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Abstract

Somatosensory Evoked Potentials (SEPs) are clinically valuable signals whose impor-
tance is highlighted in such applications as the diagnosis of neuromuscular disorders
and in peripheral nerve and spinal cord monitoring. The main problem associated
with SEP measurement is poor Signal-to-Noise Ratio (SNR). The prominent inter-
ference sources which corrupt the SEP are Myoelectric Interference (MEI), ECG and
Stimulus Artifact (SA). Digital signal processing techniques are developed in this
thesis which significantly reduce each of the abovementioned interferences.

Different Crosstalk Resistant Adaptive Noise Cancellers (CRANCs) are applied to
the task of MEI reduction and their performance is scrutinized under a wide variety
of operating conditions. A novel Multichannel CRANC (MCRANC) architecture
is developed and its performance is evaluated analytically and through processing
simulated and experimental MEI data.

Nonlinear Adaptive Filters (NAF's) based on truncated Volterra series are applied
for the first time to the SA reduction problem. Various parameters which influence
the SA reduction ability of the NAFs are identified and recommendations are made
to compensate for these parameters.

The performance of various ECG cancellation techniques such as clipping, gat-
ing, and adaptive filtering is studied in detail. Modifications are made to the basic
adaptive filter structure for ECG reduction and a method called the “template sub-
traction” and its adaptive version, the “Adaptive Template Subtraction (ATS)” are

developed which display superior ECG cancellation results.

il
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Chapter 1

Introduction

Summary

Somatosensory Evoked Potentials (SEPs) are signals emanating from the central or
peripheral nervous system in response to external stimuli. These SEPs contain clini-
cally valuable information useful in the diagnosis of various neuromuscular disorders
and in peripheral nerve monitoring. The main problem associated with the SEPs is
their abysmal Signal-to-Noise Ratio (SNR). In this chapter a brief description of the
genesis of the SEP along with its characteristics is presented. The various sources
of interference that typically influence SEP recordings are discussed briefly. The

concrete objectives of this research are stated towards the end of the chapter.

1.1 Introduction

Biomedical signal processing is a general area in the biomedical engineering field which

deals with the electrical signals emanating from physiological systems. Examples of



some important biomedical signals include the Electrocardiogram (ECG) which rep-
resents the electrical activity associated with the heart!, the Electroencephalogram
(EEG) which represents the integrated electrical activity of the brain and the Elec-
tromyogram (EMG) which is the electrical manifestation of the contracting muscles.
Various time domain and spectral parameters extracted from these signals form a
very important diagnostic tool-set as they are valuable in assessing the condition of
the underlying physiological systems and also in monitoring the physiological system
state. For example, parameters extracted from the ECG can be used to detect cardiac
arrhythmias [62] and the EMG parameters can be used to control an artificial limb
[45].

The responses of the central or peripheral nervous system to external stimuli form
an important class of these biomedical signals. These signals, called Evoked Po-
tentials (EPs), are very important in understanding the functioning of the nervous
system, in testing the integrity of the nervous system and in the diagnosis of various
neuromnuscular disorders [53, 14]. EPs recorded in the past have been from three
modalities: a) Visual Evoked Potentials (VEPs), b) Brainstem Auditory Evoked Po-
tentials (BAEPs), and c) Somatosensory Evoked Potentials (SEPs) [53]. VEPs are
generally recorded, using surface electrodes placed on the scalp, in response to such
visual stimuli as a flashing light, checkerboard or other pattern based visual stimulus
[63, 14]. BAEPs are also acquired, by placing electrodes on the scalp, in response
to auditory stimuli such as a click, tone burst or white noise [53]. Both VEPs and
BAEPs are also called Cortical Evoked Potentials (CEPs) as they are recorded on
the scalp. The SEPs, on the other hand, can be recorded either cortically, on the
peripheral nervous system or on the spinal cord [53]. This thesis concentrates on

issues related to the acquisition and processing of two subclasses of the SEP viz. the

Median nerve SEP (MSEP) and the Spinal cord SEP (SSEP). A brief description of

'For an overview of the field of biomedical signal processing and a description of some of the
important biomedical signals, refer to [62] and [14].



the genesis of each of these SEPs is given in the following section.
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Figure 1.1: Typical ezperimental setup to acquire SSEPs. The same ezperimental setup
can be used to measure MSEPs by appropriate placement of the stimulating and recording
electrodes.

1.2 Somatosensory Evoked Potentials

Before discussing the genesis of the SEPs, it is worthwhile to describe the experimental
protocol that is usually followed to acquire these signals. Figure 1.1 depicts the

instrumentation used at the Institute of Biomedical Engineering, UNB which is typical



of the experimental setup used for the acquisition of the SEPs. The system is shown
here for acquiring SSEPs, but the same instrumentation system can be utilized to
obtain MSEPs by appropriately placing the stimulating and recording electrodes (this
point will be further discussed later in this section).

The instrumentation system can broadly be classified into three subsystems: a) the
stimulating system, b) the amplification system, and c) the data processing system.
The stimulation system consists of a stimulator (in our case Grass Model S11B) which
outputs an electrical stimulus pulse of variable duration, frequency and amplitude and
a transformer coupled stimulus isolation unit (SIU) to reduce stimulus artifact and
enhance subject safety. The output of the stimulus isolation unit is given to the
stimulating electrodes which are carefully placed on the nerve site. In Figure 1.1,
the stimulating electrodes are shown placed over the tibial nerve, which is accessible
behind the knee. The amplification system comprises a fixed gain preamplifier stage
with high Common Mode Rejection Ratio (CMRR), a bandpass filter typically with
a passband of 15-1000 Hz [53} for SSEP studies and a variable gain amplifier. The
SSEPs are recorded using standard Ag-AgCl electrodes placed along the spinal cord.
The filtered and amplified signal is digitized and stored in a computer for further
processing. The signal analyzer (B & K 4 channel module type 3023) performs real-
time averaging of the SSEP and facilitates visual inspection of the SSEP while the
experiment is being performed. For the acquisition of the median nerve SEPs, the
stimulating electrodes are usually wrapped around the index finger, with the cathode
proximal to the base of the finger. The resulting MSEP can be measured by placing
recording electrodes at the wrist region.

The genesis of an SEP can be best understood from the basic anatomical unit of
a nerve, the nerve fiber [14]. At rest, these nerve fibers are said to be “polarized” as
there exists a potential difference (of approximately 70 mV) between the interior of
the fiber and the external medium. When an electrical stimulus of adequate intensity

is applied, the nerve fibers underneath the stimulating electrodes depolarize. An ionic



current from the surrounding polarized region flows into this depolarized region. This
current is adequate to depolarize the surrounding regions and wavefronts of depolar-
ization - repolarization associated with different nerve fibers travel away from the
stimulus electrodes. These traveling wavefronts can then be captured by placing the
recording electrodes in the direction of their propagation. The resulting monopolar
SEP is therefore a summation of all the action potentials arising from the active nerve
fibers and is generally a triphasic waveform whose shape and amplitude are affected
by such factors as the low pass filtering action of the tissue between the active nerve
fibers and the recording electrodes and the differences in conduction velocities of the
active nerve fibers. In Figure 1.1, a simulated SSEP is shown to be captured as it
propagates along the spinal cord. Note that the reference electrode for recording the
SSEP is placed at the back of the thigh to obtain monopolar recording [39]. Two
characteristic traits, both mainly due to the differences in conduction velocities of
the active nerve fibers, can be observed from the propagating SSEP waveforms: a)
decrease in amplitude as the SSEP propagates to higher levels of the spinal cord, and
b) dispersion or “smearing” of the waveform.

An important application of the SSEPs is spinal cord integrity monitoring during
surgery. Scoliosis is a lateral curvature of the spine, which can eventually lead to such
complications as disfiguration, respiratory problems, and heart disease [43]. The most
common procedure to compensate for the scoliosis is the Harrington rod procedure
[43]. As some possible surgical complications affecting the spinal cord are reversible
if detected immediately, monitoring of spinal cord integrity is desirable. SSEPs offer
an attractive solution to monitor the spinal cord. The SSEPs propagating along the
spinal cord can be captured as shown in Figure 1.1, effectively “mapping” the sensory
nerve conduction along the spinal cord. Any significant deviation from the normal
SSEP (which is obtained prior to the surgery) in terms of amplitude and latency

parameters can indicate damage to the spinal cord.
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Figure 1.2: Different interference sources that influence the SSEP measurements. The
same tnterference sources, with the ezception of the ECG, also influence MSEP recordings.

1.3 SEP Measurement Environment

The SEP measured using surface electrodes poses a challenging problem as it is ob-
scured by different interference sources. The Signal-to-Noise Ratio (SNR) that is
usually encountered in SEP studies is usually less than 0 dB. The time series ac-
quired using the recording electrodes consists of four components: 1) the stimulus
evoked SEP whose genesis is detailed before, 2) a larger stimulus evoked artifact, 3)
other ongoing, stimulus independent biological activity (ECG and myoelectric inter-
ference in Figure 1.2), and 4) nonbiological noise which is also stimulus independent

but originating outside the human body (uncorrelated noise in Figure 1.2). Figure



1.2 illustrates each of the noise sources along with their typical voltage levels when
recorded at the lower lumbar region of the spine. The same interference sources, with
the exception of the ECG and with slightly different amplitude levels, also influence
the MSEP recordings. A brief description of each of these interference sources is given
below.

The Stimulus Artifact (SA) waveform is generally a spike followed by a decay-
ing response whose amplitude and time constant depend upon such diverse factors
as the geometry and type of the stimulating and recording electrodes, the stimulator
characteristics, and the filtering characteristics of the preamplification stage. The
SA waveform is most irksome when the tail of the artifact interferes with the SEP
waveform resulting in erroneous SEP estimates. The ECG is the electrical signal as-
sociated with the cardiac activity. The MSEPs are usually not affected by the ECG
interference, due to the placement of the recording electrodes on the wrist region. The
SSEP recordings, on the other hand, are predominantly influenced by the ECG and
the problem becomes worse as we move towards the thoracic levels of the spinal cord
due to the proximity of the recording electrodes to the chest cavity. The EMG or the
Myoelectric Interference (MEI) is the electrical manifestation of the surrounding
active muscle fibers. The influence of the MEI also increases at the thoracic levels
of the spinal cord where the MEI originates mainly from the muscles associated with
breathing. With MSEP recordings, MEI forms the chief contributor to the poor SNR.
The Uncorrelated noise is mainly composed of the instrumentation noise and the
electrical noise generated by the electrode-skin interface at the recording electrodes.
This interference can be modelled as a white Gaussian random noise whose power
levels are often on par with the SEP. The 60-Hz or power line interference is mainly
due to the capacitive coupling between the 60-Hz power distribution system and the
measurement system. The 60-Hz interference is generally a “milder” interference in
most of the SSEP recordings as good skin preparation and high CMRR front-end am-

plification stage will significantly reduce the amount of power-line interference. Thus



the SA, MEI and ECG form the significant interference set.

Explicitly stated, the main problem associated with the SEP recording is its dismal
SNR. Thus dedicated signal processing techniques are required to reduce the influence
of each of the significant interferences thereby enhancing the SEP.

1.4 Goals of the Research

Traditionally, ensemble averaging is the procedure used to increase the poor SNR
associated with the SEP. In the presence of aforementioned interferences, however, a
large number of SEP records need to be averaged to obtain a good quality SEP. This
will result in long recording times and consequently discomfort to the subject if not
anaesthesized. In addition, stimulus artifact interference is not affected by ensemble
averaging as it occurs in synchrony with the SEP. Thus the main objective of this
research work is to develop effective signal processing techniques to reduce each of

the interferences thereby enhancing the SEP. The goal of this research work is:

¢ to investigate and devise efficient signal processing techniques to
reduce each of the abovementioned significant interference sources
while maintaining all the essential features of the underlying SEP.
The objective is to enhance the quality of the SEP while reducing

the recording time.

1.5 Thesis Organization

The organization of the thesis is as follows: In Chapter 2, a detailed literature sur-
vey is conducted to review the previous work done to reduce each of the interference
sources. In Chapter 3, fundamentals of adaptive noise cancellation technique are
detailed which form the basis for the rest of this thesis. In this chapter, various

parameters influencing an adaptive noise cancelling filter are described. Chapter 4



concerns itself with temporal and spatio-temporal filtering of the myoelectric interfer-
ence. Novel crosstalk resistant adaptive noise cancelling structures are introduced in
this chapter and their performance is evaluated analytically and through processing
simulated and experimental data. Chapter 5 presents results pertaining to SA reduc-
tion. Nonlinear filtering techniques, which have never been applied to SA reduction
before, are discussed in this chapter and their performance is rigorously scrutinized. In
Chapter 6, various signal processing techniques are investigated for ECG reduction
and a method, called Adaptive Template Subtraction (ATS) method is developed.
The thesis is concluded with Chapter 7 where a summary of the research work is
presented along with the major contributions of this thesis and suggestions for future

work.



Chapter 2

Literature Review

Summary

An in-depth literature survey is undertaken in this chapter to review the previous
SEP research. Various clinical applications which highlight the significance of SEPs
are described. Each of the main interference sources that are responsible for the
poor SEP SNR is considered separately with a description of its characteristics and
methods of reduction. The relative merits and demerits of the different interference
reduction methods are discussed and a preview of the proposed reduction methods

which circumvent some of the difficulties is given.

2.1 Clinical Applications of the SEPs

Since Dawson’s first reported findings of the SEPs in 1947 [12], there has been growing
interest in the clinical application of the SEPs mainly in the domain of neurological
damage assessment of the peripheral and central nervous system. Both cortical and

noncortical SEPs are clinically used to detect any abnormalities. SEPs recorded from
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the scalp generally are composed of early components corresponding to peripheral
nerve action potentials, early components generated in the brainstem, short- and
medium-latency cortical action potentials and finally an afterdischarge [53]. The
resulting SEP is often composed of several peaks and troughs each of which has sig-
nificance in assessing the integrity of the nervous system under scrutiny [53]. However
cortical and subcortical SEPs are sensitive to such variables as subject wakefulness
[56], level of anesthetic agents [11, 57}, temperature changes, changes in arterial blood
pressure or respiratory gases and changes in hormonal activity [21]. This sensitive
nature undermines the effectiveness of cortical SEPs in accurately assessing the func-
tioning of the nervous system. Thus Spinal cord SEPs (SSEPs) and Median nerve
SEPs (MSEPs) are more attractive as they are less influenced by anesthetic agents
[20, 3], and are more physiologically controlled [39].

Operating room procedures which benefit from SSEP recordings include the as-
sessment of conduction through possibly damaged segments prior to decompression or
nerve graft, and monitoring of sensory pathways during potentially dangerous surgical
maneuvers including scoliosis correction, [33]. There has been considerable interest
in the use of SSEPs to test conduction in the sensory spinal column pathways after
spinal cord injuries. It is deemed that continued absence of SSEPs is a poor prog-
nostic sign, whereas the persistence or reappearance of SSEPs, even in a clinically
complete lesion, is an encouraging sign.

SSEP conduction has been exploited for spinal cord monitoring during opera-
tive procedures such as Scoliosis treatment. Scoliosis is a lateral curvature of the
spine which is most frequently a problem in adolescent girls [43]. Surgical correction
techniques employ mechanical fixation devices such as Harrington Rod instrument
to apply distractive and compressive forces to correct the abnormal curvature of the
spine [31]. However, neurological complications may arise due to this procedure and it
has been reported that the prognosis for recovery is vastly improved if the Harrington

rod is removed within 3 hours of the diagnosis of a complication [31]. A commonly

11



used intra-operative test for assessing spinal cord integrity, called the Stagnara “Wake
up” test [65], relies on bringing the patient out of anaesthesia to determine his/her
voluntary control of the extremities such as the toes and fingers. If the patient has
difficulty in responding to this test, the tension associated with the Harrington rod is
reduced. There are several difficulties inherent to this procedure, most of which are
associated with bringing the patient out of anesthesia with all the anesthetic intuba-
tion devices in place. SSEPs overcome these difficulties and offer a very attractive
solution to spinal cord monitoring without any voluntary effort from the patient.
SSEPs have also been applied to spinal cord monitoring during operations for tho-
racic aortic aneurysms [26], treatment of spinal cord tumors and spinal cord ischemia
[53].

The conduction properties of the MSEPs were exploited for the diagnosis of me-
dian nerve injuries [58]. Injury to the median nerve results in impairment of two of
the most important movements of the body - grip and pronation. One of the most
common median nerve injuries is the compression of the median nerve at the wrist,
called the Carpal Tunnel Syndrome (CTS) [58]. In the wrist, the median nerve passes
through a narrow aperture called the carpal tunnel. At this point the nerve is vul-
nerable to any changes in the surrounding medium whether due to edema, trauma,
inflammation or any other conditions. This condition commonly occurs in subjects
who are engaged in vigorous manual work, especially if they are unused to such work.
This syndrome can be effectively diagnosed using the MSEP conduction characteris-
tics [58].

In any of the above SEP diagnostic applications, two main SEP parameters v1z.
the latency and the amplitude are used to detect any abnormalities [53, 39]. The
SEP latency refers to the time delay between the stimulus onset and the initial peak
of the SEP. Since the distance between the stimulating and recording electrodes can
be measured, nerve conduction velocity can be readily calculated from the latency

value. In many clinical studies, it is the increase in the latency value (or equivalently
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decrease in conduction velocity) that is taken as a positive indication of the pathology.
For example, latency increases of 3 ms have been used as the warning levels for SSEP
monitoring during spinal surgery [32]. For patients suffering from CTS, the sensory
distal latency of the MSEP was around 2 ms above the normal value and this distal
latency parameter is shown to be the most effective indicator of CTS [40]. Amplitude
measurements have been used in the diagnosis of pathology as well. One significant
issue with amplitude measurements is that the SEP waveform is highly dependent on
different variables such as the depth of the nerve, the tissue between the nerve fibers
and the recording electrode, the distribution of fiber types and their conduction ve-
locities and the position of the stimulating electrodes. Thus it is difficult to establish
norms for the amplitude levels of an SEP. An alternative approach for utilizing ampli-
tude measurements is to obtain premorbid amplitude values and compare them to the
postmorbid amplitude values. For example in spinal cord surgery applications, the
amplitude values of the SSEP obtained prior to the surgery can be used as guidelines
for detecting any neurological complications. In spinal cord monitoring applications,
an amplitude drop by 50% has been suggested as a warning threshold [32]. Table 2.1,
adopted from Regan [53], assigns a diagnostic value to different SEP parameters.

In essence, the SEPs contain information which is very helpful in clinical diag-
nosis. An important factor which determines the usefulness of any SEP instrument
in a clinical setting is its ability to detect early any deviation from the normal SEP
parameters and immediately warn the physician. Current SEP measurement systems
mostly rely on ensemble averaging to estimate the SEP waveform and then perform
the diagnostics. Due to the initial poor SNR associated with the SEP, as many as
several thousand records need to be averaged to obtain a good quality SEP, which
results in long recording times. Thus interference reduction techniques need to be

incorporated which facilitate an early detection of SEP abnormalities.
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Abnormality Value

1) Total absence of SEP 5.0
2) Absence of a component 1.5
3) Prolonged latency (> 3 SDs above

4.0
normal mean)
4) Amplitude reduction ( > 50 %) 4.0
5) Increased dispersion ( dispersion 15
factor > 3)

Table 2.1: Diagnostic value associated with different SEP parameters (after [52].)
2.2 Interference Reduction

As mentioned before, a major problem associated with SEP recordings is the presence
of more powerful interferences which mask the SEP. To quote McGillem et al. [37],
“The most important problem in evoked potential research is the signal extraction
itself”. There is a cornucopia of research work in this field attempting to improve the
poor SNR of the SEP. For the sake of clarity, the literature addressing the reduction

of each of the individual interference sources is grouped together.

2.2.1 Mpyoelectric Interference Reduction

As mentioned earlier, the SNR associated with the SEPs is typically less than 0
dB and less than -20 dB in the presence of larger Myoelectric Interference! (MEI)
(563, 54]. One of the most widely utilized tools to increase the poor SNR of the SEP is

1t is worthwhile mentioning here that the MEI will not be a concern in intra-operative monitoring
where muscle relaxants are utilized. Therefore in such situations, no MEI reduction filters are

required.
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ensemble averaging [37]. If a deterministic and repetitive signal is added to random
noise and the time of occurrence is accurately known, averaging becomes a very
effective tool. Ensemble averaging decreases the noise power in a manner inversely
proportional to the number of SEPs in the ensemble. Due to the initial poor SNR,
a large number of these SEP records are needed for an acceptable estimate of the
SEP. This results in long recording times, discomfort to the subject if awake, and
unacceptable interruption of the surgical procedure in intra-operative monitoring.
Since the SEP and the MEI occupy similar bandwidths, any fixed filtering procedures
result in SEP distortion. Matched filtering techniques have been applied to SEP
enhancement [68, 33, 43]. A matched filter is an optimum detector for a known
signal in additive white noise. However, the application of matched filtering to SEP
enhancement has two main drawbacks viz. the need for a good quality initial signal
estimate which requires averaging a large number of SEP records, and the presence of
the myoelectric interference which has a non-white spectrum. Also significant is the
inability of the matched filter to yield an estimate of the SEP waveform. Some authors
attempted to use the Wiener filter to reduce the MEI [44, 13, 66]. Unfortunately, the
design of a Wiener filter requires an a priori knowledge of the spectral content of the
SEP and the MEI, and the condition that both SEP and MEI be stationary.
Adaptive filters bypass the above a priori condition while still being able to con-
verge to the optimal solution. They also offer an additional advantage of tracking
any nonstationarities present in the input data. Adaptive Noise Cancellers (ANCs)
are a subclass of adaptive filters which have been successfully employed in reducing
the MEI [54, 52]. In its basic form, an ANC consists of a primary recording channel
containing the SEP and the MEI and a reference recording channel containing only
a correlated component of the MEI. The ANC performs as a correlation canceller
thereby leaving MEI free SEP at its output. The performance of a basic ANC is
however affected by several factors. One such factor is the presence of uncorrelated

noise sources in the reference input. The presence of these noise sources drives the
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adaptive filter away from the desired solution, resulting in unsatisfactory results. The
author [52, 46, 49], in an earlier study, has shown that the damaging effect of un-
correlated noise sources can be compensated by using a Multi-Reference Adaptive
Noise Canceller (MRANC). It has been shown by the author in {49] that the effect
of uncorrelated noise diminishes with the increase in the number of channels. How-
ever both ANC and MRANC suffer from another phenomenon, signal crosstalk. In
practical MEI cancellation experiments, the primary and reference sensors need to be
close together to acquire highly correlated MEI inputs. This will inevitably lead to
the presence of SEP components in the reference channel(s). This SEP “crosstalk”
results in undesirable signal distortion at the output of the ANC [69, 70, 34, 42]
which is even worse in the case of the MRANC [49]. The signal distortion due to
this SEP leakage into the reference channel is inversely proportional to the SNR in
the reference channel. Thus Crosstalk Resistant Adaptive Noise Canceller (CRANC)
structures are required which achieve maximum MEI reduction while being robust to
the presence of signal crosstalk.

Recently a few CRANC structures have been reported (2, 34, 42]. The CRANC
structure presented by Madhavan et al. [34] (CRAF #1) consists of a cascade of three
ANCs with the first ANC reducing the interference while the second and third ANCs
compensate for the signal distortion due to crosstalk. The author [52], in his master’s
thesis showed that the third ANC in this CRANC structure is unnecessary and a
two ANC CRANC structure was developed. A constrained CRANC was developed
by the author in a later publication? [48] which further reduces the computational
complexity of the CRANC filter. The CRANC architecture presented by Al-Kindi et
al. [2] (CRAF #2) is composed of two ANCs connected in a feedback structure and
attempts to separate the signal and interference components using a decorrelation

approach. Mirchandani et al. [42] proposed a similar CRANC structure but their

2This constrained CRANC algorithm is derived in Appendix I and the simulation results demon-
strating the efficacy of the constrained algorithm ate given in Chapter 4
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algorithm was derived on the basis of the joint energy minimization problem. These
feedback CRANC structures, however, suffer from instability and they need to be
initialized properly [42].

The problem of crosstalk resistant adaptive noise cancellation is a subset of a
more general problem viz. the separation of sources. The source separation problem
can be stated as follows: Given P independent sources and M sensors (M > P)
each of which receives a combination of the P sources, estimate the P independent
sources. This topic is hotly pursued under the heading “blind separation of sources”
and finds its roots mainly from communications and array processing fields [25, 29].
When the signals received at the individual sensors are linear combinations of the
sources, a neural network based signal separator can be designed [25]. Van Gerven et
al. [63] derived a Symmetric Adaptive Decorrelator (SAD) for the source separation
problem for the two channel case. A frequency domain source separation algorithm
was presented by Wienstien et al. [67]. Finally, a source separation algorithm based
on higher order statistics was proposed by Lacoume et al. [29] which overcomes some
of the problems arising from using the second order statistics.

A significant factor that is neglected in most of the above publications is the
presence of uncorrelated noise sources. In our case, the uncorrelated noise emanates
primarily from the instrumentation and from the electrode-tissue interfaces at the
recording electrodes. As mentioned before, the uncorrelated noise is as powerful as
the SEP and hence it needs to be taken into consideration. The author [52, 47, 51],
in his masters thesis, has shown that the performance of CRAF #1 is sensitive to
the presence of uncorrelated noise sources. It is shown through simulations and
experimental results [52, 47], that the performance of CRAF #1 is similar to the
performance of an ANC in the presence of uncorrelated noise sources. The effect of
uncorrelated noise on CRAF #2 will be even more detrimental due to the innate
feedback structure of CRAF #2. It is not clear how the source separation algorithms

behave with the addition of uncorrelated noise sources. Thus in this thesis new

17



approaches for crosstalk resistant MEI cancellation are undertaken which exhibit
improved tolerance to the presence of uncorrelated noise sources.

Discrimination based on the propagation properties of the SEP and MEI can be
used as a different approach to MEI reduction. As explained before, when a nerve is
stimulated, the resulting SEP travels away from the point of excitation. The same is
true for the MEI where the MEI travels along the active muscle fibers. The difference
in the conduction velocities can be used as a basis for designing a spatiotemporal filter
to achieve the distinction between the SEP and the MEI [7]. Bérubé compared the
performance of different spatiotemporal filters for the task of reducing MEI from SSEP
records [6]. A fundamental spatiotemporal filter is the Delay and Sum Beamformer
(DSB) wherein an array of sensors with added delays coherently sums the incident
signal (38, 6, 8]. The delays are designed in such a way that the SEP is summed
coherently while the MEI is incoherently summed. Thus the DSB requires an a prior:
knowledge of the SEP and MEI propagation characteristics to determine the delay
values [38, 6]. Another factor that affects the performance of the DSB is the high
correlation of the MEI interference across the sensors, which reduces the amount of
MEI cancellation. Another spatiotemporal filter is the Generalized Sidelobe Canceller
(GSC) which is similar to the MRANC and it, under certain condition, circumvents
the crosstalk problem that is generally present with MRANC. The GSC exploits
the propagation characteristics of the SEP and creates a “signal blocking matrix”
which reduces the SEP leakage into the reference channels. Thus the GSC enjoys the
improved uncorrelated noise tolerance associated with the MRANC while overcoming
the problem of signal distortion due to crosstalk. However, for an effective design of
the signal blocking matrix, a priori knowledge of the SEP propagation delay at each
sensor is required and moreover, the SEP needs to be a plane wave [6].

An alternative approach is to create an “interference blocking matrix” and then
implement a multichannel SEP enhancer. Due to the larger amplitude of the MEI

interference, the MEI propagation delays needed for the blocking matrix can be easily
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estimated using the crosscorrelation technique. The performance of this alternate
spatiotemporal filter and its variations will be scrutinized in Chapter 4.

An important point that is not discussed above is the presence of other correlated
interference sources across the primary and reference sensors. Three potential inter-
ference sources which fit this scenario are the stimulus artifact, ECG and the power
line interference. Thus these interferences should be removed from both the primary
and reference channels of the MEI reduction system to achieve maximum MEI re-
duction. The following sections review the literature concerned with the reduction of

these interferences.

2.2.2 SA Reduction Methods

As mentioned before, the SA waveform is typically a spike followed by an exponential
decay response whose amplitude and time constant are dependent uporn the stimulator
system characteristics, geometry and type of the stimulation and recording electrodes,
preamplifier characteristics and interelectrode impedance [17]. The SA waveform can
be modeled as a linear combination of three different components which are coupled
into the recording system by three independent mechanisms [55, 39]. The first and
the most obvious component results from the voltage gradient across the recording
electrodes resulting from the conduction of stimulus current through the limb [55, 17].
The second coupling mechanism arises from imperfect stimulus isolation. Since the
main stimulator is grounded, imperfect isolation results in a stray capacitance between
the stimulating electrodes and the grounded stimulator. This capacitance together
with the stray capacitance between the subject and ground results in a second current
which once again creates a voltage gradient at the recording electrodes. The third
component is due to electromagnetic coupling between the stimulating and recording
leads. The contribution of this component is highly dependent on the impedance
of the recording electrodes, quality of shielding on leads and the position of the
leads in space [55]. Based on this conceptual model of the SA, Mclean [39] made
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recommendations for the reduction of each of the abovementioned components?.

Traditionally, reduction of the stimulus artifact has been achieved using special
hardware. Options include sample and hold circuits which sample the input signal
the instant the stimulus is applied and hold that voltage level during the stimulus
artifact period [19, 16], trigger delay circuits which control the data acquisition process
such that no stimulus artifact is recorded [41], and circuits which utilize slew rate
limiting and time windowing [27]. Some other reported techniques of stimulus artifact
reduction include biphasic stimulator circuits [59], stimulus isolation techniques [27]
and positioning of the recording electrodes on stimulus artifact isopotential lines [28].

It is important to note here that with any stimulus artifact blanking circuit there
is a high probability of losing some signal information. In SEP conduction studies
where the precise time location of the onset of the SEP waveform is required, these
circuits may give rise to erroneous estimates of the onset of the SEP waveform. This
is especially true if the stimulus and recording sites are close together where the
tail of the SA waveform may interfere with the SEP thereby distorting the SEP. A
different approach to stimulus artifact reduction is to somehow obtain an estimate
of the stimulus artifact and subtract it from the contaminated signal. McGill et al.
[17] followed this approach and obtained estimates of the stimulus artifact by using
a) subthreshold stimulation, b) an auxiliary recording channel off the nerve axis, and
c) stimulation during the refractory period. While each of these techniques showed
promising results, none of them completely removed the stimulus artifact and all are
nonadaptive to possible changes in the SA during the course of the experiment.

The presence of residual SA following application of all of the above methods is
probably due to two factors viz nonlinearity in SA generation and a possible time

varying nature of the underlying system. The nonlinearity in the SA generation

3These are discussed in detail in Chapter 5.



system originates from the square-law behavior of V/I characteristics of the electrode-
tissue interface at the stimulating electrodes. At high current densities, the electrode-
tissue interface can be modeled as a nonlinear resistor in parallel with a fixed capacitor
(60, 17]. Stevens [60] and Barker [4] have analytically derived an expression for
the current/voltage characteristics, I = aV + bV?, and empirically validated it. In
addition, the SA waveform may possess a time-varying nature due to the changes in
the stimulating and recording electrode impedances due to sweating, drying of the
electrode paste, movement of the limbs etc.

Thus any signal processing system attempting to eliminate the SA must be able
to compensate for the nonlinear and time-varying nature of the SA. In this thesis

nonlinear adaptive filters are applied to the problem of SA reduction.

