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The last decade has witnessed the revival and a new surge in the field 

of artificial neural network research. This is a thoroughly interdisciplinary area, 

covering neurosciences, physics, mathematics, economics, and electronics. 

Although artificial neural networks have found diverse applications in pattern 

recognition, signal processing, communications, control systems, optimization, 

among others, this is still a research field with many open problems in the areas 

of theory, applications, and implementations. Compared with the development 

in neural network theories, hardware implementation has lagged behind. In 

order to take full advantages of neural networks, dedicated hardware 

implementations are definitely needed. Today, harnessing VLSl technology to 

produce efficient implementations of neural networks may be the key to the 

future growth and ultimate success of neural network techniques. 

This dissertation deals with the development of neural network models 
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implementation technologies are basically a digital implementation medium, 

which offers many advantages over its analog counterpart, artificial neural 

networks must be adapted to an all-digital model in order t o  benefit from those 

advanced technologies. In this dissertation, new models of multilayer 

feedforward neural networks with single term powers-of-two weights, 

quantized neurons, and simplified activation functions are proposed to facilitate 

the hardware implementation in digital approach. Dedicated training algorithms 

and design procedures for these models are also developed. To demonstrate the 

feasibility of the presented models, performance analysis and simulation results 

are provided, and VHDL and FPGA designs are implemented. It has been shown 

that these proposed models can achieve almost the same performance as the 

original rnultilayer feedforward networks while obtaining significant 

improvement in digital hardware implementation in terms of silicon area and 

operation speed. By using the models developed in this dissertation, a digital 

implementation approach of multilayer feedforward neural networks becomes 

very attractive. 
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Chapter 1 

INTRODUCTION 

The last decade has witnessed the revival and a new surge in the field 

of artificial neural network research. The term neural network originally referred 

to a network of interconnected neurons which are basic building blocks of the 

nervous system. Today, this term, or more properly artificial neural networks, 

has come to  mean any computing architecture that consists of a massively 

parallel interconnection of simple neuron-like processors. These architectures 

have been inspired by our current understanding of the brain, but do not 

necessarily conform strictly to that understanding. 

The fact that an one-year-old baby is much better and faster at 

recognizing objects, faces, and so on than even the most advanced artificial 

intelligence system running on the fastest supercomputer may imply that there 

are numerous problems in the real world that are difficult with today's 

computing technology but are easily solved by human beings or even animals. 

In view of this fact, the research on artificial neural networks has been 
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thoroughly interdisciplinary area, covering neurosciences, physics, 

mathematics, economics, computer sciences, and electronics. There are 

thousands of new comers entering this exciting research field every year. 

1 . I  History of Artificial Neural Networks 

The initial effort in Artificial Neural Network (ANN) research may be 

traced back to early 1940s when McCulloch and Pitts [McCulloch and Pitts, 

19431 modeled a neuron as a simple threshold binary device to perform logic 

functions. In this model, each neuron can be in only one of two possible states 

and has a fixed threshold. It can receive inputs from excitatory synapses, at1 of 

which have identical weights. It can also receive inputs from inhibitory 

synapses, whose action is absolute; that is, if the inhibitory synapse is active, 

the neuron cannot turn on. 

Later in 1949, Hebb [Hebb, 19491 published his book The Organization 

of  Behaviour and for the first time proposed a neural learning rule for synaptic 

modification that has been known as the Hebb rule. Hebb stated that if one 

neuron repeatedly fires another, some change will take place in the connecting 

synapse to increase the efficiency of such firing. This correlational synapse 

modification rule has become the basis for many neural network models 



1987 and 19881 and Hopfield Network [Hopfield, 19821. 

The most significant work at the early stage of neural network research 

was the Perceptron model which was developed by Rosenblatt [Rosenblatt, 

1959 and 19621 in late 1950s and early 1960s. It was the first precisely 

specified, computationally oriented neural network. The basic classification 

element in the Perceptron is the R-unit, which forms a weighted sum of the 

active elements times the connection strengths. The unit has a threshold. If the 

sum is greater than the threshold, the R-unit takes the value 1; if less than the 

threshold, the unit takes the value -1. This simple network generated much 

interest when initially developed because of its ability to learn to recognize 

simple patterns. 

However, the Perceptron model has its own limitations. It is capable of 

realizing only those linearly separable functions. This weakness was seized by 

Minsky and Papert [Minsky and Papert, 19691 in 1969 when they proved 

mathematically that the Perceptron cannot be used for complex logic functions. 

The publication of their famous book, Perceptron, caused a sharp decline in 

research on neural networks. 

The present impetus in neural network research is due in part to the 
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these papers, he presented a recurrent model of neural computation that is 

based on the interaction of neurons. He also pointed out that there are 

emergent computational capabilities at the network level that are nonexistent 

at the single neuron level. Such neural networks are now known as Hopfield 

networks. 

During the 1970s when no one else was working on neural networks, 

Steven Grossberg and Teuvo Kohonen were making significant contributions. 

In 1 980s, Grossberg and Carpenter [Carpenter and Grossberg, 1983, 1 987, 

and 19901 developed their Adaptive Resonance Theory (ART) neural network 

architectures, based on the idea that the brain spontaneously organized itself 

into recognition codes. These are self-organizing neural implementations of 

pattern clustering algorithms, that is, they form clusters and are trained without 

supervision. 

A t  the same time, Kohonen [Kohonen, 1982 and 19841 proposed his idea 

of a self-organizing map, based on the fact that the brain is organized, in many 

places, so that aspects of the sensory environment are represented in the form 

of two-dimensional maps; the placement of neurons is orderly and often reflects 

some physical characteristic of the external stimulus being sensed. It is a sheet- 

like artificial neural network, the cells of which become specifically tuned to 



learning process. 

In the mid 1980s, David Rumelhart and his colleagues rediscovered the 

backpropagation algorithm [Rumel hart et al., 1 9861, which was originally 

discovered by Paul Werbos [Werbos, 19741 when he applied the LMS algorithm 

to multiple layers of Perceptrons in the study of social sciences. The publication 

of their landmark book on parallel distributed processing [Rumelhart and 

McClelland, 19861 established the backpropagation algorithm and multilayer 

feedforward neural networks (MFNNs) as the major paradigm of the field of 

neural network research. This work and earlier works have finally galvanized a 

large number of scientists into thinking in terms of collective neural 

computation rather than single neurons. 

From the late 1980s through the 1990s, with some neural network 

paradigms having reached a considerable degree of maturity, more and more 

efforts have been directed towards the area of neural network implementation 

as well as applications. The pioneering work by Mead [I9891 marked the 

beginning of a new era in hardware implementation of neural networks. Since 

then, with the technological advances of VLSl circuits and systems, the field 

of VLSl artificial neural networks experienced an exponential growth and a new 

engineering discipline was born. Various work on analog, digital, pulse- 



and Elmasry, 1992, Oh and Salam, 1 993 and 1994, Kim and Shanblatt, 1992, 

Zaghloul et al., 1994, Sheu and Choi, 19951. 

By far, Hopfield networks, ART networks, self-organizing maps, and 

multilayer feedforward networks are the most popular artificial neural network 

models that have ever been proposed. Other important ANN models may 

include Neocognitron[Fukushima, 1975 and 19801, Boltzman machines[Hinton 

and Sejnowski, 1 986][Ackley et al., 1 9881, bidirectional associative memories 

(BAMfs)[Kosko, 1987 and 19881, and fuzzy ARTMAPKarpentaer et al, 1992 

and 1 9933. 

1.2 ANN Features 

Generally speaking, an artificial neural network model is specified by 

three factors: 

a set of basic processing elements, called neurons (or nodes) 

a specific topology of weighted interconnections between neurons 

a training or learning rule which specifies an initial set of weights and 

indicates how weights should be adapted during use to improve 

performance 



sums a number of weighted inputs and passes the result through a nonlinear 

activation function. More complex neurons may include temporal integration or 

other types o f  time dependencies and more complex mathematical operations 

than summation. The topologies of ANNs fit broadly into two classes: recursive 

and feedforward. A recursive ANN is a network with feedback. In such a 

network, each neuron receives as input a weighted output from every other 

neuron in the network, possibly including itself. A typical example of recursive 

neural networks is the Hopfield network shown in Figure 1 . I .  A feedforward 

network does not contain any closed synaptic loops or feedback. The most 

famous feedforward network is the Multilayer Feedforward Neural Network 

which will be discussed thoroughly in Chapter 2. Training algorithms for ANNs 

can be described either as supervised training or unsupervised training. The 

distinction between supervised and unsupervised algorithms depends on 

information they use. Supervised training, also called learning with a teacher, 

assumes that the desired output of the network is known. This is then used to 

form an error signal which is used to update the weights. On the other hand, 

in unsupervised training the desired output is not known, but instead training 

is based simply on inputloutput values. Such training algorithms usually act to 

extract features from sets of input data. 



Figure 1.1 A Hopfield Network 

The potential benefits of neural networks extend beyond the high 

computation rates provided by massive parallelism. Some of these benefits are 

outlined below. 

Neural networks typically provide a greater degree of robustness or 

fault tolerance than von Neumann sequential computers because 

there are many more processing elements, each with primarily local 

connections. 

Neural networks have the ability to adapt to changes in the data and 
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areas such as speech and image recognition. Adaptation also 

provides a degree of robustness by compensating for minor 

variabilities in characteristics of processing elements. 

Neural networks can perform functional approximation and signal 

filtering operations which are beyond optimal linear techniques 

because of their nonlinear nature. 

Neural network classifiers are non-parametric and make weaker 

assumptions concerning the shapes of underlying distributions than 

traditional statistical classifiers. 

Neural networks are model-free classifiers because they approximate 

functions with raw sample data. 

Because the motivation of ANN research comes mainly from the fact that 

humans are much better at pattern recognition than digital computers, there is 

no surprise that ANNs have found many applications in vision processing and 

speech processing[Sejnowski et al., 1987][Lang et al., 1990][Taylor, 

1990][Levin, 1993][Kung and Taur, 1995][Zhang and Fulcher, 19961. Besides, 

ANNs have also been applied to the areas of optimization[Tank and Hopfield, 



and Winarske, 1988][Choi et al, 1993][Kechriotis, et al., I 9941[Ansari, et al., 

19951, control systems[Nguyen and Widrow, 1990l[Narendra and 

Parthasarathy, 1990][Sebald and Schlenzig, 7 994][Sanger, I 9941[Lewis, et al., 

19961, and medical applications[Nikoonahad and Liu, 1990][Nekovei and Sun, 

1995 JIChoong, et ai., 19961, to mention a few. 

1.3 Motivations and impact of this research 

Although artificial neural networks have found diverse applications in 

control, signal processing, and pattern recognition, among others, this is still 

a research field with many open problems in the areas of theory, applications, 

and implementations. Compared with the development in neural network 

theories, hardware implementation has lagged behind. In order t o  take the full 

advantages of neural networks, there has to be dedicated hardware 

implementations. Research in hardware implementations belongs to  the main 

areas of activity in the field of neural networks and plays a unique role in the 

progress of the entire field. The surge of interest in neural networks, which 

started in mid eighties, was to  a large extent caused by advances in VLSl 

technology. Today, harnessing VLSl technology to produce efficient 

implementations of neural networks may be the key to the future growth and 

ultimate success of neural network techniques. 



success in their own application domains. Each technique has its own pros and 

cons. The selection between digital and analog circuits depends on many 

factors, for example, speed, precision, adaptiveness, programmability, and 

transferlstorage of signals. This dissertation deals with the topic in digital VLSl 

implementations of artificial neural networks. An all-digital artificial neural 

network VLSl implementation offers several advantages over its analog 

counterpart[White and Elmasry, 1 9921 [Kung, 1 9931. 

1) Digital design has an overall advantage in terms of system-level 

performance. Dynamic range and precision are critical for many complex 

neural network models. Digital implementation offers much greater 

flexibility of precision than its analog counterpart. 

2) In most real-world applications, neural networks are embedded in 

existing digital systems. An all-digital ANN implementation provides 

compatibility. 

3) Real-world applications usually require large scale neural networks, in 

some cases, of tens of thousands neurons and synapses. Digital VLSl is 

more appropriate at this level of complexity, whereas analog VLSl suffers 

from noise and difficulties in fabricating high-precision resistors and 



4) Larger ANN'S may require rnultichip implementations, and an analog 

implementation makes it more difficult to transfer signals from chip to 

chip, and also t o  match board-level capacitive loads and time constants. 

An all digital technique makes it easier to transfer signals form chip to 

chip. 

5) At any given time, digital VLSl technology is always more mature than 

its analog counterpart in terms of fabrication technology and simulation 

and design automation tools. It also offers a wide range of fabrication 

technologies, including such technologies as ASIC for application 

oriented design and FPGA for rapid prototyping. 

6) Real-world neural network applications may suffer from I/O bottlenecks, 

which are best addressed by digital techniques such as input buffers, 

shift registers, and pipelining. Moreover, power dissipation reduction 

techniques, such as dynamic logic and complementary operation, can be 

used. 

7) Digital implementation offers a homogeneous implementation 

environment between the processing elements and the on-chip or 



Because the state-of-the-art VLSl implementation technologies are 

basically a digital implementation medium, artificial neural networks must be 

adapted to an all-digital model in order to benefit from these technologies. 

Meanwhile, there are also certain shortcomings of digital VLSl 

implementation that must be resolved in order to implement ANN'S efficiently. 

Most ANN neuron calculations involve a weighted sum of the neuron inputs, 

and the multiplier required for this multiply-accumulate operation is slow and 

consumes large silicon area in a digital VLSI implementation. 

The solution of this problem may be approached from I )  advances in 

VLSl technologies; and 2) adapting existed models to today's available 

technologies. This dissertation deals with the latter issue and wilt develop new 

models of MFNN's which are suitable for digital hardware implementations. 

In silicon design, the cost of a chip is primarily determined by its two- 

dimensional area. Smaller chips are cheaper chips. Within a chip, the cost of an 

operation is roughly determined by the silicon area needed to implement it. As 

pointed out previously, in digital neural network systems, multiplications are 

area-consuming and slow operations and there are massive such operations 



inputs to neurons and their corresponding weights can be reduced, a reduced 

silicon area and higher speed will be resulted. Consequently, a lower cost will 

be achieved. The basic ideas behind the models proposed in this thesis are 

powers-of-two coefficients and functions, which will result in the replacement 

of multiplications by shift operations, which are much faster and have much 

smaller area, as well as the simplification of the realization of nonlinear 

activation functions. By using these proposed models, certain computational 

burdens in digital implementations will be alleviated without jeopardizing the 

performance of the ANN system, and a digital implementation scheme becomes 

very attractive. 

