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Abstract 

The gravitational collapse of a rotating star to a black hole genencally produces a 

weakly decaying gravitational wave tail whkh partially falls into the black hole. XI- 

though the influx of gravitational radiation is weak, its backreaction onto the black 

hole's interior geometry becomes significant near the black hole's inner horizon. The 

inner horizon of Kerr is a Cauchy horizon (CH), a lightlike hypeaurface of infinite 

blueshift, behind which lies a tunnel to other universes. At CH the influs of gravita- 

tional radiation is infinitely amplified by the geometry indicating that CH is unstable. 

Past work on a spherically symmetric mode1 of the interior has revealed a relatively 

simple scenario [Il. Wlen the influx is combined with any nominal outflux. the effect 

of backeaction is to cause the black hole's local mass function to diverge esponen- 

t ially at CH. Since the Weyl cunmture is completely determined by the mass funct ion 

in sphericai symmet ry, this signals the appearance of a lightlike observer-independent 

curvature singularity at CH, which effectively se& off the CH tunnel. 

In this thesis we investigate whether the mass inflation picture can be extended to 

the non-spherical black hole interior. To do so, we solve the characteristic initial value 

problem for a general metric in the region near CH. Given initial conditions mhich 

correspond to the scat tering of the incoming gravitational wave t ail by the int erior 

Kerr geometry, we show that genericdly a lightlike singularity foms at CH. The 

general solution exhibits some features similar to the spherically symmetric solution. 

for the leading order divergences of Hawking's quasi-local mass function and the 

Kretschmann invariant are the same. However, in the general solution, al1 component s 

of the Weyl tensor diverge, and the solution is not algebraically special. To leading 

order, the solution is very closely approximated by a colliding plane gravitational 

wave met ric. This leads to the following heuristic picture: the infalling gravit at ional 



radiation is scattered by the bladr hole's interior curvature into two cross-flowing 

streams of gravitational radiation which are approximately plane symmetric. The 

interaction of the two streams in the region of high blueshift strongly focuses light 

rays and a cmture  singularity results. 
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Chapter 1 

Introduction 

It is embarrassing that a direct consequence of the laws of general relativity is a pre- 

diction that it is inevitable for regions to form which general relatitity is unable to 

describe: the complete gravitationd collapse of a star produces the ultimate physical 
blemish, a spacetime singularity. It was once thought that the appearance of a sin- 

gularity was an artifact of idealized boundary conditions, such as the assumption of 

spherical symmetry. However, the singularity theorems of classical generd relativity 

[2] prove that the formation of a singularity is a generic feature of gravitational col- 

lape. This has dire consequences for the notion of predictability, since there is no 

unique prescription for placing initial data on a singulazity 
The situation for physics may not be as bad as we have made it sound if Penrose's 

cosmic censorship conjecture [3] is tme. The strong cosmic censorship conjecture 

(SCCC) states: it is impossible for any observer to view the singulaxity formed from 

gravitational coilapse. Since al1 observers are out of causal contact with the singular- 

ity, predictability is preserved. However, SCCC is most certainly not true, as several 
counter-examples, such as the shell-crossing singularities [4] have been found. A more 

plausible view is that a weaker conjecture which places a physical restriction on the 

collapsing body is probably true. An example of wealc cosmic censorship (\WC) is 
the hoop conjecture (51 (HC): an event horizon forms if and only if the circumference. 
in ail directions, of a collapsing body is less than 47rGmlS (where m is the mass of 
the body). While HC hasn't been proved, numerical experiments [6] strongly 

that it is true. 

If some form of WCC is true then any reasonable collapse will result in 
hole. A bladi hole is a region of spacetime fkom which no information can 

sugges t 

a black 
escape. 



1-1. SPHER?CALLY SYMMETRJC GRAVITATIONAL COLLAPSE 9 - 

The black hole necessady contains a singularïty, but observes outside the hole are 

shielded fiom the singulanty by an event horizon. However, inside the Kerr blaclr hole 

there are regions where it is possible to view the singularity. Clearly the assumption 

of WCC has just swept the problem of singularities under the mg. It is interest ing to 

ask, does the assumption of WCC imply the validity of SCCC inside the black hole. 
once a reaüstic mode1 of coilapse is considered? The main goal of this thesis is to 

answer this question, by providing a description of the singulariq which generically 
foms when a rotating star collapses to a black hole. 

1.1 Spherically symmetric gravitational collapse 

It is constructive to begin with a discussion of spherically symmetric collapse nrit hout 

perturbations [7]. The gravitational collapse of a star appears to take an infinite 

amount of tirne, as viewed by a static observer far from the star. However, observers 

freely falling in with the star's surface measure the time taken to collapse to be finite. 
The disparity in the observers' view of the collapse is due to the presence of the event 

horizon, a limiting null hypersurface after which the gravitational field is so strong 
that no emitted light c m  escape its suditce. Light emitted by the star when the 

surface is at a radius larger than the event horizon can be observed by the static 

observer. But the light must fust clunb out of the steep gravitational well. The time 

needed for light to travel through the distance is much longer than if the potential 
well were not present . In fact , the time approaches infinity when the light is emit ted 

at the event horizon. The light, of course, still travels at the same speed, but the 

strong gravitational field has altered the geometry of the spacetime and effectively 
"slows down" the light seen by static extemal observers. The slowing d o m  dso has 
the effect that the frequency of the light is exponentidy redshifted, so that at late 
tirnes, the only light observed from the collapsing star is of very low frequency. 

The causal structure of the spherical black hole's interior depends on two param- 

eters: its m a s  (m) and electric charge (e). The simplest black hole is the spherically 

symmetric Schwarzschild solution, which has e = O. The Schwarzschild solution (see 

figure 1) has a strong dl-encompassing spacelilre singularity hidden behind its event 

horizon. A traveler (grey world line) inside the black hole finds the journey to be 

relatively tame (except for tidal forces) until a certain time (the zig-zag line at r = 0) 

at  h hi ch the singularity appears at all spatial points. The traveler has no news of the 
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existence of the singularity lying to her future and is unable to avoid ninning into it. 

Since she never views the singularity, the Cauchy (or initial) value problem is well 

posed and predictability is presewed in the Schwarzschild interior. 

Figure 1: Conformal diagram of the Schwanschild blaclr hole. On a con- 
formal spacetime diagram, time increases upwards, the world-lines of light 
are inclined 45" to the vertical, and each point corresponds to a 2-sphere 
of radius r. Region I  represents an asymptotically fiat spacetime excerior 

to a blacli hole, where light rays can escape to infinity. The line segment 
EH at T = 2m is the event horizon of the black hole. Region II represents 
the black hole interior, O < r < 2m. Al1 light signals emitted in this 
region are trapped: they must move to smaller r and ultimately intersect 

the singularîty. Region If  is another asymptotically Bat universe similar 

to, but causdy disjoint from region I .  Region IIr is the interior of a white 

hole. In the diagram of a black hole fomed fiom the collapse of a star, 

regions If  and I I f  are omitted. 

The causal situation is not as straightforward if the blacb: hole has even the smalles t 
amount of electric charge. Consider the charged, sphencally symmetnc Reissner- 
Nordstrom solution. The energy of the electnc field acts as  a source for Einstein's 

equations and effectively causes gravity to be repulsive at small radii. The result is 

an inner horizon (see figure 2), cded  a Cauchy horizon (CH), behind which lies the 

black hole's singularity and a tunnel to anot her universe (region V). The gravitational 

repulsion causes the singularity to be timelike, so it is possible for the t raveler t O avoid 

mnning into the singularity and successfully navigate through the tunnel. Howewr , 
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the singulazity can causally influence every point in the tunnel (regions III' and N) 
after the Cauchy horizon. We have no way to predict what will come out of the 

singdarity and so the predictive power has been lod in the region after the Cauchy 
horizon- 

Figure 2: Conformal diagram of the Rehner-Nordstrom black hole. The 
analytic extension of the Reissner-Nordstrom solution corresponds to an 
inhi te  dain of universes linked by charged blafk holes. The diagram to 

the left of the grey curve should be omitted to describe the collapse of a 

charged star. 

An observation due to Penrose [8] may provide a mechanism for a restoration of 

predictability to the interior. The joumey £iom the event to Cauchy horizon takes a 

fhite amount of the traveler's proper time (on the order of 30 minutes for a 10'M,, 
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black hole). During this time she will receive signais nom the outside world originating 
over an infinite period of extemal time. Thus the incoming signals will be blueshifted 
innnitely. It is possible that the backreaction of the blueshifted radiation could cause 

a curvature singulaxity to form at CH, seahg off the tunnel and the locaily naked 

singularity from view. Our aim is to investigate the effect of perturbations on the 
bIa& hole interior formed by a generic collapse and to determine whether CH is 

stable. 

1.2 Gravit at ional collapse wit h perturbations 

The analysis of the blaclc hole's interior region, hidden from view by an event horizon, 
is a simpler proposition than the study of a star's interior. A complete description of 

a star requires a knowledge of the complicated steilar physics occurring deep in the 

central region which influences the outer regions. Causality simplifies the analogous 
problem for black holes, since the radius (r) is a timelike coordinate inside the event 

horizon. Thus layers lying at s m d  radius actuaily occur in the future of the outer 
layers. The region of strongest gravity near the centre, where an &oWn quantum 
theory of gravity is needed for a fidl description, can't causally influence regions ar 

larger values of r. The study of the blacb: hole's interior is essentially reduced to an 

evolutionary problem, with "initial'' data placed on the event horizon. Remarkably. 

the initial data which correspond to the isolated collapse of a star are hown with 

great precision, so the evolutionary problem is well dehed. 

The initial data in which we are interested, effectively amounts to the information 

about the initial gravitational field of the star. The star's field, while predominantly 
spherical, contains contributions fiom higher multipole moments with l 2 2. How- 

ever the existence of the black hole no-hair theorems [9, 101 leads to the conclusion 
that the higher multipole moments must be radiated away when a blacli hole forms. 

But the gravitational radiation emitted near the event horizon is, like light, highly 

redshifted and can't propagate k l y  on the black hole's geometry. The outgoing 

gravitational radiation is partidy reflected and transmitted by the black hole's ef- 

fective gravitational potential bamîer. The hal result first shown by Pnce (1 11, is a 

weak fiwc, decaying in t h e  as an inverse power law, which is transmitted through 
the barrier and cm be detected by extemal observers. The flux of radiation which is 

backscattered by the baaier has a similar power law decay and falls into the event 
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horizon. It is the consequences of this weak influx on the interior geometv which will 
be investigated in this dissertation. 

The effect of the gravitational wave infiux on the interior geometry depends on the 

black hole's panuneters. The weakness of the influx guarantees that in the Schwm- 
schild interior, its effect is negligible, leadîng to an asymptotic (v - oo) no-hair 

property for the Schwarzschild interior [12, 13). On the other hand, inside the Reis- 
mer-Nordstr6m black hole, the weak gravitational wave tail is amplified by an e-xpo- 

nential blueshift factor at CH. The first backreaction calculation, performed on the 

background of a spherical charged black hole [Ml, showed that certain components of 
the Ricci curvature tensor diverge at CH, although alI cumture invariants remah fi- 
nite. The result is an observer dependent singularity. The mildness of this singularity 

is unstable, for if any small amount of radiation crosses the Cauchy horizon (such as 

light emitted fiom the sd'e of a coilapsing star) a lightlike scalar curvature singu- 
larity forms (11. The lightlike nature of the singularity guarantees that the black hole 

interior will be completely predictable up to the singularity by the laws of physics. 
One of the more dramatic features of the solution is the prediction that the iocally 

measured m a s  of the black hole inflates exponentiaily as CH is approached. For t his 

reason the solution has been dubbed "mas infiation". No news of the increase of 

m a s  can escape from the event horizon to the outside world, where the black hole's 

mass is measured to be slightly smaller than the original star's. 

The sphencdly symmetric mass inflation solution is only a toy model of the sin- 

gularity formed by the collapse of a rotating star. But, it seems likely t hat it is a good 

model of a realistic black hole interior, since the causal structure of the charged spher- 

ical blaclt hole is similar to the stationary Kerr black hole. (The conformal diagram 

for Kerr, restricted to the axis of symmetry, is similar to figure 2, escept t hat it is 

possible to extend the spacetime in regions III and III' through r = O to a negative 

mass universe (not pictured).) In this dissertation, the backreaction of gravitational 
perturbations on the non-spherical black hole interior will be calculated. We find that 

genencally, a lightlike scalar curvature singuiarity foms at CH. While we can show 
that Hawbg's quasi-local mass diverges, the m a s  no longer completely determines 
the curvature in a non-spherical spacetime. More geometrically, we show that al1 five 

of the Weyl scalars (!Vol ..., iP4) diverge at CH in the tetrad which we introduce in 

chapter 3. Close to the singularity, the dominant behaviour of the spacetime is similar 
to that of a colliding plane gravitational wave metric. The singularity is of an inte- 



1 -3. OVERVIFW OF THE DISSERTATION - 
I 

grable form, similar to the spherically symmetric solution, which implies that tidal 

distortions be finite at CH. We fhd no evidence of a stronger spacelike oscillatory 

BKL [15] singularity forming at an earlier tirne. The classicai description given here is 

not complete, since near CH, when the Weyl curvature approaches Planckian levels, 

quantum effects dl become important. We calculate the one-loop expectation value 

of the stress tensor for quantized fields propagating on the sphencal mass inflation 

background, in order to make an estimate of the backreaction. 

1.3 Overview of the dissertation 

Chapter 2: The spherical black hole interior 

In this chapter, we present an oveniew of the physics of the charged spherical blaclc 

hole interior. The chapter is partialiy a review of past worli, focusing on the spherically 

s~ymmetric m a s  inflation model [LI, in which gravitational radiation is modelled b:- a 

nuil fluid. In the solution of the backreactioa model, the black hole's mass function 

diverges as 

where V is the Kruskal advanced time for the inner horizon, and takes the value 

V = O at CH. The function f is arbitrary, and p is a positive constant, which for 

gravitational radiation is p = 12. In the presence of a cross-flowing nul1 fluid on a 

charged spherically symmetric background, the only non-zero component of the Weyl 

tensor is 

so it follows that the divergence of the mass function signifies the formation of an 

observer independent curvature singularity. Since the k t  integral of !P2 is h i t e ,  the 

tidal distortions at the singdarity are finite. In this sense the singularity is weak. 

We review this work since it wili serve as a qualitative guide for the physics of 

the non-spherical black hole interior. As weii, we close up a loop-hole present in the 

original spherical analysis, by presenting a model of the scattering of radiation within 

the black hole's interior. 
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Chapter 3: Double-null dynamics 

We wish to tind a general solution to the Einstein field equations in a region close to 

the black hole's Cauchy horizon. In order to meet this goal we need to make use of 

a formalism which is idedy suited for calcdations involving lightlike hypersurfaces. 

In this chapter we will present a new formalism developed for a foliation of spacetime 

by two întersecting f d i e s  of n d  hypersufmes. The intersection of the families 
forms a two parameter collection of two dimensional spacelike surfaces, so this c m  

be pictured as an evolution of the geometry on a surface in either of the lightlike 
directions normal to the swfâce. In our notation, the general h e  element talres the 

form 

where capital Latin indices take values (0,1), while lower case Latin indices range 

over (2'3). The coordinates uo and u1 are null while the two coordinates Ba are 

spacelike. We assume in our formulae that the families of lightlike h-ypersurfaces are 
hypemirface orthogonal, so that their generators are proportional to gradients of the 

nul1 coordinates uA. This allows us to write the Einstein field equations in a concise 

manner in terms of two dïmensionally covariant quantities. The equations presented 

in this chapter will be used extensively in the next two chapters to present a general 

picture of the generic black hole singularity. 

Chapter 4: Dynamics of the mass function 

In spherical symmetry, the black hole's mass function plays a special role, since the 

mass and the circumferential radius function completely determine the curvat ure of 

the spacetime. In a non-spherical spacetime the equivalence principle forbids the 

measurement of a local gravitational mass. It is possible, though, to define a quasi- 

local mass (such as  Hawking's definition) which is an average of a local mass aspect 

function r n ~  over a spacelike surface. Hawking's quasi-local m a s  has many qualities 

which are similar to energy, so it is interesthg to investigate its properties inside the 

black hole. In particular, we would like to know if there is an andogous m a s  inflation 

phenornenon inside a non-spherical black hole. We derive formulae describing the 

dynamics of Hawking's mass aspect function including the following integral equation 
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which holds near CH: 

where U7 V are Kniskal coordinates for the Cauchy horizon, defined so that V = O at 

CH and the functions X and detg are the metric functions defmed in chapter 3. The 

shear terisors O A ~ ~  represent the gravitational perturbations. Without any Iinowledge 

of the rest of the thesis, it is possible to deduce qualitatively the existence of mass 

inflation from this equation. Consider metnc perturbations of the Kerr black hole. 

In Kniskal coordinates the metric functions eA and detg are non-zero constants at 

CH. The gravitational perturbations are expected to have the Pnce form lok-12 - 
1 Ln(-V)(-p/V2, so that if the scattered perturbations loU1* are non-zero, and the 

first term on the right-hand side of the equation dominates over the second term. the 

mass aspect takes the form 

where f is an arbitrary function. The form of the divergence is identical to the 

divergence of the mass function found in spherical symmetry. We leave the details of 

proving that this is the behaviour for the mass function to the succeeding chapter. 

where the characteristic initiai value problern for the blacbr hole interior will be solved. 

Chapter 5: The generic black hole interior 

Our aim is to describe the general black hole singularity formed by the gravitational 

collapse of a rotating star. Before doing so, we present a simple model of colliding 

plane gravit at ional waves which cap t u e s  the essent i d  features of the general solut ion. 

Mie prove a key theorem for the plane wave metric which states that if the initial data 

for the gravitational perturbations are of the Pnce power law form, the evolution of 

the perturbations through the Einstein equations preserves the power law form at 

later times. The results of the theorem me also applicable in the general black hole 

spacet ime. 
The main result of this chapter is an approximate general solution to the Einstein 

field equations (using the metric of chapter 2) near the Cauchy horizon. At leading 

order (in Our expansion) the solution is very well approximated by the simple plane 

wave model. We find that a lightlilre curvature singularity forms at CH. The square 
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of the Weyl tensor diverges in a similar fashion as in the spherical model, but now 
all of its cornponents diverge, so the solution is not dgebraically special. Homer ,  
the components are integrable, so the tidal distortions are finite, and the volume is 
non-zero, so the singulariw is not as strong as the spaceiilre Schwarzschild or BICL 
singularities. 

Chapter 6: Quantum effects in the black hole interior 

The classical picture of the black hole singularity presented in the previous chapters is 

not a complete description. When curvatures grow large, we expect that , through the 

uncertainty prïnciple, elementary particles wiU be produced and vacuum polarization 
Nill contnbute to the stress tensor. In this chapter we investigate the backreaction of 

one-loop quantum effects on the classical blacb: hole intenor. The calculation of the 

renormdized quantum stress tensor is very dificult so, to simplify the problem, we 

have assumed sphencal symmetry. We have noted in chapter 5 that the general black 
hole intenor is qualitatively similar to the charged spherical black hole, so our results 

should be indicative of the behaviour of quantum fields in the non-spherical black 

hole. We show that the Ori model [16] of mass inflation (section 2.3) can be appros- 
imated by a simpler metric confomd to a spacetime which is a linear perturbation 
of Minkowski space. This dows  us to use Horowitz's formula (171 for the renormal- 

ized stress tensor for massless quantum fields in a classical background described by 

linearized gravity. The result is then conformally trsnsformed, using Page's formula 

[l8], to the physical spacetime. Our calculations show that the quantum corrections 

to the stress tensor diverge faster than the classical contributions. The sign of the 
corrections depends on the renormalization mass scale which is not b e d .  Hence we 

can not predict whether the quantum effects tend to strengthen or weaken the rnass 

inflation singularity. The strength of the correction te- leads us to conclude that 

the classical picture presented in the preceding chapters is only accurate d o m  to 

Kniskal advanced tirnes of the order V - hlr-, at which time the quantum effects 

will become dominant. 



Chapter 2 

The spherical black hole interior 

At first glance the analysis of the intenor geometry of a black hole formed fkom the 
collapse of a rotating stat may seem a formidable challenge. However, accumulating 

evidence [19, 201 suggests that after a rotating star collapses, the exterior spacetime 

aspptoticdly relaxes to a stationary Kerr-Newman state in a manner sirnilar to 

the relaxation to a static case after a non-rotating but aspherical collapse. Although 
there is no no-hair theorem for the interior of a rotating bI& hole, it seems likely 

that the Kerr-Newman solution may act as a rough model for the general black 

hole interior. The causal structure of the Kerr-Newman intenor is similar to the 

sphericdy symmetric Reissner-Nordstriim interior, so it is pedagogically useful t O 

k t  understant the simpler sphencally symmetric problem. In this chapter we will 
review the sphericaily symmetric solution of the black hole interior so that it may act 

as a guide to the general situation where no symmetries are assumed. 

The uniqueness theorems (9, 101 state that the exterior geometry of an isolated 

black hole is descnbed by the three parameter Kerr-Newman solution. The causal 

structure of the rotating Kerr-Newman solution is essentidy the same as that of 
the simple sphencal charged Reissner-Nordstriim black hole. When both solutions 

are analyticaly extended past the event horizon into the interior, the same causal 

features appear: a timelike singulariq which is preceded by an unstable Cauchy 

horizon. For this reason the assumption of spherical symmetry can be used as a cmde 

model of the physics of the more general problem. Since the physics in the exterior 
of a spherically symmetric black hole is known with great precision 1111 it is possible 
to calculate the effects of the baclireaction of perturbations onto the geometry. In a 

non-rot ating but aspherical gravitational collapse to form a spherical charged black 



hole, the backscattered gravitational wave tails enter the black hole r21, 221 and are 

blueshifted at the Cauchy horizon. This has a catastrophic effect if combined witli 

an outfluw aossing the Cauchy horizon: a null scdar cunmture singularity develops 

and the effective mass infiates [II. 

This chapter is orgsnised as follows. In the first section, the static Reissner-Xord- 

strôm solution is reviewed. The asphencal collapse of a non-rotating star is discussed 

in section 2. On's model [16] of the b l d  hole interior is presented in section 3. 

In section 4 the field equations for sphericd symmetry are presented. The Poisson- 

Israel model [II of the interior is reviewed in section 5 dong with a discussion of 

problems with the initiai conditions. The resolution [23, 241 of the problem of the 

initial conditions is presented in sections 6, T and 8. Section 6 is concerned K-ith 

scattering in the interior. Sections 7 and 8 present an snalytic approximation for 

lightlike crossflowing dust and a massless scalar field respectively. In the concluding 

section some speculations are made about the later evolution of the singularit~., with 
reference to numerical results . 

2.1 The Reissner-Nordstrom black hole 

The Reissner-Nordst6m metric is the unique sphericdy symmetric solution to the 

Einstein equations coupled to an electric field and describes the exterior region of a 

charged star or of a blaclr hole. The metric is 

where dR2 is the line element of the unit sphere, and the function f, is defined by 

The subscript 's' refers to static. The constant mo is the m a s  of the black hole, which 

can be measured by using Kepler's third law outside the hole, and e is the electric 

charge of the hole. Setting e = O results in the uncharged Schwmschild solution. 

The roots of f,, 



correspond to the event horizon (rs = r+) and the Cauchy horizon (T, = r-)  of the 

black hoh. The positive surface gravities of the horizons are 

The tortoise coordinate r,, dehed by 

is used to define the Eddington-Finkelstein null coordinates 

which reduce to the usual advanced and retarded times fax fiom the bl& hole, .At 

the event horizon, there is a coordinate singularity, where u, * cm. Clearly these 
coordinates are only good in the extenor (region I of figure 2) of the blaclc hole m-here 

the metric is 

Observers near the event horizon of the black hole do not notice mything partic- 

ularly special about the event horizon. In the coordinate system used by the freely 

falling observers the metric components are b i t e  and non-zero. The retarded time 

used by freely fdling observers, Lif is related to observers at infmity by 

Thus, observers far fiom the black hole measure signals sent by freely fdling o bservers 

just outside the event horizon to be infinitely redshifted. 

