BIOREMEDIATION OF PETROLEUM CONTAMINATED SOIL USING COMPOSTING

A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Master of Applied Science in Environmental Systems Engineering University of Regina

> by Darrell J. Mihial Regina, Saskatchewan December, 1998

© Copyright 1998: D. J. Mihial

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your No. Votre reference

Our Ne Notre reférence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-39146-9

ABSTRACT

Petroleum-contaminated sites are a common occurrence in today's environment. One such site in Saskatchewan consists of an earthen pit excavated in the ground and filled with petroleum waste (used oil, gasoline, diesel fuel, paint thinners). This pit was in use for approximately 20 to 25 years. When environmental regulations in Saskatchewan started to become more stringent, the process of disposing of wastes in the pit was discontinued and the remainder of the pit was filled with soil. The organization that owns the site is now considering moving its operation to a new site and must decommission the existing site. As part of the decommissioning of the site, it must remediate the waste oil disposal pit.

It was determined, based on field investigation and study, that bioremediation was a suitable alternative for remediation of the contaminated soil in and around the pit. Bioremediation has been used extensively to remediate petroleum-contaminated soil. Many different methods of bioremediation are available. One method that has shown considerable potential, but has not received widespread use is, composting. Therefore, it was decided to conduct a bench scale treatability study to assess the potential for successful bioremediation of the site using composting.

Two reactors were set up; both contained a nutrient amendment (ammonium phosphate fertilizer). One reactor also contained a high-energy source (a mixture of grass clippings and sheep manure) and the other reactor did not. The high-energy source was added in an effort to determine if the composting process could be accelerated by the addition of these abundantly available waste materials.

i

The results of the study showed that the site could be remediated using composting. Based on the results of the treatability study, the half-life of the petroleum hydrocarbons at the subject site was estimated to be 36.3 days and 121.6 days with the addition of a high energy source (Reactor 1) and without the addition of the high energy source (Reactor 2), respectively. Based on the half-life of the contaminant in each reactor, it was estimated that it would take approximately 192 and 643 days to remediate a volume of soil using the amendments of Reactors 1 and 2, respectively.

ACKNOWLEDGEMENTS

I am indebted to my supervisor, Dr. T. Viraraghavan, for giving me the opportunity to work under him. I am thankful for his guidance and support throughout my thesis work. I am also thankful to Dr. Y. C. Jin, co-supervisor, for his help and support during the study. I would also like to thank Dr. G. A. Fuller and Dr. Kim Barlishen for their advice.

I appreciate the cooperation of personnel from the anonymous site from which the contaminated soil was obtained. I would also like to acknowledge and thank AGRA Earth & Environmental Limited for the financial support they provided throughout my research work.

Last, but not least, I would like to thank my parents, wife and children for the support and encouragement (and tolerance) they provided during my research work.

TABLE OF CONTENTS

Abstra	Abstract							
Ackno	wledger	ment			iii			
List of	List of Tables							
List of Figures					ix			
Nomenclature					x			
1	INTRO	DUCT	UCTION					
	1.1	Genera	l		1			
	1.2	Backg	round		2			
	1.3	Object	ives of the Stuc	ly	11			
	1.4	Scope	of the Study		11			
2	REVIE	EW OF	LITERATURE		12			
	2.1	Genera	u		12			
	2.2	Develo	opment of Com	ient of Composting				
		2.2.1	Definition of (finition of Composting				
		2.2.2	Process Descr	iption	13			
		2.2.3	Soil Contamin	ation	19			
		2.2.4	Disposal of Co	ontaminated Soil in Saskatchewan	20			
		2.2.5	Chemical Nati	are of Petroleum Products	21			
			2.2.5.1	Petroleum Aliphatic Hydrocarbons	22			
			2.2.5.2	Aromatic Hydrocarbons	22			
		2.2.6	Microbial Dec by Bioremedia	composition of Petroleum Hydrocarbons ation	25			
	2.3	Factor	s Affecting Cor	nposting	26			

	2.3.1	Substrate	27
	2.3.2	Nutrients	27
	2.3.3	Temperature	28
	2.3.4	Moisture Content	29
	2.3.5	pH	30
	2.3.6	Aeration	30
	2.3.7	Bulking Agent	31
2.4	Treata	bility Studies	32
	2.4.1	General	32
	2.4.2	Objectives	33
	2.4.3	Costs	35
	2.4.4	Equipment	36
	2.4.5	Degradation Kinetics	36
MATE	ERIALS	S AND METHODS	39
3.1	Genera	al	39
3.2	Bulk S	Sample Collection	40
3.3	Soil C	ontaminant Characterization	42
3.4	Nutrie	nt Analyses	42
3.5	Bacter	ial Enumeration and Characterization	42
3.6	Labora	atory Composting Studies	43
	3.6.1	General	43
	3.6.2	Preparation of Soil Samples	44

3

		3.6.3	Laboratory C	omposting Apparatus	44	
		3.6.4	Monitoring		45	
			3.6.4.1	ТРН	46	
			3.6.4.2	Moisture Content	46	
			3.6.4.3	Temperature	47	
			3.6.4.4	рН	47	
			3.6.4.5	Bacterial Enumeration	47	
4	RESU	ILTS A	ND DISCUSSI	ON	48	
	4.1	Nutrie	ent Analyses		48	
		4.1.1	Determination	n of Nutrient Deficiency	49	
	4.2	Micro	bial Characteri	zation of Soil Samples	52	
		4.2.1	Enumeration	of Bacteria	52	
		4.2.2	Identification	of Bacteria	53	
	4.3	Temp	erature		54	
	4.4	TPH (Concentrations,	Moisture Content and pH	58	
	4.5	Calcu	lation of Rate (Constants	62	
	4.6	Preliminary Design of Composting System				
5	SUM	MMARY, CONCLUSIONS AND FURTHER RESEARCH NEEDS				
	5.1	Sumn	nary		68	
	5.2	Concl	lusions		68	
	5.3	Furth	er Research Ne	eds	70	
REFE	REFERENCES 7					

APPENDICES

A - Test Hole logs	75
B – Other Analytical Results	136
C – Gas Chromatographs	142
D – Statistical Analyses	156

LIST OF TABLES

Table 1.1 - Number of soil samples analysed for each potential contaminant	5
Table 1.2 – Types of petroleum hydrocarbons present in soil	7
Table 1.3 – TPH concentrations in soil	8
Table 1.4 – BTEX and phenol concentrations in soil	9
Table 2.1 – SERM future land-use criteria	20
Table 2.2 Typical objectives of bioremediation treatability studies	33
Table 4.1 – Results of initial nutrient analyses	49
Table 4.2 – Heterotrophic plate count results	53
Table 4.3 – Types of hydrocarbon degrading bacteria identified	53
Table 4.4 – Results of temperature monitoring for Reactor 1	56
Table 4.5 – Results of temperature monitoring for Reactor 2	57
Table 4.6 – Results of TPH, moisture content and pH in reactors	60

LIST OF FIGURES

Figure 1.1 – Site plan showing location of test holes and boundaries of pit	4
Figure 1.2 – Treatment costs	10
Figure 2.1 – Windrow composting system	15
Figure 2.2 – Static pile composting system	16
Figure 2.3 – Horizontal-bed in-vessel composting reactor	17
Figure 2.4 – Vertical-bed in-vessel composting reactor	18
Figure 2.5 – Agitated-bed in-vessel composting reactor	19
Figure 2.6 – Petroleum aliphatic hydrocarbons	22
Figure 2.7 – Benzene ring	23
Figure 2.8 – Single-ring aromatic hydrocarbons	23
Figure 2.9 – Multi-ring aromatic hydrocarbons	24
Figure 3.1 – Site plan showing location where bulk test sample was obtained	41
Figure 3.2 – Schematic of reactor system	45
Figure 4.1 – Temperature vs time for reactors 1 and 2	58
Figure 4.2 – TPH vs time for Reactors 1 and 2	61
Figure 4.3 – pH vs time for Reactors 1 and 2	61
Figure 4.4 – Moisture content vs time for Reactors 1 and 2	62
Figure 4.5 – ln (C/C ₀) vs time for Reactors 1 and 2	64

NOMENCLATURE

ASTM	American Society for Testing and Materials
Br	Bromine
BTEX	Benzene, toluene, ethylbenzene, xylenes
С	Carbon
С	Contaminant concentration
CCME	Canadian Council of Ministers for the Environment
CERCLA	Comprehensive Environmental Response Compensation and Liability Act
cfu	Colony forming unit
СН	Carbon-hydrogen atom
Cl	Chlorine
CO,	Carbon dioxide
CN	Cyanide
C:N:P:K	Carbon to nitrogen to phosphorus to potassium ratio
C,	Denotes a carbon chain length (number of carbon atoms) in a molecule of
	a petroleum hydrocarbon product, where x is any whole number
C_0	Initial contaminant concentration
C ₅ H ₇ O ₇ N	Chemical formula of biomass produced during biodegradation processes
C ₂₂ H ₄₄	Assumed chemical formula for petroleum contaminant of concern
dC/dt	Rate of change of contaminant concentration with time
ë	electron
EA	Electron acceptor
ED	Electron Donor
EOCI	Extractable organic chlorine
GC	Gas chromatography
g	Gram
Ĥ	Hydrogen
H⁺	Hydrogen ion
H₂O	Water
1	Iodine
IR	Infrared
К	Degradation rate constant
k _m	maximum substrate utilization rate
Ks	Half-velocity coefficient
Kg	Kilogram
MAHs	Monocyclic aromatic hydrocarbons
mg/L	Milligrams per litre
N	Nitrogen
NH ₃	Ammonia
NH4PO4	Ammonium phosphate
NO ₃	Nitrate
O ₂	Oxygen
PAHs	Polycyclic aromatic hydrocarbons
PCBs	Polychlorinated biphenyls

PCP	Pentachlorophenol
pН	Hydrogen ion concentration
ppm	Parts per million
SERM	Saskatchewan Environment and Resource Management
Т	Time
ТРН	Total petroleum hydrocarbons
TSH	Total semi-volatile hydrocarbons
USEPA	United States Environmental Protection Agency
х	Microbial concentration
°C	Degrees Celsius
	-

CHAPTER ONE

INTRODUCTION

1.1 General

Petroleum-contaminated sites are common in today's environment. Sites become contaminated with petroleum through various avenues, including releases from underground and/or aboveground storage tanks, improper disposal of waste lubricating oils, accidental releases from petroleum handling facilities (e.g. tank farms, pipelines, etc.), and spills (while transporting, loading/unloading). With regulatory agencies becoming more concerned with the release of petroleum products into our environment, there is a growing need to develop more effective and less expensive technologies to remediate the petroleum-contaminated soils from these sites to acceptable standards.

