
ARTIFICIAL NEURAL NETWORK MODELS FOR

DIGITAL 1MPLEMENTATION

by

Chuan Zhang TANG

A Dissertation
Submitted to the Faculty of Graduate Studies and Research

Through the Department of Electrical Engineering
in Partial Fulfilment of the Requirements for
the Degree of Doctor of Philosophy at the

University of Windsor

Windsor, Ontario, Canada

395 Wellington Street 395, rue Wellington
Ottawa ON KIA ON4 Ottawa ON K I A ON4
Canada Canada

Your fib Vorre nlldmnce

Our fib Notre rdkllenca

The author has granted a non- L'auteur a accorde m e licence non
exclusive licence allowing the exclusive pennettant a la
National Library of Canada to Bibliotheque nationale du Canada de
reproduce, loan, distribute or sell reproduire, preter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thkse sous
paper or electronic fomats. la fome de microfichelfilm, de

reproduction sur papier ou sur format
electronique.

The author retains ownership of the L'auteur conserve la propriete du
copyright in this thesis. Neither the droit d'auteur qui protege cette thhse.
thesis nor substantial extracts fiom it Ni la these ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent %re imprimes
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

(c) 1996 Chuan Zhang Tang

ARTIFICIAL NEURAL NETWORK MODELS FOR DIGITAL IMPLEMENTAT1ON

by

Chuan Zhang Tang

Doctor of Philosophy in Electrical Engineering, 1996

University of Windsor, Windsor, Ontario, Canada N9B 3P4

Supervisor: Dr. Hon Keung Kwan

The last decade has witnessed the revival and a new surge in the field

of artificial neural network research. This is a thoroughly interdisciplinary area,

covering neurosciences, physics, mathematics, economics, and electronics.

Although artificial neural networks have found diverse applications in pattern

recognition, signal processing, communications, control systems, optimization,

among others, this is still a research field with many open problems in the areas

of theory, applications, and implementations. Compared with the development

in neural network theories, hardware implementation has lagged behind. In

order to take full advantages of neural networks, dedicated hardware

implementations are definitely needed. Today, harnessing VLSl technology to

produce efficient implementations of neural networks may be the key to the

future growth and ultimate success of neural network techniques.

This dissertation deals with the development of neural network models

iv

implementation technologies are basically a digital implementation medium,

which offers many advantages over its analog counterpart, artificial neural

networks must be adapted to an all-digital model in order t o benefit from those

advanced technologies. In this dissertation, new models of multilayer

feedforward neural networks with single term powers-of-two weights,

quantized neurons, and simplified activation functions are proposed to facilitate

the hardware implementation in digital approach. Dedicated training algorithms

and design procedures for these models are also developed. To demonstrate the

feasibility of the presented models, performance analysis and simulation results

are provided, and VHDL and FPGA designs are implemented. It has been shown

that these proposed models can achieve almost the same performance as the

original rnultilayer feedforward networks while obtaining significant

improvement in digital hardware implementation in terms of silicon area and

operation speed. By using the models developed in this dissertation, a digital

implementation approach of multilayer feedforward neural networks becomes

very attractive.

To my wife, Barbara Zhou, my son, Joshua Tang,

and

my parents, Shi-xian Tang and Kun-shu Ma

First of all, I would like to acknowledge my dissertation supervisor, Dr.

H. K. Kwan, for helpful advice and useful suggestions throughout the progress

of my dissertation. Dr. Kwan has introduced me into this exciting field of

artificial neural networks (ANNs) and recommended the multiplierless digital

implementation of ANNs as my research direction. I would also like t o thank Dr.

Kwan for providing me research assistantship through his NSERC research

grant, and the Department of Electrical Engineering for providing me teaching

assistantship. I would like to acknowledge the University of Windsor for

granting me the University of Windsor Postgraduate Scholarship (1 991-1 993)

and the Ontario Graduate Scholarship program for awarding me the Ontario

Graduate Scholarship (1 993-1 995).

I am grateful to my external examiner, Dr. M. I. Elmasry of the University

of Waterloo, who examined and provided useful comments on the dissertation.

Special thanks go to my outside department reader, Dr. R. Du, for his

constructive comments on this research. I want to express my sincere thanks

to my department reader, Dr. G. A. Jullien, for comments that improved the

presentation of this research. I also like to thank Dr. W. C. Miller for serving as

my department reader and for his helpful comments. My thanks also go to Ms.

S. Ouellette, Mr. J. Novosad, and Mr. A. Johns for their assistance during the

progress of this research.

Finally, I wish t o express my sincere appreciation t o my wife for her

constant encouragement and understanding, and to my parents for their care

and affection.

vii

TABLE OF CONTENTS

ABSTRACT

DEDICATION

ACKNOWLEDGEMENTS

LlST OF TABLES

LlST OF ILLUSTRATIONS

CHAPTER

1. INTRODUCTION

1 .I History of Artificial Neural Networks

1.2 ANN Features

1.3 Motivations and Impact of this Research

1.4 Literature Survey

1.5 Organization of this Dissertation

2. MULTILAYER FEEDFORWARD NEURAL NETWORKS

2.1 MFNN Architecture

2.2 The Backpropagation Algorithm

2.3 Improvements to the BP Algorithm

2.3.1 Adjustable Learning Rate

2.3.2 Momentum Term

iv

vi

vii

xi i

xv

viii

2.4 Hardware Implementations of MFNNs

3. MULTILAYER FEEDFORWARD NEURAL NETWORKS WlTH

SINGLE TERM POWERS-OF-TWO WEIGHTS

3.1 Adaptation of Activation Functions in MFNNs

3.2 Design Procedures for MFNNs with STPT Weights

3.2.1 Basic Ideas

3.2.2 Design Algorithm

3.3 Simulation Results

3.3.1 A Benchmark Problem

3.3.2 More Simulations

3.4 Comparison with Existing Models

3.5 Advantages for Hardware Implementation

3.6 Concluding Remarks

4. MULTILAYER FEEDFORWARD NEURAL NETWORKS WlTH

QUANTIZED NEURONS

4.1 Introduction

4.2 Quantized Neurons

4.3 Design Procedures for MFNNs with Quantized Neurons

4.4 Mapping Abilities of MFNNs with Quantized Neurons

4.5 Simulation Results

4.5.1 Benchmark Problems

4.5.2 More Simulations

4.6 Advantages for Hardware Implementation

4.7 Concluding Remarks 96

DIGITAL IMPLEMENTATION

5.1 A Simplified Sigmoid Activation Function (SSAF)

5.1 . I Second-Order Approximation

5.1.2 Considerations in Training and

Implementation

5.1.3 Simulation Results

5.2 MFNNs with SSAFs and STPT Weights

5.2.1 Design Algorithm

5.2.2 Simulation Results

5.3 Multiplierless MFNNs for Continuous

Input-Output Mapping

5.3.1 Design Algorithm

5.3.2 Simulation Results

5.4 Multiplierless MFNNs for Discrete

Input-Output Mapping

5.4.1 Design Algorithm

5.4.2 Simulation Results

5.5 Concluding Remarks

6. CONCLUSIONS AND SUGGESTIONS

6.1 Conclusions

6.2 Suggestions for Future Research

APPENDIX

A. DERIVATION OF THE BP ALGORITHM

B. DERIVATION OF THE ALGORITHM FOR ADAPTATION

C. AN FPGA IMPLEMENTATION OF MFNNS WITH

QUANTIZED NEURONS

C. 1 Design Overview

C.2 Top Level Schematic

C.3 Sub-circuit Blocks

C.3.1 Accumulator - ACC16

C.3.2 LUT - Implementation of the Activation Function

C.3.3 SHF-BLOC - Implementation of Shift Operation

C.3.4 CTRLBLOC - Implementation of the Control Block

C.3.5 Weights and Biases

C.4 Design Simulations

C.4.1 Functional Simulation Results

C.4.2 Timing Simulation Results

D. VHDL CODES FOR HARDWARE IMPLEMENTATION SCHEMES 168

REFERENCES 1 74

VITA AUCTORIS

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

f arameters for XOR Simulation 51

Convergence Speed (In Number of Epochs) for CMFNN and

STPT MFNN (1 00 Inputs, 4 Outputs, and 1 Hidden Layer) 54

Generalization Capabilities (In Percentage of Correct

Recalls) for CMFNN and STPT MFNN (100 Inputs,

4 Outputs, and 1 Hidden Layer)

Convergence Speed for Networks with Different Number

of Hidden Layers When M =4 (100 Inputs and 4 Outputs) 55

Generalization Capabilities for Networks with Different

Number of Hidden Layers When M =4 (100 lnputs and

4 Outputs)

Description of the Operation of the Shifter

Hardware Advantage of MFNN with STPT Weights

Description of Parity Problem

Convergence Performance in Number of Training

Epochs (One Hidden Layer)

Generalization Capability in Percentage of Correct

Recalls (One Hidden Layer, 5% Noise Level)

Convergence Performance in Number of Training

Epochs (Two Hidden Layers)

Table 3.6

Table 3.7

Table 4.1

Table 4.2

Table 4.3

Table 4.4

xii

Table 4.6

Table 4.7

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table C. l

Table C.2

Table C.3

Table C.3

Table C.4

Table D.1

Recalls (Two Hidden Layers, 5% Noise Level)

Hardware Advantage of MFNN with Quantized Neurons

Description of the Decoder for STPT Multistep Activation

Function

Performance of SSAF and SAF for Two- and Three-Layer

MFNNs

Convergence Speed and Generalization Capabilities of

MFNNs with One Hidden Layer

Convergence Speed and Generalization Capabilities of

MFNNs with Two Hidden Layers

Summary of Simulation Results

Convergence Speed (In Number of Epochs) of CMFNNs

and MMFNNs

Recall Performance (In Percentage of Correctness) of

CMFNNs and MMFNNs

List of Symbols Used in the Design

Combinatorial Logic in LUT Block

Thresholds of Activation Functions

Summary of Control Signals

Representations of Weights and Biases

VHDL Code for Shif? Operation

Used in MFNN with Quantized Neurons

Table 0.3 VHDL Description of the Simplified Sigmoid Activation

Function

xiv

Figure 1 .I A Hopfield Neural Network 8

Figure 2. I A Multilayer Feedforward Neural Network 21

Figure 2.2 A Typical Neuron in MFNNs 23

Figure 2.3 Commonly Used Nonlinear Activation Functions 24

Figure 2.4 Block Diagram of Direct Implementation of a

Neuron in MFNNs 35

Figure 3.1 Sigmoid Functions with Different a 40

Figure 3.2 Weight Quantization Curve When M =4 45

Figure 3.3 10 Numeral Training Patterns 53

Figure 3.4 Error Curve When N, = 10 57

Figure 3.5 Error Curve When N, =20 58

Figure 3.6 Error Curve When N,=40 58

Figure 3.7 Error Curve When N, = 60 59

Figure 3.8 Illustration of the Shift Operation 62

Figure3.9 AShifter 62

Figure 3.10 Schematic of the Shifter Used in MFNN with STPT Weights 64

Figure 4.1 A Quantized Neuron 71

Figure 4.2 Original and Quantized Activation Functions 72

Figure 4.3 Training Patterns of the 26 Letters of the Alphabet 84

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure C.1

Figure C.2

Figure C.3

Figure C.4

Figure C.5

Figure C.6

Figure C.7

Recall Accuracy as a Function of Input Noise

(20 Hidden Neurons) 89

A Shifter Used in MFNN with Quantized Neurons 91

Block Diagram of the STPT Multistep Activation Function 93

Multistep Activation Function Circuitry 94

Schematic of the Multistep Activation Function 95

Structure of a Look-Up-Table 96

Sigmoid Activation Function (SAF) and Simplified

Sigrnoid Activation Function (SSAF) 101

Block Diagram for Implementation of H(x) 104

H(x) with STPT L 1 04

Implementation of the Simplified Sigmoid Activation Function 105

Schematic of the Simplified Sigmoid Activation Function 106

Block Diagram of Digital Implementation Structure

of an MFNN with Quantized Neurons

Viewlogic Design Methodology for FPGAs

Top Level Schematic for XOR Problem

16-Bit Accumulator ACCI 6

Activation Function Block LUT

Schematic of Comparator CMPRTR

Implementation of Shift Operation

xvi

Figure C.9 Functional Simulation Result When XU =O and XD =O

Figure C. 10 Functional Simulation Result When XU = 0 and XD = 1

Figure C. 1 I functional Simulation Result When XU = 1 and XD = 0

Figure C. 12 Functional Simulation Result When XU = 1 and XD = 1

Figure C. 13 Timing Simulation Result When XU =O and XD = 0

Figure C. 14 Timing Simulation Result When XU = 0 and XD = 1

Figure C.15 Timing Simulation Result When XU = 1 and XD = O

Figure C.16 Timing Simulation Result When XU = 1 and XD = 1

xvii

Chapter 1

INTRODUCTION

The last decade has witnessed the revival and a new surge in the field

of artificial neural network research. The term neural network originally referred

to a network of interconnected neurons which are basic building blocks of the

nervous system. Today, this term, or more properly artificial neural networks,

has come to mean any computing architecture that consists of a massively

parallel interconnection of simple neuron-like processors. These architectures

have been inspired by our current understanding of the brain, but do not

necessarily conform strictly to that understanding.

The fact that an one-year-old baby is much better and faster at

recognizing objects, faces, and so on than even the most advanced artificial

intelligence system running on the fastest supercomputer may imply that there

are numerous problems in the real world that are difficult with today's

computing technology but are easily solved by human beings or even animals.

In view of this fact, the research on artificial neural networks has been

1

thoroughly interdisciplinary area, covering neurosciences, physics,

mathematics, economics, computer sciences, and electronics. There are

thousands of new comers entering this exciting research field every year.

1 . I History of Artificial Neural Networks

The initial effort in Artificial Neural Network (ANN) research may be

traced back to early 1940s when McCulloch and Pitts [McCulloch and Pitts,

19431 modeled a neuron as a simple threshold binary device to perform logic

functions. In this model, each neuron can be in only one of two possible states

and has a fixed threshold. It can receive inputs from excitatory synapses, at1 of

which have identical weights. It can also receive inputs from inhibitory

synapses, whose action is absolute; that is, if the inhibitory synapse is active,

the neuron cannot turn on.

Later in 1949, Hebb [Hebb, 19491 published his book The Organization

of Behaviour and for the first time proposed a neural learning rule for synaptic

modification that has been known as the Hebb rule. Hebb stated that if one

neuron repeatedly fires another, some change will take place in the connecting

synapse to increase the efficiency of such firing. This correlational synapse

modification rule has become the basis for many neural network models

1987 and 19881 and Hopfield Network [Hopfield, 19821.

The most significant work at the early stage of neural network research

was the Perceptron model which was developed by Rosenblatt [Rosenblatt,

1959 and 19621 in late 1950s and early 1960s. It was the first precisely

specified, computationally oriented neural network. The basic classification

element in the Perceptron is the R-unit, which forms a weighted sum of the

active elements times the connection strengths. The unit has a threshold. If the

sum is greater than the threshold, the R-unit takes the value 1; if less than the

threshold, the unit takes the value -1. This simple network generated much

interest when initially developed because of its ability to learn to recognize

simple patterns.

However, the Perceptron model has its own limitations. It is capable of

realizing only those linearly separable functions. This weakness was seized by

Minsky and Papert [Minsky and Papert, 19691 in 1969 when they proved

mathematically that the Perceptron cannot be used for complex logic functions.

The publication of their famous book, Perceptron, caused a sharp decline in

research on neural networks.

The present impetus in neural network research is due in part to the

3

these papers, he presented a recurrent model of neural computation that is

based on the interaction of neurons. He also pointed out that there are

emergent computational capabilities at the network level that are nonexistent

at the single neuron level. Such neural networks are now known as Hopfield

networks.

During the 1970s when no one else was working on neural networks,

Steven Grossberg and Teuvo Kohonen were making significant contributions.

In 1 980s, Grossberg and Carpenter [Carpenter and Grossberg, 1983, 1 987,

and 19901 developed their Adaptive Resonance Theory (ART) neural network

architectures, based on the idea that the brain spontaneously organized itself

into recognition codes. These are self-organizing neural implementations of

pattern clustering algorithms, that is, they form clusters and are trained without

supervision.

A t the same time, Kohonen [Kohonen, 1982 and 19841 proposed his idea

of a self-organizing map, based on the fact that the brain is organized, in many

places, so that aspects of the sensory environment are represented in the form

of two-dimensional maps; the placement of neurons is orderly and often reflects

some physical characteristic of the external stimulus being sensed. It is a sheet-

like artificial neural network, the cells of which become specifically tuned to

learning process.

In the mid 1980s, David Rumelhart and his colleagues rediscovered the

backpropagation algorithm [Rumel hart et al., 1 9861, which was originally

discovered by Paul Werbos [Werbos, 19741 when he applied the LMS algorithm

to multiple layers of Perceptrons in the study of social sciences. The publication

of their landmark book on parallel distributed processing [Rumelhart and

McClelland, 19861 established the backpropagation algorithm and multilayer

feedforward neural networks (MFNNs) as the major paradigm of the field of

neural network research. This work and earlier works have finally galvanized a

large number of scientists into thinking in terms of collective neural

computation rather than single neurons.

From the late 1980s through the 1990s, with some neural network

paradigms having reached a considerable degree of maturity, more and more

efforts have been directed towards the area of neural network implementation

as well as applications. The pioneering work by Mead [I9891 marked the

beginning of a new era in hardware implementation of neural networks. Since

then, with the technological advances of VLSl circuits and systems, the field

of VLSl artificial neural networks experienced an exponential growth and a new

engineering discipline was born. Various work on analog, digital, pulse-

and Elmasry, 1992, Oh and Salam, 1 993 and 1994, Kim and Shanblatt, 1992,

Zaghloul et al., 1994, Sheu and Choi, 19951.

By far, Hopfield networks, ART networks, self-organizing maps, and

multilayer feedforward networks are the most popular artificial neural network

models that have ever been proposed. Other important ANN models may

include Neocognitron[Fukushima, 1975 and 19801, Boltzman machines[Hinton

and Sejnowski, 1 986][Ackley et al., 1 9881, bidirectional associative memories

(BAMfs)[Kosko, 1987 and 19881, and fuzzy ARTMAPKarpentaer et al, 1992

and 1 9933.