If we wish to extend the Reissner-Nordstrom solution into the interior of the black 

hole (region II of figure 2), we need to introduce a new coordinate patch, defined b ~ -  

The new coordinate u ranges from [-oo, w] as rs ranges fiom (r+, r-). The rnetnc 

in the interior is 

ds?. = fSdudv + r;dfl2 . (2-4) 

There are coordinate singularities on the two horizons, which can be remomd locally 

by using Kruslial coordinates which are well behaved near each horizon. It should be 
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noted that it is impossible to 6nd cooràinates which are well behaved eveqwhere in 

the interior. kistead it is only possible to use coordinates that are good in a region 

close to either horizon. Since the horizons are physicdy separated, this is not a 

problem. Kruskal coordinates, U+ and V+ for the event horizon are defined by 

The event horizon is the hypersuface U+ = O. Nesr the event horizon, 

so the metric near the event horizon is 

which is finite. 

Similarly, Kruskal coordinates for the Cauchy horizon are 

Kear the Cauchy horizon 

and the metric is 

Consider radiation enteting the blacb: hole as in figure 3. The duration of the 

radiation is Av as measured by observers fa from the black hole. Inside the hole 
near the Cauchy horizon, locd observers use the well behaved Knislial coordinate to 

measure the duration of the idus,  AV. From equation (2.6), the differential relation 

corresponds to an infinite blueshift of the radiation as v -* m. 
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Figure 3: Radiation entering the Reissner-Nordstrom black hole. This di- 

agram is a close-up of figure 2 showing radiation entering EH and traveling 

pardel  to CH. The light is emitted during a period of extemai adlanced 

time Av. An observer inside the hole receives the signals during a period 

of internd advanced time AV. 

Similarly, the met& can be extended beyond the Cauchy horizon, into region 

I I I  of figure 2. In this region, lies a timelike cwature  singularity at r = O. The 
singularity is locally naked: for any point in IIIf, the singularity intersects its past 

lightcone. this is related to the breakdom of the Cauchy problem. Initial data placed 

on a Cauchy surface outside the blaclr hole cm only be evolved into the intenor as 

far as the Cauchy horizon (CH). Events in region II If can only be predicted if initial 

data are placed on the singularity. Since no unique prescription for placing initial 

data on a singularity exists, it seems that this pictute is seriously flawed. Penroseos 

observation that CH is a surface of infinite blueshift [a] suggests that region IIIr 
is unphysical: small perturbations outside the black hole will appear enormous to 

obsenrers at CH, wbo will measure an infinite energy density[25, 26, 2'71. As a result. 

it is expected that when the backreaction onto the geometry is taken into account 
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perturbations will cause CH to be unstable. As a result either a nul1 singularïty d l  

form at CH or a spacelike singulari@ wiU form before CH. 

2.2 Aspherical collapse of a non-rotating star 

Stars which are unable to produce an outward pressure are unstable due to gravit. 
and collapse to form a singdarity. If we assume the unproven, but plausible, cosmic 

censorship conjecture [3], then this singularity is hidden behind the event horizon 

of a black hole. The earliest description of the gravitational collapse to a black hole 

assumed that the collapshg star is spherical [7]. Real stars are, of course. not perfect- 

spherical: rotation will tend to flatten them into spheroids and the complicated stellar 

physics creates flares and other density perturbations. However, a slowly rotating star 

can be roughly approximated by a multipole expansion in spherical harmonies. 

One might guess that the colIapse of an isolated aspherical star would produce 

an aspherical static black hole, but this is not the case! The no hair tbeorems state 

that no information about the distribution of matter in the original star c m  be 

obtained after a black hole has formed and settled down to a station- state. The 
only information avaiiable is its rnass, electric charge and angular momentum. In 
particular, a static black hole must be spherically symmetric [9]. From Birkhoff's 

theorem, a static black hole must then be described by the Schwarzschild metnc if it 

is in vacuum, or by the Reissner-Nordstrom metric if a static electnc field is present . 
We aie now left with the puzzle of describing how a non-rotating but aspherical star 

collapses to form a smooth perfectly spherical bla& hole. 

A direct result of Birkhoff's theorem is that there can be no sphericaIly symmet- 

ric gravitational radiation. The theorem states t hat the only spherically symmet- 

ric vacuum solution to Einstein's equations is the Schwsnschild solution. Since the 

Schwarzschild solution is st atic, and gravitational radiation is a vacuum phenornenon. 

it follows that a purely gravitational systern can not radiate away the monopole com- 

ponent of its field. Gravitational fields have no dipole component, so this leads us to 

the conclusion that gravitational radiation is quadrupolar. A general physical princi- 

pie is that anything that can be radiated must be radiated. As a result , if the star's 

original gravitational field was of the form 
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where Km are the spin-weighted spherîcd harmonies, then as the star coiiapses, the 
perturbations with 1 2 2 will be radiated away [28]. The perturbations are not able 
to propagate freely, however, for they feel the gravity of the collapsing star. The 

effect of the gravity is studied by examining the wave equation of the perturbation. 
The wave equation is separable, so that each 1-pole is described by a one dimensional 
wave equation, which for a scalar field is 

with the effect of gravity represented by the potential barrier I/i(r). The potential 

for higher spin fields is similar to (2.10) and only ciiffers by terms of order 1/P. 
This is now a problem which can be treated with standard techniques of scattering 
theory. The important feature of the potential is that it dies off exponentially in 

r. = J dr/  f,(r) near the horizon and as l/t2 at uifinity. -4 cdculation of the reflection 

and transmission coefncients shows [Il] that at late times the transmitted fius decays 
t-2('+Pf '1, where P = 1 if an 2-pole moment is present before the collapse, and 

P = 2 othenvise. The result is that long after the black hole has formed the radiated 
perturbations are very weak. The barrier dso partidly backscatters the outgoinp 
radiation fonning a sirnila aux, of the fonn v&2(t+Pf '1, which enters the black hole's 

event horizon [28, 211. It has recently been verified numerically [22] that the original 
linear perturbation analysis agrees with a full non-linear anaiysis. \Ve will refer to 

the inverse power law gravitational wave tail as the Prke tail. 

2.3 A simple model of the black hole interior 

The fiat model of the black hole interior which captured the essential physics is 
the Poisson-Israel model [l]. Before we look at this model, it is useful to consider 

a simpler model, introduced by Ori (161. There are two key features which should 

be included in a reasonable model of the interior. When a black hole is formed by 

the collapse of a star, an infiux of gravitational radiation streams into the hole. In 

spherical symmetry, there are no gravitational waves, so we need to introduce a crude 

model which mimics the effect of the waves. When gravitational radiation is higbly 
blueshifted, as it is near the Cauchy horizon, the Isaacson effective stress tensor [29] 



of gravitational radiation is a very good approximation. In this approximation, the 

effect of the gravitational radiation is modelled by lightlike dust . 
The other key feature is that the gravitational radiation will be scattered by the 

curvature inside the bfack hole, forming an outflwc tranmersely crossing the Cauchy 
horizon. We will refer to the scattered radiation as an outflux, although it doesn't 

escape h m  the hole. 

In Ori's mode1 [16], outflux is modelled by a thin sheii. This d o w s  the matching 

of two ingoing Vaidya solutions along the outgohg IightlikeesheU S, a f i n i te  Ih ska l  

time after the event horizon (see figure 4 ): 

where the subscript + (-) refers to the region after (before) the shell. The Einstein 

equations link the mass with the idlux 

Continuity of the line element and the radiai coordinateo r,  yields the equations 

along the shell. Continuity of the influx across the shell gives the equation 

1 dm, 1 dm- --=-- 
j: du+ fZ du- ' 

These two equations yield the simple equation 

dm, dm- -=- 
f i  f- 

in which m a s  inflation is evident . The metric function f - goes to zero as the Cauchy 

horizon is approached, causing the right hand side of the equation to diverge. The 

presence of the outgoing sheH displaces the apparent horizon to smaller radii so that 

f+ # O at the Cauchy horizon. This equation implies that beyond the shell, the mass 
wiil diverge at CH. 
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Figure 4: The Ori model of the interior. Radiation enters the black hoie 

as in figure 3. Outgoing radiation is schematically represented by a thin 

sheU I: which crosses CH. A singdarity forms in region + on the Cauchy 

horizon. The singularity is represented by a bold dashed line. as it is much 

weaker than the r = O singulaxity. 

This model can be solved asymptotically close to the Cauchy horizon. The 
mass function prior to the shell must reproduce the Price power law tail: m- = 

mo - &(~v-)-@-') .  Here v- is the usual Eddington-Finlielstein advanced time 

coordinate (2.3) which is infinite on the Cauchy horizon, ,û is a dimensionless constant 

of order unity and K- is the surface gravity of the inner horizon. Equation (2.13) is 

then integrated for r dong C as v- -, m 

Equation (2.15) can now be integrated using (2.16) to show that the mass function 
diverges exponentidly 
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Equation (2.13) can be integrated to solve for v+, by substituthg the solution (2.1 7) 
for the m a s  function after the shell The result is that the coordinate u, after the 

shell is 

where V is the Kruskal coordinate defined by (2.6). This phenornenon has been 

dub bed mass inflation [II. Indeed this is a scdar curvat ure singularity since the Weyl 
curvature invariant diverges exponentially, Q2 - eLv-/rE as the Cauchy horizon is 

approached. 

The scalar cwature singdarity is weak in the sense that the metric can be Rrnt teu 

in coordinates in which it is finite at the singularity. Near the singulaxity, where the 

mass diverges, the function f+ can be approximated by f+ - -2rn+/r, so that the 

line element is approximately, 

dv+ ds2 = 2- (rdr + m+(v+)dz+) + r2do2 - (2.19) r 

It is easily checlied that the coordinate u, dehed by 

du = rdr + m+(v+)dv+, 

is bounded at CH, The metnc is 

The mass inflation singularity, though much stronger than a whunper singularity. is 

still very weak in this sense. Since tidal deformations of fieely falling obsenrers are 

roughly proportionid to components of the metric, it is clear that in the coordinate 

system (2.20) the deformations are h i t e .  

2.4 Field equat ions for spherical symmet ry 

In this section we will present the field equations for a spherically symmetric space- 

time. The metric can be written using nuU coordinates uo and u l ,  

ds2 = -2eA duQ du' + r * ~ . ~ d ~ " d 0 ~  , (2.31) 

where Rab is the metric on the unit sphere, 
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and X and r2 me functions of uA. 

Notation: Our conventions are: Greek indices a , P ,  . . . nui from O to 3; upper- 

case Latin indices A, B, . . . take d u e s  (0, l);  and lower-case Latin indices a, b, . . . 
talre vaiues (2,3). 

Upper case Latin indices are raised and lowered with the constant matn'c 

The Ricci tensor components for the metric (2.21) are 

where we have introduced the notation 

The contracted Bianchi identities produce a differential relation between compo- 
nents of the stress tensor, 

where T'& is the non-Maxwe11ian component of the stress tensor. Since we --il1 be 

focussing on solutions in the presence of a static electric field, the Einstein field 

equations take the form 

Gap = WT,8 + 1 

where E is the stress tensor for a static sphencally symrnetric electric field 

In spherical symmetry, only one component of the Weyl tensor is non-zero 

In sphencd symmetry there is a unique definition of the mass m(uA ), 
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It is &O useful to introduce a hinction n(uA), defined by 

The Coulomb component of the Weyl tensor can be rewritten as a function of the 

so that in vacuum the mass hinction and charge uniquely determine the cmature at 

any radius r. 

It can be useful to promote the mass function to the level of a dynamicd variable. 

This can be done by rewriting the Einstein field equations. Since GAB = RAB - 
i g A ~ (  RD + Rt) ,  the Einstein field equations and the Ricci tensor (2.23) and (2.24) 
can be rearranged to 

Multiplying (2.30) by aBr, we find that 

From the definition (2 -27) of f , we can easily derive 

and the equivalent definition, using the definition of K ,  

Equating both definitions of & f ,  it can be shown that the derivative of m is 

Applying the derivative aA to equation (2.32) and making use of equations (2.25) 

and (2.30), we fmd the following wave equation for the mas:  

(This corrects an error in equation (19) of reference [24].) 
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2.5 The Poisson-Israel model 

In the original m a s  idation analysis [Il, a n d  crodow stress tensor was used to 

model the gravitational radiation. The form of the outflux is kept arbitrary. The 
stress tensor for nul1 crosdowing radiation can be written as 

which satisfies the conservation equations (2.25) and has P = T = O. The conserva- 
tion equations force &,, (Lat) to be a function only of V (U). 

In the Knislral coordinate V, the Pnce power-law tail has the form 

-4s the Cauchy horizon is approached, in the limit V -, O-, L, diverges and the 

source term in the wave equation for m diverges as well. The integral solution for the 

mass hnction is [l] 

The gravitational wave tail i dwr  is tumed on at advanced time VI and the outflus 

is assumed to be switched on at the advanced t h e  U', which is behind the event 

horizon (see figure 5). The divergence of Lin(V')dVr leads to mass inflation with the 

m a s  function behaving as m - 1/V. Of course, this is only true if the combination 
r-Le-A does not go to zero, but this has been proved by Poisson and Israel [l]. 
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Inner Apparent Hontoa 

Outer Appar~nc Horizon 

Figure 5: The Poisson-Israel model of the interior. In this diagram, regions 

where radiation is propagating are shaded grey. The influx is tumed on 
at advanced time VI, while the outflux is tunied on at retarded time 

Ul > -m. A mild lightlike curvature singularity forms on the portion of 
CH with U > Ur. 

There have been suggestions that the picture presented by the Poisson-Israel and 
Ori models is not generic. Yurtsever [30] pointed out that null singularities in plane 

wave spacetimes are not generic: when perturbed, a stronger spacelike singularity 
forms before the Cauchy horizon. Yurtsever has suggested that something simi- 

Iar may happen when non-spherical perturbations of the PI model are considered. 

His unproven iiew is that the generic black hole interior would look similar to the 

Schwarzschild interior. We shall discuss this hypothesis in more detail in chapter 5. 

This hypothesis is supported by a numerical evolution [31] of a sphencdy s3.m- 

rnetric massless scalar field in a charged black hole. Io this integration, the singularity 



25.  THE POISSON-ISRAEL MODEL 25 

was inferred to be spaceLike (see figure 6u). However, a different simulation has show 
that the singulaxity is null [32] (see figure 6b). What c m  we Say analytically to clear 

up the confusion about the nature of the singularity? 

Figure 6: Two numerical evolutions of the spherical charged interior. In 
the Gnedin-Gnedin integration (6a) it is inferred that a strong r = O 

singula.rity forms asymptotic to CH. Since it OCCLUS earlier than CH al1 

light signals end at r = O. (See figure 5 of reference (3 11 .) In the Brady- 

Smith integration (6b) the r = O singularity crosses CH and a milder 
lightlike singularity exists pnor to r = O. (See figure 1 of reference [32].) 

The previous mass hfiation analyses suffer nom some limitations. In the picture 

presented [l, 161 it is always assumed that the outflux is tumed on abmptly after some 

finite time behind the event horizon. Essentially, this amounts to the assumption that 

a null portion of the Cauchy horizon exists, because the solution before the outflu~ 

begins is the Vaidya solution. This segment's existence depends on the form of the 
outflus crossing it. If the outflux at early retarded times (U -, -00) is too strong. a 

spacelike singularity aill form. The effect of an outflux crossing a null ray is described 
by Raychaudhuri's equation 
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where p is an afnne parameter on the nuil hypersuface, Tw = T&%$ is the 

transverse flux and dxH/dp is tangent to the generators of the null hypersurface. 
In the case of interest, the null h y p e d i l c e  is the Cauchy horizon and p -, -cc 

corresponds to its "meeting" with the event horizon at H in figure 7. 

Figure 7: Conformal diagram of the sphericd charged intenor. The infius 
of radiation is scattered by the black hole's intenor potential bamer. The 
transmitted flux travels pmallel to CH and is W i t e l y  blueshifted. The 
refkacted outflu crosses CH transversely, causing CH to decrease in radius 
towards the point C where it is inferred that r = 0. 

Examination of (2.37) shows that in order for r to be finite as fi  + -00 , Tpp 

must satis& 

p 2 ~ p I r  - O as p + -00. (2.38) 

To test this condition we need to relate the afnne parameter p to the nuii coordinate 

If eeA diverges as 

may not survive. 
V -, O and Cr -* -00, then depending on Tuu, the Cauchy horizon 
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The eariier models of mass inftation do not address this issue since the outflus 
is turned on after the event horizon. The corner region, V -, O, -oo < U < Crl is 

described by a Vaidya solution. (The metric function eg* is fmite in this region for 

Vaidya.) For more generd models which include the corner region, the behaviour of 

X must be found. To do this, we need to specify the appropnate initial conditions for 

Tuu which are physically reasonable. 

2.6 The Outflux 

-4 star collapsing through its event horizon provides two sources of outflus. First. 

the star shines as it collapses and wiU irradiate the Cauchy horizon after the event 
horizon is passed. While we wilI not attempt to describe the actual form of the the 

star's radiation, we do h o w  that in a fieely falling frame at the event horizon. the 

radiation must be measured to be bounded. Kruskal coordinates for the event horizon. 

ü+ = e q U  are appropriate for fkeely falling observers. These obsen-ers measure 

Tu+rr+ < constant. Transforming this to the KrusM coordinate appropriate to the 

inner horizon the outflux across CH is 

-4s we shall see, the outflux due to the s ta r  has a negligible effect compared to the 

backscat tering of the incoming radiation. 

Consider the evolution of a massless spherically symmetric scalar field in the black 

hoie interior. The characteristic initial value problem is completely specified by data 

given on the the event horizon. The physical initial data are detemined by the Price 
power law wave tail v-p. 

For reference purposes, consider the evolution of a scalar field in a fked Reissner- 

Nordstriim background with mass mo. The far nght hand side of figure 8 (with al1 
fluxes turned off), describes the static Reissner-Nordstrom solution. It is distinguished 

by an outer layer where the gravitational potential barrier is weak and perturbations 
can propagate without impediment. The potential is peaked around the radius r = 
e2/rno. This is where most of the perturbation will be scattered. Much further in, 

near r - T-,  the Cauchy horizon is approached and infaliing radiation is strongly 

blueshifted. It is important to note that the radiation is scattered long before it 
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reaches the large blueshift zone. This motivates our treatment of the evolution 
fields as a scattering pmblem on a static Reissner-Nordstrom background. 

Figure 8: Spacetime diagram of the spherical charged black hole interior 

with one angular coordinate suppressed. (The content of this diagram is 
identical to the conformal diagram of figure 7, but now the point H is 

represented by two points Hi and H2.) The time coordinate t increases to 

the right while the radius decreases towards the centre. The event horizon 

is represented by a tube which expands in radius as radiation enters the 
hole, asymptotically reaching its final radius at Hi, where v = W. In the 

region contained within the tube EHi, the coordinate t is spacelike and r 
is timelike, so that decreasing r corresponds to increasing time. Radiation 

propagating in the intenor is scattered by the potential barrier forming 
an outflux which crosses the Cauchy horizon, causing it to increase in 

size asymptotically to its maximum size at Hz, where u = -m. The 
transrnitted flux accumulates dong the Cauchy horizon where a weak 

singularity forms. As u increases the singular tube CH2 evolves to a 

stronger zero volume singularity. 

Mathematically, scattering uf a massless field is given by O @ = O -*hich, using 
the usual advancedlretarded coordinates, is for the dominant monopole term (Z = 0) 
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where f has been defined in (2.27) and the subscript s denotes the static Reissner- 

Nordstrom case with mass no. 
This is a one-dimensionai scattering problem. It is greatly simpEed by the fact 

that the potential V(r)  is highly localized near e2/rno. It fds off exponentially [27] 
in the tortoise coordinate defined by dz = d+/ f,(r) near the event horizon x = -(k: 

and the Cauchy horizon z = m. A scalar field will  propagate fieely near the event 

and Cauchy horizons and will only stmgly interact with the cumature in a thin belt 

around e2/mo. At the horizons the scalar field solutions will be of the form of ingoing 
and outgoing waves eWum and eeW. The effect of the potential will be to alter the 

amplitudes by the reflection and transmission coefficients, r(w) and t (w)  . 
If the initial vaiue on the event horizon is #&) then its Fourier transform [27, 33. 

3 4  

allows us to m i t e  the form of the scattered waves as X(a)  + Y ( u )  where 

The initial conditions are ( v )  = ( ~ 4 - p / ~ 8 ( u  - u l )  where the influx is assumed to 

start after 4. The Fourier transform behaves as [27, 33, 341 

This can be used to calculate the transmitted and reflected flux The stationary 

phase approximation can be used to evaluate the integrds (2.41). For large v the 

transmitted flux has the forxn 

and the reflected outflux is for large negative u 

y (u )  - r(uo)(-~-~)-p'2, wo = -ip/2u 

r(wo) - constant. 



We cdculated the reflection and transmission coefficients shown in (2.43) and (2.44) 

using a simple mode1 for the scattering potential: a rectangdar well adjacent to a 

rectangular banier. For low energy scattering it is expected that the perturbations 

will be strongly infiuenced by the potential so that there will be an almost total re- 

flection. A computer simulation of the scattering (351 has shown that the rectangular 

potential approximates the actual behaviour very closely. Actually, it is more appro- 

priate to use the term refraction here since the reflected beam continues on to smaller 

radii . 

The general effect of the Reissner-NordstrGrn curvature is to scatter the influx 

Tu, - (tc-u)-P into a reflected flux T,, .- a ( - t c _ u ) - p  and a transmitted flus 
TV, - p(r~-v) -p-~ near the Cauchy horizon, where a and P are the reflection and 

transmission coefficients and are O(1). Is this linearized scattering theory useful for 

our problem? 

Consider the initial layers just beneath the event horizon r = r+ - é. This region 
is fax above the strongly blueshifted region, so the flux of energy is only that of the 

Pnce gravitational wave tail v-P. For late times this is very we& and will only be a 

small perturbation from the electro-vacuum Reissner-Nordstrom solution. The effect 

of the Reissner-Nordstr6m geometry on the wave tail influx will be negligible and 

the influx from the event horizon wilI freely propagate to the Reissner-Nordstrom 

potential bamer. 

The black hole interior can be approximated from the event horizon to the scat- 

tering potential as Reissner-Nordstrom . Our method d l  be to solve the Einstein 

equations in the interior region after the scattering potential. Initial conditions can 

be set just after the potential barlier, given by the Reissner-Nordstrom scattering 

problem. In fact, just after the potential banier the flues are not particularly large 

since the blueshift region has not been approached yet. Until the Cauchy horizon is 

reached the perturbations to Reissner-Nordstrom are srnail. Our approach is to find 

an approximate solution which is good close to the Cauchy horizon (where perturba- 

tions are large) and which satisfis the initial conditions given by scattering from the 

potential barrier. 

As a first step toward the analytic scalar field approximation, we shall fiat intro- 

duce a nul1 cross flow solution which incorporates the boundary conditions discussed 

here. 
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2.7 Andytic approximation for lightlike crossflow 

Our aim is to construct an andytic model for the black hole interior after the potential 
banier. We shall first start with a nuU crossflow stress tensor aad introduce some 

approximations. This can then be used as a model for what we expect to happen in 

the scalar field evolution. 

The null crossflow stress tensor is of the form of equation (2.34) wit h the luminosi ty 

functions given by scattering 

where a and f l  are dimensionless positive numbers, corresponding t O the reflec tion 

and transmission coefficients respectively and q = p + 2. 
Introduce the functions A(U), B(V) defined by 

where ' denotes ordinary differentiation. For V -, O 

and for tr -, -00 

A(U) = 

A'(U) = 

-, 0, U -, -00, the functions A and B are small, but deriva- In the corner region V 
tives of B with respect to V diverge. 

