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Abstract 

Does coherent behaviour require an eqlicit mechanism of cooperation? In this dissertation. 

the relationship between local perception and global action in a system of multiple mobile 

robots was examined for a collective box-pushing task. The problem investigated was how 

local sensing could be used t o  coordinate the individual motor responses of a system of robots 

in a coherent manner, using only implicît communication through the task. The task was to 

move a large box from an initiaUy unknown position to  a specified goal location. The central 

thesis put forward, is that for the  box-pushing task a coherent behaviour is possible, without 

an explicit mechanism of cooperation, by using the mass effect of a system of redundant 

robots. 

Preliminary work in collective robotics appeared to  lend weight tu the hypothesis that 

collective taslis, by multi-robot systerns. are possibIe without centralized control or explicit 

inter-robot communications, two comrnon control mechanisms used for cooperation. The 

goal was to  propose and verify a framework for modelIing a rnulti-robot task, such that 

the system displayed both coherent and coordinated behaviour without centralized control. 

The result is a coordinated global action by the system similar to group transport behaviour 

by ants. The resuft is achieved using the mass effect of a system of redundant robots. The 

approach to connecting perception and action is through a task description, specified as 

changes in the environment, and a task decomposition, which describes how a system will 

achieve those changes. 

Demonstrated is a framework using a multi-robot'box-pushing task and its extension to 

a directed box-transport task. Steps in the task are modeiled as states, and implemented 

as subtask controllers, with s ta te  transitions determined by binary sensing predicates called 

perceptual cues. A perceptual cue (Q), whwe computation is independent from the opera- 

tion of the controiier, is used by a finite state controller, called a Q-machine, to produce an 

action. Results are presented for a redundant system of physical robots capable of moving 

a heavy ob ject collectively t o  arbitrarily specified goal positions. 
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Chapter 1 

Introduction 

Does coherent behaviour require an eql ici t  mechanism of cooperation? In this dissertation, 

the relationship between local perception and global action in a system of multiple mobile 

robots is examined for a collective box-pushing task. The problem investigated was how 

local sensing could be used to  coordinate the individual motor responses of a system of 

robots in a coherent manner, using only implicit communication through the taçk. The task 

was to move a large box from an initially unknown position to  a specified goal location. 

Preliminary work in collective robotics appeared to lend weight t o  the hypothesis that 

collective tasks by multi-robot systems are possible without centraiized control or explicit 

inter-robot communication, two common cooperation rnechanisms used for control [31]. 

The goal was to propose and verify a framework for modelling a multi-robot task, such that 

the system displayed bot h coherent and coordinated behaviour wit hout centralized control. 

The problem was explored dong  the dimensions of perception and action. The result is 

a coordinated global action by the system without resorting t o  explicit mechanisms of 

cooperation such as directed communication between robots or  robot differentiation. The 

approach to  connecting perception and action is through a task description, specified as 

changes in the environment, and a task decomposition, which describes how a system will 

achieve those changes. Demonstrated is a framework using a coordinated multi-robot box- 

pushing task and its extension to a directed box-transport task. The  conjecture is that this 

approach may also be extended to other multi-step construction tasks. 



1.1 Connecting Perception to Action 

it has b e n  said tha t  the eta  of the  industrial robot-characterized by its use in the manu- 

h t u r i n g  industry-is about to  make way for the next generation "service robot," a device 

with a high reliance on rnobiiity to achieve its task specific purpose [8, 211. Along with mo- 

bility cornes a need for more autonomous operation than their progenitors whose lives were 

spent locked in cycles of precise movement in Cartesian space. Autonomy and mobility in 

robotics usually leads to  the problem of dealing with increasingly uncertain environments, 

and advances in autonomous robots are accomplished through a better understanding of 

the role sensors play in controlling actuators. 

In robotics, the problem of connecting perception to action is usually tackled by taking 

a reductionist's approach. The problem is decomposeci into su bproblems, which are often 

studied in isolation with the underlying assumption that, once they are solved, someone will 

fit al1 the pieces back together into a working autonomous robot ready to  fetch and deliver 

Our next cup of coffee. However, as is often the case, this merging of soived subproblems 

ends up as a research problem in itself, and results in a solution brittleness that quickly 

rears its head as soon as the next unforeseen event or circumstance occurs- One approach 

to dealing with uncertainty is to  circumscrïbe the environment in which the robot performs 

its designed function thereby limiting the size of the  possible set of sensor stimuli. Another, 

is to constantly calibrate and recaiibrate the sensor and actuator systems, but this does 

little to help solve the  Iarger - k u e  of system integration brought about by the original 

problem decomposition. An alternate view held by many is holistic in its approach to  

creating systems that  link perception to  action in a given environment, the so caIled animat 

approach [79]. 

1.1.1 The Animat Approach to AI 

The animat approach models whole but simple animal-like systems and their sensory envi- 

ronments. In this bottom up approach t o  inteiiigence the basic hypothesis is that human 

Ievel systems can eventually be buiit by studying complete, albeit simple, animal-like sen- 

sory/motor response systems in simulated environments. This argument aside, the holistic 

approach to  studying the connection between perception and action has merit when applied 

to the difficult task of designing and constructing physical mobile robots. 

By grounding the animat's internai symbols in the physical stimuli of a given real en- 

vironment, a study can be made of the connection between perception and action. The  



animat approach of determining the minimal machinery needed for a given animat with 

needs, an environment, and a sensory/motor system used to  achieve those needs is also ap- 

plicable t o  the reactive behaviour-based approach to  building mobüe robots. Task dificufty 

is increased by either increasing the complexïty of the environment or the complexity of the 

animat's needs t o  some criterion [79]. 

1.1.2 Niche Solutions and Collective Robotics 

An alternative approach to  dealing with uncertainty and the brittle reliability of single robot 

systems, is the multi-robot system which attempts t o  increase system reliability through 

the redundancy of m a s  effect. Aithough individual robots within the  system still suffer 

from the sarne spatial constraints as found in the single robot system? the m a s  effect of 

many parallel sensing and actuation operations increases the probabiIity the system can 

complete a given task. An analogy is often made with the task-achieving systems of social 

insects capable of complex tasks with well defined global results and al1 without the aid 

of centralized control, The effects of such systems are coordinated, but not necessarily 

cooperative since antagonistic forces are  present. 

Sudd [68] provides u s  the example of a two-meter-high mushroom-shaped termitek nest. 

Lilce the great pyramids of Giza, whose existence results from the effort of many thousand 

workers over several lifetimes, the end result is a predictable shape, as if planned by some 

master architect who then directs its s tep by step completion. In the case of the termite's 

nest. ~t-here is the master architect who orchestrates this colIective effort? And what is the 

nature of the intelligence controlhg this collective system in such a coordinated rnanner? 

Closer examination of the activity in nest construction reveals many antagonistic actions. 

As termites pile pellets into columns other termites undo the work by removing the same 

pellets. Despite these antagonistic agents system reliability. measured in terrns of task 

completion, remains high. How then, is such coherent behaviour achieved? 

1.2 Collective Behaviour 

Robotics research in general is task driven. Three typical tasks used to  study and evaluate 

theories in multi-robot control have emerged in the field: foraging, box-pushing, and for- 

mation marching. Foraging involves the search and retrievd, by a rnulti-robot system, of 

target items distributed in an environment. Targets are usually small enough to be handled 

by a single robot, and task completion is therefore possible by one robot given enough tirne. 

Box-pushing requires a t  least two robots to move an object in a cornmon direction: this 



needs more coordination than foraging since the task is not possible with a single robot. 

Formation marching needs a minimum of two robots moving in a given geometric pattern 

dong a desired trajectory, Most mutti-robot research studies measure system utility in 

reference to one of the above tasks. 

In a recent review of the field, Cao et al. [16] defined multi-robot systems in which "there 

is an increase in the total utility of the system" as exhibiting coopemtive behaviour provided 

it is "due to some underlying mechanism of cooperation." Thus it is often assumeci. either 

explicitly or implicitly, that cooperation invoives direct communication and the ability to 

distinguish robots from objects as the mechanism which increases total system utility. 

In Distributed Artificial Intelligence (DAI) the distinction of cooperation as a separate 

concept is not made. Rather, cooperation is seen "as a special case of coordination among 

nonantagonistic actors" [12]. Since the simulated domains of interest to D-4I do not contain 

the same level of uncertainty as  is found in the physical domains of robotics, DAI has 

had a tirniteci influence on coUective robotics [16]. However, rnany of t h e  problems in 

collective robotics are analogous to those found in DAI. Of particular relevance is the area 

of multiagent systems in which problems are solved by coordinating intelligent behaviour 

among a collection of autonomous agents, Here coherence and coordination are analytical 

concepts in wide use [12]. In DAI the term coherence refers to system behaviour in terms 

of an e d u a t i o n  criterion, while coordiBation describes interaction among agents, 

Coordination irnpiies a predictable system level result with minimum interference- The 

more inter-robot interference the  iess coordinated the system behaves. According to Bond 

and Gasser, coherence and coordination are somewhat related since greater coordination can 

lead to more efficient coherence by minimizing the degree of interference [12]. In collective 

robotics, Iike DAI, the problem is achieving coherence and coordination without centralized 

control or a global viewpoint. 

In t h i s  dissertation, focus is on the relationship between local perception and global 

action. The central thesis is that: 

Cohemnt collective behaviour, in some tasks, does not require an ezplicit mech- 

anism of coopemtion. 

The support for this proposition is based on the many examples of collective behaviour 

among social insects. To demonstrate coherent behaviour without centralized control or 

explicit inter-robot communication, a directed box-pushing task was studied in which a box 

was moved from a n  initially unknown position to an arbitrary goal location. Complimenting 



hypotheses on perception and action state both can be computed separately frorn the deci- 

sion proces linking them together, Next, the perception to action connection is examined 

by considering how Local perception and global action can result in coherent behaviour. 

1.2.1 Taxis-based Discrete Action 

Can predefined actions be a n  appropriate perceptud response? Could you and a friend, 

each applying a unit-force, pick up an arbitrary table? Probably not, since the amount of 

force needed to pick up the table would depend on its weight which you would gauge using 

perception. But what if a group of your unit-force friends came t o  help and, since in typical 

cases a table's weight is a function of its circumference, enough friends joined in until the 

table was lifted. The force needed t o  Mt tables would then be a function of group size. 

Using this algorithm, your group could lift several different size tables without varying the 

amount of effort each applied. -4 hypothesis regarding action within a group might then be 

stated as: 

A motor msponse or action can be computed separately fmm its stimulus without 

regard to either its rnodality or magnitude. 

The advantage this moduiarization holds for designing a robot's control system, lies in t h e  

ability to change parts of the perception architecture without affecting the corresponding 

rnotor actions. Nature provides severa1 examples in support of this approach. . 
Vowles determined that ants were able to  substitute the perceptual stimuli used in ori- 

entation motor responses [72]. Using an artificial light as stimulus ants maintain a constant 

orientation angle with respect to the stimulus while traversing a horizontal surface. The 

Iight source was then removed and the surface tilted verticaliy. The ants changed their 

direction and maintained the same angle with respect to the stimulus, but switched input 

stimulus t o  reference gravity instead of light. Taxis mechanisms are reflex transIationa1 or  

orientational movements by a freely motile agent in relation to  a source of stimulation, and 

in ants form a connection between sensory and locomotory mechanisms. Vowles hypothe- 

sized that both sensory and locomotory rnechanisms functioned independently of the taxis 

mechanism. 

A fixed sequence of actions used to accompüsh a specific task is also found to occur 

in animais. Referred to  as fized-action pat tern these sequences of behaviours have been 

observed in the greylag goose while executing an egg retrievai behaviour [Ml. When an egg 

rolls from its n e t ,  the goose will complete a sequence of movements starting with extending 



its head to reach the egg, then pulling back until its head is between its legs. This sequence 

is repeated even if contact with the egg is Iost; however, small side to  side adjustments are 

made to keep the egg in place during the pulling phase of the behaviour. Thus, predefined 

actions in the form of stored behaviourai programs could be independent from the stimulus 

w hich triggers them. 

These storeci behavioural programs can be invoked by researchers using appropriate 

stimuli. In ants, corpse removaI is a collective behaviour invoked by chernical odour. Work- 

ers dispose of dead ants by carrying them from the nest t o  a refuse pile. Wüson et al. 

[77] were able t o  invoke the same behaviour in ants by treating bits of paper with acetone 

extracts of ant corpses. In fact, by daubing smaii amounts of acetone extract on [ive ants, 

they too were camed away by nestrnates and dumped on the refuse pile. 

Operations to Demonstrate Motor Action Modularity 

Reactive control is an approach that connects perception to  action without creating a n  

internai mode1 of the world on which to  formulate a plan of action [SI. In order to show the 

use of discrete motor action in a reactive controuer, a set of motion primitives was designed 

for the box-pushing robots from which all motor actions would be composed. The underlying 

motor behaviour of a robot would then be a mapping from perceptud cues, as outlined in 

the sequel, to individual motion primitives or sequences. The hypothesis implied in such 

an approach is t ha t  continuous motion of a mobile robot can be approximated from a finite 

set of small discrete motions using perception as the element selector. Global action occurs 

when many redundant robots provide a mass effect while working towards a solution to a 

shared problem. Next, we consider the opposite end of the perception to  action rnapping. 

1.2.2 Local Perception 

Can a complex decision making process be reduced to simple sensor preprocessing? The 

hypothesis irnplicit in this question is that: 

The perceptual pmess used to trïgger a response in reactive contml can be corn- 

puted using selective perception fmm the environment for the action which con- 

trois the d o t .  

Here contml refers t o  the decision process involved in mapping perception to action. Wehner 

argues that an animal's solution to perceptual tasks "is often restricted to  a narrow range of 

stimuli and situations" found in its environment [?SI. Insects are cited as a prime example 



of this "matched filter" approach to perception, in which sensing receptors are spatially ar- 

ranged to match some environmentally specific stimulus. This, Wehner conjectures, relieves 

the insect from any heavy computational task by solving the decision making proces at 

the sensoty IeveI. Further, he speculates that although this makes the system less general 

in its abiiity to handle a variety of sensing input, the information processing is easier and 

suitable for the "narrow ecological niches" insects occupy. 

Two examples Wehner cites, in support of this hypothesis, are the visual streaks found 

in the eyes of both dasert ants [74] and crabs [80]. Visual streaks refer to the close spacing 

of photoreceptors near the center of the eye, the area in which most retinal images are 

formed because of the horizon dominated world which the animals inhabit. In crabs this 

spatid arrangement dows  a constant number of receptors to be stimulated by objects of 

the same size regardles of the distance of the object to the eye. Wehner speculates that 

this mechanism is a simple solution to the animal's problem of determining the size of t h e  

object, when the retinal images appear in a predictable way due to the predominantly fiat 

visual environment [XI. It is ako speculated that such a mechanism may be used in part 

as a visual cue and subsequent response to predators [SOI. 

Another example of behaviour tnggenng by stimulus cues is found in social insects. 

Both bees and ants use dawn and dusk to start and stop their foraging behaviour. In fact, 

bees have a special sensor system consisting of three ocelii used to detect Light Ievel intensity 

and manipulating these sensors affects when the foraging behaviour begins and ends. The 

light-level threshold a t  which foraging is triggered can be varied by blinding one. two or 

three of the ocelli [60]. 

Behavioural sequenees may be invoked by one or more stimulus cues. A single stimulus 

which triggers corpse removal behaviour in ants was found and tested by daubing bits of 

paper with the acetone extracts from ant corpses, causing them to be removed from the 

nest and dumped on the same refuse pile as dead ants [77]. Downing and Jeanne found that 

multiple cues are used to trigger nonlinear building behaviour in nest construction by paper 

wasps [20]. MeFarland and B k e r  cite the work of Boerends and Kruijt [9] on egg retneval 

behaviour found in herring gulls, in which several cues are used to recognize an egg rolled 

from its nest, and note that this mechanism of adding cues is an appücation of the law of 

hetemgeneow surnmation-in which diverse and independent stimuli have an additive effect 

on behaviour [44]-proposed by Seitz [62]. 



Perception in Robotics 

These examples found in natural systerns are also supported by recent changes in approach 

to control within the field of robotics. Control systems for mobile robots typically foilow 

one of two approaches. TraditionaUy the connection between sensors and actuators was 

made through a Iinear mode1 of perception, representation, reasoning and action. These 

systems tended to be somewhat brittle due to the way information was processed sequen- 

tially. Creating behaviour in machines from sets of stimulus-response pairs, as advocated by 

Braitenberg as  an interesting way to study mind [13], is similar to an alternative approach 

to robot control proposed by Brooks [14] which made use of a more direct coupling of sen- 

sors to actuators mediated by behaviour. These stimulus-response behaviours are used in a 

paraIlel decomposition of a, task into a set of behaviours, effectively precompiling both the 

representation and reasoning into task-achieving modules. 

Fundamental to the reactive, or behaviour-based, control technique in robotics is this 

tight coupIing between stimulus and response, calied action-oriented perception [SI. Rather 

than creating a n  interna1 representation of the environment, to be used by a planning 

system as is found in traditional -41, the needs of a motor-action are specified in terms of 

its perceptual requirements. 

Pragrnatically, several issues concerning sensors must be considered before a study of 

their relationship to actuation can be made. Sensors provide a robot with a window into 

its environment that usualIy carves the wortd into a number of discrete perceptua1 spaces. 

The size of these spaces is dependent on a sensor'ç modality, resolution, features in the form 

of perceptual cues, how information is fused, and how many sensors are used. These are 

the issues of perception, which in a robot amount to sensing through a selection of sensors 

with widely varying parameters. Choosing the size of this window =ries the amount of 

information, available to the robot, o n  which to make decisions- 

Sensor modality Selecting which type of sensor to use should depend on the perceptual 

tasks to be accomplished by the robot. For example, in order to successfully navigate, 

mobile robots require obstacle sensors. Several different types of sensors exist to detect 

obstacles depending on the range, accuracy, repeatability and reliability required. Each 

modality has different processing requirernents that vary from a single bit contact switch, 

to over 500,000 bits in a digital camera. Each sensor has Limitations which may be overcome 

by combining multiple sensors of the same or different type. 



Sensor resolution In perceptuai tasks, how weU a specific quantity can be determined 

or two quantities differentiated, depends on the sensor's resolution. The finer a sensor's 

rwolution, the greater the amount of da ta  i t  may produce and potentially the greater the 

processing requirement. The resolution requirement is also task specific. If a task requires 

the robot t o  detect one-miilimeter-wide cracks in concrete surfaces, then the sensor chosen 

must be able t o  resolve distances of Iess than a millimeter- 

Sensor cues Sensor cues, often referred to  as perceptual cues o r  triggers, are features in 

the robot's perceptual space deemed important by the system's designer. Cues signify an 

event has occurred and can be used to  mark a transition in a control process. Cues may 

be binary in nature iike the illumination of a iight indicating the s tar t  of a process, or as 

subtle as a change in shading indicating the movement of a light source- A cue rnay be 

defined as a feature in a specific sensor's output space or  as  a combination of one o r  more 

different sensor features. The question of how much information (sensor output) is needed 

to define a sensor cue is an important one. 

Sensor fusion The issue of deciding how information about one stimulus from multiple 

sensors is to be used is called sensor fusion- Sensor fusion must consider the amount of 

information from a given sensor as well as its accuracy, modality, and resolution- When 

the information about a source from different sensors is conflicting, a method to  resolve 

inconsistencies must be included in the fusion algorithm. Choosing which sensors to  include 

in a fusion process is as difficult as deciding what information from those sensors will be 

used. 

Sensor quantity Deciding on the number of sensors to  be used for a given perceptual 

task is usually a pragmatic choice. Cost is often the limiting factor. Sensors of a fixed 

spatial range can provide more information by using larger quantities. For example, ten 

contact switches, each capable of detecting contact with a one centimeter squared area, 

can be used to detect contact with a ten centimeter squared area. Redundant sensors are 

often used to d u c e  uncertainty by making use of multiple readings. Often the sensor 

quantity can not be determined if a method for using the data  is not known. Stereo vision 

employs two cameras and knowledge of their geometric arrangement in order to compute 

depth information from stereo images of a scene, but how could ten cameras be used and 

what additional information would they provide? 



Operations to Demonstrate Perceptual Modularity 

In order to demonstrate that perception can be computed separately from the controi deci- 

sion process, the perceptual cues used in the box-pushing task were specified by measuring 

sensor output for a given set of stimulus conditions within the task9s environment. This 

data provided a two dimensiond view of stimuli for a given sensor and environment. The 

hypot hesis was that the stimuius data sufficiently encodes the correct control decision for 

an appropriate motor-response action, in a rnanner similar to the evolved 'matched filter' 

response found in nature. Next. we consider how perception and action processes are linked 

together in a cohesive and coordinated rnanner. 

1.2.3 Coherent Behaviour 

Does coherent behaviour require direct communication or robot differentiation? Previous 

studies of coordinated multi-robot box-pushing have often employed direct communication 

as  the explicit mechanism of cooperation [59, 18, 431. Coordination is achieved by imple- 

rnenting pushing protocok which require the robots to have spatial Iinowledge and unique 

functional roles in the pushing task. For example, in [18] a pushing protocol (Protocol 

1) was developed for a pair of mobile robots uniquely identified as Left and Right. Force 

information was communicated between the two robots which allowed each to calculate the 

net torque about a point haifway between the robots. In [59] a similar left/right knowl- 

edged strategy was used by two dissimilar robots which used broadcast communication to 

indicate "pushed-at-left" or "pushed-at-right" actions by each robot. A token passing "mu- 

turnn communication protocol was used in [43] to achieve "careful coordination between 

the robotsn in a cooperative box-pushing task. AIthough in these examples only two robots 

were used in the task, each with a unique left/right functiond role, it is not char how these 

approaches would scale to targer systems, as communication costs escalate as a function of 

the number of robots. 

However, communication as a mechanism of cooperation can improve the performance 

of some tasks. Balch and Arkin performed simulation studies of three tasks with varying 

degrees of communication complexity [IO]. The tasks studied were forage, consume, and 

gmze al1 of which involved, to varying degrees, the spatial coverage of the environment by 

a multi-robot system. In tasks such as these, performance improvements were made using 

broadcast communication when alternate communication channels, such as the environment, 

were unavailable. Furthermore, chernical communication among members of an ant colony 

is a well understood mechanisrn for releasing behaviour and thus can help direct a collective 



response in many tasks. Thus we acknowledge the benefit direct communication can have in  

certain tasks, but question whether it is a required component in multi-robot cooperation. 

Robot differentiation, the a b ï t y  to  distinguish robots from other objects in the envi- 

ronment, has been postulateci by some to be a necessary condition for coherent behaviour in 

multi-robot systems [59,42]. Also referred to  as "robot awareness" or =kin recognitionn the 

ability to d i e r n  other robots presupposes that the behaviour of a robot in a group should 

be different from its singular behaviour. Although this may be true for specific robot archi- 

tectures, it is not axiomatic in the more general case of decent raiized control. Social insects 

such as ants are a good example of decentraüzed control that  exhibit coherent behaviour 

in accomplishing several weI1 defined coilective tasks, yet no evidence has been found to 

support the daim that the behaviour of a single ant engaged in an activity is any different 

when found within its own cotony [78]. Thus, it is not clear whether explicit mechanisms 

like directed communication or robot diffeerentiation axe required in cooperative control. 

To further Our understanding of coherent collective behaviour the following prïmary 

hypot hesis was investigated: 

Coherent collective behauiour, in sonze tasks, does not require an ezplicit mech- 

anism of coopemtion. 

The motivation stems from the many weU documented cases of coherent behaviour found 

in social insects which result without use of explicit mechanisms of cooperation. 

Social insects exhibit some of their most coherent behaviour during nest building and 

group transport activities. The activity may be described as a well defined series of steps 

or  behavioural acts, with transitions between steps specified as unique stimulus cues. Nest 

construction by paper wasps begins by first building a stem, which holds the nest to  the 

bottom of a horizontal surface, to which walls are added, thus forming the first cell. Downing 

and Jeanne identified the stimulus cues used to cause transition between building acts, and 

determined that cues may be composed of more than one stimulus [19]. For example, the 

transition between the stem and roof construction step is specified by stem length. while 

to determine stem perpendiculanty wasps nieasure both sides of the stem as well as using 

its reference to gravity [20]. In nest construction, coherent behaviour would seem to have 

resulted from an evolutionary derived building program whose execution is governed by a 

cornmon set of perceptuai cues. 

Group transport behaviour is the cooperative movement of an object by two or more 

ants. The behaviour is an efficient way for a small workforce to retrieve food items to 



the n e t  [48]. Detailed study of the movement patterns during transport indicated that 

coordinated movement usuaily resulted, after a period of antagonistic actions. in response 

to transport difficulty [67]. Transport items are carned at standard retneval speeds and 

a constant relationship exists between the dry weight of the group and the weight of the 

transporteci item. Transport is initialiy starteci by one ant  with others joining in until the 

standard retrieval speed is reached, after which the group size remains constant. These 

observations have implied that individuals within the c o u p  can assess their performance 

[24]. Thus, a coherent transport behaviour is a result of simple rules of interaction governing 

the formation of groups used for food retrieval. With these examples in mind, if explicit 

mechanisms of cooperation in rnulti-robot systems are not used, how then is coherence and 

coordination accomplished? 

Task Description and Decomposition 

Problems inherent to the design and implementation of multi-robot systems are tasli de- 

scription and decomposition, also found in DAI. Of relevance, are some dimensions used for 

problem description and decomposition [12]. 

in a problem description, we are interested in capturing both information about the 

environment and the task to be accomplished, as well potential solution paths that a given 

multi-robot system can take. The description must d so  identify potential pitfalls the -stem 

may encounter and allow the designer to take these into account during task decomposition. 