2.2.3 ECG Reduction Techniques

While designing an ANC for the elimination of the MEI in SSEP records, Harrison
[22] observed that the presence of the ECG in the primary and reference channels of
the ANC is a detrimental factor. This is due to the fact that the ECG also appears as
a correlated component across the primary and reference sensors and affects the MEI
cancelling ability of the ANC. He concluded that the ECG is the main interference
that needs to be reduced and designed a separate ANC for ECG reduction. In a
complimentary work, Harrison and Lovely [64] conducted an experimental study to
determine the relative power levels of different interference sources at different levels
of the spinal cord and concluded that ECG forms a significant component at all levels
of the spinal cord. In a later study, Black [9, 10] compared the performance of three
different ECG reduction techniques in the absence of an SSEP viz. clipping, gating,
and ANC procedures. In the clipping procedure, the input amplitude is clipped at a
certain threshold level. The performance of this technique is obviously dependent on
the magnitude of the threshold value. While this technique can be argued as an ECG

reduction technique, it is more useful in increasing the dynamic range of the SSEP.
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Without any clipping action in place, the amplification factor of the amplification
stage in the data acquisition system is dictated by the ECG amplitude values such
that no saturation takes place. This will result in poor A/D resolution of the very
small amplitude SSEP signal. This effect will be more pronounced at the higher levels
of the spinal cord where the ECG magnitude is larger and the SSEP amplitude is
smaller compared to the lower levels. With the clipping circuits in place and by judi-
ciously selecting the threshold level, the amplification factor can be increased thereby
increasing the A/D resolution of the SSEP. In the gating method of ECG reduction,
all amplitude values above a certain threshold level are set to zero. Thus this tech-
nique will result in very good ECG cancellation. A drawback with this technique,
however, is the SSEP loss if the SSEP occurs during the gated ECG segment. Since
the probability of ECG occurring in a SSEP record is relatively small*, this technique
might still be useful when large number of SSEP records are averaged. Black reported
that, of all the three techniques, the ANC method offered the best ECG reduction
performance. With the ANC, once again, we have the problem of uncorrelated noise
sources and the possibility of SSEP crosstalk. The presence of uncorrelated noise
sources in ECG reduction is a relatively minor issue as the ECG is several times
more powerful than the uncorrelated noise. The SSEP crosstalk, however, is a crucial
factor. The placement of the reference electrode pair such that no SSEP components
are recorded while still obtaining a correlated ECG component is not a trivial issue.
Harrison [22] placed the reference electrode pair on the chest while Black [9] placed
an electrode on either side of the spinal column equidistant from the spine. Assuming
uniform tissue properties and SSEP conduction along the spinal cord in a straight
line, a differential signal obtained using the abovementioned electrode pair will result

in negligible SSEP component. However, in practical situations, there are always

4A rough calculation of the probability of ECG occurence during an SEP record is given in
Appendix VI
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tissue inhomogenities which will result in non-zero differential SSEP signal. Thus ad-
ditional strategies are required for the ANC such that a SSEP crosstalk-free reference
input is obtained. A possible way of obtaining a crosstalk-free reference channel is
to record the ECG input prior to the stimulation procedure. This reference ECG
input can later be used to cancel the ECG in the primary input acquired using the
same electrodes but during the stimulation stage. This method called the “template
subtraction” and its adaptive version “Adaptive Template Subtraction (ATS)” are

scrutinized in Chapter 6.

2.2.4 60-Hz Interference

Of all the interferences affecting the SEP waveform, the 60-Hz interference is probably
the easiest to reduce. The 60-Hz interference can be reduced significantly by careful
skin preparation, using generous amounts of electrode paste for good electrode contact
and employing an amplification stage with high CMRR. While one can envisage an
ANC structure for 60-Hz interference reduction, it is not considered in this thesis and
appropriate precautions are taken while measuring in vivo signals to make sure that

the experimental data is not significantly contaminated by the 60-Hz interference.

2.3 A Look Ahead

In summary, this chapter reviewed the literature addressing the clinical significance
of SEPs and the reduction of different interferences. The relative merits and demerits
of these techniques are discussed. The following items explicitly state the work done

in this thesis based on this background:

e Crosstalk Resistant Architectures for MEI Reduction. Robust CRANC
architectures are developed for the MEI reduction. Spatiotemporal filters which

further exploit the propagation characteristics are scrutinized. The performance



of these techniques is analyzed analytically and through processing simulated

and experimental data.

Nonlinear Adaptive Filtering for SA Reduction. Nonlinear Adaptive
Filters (NAFs) based on the truncated Volterra series are applied for the first
time to the problem of SA reduction. The SA reduction performance along with
the convergence behavior of the NAFs with different adaption algorithms and
under different operating conditions is rigorously evaluated. Recommendations
are made as to the best method of SA reduction for a wide variety of operating

conditions.

Adaptive Filter Structures for ECG reduction. The performances of
different adaptive filter structures for ECG reduction are evaluated and the

best ECG reduction scheme is identified.
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Chapter 3

Adaptive Noise Cancellation

Summary

The fundamentals of adaptive noise cancellation are detailed in this chapter. The
objective of this chapter is to identify different variables that affect the interference
cancelling ability of an Adaptive Noise Canceller (ANC) and offer recommendations
to compensate for them. A theoretical framework for the analysis of a general
ANC is developed and this is extended to a multichannel (MRANC) case. For the
particular case of MEI reduction, theoretical expressions for the performance of the
ANC and the MRANC in the presence of uncorrelated noise and signal crosstalk
are derived. These analytical results are further validated by processing simulated
SEP, MEI and uncorrelated noise data to gain further insight into the functioning

of an ANC.
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3.1 Basic Adaptive Noise Canceller (ANC)

In its basic form, an ANC consists of a primary recording channel consisting of the

desired signal plus the noise and a reference recording channel containing only a

correlated component of the noise.

Primary input, y(k) = s (k) + n (k) e(k)

y)

Reference input, x(k) =n r(k)
— .daptive
Filter, W(z)

Figure 3.1: Block diagram representation of a typical adaptive noise cancellation scenario.

Referring to Figure 3.1, we have,

y(k) = sp(k) + np(k),
and assuming linearity z(k) = n.(k) = h(k) * ny(k) (3.1)

where sp(k) is the desired signal in the primary input, ng(k) is the primary noise
component, n.(k) is the reference noise component, h(k) represents the transfer func-
tion between the primary and reference noise components and * is the convolution
operator. Also in Figure 3.1, §j(k) denotes the filtered reference input, e(k) represents
the error residue and W (z) stands for the transfer function of the adaptive filter in

the discrete Z domain. The optimal solution for the adaptive filter can be derived
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easily in the discrete Z domain,

$v=(2) _ dm,n,(2)H(z7")
b=:(2)  dn,N, () [H(2)
1

= m (32)

Wone(z) =

where ¢,-(2) is the cross-spectral density, ¢-=(z) is the auto-spectral density of the
reference input, and ¢n,n,(2) is the spectral density of the primary noise. Several
factors need to be considered before an ANC is applied to any noise reduction prob-
lem. The following sections discuss the four main factors that directly influence the

performance of an ANC.

3.2 Choice of the Filter Structure

There are two main choices for the implementation of the adaptive filter: a) a Finite
Impulse Response (FIR) filter and b} an Infinite Impulse Response (IIR) filter [23,
70]. FIR filters are computationally simpler to implement, inherently stable and
easier to analyze. The main drawback with the FIR filters is the need for large
filter orders in certain situations, which increases the computational burden on the
adaptive system. IIR filters, on the other hand, require very few coefficients to reach
the optimal solution but they suffer from instability (due to the inherent feedback
structure) and local minima problems. All the adaptive filters in this thesis therefore
are implemented in the FIR form. The computational penalty due to large filter
lengths of the FIR adaptive filter is endured to avert the potential instability of the
IIR filter.

The FIR filter has been implemented in three different structures viz the transver-
sal structure, the lattice structure and more recently, the systolic array structure {23].
In the transversal structure or tapped delay line, the reference input is passed through
a set of unit delays (whose number is equivalent to the filter length), multiplied by

the corresponding weights and then summed. The transversal filter is appealing from

27



the implementation point of view due to its simplicity and its robustness with the
iterative algorithms. Lattice filters are modular in structure in that they consist of a
number of individual stages, each of which has a lattice form [23]. While the lattice
structure is found to have superior convergence capabilities and low round-off noise
in fixed word length implementations, it is computationally more intense than the
transversal filter. A systolic array architecture is a parallel computing system which
possesses many desirable qualities such as modularity, local interconnections, and a
pipelined and synchronized architecture. The systolic array concept was invented
mainly to implement complex filter algorithms in a VLSI chip [23]. In this thesis,
the transversal structure based FIR filters will be used to implement all the adaptive

filtering operations.

3.3 Choice of the Adaption Algorithm

There are several adaption algorithms reported in the literature and the choice is
still a hotly pursued research area. The most pervasive of these algorithms attempt
to minimize some form of cost function based on the squared error. The adaption
algorithms can be broadly categorized into two classes: a) stochastic and b) exact
[23, 70]. In choosing an algorithm from these two classes, several factors such as
the rate of convergence (defined as the number of iterations to reach the optimal
solution), misadjustment (defined as the ratio of the excess mean-squared error and
the minimum mean-squared error), tracking in nonstationary environments, robust-
ness to ill-conditioned data, and computational complexity (calculated in terms of
the number of arithmetic operations) play an important role. Three main algorithms
were employed in this thesis to realize the adaptive filtering operation: the steepest
descent (SD) algorithm, the Least Mean Square (LMS) algorithm and the Recursive
Least Squares (RLS) algorithm!. Both the SD and the LMS algorithms fall into the

1Refer to Appendix V for a detailed description of these algorithms. Although the algorithms
are developed in a nonlinear adaptive filtering context in Appendix V, the same comments apply to

28



category of the stochastic gradient algorithms wherein the mean squared error is iter-
atively minimized. The RLS algorithm is an example of an exact adaption algorithm
wherein the exact squared error is minimized. There is a trade-off between the LMS
and RLS algorithms in terms of computational complexity and convergence rate. The
LMS algorithm is computationally simpler but often exhibits slower convergence. The
RLS algorithm, on the other hand, exhibits faster convergence but is computationally
complex especially for larger adaptive filter lengths. In this thesis, unless otherwise
stated, only the simulation and experimental results obtained using the RLS algo-
rithm are included. Since all of the data processing in this thesis was done offline,

the computational complexity of the RLS algorithm was not a significant issue.

3.4 Presence of Uncorrelated Noise Sources

u (k)
n, () r AN y& o+ e(k)
Y =
]
& T+ - :
1
h(k) A '
( L :
+ ] |
| AF -
n o . WL 5
[}
o = o - - - S

Figure 3.2: ANC with uncorrelated noise components.

The block diagram of an ANC in the presence of uncorrelated noise components

linear FIR adaptive filtering as well.
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is shown in Figure 3.2, where AF represents the adaptive filter, and u,(k) and u.(k)
represent the primary and reference uncorrelated noise sources respectively. The

unconstrained Wiener solution for the ANC now takes the form of

SN, N, (2)H(z7)

én,n,(2) |H(2)* + dv,v.(2)
1
T HOU+ LG} (3:3)

Wope(2)

where ¢y,u, (2) is the uncorrelated noise power spectral density in the reference input
and [, (z) is the ratio of uncorrelated and correlated noise power spectral densities in
the reference input. The power spectral densities of the residual noise components at

the output of the ANC can be expressed as

¢vn(2) = ¢wn,(2) |1 — H(z)Wope(2)* (3.4)
bvu.(2) = du,u,(2) + du.u.(2) [Wo(2)|* . (3.5)

Based on the above equations, two performance indices which quantify the interfer-
ence cancelling ability of the ANC can be defined as,

¢N,N, (2) + du,u,(2)
$N.N.(2) + du,u.(2)

_ éN,N,(2)
R(z) = ——¢N,N,(Z) (3.7)

I(z) =

(3.6)

where I(z) represents the overall power reduction achieved by the ANC and R(z)
quantifies the amount of correlated interference reduction accomplished by the ANC.
Since the desired signal passes through the ANC unchanged, I(z) can also be inter-
preted as the SNRGAIN achieved by the ANC. Note that both I(z) and R(z) are
frequency dependent performance measures and frequency independent performance
measures can be calculated by integrating the spectral densities in Eqs. 3.6 and 3.7
to obtain individual powers. Substituting z = ezp(j2rw/w,), with w, the sampling

frequency, and integrating, the frequency independent performance measures can be
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written as,

[ 6w ) + b0, @)

= o (3.8)
[ () + bv.,(w)ldw
./ " PN, N, (w)dw
R = Lo : (3.9)
/0 $N N, (w)dw

Thus if the power spectral densities of the correlated and uncorrelated noise
sources in the primary and reference channels are available, the performance of the
ANC can be easily quantified using the above equations.

To relate the above expressions to the myoelectric interference (MEI) reduction
problem, simulated MEI and uncorrelated noise data was processed by an ANC.
The simulated MEI was generated by passing white Gaussian noise of unit variance

through a shaping filter whose impulse response, p(k), is given by [6],
p(k) = C1kT\(2 — cakT, )e =T k=0...P-1 (3.10)

where C, is a scale factor, T is the sample period, P is the length of the shaping filter
and ¢, is the MEI spectral shaping parameter and from experimental measurements
has a typical value of 500. The resulting MEI power spectral density can be easily

shown to be equal to

_ Duw?
A

where D is a constant. The MEI transfer function between the primary and reference

¢Npr(“") (3.11)

channels was modeled as a fifth order lowpass filter given by

1

H(z) = 15z —o.078:7 —00m6.3 v 0113

(3.12)

The primary and reference uncorrelated noise were white Gaussian noise sources

whose variance was varied to achieve the desired level of uncorrelated noise?, 7, which

21t is assumed throughout the thesis that the power levels of uncorrelated noise sources in both
the primary and reference inputs are approxirmately the same.
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was defined as,
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Figure 3.3: ANC performance vs level of uncorrelated noise.

where o}, is the reference MEI variance, and of_ is the reference uncorrelated noise
variance. 10,000 data points were used to run a 40th order adaptive filter which was
driven by the RLS algorithm. Note that the Wiener solution used in the analytical
development of the ANC is in the frequency domain and hence could be non-causal.
To compensate for this possible noncausality with simulated data, a delay of half the
filter length was utilized in the primary input of the ANC. The steady-state weights
of the adaptive filter were then retrieved and used to filter the MEI and uncorrelated
noise sources separately. This facilitated the calculation of the power performance
and myoelectric residue measures given by Eqs. 3.8 and 3.9 respectively. Figure 3.3
depicts the results obtained for various levels of uncorrelated noise, along with the
theoretical predictions®. The decrease in both power performance and myoelectric
residue indices due to increasing uncorrelated noise levels is obvious in these plots.

Also good agreement between the theoretical and simulation results is seen in these

3The theoretical predictions are computed by numerically evaluating the integrals for I and R,
given by Eqgs. 3.8 and 3.9, as closed form solutions could not be found.
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figures. Any discrepancies between these two values are attributed to the convergence
properties of the adaptive filter and also to the fact that theoretical expressions utilize
exact spectral expressions for MEI and uncorrelated noise while in simulations these

are only being approximated.
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Figure 3.4: Block diagram of the MRANC.

The detrimental effect of the uncorrelated noise sources can be alleviated by de-
vising a Multi-Reference Adaptive Noise Canceller (MRANC). The block diagram of
an MRANC is shown in Figure 3.4, where M is the number of reference channels and
u;(k) represents the spatially uncorrelated noise source in the 2th channel. The author
in his master’s thesis [52] and subsequent publications [49, 50] carried out an exhaus-
tive analysis of the MRANC structure in MEI reduction application. Theoretical

expressions for power performance and myoelectric residue indices were derived [49]
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and the frequency dependent performance measures in the z domain were expressed

as

NN, (2) + du,u,(2)

I(2) . 3.14
et 4 40,0, o
R(z) = (1+x(2))? (3.15)

where x(z) = £M, x;(z) with x;(z) being the ratio of MEI to uncorrelated noise

=1
spectral densities in the :th reference channel. The frequency independent measures

were then derived as {49],

Ko+ 1
I = P 3.16
ws/2 dn N, (w) (3.16)

0 1 + x(w)

R = /3/2 @) (3.17)
0

(1 + x(w))?

where «, is the ratio of MEI and uncorrelated noise variances in the primary input.

Two important conclusions can be drawn based on these performance measures:

e For a given level of uncorrelated noise, the power performance measure, I, has
an upper bound given by 1+ £p. This is due to the primary uncorrelated noise,
up(k), which is unaffected by the filtering operation and hence saturates the

performance.

e The myoelectric residue index, R, increases monotonically with an increase in
the number of reference inputs. As the number of reference channels tends to
infinity, R also tends to infinity implying that total myoelectric cancellation can

be achieved even in the presence of uncorrelated noise.
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The following simulations further illustrate the advantages of an MRANC in ex-
hibiting improved uncorrelated noise tolerance. The primary MEI data and the un-
correlated noise data were generated as described earlier. The MEI transfer functions
between the primary and reference inputs were modeled as first order low pass filters
given by

H(2) = 4 (3.18)

1— gzt
where A; is a scaling constant and o; was varied to generate a different myoelectric
signal for each of the reference channels and was chosen in such a way that the
correlation coeflicient between the primary and reference channels decreased with
1, reflecting experimental conditions. The theoretical expressions for the MRANC
output power spectral density and residual MEI power spectral density can be easily
derived and are graphically portrayed in Figures 3.5 and 3.6. These results illustrate
quite effectively the previous statements that the MRANC output spectral density
saturates to a value dependent upon the primary uncorrelated noise and the MEI
residue will gradually diminish to zero even in the presence of uncorrelated noise
sources.

The theoretical results were further authenticated by processing simulated MEI
and uncorrelated noise data. The RLS algorithm was used to implement the MRANC
filter and ten thousand samples of MEI and uncorrelated noise data were used to
ensure MRANC filter convergence. The MEI and uncorrelated noise were then passed
through the MRANC separately and both the power performance measure and MEI
reduction index were computed. These results are plotted in Figures 3.7 a and b
for an uncorrelated noise level (7) of 0.006. The increase in power performance and
MEI residue indices with an increase in the number of reference channels is apparent
in these graphs. The simulation results are once again close to their theoretical
counterparts and the differences are mainly attributed to the convergence properties
of the M adaptive filters and the approximation of MEI and uncorrelated spectra in

simulations. Note that this approximation will result in greater differences for the
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Figure 3.5: Theoretical MRANC output power spectral den-
sity, T = 0.006.
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Figure 3.6: Theoretical MEI residual power spectral density
at the MRANC output, T = 0.006.
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MEI residue index, R, where the theoretical expression given by Eq. 3.17 includes
second order terms. Further simulation results and related issues are discussed in a

recent publication by the author [49].
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Figure 3.7: MRANC performance Vs No. of Channels.

3.5 Crosstalk Phenomenon

A physical constraint in many of the adaptive noise cancellation applications is the
presence of desired signal components in the reference input of the ANC. This signal
“crosstalk” affects the noise cancelling ability of the ANC and also results in output
signal distortion. The block diagram of the ANC infected by signal crosstalk is shown
in Figure 3.8, where g(k) represents the crosstalk transfer function. The Wiener

solution to the ANC is now given by,

Wope(2) = ¢n,n, (2)H(z™') + ¢s,5,(2)G(z7")
op ¢Npr(z) IH(Z)P + ¢S,S,(Z) IG(Z)I2 + ¢U,U‘_(z)

where @s,s,(2) is the signal power spectral density and G(z) is the z domain crosstalk

(3.19)

transfer function. It can be observed from the above equation that the optimal
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Figure 3.8: ANC with uncorrelated noise and signal crossialk components.

solution is now also dependent on the crosstalk transfer function. This dependency
manifests itself in reduced correlated-noise reduction at the ANC output. Since signal
components also pass through the ANC, the signal estimate at the output of the ANC
is distorted. In situations where the signal is intermittent and the correlated-noise
is persistent, a milder remedy to this problem is to let the ANC function only in
the absence of the desired signal. In this way, the effect of signal crosstalk on the
adaptation of the ANC disappears and the Wiener solution given above simplifies to
the one given in Eq. 3.3. While this guarantees better correlated-noise reduction, the
signal distortion, however, still persists.

To demonstrate the effect of the signal crosstalk, simulations were performed once
again. The SEP, which is the desired signal in our case, was generated using the

following equation [54, 52],

sp(k) = CokTy(2 — c,kT.)e~**T*  k=0...L-1 (3.20)
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where C; is a scaling parameters, ¢, is the SEP spectral shaping parameter with a
typical value around 2500 and L is the length (in samples) of the SEP. This SEP
waveform was repeated the desired number of times to generate an SEP train. To
this SEP train, the MEI and uncorrelated noise, whose generation was described
earlier, were added. For simplicity, the crosstalk transfer function was made equal
to a scaling constant, 8 < 1. The signal distortion incurred due to the ANC filter is

quantified using a distortion index measure given by

L-1
Z(-‘-‘p(") - 3p(k))2
p = k=0
L-1

2. sp(k)

k=0
where 35(k) is the signal estimate at the ANC output. Using Parseval’s relation, the

(3.21)

distortion index can be expressed in the frequency domain as,

we/2 wa/2 w, /2
. /0 &5, s, (w)dw + /O b5 5, (w)dw — 2 /0 R{$s, 3, (w)}dw

we/2
/0 5,5, (w)dw

where R{‘?Ss,.'s‘, (w)} is the real part of the cross-spectral density between the original

SEP and its estimate. The input SNR was defined as

S:
. o __Pmaz 3.9
SNR; = (3.23)
and the output SNR as,
52
— mas .2
SNR, e (3.24)

where Sp,... and S are respectively the SEP peak amplitude levels at the input

maz Pmas
and the output of the ANC, o}, is the variance of the residual MEI component at

the output of the ANC and o, is the uncorrelated noise component at the output of

the ANC. The SNRGAIN achieved by the ANC can be expressed as,
__SNR, &t

2 2
N = — Pmasz aNp + GUr
SNR; S _ ok +ob,

(3.25)
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Notice that in the absence of any signal crosstalk, the above SNRGAIN expression
simplifies to the power performance index, I given by Eq. 3.8. Thus the power
performance index I can be used as an upper limit for the SNRGAIN accomplished
by the ANC.

Figures 3.9 a and b depict the performance of the ANC with increasing crosstalk
levels. For these results, a twenty tap FIR filter driven by the RLS algorithm was used
to implement the adaptive filter. Once the convergence of the ANC is established,
the steady-state weights of the ANC are retrieved and are used to filter the SEP,
MEI and uncorrelated noise sources separately and both the distortion index and the
SNRGAIN were calculated according to Eqs. 3.21 and 3.25 respectively. From the
results, we can observe that the distortion index increases steadily with the level of

crosstalk while the SNRGAIN drops considerably.
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Figure 3.9: ANC performance in the presence of crosstalk.

Earlier we have demonstrated that an MRANC provides better performance com-
pared to the ANC in the presence of uncorrelated noise sources. In the presence of
signal crosstalk between the primary and reference channels, however, the signal es-
timate produced by the MRANC is more distorted than the ANC. In this situation,
the spatiotemporal properties of the SEP can be used to diminish the
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Figure 3.10: Block diagram of the Generalized Sidelobe Canceller (GSC).

damaging effects of SEP crosstalk while still retaining the attractive features of the
MRANC. Figure 3.10 portrays the block diagram of a special version of the MRANC,
viz. the Generalized Sidelobe Canceller (GSC) [70, 6]. Here the primary input is
yp(k) = sp(k) + np(k) + uy(k) where sp(k), np(k) and up(k) are respectively the SEP,
MEI and uncorrelated noise sources in the primary input, and the itk reference input
is z,i(k) = sri(k) + npi(k) + urik) where s,;(k), nri(k) and u.;(k) are the SEP, MEI
and uncorrelated noise components in the ith reference input respectively. The main
difference between the MRANC and the GSC is the “signal blocking matrix” block.
This matrix, B, is derived from an e priori knowledge of the propagation parameters

of the desired signal. A simple signal blocking matrix for a four-channel GSC can be
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constructed as,

(2% 0 0o o)
-1 z=¢ ¢ 0
B=| 0 -1 z% 0 (3.26)
0 0 -1 z¢
\ 0 0 0 -1}

where 6 is the propagation delay of the SEP signal between adjacent sensors. Assum-
ing ideal propagation of the SEP, the above matrix essentially nulls the SEP com-
ponents in the reference channels thereby avoiding the possibility of signal distortion
due to crosstalk. Needless to say, the exact value of the § parameter in the above ma-
trix is crucial for the successful operation of the GSC. In practical SEP experiments,
the value of the § parameter is usually not known a priori. In addition, uniform SEP
propagation across the sensors is required to ensure that the signal components are
nullified in the reference channels. In practice, this condition is reasonably satisfied
for smaller array sizes.

Simulations were performed to compare the SEP distortion incurred in MRANC
and GSC structures. The SEP signal was generated according to Eq. 3.20 and was
simulated to propagate with a conduction velocity of 100 m/s. The generation of
the MEI and uncorrelated noise sources was described earlier. Both MRANC and
GSC structures were allowed to operate until the ANCs reached convergence. The
converged ANC weights were then used to filter the SEP signal separately and the
NMSE distortion measure given by Eq. 3.21 was computed between the original SEP
signal and the SEP signal at the output of the MRANC and GSC structures. In Figure
3.11 the distortion indices obtained from the MRANC and the GSC are plotted. The
increase in SEP distortion with an increase in the number of reference channels in the
case of the MRANC is apparent in this plot. With ideal SEP propagation across the

sensors, the GSC outputs a distortion-free SEP resulting in a zero distortion index.
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However, deviations from the ideal result in non-zero distortion indices by the GSC.
In the case of non-uniform SEP propagation, where the SEP signal was simulated to
attenuate as it travels down the sensors, the GSC structure introduces some distortion
into the SEP, which is still significantly lower than the SEP distortion at the output
of the MRANC. In the event of using a wrong signal blocking matrix, where the §

parameter in the matrix was one time sample off the true value, the GSC can be seen

to produce substantial SEP distortion.
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Figure 3.11: Performance of the Generalize Sidelobe Canceller under a variety of SEP
propagation conditions.

The above simulation results show that the successful operation of the GSC de-
pends on the accuracy of the signal blocking matrix. To ensure this accuracy, an a
priori knowledge of the propagation parameters of the SEP is required. Since this is

not usually available in practical SEP studies, the application of GSC may also result
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in SEP distortion. In addition, the performance of the GSC will be affected by the
SEP dispersion as it travels along the array. Thus crosstalk resistant noise cancelling
structures are required which do not require any a priori knowledge of the SEP and

MEI properties.

3.6 Conclusions

The main objective of this chapter was to introduce the reader to the fundamentals
of adaptive noise cancellation. A thorough theoretical development of the ANC is
given and the analytical results are further authenticated by processing simulated

data. The following points reflect the gist of this chapter:

e Adaptive Noise Cancellers (ANCs) are very useful in many interference reduc-
tion applications as they do not require any a priori knowledge of the signal and
interference properties. In addition, they offer signal and interference tracking

abilities in nonstationary environments.

e The interference cancelling ability of the ANC is dependent mainly upon four
factors: filter structure, adaption algorithm, presence of uncorrelated noise
sources and crosstalk of the desired signal. The first two are associated with the
implementation of the adaptive filter (either in hardware or software) while the

last two are tied to the physical nature of the interference reduction problem.

e The performance of an ANC is a function of the level of uncorrelated noise
in its reference input. It has been shown analytically and through simulations
that the interference reduction capability of the ANC decreases with increasing

levels of uncorrelated noise.

e The effect of uncorrelated noise can be mitigated through using multiple ref-

erence channels. The MRANC acts as a spatial averager for the uncorrelated
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noise while still maintaining the temporal relationships between the correlated
interferences. Theoretical expressions and simulation results are included which

demonstrate the performance of the MRANC.

The performance of an ANC is further deteriorated by the signal “leakage” into
the reference input. This signal crosstalk results in undesirable output signal

distortion which is worse in the case of the MRANC.

The spatiotemporal properties of the signal can be exploited to create an MRANC
with no distortion. The GSC structure includes a signal blocking matrix which
nulls the signal components in the reference channels. However, to create an
effective signal blocking matrix, e priori knowledge of the signal propagation
characteristics are required which are not usually available. Thus crosstalk
resistant adaptive noise cancelling structures which do not need any a prior:

knowledge about the signal parameters are necessary.
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Chapter 4

MEI Reduction

Summary

The focus of this chapter is on a Crosstalk Resistant Adaptive Noise Canceller
(CRANC) filter which is a cascade of two ANCs. In the absence of uncorrelated
noise sources, this CRANC structure is shown to compensate for the signal dis-
tortion incurred in a single ANC. Two novel variations of this CRANC structure
are developed which reduce the computational complexity by exploiting the SEP
and MEI properties. In the presence of uncorrelated noise sources, however, the
performance of these CRANC structures is shown to be comparable to the single
ANC. A multichannel CRANC (MCRANC) structure is innovated which offers im-
proved tolerance to uncorrelated noise sources. Rigorous analytical treatment of
the MCRANC is provided along with simulation results which demonstrate some
of the interesting properties of the MCRANC. In addition, an Ensemble-averaged
CRANC (ECRANC) filter structure is developed which is particularly useful in low
SNR situations. The performance of these CRANC structures with real SEP and

MEI data is also scrutinized.
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4.1 CRANC Filter in the Absence of Uncorrelated

Noise

3! h(k) |

gk)

Figure 4.1: Block diagram of the CRANC filter in the absence of uncorrelated noise sources.
Here s(k)s denote the SEP components, and n(k)s denote the MEI components with p
associated with the primary input and r associated with the reference input. In addition,
h(k) is the MEI transfer function, g(k) is the crosstalk transfer function and AF represents
an adaptive filter.

The block diagram of the Crosstalk Resistant Adaptive Noise Canceller (CRANC)
filter structure in the absence of uncorrelated noise sources is shown in Figure 4.1,
where sp(k) is the desired SEP signal, and ny(k) and n.(k) are primary and refer-
ence MEI inputs respectively. Essential for the successful operation of this CRANC
structure is allowing AF #1 to converge to its optimal solution before the advent of
the signal i.e. in our application before the nerve is stimulated. This facilitates the
estimation of the inverse of the interference transfer function h(k) by AF #1. With
this condition, the Wiener solution for the first ANC is given by,

Py (2) _ PN, N, (2)H(z"")

Wilz) Peiz(2) PN, N, (z) |H(z)[”
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1
H(z)’

(4.1)

Once AF #1 has converged, further adaptation of it is stopped and the SEP signal
is applied. The primary and reference inputs to AF #2 are therefore given by,

Y2(z) = (Sp(2)G(2) + Np(2)H(2))Wi(2)
= Sp(2)G(2)Wy(z) + Np(z) (4-2)

and

Xo(z) = Sp(2)+ Np(z) — (Sp(2)G(2) + Ny(2) H(z)) Wi (2)
= 5,(2) = 55(=)C(x)Wi(z). (43)

Expressing the auto and cross-spectral densities for the second ANC as

bre:(2) = 85,5,(2){G(2)Wi(2) - |G(2)Wi(2)['}
$e2za(2) = ¢5,5,(2) [1 - G(2)Wi(2)[* (4.4)

we can compute the Wiener solution for AF #2 as

_ _G(E)\Wi(2)
Wa(z) = 1= GW, (2) (4.5)
Hence the output of the second ANC is given by
G(2)Wi(2)

Xo() = Nol2) + 5(2)GEWi(2) — (5(2) = SyAICEWH T gy (ot
Ny(2). (49

Hence at the output of the second ANC we have just the myoelectric interference,
Ng(z). This when subtracted from the primary input Y;(z) results in the SEP alone.
Thus in the absence of the uncorrelated noise the CRANC filter successfully elimi-
nates both the crosstalk and the interference but only if the following conditions are

satisfied:
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e The myoelectric interference transfer function, k(k), should be time
invariant. Since the first AF is fixed during the SEP duration, violation of the
above condition results in substantial residual MEI component at the output of

the first stage.

e The zeros of the transfer function 1 — G(z)W,(z) should be inside the
unit circle. In other words, the 1 — G(z)W;(z) should be a minimum phase
transfer function which ensures that the optimal transfer function of AF #2 is
stable. If this condition is not satisfied, the CRANC structure fails in compen-
sating for the distortion caused by the signal crosstalk.

During the rest of this chapter, it is assumed that both the above conditions are sat-
isfied. The discussion on the point about the time-varying nature of the MEI transfer
function is deferred until the “Experimental Results” section where suggestions are
made to work around this problem. It is worthwhile to note here once more that
a single ANC (just ANC #1) outputs an interference-free but distorted SEP. The
distortion incurred through AF #1 is dependent on the crosstalk transfer function,
G(z), as is evident from the Eq. 4.3.