1.2 ANN Features

Generally speaking, an artificial neural network model is specified by

three factors:

a set of basic processing elements, called neurons (or nodes)

a specific topology of weighted interconnections between neurons

a training or learning rule which specifies an initial set of weights and

indicates how weights should be adapted during use to improve

performance

sums a number of weighted inputs and passes the result through a nonlinear

activation function. More complex neurons may include temporal integration or

other types o f time dependencies and more complex mathematical operations

than summation. The topologies of ANNs fit broadly into two classes: recursive

and feedforward. A recursive ANN is a network with feedback. In such a

network, each neuron receives as input a weighted output from every other

neuron in the network, possibly including itself. A typical example of recursive

neural networks is the Hopfield network shown in Figure 1 . I . A feedforward

network does not contain any closed synaptic loops or feedback. The most

famous feedforward network is the Multilayer Feedforward Neural Network

which will be discussed thoroughly in Chapter 2. Training algorithms for ANNs

can be described either as supervised training or unsupervised training. The

distinction between supervised and unsupervised algorithms depends on

information they use. Supervised training, also called learning with a teacher,

assumes that the desired output of the network is known. This is then used to

form an error signal which is used to update the weights. On the other hand,

in unsupervised training the desired output is not known, but instead training

is based simply on inputloutput values. Such training algorithms usually act to

extract features from sets of input data.

Figure 1.1 A Hopfield Network

The potential benefits of neural networks extend beyond the high

computation rates provided by massive parallelism. Some of these benefits are

outlined below.

Neural networks typically provide a greater degree of robustness or

fault tolerance than von Neumann sequential computers because

there are many more processing elements, each with primarily local

connections.

Neural networks have the ability to adapt to changes in the data and

8

areas such as speech and image recognition. Adaptation also

provides a degree of robustness by compensating for minor

variabilities in characteristics of processing elements.

Neural networks can perform functional approximation and signal

filtering operations which are beyond optimal linear techniques

because of their nonlinear nature.

Neural network classifiers are non-parametric and make weaker

assumptions concerning the shapes of underlying distributions than

traditional statistical classifiers.

Neural networks are model-free classifiers because they approximate

functions with raw sample data.

Because the motivation of ANN research comes mainly from the fact that

humans are much better at pattern recognition than digital computers, there is

no surprise that ANNs have found many applications in vision processing and

speech processing[Sejnowski et al., 1987][Lang et al., 1990][Taylor,

1990][Levin, 1993][Kung and Taur, 1995][Zhang and Fulcher, 19961. Besides,

ANNs have also been applied to the areas of optimization[Tank and Hopfield,

and Winarske, 1988][Choi et al, 1993][Kechriotis, et al., I 9941[Ansari, et al.,

19951, control systems[Nguyen and Widrow, 1990l[Narendra and

Parthasarathy, 1990][Sebald and Schlenzig, 7 994][Sanger, I 9941[Lewis, et al.,

19961, and medical applications[Nikoonahad and Liu, 1990][Nekovei and Sun,

1995 JIChoong, et ai., 19961, to mention a few.

1.3 Motivations and impact of this research

Although artificial neural networks have found diverse applications in

control, signal processing, and pattern recognition, among others, this is still

a research field with many open problems in the areas of theory, applications,

and implementations. Compared with the development in neural network

theories, hardware implementation has lagged behind. In order t o take the full

advantages of neural networks, there has to be dedicated hardware

implementations. Research in hardware implementations belongs to the main

areas of activity in the field of neural networks and plays a unique role in the

progress of the entire field. The surge of interest in neural networks, which

started in mid eighties, was to a large extent caused by advances in VLSl

technology. Today, harnessing VLSl technology to produce efficient

implementations of neural networks may be the key to the future growth and

ultimate success of neural network techniques.

success in their own application domains. Each technique has its own pros and

cons. The selection between digital and analog circuits depends on many

factors, for example, speed, precision, adaptiveness, programmability, and

transferlstorage of signals. This dissertation deals with the topic in digital VLSl

implementations of artificial neural networks. An all-digital artificial neural

network VLSl implementation offers several advantages over its analog

counterpart[White and Elmasry, 1 9921 [Kung, 1 9931.

1) Digital design has an overall advantage in terms of system-level

performance. Dynamic range and precision are critical for many complex

neural network models. Digital implementation offers much greater

flexibility of precision than its analog counterpart.

2) In most real-world applications, neural networks are embedded in

existing digital systems. An all-digital ANN implementation provides

compatibility.

3) Real-world applications usually require large scale neural networks, in

some cases, of tens of thousands neurons and synapses. Digital VLSl is

more appropriate at this level of complexity, whereas analog VLSl suffers

from noise and difficulties in fabricating high-precision resistors and

4) Larger ANN'S may require rnultichip implementations, and an analog

implementation makes it more difficult to transfer signals from chip to

chip, and also t o match board-level capacitive loads and time constants.

An all digital technique makes it easier to transfer signals form chip to

chip.

5) At any given time, digital VLSl technology is always more mature than

its analog counterpart in terms of fabrication technology and simulation

and design automation tools. It also offers a wide range of fabrication

technologies, including such technologies as ASIC for application

oriented design and FPGA for rapid prototyping.

6) Real-world neural network applications may suffer from I/O bottlenecks,

which are best addressed by digital techniques such as input buffers,

shift registers, and pipelining. Moreover, power dissipation reduction

techniques, such as dynamic logic and complementary operation, can be

used.

7) Digital implementation offers a homogeneous implementation

environment between the processing elements and the on-chip or

Because the state-of-the-art VLSl implementation technologies are

basically a digital implementation medium, artificial neural networks must be

adapted to an all-digital model in order to benefit from these technologies.

Meanwhile, there are also certain shortcomings of digital VLSl

implementation that must be resolved in order to implement ANN'S efficiently.

Most ANN neuron calculations involve a weighted sum of the neuron inputs,

and the multiplier required for this multiply-accumulate operation is slow and

consumes large silicon area in a digital VLSI implementation.

The solution of this problem may be approached from I) advances in

VLSl technologies; and 2) adapting existed models to today's available

technologies. This dissertation deals with the latter issue and wilt develop new

models of MFNN's which are suitable for digital hardware implementations.

In silicon design, the cost of a chip is primarily determined by its two-

dimensional area. Smaller chips are cheaper chips. Within a chip, the cost of an

operation is roughly determined by the silicon area needed to implement it. As

pointed out previously, in digital neural network systems, multiplications are

area-consuming and slow operations and there are massive such operations

inputs to neurons and their corresponding weights can be reduced, a reduced

silicon area and higher speed will be resulted. Consequently, a lower cost will

be achieved. The basic ideas behind the models proposed in this thesis are

powers-of-two coefficients and functions, which will result in the replacement

of multiplications by shift operations, which are much faster and have much

smaller area, as well as the simplification of the realization of nonlinear

activation functions. By using these proposed models, certain computational

burdens in digital implementations will be alleviated without jeopardizing the

performance of the ANN system, and a digital implementation scheme becomes

very attractive.

1.4 Literature Survey

The idea of powers-of-two factors was first proposed for digital filter

implementations and has been successfully applied to many designs[Kwan and

Chan, 1989 and 1990][Lim and Parker, 1983a and 1983blILim et al. 1982][Lim

and Constantinides, 1979][Xue and Liu, 1986][Zhao and Tadokoro, 19881, in

which multiplications were either replaced by shift only operations or reduced

to shift operations plus very few additions, depending on how many terms of

powers-of-two were used. Single term powers-of-two factors are most desired

because they require the least operations in hardware implementation.

artificial neural networks require very high density of computations including

large number of multiplications. In such cases, powers-of-two factors or at

least quantized weights are needed to reduce the amount of computation and

hardware requirements.

A digi-neocognitron model for VLSI implementation was proposed by

White and ElmasryrWhite and Elmasry, 19921. The original neocognitron (NC)

model[Fukushima 19801 was adapted to an efficient all-digital implementation

for VLSI. The new model, the digi-neocognitron (DNC), has the same pattern

recognition performance as the NC. The DNC model was derived from the NC

model by a combination of preprocessing approximations and the definition of

new model function, e.g., multiplication and division are eliminated by

conversion of factors to powers of 2, requiring only shift operations. The DNC

model has substantial advantages over the NC model for VLSI implementation

with a two to three orders of magnitude improvement in the area-delay product.

A one-dimensional Kohonen network with quantized weights and inputs

was studied by Thiran and Hasler [Thiran and Hasler, 19941. The

implementation of a Kohonen network on a digital circuit realization yields the

quantization of all the input signals and weight values. It is crucial to see

whether this modification perturbs the self-organizing feature. In [Thiran and

15

organization property of the original Kohonen network for the one-dimensional

case is conserved when the weights are quantized provided that its parameters

are well chosen.

The application of discrete weights and the powers-of-two technique in

multilayer feedforward neural networks has been studied by several authors

[Marchesi et al. 1990j[Nakayama et al. 199O][Piazza et al. 19931 and most

recently by Marchesi et al.[Marchesi et al. 19931. In [Marchesi et al. 19933, a

fast neural network model was proposed for digital VLSl implementation along

with a dedicated learning procedure. In their model, weight values were

restricted to powers-of-two or sum of powers-of-two and adaptive biases and

automatic learning rate control were employed t o compensate the quantization

error.

It was pointed out that one of the major problems of digital architectures

implementing neural networks, affecting both performance and chip area, is the

presence of multipliers. The multiplications between inputs and weights, which

are slow compared to other operations and require a lot of chip area if a direct

VLSl implementation is planned, can be the bottle-neck of the system. By

introducing the idea of powers-of-two weights, it is possible to substitute

multiplications with simple shifts or much fewer shift-and-add operations,

However, the learning algorithm developed in [Marchesi et al. 19931 was

not very effective. Its convergence performance was not satisfactory due to

lack of sufficient adjustable parameters. For a given problem, the starting point

of their proposed learning algorithm is the solution of the same mapping

problem with a conventional MFNN having continuous weights, applying the BP

learning algorithm. The obtained weights are then quantized to powers-of-two

values and the BP will be applied again to adjust the discretized weights in hope

to converge to the final solution. It is obvious that there is little room to

improve the network by adjusting the quantized weights. These quantized

weights are distributed in some discrete points and the gaps among these

points are usually much larger than the weight updating amount required by the

BP algorithm, so they are not suitable for fine tuning the neural network,

especially when single term powers-of-two format is used, Moreover, the

quantization scheme they adopted appears to be fairly complicated. Actually,

the minimization of the sum of squared weight quantization error as adopted

in [Marchesi et al. 19931 does not necessarily reduce the sum of squared

output error of the network due to the non-linear nature o f the neural network

systems. It will be much simpler to adopt direct quantization of weights to their

nearest powers-of-two values as proposed in this dissertation.

digital VLSl implementation, no investigation on real hard ware issues had been

presented in the published work and that was a major weakness of their paper.

In view of this situation, a new algorithm for design of MFNNs with

single term powers-of-two (STPT) weights will be presented in Chapter 3 of

this dissertation, which has more degrees of freedom t o adapt to a given

problem. In Chapter 4, an all new model o f MFNNs with quantized neurons will

be proposed for digital hardware implementation, in which multiplications can

still be avoided and the implementation of nonlinear activation functions will

also be simplified.

1.5 Organization of this Dissertation

The remaining of this dissertation is organized as follows.

Chapter 2 begins with the multilayer feedforward neural network model.

The structure of the network and the backpropagation (BP) learning algorithm

are discussed. Some modifications to the BP algorithm are also presented. A t

the end of this chapter, the issue o f hardware implementation of MFNNs is

addressed, which introduces the necessity of the models to be developed in

Chapters 3 and 4.

with single term powers-of-two (STPT) weights. The design procedures are

provided along with simulation results.

Another MFNN model - MFNNs with quantized neurons will be proposed

in Chapter 4. The concept of quantized neuron is introduced and followed by

the corresponding training algorithm. The design methodology of such networks

is developed and the mapping capability of the new model is examined.

Chapter 5 presents more MFNN models suitable for digital

implementations, starting with a simplified sigmoid activation function which

is easy for direct hardware realization, and followed by some MFNN models

designed to accommodate continuous and discrete input patterns.

Chapter 6 concludes the dissertation and suggests possible future

research directions.

Chapter 2

MULTILAYER FEEDFORWARD NEURAL

NETWORKS

As mentioned in Chapter 1, multilayer feedforward neural networks

(MFNNs) are one of the most important and widely used ANN models. In this

Chapter, a review of the structure, properties, and training algorithms of

MFNNs will be presented as a preparation for the new models proposed in the

following chapters.

2.1 MFNN Architecture

A Multilayer Feedforward Neural Network is a unidirectional network in

which adjacent layers are fully connected. The general structure of such a

network can be illustrated by Fig.2.1. For an L-layer MFNN, there is an input

layer (denoted as layer 0) with No input nodes, an output layer (denoted as

layer L) with NL output neurons, and one or more hidden layers with N, (h = 1,

2, ..., L-I) neurons at layer h.

Layer 2

Layer 1

Layer 0

Figure 2.1 A Multilayer Feedforward Neural Network

21

summations, and calculation of nonlinear functions. A typical neuron of MFNNs

is illustrated in Fig.2.2, where xi's are inputs to the neuron, wits are

corresponding connection weights, z is the net input to the neuron before

activation, and y is the output of the neuron. The input-output relationship of

the neuron can be described as

and

where F() is a nonlinear activation function. Some commonly used forms of

F(.) include the hardlimit function, threshold logic function, and sigmoid

function, which are shown in Fig.2.3.

Usually, the collective features of neural networks are of more interest

than those of single neuron. When the entire network is concerned, the input-

output relationship of a multilayer feedforward neural network can be described

by the following set of equations

OUTPUT

INPUT

Figure 2.2 A Typical Neuron in MFNNs

-I=- Hard Limiter

1 Threshold Logic

Sigmoid

Figure 2.3 Commonly Used Nonlinear Activation Functions

with

for i=1,2. ..., No (2.4)

where y,'"'% the output of neuron i a t layer h- I ; w,'~' is the connection weight

between neuron i at layer h-I and neuron j at layer h; bihl is the bias of neuron

j at layer h; xi, is element i of the input pattern when pattern k is presented to

24

of the network.

Due to the use of nonlinearities within neurons, multilayer feedforward

neural networks overcome many of the limitations of single layer

perceptrons[Rosenblatt, 1958 and 19621, which can only be applied to linearly

separable problems. Now, it is possible to use MFNNs to distinguish between

arbitrarily complex decision regions. Actually, it has been shown that MFNNs

with a single hidden layer and arbitrarily bounded and nonconstant activation

functions are universal approximators provided that sufficiently many hidden

neurons are available [Hornik et al., 19891. Although one hidden layer is usually

sufficient, sometimes a problem is easier to solve with more than one hidden

layer. In this case, easier means that the network learns faster.

For a given problem, the parameters of a MFNN, such as the number of

layers, the number of hidden neurons, the formula of activation functions, and

the values of weights, need to be determined before the neural network can be

applied to solve the problem. Among them, how to obtain the appropriate

values of weights is the major concern, i.e., how to train the network to adapt

t o each particular problem. Learning algorithms for MFNNs has been a research

topic since 1960s. So far, the backpropagation (BP) algorithm[Rumelhart et al.

19861 has been the most popular one in spite of the existence of some

19921, simulated annealing [Kirkpatrick et al., 1988][Szu, 19861, Choice of

Internal Representations (CHIR) [Grossman et al., 19891, and layer by layer

optimization [Ergezinger and Thornsen, 1 995][Wang and Chen, 19961. In the

next section, the BP algorithm will be reviewed and some of possible

modifications will be discussed.

2.2 The Backpropagation Algorithm

Consider the multilayer feedforward neural network as shown in Fig -2.1 .

Adopting the same definition as in Section 2.1, the input-output relationship of

the network can be described as follows:

with

for i= 1,2, ... , No

Usually, the output of the network is not exactly the same as the desired

output during the learning process, there is an error associated with each

pattern. The error can be measured as the sum of the squared difference

a pattern k is presented to the network, the error at neuron j of the output layer

is calculated as

Here tjk represents element j of the target pattern k and L refers to the output

layer of an MFNN with L layers. Then the sum of squared error (SSE) related

to a particular pattern k can be defined as

And, the total squared error (TSE) over all patterns in the training set is defined

as

Where K is the number of patterns contained in the training set. A learning

process, or training algorithm, is attempting to reduce the output error by

adjusting the weights and, in some situations, other parameters of the network.

First proposed by Werbos [Werbos, 1 9741 and rediscovered by Rumelhart

method which allows updating of the weights of a feedforward neural network.

The idea of the gradient descent algorithm is to make the change in a weight

proportional to the negative derivative of a cost function, such as TSE, with

respect to that weight. Hence, by following this rule, the change in weight wi;hl

(due to pattern k) can be calculated as

where E is a learning rate parameter of weights, which controls the pace of

each weight adjustment.

By applying the chain rule (see Appendix A), the following formulas can

be obtained for weight updates in the BP learning algorithm

where

Nh+l
/ 14 [h+q [h+l] ar'=~(q.)C 6~ Wp for h< L

I= 1

and

Here F8() is the derivative o f the activation function F(). It can be seen that the

update of weights starts from the output layer down to the input layer. In this

process, the derivative of the activation function plays a very important role.

If the derivative is zero, no learning will occur even though there is a large

amount of error. A very flat activation function, i.e., an activation function with

very small values of derivative, may result in a very long learning process.

In summary, the BP algorithm may be carried out as follows:

Step 1 : Initialization of weights with small random numbers

Step 2: Presentation of input patterns and desired output patterns

Step 3: Calculation of actual output and squared output error

Step 4: Check TSE < E, ? If yes, then stop; otherwise proceed to

Step 5

Step 5: Update of weights

Step 6: Go back to Step 2

Although the BP algorithm remains as the most popular and effective

way to train MFNNs, there are some drawbacks accompanying it. The

convergence speed of the BP algorithm is usually slow, and, in some situations,

In view of these problems, modifications to the original BP algorithm have been

proposed by some researchers [Vogl et al., 1 988][Jacobs, 19881rMinai and

Williams, 1 9901 [Schrei bman and Norris, 1 9901 [Kruschke and Movellan,

199111Lee et al., 19911.

