking 
function mark-phase 0 and sweeping function sveep-phase (1. 

Marking phase 

The hnctions used for the marking phase are listed in Table 4.7. Marking is done by 
first marking the objects referenced by the root objects, which are class objects and 
the execution stacks for each thread (using the function void vaik-roots () ). Root 
objects are registered separately using gc-attach0 and maintained using a linked list. 
To avoid overhead for linking each root object (which never reverts to normal, and 
therefore there is no bound to its number), root objects are grouped into root bundles 
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Func tion 
void gc-invoke 
( i n t  lack) 
void gcmain 
(void) 
void mark-phase 
(void) 

Descript ion 1 Source file 
wake up the garbage collection t hread 1 gc-c 

the loop for the garbage collection thread gc.c 

execute the mark phase . 

Table 4.6: Important garbage collector functions 

gc.c 

sweep the heap for garbage 

(stnict gczoot-bundle) and a linked list of root bundles holds al1 root objects. 
The objects thus marked are pushed onto the marking stack void **mark-stack. 

The size of the rnarking stack is checked and if it has less objects than a certain 
limit, a flag to selective sweeping is set. Then, the objects on the marking stack are 
"walked", that is, al1 the objects pointed-to by each object in the stack are marked 
and pushed ont0 the stack (it is a modification of Cheney's algorithm). If the number 
of marked objects is still less than a certain limit, the sweeping phase is entered. 
If not. the objects are marked by depth-first traversal using the marking stack : as 
object is popped from the stack, its children are put onto the stack. and the process 
repeated until the stack is empty. Marking function is made for each object of a 
certain class with void makeWalkFunc (H j ava-lang-Class *class) . It  c d s  void 
mark0 for each reference field (Le. for each child of an object), so d l  the childrea 
are pushed onto the marking stack. Detection of stack overflow is done by an expiicit 
bound check, before pushing an object on the stack. If the stack overflow occurs, 
it is bandled by traversing al1 the objects in the heap. and marking the unmarked 
ones (functions void ualk-small-ob jec t s  () and void valk-large-ob j e c t s  0 ). This 
process is rather slow7 but it seems to occur rarely, so it has no big impact on the 
performance. 

gc.c 

Finding pointers 

Before marking, the garbage collector makes sure that the pointer to the object to be 
marked points really to a heap object using the function i n t  is-ob ject (void *pl. 
This function first finds a region to which the object belongs. Then, if the region 
is in the small object area it calls function in t  is-small-object (void*, struct 
gcxegion).  This function first checks whether the block containing the pointer is in 
use, and if yes, it goes from object to object in the block, and checks if the pointer 
points to the beginning of an object. If 'es, it is a pointer, if not, it is ignored by the 
garbage collec tor . 

If the region is in a large object area, the function int large-set-existsboid*)  
is called. This function searches through the large objects hash table in order to find 
if the object is there or not. If it is there, then it could indeed be a pointer, and the 
object is marked. Otherwise, it is ignored. 
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void **mark-stack 
void gc-attach (void 
*root, gc-type *type) 
void walkiroots 
(void) 
void walknark-stack 
(void) 
inline void mark 
(void*) 
WALK(p) 

void makeWalkFunc 
(H j avalmg-Class 
*class) 
void 
handie-stack-overf low 
(void) 
void 
walk-small-objects 
(void) 
void 
ualk-large-ob j e c t s  
(void) 

Description 

i n t  sizs number of objects in 
bundle 

struct gcxoot,bunùïe next node in root bundle 
mext List 

- -  - - - - - - - . 

struct 
void the object itself 

*ob j ect  
void the walking root s [ROOTBUNDLESIZE] 

(*vaiit) function for the 
(void*) ob iect 

the mark stack 
attach a root object to the garbage collecter 

mark root objects 

mark reachable objects 

mark an object 

( ( (Hjavhlang-Ob ject*) (pl ) ->dtable-> 
class->ualk) (pl 
create a walk function for a class 

handle mark stack ovedow 

walk marked objects in srnall object area 

walk marked objects in large object area 

Source file 

gc.c 
gc-c 

gc-c 

gc-c 

Table 1.7: Important variables and functions used for marking phase 
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h n c t  ion 1 Description 1 Source file 

large-set-exists 
(void *pl 

int is-object 
(void*) 
in t  
is-small-ob ject 
(void*, struct 
gcxegion*) 
int 

Table 1.8: Important functions for hding pointers 

If the region is in the explicitly managed heap, or there are no regions containing 
the pointer, then it is ignored by the garbage collector. 

