Abstract

‘We study in this thesis three subjects which are:
Cumnlative Renewal Pr , Stochastic Coatrol and Gradient Estimation.
The first subject is inspired from Smith’s work on cumulative processes and the early part of

Glynn and Heidelberger's paper on bias properties of budgy d 1
‘We develop for this class of cumulative processes, new methods for evaluating explicitly and
ymptotically arbitrary of a product of n distinct cumulative vector renewal reward

processes termed N(t) and N(t)+1 cases. A combinatorial approach is used to derive such moments.
The analysis developed hinges on an expression of the moments in terms of the cumulants of the
underlying time ] seq and is founded on the gnition that certain sets of random
variables are conditionally exchangeable. This gives rise to equivalence classes for the case N(t),
and to expectation summable classes for the case N(2) + 1. Besides that, the theory of martingales
is used for the case N(t) + 1, where we g 1 yraptotically Wald’s fund al equation in
the discrete time.

The second subject is devoted to the study of optimal control probl of linear hastic

conti time , when the i time domain is d d into a finite set of N

¥

disjoint random interval of the form [t;,i+1), where a complete state observation is taken at each
instant 4,0 £ i £ N -1. We ider two optimal 1 probl d (piecewise) time

P P

invariant 1 and time vari 1. C ing the observation point process, we consider
first, the gi 1 situation where the i intervals are i.i.d.r.v.s with unspecified probabilistic
distribution. Second, the exp ial distribution is idered. In this optimal control law
are obtained for both control problems.

The third subject is concerned with the interplay b gradi stimation and ratio esti-
jon. Given unbiased esti for the tor and the denominator of a ratio, as well as
their gradients, joint central limit theorems for the ratio and its gradient are derived. The resulting
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. fid gions are of p jal § when optimizing such ratios ically, as for
ity analysis, with respect to parameters whose exact value is unk We di briefly low-bi
for the gradient of a ratio.




Résumé

Ncus étudions dans cette thése trois sujets qui sont:

Processus Cumulatifs de Renouvellement, Contrile Stochastique et Estimation du Gradi

Le premier sujet est inspiré du travail de Smith sur les processus cumulatifs et la partie du début
de I'article de Glynn 2t Heidelberger sur les propriétés du biais des simmulations avec i de
budget. Nous développons pour cette classe de p. latifs, des lles méthodes pour
évaluer explici et asymptotiq des arbitraires d’'un produit de n processus

latifs de 1l avec gain 3 valeur vectorielle appelés les cas N(t) et N(t) +1. Une

pproch bi. ire est mise & ibution pour obtenir de tels L’analyse développée

dépend des expressions des ts en termes des cumulants de la suite des temps de renouvellement

sous-jacents, et est basée sur la reconnaissance que certains bles de variables aléatoires sont

diti 11 interchangeables. Ceci donne lieu 4 des classes d’équivalences pour le cas N(t),

et & des classes sommables d'espérances pour le cas N(t) + 1. En plus, la théorie des martingales

est utilisée pour le cas N(t) + 1, ot nous générali asymptotiq t P'équation fondamentale de
Wald & temps discret.

Le deuxieme sujet est voué a I'étude des problémes de contrdle optimal des syste h
tiques 3 temps continu, lorsque celui-ci est décomposé en un ensemble fini de IV intervalles aléatoires
disjoints de la forme [t;,ti4;), ol une observation complite de I'état est prise & chaque instant
t;,0 < i < N —1. Nous considérons dans ce cadre, deux problémes de contrdle appelés contréle
invariant par rapport au temps (par morceaux) et controle variant par rapport au temps. Au sujet
du processus ponctuel d'observations, nous idé en premier lieu, la situation générale lorsque
les accroissements des intervalles sont des v.a.i.i.d. sans spécifier la loi probabiliste. Ensuite, la
distribution exp jelle est idérée. Dans ce cadre, les lois de contréle optimal sont obtenues
pour les deux problémes.

Le troisitme sujet traite des effets combinés entre ’estimation du gradient et 1’estimation du
quotient. Ayant des esti biaisés pour le é et le dénomi d’un quotient,




de méme que poar lews gradients, des théortmes Limites njoints pous le quotient et
son gradient scut, obtenns. Les régions de confance qui en résultent sont d'un intérét potentic
lorsqu’on optimise de tels quoti éri ou pour analyse de ivité, par rapport
aux paramitres dont la valeur exacte est i Nous di brid t de Pestimatior du

faible-biais pour le gradient du quotient.
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Claims of Originality

The following contributions are made in this thesis:

e Exp ion of a product of jons of n distinct cumulative vector renewal reward
processes, termed N(t) and N(t) + 1, are considered and analyzed in full detail.

o The product of random variables occurring in Pa(t) = [0y Sh% @ is partitioned into
equivalence classes for the case N(t).

e An asymptotic expression for E[Pa(t)] is obtained, and a recursive scheme is given for
generating monomials occurring in E[Pa(t)).

o The product of random variables occurring in P(t) = [[hn; ¥+ v is partitioned
into expectation summable classes for the case N(t) + 1.

o An asymptotic expression for E{P;(t)] is obtained, thus generalizing asymptotically Wald’s
fund 1 equation in di time, and a recursive scheme is given for generating mono-
mials in E{P3(1)]

e Linear stochastic continuous systems are considered where the time domain is decomposed
into a finite set of disjoint half-open random intervals, where observations are taken at the
initial instant of each interval. For such systems, two control structures are considered;
piecewise-titne invariant and time variant controls. Optimal control laws are obtained for

both cases.
e A confid interval metbodology for estimating the partial derivative of a ratio is devel-
oped and a joint central limit th for the simul imation of the entire gradient

is obtained. A low bias estimation for the gradient of a ratio is given.
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CHAPTER 1

Introduction

This thesis is the result of several papers in the area of applied probability and related topics.
There are three subjects addressed in this thesis:
First: Cumulative R 1 Pr
Second: Stochastic Control
Third: Gradient Estimation
Chapters 2, 3 and 4 are motivated by applications of renewal reward processes in the areas of
electrical engineering as well as in management science.
Indeed, the random variables i duced and analyzed in these chapters, symbolically written
as Y_-m. have a concrete interpretation and diverse practical lications. For le, consid

the context where we have a dam, to which we associate random variables Y, ¥ and y¥
respectively representing the amount of rainfall, water extracted and electricity sale during the i-th
subinterval of time.

The length of each subinterval is defined by the time between the onset of two successive
rainfalls. We observe these variables in the interval [0,t). Let N(t) be the number of renewal times
(number of distinct storms) in that interval; clearly N(t) is a random integer variable which is known
as a counting process.

Tt is of particular interest to evaluate the joint statistics of total {cumulative) rainfall, water ex-
tracted and electricity sale in the interval [0, £); symbolically expressed as: E[':'z(*: Y,.“’]. E f) y,"']

=1
and E [Nf) Y_-m]; for estimation, forecasting and hydro-planing purposes.

While, ideally probability distribution functions would be highly desirable, they are dificult to
obtain. However, much information is contained in different moments of these variables: averages,
variances, correlation coefficients. Furthermore, despite the fact that it is the total amounts on
interval {0,t) which are of i diate i s ions on N(t) ] cycles and (N(t) +1)
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renewal cycles respectively constitute, lower and upper bounds on these which are easier
New o, Nk o L{O
to characterize. Thus Chapter 3isconcerned withthe 3 Y&, 3 YPand 3 ¥® gype
=1 =] 1
variables. = =
In Chapters 2 and 3, we develop a rigorous theory and efficient method to asymptotically
luate the above and more complicated forms.
(£)+1 N
We elaborate in Chapter 4 on a linearization technique to compute E| 3= ¥ S5 y@
Ny = =
> Y,”],whichseemsmbevery di C quently, one can appreciate the efficiency of the
=1

alternative methods developed in Chapters 2 and 3.

Specifically, Chapters 2, 3 and 4 are inspired from the work of Smith ([10, [11]) and Murthy {9]
on cumulative processes, and the early part of Glynn and Heidelberger’s paper on bias properties of
budget constrained simulations [8]. Briefly, their article is concerned with the problems of analyzing
and producing low bias esti from Monte Carlo simulations, within a budget constraint ¢ that
represents the i of comp time all d to the simulation

‘We study in these chapters cumulative vector renewal reward processes. We develop there
new methods for evaluati plicitly and asymptotically the expectation of a product of n distinct
< lative vector ] reward pre ‘We consider two major classes of such processes termed
N(t) and N(t) +1.

‘We study respectively the cases N(t) and N(t) + 1 in Chapters 2 and 3, where we develop
a combinatorial approach to derive explicit and asymptotic expressions for arbitrary moments of

< lative vector ] reward p The analysis developed hinges on an expression of the
moments in terms of the cumulants of the underlying time ] seq and is founded on the
recognition that certain sets of random variables are conditionally exch ble. This gives rise to

equivalence clusses for the case N(t), and to expectation summable classes for the case N(t) + 1.
Consequently, Smith’s [11] asymptotic theory of cumulants is applied. Besides that, we need the
theory of martingales for the case N(t) + 1, to overcome the difficulty inherent to the analysis of the
last renewal cycles involved in the summation part, which are probabilistically quite different from
the other variables included in that ion part. This is the so-called I paradox. Chap
2 and 3, are published as “Cabiers du GERAD" G-94-32 [2] and G-97-34 {3], and will be submitted
pectively to Math ics of Operations Research and to Advances in Applied Probability.
As we said, in Chapter 4 we elab on a standard li ization technique using the character-

istic function, to evaluate explicitly the expectation of a product of triple jons of lative
processes, as the time horizon goes to infinity. This chapter provides an independent check on the
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lidity of the methods developed in Ch
GERAD” G-94-13 [1].

The motivation behind Chapter 5 is the inspection paradigm, where ts of stochastic
Y for ple involve certain costs. In this chapter, we have the context where, cne has to
implement a closed-loop control of a stochastic system and random mode of sampling is chosen as a
means of observing it. The total number of observations is fixed, but the control horizon is random.
The solution of the linear quadratic Gaussian regul is g lized to this si

Specifically, in Chapter 5 we study optimal control problems of lirear stochastic e
time sy when the i time domain is d posed into a finite set of N disjoint random
intervals of the form [ti,241),0 < i < N -1, at the start of each a state observation is taken. We

ider two optimal 1 probl termed (piecewise) time invariant control and time variant
control. Due to the information (i.e. observation structure), on each interval a state space system
with complete initial state observation is defined. Concerning the observation point process, we,
first, ider the g ! situation where the increment intervals are i.i.d.r.v.s with unspecified
probabilistic distributions. S d, the ial distribution is idered. In this context,

14

D 2 and 3. This chapter is published as “Cahier du

optimal control laws are obtained for both control problems. The class of problems studied in this
chapter are open to g lization to probl which appear to be significantly more difficult in
particular, there is the case where the total ber of observations N is randi There is also a
possible link between that case and Chapters 2 and 3. A scalar version for the time variant case,
which is the scalar example 5.1 of Chapter 5 in this thesis, has been presented for the Cyprus

conference {4]. Chapter 5 will be submitted to IEEE Tr: ions on A ic Control.
Chapter 6 is concerned with the interplay b gradient estimation and ratio estimation.
Given unbiased esti for the and the d inator of a ratio, as well as their gradi-

ents, joint central limit theorems for the ratio and its gradient are derived. The resulting confidence
regions are of p jal i when optimizing such ratios numerically or for sensitivity analy-
sis with respect to parameters whose exact value is unknown. This chapter also briefly discusses
low-bias estimation for the gradient of a ratio. There is a potential link between Chapters 5 and 6.
Indeed, on the one hand, we showed in Sections 4 and 5 of Chapter 5, that the optimal cost-to-go of
an arbitrary stage is exp d as infinite hori di d cost. On the other hand, it was shown
by Fox and Glynn {6}, that the infinite horizon di d cost of a reg ive process can also be
expressed in terms of an appropriately chosen ratio estimation problem. An earlier version of this
chapter was given at the Optimization Days [5]. Chapter 6 is the theoretical part of a proceedings
paper which was presented at the Winter Simulation Conference [7].




REFERENCES

References

[1] Ades, M. and Malkamé, R.P. (1994). On the M ts of Cumnlative Pr A Preliminary
Study. Les Cahiers du GERAD G-94-13, Montréal.

{2] Ades, M. and Malhamé, R.P. (1994). Asymptotics of the M of Cumulative Vector Re-

13

14]

i8]

6]

7

18]

19

newal Reward Frocesses: The Case N(t). Les Cahiers du GERAD G-94-32, Revised July 1997,
Montréal.

Adgs, M. and Malhamé, R.P. (1997). Asymptotics of the M of Cumulative Vector Re-
newal Reward Processes: The Case N(t) +1. “G: lization of Wald's Fund ] Equation
in the Discrete Time: An Asymptotic Study”. Les Cahiers du GERAD G-97-34, Revised July
1997, Montréal.

Ades, M., Caines, P_E. and Malbamé, R.P. (1997). Linear G ian Quadratic Regulation under
Poissor Distributed Intermittent State Observations. Fifth IEEE Mediterranean Conference on
Control and Systems, July 1997, Cyprus.

Ades, M., Glynn, P.W. and L'Ecuyer, P. (1991). Confidence Intervals for Likelihood Ratio De-

rivative Esti Over Infinite-Horizon: Di d and Undi d Cases. Optimization
Days, May 1991, Montréal.

Fox, B.L. and Glynn, P.W. (1989). Simulating Di d Costs. M. Sci 35,
1297.1315.

Glynn, P.W., L’Ecuyer, P. and Adés, M. (1991). Gradient Estimation For Ratios. Proceedings
of the Winter simulation Conft 986-993, D ber 1991, Phoenix, Arizona.

Glynn, P.W. and Heidelberger, P. (1990). Bias Properties of Budget C. ined simulati
Operations Research, 39, 801-814.

Murthy, V.K. (1974). The General Point Processes. Addison-Wesley, Massachusetts.

[10] Smith, W.L. (1955). Reg ive Stochastic Process. P: dings of the Royal Society A 232,

6-31.

[11] Smith, W.L. (1959). On the cumulants of Renewal Process. Biometrika, 46, 1-29.



CHAPTER 2

Asymptotics of the Moments of Cumulative Vector Renewal
Reward Processses: The Case N(t)

1. Introduction: Classical Definitions and Notations

Consider a renewal sequence {t;} i = 1,2,... of ii.d. non negative variables (time intervals).
To each t;, we associate a random vector function Y; ¢ R, d > 1, which in general depends on ¢,.
We assume that [t,,Y/], i > 1, is a sequence of iid. random vectors (the components of ¥; could
bei dependent), where ’ indi vector t!

position. The general problem of interest here is

that of obtaining asymptotic expression of E[P,(t)] as time ¢ increases, where the products P,(z),
n (¢

72 1, are of the form: Pa(t) = [ (z)yf", (©) refers to the £22 component of the Y; vector, N(t)

f=] iml
N(t) Nit)+1

is the random integersuch that 3 & <t< Y. t,. Such sums appear in the study of cumulative
processes (Smith [16]). = =

Interest in this problem stems from the relation that exists b the of a rand
variable vector and its (possibly multivariate) characteristic function under the form of a Taylor’s

expansion around the origin. Thus, for example, if the sequence of ¥;'s is a scalar sequence, knowledge
Nit)

of the asymptotic behavior of E[E Y.-]’. p = 1,2,3,... could permit sharper estimates of the
=t

N(t)

asymptotic distribution of [Z Y.-] via inversion of rational approxi of the partial Taylor
series expansion of the associated ch istic function ¢{a) around @ = 0, than could allow a
central limit theorem based analysis.

‘We write:

K9 = B[], e = Bl g0 = B[P W = B[EON), g5 =
E[8Y Oy am =12, didkrp =12
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‘We assume that the above moments are finite, and that the distribution of the {t's}, F(-), is
class 7 (Smith [17]), Le., the class of distribution functions for which the k-fold convolution of the
function with itself has an absolutel; 3 p

Obviously E[P,(t)] is the exp ion of a product of jons of n (in gy 1) distinct cu-
mulative p For evaluating such expectations, we will require the cancept of exchangeability
of random variables. Also, we rely on Smith’s {17] asymptotic analysis of factorial moments of N(t),
as well as the theory of combinatorics (Comtet [6]).

Indeed, inspired from the early part of Glynn and Heidelberger [9], our analysis hinges on recog-
nizing that a ber of products of rand iables occurring in Pa(t), have the same expectation
when conditioned on N{t). Subsequently we classify these random variables into conditional expec-
tation equivalent cl and the cardinality of each class is expressed in terms of N(t). Finally, the
asymptotic behaviour of the expectation is expressed in terms of the asymptotics of N(t) as ¢ goes
to infinity.

This chapter is organized as foll A reminder of the concept of exchangeability of random
variables is presented in Section 2. A study of the asymptotic behaviour ¢f E[P, (¢)] and E[P;(t)] is
given in Sections 3 and 4 respectively. The resuits are well known but these two sections constitute
an illustration of the main steps of our methodology on relatively simple cases. We present in
Section 5 useful elements of combinatorics and exchangeability results ial in partitioning the
product of random variables in P,(t) into equivalence classes. In Section 6, we give an asymptotic
expression for E[Pa(t)]. Detailed calculations for evaluating explicitly the asymptotic expression of
E[P;s(t)] are carried out in Section 7. Finally, a recursive scheme is given in Section 8 for generating
Pa(t) occurring in E[Pa(t)]. Note that Jensen's paper [10] addresses the same issues, but for

Nit) (&
E [( Zx Y,‘) ], and the analytical methods are quite different. Thus, this work is more general.
-

2. Preliminary Notions on Exchangeability

The random variables (}3.}',.....}',.) ate said to be exchangeable if (¥;,, Yiy,- -+ Y. ) bas the
same joint distribution as (Y,,,Yz,....!’..). whenever (i;,43,...,1,) is a permutation of 1,2,...,n.
That is, they are exchangeable if the joint distribution function P(¥; € 11,Yz < ¥20-+-»Yn S ¥a) is
a symmetric function of (y1,42.....¥n); (Ross {14]). The concept of exchangeability was introduced
by DeFinetti [8] in his classical paper in 1931. For more details and applications of this concept see
e.g. Chow & Teicher {5}, Kingman [11] and Koch & Spizzichino [12].



Nit)
23 ASYM?I‘O‘HCPORMOFE[E‘ Y.]

=l

'N(z)
3. Asymptotic Form of E [Z }’.]
&1

We consider here the case where N(2) and Y; are dependent on each other, otherwise the
() (¢)
pmblunofevalua&ingE{N}: v) udVaxrz Y] would be simple; see Cox [7].
aml =1

Let W) = (,Y7) and let (H(l),...,H(m)) be any p ion of the integers 1,2,....m.
Then it can be shown that:
P[(W,,...,w,,.) ¢ AIN() = m] = P[(Wn(,,,....Wn(,..)) CAIN() = m]. @)

See Glynn & Heidelberger {9] and Ross [14] for (3.1).
Therefore {avi),i = 1,...,m} are conditionally h b} d vectors; then follow-
ing {9):

E[¥IN() =m] = E[BING) = m] 32)
E['ﬁ':) YiIN(t) = m] = f: E[Y.-lN(t) = m] = mz[y,]zv(g) = m] m>1 @3)
=1 =t

Using the properties of conditional expectations:

E é‘,:) v = E[E[,;g(:) mN(z)]]
= E[vosfveli(ve 21))
= E[Efmrowo] (v 21)]
= e[nve)

(3.4)

where I(:) is the indicator function, and the last equality stems from the fact that N(t) = 0 if
1 (N(t) > 1) = 0. Under conditioning this time on ¢; we have using the conditional independence
of Y3, N(t), given ¢;:

E[mv(:)] = E[E[mz,]z[(l +Nig =)}t < z)|z,]] (35)

In (3.5), one can utilize the asymptotic expression of E[N(t) + 1)] developed by Smith [17], as
7t = t1) + 712 + w(t — t;) where 71 and 7, are constants which can be calculated, and w(t - t,) is
o(1), for a given t;.
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2.4 ASYMPTOTIC FORM OF E [ T YRy y_"’]
sml

Using Lemmas § and 6 in Section 6, we have respectively and asymp "‘yE[Y;(-n(t-
t1)+7) I(t;>z)]=o(1)a.nd£[}’;w(t-t;)]=o(l).’rhus,a.fur bstituting, Smith's asymptotic
expressions, and getting rid of the I{t; < ¢t) factor, cne obtains:

N(t)

e X
E[Z; y] =“—:—%+£2’;§+o(l) (36)

Note that Equation (3.6) coincides perfectly with Lemma 1 in Brown & Solomea [4] and Equation
(3-3.6) in Murthy [18]. However, we have to underline that our approach, while not necessarily much
easier than theirs, more easily g lizes to the bivariate E[P;(t)] and multivariate E[Pa(t)] cases.
Note also that agenenliutionofE[Y;E[l+N(t)] It > t)] = o(1) will be required and proved in
Lemma 5 of Section 6.

Woo¥e
4. Asymptotic Formof E |3 YV Y Y
=1

=1

In this section, we will deal with two types of scalar cumulative process.
Nit) N(e)

Carrying out the ordinary multiplication of 3, Y 3= ¥ results in the following two
=l

=t
dimensional array valid for any N(¢) > 2:

12 1) (2 143, 1) y(2] 2
P A SRR AR TEED A AL RIS ¢ )Y;r():)-x +Yxmyx(~'():)
1)4,(2 2, 142 14,2 3,
HOHD 4 EOYD LI 4O V)
142! 1)y(2 1)3-(2 (1)y(2 1)4(2
Y,“Y,(’+Y,”Y,)+Y,(’Y,“+---+Y,’Y,f,(’,)_,-f}’,(’}',:,(’,)

+ o+ o+

(CBY)

(1) 2 1) (2 {1 2 (1) 2 (1) 2)
+ YR, Y@ 4yl YR vl yP e avf) v YT

N(t)=1 N(t)=-1 N@)=2"N N(t)=1° N(¢&)
1) p(2) L p() 3@ L ) pl2) (1) v (1) (2
+ Yuph +Yngha” + Y™ + oo+ Yy Yoo -1 + Yrw Yve

Note that from (4.1), we can observe two different cases; the first one is characterized by the
random variables YV¥® for i = 1,..., N(¢), which are i.id., and the other is derived from the
random variables Y,)Y{?),i # j where i,j = 1,2,..., N(t), which may be dependent.

For this bivariate case, we wish to prove that:

(t) Nt}
E[S Y¥'S ¥P] = E[vPrPE(N (- 1) + 1)1 < 1]
=]l =1

+E[YIYPE({N(E - t1 - ) + 2HN(E -ty — t2) + 1}) It + 2 S 1)
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(T3
To establish the above equation, we first show that

E[3 v@'S ¥ «3)
=1 =1
= E[NOYPYPI <9+ NONO =) X810+ < 1)
Note that Equation (4.3) is based on a counting argument derived from the expansion in (4.1).

