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ABSTRACT

In predicting the fatigue lives of structural or mechanical components, there are several
multiaxial fatigue theories that can be used to evaluate the fatigue crack initiation.
However, there exists a lack of agreements on which theory models the fatigue crack

initiation most appropriately.

The purpose of this thesis is to evaluate the validity of most commonly used multiaxial
fatigue criteria; specifically the maximum principal strain and the maximum shear strain
criteria. Moreover, a new criterion based on strain energy density is proposed and
evaluated for elastic and elastic-plastic damage scenarios. The best criterion, identified
through comparative analyses, is used to evaluate the fatigue lives of two connecting rods

supplied by an automotive company.

Three-dimensional finite element analysis is performed on the SAE notch shaft, which is
used as a test component to evaluate the validity of the existing and proposed multiaxial
fatigue damage criteria. Elastic and elastic-plastic stress-strain responses are then used to
obtain the required damage parameters that are eventually used to predict the fatigue

lives.

The two existing multiaxial fatigue theories, maximum principal strain and maximum
shear strain, seem to differ in predicting the fatigue lives of the SAE notch shaft. The
proposed criteria, elastic and elastic-plastic strain energy density; also differ in predicting
the fatigue lives of the SAE notch shaft. However, the maximum principal strain and the
elastic-plastic strain energy density approaches seem to deliver the best results when they
are compared to the reported experimental results. These two approaches predict the
fatigue lives within ranges that differ from each other. However the difference among
these ranges depends upon whether the fatigue lives are evaluated for low-cycle or high-

cycle fatigue regions. It is noticeable that the maximum principal strain criterion delivers
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better results than the elastic-plastic strain energy density approach in low-cycle fatigue
regions. However, the latter delivers much better results in high-cycle fatigue regions and
its ranges in low-cycle fatigue regions do not differ greatly from the maximum principal
strain ranges. The maximum shear strain criteion predicts the fatigue lives
conservatively. In other word, its predicted fatigue lives are much less than the
experimental fatigue lives that are reported in the literature. Also, analyses have shown
that the elastic strain energy density approach delivers the fatigue lives excessively. In
other word, it overestimates the fatigue lives. However this approach delivers the best
results in high-cycle fatigue regions where plastic strain is a small potion of the total

strain.
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Chapter 1

Introduction
1.1 General
Static or quasistatic loading is rarely observed in modern engineering practice, making it
essential to the engineer to direct himself/herself to implications of repeated loads,
fluctuating loads, and rapidly applied loads. By far, the majority of engineering design
projects involves machine parts subjected to fluctuating or cyclic loads. Such loading
induces fluctuating or cyclic stresses that often result in failure by fatigue. The most
difficult aspect of fatigue is to detect the progressive changes in material properties that
occur during cyclic stressing, and the failure may therefore occur with no apparent
warning. Also, periods of rest, with the fatigue stress removed, do not lead to any
measurable healing or recovery from the effects of the prior cyclic stressing. Thus the

damage done during the fatigue process is cumulative, and generally unrecoverable.

Fatigue failure investigations over the years have led to the observation that the fatigue
process actually embraces two domains of cyclic stressing or straining that are
significantly different in character, and in each of which failure is probably produced by
different physical mechanisms. One domain of cyclic loading is that for which plastic
strain occurs during each cycle. This domain is associated with high loads and short
lives, or low-cycle fatigue (LCF). The other domain of cyclic loading is that for which
the strain cycles are largely confined to elastic range. This domain is associated with
lower loads and long lives, or high cycle fatigue (HCF). Low-cycle fatigue is typically
associated with cycle lives from one to about 10* or 10° cycles, and high-cycle fatigue for

lives greater than about 10* or 10° cycles.

In recent years, it has been recognized that the fatigue failure process involves three
phases. A crack initiation phase occurs first, followed by crack propagation phase;
finally, when the crack reaches a critical size, the final phase of unstable rapid crack

growth to fracture completes the failure process. The modeling of these phases has been



under intense scrutiny, but the models have not yet been developed in a coordinated way
to provide widely accepted engineering design tools.

Nevertheless, great progress has been made in the crack propagation modeling and in
modeling the final fracture phase. Although progress has been much slower in modeling
the crack initiation phase, the most promising approach to the prediction of crack
initiation seems to be the local stress-strain approach. The basic premise of the local
stress-strain approach is that the local fatigue response of the material at critical point,
that is, the site of crack initiation, is analogous to the fatigue response of a small, smooth
specimen subjected to the same cyclic strains and stresses. The cyclic stress-strain
response of the critical material may be determined from the characterizing smooth

specimen through appropriate laboratory testing.

To properly perform such laboratory tests, the local cyclic stress-strain history at the
critical point in the structure must be determined, either by analytical or experimental
means. Thus valid stress analysis procedures, finite element modeling, or experimental
strain measurements are necessary, and the ability to properly account for plastic
behavior must be included. In performing smooth specimen tests of this type, it must be
recognized that the phenomena of cyclic hardening, cyclic softening, and cycle-
dependent stress relaxation, as well as sequential loading effects and residual stress
effects that may be experienced by the specimen as it accumulates fatigue damage are

presumed to be the same as at the critical point of the structure member being simulated.

Since, including all these factors in a test is inconvenient, inaccurate and expensive, the
use of finite element method has become a powerful tool to calculate the cyclic stress-
strain response of any structure or mechanical component. The finite element method is
especially used in the ground vehicle industry where discontinuities of the geometry such
as notches and holes produce difficulties to calculate the local cyclic stresses and strains,

which are essential to predict the fatigue life of any structure or component.



1.2 Research Objectives

The objective of this research is to investigate the validity of commonly used multiaxial
fatigue life predictions criteria. Specifically, the maximum principal strain and the
maximum shear strain. These criteria are used to predict the fatigue crack initiation of the
total life. Moreover, unified strain energy density based methodology that can be used for

high-cycle and low-cycle fatigue life predictions will be developed.

Based on the best fatigue life prediction criterion, fatigue life assessment of two
connecting rods will be carried out. It is important to note that the analysis is performed

for constant amplitude load cycles only.

1.3 Thesis Outline
Literature review is presented in Chapter 2 of this thesis. It includes discussions of the

existing multiaxial fatigue theories, stress, strain, and fracture mechanics approaches of

fatigue life predictions.

In Chapter 3, criteria for fatigue life predictions and overview of multiaxial fatigue
theories are presented, followed by analysis of the Society of Automotive Engineerings
(SAE) test shaft. Furthermore details on the finite element techniques used in the analysis
are also presented in this chapter. Moreover, fatigue life predictions by the existing
multiaxial fatigue theories and the proposed strain energy density approaches are also
investigated in this chapter. The fatigue life predictions are compared to experimental
fatigue lives that exist in the literature [12], and then comments and general conclusions

of the different fatigue lives criteria are made in this chapter as well.

Chapter 4, fatigue life predictions of connecting rods, is an industrial application based
on the best criterion that is obtained from the previous analysis. This chapter includes

description of the problem, finite element analysis, and fatigue life predictions of two



different connecting rods. A recommendation to Mascotech, an automotive company, is

also included in this chapter.

In Chapter S5, Summary, conclusions and recommendations for future research are

presented.



Chapter 2

Literature Review

2.1 Introduction
Methodology to predict fatigue crack initiation is divided into two principal steps: (i)
calculation of local stresses and strains, and (ii) prediction of fatigue lives from calculated

stress-strain responses.

2.2 Calculation of local stress-strain field

Almost all machine components and structural members contain some form of
geometrical or microstructural discontinuities. These discontinuities, or stress
concentrations, often result in maximum local stresses, at the discontinuities, which are
many times greater than the nominal stress of the member. Moreover, in many
applications, components are subjected to complicated states of stress and strain.
Complex stress states, in which the three principal stresses are nonproportional or whose
directions change during a loading cycle, very often occur at geometric discontinuities
such as notches or joint connections. Fatigue under these conditions, termed multiaxial
fatigue, is an important design consideration for reliable operation and optimization of

many engineering components.

Traditionally, the two existing fatigue life prediction theories are used on local stresses
and strains, which are calculated, by using Neuber’s rule. However, the scope of using
Neuber’s rule is limited to simple geometric shapes only. Moreover, it is difficult to
account for plastic strain by using Neuber’s rule.

Finite element technique appears to be a powerful tool to predict local stress-strain
response in a complex system that is subjected to complex loading. Moreover, the finite
element technique is widely used in the automotive industry, especially for noise,

vibration, and harshness NVH and crash performance verification of vehicle design. It is,
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therefore, consistent to use the same modeling technique for fatigue durability assessment
of the structural parts as well.

2.3 Fatigue life prediction

The fatigue life is often related to strain amplitude as shown in Fig. 2.1 [13]. To explain
the graph, we first define the following terms:

Fatigue ductility coefficient ¢, is the true strain corresponding to fracture in one reversal

(point A in Figure 2.2). The plastic-strain begins at this point in Fig. 2.1.

Fatigue strength coefficient o-'f is the true stress corresponding to fracture in one reversal

(point A in Fig. 2.2) [14].

Fatigue ductility exponent c is the slope of the plastic-strain line in Fig. 2.1 and is the
power to which the life 2V must be raised to be proportional to the plastic-strain

amplitude

Fatigue strength exponent b is the slope of the elastic-strain line, and is the power to

which the life 2NV must be raised to be proportional to the true-stress amplitude.

From Fig. 2.1 , it is noted that the total strain is the sum of the elastic and plastic

components. Therefore the total strain amplitude is

Ag
As _As, 85, (2.1)
2 2 2

The equation of the plastic-strain line ( Fig. 2.1) is

Ag, . .