1.4 Literature Survey 

The idea of powers-of-two factors was first proposed for digital filter 

implementations and has been successfully applied to many designs[Kwan and 

Chan, 1989 and 1990][Lim and Parker, 1983a and 1983blILim et al. 1982][Lim 

and Constantinides, 1979][Xue and Liu, 1986][Zhao and Tadokoro, 19881, in 

which multiplications were either replaced by shift only operations or reduced 

to shift operations plus very few additions, depending on how many terms of 

powers-of-two were used. Single term powers-of-two factors are most desired 

because they require the least operations in hardware implementation. 



artificial neural networks require very high density of computations including 

large number of multiplications. In such cases, powers-of-two factors or at 

least quantized weights are needed to reduce the amount of computation and 

hardware requirements. 

A digi-neocognitron model for VLSI implementation was proposed by 

White and ElmasryrWhite and Elmasry, 19921. The original neocognitron (NC) 

model[Fukushima 19801 was adapted to an efficient all-digital implementation 

for VLSI. The new model, the digi-neocognitron (DNC), has the same pattern 

recognition performance as the NC. The DNC model was derived from the NC 

model by a combination of preprocessing approximations and the definition of 

new model function, e.g., multiplication and division are eliminated by 

conversion of factors to powers of 2, requiring only shift operations. The DNC 

model has substantial advantages over the NC model for VLSI implementation 

with a two to three orders of magnitude improvement in the area-delay product. 

A one-dimensional Kohonen network with quantized weights and inputs 

was studied by Thiran and Hasler [Thiran and Hasler, 19941. The 

implementation of a Kohonen network on a digital circuit realization yields the 

quantization of all the input signals and weight values. It is crucial to see 

whether this modification perturbs the self-organizing feature. In [Thiran and 
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organization property of the original Kohonen network for the one-dimensional 

case is conserved when the weights are quantized provided that its parameters 

are well chosen. 

The application of discrete weights and the powers-of-two technique in 

multilayer feedforward neural networks has been studied by several authors 

[Marchesi et al. 1990j[Nakayama et al. 199O][Piazza et al. 19931 and most 

recently by Marchesi et al.[Marchesi et al. 19931. In [Marchesi et al. 19933, a 

fast neural network model was proposed for digital VLSl implementation along 

with a dedicated learning procedure. In their model, weight values were 

restricted to powers-of-two or sum of powers-of-two and adaptive biases and 

automatic learning rate control were employed t o  compensate the quantization 

error. 

It was pointed out that one of the major problems of digital architectures 

implementing neural networks, affecting both performance and chip area, is the 

presence of multipliers. The multiplications between inputs and weights, which 

are slow compared to other operations and require a lot of chip area if a direct 

VLSl implementation is planned, can be the bottle-neck of the system. By 

introducing the idea of powers-of-two weights, it is possible to substitute 

multiplications with simple shifts or much fewer shift-and-add operations, 



However, the learning algorithm developed in [Marchesi et  al. 19931 was 

not very effective. Its convergence performance was not satisfactory due to 

lack of sufficient adjustable parameters. For a given problem, the starting point 

of their proposed learning algorithm is the solution of the same mapping 

problem with a conventional MFNN having continuous weights, applying the BP 

learning algorithm. The obtained weights are then quantized to powers-of-two 

values and the BP will be applied again to adjust the discretized weights in hope 

to converge to the final solution. It is obvious that there is little room to  

improve the network by adjusting the quantized weights. These quantized 

weights are distributed in some discrete points and the gaps among these 

points are usually much larger than the weight updating amount required by the 

BP algorithm, so they are not suitable for fine tuning the neural network, 

especially when single term powers-of-two format is used, Moreover, the 

quantization scheme they adopted appears to be fairly complicated. Actually, 

the minimization of the sum of squared weight quantization error as adopted 

in [Marchesi et al. 19931 does not necessarily reduce the sum of squared 

output error of the network due to the non-linear nature o f  the neural network 

systems. It will be much simpler to adopt direct quantization of weights to their 

nearest powers-of-two values as proposed in this dissertation. 



digital VLSl implementation, no investigation on real hard ware issues had been 

presented in the published work and that was a major weakness of  their paper. 

In view of this situation, a new algorithm for design of MFNNs with 

single term powers-of-two (STPT) weights will be presented in Chapter 3 of 

this dissertation, which has more degrees of freedom t o  adapt to  a given 

problem. In Chapter 4, an all new model o f  MFNNs with quantized neurons will 

be proposed for digital hardware implementation, in which multiplications can 

still be avoided and the implementation of nonlinear activation functions will 

also be simplified. 

1.5 Organization of this Dissertation 

The remaining of this dissertation is organized as follows. 

Chapter 2 begins with the multilayer feedforward neural network model. 

The structure of the network and the backpropagation (BP) learning algorithm 

are discussed. Some modifications to  the BP algorithm are also presented. A t  

the end of this chapter, the issue o f  hardware implementation of MFNNs is 

addressed, which introduces the necessity of the models to  be developed in 

Chapters 3 and 4. 



with single term powers-of-two (STPT) weights. The design procedures are 

provided along with simulation results. 

Another MFNN model - MFNNs with quantized neurons will be proposed 

in Chapter 4. The concept of quantized neuron is introduced and followed by 

the corresponding training algorithm. The design methodology of such networks 

is developed and the mapping capability of the new model is examined. 

Chapter 5 presents more MFNN models suitable for digital 

implementations, starting with a simplified sigmoid activation function which 

is easy for direct hardware realization, and followed by some MFNN models 

designed to accommodate continuous and discrete input patterns. 

Chapter 6 concludes the dissertation and suggests possible future 

research directions. 



Chapter 2 

MULTILAYER FEEDFORWARD NEURAL 

NETWORKS 

As mentioned in Chapter 1, multilayer feedforward neural networks 

(MFNNs) are one of the most important and widely used ANN models. In this 

Chapter, a review of the structure, properties, and training algorithms of 

MFNNs will be presented as a preparation for the new models proposed in the 

following chapters. 

2.1 MFNN Architecture 

A Multilayer Feedforward Neural Network is a unidirectional network in 

which adjacent layers are fully connected. The general structure of such a 

network can be illustrated by Fig.2.1. For an L-layer MFNN, there is an input 

layer (denoted as layer 0) with No input nodes, an output layer (denoted as 

layer L) with NL output neurons, and one or more hidden layers with N, (h = 1, 

2, ..., L-I)  neurons at layer h. 



Layer 2 

Layer 1 

Layer 0 

Figure 2.1 A Multilayer Feedforward Neural Network 
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summations, and calculation of nonlinear functions. A typical neuron of MFNNs 

is illustrated in Fig.2.2, where xi's are inputs to the neuron, wits are 

corresponding connection weights, z is the net input to the neuron before 

activation, and y is the output of the neuron. The input-output relationship of 

the neuron can be described as 

and 

where F( ) is a nonlinear activation function. Some commonly used forms of 

F(.) include the hardlimit function, threshold logic function, and sigmoid 

function, which are shown in Fig.2.3. 

Usually, the collective features of neural networks are of more interest 

than those of single neuron. When the entire network is concerned, the input- 

output relationship of a multilayer feedforward neural network can be described 

by the following set of equations 



OUTPUT 

INPUT 

Figure 2.2 A Typical Neuron in MFNNs 



-I=- Hard Limiter 

1 Threshold Logic 

Sigmoid 

Figure 2.3 Commonly Used Nonlinear Activation Functions 

with 

for i=1,2. ..., No (2.4) 

where y,'"'% the output of neuron i a t  layer h- I ;  w,'~' is the connection weight 

between neuron i at layer h-I and neuron j at layer h; bihl is the bias of neuron 

j at layer h; xi, is element i of the input pattern when pattern k is presented to 
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of the network. 

Due to the use of nonlinearities within neurons, multilayer feedforward 

neural networks overcome many of the limitations of single layer 

perceptrons[Rosenblatt, 1958 and 19621, which can only be applied to linearly 

separable problems. Now, it is possible to  use MFNNs to distinguish between 

arbitrarily complex decision regions. Actually, it has been shown that MFNNs 

with a single hidden layer and arbitrarily bounded and nonconstant activation 

functions are universal approximators provided that sufficiently many hidden 

neurons are available [Hornik et  al., 19891. Although one hidden layer is usually 

sufficient, sometimes a problem is easier to solve with more than one hidden 

layer. In this case, easier means that the network learns faster. 

For a given problem, the parameters of a MFNN, such as the number of 

layers, the number of hidden neurons, the formula of activation functions, and 

the values of weights, need to be determined before the neural network can be 

applied to solve the problem. Among them, how to  obtain the appropriate 

values of weights is the major concern, i.e., how to train the network to adapt 

t o  each particular problem. Learning algorithms for MFNNs has been a research 

topic since 1960s. So far, the backpropagation (BP) algorithm[Rumelhart et al. 

19861 has been the most popular one in spite of the existence of some 



19921, simulated annealing [Kirkpatrick et al., 1988][Szu, 19861, Choice of 

Internal Representations (CHIR) [Grossman et al., 19891, and layer by layer 

optimization [Ergezinger and Thornsen, 1 995][Wang and Chen, 19961. In the 

next section, the BP algorithm will be reviewed and some of possible 

modifications will be discussed. 

2.2 The Backpropagation Algorithm 

Consider the multilayer feedforward neural network as shown in Fig -2.1 . 

Adopting the same definition as in Section 2.1, the input-output relationship of 

the network can be described as follows: 

with 

for i= 1,2, ... , No 

Usually, the output of the network is not exactly the same as the desired 

output during the learning process, there is an error associated with each 

pattern. The error can be measured as the sum of the squared difference 



a pattern k is presented to the network, the error at neuron j of the output layer 

is calculated as 

Here tjk represents element j of the target pattern k and L refers to the output 

layer of an MFNN with L layers. Then the sum of squared error (SSE) related 

to a particular pattern k can be defined as 

And, the total squared error (TSE) over all patterns in the training set is defined 

as 

Where K is the number of patterns contained in the training set. A learning 

process, or training algorithm, is attempting to reduce the output error by 

adjusting the weights and, in some situations, other parameters of the network. 

First proposed by Werbos [Werbos, 1 9741 and rediscovered by Rumelhart 



method which allows updating of the weights of a feedforward neural network. 

The idea of the gradient descent algorithm is to make the change in a weight 

proportional to the negative derivative of a cost function, such as TSE, with 

respect to that weight. Hence, by following this rule, the change in weight wi;hl 

(due to pattern k) can be calculated as 

where E is a learning rate parameter of weights, which controls the pace of 

each weight adjustment. 

By applying the chain rule (see Appendix A), the following formulas can 

be obtained for weight updates in the BP learning algorithm 

where 

Nh+l 
/ 14 [h+q [h+l] ar'=~(q.)C 6~ Wp for h< L 

I= 1 

and 



Here F8( ) is the derivative o f  the activation function F( ). It can be seen that the 

update of weights starts from the output layer down to the input layer. In this 

process, the derivative of the activation function plays a very important role. 

If the derivative is zero, no learning will occur even though there is a large 

amount of error. A very flat activation function, i.e., an activation function with 

very small values of derivative, may result in a very long learning process. 

In summary, the BP algorithm may be carried out as follows: 

Step 1 : Initialization of weights with small random numbers 

Step 2: Presentation of  input patterns and desired output patterns 

Step 3: Calculation of actual output and squared output error 

Step 4: Check TSE < E, ? If yes, then stop; otherwise proceed to 

Step 5 

Step 5: Update of weights 

Step 6: Go back to Step 2 

Although the BP algorithm remains as the most popular and effective 

way to train MFNNs, there are some drawbacks accompanying it. The 

convergence speed of the BP algorithm is usually slow, and, in some situations, 



In view of these problems, modifications to the original BP algorithm have been 

proposed by some researchers [Vogl et al., 1 988][Jacobs, 19881rMinai and 

Williams, 1 9901 [Schrei bman and Norris, 1 9901 [Kruschke and Movellan, 

199111Lee et al., 19911. 

2.3 Improvements to the BP Algorithm 

Since backpropagation suffers from low convergence speed, 

modifications to the original algorithm have been proposed to improve the 

learning speed. Some of these modifications are discussed in this section. 

2.3.1 Adjustable Learning Rate 

Choosing an appropriate learning rate parameter E is a key factor in 

controling the learning speed of the backpropagation. At different stages of a 

learning process, the best value of E may be different. Instead of using a 

constant learning rate for the entire learning process, a good idea is to adjust 

it automatically as learning progresses [Jacobs, 1 9881IVogl et al., 1 9881. The 

usual approach is to check whether a particular weights update did actually 

decrease the output error. If it didn't, then the process overshot, and E should 

be reduced. On the other hand, if several steps in a row have decreased the 

error, then perhaps the learning process is being too conservative, and E could 



Where AE is the difference between the network output errors at two 

consecutive times t + I and t, and a and b are positive constants. 

2.3.2 Momentum Term 

As stated above, it is difficult to choose an appropriate learning rate 

parameter e for a particular problem. The learning can be very slow if the 

learning rate E is too small, and can oscillate widely if E is too large. A 

momentum term can be introduced to deal with this problem [Phansalkar, 

19941. This scheme is implemented by giving a contribution from the previous 

weight update to each of the current weight change: 

where Aw(t + 1 ) = w(t + 1 )-w(t), Aw(t) = w(t)-w{t-I ), and y is the momentum 

parameter which is a positive number between 0 and 1. 

If the learning process is marching through a plateau region of the error 

surface, then (aE/aw) will be about the same at each time-step and the above 



with an effective learning rate of d l - p .  On the other hand, in an oscillatory 

situation, A w  responds only with coefficient e to instantaneous fluctuations of 

(aE/aw). The overall effect is to  accelerate the long term trend by a factor of 

1 / ( I  -p),  without magnifying the oscilIations. 