Also we make use of the fact that under the prevailing assumptions we can show that:
E[Y,“’}:‘”]N(z) = m] = E[Y,‘")q"’w(z) = m] Vi=1,2...,micm>1  (44)

and

E[}:“’y}”uv(z) = m] = E[Y,“’Y,"’W(t) = m] Vigjiij=12,....mlaem>2 45)

Indeed, Equation (4.4) follows from (3.3) and assuming as we are about to show that (4.5) is
true, then we would have form > 1:

N(t) N{t)
E[Y ¥ Y YN = m| = mE[ROYP|N () = m] 46)
=1 =1
and form > 2:
() Ny Ny V)
E[NZ: YOS v =m] = T 3 EFOrPiNeG =m|
=1 = =1 e
N
=3 E[Y,.“’y_.“’m(z)=m] 7%y
=l
Ny N
+3 > E[YOYPING =m] fori#j
=1

Using Equations {(4.4), (4.5) and (4.7) results for m > 2 in:

(), VO
z-:[”z:l YOS YOING =m] = mE[YPYPING) =m|
= =1

(4.8)
+ m(m - 1);-: YOYPIN(@G = m]
Recognizing that:
N(t) N(t) N(t) N(¢t)
3 ¥ Y v = e[e[y v Y v “9)
= jm1 st =
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and using (4.6) and (4.8) results in:
(£) N
B[ ¥ ¥
= = .
= E[N(t)Y,_(“Y,mI(N(t) 21)+ N (N - YR 1(N 2 2))

or equivalently:

© L0y
£[3 ¥ 2 %7
e
= E[N(z)y,‘"y,")z(z, <)+ NO(NE®- DU +12 < :)]

which is Equation (4.3). Note that (4.10) would still be valid without the indicator functions.

It ins to blish E. ion (4.5), which essentially is a claim that, conditional on N(t),
the variables YUY i = 1,...,N(),5 = 1,...,N(¢), bave the same expectation if i # j. Such
variables will be termed conditional expectation equivalent. Note that conditional expectation equiv-
alence is an equival relati We blish (4.5), by first showing that under the prevailing
assumptions, a given row or a given column of array (4.1) corresponds to conditionally exchangeable
random variables, as long as i # j in Y'Y %, Let us then state the following lemma:

(4.10)

LEMMA L.  Form>2, E[Y_."’Y,."’ IN(t) = m] = E[y,‘"}',"’m(z) = m] fori#;
endi,j=1,2,...,m.

Proof. Define for m > 2,2Z; = Y,“)Y'-(z).i = 2,...,m, a sequence of random variables and let
(H(2).....n(m)) be any permutation of the integers (2,...,m). We have for m > 2, and for
arbitrary scalars Z;, i = 1,...,m:

P[z2 <zoeeisZm < zm|N(2) =m]

P[Y,“’Y,‘”sz,,...v,‘”r,:,”sx.; t1+ta 4t 5:<:,+:,<---~+¢.+t...x]

P[g,+g,+...+z_ g:<h+u+4~-+(..+l-¢1]

£ [" (Y S/ ylD o YD 2 [yl ‘:*‘"‘*‘-S‘-ﬁ«:*-'-*‘-‘x|Yxm-v§"-h-ﬁ]l

= P t;+l:+---+t..5:<n+t:+--+t-+t..+:] @
ik[y-((::))s‘ﬂ l’:‘)-~---Y.(:-)-)5:—-/v:"3-(:)*'*‘-(-)5‘-h<¢-(:)+“+l-(~)+¢-uIY;"’tvgn"""]] {4.12)

a P[h +tnyay+etlnim) 5t<h+ln(:)+~-~+¢n|-)+h¢1]
E [P [anSt:wnzm-.)Sh:lnm+"-Nn(-)st-n<lnu)+~--+tm..,+t-¢: [ ARE RN ﬂ (413)

Plti+tam++tam) S¢<‘x+!n(:)+"-+!n(-.)+t-¢x]

10
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=l

p[znmsg, ..,zm_,sx_.;t:ﬁm,-o—-ﬁm-)stcxﬁm-#—-ﬂm-rﬂ-u]

(414)
P [h""nm*“‘*“n(-)f‘“v“m;*'—*"m—)-ih-ﬂ]

= P[zn(,) € 22yeees Zaim) < ZmIN(t) = m]

Note that the step from (4.11) to (4.12) is based on (3.1). Thus for m > 2, the conditional
random variables Y,‘”Y,‘”\N(z):m).j =2,...,m are exchangeable and in particular:

EFPYPING =m] = EPIING = mlj=2,...,m. (4.15)

Using similar arguments for a column in the expansion of (4.1), i.e. if one considers the random
variables YUY i = 1,3,...,m; it is possible to prove the interchangeability of the conditional
random variables (Y'YN () = m) for m > 2,i £ 2, and thus:

EYOYPIN(E) = m) = BV IN() = m),i = 1,3,...,m,m 2 2 (4.16)

The lemma derives from (4.15) and (4.16).
Equation (4.10) now follows directly from (4.5).
From (4.10) we obtain:

E[}E‘) Y.-‘n}g:? Y_xz)] = E[E[Yxmy!m N(@)I(ty < z)lt;]] @
. E[E[Y,‘”Y:"’ N(g)(N(t) - 1)1(:; +t2 8 t)Itntz]] a
= E|E[xMYP|E[Fon < t)ltz]] (@18)

+E E[Y,(’)Y,(z)ltx.tz E[vo(N@® - 1)1t +t: < z)[z,,z,]]

=E E[Y,(”Yl(”lh]E[(l +N(t- z,))l(tx < t)ltz]]
+E|E[YY 1, 6| E[{NE - - t2) + IHN(t— 1 = £2) + 2} “19)
I+t < t)lt;.fz]]

(t) N(t)
4.1. Asymptotic Explicit Expression of £ [NE }"-m > Y_-m]. Using Lemmas 5 and 6
=1 (T3

in Section 6 we have asymptotically, E[Y,‘”Y,‘”é;(t -0t > z)] =o{1), E[y{"y,‘”az(z -t -
)(t + 1 > 1)) = old), E[YP¥Pun()] = ol1) and EEVYun()] = o), where a1(0) &
s[(zv(:)+1) (N(¢)+2) (N(t)+k)]. k=1,2,..., are the cumulants of N(£), w1 (22) £ wn (t—t;)

11
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anc w3lt]} & wa(t — #; ~ ) are the remainders in the asymp pansions of ¢y (¢}) and éx(t%)
respect:t ely,asesubluhedbySmxth[l?] As in Section 3, we can replace the cumnulants by their
asymptotic poly ] expansion in terms of {¢ —¢;) or (¢t — ¢; — £2), and ignore the action of the
indicator functions.

Q) gy N0
Thus the asymptotic behaviour of E| 3 Y.(
=l

Y(:)] derives directly from the asymptotics
of $(£2) and $(£2) given in general form in Section 7. Uunsthefactthnl’ma.ndl’mmcondaud
respectively with ¢; and ¢z, we find after some algebra:

N(2)

E["z‘f’ y® P> y(:)] & EEr)
+t(5m‘1*—’1 2 EOE) - & ERIET) - & BV ulE )

YR y2)
+ (2 By - BexL0 2 ppy ey

(4.20)
-3 EY)EN ] + SOGEET , SETEE)
so STl () ) + o)
1 Y,® = Y/ then Equation (4.20) becomes

+3E e m+“l+) +o(1)

The result of E [NZ Yu)] is already known in the literature but has been obtained, how-
ever, using a dxﬂ'ermt pp gst which a putation of the ch~racteristic function of

E[Ng:x Y]’ (Murthy (13).

S
Murthy's approach b of exceeding complexity for the evaluation of E| 3~ ¥, ].We
=1

) 2
also mention Corollary 1 of Brown & Solomon 4] for E [NZ YI(”]
=1

12
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It seems nevertheless difficult to tackle the general case based on their paper. Before starting

the next section and in order to facilitate understanding, let us give the analogue of Equation (4.10)
for the trivariate case:
() N N
B3 yo'st yo 5t y‘(:)] - E[N(t)Y,‘"Y,‘"lq“) It <)
=1 i=l

=1
+N{t) (N(t) - 1) YOYPYP 1t +t. < 1)
+N@(v e - DY I +12 < 9) (422)

+NeO(NO - )P It + < 1)

+N(2) (N(t) - 1) (N(t) - 2)1’,‘”14”1/,‘” Hti+ta+t3 < t)]

On the R.H.S. of (4.22) we observe respectively from the first term to the last one the following:
a) Y;(”Y,(”Y,(:) is one block of letters {(or random variables) baving the same lower index
which is one.
b) YNV consists of two blocks which are Y{'Y{? and Y{¥). The cases of Y'Yy
and Yl(”]’...(z’l’,m are the same as that of }’1(”}"(”}’.‘.(’).
&) YVYPY is considered as made-up of three blocks given by Y, ¥\ and Y;*). The
lower indices are arranged in i ing order from one block to another.
Similar observations are applicable to Equations (4.10) and (3.4), the last one being the simplest
case.

As we remark either in Equation (4.22) or (4.10) we have respectively a partition of 3 or 2
letters into distinct blocks. The generalization of this idea, i.e., a partition of n letters into m
distinct blocks will be an essential notion in the forthcoming section.

5. Partitioning the Product of Random Variables in P,(¢)
n N
Let us refer to n as the index in the product [] (2 Y_‘"). Thus in an index 1 case, we
2x1 “ex}

have Aﬁf) Y.»“); we are able here to distinguish one equivalence class (variables in a sum that have
the same expectation conditional on N(t}). In the index 2 case, the number of distinct equivalence
classes is inherited in part from the index 1 case, all Y.-(”Y_-(z) type variables, plus a new equivalence
class specific to the index 2 when all indices are different i.e. ¥"'Y;?),i # j type variables. In the
index 3 case, the equivalence classes are inherited in part from the index 2 case. Indeed we have

13



25 PARTITIONING THE PRODUCT OF RANDOM VARIABLES IN Fa(t)

all YVYPY type vaciables (ome block, three letters, in this context, the mumber of blocks is
given by the number of distinct lower (time) indices within a number of an equivalence class). Also
YOyRy® yy@y® = yOyOy® ang yOyPy® ;£ i type vasiables possess 2 blocks
since Y,-(")Y_"),Y,-m}’_-(’) and Yf")};m behave as index 1 variables. Finally, we have a single new
equivalence class YYPY for i,5,k different, specific to the index 3 case, which obviously
incorporates 3 blocks.

Mare generally, let [[™™ be all partitions of n letters into m non-empty distinet blocks repre-
sentative of all equivalence classes (conditional expectation equivalence) of random variables incorpo-
rating m blocks. Also let mon [J™™ be the monomial associated with the £ distinct equivalence
class with 1'[('""). The lower indices from one block to another are arranged in increasing or-
der, while the upper indices within each block are arranged in increasing order. The ordering of
monomials within [J™™ is lexicographic with the lower index order dominating the upper index
order. Thus for the index 1 case, we have one monomial given by moa [ £ ¥{¥ representa-
tive of the equivalence class of Y,m type variables. There are N(t) type monomials represented by
mon[]*Y). In the index 2 case, the number of equivalence classes is inherited from the index 1
case plus one equivalence class specific to the index 2. Indeed, we have one hereditary monomial
mon n(;‘z) 2 Y,“)Y,(z) representative of N(t).Y‘in(z) type random variables and one new index 2
specific monomial mon []&* 2 yMY representative of N(t) (N (&) - 1),!’_-“’}’,(2) type random
variables for i # j. In the index 3 case, the number of equivalence classes is inherited from the
index 2 case plus again one index 3 specific equivalence class. Indeed, we have one hereditary sin-
gle block equivalence class denoted mon nf’,) 2 Y,u)}’i(z)}'x(’) representing N (t)Y_(” Y_(z) Y.m type
variables and three hereditary two blocks equivalence classes denoted mon []** 2 YWy Ry
mon 13 £ Vv ¥Y? and mon[}*Y 2 Yy Ay representing each N(t) (N(t) - 1) ran-
dom variables. Finally, the equivalence class mon [I>™ 2 ¥V¥Y{¥ is specific to the index 3
case. In order to show that, indeed the partition Y'Y is equivalent to Yy P¥, 4,5,k
pairwise different; we need here the following lemma which is a generalization of Lemma 1.

Lewsa 2. E[Y0y® ...Y,-i"’|N(t)] = E[Y,“’Y,"’ < Y{MIN(0)] for all poirwise distinct
i1 € 45,0 S and N(t) 2 n.

Proof.  Using essentially the same approach as in Lemma 1, we can easily show that if one
carries out index changes in one variable only at a time, the resulting random variables have the
same expectations conditional on N(t), as long as one verifies the pairwise distinctness of indices
Thus for pl

Efyy® ym |N(t)] =E[yPyP . ym |N(:)]
By proceeding repeatedly for Yf) y Y,‘” vennsy Y,f"’ successively, we reach the equality in Lemma 2.

14



25 PARTITIONING THE PRODUCT OF RANDOM VARIABLES IN Fa(t)

(I ) (T ) - (I )]
= 5{([1 ) (0 )-- (I )]

Jor 31,2, .- .Jmpwwednanctmdmdmﬁvmltonp" d into non i ing blocks
L,DpyeooyIm.

Proof. The result derives directly from Lemma 2. Indeed, the product n YL for a given &
involves variables defined at the same time index ji. Thus they could be consxdered as a single
random variable denated Y,': Given that the indices j1, j2, . - -, j are pairwise distinct, the variables
¥* for k = 1,...,m are mutually independant. Also, given that the Ji blocks, k= 1,...,m are non
intersecting, the random variables }.’; are all distinct. Thus they satisfy the conditions of Lemma 2,

and Corollary 1 follows. a
Note that Corollary 1 constitutes the basis for defining equivalence classes in an arbitrary index
n case. Each time one is able to recognize a distinct partition of the indices of the n p of

the Y, = (Y3 Y __| V() vector into m blocks, it will define a new equivalence class.

Let S(n,m) be the pumber of ways one can partition a set of n distinct elements into m
non-empty subsets (or blocks) [1].

S(n,m) are Stirling’s numbers of the second kind. Note that the total number of distinct
equivalence classes for index n is given by:

B, = i S(n.m)

m=l
The sequence By,n = 1,2,..., is known as Bell’s number (after Eric Temple Bell, see An-
drews [3]). Finally, note that the cardinality of an equivalence class associated with m blocks is
AN 3¢ N(1) > m which we also denote by N ()™ £ N(2) (N(t) - 1) (N(t) —m+ 1). This
leads to the following lemma which is a gy lization of Equations (4.6) and (4.8). Recall that
mon (™™ is the monomial representing the ¢-th distinct equivalence class, within the equivalence
classes associated with m blocks and index n, for £ = 1,2,...,5(n,m).

Leoa 3. E[P0ING®] = }f‘, [I(N(t) zm) s‘f’" N(g)(m)s[monngm.u)lmz)]]
n  S{nm)

=3 E N(t)("‘)E[monﬂ('"‘")[N(t)]
m=l

Proof. Lemma 3 follows from Corollary 1 and the remarks thereafter. Indeed in the expectation
E[Pa()iN ()], one can subdivide jals into equivalence classes corresponding to m blocks,
m = 1,...,n. Within the m blocks classes there will be $(n,m) distinct ways of partitioning the

15



26 ASYMPTOTIC BEHAVIOUR OF E[Pa(t)]

n components of vector YL, each represented by virtue of Corollary 1 by a single monomial mon

o™, ¢=1,2,...,5(n,m). Within each such equivalence class, the total number of monomials is

N(t)'™). Thus, the equality in Lemma 3 is a mathematical expression of these facts. u
Let us now state the following obvi of Lemma 3.

o -9 4

COROLLARY 2. E[P,.(t)] = EL?-; S(g‘) N(t)™ mon ngnm) I@ t< t)]

The next lemma is also easy to prove using nested conditioning and the independence of the
first m reward vectors from N(t), conditional on 2y,23,...,¢m.

LEMMA 4. E[N(z)('-)monng"”" 1(i t< :)]
=1
= E[E[ mmng"""’nh...,z,..] E[f[ (N(t',") +r)1(i ti< :) u,....,z.,.]]
rm} =l
where th 2 ¢ — i:, 2.
The following result is a consequence of Corollary 4 and Lemma 4.

PROPOSITION 1.

E[P()] = f: S(fl) E[E[monng"‘-"’u,,....:,,,]E[ﬁ (N(t'.") +r)
m=l =1 r=l

1(; t< :)ltl,....tn];l

Note that Proposition 5 gives the exact expression for E[Pa(t)]. H , we are i d in
an asymptotic expression for that expectation. Using Proposition 5 and Lemma 4, this question is
tackled in the next section.

6. Asymptotic Behaviour of E[P(t)]
In order to characterize the asymptotic behaviour of E{P,(t)], we need to focus on the asymp-
totics of terms of the form:

E[E[monng"‘-"’ |:,,...,z...]z-:['1:]'1 (v +r)!(§ t<t) |z,....,:,,.]] 6.1)

Now, recognizing that ELI_"i (N(Em) +7)] is ém(ET) with t3,13,...,tm treated as parame-
1
ters, and where ¢ () is the factorial moment of N(2) (as defined by Smith {17]), we can use the
asymptotic theory of ¢m(t) (Smith [17]). We gather from [17] the following facts useful for our
analysis.

16



26 ASYMPTOTIC BEHAVIOUR OF E{Pa{t)]

“Definition 1  The function A(t) delongs to the class B if and only if it is bounded variation,
tends o zero as t epproaches +00 and satisfies the condition A(t) — Mt —a) = oft™!) ast = +oo,
Jor every a > 0.
Theorem 1 I piny1 < 00 then ¢n(t) = Mt™ + 272 + -+ 4 Ypt + Yp41 + w(t) where w(t) e B”.
Therefore it follows from Smith's [17] Theorem 1, that w(t) = o(1) as ¢ — co. Note that the
Y'si=1,2,...,n represent finite rational functions of py, p2,.. -, -
Using the expansion of Thearem 1 in [17], and the properties of conditional expectation, we
have:

E[E[monng"“’ [+ tm] B[ ()™ + 2™t 4o+ m(e)
FIma +w(t'."))1(§l ts t)lt;,....:...]]

= B monll{™ [ 40" 4 b omn 4] (0 <e))] 62
=1

We proceed to show that under some fini ptions to be specified:
z[mng"w ['n(t’.")"‘]!(g 4 >t)] =of1) (63)
and
E[ moall{™™ o(e7)] = of1) 64)

6.1. Proof of Equation (6.3). We need the following lemma
LeMMA 5. Under the hypothesis that
B(T &) (T w®)(IT ¥)--(IT ¥9)1< (65)
=1 el eIz Sefm
for any arbitrary partition of the n components of Y, into m blocks for m = 1,2,...,n, then
”
E[ morll{™ (e &> c)] =o(l).
=1
Proof. We have:
(m,n) mym 7S 5. (m.n) ym p (S 4
E|| monII,™™ (7 )(tT) szt,>t] < |m|E}| monll, tlgt.>t[.

But, E[} moall{™™ em1( 3 &, > 0)1] < E[lmonti™™ (T )1{ S 4 > ¢)]; while the right-
hand term 15[ the tail of the expe(f.::tation)'uiltegal[in (6.5), whi(c‘;las t) —r(:; must 23 to zero since the
expectation in (6.5) is assumed to be finite. Thus, the lemma derives from the above two inequalities.
t ]

6.2. Proof of Equation (6.4). Note that w(t) is of bounded variation and thus w?(¢) is
of bounded variation. Also since w(t) is o(1), w?(t) is at least o(1). We can assert that Efu?(2)] is

17



2.7 APPLICATION
o(1); indeed:
ERP()] = / Pt - B)dFm(B) (66)

where 82 $° ¢; and Fa(§) is the distzibution of §.

Since L3 (¢) is of bounded variation, then it is bounded. Purthermate, Foa(5) being a distribution
function, is of bounded variation (or since Fin(f) is class 7 (Smith [17]), then Fen(8) is of bounded
variation). Thus the conditions of Lemma 1 in Smith [15] are satisfied and Efu?(t™)] is o(1). We
can now state the following lemma.

LEMMA 6. Under the assumption that E[ moa I{™V < oo, then E[ mon O{™™ u(tm)] =
of1).

Proof. By the Cauchy-Schwarz nequality, we bave |E{ moall{™™ w(t™)]| < 1/E{ monH{™™]2
VEWITIE. As Elw(t™)]? = o(1), the result follows.
Finally we have the asymptotic behaviour of E[P,(t)] given by the following theorem.

THEOREM 1. Under the finit of ts ptions in L 5 end 6, and the as-
ption that distribution function F(-) is class T,
n  S(nm) mel )
EP@0l=3 3 E[monni"‘"" = 74:2")"'*"‘)] +o(1) 6.7
m=l =1 =l

where the +;'s above correspond to the asymptotic expression of dm(t), the m™ order cumulant of
m

N(t) as given in Theorem 1 in [17), and tP =t~ 3 ¢;.
=1

Proof. This theorem follows from Proposition 5 and Equations (6.2) to (6.4).

7. Application
In this section, assuming the conditions of Th 6 are satisfied, we eval explicitly and
3 N(t)
asymptotically ELH1 21 Y,“)].
From Smith’s [17] Lemma 6, we have

Smle) =mi{l - F*(s)}™ (7.1

where ¢;,(s) and F*(s) are Laplace-Stieltjes transform of ¢m(t) and F(2) respectively, and F~(s) is
given by Lemma 3 in Smith {17] as

r(3)=1-#xs+£;!£—"-+(—:2—:‘u—"+o(s") (+.2)

for real s > 0.

18



27 APPLICATION

. Equations (7.1) and (7.2) are the basis for computing ¢,a(t7) and the ; coefficients in Theorem 6.
Applying Equation (6.7), we have
3 N{t) 3 ) o 1 - -
BT = L e[ moan™ ’(g w(emy™)] +of1)
(7.3)
= S E[S moan{™ du(ez)] + o1
m=l =1
o LI:I T 7] = EROYOYPe )+ YY)
1 sl
(7.4)

EYPYE YR 6 ()] + YR YR ()]

+

+ EYPYPrPeam)+o)

Recallt.hatt:":t—i t;.
=1
We assume that ¥V, Y2 and Yy*) are cotrelated with t;, t; and ty respectively. Using (7.1)
and after some tedious algebra we find

N(t) N(e) N()
s[§ LEDILADY ¥ = e e Eme
+{CIE Ve + MY IEN®) + CLEN M By
- 3G EN V0 E B - 30 B VEN Pl EY )
- 3G ETY B E V0] + CE M BT EY ) 2
+{C MY - 20 Y BT
- 202 EYPIER 0] + GEY Y EY)
- 26 E YV EM] - 203 EY R EY P )
+ G EY I E™] - 2 EY 6 B Y]
- 2GR EMENP YV ul + G EN B YY)
+3CEVG1ENMIEN )} + 30 EM V)V H1E )
+3CIEYIEMPIEN V4] + 6CEM 0 ENY, V0] B u] B
+6CIEN VB EN 1] + 6C EYVIEN V0 EY V)



2.7 APPLICATION

- Co(ERP i EIEY ) + ERMIEN 0l ) + EIE M Er O n))
+ G E ey}

+{~C BP0 + GEMPYPY) + RO SIEYS)

+ CGEENYEN ] + 2 B P EY )

- GEFYPnER®) - GEY Y EN )

+GENYEY ™) + CEEPYER ]

+2CEEIY e P + CEEMPY P EIEN )

- GEYIYPEND) - GEYPYIEYPn]

+CENYNEY ™) + CEEYIRIEV )

+ G ENMIENP Y8 + 2B ElY Py )

- GENMI]EFYP) - GEYPIENPY 4]

+ CEMEY Y] - GEY M GIEV B

- GEYMEYPGIEN)] - GEYMIENMEN )

- 3CE B GIENY ) - 30 BV 0 B V)

- 30 EMVGIEN P 0 By - 3G EV Y P 4 By

= 3G EMMGIEN I EY ) - 363 EYMEN P B1EN V]

- Gcfmmh]Emmtx]Emmh]

Cr (E VBP0 B ) + Bl EY ) + EOIEN 6 EY )
+Co(EMVGIEN BN + B BN 1] + BBV PIEN )
+Cs (BNl BN + B PIER 0 B + EMOIE P, x))
+ GEVIEEW )}

+o(1) 75)
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2.7 APPLICATION

where:

2

Ce = 9:_;2:0" us

iy

Cr=2

Y

— =3udue+ind
Cy= —L—.—“Z‘“

- 1

Note that in the development of (7.5) we used the following:

By = B t=123adm=1,23
EYOYY = BV Yr#erns=123

EYOt] = EY9 vk<o
Note also that Equation (7.5) cannot be further simplified. However, if Y = PARES AL SR
then (7.5) becomes exactly E[N(¢)]* given by:

EN@)P = ;1"- + (_""_:lh’, )t’

Y

2_ 258 2
+(9u 3u;m:- 13 n‘"“l)t

7.6)

=30 ua—36u3ui+16us ]+ 140308 +12u3 —4ut
+ _1_“1__“?_:._“2_;

+o(1)

Note also that Equation (7.6) coincides perfectly with E[N(t)1® in Ades, M. & Malhamé,
R.P. {2], and Murthy (after correcting his algebra [13]). This provides an independent validation of
the approach elaborated in the p .,

P
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23 RECURSIVE GENERATION OF Pa(t)

8. Recursive Generation of P(t)

‘The monomials occurring in E[P,(t)] are generated recursively and inherited from each others,
following by that a specific pattern according to the analysis elaborated in this chapter. For exam-
ple, monlI™ = Y'Y P¥{? (monommial associated with a partition of 3 letters into 2 blocks),
generates in the fourth ion the following three disti jal
YYRyWy® yRySylyd) gy yAyOyEye

As we can remark, the first two monomials are associated with a partition of 4 letters into
2 blocks. In each of these two generated mopomials, the “new” letter Y¥) is located at the end
of each block, taking as lower index the position number of this block. The last monomial has,
however, 3 blocks; this is an augm d (in the ber of blocks) or innovated monomial, where
Y® is located at the end of these two blocks and has 3 as lower index.