— L =€, @2N) (22)
The equation of the elastic-strain line is

Ag o-.f b
L=—=(2 23
> = ¢ N) (2.3)
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Therefore, from Eq. 2.1, we have the total-strain amplitude, known as Manson-Coffin

equation

Aeg
2

The Manson-Coffin equation relates the fatigue life to strain amplitude. Having the stress

Or ANV + £ ONY
= —@N) +£,(2N) (2.4)

and strain parameters at hand, one can calculate the fatigue life using the strain amplitude
at the critical location of structural member. The basic Manson- Coffin equation has
been used with different measures of the strain response. Two most common strain

criteria, used for fatigue life calculations, are reviewed in the following sections.



2.3.1 Maximum Principal strain criterion

This criterion proposes that fatigue cracks initiate on planes, which experience the largest
amplitude of principal strain. For uniaxial stress, the maximum principal strain is the
axial strain in the direction of the applied stress. Replacing the axial strain in Eq. 2.4 by
the maximum principal strain, which is obtained from three dimensional finite element
analysis, will enable us to predict the fatigue life of three-dimensional case [6].

A g,

= G—}(ZN)b +&,(2N)° (25)
2 E 4

2.3.2 Maximum shear strain criterion

It has been observed that fatigue cracks often initiate on shear planes. The maximum
shear strain criterion proposes that cracks will initiate on planes, which experience the
maximum shear strain amplitude.

If & > ¢, >¢,, crack initiation takes place on the plane at 45° to the plane perpendicular

g, Fig. 2.3.

£ >&, > &

&5

Figure 2.3 Plane of maximum shear strain [6].
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The maximum shear strain can be calculated from the principal strains using Mohr’s

circle (Fig. 2.4), where the maximum shear strain is given by

Veoax _ €1 — &5 (26)

2 2

An equation based on the maximum shear strain should give the same calculated

endurance for a uniaxial stress condition as the uniaxial strain-life Eq. 2.5. For uniaxial

stress, with an axial strain g,, and the principal strains &, = &, = -vg,, we have from Eq

2.6:

Ve =& — &, =& —(vg )=(1+V)g

S

K »
NN
M

Figure 2.4 Mohr’s strain circle [6].



For elastic strains, Poisson’s ratio v is approximately 0.3 for steel, so that

~

Veae =1.36

As the shear strain amplitude is 1.3 times the direct strain amplitude, the elastic part of
Eq. 2.4, that is
o
As = _f(z N)?
2 E
must be multiplied by 1.3, giving

AY e o-'f b
=~ =13—=(2
> 3 Z (2N)

For purely plastic strains, v=0.5, so that
Vmae =1.58,

and so the plastic part of the equation (2.4) becomes
A},max ’ c
_2—- =1.5¢ I (2N)

The uniaxial strain-life equation (2.4), expressed in terms of y ., , is therefore

A o .
—7’2'“& = 1.3—EL(2N)” +1.56,(2N)° 2.7)
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2.4 Stress-life approach

2.4.1 Introduction

The stress-life, S-V, method was the first approach used in attempt to comprehend and
quantify metal fatigue. It was the standard fatigue design method for almost a century.
The S-N approach is still widely used in design applications where the applied stress is
primarily within the elastic range of the material and the resultant lives are long. The
stress-life method does not work well in low-cycle fatigue applications where the applied

strains have a significant plastic component.

2.4.2 Fatigue loading

Faced with the design of a fatigue sensitive element in a machine or structure, a designer
is critically interested in the fatigue response of engineering materials to various loadings
that might occur throughout the design life of the machine under consideration. That is,
he/she is interested in the effects of various loading spectra and associated stress spectra,
which will in general be a function of the design configuration and the operational use of

the machine.

Perhaps the simplest fatigue stress spectrum to which an element may be subjected is a
zero-mean sinusoidal stress-time pattern of constant amplitude and fixed frequency,
applied for a specific number of cycles. Such a stress-time pattern, often referred to as
completely reversed cyclic stress, is illustrated in Fig. 2.5(a). Utilizing the sketch of Fig.

2.5, we can conveniently define several useful terms and symbols; these include:

Onmax 1S the maximum stress in the cycle

O.in 1S the minimum stress in the cycle
. o +0

o,  Iisthe mean stress ( —= -)

13
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Figure 2.5 Several constant-amplitude stress time patterns of interest. (a) Completely
reversed, SR=-1. (b) Nonzero mean stress. (c) Zero compression, SR= 0 [5].
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. . O — O i
o, is the alternating range of stress (—— =)

a

Ao is the stress range (0, — O min )

O-min

SR s the stress ratio ( )
. ) ) o 1-SR
A is the amplitude ratio £ =
P e ratio ( 1+ SR )

Any two of the quantities just defined, except the combination o, and Ao or the

combination A and SR, are sufficient to completely describe the stress-time pattern

shown.

A second type of stress-time pattern often encountered is the nonzero mean spectrum
shown in Fig. 2.5(b). This pattern is very similar to completely reversed case except that
the mean stress is tensile or compressive, in any event different from zero. The nonzero

mean case may be thought of as a static stress equal in magnitude to the mean o, with a

superposed completely reversed cyclic stress of amplitude o, .

A special case of nonzero mean stress, illustrated in Fig. 2.5(c) is often encountered in
practice. In this special case the minimum stress o, is zero. That is, the stress ranges

from zero up to some tensile maximum and then back to zero. This type of stressing is

often called released tension. For released tension, it may be noted that the mean stress is

. o .
half the maximum stress, or o, = ;‘“ . A similar but less frequently encountered

stress-time pattern is called released compression, where o, =0 and o, = —=.

15



2.4.3 S-N-P Curves — A basic design tool

Basic fatigue data in the high-cycle life range can be conveniently displayed on plot of
cyclic stress level versus the logarithm of life, or alternatively, on a log-log plot of stress
versus life. These plots, called S-V curves, constitute design information of fundamental
importance for machine parts subjected to repeated loading. Because of the scatter of
fatigue life data at any given stress level, it must be recognized that there is not only one
S-N curve for a given material, but a family of S-N curves with probability of failure as
the parameter. These curves are called the S-N-P curves, or curves of constant

probability of failure on a stress versus life plot.

To develop an S-N-P plot in the fatigue laboratory by “ standard” methods, one would
proceed in the following way:

1. Select a large group of carefully prepared, polished fatigue specimens of the
material of interest and, subdivide them into four or five smaller groups of at
least 15 specimens each.

2. Select four or five stress levels, perhaps judged by few exploratory tests that
span the stress range of the S-N curve.

3. Run an entire subgroup at each of the selected stress levels following the
procedures to be outlined here.

4. To make each test run, mount a specimen in the testing machine, using due
care to avoid spurious stresses. Set the machine for the desired stress
amplitude, with cycle counter set to zero.

5. Start the machine and run the constant stress amplitude until the specimen
fails or the machine reaches a predetermined runout criterion.

6. Record the stress amplitude used and the cycle count at the time of failure or
runout.

7. Using a new specimen, repeat the procedure, again recording the stress level
and the life at failure or runout. Continue to repeat this procedure until all

specimens designated for the selected stress level have been tested.

16



8. Change to new stress level and repeat the preceding procedure until all specimens
designated for the second stress levels have been tested. Repeat this procedure
until all selected stress levels have been tested. Note that the entire output from a
complete fatigue test is averaged as a single point on the S-A plot.

9. Plot all data collected on a stress versus log-life coordinate system as shown in
Fig. 2.6. A small arrow to the right indicates runouts, or points for which fatigue

failure was not observed during the test.

Considering the data plotted in Fig. 2.6, one could simply construct a visual mean curve
through the data. Doing this, it becomes clear that a substantial scatter of data about the
mean clouds the design usefulness of such a mean curve. A better approach would be to
construct for each stress ievel a histogram, such as the one shown in Fig. 2.7, which
shows the distribution of failures as function of the log life for the sample tested.
Computation of the sample mean and variance permits the estimation of population mean
and variance if the form of the distribution is known for fatigue tests at a constant stress
level. Extensive testing of large samples has indicated that a lognormal distribution of
life at a constant stress level is a good estimate. Assuming the life distribution to be
lognormal, the sample mean and variance can be used to specify any desired probability
of failure. Repeating the analysis at all stress levels, we can connect points of equal
probability of failure to obtain curves of constant probability of failure on the S-N plot.
Such a family of S-N-P curves is shown in Fig. 2.8. It is also of interest to note that the
“reliability” R is defined to be 1 minus the probability of failure; hence, R = (1-P). It
should be noted that references to the “ S-N curves” in the literature generally refer to the

mean curve unless otherwise specified.
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Figure 2.6 Plot of stress-cycle (S-V) data as it might be collected by laboratory fatigue
testing [5].
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Figure 2.7 Distribution of fatigue specimens failed at a constant stress level as a

function of logarithm of life [5].
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Figure 2.8 Family of S-N-P curves. Note P = probability of failure;
R= reliability = 1-P. [S].

The mean S-N curves sketched in Fig 2.9 distinguish two types of material response to
cyclic loading commonly observed. Ferrous alloys and titanium exhibit a steep branch
in the relatively short life range, leveling off to approach a stress to asymptote at longer
lives. This stress asymptote is called the fatigue limit (formerly called endurance limit)
and is the stress level below which an infinite number of cycles can be sustained without
failure. The nonferrous alloys do not exhibit an asymptote, and the curve of stress versus
life continues to drop off indefinitely. For such alloys, there is no fatigue limit, and
failure as result of cyclic load is only a matter of applying enough cycles. All materials,

however, exhibit a relatively flat curve in the long life range.