2.3.3 Adjustable Biases and Activation Functions 

Since biases can be considered as the weights which are connected to 

constant input 1, it is also possible to adjust biases using the gradient descent 

method as in weight adaptations. To be specific, the following formula can be 

employed. 

Where E,, is the step size for bias adjustment and b,Lhl is the bias of neuron j at 

layer h. Similar to weight updates, the following equations may be obtained by 

using the chain rule 



where 

for h < HI and 

Here F'( ) is the derivative of the activation function F( ), and t,, yjkIh1, and zjih' 

have the same definition as in Section 2.2. 

It is well known that the nonlinear activation functions play a very 

important role in the performance of MFNNs. Alsol it can be seen from (2.1 1 )- 

(2.1 3) that the derivative of the activation function F1(x) is a key factor in the 

weight adaptation process. This indicates that the learning process can be 

improved by controlling the shape of the activation functions. For the most 

widely used sigmoid activation function 

the shape of the function can be controlled by the slope, which, in turn, can be 
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the idea of the gradient descent method, i.e., 

Some results [Kruschke and Movellan, 1991 ][Tang and Kwan, 19931 have 

shown that this method can speed up the learning process significantly. The 

detailed derivation of adaptation equations and discussion will be presented in 

Chapter 3. 

2.4 Hardware Implementations of MFNNs 

As pointed out in Chapter 1, digital implementation of neural networks 

is very attractive, especially with the currently available ASIC and FPGA 

technologies. However, when applied to MFNNs, a direct implementation 

scheme may not be appropriate due t o  the large number of multiplications 

involved. 

If we look at a typical neuron in an MFNN, a direct implementation will 

generate a cell as shown in Fig.2.4. Among the functional blocks involved, 

multipliers are not favoured by digital VLSl technologies since they consume 

large chip areas and have slow speed. Implementing nonlinear activation 
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I SUMMATION I 

Figure 2.4 Block diagram of direct implementation of a neuron in MFNNs 

functions using look-up-table method will also require large silicon area. Large 

silicon area means high cost. Reducing the cost always has high priority in any 

real applications. 

In chapter 3, an MFNN model using single term powers-of-two weights 

will be proposed and consequently multipliers will be replaced by shifters. And, 

in Chapter 4, an MFNN model with quantized neurons will be developed which 

can eliminate multipliers as well as simplify the digital implementation of 

nonlinear activation functions. The proposed models will result in a significant 

improvement in both area and speed of digital implementation of multilayer 

feedforward neural networks. 



Chapter 3 

MULTILAYER FEEDFORWARD NEURAL 

NETWORKS WITH SINGLE TERM 

POWERS-OF-TWO WEIGHTS 

As discussed in previous chapters, in order to alleviate the burden of 

multiplications in digital hardware implementation of MFNNs, powers-of-two 

valued connection weights can be used in place of the original continuously 

valued weights such that the multiplications can be replaced by shift 

operations. It is no doubt that the format of single term powers-of-two (STPT) 

would be of the most interest. To be specific, when the STPT format is used, 

all weights in an MFNN would only be able to take values from the following 

set W,, 

Where M is the maximum number of bits that may be shifted. It is noted that 

the above definition constrains the absolute value of weights to be less than or 



It is also possible to extend admissible weight values t o  be sum of two or more 

terms of powers-of-two, which has been proposed for both digital filters and 

neural networks [Marchesi et al., 19931. Although such expansion would make 

the learning process easier due to the increased number of available weight 

values, it will substantially weaken the advantages of the powers-of-two 

technique because of the increased complexity of weight management and the 

higher number of operations. Thus, in the following, the discussion will 

concentrate on single term powers-of-two (STPT) format. 

Since they are not involved in multiplications, biases of neurons are not 

necessarily limited to powers-of-two format, they can still be real numbers. As 

pointed out in Chapter 1, after adding single term powers-of-two constraint to 

weights, their ability to adapt to various problems is dramatically reduced due 

to limited choices. Therefore, it may not be adequate to adjust only weights in 

an MFNN with powers-of-two weights as in [Marchesi et al., 19931, new 

adjustable parameters must be introduced to provide more degrees of freedom 

in learning. One of the key factors which have significant impact on the 

performance of an MFNN is, as mentioned previously, the nonlinear activation 

function. In this Chapter, the adaptive slope of activation functions will be 

introduced to enhance the learning capability of the post-quantization MFNNs. 



MFNNs with STPT weights consists of three stages. First, the conventional 

backpropagation algorithm is applied to find the continuous solution (a set of 

continuous weights) for a given problem; then, quantization is adopted to 

convert the obtained weights into appropriate STPT values. Finally, adaptation 

of the slope of the activation function will, in addition to adjustment o f  weights 

and biases, be employed to fine-tune the post-quantization network t o  the pre- 

determined error level based on the method presented below. 

3.1 Adaptation of activation functions in MFNNs 

Consider a multilayer feedforward neural network with the following form 

of sigmoid activation function 

This nonlinear activation function is a key factor in determining the performance 

of a neural network. It can also be seen from EqJ2.11)-(2.13) that the 

activation function and its derivative play a very important role in the process 

of weight updates and, as a result, any change in the activation function will 

affect the learning process. Therefore, a proper choice of the shape of 

activation function can result in a better adjustment of weights and also affect 

the input-output relationship of the network. Shown in Fig. 3 .1  are sigmoid 



activation function may be controlled by the slope of the function and the slope 

of the activation function is controlled by the parameter a. This property was 

used in [Kruschke and Movellan, 1991 ] to speed up the BP learning process and 

improve generalization capability. 

The idea of gradient descent method can be extended to adaptation of 

parameter a, i.e., the change in a will be in the opposite direction of the partial 

derivative of the squared output error of the network with respect to a. Hence, 

the change in the parameter a of neuron j at layer h, due to the 

presentation of pattern k can be expressed as 

where E, is a step size for a update and e, has the same definition as in section 

2.2. By applying the chain rule (see Appendix B), the following relationship are 

obtained 

for h<L 

and 
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Figure 3.1 Sigmoid Functions with Different a 

where F',(z,o) is the partial derivative of the activation function FO with respect 

to a, i.e., 



and diih+ll, L, Nhtl, zil;lh1, tjk, and yj:L' are all defined in the same way as in 

Chapter 2. 

It is also possible and usually helpful to  include a momentum term to the 

update equation of a. When taking all training patterns into account, the qIh1 

will be updated as 

This scheme has been proved to be very effective in improving the 

learning speed of MFNNs. In this Chapter, the adaptive slope of the activation 

function will be used in the design procedure of MFNNs with STPT weights for 

the purpose of post-quantization network fine-tuning, i.e., adjust the network 

to compensate the error resulted from weight quantization. 

3.2 Design Procedures for MFNNs with STPT Weights 

3.2- 1 Basic Ideas 

Consider a multilayer feedforward neural network as illustrated in Fig.2.1 

where the nonlinear activation function applied at the output of each neuron is 



network with STPT weights from the set { *  1, 2 * 2'2, ... , *2-M, 0). 

where M determines the number of quantization levels of weights. For a given 

M, there are 2M +3 distinguished values of weight to choose from. 

Given a mapping problem between the input and output spaces of the  

MFNN and a set of training pattern pairs {X,, T,), the starting point of the 

design procedure is the solution for the same mapping problem from a 

conventional MFNN with continuous weights, using BP as the learning 

algorithm. Then, at the next stage, continuous weights will be transformed into 

single term powers-of-two weights and activation functions are scaled 

accordingly to accommodate such quantization. Finally, the slopes of activation 

functions will be adjusted based on the algorithm described in the previous 

section to compensate any increase in the output error of the network caused 

by quantization. Since the bias of each neuron, b;hi, is not involved in 

multiplications, it can remain continuous. 

Before the quantization of weights, it is necessary to introduce a 

normalization process such that all weights will be in the interval of [-I, + 11 

because the set of quantization levels is defined by (3.1 ). Consider a particular 

neuron j at layer h, where all connections going into the neuron are denoted by 

weights wijlhl, i = I ,..., N,,. Define 



Then, the normalization will be carried out by dividing weights wijihl by w,,,, Ihl 

as follows 

W~ lhl now belongs to the interval [ - I ,  + I ] .  However, it can be seen that the 

input-output mapping relationship of the network will be changed if normalized 

weights are used in the network without any other appropriate adjustment of 

the network. By examining (2.3), (2.4) and (3.2), it is found that it is possible 

to  compensate the normalization of weights by scaling up the parameter of a 

accordingly. That means if the weights are normalized by their maximum value 

w,.,,, then adjusting the parameter a of the sigmoid activation function as 

follows will keep the network mapping relationship unchanged. 

Now, we can quantize the normalized weights to STPT format. The 

criterion used here is t o  round a weight t o  its nearest STPT value selected from 

the set W,. This scheme can be described as follows 



where sgn(w) denotes the sign of w and 

for m=0,1, ..., M 

A quantization curve based on the above definition when M=4 is shown in 

Fig.3.2. 

Usually, there will be an increase in the output error of the network due 

t o  weight quantization. Therefore, more adjustment to the network is necessary 

in order to bring this error down to a predetermined level. In this proposed 

model, the method of adapting the slope of the activation functions, as 

described in Section 3.2, will be used for this purpose. At this point, since 

weights have already been quantized to discrete values and are not able to 

make arbitrary changes (required by BP algorithm), there will be an update in 

weights only when such an update can result in a reduced output error. At the 

same time, the bias of each neuron can still be adjusted by using BP algorithm 

because they are not involved in any multiplication and may remain to be 

continuous. 



Figure 3.2 Weight Quantization Curve When M =4 

3.2.2 Design Algorithm 

Based on the idea presented in Section 3.2.1, a procedure for design of 



developed and is illustrated in the following. 

Step 1 : Set a,lh1=u, ( j = l ,  2. ..., N,; and h = l ,  2. .... L), where a;h' is 

related to the sigmoid activation function applied to neuron j at 

layer h of an L-layer MFNN. 

Step 2: Starting with a set of weights and biases with small random 

values, train the network using the conventional backpropagation 

algorithm to obtain a continuous solution for the given problem, 

i.e., to  obtain a set of continuous weights and biases which can 

achieve 

where e, is as defined in (2.8), K is the number of pattern pairs in 

the training set, and E, is a predetermined error level. 

Step 3: Find the maximum absolute value, w~-,,,'~~, among weights wiilhl 

(i=l, 2. ..., NhJ 



the interval of 1-1, + 1 ] 

for i = l ,  ..., N,,, j = l ,  ..., N, and h = l ,  ..., L. 

Also scale biases a,'" by the same factor wj-max'hl 

for j=  1, ..., N, and h = l ,  ..., L. 

Step 5: Adjust parameter a,'h1 accordingly as follows 

for j = l ,  ..., N, and h = l ,  ..., L. 

Step 6: Quantize normalized weights w'ihl to single term powers-of-two 

weights w9ij[h1 

for i = I, ..., N,,, j = 1, ..., N, and h = 1, ..., L. Where the function 
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Step 7: 

Step 8: 

Step 9: 

Step 10: 

Step 1 1 : 

Substitute current STPT weights w','~' and new values of ailh1 into 

the network. Calculate the squared output error over all training 

pattern pairs as 

If TSE< E,, stop; otherwise, proceed to Step 8. 

Calculate ~ w ' i j ' ~ ~ ,  Ab;hl, and Aaj'h', which are changes in w'~;~]', 

bib', and respectively. using the relations hips developed in 

Sections 2.2, 2.3, and 3.1. 

Update weights w',~~' with changes Aw  obtained in Step 8 and 

then quantize them to  STPT values as in Step 6. If this update 

results in a reduced TSE, accept the new weights; otherwise, 

discard the changes and keep previous weights. 

Update parameters bj'h' and a?' with changes 8bih1 and AU~ '~ '  

obtained in Step 8. 

Go to Step 7. 

It needs to be pointed out that, as in the original BP algorithm, 

convergence cannot be guaranteed. If convergence cannot be achieved, it may 

be necessary to restart the algorithm from the beginning with a new and 



network topology, adding more neurons and/or layers to the existing network. 

However, as shown in the next section, in most cases MFNNs with STPT 

weights can reach convergence for the same problem as original MFNNs, 

without increasing the number of neurons or layers. 

3.3 Simulation Results 

Simulations have been conducted to verify the effectiveness of the 

proposed design algorithm. The first example is a simple but very important 

benchmark problem, XOR. 

3.3.1 A Benchmark Problem 

XOR (exclusive OR) problem has been considered as a benchmark 

problem in neural network history. It is of great importance to test the mapping 

ability of neural networks. XOR was first cited by Minsky [Minsky and Papert, 

19691 in 1969 to criticize the capability of neural networks, which caused an 

interruption in neural network research for about ten years. In 1986, in their 

famous books on Parallel Distributed Processing, Rumel hart et a1 have 

demonstrated that MFNNs are capable of such mapping, which marked the 

revival of neural network research. 



According to [Rumelhart et al., 19861, the smallest MFNNs for the XOR 

problem consists of two input neurons, one hidden layer with two hidden units, 

and one output neuron. MFNNs with STPT weights have demonstrated that 

they are capable of solving this problem without increasing the size of the 

network from the smallest topology. Since this is a binary (0/1) input-output 

mapping problem, the binary form of sigmoid activation function given by 

(3.20) is used at each neuron. Other parameters used in the simulations are 

listed in Table 3.1. 

input 

0 0 
0 I 

1 0 

1 1 

output 

0 

1 

1 

0 



II Parameters I symbols I Values 

11 Learning rate of weights I E I 0.5 
-- -- 

Range of initial weights 

Learning rate of biases 

MFNNs with STPT weights have shown very good performance for the 

XOR problem, i.e., convergence was always reached within a limited number 

of epochs. One typical example is given below: 

NO. of epochs needed in stage 1 : 730 

NO. of epochs needed in stage 2: 9 

Weights: 

w"',, = 1.00000 

w"',, = 1.00000 

wl2I1, = 1.00000 

w'~',, =-I .00000 

Slopes: 

dl', = 5.82774 

d2', = 9.0051 5 

BIASES: 

Range of initial biases 

Step size of slope changes 

Momentum of slope changes 

Quantization levels of weights 

Error level for training 

- 

w o 

G 

[-I .O, 1 .O] 

0.1 
- - 

80 

€a 

P, 

M 

E0 

[-0.1, 0.11 

0.1 5 

0.05 

4 

0.1 



The simulation results of the XOR problem impliy that MFNNs with STPT 

weights are able to achieve the same mapping capabilities as the conventional 

MFNNs and the use of powers-of-two weights does not necessarily mean an 

increase in the size (number of neurons or layers) of the network. 