W e  wish to concentrate on the region after the potential bamier at early tirnes. 

Before the potential barrier we expect Reissner-Nordstrom to be a good model. In the 

innermost regions we must model the effect of the infinite blueshift of the inflowing 

radiation. 
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Using the metric (2.21) we note that the Einstein equations allow us to wrïte wave 

equations for two combinations of the metric firnctions, which do not include the m a s  
function as a source tenn: 

In order to solve the evolutionary problem, we need to h d  the solution in the 

intermediate region after the potentid bainier and before the region where r goes 

to zero. This region wil l  be defined by r # O. When this stipulation is made it is 

impossible for r-'e-A to go to zero [l]. This means that both wave equations (2.45) 

do not have any potentially diverging source terms and both will have finite solut ions. 

For conciseness, introduce the bounded and non-zero variables 

The Einstein equations can then be written as equations (2.48) and the nul1 hy- 

persurface constraint equations: 

The m a s  fwiction obeys the wave equation 

-4s long as r # O, we can mite a solution with x and p being close to their 

Reissner-Nordstrom values plus perturbations which are s m d  in this region. The 
metnc functions for static Reissner-Nordstriim with a mass mo wilI be denoted with 

a subscript "s" , so that f,(r,) and tcS(r,) are defined by equation (2.27) and (2.28). 
The functions p, and X. and their derivatives are 



In the b i t  of the Cauchy horizon, (UV -r O, r, -t r-) these functions take on the 
Iimi ting value 

f, - - 2 ~ 8  (2.54) 

We can now construct a solution to the Einstein equations using an iterative 
approach, taking the static Reissner-Nordstrom solution as the zeroth order solution 
( X ( o )  = xS, P(o) = ps) and substituting back into the Einstein equations to find the 
first order correction terms. Equations (2.50) can be integrated to solve for p: 

It is clear in our approximation scheme that (2.57) is the leading order contribution 

to the solution of the Einstein equations. The contribution from (2.48) will be of 

lower order. 

Integration of (2.57) by parts gives the solution 

where E is 

ahich is much smaller than A + B  in the remote past of CH. Using this approsimation 

in the second equation of (2.48) and expitllding to first order in A and B, allows the 

estimation 
1 

x = xs +o('(A + B)). 
r? 
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Substitution of this order of correction back into (2.57) yields a second order appros- 

imation 

Cieariy, in the corner region where (h(-~-U))- l  - (- ~ ( - K - v ) ) - ~  - O, p is well 
approximated by the leading order solution (2.58). 
To linear order in A and B, the m a s  funftion can be integrated from (2.51) 

m(U, V )  = xSA'B(1 + O(A + B) )  + rn& + mou, - ma 

n-hich in the limit V -, O is 

showing the usual 1/V inflation fouod in esrlier work [LI. 
The solutions for the original metric functions r and X are 

This approximation is not so good as the scattering surface is approached (UV - 
1, so that correction terms (2.59) axe comparable to the first order tenns in (2.58)). We 

already know that the solution near the scattering surface should be approxirnately 
described by the Reissner-Nordstrom solution. It is only after this region, deep into 

the blueshift region that an approximate solution is needed and this is where it is 

important that the solution be accurate. The solution that we have found is accurate 

where it matters, close to the Cauchy horizon. 

2.8 The Scalar Field Solution 

Using approximations sirnilar to those just discussed for lightlike crossflon-, we can 

develop an approximate anaiytic solution for the scalar field equations. As before. 

the physics tells us that the interior solution can be approximated well by the static 

Reissner-Nordstrom solution fkom the event horizon down to the scattering surface. 
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The Einstein equations for coupling to a massIess scdar field are 

Define functions a(U) and b(V) by setting their derivatives equal to 

where the subscrïpt b refers to the value of the scdar field given by scattering at the 

underside of the potential barrier. 

.4s before, the wave equations for p and have solutions which are finite and 

non-zero in the corner region as long as 4 does not diverge. The initial conditions 

given by scattering (2.43,2.44) are that the scalar field is initially regular. Near the 

scattering surface the radius will be close to its Reissner-Nordstrom value, so using 

the scalar wave equation and the Reissner-NordstrSm radius (2.52), it can be seen 

t hat the W mixed derivat ive of the scaiar field, near the initial surface is 

This derivative is small in the corner (V + O, U -r -m), so in the earliest regions the 

scalar field WU not be changing rapidly from its initial value. This moti~ates us to 

make the ansatz that the leading order behaviour of the scaiar field, near the Cauchy 

horizon should be 
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With this ansatz, we can see that the scdar field wiU be s m d  everywhere in the 

corner region, but that derivatives with respect to V will diverge near the Cauchy 

horizon. 
As before we c m  calculate the first order correction terms by iterating the Einstein 

equations, again taking the zeroth order solutions for p and x to be the same as the 

Reissner-Nordstrom solution. The soIution for p is the same as the lightlike cross Bon- 

solution (2.58). Substitution of (2.58) and (2.65) into the scalar wave equation yields 

the first order equation 

1 

which can be integrated açymptotically in the corner region, making use of (2.52) 

L'sing the first order solutions for Q and p the wave equation for x can be integrated 

To leading order the mass funetion is integrated to be 

and the metric functions r and X are 

The existence of the Cauchy horizon in this solution can now be tested. Substi- 

tution of the solution for X given by (2.69) into (2.39) gives the foliowing asymptotic 

relation between the f i e  parameter, p, and the coordinate, U, 



2.9. EVOLUTION OF THE SIIVGULARJTY 

Condition (2.38) for the scalar field solution now reads 

Since condition (2.38) is satisfied, the Cauchy horizon exists in o u  approximate 

solution to the Einstein-scalar field equations. This is of course evident directly from 
the asymptotic form of the metric functions (2.69). 

2.9 Evolution of the singularity 

In the last 3 sections we have focussed on the stmcture of the blaclc hole interior 

in the early corner region. What happens at Iater times as W increases along the 

Cauchy horizon? Consider again, equation (2.37). Since the outflus Tpp is positive 

dennite, the second derivative of r is negative. Since r is ini t idy (at H) decreasing, 

it must continue to decrease to zero along the Cauchy horizon. We should note that 

r = O still represents a curvature singularity. But what is its character, is it spacelike, 

lightlike or timelike? This question is answered by examining the nom of da r ,  given 

by f in equation (2.27). Neax the Cauchy horizon, for srnall r 

When r > e2/m then r is spacelike. Since the mass is diverging at the Cauchy 

horizon, there is always a very small radius, r = which is a spacelike hypersurface. 

One would expect by continuity, that the hypersurface T = O should also be spacelike. 
The expectation is that the curvature singulaxity at the Cauchy horizon connects with 

a stronger spacelike r = O singularity as in figures 8 and 7. 

In a l l  of the considerations in this chapter we have always assumed that r # O, so 

our solution can not describe the transition region, where the two singularities merge. 

It seems likely that the spacelike singularity would be described by the generai oscil- 
lating BKL singularity 1151. In fact, there is a simple model of a spacelike singularity 
in the black hole interior, known as homogeneous mass inflation [36] which may be 

a good approximation to the singularity at T = O. In this approximate solution, it is 

assumed that the solution depends only on r, which is a good approximation when 

r is very small. In the homogeneous mass inflation model, the solution oscillates 

violently as the spacelike singularity is approached. 
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The fact that we expect that the nuii singulaxity may merge with a spacelike 

singularity rnay explain the discrepancy between the dinerent numerical results. The 

earliest integration by Gnedin and Gnedin (311 showed that there was no null portion 

of the singularity. But the Gnedins' code encounters its worst inaccuracies near V = 0, 

and within their magin of e m r ,  it is  redy  impossible to decide whether their picture 

shows a completely spacelike singularity. It has also been shown recently [37] that 

the sort of code that was used is highiy unstable, which casts a great deal of doubt 

on the conclusion drawn fkom this code. The other numerical integration by Brady 

and Smith [32] does show that a null singularity forms, similar to the one described 

in this chapter. It is interesthg to see that the radius of U = constant rays decreases 

as U increases and the trend suggested from their graphs is that the null sinadarity 
will indeed merge with a spacelike r = O singularity. 

Conclusion 

We have calculated the effect of the backreaction of scalar field perturbations prop- 

agating in the interior of a charged spherical black hole. We incorporated physical 

initial conditions, given by the scattering of the perturbations by the interior Reis- 

sner-Nordstr6m potential barrïer. The result of this analysis is that a nul1 scalar 
cumat ure singularity forms a t  CH, as was found in the Poisson-Israel mode1 [II. 

The infinite distortion of the Penrose diagram near the point H of figure 7 can 
cause some confusion. The generd picture of the processes involved can be sum- 
rnarised by the spacetime diagram 8. In this diagram two-spheres of constant r are 

represented by circles of radius r. Since r is timelike inside the blaclr hole, we have 

labeled decreasing r as increasing the. In this diagram we show that the incoming 
radiation is partidy scattered by the potential bamier into two strearns. The scat- 

tered Stream transversely crosses CH, causing it to contract to smaller r ,  eventually 

to r = O. The transmitted stream travels parallel to CH, and is infinitely blueshifted, 
causing a curvature singularity to form at CH. 

The Weyl curvature diverges in the limit UV -, O as, 

at the segment CH, which is where the Cauchy horizon would be located if no pertur- 

bations were present. The divergence of demonstrates that the tidal forces diverge 



at CH. However, the distortions are proportional to first integrds of the curvature - J dV4* - (- ln(-V))-9 + const. which are finite. In this sense the singularity is 

weak. 



Chapter 3 

Double-nul1 dynamics 

One of the fundamental goals of physics is to make predictions about the outcome of 

experiments. The means to this end is the initiai d u e ,  or Cauchy fonndation of the 
lam of physics, which provides a method to forecast the later state of a system once 

the appropriate initial conditions are known. 
Our wish to predict the future is so great that we continue to use the Cauchy 

formulation, dthough the concept of time is not absolute: inertial observers measure 
cloclis in different inertial -es to run slow. As a result, in order to m&e use 

of the initial value formulation correctly, it is important to keep the transformation 
properties of the laws of physics in mind. For example, consider MaxnelI's theory of 

electromagnetism. One can obtain aU the information about the electromagnetic field 

for al1 observers by solving Maxwell's equat ions for the field strengt h Fap. Howewr, 
sometimes it is more useful to choose a special observer and project Fa@ into electnc 
and magnetic components and solve for the fields in the special reference frame. In 
order to describe the obserations of a different inertial observer, it is necessary to 

use the Lorentz transformation laws to find the electnc and magnetic fields in the 

new frame. 
The situation is more complicated for the theory of generd relativity where general 

transformations between the space and time coordinates are allowed. If the general 
covariance of the theory is to be respected, no obseiver should be considered special 

and no coordinate should be singled out as time. However, a generally covariant 

approach is complicated, for Einstein's field equations are a set of ten coupled second 

order non-linear part id diBerentia.1 equations for the spacetime metric. Except in 

special symmetric spacetimes, solutions to the field equations are very difficult to 



hd. The use of the non-covariant initial value approach (381 to generd relativity 

leads to conceptual simplifications which makes it easier to solve certain evolutionaq 

problems. 

The form and interpretation of the initial value problem for gravity introduced by 

Arnowitt, Deser and Misner (ADM) [39] is the current standard formulation used to 

study dynamical systems. The underlying fundamental structure that they imagined 
was a foliation of spacetime with a f d y  of hypersurfaces of simultaneity, Et. Each 

three dimensional spacelilce Ct is labelIed by a parameter t whidi is constant on the 

hypersurface. General relativity is now interpreted as the evolution of the intrïnsic 

geomet ry on Et t o lat er hypersurfaces. 

One drawback is that the hypersurfaces must be spacelike: it is impossible to 

describe the evolution of null hypersurfaces using the ADM formalism. This is a 

serious problem if one is interested in studying null hypersurfaces, such as the event 

and Cauchy horizons of a black hole. As the structure of the Cauchy horizon is the 

focus of this thesis, it would be advantageous to develop an imbedding forrnalism 

analogous to ADWs whkh can haadle nuil hypersurfaces. 

In this chapter we will present a new formalism [40] developed for a foliation of 

spacetime by two intersecting families of null hypenurfaces. The intersection of the 

families foms  a two parameter collection of two dimensional spacelike surfaces, so this 

can be pictured as an evolution of the geometry on a surface in either of the lightlike 

directions normal to the surface. The null surface approach to field theory [41,42,43] 

(called variously '<infinite momentum fiame" and "light-fiont field theorf') has led 

to important improvements in the understanding of field theories. Similady, it is 

hoped that the double-nul1 approach to gravity will clarify many problems. In this 

thesis, the double-nul1 formalism presented in this chapter wîil be applied in chaptea 
4 and 5. In chapter 4 it will be used to describe the dynamics of quasi-local mass 

and to derive a generai mess inflation law for black hole interiors. In chapter 5 the 

formalisrn will be used to solve the characteristic initial value problem in the black 

hole interior, which will show that a lightlike singularity forms at the Cauchy horizon 

of a nonspherical black hole. 
The h t  formalism based on pairs of nul1 directions was the generalized spin- 

coefficient fomalism of Geroch, Held and Penrose (GHP) [44]. The GHP formalism 

is especially well suited for the study of algebraically speciai spacetimes. When the 

vectors defdng the nul1 directions are hypenurface orthogonal simpler formulations 



can be presented [45] - (491. In this chapter we will present a double-null formulation 
of general relativity assuming hypersuface orthogonality. The content of the formu- 

lation is identical to [45] - (491 but the presentation of the field equations is much 
simpler conceptudy. It is b d  on the cl8SSical description of surfaces imbedded 

in higher dimensional manifolds [50]. The formalism is essentially a generalization 

of a previous 2 + 1 spiit of spacetime within a three dimensionai null hypersurface 

[51] introduced to study cosmic censorship. The essential featve of our approach is 

that it maintains two-dimensional comriagce while operating on objects with direct 

geometrical meaning. 
This chapter is organised as follows. In section 1 the basic geometncal frame- 

work and notation are introduced. The fint order imbedding relations (the Gauss- 

Weingarten equations) are derived in section 2. Commutation relations relating sec- 

ond derivatives of the metric functions are derived in section 3. In section 4 the 

Riemann and Ricci tensors are derived, through the Gauss-Codazzi relations. The 

cont ract ed Bianchi identities, characteristic init i d  value problem and the Lagragian 
for gravity are presented in sections 5 , 6  and 7 respectivel. More technical derivations 

are presented in the appendices. 

3.1 Geometrical framework 

We begin by imagining a foliation of spacetime by two intersecting families of null 

hypersurfaces, (Co) and (Cl). Each hypersurface Co is defined as the locus of points 

on which the parameter uo has a constant value. Similady the parameter u 1  labels the 

hypersurfaces 3'. The hypersurfaces Co and C' have nul1 normal generators and 

respectively. (Here the bracketed numbers are labels and the spacetime indices 

axe suppressed.) The intersection of two hypersurfaces fkom the two families occurs 

on a two dimensional spacelike surface, S, on which uo and u1 are both constant. 

We introduce intrinsic coordinates on S, O2 and 83, so that the foliation of the four 

dimensional spacetime is d d b e d  by the four imbeddiig relations 

where sa axe four dimensional spacetime coordinat es. 

Notation: Our conventions are: Greek indices a, ,O,. . . run fiom O to 3; upper- 

case Latin indices A, B, . . . take values (O, 1); and lower-case Latin indices a, b, . . . take 



values (2,3). We adopt MTW cunrature conventions [52] with signature (- + ++) for 

the spacetime rnetrk go& When there is no risk of confusion we s h d  often omit the 

Greek indices on 4vectors like CA) and ec,: they are easily identifiable as 4vectors 

by their parent hesized labels. Four-dimensional covariant differentiation is indicat ed 

either by Va or a verticai stroke: VBA, A,p. Four-dimensional scalar products 

are often indicated by a dot: thus, t'(A) =  PB [CA, tfB, . 

Intrinsic geometry of S 

Consider, now, the intrinsic geometry of the surface S, by i g n o ~ g  the extra imbedding 

dimensions. Given coordinates 6" on S we can define basis one-forms dBa and a metnc 

gab on S, so that the line element on S is 

Quantities which transfonn as tensors under the "rotations" Ba -r Ba' = tPa'(Oa): n-il1 

be referred to as two-tensors. For example, the two-tensor -rab transforms as 

The covariant derivative compatible with the metric gab is denoted by a semicolon. 

Christoffel symbols (2)rk and the Riemann tensor ( 2 ) ~ u k d  = 6 ; ~ ~ )  (?)R are defined 

in the usual way. 

Tangent vectors to S 

Tangent vectors to S can be dehed by reference to the imbedding (3.1) 

Q dxa 
e (a) = - ae= ' 

where the subscript a is treated here as a label, and a is a spacetime indes. The tan- 

gent vectors act as projection operators: they project tensors in the four dimensional 

spacetime onto S. For example, the rnetric gab on S is obtained by the projection of 

gag, the spacetime metric, ie., 

Here we see that the two-tensor g,b is viewed as a scalar function from the vieiipoint 

of the four dimensional manifold. 



The tangent vectors also act as puIl-backs, mappings of two-tensors to the space- 
time manifold. For example the two-tensor Xab has the pull-bacli 

where e a ( ~ )  = gabg,g@(b). R o m  (3.4) we can see that two-tensors in general have 

a dual nature, they are tensors with respect to S but o d y  tetrad-dependent scalars 
with respect to the full spacetime. 

The normals to S, !(A) have uniquely definecl directions, given by the gradients of the 

parameters uA. However, since the normals are lightlike, they can be multiplied by 

an arbitraxy scde factor 

CA) = eAaauA, (3.5) 

where X is an arbitrary function. It is usefui to allow for a normalisation of the two 

independent normds which is not unity. We have arbitrarily chosen the normalisation 
condition - l(') := -eA. Since the n o m  of a lightlike vector is zero. the inner 

product of the normds can be ~ritten 

where eB is the matrix 

It is eïsily checlred nom the definitions of the tangent and normal vectors that their 
inner product is zero, 

e(A)eQ(,l = O . (3-8) 

(2 + 2)-split of the metric 

The vectors connecting two t w o - s d i ~ ~ e s  at different values of a" are axa/auA which 

are not equal io ta,,. From (3.5) and (3.6) it can be seen that their difference is 

orthogonal to t:,), or tangent to S. It is necessary to introduce shift vecton sAa, 

defined by 



which have been austrated in figure 9. Similarly, equations (3.2) and (3.3) can be 

used to show that the difference between e:) and is orthogonal to S. According 

to (3.9) the difference is: 

This allows partial derivatives to be rewritten as 

Figure 9: The light-cone in the double-nd formalism. The intersection 

of two nuli hyperswfaces, uo = cond. and u1 = const. is shom on this 

diagram. The intersection (the h e  Sa) is a two dimensional spacelike 

surface, spanned by the ta.0 tangent vectors e?,) The point p corresponds 

to a fixed value of the two coordinates 8' on So. The future light-cone 

for p has lightlike tangent vectors eb, and tif). The vector [Po, doesn7t 

necessarily connect equal values of 8" on the hypersurface u1 = const. 

In generd, equd values of Ba are c o ~ e c t e d  by the vector &xQ. The 

ciifference between the lightlike tangent and the connecting vector is the 
shift vector s5). The shift vector lies within the surface S. Similady? a 

second shift vector SE) must be introduced. 

An arbitrary displacement dxa in spacetime is, according to (3.2) and (3.9), de- 

composable as 

dxa = l&) duA + e&(dOa + SA duA). (3.12) 

From (3.3), (3.6) and (3.8) we read off the completeness relation 



Combining (3.12) and (3.13) shows that the spaeetime metric is decomposable as 

First derivatives of the metric 

We tum now to the definition of the extrinsic curvature and the twist, which are 

composed of first derivatives of the metnc. First, it is useful to define a normal Lie 

derivative, DA, which Lie propagates two-tensors at S dong one of the normals E(.4i. 
Its action on the general two-tensor X': is defined by 

where Xi$-:-- is the pull-badr defined by equation (3.4). It can be verified that this 

definition is equivalent to 

where (*kS, is a two dimensional Lie derivative. In order to show the equivalence 

of the dehitions (3.15) and (3.16), the following identities are useful. From the  

definitions of the normal (3.5) and tangent (3.2) vectors, 

from which it follows that 

Substitution of (3.17) and (3.18) into (3.15) yields (3.16). 

As examples of the use of this operator, 

w here a semi-colon denot es two-dimensional covariant differentiation. 

The extrinsic c m t u r e s  KAab measure the change in the two-geometry as it is Lie 

propagated in either of the directions normal to S. Their values are 



3-2. THE GAUSS- WEINGARTEN RELATIONS 

The dilation, KA, measuring the change in area of a circle of light Lie transported 
along l(A), is the trace of the extrinsic curvature, 

where g is the determinant of the metric on S. The shear, measures the distor- 
tion of the circle and is defined as the traceless part of the extrinsic curvature 

The twist wu is dehed by 

where E is the completely antisymmetric matrix with component €01 = elo = 1 and 
the square bradret denotes a Lie bradret. When the twist is zero then the curves 

tangent to l(o) and 1(11 mesh together to fonn two-surfaces orthogonal to the surfaces 

S. An equident definition which follows directly from (3.24) and (3.9) 

3.2 The Gauss- Weingart en relations - 

Zn the classical theory of surfaces imbedded in a three dimensional Riemannian mani- 

fold, the Gauss-Weingarten relations describe the variation of the tangent and normal 
vectors in the directions dehed by these vectors- In this section we extend these 

equations to the imbedding of a surface in a four dimensional Lorentzian manifold. 

The complication in doing so is that there are now two normds which are both null. 

However, as we s h d  show in this section, the derivation of these relations is not 

particdarly difncul t . 

Tangentid variation of the basis vectors 

We begin by computing the Gauss-Weingartea equations for the change in 44 and 

e(,) a s  they are varied in a direction tangentid to S. In other words, we wish to 

compute the cova,riant denvative in the direction of e(b). The results are that the 

tangent i d  derivative of the tangent vectors is 
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while the tangentid variation of the normal vectors is 

In order to derive equations (3.26) and (3.27) the fohwing identities are needed. 
Rom the definition of the tangent vectors (3.2) and the symmetry of the connection. 

it directly follows that 

From the orthogonality of 44 and e(,), it follows that 

The definition of the Lie derivative allows the t e m  on the right band side of (3.29) 

to be written as 

The second equality follows from the application of (3.21). The tangential variation 

of the tangent vectors (3.26), follows directly nom equations (3.28), (3.29) and (3.30). 
Since y) is proportionai to a gradient, 

From this result it follows that 

The symmetric counterpart to (3.31) is 

The tangential variation of the normal vectors (3.27), follows from (3.30), (3.31) and 

(3.32). 
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Normal variation of the basis vectors 

Similar results can be found for the variation of the tangent and normal vectors in a 

direction defined by t(*). The normal variation of the tangent vectors is 

The nomai variation of the normal vectors is 

In order to derive equation (3.33), note that fkom the definition of the tangent 

vectors and the symmetry of the co~ect ion,  

Substitution of (3.9) into (3.35) and making use the of the Gauss-Weingarten equat ion 

(3.27), results in equation (3.33). 
The derivation of (3.34) requires the following formula which follows from (3 5): 

The symrnetric component of (3.34) is computed using (3.36) and (3.11 ), 

The antisymmetric component of (3.34) is just the Lie derivative given by equati .i 

(3 .X) .  The normal variation of the normals follows fiom equations (3.36) and (3.24). 

3.3 Commutation relations 

In this section we derive the commutation relations between the different derivative 

operators. First we look at the commutator of the normal derivatives acting on a 

general two-tensor Xt , which by definition (3.15) is 
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where the projector, A; is dehed by 

The Lie derivative of the projector foiiows fiom (3.39) and the definition of the twist 

(3.241, 
&,A: = - ~ ~ , ë - ' . ~ t ' :  = -e-V$rAswaez . 