An approach proposed by Wilson [79] to modelling simulated environments describes them 

as Sensoy State Machines. Inputs for these machines tabre the form of actions by a robot 

with the resulting output as changes in stimulus observable with sensors in the environment. 

This approach wil1 be modified to  create state graphs which describe tasks as stimulus 

changes to be accomplished while also indicating potential deadlock situations. Arcs in 

these state graphs wiil represent possible coiiective actions taken by the system and its 

finite set of motion primitives. These problem descriptions will affect the way in which the 

task is decomposed making description and decomposition iterative tasks (121. 

Bond and Gasser [12] have suggested several dimensions along which a problem may 

be decomposed, a subset of which we translate to the collective robotics domain. En the 

transport task four dimensions were used for problem decomposition: abstraction levels. 

control and temporal dependencies, and redundancy. 

Abstraction Levels- A task may be viewed from three levels of abstraction. The task- 

Ievel, which describes what is to be accomplished. The behaviour-level, which describes 



how the task is to  be accomplished. The action-level, which are the primitive actions the 

system performs for a given task. The task-Ievel description is specified as changes in the 

environment observable by an external agent with a global perspective. At the behaviour- 

level, a task is described as a series ofsteps or  subtasks that the system must take in order 

to  accomplish the ta& Transitions between these steps are specified as cues from a robotk 

sensors, which represent local perceptual changes. At the action-level, the above su btasks 

are further subdivided into task-achieving reactive actions, which accomplish the specified 

function of the controuer using stimulus-response motion primitives. 

Contml Dependencies. A task may be decomposed by reducing robot control depen- 

dencies. This wiU impact such design decisions as the amount of resources avaiiable for 

a given system size; reducing robot interaction through the use of noninterference p ro t e  

cols; restricting inter-robot communication; and iimiting autonomous action based on local 

perception. 

Tempoml Dependencies. Task decomposition is also considered in the temporal dimen- 

sion by encoding time constraints in the environment/task s tate  diagrams. Tasks which 

require a repetitive sequence of actions with onIy spatial changes in their parameters are 

encoded temporally. For example, a wall of bricks is buiIt with a repetitive sequence of 

actions by changing one spatial parameter, the location of the next brick. 

Redundancy. If uncertainty is high in the perception and actions of individual robots, 

then tasks are decomposed by creating redundancy in the multi-robot system. Thus. sys- 

tems must be homogeneous in a robot's ability to carry out al1 steps of a ta&. or if hetero- 

geneous in composition, then each subtask must still have redundant hornogeneous robots. 

These guiding principles must next be reduced to  research operations that will allow u s  

to gather data  in support of Our hypothesis on coherent behaviour. 

Operations to Demonstrate Coherent Behaviour 

In order to  demonstrate a coherent group behaviour without using direct communication 

or robot differentiation, a multi-robot box-pushing system was created under the following 

assum ptions: 

The tmnsport tasli of pushing a box from an unknown initial position to  a known goal 

position will require the net force of a t  Ieast two robots pushing in the same direction. 

O The robots are autonomous, and control is therefore decentralized. with local percep 

tion from onboard sensors as the only means of observing the environment. 



r No direct communication between robots is possible. 

Robots do not dktinguish between objects to be avoided and other robots. The worid. 

from the robot's viewpoint, consists of boxes to be pushed, obstacles to be avoided. 

and goal destinations. 

Coherence, which describes how weil t h e  system behaves as a unit, wil l  be measureù in terms 

of the percentage of times the system succdully performs the transport task in a given 

tirneframe. Coordination, which describes how weU the system synchronizes its collective 

actions, wüi be measured by comparing the time it takes for different numbers of robots 

to complete the transport task. In performing the task we wiii vary the number of robots 

that comprise the system, the size and shape of the object being transported and the goals 

towards which the system must transport the object. 

In Chapter 2, some of the issues that have motivated the field of collective robotics are 

discussed, concentrating on the typical tasks that have recently emerged and on which our 

synthetic systems are tested. The conjecture is made that the key to understanding coherent 

collective behaviour lies in the many weil researched examples of decentralized control found 

in the field of social insects. 

In Chapter 3, a taxis-based model of action is introduced. A model is presented for 

discrete actions composed from three classes of stimuIus response behaviours. Primitive 

actuation is derived from either the class of goal, avoidance or kinesthetically driven be- 

haviours. Examples of action sequences are then used to demonstrate use of the model. 

In Chapter 4, a model of perception is presented, called the perceptual cue framework, 

and its approach to compiling control decision information into binary sensing preciicates. 

The mode1 is demonstrated by creating perceptual cues for the box-pushing task used 

throughout our research to study the  connection between local perception and giobaI action. 

In Chapter 5, the connection between local perception and global action is made explicit 

through the use of task description and decornposition. Q-machines are introduced to model 

the process as a three level hierarchy of finite state automata whose execution is controlled 

by the previously defined perceptual cues. The steps of the transport task, the running 

example of a collective task, are modelled as Q-machines and the results of testing the 

individual stepcontrollers are presented. 



In Chapter 6, the resuits from a number of experiments. both in simuiation and on 

our system of physical mobile robots are presented, which integrate the subtask controllers 

presented in the previous chapter- 

In Chapter 7, the results are discussed for the main question under investigation, namely 

does coherent behaviour of multiple robots require an expliut mechanism of cooperation? 

The research contribution is summarized and areas for further study are discussed, 



Chapter 2 

Motivation 

In this dissertation, accompiishing tasirs collectively with a set of mobile robots is the area 

of interest. The specific problem investigated is how to  coordinate the actions of several 

autonomous mobile robots engageci in a directed box-pushing task without using direct 

communication between robots. As in any new field, this style of cxperimental robotics 

is staking out its territory. Often a study will concentrate on one aspect of the problem. 

leaving the results to be implemented by those conducting research farther on down the line. 

Some projects. like the one here, take a holistic approach and attempt to incorporate the 

multidisciplinary results into their systems. This is a breadth-first rather than depth-first 

approach to the problem. 

In this chapter, an overview of work related to the approach taken in collective robotics is 

presented. A bnef survey of mutti-robot systems and the collective tasks used in their study 

is discussed. Described are both phpical and sirnulated systems, Descriptions are brief and 

concentrate on the functional (task) aspect of the system, while referring to  some of the 

attributes t hat characterize the approach taken along the dimensions discussed previously. 

Since task modelling and perception are so closely related in this styIe of work, they are 

discussed together in Section 2.3. Finaliy, in Section 2.4 we consider some of nature's 

solutions to  out problems of interest, 

2.1 Introduction 

Research in micromachine technology-robots too small t o  see with the unaided eye-is 

driven by applications for multi-robot systems frorn a diverse number of areas including 



aerospace, environmental, industrial, marine, and medicine to name a few. In aerospace 

technology it is envisioned that teams of flying robots may effect satellite repair, and air- 

craft engine maintenance could be performed by thousands of robots buiIt into the engine 

eliminating the need for costly disassembly for routine preventative maintenance. Envi- 

conmental robots are to be used in pipe inspection and pest eradication. While industrial 

applications include waste disposal and micro deaners. Ship maintenance and ocean ciean- 

ing could be performed by hundreds of underwater robots designed to remove debris from 

hulls and ocean floors. Fantastic as it rnay seem, some researchers envision microsurgical 

robots that could be injected into the body by the hundreds designed to perform specific 

manipulation tasks without the need for conventional surgical techniques [47]. In order to 

realize this diverse array of applications, techniques in synergistic control for collective tasks 

wiU be required, 

2.2 Collective Tasks for Multi-Robots 

Recently, three typical tasks used to st udy multi-robot control have emerged . Tasks include 

foraging, which involves searching and retrieving a target from a given area, box-pushing? 

which moves an object between two locations, and formation marching. where robots rnove 

while maintaining a fixed pattern. These collective tasks have been studied using both 

physical robots and simulation. The questions under investigation often ask, should the 

composition be from a homogeneous or heterogeneous set of robots? What is the size of the 

system and how many robots are needed to accomplish the task? Does communication help 

improve task execution speed? What is the most effective control structure for a multi-robot 

system? And it is through the above three tasks that these questions are often explored. 

2.2.1 Collective Foraging 

In a collective foraging task robots search and retrieve a target item distributed in their 

environment. MatariC used a homogeneous system of seven mobile robots used to find and 

collect randomly distributed pucks [42]. The system makes no use of explicit communication 

between robots to accomplish the task. The primary objective in use of the foraging task 

was to  investigate the design of collective behavior from a set of basic behaviours based 

on simple local rules of interaction. Examples of these basic behaviours include obstacle 

avoidance dispersion, aggregation, foliowing, homing, and flocking [41]. 

in order to investigate whether communication could improve task execution time, AC 

tenburg used a similar task of collecting targets in an enclosed area using six homogeneous 



robots. Task performance, measured in the time taken to complete the task. improved 

when a simple broadcast type recruitment signal was used. Once a robot Iocated a target 

it broadcast a signal causing nearby robots to move towards the location. Control was 

achieved using prioritized ruIes [2]. Balch and Arkin conducted a simulation study of the 

foraging task using a homogeneous group of one to five robots, with varying amounts of 

inter-robot communication. They found that an average improvement of 19 percent, over a 

noncommunicating system, was to be had when the goal location was broadcast. Control 

of their system was achieved using motor-schemas and finite state acceptors (explained in 

the sequel) [IO]. Another modified foraging task was studied by Parker using either two or 

t h e  robots in a communicating heterogeneous team. The task involved Iocating a cluster 

of pucks and moving them to  a second location. The issue under investigation was fault 

tolerance in a cooperating heterogeneous team [59]. 

2.2.2 Multi-Robot Box-Pushing 

The above examples of foraging are noncooperative coliective tasks, in that they could be 

performed by one robot given enough time- On the other hand, cooperative tasks such as 

box-pushing and formation marching, requirc a t  least two robots to complete the ta& In 

box-pushing, both traditional -41 and reactive approaches have been employed- Box-pushing 

requires a cooperative effort from at least two robots to move a box along some trajectory. 

Traditional approaches decompose the box-pushing task into subtasks to be allocated 

to individual robots for execution. Caloud, Choi, Latombe, Le Pape and Yim make use 

of a centralized task pianner to communicate with t h e  robots executing a box-pushing 

ta&. To coordinate planning and scheduüng activities a blackboard system is used [15]. 

Noreils describes work on a three level decentralized architecture with functional, control 

and planning levels designed to decompose and allocate the task to a group of robots. A n  

experiment in box-pushing using two robots, one to push and one to supervise, is presented 

by [53]. Donald, Jennings and Rus descnbe a box-pushing protocol (Protocol 1) for a pair 

of identical robots identified as  Left and Right with explicit communication between the 

pair to coordinate their actions [18]. In a similar approach by Matarié et al. a token passing 

protocol was used between two robots to coordinate box-pushing actions. In each of these 

approaches planning is performed either globally with plans communicated to single robots 

or some combination of global and Iocal planning with conflict resolution being handled 

centrally. 

An alternate approach makes use of a reactive system in which planning has been pre- 



compiled into the task description itself. Kube and Zhang report on a undirected bos- 

pushing experiment using a decentralized noncommunicating homogeneous system of five 

mobile robots- Their system uses reactive control and noninterference as a simple form of 

cooperation [33]. Parker also describes a box-pushing experiment using a heterogeneous 

pair of robots in which state information is communicated between the robots as a means 

of coordinating their actions [58]. Thus, by designing the system for a well specified task 

and compiiîng this knowledge into itç control system, the  more generalized planning stage 

is avoided. 

An interesting approach for a material transport system has been proposed by StilweU 

and Bay, in which decentralized control of a group of homogeneous mobile robots equipped 

with force sensors collectively move a single pallet [65]. Without using communication a 

leader robot moves the pallet towards a destination with the direction sensed by the other 

robots using a single force sensor in contact with the Ioad. The distributed control law is 

tested using computer simulation. 

2.2.3 Formation Marching 

Formation marching is another common task being investigated- In formation marching a 

group of robots are to move while maintaining a desired formation. Both Noreils [54] and 

the ACTRESS project [56] have reported on experiments using two mobile robots moving in 

tandem. Other formation marching studies using simulation have examined motion based 

on nearest neighbour tracking [73], local path planning [63], virtual impedance [%], and 

combinations of local and global information [fi?]. 

From the above we may see that  most tasks in coUective robotics, that have phÿsical 

implementations, employ fewer than eight robots. Tasks tha t  involve manipulation use ei- 

ther a noncooperative search and retrieval type behaviours (eg. foraging), or cooperative 

behaviours (eg. box-pushing, formation marching). Both homogeneous and heterogeneous 

systerns have been used. Explicit communication has been shown to  improve task perfor- 

mance in tasks where implicit communication through the environment is not possible (eg. 

foraging); however, no improvement was shown for tasks where implicit communication 

through the task was possible [IO]. The approaches t o  coordination in box-pushing have 

primarily relied on direct communication between a pair of robots often uniquely identified 

in the role they play in task execution. 



2.3 Collective Task Modelling and Perception 

Few studies have explicitly considered the problern of rnodelhg the task for a collective 

robotic system. The approach taken can be roughly divided into systems that perform 

the task cok t ive ly  as a group with each robot executing the same control program, or 

systems that perform the task individually using task planning and aUocation. with a. single 

robot assigneci to each subtask. In most cases, where reactive behaviour is employed in 

the control system, a set of task-achieving behaviours are designed for the task (Le. the 

planning is part of the systern design). Input to these systems takes the form of signals 

and cues, Signals are usually received through the use of explicit communication between 

robots. Cues are received by implicit communication using local perception through the 

robot's onboard sensors. Reactive systems may also make use of memory allowing for state. 

versus those systems which rely solely on their inputs. Traditional approaches that use task 

planning and allocation typicdy use a centrdized planning and allocation system which 

sends messages or protocols t o  individual robots for execution. This approach requires the 

use of an explicit communication system to send and receive messages between the global 

pLanner and robots, 

Matarit has modelled a foraging task using a set of basic behaviours and a modified 

type of finite state machine [42]. The perceptual systern makes use of both signais and cues 

for transitions between states- Sensors are used as cues to  detect the location of targets to 

be picked up, causing a transition to an acquisition behaviour. Inter-robot communication 

is used as a signal causing behavioural transition. This type of broadcast communication 

is similar to  alarm communication used in ants [76]. 

Altenburg has used a set of prioritized rules to describe a foraging task [2]. Bot h signals 

and cues are used in the perceptual system. Cues are impkmented using sensors t o  detect 

obstacles and targets, and can be combined to form transitions between rules. Rules are 

also triggered by timeouts and signais can be broadcast which cause rules to  trigger in 

other robots. Goal location is determineci by light intensity with rules descnbing necessary 

preconditions for triggering. 

Kube and Zhang have modelled a box-pushing task using a reactive controuer and fixed 

priority behaviours [33]. Perception makes use of cues only with implicit communication 

by passive sensing. Behaviours are triggered by directly connected sensors with the controI 

system irnplemented in combinational logic. 

Parker has extended the behaviour-based architecture [14] t o  allow for selection among 



task-achieving behaviours [58]. Both sign& and cues are employed in behaviour selec- 

tion. A task in this architecture is composed of loosely coupied independent subtasks which 

may not be ordered. Subtasks are implemented using behaviour sets whose activation is 

controlied by a motivational behaviour. Only one behaviour set may be active at a time. 

and suppression of other behaviour sets is performed by the active behaviour set. Motiva- 

tional behaviours decide which behaviour set is active based on received input from sensors, 

inter-robot communication, inhibit lines from other behaviour sets, and two internai state 

variables, impatience and acquiescence. When a preset threshold is reached the motiva- 

tional behaviour activates its associated behaviour set. This method of selecting the active 

behaviour set can not be used if the task requires an ordered sequence of behaviours. 

An alternate approach to modeUing tasks that does not suffer from ordered behaviour 

sequencing has been recently proposed by Arkin and MacKenzie for perceptual processes [6]. 

Their approach controls sequences of perceptual algorithms using a finite state model with 

transitions between states trïggered by either elapsed time, algorithm completion, algorithm 

failure, or termination of a motor activity. A priority based mechanism is used to handle 

the simultaneous triggering of several perceptual processes. This state based approach has 

been applied to the control of a single robot in a docking task and allows for a systematic 

way of temporally sequencing behaviours as the tasic proceeds. 

The more traditional individual-based task allocation systems are represented by the 

worh of Noreils [53], and of Asama (-4CTRESS) [Tl. Noreils describes a box-pushing task 

modelled as coordinated protocols implemented as predicate/transition nets in a three level 

architecture. At the highest level is a global planner responsible for coordination between 

local plans and collaboration used for task decomposition and allocation. Protocols which 

describe the task are composed of requests to the lower functionat level and monitors which 

handle cues from sensors. Tasks are accomplished individuaily rather than using a collection, 

by alocating subtasks to individual robots. The ACTRESS architecture is characterized 

in a similar manner with both centrafized and decentralized task planning and allocation. 

A global model is kept of the environment and message protocols are used to  instruct 

individual robots in subtask execution. 

2.4 Collective Biology 

Examples abound in nature supporting the conjecture that locally sensed stimulus and 

reflexive behaviour can produce a predictable global effect. An example is the a-el1 defined 

mushroom shaped termite nest that often stands more than two meters high and one meter 



in diameter at its base [68b Its construction. through a linear series of buiIding steps. 

is hypothesized t o  be the result of a building program and stimulus cues used to  switch 

between construction steps, and forms the basis of Grassé's Stigrnergy Theory [26]. Can 

the many examples of perceptual cues, used to trigger behaviour sequences in biologicai 

systems, be used to  design a similar mechanism for multi-robot control? And can these 

same c u s  &O be used t o  govern transitions between task steps in robotic systems the same 

way they regdate buiiding acts in nest construction? In this section we examine a nurnber 

of examples with the above two questions in min& 

2.4.1 Nest Construction by Wasps 

Nest construction by social insects is a collective task involving a weIl defined sequence of 

construction steps. Construction by paper wasps takes place in two stages. In the first 

stage, a linear series of building acts, or behaviours, are used to construct a petiole, or 

stem, which holds the nest to the bottom of a horizontal surfacel t o  which walls are added 

forming the first nest ceil. In the second stage, a nonlinear series of building behaviours 

folIow in which either the stem is reinforced. the first ce11 Iengthened, or an additional ceIl 

is built [19]. 

The Iinear sequence of building acts are: 

1. S u  bstrate preparation: 

2. Stem construction: 

3. Flat sheet construction; 

4. First ce11 construction. 

Downing and Jeanne identified the stimulus cues that influenced the transitions between 

steps and noted that the cues remained consistent within an individual but varied between 

individuals. For example, they cite the transition between stem and flat sheet construction 

to be the length of the stem, and that although this length varied from wasp to wasp, an 

individual wasp would consistently build stems of the same length. 

The decisions in the second nonlinear phase of nest construction are more complex since 

they involve a choice between any one of several building behaviours. Cues used in this 

phase were composed of more than one sensing stimulus. For example, when constructing 

the  stem of the nest which holds it to a horizontal surface, the wasp measures both sides of 

the stem to determine its perpendicularïty as well as using its refetence to gravity [201. 



2.4.2 Group Transport by Ants 

Nature has graciously provided us, by way of the socid insects, an example multi-agent 

system whose decentraiïzed control is based solely on locally sensed information. Moreover. 

ants exhibit a group transport behaviour, used in both food and prey retrieval taslis, in 

which stagnation problems arise and are solved using simple recovery strategies. 

Group transport is the cooperative movement of a load by two or more ants. Very 

few studies have e-xamined this behaviour found aImost exclusiveIy in ants, but those that 

have shown group transport to be an efficient way of moving a load with a smaU workforce 

[48, 24, 66, 671. Food is generaUy consumed within the n e t  and must be first torn apart 

before consumption. Ants must either transport the food item as a whole from its location 

or dismantle it into srnail enough pieces to be carried back to the nest by an individual. The 

efficiency of group transport is evident in Moffett's experirnent using a large piece of cereaI 

carried by 14 ants, a food item which would have required 498 ants had individual pieces 

been carried solitariiy [48]. Franks has also determined the efficiency of group transport 

with ants capable of moving items which are more than the sum of pieces carned by the 

individual ants in a group [24]. Since items are always carried at  a standard retrieval speed, 

Franks hypothesizes that  this superefficiency is obtained by a group's ability to overcome 

the rotational forces necessary to baiance a food item, 

A detailed study of the  movement patterns involved in group transport was carried out 

by Sudd in which it was concluded that although the behaviour of ants in a group transport 

was similar to that of single ants, group transport showed cooperative features [66. 671. 

When an ant attempts to move a food item it first tries to carry it. If the item is restrained 

in any way the ant will next attempt to drag it. Sudd suggests that the resistance to 

transport determines whether to carry or drag the item. After some seconds are spent on 

resistance testing. the an t  d l  try to realign the orientation of its body without releasing 

the  item [67]. This has the effect of altering the direction of applied force and may be 

sufficient to move the food item. if the item still cannot be moved the ant wiI1 release its 

grasp and reposition itself by grasping a t  another spot, If this final attempt does not result 

in movement the ant will recruit other ants to the food site. The lighter the load the longer 

an ant will attempt to move it. Sudd cites an ant will spend up to four minutes before 

recruitment takes place for items less than IOOmg, and up to one minute for items greater 

than 300mg. 

The strategies of realigning, and repositioning are used by ants in the group if during 



transport the item gets stuck, and t herefore movement stagnates. Once movement begins. 

the rate of transport increases as time passes due to the increase in frequency of spatial 

remangement, which Sudd suggests results from the ants' response to the reactive forces 

communicated through the item being transporteci [67]. Although no numerical data was 

gathered, Sudd suggests that reaiïgnrnent occurred more frequently than repositioning. 

which suggests a priority might exist between the two behaviours although sensitivity to 

increased frictional forces would also explain t bis observation [66]. 

From the above it can be seen that the study of insect behaviour has much to offer in 

motivating control mechanisms for multi-robot control. I t  would seem that nature has 

evolved a s u c c d u l  approach to the stimulus plethora on which task specific behaviours 

make their control decisions. How then do the examples presented relate to the design of 

multi-robot systerns? 

The problem of a decision process based on Iocally sensed stimuli can be seen as one 

of sensor aliasing- In other words, how do you control the perceptual problem of unique 

stimuli equating to t h e  correct decision? it  would seem, from the above examptes. that 

nature has evolved a t  Ieast four guiding principies useful in Emiting sensor aliasing: 

Environment specific. By understanding or controlling the stimulus present in the 

environment. unique behaviour-specific sensors can be designed for the rnulti-robot 

system. This means that the environment characterized by its stimulus output is part 

of the overail solution, which results in an environment-specific robot system. 

0 Task decomposition. Stimuli need only be unique within a subtask, resulting in 

context dependent rneaning. An example found in nest construction is the rneaning 

of light intensity. While the ant is building enclosed walls, light represents a hole to 

be patched, while the ant is foraging, it governs the starting and stopping of activity. 

For multi-robot systems this means sensor cues only need to be rnutualiy exclusive to 

each subtask controller. 

Orthogonal stimulus. Combining nonconflicting stimuli into decisions that govern 

the transition between behavioural acts reduces sensor aliasing. Multiple cues such 

as the use of both grarity and stem perpendicularity in wasp nest construction make 

the cue unique. 



Mass effect. Since individual behaviourd acts are often found to be antagonistic 

towards progression of a task in nature's reactive systems, successful task completion 

must rely on m a s  &et to accomplish its goal. In homogeneous multi-robot systems 

this means using redundancy to increase the probability of successful task execution. 

It remains to be seen, however, whether these perceptual cues can in fact be used to 

control transitions between task-adiieving behaviours in Our artificial systems of robots. 



Chapter 3 

Taxis-based Action 

Jander defines insect orientation as "the capacity and activity of controlling location and 

attitude in space and time with the help of external and interna1 references i.e. stimuli." 

[30]. In insects the behavioural ôet of orientation is controiled either externally, and results 

in a directional orientation using a taxis mechanism, or internally under kinesthetic control. 

In this chapter, a model of action is developed based on the taxis mechanisms used in insect 

orientation. Taxis is defined by Webster's as a reflex translational or orientational movement 

by a freely motiie organism in relation to a source of stimulation [45]. In the model presented, 

robot actions are based pnmarily on taxis orientation or kinesthetic orientation as  fixed 

motion patterns. The resulting action model is used to create motor behaviours to be 

used in a reactive controuer. In the model presented, the only required knowledge about 

the perception side of the robot is that it corresponds to the left and right division of the 

mobility system used to produce actions. In other words, the input to the action model 

is the result of the perception of a stimulus, but does not depend on either the stimuü's 

modality or magnitude. Instead, a boolean decision is made by the perceptual -stem, 

presented in the next chapter, which detects the presence of a given stirn~lus.~ 

3.1 Introduction 

In the presented model for action, motion is restrïcted to translation and rotation in two 

dimensions. Within the box-pushing environment al1 robot motor actions, therefore. result 
- - - - - - - - - - - 

Portions of this chapter have been pubiished. C. Rondd Kube and Hong Zhang 1993. hdaptive Behavior. 
2(2):189-219 [34]. 



in changes in position and orientation with respect to a given coordinate frame, To facilitate 

a quick response to changes in sensor data, a reactive control system is used for motor 

actions. 