3.3.2 More simulations 

More simulations have been carried out by using 10 numerals, each 

represented by a 10x1 0 pixel matrix as shown in Fig.3.3. The corresponding 

targets were given below each pattern. The MFNN used in the simulations had 

one input layer with 100 units, one output layer with 4 neurons, and one or 

more hidden layers with various numbers of hidden neurons. Different 

combinations of the number of hidden layers, the number of hidden neurons, 

and the number of weights quantization levels were used in simulations to test 

the performance of the proposed design procedures. 

Two aspects of performance, i.e., the convergence and generalization 

properties of the algorithm, have been observed in simulations. For each 

topology of the network and the number of quantization levels, the network 



Figure 3.3 10 numeral training patterns 

was first trained with the given 10 pattern pairs to  obtain both continuous and 

quantized solutions, i.e., weights; then a set of  noisy patterns (original patterns 

corrupted by noise) was fed to both continuous-weight network and the 

powers-of-two-weight network to test the generalization abilities. A bipolar 

form of inputs and outputs was used. Noisy patterns were constructed by 

randomly inverting a percentage of total elements in training patterns. The 

generalization performance was measured by the recall accuracy (the 

percentage of correct recalls) which was obtained by feeding 100 noisy 

versions of each training pattern to the network and taking the average. 



Table 3.2 Convergence Speed (In Number of Epochs) for CMFNN and STPT 
MFNN (100 Inputs, 4 Outputs, and 1 Hidden Layer) 

No. of STPT MFNN 
Hidden CMFNN 

Neurons M=2 M=4 M = 8  

Table 3.3 Generalization Capabilities (In Percentage of Correct Recalls) for 
CMFNN and STPT MFNN (100 Inputs, 4 Outputs, and 1 Hidden 
Layer) 

No. of STPT MFNN 
Hidden CMFNN 

Neurons M=2 M = 4  M=8 



Table 3.4 Convergence Speed for Networks with Different Number of 
Hidden Layers When M=4 (100 Inputs and 4 Outputs) 

No. of One Hidden Layer Two Hidden Layers 
Hidden 

Neurons CMFNN STPT MFNN CMFNN STPT MFNN 

Table 3.5 Generalization Capabilities for Networks with Different Number of 
Hidden Layers When M =4  (100 Inputs and 4 Outputs) 

. . - - . - - - - - - - - 

No. of One Hidden Layer Two Hidden Layers 
Hidden 

Neurons CMFNN STPT MFNN CMFNN STPT MFNN 



the proposed design algorithm have been confirmed by the simulation results 

because convergence was reached in almost all runs. It can be seen from the 

above simulation results that MFNNs with STPT weights can retain similar 

generalization capability as the conventional MFNNs without an increase in the 

size of the network. Furthermore, in order to achieve good performance, 

parameters like the number of hidden neurons and the number of quantization 

levels should be chosen carefully. Small number of hidden neurons combined 

with very small number of quantization levels of weights should be avoided. 

Some redundancy in the topology of the network is recommended in order to 

reduce the number of quantization levels of weights and consequently to 

reduce the number of bits to  be shifted in hardware implementation. 

3.4 Comparison with Existing Models 

With the introduction of adaptive slopes of activation functions for post- 

quantization network fine-tuning, our above proposed algorithm has shown to 

be very effective in the STPT-network error reduction. It has significant 

advantages in convergence speed and the magnitude of error that can be 

reduced when compared with the weight-adjust-only algorithm, e.g., the one 

used in [Marchesi et al., 19931. The comparison of the two algorithms over the 

performance of their post-quantization network tuning capabilities are shown 



of hidden neurons varies from 10 to 60. 

In each diagram, curve "weight-slope" represents the result using the 

algorithm proposed in this chapter, i.e., adaptation of weights and slope of 

activation functions for post-quantization network tuning, while curve "weight- 

only" refers to the result based on the algorithm of adjusting weights only with 

adaptive learning rate parameter as proposed in [Marchesi et al., 19931. It can 

be seen that in all cases our proposed algorithm is more capable of post- 

quantization network error reduction. 
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Figure 3.7 Error curve when N, = 60 

3.5 Advantages for hardware implementation 

The basic operation of MFNNs is to pass a weighted sum of inputs 

through a non-linear activation function. Therefore. the digital hardware 

implementation of MFNNs will consist of several major functional blocks. 

including multiplications. summations, and calculation of non-linear functions. 

Among them, summations can be implemented by using adders and 

accumulators. while non-linear calculations are usually done by look-up tables. 

However, the multiplications between inputs and weights are not favored by 

digital technology since the multipliers required for these operations are slow 



in a digital VLSl implementation. 

This computational burden in digital implementation can be eliminated if 

STPT weights are used in MFNNs as proposed previously in this chapter. There 

will be significant gain in operation speed and saving in silicon area when 

multiplications being repfaced by shift operations. A shift operation can easily 

be implemented using either MUX's or simple combinational logic. A block 

diagram illustrating the operation of a shifter is shown in Fig.3.8. The 

corresponding symbol of the shifter is drawn in Fig.3.9, where "A" is the input 

vector, "CT" is the control vector which determines the number of bits to be 

shifted, and "Z" is the output vector, which is a shifted version of the input 

vector "A". To be fitted into a neuron's operation in MFNNs with STPT 

weights, the pin "A" is connected to a particular input to the neuron, while 

"CT" is mapped to the corresponding STPT weight. Considering that STPT 

weights are all with negative powers, the shifter has shift-right operations only. 

The operation of the shifter can further be illustrated as follows. Assuming 

M =4, the possible STPT choices are 2'. 2-', 2-2, Z3, z4, 0 and corresponding 

control vectors of the shifter are 10000, 01 000, 00100, 00010, 00001, and 

00000, respectively. If  input "A" is an 8 bit vector, A, ... A,, the operation can 

be described by Table 3.6. A VHDL description of such an operation with STPT 

parameter M =4 can be found in Table D.1 of Appendix D. 



Table 3.6 Description of the operation of the shifter 

A,. . .Ao 000000000000 

A,. ..A, A,. . . A,0000 

A,. . .Ao A7A7.. .AoOOO 

A,. . .Ao A7A,A7,. . AoOO 

A, ... A, A,A7A,A7.. .AoO 

A,. . .Ao A7A7A7A7A7.. .AO 



Figure 3.8 Illustration of the shift operation 

FIgure 3.9 A shifter 
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design has an area of 474 design units (1 58 equivalent gates) with a maximum 

delay of 1.35 ns in LSI Logic 0.6 urn 3.3V CMOS 600K ASlC technology. 

If we consider an 8x8 2's complement multiplication with carry-save 

array in the same technology, the multiplier will require 2525 design units (842 

gates) and have a maximum delay of 1 1.30 ns. 

Table 3.7 illustrates the advantages of the MFNN model of STPT weights 

over the original MFNN model for digital hardware implementation of the 

multiplication in the weighted sum calculations. The technology used here is LSI 

Logic Corporation 0.6 urn 3.3V CMOS 600K ASlC technology, 

Table 3.7 Hardware advantage of MFNN with STPT weights 

I MFNN I STPT-MFNN 

Calculation 

Implementation I multiplier (8x8) I shitter 

Area (# gates) 1 842 1 15* 

Delay (ns) 

63 

1 1.30 1.35 



Figure 3.10 Schematic of the shifter used in MFNN with STPT weights 

64 



significantly by replacing multipliers with shifters in the MFNN design. 

As for the nonlinear activation functions, they are usually implemented 

by using look-up tables. In the original MFNN models, every neuron in the 

network has the same activation function. For the proposed model of MFNN 

with STPT weights, due to the adjustment of the slope of activation functions, 

each neuron in the network will have different parameter for activation function 

and result in a different look-up table. In the first glance, it seems that the 

implementation of activation function in the new model will be more 

complicated than in the original model where a single global look-up table may 

be used. 

However, one of the most attractive features of artificial neural networks 

is the parallel distributed computation. In order to realize parallel processing, 

each neuron will need a local look-up table for its activation function instead of 

a global one. Based on this consideration, the proposed model will have no 

extra hardware requirements by implementing a different activation function at 

each neuron. 

3.6 Concluding Remarks 

The model of multilayer feedforward neural networks with single-term 



algorithm featuring adaptive slope of activation functions was developed and 

corresponding design procedure was established. Due to the use of STPT 

weights, the multiplications required in the weighted sum operations were able 

to be replaced by shift operations, which resulted in a substantial improvement 

in both silicon area and operation speed in digital VLSl implementation of 

multilayer feedforward neural networks. Meanwhile, the MFNNs with STPT are 

capable of achieving almost the same generalization performance as the original 

multilayer feedforward networks without increasing the network sizes. The 

results presented here demonstrated the feasibility of the proposed model in 

multilayer feedforward neural network applications. 



Chapter 4 

MULTILAYER FEEDFORWARD NEURAL 

NETWORKS WITH QUANTIZED NEURONS 

In the previous chapter, an MFNN model using STPT weights has been 

proposed t o  alleviate the computational burden of multiplication. By using that 

model, the multipliers will be replaced by shift registers in digital hardware 

implementation. In this chapter, a new model, which can solve the same 

problem but through a different approach, will be developed. 

4. I Introduction 

Under normal circumstances, the outputs of activation functions in an 

MFNN and connection weights obtained by using the backpropagation algorithm 

are continuously valued such that multiplications are inevitable in the 

calculation of weighted sums, the basic operations involved in MFNNs. This 

implies that the current architecture of MFNNs is not suitable for digital 

implementation. Some research activities have been invoked in view of this 



STPT weights has been proposed to deal with this problem. 

Actually, the two factors involved in a typical multiplication in MFNNs are 

connection weight and the output of a related neuron. If either of them takes 

the form of powers of two, then the mukiplication is able to  be replaced by a 

shift operation. Based on this observation, a new model of MFNNs using 

quantized neurons will be proposed in this Chapter. The outputs of such 

quantized neurons can take only powers-of-two values so that multiplication 

operations can also be avoided even though weights are still continuous ones. 

Both strategies of using powers of two weights and quantized neurons in 

MFNNs can alleviate the computational burden of multiplications; however, 

quantized neurons offer a number of advantages over powers of two weights. 

First, using quantized neurons makes the realization of activation functions 

(usually by look-up-tabletechnique) much easier. Moreover, continuous weights 

are used with quantized neurons such that the network will have more freedom 

to be adapted to diverse problems than in the case of using powers of two 

weights, 

The remaining part of this Chapter is organized as follows. Section 4.2 

is dedicated to  the quantized neuron model and the modified learning algorithm 

suitable for MFNNs with quantized neurons. In Section 4.3, the detailed 



neurons is described. The mapping capability of MFNNs with quantized neurons 

will be studied in Section 4.4. Simulation results will be provided in Section 

4.5. Finally, Section 4.6 is dedicated to hardware implementation. 

4.2 Quantized Neurons 

As mentioned before, the purpose of introducing quantized neurons is to 

avoid multiplications by forcing their outputs to be of powers of two values. 

Thus, the most important feature of a quantized neuron is its output form. In 

this model, single term powers of two format will be used, i.e., a quantized 

neuron can generate only outputs from the following set 

{ *I, *2-lg &-2g ... , *P9 0 1 

where M determines the number of quantization levels. 

Except for its output format, a quantized neuron operates in a similar 

manner as an ordinary neuron, i.e., it takes a weighted sum and passes it 

through a nonlinear activation function. The powers of two output format can 

be realized by adopting a multi-step function as its activation function which 

can be defined as: 



quantized neuron is depicted in Fig.4.1. Since the inputs to this neuron are 

outputs of other quantized neurons, the operation of taking the weighted sum 

becomes much easier and no multipliers are needed. 

Although a neuron with hardlimit activation function can be considered 

as a special case of quantized neurons with M =0, quantized neurons provide 

a more generalized definition of neurons with discrete outputs. Since quantized 

neurons have more output levels than hardlimit function, the network using 

quantized neurons will have more flexibility in adapting to various problems and 

will be easier t o  train. 

Although multiplications can be avoided by using quantized neurons in 

MFNNs, the training of such networks is another problem. Since the activation 

function of a quantized neuron is a multi-step function, the derivatives of such 

a function are either zero or undefined. Therefore, the original form of the 

backpropagation algorithm can not be applied directly. In the following, a 

modification to the backpropagation algorithm will be proposed to make it 

suitable for training MFNNs with quantized neurons. 

The major obstacle preventing the original BP algorithm from being 

applicable to  MFNNs with quantized neurons is that there is no appropriately 
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Figure 4.1 A Quantized Neuron 



learning will occur. To overcome this difficulty, an appropriate nonzero 

derivative will be assigned to each interval (C,, C,J of the activation function 

(the function is constant within the interval). Consider the sigmoid function 

given as 

Where g? 1.0 is a gain factor. This F(x), which can be used as activation 

function for ordinary MFNNs, is depicted in Fig.4.2. The multi-step activation 

function can be obtained by the following procedures. 

Figure 4.2 Original and Quantized Activation Functions 



they range from -1 to + 1, each level will have an intersection with F(x) defined 

above. These intersections can be obtained by solving the following set of 

simultaneous equations 

Denoting x coordinates corresponding to these intersections as x,, x,, . . . x,, 

then, the extreme points of each interval of G(x) can be defined as 

An illustration is provided in fig.4.2. Furthermore, the derivative of F(x) 

evaluated at an intersection will be used to approximate the derivative of G(x) 

within the entire interval corresponding to that intersection, that is 

This definition settles down the problem with the derivative of the multi-step 

activation functions. With these modifications, the principle of the 
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applied to MFNNs with quantized neurons. 

4.3 Design Procedures for MFNNs with Quantized Neurons 

In this section, the detailed design procedures of using quantized neurons 

in MFNNs will be presented. The proposed algorithm consists of three basic 

steps. Firstly, the network is trained by using the standard backpropagation 

algorithm outlined in Chapter 2. After convergence, all neurons are then 

replaced by quantized ones, which are introduced in Section 4.2. Finally, 

weights are adjusted by adopting the modified backpropagation algorithm 

described in Section 4.2 to reduce the increased output error. 