The first set of simulations compared the ability of CRANC and ANC in extracting
the SEP from the myoelectric interference in the absence of uncorrelated noise sources.
The simulated MEI and SEP data were generated as described in Section 3.5. The
primary Signal-to-Interference Ratio (SIR) is defined as %:1 where once again Sg,,..
is the primary SEP peak amplitude value and ‘712v, is the variance of the primary
MEI. As mentioned before, it is critical for the successful operation of CRANC that
the first AF be in steady-state before the signal is present. Hence the primary and
reference inputs to the CRANC were of 4000 samples of which the first 2000 samples
were MEI data. The next 2000 samples were a composite of the SEP signal and the
MEI. A ten-tap transversal filter driven by the RLS algorithms was employed as AF

#1 and it was allowed to converge in the first 2000 samples. After convergence, the
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adaptation was stopped and the remaining 2000 samples of the reference input, z,(k)
in Figure 4.1, were filtered using the steady-state weights. This filtered reference
input (y2(k)) was then subtracted from the primary input of AF #1 to give the
error output. The filtered reference input and the error output of AF #1 formed the
primary and the reference inputs respectively to AF #2 (refer to Fig. 4.1). AF #2
was implemented using a twenty-tap transversal filter driven by the RLS algorithm.
Twenty five independent trials were conducted and the final weights of AF #1 and
AF #2 were averaged over these twenty five trials. These averaged filter weights were
then used to filter the input SEP and MEI indenpendently to generate the output
SEP and MEI estimates.
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Figure 4.2a: SEP estimate by ANC Figure 4.2b: SEP estimate by the
CRANC

Figure 4.2: CRANC vs ANC in the absence of uncorrelated noise sources, SIR = 0.04.

Figures 4.2a and 4.2b show the outputs of ANC #1 and the CRANC in the absence
of uncorrelated noise for two different crosstalk levels. With no uncorrelated noise
present, it can be seen that the CRANC produces a distortion- and noise-free estimate
of the SEP irrespective of the crosstalk level, while a single ANC is unable to provide
such an estimate. Even though the SIR at the output of ANC #1 is infinity, the

increase in signal distortion at the output of ANC #1 with increasing crosstalk level
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is clearly evident in Fig. 4.2a. The main reasons for the slight differences between
the waveforms recovered by the CRANC and the original signal are the finite data
and filter lengths. Theoretically, the presence of MEI in the primary of ANC #2
should not affect its convergence. However, in practice, due to finite data length, this
does have an impact and even after 25 averages the filter weights are slightly off the
Wiener solution.

This basic CRANC structure can be further modified by exploiting certain prop-
erties thereby enhancing its performance. The following section focuses on these

variations of the basic CRANC structure.

4.2 Variations of the CRANC Structure

4.2.1 Variation #1: Constrained CRANC filter

From Eq. 4.5, we observe that the Wiener solution for the second AF is an IIR
transfer function. Thus a large number of filter taps may be required to approximate
this transfer function using an FIR filter for the second ANC. This is especially true if
either of the filters G(2) or H(z) or both happen to be of long duration. An example
can be easily concocted to realize this situation: Let G(z) be a fourth order FIR filter
given by,

G(z) = -02+0.25z2"! +0.6272 +0.1z73 (4.7)

and the interference transfer function be
H(z) = 1409527 +0.91z2"% 4 0.88273 4 0.85z™%. (4.8)

The resulting impulse response for the optimal solution of AF #2 is shown in Fig-
ure 4.3. It can be observed from this graph that the second ANC needs to be at least
one hundred taps long (if implemented as an FIR filter), to adequately compensate

for the distortion due to signal crosstalk. The computational complexity associated
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Figure 4.3: Optimal impulse response of AF #2 for G(z) = —0.2+0.252"14+0.6272+0.1273,
and H(z) =1+ 0.95z7! 4+ 0.91272 4 0.88z3 + 0.85z1.

with a hundred tap FIR filter is quite substantial, even with a simpler algorithm such
as the LMS algorithm. An appealing way to alleviate this complexity is to constrain
the adaption of AF #2 such that only a small part of the coefficients is adapted.
The constrained algorithm stems from the fact that W;(z) contains W,(z) which was
already computed by AF #1. This information can be used to restrict the adaption of
AF #2 such that only G(z) parameters are updated at each reduction. This not only
results in substantial computational savings but also facilitates a direct estimation of
the crosstalk transfer function G(z). A stochastic gradient constrained algorithm for
the adaption of G(z) is derived in Appendix I.

The performance of the constrained algorithm is evaluated through processing
simulated data. The SEP and MEI data were generated as described earlier. The
simulations were performed for three different SIRs to demonstrate the efficacy of
the algorithm. Figures 4.4a-f show the convergence of the G(z) weights and the

resulting impulse responses of AF #2. For all these results, G(z) was modeled as
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go+g12" 492272+ 9323 and the “g” values were updated according to the constrained
CRANC algorithm. A characteristic trait in the second column of these results is that
the constrained CRANC algorithm models the optimal impulse response of the second
AF for a variety of SIRs with only four coefficients. From the first column in
Figure 4.4, the effect of the SIR value on weight convergence can be noticed. Without
any MEI present, the algorithm converges to its optimal value almost perfectly and
in fewer iterations. However, in the presence of MEI, the weight convergence becomes
noisy and for lower values of the SIR the adaption has to be carried out with a lower
convergence constant which will result in a slower convergence. This fact can be seen
from Figure 4.4e where different convergence constants had to be used for adaption
of different weights to ensure that the MEI in the primary input of ANC #2 does not

have a detrimental effect.

4.2.2 Variation #2: Delay and Difference Array Processor

As mentioned before, both SEP and MEI are propagating waveforms. Thus the
spatiotemporal properties of SEP and MEI can be exploited to further simplify the
computational complexity associated with the basic CRANC. The Delay and Differ-
ence Array Processor (DDAP), shown in Figure 4.5, is an example of one such filter
where the propagating SEP and MEI are tapped using two sensors placed along their
direction of propagation'. Here s(k) is the SEP signal, n(k) is the MEI with § and A
being their respective time delays across the two sensors and AF stands for adaptive
filter. Both s(k) and n(k) are assumed to possess uniform propagation characteristics
along the array. The first stage of the DDAP estimates the time delay associated
with the MEI which can be easily calculated from the cross-correlation information

between the two sensors, prior to the application of the stimulus. Thus at the second

1t is assumed here that both SEP and MEI propagate in the same direction. While this may not
be true in all cases, one can always project the SEP and MEI waveforms with arbitrary directions
of arrival onto to the line of the array by making appropriate changes to their velocity.(refer to [70]
for an introduction to array processing).
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stage of the DDAP, we have,

aseaad

¥ = s(k)+n(k)

@-

xl(k) =s(k+ 3) + n(k+ A)

@ — 1

Direction of propagation

Output

Figure 4.5: Block diagram of the basic Delay and Difference Array Processor (DDAP)
where s(k) is the SEP signal, n(k) is the MEI with § and A being their respective time
delays across the primary and reference sensors.

y2(k) = s(k+8—A)+n(k) (4.9)
z2(k) = s(k) —s(k+6—A). (4.10)

The Wiener solution to the adaptive filter is

z_v

W(z)

=7 (4.11)

where ¢ = A — § is the difference in MEI and SEP propagating time delays. When
the AF attains this optimal solution, the output of the second stage is just n(k).
This, when subtracted from the primary input y;(k), results in an interference free
signal estimate. Several observations are in order with respect to this basic DDAP

structure:
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e By exploiting the propagation characteristics of the MEI, the DDAP reduces the
computational complexity associated with the first stage in the basic CRANC
structure. The transfer function estimation problem collapses to a simpler time
delay estimation problem. This of course is based on the assumption that the

MEI propagates uniformly across the array.

e The second stage of the DDAP also involves estimating a time delay parameter,
viz. the ¢ parameter. Note that the optimal solution for the second stage,
given by Eq. 4.11, is once again an IIR transfer function. But this time, the
IIR transfer function is only marginally stable as there are multiple poles (their
number determined by the ¢ parameter) placed on the unit circle. This results
in two drawbacks: a) any presence of residual MEI or any other noise will
result in an amplified output, and b) truncation using an FIR filter requires
a significantly large number of filter taps. Also, explicit adaptation for the ¢

parameter becomes impossible. This point is addressed in Appendix II.

The drawbacks associated with the basic DDAP can be overcome by designing a
three sensor DDAP as shown in Figure 4.6. Assuming both SEP and MEI are plane
waves, the composites at the three sensors are respectively s(k + 28) + n(k + 2A),
s(k+8)+n(k+A) and s(k)+n(k). As mentioned before, it is fairly straightforward to
estimate the A parameter. Once this MEI delay parameter is estimated, the outputs

at node #1 and #?2 are given by

y(k) = s(k)— s(k+ 26 —2A) = s(k) — s(k — 2p) (4.12)
z(k) = s(k)—s(k+6—A)=s(k) - s(k — @) (4.13)

where ¢ is once again the difference in the time delay values of the MEI and the SEP.
The problem now is to estimate the ¢ parameter. If we employ an adaptive filter

with y(k) as the primary input and z(k) as the reference input, the Wiener solution
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Figure 4.6: Modified DDAP.

to that adaptive filter is,

1—z"%

W(z) = T = 1+2z7%. (4.14)

Thus, if an FIR filter is used to realize this adaptive filter, both the first weight
and the weight corresponding to a delay value equal to ¢ will go to unity as the
adaptive filter reaches its optimal solution. A very important issue here is the length
of the FIR filter which should have an adequate memory to estimate the ¢ value.
However, this will give rise to computational complexity and convergence problems
if the ¢ parameter is large. An alternative approach is to adapt only the time delay
parameter. This explicit time delay adaptation will require adaptation of only one
weight and hence is computationally very appealing. A stochastic gradient algorithm

for an explicit adaptation of the ¢ parameter is derived in Appendix II.

97



At this point, the desired signal still needs to be recovered. To do this, the output

at node #2 is given to an inverse filter whose transfer function is given by

1
1—2v

IF(z) = (4.15)

The output of this inverse filter is an interference- and distortion-free SEP estimate.
Note that the inverse filter has multiple poles on the unit circle and hence is only
marginally stable. Thus in the presence of any residual noise, ensemble averaging
must be performed at the input of the inverse filter to correctly recover the SEP
waveform.

The following simulations scrutinize the performance of the modified DDAP. The
generation of the SEP and MEI waveforms are as described earlier. Both SEP and
MEI were modeled as plane propagating waves with § and A parameters set to 2
and 20 samples respectively. Figure 4.7 displays the results produced by the modified
DDAP. Figure 4.7a depicts the SEP+MEI composite collected at the third sensor.
The A parameter was first estimated from the peaks of the cross-correlation esti-
mates between the sensors. Using this parameter, the outputs at nodes 1 and 2 are
computed. Figure 4.7b displays the output at node #2 which is clearly distorted.
Using the output at node #1 as the primary input and the output at node #2 as the
reference input, the time-delay estimation algorithm (detailed in Appendix II) was
invoked to estimate the ¢ value. The convergence of the ¢ estimate is graphed in Fig-
ure 4.7c where correct convergence of the algorithm can be observed. The converged
value is then used to construct the inverse filter given by Eq. 4.15. The output of the
inverse filter is shown in Figure 4.7c which can be seen to be devoid of any distortion.

So far, in developing the constrained CRANC filter and the modified DDAP, we
have dealt only with desired-signal and interference waveforms with ideal propagation
characteristics and in the absence of any other noise sources. While this may be true in
some signal processing applications (where the above techniques will be most useful),

deviations from ideality are a norm with practical SEP signal processing scenarios.

58



(] b
4 0154
3 C.14
2 0054
Q [
2. 2 o
= a
E o E-O.OS-
-1 -0.14
-2 -0.15
-3 - v —r T 0.2 T -
[ 100 300 400 500 0 10 2 k] © 0 60
No.z& Somples No.  of Samples
! 8.1
True deigy volue = 1B somples ¢ d
18 0.154
16 £.124
14 0.094
2o 0.061
ot
E ]
- 2
" ==
LY & 00
g &
=y of
[3 -0.03H
“ -0.064
2 v eyt -0.09 — - - v - v
0 S 10 15 20, .25 0 5 @ 45 0 ] H 0, 15 .20 25 0 % 40
sNo. of Samples No. of Saomples

Figure 4.7: Performance of the modified DDAP. a) SEP+MEI composite at the third sensor
at an SIR of 0.01, b) distorted SEP at node #2, c) convergence of the ¢ estimate, and d)
the output of the inverse filter.

Thus the effect of these deviations on the abovementioned techniques has to be stud-

ied.
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4.3 Deviations from the Ideal

4.3.1 Effect of Uncorrelated Noise on the Basic CRANC

Let us first investigate the effect of uncorrelated noise sources on the basic CRANC.
The block diagram of the CRANC filter with uncorrelated noise sources is shown in
Figure 4.8 where uy(k) and u,(k) are the primary and reference uncorrelated noise
sources respectively. With the addition of uncorrelated noise, the Wiener solution to

AF #1 becomes (noting that once again AF #1 is adapted before the advent of the

signal),
Wi(2) $ay (2)H(=7)
én,n, (2) |H(2))* + dv.v.(2)
1
T H(2){1+T,(2)} (4.16)
where
Ie(z) = ¢v.v.(2) (4.17)

b, (2) [H(2)

is the ratio of uncorrelated to myoelectric interference spectral densities in the refer-
ence input. The primary and reference inputs to AF #2 can be expressed respectively

as,

Ya(z) = Sp(2)G(2)Wi(2) + Np(2)H(2)W1(z) + Ur (2)Wi(2) (4.18)
and
X2(z) = {Sp(2) + Np(2) + Up(2)} — {Sp(2)G(2) + Np(2)H(2) + Ur(2)}Wy(2)
= Sp(2){1 — G(2)W1(2)} + Np(2){1 —~ H(2)W1(2)} + Up(2) — Ur(2)Wy(2)
= Sp(2){1 — G(2)W1(2)} + Np(2){1 — 175} + Up(2) — Ur(2)Wi(2) (4.19)

The cross-spectral density of the primary and reference inputs for the second ANC

can therefore be expressed as

Pv,x,(2) = ¢5,5,(2)G(2)Wi(2){1 — G(z"" )Wi(z7")} +
én,n, (2)H(2)Wi(2){1 — H(z")Wy(z™")} - du.v,(2) [Wi(2)[? (4.20)
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Figure 4.8: Block diagram of the CRANC filter in the presence of uncorrelated noise
sources. In addition to the terms defined in Figure {.1, u,(k) and u,(k) are the uncor-
related noise components tn the primary and reference respectively.

which can be simplified upon substitution of Eqs. 4.16 and 4.17 to

v, %2(2) = ¢5,5,(2)G(2)Wi(2){1 - G(z™")Wi(z7")} (4.21)

Interestingly, the cross-spectral density is unaffected by the presence of the uncorre-
lated noise sources and is the same as in Eq. 4.4. The autospectral density of the

reference input is given by

63,3, (2) = B5,5,(2) |1 = G(2)Wi(2) [ + dn,,(2) |1 — H(z)Wy(2)]* +
bu,u,(2) + duu(2) [Wi(2)P . (4.22)

The Wiener solution for the second AF is the ratio of the spectral densities given in
Eqs 4.21 and 4.22. Thus from Equations 4.16, 4.21 and 4.22, we can see that the

presence of uncorrelated noise sources drives W, (2z) and W(2) away from the desired
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solutions given by Equations 4.1 and 4.5 respectively. The power spectral densities

of SEP, MEI and uncorrelated noise sources can be expressed respectively as

$5.5.(2) = ¢5,5,(2) |(1 - G(2)Wi(2))(1 + Wa(2))I® (4.23)
dnono(2) = on,n,(2) I(1 = H(z)Wi(2))(1 + Wa(2))[* (4.24)
dvva(z) = {dv,0,(2) + duu.(2) Wi(2)PHL + [Wa(2)[). (4.25)

The above equations represent the general form of the spectral content at the output of
the CRANC. In order to quantify the performance of both the CRANC and the ANC,
spectral information is therefore required. Given this spectral information, theoretical
performance indices can be computed. These can then be compared against the
performance obtained through simulations giving us an insight into the operation of
the CRANC and the ANC in the presence of both the uncorrelated noise and the
signal crosstalk. The theoretical predictions are once again calculated numerically
due to the unwieldy integrals for distortion index, p and SNRGAIN, v especially
with the complex equations for adaptive filter transfer functions given by Eqs. 4.16,
4.2] and 4.22. The power spectral density of the SEP can be found numerically using
Equation 3.20. The primary steps involved in estimating the spectrum are computing
the Fast Fourier Transform (FFT) of s,(k), squaring the magnitude of the result and
scaling it by the data length of sp(k). Since the MEI is modelled as white Gaussian
noise of unit variance passing through the shaping filter, p(k) given by Equation 3.10,
its power spectrum can be computed by calculating the FFT of p(k) and squaring
the magnitude of the result. The uncorrelated noise sources can be assumed to have
flat spectra in the bandwidth of interest. With this spectral information it is straight
forward to compute the filter transfer functions, W;(z) and W2(z). Once we compute
these transfer functions, the output spectral density functions can be calculated using
Equations 4.23, 4.24 and 4.25. With this information, the theoretical performance
measures of the CRANC and ANC can be calculated.

Figures 4.9 and 4.10 show the SNRGAIN performance surfaces of both the ANC
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Performance Surface of the ANC

Figure 4.9: Theoretical performance surface of the ANC, SIR
= 0.04.

Performance Surface of the CRANC

Figure 4.10: Theoretical performance surface of the
CRANC, SIR = 0.04.
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and the CRANC for varying levels of uncorrelated noise and crosstalk. The effect
of uncorrelated noise on the ANC and the CRANC is apparent in these plots. At
low levels of uncorrelated noise, the CRANC structure exhibits some resistance to
crosstalk compared to the ANC. At higher levels of uncorrelated noise, however, its
performance deteriorates. Another interesting factor is that the effect of uncorrelated
noise on the CRANC is more severe at higher crosstalk levels. Figure 4.11 compares
the SNRGAIN obtained from the CRANC and the ANC at different levels of uncor-
related noise. It is obvious from this picture that for + > 0.01 the performances of
the CRANC and the ANC are almost the same. Thus for levels of uncorrelated noise
greater than 0.01, the additional computational needs of the CRANC are not justified

on the basis of the SNRGAIN.
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Figure 4.11: Performance comparison of the CRANC and the ANC, SIR = 0.02 and § =
0.8.

Simulations were performed to compare the performances of the CRANC and the
ANC in the presence of the uncorrelated noise to further probe the above conjecture.

The SEP and the MEI were generated as described previously. The uncorrelated
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noise sources were white Gaussian noise sources whose variance was varied to achieve
the desired level of uncorrelated noise, 7. The first and second stages of the CRANC
were realized by twenty-tap transversal filters driven by the RLS algorithm. The
simulations were performed for two different levels of uncorrelated noise. For each of
these two levels twenty five independent simulations were performed and the steady-
state adaptive filter weights at the end of each run were averaged. These averaged
weights were then used to filter the SEP, MEI and uncorrelated noise sources. Thus
estimates of the SEP, MEI and uncorrelated noise at the output of the CRANC
and the ANC could be obtained. Using this information, the distortion index and
the SNRGAIN were calculated employing Equations 3.21 and 3.25. Figures 4.12a-d
show the performance comparison of the CRANC and the ANC for these two levels
of uncorrelated noise. In Figure 4.12a the distortion index, p, obtained from the
CRANC and the ANC is compared. The increase in crosstalk level can be seen to
increase the distortion index calculated from the CRANC and the ANC with the
CRANC slightly outperforming the ANC. The simulation results can be seen to be
in close agreement with the theory. The differences between the simulation and
theory are mainly attributed to the convergence properties of the adaptive filters
due to the finite data and filter lengths. These effects tend to be more pronounced
in the case of the CRANC filter since it employs two adaptive filters. Also in the
theoretical development exact spectral information of each of the signal and noise
components was used while in simulation these are only approximated. Figure 4.12b
portrays the SNRGAINs achieved by the CRANC and the ANC at different levels
of crosstalk for 7 = 0.0025. Again we see that an increase in crosstalk results in a
degraded performance for both the CRANC and the ANC with CRANC exhibiting
a marginally better performance compared to the ANC. Again the simulations are in
close agreement with the theory. Figures 4.12¢c and 4.12d compare the distortion index
and SNRGAIN obtained by the CRANC and the ANC at 7 = 0.01 respectively. Here
we observe that the performance indices obtained from the CRANC and the ANC

65



Distortion index, p

Distortion Index, p

o4f

X o1 02 3 a4 05 af 7 a8 s % a1 ez 03 a4 05 08 07 o8 08
Crosstak Level, § Crosstak Level, §
Figure 4.12a: Distortion Index Vs Figure 4.12b: SNRGAIN Vs Crosstalk
Crosstalk
09 T T Y T T T T T r—r T
[ Level of Uncomelated Noise, t = 0.01
08
(1h] 4
(11
ol
04
u.
02F
(R
S 01 02 03 04 05 05 07 08 09 1 % o1 0z 03 04 05 06 07 o5 05 1
Crosstak Level, § Crosstak Level, §
Figure 4.12c: Distortion Index Vs Figure 4.12d: SNRGAIN Vs Crosstalk
Crosstalk
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are almost identical at each and every level of the crosstalk. Thus higher levels of
uncorrelated noise render the second ANC in the CRANC filter structure practically

useless.

4.3.2 Effect of Uncorrelated Noise on CRANC Variations

Let us first look at the effect of uncorrelated noise sources on the constrained CRANC
algorithm. With the addition of uncorrelated noise sources, the equivalent structure
of the second stage of the CRANC filter can be depicted as shown in Figure 4.13,
where W)(2) is the optimal transfer function for AF #2 of the CRANC filter from
Eqs. 4.21 and 4.22. In the absence of any uncorrelated noise sources, W,(z) has a
form similar to G(z)W;(2)/(1—G(z)Wi(z)) and hence constrained CRANC algorithm
will converge to the correct G(z) transfer function. In the presence of uncorrelated
noise sources, Wa(z) is a complex ratio of the spectral densities given by Eqs. 4.21
and 4.22, and hence the constrained algorithm will return biased G(z) values. The

amount of bias depends on two factors:

e The ratio of the uncorrelated to myoelectric power spectral densities in the
reference input of AF #1, 1.(z). If 7.(2) is very small at all frequencies, then
AF #1 will converge to the inverse of the myoelectric transfer function and
there will be negligible myoelectric residue at the reference input of AF #2. If
this condition is not true, the myoelectric residue in the reference input of AF

#2 will introduce bias in the convergence of the constrained CRANC algorithm.

e The spectral ratio of the SEP and uncorrelated noise should be >> 1. If this is
not the case, the convergence of the constrained algorithm is significantly influ-

enced by the uncorrelated noise sources and hence the resulting G(z) estimates

will be biased.

Figures 4.14 a and b show the convergence of the constrained CRANC algorithm

in the presence of uncorrelated noise sources. Two different sets of simulations were
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Figure 4.13: Eguivalent block diagram for the second stage of the constrained CRANC
filter.

performed for two different values of the level of uncorrelated noise, 7. Comparing
these graphs with the convergence plots in Figure 4.3, we can observe that uncorre-
lated noise sources introduce bias into the convergence of the constrained CRANC
algorithm. This bias can be seen to worsen as the level of uncorrelated noise increases.
The converged weight values in Figure 4.14b are nowhere near the true G(z) values
given in Equation 4.7.

The effect of uncorrelated noise on the modified DDAP is scrutinized next. White
Gaussian noise sources were added to the propagating SEP and MEI waveforms.
Once again simulations were performed for two different 7 values viz. for r = 0.01 and
0.001. The A parameter was estimated from the peak of the cross-correlation function
between the sensors. Note that the uncorrelated noise does not effect the A parameter
estimation significantly as the MEI is at least one hundred times more powerful than
the uncorrelated noise sources. Figures 4.15 a and b show the convergence of the time

delay estimate, @, for both the simulation cases. A characteristic feature in both these
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plots is the convergence of the time delay estimate to the true value in the mean.
This can be shown theoretically using the update equation for the time-delay estimate

given by, (from Appendix II)

@(k +1) = g(k) + pe(k){z(k — ¢ — 1) —z(k— ¢+ 1)}. (4.26)
M Lovelofuncomemed roe 20001 :wd' . -
0.08
004 '3
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Figure 4.14: Convergence characteristics of the constrained CRANC algorithm in the pres-
ence of uncorrelated noise sources where go, g1,92 and g3 are the filter weights.

If we take expectations on both sides and assuming, for the time being, that there

are no uncorrelated noise components, we have
E'(@(k+1)) = E'(@(k)) + pE'(e(k){z(k~ ¢ —1) —=z(k-g+1)}).  (4.27)

Noting that e(k) = y(k) — §(k), y(k) = z(k) + z(k — ) and §(k) = z(k) + z(k — &)
(refer to Figure I1.3 in Appendix II), the above equation simplifies to,

B'@(k +1)) = B'(@(k)) + pE'{=(k — p)z(k— & — 1)-
z(k—@)z(k — @ —1) —z(k— p)z(k —F+ 1) + z(k — P)z(k -+ 1)} (4.28)

which simplifies to
E'(@(k+1)) = E'(@(k)) + p{Rxx(p — @ — 1) — Rxx(p — ¢+ 1)} (4.29)
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Figure 4.15: Convergence characteristics of delay estimate algorithm for the modified
DDAP.

where Rxx is the time-averaged autocorrelation function of x(k). It is now shown
that the addition of uncorrelated noise sources do not affect the mean trajectory of
the convergence of the delay estimate. Let u;(k) and us(k) be the uncorrelated noise
components in the primary and reference of the adaptive filter respectively and let
yu(k) = y(k) + ui(k) and z,(k) = z(k) + uz(k). The update equation for the delay

estimate is now given by

Gk +1) = p(k) + pe(kMzu(k — g — 1) —zuk—F+1)}.  (4.30)

where e(k) = yu(k) — Fu(k), yu(k) = z(k) + z(k — @) + u,(k) and F,(k) = z(z(k) +
z(k — @) + uz2(k — @). Once again taking expectations on both sides and simplifying,

E'(@(k+1) = E@(k)) + pE'{[e(k — @) + (k) — 2(k ~ 3) — ua(k — )]}
{2k =G —1) —o(k — G+ 1) +ua(k — § 1) — ua(k — § + 1)]} (431)

Since u,(k) and ua(k) are uncorrslated white noise sources, the above expression

simplifies to,
E'@(k +1) = E@(K) + s{Bxx(p -5 - 1) - Bxx(p—@+ 1} (4.32)
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Thus the delay estimate converges in the mean to its true value even in the pres-
ence of uncorrelated noise sources. The variance of the delay estimate, however, is
dependent on the power of the uncorrelated noise sources. This can be seen from
Figures 4.15 a and b where higher values of T result in delay estimates of larger
variance.

The presence of uncorrelated noise sources poses another problem for the modified
DDAP: signal recovery. As mentioned before, an inverse filter needs to be constructed
to successfully recover the SEP signal. This inverse filter, given by Eq. 4.15, has poles
on the unit circle and is therefore only marginally stable. Thus in the presence of
extraneous noise sources, the estimate at the output of the inverse filter is severely
affected. Figure 4.16 illustrates this phenomenon. In Figure 4.16 a and b the output
signals at node #2 are depicted for two different values of 7. Compared to Figure
4.7b, we see that the SEP component is significantly masked by the uncorrelated
noise sources. The SEP estimate obtained using the inverse filter in each of these
cases is shown in Figures 4.16 c and d along with the true SEP. As noted earlier, the
uncorrelated noise power is magnified and the SEP estimate is submerged under the
amplified uncorrelated noise. The only way to combat this problem is to enhance
the SEP-to-Uncorrelated Noise Ratio (SUNR) at the input of the inverse filter. In
Figures 4.16 e and f, the SEP estimates obtained by the inverse filter when its inputs
are averaged over one hundred SEP records, is shown. Now it can be seen that the

estimates are closer to the true SEP signal.

4.3.3 Effects of Non-planar Propagation

Until now, it has been assumed that both the SEP and MEI are ideal plane waves.
In such a case, the modified DDAP will recover the SEP perfectly without any a
priori knowledge of its propagation characteristics. Even in the presence of uncorre-
lated noise, we can recover the SEP if both MEI and SEP possess ideal propagation

characteristics. However, in practice, MEI and SEP are known to exhibit non-planar
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propagation characteristics. The effect of these deviations from the ideal will have a

pronounced effect on the performance of the DDAP as discussed below:

e Ideal MEI propagation and non-ideal SEP propagation. In this case,
the first stage of the modified DDAP will eliminate the MEIL. However, since
the SEP signals at nodes #1 and #2 now differ by more than just a time delay
parameter, delay estimation and inverse filtering will not be enough to recover
the SEP signal. A FIR filter has to be employed to estimate the transfer function
between the SEP components at nodes #1 and #2.

o Ideal SEP propagation and non-ideal MEI propagation. In this case,
simple cross-correlation based estimation of A parameter will not suffice. Due
to the non-planar propagation, the simple delay and difference operation will
leave a substantial amount of MEI residue at both nodes #1 and #2 which
will invariably affect the delay estimation routine in the second stage. Thus a
FIR filter has to be placed in the first stage to compensate for the non-ideal
propagation. The second stage will still be a delay estimation stage as the
SEP components at nodes #1 and #2 differ only by a time delay parameter.
However, the algorithm derived in Appendix II needs to be modified to account

for the effect of the non-planar MEI propagation.

e Non-ideal SEP and MEI propagation. The delay and difference array
processor will be least effective in such a case and an adaptive filter structure
such as the basic CRANC should be used to compensate for the non-planar

propagation of both the SEP and MEI.

4.4 Multichannel CRANC - A Remedy

From the analysis so far, the main deterrent to the application of the CRANC filter

for SEP enhancement is the presence of uncorrelated noise sources. The presence of
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Figure 4.17: Block diagram of the MCRANC.

these sources results in the following undesirable effects:

1. Increased MEI residue. In the presence of uncorrelated noise sources, AF #1
in the CRANC structure fails to implement the inverse of the MEI transfer func-
tion and hence results in substantial ME] residue. The amount of MEI residue
depends upon the relative power of the uncorrelated noise sources. With SEP
measurements, the MEI is usually several times stronger than the uncorrelated

noise sources and hence the effect of uncorrelated noise on the performance of

AF #1 may be tolerable.

2. Decreased resistance to SEP crosstalk. The second stage in the CRANC
structure compensates for the distortion induced by SEP crosstalk. In the
presence of uncorrelated noise sources, however, the ability of AF #2 to do so

weakens and signal distortion results.

Of the two points mentioned above, the second one is the most important one as the
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uncorrelated noise sources are at best as powerful as the SEP. The effect of uncorre-
lated noise on the performance of AF #2 can be alleviated by ensemble averaging at
the primary and reference inputs of AF #2. The ensemble averaging process reduces
the power of the uncorrelated noise sources in the reference input of AF #2 and
hence AF #2 performs better. However, if the SEP exhibits time varying latency and
waveform characteristics, then ensemble averaging introduces a “smearing” effect into
the SEP. This results in further degradation of the underlying SEP signal which will
not be rectified by the second ANC. Thus an adaptive structure which can track the
possible stimulus-to-stimulus variations of the SEP while still mitigating the effect of
uncorrelated noise is beneficial in these situations.

As discussed in Chapter 3, the effect of uncorrelated noise on an ANC can be
alleviated by developing a multichannel ANC. It is shown in Chapter 3 that a mul-
tichannel ANC gives a performance improvement over a single ANC in a manner
directly proportional to the number of reference channels. Thus a CRANC structure
involving a multichannel ANC may provide improved uncorrelated noise tolerance. It
is worthwhile to note here again that AF #2 in the CRANC filter (Fig. 4.1) attempts
to cancel the SEP signal in its primary. The presence of uncorrelated noise prevents
it from doing so and signal distortion results. The employment of a multichannel
ANC in the second stage of the CRANC would result in better signal cancellation
and therefore less signal distortion. There is an improved signal cancellation as the
number of channels increases and therefore the signal distortion steadily decreases as
the number of channels increases eventually reaching zero as the number of channels
goes to infinity.