From this result it follows that 

The second term vanishes since the Lie derivative of e? (see equation (3.14)) has no 
normal component . 

The first term in (3.40) can be simplified by noting that the commutator of two 

Lie derivatives is the Lie derivative of the commutator, ie., 

The action of this operator on the tangent vectors is 

The resuft is that 

The following are examples of the action of this commutator: 

The commutation relation between the two dimensional covariant and Lie deriva- 
tives follows fiom their definitions and the two dimensional Ricci cornmut ation rela- 
tions: 
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This can be simplified, by noting that the two dimensional Christoffel symbols are 

closely related to the extrinsic c~rvature. Defining KAab = kaAgab, the relation is 

A üttle bit of algebra reveals that 

To conclude, we note the rule for commuting DA and the two-dimensional co- 

variant derivative Va, which follows directly from (3.46) and the definition (3.16) of 

DA. The commutator [DAiVa], applied to any two-tensor, is formed by a pattern 
similar to its two-dimensional covariant derivative, but with (2)l'& replaced by rrAlk. 
As examples: 

3.4 The Gauss-Codazzi relations 

The Gauss-Codazzi relations me the integrability conditions of the system of first or- 

der (Gauss-Weingarten) diaerential equations (3.26), (3.27), (3.33) and (3.34). They 
express projections of the four-dimensional Riemann tensor in terms of K, L, N and 
their first derivatives The most concise way of deriving these components in practice 
is t hrough the Ricci commutation relations. 

Let A", Ba, XP and Ya be arbitrary 4vectors. The Ricci commutation relation 
is 
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which relates covariant derivatives of the Gauss-Weingarten equations wit h the corn- 

ponents of the Riemann tensor when the vectors in (3.51) are set equal to the tangent 

and normal vectors. 

Similady, the contracted Ricci commutation relation is 

Substitution of the normal and tangent vectors into this equation yields the cornpo- 

nents of the Ricci tensor. The calculation of the Ricci components is straight fomard. 
The details of the calcdation are presented in appendix A. Here we wiil only displaj- 

the ha1 results. Our notation for the tetrad components is typified by 

The results are 

Equation (3.53), containhg the term &KAab which is roughly of the forrn og,b. 

represents three equations which describe the evolution of the two-metnc. The Ray- 

chaudhuri equations describing the focussing of light rays are encoded in the Roo 
and Ril components of equation (3.54). The equation ho = 8*(Go - hgooTaogQB) 
relates the change in the dilation rate, DoKo on a u' = constant hypersurface to 

the square of the dilation and shear and of the matter flowing transverse 

to the hypersurface. The component hl is the trivial equation [53] (as we shall show 
when we discuss the characteristic initial value problem). The four equations repre- 

sented by equation (3.55) are constraints on the values of the shift vectors on the nu11 
hypersurfaces. 

The components of the Riemann tensor can be calculated using equation (3.51). 

A sample cdculation of the component RAaBb is included in appendix A, and the 



other components are calcuiated in a similar manner. The results are 

3.5 Cornparison with the NP spin-coefficient for- 

malism 

In order to compare our notation with the more f d i a r  notation of the N P  [XI spin- 

coefficient fomalism and the GHP [&, 5q formaiisrn, we introduce the following 
cornples nul1 tetrad 

and all other inner products are zero. The cornplex two-vector rn, is defined by 

It is straightforward to calculate the NP and GHP spin coeffients from their def- 

inition given in reference [54, 441. The spin coefficients will be denoted with bold 
Greek letters. Since the null vectors t'(al are tangent to geodesics, n = n' = O. Fur- 
thermore, we assume in the double-nul1 formalism that both are hypersurface 

orthogonal. As a result the rotation, or vorticity of the nul1 vectors vanislies, Le., 



p - P = ji - f l  = O. The remaùung non-zero spin coefficients are 

The primed GHP coefficients are related to the Newman-Penrose coefficients (541 by 

The Weyl scalars: as defined in references [44] and (541 are related to the compo- 

nents of the Riemann tensor by 

-&A - a 
*3 = e m &II, (3.67) 

When comparing the equations resulting fiom the spin-coefficient and double- 

nul1 formalisms it should be remembered that the two formalisms assume opposite 

signatures. The presence of the derivatives of the shear axes in the E and É coefficients 
cause many of the spin-coefficient field equations to be urineccessarily complicated. 
This complication occurs because the two-dimensiondy covariant quantities (such as 
our shear tensor cAab) are contracted with the airis vectors ma in the NP fornalism. 
Since we present the field equations in a two-dimensionally covariant form, they can 

be stated in the precise form of equations (3.53) - (3.55). The role of the equations 
in the double-nuIl fonnalism presented in this chapter is fairly straightforward as will 



be shown in the next section, where we will examine the Bianchi identities, which 

will make it clear which equations are needed to h d  a solution to the Einstein field 

equat ions. 

3.6 Bianchi identities 

The Ricci components are liaked by four differential ident it ies, the cont ract ed Bianchi 
identit ies q 

where the four-dimensional cwature  scalar R = Ra, is given by 

according to (3.13). 
-4s we show in Appendix B, projecting (3.69) onto e(.) leads to 

Projection of (3.69) onto tta) sllnilarly yields 

Equations (3.71) and (3.72) express the four contracted Bianchi ident ities in t e m s  

of the tetrad components of the Ricci tensor. 

We now look at the general structure of these equations. 

For A = O in (3.72), Roo does not contnbute to the first (parenthesized) t e m o  

This equation therefore takes the form 

1 
Dl& + (4haa = -Ko&i + L ( ( ~ ) R , ~ ,  ROO, ROo, a ) ,  

in which the schematic notation L implies that the expression is linear homogeneous 

in the indicated Ricci components and their two-dimensional spatial denvatives da. 
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The other (A = 1) component of (3.72) has the analogous structure 

The fom of the remaining two Bianchi identities (3.71) is 

The structure of (3.74)-(3.76) provides insight into how the field equations prop 

agate initial data given on a lightlike hypersurface. Let us (arbitrarily) single out uo 

as "time," and suppose that the six L'evolutionary" vacuum equations 

are satisfied everywhere in the neighbourhood of a hypersurface uo = O. (Bondi and 

Sachs [56, 531 refer to (*)Rab as the "propagating" or Umain" equations and to Rooy 
Roa as "hypersdace equations.") Since ROI only appears algebraicdy in equation 
(3.74, the vanishing of the six evolutionary equations 3.77 in the region guarantee 
that Rol also vanishes. For this reason Roi = O is dubbed the "trivial equation" 

[56, 531. 
Equations (3.75) and (3.76) imply that if RIl and RI. vanish on the hypersurface 

uo = O, then they automatically Mnish on a l l  other hypersurfaces in the region. The 
equations Rll = Ri, = O are hown as the "subsidiary" or "supplementary" equations 

[56, 531. 

The result is that the Bianchi identities guarantee that if the evolutionazy equa- 
tions are satisfied in a region and the subsidiary equations are satisfied on one hyper- 

surface, then the vacuum Einstein equations are satisfied everywhere in the region. It 
should be noted however, that the numerical implementation of a double-nul1 scheme 
is subject to instabilities [37]. When performing a numerical integration, it is neces- 
sary to check that the subsidiary equations are satisfied on a.ü hypersurfaces during 

the evolution. In this thesis we are only concerned with analytic solutions of the field 
equations, so this problem is not relevant. 

3.7 Characteristic initial value problem 

In the characteristic formulation of general relativity, data are placed on two inter- 
secting characteristics Co and Cl and their spacelib;e intersection So, and evolved off 
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the characteristics using the propsgating Einstein equations Rab = O. (Mie have arbi- 
trarily designated Co as the hypersurf'e at uo = O and C1 as u' = O.) In t his section 
we discuss the formal solution of the characteristic initial value problem (CM'). 

Gauge fWng 

As we have shown in section 2.6, the Biaschi identities act as constraints on the ten 

Einstein equations, leavhg only the six equations (3 -77) independent. The double- 
nul1 metric (3.14) has eight fiee functions, so clearly there exists the freedom to make 

two global gauge conditions. 
A naturd coordinate condition is to demand that once the coordinates 8" a ~ e  

defined on Co their values must remain the same if they are Lie transported off zo. 
le., 

O = ztoea = ega,ea = -s; , . (3.78) 

This gauge choice leads to some nice simplifications. The normal Lie derkative 

operator becomes a simple partial derivative and the extrinsic curvature and twist 

take on the simple f o m :  

In addition to the global gauge condition (3.78), we have the freedom to place 
coordinate conditions on the initiai surface Co. A related choice is to demand that 

the coordinates 8" be kept constant when Lie transported dong Co. This is equivalent 
to stating that 

This leads to the following simplifications 

OnuO=O,s;=O =i 
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For the rest of this thesis we will assume that the gauge conditions (3.78) and (3.84) 
have been made and for simplicity will defme sa := st. 

The hypersurface equations 

With the gauge choice (3.781, the hypersurface equations reduce to 

three equations for the six functions Ko, u h b ,  A, W.. (Note that the shear (3.82) ao,b 

is traceless and bas only two degrees of freedom.) 
So far, the only restrictions made on the coordinates uA is that they be lightlike. 

W e  still have the freedom to rescale the null coordinates by a function of themselves, 

uo -* u ' (u0 ) .  Thus on C1 we can make a coordinate choice which Nil1 simpl- the 

integration of the hypersdace equations. For example, consider the parametrizat ion 

of 6. Since from equation (3.34) 

G v~ = aoxe; , (3.91) 

when &A = 0, the parameter uo is afnne. Thus we are free on C1 to choose the 

"inaffuiity" [57] of the parameter uo. One special choice [57] is to set &A = f 
which reduces (3.89) to a linear equation for Ko. However, linearity is no t important. 

When uo is affine and given initial data 0.6 on C1 and the value of Ko on So, equation 

(3.89) can be solved for Ko everywhere on Cl. Alternately, if in a physical application 

there is a known form of the dilation Ko on XI, then (3.89) can be solved for X (as 

long as & # O). Either way, after (3.89) has been solved, Ko, O Q ~ ~ ~  X and all partial 

derivative a, are known on Cl. Rom (3.81) and (3.82), and gar are also known on 

Cl. Hence the 1st twi  hypersurf..ce equations (3.90) are iinear first order equations 

for W.. Once initial data for W. are set on So, then w, is known on all of Cl. The 
differential equations (3.83) can then be solved for the shift vector. The coordinate 

condition (3.84) sets sa = O on Sa, so t hat sa is also known everywhere on Cl. Hence, 

on Cf all the metric huictions, and their time and tangentid derivatives a0 and aa 
are known. 
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The subsidiary equations 

On the hypersdkce Co, where the condition (3.84) has been set, the supplementary 

equations reduce to 

The rernarks of the previous section on the hypersurface equations hold here. By 
choosing u' afnne on Co, and given initial data c l a b ,  the subsidiq  equations can be 

integrated for KI and w,. Now all the metric functions and their derivatives al and 

da are known on the hypersurface Co. The problem remains to evolve the data to 

later times uo > O, given the initial data on Co and the boundary data on CL. 

The propagating equations 

The three propagating equations '4&ab = O c o n t d  the evolution of the shear and 

dilation off the initial characteristic Co. After splitting the main equations into the 

trace and traceless parts, they can be written a s  

On Co the data 

are known function 

'D = (9.6, A> Wo, s;, a*) 
S. In order to evolve 2> off Co, d t h e  denva .tives do of V must 

be hona. Consider the trace (3.94) of the propagating equations. It is a lhear 8rst 

order equation for Ko with ali coefficients on Co known. The initial data for & are 

given on Cl, so equation (3.94) can be integrated to solve for Ko. Al1 derivative of 

Jg are now known. 



Similady, the traceles paxt of the propagating equations are h e m  first order 

equations for the shear ooab with coefficients which are known on CO and initia data 

given on Cl. Thus equation (3.95) csn be integrated to solve for the shear which 

through equati'on (3.82) determines all derivative of the two-metric g,b. 

This procedure can now be repeated on a later hypersurf'e, C : uo > O. Given 

2) on C, the propagating equations can be solved for Ko and goab. The hypersurface 

equations can then be solved for &A and &W. at every point of C. The result is that 

V and a l l  time derivatives of 'D are known everywhere. Thus, the C M ?  is forma&- 

solved. 

To reiterate, the C M  is stated by specifying the following initial data : 

3.8 Lagrangian 

The Einstein field equations can be derived by Miying the Einstein-Hilbert action 

with respect to the metric functions. It is fairly obvious that such a derivation with 

the 2 + 2 fomalism would be incomplete since the metric (3.14) contains only eight 

arbitrary functions: a variational principle can only denve eight of the ten Einstein 

equations. The reason for this problem is that we have already made two gauge 

fixing conditions by demanding that uo and u' be nd. A fairly easy fix is to add two 

more functions to the metric, calculate the new Lagrangian, vary to h d  Einstein's 

equations, and then set the new functions to zero. 

Consider the spacetime metric of equation (3.14), where the matriv is defined 

b~ 

replacing the definition of equation (3.7). Capital Latin indices are still raised by qAB 

which is 

where q is the determinant of  AB. 
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The Einstein-Hilbert Lagrangian density is now L = &R," = eAf i f i (RAëX+ 
Rz), where JQ is the square root of the the detenninant of gab. In order to derive 

the full Lagrangisn it is necessary to rederive the Ricci scalar as in Appendix A, with 
T)AB given by equation (3.96). This amounts to simply replacing LABa in equation 

(Al) with 

and NABD in equation (A.3) with 

The Ricci scalar can be derived by a calculation simila to that presented in appendix 
A. Totai derivatives can be isolated fiom the expression, by noting that 

After some algebra, the Lagrangian density can be written as 

L = LI + Lz + L3 + total derivatives , (3.100) 

where the first term is the value of the Lagrangian if  AB is assumed constant, 

Variation of LI with respect to the functions A, gab and s i  produces the vacuum 

Einstein equations Goi = Gab = GAa = O. The second tem, 

must be w-ied dong with (3.101) in order to produce the equations Go0 = Gil = 0. 

The 1st term is 



which doesn't contribute to the dynamics since, after varying, is set to a constant. 

Consider the variation of La with respect to 9* and p. Since for any derivat ive 

operator, a(J=ij) = - iqABae ,  the variation of the first term is 

when QB is set to the constant matrix of equation (3.7). Similariy the variation of 
the rest of the terms of L3 do not contribute to the classical field equations in the 

double-null gauge. 

The variation of Lr is 

while the same variation of CI yields 

The vacuum field equations result: 

which agrees wit h equation (3.54). 
Setting to the constant matrix and varying tl yields the remaining equations. 

Vaxiation with respect to A yields 

Variation of Cl with respect to sa produces the field equations G", RR", = 0. 

In order to vary Li correctly, it should be remembered that the extrinsic curvature, 

normal Lie derivative and the twist dl depend on s i  implicitly. Their variations are 



(where OA and !PA(&) axe arbitrary funetions) 

Similarly, the variation of Li with respect to gab yields the Einstein equations 

Ga( = Rab - $gab(R$ + e-* R;). The variation is straightforward when the two- 

dimensional identity 

is used, where 4 is any scalar function. 
The Lagrmgian and Hamihonian dynamics of 2 + 2 spiittings of gravity have been 

examined in more detail by various authors [57, 58, 59). 

3.9 Conclusion 

In t his chapter we have presented a formalism for describing the geometry of spacetime 
in t e m s  of a foliation by two families of lightiike hypersurfaces. The Einstein field 

equations (3.53) - (3.55) are presented as three concise equations relating the geomet ry 
of a twoaurface to its imbedded spacetime in a two-dimensiondy covariant manner. 
The definitions and equations presented in this chapter will be used extensiveiy in 
the next two chapters to discuss the quasi-local gravitational mass (chapter 4) and 
the nature of a black hole's Cauchy horizon (chapter 5). 



Chapter 4 

Dynamics of the mass function 

The most fwldamental concept of general relativity is the equivalence principle [52] : 
no locd experiment can distinguish between a gravitational field and uniform accel- 
eration in flat space. As a result, it is not possible to define local observables for the 

gravitational field, such as an energy density or a stress tensor. For if it were possible 
to measure the energy density of the gravitational field at one point, a non-zero result 

would reveal t hat a gravitational field is present , violating the equivalence principle. 
Suppose that we tried to introduce a definition of an energy density for gravita- 

tion. On dimensional grounds alone [60], the energy density must be quadratic in the 

h t  derivatives of the metric. In general relativity there are no local coordinate inde- 

pendent quantities involving k t  derivatives of the metric. For example, the square 

of certain Christoffel symbols may seem like a good candidate for a measure of energy, 

a prion. But one of the most fundamental theorems of diaerential geometry states 
that locdy a coordinate system (Riemann normal coordinates [61]) can always be 

found in which the Christoffel symbols vanish. As a result, the "Christoffel measure" 

of energy can alwsys be transformecl to zero. 

Contrast this with the situation in electromagnetism. In this case the electromag- 

netic field strength is a local observable, and there is a well defined stress tensor which 
is quadratic in the field strength. As a result, it is possible, at every point in space to 

determine the energy of the electromagnetic field. This dows us to discusç the local 

energy carried away from a time dependent source by electromagnetic radiation. 

The problem for the gravitational field is more difficult . A dynamical gravitational 
source creates a time dependent gravitationai field. In analogy 6 t h  the electromag- 

netic problem, we expect that gravitational radiation will be produced which will 



cany  idonnation about the change of the source. However, there is no unique way 

to l ocdy  split the gravitational field into a radiation field which propagates on a 

background gravitational field, except in special circumstances, such as in spherical 

symmetry [62] and high frequency gravitational radiational waves [29]. Hence any 
local stress tensor dehed  through such a split would not be unique. The key difFer- 

ence between electromagnetism and gritvity is that the electromagnetic field is locally 
obsemble, while the gravitationd field is not. 

On the other hand, andysis of the observations of the binary pulsar PSR 1913+16 
[63] gives credence to the view that gravitational waves carry energy away from a time 

dependent gravitational source. The subtlety is that gravitationd energy is a global 
concept. The energy carried by gravitational radiation can be measured in the wave 

zone, but is not well dehed  in the near zone. Fas away from an isoiated source, the 

total gravitational energy (or equivalently the mas )  of the source can be defined. 

The Bondi [56] and ADM (391 gravitational masses measure the total energy of the 

gravitat ional field at null and spacelike infinity respectively in an asymptot ically flat 

spacetime. If an otherwise static source is dynamic for a period of time, the Bondi 

mas can be measured before and after the activity, and the change in mass is equal 
to the energy radiated away by the gravitational waves. 

A compromise between the local and global definitions is a quasi-local definition 

of m a s  which is defined as an average over a two dimensional spacelike surface. 
The premise behind a quasi-local dennition is that two local observers can measure 

the geodesic deviation between themselves and toget her determine the spacet ime 
geometry in their neighbourhood. The problem with defining a gravitational mass in 

this neighbourhood, is that there are an idh i te  number of ways to do so. Cnteria 
for a reasonable definition have been listed [64], but it is probably impossible for any 

definition to satisfy a l l  the criteria. Two definitions of quasi-local m a s ,  by Hawking 
[65] and Hayward [66] are the most usefd (in our opinion) and their properties will be 

explored in this chapter. Neither debit ion of mass can be unequivocally interpreted 
a s  a local energy. It is more conservative to interpret them as a measure of the 

focussing and shearing power respectively of the gravitational field. 

Of interest is the application of these definitions of mass to the interior of the blacli 
hole. One of the more astonishing results of classicai generd relativity is the mass 

inflation [1] effect : when realistic gravitational perturbations are taken into account 

in the charged sphencal black hole interior, the local mass function diverges at the 
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hole's Cauchy horizon. We are interesteci ia a generaüzation of the mass inflation 
egect to non-spherical black holes. In this chapter, we derive a generd fomalism for 

equations describing the dynamics of the quasi-local m a s  functions of Hawking and 
Hayward which can be used to deduce the mass hdation phenornenon. The equations 

are quite generd and c m  be used in other applications, such as asymptotically flat 

geometries. 

The quasi-locd definitions of energy which we will examine are constructed out 

of quadratic combinations of the extrinsic cwature of a two dimensional spacelike 

surface. In chapter 3 we have presented in detail a formalism especially designed to 
describe the dynamics of such surfaces. In this chapter we will make extensive use of 
the notation and results of chapter 3. 

This chapter is organised as follows. Li section 1 the concept of the total mass of 
the spacetime is reviewed and the ADM and Bondi masses are defined. Quasi-local 

definitions of mass are discussed in section 2. In sections 3 and 4, formulae describing 
the variation of the quasi-local masses defined by Hawking and Hayward are derived. 

In section 5 a wave equation for Hawking's mass is derived and is used to demonstrate 

the mass inflation effect inside non-sphericd black holes. 

4.1 The ADM and Bondi masses 

Consider an isolated star which is initidy static but undergoes a period of activity 
from retarded times u1 = uf to ui during which it emits gravitational radiation. 
M e r  t h e  ui it returns to a static state. In the static regions the star's metric 

is approximated by the Schwanschild metric (2.1) at distances far from the star. 

The motion of a satellite in an orbit far from the star will be described by Kepler's 
third law, and the mass calculated fiom the orbit is asymptotically the same as the 
Schwanschild mass. An observer at spacelike infinity (iO) mesures the state of the 

star in the remote p s t  when it was static. A measurement of the m a s  at io will 
detennine the original total m a s  of the stm. This m a s  is called the ADM mas ,  

A l A D M ,  and is a measurement of the total m a s  of the spacetime [39]. An invariant 
definition is [67] 

MAOU = lim / d 2 0 ~ g ~ e ~ ~  , 47r Sr 

where Sr is a two-sphere of radius r and g is the determinant of the two-dimensional 

metric on S,. The real part of q2 is known as the Coulomb component of the Weyl 
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tensor, due to the analogy with electromagnetism. The definition of the Coulomb 
component is (in viu:uum) 

where, in the notation of chapter 3, (*IR is the intrinsic cunature of the two-surface, 

the function X is the metnc component defmed in (3.14), and KA and are the 
extrinsic curvatwes (3.22 - 3.23) of the two-surface. It has been proved [68, 6 9  that 

the ADM mass must always be positive, as must be the case if MADM really represents 
the total mass of the spacetime. 

Observers at future null infini@ (at sny point on gf) c m  measure the mass left in 

the star at any finite retarded time ul. This mass is named the Bondi m a s ,  1 . ( u 1  ) 

[56]. The Bondi mass is equal to the .4DM m a s  minus the energy carrïed away by 

gravitational radiation [70]. In order to define the Bondi mas,  it is assurned that the 

metric can be expanded in powers of l l r .  To Ieading order, the metric is fiat and 
described by the metnc 

where the advanced time uo is related to the coordinate r by 

2du0 = du' + 2dr . (4.3) 

It shodd be noted tbat the non-standard definitions for the advanced and retarded 

times have been taken, 
u l = t - r , 2 u 0 = t + r .  

.4t order l / r  the metric contains a dynamic, non-sphericdy symmetnc term. The as- 

sumption is that the asymptotic behaviour of the metric functions (using the notation 

of chapter 2) are 

where R a b  is the metric on the unit sphere, Cab is a traceless two-tensor and the Bondi 

m a s  aspect m~ is defined to agree with the Schwarzschild mass (2.27) in spherical 
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symmetry. The tensor Cab is hown as the news function. It encapsdates the two 

degrees of &dom of the gravitational field, since it determines a l l  of the physically 
meaningful quantit ies. 

