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Abstract

The gravitational collapse of a rotating star to a black hole generically produces a
weakly decaying gravitational wave tail which partially falls into the black hole. Al-
though the influx of gravitational radiation is weak, its backreaction onto the black
hole’s interior geometry becomes significant near the black hole’s inner horizon. The
inner horizon of Kerr is a Cauchy horizon (CH), a lightlike hypersurface of infinite
blueshift, behind which lies a tunnel to other universes. At CH the influx of gravita-
tional radiation is infinitely amplified by the geometry indicating that CH is unstable.
Past work on a spherically symmetric model of the interior has revealed a relatively
simple scenario [1]. When the influx is combined with any nominal outflux, the effect
of backreaction is to cause the black hole’s local mass function to diverge exponen-
tially at CH. Since the Weyl curvature is completely determined by the mass function
in spherical symmetry, this signals the appearance of a lightlike observer-independent

curvature singularity at CH, which effectively seals off the CH tunnel.

In this thesis we investigate whether the mass inflation picture can be extended to
the non-spherical black hole interior. To do so, we solve the characteristic initial value
problem for a general metric in the region near CH. Given initial conditions which
correspond to the scattering of the incoming gravitational wave tail by the interior
Kerr geometry, we show that generically a lightlike singularity forms at CH. The
general solution exhibits some features similar to the spherically symmetric solution.
for the leading order divergences of Hawking’s quasi-local mass function and the
Kretschmann invariant are the same. However, in the general solution, all components
of the Weyl tensor diverge, and the solution is not algebraically special. To leading
order, the solution is very closely approximated by a colliding plane gravitational

wave metric. This leads to the following heuristic picture: the infalling gravitational



radiation is scattered by the black hole’s interior curvature into two cross-flowing
streams of gravitational radiation which are approximately plane symmetric. The
interaction of the two streams in the region of high blueshift strongly focuses light

rays and a curvature singularity results.
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Chapter 1
Introduction

It is embarrassing that a direct consequence of the laws of general relativity is a pre-
diction that it is inevitable for regions to form which general relativity is unable to
describe: the complete gravitational collapse of a star produces the ultimate physical
blemish, a spacetime singularity. It was once thought that the appearance of a sin-
gularity was an artifact of idealized boundary conditions, such as the assumption of
spherical symmetry. However, the singularity theorems of classical general relativity
[2] prove that the formation of a singularity is a generic feature of gravitational col-
lapse. This has dire consequences for the notion of predictability, since there is no
unique prescription for placing initial data on a singularity.

The situation for physics may not be as bad as we have made it sound if Penrose’s
cosmic censorship conjecture [3] is true. The strong cosmic censorship conjecture
(SCCC) states: it is impossible for any observer to view the singularity formed from
gravitational collapse. Since all observers are out of causal contact with the singular-
ity, predictability is preserved. However, SCCC is most certainly not true, as several
counter-examples, such as the shell-crossing singularities [4] have been found. A more
plausible view is that a weaker conjecture which places a physical restriction on the
collapsing body is probably true. An example of weak cosmic censorship (WCC} is
the hoop conjecture [5] (HC): an event horizon forms if and only if the circumference.
in all directions, of a collapsing body is less than 4rGm/c? (where m is the mass of
the body). While HC hasn’t been proved, numerical experiments [6] strongly suggest
that it is true.

If some form of WCC is true then any reasonable collapse will result in a black
hole. A black hole is a region of spacetime from which no information can escape.

1
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1.1. SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE

The black hole necessarily contains a singularity, but observers outside the hole are
shielded from the singularity by an event horizon. However, inside the Kerr black hole
there are regions where it is possible to view the singularity. Clearly the assumption
of WCC has just swept the problem of singularities under the rug. It is interesting to
ask, does the assumption of WCC imply the validity of SCCC inside the black hole.
once a realistic model of collapse is considered? The main goal of this thesis is to
answer this question, by providing a description of the singularity which generically
forms when a rotating star collapses to a black hole.

1.1 Spherically symmetric gravitational collapse

It is constructive to begin with a discussion of spherically symmetric collapse without
perturbations [7]. The gravitational collapse of a star appears to take an infinite
amount of time, as viewed by a static observer far from the star. However, observers
freely falling in with the star’s surface measure the time taken to collapse to be finite.
The disparity in the observers’ view of the collapse is due to the presence of the event
horizon, a limiting null hypersurface after which the gravitational field is so strong
that no emitted light can escape its surface. Light emitted by the star when the
surface is at a radius larger than the event horizon can be observed by the static
observer. But the light must first climb out of the steep gravitational well. The time
needed for light to travel through the distance is much longer than if the potential
well were not present. In fact, the time approaches infinity when the light is emitted
at the event horizon. The light, of course, still travels at the same speed, but the
strong gravitational field has altered the geometry of the spacetime and effectively
“slows down” the light seen by static external observers. The slowing down also has
the effect that the frequency of the light is exponentially redshifted, so that at late
times, the only light observed from the collapsing star is of very low frequency.

The causal structure of the spherical black hole’s interior depends on two param-
eters: its mass (m) and electric charge (e). The simplest black hole is the spherically
symmetric Schwarzschild solution, which has e = 0. The Schwarzschild solution (see
figure 1) has a strong all-encompassing spacelike singularity hidden behind its event
horizon. A traveler (grey world line) inside the black hole finds the journey to be
relatively tame (except for tidal forces) until a certain time (the zig-zag line at r = 0)
at which the singularity appears at all spatial points. The traveler has no news of the
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existence of the singularity lying to her future and is unable to avoid running into it.
Since she never views the singularity, the Cauchy (or initial) value problem is well
posed and predictability is preserved in the Schwarzschild interior.

1 r=0Q r

Figure 1: Conformal diagram of the Schwarzschild black hole. On a con-
formal spacetime diagram, time increases upwards, the world-lines of light
are inclined 45° to the vertical, and each point corresponds to a 2-sphere
of radius r. Region I represents an asymptotically flat spacetime exterior
to a black hole, where light rays can escape to infinity. The line segment
EH at r = 2m is the event horizon of the black hole. Region IT represents
the black hole interior, 0 < r < 2m. All light signals emitted in this
region are trapped: they must move to smaller r and ultimately intersect
the singularity. Region I’ is another asymptotically flat universe similar
to, but causally disjoint from region I. Region II” is the interior of a white
hole. In the diagram of a black hole formed from the collapse of a star,
regions I' and II' are omitted.

The causal situation is not as straightforward if the black hole has even the smallest
amount of electric charge. Consider the charged, spherically symmetric Reissner-
Nordstrom solution. The energy of the electric field acts as a source for Einstein's
equations and effectively causes gravity to be repulsive at small radii. The result is
an inner horizon (see figure 2), called a Cauchy horizon (CH), behind which lies the
black hole’s singularity and a tunnel to another universe (region V). The gravitational
repulsion causes the singularity to be timelike, so it is possible for the traveler to avoid
running into the singularity and successfully navigate through the tunnel. However,
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the singularity can causally influence every point in the tunnel (regions III' and I'V)
after the Cauchy horizon. We have no way to predict what will come out of the
singularity and so the predictive power has been lost in the region after the Cauchy

horizon.

Figure 2: Conformal diagram of the Reissner-Nordstrom black hole. The
analytic extension of the Reissner-Nordstrém solution corresponds to an
infinite chain of universes linked by charged black holes. The diagram to
the left of the grey curve should be omitted to describe the collapse of a

charged star.
An observation due to Penrose (8] may provide a mechanism for a restoration of

predictability to the interior. The journey from the event to Cauchy horizon takes a
finite amount of the traveler’s proper time (on the order of 30 minutes for a 108/
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black hole). During this time she will receive signals from the outside world originating
over an infinite period of external time. Thus the incoming signals will be blueshifted
infinitely. It is possible that the backreaction of the blueshifted radiation could cause
a curvature singularity to form at CH, sealing off the tunnel and the locally naked
singularity from view. Our aim is to investigate the effect of perturbations on the
black hole interior formed by a generic collapse and to determine whether CH is

stable.

1.2 Gravitational collapse with perturbations

The analysis of the black hole’s interior region, hidden from view by an event horizon,
is a simpler proposition than the study of a star’s interior. A complete description of
a star requires a knowledge of the complicated stellar physics occurring deep in the
central region which influences the outer regions. Causality simplifies the analogous
problem for black holes, since the radius (r) is a timelike coordinate inside the event
horizon. Thus layers lying at small radius actually occur in the future of the outer
layers. The region of strongest gravity near the centre, where an unknown quantum
theory of gravity is needed for a full description, can’t causally influence regions at
larger values of r. The study of the black hole’s interior is essentially reduced to an
evolutionary problem, with “initial” data placed on the event horizon. Remarkably.
the initial data which correspond to the isolated collapse of a star are known with
great precision, so the evolutionary problem is well defined.

The initial data in which we are interested, effectively amounts to the information
about the initial gravitational field of the star. The star’s field, while predominantly
spherical, contains contributions from higher multipole moments with £ > 2. How-
ever the existence of the black hole no-hair theorems [9, 10] leads to the conclusion
that the higher multipole moments must be radiated away when a black hole forms.
But the gravitational radiation emitted near the event horizon is, like light, highly
redshifted and can’t propagate freely on the black hole’s geometry. The outgoing
gravitational radiation is partially reflected and transmitted by the black hole’s ef-
fective gravitational potential barrier. The final result first shown by Price [11], is a
weak flux, decaying in time as an inverse power law, which is transmitted through
the barrier and can be detected by external observers. The flux of radiation which is
backscattered by the barrier has a similar power law decay and falls into the event
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horizon. It is the consequences of this weak influx on the interior geometry which will
be investigated in this dissertation.

The effect of the gravitational wave influx on the interior geometry depends on the
black hole’s parameters. The weakness of the influx guarantees that in the Schwarz-
schild interior, its effect is negligible, leading to an asymptotic (v — oo) no-hair
property for the Schwarzschild interior {12, 13]. On the other hand, inside the Reis-
sner-Nordstrom black hole, the weak gravitational wave tail is amplified by an expo-
nential blueshift factor at CH. The first backreaction calculation, performed on the
background of a spherical charged black hole [14], showed that certain components of
the Ricci curvature tensor diverge at CH, although all curvature invariants remain fi-
nite. The result is an observer dependent singularity. The mildness of this singularity
is unstable, for if any small amount of radiation crosses the Cauchy horizon (such as
light emitted from the surface of a collapsing star) a lightlike scalar curvature singu-
larity forms [1]. The lightlike nature of the singularity guarantees that the black hole
interior will be completely predictable up to the singularity by the laws of physics.
One of the more dramatic features of the solution is the prediction that the locally
measured mass of the black hole inflates exponentially as CH is approached. For this
reason the solution has been dubbed “mass inflation”. No news of the increase of
mass can escape from the event horizon to the outside world, where the black hole’s
mass is measured to be slightly smaller than the original star’s.

The spherically symmetric mass inflation solution is only a toy model of the sin-
gularity formed by the collapse of a rotating star. But, it seems likely that it is a good
model of a realistic black hole interior, since the causal structure of the charged spher-
ical black hole is similar to the stationary Kerr black hole. (The conformal diagram
for Kerr, restricted to the axis of symmetry, is similar to figure 2, except that it is
possible to extend the spacetime in regions I1I and III' through r = 0 to a negative
mass universe (not pictured).) In this dissertation, the backreaction of gravitational
perturbations on the non-spherical black hole interior will be calculated. We find that
generically, a lightlike scalar curvature singularity forms at CH. While we can show
that Hawking's quasi-local mass diverges, the mass no longer completely determines
the curvature in a non-spherical spacetime. More geometrically, we show that all five
of the Weyl scalars (¥, ..., ¥4) diverge at CH in the tetrad which we introduce in
chapter 3. Close to the singularity, the dominant behaviour of the spacetime is similar
to that of a colliding plane gravitational wave metric. The singularity is of an inte-
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grable form, similar to the spherically symmetric solution, which implies that tidal
distortions will be finite at CH. We find no evidence of a stronger spacelike oscillatory
BKL [15] singularity forming at an earlier time. The classical description given here is
not complete, since near CH, when the Weyl curvature approaches Planckian levels,
quantum effects will become important. We calculate the one-loop expectation value
of the stress tensor for quantized fields propagating on the spherical mass inflation
background, in order to make an estimate of the backreaction.

1.3 Overview of the dissertation

Chapter 2: The spherical black hole interior

In this chapter, we present an overview of the physics of the charged spherical black
hole interior. The chapter is partially a review of past work, focusing on the spherically
symmetric mass inflation model [1], in which gravitational radiation is modelled by a
null fluid. In the solution of the backreaction model, the black hole’s mass function

diverges as

m ~ f({)|la(-V)|7?/(-V),V - 0_,

where V is the Kruskal advanced time for the inner horizon, and takes the value
V = 0 at CH. The function f is arbitrary, and p is a positive constant, which for
gravitational radiation is p = 12. In the presence of a cross-flowing null fluid on a
charged spherically symmetric background, the only non-zero component of the Weyl
tensor is
_ 1 m(U,V) ﬁ )
r2 T 2r2”
so it follows that the divergence of the mass function signifies the formation of an
observer independent curvature singularity. Since the first integral of ¥, is finite, the
tidal distortions at the singularity are finite. In this sense the singularity is weak.
We review this work since it will serve as a qualitative guide for the physics of
the non-spherical black hole interior. As well, we close up a loop-hole present in the
original spherical analysis, by presenting a model of the scattering of radiation within
the black hole’s interior.
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Chapter 3: Double-null dynamics

We wish to find a general solution to the Einstein field equations in a region close to
the black hole’s Cauchy horizon. In order to meet this goal we need to make use of
a formalism which is ideally suited for calculations involving lightlike hypersurfaces.
In this chapter we will present a new formalism developed for a foliation of spacetime
by two intersecting families of null hypersurfaces. The intersection of the families
forms a two parameter collection of two dimensional spacelike surfaces, so this can
be pictured as an evolution of the geometry on a surface in either of the lightlike
directions normal to the surface. In our notation, the general line element takes the

form

ds® = —2e*du’du’ + go5(d8® + s%du?)(d6® + s%du®)

where capital Latin indices take values (0,1), while lower case Latin indices range
over (2,3). The coordinates u® and u! are null while the two coordinates ° are
spacelike. We assume in our formulae that the families of lightlike hypersurfaces are
hypersurface orthogonal, so that their generators are proportional to gradients of the
null coordinates u®. This allows us to write the Einstein field equations in a concise
manner in terms of two dimensionally covariant quantities. The equations presented
in this chapter will be used extensively in the next two chapters to present a general
picture of the generic black hole singularity.

Chapter 4: Dynamics of the mass function

In spherical symmetry, the black hole’s mass function plays a special role, since the
mass and the circumferential radius function completely determine the curvature of
the spacetime. In a non-spherical spacetime the equivalence principle forbids the
measurement of a local gravitational mass. It is possible, though, to define a quasi-
local mass (such as Hawking’s definition) which is an average of a local mass aspect
function m g over a spacelike surface. Hawking’s quasi-local mass has many qualities
which are similar to energy, so it is interesting to investigate its properties inside the
black hole. In particular, we would like to know if there is an analogous mass inflation
phenomenon inside a non-spherical black hole. We derive formulae describing the
dynamics of Hawking’s mass aspect function including the following integral equation
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which holds near CH:
1 3/4_-A 2 2 a ab
ma(U,V,8%) = [ dU j dV(é-(detg) e oy Ploul? + ma(U, V,0°)00 w0 ) +0(1).

where U, V are Kruskal coordinates for the Cauchy horizon, defined so that V' =0 at
CH and the functions A and detg are the metric functions defined in chapter 3. The
shear tensors o 44 represent the gravitational perturbations. Without any knowledge
of the rest of the thesis, it is possible to deduce qualitatively the existence of mass
inflation from this equation. Consider metric perturbations of the Kerr black hole.
In Kruskal coordinates the metric functions e* and detg are non-zero constants at
CH. The gravitational perturbations are expected to have the Price form [oy-|? ~
[In(—V){~P/V?2, so that if the scattered perturbations |oy|? are non-zero, and the
first term on the right-hand side of the equation dominates over the second term, the

mass aspect takes the form
mpyg ~ f(Ua aa)l ln(—V)I"”/(-V) 1V —0_ y

where f is an arbitrary function. The form of the divergence is identical to the
divergence of the mass function found in spherical symmetry. We leave the details of
proving that this is the behaviour for the mass function to the succeeding chapter,
where the characteristic initial value problem for the black hole interior will be solved.

Chapter 5: The generic black hole interior

Our aim is to describe the general black hole singularity formed by the gravitational
collapse of a rotating star. Before doing so, we present a simple model of colliding
plane gravitational waves which captures the essential features of the general solution.
We prove a key theorem for the plane wave metric which states that if the initial data
for the gravitational perturbations are of the Price power law form, the evolution of
the perturbations through the Einstein equations preserves the power law form at
later times. The results of the theorem are also applicable in the general black hole
spacetime.

The main result of this chapter is an approximate general solution to the Einstein
field equations (using the metric of chapter 2) near the Cauchy horizon. At leading
order (in our expansion) the solution is very well approximated by the simple plane
wave model. We find that a lightlike curvature singularity forms at CH. The square
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of the Weyl tensor diverges in a similar fashion as in the spherical model, but now
all of its components diverge, so the solution is not algebraically special. However,
the components are integrable, so the tidal distortions are finite, and the volume is
non-zero, so the singularity is not as strong as the spacelike Schwarzschild or BKL
singularities.

Chapter 6: Quantum effects in the black hole interior

The classical picture of the black hole singularity presented in the previous chapters is
not a complete description. When curvatures grow large, we expect that, through the
uncertainty principle, elementary particles will be produced and vacuum polarization
will contribute to the stress tensor. In this chapter we investigate the backreaction of
one-loop quantum effects on the classical black hole interior. The calculation of the
renormalized quantum stress tensor is very difficult so, to simplify the problem, we
have assumed spherical symmetry. We have noted in chapter 5 that the general black
hole interior is qualitatively similar to the charged spherical black hole, so our results
should be indicative of the behaviour of quantum fields in the non-spherical black
hole. We show that the Ori model [16] of mass inflation (section 2.3) can be approx-
imated by a simpler metric conformal to a spacetime which is a linear perturbation
of Minkowski space. This allows us to use Horowitz’s formula {17] for the renormal-
ized stress tensor for massless quantum fields in a classical background described by
linearized gravity. The result is then conformally transformed, using Page’s formula
[18], to the physical spacetime. Qur calculations show that the quantum corrections
to the stress tensor diverge faster than the classical contributions. The sign of the
corrections depends on the renormalization mass scale which is not fixed. Hence we
can not predict whether the quantum effects tend to strengthen or weaken the mass
inflation singularity. The strength of the correction terms leads us to conclude that
the classical picture presented in the preceding chapters is only accurate down to
Kruskal advanced times of the order V ~ h/r_, at which time the quantum effects
will become dominant.



Chapter 2

The spherical black hole interior

At first glance the analysis of the interior geometry of a black hole formed from the
collapse of a rotating star may seem a formidable challenge. However, accumulating
evidence [19, 20] suggests that after a rotating star collapses, the exterior spacetime
asymptotically relaxes to a stationary Kerr-Newman state in a manner similar to
the relaxation to a static case after a non-rotating but aspherical collapse. Although
there is no no-hair theorem for the interior of a rotating black hole, it seems likely
that the Kerr-Newman solution may act as a rough model for the general black
hole interior. The causal structure of the Kerr-Newman interior is similar to the
spherically symmetric Reissner-Nordstrom interior, so it is pedagogically useful to
first understant the simpler spherically symmetric problem. In this chapter we will
review the spherically symmetric solution of the black hole interior so that it may act
as a guide to the general situation where no symmetries are assumed.

The uniqueness theorems [9, 10] state that the exterior geometry of an isolated
black hole is described by the three parameter Kerr-Newman solution. The causal
structure of the rotating Kerr-Newman solution is essentially the same as that of
the simple spherical charged Reissner-Nordstrom black hole. When both solutions
are analytically extended past the event horizon into the interior, the same causal
features appear: a timelike singularity which is preceded by an unstable Cauchy
horizon. For this reason the assumption of spherical symmetry can be used as a crude
model of the physics of the more general problem. Since the physics in the exterior
of a spherically symmetric black hole is known with great precision [11] it is possible
to calculate the effects of the backreaction of perturbations onto the geometry. In a
non-rotating but aspherical gravitational collapse to form a spherical charged black

11
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hole, the backscattered gravitational wave tails enter the black hole [21, 22] and are
blueshifted at the Cauchy horizon. This has a catastrophic effect if combined with
an outflux crossing the Cauchy horizon: a null scalar curvature singularity develops
and the effective mass inflates [1].

This chapter is organised as follows. In the first section, the static Reissner-Nord-
strom solution is reviewed. The aspherical collapse of a non-rotating star is discussed
in section 2. Ori’s model [16] of the black hole interior is presented in section 3.
In section 4 the field equations for spherical symmetry are presented. The Poisson-
Israel model (1] of the interior is reviewed in section 5 along with a discussion of
problems with the initial conditions. The resolution [23, 24] of the problem of the
initial conditions is presented in sections 6, 7 and 8. Section 6 is concerned with
scattering in the interior. Sections 7 and 8 present an analytic approximation for
lightlike crossflowing dust and a massless scalar field respectively. In the concluding
section some speculations are made about the later evolution of the singularity, with

reference to numerical results.

2.1 The Reissner-Nordstrom black hole

The Reissner-Nordstrém metric is the unique spherically symmetric solution to the
Einstein equations coupled to an electric field and describes the exterior region of a

charged star or of a black hole. The metric is

1
fa(rs)

ds® = —f,(r,)dt® + dr? 4+ r2dQ? (2.1)

where dQ? is the line element of the unit sphere, and the function f, is defined by

2my €2
fi{r) =1——-r° +5. (2.2)

The subscript ‘s’ refers to static. The constant mg is the mass of the black hole, which
can be measured by using Kepler’s third law outside the hole, and e is the electric
charge of the hole. Setting e = 0 results in the uncharged Schwarzschild solution.

The roots of f,,
r+ =mp+/mj§— €2
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correspond to the event horizon (r, = ry) and the Cauchy horizon (r, = r_) of the
black hole. The positive surface gravities of the horizons are

— Ty —T-
Ky = 5 Ti
The tortoise coordinate r., defined by
r / =r ln[r | 1 In(ry, —71_),
= = - a s + 9%._ s

is used to define the Eddington—Finkelstein null coordinates
Ve =+ To, U =t — T,

which reduce to the usual advanced and retarded times far from the black hole. At
the event horizon, there is a coordinate singularity, where u., — oo. Clearly these
coordinates are only good in the exterior (region I of figure 2) of the black hole where

the metric is
dsfz = —fdu..dv., + rfsz .

Observers near the event horizon of the black hole do not notice anything partic-
ularly special about the event horizon. In the coordinate system used by the freely
falling observers the metric components are finite and non-zero. The retarded time
used by freely falling observers, Uy is related to observers at infinity by

Upp = e™"#les |
Thus, observers far from the black hole measure signals sent by freely falling observers
just outside the event horizon to be infinitely redshifted.

If we wish to extend the Reissner-Nordstrém solution into the interior of the black
hole (region II of figure 2), we need to introduce a new coordinate patch, defined by

v=t+r.,u=r.—t. (2.3)

The new coordinate u ranges from [—oc,00] as r, ranges from (r,,r.). The metric

in the interior is
ds? = f,dudv +r2dQ? . (2.4)

There are coordinate singularities on the two horizons, which can be removed locally
by using Kruskal coordinates which are well behaved near each horizon. It should be
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noted that it is impossible to find coordinates which are well behaved everywhere in
the interior. Instead it is only possible to use coordinates that are good in a region
close to either horizon. Since the horizons are physically separated, this is not a
problem. Kruskal coordinates, U, and V. for the event horizon are defined by

kiUp = ™% g V., =™, (2.5)
The event horizon is the hypersurface U, = 0. Near the event horizon,
fi(r) = —2e=+(v+v)
so the metric near the event horizon is
ds? = —2dU,dV, + r?dQ>

which is finite.
Similarly, Kruskal coordinates for the Cauchy horizon are

KU =—e"", k. V=—e"", (2.6)

Near the Cauchy horizon

f. = —~9e—r-(utv) (2.7)

and the metric is
ds? = —~2dUdV + r2dQ2. (2.8)
Consider radiation entering the black hole as in figure 3. The duration of the
radiation is Av as measured by observers far from the black hole. Inside the hole

near the Cauchy horizon, local observers use the well behaved Kruskal coordinate to
measure the duration of the influx, AV. From equation (2.6), the differential relation

dV = e *"dv

corresponds to an infinite blueshift of the radiation as v — oo.
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(o4

AV=Av exp(-x v)

Figure 3: Radiation entering the Reissner-Nordstrom black hole. This di-
agram is a close-up of figure 2 showing radiation entering EH and traveling
parallel to CH. The light is emitted during a period of external advanced
time Av. An observer inside the hole receives the signals during a period

of internal advanced time AV.

Similarly, the metric can be extended beyond the Cauchy horizon, into region
IIT' of figure 2. In this region, lies a timelike curvature singularity at r = 0. The
singularity is locally naked: for any point in III’, the singularity intersects its past
lightcone. this is related to the breakdown of the Cauchy problem. Initial data placed
on a Cauchy surface outside the black hole can only be evolved into the interior as
far as the Cauchy horizon (CH). Events in region III’ can only be predicted if initial
data are placed on the singularity. Since no unique prescription for placing initial
data on a singularity exists, it seems that this picture is seriously flawed. Penrose’s
observation that CH is a surface of infinite blueshift [8] suggests that region III’
is unphysical: small perturbations outside the black hole will appear enormous to
observers at CH, who will measure an infinite energy density(25, 26, 27]. As a result.
it is expected that when the backreaction onto the geometry is taken into account
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perturbations will cause CH to be unstable. As a result either a null singularity will
form at CH or a spacelike singularity will form before CH.

2.2 Aspherical collapse of a non-rotating star

Stars which are unable to produce an outward pressure are unstable due to gravity
and collapse to form a singularity. If we assume the unproven, but plausible, cosmic
censorship conjecture [3], then this singularity is hidden behind the event horizon
of a black hole. The earliest description of the gravitational collapse to a black hole
assumed that the collapsingstar is spherical [7]. Real stars are, of course, not perfectly
spherical: rotation will tend to flatten them into spheroids and the complicated stellar
physics creates flares and other density perturbations. However, a slowly rotating star
can be roughly approximated by a multipole expansion in spherical harmonics.

One might guess that the collapse of an isolated aspherical star would produce
an aspherical static black hole, but this is not the case! The no hair theorems state
that no information about the distribution of matter in the original star can be
obtained after a black hole has formed and settled down to a stationary state. The
only information available is its mass, electric charge and angular momentum. In
particular, a static black hole must be spherically symmetric [9]. From Birkhoff’s
theorem, a static black hole must then be described by the Schwarzschild metric if it
is in vacuum, or by the Reissner-Nordstrém metric if a static electric field is present.
We are now left with the puzzle of describing how a non-rotating but aspherical star
collapses to form a smooth perfectly spherical black hole.