20



Stress, psi

Fatigue limit

Fatigue strength
at N cycles

Cycles to failure

Figure 2.9 Two types of material of cyclic response to cyclic loading [5].
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2.5 Strain-life approach
2.5.1 Introduction

The strain-life method is based on the observation that in many components the response
of the material at critical locations (notches) is strain or deformation dependent. When
load levels are low, stresses and strains are linearly related. Consequently, in the elastic
range, load-controlled and strain controiled test results are equivalent. At high levels, in
the low-cycle fatigue (LCF) regime, the cyclic stress-strain response and the material

behavior are best modeled under strain-controlled conditions [3].

In the strain-life approach, the plastic strain or deformation is directly measured and
quantified. As discussed previously, the stress-life approach does not account for plastic
strain. At long lives, where plastic strain is negligible and stress is easily related to strain,

the strain-life and stress-life approaches are essentially the same.

Although most engineering structures and components are designed such that the nominal
loads remain elastic, stress concentrations often cause plastic strains to develop in the
vicinity of notches. Due to the constraint imposed by the elastically stressed material
surrounding the plastic zone, deformation at the notch root is considered strain-

controlled.

The strain-life method assumes that smooth specimens tested under strain-control can
simulate fatigue damage at the notch root on an engineering component. Equivalent
fatigue damage is assumed to occur in the material at the notch root and in the smooth
specimen when both are subjected to identical stress-strain histories. As seen in Fig.2.10,

the laboratory specimen models an equally stressed volume of material at the notch root.
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Figure 2.10 Equally stressed volume of material Ref [3].

Crack growth is not explicitly accounted for in the strain-life method. Rather, failure of
the component is assumed to occur when the equally stressed volume of material fails.
Because of this, strain-life methods are often considered as initiation life estimates. For
some applications, the existence of a crack is an overly conservative criterion for
component failure. In these situations, fracture mechanics methods may be employed to
determine crack propagation life from an assumed initial crack size to a final length.

Total lives are reported as the sum of the initiation and propagation segments.
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The local strain-life approach has gained acceptance as a useful method of evaluating the
fatigue life of a notched component. Both the American Society for Testing Materials
(ASTM) and the Society of Automotive Engineers (SAE) have recommended procedures
and practices for conducting strain-controlled tests and using these data to predict fatigue

lives.

2.5.2 Material behavior
2.5.2.1 Stress-strain relationships

The total true strain g, in tension test can be separated into elastic and plastic

components:

1. Linear elastic strain: portion of strain, which is recovered upon unloading, ¢,

2. Plastic strain: portion, which cannot be recovered on unloading, ¢ »

(Fig2.11).

|___— Elastic
Unloading

Figure 2.11 Elastic and plastic strain [3]
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Stated in equation form,
£ =¢€,+¢, (2.8)
For most metals a log —log plot of true stress versus true plastic strain is modeled as a

straight line; consequently, this curve can be expressed using a power function

o=Kle,) (2.9)
or
£, = (%) (2.10)

where K is the strength coefficient and » is the strain-hardening exponent.
At fracture two important quantities can be defined (Fig. 2.12). These quantities are the
true fracture strength and true fracture ductility. True fracture strength, o ., is the true

stress at final fracture.

A (2.11)
f

Or

where Ay is the area at fracture and Py is the load at fracture.
True fracture ductility, &, is the true strain at final fracture. This value can be defined in

terms of the initial cross-sectional area and the area at fracture.

£, :ln-A—ozln ! (2.12)
A, 1-RA
A, - A, L
RA = ——=reduction in area (2.13)

The strength coefficient, K, can be defined in terms of the true stress at fracture, o s> and
the true strain at fracture, ¢, .
Substituting o - and €, into Eq. 2.9 yields

o, =Klg, ) (2.14)
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Figure 2.12 True stress versus true strain and engineering stress versus engineering

strain [3].

We can also define plastic strain in terms of these quantities. Combining Eqgs. 2.15 and

2.10, we have

g (2.16)
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therefore

1
€p = 8{%} 2.17)
S

The elastic strain is defined as

e =2 (2.18)

Therefore we may state that:

1
£, =£+(£j" 2.19)
E \K
where:

E is the modulus of elasticity.

2.5.2.2 Cyclic stress-strain behavior

Monotonic stress-strain curves have long been used to obtain design parameters for
limiting stresses on engineering structures and components subjected to static loading.
Similarly, cyclic stress-strain curves are useful for assessing the durability of structures

and components subjected to repeated loading [3].

The response of material subjected to cyclic inelastic loading is in the form of a hystersis
loop, Fig. 2.13. The total width of the loop is Ag or the total strain range. The total
height of the loop is Ao or the total stress range.

These can be stated in terms of amplitude:

Ag
e =Ae 2.20
=5 (2:20)
where:
g, 1sthe strain amplitude and
o, = AZ—" (2.21)
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where:

o, s the stress amplitude.

a

Ao
£
E
/
Ag, TA&'E
<+ Ag >
Figure 2.13 Hysteresis loop Ref [3].
The total strain is the sum of the elastic and plastic strain ranges,
Ae =Ag, +Ag, (2.22)

or in terms of amplitude,

Ae Ag, Ag,

+ 2.23
2 2 2 2.23)
Using Hooke’s law, the elastic term may be replaced by AO/E.
Aeg
Ag _Ac  Ae, (2.24)

2 2E 2
The area within the loop is the energy per unit volume dissipated during a cycle. It

represents a measure of the plastic deformation work done on the material.
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2.5.2.3 Stress-plastic strain power law relation
A log-log plot of the completely reverse3d stabilized cyclic true stress versus true plastic
strain can be approximated by a straight line (Fig. 2.14):

K’ FrTTTTETTTTT T T TTETTTTTTTT A
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Figure 2.14 Log-log plot of true cyclic stress versus true cyclic plastic strain {3].

We can develop a power law function,
o-kle,) @29
where o is the cyclically stable stress amplitude

& 1s the cyclically stable plastic strain amplitude

K is the cyclic strength coefficient

n’ is the cyclic strain-hardening exponent

For most metals the value of » usually varies between 0.10 and 0.25, with an average

value close to 0.15. Rearranging Eq. 2.25 gives
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1/
o /n
€p = (F) (226)

The total strain is the sum of the elastic and plastic components. Using Eq. 2.42 and

Hooke’s law, the total strain can be written

1

o o\
c ‘E*(Fj 227)

It is to be noted that the relationship between the strain amplitude and the number of

cycles is presented in section 2.3.
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2.6 Fracture mechanics appreoach

2.6.1 Introduction

Fatigue design for many components is a process of design to prevent the initiation of
crack. For many components this represents the total design life, either because a crack
will propagate so rapidly that life to crack initiation represents almost the total life, or
because product liability legislation precludes the release into service of components,
which develop cracks during service even though the component may still achieve its

design life.

This design philosophy cannot be applied to all components. For example, aircraft
structures can experience accidental damage in flight, and crack growth calculations must
demonstrate that the structure is airworthy after impact damage. Other components may
develop cracks in service as a result of design errors, and it may then be necessary to

calculate safe inspection intervals to prevent the cracks causing catastrophic fracture [6].

The study of predominantly brittle fracture from short cracks and defects is the subject of

Fracture Mecharics.

2.6.2 Purpose of fracture mechanics

A structure may develop a fatigue crack under repeated service loading. As the crack
length increases, it causes a greater stress concentration, and so the rate of crack
propagation increases. The strength of the structure is reduced as the crack length
increases. Eventually, the strength of the structure will be insufficient to withstand the
highest service loads, and failure is possible if the highest service load occurs. As the
crack continues to grow, the structural strength will be reduced until the structure cannot
withstand the normal service loads, and so fracture under normal loading becomes very
probable.

Faced with design problem the designer must be able to calculate the following criterion

to check against crack (Fig. 2.15):



1. The residual strength as a function of crack size

2. The crack size that can be allowed at the expected service load (the critical

size)
3. How long it takes the crack to grow from a certain size to a critical size
4. The size if initial flaws that can be tolerated in a new component
5. The interval between inspections for cracks

Fracture mechanics tries to provide tools with which to answer these questions. The
subject includes the materials science studies of fracture processes on an atomic scale, the
growth of cracks, the analysis of the crack tip tresses and the behavior of cracks in these
stress fields, the provision of materials properties by testing, and finally the engineering
application of these techniques to the analysis of real structures.

Residual
Strength
Crack size

1
'
Failure '
may !
occur ¢ Failure
‘
I
—_—p lume ~————p Cracksize

—_————p time

Figure 2.15 Relationship between crack length and failure load [6].
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2.6.3 Stresses at the crack tip
A crack can be stressed in three different modes, Mode I is the normal or opening mode,

Mode II is the tearing mode caused by in-plane shear, and Mode II is the tearing mode

caused by out-of-plane shear (Fig. 2.16).

Most problems can be addressed by superimposing one or more of these modes, but

Mode I is by far the most important for practical analysis.

Figure 2.16 The three crack opening modes [6].
For arbitrary through-thickness crack of size a, in a body of arbitrary shape and loaded by

arbitrary Mode I loading, the stress distribution near the crack tip is represented in Fig.

2.17.
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Figure. 2.17 Generalized stresses at the crack tip [6].