2.3 Improvements to the BP Algorithm

Since backpropagation suffers from low convergence speed,

modifications to the original algorithm have been proposed to improve the

learning speed. Some of these modifications are discussed in this section.

2.3.1 Adjustable Learning Rate

Choosing an appropriate learning rate parameter E is a key factor in

controling the learning speed of the backpropagation. At different stages of a

learning process, the best value of E may be different. Instead of using a

constant learning rate for the entire learning process, a good idea is to adjust

it automatically as learning progresses [Jacobs, 1 9881IVogl et al., 1 9881. The

usual approach is to check whether a particular weights update did actually

decrease the output error. If it didn't, then the process overshot, and E should

be reduced. On the other hand, if several steps in a row have decreased the

error, then perhaps the learning process is being too conservative, and E could

Where AE is the difference between the network output errors at two

consecutive times t + I and t, and a and b are positive constants.

2.3.2 Momentum Term

As stated above, it is difficult to choose an appropriate learning rate

parameter e for a particular problem. The learning can be very slow if the

learning rate E is too small, and can oscillate widely if E is too large. A

momentum term can be introduced to deal with this problem [Phansalkar,

19941. This scheme is implemented by giving a contribution from the previous

weight update to each of the current weight change:

where Aw(t + 1) = w(t + 1)-w(t), Aw(t) = w(t)-w{t-I), and y is the momentum

parameter which is a positive number between 0 and 1.

If the learning process is marching through a plateau region of the error

surface, then (aE/aw) will be about the same at each time-step and the above

with an effective learning rate of d l - p . On the other hand, in an oscillatory

situation, A w responds only with coefficient e to instantaneous fluctuations of

(aE/aw). The overall effect is to accelerate the long term trend by a factor of

1 / (I -p), without magnifying the oscilIations.

2.3.3 Adjustable Biases and Activation Functions

Since biases can be considered as the weights which are connected to

constant input 1, it is also possible to adjust biases using the gradient descent

method as in weight adaptations. To be specific, the following formula can be

employed.

Where E,, is the step size for bias adjustment and b,Lhl is the bias of neuron j at

layer h. Similar to weight updates, the following equations may be obtained by

using the chain rule

where

for h < HI and

Here F'() is the derivative of the activation function F(), and t,, yjkIh1, and zjih'

have the same definition as in Section 2.2.

It is well known that the nonlinear activation functions play a very

important role in the performance of MFNNs. Alsol it can be seen from (2.1 1)-

(2.1 3) that the derivative of the activation function F1(x) is a key factor in the

weight adaptation process. This indicates that the learning process can be

improved by controlling the shape of the activation functions. For the most

widely used sigmoid activation function

the shape of the function can be controlled by the slope, which, in turn, can be

33

the idea of the gradient descent method, i.e.,

Some results [Kruschke and Movellan, 1991][Tang and Kwan, 19931 have

shown that this method can speed up the learning process significantly. The

detailed derivation of adaptation equations and discussion will be presented in

Chapter 3.

2.4 Hardware Implementations of MFNNs

As pointed out in Chapter 1, digital implementation of neural networks

is very attractive, especially with the currently available ASIC and FPGA

technologies. However, when applied to MFNNs, a direct implementation

scheme may not be appropriate due t o the large number of multiplications

involved.

If we look at a typical neuron in an MFNN, a direct implementation will

generate a cell as shown in Fig.2.4. Among the functional blocks involved,

multipliers are not favoured by digital VLSl technologies since they consume

large chip areas and have slow speed. Implementing nonlinear activation

34

I SUMMATION I

Figure 2.4 Block diagram of direct implementation of a neuron in MFNNs

functions using look-up-table method will also require large silicon area. Large

silicon area means high cost. Reducing the cost always has high priority in any

real applications.

In chapter 3, an MFNN model using single term powers-of-two weights

will be proposed and consequently multipliers will be replaced by shifters. And,

in Chapter 4, an MFNN model with quantized neurons will be developed which

can eliminate multipliers as well as simplify the digital implementation of

nonlinear activation functions. The proposed models will result in a significant

improvement in both area and speed of digital implementation of multilayer

feedforward neural networks.

Chapter 3

MULTILAYER FEEDFORWARD NEURAL

NETWORKS WITH SINGLE TERM

POWERS-OF-TWO WEIGHTS

As discussed in previous chapters, in order to alleviate the burden of

multiplications in digital hardware implementation of MFNNs, powers-of-two

valued connection weights can be used in place of the original continuously

valued weights such that the multiplications can be replaced by shift

operations. It is no doubt that the format of single term powers-of-two (STPT)

would be of the most interest. To be specific, when the STPT format is used,

all weights in an MFNN would only be able to take values from the following

set W,,

Where M is the maximum number of bits that may be shifted. It is noted that

the above definition constrains the absolute value of weights to be less than or

It is also possible to extend admissible weight values t o be sum of two or more

terms of powers-of-two, which has been proposed for both digital filters and

neural networks [Marchesi et al., 19931. Although such expansion would make

the learning process easier due to the increased number of available weight

values, it will substantially weaken the advantages of the powers-of-two

technique because of the increased complexity of weight management and the

higher number of operations. Thus, in the following, the discussion will

concentrate on single term powers-of-two (STPT) format.

Since they are not involved in multiplications, biases of neurons are not

necessarily limited to powers-of-two format, they can still be real numbers. As

pointed out in Chapter 1, after adding single term powers-of-two constraint to

weights, their ability to adapt to various problems is dramatically reduced due

to limited choices. Therefore, it may not be adequate to adjust only weights in

an MFNN with powers-of-two weights as in [Marchesi et al., 19931, new

adjustable parameters must be introduced to provide more degrees of freedom

in learning. One of the key factors which have significant impact on the

performance of an MFNN is, as mentioned previously, the nonlinear activation

function. In this Chapter, the adaptive slope of activation functions will be

introduced to enhance the learning capability of the post-quantization MFNNs.

MFNNs with STPT weights consists of three stages. First, the conventional

backpropagation algorithm is applied to find the continuous solution (a set of

continuous weights) for a given problem; then, quantization is adopted to

convert the obtained weights into appropriate STPT values. Finally, adaptation

of the slope of the activation function will, in addition to adjustment o f weights

and biases, be employed to fine-tune the post-quantization network t o the pre-

determined error level based on the method presented below.

3.1 Adaptation of activation functions in MFNNs

Consider a multilayer feedforward neural network with the following form

of sigmoid activation function

This nonlinear activation function is a key factor in determining the performance

of a neural network. It can also be seen from EqJ2.11)-(2.13) that the

activation function and its derivative play a very important role in the process

of weight updates and, as a result, any change in the activation function will

affect the learning process. Therefore, a proper choice of the shape of

activation function can result in a better adjustment of weights and also affect

the input-output relationship of the network. Shown in Fig. 3 .1 are sigmoid

activation function may be controlled by the slope of the function and the slope

of the activation function is controlled by the parameter a. This property was

used in [Kruschke and Movellan, 1991] to speed up the BP learning process and

improve generalization capability.

The idea of gradient descent method can be extended to adaptation of

parameter a, i.e., the change in a will be in the opposite direction of the partial

derivative of the squared output error of the network with respect to a. Hence,

the change in the parameter a of neuron j at layer h, due to the

presentation of pattern k can be expressed as

where E, is a step size for a update and e, has the same definition as in section

2.2. By applying the chain rule (see Appendix B), the following relationship are

obtained

for h<L

and

-4 -3 -2 -1 0 1 2 3 4

X

Figure 3.1 Sigmoid Functions with Different a

where F',(z,o) is the partial derivative of the activation function FO with respect

to a, i.e.,

and diih+ll, L, Nhtl, zil;lh1, tjk, and yj:L' are all defined in the same way as in

Chapter 2.

It is also possible and usually helpful to include a momentum term to the

update equation of a. When taking all training patterns into account, the qIh1

will be updated as

This scheme has been proved to be very effective in improving the

learning speed of MFNNs. In this Chapter, the adaptive slope of the activation

function will be used in the design procedure of MFNNs with STPT weights for

the purpose of post-quantization network fine-tuning, i.e., adjust the network

to compensate the error resulted from weight quantization.

3.2 Design Procedures for MFNNs with STPT Weights

3.2- 1 Basic Ideas

Consider a multilayer feedforward neural network as illustrated in Fig.2.1

where the nonlinear activation function applied at the output of each neuron is

network with STPT weights from the set { * 1, 2 * 2'2, ... , *2-M, 0).

where M determines the number of quantization levels of weights. For a given

M, there are 2M +3 distinguished values of weight to choose from.

Given a mapping problem between the input and output spaces of the

MFNN and a set of training pattern pairs {X,, T,), the starting point of the

design procedure is the solution for the same mapping problem from a

conventional MFNN with continuous weights, using BP as the learning

algorithm. Then, at the next stage, continuous weights will be transformed into

single term powers-of-two weights and activation functions are scaled

accordingly to accommodate such quantization. Finally, the slopes of activation

functions will be adjusted based on the algorithm described in the previous

section to compensate any increase in the output error of the network caused

by quantization. Since the bias of each neuron, b;hi, is not involved in

multiplications, it can remain continuous.

Before the quantization of weights, it is necessary to introduce a

normalization process such that all weights will be in the interval of [-I, + 11

because the set of quantization levels is defined by (3.1). Consider a particular

neuron j at layer h, where all connections going into the neuron are denoted by

weights wijlhl, i = I ,..., N,,. Define

Then, the normalization will be carried out by dividing weights wijihl by w,,,, Ihl

as follows

W~ lhl now belongs to the interval [- I , + I] . However, it can be seen that the

input-output mapping relationship of the network will be changed if normalized

weights are used in the network without any other appropriate adjustment of

the network. By examining (2.3), (2.4) and (3.2), it is found that it is possible

to compensate the normalization of weights by scaling up the parameter of a

accordingly. That means if the weights are normalized by their maximum value

w,.,,, then adjusting the parameter a of the sigmoid activation function as

follows will keep the network mapping relationship unchanged.

Now, we can quantize the normalized weights to STPT format. The

criterion used here is t o round a weight t o its nearest STPT value selected from

the set W,. This scheme can be described as follows

where sgn(w) denotes the sign of w and

for m=0,1, ..., M

A quantization curve based on the above definition when M=4 is shown in

Fig.3.2.

Usually, there will be an increase in the output error of the network due

t o weight quantization. Therefore, more adjustment to the network is necessary

in order to bring this error down to a predetermined level. In this proposed

model, the method of adapting the slope of the activation functions, as

described in Section 3.2, will be used for this purpose. At this point, since

weights have already been quantized to discrete values and are not able to

make arbitrary changes (required by BP algorithm), there will be an update in

weights only when such an update can result in a reduced output error. At the

same time, the bias of each neuron can still be adjusted by using BP algorithm

because they are not involved in any multiplication and may remain to be

continuous.

Figure 3.2 Weight Quantization Curve When M =4

3.2.2 Design Algorithm

Based on the idea presented in Section 3.2.1, a procedure for design of

developed and is illustrated in the following.

Step 1 : Set a,lh1=u, (j = l , 2. ..., N,; and h = l , 2. L), where a;h' is

related to the sigmoid activation function applied to neuron j at

layer h of an L-layer MFNN.

Step 2: Starting with a set of weights and biases with small random

values, train the network using the conventional backpropagation

algorithm to obtain a continuous solution for the given problem,

i.e., to obtain a set of continuous weights and biases which can

achieve

where e, is as defined in (2.8), K is the number of pattern pairs in

the training set, and E, is a predetermined error level.

Step 3: Find the maximum absolute value, w~-,,,'~~, among weights wiilhl

(i=l, 2. ..., NhJ

the interval of 1-1, + 1]

for i = l , ..., N,,, j = l , ..., N, and h = l , ..., L.

Also scale biases a,'" by the same factor wj-max'hl

for j= 1, ..., N, and h = l , ..., L.

Step 5: Adjust parameter a,'h1 accordingly as follows

for j = l , ..., N, and h = l , ..., L.

Step 6: Quantize normalized weights w'ihl to single term powers-of-two

weights w9ij[h1

for i = I, ..., N,,, j = 1, ..., N, and h = 1, ..., L. Where the function

47

Step 7:

Step 8:

Step 9:

Step 10:

Step 1 1 :

Substitute current STPT weights w','~' and new values of ailh1 into

the network. Calculate the squared output error over all training

pattern pairs as

If TSE< E,, stop; otherwise, proceed to Step 8.

Calculate ~ w ' i j ' ~ ~ , Ab;hl, and Aaj'h', which are changes in w'~;~]',

bib', and respectively. using the relations hips developed in

Sections 2.2, 2.3, and 3.1.

Update weights w',~~' with changes Aw obtained in Step 8 and

then quantize them to STPT values as in Step 6. If this update

results in a reduced TSE, accept the new weights; otherwise,

discard the changes and keep previous weights.

Update parameters bj'h' and a?' with changes 8bih1 and AU~ '~ '

obtained in Step 8.

Go to Step 7.

It needs to be pointed out that, as in the original BP algorithm,

convergence cannot be guaranteed. If convergence cannot be achieved, it may

be necessary to restart the algorithm from the beginning with a new and

network topology, adding more neurons and/or layers to the existing network.

However, as shown in the next section, in most cases MFNNs with STPT

weights can reach convergence for the same problem as original MFNNs,

without increasing the number of neurons or layers.

3.3 Simulation Results

Simulations have been conducted to verify the effectiveness of the

proposed design algorithm. The first example is a simple but very important

benchmark problem, XOR.

3.3.1 A Benchmark Problem

XOR (exclusive OR) problem has been considered as a benchmark

problem in neural network history. It is of great importance to test the mapping

ability of neural networks. XOR was first cited by Minsky [Minsky and Papert,

19691 in 1969 to criticize the capability of neural networks, which caused an

interruption in neural network research for about ten years. In 1986, in their

famous books on Parallel Distributed Processing, Rumel hart et a1 have

demonstrated that MFNNs are capable of such mapping, which marked the

revival of neural network research.

According to [Rumelhart et al., 19861, the smallest MFNNs for the XOR

problem consists of two input neurons, one hidden layer with two hidden units,

and one output neuron. MFNNs with STPT weights have demonstrated that

they are capable of solving this problem without increasing the size of the

network from the smallest topology. Since this is a binary (0/1) input-output

mapping problem, the binary form of sigmoid activation function given by

(3.20) is used at each neuron. Other parameters used in the simulations are

listed in Table 3.1.

input

0 0
0 I

1 0

1 1

output

0

1

1

0

II Parameters I symbols I Values

11 Learning rate of weights I E I 0.5
-- --

Range of initial weights

Learning rate of biases

MFNNs with STPT weights have shown very good performance for the

XOR problem, i.e., convergence was always reached within a limited number

of epochs. One typical example is given below:

NO. of epochs needed in stage 1 : 730

NO. of epochs needed in stage 2: 9

Weights:

w"',, = 1.00000

w"',, = 1.00000

wl2I1, = 1.00000

w'~',, =-I .00000

Slopes:

dl', = 5.82774

d2', = 9.0051 5

BIASES:

Range of initial biases

Step size of slope changes

Momentum of slope changes

Quantization levels of weights

Error level for training

-

w o

G

[-I .O, 1 .O]

0.1
- -

80

€a

P,

M

E0

[-0.1, 0.11

0.1 5

0.05

4

0.1

The simulation results of the XOR problem impliy that MFNNs with STPT

weights are able to achieve the same mapping capabilities as the conventional

MFNNs and the use of powers-of-two weights does not necessarily mean an

increase in the size (number of neurons or layers) of the network.

3.3.2 More simulations

More simulations have been carried out by using 10 numerals, each

represented by a 10x1 0 pixel matrix as shown in Fig.3.3. The corresponding

targets were given below each pattern. The MFNN used in the simulations had

one input layer with 100 units, one output layer with 4 neurons, and one or

more hidden layers with various numbers of hidden neurons. Different

combinations of the number of hidden layers, the number of hidden neurons,

and the number of weights quantization levels were used in simulations to test

the performance of the proposed design procedures.

Two aspects of performance, i.e., the convergence and generalization

properties of the algorithm, have been observed in simulations. For each

topology of the network and the number of quantization levels, the network

Figure 3.3 10 numeral training patterns

was first trained with the given 10 pattern pairs to obtain both continuous and

quantized solutions, i.e., weights; then a set of noisy patterns (original patterns

corrupted by noise) was fed to both continuous-weight network and the

powers-of-two-weight network to test the generalization abilities. A bipolar

form of inputs and outputs was used. Noisy patterns were constructed by

randomly inverting a percentage of total elements in training patterns. The

generalization performance was measured by the recall accuracy (the

percentage of correct recalls) which was obtained by feeding 100 noisy

versions of each training pattern to the network and taking the average.

Table 3.2 Convergence Speed (In Number of Epochs) for CMFNN and STPT
MFNN (100 Inputs, 4 Outputs, and 1 Hidden Layer)

No. of STPT MFNN
Hidden CMFNN

Neurons M=2 M=4 M = 8

Table 3.3 Generalization Capabilities (In Percentage of Correct Recalls) for
CMFNN and STPT MFNN (100 Inputs, 4 Outputs, and 1 Hidden
Layer)

No. of STPT MFNN
Hidden CMFNN

Neurons M=2 M = 4 M=8

Table 3.4 Convergence Speed for Networks with Different Number of
Hidden Layers When M=4 (100 Inputs and 4 Outputs)

No. of One Hidden Layer Two Hidden Layers
Hidden

Neurons CMFNN STPT MFNN CMFNN STPT MFNN

Table 3.5 Generalization Capabilities for Networks with Different Number of
Hidden Layers When M =4 (100 Inputs and 4 Outputs)

. . - - . - - - - - - - -

No. of One Hidden Layer Two Hidden Layers
Hidden

Neurons CMFNN STPT MFNN CMFNN STPT MFNN

the proposed design algorithm have been confirmed by the simulation results

because convergence was reached in almost all runs. It can be seen from the

above simulation results that MFNNs with STPT weights can retain similar

generalization capability as the conventional MFNNs without an increase in the

size of the network. Furthermore, in order to achieve good performance,

parameters like the number of hidden neurons and the number of quantization

levels should be chosen carefully. Small number of hidden neurons combined

with very small number of quantization levels of weights should be avoided.