As detailed in Chapter 1, in SEP studies the nerve is stimulated periodically
to generate an SEP train. Thus it is possible to develop a Multichannel CRANC
(MCRANC) by deriving multiple reference channels from the reference channel of
AF #2 in the CRANC filter structure. The block diagram of the MCRANC filter
is shown in Figure 4.17, where W3,(2), W2,(2), . . ., Won(2) represent the M adaptive
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filters in the second stage of the CRANC and D is the stimulus period. For example,
if the stimulus rate is 5 Hz, the D parameter is equivalent to 200 ms. A complete
analytical treatment of the MCRANC structure is undertaken in Appendix III. The

output SEP, MEI and uncorrelated noise spectral densities are derived as,

$5.5.(2) = ¢s,5,(2)|(1 = G(2)Wi(2))(1 + MWy (2))] (4.33)
NN (2) = NN, (2) |(1 ~HEWi(2)1+(1+2zP+... + z-(M-xm)[2
(1 + War(2))? (4.34)

bvv, = ¢u,u,(2) |1 +(1+2P+. .+ z’(M'”D)Wg;(z)l2 +
$u.0.(2) [Wi(2) + (1 +27P + ... + z‘(M“l)D)Wl(z)ng(z)|2(4.35)

With this spectral information, it is straightforward to calculate the theoretical dis-
tortion index and SNRGAIN. Figures 4.18 and 4.19 show the theoretical performance
indices of the MCRANC. The SNRGAIN can be seen to increase with the number
of reference channels in the MCRANC until it reaches a saturation value regardless
of the crosstalk level. This saturation value is decided by the power spectral den-
sities of the primary and reference uncorrelated noise sources and the myoelectric
residual power spectral density at the output of ANC #1. An exact expression for
the maximum SNRGAIN achieved by the MCRANC is derived in Appendix III. The
distortion index, on the other hand, monotonically decreases to zero with the increase
in the number of reference channels irrespective of the signal crosstalk level. Thus
the MCRANC offers improved immunity to the perils caused by SEP crosstalk.

It has to be noted here that if the SEP is stationary then an M-channel MCRANC
filter is equivalent to ensemble averaging M records at the reference input of AF #2
and then using a single adaptive filter. This can be seen from the fact that the opti-
mal transfer functions for the M adaptive filters in the second stage of the MCRANC
are identical (refer to Appendix III for the exact expressions for optimal transfer
functions). The real application of the MCRANC filter is in situations where the

SEP possesses time-varying characteristics such as latency and waveform changes. In
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such situations, the MCRANC has an advantage over the ensemble averaged CRANC
(E-CRANC) as the M adaptive filters allow the tracking of stimulus-to-stimulus vari-
ations while enhancing the SEP from uncorrelated noise.

The effectiveness of this MCRANC structure in comparison to an E-CRANC
for different SEP latency characteristics was evaluated through simulations. Three
different SEP latency characteristics were simulated: 1) the normal SEP latency where
the SEP repeats unchanged, 2) sudden change in latency, where a sudden time delay
is introduced after 50 SEP records and 3) slowly varying latency, where the latency
is changed every 40 SEP records. The MEI and the uncorrelated noise sources were
generated as described earlier. Each of the M adaptive filters in the second stage of
the MCRANC were realized using thirty-tap transversal filters. The RLS algorithm
was used to achieve the minimum mean square solution. Once again, all the adaptive
filter weights were averaged over 50 independent simulation runs. These averaged
weights were then used to filter the input SEP, MEI and uncorrelated noise and the
distortion index and the SNRGAIN were calculated. This procedure was carried out
for different values of M from 1 to 5. For the E-CRANC the same procedure was
followed except that the reference input of the second ANC was ensemble averaged
over M SEP records (M ranging from 1 to 5) before the adaptation of the second
ANC.

The performances achieved by the MCRANC and the E-CRANC for a particular
level of uncorrelated noise and crosstalk are shown in Figures 4.20 and 4.21. In Figure
4,20 the distortion index, p can be seen to decrease with an increase in the number
of channels irrespective of the nature of the SEP latency. On the other hand, the E-
CRANC exhibits similar performance as the MCRANC only if the SEP is stationary.
In the case of latency changes, ensemble averaging introduces an additional SEP
degradation resulting in higher distortion indices. These results are complemented
by the results shown in Figure 4.21 where the SNRGAIN, «, can be seen to increase
with the number of reference channels for the MCRANC. The SNRGAIN can also be
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seen to drop for the E-CRANC filter in the case of time-varying latency. To compare
the performances of the ANC, CRANC, E-CRANC and MCRANC qualitatively, the
SEP estimates at the output of each of these filters are presented in Figures 4.22a-
c. In all these figures, the underlying original SEP signal is shown in solid lines.
In Figure 4.22a, the input to each of these filters which is a composite of the SEP,
MEI and uncorrelated noise and which is averaged over 50 SEP records is shown.
It is apparent that the original SEP, which is shown by the solid line, is swamped
by the larger myoelectric interference. Figure 4.22a also depicts the output of the
ANC and CRANC which again are averaged over 50 SEP records. Here we see that
the larger low frequency MEI has been reduced in both the cases. However, due to
the presence of crosstalk and uncorrelated noise, the signals are severely distorted
and the SEP estimates do not resemble the original signal. Figure 4.22b compares
the SEP estimates obtained by the MCRANC and E-CRANC with M=5 for the
same simulation data. From this figure, we can observe that the MCRANC and
E-CRANC output similar SEP estimates which are comparatively better than the
estimates provided by the ANC and the CRANC. Figure 4.22c compares the SEP
estimates obtained by the MCRANC and E-CRANC for the nonstationary SEP case.
The quality of the SEP estimate obtained by the MCRANC can be seen to be better
compared to the SEP estimate from the E-CRANC.

While the MCRANC presents an impressive solution to mitigate the effects of
uncorrelated noise on crosstalk resistant MEI reduction, it may not be practical in
experimental conditions where the SEP SNR is very low. In such conditions, a large
number of reference channels is required in the second stage of MCRANC to output
a distortion free SEP, which increases the computational burden on the system. This
factor, coupled with the requirement of large amounts of data by the MCRANC to
achieve convergence in low SNR situations, defeats the purpose of having an SEP
signal processing system - to reduce the SEP recording time. Figure 4.23 displays

the theoretical curve between the input SNR and the number of channels required
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by the MCRANC to provide a distortion index of 0.25. From this curve, it can be
observed that for input SNR values less than 0.01 more than ten reference channels

are required to achieve a distortion index of 0.25.
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Figure 4.23: Required number of channels in the second stage of the MCRANC structure
as a function of input SNR to achieve a distortion indez of 0.25.

Therefore, from a computational point of view, it is better to employ an E-F-CRANC
in place of MCRANC in practical situations where the SEP SNR is very low (for
example, SSEP experiments where the SNR is usually around 0.01). An interesting
ECRANC model can be derived from the CRANC structure which provides a practical
solution to SEP retrieval at low SNRs. Figure 4.24 depicts the block diagram of
the modified ECRANC filter structure where the blocks denoted “AVG” perform
ensemble averaging. The auto-spectral density of the reference input to the second

ANC is now,
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bx,3,(2) = 85,5,(2) 11 = GEWA() + gy, (2) L~ HEWi(2)* +
G790 (3) + 2-dun () WP . (4.36)

where M is the number of averaged SEP records. The cross-spectral density between
the primary and reference inputs of the second ANC is the same as given by Eq.
4.21. As M increases, the influence of MEI and uncorrelated noise sources on W(z)
decreases. In the limit of M approaching infinity, the optimal transfer function for
the second AF becomes,

G(z)Wi(z)

A W) = e wGy (4.37)
Now the SEP signal at the output of the averager is given by
53(z) = Sp(z){1 — G(z)W1(2)}. (4.38)
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If we construct a new filter based on W,(z) as

then

GEWi(z) _ 1
1-G(z)Wyi(z) 1-G(z)Wi(z)

Jim Wi(z) =1+ (4.40)

Thus by using W3(2) to filter the SEP signal at the output of the averager, we can
obtain an estimate of the SEP waveform. The salient points regarding the operation

of this structure are itemized below:

¢ The ECRANC structure is computationally simpler than the MCRANC struc-
ture. It is much faster to compute an ensemble average of M records than to

implement an M channel CRANC structure.

e The success of the ECRANC structure obviously depends on the number of
SEP records averaged before the second stage. However, since the first ANC
removes most of the larger MEI, it is expected that a relatively low number of

averages is required to obtain a signal estimate of good quality.

e The main drawback associated with this structure, as mentioned previously,
is the SEP “smearing” effect if the SEP exhibits time-varying characteristics.
Since this ECRANC structure is aimed mainly at low SEP SNR situations,
— where averaging is a must to retrieve the SEP — this “smearing” effect is

traded-off for shorter acquisition times.

The following simulation demonstrates the effectiveness of the ECRANC structure
in low SNR situations. The SEP, MEI and uncorrelated noise sources were simulated

as described previously. Once again, the first stage of the ECRANC structure was

84



allowed to converge during the MEI phase of the input data and the steady-state
weights were used to filter the data containing the SEP. Ensemble averaging was then
performed on the outputs of the first stage, and these averaged SEP data were used
to drive the second AF in the ECRANC structure. Once convergence of the second
AF was established, the weights were copied into a third filter (W3(z) in Figure 4.24)
and the averaged SEP data were passed through. From the resulting SEP estimate,

the distortion index and SNRGAIN values were calculated.
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Figure 4.25: Distortion indez, p and SNRGAIN, v as a function of the number of averages.

Figure 4.25 depicts the results obtained from this simulation study. Figure 4.25a
portrays the distortion index as a function of the number of SEP records averaged
for four different data: a) the raw input with no processing, b) the output of the first
stage of the ECRANC, c) the output of the CRANC structure shown in Fig. 4.8
and d) the ECRANC structure shown in Fig. 4.24. The superior performance of the
ECRANC structure is obvious in this plot. These results are complemented by the
SNRGAIN function for the same data. Once again, the performance improvement of

the ECRANC over other techniques is lucid in this graph.
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4.5 Experimental Results

The discussion up until this point has been based on theoretical models and simulation
results. While every attempt has been made to generate simulated data which are
close to the real world data, simulated data are still simulated. To quote Bérubé
[6] : “Theoretical models and simulation results may offer interesting insights, but
the true test for any signal processing method is the real world signals”. Thus this
section is devoted to results obtained through processing in vivo SEP and MEI data
by the aforementioned signal processing methods. A detailed explanation of the
experimental setup for MSEP and SSEP data acquisition along with a discussion of
the relevant issues is given in the following sections. The same experimental setup

was also used for the data acquired in Chapters 5 and 6.

4.5.1 MSEP Acquisition Setup

The experimental setup for acquiring MSEPs is displayed in Figure 4.26. As briefly
discussed in Chapter 1, the instrumentation system can be briefly divided into a)
the stimulator system, b) the recording and amplification system and c) the data
acquisition system.

A Grass Instruments S11 dual-channel stimulator was utilized to provide the stim-
ulus pulse. The stimulus pulse width was set to 0.2 msec and the stimulus period
was set to 391.72 msec for all the in vivo experiments involving the SEP data. The
output of the stimulator was input to a Grass SIU 8TB isolation unit which has an
additional provision for varying the stimulus amplitude. The output of the isolation
unit was input to the stimulating electrodes. For all the experiments involving MSEP

data, the median nerve was stimulated at the index finger with the cathode electrode

2This stimulus period was set to this value to minimize the possibility of any powerline harmonics
being in synchrony with the stimulus [39].
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proximal to the base of the index finger and the anode approximately 2 cm away to-
wards the tip. For most of the experiments the stimulating electrodes were standard
Ag-AgCl electrodes, which were wrapped around the index finger and firmly taped.
Prior to the placement of these electrodes, the surface of the index finger was prepared
by first rubbing with an alcohol swab, applying electrode paste (EKGSol by Medi-
Trace) and removing the excess paste with a tissue saturated with alcohol.

The MSEP signal was acquired using a pair of stainless steel electrode arrays,
shown in Figure 4.23 (The same electrode array was used in [38] and [6].). The active
electrode array was placed on the ventral side of the forearm with the array elements
perpendicular to the direction of the MSEP propagation. The indifferent electrode
array was placed on the dorsal side of the forearm and differential signals between
these two arrays were given to the amplification system. Once again, extensive skin
preparation was undertaken prior to the placement of each of these arrays by first
rubbing with an alcohol swab, applying electrode paste and removing the excess paste
with a tissue. In addition, a thick electrode paste, ASI A-E-12 Ten 20 electrode paste,
was applied to each of the individual sensors to ensure good conduction with extra
care taken to ensure that adjacent sensors were not shorted. The arrays were securely
held to the forearm by a pair of elastic rubber bands and some tape.

Four channels of MSEP data were collected from the array electrodes. Each one
of these channels was first input to a pre-amplification stage. These pre-amplifiers
provide a variable gain factor in the range of 100 to 1000 and are custom built in the
Institute of Biomedical Engineering (IBME) for low noise SEP and MEI data acqui-
sition. The second amplification stage consisted of commercial differential amplifiers
(Tektronix model AM 592) which also provided adjustable gain, in the range of 100
to 100000 with the option of a divide by 100 setting. These amplifiers also possess
adjustable band pass filters to limit the bandwidth of the input signals. A 4 channel
Gould digital oscilloscope (model 1604) was utilized to visually monitor the array

signals. While measuring MSEP data, the signals from the first two differential pairs
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description on the stimulation, amplification and digitization systems.

88



in the electrode array configuration were input to a dual channel Briiel and Kjeer
(B&K 4 channel module type 3023) real time signal analyzer. The B&K performed
real-time ensemble averaging of the input data thereby providing visual information
on such factors as the nature of the MSEP, the extent of the stimulus artifact and
auto/crosscorrelation functions for propagation time measurements.

The amplified signals were then fed to a CIO-DAS16/330i data acquisition board
residing in a 486 PC clone and driven by custom made, graphical, user friendly
data acquisition software. The data acquisition software acquired the signals at a
prescribed sampling rate, digitized them and stored them on a hard-disk for processing
at a later time.

When a large number of SEP records need to be acquired, there is a considerable
strain on the data storage requirements. This is due to the fact that the stimulus rate
is approximately three per second and the MSEP usually occurs within a 20 msec win-
dow following the application of the stimulus. Thus a huge amount of unwanted data
will be collected if the data acquisition process is allowed to run continuously. This is
where the “synchronization unit” is very useful. The programmable synchronization
unit provides an external clock input to the data acquisition system following a stim-
ulus pulse. The duration and frequency of this clock is programmable. This clock
input enables the A/D system to acquire only a window of data following a stimulus.

Thus the SEP can be efficiently stored using this data “chopping” procedure.

4.5.2 SSEP Acquisition Setup

For acquiring the SSEPs, an experimental setup similar to the one shown in Figure
1.1, Chapter 1 was utilized with a change in the position of the stimulating electrodes.
In order to minimize the effects of the stimulus artifact interference, the stimulating
electrodes were placed at the ankle for stimulating the posterior tibial nerve. The
stimulating electrodes were once again Ag-AgCl electrodes, with the negative elec-

trode placed at the distal end of, and posterior to, the left medial malleolus, directly
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over the posterior tibial nerve. The positive electrode was placed slightly lateral to
the sustentaculum tali at the anterior margin of the lateral malleolus. Minor adjust-
ments were made to these placements such that the stimulus was comfortable for the
subject. Prior to the placement of stimulating electrodes, careful skin preparation
was performed as in Section 4.5.1.

The recording electrode array was placed on the spine between the L2 and L4
vertebrae with the first array element placed approximately over the L4 vertebra.
The reference array was placed on the right side of the subject’s back, parallel to
and at the same height as the primary array. The distance between the primary and
reference arrays varied from subject to subject, as the reference array was placed
as far as possible from the primary array. Differential inputs from the corresponding
array elements were given to the pre-amplification stage. The rest of the experimental

procedure was similar to the protocol described above for MSEP measurements.

4.5.3 MEI reduction

To investigate the relative performance of different MEI reduction techniques, myo-
electric data were collected from different subjects prior to the stimulation procedure.
Once the recording arrays were in place, the subjects were asked to relax and the
resulting data were collected from the recording electrodes. These data primarily
represent the uncorrelated noise sources and were later used to determine the uncor-
related noise power levels and subsequently, the T parameter. The subjects were then
asked to produce an isometric contraction of the muscles surrounding the recording
area and the resulting myoelectric data were collected. MEI Data were collected at
two different contraction levels resulting in MEI data sets with two different 7 values

per subject.
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Each of these MEI data sets were then put through different signal processing tech-
niques. First, the MEI propagation velocity for each of the data sets was computed
using the cross-correlation technique. The cross-correlation function between the MEI
data obtained from the first and fourth sensors was computed and the MEI propaga-
tion delay was calculated using the peak value of the cross-correlation function. From
the propagation delay and the distance between the sensors in the array, the MEI
conduction velocity was calculated. The MEI conduction velocities for different sub-
jects and for different recording electrode placements are given in Tables 4.1 and 4.2
respectively. Once the propagation delay was calculated, the MEI residues at nodes
#1 and #2 of the DDAP structure (y(k) and z(k) respectively in Fig. 4.6 with added
uncorrelated noise sources) and the power performance parameter, I, were calculated.
The theoretical values for the DDAP performance measures were calculated assuming
ideal MEI propagation.

The MEI data from the first two sensors were then used to drive a thirty tap ANC
filter driven by the RLS algorithm. Once convergence of the ANC was established,
the residual MEI at the output of the ANC was retrieved and the power performance
index, I was computed. The theoretical estimates of the performance index were
computed from the actual spectra of the primary and reference inputs of the ANC.
These results along with the performance indices predicted by the MEI model used in
the simulation study (detailed in Chapter 3) for the same T values and the associated
MEI residue indices are tabulated in Tables 4.1 and 4.2 for the MEI data obtained
from the wrist and lower back regions respectively.

The propagation velocities for the MEI data obtained from the wrist region are
somewhat higher than normal muscle conduction velocity values. This is probably
due to the position of the recording array at the wrist region which is more likely to
be above the muscle tendon area. Infinite conduction velocities were observed for the
MEI data collected from the lower back region. This apparent behavior is probably

due to the MEI impinging on the array perpendicular to the array axis or the array
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Table 4.2: MEI reduction performance of various signal processing schemes considered in

this thesis. The MEI data were collected from the lower lumbar region of the spinal cord.
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covering the motor points.

For the MEI data obtained from the wrist region, the performance achieved by the
DDAP at node #2 is closer to its theoretical estimate at higher T values. However, the
performance index calculated at node #1 is substantially smaller than the theoreti-
cal values, strongly indicating non-ideal propagation of the MEIL. For lower 7 values,
the performance indices at nodes #1 and #2 are both much lower than the theo-
retical values. At low 7 values (i.e higher contraction levels), several muscle groups
are activated and the propagation delay calculated using the peak cross-correlation
function reflects only an average conduction velocity. Thus substantial MEI residue
remains at the DDAP output even at node #1 when this average propagation delay
is used. The same observation can be made with respect to the results obtained from
the lower back. Due to this relatively poor performance of the DDAP structure with
experimental MEI data, it was not considered in SEP enhancement results detailed
in the following section®.

The ANC outperforms the DDAP for all the MEI data sets. Close agreement be-
tween the theoretical performance indices and those computed from the experimental
data can be observed. For the MEI data collected from the wrist with higher 7 values,
the performance indices correspond to those calculated using the MEI mode! in the
simulations. At lower T values and for data collected from the lower back, the model
breaks down and the performance indices are significantly lower than expected. Once
again, at lower 7 values, the MEI is a manifestation of several active motor units, and
the “crosstalk” between these limits the overall performance of the ANC.

In Chapter 3, it is shown through simulations that the performance of an ANC can
be improved using a multichannel structure. Figure 4.27 depicts the performance of
the MRANC for some of the data sets tabulated in Tables 4.1 and 4.2. Thirty tap FIR
filters driven by the LMS algorithm were used to cancel the MEIL. Once the MRANC

31t was found that the DDAP usually results in distortion indices greater than 2 when employed
on SEP datasets.
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has converged, the residual MEI component was retrieved and the power performance
index was calculated. Figures 4.27a, 4.27c and 4.27e show that the performance of

the MRANC increases as the number of reference channels increase. Figures 4.27b,
4.27d and 4.27f depict the spectral content of MEI residue as the number of reference
channels increase. As observed in Chapter 3 with simulated data, an increase in the
number of reference channels results in whitening of the residual myoelectric spectrum

and brings it down to the level of the uncorrelated noise sources.

4.5.4 SEP Enhancement

In Chapter 3, it was shown that the performance of an ANC is drastically affected
by the presence of crosstalk. At the beginning of this chapter, a crosstalk resistant
ANC structure and its variations were studied. It was shown analytically and through
simulations that the presence of uncorrelated noise sources renders the CRANC filter
less resistant to crosstalk. Two structures, MCRANC and ECRANC, were then
developed which were shown to be more robust in the presence of uncorrelated noise
sources. This section evaluates all these techniques with experimental data collected
from the median nerve and the spinal cord.

The experimental setups for acquiring the MSEPs and SSEPs were discussed
earlier. The stimulus level was adjusted to a comfortable level for the subject and
raw SEP data was acquired under three conditions - at rest, light muscle contraction
and medium muscle contraction. To gain visual appreciation of the SEP, realtime
ensemble averaging was performed on the B&K spectrum analyzer. Five hundred
records were averaged for the MSEP experiments and a thousand records for the SSEP
experiments which formed the "gold standard” for evaluating the performance of
differnt SEP enhancement algorithms. At the same time, raw SEP data was digitized
and stored on a 486 computer for post-processing.

It was mentioned before that for successful MEI reduction using the MCRANC

filter, the MEI transfer function must be time-invariant. With experimental data
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however, this condition may not be satisfied. Hence a small change was made to the
experimental data collection protocol. The Grass stimulator unit was programmed in
such a way that the stimulus was delivered a certain time after the data acquisition
process was triggered. Thus a chunk of the MEI data was captured before the advent
of each SEP. This MEI data was used to update the weights of the first ANC in the
CRANC structure. At the onset of the SEP record, the adaptation of the first ANC is
stopped and the SEP data is filtered using the updated AF #1 weights. The filtered
SEP data is then used to drive the second stage of the MCRANC structure.

Figure 4.28 shows the results obtained using raw MSEP data. Fig. 4.28a depicts a
raw MSEP record along with a MSEP waveform which was averaged over 250 records.
The larger, low frequency component in the raw MSEP record is the MEI. Notice that
the level of the uncorrelated noise sources here is quite low. Fig 4.28b displays the
SEP estimate obtained using a single ANC. While the low frequency component has
been reduced, distortion is introduced into the original MSEP waveform. Figure 4.28¢c
portrays the MSEP estimate provided by a five channel MCRANC. By observing this
estimate, we can notice that in addition to the reduction of the low frequency MEI,
the effect of crosstalk has also been compensated.

Tables 4.3 and 4.4 offer a more comprehensive look at the performance of MCRANC
with experimental SEP data. In Table 4.3, the performance of the MCRANC in
terms of the distortion index and SNRGAIN for the MSEP data collected from dif-
ferent subjects is tabulated. One can observe that the performance of the MCRANC
gets consistently better with the increase in the number of reference channels in its
second stage. As observed with the simulated data, the performances obtained using
an ANC and a CRANC (M=1) are approximately the same. Notice that the input
SNR values for the MSEP data are relatively higher and hence the good performance
exhibited by the MCRANC. Table 4.4 shows similar results for the SSEP data. Here
we see that the performance of the MCRANC is not significantly different from an
ANC. With the SSEP data, the input SNR values are usually quite low. Thus the
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Subject Distortion Index, P SNRGAIN, Y

MCRANC, M= MCRANC, M=
ANC ANC

Subject #1

SNRin =0.14 020 J 018 ) 013] 011| 008] 007| 369 | 364 ] 364| 555|579 826
B=073

Subject #2
SNRin=007 | 168 | 120 032|029 026 | 024] 300 | 120] 273 | 277 308 430
B=096

Subject #3
SNRin =0.15 036 042 ]| 036 028| 027 021 | 232 | 225 | 341 388 389 453
=090

Table 4.3: MSEP enhancement results using the MCRANC.

MCRANC filter requires a large number of reference channels in its second stage to
accomplish the task of crosstalk compensation. The presence of a large MEI compo-
nent also results in longer convergence times for the second stage of the MCRANC
filter, usually thrice the number of SEP records used while processing MSEP data.
In these situations, it is better to employ an ECRANC filter instead of a MCRANC
filter. By employing an averager in the second stage of the CRANC structure,
ECRANC reduces the effects of the residual MEI and uncorrelated noise sources on
the convergence of the second stage. This results in a better estimate of the crosstalk

transfer function which leads to a better SEP estimate. The performance of the
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Subject Distortion Index, P SNRGAIN, Y

MCRANC M= MCRANC,M =

Subject #1
SNRi =0.0013 1918 | 19.42] 1518 1608 19.07 13.291 154 | 156 ] 120 | 115 ] 145] 085
=097

Subject #2
SNRi =0.02 150 | 17{ 1] 66| 154 159| 156 | 157] 162 | 155 161 1.56
B=106

Subject #3
SNRi =0.02 401 | 347|379 | 39| 377|372 12 | 109 122] 123] 120] LI8
B=090

Table 4.4: SSEP enhancement results using the MCRANC.

ECRANC filter for the three data sets shown in Table 4.4 was quantified using the
distortion index parameter and is shown in Figures 4.29a-c. These graphs demonstrate
that the ECRANC provides a better quality signal estimate compared to the other
two techniques. In addition, these graphs show that the ECRANC provides better
distortion indices compared to plain ensemble averaging of the input (solid line in
Figures 4.29a-c). Since the ensemble averaging process is computationally cheap, the

computational overhead associated with the ECRANC structure compared to the

other two is minimal.
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4.6 Conclusions

Electrical activity emanating from the surrounding active muscles forms a significant
source of interference in surface measurements of SEP waveforms. Since the spectral
content of this myoelectric activity overlaps with that of the SEP, bandpass filtering
without distorting the SEP characteristics is impossible. Ensemble averaging is an
effective way of reducing the Myoelectric Interference (MEI) as it is asynchronous
with the SEP but a large number of SEP records may need to be averaged to obtain
a good quality SEP.

Adaptive noise cancelling techniques offer a promising solution to the MEI reduc-
tion problem. However, the quality of SEP estimated by an ANC deteriorates in the
presence of SEP crosstalk between the primary and reference sensors. The distortion
resulting from this crosstalk can be compensated by cascading a second ANC. This
two-stage CRANC structure achieves the dual objectives of crosstalk compensation
and interference reduction.

The performance of the CRANC filter, however, suffers from another physical
process, viz. the presence of other extraneous noise sources which are uncorrelated
to both the MEI and the SEP. The mere presence of these uncorrelated noise sources
affects the crosstalk resistivity of the CRANC structure. For uncorrelated noise levels
comparable to the SEP level, the CRANC structure is as good as a single ANC -
nothing extra is gained by using a second ANC.

Multiple reference ANC structures are always better in noisy situations. The
parallel reference channels act to “average” out the uncorrelated noise sources while
still maintaining the temporal relationships between the correlated components. Thus
a multireference ANC can be used in both first and second stages of the CRANC
structure. The performance of the MCRANC structure is directly proportional to the
number of channels — the more the number of channels, the more it is robust to the

influence of uncorrelated noise sources and the better is its performance. Simulations
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and experimental results from MSEP data validate this point.

The MCRANC structure poses another problem in poor SNR situations encoun-
tered with SSEP measurements. A large number of reference channels is required in
the second stage of the MCRANC filter, to “average” out the powerful background
noise while still compensating for the crosstalk. This places a strain on the compu-
tational requirements of the processing system.

In these situations, it is better to employ a CRANC system which replaces the
multireference structure with a straight averager thereby reducing its computational
complexity. The SSEP results show that an ECRANC is a much wiser choice when
dealing with SEPs of very low SNR.

The SSEP results also justify the application of ECRANC to the problem of SSEP
enhancement instead of simple ensemble averaging. The ECRANC filter structure
requires approximately half the number of SEP records to achieve the same distortion
index as the ensemble averaging. With the advent of faster digital signal processors,
it is expected that the ECRANC filter structure can be realized in realtime for spinal

cord monitoring applications.
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Chapter 5

Stimulus Artifact Reduction

Summary

Various issues concerning the Stimulus Artifact (SA) reduction problem are explored
in this chapter. The chapter begins with a generation model of the SA followed by
some experimental studies investigating the nonlinearity in SA. Nonlinear Adaptive
Filters (NAFs) based on a truncated Volterra series are introduced and their efficacy
in reducing the SA interference is demonstrated through processing both simulation
and experimental data. Several parameters which degrade the performance of the

NAF are identified and recommendations are made to negate these influences.

5.1 Stimulus Artifact (SA) Generation

Typically, the SA waveform is a spike followed by a decay response whose ampli-
tude and time constant depend upon the type of stimulator used, the stimulating
and recording electrode characteristics, and the filtering characteristics of the pre-
amplifier stage of the recording system. This SA waveform has been modeled as a

linear combination of three different components which are coupled into the recording
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system by three independent mechanisms [55].

The first and the most obvious mechanism is due to the conduction of stimulus
current through the limb [55, 17]. This stimulus current creates at the recording
electrodes a differential signal which experiences the full amplification of the recording
system. It has been shown that this stimulus current is a nonlinear function of the
stimulus voltage [15, 60]. At high current densities, the electrode-skin interface at
the stimulating electrodes can be modeled as a nonlinear resistor in parallel with
a fixed capacitor [60, 17]. Stevens [60] and Barker [4] have analytically derived an
expression for the current/voltage characteristics, I = aV + bV'?, and experimentally
validated it. This SA component attenuates rapidly as the recording electrodes are
moved away from the stimulation site. Thus the effect of this SA component can be
reduced by increasing the distance between the stimulating and recording electrodes
[39]. McLean [39], in her Masters study, observed that this component reduced by
around twenty three times as the distance between the stimulating and recording sites
doubled. Another possible way to reduce this component is to place the recording
electrode on the stimulus isopotential lines. However, it is shown in the literature
[28] that the isopotential lines shift during the stimulus pulse duration and also that
the direction and alignment of the isopotential lines differ for the three different SA
components.

The second coupling mechanism arises from imperfect stimulus isolation. Most
of the commercial stimulators come with an isolator unit which isolates the subject
from the grounded stimulator. In many of the stimulator systems, this isolation is
transformer based and there always exists a stray capacitance between the stimu-
lating electrodes and ground due to imperfect isolation. As well, there is significant
capacitance between the subject and ground. The resulting current, called the dis-
placement current [39], also creates a differential signal at the recording electrodes.
This SA component, unlike the first component, does not attenuate appreciably as

the distance between the recording and stimulating electrodes increases and often
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becomes the predominant component when they are far apart. This component can
be significantly reduced by placing a ground electrode between the stimulating and
the recording sites [39]. This ground electrode offers a low resistance path for the
displacement current component and hence the magnitude of the SA component due
to displacement current reduces.

The third component is due to the electromagnetic coupling between the stim-
ulating and recording leads. The contribution of this SA component depends on
the impedance of the recording electrodes, the location of the leads and the quality
of shielding on the leads [55]. It becomes a significant component when the skin
surface is underprepared or when the recording electrodes exhibit high impedance.
Minimization of this component warrants usage of minimal length stimulating and
recording leads, employment of low impedance electrodes, thorough skin preparation
and adequate physical separation between the recording and stimulating leads.

Note that if the above precautions are taken, the influence of SA interference on
the SEP waveform can be reduced to a great extent. However, in some situations
there may still be some residual SA affecting the SEP characteristics. The objective
of this chapter is to investigate the applicability of signal processing techniques to
SA reduction in such situations. In particular, adaptive filters based on a truncated
Volterra series expansion are employed to mitigate the SA interference. Before the
theory of Volterra series expansion is reviewed, it is worthwhile to investigate the

nonlinearities involved in SA generation.

5.2 Nonlinearity in SA Generation

Figure 5.1 depicts the SA generation mechanisms from a transfer function point
of view. Here H,(z) represents the transfer function between the stimulating and

the recording electrodes due to the stimulus conductive current, H;(z) is the transfer
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Figure 5.1: SA generation model in the discrete Z domain.

function of the stimulus displacement current component, and Hs(z) is the electro-
magnetic coupling transfer function. Note that the transfer function due to the first
component is nonlinear as explained before and all three transfer functions are possi-
bly time varying as the impedances of the stimulating and recording electrodes change
due to sweating, drying of the electrode paste, movement of the limb etc.

Two examples are given to provide experimental evidence of nonlinearity in the
SA generation. Figure 5.2 depicts the results from the first experiment investigating
the nonlinear V/I characteristics. Here the median nerve is stimulated at the index
finger using conductive rubber electrodes. The resulting MSEP is acquired at the
wrist using Ag-AgCl electrodes. The stimulus output is taken directly from the main
stimulator bypassing the stimulation isolation unit to ensure that the displacement
current component is nullified. The current through the stimulating electrodes was
measured using the Tektronix type 134 current probe amplifier. The steady-state
current values were noted down for various values of the stimulus input voltage.

