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Abstract 
Somatosensory Evoked Potentials (SEPS) are clinically valuable signals whose impor- 

tance is highlighted in such applications as the diagnosis of neurornuscular disorders 

and in peripheral nerve and spinal cord monitoring. The main problem associated 

with SEP measurement is poor Signal-to-Noise Ratio (SNR). The prominent inter- 

ference sources which c o m p t  the SEP are Myoelectric Interference (MEI), ECG and 

Stimulus Artifact (SA). Digital signal processing techniques are developed in this 

thesis which significantly reduce each of the abovementioned interferences. 

Different Crosstalk Resistant Adaptive Noise Cancellers (CRANCs) are applied to 

the task of ME1 reduction and their performance is scrutinized under a wide variety 

of operat ing conditions. A novel Multichannel CRANC (MCRANC) architecture 

is developed and its performance is evaluated analytically and through processing 

simulated and experimental ME1 data. 

Nonlinear Adaptive Filters (NAFs) based on truncated Volterra series are applied 

for the first time to the SA reduction problem. Various parameters which influence 

the SA reduction ability of the NAFs are identified and recornmendations are made 

to compensate for these parameters. 

The performance of various ECG cancellation techniques such as clipping, gat- 

ing, and adaptive filtering is studied in detail. Modifications are made to the basic 

adaptive filter structure for ECG reduction and a method called the "template sub- 

traction" and its adaptive version, the "Adaptive Template Subtraction ( ATS)" are 

developed which display superior ECG cancellation results. 
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Chapter 1 

Introduction 

Summary 

Sornatosensory Evoked Potentials (SEPs) are signals emanating from the central or 

peripheral nervous system in response to external stimuti. These SEPs contain clini- 

cally valuable information useful in the diagnosis of various neuromuscular disorders 

and in peripheral nerve monitoring. The main problem associated with the SEPs is 

their abysmal Signal-teNoise Ratio (SNR). In this chapter a brief description of the 

genesis of the SEP along with its characteristics is presented. The various sources 

of interference that typically influence SEP recordings are discussed briefly. The 

concrete objectives of this research are stated towards the end of the chapter. 

1.1 Introduction 

Biomedical signal processing is a general area in the biomedical engineering field which 

deals with the electrical signals emanating from physiological sys tems. Examples of 



some important biomedical signals include the Electrocardiogram (ECG) which r e p  

resents the electrical activity associated wit h the heartl, the Electroencephalogram 

(EEG) which represents the integrated electrical activity of the brain and the Elec- 

tromyogram (EMG) which is the electrical manifest atior of the contract ing muscles. 

Various time domain and spectral parameters extracted from these signals form a 

very important diagnostic tool-set as they axe valuable in assessing the condition of 

the underlying physiological systems and also in monitoring the physiological system 

state. For example, parameters extracted from the ECG can be used to detect cardiac 

arrhythmias [62] and the EMG parameters can be used to control an artificial limb 

[45l 

The responses of the centrai or peripheral nervous system to external stimuli form 

an important class of these biomedical signals. These signals, called Evoked Po- 

tentials (EPs), are very important in understanding the functioning of the nervous 

system, in testing the integrity of the nervous system and in the diagnosis of various 

neuromuscular disorders [53, 141. EPs recorded in the past have been from three 

modalities: a) Visual Evoked Potentials (VEPs), b) Brainstem Auditory Evoked Po- 

tentials (BAEPs), and c) Somatosensory Evoked Potentials (SEPs) 1531. VEPs are 

generally recorded, using surface electrodes placed on the scalp, in response to such 

visual stimuli as a flashing light, checkerboard or other pattern based visual stimulus 

153, 141. BAEPs are also acquired, by placing electrodes on the scalp, in response 

to auditory stimuli such as a click, tone burst or white noise [53]. Both VEPs and 

BAEPs are also called Cortical Evoked Potentials (CEPS) as they are recorded on 

the scalp. The SEPs, on the other hand, con be recorded either cortically, on the 

peripherd nervous system or on the spinal cord [53]. This thesis concentrates on 

issues related to the acquisition and processing of two subclasses of the SEP viz. the 

Median nerve SEP (MSEP) and the Spind cord SEP (SSEP). A brief description of 
- - - - - - -- 

lFor an overview of the field of biomedicd signal processing and a description of some of the 
important biomedical signals, refer to [62] and [14]. 



the genesis of each of these SEPs is given in the following section. 

SSEP 

Figure 1.1: Typical experirnental setup to acquim SSEPs. The same experimental setup 
can be used to measure MSEPs by appropriate placement of the stimulating and wcording 
e lec tdes .  

1.2 Somatosensory Evoked Potentials 

Before discussing the genesis of the SEPs, it is worthwhile to describe the experimental 

protocol that is usually followed to acquire these signals. Figure 1.1 depicts the 

instrumentation used at the lnstitute of Biomedical Engineering, UNB which is typical 



of the experirnental setup used for the acquisition of the SEPs. The system is shown 

here for acquiring SSEPs, but the same instrumentation system can be utilized to 

obtain MSEPs by appropriately placing the stimulating and recording electrodes (t his 

point will be further discussed later in this section). 

The instrumentation system can broadly be classified into three subsystems: a) the 

stimulating system, b) the amplification system, and c) the data processing system. 

The stimulation system consists of a stimulator (in our case Grass Mode1 S11B) which 

outputs an electrical stimulus pulse of variable duration, frequency and ampli tude and 

a transformer coupled stimulus isolation unit (SIU) to reduce stimulus artifact and 

enhance subject safety. The output of the stimulus isolation unit is given to the 

stimulating electrodes which are carefully placed on the nerve site. In Figure 1.1, 

the stimulating electrodes are shown placed over the tibia1 nerve, which is accessible 

behind the knee. The amplification system comprises a fixed gain preamplifier stage 

with high Common Mode Rejection Ratio (CMRR), a bandpass filter typically with 

a passband of 15-1000 Hz [53] for SSEP studies and a variable gain amplifier. The 

SSEPs are recorded using standard Ag-AgC1 electrodes placed along the spinal cord. 

The filtered and amplified signal is digitized and stored in a computer for further 

processing. The signal analyzer (B & K 4 channel module type 3023) performs real- 

time averaging of the SSEP and facilitates visual inspection of the SSEP while the 

experiment is being performed. For the acquisition of the median nerve SEPs, the 

stimulating electrodes are usually wrapped around the index finger, with the cathode 

proximal to the base of the finger. The resulting MSEP can be measured by placing 

recording electrodes at the wrist region. 

The genesis of an SEP can be best understood from the basic anatomical unit of 

a nerve, the nerve fiber [14]. At rest, these nerve fibers are said to be "polarized" as 

there exists a potential difference (of approximately 70 mV) between the interior of 

the fiber and the external medium. When an electricd stimulus of adequate intensity 

is applied, the nerve fibers underneath the stimulating electrodes depolarize. An ionic 



current from the surrounding polarized region flows into this depolarized region. This 

current is adequate to depolarize the surrounding regions and wavefronts of depolar- 

ization - repolarization associated with different nerve fibers travel away from the 

stimulus electrodes. These traveling wavefronts can then be captured by placing the 

recording electrodes in the direction of their propagation. The resulting monopolar 

SEP is therefore a summation of al1 the action potentials arising from the active nerve 

fibers and is generally a triphasic waveform whose shape and amplitude are affected 

by such factors as the low pass filtering action of the tissue between the active nerve 

fibers and the recording electrodes and the differences in conduction velocities of the 

active nerve fibers. In Figure 1.1, a simulated SSEP is shown to  be captured as it 

propagates along the spinal cord. Note that the reference electrode for recording the 

SSEP is placed at  the back of the thigh to  obtain monopolar recording 1391. Tivo 

characteristic traits, both mainly due to  the differences in conduction velocities of 

the active nerve fibers, can be observed from the propagating SSEP waveforms: a) 

decrease in amplitude as the SSEP propagates to higher levels of the spinal cord, and 

b) dispersion or "smearing" of the waveform. 

An important application of the SSEPs is spinal cord integrity monitoring during 

surgery. Scoliosis is a lateral curvature of the spine, which can eventually lead to such 

complications as disfiguration, respiratory problems, and heart disease [43]. The most 

common procedure to compensate for the scoliosis is the Harrington rod procedure 

[43]. As some possible surgical complications affecting the spinal cord are reversible 

if detected immediately, monitoring of spinal cord integrity is desirable. SSEPs offer 

an attractive solution to monitor the spinal cord. The SSEPs propagating along the 

spinal cord can be captured as shoivn in Figure 1.1, effectively "mapping" the sensory 

nerve conduction along the spinal cord. Any significant deviation from the normal 

SSEP (which is obtained prior to the surgery) in terrns of amplitude and latency 

parameters can indicate damage to the spinal cord. 
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Figure 1.2: Different interference sources that influence the SSEP measurements. The 
same interfemace soumes, with the exception of the ECG, atso influence MSEP recordings. 

1.3 SEP Measurement Environment 

The SEP measured using surface electrodes poses a challenging problern as it is ob- 

scured by different interference sources. The Signal-to-Noise Ratio (SNR) that is 

usually encountered in SEP studies is usually less than O dB. The time series ac- 

quired using the recording electrodes consists of four components: 1) the stimulus 

evoked SEP whose genesis is detailed before, 2) a larger stimulus evoked artifact , 3) 

other ongoing, stimulus independent biological activity (ECG and myoelectric inter- 

ference in Figure 1.2), and 4) nonbiological noise which is also stimulus independent 

but originating outside the human body (uncorrelated noise in Figure 1.2). Figure 



1.2 illustrates each of the noise sources along with their typical voltage levels when 

recorded at the lower lurnbar region of the spine. The same interference sources, with 

the exception of the ECG and with slightly different amplitude levels, also influence 

the MSEP recordings. A brief description of each of these interference sources is given 

below . 
The Stimulus Artifact (SA) waveform is generally a spike followed by a decay- 

ing response whose amplitude and time constant depend upon such diverse factors 

as  the geometry and type of the stimulating and recording electrodes, the stimulator 

characteristics, and the filtering characteristics of the preamplification stage. The 

SA waveform is most irksome when the tail of the artifact interferes with the SEP 

waveform resulting in erroneous SEP estimates. The ECG is the electrical signal as- 

sociated with the cardiac activity. The MSEPs are usually not affected by the ECG 

interference, due to the placement of the recording electrodes on the wrist region. The 

SSEP recordings, on the other hand, are predominantly influenced by the ECG and 

the problem becomes worse as we move towards the thoracic levels of the spinal cord 

due to the proximity of the recording electrodes to the chest cavity. The EMG or the 

Myoelectric Interference (MEI) is the electrical manifestation of the surrounding 

active muscle fibers. The influence of the ME1 also increases at the thoracic levels 

of the spinal cord where the ME1 originates mainly from the muscles associated with 

breathing. With MSEP recordings, ME1 forms the chief contributor to the poor SNR. 

The Uncorrelated noise is mainly composed of the instrumentation noise and the 

electrical noise generated by the electrode-skin interface at the recording electrodes. 

This interference can be modelled as a white Gaussian random noise whose power 

levels are often on par with the SEP. The 60-Hz or power line interference is mainly 

due to the capacitive coupling between the 60-Hz power distribution system and the 

measurement system. The 60-Hz interference is generally a "milder" intederence in 

most of the SSEP recordings as good skin preparation and high CMRR front-end am- 

plification stage will significantly reduce the amount of power-line interference. Thus 



the SA, ME1 and ECG form the significant interference set. 

Explicitly stated, the main problem associated with the SEP recording is its dismal 

SNR. Thus dedicated signal processing techniques are required to reduce the influence 

of each of the significant interferences thereby enhancing the SEP. 

1.4 Goals of the Research 

Traditionally, ensemble averaging is the procedure used to increase the poor SNR 

associated with the SEP. In the presence of aforementioned interferences, however, a 

large number of SEP records need to be averaged to obtain a good quality SEP. This 

will result in long recording times and consequently discomfort to the subject if not 

anaest hesized. In addition, stimulus artifact interference is not affected by ensemble 

averaging as it occun in synchrony with the SEP. Thus the main objective of this 

research worlc is to develop effective signal processing techniques to reduce each of 

the interferences thereby enhancing the SEP. The goal of this research work is: 

0 to investigate and devise efficient signal processing techniques to 

reduce each of the abovementioned significant interference sources 

while maintaining al1 the essential features of the underlying SEP. 

The objective is to enhance the qudity of the SEP while reducing 

the recording time. 

1.5 Thesis Organization 

The organization of the thesis is as follows: In Chapter 2, a detailed literature sur- 

vey is conducted to review the previous work done to reduce each of the interference 

sources. In Chapter 3, fundarnent als of adaptive noise cancellat ion technique are 

detailed which form the basis for the rest of this thesis. In this chapter, various 

parameters influencing an adaptive noise cancelling filter are described. Chapter 4 



concerns itself with temporal and spatietemporal filtering of the myoelectric interfer- 

ence. Novel crosstalk resistant adaptive noise cancelling structures are int roduced in 

this chapter and their performance is evaluated analytically and through processing 

simulated and experimental data. Chapter 5 presents results pertaining to SA reduc- 

tion. Nonlineax filtering techniques, which have never been applied to SA reduction 

before, are discussed in this chapter and their performance is rigorously scrutinized. In 

Chap ter 6, various signal processing techniques are investigated for ECG reduct ion 

and a method, cded Adaptive Template Subtraction (ATS) method is developed. 

The thesis is concluded with Chapter 7 where a summary of the research work is 

presented along with the major contributions of this thesis and suggestions for future 

work. 



Chapter 2 

Literat ure Review 

Summary 

An in-depth Iiterature survey is undertaken in this chapter to review the previous 

SEP research. Various clinical applications which highlight the significance of SEPs 

are described. Each of the main interference sources that are responsible for the 

poor SEP SNR is considered separately with a description of its characteristics and 

methods of reduction. The relative merits and demerits of the different interference 

reduction methods are discussed and a preview of the proposed reduction methods 

which circumvent some of the difficulties is given. 

2.1 Clinical Applications of the SEPs 

Since Dawson's first reported findings of the SEPs in 1947 [12], there has been growing 

interest in the clinical application of the SEPs mainly in the domain of neurological 

damage assessrnent of the peripheral and central nervous system. Both cortical and 

noncort ical SEPs are clinically used to detect any abnormalit ies. SEPs recorded frorn 



the scalp generally are composed of early components corresponding to peripheral 

nerve action potentials, early components generated in the brainstem, short- and 

medium-latency cortical action potentials and finally an afterdischarge [53]. The 

resulting SEP is often composed of several peaks and troughs each of which has sig- 

nificance in assessing the integrity of the nervous system under scrutiny [53]. However 

cortical and subcortical SEPs are sensitive to such variables as subject wakefulness 

[56], level of anesthetic agents (11,571, temperature changes, changes in arterial blood 

pressure or respiratory gases and changes in hormonal activity [21]. This sensitive 

nature undermines the effectiveness of cortical SEPs in accurately assessing the func- 

tioning of the nervous system. Thus Spinal cord SEPs (SSEPs) and Median nerve 

SEPs (MSEPs) are more attractive as they are less influenced by anesthetic agents 

[20, 31, and are more physiologically controlled [39]. 

Operating room procedures which benefit from SSEP recordings include the as- 

sessment of conduction through possibly damaged segments prior to decompression or 

nerve graft, and monitoring of sensory pathways during potentially dangerous surgical 

maneuvers including scoliosis correction, [53]. There has been considerable interest 

in the use of SSEPs to test conduction in the sensory spinal column pathways after 

spinal cord injuries. It is deemed that continued absence of SSEPs is a poor prog- 

nostic sign, whereas the persistence or reappearance of SSEPs, evcn in a clinically 

complete lesion, is an encouraging sign. 

SSEP conduction has been exploited for spinal cord monitoring during opera- 

tive procedures such as Scoliosis treatment. Scoliosis is a lateral curvature of the 

spine which is most frequently a problem in adolescent girls [43]. Surgical correction 

techniques employ mechanical fixation devices such as Harrington Rod instrument 

to apply distractive and compressive forces to correct the abnormal curvature of the 

spine [3l]. However, neurological complications may mise due to this procedure and it 

has been reported that the prognosis for recovery is vastly improved if the Harrington 

rod is removed within 3 hours of the diagnosis of a complication [31]. A commonly 



used intra-operat ive test for assessing spinal cord integrity, c d e d  the S t agnara 'Wake 

up" test [65], relies on bringing the patient out of anaesthesia to determine his/her 

voluntary control of the extremities such as the toes and hgers.  If the patient has 

difficuity in responding to this test, the tension associated with the Harrington rod is 

reduced. There are several difficulties inherent to this procedure, most of which are 

associated with bringing the patient out of anesthesia with al1 the anesthetic int uba- 

tion devices in place. SSEPs overcome these difficulties and ofFer a very attractive 

solution to spinal cord monitoring without any voluntary effort from the patient. 

SSEPs have also been applied to spinal cord monitoring dunng operations for tho- 

racic aortic aneurysms [26], treatment of spinal cord tumors and spinal cord ischemia 

[53l 

The conduction properties of the MSEPs were exploited for the diagnosis of me- 

dian nerve injuries 1581. Injury to the median nerve results in impairment of two of 

the most important movements of the body - grip and pronation. One of the most 

comrnon median nerve injuries is the compression of the median nerve at  the wrist, 

called the Carpal Tunnel Syndrome (CTS) [58]. In the wrist, the median nerve passes 

through a narrow aperture called the carpal tunnel. At this point the nerve is vul- 

nerable to  any changes in the surrounding medium whether due to edema, trauma, 

inflammation or any ot her conditions. This condition commonly occurs in subjects 

who are engaged in vigorous manual work, especially if they are unused to such work. 

This syndrome can be effectively diagnosed using the MSEP conduction characteris- 

tics [5S]. 

In any of the above SEP diagnostic applications, two main SEP parameters vit. 

the latency and the amplitude are used to detect any abnormalities 153, 391. The 

SEP latency refers to the time delay between the stimulus onset and the initial peak 

of the SEP. Since the distance between the stimulating and recording electrodes can 

be measured, nerve conduction velocity can be readily calculated from the latency 

value. In rnany clinical st udies, it is the increase in the latency value (or equivalently 



decrease in conduction velocity) that is taken as a positive indication of the pat hology. 

For example, latency increases of 3 ms have been used as the warning levels for SSEP 

monitoring during spinal surgery [32]. For patients suffering from CTS, the sensory 

distal latency of the MSEP was around 2 ms above the normal value and this distal 

latency parameter is shown to be the most effective indicator of CTS [40]. Amplitude 

measurements have b e n  used in the diagnosis of pathology as  well. One significant 

issue with omplitude measurements is that the SEP waveform is highly dependent on 

different variables such as the depth of the nerve, the tissue between the nerve fibers 

and the recording electrode, the distribution of fiber types and their conduction ve- 

locities and the position of the stimulating electrodes. Thus it is diffcult to establish 

norms for the amplitude levels of an SEP. An alternative approach for utilizing ampli- 

tude measurements is to obtain premorbid amplitude values and compare them to the 

postmorbid amplitude values. For example in spinal cord surgery applications, the 

amplithde values of the SSEP obtained prior to the surgery can be used as guidelines 

for detecting any neurological complications. In spinal cord monitoring applications. 

an amplitude drop by 50% has been suggested as a warning threshold [32]. Table 2.1, 

adopted from Regan [53], assigns a diagnostic value to different SEP parameters. 

In essence. the SEPS contain information which is very helpful in clinical diag- 

nosis. An important factor which determines the usefulness of any SEP instrument 

in a clinical setting is its ability to detect early any deviation from the normal SEP 

parameters and immediately warn the physician. Current SEP measurement systems 

mostly rely on ensemble averaging to estimate the SEP waveform and then perform 

the diagnostics. Due to the initial poor SNR associated with the SEP, as many as 

several thousand records need to be averaged to obtain a good quality SEP, which 

results in long recording times. Thus interference reduction techniques need to be 

incorporated which facilitate an early detection of SEP abnormalities. 



Table 2.1: Diagnostic value moeiated Mth diffemnt SEP parometers (afier [52.) 

2.2 Interference Reduction 

As mentioned before, a major problem associated with SEP recordings is the presence 

of more powerful interferences which mask the SEP. To quote McGillen et al. 1371, 

"The most important problem in evoked potential research is the signal extraction 

itself". There is a cornucopia of research work in this field attempting to improve the 

poor SNR of the SEP. For the sake of clarity, the literature addressing the reduction 

of each of the individual interference sources is grouped together. 

Abnormality 
r 

1) Total absence of SEP 

2) Absence of a component 

3) Prolonged latency ( > 3 SDs above 
normal mean) 

4) Amplitude reduction ( > 50 1) 

5) Increased dispersion ( dispersion 
factor > 3) 

2.2.1 Myoelectric Interference Reduction 

Value 

5.0 

1.5 

4.0 

4.0 

1.5 

As mentioned earlier, the SNR associated with the SEPS is typically less than O 

dB and less than -20 dB in the presence of larger Myoelectric Interference' (MEI) 

[53, 541. One of the most widely utilized tools t o  increase the poor SNR of the SEP is 

' It is worthwhile mentioning here tbat the ME1 will not be a concern in intra-operative monitoring 
where muscle relaxants are utilized. Therefore in such situations, no ME1 reduction filters are 



ensemble averaging [37]. If a deterministic and repetitive signal is added to random 

noise and the time of occurrence is accurately known, averaging becornes a very 

effective tool. Ensemble averaging decreases the noise power in a manner inversrly 

proportional to the nurnber of SEPS in the ensemble. Due to the initial poor SNR, 

a large number of these SEP records are needed for an acceptable estimate of the 

SEP. This results in long recording times, discornfort to the subject if awake, and 

unacceptable interruption of the surgical procedure in intra-operative monitoring. 

Since the SEP and the ME1 occupy sirnilar bandwidths, any fixed filtering procedures 

result in SEP distortion. Matched filtering techniques have been applied to SEP 

enhancement [68, 33, 431. A matched filter is an optimum detector for a known 

signal in additive white noise. However, the application of matched filtering to SEP 

enhancement has two main drawbacks viz. the need for a good quality initial signal 

estimate which requires averaging a large number of SEP records, and the presence of 

the myoelectric interference which has a non-white spectrum. Also significant is the 

inability of the matched filter to yield an estimate of the SEP waveform. Some authors 

attempted to use the Wiener filter to reduce the ME1 [44, 13, 66).  Unfortunately, the 

design of a Wiener filter requires an a priori knowledge of the spectral content of the 

SEP and the MEI, and the condition that both SEP and ME1 be stationary. 

Adaptive filters bypass the above a prion' condition while still being able to con- 

verge to the optimal solution. They also offer an additional advantage of tracking 

any nonstationarities present in the input data. Adaptive Noise Cancellers (ANCs) 

are a subclass of adaptive filters which have been successfuily employed in reducing 

the ME1 [54, 521. In its basic form, an ANC consists of a primary recording channel 

containing the SEP and the ME1 and a reference recording channel containing only 

a correlated component of the MEI. The ANC performs as a correlation canceller 

thereby leaving ME1 free SEP at its output. The performance of a basic ANC is 

however affected by several factors. One such factor is the presence of uncorrelated 

noise sources in the reference input. The presence of these noise sources drives the 



adaptive filter away from the desired solution, resulting in unsatisfactory results. The 

author [52, 46, 491, in an earlier study, has shown that the damaging effect of un- 

correlated noise sources can be compensated by using a Multi-Reference Adaptive 

Noise Canceller (MRANC). It has been shown by the author in (491 that the effect 

of uncorrelated noise diminishes with the increase in the number of channels. How- 

ever both ANC and MRANC suffer from another phenornenon, signal crosstalk. In 

practical ME1 cancellation experiments, the primary and reference sensors need to be 

close together to acquire highly correlated ME1 inputs. This will inevitably lead to 

the presence of SEP components in the reference channel(s). This SEP "crosstalk" 

results in undesirable signai distortion at the output of the ANC [69, 70, 34, 421 

which is even worse in the case of the MRANC [49]. The signal distortion due to 

this SEP leakage into the reference channel is inversely proportional to the SNR in 

the reference channel. Thus Crosstalk Resistant Adaptive Noise Canceller (CRANC) 

structures are required which achieve maximum ME1 reduction while being robust to 

the presence of signal crosstalk. 

Recently a few CRANC structures have been reported [2, 34, 421. The CRANC 

structure presented by Madhavan et al. [311 (CRAF #1) consists of a cascade of three 

ANCs with the first ANC reducing the interference while the second and third ANCs 

compensate for the signal distortion due to crosstalk. The author [52] ,  in his master's 

thesis showed that the third ANC in this CRANC structure is unnecessary and a 

two ANC CRANC structure was developed. A constrained CRANC was developed 

by the author in a later publication2 [48] which further reduces the computational 

complexity of the CRANC filter. The CRANC architecture presented by Al-Kindi e t  

al. [2] (CRAF #2) is composed of tivo ANCs connected in a feedback structure and 

attempts to separate the signal and interference components using a decorrelation 

approach. Mirchandani et al. [42] proposed a similar CRANC structure but their 

'This constrained CRANC algorithm is deriveci in Appendix 1 and the simulation results demon- 
strating the efficacy of the constrained algorithm are given in Chapter 4 



algorithm was derived on the basis of the joint energy minimization problem. These 

feedback CRANC structures, however, suffer from instability and they need to be 

initialized properly [42]. 

The problem of crossta& resistant adaptive noise cancellation is a subset of a 

more general problem viz. the separation of sources. The source separation problem 

can be stated as follows: Given P independent sources and M sensors (M > P) 

each of which receives a combination of the P sources, estimate the P independent 

sources. This topic is hotly pursued under the heading "blind separation of sourcesn 

and finds its roots mainly from communications and array processing fields [25, 291. 

When the signals received at the individual sensors are linear combinations of the 

sources, a neural network based signal separator can be designed [%5]. Van Gerven et  

al. [63] derived a Symmetric Adaptive Decorrelator (SAD) for the source separation 

problem for the two channel case. A frequency domain source separation algorithm 

was presented by Wienstien et al. 1671. Finally, a source separation algorithm based 

on higher order statistics was proposed by Lacoume et al. [29] which overcomes some 

of the problems arising from using the second order statistics. 

A significant factor that is neglected in most of the above publications is the 

presence of uncorrelated noise sources. In Our case, the uncorrelated noise emanates 

primarily from the instrumentation and from the electrode-tissue interfaces at the 

recording electrodes. A s  mentioned before, the uncorrelated noise is as powerful as 

the SEP and hence it needs to be taken into consideration. The author [52, 47, 511, 

in his masters thesis, has shown that the performance of CRAF #1 is sensitive to 

the presence of uncorrelated noise sources. It is shown through simulations and 

experimental results [52, 471, that the performance of CRAF #1 is similar to the 

performance of an ANC in the presence of uncorrelated noise sources. The effect of 

uncorrelated noise on CRAF #2 will be even more detrimental due to the innate 

feedback structure of CRAF #2. It is not clear how the source separation algorithms 

behave with the addition of uncorrelated noise sources. Thus in this thesis new 



approaches for crosstalk resistant ME1 cancellation are undertaken which exhibit 

improved tolerance to the presence of uncorrelated noise sources. 

Discrimination based on the propagation properties of the SEP and ME1 can be 

used as a different approach to ME1 reduction. As explained before, when a nerve is 

stimulated, the resulting SEP travels away from the point of excitation. The same is 

true for the ME1 where the ME1 travels dong the active muscle fibers. The difTerence 

in the conduction velocities can be used as a b a i s  for designing a spatiotemporal filter 

to achieve the distinction between the SEP and the ME1 [7]. Bérubé compared the 

performance of different spatiotemporal filters for the task of reducing ME1 from SSEP 

records [6]. A fundamental spatiotemporal filter is the Delay and Sum Beamformer 

(DSB) wherein an array of sensors with added delays coherently sums the incident 

signal [38, 6, 81. The delays are designed in such a way that the SEP is summed 

coherently while the ME1 is incoherently summed. Thus the DSB requires an a pn'ori 

knowledge of the SEP and ME1 propagation characteristics to determine the delay 

values [38, 61. Another factor that affects the performance of the DSB is the high 

correlation of the ME1 interference across the sensors, which reduces the amount of 

ME1 cancellation. Another spatiotemporal filter is the Generalized Sidelobe Canceller 

(GSC) which is similar to the MRANC and it, under certain condition, circumvents 

the crosstalk problem that is generally present with MRANC. The GSC exploits 

the propagation characteristics of the SEP and creates a "signal blocking matrix" 

which reduces the SEP leakage into the reference channels. Thus the GSC enjoys the 

improved uncorrelated noise tolerance associated with the MRANC while overcoming 

the problem of signal distortion due to crosstalk. However, for an effective design of 

the signal blocking matrix, a priori knowledge of the SEP propagation delay at each 

sensor is required and moreover, the SEP needs to be a plane wave [6] .  

An alternative approach is to create an 'interference blocking matrix" and then 

implement a multichannel SEP enhancer. Due to the larger amplitude of the ME1 

interference, the ME1 propagation delays needed for the blocking matrix can be easily 



estimated using the crosscorrelation technique. The performance of this alternate 

spatiotemporal filter and its variations will be scrutinized in Chapter 4. 

An important point that is not dismssed above is the presence of other correlated 

interference sources across the primary and reference senson. Three potent ial inter- 

ference sources which fit this scenario are the stimulus artifact, ECG and the power 

line interference. Thus these interferences should be removed from both the primary 

and reference channels of the ME1 reduction system to achieve maximum ME1 re- 

duction. The following sections review the literature concerned with the reduction of 

t hese interferences. 

2.2.2 SA Reduction Methods 

As mentioned before, the SA waveform is typically a spike followed by an exponential 

decay response whose amplitude and time constant are dependent upon the stimulator 

system characterist ics, geometry and type of the stimulation and recording electrodes, 

preamplifier characteristics and interelectrode irnpedance [17]. The SA waveform can 

be modeled as a linear combination of three different components which are coupled 

into the recording system by three independent mechanisms [55, 391. The first and 

the most obvious component results from the voltage gradient across the recording 

electrodes resulting from the conduction of stimulus current through the lirnb [55, 171. 

The second coupling mechanism arises from imperfect stimulus isolation. Since the 

main stimulator is grounded, imperfect isolation results in a stray capacitance between 

the stimulating electrodes and the grounded stimulator. This capaci tance toget her 

with the stray capacitance between the subject and ground results in a second current 

which once again creates a voltage gradient at the recording electrodes. The third 

component is due to electromagnetic coupling between the stimulating and recording 

leads. The contribution of this component is highly dependent on the impedance 

of the recording electrodes, quality of shielding on leads and the position of the 

leads in space [55]. Based on this conceptual mode1 of the SA, Mclean [39] made 



recommendations for the reduction of each of the abovementioned component s3. 

Traditionally, reduction of the stimulus artifact has been achieved using special 

hardware. Options include sample and hold circuits which sample the input signal 

the instant the stimulus is applied and hold that voltage level during the stimulus 

art ifact period [19,16], trigger delay circuits which control the data acquisition process 

such that no stimulus artifact is recorded [41], and circuits which utilize slew rate 

limiting and time windowing [27]. Some ot her reported techniques of stimulus artifact 

reduction include biphasic stimulator circuits [59], stimulus isolation techniques [27] 

and positioning of the recording electrodes on stimulus artifact isopotential lines [28]. 

