
Abstract 

We study in this thesis three subjects whkh are 

Cumulative Renewal Proaaser. Stocbaatic CaJtml and Gradient Estimrrioe 

The 6rst subject is inspid h m  Smith's murk on ondat ive  proceata and the early pan of 

Glynn and Hadelbager's paper on hiaa propatia of budget omstnkd simuhths. 

We dwdop for this this of ofulative pmassq new methods for evaluating apliatly and 

asymptotically arbitmy moments of a product of n dktkrct amdative vector renewal -d 

process termed N ( t )  and N ( t ) + l  cases. A appmach is used to derive such moments. 

Thedysisdwdopedhingesonanapdooofthemomentsin~ofthe~ulant~ofthe 

underlying time renewal sequence. and is founded on the recognition that certain sets of random 

variahlu are conditionally achangeable This givu rise to equivalence clases for the case N ( t ) .  

and to apc&&ion d 1 e  ckpa for the case N ( t )  + 1. Baida  that, the theory of martingala 

is used for the case N ( t )  + 1, whm 4 generalize asymptotically Wdd's fundmentd equation in 

the discme time 

The second subject is dmted to the audy of optima control problems of linear stocbartic 

continuoustime systems, when the continuous time domain is decomposed into a 6nite set of N  

disjoint random interval of the form [t,, t,,), whm a complete state obsenation is taken at each 

instant t.,O s i 5 N  - 1. We consider two optimal control problems termed (piecewise) time 

inMMnt control and time variant control. Conrrrning the obsenntion point procus, we consider 

f a s t ,  the general situation what  the increment intmvds are i.id+.vs with wspedied probabi ic  

distribution. Second the aponentia diaribution is considered. h this context, optimal control law 

are obtained for both control problems. 

The third subject is concerned with the interplay between gradient estimation and ratio uti- 

mation. Givm u n h i i  estimators for the numaator and the denominator of a ratio, as well as 

their gradients, joint central limit theorems for the ratio and its gradient are derived. The resulting 





Kcm Ctudions dam arte rhbf tmis sqjas qui sent: 

Proassru~deRcnotmllemen+~eSrochast iqueetEst imuionduGradient  

L e p r r m i a s t r j a e n ~ u C d n ~ d e S m i r h w r 1 a ~ ~ e t l a p a r t i e d u d C b u t  

de I'artide de Glynn et Hadelbager wr l a  propriMs du biais du simhtbm a m  conninter de 

bud* Now dc4Ioppom pow cette classe de pmcests cumltktiQ d a  nouwlla mCthoda pour 

Cvalua expliatcment et arymptotiquement d a  moments arbitraLes d'rur produit de n pnmcsus 

cumdatifr de mnou~emen t  aplx gain h dnletu PeCtOrielle .ppel& l a  car N ( t )  a N ( t )  + 1. Uut 

approche c o r n b i k e  at mix B contribution pour obtmir de tJs moments. L ' d p  dtnloppk 

d+d d a  exprrssions d o  moments en tames d a  cnmtlkntsde ksuitc d a  temps de m~ouvellement 

sotu-jarrnts, et at bade sur la que cataim enwmbla de variables alcato'i  sont 

conditionnellanent intertbangeabla. Ceci donne lieu h d a  ckrses d'&uivalenca pour le as N ( t ) .  

a a d a  darsa sommabla d'apCranm pour le as N ( t )  + 1. En plus, la &Cork d a  martingales 

a t  utilkk pour Ie cas N ( t )  + 1, o i ~  nous g&&& asymptotiquemat I'Cquatiou fondamentale de 

Wald h temps dixm 

Le deuxihe sujet at VUUC A 1'Ctude des probltma de conMe optimal d a  systhes stochas- 

tiqua B temps continu, longoe d u i u  est dCcompos6 en rur ensemble fini de N  intervalla al6atoira 

disjoiiu de la forme It.,t,+~), oi une obacrvaton complkte de I'bt at priw h chaque instant 

t,.O 5 i 5 N - 1. Nous considCmns dans a cadre, d n u  pmblCma de contr6lt appelLs contr6le 

i n h t  par rapport aa temp (par moraaur) et contr6Ie variant par rapport au temps. Au sujet 

du p n m ~ u s  ponauel d'observatiom, n m  considtrom en prrmia lien, k situation g&&ale lorsque 

l a  accroiuements d a  intavalles sout des v.a.i.i.d sans spccir;a la loi probabiliste. Emuite, la 

distribution expouentielle at coaridCrCe Dam a cadre, l a  lois de conMe optimal soat obtmua 

pour l a  d n u  probltma. 

Le troisitme sujet traite d a  effets combin& a t r e  I'utimation du gradient et I'utimatiou du 

quotient. Ayant d a  atimatnvs u o n - b i  pour le uumCratetu a le d&ominatevr d'un quotient, 
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Claims of Originality 

The folloring contributiom arc msde in thia th& 
~ o f a p r o d t r c t o f ~ ~ o f n d i s t i n d c r r m o L I i v e r e c t o ~ ~ m e r ? l m a r d  

pmxses. termed N(t)  and N(t) + 1. are considered and a d -  in full detail. 

Tbe product of random M e s  occllrring in P, ( t )  = =;' e0 is partitioned into 

eqnivdence ckrsa for the ax N(t). 

An arymptotic e r p d o n  for E[P,(t)] is obtained, and a recursive scheme is given for 

genaating monomials occturing in E[P,(t)]. 

The product of random variables occllrring in c ( t )  = E,, =(:)+' Y!' is partitioned 

into apeWion d l e  cLga for the use N(t)  + 1. 

An atymptotic e r p d o n  for E[K( t ) ]  is obtained, thus gmaalidng arymptoticdly Wdd's 

fundamental equation in disc& time, and a rrcllrsive xheme is givm for generating mono- 

mials in E [ c ( t ) ] .  

0 Linear stochartic continuous syrtmw are considered whae the time domain is decomposed 

into a finite set of disjoint half~pen random intervds, where obxrvationr arc taken at  the 

initial htant of earh i n k d  For such syrtmw, two control structum are considad 

piecewise-time invariant and time variant controls. O p t i d  control laws arc obtained for 

both cases. 

A con6dena in terd  methodology for atimating the partial derivative of a ratio is dcvel- 

oped and a joint central limit th- for the simultaueous esrimation of the entire gradient 

is obtained. A low bi esrimation for the gradient of a ratio is givm. 
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CHAPTER 1 

Introduction 

This the& is the d t  of sMnl papem in the arra of applied probabiity and related topics. 

There are three mbjects add& in this thak: 

F i :  Cumulative Rmewal Procavs 

SKond: Stochanic Contml 

Third: Gradient Estimation 

Chapters 2.3 and 4 arc motivated by applications of renewal reward pnmssa  in the a ~ s  of 

electrical engineering as well as in management science. 

Indeed, the random variables introduced and and+ in these chapters, symbolically written 

as Y,"), have a conaete interpretation and di- practical applications. For example, consider 

the context where we have a dam, to which we awdate random variables Y,(",Y,(') and Y,") 

respectively representing the amount of rainfall, water e r t r d  and electriaty sale during the r-th 

subinterval of time. 

The length of each subiitavd is defined by the time between the owt of two successive 

rainfdls. We 0bse.r~~ these variables in the interval [O, t). La N(t) be the number of renewal times 

(number of distinct storms) in that i n t d  dearly N(t) is a random integer variable which is known 

as a counting pmcus. 

It is of particular intepest to nraluate the p i t  statistics of total (cumulative) rainfall, .Iram u- 

-acted and electriaty sale in the intend [0, t); symbolically expressed as: E r g  Y!')], E rc d"] 
and E Y,")] ; for estimation. fomaning and hydmplaning pupc6cs. 

While. ideally pmbabiity distribution functions muld be bigldy desirable, they are difficult to 

obtain. H o a m ~ ,  much information is contained in diflmnt moments of these variables: averages, 

variances, comlation &dents. M e r m o r e ,  despite the fact that it is the total amounts on 

interval [O,t) which are of immediate interat, summations on N(t) renewal cydes and (h'(t) + 1) 



ID Chap- 2  and 3, we develop a rigomm theory and &dent method t o  zsymptotically 

cvdoate the above momentr and more onnplicated forms. 

WeekboratcinChapter4onalineamationtcd1niqueto~puteE 

NW+l 
Y!')] , which seems to be very tedious C!mseqnently. a~ can apprrciate the &ciency of the 

alykative methods developed in Chap- 2  and 3. 

Specifically, Chaptm 2 3  and 4 arc i n s p i  &om the aork of  Smith ([ lo.  [ l l ] )  and Mturhy [9] 

on cumulative pnx t s eh  and the early part of Glgnn and Hddelberger's papa on bias propaties of 

budget constrained simulations 181. SrieBy, their article is concerned with the problems of analyzing 

and producing low b i i  etbates from Monte Carlo simulations, within a budget constraint t that 

reptesats the madmum amount of computer time allocated to the simulation. 

We study in these chaptas cumdative vector renewal reward pmccses. We develop t bae  

new methods for cvduating explicitly and asymptotically the expectation of a product of n distiict 

cumuktive vector r e n d  -d pmceua. We consider tm major c h u  of such p- termed 

N ( t )  and N ( t )  + 1. 

We study mpecrively the cares N(t )  and Nft )  + l in Chap- 2  and 3, w h m  we develop 

a combi tor id  approach to derive explicit and asymptotic a p d o n s  for arbitrary moments of 

cumulative vector renewal reward procc~sa. The analysis developed hinges on an expression of the 

moments in terms of the cumhuts  of the underlying time mead sequence. and is founded on the 

recognition that certain sets of random variables an conditionally achangeable. This giws rise to 

equivalence classa for the case N ( t ) ,  and to apccWion snmmable ckua for the czse N ( t )  + 1.  

Consequently. Smith's 1111 asymptotic theory of  cumhuts  is applied. Besides that, we need the 

theory of martingales for the case N ( t )  + 1. to -me the difficulty inherent to the analysis of the 

last renewal cycles involved in the summation part, which arc pmbabiically quite different from 

the other variables included in that summation part. T6is is the m e d  renewal paradax. Chapters 

2  and 3, an published as 'Cahiers du GERAD" G94-32 [2] and G97-34 131. and wil l  be submitted 

rupectively to Mathematics of Operations RMMh and to Advanm in Applied Probability. 

As we said, in Chapter 4 4 elaborate on a standard linearization technique using the character- 

istic function, to evaluate explicitly the ezpecration of a product of triple summations of cumulative 

processes, as the time horizon goes to indnity. This chapter provides an independent check on the 



~dityofthemabodsdepclopedinChap~2and3. Thischapterispnblishedas W a d u  

GERAD" G94-13 [I]. 

The mot imtb  behind Chapter 5 is the iospeaion paradiga where mearcmaits of stochasric 

systems for example indve certain cats. In this chapter, re have the contat wh- one has to 

isplement a closed-loop conPol of a stochastic system and random mode of sampling is chosen as a 

means of o w  it. The total nmnber of o b a m t b m  is bed, but the control horizon is random. 

The solution of the linear q d m t i c  Gaussian regdata is genadized to this sirnation. 

Specificdly, in Chapter 5 re hldy optimal control problems of linear nochartic mrinuotls- 

time systcmr when the amtimolls time domain is decomposed into a h i t e  set of N disjoint random 

i n t d  of the form [t..t,+l),O 5 i 5 K - 1, at the s t a t  of each a state obxrvation is t a b  We 

consider two optimal control problems tamed (piecewise) time inmiant control and time variant 

control. h e  to the informaZion &e. obsenation s t m c t ~ ) ,  on each intend a state s p ~ e  system 

with complete initial state o M o n  is defined. Concaning the observation point p ~ m .  an, 

lint, consider the general situation where the increment intavals are i.idr.va with wspeci6.d 

probahi ic  distributions. Second, the ecponmtial distribution is considered. In this context, 

optimal control laws are obtained for both control problems. The ckss of problems studied in this 

chapter are open to generdization to problems which appear to be significautly more difficult in 

particular, there is the case where the total number of obsenations N is random. There is also a 

possible link betanen that case and Chapters 2 and 3. A scalar version for the time variant caw, 

which is the Kaar example 5.1 of Chapter 5 in this thesis, has been presented for the Cyprus 

conference 141. Chapter 5 will be submitted to IEEE lhmactions on Automatic Control. 

Chapter 6 is conctrred with the interplay between gradient atimation and ratio estimation. 

Given u n b i i  cnimators for the numerator and the denominator of a ratio, as well as their gradi- 

ents, joint central limit theorems for the ratio and its gradient are derived. The resulting confidence 

regions are of potential in- when optimizing such ratios numericdly or for sensitivity analy- 

sis with mpect to parameters whose exact value is unknown. This chapter also briefly discuses 

low-bii estimation for the gradient of a ratio. There is a potential link between Chapters 5 and 6. 

Indeed, on the one hand, we showed in Sections 4 and 5 of Chapter 5, that the optimal cost--go of 

an arbitrary stage is apmwd as infinite horizon h u n t e d  cost. On the other hand, it was shown 

by Fox and Glynn [6], that the krfinite horizon h u n t e d  cost of a regenerative proass can dso be 

expressed in terms of an appropriately chosen ratio ertimation problem. An earlier vmion of this 

chapter was given at the Optimization Days (51. Chapter 6 k the theoretical part of a proceeding 

paper whicb aas presented at the W h  Simulation Conference [?j. 
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CHAPTER 2 

Asymptotics of the Moments of Cumulative Vector Renewal 

Reward Processses: The Case N ( t )  

1. Introduction: Classical Definitions and Notations 

Consida a renewal sequence {t.) i = 1.2.. . of i id non negative -la (time intenal). 

To each t,, we arsodate a random vector function Y. c ELd, d 2 1, which in general depends on t.. 

We amme that [t,.YJ, i 2 1, is a sequence of iid. random vectors (the components of Y, could 

be interdependent), where ' indicates vector transpoDitioe The general problem of in- h m  is 

that of obtaining asymptotic expression of E[P,(t)l as time t inmeaws, where the products Pn(t), 
n N(1) 

n 2 1, are ofthe form: Pn(t) = n ( x ) y l O .  (0 refers to the P component of the Y. vector. N(t) 
Irl 1-1 
N(1) N W + l  

is the random integer such that x t. 5 t 5 x t.. Such sums appear in the study of cumulative 
-1 .rl 

p r o c e ~ a  (Smith [MI). 