Figure 5.2 graphs the V/I characteristics resulting from this experiment. In this
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figure, the measured current values are plotted against the stimulus input voltage
along with the current values that would have resulted had the system been linear.
The deviation from linearity is obvious when these values are compared. A second
order polynomial fit to the measured current values is also shown in Figure 5.2 which

appears to be a good fit.
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Figure 5.2: Nonlinear V/I characteristics at the stimulating electrodes.

The results from another experiment which demonstrate the nonlinear nature
of the SA are shown in Figure 5.3. In this experiment, called the refractory period
experiment, two stimulus pulses of the same amplitude are given in such a way that the
second stimulus pulse occurs during the refractory period of the nerve!. In this way,
the first stimulus pulse evokes both SA and SEP waveforms while the stimulus pulse
during the refractory period results only in the SA waveform. These two waveforms

can then be subtracted to yield an estimate of the SA. Mathematically, if SA(k) is

! All nerve fibers have a certain time duration immediately after a stimulus during which a second
stimulus fails to evoke a response. This period is called the refractory period of the nerve.
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the SA waveform and s(k) is the SEP, then

z(k) = SA(k)+ s(k)

z:(k) = SA(k)+ SA(k+n)+ s(k) and
z3(k) = za(k)—=zi(k) = SA(k+1) (5.1)
0.4 0.4
a ] b
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Figure 5.3: SEP enhancement using refractory period method. a) SEP + SA composite,
z1(k) during normal stimulus, b) SEP+SA composite, z,(k) during double stimulus and c)
Enhanced SEP using refractory period method and NAF method.

where k is the time index in samples, z,(k) is the composite SA and SEP waveform
as a result of normal stimulus and z;(k) is the composite signal during the double
stimulus phase with n being the time delay between the two stimulus pulses. Assuming

that there are no time varying components, z3(k) results in a time delayed estimate
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of the SA waveform which can be aligned with the SA in z,(k) and subtracted. This
would result in an artifact free estimate of the SEP assuming that the two artifacts
during the double stimulus phase superimpose linearly. Figure 5.3a shows the trace
of zy(k) and Figure 5.3b portrays the trace of z;(k), each of which is an ensemble
average of 200 such records. The SEP estimate obtained by this refractory period
method is shown in Figure 5.3c. It can be observed that this estimate still contains a
fair amount of the SA with the tail end of the artifact interfering with the initial SEP
phase. This is due to the nonlinear superposition of the artifacts during the double
stimulus input. Figure 5.3c also contains a preview of what a nonlinear adaptive
filter can do with the same experimental data. The significant cancellation of the SA
waveform in the SEP estimate is apparent in this nonlinear filter output.

Thus from the above discussion and experimental examples of SA, it is clear that
a nonlinear adaptive system will model and hence cancel the SA better than any
linear adaptive system. Unlike linear systems, which are completely characterized
by their impulse response, there is no general model for arbitrary nonlinear system
characterization. In the following section, we review a particular type of nonlinear

system representation viz. the Volterra series representation.

5.3 Volterra Series for Nonlinear Systems

Any discrete time, causal nonlinear system response can be represented by the infinite

Volterra series given by the following equation [35, 36]:

y(k) = ho + i hi(a))z(k—a)) +---+

a1=0

i f: f: ho(ar,az,...,ap)x(k — a1)z(k—ap)...z(k—ap) + - -- (5.2)

a1=0a2=0 ap=0
where z(k) is the input to the nonlinear system, y(k) is the output and kp(ay,...,ap)

is the p-th order Volterra kernel of the nonlinear system. Without loss of generality,
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the Volterra kernels can be assumed to be symmetric i.e., the kernels are unchanged
for any possible permutations of their indices [36]. The Volterra series representation
has been successfully applied in such diverse applications as nonlinear communica-
tion channel equalizers [5], nonlinear echo cancellers [1], semiconductor device char-
acterization [24], nonlinear ocean signal processing [36], and modelling of biological
phenomena [35].

One of the disadvantages of the above Volterra expansion is that the nth order
kernel is influenced by all kernels of order greater than n. This makes estimation
of different kernels in the Volterra expansion quite burdensome [35]. Wiener showed
that this problem can be circumvented by a simple variation of the Volterra expan-
sion series and by using a Gaussian white noise signal as the input [71]. The Wiener
expansion results in Wiener kernels which are mutually orthogonal, making their es-
timation relatively simple. Lee and Schetzen [30], in their landmark paper, proposed
an efficient method of measuring nth order kernels based on the nth order cross-
correlation function between the white noise input and the resulting system output.
However, in our application problem of SA cancellation, the input to the nonlinear
system is a periodic pulse train. While one can envisage applying a white noise stim-
ulus and measuring the resulting SA, clinical stimulators do not have the capability
of providing a white noise stimulus. Thus alternative methods of kernel estimation
are required for the problem of SA cancellation.

While the infinite Volterra series expansion might precisely characterize a nonlin-
ear system, due to constraints on the amount of data and computational resources
one has to work with a truncated Volterra series expansion [36]. The second order

truncated Volterra series response can be expressed as:

N-1 N-1N-1
y(k) = ho+ 3 Ma()z(k— i) + 3 D° k(3 j)z(k —i)z(k — j) (5.3)
=0 =0 j=1

where N is the system memory, and ho, h, and h; are the zero, first (the linear

part), and second order (the nonlinear part) Volterra kernels respectively. Since it is
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suggested in the literature that the SA generation probably involves a second order
nonlinear system [60, 17], this truncated Volterra series expansion is expected to be

adequate for SA cancellation.
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Figure 5.4: Block diagram of the NAF structure as applied to SA cancellation.

The zero, first and second order Volterra kernels in Eq. 5.3 can be estimated
using adaptive signal processing techniques. Adaptive filter structures, like the one
shown in Figure 5.4, with z(k) as the reference input, y(k) as the primary, and a
structure based on Eq. 5.3 can estimate these kernels iteratively without invoking
any assumptions on the input statistics. Moreover, the derivation of the adaption
algorithms for the Nonlinear Adaptive Filters (NAFs) closely follows the derivation
of adaption algorithms for linear FIR filters [36]. The derivation stems from the
following problem statement:- let y(k) be the primary input to an NAF and x(k) be
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its reference input, then update the kernels such that the error signal between y(k)

and its NAF estimate, §(k), is minimized in the mean square sense. Mathematically,

j(k) = HT(k)X(k) (5.4)
and e(k) = y(k)—g(k) (5.5)

where HT(k) = [ho(k),h1(0;k),..., h(N — 1;k), h2(0,0; k), h2(0,1; k),. .., ho(N —
1, N—1; k)] is the kernel vector and XT (k) = [1, z(k),...,z(k—N+1),z%*(k), z(k)z(k—
1),...,z(k)z(k— N +1),...,z%(k— N +1)] is the input data vector. The Least Mean
Square (LMS) algorithm which minimizes the cost function E(e?(k)) by updating the

kernel vector H using a steepest descent mechanism is now given by
H(k +1) = H(k) + pX(k)e(k) (5.6)

where y controls the speed of convergence of the LMS algorithm. The derivations for
the misadjustment due to g, convergence time and other convergence characteristics
are straightforward extensions from the linear LMS algorithm. The Recursive Least
Squares (RLS) algorithm, on the other hand, is an exact minimization of the squared
error. The cost function, J(k) that is minimized in this case is given by [23],
k
J(H) = ¥ 3y (1) — HTX (1))’ (5.7)
1=0
where ) is the forgetting factor which controls the memory span of the NAF. The re-
sulting adaptation procedure involves calculation of the input autocorrelation matrix
and the input-output crosscorrelation vector. An advantage of the RLS algorithm,
which is an important advantage when dealing with nonlinear data, is its relative in-
sensitiveness to the eigenvalue spread in the input autocorrelation matrix compared
to the LMS algorithm. Data from a nonlinear system usually exhibit large eigenvalue
spread which prompts the usage of RLS based NAF's over the LMS based NAFs.
A simple simulation is performed to illustrate the convergence characteristics of

the RLS and LMS based NAFs. An arbitrary five filter length second order Volterra
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system is simulated using the kernel vector H, given by

Hi(k) 0, for k=0 (5.8)
1 = —(k—1 .
e~ fork =1,2,...,20
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Figure 5.5: Convergence characteristics of RLS and LMS algorithms.

The input to this nonlinear system, z(k), is a zero mean Gaussian white noise of unit
variance and the output is y(k). A length five NAF driven separately by RLS and LMS
algorithms is then employed with y(k) as its primary input and z(k) as the reference
input. The convergence plots from both these algorithms are compared in Figure 5.5.
From these graphs, it is evident that the RLS algorithm achieves significantly faster
convergence in terms of the number of samples required. This faster convergence,
however, comes at an expense of increased computational complexity which is of the
order O(N*) multiplications per iteration ( the LMS algorithm on the other hand,
exhibits a complexity of O(N?)). This higher computational complexity renders the
application of RLS based NAFs in real-time SA cancellation impractical. However,
since all the data processing for this thesis is performed offline, the computational
complexity once again was not a significant issue and only the results proffered by the

RLS based NAFs are displayed throughout this chapter. A detailed comparison of the
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performance of the RLS and LMS algorithms in SA reduction is given in Appendix
V.

5.4 Simulation Study

5.4.1 Introduction

The objective of the following simulation experiments is to identify the key parameters
that influence SA cancellation by NAFs. Since this is the first study to examine the
applicability of the Volterra expansion based NAFs to SA cancellation, it is important
to investigate through simulations the issues that affect the performance of the NAFs
before these NAFs are actually applied to the in vivo data. The main issues that are

addressed in this section are:
1. Generation of simulated SEP and SA signals.
2. Performance measures.

3. Based on these performance measures, how is the performance of the NAF

affected

e when a suboptimal filter length is used for the NAF?
e when the SEP is present in the primary and/or reference input?

e when there is a significant amount of background noise, as is the case with

the in vivo data?

5.4.2 Simulation Data and Performance Measures

The reference SA waveform, SA,(k), that is employed throughout this simulation
study is an experimentally acquired in vivo SA waveform with sufficient ensemble

averaging to eliminate the background noise. The primary SA waveform, SAp(k), is
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obtained by nonlinearly filtering the SA,(k) using the kernel vector H; of Eq. V.21 in
the filter of Eq. V.2. The SEP used in this study is generated using the mathematical
model given in Chapter 3.

Three different performance measures are used to quantify the efficacy of the NAF
in cancelling the SA in the absence of the SEP. These performance measures, 754,954

and 454, are defined as

sa _ |15Ap(k)lmas

T 154 R) e )

Bt = (M) (5.10)
USAo(h) ke?

134 = (H——a“’("’) (5.11)
a.sAo(k) ke?

where SA,(k) is the SA residual at the output of the NAF, |SA, (k)| .. and [SA.(k)|,...
are the peak absolute voltage values of the input and residual artifacts respectively, o
denotes the standard deviation, P is the time interval covering the spike phase of the
SA and P is the remaining time interval of the SA record. While each of these perfor-
mance measures is important in assessing the effectiveness of the NAF in cancelling
the SA, the parameter 754 is especially significant from the SEP enhancement point
of view. Since it is the tail end of the artifact that interferes with the SEP waveform,
754 gives a good indication of the effectiveness of the NAF in terms of SEP quality
improvement.

For simulations containing both the SA and the SEP, an additional performance

measure is defined to measure the residual artifact interference as

SA _ ,{‘;&(sp(k) - 31»("’))2

where 5p(k) is the SEP estimate at the output of the NAF. This measure is similar
to the distortin index given by Eq. 3.21. With in wvivo data, however, since the
$4

underlying SEP signal is never available, p74 cannot be computed. In these cases,

visual appreciation of the SEP estimate and the performance measures quantifying
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the SA cancellation given by Eqs. 5.9 and 5.10 are used to gauge the effectiveness of
the NAF.
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Figure 5.6: Effects of suboptimal filter length of the NAF.

5.4.3 Suboptimal Filter Length of the NAF

The purpose of this study is to investigate the effect on SA cancellation of choosing
a suboptimal filter length. The primary and reference artifacts to the NAFs are
generated as described in the previous section and are shown in Figure 5.6a. Also
indicated in the Figure are the regions P and P used for the calculation of the
performance indices. The NAF driven by the RLS algorithm is employed with varying
filter lengths. The steady state output of the NAF is then obtained by recycling the
primary and reference SA data through the RLS algorithm until the convergence of
the kernel vector is achieved. This output is then used to calculate the performance
indices given in Egs. 5.9, 5.10, and 5.11. These performance indices are graphed
in Figure 5.6b. Note that the optimal filter order for the NAF is five since the
underlying nonlinear system, H,, has a filter length of five. From the trend of the

three performance indices, we can observe that orders less than optimal result in
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highly degraded performance. This is to be expected because in nonlinear filtering,
when the filter length is changed from N to N + M, the actual number of elements in
the kernel vector changes by (M2 +3M +2MN)/2 (this can be easily calculated from
Eq.V.2). For example, if the filter length of the NAF is decreased from 5 to 3, the
reduction in the total number of coefficients in the NAF is 11! Thus the performanceis
greatly degraded even if we reduce the filter length from 5 to 3. Another interesting
point to note is that for filter lengths greater than the optimal, the performance
also degrades but then saturates. This is due to the effects of overfitting where any
nonzero value of the extra filter weights contributes to a poorer performance. With in
vivo data, where the filter length of the underlying nonlinear system is unknown, the
approach will be to increase the filter length starting from a small value. The filter
length at which the performance indices peak gives an indication of the optimal filter

length. Note that the three performance indices all peak at the same filter length.

5.4.4 Effect of the SEP position

With in vivo SEP data, the SA is most irksome when the tail of the artifact masks
the initial SEP portion. In cases where the SEP and SA are comfortably separated,
a simple blanking scheme can be used to retrieve an artifact free SEP. Thus data
containing interfering SEP and SA waveforms, which cannot be separated by simple
means, form the most crucial test of the performance of the NAF. In this section, an
investigation is undertaken to assess the performance of the NAF in such situations.

The primary and reference SA waveforms are generated as described earlier. The
SEP waveform is delayed and summed with the primary SA to generate the composite
SEP+SA waveform. Different records of such composites are shown in Figure 5.7a,
where the SEP is “moved” gradually towards the peak of the artifact. A NAF of filter
length 5 (optimal filter length for SA cancellation here) is then adapted with each
of these composite waveforms as the primary and SA,(k) as the reference. Once the

filter has reached steady state, the output SEP estimate is computed and is shown in
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Figure 5.7: The effect of the SEP position on the performance of the NAF, a) composite
waveforms of SEP and SA in the primary input, b) corresponding SEP estimates at the
output of the NAF, c) the true underlying SEP waveforms and d) the NMSE measure, p54
with respect to the SEP position (measured in number of samples between the SA and SEP

peaks).

Figure 5.7b. For the sake of comparison, the underlying original SEP waveform is
shown in Figure 5.7c. From these plots, we see that the position of the SEP does
have an effect on the performance of the NAF. As the SEP is moved closer to the
SA, there is more and more residual artifact at the output of the NAF and the SEP
waveform is degraded in quality. This output SEP distortion is quantified in Figure
5.7d where the NMSE measure given by Eq. 5.12 is displayed. The SEP position in
this plot is calculated as the distance, in number of samples, between the peak values
of the SA and the SEP. While there is an increase in the NMSE measure as the SEP

moves deep into the artifact tail, it has to be noted that interference is still less than
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Figure 5.8: The effect of increased filter length on SEP estimate. a) Primary SEP+SA
composite and the true underlying SEP, b) SEP estimate produced by an NAF of filter length
five, and c) SEP estimate provided by an NAF of filter length eight, and d) SEP estimate
provided by an NAF of filter length ten. In all the plots, the dotted line represents the
original SEP.

5 %.

A closer look at the above simulation reveals a very interesting phenomenon. If
the SA and SEP were uncorrelated, the presence of the SEP in the primary would
not have had any effect on the performance of the NAF. The NAF primarily acts
as a correlation canceller and the only correlated component would have been just
the SA component. However, due to the deterministic nature of both SA and SEP
waveforms, there is always a finite correlation between the SEP and the SA and
this finite correlation influences the convergence of the NAF and consequently the

SEP estimate at the output of the NAF is affected. In fact, if the filter length is
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made arbitrarily large, the NAF will try to encompass the SEP-SA crosscorrelation
and model the SEP+SA composite in the primary using the SA component in the
reference! This fact is shown using the following simulation. Let us take the SEP+4-SA
composite where the SEP starts around the 50th sample (shown in Figure 5.7a) as
the primary input to the NAF. Two additional simulation runs were conducted with
filter lengths of eight and ten respectively. Figure 5.8 shows the results from these
simulation studies. In Figure 5.8a the SEP+SA composite in the primary input is
shown along with the original underlying SEP (in dotted lines). Figure 5.8b displays
the SEP estimate at the output of an NAF of filter length five. Figure 5.8c and 5.8d
depict the corresponding SEP estimates for filter lengths of eight and ten respectively.
The perilous effect of the adaptive filtering operation on the SEP, even though it is
present in the primary, is obvious from these plots. Thus increasing filter lengths can
severely degrade the SEP estimate at the output of the NAF. Further simulations
and a more detailed description of this phenomenon are given in Appendix IV.

The above discussion is conflicting with the statement given in Section 5.4.5.:
“With in vivo data, where the filter length of the underlying nonlinear system is
unknown, the approach will be to increase the filter length starting from a small
value”. However, given the above simulation, it is obvious that increasing the filter
length will lead to the NAF cancelling the SEP as well. A possible way of overcoming
this problem is to let the NAF adapt only during the SA phase and let the data pass
through without adaptation during the SEP phase. In this way the adaptation routine
is “blind” to the SEP data and thus not only the possibility of the NAF affecting
the SEP properties is averted but also the constraint on choosing the filter length
is relaxed. Figure 5.9 shows the results from a simulation experiment probing the
effectiveness of the abovementioned segmented adaptive filtering approach. Figure
5.9a shows the primary input to an NAF with a filter length of 5. The weights of
the NAF are updated only during the “adapt” regions of the primary input. The

weight values at the end of the “adapt” region are held constant and these are used
g P 24
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to filter the data in the “fixed” regions. The SEP estimates obtained by the segmented
NAF and the normal NAF — which uses the entire data record for adaptation —
are compared in Figure 5.9b. The performance improvement, in terms of the SA
cancellation and the quality of the SEP estimate, achieved by the segmented NAF
is apparent in this figure. Similar simulation resulis can be obtained with NAF's of

filter lengths eight and ten.
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Figure 5.9: Segmented adaptive filtering.

Thus the segmented adaptation approach circumvents the pitfalls caused by the
finite cross-correlation between the SEP and SA waveforms. Note that in practical
SEP signal processing applications, there is always a noticeable time separation be-
tween the SEP and the SA. Thus it is not difficult to designate the “adapt” and

“fixed” regions for the segmented adaptation procedure. Also the position of the
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demarcation boundary can be biased towards the SA peak position if one is not sure

where exactly the SEP starts.

5.4.5 Effect of Background Noise
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Figure 5.10: The effect of background noise on the performance of the NAF.

The simulations thus far have been carried out in a noise free environment. Unfor-
tunately, in vivo SEP data are contaminated by the omnipresent background noise.
In this section, a study is undertaken to examine the effects of the background noise
on the performance of the NAF in the absence of the SEP. The primary and reference
SA are the same as in Section 4.2. White Gaussian noise of varying power levels o

is then added to the SA waveforms. The Artifact-to-Noise Ratio (ANR) is defined as

ANRyg = 20log (%) . (5.13)

ON
An NAF of filter length five is then adapted with the noisy primary and reference SA

until steady state is reached. Ten independent trials are performed for each
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Figure 5.11: Performance of the NAF in the presence of the background noise. Figures
5.11a, 5.11b, and 5.11c display the noisy primary SA, notisy reference SA, and the cancelled
SA for reference ANR levels of 40, 30, and 10 dB respectively. 5.11d depicts the cancelled
SA when the primary SA from 5.11c and reference SA from 5.11b are used.

noise power level and the final steady state filter weights are averaged over these

ten realizations. These averaged filter weights are then used to nonlinearly filter the

noise free reference SA which is then subtracted from the noise free primary SA. The

resulting waveform is the SA residual and this is used in calculation of the performance

measures. Figure 5.10 graphs the performance curves of the NAF for varying power

levels of the noise. As one would expect, the performance monotonically deteriorates
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as the power level of noise increases. Typical ANR levels encountered with in vivo
data are 20-30 dB and thus a performance index of 100 can be expected.

Figure 5.11 gives a picture of the noisy NAF output for three different noise power
levels. The noisy primary SA, noisy reference SA along with the output of the NAF
after convergence are shown. It can be seen that at lower ANR levels, there is a
substantial amount of SA still present in the output of the NAF. It is important to
note here that the effect of noise will be more pronounced in the case of nonlinear
filters as nonlinear filtering incorporates second order terms. The only way to mitigate
this problem is to perform ensemble averaging on the reference input to the NAF so
that we are higher up on the performance curves shown in Figure 5.10. Since the
adaptation of the NAF depends mainly on the reference input, it is sufficient that
only the reference SA input be averaged. This effect is shown in Figure 5.11d where a
cleaner reference SA is used to cancel the same primary SA as in Figure 5.11c and the
SA cancellation can be seen to be significantly better. The averaging procedure also
reduces the possibility of the presence of other correlated noise components across

the primary and reference inputs of the NAF, such as the MEI and the ECG.

5.5 Experimental SA Data Analysis

5.5.1 SA cancellation in the absence of the SEP

The first set of experiments concentrated on scrutinizing the effectiveness of the NAF
in cancelling an experimentally acquired SA waveform. The experimental setup for
obtaining median nerve and spinal cord SEP data is the same as in the previous
chapter. The primary input to the NAF is obtained by stimulating the nerve in its
subthreshold regime?, collecting the resulting SA waveform, and ensemble averaging

to reduce the background noise. The reference input is obtained in two different ways:

2A subthreshold stimulus is one which fails to evoked nervous response.
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a) by collecting SA data simultaneously from a second recording channel again with
ensemble averaging, and b) by performing a separate experiment in which the refer-
ence SA is acquired from the same electrodes as the primary, but at a lower stimulus
voltage level. One thousand records are averaged for both the primary and reference
SA waveforms acquired from the lumbar region and two hundred records are averaged
for the SA data collected at the wrist region. A NAF of filter length ten driven by the
RLS algorithm is then applied to cancel the primary SA waveform. Figure 5.12 shows
the SA cancellation results from different subjects employing different recording pro-
cedures. In each of these plots the primary SA, the reference SA and the residual SA
at the output of the NAF after its convergence are displayed. In Figure 5.12a, the
primary SA is obtained from the lumbar region while the reference SA is acquired
using the second recording channel. The primary and reference SAs shown in Figure
5.12b are measured in the lumbar region using only one set of recording electrodes
with the reference SA obtained using a lower stimulus input voltage. The SA artifact
data acquired from the wrist region using the stainless steel electrode array are shown
in Figure 5.12c. Here the primary SA is acquired from the first element in the array
and the reference SA using the second recording channel. Due to the proximity of
the second recording channel to the stimulus site, the reference SA is several times
larger than the primary SA. Finally the primary and reference SAs in Figure 5.12d
are obtained at the wrist region using the Ag-AgCl electrodes with the reference SA
obtained fromn a lower stimulus voltage level. A common feature in all these plots is
the significani SA cancellation achieved by the NAF. These results indicate that the
SA cancelling ability of the NAF is robust to a variety of experimental conditions and

recording procedures.

5.5.2 Performance Comparison of the NAF and the LAF

In Section 5.2, two examples of nonlinearity in the SA generation were provided. It

was surmised that a NAF would therefore be the appropriate candidate in reducing
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Figure 5.12: Performance of the NAF in cancelling in vivo SA data collected from different
subjects with different procedures (see tezt).
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the SA. Indeed, the previous section revealed that the NAF performs exceptionally
well in cancelling the SA. This section takes this investigation one more step by
comparing the performances of the NAF and the widely used FIR Linear Adaptive
Filter (LAF). Also, the effect of the filter length on the performance of the NAF and
the LAF is explored.

The indices defined by Eq.s 5.9, 5.10, and 5.11 are used to quantify the perfor-
mance of both the NAF and the LAF. The primary and reference SAs displayed in
Figure 5.12 were used as the inputs to the NAF and the LAF, and the RLS algorithm
was used to adapt the coefficients of both the NAF and the LAF. In addition, a delay
of half the filter length was introduced in the primary input of the LAF to compen-
sate for any noncausality. The filter length was varied from 3 to 13 in the NAF case
(the corresponding total number of coefficients were 10 and 105 respectively) , and
from 3 to 100 for the LAF. For each filter length, the NAF and LAF were adapted
separately and once the filter weights reached steady state, the residual SA at the
output was retrieved and the performance indices were computed. Figure 5.13 graphs
these performance indices against the filter length for different SA data sets. Figures
5.13a, 5.13b and 5.13c plot the three performance indices 474, ~54 and 754 obtained
through filtering the data shown in Figure 5.12a by employing the NAF and the LAF.
Figures 5.13d, 5.13e and 5.13f display the performance indices computed for data sets
in Figure 5.12c, and Figures 5.13g and 5.13h are performance indices corresponding to
the SA traces in Figure 5.12d. In each of these plots, the NAF can be seen to outper-
form the LAF quite convincingly. In most of the cases, the performance of the LAF
appears to saturate for a filter length of around 100 while the performance indices of
the NAF continue to increase even after a filter length of 13. This suggests that even
at a filter length of 13, the NAF is still operating in its suboptimal regime. However
a compelling factor for not employing larger NAF filter lengths, even though a better
SA cancellation performance can be had with larger filter lengths, is the possibility of

SEP distortion with larger NAF filter lengths as explored in the simulations section
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(refer to Figure 5.8). Thus in all ensuing SEP studies an NAF of filter length ten is

utilized.

5.5.3 Effect of Background Noise

The experimental results obtained in the previous sections employed ensemble aver-
aged primary and reference SA waveforms. In this section, an experimental example
is provided to illustrate the effect of the background noise on the performance of
the NAF. The SA data were collected at the wrist region using the stainless steel
electrode array with the stimulus voltage below the threshold level of the median
nerve. The SA waveform measured by the first element in the array is shown in
Figure 5.14a and this formed the primary input to the NAF. The reference input to
the NAF was recorded using the fourth element of the array. The reference ANR
was calculated using Eq. 5.15 where the power level of the background noise was
determined prior to stimulation and was found to be 20 dB. A ten filter length NAF
was then employed to cancel the SA and its output is displayed in Figure 5.14b.
From this Figure, it can be seen that the primary SA waveform has been reduced to
the background noise level by the NAF. The primary input was then averaged over
fifty SA records and this ensemble average is shown in Figure 5.14c. Also shown in
5.14c are the ensemble average (also of fifty records) of the NAF output in Figure
5.14b, and the ensemble average of the NAF output when a cleaner reference input
was used. The cleaner reference input is obtained by averaging the reference input
over 300 records. As observed in the simulation studies, there is an improvement in
the SA cancelling ability of the NAF when a cleaner reference input is employed. To
further investigate this issue, the performance indices, 74 and 454, of the NAF are
computed as the noise in the reference input is reduced by ensemble averaging and
these indices are graphed in Figure 5.14d. An interesting point to note from this plot
is that the performance indices increase in the beginning as the number of averages

increases but then saturate. This, as expected, is because of the noise in the primary

130



0.4 0.
0.24 02
= =
(-5 [-$]
© h~l
= =2
g g
< 02 < -0.21
-0.4 -0.44
a
-0.6 \: T 2
Q 1 1500 2000 2500
Somﬁ?g number
0.l
[~
~— Primory SA avg.
e NAF cutput, raw ref, input
— NAF output, avg. ref. input
0.0
w
-3}
<
= k=
3] g H [ ]
- H
= ] ! g
e ! £
< L S
S
a
-0.054
SA
l 61 2 --- 72
-0.1 n_— v y v 3 ~ . . v y v T . .
0 50 1 150 200 250 0 30 &0 20 IS0 180 210 240 270 300
SompPg number Ruumber of avgs.

Figure 5.14: Performance of the NAF in cancelling in vivo SA in the presence of the
background noise. a) noisy primary SA data, b) NAF output after convergence, c) primary
and residual artifacts with noisy and “clean” reference inputs, d) performance indices Vs
no.of SA records averaged in the reference input.

131



input which passes through the NAF unfiltered and hence the performance indices,
which compute the peak and standard deviation reduction between the primary input
and the residual output, saturate eventhough the SA cancellation gets better as the

number of averages increases.

5.5.4 SA Plus SEP Data

To investigate the efficacy of the NAF in enhancing the SEP in the presence of inter-
fering SA, in vivo MSEP and SSEP data were collected. Figure 5.15 depicts the results
obtained by processing SA contaminated SEP data acquired from different subjects.
The first column in this picture shows the ensemble averaged SEP+SA composite
waveform which is utilized as the primary input to the NAF, and an SA component
obtained through either subthreshold stimulation or using a separate channel which is
used as the reference input. In the second column, two different outputs are depicted:
a) the SEP estimate obtained by the normal NAF which uses the entire SEP+SA
record for its adaptation and, b) the SEP estimate obtained by the segmented NAF
which uses only a part of the SEP+SA record for its adaptation.

The MSEP data measured using Ag-AgCl electrodes from one of the subjects is
shown in Figure 5.15a. The reference SA waveform is acquired using a separate ref-
erence channel off the nerve axis. Each of these waveforms are a result of ensemble
averaging 200 such records. The SEP estimates obtained by the normal and the seg-
mented NAFs are displayed in Figure 5.15b. For the segmented NAF, the coefficients
are adapted only during the first 100 samples of the SEP+SA composite waveform
and the coefficients at the end of this “adapt” region are fixed through the remainder
of the waveform. By comparing the two estimates, we can observe that the segmented
NAF produces a “cleaner” SEP estimate compared to the normal NAF. Figures 5.15¢
and d show an example of one of the few cases where the NAF did not perform well.
In Figure 5.15¢c the MSEP data acquired from the same subject using the stainless

steel electrode array is portrayed. The interference due to the SA is obvious in this
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Figure 5.15: SEP enhancement by the NAF.
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plot. The reference SA in this case is obtained through subthreshold stimulation.
Figure 15d shows the SEP estimates obtained by the normal and segmented NAFs.
While both have made substantial improvements, the estimates still contain substan-
tial amounts of SA. This is probably due to the “undermodelling” of the SA system
by the NAF either due to a suboptimal filter length or the presence of higher or-
der nonlinear terms. Figure 5.15e depicts the MSEP data acquired from a different
subject using Ag-AgCl electrodes. In this Figure, it can be noticed that the tail end
of the SA interferes with the MSEP waveform. The reference SA here is once again
obtained through subthreshold stimulation. The SEP estimates at the output of the
NAFs are shown in Figure 5.15f. The SEP estimate produced by the segmented NAF
can be seen to be devoid of most of the interfering SA, while normal NAF can be seen
to introduce some distortion in the SEP estimate. This is, as explained before, due
to the non-zero correlation bztween the SEP and the reference SA waveforms. The
SA+SSEP composite waveform measured from the lower lumbar region of the spinal
cord, which is an ensemble average of 1500 such records, is shown in Figure 5.15g.
Once again, it can be seen that the SA tail corrupts the SSEP waveform and that the
SSEP waveform has a negative bias. The reference SA in this case is acquired from
the second recording channel. The SEP estimate obtained by the segmented NAF,
shown in 5.15h, not only seems to reduce most of the SA but also to remove the bias
in the SSEP.

In all the results above, it can be observed that the segmented NAF produces a
better quality SEP estimate compared to the normal NAF. To emphasize the effect
of the NAF filter length (as observed while processing the simulated SEP+SA data),
the in vivo SEP data shown in Figure 5.15¢ is analyzed for two different NAF filter
lengths. Figures 5.16a and b depict the results of this analysis. In Figure 5.16a, the
SEP estimates provided by the normal and segmented NAF's each with a filter length
of ten is shown. In Figure 5.16b, the SEP estimates obtained through processing the

same primary and reference data by the normal and segmented NAFs of filter length
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fifteen. The degradation in the SEP quality at the output of a normal NAF with
an increase in its filter length is clear from these plots. The segmented NAF, on the
other hand, provides a similar SEP estimate for both the filter lengths. Thus, the

segmented adaptation approach is recommended for enhancing the SEP from the SA

interference.
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Figure 5.16: Effects of the NAF filter length on the enhancement of in vivo SEP data. a)
SEP estimates produced by the normal and segmented NAFS with filter lengths of ten and
b) SEP estimates provided by the normal and segmented NAFs with filter lengths of fifteen.