There are numerous technologies available to remediate petroleum-contaminated sites to acceptable standards. The selection of a suitable method for the remediation of a

contaminated site depends on such factors as site characteristics, hazardous waste characteristics, regulatory guidelines and cost.

1.2 Background

During the early 1960's, a company in Saskatchewan, Canada excavated a pit on their property and used it to dispose of petroleum wastes such as used oil, gasoline, diesel fuel and paint thinners. At the time, there were few environmental restrictions on such practices, and the company found this was the least costly option to dispose of such wastes. This practice continued until the early 1980's when environmental regulations concerning the disposal of hazardous wastes started becoming more stringent. Regulations (Hazardous Substances and Waste Dangerous Goods Regulations) for the disposal of hazardous materials, including petroleum hydrocarbons, were introduced in the early 1980's. The practice was discontinued and the remainder of the pit was filled in with soil. The company is now planning to move their operation to a new site and, as part of the decommissioning of the existing site, it must remediate the area of the waste oil disposal pit to comply with current regulatory guidelines in Saskatchewan.

The company did not keep records of the types and amount of wastes that were deposited in the pit and, although the waste pit was intended for disposal of waste petroleum products only, the company was unsure of the type of contaminants that may be present. In addition, the company was uncertain of the exact location and dimensions of the pit.

A site investigation and laboratory analyses program was conducted to determine the types of contaminants present in the pit, the approximate dimensions of the pit, and the areal extent and depth of contaminated soil in the vicinity of the pit.

The field investigation consisted of two phases. The first phase involved drilling 21 test holes to depths between 4.6 m and 10.7 m in the assumed area of the pit. These test holes were drilled to obtain samples for characterization of the waste contained in the pit (i.e. the types and concentrations of contaminants) as well as to provide an estimate of the areal extent and depth of impacted soil. The second phase of test drilling involved drilling an additional 40 test holes to depths between 1.5 m and 6.1 m within and around the estimated boundaries of the pit. Samples were not taken from these test holes because they were drilled strictly for the purpose of refining the estimated physical boundaries of the pit and the estimated extent of impacted soil based on visual and olfactory evidence of impacted soil and the results of ambient temperature headspace measurements. The locations of the test holes and the estimated boundaries of the pit are shown in Figure 1.1.

The bore hole logs (Appendix A) indicated that the soil stratigraphy at the site consisted of clay till and/or lacustrine clay over silty sand. The clay till was medium plastic and was generally in a moist and very stiff condition. The clay fill was highly plastic, although there were some more sandy and less plastic zones. It was generally in a moist and very stiff condition, although some more moist and less stiff areas were encountered. The sand was weathered (brown) and was generally in a moist and dense condition. Significant petroleum odour and staining were observed at many of the test holes.

The site hydrogeology consisted of two aquifer formations situated on top of one another and separated by a clay till aquitard. The upper aquifer consists of the fine sand encountered in the lower part of the deeper test holes drilled at the site. This aquifer is approximately 10m to 25m thick (Maathuis and van der Kamp, 1988). It generally changes from a fine grained, silty sand to a coarse grained sand with some gravel. The

piezometric surface lies approximately 20m below the ground surface and groundwater flow is toward the west-southwest (Maathuis and van der Kamp, 1988).

The lower aquifer is approximately 23 m to 50 m below the ground surface and varies in thickness from 4 m to 40 m (Maathuis and van der Kamp, 1988). It is generally composed of medium sized sand particles with some gravel. The aquifer is under artesian pressure with a piezometric surface which lies approximately 30m below the ground surface. Groundwater flow is to the south-southwest (Maathuis and van der Kamp, 1988).

Seventy-eight soil samples were selected for laboratory analyses of potential contaminants. The analyses consisted of the following contaminants: total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, xylenes (BTEX), total semi-volatile hydrocarbons (TSH), phenoxy neutral herbicides, phenols, polychlorinated biphenyls (PCBs), heavy metals and trace elements, ethylene glycol and extractable organic chlorine (EOCl). Table 1.1 presents the number of samples analyzed for each of the contaminants.

Parameter	Number of Samples Analysed
ТРН	78
BTEX	11
TSH	19
Phenoxy-neutral Herbicides	7
Phenols	7
PCBs	4
Heavy Metals and Trace Elements	4
Ethylene Glycol	4
EOCI	4

 Table 1.1: Number of soil samples analysed for each potential contaminant

Saskatchewan Environment and Resource Management's (SERM's) "Risk-Based Corrective Actions at Petroleum Contaminated Sites" (1995) and the Canadian Council of Ministers of the Environment (CCME) "Interim Canadian Environmental Quality Criteria for Contaminated Sites" (1991) were used to assess the analytical results and the requirement for site remediation. These two sets of guidelines are intended to provide a basis for assessment and remediation of contaminated property, depending upon the intended use of the property, such as agricultural, residential/parkland or commercial/industrial.

The present land use in the area surrounding the site primarily consisted of agriculture with several commercial operations and one residential holding located north and south of the site, respectively. In addition, it was considered possible that following closure of the site, the site could be converted to a passive park area. Therefore, the analytical results were evaluated using Saskatchewan Environment and Resource Management (SERM) residential/parkland criteria which were the most stringent criteria in consideration of the existing surrounding land use and anticipated future land use.

An examination of the gas chromatographs from the TSH analyses indicated that gasoline, paint thinners, diesel fuel, lubricating oil and/or crude oil were the primary petroleum compounds found in the soil samples. Table 1.2 presents a summary of the different types of petroleum hydrocarbons found based on test hole number and depth.

Test Hole	Depth (m)	Type of Petroleum Hydrocarbon
1	3.3	Gasoline, paint thinners, diesel fuel, lube oil
2	2.2	Gasoline, paint thinners, diesel fuel, lube oil
3	1.5	Gasoline, paint thinners, diesel fuel, lube oil
6	3.8	Gasoline, paint thinners, diesel fuel, lube oil
7	3.8	Gasoline, paint thinners, diesel fuel, lube oil
9	3.0	Gasoline, paint thinners, diesel fuel
10	3.8	Gasoline, paint thinners, diesel fuel, crude oil
11	5.0	Diesel fuel
12	2.3	Diesel fuel
16	6.1	Diesel fuel, lube
17	3.0	Gasoline, paint thinners, diesel fuel, lube oil
18	5.3	Gasoline, paint thinners, diesel fuel, lube oil
20	3.8	Diesel fuel
21	5.3	Diesel fuel, lube oil

 Table 1.2: Types of petroleum hydrocarbons present in soil

Total petroleum hydrocarbon concentrations were above the 1,000 ppm guideline (SERM, 1995) in approximately 67 percent of the samples analyzed. The highest concentration was 270,000 ppm which was observed in Test Hole 1 at a depth of 3.8 m. The lowest concentration was 4 ppm which was observed in Test Holes 13 and 19 at depths of 3.8 m and 1.5 m, respectively. TPH concentrations generally exceeded the guideline value at depths of between 1.5 m and 6.1m, at the majority of the test holes which were sampled (Test Holes 1 to 21), although, some test holes did have concentrations above the guideline value outside of this depth range. The weighted average TPH concentration was calculated for each test hole. The weighted averages at the test hole locations were averaged to obtain an average TPH concentration of 31,051 ppm over the site. Table 1.3 presents data on TPH concentrations.

Test Hole	Sample Depth (m)	TPH Concentration (ppm)	Weighted Ave. TPH Concentration in Test Hole (npm)	Test Hole	Sample Depth (m)	TPH Concentration (ppm)	Weighted Ave. TPH Concentration in Test Hole (npm)
1	1.5 2.2 3.8	1,110 15,000 270,000	91,280	12	2.3 3.8 5.3	18,600 73,000 213,000	67,413
	6.8 7.6 9.1	79,600 34,000 12		13	<u>6.1</u> 2.3 4.6	106 1,020 <4	1,537
2	1.5 3.8 5.3	6,890 160,000 110,000	80,189	14	5.3 6.1 3.8	8,000 14 47,000	
3	6.1 2.3 3.8	<u>101,000</u> 19 119	46		6.1 7.6 10.7	36,400 3,160	28,888
4	<u>4.6</u> 1.5	<u>11</u> 140,000		15	2.3 4.6	63 5	49
5	2.3 <u>4.6</u> 2.3	1,940 16 681	58,484	16	1.5 2.3 4.6	1,200 239 103,000	28,754
	3 5.3	6,000 37,400 51,200	14,632	17	5.3 <u>6.1</u>	21,000 16,500	
6	1.5 4.6	73 71,000	26,809		2.5 3.0 4.6	39,600 5,200	12,073
7	2.3 5.3 6.1	2,100 68,600 68,000	27,134	18	2.3 3.0 5.3	37,000 1,880 97,800	44,016
8	3.8 4.6 7.6	66 60 17.000	3,406	19	<u>6.1</u> 0.8 1.5	<u>40,100</u> 640 4	169
9	2.3 4.6 6.1	9,500 86,900 68,000	40,801	20	4.6 0.8 1.5	22 139 5.000	2.962
10	3 5.2	26,000 105,000	42,711		3.8	3,840 31	_,
11	3 3.8 4.6 5.3 6.1	7,600 144,000 117,000 154,000 212	53,465	21	2.3 3.0 4.6 5.3 6.1	39,000 124,000 1,550 129,000 124	56,480

.