It is important to note here that with any stimulus artifact blanking circuit there 

is a high probability of losing some signal information. In SEP conduction studies 

where the precise time location of the onset of the SEP waveform is required, these 

circuits may give rise to erroneous estimates of the onset of the SEP waveform. This 

is especially true if the stimulus and recording sites are close together where the 

tail of the SA waveform may interfere with the SEP thereby distorting the SEP. A 

different approach to stimulus artifact reduction is to somehow obtain an estimate 

of the stimulus artifact and subtract it from the contaminated signal. McGill et al. 

[17] followed this approach and obtained estimates of the stimulus artifact by using 

a) subthreshold stimulation, b) an auxiliary recording channel off the nerve axis, and 

c) stimulation during the refractory period. While each of these techniques showed 

promising results, none of them completely removed the stimulus artifact and al1 are 

nonadaptive to possible changes in the SA during the course of the experiment. 

The presence of residual SA following application of al1 of the above methods is 

probably due to two factors viz nonlinearity in SA generation and a possible time 

vorying nature of the underlying system. The nonlinearity in the SA generation 

3~hese  are discussed in detail in Chapter 5.  



system originates from the square-law behavior of V/I characteristics of the electrode- 

tissue interface at  the stimulating electrodes. At high current densities, the electrode- 

tissue interface c m  be modeled as a nonlinear resistor in patailel wit h a fixed capacitor 

[60, 171. Stevens [60] and Barker [4] have analytically derived an expression for 

the current/voltage characteristics, I = UV + bV2, and empiricdy validated it. In 

addition, the SA waveform may possess a time-varying nature due to the changes in 

the stimulating and recording electrode impedances due to sweating, drying of the 

electrode paste, movement of the limbs etc. 

Thus any signal processing system attempting to eliminate the SA must be able 

to cornpensate for the nonlinear and time-varying nature of the SA. In this thesis 

nonlinear adaptive filters are applied to the problem of SA reduction. 

2.2.3 ECG Reduction Techniques 

While designing an ANC for the elimination of the ME1 in SSEP records, Harrison 

[22] observed that the presence of the ECG in the primary and reference channels of 

the ANC is a detrimental factor. This is due to the fact that the ECG also appears as 

a correlated component across the primary and reference sensors and affects the ME1 

canrelling ability of the ANC. He concluded that the ECG is the main interference 

that needs to be reduced and designed a separate ANC for ECG reduction. In a 

complimentary work, Harrison and Lovely [64] conducted an experimental study to 

determine the relative power levels of different interference sources at different Ievels 

of the spinal cord and concluded that ECG forms a significant component at al1 levels 

of the spinal cord. In a later study, Black [9, 101 compared the performance of three 

different ECG reduction techniques in the absence of an SSEP vit. clipping, gating, 

and ANC procedures. In the clipping procedure, the input amplitude is clipped at a 

certain threshold level. The performance of this technique is obviously dependent on 

the magnitude of the threshold value. While this technique can be argued as an ECG 

reduction technique, it is more useful in increasing the dynamic range of the SSEP. 



Without any clipping action in place, the amplification factor of the amplification 

stage in the data acquisition system is dictated by the ECG amplitude values such 

that no saturation takes place. This will result in poor A/D resolution of the very 

smdl amplitude SSEP signal. This effect will be more pronounced at the higher levels 

of the spinal cord where the ECG magnitude is larger and the SSEP amplitude is 

smaller compared to the lower levels. With the clipping circuits in place and by judi- 

ciously selecting the threshold level, the amplification factor can be increased t hereby 

increasing the A/D resolution of the SSEP. In the gating method of ECG reduction, 

al1 amplitude values above a certain threshold level are set to zero. Thus this tech- 

nique will result in very good ECG cancellation. A drawback with this technique, 

however, is the SSEP ioss if the SSEP occurs during the gated ECG segment. Since 

the probability of ECG occurring in a SSEP record is relatively sma114, this technique 

might still be useful when large number of SSEP records are averaged. Black reported 

that, of al1 the three techniques, the ANC method offered the best ECG reduction 

performance. With the ANC, once again, we have the problem of uncorrelated noise 

sources and the possibility of SSEP crosstalk. The presence of uncorrelated noise 

sources in ECG reduction is a relatively minor issue as the ECG is several times 

more powerful than the uncorrelated noise. The SSEP crosstalk, however, is a crucial 

factor. The placement of the reference electrode pair such that no SSEP components 

are recorded while still obtaining a correlated ECG component is not a trivial issue. 

Harrison [22] placed the reference electrode pair on the chest while Black [9] placed 

an electrode on either side of the spinal column equidistant from the spine. Assuming 

uniform tissue properties and SSEP conduction along the spinal cord in a straight 

line, a differential signal obtained using the abovementioned electrode pair will result 

in negligible SSEP component. However, in practical situations, there are always 

4A rough calculation of the probability of ECG occurence during an SEP record is given in 
Appendix VI. 



tissue inhomogenities which will result in non-zero differential SSEP signal. Thus ad- 

ditional strategies are required for the ANC such that a SSEP crosstalk-free reference 

input is obtained. A possible way of obtaining a crosst&-free reference channel is 

to  record the ECG input prior to the stimulation procedure. This reference ECG 

input can later be used to cancel the ECG in the primary input acquired using the 

sarne electrodes but d u h g  the stimulation stage. This method called the "template 

subtraction" and its adaptive version "Adaptive Template Subtraction ( ATS )" are 

scrutinized in Chapter 6. 

2.2.4 60-Hz Interference 

Of al1 the interferences affecting the SEP wavefonn, the 60-Hz interference is probably 

the easiest to  reduce. The 60-Hz interference can be reduced significantly by careful 

skin preparation, using generous amounts of electrode paste for good electrode contact 

and employing an amplification stage with high CMRR. While one can envisage an 

ANC structure for 60-Hz interference reduction, it is not considered in this thesis and 

appropriate precautions are taken while measuring in vivo signals to make sure that 

the experimental data is not significantly contarninated by the 60-Hz interference. 

2.3 A Look Ahead 

In summary, this chapter reviewed the literature addressing the clinical significance 

of SEPS and the reduction of different interferences. The relative merits and demerits 

of these techniques are discussed. The following items explicitly state the work done 

in this thesis based on this background: 

Crosstalk Resistant Architectures for ME1 Reduction. Robust CRANC 

architectures are developed for the ME1 reduction. Spatioteniporal filters which 

furt her exploit the propagation characterist ics are scrutinized. The performance 



of t hese techniques is analyzed analyt ically and t hrough processing simulat ed 

and experimental data. 

Nonlinear Adaptive Filtering for SA Reduction. Nonlinear Adaptive 

Filters (NAFs) based on the t m c a t e d  Volterra series are applied for the first 

time to the problem of SA reduction. The SA reduction performance along with 

the convergence behavior of the NAFs with different adaption algorithms and 

under different opeating conditions is rigorously evaluated. Recornmendations 

are made as to the best method of SA reduction for a wide variety of operat ing 

condit ions. 

Adaptive Filter Structures for ECG reduction. The performances of 

different adaptive fil ter structures for ECG reduction are evaluated and the 

best ECG reduction scheme is identified. 



Chapter 3 

Adapt ive Noise Cancellat ion 

Summary 

The fundarnentals of adaptive noise ca.ncellation are detailed in this chapter. The 

objective of this chapter is to identify different variables that affect the interference 

cancelling ability of an Adaptive Noise Canceller (ANC) and offer recommendations 

to compensate for them. A theoretical framework for the analysis of a general 

ANC is developed and this is extended to a multichannel (MRANC) case. For the 

particular case of ME1 reduction, theoretical expressions for the performance of the 

ANC and the MRANC in the presence of uncorrelated noise and signal crosstalk 

are derived. These analytical results are further validated by processing simulated 

SEP, RIE1 and uncorrelated noise data to gain further insight into the functioning 

of an ANC. 



3.1 Basic Adaptive Noise Canceller (ANC) 

In its basic form, an ANC consists of a primary recording channel consisting of the 

desired signal plus the noise and a reference recording channel containing only a 

correlated component of the noise. 

Figure 3.1: Block diagnrm representation of a typàcal adaptive noise cancellation scenario. 

Jo 

Referring to Figure 3.1, we have, 

Reference input, x(k) = n ,(k) 

Y @ )  = sp (k )  + np(k ) ,  

and assuming linearity x ( k )  = nT(k) = h ( k )  + np(k) (3.1) 

Adap tive , 

rilter, W(z) 

where sJk )  is the desired signal in the primary input, n p ( k )  is the primary noise 

component, ~ ( k )  is the reference noise component, h(k)  represents the transfer func- 

tion between the primary and reference noise components and * is the convolution 

operator. Also in Figure 3.1, Y ( k )  denotes the filtered reference input, e ( k )  represents 

the error residue and W ( z )  stands for the transfer function of the adaptive filter in 

the discrete Z domain. The optimal solution for the adaptive filter can be derived 



easily in the discrete Z domain, 

where &(z )  is the cross-spectral density, &(z)  is the autespectral density of the 

reference input, and ~$N,~.(z) is the spectral density of the primary noise. Several 

factors need to  be considered before an ANC is applied to any noise reduction prob- 

lem. The following sections discuss the four main factors that directly influence the 

performance of an ANC. 

3.2 Choice of the Filter Structure 

There are two main choices for the implementation of the adaptive filter: a) a Finite 

Impulse Response (FIR) filter and b) an Infinite Impulse Response (IIR) filter [B, 

701. FIR filters are computationally simpler to  implement, inherently stable and 

easier to analyze. The main drawback with the FIR filters is the need for large 

filter orders in certain situations, which increases the computational burden on the 

adaptive system. IIR filters, on the other hand, require very fetv coefficients to reach 

the optimal solution but they suffer from instability (due to the inherent feedback 

structure) and local minima problems. Al1 the adaptive filters in this t hesis therefore 

are implemented in the FIR form. The computational penalty due to large filter 

lengths of the FIR adaptive filter is endured to avert the potential instability of the 

IIR filter. 

The FIR filter has been implemented in three different structures viz the transver- 

sal structure, the lattice structure and more recently, the systolic array structure [%3]. 

In the transversal structure or tapped delay line, the reference input is passed through 

a set of unit delays (whose number is equivalent to the filter length), multiplied by 

the corresponding weights and then summed. The transversal filter is appealing from 



the implementation point of view due to its simplicity and its robustness with the 

iterative algorithms. Lattice filters are modular in structure in that they consist of a 

number of individual stages, each of which has a lattice form 1231. While the lattice 

structure is found to have superior convergence capabilities and low round-off noise 

in fixed word length implementations, it is computationally more intense than the 

transversal filter. A systolic array architecture is a parallel computing system which 

possesses many desirable qualities such as rnodularity, local interconnections, and a 

pipelined and synchronized architecture. The systolic array concept was invented 

mainly to implernent complex filter algorithms in a VLSI chip [23]. In this thesis, 

the transversal structure based FIR filters will be used to implement d l  the adaptive 

filtering operations. 

3.3 Choice of the Adaption Algorithm 

There are several adaption algorithms reported in the literature and the choice is 

still a hotly pursued research area. The most pervasive of these algorithms attempt 

to minimize some form of cost function based on the squared error. The adaption 

algorithms can be broadly categorized into two classes: a) stochastic and b) exact 

123, 701. In choosing an algorithm from these two classes, several factors such as 

the rate of convergence (defined as the number of iterations to reach the optimal 

solution), misadjustment (defined as the ratio of the excess mean-squared error and 

the minimum mean-squared error), tracking in nonstationary environments, robust- 

ness to ill-conditimed data, and computational complexity (calculated in terms of 

the number of arithrnet ic operations) play an important role. Three main algorithms 

were employed in t his thesis to realize the adaptive filtering operation: the steepest 

descent (SD) algorithm, the Least Mean Square (LMS) algorithm and the Recursive 

Least Squares (RLS) algorithml. Both the SD and the LMS algorithms fa11 into the 
- - - - - - -- - - - 

l Refer to Appendix V for a detailed description of these algorithrns. Although the algorithrns 
are developed in a nonlinear adaptive filtering context in Appendix V, the same comrnents apply to 



category of the stochastic gradient dgorithms wherein the mean squared error is iter- 

atively minimized. The RLS algorithm is an example of an exact adaption algorithm 

wherein the exact squared error is minimized. There is a trade-off between the LMS 

and RLS algorithms in terms of cornputational complexity and convergence rate. The 

LMS algorit hm is computationdy simpler but often exhibits slower convergence. The 

RLS algorithm, on the other hand, exhibits faster convergence but is computationally 

cornplex especiaily for larger adaptive filter lengt hs. In this thesis, unless otherwise 

stated, only the simulation and experimental results obtained using the RLS algo- 

rithm are included. Since al1 of the data processing in this thesis was done offline, 

the cornputational complexity of the RLS algorithm was not a significant issue. 

3.4 Presence of Uncorrelated Noise Sources 

Figure 3.2: ANC with uncomdated noise components. 

The block diagram of an ANC in the presence of uncorrelated noise components 

linear FIR adaptive filtering as well. 



is shown in Figure 3.2, where AF represents the adaptive filter, and %(k) and ~ ( k )  

represent the primary and reference uncorrelated noise sources respectively. The 

unconstrained Wiener solution for the ANC now takes the fonn of 

where t$urrr,(z) is the uncorrelated noise power spectral density in the reference input 

and rr(z) is the ratio of uncorrelated and correlated noise power spectral densities in 

the reference input. The power spectral densities of the residual noise components at 

the output of the ANC can be expressed as 

Based on the above equations, two performance indices which quantify the interfer- 

ence cancelling ability of the ANC can be defined as, 

where I ( z )  represents the overall power reduction achieved by the ANC and R ( z )  

quantifies the amount of correlated interference reduction accomplished by the ANC. 

Since the desired signal passes through the ANC unchanged, I ( z )  can also be inter- 

preted as the SNRGAIN achieved by the ANC. Note that both I ( z )  and R(z )  are 

frequency dependent performance measures and frequency independent performance 

measures can be calculated by integrating the spectral densities in Eqs. 3.6 and 3.7 

to obtain individual powers. Substituting z = exp(j2?rw/w,), with w, the sampling 

frequency, and integrating, the frequency independent performance measures can be 



written as, 

Thus if the power spectral densities of the correlated and uncorrelated noise 

sources in the primary and reference channels are available, the performance of the 

ANC can be easily quantified using the above equations. 

To relate the above expressions to the myoelectric interference (MEI) reduction 

problem, simulated ME1 and uncorrelated noise data was processed by an ANC. 

The simulated ME1 was generated by passing white Gaussian noise of unit variance 

through a shaping filter whose impulse response, p ( k ) ,  is given by [6], 

where Cl is a scale factor, T, is the sample period, P is the length of the shaping filter 

and c, is the ME1 spectral shaping parameter and from experimental measurements 

l ias a typical value of 500. The resulting ME1 power spectral density can be easily 

shown to  be equal to 

where D is a constant. The ME1 transfer function between the primary and reference 

channels was modeled as a fifth order lowpass filter given by 

H ( z )  = 
1 

1 + 0 . 2 ~ - l  - 0.075r2 - 0.076r3 + O . l l 2 ~ - ~  ' 
(3.12) 

The primary and reference uncorrelated noise were white Gaussian noise sources 

whose variance was varied to achieve the desired level of uncorrelated noise2, T ,  which 

21t is assumeci throughout the thesis that the power levels of uncorrelated noise sources in both 
the primary and reference inputs are approximately the same. 



was defined as, 
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Figure 3.3: ANC performance us level of uncorrelated noise. 

where o& is the reference ME1 variance, and oZr, is the reference uncorrelated noise 

variance. 10,000 data points were used to run a 40th order adaptive filter which was 

driven by the RLS algorithm. Note that the Wiener solution used in the analytical 

deveiopment of the ANC is in the frequency domain and hence could be non-causal. 

To compensate for this possible noncausality with simulated data, a delay of half the 

filter length was utilized in the primary input of the ANC. The steady-state weights 

of the adaptive filter were then retrieved and used to filter the ME1 and uncorrelated 

noise sources separately. This facilitated the calculation of the power performance 

and myoelectric residue measures given by Eqs. 3.8 and 3.9 respectively. Figure 3.3 

depicts the results obtained for various levels of uncorrelated noise, along with the 

theoretical predictions3. The decrease in both power performance and myoelectric 

residue indices due to increasing uncorrelated noise levels is obvious in these plots. 

Also good agreement between the theoretical and simulation results is seen in these 

3 ~ h e  theoretical predictions are computed by numerically evaluating the integrals for 1 and R, 
given by Eqs. 3.8 and 3.9, as closed form solutions could not be found. 



figures. Any discrepancies between these two values are at tri buted to the convergence 

properties of the adaptive filter and also to the fact that theoretical expressions utilize 

exact spectral expressions for ME1 and uncorrelated noise while in simdations these 

are only being approximated. 

Figure 3.4: Block diagnzm of the MRANC. 

The detrimental effect of the uncorrelated noise sources can be alleviated by de- 

vising a Multi-Reference Adaptive Noise Canceller (MRANC). The block diagram of 

an MRANC is shown in Figure 3.4, where M is the number of reference channels and 

IL;( k) represents the spatially uncorrelated noise source in the ith channel. The author 

in his master's thesis [52] and subsequent publications [49, 501 carried out an exhaus- 

tive analysis of the MRANC structure in ME1 reduction application. Theoretical 

expressions for power performance and myoelectric residue indices were derived [49] 



and the frequency dependent performance measures in the z domain were expressed 

as 

where n(z) = xZl ~ ( z )  with ni(z) being the ratio of ME1 to uncorrelated noise 

spectral densi t ies in the it h reference channel. The frequency independent measures 

were then derived as [49], 

where n, is the ratio of ME1 and uncorrelated noise variances in the primary inpu 

Two important conclusions can be drawii based on these performance measures: 

0 For a given level of uncorrelated noise, the power performance measure, 1, has 

an upper bound given by 1 f n,. This is due to the primary uncorrelated noise, 

y ( k ) ,  which is unaffected by the filtering operation and hence saturates the 

performance. 

0 The myoelectric residue index, R, increases monotonically with an increaçe in 

the number of reference inputs. As the number of reference channels tends to 

infinity, R also tends to infinity implying that total myoelectric cancellation can 

be achieved even in the presence of uncorrelated noise. 



The foilowing simulations further illustrate the advantages of an MRANC in ex- 

hibiting improved uncorrelated noise tolerance. The primary ME1 data and the un- 

correlated noise data were generated as described earlier. The ME1 transfer funct ions 

between the primary and reference inputs were modeled as first order low pass filters 

given by 

where A, is a scaling constant and ai was varied to 

(3.18) 

generate a different myoelectric 

signal for each of the reference channels and was chosen in such a way that the 

correlat ion coefficient between the primary and reference channels decreased wi t h 

i, reflecting experimental conditions. The theoret ical expressions for the MRANC 

output power spectral density and residual ME1 power spectral density cm be easily 

derived and are graphically portrayed in Figures 3.5 acd 3.6. These results illustrate 

quite effectively the previous statements that the MRANC output spectral density 

saturates to a value dependent upon the primary uncorrelated noise and the ME1 

residue will gradually diminish to zero even in the presence of uncorrelated noise 

sources. 

The theoretical results were further authenticated by processing simulated ME1 

and uncorrelated noise data. The RLS algorithm was used to implement the MRANC 

filter and ten thousand samples of ME1 and uncorrelated noise data were used to 

ensure MRANC filter convergence. The ME1 and uncorrelated noise were then passed 

through the MRANC separately and both the power performance rneasure and ME1 

reduction index were computed. These results are plotted in Figures 3.7 a and b 

for an uncorrelated noise level ( 7 )  of 0.006. The increase in power performance and 

ME1 residue indices with an increaçe in the number of reference channels is apparent 

in these graphs. The simulation results are once again close to their theoretical 

counterparts and the differences are mainly attributed to the convergence propert ies 

of the M adaptive filters and the approximation of ME1 and uncorrelated spectra in 

simulations. Note that this approximation will result in greater differences for the 



Figure 3.5: Theoretical MRANC output power spectml den- 
sity, T = 0.006. 

Residual Mt spectral density 

Figure 3.6: Theomtàcal MEI midual power spectml dewitg 
ut the MRANC output, T = 0.006. 
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ME1 residue index, R, where the theoretical expression given by Eq. 3.17 includes 

second order terms. Further simulation results and related issues are discussed in a 

recent publication by the author [49]. 

I ~ e v e l  of Uncor. Noise.? = O.W6 
a I 

2 J 4 
No. of Channels, M 5 

Level of Uncor. Noise, 7 = 0.006 b 

1 J ho. of Channets. M ' 5 

Figure 3.7: MRANC performance Vs No. of Channeis. 

3.5 Crosstalk Phenornenon 

A physical constraint in many of the adaptive noise cancellation applications is the 

presence of desired signal components in the reference input of the ANC. This signal 

"crosstalk" affects the noise cancelling ability of the ANC and also results in output 

signal distortion. The block diagram of the ANC infected by signal crosstalk is shown 

in Figure 3.8, where g(k) represents the crosstalk transfer function. The Wiener 

solution to the ANC is now given by, 

where 4sps,(z) is the signal power spectral density and G(z) is the z domain crosstalk 

transfer function. It can be observed from the above equation that the optimal 



Figure 3.8: ANC m'th uncomlated noise and signal crosstalk components. 

solution is now also dependent on the crosstalk transfer function. This dependency 

manifests itself in reduced correlated-noise reduction a t  the ANC output. Since signal 

components also pass through the ANC, the signal estimate at the output of the ANC 

is distorted. In situations where the signal is intermittent and the correlated-noise 

is persistent, a milder remedy to this problem is to let the ANC function only in 

the absence of the desired signal. In this way, the effect of signal crosstalk on the 

adaptation of the ANC disappears and the Wiener solution given above simplifies to 

the one given in Eq. 3.3. While this guarantees better correlated-noise reduction, the 

signal distortion, however, still persists. 

To demonstrate the efFect of the signal crosstalk, simulations were performed once 

again. The SEP, which is the desired signal in our case, was generated using the 

following equation [54, 521, 



where C2 is a scoling parameters, c, is the SEP spectral shaping parameter with a 

typical value around 2500 and L is the length (in sarnples) of the SEP. This SEP 

waveform was repeated the desired nurnber of times to generate an SEP train. To 

this SEP train, the ME1 and uncorrelated noise, whose generation was described 

earlier, were added. For simplicity, the crosst alk t ransfer funct ion was made equal 

to a scaling constant, < 1. The signai distortion incurred due to the ANC filter is 

quantified using a distortion index measure given by 

where Zp(k) is the signal estimate at  the ANC output. Using Parseval's relation, the 

distortion index can be expressed in the frequency domain as, 

where 314, ( w ) )  is the real part of the cross-spectral density between the original 
P P 

SEP and its estimate. The input SNR was defined as 

and the output SNR as, 

SNR, = ':ma= +, + O&', 

where Spm, and 3, are respectively the SEP peak amplitude levels at the input 

and the output of the ANC, oi0 is the variance of the residual ME1 component at 

the output of the ANC and c ~ $ ~  is the uncorrelated noise component at the output of 

the ANC. The SNRGAIN achieved by the ANC c m  be expressed as, 



Notice that in the absence of any signal crosstak, the above SNRGAIN expression 

simplifies to the power performance index, 1 given by Eq. 3.8. Thus the power 

performance index 1 can be used as an upper limit for the SNRGAIN accomplished 

by the ANC. 

Figures 3.9 a and b depict the performance of the ANC with increasing crosstalk 

levels. For these results, a twenty tap FIR filter driven by the RLS algorithm was used 

to implement the adaptive filter. Once the convergence of the ANC is established, 

the steady-state weights of the ANC are retrieved and are used to filter the SEP, 

ME1 and uncorrelated noise sources separately and both the  distortion index and the 

SNRGAIN were calculated according to Eqs. 3.21 and 3.25 respectively. From the 

results, we can observe that the distortion index increases steadily with the level of 

crosstaik while the SNRG AIN drops considerably. 

Figure 3.9: ANC performance in the pmsence of cmsstalk. 

Earlier we have demonstrated that an MRANC provides better performance corn- 

pared to the ANC in the presence of uncorrelated noise sources. In the presence of 

signal crosstdk between the primary and reference channels, however, the signal es- 

timate produced by the MRANC is more distorted than the ANC. In this situation, 

the spatiotemporal properties of the SEP c m  be used to diminish the 
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Figure 3.10: Block diagrom of the Genemlàzed Sidelo k Canceller (GSC'. 

damaging effects of SEP crosstalk while still retaining the attractive features of the 

MRANC. Figure 3.10 portrays the  block diagram of a special version of the MRANC, 

VU. the Generalized Sidelobe Canceller (GSC) [70, 61. Here the primary input is 

y p ( k )  = s&) + n p ( k )  + u p ( k )  where s P ( k ) ,  n p ( k )  and y ( k )  are respectively the SEP, 

ME1 and uncorrelated noise sources in the primary input, and the ith reference input 

is ~ r i ( k )  = s n ( k )  + ~ i ( k )  + ~ ; ( k )  where s,(k),  ~ ( k )  and uri(k)  are the SEP, ME1 

and uncorrelated noise components in the ith reference input respectively. The main 

difference between the MRANC and the GSC is the "signa blocking matrix" block. 

This matrix, B, is derived from an a priori knowledge of the propagation parameters 

of the desired signal. A simple signal blocking matrix for a four-channel GSC can be 



constructed as, 

where 6 is the propagation delay of the SEP signal between adjacent sensors. Assum- 

ing ideal propagation of the SEP, the above matrix essentially nulls the SEP com- 

ponents in the reference channels thereby avoiding the possibility of signal distortion 

due to crosstalk. Needless to Say, the exact value of the 6 parameter in the above ma- 

trix is crucid for the successful operation of the GSC. In practical SEP experiments, 

the value of the 6 parameter is usually not known a priori. In addition, uniform SEP 

propagation across the sensors is required to ensure that the signal components are 

nullified in the reference channels. In practice, this condition is reasonably satisfied 

for smaller array sizes. 

Simulations were performed to compare the SEP distortion incurred in MRANC 

and GSC structures. The SEP signal was generated according to Eq. 3.20 and was 

simulated to propagate with a conduction velocity of 100 m/s. The generation of 

the ME1 and uncorrelated noise sources was described earlier. Both MRANC and 

GSC structures were allowed to operate until the ANCs reached convergence. The 

converged ANC weights were then used to filter the SEP signal separately and the 

NMSE distortion rneasure given by Eq. 3.21 was computed between the original SEP 

signal and the SEP signal at the output of the MRANC and GSC structures. In Figure 

3.11 the distortion indices obtained from the MRANC and the GSC are plotted. The 

increase in SEP distortion with an increase in the number of reference channels in the 

case of the MRANC is apparent in this plot. With ideal SEP propagation across the 

senson, the GSC outputs a distortion-free SEP resulting in a zero distortion index. 



However, deviations from the ideal result in non-zero distortion indices by the GSC. 

In the case of non-uniform SEP propagation, where the SEP signal was simulated to 

attenuate as it travels down the sensors, the GSC structure introduces some distort ion 

into the SEP, which is still significantly lower than the SEP distortion at the output 

of the MRANC. In the event of using a wrong signal blocking matrix, where the 6 

parameter in the matrix was one time sample off the true value, the GSC can be seen 

to produce substantial SEP distortion. 
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Figure 3.11: Performance of the Genemlize Sidelobe Canceller under a van'ety of SEP 
pmpagation conditions. 
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The above simulation results show that the successful operation of the  GSC de- 
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pends on the accuracy of the signal blocking matrix. To ensure this accuracy, an a 

prion' knowledge of the propagation pararneters of the SEP is required. Since this is 

not usually available in practical SEP studies, the application of GSC may also result 



in SEP distortion. In addition, the performance of the GSC will be affected by the 

SEP dispersion as it travels dong the array. Thus crosstatk resistant noise cancelling 

structures are required which do not require any a priori knowledge of the SEP and 

ME1 properties. 

3.6 Conclusions 

The main objective of this chapter was to introduce the reader to the fundarnentals 

of adaptive noise cancellation. A thorough theoretical development of the ANC is 

given and the onalytical results are further authenticated by processing simulated 

data. The following points reflect the gist of this chapter: 

Adaptive Noise Cancellers (ANCs) are very useful in many interference reduc- 

tion applications as they do not require any a priori knowledge of the signal and 

interference properties. In addition, t hey offer signal and interference tracking 

abilities in nonstationary environments. 

The interference cancelling ability of the ANC is dependent mainly upon four 

factors: filter structure, adaption algorithm, presence of uncorrelated noise 

sources and crosstalk of the desired signal. The first two are associated with the 

implementation of the adaptive filter (either in hardware or software) while the 

last two are tied to the physical nature of the interference reduction problern. 

0 The performance of an ANC is a function of the level of uncorrelated noise 

in its reference input. It has been shown analytically and through simulations 

t hat the interference reduct ion capability of the ANC decreases wit h increasing 

levels of uncorrelated noise. 

0 The effect of uncorrelated noise can be mitigated through using multiple ref- 

erence channels. The MRANC acts as a spatial averager for the uncorrelated 



noise while still maintaining the temporal relationships between the correlated 

interferences. Theoretical expressions and simulation result s are included which 

demonstrate the performance of the MRANC. 

0 The performance of an ANC is further deteriorated by the signal "leakagen into 

the reference input. This signal crosstalk results in undesirable output signal 

distortion which is worse in the case of the MRANC. 

0 The spatiotemporal properties of the signal can be exploited to create an MRANC 

with no distortion. The GSC structure includes a signal blocking matrix which 

nulls the signal components in the reference channels. However, to create an 

effective signal blocking matrix, a priori knowledge of the signal propagation 

characteristics are required which are not usually available. Thus crosstalk 

resistant adaptive noise cancelling structures which do not need any a priori 

knowledge about the signal parameters are necessary. 



Chapter 4 

ME1 Reduction 

Summary 

The focus of this chapter is on a Crosstdk Resistant Adaptive Noise Canceller 

(CRANC) filter which is a cascade of two ANCs. In the absence of uncorrelated 

noise sources, this CRANC structure is shown to compensate for the signal dis- 

tortion incurred in a single ANC. Two novel variations of this CRANC structure 

are developed which reduce the computational complexity by exploiting the SEP 

and ME1 properties. In the presence of uncorrelated noise sources, however, the 

performance of these CRANC structures is shown to be comparable to the single 

ANC. A multichannel CRANC (MCRANC) structure is innovated which offers im- 

proved tolerance to uncorrelated noise sources. Rigorous analytical treatment of 

the MCRANC is provided along with simulation results which demonstrate some 

of the interesting properties of the MCRANC. In addition, an Ensemble-averaged 

CRANC (ECRANC) filter structure is developed which is particularly useful in low 

SNR situations. The performance of these CRANC structures with real SEP and 

ME1 data is also scrutinized. 



4.1 CRANC Filter in the Absence of Uncorrelated 

Noise 

ANC #l 

Figure 4.1 : Block diagnrm of the CRANCfilter in the absence of uncomlated noise sources. 
Hem s ( k ) s  denote the SEP components, and n ( k ) s  denote the MEI components with p 
associated with the prirnary input and r associated with the mfmnce input. In addition, 
h(k) i s  the MEI tmnsfer furrtion, g ( k )  is the ctosstalk tmnsfer function and AF represents 
an adaptive filter. 