5.5.5 SEP Enhancement in the Presence of Noise

The previous section illustrated the efficacy of the NAF in enhancing the SEP in the
presence of the interfering SA using ensemble averaged SEP+SA composite wave-
forms. In most SEP processing applications ensemble averaging will be required, and
thus it is only appropriate to use the NAF to reduce the SA after the averaging pro-
cedure. In some case, it may be desirable to reduce the SA from record to record
and in such tests, the ANR will be lower and thus results in poorer SA reduction by
the NAF. To investigate the performance of the NAF in such situations, raw SEP
data is processed using the NAF and the results are displayed in Figure 5.17. Figure
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5.17a shows the raw MSEP data of ANR 11dB acquired from one of the subjects
using Ag-AgCl electrodes which served as the primary input to a five filter length
NAF. A smaller filter length is chosen as the time separation between the SEP and
SA was small. The reference input is obtained through subthreshold stimulation of
the median nerve. The enhanced SEP which is an ensemble average of 50 records
at the output of the NAF is shown in Figure 5.17b. For the sake of comparison,
the averaged SEP of 50 records in the primary input and the averaged SEP of 50
records at the output of an NAF employing a cleaner reference input, are also shown
in this picture. Once again, it can be noticed that a cleaner reference input results in
better SA cancellation. Figure 5.17c compares the outputs of the normal NAF and
the segmented NAF, which used ensemble averaged SEP+SA composites for their
adaptation. The segmented NAF can be seen to abolish the SA thereby enhancing
the SEP and the SEP distortion due to normal NAF operation can also be observed.

5.6 Conclusions

In most SEP measurements, the stimulus evoked artifact waveform is a very both-
ersome interference. Since this artifact occurs in synchrony with the SEP, ensemble
averaging cannot reduce the artifact. Conventional techniques for SA reduction rely
on some form of blanking circuits which blank the input during the SA phase. How-
ever, these blanking circuits are ineffective when the SA waveform extends into the
SEP waveform leaving the SEP waveform distorted. Hence effective signal processing
methods are desired which can reduce the stimulus artifact while preserving the prop-
erties of the SEP. This chapter investigated the applicability of nonlinear adaptive
filters, based on second order truncated Volterra series expansion, for SA reduction.
On the basis of simulation and experimental results presented in this chapter, the

following conclusions can be drawn.

137



@ The SA generation system is nonlinear. The nonlinearity in the SA gen-
eration system arises from the nonlinear voltage/current characteristics at the
stimulating electrodes at high current densities. The voltage/current curves
given in Figure 5.1 clearly depict this nonlinearity. Due to this nonlinear na-
ture of the SA, nonlinear SA cancellation schemes are more effective than the
linear schemes. The validity of this point is also strengthened by the results
shown in Figures 5.13 a-h where nonlinear filters handsomely outperformed their

linear counterparts.

® Nonlinear Volterra adaptive filters are well suited for SA cancellation.
Conventional nonlinear system identification techniques require the response of
the nonlinear system to a white noise input. With the stimulus artifact, however,
the input is the stimulus voltage pulse train. Adaptive Volterra filters model the
underlying nonlinear system without imposing any restrictions on the nature of

the input data and hence are more suitable for the SA cancellation.

e RLS based NAFs significantly outperform the LMS based NAFs. LMS
based NAFs are very slow in their convergence due to the large eigenvalue
spread associated with the data from a nonlinear system. Also, the performance
achieved by the LMS based NAFs is much lower than the RLS based NAF's
(Appendix V offers a detailed analysis and relevant results). RLS based NAFs,
however, are more computationally involved than the LMS based NAF's thus

rendering them close to impractical in real time SA cancellation.

@ The performance of the NAF is a function of the ANR. Due to the
second order terms involved in the structure of the NAF, the noise components
that are present in the reference input of the NAF affect the performance of the
NAF. Ensemble averaging increases the effective ANR giving an improved arti-
fact rejection. Note that the ensemble averaging procedure need be performed

only on the reference input. This point is very important from a multi-stage
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SEP enhancement point of view. As discussed in the previous chapter, for effi-
cient MEI reduction, there should be no other correlated components. Thus the
SA components should be reduced from both the primary and reference inputs
to the CRANC filter while still preserving the MEI characteristics. This can
be achieved by first collecting the SA waveform using subthreshold stimulation
and ensemble averaging it to reduce the background noise components. This
averaged SA can then be used to diminish the SA components in the primary

and reference MEI inputs to the CRANC filter.

The presence of the SEP in the primary input of the NAF also affects
its performance. This is a very crucial point and its importance cannot be
overstressed. Due to finite correlation between the SEP and SA waveforms, the
weight adaptation of the NAF is invariably affected by the SEP components in
its primary input and consequently SEP distortion results. An attractive way
of overcoming this problem is to let the NAF adapt only during the SA phase.
In this way the adaptation routine is unaffected by the SEP components and is

shown to achieve good results.
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Chapter 6

ECG Reduction

Summary

Various signal processing techniques for ECG reduction are investigated in this
chapter. Each of these techniques is analyzed for its performance, computational
complexity, and robustness to the presence of SEP and extraneous noise sources. Of
all the techniques scrutinized, the Adaptive Template Subtraction (ATS) method is
shown to offer the best package in terms of all the abovementioned criteria. Detailed
experimental analysis of the ATS technique is conducted along with other techniques

and the analysis clearly demonstrates the superiority of the ATS technique.

6.1 Techniques for ECG Reduction

As mentioned in Chapter 2, there are several ECG reduction techniques and these
are discussed in detail below.
In the Clipping method, the ECG waveform is clipped at a certain voltage level.

This technique is more important in increasing the dynamic range of the digitized
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SSEP waveform than ECG reduction per se. With unclipped ECG, the input ampli-
fication factor is chosen in such a way that the ECG does not overload the amplifier.
During the A/D conversion procedure, this will result in lower SSEP resolution as
the smaller amplitude values of the SSEP fall into the lower significant bits. The
amplification factor can be increased with clipped ECG and therefore a better SSEP
resolution is obtained. With respect to ECG cancellation, the clipping procedure
does not completely remove the ECG, and the residual component may still affect
the SNR of the SSEP.

In the Gating method, all the voltage levels above a certain threshold are set to
zero. In this way,the problem of ECG remnants can be overcome as the predominant
ECG components are now “gated” to zero. A potential problem with this technique is
the SSEP loss if the SSEP occurs in the same time frame as the ECG. However, since
the probability of an ECG occurence in an SSEP record is quite low, this problem
is not significant when a large number of SSEP records are averaged. A relevant
point here is that the analog implementations of the gating procedure may result in
switching transients which further deteriorate the SSEP SNR.

All the methods described before work on continuous raw data. In SSEP record-
ings, where a large number of SSEP records are collected, the continuous data col-
lection procedure leads to huge amounts of data. A plausible way to overcome this
problem is to program the A/D conversion scheme in such a way that only a pre-
scribed number of samples are converted with each stimulus pulse. This procedure
will result in unwanted data between the stimuli being discarded and thus lead to
efficient SSEP data representation. In case of an ECG occurence (which can be de-
termined using a threshold voltage level), that particular record is discarded. This
“Chop and discard routine” thus results in efficient elimination of the ill-effects
of the ECG. Once again, since the probability of ECG occurence in an SSEP record
is small, only a few SSEP records need to be discarded. A disadvantage with this

method is the special programming of the A/D converter required to collect the SSEP
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data.

Adaptive filters offer an attractive solution to ECG cancellation as they do not
require any a priori information about the ECG. The adaptive filters, however, do
require an additional reference ECG input and they often come with extra compu-
tational baggage and implementing these filters in realtime often requires high speed
DSP boards. Perhaps the most crucial factor in determining the ECG cancellation
performance of an ANC is the placement of the reference electrode pair. The place-

ment is constrained by the following two factors:

1. The reference electrode pair must be placed away from the SSEP source. As
mentioned at several points during this thesis, to avoid risk of any potential
SSEP distortion the reference input to the ANC should be devoid of any trace
of SSEP components. Thus the reference electrode pair must be placed in such
a way that no SSEP component is recorded while still obtaining a correlated
ECG component. One way to obtain this reference signal is to place an electrode
on either side of the spine equidistant from the spinal column [9]. Assuming
uniform tissue properties and SSEP conduction aleng the spinal cord, this will
result in zero SSEP component when a differential signal is obtained using the
above electrode pair. In reality, it is difficult to determine the exact location on

either side of the spinal cord such that the differential SSEP component is zero.

2. The reference electrode pair must be placed in such a way that it does not
tap other correlated interferences. These interferences include MEI and the SA
(assuming that the 60-Hz interference does not pose a problem). Any presence
of these interferences in both primary and reference channels will result in poor

ECG reduction results.

A very attractive alternative for obtaining a reference ECG input is to collect the
ECG signal prior to the stimulation . This eliminates the possibility of the SSEP

and SA “crosstalk” into the reference input. In offline ECG cancellation scenarios,
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this ECG reference input can be ensemble averaged to diminish the background noise
level and can be stored in a separate data file as a template. This ECG template can
be employed later to cancel the ECG in the SSEP data that is obtained using the
same electrode pair in two ways: a) plain template subtraction, which assumes
that the underlying ECG waveform is time-invariant or b) Adaptive Template
Subtraction (ATS), where an adaptive filter is utilized to iteratively reduce the
ECG components in the SSEP data. This adaptive nature is desirable as the ECG,
in addition to being quasi-periodic, is significantly non-stationary. In realtime ECG
cancellation scenarios, these approaches can still be employed by storing an averaged
ECG template in a buffer and utilizing this template to cancel the ECG in the SSEP
data as it occurs. Of course this requires additional software programs to synchronize
the reference ECG template with the primary ECG and then implement the adaptive
cancellation routine.

Given these methods and issues, an attempt is made in this chapter to assess the
performance of each of these techniques and to determine which technique is most
suitable for high performance and computationally efficient ECG cancellation under

different operating conditions.

6.2 Experimental Results

6.2.1 ECG Reduction in the Absence of an SSEP

The first set of experimental results concentrate on continuous ECG data cancella-
tion. For these data, no stimulus was given to the subjects and hence these results
demonstrate the ECG cancellation capabilities of the clipping, gating, ANC and tem-
plate subtraction procedures in the absence of an SSEP. One minute of ECG data
was collected for each of these subjects at a sampling rate of 10 KHz, digitized and

stored on a 486 computer and processed offline. The threshold level for the clipping
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and gating procedures was the maximum background noise voltage level estimated
between the ECG occurences. The reference input for the ANC was acquired from the
chest with the following rationale: a) at the chest region, the magnitude of the ECG is
many times larger than either the SSEP or the SA and hence their influence on ECG
cancellation is insignificant and b) since the reference channel is now far away from
the primary channel (which is placed at the lower lumbar level of the spinal cord),
the possibility of the presence of correlated MEI components in both the primary
and the reference is greatly reduced. Note that, due to the above placement, there
is always an ECG propagation delay between the primary and reference ECG wave-
forms. In all the ensuing ECG reduction results involving the ANC, this delay effect is
compensated first by estimating the propagation delay through the cross-correlation
function between the primary and reference ECG waveforms and then appropriately
shifting the reference ECG. The ECG template required for the template subtraction
and ATS methods was obtained by ensemble averaging the ECG input. The amount
of ECG cancellation achieved by each of these techniques was quantified using the

following measure, vece, )

o° .
YECG = S (6.1)
res
where af,ﬂ-m and o2, are respectively the primary and residual ECG variances com-

puted during a single ECG interval. The results obtained from different subjects are
displayed graphically in Figures 6.1 and 6.2. In Figure 6.1, the performances of the
template subtraction, ATS and ANC are compared. The LMS algorithm was used
to update the filter weights for the ANC and a delay of half the filter length was
incorporated in the primary input of the ANC to compensate for any noncausality.
The convergence parameter required for the LMS algorithm was chosen one-tenth of
its upper bound [70]. For the template subtraction procedure, the averaged ECG
template which was collected earlier was aligned via crosscorrelation with each of the
ECG waveforms in the primary input and then subtracted. For the ATS, the same

ECG template was given to a ten tap adaptive FIR filter as a reference input. Figure
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Figure 6.1: ECG cancellation by ANC, template subtraction and ATS. a) Primary ECG
input, b) residual ECG using ANC method, c) residual ECG using template subtraction,

and d) residual ECG using ATS technique.

6.1a shows the raw ECG data collected from one of the subjects. The output of a
sixty tap linear FIR. ANC filter with the chest ECG as the reference input and driven
by the LMS algorithm is depicted in Figure 6.1b. It can be seen from this picture,
that the ANC has been quite successful in reducing the ECG down to the background
noise level. Figure 6.1c displays the residual ECG for the same primary input using
the template subtraction method and ECG cancellation similar to Fig 6.1b can be

observed. The output of the ATS method, where a ten tap adaptive filter
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Figure 6.2: Qualitative comparison of clipping, gating, ANC, ATS and template subtraction
methods. a) Primary ECG segment along with residual ECG waveforms produced by gating
and clipping methods, b), c) and d) Primary ECG and ECG remnants by ANC, template

subtraction and ATS respectively.

was utilized to cancel the primary ECG using the same aligned ECG template, is
displayed in Figure 6.1d. Once again, good ECG cancellation can be observed in this
figure.

To obtain a clearer picture of the performance of these techniques, the residual
ECG outputs produced by clipping, gating, template subtraction, ANC and ATS
procedures during a single ECG interval are shown in Figures 6.2a-d. Comparing

these plots, it can be observed that gating, template subtraction, ATS and ANC
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and that the ATS method appears to provide the best ECG cancellation.

In order to compare the absolute performance of each of these methods, the per-
formance index given by Eq. 6.1 was computed for ECG data collected from several
subjects and the results are depicted in Figure 6.3. The primary and residual ECG
variances required for measuring the performance index, yece were calculated using
the last ECG record in the raw data. For the ANC method, the performance index
was calculated for different filter lengths, with a delay of half the filter length intro-

duced in the primary input to compensate for noncausality. Several points can be
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drawn from this figure:

e As expected, the clipping method displays the worst performance index for all

the subjects.

o The performance of the ANC monotonically increases with the filter order and
does not appear to saturate even for 100 filter taps for all the subjects. This
indicates that large filter orders are often required for the ANC implementation

for good ECG cancellation results.

o The template subtraction method outperforms the gating procedure for all the
subjects and is better than the ANC for subjects #3 and #4. The inferior
performance of the ANC in these cases is due to a small filter order which is
relatively ineffective in modelling the transfer function function between the
primary ECG input and the reference ECG input, hence resulting in poorer

performance.

e The adaptive template subtraction method offers the best ECG cancellation
performance among all the techniques for all the subjects. The significant im-
provement in employing an adaptive subtraction approach rather than the fixed
template subtraction method is obvious for each of these subjects. These re-
sults back the assertion that the ECG possesses certain time varying features
and hence the need for adaptive filters. Interestingly, for most of the subjects
the performance of this method is relatively constant for increasing filter orders.

Thus lower filter orders can be used which makes this method computationally

appealing.

e The performance index values show variability across the subjects. This is to
be expected because a) the transfer function between the primary and reference
inputs is different for different subjects and hence the ANC displays different

performance values, b) the performance index given by Eq. 6.1 is sensitive to the
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ECG interval over which the variances are computed, and c) the performance
indices of the clipping and gating procedures are sensitive to the threshold value

also. The last two points are addressed next.
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Figure 6.4: Effect of threshold and interval length on the computation of performance
indices.

Figure 6.4 depicts the effect of the selection of the threshold value and ECG interval
on the computation of the performance index, ygcg. Figure 6.4 a and b show the
performance index for decreasing threshold levels. As expected, the performance
monotonically drops as the threshold value increases. The performance of the ANC

(also template subtraction and ATS) is constant as it is independent of the threshold
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value. It can be observed that by lowering the threshold value, it is possible for
the clipping procedure to provide better performance than the ANC. Figures 6.4 ¢
and d graph the performance index with respect to the ECG measurement interval.
To calculate the performance for different ECG interval lengths, the initial ECG
waveform (for example, Fig 6.2a) window is gradually shrunk symmetrically from
either end in steps of 50 samples and the performance index is computed. From
Figures 6.4 c and d we can see that all the performance indices are sensitive to the
computation interval, more so in the case of ANC and gating. The same is true for
performance indices resulting from template subtraction and ATS methods. Thus the
ECG interval is a crucial parameter in calculating the performance index. Note that
if the computation interval is confined to the time period where the ECG is gated to
zero, the performance index of the gating procedure returns a value of infinity. Hence
the ECG interval should be judiciously chosen such that a fair comparison between
different methods can be undertaken. In general a window adequately covering the

ECG complex is deemed sufficient.

6.2.2 ECG Reduction in SSEP data

All of the results discussed so far were obtained through processing continuous ECG
data in the absence of an SSEP. As mentioned before, continuous data collection for
SSEP measurements can be quite taxing on the computer storage requirements and
hence the data needs to be “chopped”. This is especially true if the stimulus rate
is lower and a large number of SSEP records need to be collected. In this section,
the “chopped” SSEP records which are contaminated by the ECG interference are
analyzed. 1024 data samples, sampled at a rate of 20 KHz, were collected from the
primary and reference channels with each stimulus pulse (the stimulus period was
391.7 ms). These data samples constituted one SSEP record, and 1000 such records
were collected and stored on the computer. A computer program was written to

identify the primary and reference records which contain traces of the ECG. These
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Figure 6.5: Performance of ANC with “chopped” SSEP data. Two SSEP records contami-
nated by the ECG along with the residual ECG produced by a forty tap ANC filter are shown
here.

records were then input to the ANC filter for cancellation. The filter length of the
ANC was fixed at forty. Even though it was shown in the previous section that the
ANC requires large filter lengths for good ECG cancellation results, filter lengths
more than forty were not implemented for the fear of introducing SSEP distortion,
as discussed in Chapter 5, Section 5.4.4. Figures 6.5 a and b display two primary
SSEP records contaminated by the ECG interference along with the corresponding
reference ECG inputs obtained from the chest. The ECG residuals produced by the
ANC operation are also shown in this figure. While the ANC has removed part of
the ECG interference in both the records, there is still a substantial ECG remnant.
This is in contrast to the performance of the ANC in reducing continuous ECG
(shown in Figure 6.1b). This is due to a combination of two factors: a) lower filter
length - it was discussed in the previous section that large filter lengths are required
by the ANC for significant ECG reduction, and b) limited ECG information, as
the chopping procedure results in only a part of the ECG segment being acquired.
Thus the performance of an ANC will be inferior with “chopped” data compared to

continuous ECG cancellation.
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The application of template subtraction and ATS methods of ECG reduction to
chopped data poses a new challenge. Since our objective now is to reduce that segment
of the ECG waveform which contaminates the SSEP record (rather than the whole
ECG waveform as in continuous ECG cancellation), these two techniques have to
be modified. Essentially, given an ECG template and an SSEP record contaminated
with an ECG segment, the template subtraction and ATS techniques have to first
extract the contaminating ECG segment from the ECG template and then perform

the cancellation operation. This can be done by carrying out the following procedure:

1. take a contiguous ECG segment (ECG window) of 1024 samples from the start
of the ECG template.

2. calculate the mean-squared error between this ECG segment and the SSEP
record and store the mean-squared error value along with the window starting

point.

3. move the ECG window by one sample and repeat the above step. Perform this

procedure until the whole ECG template is exhausted.

4. Find the minimum of the stored mean-squared error values which points to the

“matching” ECG template.

Figures 6.6 a-e demonstrate the ECG reduction results obtained through the tem-
plate subtraction and ATS methods for the “chopped” SSEP data. The ECG tem-
plate, which was obtained prior to the stimulation and ensemble averaged over ten
ECG records, is shown in Figure 6.6a. From this ECG template, the ECG segment
which best matches the interfering ECG segment in a SSEP record is extracted follow-
ing the abovementioned procedure. This is shown in Figures 6.6 b-e which depict the
contaminated SSEP records along with the ECG segment extracted from the ECG
template. It can be observed that the extracted ECG segment matches the interfering
ECG waveform quite nicely in both the SSEP records. Figures 6.6b and 6.6d display
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the performance of the template subtraction method qualitatively. Substantial ECG
reduction is evident in these figures especially when compared to the ANC cancella-
tion performance shown in Figures 6.5 a and b. Figures 6.6c and 6.6e show the ECG
reduction results using the ATS method. Here the matching ECG segment extracted
from the ECG template is given to a twenty tap adaptive filter driven by the LMS
algorithm. Once again, good ECG cancellation results are apparent and are better
than both template subtraction and ANC procedures.

To further demonstrate the performance of these techniques, the improvement
in the quality of the SSEP at the output of each of the ANC, template subtraction
and ATS procedures is compared and these results are shown in Figure 6.7. Figure
6.7a displays the SSEP record which was ensemble averaged over 1000 records (as-
sumed as the true underlying SSEP waveform) along with the ensemble average of
100 SSEP records contaminated by the ECG. It is obvious from this figure that the
ECG interference completely obscures the SSEP information. The ensemble averaged
SSEP estimate at the output of the ANC is shown in Figure 6.7b. While the ANC
is successful in partly removing the interfering ECG, there is still a substantial ECG
“left-over” and consequently the SSEP estimate is of poor quality. The results using
the template subtraction method is shown in Figure 6.7c. Here we can see that much
of the ECG interference has been reduced and the SSEP estimate resembles the un-
derlying SSEP waveform. Finally, the SSEP estimate produced by the ATS method
is shown in Figure 6.7d where an SSEP estimate “closest” to the underlying SSEP
waveform can be observed.

The “closeness” of each of these SSEP estimates to the true SSEP waveform is
quantified using the following normalized mean squared error measure,

L (k)2
where s(k) is the SSEP waveform and 3(k) is the SSEP estimate produced by any of
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Figure 6.7: SSEP estimates by ANC, template subtraction and ATS procedures.

the abovementioned techniques. Figure 6.8 provides a graphical representation of the
pecc measure for two different subjects. From this picture, it is clear that the ATS
method procures the best ECG cancellation performance and consequently a better

quality SSEP estimate.

6.2.3 A Note on Clipping

So far, the experiments have been confined to collection and processing of unclipped

ECG and SSEP data. As mentioned at the beginning of this chapter, it is beneficial
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Figure 6.8: Distortion measure, ppcg for different techniques. Label “Raw” denotes the
SSEP estimate obtained without any ECG reduction, “ANC?” denotes SSEP estimate at the
output of the ANC, “Temp.Sub” refers to the SSEP estimate due to the template subtraction
operation and “ATS” refers to the SSEP estimate by the ATS method. All SSEP estimates

are ensemble averaged over hundred such records.

to clip the input data prior to A/D conversion for better SSEP resolution. This
is usually achieved by placing back-to-back diodes in the input amplification stage.
From the ECG reduction point of view this input clipping operation however manifests

itself in the following characteristics:

e Since the clipping operation is nonlinear in nature, the transfer function between
the primary and reference ECG waveforms will be nonlinear also. Consequently
linear FIR filters, which form the basis for the ANC mode of ECG reduction,
will not be effective in reducing the ECG with the clipping circuits in place.
Nonlinear Adaptive Filters (NAFs), such as the ones discussed in Chapter 3,
may need to be deployed to remove the unwanted ECG interference. The perfor-

mances of the template subtraction and ATS methods are also similarly affected

due to this nonlinearity.
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e Since the SSEP and the ECG are additive, the clipping operation results in
SSEP distortion when both the SSEP and the ECG occur at the same time.
Note that the probability of this event happening is very low (see Appendix
VI for probability calculations), and its effect is negligible when an adequate
number of SSEP records are ensemble averaged. However, since there is no
SSEP information in these ECG contaminated SSEP records, applying ECG

reduction techniques to these records will be of very limited use.

The two points discussed above are demonstrated using experimental SSEP data.
In Figure 6.9a, a single SSEP record corrupted by the clipped ECG is shown for
one of the subjects. The residual ECGs at the outputs of linear and nonlinear ANC
schemes for this record are also shown. The linear ANC was realized using a sixty
tap FIR filter driven by the LMS algorithm. The nonlinear ANC filter was based on
the second order truncated Volterra series as described in Chapter 5. The nonlinear
ANC was also driven by the LMS algorithm. From Figure 6.9a, we can see that the
clipping mechanism introduces artifacts in the linear ANC output especially when
the ECG waveform changes phase. On the other hand, the nonlinear filter appears to
handle this well and produce a lower ECG residual. Figures 6.9b-e display the SSEP
enhancement results for two different subjects. In each of these plots, the SSEP after
an ensemble average of 1000 records, the SSEP after an ensemble average of 100
records, the ensemble average of the same 100 records at the output of the nonlinear
ANC and after the “chop-and-discard” method were compared. Let us recall that the
“chop-and-discard” method just throws away the ECG contaminated records without
any special data processing. From these plots, we see that both the nonlinear ANC
and “chop-and-discard” procedure appear to have improved the quality of the SSEP
compared to the SSEP which has been averaged using only 100 records. However,
the quality of the SSEP estimate obtained through nonlinear ANC is quite similar
to that obtained due to “chop-and-discard” method. Thus when working with the
clipped SSEP data, the extra computational load carried by the adaptive filtering
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Figure 6.9: ECG reduction from SSEP data obtained with clipping diodes in place.
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techniques is not justified.

6.3 Conclusions

In SSEP recording experiments, the larger ECG interference poses a problem. In
this chapter several ECG reduction techniques are explored and their performance is
compared under different experimental conditions. These techniques are discussed in
detail below.

The clipping procedure is the simplest ECG reduction technique. Back-to-Back
diodes can be placed in the input path to effectively remove large ECG components.
It is also useful in increasing the dynamic range of the SSEP signal and hence is
recommended in general situations. However, this technique alone cannot completely
solve the ECG problem. The clipping procedure leaves ECG remnants which may
still be quite large compared to the SSEP, especially at the higher levels of the spinal
cord where the SSEP amplitude is much smaller and the ECG magnitude is larger.
Another significant problem with input clipping is the complete loss of the SSEP
waveform if it occurs during the clipped time frame of the ECG signal.

The gating procedure offers a relatively effective solution to the ECG problem. In
this procedure, all the voltage levels above a certain preset threshold are reset to zero.
A subset of the gating procedure, is the “chop and discard” routine where the input
data is chopped into SSEP records, and any SSEP record containing a trace of the
ECG is discarded. The main problem with this method arises only when more and
more SSEP records are corrupted by the ECG and hence are discarded. However in
practice, the probability of an ECG occurence in a SSEP record is quite low (around
8-9% for all the subjects participating in this study, see Appendix VI) and hence this
method can be very efficient.

With unclipped and continuous ECG data, the ANC produced good results for all
the subjects. It is shown that large filter lengths are required for the ANC to provide
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good performance indices. Another problem with the ANC is the placement of the
reference input. The template subtraction method overcomes this problem of selecting
the reference input. By collecting the reference input using the same electrodes as
the primary prior to the stimulation procedure, the problem of SSEP, SA and MEI
crosstalk is averted. The performance results show that template subtraction alone
is on par with the ANC technique with the adaptive template subtraction method
outperforming both of them. Thus with continuous unclipped ECG data, adaptive
template subtraction is the best method for ECG cancellation. Continuous data
collection for SSEP measurements places a strain on the storage requirements. An
efficient way of SSEP data storage is to acquire only a time-window after the stimulus
pulse. This “chopped” SSEP data collection results in only a part of the ECG being
acquired. Thus modifications have to be made to both template subtraction and
ATS routines to take this effect into consideration. With these modifications in
place, the template subtraction and ATS procedures once again displayed superior
ECG cancellation capabilities compared to an ANC.

With the introduction of clipping circuits to increase the range of the SEP, the
ANC, template subtraction and ATS methods fail to reduce the ECG. This is because
the transfer function between the primary and reference ECGs becomes nonlinear
and hence nonlinear ANCs are required to cancel the ECG. Nonlinear ANCs are
a magnitude greater than the linear ANCs in terms of computational complexity.
Thus, while good SSEP enhancement results may be obtained using the nonlinear
ANC procedure, from both the practicality and efficiency point of view, the “chop-
and-discard” method appears to be the right technique for ECG reduction. It is also
shown that the quality of the SSEP estimates produced by a nonlinear ANC and
“chop-and-discard” method are roughly the same.

Thus in essence, it is best to use the adaptive template subtraction method for
reducing the ECG interference in unclipped SSEP data and the “chop-and-discard”
technique for SSEP data collected with clipping circuits in place.
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Chapter 7

Conclusions

7.1 Summary

Somatosensory Evoked Potentials (SEPs) are clinically valuable signals which boast
great potential in applications such as spinal cord monitoring during surgery and
diagnosis of neuromuscular disorders. The main problem associated with these wave-
forms when acquired noninvasively is the poor Signal-to-Noise Ratio (SNR). Several
noise sources stemming from both biological and nonbiological processes are respon-
sible for this poor SNR. The goal of this thesis was to devise novel signal processing
techniques to decrease the influence of these noise sources on the SEP waveform, while
still maintaining its essential parameters. To the best of the author’s knowledge, this
is the first research to investigate the effects and interactions of all the interferences
that are encountered in SEP recordings.

The myoelectric interference is the electrical manifestation of the muscular activ-
ity. The myoelectricinterference is the chief contributor to the poor SNR of the MSEP
signal and one of the significant noise sources in the SSEP data collection scenarios.
In this thesis, adaptive noise cancellation technique was employed to reduce the my-
oelectric interference. Two major factors that influence the performance the basic

ANC, wviz. the presence of the uncorrelated noise sources and the signal crosstalk,
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were studied both analytically and through simulations. A crosstalk resistant adap-
tive noise canceller (CRANC), which is a cascade of two ANCs, was then studied
in detail. While the CRANC structure is impregnable to crosstalk in the absence
of uncorrelated noise sources, it was found that its performance is comparable to an
ANC in their presence. Two alternative schemes were developed to mitigate the influ-
ence of the uncorrelated noise sources. The first one was the multireference CRANC
(MCRANC) structure where a multiple reference ANC was employed in the second
stage of the CRANC structure. In addition to “averaging” out the influence of the
uncorrelated noise sources, the MCRANC structure also compensates for the jitter
in the SEP signal. A significant drawback associated with the MCRANC structure
was the requirement of a large number of reference channels in low SEP SNR situ-
ations. The second CRANC structure, the ensemble-averaged CRANC (ECRANC),
is a more practical solution in this case. The multiple reference ANC structure in
the second ANC of the CRANC was replaced by a straight ensemble averager which
reduces the computational complexity of the ECRANC significantly. Simulation and
experimental results showed that the ECRANC is the CRANC of choice with low
SNR SEP data.

The stimulus artifact (SA) is a nonbiological, stimulus dependent interference.
Since it occurs in synchrony with the SEP signal, its effect cannot be reduced through
plain ensemble averaging. Furthermore, the SA generation mechanism is nonlinear
due to the quadratic relationship between the stimulus voltage and the stimulus
current. Hence linear signal processing techniques are ineffective in reducing the
SA. In this thesis, nonlinear adaptive filter (NAF) structures based on the truncated
second order Volterra series were used for the SA reduction. The performance of the
NAF was scrutinized under a wide variety of experimental conditions. Several factors
which degrade the performance of the NAF such as the suboptimal filter length,
the presence of the SEP components, and the background noise were thoroughly

investigated. The NAF was shown to perform well with most of the experimental
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SEP data. There were some cases where the NAF did not seem to remove most of
the SA. This is probably due to “undermodelling” of the SA generation system by the
NAF - either due to its suboptimal filter length or due to the presence of higher order
nonlinear terms. For these cases, it is worthwhile to investigate the performance of a
more generalized nonlinear filter such as the neural network based ANCs.

The ECG forms a significant noise source in SSEP studies. The ECG interference
is so large compared to the SSEP signal that clipping circuits may be required in
the input to increase the dynamic range of the SSEP waveform. For unclipped ECG
data, adaptive noise cancellation technique was once again preferred. By using an
ECG template which was obtained prior to the stimulation as the reference input
to the ANC, the hazards of the SEP crosstalk and the presence of other correlated
interferences was vastly reduced. This method, termed as the adaptive template
subtraction (ATS) method, was shown to be the best ECG reduction technique.
In addition, the computational complexity of the ATS method is low, making it
attractive for real-time ECG reduction scenarios. With clipped ECG data, however,
it was found that adaptive noise cancellation technique did not perform any better
than just discarding away the ECG contaminated SSEP records. Since the probability
of ECG occurance in a SEP record is low, this procedure is preferred with clipping
circuits in place.

Several major research contributions are made and these are detailed in the fol-

lowing section.