A robot mobüity base was designed and buüt that osed differentid steering as its means 

for achieving changes in translation and rotation. Discrete motion primitives were developed 

to  be used as the underlying mechanism for ail actions taken by the system. Perceptual 

processes presented in Chapter 4 are designed independently, but rely on the taxis model 

and its differential steering method for mobiity. 

Using the motion primitives, motor behaviours, called primitive actuation behaviours. 

are developed and form the basis of the task-achieving behaviours presented in Chapter 5. 

Primitive actuation behaviours are classified into three groups: positive taxis or goal driven, 

which provide a change in orientation or translation tomanis a stimulus; negative taxis or 

avoidance driven, which effect a change in orientation or translation away from a stimulus: 

and kinesthetically driven, which execute a fixed action sequence in response to stagnating 

or deadiock conditions. 

3.2 Reactive Control: Insects and Robots 

A fast response by a robot to changes in its environment is a necessary criterion when de- 

signing any robot that appears to exhibit intelligent behaviour. Controlling robots using a 

tighter coupiing between perception and action was formalized by Brooks in 1986 [14] and 

since has been referred to as behaviour-based or reactive control. Real-time responsiveness 

was the prime motivation for the new robot control architecture. Previous mobile robot 

builders created systems which tried to model the robot's environment internally. Uncer- 

tainty in perception and action was dealt with by either engineering it away. the approach 

taken in SHAKEY at Stanford in the Iate 60's [52], or by a constant recalibration of the 

perceptual and actuation systems, the approach taken in the Stanford CART [49]. These 

robots were slow to respond to changes in sensory conditions. For example, the Stanford 

CART built by Moravec in the late 70's moved in its environment a t  four meters an hour. To 

achieve a fast real-time response to a changing environment, the model that links perception 

to action should be simple to cornpute. Nature offers a fast and simple perception to action 

model in insects. 

The title of "fastest recorded movements" in the animal kingdom belongs to the trop-jaw 

ant. The trapjaw worker ant opens his mandibles 180 degrees and two sensitive trigger 

hairs project forward so that when they corne in contact with an object the mandibles close 



in under one millisecond. The spiked tip a t  the end of the 1.8 millimeter long mandible 

moves at a velocity of 8.5 meters a second [28]. HGiidobler and Wilson provide the following 

analogy : 

if the ant were human, its response would be the quivalent of swinging the  fist 

at about 3 kilometers a second-faster than a rifle bullet. 

Insect behavioural acts are d s o  triggered by odour sensing. Concern for the detrimental 

effects of pest control through the use of pesticides motivated the investigation of insect 

behaviour control by natural products. As the body of knowledge grew on how single 

behavioural acts in insects could be elicited by a simple phemmone-a chernicai substance 

produced by an animal which serves as a stimulus to  behavioural response-many scientists 

conjectured that insect behaviour could be controiied by pheromonal manipulation [25]. 

Of the two types of pheromones, reieaser pheromones invoke an immediate behaviourai 

response [51]. Many programmed behavioural acts can be triggered. with the most un- 

derstood compounds invoking behaviours of mating, alarm, trail following, attraction and 

repulsion. Moser demonstrated tha t  the same alarm pheromone serves to attract when 

found in low concentrations and repel in high concentrations [50]. Behaviours which control 

direction are referred to as orientation or taxis behaviours. This sarne dual response to the 

magnitude of a stimulus is also present in the phototazis orientation behaviours. Photo- 

tasis can either manifest itself as an increase or decrease in turning tendency as  the optical 

stimulus increases in intensity [30]. 

In insects a taxis mechanism is defined as an externalIy controlled directional orientation 

which causes turning movements or changes in position [30]. The taxis mechanisms are 

classified by sensory modalities. The ability of ants t o  detect and follow odour gradients is 

called osmotropotazïs. Odour gradients are sensed, possibly exclusively, by the sense organs 

located on the antennae on the left and nght side of an ant head [76]. This taxis mechanism 

was proved by Martin to cause orientation in bees towards an attractive ordourant and is 

achieved by estimating the differential stimulation of the two antennae on either side of the 

head ([do] cited by Wilson in [76]). 

This simple reflex action in which perception is reduced to a taxis was explored in 

synt hetic robots by Braitenberg in his creation of hypothetica1 vehicles [BI .  Attractive 

behaviours were created in the vehicles by cross connecting left and right side sensors to 

the opposite right and left side wheel motors respectively. .A stimulus presented on the Ieft 

side would cause the right wheeI rnotor to turn, propethg the  vehicle forward and to the 



left in a manner similar to the taxis behaviours found in insects. RepuIsive behaviours were 

created in a like rnanner by connecting same side sensors and wheeI motors, thereby causing 

the robot to move away from the stimutating source, Braitenberg conjectured that more 

complex behaviours could thus be fabricated by various combinations of stimulus specific 

sensors and motor connections, The primitive actuation behaviours presented in the sequel 

are fashioned on these simple taxis mechanisms. 

3.3 Achieving Mobility : Getting Around 

To achieve changes in position and orientation in an indoor mobile robot a common config- 

uration is differentiaI steering. In differential steering two wheel motors on either side of the 

robot are driven either forward or reverse with casters placed in the front and rear for sta- 

bility on smooth surfaces. Other configurations include ackerman steering, synchro-drive, 

tricycle drive and omni-directional drive [22]. 

Once the physical drive system and platform configuration is chosen a set of motion 

primitives is designed and used to cause changes in position and orientation. These dkcrete 

actions form the basis for designing the reguired perceptual processes in an action-oriented 

model of perception. 

3.3.1 Platform Configuration 

By configuring two wheeI motors, as shown in Figure 3.1, rotation about a point is possible 

by driving the motors in opposite directions. Both orientation and position, in an z, y 

coordinate system, can be controlled separately or simultaneously. The same differential 

steering mode1 used in the physical robot design is also used in the simulation model to  

calculate changes in position and orientation. 

3.3.2 Discrete Actions 

A wheel rnotor is controlIed using two parameters: speed and direction of rotation. Speed 

is proportional to the applied input voltage and a fixed speed setting is used in al1 motion 

commands except while applying a pushing force. Continuous motion is accomplished by 

issuing a series of discrete motion commands, each of which moves the robot a small incre- 

mental amount. The commands have the general fotm: kgin(action), wait A t ,  end(action). 

The motion commands are: stop, fomanf,  kckroarid, left-tum, right-turn, left-rotate, right- 

mtate, back-lefi and back-right as shown in Figure 3.2 and nul1 which produces no motor 

action. k i n g  a fixed speed the motion commands may be specified as a direction of rotation 



Figure 3.1: A top view of the mobility base with Ieft and right wheel motors used in a 
differential steering configuration. 



fonvard lefi-tum Icp-roîate bock-lcfr 

Figure 3.2: The discrete motions possible by issuing several motion commands. Initial 
positions are shown as dotted lines. 

stop 
forward 
backward 
left-tu rn 
right-turn 
left-rotate 
right-rotate 
back-ieft 

Left Motor 

Table 3.1: Using a fixed speed discrete motions are specified as a direction of rotation for 
the  Ieft and right wheel motors. 

for the left and right wheel motors using +1 for forward rotation, -1 for backward rotation 

and O for no rotation as k ted  in Table 3.1. The size or resolution of t h e  discrete action is 

ta&-dependent and in the box-pushing task discrete actions are limited to translations of 

approximately one centimeter and rotations of two degrees. 

3.4 Primitive Act uation Behaviours 

Reactive behaviours which control a specific set of actuators, are referred to here as primitive 

actuation (PA) behaviours. In box-pushing the only action a robot is capable of is movement 

in a plane. As a result, P.4 behaviours control direction and speed. These motor behaviours 

are based on a taxis mode1 of orientation in which motor actions are under either external 

or interna1 (kinest hetic) control. 



Under external control a stimulus can either attract or repel the robot resulting in  a 

positive orientation towards the stimulus, or a negative orientation away from the stimulus. 

PA behaviours simply map their inputs to one of the robot's motion commands. Behaviours 

that  cause a positive orientation towards the stimulus are said to be goal driven, whereas 

those causing a negative orientation are said to be avoidance dnilen- 

Under interna1 control, &O referred to as kinesthetic orientation [30], both position 

and orientation are the result of a fixed sequence of motion primitives. Jander provides 

several examples in which an insect is capable of returning to the nest "by remembering 

and kinestheticaily controlling its movements" [30]. In the sequel a detailed exampIe of 

this type of orientation that occurs in ant prey transport wiU be discussed. Behaviours 

that execute a fixed sequence of actions are used to rccover from stagnating or deadlock 

conditions and are said to be kinestheticaily driven, 

Since each motion primitive controls a left and right wheel motor, PA behaviours that 

change direction use left and right stimulus pairs. In short, for motions used in box-pushing 

PA behaviours can be divided into three classes corresponding to  the type of orientation 

employed: 

Positive Taxis Goal driven behaviours used to attract the robot towards a given stimulus. 

Negative Taxis Avoidance driven behaviours which repel the  robot from a given stimulus. 

Kinest hetic Orientation Behaviours used to recover from stagnating conditions by exe- 

cuting fixed patterns of motion primitives. 

in the sections that follow, motor behaviours are deveioped for the box-pushing task (and 

later extended to the transport task) based on the  taxis mode1 of orientation found in 

insects. Goal and avoidance driven behaviours receive external input from sensors and 

correspond to the positive and negative orientation taxis mechanisms previously mentioned. 

Kinesthetically driven behaviours do not have external input, but rather are internally 

controlled using kinest hetic orientation. 

3.4.1 Positive and Negative Taxis Orientation 

A positive taxis or goal driven behaviout moves the robot towards a given external stimulus. 

Input to the behaviour takes the form of a left and right divided stimulus pair which may 

correspond to left and right sensors on the robot. The input variabtes to the behaviour 

are boolean and indicate the presence or absence of the stimulus within a given range 



: SEEK-BOX ( left-flag, right-flag --- ) 
IF ! left-f lag AND ! right-f lag THEN Mn;L-MOT1 ON 
IF ! left-f lag AHD right-f lag THEN RIGHT-TüRN 
IF left-f lag AM) ! right-f lag THEH LEFT-TURN 
IF left-f lag AND right-f lag THEN FORUARD 

Figure 3.3: Shown is the pseudosode for the SEEK-BOX motor behaviour. Input is from 
left and right stimulus pairs used to determine the direction of the stimulus. The behaviour 
tums the robot towards the stimulus, 

: PUSH-BOX ( f lag --- ) 
IF flag THEN 

HIGH-SPEED FORUARD 

Figure 3.4: Shown is the pseudo-code for the PUSH-BOX motor behaviour. The behaviour 
once triggered increases the wheel motor speed and moves the robot forward. 

and field-of-view. Output from the behaviour is a motion command selected from a set of 

four cornmands representing the possible number of input cornbinations. In the case of a 

behaviour with a single input variable, O is mapped to the nuil motion command and 1 is 

mapped to the fortuard command. For the box-pushing task two goal driven behaviours 

shown in Figure 3.3 and Figure 3.4 are specified: 

SEEK-BOX - moves the robot towards a box. 

PusH-BOX - pushes the box by increasing motor voltage. 

In the same manner negative taxis or  avoidance driven behaviour repels a robot from 

a given stimulus, Inputs of two binary values correspond to a left and right stimulus pair, 

whereas single value inputs are mapped to the nul1 motion for an input of binary O and 

a bacbard motion command for an  input of binary 1. For the box-pushing task the two 

avoidance driven behaviours shown in Figure 3.5 and Figure 3.6 are specified: 

N O  ID - tunzs the robot away €rom obstacles. 

CONTACT - mtates the robot away from obstacles. 

The motor behaviours which cause changes in orientation are summarized in Table 3.2. 

In Chapter 5 the PA behaviours listed here wiil form the basis of tasli driven controllers. 

As an example, a simpie box-pushing controller for use in an environment in which box 



: AVOID C l e f t - f lag ,  right-flag -- ) 
IF !left,flag AND !right,flag THEN NIJLL-MOTION 
IF ! left-f lag AND right-flag THEN LEFT-TURN 
IF left-f lag AND ! tight-flag THEN RIGHT-TURN 
IF left-flag AND right-flag THEN RIGHT-TURN 

Figure 3.5: Shown is the pseudo-code for the AVOID motor behaviour. Input is from left 
and right stimulus pairs used to  determine the direction of the stimulus. The behaviour 
turns the robot away from the stimulus. 

: CONTACT ( left-flag, right-flag --- ) 
IF !left,flag AND !right,flag THEN NüLL-MOTION 
f F ! lef  t,f lag AND rlght-f lag THEN LEFT-ROTATE 
IF lef t-f lag AMD ! right-f lag THEN RIGEIT-ROTATE 
IF lef t-f lag AND right-f lag THEN RIGHT-ROTATE 

J 

Figure 3.6: Shown is the pseudo-code for the CONTACT motor behaviour. Input is from left 
and right stimulus pairs used to determine the direction of the stimulus- The behaviour 
rotates the robot away from the stimulus. 

Positive and Negative Taxis Mappings 1 

fitirnulus Negative Taxis Positive Taxis 
CONTACT SEEK-BOX 

O 1 left-tum lefi-mtate tight-tum 
1 O right-turn right-rotate left-turn 

mght-tum right-rotate fotward 

Table 3.2: The positive and negative taxis behaviour mappings, Behaviours that  cause 
directional changes based on external stimuli expect a stimulus from the left and right sides 
of the robot sirniiar to stimulus sensing found in insects. The "nulln out,put means the 
behaviour doesn't produce a motion command. 



sensing is not limited in range or direction consists of the SEEK-BOX and AVOID behaviours. 

This controuer produces collision free navigation in the simulated environment shown in 

Figure 3.7. 

A problem occurs when the robots surround the box applying an q u a 1  pushing force. 

In cases where an insufficient net force is applied to move the box, a deadlock or stagnating 

condition arises with no means ofresolution possible using the given controller. The problem 

is common to reactive controllers and is analogous t o  finding a local maximum when using a 

hill ciirnbing strategy in AI search problems. One possible solution to this type of stagnating 

condition involves kinesthetically driven behaviours. The stagnating condition is detected 

and a fixed sequence of action is performed. The approach is presented next. 

3.4.2 Kinesthetic Orientation 

Kinesthetic orientation serves two purposes here: motion in the absence of external stimuli 

and stagnation recovery movements. In the case of both positive and negative taxis. orien- 

tation of the robot is under control of external stirnuL2 At any time the motor behaviour 

relies on an external stimulus to decide the correct response in orientation. However. many 

behavioural acts in both insects and robots la& the external stimulus needed to  guide the 

orientation mechanism. Rather a correct behavioural response might simply be a fixed 

pattern of motor activity stored in memory and released under suitable conditions. For 

exampIe, a spider can return to a given location by "remembering and kinesthetically con- 

trolling its movements," a skidl also found in bees and ants [30]. 

In the absence of stimuli, a fixed pattern of motor activity can serve as a strategy while 

foraging for food or searching for a god. For instance, when an ant  leaves its nest to search 

for food it leaves in a straight Iine until it encounters either food or an odour trail which it 

then foilows using a positive odour-taxis mechanism [78]. In box-pushing, a search strategy 

called RANDO M-WALK is used which keeps the robot moving in a forward direction by issuinp 

a sequence of motion primitives (see Figure 3.8). Continuous motion by the robot in the 

absence of any external stimdus is thus accomplished. 

Recovery from deadlock or stagnation is the second use ofkinesthetic orientation. During 

the execution of a task by robots using reactive control strategis, the absence of a plan can 

result in a condition in which the execution of the task gets stuck or  is said to  stagnate. For 

example, a dead end is reached by a robot trying to navigate to a given goal as in Arkin's 
. - - - - -- - 

2Portions of this section have been published, C. Ronaid Kube and Hong Zhang 1994. IEEE IROS, 
3: 1883- 1890 [35]. 



Figure 3.7: Shown are the initial and final configuration of 10 simulated robots (circles) 
under the control of two motor behaviours, SEEK-BOX and AVOID. The output from the 
AVOID behaviour has priority over SEEK-BOX if obstacles are detected. With this initial 
configuration the system reaches stagnation without the box changïng position. 



Figure 3.8: The pseudo-code for the FLANDOM-WALK motor behaviour. The behaviour causes 
the robot to swagger while constantly moving forward. 

box canyon problem [Iï]. The problem is similar to finding a locaf maximum. encountered 

by hiil-climbing algorithms, when the goal is to find the global maximum. 

The problern of stagnation also occurs in nondirected box-pushing where the goal is 

to push the box in an unspecified direction. For example, in a box-pushing task the net 

force applied by the robots may equal zero if the robots are eveniy distributed around 

the penmeter of the box as shown in Figure 3-7, In such a case. a robot might attempt 

indefinitely to push the box unsuccessfully- An equivalent problem can be found in nature 

among ants displaying a group transport behaviour [48]. How do ants equipped with simple 

sensory-response behaviours deal with the stagnation that results when the item they are 

transporting becomes stuck? 

Group Transport by Ants 

As was discussed in Chapter 2, group transport is the cooperative rnovement of a load by two 

or more ants. The strategies of realigning, and repositioning are used by ants in the group if 

du ring transport the item gets stuck, and therefore movement stagnates. SirniIar stagnation 

recovery strategies are designed here for box-pushing and iilustrated in Figures 3.9, 3.11 

and Figure 3.10. 

The strategies employed by ants to handle task stagnation-a condition that occurs 

when an item being canied gets stuck during a group transport task-can be viewed as 

stored behaviours designed to overcome difficulty. Activated as a response to increased 

frictional forces, the behaviours are used by ants both in group transport and during indi- 

vidual transport of food items. These behaviours appear to be ordered in their application. 

For example, Sudd notes realignment seemed to occur more frequently than repositioning 



: BACK-OFF ( --- ) 
FOR i=l to  i=8 DO 

BACKWARD 
FOR i=i to  i=6 DO 

RIGEIT-ROTATE 

Figure 3.9: The pseudecode for the BACK-OFF motor behaviour. Once triggered it causes 
the robot to backup and rotate towards the right. 

: REALIGNHENT ( -- 
IF rand > 0 - 5  THEN 

RIGHT-ROTATE 
ELSE 

Lm-ROTATE 

Figure 3.10: The pseudo-code for the REALIGNMENT motor behavior. The behaviour couses 
a robot to change its pushing angle by a s m d  random amount. 

with the former being applied as the first response to the increase in fnctional forces [66]. 

Simulation was used to compare the strategies of realignment and repositioning using our 

simulation environment[34] and nondirected box-pushing [35] with the results presented in 

Chapter 5- 

The recovery behaviours increase the task success rate by providing a s t r a t e 3  for dealing 

with deadlocb; situations. These results motivated the use of the kinest hetically driven re- 

covery behaviours used in directecl box-pushing. For box-pushing the kinestheticaIly driven 

behaviours are: 

a RANDOM-WALK - causes the robot to move forward in an "Sn pattern. 

a BACK-OFF - causes the robot to back away ftom objects contacted by its touch sensor. 

a REPOSITION - moves the robot in a backward arc. 

a REALIGNMENT - changes the pushing angle when in contact with the box. 

3.5 Summary 

In insects, translation and orientation is accomplished by way of a taxis mechanism and is 

a fast and simple response to  external and interna1 stimuli, In robots, that need to have 



: REPOSITION ( --- ) 
FOR i=l to i=6 DO 

BACKUARD 
FOR i=l t o  i=3 DO 

RXGHT-TURN 
FOR i=i t o  i=4 DO 

FORWARD 
# 

Figure 3.1 1: The pseudo-code for the REPOSITION motor behavior. The behaviour causes a 
robot to  move a fixed distance counterclockwise, 

a real-time response to changing environmental stimuli, a reactive model for action based 

on taxis is simple to compute. And by defining the input stimulus to both positive and 

negative taxes as  binary values, the robot's action is decoupied from bath the modality and 

magnitude of the stimulus, resulting in a clean abstraction suitable for component change 

or replacement . 
The three forms of orientation: positive and negative taxes, under external control of 

stimuli, and Enesthetic orientation, under the interna1 control of fixed action sequences. 

form the basis of reactive motor behaviours referred to here as primitive actuation be- 

haviours. Along with the material on perception developed in Chapter 4, PA behaviours 

form the building blocks of finite s tate  machines, called Q-machines, discussed in Chapter 5. 

However, taxis by itself suffers the same problems of stagnation (local minirna/maxima) 

as do other reactive control methods. Enesthetic orientation, in the form of fixed action 

sequences and triggered by either the presence or absence of a controlling stimulus, is one 

solution suitable to the stagnating conditions in the box-pushing task. 

Processing the input stimuli to  the PA behaviours is the role of perception and the 

subject of the next chapter, in which a model for IocaI perception is developed called 

perceptuai eues. Can perception be reduced to the yes/no type of binary inputs required 

by the motor behaviours developed in this chapter? And can the process of perception 

be computed for a reactive controller independent of the action primitive it is used with? 

Perceptual cues provide such a model and are based Iargely on further examples motivated 

by the social insects. 



Chapter 4 

Local Perception 

Given a robot with predefined rnotor actions, the role of perception is to determine what 

actions take place and when. In this style of action-oriented perception, the action defines 

the form of the perception in terms of what information is needed for the action to make 

its control decision. In th% Chapter, an assumption is made that local sensing can be 

used to decode information present in the environment that signifies the appropriate motor 

action. This presupposes that the environment and its stimuli are part of the system 

design process. and can be characterized through a given set of physical sensors. In the 

next chapter, perceptual cues are combined with primitive actuation behaviours to  produce 

subtask controllers that implement the control system for a singie robot. At the task-level. 

the subtask controller represents task state information with perceptual cues used to  control 

transitions between states.' 

4.1 Introduction 

Perception is used to help decide what action the robot should take and when it should be 

performed. In the perceptual cue framework, the task environment encodes information in 

its stimulus output on what actions the robot should take and when to take them. In this 

manner, perceptual cues sirnply decode this information. Since errors occur in decoding 

this information locally, the mass effect of dktributed sensing increases the probability of a t  

least some of the robots correctly decoding the stimulus. Two feature extraction techniques. 

'Portions of this chapter have been aubmitted for publication. C. Ronald Kube and Hong Zhang 2995. 
Robotica - special issue on interacting Robots. 9 pages [36] 



presented in the sequel, simptify the decoding procw. The approach is dernonstrated by 

designing the perceptual cues for a multi-robot box-pushing task. Thetefore, deciding when 

a robot should act in a given task involves designing a system with both the environment 

and the robot as part of the solution. 

For an environment to  encode information, Wilson suggests it be considered as a type 

of machine with inputs and outputs [79]. On the input side are the actions performed by 

the robots on the environment, which responds with changes in stimuli as its output. The 

mode1 for the robots considers stimulus changes on its input side with motor actions as 

output. As a task progresses in execution, changes in stimulus h m  the environment serve 

to  guide the robot's action selection process. How the environment can be modelled to 

encode information about task execution is covered in more deta'il in Chapter -5. For now 

let u s  assume that it is, and the question is how the information is decoded and used in 

action selection. Action selection is what a robot does when a motor behaviour is activated. 

When that action is perforrned depends on the current state in task execution. 

Perceptual cues are used to  decode the information in an environment and decide which 

motor behaviour is activated. Behaviour activation decides what action is performed. but 

depends on the state of the robot's task controiler. The relationship between local sensing. 

behavioural state and the output actions of the robot ~ ~ i l l  be fully explained in the next 

chapter. State changes of a task controller are also controlled by perceptual cues that 

uniquely extract features from sensor data. However, since perception is local t o  a robot, 

global action by the system depends on mas effect. 

The connection between local perception and global action is through the m a s  effect 

of a redundant system of mobile robots. For any one robot, its IocalIy derived perception 

may not decode the environment completely, due to limitations imposed by the robot's 

position within the environnent (a spatial constraint). Nevertheiess, since sensing in such 

a spatialy distributed system increases the probability that  some of the robots correctly 

respond to  the environment, then the actions performed on the environment by those robots 

may allow others t o  sense stimulus changes. For example, a robot unabte t o  sense an object 

tha t  is outside the range of its sensors, may sense the object as i t  is pushed into its sensor 

range by other robots. How local perception decodes stimuli depends on two approaches t o  

integrating sensor data. 

The first approach to sensor integration involves two orthogonal sensing strategies: Spa- 

tially and modally orthogonal sensors. Spatially orthogonal refers to a geometric arrange- 

ment of like sensors which carves the robot's perceptual field-of-view into discrete non- 



overlapping regions. ModaIly orthogonal is the integration of sensor data from dissirnilar 

sensor types. By combining sensor data using these approaches, features from the environ- 

ment's stimulus output are extracted and used by the robot's motor decision process. 

The second method of integrating sensor data uses previously defined perceptual cues 

additively by concatenating binary decisions (cue outputs) into vectors that can be used 

to controt state transitions in the robot's task modeI. Box-pushing k the task used to 

demonstrate the feasibility of the perceptual cue fiamework, by defining the cues used in 

the task independently from the actions performed by the robots. In this manner, what 

the system of robots is to do is defineci by a robot's task controiler, but how the robots 

accomplish the task is not explicitly defined. The end result is a predictable task completion, 

but the solution path taken and perfomed by the intermediate steps is not unique. 

The remainder of this chapter presents the details of the mode1 by describing both the 

definition and function of perceptual cues. An example task is then presented in detail 

which outlines the steps involved in specifying the cues for a given environment. Finally, a 

brief summary of the framework and how it fits into the remaining chapters follows. 