The block diagram of the Crosstalk Resistant Adaptive Noise Canceller (CRANC) 

filter structure in the absence of uncorrelated noise sources is shown in Figure 4.1, 

where s,(k) is the desired SEP signal, and nJk) and nr(k) are primary and refer- 

ence ME1 inputs respectively. Essential for the successful operation of this CRANC 

structure is allowing AF #1 to converge to its optimal solution before the advent of 

the signal i. e. in Our application before the nerve is stimulated. This facilitates the 

estimation of the inverse of the interference transfer function h(k)  by A F  #l. With 

this condition, the Wiener solution for the first ANC is given by, 



Once A F  #1 has converged, further adaptation of it is stopped and the SEP signal 

is applied. The primary and reference inputs to A F  #2 are therefore given by, 

and 

Expressing the auto and cross-spectral densities for the second ANC as 

we can compute the Wiener solution for A F  #2 as 

W W l ( 4  
W2(Z)  = 1 - G(z)Wl(a)  

Hence the output of the second ANC is given by 

Hence at the output of the second ANC we have just the myoelectric interference, 

Np(z).  This when subtracted from the primary input Yl ( z )  results in the SEP alone. 

Thus in the absence of the uncorrelated noise the CRANC filter successfully elimi- 

nates both the crosstalk and the interference but only if the following conditions are 

sat isfied: 



The myoelectric interference transfer function, h(k) ,  should be time 

invariant. Since the fint A F  is fixed during the SEP duration, violation of the 

above condition results in substantial residual ME1 component at the output of 

the first stage. 

The zeros of the transfer function 1 - G(z)Wl(z) should be inside the 

unit circle. In other words, the 1 - G(z)Wi(z) should be a minimum phase 

transfer function which ensures that the optimal transfer function of AF #2 is 

stable. If this condition is not satisfied, the CRANC structure fails in compen- 

sating for the distortion caused by the signal crosstalk. 

During the rest of this chapter, it is assurned that both the above conditions are sat- 

isfied. The discussion on the point about the time-varying nature of the ME1 transfer 

function is deferred until the "Experimental Resultsn section where suggestions are 

made to work around this problem. It is worthwhile to note here once more that 

a single ANC (just ANC #1) outputs an interference-free but distorted SEP. The 

distortion incurred through A F  #1 is dependent on the crosstalk transfer function, 

G(z) ,  as is evident from the Eq. 4.3. 

The first set of simulations compared the ability of CRANC and ANC in extracting 

the SEP from the myoelectric interference in the absence of uncorrelated noise sources. 

The simulated ME1 and SEP data were generated as described in Section 3.5. The 
s2 primary Signal-to-Interference Ratio (SIR) is defined as where once again S,, 
NP 

is the primary SEP peak amplitude value and uNP is the variance of the primary 

MEI. As mentioned before, it is critical for the successful operation of CRANC that 

the first AF be in steady-state before the signal is present. Hence the primary and 

reference inputs to the CRANC were of 4000 sarnples of which the first 2000 samples 

were ME1 data. The next 2000 samples were a composite of the SEP signal and the 

MEI. A ten-tap transversal filter driven by the RLS algorithms was employed as Al? 

#1 and it was allowed to converge in the first 2000 samples. After convergence, the 



adaptation was stopped and the remaining 2000 samples of the reference input, x i ( k )  

in Figure 4.1, were filtered using the steady-state weights. This filtered reference 

input (y2(k)) was then subtracted frorn the primary input of AF #1 to  give the 

error output. The filtered reference input and the error output of AF #1 formed the 

primary and the reference inputs respectively to AF  #2 (refer to  Fig. 4.1). AI? #2 

was irnplemented using a twenty-tap transversal filter driven by the RLS algorithm. 

Twenty five independent trials were conducted and the final weights of AF #1 and 

AF #2 were averaged over these twenty five trials. These averaged filter weights were 

ME1 indenpendently to generate the output then used to filter the input SEP and 

SEP and ME1 estirnates. 
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Figure 4.2a: SEP estimate by ANC 
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Figure 4.2: CRANC us ANC in the absence of uncorrelated noise sources, SIR = 0.04. 

Figures 4.2a and 4.2b show the outputs of ANC #1 and the CRANC in the absence 

of uncorrelated noise for two different crosstalk levels. With no uncorrelated noise 

present, it can be seen that the CRANC produces a distortion- and noise-free estimate 

of the SEP irrespective of the crosstalk level, while a single ANC is unable to provide 

such an estimate. Even though the SIR at  the output of ANC #1 is infinity, the 

increase in signal distortion at the output of ANC #1 with increasing crosstalk level 



is clearly evident in Fig. 4.2a. The main reasons for the slight differences between 

the waveforms recovered by the CRANC and the original signal are the finite data 

and filter lengths. Theoretically, the presence of ME1 in the primary of ANC #2 

should not affect its convergence. However, in practice, due to h i t e  data length, this 

does have an impact and even after 25 averages the filter weights are slightly off the 

Wiener solution. 

This basic CRANC structure can be further rnodified by exploiting certain p r o p  

erties thereby enhancing its performance. The following section focuses on these 

variations of the basic CRANC structure. 

4.2 Variations of the CRANC Structure 

4.2.1 Variation #1: Constrained CRANC filter 

From Eq. 4.5, we observe that the Wiener solution for the second A F  is an IIR 

transfer function. Thus a large number of filter taps may be required to approximate 

this transfer function using an FIR filter for the second ANC. This is especially true if 

either of the filters G(z) or H ( z )  or both happen to be of long duration. An example 

can be easily concocted to realize this situation: Let G ( z )  be a fourth order FIR filter 

given by, 

and the interference transfer function be 

The resulting impulse response for the optimal solution of AF #2 is shown in Fig- 

ure 4.3. It can be observed from this graph that the second ANC needs to be at least 

one hundred taps long (if implemented as an FIR filter), to adequately compensate 

for the distortion due to signal crosstdk. The computational complexity associated 
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Figure 4.3: Optimal impulse Eespome of AF #2 for G ( z )  = -0.2+0.25z-1+0.6z'2+0.1z-3, 
and H ( z )  = 1 + 0.952-l + 0.91z-* + 0.88r3 + 0.85t-4. 

with a hundred tap FIR filter is quite substantial, even with a sirnpler algorithm such 

as the LMS algorithm. An appealing way to alleviate this complexity is to constrain 

the adaption of AF #2 such that only a small part of the coefficients is adapted. 

The constrained algorithm stems from the fact that W2(4 contains Wi (2) which was 

already computed by AF #1. This information can be used to restrict the adaption of 

AF #2 such that only G(z) parameters are updated a t  each reduction. This not only 

results in substantial computational savings but also facilitates a direct estimation of 

the crosstalk transfer function G(z). A stochastic gradient constrained algorithm for 

the adaption of G ( z )  is derived in Appendix 1. 

The performance of the constrained algorithm is evaluated through processing 

simulated data. The SEP and ME1 data were generated as described earlier. The 

simulations were performed for three different SI& to demonstrate the efficacy of 

the dgorithm. Figures 4.4a-f show the convergence of the G(z) weights and the 

resulting impulse responses of AF #2. For al1 these results, G(z)  was modeled as 
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Figure 4.4: Convergence of the CCRANC algorithm for thme different SIRs. Figs. a, 
c, and e show the weight trujectories while b,d, and f display the comsponding impulse 
riesponses of AF #2. The conuetgence constant p for the first case was 0.05, and 0.01 for 
the second. For the thinl case, p tuos a vectm = (0.001, 0.0025, 0.006 0.0061~. (Refer to 
text for detaàh.) 53 



g0+9iz-1 + 9 2 ~ - 2 + g 3 ~ - 3  and the "g" values were updated according to the constrained 

CRANC algorithm. A characteristic trait in the second column of these results is t hat 

the constrained CRANC algorithm models the optimal impulse response of the second 

A F  for a variety of SI& with only four coefficients. From the fmt column in 

Figure 4.4, the effect of the SIR value on weight convergence can be noticed. Without 

any ME1 present, the algorithm converges to its optimal value almost perfectly and 

in fewer iterations. However, in the presence of MEI, the weight convergence becomes 

noisy and for lower values of the SIR the adaption has to be carried out with a lower 

convergence constant which will result in a slower convergence. This fact can be seen 

from Figure 4.4e where different convergence constants had to be used for adaption 

of different weights to ensure that the ME1 in the primary input of ANC #2 does not 

have a detrimental effect. 

4.2.2 Variation #2: Delay and DBerence Array Processor 

As mentioned before, both SEP and ME1 are propagating waveforms. Thus the 

spatiotemporal properties of SEP and ME1 can be exploited to further simplify the 

computational complexity associated wit h the basic CRANC. The Delay and Difl'er- 

ence Array Processor (DDAP), shown in Figure 4.5, is an example of one such filter 

where the propagating SEP and ME1 are tapped using two sensors placed along their 

direction of propagation'. Here s ( k )  is the SEP signal, n(k) is the ME1 with 6 and A 

being their respective time delays across the two sensors and A F  stands for adaptive 

filter. Both s (k )  and n(k) are assumed to possess uniform propagation characteristics 

along the array. The first stage of the DDAP estimates the time delay associated 

with the ME1 which can be easily calculated from the cross-correlation information 

between the two sensors, prior to the application of the stimulus. Thus at the second 

IIt is assurneci here that both SEP and ME1 propagate in the same direction. While this may not 
be true in al1 cases, one can always project the SEP and ME1 waveforms with arbitrary directions 
of arriva1 onto to the line of the array by making appropriate changes to their velocity.(refer to [70] 
for an introduction to array processing). 
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Figure 4.5: B k k  diagmm of the basic Delay and Diffemnce A m y  Processor (DDAP) 
w h m  s(k) is the SEP signal, n(k) U the MEI *th 6 and A king their mspective time 
defays a m s s  the prhary  and Feference sensors. 

y2(k) = s ( k  + 6 - A) + n(k) 
4 k )  = ~ ( k )  - s ( k  + 6 - A). 

The Wiener solution to the adaptive filter is 

where <p = A - 6 is the difference in ME1 and SEP propagating time delays. When 

the AF attains this optimal solution, the output of the second stage is just n ( k ) .  

This, when subtracted from the primary input yl(k), results in an interference free 

signal estimate. Several observations are in order with respect to this basic DDAP 

structure: 



By exploiting the propagation characteristics of the MEI, the DDAP reduces the 

computational complexity associated with the first stage in the basic CRANC 

structure. The transfer function estimation problem collapses to a simpler time 

delay estimation problem. This of course is based on the assumption that the 

ME1 propagates uniformly across the array. 

The second stage of the DDAP ais0 involves estimating a time delay parameter, 

yU. the 9 parameter. Note that the optimal solution for the second stage, 

given by Eq. 4.11, is once again an IIR transfer function. But this time, the 

IIR transfer function is only marginally stable as there are multiple poles (their 

number determined by the p parameter) placed on the unit circle. This results 

in two drawbacks: a) any presence of residual ME1 or any other noise will 

result in an amplified output, and b) truncation using an FIR filter requires 

a significantly large number of filter taps. Also, explicit adaptation for the <p 

parameter becomes impossible. This point is addressed in Appendix II. 

The drawbacks associated tvith the basic DDAP can be overcome by designing a 

three sensor DDAP as shown in Figure 4.6. Assuming both SEP and ME1 are plane 

waves, the composites at the three sensors are respectively s(k + 26) + n(k + 24) ,  

s(k+6)+n(k+A) and s(k)+n(k). As mentioned before, it is fairly straightforward to 

estimate the 4 parameter. Once this ME1 delay parameter is estimated, the outputs 

at node #1 and #2 are given by 

where cp is once again the difference in the time delay values of the ME1 and the SEP. 

The problem now is to estimate the q parameter. If we employ an adaptive filter 

with y(k) as the primary input and x(k) as the reference input, the Wiener solution 
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Figure 4.6: Modified DDAP. 
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Thus, if an FIR filter is used to realize this adaptive filter, both the first weight 

and the weight corresponding to a delay value equal to <p will go to unity as the 

adaptive filter reaches its optimal solution. A very important issue here is the length 

of the FIR filter which should have an adequate memory to estimate the Q value. 

However, this will give rise to  computational complexity and convergence problems 

if the 9 parameter is large. An alternative approach is to adapt only the time delay 

parameter. This explicit time delay adaptation will require adaptation of only one 

weight and hence is computationally very appealing. A stochastic gradient algorithm 

for an explicit adaptation of the cp parameter is derived in Appendix II. 
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At this point, the desired signal still needs to be recovered. To do this, the output 

at node #2 is given to an inverse filter whose transfer function is given by 

The output of this inverse filter is an interference- and distortion-free SEP estimate. 

Note that the inverse filter has multiple poles on the unit circle and hence is only 

marginally stable. Thus in the presence of any residual noise, ensemble averaging 

must be performed at the input of the inverse filter to correctly recover the SEP 

waveform. 

The following simulations scrutinize the performance of the modified DDAP. The 

generation of the SEP and ME1 waveforms are as described earlier. Both SEP and 

ME1 were modeled as plane propagating waves with 6 and A parameters set to 2 

and 20 samples respectively. Figure 4.7 displays the results produced by the modified 

DDAP. Figure 4.7a depicts the SEP+MEI composite collected at the third sensor. 

The A parameter was first estimated from the peaks of the cross-correlation esti- 

mates between the sensors. Using this parameter, the outputs at nodes 1 and 2 are 

computed. Figure 4.7b displays the output at node #2 which is clearly distorted. 

Using the output at node #1 as the primary input and the output at node #2 as the 

reference input, the time-delay estimation algorithm (detailed in Appendix II) was 

invoked to estimate the cp value. The convergence of the (p est imate is graphed in Fig- 

ure 4 . 7 ~  where correct convergence of the algorithm can be observed. The converged 

value is t hen used to construct the inverse filter given by Eq. 4.15. The output of the 

inverse filter is shown in Figure 4 . 7 ~  which can be seen to be devoid of any distortion. 

So far, in developing the constrained CRANC filter and the modified DDAP, we 

have dealt only with desired-signal and interference waveforms with ideal propagation 

characteristics and in the absence of any other noise sources. While this may be true in 

some signal processing applications (where the above techniques will be most useful), 

deviations from ideality are a norm with practical SEP signal processing scenarios. 
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Figure 4.7: Performance of the modified DDAP. a) SEP+MEI composite ut the thàrd sensor 
ut an SIR of 0.01, b) distorted SEP at node #2, c) convergence of the p estimate, and d) 
the output of the inverse filter. 

Thus the effect of these deviations on the abovementioned techniques has to be stud- 

ied. 



4.3 Deviations from the Ideal 

4.3.1 Effect of Uncorrelated Noise on the Basic CRANC 

Let us first investigate the effect of uncorrelated noise sources on the basic CRANC. 

The block diagram of the CRANC filter with uncorrelated noise sources is shown in 

Figure 4.8 where y ( k )  and ~ ( k )  are the primary and reference uncorrelated noise 

sources respectively. With the addition of uncorrelated noise, the Wiener solution to 

AF #1 becomes (noting that once again AF #1 is adapted before the advent of the 

signal) 7 

w here 

is the ratio of uncorrelated to myoelectric interference spectral densities in the refer- 

ence input. The primary and reference inputs to AF #2 can be expressed respectively 

and 

The cross-spectral density of the primary and reference inputs for the second ANC 

c m  therefore be expressed as 



Figure 4.5: Block diagmrn of the CRANC filter in the prresence of uncorrelated noise 
soumes. In addition to the t e m  defined in Figure 4.1, y ( k )  and ( l c )  are the uncor- 
d a t e d  noise components in the primary and reference mspectivety. 

which can be simplified upon substitution of Eqs. 4.16 and 4.17 to 

Interestingly, the cross-spectral density is undected by the presence of the uncorre- 

lated noise sources and is the same as in Eq. 4.4. The autospectral density of the 

reference input is given by 

The Wiener solution for the second AF is the ratio of the spectral densities given in 

Eqs 4.21 and 4.22. Thus from Equations 4.16, 4.21 and 4.22, we can see that the 

presence of uncorrelated noise sources drives Wi(z) and W2(z) away from the desired 



solutions given by Equations 4.1 and 4.5 respectively. The power spectral densities 

of SEP, ME1 and uncorrelated noise sources can be expressed respectively as 

The above equations represent the general form of the spectral content at the output of 

the CRANC. In order to quantify the performance of both the CRANC and the ANC, 

spectral information is therefore required. Given this spectral information, t heoretical 

performance indices can be computed. These can then be compared against the 

performance obtained through simulations giving us an insight into the operation of 

the CRANC and the ANC in the presence of both the uncorrelated noise and the 

signal crosstdk. The theoretical predictions are once again calculated numerically 

due to the unwieldy integrals for distortion index, p and SNRGAIN, 7 especially 

with the complex equations for adaptive filter transfer functions given by Eqs. 4.16, 

4.21 and 4.22. The power spectral density of the SEP can be found numerically using 

Equation 3.20. The pnmary steps involved in estimating the spectrum are computing 

the Fast Fourier Transform (FFT) of s,(k), squaring the magnitude of the result and 

scaling it by the data length of s,(k). Since the ME1 is modelled as white Gaussian 

noise of unit variance passing through the shaping filter, p ( k )  given by Equation 3.10, 

its power spectrum can be computed by calculating the FFT of p ( k )  and squaring 

the magnitude of the result. The uncorrelated noise sources can be assumed to have 

flat spectra in the bandwidth of interest. With this spectral information it is straight 

forward to compute the filter transfer functions, Wi(z) and W2(z). Once we compute 

these transfer functions, the output spectral density functions can be calculated using 

Equations 4.23, 4.24 and 4.25. With this information, the theoretical performance 

measures of the CRANC and ANC can be calculated. 

Figures 4.9 and 4.10 show the SNRGAIN performance surfaces of both the ANC 
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Figure 4.9: Thentical performance surface of the ANC, SIR 
= 0.04. 
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Figure 4.10: Theoieticd performance surface of the 
CRANC, SIR = 0.04. 
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and the CRANC for varying levels of uncorrelated noise and crosstalk. The effect 

of uncorrelated noise on the ANC and the CRANC is apparent in these plots. At 

low levels of uncorrelated noise, the CRANC structure exhibits some resist ance to 

crosstalk compared to the ANC. At higher levels of uncorrelated noise, however, its 

performance deteriorates. Anot her interest ing factor is t hat the effect of uncorrelated 

noise on the CRANC is more severe at higher crosstalk levels. Figure 4.11 compares 

the SNRGAIN obtained from the CRANC and the ANC at different levels of uncor- 

related noise. It is obvious from this picture that for T > 0.01 the performances of 

the CRANC and the ANC are almost the same. Thus for levels of uncorrelated noise 

greater than 0.01, the additional computational needs of the CRANC are not justified 

on the basis of the SNRGAIN. 
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Figure 4.11: Performance compciràson of the CRANC and the ANC, SIR = 0.02 and P = 
O. 8. 

Simulations were performed to compare the performances of the CRANC and the 

ANC in the presence of the uncorrelated noise to further probe the above conjecture. 

The SEP and the ME1 were generated as described previously. The uncorrelated 



noise sources were white Gaussiwi noise sources whose variance was varied to achieve 

the desired level of uncorrelated noise, T .  The first and second stages of the CRANC 

were realized by twenty-tap transversal flters driven by the RLS algorithm. The 

simulations were performed for two different levels of uncorrelated noise. For each of 

these two levels twenty five independent simulations were performed and the steady- 

state adaptive filter weights at the end of each run were averaged. These averaged 

weights were then used to filter the SEP, ME1 and uncorrelated noise sources. Thus 

estimates of the SEP, ME1 and uncorrelated noise at  the output of the CRANC 

and the ANC could be obtained. Using this information, the distortion index and 

the SNRGAIN were calculated employing Equations 3.21 and 3.25. Figures 4.12a-d 

show the performance comparison of the CRANC and the ANC for these two levels 

of uncorrelated noise. In Figure 4.12a the distortion index, p, obtained from the 

CRANC and the ANC is compared. The increase in crosstalk level can be seen to 

increase the distortion index calculated from the CRANC and the ANC with the 

CRANC slightly outperforming the ANC. The simulation results can be seen to be 

in close agreement with the theory. The clifferences between the simulation and 

theory are mainly attributed to the convergence properties of the adaptive filters 

due to the finite data and filter lengths. These effects tend to be more pronounced 

in the case of the CRANC filter since it employs two adaptive filters. Also in the 

theoretical development exact spectral information of each of the signal and noise 

components was used while in simulation these are only approximated. Figure 4.12b 

portrays the SNRGAINs achieved by the CRANC and the ANC at  different levels 

of crosstalk for T = 0.0025. Again we see that an increase in crosstalk results in a 

degraded performance for both the CRANC and the ANC with CRANC exhibiting 

a marginally better performance compared to the ANC. Again the simulations are in 

close agreement with the theory. Figures 4.12~ and 4.126 compare the distortion index 

and SNRGAIN obtained by the CRANC and the ANC at T = 0.01 respectively. Here 

we observe that the performance indices obtained from the CRANC and the ANC 
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are almost identical at each and every level of the crossta&. Thus higher levels of 

uncorrelated noise render the second ANC in the CRANC fdter structure practicdy 

useless . 

4.3.2 Effect of Uncorrelated Noise on CRANC Variations 

Let us first look at the effect of uncorrelated noise sources on the constrained CRANC 

algori thm. Wi t h the addition of uncorrelated noise sources, the equivalent structure 

of the second stage of the CRANC flter can be depicted as shown in Figure 4.13, 

where WÎ(a) is the optimal transfer function for AF #2 of the CRANC filter from 

Eqs. 4.21 and 4.22. In the absence of any uncorrelated noise sources, W2(2) has a 

form sirnilar to 6 ( z )  wi(z)/(i - d(z) w&)) and hence constrained CRANC algorithm 

will converge to the correct G(z) transfer function. In the presence of uncorrelated 

noise sources, W2(z) is a complex ratio of the spectral densities given by Eqs. 4.21 

and 4.22, and hence the constrained algorithm will return biased G ( z )  values. The 

amount of bias depends on two factors: 

a The ratio of the uncorrelated to myoelectric power spectral densities in the 

reference input of A F  #1, r,(z). If T,(z) is very small at al1 frequencies, then 

AF #1 will converge to the inverse of the myoelectric transfer function and 

there will be negligible myoelectric residue at the reference input of A F  #2. If 

this condition is not true, the myoelectric residue in the reference input of A F  

#2 will introduce bias in the convergence of the constrained CRANC algorithm. 

a The spectral ratio of the SEP and uncorrelated noise should be >> 1. If this is 

not the case, the convergence of the constrained algorithm is significantly influ- 

enced by the uncorrelated noise sources and hence the resulting G(z) estimates 

will be biased. 

Figures 4.14 a and b show the convergence of the constrained CRANC algorithm 

in the presence of uncorrelated noise sources. Two different sets of simulations were 



Figure 4.13: Equivalent bloch diagnrm for the second stage of the constmined CRANC 
fil ter. 

performed for two different values of the level of uncorrelated noise, T. Comparing 

these graphs with the convergence plots in Figure 4.3, we can observe that uncorre- 

lated noise sources introduce bias into the convergence of the constrained CRANC 

algorithm. This bias can be seen to worsen as the level of uncorrelated noise increases. 

The converged weight values in Figure 4.14b are nowhere near the true G(z) values 

given in Equation 4.7. 

The effect of uncorrelated noise on the modified DDAP is scrutinized next. White 

Gaussian noise sources were added to the propagating SEP and ME1 waveforms. 

Once again simulations were performed for two different T values viz. for T = 0.01 and 

0.001. The A parameter was estimated from the peak of the cross-correlation function 

between the sensors. Note that the uncorrelated noise does not effect the A parameter 

estimation significantly as the ME1 is at least one hundred times more powerful than 

the uncorrelated noise sources. Figures 4.15 a and b show the convergence of the time 

delay estimate, $, for both the simulation cases. A characteristic feature in bot h these 



plots is the convergence of the time delay estimate to  the true value in the mean. 

This can be shown theoretically using the update equation for the tirne-delay estimate 

given by, (from Appendix II) 

4.d I 1 
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Figure 4.14: Convergence chamcteristics of the constmined CRANC a l g o a m  in the pms- 
ence of uncowvlated noise sources whem go, gl,g2 and 93 a m  the füter weighb. 

If we take expectations on both sides and assuming, for the time being, that there 

are no uncorrelated noise components, we have 

Noting that e ( k )  = y(k) - y ( k ) ,  y(k) = x ( k )  + x(k - V) and c ( k )  = x ( k )  + x ( k  - @) 

(refer to Figure 11.3 in Appendix II), the above equation simplifies to, 

which simplifies to 



Figure 4.15: Convergence chamcterïstics of dehy estimate algonthm for the modifed 
DDAP. 

where Rxx is the time-averaged autocorrelation function of x(k). It is now shown 

that the addition of uncorrelated noise sources do not affect the mean trajectory of 

the convergence of the delay estimate. Let ul (k) and u 2 ( k )  be the uncorrelated noise 

components in the primaxy and reference of the adaptive filter respectively and let 

y J k )  = y ( k )  + u L ( k )  and xu(k)  = s(k) + u 2 ( k ) .  The update equation for the delay 

estimate is now given by 

where e ( k )  = y, (k)  - &(k) ,  y,(&) = x ( k )  + x ( k  - p) + q ( k )  and &(k)  = x ( x ( k )  + 
x ( k  - @) + u 2 ( k  - @). Once again taking expectations on both sides and simplifying, 

Since u l ( k )  and u 2 ( k )  are uncorralated white noise sources, the above expression 

simplifies to, 



Thus the delay estimate converges in the mean to i ts true value even in the pres- 

ence of uncorrelated noise sources. The Mnance of the delay estimate, however, is 

dependent on the power of the uncorrelated noise sources. This c m  be seen from 

Figures 4.15 a and b where higher values of T result in delay estimates of larger 

variance. 

The presence of uncorrelated noise sources poses another problem for the modified 

DDAP: signal recovery. As mentioned before, an inverse filter needs to be constructed 

to successfully recover the SEP signal. This inverse filter, given by Eq. 4.15, has poles 

on the unit circle and is therefore only marginally stable. Thus in the presence of 

extraneous noise sources, the estimate at the output of the inverse filter is severely 

affected. Figure 4.16 illustrates this phenornenon. In Figure 4.16 a and b the output 

signals at node #2 are depicted for two different values of r .  Compared to Figure 

4.7b, we see that the SEP component is significantly masked by the uncorrelated 

noise sources. The SEP estimate obtained using the inverse filter in each of these 

cases is shown in Figures 4.16 c and d along with the true SEP. As noted earlier, the 

uncorrelated noise power is magnified and the SEP estimate is submerged under the 

amplified uncorrelated noise. The only way to combat this problem is to enhance 

the SEP-to-Uncorrelated Noise Ratio (SUNR) at the input of the inverse filter. In 

Figures 4.16 e and f, the SEP estimates obtained by the inverse filter when its inputs 

are averaged over one hundred SEP records, is shown. Now it can be seen that the 

estimates are closer to the true SEP signal. 

4.3.3 Effect s of Non-planar Propagation 

Until now, it has been assumed that both the SEP and ME1 are ideal plane waves. 

In such a case, the modified DDAP will recover the SEP perfectly without any a 

priori knowledge of its propagation characteristics. Even in the presence of uncorre- 

lated noise, we can recover the SEP if both ME1 and SEP possess ideal propagation 

characteristics. However, in practice, ME1 and SEP are known to exhibit non-planar 
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propagation characteristics The effect of these deviations from the ideal will have a 

pronounced effect on the performance of the DDAP as discussed below: 

Ideal ME1 propagation and non-ideal SEP propagation. In this case, 

the first stage of the modified DDAP will eliminate the MEI. However, since 

the SEP signals at nodes #1 and #2 now differ by more than just a time delay 

parameter, delay estimation and inverse filtering will not be enough to recover 

the SEP signal. A FIR filter has to bc employed to estimate the transfer function 

between the SEP components at nodes #1 and #2. 

Ideal SEP propagation and non-ideal ME1 propagation. In this case, 

simple cross-correlation based estimation of A parameter wilI not suffice. Due 

to the non-planar propagation, the simple delay and difference operation will 

leave a substantial amount of ME1 residue a t  both nodes #l and #2 which 

will invariably affect the delay estimation routine in the second stage. Thus a 

FIR filter has to be placed in the first stage to compensate for the non-ideal 

propagation. The second stage will still be a delay estimation stage as the 

SEP components at nodes #1 and #2 differ only by a time delay pararneter. 

However, the algorithm derived in Appendix II needs to be modified to account 

for the effect of the non-planar ME1 propagation. 

0 Non-ideal SEP and ME1 propagation. The delay and difference array 

processor will be least effective in such a case and an adaptive filter structure 

such as the basic CRANC should be used to compensate for the non-planar 

propagation of both the SEP and MEI. 

4.4 Multichannel CRANC - A Remedy 

From the analysis so far, the main deterrent to the application of the CRANC filter 

for SEP enhancement is the presence of uncorrelated noise sources. The presence of 



Figure 4.17: Block d i a p m  of the MCRANC. 

t hese sources results in the following undesirable effect s: 

1. Increased ME1 residue. In the presence of uncorrelated noise sources, A F  #1 

in the CRANC structure fails to implement the inverse of the ME1 transfer func- 

tion and hence results in substantial ME1 residue. The amount of ME1 residue 

depends upon the relative power of the uncorrelated noise sources. \Vit h SEP 

measurements, the ME1 is usually several times stronger than the uncorrelated 

noise sources and hence the effect of uncorrelated noise on the performance of 

A F  #1 may be tolerable. 

2. Decreased resistance to  SEP crosstalk. The second stage in the CRANC 

structure compensates for the distortion induced by S5P crosstalk. In the 

presence of uncorrelated noise sources, however, the ability of A F  #2 to do so 

weakens and signal distortion results. 

Of the two points mentioned above, the second one is the rnost important one as the 



uncorrelated noise sources are at  best as powerful as the SEP. The effect of uncorre- 

lated noise on the performance of A F  #2 can be deviated by ensemble averaging at 

the primary and reference inputs of AF #2. The ensemble averaging process reduces 

the power of the uncorrelated noise sources in the reference input of AF #2 and 

hence AF #2 performs better. However, if the SEP exhibits time varying latency and 

waveform characteristics, then ensemble averaging introduces a "smearing" effect into 

the SEP. This results in further degradation of the underlying SEP signal which will 

not be rectified by the second ANC. Thus an adaptive structure which can track the 

possible stimulus-t~stimulus variations of the SEP while still rnitigating the effect of 

uncorrelated noise is beneficial in these situations. 

As discussed in Chapter 3, the effect of uncorrelated noise on an ANC can be 

alleviated by developing a multichannel ANC. It is shown in Chapter 3 that a mul- 

tichannel ANC gives a performance irnprovement over a single ANC in a manner 

directly proportional to the number of reference channels. Thus a CRANC structure 

involving a multichannel ANC may provide improved uncorrelated noise tolerance. It 

is worthwhile to note here again that AF #2 in the CRANC filter (Fig. 4.1) attempts 

to cancel the SEP signal in its primary. The presence of uncorrelated noise prevents 

it from doing so and signal distortion results. The employment of a multichannel 

ANC in the second stage of the CRANC would result in better signal cancellation 

and therefore less signal distortion. There is an improved signal cancellation as the 

number of channels increases and therefore the signal distortion steadily decreases as 

the number of channels increases eventually reaching zero as the number of channels 

goes to infinity. 