It would be expected that stresses reduce with increasing r, and will be a function of the

angle € The general expression for the stress field is

(2.28)

K,
oy Jij(6)
T 2w
where o, are the stresses acting on an element dxdy at a distance r from the crack tip at

an angle 8 from the crack plane, and f;;(€) are known functions of 6. The factor X is as
yet unknown, because the loading and the shape of the body are yet to be defined.

As it appears that the entire stress field close to the crack tip can be described if K; is
known, K; is an important parameter called the stress intensity factor and the subscript 1

denotes mode I loading.

Eq. 2.28 can be applied to an infinite plate subjected to uniform tension, with a central
crack of length 2a.
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The standard convention is to let the length of the crack equal to 2a if the crack has two
tips, and equal to a if the crack has one tip Fig. 2.18. As the left hand side of Eq. 2.28 has

K,

Vamr

must have a unit of stress multiplied by square root of length. As the only stress is the

unit of stress, and as f{6) has no units, then must have units of stress, and so X;

remote stress, and as the only length is the crack length a, then

K, = foa (2.29)

) :

Figure 2.18 Generalized stresses for a crack in an infinite plate [6].
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In fact if B = Jr for a center in an infinite plate, but it is convention to refer all stress

intensity factors to the infinite plate case, (i.e make the constant equal to / for this case).

Therefore K is given by
K, = fom (2.30)
The factor £ is a function of the crack dimension a and the shape of the component.

Values of  have been giving in [7].

The stress o in these equations is always the remote stress, not the stress in the cracked
section. The fact that the average stress in the net section will be higher is accounted for

in the tabulated values of S

Combining Eqs. 2.28 and 2.30

o, = ﬁo\/zzf.», ©) (2.31)
r

For mode / loading, the function f;(€) can be added to give

a e . 6 . 36
o, = fo,[—cos—| 1—sin—sin —
2r 2 2 2
o, = ,60'1/—61— cosg(l +sin sin 19—) (2.32)
’ 2r 2 2 2
f a . 6 6 36
o. = fo,[—sin —cos—cos—
i 2r 2 2 2

This single set of functions f{6) applies to all mode / cases. Moreover, Eq. 2.31 provides

the stresses close to the crack tip only. It is in fact a truncation of a series

o, = ﬂo*Jzi + 2™ term+ 3™ term+. . .. (2.33)
r

For small values of r, the first term tends to infinity but the remaining terms tend to zero,

and so can be neglected. Using only the first term implies that the stresses tend to zero at
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large values of r . In fact they tend to o; the remote stress. Hence the need for the 2™

and subsequent terms at large values of r.

2.6.4 Fracture toughness

Eq. (2.28) oy, :—K’— fij(@), applies to all different cracked bodies. If the load is
r

Vamr

increased until fracture occurs, then the fracture stress from the mentioned equation can
be substituted into the equation K, = fovm . The value of K at fracture is called the

fracture toughness.

Fracture occurs when the value of K;equals the fracture toughness value. It is therefore a
similitude parameter. Fracture occurs at a particular value of K; whatever the shape of

the body or size of the crack.

2.6.5 Plasticity
Eq. 2.28 is an elastic equation and implies that the crack tip stresses become infinite at

the crack tip, that is » = 0. This cannot be true, and in fact plastic deformation occurs

which keeps the crack tip stress finite.

A first estimate of the size of the plastic zone can be obtained from diagram such as

Fig.2.19 by determining the distance from the crack tip (r,) over which the stresses

exceed the yield stress for the material.



s

2a

Figure 2.19 Plastic zone at the crack tip [6].

Substituting o, = o, into Eq. 2.28 gives:

K
o, = L -
27zrp
so that
. K;
r, = !
2ot

In fact the size of the plastic zone is lager (Fig 2.20).
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Figure 2.20 More accurate estimaie of crack tip plastic zone size [6].

However, the approximate value, r,, has the advantage that it can be obtained directly

from the stress intensity factor and the yield stress. K still represents a similitude
parameter, provided the size of the plastic zone is still determined by K; In other words,
plasticity must be restricted to an area close to the crack tip that is the area where the 2™

and subsequent terms in Eq. 2.33 can be neglected.



2.6.6 Crack propagation
The preceding sections have concentrated on the calculation of final fracture. However,

it is possible that the applied stress on a crack may cause the crack to extend a small

amount, without causing fracture.

If the applied load varies between zero and some value (constant amplitude cycling) the
stress intensity K varies cver a range AK. The rate of crack propagation da/dN must

depend on the range of the stress intensity AK so that
da
7ﬂ—v=f(AK)=f(25,,\/7m) (2.34)

where S, is the stress amplitude (Fig. 2.21) and N is the number of cycles.
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Figure 2.21 Crack propagation diagrams [6].
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The results of the tests (Fig 2.21(a)), for two different stress amplitudes, can be piotted on
the basis of da/dN at the instantaneous value of AK. In (4) the data has been plotted on a

log-log basis.

The fact that both sets of data fall on the same curve shows that Eq. 2.34 applies for small
cracks at the high stress, or large cracks at low stress. The two cracks have the same
growth rate providing the values of AK together with two material constants. The central
part of the curve in (b) is the approximately straight line and for this central region, Eq.

2.34 can be re-written as

da _ n
7 = CaK) (2.35)

Equation 2.30, K, = fo+m , allows values of AK to be calcuilated for any combination
of crack geometry and remote stress, and these two equations are the fundamental crack

growth equations.
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Chapter 3
Criteria for Fatigue Life Predictions

3.1 Overview of multiaxial fatigue theories

Although the three-dimensional local stress-strain field response can be determined by
finite element method, the proper approach to strain based multiaxial fatigue analysis is
not clear. Several multiaxial fatigue theories have been suggested in the literature, two of
which had been explained in Chapter 2. However, there exists a lack of agreement on

which model is most appropriate.

There are five fatigue theories which engineers can rely on to calculate the fatigue
resistance of structural components. Three commonly used approaches, the maximum
principal strain, the maximum shear strain and the effective strain, are based on
extensions of static yield criteria and two theories, the critical plane approaches, are
based on critical damage planes. A common characteristic of all five approaches is that
the required material properties can be determined from standard uniaxial fatigue test
data. Also, the fatigue life prediction of multiaxially loaded component is based on the
uniaxial relationship between the strain amplitude and the number of cycles, namely the

Manson-Coffin equation.

In an effort to evaluate the validity of these theories, Fash [7] performed analytical and
experimental analyses in which he used finite element method to evaluate the three
dimensional stress-strain fields. The obtained strains were used to predict the fatigue life
of the Society of Automotive Engineerings (SAE) (Fig. 3.1) notched shaft using all five
theories. Comparing the experimental cycles to the predicted cycles, Fash found that the
correlation of all five methods is within a factor of ten. He argued that the lack of perfect
correlation is related to the effect of the notch on the local stress-strain field and actual

damage mechanisms.
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In a later study Fash’s work was investigated by Hoffman and Seeger [12]. In their
study, they have used finite element method as well as Neuber’s rule to calculate the local
stress-strain fields. They only investigated the maximum principal strain; equivalent
strain and the maximum shear strain. It was concluded that the predicted cycles agree
with the experimental results within a range of factor of three and the maximum strain
parameter delivers the best correlation. They argued that the larger scatter of Fash’s
results was caused by the finite element mesh where he only used one element at the
notch due to the lack of computer resources. To further investigate the issue, the SAE

notched shaft has been reanalyzed in this thesis. Fig.3.2.
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Figure 3.1 SAE notch shaft geometry and loading.
Ref[12]

43



3.2 Shaft analysis by finite element method

3.2.1 Analysis overview

In an effort to evaluate the predictive capabilities of several multiaxial fatigue theories, a
series of, bending, torsion and combined bending-torsion tests were conducted by the
Society of Automotive Engineerings using the notched shaft Fig. 3.1 [12]. Finite element

analyses of the shaft have been conducted here for different loading conditions.

The primary objective is to calculate the local stresses and strains of the same SAE
notched shaft using Finite Element Technique. The elastic-plastic finite element analysis
is carried out using ABAQUS [9] with nonlinear material behavior. The cyclic stress-
strain curve Fig. 3.2, obtained from Eq. 3.1 is represented truly without any linear
approximation. Table (3.1) represents the material properties for SAE 1045 steel as
reported in the literature [12].

c o =
8_E+(F) 3.1

Where ¢ is the total strain

c is the stress
. O-j" - - -

K =—=—isthe cyclic strength coefficient

e
!
. b . . .
n=— is the cyclic hardening exponent
c
E is the modulus of elasticity

Table 3.1 Smooth Specimen Uniaxial Fatigue Constants of the SAE —1045 steel

Laboratory Specimen diameter (mm) | or (MPa) b & c E (MPa)

Ford Motor Company 5.0 1049.0 -0.105 | 0.229 | -0.454 | 202000
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Figure 3.2 Cyclic stress-strain curve.

Figure 3.3 Three-dimensional finite element mesh.
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3.2.2 Detaii on finite element analysis
The main features of the finite element technique employed are listed below.

1. Isoparametric elements with 20 nodes (quadratic displacement functions)

An overview of solid elements is presented, so that one has a bref but effective
explanation of the behavior of various solid elements. ABAQUS [9] contains a library of
solid elements for two-dimensional and three-dimensional applications. The two-
dimensional elements allow modeling of plane and axisymmetric problems, and include
extensions to generalized plane strain (when the model exists between two planes that
may move with respect to each other, providing thickness direction strain that may vary

with position in the plane of the model but is constant with respect to thickness position).