In general, monng"""") generates in the n-th generation m monomials of n letters with m
blocks, plus an augmented monomial of n letters with m + 1 blocks, following essentially the same
pattern described previously.

First Generation Y} = (Y())

111 moni*V = ¥

Second Generation Y = (Y() Y®)

211 YW » monll{*? = YDy

\ monlI®? = Yy

Third Generation Y3 = (Y Y y®)

3.1.1 yl(l)yx(:) Y monn‘,"” = Yx(x)Yl(z)Yx(!)
monll® = YWy @y

321 yOyP monlI? = YRyPy®
E E:. monﬂ?‘” =1,1(1)},;2)},;.(:)
moalI®™ = YPyPy

Fourth Geperation Y; = (Y1) Y@ y® y)

411 YOyOy® monll{*Y = Yy Py Sy
monn(xl.‘) = }’1(1)!,1(2)},1(3)!,2(()

421 YOYRY® moalI3 = YOyRyy®
§’ monlI*9 = Yy Dy Oy

monlI®) = YWy Ry @y

22



28 RECURSIVE GENERATION OF Pa(t)
moall2Y = ¥y Oy

122 yOxOYP
ES moalI®Y = Pl 7l
o (:.4)=Yl(x)yx(:)y§z)},a(q

monn,(f“’ = Yl(x)yl(c)yz(z)y;:)
monﬂ‘,z") = Yxmyz(z)yzmy;‘)
m onng"‘) = Yf”*’-}”}’z‘”}’:("

123 YPyPy®

3.4) _ y!(l)yx(i)yz(Z)ysG)

131 yyPy® monlI =
monngl-‘) = };1(”}’2(3)}’:(1)},:(3)
monll®Y = Yy Py Py

monngl.t) = Y,(“Y-‘.(Z)Y;,(”Y‘w

There are B, ials for this g jon (B, = 15).

n-th Generation Y/ = (Y1) y®@ _ _ y)

all Yx(i)yz(z) " .Y,""” monﬂ{""’ = 1’1‘”!’,"’ . ‘yx(n-t)yx(n)
monlI™) = YOy .yl Dym

n21 Yxmyx(:) .. -Yx("-z)yz("-!) monng""‘) = Yl(x)yl(z) . Yl(n—z)},x(n)},z(n-z)
momgz.n) = Yx‘”*’z‘z) . y’(n-z)yz(n-n};tn)

monngl.n) = Ylu)yx(z’ . yl(n-z)yz(n—l)y:(n)

n.2.5(n-1,2)
v L yr-dyn-yie-t) monIET, | = Y . yr-Iymyn-dyn-n

monn(SZ(.:‘)z) = Yl(l) . Yl(n—l)y‘z(n—z)!,z(n-l)y:(n)

monn(s:(':lx_z) = Y‘(l) . --Yg(n_:)}’z(n-:)y;-(n-x)yj(")

8



n{n-1).1

YOy Bt = KK Ly

S{n.n=1)=(n-2)
1. 1 -
CRAIINE D s At S fres

(n—1. 1 -1
moall), = YYD, ¥y

Recall that for each generation, there are B, monomials where B, are Bell’s numbers.

9. Conclusion

As we observe, the evaluation of E{Pa(t)], using the present approach, is based only on é,(t7),

since the monomials of P,(t) are generated recursively. Note that the constants 41 t0 Yn41 in the
expansion of ¢n(t) can be computed using e.g. an algorithm of Teugels {19]. Thus, using a symbolic
language of programming as Maple or Mathematica, the symbolic computation of E{P,(t)] can be
performed efficiently.
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CHAPTER 3

Asymptotics of the Moments of Cumulative Vector Renewal
Reward Processes: The Case N(t) +1
“Generalization of Wald’s Fundamental Equation in the
Discrete Time: An asymptotic Study”

1. Introduction: Classical Definitions and Notations

Consider a r ] seq {t} i =1,2,... of i.i.d. non negative variables (time intervals).
To each ¢;, we associate a random vector function ¥; ¢ R?, d > 1, which in general depends on ¢,.
We assume that [t;,Y;], § > 1, is a sequence of i.i.d. random vectors (the components of ¥; could

be interdependent), where ’ indicates vector transposition. The g ] problem of i here is
that of obtaining asymptotic expression of E{P;(t)] as time t increases, where the products P;(t),
n N9+t
n 2 1, are of the form: P5(t) = H ( Z Y_-w), (£) refers to the ££* component of the Y; vector,
= =1
= 1:' (t) N{t)+1

N(t) is the random integer such that E ti<t< E t;. More generally, we can evaluate the
=1 =1
n N(t)+1

asymptotic expression of E[P,(t)] where Pu(t) = [] ( s Y"’)" such that i P = n. Such
sums appear in the study of cumulative processes (lssxxxuth ‘['83) =

Clearly, the random integer variable N(t) represents the number of events in the interval (0,¢] of
the renewal process {¢;}i 2> 1; note that Karlin & Taylor [4] and Ross [6] call N(t) a renewal process,
which is slightly different from Smith’s [8] terminology. Let {V(t)+1} be a stopping time (Ross [6],
Shiryayev [7]) with respect to {t;} i > 1, i.e., the event {N(t) + 1 = n} depends only on {t1,...,t.}
and therefore independent of {tn+1,¢n42+-..}, Whereas {N(t) = n} depends on {t1,...,tn,tn41}.
We write K10 = E[V]], we = Bl 4§ = E[t{[V/]], where £ = 1,..., &5 i kor = 1,205
and K9 + B+ uﬁ) < 0. We also assume that the distribution of the underlying renewal process



Nit)+2

‘-}:x Y_(z)]
is class £ (Smith [9]) i.e., the class of distribution functions F(-) for which Fa(-), for some finite n,
has an absolutely continuous component, where F(-) and F,(-) are the distribution of {¢;}i > 1 and
Ta= i t; respectively.

The fundamental difference b N(t) and N(¢) + 1 is very crucial, indeed Corollary 2,
Proposition 1 and Theorem 1 of Adés and Malhamé [1] are no longer valid if we replace N(t) by
N(t) +1; the p hapter is a q of that fact. Besides the i hangeability idea
developed in {1], we shall need here the theary of martingales to overcome the difficulty inherent to
the analysis of the last ! cycles involved in the jon part of Px(t).

Our approach consists in classifying the product of rand iables appearing in P3(t) into
separate classes which we term expectation summable class. More precisely, such expectation sum-
mable classes of random variables, can each be associated with an auxiliary martingale sequence
that can be shown via exch bility type ar to have the same expectation as that of the
sum of rand iables in this ezpectation ble closs. Subsequently, using the martingale
property, the asymptotic behaviour of the expectation of that sum is characterized.

Thep chapter is organized as foll In Section 2, we carry out a study of the asymptotic
behaviour of E[P;(t)], while the results are well known, this section is, nevertbeless, useful in
illustrating our methodology on a relatively simple case. In Section 3, we present the analysis for
E[P;(t)] wherein we introduce the notion of partition appropriate to our study. In Section 4, we

()41
32 AsympTOTICS OF E[ & v®
sml

p combi jal el ial in partitioning the product of random variables in P3(2) into
ezpectation summable classes. In Section 5, we develop g ) asymptotic expressions for E[F;(t)].
Detailed putations for evaluating explicitly the asymptotic expression in the case n = 3 are

performed in Section 6. Finally, a recursive scheme is given in Section 7 for generating Py (t).

(t)+1 @ N{t)+1 @
2. Asymptotics of E| 3 YW Y Y| ]
=1 =1
This section deals with two types of scalar cumulative processes. Carrying out the ordinary
Nit)+1 N(t)+1
multiplication of 3. Y ¥ Y results in the following two di ional array valid for
=1 =1

Nt > 2

27



32 ASYMPTOTICS OF E (*E“Y_‘" m*'f‘y‘”}
ol
1 3
A A A 7 A R W1 A W
YR Ly 4y My ® +---+Y‘"va’&) Yz( N
2]
> 2.1

@) y@ @ Ly Q) »i2) ) 142
+YR YT + YT + YUV 4+ YUY, + YR YR

() P p®  p@ ) @ 1) 2
D + Y Yi + YN B 4o+ Vi Vi + Y Yo )

Note that the distribution of Y}, , is in general different from that of ¥, i = 1,2,..., N(¢). This
is the so-called renewal paradax; for more details and additional references see, e.g., Feller {3] and
Ross [6]. Thus, conditional on {N(t) = n} the random variables (¥{",...,¥{") and YY), are not
hangeable. Consequently as a result of this fact, the approach developed for the case N(t) in 1]
cannot be directly transposed for the case N(t) + 1. From (2.1) we distinguish the following three
cases:
(a) random variables on the diagonal Y.-(’)Y,.(z) fori=1,2,... . N{t)+1.
(b) random variables on the right of this diagonal.
i) E[y,.“’y,"’uv(z)] = E[y,‘“y,"’m(z)]
fori# jandi,j=1,2,...,N(t); N(t) > 2
This is Lemma 1 in Adés and Malbamé [1].
i) E[Y“’Y‘ (,M]N(z)] [Y“’y‘ (,,“IN(t)]
fori=1,2,...,N(t); N(t) > 1.
This can be shown following an approach similar to Lemma 1 in Adés and Mal-
hamé {1].
(c) random variables of the left of this diagonal.
For such variables we have:
i E[rPyPIve)] = E[vP ¥ i)
fori#jandi,j=1,2,...,N(t); N{t) > 2
i) E[YPY{R,.IN0)] = E[y"’y‘ VO]
fori=1,2,...,N(t); N(t) > 1.

28
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=l

=]

The total number of products of random variables occurring in categories (b) i)-ii) is as follows:

(NG + DD for case (1) 1) and N(t) for case (b) i), where
N(t)
NOW =k (-1G-2)-(i—k+1) @2
=2

Thus, if we add expectations of all the variables in (b) i)~ii), we obtain the following expectation:

N(t)+1
E[ (i-1)¥,‘"y_."’uv(z)] for N(B)>1
1

i=

As we show further, the above expectation can be evaluated using martingales techniques. We
term the merge of product of random variables in (b} i)-ii) an ezpectation summable class.
Applying the same analysis for step (c) i)-ii) results in a total expectation of:
N(t)+1
E[ s (i-l)Y,(”Y‘-(”[N(t)] for N@©)21
4=l

Again the merge of product of random variables in (¢) i)-ii) is also an ezpectation summable
class. It follows that for N(t) > 1:

(t)+1 N(t)+1 (t)+1
B[ 5 v S v = £ 5 YOy Pne)]
=1 =1 =1

(2.3)
(£)+1 (t)+1
+E[' S G-rPYOe] + B[ & G-0rPrOe).
=1 =1
Thus, the law of total probability entails:
(t)+2 N{t)+1 (t)+2
Er'z yo e - E[NE YOy
=1 N(t)-;le =1 (2)+1 24
+E[(E 6-0rr) e <] +E[(E G-DEOKP ) <o)
=1 sm]
where I(-) is the indicator function.
2.1. Evaluation of the Expectations in the RHS of (2.4).  The first expectation can

be evaluated via Wald’s fund tal equation:
N(t)+1
E| :; YY) = B[Py B[N © +1]

In order to evaluate the next two expectations, we apply martingales techniques. We proceed
as follows:



(0+1 N+
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-l =l

* Under conditioning on ¢;, we have
E [(Ngl(f—l)i’x‘"}’.-‘”)l(n < t)]
= E[E[(‘" :2":*(:‘-1)1@(15,‘(:))1(:, < :)13,]] @3)
-ty )42
e ool R o) 0 o]

where N(t —t,) is defined only for £ > ¢;.
o In order to evaluate the second expactation in the RHS of (2.5), we need to cousider the
following sequence:

Sa=Y (-0 - p) (26)
=1

for all finite n > 2 and p = E[Y{).
NotethazS..isammingaJesinceE[lS,.]] < oo for all finite n > 2 and
E[smlsz.s;.....s,. = Sn.

e Consider the random variable N = N(t — ;) + 2 for &; < ¢, and assuming that Y,*)
are measurable functions of ¢;, N will be a stopping time with respect to the o-field
F5S = 0(w,52,53,.--,5a). K we that the fund al ! cycles are such
that E[N(t)]l < oo for all finite £ > 0 and for all finjte ¢, then E[N] < co. Now define
& = (i - DO - u)i = 2,...,n. Note that E[TL, El&ility] < RE[EE=D] < oo,
where [z is the upper bound on the expectation of the absolute value of individual rewards.

eIt follows from Shiryayev's (7] problem 6 on page 464, that z-:[s,,lz,] =
E[szm] =0, and after some algebra we bave

E[(E " - s o]

- Nitty)+2) { N(t=t)+2 29
=E[Y} ]E[ It < z)]z,].
Using (2.7) in (2.5) yields:
(t)+1
E[E[(N ¥ G-y s:)ltx]]
=l
{2.8)
Nit=t3)+2 ) [ N(e-t)+1
= efBfrin] ) e[ e < i
Subsequently, adapting L 5 and 6 of Section 6 in Adés and Malhamé {1], we can write
asymptotically:
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E[EM B - ) > Bin]] = o1) asd E[EWjt]Efunte ~ :xnzx]] of1), where
Smlt) = E[n,";,(N(z)+z)]udu(: —1y) is the remainder in the asymptotic expansion of da(t —2;)
given ¢;. Thus, we can write:

N{(t)+:

)
(X Q) VP B P P PP PO

Following similar steps, the third expectation in the RHS of (2.4), can be written as:

(3 G <o - ene[E0OE 0 <o v, o

Thus:

(¢)+1 N()+2

E 2 Yo Z ym] =E[Y(x)y<z)]E[N(,)+1]
+E(Y‘”]E[Y( Rlet-t) <,)] 211
+EIY-..(”]E[-WI(& < 1) +of1).

N(t)+1 ”N(t)-» 2 "N{t)+1 N 2
2.2. Asymptotic Explicit Expressionsfor E[ 3 ¥{ A )] de[ T Y ’] .
eml (3]
Using (2.11) and Smith's asymptotic analysis of fact gial {9].

E ”‘%‘” yar™ (§+xy(3) EM ] 1
fy —_}'_

=1 =]
(BRI 2qufY“’]E[Y"’] ERY®)
2% u
E[}’,‘”]E[!x}',m] te an[y(!)y(i)]
™ 241
(2)

(11 1y, (3) Eﬁ_i’ﬁ EYMEEY)
+EGMEMT G - g |+ T
Em"’lE[t’Y“’] _ e EWMEm )

3

(2.12)

B
szIY:( ’]EltxY‘”] oy
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32 ASYMPTOTICS OF z-:['"‘*'f’y“) 2 b
When ¥, and ¥, are identical, (2.12) yields:
(g - e (0
L2 B - %Em“’lb‘ltm“’] ¢
L EYER 9£45"'D'm] 2nsE’[Y("1
Ervﬁmey‘“l 2u:EIY(“]EItxY‘”l

(2.13)

+0(1).

(8)+21
ThemultforE[Nz Y2 is well known in the ite: and coincides with (2.13); b
=l
existing derivations are based on puting ch istic functions (Smith [8], Murthy [5}).
(e)+1 N(2)+1
As shown in Ades and Malhamé [2], the evaluation of E[NZ Yy® v y®
=1

=1
N(t)+1

y

(’)] using characterietic functions and linearization technique is very long and tedious. By
contrast,t.he pproach herein p d for the bivariate case g lizes to the multivariate case
E[P;(2)) much more easily.

Before tackling the general case, and fcr expository purposes, we yet present the combinatorial
analysis for n = 2,3.
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£
3. Expression for E f{ N(MY“’]
We give the analogue of equation (2.4) for the trivasiate case.
+E[(~ b2} (:— )Y‘“Y‘”y"’)l(t, <:)]
-1-z~:[(Jv S (- 1)}"”1’“’1"’))1(: <:)]
+E[ z (z-1)y<“y<"y(”)1(:l )]
E[(N S (i-1) 1(‘”1(‘"}"”)1(:x < z)]
+E|(E 6-0¥PYPY) e <o)
+£[(E G-n¥PYIr)ie <)

t)+2
+E[(N b (:'-1)(:‘-2)14"1/,‘”1@"’)1(“1»:,5:)
=]

+

(3.0)

—

+E [(N“z)ﬂ(i-l)(i-ﬂ L AR A HCELE D
am]

—

N{t)+1
+8[(E, (-D6-2YXHE) 0+ <0
=1

—_

To understand the structure of Equation (3.1), let us do the bi rial and probabilis-
tic analysis for the case n = 2. We consider the pa.muon of the set {1,2} into m distinct or-
dered blocks or classes (m = 1,2), that we term expect ble cl In Equation (2.4),
we distinguish 3 disti tati ble classes of product of random variables which are
YHYR, yIY®, and y"’}'“’ The class Y'Y is inherited from the case n = 1 and corre-
sponds to ordered partition of the set {1,2} into one single block ({1,2}) where 1 and 2 represent
respectively Y®) and Y®. The classes Y{'Y® and Y2'¥/) are ezpectation summable classes
of random variables specific to the case n = 2; they correspond to ordered partitions of the set
{1,2} into two blocks, thus yielding the partitions ({1},{2}) and ({2},{1}). As we have already
seen in Section 2.(b)i)-ii) and 2.(c)i)-ii), these two expectations summable classes are made-up of
a mix of random variables which have identical expectation, complemented with “edge” random
variables associated with an index N(t) + 1. Thus, the class ({1},{2}) is made-up of all variables
of the type Y'Y for i # j and i,j = 1,...,N(t); complemented with YV, variables
for i = 1,...,N(t); which are quite probabilistically distinct form the previous ones. Indeed, we
have E[Y,“’y,.")u\r(z)] = E[}',“’y,")w(:)] and E[¥My “,Hw(z)] E[ryS (,MIN(t)] for
a total number of N(t)(N2(¢) )

and N(t) random variables falling in these two categories, whose
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£)+1
union results in one ezpectation summable closs given by E f (i-1)}g‘“y,.‘”]. where we used
martingal hni for puting this expectation. =

We can now perform the combinatorial and probabilistic analysis for Equation (3.1) based on
thecasen = 2.

‘We consider the partition of the set {1,2,3} into m distinct blocks or classes (m = 1,2,3), that
we term espectation summable classes. Therefore, in (3.1) we can distinguish 10 distinct erpecta-
tion ble classes of product of random variables. Note that a subset of these classes can be
coasidered as inherited from the casesn=1and n=2.

More specifically, the class Y‘-m}’_-""’l’i(:) is inherited form the case n = 1 and corresponds to
ordered partition of the set {1,2,3} into one single block ({1,2,3}), where 1,2 and 3 represent re-
spectively Y(l),y(z) and Y. The classes yl(x)yxﬂ)y‘(n' y‘(l)y‘(l)y‘_(z)' yl(l)yxﬂ)yi(z)' }tl(:)}fl(l)yi(l)'
YYPY® and Y'Y Y® are all inherited from the case n = 2 and correspond to ordered
partitions of the set {1,2,3} into two blocks, thus yielding the following partitions:

({12}, {31, ({3}, {1,2}), ({13} {2}, ({2},{1.3}), ({1},{2,3]), and ({2,3},{2}).

The various above expectations summables classes in (3.1) are made-up of a mix of random variables
which have identical expectation, complemented with “edge” random variables jated with an
index N(t) + 1. For example, to understand the ezpectation summable class ({1,2},{3}) we re-
fer to (b)i)-1i) in the beginning of the previous section, thus this class is made-up of all variables
of the type YV for i # j and i,j = 1,...,N(t); complemented with YUYy |
variables for i = 1,...,N(t); which are probabilistically distinct form the previous ones. In-
deed, as in Section 2(b)i)-ii), we have E[x“’}',."’}',."’|zv(z)] = E[y,‘”y,(”y}:({,*,|1v(e)] and
E[r®y@y@, W) = E[FPYYE, INQ], for a total number of TOTO 1) 40

N(t) random variables occurring in these two categories whose union results in one ezpectation sum-
(t)+1

mable class given by E 2 (i—l)}’,m}'l(z)}'_-m] . Clearly, the advantage of grouping the variables
=1

in this is that martingal hniques can be used as in (2.5) to compute the expectation of
this summable class.

Finally, there are ezpectation summable classes of random variables specific to the case n = 3;
they correspond to ordered partitions of the set {1,2, 3} into three blocks, thus yielding the partitions:
({11 {21, {3, ({2}, {3}, {1}), and ({3}, {1}, {2}-

Indeed, while all variables YUY for i # j # k and i, j, k less than N(t) + 1, bave essentially
the same expectation, it is not 5o for the class Y'YY ) | 4 # j less than N(¢) +1, and the

N(e)
class Y-(”YJ‘(S)Y;’?!)-H for i £ j less than N(t) +1. Note also that we complement the z (i~
=1




3 N(t}+1
33 EXPRESSION FOR EL['I poy y.“’]
=l em]

1)(i—2) random variables of the type Y'Y DY for i # j # k and i, 7, k less than N(z) + 1, with
N@) (N(t) - 1) random variables of the type YYYS)
To conclude this subsection, note that the 10 distinct partitions or summable classes given

in (3.1) are not the total ordered partitions of the set {1,2,3}; indeed there are 13 ordered par-
titions. To be complete, we write the partitions ({2}, {1},{3}), ({1}, {3}, {2}) and ({3}.{2}.{1})
which correspond to ¥PYYS, YRYSY® and YY) respectively. However, in ezch

of these three partitions, the last random variable has been already occurred in the previous parti-
tions YOYPY®, v yDy® and vy Sy Y. The events given in the partitions V¥ 2y®),
Yz(z)yz(i)y._(l) and ylu)y“.(l)y"('-') are probabilistically the same as the partitions yl(’)y_“(l)y“(:). }’I(J)YI(Z)Y-“)
and VY PY® respectively; for this reason we did not consider them in (3.1).