As detailed in Chapter 1, in SEP studies the nerve is stimulated periodically 

to generate an SEP train. Thus it is possible to develop a Multichannel CRANC 

(MCRANC) by deriving multiple reference channels from the reference channel of 

AF #2 in the CRANC filter structure. The block diagram of the MCRANC filter 

is shown in Figure 4.17, where W21(z), W22(z), . . . , W2&) represent the M adaptive 



filters in the second stage of the CRANC and D is the stimulus period. For example, 

if the stimulus rate is 5 Hz, the D parameter is equivalent to 200 ms. A complete 

analyticai treatment of the MCRANC structure is undertaken in Appendix III. The 

output SEP, ME1 and uncorrelated noise spectral densities are derived as, 

With this spectral information, it is straightforward to calculate the theoretical dis- 

tortion index and SNRGAIN. Figures 4.18 and 4.19 show the theoretical performance 

indices of the MCRANC. The SNRGAIN can be seen to increase with the number 

of reference channels in the MCRANC until it reaches a saturation value regardless 

of the crosstalk level. This saturation value is decided by the power spectral den- 

si t ies of the p n m ~ y  and reference uncorrelated noise sources and the myoelectric 

residual power spectral density at the output of ANC #l. An exact expression for 

the maximum SNRGAIN achieved by the MCRANC is derived in Appendix III. The 

distortion index, on the other hand, monotonically decreases to zero with the increase 

in the number of reference channels irrespective of the signal crosstalk level. Thus 

the MCRANC offers improved immunity to the perils caused by SEP crosstalk. 

It has to be noted here that if the SEP is stationary then an M-channel MCRANC 

filter is equivalent to ensemble averaging M records at the reference input of A F  #2 

and then using a single adaptive filter. This can be seen from the fact that the opti- 

mal transfer functions for the M adaptive filters in the second stage of the MCRANC 

are identical (refer to Appendix III for the exact expressions for optimal transfer 

functions). The real application of the MCRANC filter is in situations where the 

SEP possesses t ime-varying characterist ics such as latency and waveform changes. In 
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Figure 4.18: Theoretical MCRANC SNRGAIN, r = 0.001, 
SNR = 0.025. 
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Figure 4.19: Theonzticai MCRANC Distortion Indez, T = 
0.001, SNR = 0.025. 



such situations, the MCRANC has an advantage over the ensemble averaged CRANC 

(ECRANC) as the M adaptive füters d o w  the tracking of stimulus-to-stimulus vari- 

ations while enhancing the SEP from uncorrelated noise. 

The effectiveness of this MCRANC structure in cornparison to an ECRANC 

for different SEP latency characteristics was e d u a t e d  through simulations. Three 

different SEP latency characteristics were simulated: 1) the normal SEP latency where 

the SEP repeats unchanged, 2) sudden change in latency, where a sudden time delay 

is introduced after 50 SEP records and 3) slowly varying latency, where the latency 

is changed every 40 SEP records. The ME1 and the uncorrelated noise sources were 

generated as described earlier. Each of the M adaptive filten in the second stage of 

the MCRANC were realized using thirty-tap transversal filters. The RLS algorithm 

was used to achieve the minimum mean square solution. Once again, al1 the adaptive 

filter weights were averaged over 50 independent simulation runs. These averaged 

weights were then used to filter the input SEP, ME1 and uncorrelated noise and the 

distortion index and the SNRGAIN were calculated. This procedure was carried out 

for different values of M from 1 to 5. For the ECRANC the same procedure was 

followed except that the reference input of the second ANC was ensemble averaged 

over M SEP records (M ranging from 1 to 5) before the adaptation of the second 

ANC. 

The performances achieved by the MCRANC and the ECRANC for a particular 

level of uncorrelated noise and crosstalk are shown in Figures 4.20 and 4.21. In Figure 

4.20 the distortion index, p can be seen to decrease with an increase in the number 

of channels irrespective of the nature of the SEP latency. On the other hand, the E 

CRANC exhibits similar performance as the MCRANC only if the SEP is stationary. 

In the case of latency changes, ensemble averaging introduces an additional SEP 

degradation resulting in higher distortion indices. These results are complemented 

by the results shown in Figure 4.21 where the SNRGAIN, 7, can be seen to increase 

with the number of reference channels for the MCRANC. The SNRGAIN can also be 
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seen to &op for the ECRANC filter in the case of time-varying latency. To compare 

the performances of the ANC, CRANC, ECRANC and MCRANC qualitatively, the 

SEP estimates at the output of each of these füters are presented in Figures 4.22a- 

c. In al l  these figures, the underlying original SEP signal is shown in soiid lines. 

In Figure 4.22a, the input to each of these filters which is a composite of the SEP, 

ME1 and uncorrelated noise and which is averaged over 50 SEP records is shown. 

It is apparent that the original SEP, which is shown by the solid line, is swamped 

by the larger myoelectric interference. Figure 4.22a also depicts the output of the 

ANC and CRANC which again are averaged over 50 SEP records. Here we see that 

the larger low frequency ME1 has been reduced in both the cases. However, due to 

the presence of crosstalk and uncorrelated noise, the signals are severely distorted 

and the SEP estimates do not resemble the original signal. Figure 4.22b compares 

the SEP estimates obtained by the MCRANC and ECRANC with M=5 for the 

same simulation data. From this figure, we can observe that the MCRANC and 

GCRANC output similar SEP estimates which are comparatively better than the 

estimates provided by the ANC and the CRANC. Figure 4 . 2 2 ~  compares the SEP 

estimates obtained by the MCRANC and ECRANC for the nonstationary SEP case. 

The quality of the SEP estimate obtained by the MCRANC can be seen to be better 

compared to the SEP estimate from the E-CRANC. 

While the MCRANC presents an impressive solution to mitigate the effects of 

uncorrelated noise on crosstalk resistant ME1 reduction, it may not be practical in 

experimental conditions where the SEP SNR is very low. In such conditions, a large 

number of reference channels is required in the second stage of MCRANC to output 

a distortion free SEP, which increases the computational burden on the system. This 

factor, coupled with the requirement of large amounts of data by the MCRANC to 

achieve convergence in low SNR situations, defeats the purpose of having an SEP 

signai processing system - to reduce the SEP recording time. Figure 4.23 displays 

the theoretical curve between the input SNR and the number of channels required 
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by the MCRANC to  provide a distortion index of 0.25. From this curve, it can be 

observed that for input SNR values less than 0.01 more than ten reference channels 

are required t o  achieve a distortion index of 0.25. 

0.01 
Input SNR 

O. 1 

Figure 4.23: Required number of channels in the second stage of the MCRANC structure 
as a finction of input SNR to achieve a distortion index of 0.25. 

Therefore, from a computational point of view, it is better to employ an E-CRANC 

in place of MCRANC in practical situations where the SEP SNR is very low (for 

example, SSEP experiments where the SNR is usually around 0.01). An interesting 

ECRANC mode1 can be derived from the CRANC structure which provides a practical 

solution to SEP retrieval at low SNRs. Figure 4.24 depicts the block diagram of 

the modified ECRANC filter structure where the blocks denoted "AVG" perform 

ensemble averaging. The auto-spectral density of the reference input to the second 

ANC is now, 



Figure 4.24: Block diagrurn of the modified ECBANC. 

where M is the number of averaged SEP records. The cross-spectral density between 

the primary and reference inputs of the second ANC is the same as given by Eq. 

4.21. As M increases, the influence of ME1 and uncorrelated noise sources on W2(z) 

decreases. In the limit of 

the second AF  becomes, 

M approaching infinity, the optimal transfer function for 

lim W2(2) = W W l ( 4  
M - w  1 - G(z)  Wl ( 2 )  ' 

Now the SEP signal at the output of the averager is given by 

53(4 = Sp(~){l - G ( z ) ~ ( z ) ) .  



If we construct a new filter based on W2(4 as 

W3(4 = 1 + w2 (1) 

Iim ~ ~ ( 2 )  = 1 + W W d 4  - 1 
M-w 1 - G(z) Wl ( z )  - 1 - G ( z )  Wl ( z )  

Thus by using W3(z) t o  filter the SEP signal at the output of the averager, we can 

obtain an estimate of the SEP waveform. The salient points regarding the operation 

of this structure are itemized below: 

a The ECRANC structure is computationally simpler than the MCRANC struc- 

ture. It is much faster to compute an ensemble average of M records than to 

implement an M channel CRANC structure. 

a The success of the  ECRANC structure obviously depends on the number of 

SEP records averaged before the second stage. However, since the first ANC 

rernoves most of the larger MEI, it is expected that a relatively low number of 

averages is required to  obtain a signal estimate of good quality. 

a The main drawback associated with this structure, as mentioned previously, 

is the SEP "smearing" effect if the SEP exhibits time-varying characteristics. 

Since this ECRANC structure is aimed mainly a t  low SEP SNR situations, 

- where averaging is a must to retrieve the SEP - this "smearing" effect is 

traded-off for shorter acquisition times. 

The following simulation demonstrates the effectiveness of the ECRANC structure 

in low SNR situations. The SEP, ME1 and uncorrelated noise sources were simulated 

as described previously. Once again, the first stage of the ECRANC structure was 



allowed t o  converge during the ME1 phase of the input data and the steady-state 

weights were used to  filter the data containing the SEP. Ensemble averaging was t hen 

pedorrned on the outputs of the first stage, and these averaged SEP data were used 

to drive the second AF in the ECRANC structure. Once convergence of the second 

AF  was established, the weights were copied into a third filter (W3(z) in Figure 4.24) 

and the averaged SEP data were passed through. From the resulting SEP estimate, 

the distort ion index and SNRG AIN values were calcdated. 
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Figure 4.25: Distortion indez, p and SNRGAIN, 7 as a function of the number of avenzges. 

Figure 4.25 depicts the results obtained from this simulation study. Figure 4.25a 

portrays the distortion index as a function of the number of SEP records averaged 

for four different data: a) the raw input with no processing, b) the output of the first 

stage of the  ECRANC, c) the output of the CRANC structure shown in Fig. 4.8 

and d) the ECRANC structure shown in Fig. 4.24. The superior performance of the 

ECRANC structure is obvious in this plot. These results are complemented by the 

SNRGAIN function for the same data. Once again, the performance improvement of 

the ECRANC over other techniques is lucid in this graph. 



4.5 Experimental Results 

The discussion up until this point has been based on theoretical models and simulation 

results. While every attempt has been made t o  generate simulated data which are 

close to the real world data, simulated data are still simulated. To quote Bérubé 

[6] : "Theoretical models and simulation results may offer interesting insights, but 

the true test for any signal processing method is the real world signais". Thus this 

section is devoted to  results obtained through processing in vivo SEP and ME1 data 

by the aforementioned signal processing met hods. A detailed explanation of the 

experimental setup for MSEP and SSEP data acquisition along with a discussion of 

the relevant issues is given in the following sections. The same experimental setup 

was also used for the data acquired in Chapters 5 and 6. 

4.5.1 MSEP Acquisition Setup 

The experimental setup for acquiring MSEPs is displayed in Figure 4.26. As briefly 

discussed in Chapter 1, the instrumentation system can be briefly divided into a)  

the stimulator system, b) the recording and amplification system and c) the data 

acquisition system. 

A Grass Instruments S11 dual-channel stimulator was utilized to provide the stim- 

ulus pulse. The stimulus pulse width was set to  0.2 m e c  and the stimulus period 

was set to 391.72 m e c  for al1 the in vivo experiments involving the SEP data. The 

output of the stimulator was input to a Grass SIU 8TB isolation unit which has an 

additional provision for varying the stimulus amplitude. The output of the isolation 

unit was input to the stimulating electrodes. For al1 the experiments involving MSEP 

data, the median nerve was stimulated at the index finger with the cathode electrode 

2This stimulus period was set to this value to minirnize the possibility of any powerline harrnonics 
being in synchrony with the stimulus [39]. 



proximal to  the base of the index finger and the anode approximately 2 c m  away to- 

wards the tip. For most of the experiments the stimulating electrodes were standard 

Ag-AgCi electrodes, which were wrapped around the index finger and firmly taped. 

Prior to the placement of these electrodes, the surface of the index finger was prepared 

by first rubbing with an alcohol swab, applying electrode paste (EKGSol by Medi- 

Trace) and removing the excess paste with a tissue saturated with alcohol. 

The MSEP signal was acquired using a pair of stainless steel electrode arrays, 

shown in Figure 4.23 (The same electrode array was used in [38] and [6].). The active 

electrode array was placed on the ventral side of the forearm with the array elements 

perpendicular to  the direction of the MSEP propagation. The indifferent electrode 

array was placed on the dorsal side of the forearm and differential signals between 

these two arrays were given to the amplification system. Once again, extensive skin 

preparation was undertaken prior to the placement of each of these arrays by first 

rubbing with an alcohol swab, applying electrode paste and removing the excess paste 

with a tissue. In addition, a thick electrode paste, AS1 A - E l 2  Ten 20 electrode paste, 

was applied to  each of the individual sensors to ensure good conduction with extra 

care taken to  ensure that adjacent sensors were not shorted. The arrays were securely 

held to the forearm by a pair of elastic rubber bands and some tape. 

Four channels of MSEP data were collected from the array electrodes. Each one 

of these channels was first input to a pre-amplification stage. These pre-amplifiers 

provide a variable gain factor in the range of 100 to 1000 and are custom built in the 

Institute of Biomedical Engineering (IBME) for low noise SEP and ME1 data acqui- 

sition. The second amplification stage consisted of commercial differential amplifiers 

(Tektronix model AM 592) which also provided adjustable gain, in the range of 100 

to  100000 with the option of a divide by 100 setting. These amplifiers also possess 

adjustable band pass filters to limit the bandwidth of the input signals. A 4 channel 

Gould digital oscilloscope (model 1604) was utilized to visually monitor the array 

signals. While measuring MSEP data, the signals from the first two differential pairs 



Electrode 

Figure 4.26: Experimental setup for MSEP data acquisition. The neummuscular data tuas 
acquired uring the stainless steel electmde a m y  shoum in this figure. See tezt for a detailed 
description on the stimulation, amplification and digitization systemc. 



in the electrode azray configuration were input t o  a dual channel Briiel and Kjær 

(B&K 4 channel module type 3023) real time signal analyzer. The B&K performed 

real-time ensemble averaging of the input data thereby providing visual information 

on such factors as the nature of the MSEP, the extent of the stimulus artifact and 

auto/crosscorrelation functions for propagation time measurements. 

The amplified signals were then fed to  a CIO-DAS16/330i data acquisition board 

residing in a 486 PC clone and driven by custom made, graphical, user friendly 

data acquisition software. The data acquisition software acquired the signals at a 

prescribed sampling rate, digitized them and stored them on a hard-disk for processing 

at a later time. 

When a large number of SEP records need to be acquired, there is a considerable 

strain on the data storage requirements. This is due to the fact that the stimulus rate 

is approximately three per second and the MSEP usually occurs within a 20 msec win- 

dow following the application of the stimulus. Thus a huge amount of unwanted data 

will be collected if the data acquisition process is allowed to run continuously. This is 

where the "synchronization unit" is very useful. The programmable synchronization 

unit provides an external clock input to the data acquisition system following a stim- 

ulus pulse. The duration and frequency of this clock is programmable. This clock 

input enables the A/D systern to acquire only a window of data following a stimulus. 

Thus the SEP can be efficiently stored using this data khopping" procedure. 

4.5.2 SSEP Acquisition Setup 

For acquiring the SSEPs, an experimental setup similar to the one shown in Figure 

1.1, Chapter 1 was utilized with a change in the position of the stimulating electrodes. 

In order to  minimize the effects of the stimulus artifact interference, the stimulating 

electrodes were placed at the ankle for stimulating the posterior tibia1 nerve. The 

stimulating electrodes were once again Ag-AgC1 electrodes, wit h the negative elec- 

trode placed at the distal end of, and posterior to, the left medial malleolus, directly 



over the posterior tibia1 nerve. The positive electrode was placed slightly lateral to 

the sustentaculum tali at the anterior rnargin of the lateral malleolus. Minor adjust- 

ments were made to these placements such that the stimulus was cornfortable for the 

subject. Prior to  the placement of stimulating electrodes, careful skin preparation 

was performed as in Section 4.5.1. 

The recording electrode array was placed on the spine between the L2 and L4 

vertebrae with the first array element placed approximately over the L4 vertebra. 

The reference array was placed on the right side of the subject's bock, parallel to 

and at the same height as the primary array. The distance between the primary and 

reference urays  varied from subject to subject, as the reference array was placed 

as far as possible from the primary array. Differential inputs from the corresponding 

array elements were given to the pre-amplification stage. The rest of the experimental 

procedure was similar to the protocol described above for MSEP measurements. 

4.5.3 ME1 reduction 

To investigate the relative performance of different ME1 reduction techniques, myo- 

electric data were collected from different subjects prior to the stimulation procedure. 

Once the recording arrays were in place, the subjects were asked to relax and the 

result ing data were collected from the recording electrodes. These data primarily 

represent the uncorrelated noise sources and were later used to determine the uncor- 

related noise power levels and subsequently, the T parameter. The subjects were then 

asked to produce an isometric contraction of the muscles surrounding the recording 

area and the resulting myoelectric data were collected. ME1 Data were collected at 

two different contraction levels resulting in ME1 data sets with two difTerent r values 

per subject. 



Each of these ME1 data sets were then put through different signal processing tech- 

niques. First, the ME1 propagation velocity for each of the data sets was computed 

using the cross-correlation technique. The cross-correlation function between the ME1 

data obtained fiom the first and fourth sensors was computed and the ME1 propaga- 

tion delay was calculated using the peak value of the cross-correlation function. From 

the propagation delay and the distance between the sensors in the array, the ME1 

conduction velocity was calculated. The ME1 conduction velocities for different sub- 

jects and for dieerent recording electrode placements are given in Tables 4.1 and 4.2 

respectively. Once the propagation delay was calculated, the ME1 residues at nodes 

# 1 and #2 of the DDAP structure (y (k) and x ( k )  respectively in Fig. 4.6 with added 

uncorrelated noise sources) and the power performance paraneter, 1, were calculated. 

The theoretical values for the DDAP performance measures were calculated assuming 

ideal ME1 propagation. 

The ME1 data from the first two sensors were then used to drive a thirty tap ANC 

filter driven by the RLS algorithm. Once convergence of the ANC was established, 

the residuaI ME1 at the output of the ANC was retrieved and the power performance 

index, 1 was computed. The theoretical estimates of the performance index were 

computed from the actual spectra of the primary and reference inputs of the ANC. 

These results along with the performance indices predicted by the ME1 mode1 used in 

the simulation study (detailed in Chapter 3) for the same T values and the associated 

ME1 residue indices are tabulated in Tables 4.1 and 4.2 for the ME1 data obtained 

from the wrist and lower back regions respectively. 

The propagation velocities for the ME1 data obtained from the wrist region are 

somewhat higher than normal muscle conduction velocity values. This is probably 

due to the position of the recording array at  the wrist region which is more likely to 

be above the muscle tendon area. Infinite conduction velocities were observed for the 

ME1 data collected from the lower back region. This apparent behavior is probably 

due to the ME1 impinging on the array perpendicular to the array axis or the array 
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Table 4.2: MEI d u c t i o n  performance of variow signal processing schemes considered in 
this thesàs. The ME? data wew collected jbm the lower lumbar mgion of the spinal cord. 



covering the motor points. 

For the ME1 data obtained from the wrist region, the performance achieved by the 

DDAP a t  node #2 is closer to its theoretical estimate at higher T values. However, the 

performance index calculated at node #1 is substantially smaller than the theoreti- 

cal values, strongly indicating non-ideal propagation of the MEI. For lower T values, 

the performance indices at nodes #1 and #2 are both much lower than the theo- 

retical values. At low T values ( i . e  higher contraction levels), several muscle groups 

are activated and the propagation delay calculated using the peak cross-correlation 

function reflects only an average conduction velocity. Thus substantial ME1 residue 

remains at the DDAP output even a t  node #1 when this average propagation delay 

is used. The same observation can be made with respect to the results obtained from 

the lower back. Due to this relatively poor performance of the DDAP structure wit h 

experimental ME1 data, it was not considered in SEP enhancement results detailed 

in the following section3. 

The ANC outperforms the DDAP for a11 the ME1 data sets. Close agreement be- 

tween the theoretical performance indices and t hose computed from the experimental 

data can be observed. For the ME1 data collected from the wrist with higher T values, 

the performance indices correspond to those calculated using the ME1 mode! in the 

simulations. At lower T values and for data collected from the lower back, the mode1 

breaks down and the performance indices are significantly lower than expected. Once 

again, at lower T values, the ME1 is a manifestation of several active motor units, and 

the "crosstalk" between these limits the overall performance of the ANC. 

In Chapter 3, it is shown through simulations that the performance of an ANC can 

be improved using a multichannel structure. Figure 4.27 depicts the performance of 

the MRANC for some of the data sets tabulated in Tables 4.1 and 4.2. Thirty tap FIR 

filters driven by the LMS algorithm were used to  cancel the MEI. Once the MRANC 
-- 

'It was found that the DDAP usually results in distortion indices greater than 2 when employed 
on SEP datasets. 



has converged, the residual ME1 oomponent was retrieved and the power performance 

index was calculated. Figures 4.27a, 4.27~ and 4.27e show that the performance of 

the MRANC increases as the nurnber of reference channels increase. Figures 4.27b, 

4.27d and 4.27f depict the spectral content of ME1 residue as the n u m b ~ r  of reference 

channels increase. As observed in Chapter 3 with simulated data, an increase in the 

number of reference channels results in whitening of the residual myoelectric spectrum 

and brings it down to the level of the uncorrelated noise sources. 

4.5.4 SEP Enhancement 

In Chapter 3, it was shown that the performance of an ANC is drastically affected 

by the presence of crosstalk. At the beginning of this chapter, a crosstalk resistant 

ANC structure and its variations were studied. It was shown analytically and through 

simulations that the presence of uncorrelated noise sources renders the CRANC filter 

less resistant to crosstalk. Two structures, MCRANC and ECRANC, were then 

developed which were shown to be more robust in the presence of uncorrelated noise 

sources. This section evaluates al1 these techniques with experimental data collected 

from the median nerve and the spinal cord. 

The experimental setups for acquiring the MSEPs and SSEPs were discussed 

earlier. The stimulus level was adjusted to a comfortable level for the subject and 

raw SEP data was acquired under three conditions - at rest, light muscle contraction 

and medium muscle contraction. To gain visual appreciation of the SEP, realtime 

ensemble averaging was performed on the B&I< spectrum analyzer. Five hundred 

records were averaged for the MSEP experiments and a thousand records for the SSEP 

experiments which formed the "gold standard" for evaluating the performance of 

differnt SEP enhancement algorithms. At the same time, raw SEP data was digitized 

and stored on a 486 computer for post-processing. 

It was mentioned before that for successful ME1 reduction using the MCRANC 

filter, the ME1 transfer function must be time-invariant. With experimental data 
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however, this condition may not be satisfied. Hence a small change was made to  the 

experimental data collection protocol. The Grass stimulator unit was programmed in 

such a way t hat the stimulus was delivered a certain time after the data acquisition 

process was triggered. Thus a chunk of the ME1 data was captured before the advent 

of each SEP. This ME1 data was used to update the weights of the first ANC in the 

CRANC structure. At the onset of the SEP record, the adaptation of the first ANC is 

stopped and the  SEP data is filtered using the updated AF #1 weights. The filtered 

SEP data is then used to drive the second stage of the MCRANC structure. 

Figure 4.28 shows the results obtained using raw MSEP data. Fig. 4.28a depicts a 

raw MSEP record along with a MSEP waveform which was averaged over 250 records. 

The larger, low frequency component in the raw MSEP record is the MEI. Notice that 

the level of the  uncorrelated noise sources here is quite low. Fig 4.28b displays the 

SEP estimate obtained using a single ANC. While the low frequency component has 

been reduced, distortion is introduced into the original MSEP waveform. Figure 4 . 2 8 ~  

portrays the MSEP estimate provided by a five channel MCRANC. By observing this 

estimate, we can notice that in addition to the reduction of the low frequency MEI, 

the effect of crosstalk has also been compensated. 

Tables 4.3 and 4.4 offer a more comprehensive look at the performance of MCRANC 

with experimental SEP data. In Table 4.3, the performance of the MCRANC in 

terms of the distortion index and SNRGAIN for the MSEP data collected from dif- 

ferent subjects is tabulated. One can observe that the performance of the MCRANC 

gets consistently better with the increase in the number of reference channels in its 

second stage. As observed with the simulated data, the performances obtained using 

an ANC and a CRANC (M=l)  are approximately the same. Notice that the input 

SNR values for the MSEP data are  relative!^ higher and hence the good performance 

exhibited by the  MCRANC. Table 4.4 shows similar resuits for the SSEP data. Here 

we see that the  performance of the MCRANC is not significantly different from an 

ANC. With the  SSEP data, the input SNR values are usually quite low. Thus the 
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Subject 

Subject #l 

SNRin 4.14 

8 = 0.73 

Subject #2 

SNRin a.07 

8 = O.% 

Distortion Index, P 

ANC 

Table 4.3: MSEP enhancement msults wing the MCRA NC. 

MCRANC filter requires a large number of reference channels in its second stage to 

accomplish the task of crosstalk compensation. The presence of a large ME1 compo- 

nent also results in longer convergence times for the second stage of the MCRANC 

filter, usually thrice the number of SEP records used while processing MSEP data. 

In these situations, it is better to employ an ECRANC filter instead of a MCRANC 

filter. By employing an averager in the second stage of the CRANC structure, 

ECRANC reduces the effects of the residual ME1 and uncorrelated noise sources on 

the convergence of the second stage. This results in a better estimate of the crosstalk 

transfer function which leads to a better SEP estimate. The performance of the 
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Table 4.4: SSEP enhancement results using the MCRANC. 

ECRANC filter for the three data sets shown in Table 4.4 was quantified using the 

distort ion index parameter and is shown in Figures 4.29a-c. These graphs demonstrate 

that the  ECRANC provides a better quality signal estimate compared to the other 

two techniques. In addition, these graphs show that the ECRANC provides better 

distortion indices compared to plain ensemble averaging of the input (solid line in 

Figures 4.29a-c). Since the ensemble averaging process is computat ionally cheap, the 

computational overhead associated with the ECRANC structure compared to the 

other two is minimal. 
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4.6 Conclusions 

Electrical activity emanating from the surrounding active muscles forms a significant 

source of interference in surface measurements of SEP waveforms. Since the spectral 

content of this myoelectric activity overlaps with that of the SEP, bandpass filtering 

without distorting the SEP characteristics is impossible. Ensemble averaging is an 

effective way of reducing the Myoelectric Interference (MEI) as it is asynchronous 

with the SEP but a large number of SEP records may need to be averaged to obtain 

a good quality SEP. 

Adaptive noise cancelling techniques offer a promising solution to the ME1 reduc- 

tion problem. However, the quality of SEP estimated by an ANC deteriorates in the 

presence of SEP crosstalk between the primary and reference sensors. The distortion 

resulting from this crosstalk can be compensated by cascading a second ANC. This 

tw-stage CRANC structure achieves the dual objectives of crosstalk compensation 

and interference reduction. 

The performance of the CRANC filter, however, suffers from another physical 

process, uiz. the presence of other extraneous noise sources which are uncorrelated 

to both the ME1 and the SEP. The rnere presence of these uncorrelated noise sources 

affects the crosstalk resistivity of the CRANC structure. For uncorrelated noise levels 

comparable to  the SEP level, the CRANC structure is as good as a single ANC - 

nothing extra is gained by using a second ANC. 

Multiple reference ANC structures are always better in noisy situations. The  

parallel reference channels act to "average" out the uncorrelated noise sources while 

still maintaining the temporal relationships between the corelated components. Thus 

a multireference ANC can be used in both first and second stages of the CRANC 

structure. The performance of the MCRANC structure is directly proportional to the 

number of channels - the more the number of channels, the more it is robust to the 

influence of uncorrelated noise sources and the better is its performance. Simulations 



and experimental results from MSEP data validate this point. 

The MCRANC structure poses another problem in poor SNR situations encoun- 

tered with SSEP measurements. A large number of reference channels is required in 

the second stage of the MCRANC filter, t o  "average" out the powerful background 

noise while still compensating for the crosstalk. This places a strain on the compu- 

tational requirements of the processing system. 

In these situations, it is better to employ a CRANC system which replaces the 

multireference structure with a straight averager thereby reducing its computational 

complexity. The SSEP results show that an ECRANC is a much wiser choice when 

dealing with SEPS of very low SNR. 

The SSEP results also justify the application of ECRANC to the problem of SSEP 

enhancement instead of simple ensemble averaging. The ECRANC filter structure 

requires approximately half the number of SEP records to achieve the same distortion 

index as the ensemble averaging. With the advent of faster digital signal processors, 

it is expected that the ECRANC filter structure can be realized in realtime for spinal 

cord monitoring applications. 



Chapter 5 

Stimulus Artifact Reduct ion 

Summary 

Various issues concerning the Stimulus Artifact (SA) reduction problem are explored 

in this chapter. The chapter begins with a generation mode1 of the SA followed by 

some experimental studies investigating the nonlinearity in SA. Nonlinear Adaptive 

Filters (NAFs) based on a truncated Volterra series are introduced and their efficacy 

in reducing the SA interference is demonstrated through processing both simulation 

and experimental data. Several parameters which degrade the performance of the 

NAF are identified and recommendations are made to negate these influences. 

5.1 Stimulus Artifact (SA) Generation 

Typically, the SA waveform is a spike followed by a decay response whose ampli- 

tude and time constant depend upon the type of stimulator used, the stimulating 

and recording electrode characteristics, and the filtering characteristics of the pre- 

amplifier stage of t he  recording system. This SA waveform has been modeled as a 

linear combination of three different components which are coupled into the recording 



system by three independent mechanisms [55]. 

The first and the most obvious mechanism is due to the conduction of stimulus 

current through the limb [55, 171. This stimulus current creates at the recording 

electrodes a differential signal which experiences the full amplification of the recording 

system. It has been shown that this stimulus current is a nonlinear function of the 

stimulus voltage [15, 601. At high current densities, the electrode-skin interface a t  

the stimulating electrodes can be modeled as a nonlinear resistor in parallel with 

a fixed capacitor [60, 171. Stevens [60] and Barker [4] have analytically derived an 

expression for the current/voltage characteristics, 1 = aV + LV2, and experimentally 

validated it. This SA component attenuates rapidly as the recording electrodes are 

moved away from the stimulation site. Thus the effect of this SA component can be 

reduced by increasing the distance between the stimulating and recording electrodes 

[39]. McLean [39], in her Masters study, observed that this component reduced by 

around twenty three times as the distance between the stimulating and recording sites 

doubled. Another possible way to reduce this component is to place the recording 

electrode on the  stimulus isopotential lines. However, it is shown in the literature 

[28] that the isopotential lines shift during the stimulus pulse duration and also that 

the direction and alignment of the isopotential lines differ for the three different SA 

components. 

The second coupling mechanism arises from irnperfect stimulus isolation. Most 

of the commercial stimdators corne with an isolator unit which isolates the subject 

from the grounded stimulator. In many of the stimulator systems, this isolation is 

transformer based and there always exists a stray capacitance between the st imu- 

lating electrodes and ground due to imperfect isolation. As well, there is significant 

capacitance between the subject and ground. The resulting current, called the dis- 

placement current [39], also creates a differential signal a t  the recording electrodes. 

This SA component, unlike the first component, does not attenuate appreciably as 

the distance between the recording and stimulating electrodes increases and often 



becomes the  predominant component when they are far apart. This component can 

be significantly reduced by placing a ground electrode between the stimulating and 

the recording sites [39]. This ground electrode offers a low resistance path for the 

displacement current component and hence the magnitude of the SA component due 

to displacement current reduces. 

The third component is due to the electromagnetic coupling between the stim- 

ulating and recording leads. The contribution of this SA component depends on 

the impedance of the recording electrodes, the location of the leads and the quality 

of shielding on the leads [55]. It becomes a significant component when the skin 

surface is underprepared or when the recording electrodes exhibit high impedance. 