A direct result of Birkhoff’s theorem is that there can be no spherically svmmet-
ric gravitational radiation. The theorem states that the only spherically symmet-
ric vacuum solution to Einstein’s equations is the Schwarzschild solution. Since the
Schwarzschild solution is static, and gravitational radiation is a vacuum phenomenon.
it follows that a purely gravitational system can not radiate away the monopole com-
ponent of its field. Gravitational fields have no dipole component, so this leads us to
the conclusion that gravitational radiation is quadrupolar. A general physical princi-
ple is that anything that can be radiated must be radiated. As a result, if the star’s
original gravitational field was of the form

B(t,r,0,6) = St [ dwe“Yin(8, 8)bimu(r)/r, (2.9)



2.3. A SIMPLE MODEL OF THE BLACK HOLE INTERIOR 17

where Y}, are the spin-weighted spherical harmonics, then as the star collapses, the
perturbations with [ > 2 will be radiated away [28]. The perturbations are not able
to propagate freely, however, for they feel the gravity of the collapsing star. The
effect of the gravity is studied by examining the wave equation of the perturbation.
The wave equation is separable, so that each I-pole is described by a one dimensional
wave equation, which for a scalar field is

auauwlmw = W(r)¢lm

- _ 2
Vi) = (e ry)ir r.) (l(l:z- 1) + 2::0 _ _21%) ’ (2.10)

with the effect of gravity represented by the potential barrier V;(r). The potential
for higher spin fields is similar to (2.10) and only differs by terms of order 1/7°.
This is now a problem which can be treated with standard techniques of scattering
theory. The important feature of the potential is that it dies off exponentially in
r. = [dr/ f,(r) near the horizon and as 1/r? at infinity. A calculation of the reflection
and transmission coefficients shows [11] that at late times the transmitted flux decays
as t720+P+1) where P = 1 if an [-pole moment is present before the collapse, and
P = 2 otherwise. The result is that long after the black hole has formed the radiated
perturbations are very weak. The barrier also partially backscatters the outgoing
radiation forming a similar flux, of the form vZ2+P+1) which enters the black hole’s
event horizon [28, 21]. It has recently been verified numerically [22] that the original
linear perturbation analysis agrees with a full non-linear analysis. We will refer to
the inverse power law gravitational wave tail as the Price tail.

2.3 A simple model of the black hole interior

The first model of the black hole interior which captured the essential physics is
the Poisson-Israel model [1]. Before we look at this model, it is usefu!l to consider
a simpler model, introduced by Ori [16]. There are two key features which should
be included in a reasonable model of the interior. When a black hole is formed by
the collapse of a star, an influx of gravitational radiation streams into the hole. In
spherical symmetry, there are no gravitational waves, so we need to introduce a crude
model which mimics the effect of the waves. When gravitational radiation is highly
blueshifted, as it is near the Cauchy horizon, the Isaacson effective stress tensor [29]
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of gravitational radiation is a very good approximation. In this approximation, the
effect of the gravitational radiation is modelled by lightlike dust.

The other key feature is that the gravitational radiation will be scattered by the
curvature inside the black hole, forming an outflux transversely crossing the Cauchy
horizon. We will refer to the scattered radiation as an outflux, although it doesn’t
escape from the hole.

In Ori’s model [16], outflux is modelled by a thin shell. This allows the matching
of two ingoing Vaidya solutions along the outgoing lightlike shell ¥, a finite Kruskal
time after the event horizon (see figure 4 ):

ds® = dvs(frdvs — 2dr) + r2dQ?, (2.11)
fe=1=2my(ve)/r + €*/r?,

where the subscript + (-) refers to the region after (before) the shell. The Einstein
equations link the mass with the influx

Ly(vs)
Ly =dmy/dve, TS = —f;.a—aauiaﬁvi. (2.12)
Continuity of the line element and the radial coordinate, r, yields the equations
fydvy = fdv. = 2dr (2.13)

along the shell. Continuity of the influx across the shell gives the equation

1dm, 1dm_ ,
-fz v, - -fZ- T (2.14)
These two equations yield the simple equation
dm dm_ -
7. =7 249

in which mass inflation is evident. The metric function f_ goes to zero as the Cauchy
horizon is approached, causing the right hand side of the equation to diverge. The
presence of the outgoing shell displaces the apparent horizon to smaller radii so that
f+ #0 at the Cauchy horizon. This equation implies that beyond the shell, the mass
will diverge at CH.
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Figure 4: The Ori model of the interior. Radiation enters the black hole
as in figure 3. Outgoing radiation is schematically represented by a thin
shell £ which crosses CH. A singularity forms in region + on the Cauchy
horizon. The singularity is represented by a bold dashed line, as it is much
weaker than the r = 0 singularity.

This model can be solved asymptotically close to the Cauchy horizon. The
mass function prior to the shell must reproduce the Price power law tail: m_ =
mg — :(-g-_—l)-(n-v_)“(”'”. Here v_ is the usual Eddington-Finkelstein advanced time
coordinate (2.3) which is infinite on the Cauchy horizon, § is a dimensionless constant
of order unity and k_ is the surface gravity of the inner horizon. Equation (2.13) is
then integrated for r along ¥ as v_ — oo

re(v.) = -+ :Eg'ﬁ—_-l-)'(n_v_)-(p—l) (1 + %—_-—v_]:')' + ) . (2.16)

Equation (2.15) can now be integrated using (2.16) to show that the mass function
diverges exponentially

my(v_) = mee™ - (k_v_)"P, v_ — 00 . (2.17)
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Equation (2.13) can be integrated to solve for v, by substituting the solution (2.17)
for the mass function after the shell. The result is that the coordinate v, after the

shell is

vy = A —1—6""“"‘= 4 v, (2.18)
K.Mg —K_- K-y

where V is the Kruskal coordinate defined by (2.6). This phenomenon has been
dubbed mass inflation [1]. Indeed this is a scalar curvature singularity since the Weyl
curvature invariant diverges exponentially, ¥5 ~ e~~~ /r2 as the Cauchy horizon is

approached.

The scalar curvature singularity is weak in the sense that the metric can be written
in coordinates in which it is finite at the singularity. Near the singularity, where the
mass diverges, the function f, can be approximated by f, ~ —2m,/r, so that the
line element is approximately,

ds® = 291} (rdr + my(vy)dvy) 4+ r2dQ2 . (2.19)
It is easily checked that the coordinate u, defined by
du = rdr + my(vy)dvy,
is bounded at CH. The metric is

9 dv+du
r

ds? = +r2dQ2. (2.20)

The mass inflation singularity, though much stronger than a whimper singularity. is
still very weak in this sense. Since tidal deformations of freely falling observers are
roughly proportional to components of the metric, it is clear that in the coordinate
system (2.20) the deformations are finite.

2.4 Field equations for spherical symmetry

In this section we will present the field equations for a spherically symmetric space-
time. The metric can be written using null coordinates »° and u!,

ds? = —2¢* du® du! + r*Q,;,d8°d6° (2.21)
where Q,; is the metric on the unit sphere,

Q.d0°d8® = d6? + sin® do®
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and A and r? are functions of u4.

Notation: Our conventions are: Greek indices a, 3, ... run from 0 to 3; upper-
case Latin indices A, B,... take values (0,1); and lower-case Latin indices a,b,. ..
take values (2, 3).

Upper case Latin indices are raised and lowered with the constant matrix

0 -1 1 0
AB _ = AB = = . 2.22
n NAB (_1 0 ) » 1 e = 6¢ (0 1) (2.22)
The Ricci tensor components for the metric (2.21) are
RS, = ;155;; (1~ e X(@*rdar +73,0%r)) (2.23)

Rip = % (-2aAaB Inr + 234rdmA — %ma(raga"x + 2aEAa£r)) L (2.24)

where we have introduced the notation

a B8
Rup =R 0z Oz

A 9uA guB
The contracted Bianchi identities produce a differential relation between compo-
nents of the stress tensor,

0p(r?T?) = e"(PaAr2+%r2 To,\) (2.25)

2P :=Tug® , T := Tapg*? = e *Typn*? (2.26)

where T, is the non-Maxwellian component of the stress tensor. Since we will be
focussing on solutions in the presence of a static electric field, the Einstein field

equations take the form
Gap = SW(Ta,g + Eap) ’
where E is the stress tensor for a static spherically symmetric electric field

_é __Bu“‘ ozr® + 80° 0z=
= 87t 0z8 guA  OzP 80

Eg
In spherical symmetry, only one component of the Weyl tensor is non-zero
1 e? -2 4r
Uy = -2-13(1 -3 + 2e7*3yrdT) + —3—(T - P).
In spherical symmetry there is a unique definition of the mass m(u?),

2m  €? -
f(ut):=1- - + 5= 9%Prorg =erart. (2.27)
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It is also useful to introduce a function x(u*), defined by

_19f, _ m e
K=—go lm= =t (2.28)

The Coulomb component of the Weyl tensor can be rewritten as a function of the

mass 1 2 9 4
m e T
\1’2——2—13(—1.--'13)+-'3,-(T-P) . (2.29)

so that in vacuum the mass function and charge uniquely determine the curvature at
any radius r.

It can be useful to promote the mass function to the level of a dynamical variable.
This can be done by rewriting the Einstein field equations. Since G,p = R, p —
5948(RP + R2), the Einstein field equations and the Ricci tensor (2.23) and (2.24)
can be rearranged to

9a0pr = —4nr(Tap ~ gapT) + Gardp)A
_.21.,,4,,(2“* +3Frag)) . (2.30)
Multiplying (2.30) by 82r, we find that
078,05 = —4n0°r(Tap ~ 9asT) + 30N f —Barne* . (231)
From the definition (2.27) of f, we can easily derive
Oaf = —0arf +2e2387r0,0pT
and the equivalent definition, using the definition of x,
Oaf = —2k0,r — %3Am .
Equating both definitions of d,4 f, it can be shown that the derivative of m is
dam = —re*98r8,0pr + %(BAA)f — rROsT
= 4rr2e”X(0%7)(Typ — ganT) - (2.32)

Applying the derivative 84 to equation (2.32) and making use of equations (2.25)
and (2.30), we find the following wave equation for the mass:

agm = —(47)*r3e T pTA® — 8xrfe)(P —~T) — 4nr’ke’T
+47r3(887)(0T) . (2.33)

(This corrects an error in equation (19) of reference [24].)
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2.5 The Poisson-Israel model

In the original mass inflation analysis [1], a null crossflow stress tensor was used to
model the gravitational radiation. The form of the outflux is kept arbitrary. The
stress tensor for null crossflowing radiation can be written as

Lin (‘,)
4zrre

Lou(U) ,
0.VV + _41”‘2 aaUagU (2.34)

T.p =

which satisfies the conservation equations (2.25) and has P = T = 0. The conserva-
tion equations force Lin (Lout) to be a function only of V' (U).

In the Kruskal coordinate V', the Price power-law tail has the form

dm;, , dv g (—In(—K_V))?. (2.35)

La(V) =34V = vy

As the Cauchy horizon is approached, in the limit V — 0_, L;, diverges and the
source term in the wave equation for m diverges as well. The integral solution for the

mass function is [1]

U pv
—_ 1=1,=Xr ! ! ! e st
m(U,V) = /U 1 th P=1e¥ Lo (V') Loue(U")dU' dV
+mn (V) + mo(U) — my. (2.36)

The gravitational wave tail influx is turned on at advanced time V] and the outflux
is assumed to be switched on at the advanced time U;, which is behind the event
horizon (see figure 5). The divergence of L;,(V')dV’ leads to mass inflation with the
mass function behaving as m ~ 1/V. Of course, this is only true if the combination
r~te=* does not go to zero, but this has been proved by Poisson and Israel [1].
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Inner Apparent Horizon

Outer Apparent Horizon

Figure 5: The Poisson-Israel model of the interior. In this diagram, regions
where radiation is propagating are shaded grey. The influx is turned on
at advanced time Vi, while the outflux is turned on at retarded time
Uy > —oco. A mild lightlike curvature singularity forms on the portion of
CH with U > U;.

There have been suggestions that the picture presented by the Poisson-Israel and
Ori models is not generic. Yurtsever [30] pointed out that null singularities in plane
wave spacetimes are not generic: when perturbed, a stronger spacelike singularity
forms before the Cauchy horizon. Yurtsever has suggested that something simi-
lar may happen when non-spherical perturbations of the PI model are considered.
His unproven view is that the generic black hole interior would look similar to the
Schwarzschild interior. We shall discuss this hypothesis in more detail in chapter 3.

This hypothesis is supported by a numerical evolution [31] of a spherically sym-
metric massless scalar field in a charged black hole. In this integration, the singularity
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was inferred to be spacelike (see figure 6a). However, a different simulation has shown
that the singularity is null [32] (see figure 6b). What can we say analytically to clear
up the confusion about the nature of the singularity?

Figure 6: Two numerical evolutions of the spherical charged interior. In
the Gnedin-Gnedin integration (6a) it is inferred that a strong r = 0
singularity forms asymptotic to CH. Since it occurs earlier than CH all
light signals end at r = 0. (See figure 5 of reference [31].) In the Brady-
Smith integration (6b) the » = 0 singularity crosses CH and a milder
lightlike singularity exists prior to r = 0. (See figure 1 of reference [32].)

The previous mass inflation analyses suffer from some limitations. In the picture
presented [1, 16] it is always assumed that the outflux is turned on abruptly after some
finite time behind the event horizon. Essentially, this amounts to the assumption that
a null portion of the Cauchy horizon exists, because the solution before the outflux
begins is the Vaidya solution. This segment’s existence depends on the form of the
outflux crossing it. If the outflux at early retarded times (U — —o0) is too strong. a
spacelike singularity will form. The effect of an outflux crossing a null ray is described
by Raychaudhuri’s equation

— = —4nrT,, (2.37)
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where g is an affine parameter on the null hypersurface, T, = Qg%% is the
transverse flux and dz?/du is tangent to the generators of the null hypersurface.
In the case of interest, the null hypersurface is the Cauchy horizon and g — —oc
corresponds to its “meeting” with the event horizon at H in figure 7.

Figure 7: Conformal diagram of the spherical charged interior. The infiux
of radiation is scattered by the black hole’s interior potential barrier. The
transmitted flux travels parallel to CH and is infinitely blueshifted. The
refracted outflux crosses CH transversely, causing CH to decrease in radius
towards the point C where it is inferred that r = 0.

Examination of (2.37) shows that in order for r to be finite as p — —o0 , T},
must satisfy
¥, =0 as p— —co. (2.38)
To test this condition we need to relate the affine parameter u to the null coordinate
U by .
— =gV =, (2.39)
If e~* diverges as V — 0 and U — —oo, then depending on Ty, the Cauchy horizon

may not survive.
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The earlier models of mass inflation do not address this issue since the outflux
is turned on after the event horizon. The corner region, V' — 0,—00 < U < U] is
described by a Vaidya solution. (The metric function e~ is finite in this region for
Vaidya.) For more general models which include the corner region, the behaviour of
A must be found. To do this, we need to specify the appropriate initial conditions for
Tyy which are physically reasonable.

2.6 The Outflux

A star collapsing through its event horizon provides two sources of outflux. First.
the star shines as it collapses and will irradiate the Cauchy horizon after the event
horizon is passed. While we will not attempt to describe the actual form of the the
star’s radiation, we do know that in a freely falling frame at the event horizon. the
radiation must be measured to be bounded. Kruskal coordinates for the event horizon.
Uy = e+ are appropriate for freely falling observers. These observers measure
Ty, v, < constant. Transforming this to the Kruskal coordinate U appropriate to the
inner horizon the outflux across CH is

dU,\?
(Tvv)star = Ty, v, (E&t) ~ (=U)THER /) T —o0.

As we shall see, the outflux due to the star has a negligible effect compared to the
backscattering of the incoming radiation.

Consider the evolution of a massless spherically symmetric scalar field in the black
hole interior. The characteristic initial value problem is completely specified by data
given on the the event horizon. The physical initial data are determined by the Price
power law wave tail v~7.

For reference purposes, consider the evolution of a scalar field in a fixed Reissner-
Nordstrém background with mass mg. The far right hand side of figure 8 (with all
fluxes turned off), describes the static Reissner-Nordstrom solution. It is distinguished
by an outer layer where the gravitational potential barrier is weak and perturbations
can propagate without impediment. The potential is peaked around the radius r =
e?/mgy. This is where most of the perturbation will be scattered. Much further in,
near 7 ~ r_, the Cauchy horizon is approached and infalling radiation is strongly
blueshifted. It is important to note that the radiation is scattered long before it
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reaches the large blueshift zone. This motivates our treatment of the evolution of

fields as a scattering problem on a static Reissner-Nordstrém background.

t=(v-u)2

h
P e L L T
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orizon barrier

Figure 8: Spacetime diagram of the spherical charged black hole interior
with one angular coordinate suppressed. (The content of this diagram is
identical to the conformal diagram of figure 7, but now the point H is
represented by two points H; and H,.) The time coordinate ¢ increases to
the right. while the radius decreases towards the centre. The event horizon
is represented by a tube which expands in radius as radiation enters the
hole, asymptotically reaching its final radius at H;, where v = co. In the
region contained within the tube EH;, the coordinate ¢ is spacelike and r
is timelike, so that decreasing r corresponds to increasing time. Radiation
propagating in the interior is scattered by the potential barrier forming
an outflux which crosses the Cauchy horizon, causing it to increase in

size asymptotically to its maximum size at H,, where u = —oo. The
transmitted flux accumulates along the Cauchy horizon where a weak
singularity forms. As u increases the singular tube CH, evclves to a

stronger zero volume singularity.

Mathematically, scattering of a massless field is given by 0O ¥ = 0 which, using
the usual advanced/retarded coordinates, is for the dominant monopole term (I = 0)

Oy = V(r)¢ ' ‘I"':‘b/r
vy = £DLg0

4rd—r

(2.40)
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where f has been defined in (2.27) and the subscript s denotes the static Reissner-
Nordstrom case with mass my.

This is a one-dimensional scattering problem. It is greatly simplified by the fact
that the potential V'(r) is highly localized near e?/my. It falls off exponentially [27]
in the tortoise coordinate defined by dr = dr/f,(r) near the event horizon £ = —oc
and the Cauchy horizon £ = 0o. A scalar field will propagate freely near the event
and Cauchy horizons and will only strongly interact with the curvature in a thin belt
around e2/my. At the horizons the scalar field solutions will be of the form of ingoing
and outgoing waves e~*“7 and e~**. The effect of the potential will be to alter the
amplitudes by the reflection and transmission coefficients, r(w) and t(w).

If the initial value on the event horizon is ¢o(v) then its Fourier transform [27, 33.

34]
do(w) = #/_‘: ¢o(v)e™“"dv

allows us to write the form of the scattered waves as X(v) + Y (u) where

X(w) = do(w)t(w)e “* dw

7=
Y(u) = ‘/._/ do(w)r(w)e™ duw. (2.41)

The initial conditions are ¢g(v) = (k_v)"P/20(v — v,) where the influx is assumed to
start after v;. The Fourier transform behaves as [27, 33, 34]

bo(w) ~ P> L, (2.42)

This can be used to calculate the transmitted and reflected flux. The stationary
phase approximation can be used to evaluate the integrals (2.41). For large v the
transmitted flux has the form

X(v) ~ t(wo)(kov)™™?, wy = —ip/2v (2.43)
t(wo) ~ I/U

and the reflected outflux is for large negative u

Y(u) ~ r(wo)(~r-u)2,wp = ~ip/2u (2.44)

r{wg) ~ constant.
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We calculated the reflection and transmission coefficients shown in (2.43) and (2.44)
using a simple model for the scattering potential: a rectangular well adjacent to a
rectangular barrier. For low energy scattering it is expected that the perturbations
will be strongly influenced by the potential so that there will be an almost total re-
flection. A computer simulation of the scattering [35] has shown that the rectangular
potential approximates the actual behaviour very closely. Actually, it is more appro-
priate to use the term refraction here since the reflected beam continues on to smaller
radii.

The general effect of the Reissner-Nordstrém curvature is to scatter the influx
T,. ~ (x_v)7P into a reflected flux T,, ~ a (~x_u)"? and a transmitted flux
T, ~ B(k_v)~P2 pear the Cauchy horizon, where « and f are the reflection and
transmission coeflicients and are O(1). Is this linearized scattering theory useful for

our problem?

Consider the initial layers just beneath the event horizon r = r, — €. This region
is far above the strongly blueshifted region, so the flux of energy is only that of the
Price gravitational wave tail v~P. For late times this is very weak and will only be a
small perturbation from the electro-vacuum Reissner-Nordstrom solution. The effect
of the Reissner-Nordstrom geometry on the wave tail influx will be negligible and
the influx from the event horizon will freely propagate to the Reissner-Nordstrom

potential barrier.

The black hole interior can be approximated from the event horizon to the scat-
tering potential as Reissner-Nordstrom . Our method will be to solve the Einstein
equations in the interior region after the scattering potential. Initial conditions can
be set just after the potential barrier, given by the Reissner-Nordstrom scattering
problem. In fact, just after the potential barrier the fluxes are not particularly large
since the blueshift region has not been approached yet. Until the Cauchy horizon is
reached the perturbations to Reissner-Nordstrém are small. Our approach is to find
an approximate solution which is good close to the Cauchy horizon (where perturba-
tions are large) and which satisfies the initial conditions given by scattering from the
potential barrier.

As a first step toward the analytic scalar field approximation, we shall first intro-
duce a null cross flow solution which incorporates the boundary conditions discussed

here.
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2.7 Analytic approximation for lightlike crossflow

Our aim is to construct an analytic model for the black hole interior after the potential
barrier. We shall first start with a null crossflow stress tensor and introduce some
approximations. This can then be used as a2 model for what we expect to happen in
the scalar field evolution.

The null crossflow stress tensor is of the form of equation (2.34) with the luminosity
functions given by scattering

Lia(V) = B(—k_V)2(~In(~&_V))™?
Low(U) = a(—k_U))(In(—k_U))"P (2.45)

where a and § are dimensionless positive numbers, corresponding to the reflection

and transmission coefficients respectively and ¢ = p + 2.
Introduce the functions A(U), B(V') defined by

Loe(U) = A"(U)
Lia(V) = B"(V)

where ’ denotes ordinary differentiation. For V — 0

B(V) = -Eqﬁm (—In(—k_V))™o* (1 + '—1Tq(-—7c1__vi + )
B(V) = 7?2_(_]6—77 (—=In(~k_V))™ (1 + :—l;(f’;m + ) (2.46)
and for U — —o0
AU) = PZT:TT)U"(""U))‘M (1 - E’(’L_:—ZIES + )
AU) = K—?_(—‘:-m(m(-n_tf))-v (1 - T.FEZ%E + ) . (2.47)

In the corner region V' — 0,U — —oo, the functions A and B are small, but deriva-
tives of B with respect to V diverge.

We wish to concentrate on the region after the potential barrier at early times.
Before the potential barrier we expect Reissner-Nordstrém to be a good model. In the
innermost regions we must model the effect of the infinite blueshift of the inflowing

radiation.
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Using the metric (2.21) we note that the Einstein equations allow us to write wave
equations for two combinations of the metric functions, which do not include the mass

function as a source term:
3e?
-1 _ =X -
((rTe™)ov = -3 (1 - ,.—z)

vy = - (1-—%). . (248)

r

In order to solve the evolutionary problem, we need to find the solution in the
intermediate region after the potential barrier and before the region where r goes
to zero. This region will be defined by r # 0. When this stipulation is made it is
impossible for e~ to go to zero [1]. This means that both wave equations (2.4$)
do not have any potentially diverging source terms and both will have finite solutions.
For conciseness, introduce the bounded and non-zero variables

X = rle™t | p= %1'2. (2.49)

The Einstein equations can then be written as equations (2.48) and the null hy-
persurface constraint equations:

O (xpp) = —xA"
d(xpy) = —xB" (2.50)
The mass function obeys the wave equation
myy = xA"B". (2.51)

As long as 7 # 0, we can write a solution with x and p being close to their
Reissner-Nordstrém values plus perturbations which are small in this region. The
metric functions for static Reissner-Nordstrom with a mass mg will be denoted with
a subscript “s”, so that f,(r,) and x,(r,) are defined by equation (2.27) and (2.28).
The functions p, and x, and their derivatives are

- 1 2 - 1 r.f.q —_ 1 r:fs (G
Py =3Te s Poll = =5 Pav = T35 (2.52)
= UV k2
* fo TS
_ _n__V 1+ 2r,
Xs,U = = 7, K_ — K,)

2
]

Xov = -fﬁq (1 + 2re K. — x,)) . (2.53)
C ]

s
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In the limit of the Cauchy horizon, (UV — 0,r, — r_) these functions take on the
limiting value

fo = =2UV«2 (2.54)
1
ps — -2-1‘?_, sy = r-Vik_, pov = r_Ur_ (2.55)
1 .V .U

(2.56)

Xs—";‘, Xs U — — 1‘2. y XsV — —

-— —

We can now construct a solution to the Einstein equations using an iterative
approach, taking the static Reissner-Nordstrom solution as the zeroth order solution
(X = xs, 9 = p,) and substituting back into the Einstein equations to find the
first order correction terms. Equations (2.50) can be integrated to solve for p:

rz -’

P = Ps (2.57)
v dv” V" 4 (] 4 /3 /]
/ W dV'x (U, V') B" (V")
U dU” U" (4 s '4 n 4
- f o] WX VAW,

It is clear in our approximation scheme that (2.57) is the leading order contribution
to the solution of the Einstein equations. The contribution from (2.48) will be of
lower order.

Integration of (2.57) by parts gives the solution

p=ps—(A+B)+e, (2.58)
where € is
= Y dv” v 4 d '} ’ ’ -
o / xs(U", V") / dV'xs v (U, V)B' (V') (2.59)
’ dU” v ’ ! (] ’ 4
+/ x.(U", V") dV'xeu (U, V')A(U")
~ U/BdV+V/AdU (2.60)

which is much smaller than A+ B in the remote past of CH. Using this approximation
in the second equation of (2.48) and expanding to first order in A and B, allows the

estimation .
X = Xs + O(5(A + B)).
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Substitution of this order of correction back into (2.57) yields a second order approx-

imation
p=ps ~ A(1+O0(n(-£_U))?) - B(1 +0O(~In(—x_V))77).

Clearly, in the corner region where (In(—«_U))™! ~ (=In(—&_V))™' ~ 0, p is well
approximated by the leading order solution (2.58).
To linear order in A and B, the mass function can be integrated from (2.51)

m(U,V) = x,A'B'(1+ O(A + B)) + m{, + m,,,, — mq

which in the limit V — 0 is

2B 1 - ~P (—ln(~ -4
m ~ —= gy n(=£-U))"? (- ln(~«-V)) (2.61)
showing the usual 1/V inflation found in earlier work [1].

The solutions for the original metric functions r and X are

A 2
R :B)+ fsB+0(A2+B'-’)
A 2
A = ,\,+( :;B)-i- ‘:43+0(A2+B2). (2.62)
s 3

This approximation is not so good as the scattering surface is approached (U'V —
1, so that correction terms (2.59) are comparable to the first order terms in (2.58)). We
already know that the solution near the scattering surface should be approximately
described by the Reissner-Nordstrom solution. It is only after this region, deep into
the blueshift region that an approximate solution is needed and this is where it is
important that the solution be accurate. The solution that we have found is accurate
where it matters, close to the Cauchy horizon.

2.8 The Scalar Field Solution

Using approximations similar to those just discussed for lightlike crossflow, we can
develop an approximate analytic solution for the scalar field equations. As before,
the physics tells us that the interior solution can be approximated well by the static
Reissner-Nordstrom solution from the event horizon down to the scattering surface.
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THE SCALAR FIELD SOLUTION

The Einstein equations for coupling to a massless scalar field are

répvy = —~Tydy —ryvdy (2.63)
- 91l ¢
pLrV = -~ 2
1 3e?
(ln(x)ov = 87ppdy ..;5;(.(1__;)
(xeuv)u = —8mpxoy
(xpv)v —8npxd’,
myy = 1672xr'¢%d% —4nrféudy.

Define functions a(U) and (V') by setting their derivatives equal to
d(U)=ouls, Y(V)=dvh

where the subscript b refers to the value of the scalar field given by scattering at the
underside of the potential barrier.