Table 1.3: TPH concentrations in soil

BTEX and phenol concentrations were above the SERM (1995) and CCME (1991) criteria for residential/parkland land use in the samples from Test Holes 1 (3.3 and 3.8m), 2 (2.2m), 12 (3.0m), 14 (3.0m), 17 (3.0m) and 21 (5.3m) (Table 1.4). This indicated that there were high concentrations of volatile petroleum hydrocarbons present in the soil.

Test Hole	Benzene	Toluene	Ethylbenzene	Xylenes	Phenols
1 (3.3 and 3.8m)	47	36	37	835	
2 (2.2m)	11		5.5	26	2.5
12 (3.0m)		9.5	6.0	36	
14 (3.0m)				5.1	
17 (3.0m)	2.3			97	
21 5.3m)	1.5				
SERM residential/parkland	0.5	3.0	5.0	5.0	
criteria					

Table 1.4: BTEX and phenol concentrations (ppm) in soil

Ethylene glycol, PCB and trace element concentrations (Appendix B) were below method detection limits and were, therefore, not of concern.

Results of the solvent scan, herbicide scan, and EOCI scan (Appendix B) were below or very near the method detection limits and, therefore, these parameters were not of concern.

The boundaries of the pit were estimated by a visual examination of the soil to determine the presence of fill soil. The transition from fill soil to native soil was assumed to be the boundary of the pit. The estimated boundary of the pit was approximately as shown in Figure 1.1. The boundary of the pit consisted of two portions; a long narrow section to the north, 15m wide by 40m long, and a wider, trapezoidal shaped section to the south, 28m by 28m. The areal extent and depth of the contaminated soil requiring remediation was estimated using TPH values. Based on the values presented in Table 1.3, the estimated volume of soil requiring remediation was $8,000 \text{ m}^3$.

A preliminary feasibility analysis was conducted for the subject site in 1995 (Viraraghavan et al). The feasibility study evaluated various technologies for remediation of the site. Costs from the literature used for analysis of several remediation alternatives are shown in Figure 1.2. From the preliminary feasibility analysis, it was determined that bioremediation should be examined further for remediation of the contaminated soil from this site.

Figure 1.2: Treatment Costs for Petroleum Contaminated Soil (Leahy and Brown, 1994)

An analysis of several bioremediation alternatives was then conducted in order to choose the option that could be used to remediate the site at the lowest possible cost and within a reasonable length of time. The alternatives that were evaluated were landfarming, composting, accelerated composting (biopile composting) and enhanced biopile/biofiltration. It was determined that accelerated composting would provide most effective remediation at a reasonable cost.

1.3 Objectives of the Study

The objective of this study was to conduct a bench-scale biotreatability study using a composting process which would demonstrate a reduction in the concentration of the petroleum hydrocarbons (presumably to below the SERM guideline criteria). The components of the study used to acheive the overall objective were as follows:

- 1. analysis of the nutrients in the soil and the need for nutrient additions;
- 2. identification of the presence and types of hydrocarbon degrading bacteria in the petroleum hydrocarbon contaminated soil at the site;
- 3. enumeration of the bacterial population; and
- 4. evaluation of the contaminant half life.

1.4 Scope of the Study

The scope of the study included a review of literature on bioremediation of contaminated soil using the composting process. Laboratory studies were conducted to determine whether or not the concentration of petroleum hydrocarbons in the soil could be reduced to below the SERM guideline value of 1000 ppm.

CHAPTER TWO

REVIEW OF LITERATURE

2.1 General

The literature review is presented in three sections. The first section discusses the development of composting of petroleum-contaminated soil. The second section of the literature review covers the important factors which determine the efficiency of composting operations. The third and fourth sections outline the procedures for conducting treatability studies, and the degradation kinetics used to predict final cleanup levels for bioremediation processes, respectively.

2.2 Development of Composting

2.2.1 Definition of Composting

In order to understand the composting process one must first define composting. There is no universally accepted definition of composting. Haug (1980) defined composting as follows: "biological decomposition and stabilization of organic substrates under conditions which allow development of thermophilic temperatures as a result of biologically produced heat, with a final product sufficiently stable for storage and application to land without adverse environmental effects".

This definition is basically accurate with reference to composting municipal wastes; however, it may not be totally accurate when considering the composting of hazardous wastes. Cookson (1995) reported that composting of some hazardous compounds does not require the higher temperatures that are typical in composting municipal wastes and which are required for the destruction of pathogenic organisms. He further stated that if no pathogenic organisms are associated with the wastes, then the higher temperatures are not necessary. In fact, he stated that composting of hazardous compounds had been successfully pilot tested at ambient temperatures. Considering the above, it appears that composting need not allow the development of thermophilic temperatures as stated by Haug (1980). The definition of composting given by Golueke (1977) may be more appropriate for application to composting of both hazardous and non-hazardous wastes.

"Compositing is a method of solid waste management whereby the organic component of the solid waste stream is biologically decomposed under controlled conditions to a state in which it can be handled, stored, and/or applied to the land without adversely affecting the environment".

2.2.2 Process Description

Composting is a natural process whereby microbiological transformations, known as bioremediation, convert hazardous materials to harmless inorganic products in a simple, inexpensive and environmentally safe manner (Williams and Myler, 1990). Until recently, composting has been used primarily to treat wastewater sludges, processing wastes and municipal refuse. The primary reasons for composting these materials are to reduce moisture content and volume, to destroy pathogens and odour-producing nitrogen and sulphur-containing compounds, and to stabilize the waste for ultimate disposal or use as a marketable product. The objective in composting hazardous materials is to convert the hazardous substances into innocuous end products. In general, no matter what the material being composted, the composting process employed is virtually the same. However, the shift in objectives between composting non-hazardous wastes and hazardous wastes requires that a more tightly controlled and aggressive approach be employed for composting hazardous wastes.

Modern composting systems are usually divided into three types: windrow, aerated static pile (biopile) and in-vessel. Each is described below.

Windrow System

In the windrow composting system (Figure 2.1), the contaminated soil is usually mixed with a bulking agent to facilitate air permeation through the soil. Other items that may be mixed with the soil and bulking agents include fertilizer or nutrients from other sources, organic material (such as municipal waste, animal wastes, grass clippings, leaves) and bacterial innoculants. The purpose of the addition of these materials is described later in this chapter. The mixture is then distributed in long rows on an impervious liner. The rows are typically 1.2m to 1.5m in height and 3.0m to 3.7m in width. The length of the rows will vary depending upon the land available for the process. The rows of contaminated soil are mixed or turned daily to maintain an aerobic condition by convective air flow and diffusion. Mixing is usually done using a front-end loader or specially designed equipment. Front-end loaders are generally less expensive than specially designed equipment, however, the quality of the mix is usually better (i.e.

nutrients are mixed better and aeration is better) when specially designed equipment is used.

The rows of contaminated soil are usually constructed on an impervious liner to prevent the contaminant(s) from seeping into the native soil and into groundwater systems. Some berming or ditching may also be required around the area to prevent contaminants from moving off-site and entering surface waters.

Figure 2.1: Windrow composting system (Tchobanoglous, 1993)

Static Pile System

The static pile composting system (Figure 2.2) uses forced aeration to maintain aerobic decomposition in a much larger pile mass than is possible with the windrow system (Cookson, 1995). Aeration is typically provided by a system of perforated pipes installed under the static pile(s). The contaminated soil is mixed with various amendments as described for the windrow system and placed in piles over the perforated pipe. The

Figure 2.2: Static pile composting system (Albrecht, 1983)

perforated pipes are connected to a non-perforated header pipe which is connected to fans which either draw air or force air through the pile. It is preferrable to draw air through the pile as this will allow treatment of volatile emissions. In a system which forces air through the pile, the system of pipes may be covered with a layer of highly permeable material such as wood chips or gravel to allow the air being released from the pipes to be more evenly distributed under the pile. This will allow more even percolation of air through the pile. The piles can be up to 6 m in height. The height of the piles is limited by the capabilities of the front-end loader or backhoe that is used in their construction. As with the windrow system, the piles are usually constructed on an impervious liner to prevent the contaminant(s) from seeping into the native soil and into ground water systems. Some berming or ditching may also be required around the area to prevent contaminants from moving off-site and entering surface waters.