3.1. G lization of Equation (2.9). As we will use very often the idea of partition of
the set {1,2,...,n} into m distinct blocks, let us define monTI{™" as the £-th monomial associated
with a partition II of n letters into m non-empty distinct blocks having the same lower index in each
block.

We generalize now Equation (2.9) in two steps (a) and (b), which is the most general form
of (2.9).

(a) Using martingales techniques, as in (2.7), we can show that:

k=1
E[(N S = 1)=2) =k NyEIyp? ...y,‘{’,"’y,.("’)z(z 5 < z)]
=1 =1
k-1 (3.2)
= EFEE[EY T e I (T 1 5e)] 4ot
=1

where N
o the index 2 in (j2) represents the belonging of Y,V

to the second block.

1] ]

o EYEY) = EpSh)

k=1
o f,=t-3 &

=
o (i) =E[I (Vo) +4)]
\ =1
Note that on the LHS of (3.2) there is only one monomial with & blocks given by
YEYE L yETIYEY. In the general context we have different monomials with k
blocks, thus for generating these distinct monomials, the indices {j2,3%,...,7%~,j*} could
be any permutation of the set {1,2,...,k} resulting each time in different monomials.
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Hmva,ontheRHSof(u)thmmmdisﬁnamonomiﬂsgimbylﬂf’*’ad
3 ) 3 =1

Yoy Ly,

‘We show now Equation (3.2) as follows:
(1) under conditioning on #3,...,%x.; We have:

s[(’" gl(i—l)(i—2)---(i—k+1)Y,(")l’,u”... ‘_',"’x.‘"")
oS usd)]
=1
= E[E[(N :lg):l(i—l)(i—ﬂ e li=k)y ) vy )
I(§ t< z)]z,.z;,...,z._,]]
=]
= E[E[Y;u‘)}'zu:) . .Yk(‘i.;‘)[t;, . .,tg-x]

L . . Y(,-') Ly
E[(E;l (i=1)(i=2) - (i—k+1)Y] |:,.....z._,)r(§ < :)]]

k=1
where N = N(t;_,) +k and N(¢]_,) is defined only fort > 3 t..

=1

(2) Consider the following sequence
L i1
Sa=Y G- G-k YT - g
=l

for all finite n. > k and 4 = E[YZ™).
Note that S, is a martingale since £[|s,.|] < oo for all finite n > k and
E[SwnlSe,Susre-rSa] = Sa

k-1

33)

(3) Consider the random variable N = N(t;_;) + k for 2 t; < t, and assuming that
=1

Y,-U.) are measurable functions of ¢t;, N will be a stopping time with respect to the o-
field FS = o(w, Sk Stt1r+++15n). H we that the fund I renewal cycles
are such that E[N(:)]' < oo for all finite £ 0 and for all finite ¢, then E[N] < oo.
Now define & = (i—1}...(i—k+1)(p¥" = )i = k,... ,n. Note that E[=N, Elgi|
tryeeeteg] H[wnh... +2k-1] < 00, where i is the upper bound
on the expectation of the absolute value of individual d

(4) It follows from Shiryayev's [7] problem 6 on page 464 that E[Swlts, ... te] =
E[sklhv---,ttq] =0,
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and after some algebra, we find -
E[@(ﬁ-l)---({-k+1}1¢"’ ’)1(2 t<t)in,..., t,._;]
= /REFEE [(N(:;_,) +1) - (Nt +5) 34)
I(g“; t <8)ltsses ft—x]
Using (3.4) in (33) yields:

E [B [(N :5‘_5:1 (-1)-2)- G-k+)EVH Ly STV OY)
1(’2 t< t)lt;.t,.....z*_,]]
= (1/1:)5[5[;;}0’)1,215’) Y ., ‘M] E[Y.""]E[ (¥ +1)
(M) + ")’(if t<t)ltsyenn t._1]]
Adapting again Lemmas 5 and 6 in Adés and Malhamé {1}, we have asymptotically:
E[E LR F R I DI ‘*—1] [¢k(¢i_x)l (Ef t.->t) fiveens z,‘_l]] =o{1)
and E[E[ylu‘)yzu’) R z._,]E[w(z;:;lz, ..... z._,]] = o{1), where

k=1

w(tjy) s the remainder in the asympotic expansion of 6x(t}._,) given 3 t; thus,
=1
Equation (3.2) follows.
(b) Using similar steps as in (3.1) (a), we can easily generalize Equation (3.2):

E[(N(;z):‘ (’:_ﬁ:(i -9) (g; ) (LI, ¥ ('-11.1.; ¥) (,];-;[. Y_-"’)) I(‘g < z)]
- (llk)E[E[(I}[ ¥O) (L) ( T %) erevertaca]

rely reluny
E[I] Y.fr>]5[f[ (M + 1)1(:’\:‘_‘x t<t)itnee, t,‘_,]] (3.8)
rels =1 i=1
= (1/k)E[1'}[ Y::(')]E[(I.'[ }"(r)) (III v ( ]l:[ yé:)l)
ulti (§ us ‘)] +oll) @6
=l
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where
o IL,...,Iare k distinct and non-overlap blocks, and the randam
variables in each block are quite different from one another.
] — r)
- s{got]-s{ 0]
More specifically, Equation (3.6) should be written as:
N(eh+1 (,'
(S (Te-0) (T 5% (M 5™
"";' ) (n Yo )J(Z t< :)]
ld.- G2,) l: ) G2,) S
= (1/k)E Y, “|E Y, o).
el e[ 5) ()
(I a1 (T us t)] +of1)
=1
where Gl i H (L8]
H Y, ve =Y,0‘)Y10’)---Yx it
reely
The upper and lower indices in (j1) rep pectively the belonging
of YU3) to the first block and its position inside this block which has r,
different random variables.
s i*
- E[H qu'-'c.] =E[H qu")]
L reels reely
Obviously, on the LHS of (3.6) or (3.7) there is only one jal which is made-up of k

distinct blocks, within each there are r, random variables having the same lower index; for
those k blocks there are n different random variables.

But for the general context, we have several distinct monomials, thus, for generating such
monomials {(j{....,j,‘.t).....(jf.....j}.)} could be any permutation of the set {1,2,...,n}

k
such that Z =0
=1
However, on the RHS of (3.6) or (3.7) there are two distinct monomials given by H Y,

reeln
= o)
and H(H At )

t=l reel,

Gt
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4. Partitioning the Product of Random Variables in P;(t)

n N{t)+1
Asusualwenﬁctonin?;(t)astheinduinthepmductE[H El’_-m]fornzz
" ) . &=l =1
whereiorn:l.wehzveE[Nz Y] = E[MP]E[N(e) +1] which is the well-inown Wald
=l
fund 1 equation in sequential analysis.
Using the definition of monll{™" introduced in the previ ion, we can write Equa-
tions (2.4) and (3.1) respectively as follows:

N(t)+1 N(t}+2 N{ty+1
o) E[ 21 Y Zx 1,‘(2)]= E[ > mona!I{"”]
= = =

E[N(t)-\\-

l(.-.1) (f; momniu’)l(tx < t)]
=1 2=l

where mn?n’) = Yiﬂ)y‘(?). mn{l’) = Yx(l)Y‘_(z) and mn;u) = Yx(z)y‘_(l).
(t)+1 N(t)y+1

N(t)+1 (Uag]

@ % w'E vy 1) =5 % mmnt]
im1 =1 =1 =1
(t)+1 s

) N(£)+1 . N 3
+E §(‘-1)(l-xmon.n?"))l(t; 52)]+E[ = (.-1)(.-2)(1.5_‘,1 momn;’-")z(s,+:,5z)]

where mon.-IIy"") are given in (3.1).

It is well known, see e.g., Adés and Malhamé [1] that the total number of distinct partitions
of the set {1,2,...,n} is given by

Bp= i} S(n,m)

where S(n,m) are Stirling’s numbers of the second kind and B, are Bell’s numbers. Fol-
lowing the combinatorial and probabilistic analysis for the cases n = 2 and 3, the total
number of ordered partitions of the set {1,2,...,n} for the case N(t) + 1 is given by:

n
Ba, =3 mS(n,m); (p for probabilistic)
m=]

Note that in general, the total number of ordered partitions of the set {1,2,...,n} is given
Bu=3 mSnm=33 (5) K
m=1 k=0

For the case n = 4, we have B, =37 and B,, = 75.

‘We interpret 37 as the ber of expectati ble classes and 75 as the total number
of ordered partitions of the set {1,2,3,4} into m = 1,2,3,4 blocks; clearly By, C Bn,.
H , for probabilistic arg similar to the case n = 3, we considered only 37 from
these 75 partitions.
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To find agmudcprsdonforE[P;(t)lN(t)],weneed the following two equations:

- S @)~ ()]

= E[(E ) (gy,ﬂj‘ (Ix) w)

for j1,32:- -+ Jm pairwise distinct and indices from 1 to n partitioned into i ing
blocks Iy, 2, .- ., Im. (This is Corollary 1 in [1].)

- E [(u, y,_(‘-)) (.];-}[ Y:‘;)) o (“:XE[- }’:‘:).x)YN(z)a'xlN (t)]

(CR)

) . . (42)
= E[qxl. ) (.].::E ). (‘d];. ’ Y-‘.‘L)*’mwl”(t)]
which is a consequence of Corollary 1 in {1].
We note again that the merge of product of rand iables in (4.1) and (4.2) is an
expectation summable class given by:
{t)+1 m—
o 3 (To-o) (M) () (T we)(Mn)we] w9
=1 s=1 rely rely telmez veln
(t)+2 me1
=£| > (M6 -s))mon.-ng"'-"’uv(z)] (@4)
=l am]

. . s Cas . (N(t) + 1)\™
Obviously, there is only one monomial in (4.3) or (4.4), which is rep ve of -
random variables falling in this category. More specifically, the total number of product of
random variables in {4.1) and (4.2) is ety YO g NOT

om an P = O -m+1)

If we add expectation of all variabies in these two categories we obtain one ezpectation summable
class given in (4.3) or (4.4). We state now the following lemma which is the generalization of
Equation (2.3).

LEMMA 1.

(t)41 m—1 mS(n,m.

n )
slmowe] =3 B[S (T6-0) L mondi™ (N 2 m)ive]
m=] im] =]

&=l

Proof This lemma follows from Equation (4.1) and (4.2) and the di ion in the b
of Section 3. Indeed, in E[P:,(z)w(z)]. one can subdivide jals into i bl

classes corresponding to m blocks, m = 1,2,...,n. Within the m blocks, there are mS(n, m) distinct
ways of partitioning the n ponents of the vector Y, = (Y®) Y@ ... Y™) into mS(n,m)
ordered partitions, each of them is represented by virtue of Equations (4.2) and (4.3) by a single
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monomial which is inside this i ble class. The ial mon, 1™ ™ is, for fixed

vet (N(z)+1)""
m

£, rep

of product of random variables ing in this gory (this

o (vey+1)™ )
ueqmvalmtwsmethnthmue.fotﬁndL——m—momiﬂshznngthemaum
mon,I{™") which is made-up of product of rand iables). Thus, Lemma 1 is a mathematical
expression of these facts.

As a consequence of Lemma 1 and the law of total probability we state the following theorem
which generalizes Equation (3.1).

THEOREM 1.
n (£)+1 m-1 mS(n.m) m-1
Elmw]=% E[NE (Me-9) ¥ moam™1(3 « 5:)]
m=l =l sl iml =l

m=1 -1
For computational facilities only, we ogree that form =1, [[ -5 =1 cndl(mz z.-sz) =1.
13 =1
‘We can now state the following theorem.

THEOREM 2.

Emo] =3 E[(l/m)ms:zj){z[(y ) (I1 %)

Iy  SReY

t,....,%-;]ELI;['.Y,‘,()]}IE['I':IX(NU;._,) + .9)1("‘2x t< :)1:,....,:,..-1]]

Proof This th follows from Th 1, Equation (3.5) and noting that

mon, ™™ = {(,1:,Il Y;")) ('1‘-’1’ y_“m) . (}1 ‘ y'ggl) ( ,I,‘!_ ],‘(r))}l

where 2 (rj € I;) = n (see the beginning of this section for some examples).

=1
Note that Theorem 2 gives the exact expression for E[P;(t)]. However, we are interested in
finding an asymptotic expression for that exp ion; this will be performed in the next section.
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5. Asymptotic Behaviour of E[P;(t)]

To ch ize the asymptotic behavi ofE[P;(t)],'ehavemstudytheasympwﬁcof
terms of the form:

E[E[Q‘l{ W) (1 Y,le)ltx....,:.._,]z[“g. Y]
E[ff (Vea-+ I (T us t)ltx,-...tn-x]]

Now, as ELI:[x(N(t;‘) +r)] i8 Gm(ts) With t1,22,-..,tm treated as parameters, and where
&m(t) is the factorial moment of N(t) (as defined by Smith [9]). We can use the asymptotic theory
of ém(t) (Smith [9]). We gather the follawing facts usefal for our analysis.

“Definition 1  The function A(t) belongs to the class B if and only if it is bounded variation,
tends to zero ast approaches +oo and satisfies the condition A(t) — A(t — @) = o{t™?) as t — +oo,
for every > 0.

Theorem 1 If pns1 < 00 then $n(t) = t™ + 12t™" + oo + Ypt + Yng1 + w(2) where w(t) e B”.

Therefore it follows from Smith's [9] Theorem 1, that w(t) = o(1) as ¢t = co. Note that ,’s
i=1,2,...,n represent finite rational functions of gy, g2, ..., .

Using essentially the same approach as in Section 6 of Adés and Malhamé {1], we write:

E[E[(E‘ SAO B («:I.I.- Al IS | [ CNCR
(i)™ e gy w(t:,._,))!(':g: < t) I, .z...-,]s[nl'll_ y,g;)]]

(5.1)

= E[(I157) - (1 ¥0) (mlta)™ + e e .
s + “’(':"-‘))'(g t< z)s["r}- Y.S."]]
Using Lemmas 5 and 6 in [1], we can show that:
. s[(g ¥0)ee (":I[:[-‘Y.f.'_’,)‘r(t;.q)"‘l(:: > )] =otw
. E[(H ). (J“I_'Y.‘;.’,)w(z:,-x)] =o(1)
Therefore we state without proof the following theorem for an asymptotic expression of £ [P5 (1))



3.6 APPLICATIONS

THEOREM 3.
] = Tovm 2 {=[(II7) (1 %)
Gmltmoy)] (2 t< t)] [ Y")]} +ofl)

Note that the sum of random variablesin y, ..., m-1 and I, is n. We can also write Theorem 3
in a compact form as follows:

E[P'(t)] 2(1/m) E E[monn<"'" ""¢,,.(z,,._,)1 Ez.<:)]

(83)
E [::ncml'lgx "’)] + 0(1)

such that ny +1n2 = n and n; = 1,...,n; finally note that for computation facilities, t§ = ¢ and
U(lo‘o) =1.

6. Applications

(0)+1
In this section, we evaluate explicitly and asymptotically E 2 (”

From Smith’s [9] Lemma 6, we have

N{(t)+1 N{t)+1
3
T ¥ v
=1

dmls) =mi{1- r(s)}"" (6.1)
where ¢7,(s) and F*(s) are Laplace-Stieltjes transform of ¢ (t) and F(t) respectively, and F*(s) is
given by Lemma 3 in Smith [9] as

Fls)=1- ms+£—---+( ‘2 tn

o +o(s™) (6.2)

for real s > 0.
Equations (6.1) and (6.2) are the basis for computing ém(t5,-,).

43



38 APPLICATIONS
‘ It follows from our Theorem 3 that:

8 E e ) = e

[P a 10 < 0] 5[4
+0/E[EOHP eI < 0] £
+E[FPYO e <o 2]
+/E[Pe < o] ey 3
/DB < o] Er ]

+E[RPaEIe < o] ey

+MEPIYPaE + ) < B[R]

+(1/3)E[Y,"’Y,"’¢s(t;)l(n +1)< t]E[Y."’]

+RE[PYP e + 1) < BE] +otm

m=1

Recall that #5,; =t = 3 £, 23 = 1 and ¢m(t) =E[(N(t)+1) ---(N(t)+m)].
On the RHS of (6.3) we‘l‘:;.ve:
(1) One single partition of the vector Y3 = (Y“) Y® Y")) in one block which is

(v,

(2) Six ordered partitions of the vector 4 = (Y Y® ¥) in two blocks given by
(Y@, ), (Y1), (P ), (0L P r),
(1 %) and (1. 0909)).

(3) Three ordered partitions of the vector ¥4 = (Y Y1 Y®) in three blocks which are
(11 )), (21 01 50)) and (5P (01 067)).



3.6 APPLICATIONS

We assume that Y*), ¥ and ¥ are correlated with 1, 2; and t; respectively. Using (6.1)
and (6.2) we obtain after a very tedi Igebra the foll

S o -

N(t)+1 N{g)+1 N{t)+1
P > SIS R i: Y‘_(:)]=ED’:“’]EI:’§’]EIY,"’I:;

+ 5 { OB + EEERE + BB X
- 2 (BB ) + BB )
B ) + S EOEY P e |
S ERER 2 ET e

»m I
+ 281}':(2)]51}:1(”"1“)]#2 . ZEDG(:)]E‘I;’:“)Y:(:)]#2

EIY“’]EIY"’Y"’]h - ENE Y

]
EIY“)]E[Y“)Y(”M E[Y,“)Y,(z)}m(”t;]
# I
EEE M) _ e )

“ s
LEOEYIERO8) m"’ww"’ww“’ﬂ
! a3

H
ZEIY(")]E[Y(Z)]E[Y(:)F] 25[1’1(1)]5[}’1(2)&]5[}’“)!:]
"
ZEIY(Z)]E[Y,(”h]E[Y,mh] m(:)]ED’xmt!.]E[Y:(z)tl]
u u3

=SB IEN, VI ) 2 - S BN B )
R A A

33 -
+o(ET ) oy ey ey ) o

2
{ b2 pry Y@y ) 4 EIEY Dy

2
EW"’]E[Y“’Y"’:’] E[}',(:)]E[Y,(”Y,(z)tf]
2#1 2[-&
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3.6 APPLICATIONS

LEXVOYPEYSS) | By e)
23 23
LEVOYREYE] B IE Y0
i 2 [
wEVIEFY _ mEVERY )
I e

wEIER ) quD’:‘"Y::’]EMmh]
A

pEYPYIEN ] B EY 0 B )
i A

EMVEMRIEY V0] _ BV EY s B g)
“ A

EVPIENnIEy ] BBl Em 4]
3 3

L #
EMEN 0B ] _ 2B e MIEN ]
s 33
2B MEVEY ) _ 280 EMEm O s)
33 - 3u
+ 3p2£m(1)]m}}(2)]m(3)t:{] . 3“251},1(2)15(}‘,’(:)1511,‘(1)&]
# e}

L 3uEYMEYMEND) | 3 B 0B ]
* 4 0

) [

3 EVEY VBN | 3 BRI B4 EY 0]
+ ) 1

13 (=3
+2¢1me)]£[1’1(2)},1(:)1 + %xEm(z)]E[Yx(!)yl(a)]

+20 EMVIENV Y] - 20, EY{EY P IET, V1)
~26:EM V)WV B 1] - 20BNV EY T EN V1)
FeEOIEIER + o)
93 — 4#1#:)

1248

343 = pps
- S

L1
443 = pad
g

(6.4)
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¥ Y®, Y and Y/ are identical, (6.4) yields the special case:
(¢)+2

3 (1) 1) (1)
] 5 yo] - B, f3ErDiEyOp
5, W) = Epe {0

SEVNENY 0] | 9mE )]
T

E[Yxm]: GmE[Y“)]E’[Y,m]:
+{ 123 + 1}4

35[}'1")15[0’1“))2‘!] AEVOREY Dy,
I - A

LSEVOERYE | eEyME N n]
M "

BEYMEN 0, 93B3
] 73

Su:E’[Yxm]} {Ile[yme
Y t + 2
s 24

SEME[0PE] | spppem e
t +
2u3 2u3

3uEYV|E [ 1(1))321] _ 3wEFVPEYOn)
B3 s

LSEMUIER BNV _ 2B IEm Y]
i s “

LBV | 9B ey n]
. =

s

3

SBEVIEMDE _ 2B E Py

j 2p8 B

+ 18EAY VBl + SEA I MEY s

u u
BV 3BV
T I R
Note that in the development of (6.5) we used the following

EY9)=EY9 ¢=1,23andm=1,23
EYOYN = EfYY ) Yr#£sns=1,23
EY{0] = EV}9%] Vk<oo

3.6 APPLICATIONS

(6.5)

Also note that Equations (6.4) and (6.5) are the same as those obtained in Adés and Mathamé [2).
This provides an independent validation of the approach elaborated in the present chapter.
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37 RECURSIVE SCHEEME OF Pz(t)

7. Recursive Scheme of F;(t)

TbemonomialsoocurringinE[P;(t)] are g d recursively and inherited from each other
following by that a specific p ding to the analysis elab d in this paper.
Let us consider the following example:

monn?") = “(4)'}'2(!)}/2(2)’}3(3)
For this monomial, we have the following remarks:
o moal{™ = ¥, Yy ¥ is inherited from monl®Y = YY), v
{34 is one of 37 monomials occurring in the fourth generation according to By, =
4
3" mS(4,m) =37, as defined previously.

® Mo

m=1

o monlI®* is associated with a partition of 4 letters into 3 blocks separated by 2 commas,
where the last one has a special ing in the of Th 3.
Indeed, we have by this theorem:

E[woan{™] = B[R, 50%,v¥] 23 B[ROYIrP e + 6 < 0] BN,

w Thus, in the context of Theorem 3, we have 2 expectati jated with this jal

The first expectation is applied to the first blocks located before the last comma, whereas
the second expectation is specific to the block after this last comma. Therefore, it is clear

by Theorem 3, that we have only 2 exp i pplied to every jal
o monll$Y = Ylm ,Ysz,(z),Y,(’) generates in the fifth generation the following distinct
monomials:
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3.7 RECURSIVE SCHEME OF F3(1)

YOI 15 Y0, 707,y
YO, 5 2)
}Q(l)}’l‘z)v}'z(:)],:(s)' y:(‘)
n(‘)'yz(l)yz(?)yz(-'b)‘ys(ﬁ)
}3(3)’}3(4),}30)}':(3)}"(5) )
Yx(x)yx(z)yx(s)‘y;:)’y,(c)
“(4)]45),}'2(!)1,2(2)'),:(!)
12,1050, oy 2)
YO¥D, 12,0y
Yl(‘)’yz(l)yz(?)'y:(l)'y‘ﬂ)
}’,_(5).}'3(".1’,“)}',(2).1’.“)
Yl(i)']rz(ﬂ'}f:(‘)‘}r‘(l)y‘(?)
}3(1)!/‘(2)’}3(3)’345)"1‘(4)
® As we can remark, monng"‘) generates in the fifth generation:
(a) 9 distinct monomials E monn:"’). which are associated with a partition of 5 letters
into 3 blocks. For the fifth generation, we bave 35(5,3) = 75 distinct monomials of

S5 letters with 3 blocks.

{b) 4 distinct augmented monomials £ monlI{**). There are 45(5,4) = 40 distinct
monomials of 5 letters with 4 blocks.