As before, the wave equations for p and x have solutions which are finite and
non-zero in the corner region as long as ¢ does not diverge. The initial conditions
given by scattering (2.43,2.44) are that the scalar field is initially regular. Near the
scattering surface the radius will be close to its Reissner-Nordstrom value, so using
the scalar wave equation and the Reissner-Nordstrém radius (2.52), it can be seen
that the UV mixed derivative of the scalar field, near the initial surface is

_1f by bu
duvle = 21_”:_( vtV e

~ (= In(=£_V))™ 2 ¢ (In(—k_U))?/2. (2.64)

This derivative is small in the corner (V' — 0,U — —o0), so in the earliest regions the
scalar field will not be changing rapidly from its initial value. This motivates us to
make the ansatz that the leading order behaviour of the scalar field, near the Cauchy
horizon should be

©_ 4 _ A"
Sv =a = 4rr?
1

= (in(=k_0)) "

Varrze2 (=U)
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BI’
471'1‘2

JT,&(V

With this ansatz, we can see that the scalar field will be small everywhere in the
corner region, but that derivatives with respect to V' will diverge near the Cauchy

oD =t (2.65)

il

y (= In(= k-V))".

horizon.
As before we can calculate the first order correction terms by iterating the Einstein

equations, again taking the zeroth order solutions for p and x to be the same as the
Reissner-Nordstrom solution. The solution for p is the same as the lightlike cross flow
solution (2.58). Substitution of (2.58) and (2.65) into the scalar wave equation yields
the first order equation

buv = —3=(osg = AW + (puy = B')a)
which can be integrated asymptotically in the corner region, making use of (2.52)
S=a+b+ ;E(Ab + Ba) + O(UV(a +b)). (2.66)
Using the first order solutions for ¢ and p the wave equation for x can be integrated
Inx =Inx, + 87ab + O(A + B). (2.67)
To leading order the mass function is integrated to be

m(U,V) ~ k2 /r_A'B’ (2.68)

and the metric functions r and ) are

ro= - B3B8 4B oy gy
T, r3
A= A,—Sn’ab+(A+;B)+2A43+0(A2+Bz).
T.' r’

The existence of the Cauchy horizon in this solution can now be tested. Substi-
tution of the solution for A given by (2.69) into (2.39) gives the following asymptotic
relation between the affine parameter, u, and the coordinate, U,

U
u= -K-z-(l-i-O(a)) U — —o0.
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Condition (2.38) for the scalar field solution now reads

. _ o (In(=k_U))—P+?
“Elinm ,usz‘ - UEIBQ 4mr2 ks

(1+ O(in(—x_U))""*!) =0.

Since condition (2.38) is satisfied, the Cauchy horizon exists in our approximate
solution to the Einstein-scalar field equations. This is of course evident directly from
the asymptotic form of the metric functions (2.69).

2.9 Evolution of the singularity

In the last 3 sections we have focussed on the structure of the black hole interior
in the early corner region. What happens at later times as U increases along the
Cauchy horizon? Consider again, equation (2.37). Since the outflux 7}, is positive
definite, the second derivative of r is negative. Since r is initially (at H) decreasing,
it must continue to decrease to zero along the Cauchy horizon. We should note that
r = 0 still represents a curvature singularity. But what is its character, is it spacelike,
lightlike or timelike? This question is answered by examining the norm of 9,7, given
by f in equation (2.27). Near the Cauchy horizon, for small r

OarOprg™? ~ —2m/[r + 2 [r?.

When r > e?/m then r is spacelike. Since the mass is diverging at the Cauchy
horizon, there is always a very small radius, r = € which is a spacelike hypersurface.
One would expect by continuity, that the hypersurface r = 0 should also be spacelike.
The expectation is that the curvature singularity at the Cauchy horizon connects with
a stronger spacelike r = 0 singularity as in figures 8 and 7.

In all of the considerations in this chapter we have always assumed that r # 0, so
our solution can not describe the transition region, where the two singularities merge.
It seems likely that the spacelike singularity would be described by the general oscil-
lating BKL singularity [15]. In fact, there is a simple model of a spacelike singularity
in the black hole interior, known as homogeneous mass inflation [36] which may be
a good approximation to the singularity at » = 0. In this approximate solution, it is
assumed that the solution depends only on r, which is a good approximation when
r is very small. In the homogeneous mass inflation model, the solution oscillates
violently as the spacelike singularity is approached.
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The fact that we expect that the null singularity may merge with a spacelike
singularity may explain the discrepancy between the different numerical results. The
earliest integration by Gnedin and Gnedin [31] showed that there was no null portion
of the singularity. But the Gnedins’ code encounters its worst inaccuraciesnear V' = 0,
and within their margin of error, it is really impossible to decide whether their picture
shows a completely spacelike singularity. It has also been shown recently [37] that
the sort of code that was used is highly unstable, which casts a great deal of doubt
on the conclusion drawn from this code. The other numerical integration by Brady
and Smith [32] does show that a null singularity forms, similar to the one described
in this chapter. It is interesting to see that the radius of U = constant rays decreases
as U increases and the trend suggested from their graphs is that the null singularity
will indeed merge with a spacelike r = 0 singularity.

2.10 Conclusion

We have calculated the effect of the backreaction of scalar field perturbations prop-
agating in the interior of a charged spherical black hole. We incorporated physical
initial conditions, given by the scattering of the perturbations by the interior Reis-
sner-Nordstrom potential barrier. The result of this analysis is that a null scalar
curvature singularity forms at CH, as was found in the Poisson-Israel model [1].

The infinite distortion of the Penrose diagram near the point H of figure 7 can
cause some confusion. The general picture of the processes involved can be sum-
marised by the spacetime diagram 8. In this diagram two-spheres of constant r are
represented by circles of radius r. Since r is timelike inside the black hole, we have
labeled decreasing r as increasing time. In this diagram we show that the incoming
radiation is partially scattered by the potential barrier into two streams. The scat-
tered stream transversely crosses CH, causing it to contract to smaller r, eventually
to r = 0. The transmitted stream travels parallel to CH, and is infinitely blueshifted,
causing a curvature singularity to form at CH.

The Weyl curvature diverges in the limit UV — 0 as,

¥, ~ o (In(=0)) P/~ In(~V))9"

at the segment CH, which is where the Cauchy horizon would be located if no pertur-
bations were present. The divergence of ¥, demonstrates that the tidal forces diverge
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at CH. However, the distortions are proportional to first integrals of the curvature
~ [dV ¥y ~ (= In(—V))"? + const. which are finite. In this sense the singularity is
weak.



Chapter 3
Double-null dynamics

One of the fundamental goals of physics is to make predictions about the outcome of
experiments. The means to this end is the initial value, or Cauchy formulation of the
laws of physics, which provides a method to forecast the later state of a system once
the appropriate initial conditions are known.

Our wish to predict the future is so great that we continue to use the Cauchy
formulation, although the concept of time is not absolute: inertial observers measure
clocks in different inertial frames to run slow. As a result, in order to make use
of the initial value formulation correctly, it is important to keep the transformation
properties of the laws of physics in mind. For example, consider Maxwell’s theory of
electromagnetism. One can obtain all the information about the electromagnetic field
for all observers by solving Maxwell’s equations for the field strength F,.5. However,
sometimes it is more useful to choose a special observer and project F,z into electric
and magnetic components and solve for the fields in the special reference frame. In
order to describe the observations of a different inertial observer, it is necessary to
use the Lorentz transformation laws to find the electric and magnetic fields in the
new frame.

The situation is more complicated for the theory of general relativity where general
transformations between the space and time coordinates are allowed. If the general
covariance of the theory is to be respected, no observer should be considered special
and no coordinate should be singled out as time. However, a generally covariant
approach is complicated, for Einstein’s field equations are a set of ten coupled second
order non-linear partial differential equations for the spacetime metric. Except in
special symmetric spacetimes, solutions to the field equations are very difficult to

40
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find. The use of the non-covariant initial value approach [38] to general relativity
leads to conceptual simplifications which makes it easier to solve certain evolutionary
problems.

The form and interpretation of the initial value problem for gravity introduced by
Arnowitt, Deser and Misner (ADM) [39] is the current standard formulation used to
study dynamical systems. The underlying fundamental structure that they imagined
was a foliation of spacetime with a family of hypersurfaces of simultaneity, ¥,. Each
three dimensional spacelike X, is labelled by a parameter ¢ which is constant on the
hypersurface. General relativity is now interpreted as the evolution of the intrinsic
geometry on ¥, to later hypersurfaces.

One drawback is that the hypersurfaces must be spacelike: it is impossible to
describe the evolution of null hypersurfaces using the ADM formalism. This is a
serious problem if one is interested in studying null hypersurfaces, such as the event
and Cauchy horizons of a black hole. As the structure of the Cauchy horizon is the
focus of this thesis, it would be advantageous to develop an imbedding formalism
analogous to ADM’s which can handle null hypersurfaces.

In this chapter we will present a new formalism {40] developed for a foliation of
spacetime by two intersecting families of null hypersurfaces. The intersection of the
families forms a two parameter collection of two dimensional spacelike surfaces, so this
can be pictured as an evolution of the geometry on a surface in either of the lightlike
directions normal to the surface. The null surface approach to field theory {41, 42, 43}
(called variously “infinite momentum frame” and “light-front field theory™) has led
to important improvements in the understanding of field theories. Similarly, it is
hoped that the double-null approach to gravity will clarify many problems. In this
thesis, the double-null formalism presented in this chapter will be applied in chapters
4 and 5. In chapter 4 it will be used to describe the dynamics of quasi-local mass
and to derive a general mass inflation law for black hole interiors. In chapter 5 the
formalism will be used to solve the characteristic initial value problem in the black
hole interior, which will show that a lightlike singularity forms at the Cauchy horizon
of a nonspherical black hole.

The first formalism based on pairs of null directions was the generalized spin-
coefficient formalism of Geroch, Held and Penrose (GHP) [44]. The GHP formalism
is especially well suited for the study of algebraically special spacetimes. When the
vectors defining the null directions are hypersurface orthogonal simpler formulations
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can be presented [45] - [49]. In this chapter we will present a double-null formulation
of general relativity assuming hypersurface orthogonality. The content of the formu-
lation is identical to [45] - [49] but the presentation of the field equations is much
simpler conceptually. It is based on the classical description of surfaces imbedded
in higher dimensional manifolds [50]. The formalism is essentially a generalization
of a previous 2 + 1 split of spacetime within a three dimensional null hypersurface
[51] introduced to study cosmic censorship. The essential feature of our approach is
that it maintains two-dimensional covariance while operating on objects with direct
geometrical meaning.

This chapter is organised as follows. In section 1 the basic geometrical frame-
work and notation are introduced. The first order imbedding relations (the Gauss-
Weingarten equations) are derived in section 2. Commutation relations relating sec-
ond derivatives of the metric functions are derived in section 3. In section 4 the
Riemann and Ricci tensors are derived, through the Gauss-Codazzi relations. The
contracted Bianchi identities, characteristic initial value problem and the Lagrangian
for gravity are presented in sections 5, 6 and 7 respectively. More technical derivations
are presented in the appendices.

3.1 Geometrical framework

We begin by imagining a foliation of spacetime by two intersecting families of null
hypersurfaces, {£°} and {£'}. Each hypersurface £ is defined as the locus of points
on which the parameter u® has a constant value. Similarly the parameter u! labels the
hypersurfaces £!. The hypersurfaces £° and £! have null normal generators &% and
¢1) respectively. (Here the bracketed numbers are labels and the spacetime indices
are suppressed.) The intersection of two hypersurfaces from the two families occurs
on a two dimensional spacelike surface, S, on which u® and u! are both constant.
We introduce intrinsic coordinates on S, 82 and 63, so that the foliation of the four
dimensional spacetime is described by the four imbedding relations

= = z%(u®, u!, 6%, 6%), (3.1)

where z% are four dimensional spacetime coordinates.
Notation: Our conventions are: Greek indices a, 3, ... run from 0 to 3; upper-
case Latin indices A, B, ... take values (0, 1); and lower-case Latin indices a, b, . .. take
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values (2,3). We adopt MTW curvature conventions [52] with signature (— + ++) for
the spacetime metric g,5. When there is no risk of confusion we shall often omit the
Greek indices on 4-vectors like £ and ef,): they are easily identifiable as 4-vectors
by their parenthesized labels. Four-dimensional covariant differentiation is indicated
either by V, or a vertical stroke: VgA, = A,)s. Four-dimensional scalar products
are often indicated by a dot: thus, ) : &5) = gap €4) £p)-

Intrinsic geometry of S

Consider, now, the intrinsic geometry of the surface S, by ignoring the extra imbedding
dimensions. Given coordinates #% on S we can define basis one-forms df° and a metric
gab O1L S, so that the line element on S is

dszlg = g.5d08°de°® .

Quantities which transform as tensors under the “rotations” 6° — 8% = 6% (8%), will
be referred to as two-tensors. For example, the two-tensor X,° transforms as

a0° 96"

96" 06>

The covariant derivative compatible with the metric g,; is denoted by a semicolon.
Christoffel symbols ®T'g, and the Riemann tensor R%; = 62945 ®'R are defined

in the usual way.

X¥ =X,

Tangent vectors to S

Tangent vectors to S can be defined by reference to the imbedding (3.1)

az~

e°(,,) = ‘5&— ’ (32)

where the subscript a is treated here as a label, and « is a spacetime index. The tan-
gent vectors act as projection operators: they project tensors in the four dimensional
spacetime onto S. For example, the metric g, on S is obtained by the projection of
Jda4, the spacetime metric, ie.,

Gab = Gape® )€’ s) - (3.3)

Here we see that the two-tensor g, is viewed as a scalar function from the viewpoint
of the four dimensional manifold.
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The tangent vectors also act as pull-backs, mappings of two-tensors to the space-
time manifold. For example the two-tensor X,® has the pull-back

X8 = X, be, @efyy , (3.4)

where e,(® = g°g,5e8;). From (3.4) we can see that two-tensors in general have
a dual nature, they are tensors with respect to S but only tetrad-dependent scalars
with respect to the full spacetime.

Normals to S

The normals to S, £4) have uniquely defined directions, given by the gradients of the
parameters u. However, since the normals are lightlike, they can be multiplied by
an arbitrary scale factor

&N = g ut, (3.5)
where A is an arbitrary function. It is useful to allow for a normalisation of the two
independent normals which is not unity. We have arbitrarily chosen the normalisation
condition &9 - 1) := —e*. Since the norm of a lightlike vector is zero. the inner

product of the normals can be written
gaﬂegd)eng) — eAnAB , (36)

where 748 is the matrix

0 -1 1 0
AB _ _ AB. oA _ ‘ -
n°" =nap (_1 0 ) , M nge = 6¢ (0 1) (3.7)

It is easily checked from the definitions of the tangent and normal vectors that their

inner product is zero,
4,‘4)60(4) =0. (3.8)

(2 4 2)-split of the metric

The vectors connecting two two-surfaces at different values of u* are 8z /8u* which
are not equal to £f,,. From (3.5) and (3.6) it can be seen that their difference is
orthogonal to €4y, or tangent to S. It is necessary to introduce shift vectors 5,42,

defined by
oz°
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which have been illustrated in figure 9. Similarly, equations (3.2) and (3.3) can be
used to show that the difference between e{®) and % is orthogonal to S. According

to (3.9) the difference is:
a6 _, .
e(“)a = 53; +e '\SA Z(A)a s (3.10)
This allows partial derivatives to be rewritten as

8, = €N (3, ~ 528,) + €3, . (3.11)

Figure 9: The light-cone in the double-null formalism. The intersection
of two null hypersurfaces, u® = const. and u! = const. is shown on this
diagram. The intersection (the line Sp) is a two dimensional spacelike
surface, spanned by the two tangent vectors €(z)- The point p corresponds
to a fixed value of the two coordinates 8% on Sg. The future light-cone
for p has lightlike tangent vectors £, and £f},. The vector £f, doesn't
necessarily connect equal values of 6° on the hypersurface u!
In general, equal values of 6° are connected by the vector dyz*. The
difference between the lightlike tangent and the connecting vector is the
shift vector sf,. The shift vector lies within the surface S. Similarly, a
second shift vector sf}, must be introduced.

= const.

An arbitrary displacement dz* in spacetime is, according to (3.2) and (3.9), de-

composable as
dz® = £y du? + ,)(df° + 54 dut). (3.12)

From (3.3), (3.6) and (3.8) we read off the completeness relation

GaB = e“‘nABES{‘)Z(ﬁB) + gabef,") eg'). (3.13)
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Combining (3.12) and (3.13) shows that the spacetime metric is decomposable as

Gapdz® dz° = e*npp du’ du® + go,(d8°® + 5% du?)(d8® + 55, du®). (3.14)

First derivatives of the metric

We turn now to the definition of the extrinsic curvature and the twist, which are
composed of first derivatives of the metric. First, it is useful to define a normal Lie
derivative, D4, which Lie propagates two-tensors at S along one of the normals £,4).
Its action on the general two-tensor X2 is defined by

DaXp = e®el Lo X5, (3.15)

where X§-- is the pull-back defined by equation (3.4). It can be verified that this
definition is equivalent to

DaXg = (84— L, ) X5, (3.16)

where (J)C,, is a two dimensional Lie derivative. In order to show the equivalence
of the definitions (3.15) and (3.16), the following identities are useful. From the
definitions of the normal (3.5) and tangent (3.2) vectors,

a (s 4 a a ~
Lo ea)® = e(a)a—o-;s,l ) (3.17)
from which it follows that
d
e(d)"ﬁgme(“)a = __e(a)acl“)e(‘na = —WSA‘! . (3.18)

Substitution of (3.17) and (3.18) into (3.15) yields (3.16).
As examples of the use of this operator,

Dad = 94) — %9, (3.19)
Dagas = 0aGas — 254¢ap), (3.20)

where a semi-colon denotes two-dimensional covariant differentiation.

The extrinsic curvatures K 4,5 measure the change in the two-geometry as it is Lie
propagated in either of the directions ¢ 4) normal to S. Their values are
1

2DAgab . (3.21)

Ko :=
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The dilation, K4, measuring the change in area of a circle of light Lie transported
along £ 4), is the trace of the extrinsic curvature,

KA = KAabg"" = 3,, In ‘/5- SAa;a . (3,22)

where g is the determinant of the metric on S. The shear, 04,5, measures the distor-
tion of the circle and is defined as the traceless part of the extrinsic curvature
1 Gab 1
T Aab ‘= '2'\/5 Oa (—a\/-g:) — SA(ap) + 59«:63,44;4 - (3.23)

The twist w® is defined by
eapweq) = [(B), {ay] (3.24)

where ¢ is the completely antisymmetric matrix with component €; = €'° = 1 and
the square bracket denotes a Lie bracket. When the twist is zero then the curves
tangent to £y and ;) mesh together to form two-surfaces orthogonal to the surfaces
S. An equivalent definition which follows directly from (3.24) and (3.9)

w® = e*B(dpsy — shss ) (3.25)

3.2 The Gauss-Weingarten relations

In the classical theory of surfaces imbedded in a three dimensional Riemannian mani-
fold, the Gauss-Weingarten relations describe the variation of the tangent and normal
vectors in the directions defined by these vectors. In this section we extend these
equations to the imbedding of a surface in a four dimensional Lorentzian manifold.
The complication in doing so is that there are now two normals which are both null.
However, as we shall show in this section, the derivation of these relations is not

particularly difficult.

Tangential variation of the basis vectors

We begin by computing the Gauss-Weingarten equations for the change in ¢4y and
€(q) as they are varied in a direction tangential to S. In other words, we wish to
compute the covariant derivative in the direction of e@). The results are that the
tangential derivative of the tangent vectors is

€ * Vef’a) = (2)‘[‘368&) - e-AKAabQ’A) ' (3.26)
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while the tangential variation of the normal vectors is
ew) - V€4 = Kaape™®* + LB (3.27)

1 1
Lagy = '2‘77.48661\ + '2-61113%'3_A .

In order to derive equations (3.26) and (3.27) the following identities are needed.
From the definition of the tangent vectors (3.2) and the symmetry of the connection.
it directly follows that

€y ° Vefa) = e(.,) . Ve?b) s
edew - Vel = Oy (3.28)

From the orthogonality of £ 4) and e, it follows that
E(A)ae(,,) . Ve&) = —ef'a)e(b) . Vf(A)a . (3.29)

The definition of the Lie derivative allows the term on the right hand side of (3.29)
to be written as

2€e(a)es) * Vlaa = g"(“e(”))o‘ctm)e(d)‘* — €a(()Le €0 + Z?A)V'rgab
= 2K4a - (3.30)

The second equality follows from the application of (3.21). The tangential variation
of the tangent vectors (3.26), follows directly from equations (3.28), (3.29) and (3.30).
Since #£58) is proportional to a gradient,

€ O 10 = €0, 048,051 = 0.
From this result it follows that

Conlalons = efilaisn

= %WbEBA . (3.31)
The symmetric counterpart to (3.31) is
1
e lalomps = 5%z - (3.32)

The tangential variation of the normal vectors (3.27), follows from (3.30), (3.31) and
(3.32).
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Normal variation of the basis vectors
Similar results can be found for the variation of the tangent and normal vectors in a
direction defined by £(4). The normal variation of the tangent vectors is

la- Vel = (Kao® +8,sh)ef + Lagat™ . (3.33)

The normal variation of the normal vectors is

€g -V = Nmpfg - e*LgAae?, (3.34)

1
Nagp = npaDpA — EWABDD/\ .

In order to derive equation (3.33), note that from the definition of the tangent
vectors and the symmetry of the connection,

oz* o
gu—AVaef =e, v

Substitution of (3.9) into (3.35) and making use the of the Gauss-Weingarten equation
(3.27), results in equation (3.33).
The derivation of (3.34) requires the following formula which follows from (3.3):

o

i (3.35)

0o = €45 + B A5 — DAl . (3.36)
The symmetric component of (3.34) is computed using (3.36) and (3.11),
1
ef‘BEA)ﬂla = D(B,\e,i,,g - '2‘7743(5300/\ + E'\egaaz\) . (3.37)

The antisymmetric component of (3.34) is just the Lie derivative given by equati .:
(3.24). The normal variation of the normals follows from equations (3.36) and (3.24).

3.3 Commutation relations

In this section we derive the commutation relations between the different derivative
operators. First we look at the commutator of the normal derivatives acting on a
general two-tensor X, which by definition (3.15) is

DiaDg Xg = esef Ly, (ASASLy, (7€) XT)) | (3.38)
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where the projector, AJ is defined by
AS =elel =65 — e eqed . (3.39)

-~

The Lie derivative of the projector follows from (3.39) and the definition of the twist

(3.24),
LegAS = —Loge 0508 = —e e ppuie] .

From this result it follows that
DiuDg Xg = eief L, Loy (eFeh XS) — e 2 efw epia Loy (efeh X)) . (3.40)

The second term vanishes since the Lie derivative of e (see equation (3.17)) has no

normal component.
The first term in (3.40) can be simplified by noting that the commutator of two

Lie derivatives is the Lie derivative of the commutator, ie.,
26‘[}\["81 = C[l,-.,tsl = €gaLluac, -

The action of this operator on the tangent vectors is

ef L b € = —€o L s, 07 = O’ .
The result is that )
DiaDpg Xy = €84 AL X2 . (3.41)
The following are examples of the action of this commutator:
DisDad = geanw"de) (3.42)
DipKuws = 3DisDages = 5 €45 (et (3.43)
DipKy = %gabD[BDAlgab = ';'6.43 w’q . (3.44)

The commutation relation between the two dimensional covariant and Lie deriva-
tives follows from their definitions and the two dimensional Ricci commutation rela-

tions:
(2)£3AX:;C — (2)£’A Xg)e = ngAa;(cd) - X:izsAd;(bc)

1 1
+- (2)R X:S;tagcd - X;SAdgbc + -ng,u, -
2 2

1

2ng,.dag) .
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This can be simplified, by noting that the two dimensional Christoffel symbols are
closely related to the extrinsic curvature. Defining Kq = $8agas, the relation is

0.%Cy = 2Ka%ap — Kaas®
= 2KA%ap — Kaat™ + 54505 + % PR(54°ab — saalf)) - (345)
A little bit of algebra reveals that
L, Xee = (PU0, XD)ie = X(04 PP — Tlarae) — X3(0aPXE — Tlape) . (3.46)
where
Tlae = 2K age — 5 ase™. (3.47)

To conclude, we note the rule for commuting D, and the two-dimensional co-
variant derivative V,, which follows directly from (3.46) and the definition (3.16) of
D,. The commutator [Dy4,V,], applied to any two-tensor, is formed by a pattern
similar to its two-dimensional covariant derivative, but with ?I'g, replaced by ['¢,,,-
As examples:

[Da, VA = 0 (3.48)
[Da, Vo] X = XT{u4 (3-49)
[Da,Valgee = —2T¢4090d = —2Kaseia - (3.50)

3.4 The Gauss-Codazzi relations

The Gauss-Codazzi relations are the integrability conditions of the system of first or-
der (Gauss-Weingarten) differential equations (3.26), (3.27), (3.33) and (3.34). They
express projections of the four-dimensional Riemann tensor in terms of K, L, N and
their first derivatives. The most concise way of deriving these components in practice

is through the Ricci commutation relations.
Let A*, B*, X* and Y be arbitrary 4-vectors. The Ricci commutation relation

is
RopysX°APYTB? = X°APY(V,Vs3—V;5V,)B,
= A*(X-V(Y-VB,)-Y V(X VB,))
+(A°VgB, )Ly X? : (3.51)
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which relates covariant derivatives of the Gauss-Weingarten equations with the com-
ponents of the Riemann tensor when the vectors in (3.51) are set equal to the tangent

and normal vectors.
Similarly, the contracted Ricci commutation relation is

RogA®B” = V(A°V,B?) — A*V(VB®) — (V5 A®)(VaBP). (3.52)

Substitution of the normal and tangent vectors into this equation yields the compo-
nents of the Ricci tensor. The calculation of the Ricci components is straight forward.
The details of the calculation are presented in appendix A. Here we will only display
the final results. Our notation for the tetrad components is typified by

“Ra = Rogelyelyy  Raa = Rapelefla)-
The results are

1 -
(4)Rab = 5 (2)Rgab — e A (DA + KA) KAab

1 1 -
+26-'\I{A(adKAb)d - -2-8—2‘\ Waldp — ’\;ab - 5)\‘“,\'5 (303)

Rap = —D(aKp) — KaaKp® + KaDp))
1
—35MaB [(DB + K E) D) — e *ww, + (e*)*° a] (3.54)

Rie = Kadlp~0.Ka~ %a.,DA,\ + -;-K,‘a.,x

+aeane™ [(D® +K®) wy ~ waDP)] (3.55)

Equation (3.53), containing the term D4K*“, which is roughly of the form 0Oggs.
represents three equations which describe the evolution of the two-metric. The Ray-
chaudhuri equations describing the focussing of light rays are encoded in the Ry
and R;; components of equation (3.54). The equation Rgo = 87(Tgo ~ $g00Tusg™’)
relates the change in the dilation rate, DoKj on a u! = constant hypersurface to
Koas Ko, the square of the dilation and shear and of the matter flowing transverse
to the hypersurface. The component Ry is the trivial equation [53] (as we shall show
when we discuss the characteristic initial value problem). The four equations repre-
sented by equation (3.55) are constraints on the values of the shift vectors on the null
hypersurfaces.