Some redundancy in the topology of the network is recommended in order to

reduce the number of quantization levels of weights and consequently to

reduce the number of bits to be shifted in hardware implementation.

3.4 Comparison with Existing Models

With the introduction of adaptive slopes of activation functions for post-

quantization network fine-tuning, our above proposed algorithm has shown to

be very effective in the STPT-network error reduction. It has significant

advantages in convergence speed and the magnitude of error that can be

reduced when compared with the weight-adjust-only algorithm, e.g., the one

used in [Marchesi et al., 19931. The comparison of the two algorithms over the

performance of their post-quantization network tuning capabilities are shown

of hidden neurons varies from 10 to 60.

In each diagram, curve "weight-slope" represents the result using the

algorithm proposed in this chapter, i.e., adaptation of weights and slope of

activation functions for post-quantization network tuning, while curve "weight-

only" refers to the result based on the algorithm of adjusting weights only with

adaptive learning rate parameter as proposed in [Marchesi et al., 19931. It can

be seen that in all cases our proposed algorithm is more capable of post-

quantization network error reduction.

- we@\-slope
-- weight -only

0 20 40 60 80 I00 120
Epoch

Figure 3.4 Error curve when N, = 10

0 20 40 60 00 I00 120
Epoch

-

-

-

-

Figure 3.5 Error curve when N, = 20

1
\
\--- ------

weight-slope -- weight-only

I 1 I I I I

0 20 40 60 80 100 120
Epoch

-

-

-

-

Figure 3.6 Error curve when N, =4O

--- -----_
-\

x-

- weight -slope
-- weight-only

1 I I I I I

- weight-slope
-- weight-only

0 20 40 60 80 100 120

Epoch

Figure 3.7 Error curve when N, = 60

3.5 Advantages for hardware implementation

The basic operation of MFNNs is to pass a weighted sum of inputs

through a non-linear activation function. Therefore. the digital hardware

implementation of MFNNs will consist of several major functional blocks.

including multiplications. summations, and calculation of non-linear functions.

Among them, summations can be implemented by using adders and

accumulators. while non-linear calculations are usually done by look-up tables.

However, the multiplications between inputs and weights are not favored by

digital technology since the multipliers required for these operations are slow

in a digital VLSl implementation.

This computational burden in digital implementation can be eliminated if

STPT weights are used in MFNNs as proposed previously in this chapter. There

will be significant gain in operation speed and saving in silicon area when

multiplications being repfaced by shift operations. A shift operation can easily

be implemented using either MUX's or simple combinational logic. A block

diagram illustrating the operation of a shifter is shown in Fig.3.8. The

corresponding symbol of the shifter is drawn in Fig.3.9, where "A" is the input

vector, "CT" is the control vector which determines the number of bits to be

shifted, and "Z" is the output vector, which is a shifted version of the input

vector "A". To be fitted into a neuron's operation in MFNNs with STPT

weights, the pin "A" is connected to a particular input to the neuron, while

"CT" is mapped to the corresponding STPT weight. Considering that STPT

weights are all with negative powers, the shifter has shift-right operations only.

The operation of the shifter can further be illustrated as follows. Assuming

M =4, the possible STPT choices are 2'. 2-', 2-2, Z3, z4, 0 and corresponding

control vectors of the shifter are 10000, 01 000, 00100, 00010, 00001, and

00000, respectively. If input "A" is an 8 bit vector, A, ... A,, the operation can

be described by Table 3.6. A VHDL description of such an operation with STPT

parameter M =4 can be found in Table D.1 of Appendix D.

Table 3.6 Description of the operation of the shifter

A,. . .Ao 000000000000

A,. ..A, A,. . . A,0000

A,. . .Ao A7A7.. .AoOOO

A,. . .Ao A7A,A7,. . AoOO

A, ... A, A,A7A,A7.. .AoO

A,. . .Ao A7A7A7A7A7.. .AO

Figure 3.8 Illustration of the shift operation

FIgure 3.9 A shifter

A
N
/

-
1

/M+1

SHFT /
/ Z

design has an area of 474 design units (1 58 equivalent gates) with a maximum

delay of 1.35 ns in LSI Logic 0.6 urn 3.3V CMOS 600K ASlC technology.

If we consider an 8x8 2's complement multiplication with carry-save

array in the same technology, the multiplier will require 2525 design units (842

gates) and have a maximum delay of 1 1.30 ns.

Table 3.7 illustrates the advantages of the MFNN model of STPT weights

over the original MFNN model for digital hardware implementation of the

multiplication in the weighted sum calculations. The technology used here is LSI

Logic Corporation 0.6 urn 3.3V CMOS 600K ASlC technology,

Table 3.7 Hardware advantage of MFNN with STPT weights

I MFNN I STPT-MFNN

Calculation

Implementation I multiplier (8x8) I shitter

Area (# gates) 1 842 1 15*

Delay (ns)

63

1 1.30 1.35

Figure 3.10 Schematic of the shifter used in MFNN with STPT weights

64

significantly by replacing multipliers with shifters in the MFNN design.

As for the nonlinear activation functions, they are usually implemented

by using look-up tables. In the original MFNN models, every neuron in the

network has the same activation function. For the proposed model of MFNN

with STPT weights, due to the adjustment of the slope of activation functions,

each neuron in the network will have different parameter for activation function

and result in a different look-up table. In the first glance, it seems that the

implementation of activation function in the new model will be more

complicated than in the original model where a single global look-up table may

be used.

However, one of the most attractive features of artificial neural networks

is the parallel distributed computation. In order to realize parallel processing,

each neuron will need a local look-up table for its activation function instead of

a global one. Based on this consideration, the proposed model will have no

extra hardware requirements by implementing a different activation function at

each neuron.

3.6 Concluding Remarks

The model of multilayer feedforward neural networks with single-term

algorithm featuring adaptive slope of activation functions was developed and

corresponding design procedure was established. Due to the use of STPT

weights, the multiplications required in the weighted sum operations were able

to be replaced by shift operations, which resulted in a substantial improvement

in both silicon area and operation speed in digital VLSl implementation of

multilayer feedforward neural networks. Meanwhile, the MFNNs with STPT are

capable of achieving almost the same generalization performance as the original

multilayer feedforward networks without increasing the network sizes. The

results presented here demonstrated the feasibility of the proposed model in

multilayer feedforward neural network applications.

Chapter 4

MULTILAYER FEEDFORWARD NEURAL

NETWORKS WITH QUANTIZED NEURONS

In the previous chapter, an MFNN model using STPT weights has been

proposed t o alleviate the computational burden of multiplication. By using that

model, the multipliers will be replaced by shift registers in digital hardware

implementation. In this chapter, a new model, which can solve the same

problem but through a different approach, will be developed.

4. I Introduction

Under normal circumstances, the outputs of activation functions in an

MFNN and connection weights obtained by using the backpropagation algorithm

are continuously valued such that multiplications are inevitable in the

calculation of weighted sums, the basic operations involved in MFNNs. This

implies that the current architecture of MFNNs is not suitable for digital

implementation. Some research activities have been invoked in view of this

STPT weights has been proposed to deal with this problem.

Actually, the two factors involved in a typical multiplication in MFNNs are

connection weight and the output of a related neuron. If either of them takes

the form of powers of two, then the mukiplication is able to be replaced by a

shift operation. Based on this observation, a new model of MFNNs using

quantized neurons will be proposed in this Chapter. The outputs of such

quantized neurons can take only powers-of-two values so that multiplication

operations can also be avoided even though weights are still continuous ones.

Both strategies of using powers of two weights and quantized neurons in

MFNNs can alleviate the computational burden of multiplications; however,

quantized neurons offer a number of advantages over powers of two weights.

First, using quantized neurons makes the realization of activation functions

(usually by look-up-tabletechnique) much easier. Moreover, continuous weights

are used with quantized neurons such that the network will have more freedom

to be adapted to diverse problems than in the case of using powers of two

weights,

The remaining part of this Chapter is organized as follows. Section 4.2

is dedicated to the quantized neuron model and the modified learning algorithm

suitable for MFNNs with quantized neurons. In Section 4.3, the detailed

neurons is described. The mapping capability of MFNNs with quantized neurons

will be studied in Section 4.4. Simulation results will be provided in Section

4.5. Finally, Section 4.6 is dedicated to hardware implementation.

4.2 Quantized Neurons

As mentioned before, the purpose of introducing quantized neurons is to

avoid multiplications by forcing their outputs to be of powers of two values.

Thus, the most important feature of a quantized neuron is its output form. In

this model, single term powers of two format will be used, i.e., a quantized

neuron can generate only outputs from the following set

{ *I, *2-lg &-2g ... , *P9 0 1

where M determines the number of quantization levels.

Except for its output format, a quantized neuron operates in a similar

manner as an ordinary neuron, i.e., it takes a weighted sum and passes it

through a nonlinear activation function. The powers of two output format can

be realized by adopting a multi-step function as its activation function which

can be defined as:

quantized neuron is depicted in Fig.4.1. Since the inputs to this neuron are

outputs of other quantized neurons, the operation of taking the weighted sum

becomes much easier and no multipliers are needed.

Although a neuron with hardlimit activation function can be considered

as a special case of quantized neurons with M =0, quantized neurons provide

a more generalized definition of neurons with discrete outputs. Since quantized

neurons have more output levels than hardlimit function, the network using

quantized neurons will have more flexibility in adapting to various problems and

will be easier t o train.

Although multiplications can be avoided by using quantized neurons in

MFNNs, the training of such networks is another problem. Since the activation

function of a quantized neuron is a multi-step function, the derivatives of such

a function are either zero or undefined. Therefore, the original form of the

backpropagation algorithm can not be applied directly. In the following, a

modification to the backpropagation algorithm will be proposed to make it

suitable for training MFNNs with quantized neurons.

The major obstacle preventing the original BP algorithm from being

applicable to MFNNs with quantized neurons is that there is no appropriately

OUTPUT

INPUT

Figure 4.1 A Quantized Neuron

learning will occur. To overcome this difficulty, an appropriate nonzero

derivative will be assigned to each interval (C,, C,J of the activation function

(the function is constant within the interval). Consider the sigmoid function

given as

Where g? 1.0 is a gain factor. This F(x), which can be used as activation

function for ordinary MFNNs, is depicted in Fig.4.2. The multi-step activation

function can be obtained by the following procedures.

Figure 4.2 Original and Quantized Activation Functions

they range from -1 to + 1, each level will have an intersection with F(x) defined

above. These intersections can be obtained by solving the following set of

simultaneous equations

Denoting x coordinates corresponding to these intersections as x,, x,, . . . x,,

then, the extreme points of each interval of G(x) can be defined as

An illustration is provided in fig.4.2. Furthermore, the derivative of F(x)

evaluated at an intersection will be used to approximate the derivative of G(x)

within the entire interval corresponding to that intersection, that is

This definition settles down the problem with the derivative of the multi-step

activation functions. With these modifications, the principle of the

73

applied to MFNNs with quantized neurons.

4.3 Design Procedures for MFNNs with Quantized Neurons

In this section, the detailed design procedures of using quantized neurons

in MFNNs will be presented. The proposed algorithm consists of three basic

steps. Firstly, the network is trained by using the standard backpropagation

algorithm outlined in Chapter 2. After convergence, all neurons are then

replaced by quantized ones, which are introduced in Section 4.2. Finally,

weights are adjusted by adopting the modified backpropagation algorithm

described in Section 4.2 to reduce the increased output error.

A. Training the Network Using the Standard Backpropagation Algorithm

For a given problem, assuming that the topology of the network has

been established, we first initialize all connection weights to small random

numbers, then apply the standard backpropagation algorithm to the network

until convergence is reached, i.e., the output error falls below a predetermined

level E. For bipolar input and output of + 1 and -1, the following sigmoid

activation function is used

order to avoid the possiblility of undesired saturation. Another consideration on

the use of g is that intersections of F(x) and the quantized levels of * 1 are

needed as discussed in Section 4.2 in order to obtain non-zero derivatives of

G(x). Upon convergence to a predetermined error level E, a network with

continuous weights and sigmoid activation functions is obtained which is

denoted as Net#l .

B. Rep/acing Original Neurons with Quantized Neurons

All neurons in Net#l will be replaced by quantized neurons while the

topology of the network and the connection weights among neurons are

unchanged. As stated previously, a quantized neuron differs from an original

neuron mainly in its activation function which is a multi-step function as

defined in (4.2). After the replacement of neurons, all training patterns will be

presented to the network and the output error will be checked. If the sum of

squared output errors remains below the error level E, i.e.,

the algorithm terminates at this point. The desired MFNN with quantized

neurons, denoted as Net#2, is obtained. Otherwise proceed t o the next step.

Normally, replacing original neurons with quantized ones will cause an

increase in the output error of the network. If this increased output error jumps

above the predetermined level E, then it must be brought down by adjusting the

parameters of the network. Since all weights are continuous, the modified BP

algorithm proposed in the first part of this section can be employed to fulfill

such adjustment.

Besides, biases can also be adapted because they are continuous and not

involved in any multiplications. The procedures for bias adaptation are similar

to those described previously. The weights and biases will be repeatedly

updated until the sum of squared output errors falls below the level E, i.e., (4.8)

is satisfied. Now the obtained network, denoted as Net#2, is the desired MFNN

with quantized neurons.

The above three-stage design method is referred as Scheme I . Besides,

it is also possible to use quantized neurons right from the very beginning of the

training process especially when on-chip (on-line) learning is desired. This plan

will be referred as Scheme 2. However, it is expected that the network

obtained by using Scheme 2 will lose some generalization capability while it will

gain speed in training. In section 4.5.2, the simulations results for both

schemes will be provided. Because the training is performed off-line here, the

the other hand, a higher generalization capability is what we always want to

achieve.

4.4 Mapping Abilities of MFNNs with Quantized Neurons

The conventional multilayer feedforward neural networks have been

shown to be universal approximators [Hornik et al., 1989][Hornik, 1991 I , that

means MFNNs with as few as one hidden layer using arbitrary squashing

functions are capable of approximating any Borel measurable function from one

finite dimensional space to another to any desired degree of accuracy, provided

sufficiently many hidden neurons are available.

For MFNNs with quantized neurons, the activation functions are

quantized and no longer continuous. Consequently, the mapping ability of such

networks needs to be examined. In [Hornik, 19911, it was shown that

whenever function F(.) is bounded and nonconstant, then, for arbitrary input

environment measures p, multilayer feedforward networks with activation

function F() can approximate any function in LP(p) (the space of all functions on

Rk such that $ c lf(x) 1 dp(x) < 00) arbitrarily well provided that sufficiently

many hidden units are available if closeness is measured by q, as

where 1 s p 5 00, the most popular choice being p = 2, corresponding to mean

square error. Since the activation functions used in MFNNs with quantized

neurons can meet the bounded and nonconstant condition, MFNNs with

quantized neurons are still capable of approximating any discrete mapping. The

simulation results presented below will also show that it is not always

necessary to use more hidden units in MFNNs with quantized neurons than in

conventional MFNNs in order to get the same mapping capabilities.

4.5 Simulation Results

4.5.1 Benchmark Problems

The XOR problem was again applied to MFNNs with quantized neurons.

Since the input/output patterns are binary (011) form, the activation function

will also take binary form which can be defined as

Here F,,,(z) remains a multistep function with STPT values because the

constant 1/21 can be combined into biases and the factor 112 does not change

the single term powers of two format of the activation function.

with two neurons, and one output neuron, which is the smallest MFNN that can

solve the XOR problem. Quantized neurons are used for the complete training,

i.e., there is only one stage instead of two. Simulations have been carried out

with different initial conditions and for each simulation convergence reached

within limited number of epochs. One example is given below:

Parameters used in training:

Learning rate of weights: 0.5

Range of initial weights: [- 1 .Of + 1.01

Learning rate of biases: 0.1

Range of initial biases: [-0.1, + 0. I]

NO. of quantization levels: M = 4

Error level of training: TSEL =0.01

Results:

NO. of epochs needed in training: 187

Weights:

w"', , = 2.3801 67 ,,,,HI ,, = 1.489372

w"',, = 2.388525 w"',, = 1 -496423

wt2', = 3.639545

w'~', , = -3.674386

An FPGA design of an MFNN with q uantized ne iurons has been

implemented for the XOR problem (see Appendix D for details) using Xilinx

4000 series technology, which verified the feasibility of using quantized

neurons in MFNN designs.

Another benchmark problem is the parity problem, in which the output

required is 1 if the input pattern contains an odd number of I s and 0 otherwise.

This is a very difficult problem because the most similar patterns (those which

differ by a single bit) require different answers.

A four-bit parity was used to test the MFNNs with quantized neurons.

The problem can be described as in Table 4.1. The network used in this

problem has four inputs, one hidden layer with four hidden neurons, and one

output unit, which is the smallest size needed to solve this parity problem with

conventional MFNNs. Convergence was reached in all simulation runs. One of

them is shown below.

Parameters of training:

Learning rate of weights: 0.01

Learning rate of biases: 0.01

Range of initial biases: k0 .1

NO. of quantization levels: M=4

Error level of training: TSEL=0.0

Results:

NO. of epochs needed in training: 24620

Weights:

w"l,, = 0.67983 wH1,, =0.68972

w"',, = 1 ,19062

w"',, = -0.68769 w"',, = -0.67753

w " ' ~ ~ = -1 . I8309

w"13, = 0.68069 w"',~ = 0.691 07

w['*,= 1.19142

wH1,, = -0.68304 w"h2 = -0.67973

w[", = -1 . I 8275

w'~', , = -4.1041 4

w'~',, =-3.39181

w ' ~ ' ~ , =4.70325

wi2',, = 4.50950

BIASES:

=-0.32909 @'I2 =-0.35629

Table 4.1 Description of Parity Problem

Based on the above simulation results, it can be seen that MFNNs with

quantized neurons are able to achieve the same mapping performance as the

conventional MFNNs without an increase in network size.