4.2 Percept ual Cue Framework 

Defining and specifying perceptual cues involves three techniques for cue creation: feature 

extraction using threshold logic; orthogonal sensing as a means for integrating physical sen- 

sors: and additive cue construction specified as clauses in predicate calculus. The result is 

cues that answer yes/no type questions about what can be sensed in t h e  robot's immediate 

vicinity. Functionally, perceptual cues are used for either activating motor behaviours or for 

causing state transitions among the robot's subtask controuers. Consequently, the frame- 

work can be summarized as a way of determining the "what and when" of robot action 

sequences. 

4.2.1 Perceptual Cue Definition 

A perceptual cue is a boolean value which indicates either the presence or absence of a pat- 

tern of stimuli. Perceptual cues (PCs) are context dependent features in sensor data vi-hich 

indicate a perceived event, Context is determined by the current state in task execution 

space. States in task execution space are specified as steps in the task and irnplemented as 

subtask controllers explained fully in the next chapter. At the level of task description, PCs 

are used to determine which step of the task is being executed. Each subtask controller 

consists of a finite number of States, where each state is associated with a certain rnotor 



action and implemented as a primitive actuation behaviour. Within the PA behaviours. 

sensor features detected by a perceptual cue map directly to motor actions. Features are 

obtained by processing sensor data to produce a binary output. Sensor data is acquired 

from single or multiple sensors and is processeci using simple threshold logic. Cues can be 

created by using data from different sensor types combined using boolean operators. Cues 

are context dependent in that they are specified for a specific task and a given environ- 

ment. Sensor features which are not unique can be combined ortlrogonaiZy or additiwely, as 

explained in the sequel, to produce a unique feature. Perceptual cues are binary vectors 

created by combining features extracted from sensor data using three techniques: threshold 

Iogic, orthogonal sensing and additive cue construction. 

Feat ure Extraction Using Threshold Logic 

-4 crude form of feature extraction is a threshold function provided that a monotonic re- 

lationship exists between the sensor's analog output and the parameter of interest. For 

example, the output of a light sensor is a function of the intensity of the light source. if the 

radiant energy from a iight source falls normal to the surface of the sensor, then a corre- 

lation can be made between the magnitude of the signal from the sensor and the distance 

to the light source. If a cue is to be created which detects when the robot is within a 

certain distance of the light source, then a threshold is specified which corresponds to the 

magnitude of the signal at  the desireci distance. Exceeding this threshold triggers the cue 

and produces a "ln as its output bit. The assumption, for such a mechanism to work, is 

that the robot is working in a known environment. Thus, when using threshold Iogic for 

feature extraction, both the environment and the sensor's response to it are considered by 

the system designer as part of the solution. 

When a nonmonotonic relationship between sensor output and a parameter exists the 

data is partitioned into linear segments.' Cues are then created using threshold logic as 

before on each linear segment with the results combined using the boolean operators AND, 

OR, and NOT. For example, a signal peak-detection cue, described in Section 4.3.4, is 

created by combining a cue that detects a rise in signal magnitude greater than a t hreshold 

followed by a cue that detects a fa11 in signal magnitude within a fixed period of time. The 

two cues are combined using the AND operator. The signal peak-detection cue is true if 

a faii is detected after a rise in s i g d  magnitude which is greater than a given threshold. 

When perceptual cues are created from two or more sensors the resulting binary features 

'This does not preciude the use of other statistical functions for feature extraction. 



Non-Ovcrlrrppïng FOV Thnshold Partitions 

SpaWy Orthogonal Senshg 

Figure 4.1: Sensing can be made spatially orthogonal by either arranging the same type of 
sensors geometrically with nonoverlapping fieldsot-view or by partitioning the field-of-view 
with thresholds. 

are combined using orthogonal sensing strategies, 

Orthogonal Sensing 

In order to simplify sensor processing, binary cues created using threshold logic ean be 

integrated by employing either spatially or modally orthogonal sensing strategies. The 

result integrates multiple sensors of the same type geometrically, by spatially partitioning 

the robot's perceptual field-of-view. Sensors of different type are combined to create cues in 

which aU bit positions in the output vector are from dissimilar stimulus modalities. Their 

combination makes the exttacted sensor feature tempordy unique. 

Sensors of the same type can be made spatially orthogonal either by geometric arrange- 

ment, with nonoverlapping fields of view, or by partitioning the sensor's range discretely 

using different threshold values as shown in Figure 4.1. As an example of a spatially or- 

thogonal sensor, consider a ring of eight sensors, each with a 45 degree field-of-view and 

equally spaced on a ~ i r c l e . ~  The perceptual space is divided into eight discrete zones in 

which stimuli may be detected. If obstacle sensors were used. then each bit of an &bit vec- 

tor could represent the presence of an obstade within the assigned zone. Thus, 256 possible 

combinations are available for mapping to motor actions used in obstacle avoidance. 

A perceptual cue that is modally orthogonal is specified by taking the binary outputs 

of sensors with incompatible outputs like temperature and contact sensing, or range and 
- - -  --- 

'A common configuration found in commercial mobile platforms. 



odometry data. The outputs are combined using boo1ea.n operators resulting in a unique 

feature in the sensor's output space from sensors of different modalities. For example. to 

detect the side of a brightly Lit box both touch and üght intensity are used since their 

combination is unique in the box-pushing environment. 

Additive Cue Construction 

Perceptual cues c m  also be defined by combining cues additively as  a Horn dause. In 

predicate calculus a Horn clause is any disjunction of the forrn: 

Each Horn clause has at  most one positive literd, and can be rewritten a s  an equivalent 

implicational formula: 

The above formula is a notational variant of Hom clauses used in Logic Programming. 

The newly defined cue is the consequent (variable D) of previously defined cues (variables 

.4, B,  . . . , C) which are the antecedents of the general forrn: 

antecedent 2 ,  -, antecedent n. + consequent. 

Cues defined in this manner define the state in the task model. Cues are also used for 

behaviour activation as explained next. 

A perceptual cue is a control decision used to trigger a rnotor behaviour and to controi the 

transition among states in a task model. Motor behaviours remain active for a fixed penod 

of time, at  the end of which the cue's truth value is reevaiuated. Either the same cue is 

applicable or the stimulus conditions have changed, thereby activating another cue. In exe- 

cuting a robot task, defined as a multistep procedure, stimulus conditions may also change 

sufficiently to indicate a state transition, or change in activity, where "staten represents a 

separate motion controller designed to accompiish one step in a task description. Using 

cues to trigger a behavioural response is a common mechanism for action in social insects 

[SI] and for governing different phases of activity in taslis such as nest building [19]. 

The advantage of reducing motor behaviour control decisions to binary values is in 

the cue's functional abstraction. In this manner, activation of a motor behaviour is not 



Figure 4.2: To maintain a normal orientation with respect to a surface, Ieft and right contact 
information is used- The information can be provided by either touch sensors as illustrated 
or another sensor rnodality such as in phototaxis. 

dependent on a specific perceptual cue, but rather on the decision that results from sensor 

processing. For example, a motor behaviour created to keep a robot in perpendicular contact 

with the surface of an ob ject, relies on sensor information from either side of the point of 

contact. if touch sensors are used then perpendicularity about the point of contact could be 

specified when both touch sensors are in contact with the surface as illustrated in Figure 4.2, 

and return a binary '1 1' value, Contact with the left side only would be represented as  binary 

'10' and contact with the right as a '01' d u e ,  with the no contact condition specified as 

a '00' value. The same contact information using iight sensors and phototaxis could be 

specified by determining the sensorts threshold value when in contact with a surface and 

creating cues that  return '21' when the  robot is in perpendicular contact with the surface 

in a similar manner. The advantage is that the design of the motor behaviour does not 

change when different sensor types or  alternate feature extraction techniques are used since 

the information needed by the motor behaviour is the same binary vector in both cases. 

In short, the function of perceptual cues is to control behaviour activation and s ta te  

transitions in a manner that allows for changes in perception design and implementation 

without affecting the control architecture's connection t o  motor action. 

Controiling Behaviour Activation 

Behaviour activation refers to the process of deciding which behaviour is to become active 

in the current context (Le. in the currently executing controiier). The decisinn as to 

which action the robot performs is made by the primitive actuation behaviours described 

previously in Chapter 3. Each behaviour has an associated perceptual cue that activates 

the behaviour to  produce a motion command as output. More than one behaviour may 

become active during the control loop. A prionty scheme among the behaviours within the 

current executing controller determines which action is executed by the robot. Thus. in a 



known environment a robot's action is based on a perceptual process that  uses local sensing 

to Iook for specific features in sensor data- 

Controlling Task State Transitions 

PerceptuaI cues used to control state transitions in task execution are specified as predicates 

with perceptual preconditions that must be satisfied. Each task is decornposecl into subtasks 

and a controiler is designed for each subtask. Control system processing is handied in 

dicrete  steps, with control either remaining within the current su btask controiler or passing 

on to  the next one, as  specified in the task mode1 digraph using a forward (FL) o r  repeat 

(RL) edge. The cue used for transition in each subtask controller, or  step i, is related to  its 

predecessor by : 

for i = 1,2,. . . , n where n = the number of subtasks and c; is a new perceptual cue for step 

i. How each perceptual cue, ci, is computed for the box-pushing task is explained in the 

next section. 

RLi = FLi,l A 1~ (4-2) 

Specified in this rnanner the forward edge, iliustrated in Figure 4.3, is the cue signalling 

step transition and signifies that a Iocally detectable event has occurred indicating step 

completion. The repeat edge indicates the current action is to be repeated since the specified 

change in stimulus (the detectable event) has not occurred. 

When a task is modelled as a multistep procedure, with each step represented as a state 

in a task digraph, expIained in chapter 5, then the current state (ST) is specified as a logical 

A N D  of the perceptual cues, for i = 1.2,. . ., n where n = the number of subtasks: 



1 Tr~nsitwn Perceptwl Cues 

Figure 4.3: Each step in the task is modeiled as a state in a finite state machine with 
perceptual cues used for state transition. The perceptual cue causing a forward transition 
(FL) is simply a concatenation of another boolean variabie to  the previous step's forward 
perceptual cue. 

In Chapter 5 task modelling will be presented with examples of the above cues used 

for state transition. Next is presented an implementation of the perceptual cue model in a 

multi-ro bot box-pushing task. 

4.3 Perceptual Cues for Box-Pushing 

Transporting a box from an unknown initial position towards a final goal destination was 

modelled using three types of perceptual mes. Obstacle avoidance cues were used to detect 

an obstacle and trigger avoidance behaviours. Box detection cues were used to locate and 

track a moving box, as well as, to control state transitions among the task step controilers. 

And a goal detection cue was used to indicate proper robot orientation, with respect to the 

goal, for a pushing behaviour. The cues are designed with a given set of motor actions in 

mind. The design and implementation of each perceptual cue involve the following steps: 

1. Sensor Placement Given a sensor type, determine the position, orientation and 

number of sensors to be used in the sensor system. 

2. Data Collection For a given environment, coiiect data from the sensor that repre- 

sents the condition under which the task is performed. 

3. Data Analysis Determine what features of the data may be used to meet the per- 

cept ual cue's specification. 

4. Algorithm Design Design an algorithm to extract the desired feature. 



5. Algorithm VerSication Specify the tests to  verif'y that  the cue performs as designed- 

In the next chapter, these perceptual cues will be used to control the States of a robot as it 

executes the transport task. 

4.3.1 Physical Sensors for Tkansporting a Box 

In choosing a minimal set of sensors for the transport task, the robot's activities of avoiding 

obstacles, locating the box to be moved, and pushing i t  to  a goal location, are considered. 

In Chapter 3 the  actions that  each behaviour could take were enurnerated, with inputs to 

the behaviours specified as binary input variables. This establishes the minimal number of 

binary variables that  each behaviour uses in mapping perception to actions. For example, 

the possible actions of the AVOID behaviour are idle, left-tum, right-tum therefore requiring 

two binary input variables allowing for a maximum of four actions- In a similar rnanner, 

the box locating behaviours use two input variables and the pushing behaviours use one. 

Although several types of sensors are a d a b l e  for mobile robots: optical sensors were 

used in each of three activities mentioned above. To implement obstacle avoidance infrared 

emitter/detectors, whose output is dependent on the magnitude of the  reflected energy, 

along with contact sensors were used. Box tracking behaviours made use of ptiotocelk? 

which Vary in resistance as a function of light intensity, and contact sensors. Goal direction 

behaviours used phototransistors whose output current is a function of light intensity The 

fact that the sensors are commonly avaiiable, inexpensive, and easy to  use guided our 

decision. What foUows is a brief discussion of their characteristics. 

Infkared Photo Emitters and Detectors5 

Infrared radiation is electromagnetic energy with a wavelength longer than visible red (Le. 

in the range from 770 to 1500 nanometers), Two optoelectronic devices that make use of 

this energy are the Infrared-Emitting Diode (IRED), and the Infrared Phototransistor. Two 

types of IRED radiant-energy sources are Gallium Arsenide (Ga&) and Galiiurn Aluminum 

Arsenide (GaALAs), which emit in the 940 nrn and 820 nm portion of the near-infrared spec- 

t rum respectively. Infrared p hototransistors are simply transistors designed to  be responsive 

to  this radiant energy. Figure 4.4 shows the relative spectral characteristics of the human 

eye, a Silicon Phototransistor, two types OF Infrared Light Emitting Diodes, and a Tungsten 

light source. 

'See H. R. Everett's book [22] for a recent survey. 
'Portions of this section have been pubüshed. C. Ronald Kube 1996- The Robotics Practitioner, 3(2):15- 

20. [32]. 
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Figure 4.1: The relative spectral characteristics of the human eye, a tungsten light source 
and a silicon phototransitor (adapted from [69]). 

Infrared emitters and detectors can be configureci as retroreflective sensors by placing 

the emitter alongside the detector. In this configuration the output of the phototransistor 

detector is a function of the reflected infrared energy. For a given object sudace the reflected 

energy can be calibrated as a function of distance to the object as shown in Figure 4.5. 

Different phototransistor detectors can vary in their response to reflected infrared energy 

shown in Figure 4.6. 

Cadmium-sulfide photocells are sensitive only to visible light and have a number of appli- 

cations in detecting changes in iighting conditions. These sensors whose output resistance 

varies as a function of light intensity respond slower than the phototransistors. Response 

times vary up to one second before the change in reçiçtance stabilizes. Although slow, these 

sensors are very sensitive to changes in iight intensity. Since these devices do not respond to 

infrared radiation they may be used in paraLiel with the infrared emitters, discussed in the 

previous section, without concern for optical interference. The output of a cadmium-sulfide 

photocell is measured as a function of distance to a 100 watt  light bulb shown in Figure 4.7. 
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Figure 4.5: -4 plot showing the output of an infrared obstacle sensor as a function of distance 
to a white paper target. 

Cornparison of the BPI 03B-4 and SY-54- Phototransistors 
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Figure 4.6: Compared are the output voltages of a SY-54PTR and a BP103B-4 phototran- 
sistor as a function of distance to a white target. 
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Figure 4.7: To locate the brightly lit box, left and right photocells, pointing forward at 20 
degrees off center, whose output vanes as a function of üght intensity are used. Shown are 
the output voltages of the left and right photoceiI as a function of the distance to the box. 



Silicon P hototransistors 

Silicon phototransistors are fast devices sensitive tu changes in iight intensity with response 

times of a few microseconds. Typidiy  used in electronic flash units their fast response time 

rnakes the phototransistor ideal when used in a moving sensor system. The output current 

of a phototransistor varies as  a function of light intensity incident on the semiconductor 

surface. 

The above sensors will be used individually and in combination to form the basis of the 

robot's perception system. In implementing perceptud cues frorn t hese sensots the pro blem 

of perception has been simplified to recognizing features in the sensor data for a specific 

task environment. The sensor features are reduced to boolean vectors and used as  input 

to the primitive actuation behaviours which map them to corresponding motion primitives. 

How sensor data is used to create these boolean vectors is desctibed next and the complete 

perception to action mapping is explained in the following chapter. 

4.3.2 Obstacle Detection Cues 

The purpose of the obstacle detection cues are to provide obstacle distance information 

to the robot. Three discrete thresholds are used corresponding to the distances of: less 

than 25 cm, les  than 12-5 cm. and in physical contact with the robot, Active infrared 

emitter/detector pairs are used to provide non-contact obstacle information for the left and 

right front of the robot. Contact obstacle detection is determined using a single bit contact 

switch- The obstacle detection cues are defined as6 

?OBSTACLE Return right and left true flags indicating the corresponding obstacle sensor 

has exceeded the input threshold. 

?TOUCH Return a true flag if the front contact switch is presseci. 

Sensor Placement 

O bstacIe proximity detection is accomplis hed by configuring the infrared emitter/detector 

pair as a retroTepectiue sensor. The object to be detected reflects the radiant energy from 

the emitter back to an adjacent detector. Two retroreflective sensors are placed facing 

outward on both left and right sides of the robot's ccnterhe. Each infrared detector has a 

50 degree field-of-view, also termed acceptance angle, and is paired with an infrared emitter 

with a 16 degree beam angle, the total angle between the half intensity points. The sensors 
- 

' ~ e r c e ~ t u d c u e s  wiU be idencined by rheir leading question mark. 



Figure 4.8: Infrared emitter/detector pairs are placed on the circumference pointing outward 
at 30 degrees both left and right of center. 

are placed on the robot's circumference, at 30 degrees both left and right of the centerline 

as shown in Figure 4.8, 

Sensor Data Collection 

To determine the sensor's output response as  a function of distance to an obstacle. a white 

paper target was moved toward the sensor with output the voltage and distance recorded. 

To measure the sensor's response as a function of obstacle angle, a small 2.5 centimeter 

square white target was moved in an arc in front of the sensor with readings taken every 

10 degrees as shown in Figure 4.9. 

Sensor Data Analysis 

The energy reflected back to the detector will depend on the magnitude of the energy radi- 

ated, the surface properties of the object upon which the energy is incident, the distance to 

the object and the angle of reflection [22]. In the approach presented here, the environment 

and its objects are known quantities. The measured reflected infrared energy is a function 

of the distance to the object as shown in Figure 4.10. 

-4s an object passes in front of a retroreflective sensor it enters and then leaves the 

field-of-view, or acceptance angle of the detector. The typical output of such a sensor 
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Figure 4.9: Data from the sensor was coliected by taking voltage readings as a function of 
angle to a small 2.5 cm square target at the sensor's height. The target was moved in 10 
degree incrernents on a 12.7 cm semicircie. 



Obstacle Sensor Output 
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Figure 4.10: Data from the infrared emitter/detector obstacle sensor. A white target is 
moved towards the sensor and output voltage readings are taken as a function of target 
distance. Readings are repeated with the room iights ON for cornparison. 

as a function of target angle is shown in Figure 4.11. If we design a minimal obstacle 

detection sÿstem using a pair of retroreflective sensors, positioned on the left and right side 

of the robot, then the range of the sensors can be partitioned spatially, as explained in 

the previous section, by using a threshold function that corresponds to a desired detection 

distance. Thus. the type of sensing information returned is of the form "there is an obstacle 

less than 15 cm on your right," or 4here is an obstacle l e s  than 22 cm directly in front" 

etc. 

ObstacIe Detection Algorit hm 

The function of the obstacle detection cue is to provide left, right, and center obstacle 

detection for a fixed distance. The distance is determined as an input parameter called 

threshold, with two output parameters indicating obstacles detected by the left or right 

sensor. For the box-pushing task two thresholds corresponding to obstacles detected within 

the range of 12.5 cm and 25 cm are used. Pseudo-code for the obstacle detection cue is 

shown in Figure 4.12. The obstacle detection cue can be used to create cues specific to the 

range (specified as a threshold) as shown in Figure 4.14. For detecting obstacles in physical 

contact with the front of the robot the algorithm shown in Figure 1.13 is used to read the 
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Figure 4.11: The output voltage of a Siemens BP103B-4 phototransistor as a function of 
angle to a srnall 2.5 by 2.3 cm white target. Shown are two room Iighting conditions: 
Sunlight (which contains lots of IR noise) and a dimly lit room with fow ambient IR noise. 

: ?OBSTACLE ( threshold --- left-flag, right-flag ) 
FOR the right and left obstacle sensor DO 

take a reading with the obstacle sensor-ON 
take a reading with the obstacle sensor-OFF 
IF sensor-ON - sensor-OFF > threshold THEN 

SET the flag = TRIE 
ELSE 

SET the f  lag = FALSE 
RENRN < l e f t f l a g ,  right-flag 3 

Figure 4.12: Shown is the pudo-code obstacle detection algorithm with input and output 
parameters on the left and right of the --- symbol respectively. Obstacles are detected when 
the reflected infrared energy is greater than a given threshold value. To detect reflected 
energy, ambient infrared readings are subtracted before cornparison with the threshold due. 



: ?TOUCH ( --- touch-flag 1 
take a reading of the front contact switch 
IF sensor-ON THEN 

SET touch-flag = TRUE 
ELSE 

SET touch-flag = FUSE 
RETURN { touch-f h g  ) 

# 

Figure 4.13: The pseudo-code for the  touch obstacle detection cue retums a true flag if the 
forward contact switch is depresseci- 

binary value of the front contact switch. 

O bstacle Detect ion Verification 

To test the obstacle detection cues a simple motion controller is created using the RASDOM- 

WALK, AVOID and CONTACT behaviours defined in Chapter 3. The controller consists of 

a processing Ioop which calIs each behaviour in order. The output of a Ieft and right 

obstacle sensor is mapped by the AvoID and CONTACT behaviours to left and right motion 

1 TACT commands. The possible outputs of AVOID are ( idle, lefi-turn, right-turn } while COY 

maps sensor output to ( idle, left-rotate, right-mtate ). Ambient infrared light is accounted 

for by taking a detector reading whiie the emitter is off. Currently both behaviours make 

use of the same infrared obstacle sensors, but with different threshold functions on the 

outputs shown in Figure 4.5. The robot wanders in a roorn with other static robots and 

the sensor positions are adjusted until collision free movernent is achieved. Aithough in 

this example both behaviours are using the same sensor output this separation in sensor 

processing aiiows for sensor replacement .' 

4.3.3 Box Detection Cues 

Three perceptual cues are used for box detection: 

?BOX-DIRECTION Return right and left true fiags indicating the corresponding box sensor 

has exceeded the input threshold. 

?BOX-DETECT Return a true flag if either left or right box sensors exceed a given input 

threshoId. 
- 

'CO~T*CT'S sensors C O U . ~  be replaceci with left and nght tactile switches. 



: ?AVOID-DETECT ( threshold-l -- avoid-f lag 
?OBSTACLE( threshold-1, right-f lag , l e f t - f  lag ) 
IF the right-flag OR the left-flag TIiEH 

SET avoid-f lag = TRIE 
U S E  

SET avoid-f lag = FALSE 
RETURN { avoid-flag > 

8 

: ?CONTACT-DETECT ( threshold-2 --- contact-flag ) 
?OBSTACLE( threshold-2, right-flag, left-flag ) 

IF the right-flag OR the left-flag THEN 
SET contact-flag = TRUE 

U S E  
SET contact-f lag = FALSE 

RETORN { contact-f lag ) 

Figure 4.14: The avoid and contact detection algorithm sets a flag true if either right or 
left sensor t hresholds are exceeded. 

?BOX-CONTACT Retum a true flag if ?TOUCH is true A N D  either nght or ieft box sensors 

exceed a given input threshold. 

Box detection is simplifieci by using a bright light placed at the center of the box. The box 

detection cue asks the question: Can the robot see the box-light? The answer depends on 

the robot's distance from the box and the orientation of its two forward pointing sensors 

with respect to the box. An adjustable threshold =ries the range a t  which the box-light 

is detectable and is dynamically determined as a function of ambient light. Recognizing 

physical contact with the box is a combination of two different types of sensing? touch and 

!ight intensity. This combination of stimulus is unique in the task's environment simplifying 

box recognition. The perceptual cues are designed using the foliowing five step procedure. 

Sensor Placement 

Two forward pointing sensors whose output is a function of light intensity are placed on 

the robot pointing 20 degrees off center. The sensor's field-of-view is restricted to a narrow 

band in the horizontal plane at the same height as the box-light as depicted in Figure 4.15. 

This minirnizes interference from other üght sources in the environment placed at different 

heights. The field of view of the box light sensors is fixed at 80 degrees. IndividualIy each 

sensor7s field-of-view is approximately 40 degrees. 
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Figure 4.15: Shown is the placement of the box-light sensors on the robot with respect to 
the height of the box. The two sensors see in a narrow forward pointing cone of roughly 
80 degrees. By restncting both the sensar's field-of-view and the box-light stimulus to a 
narrow horizontal band, box recognition is simplified. 

Sensor Data Collection 

Sensor data was coilected for the box direction and contact cues. Box direction sensor 

data was collected using the setup iliustrated in Figure 4-16. -4 robot is positioned facing 

forward with center being 90 degrees and right and Ieft sides corresponding to O and 180 

degrees. A brightly Lit box is moved on a 1.8 meter arc from 50 to 130 degrees with sensor 

readings recorded for each 10 degree increment. Data for the box contact eue was recorded 

by measuring the box sensor's output voltage whiie a robot was in contact with a box. 

Sensor Data Aoalysis 

Figure 4.17 shows the output voltage of the left and right photoceil box sensor as a function 

of direction angle with respect to the robot. Lower voltages correspond to brighter light 

intensities. As the box enters the sensor's field-of-view the voltage decreases with a minimum 

value at a box angle normal to the sensor and then nses as the box angle increases. Note 

the minimum should occur at 110 degrees for the left photocell and 70 degrees for the  right 

photocell since each sensor is pointing 20 degrees off center. Since the minimum reading of 

the right sensor is at 80 degrees, the sensor's direction is adjusted. The left and right sensor 

plots cross when the box is directly in front of the robot, approximately at the 90 degree 

position. This information provides a rough estimate of box direction with respect to the 

robot. 