In-vessel System

The process used for in-vessel composting is identical to that described in windrow and static pile composting. The mixture is placed inside enclosed reactors where the actual

composting takes place. The major advantage is that ditches, berms, etc. are not required due to the enclosed reactor, however, in-vessel operations do not allow the degree of process flexibility of the open systems (Cookson, 1995). For example, if a material handling problem such as compaction of the mix in the vessel should occur, correction by remixing with the front-end loader is not an option (Cookson, 1995). Therefore, most invessel systems use sophisticated mixing equipment and, hence, are very expensive. Invessel composting uses pug mills and plow blade mixers for mixing, and belt conveyors, screw conveyors, cleated belt conveyors and drag conveyors for material transport. There are two types of in-vessel composting reactors: plug flow (horizontal (Figure 2.3) and vertical (Figure 2.4)) and agitated-bed reactors (Figure 2.5). In plug flow reactors,

Figure 2.3: Horizontal-bed in-vessel composting reactor (U. S. EPA, 1989)

the mixing is such that the mix moves either from top to bottom or horizontally through the reactor chamber (Cookson, 1995). Most vertical plug flow reactors use a screw for material discharge (Cookson, 1995). In horizontal plug flow reactors, the material is transported by a moving floor or a hydraulic door (Cookson, 1995). The agitated bed reactors use mechanical mixing to mix the compost either in place or as it moves through the reactor (Cookson, 1995).

Figure 2.4: Vertical-bed in-vessel composting reactor (U. S. EPA, 1989)

Figure 2.5: Agitated-bed in-vessel composting reactor (U. S. EPA, 1989)

2.2.3 Soil Contamination

The three most common types of hazardous materials released to the environment in decreasing order are petroleum products, creosote and volatile organic compounds (Cookson, 1995).

The widespread usage and storage of petroleum products have made them the most widespread soil and groundwater contaminant (Cookson, 1995). Leaking underground storage tanks have been cited as one of the most common sources of soil and groundwater contamination (Demque, 1994). It is estimated that across Canada there are 200,000 underground storage tanks installed, and as many as 30,000 may be leaking products into the underground environment (Demque, 1994).

2.2.4 Disposal of Contaminated Soil in Saskatchewan

In Saskatchewan, contaminated sites are evaluated using the SERM "Risk Based Corrective Actions for Petroleum Contaminated Sites in Saskatchewan (SERM, 1995)." The guidelines allow two methods of evaluating contaminated sites. One method is to evaluate the need for and degree of cleanup based on a risk assessment, and the other method is to evaluate these requirements based on future land use. Table 2.1 presents the future land use criteria published by SERM.

Analyte	μg/g		
-	Agricultural	Residential/Parkland	Commercial/Industrial
Benzene	0.05	0.5	5.0
Toluene	0.1	3.0	30
Ethylbenzene	0.1	5.0	50
Xylenes	0.1	5.0	50
Lead	375	500	1,000
TPH	1,000	1,000	1,000

 Table 2.1: SERM future land-use criteria (SERM, 1995)

Until approximately ten to fifteen years ago, landfilling was the most common method of disposing of contaminated soil. However, regulatory agencies are imposing greater restrictions on the disposal of contaminated soil in landfills. Landfilling of contaminated soil without some kind of treatment is no longer an acceptable form of disposal. Many landfills are setting up treatment facilities (usually bioremediation) to treat petroleum-contaminated soils. However, most landfills have an upper limit for the concentrations of petroleum in the soil that they will accept for treatment. The limit in Saskatchewan is 2 percent by weight or 20,000 μ g/g. Soil with a petroleum hydrocarbon concentration greater than 20,000 μ g/g usually requires the soil to be treated on-site or excavated and transported to a hazardous waste treatment facility. Off-site disposal at a hazardous

waste treatment facility is usually very expensive. On-site treatment (usually ex-situ, biological treatment) is usually chosen because it is less expensive and eliminates the liability associated with the transportation of hazardous waste; however, it usually requires extensive permitting and regulatory approvals.

2.2.5 Chemical Nature of Petroleum Products

There are many different types of petroleum products, such as gasoline, diesel fuel, crude oil, solvents, pesticides, PCBs, PCP, and paint thinners. All these products are made of hydrocarbon compounds, which are, as the name implies, chemical compounds made up of hydrogen and carbon atoms (Rowell *et al.*, 1992). The carbon atoms are linked together in chains, in a ring, or in more than one ring (polycyclic hydrocarbons) (Rowell *et al.*, 1992). Petroleum products such as gasoline, diesel fuel and crude oil are sometimes grouped according to their "carbon number". The carbon number is simply the number of carbon atoms in a molecule of the product (Rowell *et al.*, 1992). For example C10 is a product that has 10 carbon atoms in one molecule of the product. Gasoline is typically in the C1 to C9 range, diesel fuel is typically in the C10 to C20, and crude oils are in the C21 to C30 range.

The composition of petroleum products varies with such factors as their origin, method of storage, treatment, and weathering conditions. Regardless of its source, a single petroleum product is usually made up of a large mixture of hydrocarbon compounds. For example, regular gasoline contains approximately 50 different hydrocarbon compounds (Cookson, 1995).

The focus of this research is degradation of gasoline, diesel fuel, used lubricating oil and small amounts of paint thinners and crude oil. The most common types of hydrocarbon

structures contained in petroleum products such as these are aliphatic hydrocarbons and aromatic hydrocarbons.

2.2.5.1 Petroleum Aliphatic Hydrocarbons

Aliphatic hydrocarbons are straight or branched-chain hydrocarbons of various lengths (Cookson, 1995). They are divided into the families: alkanes, alkenes, alcohols, aldehydes, ketones, acids, and alkynes. Typical structures are shown in Figure 2.6.

Figure 2.6: Petroleum aliphatic hydrocarbons (Cookson, 1995)

2.2.5.2 Aromatic Hydrocarbons

Aromatic hydrocarbons contain the benzene ring as the parent hydrocarbon. The benzene ring is represented by double bonds between alternate carbon atoms (Figure 2.7). Benzene ring compounds are further divided into monocyclic aromatic hydrocarbons (MAHs) and polycyclic or polynuclear aromatic hydrocarbons (PAHs). The MAHs are

those that contain a single benzene ring. These consist of benzene, toluene, ethylbenzene and xylene (BTEX) compounds. Typical structures of MAHs are shown in Figure 2.8. PAHs are those compounds where several benzene rings are joined at two or more ring carbons. The hydrogen may or may not be substituted by other compounds. Some of the more common substitutes are chloro (Cl), bromo (Br), iodo (I), nitro (NO₂), and cyano (CN). Structures of some common PAHs are shown in Figure 2.9.

Figure 2.7: Benzene ring (Cookson, 1995)

Figure 2.8: Single-ring aromatic hydrocarbons (Cookson, 1995)

Figure 2.9: Multi-ring aromatic hydrocarbons (Cookson, 1995)

2.2.6 Microbial Decomposition of Petroleum Hydrocarbons by Bioremediation

Bioremediation is a process in which microorganisms in the soil convert complex organic materials (such as petroleum hydrocarbons) into cell biomass and other non-toxic by-products such as carbon dioxide (CO_2) and water (H_2O). This is accomplished through a catalyzed oxidation-reduction reaction in which the catalyst (enzyme), supplied by the microorganism, causes the destruction of the contaminant.

Detailed environmental control is necessary for the catalyst production and the desired reaction (Cookson, 1995). Therefore, successful bioremediation, requires a tightly controlled process with the presence of a suitable energy source, an electron donor-acceptor system, and adequate nutrients and moisture level. The appropriate combination of these conditions is critical to the performance of the bioremediation process.

In a bioremediation process, microorganisms in the soil obtain energy by metabolizing the organic compound (contaminant). Indigenous microorganisms can readily degrade the naturally occurring organics in a soil. However, contaminated soils may contain man-made organics which are more difficult to degrade. Therefore, the indigenous microorganisms in the soil must first acclimate themselves to the man-made chemicals before the degradation process can occur. As the microorganisms become acclimated to the contaminant, they will start to reproduce and the biodegradation rate will gradually increase.

Bioremediation has been shown by numerous researchers to be a viable method for remediating soil contaminated with petroleum products (Albrecht *et al.*, 1983, Beaudin, *et al.*, 1996, Demque, 1994, Pruess and Saberiyan, 1996, St. Cyr *et al.*, 1992,). Bioremediation technologies usually result in the lowest cost method of remediation if

the contaminant of concern is biodegradable and the biological processes are optimized. Optimization of the processes can require significant scientific analyses and testing but, if found to be an appropriate method for remediating the contaminant of concern, usually results in the lowest cost when compared with technologies such as incineration, thermal adsorption, soil washing, or excavation and disposal at a hazardous waste disposal facility (Leahy and Brown, 1994).

2.3 Factors Affecting Composting

Composting of hazardous wastes is essentially the same process that is used in composting of municipal wastes. The objective in composting of hazardous wastes is to create an ideal environment, in either the windrow, static pile or enclosed reactor, in which the indigenous microorganisms will biodegrade the petroleum contaminants in the soil to innocuous carbon dioxide, water and organic matter (humus). Before the composting operation can begin, many factors must be considered to ensure that a favourable environment exists. The factors affecting composting can be grouped into the headings "physical", "chemical" and "nutritional". These factors include the following:

- substrate (nutritional)
- nutrients (nutritional)
- temperature (physical)
- pH (chemical)
- moisture content (physical)
- aeration (physical, chemical)
- bulking agent (physical)

Of the above factors aeration is the most critical (St-Cyr et al., 1992). The rate of biodegradation is proportional to the rate of aeration (St-Cyr et al., 1992).