© The mechanism for g ing these ials is simple, which can be summarized by the
next three steps:

(1) The new letter Y) has to be lucated at the end of each block, taking as lower index
the position number of this block.

(2) When the new letter Y(®) is 5o fixed, we have a new monomial, from which we follow
a cyclicity operation on the p blocks, g ing thereafter the appropriate

monomials. We illustrate this cyclicity by the rounded arrow ( Q).

(3) Once the new letter Y3 has taken place at the end of each block, then Y(® has its
own or new block, where the position number of this new block is 4. We have then
an augmented (in the ber of blocks) monomial from which we follow step 2 as
above.

Note that in practice, we do not generate monomials from monnf“)z , since those monomials are
already generated from monll?‘".
First Generation Y} =(Y®)

monng"” = Y,m

49



3.7 RECURSIVE SCHEME OF FP3(t)

Second Generation Y3 = (Y Y@?))
211 b AR monI{? = YWy
menl? = 30,
monlI®? = Y,y
Third Generation Y3 = (Y?) Y y©)
a1 yy® monlI{¥ = YNy 0y
:: monn{®¥ = Yy y»
m (23) _ },1(:)'},3(1)1,;2)
321 Y, v monlI® = Y, y2y®
moalI® = ‘,x(:)l,{:)'),z(1)
monlI®Y = Yy, y
monlI = ¥, yy®
monnFJ) = !;1(1),1,2(2)‘},:(3)
moul$ = v, vy, ¥
monliP = y& ¥,y
Fourth Generation Y = (Y1) Y Y3} y(9)
411 YR Ry® monlI*Y = YOYPyPy®
:: monngz") = yl(l)yl(z)yl(:)’yz(c)
monlIPY = Y, yPySy®
121 YyR v moulI™ = YUY, y Oy
monlIPY = YOV, vy
monlI = YOy Ry®, v
monlI? = ¥, Yy Py
monlI$Y = YYD, v, v
monl™ = ¥, vy, v
moaI® = v, 19, y Iy,

S0



431 yl(l)'yz(z)‘ys(

3)

\

3.7 RECURSIVE SCHEME OF F3(t)

monlIE = ¥, ¥y Py o
monI9 = YRy Ry, y !
moalI®Y = YY) y @y

meallS = YY), yyo

moall™ = ¥, Y@y, y®
monlI®¥ = ¥, ¥®, 2y
monlI® = YP¥P yi9, vy
moalIE) = YY), y@ylo

monlIEY = ¥AY 0, yBy®

monng“) = yl(l)yx(l)yx(l)’yz(z)

meal” = ¥, 7O

monns,"‘) = Y:lmyx(”vyz(z)vys«)
monn(.:'.) = ﬁ‘)v}'zm}';'m-y:(z)
monlI&Y = y‘(ﬁ)’yz(‘)‘ys(l)ys(i)
monl& = ¥, ¥, y Oy
ol = YK, 1 1
monﬂg“) = }'1(2)'}’:(:)}’2(‘)vy:m
moany” = ¥, 12401
ot = 9,712, {50
R
moall” = XK, 1, 1
monl3Y = ¥, ¥y v
monnﬁ") = }r{?)",‘z(:)’ya(l)ya(l)
monll{** = Y, v, v, v{¥
monlI*Y = }’}".Y;”_}’;”,Y‘(’)
monn§4.4) = YI(S)'}G(Q)‘Y:(X)'Y‘B)
monll™ = ¥ ¥ vy y®

LU LU L R WY R VIR

w o/

There are By,

jals for this g

ion (B,, =37).

n-th Generation Y/ =(Y® v _  yn)
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3.7 RECURSIVE SCHEME OF P3(t)

a1 @ ---Yf"'“?: meall{ = Y. v~y
moall®™ = YIY® |y~ yim
monII?"‘) = Yx(‘)vyzmyzm . _Yz(w-x)
n21  YOUS .yl yiny monlI®™ = YIYR |y, yitlyim
monn?") = Yl(n-x)yx(n)'yz(x)yz(z) . Yz(--z) )
monlI®™ = Yy | y{n-dy yin- )
moalIP™ = Ym0, YOy | yir-dym
moalI®™ = Yy | y{n-D yir-1) yin
moalI®™ = Y,y Oy | ym-D yin-1)
wonlI®™ = Y71,y yy | yin-2)
n22 Y;‘”,Yz"’l’:") ___yz(n-l) monII*™ = Yx“)vyz(z)yzm ".},2(-.-1)},2(»)
moallF™ = Yi(z)yl(:) ---Y,("-‘)Y;(")vyzm )
monlIZ™ = YRy, y@y® .y
moally” = Y. 1D, vy
m (3.n) _ Yxm'Yszz(” ."Yz(w-l)'ya(n)
monﬂf‘") = Yl(n),yz(l)'ﬂi)y,ﬂ) .. 'Y:(n-l)
monlI®™ = YRy | yird yim y

n2.5(n-1,2)

YYDyt nﬂ%{‘,"‘, s =YD yln- pin-tyin-tiym
moall3), = KT Yy
mo: (:.;2‘2 - =YD yfr-dy ym-dyn-n
sl = VKD, ey
Bl = Y D, e,y
o "'('2-1 2)-1 = Yl(u)'yz(x) Y yla-tlyin-n

monll) .y = K0 e
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3.7 RECURSIVE SCHEME OF F£1(1)

n.{n—1).1
ORISR IR e maclIt7 = YO, ¥, v, vy, )\
H
‘

mnng:x.n) =Y;("'”Yx("»Yzm'Y;(’l--~-vY.f'.‘I” b
a2 = K1, XY, ¥

n=2r

moalig ™ = ¥, ¥, ¥, vy, vt
\
.

meall7M = Y0, v, v @), L yind) yins iy

n=-2

. . £ 3
o v !
A = 0,0, VY ¥,
monn‘(:::‘l..‘n) = Yl(”ylh)' Y:‘”' ’3‘3)‘ vees Y,f:;”. y't;l)
i = 5D P )
-
. . . . '3

moal(e=i2), =, Y V)
monlI™Y = Y0, v, ¥, yin?, ym

moan) = H, Y, ¥, e

e
monng'_‘:'_') = Yx("-n.yz(")vyamv}"mv"~-Y-$"-2) l

where the lower indices ¢;,; in monHI{?71™ are as follows:
ayr=(n-1)Sn,n-1)~n(n—-2)
g2={m-1)Snn-1)~nn-2)+1

e ={n=1)S(n,n—1)~(n-1){n-2)
Ga=(-1Sma-1)~n-1)r-2)+1
e2=Mn-1)Snn-1)~Mn-1)n-2)+2

G-t = (R =1)8(n,n—-1) - (n—1)(n-3)
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ey = (n=1Smn-1)-(n-2)
t-12=(@-1)S(nn-1) - (n-2)+1

Cnmin-1 = (n=1)S(n,n-1)
a=1c2=2-..sCan=n
Concerning this recursive scheme, we note the following remarks:

o For the third g ion, it is not Y to g jals from 1,2, ¥ ),
b these jals are already g din 3.2.1.

o For the fourth generation, we do Dot genmerate momomials from Y3, YM¥P ),
YYD v, ¥0v ¥, v v Jand v, ¥, ¥{D ), because these
monomials are alreacy generated in the previous steps.

e According to the analysis elaborated here, we do not generate monomials from those with
the rounded arrow.

o The application of Theorem 3 to this recursive scheme is illustrated by the following exam-
ples:

Em(l)y{!)}rl(!)'ldl)] 24 E[Y;“)Y;(z)yx(”@(t;)l(!x < l)]E[Yz(‘)]
By, Py, v 83 EyyPyPeseit + ¢ <)) EWY)
B0, Y, v, 93 B YOI +ta + 1y S OERS)

o For each generation, there are B,, monomials, where B, = 2 mS(n,m).
m=1

8. Conclusion

As we observe, the computation of E[P;(¢)] using the present approach, is based only on

Om(ts,), since the monomials of P, (t) are generated recursively. Thus using a symbolic language of
programming as Maple, the symbolic computation of E[P;(t)] can be performed efficiently.
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CHAPTER 4

On the Moments of Cumulative Processes: A Preliminary
Study

1. Introduction: Classical Definitions and Notations

Let {t;},i = 1,2,..., be an infini q of independ: gative and identically dis-
tributed random variables, which are not zero with probability one. Such a sequence of random
variables is called a renewal process.

The augmented sequence {t;},i = 0,1,2,..., is called a general renewal process, where ¢ is a
non-negative random variable, independent of the ¢'s,i = 1,2,..., and not necessarily identically
distributed like them.

Let T, = i ¢; for the partial sums of ¢, where T, is the time instant corresponding to the
occurrence of ‘.:; event E. Let X(2) and F(t) be the distribution functions of to and {t,}i > 1,
respectively. For a given general renewal process {t;}, we write T_.; =0, T = i tyforn=0,1,...,
and we define for all ¢ > 0, the random variable V°(t) as the greatest integer ::uch that T,y < ¢

Let W, be a real valued process which is defined to be a lative process if it satisfies the
following two conditions:

(C1) yn = AW, = Wy, —Wr, _, is asequence of independent and identically distributed random
variables, wheren = 1,2,...
(C2) W, is, with probability one, of bounded variation in every finite t—interval (see Smith [15]).
Let us consider from here on the case where tg = 0, thus let N(t) be a random variable which
represents the number of events in the interval (0,¢) of the renewal process {¢,},i = 1,2,... .
We assume that {tn,yn},n =1,2,..., is 2 seq of independent and identically distributed
random variables.
Let G(t,y) denote the joint distribution functior of {ta,yn}, and let
&, = E[y5], pr = E[tq] and u;; = E[thyi], where x, + pr + pij < 00.




42 SOME EXCERPTS OF SMITH'S WORK ON RENEWAL THEORY AND FURTHER DEVELOPMENT

Let Gi(a) = 7 7’ e~ ievd, ,Glt,y),
t=0 y=—00
‘hm -] o0 o
)= [ [ ema,6emn= [ emace)= [ émawn)
0 = -0 ~00
and -] -] o o
G0 = o/ _4 "4, Gltiy) = o/ 4Gt = of *dG(t) = o/ UdF ()

oo
where G§(c) is the characteristic function of the random variable y, and G;(0) = F*(s) = f e~"dF(t),
Q
is the Laplace-Stieltjes transform of F'(2). Recall that F(¢) is the distribution function of ..
This chapter is organized as foll An explicit and asymptotic expression of the third moment
ofa lative p: isp d in section 2. A detailed procedure is given in section 3 to find
the expectation of a product of triple summation. Finally, we study briefly E[V(¢)]* in section 4.

2. Some Excerpts of Smith’s Work on Renewal Theory and Further Develop-
ment

One of the pioneers in the area of renewal theory is W.L. Smith.
In his paper of 1955, Smith {15] has considered the random variable Y; with the related questions

as follows:
N(t)+1

a) Y= EX ¥ = Whttzditwgen
=
b) ¥:(y) = P(Y: < y) is the distribution function of Y;.
L
c) For Re(s) = 0, let ¥;(y) = s / e~ ¥, (y)dt, where for fixed s, ¥;(y) is a distribution
0

function in y. -

&) When Re(s) >0, ¥3(0) = [ &, 9505) =

Gile) = Cile) _ Gile) =1

1-Gi(a) 1-G;(a)

where :(a) is the characteristic function of ¥;{y) and @ ¢ IR. When Re(s) > 0,

,E'fg’?’(‘;‘; is m-times differentiable with respect w0 a, since xm = E[y;?] < oo; recall for this

purpose that Gj(a) is the characteristic function of the random variable y.. Consequently, the first
m moments of ¥;(y) are finite (Theorem 3.2.1 page 142 of Laha & Rohatgi [12]).

+1



42 SOME EXCERPTS OF SMITH'S WORK ON RENEWAL THEORY AND FURTHER DEVELOPMENT
2.1. Evaluation of the Third Derivative of ¥J(a). We can show very easily that

Ga) G- (Ge-1)

HO =g ) @1
and
oy L GTE@) | 263G e) __ GY(e)
¥, (@) =G50 (1 _ G;(a))z (1 _ G;(c))z
, 2 . 2
261 @) | Gacr o) , 203 (6E () 2
(-e@) (-c:@)  (1-6i@)
Then after some algebra, one obtains:
oy _ _Gola) | G3'(e)Gi(e)
¥, (@) (1 s (0)) + (1 ps (a))z
268 (@67 (o) + 265 @G (@) , 463 (@)(67 @)’
(1- c:;(a))2 (1- G:(c))a
G"(e) _ 2GI(e)Gi"(a)
(t-c@) (1-G:@)’
6 e @ _ S(C @)’
(t-a:@) (1-6:)’
L G3(a)G:" (@) + Gi(e)G:" (@) | 263(2)G3 ()63 (e)
(-6 (cx))z (-6 (az))3
263 (0)(65 @) +463()G ()G (@)
) (1-Gst)’
565 @)’ 3

(1-G:@)’
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oo

Since ;") = [ #¥E¥I0), G30) =1, 63 (0) = ixy, 67 (0) = Pz, G3"(0) = s and

G3(0) = F~(s), then we obtain:

K3 3xaRi(s)

[ e =

L _3xiR5(s)

(1-F) ¥ (-r)
+ 6x:1R13(s)

(24)

T(-r@) (-F)

where:
Ri(s) 2 [1.-5‘:—,62@)]”0

1
R 2 [ 20w

Obviously ;"(0) gives the third moment of ¥3(y).

(2.5)
(2:6)

But as !:;(-'L' is the

o0
Laplace transform of ¥,(y), then using the inverse of such transform one can obtain / v d, ¥ (y) =
-0

E[Yi.

2.2. Explicit Form for Rj(s) and R3(s).

a) The function R;(s) is the Laplace Stieltjes transform of R (¢) which is of bounded variation

in ¢ (Smith [15]), where:

Ri(t) vd,G(t.y)

(1]
é’\a

Ri(s) e~*dRy (1)

il
og

It can easily be shown that

f dRy(t) = Elyal=s

—
5
]

Eftaya] = p11

2.9)

(28)

(29)

(2.10)

59
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where the integrals converge absolutely. We can expand e~* by the Taylor-MacLaurin

series which is given by:
et = i(—n"(?—!)i (2-11)
=0
Then me = [(Ee)ao (212
o =0
= E(—';l( f famy(0) (2.13)
=0 0
= (=3’
= 2-—;,—#-1 (2.19)
=0

The integral in (2.8) converges absolutely at a point s = ¢ + ir if the integral

7e"'ldﬂx(t)l = 7 " "da(t)
o

[

converges, where a(z) is the total variation of the function R;(t) in the interval 0 < ¢t < z.
)
Now as / e~"dR,(t) converges absolutely for s = gp + i7o, then it converges uniformly

[

and absolutely in the half-plane ¢ > oo (Theorem 3.1 page 46 of Widder [18]).

Consequently equation (2.13) relies on the fact that the integral in (2.8)
o0

converges uniformly, while equation (2.14) follows b i = Eltiyan] = / thdRy(t) =

!’ Ry (2).

o
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42 SOME EXCERPTS OF SMITE'S WORK ON RENEWAL THEORY AND FURTHER DEVELOPMENT

Note also that uo = Efyn] = 51. To conclude this subsection, let us prove equation (2.5)

as follows:

Gi'()

G0

G0

Gy (0)

G;(0)

B

[ ieemad,cen

ym—c0

B—g

/ ieyded, Glt,y)

v,

E‘\.g E‘;.s E‘\.s

ea( [ va6t)
e~ de Ry (t)

£ e~ dR;(t)

b) The function R5(s) is the Laplace-Stieltjes transform of R;(t) which is of bounded variation

in t, where:
R = [ 460 215)
R = [evamty 216)
1]
It can be shown that:
/dR:(t) = E[yf,] =x2 (2.17)
]
[faraty = Eifiyn] = 218)
L]

where the integrals converge absolutely.
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Using the same development as previously (part 2.2.a), we can write

T sy
Bl = o[ (& e (219)
= — (=) T i
= 2_.; F) ('[ 20))
_ o= (s
=X (220)
where u = Eftiydl = / tidRa(t) = [ 'dRy(t).
To end this sub inn:ot.ethaz q i (2.6) can be proved very easily; indeed:
el = [ [ dfetemadiy)
20 y=—00
e’ = [ [ #veraacey

o
]
8

;2

'\‘8

era( / Y4,G(.y))

;2

= 3

C-“dRz ()

o g ©

oo

oo
2.3. Explicit Form for / v’ dy¥5(y). To obtain an explicit expression for / ¥, %5 (y)

given in equation (2.4), the k.n:wledge of F*(s) is required. For this end we use- ol’iemma 3 of
Smith [17], where he gave an expansion for F*(s). This Lemma is stated as follows:

“A necessary and sufficient condition for F(t) to have its first n moments finite is that, for real
s >0, F~(s) has an expansion

F(s) = 1—y;s+£;!—’2—---+£:2#"-+o(3")”.

Using, on the one hand, the inversion techniques for o power series, see e.g. pages 506-515 of
Knuth [10] Vol. 2, pages 436—444 of Markushevich {13] Vol. 1, Brent and Kung (5], Kung [11}
and Beyer [4]. On the other hand, we consider F*(s) as stated above, Ri(s), R3(s) as given by
equations (2.14) and (2.20) respectively. We obtain, by applying a straightforward computation and
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after some steps of simplification, the following:

1
1—F=(s)
Ri(s)

(-r)

R3(s)
-z a2
(1 - I"(s))

Ri*(s)
(1 —Fe (s))

1 B2
— +0o(l) ass—=0
PR A

1
K1 . (le-lz - I-!u)

s\ &
Bn_papu (ﬁ_ u:)
2 A8 PO
ofl) ass—=0
K2 1 (Ka#z _ #x:)
ST s\
sn_ppn (ﬁ - #_s)
2 u a3
o(l) ass—0
14 +1 3nfu 2511111)
s I_‘E], 2\ 248 4
17333 Bus  3mpupr | mpn | g
NSttty
- 2“1 2[11 123 B 121
1/ _ Su_ 3mpned 4 Busups
P\ T8l # %]
+3ml-lzxm 3uhipz _ mn ﬂnlm)
258 28 3 up
ofl) ass—0

(2213

(222)

(223

(2.24)
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Combining the last four equations we find:

o0
[vanm = 35+25(% M, )
R "E £\ 2 2}
+ li(ﬁ _mus _ 3<iunp | mim
spm\ 2t 23 e
T LT L f&a)
u [ “ 2p1
. l(nwz o 3nun _ Srapaun | 9misad
A\ T g o\ 24
s | 3mpm  3mpan | 363
s 23 u uf
3due _ 18xfunng + Sxinnps + xfun s
4

4p B u ]
LSmiphpe  2x3pw _ Gkisnpm
S B
+ ofl) ass—=0 (2.25)

Evidently, equation (2.25) gives the third moment of ¥;(y). But as mentioned previously !I;(L)
is the Laplace transform of ¥(y).
Then using the inverse of such transform, we obtain:

(8)+2 3
Erz: Vn'] = -::3-:’ + %(3—;3‘;2 - —2‘3‘1‘“ + n,nz)tz

6 (333  Klps _ 3xdpnus  nfum
el Ty T st
s\ 24 25 7 I

7 ¥*dy %e(y)

+l¢xll31 LR x| K:Mu)t
6 2 ] 2t

. (ﬂ Smapm _ 3kapapn | 9mima | 2mkass

28 228 8 2u} %
- 3x1pzp12 + 3xdi3 _ 3niue _ 18aunud
2p3 % 4pd “
6m3unps | O3uapr | Isudiuz  2un  Gmusnun
¥ 0y + 'y + 4 - " - 3
L0 [ L3 1 51
+ ofl) ast—oco. (2.26)



4.3 EXPECTATION OF A PRODUCT OF TRIPLE SUMMATION

2.4. Evaluation of E[N(t)]>. Ifwelety; = 1, then &, = E[y] = 1. Consequently equation
(2.26) becomes:

s o £, 33
EN@)+1} = “:+p§ % ]
6633 ws p2 1
+ -
4 [ +27n§ 2u | 33 3pe _ 18#5]
%8 I‘i T
+ ofl) ast—co. (2.27)

But as E[N(t)], E[N(t)]? are already known (Smith [16]), then one can deduce E[N(t)]® from (2.27),
since E[N(t) + 1]* = E[N(¢)]® + 3E[N(t)]*> + 3E[N(t)] + 1. This small operation gives:

2 9 p2 91& 3#: 2 7
E[N@®) = + [——— =-= +_]
e B i W Tl
14p20 - 364343 + 16#:1‘1 + 121‘-; = 3pap —4pf
o
+ ofl) ast—oo. (2.28)

. Expectation of a Product of Triple Summation
N{t}+1 @ N(t)+1 *
Murthy [14], gave an asymptotic expression for the covariance between 2 v and ¥ y, ),
=1

where y_ ) and yfk) are the j-th and k-th components of the vector Y, (nx1) and i=1,2,...,N(t)+1.
N(t)+1 . N(t)+1 (x
I-\'omthiseova:ianceonecandeduceE[ T Ty ’].
=] =]

In our present case, we want to evaluate

Nit)+1 )+ Nit)+1 N(t)+1
I > )= 3 o 3 o 6
Uk} =1 =1 il =l
where y_ N y ) and y(‘) are the j-th, k-th and £-th p of the random vector Y;(n x 1).

We can interpret equation (3.1) as the three dimensional equation of Wald fundamental uni-
variate equation which is given by:
(e)+2
3> w] = EwlEw +1 (32)
=1
To find equation (3.1) let us define:

yi=y9 +y + 40 (3.3)
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where {y;} are independently and identically distributed rand iables, since {Y;(n x 1} are i.i.d
d Obviously the variables 3, y{*) and !9 are dependant in general
It follows from equation (3.3) that
N(g+1 N()+1 N(ey+1 Nit)+1

Tu= 2+ 3T+ 30
=2 =2 =t =t
(tH2 43 (+1 a3 (e)+1 3
Then E[NZ y;] E 2 y?)] +E Z v.""]
=1 =t =1
(thH1 3 (e+1 ZN('H
+ E y“’ +3E[(N ""]
(£}+1 2N(¢)+1
: “‘[C % o]
(6)+1 2N
+ (T ,,gn) Y o
=1 =1

+ [ %ﬂ m),mg yz)]

=l

(6)+1 2 N(t}+1
+ 38[ 3 y.(") 3 vfk)]
=t

iml

(t)+1 . 2N(t+1

+ asl(347) 3 ]
iml =l

(¢)+1 VN(1)+1 " N(t)+1
[ T WY ys"] (34)
=l

=1 2

+

N(t)+3 Nit)+1

U) N(t)+1
3.1. Necessary Steps to Evaluate E[ 2

0 E" o).
=
N+ 93 Ni+1 13 N(!)+1 ® N(t +1 3
S.nceE[ 2 y.] E E y?’] [2 I ] andE[ 2 ¥t ] can be evaluated by
=
the result of equa.uon (2.26)a.n puting the app i.»ccoeﬁcents appearing in that formula,
No# MR, Noe
thentobeabletowa.luateE[E D Y y]
=1 =t

, we have to know the following
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expressions:
(e)+1 2 N(t)+1 (0)+1 2N+
< EE ] (E )R
& =1
(22 2 N(E+2 (t)+1
(R R ] - (R )
=]
(t)+1 " 2 N{t)+1 p (8)+2 z "
. E[ > o ) > y.-" and E[(N Z vl ’]
=1 =1 =1

For this end, let us define the following auxiliary random variables:

1]
k3 k3
s M=
E"ME

«

g

| W——

- (3
w o= 3@+
vt = P +0
R

With these definitions, we can find (3.5), (3.6) and (3.7). Indeed, we have:

(6)+1 {2)+1 (8)+1
SRR PRI EL bl
=l
(t)+1 | 2 N(@t)+1 (t)+1 . 2N+
=ss[(S )3 ] s ) S w0
[T iml =1 3

iml
(t)+1 ; (B+1 a3 (8)+1 3
O R b
=l =l

W+ | 2N+ (2)+1 . N+
wal () Bl (B ) B 4]
=l =]l =l

(t)+1 3 ()+1 (£)+1
. E| 3 y,.'“] -E Z "’] -E Z “’]
=
(t)+1 3 N(t)+1 (£)+1 2 N(2)+1
s[5 ) S ] wsn () S ]
=1 =1

(35)

(36)

(&)

(3.8)
(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Therefore using equations (3.4), (3.11), (3.12) and (3.13), we obtain after simplification:
(tH+1 N(ty+1 N(e)+1

29 s (n)z y)]

=l
()1 (eh+1

3 (t)+1
= amfe > W -E X w| - ]
(t)+1 (0)+1 {t)+1 3
3w +I-J[N (’7] +E[N _""]
=l

(t)+1 3
+ (3 o} (314
i=l

3.2. Evaluation of Equation (3.14).

In this section, we shall compute the appropriate coefficients of 3, t3, £* and t° appearing in
formula (2.26) for each expectation involved in equation (3.14). To simplify the notation in the
following cases which consist in the computation of those coefficients, let us introduce this notation:

Hoser = E(BO1° V)P ) £7) (3.15)

We are now ready to compute t.l;ose coefficients for each of the following cases:
N{e)+1
3.2.1. The Case of E 2 y.]