The components of the Riemann tensor can be calculated using equation (3.51).
A sample calculation of the component Raqp; is included in appendix A, and the
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other components are calculated in a similar manner. The results are

@R®y = PRy -2 K"Ky (3.36)
RABCD = %EA.B ECD(2€ADBDEA -_— 3&)“ Wa + 32‘\A'at\‘a) (3.57)
Rasse = 2Kaapp) — Kaapre — € eap KB pwy (3.58)
Raapc = ‘;'GBC{DAC% + Kb w® — € 4e(DEG A — KB A?) — woD 4 A}3.59)
RAa.Bb = —D(AKBzzb + KAMKBJQ +D(A/\ KB)ab - -;'WABDE’\ KEab
—irr‘w (e"‘\w,,u:b + e‘\/\‘az\,b + 26‘\A;ab)
1
—‘2-€A B fows] + wipia))- (3.60)

3.5 Comparison with the NP spin-coefficient for-
malism

In order to compare our notation with the more familiar notation of the NP [54] spin-
coefficient formalism and the GHP [44, 53] formalism, we introduce the following

complex null tetrad

=32 = e~3A =
& =e" g , n® =720y, m® = ef,m®
m

m=—C-n=1, (3.61]

and all other inner products are zero. The complex two-vector m, is defined by

Gab = 2mygMmy)
mb - magab
m'm, = m*m,—-1=0. (3.62)

It is straightforward to calculate the NP and GHP spin coefients from their def-
inition given in reference [54, 44]. The spin coefficients will be denoted with bold
Greek letters. Since the null vectors ¢ 4) are tangent to geodesics, & = k' = 0. Fur-
thermore, we assume in the double-null formalism that both ¢4 are hypersurface
orthogonal. As a result the rotation, or vorticity of the null vectors vanishes, i.e.,
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p — p=p — p =0. The remaining non-zero spin coefficients are

b_—A/2 b_—A/2

o =m*m’e 00 ; o =mmbe Mgy,
o= _;_ My o = _;.e-ll2 K,
Tr= %m"(/\,b +we™™) ; = % APy — wpe™)
B= i—mbédbe—l ; A= “imb“’bew\
€ = _ie-*ﬂ(po,\ + m®Dymy, — m®Dyrmy)
€ = -ie-m(ol,\ — m®Dymy + mbDymy) .

The primed GHP coefficients are related to the Newman-Penrose coefficients [54] by

K=—v o=-A p=-pu

r’=-n f=-a €=-~.

The Weyl scalars, as defined in references [44] and [54] are related to the compo-
nents of the Riemann tensor by

¥y = —e *m®m®Roq0s (3.63)
¥ = —e Pm®Ry, (3.64)
Re¥; = "%Qadgbc DR b — igub Rt 4 -1% “R (3.65)
ImU, = —iRp*’m.ms (3.66)
T3 = e m°Roa (3.67)
¥y = —e *m*mRians (3.68)

When comparing the equations resulting from the spin-coefficient and double-
null formalisms it should be remembered that the two formalisms assume opposite
signatures. The presence of the derivatives of the shear axes in the € and € coeflicients
cause many of the spin-coefficient field equations to be unneccessarily complicated.
This complication occurs because the two-dimensionally covariant quantities (such as
our shear tensor o 44;) are contracted with the axis vectors m, in the NP formalism.
Since we present the field equations in a two-dimensionally covariant form, they can
be stated in the precise form of equations (3.53) - (3.55). The role of the equations
in the double-null formalism presented in this chapter is fairly straightforward as will
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be shown in the next section, where we will examine the Bianchi identities, which
will make it clear which equations are needed to find a solution to the Einstein field

equations.

3.6 Bianchi identities

The Ricci components are linked by four differential identities, the contracted Bianchi

identities .
VsRP, = 5@,3, (3.69)

where the four-dimensional curvature scalar R = R%, is given by

R=e¢R*, + R%, (3.70)

according to (3.13).
As we show in Appendix B, projecting (3.69) onto e, leads to

(Da+Ky) R, = éa.,RAA + %e*a,, @RS, — (& WRS,) . (3.71)
Projection of (3.69) onto € 4) similarly yields
Dg (REA - -;-6pr0) - %e’\D,l “Re,
=e (4)R¢5K4ab - RBAKB - (e’\RaA) a + GABwaRBn- (3.72)

Equations (3.71) and (3.72) express the four contracted Bianchi identities in terms
of the tetrad components of the Ricci tensor.

We now look at the general structure of these equations.

For A = 0 in (3.72), Ry does not contribute to the first (parenthesized) term,

since

~Roi=R’=R,'= —;-RA“‘. (3.73)
This equation therefore takes the form
D Lan @)p e @
1Roo + 5¢ Dy '*R,* = =KoRg1 + L(**'Ras, Roo, Roa; B ), (3.74)

in which the schematic notation £ implies that the expression is linear homogeneous
in the indicated Ricci components and their two-dimensional spatial derivatives 9,.
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The other (A = 1) component of (3.72) has the analogous structure
DoRy + %e"Dl ®R,* = —K Ry + L(“Ras, Ryy, Ria, 3,). (3.75)
The form of the remaining two Bianchi identities (3.71) is
DoRyo + Dy Roo = L(“Rap, Ror, Raa, 8a). (3.76)

The structure of (3.74)~(3.76) provides insight into how the field equations prop-
agate initial data given on a lightlike hypersurface. Let us (arbitrarily) single out »°
as “time,” and suppose that the six “evolutionary” vacuum equations

(4)Rab = 0, Roo = Rﬂa =0 (3'77)

are satisfied everywhere in the neighbourhood of a hypersurface «° = 0. (Bondi and
Sachs [56, 53] refer to “R,, as the “propagating” or “main” equations and to Ryg,
Rg. as “hypersurface equations.”) Since Ry; only appears algebraically in equation
(3.74), the vanishing of the six evolutionary equations 3.77 in the region guarantee
that Rg; also vanishes. For this reason Ry = 0 is dubbed the “trivial equation™
[56, 53).

Equations (3.75) and (3.76) imply that if R;; and R;, vanish on the hypersurface
u® = 0, then they automatically vanish on all other hypersurfaces in the region. The
equations R;; = Rj, = 0 are known as the “subsidiary” or “supplementary” equations
[56, 53).

The result is that the Bianchi identities guarantee that if the evolutionary equa-
tions are satisfied in a region and the subsidiary equations are satisfied on one hyper-
surface, then the vacuum Einstein equations are satisfied everywhere in the region. It
should be noted however, that the numerical implementation of a double-null scheme
is subject to instabilities [37]. When performing a numerical integration, it is neces-
sary to check that the subsidiary equations are satisfied on all hypersurfaces during
the evolution. In this thesis we are only concerned with analytic sclutions of the field
equations, so this problem is not relevant.

3.7 Characteristic initial value problem

In the characteristic formulation of general relativity, data are placed on two inter-
secting characteristics £° and £! and their spacelike intersection Sy, and evolved off
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the characteristics using the propagating Einstein equations R,; = 0. (We have arbi-
trarily designated £° as the hypersurface at u® = 0 and £! as ! = 0.) In this section
we discuss the formal solution of the characteristic initial value problem (CIVP).

Gauge fixing

As we have shown in section 2.6, the Bianchi identities act as constraints on the ten
Einstein equations, leaving only the six equations (3.77) independent. The double-
null metric (3.14) has eight free functions, so clearly there exists the freedom to make
two global gauge conditions.

A patural coordinate condition is to demand that once the coordinates 4% are
defined on XU their values must remain the same if they are Lie transported off 9.
ie.,

0= L0° =£50,0° = ~s3 - (3.78)

This gauge choice leads to some nice simplifications. The normal Lie derivative
operator becomes a simple partial derivative and the extrinsic curvature and twist

take on the simple forms:

sp=0= Dy=29 (3.79)
1
Kooy = 5309@ (3.80)
1 Gab
- = Fab 9
O0ab 2\/530 ( ﬁ) (3.82)
% = ~0psT . (3.83)

In addition to the global gauge condition (3.78), we have the freedom to place
coordinate conditions on the initial surface £%. A related choice is to demand that
the coordinates #° be kept constant when Lie transported along £°. This is equivalent

to stating that
onu’=0,0=L,0°=—s?. (3.84)

This leads to the following simplifications on £°:

onu’=0 ,$i=0= D=0 (3.83)

1
Kigp = 531%5 (3.86)
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Ky=0,In/g (3.87)
Olab = %\/9‘31 (%) - (3.88)

For the rest of this thesis we will assume that the gauge conditions (3.78) and (3.84)
have been made and for simplicity will define s® := sf.

The hypersurface equations
With the gauge choice (3.78), the hypersurface equations reduce to
1
Ry = —0uKo— §K02 + Koo — 00as00® (3.89)

1 1 1
Ry, = -aO(emA gwa) - "2'aaK0 + aOab;b - 5 0o + EKOan/\ ) (3.90)

three equations for the six functions Ky, 0gas, A, w,. (Note that the shear (3.82) agqs
is traceless and has only two degrees of freedom.)

So far, the only restrictions made on the coordinates u# is that they be lightlike.
We still have the freedom to rescale the null coordinates by a function of themselves,
u® — u%(u%). Thus on ! we can make a coordinate choice which will simplify the
integration of the hypersurface equations. For example, consider the parametrization
of ¢y. Since from equation (3.34)

by - VG = BAES (3.91)

when GgA = 0, the parameter u® is affine. Thus we are free on T! to choose the
“inaffinity” [57] of the parameter u®. One special choice [57] is to set oA = 3 Kj
which reduces (3.89) to a linear equation for K. However, linearity is not important.
When u? is affine and given initial data 0¢. on £! and the value of K on Sp, equation
(3.89) can be solved for K everywhere on X!. Alternately, if in a physical application
there is a known form of the dilation Ky on !, then (3.89) can be solved for A (as
long as Ky # 0). Either way, after (3.89) has been solved, Kj, ogas, A and all partial
derivative 9, are known on £!. From (3.81) and (3.82), /g and g, are also known on
»!. Hence the last two hypersurface equations (3.90) are linear first order equations
for w,. Once initial data for w, are set on Sy, then w, is known on all of £!. The
differential equations (3.83) can then be solved for the shift vector. The coordinate
condition (3.84) sets s = 0 on Sy, so that s° is also known everywhere on £!. Hence,
on ! all the metric functions, and their time and tangential derivatives d and 9,

are known.
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The subsidiary equations

On the hypersurface £ where the condition (3.84) has been set, the supplementary
equations reduce to
1
Ry = —-6K, - '2'K12 + K18 X = 010501 (3.92)
1 1 1
Ry, = -31(6"\\/5&)4) - 58.,1(1 + 0’1¢b;b - 5 LA + §Klaa/\ . (3.93)

The remarks of the previous section on the hypersurface equations hold here. By
choosing u! affine on £ and given initial data o,,s, the subsidiary equations can be
integrated for K; and w,. Now all the metric functions and their derivatives 8, and
3, are known on the hypersurface £%. The problem remains to evolve the data to
later times u® > 0, given the initial data on £° and the boundary data on T

The propagating equations

The three propagating equations ()R, = 0 control the evolution of the shear and
dilation off the initial characteristic £°. After splitting the main equations into the
trace and traceless parts, they can be written as

WRe = 2¢73D; Ky + KoK)
@p - %/\a/\'“ ~ A, - -;-e“z’\ca.:“wn —e MW, (3.94)

1 - -— a
(4)Rg - 55: (4)R$ = 8_'\(21)10046 + KoO’lab + Klao,,b) +eMw b

1 -2\ b ] 1 b
2€  WWa A 2/\;,,A
@ By
--;—6,'; (%e"z“w“wa -2, — ~2-,\;,,/\'“) . (3.95)

On X0 the data
D= {gaby '\s Wa, S‘{, al) aa}

are known functions. In order to evolve D off £°, all time derivatives 8, of D must
be known. Consider the trace (3.94) of the propagating equations. It is a linear first
order equation for Ko with all coefficients on £°% known. The initial data for K, are
given on X!, so equation (3.94) can be integrated to solve for Ky. All derivative of
/g are now known.
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Similarly, the traceless part of the propagating equations are linear first order
equations for the shear gq,® with coefficients which are known on £° and initial data
given on £!. Thus equation (3.95) can be integrated to solve for the shear which
through equation (3.82) determines all derivative of the two-metric ggs-

This procedure can now be repeated on a later hypersurface, ¥ : u® > 0. Given
D on X, the propagating equations can be solved for Ky and ¢q,;. The hypersurface
equations can then be solved for dyA and dyw, at every point of L. The result is that
D and all time derivatives of D are known everywhere. Thus, the CIVP is formally
solved.

To reiterate, the CIVP is stated by specifying the following initial data :

On 21 : C"Oafi(uoiea) ,Or gab(uoioa)/\/z
On EO : Ulab(ulaoa) , Or gab(ulyoa)/\/—g_
On So:  Ko(6°), K1(8%),wa(6%), 9as(6°), A(8°) .

3.8 Lagrangian

The Einstein field equations can be derived by varying the Einstein-Hilbert action
with respect to the metric functions. It is fairly obvious that such a derivation with
the 2 + 2 formalism would be incomplete since the metric (3.14) contains only eight
arbitrary functions: a variational principle can only derive eight of the ten Einstein
equations. The reason for this problem is that we have already made two gauge
fixing conditions by demanding that u® and u! be null. A fairly easy fix is to add two
more functions to the metric, calculate the new Lagrangian, vary to find Einstein’s
equations, and then set the new functions to zero.

Consider the spacetime metric of equation (3.14), where the matrix 7,45 is defined

by
- mo(z®) —1
= , 3.96
s (=) ( -1 u(z®) (390
replacing the definition of equation (3.7). Capital Latin indices are still raised by 748
which is 115
1/ (z 1 -
AB /¢, a
== , 3.9
@)= ("7 ) (397)

where 7 is the determinant of 7,45.
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The Einstein-Hilbert Lagrangian density is now £ = ‘/(T)—g- e =e* /og/-n(Rie™+
R¢Z), where /g is the square root of the the determinant of g,5. In order to derive
the full Lagrangian it is necessary to rederive the Ricci scalar as in Appendix A, with
Nap given by equation (3.96). This amounts to simply replacing L5, in equation
(A.1) with

1
Laps = -2'8-'\(34714436’\) + Wa€anB) , (3.98)

and N4pp in equation (A.3) with

- 1
Napp = e *(Da(e*npyp) — EDD(C‘\TIAB) . (3.99)

The Ricci scalar can be derived by a calculation similar to that presented in appendix
A. Total derivatives can be isolated from the expression, by noting that

(e*X4)e = e MDaX”A+XAK4+Dyln /=)
(¥'e2)le = Yo +y*(Aa+daln/=n).

After some algebra, the Lagrangian density can be written as
L =L, + Ly + L3 + total derivatives , (3.100)

where the first term is the value of the Lagrangian if n4p is assumed constant,

L = VTR [A( PR+ 50aA") + 12 (KaKp — Ko™K + KDa))

L
+ e, (3.101)

2y/—n
Variation of £; with respect to the functions A, g,; and s produces the vacuum
Einstein equations Gg; = Gg = G4, = 0. The second term,

Ly = gt/=nKpDan*? (3.102)

must be varied along with (3.101) in order to produce the eﬁua.tions Go = Gy; = 0.
The last term is

1 1 1
L3 = g:y/—n [2K ADalnv/=n+ 577€CF€E’(BDA)77EFDC7IAB + ZneAszFDCnABDCTIEFJ

1
gt/ ~ne* [3r\'°aa In/—n+ ZTIGAEEBFaanAaaa TIEF] ) (3.103)
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which doesn’t contribute to the dynamics since, after varying, 14p is set to a constant.
Consider the variation of £3 with respect to n% and n!!. Since for any derivative
operator, 8(v/=7) = —i74897*%, the variation of the first term is

8 4 /mropa —
/ d'zgmet V=K Daln V=0
= [ d'a(2gt V=K 405 In V=T + nasOp(gtKP) =0, (3104)

when 7,45 is set to the constant matrix of equation (3.7). Similarly the variation of
the rest of the terms of £3 do not contribute to the classical field equations in the

double-null gauge.
The variation of £, is

6 -
/ d“‘"‘&qnacﬁ == / d‘zg*(DaKp) + KaKp) , (3.105)

while the same variation of £; yields

]
_/d4xénAB£I = /d"xgé(KAKg - KAabKBab +K(ADB)1\) . (3106)

The vacuum field equations result:

9

Goo = Roo = 61’00(['1 +£L2)=0,
é
Gu=Rny = 6"7(51 +£L2) =0,

which agrees with equation (3.54).
Setting 745 to the constant matrix and varying £, yields the remaining equations.
Variation with respect to A yields

]
—L, = \/§e‘\( (Z)R - %’\,a)"a - )‘;n:a - %e-z\wawa)

I3)
~VI(DAK* + K K*)
1
— o — Zpa
=e"Goy = 2Ra -

Variation of £; with respect to s§ produces the field equations G§ = R4 = 0.
In order to vary L£; correctly, it should be remembered that the extrinsic curvature,
normal Lie derivative and the twist all depend on s4 implicitly. Their variations are
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(where ®,4 and W 4(.s) are arbitrary functions)

6 é
ds4 (‘/EKB(PB) = Tt \/-g‘sbB:b‘bB) = \/gaaQA
Sa 6s%
J 6
5o (VIK %) = —(/Gss®I¥0h) = /G¥ 4%
Sa 6s%
7oz (VIP"Ds) = —z(/87sh0) = — /G840,
6s4 8s%
586.; (Vae wbuy) = —~26AP,/ge " (Dpw, + (Kp — DpA)w,) -
A

Similarly, the variation of £; with respect to g° yields the Einstein equations
Gas = Rap — 39u5(R3 + e”*RB). The variation is straightforward when the two-
dimensional identity

6
& gab

(VI®PR) = /3(9ca9" .2 — brca) (3.107)

is used, where ¢ is any scalar function.
The Lagrangian and Hamiltonian dynamics of 2+ 2 splittings of gravity have been
examined in more detail by various authors [57, 58, 59].

3.9 Conclusion

In this chapter we have presented a formalism for describing the geometry of spacetime
in terms of a foliation by two families of lightlike hypersurfaces. The Einstein field
equations (3.53) - (3.55) are presented as three concise equations relating the geometry
of a two-surface to its imbedded spacetime in a two-dimensionally covariant manner.
The definitions and equations presented in this chapter will be used extensively in
the next two chapters to discuss the quasi-local gravitational mass (chapter 4) and
the nature of a black hole’s Cauchy horizon (chapter 5).



Chapter 4

Dynamics of the mass function

The most fundamental concept of general relativity is the equivalence principle [52]:
no local experiment can distinguish between a gravitational field and uniform accel-
eration in flat space. As a result, it is not possible to define local observables for the
gravitational field, such as an energy density or a stress tensor. For if it were possible
to measure the energy density of the gravitational field at one point, a non-zero result
would reveal that a gravitational field is present, violating the equivalence principle.

Suppose that we tried to introduce a definition of an energy density for gravita-
tion. On dimensional grounds alone [60], the energy density must be quadratic in the
first derivatives of the metric. In general relativity there are no local coordinate inde-
pendent quantities involving first derivatives of the metric. For example, the square
of certain Christoffel symbols may seem like a good candidate for a measure of energy,
a priori. But one of the most fundamental theorems of differential geometry states
that locally a coordinate system (Riemann normal coordinates [61]) can always be
found in which the Christoffel symbols vanish. As a result, the “Christoffel measure”
of energy can always be transformed to zero.

Contrast this with the situation in electromagnetism. In this case the electromag-
netic field strength is a local observable, and there is a well defined stress tensor which
is quadratic in the field strength. As a result, it is possible, at every point in space to
determine the energy of the electromagnetic field. This allows us to discuss the local
energy carried away from a time dependent source by electromagnetic radiation.

The problem for the gravitational field is more difficult. A dynamical gravitational
source creates a time dependent gravitational field. In analogy with the electromag-
netic problem, we expect that gravitational radiation will be produced which will
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carry information about the change of the source. However, there is no unique way
to locally split the gravitational field into a radiation field which propagates on a
background gravitational field, except in special circumstances, such as in spherical
symmetry [62] and high frequency gravitational radiational waves [29]. Hence any
local stress tensor defined through such a split would not be unique. The key differ-
ence between electromagnetism and gravity is that the electromagnetic field is locally
observable, while the gravitational field is not.

On the other hand, analysis of the observations of the binary pulsar PSR 1913+16
[63] gives credence to the view that gravitational waves carry energy away from a time
dependent gravitational source. The subtlety is that gravitational energy is a global
concept. The energy carried by gravitational radiation can be measured in the wave
zone, but is not well defined in the near zone. Far away from an isolated source, the
total gravitational energy (or equivalently the mass) of the source can be defined.
The Bondi [56] and ADM [39] gravitational masses measure the total energy of the
gravitational field at null and spacelike infinity respectively in an asymptotically flat
spacetime. If an otherwise static source is dynamic for a period of time, the Bondi
mass can be measured before and after the activity, and the change in mass is equal
to the energy radiated away by the gravitational waves.

A compromise between the local and global definitions is a quasi-local definition
of mass which is defined as an average over a two dimensional spacelike surface.
The premise behind a quasi-local definition is that two local observers can measure
the geodesic deviation between themselves and together determine the spacetime
geometry in their neighbourhood. The problem with defining a gravitational mass in
this neighbourhood, is that there are an infinite number of ways to do so. Criteria
for a reasonable definition have been listed [64], but it is probably impossible for any
definition to satisfy all the criteria. Two definitions of quasi-local mass, by Hawking
[65] and Hayward [66] are the most useful (in our opinion) and their properties will be
explored in this chapter. Neither definition of mass can be unequivocally interpreted
as a local energy. It is more conservative to interpret them as a measure of the
focussing and shearing power respectively of the gravitational field.

Of interest is the application of these definitions of mass to the interior of the black
hole. One of the more astonishing results of classical general relativity is the mass
inflation [1] effect: when realistic gravitational perturbations are taken into account
in the charged spherical black hole interior, the local mass function diverges at the
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hole’s Cauchy horizon. We are interested in a generalization of the mass inflation
effect to non-spherical black holes. In this chapter, we derive a general formalism for
equations describing the dynamics of the quasi-local mass functions of Hawking and
Hayward which can be used to deduce the mass inflation phenomenon. The equations
are quite general and can be used in other applications, such as asymptotically flat
geometries.

The quasi-local definitions of energy which we will examine are constructed out
of quadratic combinations of the extrinsic curvature of a two dimensional spacelike
surface. In chapter 3 we have presented in detail a formalism especially designed to
describe the dynamics of such surfaces. In this chapter we will make extensive use of
the notation and results of chapter 3.

This chapter is organised as follows. In section 1 the concept of the total mass of
the spacetime is reviewed and the ADM and Bondi masses are defined. Quasi-local
definitions of mass are discussed in section 2. In sections 3 and 4, formulae describing
the variation of the quasi-local masses defined by Hawking and Hayward are derived.
In section 5 a wave equation for Hawking’s mass is derived and is used to demonstrate
the mass inflation effect inside non-spherical black holes.

4.1 The ADM and Bondi masses

Consider an isolated star which is initially static but undergoes a period of activity
from retarded times u' = u} to u} during which it emits gravitational radiation.
After time u} it returns to a static state. In the static regions the star’s metric
is approximated by the Schwarzschild metric (2.1) at distances far from the star.
The motion of a satellite in an orbit far from the star will be described by Kepler’s
third law, and the mass calculated from the orbit is asymptotically the same as the
Schwarzschild mass. An observer at spacelike infinity (i°) measures the state of the
star in the remote past when it was static. A measurement of the mass at i® will
determine the original total mass of the star. This mass is called the ADM mass,
M_apum, and is a measurement of the total mass of the spacetime [39]. An invariant
definition is [67]

Mupy = lim — /S &0,/3Re¥; , (4.1)

r—oo 41
where S, is a two-sphere of radius r and g is the determinant of the two-dimensional

metric on S,. The real part of ¥, is known as the Coulomb component of the Weyl
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tensor, due to the analogy with electromagnetism. The definition of the Coulomb
component is (in vacuum)

Re¥, = i'( R + e KoK, ~ 2e 2 0gas0r ) (4.2)

where, in the notation of chapter 3, ®)R is the intrinsic curvature of the two-surface,
the function A is the metric component defined in (3.14), and K4 and o, are the
extrinsic curvatures (3.22 - 3.23) of the two-surface. It has been proved [68, 69] that
the ADM mass must always be positive, as must be the case if M 4py really represents
the total mass of the spacetime.

Observers at future null infinity (at any point on J) can measure the mass left in
the star at any finite retarded time u!. This mass is named the Bondi mass, Mpg(u')
[56]. The Bondi mass is equal to the ADM mass minus the energy carried away by
gravitational radiation (70]. In order to define the Bondi mass, it is assumed that the
metric can be expanded in powers of 1/r. To leading order, the metric is flat and
described by the metric

d32| flaa = ~2duldu’ + r?d0?
= —(du')? — 2drdu! + r2dQ? ,

where the advanced time u? is related to the coordinate r by
2du® = dul + 2dr . (4.3)

It should be noted that the non-standard definitions for the advanced and retarded
times have been taken,

ul=t—r 28 =t+r
At order 1/ the metric contains a dynamic, non-spherically symmetric term. The as-
sumption is that the asymptotic behaviour of the metric functions (using the notation
of chapter 2) are

C,b(ul, a°)
r

gy = T+ +0(1/r?)

si = O(1/r?

2m3(u1, 0“)
r

—2e2Ggrohr = 1 +0(1/r?), (4.4)

where Qg is the metric on the unit sphere, C,; is a traceless two-tensor and the Bondi
mass aspect mp is defined to agree with the Schwarzschild mass (2.27) in spherical
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symmetry. The tensor C,; is known as the news function. It encapsulates the two
degrees of freedom of the gravitational field, since it determines all of the physically
meaningful quantities.

From the definitions (4.3) and (4.4), the asymptotic behaviour of the curvatures

can be derived,

2
2 =
@R = ;34-0(1/1‘3)

K = alhr=2100/)
K = allnr2=-—l+0(1/r2)
Ooat = "2%'—02*'0(1/73)
s = Q—C—‘!ﬁ(;'f—’—Q+0(1/r2)
Wt = 0O(1/r%). (4.5)

Substituting these expansions into the Coulomb component of the Weyl tensor, we
see that [56, 71]
ReW, = ;la-(ma + %c""alc,,,) +0(1/rY . (4.6)
To highest order, the Coulomb component of the curvature is determined by the mass
aspect of the star at time u! and the rate of change of the two-metric. A coordinate
independent definition of the Bondi mass is the average of the Bondi mass aspect
over a sphere at infinity:
Mp(u') = lim

lim yo / d?0,/g(Re¥; + -—e 200a601%) . (4.7)
Asymptotically, the largest component of the Weyl tensor is [56, 71]

¥, = e’*ﬁ“ﬁb% +0(1/r%), (4.8)
which motivates the identification of ¥4 as the radiative part of the gravitational
field.

The Bondi-Sachs mass loss formula [56, 73] can be derived from the Raychaudhuri
(3.92) equation R;; = 871}, where T3, is the stress tensor of the material flowing out
of the star. Substituting the asymptotic expansions (4.4) and (4.5) into Raychaud-
huri’s equation, we find that
1

Y= —r
HMp(v) = =3 i e

/ 20./5(0,:CasdiCeag™a™ +81T1) . (4.9)
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In vacuum, the rate of change of the traceless part of the two-metric uniquely deter-
mines the loss of mass from the star. This is interpreted as the rate that gravitational
radiation carries energy away from the source. The right hand side of (4.9) is negative
semi-definite (if the stress tensor obeys the dominant energy condition), so that the
mass of an isolated star can not increase. It has been proved [72, 74, 69] that the
Bondi mass must always be positive, in other words, the star can not radiate away
more mass than it originally started with.