Rinctions used for finding pointers are listed in Table 4.8. 

check if the reference is valid 

check whether a pointer points to an object in the 
small object area 

check if pointer is in large object table 

Sweeping phase 

gc.c 

gc.c 

gc.c 

After the marking phase is completed, the sweeping phase takes place, freeing the 
unused memory (see Table 4.9). Sweeping is done separately for small and large object 
area. 

For srna11 area two possible sweeping algonthms are used : selective sweeping (void 
sveep-small-selective (void ** , in t )  ), used when heap occupancy is low, and tra- 
ditional sweeping (void sveep~smallsormal O)  used when the number of live objects 
is bigger than a certain threshold. The algorithm are chosen at run-time, thus im- 
proving garbage collection time, according to the authors. Select ive sweeping takes 
as an input a set of live objects, sorts them by increasing addresses and frees space 
between them in constant time. Free memory is put back into free iists of blocks 
or chunks (depending on its size) using the function void insertf reemem (struct 
small-chunk-table* , struct gcsmall-block** , void* , void*) . In the case of tra- 
dit ional sweeping, objects are visited one by one, and if they are not marked, t heir space 
is reclaimed. While sweeping, contiguous fiee memory (pointed to by *slack) is co- 
alesced. It is put on one of the free lists (chunks or blocks) according to its size. In 
fact, lists of free chunks are made by the sweeping phase. Chunks are put in the appro- 
priate list using the function void insertf reechuak (struct small-chunk-table , 
g c l e a d ,  size-t), and after the sweeping d l  the lists are merged into one in order of 
decreasing object sizes (function struct gc-small-chunk* mergef reeindex (stnict 
small-chunk-table) ) to be able to accommodate worst-fit allocation. 

The large object area is swept by looking at each object in the large object hash 
table large-objects. If the object is not marked, it is freed using the function void 
memfree(stnict gc-heap, void *) fkom manual memory manager. For both the 
small and large object ares,  marked objects are unmarked so that the marking process 
in the next garbage collection works properly. 
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Variable/Function/Macro 1 Description [ Source file 

1 tween two marked srnall objects 1 
gchead *slack 

void 1 selectively sweep the small object area gc.c 

1 

points to the beginning of the free area be- 1 gc.c 

sueep-small-select ive  1 1 

void 1 sweep the small object area traditionally 

(struct 1 chunk and blocks list 1 

gc.c 
sveep-smallnormal ( 1 
void insert-f reemem 

struct 
gc-small-block** , 
void* ,void*) 1 1 

insen a range of free memory into the free g . c  

void i n s e r t f  reechunk 
(struct 
small-ch-,t able, 
g c l e a d ,  s ize-t ) 
struct gc-small-chunk* 

1 

merge f reeindex ( s tn i c t  
small-chunk-table) 

Table 4.9: Important variables and functions used for sweeping phase 

insert a free chunk into the free chunk list 
index table 

merge the free chunk index table into a single 
list sorted in decreasing order of size 

void memf ree (struct 
gcheap, void *) 

gc.c 

gc.c 

manudly free a memory chunk gc.c 
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Variable/Function /Macro 1 Descri~tion 1 Source file 

f i n a l  i z e ~ o d e  

struct f inalizenode 
*hasf inal  
struct f inal izeaode 
*do3 inal  
void v a l k f  inals (void) 

. -- 

veld invokef lnal izer  

1 struct finalizenode 1 
void *object object with the balizer 
void finalizer 

(*f inal)  (void*) 
struct next node in linked list 

f inalizenode I 
*next 

list of live objects that have finalizers gc.c 

list of dead objects that have finalizers 

(H j ava-lang-Ob j ec t  1 1 

gc.c 

mark objects with finalizers 
invoke the finalizer for an object 

*abject , void 
(*final)  (void*) ) 

gc.c 
gc.c 

Table 1.10: Important variables and functions used for object finalizing 

Finalizers 

In Java, the finalizer of an object is executed, even if the object is unreachable. The 
execution of a finalizer can make that object and its children reachable again. so a 
special care is needed for objects with finalizers. During the allocation, such objects 
are put in a linked list called hasf inal. After al1 the reachable objects are marked. 
the function void w a l k f  inals 0 rernoves the unmarked (dead) objects in that list 
and puts them in the d o 2  inal list. -4s the objects in a d o 3  inal  list can be revived, 
they are put on the marking stack, and the marking (function void walk-mark-stack 
O )  is called again, in order to mark al1 the objects with finalizers and their children. 
The finalizer itself is invoked after the sweeping phase (with void invokef  ina l i zer  
(void *object, void (*final)  (void*))),  on the objects from the d o f  ina l  iist : 
objects that are dead, but have a finalizer. 