The solid element library includes isoparametric elements: quadrilaterals in two
dimensions and bricks (hexahedral) in three dimensions (Fig. 3.4). These iscparametric
elements are generally preferred for most cases because they are usually the more cost-
effective of the elements that are provided in ABAQUS. They are offered with first and
second order interpolation. For practical reasons, it is sometimes not possible to use
isoparamatric elements throughout the model; for example, some commercial mesh
generators use automatic meshing techniques that rely on triangulation to fill arbitrarily
shaped regions. Because of these needs ABAQUS includes triangular, tetrahedron, and

wedge elements.

In this analysis, tetrahedral and hexahedral three-dimensional elements are used. The
tetrahedral elements exist due to fact that two-dimensional mesh was rotated 360° to
obtain three-dimensional solid elements. Moreover, the three-dimensional solid elements
are used with second order (quadratic) interpolation. The second order elements are used
due to fact that they are capable of representing all possible linear strain fields.

Reduced Gaussian integration (2x2x2 integration points) is also used in this analysis.

Reduced integration element C3D20R with lower order integration tends to reduce the
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running time compared to the C3D20 element, which has 27 integration points whereas
C3D20R element has 8 integration points. Moreover, a reduced integration (low-order)
element tends to soften the element thus countering the overly stiff behavior associated

with an assumed displacement field.

Figure 3.4 Isoparametric master elements
Ref [9]
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1. Isotropic hardening with von Mises flow criterion

Isotropic hardening is generally considered to be suitable model for problems in which
the plastic straining goes well beyond the incipient yield state where Bauschinger effect
is noticeable Fig 3.5. Therefore, the hardening theory is used for such applications. The
Mises yield function with associated flow means that there is no volumetric plastic strain;

since the elastic bulk modulus is quite large; the volume change will be smali [9].
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Figure 3.5 (a) Stress-strain plot in uniaxial stress, idealized as two straight lines,
(b) Kinematic and isotropic hardening rules. Ref [4].
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1. BFGS method for equilibrium iteration

The most frequently used iteration schemes for the solution of nonlinear finite element
equations are the Newton-Raphson iteration techniques. However, as an alternative of
Newton-Raphson iteration, a class of methods known as matrix update methods or quasi-
Newton methods has been developed for iteration on nonlinear systems of equations [1].
These quasi-Newton methods provide a compromise between the full re-formation of the
stiffness matrix performed in the full Newton—Raphson method and the use of a stiffness
from previous configuration as is done in the modified Newton-Raphson method. Among
the quasi-Newton methods available, the BFGS (Broyden-Fletcher-Goldfrab-Shanno)

method appears to be most effective regarding computer time and storage.

4. Maximum load

The maximum load is gradually applied by 100 load increments. The constant amplitude
load is applied over one unit time Fig. 3.6. The load increments are achieved through
ABAQUS input file. ABAQUS automatically adjusts the size of the load so that it solves
nonlinear problems efficiently. The «static option is composed of initial time increment
AT and total step time T. These data in the static option specify the proportion of load

applied in the first increment. Therefore, the initial load increment is given by:

(A—TTJ * Load magnitude
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Figure 3.6 Arbitrary constant amplitude load over one unit time

S. Nodal stresses and strains

It is possible to obtain the stresses and strains at the nodes by requesting them from the
output request section in ABAQUS input file. These nodal stresses and strains are
averaged from all elements that share the same node. The averaged nodal stresses and
strains are obtained by interpolation from the integration points. It is worthwhile to
notice that it is of necessary to obtain stresses and strains at the nodes since some of these
nodes lie on the surface of the components where plastic strains takes place and starts to

cause crack initiation Fig. 3.7.
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Figure 3.7 A Schematic representation of three-dimensional model
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6. Mesh quality and result checks

One of the most important issues in any finite element analysis is meshing quality.
Meshing quality is easily checked through the process of meshing generation. In other
words, the quality of the mesh is checked through the postprocessor software such as

Hypermesh. The elements warpage, aspects ratio, and jacobians can be checked for

recommended limits that are provided by the software.

To ensure that the obtained results are reliable, the mesh density of shaft was changed.
Purposely, the mesh density at the critical location (notch) was refined from three
elements to eight elements Figs 3.8 (model I), and 3.9 (model IT). Elastic analyses of the
two different mesh densities were performed using the same load. The obtained results

did not show a large scatter of the examined parameters, namely, the maximum principal

stresses and strains (Table 3.2).

Table 3.2 Comparisons Between Two Different Mesh Densities (Models I and II)

Model Max Principal Stress Max Principal Strain Predicted Cycles
I 767.3 (MPa) 3.566E-03 20098
I 767.0 (MPa) 3.577E-03 19884
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Figure 3.8 three-dimensional meshes with three elements at the notch (model I).

Figure 3.9 Three-dimensional meshes with eight elements at the notch (model IT)
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3.3 Life Predictions of notched shaft under multiaxial loading

3.3.1 Introduction

The validities of the maximum principal strain and the maximum shear strain criteria are
investigated by predicting the fatigue lives of the SAE notch shaft under different
multiaxial loadings. The predicted fatigue lives are compared to experimental fatigue

lives that are reported in the literature [12].

3.3.2 Life prediction by maximum principal strain
From the nonlinear analyses, results of the three-dimensional finite element model are
used to predict the fatigue lives. Here, the maximum principal strain is extracted to

predict the fatigue life by using the following equation. (See section 2.3.1):

A g,
2

O NV + & (AN
= —@N) +5,2M) (3.2)

Calculated maximum principal strains, predicted fatigue lives, and experimental cycles
are shown in Table 3.3. Predicted cycles versus experimental cycles are depicted in Fig.

3.10.
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Table 3.3 Predicted Fatigue Life Cycles Based on Maximum Principal

Strain Criterion

Pure Bending

Moment (N.m) | Percentage Strain | Predicted Cycles | Experimental Cycles
1460 0.22078 127887 382000
1475 0.2404 89264 354500
1708 0.27177 54597 92459
1730 0.27595 51450 49200
1875 0.30965 33307 43540
2586 0.51509 6023 5235
2600 0.51983 5853 5676
2800 0.58916 4002 2571
T/B=0.7
Moment (N.m) | Percentage Strain | Predicted Cycles | Experimental Cycles
1250 0.2111 155449 325000
2550 0.28358 46349 97500
1720 0.35176 21076 21450
2325 0.56111 4634 3000
T/B=1.4
Moment (N.m) | Percentage Strain | Predicted Cycles | Experimental Cycles
990 0.21699 137805 716382
1220 0.29765 38575 72000
1850 0.65122 2976 2045
T/B=1.9
Moment (N.m) | Percentage Strain | Predicted Cycles | Experimental Cycies
1355 0.5194 5871 5500
T/B=2.8
Moment (N.m)| Percentage Strain | Predicted Cycles | Experimental Cycles
845 0.25017 75864 200000
780 0.23548 97275 70681
1150 0.52422 5704 3000
T/B=3.6
Moment (N.m) | Percentage Strain | Predicted Cycles | Experimental Cycles
570 0.28424 45919 80287
851 0.46656 8219 10000
Pure Torsion
Torque (N.m) | Percentage Strain | Predicted Cycles | Experimental Cycles
2000 0.19414 226974 700000
2400 0.27514 52046 75700
2534 0.30737 34237 14331
3000 0.45721 8768 6329
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3.3.3 Life Prediction by maximum shear strain
The maximum principal strains for different type of loading are obtained from the three-
dimensional finite elements analysis. Once this damaging parameter is at hand, the

fatigue life is predicted by using the following equation. (See section 2.3.2):

o, .
AVTM‘ - 1.3?’(2N)” +1.58,(2N)° (3.3)

Calculated maximum shear strain, predicted fatigue lives, and experimental fatigue lives

are shown in Table 3.4. Experimental fatigue cycles versus predicted fatigue cycles are

depicted in Fig. 3.11

57



Table 3.4 Predicted Fatigue Life Cycles Based on Maximum Shear

Strain Criterion

Pure Bending
Moment (N.m) Percentage Strain | Predicted Cycles | Experimental Cycles
1460 0.33903 81694 382000
1475 0.34466 76639 354500
1708 0.42735 34648 92459
1730 0.43433 32726 49200
1875 0.4918 21357 43540
2586 0.85604 3831 5235
2600 0.86446 3725 5676
2800 0.98956 2537 2571
T/B=0.7
Moment (N.m)| Percentage Strain | Predicted Cycles | Experimental Cycles
1250 0.30996 116652 325000
2550 0.42751 34603 97500
1720 0.5608 13868 21450
2325 0.89219 3402 3000
T/B=1.4
Moment (N.m); Percentage Strain | Predicted Cycles | Experimental Cycles
990 0.30002 133294 716382
1220 0.41864 37274 72000
1850 0.95387 2813 2045
T/B=1.9
Moment (N.m)| Percentage Strain | Predicted Cycles | Experimental Cycles
1355 0.76886 5244 5500
T/B=2.8
Moment (N.m)| Percentage Strain | Predicted Cycles | Experimental Cycles
845 0.37633 54926 200000
780 0.35797 66286 70681
1150 0.8085 4523 3000
T/B=3.6
Moment (N.m) Percentage Strain | Predicted Cycles | Experimental Cycles
570 0.47839 23446 80287
851 0.76982 5225 10000
Pure Torsion
Torque (N.m) | Percentage Strain | Predicted Cycles | Experimental Cycles
2000 0.38754 49281 700000
2400 0.54923 14834 75700
2534 0.61399 10398 14331
3000 0.91266 3189 6329
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3.3.4 General comparisons and discussions of fatigue life criteria

It is clear from Figs. 3.9 and 3.10 that the relationships between the experimental and
numerical predictions do not follow the 45° straight line. However, the results show that
the maximum principal strain delivers better correlation than the maximum shear strain.
Moreover, the maximum shear strain is more conservative than the maximum principal
strain, especially in high-cycle fatigue regions and torsion tests. Although, these two
criteria show some agreement in low-cycle fatigue regions, these two approaches show a
great difference in predicting the fatigue lives, and therefore cannot be considered as two

identical methods that predict crack initiations.