4.2 Quasi-local definitions of mass

As we mentioned in the introduction, there can be no general local definition of the
mass (or equivalently, energy) of the gravitational field. The closest type of definition
of a gravitational mass is a “quasi-local” mass. A quasi-local definition is not local,
but is usually defined with respect to a spacelike closed two-surface which provides a
notion of quasi-locality. There is no obvious canonical prescription for a quasi-local
definition: in fact there are an infinite number of ways in which a definition can
be made. A review of the various definitions would be pointless, since most are not
particularly useful for our purposes. Instead, as a guide, we list a number of properties
that a reasonable quasi-local mass should possess, and discuss the definitions which
come closest to fulfilling the desired properties. The following list of properties is
a modification of Eardley’s list [64]. Here we assume that the definition is made
with respect to a two dimensional spacelike surface S which has area A. A “good”
definition of a quasi-local mass should:

i) reduce to zero if A reduces to zero.
ii) reduce to zero in Minkowski spacetime, regardless of the shape of S.
iii) reduce to the Schwarzschild mass (2.27) in a spherically symmetric spacetime.

iv) reduce to the ADM mass (4.1) at spatial infinity in an asymptotically flat space-
time.

v) reduce to the Bondi mass (4.7) at null infinity in an asymptotically flat spacetime.

vi) be equal to the irreducible mass of a horizon when S is an apparent horizon,
where m;, = (A/167)3.
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vii) increase if A increases and S is outside of a black hole.
viii) reproduce the Bondi mass loss formula when varying with respect to time.

No present definition satisfies all of these restrictions and it is probably impossible to
invent a new definition which satisfies all of these points.

Relation between local and quasi-local mass

We wish to investigate the properties of three quasi-local definitions of gravitational
mass which involve an integration over a surface. Quasi-local quantities of this type
can be awkward to manipulate, so for convenience, we will associate with each quasi-
local mass M(u*) a local mass aspect m(u4,6?). The quasi-local definitions which
we will discuss make use of a quasi-local luminosity distance I(u?) ( or area radius),
defined by

4l = /S &20./5 . (4.10)

The ratio of the quasi-local mass, M(u4) to the luminosity distance is set equal to
the average over S of a local function of the extrinsic and intrinsic curvatures of 5§
which has dimension 1/L2. (There are an infinite number of local functions which
meet these requirements.) For convenience, we will define this local function to be

m/r3, so that

M 1 2 m
T=5/#ig (4.11)

It is useful to introduce a local function r(z*) defined by reference to the char-
acteristic initial value problem (CIVP). The CIVP is typically formulated by stating
the initial conditions for the metric functions on two intersecting characteristics and
on Sy the spacelike intersection of the initial characteristics (see section 3.7). From
(4.10), it follows that the area of Sy is 47i2. The relation between r and [y is

o) = %g—arz(z“) . (4.12)

When all of the surfaces S are spheres of radius !, then r = [.
Substituting (4.12) into (4.11), we find that the relation between the quasi-local
mass M and the local mass aspect m is

l 2 m
M= 1}72(; Sd ) 907 . (4.13)
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Recalling the definition (3.22) of the dilations in the double null formalism,
Da2=0,2=1 JEN A (4.14)
4r Js !

we see that K4 measures the change in the area of § in a direction normal to the
surface. The dilation is related to r2 by

Ky=Dslnr2 -~ Ass, Asy = —l—g;aa(\/ﬁs;) , (4.15)

T

In most applications of interest As4 will be negligible.

The Schwarzschild mass

The most naive definition of a quasi-local mass is a generalisation of the Schwarzschild
mass to non-spherical spacetimes. Recalling that in spherical symmetry the dilation
is Ky = d4In 72, we define the Schwarzschild mass aspect, mg(z®) to be

2m s 1

" = EG—AKOKI -+ 1. (4-16)

This definition was originally introduced by Misner and Sharp {73]. Details of the
properties of mg in spherically symmetric spacetimes have been described in reference
[76]. The quasi-local mass, Ms(u?) associated with (4.16) is found by replacing M
by Mg and m by mg in equation (4.13),

_ 4 2 L g opr _
Mg = ng;d 0‘/_%(2e KOI\1+1) . (4.17)

Clearly, the definition of Mg reduces to the definition (2.27) of the mass in spherical
symmetry.

The Hawking mass

A slight modification of the Schwarzschild mass is Hawking’s quasi-local mass [63].
If our basic demand on a quasi-local mass is that it should reduce to Bondi’s mass
(4.6) in the limit r — oo, then we are led to Hawking’s definition of the mass aspect,

mg(z®),
2T _ 212 (MK K, + OR) (4.18)
ro 2 ’ ’
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The quasi-local version of Hawking’s mass, Mg (u?)

l

1
= /S #0\/Go5r? (e KoK + OR) . (4.19)

My =
is exactly the same as Mg when the topology of the surfaces S are spherical. This is
a result of the Gauss-Bonnet theorem, which states that

/s d%0./5 PR = 8x(1 - g) (4.20)

where g is the genus of S. When S has spherical topology, ¢ = 0. Hawking’s quasi-
local mass can be thought of as a generalization of the Schwarzschild mass to arbitrary
topology.

Because of the Gauss-Bonnet theorem, when $ has spherical topology, the two
definitions have the same properties. Both the Schwarzschild and Hawking masses
satisfy most of the properties (i) - (viii) but fail property (ii). It has been proved
(60] that for small spheres, the Hawking mass reduces to zero when the surface area
of S shrinks to zero. The Hawking mass reduces to the Schwarzschild, Bondi and
irreducible masses in the appropriate limits, by definition. It reduces to the AD)I
mass if it is demanded [70] that the shear falls off quickly enough at spacelike infinity.
Variation of Hawking’s mass [79] shows that it increases as r increases and reproduces
the Bondi-Sachs mass loss formula. As we will show in section 4.3 the Bondi-Sachs
mass loss formula is applicable inside the black hole as well, where it becomes a mass

gain formula.

The Hayward mass

The Hawking and Schwarzschild definitions of the quasi-local mass are zero in Minkowski
spacetime only if S is spherical [66, 60]. Suppose that we set up a foliation of flat space
with surfaces with non-zero shear. Consider the definition (4.2) of ¥,. In Minkowski
space ¥, = 0, which implies that

My =Mg= —-Z—E/ d20\/§3}-r26_*00a501“6 ,in flat space. (4.21)
872 Js 2

As a result it is possible to set up a foliation of flat spacetime by highly distorted
surfaces which the Hawking definition would register as a fictitious mass.
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Hayward has suggested [66] that the real part of ¥, has energy-like properties and
it may be worthwhile to consider a new mass aspect, m’, defined by

2-1—:: = %rz( @R + e KoK — 2e 2 agq0,%) = 2-—":—H — r2e g0, (4.22)
which is always zero in flat space independent of the foliation S.

By definition, this mass reduces to the ADM mass at spacelike infinity. When
the appropriate limit [66] is taken, the Bondi mass is also found. When the surfaces
S are spheres, the shear term disappears, so that the Schwarzschild and irreducible
masses are recovered. In the limit of small surface area, Hayward'’s mass goes to zero
from the negative direction [77], which is not a very good feature. In section 4.4 we
will compute the variation of m’ in order to discuss properties (vii) and (viii).

A further generalisation [66] is to add a term to m' proportional to e 2*w,u?,
where w? is the twist defined by equation (3.25). A new analysis [78] of the symplectic
structure of the double-null formalism suggests that the dynamical degrees of freedom
of the gravitational field can be encoded in the twist instead of the shear, as is more
usual. If this line of thought is developed further, it may be interesting to examine
the dynamics of a quasi-local mass containing a twist term. However, we are most
interested in problems where the twist is small, such as asymptotically flat spacetimes
and the black hole interior, and we will not consider this sort of generalisation.

4.3 Variation of Hawking’s mass

Hawking's quasi-local mass has the property that it reduces to Bor-'"'s mass at Z+
in an asymptotically flat geometry. In the same limit the change in hawking’s mass
reduces to the Bondi-Sachs energy loss formula [79]. This suggests that far from a
radiating source, the change in Hawking's quasi-local mass can be interpreted as the
energy carried by the gravitational radiation, to a good approximation. The result
connecting the variation of My with the Bondi-Sachs mass loss formula was derived
[79] using special assumptions which limits the result to untrapped regions. A formula
of this sort is useful for the derivation of the mass inflation phenomenon in the black
hole interior. In this section we will derive an equation for the normal Lie derivative
of my.

The aim of this section is to produce an expression for Dsmg. First, it is useful to
derive an expression for the normal derivatives of the dilations, D 4Kg. The equation
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can be derived from algebraic manipulations of the components of the Einstein field
equations normal to S. Forming the combination G45 — g1pGp where G 5 is given
by equations (3.53) and (3.54) and substituting the definition of the mass aspect

(4.18), we find that

m
DuKpy = —8m(Tap — gasT + Tap) +29a5—
3

. 1 1
+KaDpyA — §7IABK EDpx - §KAKB + gapu (4.23)

1 1
TAB Py ( A:UB: - 517,450u20'0ab) (4.24)

1 o 1., 1, i
= (- @ a - 1“ — /\a . 2
7 (4e ww, +2/\'a+4/\ ) (4.23)

The term represented by u is zero in spherical symmetry and negligible in an asymp-
totically flat region of spacetime. In chapter 3 we will show that the term p is of
order unity and that e* — 0 at the Cauchy horizon of a black hole. The matrix 745
plays the role of an effective stress tensor for gravitational radiation. When the grav-
itational radiation is highly blueshifted, then the average of the tensor & ({8
over many wavelengths reduces to the Isaacson [29] effective stress tensor.

Now, note the following identity for the normal derivative of the quantity KpK? =
—2KoK,:

D4(KpK?®) =2K"®(D(4Kpy + D|4Kp) . (4.26)

The antisymmetric term is related to the twist by equation (3.44), while the symmetric
term is given by contracting expression (4.23) with K8,

2K8D(41Kp) = —IGWKB(TAB-gABT-i-rAB)+K3KB(—;KA+D,.1A)+e"It’_4( AR42p) .
(4.27)
The normal derivative of Hawking’s mass aspect can be calculated by operating
directly on the definition (4.17). The result after making use of equations (4.26) and
(4.27) is

Damg = 2nr%e™KB(Typ — gapT + Ta) + pa +va (4.28)
3
pa = (e K enait ~2uKa) + SAsamy (429)
Tl2 2
va = = (04(v3 PR) - V5(si PR),) . (430)

4,/%
Equation (4.28) should be compared with the equation (2.32) derived in spherical
symmetry. The terms grouped together as u4 vanish in spherical symmetry and will
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be negligible in the applications of interest to us. The terms grouped together as v,
vanish when integrated over S,

/s /g0 -:—VA =0
The first term of v4 vanishes as a result of the Gauss-Bonnet theorem and the second
term is an integral of a divergence, which vanishes over a closed surface.
Consider an asymptotically flat vacuum spacetime. Substituting in the asymptotic
expaunsions (4.4) and (4.5) into (4.28) it can be seen that u4 = O(1/r) and

/S dama‘;"” 2 y— / & /G (0:Cas® Ceag™q™) | (4.31)

which is the Bondi-Sachs mass loss formula (4.9).
The normal derivative of Hawking’s quasi-local mass can be computed, by substi-
tuting this result into the derivative of equation (4.19):

DiMy = 112 Ji d20\/§a( Damg +
Outside of a black hole, a special foliation of spacetime by surfaces of mean constant
curvature can be made [79]. Surfaces of mean constant curvature have the property
that K, is a constant on the surface S, so that DsInl2 = K. As a result, the
variation of My yields the Bondi-Sachs mass loss formula [79]. Since outside of a
black hole DyMpg > 0 and D; My < 0, the mass increases as r increases [79].

Now, consider the variation of Hawking’s mass in a region inside a black hole.
close to its Cauchy horizon. The stationary Kerr metric,

2.:02
ds? = g(d" d02) + ((r2+az)+w) in? 92

lmH(D In? — K4 — 3As4) ) (4.32)

A %
4mar

sin? Odgdt — (1 -~ 2;’) d?
T =12+ a%cos?d
A =1%-2mr+ad® (4.33)

can be simplified on the axis of symmetry, where # = 0. On the axis, the metric is
7'2 + a2 dr2 _ A
A r2 4 a?
Null Eddington-Kerr coordinates, similar to the Reissner-Nordstrom coordinates (2.3)

can be defined

ds®|g=0 = dt® . (4.34)

2 2 2 2
e du=—dt+ % (4.35)

dv=dt + X
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and Kruskal coordinates,

—Ku

k.U=—e , K.V =—e"", (4.36)

defined such that the metric near CH is finite,

ds?|o=g ~ =2 "-(v**)dudy (4.37)
~ —2dUdV . (4.38)

Compare the metric near CH with the general form of the double-null metric (3.14).
In Eddington-Kerr coordinates, CH corresponds to the limit v — oo and the metric
function e* = e™"-(*+v) ~ (. Suppose that a solution to the field equations in the
interior can be written as a perturbation series around the stationary black hole
solution. We would expect that close to the Cauchy horizon the metric function A is
such that e~ — co. Taking this limit in equation (4.28) we find that in vacuum,

Jim 9,my = =27r3e " KTy + O(1) (4.39)
lim dmpg = =27r3e K, Twu + O(1) , (4.40)

where u is the internal retarded time (2.3). The right hand sides of equations (4.39)
and (4.40) are positive since the components (4.24) of the effective stress tensor
74p are positive, and the dilations K, are negative. We are assuming that the
event horizon conjecture [51) (which has only been proven in special circumstances)
is generally true, so that the region inside an event horizon will always be trapped
and the dilations must be negative.

The positivity of the variations of my reveals that in the presence of perturba-
tions, the mass must increase as the Cauchy horizon is approached. As well, as u
increases along the Cauchy horizon, the mass must increase. The increase in mass is
independent of the form of the perturbations, as long as they are weak enough that
the perturbation approach is justified, which is the case in the collapse of a star to
a black hole. Thus inside the black hole, the Hawking variational formula is a mass
gain formula.

In the stationary solution A diverges linearly in the external advanced time, so that
e~* ~ e*~?. The shear of the ingoing null generators, o, represents the perturbations
of the interior caused by the incoming gravitational wave tail. The tail has the form
of an inverse power law, d,q ~ v~92, (¢ > 0). These perturbations are scattered in
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the interior by the curvature in the hole. The backscattered radiation causes shearing
of the outgoing null generators (discussed in section 4.3) which has an inverse power
law form oue ~ u~P/2. Substituting these perturbative values for the shears and
for A into (4.39) we find that as a first approximation, Hawking’s mass will diverge
exponentially.

This illustrates the duality between observations made inside and outside a black
hole formed by the collapse of a star. Gravitational radiation emitted by the star as it
collapses is partially scattered by the external potential barrier. The gravitational ra-
diation which is transmitted to J carries mass away from the star, so that observers
outside the forming black hole see the mass of the hole decreasing with an inverse
power law in time. Observers entering the black hole and falling freely towards the
Cauchy horizon see the Hawking mass increase without bound as the backscattered
gravitational radiation is infinitely blueshifted.

4.4 Variation of Hayward’s mass

Since Hawking’s mass is not necessarily zero in flat spacetime, it is possible to cre-
ate fictitious gravitational radiation by choosing a foliation of spacetime with non-
spherical surfaces. In this section we will derive a variational formula for Hayward's
mass which is always zero in flat spacetime.

First, we define the difference between Hayward’s mass aspect, m’, Hawking's

mass aspect, my,

Am=m'—mg = %r"‘e““agc"aBb“ . (4.41)
Then the normal derivative of Am is
D4s(Am) = Am(gDA Inr? — D)) + %r"e"‘aBb“DAaBab . (4.42)

This expression can be simplified by noting that the symmetric normal derivative of
the shear is related to the Riemann tensor by equation (3.60). In particular.

O’BbaD(AO'B)ab = —O'BbaRAaBb - 471’[(81’,43 + %3726)\(—31{,1 +2D4)

-—i—aMbe’\(e"”w"w" + Aeab 4 2098y (4.43)
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The antisymmetric normal derivative of the shear is given by the commutation rela-
tions (3.43) and (3.44). Some algebra reveals the result

1
Ds(Am) = r’e“‘(—-z-as“bRMm - 2rK87,8) + 1y (4.44)
1
p& = 41'38 GBAO'Babwa -5 + ;ASAAm
—grsa"“”(e‘”wawb +AaAp +2A45) - (4.45)

The final result is that the normal derivative of m’ is
am’ = e ( 0B8R gupy + 20 KB (T — ')ABT)) +pa+rva+ s (4.46)

In an asymptotically flat region, the expansions (4.4) and (4.3) can be substituted
into (4.46) to find

oM (u) = 517; [ #osing coid.a.ct
— i 209 o l 2 _ a b ) g~
= [ 2205in 0 (2auau10| 8,C%3.C". ) . (4.47)

The sign of this expression depends on the second time derivative of the magnitude of
the gravitational perturbations. Consider the case of the collapse of a star to a black
hole. Generically, a gravitational wave tail forms which has the Price power law fall

off at late time,
ICl ~u™P?, u— o0 (4.48)

where p is a positive integer, typically p = 12 for gravitational radiation. Substituting
the power law into the formula for the rate of change of Hayward’s mass, we find

2
oM ~ (%p(p +1) - %—) =P >0, p>0. (4.49)

Hence, Hayward’s mass increases (slowly) at late times after the complete gravita-
tional collapse of a star. This property is rather counter-intuitive, and leads us to
conclude that M’ is not a very good measure of the gravitational mass of the space-
time. Clearly, this formula does not reproduce the Bondi-Sachs mass loss formula. It
is not surprising that variation of Hayward’s mass can’t reproduce the usual law for
the change in energy due to gravitational radiation. This is because m’ is a component
of the Riemann tensor. If we take a derivative of the Riemann tensor, the Bianchi
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identities will relate the derivative to other components of the Riemann tensor. But
the Bondi-Sachs formula relates the derivative of a mass to the effective stress tensor
of gravitational radiation. The effective stress tensor is not built out of any compo-
nents of the Riemann tensor, so it is impossible for the variation of Hayward’s mass
to depend on the effective stress tensor. For this reason, m’ probably is not a very
good representation of the gravitational energy of the system.

While the interpretation of m’ as a mass is debatable, it does have an invariant
geometrical meaning: it is the Coulomb component of the Weyl tensor. The solution
of (4.46) can reveal some information about the geometry of the spacetime. Consider
the equation in the limit of the Cauchy horizon, as discussed in the previous section.
In vacuum, the solution of (4.46), with u* = v is

l,1_1_.11@19 Re¥, = ulixglc m'[rd = -2%5 / * dvrle 0, Roavt, - (4.50)
In a Petrov type D spacetime (such as a stationary black hole), the component R.q.s
vanishes. The solution of (4.50) for a type D spacetimeis that ¥, is a constant near the
Cauchy horizon of the spacetime. Now consider a spacetime which is a perturbation
of a stationary black hole, so that Ry.y is small, but non-zero. If e~ diverges faster
than the rate that R, goes to zero, then the magnitude of the right hand side of
(4.50) will diverge. Since we expect A to diverge linearly and the perturbation in
the Riemann tensor to go to zero as an inverse power law, this argument leads us
to suspect that the magnitude of the ¥, component of the curvature will diverge
exponentially at the Cauchy horizon. The results of the next chapter will prove that
this is the case.

4.5 Wave equation for the mass

In spherical symmetry, the derivation of a wave equation (2.33) for the mass function
led to the conclusion that the introduction of perturbations to the interior will cause
the internal mass of the black hole to inflate exponentially as the Cauchy horizon is
approached, signalling a curvature singularity. In this section we will derive a similar
equation for Hawking’s mass aspect which holds in a general spacetime.

To begin, we rearrange the contracted Bianchi identity (3.72) to the form of a

conservation law for the stress tensor,

1
DgTs® + KpTx® = —('Ta%)i0 + €apwalT? + 040 T% + K1e*'P + 5Da(e)) T
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2P = T,,9% , T := Tapn*fe . (4.51)

A similar equation for the effective stress tensor can be derived. Taking the divergence
of 74? as defined in (4.44) yields

BTIDBTf = O'AabDBO'I,Ba + O’Aab(DBG'Aab - DAO'BQI’) . (4.52)

The first term on the right hand side of (4.52) is related to the traceless part of
the propagation equation (3.95), while the second term is given by the commutator
(3.43). The final result is that

1 et
DB'T'AB + KBTAB = _i'ﬁ_wKAaDaba'Dab - O’AabTabe" + ‘é‘:(}:A (4.33)

where the terms grouped together as a4,
1
2
are small inside the black hole or in an asymptotically flat region.

It is now a matter of some algebra to find the two dimensional wave operator’s
action on mg. Operating on (4.18) with the operator D, and making use of equations
(4.23), (4.51) and (4.33), we find that

1 . - .
aq4 = eABaB"bwa;b - a,‘ab(é-e‘uwbw“ + Abe 4 A'“A'b) . (4.54)

DADAm = —(471’)21'36—‘\(1',13 -+ TAB)(TAB + TAB)
3
+(m -— rz (”R)O’BabO'Bab

* The terms grouped together in o/ are terms which are zero in spherical symmetry
only if the stress tensor has the property that 7 = P = (,

o = 21Ky KA(2P —T) — 20r* KADA(T) — 4xmTe* . (4.56)
The terms grouped together as ofl) are zero in vacuum,

a = 37r3e*KBAsA(Tup — gapT) — 227%uT
+2rr0e KA(—(e*T4%).a + €4pw,T5%) . (4.57)

The terms grouped together as a?) are small near the Cauchy horizon of a black hole.

1
o? = ZraKAaA + D%+ Dy + 3nrle KB As 5 . (4.38)



4.6. CONCLUSION 81

The wave equation (4.55) for mg can be compared with the corresponding equa-
tion (2.33) for the mass in spherical symmetry. Clearly, the two equations agree in
the spherical limit. The wave equation in spherical symmetry can be inverted, as in
equation (2.36), since it is only two dimensional. Technically, equation (4.55) can
not be inverted to solve for my in a general spacetime. However, consider again the
perturbation approach discussed in section 4.3. In this approach we assumed that
the metric functions of the perturbed solution are close to the stationary solution.
On the axis of the Kerr solution, the shift vectors are zero, so to highest order, the
normal Lie derivatives reduce to regular partial derivatives, ie., D4 — 34. As stated
earlier. in the stationary solution e™* — oo at the Cauchy horizon. In this approxi-
mation the solution becomes effectively two dimensional and the mass function can
be approximated, in vacuum, by the formal solution of the integral equation

1
myg = / du / dv (grae“‘owbm,“ba'ucdau"d +myavaba,,“b) +O(1), (4.39)

for r # 0. Suppose that my is approximated by the first term of (4.59). If the
behaviour of the shear and A are as discussed in section 4.3, then as a first approxi-
mation, equation (4.59) yields that

lim myg = e~ F+uly=9y =7 (4.60)

U=—00C

It is easily verified that mgo,q0,% is much smaller than the first term of (4.39).

This handwaving discussion suggests that the effect of perturbations propagating
in the interior is to cause my to diverge exponentially near the Cauchy horizon. In
order to make this solution for the mass function more rigorous, it is necessary to
solve the characteristic initial value problem for the interior of a general black hole.
We will do this in the next chapter. The result is that we find the mass function does
diverge approximately as described by equation (4.60).

4.6 Conclusion

In this chapter we have discussed the problems associated with defining a local energy
density for the gravitational field. Although it is impossible to define a local gravita-
tional energy density, the quasi-local definitions made by Hawking and Hayward have
many of the characteristics which we would expect such an energy density to have.
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We have derived equations for the normal Lie derivatives of both quasi-local masses
and a wave equation for Hawking's mass. We have shown that general arguments
based on the behaviour of perturbations in a black hole spacetime suggest that the
magnitudes of both mass definitions will diverge at the Cauchy horizon of a perturbed
black hole. Since Hayward’s mass is a curvature invariant, its divergence signals the
presence of a curvature singularity at the Cauchy horizon. In the next chapter we will
solve the characteristic initial value problem inside the black hole and show that in
general, a curvature singularity does form, as suggested by the arguments presented

in this chapter.



Chapter 5
The generic black hole singularity

The principal goal of this thesis is to describe the intertor of an isolated black hole
formed from the collapse of a rotating star. The exterior geometry of the black hole
is given by the stationary Kerr-Newman family of solutions. How deep into the biack
hole does the Kerr-Newman solution approximate the interior of a perturbed black
hole? As discussed in chapter 2, the analytic extension of Kerr across the event
horizon has an unphysical timelike singularity which lies behind a Cauchy horizon.
As in the static Reissner-Nordstréom solution, the Kerr Cauchy horizon is a surface of
infinite blueshift, where the energy of perturbations measured by free falling observers
diverges [26, 80]. The aim of this chapter is to present a backreaction calculation in
which the effect of the blueshifted perturbations is taken into account.

The causal structure of the Kerr black hole is similar to the Reissner-Nordstrom
black hole. In chapter 2 we found that general spherical perturbations of Reissner-
Nordstrom result in a null scalar curvature singularity forming at the location of the
Reissner-Nordstrém Cauchy horizon. This singularity acts as a brick wall rendering
the extension of the spacetime beyond the singularity meaningless.

The assumption of spherical symmetry in chapter 2 plays a minor role compared
to the causal structure of the black hole. For this reason, it might be expected that
a similar singularity will be found at the Cauchy horizon of Kerr when perturbations
are present. In the analysis of this chapter the results of chapter 2 will be used as a
guide.

The key question is whether the spherical backreaction models are stable to per-
turbations. It has been observed that the black hole interior is isomorphic to the inter-
action region of a colliding plane wave spacetime. Since the Cauchy horizon in a plane
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wave spacetime is unstable to perturbations and is generically replaced by a spacelike
singularity (see figure 1) [81], it has been suggested [30] that a similar phenomenon
may also occur inside the black hole. Although this is a nice argument, no analyti-
cal backreaction calculation has shown any evidence of an all-encompassing spacelike
singularity. In order to discuss this argument, we introduce a plane wave metric
and consider plane symmetric perturbations of Reissner-Nordstrom . The plane wave
analysis also serves as a simple model, which is a remarkably good description of the
general black hole solution which will be presented later in this chapter.

Several calculations have suggested that the null singularity found in spherical
symmetry may be a generic feature of black holes formed by gravitational collapse.
Bonanno(82] matched two Kerr solutions along a thin null shell in the interior and
showed that the mass diverges along a null hypersurface. His analysis assumed that
the hole’s angular momentum is small and thus can’t be considered a general solution.
Ori [83] has shown that gradients of the metric perturbations of the Kerr solution
diverge at the Cauchy horizon, suggesting that a null singularity forms. Brady and
Chambers {84] have solved the Einstein equations on the Cauchy horizon and an
intersecting null hypersurface. Their solution shows that a singularity forms on the
Cauchy horizon, but they did not evolve the equations off the initial characteristics.
Recent results of Ori and Flanagan [85] show that the Einstein equations admit a
generic family of null spacetime singularities. The arguments presented in section 4.5
of this thesis suggest that the backreaction of perturbations in the Kerr black hole
will cause Hawking’s quasi-local mass to diverge. In a general spacetime the Weyl
curvature is not uniquely determined by the mass, as it is in spherical symmetry, but
this suggests that a curvature singularity may form.

Our method is to model the innermost region of the black hole by solving the
Einstein equations for a completely general metric near the Cauchy horizon. This
complicated task can be simplified by noting that the structure of the black hole
interior is ideally suited for a double-null decomposition of the spacetime metric.
Applying the 2 + 2 formalism of chapter 3 to the interior problem results in a sim-
plification of the Einstein equations and allows us to find a solution near the Cauchy
horizon. We shall show that the initial conditions given by the collapse of a star
lead to a null singular solution with the requisite number of arbitrary functions to be
considered general. All components of the resulting Weyl curvature tensor diverge
at CH. As the singularity is approached, the Kretschmann invariant is dominated by
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the ¥g, V5 and ¥4 components of the Weyl tensor.