Rom the definitions (4.3) and (4.4), the asymptotic behaviour of the c w a t u r e s  

can be derived, 

( 2 1 ~  = 

Ko = 

KI = 

c0ab = 

C l a b  = 
wa s 

2 - r * t 0(l/r3) 

2 a,, in P = - r- + o(ilr2) 
1 al in r2 = -- r + 0(i/r2) 

- Cab(u' ,  0') 
r2 + 0(i /r3)  

& C a b ( u l ,  4") 
r + 0 ( l / r 2 )  

0 ( i / r 3 )  - (4.5)  

Substituting these expansions into the Coulomb component of the Weyl tensor, we 

see that [56, 711 
1 1 = -(mr, 7'3 + Z~abalCab)  + 0(l/f4) - (4.6 

To highest order, the Coulomb component of the curvature is detennined by the mass 
aspect of the star at t h e  u1 and the rate of change of the two-metnc. A coordinate 
independent definition of the Bondi m a s  is the average of the Bondi mass aspect 
over a sphere at infbity: 

Asymptoticdy, the largest component of the Weyl tensor is [56, 711 

which motivates the identification of q4 as the radiative part of the gravitational 
field. 

The Bondi-Sachs m a s  l o s  formula 156,731 can be derived fiom the Raychaudhuri 
(3.92) equation Ril = 8C11 where Tii is the stress tensor of the material flowing out 
of the star. Substituting the asymptotic expansions (4.4) and (4.5) into Raychaud- 
huri's equation, we find that 
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In vacuum, the rate of change of the traceles part of the two-metric uniquely deter- 

mines the lm of mass fiom the star. This is interpreted as the rate that gravitational 

radiation casries energy away fiom the source. The right hand side of (4.9) is negative 
semi-definite (if the stress tensor obeys the dominant energy condition), so that the 

mass of an isolated star can not increase. It has been proved [72, 74, 691 that the 

Bondi m a s  must dways be positive, in other words, the star can not radiate away 

more mass than it originally started with. 

4.2 Quasi-local definit ions of mass 

As we mentioned in the introduction, there can be no general local definition of the 

mass (or equidently, energy) of the gravitational field. The closest type of definition 

of a gravitational m a s  is a "quasi-local" mass. A quasi-local definition is not local- 

but is usudy defined with respect to a spaceiike closed two-surface which provides a 
notion of quasi-locahy. There is no obvious canonical prescription for a quasi-local 

definition: in fact there are an infinite number of ways in which a definition cm 

be made. A review of the various definitions would be pointless, since most are not 

particularly useful for our purposes. Instead, as a guide, we list a number of properties 
that a reasonable quasi-local mass should possess, and discuss the definitions which 

corne closest to fulfilling the desired properties. The following list of properties is 
a modification of Eardley's list [64]. Here we assume that the definition is made 
with respect to a two dimensional spacelike surface S which has area A. A "good?' 

definition of a quasi-local mas  should: 

i) reduce to zero if A reduces to zero. 

ii) reduce to zero in Minkowski spacetime, regatdless of the shape of S. 

iii) reduce to the Schwanschild m a s  (2.27) in a sphericdy syrnmetric spacetime. 

iv) reduce to the ADM mass (4.1) at spatial Uifinity in an asymptotically flat space- 
t ime. 

v) reduce to the Bondi mass (4.7) at nuli infhity in an asymptotically flat spacetime. 

vi) be equal to the irreducibie mass of a horizon when S is an apparent horizon, 
1 where mi* = (A/16*)2. 
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vii) increase if A increases and S is outside of a black hole. 

viü) reproduce the Bondi m a s  loss formula when varying with respect to time. 

No present definition satides aJi of these restrictions and it is probably impossible to 

invent a new definition which satbfies ail of these points. 

Relation between local and quasi-local mass 

We wish to investigate the properties of three quasi-local definitions of gravitationai 
mass which involve an integration over a surface. Quasi-local quantities of this type 

can be awkward to manipulate, so for convenience, we will associate with each quasi- 

local mass M(uA) a local m a s  aspect m(uA, Ba). The quasi-local definitions which 
we ail1 discuss make use of a quasi-local luminosity distance I (uA) ( or area radius), 

defined by 

The ratio of the quasi-local mas ,  M(uA) to the luminosity distance is set equal to 

the average over S of a local function of the extrinsic and 
which has dimension I /L*.  (There are an idbi te  numbe~ 

meet these requirements.) For convenience, we will d e h e  
ml?, so that 

intrinsic curvatures of S 
of local firnctions wbich 

this local fiinction to be 

It is useful to introduce a local function r ( P )  defined by reference to the char- 

acteristic initial value problem (CIVP). The CIVP is typically fomiulated by stating 
the initial condit ions for the metric functions on two intersect ing charact eristics and 

on So the spacelike intersection of the initial chatacteristics (see section 3.7). From 

@.IO), it follows that the area of So is 4~2;. The relation between r and Io is 

When al l  of the surfaces S are spheres of radius 1, then r = 1. 
Substituting (4.12) into (4.11), we find that the relation between the quasi-local 

m a s  M and the local mass aspect m is 
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Recalhg the definition (3.22) of the dilations in the double null formaiïsm, 

we see that KA measures the change in the area of S in a direction normal to the 

surface. The dilation is related to r2 by 

In most applications of interest AsA will be negligible. 

The Schwarzschild mass 

The most naive definition of a quasi-local m a s  is a generalisation of the Schwarzschild 
mass to non-sphexicd spacetimes. RecaIling that in sphericd symmetry the dilation 

is & = 0, ln r2, we define the Schwansdiild mass aspect, rns(P) to be 

This definition was origindy introduced by Misner and Sharp [El. Details of the 
properties of ms in spherically symmetric spacetimes have been described in reference 

[76]. The quasi-local m a s ,  hlS(uA) associated with (4.16) is found by replacing di 
by 1& and m by rns in equation (4.13), 

Clearly, the definition of Ms reduces to the definition (2.27) of the mass in spherical 

symmetry. 

The Hawking mass 

A slight modification of the Schwanschild mass is Hawking's quasi-local mass [65]. 

If Our basic demand on a quasi-local mass is that it should reduce to Bondi's mass 
(4.6) in the limit r + w, then we are led to Hawking's definition of the mas aspect, 

~ H W ) ,  



4.2. QUASI-LOCAL DEFINITONS OFMASS - 42 

The quasi-local version of Hawking's m a s ,  MB ( u A ) 

is exactly the same as Ms when the topology of the surfaces S axe sphericd. This is 
a result of the Gauss-Bonnet theorem, which states that 

where g is the genus of S. When S has spherical topology, g = O. Haaiking's quasi- 

local mass can be thought of as a generslization of the Schwarzschild m a s  to arbitraq- 

topology. 

Because of the Gauss-Bonnet theorem, when S has spherical topologv, the two 

definitions have the same properties. Both the Schwarzschild and Hawking masses 

satisfy most of the properties (i) - (viii) but fail property (ii). It has been proved 

[60] that for smdl spheres, the Hawking mass reduces to zero when the surface area 

of S shrinks to zero. The Hawking mass reduces to the Schwanschild, Bondi and 

irreducible masses in the appropriate limits, by definition. It reduces to the ADSI 
mass if it is demanded [TOI that the shear fdls off quidy  enough at spacelike infinits 

Variation of Hawkng's m a s  [791 shows that it increases as r increases and reproduces 

the Bondi-Sachs mass loss formula. As we will show in section 4.3 the Bondi-Sachs 

mass loss formula is applicable inside the black hole as well, where it becomes a mass 

gain formula. 

The Hayward mass 

The Hawliing and Schwarzschild definitions of the quasi-local mass are zero in Minkowski 

spacetime only if S is spherical[66,60]. Suppose t hat we set up a foliation of flat space 

with surfaces with non-zero shear. Consider the definition (4.2) of Q2. In Minkowski 
space ikq = 0, which implies that 

1 
& = M s = -  = 2 -A  1 d20&?r e ooaaoiab , in Bat space. 

s7d; s 

-4s a result it is possible to set up a foliation of flat spacetime by highly distorted 

surfaces which the Hawking definition would register as a fictitious m a s .  
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Hayward has suggested [66] that the real part of 92 bas energy-like properties and 

it may be worthwhile to consider a new m a s  aspect, m', defined by 

which is always zero in flat space independent of the foliation S. 
By definition, this mass reduces to the ADM mass at spacelike inf in i .  When 

the appropriate limit [66] is taken, the Bondi m a s  is also found. When the surfaces 
S are spheres, the shear temi disappearç, so that the S c h w a n s ~ d  and irreducible 

masses are recovered. In the limit of smail surface area, Hayward's mass goes to zero 

from the negative direction 1771, which is not a very good feature. In section 4.4 n-e 

m-ill compute the variation of rn' in order to discuss properties (vii) and (viii) . 
-4 further generalisation [66] is to add a term to m' proportional to e-*bw,*". 

where wu is the twist defined by equation (3.23). A new analysis [TB] of the qmplectic 

structure of the double-nul1 formalism suggests that the dynamical degrees of freedoni 
of the gravitational field can be encoded in the twist instead of the shear, as is more 

usud. If this line of thought is developed furt her, it may be interesting to examine 

the dynamics of a quasi-local mass containhg a twist term. However, we are most 

interested in problems where the m5st is small, such as asymptotically flat spacetimes 

and the black hole interior, and we will not consider this sort of generalisation. 

4.3 Variation of Hawking9s mass 

Hawking's quasi-local m a s  has the property that it reduces to Bor -'"s mass at li 

in an asymptotically flat geometry. In the same limit the change in haWlring1s mass 

reduces to the Bondi-Sachs energy loss formula [79]. This suggests that far from a 

radiating source, the change in Hawking's quasi-local m a s  can be interpreted as the 

energy carried by the gravitational radiation, to a good approximation. The result 

connecting the variation of Ma with the Bondi-Sachs mass loss formula was denved 

[79] using special assumptions which lknits the resdt to untrapped regions. A formula 

of this sort is useful for the derivation of the mess inflation phenornenon in the black 

hole intenor. In this section we will derive an equation for the normal Lie derivative 

of m ~ .  

The aim of this section is to produce an expression for i lArna.  Fint, it is useful to 

derive an expression for the normal derivatives of the dilations, DAIcB. The equation 



4.3. V r n T I O N  OF HAWhJNGS MASS 

can be derived from algebraic manipulations of the components 

equations normal to S. Fonning the combination GAB - gABGg 

by equations (353) and (3.54) and substituthg the definition 

(4.18), we h d  that 

of the Einstein field 

where GAB is given 

of the mass aspect 

The term represented by p is zero in spherical symmetry and negligible in an a s p p -  

totically fiat region of spacetime. In chapter 5 we will show that the term p is of 

order unity and that e" O at the Cauchy horizon of a black hole. The matris r ~ 8  

plays the role of an effective stress tensor for gravitational radiation. When the grav- 

itational radiation is highly blueshift ed, then the average of the t ensor 7-4a fi") ((B) 
over many waveIengths reduces to the Isaacson [29] effective stress tensor. 

Nom-, note the following identity for the normal derivat ive of the quant ity ri** K B  = 

-2K0K1 : 

&(K&~)  = ~ K ' ( D ( ~ K ~ )  + DpKq)  . (4.26) 

The antisymmetric term is related to the twist by equation (3.44), while the symrnetric 

term is given by contracthg expression (4.23) with K ~ .  

The normal derivative of Hawking's m a s  aspect can be calculated by operating 

directly on the definition (4.17). The resdt after making use of equations (4.26) and 

Equation (4.28) should be compared with the equation (2.32) derived in spherical 

symrnetxy The terms grouped together as vanish in spherical symmetry and will 
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1 3  

be negligible in the applications of interest to us. The tems grouped together as v.4 

vanish when integrated over S, 

The first term of Q vanishes as a result of the Gauss-Bonnet theorem and the second 

term is an integral of a divergence, which vanishes over a closed surface. 

Consider an asymptotically flat vacuum spacetime. Substituting in the asymptotic 

expansions (4.4) and (4.5) into (4.28), it can be seen that p~ = O ( l / r )  and 

which is the Bondi-Sachs mass loss formula (4.9). 

The normal derivative of Hawking's quasi-local m a s  can be computed, bj- subst i- 

tuting this result into the derivative of equation (4.19): 

Outside of a blacli hole, a specid foliation of spacetime by surfaces of mean 

cunmture can be made [79]. Surfaces of mean constant curvature have the 

. (4.32) 

constant 

property 

that 6 is a constant on the surface S, so that Da ln l2 = IL. -4s a result, the 

variation of Ma yields the Bondi-Sachs m a s  loss formula (791. Since outside of a 

black hole DOMB > O and Di & < 0, the m a s  increases as t increases (791. 
hjow, consider the variation of Hawking's mass in a region inside a black hole. 

close to its Cauchy horizon. The stationary Kerr metric, 

can be simplified on the axis of symmetry, where B = O. On the axis, the rnetric is 

Nul1 Eddington-Ken coordinates, similar to the Reissner-Nordstrom coordinat es (2.3) 
can be defined 

r2 + a* r2 + a2 
dv = dt + 

A 
dr ,du = -dt + 

A dr , 



and Kruskal coordinates, 

defined such that the metric near CH is finite, 

Compare the metric near CH with the general form of the double-null metric (3.14). 
In Eddington-Kerr coordinates, CH corresponds to the limit v 4 oo and the metric 
b c t i o a  eA = e-a- (~+~)  -- O. Suppose that a solution to the fidd equations in the 

interior can be written as a perturbation series around the stationaq- black hole 

solution. We would espect that close to the Cauchy horizon the metric function X is 
such that e-A -r m. Taking this limit in equation (4.28) we find that in vacuum. 

where u is the intemal retarded time (2.3). The right hand sides of equations (1.39) 

and (4.40) are positive since the components (4.24) of the effective stress tensor 

rqg are positive, and the dilations & axe negative. We are assurning that the 

event horizon conjecture [51] (which has only been proven in special circumstances) 

is generally true, so that the region inside an event horizon will always be trapped 

and the dilations must be negative. 

The positivity of the variations of n~ reveds that in the presence of perturba- 

tions, the mass must increase as the Cauchy horizon is approached. As well, as u 

increases dong the Cauchy horizon, the m a s  must increase. The increase in mass is 
independent of the form of the perturbations, as long as they are weak enough that 

the perturbation approaeh is justified, which is the case in the collapse of a star to  

a blacb: hole. Thus inside the bladi hole, the Hawking variational formula is a m a s  

gain formula. 
In the stationary solution X diverges linearly in the estemal advanced time, so t hat 

e - L  The shear of the ingoing null generators, ouab represents the perturbations 

of the interior caused by the incoming gravitational wave tail. The tail has the form 

of an inverse power law, avab - v-q/*, (q > O). These perturbations are scattered in 



the interior by the curvature in the hole. The backscattered radiation causes shearing 

of the outgoing ndl  generators (discussed in section 4.3) which has an inverse power 

law form cua6 - u-pI2. Substituthg these perturbative d u e s  for the shears and 
for X into (4.39) we find that as a nrst approximation, Hawking's mass will diverge 

exponentidy. 

This illustrates the duality between obsemtions made inside and outside a black 

hole formed by the collapse of a star. Gravitation al radiation emitted by the star as it 

collapses is partially scattered by the externd potential banfer. The gravitational ra- 

diation whidi is transmitted to J7+ carries mass away from the star, so that obsemers 

outside the forming black hole see the mass of the hole decreasing with an inverse 

power law in time. Obervers entering the blacb: hole and fdling fieely towards the 

Cauchy horizon see the Hawking m a s  increase without bound as the backscattered 

gravit at iond radiation is infinitely blueshifted. 

4.4 Variation of Hayward's mass 

Since H a w h g ' s  mass is not necessarily zero in flat spacetime, it is possible to cre- 

ate fictitious gravitational radiation by choosing a foliation of spacetime a i t h  non- 

spherical surfaces. In this section we will derive a variational formula for Ha-mard's 

m a s  which is always zero in flat spacetime. 

First, we define the diEerence between Hajward's mass aspect, ml, HawkiningS 
m a s  aspect, m ~ ,  .. 

Then the normal derivative of Am is 

This expression can be simplified by noting that the symmetric normal derivative of 

the shear is related to the Riemann tensor by equation (3.60). In particular. 



The antisymmetric normal derivative of the shear is given by the commutation rela- 

t ions (3.43) and (3.44). Some algebra reveais the result 

The h a l  result is that the normal derivative of m' is 

In an asymptoticdy flat region, the expansions (4.4) and (4.5) c m  be substituted 

into (4.46) to find 

The sign of this expression depends on the second time derivative of the magnitude of 

the gravitational perturbations. Consider the case of the coIIapse of a star to a black 

hole. Generically, a gravitational wave tail foms  which has the Price power lan- fail 
off at late time, 

ICI NU-/*, 8 + 00 (4.48) 

where p is a positive integer, typically p = 12 for gravitational radiation. Subst ituting 

the power law into the formula for the rate of change of Hayward's m a s ,  we find 

Hence, Hayward's m a s  increases (s1owly ) at late times aft er the complete gravit a- 

tiond collapse of a star. This property is rather counter-intuitive, and leads us to 

conclude that li4' is not a very good mesure of the gravitational mass of the space- 
t h e .  Clearly, this formula does not reproduce the Bondi-Sachs mass loss formula. It 

is not surprising that variation of Hayward's mass can't reproduce the usual law for 

the change in energy due to  gravitational radiation. This is because m' is a cornponent 

of the Riemann tensor. If we take a derivative of the Riemann tensor, the Bianchi 
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identities will relate the derivative to other components of the Riemann tensor. But 
the Bondi-Sachs formula relates the derivative of a m a s  to the effective stress tensor 

of gravitational radiation. The effective stress tensor is not built out of any compo- 

nents of the Riemann tensor, so it is impossible for the variation of Hayward's mass 

to depend on the effective stress tensor. For this reason, mf probably is not a ven  

good representation of the gravitational energy of the system. 

While the interpretation of m' as a m a s  is debatable, it does have an invariant 

geometrical meaning: it is the Coulomb component of the Weyl tensor. The solution 

of (4.46) can reveaI some information about the geometry of the spacetime. Consider 

the equation in the limit of the Cauchy horizon, as discussed in the previous section. 

In vacuum, the solution of (4.46), with uA = v is 

hm ReQ2 = hl m'Ir3 = - 3 -A ab 
v-a0 O--% 

e ou &,a. 
2 ~ 3  

(430) 

In a Petrov type D spacetime (such as a station- blad hole), the component &.are 

vanishes. The solution of (4.50) for a type D spacetime is that 92 is a constant near the 

Cauchy horizon of the spacetime. Now consider a spacetime which is a perturbation 

of a stationary blach- hole, so that kaWb is srnall, but non-zero. If ëA diverges faster 

than the rate that goes to zero, then the magnitude of the right hand side of 

(4.50) d l  diverge. Since we expect X to diverge linearly and the perturbation in 

the Riemann tensor to go to zero as an inverse power law, this argument leads us 

to suspect that the magnitude of the G2 component of the cunmture will diverge 

exponentially at the Cauchy horizon. The results of the next chapter d l  prove that 

this is the case. 

4.5 Wave equation for the mass 

In spherical symmetry, the derivation of a wave equation (2.33) for the mass function 

led to the conclusion that the introduction of perturbations to the interior will cause 

the internai mass of the black hoh to inflate exponentially as the Cauchy horizon is 

approached, signalling a c m t u r e  sîngularity. In this section we will derive a similar 

equation for Hawking's mass aspect which holds in a general spacetime. 

To begin, we remange the contracted Bianchi identiw (3.72) to the form of a 

conservation law for the stress tensor, 
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A similarequation for the efFective stress tensor can be derived. Taking the divergence 

of rAB as defined in (4.44) yields 

The first term on the right hand side of (4.52) is related to the traceless part of 

the propagation equation (3.95), while the second term is given by the commutator 

(3.43). The final result is that 

where the terms grouped together as a-4, 

are small inside the black hole or in an asymptotically flat region. 

It is now a matter of some algebra to fhd the two dimensional wave operator's 

action on m ~ .  Operating on (4.18) with the operator DA, and making use of equations 

(4.23), (4.51) and (4.53), we fmd that 

The terms grouped together in a.'') are terms which are zero in spherical sjmrnetry 

only if the stress tensor has the prope- that T = P = 0, 

The terms grouped together as a(') are zero in vacuum, 

The ternis grouped together as a(*) are small near the Cauchy horizon of a black hole. 



The wave equation (4.55) for r n ~  can be compared with the corresponding equa- 

tion (2.33) for the mass in spherical symmetry. Clearly, the two equations agree in 

the sphericai limit. The wave equation in sphericd symmetry can be inverted, as  in 
equation (2.36), since it is only two dimensional. Technicdy, equation (4.53) can 

not be inverted to solve for r n ~  in a general spacetime. However, consider again the 
perturbation approach discussed in section 4.3. In this approach we assumed that 

the metric functions of the perturbed solution are close to the stationary solution. 
On the axis of the Kerr solution, the shift vectors are zero, so to highest order, the 

nomal Lie derivatives reduce to regular partial derivatives, ie., DA - As stated 
earlier. in the stationary solution e - b  XI at the Cauchy horizon. h this approsi- 

rnation the solution becomes effectively two dimensional and the mass function can 

be appro-simated, in vacuum, by the formal solution of the integrai equation 

for r # O. Suppose that r n ~  is approsimated by the first tenn of (4.59). If the 

behatiour of the shear and X are as discussed in section 4.3, then as a first approsi- 

mation! equation (4.59) yields that 

It is easily vedied that mao,abo,ab is much smaller than the first term of (4.59). 
This handwaving discussion suggests that the effect of perturbations propagating 

in the interior is to cause r n ~  to diverge exponentidy near the Cauchy horizon. In 
order to make this solution for the rnass funftion more ngorous, it is necess- to 

solve the characteristic initial value problem for the interior of a general black hole. 

We will do this in the nest chapter. The result is that we find the m a s  function does 

diverge approximately as described by equation (4.60). 

Conclusion 

In this chapter we have discussed the problems associated Mth defining a local energ' 

density for the gravitational field. Although it is impossible to define a local gravita- 

t ional energy density, the quasi-local definitions made by Hawkng and Hayward have 

many of the characteristics which we would expect such an energy density to have. 



We have derived equations for the normal Lie derimtives of both quasi-local masses 
and a wave equation for Hawking's mas.  We have shown that general arguments 

based on the behaviour of perturbations in a black hole spacetime suggest that the 
magnitudes of both mass definitions will diverge at the Cauchy horizon of a perturbed 

black hole. Since Hayard's mas is a curvature invariant, its divergence signals the 
presence of a curvature singularity at the Cauchy horizon. In the next chapter we will 

solve the characteristic initial d u e  problem inside the black hole and show- that in 

general, a curvature singularity does form, as suggested by the arguments presented 

in t his chapter. 



Chapter 5 

The generic black hole singularity 

The principal goal of this thesis is to describe the interior of an isolated black hole 
formed from the collapse of a rotating star. The exterior geometry of the black hole 
is given by the stationary KemNewman family of solutions. How deep into the biack 

hole does the Kerr-Newman solution approximate the intenor of a perturbed black 

hole? As dïscussed in chapter 2, the analytic extension of Kerr across the event 

horizon has an unphysical timelilre singularity which lies behind a Cauchy horizon. 
As in the static Reissner-Nordstrom solution, the Kerr Cauchy horizon is a surface of 

infinite blueshift, where the energy of perturbations measured by free falling observers 

diverges [26, 801. The aim of this chapter is to present a bakeaction calculation in 
which the effect of the blueshifted perturbations is taken into account. 

The causal structure of the Kerr black hole is similar to the Reissner-Nordstroni 

black hole. In chapter 2 we found that general spherical perturbations of Reissner- 
Nordstrom resdt in a nul1 scalar curvature singularity forming at the location of the 

Reissner-Nordstrom Cauchy horizon. This singulazity acts as a brick wall rendenng 

the extension of the spacetime beyond the singularity meaningless. 
The assumption of spherical symmetry in chapter 2 plays a minor role compared 

to the causal structure of the black hole. For this reason, it might be evpected that 

a sirnilar singularity ail1 be found at the Cauchy horizon of Kerr when perturbations 

are present. In the analysis of this chapter the results of chapter 2 m31 be used as a 

guide. 