(]

Since y; = y,”’ +y, +ym then

(1) x1 = Elg:] = p1000 + ptozo0 + pooro
(2) 1 k2 = E[yZ] = poooo + to200 + Boozo + 241200 + 260110 + 22010
(3) w21 = Eft3y:) = s1002 + Horoz + proorz
(4) 11 = Etagi] = pa001 + pioror + poona
(5) x3 = E[y?] = psooo + Hosoo + 10030 + 342100 + 2010 + 3pi1200
+ 3pta210 + 3p0120 + 3p1020 + Gp110
(6) pa2 = E[t:y] = 2001 + 2oy + Hooza + 26101 + 2p01n + 2pons
(7) b2z = E[357] = paooz + pozoz + poozz + 2un02 + 2pousz + 2tz
(8) a1 = Eft}yi] = m100s + por03 + poors
0+ 73
3.2.2. The Case ofE[ 5;l y(’)] .
(1) ®1 = E¥] = moo
@) =2 = EBPP = paooo
(3) 21 = E[25P") = prom
@) g1 = Eltay?] = srons
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6) xs = EGP = oo
6) p12 = Elti@?)] = paoen
(N p22 = BRG] = a0
(8) pn = EI8v] = proos
Nt 3
32.3. The Case oIE[ >} y}“’] .
M) & = Ey™ = poro
(@) <2 = EP = poso
(3) sz = Ef3M] = pora
4 pu = Eta{M] = o
(5) #3 = Ep{MP = posoo
(6) sz = Elti@™)?) = oam
(@) bz = )] = hooma
(®) s = Eltly™] = soros
N{t}+1 3
3.2.4. The Case of B[ 'gl v.“’] .
M) m = Ep" = poow
@ sz = BB = poozo
(3) g1 = E2y{") = ooz
4) pu= E[‘-‘yil,] = Hoo1r
() &3 = EP = pooso
(6) p2 = Elta(®)) = poon
(1) p22 = B0 = bioaza
®) pa = E5{" = pooss
N+l 13
3.2.5. The Case of E| Y y.'] .

=1
Since y; = y?) + y,m, then
(1) 1 = E[y]] = pr000 + o100
(2) w2 = E[y;]? = p2000 + kiczoo + 241100
(3) pn = E[tiy;] = prooz + poroz
4) pu = Efti]) = pom + paror
(5) 3 = Ely;]® = 3000 + paso0 + 3pz100 + 3p1200
(6) p1a = E[ti(y] )] = paoor + poam + 28100
(7) p22 = E[(5;)] = poooz + pozoz + 2p1102
(8) a1 = E[t]y] = pro03 + Baros
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N(t+1 3
3.26. TheCueojE[ -§x y_?‘] .
Recall that y3* = 3 + {9, then
(1) &1 = Efy"] = p000 + pooro
(2) &2 = Ely"F = paooo + pooo + #1010
(3) B2 = Elt3y;"] = proo2 + o012
(4) pn = Eftyi"] = oot + poos
(5) x3 = Ely"P = p3000 + pooso + 3pz010 + 3p1020
(6) 2 = E[t(yr)] = pz00m + oo + 2m011
(7) s22 = E3(u7")%] = p2002 + soozz + 2p1012
(8) ua1 = Eftdyy™] = paoos + poors

N(2)+1 3
3.2.7. The Case of E[ > y:"] .
=1

Remember that ;™ = yg") + yi‘). then

(1) ;1 = E[yI**] = poroo + pooro

(2) k2 = Efy;™"]* = pozo0 + poo20 + 2por10

(3) #a1 = E[2y7™"] = poio2 + poor2

(4) 1 = Eftiyr™] = poror + oo

(5) k3 = Ely**]* = 10300 + pooso + 3pazi0 + 3p0120
(6) piz = Elti(y:™"F] = pozor + poom + 2po1ns

(7) 22 = E[(y7"")*] = po2oz + boozz + 20112

(8) sa1 = E[fy;™"] = poros + poors

Note that p; = E[t:] = pooo1, #2 = Elt5] = pooozs s = E[t]] = o003 and s = E[tf] = siooos
are the same for the cases 3.2.1 to 3.2.7.

NER L N MO
3.3. Asymptotic Expressionfor E[ ¥ 3" ¥ ¥ X w |-

=] ]
By applying the result of equation (2.26) on each term appearing in equation (3.14), with the
corresponding coefficients as computed in steps 3.2.1 to 3.2.7, we obtain after simplification the
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. following asymptotic expression:

(t)+1 N+ . N(e)+1
E 2 !I.(" ) Z !Is) 2 !I.(n] = p® b1ooo o100 Hoot0t’
=1 =2

=1

+ {P’r pa110 + P Horcop1010 + P pootop1100

=2p% pio011 — 20° B1000H00105 = 2p*ug100200108
94
+§P 141000440100 1001040002 £
3 . 3
+ {P#xuo+29 B + 2p° 01004101044
420 10010K11000002 — 1 11 — £* to10041011

—p” Boototai01 — AC'2 H1100/40011 = Pz H101040101 — Pz Ho110412001
+29° 1000 k00100102 + 20 Bor00/001081002 + 20° 11000 01000012

+20° 3000120101 o011 + 20° pozoo 1001 #oanz + 20 o010 K1001 0101

—6* p1000k00100101 Hoooz2 — 69* 1000401000011 40002
=6p* 010010010 £13001 H0002

+3p° (3#3002 - ﬂoox#ooo:) ;lmoo#omouoo:o}t

+ {721‘1110”0002 + P2“1000I‘0112 + le-loxoollxoxz + leloomlluoz

2 2 2 2
*pz $£1100 £0012 P2 1101040102 Pz 340110501002
+ + +

2 2 2
~p° 100020111 40002 = £* 1010011011 0002 — £°Ho01041201 H0002

—Pai‘uoouooxwoooz - P:‘#xoxo#oxoxuoooz - P’ﬂouomoox#oooz
-P’#xoowom#ooxz - P’onooﬂomzlloou ~ 0% 1010010011 1002

-P’;’ H1001 40012 = P:;' £1001 40102 = P:#oowlloxoulxoa:
26° pooss _ 26°% paoas 29 cootiootol
3 - 3 - 3
+3p% 100040100 12001240002 + 354 Ho10040010141002 0002
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+3p'u pooaz + 394410000101 K001 K000z

+3p* pig1004s1001 #0031 Hooaz + 3 o001 #1001 o102

+2%1p100040110 + 221402002010 + 2P1 001081100
=23 1 1-2"'
-923. m +3%3u m ¢ }
+ ofl) ast—co (3.16)
where:' 1
*P T a
« & = SusBoaz = 440001 Hoons
T 2o
2 -
.« & = SHom “3:ooxnooo:
3
o« & = 4183002 = PoooisBoor
488001
o haser= E(OPBPPROrY)

\
It is appropriate to explain how we obtained the coefficient of ¢* in equation (3.16), since those
of £2, t1 and ¢° are obtained using the same idea. The coefficient of £3 is obtained »¢ follows:
F [(leooo + o100 + #oo10)® — (B1000 + Hor00)
— (1000 + po010)* = (o100 + so010)°
+  #3o0 + Hor00 + #3010] /6

= p’p1000K010040010 (317)
k
4. Brief Study of E [N (t)]

Let N(t) be a renewal process with F(z) as its associated distribution function, then it follows
from problems 16 and 17 page 233 in Karlin & Taylor (7], that E[N()]* = mu(t) satisfies the
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t
m(t) = Zut)+ / malt — 7)dF(r) @1
[
t x2 k
where  Zi(t) = f > () )mste-nieFen) @“2)
o =0 7
k-1
o Zl) = OO+ S (5 )m (43)
=1 7

&
4.1. Integral Equation for E [N (t)] . For this purpose, we state the following Lemma

LEMMA 4.1. Let N(t) be o renewal process then E[N(2)]* satisfies the following integral equa-

2

tion

£ x-1

EIN@)E = my(t) + / 2 ( : )m,(t = 7)dm; (1) (4.4)

o =t

Proof. ‘We show the lemma by induction. It follows from theorem 5.1 in Karlin & Taylor (7] page
191, that

t
malt) = Zu(e) + / Zi(t — P)dmay(r) )
]
By substituting (4.3) in (4.5) results in

my(t)

k=1
IR G Y (R P
]

=1
t
+ | (=152 F(t - T)dmy(r)
/
¢ k~1 k
+ [ T (] mite-ndmin) (6)
° =l J

t
= (~DFPmaf + (-1 [(—1)*( ': Y{mate)+ [ mate = rram )}
o

m—— kf et JEE ")dmx(")}] )
0
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Using the induction principle, equation (4.7) can be written as:

@ = -me+mo{eo ()

()

t
st ) frute-namen
o

+=1( ki2 ){2 f my(t ~ 7)dmy (r) + / mz(t—f)dm;(‘r)}
o 0

k=2

k L=
+...+(_1)k(k_1 ){-o/.r-zl( p )mj(t—f)d‘mx(f)
_1(t — 7)dmy (7) (48)
+°/mk 1t -7, 17'}] 4

t
k
From (4.8) we have (k 1) of /mx(t-r)dml(‘r) and in general there is
- °

= N XV f
(1) 3" (-1 of [ mj(t—7)dmy(r) Vi1
S ()£ ot fre-iom
By using equation (34) page 63 of Knuth [9], we obtain

At kyot k
(- ;(—1)’( ) ; )=( ; ) 49

Also from Abramowitz & Stegun [1] we have

1-(f)+(:)—---+(—1)”(:)=o (4.10)

Applying (4.9) and (4.10) in (4.8), lemma 4.1 follows at once.

4.2. Laplace Transform of the Integral Equation (4.4). Taking the Laplace transform
of (4.4) for k = 2, Smith [16] found

I G))

,(1 _p-(,)) ,(1 — F'(,))’ (4.11)

m3() = [ema(e)e =
0
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where F*(s) is Laplace-Stieltjes transform of F(t), given by Smith [17}:

F(s) =1—u;s+“’T‘,”+---+%+°(-*")
In fact
mi(s) = % 'Eax ” [(F'(,))' - (F'(a))"ﬂ]
In general we have
mi) = 1 ;Zl ™ [(P(s))' - (F'('))m]
mi(s) = -——(1 - ﬁ-(’)) i r* (F‘(s))'
r>1

From theorem F page 245 of Comtet [6], which states that for each integer k > 0

Iy

oo 2! Ak, )25
r o I=

;0 ket = T-o

s=t
s(l - F- (s))k
where A(k, j) are the Eulerian numbers, see e.g. Kimber [8].
Also note that from Abramowitz & Stegun [1] page 825, one has:

c - L8 [1—zh)
Skt = 2 S(m.J)r’E{ z }
k>0 =0

¥ Atk (Fo))’

mi(s) =

l1-z

where S(n,m) are Stirling numbers of the second kind.
By applying equation (4.18), it can be easily shown that:

ko . i
ey X ISR F(s) Y
mi(s) _E s (I—F'(s))

i=0

Consequently we derive from (4.19):

,é (P(s))’ g (~1)515 (k. - )

m; (s) =

k—j+t
¢

3(1—1'-(5))"

4.12)

(4.13)

4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(a.20)



Finally, it can be shown that:
(1-Fw)
mi(e) = ——Tm(s) (a21)
where Mg(s) = (f;.f“) ) (aﬂé’—:(’) (4&)

F(3) 4-2"(1-"(3))= +3*(F ) +...

or mi(s)

. Conclusion

As we observe, the method elaborated here, which is based on the characteristic function and
(t)+1 N+l N+
the linearization technique for evalmngE[Nz Xi z Y 2 Z.-] , is computationally very
tedious. Such method is not efficient for lngher momcnt.s.

Thus in our forthcoming papers [2] and (3], entitled “On the M of Randomly Stopped
Cumulative Processes : The Cases N(t) and N(t) + 1", which are respectively Chapter 2 and
Chapter 3, we develop a new approach for evalum.mg the expectation of a product of n distinct

Jative pr While putati complex, the new approach has the merit of

making them much more systematic.
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CHAPTER 5

Stochastic Optimal Control Under Poisson Distributed

Observations

1. Introduction

The optimal control of a partial observed stochastic system which evolves according to an It
stochastic state system is well-known (Bagchi [1], Fleming and Rishel [5]). Bowever, the optimal
control of such continuous time systems, where the time domain is decomposed into a finite set of
disjoint random intervals, where observations are taken at the initial instant of each interval, has
not been carried out.

This optimal control problem is well i d by p ial applications to problems such as
reservoir control. Consides s controller of a stochastic system, which may be taken to be observed
at random times with a fixed total ber of observations i This set may be regarded as a

fund of observation actions which have been payed before the control exercise begins.

The inter-observation intervals will be taken to be generated by a sequence of i.i.d. R* -valued
random variables, i.e. the point process of observation times is a general independent increment
process, and in particular, it will be given by the special case where the observations instants are
Poisson distributed.

This chapter is organized as foll In Section 2, we formulate two classes of optimal control
problems, termed (piecewise) time invariant and time variant control, where the central issue is
the control structure in each case. In Sections 3 and 4, we present in details the solution in the
(piecewise) time invariant case, where the observation time instants are respectively a stochastic
process with independent increments and Poisson distributed. In Section 5, we present the time
variant case, where the mean time between observation instants is exponentially distributed in its
parameter A. A stochastic dynamic programming framework is used fr- the solution of these optimal
control problems.
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2. Problem Statement

We ider a stochastic sy Iving ding to the following time-invariant Ité stoch
state equation
dX(t) = AX(t)dt + BU(¢t)dt + GdW (t) (2.1)
where X and U are respectively vector state and ] prc with di ions dx 1 and px 1;

while A(d x d), B(d x p) and G(d x m) are respectively plant, control and disturbance distribution
matrices. W is a normalized zero mean standard vector (m x 1) Brownian motion.

‘We decompose the time domain of the i quation in (2.1) by taking a finite number
N of point observations at times ¢,, where ¢t = {t,, > 0} is a stochastic with independ

P

increments, and we set £5 = 0.

Following this process of decomposition of the time domain into a finite set of N disjoint random
intervals [t;, tiv1) for 0 € i £ N — 1; we associate on each interval a state space system equations
with complete initial state observation, defined as follows:

dX(t) = AX(t)dt + BU(t)dt + GdW (¢) (2-22)
X(t:) = J.C. (initial conditions)
Z(t:) = X(t:) for t; St <ty and 0<i< N, (2.2b)

As X(t) is a Markov process, it is known (Feller [4], Stam [10]), that the derived process Z(t,) is a
Markov process. This fact will be used in the stochastic dynamic prog ing procedure (Caines
{2], Davis [3], Fleming and Rishel [5]), and employed in the solution of the stochastic izati
problems in the following sections. We consider in sections (3, 4) and 5 two optimization control
problems which we term time invariant control (piecewise-constant control), and time variant control
problems respectively.

The objective in both cases is to construct a control law that satisfies the linear stochastic
control system and minimizes the quadratic expected cost functional specified further down in (2.3)
- (2.5) and (2.6) - (2.8).

The central issue of i in the specification and solution of these problems is the particular
information and control structure in each case; this will be clearly specified below for both control
problems.

P

For notational convenience, we shall consider that conditioning on X (¢;) con ds in fact

P

10 the conditioning of both X(t;) and ¢;. This telescoping technique of conditioning is used in the

stochastic dynamic programming framework since X (¢;) is of a Markovian nature.




$2 PROBLEM STATEMENT

Problem 1: (Piecewise-C. ) Time-lovariant Control

J(X(t)) = min Ew,[ J"(X'(‘)CJ‘(‘)+U" (LX1)DU(LXJe))at]
Uclips o

N-1

= i Bwl T Bl f:‘ (X'OCX () + U (X ) DUX S| X ()}]
which is iated with the following ¢

dX(t) = AX(t)dt + BU(| X })dt + GdW (¢}

where

U(1X]e) = U(X (%)) eUpr for t; St <ty
Up; is the class of admissible control laws (i.e. bounded or contained within a
certain region), associated with this probl
U() : R® = R, where U(-) is Borel measurable, with respect to the o-field
F{X(t)}, on each interval [t,, i2)-
C(d x d), D(p x p) are symmetric and respectively positive definite and positi
semi-definite matrices.
{-|X(2:)} corresponds to {-|X(t),#;} for short.

See the Appendix for details about equations (2.3) to {2.4).

Problem 2: Time Variant Control

tn
J(X(t)) = min Ewy[ /h (X'(CX(e) +U'(e, L X })DU (| X J1))dt]

23)

(24)

(2:5)

(26)

N=1 i+l
= jia Ew[ Y Ena{ / - (X'(CX(8) +U'(t, | XJ)DU (e, [X]Nat| X (2)}] (27)
™ =0 t

which is associated with the following dynamics
dX(t) = AX(t)dt + BU(t, | X |:)dt + GAW (¢)
where
U, | X]) S URX (%)) clry for i St < tiga.
Urv is the class of admissible control laws associated with this problem.

U(-,-) : R x R? = RP, where U(-,) is jointly Borel measurable, with respect to
the o-field F{t, X ()}, on each interval [¢;, 8i+1).

(2.8)
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For the (pi i )} time invariant control problem, we ider first the ¢,’s as a stochastic
p with independent (termed an IT process). For this problem, the class of admissibl
control laws is Upy. , where “G™ means a General II process.

Then, we take the sequence #;'s as Poisson distributed with mean inter-arrival time i = 1/)
for both the first and second control problems. Thus, we associate Up;, and Urv, as the class of
admissible control laws, respectively with the (pi i ) time invariant and time variant
control problems.

3. Optimal (Piecewise) Time Invariant Control: {¢;} an II Process

The decomposition of the time domain of the i hastic differential equation in
(2.5), yields as solution the following:

X(tir1) = @en X(8) + Beean UX (8D} + 1o (3.1)

where

i=0,1,...,N—-1; =0

gy = eAltear—ts)

Brosr = j:ﬂ eAltisr=0) Bd, = (eAlts1=t) = )A-'B

Tty = [ A= GaW,
As we mentioned in the beginning, we use a dy ic programming formulation for the solution of
this optimization problem, where the i-th stage starts with the occurrence of the i-th measurement,
and the optimal cost-to-go for this i-th stage is given by

V(X(t:),1) & V(X () t07)
N=1 ty41
= U%c Ew| 2 Ep,n{ -/: (X'(O)CX () + U'(X(£;)DU(X (t)Nde| X (t5) 1) (3.2)

i=i
where U(X(t;)) eUpyc.
The terminal optimal cost-to-go associated with the Nth stage is given by:

V(X(tn),N) =0. (3.3)
At the (N — 1)th stage, the optimal cost-to-go is given by:
N
V(X(tx-1),N-1) = s 5‘:5”_‘ Ew|[Een{ /: M(x t)CX(t)
+ U'(X (tn~1)) DU (X (tn-1)))et| X (tn-1)}] (34)

where Ux—3 = U(X(tn-1)) €Urig nes-
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Using the independ b the B

p W and the point process ¢ = {¢,, > 0},

U (X(tn-1)) = —Ln-1X(tn-1) (3:5)
where
Ly-1 = (@2n-1 + Dpn-t) qan-

an-1=Ei,[ [ " BiCaudt| X (tx-1))

s =l [ ALCBHIX ().

After appropriate computations, the optimal cost-to-go value for the state (N — 1)th stage is given
by:

V(X(tn-1) N = 1) = X'(tn-2)En-a X (tn=3) + En— 36)
where
Ina=@na-du sl —Lysqna
+ Ly 1@aNetLn-1 + Ly 1 DLn_3pn-1

tn
@N-1 =Ery [/: a}Caydt] X(tn-1)]

- ‘"
a1 = Eve1 = Bw[Een [ /‘ ACndt|X (tn-1)])-

At this stage, it is clear that the optimal cost-to-go is quadratic in its initial state; we postulate then
the hypotheses that the optimal cost structure will remain quadratic in its initial state.
Thus, let:

V(X (tear) k +1) = X' (the2) Dasa X (trsr) + L 3G9

where 0 < k < N,Lp4; and ?k+l are some specific constants.
Using backwards induction, we show that:

V(X (te), k) = X' (te) e X (2) + i (3.8)
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By the Principle of Optimality in the dynamic programming framework, we have:
VKR =, mn EwlBaa{ [ (X0CX0)
+ U (X E)DUX (et + V(X (taa) k + D)X ()} (39)

where Uy = U(X(t:)) eUpsg,-
Indeed,

VX(u)K) = min ES ) E,, . { [ X, UX @)

N=o ety
i [thss e} ” °(X(0), Wde )
w2 B Bl [T axo.oxemanxeixen
(3.10a)
=iz EtE,,, { /: ™ ux (o, Ux e
+ V(X (tas1), Un ) + 1)[ X (22)}] (3.10b)

where equation (3.10b) consti the Principle of Optimality of stochastic dynamic prog
see e.g. Chapter 11 in Caines [2].
After careful computations, we obtain the optimal control and cost-to-go respectively as:

US(X(t:)) = ~LeX(ta) (3.11)
V(X (%), k) = X)L X (t2) + & (3.12)
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1_ 1. - 1. 1.
Li = (24 + Dpn + 58 + 58B01) Hara + 50+ 38)
Li=gsa—gials ~Liqia + LigaaLn + LiDLupss + B — Graln
—Liix+ Lials
k
L= z QUi +an0<k<N

j=N=1

L ERY
@16 = Eeua [ [ BiCeudt|X(t)]
ea=Ean[ [ HCBX ()]
o =Eu [ ™ aiCaedt| X(t)]

¢4 =Ew[Er,,,{ /‘ :“‘ ~Cvedt| X (t0)]]
Gk = Eny [BiLasrae| X {t4))
Tt = Eepus [ Zus1Be} X (20))
B = Eu [0 Dearae| X ()]
Gok = Ew [Erer, [ Lasame| X (20)]]
Gik = Eu, [BiLL s e X (80)]
& = Eun [B LBl X ()]
G140 = B [0l Len B X (00)].
Note that for K = N — 1 only, we bave:
BN = BN =RN 1 = RN = AN-1 = RN =GN =0,

Thus we have proved equation (3.12), and this establishes our result for this section.