Finalizers are executed in a separate thread, protected by f inal - l i s t - lock mutex. 

4.4 Conclusion 
LaTTe's memory manager uses a rather elaborate allocator and garbage coilector. 
Memon, allocator uses different algorithms for different object types/sizes : pointer 
increments and free lists for small objects, free lists as hash tables for large objects, 
and free lists for different sizes for both explicitly managed heap and large objects area. 
Garbage collector uses mark and sweep algorithm, and ditrerent methods for sweeping 
of small objec ts (select ive and tradit ional sweeping) , based on heap occupancy. 

The code of LaTTe memory manager is well written, commented and localized (files 
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gc.h and gc.c cover it ail, although they use some other parts of the JVM : like general 
types, exception and error handling and threads). 

In the next chapter we will discuss possible reasons for the efficiency of LaTTe's 
memory manager, some improvements that can be introduced, as well as different 
algorithms that could be implemented, in order to test thern and possibly improve the 
present algorithm. 



Chapter 5 

Discussion and Possible 
Improvements of LaTTe's Garbage 
Collect or 

5.1 Introduction 
In this chapter. we discuss possible improvements to the existing LaTTe's garbage 
collector, as well as algorithms that could replace the existing one (while using some 
of its data structures). This is more a discussion on the algorithms, and not the exact 
implementation. It would have been nice to have an actuai implementation. but it is 
unfortunately (because of lack of time) beyond the scope of this work. 

5.2 LaTTe9s Algorit hm 

5.2.1 Reasons for Its Efficiency 

LaTTe's garbage collector performs much better than other mark-sweep collectors (see 
Section 3.6). As we did not enter into details of other mark-sweep implementations, 
we cannot compare them, but we wiil notice few things that possibly make LaTTe's 
more efficient. 

One of the biggest issues of mark-sweep garbage collection is fragmentation. AI- 
though our benchmarks were insufficient to prove whether the heap expansion is due 
to the fragmentation or to real lack of rnemory, we think that the fragmentation may 
not be an issue here after dl. 

LaTTe has a well defined allocator, using the segregated lists and size classes for 
large and fixed objects (which is a sort of best fit), and pointer increments and lazy 
worst fit for small objects. Chung [60] indeed shows that pointer increments with fits 
as a backup (lazy fits) cm give better performance than conventional fits. ..Uthough 
worst fit tends to add to fragmentation, LaTTe's garbage collector reconstmcts from 
the scratch the free iist alter every sweep phase, therefore eliminating the fragmentation 
introduced in the previous allocation. 
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Besides, Johnstone [61] found t hat objects allocated at the same time tend to die at 
the sarne time, which explains a good behavior of the lazy worst fit : objects allocated 
in one free chunk using pointer increments, and just if there is no space in a free chunk, 
a new chunk is taken fiom the free list (using the worst fit); in average, al1 the objects 
being allocated in one free chunk would die at the same time, thus returning the whole 
chunk to the free list. 

As for the marking phase, Lane  uses customized marking function for every class. 
LaTTe's authors show [59] that it gives much better performance thaa using generic 
marking functions. 

We already mentioned (see Section 4.3.2) the LaTTe's selective sweeping, which 
makes sweeping phase faster by visiting only live objects, and not the whole heap, 
when the heap occupancy is low. For more details see [9]. 

Finally, LaTTe uses the following heap expansion heuristics : the heap is expanded 
only when the arnount of live objects exceeds the amount of objects allocated (the 
amount expandeci being the difference between the two quantities). LaTTe9s tearn 
compared this heuristics with "expand when needed" one and concluded that garbage 
collection time can significantly be irnproved using their heuristic. 

5.2.2 Possible Improvements of LaTTe's Garbage Collector 
Many possible improvements have already been mentioned by LaTTe's team [59]. We 
will mention just the ones that we noticed, and which concern the algorithm itseif and 
not the actual implernentation. 

LaTTe uses lazy worst fit for small object allocation. It is surely the most efficient 
one, but it leads to fragmentation faster. It wodd be interesting to compare the 
performance of first or best fit with the present one. 

Pointers to large objects are held in a hash table. During the marking phase, the 
hash table is searched, and every object in the heap marked, by changing a mark bit in 
its header. It would probably be better to hold mark bit in the hash table. so that there 
is no unnecessaq access to the ob jects t hemselves (thus improving cache behavior) . 