7.2 Contributions

The major contributions of this research work in reducing different interferences are

categorized below:
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7.2.1 Myoelectric Interference

e Theoretical development of the Multireference Adaptive Noise Canceller (MRANC).

¢ Thorough analytical treatment of the Crosstalk Resistant Adaptive Noise Can-
celler (CRANC) structure backed up by exhaustive simulations.

e Development of two novel variations of the CRANC structure:

1. Derivation of a constrained CRANC (CCRANC) algorithm which offers

computational savings.

2. A three-sensor Delay and Difference Array Processor (DDAP) and the

associated algorithm which exploits the propagation characteristics of the

SEP and the MEI.

e Theoretical evaluation of a novel multichannel CRANC (MCRANC) structure,
which is robust to the presence of uncorrelated noise, and its validation using

simulated and experimental SEP data.

o Development of the Ensemble averaged CRANC (ECRANC) which is effective

in low SNR situations.

7.2.2 Stimulus Artifact Reduction

¢ Application of Nonlinear Adaptive Filters (NAFs) based on second order trun-

cated Volterra series to stimulus artifact cancellation.

¢ Identification of several issues related to SA cancellation using adaptive filters
such as the effect of the SEP in the primary, background noise and filter length

and their work-arounds.

o Comparative analysis of LMS and RLS algorithms in SA cancellation under

different conditions and recommendations based on this analysis.

164



7.2.3 ECG reduction

e Comparative analysis of different ECG reduction techniques for different exper-

imental conditions.

¢ Development of template subtraction and Adaptive Template Subtraction (ATS)
methods for ECG reduction with “chopped” unclipped SSEP data.

o Theoretical calculation of the probability of ECG occurence in a SSEP record.

o Investigation of the effects of clipping and recommendations based on this in-

vestigation.

7.3 Future Work

This thesis was originally intended to develop a multistage SEP enhancer which will
systematically reduce all the interference sources. While this thesis has achieved a
substantial mileage in reaching this goal, there are still some issues which need to be

further researched. Some of these are

o Development of a SEP enhancement toolbox which amalgamates the best signal

processing techniques detailed in this thesis.

¢ Realtime implementation of some of the signal processing techniques described
in this thesis. For example, the comparison of the computational times required
by the ECRANC and the B&K signal analyzer to achieve similar SEP quality
is an interesting project. Also implementations of the nonlinear LMS algorithm
for realtime SA cancellation and of the ATS algorithm for ECG reduction are

worth pursuing.

o Alternative signal processing techniques need to be researched for MEI cancella-
tion at high contraction levels. Adaptive filters based on higher order statistics

may be quite useful here.
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Appendix I

Constrained CRANC Filter

I.1 Derivation of Constrained CRANC Algorithm

(k)
n p(k) + n (k) + x2 ANC #2
. . :
J y,&)

—3» h(k)

Figure I.1: Block diagram of the CRANC filter in the absence of uncorrelated noise sources.

The Z-domain block diagram of the CRANC filter structure in the absence of
uncorrelated noise sources is repeated in Figure 1.1 (refer to Chapter 4 for a complete

description of this block diagram). The Wiener solutions for AF #1 and AF #2 were
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derived in Chapter 4, Egs. 4.1 and 4.5 and are reproduced below,

Wi(z) = ‘}Tz'a
_ _G(z)Wi(2)
Wi2) = T-eewie) (L1)

The idea is to use the information possessed by AF #1 in constraining the adaption
of AF #2. In other words, the adaption of AF #2 could be constrained to just the G(z)
parameters. To simplify notation, let W(z) = W)(2) and é(z) be the transfer function
that needs to be adapted. The objective is to derive a gradient search algorithm that
updates G(z) in such a way that G(z) approaches G(z) as the algorithm converges.
Let G(2) = Go+ Gzt + ... + Gm-1z~ ™Y and W(z2) = wo + w2z~ + ... +
wg_1z-L=1) where M is the length of G(z) and L is the length of W(z). It is assumed
that G(z) is of adequate order to model the G(z) transfer function. The derivation
of the adaption algorithm starts with the following equation for the error output of
AF #2,
z3(k) = y2(k) — F2(k) (L.2)

The gradient vector with respect to the ﬁ(z) transfer function is given by,
(k) o(k) 22 (13)

where G is the g-weight vector defined as G= (G0, 1, - -,Gm-1]F. Thus the problem
now simplifies to finding the partial derivatives of (k) with respect to G. To do
this, we need to write §(k) in the time domain in terms of gs. This can best be done

by first starting out in the frequency domain,

G(z2)W(z)

Y2 = s owe)
- ()1 - BW(2) = BEW()Xo(z)  (L4)
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and

7’2(:)(1 —(Go+...+ §M_1z’(M'1))(wo ...+ w[,_lz°(z"1))) =
G(2)W(2)Xa(2) (L5)

which can be written as

Y2(z)(1 — Gowo) = G(2)W(2)X2(2) + Ya(z)(Go(wrz™! + ... + wp_1z~E-D)
+wo(Fiz™ +... + G-z~ M)
@z o+ Gz M) (T 4wz~ ED)) (L6)

Transforming the above equation into the time domain, we have

L-1 M-1
F2(k)(1 — Gowo) = Go >_wiFa(k — j) + wo Y Gk — i)+
=1 i=1
M-1 L-1 ) M-1 L-1
Z §;ijﬁ2(k—i—])+ Z?{Zszz(k—i—j). (17)
=1 =1 =0 3=0

Due to the explicit dependency of above equation on the weight gy, the partial
derivative of §,(k) with respect to go is different from all other gs. The partial

derivative with respect to go can be expressed as,

. Oy.(k - . L-1' 54.(k
(1 = Gow) 2255 — (k) = gozw,y;g.—” + z:w,yz(k ~ip
~ o k L-t 6 k— .
w3 & ’“( =9) S5 S o, 0 j )+ S wgmab—g) . (@8)
1=1 =1 i=1 gD j=0

The partial derivatives with respect to other weights can be similarly derived as

5yz(k) =y 3yz(k 7). &

(1 — Gowo) Oz Wj——o— Zw1y2(k—3—.7)+zw122k i+
Ji=1 3=0
M-1 L-1
wo( Z g ayz(k ) + G2k —12)) + Z gi Zl ayZ(kaa‘_ J)(I 9)
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With this information, we can express the gradient vector as
Bﬁskz
_ 90
VI(k) = : (1.10)
0
IM—1
and the update for § vector is given by

G(k +1) = G(k) + 2uVI(k)z3(k) (L.11)

where p = [po, p1, - - ., pm—1]F is the adaption control vector.

1.2 Error Performance Surface

The objective of this Section is derive an expression for the error surface at the output
of AF #2 when its adaption is constrained by the above algorithm. This expression
not only facilitates theoretical calculation of the minimum mean squared error at the
output of AF #2 but also is of immense help in locating possible local minima. Let

the transfer function of AF #2 be

Wa(z) = —22W () (1.12)

1 —-G(2)W(z)
Note that W(z) is known to us from the transfer function of AF #1. The error
performance surface for AF #2 is obviously a function of @(z) and, with z = e, can

be written as !

1 r~
B(@3(k)) = — [ oy (w)du (L.13)
Since z3(k) = y2(k) — §2(k), @zsz;(w) on the righthand side in the above expression

can be evaluated as

Peszs (W) = Gy (W) + d55, (W) — 2R(4,.5, (W) (L.14)

! For simplicity, the sampling frequency, w, is set to 2x.
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After a few mathematical manipulations and substitutions the above equation sim-

plifies to

CwWw) [

1 - Gw)W(w)
GuwW(w) Gw)Ww)

1-GWw)W(w) 1 - G(w)W(w)

Bzsms (W) = $a,, (W) + 85,5, () [1 = GW)W (W) [ [

— 2R

). (1.15)

, G(w)W (w)
1 - G(w)W(w)

Thus if we know the spectral densities of the desired signal (sp(k)) and the inter-
ference (np(k)) along with the crosstalk and interference transfer functions, we can
theoretically evaluate the error surface for different values of G(w). This will enable

us to determine if the error surface has any local minima.
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Appendix 11

Delay and Difference Array
Processor (DDAP)

II.1 Basic DDAP

l'_ -
(k) = s(k)+n(k !
yl ) S ) ) + xz(k) ;l
®- [ v
- V
x1(k) = s(k+ &) + n(k+ A) yz(k)

Q- £ A

Direction of propagation

Output

Figure I1.1: Block diagram of the basic Delay and Difference Array Processor (DDAP).
With the first stage successfully removing the myoelectric interference through

177



estimating the A parameter, we have,

yo(k) = s(k+6~A)
zo(k) = s(k)—s(k+6~A).

The Wiener solution to the adaptive filter is
z_p

1—2z—%

W(z) =

(IL.1)
(I1.2)

(IL.3)

where ¢ = A — § is the difference in MEI and SEP propagating time delays. From

Eq.3, we can observe that there is only one unknown parameter, viz. the p parameter.

Thus an adaptive algorithm which estimates the ¢ parameter will considerably reduce

the computational burden on the adaptive filter. Let @ be the estimate of ¢ parameter.

The idea is to increment or decrement the @ value such that the error at the output

of the AF (refer to Figure II1) is minimized. Now the error signal at the output of

the AF is given by,
z3(k) = y2(k) — F2(k)-
The gradient vector with respect to @ is given by,

- 2 2.
VJI(k) = ?%3(;—) ~ —zza(k)ﬁ’gg‘—).

In order to evaluate the i‘%ﬁ term, we have to write out %.(k) as

72(k) = G2(k — @) + z2(k - §)

which implies
07(k) - O%2(k - @) + Ozy(k — ¢)
op 7 0p

(11.4)

(IL.5)

(IL6)

(IL.7)

Without any a priori knowledge of the signal characteristics, it is not possible to

evaluate the above partial derivatives with respect to @. If we use symmetric difference

as an approximation to the partial derivatives we have,
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05ak) _ Golk—F—1)—Go(k=B+1)  zo(k—@—1) —zo(k—§+1)

= = P~ = ~ I1.8
55 G+ - (-1 @+D-6-1) (18
With this approximation, the update rule for the @ parameter is given by,
Bk +1) = (k) + 2pas(k) B (IL9)
@(k+1) = @(k)+ pza(k){F2(k — @(k) — 1) — §2(k — @(k) +1) +
za(k — @(K) — 1) — 23(k — (k) + 1)} (IL.10)

where p is the convergence control parameter. The above algorithm poses a significant
problem: Due to the feedback nature, any error in the initial gradient estimates
recycles through the algorithm making it unstable (even for smaller values of u. Thus
correct initialization is required which implies that for this algorithm to be viable, we
need to have a prior: knowledge of the signal.

We can enhance this algorithm by modifying the structure of the DDAP. The
modified DDAP is shown in Figure II.2 where an extra sensor is utilized. Once again
assuming that the first stage has successfully estimated the A parameter, we have at

nodes #1 and #2,

y(k) = s(k)—s(k+26—2A) = s(k) — s(k — 20), (IL11)
z(k) = s(k)—s(k+6—A)=s(k)— s(k — o). (IL12)

If we construct an adaptive structure, as shown in Figure I1.3, with z(k) as the
reference input and y(k) as the primary input, the optimal solution to the AF block
is,

W(z)=1+27%. (I1.13)
Instead of implementing the AF block as a standard FIR filter, which may require

quite a few number of taps if the ¢ parameter is large, let the AF block have a transfer

function, 1 + z‘a, where @ is an estimate of ¢. Once again, the objective is to derive
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Node 1

_ y(k)
. 24 ‘ Q I_’ Estimation of
s(k+28)+n(k+2A) + (1)

Node 2
N o Yoo
s(k+ 8)+n(k+ A) + Inverse
——a
Filter Estimate of s(k)
@ .-
s(k)+n(k)

Figure 11.2: Modified DDAP.

an adaptive algorithm for iterative updating of the @ value in the form of

ok +1) = p(k) - w250 (IL14)
which simplifies to
Bk -+ 1) = (k) + 2ue(k) 2. (IL15)
From Figure I1.3, we have
y(k) = z(k) + z(k — @) (I1.16)
and
8(k) _ Bz(k — ) w1

0p 0
Once again, if we have a priori knowledge of the signal, the above partial derivative
can be derived exactly. In the absence of any such information, the partial derivative
is substituted by the symmetric difference approximation resulting in,

Oyk) zk—@-1)—z(k—Fg+1)
og (#+1)-(g-1) '

(IL.18)
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y(k) + e(k)

|
t
i
1
1+ Z_(p A(k) :
!
A ’ :
: '
i A :
c : 1+2 P [
x(k) : :
? ]
|
! :
b e e e e |
Figure I1.3: Second stage of the modified DDAP.
Thus the updating algorithm for the ¢ estimate is
@(k+1) = @(k) + pe(k){z(k— @ —1) ~z(k - ¢+ 1)}. (IL.19)

Once again we can derive an expression for the error surface at the output of the

second stage as a function of g. We start with,

B((k) = — [ dan(w)d (11.20)
From Figure IL3,
e(k) = y(k) — (k) (IL.21)
which implies
¢ee(w) = dyy (W) + dpp(w) — 2R{dy 3 (w)} (11.22)

which simplifies to

¢ee(w) = dxx(w) il + Z‘“’lz + dxx(w) |1 + z"“"|2 —

WR{dxx(w)(1 + z7°)(1 + z°)}. (11.23)
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Appendix II1

Theoretical Analysis of the
MCRANC

III.1 Optimal Weight Vector Derivation

The block diagram of the MCRANC is shown in Figure III.1 where sp(k) is the
desired SEP signal, ny(k) and n.(k) are the primary and reference MEI sources, up (k)
and u,(k) are the primary and reference uncorrelated noise sources, h(k) is the MEI
transfer function, g(k) is the crosstalk transfer function, Wi(z), Wa1(2) ... Wap(2) are
the adaptive filters and M is the number of reference channels. The parameter D in
the second stage of the MCRANC structure represents a delay of one stimulus period.
Essential for the successful operation of this structure is to allow the first ANC to

converge before the advent of the SEP. The Wiener solution of AF #1 is then given

by,

¢n,N,(2)H(2™")

n,,(2) |H(2)|* + dv,v.(2)

1
= HOU ()] (L)

where [',(z) is the ratio of uncorrelated and MEI power spectral densities in the

Wi(z) =
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Figure II1.1: Block diagram of the MCRANC.
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reference input to AF #1. The unconstrained Wiener solution to the second stage of

the MCRANC is a set of optimal transfer functions represented by,

[ Wa(z) )
W(z) = W”f(’) (1IL.2)
\ Wam(z) )
and is given by the discrete Wiener-Hopf equation,
W(z) = ¢xx""(2)¢vx(2) (IIL.3)
where ¢xx(z) is the reference input spectral density matrix given by
[ $xaxn(2) xaxn(2) - Bxuxmd(z) )
bxx(z) = PX20X21(2)  BXnXna(2) o BXaaXon(2) (111.4)

\ BXoreXa1 (2) BxoneXa(2) *+ BXapeXone(2) /
where @x,;x,;(z) is the cross-spectral density between the ith and jth reference chan-
nels of the second stage of MCRANC. The cross-spectral density between the primary

and reference inputs is ¢yx(z) which can be expressed as

by, X, (2)
dyx(z) = ¢Y”‘j‘(’) (IIL5)
P, X, (2)
Let
$4(2) = ¢5,5,(2)G(2)Wi(2){1 - G(z"" YWy (=71},

¢8(2z) = ¢s,5,(2) |1 — G(z)Wi(2)|?, and
bc(z) = énN,(2) |1 — H(2)Wi(2)* + du,u,(2) + dv.v.(2) [Wi(2)]>. (IIL6)

If we make the following reasonable assumptions:
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@ The MEI and the uncorrelated noise sources are wide sense ergodic processes,
@ The SEP repeats itself faithfully every D seconds, and

@ Both the MEI and uncorrelated noise sources are uncorrelated with themselves

after D seconds.

then,

¢8(2) + ¢c(2) $8(2) ¢8(z)

¢5(z) ¢8(2) + ¢c(z) - ¢5(2) (IIL7)

¢xx(2)
¢5(2) ¢8(2) oo ¢8(2) + dc(2)

¢A(Z) \

bex(z) = | 44 (11L8)

$a(2) )
giving us the Wiener solution for the second stage of the MCRANC as
( —_%alz) \
Mégp(z)+éc(2)

dalz

Meégp(z)+éc(z)
W(z) = prHTee . (I11.9)

¢“z!
\ Mép() e )

Note that under the stationarity assumption, all of the adaptive filters have the same

optimal transfer function. The output signal estimate can be easily calculated as,

5p(2) = Sp(2){1 — G(2)Wr(2)H1 + MWy (2)} (I11.10)
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Now,

Mda(2)
M¢p(z) + dc(z2)
$a(z)
¢8(z) + ﬂ’f)-

1+ MWQ{(Z) = 14

(IIL11)

and,

Pa(z)
é5(2)
#s,s,(2)G(2)Wi(z{l — G(z" )W, (z7")}
#s,5,(2) |11 — G(2)Wy(2)[°
1

= 1-CEWi(e) (IIL.12)

From Egs. II1.10 and III.12, we can see that as the number of reference channels in
the second stage MCRANC tends to infinity, the SEP estimate at the output of the
MCRANC approaches the undistorted input SEP.

The MEI and uncorrelated noise components at the output of the MCRANC filter

A}ingol-{'-MWzl(Z) = 1'{"

1+

can be expressed as

B, = by (2) (1 = HEWA(2)(1+ (14272 4+ 2 00) (14 Wy ()
(I11.13)
and
¢U9Ue = ¢UpUp(Z) Il + (1 + z—D +...+ “"-(l‘l—l)D)pvzl(z)I2 +
$v.u,(2) [Wi(2) + (1 + 272 + ...+ z"(M'l)D)Wl(z)Wn(z)lz (I11.14)

As the number of channels tends to infinity, these can be expressed as,

dnm(z) = [lim dnn,(2) = dw,n,(2) (1 ~ H(z)Wi(2)? (II1.15)
bur(z) = Jim duu.(2) = duz,(2) + b0, () Wi(z)F  (IIL16)
Thus the SNRGAIN, «, achieved by the MCRANC filter has zn upper bound given

by
_ f‘ﬁN’Nv(")d” +f¢u,u,(z)dz

Ymes = f dnm(z)dz + f¢UM(z)dz

(I1L.17)

186



with the integrals evaluated on the unit circie in the Z domain. Thus, as the number
of reference channeis in the second stage of MCRANC is increased, the SNRGAIN
increases until it reaches the maxi:num value while the signal distortion decreases

regardless of the amount of signal crosstalk and even in the presence of uncorrelated

noise sources.
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Appendix IV

SA Cancellation in the Presence of

an SEP

IV.1 Introduction

As discovered in Chapter 5, the presence of an SEP, even if it is in the primary input to
the adaptive filter, drastically affects the convergence of the adaptive filter resulting
in undesirable SEP distortion. A detailed study of the perils of adaptive filtering
operation on the SEP is therefore undertaken in this appendix. For pedagogical
reasons, two cases are considered separately: a) primary and reference SAs related
through a linear transfer function, and b) primary and reference SAs related through

a second order Volterra model.

IV.2 Linear SA transfer function

The reference SA, SA,(k), in all the ensuing simulations is an experimentally acquired
SA waveform which has been ensemble averaged to diminish the background noise.
The primary SA, SAp(k), for this section is generated through filtering the reference

SA using a linear filter whose impulse response is given by
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Primary input, y(k) = s (k) +n,(k) . e(k)

-
- A
y()
Reference input, x(k) =n l,(k)
; daptive
iter, W(z)
Figure IV.1: SA cancellation block diagram.
Hyin(k) = e~ k/10 k=0,...,19 (V.1

Figure IV.2 shows the primary and reference SAs used for this study. The desired SEP
was generated using the analytical model given in Chapter 5. This SEP waveform
is delayed and added to the SA, waveform to generated the primary input to the
adaptive filter, y(k) (refer to Figure IV.1). The SEP+SA composites for four different
SEP positions are shown in Figures IV.2 c-f. Let us call these four different primary
inputs as y150(k), ¥100(k), ¥so(k) and y20(k) respectively with the number designating
the start of the SEP waveform in the SEP+SA composites. Now the Wiener solution

for the adaptive filter in the time domain is given by,

where R, is the auto-correlation matrix given by
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(=0 re(l) o re(N-1))
R = rzz(1) r22(0) <o Tee(N —2) (Iv.3)
\ Tee(N—1) ree(N=2) ---  12(0)

where N is the filter length and
T=z(a) = E'(z(k)z(k — a)) (IV.4)

and P, is the cross-correlation vector given by

( Put(o) \
P, = Pvz'.(l) (IV.5)
\ Py=(N — 1) /
where
Py=(a) = E'(y(k)z(k ~ a)). (IV.6)

As the SEP and SA are additive in the primary input to the ANC, the cross-correlation

vector can be split into

Py = Psa + Psep-sa (IV.7)

where Pgs4 corresponds to the cross-correlation between the SA components in the
primary and the reference, and Psgp_s4 represents the cross-correlation between the
SEP in the primary input and the reference SA. It is this Psgp_sa function that is the
root cause of SSEP distortion. If the SEP and SA and were uncorrelated waveforms,
this term would have been zero and the Wiener solution would have depended solely
on the SA characteristics. Unfortunately due to the deterministic nature of the SEP
and SA waveforms, Psgp_sa is usually non-zero. The Psgp_sa functions for the four
different SEP positions are depicted in Figure IV.3. The non-zero cross-correlation

function between the SEP waveform and the reference artifact is evident in this figure.
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Figure IV.3: SEP-SA cross-correlation. The cross-correlation function between the primary
SEP and the reference SA for four different SEP positions are depicted in this figure.

However, notice that the cross-correlation function is tied to the position of the SEP
and hence there is a range of “close-to-zero” cross-correlation values. These values
are key to the successful operation of an adaptive filter. If the length of the
adaptive filter is constrained to be within this “close-to-zero” cross-correlation value
range, the SEP distortion will not be noticeable. To explain this fact further, let us
look at Figure IV.3a. The cross-correlation values are not significant until around a
lag value of 130 samples. Thus, as long as the length of the adaptive filter is less than
130, the distortion incurred by the SEP will not be noticeable. In the same way, filter
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Figure IV.4: Effect of filter length on SEP distortion. Distortion indices for different
adaptive filter lengths for each of the four cases are shown here.

lengths of greater than 80 taps will cause distortion for the case in Figure IV.3b and
a 30 tap filter will introduce distortion for the case in Figure IV.3c. Figure IV.3d is
the worst case as any non-zero filter length will result in significant SEP distortion.
The effect of filter length on SEP distortion is demonstrated for each of the four
cases. Adaptive filters of varying filter lengths were employed to cancel the SA, with
each of the four composites shown in Figure IV.2¢-f as the primary inputs and the
SA waveform shown in Figure IV.2b as the reference input. Once the adaptive filter

has converged, the SEP estimate at the output of the adaptive filter is retrieved and
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the amount of SEP distortion is quantified once again using the following distortion

index,
_ Xazo(s(k) — a(k))?
psa = SE-T 33(k) (IV.8)

where 3(k) is the SEP estimate at the output of the adaptive filter. Figures IV.4a-d
depict the distortion indices obtained for the four cases corresponding to different

SEP positions. The following comments can be made based on these results:

e For all the cases, the distortion index psa is the lowest at a filter length of 20.
This is to be expected as the optimal filter length for total SA cancellation is
20.

e For filter lengths less than 20, the adaptive filter is “under-modeled” for SA
reduction. The adaptive filter, consequently leaves substantial artifact residue
and this causes the SEP to appear distorted. Note that for these filter lengths
the true SEP waveform is unaffected but it is the residual artifact that is re-

sponsible for the distortion index.

e For filter lengths greater than 20, the distortion index can be seen to steadily in-
crease for cases #1 to #3. This is due to the effect of the finite cross-correlation
between the SEP and SA. For these filter lengths, the adaptive filter is “over-
modeled” to cancel the SA and the extra filter weights are affected by the

presence of the SEP, thereby creating some distortion.

e The distortion index jumps sharply as the filter length approaches the “non-
zero” cross-correlation region. In case #1!, the SEP and SA are comfortably
separated and hence even a filter length of 100 did not result in significant dis-
tortion (less than 0.1%). For case #2, there is a sharp increase in the distortion
index around 85. This, from Figure IV.3b, can be seen as the start of the non-
zero SEP-SA cross-correlation. Similarly,for case #3, there is a sharp increase

in the distortion index around a filter length of 35 which once again corresponds
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to the beginning of the non-zero phase of the cross-correlation function. Note
that the distortion index saturates to unity as the filter length increases. This
means that the SEP is being canceled by the adaptive filter as well!.
The iacreased filter lengths enable the adaptive filter to model the SEP+SA
composite in the primary based on the reference SA! (A pictorial example of
this phenomenon is given in Figure IV.5). Case #4 is the worst case as the dis-
tortion index is close to 1 for filter orders greater than 15. This means that, for
this case, no matter what filter length is used, severe SEP distortion will occur.
Case #4 makes one point clear: if the SEP is positioned close to the SA peak,
there is no least squares filtering technique that will retrieve an undistorted SEP
from SEP+SA composite. Fortunately, the SEP and SA are usually separated
in time and thus there is hope for applying least squares filtering techniques in

SA cancellation.

As a last example for this section, the “creation” of the SEP component by the
adaptive filter at higher filter lengths is displayed in Figure IV.5. The primary, y(k)
(refer to Figure IV.1), and reference, z(k), inputs used for this simulation example
are shown in Figures IV.5a and b. The adaptive filter outputs, (k) for two different
filter lengths are displayed in Figures IV.5c and d. It can be observed that for a filter
length of 20 taps, the adaptive filter produced an output which matched only the SA
component in the primary input. Thus the error output, e(k) = y(k)—7(k) will be the
SEP estimate with very little distortion. On the other hand, the adaptive filter with
a length of 50 taps, “created” the SEP component as well in its output. This when
subtracted from the primary input results in a highly canceled SEP. This example
therefore effectively demonstrates the perils associated with using high filter lengths
for SA cancellation. The only solution to this problem is to segment the adaptation
such that the presence of the SEP does not affect the convergence of the adaptive
filter. Note that even a segmented adaptation approach will be difficult to implement

for the case #4.
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Figure IV.5: Pictorial demonstration of the SEP cancellation phenomenon. The primary
and reference inputs to the adaptive filter are given in a) and b). The adaptive filter outputs
for two different filter lengths are shown in Figures c) and d). Note that for a filter length
of 20, the adaptive filter estimates the interfering artifact but a filter length of 50 estimates
the SEP component as well.

IV.3 QNonlinear SA transfer function

If the SA transfer function were linear, the above discussion (based on SEP-SA cross-
correlation) neatly describes the SEP cancellation phenomenon. With a nonlinear
function modelling the relationship between the primary and reference SAs, this
method of demonstration, however, is not possible. However, we can still investi-
gate the effect of the filter length on the SEP distortion through simulations in much

the same way as in the previous section.
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Figure IV.6: Effect of nonlinear filter length on SEP distortion. Distortion indices for
different nonlinear adaptive filter lengths for each of the four cases are shoun here.

The nonlinear model between the reference and primary SA was a second order
Volterra filter of filter length 5 given by (reproduced from Chapter 5)
0, for k=0

Hoontin(k) = o IvV.9
() eJ{O—Q, fork=1,2,...,20 ( )

The primary SA was generated by passing the reference SA through the above
filter. To the primary SA, once again, the SEP was delayed and added just as in

the previous section. For the four cases of SEP position, nonlinear adaptive filters
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(NAFs) based on second order Volterra series and of varying filter lengths were em-
ployed to cancel the primary SA. Once convergence was established, the output SEP
estimate was once again retrieved and the distortion index, ps4, given by Eq. IV.1
was computed. This distortion index for the four different cases is depicted in Figures

IV.6a-d. Once again, we can make the following observations:

e Once again, except for case #4, the distortion index, psa, is lowest when the

filter length of NAF is 5, which is the optimal filter length.

e Interestingly, the distortion indices for cases #1 and #2 are almost identical.
This is probably due to the fact that the position of the SEP far exceeds the

filter memory in both the cases.

e For all the cases, the distortion indices resulting from using the NAF's are higher
compared to the distortion indices obtained using the linear adaptive filters of
same filter lengths. This shows that, in general, the NAFs will be more severe on
the SEP distortion than their linear counterparts. This is due to the additional
second order terms that are present in the nonlinear adaptive filter. Note that,
the effective number of parameters for an NAF of filter length N, is N + M%ﬂ
Thus for a filter length of 15, the effective number of coefficients is 135! Thus
even though the filter length is 15, the parameter space has a dimension of
135 and thus an NAF can be dangerous even if the SEP and SA are separated
comfortably. This can be seen in Figure IV.6a and b where the distortion index
is close to 10 % for a filter length of 15, while the linear filters exhibited a
distortion index of 0.1% for a filter of 100 for the same data.

In essence, the finite cross-correlation between the SEP and SA has a direct influ-
ence on the convergence behavior of an SA cancelling adaptive filter. The amount of
this influence is directly tied to the relative position of the SEP to the SA waveform.

If the filter length of the linear filter within a certain range, called the “close-to-zero”
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range of the SEP-SA cross-correlation, then the SEP undergoes negligible distor-
tion. If the filter length exceeds this range, the adaptive filter attempts to model the
SEP+SA composite, and tremendous signal cancellation occurs.

Due to the presence of second order terms, the NAF has more degrees of freedom
and hence is more affected by the presence of the SEP in the primary input. This
affect manifests itself in significant SEP distortion which may still be present even if
the SEP and SA are comfortably separated. Thus extreme caution has to be exercised

in employing either linear or nonlinear filter to the task of SA cancellation.
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Appendix V

RLS and LMS algorithms in

Nonlinear SA Cancellation

V.1 Nonlinear Adaptive Filtering

Any discrete, causal nonlinear system can be represented by the infinite Volterra

series expansion [35, 36] given by

y(n') = ho + i hl(a.l)a:(n - a,l) +---+

a; =3

i f;:o. - i;o ho(ay,az,...,a8p)z(n — a))z(n — az)...z(n —ap) + ---(V.1)

where z(n) is the input to the nonlinear system, y(n) is the output and hy(ar, az, . . ., ap)
is the p-th order Volterra kernel of the nonlinear system. While the infinite Volterra
series can precisely characterize a nonlinear system, due to obvious constraints on the
data and computational capacities of a signal processing system one has to work with
truncated Volterra series [36]. The second order truncated Volterra series response

can be expressed as:
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Figure V.1: Block diagram of the NAF structure as applied to SA cancellation.
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N-1 N—-1N-1
y(n) =ho+ Y h(d)z(n—1) + Y Y ho(i,5)z(n —i)z(n - j) (V.2)

1=0 =0 j=i
where N is the system memory, and ko, h; and h; are the zero, first (the linear part),
and second order (the nonlinear part) Volterra kernels respectively. The Volterra
kernels in Eq. V.2 can be adaptively estimated by using an NAF whose block diagram

is depicted in Figure V.1. The linear, nonlinear and bias weights are iteratively

updated according to some form of adaptation algorithm. Mathematically,

§(n) = H (n)X(n) (V.3)
and e(n) = y(n) — §(n) (V.4)

where H(n) = [ho(n), k1(0;n), ...,k (N—1;n), k2(0,0;n), R2(0,1;n),..., he(N—1, N—
1;n)] is the kernel vector and X(n) = [1,z(n),...,z(n — N + 1),2%(n),z(n)z(n —
1),...,z(n)z(n — N +1),...,z%(n — N + 1)] is the input data vector. The function
of an adaption algorithm is to vary the kernel vector H in such a way that some cost
function based on e(n) is minimized. Two adaption algorithms are widely used: the
Least Mean Square (LMS) algorithm and the Recursive Least Squares (RLS) algo-
rithm. The development of these algorithms is an extension of the LMS and RLS
algorithms used for linear FIR filtering, with appropriate changes to the data and
weight vectors [36]. A brief theoretical background of these algorithms is given in the

following section.

V.2 ADAPTION ALGORITHMS FOR THE NAF

Adaption algorithms of the first type attempt to minimize the mean squared error
function. The method of steepest descent and the LMS algorithm fall into this cate-

gory. The cost function, J(n), [23], can be expressed as
J(n) = E'(e*(n))
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= E'((y(n) - H (n)X(n))?)