This disagreement between the maximum principal strain and maximum shear strain
motivates us to search for another approach that can be used as a unified method to
predict the fatigue lives for low-cycle and high-cycle fatigue and more importantly, to

estimate when the crack initiations occur.

3.4 Proposed approach based on energy density.

3.4.1 Introduction

The basic premise of this proposed methodology is that the fatigue crack starts to initiate
at the critical location where maximum energy density is observed. This premise agrees
with the fact that the area within the stable hysteresis loop represents the energy per unit

volume Fig. (2.13).

The total strain energy per unit volume at the critical location, the notch, can be obtained
from the three-dimensional finite element model. The objective is to obtain an equivalent
uniaxial strain from the total strain energy density that is obtained from multiaxial stress-
strain analysis. In other words, we are seeking an equivalent uniaxial strain that causes
the same energy density in the uniaxial case.

Two approaches are investigated, one in which the energy density is obtained by elastic

analysis, and the other is that the energy density is obtained by elastic -plastic analysis.
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3.4.2 Fatigue life prediction by energy density based on elastic stress-strain field

It was shown by Hutchinson [8] for cracks, and by Walker [8] for deep notches, that in
the case of localized plastic yielding the energy density distribution in the plastic zone is
almost the same as linear elastic material. This means that, in the presence of localized
small-scale plastic yielding, the gross linear elastic behavior of the material surrounding
the notch controls the deformations in the plastic zone. Thus, it can be concluded that the
energy density Us due to the local elastic-plastic stress-strain field is approximately equal

to the strain energy density Us due to elastic stress-strain field [8]:
_ {7 _ [ .
Us=Us or ['S,de, =["c,de, (3.4)
Where §, is local elastic stress tensor

o, Iis the local elastic-plastic stress tensor

e; 1s local elastic strain tensor

& 1s local elastic-plastic strain tensor

In this methodology a three-dimensional elastic analysis of the finite element model is
conducted and the strain energy density at the most critical location is determined by

summing the contributions of all stress-strain components.

This calculated strain energy, U, is used to determine an equivalent uniaxial strain
corresponding to energy density that is composed of elastic and plastic components in the
uniaxial case. In other words, the strain energy density value obtained from three-
dimensional finite element analysis is equated to a uniaxial energy density that is
composed of elastic and plastic strain energies Fig.3.12. The mathematical formulation of

this methodology is presented below.
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Figure 3.12 (a) A schematic representation of uniaxial stress-strain curve,

(b) strain energy density can be obtained at critical location.
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The total uniaxial strain energy per unit volume, energy density, can be obtained by

integrating the area under the curve:

U=U,+U,=[ o de (3.5)
0
o o -

We know that € = —+ (—)" 3.6
I (K ) (3.6)

d . (l;.".)

Therefore, £e =—+ i ]

o FE e

nkn

1-n

n

Hence Eq. 3.5 becomes U =IJ —1—+ — do
E .=
nkn
o o o =
Therefore, U = — + ———(—)" (3.7)
2E n+1'K

Solving Eq. 3.7, one can obtain the stress that is required to produce the same energy
density in the uniaxial case. Back substituting the stress in Eq. 3.6, the corresponding
strain is obtained.

Having the strain or the strain amplitude at hand, the fatigue life can be predicted by

using the Manson-Coffin Equation.

Ace
2

o-'f b ’ c
= ?(ZN) +£&,(2N) (3.8)

The perdicted lives using this methodology and the experimental fatigue lives given in
reference [13] are presented in Table 3.5 and Fig 3.13.
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Table 3.5 Predicted Fatigue Life Based on Multiaxial Elastic Strain

Energy Density
Pure Bending
Moment (N.m); Percentage Sirain | Predicted Cycles [Experimental Cycles
1460 0.1834 296592 382000
1475 0.186 277328 354500
1708 0.2221 127315 92459
1730 0.2256 116539 49200
1875 0.2493 76961 43540
2586 0.3782 16414 5235
2600 0.3809 16022 5676
2800 0.4209 11468 2571
T/B=0.7
Moment (N.m)| Percentage Strain | Predicted Cycles [Experimental Cycles
1250 0.1731 392913 325000
2550 0.2242 119686 97500
1720 0.2626 62465 21450
2325 0.3483 21827 3000
T/B=1.4
Moment (N.m)| Percentage Strain | Predicted Cycles [Experimental Cycles
990 0.1712 415039 716382
1220 0.2198 130367 72000
1850 0.3707 17583 2045
T/B=1.9
Moment (N.m)| Percentage Strain |Predicted Cycles [Experimental Cycles
1355 | 0.3083 33855 | 5500
T/B=2.8
Moment (N.m)| Percentage Strain | Predicted Cycles IExperimental Cycles
845 0.1984 205421 200000
780 0.2189 132656 70681
1150 0.3025 36335 3000
T/B=3.6
Moment (N.m)| Percentage Strain | Predicted Cycles 'Experimental Cycles
570 0.2057 174522 80287
851 0.2776 50306 10000

Pure Torsion

Torque (N.m)

Percentage Strain

Predicted Cycles

Experimental Cycles|

2000 0.1717 408935 700000
2400 0.2135 147914 75700
2534 0.2283 110816 14331
3000 0.2822 47207 6329
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3.4.3 General discussion of fatigue lives predicted by enegry desnsity based
on elastic stress-strain field

It is clear that this methodology delivres better results in high cycle fatigue region than
the other two criteria that were tested in previous sections, specifically the maximum
principal strain and maximum shear strain. However, this methodology overstimates the
fatigue lives in low cycle fatigue region due to the fact that plastic strain is not accounted

for properly.

It is worthwihle to remember that the basic premise of this methodology is based on the
fact that the plastic strain is a small fraction of the total strain. That is why this
methodology delivers the best estimates in high-cycle fatigue regions where the elastic

strain controls the fatigue damage process.

It is obvious that this methodology does not serve as a unified tool that engineers can
rely on in their daily practice, and therefore, this criterion failed to provide a unique

approach that can be used for both high-cycle and low-cycle fatigue life predictions.



3.4.4 Fatigue life prediction by energy density based on elastic-plastic stress-strain
field

In this methodology, an inealstic analysis of the three-dimensional finite element model

is conducted and the energy density, U, (elastic and plastic) at the most critical location is

predicted by taking into consideration contributions from all stress-strain components.
€y
U={"0o,ds, (3.9)

It is important to note that the strain energy densities for different loadings are easily
obtained from ABAQUS data files. The obtained energy density value is, then used to
define an equivalent uniaxial strain as explained previously for the elastic energy

methodology in section 3.4.3.

The equivalent uniaxial strain is then used to predict the fatigue lives. Therefore, there is
no difference of obtaining the equivalent strain, and hence, the fatigue lives between this
methodology and the previous methodology except in that the strain energy calculations
are based on elatic-plastic stress-strain field and elastic stress-strain field analysis

respectively.

The predicted lives using this methodology and the experimental fatigue lives given in

reference [13] are presented in Table 3.6 and Fig 3.14.
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Table 3.6 Predicted Fatigue Life Cycles Based on Multiaxial Elastic-Plastic

Strain Energy Density
Pure Bending
Moment (N.m)| Percentage Strain | Predicted Cycles |[Experimental Cycles
1460 0.1963 215721 382000
1475 0.199 202560 354500
1708 0.2423 86402 92459
1730 0.2466 80585 49200
1875 0.2766 50997 43540
2586 0.4615 8511 5235
2600 0.4659 8255 5676
2800 0.5298 5522 2571
T/B=0.7
Moment (N.m)| Percentage Strain | Predicted Cycles |[Experimental Cycles
1250 0.1861 276565 325000
1550 0.2506 75340 97500
1720 0.3089 33617 21450
2325 0.4937 6872 3000
T/B=1.4
Moment (N.m)[ Percentage Strain | Predicted Cycles |[Experimental Cycles
990 0.1904 248527 716382
1220 0.2607 64277 72000
1850 0.5702 4414 2045
T/B=1.9
Moment (N.m)| Percentage Strain | Predicted Cycles [Experimental Cycles
1355 0.462 8482 | 5500
T/B=2.8
Moment (N.m)| Percentage Strain | Predicted Cycles [Experimental Cycles
845 0.2255 116730 200000
780 0.213 105428 70681
1150 0.4751 7760 3000
T/B=3.6
Moment (N.m)| Percentage Strain | Predicted Cycles [Experimental Cycles
570 0.2701 55932 80287
851 0.4344 10682 10000

Pure Torsion

Torque (N.m)

Percentage Strain

Predicted Cycles

Experimental Cycles

2000 0.214 146389 700000
2400 0.3006 37193 75700
2534 0.3375 24391 14331
3000 0.4972 6723 6329
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3.4.5 General discussion of fatigue lives predicted by enegry density based on
elastic-plastic stress-strain field.