Figure 4.16: To gather box tracking data from the forward facing photocetls the robot was 
positioned pointing at the 90 degree mark while the Lit box was moved along a 1.8 rneter 
80 degree arc from 50 t o  130 degrees in 10 degree increments. 

Angular Left & Right CdS PhotoCeii Outputs 
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Position of Lit Box witb robot facing 90 degrees 

Figure 4.17: To locate the Lit box two forward pointing photocelis measure light intensity 
in a horizontal plane. Shown are the left and right box-sensor outputs as the box is moved 

=Tees. along a 1.8 meter arc from 50 to 130 degrees with the robot facing 90 de, 



: ?BOX-DIRECTION ( threshold -- right-flag, left-flag ) 
FOR the right and left box sensor DO 

take a reading from the box sensor 
IF sensor reading > threshold T&EN 

SET the flag = TRUE 
ELSE 

SET the flag = FALSE 
RETüM { right-f lag, left-f lag ) 

* 

Figure 4.18: The box direction algorithm takes readings from two forward pointing left 
and right photoceiis and sets their respective 0ags if the readings are greater than a given 
threshold. 

Figure 4.19: The ?BOX-DETECT cue is true if either the left or right sensor thresholds are 
exceeded. The threshold value correspond to an approximate distance of 1.5 meters between 
the robot and the box, 

Box Detection Algorithms 

The function of the box direction cue is to provide an approximate direction towards the 

box based on the intersection of the left and right box sensors' field-of-views. If the box is 

directly ahead both left and right sensor thresholds are activated. The value of the threshotd 

determines the range a t  which the box is detected. Pseudo code for box direction is shown 

in Figure 4.15. 

The box detection and contact cues are used to control state transitions between the 

step controllers explained in the next chapter. Figure 4.19 and Figure 4.20 summarize the 

algorit hms presented next. 

The box detection eue, shown in Figure 4.21, is based on the box direction cue and 

returns a true flag if either left or right box sensor thresholds are exceeded. 



Figure 4-20: The ?BOX-CONTACT cue is true if either the left or rïght sensor threshold is 
exceeded AND the contact switch is closed. The threshold used corresponds to the box-light 
intensity found at the side of the box. Contact with the box is therefore determined by a 
combination of bright light and touch. 

: ?BOX-DETECT ( threshold-1 --- box-flag ) 
?BOX-DIRECTION( threshald-1, right-f lag , left-f lag ) 
IF the right-flag OR the left-flag THEN 

SET box-flag = TRUE 
ELSE 

SET box-flag = FALSE 
RETURN { bor,f lag ) 

Figure 4.21: The box detection algorithm sets the box fiag true if either right or left box 
sensor thresholds are exceeded. 



: ?BOX-CONTACT ( threshold-2 --- box-contact-f lag ) 
?BOX-DE'ECTC threshold-2, box-flag ) 
?TOUCH ( touch-f lag ) 
IF box-flag AHD touch-flag THEN 

SET box-contact-flag = TIIüE 
ELSE 

SET box-contact-f lag = FALSE 
RETURN < box-contact-flag ) 

Figure 4.22: The box contact algorithm sets the box-contact 0ag true if the robot is touching 
the side of a box. 

The box contact cue, shown in Figure 4.22, also uses the box detection cue. but a 

different value for the threshold, corresponding to the higher light intensity found at a 

boxside, is used. The box contact cue combines the box detection cue and the touch cue 

and returns a true flag if both are true. 

Box Detection Veriiication 

The three box detection cues are tested unng a static robot tethered to a workstation to 

display output. The threshold used to detect the box-Iight is set to be twice the ambient 

room light and is determined dynamically on power up- The effect of bright ambient Iight 

readings is to reduce the distance at which the box-light is detected. The box direction cue 

is tested using the same procedure as  for data collection. The outputs from both cues are 

displayed on the workstation as the box is moved from O to 180 degrees. The box contact 

cue is tested by putting the robot in contact with a side of the lit box. Although these 

tests are preliminary, the cues are retested when integrated with the primitive actuation 

behaviours. 

4.3.4 Goal Detection Cue 

The goal direction cue asks the question: Can the robot see the goal? The answer is a 

function of the robot's orientation with respect to the goal indicator. which in this instance 

is a spotlight placed near the ceiling. The goal detection cue is defined as: 

?SESGOAL Return a true flag if a signal peak greater than the input threshold is detected 

wit hin the user defined field-of-view, 



1 FRONT 

Figure 4.23: The first design for the goal direction sensor consisted of four photocelis 
mounted on a square and pointed upward a t  30 degrees elevation. The fixed sensor positions 
proved inflexible and the second version mounted a single sensor on a rotating motor. 

The first design of this sensor system was not succeçsful and will be discussed in the sequel. 

The final design consists of a narrow field of view sensor which is swept by a motor in an 

upwasd pointing arc. if a signal peak occurs. caused by the spotiight, within an adjustable 

window the goal is detected. The box detection sensors which face horizontaily are shielded 

from Iight sources above the robot, while the goal detection sensors face upward and there  

fore the goal-light does not interfere with the box-light. The design of the goaI detection 

cue involves five steps: sensor placement, data collection, data analysis: algorithm design 

and verification. 

Sensor Placement 

A preliminary design tried to use the same photocells used in box tracking as shown in 

Figure 4.23. If two sensors could be used to track a brightly lit box in the horizontal plane, 

then the same approach should work in an elevated plane. The sensors were arranged on four 

sides forming a pyramid pointing upward at  an elevation of30 degrees. An omni-directional 

view is available by considering any two pairs of sensors. 

Figure 4.24 shows the output from the two forward facing senson as a function of the 

goal-light angle. The readings were taken by moving the goal-light in a 180 degree 4.6 rneter 

arc in front of a robot. Figure 4.24 shows the sensor readings are not symmetric about the 

90 degree position, because the fixed position of each photocell makes the sensor difficult 

to align and the wide field-of-view results in the asymmetric sensor output. The fixed 

photocell position does not allow the field-of-view to be changed. Although the method was 

abandoned it provided the motivation for a design using a rotating sensor. 

The alternate design aIlowed the sensor to be swept in an arc using a small positional 
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Figure 4.24: The output from a preliminary goal direction sensor design. The reading were 
taken with the sensor mounted in a fixed position and orientation. Shown are the outputs 
of two photocelis whose voltage Vary as a function of light intensity. A lower output voltage 
indicates a brighter stimulus. The goal indicator, a downward pointing spotlight, was moved 
along a 4.6 rneter circular arc in front of the robot at 10 degree increments. As can be seen, 
the data from the two photoceh that comprise the sensor are not symetric about the 90 
degree position. The sensor design was abandoned for one based on rotating the  sensor to 
gat her readings, 



Figure 4.25: The omni-directional goal sensor design consists of a forward and rear facing 
phototransistor which is swept in a 180 degree arc from left to right using a servo motor. 
Readings are taken every five degrees once the robot has made contact with the box. 

servo motor. In this manner the sensor system's field-of-view could be made variable from 

the sensor's fixed field-of-view of 10 degree to a maximum of 180 degrees determined by 

the Iength of the arc swept by the motor, An omni-directional view was obtained by using 

two opposing sensors. The sensor's elevation angle was calculated for the lab environment 

used. which had a maximum distance of 4.2 meters from a goal indicator placed at height 

of 2.4 meters. The elevation angle 0 is equal to arctan(y/x) where y is the height of the 

goal indicator, and z is the maximum diitance at tvhich the goai is to be visible. The final 

design of the sensor system is shown in Figure 4.25. 

Sensor Data Collection 

The next step is to collect data from the sensor system in the intended environment and 

under simüar dynamic conditions as the transport task. The goal-direction sensor was 

mounted on top of a robot which was then placed pointing towards the goal-light. Sensor 

readings were taken for positions between 1.75 and 4.75 meters from the goal-light as shown 

in Figure 4.26. Data from these positions were to represent the  conditions while the box 

was moving toward the goal, 

Sensor Data Analysis 

The purpose in the data analysis step is for the designer of the system to get a feel for the 

sensor system5 output as the task executes. Shown in Figure 4-27 is the sensor's output as a 

function of sweep angle. The goal-light is positioned directly in front of the robot and forms 



Figure 4.26: The laboratory setup used to gather goal direction sensor data. The robot is 
positioned facing the goaI stimulus, an overhead spotiight, with the box between the robot 
and goal. Sensor readings were taken as the sensor is swept from O to 180 degrees. The 
distance between the goal and robot is then reduced and the measurements repeated. In 
this  way a spatial stimulus map is produced for each perceptual cue. 

a signal peak at 90 degrees. A simple threshold function wiIl not detect the goal location 

since light reflecting off adjacent walls causes a higher than baseline reading as evident at 

the  O and 180 degree positions. Since the width of the signal peak increases as the distance 

to the goal decreases, signal width can not be used as the cue for goal detection. However, 

as Figure 4.27 shows, the sharp rise and fall of the signal can be used to detect the goal 

direction with respect to sensor orientation, 

Goal Detection Algorithm 

The function of the goal detection cue is to determine if a robot is on the right side of a box 

to push. The "right" side of a box is any side on which a robot pushes that causes the box 

to move towards the goal. The wrong side is any side on which a robot pushes that moves 

the box away from the goal. The number of correct sides on which to push can be controlled 

by specifying the range of orientation angles in which the signal peak is detected. These 

angles can be specified by defining a window in the sensor system's field-of-view in which 

the signal peak must fall. Both the position and size of the window may be determined by 

specifying its right and left field-of-views. Also required in goal detection is the magnitude of 
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4.27: Shown is the output of the goal direction sensor as a function of arigular 
position. The goal stimulus is located at 90 degrees. The sensor is swept from O to 180 
degrees in front of the robot. Four plots show how the signal varies as a function of distance 
from the robot to  the goal stimulus (1.75 - 4-75 meters). 



: RISE? ( curent-readïng , previous-reading --- rise-f l a g  ) 
IF current-reading > previous,readïng THEN 

SET rise-flag = TRüE 
ELSE 

SET rise-f lag = FESE 

: FALL? ( current-reading , pseviou8,reading --- f ail-f lag ) 
IF current-reading < previous,reading THEN 

SET fall-flag = TRUE 
ELSE 

SET fall-f l a g  = FALSE 
I 

: ?SEE-GOAL ( threshold, right-FOV, left,FOV --- goal-f lag 
SET previous-reading = initial-reading 
SET goal-flag and rise-flag = FALSE 
FOR move the sensor from left-FOV t o  right-FOV DO 

take a reading from the goal seasor 
IF 1 current-reading - previous-reading 1 > threshold THEN 

IF RfSE? THEN SET rise-flag = TRUE 
IF FALL? AND riseoflag THEN 

SET goal-flag = TRüE 
ELSE 

SET goal-f lag = FALSE 
RETURN € goal-flag ) 

1 

Figure 4.28: The goal detection cue determines if the goal indicator is within the robot's 
allowable orientation angles. The output is true if a signal peak faüs within the range of 
angles- The cue is used to tngger a pushing behaviour. 

signal peaks, which may be specified as the minimum difference between successive sensor 

readings. Thus, the goal detection aIgurithrn has three input parameters describing the 

magnitude of signal peaks, and the size and position of the orientation window. The result 

is a perceptual cue which detects whether the robot is properly oriented to push a box 

with respect to a goal direction indicator. The pseudtxode for the  goal detection cue, 

?SEE-GOAL, is shown in Figure 4.28. 

Goal Detection Verification 

Verification of the algorithm is performed for static positions only. The box is oriented on 

45 degree line to the goal indicator as shown in Figure 4.29. The robot is tethered to a 

workstation so that the results of the test may be displayed. A aubset of possible orientation 

positions are used to test the cue. The input parameters are specified for signal peaks of 



Figure 4.29: The goal detection cue is verified for a subset of possible orientations. A 
robot is tethered to a workstation and then placed in the indicated positions. The output 
of the ?SEE-GOAL algorithm is tested with mindifference = 20. rightEOV = 150 and 
leftEOV = 30 input parameters. In al1 the above positions the cue returns TRUE. 

20 (0-255), and a window of 120 degrees centered a t  90 degrees. For each of the positions 

shown in Figure 4.29 the cue returns a TRUE output value. 

4.4 Summary 

If the environment is considered when designing a task specific system then it can be used 

to encode information about the execution order of a task. The problem of what a robot 

should do and when, is transformed to decoding that information. Perceptual cues used for 

behaviour activation decode what action the robot takes, and cues used for state transitions 

decode tohen the action is performed. 

Techniques to simplify the decoding pmcess include spatially and rnodally orthogonal 

sensing and additive cue construction. These methods were used to reduce the perception 

problem to answering yes/no questions about conditions in a robot's task environment. 

To elucidate the  cue design process, the multi-robot task of box-pushing was used. The 

approach to cue construction involves a careful characterization of the environment, in 



which the task is performed, using the chosen sensors. The result is sensor data that  varies 

spatialiy and whose analysis leads to algonthms that  extract features used in behaviour 

activation and state transitions in the task model. 

Binary vectors are the interface to the primitive motor behaviours. This allows the 

perceptual cues to be cornputeci independently €rom the implementation details of motor 

action. This adds weight to the hypothesis that perception serves to motivate motor b e  

haviours, but does not have t o  be functiondy dependent on the output signal those rnotor 

behaviours produce. The advantage of such a supposition is architectura[, in that pieces of 

the perception to action control systern can be replacecl without causing a redesign. 

In the next Chapter, the connection between local perception and global action is made 

explicit in the design of subtask controllers, or  Q-machines, which produce the coherent 

system behaviour needed in multi-robot box-pushing. 



Chapter 5 

Coherent Behaviour 

Do multi-robot systems requiring close coordination, as found in manipulation tasks, require 

an explicit "mechanism of cooperation?" Or can a system of robots displa? a coherent 

behaviour by carefully decomposing the problem into subtasks and coordinate the mass 

action based on local perception alone? In this chapter, it is demonstrated that certain 

cooperative tasks are possible without explicit communication or cooperation mechanisms. 

The approach relies on subtask decomposition and sensor preprocessing. A framework is 

described for modelling multi-robot tasks which are described as a series of steps with each 

step possibly consisting of substeps. Finite state autornata theory is used to model steps 

with state transitions determined by values of binary sensing predicates cailed perceptual 

cues. A perceptual cue (Qj, whose computation is independent from the operation of the 

automata, is processed by a finite state machine calleci a Q-machine. The model is based 

on entomological evidence that suggests local stimulus cues are used to regulate a Linear 

series of building acts in nest construction. The approach is designed for a redundant set of 

homogeneous mobile robots. Both a mode1 and its implementation are described. Results 

are presented, in the next chapter, for a system of physical robots capable of collectively 

moving a heavy object to an arbitrady speafied goal position.' 

'Portions of this chapter have been published. C. Ronald Kube and Hong Zhang 1994, 1997. IEEE IROS 
(3):1883-1890, Autonornous Robots 4(1):53-? 2 [35, 381. 
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Figure 5.1: A solution to a given task is considered to consist of two parts: the environment 
with actions on its input and changes in stimulus as its output, and the robot system with 
stimulus as input and actions on the environment as output. 

5.1 Introduction 

A collective system that acts as a unit in a weU coordinated manner is displaying a coherent 

system behaviour. Such a system, be it composed of people. insects or robots is thought to 

be more effective at achieving some goals than individuak acting alone. In robot tasks. libre 

collective manipulation, is such a cooperative system possible without inter-robot commu- 

nication or robot identification? 

Coherent behaviour is accomplished by viewing the system that solves the problem as 

two equaUy important parts consisting of the environment and the robot system as shown 

in Figure 5.1. The environment has actions perforrned in it on its input side, which result 

in changes that may be perceived on its output side. The robot systern has perception on 

its input and produces actions in the environment as its output- 

In such a system the task to be accomplished is the desired change in the environment 

in response to input actions performed by the robots. The robot system is the procedural 

rnechanism used to achieve t hose changes. In this synergistic system CO herent behaviour 

becomes possible as the common task and its environment becorne the central coordinating 

mechanism. 

Presented here is a mode1 which connects local perception to global action by describing 

tasks as  a sequence of changes in position for a given stimulus-abject.* The task to be 
- - - - - --- - - 

2~timulusobject refers CO a manipuiation object that has been "tagged" for easy identification. 



accomplished is specified using a directed graph whose traversal describes the temporal 

order in which the task is completed. 

Using the  predefined actions describecl in Chapter 3 and the perceptual cues described 

in Chapter 4 machines are defined that accomplish the desired task in an ordered stepwise 

manner. The machines described as FSM controllers for each step in the task with tran- 

sitions between steps specified as locally sensed parceptual mes- This type of control is 

analogous to phase-based control used in dextrous manipulation tasks [ i l ] .  

Transporting a heavy box between two known locations by a system of rnany robots 

is a manipulation task requinng coordination to be effective. What is demonstrated here 

is a feasible solution which is obtained by coordinating behaviour among a collection of 

autonomous robots without using either explicit direct communication between robots or 

robot identification- 

5.2 Coherent Insect Behanour 

The examples discussed in chapter 2 on nest construction [19] and prey transport [61] 

by some social insects are prime examples of tasks performed by a repetitive sequence 

of behaviours. Sensing plays a key role in trigering the transition between different task 

construction or transport behaviour steps. It is reasonable: therefore, to speculate that such 

a mechanism may &O be used as a means of synchronizing several asynchronous robots in 

the execution of a common task. 

A frequent question about social insects is how they coliectively build sophisticated 

nests without centralized planning. Coordinating their building activities often involves 

simpie rules appiied without communicating directly with other workers as Franks et al. 

concluded after modeiling the two dimensional structures built by ants using a bulldozing- 

building behaviour [23]. 

Nest buiiding by ants that Live in the flat crevices of rocks involves making perimeter 

waIls around their colonies without t h e  need to construct either a roof or ftoor. This type 

of two dimensional structure is highly conducive to Iaboratory observation and data collec- 

tion, as  nests could be built between two microscope g l a s  slides separated with cardboard 

columns. The first stage of wall construction descnbed involves an individual ant carrying 

a granule into the nest towards the cluster of nest mates, Once the ant is close it reverses its 

direction 180 degrees and begins to  push the granule into other existing granules. This bull- 

dozing behaviour was tested as a cornputer-simulation mode1 producing a similar pattern of 

granules that formed perimeter walls. Thus, bulldozing behaviour is an example of hon. a 



simple rule for buiiding can be used to  produce a predictable result without direct cornmu- 

nication between buildets. Rather, indirect communications through the environment by 

way of the building structure serves to coordinate coUeetive activity [23]. In this way both 

the environment and behaviourai act used for task completion is part of the solution. 

Attempts to model the states of both the environment and its cognizant occupants is 

not novel, In animal behaviour McFatland and B h r  have defined a motivational state 

as  a combination of a physiological and perceptual state, with behaviour used to change 

states in motivational space [44. They extended this approach to modelling the system 

behaviour by assigning state variables to environmental space, behaviour space and task 

space. Environmental space defines the constraints imposed on the system with regards to 

movement and topology. BchaviouraI space refers to the partition of the environment made 

by the animal's (or robot's) sensory system. Tasks are defined by their initial and final 

states using state variables that are relevant to the task. 

Finite state automata (FSA! have been used to model perceptual tasks [6] and moti- 

vational behaviour in animals [64, 461. Arkin and McKenzie have used FSA to model the 

space time relationship in a perceptual processing task on a mobile robot. This approach 

allows for perceptual tasks to  be sequenced in a reactive control systern. In short, finite 

state automata used to model the steps in a task as rules of interaction along with local 

perception to control the application of that  action is a plausible model for a collective 

coherent behaviour. 

5.3 Task Description and Decomposition 

Task description and decomposition can be divided into task-related and tookelated knowl- 

edge [W. In other words, what is to be done and how to do it. Task-related knowledge can 

be descnbed in terms of externally observable desired changes in the environment, inde- 

pendent of the procedura1 mechanism used to  accomplish them. This is synonymous with 

Wilson's sensory state machines in which the environment is considered as a machine with 

the effects of robot actions considered as input and changes in observable stimulus as output 

Dl 
Our model assumes that the task under consideration c m  be described as a sequence 

of steps. A finite state machine (FSM) wül then be designeci to  accomplish each step 

with transitions between steps triggered by perceptual eues. Each step may? of course, 

be cornposed of substeps or subtasks to  also be performed sequentially. In this manner 

a task may be descnbed in as fine a detail as required by its decompositional analysis. 



Figure 5.2: Tasks are dexribed as a sequence ofsteps,  with each step posçibly cornposed of 
additional subtasks (ST) . 

This results in a task description having the hierarchical structure Uustrated in Figure 5.2. 

In the presented model, task description is specified in a directeci graph, called a task 

description graph (TDG), with vertices representing a stimulus-object and its position to 

be manipulated by the system, and edges in the  graph representing possible actions that 

effect those manipulations. 

TooI-related knowledge is specific to the mechanism employed by the system and refers 

to robot actions in the environment and therefore is procedura1 in nature. A task decompo- 

sition into finite state controllers that  accompiish the  desired changes specified in the task's 

TDG is modelled using the primitive actions previoudy described in Chapter 3. Both the 

esecution of individual subtask controllers and the transitions between them are accom- 

plished with perceptual cues. Perceptual cues and their finite state machine controllers 

are ca1led Q-machines and together with a task description graph provide a mode1 that 

considers the environment and robots together in its solution to the specified task. 

5.3.1 Task Description Graphs 

In the class of manipulation tasks being modelled here objects to be manipulated are de- 

scribed as  stimulus-objects and states determined by position, time and a performance 

rnetric. Since states are vectors there are an infinite number of states in the environment. 

However, in the box-pushing task the states of interest are: initial, final, intermediate 

and stagnating. Thus the states correspond to  several actual positions of the object being 

manipulated in an X, Y coordinate system. A task to be accompiiihed by the system is 

dexribed by defining the initial and goal positions of the  object being manipulated. As 

well, stagnating conditions are identified as positions in the graph requiring special actions 

(i.e. stagnation recovery behaviours). In the box-pushing examples that  follow, two actions 

are used that manipulate the box: Al PUSH-BOX and Az REPOSITION. Task description is 



an external gIobal point-of-view and describes changes in the  environment without regard 

t o  the mechanism that causes those same changes. The description of the  task is captured 

in a directed graph defined as: 

Definition 5.1 A task desmption gmph (TDG) is a directed gmph G &th n vertices and 

rn edges. The uertez set V(G) = {vi, . . . , un) describes the state uniquely detemined by 

position, time and a performance rnetric, of an object (S) perceiued os a stimulus to be ma- 

nipulated, and the edge set A(G) = {al, . . . , %) describes the actions needed tu manipulate 

the object wïthout speaking about the actor or actors. V(G) contains an initial state and a 

goal state, each O/ which can be associated mith a set of positions, times and performance 

metrïcs according to the precision to which the values are knoum, 

Two examples are now presented of nondirected and directed box-pushing. 

Nondirected Box-Pushing 

Nondirected box-pushing involves pushing a box from an initiai position for a fixed distance 

in any direction. The task is  considerd successfuI if the  box S is pushed a fixed distance 

R in under a given amount of t ime T. Distance R is t h e  radius of a circle with center 

at an  initia1 position Pt, as iiiustrated in Figure 5.3. The goal position P is any position 

tha t  satisfies R 2 1 P - Pt, 1 which is simpiy the distance between the goal and initial box 

positions. 

Each vertex in the TDG shown in Figure 5.4 specifies a unique condition as defined by 

changes in radius from the initial position Ar = IP - Pt-&l per tirne period b summarized 

as: 

Initial box position: which may take any value in the 2D position space with Ar  = O 

VI : (SI, Pt) 1 Ar = 0 ,  t = to (5.1) 

Intermediate box positions, which may take any value in the 2D position space with 

Ar > O 

v.2 : (SI, Pt) 1 Ar > O ,  t = to + 6  (5.2) 

Goal box positions, which may be specified as any value in the  2D position space where 

Ar 2 R and t, - to < T 

~3 : (SI, Pt) 1 Ar > R, t = tn (5.3) 

Stagnating box position, which describes a position t h a t  h a .  not changed in time period 

6 resulting in Ar  = O 

q: (Sl,fi) 1 Ar=O: t = t o + k 6  (-5.4) 



Figure 5.3: illustrated is the nondirected box-pushing task where the robots (srnaII circles) 
push the box in any directior, for a fixed distance (dotted circle). 

where k6 is the time period before stagnation is detected (i.e. a tirneout). 

The stagnating condition in equation 5.4 occurs when robots push the box in opposing 

directions thereby producing a resultant net force insufficient to move the box. The problem 

occurs due to the nondirected nature of the task. The solution is a recovery behaviour whose 

output is a robot action that changes the orientation of the pushing force and is Iabelled as 

Az in Figure 5.4. 

Directed Box-p us hing 

The task description can be changed to directed box-pushing towards specific positions and 

can include a temporal sequence of positions as  indicated in Figure 5.5. In this example, 

the box is first moved from an initial unknown position Pi to a known position PA and 



Figure 5.4: The task description graph where vertices represent an ob ject (box) and position. 
and edges represent actions that effect changes in object's position, 

then moved to a second position PB, in each step the path taken is unspecified and may 

therefore be suboptimal. The corresponding TDG is illustrated in Figure 5-6. 

5 -3.2 Q-machine Controllers 

In the mode1 presented, tasks are decornposed along four dimensions: abstraction levels, 

control and temporal dependencies, and redundancy. Using these guiding principles con- 

trollers are then designed which accomplish each step in the task decomposition- After 

a bnef discussion of these four dimensions, detailed examples of two approaches taken to 

nondirected and directed box-pushing are discussed. 