A. Training the Network Using the Standard Backpropagation Algorithm 

For a given problem, assuming that the topology of the network has 

been established, we first initialize all connection weights to small random 

numbers, then apply the standard backpropagation algorithm to the network 

until convergence is reached, i.e., the output error falls below a predetermined 

level E. For bipolar input and output of + 1 and -1, the following sigmoid 

activation function is used 



order to avoid the possiblility of undesired saturation. Another consideration on 

the use of g is that intersections of F(x) and the quantized levels of * 1 are 

needed as discussed in Section 4.2 in order to obtain non-zero derivatives of 

G(x). Upon convergence to a predetermined error level E, a network with 

continuous weights and sigmoid activation functions is obtained which is 

denoted as Net#l . 

B. Rep/acing Original Neurons with Quantized Neurons 

All neurons in Net#l will be replaced by quantized neurons while the 

topology of the network and the connection weights among neurons are 

unchanged. As stated previously, a quantized neuron differs from an original 

neuron mainly in its activation function which is a multi-step function as 

defined in (4.2). After the replacement of neurons, all training patterns will be 

presented to the network and the output error will be checked. If the sum of 

squared output errors remains below the error level E, i.e., 

the algorithm terminates at this point. The desired MFNN with quantized 

neurons, denoted as Net#2, is obtained. Otherwise proceed t o  the next step. 



Normally, replacing original neurons with quantized ones will cause an 

increase in the output error of the network. If this increased output error jumps 

above the predetermined level E, then it must be brought down by adjusting the 

parameters of the network. Since all weights are continuous, the modified BP 

algorithm proposed in the first part of this section can be employed to fulfill 

such adjustment. 

Besides, biases can also be adapted because they are continuous and not 

involved in any multiplications. The procedures for bias adaptation are similar 

to those described previously. The weights and biases will be repeatedly 

updated until the sum of squared output errors falls below the level E, i.e., (4.8) 

is satisfied. Now the obtained network, denoted as Net#2, is the desired MFNN 

with quantized neurons. 

The above three-stage design method is referred as Scheme I .  Besides, 

it is also possible to use quantized neurons right from the very beginning of the 

training process especially when on-chip (on-line) learning is desired. This plan 

will be referred as Scheme 2. However, it is expected that the network 

obtained by using Scheme 2 will lose some generalization capability while it will 

gain speed in training. In section 4.5.2, the simulations results for both 

schemes will be provided. Because the training is performed off-line here, the 



the other hand, a higher generalization capability is what we always want to 

achieve. 

4.4 Mapping Abilities of MFNNs with Quantized Neurons 

The conventional multilayer feedforward neural networks have been 

shown to be universal approximators [Hornik et al., 1989][Hornik, 1991 I ,  that 

means MFNNs with as few as one hidden layer using arbitrary squashing 

functions are capable of approximating any Borel measurable function from one 

finite dimensional space to another to any desired degree of accuracy, provided 

sufficiently many hidden neurons are available. 

For MFNNs with quantized neurons, the activation functions are 

quantized and no longer continuous. Consequently, the mapping ability of such 

networks needs to be examined. In [Hornik, 19911, it was shown that 

whenever function F(.) is bounded and nonconstant, then, for arbitrary input 

environment measures p, multilayer feedforward networks with activation 

function F() can approximate any function in LP(p) (the space of all functions on 

Rk such that $ c lf(x) 1 dp(x) < 00 ) arbitrarily well provided that sufficiently 

many hidden units are available if closeness is measured by q, as 



where 1 s p  5 00, the most popular choice being p = 2, corresponding to mean 

square error. Since the activation functions used in MFNNs with quantized 

neurons can meet the bounded and nonconstant condition, MFNNs with 

quantized neurons are still capable of approximating any discrete mapping. The 

simulation results presented below will also show that it is not always 

necessary to use more hidden units in MFNNs with quantized neurons than in 

conventional MFNNs in order to get the same mapping capabilities. 

4.5 Simulation Results 

4.5.1 Benchmark Problems 

The XOR problem was again applied to MFNNs with quantized neurons. 

Since the input/output patterns are binary (011 ) form, the activation function 

will also take binary form which can be defined as 

Here F,,,(z) remains a multistep function with STPT values because the 

constant 1/21 can be combined into biases and the factor 112 does not change 

the single term powers of two format of the activation function. 



with two neurons, and one output neuron, which is the smallest MFNN that can 

solve the XOR problem. Quantized neurons are used for the complete training, 

i.e., there is only one stage instead of two. Simulations have been carried out 

with different initial conditions and for each simulation convergence reached 

within limited number of epochs. One example is given below: 

Parameters used in training: 

Learning rate of weights: 0.5 

Range of initial weights: [- 1 .Of + 1.01 

Learning rate of biases: 0.1 

Range of initial biases: [-0.1, + 0. I] 

NO. of quantization levels: M = 4 

Error level of training: TSEL =0.01 

Results: 

NO. of epochs needed in training: 187 

Weights: 

w"', , = 2.3801 67 ,,,,HI ,, = 1.489372 

w"',, = 2.388525 w"',, = 1 -496423 

wt2', = 3.639545 

w'~', , = -3.674386 



An FPGA design of an MFNN with q uantized ne iurons has been 

implemented for the XOR problem (see Appendix D for details) using Xilinx 

4000 series technology, which verified the feasibility of using quantized 

neurons in MFNN designs. 

Another benchmark problem is the parity problem, in which the output 

required is 1 if the input pattern contains an odd number of I s  and 0 otherwise. 

This is a very difficult problem because the most similar patterns (those which 

differ by a single bit) require different answers. 

A four-bit parity was used to test the MFNNs with quantized neurons. 

The problem can be described as in Table 4.1. The network used in this 

problem has four inputs, one hidden layer with four hidden neurons, and one 

output unit, which is the smallest size needed to  solve this parity problem with 

conventional MFNNs. Convergence was reached in all simulation runs. One of 

them is shown below. 

Parameters of training: 

Learning rate of weights: 0.01 



Learning rate of biases: 0.01 

Range of initial biases: k0 .1  

NO. of quantization levels: M=4 

Error level of training: TSEL=0.0 

Results: 

NO. of epochs needed in training: 24620 

Weights: 

w"l,, = 0.67983 wH1,, =0.68972 

w"',, = 1 ,19062 

w"',, = -0.68769 w"',, = -0.67753 

w " ' ~ ~  = -1 . I8309 

w"13, = 0.68069 w"',~ = 0.691 07 

w['*,= 1.19142 

wH1,, = -0.68304 w"h2 = -0.67973 

w[", = -1 . I  8275 

w'~',  , = -4.1041 4 

w'~',, =-3.39181 

w ' ~ ' ~ ,  =4.70325 

wi2',, = 4.50950 

BIASES: 

=-0.32909 @'I2 =-0.35629 



Table 4.1 Description of Parity Problem 

Based on the above simulation results, it can be seen that MFNNs with 

quantized neurons are able to achieve the same mapping performance as the 

conventional MFNNs without an increase in network size. 

INPUT 

0000 

000 1 
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001 1 

0100  

0101 

0 1  1 0  

0 1  11 
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OUTPUT 

0 

1 

1 

0 

1 

0 

0 

1 

1 
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0 
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0 
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Simulations have been conducted to verify the design procedures 

proposed above. An example is given below. The training patterns were the 26 

letters of the alphabet, each represented by a 10x10 pixel matrix as shown in 

Fig. 4.3. Black pixels correspond a value to 1 and white pixels are assigned the 

value -1. The targets were bipolar codes as given below each training pattern. 

The feedforward neural network used in simulations had 100 inputs, 5 

outputs, and one or two hidden layers with various number of neurons. Two 

aspects of behaviour, i.e., the convergence and generalization properties of the 

algorithm, have been examined in the simulation. For each topology of the 

network, Scheme 1 of the design algorithms proposed in section 4.3 was 

applied to obtain Net#l and Net#2, a set of noisy patterns (original patterns 

corrupted by noise) was then fed to Net#2 to test the generalization capability. 

Noisy patterns were constructed by randomly inverting a percentage of total 

elements in training patterns. In simulations presented in this section, this 

percentage was ranging from 5% to 20%. Example of noise patterns are shown 

in Fig.4.4. The recall accuracy was obtained by taking the average results of 

100 noisy versions of each of the training patterns used. 

Tables 4.2 through 4.5 show the simulation results under different 

conditions of the number of hidden layers, hidden neurons, and quantization 



Figure 4.3 Training patterns of the 26 letters of the alphabet 



are also given in these tables. For the case of two hidden layers, an identical 

size for both layers is assumed, i.e., both layers have the same number of 

neurons. All data given in these tables are averages of five runs of the 

algorithm, starting with different initial weights which were set as random 

numbers uniformly distributed in [-0.1, +O. I]. Parameters of FIX) when used 

to find out C,'s were g = I .  I and a= 2.0. Other parameters used were: 

Learning rate for weights: E = 0.01 

Predetermined error level: E = 0.1 . 

For the purpose of comparison, also listed in Tables 4.2-4.5 under the 

column CMFNN are corresponding results of conventional MFNNs using the 

standard backpropagation algorithm. The parameters of sigmoid activation 

functions are g = 1.0 and a=2.0, 

Table 4.2 Convergence performance in number of training epochs (one 
hidden laver) 

Scheme 1 

N H  Net #2 
Scheme 2 

Net #I 
M=4 M=2 M =4 M=2 

CMFNN 



Table 4.3 Generalization capability in percentage of correct recalls (one 
hidden layer, 5 %  noise level) 

Scheme 1 Scheme 2 CMFNN 
NH M=4 M=2 M =4 M=2  

Table 4.4 Convergence performance in number of training epochs (two 
hidden layers) 

Scheme 1 Scheme 2 CMFNN 

NH 
Net #2 

Net #I 
M=4 M=2 M=4 M = 2  



Table 4.5 Generalization capability in percentage of correct recalls (two 
hidden layers, 5% noise level) 

Scheme 1 Scheme 2 CMFNN 
NH M =4 M=2 M=4 M=2 

This test procedure is repeated 100 times at each noise level, in 5% 

increments ranging from 0% to 20%. At  5% noise, the patterns are still 

recognizable, as shown by the examples in the middle part of Fig.4.4. At 20% 

noise, the patterns are not very recognizable, as shown by the examples in the 

right part of Fig.4.4. The correct recall rate as a function of noise added for 

MFNNs with 20 hidden neurons is shown in Fig.4.5, where QMFNN refers to 

the MFNN with quantized neurons and M=4, while the curve CMFNN 

represents the performance of the conventional MFNN with continuous 

weights. It can be seen that the MFNN with quantized neurons has no 

deterioration from original MFNN performance. 



Figure 4.4 Example of noise patterns 
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Figure 4.5 Recall accuracy as a function of input noise (20 hidden neurons) 
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From the simulation results, we can see that, first, convergence was 

always reached in all runs. This implies the effectiveness of the proposed 

algorithm and the possibility of implementing feedforward neural networks with 

quantized neurons. Next, the multilayer feedforward neural networks with 

quantized neurons can achieve similar recall accuracy as the conventional 

multilayer feedforward neural networks. Furthermore, Scheme 1 can get higher 

recall accuracy than Scheme 2 while the latter converges faster in training, 

which agrees with the prediction in Section 4.3. It is also noted that the recall 

performance deteriorates with decreasing number of quantization levels. This 



4.6 ADVANTAGES FOR HARDWARE IMPLEMENTATION 

For MFNNs with quantized neurons, the powers-of-two factors involved 

in multiplications are outputs of neurons. Since these outputs vary from pattern 

to pattern, there is no such cases that direct wiring can be applied. However, 

the shifter using simple combinational logic as suggested in Chapter 3 is still 

applicable and can improve significantly the area-delay product over 

multiplications. The difference is that the weight is connected to pin "A" of the 

shifter as input vector and the input t o  the neuron (the output from another 

neuron) functions as the control vector. This configuration is illustrated in Fig. 

4.6. Table 4.6 illustrates the advantages of the MFNN with quantized neuron 

model over the original MFNN model for VLSl implementation of the 

multiplication in the weighted sum calculations. An 8x8 multiplier is assumed 

for MFNN model while the MFNN with quantized neurons model is as presented 

previously in this Chapter with M =4. Again, the LSI Logic 600k CMOS ASIC 

technology is used in the example. The VHDL description of the shifter is listed 

in Table D.l of Appendix D. 
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Figure 4.6 A shifter used in MFNNs with quantized neurons 

Table 4.6 Hardware advantage of MFNN with quantized neurons 

Calculation 

Implementation I multiplier (8x8) 

Area (# gates) 

STPT-MFNN 

Delay Ins) 

shifter 

1 1.30 



that it simplifies the implementation of the nonlinear activation function. As 

described previously in this chapter, activation functions used in MFNNs with 

quantized neurons are multistep functions with STPT outputs. This simplified 

STPT multistep activation function can be realized easily using either 

comparators or other combinational logic. For any input to the function, the 

STPT output value can be determined by simply compare the input with the 

thresholds related to each output level. This procedure is illustrated in Fig.4.7, 

where only one bit in the output vector will be one, all others are zero. A 

further description can be found in Table 4.7, where TH, >TH, > . .. >TH, are 

thresholds and Ci = 1 when IN ?TH, and C, = 0 otherwise. A VHDL description 

of such an implementation when M=4 is listed in Table D.2. The input is 

assumed to be 16 bits. 

Table 4.7 Description of the decoder for STPT multistep activation function 

OUTPUT FROM COMPARATORS 
(INPUT TO THE DECODER) C,. ..C, 

00 ... 0000 

OUTPUT FROM THE DECODER 
(OUTPUT OF THE FUNCTION) 
Q,. . .Q1 

0000.. .oo 



IN  

Figure 4.7 Block diagram of the STPT multistep activation function 

The synthesized circuit in LSI Logic 600k CMOS ASIC technology is 

shown in Fig.4.8. A more detailed schematic is drawn in Fig.4.9 with an area 

of 1937 design units (646 gates). The complexity of this design is only 

comparable to the address decoder (an n to 2" decoder) part of a memory 

based look-up-table implementation, as shown in Fig.4.10, which is the 

commonly used solution of the nonlinear activation function. A 128 words &bit 

look-up-table implementation in LSI 600k technology requires approximately 

2560 gates. 