Visual comparison among Figs. 3.10 (maximum principal strain criterion),

3.11(maximum shear strain criterion), 3.13 (elastic strain energy criterion) and 3.14

(elastic-plastic strain energy criterion) shows that the overall correlation between

experimental and predicted results in the entire range of low-to-high cycle fatigue , is best

obtained with the elastic-plastic strain energy criterion.

It should be noted that the strain energy densities for this criterion are obtained at the
integration points. Unfortunately, the strain energy densities are not obtained at the nodal
points which are closer to surface where crack starts to initiate, this is due to fact that
ABAQUS does not support this type of output; it only provides for this type of request at

the integration points.

This methodology which is based on strain energy criterion that is calculated by elastic-
plastic stress-strain field delivers better results than the other strain energy density
approach which calculated by elastic stress-strain field . This improvement in life
prediction is due to the fact that the plastic strain is accurately accounted for by

conducting an elastic-plastic analysis.
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3.5 Statistical and simple data analyses of fatigue lives criteria with respect to
experimental results

In order to enable a quantitive comparsions among the fatigue lives criteria, statistical

evalution of the ratios, between experimental and analytical fatigue lives is carried out.

However, full statistical analysis for this type of data is not applicable, since the

relationship between the predicted fatigue lives and the experimental fatigue lives is not

dependent. In other words, there exists no such dependent variable and independent

variable to describe a mathematical relationship so that a linear regression analysis can be

performed.

Consequently, the mean, standard deviation, and the coefficient of variation are
calculated for each fatigue life criterion so that one has an idea how the calculated data
varies around its own mean. Also, another measure of dispersion of the ratio predicted to
actual is the standard deviation around the optimum value one which indicates how well

each fatigue life criterion varies around the perfect correlation.

Table 3.7 Statistical Data of the Ratio Between Analytical and Experimental Fatigue

Lives
Coefficient Standard
Criterion Mean | Standard of Deviation Maximum | Minimum
Deviation | Variation Around one
Max Principal Strain | 0.932 0.561 60.2 % 0.565 2.39 0.192
Max shear Strain 0.596 0.379 63.7% 0.561 1.51 0.070
Strain Energy Density
(elastic) N.mm/mm’ 3.49 3.06 87.9% 3.98 12.1 0.579
Strain Energy Density
(Elastic-plastic) 1.217 0.649 53.3% 0.685 2.58 0.209
N.mn/mm®
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In order to make relative comparisons among the fatigue lives criteria with respect to the

experimental data, difference of fatigue lives for each fatigue life criterion is performed.

The experimental data are sorted in the ascending order so that one can distinguish how
well each fatigue life criterion behaves in high-cycle and low-cycle fatigue regions. The
difference is then calculated for each fatigue life criterion with respect to corresponding
experimental value that is reported in the literature [12].

The relative difference, reiative to experimental data, is defined as

Relative difference = (Experimental — Predicted)

Tables 3.8 through 3.11 show the relative difference with respect to the experimental
results. Fig 3.15 depicts experimental versus analytical results for cycles up to 10° . Fig
3.16 depicts experimental versus analytical results for cycles higher than 10° cycles.
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Table 3.8 Difference in Cycles for Maximum Principal Strain

Criterion
Experimental cycles | Predicted Cycles| Difference
2045 2976 -931
2571 4002 -1431
3000 4634 -1634
3000 5704 -2704
5235 6023 -788
5500 5871 -371
5676 5853 -177
6329 8768 -2439
10000 8219 1781
14331 21076 6745
21450 21076 374
43540 33307 10233
49200 51450 -2250
70681 97275 -26594
72000 38575 33425
75700 52046 23654
80287 45919 34368
92459 54597 37862
97500 46349 51151
200000 75864 124136
325000 155449 169551
354500 89264 265236
382000 127887 254113
700000 226974 473026
716382 137805 578577
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Table 3.9 Difference in Cycles for Maximum Shear Strain

Criterion
Experimental Cycles |Predicted Cycles | Difference
2045 2813 -768
2571 2537 34
3000 3402 -402
3000 4523 -1523
5235 3831 1404
5500 5244 256
5676 3725 1951
6329 3189 3140
10000 5225 4775
14331 10398 3933
21450 13868 7582
43540 21357 22183
49200 32726 16474
70681 66286 4395
72000 37274 34726
75700 14834 60866
80287 23446 56841
92459 34648 57811
97500 34603 62897
200000 54926 145074
325000 116652 208348
354500 76639 277861
382000 81694 300306
700000 492821 207179
716382 133294 583088
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Table 3.10 Difference in Cycles for Elastic Strain Energy

Criterion
Experimental Cycles |Predicted Cycles | Difference
2045 17583 -15538
2571 11466 -8895
3000 21827 -18827
3000 36335 -33335
5235 16414 11179
5500 33855 -28355
5676 16022 -10346
6329 47207 -40878
10000 50306 -40306
14331 110816 -96485
21450 62465 -41015
43540 76961 -33421
49200 116539 -67339
70681 132656 61975
72000 130367 58367
75700 147914 -72214
80287 174522 -94235
92459 127315 -34556
97500 119686 -22186
200000 205421 -5421
325000 392913 67913
354500 277328 77172
382000 296592 85408
700000 408935 291065
716382 415039 301343
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Table 3.11 Difference in Cycles for Elastic-plastic Strain Energy

Criterion
Experimental Cycles | Predicted Cycles | Difference
2045 4414 -2369
2571 5522 -2951
3000 6872 -3872
3000 7760 4760
5235 8511 -3276
5500 8482 -2982
5676 8255 -2579
6329 6723 -394
10000 10682 -682
14331 24391 -10060
21450 33617 -12167
43540 50997 -7457
49200 80585 -31385
70681 105428 -34747
72000 64277 7723
75700 37193 38507
80287 55932 24355
92459 86402 6057
97500 75340 22160
200000 116730 83270
325000 276565 48435
354500 202560 151940
382000 215721 166279
700000 146389 553611
716382 248527 467855
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3.6 Comprhensive discussion of fatigue lives criteria

Experimental fatigue lives versus estimated fatigue lives of the SAE notched shaft, have
been shown in previous sections. Perfect correlation would lie along the 45° lines.
Fatigue life comparisons, based on graphical observations and data analyses show that
the maximum principal strain delivers the best results in low-cycle fatigue regions,
however the results deviates significantly from the experimental results in high cycle-

fatigue regions.

Although the maximum shear strain criterion delivers good results in low-cycle fatigue
region (few cases), it is very conservative in predicting the fatigue lives. This is

especially noticeable in torsion tests.

It is clear from the graphical comparisons and the simple data analyses that the energy
density criterion based on elastic stress-strain field is only useful for high-cycle fatigue
life prediction. This approach overestimates the fatigue lives in low-cycle fatigue
drastically. Therefore this methodology failed to serve as a unified method that can be
used for both low-cycle and high-cycle fatigue life predictions.

Finally, fatigue life predictions that are based on an elastic-plastic energy density
criterion show equally good trend in low-cycle and high-cycle domains. This
methodology delivers better results than the maximum principal strain criterion in high-
cycle fatigue regions; the results of the low-cycle lives are also equally good. It can be
said that this methodology predicts the fatigue lives consistently. It is believed that this
methodology can be used for low-cycle and high-cycle fatigue problems.

It can be seen from the previous discussions that the choice of selecting a criterion to
predict the fatigue crack initiation depends upon the fatigue domain. If the interested
crack initiation falls in low-cycle fatigue domain the choice of using the maximum

principal strain criterion would deliver a closer answer, with respect to experimental or
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actual results, than the other fatigue lives criterion. However, if the interested crack
initiation falls in high-cycle domain where elastic strain dominates the deformation, a
choice of using the elastic strain energy density criterion would deliver a better answer
than the other criteria. Consequently, the elastic strain energy density criterion is used to
predict the fatigue crack initiation of two connecting rods where high-cycle fatigue is of

our interest (see Chapter 4).

Although, the maximum principal strain and the elastic strain energy criteria serve as
good damaging parameters to predict the fatigue crack initiation for low-cycle and high-
cycle fatigue respectively, the elastic-plastic strain energy criterion can be used equally to

predict fatigue crack initiations in high-cycle and low-cycle regions respectively.
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Chapter 4
Industrial Application

4.1 Introduction

The objective in this chapter is to predict the fatigue crack initiation of two automotive
connecting rods. Elastic strain energy density criterion, which has been found to be the
best criterion, to predict fatigue crack initiation in high-cycle fatigue regions is employed

to estimate the fatigue crack initiation of the two connecting rods.

Three-dimensional finite element analyses are performed on the two different connecting
rods. The calculated stress-strain response parameters are, then, used to predict the

fatigue crack initiation.

4.2 Problem description

Mascotech, an American automotive supplier company, has performed experimental
fatigue life predictions on two of their connecting rods that are made from the same
material. The two rods are similar in shape, but have different cross-sectional areas,

specifically at the lower portion of the rod that connect the boreholes Figs 4.1 and 4.2.

In their experimental fatigue life predictions, Mascotech has used the same nominal
stress on the two connecting rods and expected the fatigue lives of the two different
connecting rods to be the same. However, experimental results showed that the two
connecting rods have different fatigue life cycles. Consequently, the difference in fatigue
lives motivated the company to pursue finite element analyses so that experimental

conclusions are confirmed.
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Figure 4.2 Finite element mesh of 2383 connecting rod



4.3 Finite element analyses
Three-dimensional finite element analyses were conducted on the two connecting rods.

The 8-node brick elements and the wedge elements had been used in the analyses.

Elastic finite element analyses had been conducted on the two connecting rods. The
elastic analyses showed that the applied load did not cause the material to yield.
Consequently a high-cycle fatigue life was expected for both connecting rods.