Intmst in this problem stems from the relation that aim between the moments of a random 

variable vector and its (possibly multivariate) characteristic function under the form of a Taylor's 

expansion around the origin. Thus, for ezample, if the sequence of Y.'s is axakr sequence, knowledge 
N ( t )  

of the asymptotic behavior of E[X Y.]'. p = 1.2.3. ... could permit Jharper estimates of the 
-1 

N ( 0  

asymptotic distribution of [x Y.] via inversion of rational appmdmants of the partial Taylor 
'-1 - 

series arparuion of the arsodated characteristic function 6(e) around e = 0, than could allow a 

central limit theorem bwd analysis. 

we write: 



W e ~ t h a t t h e ~ ~ u e f i n i ~ d t b u t h r ~ o f t h e { f ' s } , F ( - ) . i s  

cks 9 (Smith [ l q ,  ic, the cks of d & t r h t h  f m d c a s  for which the k-fold d u t i o n  of the 

f u n c r i o n a i t h i U e l f h u a n a b m l r r t d y ~ ~ p a n e n +  

Obviously qP,( t ) ]  is the a p a i a t b  of a product of rrrmmuions of n (in general) diainn cu- 

muIativeproasa F o r e r n l r u t i n g s a c b ~ w e r i l l r e p i r e t h e c o n a p t o f ~ i  

of random variables Also, we rely on Smith's [lq ~ p t o t i c a u a l y s i s o f ~ m ( r m ~ ~ t s o f  N(t). 

as 411 as the theory o f d i n a t o r i c s  (Comter [6]). 

Indeed, i n r p i  from the early part of Glynn and Hddelkrgtr [Q], our analysir hinges on rewg- 

niring that a numba of products of random variables ooxmhg in P,(t), ha4 the same -on 

wbm conditioned on N(t). Subsequently we ckssify these random variables into conditional errpec- 

tation equivalent ck9er. and the cardinality of ucb ck9 is erprrssed in terms of  N(t). Finally, the 

asymptotic bthaviour of the acpectation is e x p d  in terms of the asymptotics of N(t) as t goes 

to infinity. 

This chapter is organized ar foliotsx A remind- of the concept of achangeability of random 

variables is presented in Section 2 A study of the asymptotic behaviour of E[Pl(t)] an3 qPz( t ) ]  is 

given in Sections 3 and 4 mpeaively. The results am 411 known but these two sections constitute 

an illustration of the main steps of our methodology on relatidy simple caws. We present in 

Section 5 useful elementa of combiiorio and achangeabity results asenrid in partitioning the 

product of random variables in P,(t) into equivalence cksse* In Section 6, we give an asymptotic 

expression for E[P,(t)]. Derailed dculations for evaluating expliatly the asymptotic expression of 

E[P,(t)] am h e d  out in Section 7. Finaliy, a recutsive scheme is given in Section 8 for generating 

P,(t) occurring in E[P,(t)]. Note that Jensm's paper [lo] addmsa the same ksus, but for 

E [(y Y,) '1, and the andyticd methods are quite different. Thus, this work is more general. 
u t  

2. Preliminary Notions on Exchaageabiity 

The random variables ( Y ~ ,  &, . . . , Y,) are Mid to be acbangcable if (Y,, ,Y,, . . . . , Y,) has the 

same joint distribution as (YI,&,. . . , Y,), whenever ( i 1 . i ~ ~  .. .,in) is a permutation of 1,2,. . . ,n. 
That is, they am achangeable if the joint distribution function P(Yl 5 y1.h 5 n..... Y, 5 y,) is 

a symmetric function of (y~, n.. . . .yn); (Rms [14]). The concept of exchangeability was introduced 

by DeFietti [8] in his dauicd paper in 1931. For more details and applications of this concept see 

e.g. Chow k Teicha [5], Kingman [ll] and Koch k Spizzichino [12]. 



We consider h a e  the cau where N ( t )  and Y, arc dependent on each other, otharise the 

pmblmrof-aluat ing~r2 -1 K] andva$? ,-a XI ~ ~ ~ H b e s i r n p l * ~ ~ ~ ~ ~ ~ .  

La W,' = (4.K') and let (Il(1) ,... .Il(m)) be perrrmtuion of the in- 1 . 2 . .  . .m 

Then it can be sham that 

P[(WI ,..., w,) cAIN(t)  = m ]  = P [ W I I ( I ) , . . . . W I I ~ ~ ~ )  c AIN(t) = m ] .  ( 3 1 )  

See G 1 w  & Hadelbaga [9] and FInss 1141 for (3.1). 

Therefore { W , ) , i  = 1, ..., m )  arc e~nditiondly a&angeable random vectors; then follow- 

ing [9]: 

Using the proparia of conditional acpectations: 

whae I( . )  k the indicator function. and the last equality s t m u  from the fact that N ( t )  = 0 if 

I ( ~ ( t )  2 1)  = 0. Under condirioning this time on t l  we have using the conditional independence 

of Y l ,  N(:), given :I: 

E[Y,N(:)]  = ~ ~ [ f i ~ t ~ ] ~ [ ( ~ + w ; t - t ~ ) ) ~ ( t ~  < t ) ~ t ~ ] ]  (3.5) 

In (3.5). one can utilize the m p t o t i c  aprrssion of &[N( t )  + 1)] developed by Smith [l7], as 

- t l )  + 72 + w(t  - t l )  where n and 72 arc coustauts which can be calcdated, and w(t  - t l )  is 

o ( l ) ,  for a givm t l .  



Note that Equaion (3.6) mindda perfealy with Lemma 1 in BnnmkSofomon [4] and Equath 

(3-3.6) in Mlvthy [IS]. Hoacorr. we have to rmderline tht our approach, wh5e not necessarily mu& 

easier than theirs, more easily gaerdizes to the bi- q I S ( t ) ]  and multivariate qPP.(t)]  cavr 

Note also that a gmmlization of  E [ K E [ ~  + ~ ( t ) ]  I(tl > t ) ]  = 4 1 )  rill be requ id  and proved in 

LemmasofSection6. 

Inthiswtiou,werilldedaith~typaofMdarcllmrrktivepmces. 
Nlt) NW 

Carrying out the ordinary multiplication of C Y;") C d t s  in the following taro 
"1 "I 

dimensional array valid for any N(t )  2 2: 

+ Y;;)-~Y?) + Y $ ( ; ) L ) - ~ Y ~ )  + Y:;)-,Y?) + . * - + Y&;)-~Y$;)-, + Y&)-~Y$;) 

+ yl') yl') + y(1) y e )  + y(') yl2) + ... + y(') yl') 
N(1)I  N(1)Z N ( t ) 3  N(t) N(t)-I+ Y&)Y$;)L) 

Kote that from (4.1). we can o b w w  two dXmnt cases; the first one is characterized by the 

random variables e ' ) @ )  for i = 1 , . .. . N(t ) ,  wbicb arc ud. ,  and the other is derived from the 

random variables Y;':(')$').i # j where i ,I ' - - 1.2.. . . , N(t ) ,  which may be dependent. 

For this bivariate casc, we wish to prove that: 



Indeed, E .  (44) follors hxa (33) and atmming as we are about to show that (4.5) is 

true, then we wotlld have for m > 1: 

and for m 2 2: 

Using Equations (4.4). (4.5) and (4.7) d t s  for m > 2 in: 



and using (4.6) 

which is Eapation (4.3). Now that (4.10) d d  still be d i d  without the indicator functions. 

It remains to establish Egrration (U), which asentially i s  a ckim that, conditional on N ( t ) .  

the variables Y??(20.i = 1,. . . .N(t) .  j = 1, .  . . ,N( t ) ,  have the same ercpecration if i  # j. Such 

sariable will be termed conditional epuiwlrnt Note that conditional ercpecration quiv- 

alence is an q u i d m c e  rrktioe We establish (45) .  by 61% showing that under the prwailing 

arsumptions, a given row or a given column of array (4.1) cormponds to conditionally achangeable 

random variables, a long as i # j in el)Y,(Z'. La us then nate the following lemma: 

LEMMA 1. Fm m 2, E [ ~ ' ) Y , ( ~ ' ~ N ( ~ )  = m] = E[Y,("*)IN(~) = m] for i # j 
a n d i , j = l , 2  ,..., m .  

Proof. lkfine for m 2 2.2,  = ~ , ( ' ) x ( ~ ' , i  = 2, .  . . .m, a sequence of random %&ables and let 
(w) .... , n ( m ) )  be any pamutation of the in- (2 ,.... m).  We haw for m 2 2, and for 

arbitrary scalars Z,, i = I,. . . ,m: 



Note that the step fmm (4.11) to (4.12) is based an (3.1). Thus for m 2 5 the conditional 

randomva~iabla (~ , ( ' )YI(" \N(t )=m). j=l  .... mmccchangabkandininparti* 

*)qG)lN(t) = m] = &p'P1@'lN(t) = m], j = Z....m (4.15) 

Using s i m k  argnmmts for a col~l~llll in the erpansion of (4.1). ic if one considas the random 

variables Y,")(')Y:'),i = 1.3.. . . .m; it is possible to prove the interchangeability of the conditional 

random variabla (Y,(1)(')Y:2)l~(t) = m )  for m 2 5i # 5 and thrrs: 

The lemma derivu h m  (4.15) and (4.16). 

Equation (4.10) now f o l l a  directly fmm (45). 

h o m  (4.10) we obtain: 

N W  
4.1. Aaymptotk Explicit Expression of EE Y,(O X Y,"]. Using Lunmas 5 and 6 

-1 

in Seaion 6 4 have asymptoticdly, E[el)y:''&(t - t l)I(tl  > t)] = d l ) ,  E[Y:"Y:"&(~ - tt - 
t2)I(tl + tz > t)] = o(1). &[*)~:')m(tf)] = 4 1 )  and E[*)@)uz(<)] = 00). where &(t) 

E[(N(t )+l)(N(t )+2)  ...( N(t)+k)] ,  k =  1.2, ..., anthetl l~~&e~fN(t) ,w(tf)  4wl( t - tr )  



The result of E g  x( t1 ]2  is already hp. in the literature but has been obtained, how- 

ever, using a different appmacha amongst which a computation of the ch--wWrktic hmction of 

I("]': M ~ Y  [lsl). 
- - 
Murthy'l appmach bemma of exceeding complexity fw the evaluation of  Er? Y,")]". We 

u, 



Itxrmsnerrrrthelm~crrlttoradrletbegcnerdcsrebarcdonth&paper. Bdolestarting 

thencaseaio11andinordatofadlitatermdenrrndingdenrrnding1~m~the~ofEgrvtion(~l0) 

for the tIivaliate care: 

On the RHS. of (422) we observe rrspeaively from the &-st tam to the last one the foIIoaing. 

a) Yy1Y,(')5((") is one block of letten (or random variables) having the same lower index 

which is one. 

b) Y:')Y:~)Y;') consists of tao blocks which arc Y$')Y:') aud Y:'). The caxs of  Y,(')Y:')Y:" 

and Y ~ ' Y ~ ) Y : ' )  are the same as tbat of ~')Y , ( ' )Y!J) .  

c) Y:')Y:')Y~) is considered as madeup of thm blocks given by Y:",Y,'~' and Y:". The 

Iowa indices are arranged in increasing orda from one block to another. 

S i o b s e n a t i o n s  are applicable to Equations (4.10) and (3.4), the last one being the simplest 

caK. 

As we -k d t h a  in Equation (4.22) or (4.10) we have respectively a partition of 3 or 2 

letten into distinct blocks. The generalization of this id- ir, a partition of n l a m  into m 

d i s t i a  blocks wil l  be an essential notion in the forthcoming section. 

5. Partitioning the Product of Random Variables in P,(t) 
N ( t )  

Let us refer to n as the index in the product fi ( C Y!')). Thus in an inda 1 c a ~ ,  we 
' -1 -1 

Nll) 
have xY!'); arr arc able bae  to distinguish one equidence dass (variables in a sum that have 

the gi expectation conditional on N(t)). h the inda  2 case, the number of distinct equivalence 

clarsa is inherited in part from the index 1 cau, all T(')Y!~) type variables, plus a new equivalence 

day specific to the index 2 when all indices am different i.e. e1)Y:),i # j type variables. In the 

index 3 cw, the equivalence classes arc inherited in part from the index 2 cw. Indeed we have 



g i v c n b y t h e r u r m k r o f ~ b m ( t k n c ) ~ r i % a m r m k r d a n ~ m c e b ) . X l s o  x(1'u;(2)~),~)v)l?) E Ir;(l)v)?) and el)v)F).i # j type m a  posses 2 blocks 

since y!')F),~(:(')k?) and e)qm) behm as index 1 variables F i y ,  we have a ringle new 

equid- cko %(')~@)e) for i, j,k di&rmt. apedfic to the inda  3 case, which obviously 

mtative of dl eqnivalmce dasa (mnditiond erpecLarion equivalence) of random variables i n c o w  

rating m blocks. Also kt monfimn' be the mnnnmi.l rasodued with the pb distinct equivalence 

dass with n(-"). The lorn indim from one block to amtha  arc arranged in increasing or- 

der, while the upper indim within each b- an arranged in increasing order. The ordering of 
monomials within n(%"' is -hit with the lorer index order domkdkg the nppcr index 

order. Thus for the inda  1 care. we have one monomid given by monnf") & Y:') wprr~llta- 

tive of the equidence dast of type variabk. T h e  are N(t) type monomids repnxnted by 

monnf"). In the inda  2 case, the number of equivalence ck+ra is inherited from the index 1 

case plus one equivalence class specific to the inda  2 Indeed, ac have one hereditary monomial 

monnfZ' k Y:')Y~) representative of N(~),Y,(')Y,(~) type random variabks and one new index 2 

specific monomial monny") & ~ " ~ i "  representative of ~ ( t ) ( ~ ( t )  - l),Y,(')?(') type random 

variables for i # j. In the inda  3 case, the number of equidence ck+ra is inherited from the 

index 2 case plus again one inda  3 s p d c  eqnidence class. Indeed, we have one hereditary sin- 

gle block equivalence class denoted monnfa) ? Y:~)Y:')Y,(') rcprrsenting ~ ( t ) Y , ( ' ) p )  type 

variables and three hereditary nro blocks equivalence dassa denoted monnra)  Y:')Y(~)Y"' 1 2 ,  
monnya) y(~)y(vyc~) and monny) g Y(l)y(2)y(v 

1 1 2  wp-ting each ~ ( t )  (W - 1) ran- 

dom variables. F i y ,  the equivalence class monnpa) g Y~)Y~)Y:) is s p d c  to the index 3 

case. In order to show that, indeed the partition ~(;(')y!''Y~') is equivalent to Y,(')~('Y~\ i, j, k 

pairwii different; we need here the following lemma which is a genaalization of Lemma 1. 