3.1. Ni jcal E: )t We ider the following scalar stochastic differential equation:

dz(t) = —z(e)dt + u(|z]e)dt + du(t) (3.13)
with the associated cost functional
N=1 tis1
Jelta) = min Ew| § B /; (2P () + WP (=z(ta)))dtlz(8:)}] (3.14)
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where u(z(t:)) eUpzs-
Equations (3.13) and (3.14) are a scalar version of equations (2.5) and (2.4).
Following the g 1 fra k solution elab d through jons (3.3) to (3.12), we have:

V(z(tn), N} =0. (3.15)

At the (N — 1)th stage the optimal cost-to-go is

V(z(ty-1), N =1) = min Ew[EeW{ /: " (Z () + P (tnaN)tz(tn-2)}]  (3.16)

wN—reldpig oy

= min Ew[&u{[u (ofz’(ty_,)q.pfu?(:(tu_;))

wNrdpig oy

+ 97 +2z(tw-1)u(z(tw-1))aeBe + 22(tn-1)aen

+ 2u(z(tN-1))Br e + w3 (2(tn-1))) dtlz(tn-1)}] (3.17)
where up-1 = u(z(tn-1)) ¢ Upto -
Using the independ b the B ian motion w and the point process t = {t;,i > 0},
we obtain:
u™(z(tn-1)) = =Lrn-1z(tn-1) (3.18)
where

Ly-1 = (@ev-1 + iv-1) @
v
a1 =Eu[ [ afidtle(enoa)]
tN-3
ty
v =Bl [ © Betfetn-)]
tN-)
The resulting optimal cost-to-go is

V(zlty-1),N =1) = 2(tn-1)Inoy + Ty (3.19)

where
Iyoi = qavo1 = 2Lnaagiyr + Lig@an-1 + Liogpena

N
@8- = e[ [ aZdt|z(tn-1)]

@un-1=Ino1=Ew [E,,,[/:‘" Yidtlz(tn-1)]]-
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Applying equations (3.7) to (3.12), we can compute for an arbitraty stage, Ly and ¢, in
Vi) =2 +4 (320)

which is a scalar version of equation (3.8). This means that the structure of the optimal cost remains
quadratic in its initial state from stage to another.
At the k-th stage, the optimal cost-to-go is:

Vet = gin EwlEen{ [ 0+t
+ V(z(teer) k + 1lz(ta)}] (321)

tast
=_min EwlB...{ f“ (a222(ta) + B (=(ta))

—weltrrg,
+7 + 2z(ta)ulz(te))ach; + 2z(tedarye + 2u(z(t)) e + v (z(ts)))dt
+V(z(teea) k +1)|z(ts)}) (322)
where u, = u(z(te)) eUpig .-
The optimal control law and the optimal cost-to-go are given respectively by:
u®(z(th)) = =Laz(te) (3.23)
Viz(ta). k) =2t e + & (324)

L= (g +pa + Bk) " (@ + &)

L= gua - 2q1als + Ligaa + Ll + B + Lk - 2Lafi e
k

ik = Z [-7%) +<7.‘g.
j=N~1

For this scalar case, we note that:

Tk = Ga = Grx = Lia By, [Breelz(ta)]

and

T2 = Bk = LearBu,, [BFiz(te)]-
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. If (tasr — i) is exp ially distributed in its p A, then we can evaluate explicitly g; & to
Gek- Let us evaluate g1 a-

s = Eu[ [:’ * aeBedtiz(ta)] (325)

= ? mtt—ta) * —tt—s)
Bl e ([ et dpatizten]
=B et I(1- ) atiz(en)]

ta

=Bl [ O -] 29

= _/@ (f“‘ (e et ) (e Moty @27
te ty

= [T ([ ae ot ) e - e ©28)
ta L3

- /’°° Mt (-t _ ~206-0)) 4y
ty
=+ +2) 7
‘We justify equations (3.26)-(3.28) by the distribution of the increment (2343 —£) and Fubini theorem.
Using essentially the same method, we can evaluate the rest. Thus, we obtain:

@e =200+ +2)7"
aa={r+2)""
gux = (A1 +2)7
fia = LM+ DA +2) 7
Gax = 2Lea (A + DO +2)
Fa=Lear(r+2)~

Fx=Lena(r+2)"2

4. Optimal (Piecewise) Time Invariant Control: The Poisson Case

We ider here the quadratic expected cost functional and the dy: ics of the hastic
system given in (2.3)-(2.5).

However, in this case we restrict the II point process so that ¢, = 0 and the increments ¢ —
tx, k > 0 are exponentially distributed with mean inter-arrival time u, = 1/Afor 0 < k< N.

For this problem, recall that Upy, is the class of admissible control laws.
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Using the same general framework as in the previous section, the inal optimal cost-to-go
associated with the N-th stage is given by:

V(X(tx),N)=0. 4.1)

At the (VN — 1)th stage, the optimal cost-to-go is given by:

V(X(tn-1) N=1) = min Ew (B { [ " (X'@ycx(t)

Uncrdiprp ey
+ U (X(En-1))DU(X (tn-2)))dt} X (tx-1)}] “2)

where Un—1 = U(X(tn-1)) €UPrpp.s-

Again using the independ b the B i jon W and the point process ¢t =
{t.,i > 0} in (4.2), and evaluating the expectation in its respect o ¢y (given tn_1; recall that
(X (tn-1)) corresponds to (-[X(t¥—1),¢N-1)), we obtain:

Vxes-N-D=, mn e[ ([ :" (X(OCX ()
+ U (X (tw-2))DU(X (tn-)))dt e ==t X (tn-a)].  (43)
Using Fubini's theorem in (4.3), one can interchange the order of integration to yield:
V(X(tn-1),N=1)= vu-ﬁi’.‘,,.,_. Ew|[ - { f AemMeN=tnoa)gen J (X ()OX(t)
+U' (X (tx—1))DU(X (t-1)))dt] X (t5-1)) (44)
V(X(ty-1),N-1) = v"_‘gix’:’_m Ew|[ [: , emMt-tv (XN ()C X (1)
+U' (X (tn-1)) DU(X (t—-1)))dtlX (tn-1)) - (4.5)

We recognize (4.5) to be an infinite horizon di d linear quadratic regulator problem with
initial state X (¢x-) known.
We can write (4.5) as:

ViX@n-ahN=1)=,  min {Ew] ‘/m trfe At -ICX (X (@12t X (t5-2))

Ny

+A70(X (tn-1)) DU (X (tn-2))} (4.6)

To evaluate the expectation in (4.6), we proceed as follows:
« Let P(t) be the covariance matrix given by

P(t) = E(X(2) - EX(1))(X(t) - EX(2))' (4.7
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from which we have

P(t) + EX({)EX'(8) = EX() X"(t) (48)

Ew[[ tfe-2t-tv-0CX ()X (8)]dt]X (t-1)]

(2283

= [ wfeMe-tv-aopear+ f" tle-M-tv-CEX(QEX'(d  (49)
tN- tnat

o To compute the first integral in (4.9), we rely on the following differential equation (Gelb
g}

P(@) = AP(f) + P())A'+GG",  Plty—y)=0. (4.10)
where f =t — 2n-1. Then:

/m e Xp(Rdi = f” e~ ¥(AP(D) + P(DA' + CG')dE. 4.11)
] (]

Hence:

[ e@d = i) |, ~Pen)

- -\t ESY] ’ -t
_/:ne AP(t)dt+-/:ne P(t)Adt+[e GG'dt (4.12)
= Ap(s) |, P4’ | o, +G—f'- lems® (4.13)

By setting s = ), we have:

(4- %’-)p(,\) +p(A)(A - %) = -A"1GG’ (4.14)
where p()) is given (Lancaster & Tismenetsky [8]) by:
p(0) = f A1 \=1GG A=) g, (4.15)
Therefore the first integral in (4.9) can now be expressed by:
™ wlemse-t-iepioe = /:" tele-¥CP(@)dE = tc(Cp(N)]. (@.16)
o1
@ To evaluate the second integral in (4.9), we rely on the following differential equation for
dEX (t) and its solution:

dEX(t) = (AEX(t) + BU(X (tn-1)))dt (4.17)
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EX(t) = ¢(t, tN_1) X (tn_1) — Q(t, tn-1)U(X (tn—1)) (4.18)

e, tnoy) = eAlt=tn.1)
Qftitn_z) = (I - $(t,tn_1)) A" B.
After i jons, we obtai

L e P

/“' trfemNe—te-) CEX (1) EX' ()]t
]

= [: (X (tnma)e ™SS OCHOX (tn-1) = U (X (tnm1))e Q@ (CHOX (n)
= X(tn-s)e ¢ (ICQUIV(X tn-1))

+ U (X (tn-1))e™MQ ()CQUU(X (tn-1)))dt (4.19}
= X'(tn-1)Fg c.oX (tn-1) - U'(X (tn-1))For .0 X (2N-1)
= X'(tn-1)Fo.cQU(X(tn-1)) + U'(X(tno1)) Farc@U(X (tn-1)) (4-20)

where

Feco= [ e~ (t)Co(t)dt

Farco = 57 e 2Q'(1)Co(2)dt

Fyco=f3 e (1)CQ(t)dt

Foca= [ e Q' (t)CQ()at.
We can now express V(X (tx-1), N = 1) as:

V(X(tn-1) N=-1) = min {t[Cr(A)] + X' (ty-1)For.c.oX (tn-1)

Un-rsellpip
= U'(X{tn-1)For.c.oX(tn-1) = X'(tn-1)Fo c.U(X (tn-1))
+U'(X(tw-1))Fo c.QU(X(tn-1)) + A7 U (X (tn-1)) DU (X (t5-1)) }.

(4.21)

After some algebra, we obtain:
U (X(tner)) = (Fg,cq + A7 D) " Fgr co X (tn~1) (4.22a)
=-Ly-1X(tn-1) (4.22b)
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where Ly._; is explicitly given by:
Lya= (/c e~ MB (AT - AYC(I - A) AT Bdt + A”‘D)_".
(]

( /: e MB(A71) (At - DCA). (4.23)

At the (N — 1)th stage, the optimal cost-to-go expression is given by:
V(X (tn-1)s N = 1) = X' (tNeg)Inas X (tn-1) + Eny @.24)

where

In-1=Foce+ Ly Foce+Fecalna

+LyyForcqln-y+ A7 Ly_y DLy,

Ty = t[Cp(N)])
Here the optimal cost-to-go expression is quadratic in its initial state X (t51). We postulate then,
that the structure of the optimal cost will remain quadratic in its initial state. We shall prove our

bypotheses using backwards induction. Thus let:
V(X (tesa)ok + 1) = X' (tar2) Daer X (ther) + Gt (425)

where 0 < k< N,Zg.ﬂ and ?.41 2zre some specific constants.
By the Principle of Optimality in the dynam?’c pr ing fra k, we have:

o

tast
VXK =, min EwlBna{ [ 00X
+UXENDUX N+ V(X (o) b+ DIX@)]  (426)

where U = U(X(ti)) cUps,,-
As for the (V — 1)th stage, we can show for the present stage that:

Ew(En..{ /‘:“‘(X'(:)cxc) +U(XEB)DUX X t)}]

=Ew| f N X(GCX () + UM (X (6))DU(X (ta))IX (24))- (427
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Now as (fx41 — ta) is expoventially distributed in its p A, and upon conditioning on 2,, we
can write:

Ew [Beeya { X" (te+ 1) Dat1 X (t042)1X (22)}]

=Ew| /: X'(tert) Eat Xns he M=)ty X (14)]

=Ew[ f’ A3 X! () Eus X ()1IX (1)) (@28)

Therefore (4.26) can be expressed as:
V(X(t),k) = min Ew[ _/: M) (X (¢)(C + AL par) X (1)

+ U (X(8)) DU(X (t2)))et] X ()] + Tavr (4.29)
VX@)LE) = min (X ()Fy 5, X () = U(X () Fg £, X ()

P
= X'(t)Fy 7 QU(X(t)) + U'(X () F o & oU (X (t))
+ X7 (X (@)DU (X (%)} +tlCp(N)] + Eusa (4.30)
where
C=C+ln
Fpzo=J ¢ e)Co(t)dt
Fg g =I5" e~ Q00T o(t)at
Fyzo=I7 e *e(CQ(d
Fozq = e M@ t)CQ(ar.
Note that Lx., is symmetric, indeed:
Dy 1= Fyce+Focaln1+ Ly Fo.ce
+ Ly 1Fo caln-1+ X Ly, DLy-y = Ly
Using induction principle, we can show that ZH.; is symmetric.
Therefore, it follows from (4.30):
U(X(t2)) = (Fg g+ X" 1D) Fy 5 4 X(t) (4.31a)

= =L X {ts) (4.31b)
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where L; is given by:
Li=( /° B4 (I - A )OI - M)A Bdt + A7 D) .
(]
( f’ MBI (A=Y (A" - NTA). @32)
o
At the k-th stage, the optimal cost-to-go expression is given by:
V(X (ta) k) = X'(t) DX (&) + & 4.33)
where
Li=F,z,+LiFazs+Fyzols
+ L‘FQ..é.QLg +X"1L.DL,
& =ul(C + 2L )pN + G
ZN = ZN =0.

we establish with equation (4.33) our main result.

4.1. Scalar E: pl We ider here the following scalar stochastic differential eq:

dz(t) = az(t)dt + bu(|z]e)dt + gdw(2) (4.39)

with the associated cost functional

N-1

Jz(to)) = min E " @) + du(lz))dtlae 435
(e(t) = min Bw[ 3 B [ €20+ deizinaeiz)] (435)
where u(|z]¢) = u(z(t:)) eUps, for t; <t < tiyg.
Following the same g 1 fr: k developed through equations (4.1) to (4.33), we have:
V(X(tw),N)=0. (4.36)

At the (N — 1)th stage, the optimal cost-to-go is
Viz(ty-1),N=1)=  min Ew| e~Me=tx-tder3(t)dtlz(tn_1)]

UN1dPLy oy ez

+ A7 du? (z(tn-1))}- (4.37)
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Using equations (4.7) to (4.20) and after some algebra, we obtain in our scalar context:
u[Cp(N)] = *(MA ~ 20))?
Fy.co=c(A—2d)"
Foco=Fpca=-b{A-a)(r-2q))!
Fg.cq=2c(AA - a)(A—2a))"2.
Thus, we have:
ViEty- N-1)=_ Ei?”-x {e®(MA = 20))72 +¢(A ~ 20)" 2P (tn-s)
+25c((A = a) (A - 20)) " u(z{tn-1))z(tn-1)
+2Pe(A(A = 0)(A ~ 20)) PP (z(tn-1)) + A du(z(en-1))}
where uy—1 = U(2(tn—1)) € Uptp pe_s-
u*(2(tN-1)) = —~Ly-17(tn-1)
where
Ly-y = beA(2Pc+ d(A — a)(A — 2a))™2.
The resulting optimal cost-to-go at the (V' — 1)th stage is expressed by:
V(z(tno1)y N = 1) = Ly_12*(tn-s) + lva
where
Inoy=c(A-20)"" + 2beLy_a((a ~ M)A - 20))7
+ L3, (26%c(A(A — a)(A — 23)) 2 + A~1d)
Tv-1 = cg? (M= 20))7

(4:38)

(4.39)

(4.40)

(441)

Applying equations (4.30) to (4.33) in our present scalar study, we can compute explicitly for an

arbitrary stage, L.and 4 in

Viz(ts). k) = Zgz’(tk) +Zk.

(4.42)

The last equation means that the structure of the optimal cost-to-go remains quadratic from stage

to another. We write now from equations (4.30) to (4.33) the main scalar steps:
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u®(z(ts)) = —Lexz(ts) (4.43)

Li = B2+ d(\ — a)(A — 2a))~L. 4.44)
o The resulting optimal cost-to-go is expressed by
Vizita) k) = L (ta) + & (4.45)
where
L = 2 - 20)~% + 26Li (o — A)(A — 20))2
+ L2(2PFAM — a)(A = 2a))"* + A1d)
L=5P00-2) 7+l
E=c+ALlin
Li+1 and Ziy; are some constants specific to the stage k + 1
Iy=Iy=0.
5. Optimal Time Variant Control

We consider in this section the expected quadratic cost functional and the stochastic differential
equation given above in (2.6) - (2.8).

As we mentioned earlier in this chapter, for the time variant control, the ¢,’s are Poisson
distributed with mean inter-arrival time u, = 1/A for 0 < k < N. As previously, we have:

V(X(tn),N)=0. (5.1)
At the (N — 1)th stage, the optimal cost-to-go is expressed by:

tn
VX(tnoa) N =1) = Ew[Een{ /N " (reox

min
Unardizve p_y

+U'(t, X (tn-1)) DU(t, X (tn-1)))at} X (tn-1)}] (5.2)

Ewl e~ M-t (X' (1)C X (8)

tNaa

+U'(t, X (tn-1))DU(t, X (tn-1))dt)X (tn-1)] (5.3)

= min
Unereldzvp p_,y

where Un_y = U(t, X(tn-1)) € uTVr.N-:'
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We recognize {5.3) to be an infinite horizon di d linear quadratic regulator problem with
the initial state X (¢tn—1) known and no further observations thereafter. This last fact is very crucial
for our p: time vari ] case, 'y to the time invariant control case, where the

control law is function only of the initial state on each interval
Using Rishel’s [9] result for (5.3), the contral law is given for the moment by:
Un(t, X(8)) = —-D™*B' K1 X(2) (54)

where the matrix gain Kx.; is given below in equation (5.8).

However, as no further cbservations of the state X(t) are available on the interval {tx_;,tx),
then by the separation principle (Bagchi [1], Fleming & Rishel [5]), we replace X (¢) by its optimal
predictor X (¢|ty—;) with the initial state X (tx_;) known.

Then the optimal control law is now expressed by:

U (6. X(tltn-1)) = -D™B'K_1 X(tltn-). 5)
This optimal filtering estimate of X (¢) is governed by the following dynamics:

dX(titn-1) = (A - BDB'Kn_) X (tltwy)dt 56)

X(tlen-r) = eMr-ste-tvedX (e _y) 7

where My_3 = A~ BD-1B'Kn-1 and X(tnoq|tn-1) = X(tn—y).
As we know, the matrix gain Kx.; is a solution of the Algebraic Riccati

—KnyA—A'Kn_y = AKn_y+ Knoy\BD™'B'Kyn_y ~C =0. (5.8)
Thus, we have a closed-loop system with the following dynamics:

dX(t) = AX(t)dt — BDT B'Kn_y X (tltn-1)dt + GdW(t) (5.9)

dR(t|tn-1) = (A= BD™*B'Kn_) X (tltn_y)dt (5.10)
with the resulting cost functional expressed by:
V(X(ty-1), N = 1) = Ew [ /«: trfeA-tv-1) (CX (1) X' (2)
[J Y

+ Mucr X (tltw-1) X' (ttn-1))] @] X (2=1)] (s.11)

where My_1 = Kiy_,BD"'B'Kn.,.
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‘We compute now the first integral in (5.11); for this end we rely on the same approach elaborated
in the previous section, and we note that for this closed-loop system, we have obviously EX(¢) =
Xtlew—2).

Therefore:

trfe~Mt-tr—))CEX () EX"(£)]dt

tray
= fw €Mt XN by e Mivmrltotn-2) CeMm-s(t=tu-0) X (¢, )dt
tNay
(where X(tn_;) is already fixed)
= /:' e MX (tnay)eMr-1tCMN-1 X (t5ry)dt
= X'(tN-1)Fate.. X (tN-1) (5.12)
where Fagy_, = [3° e~ MeMr-1tCeMn-rtgs.
Finally, the last integral in (5.11) yields:
f €2 X! (b1 )M Moy M- X (e )dt = X' (tn—1)Fig, _ X (1) (5.13)

where Fi = [0 e~ MeMr-1t My _reMr-3tds. We know that F = [§° eA*CeAtds, is the solution
of the algebraic Lyapunov matrix equation in the form A'F 4+ FA = =C. For a detailed and
systematic study of the well-known Lyapunov matrix equation, see Gaji¢ and Qureshi {6].

At this stage, the optimal cost-to-go is expressed by

V(X(tne1, N = 1) = X'(tx-1)Fat-s + Fi, )X (tn-1)
c (A=) ) =100 A= )rg. 5.14
4] /;” R e r] (5.14)
V(X (tw-2), N = 1) = X'(tn-2)In-a X (tv-a) + B 619)

where obviously Ly—1 = Fuw., + Fig,,_, and Iv-1 = t[Cp(\)].
Again the optimal cost is quadratic in its initial state X (¢x—1), we reformulate the hypotheses
that the optimal cost value will remain quadratic in its initial state.

Thus, let:
V(X (trer)rk + 1) = X' (ter1) Leer X (thar) + B (5.16)

where 0 < k< N, Zg...; and th are some specific constants.
‘We have to prove the following equation using backwards induction

VX (te) k) = X' () DaX (8} + B (517)
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for0<k<N.
By the Principle of Optimality in the dy ! ing fra k, we have:

ViX@)R) = .b‘i‘,-;,, Ew([Eu..{ _/:’ ) (X'()CX(2)
+ U(t, X(ta))DU (¢, X (ta)))ét + V(X (tas2), k + D) HX (ta)] (518)

where Uy = U(t, X(ta)) e Urvy -
On the one hand, using a similar approach than previously, we know that:

Ew[Bu..{ /:“ "(XOCX @ + U6 XE)DU X ENIX 0}

=Ew|[ /w =R X! ()CX () + U'(¢, X (t)) DU (8, X (ta )}t X (ta)] - (5.19)
e
On the otber hand, as (tx43 — 2i) is exp jally distributed in its p A, and upon condi-

tioning on tx, We can write:

Ew [Btuns {X (te43) Lasa X (t541) X (2)}]

—Ew| f X'(tean) Enna X (thsa ) Ae Mttty X (84)]

=Ew| F DMt X (O D, X ()t X ()] (5.20)
Therefore (5.18) can be written as:

V(X(te) k)= min EW[F ™M=t ) (X' (E)(C + ALasa) X (1)

o
+U'(, X()DU(E X (et X (6] + Tas- {5.21)
Again, we recognize (5.21) to be an infinite horizon di d linear quadratic regulator problem;

P

then using Rishel’s result and separation principle, we

U(t, X(tlte)) = D B K X (tlta) (522)
where K is the matrix solution of Riccati equation given by:
K A-A'Ky =Ky + KkBD-lB'Kk -(C+ Azg+;) =0. (5.23)
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Then we have the following dynamics and cost functional:
dX(t) = (AX(t) ~ BD- B'K, X{t]t))dt + GdW (¢)
dX(tits) = (A — BD™ B’ Kp) X (¢[tx)de
X(tlts) = S0 X(t,)
where M, = A— BD-1B'K,
V(X (tx),k) = Ew| F e ((C + ALay) X (1) X (2)
+ M X (tle) X elen))) &1 X (1)) + By
where M, = K{BD-'B'K).
V(X(te) k) = X' (te}(Fae, + Fiz )X (t)
+4[(C + ATaus) /:” AN GG R -] 4 Ty
V(X (ta), B) = X' (t) DX () + B
where
L, =Fu, +Fg,
Fu, = [3° e XM (C + ALyyq)eMotdt
Fg, = [ e~ Mt MyeMeta
& = (€ + ALis)p(N)] + lanr
In=Iy=0.