Minimization of this component warrants usage of minimal length stimulating and 

recording leads, employment of low impedance electrodes, thorough skin preparation 

and adequate physical separation between the recording and st  imulat ing learls . 
Note that if the above precautions are taken, the influence of SA interference on 

the SEP waveform can be reduced to a great extent. However, in some situations 

there may still be some residual SA affecting the SEP characteristics. The objective 

of this chapter is to investigate the applicability of signal processing techniques to 

SA reduction in such situations. In particular, adaptive filters based on a truncated 

Volterra series expansion are employed to mitigate the SA interference. Before the 

theory of Volterra series expansion is reviewed, it is worthwhile to investigate the 

nonlinearities involved in SA generat ion. 

5.2 Nonlinearity in SA Generation 

Figure 5.1 depicts the SA generation mechanisms from a transfer function point 

of view. Here Hl(z) represents the transfer function between the stimulating and 

the recording electrodes due to the stimulus conductive current , H2(z) is the transfer 



Figure 5.1: SA genemtion mode2 in the discrete Z domain. 

funct ion of the stimulus displacement current component , and H3 ( E )  is the elect ro- 

magnetic coupling transfer function. Note that the transfer function due to the first 

component is nonlinear as explained before and al1 three transfer functions are possi- 

bly time varying as the impedances of the stimulating and recording electrodes change 

due to sweating, drying of the electrode paste, movement of the limb etc. 

Two examples are given to provide experimental evidence of nonlinearity in the 

SA generation. Figure 5.2 depicts the results from the first experiment investigating 

the nonlinear V/I characteristics. Here the median nerve is stimulated at the index 

finger using conductive rubber electrodes. The resulting MSEP is acquired at the 

wrist using Ag-AgC1 electrodes. The stimulus output is taken directly from the main 

stimulator bypassing the stimulation isolation unit to ensure that the displacement 

current component is nullified. The current t hrough the  stimulat ing electrodes was 

rneasured using the Tektronix type 134 current probe amplifier. The steady-state 

current values were noted d o m  for various values of the stimulus input voltage. 

Figure 5.2 graphs the V/I characteristics resulting from this experiment. In this 



figure, the measured current values are plotted against the stimulus input voltage 

along with the current values that would have resulted had the system been linear. 

The deviation from linearity is obvious when these values are compared. A second 

order polynomial fit to the measured current values is also shown in Figure 5.2 which 

appears to be a good fit. 

5 

* Measured values 
- Hypothetical linear response 
+ Least squares fit, c + a ~ + b ~ ~  

Figure 5.2: Nonlinear V/I characteristics at the stimulating electrodes. 

The results from another experiment which demonstrate the nonlinear nature 

of the SA are shown in Figure 5.3. In this experiment, called the refractory period 

experiment, two stimulus pulses of the same amplitude are given in such a way that the 

second stimulus pulse occurs during the refractory period of the nerve'. In this way, 

the first stimulus pulse evokes both SA and SEP waveforms while the stimulus pulse 

during the refractory period results only in the SA waveform. These two waveforms 

c m  then be subtracted to yield an estimate of the SA. Mathernatically, if SA(k)  is 
. . - - -. . . - - - - - . . . . 

'Al1 nerve fibers have a certain time duration immediately after a stimulus during which a second 
stimulus fails to evoke a response. This period is called the refractory period of the nerve. 



the SA waveform and s ( k )  is the SEP, then 
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Figure 5.3: SEP enhancement using refmctory period method. a) SEP + SA composite, 
x i  ( k )  during nomal stirnulw, b) SEP+SA composite, x2 ( k )  during double stimulus and c) 
Enhanced SEP using ~frnctory penod method and NAF method. 

where k is the time index in samples, xi(k) is the composite SA and SEP waveform 

as a result of normal stimulus and x 2 ( k )  is the composite signal during the double 

stimulus phase with 7 being the time delay between the two stimulus pulses. Assuming 

that there are no time n r y i n g  cornponents, x s ( k )  results in a time delayed estimate 



of the SA waveform which can be aligned with the SA in x l ( k )  and subtracted. This 

would result in an artifact free estimate of the SEP assuming that the two artifacts 

during the double stimulus phase superimpose linearly. Figure 5.3a shows the trace 

of xi(&) and Figure 5.3b portrays the trace of x z ( k ) ,  each of which is an ensemble 

average of 200 such records. The SEP estimate obtained by this refractory period 

method is s h o w  in Figure 5 . 3 ~ .  It can be observed that this estimate still contains a 

fair amount of the SA with the tail end of the artifact interfering with the initia1 SEP 

phase. This is due to the nonlinear superposition of the artifacts during the double 

stimulus input. Figure 5 . 3 ~  also contains a preview of what a nonlinear adaptive 

filter can do with the same experimental data. The significant cancellation of the SA 

waveform in the SEP estimate is apparent in this nonlinear filter output. 

Thus from the above discussion and experimental examples of SA, it is clear that 

a nonlinear adaptive system will model and hence cancel the SA better than any 

linear adaptive system. Unlike linear systems, which are completely characterized 

by their impulse response, there is no general model for arbitrary nonlinear system 

characterization. In the following section, we review a particular type of nonlinear 

system representat ion viz. the Volterra series representation. 

5.3 Volterra Series for Nonlinear Systems 

Any discrete tirne, causal nonlinear system response can be represented by the infinite 

Volterra series given by the following equat ion [35, 361: 

where x(k) is the input to the nonlinear system, y(k) is the output and hp(al, . . . , ap)  

is the p-th order Volterra kernel of the nonlinear system. Without loss of generality, 



the Volterra kernels can be assumed to be symmetric i e . ,  the kemels are unchanged 

for any possible permutations of their indices [36]. The Volterra series representation 

has been successfully applied in such diverse applications as nonlinear communica- 

tion channel equalizers [5], nonlinear echo cancellers [l], serniconductor device char- 

acterization [24], nonlinear ocean signal processing [36], and modelling of biological 

phenomena [35]. 

One of the disadvantages of the above Volterra expansion is that the nth order 

kemel is influenced by al1 kernels of order greater than n. This makes estimation 

of different kernels in the Volterra expansion quite burdensome 1351. Wiener showed 

that this problem can be circumvented by a simple variation of the Volterra expan- 

sion series and by using a Gaussian white noise signal as the input [71]. The Wiener 

expansion results in Wiener kernels which are mutually orthogonal, making their es- 

timation relatively simple. Lee and Schetzen [30], in their landmark paper, proposed 

an efficient method of measuring nth order kernels based on the nth order cross- 

correlation function between the white noise input and the resulting system output. 

However, in our application problem of SA cancellation, the input to the nonlinear 

system is a periodic pulse train. While one can envisage applying a white noise stim- 

ulus and measuring the resulting SA, clinical stimulators do not have the capability 

of providing a white noise stimulus. Thus alternative methods of kernel estimation 

are required for the problem of SA cancellation. 

While the infinite Volterra series expansion might precisely characterize a nonlin- 

ear system, due to  constraints on the amount of data and computational resources 

one has to work with a truncated Volterra series expansion [36!. The second order 

truncated Volterra series response can be expressed as: 

i=O i=O j=i 

where N is the system memory, and ho, hl and h2 

part), and second order (the nonlinear part) Volterra 

are the zero, first (the linear 

kernels respectively. Since it is 



suggested in the literature that the SA generation probably involves a second order 

nonlinear system [60, 171, this truncated Volterra series expansion is expected to be 

adequate for SA cancellation. 

Figure 5.4: Block diagnzm of the NAF structure as applied to SA cancellation. 

The zero, first and second order Volterra kernels in Eq. 5.3 can be estimated 

using adaptive signal processing techniques. Adaptive filter structures, like the one 

shown in Figure 5.4, with x(k) as the reference input, y(k) as the primary, and a 

structure based on Eq. 5.3 can estimate these kernels iteratively without invoking 

any assumptions on the input statistics. Moreover, the derivation of the adaption 

algorithms for the Nonlinear Adaptive Filters (NAFs) closely follows the derivat ion 

of adaption algorithms for linear FIR filters [36]. The derivation stems from the 

following problem statement:- let y(k) be the primary input to an NAF and x(k) be 



its reference input, then update the kernels such that the error signal between y(k) 

and its NAF estimate, y(k), is minirnized in the mean square sense. Mathematically, 

~ ( 6 )  = ~ = ( k ) x ( k )  (5.4) 

and e ( k )  = ~ ( k )  - Y&) ( 5 . 5 )  

where p ( k )  = [ho(k),  hi ( O ;  k ) ,  . . . , hi ( N  - 1; k ) ,  ha(O, O ;  k ) ,  h2(0,  1 ;  k ) ,  . . . , hz(N - 

1, N-1; k ) ]  is the kernel vector and X T ( k )  = [ l ,  x ( k ) ,  . . . , x(k -N+1) ,  x 2 ( k ) ,  x ( k ) x ( k -  

1) ,  . . . , x ( k ) x ( k  - N + l ) ,  . . . , x2(k - N + l ) ]  is the input data vector. The Least Mean 

Square (LMS) algorithm which minirnizes the cost function E(e2(k)) by updating the 

kernel vector H using a steepest descent mechanism is now given by 

where p controls the speed of convergence of the LMS algorithm. The derivations for 

the misadjustment due to p, convergence time and other convergence characteristics 

are straightforward extensions from the linear LMS algorithm. The Recursive Least 

Squares (RLS) algorithm, on the other hand, is an exact minimization of the squared 

error. The cost function, J(k) that is minimized in this case is given by [23], 

where X is the forgetting factor which controls the memory span of the NAF. The re- 

sulting adaptation procedure involves calculation of the input autocorrelation matrix 

and the input-output crosscorrelation vector. An advantage of the RLS algorithm, 

which is an important advantage when dealing with nonlinear data, is its relative in- 

sensitiveness to  the eigenvalue spread in the input autocorrelation matrix compared 

to the LMS algorithm. Data from a nonlinear system usually exhibit large eigenvalue 

spread which prompts the usage of RLS based NAFs over the LMS based NAFs. 

A simple simulation is performed to illustrate the convergence characteristics of 

the RLS and LMS based NAFs. An arbitrary five filter length second order Volterra 



system is simulated using the kernel vector Hl given by 

for k=O 

for k = 1,2,. . . ,20 

d 
O 200 409 600 800 lm 

Sample number 

Weight h ,(0,0) 

Figure 5.5: Convergence chanrcteristics of RLS and LMS algon'thms. 

The input to this nonlinear system, x ( k ) ,  is a zero mean Gaussian white noise of unit 

variance and the output is y(k). A length five NAF driven separately by RLS and LMS 

algorithms is then employed with y(k) as its prirnary input and x ( k )  as the reference 

input. The convergence plots from both these algorithms are compared in Figure 5.5. 

From these graphs, it is evident that the RLS algorithm achieves significantly faster 

convergence in terms of the number of samples required. This faster convergence, 

however, cornes at an expense of increased computational cornplexity which is of the  

order 0(N4) multiplications per iteration ( the LMS algorithm on the other hand, 

exhibits a complexity of 0(N2)). This higher computational complexity renders the  

application of RLS based NAFs in real-time SA cancellation impractical. However, 

since al1 the data processing for this thesis is ~erformed offline, the computational 

complexity once again v a s  not a significant issue and only the results proffered by the 

RLS based NAFs are displayed throughout this chapter. A detailed comparison of the 



performance of the RLS and LMS algorithms in SA reduction is given in Appendix 

v. 

5.4 Simulation Study 

5.4.1 Introduction 

The objective of the following simulation experiments is to identify the key parameters 

that influence SA cancellation by NAFs. Since this is the first study t o  examine the 

applicability of the Volterra expansion based NAFs to SA cancellation, it is important 

to investigate through simulations the issues that affect the performance of the NAFs 

before these NAFs are actually applied t o  the in vivo data. The main issues that are 

addressed in t his section are: 

1. Generation of simulated SEP and SA signals. 

2. Performance measures. 

3. Based on these performance measures, how is the performance of the NAF 

affected 

0 when a suboptimal filter length is used for the NAF? 

when the SEP is present in the primary andior reference input? 

0 when there is a significant amount of background noise, as is the case with 

the in vivo data? 

5 A.2 Simulation Data and Performance Measures 

The reference SA waveform, SAJk) ,  t hat is employed throughout t his simulation 

study is an experimentally acquired in vivo SA waveform with sufficient ensemble 

averaging t o  eliminate the background noise. The primary SA waveform, SAp(k),  is 



obtained by nonlinearly filtering the S&(k) using the kernel vector Hi of Eq. V.21 in 

the filter of Eq. V.2. The SEP used in this study is generated using the mathematical 

mode1 given in Chapter 3. 

Three different performance measures are used to quantify the efficacy of the NAF 

in cancelling the SA in the absence of the SEP. These performance measures, 

and 7,SA, are defined as 

(5. il) 

where S&(k) is the SA residual at the output of the NAF, IS&(k)(,, and ISAo(k)l,,, 

are the peak absolute voltage values of the input and residual artifacts respectively, a 

denotes the standard deviation, P is the time interval covering the spike phase of the 

SA and P is the remaining time interval of the SA record. While each of these perfor- 

mance measures is important in assessing the effectiveness of the NAF in cancelling 

the SA, the parameter is especially significant from the SEP enhancement point 

of view. Since it is the tail end of the artifact t hat interferes with the SEP waveform, 

r:A gives a good indication of the effectiveness of the NAF in terms of SEP quality 

im provernent . 
For simulations containing both the SA and the SEP, an additional performance 

measure is defined to measure the 

/,SA = 

residual art ifact interference as 

where Sp(k)  is the SEP estimate at the output of the NAF. This measure is similar 

to the distortin index given by Eq. 3.21. With in vivo data, however, since the 

underlying SEP signal is never available, cannot be computed. In these cases, 

visual appreciation of the SEP estimate and the performance measures quant ifying 



the SA cancellation given by Eqs. 5.9 and 5.10 are used to gauge the effectiveness of 

the NAF. 
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Figure 5.6: Effects of suboptimal filter length of the NAF. 

5.4.3 Suboptimal Filter Length of the NAF 

The purpose of this study is to investigate the effect on SA cancellation of choosing 

a suboptimal filter length. The primary and reference artifacts to the NAFs are 

generated as described in the previous section and are shown in Figure 5.6a. AIso 

indicated in the Figure are the regions P and P used for the calculation of the 

performance indices. The NAF driven by the RLS algorithm is ernployed with varying 

filter lengths. The steady state output of the NAF is then obtained by recycling the 

primary and reference SA data through the RLS algorithm until the convergence of 

the kernel vector is achieved. This output is then used to calculate the performance 

indices given in Eqs. 5.9, 5.10, and 5.11. These performance indices are graphed 

in Figure 5.6b. Note that the optimal filter order for the NAF is five since the 

underlying nonlinear system, Hl, has a filter length of five. From the trend of the 

three performance indices, we can observe that orders less than optimal result in 



highly degraded performance. This is to  be expected because in nonlinear filtering, 

when the filter length is changed from N to N + Ml the actual number of elements in 

the kernel vector changes by (M2 +3M + 2MN)/2 (this can be easily calculated from 

Eq.V.2). For exarnple, if the filter length of the NAF is decreased from 5 to  3, the 

reduction in the total number of coefficients in the NAF is 11! Thus the performance is 

greatly degraded even if we reduce t h e  filter length from 5 to 3. Another interest ing 

point to  note is that for filter lengths greater than the optimal, t he  performance 

also degrades but then saturates. This is due to the effects of overfitting where any 

nonzero value of the extra filter weights contributes to a poorer performance. With in 

vivo data, where the filter length of the  underlying nonlinear systern is unknown, the 

approach will be to increase the filter length starting from a small value. The filter 

length at which the performance indices peak gives an indication of the  optimal filter 

length. Note that the three performance indices al1 peak at  the same filter length. 

5.4.4 Effect of the SEP position 

With in vivo SEP data, the SA is most irksome when the tail of the artifact masks 

the initial SEP portion. In cases where the SEP and SA are comfortably separated, 

a simple blanking scheme can be used to retrieve an artifact free SEP. Thus data 

containing interfering SEP and SA waveforms, which cannot be separated by simple 

means, form the most crucial test of the performance of the NAF. In this section, an 

investigation is undertaken to assess the performance of the NAF in such situations. 

The primary and reference SA waveforms are generated as described earlier. The 

SEP waveform is delayed and summed with the primary SA to generate the composite 

SEP+SA waveform. DifFerent records of such composites are shown in Figure 5.7a, 

where the SEP is "moved" gradually towards the peak of the artifact. A N A F  of filter 

length 5 (optimal filter length for SA cancellation here) is then adapted with each 

of these composite waveforms as the primary and SA,(k)  as the reference. Once the 

filter has reached steady state, the output SEP estimate is computed and is shown in 



O 50 100 150 200 O 50 100 150 200 
Sample number Sample number 

O 50 100 150 200 - 30 40 50 60- 70 80 
Sample number SEP Position 

Figure 5.7: The e f i c t  of the SEP position on the performance of the NAF, a) composite 
waveforms of SEP and SA in the primary input, b) corresponding SEP estimates at the 
output of the NAF, c) the t r w  underlying SEP tuavefom and d) the NMSE memure, pfA 
with respect to the SEP position (measured in number of samples between the SA and SEP 
peaks). 

Figure 5.7b. For the sake of comparison, the underlying original SEP waveform is 

shown in Figure 5 . 7 ~ .  From these plots, we see that the position of the SEP does 

have an effect on the performance of the NAF. As the SEP is moved closer to the 

SA, there is more and more residual artifact at the output of the NAF and the SEP 

waveform is degraded in quality. This output SEP distortion is quantified in Figure 

5.7d where the NMSE measure given by Eq. 5.12 is displayed. The SEP position in 

this plot is calculated as the distance, in number of samples, between the peak values 

of the SA and the SEP. While there is an increase in the NMSE rneasure as the SEP 

moves deep into the artifact tail, it has to be noted that interference is still less than 
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Figure 5.8: The egect of increased filter length on SEP estirnate. a) Primary SEP+SA 
composite and the true underlytrrg SEP, b) SEP estimate produced by an NAF of filter length 
five, and c)  SEP estimate pmMded by an NAF offüter Zcngth eight, and d) SEP estimate 
pmvided by an NAF offilter length ten. In al1 the plots, the dotted line represents the 
original SEP. 

A closer look at the above simulation reveals a very interesting phenornenon. If 

the SA and SEP were uncorrelated, the presence of the SEP in the primary would 

not have had any effect on the performance of the NAF. The N A F  primarily acts 

as a correlation canceller and the only correlated component would have been just 

the SA component. However, due to the deterministic nature of both SA and SEP 

waveforms, there is always a finite correlation between the SEP and the SA and 

t his finite correlation influences the convergence of the NAF and consequently the 

SEP estimate at the output of the NAF is affected. In fact, if the filter length is 



made arbitrarily large, the NAF will try to encompass the SEP-SA crosscorrelation 

and mode1 the SEP+SA composite in the primary using the SA component in the 

reference! This fact is shown using the following simulation. Let us take the SEP+SA 

composite where the SEP starts around the 50th sample (shown in Figure 5.7a) as 

the primary input to t h  NAF. Two additional simulation nins were conducted with 

filter lengths of eight and ten respectively. Figure 5.8 shows the results from these 

simulation studies. In Figure 5.8a the SEPfSA composite in the primary input is 

shown along with the original underlying SEP (in dotted lines). Figure 5.8b displays 

the SEP estimate at the output of an NAF of filter length five. Figure 5 . 8 ~  and 5.8d 

depict the corresponding SEP estimates for filter lengths of eigbt and ten respectively. 

The perilous effect of the adaptive filtering operation on the SEP, even though it is 

present in the primary, is obvious from these plots. Thus increasing filter lengths can 

severely degrade the SEP estimate at the output of the NAF. Further simulations 

and a more detailed description of this phenornenon are given in Appendix IV. 

The above discussion is conflicting with the statement given in Section 5.4.5.: 

llWith in vivo data, where the filter length of the underlying nonlinear system is 

unknown, the approach will be to increase the filter length starting from a small 

value". However, given the above simulation, it is obvious that increasing the filter 

length will lead to  the NAF cancelling the SEP as well. A possible way of overcoming 

this problem is to  let the NAF adapt only during the SA phase and let the data pass 

through without adaptation during the SEP phase. In this way the adaptation routine 

is "blind" to the SEP data and thus not only the possibility of the NAF affecting 

the SEP properties is averted but also the constraint on choosing the filter length 

is relaxed. Figure 5.9 shows the results from a simulation experiment probing the 

effectiveness of the abovementioned segmented adaptive filtering approach. Figure 

5.9a shows the primary input to an NAF with a filter length of 5. The weights of 

the NAF are updated only during the "adapt" regions of the primary input. The 

weight values a t  the end of the "adapt" region are held constant and these are used 



to  filter the data in the "fixedn regions. The SEP estimates obtained by the segmented 

NAF and the normal NAF - which uses the entire data record for adaptation - 

are compared in Figure 5.9b. The performance improvement, in terms of the SA 

cancellation and the qudity of the SEP estimate, achieved by the segmented NAF 

is apparent in this figure. Similar simulation resulis can be obtained with NAFs of 

filter lengths eight and ten. 
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Figure 5.9: Segmented adaptive filtering. 

Thus the segrnented adaptation approach circumvents the pitfalls caused by the 

finite cross-correlation between the SEP and SA waveforms. Note that in practical 

SEP signal processing applications, there is always a noticeable time separation be- 

tween the SEP and the SA. Thus it is not difficult to designate the "adapt" and 

"fixedYy regions for the segmented adaptation procedure. Also the position of the 



demarcation boundary can be biased towards the SA peak position if one is not sure 

where exactly the  SEP starts. 

Figure 5.10: The effect of background noise on the performance of the NAF. 

The simulations thus far have been carried out in a noise free environment. Unfor- 

tunately, in vivo SEP data are contaminated by the omnipresent background noise. 

In this section, a study is undertaken to examine the effects of the background noise 

on the performance of the NAF in the absence of the SEP. The primary and reference 

SA are the same as in Section 4.2. White Gaussian noise of varying power levels o& 

is then added to the SA waveforms. The Artifact-to-Noise Ratio (ANR) is defined as 

An NAF of filter length five is then adapted with the noisy primary and reference SA 

until steady state is reached. Ten independent trials are performed for each 
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Figure 5.11: Performance of the NAF in the ptesence of the background noise. Figuns 
5.1 1 a, 5.11 b, and 5 . 1 1 ~  disphy the noàsy primary SA, noisy reference SA, and the cancelled 
SA for reference ANR levels of 40, 30, and 10 dB respectively. 5.11d depicts the cancelled 
SA when the primary SA from 5 . 1 1 ~  and reference SA from 5.11 b are wed.  

noise power level and the final steady state filter weights are averaged over these 

ten realizations. These averaged filter weights are then used to nonlinearly filter the 

noise free reference SA which is then subtracted from the noise free primary SA. The 

resulting waveform is the SA residual and this is used in calculation of the performance 

measures. Figure 5.10 graphs the performance curves of the NAF for varying power 

levels of the noise. As one would expect, the performance monotonically deteriorates 



as the power level of noise increases. Typical ANR levels encountered with in aiao 

data are 20-30 dB and thus a performance index of 100 can be expected. 

Figure 5.11 gives a picture of the noisy NAF output for three different noise power 

levels. The noisy primary SA, noisy reference SA along with the output of the NAF 

after convergence are shown. It can be seen that at  lower ANR levels, there is a 

substantial amount of SA still present in the output of the NAF. It is important to 

note here that the effect of noise will be more pronounced in the case of nonlinear 

filters as nonlinear filterhg incorporates second order terms. The only way to mitigate 

this problem is to perform ensemble averaging on the reference input to the N 4 F  so 

that we are higher up on the performance curves shown in Figure 5.10. Since the 

adaptation of the NAF depends mainly on the reference input, it is sufficient that 

only the reference SA input be averaged. This effect is shown in Figure 5.11d where a 

cleaner reference SA is used to cancel the same primary SA as in Figure 5 .11~ and the 

SA cancellation con be seen to be significantly better. The averaging procedure also 

reduces the possibility of the presence of other correlated noise components across 

the primary and reference inputs of the NAF, such as the MEI and the ECG. 

5.5 Experimental SA Data Analysis 

5.5.1 SA cancellation in the absence of the SEP 

The first set of experiments concentrated on scrutinizing the effectiveness of the N A F  

in cancelling an experimentally acquired SA waveform. The experimental setup for 

obtaining median nerve and spinal cord SEP data is the same as in the previous 

chapter. The primary input to the NAF is obtained by stimulating the nerve in its 

subthreshold regime2, collecting the resulting SA waveform, and ensemble averaging 

to reduce the background noise. The reference input is obtained in two different ways: 

2A subthreshold stimulus is one which fails to evoked nervous response. 



a)  by collecting SA data simultaneously from a second recording channel again with 

ensemble averaging, and b) by performing a separate experiment in which the refer- 

ence SA is acquired from the same electrodes as  the primary, but at a lower stimulus 

voltage level. One thousand records are averaged for both the primary and reference 

SA waveforms acquired from the lurnbar region and two hundred records are averaged 

for the SA data collected at the wrist region. A NAF of filter length ten driven by the 

RLS algorithm is then applied to cancel the primary SA waveform. Figure 5.12 shows 

the SA cancellation results from different subjects employing different recording pro- 

cedures. In each of these plots the primary SA, the reference SA and the residual SA 

at the output of the NAF after its convergence are displayed. In Figure 5.12a, the 

primary SA is obtained from the lumbar region while the reference SA is acquired 

using the second recording channel. The primary and reference SAS shown in Figure 

5.12b are measured in the lumbar region using only one set of recording electrodes 

with the reference SA obtained using a lower stimulus input voltage. The SA artifact 

data acquired from the wrist region using the stainless steel electrode array are shown 

in Figure 5.12~. Here the primary SA is acquired from the first element in the array 

and the reference SA using the second recording channel. Due to the proximity of 

the second recording channel to the stimulus site, the reference SA is several times 

larger than the primary SA. Finally the primary and reference SAS in Figure 5.12d 

are obtained a t  the wrist region using the Ag-AgCl electrodes with the reference SA 

obtained from a lower stimulus voltage level. A cornmon feature in al1 these plots is 

the significani SA cancellation achieved by the NAF. These results indicate that the 

SA cancelling ability of the NAF is robust to a variety of experimental conditions and 

recording procedures. 

5.5.2 Performance Cornparison of the NAF and the LAF 

In Section 5.2, two examples of nonlinearity in the SA generation were provided. It 

was surrnised that a NAF would therefore be the appropriate candidate in reducing 
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Figure 5.12: Performance of the NAF in cancelling in vivo SA data collectedfrom diflerent 
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the SA. Indeed, the previous section revealed that the  NAF perfonns exceptionally 

well in cancelling the SA. This section takes this investigation one more step by 

comparing the performances of the NAF and the widely used FIR Linear Adaptive 

Filter (LAF). Also, the effect of the filter length on the  performance of the NAF and 

the LAF is explored. 

The indices defined by Eq.s 5.9, 5.10, and 5.11 are used to quantify the perfor- 

mance of both the NAF and the LAF. The primary and reference SAS displayed in 

Figure 5.12 were used as the inputs to the NAF and the LAF, and the RLS algorithm 

was used to adapt the coefficients of both the NAF and the LAF. In addition, a delay 

of half the filter length was introduced in the primary input of the LAF to compen- 

sate for any noncausality. The filter length was varied from 3 to 13 in the NAF case 

(the corresponding total number of coefficients were 10 and 105 respectively) , and 

from 3 to 100 for the LAF. For each filter length, the NAF and LAF were adapted 

separately and once the filter weights reached steady state, the residual SA at the 

output was retrieved and the performance indices were computed. Figure 5.13 graphs 

these performance indices against the filter length for different SA data sets. Figures 

5.13a, 5.13b and 5 . 1 3 ~  plot the three performance indices and obtained 

through filtering the data shown in Figure 5.12a by employing the NAF and the LAF. 

Figures 5.13d, 5.13e and 5.13f display the performance indices computed for data sets 

in Figure 5.12c, and Figures 5.13g and 5.13h are performance indices corresponding to 

the SA traces in Figure 5.12d. In each of these plots, the NAF can be seen to outper- 

form the LAF quite convincingly. In most of the cases, the performance of the LAF 

appears to saturate for a filter length of around 100 while the performance indices of 

the NAF continue to increase even after a filter length of 13. This suggests that even 

at a filter length of 13, the NAF is still operating in its suboptimal regime. However 

a compeliing factor for not employing larger NAF filter lengths, even though a better 

SA cancellation performance can be had with larger filter lengths, is the possibility of 

SEP distortion with larger NAF filter lengths as explored in the simulations section 
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Figure 5.13: Performance cornparison of the NAF and LAF in SA cancellation. (=fer to 
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(refer to Figure 5.8). Thus in al1 ensuing SEP studies an NAF of filter length ten is 

ut ilized, 

5.5.3 Effect of Background Noise 

The experimental results obtained in the previous sections employed ensemble aver- 

aged primary and reference SA waveforms. In this section, an experimental example 

is provided to illustrate the eEect of the background noise on the performance of 

the NAF. The SA data were collected at the wrist region using the stainless steel 

electrode array with the stimulus voltage below the threshold level of the median 

nerve. The SA waveform measured by the first element in the array is shown in 

Figure 5.14a and this formed the prirnary input to  the NAF. The reference input to  

the NAF was recorded using the fourth element of the array. The reference ANR 

was calculated using Eq. 5.15 where the power level of the background noise was 

determined prior to  stimulation and was found to be 20 dB. A ten filter length NAF 

was then employed to  cancel the SA and its output is displayed in Figure 5.14b. 

From this Figure, it can be seen that the primary SA waveform has been reduced to 

the background noise level by the NAF. The primary input was then averaged over 

fifty SA records and this ensemble average is shown in Figure 5.14~. Also shown in 

5 . 1 4 ~  are the ensemble average (also of fifty records) of the NAF output in Figure 

5.14b, and the ensemble average of the NAF output when a cleaner reference input 

was used. The cleaner reference input is obtained by averaging the reference input 

over 300 records. As observed in the simulation studies, there is an irnprovement in 

the SA cancelling ability of the NAF when a cleaner reference input is employed. To 

further investigate this issue, the performance indices, and of the NAF are 

computed as the noise in the reference input is reduced by ensemble averaging and 

these indices are graphed in Figure 5.14d. An interesting point to note from this plot 

is that the performance indices increase in the beginning as the number of averages 

increases but then saturate. This, as expected, is because of the noise in the primary 



Figure 5.14: Perfonnance of the NAF in cancelfing in vivo SA in the presence of the 
background noise. a) noisy prirnary SA data, b) NAF output after convergence, c )  prirnary 
and residual artifacts with noisy and "clean" reference inputs, d)  pe~forrnance indices Vs 
naof SA records avemged in the reference input. 



input which passes through the NAF unfiltered and hence the performance indices, 

which compute the peak and standard deviation reduction between the primary input 

and the residual output, saturate eventhough the SA cancellation gets better as the 

numher of averages increases. 

5.5.4 SA Plus SEP Data 

To investigate the efficacy of the NAF in enhkncing the SEP in the presence of inter- 

fering SA, in vivo MSEP and SSEP data were collected. Figure 5.15 depicts the results 

obtained by processing SA contaminated SEP data acquired from different subjects. 