LEMMA 2. E[Y,':)Y,F) .. .Y:)lN(t)] = E [ Y ~ ) Y ~ )  ... Y?)IN(~)] for 011 poinoise distinct 

i,,it;l 5 i,,ik I n  andN(t) 2 n. 

Proof. Using asentially the same approach as in Lmuna 1, we can easily show that if one 

carries out index changes in one variable only at a time, the d t i n g  random variables have the 

same expectations conditiond on N(i), as long as one vaifies the pairrrix distinctness of indices 

assumptions Thus for aample 

By promding repeatedly for Yi2), Y:), . . . .,Y,?"' suMfively. we reach the equality in Lemma 2. 



2.5 PAannOhNC TBE PRODUCT OF aAXPOM VAaUBLtJ Le P.(t) 

ProoL The result derives M y  from Lemma 2 Indeed, the product n for a g i n  k 
ut 

involves variables defined at the same time inda  jk. 'Thus they o d d  be considered as a single 

random variable d d  v,. G i n n  that the indias j x ,  jl, . . . , j, arc paimix distinct, the variables 

for k = I,. . . ,m are mutually independza Also, g i n  that the Ik blocks, k = I. .. . , m are non 

intesuthg, the random variables arc all distinct. Thus they satidy the conditions of Lemma 2, 

and Corollary 1 follows. m 

Note that Corollary 1 constitutes the basis for d-g equivalence clascs in an arbitrary index 

n cw. Each time one is able to recophe a distinct partition of the indices of the n components of 

the = (Y(l) Y(2) . . . Y(")) vector into m blocks, it will define a new equivalence k 

Let S(n,m) be the number of ways one can partition a sct of n distinct elements into m 

uon-empty subsets (or blodrs) [I]. 

S(n,m) are Stirling's numbers of the second kind. Note that the total number of distinct 

equivalence darJes for inda n is ginn by: 

n 
Bn = S(n.m) 

m-1 

The sequence Bn,n = 1.2 ..... is hrm as Bell's number (after Eric Temple W, see An- 

drews [3]). Finally, note that the cardinality of an equivalence clay awxiatd with m blocks is 

A:'') if N(t) 2 m which we also denote by N(t)(") f N(t)(N(t) - 1) ... ( ~ ( t )  - m + I). This 
leads to the following lemma which is a generalization of Quatiom (4.6) and (4.8). Recall that 

mon is the monomial representing the l-th distinct equidence class. within the equivalence 

classaassodatedwithm blocksandindan,forf = 1.2 ,.... S(n.m). 

ProoL Lemma 3 follows from Corollary 1 and the remarks thmafrer. Indeed in the expectation 

~[~,( t ) lN(t ) ] ,  one can subdivide monomials into equivalence daua corresponding to m blocks. 

m = I,. . . ,n. Within the m blocks dassa there wi l l  be S(n,m) distinct ways of partitioning the 



n components of mxtor z, each r e p d  by virtue of  CarolkrJr 1 by a single mnnnmi.l mon 

n:*").c= 1.5 .... S(7x.m). Wiachsllchqid~~~ckrSthetatdnltmberofmonomiabis 

N(t)(-) .  Thus, the eprrality in Lemnu 3 is a mathematical t-1 of thae fac& 

L e t t u n o W ~ t b e ~ o ~ ~ o f L r m m a b  

The next lemma is dro e&¶y to p m  tuing rm&d conditioning and the independence of the 
f immrraardvumrsfromN(t) ,dWontl . tp ..... t,,,. 

m 

L- 4. ~[N(t)(")monII:*") 1(1 ti 5 t ) ]  
-1 

m m 

= E[~[monII::-*lt l.....L] E [ ~ ( N ( c ) + ~ ) I ( ~  ti 5 t)1t1 ,.... L 

m 
"1 -1 

dm t: P t - t.. 
e l  

The following result is a consequence of  Comllary 4 and Lemma 4. 

Note that Proposition 5 gives the aact aprasion for E[P,(t)]. However, we are intmned in 

an arymptotic expression for that crpeMion. Using Proposition 5 and Lemma 4, this question is 

tackled in the next section. 

6. Asymptotic Behaviour of E[P,(t)] 

In order to chatacMize the asymptotic behaviour of q P , ( t ) ] ,  we need to focus on the arymp 

totia of rams of the form: 

NW, that E @ ~ ( N ( ~ T )  + r ) ]  is ~ , ( t : )  rith t1.tt.. . .,L treated as paramr 

t m ,  and whae &(t) is the kaorid moment of N ( t )  (ar defined by Smith [1'1]), we can w the 

asymptotic theory of &(t) (Smith [lq). We gather from [1'1] the following facts useful for our 

analysis. 



I 
.n 

= E monUiqn) [n(t?)m+%(t~)m-l +-.-+Y,,M +w(t?)] (I(E k 5 t))] 
-1 

We proceed to show that under some moment finitenus armmptions to be specified: 

[ 
m 

E [n(t?)m] I(Z t. > t)] = o(1) 
U 1  

and 

~[mon~~:"'."'w(t~)] = o(l) 

6.1. Proof of Equation (6.3). We need the following lemma 

Lmau 5. Under the hypothuk that 

for any arbttmry portition of the n componm(s of into m bl& for m = 1.2. .... n, then 

E [ mm@m.n) [t:(t:)ml~(E t. > t)] = o(1). 
,-I 

Proof. We have: 

E[I moflj".") (71)(t?)" I@: t, > t )~ ]  < I~I IE[ I  mOdim."' t, 1g ts > t ) ~ ] .  

But, E [I ~ O ~ I I : ~ . ~ )  P I  t. > t) 11 5 E [lmonIIim.") t,) I t. > t)] ; while the right- 

hand term is the tail of the -on integral in (6.5). which as t + m must go to zero since the 

expectation in (6.5) is armmed to be finite. Thus, the lemma dm= from the above two inequalities. 

m 

6.2. Proof of Equation (6.4). Note that w(t) is of bounded vaMtion a d  thus d ( t )  is 

of bounded variation. Also since w(t) is o(l), 4 ( t )  is at least o(1). We can auu that E[w'(t)] is 



4 1 ) ;  indeed: 

m 
a h r n ~ P ~  t,andFm(B) isthediatribntiaof&. 

u l  
S i n e  4:) k of bounded variation, then it is bounded. k t k m x c ,  Fm(B) bdng adisrribntion 

function. is of bounded -on (or since F,(B) is ckrs 3 (Smith [17j), then F-(B) k of bounded 

mriation). Thus the conditions of Lemma 1 in Smith [IS] il satktied and q d ( t : ) ]  is 41) .  We 

can now sfate the following lemma 

L u a u  6. Under the ~vwnpt ion  that q man XI:*"'P < oo, then &[ mon ~ ( t : ) ]  = 
4 1 ) .  

F i y  4 have the asymptotic behaviour of qPn( t )]  given by the following theorem. 

THEOREM 1. Under LllC ftu(mur of monuni~ assumptionr in h n w s  5 mad 6, and the w- 

sumption hi distribution fundim F(-) is  Jou 3, 

w h m  the y, 5 h e  cmrrrpond to LllC cuymptotic cIprruion of &(t),  the ma order cumulant of 
m 

N ( t )  ~ ( g i v r n i n  Theorem1 i n [ 1 7 j , a d t F = t - C  t.. 
PI 

Proof. Tbb theorem follows from Proposition 5 and Equations (6.2) to (6.4). 

7. Application 

In this section, d g  the conditions of Theoran 6 are satisfied. we evduate erplidtly and 
3 Nit1 

asymptotically &[n y,"']. 
t-l  .=I 

From Smith's [1'1] Lemma 6, we have 

where O&(s) and P ( s )  are LaplaccStieltja transform of dm(:) and F( t )  mpe*ively, and F ( s )  is 

given by Lemma 3 in Smith [17] as 

Z"(*) = 1 - + EZ - . . . + 0." + 
2! n! 

(i.2) 

for red s > 0. 







2 7  APPLICATION 

Note also that Equation (7.5) cannot be furthm simplified. However, if ~ ' l )  Y,IZ) t Y,") I 1, 
then (7.5) becomes exactly E[N(t)13 giwn by: 

4 

+o(U 

Note also that Equation (7.6) coinades perfectly with E[N(t)13 in Ad&, M. 6: Malhame, 

RP. [Z],  and Murthy (afm correcting his algebra [IS]). This provides an independent validation of 

the approach elaborated in the pmmt chapter. 

c4 = 3 
c, - Od-y,u. 

*I 

C6 = !*. 

G = 3  

- -3u=Y+"y: . 0 -  '44 

Note that in the ddopment  of (7.5) we used the f o U e  



The monomials ocemring in qP- ( t ) ]  arr genentcd ruunivdy and inherited from ea=b o t h 4  

following by that a s p d c  pattern sccording to the analysis i. in this chapter. Far aam- 

ple. mot@") = s(;(')y!l)l$) (mommmial Msodated with a partition of 3 lettm into 2 blocks), 

gen- in the fourth gareration the following three distinct monomialr 
Y, ( ' )~P)~( ' )~(~)  y ( l ) y ( 3 ) ~ ( ' ) ~ ( 4 )  ,d y,(')y,(9y20)yp) 

1 2 . 1  1 2  2 

As 4 can remark, the first two monoraids are rrsodwd with a partition of 4 letters into 

2 blocks In each of these two gar& monaniak, the "new" letter Y(') is located at the end 

of each block. taking as Iowa inda the poaition number of this blo& The last monomial has, 

however, 3 blocbr; this is an augmented (in the number of blocks) or innovated monomid. where 

Y@) is located at the end of t h e  two blocks and has 3 as Iowa i n d a  

In garad, mod:"'"-') garerata in the n-th generation m monomials of n letters with m 

blocks, plus an augmented monomid of n l a t m  with m + 1 blocks, following eumtidly the same 
pattern described pmiourily. 



Thw arc B4 monomidsfor this g m d o n  (B, = 15). 

n-th Generation = (YW Y(') . . . Y(")) 



9 .  Conclusion 

As an observe, the evduation of E[P,(t)], using the prrsent approach. h based only on &(t:), 

since the monomials of Pn(t) are gmQated rmmivcly. Note that the consta~~ts 71 to 7-1 in the 

expansion of &(t)  can be computed using ag. an algorithm of Tcu& [ID]. Thus, using a symbolic 

language of programming as Maple or Mathematics, the symbolic computation of qP,,(t)] can be 

performed efficiently. 
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CHAPTER 3 

Asymptotics of the Moments of Cumulative Vector Renewal 

Reward Processes: The Case N(t )  + 1 
UGeneralization of Wdd's F'undamental Equation in the 

Discrete Time: An asymptotic Studyn 

1. Introduction: Classical Definitions a n d  Notations 

Consider a renewal sequence {t,) i = 1.2,. . . of iid. non negative variables (time intavals). 

To each t., we arJocLte a random vector function Y.  ( Rd, d > 1, which in general depends on t.. 

We assume that [t , ,xl ,  i > 1. is a sequence of Lid. random vectors (the components of Y.  could 

be interdependent), whae ' indicate vector tansposition. The general problem of interest here is 

that of obtaining arymptotic expression of E [ c ( t ) ]  as time t iuaeaxli, where the p d u c u  c ( t ) ,  
n NW+l 

n > 1, are of the form: P;;(t) = n ( x eq), (0 refers to the pb component of the Y.  vector, 
1=1 - *=I 

NW NW+l 
N( t )  is the random integer such that x t. 5 t 5 t,. More generally, we can evaluate the 

u l  1-1 
n NW+l 

asymptotic expression of E[P,,(t)] where k ( t )  = n ( ~'0)'' such that 2 pl = n. Such 
1-1 u l  1=1 

sums appear in the study of cumdative pm- (Smith [a]). 
Clearly, the random integer variable N( t )  represents the number of events in the interval (0, t] of 

the r e n d  process {t,} a > 1; note that Karlin 8; Taylor 141 and Rass [6] cdl N( t )  a renewal process, 

which is slightly d8-t from Smith's [8] terminology. Let {N( t )  + 1) be a stopping time (Ross [6], 

Shiryaynr [?I) with respect to {t,) i > 1, ic, the m t  {A'@) + 1 = n )  depends only on {tl,. . . , t,) 
and therefore independent of {tWl. tWt.. . .}, whereas {N(t )  = n) depends on {tl,. . . ,tn, tn+t}. 

We write df)  = E[[Y!')]']. p, = E[t:]. = E[<[Y , (~ ) ] " ] ,  where f = 1,. . . .d; i, j, k,r = 1,2.. . ; 
and df)  + p, +&$) < co. We also auume +at the distribution of the underlying r e n d  process 
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is dars L (Smith 181) ie. the ckas of  d k k h t h  hcrioos F(-) for which F,(.), for some G t e  n, 

has an absolutely fontinnoxs component, where F(.) and F,(.) arr the distribution of  {t.) i > 1 and 
,% 

T, = C t. rrspectidy. 

l% fundamad diE-ce between N(t )  and N(t )  + l is very uncial, indeed Corolly. 2. 

Proposition 1 and Theorem 1 of Ad& and M a l h d  [I] arc m longer d i d  if ae rrpkce N ( t )  by 

N ( t )  + 1; the present chapto is a mnsequm~~ of that kcr Besides the intarbqdiity idea 

developed in [ I ] ,  we shall need k c  the theory of martingales to wercome the Mdty inherent to 

the analysis of the last renerd cycles involved in the -part of  c ( t ) .  