The key question is whether the spherical backreaction models are stable to per- 

turbations. It has been observed that the blacb: hole interior is isomorphic to the inter- 

action region of a colliding plane wave spacetime. Since the Cauchy horizon in a plane 



wave spacetime is unstable to perturbations and is genericdy replaced by a spacelike 

singulaxity (see figure 1) [81], it has been suggested [30] that a similar phenomenon 

may also occur inside the black hole. Although this is a nice argument, no analyti- 
cal baclireaction calculation has shown any evidence of an all-encompassing spacelike 

singularity. In order to discuss this argument, we introduce a plane wave metric 

and consider plane symmetric perturbations of Reissner-Nordstrom . The plane wave 

analysis also serves as a simple model, whifh is a remarkably good description of the 

general black hole solution which will be presented later in this chapter. 

Several calculations have suggested that the null singulari~ found in spherical 

symmetry may be a generic feature of black holes formed by gravitational collapse. 

Bonanno(821 matched two Kerr solutions dong a thin nul1 shell in the intenor and 

showed that the mass diverges dong a null hypersurface. His analysis assumed that 

the hole's angular momentum is s m d  and thus can't be considered a generd solution. 

Ori [83] has s h o m  that gradients of the rnetrk perturbations of the Kerr solution 

diverge at the Cauchy horizon, suggesting that a null singularity forms. Brady and 

Chambers [84] have solved the Einstein equations on the Cauchy horizon and an 

intersecting null hypersurface. Their solution shows that a singularity foms on the 

Cauchy horizon, but they did not evolve the equations off the initial characteristics. 

Recent results of Ori and Flanagan [85] show that the Einstein equations admit a 

genenc farnily of null spacetime singulacities. The arguments presented in section 4.5 

of this thesis suggest that the backreaction of perturbations in the Kerr black hole 

NiIl cause Hawliing's quasi-local mass to diverge. In a general spacetime the Weyl 

curvature is not uniquely detemined by the m a s ,  as it is in spherical symmetry, but 

this suggests t hat a curvature singularity may form. 

Our method is to model the innermost region of the bladr hole by solvhg the 

Einstein equations for a completely general metric near the Cauchy horizon. This 
complicated task can be simplified by noting that the structure of the bladc hole 
interior is i dedy  suited for a double-nuli decomposition of the spacetime metric. 

Applying the 2 + 2 formalism of chapter 3 to the interior problem results in a sim- 

plification of the Einstein equations and allows us to find a solution near the Cauchy 
horizon. We shall show that the initial conditions given by the collapse of a star 

lead to a null singular solution with the requisite number of arbitrary functions to be 

considered general. Al1 components of the result ing Weyl curvature tensor diverge 

at CH. As the singularity is approached, the Kretschmann invariant is dominated by 



the Qo, \Y2 and q.4 components of the Weyl tensor. 

We fmd that close to the Cauchy horizon, the metric is approximated by a simple 

plane symmetric spacetime with a null shock-like singularity. The resulting picture 

is of a collision of ingoing and scattered gravitational radiation interacting wit h the 

geometry to create a lightlike singularity. The singdarity is d d  in the same sense 

as was found in sphericd symmetry: the metric can be written in coordinates whicli 

leave al1 cornponents finite and non-zero. Thus, tidal distortions of observes remain 

finite at the singulularity. 
The organisation of this chapter is as follows. In section 1 we discuss the general 

collapse problem which provides the initial conditions for the blad; hole interior. In 
section 2 we discuss the plane wave approximation on which the general solution 

presented in section 3 is based on. 

5.1 Collapse with angular momentum 

The general features of the collapse of a star with anguiar momentum are similar to 

the non-rotating collapse discussed in section 2.2. The gravitational field of a rotating 

star may be very complicated but after it has settled into a stationary state, the black 

hole's exterior gravitationai field is completely described by its total m a s ,  electric 

charge and angular momentum. 

Pnce's analysis [Il] of the radiation of the star's inegularities was done on a 

spherical background which is only valid for coliapse with zero angular momentum. 

However, the presence of the power law tails is due to the power law behaviour of the 

cwature  potential at large distances away fiom the blacl; hole. The large distance 

behaviour of the Kerr potential is similar, so it is expected that power law tails should 

develop [19]. 

A recent numencal integration has shown that in the linear approximation pon-er 

law tails do develop in the extenor of the Kerr solution [20]. In this study, it was 

found that for slow rotation, tails develop almost exactly as they do in spherical 

symmetry. The analysis for quiclily rotating bla& holes is complicated by the miving 

of different 1-modes. The study showed that the dominant tenn in the 1 = 2 mode tail 

has angular dependence at intermediate times, but this dependence dies out at late 

times. The late time behaviour is a power law, t-p, with p - 2.9. If the background 
were spherically symmetric, p = 7. However, the value of p is unimportant for our 



andysis. The important point is that the power law form is generic. 
The analysis of scattering on the spherical black hole's exterior [21. 221 showed 

that the power law wave ta& enter the black hole. While this has not been esplici tly 

shown for the power law tails which develop outside of Kerr, the spherical analpis is 

generd enough to suggest that the power Iaw tails enter the Kerr blacli hole. 

An important effect is the propagation of the wave tail in the bladt hole interior. 
The Kerr potential is more complicated than Reissner-Nordstrom, but for lon- enerz- 

modes the potential appears qualitatively similar. The scattering occurs for these 

modes in a thin band at a radius much larger than the Cauchy horizon. Since the 

scattering will occur long before the modes are infinitely blueshifted, the results of 

scattering on a stationary background[86, 87, 801 ttdl serve as  a reasonable appros- 

imation. We expect then that near the Cauchy horizon, for late times, the metric 

perturbations fall off in an inverse power law. On's analysis [83] of the metric per- 

t urbations confirms t his picture. 

5.2 The plane wave approximation 

The spherical mode1 of the bla& hole interior has several key features whicii shoulcl 

be typical of the generic situation. Gravitational collapse will generally produce 

a nie& tail of gravitational radiation which is backscattered into the hole. Thcse 

wealc infalling perturbations ndl appear to be infinitely blueshifted to freeiy falling 
observers at the Cauchy horizon of the hole. The Cauchy horizon of Kerr-Seman is 

characterised by a surface gravity n- which is independent of the angular coordinates 

0 and 4. This suggests that the exponential blueshift function will be independent 

of angular location on the Cauchy horizon. The influx will interact ~ 4 t h  the the 

cumature as it propagates inwards, producing a scattered outflux of the form modeled 

in the previous section. It seems reasonable that a nul1 curvature singularity will also 

form in the generd case when the backreaction of the wave tail is talien into account. 

-4 simple model of the black hole interior can be developed by approxirnating 

the incoming and scattered gravitational radiation a s  plane gravitat ional waves. The 

region near the black hole's Cauchy horizon is modelled as a colliding plane wave 

spacetime. As we shall see in the next section, this is more than a toy model: the 

dominant t e m s  of the generd solution are identical to the plane wave spacetime. 

On length scales, I ,  which are much smaller than the Cauchy horizon radius r-, 
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the Cauchy horizon appears locdy to be flat. To be specific, talie the two-sphere at 

the Cauchy horizon &O2, and transform to coordinates x, y defined by 

so that r:dQ2 - dx2 + dg. 
Thus, close to the Cauchy horizon, the static black hole interior can be approsi- 

mated by the metric 

where r = r(u, v). Cauchy data placed outside of the hole can only be evolved as far 

as the Cauchy horizon at  r = r- where f,(r-) = 0. 

Son- consider perturbations of this metric, corresponding to a collision of plane 

parallel polarized gravitational waves propagating in the interior [88] 

n-here A, r, 0 are only functions of u". Our aim is to test the stability of the Cauchy 

horizon at f,(r-) = O under gravitational perturbations. If it is stable, it wii1 hc 

possible to find a solution to the vacuum field equations which to leading order is of 

the fonn eA -. f,(r-) and r .- r-. The metnc (5.3) has only one degree of freedom. In 

order to mode1 the non-linear aspects of the gravitational radiation, it is necessary to 

introduce a second degree of freedom, the function 7(uA). The metric can be mi t t en  

in a standard form [81] 

which represents plane-symmetric gravitational waves. 

The details of the choice of two-metnc are unimportant. We will write the plane 

wave metric in a l es  coordinate specific way, 

where h.b has two degrees of fieedom, since we define det hab = 1. Comparing witli 

the standard form (3.14) of the 2 + 2 metric, we see that 
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The two dimensional Ricci scalar vanishes, as a result of the plane symmet- The 

extrinsic curvat ures are 

The vacuum Einstein equations can now be e d y  written using the double-null equa- 

tions derived Ïn chapter 3. 

Figure 10: The characteristic initial data problem for the black hole in- 
terior. Initial data (four huictions of three variables) are placed on the 

initial characteristics AF and AB and evolved using the vacuum Einstein 

equations to the final characteristics DF and DB. The initial data corre- 

spond to gravitational radiation which has been scattered b>* the black 

hole's interna1 gravitational field. 



Initial condit ions for the gravitational perturbations are given by specifying the 

form of the conformal metric hab on the initial characteristics Co and S1 (see figure 

10). Equivalently, o1.b can be specined on Co and floab on CL. The goal is then to 

evolve the shear off the initial characteristics using the C N P  integration procedure 

explained in section 3.7. 
Before solving the CIVP, we should consider the gauge &dom in the choice of 

null coordinates uA. Consider the vacuum propagation equation (3.94) 

The solution for ?- depends on two arbitrary hinctions of one variable, 

r2 = f (ao) + g(ul) + constant . 
The abitrariness in f and g is a manifestation of our fieedom in choosing coordinates 

uA. Our aim is to study the stability of the spherical solution to plane-symmetric 

perturbations. For this reason we choose r2 to have the same form (2.58) as was 

found for the spherically symmetric solution, 

In chapter 2 we solved the equations using Kniskal coordinates, in which dl compo- 

nents of the metric are finite and non-zero near the Cauchy horizon. In this chapter 

we choose to use the Eddington-Finkelstein coordinates u1 = u and uo = v (2.3) for 

the reason that in these coordinates, the static rnetric has e" fs (r). At the Cauchy 

horizon e* -+ O. In the general solution we wiU exploit this fact in order to espand 

the general equations in powers of e*, which will be small. 
In this coordinate system, the functions A and B are 

As initial conditions, we assume that the shear 

scattering on a stationary background. We define 
is detennined by the results of 

shape functions a(u) and b(v) 

which describe the initial behaviour of the perturbations, 
n, 

( b ' ( ~ ) ) ~  := -2B' (~)  - (tc-v)-9 
4ar- 

K, 
( ~ ' ( u ) ) ~  := TA'(u) - (-LU)-p . 

4m, 
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The sheax of the ingoing nuii rays initially has the value 

where Zab is a constant traceless two-tensor. Similarly, the initial value of the shear 

of the outgoing null rays is 

O W ~ ( U ,  V O )  = xbar(u) (5.13) 

where Y,,, is constant and traceless. 

The hyperswface equation (3.89) on Cl can be rearranged to  form a first order 
ODE for A, as long as Kv # O, (which is always tme inside a black hole), 

where the positive definite nom is defined by 

Substituting the initial conditions (5.14) and (5.15) on CL into the huypersur£'ace equa- 

tion, we find that 

1 2 2  A(uo, u )  = A. + - Inr /ro + In lBt(u)/B'(v0)l - L(V - q) , 
2 

(5.18) 

where the subscript O refers to the value of a function on the initial surface %. ne 
have used the freedom to rescde u by a positive constant to set the coefficient of c in 

the last term of (5.18) to K-. The rescaling is equident to setting 1 212 = 8 r .  This 

solution shows that on the initial surface Lm,,, e" O. 

Similarly, the subsidiary equation RiI = O can be solved on ,Po, yielding 

It remains to evolve the shear to Iater hypersurfaces u > uo. If the power law 
behaviour remains, integration of (5.16) will result in a generd solution for X with 

bebaviour similar to the initial value (5.18). The gravitational degrees of freedom are 

propagated by the traceless equations (3.95), 
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This is a non-linear coupled system of equations for the two degrees of freedom de- 
noted by hab. In general, no closed fonn solution of (5.21) is known, however, global 

existence and uniqueness has been proven for these equations (811 in the case of col- 

Ming plane gravitational waves. 

When ha, is diagonal, as  for the simple pardel  polarized gravitationai w e  space- 

time (5.3), the equation for hab has an exact solution. h this case, uA,' = = 
&,û and equation (5.20) is linear and reduces to 

which can be solved in tenns of Hanlrel iunctions of zero order, 

The solution (5.23) cm also be written as a function of the initial data [88] which 

demonstrates that given power law initial data, p continues to have a pon-er law f o m  

when evolved off the initial characterist ics. 

The evolution of the shear off the initial hypersurfaces controls the cliaracter of 

the metric. For the square of the shear 1a.l makes a contribution to the h-ypersurface 

equation (5.16) which must be solved on the Iater hypersurfaces u > uo. If the 

shear continues to have a power law behaviour on the Iater surfaces then a solution 

very similar to the mass inflation singularity will result. If the shear should develop 

singular behaviour, then the mass inflation picture will not be stable. We can prove 

the following theorem concerning the behaviour of the shears. 

Theorem: 1 If the initial data for the shears are such that 

i) cv is an inverse power law in v on the hypersurface u = uo, 

ii) a, is an inverse power law in lu1 on the hypersurface v = vo , 

and the solution for r2 is given by (5.10), then the leading order sohtion of the 

propagation eqwtions (5.21) yields a power law behaviour on later hypersurfaces u > 
uo and v > vo. 

ProoE In chapter 4 we introduced an effective stress tensor for gravitation TAB (4.24) 

which has components given by 
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Using the traceless part of the propagation equations Rab = O, we derived a "conser- 

vation" law (4.53) for TM which has the exact form for the plane wave metric 

If the right hand sides of (5.26) and (5.27) were zero, then it wodd be possible to 

show that the evolution of the shear presenes the power law decay of the m e  tail. 
-Uthough the right hand sides of these equations are not zero, it is not ditficuit to 

fùid an upper bound for 10~,~nt~1. 

First. defbe the function 

F = oUabovab. (5.28) 

htegration of (5.26), making use of the initial condition (5.14) and the solution for 

rZ (5.10), yields the equation 

Similady, integration of (5.27) yields 

Consider the Schwartz inequality 

When the *O-metric 9.6 is diagonal (as in the plane wave metrïc (5.3) with one degree 
of freedom) the equaiity holds. Substitution of the solutions (5.29) and (5.30) into 

(5.3 1) yields the inequality 

n-here the positive function p2 is defined to be 

Suppose that at the point (u, v )  = (u', v') in ABDF the function has its maximum 
value, [,., = C(uf, d) .  Then the foIIowing inequaüties me satisfied 
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where the coefficients a, p, 7 have been defined by 

2 f f  a = i - j i  ( u , v ) ( u ' - Z I ~ ) ( V '  -a) 
2 f l  p = rc-/A (u , v ) ((u' - u*) + (a' - uo)) > O 
2 f f  r = & ( U , V ) *  

From the inequdity (5.35), it can be seen that there are two cases: 

a < O If a is negative, then (5.35) can't be used to place a bound on Lac. 

a > O En this case the upper bound on cm, is 

In order to determine the sign of a, it is necessary to consider the magnitude of 

the term $(ut - uO)(d  - uo) which appears in the coefncient a. The functions 11 - 1  
and 121 are bounded and approsimately of order unity. The diamond ABDF of figure 

10 is the region where lu1 5 v and the magnitudes of both coordinates are large: ie. 

K- lu1 - K-o >> 1. AS a result, the hinctions af(u) - bf ( v )  << 1 and the radius r 
(5.10) and is always close to the d u e  of the Kerr Cauchy horizon radius, r .- r- . 
The characteristic Iength of the segment AF is approximately r-, so that at most. 

(uf - uo) 5 r-. Hence 

IZlthough the interval (v' - vo) can be infinite, this does not have a disastrous effect. 

since 
t 

Making use of these two inequalities, we can mite 

Substituting (5.39) into (5.36), it is clear that a - 1 and tmaz is @en by (5.36). 
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Since p is very smaU everywhere in ABDF, we can expaad (5.36) to lowest order 

in p to approximate 
2 2 Cmor - - ~ r - p  << r- . (5.40) 

This d o w s  an estimation of the upper bound for at  any point in ABDF by neglecting 

the integrah in equations (5.29) and (5.30). The function then satisfies 

which is the required bound on c. Hence, by elementary calculus, equations (529)  

and (5.30) have the solutions 

The result is that when the initial data for the shear is of the Price inverse power 

Iaw fom,  the evolution preserves the power law fd off at Iater characteristic slices. 

QED. 
The prediction of the theorem has been verified numericaily [go] with initial data 

which include perturbations of a power law. Substitution of the solution (5.42) into 
the differential equation for X on dices u > uo and matching with the b o u n d q  data 

on Co, we find that the general solution for X is 

The general solution for the conformat metric can be found by integrating (5.8). 

while the determinant of the two-metric is 

This solution is singular in the limit v -t cm, as  can be seen by substituting the 
solution (5.44) - (5.46) into the cornponents of the Weyl tensor, (3.63) - (3.68). The 
components !Pi and !F3 are identically zero. The non-zero components, 
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The asymptotic behaviour of the square of the Weyl tensor is 

The cuntature diverges exponentially in the Iimïr u -+ m. 

The gravitational wave tail, b(v), which enters the black hole is infinitely blueshift ed 

at the Cauchy horizon. When the tail interacts with the scattered radiation, a(u), 

transversely crossing the Cauchy horizon, a gravitational shock wave forms, creating 

a cunmture singularity. The specific form of the Eunction a(u) is unimportant. The 
importance of the scattered radiation is that it serves as a catalyst. If a(u) = O. then 

!Po is the only non-zero component of the Weyl tensor and the square of the Weyl 

tensor is zero. The absence of scattered radiation produces a coordinate dependent 

singularity. As long as a(u) # O the Kretschmann invariant diverges at the Cauchy 

horizon. The blad: hole's cunature will always scatter the incoming radiation. so in 

generd the b c t i o n  a(u)  will never be zero for all u. 

It is known [88, 81) that the general singularity formed in the collision of plane 

waves is spacelike. It may seem counter-intuitive that our solution which describes a 

collision of plane waves has a lightlike singdarity- Yurtsever's theorems [88j descnbe 

the behaviour of the metric (5.3) close to r = O. By studying the solution for '3 
(5.23), he has proved that under generic perturbations of 9 a spacelike singularity 

forms at r = O and that no other singularities can precede it. But this is only tme 

if in the unperturbed spacetime the initial characteristic u = uo extends as far as 

r = O- Contrast this ~ 5 t h  the case of a black hole. Inside of a black hole, initial data 

can only be evolved as far as the Cauchy horizon at r = t- # O. In other words. the 

initial characteristic necessarily ends at r = r-. The point is that a Cauchy horizon is 

a relative concept: it depends on the choice of initial Cauchy surface (891. A Cauchy 

surîace in the Reissner-Nordstrom exterior is not equivalent to a Cauchy surface for 

the interior (including r = O) of Reissner-Nordstrom. 

5.3 The general solution 

Our approach is to mode1 the region dose to the Cauchy horizon using the metric 

ds2 = -2eAdudv + 2s,dudOa + g a b d ~ a d ~ b  + s,s'du2 (5.49) 
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where the six metric functions are fiuictions of a.il four variables. The double-nul1 
formalism of the previous section is a natural choice to decompose the Einstein equa- 
tions to a tractable form, since the Cauchy horizon is a null hypersurface. Iising this 
formalism we wili show that in the limit of the Cauchy horizon the metric reduces 
to the form (5.5) of the interacting plane waves which we examined in section 5.2. 
This is not surprising since we are essentialiy studying the interaction of gravit at ional 
radiation in the black hole interior. 

If the Kerr metric is written in n d  coordinates u and u (defùied in equation 
(4.35), then the g,, component of the metric takes the form 

is the surface gratity of the inner horizon. Thus we see that in this coordinate s ~ t e m .  

close tu the inner horizon the metric function e-* - en-(uiV) + OC. This suggests 

that all  factors of e-"e pulled out and the Ricci tensor be espanded as the senes 

A solution of the vacuum field equations asymptotic to the Cauch~ horizon is found 

by solving the equation RF, = 0. 

In this limit, the vacuum field quations (3.53) - (3.55) reduce to a form similar to 

the field equations for a plane wave spacetime. The similarity will be esploited in the 

solution of the characteristic initial value problem ( C M )  which will be presented in 

t his section. 
The new complication, as  compared to the plane wave spacetime of the previous 

section, is that we do not assume that the spacetime has any syrnmetry. Ai1 six metric 

functions depend on the four spacetime coordinates. In addition to the four metric 
functions X and g,b of the plane wave spacetime, the generd spacetime has a shift 

vector sa. As a result, the four equations RA. = O are not trividly satisfied. 

Our notation and generd method for hding a solution na1 be identical to the 

analysis presented for the plane wave spacetime. 

The hypersurface equations 

In the discussion of the plane wave spacetime, we made a number of remarlts about the 

espected behaviour of the initial data. W e  assume that on the initial characteristics, 



5.3. THE GENERAL SOLUTION 91 

the gravitational perturbations can be expanded in an inverse power series in the 

advanced t h e  u, 

oVab(uo,v.ea) = ( ~ - ~ ) - q / * ~ ~ = ~ = o o ~ ( e ~ ) ~ - ~  - zab(oa)b'(u) , (5.52) 

where the function b(v) (5.13) describes the shape of the tail, to highest order and 
the t racek~s  two-tensor Zab 

The two-metric is split 
function r (xQ)  introduced, 

is now a function of the anguiar coordinates Ba. 

as before into ga6(xa) = & ~ ) h & " ) ,  and a scaiar 

t (5.53 j 

where the subscnpt 'O' denotes the value of a function on the initial two-surface So. 

The shear and dilation of the ingoing null rays are related to the two-metric by 

Our .Ansatz is that the u dependence of rZ on the initial surface C(') in these coordi- 

nates should be the same as in the plane wave mode1 (5.10) 

where B(v) is given by (5.12) and the hinction Kvo is the value of the dilation at So. 
Since the black hole interior is a trapped region, the diiation is negative for all values 

of the anguiar coordinates. 

The value of the function A on c(') is given by the solution of the hypersurface 

equation a, = O, which is the same equation (5.16) for X in the plane wave spacetime. 
The solution, given the initia data for the shear and dilation, is 

Note that the solution (5.58) for the function X in the general case is very similar 

to the solution (5.18) for X in the plane wave spacetime. The main difference is the 
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appearance of an arbitrary function of angdar coordinates, tc@a). Since B ( u )  is 

a positive function, the function K, is positive definite. .As a result, the function eA 

diverges in the Iimit v -.r oo on the initial surface c('). If is not constant, then 
the strength of the divergence of eJ at CH will depend on the angle at which the 

horizon is approached. It follows fkom (5.57) that the rate of change of X with respect 

to angdar position diverges, since 

This situation is very dinerent fkom that of the spherical black hole, where the di- 

vergence doesn't depend on angle. Hoivever, we will soon prove that the evolution 

equations constrain K~ to be a constant. 

We turn nonr to the constraint equations &, = O, which are identically zero in 

the plane wave spacetime. These can be nrritten as a first order ODE for w,: 

Once the two-metric gab is specified on So the two-dimensionally covariant derivat ive 

(denoted by ;) is defined. Substituting in the asymptotic behaviour of the initial data. 

this equation can be integrated to yield, 

where w;(Ba) is an integation function. Since the twist is related to the shift vector 

by (3.83), we have the result 

where the form of the tast term was chosen to set sa = O on v = vo. The results of 

equations (5.61) and (5.62) show that the shift and twist vectors are exponential1~- 

suppressed on W. 