INPUT

0000

000 1

001 0

001 1

0100

0101

0 1 1 0

0 1 11

1000

1001

1010
t 101 1

1100

1101

11 1 0

1111

OUTPUT

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

Simulations have been conducted to verify the design procedures

proposed above. An example is given below. The training patterns were the 26

letters of the alphabet, each represented by a 10x10 pixel matrix as shown in

Fig. 4.3. Black pixels correspond a value to 1 and white pixels are assigned the

value -1. The targets were bipolar codes as given below each training pattern.

The feedforward neural network used in simulations had 100 inputs, 5

outputs, and one or two hidden layers with various number of neurons. Two

aspects of behaviour, i.e., the convergence and generalization properties of the

algorithm, have been examined in the simulation. For each topology of the

network, Scheme 1 of the design algorithms proposed in section 4.3 was

applied to obtain Net#l and Net#2, a set of noisy patterns (original patterns

corrupted by noise) was then fed to Net#2 to test the generalization capability.

Noisy patterns were constructed by randomly inverting a percentage of total

elements in training patterns. In simulations presented in this section, this

percentage was ranging from 5% to 20%. Example of noise patterns are shown

in Fig.4.4. The recall accuracy was obtained by taking the average results of

100 noisy versions of each of the training patterns used.

Tables 4.2 through 4.5 show the simulation results under different

conditions of the number of hidden layers, hidden neurons, and quantization

Figure 4.3 Training patterns of the 26 letters of the alphabet

are also given in these tables. For the case of two hidden layers, an identical

size for both layers is assumed, i.e., both layers have the same number of

neurons. All data given in these tables are averages of five runs of the

algorithm, starting with different initial weights which were set as random

numbers uniformly distributed in [-0.1, +O. I]. Parameters of FIX) when used

to find out C,'s were g = I . I and a= 2.0. Other parameters used were:

Learning rate for weights: E = 0.01

Predetermined error level: E = 0.1 .

For the purpose of comparison, also listed in Tables 4.2-4.5 under the

column CMFNN are corresponding results of conventional MFNNs using the

standard backpropagation algorithm. The parameters of sigmoid activation

functions are g = 1.0 and a=2.0,

Table 4.2 Convergence performance in number of training epochs (one
hidden laver)

Scheme 1

N H Net #2
Scheme 2

Net #I
M=4 M=2 M =4 M=2

CMFNN

Table 4.3 Generalization capability in percentage of correct recalls (one
hidden layer, 5 % noise level)

Scheme 1 Scheme 2 CMFNN
NH M=4 M=2 M =4 M=2

Table 4.4 Convergence performance in number of training epochs (two
hidden layers)

Scheme 1 Scheme 2 CMFNN

NH
Net #2

Net #I
M=4 M=2 M=4 M = 2

Table 4.5 Generalization capability in percentage of correct recalls (two
hidden layers, 5% noise level)

Scheme 1 Scheme 2 CMFNN
NH M =4 M=2 M=4 M=2

This test procedure is repeated 100 times at each noise level, in 5%

increments ranging from 0% to 20%. At 5% noise, the patterns are still

recognizable, as shown by the examples in the middle part of Fig.4.4. At 20%

noise, the patterns are not very recognizable, as shown by the examples in the

right part of Fig.4.4. The correct recall rate as a function of noise added for

MFNNs with 20 hidden neurons is shown in Fig.4.5, where QMFNN refers to

the MFNN with quantized neurons and M=4, while the curve CMFNN

represents the performance of the conventional MFNN with continuous

weights. It can be seen that the MFNN with quantized neurons has no

deterioration from original MFNN performance.

Figure 4.4 Example of noise patterns

+ CMFNN
QMFNN

0 5 10 15 20 25

INPUT NOISE (X)

- -"
LOO -
90 -
80 -

' 7 0 -
h

e3
60 -

W
0: 50 -
E s 40 -
0 U

30 -
20 -
10 -
0

Figure 4.5 Recall accuracy as a function of input noise (20 hidden neurons)

I I I I 1

From the simulation results, we can see that, first, convergence was

always reached in all runs. This implies the effectiveness of the proposed

algorithm and the possibility of implementing feedforward neural networks with

quantized neurons. Next, the multilayer feedforward neural networks with

quantized neurons can achieve similar recall accuracy as the conventional

multilayer feedforward neural networks. Furthermore, Scheme 1 can get higher

recall accuracy than Scheme 2 while the latter converges faster in training,

which agrees with the prediction in Section 4.3. It is also noted that the recall

performance deteriorates with decreasing number of quantization levels. This

4.6 ADVANTAGES FOR HARDWARE IMPLEMENTATION

For MFNNs with quantized neurons, the powers-of-two factors involved

in multiplications are outputs of neurons. Since these outputs vary from pattern

to pattern, there is no such cases that direct wiring can be applied. However,

the shifter using simple combinational logic as suggested in Chapter 3 is still

applicable and can improve significantly the area-delay product over

multiplications. The difference is that the weight is connected to pin "A" of the

shifter as input vector and the input t o the neuron (the output from another

neuron) functions as the control vector. This configuration is illustrated in Fig.

4.6. Table 4.6 illustrates the advantages of the MFNN with quantized neuron

model over the original MFNN model for VLSl implementation of the

multiplication in the weighted sum calculations. An 8x8 multiplier is assumed

for MFNN model while the MFNN with quantized neurons model is as presented

previously in this Chapter with M =4. Again, the LSI Logic 600k CMOS ASIC

technology is used in the example. The VHDL description of the shifter is listed

in Table D.l of Appendix D.

SHFT
I t-

i npu t
to neuron

Figure 4.6 A shifter used in MFNNs with quantized neurons

Table 4.6 Hardware advantage of MFNN with quantized neurons

Calculation

Implementation I multiplier (8x8)

Area (# gates)

STPT-MFNN

Delay Ins)

shifter

1 1.30

that it simplifies the implementation of the nonlinear activation function. As

described previously in this chapter, activation functions used in MFNNs with

quantized neurons are multistep functions with STPT outputs. This simplified

STPT multistep activation function can be realized easily using either

comparators or other combinational logic. For any input to the function, the

STPT output value can be determined by simply compare the input with the

thresholds related to each output level. This procedure is illustrated in Fig.4.7,

where only one bit in the output vector will be one, all others are zero. A

further description can be found in Table 4.7, where TH, >TH, > . .. >TH, are

thresholds and Ci = 1 when IN ?TH, and C, = 0 otherwise. A VHDL description

of such an implementation when M=4 is listed in Table D.2. The input is

assumed to be 16 bits.

Table 4.7 Description of the decoder for STPT multistep activation function

OUTPUT FROM COMPARATORS
(INPUT TO THE DECODER) C,. ..C,

00 ... 0000

OUTPUT FROM THE DECODER
(OUTPUT OF THE FUNCTION)
Q,. . .Q1

0000.. .oo

IN

Figure 4.7 Block diagram of the STPT multistep activation function

The synthesized circuit in LSI Logic 600k CMOS ASIC technology is

shown in Fig.4.8. A more detailed schematic is drawn in Fig.4.9 with an area

of 1937 design units (646 gates). The complexity of this design is only

comparable to the address decoder (an n to 2" decoder) part of a memory

based look-up-table implementation, as shown in Fig.4.10, which is the

commonly used solution of the nonlinear activation function. A 128 words &bit

look-up-table implementation in LSI 600k technology requires approximately

2560 gates.

Figure 4.8 Multistep activation function circuitry

Address
Decoder

Memory
Cell A r r a y

Figure 4.10 Structure of a look-up-table

4.7 Concluding Remarks

The concept of quantized neurons was introduced in this chapter to

alleviate the computational burden of massive multiplications in multilayer

feedforward neural networks. A modified backpropagation algorithm was

developed to meet the training requirements of MFNNs with quantized neurons.

network, an MFNN with quantized neurons has significant advantages for

digital hardware implementation. First of all, a reduced chip area and an

increased computational speed can be achieved due to the fact that

multiplications are replaced by shift operations only, which is a similar feature

as for the model of MFNNs with STPT weights proposed in Chapter 3. Yet one

more advantage of using quantized neurons in MFNNs is that the complexity

of the implementation of nonlinear activation functions, which is another

shortcoming in digital techniques, can be reduced substantially. More on the

issue of implementation o f activation functions will be discussed in the next

chapter.

MORE MFNN MODELS FOR DIGITAL

IMPLEMENTATIONS

In the previous chapters, MFNN models with STPT weights and

quantized neurons were proposed. These models have been shown to be

effective in alleviating some of the computational burden in digital

implementation of neural networks. Based on the ideas in the development of

those two models, along with the introduction of a new form of sigmoid

activation function, further MFNN models will be developed in this chapter for

alternative digital hardware implementation.

5.1 A Simplified Sigmoid Activation Function (SSAF)

The sigmoid function as defined in equation (3.2) is the most popular

nonlinear activation function used in artificial neural networks. However, this

sigmoid function is not suitable for direct digital implementation as it consists

of an infinite exponential series. A look-up-table has been a traditional method

for implementing the sigmoid function for which the amount of hardware

overcomes many of the limitations of single-layer perceptron so that MFNNs

can approximate any input-output functions. The sigmoid function provides, at

the output of a neuron, a nonlinearity that has a tanh-like transition between

the lower and upper saturation regions. In practice, any nonlinear function

which possesses a similar transition region may be expected to achieve similar

performance in MFNNs. In this section, it is shown that a simple second-order

piecewise nonlinear function exists which can be used as an activation function

in MFNNs. The proposed piecewise activation function can be implemented

directly using digital techniques.

5.1.1 Second-Order Approximation

Consider the following second-order piecewise nonlinear function, which

has a tanh-like transition between an interval [-L, L]

where IS and O determine the slope and the gain of the function. Consequently,

a sigmoid-like bipolar function can be realized by

To determine the parameters 13 and 0, the following condition can be used

H'Q I,, =O (5.4)

hence

Also, based on the condition H(L) = 1, we obtain

PL-8L2=1

From equations (5.5) and (5.61, the following relationships can be obtained

where L determines the saturation point of the function.

conventional sigmoid function given below

The parameters used are L = 2 and a= 2. It can be seen that these two curves

are very close. The maximum difference, which is about 4%, occurs around the

saturation points. With such a close approximation, similar performance can be

expected when the piecewise activation function is used with MFNNs.

I ssaf

Figure 5.1 Sigmoid Activation Function (SAF) and Simplified Sigmoid
Activation Function (SSAF)

Although the piecewise function G(x) is a very good approximation to the

sigmoid activation function F(x), there is a major difference between the two

functions. It can be seen that the piecewise function has a zero derivative

beyond the saturation points *L, as shown in equation (5.91, which is not

suitable for training with the backpropagation algorithm. This problem needs to

be solved before the piecewise function G(x) can be used as activation

functions in MFNNs.

[: for Lsx
G ' Q = HI(* fur -LsxsL

for xs-L

If the derivative of the piecewise activation function is used directly with

the algorithm, the learning process will get stuck when it happens to be in the

wrong saturation region. It needs a little push to bring the learning out of the

premature saturation region. A small positive value of the derivative may serve

the purpose. By introducing a small positive value 6 into G J (x) in both saturation

regions, we have

for -(LA) s xr L-A
for -(L-A) r x

The learning process can be carried out using this version of the derivative of

G(x). While the newly defined G'(x) will serve in the backward operations

during training, the piecewise activation function G(x) is still used in the

forward operations. Given a small positive value of 6, the offset A can be

determined by setting H1(L-A) = 6, i.e.,

p -2O(L-A) = i5 (5.1 1)

Solving the above equation and taking into account equation (5.7), we have

A direct digital hardware implementation of H(x) can be carried out

according to the signal flow graph as shown in Fig.5.2. This implementation

can be simplified when L takes a value in single term powers-of-two format. In

this situation, both O and I3 are also single term powers-of-two values

according t o EqJ5.7) such that H(x) can be implemented by one multiplication

together with one shift and one addition as illustrated by Fig.5.3. A VHDL

description of the implementation of the simplified sigmoid activation function

circuitry is drawn in Fig. 5.4, which clearly indicates that there are one

multiplier, one adderkubtracter, and two comparators in the implementation.

The detailed schematic of this design is drawn in Fig.5.5 and has an area of

2661 design units (887 gates) and a maximum delay of 13.14 ns in LSI Logic

600K ASIC technology. In comparison, a 128x8-bit look-up-table, as discussed

in section 4.6, requires 2560 gates in the same technology.

'8 P
Figure 5.2 Block Diagram for Implementation of H(x)

Figure 5.3 H(x) with STPT L

Figure 5.4 Implementation of the simplified sigmoid activation function

105

In this section, simulation results will be presented in which the

performance of the proposed piecewise activation function G(x) is compared

with the performance of the traditional sigmoid activation function as shown

below

The two activation functions were used t o train a two-layer and a three-

layer feedforward neural network using the backpropagation algorithm. The

following parameters o f the functions were used:

G(x): L = 2

F(x) : u=2

Two curves of activation functions with these parameters are shown in Fig.5.1.

The training pattern-pairs of 10 numerals, which are the same as those used

in Chapter 3, were used in simulations. The feedforward neural networks have

100 input nodes, 4 output neurons, and one or two hidden layers each with 40

hidden neurons. The learning rate parameter used was 0.01 in all simulations.

For each combination of function and network, three set of initial random

weights uniformly distributed in the interval [-0.1, 0.11 were used. For recall

constructed by inverting 5% of its original pixels randomly. The results on the

number of training epochs to reach a sum of squared output errors of 0.1 over

the entire training pattern set and the generalization capabilities, which were

measured as the percentage of correct recalls over all patterns, are summarized

in Table 5.1. The simulation results show that the proposed piecewise

activation function can achieve a similar performance as that of the traditional

sigrnoid activation function.

Table 5.1 Performances of SSAF and SAF for Two- and Three-Layer FNNs

Training Generalization Training Generalization
(Epochs) (%I (Epochs) (%I

33 99.6 29 99.6

Two-layer 32 99. I 27 99.1
network

32 99.0 28 99.0

39 99.5 35 99.4

Three-layer 41 99.9 38 99.9
network

38 99.9 35 99.9

The simplified sigmoid activation function (SSAF) proposed in the last

section has nearly identical features to the traditional sigmoid activation

function, but can be implemented easily using one multiplier. When used in

combination with STPT weights, the implementation of network can be further

simplified. In this section, a method for designing MFNNs using SSAFs and

STPT weights will be developed.

5.2.1 Design Algorithm

Our objective is to design an MFNN with SSAF at the output of each

neuron and STPT weights of the form of { * 1, & 2", . . ., * 2'M, 0). The design

procedure can be carried out as follows.

Step 1: Starting with small random weights and zero biases, train an

MFNN with SSAFs and continuous weights using the

backpropagation algorithm without adjusting biases until

convergence to an predetermined error level E,, i.e.,

Step 2: Find the maximum absolute value in each layer among weights

w, '~~, which have been obtained in Step 1.

Then find the smallest STPT value which is greater than or equal

to w,,,,~~] and denote it as 2P'h1. NOW set wmaXth1 to this STPT value

= 2P'hl.

Step 3: Normalize weights wjjLh1 as

W / IQ =2-d4l Y
4 d

Step 4: Adjust the parameters in SSAFs at each layer accordingly as

such that they remain STPT values.

Step 5: Quantize the normalized weight w' ,~ '~ ' t o its nearest STPT value

110

where ~gn(w':~') stands for the sign of wfiihl and C, is defined as

Step 6: Calculate the TSE using current STPT weights and SSAFs. If TSE

is less than the predefined level E,, i.e.,

stop; otherwise, proceed to Step 7.

Step 7: Compute changes in weights w','~' and biases b,'", respectively,

according to the equations in the BP algorithm.

Step 8: Update weights and quantize them as in Step 5. Denote the old

set of weights as {w' , [~~}, , and the new set as {w'~~'~'),,,, and then

calculate TSE using both sets of weights, if

accept new weights by setting

otherwise, discard them and keep old weights.

Step 9: Update biases b,'hl and go back to Step 6.

5.2.2 Simulation Results

The I0 numeral patterns, each with 10x10 bipolar pixels, shown in

Fig.3.4 are used in the simulations. Each MFNN was trained to obtain both

continuous and STPT weights. Sets of noisy patterns were fed t o each

continuous-weight MFNN and its corresponding STPT-weight MFNN to test

their generalization capabilities in terms of recall accuracy (in percentage of

correct recalls). A noisy version of each of the 10 training patterns was

constructed, as before, by inverting randomly 5% of the original elements. The

recall accuracy was obtained by taking the average of the results among 100

noisy versions of each of the 10 training patterns. Simulation results are

summarized in Table 5.2 and Table 5.3, where CMFNN and STPTMFNN

represent, respectively, the MFNNs with continuous and STPT weights. For

All data given in Tables 5.2 and 5.3 were averages of five designs, starting

with different initial random weights uniformly distributed in [-0.1, 0.11. Other

parameters used were ~=0 .01 ; ~,=0.1; M=4; E,=0.01; E=0.2; D=2; and

6=0.01.

It can be seen that convergence was reached in all designs. The designed

MFNNs with STPT weights can retain the generalization capability of the

corresponding MFNN with continuous weights as the degradations in

performance were at most 0.42% over all designs.

- -

Number Training Generalization
of (Epochs) (% I

Hidden
Neurons CMFNN STPTMFNN CMFNN STPTMFNN

Table 5.3 Convergence Speed and Generaiization Capabilities of MFNNs with
Two Hidden Layers

Number Training
of (E~ochs)

Generalization
(% I - .

Hidden
Neurons CMFNN STPTMFNN CMFNN STPTMFNN

In this section, the ideas of STPT weights, quantized neurons, and

simplified sigmoid activation functions will be combined to generate an MFNN

model with no weight multiplications for continuous input-output mapping.

The designed MFNNs will have following features:

STPT weights in the input layer and continuous weights in all

other layers

Simplified sigmoid activation functions at output neurons

three-level activation functions (3-LAFs) at hidden neurons

A three-level activation function is a special case of the quantized neuron

presented in Chapter 4 when M =O and can be expressed as

for tsx
for -t<x<t

-1 for x s t

whe /e threshold value. The derivative of FJx) can be determined

by using the method described in Chapter 4, Le., finding the three intersection

of FJx) and the following function

where g > 1 is a gain factor. The derivative of F(x) at these three intersections

will be used as the approximation of F',(x) in three different regions defined in

equation (5.23), respective1 y, during training.