The first column in this picture shows the ensemble averaged SEP+SA composite 

waveform which is utilized as the primary input to the NAF, and an SA component 

obtained through either subthreshold stimulation or using a separate channel which is 

used as the reference input. In the second column, two different outputs are depicted: 

a) the SEP estimate obtained by the normal NAF which uses the entire SEP+SA 

record for its adaptation and, b) the SEP estimate obtained by the segmented NAF 

which uses only a part of the SEP+SA record for its adaptation. 

The MSEP data measured using Ag-AgCl electrodes from one of the subjects is 

shown in Figure 5.15a. The reference SA waveform is acquired using a separate ref- 

erence channel off the nerve axis. Each of these waveforms are a result of ensemble 

averaging 200 such records. The SEP estimates obtained by the normal and the seg- 

mented NAFs are displayed in Figure 5.15b. For the segmented NAF, the coefficients 

are adapted only during the first 100 sarnples of the SEP+SA composite waveform 

and the coefficients at the end of this "adapt" region are fixed through the remainder 

of the waveform. By comparing the two estimates, we con observe that the segmented 

NAF produces a 'kleaner" SEP estimate compared to the normal NAF. Figures 5.15~ 

and d show an example of one of the few cases where the NAF did not perform well. 

In Figure 5 . 1 5 ~  the MSEP data acquired from the same subject using the stainless 

steel electrode array is portrayed. The interference due to the SA is obvious in this 
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plot. The reference SA in this case is obtained through subthreshold stimulation. 

Figure 15d shows the SEP estimates obtained by the normal and segmented NAFs. 

While both have made substantial irnprovements, the estimates still contain substan- 

tial amounts of SA. This is probably due to the "undermodelling" of the SA system 

by the NAF either due to  a suboptimal filter length or the  presence of higher or- 

der nonlinear terms. Figure 5.15e depicts the MSEP data acquired from a different 

subject using Ag-AgCl electrodes. In this Figure, it can be noticed that the tail end 

of the SA interferes with the MSEP waveform. The reference SA here is once again 

obtained through subthreshold stimulation. The SEP estimates at  the output of the 

NAFs are shown in Figure 5.15f. The SEP estimate produced by the segmented N A F  

can be seen to be devoid of most of the interfering SA, while normal NAF can be seen 

to introduce some distortion in the SEP estimate. This is, as explained before, due 

to the non-zero correlation batween the SEP and the reference SA waveforms. The 

SA+ SSEP composite waveform measured from the lower lumbar region of the spinal 

cord, which is an ensemble average of 1500 such records, is shown in Figure 5.15g. 

Once again, it can be seen that the SA tail corrupts the SSEP waveform and that the 

SSEP waveform has a negative bias. The reference SA in this case is acquired from 

the second recording channel. The SEP estimate obtained by the segmented NAF, 

shown in 5.15h, not only seerns to reduce rnost of the SA but also to remove the bias 

in the SSEP. 

In al1 the results above, it can be observed that the segmented NAF produces a 

better quality SEP estimate compared to the normal NAF. To emphasize the effect 

of the NAF filter length (as observed while processing the simulated SEP+SA data), 

the in vivo SEP data shown in Figure 5.15e is analyzed for two different NAF filter 

lengths. Figures 5.16a and b depict the results of this analysis. In Figure 5.16a, the 

SEP estirnates provided by the normal and segmented NAFs each with a filter length 

of ten is shown. In Figure 5.16b, the SEP estimates obtained through processing the 

same primary and reference data by the normal and segmented NAFs of filter length 



fifteen. The degradation in the SEP quality at the output of a normal NAF with 

an increase in its filter length is clear from these plots. The segrnented NAF, on the 

other hand, provides a similar SEP estimate for both the filter lengths. Thus, the 

segmented adaptation approach is recommended for enhancing the SEP from the SA 

int erference. 
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Figure 5.16: Effects of the NAF filter length on the enhancement of in vivo SEP data. a) 
SEP estimates pmduced by the nonnal and segmented NAFS with filter lengths of ten and 
b) SEP estirnates pmvided by the normal and segrnented NAFs with filter lengths of jïjleen. 

5.5.5 SEP Enhancement in the Presence of Noise 

The previous section illustrated the efficacy of the NAF in enhancing the SEP in the 

presence of the interfering SA using ensemble averaged SEP+SA composite wave- 

forms. In most SEP processing applications ensemble averaging will be required, and 

thus it is only appropriate to use the NAF to reduce the SA after the averaging pro- 

cedure. In some case, it may be desirable to reduce the SA frorn record to record 

and in such tests, the ANR will be lower and thus results in poorer SA reduction by 

the NAF. To investigate the performance of the NAF in such situations, raw SEP 

data is processed using the NAF and the results are displayed in Figure 5.17. Figure 
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Figure 5.17: Perfmnance of the NAF in enhancing the SEP from the corrupting SA in 
the presence of background noise. 



5.17a shows the raw MSEP data of ANR l l d B  acquired from one of the subjects 

using Ag-AgC1 electrodes which served as the primary input to a five filter length 

NAF. A smaller filter length is chosen as the time separation between the SEP and 

SA was small. The reference input is obtained through subthreshold stimulation of 

the median nerve. The enhanced SEP which is an ensemble average of 50 records 

at the output of the NAF is shown in Figure 5.17b. For the sake of cornparison, 

the averaged SEP of 50 records in the primary input and the averaged SEP of ai) 

records at  the output of an NAF employing a cleaner reference input, are also shown 

in this picture. Once again, it can be noticed that a cleaner reference input resuIts in 

better SA cancellation. Figure 5 .17~ compares the outputs of the norrnaI NAF and 

the segmented NAF, which used ensemble averaged SEP+SA composites for their 

adaptation. The segmented NAF can be seen to abolish the SA thereby enhancing 

the SEP and the SEP distortion due to normal NAF operation can also be observed. 

5.6 Conclusions 

In most SEP measurements, the stimulus evoked artifact waveform is a very both- 

ersome interference. Since this artifact occurs in synchrony with the SEP, ensemble 

averaging cannot reduce the artifact. Conventional techniques for SA reduction rely 

on sorne form of blanking circuits which blank the input during the SA phase. How- 

ever, these blanking circuits are ineffective when the SA waveform extends into the 

SEP waveform leaving the SEP waveforrn distorted. Hence effective signal processing 

methods are desired which can reduce the stimulus artifact while preserving the prop- 

ertier of the SEP. This chapter investigated the applicability of nonlinear adaptive 

filters, based on second order truncated Volterra series expansion, for SA reduction. 

On the basis of simulation and experimental results presented in this chapter, the 

following conclusions can be drawn. 



The SA generation system is nonlinear. The nonlinearity in the SA gen- 

eration system arises from the nonlinear voltage/current characteristics a t  the 

stimulating electrodes at  high current densit ies. The voltage/current curves 

given in Figure 5.1 clearly depict this nonlinearity. Due to this nonlinear na- 

ture of the SA, nonlinear SA cancellation schemes are more effective than the 

linear schemes. The validity of this point is also strengthened by the results 

shown in Figures 5.13 a-h where nonlinear filters handsomely outperformed their 

linear counterparts. 

Nonlinear Volterra adaptive filters are well suited for SA cancellation. 

Conventional nonlinear system identification techniques require the response of 

the nonlinear system to  a white noise input. With the stimulus artifact, however, 

the input is the stimulus voltage pulse train. Adaptive Volterra filters mode1 the 

underlying nonlinear system without imposing any restrictions on the nature of 

the input data and hence are more suitable for the SA cancellation. 

RLS based NAFs significantly outperform the LMS based NAFs. LMS 

based NAFs are very slow in their convergence due to the large eigenvalue 

spread associated with the data from a nonlinear system. Also, the performance 

achieved by the LMS based NAFs is much lower than the RLS based NAFs 

(Appendix V offers a detailed analysis and relevant results). RLS based NAFs, 

however, are more computationally involved than the LMS based NAFs thus 

rendering them close to impractical in real time SA cancellation. 

The performance of the NAF is a function of the ANR. Due to the 

second order terms involved in the structure of the NAF, the noise components 

that are present in the reference input of the NAF affect the performance of the 

NAF. Ensemble averaging increases the effective ANR giving an improved arti- 

fact rejection. Note that the ensemble averaging procedure need be performed 

only on the reference input. This point is very important from a multi-stage 



SEP enhancement point of view. As discussed in the previous chapter, for effi- 

cient ME1 reduction, there should be no other correlated components. Thus the 

SA components should be reduced from both the primary and reference inputs 

to the CRANC filter while still preserving the ME1 characteristics. This can 

be achieved by first coIlecting the SA waveform using subthreshold stimulation 

and ensemble aveaging it to reduce the background noise components. This 

averaged SA can then be used to diminish the SA components in the primary 

and reference ME1 inputs to the CRANC filter. 

The presence of the SEP in the primary input of the NAF also affects 

its performance. This is a very crucial point and its importance cannot be 

overstressed. Due to finite correlation between the SEP and SA waveforms, the 

weight adaptation of the NAF is invariably affected by the SEP components in 

its primary input and consequently SEP distortion results. An attractive way 

of overcoming this problem is to let the NAF adapt only during the SA phase. 

In this way the adaptation routine is unaffected by the SEP components and is 

shown to achieve good results. 



Chapter 6 

ECG Reduction 

Summary 

Various signal processing techniques for ECG reduction are investigated in this 

chapter. Each of these techniques is analyzed for its performance, computational 

cornplexity, and robustness to the presence of SEP and extraneous noise sources. Of 

al1 the techniques scrutinized, the Adaptive Ternplate Subtraction (ATS) method is 

shown to offer the best package in terrns of ail the abovernentioned criteria. Detailed 

experimental analysis of the ATS technique is conducted along with other techniques 

and the analysis clearly demonstrates the superiority of the ATS technique. 

6.1 Techniques for ECG Reduction 

As mentioned in Chapter 2, there are several ECG reduction techniques and these 

are discussed in detail below. 

In the Clipping method, the ECG waveform is clipped at a certain voltage level. 

This technique is more important in increasing the dynamic range of the digitized 



SSEP waveform than ECG reduction per se. With unclipped ECG, the input ampli- 

fication factor is chosen in such a way that the ECG does not overload the amplifier. 

During the A/D conversion procedure, this will result in lower SSEP resolution as 

the maller amplitude values of the SSEP fa11 into the lower significant bits. The 

amplification factor can be increased with clipped ECG and therefore a better SSEP 

resolution is obtained. With respect to ECG cancellation, the clipping procedure 

does not completely remove the ECG, and the residua component may still affect 

the SNR of the SSEP. 

In the Gating method, al1 the voltage levels above a certain threshold are set to 

zero. In this way,the problem of ECG remnants can be overcome as the predominant 

ECG components are now "gated" to zero. A potential problem with this technique is 

the SSEP loss if the SSEP occurs in the same time frame as the ECG. However, since 

the probability of an ECG occurence in an SSEP record is quite low, this problem 

is not significant when a large number of SSEP records are averaged. A relevant 

point here is that the analog implementations of the gating procedure may result in 

switching transients which further deteriorate the SSEP SNR. 

Al1 the methods described before work on continuous raw data. In SSEP record- 

ings, where a large number of SSEP records are collected, the continuous data col- 

lection procedure leads to huge amounts of data. A plausible way to overcome this 

problem is to program the A/D conversion scheme in such a way that only a pre- 

scribed number of samples are converted with each stimulus pulse. This procedure 

will result in unwanted data between the stimuli being discarded and thus lead to 

efficient SSEP data representation. In case of an ECG occurence (which can be de- 

termined using a threshold voltage level), that particular record is discarded. This 

"Chop and discard routine" thus results in efficient elimination of the ill-effects 

of the ECG. Once again, since the probability of ECG occurence in an SSEP record 

is small, only a few SSEP records need to be discarded. A disadvantage with this 

method is the special programming of the A/D converter required to collect the SSEP 



data. 

Adaptive filters offer an attractive solution to ECG cancellation as they do not 

require any a priori information about the ECG. The adaptive filters, however, do 

require an additional reference ECG input and they often corne with extra compu- 

tational baggage and implementing these filters in realtime ofken requires high speed 

DSP boards. Perhaps the most crucial factor in determining the ECG cancellation 

performance of an ANC is the placement of the reference electrode pair. The place 

ment is constrained by the following two factors: 

1. The reference electrode pair must be placed away from the SSEP source. As 

mentioned at several points during this thesis, to avoid risk of any potential 

SSEP distortion the reference input to the ANC should be devoid of any trace 

of SSEP components. Thus the reference electrode pair must be placed in such 

a way that no SSEP component is recorded while still obtaining a correlated 

ECG component. One way to obtain this reference signal is to place an electrode 

on either side of the spine equidistant from the spinal column [9]. Assuming 

uniform tissue properties and SSEP conduction alcng the spinal cord, this will 

result in zero SSEP component when a differential signal is obtained using the 

above electrode pair. In reality, it is difficult to determine the exact location on 

either side of the spinal cord such that the differential SSEP component is zero. 

2. The reference electrode pair must be placed in such a way that it does not 

tap other correlated interferences. These interferences include ME1 and the SA 

(assuming that the 60-Hz interference does not pose a problem). Any presence 

of these interferences in both primary and reference channels d l  result in poor 

ECG reduction results. 

A very attractive alternative for obtaining a reference ECG input is to  collect the 

ECG signal prior to the stimulation . This eliminates the possibility of the SSEP 

and SA "crosstalk" into the reference input. In ofIline ECG cancellation scenarios, 



this ECG reference input can be ensemble averaged to diminish the background noise 

level and can be stored in a separate data file as a template. This ECG template can 

be employed later to cancel the ECG in the SSEP data that is obtained using the 

same electrode pair in two ways: a) plain templa te  subt rac t ion ,  which assumes 

that the underlying ECG waveform is time-invariant or b) Adaptive Template 

Subtract ion (ATS), where an adaptive filter is utilized t o  iteratively reduce the 

ECG components in the SSEP data. This adaptive nature is desirable as the ECG, 

in addition to being quasi-periodic, is significantly non-stationary. In realtime ECG 

cancellation scenarios, these approaches can still be employed by storing an averaged 

ECG template in a buffer and utilizing this template to cancel the ECG in the SSEP 

data as it occurs. Of course this requires additional software programs to synchronize 

the reference ECG template with the primary ECG and then implement the adaptive 

cancellat ion routine. 

Given these methods and issues, an attempt is made in this chapter to assess the 

performance of each of these techniques and to determine which technique is most 

suitable for high performance and computationally efficient ECG cancellation under 

different operat ing condit ions. 

6.2 Experiment al 

6.2.1 ECG Reduction 

Result s 

in the Absence of an SSEP 

The first set of experimental results concentrate on continuous ECG data cancella- 

tion. For these data, no stimulus was given to the subjects and hence these results 

demonstrate the ECG cancellation capabilities of the clipping, gating, ANC and tem- 

plate subtraction procedures in the absence of an SSEP. One minute of ECG data 

was collected for each of these subjects at a sampling rate of 10 KHz, digitized and 

stored on a 486 computer and processed offline. The threshold level for the clipping 



and gating procedures was the maximum background noise voltage level estimated 

between the  ECG occurences. The reference input for the ANC was acquired from the 

chest with the following rationale: a) a t  the chest region, the magnitude of the ECG is 

many times larger than either the SSEP or the SA and hence their influence on ECG 

cancellation is insignificant and b) since the reference channel is now far away from 

the pnmary channel (which is placed at the lower lumbar level of the spinal cord), 

the possibility of the presence of correlated ME1 components in both the primary 

and the reference is greatly reduced. Note that, due to the above placement, there 

is always an ECG propagation delay between the primary and reference ECG wave- 

forms. In al1 the ensuing ECG reduction results involving the ANC, this delay effect is 

compensated first by est imat ing the propagation delay t hrough the cross-correlat ion 

function between the primary and reference ECG waveforms and then appropriately 

shifting the reference ECG. The ECG template required for the template subtraction 

and ATS methods was obtained by ensemble averaging the ECG input. The amount 

of ECG cancellation achieved by each of these techniques was quantified using the 

following measure, ~ E c G ,  

2 where uF, and e, are respectively the primary and residual ECG variances com- 

puted during a single ECG interval. The results obtained from different subjects are 

displayed graphically in Figures 6.1 and 6.2. In Figure 6.1, the performances of the 

template subtraction, ATS and ANC are compared. The LMS algorithm mas used 

to update the filter weights for the ANC and a delay of half the filter length was 

incorporated in the primary input of the ANC to compensate for any noncausality. 

The convergence parameter required for the LMS algorithm was chosen one-tenth of 

its upper bound [70]. For the template subtraction procedure, the averaged ECG 

template which was collected earlier was aligned via crosscorrelation with each of the 

ECG waveforms in the primary input and then snbtracted. For the ATS, the same 

ECG template was given to a ten tap adaptive FIR filter a.. a reference input. Figure 



25000 
Sample number 

Primary ECG input. subjed 11 
s 

O 

2- 

WxK, 
Sample number 

ANC output. Filter length = 60. C( = 0.019 b 

Figure 6.1: ECG cancellation by ANC, template subtraction and ATS. a) Primary ECC 
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6.la shows the raw ECG data collected from one of the subjects. The output of a 

sixty tap linear FIR ANC filter with the chest ECG as the reference input and driven 

by the LMS algorithm is depicted in Figure 6.lb. I t  can be seen from this picture, 

that the ANC has been quite successful in reducing the  ECG down to the background 

noise level. Figure 6. lc displays the residual ECG for the  same primary input using 

the template subtraction method and ECG cancellation similar to Fig 6.lb can be 

observed. The output of the ATS method, where a ten tap adaptive filter 
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Figure 6.2: Qualitative c o m ~ o n  of clipping, gating. ANC, ATS and tempiate subtmction 
methods. a) Primary ECG segment along with residual ECG wavefoms pmduced by gating 
and clipping methods, b), c) and d) Primary ECG and ECG remnants by  ANC, template 
subtmction and ATS respectively. 

was utilized to  cancel the primary ECG using the same aligned ECG template, is 

displayed in Figure 6.ld. Once again, good ECG cancellation can be observed in this 

figure. 

To obtain a clearer picture of the performance of these techniques, the residual 

ECG outputs produced by clipping, gating, template subtraction, ANC and ATS 

procedures during a single ECG interval are shown in Figures 6.2a-d. Comparing 

these plots, it can be observed that gating, template subtraction, ATS and ANC 



Subject fl a 

- -  . . - . . .  -. . . . . 7 -  

1 0 1 0 1 , , , , m ~ 9 0 1 W  
ilter eng 'O %iter"lnn# m w w m  

Subject f2 b 

200- 

1 Clipping. threshold = 0.33 V 
2 Gating, threshold = 0.33 V 

8 3 Templote subtroction . 1 Clippinq. threshold = 0.24 V 4 ANC 

G 5, 2 Gatnig. threshold = 0.24 V 
$ ' 3 Ternplote subtmdion '- 

. 4 ANC 
0 5 ATS 
E IOO. 
8 ,  4 

B - - A 3 

5 3 y  2 

1 

Figure 6.3: Absolute performance of diffemrt ECG mduction techniques. 

1 

lm 

O 

5 
al 
-0 C .- 
O 'CG 
C 

2 
O 

procedures give superior ECG cancellation results compared to the clipping method 

Subject #4 d 
5 

1 Clipping, threshold = 0.17 V 
2 Gatinq. threshold = 0.17 V 

3 3 Template subtraction 
4 ANC 
5 ATS 

2 

and that the ATS method appears to provide the best ECG cancellation. 

z 
O 

I 

l l k . . .  
10 20 JO 

Aiter %nqtR' 
70 80 90 100 10 20 JO 

f i t e r  Yen& 70 ao 4a iaa 

In order to compare the absolute performance of each of these rnethods, the per- 

formance index given by Eq. 6.1 was computed for ECG data collected from several 

subjects and the results are depicted in Figure 6.3. The  primary and residual ECG 

variances required for measuring the performance index, 7eco were calculated using 

the last ECG record in the raw data. For the ANC method, the performance index 

was calculated for different filter lengths, with a delay of half the filter length intro- 

duced in the primary input to compensate for noncausality. Several points can be 



drawn fiom this figure: 

As expected, the clipping method displays the worst performance index for al1 

the subjects. 

The performance of the ANC monotonically increases with the filter order and 

does not appear to saturate even for 100 filter taps for al1 the subjects. This 

indicates that large filter orders are often required for the ANC implementation 

for good ECG cancellation results. 

The template subtraction method outperforms the gating procedure for al1 the 

subjects and is better than the ANC for subjects #3 and #4. The inferior 

performance of the ANC in these cases is due to a small filter order which is 

relatively ineffective in modelling the transfer function function between the 

primary ECG input and the reference ECG input, hence resulting in poorer 

performance. 

a The adaptive template subtraction method offers the best ECG cancellation 

performance among al1 the techniques for al1 the subjects. The significant im- 

provement in employing an adaptive subtraction approach rather than the fixed 

template subtraction method is obvious for each of these subjects. These re- 

sults back the assertion that the ECG possesses certain time varying features 

and hence the need for adaptive filters. Interestingly, for most of the subjects 

the performance of this method is relatively constant for increasing filter orders. 

Thus lower filter orders can be used which makes this method computationally 

ap pealing. 

a The performance index values show variability across the subjects. This is to 

be expected because a) the transfer function between the primary and reference 

inputs is different for different subjects and hence the ANC displays different 

performance values, b) the performance index given by Eq. 6.1 is sensitive to the 



ECG interval over which the variances are computed, and c) the performance 

indices of the clipping and gating procedures are sensitive to the threshold value 

also. The last two points are addressed next. 
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Figure 6.4: Effect of thmshold and interval length on the computation of performance 
indices. 

Figure 6.4 depicts the effect of the selection of the threshold value and ECG interval 

on the computation of the performance index, reco. Figure 6.4 a and b show the 

performance index for decreasing threshold levels. As expected, the performance 

monotonically drops as the threshold value increases. The performance of the ANC 

(also template subtraction and ATS) is constant as it is independent of the threshold 



value. It can be observed that by lowering the threshold value, it is possible for 

the clipping procedure to provide better performance than the ANC. Figures 6.4 c 

and d graph the performance index with respect to the ECG measurement interval. 

To calculate the performance for different ECG intenal lengths, the initial ECG 

waveform (for example, Fig 6.2a) window is gradually shrunk symmetrically from 

either end in steps of 50 samples and the performance index is computed. From 

Figures 6.4 c and d we can see that al1 the performance indices are sensitive to  the 

computation interval, more so in the case of ANC and gating. The same is true for 

performance indices resulting from template subtraction and ATS met hods. Thus the 

ECG interval is a crucial parameter in calculating the pedormance index. Note that 

if the computation interval is confined to the time period where the ECG is gated to  

zero, the performance index of the gating procedure returns a value of infinity. Hence 

the ECG interval should be judiciously chosen such that a fair comparison between 

different methods can be undertaken. In general a window adequately covering the 

ECG complex is deemed sufficient. 

6.2.2 ECG Reduction in SSEP data 

Al1 of the results discussed so far were obtained through processing continuous ECG 

data in the absence of an SSEP. As mentioned before, continuous data collection for 

SSEP measurements can be quite taxing on the computer storage requirements and 

hence the data needs to be "chopped". This is especially true if the stimulus rate 

is lower and a large number of SSEP records need to be collected. In this section, 

the "chopped" SSEP records which are contaminated by the ECG interference are 

analyzed. 1024 data samples, sampled at a rate of 20 KHz, were collected from the 

primary and reference channels with each stimulus pulse (the stimulus period was 

391.7 ms). These data samples constituted one SSEP record, and 1000 such records 

were collected and stored on the computer. A computer program was written to 

identify the primary and reference records which contain traces of the ECG. These 
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records were then input to the ANC filter for cancellation. The filter length of the 

ANC was fixed at  forty. Even though it was shown in the previous section that the 

ANC requires large filter lengths for good ECG cancellation results, filter lengths 

more than forty were not implemented for the fear of introducing SSEP distortion, 

as discussed in Chapter 5, Section 5.4.4. Figures 6.5 a and b display two primary 

SSEP records contaminated by the ECG interference along with the corresponding 

reference ECG inputs obtained from the chest. The ECG residuals produced by the 

ANC operation are also shown in this figure. While the ANC has removed part of 

the ECG interference in both the records, there is still a substantial ECG remnant. 

This is in contrast to the performance of the ANC in reducing continuous ECG 

(shown in Figure 6.lb). This is due to a combination of two factors: a) lower filter 

length - it was discussed in the previous section that large filter lengths are required 

by the ANC for significant ECG reduction, and b) limited ECG information, as 

the chopping procedure results in only a part of the ECG segment being acquired. 

Thus the performance of an ANC will be inferior with "chopped" data compared to 

continuous ECG cancellation. 



The application of template subtraction and ATS methods of ECG reduction to 

chopped data poses a new challenge. Since our objective now is to  reduce that segment 

of the ECG waveform which contaminates the SSEP record (rather than the whole 

ECG waveform as in continuous ECG cancellation), these two techniques have to 

be modified. Essentially, given an ECG template and an SSEP record contaminated 

with an ECG segment, the template subtraction and ATS techniques have to first 

extract the contaminating ECG segment from the ECG template and then perform 

the cancellation operation. This can be done by carrying out the following procedure: 

1. take a contiguous ECG segment (ECG window) of 1024 samples from the start 

of the ECG template. 

2. calculate the mean-squared error between this ECG segrnent and the SSEP 

record and store the mean-squared error value along wit h the window start ing 

point. 

3. rnove the ECG window by one sample and repeat the above step. Perform this 

procedure until the whole ECG template is exhausted. 

4. Find the minimum of the stored mean-squared error values which points to the 

"matching" EC G template. 

Figures 6.6 a-e demonstrate the ECG reduction results obtained t hrough the tem- 

plate subtraction and ATS methods for the "chopped" SSEP data. The ECG tem- 

plate, which was obtained prior to the stimulation and ensemble averaged over ten 

ECG records, is shown in Figure 6.6a. From this ECG template, the ECG segment 

which best matches the interfering ECG segment in a SSEP record is extracted folIow- 

ing the abovementioned procedure. This is shown in Figures 6.6 b-e which depict the 

contaminated SSEP records along with the ECG segment extracted from the ECG 

template. It can be observed that the extracted ECG segment matches the interfering 

ECG waveform quite nicely in both the SSEP records. Figures 6.6b and 6.6d display 
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the performance of the template subtraction method qualitatively. Substantial ECG 

reduction is evident in these figures especially when compared to the ANC cancella- 

tion performance shown in Figures 6.5 a and b. Figures 6 . 6 ~  and 6.6e show the ECG 

reduction results using the ATS method. Here the matching ECG segment extracted 

from the ECG template is given to  a twenty tap adaptive filter dnven by the LMS 

algorithm. Once again, good ECG cancellation results are apparent and are better 

than both template subtraction and ANC procedures. 

To further demonstrate the performance of these techniques, the improvement 

in the quality of the SSEP at the output of each of the ANC, template subtraction 

and ATS procedures is compared and these results are shown in Figure 6.7. Figure 

6.7a displays the SSEP record which was ensemble averaged over 1000 records (as- 

sumed as the true underlying SSEP waveform) along with the ensemble average of 

100 SSEP records contaminated by the ECG. It is obvious from this figure that the 

ECG interference completely obscures the SSEP information. The ensemble averaged 

SSEP estimate at the output of the ANC is shown in Figure 6.7b. While the ANC 

is successful in partly removing the interfering ECG, there is still a substantial ECG 

"left-over" and consequently the SSEP estimate is of poor quality. The results using 

the template subtraction method is shown in Figure 6 .7~.  Here we can see that much 

of the ECG interference has been reduced and the SSEP estimate resembies the un- 

derlying SSEP waveform. Finally, the SSEP estimate produced by the ATS method 

is shown in Figure 6.7d where an SSEP estimate "closest" to the underlying SSEP 

waveform can be observed. 

The "closeness" of each of these SSEP estimates to the true SSEP waveform is 

quantified using the following normalized mean squared error measure, 

where s ( k )  is the SSEP waveform and Z(k) is the SSEP estimate produced by any of 
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Figure 6.7: SSEP estirnates by ANC, template subtmction and A TS procedures. 

the abovementioned techniques. Figure 6.8 provides a graphical representation of the 

PECG measure for two different subjects. From this picture, it is clear that the ATS 

method procures the best ECG cancellation perfarmance and consequently a better 

quality SSEP estimate. 

6.2.3 A Note on Clipping 

So far, the experiments have been confined to collection and processing of unclipped 

ECG and SSEP data. As mentioned at the beginning of this chapter, it is beneficial 



Figure 6.8: Distortion measuni?, P E ~ G  for dgemnt techniques. Label uRaw" denotes the 
SSEP estimate obtained without any ECG reduction, '<ANCn denotes SSEP estimate at the 
output of the ANC, "Temp.Subn =fers to the SSEP estirnate due to the template subtmction 
openation and uATSm refers to the SSEP estimate by  the ATS method. Al1 SSEP esfimates 
aw ensemble avemged over hundred such mcordP. 
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to clip the input data prior to A/D conversion for better SSEP resolution. This 

--- -- -- --- 

is usually achieved by placing back-to-back diodes in the input amplification stage. 
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From the ECG reduction point of view t his input clipping operation however manifest s 

itself in the following characteristics: 

a Since the clipping operation is nonlinear in nature, the transfer function between 
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the primary and reference ECG waveforms will be nonlinear also. Consequently 

linear FIR filters, which form the basis for the ANC mode of ECG reduction, 

will not be effective in reducing the ECG with the clipping circuits in place. 

Nonlinear Adoptive Filters (NAFs), such as the ones discussed in Chapter 5 ,  

may need to be deployed to remove the unwanted ECG interference. The perfor- 
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Since the SSEP and the ECG are additive, the clipping operation results in 

SSEP distortion when both the SSEP and the ECG occur at the same time. 

Note that the probability of this event happening is very low (see Appendix 

VI for probability calculations), and its effect is negligible when an adequate 

number of SSEP records are ensemble averaged. However, since there is no 

SSEP information in these ECG contaminated SSEP records, applying ECG 

reduction techniques to these records will be of very limited use. 

The two points discussed above are demonstrated using experimental SSEP data. 

In Figure 6.9a, a single SSEP record corrupted by the clipped ECG is shown for 

one of the subjects. The residual ECGs at the outputs of linear and nonlinear ANC 

schemes for this record are also shown. The linear ANC was realized using a sixty 

top FIR filter driven by the LMS algorithm. The nonlinear ANC filter was based on 

the second order truncated Volterra series as described in Chapter 5. The nonlinear 

ANC was also driven by the LMS algorithm. From Figure 6.9a, we can see that the 

clipping mechanism introduces artifacts in the linear ANC output especially when 

the ECG waveform changes phase. On the other hand, the nonlinear filter appears to 

handle this well and produce a lower ECG residual. Figures 6.9b-e display the SSEP 

enhancement results for two different subjects. In each of these plots, the SSEP after 

an ensemble average of 1000 records, the SSEP after an ensemble average of 100 

records, the ensemble average of the same 100 records at the output of the nonlinear 

ANC and after the "chop-and-discard" method were compared. Let us recall that the 

"chop-and-discard" method just throws away the ECG contaminated records without 

any special data processing. From these plots, we see that both the nonlinear ANC 

and "chop-and-discard" procedure appear to have irnproved the quality of the SSEP 

cornpared to the SSEP which has been averaged using only 100 records. However, 

the quality of the SSEP estimate obtained through nonlinear ANC is quite similar 

to that obtained due to "chop-and-discard" method. Thus when working with the 

clipped SSEP data, the extra computational load carried by the adaptive filtering 
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Figure 6.9: ECG reduction from SSEP data obtained with clipping diodes in place. 



techniques is not justified. 