2.3.1 Substrate

The physical and chemical nature of the substrate is one of the most important factors in determining the rate and potential success of the biodegradation of the waste. Substrate simply refers to the presence and accessibility of organic food sources. The organic food source in a hazardous waste composting system is usually the contaminant of concern (e.g. petroleum products). In composting of municipal solid waste, the waste usually provides the organic food source and the energy (thermal) source. However, most hazardous wastes do not contain a high enough concentration of organic material to sustain composting and, therefore, require the waste to be mixed with another material which contains a high concentration of organic material such as grass clippings, animal manures, etc. The highly organic/biodegradable material serves as a high energy (thermal) source for microorganisms which provide the microbial heat generation which is required for destruction of pathogenic organisms present in some wastes (both hazardous and non-hazardous). If no pathogenic organisms are present (as is the case in this thesis) in the contaminated waste, elevated temperatures are not required. Cookson (1995) states that composting of hazardous waste has been successfully pilot tested at ambient temperatures.

2.3.2 Nutrients

Microorganisms require inorganic nutrients for growth and reproduction. Carbon (C), nitrogen (N), phosphorus (P) and potassium (K) are the macronutrients required for the growth of microorganisms. Trace nutrients are also required, but if the optimum N:P:K ratio is satisfied then the amount of trace nutrients is usually satisfied as well (Demque, 1994). The typical N:P:K ratio is 100:10:1 (Pruess and Saberiyan, 1996). Typically, the rate limiting nutrients are N, P and K (Cookson, 1995). Nutrient deficiencies are usually

corrected by adding nutrient sources such as normal lawn or agricultural fertilizer. Carbon is supplied by the hazardous waste being composted.

2.3.3 Temperature

The common belief is that composting must involve the development of high temperatures (in the 50 to 60 °C range) in order to be effective. It has been stated that composting can be successful under ambient temperature conditions (i.e. 20 to 30 °C) (Cookson, 1995). Furthermore, the development of high temperatures is not necessary when composting some hazardous wastes, such as petroleum products, because pathogenic organisms are not present. Cold temperatures, such as those experienced in Saskatchewan during winter months, retard and can stop bacterial activity (St Cyr, 1992). Cold temperature, however, is merely a constraint; it does not necessarily prevent effective bioremediation (St Cyr, 1992).

The temperature attained during the composting process is dependent upon the type of bacteria that are present to degrade the contaminant. Some microorganisms are mesophilic which means they thrive in environments where the temperature is in the 20 to 50 °C range. Other bacteria are thermophilic and prefer temperatures in the 45 to 70 °C range. There are also different optimum temperatures for the different microorganisms that exist within each of these temperature ranges. So, for example, if a compost pile has three mesophilic microorganisms present, each with a different optimum temperature, the chances of the temperature being optimum for every microorganism at any given instant is virtually impossible. Therefore, the temperature of the pile usually adjusts to a temperature that can be described as a compromise between the optimums of all the organisms present.

Beaudin *et al.* (1996) conducted a study in which they used the composting process to degrade mineral oil and grease from soil. They found that temperature fluctuated throughout the degradation process. They concluded that changing temperatures are an indication of the microbial diversity that develops in a composting system and is necessary to achieve more complete degradation of contaminants. They referenced several studies (Atlas 1975; Westlake *et al.* 1974; Jobson *et al.* 1972) which indicated that different hydrocarbon components may be degraded at different temperatures.

2.3.4 Moisture Content

It is essential to have an adequate moisture content in the soil being remediated. Inadequate moisture content causes bacterial desiccation. Elevated moisture content reduces the oxygen supply by reducing forced soil-gas flow and decreases the biodegradation rate.

Optimum moisture content of the compost mix is dependent on the amount of organic material in the mix and the type of soil (i.e. sand, gravel, clay, etc.). Municipal wastes require a moisture content in the range of 40 to 60 percent by weight for optimal composting of the waste. Stegmann *et al.*, (1991) conducted a study to determine the effect of water content on the degradation rate of oil-contaminated soil. A compost mix composed of 8 parts contaminated clayey soil and 1 part compost obtained from a municipal waste composting plant was used in laboratory respiration studies. The mix had a maximum water holding capacity of 48 percent by weight. The maximum oxygen uptake of the microorganisms occurred at a moisture content of 60 percent of the maximum water holding capacity of the soil/compost mixture. Saberiyan et al. (1996) reported that the optimum moisture content of the soil for biodegradation of petroleum

should be approximately 40 percent of soil saturation. The optimum moisture content for most contaminated soils would be in the 20 to 40 percent by weight range.

2.3.5 pH

Most microorganisms perform efficiently at pH ranges between 6 and 8. Typically in bioremediation experiments, the pH will rise to about 8 and then fall back to near 7 at the end of the experiment when most of the petroleum product has been degraded. This is because during the first stages of the biodegradation process organo-nitrogen compounds are broken down which releases NH_4^+ and causes the pH to rise (LaGrega *et al.*). This is followed by the gradual increase in microbial activity producing CO₂ which causes the pH to decrease (Golueke, 1977).

2.3.6 Aeration

Composting can be conducted in either an aerobic (in the presence of oxygen) or anaerobic (without oxygen) mode. Composting of non-hazardous wastes such as municipal sludges is usually done under aerobic rather than anaerobic conditions. The disadvantage of anaerobic systems for municipal sludges is the generation of odourous compounds such as hydrogen sulphide, mercaptans, and disulphides. Aerobic composting provides a much greater degree of stablilization of municipal wastes (Cookson, 1995). The use of anaerobic systems can be advantageous in composting some types of hazardous wastes. Halogenated or complex chemicals are treated more successfully under anaerobic conditions than under aerobic conditions (Cookson, 1995).

The method of aeration depends on the type of composting system. In windrow composting, aeration is usually conducted by turning the pile periodically. In static pile

composting, aeration is usually conducted using a series of pipes placed under the compost pile(s) and connected to a blower or vacuum pump. The air is blown through the pipes and then percolates through the pile. These types of systems were described previously.

The amount and thoroughness of aeration will determine the rate and extent of the destruction of the contaminant, provided other conditions are satisfied. The amount of oxygen and the rate of aeration is a function of the chemistry of the contaminant (different contaminants require different amounts of oxygen and hence different aeration rates). Tchobanoglous *et al.* (1993) and Battaglia and Morgan (1994) have outlined methods for determining the approximate air requirements in a static pile or enclosed reactor system.

2.3.7 Bulking Agent

Most composting systems require a bulking agent. A bulking agent increases the porosity of the contaminated soil which allows greater air (oxygen) flow through the soil and distributes the air more evenly throughout the pile/reactor. The material used as the thermal source can also be used as the bulking agent (i.e. grass clippings, straw, manure, wood chips, etc.). This eliminates the need for screening/separation of the bulking agent from the compost following the composting phase, thereby, reducing the cost of the treatment process. Bulking agents that can not serve as a thermal source include gravel and shredded rubber tires.

Savage et al. (1985) define the ideal bulking agent as one that:

- provides ample porosity under all moisture conditions;
- is an absorbent;

- resists compaction;
- degrades very slowly, if at all; and
- can be easily recovered from the composted wastes and subsequently recycled.

Screening of the compost mix is common to recover the bulking agent for recycling. Screening involves the use of very expensive equipment, such as vibrating screens, rotary screens and trammels (Cookson, 1995). Therefore, the capital cost of screening must be compared with the cost of lost bulking agent if it is not recycled. This evaluation is dependent on the expected life of the cleanup operation, the treatment required and the final deposition of the treated soil (Cookson, 1995).

2.4 Treatability Studies

2.4.1 General

Before a full-scale composting operation (or any bioremediation operation) can be designed, it is necessary to conduct treatability studies to determine the potential for success and the expected performance of the proposed bioremediation system. A treatability study may consist of laboratory or bench-scale studies, a pilot-scale study or both. Generally, a proper treatability study would consist of both laboratory-scale studies and pilot-scale studies. Laboratory-scale studies determine the potential for successful biodegradation of the specific contaminant. Pilot- scale studies follow the laboratory-scale studies and performance over a period of months of operation. Pilot-scale studies would be very similar to a full-scale operation except that the pilot-scale operation is scaled down in size.

2.4.2 Objectives

The first step of a treatability study is to determine the objectives that you want to achieve. Typical objectives of a bioremediation treatability study are shown in Table 2.2. It is not required to achieve all of these objectives under a single treatability study, nor would it be possible. If a treatability study is to accomplish several objectives it may be more feasible to conduct the treatability study in phases. Conducting treatability studies in phases has the advantage of being able to implement the results of initial phases in subsequent phases to either confirm or change the results of the preceding phases. The major disadvantage of conducting multiple objective treatability studies in phases is that significant time requirements, ranging from a few weeks to a few months or even several years, may be necessary.

Table 2.2 – Typical objectives of bioremediation treatability studies (Cookson, 1995)

- 1. Evaluate the capability of the microorganisms to degrade the target compounds.
- 2. Evaluate the enhancement capability of seed microorganisms.
- Evaluate the optimum range for environmental parameters: Moisture pH Nutrients Trace minerals
- 4. Evaluate the need and effect of supplemental substrates and electron acceptors.
- 5. Determine the feed and starvation cycle for primary substrates.
- 6. Evaluate the need to provide supplemental electron donors.
- 7. Evaluate the rate of degradation for target compounds under ideal laboratory conditions or modified conditions to represent expected field response.
- 8. Evaluate the expected duration of the bioremediation project.
- 9. Determine the attainable level of treatment.
- 10. Evaluate potential soil-water reactions and clogging potential of in-situ treatment.
- 11. Evaluate the potential for toxicity changes due to mixing, surfactants, or buildup of intermediates.
- 12. Evaluate the degree of volatization.
- 13. Determine the cost effectiveness of various optimization measures.
- 14. Evaluate the monitoring frequency for process control.