Figure 4.8 Multistep activation function circuitry 





Address 
Decoder 

Memory 
Cell A r r a y  

Figure 4.10 Structure of a look-up-table 

4.7 Concluding Remarks 

The concept of quantized neurons was introduced in this chapter to 

alleviate the computational burden of massive multiplications in multilayer 

feedforward neural networks. A modified backpropagation algorithm was 

developed to meet the training requirements of MFNNs with quantized neurons. 



network, an MFNN with quantized neurons has significant advantages for 

digital hardware implementation. First of all, a reduced chip area and an 

increased computational speed can be achieved due to the fact that 

multiplications are replaced by shift operations only, which is a similar feature 

as for the model of MFNNs with STPT weights proposed in Chapter 3. Yet one 

more advantage of using quantized neurons in MFNNs is that the complexity 

of the implementation of nonlinear activation functions, which is another 

shortcoming in digital techniques, can be reduced substantially. More on the 

issue of implementation o f  activation functions will be discussed in the next 

chapter. 



MORE MFNN MODELS FOR DIGITAL 

IMPLEMENTATIONS 

In the previous chapters, MFNN models with STPT weights and 

quantized neurons were proposed. These models have been shown to be 

effective in alleviating some of the computational burden in digital 

implementation of neural networks. Based on the ideas in the development of 

those two  models, along with the introduction of a new form of sigmoid 

activation function, further MFNN models will be developed in this chapter for 

alternative digital hardware implementation. 

5.1 A Simplified Sigmoid Activation Function (SSAF) 

The sigmoid function as defined in equation (3.2) is the most popular 

nonlinear activation function used in artificial neural networks. However, this 

sigmoid function is not suitable for direct digital implementation as it consists 

of an infinite exponential series. A look-up-table has been a traditional method 

for implementing the sigmoid function for which the amount of hardware 



overcomes many of the limitations of single-layer perceptron so that MFNNs 

can approximate any input-output functions. The sigmoid function provides, at 

the output of a neuron, a nonlinearity that has a tanh-like transition between 

the lower and upper saturation regions. In practice, any nonlinear function 

which possesses a similar transition region may be expected to achieve similar 

performance in MFNNs. In this section, it is shown that a simple second-order 

piecewise nonlinear function exists which can be used as an activation function 

in MFNNs. The proposed piecewise activation function can be implemented 

directly using digital techniques. 

5.1.1 Second-Order Approximation 

Consider the following second-order piecewise nonlinear function, which 

has a tanh-like transition between an interval [-L, L] 

where IS and O determine the slope and the gain of the function. Consequently, 

a sigmoid-like bipolar function can be realized by 



To determine the parameters 13 and 0, the following condition can be used 

H'Q I,, =O (5.4) 

hence 

Also, based on the condition H(L) = 1, we obtain 

PL-8L2=1 

From equations (5.5) and (5.61, the following relationships can be obtained 

where L determines the saturation point of the function. 



conventional sigmoid function given below 

The parameters used are L = 2 and a= 2. It can be seen that these two curves 

are very close. The maximum difference, which is about 4%, occurs around the 

saturation points. With such a close approximation, similar performance can be 

expected when the piecewise activation function is used with MFNNs. 

I ssaf 

Figure 5.1 Sigmoid Activation Function (SAF) and Simplified Sigmoid 
Activation Function (SSAF) 



Although the piecewise function G(x) is a very good approximation to the 

sigmoid activation function F(x), there is a major difference between the two 

functions. It can be seen that the piecewise function has a zero derivative 

beyond the saturation points *L, as shown in equation (5.91, which is not 

suitable for training with the backpropagation algorithm. This problem needs to 

be solved before the piecewise function G(x) can be used as activation 

functions in MFNNs. 

[: for Lsx 
G ' Q  = HI(* fur -LsxsL 

for xs-L 

If the derivative of the piecewise activation function is used directly with 

the algorithm, the learning process will get stuck when it happens to be in the 

wrong saturation region. It needs a little push to bring the learning out of the 

premature saturation region. A small positive value of the derivative may serve 

the purpose. By introducing a small positive value 6 into G J ( x )  in both saturation 

regions, we have 



for -(LA) s xr L-A 
for -(L-A) r x  

The learning process can be carried out using this version of the derivative of 

G(x). While the newly defined G'(x) will serve in the backward operations 

during training, the piecewise activation function G(x) is still used in the 

forward operations. Given a small positive value of 6, the offset A can be 

determined by setting H1(L-A) = 6, i.e., 

p -2O(L-A) = i5 (5.1 1) 

Solving the above equation and taking into account equation (5.7), we have 

A direct digital hardware implementation of H(x) can be carried out 

according to  the signal flow graph as shown in Fig.5.2. This implementation 

can be simplified when L takes a value in single term powers-of-two format. In 

this situation, both O and I3 are also single term powers-of-two values 

according t o  EqJ5.7) such that H(x) can be implemented by one multiplication 

together with one shift and one addition as illustrated by Fig.5.3. A VHDL 

description of the implementation of the simplified sigmoid activation function 



circuitry is drawn in Fig. 5.4, which clearly indicates that there are one 

multiplier, one adderkubtracter, and two comparators in the implementation. 

The detailed schematic of this design is drawn in Fig.5.5 and has an area of 

2661 design units (887 gates) and a maximum delay of 13.14 ns in LSI Logic 

600K ASIC technology. In comparison, a 128x8-bit look-up-table, as discussed 

in section 4.6, requires 2560 gates in the same technology. 

'8 P 
Figure 5.2 Block Diagram for Implementation of H(x) 

Figure 5.3 H(x) with STPT L 



Figure 5.4 Implementation of the simplified sigmoid activation function 
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In this section, simulation results will be presented in which the 

performance of the proposed piecewise activation function G(x) is compared 

with the performance of the traditional sigmoid activation function as shown 

below 

The two activation functions were used t o  train a two-layer and a three- 

layer feedforward neural network using the backpropagation algorithm. The 

following parameters o f  the functions were used: 

G(x): L = 2  

F(x) : u=2 

Two curves of activation functions with these parameters are shown in Fig.5.1. 

The training pattern-pairs of 10 numerals, which are the same as those used 

in Chapter 3, were used in simulations. The feedforward neural networks have 

100 input nodes, 4 output neurons, and one or two  hidden layers each with 40 

hidden neurons. The learning rate parameter used was 0.01 in all simulations. 

For each combination of function and network, three set of initial random 

weights uniformly distributed in the interval [-0.1, 0.11 were used. For recall 



constructed by inverting 5% of its original pixels randomly. The results on the 

number of training epochs to reach a sum of squared output errors of 0.1 over 

the entire training pattern set and the generalization capabilities, which were 

measured as the percentage of correct recalls over all patterns, are summarized 

in Table 5.1. The simulation results show that the proposed piecewise 

activation function can achieve a similar performance as that of the traditional 

sigrnoid activation function. 

Table 5.1 Performances of SSAF and SAF for Two- and Three-Layer FNNs 

Training Generalization Training Generalization 
(Epochs) (%I  (Epochs) (%I 

33 99.6 29 99.6 

Two-layer 32 99. I 27 99.1 
network 

32 99.0 28 99.0 

39 99.5 35 99.4 

Three-layer 41 99.9 38 99.9 
network 

38 99.9 35 99.9 



The simplified sigmoid activation function (SSAF) proposed in the last 

section has nearly identical features to the traditional sigmoid activation 

function, but can be implemented easily using one multiplier. When used in 

combination with STPT weights, the implementation of network can be further 

simplified. In this section, a method for designing MFNNs using SSAFs and 

STPT weights will be developed. 

5.2.1 Design Algorithm 

Our objective is to design an MFNN with SSAF at the output of each 

neuron and STPT weights of the form of { * 1, & 2", . . ., * 2'M, 0). The design 

procedure can be carried out as follows. 

Step 1: Starting with small random weights and zero biases, train an 

MFNN with SSAFs and continuous weights using the 

backpropagation algorithm without adjusting biases until 

convergence to an predetermined error level E,, i.e., 



Step 2: Find the maximum absolute value in each layer among weights 

w, '~~,  which have been obtained in Step 1. 

Then find the smallest STPT value which is greater than or equal 

to w,,,,~~] and denote it as 2P'h1. NOW set wmaXth1 to  this STPT value 

= 2P'hl. 

Step 3: Normalize weights wjjLh1 as 

W /  IQ =2-d4l Y 
4 d 

Step 4: Adjust the parameters in SSAFs at  each layer accordingly as 

such that they remain STPT values. 

Step 5: Quantize the normalized weight w' ,~ '~ '  t o  its nearest STPT value 
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where ~gn(w':~') stands for the sign of wfiihl and C, is defined as 

Step 6: Calculate the TSE using current STPT weights and SSAFs. If TSE 

is less than the predefined level E,, i.e., 

stop; otherwise, proceed to Step 7. 

Step 7: Compute changes in weights w','~' and biases b,'", respectively, 

according to the equations in the BP algorithm. 

Step 8: Update weights and quantize them as in Step 5. Denote the old 

set of weights as {w' , [~~}, ,  and the new set as {w'~~'~'),,,, and then 

calculate TSE using both sets of weights, if 



accept new weights by setting 

otherwise, discard them and keep old weights. 

Step 9: Update biases b,'hl and go back to Step 6. 

5.2.2 Simulation Results 

The I0 numeral patterns, each with 10x10 bipolar pixels, shown in 

Fig.3.4 are used in the simulations. Each MFNN was trained to obtain both 

continuous and STPT weights. Sets of noisy patterns were fed t o  each 

continuous-weight MFNN and its corresponding STPT-weight MFNN to test 

their generalization capabilities in terms of recall accuracy (in percentage of 

correct recalls). A noisy version of each of the 10 training patterns was 

constructed, as before, by inverting randomly 5% of the original elements. The 

recall accuracy was obtained by taking the average of the results among 100 

noisy versions of each of the 10 training patterns. Simulation results are 

summarized in Table 5.2 and Table 5.3, where CMFNN and STPTMFNN 

represent, respectively, the MFNNs with continuous and STPT weights. For 



All data given in Tables 5.2 and 5.3 were averages of five designs, starting 

with different initial random weights uniformly distributed in [-0.1, 0.11. Other 

parameters used were ~=0 .01 ;  ~,=0.1;  M=4; E,=0.01; E=0.2; D=2; and 

6=0.01. 

It can be seen that convergence was reached in all designs. The designed 

MFNNs with STPT weights can retain the generalization capability of the 

corresponding MFNN with continuous weights as the degradations in 

performance were at most 0.42% over all designs. 



- - 

Number Training Generalization 
of (Epochs) ( % I  

Hidden 
Neurons CMFNN STPTMFNN CMFNN STPTMFNN 

Table 5.3 Convergence Speed and Generaiization Capabilities of MFNNs with 
Two Hidden Layers 

Number Training 
of (E~ochs) 

Generalization 
( % I  - .  

Hidden 
Neurons CMFNN STPTMFNN CMFNN STPTMFNN 



In this section, the ideas of STPT weights, quantized neurons, and 

simplified sigmoid activation functions will be combined to generate an MFNN 

model with no weight multiplications for continuous input-output mapping. 

The designed MFNNs will have following features: 

STPT weights in the input layer and continuous weights in all 

other layers 

Simplified sigmoid activation functions at output neurons 

three-level activation functions (3-LAFs) at hidden neurons 

A three-level activation function is a special case of the quantized neuron 

presented in Chapter 4 when M =O and can be expressed as 

for tsx  
for -t<x<t 

-1 for x s  t 

whe /e threshold value. The derivative of FJx) can be determined 

by using the method described in Chapter 4, Le., finding the three intersection 

of FJx) and the following function 



where g > 1 is a gain factor. The derivative of F(x) at these three intersections 

will be used as the approximation of F',(x) in three different regions defined in 

equation (5.23), respective1 y, during training. 

5.3.1 Design Algorithm 

Step 1 : Prepare a set of random weights and zero biases. 

Step 2: Starting with the latest weights and zero biases, train the network 

using the backpropagation algorithm, with the SSAFs at the 

output neurons and the 3-LAFs at the hidden neurons. The 

weights will keep updated until the TSE becomes less than a 

prespecified error level E,. The obtained network is denoted as Net 

1. 

Step 3: Find the maximum absolute value w,,, among the weights in the 

first layer and normalize these weights by w,,,. 

Step 4: Scale the threshold value t of 3-LAFs applied to hidden neurons by 
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Step 5: Quantize those normalized weights in the first layer to their 

nearest STPT values from the set of { * 1, k 2-' , . . ., * 2'M, 0). 

Step 6: Calculate the TSE. If TSE < E,, stop and denote the network 

obtained here as Net 2; otherwise, proceed to Step 7. 

Step 7: Re-adapt all continuous weights in all layers rather than the first 

one, and biases in all neurons using the backpropagation 

algorithm. 

Step 8: Go backto Step 6. 

5.3.2 Simulation Results 

Simulation results are provided in Table 5.4. Two normalized orthogonal 

continuous real vector sets, one as input pattern set and the other as target 

set, were used for training and recall. Each vector set consists of 10  vectors 

and each vector consists of 25 continuous real elements, which are generated 

by using a method described in Reference [Kwan et al., 19931. The network 

was used as a pattern associator, which had 25 inputs, 25 outputs, and one 



versions of each of the 10 input vectors were presented to the network to  test 

the recall performance. The noisy vectors were constructed by adding random 

noise within the interval of =tR to each element of each input vector. R 

represents a percentage of the maximum element value among all the 10 input 

vectors. In the simulations presented here, R was 10% or 20%. The output 

vector was identified based on its crosscorrelations with all ideal output 

vectors. The ideal output vector with maximum crosscorrelation was selected 

as the recall vector. For comparison, the simulation results of the corresponding 

continuous MFNN (CMFNN), which had the same topology but continuous 

weights and bipolar sigmoid activation functions at both layers, were also 

obtained. The data summarized in Table 5.4 represent the average of five 

designs, starting with different initial random weights uniformly distributed 

within k0.1. The learning rate parameter for weights was ~ = 0 . 0 1 ,  the step 

size for bias adjustment was cb =0.01, and other parameters used were 

6=0.01, a=2, D=2, M=4, andE,=106. 