5.3.1 Design Algorithm

Step 1 : Prepare a set of random weights and zero biases.

Step 2: Starting with the latest weights and zero biases, train the network

using the backpropagation algorithm, with the SSAFs at the

output neurons and the 3-LAFs at the hidden neurons. The

weights will keep updated until the TSE becomes less than a

prespecified error level E,. The obtained network is denoted as Net

1.

Step 3: Find the maximum absolute value w,,, among the weights in the

first layer and normalize these weights by w,,,.

Step 4: Scale the threshold value t of 3-LAFs applied to hidden neurons by

116

Step 5: Quantize those normalized weights in the first layer to their

nearest STPT values from the set of { * 1, k 2-' , . . ., * 2'M, 0).

Step 6: Calculate the TSE. If TSE < E,, stop and denote the network

obtained here as Net 2; otherwise, proceed to Step 7.

Step 7: Re-adapt all continuous weights in all layers rather than the first

one, and biases in all neurons using the backpropagation

algorithm.

Step 8: Go backto Step 6.

5.3.2 Simulation Results

Simulation results are provided in Table 5.4. Two normalized orthogonal

continuous real vector sets, one as input pattern set and the other as target

set, were used for training and recall. Each vector set consists of 10 vectors

and each vector consists of 25 continuous real elements, which are generated

by using a method described in Reference [Kwan et al., 19931. The network

was used as a pattern associator, which had 25 inputs, 25 outputs, and one

versions of each of the 10 input vectors were presented to the network to test

the recall performance. The noisy vectors were constructed by adding random

noise within the interval of =tR to each element of each input vector. R

represents a percentage of the maximum element value among all the 10 input

vectors. In the simulations presented here, R was 10% or 20%. The output

vector was identified based on its crosscorrelations with all ideal output

vectors. The ideal output vector with maximum crosscorrelation was selected

as the recall vector. For comparison, the simulation results of the corresponding

continuous MFNN (CMFNN), which had the same topology but continuous

weights and bipolar sigmoid activation functions at both layers, were also

obtained. The data summarized in Table 5.4 represent the average of five

designs, starting with different initial random weights uniformly distributed

within k0.1. The learning rate parameter for weights was ~ = 0 . 0 1 , the step

size for bias adjustment was cb =0.01, and other parameters used were

6=0.01, a=2, D=2, M=4, andE,=106.

It can be seen that the proposed MFNNs with SSAFS, 3-LAFs, and STPT

weights have a similar recall performance as the original MFNNs with SAFs and

continuous weights a t a cost of additional training epochs.

5.4 Multiplierless MFNNs for Discrete Input-Output Mapping

When the input and output patterns are of discrete format (binary or

bipolar), some limitations in the design of MNFFs without weight multiplications

can be removed and the design will be more flexible.

In this section, a method for designing 2-layer feedforward neural

networks suitable for bipolar (* 1) input to output mapping will be presented,

which uses simplified sigmoid activation functions at hidden neurons, step

activation functions at output neurons, continuous valued weights in the first

layer, and single-term powers-of-two weights in the second layer such that

multipliers can be eliminated from the resultant networks. The designed

network will have the following properties:

bipolar (* 1) input and output

one hidden layer

continuous weights at first layer and single-term powers-of-two

weights at the second layer

. SSAFs at the hidden layer

SAFs at the output layer for training and step functions at the

output layer for recall

5.4.1 Design Algorithm

Step I : Prepare a set of random weights and zero biases, with sigmoid

activation functions at the output layer and simplified sigmoid

activation functions (with a single-term powers-of-two L) at the

hidden layer.

Step 2: Starting with the latest weights and zero biases, train the network

using the BP algorithm without adjusting biases until

where E is a prespecified error level. The network obtained at this

point is denoted as Net#l .

Step 3: Find the maximum absolute value wmaXL2' among the weights in the

output layer and normalize these weights by w,,,,[~'.

Step 4: Adjust the parameter a of the sigmoid activation functions applied

at the output neurons as o~_,,'~'.

term powers-of-two values chosen from the following set:

{ *2", k2-2B2*; *2‘4 o (5.26)

Step 6: Calculate the TSE. If TSE<E is not satisfied, proceed to step 7;

otherwise, go to step 8.

Step 7: Adapt all continuous weights of the first layer and biases of

neurons at both layers using the equations given in Section I1 until

either Eq.(13) is satisfied or convergence is reached in which no

further improvement in SSE can be obtained.

Step 8:

Step 9:

Step 10:

Find the maximum absolute value w,,,,"' among the weights in the

first layer, and set wmmnl = 2P''1, where 2P11' is the smallest single-

term powers-of-two value greater than or equal to w,,[l1.

Normalize the weights in the first layer by 2P[7' and set parameters

8 and O of the SSAFs applied at hidden neurons as R = ZPLllB and

0=22p'110. respectively, such that they remain single-term

powers-of-two.

Replace the sigmoid activation functions at the output layer by

5.4.2 Simulation Results

Simulations have been conducted to verify the proposed design

algorithm. The input patterns used in training were 10 numerals as shown in

Fig.3.4, each represented by 10x10 bipolar pixels. The corresponding desired

output patterns were 4-bit codes given below each input pattern. Thus, the

network had 100 inputs, 4 outputs, and one hidden layer with various number

of neurons. After training, 100 noisy versions of each of the 10 input patterns,

in total 1000, were presented to test the recall accuracy of the network

obtained. A noisy pattern was constructed by inverting randomly a percentage

(in this paper it was 5%) of elements of the original pattern. The recall

accuracy was obtained by taking the average over all 1000 testing patterns.

Simulation results are summarized in Tables 5.5 and 5.6. All data given in these

tables were averages of five designs, starting with different initial random

weights uniformly distributed in (-0.1, +0.1]. For the purpose of comparison,

the results of corresponding continuous-weight MFNN (CMFNN), which had the

same topology but continuous weights and sigmoid activation functions at both

layers, were also obtained and included in these tables. The total number of

epochs under MMFNN is the sum of epochs required to obtain both Net#l and

target patterns. The other parameters used for simulations were: ~ = 0 . 0 1 ,

4 = O . l , E=0.01, a=2, D=2, and 6=10'*.

Based on the data in Tables 5.5 and 5.6, we can see that the

convergence was always reached in the training of MMFNN and there was only

slight degradation in the recall performance of MMFNN compared with CMFNN.

Table 5.5 CONVERGENCE SPEED (IN NO. OF EPOCHS) OF CMFNNs AND
MMFNNs

Number MMFNN
of hidden CMFNN
neurons S=2 S = 4 S = 8

Table 5.6 RECALL PERFORMANCE (IN PERCENTAGE OF
CORRECTNESS) OF CMFNNs AND MMFNNs

Number MMFNN
of hidden CMFNN
neurons S = 2 S = 4 S=8

5.5 Concluding Remarks

A simplified sigrnoid activation function (SSAF) has been proposed in this

chapter for direct digital implementation. This presented model is a piecewise

function which has a very close approximation to the original sigmoid function

and performs equally when used in multilayer feedforward neural networks. The

advantage of SSAF for hardware implementation was demonstrated by the fact

that it requires much less silicon area than the commonly used look-up-table

method.

Based on the SSAF model and combined with the ideas of STPT weights

125

- - -
-1 - - . -

feedforward neural networks architectures suitable for digital hardware

implementation were developed under different conditions. While having

advantages for digital implementation approach, all these models can retain the

performance of the original multilayer feedforward networks as shown by the

simulation results.

Chapter 6

CONCLUSIONS AND SUGGESTIONS

6.1 Conclusions

This dissertation has made original contributions to the development of

artificial neural network models for digital hardware implementations.

First, a new model of multilayer feedforward neural network with single

term powers-of-two weights is proposed in Chapter 3 along with a dedicated

design algorithm. The adaptive sigmoid activation function has been introduced

for fine-tuning the network to compensate the errors caused by weight

quantization. This method gives the network more dimensions of freedom in

addition to weight adjustment to adapt to a given problem. The proposed

algorithm turns out to be effective in designing MFNNs with STPT weights.

MFNNs with STPT weights have substantial advantages over original MFNNs

in digital hardware implementation. By using STPT weights, multiplications are

eliminated such that only shift operations are required. This has resulted in

feasibility of the proposed model and algorithm was demonstrated by simulation

results. STPT-weig ht networks can retain a similar performance to the original

continuous-weight networks while avoiding weight multiplications in digital

hard ware implementations.

The STPT weights were introduced in an attempt to alleviate the

computational burden of multiplications, no extra effort has been made to ease

the interconnection problem in digital implementation. However, if we take into

account the effect of the increased number of zero weights and the reduced bit

width of non-zero weights as a result of the adoption of STPT weights, we can

still see some reduction in the density of interconnections, although this impact

is limited and no substantial improvement is expected.

A new model for MFNNs with quantized neurons is proposed in Chapter

4. The concept of a quantized neuron is introduced and its structure is

demonstrated. The output of a quantized neuron is restricted to STPT format

with a multistep activation function. The BP algorithm has been modified to

handle the training of quantized neurons. A methodology for designing MFNNs

with quantized neurons is presented and has been proved t o be very effective

through simulations. The advantages of using quantized neurons in MFNNs for

digital hardware implementation include elimination of weight multiplications

functional blocks have been proposed and significant improvement in terms o f

speed and silicon area has been achieved. In conclusion, MFNNs with quantized

neurons have shown great advantages over digital hardware implementation

with little degradation in the network performance when compared with original

MFNNs.

A simplified sigmoid activation function is proposed in Chapter 5, which

is a very close approximation to the original sigmoid activation function and has

the same performance in simulations. A corresponding training algorithm has

been developed and a cost effective direct hardware implementation is

presented. More multipiierless MFNN models are also developed in Chapter 5

based on the idea of STPT weights and the simplified sigmoid activation

function. The effectiveness of these models are verified via computer

simulations.

Real world applications may require very large neural networks with

hundreds of thousands neurons, or even more. Increased complexity of ANN

will definitely result in a high cost of hardware implementation, which could

limit the wide application of ANNs. Thus, there is an urgent need in cost

effective implementation of ANNs and the strategies proposed in this

dissertation are able to serve this purpose well.

While the proposed models and algorithms have been shown to be

successful in designing multilayer feedforward neural networks, the following

open problems still need further investigation.

The original multilayer feedforward neural networks are universal

approximators. Do MFNNs with powers-of-two weights still have this property?

J t would be very interesting to see whether it is possible to find any direct

analytical solution in this regard. Although it is expected that the analysis may

be quite complex in nature.

Our simulation results show that MFNNs with STPT weights or quantized

neurons can achieve almost the same performance as the original MFNNs

without an increase in the size of the network. To what extent this result can

still hold is a good direction for future mathematical analysis.

The models proposed in this dissertation can eliminate multiplication in

the feedforward operations only. That means multiplications are still inevitable

in the learning phase. The learning algorithm without multiplications is needed

if on-chip learning is to be implemented digitally.

Appendix A

DERIVATION OF THE BP ALGORITHM

The backpropagation (BP) algorithm is a gradient descent method, which

makes the change in a weight to be proportional to the negative derivative of

a cost function with respect to that weight. If the total squared error (TSE)

defined in equation (2.9) is used as the cost

weight wi;h' due to pattern k can be calculated

function, then the change in

as

By using the chain rule,

define

then

for the output layer, i.e., h =L,

hence

and

for h<L

the term azi~h+ll/azj,'hl can be expressed as

a$Q ad? azLM

and by definition

therefore

(A. 1 2)

Appendix B

DERIVATION OF THE ALGORITHM FOR

ADAPTATION OF ACTIVATION FUNCTIONS

Based on the gradient descent method, the change in the parameter a of

the sigmoid activation function of thejth neuron a t the hth layer in an MFNN

can be expressed as

a*, spy = --
day

for h=L

where F',(z,a) is the partial derivative of the activation function with respect to

parameter a.

135

Since

then

and

AN FPGA IMPLEMENTATION OF MFNNS

WITH QUANTIZED NEURONS

In this appendix, the FPGA design of a multilayer feedforward neural

network with quantized neurons for XOR problem will be presented.

C. 1 Design Overview

The overall design of an all-digital implementation of MFNN with

quantized neurons can be divided into several major parts, including

accumulation, shift operation, activation function, and timing control. The

design will be a partly parallel, partly serial operated architecture. In other

words, the operations within the same layer of the network are parallel, and the

inter-layer operations are performed in serial from the first (or input) layer to the

output layer because the outputs of the current layer usually are inputs to the

next layer. The architecture of each layer are similar in MFNNs. A block diagram

of the implementation structure of a typical MFNN is illustrated in Fig.C.1,

where only one layer is shown.

Input
Array

Figure C.1 Block Diagram of Digital Implementation Structure of an MFNN
with quantized neurons

In the above structure, the ACCUs stand for functional blocks of

accumulation; the SHFs are functional blocks of shift operation; the LUTs stand

for the functional blocks of activation function; MUX is a multiplexer; and N s

are weights.

The operation of accumulation can be realized using an accumulator. The

function of accumulator is t o add up all input to the neuron. Each neuron will

have a dedicated accumulator. The accumulator will have addhubtract

139

mas Inputs, syncnronous reset Tor new parrerns, ana CIOCK ename ro conrrol rne

operation flow. The function of a shift block is to shift a weight by a certain

number of bits, which is determined by the activation of the corresponding

neuron. This block will also have parallel data loading, synchronous reset, and

clock enable. Because for a particular connection weight, the number of bits to

be shifted varies from pattern to pattern, the shift block should be able to

detect how many bits will be shifted for each weights under different input

patterns and control the shift operation as required. From Chapter 4, it can be

seen that the maximum magnitude of the output of a neuron cannot exceed 1,

therefore only right shift is involved in the operation. However, the output of

each neuron is changing with different pattern presented to the network.

Consequently, the number of bits to be shifted for a particular weight is not

known in advance. The circuit has to be able to deal with this demand. As for

the nonlinear activation function, it is usually implemented by look-up table

using memories. Since in the model of MFNNs with quantized neurons, the

activation function is a multi-step function, the implementation of this function

can be simplified significantly. Due to its multi-step format, a group of

magnitude comparators and a simple combinational logic can be put together

to realize the desired feature of such activation functions. Weights can be

stored in memories.

design package using the Unified Component L~brar~es. weatmg wtm aeslgns

with Viewlogic involves the following steps:

1. Enter the design with Viewdraw schematic editor, observing the Xilinx

design requirements.

2. Test the functionality of the design. Run XSimMake to generate the

ViewSim functional simulation netlist (VSM) file. After verifying that the

logic design is functionally correct, proceed with the third step, design

implementation.

3. Implement the FPGA design. Generate the placed and routed design

automatically by executing the XMake program for an FPGA design or

translate the design manually.

4. Simulate the timing of the design. Generate a ViewSim timing netlist by

running the XSimMake program on the LCA (Logic Cell Array) file. Use

the VSM output file for timing simulation.

The Viewlogic design methodology for FPGAs is illustrated by the

flowchart in Fig.C.2.

Creat/edit/add to the design
using ViewOrow

I

r No
Generote o

VSM file

/ design v

Yes

Implement the design
using make

Generate timing simulation
filss wing XSimMake

I

Figure C.2 Viewlogic Design Methodology for FPGAs

Fig.C.3 shows a top level schematic of an MFNN with 2 inputs, one (1)

output, and one (1) hidden layer of two (2) hidden neurons for solving XOR

problem. Several functional blocks were used in the design. The description of

these blocks will be provided in the following sections. Some of them are user

defined symbols, while the others are components directly from Xilinx libraries.

In Table C.1, all symbols used in the top level design are listed with a brief

explanation. Xilinx FPGA device 4013MQ208-5 was used in the design. The

final design occupies 346 CLBs, that counts for 60% of the maximum number

of 576 available CLBs.

The circuit was designed to function in the following way. After a

pattern is presented to the input of the network, the bias of each neuron will

be loaded into the corresponding accumulator; then the first layer accumulators

will be working in parallel to add up all weighted inputs. Since the inputs are

digital signals of 0 or 1, they can control the clock enable of the accumulator

to determine whether the corresponding weight will be added or not. The

elements of the input pattern are selected one by one in sequence by a

multiplexer.

(0 I,, - Y C

Symbols
. -- -

M2-1 E

IFD

IPAD

Wi&h

BIASLLh

T I 6MUX2-1 E

AND2

ACC16

LUT

SHF-BLOC

OSCQK

DEBOUNCE
-

CTRLBLOC

OBUF

OPAD

Explanation

Two to one multiplexer

Input D Flip-Flop

lnput pad

Weight wiY1

Bias b?'

16 bit two to one multiplexer

Two inputs AND gate

16 bit accumulator

Activation function

Shift operation block

Internal clock generator

Start pulse generator

Timing control block

Output buffer

Output pad

Inout buffer

After the accumulations at the first layer are finished, the sums of

accumulators will be passed to the activation functions (block LUT) to produce

the output of neurons. Because quantized neurons are used here, the output of

an activation function has single term powers-of-two format, which will be

used as an input to the block of shift operation (SHF-BLOC) to control the shift

to neurons at the next layer. I ne s ~ y u ulr UI ru lc QCIUUIIIUIU~V. .. .- - - - - - .- 8 -

will be used to select addhub of the accumulator at the second layer. Due to

the similarity of layers in an MFNN model, the same operations will be repeated

in the consecutive layers.

In the following section, the details of major sub-circuit blocks will be

described.

C .3 Sub-circuit Blocks

In this section, the schematic design of the major functional blocks will

be described. All of these blocks have been constructed using the primitive

components from the Xilinx XC4000 library.

C.3.1 Accumulator - ACCI 6

ACCl6, shown in Fig.C.4, is a 16-Bit Loadable Cascadable Accumulator

with Carry-In, Carry-Out, and Synchronous Reset. The function of ACCI 6 is to

take a sum of weighted inputs to each neuron, that means the output of the

accumulator is the net input to the corresponding neuron.