6.3 Conclusions 

In SSEP recording experïments, the larger ECG interference poses a problem. In 

this chapter several ECG reduction techniques are explored and their performance is 

compared under different experimental conditions. These techniques are discussed in 

detail below. 

The clipping procedure is the simplest ECG reduction technique. Back-tc+Back 

diodes can be placed in the input path to effectively remove large ECG components. 

It is also useful in increasing the dynamic range of the SSEP signal and hence is 

recommended in general situations. However, this technique alone cannot comptetely 

solve the ECG problem. The clipping procedure leaves ECG remnants which may 

still be quite large compared to the SSEP, especially at  the higher levels of the spinal 

cord where the SSEP amplitude is much smaller and the ECG magnitude is larger. 

Another significant problem with input clipping is the complete loss of the SSEP 

waveform if it occurs during the clipped time frame of the ECG signal. 

The gating procedure offers a relatively effective solution to the ECG problem. In 

this procedure, a11 the voltage levels above a certain preset threshold are reset to zero. 

A subset of the gating procedure, is the "chop and discard" routine where the input 

data is chopped into SSEP records, and any SSEP record containing a trace of the 

ECG is discarded. The main problem with this method arises only when more and 

more SSEP records are corrupted by the ECG and hence are discârded. However in 

practice, the probability of an ECG occurence in a SSEP record is quite low (around 

84% for a11 the subjects participating in this study, see Appendix VI) and hence this 

method can be very efficient. 

With unclipped and continuous ECG data, the ANC produced good results for al1 

the subjects. It is shown that large filter lengths are required for the ANC to provide 



good performance indices. Another problem with the ANC is the placement of the 

reference input. The template subtraction method overcomes this problem of selecting 

the reference input. By collecting the reference input using the same electrodes as 

the primary prior to the stimulation procedure, the problem of SSEP, SA and ME1 

crosst alk is averted. The performance results show t hat template subt raction alone 

is on par with the ANC technique with the adaptive template subtraction method 

outperforming bot h of them. Thus with continuous unclipped ECG data, adaptive 

template subtraction is the best method for ECG cancellation. Cont inuous data 

collection for SSEP measurements places a strain on the storage requirements. An 

efficient way of SSEP data storage is to acquire only a time-window after the stimulus 

pulse. This "chopped" SSEP data collection results in only a part of the ECG being 

acquired. Thus modifications have to be made to both template subtraction and 

ATS routines to take this effect into consideration. With these modifications in 

place, the template subtraction and ATS procedures once again displayed superior 

ECG cancellation capabilities compared to an ANC. 

With the introduction of clipping circuits to increase the range of the SEP, the 

ANC, template subtraction and ATS methods fail to  reduce the ECG. This is because 

the t ransfer function between the primary and reference ECGs becomes nonlinear 

and hence nonlinear ANCs are required to cancel the ECG. Nonlinear ANCs are 

a magnitude greater than the linear ANCs in terms of computational cornplexity. 

Thus, while good SSEP enhancement results may be obtained using the nonlinear 

ANC procedure, from both the practicaljty and efficiency point of view, the "chop- 

and-discard" method appears to be the right technique for ECG reduction. It is also 

shown that the quality of the SSEP estimates produced by a nonlinear ANC and 

"chop-and-discard" met hod are roughly the same. 

Thus in essence, it is best to use the adaptive template subtraction method for 

reducing the ECG interference in unclipped SSEP data and the "chop-and-discard" 

technique for SSEP data collected wit h clipping circuits in place. 



Chapter 7 

Conclusions 

7.1 Summary 

Somatosensory Evoked Potentials (SEPS) are clinically valuable signals which b o a t  

great potential in applications such as spinal cord monitoring during surgery and 

diagnosis of neurornuscular disorders. The main problem associated with these wave- 

forms when acquired noninwively is t be poor Signal-tu-Noise Ratio (SNR) . Several 

noise sources stemming from both biological and nonbiological processes are respon- 

sible for this poor SNR. The goal of this thesis was to devise novel signal processing 

techniques to decrease the influence of these noise sources on the SEP waveform, whiie 

still maintaining its essential parameters. To the best of the author's knowledge, this 

is the first research to investigate the effects and interactions of al1 the interferences 

that are encountered in SEP recordings. 

The  myoelectric interference is the electrical manifestation of the  muscular activ- 

ity. The myoelectric interference is the chief contributor to the poor SNR of the MSEP 

signal and one of the significant noise sources in the SSEP data collection scenarios. 

In this thesis, adaptive noise cancellation technique was employed to reduce the my- 

oelectric interference. Two major factors that influence the performance the basic 

ANC, viz. the presence of the uncorrelated noise sources and the signal crosstalk, 



were studied bot h analytically and t hrough simulations. A crosst alk resistant a d a p  

tive noise canceller (CRANC), which is a cascade of two ANCs, was then studied 

in detail. While the CRANC structure is impregnable to crosstalk in the absence 

of uncorrelated noise sources, it was found that its performance is comparable to an 

ANC in their presence. Two alternative schemes were developed to mitigate the influ- 

ence of the uncorrelated noise sources. The first one was the multireference CRANC 

(MCRANC) structure where a multiple reference ANC was employed in the second 

stage of the CRANC structure. In addition to "averaging" out the influence of the 

uncorrelated noise sources, the MCRANC structure also compensates for the j itter 

in the SEP signal. A significant drawback associated with the MCRANC structure 

was the requirement of a large nurnber of reference channels in low SEP SNR situ- 

ations. The second CRANC structure, the ensemble-averaged CRANC (ECRANC), 

is a more practical solution in this case. The multiple reference ANC structure in 

the second ANC of the CRANC was replaced by a straight ensemble averager which 

reduces the computational complexity of the ECRANC significantly. Simulation and 

experimental results showed that the ECRANC is the CRANC of choice with Iow 

SNR SEP data. 

The stimulus artifact (SA) is a nonbiological, stimulus dependent interference. 

Since it occurs in synchrony with the SEP signal, its effect cannot be reduced through 

plain ensemble averaging. Furthermore, the SA generation mechanism is nonlinear 

due to  the quadratic relationship between the stimulus voltage and the stimulus 

current. Hence linear signal processing techniques are ineffective in reducing the 

SA. In this thesis, nonlinear adaptive filter (NAF) structures based on the truncated 

second order Volterra series were used for the SA reduction. The performance of the 

NAF was scrutinized under a wide variety of experimental conditions. Several factors 

which degrade the performance of the NAF such as the suboptimal filter length, 

the presence of the SEP components, and the background noise were thoroughly 

investigated. The NAF was shown to perform well with most of the experimental 



SEP data. There were some cases where the NAF did not seem to  remove most of 

the SA. This is probably due to "undermodellingn of the SA generation system by the 

NAF - either due to its suboptimal filter length or due to the presence of higher order 

nonlinear terms. For these cases, it is worthwhile to investigate the performance of a 

more generalized nonlinear filter such as the  neural network based ANCs. 

The ECG forrns a significant noise source in SSEP studies. The ECG interference 

is so large compared to the SSEP signal that clipping circuits may be required in 

the input to  increase the dynamic range of the SSEP waveform. For unclipped ECG 

data, adaptive noise cancellation technique was once again preferred. By using an 

ECG template which was obtained p io r  t o  the stimulation as the reference input 

to  the ANC, the hazards of the SEP crosstalk and the presence of other corretated 

interferences was vastly reduced. This method, termed as the adaptive template 

subtraction (ATS) method, was shown to be the best ECG reduction technique. 

In addition, the computational complexity of the ATS method is low, making it 

attractive for real-time ECG reduction scenarios. Wit h clipped ECG data, however, 

it was found that adaptive noise cancellation technique did not perform any better 

than just discarding away the ECG contaminated SSEP records. Since the probability 

of ECG occurance in a SEP record is low, this procedure is preferred with clipping 

circuits in place. 

Several major research contributions are made and these are detailed in the fol- 

lowing section. 

7.2 Contributions 

The major contributions of this research work in reducing different interferences are 

categorized below: 



7.2.1 Myoelectric Interference 

a Theoretical development of the Multireference Adaptive Noise Canceller (MRANC). 

a Thorough analytical treatment of the Crosstalk Resistant Adaptive Noise Can- 

celler (CRANC) st mcture backed up by exhaustive simulations. 

a Development of two novel variations of the CRANC structure: 

1. Derivation of a constrained CRANC (CCRANC) algorithm whish offers 

comput ational savings. 

2. A three-sensor Delay and Difference Array Processor (DDAP) and the 

msociated algorithm which exploits the propagation characteristics of the 

SEP and the MEI. 

a Theoretical evaluat ion of a novel mult ichannel CRANC (M CRANC) structure, 

which is robust to  the presence of uncorrelated noise, and its validation using 

simulated and experimental SEP data. 

a Development of the  Ensemble averaged CRANC (ECRANC) which is effective 

in low SNR situations. 

7.2.2 Stimulus Artifact Reduction 

a Application of Nonlinear Adaptive Filters (NAFs) based on second order trun- 

cated Volterra series to stimulus artifact cancellation. 

a Identification of several issues related to SA cancellation using adaptive filters 

such as the effect of the SEP in the primary, background noise and filter length 

and t heir work-arounds. 

a Comparative analysis of LMS and RLS algorithms in SA cancellation under 

different conditions and recommendations based on this analysis. 



7.2.3 ECG reduction 

0 Comparative analysis of different ECG reduction techniques for different exper- 

irnental conditions. 

O Development of template subtaction and Adaptive Template Subtraction (ATS) 

methods for ECG reduction with Uchoppedn unclipped SSEP data. 

Theoretical calculation of the probability of ECG occurence in a SSEP record. 

Investigation of the effects of clipping and recommendations based on this in- 

ves t igat ion. 

7.3 Future Work 

This thesis was originally intended to develop a multistage SEP enhancer which will 

systematically reduce al1 the interference sources. While this thesis has achieved a 

substantial mileage in reaching this goal, there are still some issues which need to  be 

further researched. Some of these are 

0 Development of a SEP enhancement toolbox which amalgamates the best signal 

processing techniques detailed in this thesis. 

0 Realtime implementation of some of the signal processing techniques described 

in this thesis. For example, the cornparison of the computational times required 

by the ECRANC and the B&I< signal analyzer to achieve similar SEP quality 

is an interesting project. Also implementations of the nonlinear LMS algorithm 

for realtime SA cancellation and of the ATS algorithm for ECG reduction are 

worth pursuing. 

0 Alternative signal processing techniques need to be researched for ME1 cancella- 

tion at high contraction levels. Adaptive filters based on higher order statistics 

may be quite useful here. 
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Appendix 1 

Constrained CRANC Filter 

1.1 Derivat ion of Constrained CRANC Algorithm 

Figure 1.1: Block diugrum of the CRANCfilter in the absence of uncorrelated noise sources. 

The Z-domain block diagram of the CRANC filter structure in the absence of 

uncorrelated noise sources is repeated in Figure 1.1 (refer to Chapter 4 for a complete 

description of this block diagram). The Wiener solutions for AF #1 and AF #2 were 



derived in Chapter 4, Eqs. 4.1 and 4.5 and are reproduced below, 

The idea is to use the informat ion possessed by A F  #1 in constraining the adapt ion 

of A F  #2. In other words, the adaption of A F  #2 could be constrained to just the G(z) 

parameters. To simplify notation, let W ( z )  = Wl(z) and &z) be the transfer function 

that needs t o  be adapted. The objective is to derive a gradient search algorithm that 

updates G(z)  in such a way thot G(z) approaches G(z) as the algorithm converges. 

Let G(z) = & + +lz-L + . . . + gM-12 -("-l) a d  W(z) = wo + wlt-l + . . . + 
W~-~Z-(~-') where M is the length of G(z )  and L is the length of W(z). It is assumed 

that G(r )  iç of adequate order to mode1 the G(E)  tramfer function. The derivation 

of the adaption algorithm starts with the following equation for the error output of 

AF #2, 

= ~2(k) - W )  (1.2) 

The gradient vector with respect to the G(t )  transfer function is given by, 

where G is the g-weight vector defined as G = [go, gl, . . . ,&f-i]T. Thus the problern 

now simplifies to finding the partial derivatives of f 2 ( k )  with respect to G. To do 

this, we need to write &(k) in the time domain in terms of Cs. This can best be done 

by first starting out in the frequency domain, 



and 

which can be written as 

Transforming the above equation into the time domain, we have 

Due to the explicit dependency of above equation on the weight go, the partial 

derivative of F2(k) with respect to go is different from al1 other gis. The partial 

derivative with respect to go can be expressed as, 

The partial derivatives with respect to other weights can be similarly derived as 



With this information, we can express the gradient vector as 

and the update for g  ̂ vector is given by 

where p = [po, p i , .  . . , pM-llT is the adaption control vector. 

1.2 Error Performance Surface 

The objective of this Section is derive an expression for the error surface at the output 

of AF #2 when its adaption is constrained by the above algorithm. This expression 

not only facilitates thmretical calculation of the minimum mean squared error at the 

output of A F  #2 but also is of immense help in locating possible local minima. Let 

the transfer function of AI? #2 be 

Note that W ( z )  is known to us from the transfer function of A F  #1. The error 

performance surface for A F  #2 is obviously a function of G ( z )  and, with z = ejw,  can 

be written as ' 

Since ~ 3 ( k )  = ~ 2 ( k )  - & ( k ) ,  4 r 3 q ( ~ )  on the righthand side in the above expression 

can be evaluated as 

- - - - -- 

'For simplicity, the sampling frequency, w, is set to 2n. 



After a few mathematical manipulations and substitutions the above equation sim- 

plifies to 

Thus if we know the spectral densities cf the desired signal (s,(k)) and the inter- 

ference (+(k)) along with the crossta& and interference transfer functions, we can 

theoretically evaluate the error surface for different d u e s  of ~ ( u ) .  This will enable 

us to determine if the error surface has any local minima. 



Appendix II 

Delay and Difference Array 

Processor (DDAP) 

11.1 Basic DDAP 

I Direction of propagation 

J. Output 

Figure II. 1: Block diugmm of the basic Delay and Differwzce A m y  Pmcessor (DDAP). 

Wit h the first stage successfully removing the myoelectric interference t hrough 



estimating the A parameter, we have, 

y2(k) = s(k + 6 - A) 

+2(k) = ~ ( k )  - 3(k + 6 - A). 

The Wiener solution to the adaptive filter is 

(II. 1) 

(11.2) 

where = A - 6 is the difference in ME1 and SEP propagating time delays. From 

Eq.3, we can observe that there is only one unknown pasameter, viz. the p parameter. 

Thus an adaptive algorithm which estimates the <p parameter will considerably reduce 

the computationd burden on the adaptive filter. Let @ be the estimate of rp parameter. 

The idea is to increment or decrement the value such that the error at the output 

of the A F  (refer to Figure 114 is minimized. Now the error signal at the output of 

the AF is given by, 

53(k) = ~ 2 ( k )  - ?2(k)- (11.4) 

The gradient vector with respect to @ is given by, 

In order to evaluate the y terrn, we have to write out c 2 ( k )  as 

which implies 

Without any a priori knowledge of the signal characteristics, it is not possible to 

evaluate the above partial derivatives with respect to @. If we use symmetric difference 

as an approximation to the partid derivatives we have, 



With this approximation, the update d e  for the 8 parameter is given by, 

where p is the convergence control parameter. The above algorit hm poses a significant 

problem: Due to the feedback nature, any error in the initial gradient estimates 

recycles through the algorithm making it unstable (even for smaller values of p. Thus 

correct initialization is required which implies that for this algorithm to be viable, we 

need to have a priori knowledge of the signal. 

We can enhance this algorithm by modifying the structure of the DDAP. The 

modified DDAP is shown in Figure 11.2 where an extra sensor is utilized. Once again 

assuming that the first stage has successfully estimated the A parameter, we have at 

nodes #1 and #2, 

y ( k )  = ~ ( k )  - s ( k  + 26 - 2A) = s ( k )  - ~ ( k  - 2 9 ) ,  (II. 1 1 )  

+ ( k )  = ~ ( k )  - s ( k  + 6 - A) = s ( k )  - s ( k  - p). (II. 12) 

If we construct an adaptive structure, as shown in Figure 11.3, with x ( k )  as the 

reference input and y ( k )  as the primary input, the optimal solution to the AI? block 

is, 

W ( E )  = 1 + Z-*. (II. 13)  

Instead of implementing the AF block as a standard FIR filter, which may require 

quite a few number of taps if the p parameter is large, let the A F  block have a transfer 
CI 

function, 1 + z-', where Q is an estimate of Q. Once again, the objective is to derive 



2A 
Estimation of 1 

Figure 11.2: Modified DDAP. 

an adaptive algorithm for iterative updating of the @ value in the form of 

which simplifies to 

From Figure 11.3, we have 

and 

(II. 14) 

(II. 15) 

(II. 16) 

(II. 17) 

Once again, if we have a prion'knowledge of the signal, the above partial derivative 

can be derived exactly. In the absence of any such information, the partial derivative 

is substituted by the symmetric difference approximation resulting in, 

(II. 18) 



Figure 11.3: Second stage of the rnodified DDAP. 

Thus the updating algorithm for the cp estimate is 

$(k + 1) = $(k) + pe(k){x(k - @ - 1) - x(k - @ + 1)). (II. 19) 

Once again we can derive an expression for the error surface at the output of the 

second stage as  a function of p. We start with, 

From Figure 11.3, 

which implies 

~ E E ( W )  = ~ Y Y  (4 + &P(w) - 29i{4yy ( w ) )  

which simplifies to 



Appendix III 

Theoretical Analysis of the 

MCRANC 

III. 1 Optimal Weight Vector Derivation 

The block diagram of the MCRANC is shown in Figure IIL1 where s,(k) is the 

desired SEP signal, np(k) and nr(k)  are the prirnary and reference ME1 sources, y ( k )  

and ur(k) are the primary and reference uncorrelated noise sources, h ( k )  is the ME1 

transfer function, g ( k )  is the crosstalk transfer function, Wl(z) ,  W&(z) . . . W2&) are 

the adaptive filters and M is the number of reference channels. The parameter D in 

the second stage of the MCRANC structure represents a delay of one stimulus period. 

Essential for the successful operation of this structure is to allow the first ANC to 

converge before the advent of the SEP. The Wiener solution of AF #1 is then given 

by, 

(III. 1) 

where r r ( z )  is the ratio of uncorrelated and ME1 power spectral densities in the 

182 



Figure III. 1: Block diagmrn of the MCRANC. 



reference input to A F  #1. The unconstrained Wiener solution to the second stage of 

the MCRANC is a set of optimal transfer functions represented by, 

and is given by the discrete Wiener-Hopf equation, 

where dxx(z) is the reference input spectral density matrix given by 

where dx,ix2j (z) is the cross-spectral density between the i th and j t h  reference chan- 

nels of the second stage of MCRANC. The cross-spectral density between the primary 

and reference inputs is q5yX(z) which can be expressed as 

4yx(z) = 

Let 

If we make the following reasonable assumptions: 



The ME1 and the uncorrelated noise sources are wide sense ergodic processes, 

The SEP repeats itself f a i t M y  every D seconds, and 

Both the ME1 and uncorrelated noise sources are uncorrelated with themselves 

after D seconds. 

and 

giving us the Wiener solution for the second stage of the MCRANC as 

Note that under the stationarity assumption, al1 of the adaptiw: filters have the same 

optimal transfer function. The output signal estimate can be easily calculated as, 



Now, 

and, 

lim 1 + MWz1(z) = 1 + 
M+oo 

= 1+  

(III. 11) 

(III. 12) 

From Eqs. III. 10 and III.12, we can see that as  the number of reference channels in 

the second stage MCRANC tends to infinity, the SEP estimate at the output of the 

MCRANC approaches the undistorted input SEP. 

The ME1 and uncorrelated noise components at the output of the MCRANC filter 

can bc expressed as 

(III. 13) 

and 

(III. 14) 

9v.v. = drJ&(z) Il + (1 + z - ~  + . + z-(M-1)D)~21(z)(2 + 
dupu&) IW(z) + (1 + z - ~  + ... + Z - ( ~ - ' ) ~ ) W ~ ( Z ) W ~ L ( Z ) ~ ~  

As the number of channels tends to infinity, these can be expressed as, 

~ N M ( Z )  = ~ ~ O O d ~ o ~ . ( z )  = ~N,N,(z) 11 - H ( z ) w I ( ~ )  I 2  (111.15) 

~ U M ( Z )  = JF~~.u.(z) = d ~ , ~ , ( z )  + h.v. (2) I ~ i ( z )  l 2  (111.16) 

Thus the SNRGAIN, 7 ,  achieved by the MCRANC filter has an iipper Sound given 

(III. 17) 



with the integrals evaluated on the urGf iircie in the Z domain. Thus, as the number 

of reference chûrineis in the second stage of MCRANC is increased, the SNRGAIN 

increases until it reaches the maximum value while the signal distortion decreases 

regardless of the amount of signal crosstalk and even in the presenca of uncorrelated 

noise sources. 



Appendix IV 

SA Cancellation in the Presence of 

an SEP 

IV. 1 Introduction 

As discovered in Chapter 5, the presence of an SEP, even if it is in the primary input to 

the adaptive filter, drastically affects the convergence of the adaptive filter resulting 

in u~idesirable SEP distortion. A detailed study of the perils of adaptive filtering 

operation on the SEP is therefore undertaken in this appendix. For pedagogical 

reasons, two cases are considered separately: a) primary and reference SAS related 

through a linear transfer function, and b) primary and reference SAS related through 

a second order Volterra model. 

IV.2 Linear SA transfer function 

The reference SA, S&(k),  in al1 the ensuing simulations is an experimentally acquired 

SA waveform which bas been ensemble averaged to diminish the background noise. 

The primary SA, SAJk),  for this section is generated through filtering the reference 

SA using a linear filter whose impulse response is given by 



Figure IV. 1: SA cuncellation blmk diagram. 

Hli,,(k) = ëYio k = 0, ..., 19 (IV. 1) 

Figure IV.2 shows the primary and reference SAS used for this study. The desired SEP 

was generated using the analytical mode1 given in Chapter 5. This SEP waveform 

is delayed and added to the SA, waveforrn to generated the primary input to  the 

adaptive filter, y (k)  (refer to Figure IV. 1). The SEP+SA cornposi tes for four different 

SEP positions are shown in Figures IV.2 c-f. Let us cal1 these four different primary 

inputs as ~ ~ ~ ~ ( k ) ,  ~ 1 0 ~ ( k ) ,  ySo(k) and y2,(k) respectively with the number designating 

the start of the SEP waveform in the SEP+SA composites. Now the Wiener solution 

for the adaptive filter in the time domain is given by, 

where k, is the auto-correlation matrix given by 
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Figure IV.2: Simulated SEP and SA data to demonstmte the efects of adaptive filtering 
on the SEP. 
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where N is the Hter  length and 

rP(a)  = Ef(x(k)x(k - a)) 

and P, is the cross-correlation vector given by 

where 

P F ( ~  = E' (y (k )x (k  - a))* 

(IV. 5) 

As the SEP and SA are additive in the primary input to the ANC, the cross-correlation 

vector can be spiit into 

Pw = PSA + PSEP-SA (IV. 7) 

where Psa corresponds to the cross-correlation between the SA components in the 

primary and the reference, and PSEP-sA represents the cross-correlation between the 

SEP in the primary input and the reference SA. It is this PSEP-SA function that is the 

root cause of SSEP distortion. If the SEP and SA and were uncorrelated waveforms, 

this term would have been zero and the Wiener solution would have depended solely 

on the SA characteristics. Unfortunately due to the deterministic nature of the SEP 

and SA waveforms, PSEP-sA is usually non-zero. The PSEP-SA functions for the four 

different SEP positions are depicted in Figure IV.3. The non-zero cross-correlation 

function between the SEP waveform and the reference artifact is evident in this figure. 
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Figure XV.3: SEP-SA cross-comlation. The mss-comlation function between the primary 
SEP and the r e f e n c e  SA for four diffemnt SEP positions am depicted in this figure. 

However, notice that the cross-correlation function is tied to the position of the SEP 

and hence there is a range of "close-to-zero" cross-correlation values. These values 

are key to the successful operation of an adaptive filter. If the length of the 

adaptive filter is constrained to be wi t hin t his "close-t*zeron cross-correlation value 

range, the SEP distortion will not be noticeable. To explain this fact further, let us 

look a t  Figure IV.3a. The cross-correlation values axe not significant until around a 

lag value of 130 sarnples. Thus, as long as the length of the adaptive filter is less than 

130, the distortion incurred by the SEP will not be noticeable. In the sarne way, filter 
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Figure IV.4: Efect of filter length on SEP distortion. DistottMn indices for diferent 
adaptive filter lengths for each of the four cases am shoum hem. 

lengths of greater than 80 taps will cause distortion for the case in Figure IV.3b and 

a 30 tap filter will introduce distortion for the case in Figure IV.3c. Figure IV.3d is 

the worst case as any non-zero filter length will result in significant SEP distortion. 

The effect of filter length on SEP distortion is demonstrated for each of the four 

cases. Adaptive filters of varying filter lengths were employed to cancel the SA, wit h 

each of the four composites shown in Figure IV.2c-f as the primary inputs and the 

SA waveform shown in Figure IV.2b as the reference input. Once the adaptive filter 

has converged, the SEP estimate at the output of the adaptive filter is retrieved and 



the amount of SEP distortion is quantified once again using the following distortion 

index. 

where S(k)  is the SEP estimate a t  the output of the adaptive filter. Figures IV.4a-d 

depict the distortion indices obtained for the four cases corresponding to different 

SEP positions. The following comments can be made based on these results: 

0 For al1 the cases, the distortion index p s ~  is the lowest at a filter length of 20. 

This is to be expected as the optimal filter length for total SA cancellation is 

20. 

0 For filter lengths less thon 20, the adaptive filter is "under-modeledn for SA 

reduction. The adaptive filter, consequently leaves substantial artifact residue 

and this causes the SEP to  appear distorted. Note that for these filter lengths 

the true SEP waveform is unaffected but it is the residual artifact that is re- 

sponsible for the distortion index. 

0 For filter lengths greater than 20, the distortion index can be seen to steadily in- 

crease for cases #1 to #3. This is due to the effect of the finite cross-correlation 

between the SEP and SA. For these filter lengths, the adaptive filter is "over- 

modeledn to cancel the SA and the extra filter weights are affected by the 

presence of the SEP, thereby creating some distort ion. 

0 The distortion index jumps sharply as the filter length approaches the "non- 

zero" cross-correlation region. In case #1, the SEP and SA are comfortably 

separated and hence even a filter length of 100 did not result in significant dis- 

tortion (less than 0.1%). For case #2, there is a sharp increase in the distortion 

index around 85. This, from Figure IV.3b, can be seen as the start of the non- 

zero SEP-SA cross-correlation. Similarly,for case #3, there is a sharp increase 

in the distortion index around a filter length of 35 whicb once again corresponds 



to the beginning of the non-zero phase of the cross-correlation huiction. Note 

that the distortion index saturates to unity as the flter length increases. This 

means that the SEP is being canceled by the adaptive filter as well!. 

The increased filter lengths enable the adaptive filter to mode1 the SEP+SA 

composite in the primary based on the reference SA! (-4 pictorial exarnple of 

this phenornenon is given in Figure N.5). Case #4 is the worst case as the dis- 

tortion index is close to 1 for filter orders greater than 15. This means that, for 

this case, no matter what filter length is used, severe SEP distortion will occur. 

Case #4 makes one point clear: if the SEP is positioned close to the SA peak, 

there is no least squares filtering technique t hat will retrieve an undistorted SEP 

from SEP+SA composite. Fortunately, the SEP and SA are usually separated 

in time and thus there is hope for applying least squares filtering techniques in 

SA cancellation. 

As a last exarnple for this section, the "creation" of the SEP component by the 

adaptive filter at  higher filter lengths is displayed in Figure IV.5. The primary, y(k) 

(refer to Figure IV.l), and reference, x ( k ) ,  inputs used for this simulation example 

are shown in Figures IV.5a and b. The adaptive filter outputs, Y(&) for two different 

filter lengths are displayed in Figures IV.5c and d. It can be observed that for a filter 

length of 20 taps, the adaptive filter produced an output which matched only the SA 

component in the primary input. Thus the error output, e ( k )  = y(k) - f ( k )  will be the 

SEP estimate with very little distortion. On the other hand, the adaptive filter with 

a length of 50 taps, "createdn the SEP component as well in its output. This when 

subtracted from the primary input results in a highly canceled SEP. This example 

t herefore effectively demonstrates the perils associated with using high filter lengt hs 

for SA cancellation. The only solution to this problem is to segment the adaptation 

such that the presence of the SEP does not affect the convergence of the adaptive 

filter. Note that even a segmented adaptation approach will be difficult to implement 

for the case #4. 
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Figure IV.5: Pictorial demonstmtion of the SEP cancellation phenornenon. The prima y 
and wference inputs to the adaptive filter are giuen in a) and b). The adoptive filter outputs 
for two dii femt füter lengths are shown in Figures c) and d). Note that for a füter length 
of 20, the adaptiue filter estimates the interferhg artifact but a filter length of 50 estimates 
the SEP component as well. 

IV.3 Nonlinear SA transfer function 

If the SA transfer function were linear, the above discussion (based on SEP-SA cross- 

correlation) neatly describes the SEP cancellation phenomenon. Wit h a nonlinear 

function modelling the relationship between the primary and reference SAS, this 

method of demonstration, however, is not possible. However, we can still investi- 

gate the effect of the filter length on the SEP distort ion through simulations in much 

the same way as in the previous section. 
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Figure IV.6: Effect of ncnlinear flter length on SEP distortion. Distortion indices for 
diffeent nonlinear adaptive filter lengths for each of the four cases are shown here. 

The nonlinear mode1 between the reference and primary SA was a second order 

Volterra filter of filter length 5 given by (reproduced frorn Chapter 5) 

for k=O 

for k = 1,2, ..., 20 

The prirnary SA was generated by passing the reference SA through the above 

filter. To the primary SA, once again, the SEP was delayed and added just as in 

the previous section. For the four cases of SEP position, nonlinear adaptive filters 



(NAFs) based on second order Volterra series and of varying filter lengths were em- 

ployed to cancel the primary SA. Once convergence was established, the output SEP 

estimate was once again retrieved and the distortion index, p s ~ ,  given by Eq. IV. 1 

was computed. This distortion index for the four different cases is depicted in Figures 

IV.6a-d. Once again, we can make the following observations: 

Once again, except for case #4, the distortion index, PSA, is lowest when the 

füter length of NAF is 5, which is the optimal filter length. 

Interestingly, the distortion indices for cases #1 and #2 are almost identical. 

This is probably due to the fact that the position of the SEP far exceeds the 

filter memory in both the cases. 

a For al1 the cases, the distortion indices resulting from using the NAFs are higher 

compared to the distortion indices obtained using the linear adaptive filters of 

same filter lengths. This shows that , in general, the NAFs will be more severe on 

the SEP distortion than their linear counterparts. This is due to the additional 

second order terms that are present in the nonlinear adaptive filter. Note that , 
N(N+l) the effective number of parameters for an NAF of filter length N, is N + . 

Thus for a filter length of 15, the effective number of coefficients is 135! Thus 

even though the filter length is 15, the parameter space has a dimension of 

135 and thus an NAF can be dangerous even if the SEP and SA are separated 

comfortably. This can be seen in Figure IV.6a and b where the distortion index 

is close to 10 % for a filter length of 15, while the linear filters exhibited a 

distortion index of 0.1% for a filter of 100 for the same data. 