For simplicity, the loads were applied on each connecting rod as two different cases, one
in which the load is in tension Fig 4.3, and the other in which the load is in compression

Fig. 4.4.

The damaging parameters, such as the maximum principal strains and strain energy
densities, may have different amplitudes under tensile and compressive load cases. The
difference in amplitude may occur due to the fact that the stress flow in the rod may
differ with the nature of the applied force. Finite element analyses have shown that the
tensile and compressive load cases have delivered the same amplitudes for the maximum
principal strains and strain energy densities respectively. This similarity in amplitudes is
due to the fact that stress distribution becomes uniform (Saint-Venant’s principle) at the

cntical cross-section (Figs4.3 and 4.4), which is away from the applied load.
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Figure 4.4 Tension load case of 2383 connecting rod



The objective is to operate the two connecting rods under the same nominal stress, 262
MPa (38 ksi), therefore the applied loads on both connecting rods varied according to
their nominal cross-sectional areas. Table (4.1) shows the applied loads along with the

obtained damaging parameters.

Table 4.1 Applied Loads and Corresponding Damaging Parameters

Nominal Nominal Applied Max Principal Strain energy
Rod ID area (mm?) | stress (MPa) load (N) strain (mm/mm) density
(N.mm/mm?)
2383 (tension) 172.5 262 45206 0.001560 0.2394
2383 172.5 262 45206 N -0.001560 0.2394
(compression)
2354 (tension) 167.2 262 43813 N 0.001984 0.3873
2354 167.2 262 43813 N -0.001984 0.3873
(compression)
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4.4 Fatigue life predictions of connecting rods

4.4.1 Introduction

Based on the finite element analyses, the Von-Mises stresses are well below the yield
stress; hence plastic strains do not exist and the deformation is controlled by the elastic
strain. Consequently, high-cycle fatigue lives are expected for both connecting rods.
Since, it was concluded that the strain energy density approach based on elastic stress-
strain field delivers the best results for high-cycle fatigue life predictions, this approach is
used to predict the fatigue lives of the two connecting rods.

4.4.2 Fatigue properties
It was shown in Section 2.3 that the total strain amplitude is related to the number of

fatigue life cycles through Manson-coffin equation. In order to predict the fatigue lives,

fatigue properties such as fatigue ductility exponent c, fatigue ductility coefficient &',

fatigue strength exponent b and fatigue strength coefficient o, are needed to use the

following equation:

A O—' b ' c
?gz?f(zzv) +&,(2N) 4.1

The material properties, read in Eq (4.1), are not known directly. However, the industrial
sponsor (mascotech) had provided a cyclic stress-strain curve from which the stress and
the plastic strain data have been extracted manually Fig.4.5.

These data when plotted on a log-log scale graph represent a near-straight line
relationship Fig.4.6. The deviation from perfect straight line may be attributed to the error
in manual extracting of data from the industry provided curve. Nonetheless, a best-fit line
has been drawn through the data points. The slope of this line gives the material strain
hardening exponent, », and the stress ordinate corresponding to 100 % plastic strain has

been taken as the strength coefficient X .
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The cyclic hardening exponent, n, is found to be 0.210 and the cyclic strength
coefficient, K, is 1958 MPa. It should be noted that the parameters K “and n’ depend on
the available data that were read from the cyclic stress-strain curve. It is believed that the
parameter K is higher than expected. However, for the relative comparison between the
2383 and 2354 connecting rods the parameter X would produce the same error in

predicting the fatigue lives.

Once the material properties K and # are established, the fatigue properties (Eq. 4.2) are
calculated by using the approach that proposed by Morrow [10]. Morrow has shown

through an energy argument that b is related to the cyclic strain hardening # as follows:

-n

T (+5n) @2

For n =0.21, we obtain b = - 0.102.
The fatigue ductility exponent is related to the strain hardening and the strength

exponents as follows [12]:
n’ = —_ (43)

this gives, ¢ = - 0.488

Finally, the last two requirements that are needed to predict the fatigue lives are the
fatigue ductility coefficient ¢, and the fatigue strength coefficient o ,. The cyclic
strength coefficient K is related to fatigue ductility and strength coefficients as follows:

K =L (4.4)

rn

€r

Knowing that £y =In " IRA = 0.276 (section 2.5.2.1), where RA= 24.14% provided by

Mascotech, and substituting the values of K, » and &, in (Eq. 4.4) we obtain

o'y =1494 MPa. The derived parameters are summarized in Table (4.2).
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Table 4.2 Uniaxial Fatigue Constants of the Connecting Rods
o'r (MPa) b &y c E (MPa)
1494 -0.102 0.276 -0.488 204000

4.4.3 Fatigue life estimates
The strain energy density, based on elastic stress-strain field is used to predict the fatigue
crack initiation of the two connecting rods. It was shown that this approach delivers the

best results in high-cycle fatigue regime (section 3.4.2).

The strain energy density is used to extract the required stress by using the following

equation:
2 e

U=9 .9 (1) @.5)

2E n +1\K
Back substituting the extracted stress in the following equation, the required strain is
obtained,

L

log o \n
E=—+| — 4.6

Z+(Z) )

The strain, equivalent to strain amplitude, is substituted in Manson-Coffin equation
(Eq.4.1), and the fatigue crack initiation lives are estimated. The results are presented in

Table 4.3.

Table 4.3 Damage parameters and Corresponding Number of Cycles

Rods ID Energy Density Calculated Strain | Number of Cycles
(N.mm/mm")
2383 0.2394 0.001550 4,315,185
2354 0.3873 0.001998 740,813
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4.5 Conclusions and recommendations

The analyses have shown that the two connecting rods have different fatigue crack
initiation lives. The 2383-rod, whose cross-sectional area is greater than the 2354-rod,
has longer fatigue life crack initiation. The obtained results showed that the 2383-rod
fatigue life is about six times greater than the 2354-rod life. Therefore, based on the
analyses, provided and extracted material properties that were used in the finite element
analyses and fatigue life predictions, it can be concluded that the two connecting rods

have different fatigue lives even though they were operated at the same stress level.

In order to predict the fatigue lives accurately, material properties should be provided as
digital data so that solid conclusions could be made regarding the predicted fatigue lives.
However, it is believed that the relative comparison between the connecting rods is valid
to show the difference in fatigue crack initiations since the same material properties were

used for both connecting rods.
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Chapter S
SUMMARY, CONCLUSIONS & RECOMMENDATIONS For
FUTURE RESEARCH

5.1 Summary

Elastic and elastic-plastic three dimensional finite element analyses were conducted on
the SAE notch shaft for different bending, torsion and combined bending-torsion
loadings. The calculated stress-strain fields were used to predict the fatigue lives. The
relative performance of two existing multiaxial fatigue theories, specifically, the
maximum principal strain and the maximum shear strain criteria have been investigated.

Two additional criteria based on the strain energy densities were also investigated.

All fatigue life predictions were based on a uniaxial equation that relates the damage
parameter to the number of cycles, (namely the Manson-Coffin equation). The obtained
fatigue lives, calculated using different multiaxial fatigue criteria, were compared to
experimental fatigue lives that are reported in the literature [13]. The best criterion for
high-cycle fatigue life prediction, as identified through the comparative studies, was
subsequently used to predict the fatigue crack initiation lives of two automotive

connecting rods.
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5.2 Conclusions and recommendations

The following conclusions can be drawn from the analysis:

The maximum principal strain criterion delivers the best results in low-cycle
fatigue region whereas it deviates more than other criteria in high-cycle fatigue
regions. Therefore, it is the opinion of the author of this thesis that the maximum
principal strain criterion cannot be used to predict fatigue crack initiations for
both low-cycle and high-cycle fatigue. However, this criterion is recommended
for fatigue crack initiation predictions in low-cycle regions, where plastic strains

control the deformation.

The maximum shear strain criterion predicts the fatigue lives conservatively.
Although, this criterion shows some good prediction in low-cycle fatigue regions,
it cannot be considered as a reliable approach to predict high cycle fatigue crack

initiations.

The strain energy density approach, which is based on elastic stress-strain field,
delivers the worst results in low-cycle fatigue regions. However it gives the best
estimate in high-cycle fatigue regions. It is recommended to use this approach to
predict fatigue crack initiation in high-cycle fatigue regions where plastic strain is
a small portion of the total strain, in another word where elastic strain controls the
deformation. This recommendation is being advised due to the fact that the
damaging parameter required for this criterion can be extracted by performing

elastic analysis, which is favored by most industries.
The strain energy density approach that is based on elastic-plastic stress-strain

field seems to predict the fatigue crack initiations consistently. In other words, it

predicts the fatigue lives in high-cycle and low-cycle regions within an acceptable
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range of variation, that is the scatter of ranges from one load case to another does
not vary greatly compared to the other multiaxial fatigue life criteria.
Consequently, it is believed that this criterion can be used as unified approach that
engineers can depend upon to predict fatigue crack initiations in high-cycle and

low-cycle fatigue regions.

It seems that the only recommendation for future research is that the strain energy
density approach can be improved further by calculating the energy densities at the nodal
points which are located at the surface of the critical location where cracks start to

initiate.

As for the industrial problem of connecting rods, the following recommendations are
presented:
e Stress-strain data for metal powder should be provided digitally so that reliable
fatigue properties are used for life predictions.
e Fatigue crack propagation may be used to calculate the total fatigue life of each
connecting rod. It should be clear that the fatigue lives that this thesis provided

are only the crack initiation portion of the total fatigue life.
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