5.3 Choice of the New Algorithm 
LaTTe's collector proved to be very efficient and it seems hard to make a faster col- 
lector. .4t first sight, fragmentation does not seem to be an issue: but it has to be 
thoroüghty tested and preferably on long-running applications, to be able to say that 
the fragmentation problem is not present. Even if it is not the case, it would still be 
interesting to use LaTTe to compare its mark-sweep with some compacthg algorithm. 
The alternatives are mark-compact , copying and generational collector. 

5.3.1 Compacting Garbage Collection Algorit hms 
Generational collection (Section 2.4) seems to be the most robust one, but the write 
barrier demands global changes in the JVM code, which makes the implementation 
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more difficult. Mark-corn pact collection (Section 2.3.4) would be interesting, because 
the marking phase is already implemeated in LaTTe's collector, so we would have to 
implement only the compacting phase, but it lacks performance due to number of passes 
that mark-compact algorithms do (2 to 3). Copying collection (Section 2.3.5) is mostly 
used in generational collectors, so implementing a copying collector would be the first 
step to it (first generations are lrequently implemented as a copying collector). On the 
other hand, not much of an existing code can be reused for the copying collector. so 
we would have to make it from scratches. 

5.3.2 Copying Garbage Collection and LaTTe 
Conservatism and block size 

LaTTe uses a partially conservative collector. That means that the collector knows the 
type of the heap objects, but not the type of the local variables and stadc operands. 
So, if we were to use a copying collector, we would have to pay attention not to move 
objects pointed to by stack objects, as we are oot certain of their type. .-\ copying 
collector that is partially consemative is Bartlett's collector (Section 2.6.3). It leaves 
in place the objects referenced by stack objects, and copies al1 the others. 

Bartlett's collector does not divide the heap into two semi-spaces? as an ordinary 
copying collector does. Instead. it divides the heap into blocks (or "pages". the term 
used by Bartlett. which should not be mistaken for virtual memory page) of 512 bytes 
each. Every block has a space identifier : a small field which identifies the space to 
which an object belongs (fromspace or tospace)'. During the collection. objects are 
copied from fromspace to tospace, as in standard copying collection. Only for the 
objects that cannot be copied. the agcopying" is done by changing the space identifier 
of the block to which they belong. Unf~rtunately~ this way al1 the objects on that block 
are retained regardless of whether they are live or not. 

This leads to an important question of the block (page) size : as the block size 
gets bigger, more garbage is retained. On the other hand, smaller blocks make the 
allocation more difficult. The size of 512 bytes is chosen in regard to these two issues. 
Bartlett's collector is initially made for Lisp, which has small, equally sized cells and 
this choice of size seems to work well for Lisp. Java objects are much bigger than 
Lisp's cells, so this block size seems to be too small for Java. LaTTe's block size is 
4K, and the limit between small and large objects is 1K (objects larger than 1K are 
considered large). The actual size of the block should be determined by experimenting 
with several sizes. 

Cost of copying large objects 

The other problem are large objects : the cost of copying large objects is bigger than 
that of srnaller ones, which can be obtrusive. One solution is not to copy them. but 
to keep them in place, changing just the space identifier (just like it does for objects 

'This identifier can hold the age information, thus making it easy to prornote Bartlett's cop-ying 
collector to generationai 
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that are treated conservatively). This means that al1 other objects in that block would 
be kept alive, although they could be dead. -4nother solution is to keep large objects 
in a separate large objects space (which already exists in LaTTe, for objects bigger 
than 1K) and to collect that space differently : mark-sweep would be a good choice, 
because it is already present in LaTTe, but occasional mark-compact collection would 
be necessary if we want to completely avoid fragmentation. 

Heap organization and pointer iinding 

LaTTe divides the heap in three parts : explicitly managed, large object and small 
object heap. In view of previously mentioned problem of copying large objects, Our 
mostly copying collector for LaTTe could use the same scheme. Fked objects can be 
treated in the same way, being allocated in the explicitly managed part and not garbage 
collected. Large objects c m  be allocated in large object heap and occasionally garbage 
collected, ei t her by mark-sweep or mark-compact collection. Smdl objects, whose size 
should be determineci. would be allocated in small object heap, and garbage collected 
by mostly copying collector. 