Our approach c~nrisU in ckrsifying the pmdnct of raudom variables appeasing in c ( t )  into 

xparate darsa which we term d I c  Jau. Mom prtcisely, mch cIpaotion rum- 

mublc ckwu of  random variables, can each be agodaKd with an audary marLingde sequence 

that can be shown via achangeability type arguments to have the same a p x w i o n  as that of the 

sum of random variables in this erpectdion summubk Snbocpuently, using the mastingale 

property, the asymptotic behaviour of the apeadtion of that aum is cbaraaaized 

The present chapter is organized as follows. In Section 2, we carry out a study of the arymptotic 

behaviour of q q ( t ) ] ,  while the d t s  are dl known, this section is, nmttbelas,  wful in 

illustrating our methodology on a relatively simple cau. In Section 3, we present the analysis for 

E [ c ( t ) ]  wherein we introduce the notion of partition appropriate to our study. In Section 4, we 

present combinatoridelements erv~ltial in partitioningtbe pmduct of random variables in c ( t )  into 

crpectation summoblc c l o s s u  In Section 5, we dnnlop g m d  asymptotic expressions for E [ c ( t ) ] .  

Dztailed computations for evaluating opliatly the asymptotic expression in the case n = 3 are 

performed in Section 6. F i d y ,  a m i w  scheme is givm in Section i for generatjug c ( t ) .  

This section deals with tan, types of acabt cumulative proassa. Carrying out the ordinasy 
NW+1 NW+1 

multiplication of C Y,(" C Y,(" d t s  in the following two dimensional array vdid for 
.=I -1 

N(t )  2 2: 



Note that the distribution  of^:;)+^ ia in general diflerent from that of Y.") i = 1.2,. . . , N(t ) .  This 

is the so-called renewal parador; for more details and additional references see, eg., Feller [3] and 

Ross [6]. Thus, conditional on { N ( t )  = n) the random variables (Y?). . .. .YA1)) and Y$\ arc not 

exchangeable. Consequmtly as a msdt of  this fact, the approach developed for rhe case N ( t )  in [I] 

cannot be directly tansposed for the case N ( t )  + 1. F h m  (21) we dkhgnih the tollowing thm 

caxs: 

(a )  random variables on the diagonal e1)Y,(2) for i = 1.2,. . . , N ( t )  + 1. 
(b) random variables on the right of this diagonal. 

i )  E[Y.('))Y:')~N(~)] = E [Y:')Y?)IN(~)] 
fo r i# j and i , j=1 .2  ..... N ( t ) ; N ( t ) > 2  

ThisisLemmalinAdLandMdham€[l]. 

ii) E[Y!')Y$),)+~IN(~)] = E [ ~ ' ) Y & + , I N ( ~ ) ]  

for i = 1.2 ,..., N(t ) ;  N ( t )  > 1. 
This can be shown following an approach .rimikr to Lemma 1 in Adk and Mal- 

(c) random variables of the left of this diagond. 

For such variables we have 

i )  E [ ~ ' ) ~ ' ) l N ( t ) ]  = E [*)Y,(')IN(~)] 

fo r i# j and i , j=1 ,2  ,.... N ( t ) ; N ( t ) > 2  

ii) E [ Y . ( ~ ) Y & ~ ) , ~ ~ N ( ~ ) ]  = E[Y:')Y:~,)+,IN(~)] 

for i = 1.2,. . . .N(t);  N ( t )  > 1. 



Thus, if we add apectatiom of dl the &la in @) i)-ii), we obtain the foUaaing expaatiox 

As we show further, the above expecWion can be evaluated using maningales techniques. We 

term the merge of product of random vaiables in @) i)-ii) an crpedotimr summoble clpu 

Applying the same analysis for step (c) i)-ii) results in a total apcctatiou of: 

Again the merge of product of random variables in (c) i)-ii) is dso an apcctofion svmmable 

clats. It follows that for N(t) 2 1: 

Thus, the h w  of total pmbabiity entails 

where I( . )  is the indicator function. 

2.1. Evaluation of the Expectations in the RBS of (2.4). The first expectation can 

be evaluated via Wald's fundamental equation: 

In order to evaluate the next tam a;pectatow. an apply marringales techniques. We proceed 

a3 f0Uows: 



where N(t  - t l )  is dehned only for t  2 t l .  
In order to evaluate the second e q e w i o n  h the RES of (2.5). we need to covdder the 

following sequence 

for all finite n 2 2 and p = E[Y(')]. 
~ o t e t h a t ~ ~ k a m a n i n g a e s i n o c E [ ~ ~ ~ l ]  <mforaUfiniten>2and 

E [ s ~ + ~ I L w , - . - . s ~ ]  =Sn. 

Consider the random vaMble N = N(t  - t l )  + 2 for tl 5 t ,  and aunming that Y,") 

are m d l e  functions of 4, N will he a napping time with respect to the a-field 

7: = o (w , .%p  ,... &). I f  we amme that the frtndamrntd r e n d  Eyda are such 

that E [ N ( ~ ) ]  < m for dl finite ( 2  0 and for dl finite t ,  then q N l <  co. Now define 

{,= ( i - l ) ( y? -p ) , i  = 2, ...,a Note that ~ ~ E I G I I ~ I ]  5 =-It11 < oo. 
where ii is the upper bound on the exptaation of the absolute d u e  of individual -ds. 

It foU- from Shixyayev's [fl problem 6 on page 464, that E [ S N ~ ~ I ]  = 

~ [ S z l t l ]  = 0, and after some algebra we have 

Using (2.7) in (25) yields: 

Subsequently, adapting Lemmas 5 and 6 of Section 6 in Adb and Malharne [l], we can write 

asymptotically: 





N ( t l + ~  
Y!')] udng charaaaiCic functions and heariZation technique is very long and tedious By 

cof&t, the appmach hmin presented for the b i d  care gaerdiza to the multivariate care 

q P ; ; ( t ) ]  much more eadly. 

More tackling the general care, and fa expository purpcra, we yet present the combinatorid 
analpis for n = 2.3. 



We give the analope of cqnath ( 2 4 )  for the trhrhte 

To undatand the structure of Equation (3.1). let us do the c o m b i i r i a l  and pmbabilis- 

tic analysis for the case n = 2 We consider the partition of the set (1.2)  into m distinct or- 

dered bl& or dasseJ (m = 1.2). that w-c term a p d a t b  mmmublc d o s r u  In Equation (2.4). 

we distinguish 3 distinct trpectotia mmmoble cloJsw of product of random variables which are 

Y,';'"Y'~), , I .  Y ' ~ ) Y ' ~ ' ,  and Y,%/'). The clau Y,'l)x':(') k inherited from the tax n = 1 and cone 

sponds to ordered partition of the set j l . 2 )  into one single block ((1.2)) where 1 and 2 represent 

respectively Y")  and Y(2) .  The claws Y:')Y,(~) and YF)~$') are -tation mmmoble clusses 

of random variables specific to the case n = 2; they comspond to ordered partitions of the set 

(1.2)  into two blocks, thus yielding the partitions ((1) , (2))  and ( {2 ) . {1 ) ) .  As we have already 

seen in Section 2.(b)i)-ii) and Z(c)i)-ii), these two crpeaations summable classes are madcup of 

a mix of random variables which have identical eqmtation, complemented with "edge" random 

variables associated with an i n d a  N ( t )  + 1. Thus, the dass ({1) ,{2))  is made-up of dl variables 

of the type ~ ' 1 ) ~ ~ '  for i # j and i ,  j = I , .  . . , N(t);  complemented with Y',':(')Y$\),, variables 

for i = 1 , .  . . , N(t ) ;  which are quite p r o b a b i i d y  distinct form the previous ones. Indeed, we 

have E [ Y ! ' ) T ' ~ ) ~ N ( ~ ) ]  = E[YI(')YF)IN(:)] and E[x")~$) , )+ , jN( t ) ]  = E [ Y ~ ) Y $ \ ) + , ~ N ( ~ ) ] ,  for 

a total number of N(t'(NZ(I) - and N ( t )  random variables falling in these two categories. whose 



union d t s  in one rspdotia mmmcdL Jars giom by E ( i - l ) e 1 ) F )  . where 

~ e v c h n i ~ f o r u x u ~ ~ ~  
I -- 

Wecannaaper formtbecombin+tor i r l&~c~andys i s~Eqt la t i on (3 .1 )  basedon 

thecaren=2 

We consider the partition ofthe set (1.23) intom distinct blocks or classes (m = 1,2,3), that 

4 t a m  -mmmobleckuU. TherdOrC,hl(3.1)WCCandktingukh10distinctclpcdn- 

tM1 SMVltObIe clPUu of product of random variables Note that a subset of thew claPa can be 

consideredarinheritedfromthe~n=1&n=2 

More specScany, the dars x'1)xp)x'31 is inherited form the care n = 1 and wnvsponds to 

ordered partition of the set (1.1 3) into one single block ((1.13)). where 1.2 and 3 reprumat re- 
spectidy y(l) ,y(z)  and ~ ( 1 ) .  The - q((')q(;(')*), y r ) ~ ; ( l ) x ( ~ ) ,  q(l)F)~!~), yF)y( l )y (3) ,  

Y,(')~';(')Y,'~(') and ~(')~')l',';(') are all inherited from the au n = 2 and cu-nd to ordered 

partitions of the set (1.53) into tm blocks, thus yielding the following parritio~s'. 

({1.2h {3)h ((3). {12)). ({1.3}.{2)). ({2),{1.3)). W}, (2.31). and ({13}, (1)). 
The various above erpeaationa mmmables druvr in (3.1) are made-up of a mix of random variables 

which have identical ccpectbtion. complemented with "edge" random variables arrodated with an 

inda  N(t) + 1. For aample, to understand the espedohmr summablc Jw ({1.2},{3}) we re- 

fer to (b)i)-ii) in the bcgbing of the previous section, thus this cku is madcup of all variables 

of the type x(1)x'21$a1 for i # j and i, j = 1,. . . ,N(t); complemented with Y,(')Y,(;(")Y$:,+~ 

variables for i = 1,. . . . N(t); which arc pmbahilisticdly distinct form the previous ones. In- 

deed, as in Section 2(b)i)-ii), we have E[~(~)Y,(:(')Y,(~)IN(:)] = E[Y~(:)Y~(~)Y$),)+,IN(~)] and 

E[~(~)Y!~)Y~~,+ , IN(~) ]  = E[Y~)Y:')Y$~,+~IN(~)], for a total number of N(t)(N(t) 2 - 1) and 

N(t) random variables occurring in t h e  two categoria whose union results in one a ~ ~ ~ ( o t r a  sum- 
(0+1 

mabk c h s  given by E rx ( ~ - I ) Y ~ ~ ' Y ~ ) ~ ( ~ ) ~ ] .  Clearly, the advantage of grouping the variables 
L "1 .I 

in this manner is that martingales techniques can be wd an in (25) to compute the expectation of 

this s d l e  ckrs. 

Finally, there are c I p d o l i a  summabte c h t s u  of random variables specific to the cau n = 3; 

they correspond to ordered partitions ofthe set (1.2.3) into three blocks. thus yieldingthe partitions: 

( w ,  w, { 3 ~ .  (PI. { 3 ~ 1 1 ) .  ((31. {I}. { 2 ~ .  
Indeed, while all variables Y!')Y,(~(')Y~~) for i # j f k and i, j, k less than N(t) + 1, have usentially 

the same apwtatiou, it is not m for the class ~ ( , ( " ~ ' Y ~ { , , ,  i # j less than N ( t )  + 1, and the 
N(I) 

d m  ~ ! ' ) q ' ~ ) Y 4 ~ ) + ~  for i # j ley than N(t) + 1. Note dco that we complement the (i- 
-1 



3.1. Generalization of Equation (2.9). As we will use vay often the idea of partition of 

the set (1.2,. . . . n) into m distinct blocks, l a  tu dQne monllimn) as the f-th monomial associated 

with a partition ll of n letters into m non-empty distinct blocks having the same lowex index in ear31 

blo& 

We generalize now Quation (2.9) in two steps (a) and (b), which is the mort general form 

of (29). 

(a) Using martingala techniques, ar in (2.7), we can show that: 

I to the xmnd block. 

Note that on the LHS of (3.2) there is only one monomial with k blocks g i w  by 

ylcj')~:') ...Y~~-%,'~). In the general context we have different monomials with k 

blocks, thus for generating these distina monomials, the indices Cjl, j2,. . . , jk-', jk) could 

be any permutation of the set (1.2,. . . , k) resulting each time in different monomials. 



I ( 2  L L t ) ]  
.=I 

k-1 

where N = N(t;-,) + k and N(t;-,) is defined only for t 2 t.. 
.=I 

( 2 )  Consider the following sequence 

for dl finite n 2 k and p = E[Y,'~')]. 

Note that S, is a marringale since E[IS,I] < m for dl finite n 2 k and 

E [ S ~ + I I S ~ , S I + I  ,... , s ]  = Sn 
k-1 

(3)  Consider the random variable N = N(t;-,) + k for t ,  I t ,  and assuming that 
i-1 

Y,") arc measurable functions of L, N rill be a stopping time with mpect to the o- 

field 7; = o(w,&,&:~,. . . .S,). If we assume that the fundamental renewal cyda 

arc such that E [ N ( ~ ) ]  < m for dl finite f 2 0 and for dl finite t ,  then E[Nl < m. 

Now define <, = ( i - 1 )  ... ( i -k+l ) (yYb)-p) . i  = k, . .  . ,n. Note that EEL, EI&l 

Itl .... ,tk-l] 5 ~ [ N ( N - l ' . : N - k + ~ l t l  ,... , t ~ - , ]  < m, where B is the upper bound 

on the amxtation of the absolute value of individual rewards. 

(4)  I t  follows hum Shiryayev's [7] problem 6 on page 464 that E [ S N I ~ I . .  . . I tk-I] = 

E [ s ~ I ~ I , . - . , ~ ~ - I ]  =o, 





rrh I The nppe~ and lower indices in (ji) represent respectively the belonging 

Obviously, on the LHS of (3.6) or (3.7) there is only one monomial which is made-up of k 

distinct blocks, within each t h e  arc r f  random variables having the same lower index; for 

those k blocks there arc n ditlercnt random variables. 