The subsidiar y equations 

The procedure for solving the subsidiary equations a, = &a = O on Co is similar 

to that for the hypersurface equations. We have made use of the coordinate freedom 

(discussed in section 3.6) to set the shift vector to zero on zo. As a result. the shear 
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and dilation of the outgoing n d  rays on Co have the same simple form as equation 

(5.54) and (5.55) with v replaceci by u. Off Co, the shear and dilation are more 

complicated, since the shift vector is not zero. 

The initial data for the shear are 

where Yub is traceiess and a is given by (5.13). The Ansatz for the form of the function 
r on Co is that it tabres the same functional f o m  as in the plane wave spacetime! 

a-here A(u) is given by (5.11) and the (negative definite) function Ir4 is the value of 

the dilation at So. 

The equation Ku = O on Ca is exactlu the same as the equation for the plane 
wave spacetime. The solution for X on Co is 

where tcU is positive definite. 

The d u e  of the twist on Co is given by the solution of the equation &, = O. The 

formal solution is 

To summarise, we have shown that once the functions gab9 &sa, &r2, &r2 and X 

are specified on So and o,b, o,.b on the initial charactenstics, the constraint equat ions 

on the charactenstics are satisfied. 

Solution of the propagation equations 

The propagation equations (4&ab = O (3.95) may appear rather complicated. How- 

ever, we have just shown that on the charactenstics, wa - sa - eA, which allows the 

expansion of the field equations (5.51) discussed earlier. Our procedure is to assume 
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that a solution for X of the form given by the solutions (5.66) and (5.57) on the ini- 
tial hypersurfaces holds eveqwhere near the Cauchy horizon so that X -+ -oo and 

eA -+ O. We s h d  show that this assumption is self-consistent . 
We first apply this limit to the two dimensiond trace of the evolution equations: 

The term e-Uwawa - O(1). The dilation is I(, = au ln? + O(eA), and the Lie 

derivative operator is Du = a, + O(eA). Hence the Ricci tensor is split into the terms 

The solution of the zeroth order vacuum equation gab (4~( tb)  = O is 

which satisfies the initial Ansatz (5.56) and (5.64). 

For self-consistency of the field equations, it is necessary for the lower order terrns 

of the Ricci tensor to vanish, i.e., f l b  (4)~i) = O. W terms in (5.70) are of order unity. 

except for the first two, since as shown in equation (5.59), the function A ,  diverges 

at the Cauchy horizon. Taking the limit of the Cauchy horizon in the lower order 

field equation, we find that 

This equation has a solution only if 8.6 = O. Rom its definition (j.j8), tcV is positive. 

so the freedom to rescale the coordinate v by a positive constant allows us to set 

This is the important result that the field equations force the metric functions to 

diverge uniformly. The singularity is equally strong at any value of da on the Cauchy 

horizon. This result makes sense intuitively, since the infinite blueshift in the Kerr 
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bladr hoie is controlled by the surface gravity of the Cauchy horizon which is a 

constant. A simila. restriction can be placed on the function Ku by considering the 

behaviour of equation (5.68) in the limit that the initial surface Cl is rnoved bacbvaxds 
to earlier times, uo -, -m. The result is that K, must be constant, and can be set 

equal to L. This places a restriction on the initial values of the dilations and 

Kuo, since they axe related to and tc, through equations (5.58) and (5.66). As a 

result the general solution for r2 will be 

The final propagation equation to be considered is the traceless equation (3.93) 

which controls the shear. In the E t  eA - O (3.96) reduces, in lowest order. to 

the propagation equation (5.21) for the shear in the plane wave spacetime. The 
conservation laws (4.53) for T ~ B  reduce in this iimït to 

The theorem presented in the preilous section applies to this case, if we make the 

trivial change that al1 functions depend on Ou and that the tensors Yas(Ba) and Zas(Oa) 
are bounded. The result is that the right hand sides of (5.75) and (5.76) are always 

s m d  in the diamond ABDF of figure 10 and these equations can be integrated to 

show that the shear maintains its initial power law behaviour, as in equations (5.42) 
and (5.43) for the shear in the plane wave spacetime. Integration of the hypersurface 

equations yields the solution for X found in the plane wave spacetime. 

To summarise, the solution of the vacuum field equations, aspptotic  to the 

Cauchy horizon (v 4 oo), is given by the metnc functions: 

A, - IF-(V + u)  + ln r/ro + ln(rl'(u) B' ( v ) )  - h(R(uo) Bt(v0)) + O(ab) 

where xb(Ba), Zab(Oa) are restricted by ydgab = Zabgab = O. First order quantities 

derived fiom the metric functions are 



The fimctions A and B are given by (5.11) and (5 -12) and the funetions a and b are 

defined by (5.13). 
The components of the Weyl tensor can be found by substituthg this solution 

into the formal expressions (3.63) - (3.68). To highest order, the components are 

The asymptotic behaviour of the square of the Weyl tensor is given approsimately 

by the product ikoQ4, 

The curvature diverges exponentially in the limit v - m. 

The solution will still be valid when matter is present if the stress tensor has the 

following asymptotic fall-off near the Cauchy horizon: 

where TL; is of order unis. 

5.4 Conclusion 

The general description of the black hole singularity that we have presented here is 

remarkably similar to a lightlike shock wave singularity fomed by the interaction of 

highly blueshifted gravitational waves. It is reasonable to assume that in the collapse 

of a general rotating object to form a black hole, scattering of the perturbations on the 
background geometry should cause gravitational wave tails of the Price f o m  to enter 

the black hole. On physical grounds one would expect the influx of gravitational waves 



to be infinitely blueshifted at the black hole's Cauchy horizon and to cause a cunature 

singularity to form. In section 5.3 we have ptesented a solution of the Einstein 

equations for a metnc with six functions of four vazïables. Under the assumption that 

the initial perturbations fd off with the Prke Iaw we have shown that it is possible 

to find a solution of the field equations asymptotic to the Cauchy horizon. A simple 

model of the region of the general solution near the Cauchy horizon is the paralle1 

pohrized plane wave metnc. At the Cauchy horizon, we fmd that the cmature 

invariants diverge. The curwrture singularity is lightlike and weak with a simple 

st mcture reminiscent of the sphericdy symmetric mass inflation model. .Ut hough 

gravitationai mass is not well defined in non-spherical spacetimes, the concept of 

quasi-local m a s  can be useful. We have shown (in chapter 4) that the mass aspect 

function and Hawking's quasi-local m a s  diverge at the singula.rïty. For this reason it 

is reasonable to refer to this solution as  mass idation. 

The simple form of the m a s  inflation singdarity should be contrasted -5th the 
strong spacelilie and oscillatory singularity of BKL. It is expected, t hough? t hat as 

gravitational radiation transversely crosses the Cauchy horizon, its generat ors will be 

eventually focussed (through the Raychaudhuri equation) to zero radius. At this point 

the singulaxity would becorne spacelilie and possibly of the BICL form. The solution 

presented in this chapter should be thought of as a null precursor to a stronger 

spacelike singularity. 



Chapter 6 

Quantum effects in the black hole 
int erior 

It has often been suggested that the inclusion of the backreaction of quantum fields on 

classicdy singular spacetimes could tend to weaken singularities. This is due to the 

loophole in the singularity theorems [2] which prove that the complet e gravit at ional 

collapse of a star generically produces a singdarity. The theorems require t hat matter 

obeys the dominant energy condition. Classical matter always obeys this condit ion. 

but it is possible for the stress tensor of quantum fields to violate the condition without 

violating the conservation law VpTE = O. This opens up the possibilitj- that when 

quantum effects are considered, the collapse of a star may not necessarily produce a 

singularity. 
Quantum effects near classical singularities rnay be important for another reason. 

Recall that the notion of a continuous manifold requires that the measurement of 

position be made arbitrarily precise. However, through the Heisenberg uncertainty 

principle, particles with Planck scale momentum will be produced if length scales of 

the order of the Planck length cm) axe probed. The badrreaction onto the 

geometry of these particles would cause such a large fluctuation in the curvature 
that the classical picture of a continuous m d o l d  will probably break d o m  [91]. 

One of the signatures of a singularity is that the Riemm curvature diverges. If 
the characteristic length scale of the spacetime is defined as t? - 1 Rap7sRa076]-i14? 
then close to a singularity e will approach the Planck length. Hence, we expect that a 

purely classical description of a s i n g u l w  cannot be adequate and a quantum theory 

of gravity must be invoked. 



The implication is that the classical mass inflation scenario describing a rotating 

black hole's singularity is not cornpiete. In the preceding chapters we ignored the 

contribution of quantum effects to the black hole singularity. .4t moderate curvatures 
the classical approach is justified, for causality protects us tkom the region of strong 
curvature. Since the singuIaïity is lightlike, curvature increases as t h e  increases so 

that the region of Plandcian curvature descnbed by the unlrnown quantum theory 

of gravity lies to the hiture and cannot influence the region of moderate curvature. 
However, in the region of rnoderate c m t u r e  where classical relati\ity is still a good 

description, effects such as the production of elementary particles and vacuum polar- 

ization may contribute sigdicantly to the curvature of spacetime. 

It is held by many that quantum gravity should have a self-regulatory effect (921. 
Le., that quantum effects shodd help to weaken singularities. However an exarn- 
ination of the literature does not produce any definite proof of any self-regulato- 

property- The effect of quantized fields on other spacetime singularities produced 
by gravitational coilapse has been considered by various authors. Ford and Parker 

(931 studied the production of particles by naked singularities, alt hough they didn't 

calculate the backreaction of the created particies on the geometry. They considered 
shell crossing singularities and showed that quantum effects do not tend to remove 

the singulazity. They also examined the le1 > m Reissner-Nordstrom solution and 

showed that the singularity is not damped, but that quantum effects may cause an 

event horizon to form. Frolov and Vilkovisky [94] studied the collapse of a spheri- 
cally sjmmetric nuU shell governed by a quadratic effective Lagrangian. They found 

evidence suggesting that the coliapse to r = O can produce a regdar solution. Ander- 

son, Brady and Camporesi [95] calculated the effects of vacuum polarization in the 

homogeneous mass inflation model (HMI), briefly discussed in section 2.9. The HM1 
model is a simplified model of the spacelike r = O singularity which joins to the m a s  

inflation singularity. They found that the effect of vacuum polarization is to intensif- 
the strength of the singularity. 

In this chapter we will calculate the expectation value for the stress tensor of 

quantized fields propagating on a simple mass inflation background. We Nil1 work 

in the semi classical approximation where the gravitational field is treated classically 

while all other fields are quantum in nature [96]. A few other calculations of this sort 

have been done by others. Balbinot and Brady [97] fomd in the (1+1) dimensional 

analogue of the Reissner-Nordstrom solution that quantum eEects tend to make the 



singulaxity stronger. A (2+1) dimensional cdculation by Steif 1981 came to a similar 

result. In (3+1) dimensions, Balbinot and Poisson [99] ignored non-local effects by 

using a quadratic Lagrangian mode1 and found that quantum effects either strength- 

ened or weakened the singularity, depending on the sign of the quadratic tenns in 

the Lagrangian. We find [100] that the quantum stress tensor exhibits a divergence 

which is exponentid y stronger than the rate of divergence of the classical stress ten- 
sor. However, we axe unable to ascertain, in this formalism, the sign of the divergence. 

If the quantum influx were to diverge to positive infinity, the quantum effects would 

tend to increase the strength of the singularity, while a negative divergence would 

tend to weaken the singulaxity. As we wil l  show, the ongin of the ambiguity is in the 

non-local contribution to the quantum stress tensor, which dominates over the local 

terms. Non-local effects are typicdy due to the dominance of low energy quanta 

which probe long distance scales. The classical mass inflation effect is rnainly due to 

the scattering of low energy fields, so it is interesting that Iow energy effects are also 

important in the quantum domain. 
The organisation of this chapter is as follows. Particle creation by bladi hoies will 

be discussed in section 1. In section 2 Horowitz's formula [l7] for the quantum stress 

tensor in linea&ed gravity will be introduced. In section 3 we will use this formula 

to calculate the expectation value of the stress tensor of non-gravitational quantum 

fields in the On model of mass inflation. Concluding remarks will be made in section 

4. 

6.1 Particle creation in a black hole spacetime 

The modern view of the vacuum, gained through the study of quantum field theon. 

[IO 11, is that it is not really a vacuum: virtual particle-antipasticle pairs are constantly 

being created and annihilated. The Heisenberg uncert ainty principle allows part icles 

of rest energy me2 to live briefly for a tirne of order f i lms.  These virtual particles 

can have measurable consequences when an external field is present. Heuristically. 

the effect of an external field is to lend energy to the virtual pair, dlowing them to 

exist for a longer period of tirne. For example, in the Casimir effect, an electric field 

applied to the  vacuum region between two conductors polarizes the vacuum. The 
vacuum polarization is responsible for a measurable force on the conductors which 

can't be explained dassically. 



It seems reasonable that if the gravitational field is treated as an extemal force. 

sirnilar particle creation effects will occur (1021. However, the particle concept is not 

well defined in a generd curved spacetime, so the extemal field concept must be 

applied with care. The problem is that the definition of a positive energy particle 

state depends on the choice of observer. For an inertial observer in Minkowski space. 

the definition is clesr: positive energy states are eigenstates of the Killing vector alat - 
where t is the Minkowski time coordinate. The definition is Poincaré invariant, so 

that all inertial observers agree on their obsenmtions of particles. The introduction 

of a non-inertid observer serves as an example of the effects which can occur in a 

curved spacetime. The non-inertial observer's tirne, r is in general a complicated 

function of the inertial observer's tirne, so that eigenstates of a fat are not generally 

eigenstates a/&. The result is that accelerated observers will detect particles in the 

inertial observer's vacuum state (1031. The situation in a general curved spacetime is 

similarly ambiguous, for if t here are different nonequivalent observers, their defini t ions 
of a particle will not agree. 

The situation which is most straightfomard to analyze is a spacetime n-hich is 

initidy stationary, undergoes a period of evolution, and afterwards settles down t O a 

final stationary state. We will refer to the initial stationary period as the "in" state 

and the final stationary period as  the "out" state. The eigenfunctions of the Killing 

vector for the "in" state are the one parameter f d y  u z ( x p ) .  A sirnilar famil- 

uft(x') can be defined for the "out" region. Both families fom a complete basis. so 

that any quantum scdar field can be "second quantized" by an expansion into the 

normal modes of either basis, 

Where the operators a: and a, respectively create and annihilate quanta of energ?- 

u in the 'Sn" state. Similarly b t  and b, are creation and annihilation operators for 

the "out" state. The definition of the "in" vacuum (or no-particle) state is the set of 

condit ions 

Similady the "out" vacuum is defined by 

b, IO,, >= O , for all w . 



The operators in the two representations are related by the linear Bogoliubov 

transformation 
t by = &(oLq~ - &a,) (6-3) 

where a> and PL. are the Bogoliubov coefficients. If any of the & coefncients 
are non-zero, then the transformation is nontrivial and there will be mt'uing between 

states. It can easily be shown, using equations (6.2) and (6.3) that the expectation 
value of the number of "out" particles in the 'Sn" vacuum state is 

The result is that if the Bogoliubov coefficients are non-zero, and the system begins 

in a vacuum state, observers in the "out" region will observe particles. 

Consider a star which collapses to a stable radius larger than the Schwarzschild 

radius. The hïlling vectors for the regions before and after the collapse are defined 

with respect to the Schwarzschild t h e  and are identical. It folIows that the eigenfunc- 

tions in the "in" and "out" regions are identical and the Bogoliubov transformation 

is trivial. No particle creation results in this case (1041, except for transitory particle 

production during the non-stationary period. 
The case which is of interest to us is the collapse of a star to form a black hole. 

Naively, we might define the 'Sn" state at and the "out" state at p. However. the 

collapse to a black hole has changed the topology of the spacetime non-trivially, and 

,!T+ no longer constitutes a Cauchy surface. A complete Cauchy surface consists of the 

union of J'+ with the future event horizon. H a w b g  (1051 showed that the Bogoliubov 

transformation is non-trivial when a blacb: hole is formed. Although obsenrers measure 

the quantum state to be vacuous before the collapse begins, observers near the event 

horizon, will measure the "in" vacuum state to be full of particles. Some of these 

particles will fa11 into the horizon and become causdy disconnected fiom their anti- 

particle partners. The partners can now be considered real particles that can travel 

to the future static region and be measured by future static observers. Hawking's 
calculat ions show that in the far future, the observers will measure thermal radiation 

corresponding to a temperature of rc+/2r coming from the black hole. 

The Hawking radiation has consequences inside the bladc hole as well. Conser- 

vation of energy implies that a flux of positive energy radiation outside the hole is 

accompanied by an influx of negative energy radiation inside the hole [106]. The 
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quantum influx is idinitely blueshihed at the inner horizon, so that (in I h s k a l  CO- 

ordinates (2.6) for the inner horizon) the stress tensor for the Hawking influx is 

As we have discussed in section 1.2, the classical influx of gravitational radiation 
created by the collapse has the Price tail form (2.35), so that the Hawking radiation 

becomes comparable in size to the Pnce tail at a time V given by 

for p = 12. Substituting this value of V into the expression for the Weyl cwature 

(2.29), it can be seen that for blaclr holes with exterior mass larger than approsimateiy 
100 kg, the Weyl cuilrature has grown to Plancician levels at which point the semi- 

classical approximation is not valid. Hence we conclude that the effect of the Ham-king 
radiation on the intenor geometry is only important for black holes which have mass 
less than LOO kg [107]. When the m a s  is larger than this critical value, the classical 
picture presented in the preceding chapters is valid. We will restnct Our attention t O 

the study of quantum effects inside astrophysical scale black holes, where the effect 

of the influx of Hawking radiation will be negligible. 
Another important cause of quantum particle creation is the electric field present 

in the Reissner-Nordstrom black hole. Markov and Frolov [108] have shown that 
particle creation by the electric field will very rapidly neutralize the Reissner-Nord- 

strom black hole. This suggests that a realistic model of the Reissner-Nordstrom 

black hole interior should look similar to the Schwarzschild intenor [log]. However. 

our use of the Reissner-Nordstrom black hole bas dways been as a toy model of the 
more complicated Kerr black hole. As we have shown in chapter 5, the non-spherical 
bla& hole intenor is very similar to the charged black hole interior. In this chapter 

we wiU consider quantum effects on the background of a charged bladc hole with the 

understanding that o u  results should be indicative of the more general situation. 

Vacuum polarization inside the black hole 

The general goal of semi-classical gravity is to calculate a finite expectation value for 

the stress tensor, < Ta8 > of a quantum field on a fixed manifold. This expectation 
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value can then be used as a source tenn for the semi-classicd Einstein equations 

which can be solved for the classical spacetime metric. This quantum backreaction 
problem is very difficult to solve in general. The calculation of the expectation value 

of the quantum stress tensor is hampered by the fact that there is no forma1 expression 

for a finite quantum stress tensor. The standard approach to this problem (see for 
example refetence (961) is to substitute the quantized field (such as the expression 
(6.1)) into the expression for the stress tensor for the equivalent classicai field. The 
classical stress tensor is quadratic in derivatives of the field. For example, the stress 

tensor for a massless scalat field is 

Substitution of the infinite mode sum (6.1) into this expression will field an infinite 

result from the infinite zero point contribution of terms of the form awa?. Mihatever 

method is used to calculate the quantum stress energy, the result is alnmys divergent. 

The divergent expression can be separated into two terms, one finite and the other 

infinite by one of many regulaxization prescriptions. A finite, renomalized, stress 

tensor is then obtained by retaining just the finite portion of the regulaxized result. 
Of course, there is some ambiguity in subtracting one infinite expression from another. 

A prion, it seems that there is no reason for different regulaxization schemes to yield 

the same finite result. 

Wald's axiomatic approach has shown that the results of various regulaxization 
schemes agree within a reasonable degree of fieedom. Wald's axioms [110, Ill] are 

that a reasonable definition of a renonnaüzed quantum stress tensor in the "in-in" 
state should have the following properties. 

i) The diaerence between the expectation value for dif€erent states should be well 

defined. 

ii) The expectation value for the stress tensor is zero in Minkowski space. 

iü) The expectation value is conserved. 

iv) The expectation value at a point p depends only on the geometry within the past 

Iight cone of p. 



6.2. VACUUM POLARIZATION INSIDE THE BLACK HOLE 111 

Wald has shown that these axïoms define a quantum stress tensor up to an a r b i t r q ,  

but conserved local tensor depending on the cunmture of spacetime. 

Quantum backreaction 

Our a b  is to estimate the effect in the black hole interior of the baclireaction due to 

vacuum polarization. In order to do so, we will compute the renormalized one-loop 

expectation value of the quantum stress tensor for the %in" (or Unruh) vacuum 

state, < OhITpvIOh >, which will abbreviate to < T, >. The %-in" vacuum state. 

in the black hole contact meam that the vacuum was in an unexcited state before 

the coilapse of the star occurred. The result of the specification of this  vacuum 

state is the influx of Hawlring radiation, which (as discussed in the previous section) 

is negligible. The cdctdation of < T,, > in the generd non-spherical black hole 

background presented in chapter 5 is a very difEcult probiem. Uë have shown that the 

simple spherically symmetnc Ori model captures the essence of the more complicated 

black hole interior. It seems reasonable that a study of the quantum baclcreaction 

problem in sphencal symmetry should dso serve as a good model of the general 

situation. 

Recall that in spherical symmetry, the m a s  function completely specifies the Weyl 

curvature. Following Simon's prescription [Il21 for finding perturbative solut ions to 

the semi-classical Einstein equations we assume that they yield a solution for the 

metric functions of the form 

The wave equation for the mass function (2.33) depends on the two-dimensional 

square of the stress tensor, 

where < Ta@ > corresponds to the quantum corrections to the stress tensor. Thus to 

order h, the semi-classical field equation for the quantum correction to the m w  is 
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where quantities without a superscript are understood to be classicai. The quantum 

corrections to the other metnc functions axe roughly of the order 

which follows from Raychaudhuri's equation (2.37). If we find that the solution for the 
quantum correction m ~ a * t -  is positive, then we will conclude that the backreaction 
increases the strength of the mass inflation singularity. A negative result for mpant- 
will result in a damping of the singulaxity. 

Horowitz's formula for Iinearized gravity 

In the case of linearized gravity, Wald's d o m s  have been successfully applied by 

Horowitz [17] to deduce a relatively simple formula for the renormalized stress tensor. 

Horowitz's formula is valid for spacetimes which can be decomposed as a perturbation 

of Minkowski space, 

&P = %3 + ?ad 
where i ) , ~  represents the Minkowski metnc. rU1 quantities second order in y are 

smder  than quantities first order in 7. The Poincaré invariance of the blinkowski 
metric simplifies the problem. A further assumption, which Horowitz mates is that 

< TPB > c m  not depend on denvatives of 7 which are of sixth order or higher. This 

restriction 

B~~ which 
fixes the arbitrariness in the stress tensor d o m  to two tensors and 
are the linearized variations , 

where a dot denotes a linearized quantity. These two tensors are the only conserved 

linearized tensors with fewer than six derivatives of the metnc [17]. Horowitz finds 

that the most generai stress tensor which satisfies Wald's axioms is 

where HA(x - 2') is a distribution with support on the past light cone of x ,  and will 
be defined in the next section. The constants a and b are positive and are knomm for 



ail massless quantum fields [17]. The constant P is arbitrary, as  is the parameter A 

on which the distribution depends. This formula has been derived by a number of 

authors using a mriety of alternate methods [113, 1141. 