In essence, the finite cross-correlation between the SEP and SA has a direct influ- 

ence on the convergence behavior of an SA cancelling adaptive filter. The arnount of 

this influence is directIy tied to the relative position of the SEP to the SA waveform. 

If the filter length of the linear filter within a certain range, called the '4close-to-zero" 



range of the SEP-SA cross-correlation, then the SEP undergoes negligible distor- 

tion. If the f l ter  length exceeds this range, the adaptive filter attempts to mode1 the 

SEP+SA composite, and tremendous signal cancellation occurs. 

Due to the presence of second order terms, the NAF has more degrees of freedom 

and hence is more affected by the presence of the SEP in the primary input. This 

affect manifests itself in significant SEP distortion which may still be present even if 

the SEP and SA are comfortably separated. Thus extreme caution has to be exercised 

in employing either linear or nonlinear filter to the task of SA cancellation. 



Appendix V 

RLS and LMS algorithms in 

Nonlinear SA Cancellat ion 

V. 1 Nonlinear Adaptive Filtering 

Any discrete, causal nonlinear system can be represented by the infinite Volterra 

series expansion [35, 361 given by 

where x(n) is the input to the nonlinear system, y ( n )  is the output and hp(al, oz,. . . ,a,) 

is the p-th order Volterra kernel of the nonlinear system. While the infinite Volterra 

series can precisely characterize a nonlinear system, due to obvious constraints on the 

data and computational capacities of a signal processing system one has to work with 

truncated Volterra series [36]. The second order truncated Volterra series response 

can be expressed as: 



Figure V. 1 : Block diagram of the NA F structure as applied to SA cancellation. 



where N is the system memory, and ho, hl and hi are the zero, first (the linear part), 

and second order (the nonlinear part) Volterra kernels respectively. The Volterra 

kernels in Eq. V.2 can be adaptively estimated by using an N AF whose block diagram 

is depicted in Figure V.1. The linear, nonlinear and bias weights are iteratively 

updated according to some form of adaptation algorithm. Mathematically, 

and 

where H(n)  = [ha(n), ht(O; n), . . . , hl(N-1; n),  h2(0, O; n), h2(0, 1; n), . . . , h2(N-1, N- 

1;n)l is the kernel vector and X(n) = [l,x(n), . . . ,x(n - N + 1),x2(n),x(n)x(n - 
l ) ,  . . . , x(n)x(n - N + 1), . . . , x2(n - N + l ) ]  is the input data vector. The function 

of an adaption algorithm is to Vary the kernel vector H in such a way that some cost 

function based on e(n) is minimized. Two adaption algorithms are widely used: the 

Least Mean Square (LMS) algorithm and the Recursive Least Squares (RLS) algo- 

rithm. The development of these algorithms is an extension of the LMS and RLS 

algorithms used for linear FIR filtering, with appropriate changes to the data and 

weight vectors [36]. A brief theoretical background of these algorithms is given in the 

following section. 

V.2 ADAPTION ALGORITHMS FOR THE NAF 

Adaption algorithms of the first type attempt to minimize the mean squared error 

function. The method of steepest descent and the LMS algorithm fa11 into this cote- 

gory. The cost function, J(n), [23], can be expressed as 



where E' is the time-average operator', is the variance of the prirnary input y(n), 

P is the time-averaged crosscorrelation vector and R is the time-averaged autocorre- 

lation matrix. The gradient of the mean square function with respect to the kernel 

vector can be expressed as 

In the method of steepest descent, the kernel vector H(n)  is updated in the direction 

opposite to the gradient. In other words, 

where p is a constant which controls the convergence of the algorithm. The following 

are the d e n t  features of the steepest descent algorithm 1231: 

0 The steepest descent algorithm cornputes the gradient vector exactly by us- 

ing the true autocorrelation matrix and crosscorrelation vectors. Thus it does 

not suffer from gradient estimation noise and converges to the minimum mean 

square error. 

O The adaptation pararneter, p, is bounded by the largest eigenvalue of the auto- 

correlation matrix, R. In other words, 

where A- is the largest cigenvalue of the autocorrelation matrix. 

'In this paper, since we are dealing with single tirne series records rather than an ensemble 
of them, time averaged statistics will be used rather than the ensemble average statistics. This 
approach is more pertinent to the SA data as the artifact is a deterministic waveform. 



0 The convergence rate of the kernel vector H, is determined by the eigenvalues of 

the autocorrelation rnatrix. The eigendue spread, x(R), of the autocorrelation 

matrix is defined as 

where is the smdlest eigenvalue. 

The total number of eigenvalues in our case is M = ( N + 2 ) ( N + 1 L .  2 The kth naturd 

mode of the algorithm decays exponentially with a time constant given by 

The overall convergence rate of the kernel vector is determined by the weighted 

sum of M such exponentials each associated with an eigenvalue of the R matrix. 

Thus small values of p and Amin result in a slow rate of convergence. 

The abovementioned algorithm will not be useful in realtime SA cancellation problems 

as it requires the true autocorrelation and crosscorrelation information. Thus in 

realtime situations stochastic gradient search algorithms such as the Least Mean 

Square (LMS) algorithms are required. In the LMS algorithm the exact gradient 

vector, V J(n), is replaced by the instantaneous es tir na te,^ ~ ( n ) ,  given by 1231 

and the kernel vector update equation is given by 

where p is convergence control parameter. For guaranteed kernel vector convergence, 

the value of p is constrained by following bound, 



where trace(R) is the sum of a.ll eigenvalues of the R matrix. From Eq. V.13, we see 

that the LMS algorithm is a very simple algorithm from the implementation point of 

view. The computational complexity of the algorithm is O(M). However, the instan- 

taneous estimate of the gradient vector manifats itself as noisy kernel vector conver- 

gence and contributes to the excess mean squared error [23]. The misadjustment, 0, 

which is defined as the ratio of the excess mean squared error to the minimum mean 

squared error, can be approximated by the following equation, 

where A, is the average eigenvalue of the autocorrelation matrix. Thus there is 

a tradeoK in choosing the value of p, as higher d u e s  of p not only speed up the 

convergence rate but also result in larger misadjustment . Now taking the expectation 

on both sides of Eq. V.12, we have, 

Comparing Eq. V.16 with Eq. V.? we see that the expected value of the kernel 

vector update in the LMS algorithm follows the steepest descent mechanism. Thus in 

simulations where the true autocorrelation and crosscorrelation information is readily 

available, the convergence exhibited by the steepest descent algorithm can be used 

as the theoretical mean trajectory of the kernel convergence achieved by the LMS 

algorit hm. 

Algorithms of the second type attempt to minimize the exact squared error. In- 

stead of estirnating the gradient and then applying a correction factor in the direction 

opposite to it, these algorithms directly work on the autocorrelation and crosscorre- 

lation information. The exponential Recursive Least Squares (RLS) algorithm is one 

such algorithm wherein the cost function that needs to be minimized is 
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The optimum kernel vector is given 

6 1  

by ~ ( n )  = R-' (n) P(n) . The autocorrelation 

matrix and the crosscorrelation vector can be computed recursively as [23], 

(V. 18) 

(V. 19) 

Note that the optimum solution for the kernel vector requires the inverse of the 

autocorrelation matrix R. Utilizing the matrix inverse lemma, the RLS algorithm for 

the kernel update is given by, [23], 

The RLS algorithm therefore, by calculating the autocorrelation matrix and crosscor- 

relation vector, extracts more information from the input data and hence converges 

at a faster rate relatively insensitive to the eigenvalue spread of the autocorrelation 

matrix. This improvement in convergence, however, cornes at a penalty of increased 

computational complexity, of the order 0(M2) where M = IN+1)(NC21, 2 N being the 

filter length of the NAF. Since M increases quadratically with N, srnall changes in 

filter lengths of the NAF immerisely increase the computational complexity of the 

RLS based NAFs. Thus RLS based NAFs find themselves close to impractical for 

realtime SA cancellation except for srnall fiiter lengths. 



V.3 SIMULATION 

V.3.1 Introduction 

The main objective of this simulation study is to examine the convergence behavior 

and cornputational time of the RLS and LMS algorithms in nonlinear SA cancellation 

under a wide vaciety of conditions. Typically, data from a nonlinear system exhibit 

large eigenvalue spreads. Also, almost always, the true filter length of the underlying 

nonlinear system is unknown and one has to work with a suboptimal filter length 

and also in a noisy environment. Thus the main issues that are addressed in the 

simulations are 

O Convergence behavior of the LMS and RLS based NAFs for varying values of 

eigenvalue spreads. 

Combined effect of suboptimal filter length and large e i g e n ~ l u e  spread on the 

N AF convergence. 

Effect of background noise on the NAF convergence. 

e Computational times for RLS and LMS based NAFs to reach the same plateau 

of performance for the above three conditions. 

V.3.2 Simulation # 1 

In this section, the convergence properties of the LMS and RLS based NAFs are 

invest igated for t hree different d u e s  of eigenvalue spread of the data autocorrelat ion 

rnatrix. A five filter length second order Volterra system was simulated using the 

following kernel vector 

for k=O, i .e  no bias weight 

for k = 1,2,. . . ,20. 



In the f i s t  case the input, z (n) , to this nodineor system was a zero mean Gaussian 

white noise of unit variance and its output is y(n). In the second experiment, x(n), 

was a colored noise input which was generated by passing zero mean Gaussian white 

noise through a shaping filter whose impulse response is given by 

Findy,  in the third simulation, an in vivo SA waveform which was sufficiently ensem- 

ble averaged to reduce the background noise was employed as x(n) .  The corresponding 

eigemdue spreads were calculated as 8.2, 7.9e+3 and 9.9e+7 respectively. In each of 

these cases, a five filter length NAF driven separately by RLS and LMS algorithms 

with y(n) as  the primaxy input and x ( n )  as the reference, was utilized. Thus in each of 

t hese simulations, once convergence is established, the kernel vect or est imated by the 

NAF should be equal to the kernel vector given by Eq. V.21. Figure V.l  displays the 

convergence of two different weights in the NAF-estimated kernel vector for each of 

the abovementioned simulation cases. Each of these plots compares the convergence 

rate of the RLS, LMS algorithm and steepest descent algorithms. For the steepest 

descent algorithm, given by Eq. V.7, the time averaged autocorrelation matrix and 

crosscorrelation vector were estimated. Two different values of p were chosen for each 

of the simulation experiments involving LMS and steepest descent algorithms, wit h 

the first value close to the upper bound posed by Eq. V.14 and the second value 

about an order lower than the first. Note that the theoretical misadjustment for the 

LMS algorithm in al1 the above three cases is zero, as theoretical minimum mean 

squared error is zero. Thus the choice of p is not that critical as long as it satisfies 

the constra.int imposed by Eq. V.14. 

Comparing the convergence trajectories, we can see that the RLS algorithm is 

insensitive to the eigenvalue spread. Even for the SA input, where the eigenvalue 

spread is close to le+8, the RLS algorithm converged to the optimal solution in less 

than 50 iterations. The convergence rates of the LMS and steepest descent algorithms 
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on the other hand, are acutely afkcted by the eigenvalue spread. For the specific 

case of the SA input, the LMS and steepest descent algorithms can be still seen to be 

converging even after 20000 iterations. Thus with the SA data which usually possesses 

large eigenvalue spread, the RLS dgonthm achieves significantly faster convergence 

rates thereby giving better performance in a shorter time. 

V.3.3 Simulation # 2 

In t his section simulations were performed to scrutinize the convergence behavior 

of the RLS and LMS algorithms with suboptimal filter lengths. With experimental 

SA data, the underlying füter length is normally unknown. Thus one usually has to 

work with suboptimal filter lengths in SA cascellation problems. The main thrust 

behind these simulations is to study the combined effect of large eigenvalue spread 

and suboptimal filter length on the convergence of these adaption algorithms. The 

simulation data used for this study are described in the previous section. However, in 

place of an NAF with a filter length of five (which is the optimd value), an NAF of 

filter length three was employed. For each of these simulation cases, the theoretical 

least squares kernel vector was calculated by H* = R-'P where R is the time- 

averaged autocorrelation matrix of the reference input and P is the time-averaged 

crosscorrelation vector. The convergence trajectories of al1 the three algorithms in 

reaching this l e s t  squares vector are shown in Figure V.3 for two different weight 

values in the kernel vector. Once again two p values were assigned for the LMS 

and steepest descent algorithms. Note that in this simulation case, the theoretical 

minimum mean squared error is nonzero, and hence larger values of p for the LMS 

algorithm result in noisier convergence and excess mean squared error. 

The graphs displayed in Figure V.3 illustrate this point where the convergence 

curves of the LMS algorithm are shown to be noisy for large values of p. For smaller 

values of p, the convergence can be seen to be smoother. Note that the convergence 

of the steepest descent does not suffer from gradient estimation noise even for large 



values of p, as it uses the exact gradient estimate in calculating its kernel update. 

From Figures V.3 g-h, we can observe that the LMS algorithm is far away from the 

optimal solution even after 50,000 iterations. Thus the combinat ion of suboptimal fil- 

ter length and large eigenvalue spread will have a compounded effect in slowing down 

the convergence rate of the LMS algorithm, rendering it inefficient for SA cancella- 

tion. Another interesting point in Figures V.3 a-h is that the convergence of the RLS 

algorithm is dso dected,  except in the case of the SA data. In the case of the white 

noise and colored noise input data, the RLS algorithm has consumed substantially 

more data samples for its convergence. This characteristic, however, is not seen with 

the SA data. A probable reason for this is the estimation errors in computing auto- 

correlation and crosscorrelation information that is necessary for the RLS algorit hm. 

With suboptimal filter lengths and random input data, the RLS algorithm requires 

more data samples to compute the auto- and crosscorrelatiou information. Wi t h a 

deterministic data stream such as the SA data, this estimation does not require a 

large number of data samples and hence the RLS algorithm converges in approxi- 

mately the same number of iterations as in the SA cancellation simulation given in 

the previous section. 

V.3.4 Simulation #3 

Al1 the simulations performed before were concerned wit h high ANR (Artifact-to- 

Noise Ratio) SA data. However, in online SA cancellation experiments the NAF has 

to combat the omnipresent background noise to cancel the SA. Thus the motivation 

for this simulation study is to  examine the behavior of the LMS and RLS algorithms 

in the presence of background noise. The SA data used in these simulations are 

generated as described in the previous two sections. Zero mean white Gaussian noise 

is then added to both the primary and the reference SA data. The reference ANR 

was defined as 
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ANR = 20 log,, S&, 
UN 

where S&er is the peak amplitude of the reference SA and UN is the standard 

deviation of the background noise. The ANR for this experiment was found to be 

18 dB. Two sets of simulations were perfomed, one employing an NAF of filter 

length five and the other utilinng an NAF of filter length three. The results from 

the simulations are depicted in Figure V.4. Figure V.4a displays the least squares 

kernel vector for the first set of simulations which was once again computed from the 

timeaveraged autocorrelation and crosscorrelation informat ion. Figures V.4b-c show 

the convergence of two weights in the kernel vector for the RLS, LMS and steepest 

descent algorithms. Perhaps the most notable feature among these plots is the fact 

that the convergence rate of the LMS algorithm is on par with the RLS algorithm. 

The same feature con be observed in figures V.4e-f where the convergence behaviors of 

RLS and LMS algorithms for a three filter length is compared. Thus in the presence 

of noise, the LMS algorithm exhibits convergence speed similar to that of the RLS 

dgori t hm. 

There are two main reasons for this phenomenon: 1) The eigenvalue spread reduces 

with the addition of background noise. Note that for the noise free SA data considered 

in Sections V.3.2 and V.3.3, the eigenvalue spread is close to le+$. With the addition 

of white background noise, the eigenvalue spread dropped to le+3 which led to a 

faster convergence rate, and 2) The convergence speed of the RLS algorithm is slowed 

down due to the fact that the autocorrelation and crosscorrelation information that is 

needed for the RLS algorithm suffers from estimation errors in the initial stages due 

to random background noise and small number of data sarnples. Thus in an online 

SA cancellation situation, LMS based NAFs are most suitable as they exhibit similar 

convergence rates as the RLS based NAFs and are computationally less expensive. 
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V.3.5 Absolute Convergence Times 

It was mentioned before that the RLS algorithm is computationally more complex 

than the LMS but it takes fewer samples to  converge to the optimal solution, maidy 

in high ANR SA environment. However, the absolute time taken by each of the 

algorithms to converge to the optima solution is not calculated. The main question is: 

is the LMS algorithm which is computationally simpler but requires more iterations 

to converge faster/slower than the RLS algorithm in t ems  of absoiute processing 

time? This section attempts to answer this question via a table (Table V.l) which 

tabulates the convergence times (both in number of data samples and seconds) for 

each of the simulation scenarios described in the previous sections. The following 

normalized mean squared error criterion was used to assess convergence a t  the nth 

iteration (data sample) : 

where Hm is the least squares kernel vector, M is the total number of elements in 

the kernel vector and n is the iteration number. This criterion was evaluated at each 

iteration and the iteration number and the time taken (in seconds) to satisfy the 

above criterion were noted down. These values are displayed in Table V.1. Several 

points can be construed from this table: 

The RLS algorithm takes comparatively fewer data samples and less time to 

reach a convergence plateau when the optimal filter length is used in the NAF. 

In general, the steepest descent algorit hm consumes less comput ational t ime 

than the LMS algorithm. This is because for the steepest descent mechanism 

given Eq. V.7, the R matrix and the P vector are given a prion' while the 

LMS algorithm has to work on the raw data samples and thus carries extra 

computational bagage. 
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0 In most of the cases, the LMS and the steepest descent algorit hms take approx- 

imately the same nurnber of data samples. In a few cases, the LMS appears 

to require fewer data samples thon the steepest descent. This is probably due 

to the fact that the LMS update contains gradient estimation noise which can 

result in the convergence criterion being sat isfied even t hough convergence in 

the mean has not yet been achieved. 

O With suboptimal filter lengths and in the presence of background noise, the RLS 

algorithm appears to take more computational time, except for the SA case (case 

#6 in Table V.l). This is, as stated before, due to the large estimation errors in 

the initial stages of the RLS algorithm with random data. With deterrninistic 

data such as the SA data, there is no such problem and the RLS converges much 

façter. 

O With suboptimd filter lengths and in the presence of background noise, the 

LMS algorithm never satisfies the convergence criterion for large values of p. 

This is due to the misadjustment created by the large p values. 

0 In the previous section, we stated that in the presence of background noise the 

convergence rate of the LMS algorithm is on a par with the RLS algorithm. 

However, that statement is not clear from this table (case #7). This is due 

to the way the convergence criterion was defined in Eq. V.24, which as men- 

tioned before is never satisfied for large values of p. If we were to slightly relax 

the convergence criterion and state that convergence to 1% misadjustment is 

acceptable - which is common practice in LMS based adaptive filtering appli- 

cations - then the LMS convergence times will be comparable with those of 

the RLS. 



V.4 EXPERIMENTAL RESULTS 

The purpose of this section is t o  compare the performance of the LMS and RLS dg* 

rithms using experiment al SA data. Comparative SA reduction by t hese algorit hms 

with and without SEP is undertaken. 

V.4.1 High ANR SA Cancellation 

The f i s t  set of experiments was concerned wit h assessing the cancellation capabilities 

of RLS and LMS based NAFs with noise- and SEP-free SA data. Thus both the 

primary and reference SA data were obtained t hrough subthreshold stimulation of 

the peripheral nerve under study. The raw data were then ensemble averaged to 

dirniuish the background noise level. One thousand records were used for the SA 

data acquired from the spinal cord region and two hundred SA records were averaged 

for the data collected from the wrist region. The ensemble averaged primary and 

reference artifacts were then fed to an NAF of filter length ten driven by RLS and 

LMS algorithms separately. The primary and reference SA records were recycled 

through the respective algorit hms until convergence was achieved. Figure V.5 shows 

the results of this SA cancelling experiment with SA data collected from diflerent 

subjects using different recording procedures. In each of tkese plots the ensemble 

averaged primary SA, the  residual SA at the output of the RLS-NAF after the RLS 

algorithm has passed through 3 SA records and the residual SA by the LMS based 

NAF after processing 200 SA records are shown. In each of these experiments, the p 

value for the LMS algorithm was chosen close to the upper limit given by Eq. V.14. 

In Figure V.5a, the primary SA was recorded from the lumbar region while the 

reference SA was acquired using the second recording channel. The  primary SA shown 

in Figure V.5b was also recorded at the lumbar region but from a different subject. 

The reference SA utilized for the cancellation of this primary SA was obtained using 

the same recording channel but at a lower stimulus voltage ievel. Figures V.5 c 
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and d display the SAS recorded from the wrist region from two different subjects. 

The primary SA shown in Figure V.5c was acquired using the Ag-AgC1 electrodes 

while that shown in Figure V.5d was obtained using the stainless steel electrode 

array. In both the cases the reference SA waveform was obtained using a separate 

reference channel. From the SA cancellation results, we can observe that the RLS 

based NAFs significantly reduce the artifact with just 3 SA records irrespective of 

the data collection protocol. The LMS based NAFs, on the other hand, still produce 

substantial residual SAS at their output even after 200 records. Thus with high ANR 

SA datl, the RLS based NAFs are the NAFs of choice for SA cancellation. 

This point can be put in a different perspective by comparing the performances 

of the RLS-NAFs and LMS-NAFs for the above experimental data. To quantify the 

performance of t hese NAFs, let us define two performance indices, pl and pz as 

where S%(n) is the SA residual at the output of the NAF, ISAp(n)l,, and ISAa(n)l,, 

are the peak absoiute voltage values of the input and residud artifacts respectively, 

and o denotes the standard deviation. The performance indices of the RLS and LMS 

based NAFs for the experimental SA data described above are shown in Figure V.6. 

Each row in this figure graphs the two performance indices corresponding to each 

of the experimental cases shown in Figure V.5. These plots can be used as alterna- 

tives to the convergence plots described in the simulations section. They also convey 

more information than the standard weight convergence plots as they offer an inkling 

about the actual SA cancellation. From each of these graphs, we can observe that 

the performance of the RLS based NAFs has reached close to its maximum value 

in approximately 5-10 SA records. The LMS based NAFs are still in the process of 

convergence even after 200 SA records. Thus in cancelling ensemble averaged SA 

data, RLS based NAFs are more efficient than their LMS based counterparts. 
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Figure V.6: Performance compoMon of RLS dritnn and LMS d&en NAFs in cancelling 
ensemble avemged SA &ta. 



V.4.2 SA Cancellation in the presence of background noise 

It is clear from the previous section that good SA cancellation results can be obtained 

with noise-free primas. and reference SA data. However, in realtime SA canceIlation 

applications, the NAF algorithm has to ded  with the background noise. In simula- 

tions, it has been noted that in the presence of background noise, LMS-NAFs exhibit 

comparable convergence rates to the RLS-NAFs. In this section, an experimental 

example is given to illustrate the effect of background noise on the performaace of 

the NAFs. 

The primary and reference inputs were collected from the wrist region using the 

stainless steel electrode array. Once again the stimulus voltage level was set below 

the t hreshold of the median nerve ensuring t hat no SEP was recorded. The reference 

ANR was calculated to be 15 dB in this case. The raw primary and reference data 

were then fed to an NAF of filter length ten driven separately by the RLS and LMS 

dgorithms. Both the algorithms converged to the steady state kernel vectors within 

20 SA records. The primary input after the 20th SA record is shown in Figure 

V.7a. Figure V.7b and V.7c show the residuals at  the output of the RLS and LMS 

based NAFs respectively for the same data. It can be seen that both the algorithms 

were successful in reducing the SA down to the background noise level. Figure V.7d 

compares the ensemble averaged primary SA with the residual averaged SA at the 

output of the two NAFs. The ensemble averages for both the NAFs were computed 

after the first 20 SA records. From this picture, we can note that the SA cancellation 

~bility of an NAF is affected by the presence of noise and that the LMS based NAF 

produced an output similar to that of the RLS driven NAF. Thus in the presence of 

background noise, LMS based NAFs display levels of performance sirnilar to the RLS 

based NAFs. This is due to the fact that the huge eigenvalue spread associated with 

the averaged data reduces considerably wi th the addition of background noise. 



V.4.3 SEP + SA data 

Ail the experimental results described so far have b e n  SEP-free. To scrutinize the 

effectiveness of the NAF in enhancing the SEP from the interfering SA, bot h in vivo 

MSEP and SSEP data corrupted by the SA were processed. The MSEP data were 

acquired by placing Ag- AgC1 electrodes approximately over the nerve axis. The tail 

of the artifact can be seen to interfere with the initial stages of the MSEP in Figure 

V.8. The reference SA waveform in this case was obtained through subthreshold 

stimulation. The SSEP data were recorded from the lower lumbar region of the 

spinal cord using Ag-AgCl electrodes. The SA waveform in this case not only seems 

to interfere with the initial phase of the SEP but also seems to induce a bias in the 

SEP. The reference SA was obtained from the second recording channel. Two hundred 

records were averaged for the MSEP data and one thousand records were averaged 

for the SSEP data. 
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Figure V.7: Performance of the RLS and LMS dn'ven NAFs in cancelling in vivo SA in 
the pesence of backgmund noise. 
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Figure V.8: SEP enhancement by RLS and LMS based NAFs. 

A slight modification was made to the RLS and LMS adaption algorithrns to cancel 

the SA. The algorithms were allowed to update the kernel vectors only during the 

supposed SA phase i .e  during the first 100 sarnples for the MSEP data and first 500 

samples for the SSEP data. The reason for this segmented adaption procedure was 

the negative effect of the SEP in the primary channel on the kernel convergence, as 

explored in Appendix IV. The kernel vector at the end of the SA region is then fixed 

and these kernel weights are used to filter the remaining data. From the results shown 



in Figures V.8b and V.8d we can observe quolitatively that RLS based segmented 

NAFs provide a good quality SEP estimate which is devoid of rnrich of the artifact ond 

any bias. The LMS based NAF on the other hand still contains substantial artifact 

even after 200 SA records. Thus RLS based NAFs offer good SEP enhancement 

results when utilized wi th ensemble averaged SEP data. 

V.5 Discussion 

Nonlinear adaptive filters based on second order truncated Volterra series are shown 

to be effective in reducing the SA interference. One of the important factors dictating 

the performance of an NAF is its adaption aigorithm. Different adaption algorithms 

are available in the literature and the choice is still a hotly pursued research area. 

There are a variety of trade-offs involved with each of these adaption algorithms and 

an understanding of these trade-offs is essential before putting these algorit hrns to 

the task of SA cancellation. In this appendix, we concentrated on the two basic 

dgorithms viz. the LMS algorithm and the RLS algorithm. From both the simu- 

lation and experimental results, we can see that the RLS based NAFs significantly 

outperform LMS based NAFs with high ANR data. The main reason for this is the 

huge eigenvalue spread associated with the high ANR SA data. With the addition 

of background noise, however, the eigenvalue spread decreases and the LMS based 

NAFs exhibit comparable convergence rates and performance indices to RLS based 

NAFs. Thus the answer is clear: use RLS-NAFs for SA cancellation in ensemble aver- 

aged SEP data and LMS-NAFs for realtime SA cancellation. This is intuitively quite 

appeding as the LMS-NAFs are computationally less complex and are best suitable 

for realtime SA cancellation. The drawback, however, is that there is a significant 

amount of residual artifact at the output of the NAF in the presence of background 

noise. The only way to diminish this artifact is to ensemble average at the reference 

input of the NAF. This brings us to the next question: when to average and when 



not to average? This point is discussed under four scenarios, the first t hree are of3ine 

processing experiments and the last one is a d t i m e  SA cancellation scenario: 

Time invariant SA and time invariant SEP. This is the most benign 

situation in which ensemble averaging can be performed on both the primary 

and reference SA data, and an RLS based segmented NAF can be employed to 

significantly reduce the SA. 

Time varying SA and time invariant SEP. Here once again, ensemble 

averaging can be performed on both the primary and reference channels and 

the resultant averages can be used for SA cancellation by the RLS-NAF. The 

time varying nature of the SA is not a factor, as the NAF will converge to the 

averaged Volterra mode1 between the primary and reference SAS. 

Time varying SEP. In most of the surface recorded SEP experiments, the 

initial Signal-to-Noise Ratio (SNR) is small and ensemble averaging needs to 

be performed in order to unveil the SEP. In rare cases, it might be required to 

track the single sweep SEPS from record to record. Even in this case, ensemble 

averaging can still be performed on the reference input and an RLS based 

segmented NAF can be employed. Since the NAF is primarily affected by the 

statistics of the reference SA data, the averaged reference SA waveform will 

result in good SA cancellation while still protecting the time varying properties 

of the SEP. 

Realtime SA cancellation. In realtime SA cancellation situations, the LMS 

based NAFs are the filters of choice mainly because of their computational 

simplicity and their equally good performances as the RLS-NAFs. However, 

as discussed in Chapter 5 and Appendix IV, the adaptation process should be 

segmented to avoid the perils associated with the presence of the SEP in the 

primary input to the NAF. 



Appendix VI 

Probability of an ECG Occurance 

in an SSEP Record 

A rough calculation of the probability of an ECG occurence in an SSEP record is 

undertaken in this Appendix. The problem can be formulated based on Figure V1.1. 

Before we actudly formulate the problem, the foiiowing assumptions are in order 

about the ECG and SSEP characteristics: 

0 The heart beat is 6O/min i .e there is only one ECG waveform every second. 

0 The stimulus rate for the SSEP generation is greater than or equal to one per 

second, thus making sure that there is at least one SSEP every second. 

O The ECG does not simultaneously occur in two SSEP records whicb is true in 

SSEP experiments as the stimulus rate is low. 

Figure VI.l depicts an ECG waveform and an SSEP record. Here NECG denotes 

the length of the ECG window (in samples) during which the ECG is deemed to have 

significant effect on the SSEP record, and NsEP is the length of the SSEP record 

(again in samples). An ECG is said to have occured in a SSEP record if there is at 

least a 



Figure VI.1: ECG and SSEP waveforms for probability calculation. Note that the two 
wavefonns are not dmwn to scale. NECG is the length of the "eflectiue" ECG window 
and N s ~ p  iS the length of the SSEP data rvcod. The pmblern is  to find the probability of 
intersection of these two windows. 

sample overlap between these two windows. Assuming there is only one SSEP per 

second ( i . e  the stimulus rate is 1 Hz), this probability can be calculated as, 

(VI. 1) 

where Na,  is the total number of samples per second. As an example, if 1024 

samples are collected with each stimulus at a sampling rate of 20,000 Hz and the 

effective ECG window length is 1500 sarnples, then the probability is, 

(VI.'?) 



If the stimulus rate is greater than 1 Hz, the probability value given by Eq. V1.1 is 

divided by the stimulus rate. Table VI. 1 summarizes the probability d u e s  calculated 

from experimental ÇSEP data h m  various subjects along with the predicted t h e  

retical values. From this table we can see that the experimental probability values 

are higher than the theoretical values for all the subjects. This is probably due to 

the fact the theoretical caiculations assume the ECG rate is only 6O/min. In prac- 

tice, however, the rate is closer to 72/min which results in higher probability of ECG 

contamination. In addition, the actual stimulus rate used in the experiments was a p  

proxirnately 2.6fsec which also contributes to the difierence between the t heoretical 

and predicted values. 
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Table VI.1: Pmbability of ECG oçcurence in cr SSEP record for dàffemnt subjects. A 
stimulus nzte of 2 H z  and an ECG rate of 60/nzin is used for calculating the theoretical 
probabàlity values. 