We have then proved our main result.

(529)
(5-25)
(5-26)

(527

(5-28)

(5.29)

5.1. Scalar E pl We ider the following scalar stochastic differential equation:

dz(t) = az{t)dt + bult, |z].)dt + gdw(t)

with the associated cost functional

N=1 et
Jetto)) = jmin Ewl Y Enn /" (@) + et s )tiz(t) }]-
r =0

Equations (5.30) and (5.31) are a scalar version of equations (2.8) and (2.7).

(5.30)

(5.31)
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3.5 OPTIMAL TIME VARIANT CONTROL

Following the general fr: k solution elaborated through equations (5.1) to (5.29), we have:
V(=z(tn), N} =0. (5:32)

At the (N ~ 1)th stage, the optimal cost-to-go is

Vieltya) N=T)=  min  Ew[Ee{ f " () + d (b altn)tiz(tn)}] (5.33)

uN1eldTVp oy

Vizltn1) N=1) = min Ew[ A=t (e (8) + duP (¢, z(tn 1)) dtlz(tn )]
uN—1eldrvp reuy tN-t
(534}
where un_3 = u(t,z(tn-1)) ¢ Urvpv_,- Therefore
u® (& E(t]tn-1)) = —d " bkn-1Z(tltn-1) (5.35)
where Z(t|ty_;) is the optimal predi i of z(t) according to:
Z(ttn-1) = My_1Z(¢|tn-1)dt (5.36)
B(tlty-y) = eMr-alt=to-ilz(ey ) (5337
where My_; = a — Bd~2kn.;.
The gain kn_; is a solution of the algebraic Riccati eq
VP, = (2a+Nkyoy —c=0. (5.38)
Thus, we have a closed-loop sy with the following dy
dz(t) = (az(t) = BPd~kp_1Z(t|tn—1))dt + gduw(t) (5.39)
d2(t|tn-1) = My Z(tltn-1)dt (5.40)

with the resulting optimal cost-to-go is given by:
V(z(ty-1),N =1) = Ew| F e Memtnaad(er3 () + Mo (ttnog))dtlzltney)] (541
[ 3 Y

where My_; = k3,_,b*d"2.
Using equations {5.12) - (5.14), we can compute easily the optimal cost expressed explicitly by:

V(zltna), N = 1) = (A = 2(a = BBd" knoa)) o+ Ko BB 122 (tnmg) + cg? (MA = 20))2
(5.42)
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S5 OPTIMAL TIME VARIANT CONTROL
which is of the form
V(z(tn-1), N = 1) = Ly_12%(tn—1) + En=s- (543)

Applying equations (5.18) to (5.28), we can p plicitly, for an arbitrary stage, Ly and % in:

V(z(ta), k) = Le2?(te) + & (5.44)

which is a scalar version of equation (5.17). This means that the structure of the optimal cost
remains quadratic in its initial state from stage to ancther. Let us write from these 2quations
{(5-18) - {5.28)), the major scalar steps:

Vetb = gin {Ewl [” M=) (e + AL )2 (1)

+du?(t, z(t))) dtiz(ta)] } + Lisa (5.45)

where uy = u(t,z(ts)) ¢Urv,, _,,,Zg+1 and Z.4 are some given constants.

u*(t, Eelte)) = —d~ ok (t]tx) (5.46)

where k. is the solution of Riccati

Bd k3 - (2a+ Mk = (c+ ALrs1) = 0. (5.47)

® We have the following dynamics and cost functional:

dz(t) = (az(t) — BPd 2k Z(t|ts))dt + gdw(t) (5.48)
dZ(tltn-1) = MiZ(t|ts)dt (5.49)
Mg =a- bzd_ lkk
V(z(t), k) = Ew | F e M=t (e Aaan)22 ()
tn
+ M (tte)) tlz(ta)] + Bona (5.50)

where M, = k3t2d™.
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5.7 APPENDIX

® After iate i we obtain

PPLOP P

V{z(ta) k) = (A = 2(a — P ka)) " (e + ALiea + K122 (1)

+(c+ALeen)? (A - 20)" + G (5:51)
V(zlta).5) = L (b) + & (5:52)
with Iy =Zn =0.
6. Conclusion
The class of probl died in this chapter are open to generalization to problems which

appear to be significantly more difficult; for instance, we consider the case where:

(a) The total number of observations N is random and unknown to the controller.
(b) One has the option to pay for a fixed sum in order to obtain the value of an
observation occurring at a random time, and where the total performance cost is
the LQG cost given below, plus the total observation cost payed over the time
horizon of the problem.

(c) The hastic differential ion described in (2.1) has random and time
variant coefficients.

(d) The observations instants are distributed according to another probabilistic
distribution.

7. Appendix

N
I () = gmin B [ X0,V %)

N=1 st

= g Bl / " xe, v 72)
N-1 tidy

= gain, Bl 2 B [T xevomx.... xe) =3)
N1 tos1

= gin Ewl T B L €X(0).U )X} 7.4)
=0
N-l tisa

= i Bw[ 2 Bl [ X O.UOX )] @)
=0
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REFERENCES

Concerning equations {7.1) to (7.5), note that:

(7.1) to (7.2) is justified by the d ition of the conti time domain into
a finite set of N disjoint intervals [t;, t;v1)-

(7.3) is a consequence of smoothing property of conditional expectation.

7.4) relies on the fact that the stochastic process {X(t:),i > 0} is a Markov
process.
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CHAPTER 6

Gradient Estimation for Ratios

1. Introduction

Let (A, B) be a pair of jointly distributed real-valued rand iables. The estimation of the
ratio a = E[A]/E[B)] is known, in the simulation literature, as the ratio estimation problem. Such
ratio estimation problems arise in many different applicati tings. For ple, it is well known
that the steady-state mean of a positive recurrent reg i hastic p can be expressed
as such a ratio of expectations; see, for example, Section 3.32 of (2], or Chapter 2 of [15]. In Section
2 of this chapter, we will di the ratio estimation problem in gr detail and offer additional
examples. It will turn out that the infinite-horizon di d cost of a non-delayed regenerative

process can also be expressed in terms of an appropriately chosen ratio estimation problem. This
fact was first pointed out by (3].
Recently, the simulation community has devoted a great deal of attention to the use of simulation

as an optimization tool. An important P of this h effort has been the development
of estimation methodology for puting the gradient of a real-valued performance measure with
respect to a (finite-di ional) decision p ter vector. Such gradients play an important role

in many iterative algorithms for performing both constrained and unconstrained mathematical opti-
mization. This chapter is intended as a study of the question of how to use this gradient estimation
methodology in the setting of the ratio estimation problem.

The chapter is organized as follows. In Section 2, a number of different applications in which
ratio estimation probl arise are di d, and the h ical fr k for the ind
of the chapter is described. Section 3 is devoted to deriving a confidence interval methodology
for estimating the partial derivative of a ratio. In addition, a joint central-limit theorem for the
simultaneous estimation of the entire gradient is obtained. In Section 4, low-bias estimation issues
are di d. Section 5 ludes the chapter with a brief summary. The proof of our main theorem
(Theorem 1) is given in the Appendix.
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2. Examples of Ratio Estimation Problems

As di d in the i duction, the ratio estimation problem is concerned with the estimation
of the ratio
_ B4
= EB

where (A, B) is a pair of jointly distributed real-valued random variables. We now proceed to offer
several examples of this estimation problem.

Example 1. Let X = {X(t),t > 0} be a real-valued (possibly) delayed reg ive
with regenerative times 0 < T'(0) < T(1) < ---. Fori > 1, let

P

A= ™ (s
B r(.'-x)‘ e
T3}
i = f X(s)ds
T(i-1)
B =T(i) = T(i - 1).
If E|4; + B1] < o0, then it can be shown (see, for example, [1), or [15]) that

Jim 2 jo' X(s)ds 2 o = E[A/E(B,).

Hence, as di d in the introduction, the steady-state mean of such a process can be expressed
as the ratio of the two expectations E[4,] and E[B;].
Example 2. Let X = {X(t),t >0} bea delayed reg tive p , taking values in

a state space S, with regenerative times 0 = T(0) < T(1) < ---. Let f and g be two real-valued
non-negative (measurable) functions defined on S, and set

£3
v = fo o(X(s))ds

a=g[ [ epl-veloro.

Then, a is the infinite-horizon expected di d cost, the process g(X(t)) corresponds to the
(state-dependent) discount rate at time ¢, and f(X(t)) is the (undiscounted) rate at which cost is
incurred at time ¢. A common choice for g is the one in which g(-) is constant and equal to p > 0,
in which case

a=E[ [ epl-plsxe)]
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is the infinite-barizon p-di d cost. Let

T(1)
= [ el j: S(X())ds] F(X @)t

G = epl-V(T(1))]

By =1-0C;.
B of the reg: ive structure of X, it is evident that a satisfies the ion @ = E[4,] +
E[Cile. Thus, if E[C] < 1, it follows that a is finite and can be expressed as
_ Ela]
E[B]
Hence, the infinite-horizon di d cost for a reg: ive p can be exp d in terms of a

ratio estimation problem; see [3] for further details.

Example 3. Let X be a regenerative process as in Example 2, and assume that X has
right-continuous paths with left limits. Let F be = non-empty subset of the state space S, and let
7(F) = inf{t 2 0]X(t) ¢ F} be the first hitting time of the subset F. Then,

a=E[r(F)]

is the mezn hitting time of F. Such expectations are of interest, for example, in the reliability
setting, in which case 7(F) would typically correspond to the system failure time, and T'(1) to a
time at which the system is brought back to an “as good as new™ state. Let

Ay = min[r(F), T(1)]

B, = I[r(F) < T(1)),
where I denotes the indicator function. K P{r(F) < o0] > 0 (note that this is equivalent to requiring
that P[r(F) < T(1)] > 0), it is easily shown that

- Elay
T EB]

See [7] for additional details. Thus, the mean hitting time of a regenerative process can be formulated
in terms of the ratio estimation problem.

Example 4. Let X be a real-valued random variable and let C be an event with P(C) > 0.
Suppose that we wish to estimate

a=E[X|C],
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ly the conditional exp ion of X, given that the event C has occurred. If E[JX[] < oo, then
we can express a it terms of the ratio a = E{A,]/E[B;], where
=XI(C)
=IC).
Hence, conditional exp ions are exp. ble in terms of the ratio estimation problem.
Thus,tbemmemmnmpmblmmmavmetyofdﬂmtapphmonsoomm& We
shall now introduce a d P vector 8 into the discussion. For each 6 ¢ R?, let P be
the probability jated with the parameter value 6, and let Ey be its corresponding

expectation operator. In addition, we shall permit the random variable A(6) and B(6) to depend
explicitly on 6 ¢ R%. Then, for each 8 ¢ RY, the ratio of expectations can be expressed in the form

u(8)

a(f) = ‘( Ok
where u(6) = E4[A(6)] and £(6) = Eo[B(6)]. Given our above pl puting the gradient of
such a ratio a(8) is useful for sensitivity a.na.lyszs or optimization of any of the following: steady-state
costs or rewards in reg ive p ; infinite-horizon di: d costs; mean time to failure in

reliability systems; conditional expectations and probabilities.

3. Confidence Intervals For Gradient Estimators of Ratios
Let 6 ¢ R be fixed. In order for the gradi stimati blem to make sense, we shall

require that both u(-) and £(-) have gradients at § = 6. We shall further assume that there
exists unbiased estimators for not only u(f) and £(6,), but also their gradients Vu(6p) and V().
Focussing now on the i-th p of the gradi we shall specifically assume that there exist
jointly distributed random variables (4, B, C, D) such that

E{A] = u(60)
E[B] = £(60)
E[C] = 8iu(60) Y —‘3-_u(e) ]
E[D] = 8.460) ¥ o o 46 [

where §; denotes the partial derivative with respect to 6;, and 6; is the i-th component of 6.

There is now a great deal of literature on various ways of constructing unbiased estimators
for diu(fo) and 9,4(6a). The two principal approaches that have been explored are likelihood ratio
gradient estimation (see [5] for a survey) and infinitesimal perturbation analysis (see [4]). For links
b the two methods and for a g I survey, see [10] and [11].
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We shall now that it is possible for the simulatorto g asequence {(4;,B;,C;,D;),j >

1} of iid. replicates of the random vectar (A4, B,C, D). In each of the problem settings described
in Section 2, this is typically straightforward.

To estimate
Bix(Bo) = 1(90)8-'14(90()2 (—8:)(90)3-1(90)
= 8iu(6p) — a(0)0:£(60)
£(6o) '
the natural estimator to use is
m) = Cagaln,
where
- 1
=234
n ,Z_; I
B,.= 1 i B;
et
1 n
Cn= a ,; C;
D.=ly
n= = 2 Dj
fidrect
and
Qn = An/Bn.

Qur first proposition states that under reasonable conditions, &;(n) is a consistent estimator for
.a(8p). The proof is straightforward and therefore omitted.

PROPOSITION 1. Suppose that E[l4:| + [By| + |Cy| + |D1[] < o0 and that E[B,] # 0. Then,
R 0.0
Jim 8i(n) 2 Bia(fo) B

To develop a confidence interval methodology for 6;(n), we need a central-limit theorem (CLT)
for the estimator. Let

Z; = A; - a(6,)B;
W; = C;j = a(8)D; ~ dia(6o) B;
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and note that under the assumptions of Proposition 1, E[Z;] = E{W;] = 0. This observation is an
important element in the proof of the following theorem.

THEOREM 1. Assume that E[2} + W}] < co. If, in addition, the conditions of Proposition 1
are in force, then

Vnléi(n) - Gia(fo)] = oN(0,1)

as n — 00, where
A= EW: — (E[D:)/E[B:]) 21 =
(E[B))*

Theorem 1 has been previously established, using different methods, by [14] in the context of
Iikelihood ratio gradi imation for reg ive steady-state simulati Their expression for
the variance constant o2 is formally different, but algebraically identical.

The final step need to develop a confid interval methodology for &;(n) is the construction

of an appropriate estimator for o3. Let

150, W - (Ba/Ba) 2R
By

v(n) =

where

Zj = A,' - QnB,'
W; = C; — anD; - 5(n)B;.

The next proposition gives conditions under which v(n) is strongly consistent for o2. The proof is
straightforward and therefore omitted.

PROPOSITION 2. Suppose that E[A? + B} + C? + D}] < 00. IfE[B] #0, then
lim v(n) 2 o*m
nevoo

‘We note that if v(n) is computed via a two-pass approach in which a, and J;(n) are computed
in the first pass through the data {(4;, B;,Cj,D;),1 € j < n} and the sum of squares computed
in the second pass, then it is essentially guaranteed that v(n) will be computed as a non-negative
quantity on any finite-precision computer. More importantly, this means of computing v(n) is likely
to be more stable numerically than that iated with the putation described in [14].

‘We are now ready to describe a g ] confid interval methodology for estimating partial
derivatives of ratios.. Suppose that we wish to compute a 100(1—-5)% confidence interval for 8;a(6).
We use the following procedure:
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Algorithm CL
1 Generate {(4;, B;,C;, D;),j 2 1}.
2 Compute a, aud &;(n).
3 Compute v(n) (using the two-pass approach described above).
4 Find x(8) such that P[N(6,1) < =(8)] =1-4/2.
5 Compute

L, = &i{n) — (0} vln}/n)
Un = &(n) + z(8)vv(n)/n)m

Then, [Ln,Un) is an (appraximate) 100(1 — 5)% confidence interval for §;a(6y)- In particular, if the
conditions of Proposition 2 are in force and ¢ > 0, then

'E.ﬂ;e PI&.-c(Bo) € IL,.. U..]] =1-34.

‘We conclude this section with a brief di jon of the problem of g ing a confidence region for

the vector (e(6s), 81alfa), - . - ,84x(65)). A joint confidence region could be of potential interest in a
ber of optimizati ings, since virtually all iterative (deterministic) optimization algorithms

choose their search direction, at each i jon, by idering the full gradient

Let C(i) and D(i) be unbiased estimators for ;u(fo) and 8;(6o), so that
E[C())] = 8iu(8o)
E[DG)] = 8,4(60)-

If {(A,,B,,C;(1), D(1),...,C;(d). Dj(d)),1 < j < n} is a set of n iid. replicates of the ran-
dom vector (4, B, C(1), D(1),... ,C(d), D(d)), then the estimators an,8;(n), ... ,64(n) can be con-
structed from the sample in the obvious way, namely

@n = Ap/Ba
8i(n) = (Cali) ~ @nDa(i))/Bn-
Define
W;(i) = C;(3) ~ a(86) D (3) — Bial6o) B;.
We are now ready to state a joint CLT for (an,8(n),.. ,54(n)).

THEOREM 2. Assume that E{A2+ B} +C2(1)+D3(1)+---+C3(d)+D¥(d)] < oo. IFE[B1] £ 0,
then

Vo = a{fo),61(n) - 81a(60), . .. 8a(n) — Bea(8)]E[B1] = N(0,C)
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as n — o0, where C = (Ci;,0 <1,7 € d) is a coveriance matriz whose elements are given by

Goo = E{Z]]
Coi=Co
= el - Z2llz)2)
Cij =Cji
= £[w0) - 2z, (5) - E 7))
frigijsam
The proof of this theorem mirrors that of Th 1 and is theref itted

A procedure for producing asymptotically valid confidence regions for {(a(6), 81 a(6o), ... 8sa(6p))
can now easily be derived, using the same ideas as those described earlier in this section for 8;a(6o).

4. Low Bias Estimation for the Gradient of a Ratio

Since the gradient of the ratio is 2 nonli function of the expectations E{4), E[B], E[C(1)],
E[D(1)},... ,E[C(d)], E[D(d)], it follows that the estimator &;(n) is, in general, biased for d,a(6o).

‘We will now proceed to (formally derive a bias expansion for §;(n). The proof of Theorem 1
shows that

&i(n) - dia(fo) =

Wn bt (Dn/ Fn)zn
R A (4.1)

‘We would like to appraximate the expectation of that. We note that smceB,.nsclosetoy E[B,]
for large n, we can use the power series expansion for f(z) = (1 —z)~? to obtain
B\t
1-(1-=
[-@-22)
= -2y 4 0= By

~ -1[1+(1-%)]

- ZH-Fn
=

m
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Using this appraximation in (4.1), we find that

&i(n) — Bialfo) = 2“' B T L 2 Z:D)
. ZD. F w. _2Z,D.
- B '3 #Fn
~ % + znﬁu ‘anu _ zznﬁn(zl‘ _Eu)
B '3 w
_Wa Z.Da+B.Wa  2Z.DabBa
== o “2

where B, = Ba—p- Recall that E[W;} = E[Z;] = 0. Observe that fori # j, E{B;W;] = E[BJEW;] =
0, since B; and W; are independent. Therefore

EB. Wl = & 353 EiBw;) = BB,
im] jml

Similarly, E{ZoDn] = E[Z1D;]/n- Also, E[Z:D;(Bi - u)] = 0 wh i # k. Theref

EZ.DnBa) = E[szxr(zsz ) + (n— 1)5{21(31 - #)]E(D,]

= BGBIED | o /m).

Now taking the expectation in (4.2) yields
B,]E[D,) — uE[BiW; + Z; D

I8 ()] - Bio(0e) = LB —wB s + 5],
This bias approximation suggests an obvious means of reducing the bias of gradient estimators for
ratios. The idea is to estimate the bias term and correct for it by subtracting off the estimated bias.
In this case, this approach leads to the estimator
2Dx 2,=x Z;B; + 2,:1(B:w +ZJDJ)

B,. n’B

3i(n) = 8i(n) —

where Z ; and W, are defined just before the statement of Proposition 2 in Section 3.
Under the appropriate regularity hypotheses, and by applying techniques similar to those used
in [6], one can rigorously prove that a(n) reduces the asymptotic bias, in the sense that

E[5:(n)] = 8ia(8p) + o{1/n).
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A second approach that is frequently used to correct for “nonlinearity bias” of the above type is to
“Jackknife” the estimator. Specifically, for 1 < j <n, let

- A,
L= Ex.mz k
A = et s B
- (X:sx.uj Cs) — anti) E:xx.uj Dj
Ehx#,' By

Sats) = nan(f) = (n — 1)Bags)-

Bnis)

o1l
5;'(n}=;26,u)

i=1
is the jackknife estimator for 8;a(8,). Also,

o) = N(0,1),

where
1 n
(@) = =7 2 (ney = & ()
=1
is a consistent variance estimator. As in the case of the estimator 6-,-(73). one can prove rigorously

(under suitable regularity hypotheses) that the esti §7(n) red asymptotic bias, in the sense
that

E[6/ (n)] = 8ia(86) + o(2/n).

It turns out that the improved bias characteristics of these estimators are cost-less relative to the
variance, in the sense that the estimators 5;(n) and §7(n) obey precisely the same CLT as does
6i(n). Hence, the estimators exhibit the same degree of asymptotic variability.

THEOREM 3. Assume that E[A? + B} + C} + D] < oo and that E[B;] # 0. Then,
Va(Gi(n) - ial6o)) = oN(0,1)
VA(E] (n) - ia(80)) = oN(0,1)

where o2 is the same constant as in Theorem 1. W

5. Conclusion

Ratio estimation problems arise in many different applications setti When estimation is

-

to be used to analyze the sensitivity of (or to optimize) a system in which the ratio estimation
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problem occurs, the results of this chapter become pertinent. We have derived a numerically stable

fid interval procedure for puting partial derivatives of such ratios, and have developed
the appropriate joint CLT’s 'y to extend this methodology to the computation of confidence
regions for the full gradient of the ratio. In addition, we bave di d low-bi i for

computing such partial derivatives.

6. Appendix
Proof of Theorem 1. We note that
B [8i(n) — 8ia(60)] = Cn —~ @aDn — 8:a(60)Bn
=W — (an —a(60))Da
=Wa— (Dn/Bn)Zn
=Wa — (EIDA/EB:))Zn ~ (On/Bn — EIDI)/E[B1))Z.

Clearly, /aZ, = (E[22])*/2N(0,1) as n — o0 and D,/B, 2= E[D;]/E[B;] as n = co. It follows,
by the converging-together principle, that

V7 (Da/B. = E[D))/E[B1))Z- = 0
as n — oo. The CLT for i.i.d. random variables also proves that
Va(Wa — (EID1}/E[B1])Za) = E[B1]oN(0,1)
as n -+ 00. A second application of the converging-together principle then yields
VA Balbi(n) — 8ia(60)) = E[B:]oN(0,1).

One final application of the converging-together principle (note that B,, <% E[B;] as n — o)
proves the theorem.
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CHAPTER 7

General Conclusion and Future Research

In this thesis, a class of problems in statistics and control, both with applications in electrical
gineering has been studied, whereby an underlying time renewal sequence plays a key role in the
evolution of the dynamic quantities of interest.

It will be of particular interest to study the moments of the same general forms; as detailed
in Chapters 2, 3, and 4; but with dependent random variables. This type of moments involving
dependent variables has many practical applications, mainly in random cumulative fatigue.

For the stochastic optimal control part, it will be very relevant, as subsequent research, to study
the hastic optimal control problem, where the framework is a fixed finite horizon with Poisson
distributed observation instants, and the total number of observations is random.

‘We hope that the mathematical theory developed in this thesis will help the formulation and
eventual resolution of new probl deriving from a cross b the probl of operations re-
search and those of main stream in stochastic control theory.