Each neuron needs a dedicated accumulator such that parallel operation

I46

m e msr layer, nkL I TJ UpclarGa

only in add mode due to 011

inputs. Therefore, ADD will

always be HIGH and CI will be

LOW. Weights and biases, both

in 16-bit 2's complement, are

connected t o 8 and D,

respectively.

Figure C.4 1 6-Bit Accumulator

When used in a layer other than the first one, ACC16 will operate in add

mode as well as subtract mode. The operation mode will be determined by the

output of neurons in the previous layer together with the corresponding

weights. If the sign bit of the output of the neuron in the previous layer is

negative, then the value of the shifted version of the corresponding weight will

be subtracted from the contents of the accumulator; otherwise, it will be added

to that accumulator.

C.3.2 LUT - Implementation of the Activation Function

The input to the LUT is the output from the accumulator. The output of

the LUT is the activation of the quantized neuron in STPT format, i.e., there is

only one bit is "on" (logic high) in the output. This functional block has been

Fig. C.5 is the schematic or ru I wnen IW =+. I I I G D C I I I G ~ ~ ~ ~ ~ ~ ~ lVI J y , , , u v ,

CMPRTR is shown in Fig. C.6. The five comparators on the top are used for

comparisons between input data and positive thresholds, while the other five

at the bottom are for comparison with negative thresholds.

The input-output relationship of the combinatorial logic can be described

as in Table C.2. The five positive and negative thresholds are obtained by using

the method described in Chapter 4 and listed in Table C.3.

Table C.2 Combinatorial Logic in LUT Block

11 INPUTS I OUTPUTS

IN1 5 I P4-PO I N4-NO I Position of "1 "

0

0 I 00111 I XXXXX I

0

1

11111

0 I 00011 I XXXXX I

XXXXX

01111

XXXXX

1

0 I OOOOl I XXXXX I

XXXXX

01 11 1

XXXXX

1

XXXXX 00001

OUT6

I

XXXXX I 0001 1

00111
OUT5

THRESHOLDS I 2% COMPLEMENT VALUES

C.3.3 SHF-BLOC - Implementation of Shift Operation

The function of the shift block is to shift a weight according to the

activation of the corresponding neuron, which is of the STPT format, instead

of doing multiplication. As mentioned before, because the output of a neuron

is different under different input patterns, the number o f bits t o be shifted in

the corresponding weight varies from one pattern to another. Therefore, the

shift block must be able to detect and control the actual number of bits to be

shifted. This is done by using two shift registers, one is used to control how

many bits will be shifted while the other is used to do the actual shift operation

of weights. Fig. C.7 shows the implementation of the shift block where the

l l l p U L 3 ,).IaIuIuwv m v v r u ~ u I-. --,, -- --. - - - - - - - - - .
enable (L), shift leftlright (LEFT), and synchronous reset (R).

Figure C.7 Implementation of Shift Operation

The 8-bit shift register SR8RLED is used to control the shift operation

while the 16-bit shift register SR16RLED conducts the actual weight shifting.

The SR8RLED will keep shifting left while the SR1 GRLED is shifting right until

the most significant bit (MSB) in the SRSRLED becomes 1. At that point, both

C.3.4 CTRLBLOC - Implementation of the Control Block

The function of the control block CTRLBLOC is to provide timing signals

to the circuit. These signals usually will control the Enable input, the Data Load

input, and SetIReset input of functional components. Because an MFNN

operates from the input layer to the output layer, the CTRLBLOC will allow each

layer to operate only when all information have come available to that layer.

Fig. C.8 shows the implementation of the control block CTRLBLOC,

where CB4CE is a 4-stage, 4-bit, synchronous, clearable, cascadable binary

counter.

From the top level design given in Section C.2, it can be seen that the

whole circuit operates synchronously, i.e., the states of the circuit make

changes only during clock transitions. However, the sequence of operations and

the time at which a block can operate will be determined by control signals.

These signals include ACC-LD, L1-ENB, L1-SLCT, SHF-LD, SHF-CE, L2-ENB,

and L2_SLCT, which are summarized in Table C.3.

OUTPUTS OF CTRLBLOC FUNCTIONS I
Accumulators load signal

Layer 1 operations enable

Layer 1 multiplexer select signal

Shift blocks load signal

Shift blocks clock enable

Laver 2 operations enable

Layer 2 multiplexer select signal

All control signals are active High. Each block can act only during the

active period of the corresponding control signal. The order of appearance of

these signals is the same as the sequence in which they are listed in Table C.3.

C.3.5 Weights and Biases

Weights and biases used in the FPGA design are listed in Table C.4,

along with their 16-bit fixed-point 2's complement representations.

Figure C.8 Schematic of Control Block CTRLBLOC

Table C.4 Representations of Weights and Biases

Values 1 2's Complement Representations

C.4 Design Simulation

Both functional and timing simulations have been conducted on the top

level schematic design. Functional simulation is used to verify the logic

relationship under normal unit delay of each component while timing simulation

is used to verify the logic correctness under the worst situation of gate delays.

Functional simulations use unrouted design and timing simulation based on the

routed design.

I I . I ne aeslrea ourpur IS u0 I, I , a1 IU U, I G 3 p G b L I V G I Y . r w a IGUIuI I I,=

output layer, if the net input before activation is negative, then the output of

that neuron will be zero because a hardlimiter function can be applied to

produce binary output. On the other hand, if the net input before activation is

positive, the output of that neuron will be logic one.

C.4. f Functional Simulation Results

Design simulations have been conducted using Xilinx's ViewSim. The

results are provided below.

1) XlJ=O, XD=O

When both inputs are 0, the signal OUTPUT[lS:O] =

1110111000110011 whichislessthanTH~N1=1110111111100110. Thus,

the output of the network is logic zero (LOW), the same as expected. The

simulation waveform is depicted in Fig. C.9.

2) XU=O, XD=1

In this case, two inputs are different, the output of the network should

be logic one (High). Look at the simulation waveform given in Fig. C.10, the

signal OUTPUT[I 5:0] = 0001 001 001 0001 01 which is greater than

TH - PI =0001000000011010. Therefore, the output of the network is indeed

3) XU=1, XD=O

Similar to the above case 2), the two inputs are new different, so the

output of the network should be logic one (High). From Fig. C.11, the

simulation waveform, it can be seen that the signal OUTPUT[IS:O] =

0001 001 001 0001 01 which is greater than TH-PI = 0001 00000001 101 0.

Therefore, the output of the network is indeed logic one (High).

4) XU=1, XD=1

Now both inputs are 1, which is a similar situation to case 1), the output

of the network is expected to be logic zero (Low). Observe the simulation

waveform in Fig.C.12, the signal OUTPUT11 501 = 1 1 101 1001 1 1 1 1001 which

is still less than TH-N1 = 1 1 101 11 1 1 1 1001 10. With this OUTPUT[I 5:OI as the

net input to the output neuron before activation, the output of the network is

logic Low (zero), showing the correct result.

X 0

C C K - P

C L K - N

S T A R 1

P U L S E

O U T P U T 1 5

O U T P U T 1 4

O U T P U T 1 3

O U T P U T 1 2

O U T P U T 1 1

O U T P U T 1 0

O U T P U T 9

O U T P U T 8

O U T P U T 7

O U T P U T 6

O U T P U T S

O U T P U T 4

O U T P U T 3

O U T P U T 2

O U f P U T l

Figure C.9 Functional Simulation Result When XU =O and XD =O

S l A R l

P U L S E

O U T P U t I S

O U r P U T l 4

O U T P U T 1 3

O U T P U T 1 2

O U I P U T ~ I

O U T P U T 1 0

O U T P U I 9

O U T P U l 0

O U I P U I ~

O U T P U 1 6

O U l P U l S

a u r p u r 4

O U T P U T 3

O U T P U l Z

O U l P U r 1

Figure C.10 Functional Simulation Result When XU = 0 and XD = 1

U

0

L K - P

L K - N

1 A R T

U L S E

U T P U T I S

u l P U T 1 4

1 u T P U 1 1 3

l U T P U T l 2

) U T P U T 1 1

) U T P U T I O

) U I P U T S

3 U T P U T B

3 U T P U T 7

D U T P U T 6

o u t P U T S

O U T P U T 4

O U T P U T 3

O U T P U T 2

O U T P U T 1

Figure C. 1 I Functional Simulation Result When XU = 1 and XD = 0

1 1~1111$J Sll 1 lularlv~ I IOVCZ uUu.. .,, , -- ,- - - - .. - - V -

The same logic results as in the functional simulations were obtained and are

shown in Fig.C.13-C.16. The only difference is the amount of delays.

. Y 0 0 0 1 o 0.0 c oopr 0 0 0 c I c 1-
I 1 0 I O l f l d l n O

a u
0 0 0 ? OOOE 0002 0001 E 7

D olndlno

I 0 r l n d l n o

I" o o o c O O O E o o o z o o o r I C 1- 1
- - - -

Appendix D

VHDL CODES FOR HARDWARE

IMPLEMENTATION SCHEMES

Table D.l VHDL code for shift operation

LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.all;

entity SHIFTER is
port(a: in std-logic_vector(7 downto 0);

ct: in std-logicyector(4 downto 0);
z: out std~logic~vector(1 I downto 0));

end SHIFTER;

architecture BEHAVIORAL of SHIFTER is
begin

process(a, ct)
begin

case ct is
when

when

when

"00000" = >
z < = "000000000000";
"00001" = >
z < =a(7)&a(7)&a(7)&a(7)&a(7 downto 0);
"00010" = >
z< =a(7)&a(7)&a(7)&a(7 downto 0)&'0';

C\ - Q \ r l u u \ r l u u \ n u v r r s r r v v l u w v

when "01 000" = >
z < =a(7)&a(7 downto 0)&"00OW;

when " 40000" = >
z < =a(7 downto 0)&"0000";

when others = >
z < ' 1 ,

end case;
end process;

end BEHAVIORAL;

I ame u.r VHUL aescrlprlurl UI rrle rIuIrIsiep CILiIvauuI I IUI ILWI I UDGU I

MFNNs with quantized neurons

Library IEEE;

use IEEE.std-logic-I 1 64.all;

use IEEE.std-logic - arith.al1;

use 1EEE.std-logic-unsigned .all;

entity PIECEWISE is

port(a: in std~logic~vector(l5 downto 0);
c: out std-logic-vector(4 downto 0));

end PIECEWISE;

architecture BEHAVIORAL of PIECEWISE is

constant PO:

constant p l :

constant p2:

constant p3:

constant p4:

constant no:

constant n 1 :

constant n2:

constant n3:

constant n4:

s td~logic~vector(l5 downto 0): = "0001 00000001 101 0";

std-logic-vector(1 5 downto 0): = "000003 01 1 1 0001 1 0";

std~logic~vector(l5 downto 0): = "0000001 01 100001 1 ";

std - logic-vector(l5 downto 0): = "00000001 01 01 1 1 10";

s td~logic~vector(l5 downto 0): = "0000000001 1 101 01 ";

std~logic~vector(l5 downto 0): = " 1 1 101 1 1 1 1 1 1001 10";

s td~logic~vector(l5 downto 0): = " 1 1 1 1 101 0001 1 101 0";
std-logic_vector(l5 downto 0): = " 1 1 1 1 1 101 001 1 1 101 ";

std-logic-vector(l5 downto 0): = "1 1 1 1 1 1 101 01 0001 0";

std~logic~vector(l5 downto 0): = "1 1 1 1 11 1 1 10001 01 1 ";

begin

process(a)

begin

case a(15) is

when '0' = >
if(a > = PO) then

when

emra > = p I J men

c < = "01 000";

elsif(a > = p2) then

c < ="00100";

elsif(a > = p3) then

c< = "00010";

elsif(a > = p4) then

c < = "00001 ";

else

c < = "00000";

end if;

others = >
if(a < = no) then

c< ="10000";
elsif(a < = nl) then

c< = "01 000";

elsif(a < = 172) then

c< = "001 00";

elsif (a < = n3) then

c< = "0001 0";

elsif(a < = n4) then

c< = "00001 ";

else

c < = "00000";

end if;

end case;

end process;

end BEHAVIORAL;

Table 0.3 VHDL description of the simplitied slgmold actwanon tunctlon

library IEEE, DW02;
use IEEE.std-logic-I 164.all;
use IEEE.std-logic-arith.all;
use IEEE.std-logic-signed.all;
use DW02. DWO2-components .all;

entity ssaf is
port(x: in std-logic - vector(15 downto 0);

z: out std-logic-vector(7 downto 0));
end ssaf;

architecture behavior of ssaf is

signal x - shft: std~logic~vector(l5 downto 0);
signal x - shft-low: std-logicyector(7 downto 0);
signal x - shft - low-sqr: std~logic~vector(l5 downto 0);
signal z-long: std-logic-vector(8 downto 0);
signal control: std-logic;

begin
control < = 'I ';
x-shft < = x(15)&x(15 downto 1);
x-shft-low < = x-shft(7 downto 0);
-- x-shft-low-sqr < = x-shft-low * x-shfl-tow;

U1: DW02-mult
generic map(A-width = > 8, B-width = > 8)
port map(A = > x-shft-low, B = > x - shft-low,

TC = > control, PRODUCT = > x-shftJow-sqr);

piecewise: process(x, z-long)

if(x > = 2) then
z< ="01111111";

elsif(x < = -2) then
z< ="10000000";

else
z < = z - long(7 downto 0) ;

end if;
end process;

second-order: process(x-shft, x - shft - low - sqr, x)

begin
case x(15) is

when '0' = >
z-long < = x-shft(7 downto O)&'Or -

x-shit_low-sqr(l5 downto 7) ;
when others = >

z-long < = x - shft(7 downto 0)&'0' +
x-shft-low-sqr(l5 downto 7);

end case;
end process;

end behavior;

Ackley, D.H., D.E., Hinton, G.E., and William, R.J., A learning algorithm for
Boltzmann machines, in Anderson, J.A. and Rosenfeld, E. (Eds.),
Neurocomputing, Cambridge, MA: MIT Press, 1 988.

Alippi, C., Piuri, V., and Sami, M., Sensitivity to errors in artificial neural
networks: A behavioral approach, /EEE Trans. on Circuits and Systems
/: Fundaments/ Theory andApplications, Vol. 42, No. 6, June 1995, pp.
358-361.

Ansari, N., Hou, E.S.H., and Yu, Y., A new method to optimize the satellite
broadcasting schedules using the mean field annealing of a Hopfield
neural network, IEEE Trans. Neural Networks, vo1.6, no.2, pp.470-483,
Mar. 1995.

Antognetti, P., and MilutinoviC, V. (Eds.), Neural Networks: Concepts,
Applications, and implementations, Vol.l, Ill, IV, Englewood Cliffs, NJ:
f rentice-Hall, 1991.

Atlas, L.E and Suzuki, Y., Digital systems for artificial neural networks, IEEE
Circuits and Devices Magazine, pp. 20-24, Nov. 1989.

Baldi, P., Gradient descent learning algorithm overview: A general dynamical
systems perspective, IEEE Trans. Neural Networks, Vol. 6, pp. 182-1 95,
Jan. 1995.

Benvenuto, N., Marchesi, M., Orlandi, G., Piazza, F., and Uncini, A., Design of
multi-layer neural networks with powers-of-two weights, Proc. lEEE lnt.
Symposium on Circuit and Systems, pp. 2951 -2954, New Orleans, May
1990.

Carpenter, G.A., and Grossberg, S., A massively parallel architecture for a self-
organizing neural pattern recognition machine, Computer Vision,
Graphics, and image Processing, vol. 37, pp. 54-1 15, 1983.

recognltlon coaes tor analog ourpur parcerns, ~ p p l e u upr1c-s-, VUI. LU,

pp. 491 9-4930, Dec. 1, 1987.

Carpenter, G.A., and Grossberg, S., Art 3 hierarchical search: Chemical
transmitters in self-organizing pattern recognition architectures," in Proc.
lnt. Joint Conf. on Neural Networks, vol. 2, pp. 30-33, Washington,
D.C., Jan. 1990.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen,
D.B., Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional maps, IEEE Trans. Neural
Networks, vol.3, no.4, pp.698-713, 1992.

Carpenter, G,A., Grossberg, S., and Reynolds, J.H., A fuzzy ARTMAP
nonparametric probability estimator for nonstationary pattern recognition
problems, IEEE Trans. Neural Networks, vo1.7, no.6, pp. I 330-1 336,
1996.

Cavilia, D.D., Valle, M., and Bisio, G.M., Effects of weight discretization on the
back propagation learning method: algorithm design and hardware
realization, Proc. lnt. Joint Conf. on Neural Networks, vol. 2, pp. 631 -
637, San Diego, CAI 1990.

Choi, J., Bang, S.H., and B.J. Sheu, A programmable analog VLSl neural
networks processor for communication receivers, /EEE Trans. Neural
Networks, vo1.4, no.3, pp.484-495, May 1993.

Choong, P.L., deSilva, C. J.S., Dawkins, H. J.S., and Sterrett, G.F., Entropy
maximization networks: An application to breast cancer prognosis, IEEE
Trans. Neural Networks, vo1.7, no.3, pp.568-577, May 1996.

Ergezinger, S. and Thornsen, E., An accelerated learning algorithm for
multilayer perceptrons: Optimization layer by layer, IEEE Trans. Neural
Networks, vo1.6, no. I, pp.31-42, Jan. 1 995.

Freeman, J.A., and Skapura, D.M., NeuralNetworks: Algorithms8 App/ications,

company, -I YY-I .

Fukushima, K., Cognitron: A self-organizing multilayered neural network,
Biolog. Cybernetics, vol. 20, pp.121-136, 1975.

Fukushima, K., Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position, Biolog.
Cybernetics, vol. 36, pp. I 93-202, 1980.

Grossman, T., Meir, R., and Domany, Em, Learning by choice of internal
rep resent at io n st i n Advances in Neura/ /n formation Processing Systems
/, pp.73-80, Touretzky, D. (Eds.), Morgan Kaufmann, San Mateo, 1989.

Hebb, D.O., The Organization o f Behavior, New York: John Wiley & Sons,
1949.