15. Evaluate the operational limits on process control parameters without significant decrease in performance.

Once the objectives of the treatability study have been determined, the experimental design can be formulated. The experimental design consists of development of specific protocols or procedures that will be used to satisfy the objectives. Development of specific protocols are based on the following considerations or bases (Cookson, 1995):

- 1. Determine how one is to accomplish, quantify, and document the treatability study;
- Determine if a customized treatability protocol will be developed or if standardized protocols are appropriate;
- 3. Determine if the treatability study will be conducted under ideal laboratory conditions or under conditions that simulate those at the site;
- 4. Determine the level of quality control to be applied to all test protocols and analytical data;
- 5. Determine if analytical data will be collected to provide statistically significant data and, if so, to what level of confidence; and
- 6. Determine what analytical protocols will be applied to data collection.

Once the above points have been considered, specific protocols can be developed. Protocols are simply a set of instructions or procedures that will be followed for a particular treatability study to achieve the specific objectives. The protocols must be stated in a detailed step-by-step procedure which leaves nothing to another's interpretation. Protocols can be either standardized or customized. Standardized protocols are those that are contained in government standards or other guidance documents. Two examples of guidance documents available in the United States from the U.S. Environmental Protection Agency (EPA) under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) are as follows: Guide for Conducting Treatability Studies under CERCLA: Biodegradation Remedy Selection, U. S. EPA, 2nd and Final Draft, March 1993; and

Guide for Conducting Treatability Studies under CERCLA: Aerobic Biodegradation Remedy Screening, U. S. EPA, EPA/54012-91/-13A, July 1991.

Customized protocols are those developed by the researchers who are conducting the treatability study and are specific to the treatability study being conducted. Customized protocols are developed when standard protocols are inadequate to satisfy the objectives of the treatability study. Customized protocols may be simply a standardized protocol with a slight modification or it may be a completely new protocol.

2.4.3 Costs

The cost of a treatability study can range from as low as several thousand dollars to as much as several hundred thousands of dollars. The budget available for treatability studies is influenced largely by the overall anticipated remediation cost of the project. In the case of a multimillion dollar bioremediation project there is certainly a justification to budget several hundred thousand dollars for treatability studies. Several hundred thousand dollars for treatability studies. Several hundred thousand dollars spent on a well designed treatability study may save millions on the final remediation cost. On the other hand, in the case of a \$50,000 bioremediation project, little in the way of treatability studies can be supported. At most, \$1000 or \$2000 may be available for treatability studies.

2.4.4 Equipment

Equipment used for solid phase treatability studies can be as simple as a couple of beakers or baking pans to specially designed and constructed pilot-scale facilities. Typically, laboratory treatability studies are conducted using very low-tech, inexpensive equipment such as pans, beakers, flasks, tubs, etc. as the reactors and polyethylene tubing and simple compressed air supplies as the aeration system. Some researchers have gone to great lengths and expense to fabricate bench scale reactors or "microcosms" which accurately simulate the actual field conditions in a laboratory setting including such things as automated watering/humidified air supplies, insulated, stainless steel enclosed reactors and computerized oxygen-carbon dioxide respirometers.

2.5 Degradation Kinetics

The Monod equation is commonly used to model substrate degradation and microbial growth (Saberiyan *et al.* 1996). The Monod equation assumes that a single substrate and single type of microorganism are involved. In reality, there are usually multiple substrates and multiple microorganisms involved. However, the Monod equation is usually selected for ease in analyzing data, and it offers adequate accuracy. The Monod model takes advantage of the fact that the biodegradation rate is a function of substrate concentration. The Monod equation takes the form in equation 2.1, when substrate concentration (C) is small compared to K_s :

$$\frac{dC}{dt} = -k_m \times \frac{X}{K_s} \times C \tag{2.1}$$

where,

C = contaminant concentration at time t (mg/kg)

 $k_m = maximum substrate utilization rate (day⁻¹)$ $K_s = half-velocity coefficient (substrate concentration at one-half the$

X = microbial concentration (mg/kg)

t = time (days)

Assuming,

$$K = k_m \times \frac{X}{K_s} \tag{2.2}$$

where K=degradation rate constant, and where k_m , X and K_s are constants for the system, then equation (2.1) reduces to a first-order equation,

$$\frac{dC}{dt} = -KC \tag{2.3}$$

$$\frac{dC}{C} = -Kdt \tag{2.4}$$

$$\ln C = -Kt + C_1 \tag{2.5}$$

if $C = C_0$ at t = 0

then, $\ln C_0 = C_1$

and

$$\ln C = -Kt + \ln C_0 \tag{2.6}$$

$$\ln C - \ln C_0 = -Kt \tag{2.7}$$

$$\ln \frac{C}{C_0} = -K \times t \tag{2.8}$$

The value K is measured empirically from a biotreatability study by plotting the natural log of C/C_0 vs time and performing a regression analysis. The degradation rate constant can then be used in Equation (2.8) to calculate the length of time required to degrade a specific waste to half of its initial concentration. This is commonly referred to as the half-life of the contaminant.

CHAPTER THREE

MATERIALS AND METHODS

3.1 General

The initial site investigation was considered as background information to the treatability study, which is the subject of this thesis. Therefore, the methods used in the initial site investigation were presented in Chapter One of the thesis under Section 1.2 - Background Information. The methods used in the treatability study are presented in the following subsections.

Analytical methods used in analyzing the various parameters identified in the following sections are available in detail in other sources. Therefore, the detailed procedures are not presented here, however, the methods used for analysis of each parameter are indicated.

3.2 Bulk Sample Collection

A bulk sample of the contaminated soil from the pit described in subsection 1.2 was collected on May 15, 1997. The location where the bulk sample was obtained is shown on Figure 3.1. The location for sampling was selected such that the TPH concentration of the sample would be approximately the same as the average TPH concentration over the site which was stated in subsection 1.2 as 31,051 ppm. During the site investigation and characterization phase, Test Hole 17 at a depth of 3.0m exhibited a TPH concentration of 39,600 ppm. Therefore, this was the chosen location for bulk sample collection. Once the location for the bulk sample collection was identified, a backhoe was used to excavate the area. The bulk sample was put into a 205 L capacity plastic drum which had been thoroughly cleaned with warm soapy water prior to sample collection. The bulk sample was then transported to the laboratory where the treatability study was conducted.

At the laboratory, a smaller subsample consisting of approximately 10 kg (wet weight) of soil was removed from the bulk sample barrel. The 10 kg sample was broken down into smaller pieces using a 7mm (0.25 inch) screen. The sample was then put into a plastic tub and mixed thoroughly, by hand, so that the waste petroleum in the soil was evenly distributed throughout the sample. A second subsample consisting of approximately 4 kg of soil was removed from the 10 kg subsample. The 4 kg sample was designated as the test sample. The remainder of the 10 kg was put into a plastic bag and stored in the freezer in case it was required at a later date. Part of the 4 kg sample was put into 250 ml certified clean laboratory glass jars with teflon lined lids to be used for analyses of parameters for initial characterization of the soil and contaminant(s).

3.3 Soil Contaminant Characterization

It was necessary to determine the initial concentrations and types of petroleum hydrocarbons in the soil sample. The petroleum hydrocarbons in the soil collected from the site were characterized and quantified by the following analytical methods:

- Hydrocarbon fingerprint by GC (EPA Method 3550/8000), (U. S. EPA, 1986); and
- Total petroleum hydrocarbons by the infrared method (EPA Method 418.1 Modified) (USEPA, 1986).

3.4 Nutrient Analyses

It was necessary to determine the amount of nutrients in the initial soil sample in order to evaluate the need for, and amount of, nutrient additions to achieve the optimal C:N:P:K ratio. The initial pH of the soil was also required to determine if pH adjustment was required. The following analyses were conducted using the analytical methods shown:

- available phosphorus (Method 4.43), (McKeague, 1978);
- available nitrate nitrogen (Method 4.34), (McKeague, 1978);
- available ammonia nitrogen (Method 4.3), (McKeague, 1978);
- available potassium (Method 4.51), (McKeague, 1978); and
- pH (Method 4.13), (McKeague, 1978).

3.5 Bacterial Enumeration and Characterization

A procedure outlined by Pruess and Saberiyan (1996) was used for bacterial enumeration. Ten grams of soil and 100 ml of sterile water were agitated vigorously for approximately one minute, after which the soil was allowed to settle from the supernatant. One millilitre of supernatant was mixed with nine millilitres of sterile Bushnell-Haas broth. The sample supernatant was then ten-fold serially diluted twice more to a 10⁻³ dilution. Small (0.1 ml) aliquots from each dilution were plated in triplicate on Bushnell-Haas agar. Oil (0.1 ml), to serve as the carbon source, was placed on filter paper within each sealed Petri plate. Control plates (sterile water added in place of supernatant)) were also prepared and incubated in the presence of petroleum product to monitor possible cross contamination. All plates were incubated for eight days at 30°C. Following the incubation period, bacterial colonies were enumerated on each plate. The counts were averaged to determine the number of colony forming units (cfu's) per gram of soil. In addition to plate count analysis, the species of bacteria present in the soil were determined in order to confirm that they were capable of degrading hydrocarbons.

3.6 Laboratory Composting Studies

3.6.1 General

The experimental phase of the study was conducted to determine the reduction of the contaminant (petroleum hydrocarbons) with time using a laboratory composting apparatus which simulated an aerated static pile composting system. TPH was chosen as the indicator parameter for the reduction of the contaminant because it was consistent with that used by other researchers for similar contaminants and the equipment was readily available. The theoretical nutrient additions as calculated were used. It was also decided to determine what effect, if any, the addition of a highly biodegradable material had on the rate and degree of biodegradation of the petroleum product. The high-energy source chosen was partially composted grass clippings as it was felt that this was a low cost, readily available energy source.