We find that close to the Cauchy horizon, the metric is approximated by a simple
plane symmetric spacetime with a null shock-like singularity. The resulting picture
is of a collision of ingoing and scattered gravitational radiation interacting with the
geometry to create a lightlike singularity. The singularity is mild in the same sense
as was found in spherical symmetry: the metric can be written in coordinates which
leave all components finite and non-zero. Thus, tidal distortions of observers remain
finite at the singularity.

The organisation of this chapter is as follows. In section 1 we discuss the general
collapse problem which provides the initial conditions for the black hole interior. In
section 2 we discuss the plane wave approximation on which the general solution

presented in section 3 is based on.

5.1 Collapse with angular momentum

The general features of the collapse of a star with angular momentum are similar to
the non-rotating collapse discussed in section 2.2. The gravitational field of a rotating
star may be very complicated but after it has settled into a stationary state, the black
hole’s exterior gravitational field is completely described by its total mass, electric
charge and angular momentum.

Price’s analysis [11] of the radiation of the star’s irregularities was done on a
spherical background which is only valid for collapse with zero angular momentum.
However, the presence of the power law tails is due to the power law behaviour of the
curvature potential at large distances away from the black hole. The large distance
behaviour of the Kerr potential is similar, so it is expected that power law tails should
develop [19].

A recent numerical integration has shown that in the linear approximation power
law tails do develop in the exterior of the Kerr solution [20]. In this study, it was
found that for slow rotation, tails develop almost exactly as they do in spherical
symmetry. The analysis for quickly rotating black holes is complicated by the mixing
of different I-modes. The study showed that the dominant term in the ! = 2 mode tail
has angular dependence at intermediate times, but this dependence dies out at late
times. The late time behaviour is a power law, t=#, with u ~ 2.9. If the background
were spherically symmetric, 4 = 7. However, the value of x is unimportant for our
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analysis. The important point is that the power law form is generic.

The analysis of scattering on the spherical black hole’s exterior [21. 22| showed
that the power law wave tails enter the black hole. While this has not been explicitly
shown for the power law tails which develop outside of Kerr, the spherical analysis is
general enough to suggest that the power law tails enter the Kerr black hole.

An important effect is the propagation of the wave tail in the black hole interior.
The Kerr potential is more complicated than Reissner-Nordstréom, but for low energy
modes the potential appears qualitatively similar. The scattering occurs for these
modes in a thin band at a radius much larger than the Cauchy horizon. Since the
scattering will occur long before the modes are infinitely blueshifted, the results of
scattering on a stationary background([86, 87, 80] will serve as a reasonable approx-
imation. We expect then that near the Cauchy horizon, for late times, the metric
perturbations fall off in an inverse power law. Ori’s analysis [83] of the metric per-

turbations confirms this picture.

5.2 The plane wave approximation

The spherical model of the black hole interior has several key features which should
be typical of the generic situation. Gravitational collapse will generally produce
a weak tail of gravitational radiation which is backscattered into the hole. These
weak infalling perturbations will appear to be infinitely blueshifted to freely falling
observers at the Cauchy horizon of the hole. The Cauchy horizon of Kerr-Newman is
characterised by a surface gravity x_ which is independent of the angular coordinates
f and ¢. This suggests that the exponential blueshift function will be independent
of angular location on the Cauchy horizon. The influx will interact with the the
curvature as it propagates inwards, producing a scattered outflux of the form modeled
in the previous section. It seems reasonable that a null curvature singularity will also
form in the general case when the backreaction of the wave tail is taken into account.
A simple model of the black hole interior can be developed by approximating
the incoming and scattered gravitational radiation as plane gravitational waves. The
region near the black hole’s Cauchy horizon is modelled as a colliding plane wave
spacetime. As we shall see in the next section, this is more than a toy model: the
dominant terms of the general solution are identical to the plane wave spacetime.
On length scales, I, which are much smaller than the Cauchy horizon radius r_,
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the Cauchy horizon appears locally to be flat. To be specific, take the two-sphere at
the Cauchy horizon r2d?, and transform to coordinates z,y defined by

r+iy = r_e*sin(d) (5.1)

so that r2d0? ~ dz? + dy?.
Thus, close to the Cauchy horizon, the static black hole interior can be approxi-
mated by the metric

2
ds? = f,(r)dudv + :—2(d:52 +dy?) (5.2)

where r = r(u,v). Cauchy data placed outside of the hole can only be evolved as far
as the Cauchy horizon at r = r_ where f,(r-) = 0.

Now consider perturbations of this metric, corresponding to a collision of plane
parallel polarized gravitational waves propagating in the interior [88]

2
ds? = —2e'dudu’ + —(e?ds? + e~ Pdy?), (5.3)

where A, r, 3 are only functions of u*. Qur aim is to test the stability of the Cauchyv
horizon at fs(r_) = O under gravitational perturbations. If it is stable, it will be
possible to find a solution to the vacuum field equations which to leading order is of
the form e* ~ f,(r_) and r ~ r_. The metric (5.3) has only one degree of freedom. In
order to model the non-linear aspects of the gravitational radiation, it is necessary to
introduce a second degree of freedom, the function 4(u#). The metric can he written

in a standard form [81]
2
ds? = —2e*du’du’ + ;7;2- (cosh ~(e*dz® + e *#dy?) — 2sinh ‘ydxdy) . (5.4)

which represents plane-symmetric gravitational waves.
The details of the choice of two-metric are unimportant. We will write the plane
wave metric in a less coordinate specific way,

2
ds? = ~2e*du’du’ + ;g-habdaadab , (5.5)

where h,;, has two degrees of freedom, since we define det h,, = 1. Comparing with

the standard form (3.14) of the 2 4 2 metric, we see that
r? r?

ab = _ha ==

Gab 2 b g rZ

5?,‘ =0 =0 D,; = 6‘4 . (56)
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The two dimensional Ricci scalar vanishes, as a result of the plane symmetry. The
extrinsic curvatures are
2

Ky = aAln;r? (5.7)
1r2 .
Caadb = 5;?34’%6- (5.8)

The vacuum Einstein equations can now be easily written using the double-null equa-

tions derived in chapter 3.
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Figure 10: The characteristic initial data problem for the black hole in-
terior. Initial data (four functions of three variables) are placed on the
initial characteristics AF and AB and evolved using the vacuum Einstein
equations to the final characteristics DF and DB. The initial data corre-
spond to gravitational radiation which has been scattered by the black
hole’s internal gravitational field.
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Initial conditions for the gravitational perturbations are given by specifying the
form of the conformal metric hg, on the initial characteristics £° and £! (see figure
10). Equivalently, 014 can be specified on £% and ¢gq, on T!. The goal is then to
evolve the shear off the initial characteristics using the CIVP integration procedure
explained in section 3.7.

Before solving the CIVP, we should consider the gauge freedom in the choice of
null coordinates u4. Consider the vacuum propagation equation (3.94)

-
€ -
0=R, = 21_—230311'2 . (5.9)
The solution for r? depends on two arbitrary functions of one variable,
r2 = f(u®) 4 g(u!) + constant .

The arbitrarinessin f and g is a manifestation of our freedom in choosing coordinates
ut. Our aim is to study the stability of the spherical solution to plane-symmetric
perturbations. For this reason we choose r2 to have the same form (2.58) as was

found for the spherically symmetric solution,
r2 =12 - 2(A(z) + B(v)) . (5.10)

In chapter 2 we solved the equations using Kruskal coordinates, in which all compo-
nents of the metric are finite and non-zero near the Cauchy horizon. In this chapter
we choose to use the Eddington-Finkelstein coordinates u! = u and »® = v (2.3) for
the reason that in these coordinates, the static metric has e* = f,(r). At the Cauchy
horizon e* — 0. In the general solution we will exploit this fact in order to expand
the general equations in powers of e*, which will be small.

In this coordinate system, the functions A and B are

Alu) = (P'“le)(-n-u)*m(l - _’: ;_t +...) (5.11)
B(v) = —(:521)(;{_11)""“(1 - qxjvl +...)- (5.12)

As initial conditions, we assume that the shear is determined by the results of
scattering on a stationary background. We define shape functions e(u) and b(v)
which describe the initial behaviour of the perturbations,

F@)? = =B(v)~(xv)
(@(W)? = = Alu) ~ (—r_u)™P. (5.13)

47re



5.2. THE PLANE WAVE APPROXIMATION 90

The shear of the ingoing null rays initially has the value
Uvab(uo, 'U) = anb’(v) (5'14)

where Z,; is a constant traceless two-tensor. Similarly, the initial value of the shear

of the outgoing null rays is
Cuab(t, vo) = Yapa'(u) (5.13)

where Y, is constant and traceless.
The hypersurface equation (3.89) on ! can be rearranged to form a first order
ODE for A, as long as K, # 0, (which is always true inside a black hole),

oA =0,InK, + 1K, + 1%L (5.16)
] - v v 2 v Kv b 9.
where the positive definite norm is defined by
Iovl2 = Uvabavba - (517)

Substituting the initial conditions (5.14) and (5.15) on X! into the hypersurface equa-
tion, we find that

Mo, 2) = Ag + %mrz/rg +In|BW)/B W) - k(v—10),  (5.18)

where the subscript 0 refers to the value of a function on the initial surface S;. We
have used the freedom to rescale v by a positive constant to set the coeficient of v in
the last term of (5.18) to x_. The rescaling is equivalent to setting |Z|2 = 8. This
solution shows that on the initial surface lim,_.., e* — 0.

Similarly, the subsidiary equation R;; = 0 can be solved on ¢, yielding

At v9) = Ao + %lnrz/rg +1n[A'(u)/A ()] ~ k_(u—w) . (5.19)

It remains to evolve the shear to later hypersurfaces u > ug. If the power law
behaviour remains, integration of (5.16) will result in a general solution for A with
behaviour similar to the initial value (5.18). The gravitational degrees of freedom are
propagated by the traceless equations (3.95),

1
2
= e (h"ca,,avh,,c + 8,h%B kg + ég(avrﬁhbca.,h“ + a.,rzhbca,,h,,c)) (5.21)

0 = Rab - JGLR&‘ = e_A (2auavab + Kuauab + Kudvab) (5.20)
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This is a non-linear coupled system of equations for the two degrees of freedom de-
noted by hgs- In general, no closed form solution of (5.21) is known, however, global
existence and uniqueness has been proven for these equations [81] in the case of col-
liding plane gravitational waves.

When h,; is diagonal, as for the simple parallel polarized gravitational wave space-

time (5.3), the equation for A, has an exact solution. In this case, 04" = —0,4,Y =
348 and equation (5.20) is linear and reduces to
0 = 2r29,8,8 + 8,r%0,8 + 8,r%9,0 , (5.22)
which can be solved in terms of Hankel functions of zero order,
8 = / dw (e(w)e** HP(wr?) + d(w)e “*H{P (wr?)) (5.23)
x = Au) - B(v). (5.24)

The solution (5.23) can also be written as a function of the initial data [88] which
demonstrates that given power law initial data, 8 continues to have a power law form
when evolved off the initial characteristics.

The evolution of the shear off the initial hypersurfaces controls the character of
the metric. For the square of the shear |o,| makes a contribution to the hypersurface
equation (5.16) which must be solved on the later hypersurfaces u > wugy. If the
shear continues to have a power law behaviour on the later surfaces then a solution
very similar to the mass inflation singularity will result. If the shear should develop
singular behaviour, then the mass inflation picture will not be stable. We can prove
the following theorem concerning the behaviour of the shears.

Theorem: 1 If the initial data for the shears are such that

i) o, is an inverse power law in v on the hypersurface u = u,

il) o, is an inverse power law in |u| on the hypersurface v = vy,

and the solution for r? is given by (5.10), then the leading order solution of the
propagation equations (5.21) yields a power law behaviour on later hypersurfaces u >

ug and v > vp.

Proof: In chapter 4 we introduced an effective stress tensor for gravitation 745 (4.24)

which has components given by

1 .. e ae
TAB = 8—Wd138(|0u|2,|0u|2) . (5.25)
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Using the traceless part of the propagation equations R, = 0, we derived a “conser-
vation” law (4.53) for 74p which has the exact form for the plane wave metric
a"‘(rzldulz) = "rszauaba’uab (5.26)
3(r?ouf?) = ~r’K,oumo, .
If the right hand sides of (5.26) and (5.27) were zero, then it would be possible to
show that the evolution of the shear preserves the power law decay of the wave tail.
Although the right hand sides of these equations are not zero, it is not difficult to
find an upper bound for [0,402.
First, define the function £
£ = 0yat0,™. (5.28)
Integration of (5.26), making use of the initial condition (5.14) and the solution for
r? (5.10), yields the equation

r ! 2 u
low(u, 1.1)[2 = (IZ[K(_l:-o?’(Z)l:,:gv)) (rc_ + /;o .fdu) . (5.29)
Similarly, integration of (5.27) yields
' 2
lou(u, )% = (Iylii'zl(’z)igu)) (K.. + o Edv) . (5.30)

Consider the Schwartz inequality
€17 < louf?louf® - (5.31)

When the two-metric g, is diagonal (as in the plane wave metric (5.3) with one degree
of freedom) the equality holds. Substitution of the solutions (3.29) and (5.30) into
(5.31) yields the inequality

£ < 12(u,v) (r:_ + f' .sdu) (n:_ + [" Edv) , (5.32)

where the positive function u? is defined to be

’ / 2
ceapip)

1 (u,v) = (

Suppose that at the point (u,v) = (v/,7') in ABDF the function £ has its maximum
value, §nqz = §(¢',v'). Then the following inequalities are satisfied

/"' fdu < (uv' - u0)&maz /1., fdu < (Vv — v0)€maz - (5.34)
" )
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The following inequality for .- can be derived by substituting (5.34), into (5.32):

& &gz = B Emaz — 7 <0 (5.35)
where the coefficients a, 3,4 have been defined by

a = 1-p*0W, V) —u)(v' — w)
B = w_p?(d,v)((« —uo) + (v —1%)) >0
v = &2pP,).

From the inequality (5.35), it can be seen that there are two cases:
a <0 If « is negative, then (5.35) can’t be used to place a bound on &,42.

o > 0 In this case the upper bound on &4, is

B VE oy (5.36)

<
fmez < 2a 2a

In order to determine the sign of , it is necessary to consider the magnitude of
the term pu?(u’ — ug)(v' — vo) which appears in the coefficient a. The functions |}7]
and |Z| are bounded and approximately of order unity. The diamond ABDF of figure
10 is the region where |u| < v and the magnitudes of both coordinates are large, ie.
k_lul ~ k_v >> 1. As a result, the functions a’(u) ~ b'(v) << 1 and the radius r
(5.10) and is always close to the value of the Kerr Cauchy horizon radius, r ~ 7_.
The characteristic length of the segment AF is approximately r_, so that at most.
(v’ — up) < r—. Hence

(a'(u))*(u — up) ~ (—-rc-u)"’;l— <<1. (5.37)

Although the interval (v' — vg) can be infinite, this does not have a disastrous effect,

since
(k_v)" (1 -y /v) << 1. (5.38)

(t'())*(v ~ v0) ~

Making use of these two inequalities, we can write

riK_

1
,uz(u —ug)(v —v) << m‘ ~1. (5.39)

Substituting (5.39) into (5.36), it is clear that & ~ 1 and &nq. is given by (5.36).
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Since p is very small everywhere in ABDF, we can expand (5.36) to lowest order

in g to approximate
bmaz ~ Y2~ K_rPp<<r? . (5.40)

This allows an estimation of the upper bound for £ at any point in ABDF by neglecting
the integrals in equations (5.29) and (5.30). The function £ then satisfies

(., 0)? < [ou(a, v0)Plow(ua, v)? = ([Y]|Z]a(u)t(v)) (5-41)
which is the required bound on £. Hence, by elementary calculus, equations (5.29)
and (5.30) have the solutions
loul? < (1Z1'(v))? + O(ab®) (5-42)
loul? < (IY]a'(x))? + O(a®) . (5.43)

The result is that when the initial data for the shear is of the Price inverse power
law form, the evolution preserves the power law fall off at later characteristic slices.

QED.
The prediction of the theorem has been verified numerically [90] with initial data

which include perturbations of a power law. Substitution of the solution (5.42) into
the differential equation for A on slices u > up and matching with the boundary data
on £9, we find that the general solution for ) is

A = A —k-(v+u)+In(A'(u)B'(v)) - In(A4A"(ue)B'(v)) + %ln r2[re + O(E@}4)
The general solution for the conformal metric can be found by integrating (3.8).
has(u, v) = hoas +2Za(b(v) ~ b(vo)) + 2Yar(a(u) — a(uo)) (5.45)

while the determinant of the two-metric is
Vi= —;— =1- 5(Aw) + B)) . (5.46)
This solution is singular in the limit v — 00, as can be seen by substituting the

solution (5.44) - (5.46) into the components of the Weyl tensor, (3.63) - (3.68). The
components ¥; and ¥; are identically zero. The non-zero components,

Ty ~ ke~ (y)
Uy ~ —d4rde=+0)g ()b (v)

Uy ~ k_e~tg'(u). (5.47)



5.3. THE GENERAL SOLUTION 95
The asymptotic behaviour of the square of the Weyl tensor is
CaprsCP" ~ e 22U (v)d (u) ~ e~ (k_v)" Y (~k_u)"P/2. (5.48)

The curvature diverges exponentially in the limit v — 0.

The gravitational wave tail, b(v), which enters the black hole is infinitely blueshifted
at the Cauchy horizon. When the tail interacts with the scattered radiation, a(u),
transversely crossing the Cauchy horizon, a gravitational shock wave forms, creating
a curvature singularity. The specific form of the function a(z) is unimportant. The
importance of the scattered radiation is that it serves as a catalyst. If a(u) = 0, then
¥, is the only non-zero component of the Weyl tensor and the square of the Weyl
tensor is zero. The absence of scattered radiation produces a coordinate dependent
singularity. As long as a(u) # 0 the Kretschmann invariant diverges at the Cauchy
horizon. The black hole’s curvature will always scatter the incoming radiation. so in
general the function a(u) will never be zero for all u.

It is known (88, 81] that the general singularity formed in the collision of plane
waves is spacelike. It may seem counter-intuitive that our solution which describes a
collision of plane waves has a lightlike singularity. Yurtsever’s theorems [88] describe
the behaviour of the metric (5.3) close to r = 0. By studying the solution for J
(5.23), he has proved that under generic perturbations of 3 a spacelike singularity
forms at r = 0 and that no other singularities can precede it. But this is only true
if in the unperturbed spacetime the initial characteristic ¥ = uy extends as far as
r = 0. Contrast this with the case of a black hole. Inside of a black hole, initial data
can only be evolved as far as the Cauchy horizon at r = r_ # 0. In other words, the
initial characteristic necessarily ends at r = r_. The point is that a Cauchy horizon is
a relative concept: it depends on the choice of initial Cauchy surface [89]. A Cauchy
surface in the Reissner-Nordstrém exterior is not equivalent to a Cauchy surface for
the interior (including r = 0) of Reissner-Nordstrém.

5.3 The general solution

Our approach is to model the region close to the Cauchy horizon using the metric

ds® = —2e*dudv + 25,dudf® + g,,d6°d6® + s.s°du® (5.49)



5.3. THE GENERAL SOLUTION 96

where the six metric functions are functions of all four variables. The double-null
formalism of the previous section is a natural choice to decompose the Einstein equa-
tions to a tractable form, since the Cauchy horizon is a null hypersurface. Using this
formalism we will show that in the limit of the Cauchy horizon the metric reduces
to the form (5.5) of the interacting plane waves which we examined in section 5.2.
This is not surprising since we are essentially studying the interaction of gravitational
radiation in the black hole interior.

If the Kerr metric is written in null coordinates u and v (defined in equation
(4.35), then the g,, component of the metric takes the form

Guy ~ —€ 0+ 4 4o (5.50)

near the Cauchy horizon r = r_ = mg — y/m} — a?, where ks_ = (r2 +a?)~'y/mi - a®

is the surface gravity of the inner horizon. Thus we see that in this coordinate system.
close to the inner horizon the metric function e=* ~ e*-(*+¥) — oc. This suggests
that all factors of e~ be pulled out and the Ricci tensor be expanded as the series

R.s=R%e™ +RY +. .. (5.51)

[+

A solution of the vacuum field equations asymptotic to the Cauchy horizon is found
by solving the equation Rg? =0.

In this limit, the vacuum field equations (3.53) - (3.55) reduce to a form similar to
the field equations for a plane wave spacetime. The similarity will be exploited in the
solution of the characteristic initial value problem (CIVP) which will be presented in
this section.

The new complication, as compared to the plane wave spacetime of the previous
section, is that we do not assume that the spacetime has any symmetry. Allsix metric
functions depend on the four spacetime coordinates. In addition to the four metric
functions A and g, of the plane wave spacetime, the general spacetime has a shift
vector s®. As a result, the four equations R4, = 0 are not trivially satisfied.

Our notation and general method for finding a solution will be identical to the
analysis presented for the plane wave spacetime.

The hypersurface equations

In the discussion of the plane wave spacetime, we made a number of remarks about the
expected behaviour of the initial data. We assume that on the initial characteristics,
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the gravitational perturbations can be expanded in an inverse power series in the

advanced time v,

OvapUg, v.0%) = (n_v)-"ﬂEZ‘;oa’f,:g(G“)v‘"

~ Za(0°)'(v) (5.52)

where the function b(v) (5.13) describes the shape of the tail, to highest order and
the traceless two-tensor Z,; is now a function of the angular coordinates 6°.

The two-metric is split as before into g,;(z*) = +/g(z*)hes(z®), and a scalar
function r(z®) introduced,

Va(ze) = \,/Eo(f)“)ﬁz(x—:) : (5.53)
7'0(9 )

where the subscript ‘0’ denotes the value of a function on the initial two-surface S;.
The shear and dilation of the ingoing null rays are related to the two-metric by
2

K, = 8,ln— (5.54)
D
L
Ovab = E\/.aauhab- (5-55)

Our Ansatz is that the v dependence of 72 on the initial surface £V in these coordi-
nates should be the same as in the plane wave model (5.10)

K,0(6°%)
r2u,v,0a =r20a +____L—
(0,0 = 1000+ 26 BCwo)

where B(v) is given by (5.12) and the function K, is the value of the dilation at S;.
Since the black hole interior is a trapped region, the dilation is negative for all values

(B(v) — B(w)) (5.56)

of the angular coordinates.

The value of the function A on £(!) is given by the solution of the hypersurface
equation R,, = 0, which is the same equation (5.16) for A in the plane wave spacetime.
The solution, given the initial data for the shear and dilation, is

AMug,v,6%) = —ry(6%) (v-vo)‘*‘lnlB'(”)/B'(vo)l+';'1n%+/\o(9a) (5.57)
2y
x,(0°) = -'c—"%@. (5.58)

Note that the solution (5.58) for the function A in the general case is very similar
to the solution (5.18) for A in the plane wave spacetime. The main difference is the
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appearance of an arbitrary function of angular coordinates, ,(#%). Since B'(v) is
a positive function, the function , is positive definite. As a result. the function e*
diverges in the limit v — oo on the initial surface T(). If &, is not constant, then
the strength of the divergence of e~* at CH will depend on the angle at which the
horizon is approached. It follows from (5.57) that the rate of change of A with respect
to angular position diverges, since

lim G\ = "',,li.% Ogkv (v — vg).- (5.39)

v—0C

This situation is very different from that of the spherical black hole, where the di-
vergence doesn’t depend on angle. However, we will soon prove that the evolution
equations constrain K, to be a constant.

We turn now to the constraint equations R,, = 0, which are identically zero in
the plane wave spacetime. These can be written as a first order ODE for w,:

By(r?e ™ we) = r? (20’"2 b =~ 020, A — 0,0, In 72 + 8,09, In r2) . (5.60)

Once the two-metric g, is specified on Sy the two-dimensionally covariant derivative
(denoted by ;) is defined. Substituting in the asymptotic behaviour of the initial data.
this equation can be integrated to yield,

A
O = % (we(8%)e™ + Bak, (v —w0)) (1 + O(b)) (5.61)

where w§(6¢) is an integration function. Since the twist is related to the shift vector

by (3.83), we have the result
a ex a a —~AQ wa = v
s = = (wo(ﬂ )™ + Guk, (v —-vo)) + ;3 , (5.62)
where the form of the last term was chosen to set s = 0 on v = v3. The results of
equations (5.61) and (5.62) show that the shift and twist vectors are exponentially

suppressed on £(1).

The subsidiary equations

The procedure for solving the subsidiary equations R,, = R,, = 0 on X9 is similar
to that for the hypersurface equations. We have made use of the coordinate freedom
(discussed in section 3.6) to set the shift vector to zero on £°. As a result, the shear
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and dilation of the outgoing null rays on £° have the same simple form as equation
(5.54) and (5.55) with v replaced by u. Off £°, the shear and dilation are more
complicated, since the shift vector is not zero.

The initial data for the shear are

Tuat(,%0,8%) = (—r_u)PPER 0 (6°)(—r_u) ™

~ Yu(6%)d'(u), (5.63)

where Yg; is traceless and a is given by (5.13). The Ansatz for the form of the function
r on L0 is that it takes the same functional form as in the plane wave spacetime,

Kuo(6°)

m(A(U) — A(uo)) , (5.64)

r?(u,vg,8%) = rg(ﬂa) +

where A(u) is given by (5.11) and the (negative definite) function K, is the value of

the dilation at Sy.
The equation R,, = 0 on L0 is exactly the same as the equation for the plane

wave spacetime. The solution for A on £° is

Mu,u0,0%) = —ku(8%) (u — uo) + In |A'(u)/A'(uo)| + In %{E + Ao(6°) (5.63)

k- |V]2A(uo) (5.66)

Ku(ga) = IK ol b

where «, is positive definite.
The value of the twist on Z° is given by the solution of the equation R,, = 0. The
formal solution is

wa(u, v, 0°) = er? / dur? (20,5, — 3uB,) ~ 8,8, In7% + 8,20, In7?) . (5.67)

To summarise, we have shown that once the functions ggs, 8,5°%, 8,72, 8,r% and A
are specified on Sg and 04, 0yes On the initial characteristics, the constraint equations

on the characteristics are satisfied.

Solution of the propagation equations

The propagation equations )R, = 0 (3.95) may appear rather complicated. How-
ever, we have just shown that on the characteristics, w® ~ 5% ~ e*, which allows the
expansion of the field equations (5.51) discussed earlier. Our procedure is to assume
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that a solution for A of the form given by the solutions (5.66) and (5.57) on the ini-
tial hypersurfaces holds everywhere near the Cauchy horizon so that A — —oc and
e* — 0. We shall show that this assumption is self-consistent.
We first apply this limit to the two dimensional trace of the evolution equations:
(4)R: = g @R, = g? (4)R£2) +g% “)Rf.?
=~ (DaKA + KaK*) +OR — 2e P, =~ N — ZAN (5.68)

The term e >*w®w, ~ O(1). The dilation is K, = 8,Inr? + O(e), and the Lie
derivative operator is D, = 8, + O(e*). Hence the Ricci tensor is split into the terms

g @RY = ;_22-31.31,1'2 (5.69)
gab (4)R(alb) = —-';'Aa/\a _ A;a;a +(2)R _ %e-L\wawa
~e* (8,(5%a) + 5°0a0, In 72 - 25°,,8, In7?) . (5.70)

The solution of the zeroth order vacuum equation g® YR =0 is

2 ay a 'vo(en) _ Kuﬂ(ga) u) — u
r2(w,0,8%) = 18(6%) + i (Blo) = Blw)) + i s(Aw) = Alw)

(5.71)
which satisfies the initial Ansatz (5.56) and (5.64).