In fact, we could have a pool of free blocks and allocate al1 the objects from them. 
but paying attention on a space identifier, whicli c m  be different for fixed, large and 
small objects. So if an object is the first to be allocated in a certain block. at that 
moment the block identifier would be set and the block put on one of three lists (for 
three types of objects). The objects would then be allocated from the appropriate 
block, by incrementing the pointer. If the allocation fails, a new block would be issued 
from the free pool, its identifier changed accordingly (free, large or small area) and the 
allocation cont inued. 

The main problem with this kind of heap organization is the same as with the 
generational collection : as small and large object heap would not be collected at  the 
same time, pointers from one to another heap must be updated with each copying 
collection so some kind of treatment for this case should exist. The easiest way is to 
scan al1 large objects for pointers to small objects, and to update their values : it 
means that both large and srnali object heap would be collected at  the same time. It 
would be faster if large objects were divided into header and body, and if by scanning a 
separated list of headers, the pointer values could be updated. Or, we could maintain 
a remembered set : a set of al1 pointers from large to small objects. This would put an 
overhead on each store and would require changes in existing object formats, which is 
rat ber complicated. 

Bartlett 's collector originally uses breadt h-ûrst traversa1 (see Cheney 's algorit hm' sec- 
tion 2.3.5) while scanning live objects : after "moving7 the objects pointed by roots (in 
fact, just changing the space identifier of the corresponding block), these objects are 
scanned for pointers and the pointed objects are copied to tospace. Tospace objects 
are hrther scanned for pointers to the objects that are not yet copied, and the process 
is repeated until al1 live objects are copied. Cheney's algorithm is elegant, but it is 
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found that a breadth-first traversal yields worse locality of references t han a depth first. 
The locality is important for performance, because a good locdity avoids frequent page 
eviction. Breadth-first traversal is typically implemented using a mark queue (FIFO) 
and depth traversal using a mark stack (LIFO). 

5.3.3 Other Aigorithms 
Having a mark-sweep algorithm, it should possibly be easier to the Java virtual machine 
programmer to irnplement incremental mark-sweep collection. The changes to the 
overall virtual machine would be required, because of the wnte barrier that has to be 
implemented to register each pointer write, so we did not consider it. We suppose that 
LaTTe's team has it in mind for future work. 

5.4 Conclusion 
LaTTe bas an efficient garbage collector. It is a well implemented mark-sweep algo- 
rithm, with selective sweeping and a good allocation policy. But, as it is not a copying 
collector, fragmentation still can be a problern. 

It would be interesting to compare the performance of a copying collector with 
LaTTe's mark-sweep, and see if some irnprovements are possible. Not only for the 
fragmentation issue, but also because copying collector is the first step to generational 
one. which should be more efficient. The only copying collector that can be used in a 
serni-conservative way is the Banlett's coilector. We discussed the issues concerning 
this collector : block size. copying of large objects. traversing aigorithm, and proposed 
ai ternatives. 

The ne-xt step would be to implement those alternative algorithms, and to compare 
their performance to that of LaTTe's present collector. 



Chapter 6 

Conclusion 

Memory management is a highly complex issue, having been under development for 
almost forty years, but still being rat her mysterious. The allocation and deallocation 
algorithms are fairly known. but their combination, implernentation and sophisticated 
details may influence greatly their performance. Java raised again the question of 
automatic memory management (garbage collection) efficiency by being among the 
most used language today. having a high allocation rate and having a mandatory 
garbage collection system. 

In order to get some insight on memory management (with an accent on Java), we 
first tried to understand the basic allocation and garbage collection algorithms. Then 
we tested garbage collectors in SLX Java virtual machines, known for having imple- 
mented different garbage collection algorithms. We showed that a well-implemented 
simple garbage collection algorithm (LaTTe's) can have the same performance as a 
highly sophisticated, complex set of algorithms (Hotspot). Our benchmarks were rather 
simple, and more thorough analysis should be performed (using more applications, and 
more sophisticated profiling methods, such as having heap snapshots by instrument ing 
each JVM), but our results correspond to the results found by LaTTe's team, and we 
tried to give some possible explanation for this unexpected efficiency (which is much 
better than the same algorithm implemented in other JVMs). 

This could have been done only by the analysis of the source code of LaTTe's 
memory manager. By reverse engineering of LaTTe's memory management code. we 
were able to understand in details the algorithms used, to find points for possible 
improvements, and to discuss other algorithms that could be implemented instead of 
the present one. That wouid in fact be possible future work : to implement several 
memory allocatioa and garbage collection dgorithms in LaTTe and to test them. Some 
of that work has already been done by LaTTe's team? and we assume that they ni11 
further improve it. possibly going toward incremental collection (to satisfy red-time 
applications). 
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