It can be seen that the proposed MFNNs with SSAFS, 3-LAFs, and STPT 

weights have a similar recall performance as the original MFNNs with SAFs and 

continuous weights a t  a cost of additional training epochs. 





5.4 Multiplierless MFNNs for Discrete Input-Output Mapping 

When the input and output patterns are of discrete format (binary or 

bipolar), some limitations in the design of MNFFs without weight multiplications 

can be removed and the design will be more flexible. 

In this section, a method for designing 2-layer feedforward neural 

networks suitable for bipolar ( * 1 ) input to  output mapping will be presented, 

which uses simplified sigmoid activation functions at hidden neurons, step 

activation functions at output neurons, continuous valued weights in the first 

layer, and single-term powers-of-two weights in the second layer such that 

multipliers can be eliminated from the resultant networks. The designed 

network will have the following properties: 

bipolar ( * 1) input and output 

one hidden layer 

continuous weights at first layer and single-term powers-of-two 

weights at the second layer 

. SSAFs at the hidden layer 

SAFs at the output layer for training and step functions at the 

output layer for recall 



5.4.1 Design Algorithm 

Step I :  Prepare a set of random weights and zero biases, with sigmoid 

activation functions at the output layer and simplified sigmoid 

activation functions (with a single-term powers-of-two L) at the 

hidden layer. 

Step 2: Starting with the latest weights and zero biases, train the network 

using the BP algorithm without adjusting biases until 

where E is a prespecified error level. The network obtained at this 

point is denoted as Net#l . 

Step 3: Find the maximum absolute value wmaXL2' among the weights in the 

output layer and normalize these weights by w,,,,[~'. 

Step 4: Adjust the parameter a of the sigmoid activation functions applied 

at the output neurons as o~_,,'~'. 



term powers-of-two values chosen from the following set: 

{ *2", k2-2B2*; *2‘4 o (5.26) 

Step 6: Calculate the TSE. If TSE<E is not satisfied, proceed to step 7; 

otherwise, go to step 8. 

Step 7: Adapt all continuous weights of the first layer and biases of 

neurons at both layers using the equations given in Section I1 until 

either Eq.(13) is satisfied or convergence is reached in which no 

further improvement in SSE can be obtained. 

Step 8: 

Step 9: 

Step 10: 

Find the maximum absolute value w,,,,"' among the weights in the 

first layer, and set wmmnl = 2P''1, where 2P11' is the smallest single- 

term powers-of-two value greater than or equal to w,,[l1. 

Normalize the weights in the first layer by 2P[7' and set parameters 

8 and O of the SSAFs applied at hidden neurons as R =  ZPLllB and 

0=22p'110. respectively, such that they remain single-term 

powers-of-two. 

Replace the sigmoid activation functions at the output layer by 



5.4.2 Simulation Results 

Simulations have been conducted to verify the proposed design 

algorithm. The input patterns used in training were 10 numerals as shown in 

Fig.3.4, each represented by 10x10 bipolar pixels. The corresponding desired 

output patterns were 4-bit codes given below each input pattern. Thus, the 

network had 100 inputs, 4 outputs, and one hidden layer with various number 

of neurons. After training, 100 noisy versions of each of the 10  input patterns, 

in total 1000, were presented to test the recall accuracy of the network 

obtained. A noisy pattern was constructed by inverting randomly a percentage 

(in this paper it was 5%) of elements of the original pattern. The recall 

accuracy was obtained by taking the average over all 1000 testing patterns. 

Simulation results are summarized in Tables 5.5 and 5.6. All data given in these 

tables were averages of five designs, starting with different initial random 

weights uniformly distributed in (-0.1, +0.1]. For the purpose of comparison, 

the results of corresponding continuous-weight MFNN (CMFNN), which had the 

same topology but continuous weights and sigmoid activation functions at  both 

layers, were also obtained and included in these tables. The total number of 

epochs under MMFNN is the sum of epochs required to obtain both Net#l and 



target patterns. The other parameters used for simulations were: ~ = 0 . 0 1 ,  

4 = O . l ,  E=0.01, a=2, D=2, and 6=10'*. 

Based on the data in Tables 5.5 and 5.6, we can see that the 

convergence was always reached in the training of MMFNN and there was only 

slight degradation in the recall performance of MMFNN compared with CMFNN. 

Table 5.5 CONVERGENCE SPEED (IN NO. OF EPOCHS) OF CMFNNs AND 
MMFNNs 

Number MMFNN 
of hidden CMFNN 
neurons S=2 S = 4  S = 8  



Table 5.6 RECALL PERFORMANCE (IN PERCENTAGE OF 
CORRECTNESS) OF CMFNNs AND MMFNNs 

Number MMFNN 
of hidden CMFNN 
neurons S = 2  S = 4  S=8 

5.5 Concluding Remarks 

A simplified sigrnoid activation function (SSAF) has been proposed in this 

chapter for direct digital implementation. This presented model is a piecewise 

function which has a very close approximation to the original sigmoid function 

and performs equally when used in multilayer feedforward neural networks. The 

advantage of SSAF for hardware implementation was demonstrated by the fact  

that it requires much less silicon area than the commonly used look-up-table 

method. 

Based on the SSAF model and combined with the ideas of STPT weights 
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feedforward neural networks architectures suitable for digital hardware 

implementation were developed under different conditions. While having 

advantages for digital implementation approach, all these models can retain the 

performance of the original multilayer feedforward networks as shown by the 

simulation results. 



Chapter 6 

CONCLUSIONS AND SUGGESTIONS 

6.1 Conclusions 

This dissertation has made original contributions to the development of 

artificial neural network models for digital hardware implementations. 

First, a new model of multilayer feedforward neural network with single 

term powers-of-two weights is proposed in Chapter 3 along with a dedicated 

design algorithm. The adaptive sigmoid activation function has been introduced 

for fine-tuning the network to compensate the errors caused by weight 

quantization. This method gives the network more dimensions of freedom in 

addition to weight adjustment to adapt to a given problem. The proposed 

algorithm turns out to be effective in designing MFNNs with STPT weights. 

MFNNs with STPT weights have substantial advantages over original MFNNs 

in digital hardware implementation. By using STPT weights, multiplications are 

eliminated such that only shift operations are required. This has resulted in 



feasibility of the proposed model and algorithm was demonstrated by simulation 

results. STPT-weig ht networks can retain a similar performance to the original 

continuous-weight networks while avoiding weight multiplications in digital 

hard ware implementations. 

The STPT weights were introduced in an attempt to alleviate the 

computational burden of multiplications, no extra effort has been made to ease 

the interconnection problem in digital implementation. However, if we take into 

account the effect of the increased number of  zero weights and the reduced bit 

width of non-zero weights as a result of the adoption of STPT weights, we can 

still see some reduction in the density of interconnections, although this impact 

is limited and no substantial improvement is expected. 

A new model for MFNNs with quantized neurons is proposed in Chapter 

4. The concept of a quantized neuron is introduced and its structure is 

demonstrated. The output of a quantized neuron is restricted to STPT format 

with a multistep activation function. The BP algorithm has been modified to 

handle the training of quantized neurons. A methodology for designing MFNNs 

with quantized neurons is presented and has been proved t o  be very effective 

through simulations. The advantages of using quantized neurons in MFNNs for 

digital hardware implementation include elimination of weight multiplications 



functional blocks have been proposed and significant improvement in terms o f  

speed and silicon area has been achieved. In conclusion, MFNNs with quantized 

neurons have shown great advantages over digital hardware implementation 

with little degradation in the network performance when compared with original 

MFNNs. 

A simplified sigmoid activation function is proposed in Chapter 5, which 

is a very close approximation to the original sigmoid activation function and has 

the same performance in simulations. A corresponding training algorithm has 

been developed and a cost effective direct hardware implementation is 

presented. More multipiierless MFNN models are also developed in Chapter 5 

based on the idea of STPT weights and the simplified sigmoid activation 

function. The effectiveness of these models are verified via computer 

simulations. 

Real world applications may require very large neural networks with 

hundreds of thousands neurons, or even more. Increased complexity of ANN 

will definitely result in a high cost of hardware implementation, which could 

limit the wide application of ANNs. Thus, there is an urgent need in cost 

effective implementation of ANNs and the strategies proposed in this 

dissertation are able to serve this purpose well. 



While the proposed models and algorithms have been shown to  be 

successful in designing multilayer feedforward neural networks, the following 

open problems still need further investigation. 

The original multilayer feedforward neural networks are universal 

approximators. Do MFNNs with powers-of-two weights still have this property? 

J t  would be very interesting to see whether it is possible to find any direct 

analytical solution in this regard. Although it is expected that the analysis may 

be quite complex in nature. 

Our simulation results show that MFNNs with STPT weights or quantized 

neurons can achieve almost the same performance as the original MFNNs 

without an increase in the size of the network. To what extent this result can 

still hold is a good direction for future mathematical analysis. 

The models proposed in this dissertation can eliminate multiplication in 

the feedforward operations only. That means multiplications are still inevitable 

in the learning phase. The learning algorithm without multiplications is needed 

if on-chip learning is to be implemented digitally. 



Appendix A 

DERIVATION OF THE BP ALGORITHM 

The backpropagation (BP) algorithm is a gradient descent method, which 

makes the change in a weight to be proportional to  the negative derivative of 

a cost function with respect to that weight. If the total squared error (TSE) 

defined in equation (2.9) is used as the cost 

weight wi;h' due to pattern k can be calculated 

function, then the change in 

as 

By using the chain rule, 



define 

then 

for the output layer, i.e., h =L, 

hence 



and 

for h<L 

the term azi~h+ll/azj,'hl can be expressed as 

a$Q ad? azLM 

and by definition 



therefore 

(A. 1 2) 



Appendix B 

DERIVATION OF THE ALGORITHM FOR 

ADAPTATION OF ACTIVATION FUNCTIONS 

Based on the gradient descent method, the change in the parameter a of 

the sigmoid activation function of thejth neuron a t  the hth layer in an MFNN 

can be expressed as 

a*, spy = -- 
day 

for h=L 

where F',(z,a) is the partial derivative of the activation function with respect to 

parameter a. 
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then 

and 





AN FPGA IMPLEMENTATION OF MFNNS 

WITH QUANTIZED NEURONS 

In this appendix, the FPGA design of a multilayer feedforward neural 

network with quantized neurons for XOR problem will be presented. 

C. 1 Design Overview 

The overall design of an all-digital implementation of MFNN with 

quantized neurons can be divided into several major parts, including 

accumulation, shift operation, activation function, and timing control. The 

design will be a partly parallel, partly serial operated architecture. In other 

words, the operations within the same layer of the network are parallel, and the 

inter-layer operations are performed in serial from the first (or input) layer to the 

output layer because the outputs of the current layer usually are inputs to the 

next layer. The architecture of each layer are similar in MFNNs. A block diagram 

of the implementation structure of a typical MFNN is illustrated in Fig.C.1, 

where only one layer is shown. 



Input 
Array 

Figure C.1 Block Diagram of Digital Implementation Structure of an MFNN 
with quantized neurons 

In the above structure, the ACCUs stand for functional blocks of 

accumulation; the SHFs are functional blocks of shift operation; the LUTs stand 

for the functional blocks of activation function; MUX is a multiplexer; and N s  

are weights. 

The operation of accumulation can be realized using an accumulator. The 

function of accumulator is t o  add up all input to the neuron. Each neuron will 

have a dedicated accumulator. The accumulator will have addhubtract 
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operation flow. The function of a shift block is to shift a weight by a certain 

number of bits, which is determined by the activation of the corresponding 

neuron. This block will also have parallel data loading, synchronous reset, and 

clock enable. Because for a particular connection weight, the number of bits to 

be shifted varies from pattern to pattern, the shift block should be able to 

detect how many bits will be shifted for each weights under different input 

patterns and control the shift operation as required. From Chapter 4, it can be 

seen that the maximum magnitude of the output of a neuron cannot exceed 1, 

therefore only right shift is involved in the operation. However, the output of 

each neuron is changing with different pattern presented to the network. 

Consequently, the number of bits to be shifted for a particular weight is not 

known in advance. The circuit has to be able to deal with this demand. As for 

the nonlinear activation function, it is usually implemented by look-up table 

using memories. Since in the model of MFNNs with quantized neurons, the 

activation function is a multi-step function, the implementation of this function 

can be simplified significantly. Due to its multi-step format, a group of 

magnitude comparators and a simple combinational logic can be put together 

to realize the desired feature of such activation functions. Weights can be 

stored in memories. 



design package using the Unified Component L~brar~es. weatmg wtm aeslgns 

with Viewlogic involves the following steps: 

1. Enter the design with Viewdraw schematic editor, observing the Xilinx 

design requirements. 

2. Test the functionality of the design. Run XSimMake to generate the 

ViewSim functional simulation netlist (VSM) file. After verifying that the 

logic design is functionally correct, proceed with the third step, design 

implementation. 

3. Implement the FPGA design. Generate the placed and routed design 

automatically by executing the XMake program for an FPGA design or 

translate the design manually. 

4. Simulate the timing of the design. Generate a ViewSim timing netlist by 

running the XSimMake program on the LCA (Logic Cell Array) file. Use 

the VSM output file for timing simulation. 

The Viewlogic design methodology for FPGAs is illustrated by the 

flowchart in Fig.C.2. 
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Figure C.2 Viewlogic Design Methodology for FPGAs 



Fig.C.3 shows a top level schematic of an MFNN with 2 inputs, one (1) 

output, and one (1) hidden layer of two (2) hidden neurons for solving XOR 

problem. Several functional blocks were used in the design. The description of 

these blocks will be provided in the following sections. Some of them are user 

defined symbols, while the others are components directly from Xilinx libraries. 

In Table C.1, all symbols used in the top level design are listed with a brief 

explanation. Xilinx FPGA device 4013MQ208-5 was used in the design. The 

final design occupies 346 CLBs, that counts for 60% of the maximum number 

of 576 available CLBs. 