E'(y*(n)) — E'(H" (n)y(n)X(n)) — E'(y(n)XT (n)H(n)) +
E'(H"(n)X(n)X" (n)H(n))

= o2 —H¥(n)P — PTH(n) — HT (n)RH(n) (V.5)

H

where E’ is the time-average operator', o2 is the variance of the primary input y(n),
P is the time-averaged crosscorrelation vector and R is the time-averaged autocorre-
lation matrix. The gradient of the mean square function with respect to the kernel

vector can be expressed as
VJ(n) = —2P + 2RH(n). (V.6)

In the method of steepest descent, the kernel vector H(n) is updated in the direction
opposite to the gradient. In other words,

H(n+1) = H(n)+ %u(—VJ(n))
= H(n)+ p(P — RH(n)) (V.7)

where 4 is a constant which controls the convergence of the algorithm. The following

are the salient features of the steepest descent algorithm [23]:

e The steepest descent algorithm computes the gradient vector exactly by us-
ing the true autocorrelation matrix and crosscorrelation vectors. Thus it does
not suffer from gradient estimation noise and converges to the minimum mean

square error.

e The adaptation parameter, g, is bounded by the largest eigenvalue of the auto-

correlation matrix, R. In other words,

O<p< (V.8)

Amas

where Apmgz is the largest cigenvalue of the autocorrelation matrix.

lIn this paper, since we are dealing with single time series records rather than an ensemble
of them, time averaged statistics will be used rather than the ensemble average statistics. This
approach is more pertinent to the SA data as the artifact is a deterministic waveform.
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e The convergence rate of the kernel vector H, is determined by the eigenvalues of
the autocorrelation matrix. The eigenvalue spread, x(R), of the autocorrelation

matrix is defined as

x(R) = ;"’"

(V.9)

min

where Apin is the smallest eigenvalue.

o The total number of eigenvalues in our case is M = M%(M The kth natural

mode of the algorithm decays exponentially with a time constant given by

I S
" In(l —phe) T phe

Tk for uxkl (V.10)

The overall convergence rate of the kernel vector is determined by the weighted
sum of M such exponentials each associated with an eigenvalue of the R matrix.

Thus small values of g and Apin result in a slow rate of convergence.

The abovementioned algorithm will not be useful in realtime SA cancellation problems
as it requires the true autocorrelation and crosscorrelation information. Thus in
realtime situations stochastic gradient search algorithms such as the Least Mean
Square (LMS) algorithms are required. In the LMS algorithm the exact gradient

vector, VJ(n), is replaced by the instantaneous estimate,V.J(n), given by (23]
VJ(n) = —2y(n)X(n) + 2X(n)XT (n)H(n) (V.11)
and the kernel vector update equation is given by

Hn+1) = H(n)+pX(n){y(n) - XT(n)H(n)} (V.12)
= H(n)+ pX(n)e(n) (V.13)

where p is convergence control parameter. For guaranteed kernel vector convergence,

the value of u is constrained by following bound,

O<p (V.14)

< trace(R)
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where trace(R) is the sum of all eigenvalues of the R matrix. From Eq. V.13, we see
that the LMS algorithm is a very simple algorithm from the implementation point of
view. The computational complexity of the algorithm is O(M). However, the instan-
taneous estimate of the gradient vector manifests itself as noisy kernel vector conver-
gence and contributes to the excess mean squared error [23]. The misadjustment, O,
which is defined as the ratio of the excess mean squared error to the minimum mean
squared error, can be approximated by the following equation,

~ F(N+2)(N+ I)Aav

© 2

(V.15)

where )4, is the average eigenvalue of the autocorrelation matrix. Thus there is
a tradeoff in choosing the value of u, as higher values of g not only speed up the
convergence rate but also result in larger misadjustment. Now taking the expectation

on both sides of Eq. V.12, we have,

E'(H(n+1)) = E'(H(n))+ pE'(X(n){y(n)— X7 (n)H(n)})
= E'(H(n))+ p{P — RE'(H(n))}. (V.16)

Comparing Eq. V.16 with Eq. V.7 we see that the expected value of the kernel
vector update in the LMS algorithm follows the steepest descent mechanism. Thus in
simulations where the true autocorrelation and crosscorrelation information is readily
available, the convergence exhibited by the steepest descent algorithm can be used
as the theoretical mean trajectory of the kernel convergence achieved by the LMS
algorithm.

Algorithms of the second type attempt to minimize the exact squared error. In-
stead of estimating the gradient and then applying a correction factor in the direction
opposite to it, these algorithms directly work on the autocorrelation and crosscorre-
lation information. The exponential Recursive Least Squares (RLS) algorithm is one

such algorithm wherein the cost function that needs to be minimized is
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J(n) = 30 AmieX(d). (V.17)

=1
The optimum kernel vector is given by H(n) = R~!(n)P(n). The autocorrelation

matrix and the crosscorrelation vector can be computed recursively as [23],
R(n) = AR(n—1)+ X(n)XT(n) (V.18)
P(n) = AP(n-—1)+y(n)X(n). (V.19)
Note that the optimum solution for the kernel vector requires the inverse of the

autocorrelation matrix R. Utilizing the matrix inverse lemma, the RLS algorithm for

the kernel update is given by, [23],

G(n) = 1+ 2 XT(n)R Y (n—-1)X(n)
AR Y n-1)X(n)

K(r) 1+ G(n)
H(n) = H(n-1)+K(n){y(r) - H (n - 1)X(n)}
R'n) = 'R 'n-1)-A"'Kn)XT(n)R ' (n-1). (V.20)

The RLS algorithm therefore, by calculating the autocorrelation matrix and crosscor-
relation vector, extracts more information from the input data and hence converges
at a faster rate relatively insensitive to the eigenvalue spread of the autocorrelation
matrix. This improvement in convergence, however, comes at a penalty of increased
computational complexity, of the order O(M?) where M = w—"’%‘—ﬂ"ﬂ, N being the
filter length of the NAF. Since M increases quadratically with N, small changes in
filter lengths of the NAF immensely increase the computational complexity of the
RLS based NAFs. Thus RLS based NAFs find themselves close to impractical for

realtime SA cancellation except for small filter lengths.



V.3 SIMULATION

V.3.1 Introduction

The main objective of this simulation study is to examine the convergence behavior
and computational time of the RLS and LMS algorithms in nonlinear SA cancellation
under a wide variety of conditions. Typically, data from a nonlinear system exhibit
large eigenvalue spreads. Also, almost always, the true filter length of the underlying
nonlinear system is unknown and one has to work with a suboptimal filter length
and also in a noisy environment. Thus the main issues that are addressed in the

simulations are

e Convergence behavior of the LMS and RLS based NAF's for varying values of

eigenvalue spreads.

® Combined effect of suboptimal filter length and large eigenvalue spread on the

NAF convergence.
@ Effect of background noise on the NAF convergence.

e¢ Computational times for RLS and LMS based NAFs to reach the same plateau

of performance for the above three conditions.

V.3.2 Simulation # 1

In this section, the convergence properties of the LMS and RLS based NAFs are
investigated for three different values of eigenvalue spread of the data autocorrelation
matrix. A five filter length second order Volterra system was simulated using the

following kernel vector

Hu(h) = { 0, for k=0, i.e no bias weight v

e~ for k = 1,2,...,20.
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In the first case the input, z(n), to this nonlinear system was a zero mean Gaussian
white noise of unit variance and its output is y(n). In the second experiment, z(n),
was a colored noise input which was generated by passing zero mean Gaussian white

noise through a shaping filter whose impulse response is given by
p(n) = K(2 — enT)e ™7, ¢ = 500, T=0.1 msec and K = 400.  (V.22)

Finally, in the third simulation, an in vivo SA waveform which was sufficiently ensem-
ble averaged to reduce the background noise was employed as z(n). The corresponding
eigenvalue spreads were calculated as 8.2, 7.9e+3 and 9.9e+7 respectively. In each of
these cases, a five filter length NAF driven separately by RLS and LMS algorithms
with y(n) as the primary input and z(n) as the reference, was utilized. Thus in each of
these simulations, once convergence is established, the kernel vector estimated by the
NAF should be equal to the kernel vector given by Eq. V.21. Figure V.1 displays the
convergence of two different weights in the NAF-estimated kernel vector for each of
the abovementioned simulation cases. Each of these plots compares the convergence
rate of the RLS, LMS algorithm and steepest descent algorithms. For the steepest
descent algorithm, given by Eq. V.7, the time averaged autocorrelation matrix and
crosscorrelation vector were estimated. Two different values of 4 were chosen for each
of the simulation experiments involving LMS and steepest descent algorithms, with
the first value close to the upper bound posed by Eq. V.14 and the second value
about an order lower than the first. Note that the theoretical misadjustment for the
LMS algorithm in all the above three cases is zero, as theoretical minimum mean
squared error is zero. Thus the choice of u is not that critical as long as it satisfies
the constraint imposed by Eq. V.14.

Comparing the convergence trajectories, we can see that the RLS algorithm is
insensitive to the eigenvalue spread. Even for the SA input, where the eigenvalue
spread is close to le+8, the RLS algorithm converged to the optimal solution in less

than 50 iterations. The convergence rates of the LMS and steepest descent algorithms
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Figure V.2: Convergence of the RLS, LMS and steepest descent algorithms for varying
eigenvalue spreads.
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on the other hand, are acutely affected by the eigenvalue spread. For the specific
case of the SA input, the LMS and steepest descent algorithms can be still seen to be
converging even after 20000 iterations. Thus with the SA data which usually possesses
large eigenvalue spread, the RLS algorithm achieves significantly faster convergence

rates thereby giving better performance in a shorter time.

V.3.3 Simulation # 2

In this section simulations were performed to scrutinize the convergence behavior
of the RLS and LMS algorithms with suboptimal filter lengths. With experimental
SA data, the underlying filter length is normally unknown. Thus one usually has to
work with suboptimal filter lengths in SA cancellation problems. The main thrust
behind these simulations is to study the combined effect of large eigenvalue spread
and suboptimal filter length on the convergence of these adaption algorithms. The
simulation data used for this study are described in the previous section. However, in
place of an NAF with a filter length of five (which is the optimal value), an NAF of
filter length three was employed. For each of these simulation cases, the theoretical
least squares kernel vector was calculated by H* = R™!P where R is the time-
averaged autocorrelation matrix of the reference input and P is the time-averaged
crosscorrelation vector. The convergence trajectories of all the three algorithms in
reaching this least squares vector are shown in Figure V.3 for two different weight
values in the kernel vector. Once again two p values were assigned for the LMS
and steepest descent algorithms. Note that in this simulation case, the theoretical
minimum mean squared error is nonzero, and hence larger values of p for the LMS
algorithm result in noisier convergence and excess mean squared error.

The graphs displayed in Figure V.3 illustrate this point where the convergence
curves of the LMS algorithm are shown to be noisy for large values of u. For smaller
values of pu, the convergence can be seen to be smoother. Note that the convergence

of the steepest descent does not suffer from gradient estimation noise even for large
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values of u, as it uses the exact gradient estimate in calculating its kernel update.
From Figures V.3 g-h, we can observe that the LMS algorithm is far away from the
optimal solution even after 50,000 iterations. Thus the combination of suboptimal fil-
ter length and large eigenvalue spread will have a compounded effect in slowing down
the convergence rate of the LMS algorithm, rendering it inefficient for SA cancella-
tion. Another interesting point in Figures V.3 a-h is that the convergence of the RLS
algorithm is also affected, except in the case of the SA data. In the case of the white
noise and colored noise input data, the RLS algorithm has consumed substantially
more data samples for its convergence. This characteristic, however, is not seen with
the SA data. A probable reason for this is the estimation errors in computing auto-
correlation and crosscorrelation information that is necessary for the RLS algorithm.
With suboptimal filter lengths and random input data, the RLS algorithm requires
more data samples to compute the auto- and crosscorrelation information. With a
deterministic data stream such as the SA data, this estimation does not require a
large number of data samples and hence the RLS algorithm converges in approxi-
mately the same number of iterations as in the SA cancellation simulation given in

the previous section.

V.3.4 Simulation #3

All the simulations performed before were concerned with high ANR. (Artifact-to-
Noise Ratio) SA data. However, in online SA cancellation experiments the NAF has
to combat the omnipresent background noise to cancel the SA. Thus the motivation
for this simulation study is to examine the behavior of the LMS and RLS algorithms
in the presence of background noise. The SA data used in these simulations are
generated as described in the previous two sections. Zero mean white Gaussian noise
is then added to both the primary and the reference SA data. The reference ANR

was defined as
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ANR =20log,, al ﬁ"‘f (V.23)
N

where SAg.s is the peak amplitude of the reference SA and oy is the standard
deviation of the background noise. The ANR for this experiment was found to be
18 dB. Two sets of simulations were performed, one employing an NAF of filter
length five and the other utilizing an NAF of filter length three. The results from
the simulations are depicted in Figure V.4. Figure V.4a displays the least squares
kernel vector for the first set of simulations which was once again computed from the
time-averaged autocorrelation and crosscorrelation information. Figures V.4b-c show
the convergence of two weights in the kernel vector for the RLS, LMS and steepest
descent algorithms. Perhaps the most notable feature among these plots is the fact
that the convergence rate of the LMS algorithm is on par with the RLS algorithm.
The same feature can be observed in figures V.4e-f where the convergence behaviors of
RLS and LMS algorithms for a three filter length is compared. Thus in the presence
of noise, the LMS algorithm exhibits convergence speed similar to that of the RLS
algorithm.

There are two main reasons for this phenomenon: 1) The eigenvalue spread reduces
with the addition of background noise. Note that for the noise free SA data considered
in Sections V.3.2 and V.3.3, the eigenvalue spread is close to 1e+8. With the addition
of white background noise, the eigenvalue spread dropped to le+3 which led to a
faster convergence rate, and 2) The convergence speed of the RLS algorithm is slowed
down due to the fact that the autocorrelation and crosscorrelation information that is
needed for the RLS algorithm suffers from estimation errors in the initial stages due
to random background noise and small number of data samples. Thus in an online
SA cancellation situation, LMS based NAFs are most suitable as they exhibit similar

convergence rates as the RLS based NAFs and are computationally less expensive.
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V.3.5 Absolute Convergence Times

It was mentioned before that the RLS algorithm is computationally more complex
than the LMS but it takes fewer samples to converge to the optimal solution, mainly
in high ANR SA environment. However, the absolute time taken by each of the
algorithms to converge to the optimal solution is not calculated. The main question is:
is the LMS algorithm which is computationally simpler but requires more iterations
to converge faster/slower than the RLS algorithm in terms of absolute processing
time? This section attempts to answer this question via a table (Table V.1) which
tabulates the convergence times (both in number of data samples and seconds) for
each of the simulation scenarios described in the previous sections. The following
normalized mean squared error criterion was used to assess convergence at the nth

iteration (data sample) :

Tito ' (H* () — H(i,n))?
oo (H*(3))?

where H* is the least squares kernel vector, M is the total number of elements in

<le™? (V.24)

the kernel vector and n is the iteration number. This criterion was evaluated at each
iteration and the iteration number and the time taken (in seconds) to satisfy the
above criterion were noted down. These values are displayed in Table V.1. Several

points can be construed from this table:

o The RLS algorithm takes comparatively fewer data samples and less time to

reach a convergence plateau when the optimal filter length is used in the NAF.

o In general, the steepest descent algorithm consumes less computational time
than the LMS algorithm. This is because for the steepest descent mechanism
given Eq. V.7, the R matrix and the P vector are given a priori while the
LMS algorithm has to work on the raw data samples and thus carries extra

computational baggage.
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Simulation case RLS LMS Steepest descent
No. of _Time No. of Time No. of Time
o Samples | (insecs) | Samples | (in secs) Samples (in secs)
1) White noise input. a85 3.1354 7 1.0052
L([R) =8.2401 2 03095 =001)] @=001) ]| @=001D)] @=001)
Optimal filter length=5 . 1227 11.9795 1241 3.0257
Filter length used=5 (u=0.003{ ®=0003) | (1=0003)| (1+=0.003)
2) Colored noise input. 2956 32.0857 2471 6.0001
LR) =7.94c+3 18 02005 |H=00D] @=001)] @=001) | w=00D)
Optimal filter length=5 19014 | 200.1375 24708 58.0788
Filter length used=5 (1=0.001] (0=0001) | @=0.001) | (u=0.001)
3) Stimulus Artifact input. 28,700 | 239.4006 54,896 1324723
AR) =9.92e+7 3 034gy |-8=029) ®=025] @=025] @®=0295
Optimal filter length=>5 ' 109,500 | 902.1112 137,241 337.8875
Filter length used=5 @=01)]| @=0.1) ®=0.1) @=0.1)
4) White noise input. 4660 38.2960 3573 8.3897
x(l_z) =5.5012 2584 259209 |@L=0.00D)] (= 0001)] (u=0.001) ] (1=0.001)
Optimal filter length=5 3531 26.3623 1190 2.6559
Filter length used=3 (0 =0.003)| (1=0.003) | (1=0.003) | (u=0.003)
5) Colored noise input. NA* NA* 96,221 225.0997
= =U. = 0 1 = . =Q.
x(l_l) 1.8e43 2420 962729 |-B=00D (=001 | (=001 | (@=0.01)
Optimal filter length=5 >2,620,000 >43,699 2,699,310 5.1433e4+3
Filter length used=3 U=3e4)| (u=3e4)] (H=3e4)| (u=3e4)
6) Stimulus Artifact input. NA* NA* >2,590,645 | >5.6784¢+3
AR) =1.4077e+5 2 0.3816 ®=025] ®=025| @=025| @=0295)
Optimal filter length=5 ’ >10e+7 | >10e+4 > le+7 > 50e+3
Filter length used=3 B=3e4)| (u=3e4) | (n=304) | (n=3e4)
7) SA + noise input. NA* NA* 163,372 | 417.2019
LR) =2.621e+3 19201 | si6.1992 =00 | @=01) ®=01 | @=01
Filter length used = 5 >10e+7 | >10e4d > le+? > 50e+3
p=1led)| (H=1e4d) | (u=1e4) | L=1e4)

Table V.1: Quantification of convergence rates for RLS, LMS and steepest descent algo-
rithms. Entries under the LMS algorithm marked by asterisks denote u values for which the
convergence criterion was not achieved. This is due to the misadjustment incurred due to
large yu values. For these pu values, the convergence times of the steepest descent algorithm
can be used as comparative estimates.
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e In most of the cases, the LMS and the steepest descent algorithms take approx-
imately the same number of data samples. In a few cases, the LMS appears
to require fewer data samples than the steepest descent. This is probably due
to the fact that the LMS update contains gradient estimation noise which can
result in the convergence criterion being satisfied even though convergence in

the mean has not yet been achieved.

e With suboptimal filter lengths and in the presence of background noise, the RLS
algorithm appears to take more computational time, except for the SA case (case
#6 in Table V.1). This is, as stated before, due to the large estimation errors in
the initial stages of the RLS algorithm with random data. With deterministic
data such as the SA data, there is no such problem and the RLS converges much

faster.

e With suboptimal filter lengths and in the presence of background noise, the
LMS algorithm never satisfies the convergence criterion for large values of pu.

This is due to the misadjustment created by the large u values.

¢ In the previous section, we stated that in the presence of background noise the
convergence rate of the LMS algorithm is on a par with the RLS algorithm.
However, that statement is not clear from this table (case #7). This is due
to the way the convergence criterion was defined in Eq. V.24, which as men-
tioned before is never satisfied for large values of u. If we were to slightly relax
the convergence criterion and state that convergence to 1% misadjustment is
acceptable — which is common practice in LMS based adaptive filtering appli-
cations — then the LMS convergence times will be comparable with those of

the RLS.
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V.4 EXPERIMENTAL RESULTS

The purpose of this section is to compare the performance of the LMS and RLS algo-
rithms using experimental SA data. Comparative SA reduction by these algorithms
with and without SEP is undertaken.

V.4.1 High ANR SA Cancellation

The first set of experiments was concerned with assessing the cancellation capabilities
of RLS and LMS based NAFs with noise- and SEP-free SA data. Thus both the
primary and reference SA data were obtained through subthreshold stimulation of
the peripheral nerve under study. The raw data were then ensemble averaged to
diminish the background noise level. One thousand records were used for the SA
data acquired from the spinal cord region and two hundred SA records were averaged
for the data collected from the wrist region. The ensemble averaged primary and
reference artifacts were then fed to an NAF of filter length ten driven by RLS and
LMS algorithms separately. The primary and reference SA records were recycled
through the respective algorithms until convergence was achieved. Figure V.5 shows
the results of this SA cancelling experiment with SA data collected from different
subjects using different recording procedures. In each of these plots the ensemble
averaged primary SA, the residual SA at the output of the RLS-NAF after the RLS
algorithm has passed through 3 SA records and the residual SA by the LMS based
NAF after processing 200 SA records are shown. In each of these experiments, the u
value for the LMS algorithm was chosen close to the upper limit given by Eq. V.14.
In Figure V.5a, the primary SA was recorded from the lumbar region while the
reference SA was acquired using the second recording channel. The primary SA shown
in Figure V.5b was also recorded at the lumbar region but from a different subject.
The reference SA utilized for the cancellation of this primary SA was obtained using

the same recording channel but at a lower stimulus voltage level. Figures V.5 ¢
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Figure V.5: Performance of the RLS and LMS driven NAFs in cancelling in vivo ensemble
averaged SA data collected from different subjects.
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and d display the SAs recorded from the wrist region from two different subjects.
The primary SA shown in Figure V.5c was acquired using the Ag-AgCl electrodes
while that shown in Figure V.5d was obtained using the stainless steel electrode
array. In both the cases the reference SA waveform was obtained using a separate
reference channel. From the SA cancellation results, we can observe that the RLS
based NAFs significantly reduce the artifact with just 3 SA records irrespective of
the data collection protocol. The LMS based NAFs, on the other hand, still produce
substantial residual SAs at their output even after 200 records. Thus with high ANR
SA data, the RLS based NAF's are the NAFs of choice for SA cancellation.

This point can be put in a different perspective by comparing the performances
of the RLS-NAFs and LMS-NAFs for the above experimental data. To quantify the

performance of these NAFs, let us define two performance indices, p, and p; as

|S Ap(n)|

TP _‘lmas V.25

15, o (V-25)
= TSl (V.26)

OSA,(n)

where SA,(n) is the SA residual at the output of the NAF, |SA,(n)|___and [SA,(n)|, ..z
are the peak absolute voltage values of the input and residual artifacts respectively,
and o denotes the standard deviation. The performance indices of the RLS and LMS
based NAFSs for the experimental SA data described above are shown in Figure V.6.
Each row in this figure graphs the two performance indices corresponding to each
of the experimental cases shown in Figure V.5. These plots can be used as alterna-
tives to the convergence plots described in the simulations section. They also convey
more information than the standard weight convergence plots as they offer an inkling
about the actual SA cancellation. From each of these graphs, we can observe that
the performance of the RLS based NAFs has reached close to its maximum value
in approximately 5-10 SA records. The LMS based NAF's are still in the process of
convergence even after 200 SA records. Thus in cancelling ensemble averaged SA

data, RLS based NAFs are more efficient than their LMS based counterparts.
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Figure V.6: Performance comparison of RLS driven and LMS driven NAFs in cancelling
ensemble averaged SA data.
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V.4.2 SA Cancellation in the presence of background noise

It is clear from the previous section that good SA cancellation results can be obtained
with noise-free primary and reference SA data. However, in realtime SA cancellation
applications, the NAF algorithm has to deal with the background noise. In simula-
tions, it has been noted that in the presence of background noise, LMS-NAFs exhibit
comparable convergence rates to the RLS-NAFs. In this section, an experimental
example is given to illustrate the effect of background noise on the performance of
the NAFs.

The primary and reference inputs were collected from the wrist region using the
stainless steel electrode array. Once again the stimulus voltage level was set below
the threshold of the median nerve ensuring that no SEP was recorded. The reference
ANR was calculated to be 15 dB in this case. The raw primary and reference data
were then fed to an NAF of filter length ten driven separately by the RLS and LMS
algorithms. Both the algorithms converged to the steady state kernel vectors within
20 SA records. The primary input after the 20th SA record is shown in Figure
V.7a. Figure V.7b and V.7c show the residuals at the output of the RLS and LMS
based NAF's respectively for the same data. It can be seen that both the algorithms
were successful in reducing the SA down to the background noise level. Figure V.7d
compares the ensemble averaged primary SA with the residual averaged SA at the
output of the two NAFs. The ensemble averages for both the NAFs were computed
after the first 20 SA records. From this picture, we can note that the SA cancellation
ebility of an NAF is affected by the presence of noise and that the LMS based NAF
produced an output similar to that of the RLS driven NAF. Thus in the presence of
background noise, LMS based NAFs display levels of performance similar to the RLS
based NAFs. This is due to the fact that the huge eigenvalue spread associated with

the averaged data reduces considerably with the addition of background noise.
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V.4.3 SEP + SA data

All the experimental results described so far have been SEP-free. To scrutinize the
effectiveness of the NAF in enhancing the SEP from the interfering SA, both in vivo
MSEP and SSEP data corrupted by the SA were processed. The MSEP data were
acquired by placing Ag-AgCl electrodes approximately over the nerve axis. The tail
of the artifact can be seen to interfere with the initial stages of the MSEP in Figure
V.8. The reference SA waveform in this case was obtained through subthreshold
stimulation. The SSEP data were recorded from the lower lumbar region of the
spinal cord using Ag-AgCl electrodes. The SA waveform in this case not only seems
to interfere with the initial phase of the SEP but also seems to induce a bias in the
SEP. The reference SA was obtained from the second recording channel. Two hundred
records were averaged for the MSEP data and one thousand records were averaged

for the SSEP data.
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Figure V.7: Performance of the RLS and LMS driven NAFs in cancelling in vivo SA in
the presence of background notse.
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Figure V.8: SEP enhancement by RLS and LMS based NAFs.

A slight modification was made to the RLS and LMS adaption algorithms to cancel
the SA. The algorithms were allowed to update the kernel vectors only during the
supposed SA phase i.e during the first 100 samples for the MSEP data and first 500
samples for the SSEP data. The reason for this segmented adaption procedure was
the negative effect of the SEP in the primary channel on the kernel convergence, as
explored in Appendix IV. The kernel vector at the end of the SA region is then fixed

and these kernel weights are used to filter the remaining data. From the results shown
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in Figures V.8b and V.8d we can observe qualitatively that RLS based segmented
NAFSs provide a good quality SEP estimate which is devoid of much of the artifact and
any bias. The LMS based NAF on the other hand still contains substantial artifact
even after 200 SA records. Thus RLS based NAFs offer good SEP enhancement

results when utilized with ensemble averaged SEP data.

V.5 Discussion

Nonlinear adaptive filters based on second order truncated Volterra series are shown
to be effective in reducing the SA interference. One of the important factors dictating
the performance of an NAF is its adaption algorithm. Different adaption algorithms
are available in the literature and the choice is still a hotly pursued research area.
There are a variety of trade-offs involved with each of these adaption algorithms and
an understanding of these trade-offs is essential before putting these algorithms to
the task of SA cancellation. In this appendix, we concentrated on the two basic
algorithms wviz. the LMS algorithm and the RLS algorithm. From both the simu-
lation and experimental results, we can see that the RLS based NAF's significantly
outperform LMS based NAFs with high ANR data. The main reason for this is the
huge eigenvalue spread associated with the high ANR SA data. With the addition
of background noise, however, the eigenvalue spread decreases and the LMS based
NAFs exhibit comparable convergence rates and performance indices to RLS based
NAFs. Thus the answer is clear: use RLS-NAF's for SA cancellation in ensemble aver-
aged SEP data and LMS-NAFs for realtime SA cancellation. This is intuitively quite
appealing as the LMS-NAFs are computationally less complex and are best suitable
for realtime SA cancellation. The drawback, however, is that there is a significant
amount of residual artifact at the output of the NAF in the presence of background
noise. The only way to diminish this artifact is to ensemble average at the reference

input of the NAF. This brings us to the next question: when to average and when
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not to average? This point is discussed under four scenarios, the first three are offline

processing experiments and the last one is a realtime SA cancellation scenario:

1. Time invariant SA and time invariant SEP. This is the most benign
situation in which ensemble averaging can be performed on both the primary
and reference SA data, and an RLS based segmented NAF can be employed to
significantly reduce the SA.

2. Time varying SA and time invariant SEP. Here once again, ensemble
averaging can be performed on both the primary and reference channels and
the resultant averages can be used for SA cancellation by the RLS-NAF. The
time varying nature of the SA is not a factor, as the NAF will converge to the

averaged Volterra model between the primary and reference SAs.

3. Time varying SEP. In most of the surface recorded SEP experiments, the
initial Signal-to-Noise Ratio (SNR) is small and ensemble averaging needs to
be performed in order to unveil the SEP. In rare cases, it might be required to
track the single sweep SEPs from record to record. Even in this case, ensemble
averaging can still be performed on the reference input and an RLS based
segmented NAF can be employed. Since the NAF is primarily affected by the
statistics of the reference SA data, the averaged reference SA waveform will
result in good SA cancellation while still protecting the time varying properties

of the SEP.

4. Realtime SA cancellation. In realtime SA cancellation situations, the LMS
based NAFs are the filters of choice mainly because of their computational
simplicity and their equally good performances as the RLS-NAFs. However,
as discussed in Chapter 5 and Appendix IV, the adaptation process should be
segmented to avoid the perils associated with the presence of the SEP in the

primary input to the NAF.
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Appendix VI

Probability of an ECG Occurance
in an SSEP Record

A rough calculation of the probability of an ECG occurence in an SSEP record is
undertaken in this Appendix. The problem can be formulated based on Figure VI.1.
Before we actually formulate the problem, the following assumptions are in order

about the ECG and SSEP characteristics:
e The heart beat is 60/min t.e there is only one ECG waveform every second.

e The stimulus rate for the SSEP generation is greater than or equal to one per

second, thus making sure that there is at least one SSEP every second.

e The ECG does not simultaneously occur in two SSEP records which is true in

SSEP experiments as the stimulus rate is low.

Figure VI.1 depicts an ECG waveform and an SSEP record. Here Ngcg denotes
the length of the ECG window (in samples) during which the ECG is deemed to have
significant effect on the SSEP record, and Nsgp is the length of the SSEP record
(again in samples). An ECG is said to have occured in a SSEP record if there is at

least a
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Figure VI.1: ECG and SSEP waveforms for probability calculation. Note that the two
waveforms are not draun to scale. Ngcg is the length of the “effective” ECG window
and Nggp ts the length of the SSEP data record. The problem is to find the probability of
intersection of these two windows.

sample overlap between these two windows. Assuming there is only one SSEP per
second (z.e the stimulus rate is 1 Hz), this probability can be calculated as,

-9
P(ECGoscurence) = YECC T Nsgp — 2 (VL1)

N, sarnp

where N,qmp is the total number of samples per second. As an example, if 1024
samples are collected with each stimulus at a sampling rate of 20,000 Hz and the
effective ECG window length is 1500 samples, then the probability is,

1500 + 1024 — 2

20000
= 0.1262 or 12.61% (V1.2)

P(ECGoccurence)




If the stimulus rate is greater than 1 Hz, the probability value given by Eq. VL.1is
divided by the stimulus rate. Table V1.1 summarizes the probability values calculated
from experimental SSEP data from various subjects along with the predicted theo-
retical values. From this table we can see that the experimental probability values
are higher than the theoretical values for all the subjects. This is probably due to
the fact the theoretical calculations assume the ECG rate is only 60/min. In prac-
tice, however, the rate is closer to 72/min which results in higher probability of ECG
contamination. In addition, the actual stimulus rate used in the experiments was ap-
proximately 2.6/sec which also contributes to the difference between the theoretical

and predicted values.



SSEPs
Subject | with P (ECG) NECG N N P(ECG)

ECG | @) SEP | Samp | (Theory)

subect#1 | BUOC | 93 | 1500 | 102 | 2000 | 63%

subject#1 | 320U goq | 750 | si2 | 10000 | 63%
1000

subject #2 7%&':; off 20w | 0 | 256 | 1000 | 519
subject #2 8?0‘(’)‘(‘)‘“ 89% | 750 | si2 | 10000 | 63%
subject #3 1%&‘)“ of 106% | 150 1024 20000 | 6.3%
subject #4 232‘;‘(‘)‘ o 920 | 150 | 256 | 10000 | 5.0%
 subject #5 Howof) g1m | 10 | 256 | 1000 | 515

Table VI.1: Probability of ECG occurence in a SSEP record for different subjects. A
sttmulus rate of 2 Hz and an ECG rate of 60/min is used for calculating the theoretical
probability values.