Abstraction Levels 

Three leveis of abstraction are used to decompose any given task: the task-Ievel which 

describes what is to be performed by the system and is specified by a task description 

graph; the behaviour-level in which a task is specified as subtasks; and the action-level in 

which taxis-based actions are used to accomplish each subtask. 

At the ta&-level objects to be manipulated and their positions are specified in temporal 

sequences using a task description graph. In the specific example presented in the next 

section this level of description corresponds to statements like %rst move box number 1 to 

goal position A; next wait one minute; then move box number 1 to goal position B." 

At the behaviour-level the task is further decomposed into a number of subtasks. An 

example wiii be presented in which the task is decomposed into three subtasks, correspond- 

ing to finding the box perceptually, moving towards it until contact is made, and finally 

pushing the box towards position A. 





Figure 5.6: The task description g a p h  for directed box-pushing. The box is pushed from 
an unknown initial position IabeUed as V I  to the position described by vertex in time 
penod AT1 and then to position describeci by vertex vs in time period AT2. Positions 
wa5 describe intermediate positions during execution, whïie position ~4,;- refer to stagnating 
positions from which recovery actions are required. 

At the action-levei, each of the above subtasks are further decornposed into primitive 

actuation behaviours described in Chapter 3. Taken together t hese PA behaviours compose 

a subtask controller which accornpliihes the subtask, for instance "fînding the box percep 

tually." This t hree-Ievel hierarchy decomposes a given problem into subproblems each of 

which may use an architecturally different approach to  its solution. In the mode1 presented 

here reactive control is used at d three leveh. 

Control Dependencies 

Ta& decomposition is performed on the basis of trying to  reduce four robot control depen- 

dencies: 

O Resoume conpicts. By ensuring that a sufficient supply of resources per robot are 

available conflicts between robots are reduced, In the box-pushing task this translates 

to having enough free space on a boxside available by either limiting the number of 

robots used or  increasing the size of the box being pushed. 

Robot in temction. Reducing the interaction between robots helps minimize the antag- 

onistic forces present in trying to  coordinate the actions or mass effect of a multi-robot 

system. Obstacle avoidance is used as a means of implementing noninterference pro- 

tocols. 



Inter-robot c~mrnunication- In the approach presented, robots do not explicitlji com- 

municate, thereby reducing the control dependency present in methods that use inter- 

robot communications as  a means of coordination. 

GZobul information. AU actions taken by a robot are based on locally perceived in- 

formation only, thus eliminating the need to obtain a global view of a problem before 

making a decision. 

Temporal Dependencies 

Task decompoçition is possible along the temporal dimension by specifying sequences of 

actions to be perforrned using the task description graph. In the case of directed box-pushing 

this amounts to sequencing the stimulus used to indicate each goal position. This allows 

the box to  be moved between two goal positions using the same set of subtask controllers by 

controlling when and where the goal stimulus appears. This approach requires the  control 

of some of the environment's stimulus to be part of the solution design 

Redundancy 

Since the uncertainty is high in both the perception and action of individua1 robots, the task 

is deconiposed under the assumption that there will be many homogeneous and therefore 

redundant robots. AU robots carry identical programs for solving the task. Observing the 

noninterference protocols mentioned above increases the probability that  a specific action 

will be perforrned. 

5.4 Q-machine Controller Design 

Two examples to help further elucidate the presented model are now presented. In the next 

Chapter, the model for nondirected box-pushing wiU be explored in simulation and serve as 

a precursor for the results obtained for directed box-pushing by a physical system of robots. 

Nondirected Box-Pushing 

In the computer-simulation of nondirected box-pushing the forces on the box are modeled as 

the sum of a singIe robot applying a unit force at an angle to the box side. This will produce 

a resultant force vector and a torque applied about the box's center. If the resultant force 

is greater than a user-defined threshold the box wil1 translate in an XY plane. Likewise 

a user-set torque threshold wiIl cause rotation of the box (see Figure 5.9). If an equal 



distribution of robots push the box the resulting net force is insufficient to overcome c h ~  

weight of t h e  box and the  systern stagnates. 

A single controller is used for each robot. The  controuer is cornposed of the  following- 

PA behaviours: AVOID, REPOSITION, REALIGNMENT and sEEK-BOX, which have a fixed 

prionty with AVOID being the highest and SEEK-BOX the  lowest. The stagnation recovery 

behaviours each contain a counter that is reset each time the robot moves. Each counter 

has a threshold t ha t  can be set, and if reached (i.e. a timeout) the behaviour is activated. 

Using thresholds, behaviours can be ordered. For example, a REALIGNMENT behaviour with 

a time threshold Tl = k where k is some constant, and a REPosITIONING behaviour with a 

time threshold of T2 = 4k WU take four times as much time before being invoked.. -4s long 

as the robot is moving, the behaviour does no t  become active since its threshold c ~ u n t e r  is 

constantly being reset to  zero. Since the behaviours alter the robot's orientation or  position 

by a smaü random amount, the  robots behave asynchronously. 

In the box-pushing task, stagnation refers to  any configuration in which robots are 

in contact with the  box and the box is not moving. For example, consider a minimum 

configuration with two robots on the same side pushing with a unit force at an orientation 

of 4 j 0  and the  weight of the box set a t  1.50. The resulting force calculations using a, unit 

force and equations 5.5 and 5.6 are F, = 1.414 and Fu = 0.0. Since F, 5 1.50 stagnation 

has occurred. 

F y  = C f iy  

Once the realignment timeout threshold is reached the behaviour changes the direction 

of the appiied force. Since the reatignment k random this may increase or decrease the 

resultant force. For cases where realignment is not suficient to establish box movement 

the repositioning behaviour becornes active. In this case the  repositioning behaviour causes 

the robot to  assume a new position on the box. Figure 5.7 compares the  success rates of 

two controllers with and without recovery behaviours. Figure 5.8 compares two recovery 

behaviours as a function of the  number of robots. The simulation results of nondirected 

box-pushing led t o  the mode1 used in directed box-pushing described next. 
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Figure 5.7: Shown is a cornparison of a nondirected box-pushing controller with and  without 
a stagnation recovery behaviour. Success ra te  is pIotted as a function of system size, where 
success was defined as pushing the  box 200 units from its initial position within 2000 
simulation timesteps. Each data point represents 25 t h l s  with the  number of robots placed 
at a random initial position. The  recovery behaviour tested was REALIGNMENT which 
randomly changes the  angle of pushing force upon detecting no robot movement while 
pushing within a fixed time period. 
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Figure 5.8: A cornparison of the REALIGKMENT and REPOSITION recovery behaviours. Since 
REALIGNMENT does not change the position of the robot on the box, changes in force 
magnitude are smaller than found in REPOSITIONING. 
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Figure 5.9: The mode1 used to calculate the box force vector. 



D irected Box-P us hing 

The problem of transporting a heavy box from an unknown location, in a given environment, 

to a known goal destination can be divided into three subtasks: 

Find the Box. Since physical sensors used for perception have a iimited range 

and field-of-vîew, the robot must search the environment for the box while avoiding 

collisions with obstacles. 

Move to the  Box. Once the box is located within a robot's field-of-view, move 

towards the box while avoiding obstacles and bring the robot into contact with any 

side. 

r Push the Box towards the Goal. If the box is between the robot and the goal 

destination then push the box; otherwise reposition the robot to another spot on the 

box. 

The reactive controller designed for each subtask consists of a method for achieving 

its task (goal-driven positive taxis PA behaviour), a method for dealing with impediments 

(avoidance-driven negative taxis PA behaviour). and a method for recovering from stagna- 

tion or deadlock conditions (recovery-driven kinest hetic P-4 behaviour) . -4 minimally de- 

signed controller must contain a t  Ieast one PA behaviour from the goaI or recovery classes. 

ControUers used for navigation wilI also indude behaviours from the avoidance class. A 

subtask controller can be modeled as a FSM with each state represented by a single PA 

behaviour. For the transport tasli the three subtask controllers are FIND-BOX, MOWSTO- 

BOX and PUSH-TO-GOAL. 

In order to integrate the subtask controllers into a single three state machine, with each 

state represented by a single controller, a mechanism is required to  cont rol state transitions. 

Perceptual cues are the cornputationally independent mechanism used. The cues can be 

expressed as Horn clauses with each atom representing a stimulus needed to satisfy the 

truth of the clause. The integrated controller is simply a machine that processes perceptual 

cues (Q) to determine the state (or subtask controller) that controls the robot, hence we 

cal1 them Q-machines. Since the number of states is few, execution is controlled by cycling 

through the states using a perceptual cue to  determine the correct state of the transport 

task Q-machine shown in Figure 5.10. The perceptual cues used to determine state are: 

?BOX-DETECT True when the forward box sensors detect a lit box 



Figure 5.10: The behaviour-level description of the controller for transporthg a box by 
pushing it from an initially unknown position to a final goal destination. 

?BOX-CONTACT True when the robot is in contact with a Lit box. 

The state of the transport machine is specified by: 

1. FIND-BOX ?BOX - D ETECT 

3. PUSH-TO-GOAL ?BOX-DETECT A ?BOX-CONTACT 

Each subtask controller is a FSM with state represented by a single PA behaviour de- 

scribed in Chapter 3. Described next are the subtask controllers and their implementation. 

FIND-BOX Subtask Controller 

.4 machine is designed that will find a brightly lit box in the robot's environment while avoid- 

ing obstacles. From the given Iist of PA behaviours a random search strategy (RANDOM- 

WALK) is chosen. Two behaviours from the avoidance dass (CONTACT, AVOID) along with an 

additional recovery class b e h a v i o u r ( ~ ~ c ~ - o ~ ~ )  complete the controller whoçe pseud-code 

algorithm is shown in Figure 5.1 1. An alternate design rnight have used a more methodical 

search and movement generator in place of RANDOM-WALK, or any one of the many strate- 

gies for spatial searching. The perceptual cues used to determine the state of the &-machine 

are listed in Table 5.1. 

Control is maintained within FIND-BOX untii  the?^^^-DETECT perceptual cue becomes 

true, at  which point control is passed to the MOVETO-BOX subtask controller. As indi- 

cated in TabIe 5.1 a fixed pnority is maintained between the PA behaviours as a means 



1 FIND-BOX Subtask Controuer 1 
[ Perceptual Cue (Input) Behaviour State (Output) 1 
1 TTOUCH TCONTACT- TAVOID- 1 PA Behaviour 1 

I 

0 0 0 1 RANDOM-WALK 1 
I o  0 I l  AVOID 1 

Table 5.1: The  FIND-BOX Q-machine is the subtask controiier used to  locate the box to be 
manipulateci. Input is from the listed perceptual cues which define the output behaviour 
state specified as  a primitive actuation (PA) behaviour. The "X" in the input table indicates 
a don't ca- term. The perceptual cues corresponding to the dashed labels are: ?CONTACT- 
= ?CONTACT-DETECT; ?AVOID- = ?AVOID-DETECT de~cnbed in Chapter 4. 

0 1 X 
1 X X 

: FIND-BOX ( --- ) 
NOT ?BOX-DETECT ( transition perceptual cue ) 
WHILE ( while you don't see the box search for it ) 

IF ?TOUCH TREN BACK-OFF ( kinesthetic ) ELSE 
IF ?CONTACT-DETECT THEN CONTACT ( negative taxis ) ELSE 
IF ?AVOID-DETECT THEN AVOID C negative taxis 1 ELSE 
RANDOU-WALK ( kinesthetic 

CONTACT 

BACK-OFF 

Figure 5.1 1: Shown is the pseud*code for the FIND-BOX Q-machine. Each state in the 
FSM is a primitive actuation behaviour described in Chapter 3. Comments are in lower 
case and enclosed in parentheses, 

of behaviour arbitration. Using a fixed pnority in behaviour arbitration is simple if the 

number of behaviours is few making control unambigrious. If the control choice is ambigu- 

ous then a n  additional subdivision of the task into another subtask controller is advised. 

An alternate means of behaviour arbitration among a Iarger number (> 5 )  of competing 

behaviours was explored and the results presented in [39]. 

MOVETO-BOX Subtask Controller 

Once the box stimulus has been detected control passes to the MOVETO-BOX subtask 

controller responsible for guiding the robot towards the box. The controller is identical to 

FmD-BOX with the movement generator (RANDOM-WALK) replaced with a goal dnven be- 

haviour (SEEK-BOX) based on a positive phototaxis. The pseudo-code algorithm illustrated 

in Figure 5.12 brings the robot into contact with any side of the box so that the pushing 

force is normal to the point of contact. 



1 MOVE-TO-BOX Su btask ControUer 1 
Perceptud Cue (Input) Behaviour State (Output) 

?TOUCE ?CONTACT- TAVOIX~~ ?BOX- PA Behaviour 

Table 5 6 :  The MOVETO-BOX Q-machine is the subtask controuet that moves the robot 
towards any side of the brightly lit box to be manipulateci- Input is from the listed per- 
ceptual cues which define the output behaviour state specïfied as a primitive actuation 
(PA) behaviour. The "X" in the input table indicates a don? cure term. The perceptual 
cues corresponding to the dashed labels are: ?CONTACT- = ?CONTACT-DETECT: ?AVOID- 
= ?AVOID-DETECT; and ?BOX- = ?BOX-DETECT described in Chapter 4. 

O O O L 
0 0 1 x 
0 1 x X 
1 X X X 

: HOVE-TO-BOX ( --- ) 
?BOX-DETECT AND NOT ?BOX-CONTACT ( transition perceptual cue ) 
WIiILE ( while you see the box move towards it ) 

IF ?TOUCH THEN BACK-OFF ( kinesthetic ) ELSE 
IF ?CONTACT-DETECT T?EN CONTACT ( negative taxis ) ELSE 
IF ?AVOID0DETECT THEN AVOID ( negative taxis 1 ELSE 
SEEK-BOX ( p o s i t i v e  taxis ) 

SEEK-BOX 
AVOID 

CONTACT 

BACK-OFF 

Figure 5.12: Shown is the pseudo-code for the MOVETO-BOX Q-machine. States are 
primitive actuation behaviour described in Chapter 3. Comments are in lower case and 
enclosed in parent heses. 

If during the course of navigating towards the box one of the avoidance driven behaviours 

causes the robot to Iose sight of the box control is passed back to the FIND-BOX subtask 

controller. Control is maintained within the controhr  until the ?BOX-CONTACT cue is truc? 

at which point control passes to PUSH-TO-GOAL. 

PUSH-TO-GOAL Subtask Controller 

The strategy used to move a box towards a goal position is based on positioning the robot so 

that the box to  be pushed is between the robot and the goal position (see Figure 5.13). Once 

in contact with a side of the box the ?SEE-GOAL cue determines if the robot is correctly 

positioned. If the cue is true the robot begins to  push and if the cue is false the robot 

executes a repositioning behaviour. Continuous execution of the kinesthetic REPOSITION 

behaviour causes the robot to move in a counterclockwise direction around the box. While 



PUSH-TO-GOAL Subtask Controuer 1 
erceptud Cue (Input) Behaviour State (Output) 

?s~E-GOAL PA Behaviour 

Table 5.3: The PUSH-TO-GOAL Q-machine is the subtask controuer that either pushes the 
box towards a goal destination or repositions the robot on another position of the box to be 
manipulateci. Input from the ?SEE-GOAL perceptual cue which determines pushing angles 
can vary the acceptabie pushing angles. 

0 
1 

: PUSH-TO-GOAL ( - ) 
?BOX-DETECT AND ?BOX-CONTACT ( transition perceptua l  cue ) 
WHILE ( while in contact a i t h  the box ) 

IF ?SESGOAL TEEN PUSH-BOX C k i n e s t h e t i c  1 ELSE 
REPOSITION ( k i n e s t h e t i c  ) 

REPOSITIO N 
PUSH-BOX 

Figure 5.13: Shown is the pseudwcode for the PUSH-TO-GOAL Q-machine. Once posi- 
tioned on a box side the robot determines if the goal stimulus is within a fixed field of view 
needed for pushing. If not, a kinesthetic behaviour repositions the robot. Comments are in 
lower case and enclosed in parentheses. 

in contact with a boxside avoidance behaviour is not relevant and therefore not part of the 

controiler whose States are Iisted in Table 5.3. 

Control is maintained within the PUSH-TO-GOAL controUer as iong as the robot re- 

mains in contact with the box. However, should the robot lose sight of the goal stimulus 

as determined by ?SEE-GOAL the REPOS~TION behaviour forces the robot to break contact 

with the  box thereby pkssing control to either FINDBOX or MOVE-TO-BOX depending 

on the state determined by their respective perceptual cues. 

Since the movement of the box towards a goal position is not specified as an explicit pat h 

in two dimensional space, but rather as a rde of interaction between the box, the robot and 

the goal position, a unique solution is never obtained. Instead, like declarative programming 

in which what is specified rather than how, the  rules of in te r~ t ion  (Q-machines) provide a 

method for achieving the solution. 



: TRANSPORT ( -- 
BEGIlO 

FIIOD-BOX 
HOVE-TO-BOX 
PUSEI-TO-GOAL 

AGAIN 

Figure 5.14: Shown is the Forth code for the TRANSPORT Q-machine. The three state 
machine uses transition perceptual cues t o  determine which state is relevant based on Iocal 
sensing. 

Transport Q-machine 

The TRANSPORT machine is created by cycling through the three behaviour-Ievel con- 

trollers as shown in Figure 5.14. The correct s ta te  is determined by the ?BOX-DETECT and 

?BOX-CONTACT cues. AS indicated in the task description graph (shonrn in Figure 5.6) dif- 

ferent goal positions towards which the box is pushed are specified by extenally controlling 

the time at which the goal stimulus is present. The system of robots simply pushes the box 

towards the active goal stimulus which indicates where the box is t o  be transported. 

5.5 Summary 

Social insects offer one of nature's most startling examples of coherent behaviour from a 

collective system. The well coordinated effort found in n e t  building resuIts in repeatable 

structures that prove the activity is more than just random behavioural acts. As shown in 

the bulldoze-building behaviour of ants, simple rules of behaviour governed by local sensing 

results in a predictable global action without resorting to  directiy communicating building 

intentions between ants. Rather, indirect communication through the task itself is sufficient 

to produce a coherent behaviour. 

In insects, evolution provided the programming skiils necessary t o  produce behaviou ral 

programs finely tuned to  the environmental niche they inhabit. In robots. solutions that 

encornpas both robots and their environment as part of the model may achieve nature's 

intention in solving corn plex problems using decen tratized mechanisms. 

In the model presented, the problem-specified as observable changes in the environment- 

becomes part of the solution by directing the robots' behavioural acts to  converge in a 

desired way. 



Task description graphs capture both the spatial and temporal stimulus changes that  

define the  task to be accomplished. Together with Q-machines, which are based on finite 

state automata, and their context dependent behavioural state, a unique approach is taken 

to the control of a collective multi-robot system. 

Venfying the feasibility of t h e  modei on a physical system of mobile robots presents a new 

challenge in itself- Designing, prototyping, testing and then replicating 1 l identical mobile 

robots so that  repeatable experiments could be performed is time consuming. However, the 

results as discussed in the next chapter were rewarding in themselves, but not so much in 

the positive confirmation of the proposed iramework, rather in the questions raised, and 

discussed in the sequel. These open new vistas for exploration- 



Chapter 6 

Global Action: Results 

Stigmergy, a term coined by French biologirt P. Grassé, which means to incite work by the 

effect of previous work [26] is a principle finding its way from the  field of social insects to 

coliective robotics [ll, 501. With their limited repertoire of behavioural acts social insects 

display en amazing cornpetence in building nest structures. From the simple nests produced 

by the blind buildozing of ants [23] to the termite homes that  stand over a rneter tail [68] 

al1 of which result from common tasli coordination that does not appear to depend on 

interaction between the agents but rather on the object they act upon. In this chapter, 

the results are presented for the integrated modeis of the previous three chapters. The 

resulting Q-machine mode1 takes local perception derived by the perceptual cues presented 

in Chapter 4 and the context sensitive decision process of Chapter 5 to produce the taxis- 

based actions of Chapter 3, which together form a coherent global action. This global action 

is demonstrated in the collective transport tasli and represents another step in the punuit 

of knowledge already O btained by social insects. 

6.1 Introduction 

In the results presented, global action is the effect produced when a set of identical mobile 

robots execute the common task of pushing an object towuds an arbitrarily specified goal 

position. Coordination is achieved without resort to direct inter-robot communication or 

robot differentiation. Instead, context sensitive subtask controllers decompose the box 

transport task into three phases. The phases describe what is to  be achieved, in  terms of 

the externally observable events descnbed by box position, without specifying how the task 

is to be accomplished by way of a unique path. 



Described is the experimentaI system used to gather the da ta  followed by the primary 

results in support of the main hypothesis and the secondary results which make some 

preürninary compatisons of execution times under various experimentd conditions, 

6.2 Experimental System 

The experimental setup used t o  gather the data presented in the sequel consisted of a 

robot environment, in which various boxes were placed along with two spotlights used to 

indicate final goal positions, and a set of identical mobile robots complete wit h sensors and 

Q-machine task controlIers. In total over 100 box-pushing trials were run using from one to 

11 robots, four different box types and in three different venues. The  final set of experiments 

were recorded on over four hours of video tape with an individual triid lasting between 30 

seconds and five minutes. Describeci briefly is both the robot environment and hardware 

used. 

6.2.1 Robot Environment 

The ideal test environment would be a large open space without walls leaving t h e  robots 

free to push the box along any desired path. Since this environment was not available 

a smaller and more restrictive area defined by w d s  was used. A permanent space large 

enough in which to conduct experiments was often difficult t o  find, resulting in the creation 

of a portable testing environment consisting of: 11 robots, two spotlights on stands for goal 

position indicators, the box to  be manipulated, and a video camera to record the results. 

However, the majority of the experiments were conducted in the area depicted in Figure 6.1 

which became available towards the end of this study. 

6.2.2 Robot Hardware 

The mobiIity hardware designed is cornposeci of a set of homogeneous two-wheeled robots, 

each weighing 1.3 kilograms and measunng approximately 18 centimeters in height and 

diameter as shown in Figure 6.2. A battery aiiows for 45 minutes of operation with a 10 

minute recharge time, ControI electronics are separate modules plugged into the robot, 

allowing for quick maintenance in the event of failure.' Tksk specific sensors are added 

to the generic base and can be attached ont0 a grid of evenly spaced holes. A Motorola 

68HCll microcontroller with 8K of RrlM and programmed in Forth is used to map sensor 

output to one of nine motion primitives. A minimum number of sensors (6) was sought in 

'See Appendix -4 for a detailed description. 
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Figure 6.1: A schematic of the Iab environment used to test the integrated transport con- 
trollet. In each trial the box was placed at initial position three meters from the goal line 
and the robots were placed at one of the indicated starting positions labeiied Pl - P5. 



Figure 6.2: Each of the robots are equipped with two forward pointing infrared obstacle 
sensors, one touch sensor, two CdS box-tracking photocells, and a destination sensor, al1 
mounted on a differentially steered base. 

implementing the perceptual eues. Additional sensors would ailow a more omnidirectional 

field-of-view in the  case of obstacle and box sênsing, and better pushing orientation in the 

case of box contact sensing, but the objective was to determine what could be accomplished 

with the minimal number of sensing bits. The hardware proved to be robust with few 

breakdowns. 

Each subtask controller was tested individuaily on the physicd robots and then combined to 

form the final integrated controller used in the transport task. The three subtask controllers 

are FIND-BOX, MOVETO-BOX and PUSH-TO-GOAL. 

First, the FïND-BOX controuer was tested for its abiiity t o  search the robot's environ- 

ment for a brightly lit box. FIND-BOX k a four-state machine consisting of RANDOM-WALE;, 

AVOID, COXTACT and BACK-OFF PA behaviours To test the controller a felt-tipped pen is 



Figure 6.3: Shown are the dispersive effects of obstacle avoidance behaviours in both simu- 
lated and physical robot expenments. Starting from a close initial configuration, the F ~ D -  
BOX controlIer will disperse the robots until the obstacle sensors are inactive. Adjusting 
the sensor's threshold effects the inter-robot diitances. Note that  the obstacle sensors are 
not omnidirectional and point in the forward direction only. 

attached to  the robot marking its traveled path. A single robot was placed in a 2.7 meter 

square enclosed grid composed of 81 cek of which 90% were visited in three minutes. The 

fixed motion pattern generates a pseudo-random motion when the obstacle sensors change 

the path of the robot. The same controiier tested with 11 robots in a five by six meter room 

produces continuous stagnation-free motion for 10 minutes. 

An example of how the avoidance behaviours, within the FmD-BOX cont r~i ie r~  cause 

robot dispersion is shown in Figure 6.3. If the robots are placed close to  each other in 

an initial configuration so that obstacle sensors are active, the robots will disperse using 

avoidance behaviours until the obstacle sensors are inactive. The inter-robot distance is a 

function of the obstacle avoidance t hresholds [32] . 
Next, the MOVETO-BOX controller was tested for i t ç  abiiity to detect and direct the 



robot towards a box, resuiting in contact with a side. MOVE-TO-BOX is a four-state 

machine composeci of SEEK-BOX, AVOID, CONTACT and BACK-OFF PA behaviours. The 

controiier was first tested using a single robot which foUowed a Lit box as it was dragged 

around the room. The FIND-BOX controuer is added and 10 robots were placed at opposite 

ends in a three by five meter room. Al1 robots located the box while obstacle avoidance 

created an even distribution around its circumference, 

In order to test the transition perceptual cue between FIND-BOX and MOVSTO-BOX 

two experirnents were run in two separate environments. In the first, 10 robots were pIaced 

in one corner of a five by three meter room with the box located at  the opposite end. The 

initial and final configurations were then compared against the simulated version of t h e  

same experiment. In both versions the initial configuration of robots expanded spatially 

avoiding obstacles while executing the RANDOM-WALK PA behaviour. Once their forward 

pointing Light sensors detected the box they converged and attempted to occupy a spot on 

a box side. Additional robots converged until obstacle sensors detected an object already 

present on a boxside, forcing the additionaI robot to find a free spot. This resulted in a 

distribution of robots around the box and marked the end of the second task step (see 

Figure 6.4) [37]. 