For self-consistency of the field equations, it is necessary for the lower order terms
of the Ricci tensor to vanish, i.e., g WR() = 0. All terms in (5.70) are of order unity.
except for the first two, since as shown in equation (5.59), the function A, diverges
at the Cauchy horizon. Taking the limit of the Cauchy horizon in the lower order
field equation, we find that

. a 1. . . -
0=limg bR = -5 Jim (v — )20, prug®. (5.72)

This equation has a solution only if 8,4, = 0. From its definition (5.58), x, is positive.
so the freedom to rescale the coordinate v by a positive constant allows us to set

Ky = K_ . (5.73)

This is the important result that the field equations force the metric functions to
diverge uniformly. The singularity is equally strong at any value of % on the Cauchy
horizon. This result makes sense intuitively, since the infinite blueshift in the Kerr
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black hole is controlled by the surface gravity of the Cauchy horizon which is a
constant. A similar restriction can be placed on the function «, by considering the
behaviour of equation (5.68) in the limit that the initial surface £! is moved backwards
to earlier times, ug — —oo. The result is that x, must be constant, and can be set
equal to x_. This places a restriction on the initial values of the dilations K,y and
K9, since they are related to x, and s, through equations (5.58) and (5.66). As a
result the general solution for r2 will be

r(z%) = r§(6°) +12(6°)P(B(vo) — B(v)) + Y (0°)*(A(u) — A(wo)) . (5.74)

The final propagation equation to be considered is the traceless equation (3.95)
which controls the shear. In the limit e* — 0 (3.95) reduces, in lowest order. to
the propagation equation (5.21) for the shear in the plane wave spacetime. The
conservation laws (4.53) for 745 reduce in this limit to

|

F)!

3)

6)

3u(r2la,,.|2) = -Tzk’vauabo'uab’*’o(ek) (
au(Tzlfqu) = -TzKuauabavab + 0(8'\) . (

]
=~

The theorem presented in the previous section applies to this case, if we make the
trivial change that all functions depend on * and that the tensors Y,4(°) and Z,;(6°)
are bounded. The result is that the right hand sides of (5.75) and (5.76) are always
small in the diamond ABDF of figure 10 and these equations can be integrated to
show that the shear maintains its initial power law behaviour, as in equations (5.42)
and (5.43) for the shear in the plane wave spacetime. Integration of the hypersurface
equations yields the solution for A found in the plane wave spacetime.

To summarise, the solution of the vacuum field equations, asymptotic to the
Cauchy horizon (v — o0), is given by the metric functions:

A = M-k_(v+u)+Inr/rg+In(A(u)B'(v)) — In(A'(ug) B'(ve)) + O(ab)
Votze) = Vao) (1 +1200)(BG) - Bl + Z8) ) - agua))
G0 = aul0) +22(07000) ~ o)+ 2Kl07No0) o)

e)~4\o
G(oﬁ) + _~

s* = -

where Y,;(6°), Zaa(ﬂ ) are restricted by Yag%® = Z,,g%® = 0. First order quantities
derived from the metric functions are

Oyab = Zabbl(v)(1+0(azb2))
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Tus = Yapa'(u)(1 + O(a’h?))
—Ao

= S+ Oab)

The functions A and B are given by (5.11) and (5.12) and the functions a and b are
defined by (5.13).

The components of the Weyl tensor can be found by substituting this solution
into the formal expressions (3.63) - (3.68). To highest order, the components are

¥y ~ k_mmbes~("+9Z b/ (v)
1 .
&~ _§mae%~-<vfu>z,,,,,\vbb'(v)

Ty ~ —%e"-("*“)}{,bZ b’ (u)b'(v)

1
‘1’3 ~ —§m“e%"—(“+“)Yab/\"’a'(v)
¥, ~ rx_membe~+Y,d'(v)
The asymptotic behaviour of the square of the Weyl tensor is given approximately
by the product ¥o¥q,
CaprsC®P ~ e PV (v)d' (1) ~ e¥*~+9)(k_v)~92(—k_u)"P/? . (3.77)
The curvature diverges exponentially in the limit v — oo.

The solution will still be valid when matter is present if the stress tensor has the
following asymptotic fall-off near the Cauchy horizon:

Topg = e v 0,v03v + |u| " 0audsu) + TS (5.78)

where TSB) is of order unity.

5.4 Conclusion

The general description of the black hole singularity that we have presented here is
remarkably similar to a lightlike shock wave singularity formed by the interaction of
highly blueshifted gravitational waves. It is reasonable to assume that in the collapse
of a general rotating object to form a black hole, scattering of the perturbations on the
background geometry should cause gravitational wave tails of the Price form to enter
the black hole. On physical grounds one would expect the influx of gravitational waves



5.4. CONCLUSION 103

to be infinitely blueshifted at the black hole’s Cauchy horizon and to cause a curvature
singularity to form. In section 5.3 we have presented a solution of the Einstein
equations for a metric with six functions of four variables. Under the assumption that
the initial perturbations fall off with the Price law we have shown that it is possible
to find a solution of the field equations asymptotic to the Cauchy horizon. A simple
model of the region of the general solution near the Cauchy horizon is the parallel
polarized plane wave metric. At the Cauchy horizon, we find that the curvature
invariants diverge. The curvature singularity is lightlike and weak with a simple
structure reminiscent of the spherically symmetric mass inflation model. Although
gravitational mass is not well defined in non-spherical spacetimes, the concept of
quasi-local mass can be useful. We have shown (in chapter 4) that the mass aspect
function and Hawking’s quasi-local mass diverge at the singularity. For this reason it
is reasonable to refer to this solution as mass inflation.

The simple form of the mass inflation singularity should be contrasted with the
strong spacelike and oscillatory singularity of BKL. It is expected, though, that as
gravitational radiation transversely crosses the Cauchy horizon, its generators will be
eventually focussed (through the Raychaudhuri equation) to zero radius. At this point
the singularity would become spacelike and possibly of the BKL form. The solution
presented in this chapter should be thought of as a null precursor to a stronger

spacelike singularity.



Chapter 6

Quantum effects in the black hole

interior

It has often been suggested that the inclusion of the backreaction of quantum fields on
classically singular spacetimes could tend to weaken singularities. This is due to the
loop-hole in the singularity theorems [2] which prove that the complete gravitational
collapse of a star generically produces a singularity. The theorems require that matter
obeys the dominant energy condition. Classical matter always obeys this condition.
but it is possible for the stress tensor of quantum fields to violate the condition without
violating the conservation law V,T# = 0. This opens up the possibility that when
quantum effects are considered, the collapse of a star may not necessarily produce a
singularity.

Quantum effects near classical singularities may be important for another reason.
Recall that the notion of a continuous manifold requires that the measurement of
position be made arbitrarily precise. However, through the Heisenberg uncertainty
principle, particles with Planck scale momentum will be produced if length scales of
the order of the Planck length (10~33 cm) are probed. The backreaction onto the
geometry of these particles would cause such a large fluctuation in the curvature
that the classical picture of a continuous manifold will probably break down [91].
One of the signatures of a singularity is that the Riemann curvature diverges. If
the characteristic length scale of the spacetime is defined as ¢ ~ |Rog,6R*57%|"1/4,
then close to a singularity £ will approach the Planck length. Hence, we expect that a
purely classical description of a singularity cannot be adequate and a quantum theory
of gravity must be invoked.
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The implication is that the classical mass inflation scenario describing a rotating
black hole’s singularity is not complete. In the preceding chapters we ignored the
contribution of quantum effects to the black hole singularity. At moderate curvatures
the classical approach is justified, for causality protects us from the region of strong
curvature. Since the singularity is lightlike, curvature increases as time increases so
that the region of Planckian curvature described by the unknown quantum theory
of gravity lies to the future and cannot influence the region of moderate curvature.
However, in the region of moderate curvature where classical relativity is still a good
description, effects such as the production of elementary particles and vacuum polar-
ization may contribute significantly to the curvature of spacetime.

It is held by many that quantum gravity should have a self-regulatory effect [92].
i.e., that quantum effects should help to weaken singularities. However an exam-
ination of the literature does not produce any definite proof of any self-regulatory
property. The effect of quantized fields on other spacetime singularities produced
by gravitational collapse has been considered by various authors. Ford and Parker
(93] studied the production of particles by naked singularities, although they didn't
calculate the backreaction of the created particles on the geometry. They considered
shell crossing singularities and showed that quantum effects do not tend to remove
the singularity. They also examined the |e] > m Reissner-Nordstrém solution and
showed that the singularity is not damped, but that quantum effects may cause an
event horizon to form. Frolov and Vilkovisky [94] studied the collapse of a spheri-
cally symmetric null shell governed by a quadratic effective Lagrangian. They found
evidence suggesting that the collapse to 7 = 0 can produce a regular solution. Ander-
son, Brady and Camporesi [95] calculated the effects of vacuum polarization in the
homogeneous mass inflation model (HMI), briefly discussed in section 2.9. The HMI
model is a simplified model of the spacelike r = 0 singularity which joins to the mass
inflation singularity. They found that the effect of vacuum polarization is to intensify
the strength of the singularity.

In this chapter we will calculate the expectation value for the stress tensor of
quantized fields propagating on a simple mass inflation background. We will work
in the semi classica] approximation where the gravitational field is treated classically
while all other fields are quantum in nature [96]. A few other calculations of this sort
have been done by others. Balbinot and Brady [97] found in the (1+1) dimensional
analogue of the Reissner-Nordstrom solution that quantum effects tend to make the
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singularity stronger. A (2+1) dimensional calculation by Steif [98] came to a similar
result. In (3+1) dimensjons, Balbinot and Poisson [99] ignored non-local effects by
using a quadratic Lagrangian model and found that quantum effects either strength-
ened or weakened the singularity, depending on the sign of the quadratic terms in
the Lagrangian. We find [100] that the quantum stress tensor exhibits a divergence
which is exponentially stronger than the rate of divergence of the classical stress ten-
sor. However, we are unable to ascertain, in this formalism, the sign of the divergence.
If the quantum influx were to diverge to positive infinity, the quantum effects would
tend to increase the strength of the singularity, while a negative divergence would
tend to weaken the singularity. As we will show, the origin of the ambiguity is in the
non-local contribution to the quantum stress tensor, which dominates over the local
terms. Non-local effects are typically due to the dominance of low energy quanta
which probe long distance scales. The classical mass inflation effect is mainly due to
the scattering of low energy fields, so it is interesting that low energy effects are also
important in the quantum domain.

The organisation of this chapter is as follows. Particle creation by black holes will
be discussed in section 1. In section 2 Horowitz’s formula [17] for the quantum stress
tensor in linearized gravity will be introduced. In section 3 we will use this formula
to calculate the expectation value of the stress tensor of non-gravitational quantum
fields in the Ori model of mass inflation. Concluding remarks will be made in section
4.

6.1 Particle creation in a black hole spacetime

The modern view of the vacuum, gained through the study of quantum field theory
[101], is that it is not really a vacuum: virtual particle-antiparticle pairs are constantly
being created and annihilated. The Heisenberg uncertainty principle allows particles
of rest energy mc? to live briefly for a time of order £/mc?. These virtual particles
can have measurable consequences when an external field is present. Heuristically,
the effect of an external field is to lend energy to the virtual pair, allowing them to
exist for a longer period of time. For example, in the Casimir effect, an electric field
applied to the vacuum region between two conductors polarizes the vacuum. The
vacuum polarization is responsible for a measurable force on the conductors which
can’t be explained classically.
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It seems reasonable that if the gravitational field is treated as an external force,
similar particle creation effects will occur [102]. However, the particle concept is not
well defined in a general curved spacetime, so the external field concept must be
applied with care. The problem is that the definition of a positive energy particle
state depends on the choice of observer. For an inertial observer in Minkowski space,
the definition is clear: positive energy states are eigenstates of the Killing vector 8/9t.
where t is the Minkowski time coordinate. The definition is Poincaré invariant, so
that all inertial observers agree on their observations of particles. The introduction
of a non-inertial observer serves as an example of the effects which can occur in a
curved spacetime. The non-inertial observer’s time, 7 is in general a complicated
function of the inertial observer’s time, so that eigenstates of 9/8t are not generally
eigenstates d/07. The result is that accelerated observers will detect particles in the
inertial observer’s vacuum state [103]. The situation in a general curved spacetime is
similarly ambiguous, for if there are different nonequivalent observers, their definitions
of a particle will not agree.

The situation which is most straightforward to analyze is a spacetime which is
initially stationary, undergoes a period of evolution, and afterwards settles down to a
final stationary state. We will refer to the initial stationary period as the “in” state
and the final stationary period as the “out” state. The eigenfunctions of the Killing
vector for the “in” state are the one parameter family u™(z#). A similar family
uZ*'(z#) can be defined for the “out” region. Both families form a complete basis, so
that any quantum scalar field can be “second quantized” by an expansion into the

normal modes of either basis,
B(z*) = u(aouy + abugt) = y(boul™ +blull) . (6.1)

Where the operators a!, and a, respectively create and annihilate quanta of energy
w in the “in” state. Similarly 5! and b, are creation and annihilation operators for
the “out” state. The definition of the “in” vacuum (or no-particle) state is the set of
conditions

@,|0; >=0 ,for all w . (6.2)

Similarly the “out” vacuum is defined by

Bs|Oput >=0 , for all w .
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The operators in the two representations are related by the linear Bogoliubov

transformation

b = B (@t — B als) (6.3)

where o, and §; . are the Bogoliubov coefficients. If any of the 37 , coeficients
are non-zero, then the transformation is nontrivial and there will be mixing between
states. It can easily be shown, using equations (6.2) and (6.3) that the expectation
value of the number of “out” particles in the “in” vacuum state is

< Oinln:utloin >=< Oinlblbwloin >= Ew'lﬁww’F - (6‘4)

The result is that if the Bogoliubov coefficients are non-zero, and the system begins
in a vacuum state, observers in the “out” region will observe particles.

Consider a star which collapses to a stable radius larger than the Schwarzschild
radius. The Killing vectors for the regions before and after the collapse are defined
with respect to the Schwarzschild time and are identical. It follows that the eigenfunc-
tions in the “in” and “out” regions are identical and the Bogoliubov transformation
is trivial. No particle creation results in this case [104], except for transitory particle
production during the non-stationary period.

The case which is of interest to us is the collapse of a star to form a black hole.
Naively, we might define the “in” state at 7~ and the “out” state at J+. Howevér, the
collapse to a black hole has changed the topology of the spacetime non-trivially, and
J* no longer constitutes a Cauchy surface. A complete Cauchy surface consists of the
union of J* with the future event horizon. Hawking [105] showed that the Bogoliubov
transformation is non-trivial when a black hole is formed. Although observers measure
the quantum state to be vacuous before the collapse begins, observers near the event
horizon, will measure the “in” vacuum state to be full of particles. Some of these
particles will fall into the horizon and become causally disconnected from their anti-
particle partners. The partners can now be considered real particles that can travel
to the future static region and be measured by future static observers. Hawking’s
calculations show that in the far future, the observers will measure thermal radiation
corresponding to a temperature of x, /2w coming from the black hole.

The Hawking radiation has consequences inside the black hole as well. Conser-
vation of energy implies that a flux of positive energy radiation outside the hole is
accompanied by an influx of negative energy radiation inside the hole [106]. The
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quantum influx is infinitely blueshifted at the inner horizon, so that (in Kruskal co-
ordinates (2.6) for the inner horizon) the stress tensor for the Hawking influx is

2
Hawking __ _ &)4 1 VoV
Tﬂﬁ 27" (—K_—__V ag aﬁ .
As we have discussed in section 1.2, the classical influx of gravitational radiation
created by the collapse has the Price tail form (2.35), so that the Hawking radiation
becomes comparable in size to the Price tail at a time V given by

K 1/3
IIIIK..V, = - (2—;’)

for p = 12. Substituting this value of V into the expression for the Weyl curvature
(2.29), it can be seen that for black holes with exterior mass larger than approximately
100 kg, the Weyl curvature has grown to Planckian levels at which point the semi-
classical approximation is not valid. Hence we conclude that the effect of the Hawking
radiation on the interior geometry is only important for black holes which have mass
less than 100 kg [107]. When the mass is larger than this critical value, the classical
picture presented in the preceding chapters is valid. We will restrict our attention to
the study of quantum effects inside astrophysical scale black holes, where the effect
of the influx of Hawking radiation will be negligible.

Another important cause of quantum particle creation is the electric field present
in the Reissner-Nordstrém black hole. Markov and Frolov [108] have shown that
particle creation by the electric field will very rapidly neutralize the Reissner-Nord-
strom black hole. This suggests that a realistic model of the Reissner-Nordstrom
black hole interior should look similar to the Schwarzschild interior [109]. However.
our use of the Reissner-Nordstrom black hole has always been as a toy model of the
more complicated Kerr black hole. As we have shown in chapter 5, the non-spherical
black hole interior is very similar to the charged black hole interior. In this chapter
we will consider quantum effects on the background of a charged black hole with the
understanding that our results should be indicative of the more general situation.

6.2 Vacuum polarization inside the black hole

The general goal of semi-classical gravity is to calculate a finite expectation value for
the stress tensor, < 7,5 > of a quantum field on a fixed manifold. This expectation
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value can then be used as a source term for the semi-classical Einstein equations
G =87(T5* + K < T >)

which can be solved for the classical spacetime metric. This quantum backreaction
problem is very difficult to solve in general. The calculation of the expectation value
of the quantum stress tensor is hampered by the fact that there is no formal expression
for a finite quantum stress tensor. The standard approach to this problem (see for
example reference [96]) is to substitute the quantized field (such as the expression
(6.1)) into the expression for the stress tensor for the equivalent classical field. The
classical stress tensor is quadratic in derivatives of the field. For example, the stress

tensor for a massless scalar field is
1 .
Tpv = u¢aV¢ - Egpug ﬂao¢aﬂ¢ .

Substitution of the infinite mode sum (6.1) into this expression will yield an infinite
result from the infinite zero point contribution of terms of the form a_ af. Whatever
method is used to calculate the quantum stress energy, the result is always divergent.
The divergent expression can be separated into two terms, one finite and the other
infinite by one of many regularization prescriptions. A finite, renormalized, stress
tensor is then obtained by retaining just the finite portion of the regularized result.
Of course, there is some ambiguity in subtracting one infinite expression from another.
A priori, it seems that there is no reason for different regularization schemes to vield
the same finite result.

Wald’s axiomatic approach has shown that the results of various regularization
schemes agree within a reasonable degree of freedom. Wald’s axioms [110, 111] are
that a reasonable definition of a renormalized quantum stress tensor in the “in-in”
state should have the following properties.

i) The difference between the expectation value for different states should be well
defined.

ii) The expectation value for the stress tensor is zero in Minkowski space.
ili) The expectation value is conserved.

iv) The expectation value at a point p depends only on the geometry within the past
light cone of p.
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Wald has shown that these axioms define a quantum stress tensor up to an arbitrary,
but conserved local tensor depending on the curvature of spacetime.

Quantum backreaction

Our aim is to estimate the effect in the black hole interior of the backreaction due to
vacuum polarization. In order to do so, we will compute the renormalized one-loop
expectation value of the quantum stress tensor for the “in-in” (or Unruh) vacuum
state, < 0i3)T,,|0;» >, which will abbreviate to < T, >. The “in-in" vacuum state.
in the black hole context means that the vacuum was in an unexcited state before
the collapse of the star occurred. The result of the specification of this vacuum
state is the influx of Hawking radiation, which (as discussed in the previous section)
is negligible. The calculation of < T, > in the general non-spherical black hole
background presented in chapter 5 is a very difficult problem. We have shown that the
simple spherically symmetric Ori model captures the essence of the more complicated
black hole interior. It seems reasonable that a study of the quantum backreaction
problem in spherical symmetry should also serve as a good model of the general
situation.

Recall that in spherical symmetry, the mass function completely specifies the Weyl
curvature. Following Simon’s prescription [112] for finding perturbative solutions to
the semi-classical Einstein equations we assume that they yield a solution for the
metric functions of the form

msem:'—-clau. — mdau. + hmquant (6.5)

rsemi-dass. = rdau. +h1.quanz (66)

!

The wave equation for the mass function (2.33) depends on the two-dimensional

square of the stress tensor,
TapTAB = TE3*Te® + KTES < Tyv > +T58* < Tyy >) + O(K%),  (6.7)

where < T,3 > corresponds to the quantum corrections to the stress tensor. Thus to
order %, the semi-classical field equation for the quantum correction to the mass is

Oyfymaent = %(47&')27‘4 (Tg;}”' <Tyv > +T‘°/I§”’ < Tyy >)

1
+5(41r)21‘“4T53”'T3§-”'r"““""/r, (68)
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where quantities without a superscript are understood to be classical. The quantum
corrections to the other metric functions are roughly of the order

peuant. ., _ / / < Tyy > dVdV, (6.9)

which follows from Raychaudhuri’s equation (2.37). If we find that the solution for the
quantum correction m%“%** is positive, then we will conclude that the backreaction
increases the strength of the mass inflation singularity. A negative result for m7“2"*
will result in a damping of the singularity.

Horowitz’s formula for linearized gravity

In the case of linearized gravity, Wald’s axioms have been successfully applied by
Horowitz [17] to deduce a relatively simple formula for the renormalized stress tensor.
Horowitz’s formula is valid for spacetimes which can be decomposed as a perturbation
of Minkowski space,

gaB = Mas t+ Yos

where 7,5 represents the Minkowski metric. All quantities second order in v are
smaller than quantities first order in . The Poincaré invariance of the Minkowski
metric simplifies the problem. A further assumption, which Horowitz makes is that
< Top > can not depend on derivatives of 4 which are of sixth order or higher. This
restriction fixes the arbitrariness in the stress tensor down to two tensors A,g and

B,s which are the linearized variations ,

A = 1 _6_ - afré
Aot = =55 / V=9CaprsCPT s (6.10)

. 1 & 2
B.s ﬁﬁf\/—g}f d'z | (6.11)

]

where a dot denotes a linearized quantity. These two tensors are the only conserved
linearized tensors with fewer than six derivatives of the metric [17]. Horowitz finds
that the most general stress tensor which satisfies Wald’s axioms is

< Top(z) >=Hh (/ Hy(z - 2')[aAap(z') + bBop(z))|d*z’ + ﬁBaﬂ(I)) ,  (6.12)

where H,(z — z') is a distribution with support on the past light cone of z, and will
be defined in the next section. The constants a and b are positive and are known for
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all massless quantum fields [17]. The constant § is arbitrary, as is the parameter A
on which the distribution depends. This formula has been derived by a number of
authors using a variety of alternate methods [113, 114].

An approximate black hole metric

It is probably not obvious that a formula based on linearized gravity can have any
application to the black hole interior. The presence of the mass inflation singularity
means that the metric is decidedly not flat! However, the singularity has a mild
integrable form. Recall that in section 1.3 we showed that the Ori metric can be
written in coordinates in which the metric has no singular components. Furthermore.
the diverging mass function has the special form

1
-k_V

m(V) = mg——=|In(k_V)[~?, V = 0_, (6.13)
where V is the Kruskal advanced time. The presence of the logarithmic damping
factor has the result that

d(i)m(V) o> d(j)m(V) d“')m(V)

= o g fri k41 (6.14)

In this restricted sense, terms non-linear in m can be neglected compared to terms
linear in m.
Recall that in the simple Ori model of mass inflation, the metric after the shell is

ds? = dV(f(r,V)dV — 2dr) + r2dQ?, (6.15)
fr,V)=1=2m(V)/r + e2/r2,

which can be written as a flat metric plus a perturbation term linear in the mass
function. All curvature quantities in the Vaidya spacetime are linear in m, so that it
seems that the Horowitz formula can be applied to this spacetime. There is, however,
a very serious problem with this approach. The light cone structure of the Ori metric
(6.15) is very different from the light cone structure of Minkowski space. For example,
the coordinate r is spacelike in Minkowski space and timelike in the Ori metric. But
Horowitz’s formula involves an integral over the past light cone of the observation
point. If the light cone of the perturbed metric is radically different from the light
cone for Minkowski space, the result of the formula (6.12) may yield incorrect results.
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For this reason we will not attempt to calculate quantum effects in the Ori background
metric. Instead, we will show that there is a spacetime which approximates the Ori
metric and has the property that the Horowitz formula can be used.

In this thesis, we have discussed two types of approximations. In section 1.3, the
divergence of the mass function was used to make the approximation f ~ ~2m(V)/r.
In section 5.2 we argued that on small length scales, the two-sphere at the Cauchy
horizon can locally be approximated by a plane, so that r2d? ~ dz2+dy®. Adopting
both of these approximations to the Ori metric (6.15), we arrive at the metric

ds? = 2drdV + ‘—?1"@:11/2 + ;—(dzz +dy?) . (6.16)

The curvature tensor for (6.16) differs from the curvature for the Ori metric by terms
of order 1/r2, which is finite. Compared to the diverging terms in the curvature
arising from the mass function these differences are negligible.

Consider the conformal metric

ds? = f;—'dsz
T
2 2

= 2:—;er +dz? + dy? + 2-"’—(‘T/T)Edv2 i (6.17)

If we introduce the coordinate 9
U= 2-’;; (6.18)

the metric takes the form

ds? = —~dUdV + do® + dy? + 2L(U,V)dV? , [ = 8:2 m(V)U3 (6.19)

which is in the flat plus lightlike Kerr-Schild form [115]. The form of the conformal
metric is exactly of the form needed in order to use Horowitz’s result.

Before embarking on the calculation of the quantum stress tensor, we should
examine the causal structure of the conformal metric. The coordinate U is a retarded
null coordinate for the flat metric, but not for the conformal metric (6.19). The
correct null coordinate for the conformal metric has the value

_r? 2
U=T-+= / m(V)dV . (6.20)

In the limit V' — 0_, the integral of the mass function vanishes, and the coordinate
r approaches r_. As a result, close the Cauchy horizon, (ie. |k_.V| << 1), the



6.3. THE QUANTUM STRESS TENSOR 115

light cone for the conformal metric is approximated very closely by the light cone for
the flat metric. Thus, Horowitz’s formula can be used to calculate the renormalized
quantum stress tensor for fields propagating on the conformal background metric.
Page’s formula [18] for conformal transformations of the quantum stress tensor can
be used afterwards to find the stress tensor in the physical metric.

6.3 The quantum stress tensor

In this section we will apply Horowitz’s formula (6.12) to the calculation of the renor-
malized stress tensor for quantized fields on the classical background of the conformal
metric (6.19). Horowitz’s formula for < T,s > has a non-local component, which is
the action of the distribution H)(z — z’) on the conserved tensors A and B. The
non-locality of the stress tensor is a reflection of the fact that quantum particles cre-
ated within the past light cone of the observation point = can travel to the point and
contribute to the quantum stress tensor. The manner in which the past fluctuations
contribute is controlled by the distribution.