But for the general co~texL, we have s e t n n l  distinct monomials, thus, for generating such 

monomials {(j:, . . . , j,?,). . . . , g,. . . , j:.)} could be any permutation of the set (1.2,. . . , n) 
k 

such that C rt = n. 
f-1 

However, on the RBS of (3.6) or (3.7) thm are two distinct monomials given by n Y?" 
rnlr 



t4 P A B r m O m C  TBE PRODUCT OF aAhDOM VARUBLES IN <(t) 

4. Partitioning the Product of Bandom Variables in x(t) 

tions (24) and (hl)  respeaively as follorr 
N(tH1 N(tH1 N(tHl 

(1) E [  C p C p] = E[  x monin:'3)] 
-1 -1 -1 

) - ] r';. ( i - ~ ) ( ~ r n o r & ~ )  I(:: < t) +E (-1)(s-2)(5 moninpJ))~(t:+tZ 5 t)] 
i..l I-1 bl 

where mon,~~:") are giw in (3.1). 

It is well known, see eg.. Ad& and MalhamC [I] that the total number of distinct partitions 

oftheset (1.2, ..., n}isgimby 

where S(n,m) are Stirling's n v m b m  of the second kind and Bn are Bell's numben. Fol- 

lowing the comhiiorial and p r o b a b i c  analysis for the cases n = 2 and 3, the total 

number of ordered partitions of the set (1.2.. . . , n} for the care N(t) + 1 is given by: 

n 
B,, = mS(n,m); (p for probab ' ic)  

-1 

Note that in general. the total number of ordaed partitions of the set (1.2.. . . ,n) is given 

Forthecasen=4,wehaveB,, =37andB, =75. 

We in terpa  37 as the number of cspectotia summable dwsu and 7'5 as the total number 

of ordered partitions of the set {1.23,4) into m = 1.2.3,4 blocks; dearly B,, C B,. 

H-. Sor pprobahiic arguments similar to the cau n = 3, ae mrsidmd only 37 from 

these '15 partitions. 



To find a gmenl ewash for E[<(t)lN(t)] .  we need the foIlaring tso q m t i ~ ~ ~  

for j1&, . . . , j, pairwk distinct and indicu fmm 1 to n partitioned into non-imerseaing 

bloch Il. I2 ,... . I". (This is Cmony 1 in [I].) 

which is a c~nwqoma o f  Comllay 1 in [I] .  

We note again that the merge of product of random variables in (4.1) and (4.2) is an 

cIpeaotia snmmablc CIPV given by: 

Obviously. t h e  is only one monomid in (43) or (4.4), which is repmscntative of 
( N ( t )  + 1)'"' 

m 
random variables fdling in this category. More specifically, the total number of product of 

N ( P )  and random variables in (41) and (4.2) is n spcdn ly  - N W )  
m ( N ( t ) - m + l ) '  

If we add erpectation of all variables in these two categories we obtain one apcctation summable 

class given in (4.3) or (4.4). We state now the following lemma which is the generahation of 

Equation (2.3). 

Proof This lanma follows from kuation (4.1) and ( 4 2 )  and the d h d o n  in the beginning 

of Section 3. Indeed, in E [ P I ; ( : ) I N ( ~ ) ] ,  one can subdivide monomials into cIpcdorion summoble 

c h s u  cormpourling to m bloclcr, m = 1.2.. . . . n. them blocks, there am mS(n,m) distinct 

ways of partitioning the n components of  the vector = ((Yo Y ( = )  . . . Y(*) into mS(n,m) 

ordered partitions, each of them is repnscuted by virtue of Equations (4.2) and (43)  by a single 



... 
mon,II:mn) which is made-up of prodnd of random wiablP). Thm, Lemma 1 is a mathematical 

expression of t h e  kcr* 
As a ~ D Y Q O ~ ~ Q  of Lemma 1 and the law of total pmbsbiliQ we state the following theorem 

which gmerdiza Eqaation (3.1). 

We can now state the following theorem. 

Proof This theorem follows 6um Theorem 1. Equation (3.5) and noting that 

w h m  (rj c I,) = n (six the beginning of this section for some examples). 
1-1 

Note that Theorem 2 gives the exact expression for E [ c ( t ) ] .  H m ,  we are intwned in 

finding an asymptotic expression for that expectation; this w i l l  be performed ia the next seaion. 



5. Asymptotic Behariour of ~[c(t)] 

To dma%erk the arpmptotic b d w h r  of  E [ e ( t ) ] .  n have to study the asymptotics of 

terms of the form: 

Now, as E$~(N(c )  + r)] is &(6) with t1.a ..... t, treated as param- and 

&(t) is the faaorial moment of  N( t )  (as d&ed by Smith 191). We can use the asymptotic theory 

of &(t) (Smith [Q]). We gatha the following facts u d d  for om and+ 
'Dc5nition 1 Tlrc function A(:) &longs to the cIa.u B if ond only if it is bounded wrio(ion, 

t r n d r t o r m w t  OppmOJlu+mondsotLfiuthecondirionX(t)-X(t-o)=o(t-') a c t - + + m .  

formeryo>O. 
Theorem 1 If~sl+r  < m thm &(t) = n t n  + >tn-I +. . - + ynt + f , , .+~+ u( t )  w h m  w(t) c 5. 

Therefore it follows from Smith's [Q] Theorem 1, that u ( t )  = o( l )  as t -+ m. Note that 7,'s 
i = 1.2.. . . ,n represent finite rational functions of ~ 1 . ~ 2 ,  .... A. 

Using essentially the same approach as in Section 6 of Adb and Mdhame [I ] ,  re write: 

Using Lemmas 5 and 6 in [I ] ,  we can show that: 

'Therefore we state without pmof the following theorem for an asymptotic expression o f  E [ ~ ( t  ) ]  . 



THEOREM 3. 

Note that the sum of random variables in I t , .  . . ..l, and I ,  is n We can also write Theorem 3 

in a compact form as f o U m  

m-1 * 5 t)] 
(53) 

E[monIIP"')] + o(l) 

such that nl + na = n and nl = 1, .... n; f i d y  note that for computation facilities. % = t and 

11jD.O) = 1. 

6. Applications 

In this seaion, we evaluate explicitly and asymptotically E 

From Smith's [Q] L.emma 6, we have 

where &(a) and P ( s )  are Laplace-Stieltjes transform of &(t) and F(t) respectively, and P ( s )  is 

given by Lemma 3 in Smith [Q] as 

= 1 -p ls+  P'Z -... + 0"Ch +o(s") 
2! n! (6.2) 

for r e d  s > 0. 

Equations (6.1) and (6.2) are the baris for computing 6,,,(t;-1). 



It follows from our Tbeorrm 3 that: 







Note that in the dewlopment of (6.5) we twed the following 
.E[Y,O]= EIY,(("'] f = 1,2,3andrn= 1.2.3 

E[Y,)Y$)] = EK( ' )Y~) ]  V r  # s, r, s = 1.2.3 

E[Y,(")t:] = E[Yt'Ot:] v k < oo 
A h  note that Equations (6.4) and (6.5) are the same as those obtained in Ad& and MaIhamC [Z]. 

This provides an independent validation of the approach elaborated in the present chapter. 



7. RecuRive Scheme of e(t) 

The monomials occorring in E <(t) are g e n d  recursively and inherited from each other [ I 
following by that a s p d c  pattan acmsding to the analysis ekbontcd in this paper. 

La us condda the folloaing aamplc  

For this monomial, we have the following remark mow) = Y(4) Y(I)Y(~) ~ ( 3 )  is monp = ~ p ~ p ) ,  Y;J) 1 . 2  2 . 3  

rnor~@~.~) is one of 31 mono& occrvdng in the fourth generation according to B., = 
4 

mS(4.m) = 37, ar defined previously. 
m=1 

m o w )  is aaodated with a partition of 4 letten into 3 blocks separated by 2 commas, 

w b e  the last one hat a special meaning in the context of Theomn 3. 

Indeed, we have by this t h e o m  

~ [ m o e ) ]  = E[Y:').Y~)@).YF)] 3 E[Y:')Y~)Y~)&I(~;)I(~I + tz 5 t)]E[Y:))]. 

Thus, in the contat of Theorem 3, we have 2 erpecrafionr asodated with this monomial. 

The fust a p d a t i o n  is applied to the fust blocks located before the last comma. whereas 

the second expectation is s p d c  to the block after this last comma Therefore. it is dear 

by Theomn 3, that we have only 2 a p d a t i o m  applied to ewy monomial. 

= Y!)),Y~')Y~),Y~) generate in the 6fth p a a t i o n  the foUowhg distinct 

monomials: 



y:", y!", y!"y!", y p l  

y(9 y(S) y I 4 )  y(l)y12) 
1 . 2  7 3  r 4  4 

y?)y,('), yp, y!"), y p  

As n can remark, m o w )  genenta in the Mh generation: 

(a) 9 distinct monomials f monIIpo). which are arsodated with a partition of 5 letters 

into 3 bloclo. For the Mh generation. we bave S(5.3) = 75 distinct monomials of 

5 letters with 3 bloclo. 

@) 4 distinct augmented monomials d mon~~?'). Thae are G(5.4) = 40 distinct 

monomials of 5 letters with 4 bloclo. 

The mechanism for generating these monomials L simple, which can be nunmarizcd by the 

next thm aeps: 

(1) The new letter Y(S) has to be kated at the end of each block, taking as l o r n  inda 

the position number of this block. 

(2) Whm the new letter YIs) is so 6xed. 4 have a new monomial, from which we follow 

a cydiaty operation on the pmmt blocks, generating thereafter the appropriate 

monomidr We illustrate this cycliaty by the munZed amnr ( 2 ) .  

(3) Once the new letter YIs) has taka pkct at the end of each block, then Y(') !as its 

own or new block, whm the position numba of this new block is 4. We bave then 

an augmented (in the nnmber of blocks) monomial from which we follow step 2 as 

above. 

Note that in practice, 4 do not perate monomials from m @ ) 2 ,  since those monomials are 

already generawd from modf:'"). 

First Generation fi = @'(I)) 

1.1.1 mon~~p")  = Y,(') 









where the lover indices q j in rnonIIE1") are as follow% 

= (n - l)S(n.n - 1) - n(n - 2) 

C Z J  = (n - l)S(n.n - 1) - n(n - 2) + 1 

c1.,,-l = (n - l)S(n,n - 1) - (n - l)(n - 2) 
= (n - l)S(n,n - 1) - (n - l)(n - 2) + 1 

a2=(n-l)S(n,n-1)-(n-l)(n-2)+2 



Concerning this rrcmSiw scheme, re note the following remark 

the rounded arrow. 

The application of Theorem 3 to this rrcmSiw scheme is illushated by the foUming exam- 

8. Conclusion 

As we observe, the computation o f  E [ c ( t ) ]  using the present approach, is based only on 

Om(tb), s i n e  the monomias of c ( t )  arc gmeated recursively. Thus using a symbolic language of 

programming ar Maple. the symbolic compntation o f  E [ E ( t ) ]  can be performed &ciently. 

References 

AD&, M. AND M.u.U&, RP. (1994) Asymptotio of the Moments of Cumulative Vector 

Renewal Reward Procasa: The Cax N(t) .  Lw Cahim du GERAD 694-32. Revised 

April 199i. 

AD&. M. AND MALIW~~, RP. (1994) On the Moments of Cumulative Process: A P r c  

liminary Study. Lw C&m du GERAD 694-13. b l e  d a  Hauta l hudu  Commnddcs, 

Montrid. 

FEtLER. W .  (19il)  An Introductia to Pmbobility Thcmy and Its Applicotionr. Volume II, 
Second Edition. John Wiey k Sons. New York. 

54 



[4] lbruui. S- AND TAYLOR. H.M. (l975) A First h e  in ~~ E.tocuru Second 

Editios Aademic Prrsq New Yd. 

[5] M m m ~ .  V.K. (1974) The Gcnanl Point F~WUSCI. AddisopWdey, Massach- 

[6] Ross, S.M. (1983) SIahPdic Proetua J&W1ey k Sons, New York. 

I?] Sr i rm~mV,  A X  (1984) PdsbiUp S-Vahg, New Yotk. 

[a] Saora, W L  (1955) Regenerative Stcdasic Proass. Pmmdingr of the Royd Sodcty A 

uZ, 6-31. 

191 S m .  WL. (1959) On the C u m h  of R e n d  Prooa* Biomctn;to 48.1-29. 



CHAPTER 4 

On the Moments of Cumulative Processes: A Preliminary 

Study 

1. Int roduct ion:  Classical Delinitions and N o t a t i o n s  

Let {t.), i = 1 .2 . .  . . be an W t e  sequence of independent non-negative and identically dis- 

tributed random variables, which arc not zero with pmbabiity onc Such a sequence of random 

variables is called a renewal process 

The augmenrcd sequence {t.),i = 0.1.2,. . . . is called a general m d  procar, whae to is a 

non-negative random variable, independent of the &'a, i = 1.2,. . . , and not necmarily i d a t i d l y  

distributed like them. 
n 

La T. = C ti for the partial sums of ti, w b m  T, is the time instant corrrsponding to the 
.=I 

occurrence of the event E. La K( t )  and F(t) be the distribution functions of t~, and {t,)i 2 1, 

respectively. For a given g m d  renewal pnxeu {ti) ,  we arite T-I = 0. T, = 1 t. for n = 0,1,. . . , 
-0 

and we define for all t 2 0, the random variable N'(t) ar the patest integer n such that Tn-l 5 t .  
Let Wt be a real valued process which is d&ed to be a cumulative pnxeu if it satisfies the 

following two conditions: 

(C1) yn = A,We = WT. -Wr.-, is a sequence of independent and identically distributed random 

miable .  whae n = 1.2,. . . 
(C2) Wt is, with probability one, of bounded variation in every finite t-interval (xe Smith [15]). 

Let us consider from here on the care w h m  b = 0, thus l a  N(t)  be a random variable which 

represents the number of events in the i n t m d  (0, t]  of the mmal proceu {t ,) , i  = 1.2,. . . . 
We assume that {t,. y,),n = 1.2,. . . , is a sequence of independent and identically dinributed 

random vuiables. 

Let G(t ,y)  denote the joint distribution fnnctioz of jtn,yn), and let 

t~ = E[y:], fi = E[t:] and pi, = E[t&!A, w h m  6 + lr, + pi, c m 



4.7. SOME EXCERPTS OF aQPaS WORK ON RENEWAL TBEORY AND FmnaEa DEVELOPMENT 

0 
is the LaphccStidtjes transform of F(t). RKdl that F(t) is the distribution function of tn. 