Hinton, G.E.1 and Sejnowski, T.J., Learning and relearning in Boltzmann
machines, in Rumelhart, D. E. and McClelland, J. L. (Eds.), Parallel
Distributed Processing, vol. I, ch. 7, Cambridge, MA: MIT Press, 1 986.

Hopfield, J.J., Neural networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci. USA, vol. 79, pp.2554-
2558, April 1982.

Hopfield, J. J., Neurons with graded response have collective computational
propoerties like those of two-state neurons, Proc. Natl. Acad. Aci. USA,
vo1.81, 3088-3092, May 1984.

Hornik, K., Stinchcornbe, M., and White, H., Multilayer feedforward networks
are universal approximators, Neural Networks, vol. 2, pp. 359-366,
1989.

Hornik, K., Approximation capabilities of multilayer feedforward networks,
Neural Networks, vol. 4, pp. 251-257, 1991.

Jacobs, R. A., l ncreased rates of convergence through learning rate adaptation,

Jenkins, J.H., Designing with FPGAs and CPLDs, Englewood Cliffs, NJ: PTR
Prentice Hall, 1994.

Kechriotis, G., Zervas, E., and Manolakos, E.S., Using recurrent neural
networks for adaptive communication channel equalization, IEEE Trans.
Neural Networks, vo1.5, no.2, pp.267-278, Mar. 1994.

Kim, Y.C. and Shanblatt, M.A., An Implementable Digital Multilayer Neural
Network, Proc. /JCNN, Baltimore, vo1.2, pp.594-600, 1992.

Kirkpatrick, S., Jr., Gelatt, C.D., and Vecchi, M.P., Optimization by simulated
annealing, in Anderson, J.A. and Rosenfeld, E. (Eds.), Neurocomputing,
MIT Press, Cambridge, MA, pp. 554-568, 1988.

Kohonen, T., Self-organized formation of topologically correct feature maps,
Biolog. Cybernetics, vol. 43, pp. 59-69, 1982.

Kohonen, T., Self-Organization and Associative Memory, Springer-Verlag,
Berlin, 1 984.

KOS~O, B., Adaptive bidirectional associative memories, Appl. Optics, vol. 26,
pp. 4947-4960, Dec. 1, 1987.

Kosko, B., Bidirectional associative memories, /EEE Tran. Systems, Man, and
Cybernetics, vol. 1 8, no. I , pp. 49-60, 1 988.

Kruschke, J.K., and Movellan, J.R., Benefits of gain: Speeded learning and
minimal hidden layers in back-propagation networks, IEEE Trans.
Systems, Man, and Cybernetics, vol. 21, pp. 273-280, Mar. 1991 .

Kung, S.Y., Digital Neural Networks, Englewood Cliffs, NJ: PTR Prentice Hall,
1993.

Kung, S.Y. and Taur, J.S., Decision-based neural networks with signal/image
classification applications, IEEE Trans. Neural Networks, vo1.6, no.3,

Kwan, H.K., Simple sigmoid-like activation function suitable for digital hardware
implementation, /EE Electronics Letters, vol. 28, no. 1 5, pp. 1 379-1 380,
July 16, 1992.

Kwan, H .K. and Chan, C.L., Design of multidimensional spherically symmetric
and constant group delay recursive digital filters with sum of powers-of-
two coefficients, /EEE Trans. on Circuits and Systems, vol. 37, pp.
1027-1035, August 1990 and pp. 1580, December 1990.

Kwan, H.K. and Chan, C.L., Circularly symmetric two-dimensional multiplierless
FIR digital filter design using an enhanced McClellan transformation,
Proc. lnst. Elec. Eng. (part G: Circuits, Devices, and Systems), vol. 136,
no. 3, pp. 129-134, June 1989.

Kwan, H.K., and Tang, C.Z., Multilayer feedforward neural networks with
powers-of-two weights and piecewise activation functions, Proc. 7992
Canadian Conference on Electrical and Computer Engineering, Toron to,
Sept. 1992, pp. TM6.14.1-4.

Kwan, H.K., and Tang, C.Z., Designing multilayer feedforward neural networks
using simplified sigmoid activation functions and one-powerss-of-two
weights, lE€ Electronics Letters, vol. 28, no.25, pp. 2343-2345, Dec.
3, 1992.

Kwan, H.K., and Tang, C.Z., A design method for multilayer feedforward neural
networks for simple hardware implementation, Proc. 1993 IEEE
International Symposium on Circuitsand Systems, Chicago, U S A . , May
1993, pp.2363-2366.

Kwan, H.K., and Tang, C.Z., Multiplierless multilayer feedforward neural
network design suitable for continuous input-output mapping, IEE
Electronics Letters, vol. 29, no. 14, pp. 1 259-1 260, July 8, 1 993.

Kwan, H.K., and Tang, C.Z., Multiplierless Multilayer Feedforward Neural
Networks , Proc. 36th Midwest Symposium on Circuits and Systems,

Kwan, H.K., and Tang, C.Z., A multilayer feedforward neural network model
for digital hardware implementation, Proc. IEEE International Symposium
on Circuits and Systems, London, UK, vo1.6, pp.343-345, May 30-June
2, 1994.

Kwan, H.K., Wang, Z., and Soltis, J.J., Method for generating partially
correlated vectorsets for neural network simulations, /nt. J. Electron.,
vol. 74, no. 4, pp.523-528, 1993.

Lang, K. J., Waibel, A.H., and Hinton, G.E., A time-delay neural network
architecture for isolated word recognition, in Sanchez-Sinencio, E. and
La u , C . (Eds . I , Artificial Neural Net works: Paradigms, Applications, and
Hardware Implementations, New York: IEEE Press, 1992.

Lau, C. (Eds-), Neural Networks: Theoretical Foundations and Analysis. New
York: IEEE Press, 1992.

Lee, Y., Oh, S.H., and Kim, M.W., The effect of initial weights on premature
saturation in back-propagation learning, Proc. International Joint
Conference on Neural Networks, vol. I, pp. 765-770, Seattle, USA,
'1991.

Levin, E., Hidden control neural architecture modeling of nonlinear time varying
systems and its applications, / E E Trans. Neural Networks, vo1.4, no. I,
pp. 109-1 1 6, Jan. 1 993.

Lewis, F.L., Yesildirek, A., and Liu, K., Multilayer neural-net robot controller
with guaranteed tracking performance, IEEE Trans. Neural Networks,
vo1.7, no.2, pp.388-399, Mar. 1996.

Lim, Y.C. and Constantinides, A.G., Linear phase FIR digital filter without
multipliers, in Proc. IEEE Symp. Circuits Syst., Tokyo, Japan, July 1979,
pp. 185-188.

Lim, Y.C., Parker, S.R., and Constantinides, A.G., Finite wordlength FIR filter

trans. ~cousr., apeecn, 31gna1 rrocess~ny, VUI. au, pp. PO ~-uv-, MUY.

1982.

Lim, Y.C. and Parker, S.R., FIR filter design over a discrete powers-of-two
coefficient space, IEEE Trans. on Acoustics, Speech, and Signal
Processing, vol. 1, pp. 583-591, June 1983.

Lim, Y.C. and Parker, S.R., Discrete coefficient FIR digital filter design based
upon an LMS criteria, IEEE Trans. on Circuits and Systems, vol. 30, no.
10, pp. 7233-7239, Oct. 1983.

Lippmann, R.P., An introduction to computing with neural nets, IEEE ASSP
Magazine, vol. 4, pp. 4-22, Apr. 1987.

Marchesi, M., Orlandi, 6, Piazza, F., and Uncini, A., Fast neural networks
without multipliers, IEEE Trans. NeuralNetworks, vol. 4, pp. 53-62, Jan.
1993.

McCulloch, W.S. and Pitts, W., A logical calculus of the ideas imminent in
nervous activity, Bulletin o f Mathematical Biophysics, 5, pp. 11 5-1 33,
1 943.

Mead, C.A., Analog VLS/ and Neura/ Systems, Reading MA: Addison-Wesley,
1989.

Minai, A. A. and Williams, R. D., Acceleration of back-propagation through
learning rate and momentum adaptation, Proc. lnternationa/ Joint
Conference on Neural Networks, vol. 1, pp. 676-679, Washington, DC,
USA, 1990.

M ins ky, M . and Pa pert, S . , Perceptrons: A n Introduction to Computational
Geometry, Cambridge, MA: MIT Press, 1969.

Moore, K.L., Artificial neural networks: Weighing the different ways t o
systematize thinking, IEEE Potentials, pp. 23-28, Feb. 1992.

Verlag, 1 990.

Nakayama, U., Inomata, S., and Takeuchi, Y., A digital multilayer neural
network with limited binary expressions, IJCNN '90, San Diego, June
17-21, 1990, ~01.2, pp. 587-592.

Narendra, K.S. and Parthasarathy, K., Identification and control of dynamical
systems using neural networks, I E E Trans. Neural Networks, vol. 1, no.
1, pp. 4-27, Mar. 1990.

Nekovei, R. and Sun, Y., Back-propagation network and its configuration for
blood vessel detection in angiograms, /EEE Trans. Neural Networks,
vo1.6, no.1, pp.64-72, Jan, 1995.

Nguyen, D.H. and Widrow, B., Neural networks for self-learning control
systems, IEEE Control Systems Magazine, pp. 18-23, Apr. 1990.

Nikoonahad, M. and Liu, D.C., Medical ultrasound imaging using neural
networks, Electron. Lett., vo1.26, no.8, pp.545-546, Apr. 1 990.

Oh, H.J. and Salam, F.M.A., Analog CMOS implementation of neural network
for adaptive signal processing, Proc. IEEE Int. Symp. Circuits and
Systems, London, England, vo1.6, pp.503-506, 1 994.

Oh, H. J. and Salam, F.M.A., Modular analog chip for feedforward networks
with on-chip learning, Proc. 36th Midwest Symp. Circuits and Systems,
Detroit, vol. I, pp.766-769, 1 993.

Piazza, F., Uncini, A., and Zenobi, M., Neural networks with digital LUT

activation functions, IJCIVN '93, Japan, vol. 2, pp. 14.01 -1 4O4.

Phansalkar, V.V. and Sastry, P.S., Analysis of the back-propagation algorithm
with momentum, IEEE Trans. NeuralNetworks, vol. 5, pp. 505-506, May
1994.

Przytula, K.W. and Prasanna, V.K., Parallel Digital /mp/ernentations o f Neural

Rauch, H.E. and Winarske, T., Neural networks for routing communication
traffic, IEEE Control Systems Magazine, pp.26-31, Apr. 1988.

Rosenblatt, F., The perceptron: A probabilistic model for information storage
and organization in the brain, Psychological Review, vol. 65, pp .386-
408, 1958.

Rosenblatt, F., Princ@/es o f Neurodynamics: Perceptrons and the Theory o f
Brain Mechanisms, Washington D.C.: Spartan Books, 1962.

Rumelhart, D.E., Hinton, G.E., and William, R.J., Learning interrnal
representations by error propagation, in Rumelhart, D.E. and McClelland,
J.L. (Eds.), Parallel Distributed Processing, vol.1, ch.8, Cambridge, MA:
MIT Press, 1986.

Rumelhart, D.E. and McClelland, J.L., Parallel Distributed Processing, vol. I ,
Foundations. Cambridge, MA: MIT Press, 1986.

Sanchez-Sinencio, E. and Lau, C. (Eds.), Artificia/ Neura/Networks: Paradigms,
Applications, and Hardware Implementations, New Yor k: l EEE Press,
1992.

Sanger, T.D., Optimal unsupervised motor learning for dimensionality reduction
of nonlinear control systems, IEEE Trans. Neural Networks, vo1.5, no.6,
pp.965-973, NOV. 1994.

Schreibman, D.V. and Norris, E.M., Speeding up back propagation by gradient
correlation, Proc. lnt. Joint Conf. on Neural Networks, Washington, D.C.,
pp. 1723-726, 1990.

Sebald, A.V. and Schlenzig, J., Minimax design of neural net controllers for
highly uncertain plants, / E E Trans. NeuralNetworks, vo1.5, no.1, pp.73-
82, Jan. 1994.

Sejnowski, T.J. and Rosenberg, C.R., Paraller networks that learn to pronounce

Sheu, B.J. and Chor, J., Neural Information Processing and VLSI, Kluwer
Academic Publishers, Boston, 1995.

Stevenson, M., Winter, R., and Widrow, B., "Sensitivity of feedforward neural
networks to weight errors," IEEE Trans. Neural Networks, vol. 1, no. 1,
pp. 81-92, March 1990.

Szu, H., Fast simulated annealing, in Denker, J.S. (Ed.), Neural Networks for
Computing, American Institute of Physics, New York, pp. 420-425,
1986.

Tang, C.Z. and Kwan, H.K., Convergence and generalization properties of
multilayer feedforward neural networks, Proc. 7992 IEEE International
Symposium on Circuits and Systems, San Diego, U.S.A., May 1992, pp.
65-68.

Tang, C.Z. and Kwan, H.K., Feedforward neural networks with powers-of-two
weights , Pro c. 7 992 International Joint Conference on Neural Net works,
Beijing, China, Nov. 1992, Vo1.2, pp.93-98.

Tang, C.Z. and Kwan, H.K., Feedforward neural networks without multipliers,
Proc. 7 992 ln terna tional Conference on Signal Processing Applications
and Technology, Boston, U.S.A., Nov. 1992, pp. 1 194-1 201.

Tang, C.Z. and Kwan, H.K., Parameter effects on convergence speed and
generalization capability of backpropagation algorithm, International
Journal o f Electronics, vol. 74, no. 1, pp. 35-46, Jan. 1993,

Tang, C.Z. and Kwan, H.K., Multilayer feedforward neural networks with single
powers-of-two weights, IEEE Trans. Signal Processing, vol. 41, pp.

2724-2727, Aug. 1993.

Tang, D.W. and Hopfield, J.J., Simple "neural" optimization networks: an A/D
converter, signal decision circuit, and a linear programming circuit, IEEE
Trans. Circuits and Syst., vol. CAS-33, no. 5, pp. 533-541, May 1986.

Sinencio, E. and Lau, C. (Eds.), Artificial Neural Networks: Paradigms,
Applications, and Hardware lrnplementations, New York: IEEE Press,
1992.

Thiran, P. and Hasler, M., Self-organization of a one-dimensional Kohonen
network with quantized weights and inputs," Neural Networks, vol. 7,
no. 9, pp. 1427-1439, 1994.

Thiran, P., Peiris, V., Heim, P., and Hochet, B., Quantization effects in digitally
behaving circuit implementations of Kohonen networks, IEEE Trans.
Neural Networks, vol. 5, pp.450-458, 1994.

Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., and Alkon, D.L., Accelerating
the convergence of the back-propagation method, Biol. Cybern., vol. 59,
pp. 257-263, 1988.

Wakerly, J.F., Digital Design Prhc@les and Practices, Englewood Cliffs, NJ:
PTR Prentice Hall, 1990.

Wang, G.-J., and Chen, C.-C., A fast rnultilayer neural-network training
algorithm based on the layer-by-layer optimizing procedures, IEEE Trans.
Neural Networks, vo1.7, no.3, pp.768-775, May 1996.

Watta, P.B. and Hassoun, M.H.1 A coupled gradient network approach for
static and temporal mixed-integer optimization, IEEE Trans. Neural
Networks, vo1.7, no.3, pp.578-593, May 1996.

Werbos, P., Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences, Ph.D. thesis, Harvard University, Cambridge, MA,
Aug. 1974.

White, B.A. and Elmasry, M.I., The digi-neocognitron: A digital neocognitron
neural network model for VLSI, JEEE Trans. Neural Networks, vol. 3, pp.
73-85, Jan. 1992.

Widrow, 8. and Hoff, M.E., Adaptive switching circuits, 1960 IRE WESCON

Widrow, B. and Lehr, M.A., 30 years of adaptive neural networks: Perceptron,
madaline, and backpropagation, Proc. IEEE, vol. 78, pp. 141 5-1 442,
Sept. 1990.

Xue, P. and Liu, B., Adaptive equalizer using finite-bit power-of-two quantizer,
IEEE Trans. Acoust., Speech, Signal Processing, vol. 34, pp. 1603-1 61 1,
Dec. 1986.

Zaghloul, M.E., Mendor, J.L., and Newcomb, R.W., Silicon Implementation o f
Pulse Coded Neural Ne tworks, Kluwer Academic Publishers, Boston, MA,
1994.

Zak, S.H., Upatising, V., and Hui, S., Solving linear programming problems with
neural networks: A comparative study, IEEE Trans. Neural Networks,
vo1.6, no.1, pp.94-104, Jan. 1995.

Zhang, M. and Fulcher, J., Face recognition using artificial neural network
group-based adaptive tolerance (GAT) trees, IEEE Trans. Neural
Networks, vo1.7, no.3, pp.555-567, May 1996.

Zhao, Q. and Tadokoro, Y., A simple design of FIR filters with powers-of-two
coefficients, IEEE Jran. Circuits and Systems, vo1.35, no.5, pp. 566-
570, May 1988.

Zurada, J.M., Analog implementation of neural networks, IEEE Circuits and
Devices Magazine, vol. 8, pp. 36-41, Sept. 1992.

VITA AUCTORIS

NAME: Chuan Zhang Tang

PLACE OF BIRTH: Beijing, China

YEAR OF BIRTH: 1962

EDUCATION: Jing Gong High School, Beijing, China
1976 - 1980

Tsinghua University, Beijing, China
1980 - I985
B.Eng. in Electrical Engineering

Peking University, Beijing, China
1985 - 1988
M.Sc. in Electrical Engineering

University of Windsor, Windsor, Ontario, Canada
1990 - I996
Ph.D. in Electrical Engineering

WORK EXPERIENCE: Chinese Academy of Sciences, Beijing, China
I988 - 1990
Research Engineer

Cableshare Interactive Technology, Inc.
London, Ontario, Canada
1995 - present
Senior ASIC Design Engineer

APPLIED - INLAGE . lnc
= 1653 East Main Street - -. - Rochester. NY 14609 USA -- -- - - Phone: 71 6/482-O3OO -- -- - - Fax: 7161288-5989

0 1993, Applied image. Inc.. All Rights Resewed