The same results were obtained in a second environment in which six robots were placed 

in a six by 5.5 meter room with the box located 5.8 meters from the robots- In each of 

the three trials the robots located the box after an initial random search in under two 

minutes.* Finally, floor level lights placed at opposite corners of the same room were used 

to march nine robots back and forth across the floor in a simple homing experiment shown 

in Figure 6.5. Interference between interacting robots is minimized by reducing the distance 

at which obstacles are detected- 

Finaiiy, the PUSH-TOGOAL controller is tested for its ability to provide directed box- 

pushing or repositioning behaviours. PUSH-TO-GOAL is a two-state machine using the 

PUSH-BOX and REPOSITION PA behaviours. The machine enters the PUSH-BOX state if 

the perceptual cue ?SEE-GOAL is true. ?SESGOAL is true if the box is between the robot 

and the destination goal as iliustrated in Figure 6.6. The cue h created using an upward 

'one item of interest not modded in the simulation experiment is that once the box is surroundal by 
robots it becornes undetectable to the temaiaing robots since the radiating box light is now blocked. This 
automacicdy frees the rernaining robots to s e a d  for other boxes. a r e d t  that bares analog). to ant prey 
transport reported by Fr&[24], who found that the number of ants that were involvecl in a group transport 
task was reiated to the avaiiable perimeter spase on the item being retrieved. Thus, the number of robots 
directly participating in the task might be self regulating and a function of sensing rather than explicit 
control. 



Figure 6.4: The results of both simulated and physical tests on locating a lit box, The 
distribution around the box results when t he  avoidance behaviours, AVOID and CONTACT, 

keep the robot away from other robots until a free spot against a boxside is found. 

Figure 6.5: One test of the MOVBTO-BOX controfler involved marching nine robots back 
and forth between two floor level üghts turned on alternately and placed a t  opposite corners 
of the room. A white sheU is added to each robot so that a reflective surface is available for 
the obstacle sensors. 



pointing rotating sensor which detects signa1 peaks within a specified field of vien*. To test 

the controuer two robots, needed to push the box, are positioned on a boxside and facing 

the goal indicator. The robots successfully push the box towards the goal. Next the robots 

are phced on a box side fachg away from the goal causing the REPOSITION state to  move 

the robots to  a new position and orientation. The final tests invoive integrating the three 

subtask controllers into a machine that  can transport the box €rom any initial position 

wit hin the environment to an arbitrariiy specified goal position. 

6.3 Ernpkical Results: Directed Box-Pushing 

The above three subtask controllers are combined to form a three state transport Q-machine. 

The integrated controller was tested in experiments using one to  six robots in which four 

different types of boxes were transported from the same initiai position to an arbitrary final 

goal position in the environment depicted in Figure 6.1. Task cornplexity was increased 

by changing the goal positions during transport execution, thereby requiring the robots 

to dynamicaily reconfigure their pushing orientation towards the new goal position. The 

results are presented in support of the primary hypothesis followed by secondary results 

which require additional experiments for statisticd conclusions. 

6.3.1 Prirnary Results 

The primary hypothesis that coherent behaviour from a multi-robot system, in some tasks, 

does not repuire explicit cooperation mechanisms was examined by gathenng experimental 

evidence on a directed box-pushing task. Over 50 successful trials were recorded of a 

physical system of robots in which a box, requinng at least two robots to move, was pushed 

from an  initial starting position towards a specified goal position. The control framework 

tested did not make use of inter-robot communication or robot identification to coordinate 

the system. Rather, decentralized control was used in which the autonornous robots made 

use of local sensors as the only means of observing their environment. Experiments were 

conducted which varied the number of robots, the box size and shape, and task difficulty 

by requiring the robots to transport the box between a sequence of goal positions. From 

the experimental data  the following statements can be made in support of the primary 

hypot hesis: 

O Insensitive to System Size. The number of robots used to  transport the box to 

different goal positions was mned from two to six with 58 successful trials recorded- 
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Figure 6.6: The actions taken by the PUSH-TO-GOAL machine depend on the ?SEE-GOAL 

perceptuai eue. If the goal is within the sensor's field-of-view the machine is controlled by 
the  PUSH-BOX PA behaviour; otherwise control is passed t o  REPOSITION which causes the 
robot to locate another spot on the box. 



The success of the transport task was not sensitive to the number of robots used to 

compose the system. 

0 Insensitive to Some Types of Convex Object Geometry. Six robots and four 

different box types of varying size and shape, were transporteci with 39 successful 

trials recorded. The transport task success was not sensitive t o  the four box types 

used. 

Insensitive ta Changes in Goal Position. Wsing between four and six robots 

to transport a large round box between a sequence of goal positions, eight successful 

trials were recorded. The transport task success was not sensitive to the increase in 

task CO m plexity. 

In the sections that follow, successfuI tri* d l  be discussed with regard to the above 

three statements. The unsuccessful trials can be grouped into two: failure due to a robot 

system fault, or failure due to an environment restriction, A system fault included problems 

specific to the robots. For example, a tire or wheel feu off disabling the robot, a rundown 

battery leaving Little pushing force, or the door to the lab was left open and the robots left 

the arena. Failures also occurred due to restrictions, previously mentioned, on the environ- 

ment used to conduct the experiments. A f d u r e  occurred if the box was pushed against 

a wall leaving no space for the counterciockRise repositioning needed to bnng the robots 

in correct alignment with the goal. Despite these restrictions the system was successful in 

transporting the box in over 70% of t h e  trials conducted. 

Insensitivity to System S i z e  

increasing the number of robots from two to six did not affect the successful outcome of 

the transport experiments. This is an analogous result t o  the simulation results (shown 

in Figure 6.11) in which successful task completion remained high despite an increase in 

the number of robots. However, no daim is being made that task completion time is not 

affected, since completion tirnes were found to vary as the number of robots increased and 

were dependent on available resources as discussed in Chapter 7. In each of the 58 successful 

trials recorded the box was pushed from an initial starting position, located approximately 

in the center of a five by four meter area, towards the goal area indicated in Figure 6.1 and 

ending in quadrant I a t  a distance of at  least 2.5 meters. The robots were started in each 

trial from positions one to five in quadrants II-IV shown in Figure 6.1. Successful trials 

would run between 32 and 214 seconds and were executed in three phases. 



The first phase began when the robots were powered on, the box-light was off and the 

goal-tight was on. System initialization consists of taking ambient Lght readings used to set 

the box-detection threshold. The  robots began executing FIND-BOX and quicidy dispersed 

themselves in the area. Shortly thereafter, the  box-tight was tumed on and those robots 

that were fkeing the box and sufficiently dose would move towards and make contact with a 

boxside using the MOVETO-BOX controuer. Depending on an individua.1 robot's position, 

with respect to  the box when box-detection occurred, the distribution of robots around the 

box would vary and mark the beginning of the second phase. 

In the second phase, some of the robots incorrectly positioned for pushing, as detcr- 

mined by the PUSH-To-GOAL controuer, began moving counterclockwise around the box 

petimeter searching for an open spot on a correct side- This behaviour is the result of several 

cycles through the transport Q-machine consisting of in turn FïND-BOX, MOVETO-BOX 

and PUSH-TO-GOAL subtask controllers and can be expiained as foIlows. Once contact 

is made with a boxside the ?SEE-GOAL perceptual cue determines that  the robot is on the 

wrong side for pushing. The  PUSH-TO-GOAL controlier then executes the REPOSITION 

behaviour which moves the robot away from the box in a countercIockwise direction. Cf 

the box is within view, determined by the ?BOX-DETECT cue, MOVETO-BOX brings the 

robot into contact with a new position on the box providing it is unoccupied. The obstacle 

avoidance behaviours keep a robot away from occupied positions on a boxside. If the box is 

not within view then FIND-BOX executes and searches for the box. The PUSH-TO-GOAL 

controller evaluates the new position and the cycle repeats. 

The third and final phase is characterized by the box moving towards the goal position. 

Once a net force sufficient t o  move the box occurs the box begins t o  translate and possibly 

rotate. During the box movernent phase a robot continuously determines if it remains on 

the correct side for pushing using the ?SEE-GOAL cue. A robot located at the edge of the 

pushing swarm rnay suddenly lose site of the goal and begin repositioning. The resulting 

drop in pushing force may be sufficient to  halt the box movernent until another robot joins 

the group effort. The  dynamics of both the box and robots is such that  the path taken by 

the box towards the goaI is seldom straight. Rather, box movement can be said t o  converge 

towards the goal since its trajectory is the net result of several force vectors applied by 

individual robots. A typical box path might begin at position Po proceed towards Po and 

then move to  P7 as illustrated in Figure 6.1- 

Figure 6.7 is taken from a 45 second video segment in which six robots starting from 

position P4 moved the box a total of three meters ending on the goaI line just behind 



Figure 6.R Shown are six robots pushing an large box from its initial position three meters 
towards a final goal. The mpeg video from which this sequence was taken is available at  
http://www .cs,udberta.ca/-hbe/ 

position PT. On the whole, the time taken would depend on the sue  of the box and the 

number of robots as explaineci in section 6.3.2, but the success of the approach was not 

sensitive to  the number of robots providing that the minimum of two robots were used. 

Insensitivity to Some Types of Convex Object Geometry 

To evaluate the controller's sensitivity to object geometry, 38 successful trials were per- 

formed using six robots and four different box types. The initial box, BOX A! tested was 42 

centimeters square and large enough for two 18 centimeter robots on a side. -4 second 84 

centimeter square box, BOX C, was buiIt by extending the initial box with a second frame. 

This increased the box dimensions, but used the same base on which the box siid along 

the floor. A third 84 centimeter box, BOX B, was built on a new base which increased the 

number of points in contact with the 0oor and therefore its sliding friction. The fourth box, 

BOX D, was round with a diameter of 84 centimeters and the results of t h e  39 trials can be 

summarized as follows: 

BOX A. A total of 10 trials were successful in pushing BOX A from the initial position 

to the goal positions in quadrant 1 (see Figure 6.10). The  robots started from positions 

Pr-s. In general as the number of robots increased the task took longer to complete 

as  the robot interference was high since the limited box side space created cornpetition 

among the robots. 

BOX B.  A total of eight trials were successful in transporting BOX B from its initial 

position using 6 robots starting from position P4 and ending at positions Ps-7. 

BOX C. A total of seven successful trials were recorded in which BOX c was moved 

to the goal area by six robots starting from positions This box had the highest 



Mure  rate among the four boxes used and was due to a robot getting caught on the  

frame. 

a BOX D. A total of 14 triais using a round box, BOX Dl and four to six robots were 

successful in moving the box between two goal positions. The round box was the  

Iast box buiit and experienced the most succes of the four types testeci. The lack of 

corners provided the robots with a uniform contact surface to push against unlike the 

square boxes which had sharp points at its corners. 

Insensitivity to Changes in Goai Position 

The initial success of the directed box-pushing task led to the foilowing extension which 

increased the task difficulty. Pictured in Figure 6.8 are two goal positions labelleci PA and 

PB. The robots begin from position P4 and goal-light at position PA is illuminated causing 

the robots to push the box towards PA. Once reached the goal-light at 94 is turned off 

and the goal-light at PB is switched on. The robots reposition around the box and begin 

pushing towards the goal a t  PB. Figure 6.9 is a sequence of three images taken from the  a 

video segment in which two goals were used. A total of eight successful trials using three 

different goal positions were recorded using a single box. 

6.3.2 Secondary Results 

In the following discussion some interesting secondary results are presented which compare 

execution times as a function of system size in the first experiment and as a function of object 

geometry in the second experiment dong with the foilowing caveat. In experiments involving 

physical mobile robots, holding the many system variables invariant is near impossible 

making cornparisons based on execution runtimes tenuous at best. In t h k  experimentalist 

approach to robotics "things changen is axiomatic. Coefficients of friction change because 

the 0oor gets dusty, force is reduced because batteries run down, motors Wear reducing 

repeatabity, wheels slip in response to changes in load, and the Iist goes on. However, in 

general there still seerns to be a trend in the data making i t  worth presenting. 

System Size 

The rnean execution tirne for moving the smaller 42 centimeter square box from its initial 

position to the goal positions were compared for two to six robots as  shown in Figure 6.10. 

Starting positions for the robots were vaned and included with the final end position 

of the box recorded for timing to be Ps,;. Indicated in each plot are the number of trials 



Figure 6.8: -4 schematic of the Iab environment used to test the transport of a round box 
between two goal positions. Shown are the initial positions of the five robots and the box. 
The first step is to rnove the box from itç initial position to the goal located a t  PA. The 
second step moves the box from PA to position PB. The goal positions are indicated with 
a bright spotlight positioned at a height of 2.5 meters. To sequence the task steps the 
spotlight at position PA is turned off and the light at PB is turn on when the box reaches 
PA 

used to cornpute the mean. The large variance in runtimes was due to robot start  positions 

PIa which could result in long repositioning phases 3. In general, execution times increased 

as a function of the number of robots due to t h e  increase in robot interference competing 

for the limited box space. A much larger number of trials is needed for any statistical 

conclusions. 

Convex O b  ject Geometry 

Our previous simulation study had shown that in a box-pushing task performance, as mea- 

sured by completion time or success rate, could be improved if stagnation recovery be- 

haviours were added to  the controiler to avoid deadlock from occurring when the robots 

applied an equal distribution of forces to the box [35]. What was also noted was the sudden 

'~0th the m d r n u m s  indicated in the case of three and five robots o c m e c i  h m  Ps. 
'Success was defined to be the movement of the box by 200 units in under 7000 simulation timesteps. 



Figure 6.9: Shown are five robots pushing a round box from its initial position first to- 
wards a goal-light in the right of the picture and then towards a goal-light on the left 
of the picture. The mpeg v i d a  €rom which this sequence was taken is avaiiable at 
http://www.cs.ualberta-ca/&be/ 

drop in performance as the size of the system grew for controllers without stagnation recov- 

ery. This was conjectured to  be due to the number of robots able to fit on a box side. To 

test this hypothesis, simulations were run for the same behaviour controuer and the robot 

diameter (RD) was tested for RD = 10 and compared with the results using RD = 20. The 

results are shown in Figures 6.11 and 6.12. If the diameter of the robots were reduced, for 

a fixed box side, the performance increases, which leads to  the conjecture that for a given 

task, performance is dependent on sume yet to be determined taslc density function. 

In Figure 6.13 the mean execution times were compared for the four box types and six 

robots starting from the same initial position. In general, it oppears that  as the available 

contact space increases more robots are able to participate in pushing a t  the same time 

reducing the time taken to complete the task. However, due to the sparseness of the data 

additional experiments would allow statistical concIusions. 

6.4 Summary 

After reviewing the videotaped experiments one is reminded of the antagonistic forces 

present in ant group transport[48], yet the end result is invariably transport of the item 

back to the nest. In Our multi-robot box-pushing experiments the path taken to the  goal 

is neither optimal nor continuous, and it is not the same as one would get in a centralized 

controller, but rather i t  is a feasible solution to the problem given the lirnited abilities of 

the individual robots. There are even temporary setbacks as the box is moved incorrectly. 

At times the robots can lose contact with the box, be blocked by other robots, or  be forced 

to relocate as the box rotates. 

In the reçults presented, it can be said that in al1 cases the robots move the box towards 



Directeci Box-Pushing of a 42 cm box by 18 cm robots 
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Figure 6.10: The mean execution time of moving a 422 centimeter box 2.5 meters towards 
a goal position (P5, P6, P7) as a function of the number of robots. For each plot the 
number of trials as weU as the minimum and maximum run times are indicated. A boxside 
is approximateIy twice the robot's diameter and increasing the number of robots increases 
the robot interference as they compete for the Iimited space axailable. 



The Effect of Doubling Box Contact Space on Task Success Rate 

5 10 15 
Number of Robots 

Figure 6.11: The effects of doubiing box contact space on the task success rate. T h e  resutts 
from two simulation expenments in which the only parameter changed was the robot% 
diameter, with the size of the box side fixed a t  90 units- Robot diameters of 20 and 10 were 
compared for a task in which a box was moved 200 units from its initial position. Each da t a  
point is the average of 25 simulation mns  each with a different random initial configuration. 



Figure 6.12: The effects of doubling box contact space on execution tirne. The resutts from 
two simulation expenments showing execution time versus system size. The only parameter 
varied was the size of the robot; the size of the box side was held constant at 90 units. 
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Directed Box-Rishing by 6 Robots and 4 Box Types 
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Figure 6.13: The mean execution time of moving a box towards the goal as a function of 
box type, Box A is a 42 centimeter square box, Box B and C are 84 centimeter square boxes 
with B having a higher sliding friction than Box C, Box D is an 84 centimeter diameter 
round box. Al1 box types are approximately the same weight and can be pushed by at 
Ieast two robots. For each plot the number of triais as weil as the minimum and maximum 
run times are indicated. Ali trials used six robots, Robot interference is minirnized by 
increasing the available contact space around the  box. 

the goal; however, there is ample room for improved performance once the robot parameters 

are fine tuned. For t h e  box-pushing transport task the decentralized approach to control is 

insensitive to system size, some types of convex object geometry and changes in the goal 

positions- Statistical conclusions can be better supported with more experiments. 



Chapter 7 

Discussion: From Social Insects to 
Collective Robots 

Visualize a room in which a group of robots sit in one corner and a large box sits 

approximately center with a spotlight placed in another corner. The robots begin moving 

and soon disperse into the roorn. Soon after the box-Iight cornes on the robots begin moving 

towards it and eventualIy corne into contact with a side. Then imagine some of the robots 

beginning to reposition themselves by moving around the box in a counterclockwise fashion, 

while others which are correctly positioned begin to push the box towards the spotlight. The 

box begins to move in the direction of the lit corner of the room, but the path is not quite 

straight and veers to the right and the box movement stops. Again some of the robots begin 

their counterclockwise repositioning and assume a new position more correctly oriented for 

pushing. Finally, the box begins to move in a new direction towards the goal-light. 

Once the box reaches the goal position the spotlight turns off and a second goal light 

on the opposite corner of the room is illuminatecl. Now al1 the robots begin repositioning, 

eventually making it to the opposite side and begin to once again push the box towards the 

new goal destination. Robots leave the task, seemingly at random, and wander off only to 

return and join the group effort in transporting the box towards its goal. The experirnents 

are repeated, this time with boxes of different shapes and sizes and the number of robots 

in a group are W. Our video recordings shows, and those that have seen them agree, 

that the robots make a coordinated effort in pushing the box in a direction that converges 

towards the indicated goal position. 



7.1 Coherent Behaviour wit hout Explicit Cooperation 

The reçults show in the many successful triais of directed box-pushing that  a cootdinated 

g m p  effort is possible without use of direct communication or robot dflerentiation. Rather 

a form of indirect communication takes place through the environment by way of the ob- 

ject being manipulateci. For directed box-pushing, the control strategy was shown to be 

insensitive to system size, some convex object geometries and changing goal positions. The 

results of experiments with physical robots presented here, adds support to Arkin's sim- 

ulation studies which showed that  cooperation in some tasks are possible without direct 

comcmcitation [4]. 

In Arkin's study, the task of retrieving objects in the environment was decomposed 

into three subtasks andogous to the transport task presented here. Although in Arkin's 

study robot differentiation was used, the resuits presented here are complimentary in their 

support of the hypothesis that  cooperation in some tasks is possible without communication. 

The present study expands on the previous simulation work by indirectly considering the 

dynamics involved in box manipulation. 

The da ta  presented in this study also agrees in certain aspects with other studies in 

which stigmergy is used as the task coordinating mechanism. Stigmergy as proposed by 

Grassé is a mode1 used to  explain the regdation of building behaviour in termites [26]. Stig- 

mergy theory holds that transitions between a sequence of construction steps is regulated 

by the effect of previous steps. In more general terms, the theory has been used to explain 

and describe the process by which task activity can be regulated using only local perception 

and indirect communication through the environment as applied to algonthms for coordi- 

nating distributed building behaviour [70] and foraging tasks by multi-robot systems [ll]. 

In the box-pushing task the resuits support the use of indirect communication through the 

environment as  proposed by stigmergy theory. However, Downing and Jeanne found that 

stigmergy theory does not explain the use of additional cues, not dependent on previous 

steps, in regulating task execution in nest construction by paper wasps [19]. For collec- 

tive robotics this means that petceptual cues can also be formed from stimuli other than 

that which are immediately amilable from the task itseif. For example, in directed box- 

pushing the box-detection eues are adaptive to the ambient light level of the environment 

by specifying box-detection as a multiple of the ambient light level. 

Stigmergy theory also does not account for the multiple cues proposed in this study 

for creating transition cues based on the use of orthogonal sensing and described in Chap 



ter 4. The use of multiple cues for controlling transitions between the subtask controilers 

is supported by studies on wasp nest construction in which a processing hierarchy reduces 

the number of eues that need to be evaluated at the same time [20]. In a similar manner 

perceptual cues, used to specify transitions between subtask controllers is a hierarchical 

method of evaluating an action control decision. Hence, stigmergy theory would have to be 

expandeci to include both additional and multiple cues which may adapt to the environment 

as p r o p d  in [NI. 

Coherent behaviour from a collective system of robots must &O account for task resource 

management. Coordination improves by minimizing antagonistic actions that can result 

from conflicts over l imitd resources. In box-pushing antagonistic forces are mitigated by 

increasing the available boxside space while enforcing a noninterference behaviour. The 

data on transporting small boxes versus large boxes by the same number of robots confirms 

the observations made during task execution. For box-pushing, this result implies that 

group size is important for a fixed resource size in a given task and agrees with the result 

obtained by Beckers et al- [Il] for a foraging task in which one to five robots were used 

to gather 81 objects randomly distributeci in their environment then placing them into one 

large pile. Their study showed that group size was a critical factor in determining task 

efficiency and that increasing the nurnber of robots used without increasing the available 

task resources increased task execution time due to the increase in inter-robot interference. 

In generd, increasing task resources minirnizes inter-robot interference. Thus. reducing 

robot interference increases group coordination and consequently leads to a more efficient 

coherence as  demonstrated by the decreasing execution times. 

The coherent behaviour displayed for the transport task can aiso be attributed to the 

cornmon goal shared by the individual robots along with an identicaI set of interaction rules. 

This is the same effect noted by Seeley while considering the collective decision making in 

honey bees [61]. As an explanation for how a swarm of honey bees could reach the same 

decision on the profitability of several food sources, Seeley hypothesized that each bec's 

nervous system was calibrated in a simiIar manner. Since al1 members of the colony share 

the same rules for adjusting response thresholds, the bees can operate independently yet 

generate a collective response to various nectar sources. Thus common goals and common 

rules of interaction d o w  a decentralized decision making proces to produce a coherent 

global response. 



7.2 Research Contribution 

The central thesis in this reseatch was that  coherent behaviour in some tadis, namely 

coUective box-pushing, does not require explicit mechanisms of cooperation. Rather, a 

decentralized system of asynchronous machines could perform a multi-step task in a coordi- 

nated iashion, given a common set of operational N ~ S  (@machines) and a decision process 

(perceptual cues) tha t  depends on local information only. This synergistic approach was 

dernonstrated by way of a system of multiple mobile robots and a common collective task. 

The contribution is the evidence in support of the hypothesis that some coherent behaviour 

does not require explicit mechanisms of cooperation. During the course of investigation a 

simple task-programming architecture, called Q-machines, was developed which included a 

novel framework, called perceptual mes, that offers a new approach t o  environment-specific 

task modeiling in coilective robotics. 

The methodology of modelling tasks as Qmachines, is similar t o  the well establkhed 

theory of sequential machines, and in multi-robot systems allows for tasks t o  be described 

as a sequence of steps and controi behaviours designed ta  accornplish each step. Given 

that the environment in which the system functions can be controlled, the methodotogy 

resuIts in a deterministic system behaviour. The m o d e h g  of the task to  be accomplished 

as a hierarchy of s ta te  machines allows for altemate controi mechanisms to  be employed 

at each level. This modularity allows for nonreactive control techniques to be used along 

with reactive ones. Most existing systems integrate task-level knowledge with tool-Ievel 

knowledge in a way t h a t  does not permit this separation during implementation. 

The design approach advocated here is andogous in some ways with task specific solu- 

tions by social insects. In both the robot and insect cases, a solution must consist of two 

parts: the environment and the agent with its environmentally tuned sensing systems. The 

solution is therefore environment-specific as weU as being task-specific. This is congruent 

with the idea that task-specific robotics wiU prevail over the more general multiple task do- 

everything-for-you robotics typically presented by the media and held by some roboticists. 

The second contribution Lies in the use of the kinest hetically-driven stagnation recovery 

behaviours. Task progression depends on the ability of the system t o  automatically soIve 

problems relating to  system deadlock or stagnation, In Q-machines, stagnation recovery 

behaviours make use of kinesthetic orientation t o  soive the local minimum problem of dead- 

lock in reactive control. The  method specifies the stagnatinp condition in terms of a locally 

sensed stimulus. The resulting action used to break the deadlock condition makes use of 



either fixed action or random motion patterns Like those found by Sudd and used by ants 

d u h g  prey transport [66, 671. 