This chapter is oganivd  as follows. An expHat and asymptotic expmsion of the rhird moment 

of a cumulative processes is prrsented in section 2 A detailed procedure is giwn in section 3 to find 

the apeaa t ion  of a product of triple summation. Finally, we study brie9y EIN(t)lk in section 4. 

2. Some Excerpts of Smith's Work on Renewal Theory and -her Develop 

ment 

One of the pioneers in the area of r e n d  theory is W.L. Smith. 

In his paper of 1955, Smith [lq has considered the random variablex with the related questions 

as follom: 
Nit)+: 

a) Yt = C Y, = Wt,+t,+...+t,,,,,,. 
s 1  

b) -Pt(y) = P(K 5 y) is the distribution function of Yt. 
OD 

c) For Re(#) 2 0, let -P;(y) = s [e-%(y)dt. where for fixed s, -P;(y) is a distribution 
0 

function in y. 
a 

d) When Rc(s) > 0. $:(a) = / eW4P;(y) = 

where @;(a) is the chKMeristic function of %;(y) and o c IR. When Re(s) > 0, 

is m-times di8erentiable with respect ro o, since K,,, = Eb,"] < co; r e d  for this 

purpose thar G;(o) is the chaaaeristic function of the random variable 3,. Consequently, the first 

m moments of 8;b) are finite (Theorem 35.1 page 142 of bha & Rohatgi 1121). 



21. Evalrvtion of the Third Derivative of $:(a). Wean ahow vuy e d y  thar 

and 

Then after some algebra, one obtaixs 

+m;- WG, (a) + 2Gf (a)Gf(a) + 4G'b) (C;k4)2 

(1 - ~ ; ( a ) ) =  (1 - c;b))' 



4.2 SOME EXcERFTS OF SMITE5 WORK ON BehEWAL THEORY AND FmCTBER DEVELOPMEhT - 
~ i n a  ~ ~ ( 0 )  = 1 a .' ~ ( 0 )  = 1. c$(o) = ircl. ~"(0) = izx2, @(o) = d 

-aD 

c(0) = P(a). then re obtain: 

Obviously *;-(0) gives the third moment of q ( u ) .  But as is the 

bplacetrandonnof a&), then -the in-of mchtrandonn one can obtain 7 ua4*t(y) = 

23. Explicit Form for R;(s) and %(a). 

a) The function R;(a) is the Laplace Stieltja transform of Rl (t) which is of bounded MMtion 

in t (Smith [IS]), whm.  

It can easily be s h m  that 



C2 SOME EXCEaPTS OF ShdnaS WORK ON m A L  THEORY AND FJFSEER DEntOPMCFT 

where the integds anmerge abrolntely. We can expand e-" by the Taylor-Mactarvin 

The integral in (28) c o n w g a  abso1utdy at a point s = o + ir if the integral 

converges, = h a  a(+) is the total variation of the function Rl(t)  in the i n t a d  0 5 t < I. 
DD 

Now as / e-%fRl(t) converges absolutely for s = 00 +in, then it con- uniformly 
J 0 

and absolutely in the hdf-planc o 2 oo ((Theorem 3.1 page 46 of W~dder [IS]). 
Consequently quation (213) relies on the fact that the in+ in (2.8) 

OD 

converges uniformly, while equation (2.14) follows because pi1 = E[t:y,] = / t idRl(t)  = 



Note dso that MI = E L ]  = XI. To condude this mbaecrion, let us prove equation (25) 

as rolloar 

b) The function G(8) is the LapMtiel t ja  transform of  R&) which is of  bounded variation 

in t .  where 

0 

It can be shown that 

jdRl(tl = 
0 

whae  the integrak converge absolutely. 



Using the same dedopment as previously (part 22.a). we can write 

-00 -0 

given in equation (24). the knowledge of P ( s )  is required. For this end we use Lemma 3 of 

Smith [ l v ,  where he gave an expansion for P ( s ) .  This Lemma is Itated as follows: 

-A nnmusry and soffraent condition for F(i) to have its first n moments finite is that, for real 

s > 0. P ( s )  har an expansion 

q s )  = l-rls+& -... +o"'l"+O(~)(.. 
2! n! 

Using, on the one hand, the iweraion techniques for 3 power saia, see e.g. pages 506-515 of 

Knuth [lo] Vol. 2, pages 436-444 of MarkushNich [13] Vol. 1, Brent and Kung [S], Kung [ l l ]  

and Beyer [4]. On the other hand, we consider P ( s )  a9 stated above, R;(s), $(s) as given by 

equations (2.14) and (2.20) respectively. We obtain, by applying a straightforward computation and 





4.2 SOXE EX- OF -5 WORK ON RENEWAL ?BEORI AND FmrraER DEVELOPME?dT 

C o m b i i  the h f a  equations we hnd: 

Evidently, equation (225) gives the third moment of 'P;(v). But as mentioned previously 

is the Laplace transform of '&(y). 

Thm using the in- of mcb transform, we ob* 



2.4. hnluation of E[N(~)]~- If 4 let y, 3 1, thm n, = WJ I 1. Conwgumtly equation 

But a E[N(t)], E[N(t)12 aredrrady known (Smith [16]), thm one ca deduce E[N(t)I3 from (2.27). 

since E[N(t) + 11' = E[N(t)13 + 3E[N(t)I2 + WIN(:)] + 1. This small operation gives 

3. Expectation of a Product of Triple Summation 

where yp) and y!l) arethe j-th and k - t h c o m p o n m t s d t h e ~ r ~ ( n x 1 )  andi = 1,2. ..., N(t)+l. 

b m  this cowknceone can deduce E 

In our present cw, 4 want to e d W  

where y:), y?) and y!') are the j-th, k-th and I-th components of the random vector L(n x 1). 

We ~e interpret equation (3.1) as the thm dimensional quation of Wald fundamental uni- 

MMte equation which is given by: 

To find equation (3.1) let us define: 





2 N(I)+l E[(gU?) % $11 and E[(guy))2N~uP~] 

For this end, let us define the following audiary random variables 

u; = + p  
u y  = v y  + v y  

~7 = $1 + p  
With t h e  definitions. we can find (3.5). (3.6) and (3.7). Indeed, we have 





(8) PI, = E[~Y!')J = W O ~ J  

Since y; = y,(J) + $), then 



(8) PSI = qfv."l= rlom + w o n  
3 2 7 .  The Case of E r =  y 7 l 3  

0.3. Asymptotic ~xpression br  E 

By applying the result of equation (226) on each term appearing in equation (3.14). with the 
conaponding cxe5aents as mmpured in steps 3.2.1 to 32.7, we obtain after simplification the 



4.3 EXPECUnON OF A PRODUCT OF TRIPLE SUMMATION 



U BRIEF alDDY OF E N(t )  [ I' 

wherr: 
1 = - 

Wool 

( &SO = ~ ( k J ~ ) l ~ ~ ) ] ~ k J ! ~ ~ l ~ t : )  
It is appropriate to explain how we obtained the coe5aent of 9 in equation (3.16). since those 

oft', t1 and to are obtained using the same idea The &dent of P is obtained -3 foUopn: 

Let N(t) be arenewal procot with F(z) a i l l  associated distribution function, then it follows 

from problems 16 and 17 page 233 in Karlin 6: Taylor [q, that EIN(t)lk = m&) satisfies the 



4.1. Integral Equation for E N ( t )  . Em this purpose, we state the foUwing Lrmma [ I' 

Proof. W e  show the lemma by induction. It foUm h m  theorem 5.1 in Karlin k Taylor [7] page 
191, that 

By substituting (4.3) in (4.5) results in 



Using the induction principle. quation (4.7) be arittm rr: 

k 
t 

From (4.8) w t  have ( ) of j m l ( t  - r ) h l ( 7 )  and in g m a d  there is 
k-1 

0 

Also from Abramowitz & Stegun [l] we have 

Applying (4.9) and (4.10) in (4.8). lemma 4.1 follows at once. 

4.2. Laplace Thnsfonn of  the Integral Equation (4.4). Taking the Laplace transform 

of (4.4) for k = 2, Smith [Is] found 



4.4 BRIEF STUDY OF E N( t )  

where P ( s )  is Lapbccstieltjes trsluEorm of F(t). giw by Smith 1171: 
I' 

In general 4 have 

Then 

R o m  t h e o m  F page 245 of Comtet [6], whid states that for d l  integer k 2 0 

where A(k, j )  a n  the E u l d  numbers, see cg. Kimber [a]. 

Also note that from Abamowitz k Stegun [I] page 825, one has: 

where S(n,m) arc Stirling numbm of the second kind 

By applying equation (4.18). it can be easily shown that: 

Consequently we derive from (4.19): 



5. Conclusion 

As we observe, the method elaborated hm, which is b a d  an the charactaistic function and 

t h e l i n ~ o n ~ q u e f o r e r a l r t a t i n g E  ~ . ] . i s ~ ~ ~ t a t i ~ d ~ ~  
'-1 -1 

tedious. Such method is not efficient for higher moments. 

Thus in our forthcoming papas [2] a d  [3], entitled 'On the Moments of Randomly Stopped 

Cumulative P r o c m a  : The Caxr N( t )  and N(t)  + 1". which are mspectively Chapter 2 and 

Chapta 3, we develop a near appmach for evaluating the crpecraton I9 a pmduct of n distinct 

cumulative processes. While computations rrmain compleq the near approach har the merit of 

making them much more systematic. 
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CHAPTER 5 

Stochastic Optimal Control Under Poisson Distributed 

Observations 

1. Introduction 

The optimd control of a partial observed stochastic system which evolves according to an It6 

stocbanic state system is well-known (Bagchi [I], Fleming and Rishel [S]). However, the optimal 

control of such continuous time systems, where the time domain is decomposed into a finite set of 

disjoint random intemals, where obxrrations are taken at the initial instant of each interval, has 

not been carried out. 

This optimd control problem is well motivated by potentid applications to problrm~ such as 

-ir control. Consider mutroller of a stochartic system, which may be taken to be observed 

at random times with a fixed total number of obxrratious instants. This set may be regarded as a 

fund of observation actions which have been pyed before the control a& begins. 

The interobxrratiou intends will be taken to be generated by a sequence of iLd. R* -valued 

random rariabl~es, ie. the point process of obsmatiou time is a general independent increment 

process. and in particular, it will be given by the special case where the obwrviltions instants are 

Poisson distributed. 

This chapter is organized as follows. In Section 2, we formulate taro daua of optimal control 

problems, termed (piecewise) time invariant and time variant control, whm the central issue is 

the control structure in each case. In Sections 3 and 4. we present in details the solution in the 

(piecewise) time invariant case, whm the obsenation time innants are respectively a stochastic 

procas with independent inarments and Poisson distributed. In Section 5. we present the time 

variant case, where the mean time between obsenation instants is exponentially distributed in its 

parameter A. A s t M c  dynamic pmpammhg £ramework is used f~-  the solution of t h e  optimal 

control problems. 



2. Problem Statement 

whae X and U are rrrpcrivdy sector state and control praessa  with dimensions d x 1 and p x 1; 

while A(d x d), B(d x p) and C(d x m) am rrrpcrivdy plant, control and disturbance distribution 

matrices. W is a normalized zan m a  standard vector (m x 1) Bmarrian motion. 

We decompose the time domain of the contkrnoos equath in (21) by taking a finite ntlmba 

Ib' of point obsenations at times f ,  whae t = {f.i 2 0) is a m c  proass with independent 

incranenu, and 4 set = 0. 

Fallowing this p m a r t  of decomposition ofthe time domain into a Wte set of N disjoint random 

intervals [t., t.+l) for 0 I i < N - k we rtsodate on each interval a state space srstcm equations 

with complete initial stste obsavation, d&ed as fo11oar: 

X(f)  = I.C. (initial conditions) 

As X(t) is a M a r k  p m a a ,  it is laown (Feller [4]. Stam [lo]), that the derived process Z(t,) is a 

Markov process. This Ian wil l  be used in the stochartic dynamic propamming procedure (Caina 

121. Davis [3]. Fleming and Rishel 151). and employed in the solution of the stochastic optimization 

problems in the following sections We conrida in sections (3, 4) and 5 two optimization control 

problems which we term time invariant control (pieaa'ue-constant control), and time variant control 

problems respectively. 

The objective in both caxs is to construct a control law that satisfies the linear nochartic 

control system and minimizm the quadratic expected con functional specified further down in (2.3) 

- (2.5) and (2.6) - (2.8). 

The central issue of intmst in the specification and solution of these problems is the particulv 

information and mntml structure in each cax; this wi l l  be dearly specified below for both control 

problems. 

For notational convenience, we shdl consider that conditioning on X(t.) cornsponds in fact 

to the conditioning of both X(t,) and ti. Thia teley0pPmg technique of conditioning is used in the 

nochanic dynamic progrpmmkg framework since X(ti) is of a Markavian nature. 



which is asso&&& with the folloring dynamicr 

a ( t )  = AX(t)& + BU(LXJt)& + GdW(t) 

where 

V ( l X J t )  U ( X ( t d )  ~ U P I  fOT ti 5 t < &I. 

UpI is the ckss of admissible control laas (k h d e d  or contained within s 
certain region). Msodated with this problem. 

U(-) : Rd -+ Rp, where U(-) is Bod die, with -pea to the a-6dd 

F{X( t i ) ) ,  on each intma k.ti+d. 
C(d x d) ,  D@ x p) arc symmaric and r u p r c t i d y  positive d&te and pasitivc 

semi-definite matrices. 

(lX(t.)} cormponds to (IX(t.).ti) for shoe  
Sn the Appendix for details about ~o~ (2.3) to (24). 

Problem 2: T i e  Variant Control 

where 

U(~.LXJ~)IU(~.X('.))LUN~~~'.<~<&I. 
U r v  b the ckss of admissible conuol laws auodared with this problrm. 

V(.,.) : R x R' + RP, where U(.,.) is jointly BOA m-able, with respect to 

the a-field F{t,X(t i)) ,  on each intma [ti, t*~) .  



Forthe@*ceaiKsolutant)~timed~pmblem,nconddafimtheL'sasascochanic 
process with independat ' ts ( t a w d  an II process). For this problem, the ckss of admissible 

conpolhrsisUpr,,rhert"G" ~ l n s a G e n e n l I I p r o a g  

Then, ac take the segumce ti's ar Poisson dh.tributed with mean inta-arrivd time p = IjX 

for both the fim and second c o d  problems. Thus. we assodate Upr, and Urv, as the class of 

adminible conpol has, rrspectively with the (p.ieaaisccDnstant) time intiariant and time variant 

conpol problems. 