3.6.2 Preparation of Soil Samples

Approximately 2 kg of soil was taken from the previously prepared 4 kg sample. The 2kg sample was split into two approximately equal samples (by weight) using a soil sample splitter. These samples were designated as 1 and 2. Nutrients, in the amount calculated previously (40.3 grams/kg of soil), were added in the form of granular lawn fertilizer. The granular fertilizer was dissolved in approximately 50 ml of water. The two 1-kg soil samples were each placed in a mixing pan and the water (with dissolved fertilizer) was sprinkled over each soil sample and subsequently mixed thoroughly into each soil sample.

Next, approximately 25 percent by weight of sandy gravel was added to each of the contaminated clay soil samples. The gravel was used as the bulking agent to provide a more permeable medium and, thereby, facilitate greater air flow through the soil. Gravel was chosen as the bulking agent because it was readily available and required no preparation prior to its use. Following this, approximately 25 percent by weight of the total soil mixture (i.e. contaminated clay soil and gravel bulking agent) of grass clippings was added to reactor #1. These materials were thoroughly mixed into the nutrient amended contaminated soil.

3.6.3 Laboratory Composting Apparatus

A schematic of the experimental set-up and the details of each reactor are shown in Figure 3.2. An aerated static pile system was simulated in the laboratory using two 4-litre glass jars as reactors. The aeration was supplied to each reactor by a compressed air system. The pressure and flow rate of the air in the compressed air line was reduced using a pressure regulator installed in the line. A line was then constructed from the

regulator to each of the reactors using 7.5 mm I. D. polyethylene tubing and a plastic tee connector. A cone-shaped porous stone, used in fish aquariums, was connected to the end of each line. The porous stones were used to disperse the air in all directions in order to provide more even air distribution in the reactors.

Figure 3.2: Schematic of reactor system

3.6.4 Monitoring

TPH, moisture content, temperature, pH, and the growth of microorganisms were monitored, at various frequencies, throughout the experiment. The following subsections describe the monitoring and sampling that was conducted throughout the experiment.

3.6.4.1 TPH

TPH concentration in the soil was monitored on a regular basis throughout the experiment. The TPH concentration was used as the primary indicator of petroleum degradation and the completeness of the experiment. Each experimental cell was sampled (approximately 100 gram samples) for determination of TPH concentrations at days 26, 55, 74 and 181. These sampling times were essentially chosen at random.

3.6.4.2 Moisture Content

Moisture content was determined on the same occasions and samples as for TPH analyses. As mentioned in section 3.6.4.1 the sample size taken for TPH and moisture content was 100 grams. This was adequate for TPH as only 50 grams of soil is required. Moisture content in accordance with ASTM D2216 requires a sample size of approximately 250 grams and only 50 grams was used. However, a simple test was conducted to determine the effect of a smaller sample size on the results of the moisture content test. The test consisted of conducting a moisture content test on a sample of the experimental soil using the sample size stated in ASTM D2216 and using the smaller, 50 gram sample size. This was replicated three times. The test indicated that the moisture content was approximately 2 percent lower, on average, when the smaller sample size was used. This was considered an acceptable degree of error for purposes of this experiment, since a soil moisture content of 30 percent was used. Moisture content was adjusted as required to maintain it at approximately 30 percent by sprinkling water over The saturation point of the site soil was assumed to be the composting soil. approximately equal to its plastic limit which was determined using procedure ASTM D4318.

3.6.4.3 Temperature

Temperature was determined within the contaminated soil mass in each reactor using a mercury thermometer. Temperature was measured daily for the first 12 weeks of the experiment and then it was measured approximately twice per week thereafter.

3.6.4.4 pH

pH was measured at days 0, 74 and 181. Similar to the moisture content testing, the pH test had to be slightly modified to use a smaller sample size than is required due to the lack of sample in the reactors. A sample size of 50 grams was used for this test.

3.6.4.5 Bacterial Enumeration

Bacterial enumerations were conducted at the beginning of the experiment, at day 96 and at the conclusion of the experiment (day 182). The enumerations consisted of a heterotrophic plate count using the method previously described in section 3.5 of the thesis.

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Nutrient Analyses

Results of the initial nutrient analyses on the soil are shown in Table 4.1.0. The nutrient analyses indicated that available nitrogen (in the form of ammonia and nitrate) was very low and available phosphorus was also low. Nutrient supplementation for nitrogen and phosphorus deficiency was necessary. The required amounts were calculated from the stoichiometric relationships developed in 4.1.2. It was determined that approximately 40.3 grams of ammonium phosphate fertilizer was required for nitrogen supplementation. Based on the typical N:P:K ratio of 10:1:0.1, it was also determined that 30 grams of fertilizer was required for nitrogen supplementation; however, this amount was less than that required for nitrogen supplementation and the requirement for phosphorus would be satisfied with the addition of the required amount of fertilizer for nitrogen supplementation. Available potassium was adequate for microbial growth based on the typical N:P:K ratio of 100:10:1.

Nutrient	Concentration (mg/L)	
Available ammonia	5.0	
Available nitrate	23.8	
Available phosphorus	1.0	
Available potassium	443	

Table 4.1 – Results of initial nutrient analyses

4.1.2 Determination of Nutrient Deficiency

The results of the nutrient analyses suggested that the soil had fairly low levels of nitrogen (nitrite/nitrate and ammonia) and high levels of phosphorus and potassium. The soil had a pH of 7.49 which is ideal for bioremediation.

The hydrocarbon fingerprint analysis indicated that the contaminant of concern was mainly oil with minor amounts of diesel fuel and/or weathered gasoline, paint thinners, and solvents. The gas chromatographs (Appendix C) indicated an average carbon chain length of approximately C_{22} . Therefore, the following calculations for determination of the nutrient requirements assume that the contaminant has an average carbon chain length of C_{22} . The stoichiometric relationship is as follows:

1) Energy Reaction:

Electron Donor (ED) = $C_{22}H_{44}$ Electron Acceptor (EA) = O_2 ED half reaction:

 $C_{22}H_{44} + 44H_2O \rightarrow 22CO_2 + 132H^+ + 132\ddot{e}$

EA half reaction:

$$4H^+ + 4\ddot{e} + O_2 \rightarrow 2H_2O$$

Energy reaction = ED + EA

$$\frac{1}{132}C_{22}H_{44} + \frac{44}{132}H_2O \rightarrow \frac{22}{132}CO_2 + H^+ + \ddot{e}$$
$$H^+ + \ddot{e} + \frac{1}{4}O_2 \rightarrow \frac{2}{4}H_2O$$
$$\frac{1}{132}C_{22}H_{44} + \frac{1}{4}O_2 \rightarrow \frac{1}{6}CO_2 + \frac{1}{6}H_2O$$

2) Synthesis Reaction:

$$\frac{1}{4}CO_2 + \frac{1}{20}NH_3 + H^+ + \ddot{e} \rightarrow \frac{1}{20}C_5H_7O_2N + \frac{2}{5}H_2O$$

$$\frac{1}{132}C_{22}H_{44} + \frac{1}{3}H_2O \rightarrow \frac{1}{6}CO_2 + H^+ + \ddot{e}$$

$$\frac{1}{132}C_{22}H_{44} + \frac{1}{20}NH_3 + \frac{1}{12}CO_2 \rightarrow \frac{1}{20}C_5H_7O_2N + \frac{1}{15}H_2O$$

Overall reaction = A (energy reaction) + synthesis reaction:

Assume A = 1

$$\frac{1}{132}C_{22}H_{44} + \frac{1}{4}O_2 \rightarrow \frac{1}{6}CO_2 + \frac{1}{6}H_2O$$

$$\frac{1}{132}C_{22}H_{44} + \frac{1}{20}NH_3 + \frac{1}{12}CO_2 \rightarrow \frac{1}{20}C_5H_7O_2N + \frac{1}{15}H_2O$$

$$\frac{1}{66}C_{22}H_{44} + \frac{1}{4}O_2 + \frac{1}{20}NH_3 \rightarrow \frac{1}{12}CO_2 + \frac{1}{20}C_5H_7O_2N + \frac{7}{30}H_2O$$

or

$$C_{22}H_{44} + 16.5O_2 + 3.3NH_3 \rightarrow 5.5CO_2 + 3.3C_5H_7O_2N + 15.4H_2O_2N + 15.4H_2O_$$

For each mole of C₂₂H₄₄ there are: 16.5 moles of O₂ utilized; 3.3 moles of NH₃ utilized; 5.5 moles of CO₂ produced; 3.3 moles of biomass produced; and 15.4 moles of water produced.

Converting from moles to mass, the mass ratio is:

Mw $C_{22}H_{44} = 22 \times 12 + 44 = 308 \text{ g/mole}$ Mw N = 3.3 NH₃ per mole of $C_{22}H_{44} \times 14 = 46.2 \text{ g/mole}$ Mw N/Mw $C_{22}H_{44} = 46.2/308 = 0.15$

Using the theoretical mass ratio above and assuming used oil $(C_{22}H_{44})$ contaminant concentrations of 39,800 ppm, the required level of available nitrogen can be estimated as

39,800 X 0.15 = 5970 ppm of nitrogen required

The soil was estimated to have only 28.81 ppm of available nitrogen. Therefore, approximately 5941 ppm has to supplemented. To estimate the unit mass of nutrient amendment (fertilizer) required, the following calculation was done:

Molecular weight of ammonium phosphate $(NH_4PO_4) = 95$ grams Molecular weight of nitrogen in ammonium phosphate = 14 grams

(95/14) X (5941 mg/kg/1000 g/mg) = 40.3 grams of ammonium phosphate fertilizer per kg of soil.