In order for the distribution to be Lorentz invariant and to have the correct di-
mensions [17], the distribution should be proportional to §(o(z,2’)) where o(z,z’) is
the world function defined as one half the square of the geodesic distance from z to z'.
In order to restrict the results to the past light cone a step funtion in the difference
between the Minkowski time at z and =’ must also be included. Introduce Minkowski
coordinates (t,l,8, ¢) with origin at the observation point z. Advanced and retarded
times are defined by

v=t+l,u=t-1. (6.21)

In these coordinates the world function is

1
o(z,z') = —3uv. (6.22)

Points z’ with & = 0 lie on the light cone of z. Consider the action of a distribution
H(z - z') = ¥8(o(z,2'))O(t = t') on a test function with compact support

[HE =) f)ate = lli [ du dv a9 ~ w5 ,6, ¢)6'(-—%uv)€)(~t)
[ duae(-1) (% f(u,0) = 8, f(u, 0)) . (6.23)
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After an integration by parts, this becomes
/ H(z - ) f(z)ds = - / dudQO(~t) (21n{—w)d, f(u,0) + 8, f(v,0))
+ / dudQ In(~u) f (, 0)6(u) . (6.24)

There are two problems with this expression. First, the coordinate u has dimensions
of length, so the logarithms aren’t properly defined. As well, the last term is infinite.
Horowitz fixes these problems by introducing an arbitrary length scale A into the
integral and by defining the distribution H) to be the finite part of (6.24). The result
is that the correct distribution has the following action on a test funtion [17],

[~ e = [ ‘; dud® (In(~u/N)2.f(2,0) + S0.f(u, ) lo=66.25)

The parameter A effectively plays the role of a renormalization mass scale [113].
Substitution of the distribution (6.23) into (6.12) yields the formula for the quantum

stress tensor which we will now use.
The linearized variations which are to be inserted into the stress tensor formula

are given by,

. 3 . 2 .
Aap = —20%8,Gop — §-aaaﬁc+ =100 0,G
Bag = 210p0"3,G ~20,85G , (6.26)
where G, is the linearized Einstein tensor for the conformal metric (6.19), which has
the value
Gap = Gap = —4L yu(0aUds)V + ag). (6.27)
The components of A and B are
dyy = 3Byy = m'(V)U (6.28)
Ayy = Byy =0 (6.29)
Agy = LByy =24, =24y, = ——B., = ——B,, = -im'(V) (6.30)
UV_'3 vy = T = yy = 12 zz = 12 T ry - .

In order to evaluate the integrals, we need to relate the flat coordinates (U, V, X, Y")
in which the conformal metric (6.19) is written to the coordinates (u,v,6,¢) (6.21).
We introduce Cartesian coordinates for the conformal metric, defined by

T=-21—(V+U), Z=%(V—U). (6.31)
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The point at which the stress tensor is to be evaluated has coordinates
Wo = (To, Zo, X0,Ys). The plane symmetry of the classical problem allows us to
choose Xy = Yp = 0. Suppose that we introduce Cartesian coordinates (¢, z,z.y)
with origin at W, and % = 22 + y? + 22. The two sets of Cartesian coordinates are

related by

X ==z (6.32)
Y =y (6.33)
Z = lcosf+ 2, (6.34)
T = t+Tp. (6.35)

Given the definitions of the two sets of null coordinates (6.19) and (6.21).

1
V = %+-;-(v+u)+§(v—u)c030 (6.36)
U = U+ :;-(v +u)— %(v — u)cosé (6.37)
We note here that when v = 0 and u = —oo, the coordinate V' is unbounded below.

We have already stated that for our approximation to be valid, |k_V| « 1. It
is necessary to restrict the range of integration over the coordinate u in (6.25) to
[—|u.], 0], where |u.|k_ ~ 1. This is equivalent to stating that the vacuum polarization
in the region of strong curvature will dominate the contribution to the stress tensor.
The introduction of this cut-off alters the formula for the non-local contribution to

. 0 1
/ Hy(z - Z)f(z') = /_ | dud® (m(-u/,\)a., £(w,0) + 58,1 (x, 0)) lo<0 (6.38)

It is now a trivial matter to change from coordinates u and @ on the surface v =0
to coordinates U and V. The integral in (6.38) is transformed to

0 1 Vo Uo 1
[ e[ desty==2[" av[" = dUZjeo, (6.39)

where
o =V -WV+U-0p. (6.40)

The derivatives in (6.38) can be transformed to the conformal coordinates. Their

values are

d ou d 1%
0y f(u,0) = 'a—U'f(U, V)El":() + a_ff(U’ V)%‘lu.—_o
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((v Vo) aas U V) + (U = U)oz U, V)) (6.41)

]

0y f(u,0) —-f 0, V)'a'—lv—o + —f(U V)-"l

= ((U"Uo) 2 KUV + vV -1, V>)- (6.42)

As a result, the integrals (6.38) which must be evaluated are of the form

[ Bz =) = L) + Iu(), (6.43)
where
Lip) = —2#[}?1'“" dV—/UZo—(V =Vo)—|u.l i
[(V Vo)-—f +(U - Uo)-;‘; ] (6.44)
lf) = ‘ijzo-lu.ldvjvfo—n/-m lu-t i
i) (Ot r + v Vo] . 69

The evaluation of the integrals required to calculate the stress tensor is straight-
forward. Intermediate steps for the calculation are listed in appendix C. The leading
order behaviour (in the limit V5 — 0_) of the quantum stress in the conformal

spacetime is
T 1 " -VU ~
< Tyy(U, Vo) > ~ 4Uoh1—3-m (Vo) {(a + 3b)avy h(T) + 35 (6.43)

<Tp (U W) > ~ —thrm'(%) ((a+ 3oy In(S2)+38)  (6.47)
< Tgp(Uo, Vo) > = 0 (6.48)
<Txx(Uo, Vo) > = <T§Y(U0’V0)>

~ -4h——m'(Vg) ((a/2-12b)agvln(—-) -125) (6.49)

where the positive constants ayy and ayy are calculated in appendix C, and the
arbitrary constants A and § were introduced in equation (6.12). Note that the overall
sign of < Ty (Uy, Vo) > depends on the relative signs of A and §, which are not fixed
by the semi-classical theory.
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The stress tensor for the physical metric can be found using Page’s formula [18]

for the transformation of the quantum stress tensor under conformal transformations.
<T¢,> = Q'<T™*, >

4

-?;% [(c*cﬂ,,, InQ)¥,, + éR*ﬂacm“ﬂ, mn]

—8 [(4RPoCs, ~ 28%,) — h1—4(4R*’3¢C*°“p,, ~ 2,
—%(I“,, - Qi) (6.50)

where 2 = r/r_, the positive constants o/, 3’ and ¥/ = 2/3a’ depend on the spin
of the field and the bar denotes a covariant derivative with respect to the conformal
metric. The tensors H,, and I, are defined by

H, = —-R%R..+ %RR,W + gpv(%RaBRBa - %Rz) (6.51)
1o o -

The formula (6.50) for the transformation of the quantum stress is quite different
from that for a classical conformally invariant field. The transformation law for the
classical field is simply the first term of (6.50). The presence of the terms in (6.50)
which are not conformally invariant shows that the contribution from quantum effects
to the stress tensor depends on the length scale that we are probing.

It is not necessary to perform a detailed calculation of all the terms in the tranfor-
mation law, if we keep in mind the leading order behaviour of the curvature tensors
is

C**Pys ~ C%Ps~m(V)
R ~ m(V)
R ~ m'(V).

Since < TPy >~ m"(V), and the classical mass function obeys (6.14), it follows that
< Tyy >> mm’(V) > m3

so that terms quadratic in curvature are negligible in comparison to the conformal
contribution. Only terms involving two derivatives of curvature, (the term propor-
tional to In and I3y, ) will contribute. The result of the conformal transformation



6.3. THE QUANTUM STRESS TENSOR 120

on the quantum influx is

<Tyy >=072 (< Ty > +(8¢' nQ + 29 AUmM"(V)/r2) . (6.53)
Similarly, we find that
<Tyy > = =2'KUm(V)[r (6.54)
<Tyv > = Q2 (<Tgy >+(27 +8/(1-lnQ)m'(V)/r2)  (6.55)
<Txx> = <Tyy > (6.56)
= 072 (<Txx > (@' +16a/(1 - InQ))m'(V)/r2).  (6.57)

Now consider the quantum backreaction equations (6.8) and (6.9). Assume that
the term |In(=}2)| >> 1, so that the contribution from the conformal metric dominates

the stress tensor. The size of the correction to r is

reent o —m(V) m(‘TV"). (6.58)

Comparing the relative sizes of the terms in (6.8), we find that
m"t ~ m'(V) In( :A—% (6.59)

The sign of the quantum corrections to r and m depends on the size of A in equations
(6.58) and (6.59). Remember that A is an arbitrary length scale introduced to the
problem and plays the role of a renormalization mass scale. There is no preferred
length scale in the theory of 2 massless quantum field, so the most that we can say is
that there are three cases,

A ~ V, where V, is the time at which the curvature becomes Planckian. In this case
Vol > A, and the quantum influx is positive and adds to the classical influx.
From (6.59), the quantum corrections will make the mass grow faster while the
radius will shrink. Both effects will tend to make the Weyl curvature grow faster
than predicted by a purely classical analysis.

<> X > V, In this case, while [Vy| > A the backreaction will have a similar effect as
in the previous case. However, now it is possible at some critical time V., = —\
(which is still within the range of validity of the semi-classical approximation)
for the quantum influx to change sign. After this critical time, the quantum
correction to the mass function is negative while the correction to r causes it
to grow larger. Both effects tend to weaken the singularity in this case.
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A> -:T Since the solution is valid when |k_Vp| < 1, the logarithmic factor is always

negative. Thus, in this case, quantum corrections tend to weaken the singularity.

6.4 Conclusion

In the region of strong curvature near a classical singularity, quantum effects due to
the creation of elementary particles and vacuum polarization can become very impor-
tant. It would be remiss to discuss the physical features of a singularity without some
estimate of the backreaction of the quantum particles on the spacetime geometry. In
this chapter we have made use of the apparatus of the semi-classical to quantum
gravity to determine the quantum backreaction on the singular spherically symmetric
mass inflation background.

We noted that the mass function, which characterizes the curvature in spherical
symmetry, has a special form in which a term linear in the first derivative of the mass
function is much larger than terms quadratic in the mass function. In this sense, the
mass inflation geometry is similar to linearized gravity. This suggests that Horowitz’s
formula (17] for the renormalized expectation value of the quantum stress tensor for
massless fields propagating in a spacetime which is a linear perturbation of Minkowski
space can be applied to our problem.

We find that the quantum stress tensor diverges faster than the classical stress

tensor as 5
< Taﬂ > Vl_l‘fél- F‘T‘/—l af 'ln(IV|/A), (6-60)

where A is the renormalization mass scale. We conclude that quantum effects are
very important near the singularity at V = 0. However, the sign of the stress tensor
depends on the magnitude of A which is not fixed by the theory of a massless scalar
field. Hence, we are left with some ambiguity, for if the logarithm is positive, quantum
effects will tend to make the singularity stronger, while if the logarithm is negative,
the quantum effects will tend to weaken the singularity. It is interesting that the
other four-dimensional estimate of the backreaction [99] found a similar ambiguity
while lower dimensional calculations [97, 98] found a definite result: quantum effects
increase the strength of the singularity.

We should make a remark about the validity of the semi-classical approximation.
Simon [112] has discussed the problem of fictitious solutions to the semi-classical
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equations. He pointed out that the only solutions which should be ajJlowed are those
with

<Top > Teg™"- (6.61)
This leads to the condition 5
V] > = a(VI/A)] (6.62)
But the Weyl curvature reaches Planckian values at the time V},, when
¥y ~ [In(k_ V) P— ~ 3. (6.63)
r_V, *h

Substituting (6.63) into the inequality (6.62) results in
V1> [Vl n(<_Vo) | In(|V]/A)]. (6.64)

Since we also require, [V| > [V, for the semi-classical approximation to hold this
suggests that |In(|V[/A)] < 1. However, if this is the case then the logarithmic term
doesn't dominate the stress tensor. Instead, it is of the same size as the other (local)
terms, including the term proportional to the arbitrary constant 5. The sign of the
corrections now hinges crucially on the sign of $, which is not fixed by the semi-
classical theory. The arbitrariness in S is due to the freedom to add multiples of
R? to the effective action. This suggests that our calculation reduces to essentiallv
the problem which Balbinot and Poisson [99] considered. They looked at a local
effective action which is quadratic in the curvature. When the coupling constant
for the quadratic terms is positive, they found that the curvature increases, while a
negative constant reduces the curvature. It seems that to say any more would require
knowledge of the signs and magnitudes of the coupling constants in the effective action
for quantum gravity, which is out of reach of present day theory.



Chapter 7
Conclusion

The physical picture of the non-spherical black hole interior presented in this disser-
tation is remarkably simple. The main qualitative features are very similar to the
description of the charged spherical black hole interior [1, 16, 23, 24]. The gravita-
tional collapse of a star produces a weak gravitational wave tail which decays as an
inverse power law in time and enters the black hole’s event horizon. Near the event
horizon the tail is very weak and its backreaction onto the geometry can be neglected.
The propagation of the gravitational radiation into the interior can thus be approxi-
mated by the results of scattering on a stationary Kerr background. The scattering of
inverse power law radiation tends to create two weakly decaying fluxes (as discussed
in chapter 2), a transmitted influx (parallel to CH in figure 7), which is infinitely
blueshifted at CH and a refracted “outflux” which crosses CH transversely focusing
the generators of CH to smaller radius. As was found for spherical symmetry, the
backreaction of this combination of crossflowing gravitational radiation results in a
lightlike, observer-independent curvature singularity forming at CH. The divergence
is mild, however, since the integral of the Riemann curvature components is finite
in a freely-falling frame, so that tidal distortions are finite at the singularity. The
lightlike nature of the singularity guarantees that no timelike observer will ever be
in causal contact with the singularity, until running into it. Thus we conclude that
the black hole interior formed from gravitational collapse is completely predictable
as suggested by the strong cosmic censorship conjecture. This does not, of course.
prove SCCC, since we have assumed that WCC holds. Since the scattered radiation
which transversely crosses CH slowly focuses it to smaller radius, it seems reasonable
to make the conjecture that at some later retarded time, the lightlike Cauchy horizon
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singularity will merge with a stronger spacelike singularity. This conjecture can only
be proved with a full four dimensional numerical integration of the Einstein equa-
tions. It will be many years before the techniques of numerical relativity will be able
to tackle this difficult problem.

Fairly general arguments were raised in chapter 4 which show that Hawking’s
quasi-local mass and the Coulomb component of the Weyl tensor will always diverge
at the Cauchy horizon of a perturbed black hole. In fact, the general solution of
the characteristic initial value problem presented in chapter 5 demonstrates that in
general all components of the Weyl tensor diverge at CH. The leading order divergence
of the product of the Weyl components is

Ul ~ lim e2-vy~9/?
V—e 00

[Taf? ~ t,l_i_.lglaek“’v“?

¥, ¥ ~ lime™~""%2,
V=00

so that the square of the Weyl tensor is dominated by the contribution from the
gravitational wave and Coulomb components. The solution presented is very closely
approximated (near CH) by a colliding plane gravitational wave metric, which can
serve as an easy toy model of the black hole interior. Essentially, the model results
from the assumption that on small length scales a curved region of spacetime can be
approximated by a plane symmetric metric [116]. However, as we discussed in section
5.2 it should be noted that the boundary conditions for a black hole are completely
different than those for a general plane wave spacetime (for example [88]) so that a
spacelike singularity doesn’t form prior to the Cauchy horizon.

The weakness of the singularity at CH has lead to some speculation [16, 83] that
the spacetime could be continued across the singularity. However, the singularity is
still a Cauchy horizon for the spacetime, so there is no unique continuation across
CH. In our opinion, it is meaningless to speculate on the possibility of a continuation
across CH, without taking quantum effects into account. In chapter 6 we showed
that the renormalized stress tensor for massless quantum fields diverges exponentially
faster than the stress tensor for classical fields on a spherical background. Clearly the
magnitude of the quantum corrections is so large that they shouldn’t be neglected.
Unfortunately, the semi-classical theory doesn’t reveal the sign of the correction. If the
corrections add to the classical influx, the singularity may be reinforced by quantum
effects, resulting in a stronger curvature singularity at which tidal distortions diverge.
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However, if the quantum corrections have a negative sign relative to the classical flux.
the singularity’s strength will be weakened. Only a full backreaction calculation in
this case can reveal the resulting spacetime structure.



Appendices

A Curvature calculations

In this appendix we will calculate the Ricci and Riemann tensors. The computation
is based on the Gauss-Weingarten equations of section 3.2, which are summarised
here. The Gauss-Weingarten equations (3.26) and (3.33) for the covariant derivatives
of the tangent vector can be written as

eaals =P T5uel b — e K08 era+ e (Kaa" +0a5%)eg €y + e Lpaati2€] . (A1)

a

Since L# 4, = 8,1, the trace of (A.1) is
€a®la =TS, + O) . (A.2)

The expression for the derivative of the normal vector follows from (3.27) and
(3.34):
baals = Kaaseleh + LapatPe — Lpaaelts +e*Napellt] . (A3)

The trace of (A.3) is
€s% = Ks+ Dl (Ad)

Calculation of Ry

The Ricci commutation relation (3.52) for the tangential projection of the Ricci tensor
1S
Rab = —€z" V(ebﬂlﬁ) - eaolﬂeba[a + Vﬂ(ea " Vef) . (-'\'5)

The first term follows from (A.2)
—eq - V(esP1g) = —Apa = [SA e — 3oL, . (A.6)
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In order to calculate the second term, note that
1
Lap LB = E(A,a/\,b + e Puws) .

It then follows from (A.1) that the second term is

1
—e.%|ge7 1 = =TS lh + 2K 4K + Opys) — E(A,QA,,, + e Puwy) .

The third term requires the use of (A.1) along with (A.3):

Vslea-Ve§) = V(e — e Kapal®)
= OqLL +TE(TS,+ Aa) ~ e Kapa(K* + D))
—eAﬂag(e"\KAba) .

The last term of (A.9) can be simplified by noting that

505(e ™ Kpsa) = Da(e ™ Kppa) + 26K pa(ads)s?, .

(A.8)

(A.9)

(A.10)

Substituting (A.6), (A.8), (A.9) and (A.10) into (A.3), yields the result for the

tangential component of the Ricci tensor, equation (3.53).

Calculation of R4p

The calculation of R 4p proceeds in a similar fashion. The Ricci commutation relation

is
Rip =¥, ‘°V(€B°IQ) - VgZA"Vaégﬁ + V(e - VZBB) )

The first term follows from (A.4),
-—€A - V(ZBGIQ) = —DA(KB + DB’\) .
In order to compute the second term in (A.11), we note that

1 a ~2\ a
-2LD(3aLA)n¢ = --2-7],15(/\' ,\,¢+e 22 wa)

NapcNs®® = DaADp)~ 51asDEADE,

so that the second term is

(A.11)

(A.12)

—V5l4°Volg? = -KAabKEab+lnABeA(’\'a/\,a"*'e—?’\wawa)"DA/\DB’\’*";"]ABDE’\DE/\ .

2

(A.13)
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The third term is

Va(la-Ves®) = Vs(~€*Lap.€l + Npanty)

= DgNpa® + Npap(KE + DE))

"'e‘\(LABa:a + 2LABaA.a) - (A.14)
The first term of (A.14) can be simplified to
E 1 E . =

DgNpa® = DiaDpgyA — 5MasD*DeA (A.15)

so that substitution of (A.12), (A.13) and (A.14) into (A.11) yields:

Rsp = —DsKg-— KAangab + KaDpyA — Dy Dpg)A
1 E E -\ a A\a
—374B [(D + K )Dzz\—e wiwe + () a]
1

——Q-eAB(wa;a +w'Aa) (A.16)

It appears that this result is not symmetric in AB, as is required for the Ricci tensor.

That (A.16) does have the correct symmetry, can be seen by applying the commuta-
tion relations (3.42) and (3.44), after which the normal component of the Ricci tensor

simplifies to equation (3.54).

Calculation of R 4,

We now turn to the calculation of the mixed components of the Ricci tensor. The
Ricci commutation relation is

RA,, = —€5" V(éAaia) - vﬁeAavaeaﬁ + vﬁ(ea - Ve.»lﬁ) - (A'l‘—)

The first term is
—€g - V(€4%a) = —0.,(Ka+ DyA) . (A.18)

The following equalities are useful for calculating the second term:

1
LBDaNABD = E(/\'GDA,\ + G"AwaEABDB/\)
2KB¢16L€BA) = )\’bKAab .

The second term is

"VﬂeAavaeaﬂ = "szKAcb—aasbBLABb "AbKAab_ %()‘.aDA'f‘eABe-ADB’\) - ("\-19)
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The third term is
Vslea-Ve4P) = Va(Kaades + Lapats)
1
= Ko +ToaKa® + Kjgha+ 5Xa(Ka + Da))

+%e—*eAB(KB +DEX) + E9L,5, , (A.20)

which can be simplified by noting that
DpL.B, = 635045, — 8,4 L 4%, .

The final result, found by substituting (A.18), (A.19) and (A.20) into (A.17) is
the mixed component of the Ricci tensor, equation (3.55).

Calculation of R .p;

The calculation of the Riemann tensor follows a method similar to that for the Ricci
tensor. In this appendix we will calculate the component R 4,55 as an example. The
Ricei commutation relation (3.51) for the component R4,p5 is

Raass = 03 (64 - V(ea - Ver) — €~ V(€a - Ver)) — Loy 2(63Vpesa) . (A21)
The first term is calculated with the aid of equations (A.1) and (A.3):
(564 -Viea Ve = 6584 V(Ieca — e K2 lpa)
= e Laps — KPwNpap — DaKpas
+D4AKpas — 2K puadh)s5 - (A.22)
The second term is
—tpge, - V(EA . Veb.,) = —lgeé,- V((KAbd + absf‘)eda + LAm,eDO:)
= Kpaa(Kas® + 055%) — € Laps LP po ~ €0 L 1ps(A.23)

The third term is
~(Le€l)(€5V€ta) = Oas Kb - (A.24)
Before substituting (A.22), (A.23) and (A.24) into (A.21) to calculate the Riemann

tensor component, we note that

1 _ 1 _
LapsLP pa + Lapea = ZﬂAB(/\,a)\,b +2Xpe + € ”wa%)EEABe M= o] + Wha) -
(A.23)
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The result is
RA.B, = —DWUK®, + KAyK®e, + DAAKD),, — %ﬂAB DgrK®q

a b

1
-é AB (=2 quwp + ey + 28"&,,5) - -2-6‘43 (= faws] + Wibia})
~DUEKSB, %&Bw@;ﬂ, : (A.26)

The last two terms cancel once the commutation relation (3.43) is applied. yvielding
the result of equation (3.60).

B The contracted Bianchi identities

In this appendix we compute the projections of the contracted Bianchi identities. We
first consider the tangential projection,

e2VsR%, —~ -21-e§80,R =0. (B.27)
Note that the Ricci tensor can be decomposed as
R = R%e2ef + 2¢*RA%e8) + e~ P RAB LS, (B.28)
and consider the operation of €2V on each term of (B.28). The first term is
esVaR?eZe] = e (R*)s (B.29)
which follows from equation (A.1). The second term is
e2Vge R4 = ¢ (D4R + K4R" + K50 RY) (B.30)

where we have made use of the definition of the normal Lie derivative (3.13) and
equation (A.3). The third term is

eV~ RABg g — -%e-*R;:,\,., . (B.31)
Meanwhile, the second term of (B.27) is
—%a.,R = --;-e"*(-ij,a + 0, R3) — %BQRZ . (B.32)

Substituting equations (B.29), (B.30), (B.31) and (B.32) into (B.27) results in the
tangential projection of the contracted Bianchi identity (3.71).
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The normal projection of the contracted Bianchi identity is

6VgRP, — %egaaR =0. (B.33)

The first term of (B.33) is
GGVsR. = VRS — Rl (B.34)

The first term of (B.34) is
Vs(R%e? + e *RECE) = e *(*R%).. + DpRE + KpR5 . (B.35)

The second term of (B.34) can be calculated by using equations (B.29) and (B.28).
The result is
1

~R°Pla1p = ~Ka4upR®® — e *eqpu, R ~ §e*"DA,\Rg : (B.36)

Substitution of (B.33) and (B.36) into (B.33) yields the normal projection of the
contracted Bianchi identity (3.72).

C Calculation of the quantum stress tensor

In this appendix we will calculate the expectation value of the quantum stress tensor
for non-gravitational fields in the conformal background metric (6.17). First we will
present a detailed calculation of the component < Ty, >. The calculation of < Ty >
is very similar, so only the leading order terms will be explicitly derived.

The mixed component of the stress tensor depends on the integral (6.43) of the
tensor component Agy = —--r“Tm'(V). Since Oy Ayy = 0, the integral [ Hy(z —z')Ayy
is fairly easy to evaluate. An algebraic manipulation computer program such as
Mathematica or Maple can be used to reduce the required integral to the form

[z =2mv) = ange " |ia(erp)Pla(o - po)j—f,’
+-|_2’£ (m(Vp) — m(Vy — |u.|)) (l + l-lf\;l) (1 +lIn l—ijr'l)
271+ 1n |1t/ \)m' (Vi = fu]), (C37)

where the positive dimensionless variable p = —V/A. To find the leading order term
in this expression, we need to estimate the size of the integral appearing in the first
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term of (C.37). The integral is of the form

1) = [ Iln(ﬁ—/\P)l"ln(P*Po)%,B, (C.38)

+lu /A

where r is a positive integer and r > 1. We are interested in the asymptotics of this
integral when pq is very small, which corresponds to points near the Cauchy horizon.
It is useful to change coordinates to

e =p—po (C.39)

where the integral (C.38) takes the form

Inju./A
IWo,r) = = [ ds s|lur_A(e’ — Vp)|~Per® (C.40)

-0

p(s) = s—rln(e* +p). (C.A41)

The behaviour of the integrand is dominated by the term e¥(*). At the lower integra-
tion limit, lim,_._., e¥(*) — 0, while at the upper limit, the exponential term is a finite
number. Inspection of the form of the integrand leads one to suspect that I(Vg.r)
will diverge, so the value of the integrand at s = In |u,| will not make a significant
contribution to the value of the integral. The integral can be evaluated using the
method of stationary phase. The phase ¢(s) is stationary at the point sg,

50 = In £ (C.42)

which is a maximum since )
1‘ —

" -
¥"(s0) = -

The result is that I(Vg, ) is approximated by

- (r=1)— [ r c (2 W 1:
I(Vo,r) ~ ~Voms—or— [ e Vol P ( 7 ) (). (C4d)

The integral in equation (C.37), is

()
)
The result (C.45) can now be used to estimate the leading order behaviour of the
stress tensor. First consider the terms in (C.37). Since Vj << 1, m/(Vy) >> m(Vg).
so that terms in the first two lines will dominate over the terms in the third line. Since

I(V,3) ~ —m'(Vp) In( (C45)
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Vol < [Va| + [u«[, it follows from the form of the mass function that m’(Vp — |u.]) <
m’(Vp). The initial surface u = u, is taken to be finite, so that [In|Vp|| >> In|u.].
Hence for small V},

[ Bz = 2ym(V) ~ ~agym' (Vo) In(2 ) (C.46)

where the positive constant ayy is

2 [322 -
ayy = (2x)3? 538 (CAT)

Substituting this result into Horowitz’s equation for the stress tensor (6.12), we find

that
a + 3b

o -V
< Tpy >~ —dagvh (%)M—A—Q), (C.48)

where a + 3b is a fixed positive number for all quantum fields. The sign of this
component depends on the size of A as is discussed in the main body of the text.

A similar calculation yields the component < Ty, >. The leading order contri-
bution to the appropriate integral is

/ Hy(z -2 m'(V) ~ —122Uymo—s51(Va,4). (C.49)

Substituting (C.44) into (C.49) we find that

[ Hyz = 20 m"(V) ~ Unavym (V) in( %) (C.50)
where we have defined
= 3(2m)3%/? 4% (C.51)
344 -

The quantum stress tensor has the lightlike lux component

a+3b

ll —V' -
< Tyy >~ dlpayvh (Vo) In(—) - (C.52)
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