The circuit was designed to function in the following way. After a 

pattern is presented to  the input of the network, the bias of each neuron will 

be loaded into the corresponding accumulator; then the first layer accumulators 

will be working in parallel to add up all weighted inputs. Since the inputs are 

digital signals of 0 or 1, they can control the clock enable of the accumulator 

to determine whether the corresponding weight will be added or not. The 

elements of the input pattern are selected one by one in sequence by a 

multiplexer. 
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Symbols 
. -- - 

M2-1 E 

IFD 

IPAD 

Wi&h 

BIASLLh 

T I  6MUX2-1 E 

AND2 

ACC16 

LUT 

SHF-BLOC 

OSCQK 

DEBOUNCE 
- 

CTRLBLOC 

OBUF 

OPAD 

Explanation 

Two to one multiplexer 

Input D Flip-Flop 

lnput pad 

Weight wiY1 

Bias b?' 

16 bit two to one multiplexer 

Two inputs AND gate 

16 bit accumulator 

Activation function 

Shift operation block 

Internal clock generator 

Start pulse generator 

Timing control block 

Output buffer 

Output pad 

Inout buffer 

After the accumulations at the first layer are finished, the sums of 

accumulators will be passed to the activation functions (block LUT) to produce 

the output of neurons. Because quantized neurons are used here, the output of 

an activation function has single term powers-of-two format, which will be 

used as an input to the block of shift operation (SHF-BLOC) to control the shift 
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will be used to select addhub of the accumulator at the second layer. Due to 

the similarity of layers in an MFNN model, the same operations will be repeated 

in the consecutive layers. 

In the following section, the details of major sub-circuit blocks will be 

described. 

C .3 Sub-circuit Blocks 

In this section, the schematic design of the major functional blocks will 

be described. All of these blocks have been constructed using the primitive 

components from the Xilinx XC4000 library. 

C.3.1 Accumulator - ACCI 6 

ACCl6, shown in Fig.C.4, is a 16-Bit Loadable Cascadable Accumulator 

with Carry-In, Carry-Out, and Synchronous Reset. The function of ACCI 6 is to 

take a sum of weighted inputs to each neuron, that means the output of the 

accumulator is the net input to the corresponding neuron. 

Each neuron needs a dedicated accumulator such that parallel operation 

I46 
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only in add mode due to 011 

inputs. Therefore, ADD will 

always be HIGH and CI will be 

LOW. Weights and biases, both 

in 16-bit 2's complement, are 

connected t o  8 and D, 

respectively. 

Figure C.4 1 6-Bit Accumulator 

When used in a layer other than the first one, ACC16 will operate in add 

mode as well as subtract mode. The operation mode will be determined by the 

output of neurons in the previous layer together with the corresponding 

weights. If the sign bit of the output of the neuron in the previous layer is 

negative, then the value of the shifted version of the corresponding weight will 

be subtracted from the contents of the accumulator; otherwise, it will be added 

to  that accumulator. 

C.3.2 LUT - Implementation of the Activation Function 

The input to  the LUT is the output from the accumulator. The output of 

the LUT is the activation of the quantized neuron in STPT format, i.e., there is 

only one bit is "on" (logic high) in the output. This functional block has been 
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CMPRTR is shown in Fig. C.6. The five comparators on the top are used for 

comparisons between input data and positive thresholds, while the other five 

at the bottom are for comparison with negative thresholds. 

The input-output relationship of the combinatorial logic can be described 

as in Table C.2. The five positive and negative thresholds are obtained by using 

the method described in Chapter 4 and listed in Table C.3. 

Table C.2 Combinatorial Logic in LUT Block 

11 INPUTS I OUTPUTS 

IN1 5 I P4-PO I N4-NO I Position of "1 " 

0 

0 I 00111 I XXXXX I 

0 

1 

11111 

0 I 00011 I XXXXX I 

XXXXX 

01111 

XXXXX 

1 

0 I OOOOl I XXXXX I 

XXXXX 

01 11 1 

XXXXX 

1 

XXXXX 00001 

OUT6 

I 

XXXXX I 0001 1 

00111 
OUT5 







THRESHOLDS I 2% COMPLEMENT VALUES 

C.3.3 SHF-BLOC - Implementation of Shift Operation 

The function of the shift block is to shift a weight according to the 

activation of the corresponding neuron, which is of the STPT format, instead 

of doing multiplication. As mentioned before, because the output of a neuron 

is different under different input patterns, the number o f  bits t o  be shifted in 

the corresponding weight varies from one pattern to another. Therefore, the 

shift block must be able to  detect and control the actual number of bits to be 

shifted. This is done by using two shift registers, one is used to control how 

many bits will be shifted while the other is used to do the actual shift operation 

of weights. Fig. C.7 shows the implementation of the shift block where the 
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enable (L), shift leftlright (LEFT), and synchronous reset (R). 

Figure C.7 Implementation of Shift Operation 

The 8-bit shift register SR8RLED is used to control the shift operation 

while the 16-bit shift register SR16RLED conducts the actual weight shifting. 

The SR8RLED will keep shifting left while the SR1 GRLED is shifting right until 

the most significant bit (MSB) in the SRSRLED becomes 1. At that point, both 



C.3.4 CTRLBLOC - Implementation of the Control Block 

The function of the control block CTRLBLOC is to provide timing signals 

to the circuit. These signals usually will control the Enable input, the Data Load 

input, and SetIReset input of functional components. Because an MFNN 

operates from the input layer to the output layer, the CTRLBLOC will allow each 

layer to operate only when all information have come available to that layer. 

Fig. C.8 shows the implementation of the control block CTRLBLOC, 

where CB4CE is a 4-stage, 4-bit, synchronous, clearable, cascadable binary 

counter. 

From the top level design given in Section C.2, it can be seen that the 

whole circuit operates synchronously, i.e., the states of the circuit make 

changes only during clock transitions. However, the sequence of operations and 

the time at which a block can operate will be determined by control signals. 

These signals include ACC-LD, L1-ENB, L1-SLCT, SHF-LD, SHF-CE, L2-ENB, 

and L2_SLCT, which are summarized in Table C.3. 



OUTPUTS OF CTRLBLOC FUNCTIONS I 
Accumulators load signal 

Layer 1 operations enable 

Layer 1 multiplexer select signal 

Shift blocks load signal 

Shift blocks clock enable 

Laver 2 operations enable 

Layer 2 multiplexer select signal 

All control signals are active High. Each block can act only during the 

active period of the corresponding control signal. The order of appearance of 

these signals is the same as the sequence in which they are listed in Table C.3. 

C.3.5 Weights and Biases 

Weights and biases used in the FPGA design are listed in Table C.4, 

along with their 16-bit fixed-point 2's complement representations. 



Figure C.8 Schematic of Control Block CTRLBLOC 



Table C.4 Representations of Weights and Biases 

Values 1 2's Complement Representations 

C.4 Design Simulation 

Both functional and timing simulations have been conducted on the top 

level schematic design. Functional simulation is used to verify the logic 

relationship under normal unit delay of each component while timing simulation 

is used to  verify the logic correctness under the worst situation of gate delays. 

Functional simulations use unrouted design and timing simulation based on the 

routed design. 
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output layer, if the net input before activation is negative, then the output of 

that neuron will be zero because a hardlimiter function can be applied to  

produce binary output. On the other hand, if the net input before activation is 

positive, the output of that neuron will be logic one. 

C.4. f Functional Simulation Results 

Design simulations have been conducted using Xilinx's ViewSim. The 

results are provided below. 

1) XlJ=O, XD=O 

When both inputs are 0, the signal OUTPUT[lS:O] = 

1110111000110011 whichislessthanTH~N1=1110111111100110. Thus, 

the output of the network is logic zero (LOW), the same as expected. The 

simulation waveform is depicted in Fig. C.9. 

2) XU=O, XD=1 

In this case, two inputs are different, the output of the network should 

be logic one (High). Look at the simulation waveform given in Fig. C.10, the 

signal OUTPUT[I 5:0] = 0001 001 001 0001 01 which is greater than 

TH - PI =0001000000011010. Therefore, the output of the network is indeed 



3) XU=1, XD=O 

Similar to the above case 2), the two inputs are new different, so the 

output of the network should be logic one (High). From Fig. C.11, the 

simulation waveform, it can be seen that the signal OUTPUT[IS:O] = 

0001 001 001 0001 01 which is greater than TH-PI = 0001 00000001 101 0. 

Therefore, the output of the network is indeed logic one (High). 

4) XU=1, XD=1 

Now both inputs are 1, which is a similar situation to case 1 ), the output 

of the network is expected to be logic zero (Low). Observe the simulation 

waveform in Fig.C.12, the signal OUTPUT11 501 = 1 1 101 1001 1 1 1 1001 which 

is still less than TH-N1 = 1 1 101 11 1 1 1 1001 10. With this OUTPUT[I 5:OI as the 

net input to the output neuron before activation, the output of the network is 

logic Low (zero), showing the correct result. 
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Figure C.9 Functional Simulation Result When XU =O and XD =O 
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The same logic results as in the functional simulations were obtained and are 

shown in Fig.C.13-C.16. The only difference is the amount of delays. 
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Appendix D 

VHDL CODES FOR HARDWARE 

IMPLEMENTATION SCHEMES 

Table D.l  VHDL code for shift operation 

LIBRARY IEEE; 
USE IEEE.STD-LOGIC-1164.all; 

entity SHIFTER is 
port( a: in std-logic_vector(7 downto 0); 

ct: in std-logicyector(4 downto 0); 
z:  out std~logic~vector(1 I downto 0)); 

end SHIFTER; 

architecture BEHAVIORAL of SHIFTER is 
begin 

process(a, ct) 
begin 

case ct is 
when 

when 

when 

"00000" = > 
z < = "000000000000"; 
"00001" = > 
z < =a(7)&a(7)&a(7)&a(7)&a(7 downto 0); 
"00010" = > 
z< =a(7)&a(7)&a(7)&a(7 downto 0)&'0'; 
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when "01 000" = > 
z < =a(7)&a(7 downto 0)&"00OW; 

when " 40000" = > 
z < =a(7 downto 0)&"0000"; 

when others = > 
z <  ' 1 ,  

end case; 
end process; 

end BEHAVIORAL; 



I ame u.r VHUL aescrlprlurl UI rrle rIuIrIsiep CILiIvauuI I IUI ILWI I UDGU I 

MFNNs with quantized neurons 

Library IEEE; 

use IEEE.std-logic-I 1 64.all; 

use IEEE.std-logic - arith.al1; 

use 1EEE.std-logic-unsigned .all; 

entity PIECEWISE is 

port( a: in std~logic~vector( l5 downto 0); 
c: out std-logic-vector(4 downto 0)); 

end PIECEWISE; 

architecture BEHAVIORAL of PIECEWISE is 

constant PO: 

constant p l  : 

constant p2: 

constant p3: 

constant p4: 

constant no: 

constant n 1 : 

constant n2: 

constant n3: 

constant n4: 

s td~logic~vector( l5 downto 0): = "0001 00000001 101 0"; 

std-logic-vector( 1 5 downto 0): = "000003 01 1 1 0001 1 0"; 

std~logic~vector( l5 downto 0): = "0000001 01  100001 1 "; 

std - logic-vector(l5 downto 0): = "00000001 01 01 1 1 10"; 

s td~logic~vector( l5 downto 0):  = "0000000001 1 101 01 "; 

std~logic~vector( l5 downto 0): = " 1 1 101 1 1 1 1 1 1001 10"; 

s td~logic~vector( l5 downto 0): = " 1 1 1 1 101 0001 1 101 0"; 
std-logic_vector(l5 downto 0): = " 1 1 1 1 1 101 001 1 1 101 "; 

std-logic-vector(l5 downto 0): = "1 1 1 1 1 1 101 01 0001 0"; 

std~logic~vector( l5 downto 0): = "1 1 1 1 11 1 1 10001 01 1 "; 

begin 

process(a) 

begin 

case a(15) is 

when '0' = > 
if(a > = PO) then 



when 

emra > = p I J men 

c < = "01 000"; 

elsif(a > = p2) then 

c <  ="00100"; 

elsif(a > = p3) then 

c< = "00010"; 

elsif(a > = p4) then 

c < = "00001 "; 

else 

c < = "00000"; 

end if; 

others = > 
if(a < = no) then 

c< ="10000"; 
elsif(a < = nl ) then 

c< = "01 000"; 

elsif(a < = 172) then 

c< = "001 00"; 

elsif (a < = n3) then 

c< = "0001 0"; 

elsif(a < = n4) then 

c< = "00001 "; 

else 

c < = "00000"; 

end if; 

end case; 

end process; 

end BEHAVIORAL; 



Table 0.3 VHDL description of the simplitied slgmold actwanon tunctlon 

library IEEE, DW02; 
use IEEE.std-logic-I 164.all; 
use IEEE.std-logic-arith.all; 
use IEEE.std-logic-signed.all; 
use DW02. DWO2-components .all; 

entity ssaf is 
port(x: in std-logic - vector( 15 downto 0); 

z: out std-logic-vector(7 downto 0)); 
end ssaf; 

architecture behavior of ssaf is 

signal x - shft: std~logic~vector( l5 downto 0); 
signal x - shft-low: std-logicyector(7 downto 0); 
signal x - shft - low-sqr: std~logic~vector( l5 downto 0); 
signal z-long: std-logic-vector(8 downto 0); 
signal control: std-logic; 

begin 
control < = 'I '; 
x-shft < = x(15)&x(15 downto 1 ); 
x-shft-low < = x-shft(7 downto 0); 
-- x-shft-low-sqr < = x-shft-low * x-shfl-tow; 

U1: DW02-mult 
generic map(A-width = > 8, B-width = > 8) 
port map(A = > x-shft-low, B = > x - shft-low, 

TC = > control, PRODUCT = > x-shftJow-sqr); 

piecewise: process(x, z-long) 



if(x > = 2) then 
z< ="01111111"; 

elsif(x < = -2) then 
z< ="10000000"; 

else 
z < = z - long(7 downto 0) ;  

end if; 
end process; 

second-order: process(x-shft, x - shft - low - sqr, x) 

begin 
case x(15) is 

when '0' = > 
z-long < = x-shft(7 downto O)&'Or - 

x-shit_low-sqr(l5 downto 7) ;  
when others = > 

z-long < = x - shft(7 downto 0)&'0' + 
x-shft-low-sqr(l5 downto 7); 

end case; 
end process; 

end behavior; 
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