The decomposition of the time domain of the continnous srochartic differential egoation in 

(25) .  yields as solution the followin& 

i=O. l .  .... N - 1  ; b = O  
Oa.,, = @iLrr-a.) 

as+, = $"* @It.+'-4Bd, = (eAlbs-G) - I)A-lB 

yr,,> = I,"" @(a.+l-*)GdW. 

As we mentioned in the beginning. we w a dynamic programming formulation for the solution of 

this oprimitation problem, where the i-th stage starts with the occurrence of the i-th mwurement, 

a ~ d  the optimal coatmgo for this i-th stage is givm by 

where U(X(tj)) c  UP^. 
The tamind optimal coattogo associated with the Nth stage is given by: 

At the ( N  - 1)th stage, the optimal coattogo is given by: 



w h a c  

After appropriate computations. the optimal cost- value for the state (N - 1)th stage is given 

by: 

~ ( X ( ~ N - I ) ,  N - 1)  = X ' ( ~ N - I ) Z N - I X ( I N - ~ )  +TN-I (3.6) 

whac  

At this stage, it is dear that the optimal cost-to-go is quadratic in its initial state; we pcatulate then 

the hypotheses that the optimal cost structure will remain qmdratic in its initial atare. 

Thus, la: 

where 0 5 k < N.&+~ and are some specific constants. 

Using backwards induction, we show that: 



By the Principle of optimality in the dynamic pmgmmhg fnmerork. we have 

w h m  equation (3.10b) constitutu the Principle of Optimdity of stochartic dynamic programming, 

see e.g. Chapter 11 in Caines [2]. 

After careful computations, we obtain the optimal control and c o s t ~ g o  rapectively as: 



Note that for k = N - 1 only, we have: 

Thus we have proved equation (3.12). and this atablisha our result for this section. 

3.1. Numerid Example. We consider the following scalar stochastic differentialequation: 

with the auodated cost hctional 



At the ( N  - 1)th stage the optimal cmt-t+ga is 

where UN-1 I u ( z ( t ~ - I ) )  CUPI,,~-,.  

Using the independence betaem the Brownian motion w and the point p- t = {t..i 2 0).  

we obtain: 

where 

where 



where 

For this wkr case. we note that: 



=h e-",+ (e-(t-t.) - e-'(t-t.) 

= ((A + 1)(A + ?))-I. 

We junify egtrations (326>(328) by the distribution of the incrrmmt (tr+l-4) and Fbbini theorem. 

Using esseuUy the same method, we can evaluate the rest. Thus, we oh& 

4. Optimal (Piecewise) T i e  hvariant Control: The Poisson Case 

We consider h m  the guadtatic expected cost functional and the dynamics of the nochartic 
system given in (2.3)-(2.5). 

However, in this cax we restrict the II point procas so that to = 0 and the increments tt+r - 
t k ,  k 2 0 are exponentially distributed with mean interarrival time p k  = 11.4 for 0 5 k < A'. 

For this problem, d that UPI, is the das of admissible control laws. 



At the ( N  - 1)th stage, the o p t i d  cortto-go is g i n  by: 

UN-: K U(x(t~- : ) )  ~UPI,~-,. 
Again luing the independma kheen the Brownian motion W and the point proarr t = 

{t.,i 2 0 )  in (4.2). and evaluating the erpeaation in its repet to t~ (given t ~ - I ;  4 that 

(.lX(t~-:))  napon on& to (.IX(t~-:).tw-:)). re obrain: 

Using hbini's t h e o m  in (4.3). one can intacfunge the order of integration to yield: 

We recognize (4.5) to be an infinite horizon discounted l i n w  qnadntic regulator problem with 

initial state X(tr-1) known. 

We can write (4.5) as: 

To evaluate the ccpeaarion in (4.6). we proceed as fonm: 

0 La P(t) be the covariance matrix given by 



By setting s = A, we have 

XI XI (A - -)p(X) +p(X)(A1 - T )  = -A-'CG 
2 

(4.14) 

T h d m  the hrst btc& in (4.9) can now be express& by: 

To evduate the second integral in (4.9). we rely on the following Mamtid equation for 

dEX(t)  and its solution: 



where 

We can now apress v ( X ( t ~ - l ) ,  N - 1)  as: 

After some algebra, we obrain: 



where 

Here the oprim+l costta-g~ erprrsion is goadratic in its initial state X ( ~ N - 1 ) .  W e  postulate then, 

that the structure of the optimal cost w i l l  remain qodnt ic  in its initial statc W e  Ne p- our 

hypotheses using bachntds induction. Thtu let: 

where Uk r U ( X ( 4 ) )  c UPI,.. . 
As for the ( N  - 1)th stage, we a n  ahw for the present stage that 



Using induction principle, we ca. shw that Zr+l is symmetric 

Thadm, it follows from ( 4 3 ) :  



we establish with equation (433) mu main r e d t  

4.1. Scalar Example. We consider hae  the following& stoc6artic diEercntial equation: 

&(t) = ar(t)dt + bu(LrJt)dt + gdw(t) (4.34) 

with the arsodated cost fnnctiod 
N - 1  ++r 

J ( 4 u )  = 4j, E W [ ~  4+,{l ( d B )  + d ~ ' ( l ~ ~ r ) ) d t l ~ ( t ~ ) } ]  ( 4 3 4  
$4 

where u(LrJl) n u(z(t .))  c h ~ ,  for t. I t c t.+l- 

Following the same general framework developed thmugh equations (4.1) to (433). we have: 

V ( X ( t s ) ,  N )  = 0. ( 4 3 )  



where 

LN-I = b3L(2b%+ d(X - a)(X - 20))-'. 

The multing optimal --go at the (N - 1)th atage is erprrsed by: 

W ( ~ N - I ) . N  - 1) = E N - ~ ~ ( ~ N - I )  + &N-l 

where 

L-1 = c(x - %)-I + !&eL~-~((a - X)(X - %))-I 

+ L~- l (2b2c(~(~  - a)(X - %))-I+ A-Id) 

%-I = cd(X(X - %))-I. 

Applying equations (4.30) to (433) in our present scalar study. we can compute apliatly for an 

arbitrary stage, Z k  and ik in 

The last equation means that the structure of the optimal cmt-go remains quadratic from stage 

to another. We write now from equations (4.30) to (4.33) the main scalar steps: 



5. Optimal T i e  Variant Control 

We consider in this section the ex@ quadratic cost fimctional and the stochastic Maential 

equation giwn above in (26)  - (28).  

As we mentioned earlier in this chapter, for the time variant control, the t,'s are Poisson 

distributed with mean inta-arrival time pr = 1/X for 0 5 k < N. As previously, we have: 

At the ( N  - 1)th stage, the optimal cost-go is expressed by: 



where the matrix gain KN-1 is given bdm in quation (5.8). 

However, as no fmtha obserrntiom of  the state X ( t )  ue available on the intava [ ~ N - I . ~ N ) .  

then by the separation principle [I] ,  Fleming k RLhel[5]), we replace X ( t )  by its optimal 

predictor f ( t l t s -1 )  witb the initid statc X ( ~ N - I )  lmOm 
Tben the optimal control law is now a p d  

This o p t i d  Ptering estimate of X ( t )  is govaned by the following dynamics 

Thus, we bave a dosed-loop system with the following dynamics 

d X ( t )  = AX(t)dt - ~ ~ - ' B ' ~ ~ - ~ d ( t l t ~ - ~ ) d t  + CdW(t )  



where F~, , -*  = r e-U&-xt~N-lI+-xt&. w e  ~LMIT t h ~  F = C-"~CC-%~,  is the solution 

of the algebraic Lyap~mov matrix equation in the form A'F + FA = 4. For a detailed and 

synematic study of the well-known Lyapunov matrix equation. see GajiC and Qtvcrhi [6]. 
At this stage, the optimal &-go is expressed by 

where obviously EN-1 = FM,,-~ + FzN-,  and (71-1 = tr[Cp(A)]. 
Agam the optimal cost is quadratic in its initial state X ( t ~ - l ) ,  we reformulate the hypothaa 

that the optimal cost value wi l l  rrmain qttadraric in its initial state. 

Thus, let: 

where 0 5 k < N,Zr+l and re1 are some spedfic constants. 

We have to pmve the following equation wing badrrards induction 



f o r O S k < N .  

By the PMaple of Optimaiity in the dynamic prc-g. frameror4 we ham 

where Ut e U(t ,X( t r ) )  c UN,,. 
On the one hand, using a similar appro ad^ than previously, 4 Imoa that 

On the other hand, as - t t )  is aponmtidly distributed in its parameta A, and upon condi- 

tioning on tk, 4 can write: 

Therefore (5.18) can be written as: 

Again, we recognize (5.21) to be an infinite horizon discounted linear q d m t i c  regulator problem; 
then using Rishel's result and separation principle, we obtain: 

where Kk k the matrix solution of Riccati equation givm by: 



5J 0-TIME VARUhT CONTROL 

w h m  

5.1. S& Example. We consida the following xdar stochastic differential equation: 

&(t) = a+(t)dt + A ( t ,  11J~)dt +gdw(t)  (5.30) 

with the arsodated cost htnctional 
N-1 L*, 

J M ~  = "2, E W [ ~  4,{L ~ t )  + c ~ ' R . ~ ( ~ ) ) ) ~ I I ( ~ . ) I I .  (5.311 
.=* 

Equations (5.30) and (5.31) are a xdar version of equations (2.8) and (2.7). 



s5 oP?IMALTIMEvAaUNT COh'TBOL 

F ~ t h e g m e r d ~ d ~ e l b o n * e d ~ ~ ( 5 . 1 ) t o ( 5 ~ ) , r c h a ~  

W ( : N ) . N )  = O. (532) 

At the ( N  - 1)th stage, the optimal cortto-go is 

Using equation$ (5.12) - (5.14), we can compute easily the optimal cost expressed expliatly by: 



which is of& form 

Applying q&ons (5.18) to (538). we can ccrmpute aplidtly, for an arbitrary stage, zk and 7; in: 

which is a scdar  version of equation (5.17). This means that the structure of the optimal cmt 

rrmainsquadrat i c in i t s in i i i a l sea te~~toanotha .  kusrtrtefroruthaeequations 

((5.18) - (528)). the major scdar steps 

where 4 is the solution of Riccati equation 

We have the following dynamio and cwt htnctiond: 



6. Conclusion 

The clas of problems studied in this chapter are open to genenlizatron to pmbltms which 

appear to be significantly more diflidc for insrance, we consider the case where 

(a) The total n& of o w -  N is random and unknown to the controlla. 

@) One has the option to pay for a fired sum in order to obtain the value of an 

observation ocamhg at a random time, and where the total performance cost is 

the LQG cost givm below, plus the total obxrvarion cost payed over the time 
horizon of the problem. 

(c) The Jtochastic differential equation dexribcd in (21) har random and time 
MMnt idaents .  

(d) The observations instants are distributed according to another probabilistic 

disuibutiou. 

J ( X M  = u%,~w.t[[ W(%Ult))&] 

R-1 4+, 
= ueurt min E W . C [ ~  YO 6 W ( t ) . W ) & ]  

= E W E  E{ f q x ( t ) . u ( t ) ) 6 t ~ ( b ) .  ... .X(UR 
Ueu,' * t. 

N-1 2+, 
= min E W [ ~  &{A  t(x(t).u(t))&lx(ti))l 

Ueurr & 

N-1 4+1 

= min E Y [ X  L { / I  f ( ~ ( t ) . W ) ) & W d } ] -  
U&r * 



b a r p i n g  eqrtations (7.1) to (is). that: 

(7.1) to (72) is justi6ed by the decomposition of the omthous time domain into 

a bite set a f N  dijoint iaals [ti.&& 

(7.3) is a omsquencc of smoothing propay of conditional erpectatiop 

(7.4) relies on the fact that the stochaaic process {X(k) , i  2 0) is a Markov 

P- 
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CHAPTER 6 

Gradient Estimation for Ratios 

1. Introduction 

Let (A, B) be a pair of jointly distributed real-dued random vaMb1u The estimation of the 

ratio a = E[A]/!3[B] is known, in the airnulation literature, as the d o  uiimotion problem Such 

ratio d o n  problems arise in many different applications settings. For example, it is well known 

that the steady-state mean of a poaitiw rrctvnnt regenerative stocbtic p- can be expressed 

as such a ratio of expectations; see. for example, Section 3.32 of [2], or Chapter 2 of [IS]. In Section 

2 of this chapter, we wil l  discuss the ratio estimation problem in greater derail and oEer additional 

examples. It wil l  turn out that the infinitehorizon discounted cost of a nondelayed regenerative 

proms can also be expmsed in tams of an appropriately choxn ratio estimation problem. This 

fact was first pointed out by [3]. 

Recently, the simuktion community has devoted a g m  ded of attention to the use of simulation 

as an optimization tool. An important component of this rescar& dart has been the development 

of estimation methodology for computing the gradient of a d-valued performance m- with 

respect to a (finitedimensional) deckion parameter vector. Such gradients play an important role 

in many iterative algorithms for performing both constrained and unconstrained mathematid opti- 

mization. This chapter is intended as a audy of the question of bow to use this gradient estimation 

me tho do log^ in the setting of the ratio estimation problem. 

The chapter is organized as follows. In Section 2, a number of different applications in which 

ratio estimation problems arise are dixuyed, and the mathematical framework for the remainder 

of the chapter is described. Section 3 is devoted to deriving a confidence i n t e r4  methodology 

for estimating the partial derivative of a ratio. In addition, a joint central-limit theorem for the 

simultaneous estimation of the entire gradient is obtained. In Section 4. low-bii estimation issues 

are dixuued. Section 5 concluda the chapter with a brid summary. The proof of our main theorem 

(Theorem 1) is given in the Appendix. 



2. Examples of Ratio Estimgtion Problenu 

where (A. B) is a pair of jointly distributed reaI-valued mdom d l a  We now proceed to d e r  

d examples oft& eshatbm pmblem. 