An approximate black hole metric 

It is probably not obvious that a formula based on linearized gravity c m  have a=- 
application to the black hole interior. The presence of the m a s  inflation singularit- 
means that the metnc is decidedly not flat! However, the singuiarity has a mild 

integrable form. Recall that in section 1.3 we showed that the Ori metric can be 

written in coordinates in which the metnc has no singular components. Furthemore. 

the diverging m a s  h c t i o n  has the special form 

where V is the Kmslral advanced tirne. The presence of the Iogarithmic damping 

factor has the result that 

In this restricted sense, tems non-linear in m can be neglected compared to terms 
linear in m- 

Recdl that in the simple Ori mode1 of mass d a t i o n ,  the metric after the shell is 

ds2 = dV( f (r, V ) W  - 2dr) + r2df12, (6.15) 
2 2 f (r, V )  = i - 2rn(V)/r + e / r  , 

which can be mitten as a flat metric plus a perturbation term linex in the mass 

function. All cuMlture quantities in the Vaidya spacetime are Iinear in m, so that it 

seems that the Horowitz formula can be applied to this spacetime. There is, however, 
a very serious problem with this approach. The light cone structure of the Orï metnc 

(6.15) is very different ftom the Iight cone structure of Minkowski space. For example, 
the coordinate r is spacelike in Minkowski space and timelike in the 015 metric. But 

Horowitz's formula involves an integral over the past light cone of the observation 

point. If the light cone of the perturbed metric is radically different from the light 

cone for Minkowski space, the result of the formula (6.12) may yield incorrect results. 
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For this reason we will not attempt to calculate quantum effects in the 015 background 

metric. Instead, we will show that there is a spacetime which approximates the On 

rnetrk and has the property that the Horowitz formula can be used. 
IR this thesis, we have discussed two types of approximations. In section 1.3, the 

divergence of the mass function was used to make the approximation f - -2m(V)/r.  
In section 5.2 we argued that on s m d  length scaies, the two-sphere a t  the Cauchy 
horizon can Iocaily be approximated by a plane, so that e d R 2  - dz2 +dy2. Adopting 
both of these approximations to the On metric (6.15)' we arrive at the metnc 

The curvature tensor for (6.16) differs from the curvature for the Ori metrk by terms 

of order 1/rZ, which is hi te .  Compared to the diverging terms in the curvature 

arising from the mass funct ion these clifferences are negligible. 

Consider the conformal metric 
n 

If we introduce the coordinate 
2 

u=g=  
r 

the metnc takes the f o m  

1 
ds: = -dUdV + dz2 + dy2 + 2L(U, v)dv2 , L = -rn(v)u3 , (6.19) 

8rz 

which is in the fiat plus lightlike Kerr-Schild fonn [115]. The form of the conformal 

metnc is exactly of the fonn needed in order to use Horowitz's result. 

Before embarking on the cdcdation of the quantum stress tensor, we should 

examine the causal structure of the conformal metric. The coordinate U is a retarded 

nul1 coordinate for the fiat metric, but not for the conformal metric (6.19). The 
correct nul1 coordinate for the conformal metric has the value 

In the limit V -r O-, the integral of the mass function Mnishes, and the coordinate 

r approaches r-. As a result, close the Cauchy horizon, (i.e. (PLV/ << l), the 
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light cone for the conformd metric is approximated very closely by the iight cone for 

the flat metric. Thus, Horowitz's formula can be used to calculate the renormalized 

quantum stress tensor for fields propagating on the conformai background metnc. 

Page's formula [18] for conforma1 transformations of the quantum stress tensor can 

be used afterwards to k d  the stress tensor in the physical rnetric. 

6.3 The quantum stress tensor 

In this section we will apply Horowitz's formula (6.12) to the calculation of the renor- 

malized stress tensor for quantized fields on the classical background of the conformal 

metric (6.19). Horowitz's formula for < Td > has a non-local component, which is 

the action of the distribution H A ( z  - 2') on the conserved tenson A and B. The 

non-locality of the stress tensor is a reflection of the fact that quantum particles cre- 

ated within the past light cone of the observation point x can travel to the point and 

contribute to the quantum stress tensor. The manner in which the past fluctua+'  ions 

contribute is controlled by the distribution. 

In order for the distribution to be Lorentz invariant and to have the correct di- 

mensions [17], the distribution should be proportional to 6'(o(x, x')) where o(z, r') is 
the world hinction defined as one half the square of the geodesic distance fkom z to x'. 
In order to restrkt the results to the past Iight cone a step funtion in the difference 

between the Minkowski time at x and d must also be included, Introduce Minkowski 

coordinat es (t, Z, 8'9) wit h origin at the observation point x. Advanced and ret arded 

times are dehed by 

u = t + Z ,  u = t - I .  (6.21) 

In these coordinates the world function is 

1 
o(5, x')  = - ~ u v  . 

Points z' with u = O lie on the light cone of x. Consider the action of a distribution 

H ( x  - x') = B(u(z, z'))@(t - t') on a test function with compact support 
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M e r  an integration by parts, this becomes 

/ H ( +  -l.')f(zf)bLzf = - / dudfle(- t)  (2 ln(-u)&f (u. 0) + &f (u, O)) 

There are two problems with this expression. First, the coordinate u has dimensions 

of length, so the Iogarithms aren't properly defined. As well, the Iast term is infinite. 
Horowitz fixes these problems by introducing an arbitrary length scaie X into the 
integral and by definhg the distribution HA to be the h i t e  part of (6.24). The result 

is that the correct distribution has the following action on a test funtion [l?], 

/HA(z - l!)f(~')d%' = 
1 

dudo In(-u/.i)&f (a, O) + ,&f (u, 0)) 1.=66.26) 1: ( 
The parameter X effectively plays the role of a renormalization mass scale (1 131. 
Substitution of the distribution (6.25) into (6.12) yieids the formula for the quantum 

stress tensor which we wiU now use. 

The linearized variations which are to be inserted into the stress tensor formula 

where GQs is the iinearized Einstein tensor for the conformal metric (6.19), which has 

the value 

= GOB = - ~ L , U U ( ~ ~ Q ~ ~ Q ~ ~  + ilop). (6.27) 

The components of A and B are 

In order to evduate the integrals, we need to relate the flat coordinates (U, V, X. Y) 
in which the conformal metric (6.19) is written to the coordinates (u, v ,  O ,  Q) (6.21). 

We introduce Cartesian coordinates for the conformal metric, defined by 
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The point at which the stress tensor is to be evaluated has coordinates 

Wo = (To, Zo y Xo , Yo) . The plane symmetry of the classical problem allows us t O 

choose Xo = Y. = O. Suppose that we introduce Cartesian coordinates (t, r ,  x ,  y) 

with origin at Wo, and l2 = 9 + + z2. The two sets of Cartesian coordinats are 
related by 

Given the definitions of the two sets of nul1 coordinates (6.19) and (6.21)' 

W e  note here that when u = O and u = -m, the coordinate V is unbounded belon-. 
W e  have already stated that for our approximation to be valid, ( L V ~  « 1. It 
is necessary to restrict the range of integration over the coordinate u in (6.25) to 

[- (uJ, O], where 1 ~ 1 ~ -  - 1. This is equivalent to stating that the vacuum polarization 

in the region of strong cunmture wiIl dominate the contribution to the stress tensor. 
The introduction of th& eut-off alters the formula for the non-local contribution to 

It is now a trivial matter to change from coordinates u and B on the surface v = O 
to coordinates Lr and V. The integral in (6.38) is transformeci to 

The derivatives in (6.38) can be transformed to the conformai coordinates. Their 
values are 
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As a result, the integrals (6.38) which must be evaluated are of the form 

where 

1 d 
- I ~ ( - u )  [(a - uolEf + (v - 
u2 (6.45) 

The evaluation of the integrals required to  calculate the stress tensor is straight- 
forward. Intermediate steps for the calculation are listed in appendiv C. The leading 

order behaviour (in the limit l/o -r O-) of the quantum stress in the conformal 
spacetime is 

1 -KI 
O - 4hh-m'(h) ((a + 3b)avv + 39) (6.43) ~4 

where the positive constants auv and avv are calcdated in appendix C, and the 

arbitrary constants X snd ,O were introduced in equation (6.12). Note that the overall 

sign of < Z&(Cro, Vo) > depends on the relative signs of X and ,û, n-hich are not fixed 

by the semi-classical theory. 
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The stress tensor for the physical metric can be f m d  using Page's formula [18] 

for the transformation of the quantum stress tensor under conformai transformations. 

where R = rlr-, the positive constants d ,  and 7' = 2 / 3 d  depend on the spin 

of the field and the bar denotes a covariant derivative with respect to the conformal 

metric. The tenson H,, and I,, are defined by 

The formula (6.50) for the transformation of the quantum stress is quite different 

fiom that for a ciassical conformally invariant field. The transformation law for the 

classical field is sirnply the first term of (6.50). The presence of the tems in (6.50) 

which are not confonndy invariant shows that the contribution fiom quantum effects 

to the stress tensor depends on the length scale that we are probing. 
It is not necessary to perfonn a detailed calculation of al1 the terms in the tranfor- 

mation law, if we keep in mind the leading order behaviour of the curvature tensors 
is 

Since < Tiv >- mff(V),  and the classical mass function obeys (6. M), it follows t hat 

so that terms quadratic in curvature are negligible in cornparison to the conformal 

contribution. Only terms involving two derivatives of cuxvature, (the terni propor- 
tiond to In R and IGv) will contnbute. The result of the conformal transformation 
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on the quantum infiux is 

< TvV >= fid2 (< InW > +(8crf lnR + l y ' ) ~ ~ m r ' ( l / ) / r ~ )  . 
Similarly, we find that 

Kow consider the 

the term 1 ln(*)l > 
quantum baclireaction equations (6.8) and (6.9). Assume that 

1, so that the contribution fiom the conformal metric dominates 
the stress tensor. The size of the correction to r is 

Comparing the relative sizes of the te- in (6.8), we h d  that 

The sign of the quantum corrections to r and rn depends on the size of X in equations 

(6.58) and (6.59). Remember that X is an arbitrary length scale introduced ta the 

problem and plays the role of a renormaüzation m a s  scde. There is no preferred 

length scale in the theory of a massless quantum field, so the most that n-e can say is 

that there are three cases, 

X - V, where V, is the tirne at which the curvature becomes Planckian. In this case 

1 & 1 > A, and the quantum influx is positive and ad& to the classical influx 

From (6.59), the quantum corrections will make the mass g o w  faster while the 

radius will shrink. Both effects will tend to make the Weyl curvature grow faster 

than predicted by a purely classical analysis. 

> A > V, In this case, while [Vol > X the baclrreaction w3I have a similar effect as rc- 

in the previous case. However, now it is possible at some critical time Vkt = -A 

(which is still within the range of validity of the semi-classical approximation) 

for the quantum influx to change sign. After this criticd t h e ,  the quantum 

correction to the mass function is negative while the correction to r causes it 

to grow larger. Both effects tend to weaken the singularity in this case. 



X 2 2 rt, Since the solution is valid when (K- % 1 9: 1, the logarithmic factor is always 
negative. Thus, in this case, quantum corrections tend to weaken the singularity. 

6.4 Conclusion 

In the region of strong curvature near a classicd singularity, quantum effects due to 

the creation of e lementq particles and vacuum polarization can become very irnpor- 
tant. It would be remiss to discuss the physicd features of a singuiarity without some 
estimate of the bâckreaction of the quantum particles on the spacetime geometry. In 
this chapter we have made use of the apparatus of the semi-classical to quantum 

gavity to detennine the quantum badrreaction on the singular sphericall y symmet r i c  

mass inflation background. 

We noted that the mass function, which characterizes the cwature in sphericaI 

symmetry, has a special form in which a term h e a r  in the first derivative of the mass 

function is much larger than terms quaciratic in the m a s  function. In this sense, the 

mass inflation geometry is similar to linearized gravity. This suggests that Horowit 2's 

formula (1 71 for the renomalized expectation value of the quantum stress tensor for 

massless fields propagating in a spacetime which is a linear perturbation of Minkowski 

space can be applied to our problem. 

We find that the quantum stress tensor diverges faster than the classicd stress 

tensor as 

where X is the 
very important 

depends on the 

renormalization mass scale. Më conclude that quantum effects are 

near the singularity at V = O. However, the sign of the stress tensor 

magnitude of A which is not fixed by the theory of a rnassless scalar 

field. Hence, we are left with some arnbiguity, for if the logarithm is positive, quantum 

effects will tend to make the singularity stronger, while if the Iogarithm is negative, 

the quantum effects will tend to weaken the singularity. It is interesting that the 

other four-dimensional estimate of the backreaction (991 found a similar arnbiguity 

while Iower dimensional calculations [97, 981 found a definite result: quantum effects 

increase the strength of the singularity. 
We should make a remarb: about the validity of the semi-classical approximation. 

Simon [112] has discussed the problem of fictitious solutions to the semi-classical 



equations. He pointed out that the only solutions which shouid be aiiowed are those 

with 

< Ta@ >< Cr-. (6.61) 

This leads to the condition 

IV1 hl r, W I ~ I I ~ I -  (6.62) 

But the Weyl cwature  reaches Planckian values at the t h e  V,, when 

Substituting (6.63) into the inequaüty (6.62) r e d t s  in 

Since we also require, IV1 > (51 for the semi-classical approximation to hold this 

suggests that 1 ln(lVI/A)I 1. However, if this is the case then the Iogarithmic term 

doesnTt dominate the stress tensor. Instead, it is of the same size as the other (local) 

terms, including the term proportional to the arbitrary constant 8. The sign of the 

corrections now hinges crucidy on the sign of P,  which is not fked by the semi- 

classical theory. The arbitrariness in ,û is due to the freedom to add multiples of 

R2 to the effective action. This suggests that our calculation reduces to essentially 

the problem which Bdbinot and Poisson [99] considered. They looked at a local 

effective action which is quadratic in the curvature. When the coupling constant 

for the quadratic terms is positive, they found that the curvature increases, while a 

negative constant reduces the curvature. It seems that to say any more would require 

lcnowledge of the signs and magnitudes of the coupling constants in the effective action 

for quantum gravity, which is out of reach of present day theory. 
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Conclusion 

The physical picture of the non-spherical black hole interior presented in this disser- 

tation is remarkably simple. The main qualitative features are very similar to the 

description of the charged spherical black hole interior [1, 16, 23, 241. The gravita- 

tional collapse of a star produces a weak gravitational wave tail which decays as an 

inverse power la%* in time and enters the blacb: hole's event horizon. Near the event 

horizon the tail is very weak and its backreaction onto the geometry can be neglected. 

The propagation of the gravitational radiation into the interior can thus be approsi- 

mated by the results of scattering on a stationary Ken background. The scattering of 

inverse power law radiation tends to create two wealily decaying fluxes (as discussed 

in chapter 2), a transmitted influx (parallel to CH in figure 7), which is infiniteiy 

blueshifted at CH and a refiacted "outflux" which crosses CH transversely focusing 

the generators of CH to smaller radius. As was found for spherical symmetry, the 

badrreaction of this combination of crossflowing gravitational radiation results in a 

light lilie, O bserver-inde pendent curvature singularity fomiing at CH. The divergence 

is mild, however, since the integral of the Riemann curvature components is finite 

in a freely-falling frame, so that tidal distortions are finite at the singularity. The 

lightlike nature of the singularity guaxantees that no timelike observer wiil ever be 

in causal contact with the singulazity, until d g  into it. Thus we conclude that 

the black hole interior fomed from gravitational collapse is completely predict able 

as suggested by the strong cosmic censorship conjecture. This does not, of course. 

prove SCCC, since we have assumed that WCC holds. Since the scattered radiation 

which transversely crosses CH slowly focuses it to smaller radius, it seems reasonable 
to make the conjecture that at some later retarded time, the lightlike Cauchy horizon 



singularity will merge with a stronger spacelike suigularity. This conjecture can only 

be proved with a full four dimensional numerical integration of the Einstein equa- 

tions. It will be many years before the techniques of numerical relativity ail1 be able 

to taclde this difncdt problem. 

Fairly general arguments were raised in chapter 4 which show that Han-king's 
quasi-local mass and the Coulomb component of the Weyl tensor will always diverge 

at the Cauchy horizon of a perturbed biack hole. Ln fact, the general solution of 

the characteristic initial value problem presented in chapter 5 demonst rates t hat in 

general al1 components of the Weyl tensor diverge at CH. The leading order divergence 

of the product of the Weyl components is 

so that the square of the Weyl tensor is dominated by the contribution fkom the 

gravitationai wave and Coulomb components. The solution presented is very closeiy 

approximated (near CH) by a colliding plane gravitational wave metric, which can 

s e m  as an easy toy mode1 of the b l d  hole interior. Essentially, the mode1 results 

from the assumption that on s m d  length scales a curved region of spacetime can be 

approximated by a plane symmetric metric [1l6]. However, as we discussed in section 

5.2 it should be noted that the boundary conditions for a blacb: hole are completel- 

different than those for a general plane wave spacetime (for example [88]) so that a 

spacelike singulazity doesn't form prior to the Cauchy horizon. 

The weakness of the singularity at CH has lead to some speculation [16: 831 that 

the spacetime could be continued across the singularity. However, the singularity is 

still a Cauchy horizon for the spacetime, so there is no unique continuation across 

CH. In our opinion, it is meaningless to speculate on the possibility of a continuation 

across CH, without taking quantum effects into account. In chapter 6 we showed 

that the renorrnaüzed stress tensor for massless quantum fields diverges exponentially 

faster than the stress tensor for classical fieids on a spherical background. Clearly the 

magnitude of the quantum corrections is so large that they shouldn't be neglected. 

Unfortunately, the semi-classical t heory doesn't reveal the sign of the correct ion. If the 

corrections add to the classical influx, the singularity may be reinforced by quant urn 
effects, resulting in a stronger cunature singula,rity at which tidal dist ort ions diverge. 



However, if the quantum corrections have a negative sign relative to the classical Bus. 
the singuiaxity's strength will be weakened. Only a Ml backreaction calculation in 

this case can reveal the resulting spacetime stmcture. 



Appendices 

A Curvat ure calculations 

In this appendiv we wiil calculate the Ricci and Riemann tensors. The computation 

is based on the Gauss-Weingarten equations of section 3.2, which are surnmarised 

here. The Gauss- Weingart en equat ions (3.26) and (3 -33) for the covariant derivat ives 

of the tangent vector c m  be written as 

Since L"-4a = &A, the trace of ( A 4  is 

The trace of (-4.3) is 

tAaIa = KA +DAX. 

The Ricci commutation relation (3.52) for the tangential projection of the Ricci tensor 
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In order to calcuiate the second t e m ,  note that 

It then foIlows fiom (A.1) that the second term is 

The third term requires the use of (A.1) dong with (A.3): 

The last term of (A.9) can be simplified by noting that 

Substituting (A.6), (A.8), (A.9) and (A.10) into (-4.3, yields the result for the 

tangentiaI component of the Ricci tensor, equation (3.53). 

The calculation of proceeds in a similar fashion. The Ricci commutation relation 
is 

R A B  = - e ~  v(egQIa) - vBeAavpeSB + vB(eA ve/) . (-1-11) 

The first term follows from (.4.4), 

In order to compute the second term in (A.11), we note that 

so that the second term is 
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The third term is 

The k t  term of (-4.14) can be simplined to 

so that substitution of (A.12), (A.13) and (-4.14) into (A.11) yields: 

It appears that this result is not symmetric in AB, as is required for the Fücci tensor. 

That (A.16) does have the correct symmetry, c m  be seen by applying the conimuta- 

tion relations (3.42) and (3.44), after which the normal component of the Ricci tensor 

simplifies to equation (3.54). 

We now tum to the cdculation of the mixed components of the Ricci tensor. The 
Ricci cornmutat ion relation is 

The fist term is 

-e. - V(tAaia) = -&(KA + DAX) . (AM) 

The following equalities are usehil for cdculating the second term: 

The second term is 



The third term is 

which can be simplified by noting that 

The final result, found by substituting (A.18), (A.19) and (A.20) into (A.17) is 
the mixed component of the Ricci tensor, equation (3.55). 

The calculation of the Riemann tensor follows a method similar to that for the Ricci 

tensor. In this appendk we will calculate the component RAaBb as an esample. The 

Ricci commutation relation (3.51) for the component RAass is 

The fist term is calculated with the aid of equations (A.1) and (A.3) : 

The second tenn is 

The third tenn is 

-( tc4)(q37peso) = ~&KBM - (A.24) 

Before substituting (A.22), (A.23) and (A.24) into (A.21) to calculate the Riemann 
tensor component, we note that 
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The result is 

The last two t ems  cancel once the commutation relation (3.43) is applied. jielding 

the result of equation (3.60). 

B The contracted Bianchi identities 

In t his appenck vve compute the projections of the contracted Bianchi identities. FI2 

fint consider the tangential projection, 

Xote that the Ricci tensor can be decomposed as 

and consider the operation of etVB on each term of (B.28). The first term is 

which follows from equation (A.l). The second term is 

where we have made use of the definition of the normal Lie derivative (3.13) and 

equation (A.3). The third term is 

Meanwhiie, the second term of (B.27) is 

Substituting equations (B.29), (B.30), (B.31) and (B.32) into (B.27) results in the 

tangential projection of the contracted Bianchi identity (3.71). 
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The normal projection of the contracted Bianchi identity is 

The 6rst tenn of (B.33) is 

The first term of (B.34) is 

The second tenn of (B.34) can be calculated by using equations (B.29) and (B."). 
The result is 

Substitution of (B.35) and (B.36) into (B.33) yields the normal projection of the 

contracted Bianchi identity (3.72). 

C Calculation of the quantum stress tensor 

In this appendiv we dl calculate the expectation value of the quantum stress tensor 

for non-gravitational fields in the conformal background metric (6.1 7). First we will 
present a detailed calculation of the component < T;, >. The calculation of < y,,. > 
is ver). similar, so only the leading order terms WU be explici tly derived. 

The mived component of the stress tensor depends on the integral (6.43) of the 

tensor component Aov = -+rnf(V). Since &Auv = 0, the integral J H*(x - x')dUr* - 
is fairly easy to evaluate. An algebraic manipulation computer program such as 

Mathematica or Maple can be used to reduce the required integral to the form 

where the positive dimensionless variable p = -VIX. To find the leading order temi 
in this expression, we need to estimate the size of the integral appearing in the first 
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tenn of (C.37). The integral is of the form 

where r is a positive integer and r 2 1. We are interested in the asymptotics of this 

integral when po is very smd,  which corresponds to points near the Cauchy horizon. 
It is useful to change coordinates to 

where the integral ((2.38) takes the f o m  

(CAO) 

The behaviour of the integrand is dominated by the term e'('). At the lower integra- 

tion b i t t  lim,--, ep(') -r O, while at the upper b i t ,  the exponential term is a finite 

number. Inspection of the form of the integrand leads one to suspect that I(Ijb. r) 

will diverge, so the value of the integrand at s = In 1 ~ 1  will not make a significant 

contribution to the value of the integral. The integral can be evaluated using the 

method of stationary phase. The phase p(s) is stationary at the point so, 

Po s0=h-  
r - l  

which is a maximum since 
T-1 

rpM(s0) = -- . 
T 

(C.43) 

The result is that I(Vo, r )  is approximated by 

The integral in equation (C.37), is 

The result (C.45) can now be used to estimate the leading order behaviour of the 

stress tensor. First consider the tenns in (C.37). Since Vo << 1, ml(&) > > n(Vo). 

so that terms in the kst two lines will dominate over the terms in the third line. Since 
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Ili,[ < l&[ + lu,[, it foliows fiom the form of the m a s  function that rnr(l/o - lu,l) c 
m r ( h ) .  The initial surface u = u, is taken to be finite, so that 1 In(tbl( >> ln lu,/. 

Hence for s m d  &, 

where the positive constant cruv is 

Substituting this result into Horowitz's equation for the stress tensor (6.12): ive find 

where a + 3b is a fixed positive number for aJl quantum fields. The sign of this 

cornponent depends on the size of X as is discussed in the main body of the test. 

A similar calculation yields the component < T;, >. The leading order cont ri- 

bution to the appropriate integral is 

Substituting (C.41) into (C.49) we find that 

where we have defined 
4 33 

ovv = 3(2n)3/2 b4, . 

The quantum stress tensor has the lightiike flux component 
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