This dissertation also complements the existing reseiuch studies by examining another 

of the three typicd multi-robot tasks. Foraging, a task in which objects are retrieved, can be 

accomplished using a single robot. Multi-robot studies have shown t hat t his t ask can alço be 

accomplished without centralized control or explicit communication, but that some Iimited 

forms of direct communication can improve execution tirnes [42, 31. Formation marching, a 

task in which robots move in a fixed pattern, has oaty been studied in simulation except for 

very simple two robot cses. Box-pushing, the task studied here, has previously only been 

considered in the two robot case with robots assuming unique left/right functional roles 

in task execution. Both direct communication [58, 431 and indirect commonication [18] 

using two robots has been studied. Simulation studies for the transport task which utilized 

decenttalized control have also been presented in the literature [65]. For the box-pushing 

task presented here, data has been coilected for over 200 trials with a physicat system of 

robots making this study the largest exploration to date of this task domain. 

A novel framework is used to specify transitions in sequential subtask controllers. Tran- 

sitions are specified using locally sensed information. By using both state information and 

perceptual cues, tasks that require sequential execution are possible. The use of action- 

oriented perception, ako referred to as selective perception, further demonstrates how a 

specific stimulus in the environment can be used in the action selection process as  also ar- 

gued by Horswiii in [29]. The approach presented in this dissertation for transition control is 

closely analogous to "trïgger eventsn used in the temporal coordination of perceptual dg* 

rithms, called finite state acceptors, proposed by Arkin and MacKenzie [6]. The difference 

lies in how the transition cues are specified. In the proposed framework, cues are specified 

using orthogonal local sensing only, whereas in finite state acceptors transitions occur from 

a variety of conditions including ejapsed time, algorithm completion, algorithm failure, or 

termination of a motor activity. The taxis-based mode1 used for action is somewhat analo- 

gous with Agah and Bekey's Zbpism System Cognitiue Architecture in which robot actions 

are based on likes and dislikes [l]. Their system allows simulated colonies of robots to learn 

relationships between task performance and perception, success and failure. 

Findly, ais0 gathered was empiricai evidence that supports the notion of a task density 

function which relates the number of robots to the amilable task resources. Like group 

transport behaviour where ants can catry prey in excess of the sum of individual pieces by 

distnbuting their efforts, the mass effect of many robots on the box-pushing task coupled 



with simple obstacle avoidance rules aliow resources to  be distrïbuted. The resulting distri- 

bution of robots along the box perimeter coordinates the individuai pushing actions towards 

the common goal position. The results obtained in this investigation wili contribute to the 

body of knowledge in the relatively Young field of collective robotics. 

7.3 htrther Study 

Three areas for further exploration are: system reliability, learning and perceptual expan- 

sion. First, the approach to controlier design although procedural is not automatic and of 

interest for further study is a technique for comparing different control designs for the same 

task. Reliability theory is one possible tool for such a cornparison. Second, in order for 

systems to  be truly autonomous they must learn to  adapt. Two possible avenues for expl* 

ration are the adaptation of the perceptual cues and the primitive actuation behaviours. 

Finaily, the current system made use of the minimal number of sensors thought needed for 

the task; however, stül to be explored ïs the relationship between system performance and 

the amount of information provided by the perception system. 

7.3.1 System Reliability 

The experimental objectives are not to demonstrate optimal, but rather feasible solutions to 

collective tasks. In doing so, the aim is to  provide a means of making relative corn parisons 

arnong competing solutions highlighting the variables that effect system reliability. When a 

task is decomposed into an aggregation of behaviourd actions performed by many redundant 

simple robots, how can cornparisons between alternative decompositions in terms of their 

reliability be made? Herbers [27] has shown, using reliability theory, how a large system 

of redundant behaviour sequences in ant colonies can increase system reliability in the 

foraging task. Five foraging strategies used by ants to  find food were compared by rnodeiling 

each strategy's system structure as the probability that  an individual behavioural act is 

performed correctly. Thus the probability of food being returned to  the ant's nest can be 

calculated and compared for each strategy. In doing so, Herbers was able to  show that 

the foraging strategy of group hunting was more likely to be successful in retrieving food 

when compared to the strategy of foraging alone. This was due, in spite of the fact that 

the probability of performing an individual behavioural act correctly was IOW, to  the highIy 

redundant series-parallel foraging strategy employed in group hunting. In a simiiar manner, 

can this approach be mapped to a redundant set  of robots and used to compare alternate 

box-pushing task decompositions? 



7.3.2 Learning to Adapt 

Also of interest, for future study, is the manner in which a perceptual cue or primitive 

motion can change over time or  be adaptive to  changes in the environment and task re- 

quirements. Entomologicai studies of nonlinear sequences of behaviours suggest that cues 

used to  regulate the latter stages of nest consiniction vary in response to  a changing envi- 

ronment [20]. In a manner simiiar t o  the way the box detection cue was varied to  adapt 

to  the ambient light found in the robot's environment, the thresholds used in a perceptual 

cue could be adjusted based on a reinforcement signal, as could the currently fixed motion 

primitives. For example, both obstacle avoidance cues and pushing behaviours could be 

adapted over tirne as follows: 

Leaming to See. Currently two fixed threshold values are used in obstacle avoidance. 

If a robot could Vary the threshold based on the number of collisions over a given time, 

then the avoidance behaviour would learn to  adjust the threshold to  an optimal value 

for a given environment. And if the environment changed over time then the threshold 

values would adjust. To test this idea, the robot would need an array of contact sensors 

to  provide the negative feedback for each motor action. An initial threshold value for 

obstacle avoidance would aUow the robots t o  detect obstacles within a fixed distance 

of the robot. if a movement resulted in a collision, as detected by the contact sensors, 

then the threshold would be adjust downward. This would have the effect of varying 

the detection field around the robot until an optimal collision free value is found. 

a Leaming to Act. f ushing behaviour currently makes use of a fixed motion primitive 

the resuIt of which is a simple decision on whether t o  push or  not t o  push. However, 

a feedback stimulus is available which would alIow a robot t o  assess the effect of each 

discrete pushing action. That  stimulus is the intensity of the goal indicator iight. A 

successful push from the robot's point of view, is one tha t  brings the box closer to  the 

goal as indicated by an increase in signal intensity from the goal direction sensor. If 

the  angle of pushing (currently perpendicular t o  the box) was adjustable and made a 

function of the  position of the signa1 peak within the field of view of ?SEE-GOAL, then 

i t  might be possible to  learn optimal pushing angles. 

7.3.3 Perceptual Expansion 

While viewing the video taped experiments, one immediately notices that robots often Ieave 

the box and seemingly wander off. Since box detection is limited to two forward pointing 



Light sensors, repositioning behaviour often moves the robot so that its view of the  box is Iost . 
if the number of sensors were increased so t h a t  box detection became omnidirectional then 

one would assume t ha t  the robots would spend iess time searching for the box. Consequently, 

the time taken t o  transport the box to the goal should decrease thereby increasing the system 

performance. This argument could aIso be made for the obstacle avoidance sensors, which 

currently are aIso two forward pointing sensors. Although Shannon's information theory 

states that ambiguity decreases as the amount of information increases it is not clear how 

an increase in the amonnt of sensing information would translate to  an increase in system 

performance resulting in "bette? control decisions. 

7.4 Epilogue 

By way of the social insects, nature is showing us how to  build decentralized and distributed 

systems that are autonomous and capable of accompiishing tasks through the interaction of 

many simple and highly redundant agents. From their locd perception to  the m a s  efTect 

that  results in a global action these bio1ogica.I systems serve to elucidate the mechanisms 

thought to be at t h e  heart of self-organizing behaviour. With their rïch source of inspiring 

examples, sociaI insects serve as nature's proof that solutions to  cornplex tasks in collective 

robotics may in fact be found underfoot. 



Bibliography 

[l] Arvin Agah and George Bekey. Learning by trying in an autonomous multi-robot 
system. In subrnitted to IEEE/RSJ International Con ference on Intelligent Robots and 
Systems, 19%. 

[2] Karl Altenburg. Adaptive resource allocation for a multiple mobile robot system using 
communication. CSOR TR-9404, North Dakota State University, 1994. 

[3] KarI R. Aitenburg. Cocobots: Robots, ants, and randomness. Masterk thesis, North 
Dakota State University, 1995. 

[4] Ronald C. Arkin. Cooperation without communication: Multiagent schema-based 
robot navigation. Journal of Robotic Systems. 9(3):351-364, 1992. 

[5] Ronald C. Arkin. Survivable robotic systems: Reactive and homeostatic control. In 
M. Jamshida and P. Eicker, editors, Robotics and riemote sys tem for hazardous envi- 
mnrnents, volume 1 ,  chapter 7, pages 135-154. Prentice Hall, Englewood Cliffs, New 
Jersey, 1993. 

[6] Ronald C. Arkin and Douglas MacKenzie. Temporal coordination of perceptual algo- 
rithms for a mobile robot navigation. IEEE mansactions on Robotics and ,.tutornation, 
10(3) :276-286, June 1994. 

[7] Hajime Asama, Maki K. Habib, Isao Endo, Koichi Ozaki, Akihiro Matsumoto, and 
Yoshiki Ishida. Functional distribution among multiple mobile robots in an autonornous 
and decentralized robot system. In 1991 IEEE international Conference on Robotics 
and Automation, pages 1921-1926, 1991. 

[8] Shuji Asami. Robots in Japan: Present and future. IEEE Robotics and Automation 
Magazine, pages 22-26, June 1994. 

[9] G.P. Baerends and J.P. Kruijt. Stimulus selection. In R.A. Hinde and J. Stevenson- 
Hinde, editors, Constmints on Learning: Limitations anci Predispositions. Academic 
Press, 1973. 

[IO] Tucker Balch and Ronald C. Arkin. Communication in reactive multiagent robotic 
systems. Autonomous Robots, 1:l-25, 1994. 

[11] R. Beckers, O.E. Holland, and J.L. Deneubourg. From local actions to global tasks: 
Stigmergy and collective robotics. In Pmeedings of the Fourth International Workshop 
on the Synthesis and Simulation of Living Systems Artficial Life IV, pages 181-189, 
1994. 



[12] Alan H. Bond and Les Gasser. An analysis cf problems and research in distributed 
artificial int digence. In Readings in Distributed A dificial Intelligence, pages 3-35. 
1988. 

[13] Vdentino Braitenberg. Vehicles: Ezpcriments in Synthetic Psychology. MIT Press, 
1984. 

[14] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal 
of RUbotics and Automation, RA-2(1) : 14-23, March 1986. 

[15] Phüippe Cdoud, Wonyun Choi, Jean-Claude Latombe, Claude Le Pape, and Mark 
Yim. Indoor automation with many mobile robots. In 1990 IEEE/RSJ Int~nzational 
Confe~nce on Intelligent Robots and Systems, pages 67-72, 1990. 

[16] Y. Uny Cao, Alex S. Fukunaga, Andrew B. Kahng, and Frank Meng. Cooperative 
mobile robotics: Antecedents and directions. Autonomous Robots, 4(2):?-27, 1997. to 
appear. 

[l?] Russe11 J. Clark, Ronald C. Arkin, and Ashwin Ram. Learning momentum: On-iine 
performance enhancement for reactive systems. In 1992 IEEE International Conterence 
on Robotics and Automation, pages 111-116, 1992. 

[la] Bruce Donald, James Jennings, and Daniela Rus. Analyzing teams of cooperating 
mobile robots. In 1994 IEEE International Conference on Robotics and Automation, 
pages 1896-1903, 1994. 

[19] H. A. Downing and R. L. Jeanne. Nest construction by the paper wasp, Polistes: a 
test of stigmergy theory. Animal Behauiour, 36: l?29-1739, 1988. 

[20] H. 4.  Downing and R. L. Jeanne. The regulation of complex building behaviour in 
the paper wasp, polistes fuscatus (insecta, hymenoptera, vespidae) . -4nimal Behaviour, 
39:105-124, 1990. 

[21] Joseph F. Engelberger. Robotics in Seruice. Kogan Page Ltd., 1989. 

[22] H. R. Everett. Sensors for Mobile Robots.- Theory and Application. A. K. Peters, Ltd., 
1995. 

[23] N. R. Franks, A. Wilby, B. W. Silverman, and C. Tofts. Self-organizing nest contruction 
in ants: sophisticated building by blind buiidozing. Animal Behaviour, 44:357-375, 
1992. 

[24] Nigel R. Franks. Tearns in sotial insects: Group retneval of prey by army ants. Be- 
hauioml Ecoiogy and Sociobiology, 18:425-429, 1986. 

[25] Norman E. Gary. Pheromones of the honey bee, apis meIlifera 1. In David Wood, 
Robert Silverstein, and Mnoro Nakajima, editors, Contml of Insect Behawior by Nat- 
unzl Pduc t s ,  pages 29-53. Acaàemic Press, 1970. 

[26] P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez bel- 
licositemes natalensis et cubitermes sp. la théorie de la stigrnergie: essai d'interpré. 
Insectes Sociaux, 6:4 1-8 1, 1959. 



[27] J. M. Herbers. Reliability theory and foraging by ants. Journal of Theomtical Biology. 
89(1):175-189,1981. 

[28] Bert H6ildobler and Edward O. W i n .  Jaurney to the Ants: A Story of ScientiFf 
Ezplomtion. Belknap Press of Hardvard University Press, 1994 . 

[29] Ian D. Borswill. S'cializatim of Perreptual Pmcesses. P hD t hesis, Massachusetts 
Institute of Technology, 1993. 

[30] RudoK Jander. Insect orientation. Annual Reoiew of Entomolugy, 8~95-114, 1963. 

[31] C. Ronald Kube. Collective robotic intelligence: A control theory for robot populations. 
Master's thesis, University of Alberta, 1992. 

[32] C. Rondd Kube. A minimal infrared obsta.de detectioo scheme. The Roobotics Pmcti- 
tioner, 2(2):15-20, 1996. 

[33] C. Ronald Kube and Hong Zhang. Collective robotic intelligence. In Second Interna- 
tional Con femnce on Simulation of Adaptiue Behauior, pages 460-468, December 7- 1 1 
1992. 

[Ml C. Ronald Kube and Hong Zhang. Collective robotics: From social insects to robots. 
Adaptive Behauior, 2(2):189-219, 1993. 

[35] C. Ronald Kube and Hong Zhang. Stagnation recovery behaviours for collective 
ro botin. In 1994 IEEE/RSJ/GI International Conference on Intelligent Robots and 
Systerns, volume 3, pages 1883-1890, 1994. 

[36] C. Ronald Kube and Hong Zhang. The use of perceptual cues in multi-robot box- 
pushing. Robotica special issue on Intemcting Robots, 1995. submitted October. 

[37] C. Ronald Kube and Hong Zhang. The use of perceptual cues in multi-robot box- 
pushing. In 1996 IEEE International Conference on Robotics and Automation, pages 
2085-2090, 1996. 

[38] C. Ronald Kube and Hong Zhang. Task rnodelling in collective robotics. Autonomous 
Robts, 4(1):53-72, 1997. 

[39] C. Ronald Kube, Hong Zhang, and Xiaohuan Wang. Controüing coUective tasks with an 
ALN. In 1993 I . R S J  International Conference on Intelligent Robots and Systems, 
pages 289-293, 1993. 

[40] K. Martin. Zur Nahorientierung der iene irn Duftfeld Zugleich ein Nachweis fur die 
Osmotropotaxis bei Insekten. Zeàtschrift für Vergleichende Physiologie, 48 (5) :48 1-533, 
1964. 

[41] Maja J. Matarie. Designing emergent behaviors: From local interactions to collective 
intelligence. In J. A. Meyer, H. Roitblat, and S. Wilson, editors, Second International 
Conference on Simulation of Adaptive Behauior, pages 432-441. MIT Press, 1992. 

[42] Maja J. Matarit. Internction and Intelligent Behawior. PhD thesis: Massachusetts 
institute of technology, 1994. 



[43] Maja J. Matarit, Martin Nikon,  and Kristian T. Simsarian. Cooperative multi-robot 
box-pashing. In 1995 IEEE International Conference on Intelligent Robots and Sys- 
tems, volume 31 pages 556461,1995. 

[44] David McFarland and Thomas Bosser. Intelligent Behauior in  Anirnak and Robots. 
MIT Press, 1993. 

[45] Merriam-Webster Inc. Webster's Ninth New Collegiate Dictàtmary, 1985. 

[46] Hans A. J. Metz. State space modes for animal behaviour. Annals of Systems Reseumh, 
6:65-109, 1977. 

[47] Micromachine Center (MMC) .  Màcmmachine, 3 edition, July 1993. 

[48] M.  W .  Moffett. Cooperative food transport by an asiatic ant. National Geogmphic 
Research, 4(3):386-394, 1988. 

[49] Hans Moravec. RoQt Rowet Viswl Nauigation. UMI Research Press, 1981. 

[50] J.  C. Moser, R. C. Brownlee, and R. Silverstein. Alarm pheromones of t h e  ant a t t a  
texana. Journal of Insect Physiology, 14:529-535, 1968. 

[51] J-C. Moser. Pheromones of social insects. In D. Wood, R. Süverstein, and M. Nakajima, 
editors, Contml of Insect Behauior by Natuml Pduc t s ,  pages 161-178. Academic 
Press, 1970. 

[52] N .  Nikon. Shakey the robot. A.I. Center Technical Note 323, SRI International, 1984. 

[53] Fabrice R. Noreils. An architecture for cooperative and autonomous mobile robots. In 
1992 IEEE International Conference on Robotics and Automation, pages 2703-2710, 
1992. 

[54] Fabrice R. Noreils. Multi-ro bot coordination for bat tlefield strategies. In 1992 
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1777- 
1784, 1992. 

[55] Jun Ota  and Tamio Aai .  Motion planning of multiple mobile robots using dynamic 
groups. In 1993 IEEE International Conference on Robotics and =lutornation, pages 
28-33, 1993- Vol. 2. 

[56] Koichi Ozaki, Hajime Asama, Yoshiki Ishida, Akihiro Matsumoto, Kazutaka Yokota, 
Hayato Kaetsu, and Isao Endo. Synchronized motion by multiple mobile robots using 
communication. In Pmceedings of the 1993 IEEE/RSJ International Con f e~nce  on 
Intelligent Robots and System, pages 1164-1169,1993. 

[57] Lynne E. Parker. Designing control laws for cooperative agent teams. In 1993 IEEE 
International Conference on Roktics and Automation, pages 582-587, 1993. Vol. 3. 

[58] Lynne E. Parker. ALLIANCE: An architecture for fault tolerant, cooperative control 
of heterogeneous mobile robots. In 1994 IEEE/RSJ/GI International Conference on 
Intelligent Robots and Systems, pages 776-783, September 1994. 

[59] Lynne E. Parker. Heterogeneous Multi-Robot Coopemtion. PhD thesis, Massachusetts 
Institute of Technology, 1994. 



(601 B. Schricker. Die Orientierung der Honigbiene in der Dammerung zugleich ein Beitrag 
z ur Frage der Ocellenfunktion bei Bienen. Zeitschrift fur Vergleichende Physiologie. 
49:420-458,1965. 

[6 11 Thomas D. Seeley, Scott Carnazine, and James Sneyd. Collective decision-making 
in honey bees: how colonies choose among nectar sources. Behauiorul Ecology and 
Sucàobiolugy, 28:277-290, 1991. 

[62] A. Seitz. Die Paarbiidung bei einigen Cichliden 1. ZeitschRfl für Tierpsychologie, 
4:4û-84, 1940. 

[63] Takanori Shibata and Toshio Fukuda- Coordinative behavior by genetic algorithm and 
fuzzy in evolutionary multi-agent system. In 1993 IEEE International Conference on 
Robtics and Automation, pages 76û-765, 1993. Vol. 1. 

[64] Richard Silby and David McFarland. A statespace approach to motivation. In D. J.  
McFarland, editor, Motivational Contml Systenzs AnaIy&, pages 213-250. Acadernic 
Press, 1974. 

[65] Daniel J. StiiweU and John S. Bay. Toward the development of a material transport 
system using swarms of ant-like robots. In 1993 IEEE International Confemnce on 
Roûotics and Automation, pages 766-771, 1993. Vol. 1. 

.6] J. H. Sudd. The transport of prey by an ant, pheidole crussindoa. Behoviour, 16(3- 
4) :295-308, N60. 

[67] J. H. Sudd. The transport of prey by ants. Behaviour, 25(3-4):234-271. 1963. 

[68] John Sudd. How insects work in groups. Discouery, pages 15-19, June 1963. 

[69] Texas Instruments Inc. The Optoelectronics Data Book for Design Engineers, fift h 
edition, 1978. 

[70] Guy Theraulaz and Eric Bonabeau. Coordination in distributed building. Science, 
269(4) $86-688, 1995. 

[Tl]  Marc R. Tremblay and Mark R Cutkosky. Using sensor fusion and contextual informa- 
tion to perform event dete ction during a phase-based manipufation ta&. In 1995 IEEE 
International Conference on Intelligent Robots and Systems, pages 262-267, 1995. 

[72] D. M. Vowles. The orientation of ants 1, the substitution of stimuli. Journal of Ezper- 
imental Biology, 3(3 1) :341-355, 1954. 

[73] P. K. C. Wang. Navigation strategies for multiple autonomous mobie robots rnoving 
in formation. Journal of Robotic Systems, 8(2):177-195,1991. 

[74] R. Wehner and M.V. Snnivasan. The world as the insect sees it. In T. Lewis, editor, 
Insect Communications, pages 29-47. Academic Press, 1984. 

[75] Rudiger Wehner. Matched filters - neural models of the external world. Journal O/ 

Cornpurutive Physiology A, 161:511-531, 1987. 

[76] E.O. Wilson. The Insect Soeieties. The Belkap Press of Harvard University Press, 
1971. 



[77] E.O. Wilson, N.I. Durlach, and L.M. Roth. Chernicd releasers of necrophoric behavior 
in ants. Psyche, 65(4):10&114, 1958. 

[78] E.O. Wüson and B. H6Udobler. The Anb. The Belkap Press of Harvard University 
Press, 1990. 

[79] Stewart W. W i n .  The animat path to At. In First International Conference on 
Simulation of Adaptive B e h ~ ~ o r ,  pages 15-21. MIT Press, 1990. 

[80] J. Zeil, G. Nalbach, and H.O. Nalbach. Eyes, eye stalks and the visual world of semi- 
terrestial crabs. Journal of Comparutive Physiolugy A, 159:801-8 Il, 1986. 



Appendix A 

Collective Robotics Hardware 

A unique modular system for builàing mobile robots was developed during the course of the 

describeci research. The system was also useci to support an undergraduate course in Mobiie 

Robotics taught within the Department of Computing Science and has been successfuily 

licensed by the University of Alberta to a commercial partner. Shown in Figure A.1 is the 

system block diagram of a box-pushing robot. 

Electronic Control Modules 

In order to simplify the robot's electronics, control functions have been packaged into mod- 

ules and fabricated on printed circuit boards. Each robot control system is built from an 

assortment of modules from the foliowing kt: 

68HCll Microcontroller. This single board cornputer from New Micros Inc. is 

based on the popular Motorola 68HCll with the addition of an embedded Forth oper- 

ating system/language/compiler. The board is complete with RS232 communications, 

expandable RAJA and the UA-ROM BIOS/Utilities/Tools extension. 

DC Power Regulator. Converts battery voltage to regulated +5 VDC and provides 

several +5 VDC connections to other modules. 

DC Power Interconnect- A DC power expansion module with power indicator 

LED, 11 +5 VDC and 3 +Battery connections, and expansion connector. The module 

provides a convenient source of regulated voltage. 

0 Motor Control. Provides a digital interface to 2 DC moton (50V, 3A rnax). Each 

motor has a direction and enable control line d1owing for Pulse Width Modulation 

(PWM) speed control. Each motor has forward/reverse direction indicator LEDs. 



Figure A.1: A system block diagram of a box-pushing robot illustrating the use of the 
electronic modules. 

I n h e d  Cont rol. Provides on/off cont rol of 4 infrared emit ter/detector pairs used 

in obstacle detection, 

Sensor Pull-Up Resistors. A 47K-Ohm pullup resistor module allows for 8, 2-wire, 

sensor connections. 



DC Power Regulator 

Functional Description 

The DC Power Regulator converts input battery voltage (+/-B) to regulated 

+5 M C  output. The battery voltage must be 2 7.5 VDC, with a one ampere 

output current available. 

Electricai Description 



DC Power Interconnect 

Funct ional Descript ion 

A DC power expansion module with power indicator LED, 11 +5 VDC and 3 

+Battery connections, and expansion connector. The module provides a conve 

nient source of tegulated voltage. 

Electrical Description 

BAT 
GND 
45 

P U  Ki-&&&--- 
Pl9 P21 



Motor Control 

Functional Descrîpt ion 

Provides a digital interface to 2 DC motors (50V, 3A max). Each motor has a 

direction and enable control line alIoMng for Pulse Width Modulation (PWM) 

speed control. Each motor has forward/reverse direction indicator LEDs. 

Electricd Description 



IR Control 

Funct ional Description 

Provides on/off control of 4 inframl emittet/detector pairs used in obstacle 

detection. 

Electrical Description 



Sensor Pullup Resistors 

Functional Descript ion 

A 47K-Ohm puiiup resistor module d o w s  for 8, Zwire, sensor connections. 

Electrical Description 