Example 1. Let X = {X(t).t > 0) be a & d u d  (possibly) delayed regenenti= p- 

aithrrgm~vetimaO~T(O)<T(l)<~~-.Fori>1.l& 

Hence, as di?russed in the intmdnction, the steady-6tate mea. of such a p- can be aprrssed 

as the ratio of the tvm e?rpenations E[Al] and E[Bl]. 
Example 2. Let X = {X(t), t > 0) be a nw-delayed regm& pmca~, taking values in 

a state space S, with repaative times 0 = T(0) < T(1) < --.. Let f and g be two d-valued 

non-negative (measurable) functions defined on S, and set 

Then, a is the infinite-horizon crpected dixounted cost, the p- g(X(t)) corresponds to the 

(statedependent) dixount rate at time t, and f (X(t)) is the (nndiscounted) rate at which cost is 

incurred at time t .  A common choice for g is the one in which g(.) is constant and eqtld to p > 0, 

in which cax 



Hence, the infinitchoriton discounted coat for a regenerative process can be acprrssed in terms of a 

ratio atimation problaq see 131 for hutha details. 

ExampleS. LerXbearegenerati~pmassasinExample5andarmmethatXhas 

right-continuous patbs with left limits. L* F be r no~empty subset of the state space S, and In  

s(F)  = i d { t  2 OIX(t) c F )  be the fint hitting time oftbe subset F. Then, 

is the m a n  hitting time of F. Such apecWbm are of interut. for aanple, in the M i t y  

setting, in which case s(F) aodd typicdly correspond to the system failure time, and T ( l )  to a 

time at which the systrm is brought back to an "as good ZLY ner" state. Ln 

where I dmota the indicator function. If P[r(F) < w] > 0 (note that this is equivdmt to requiring 

that P[r(F)  < T(1)]  > 0).  it is easily shown that 

See [i] for additional details. Thus, the mean hittingtime of aregenerative pmca?i can be formulated 

in terms of the ratio estimation problem. 

Example 4. Let X be a real-vdued random variable and la C be an event with P(C)  > 0. 

S u p p o d e t h a t w e ~ t o u t i m a t e  



Hena,conditional~arrerprrsablein-dtheratio~problem. 

Thus, the ratio estimation problem rdscs in a &ety of different applic+tions con- We 

shall~ointrodutxadedsionpanmetare~rBintothe~ F o r e a ~ h B c R ~ , l t t ~ ~  be 

the probabiity m- rrsodatcd with the pMmacr value 0, and k t  ?& be iu comsponding 

-on operator. In addition, we ahdl permit the random e l e  A(@) and B(B) to depend 

erpliatly on B c R'. Thm, for each B c Rd. the ratio of erpeaations can be ecp& in the form 

rbere u(B) = E+[A(B)] and ((6') = 4[B(B)] .  Given our above examples, computing the gradient of 

such a ratio a(@) is useful for WUitivity analysis or opthkation of any ofthe folloaing. steady-state 

W or rewards in regenerative pmasxr; infinirc-horimu dircorrnted axts; mean time to failure in 

reliability systems; conditional upctati01~ and probabilities. 

3. Confidence Intervals For Gradient Estimators of Ratios 

Let Bo c R4 be fixed. In order for the gradient atimatiou problem to make sew, we rhdl 

require tbat both u(-) and l ( - )  have gradients at B = 00. We shall further assume that t h m  

ains u n b i  &imam for not only u(Bo) and l(Bo), but thdr gradients Vu(eo) and Ve(eo). 

Focursing now on the dth component of the gradient. we shall speci6cdly assume that there exist 

jointly distributed random variables (A, B. C, D) such tbat 

where a, denotes the partial derivative with respect to 0,. and 8, is the i-th component of 8. 

Thae is now a great deal of Literature on d o u s  waya of conSMcting n g b i i  enimators 

for a.u(Bo) and B,C(Bo). The two prinapal approaches that have been aplored are likelihood ratio 

gradient (see [S] for a survey) and infrnitesimd perturbation analysis (see [4]). For links 

between the two mahods and for a general survey, see 1101 and [ l l ] .  



Werhannoraglmv~itbparible6mthesimtJatortogc~atea~~tl~~{(A,.B~.C,,D,),j 2 
1) of iid. rrpl icatu of the Mdom P-ec(or (4 B.C.D). In each of the problem settings described 

in Seaion 5 this is typically stnightforruh 

To atimate 

and 

Our first proposition states that unda masonable conditions, &(n) b a consistent estimator for 

a.a(B0). The proof is straightforward and therefore omitted. 

P~oPosmoN 1. Suppose (hot E[IAlI + IBII + ICII + lDlll < m and thOt EIBl] # 0. Then, 

lim &(n) O* B,a(Oo)D 
n-oo 

To develop a conlidmce intaval methodology for B,(n). we need a central-limit theorem (CLT) 
for the atimator. Let 



and note tht r m d ~  the asmnptiona a f  Proposition 1. E[Zj] = E[W,] = 0. Thir obscrmth is an 

i m p o r t a n t e l e m e n t i n t b e p r o o f a f t h e f ~ t h ~  

Th- 1 has be- previously atablished, using differ& method* by P4] in the context of 

likelihood ratio gradient ertimation for regenerative study-state simulation. Their expression for 

the variance constant Z is f d y  diffaenf but algehraicdly identicd 

The final aep need to develop a cwfdc~ce  intersal mahodology for &(n) k the constmaion 

of an appropriate esthamr for 0'. Let 

The next proposition gives conditions under which v(n) is strongly consistent for o'. The proof is 

straightforward and therefore omitted. 

P~oposrnon 2. Suppose that E[A: + Bf + C: + D3 c m. If E[Bl] # 0, Lhm 

We note that if v(n) is computed via a twc-pass approach in which a,, and 6,(n) arc computed 

in the 6rst pass through the data {(A, .  B,.C,, Dj) ,  1 5 j _< n)  and the sum of squares computed 

in the second pass, then it L enxntidly guaranteed that u(n) wil l  be computed as a non-negative 

quantity on any mte-precision computer. More importantly, this means of  computing v(n) is likely 

to be more stable numerically than that auodated with the computation described in [14]. 

We an now ready to describe a general confidence interval methodology for atimating partial 

derivatiwsof ratios. Suppose that we wish to compute a lW(1-6)% conhdena interval for B,a(Bo). 

We w the following procednre 



Algorithm CL 

1 Cenente {(Aj,Bj,Cj,Dj),j  2 1). 
2 Compute a., and 6.(n). 
3 Compute v(n) (using the +xq!as a p p d  d c s a i i  above). 

4 Find ~(6) such that P[N(O.l) ,-(@I = 1 - 612. 
5 Compute 

Then, [L,,,U,] ,I an ((1ppmxhat.4 lOO(1- 61% confidence intcnal for B,a(Bo). In particular, if the 

conditions of Proposition 2 arc in force and 9 > 0, then 

We condude this section with a brid discussion of the problem of generating a d d e n c e  region for 

the vector (a(Bo),&a(B~),. . . .B&(Bo)). Ajoint confidence region could be of potcutid interest in a 

number of optimization settings, since virtuaUy all itaative (d-c) opthhtion algorithms 

c h o w  thdr search direction, at each itention, by considering the full gradient. 

~a c ( i )  and ~ ( i )  be t l n b i  aima~a f a  8,u(B0) and a.w0) ,  SO u 

If { ( A a , & , C J ( l ) . ~ J ( l ) , . . .  ,Ca(d).DJ(d)), 1 5 j 5 n)  is a set of n i.i.d. replicates of the ran- 

dom veaor (A, B.C(l ) ,D( l ) .  . . . .C(d),D(d)), thm the estimators an.6r(n), . . . ,Jd(n) can be con- 

e ~ &  from the sample in the obvious way, namely 

Define 

We are now ready to state a joint CLT for (an,61(n).. .. .6d(n)). 

THEOREM 2. Auume thd E[A:+B:+G(l)+q(l)+..-+G(d)+D:(d)] < w. If E[Bx] # 0, 

then 



The proof of this theorem mirmn that of Theomn 1 and is therefore omitted. 

A procedure for pmduchgacymptotically valid con6denarrgions for (a(&). &a(&), . . . &a(&)) 

can now easily be derived, using the same ideas as those dacribed earlier in this seccion for a,a(80). 

4. Low Bi Estimation for the Gradient of a Ratio 

Since the gradient of the ratio is a nonlinear function of the rrpecrations E[A],E[B],E[C(l)]. 

E[D(l)], . . . , E[C(d)].E[D(d)], it follows that the estimator 6,(n) is, in general, b i  for a,a(Bo). 

We will now p d  to (formally derive a bii apansion for 6.(n). The proof of Theorem 1 

shows that 

Wn - ( W R J Z s  
6dn) - 8 4 % )  = Bn (4.1) 

We ' e d d  like to apprmdmate the arpeaation of thar We note that since% is dose to p '% E[Bz] 

for large n. we can w the power series apansion for f (z) = (1 -=)-I to obtain 



Using this a p p  ' 4 in (4.1). n h d  that 

Thk b i i  appmdmation stlggats an obvious means of reducing the b i i  of gradient estimators for 

ratios. The i&ea is to atimate the b i i  tam and am& for it by subtracting cdf the s t h a t e d  b i .  

In this case, this approach leads to the atimator 

where za and E, are defined just before the statanent of Proposition 2 in Section 3. 

Unda the appropriate rrgularity hypothaa, and by applying techniques similar to those used 

in [6], one can rigorously p m  that g,(n) reduces the asymptotic b i i  in the sense that 



is a consistent variance eshator. As  in the cw of the arimator g,(n), one can pmve rigorously 

(under suitable reguhity hypotheses) that the estimator 6:(n) reduces asymptotic bias, in the sense 

that 

It turns out that the improved b i i  -cs of these estimators arc costless relative to the 

variance, in the sense that the estimators &(n) and 6:(n) obey precisely the same CLT as does 

6.(n). Iimce, the estimators ahibit *e same degree of asymptotic variability. 

THEOREM 3. Assume UIot E[A: + B: + + D:] < ca and that E[BJ # 0. Thm, 

whew c? is the same constant PI in Thcorcm 1. I 

5. Conclusion 

Ftatio estimation problems arix in many different applications settings. When atimation is 

to be used to analyze the sensitivity of (or to optimize) a systuc in which the ratio estimation 



problem occoxs, the d t s  ofthis chapter bemme patina& We have derived a &kaUy stable 

d m a  intend procedure for computing partid daivativcs of mch ratior, and have developed 

the appropriate joint CLT's necasary to a tend this mahodology to the computation of d d m a  

e o n s  for the fd gradimt of the ratio. In addition, rc have diwrrssed lor-bii esLimators for 

computing such partial derivatives. 

6. Appendix 

Proof of Theorem 1. We note that 

Clearly, * (E[G])'f2N(0, 1) as n + m and nn/an E[DI]/E[BI] as n + m. It follows, 

by the converging-togetha prindple, that 

as n + m. The CLT for i id.  random variables a h  prover that 

as n -+ m. A second application of the converging-togetha prinaple then yields 

One find application of the omverging-together principle (note that zn % E[Bl] as n + m) 

prows the theorem. 

References 

[I] Asmussen. S. 1987. Applied Pmbobility ond Qucuu, Wiley. 

[2] Bratley, P.. B.L Fax and LE Schage. 1987. A Guide to Simulation, Springa-Valag. Iier 
York, second edition. 

[3] Fox, B.L and P.W. Glynn, 1989. Simulating Diiunted Costs. M a n n g m d  Samcc, 35. 

1297-1315. 

[4] Glasxrman, P. 1991. Gmdinrt Estimation ltia Perturbation Analysir, Kluwa Academic. 



[5] G l w ,  P.W. 1990. Lihlhood Ratio Grsdimt Estimation for Srochastic Systan% Communi- 

cociar of the ACM, 33.10. W 

[6] Glynn, P-W. and Hadelbeger, P. 1991. J-Unda aBudgtt Gmstnint ORSA J d  

on -, to appear. 

m GoyaI, A, PShahabnddin, Hdddbczger, P.. Nicoh, V. F, and G l p ,  P.W. 1991. A Unified 
Frameaork for S i  MarbDIlian Models of Highly Dependable Systemr IEEE Tmnrac- 

t k  on Computers. To appear- 

[8] Hddd-, P., X-R Cao, MA. Zaranis, and R Stvi 1988. Comrrrgen~ Roperties of 

Infinitainul Perturbation Analysis Estimata Mamgmcnf Scimcq 34.11, 1281-1302. 

[9] Iglehaa. D L  1975. Simukting Stable Srochartic Systems V: Comparison of Ratio Estimators 

Naval R u d  Logistics Quarterly, 22,553565. 

1101 L'Ecuyer, P. 1990. A d e d  Version of the P A ,  SF, and LR Gradimt Estimation Techniques. 

Managcmcnt Scimcu, 36.11, pp.1364-1383. 

1111 L'hyer, P. 1991. An Overview of Derivative Estimation. In t h e  proaedings. 

[12] L'Ecuyer, P. , N. Gimux and P.W. Glynn. 1991. Stochastic Optimization by Simulation: Ccn- 

wgence Pmofs and Experimental Raults for the GI/G/l Queue in Steady-State. In prepara- 

tion. 

(131 Miuer. RG. 19i4. The JacLhrife - A Review. Biomefdo, 61.1-15. 

1141 Reiman, M.1 and Web, A. 1989. Sensitivity Analysis for Smulati011~ via Likelihood Ratios. 

0 p . h . .  37,s. pp.630-644. 

[15] WOE, R 1989. Stochastic Modeling and the Thmry of Queuu, Pmtice-Hdl. 



CHAPTER 7 

General Conclusion and Future Research 

In this thesis, a ckss of problems in statisti- and control both with applications in electrical 

engineering has been studied. whmby an underlying time mead sequence plays a key role in the 

evolution of the dynamic quantities of intaest 

It will be of particular interest to study the moments of the same general forms; as detailed 

in Chapters 2, 3, and 4; but with dependent random &la. This type of moments involving 

dependent variables has many practical applications. mainly in random cumulative fatigue. 

For the stochastic optimal control part, it wil l  be wy relevant. as 6ubsquent roearch, to study 

the stochastic optimal control problem, where the b m r k  is a Gzed finite horizon with Poisson 

distributed obsenation instants, and the totd n u m k  of observations is random. 

We hope that the mathematical theory developed in this thesis will help the formulation and 

eventual resolution of new problems deriving &om a croy between the problems of operations re- 

search and those of main stream in stodmtic control theory. 