The phosphorus concentration is also of concern in bioremediation. Typically, a ratio of 10:1 for N:P is necessary to optimize biological activity. Therefore, a theoretical concentration of 597 ppm is predicted. There is currently only 1 ppm of available phosphorus in the soil. Therefore, 596 ppm had to be supplemented. Similar to the calculation for nitrogen supplementation, the calculation for phosphorus is as follows:

Molecular weight of ammonium phosphate $(NH_4PO_4) = 95$ grams; and

Molecular weight of phosphorus in ammonium phosphate = 31 grams

(95/31) X (594 mg/kg/1000 g/mg) = 1.8 grams of ammonium phosphate fertilizer per kg of soil.

Therefore, the amount of ammonium phosphate calculated for nitrogen supplementation will also satisfy the phosphorus requirement.

4.2 Microbial Characterization of Soil Samples

4.2.1 Enumeration of Bacteria

The results of microbial enumeration in the soil in each experimental cell are shown in Table 4.2. Generally, there was an increase in the microbial population in both cells. The microbial population in Cell #1, which was amended with a high energy source, increased by approximately three orders of magnitude throughout the duration of the experiment. The microbial population in cell #2, which did not have the high energy source added to it, stayed constant for the first three months of the experiment and then increased by approximately one order of magnitude during the last three months.

Quinn *et al.* (1997) found that biological counts remained relatively constant over the 13 weeks of a study which used static pile composting to degrade diesel fuel from soil. Although the biological counts did not increase over the course of the experiment, they were significantly higher than those obtained from a sample of the experimental soil to which no amendments were added.

Time (days)	Date	Cell #1 (cfu/g of soil)	Cell #2 (cfu/g of soil)
0	97/06/06	4.3 X 10 ⁶	1.3 X 10 ⁷
96	97/09/10	1.1 X 10 ⁸	1.1 X 10 ⁷
182	97/12/06	2.4 X 10 ⁹	3.1 X 10 ⁸

Table 4.2 – Heterotrophic plate count results

4.2.2 Identification of Bacteria

The types of hydrocarbon degrading bacteria identified in the initial soil samples are shown in Table 4.3.

Table 4.3 –	Types of l	ydrocarbon	degrading	bacteria identified
-------------	------------	-------------------	-----------	---------------------

Bacteria Identified
Aspergillus spp
Actinomycetes spp
Pseudomonas spp
Citrobacter freundi
Pseudomonas fluorescence

Three genera of microorganisms listed in Table 4.3 have been frequently identified as active members of microbial consortiums in bioremediation of hazardous wastes: *Actinomycetes spp, Pseudomonas spp* and *Pseudomonas fluorescence* (Cookson, 1995).

The group found with the highest frequency consists of those belonging to the genus *Pseudomonas*. *Pseudomonas* consist of gram-negative, aerobic chemoheterotrophic organisms (Cookson, 1995). About 30 species have been identified, each of which is capable of utilizing 60 to 100 different organic compounds as their sole carbon and energy source (Cookson, 1995). It is not surprising, therefore, to find them as the predominant group in contaminated soil and groundwater. Two species of *Pseudomonas* were found in the experimental soil. These two species are capable of degrading the petroleum hydrocarbons found in the soil at the site (Cookson, 1995).

4.3 Temperature

The results of temperature monitoring throughout the experiment for Reactors 1 and 2 are summarized in Tables 4.4 and 4.5, respectively, and in Figure 4.1. Temperature did not increase significantly throughout the experiment, as one would have expected in a composting experiment. This may be attributed to any one of or a combination of the following:

- the aeration rate was quite high (5 litres/min) and may have cooled the reactors which prevented a temperature increase;
- the amount of thermal source (grass clippings) may not have been sufficient to produce the temperature rise characteristic in municipal waste composting; and/or
- Pseudomonas spp. and Pseudomonas fluorescens were found to be present in the soil and, as stated earlier, are two types of microorganisms that are frequently

identified as the active members of microbial consortiums (Cookson, 1995). The temperature for growth of *Psuedomonas spp.* has been reported to be in the -10° C to 20°C range (Cookson, 1995). The temperature for growth of *Pseudomonas fluorescens* has been reported to be in the range of 20 to 25°C. The optimum temperature which would satisfy the requirements of these organisms is likely around 20°C, which was approximately where the temperature of the soil remained throughout the experiment.

As stated earlier in this thesis, it has been found by other researchers that composting can be successful under ambient temperature conditions (i.e. 20 to 30 °C) (Cookson, 1995). Furthermore, the development of high temperatures is not necessary when composting some hazardous wastes, such as petroleum products, because pathogenic organisms are not present.

Date (1997)	Temperature (°C)	Date (1997)	Temperature (°C)
Jun 6	21	Aug 5	27
Jun 7	22	Aug 12	25
Jun 8	21	Aug 15	26
Jun 9	21	Aug 20	25
Jun 10	22	Aug 23	24
Jun 11	22	Aug 27	25
Jun 12	21	Aug 31	26
Jun 13	21	Sep 4	26
Jun 14	22	Sep 10	25
Jun 15	23	Sep 15	24
Jun 16	22	Sep 22	23
Jun 17	23	Sep 26	24
Jun 18	23	Sep 30	23
Jun 19	22	Oct 5	23
Jun 20	23	Oct 10	22
Jun 21	23	Oct 16	23
Jun 22	23	Oct 20	24
Jun 23	24	Oct 24	23
Jun 24	24	Oct 27	23
Jun 25	23	Oct 30	23
Jun 26	23	Nov 3	23
Jun 30	24	Nov 6	23
Jul 4	25	Nov 10	21
Jul 9	25	Nov 14	22
Jul 14	24	Nov 20	21
Jul 17	24	Nov 26	22
Jul 23	25	Nov 30	22
Jul 30	25	Dec 5	21

Table 4.4 – Results of temperature monitoring for Reactor 1

Date (1997)	Temperature (°C)	Date (1997)	Temperature (°C)
Jun 6	21	Aug 5	26
Jun 7	22	Aug 12	25
Jun 8	22	Aug 15	24
Jun 9	23	Aug 20	24
Jun 10	22	Aug 23	25
Jun 11	23	Aug 27	26
Jun 12	22	Aug 31	25
Jun 13	22	Sep 4	25
Jun 14	24	Sep 10	25
Jun 15	24	Sep 15	24
Jun 16	24	Sep 22	24
Jun 17	23	Sep 26	24
Jun 18	25	Sep 30	23
Jun 19	24	Oct 5	23
Jun 20	22	Oct 10	22
Jun 21	23	Oct 16	22
Jun 22	24	Oct 20	23
Jun 23	23	Oct 24	22
Jun 24	23	Oct 27	22
Jun 25	24	Oct 30	23
Jun 26	22	Nov 3	22
Jun 30	24	Nov 6	22
Jul 4	25	Nov 10	21
Jul 9	25	Nov 14	23
Jul 14	25	Nov 20	22
Jul 17	26	Nov 26	23
Jul 23	27	Nov 30	22
Jul 30	26	Dec 5	22

Table 4.5 – Results of temperature monitoring for Reactor 2

Figure 4.1 Temperature vs time for Reactors 1 and 2

4.4 TPH Concentrations, Moisture Content and pH

TPH concentrations, moisture content and pH of the soil in each experimental cell are shown in Table 4.6. The TPH concentration, pH and moisture content versus time are shown in Figures 4.2, 4.3 and 4.4, respectively.

TPH concentrations in Reactor 1 and Reactor 2 decreased from 39100 ppm to 1300 and 11000 ppm, respectively, in 181 days. These reductions in the TPH concentrations correspond to removals of approximately 96.7 percent and 71.9 percent for Reactors 1 and 2, respectively. The difference between Reactors 1 and 2 was the addition of a highly biodegradable material to Reactor 1 and not to Reactor 2. The addition of a highly biodegradable source (grass clippings) resulted in a significantly higher overall removal

of TPH. These results compare very well with a pilot-scale study conducted by Quinn *et al.*, (1997) where aerated static piles were used to reduce the concentration of diesel fuel in contaminated soil from 3000 ppm to less than 200 ppm in 13 weeks.

pH of the compost mix in each reactor was monitored three times during the course of the study, at the beginning, approximately halfway through and at the end. The pH profile was essentially the same for both reactors. pH started at approximately 7.49 in both reactors, then increased to 8.23 and 8.03 in Reactors 1 and 2, respectively, halfway through the study and then it decreased to 7.25 and 7.05 in Reactors 1 and 2, respectively, at the end of the study. This is because during the first stages of the biodegradation process organo-nitrogen compounds are broken down which releases NH_4^+ and causes the pH to rise (LaGrega *et al.*). This is followed by the gradual increase in microbial activity producing CO₂ which causes the pH to decrease (Golueke, 1977). The pH profile was consistent with that expected based on other similar studies reported in the literature.

The moisture content of the compost mixture remained between 29 and 33 percent in both reactors which corresponds to approximately 45% to 51% saturation. The saturation point of the soil at the site was determined to be approximately 65 percent moisture by weight of soil. This is consistent with the literature which suggests an optimum moisture content for biodegradation of hydrocarbons in soil of approximately 40 to 48 percent of soil saturation (Saberiyan *et al.*, 1996 and Stegmann *et al.*, 1991).
			Reactor 1			Reactor 2	
Time	Date	TPH	Moisture	pН	TPH	Moisture	pН
(Days)	(1998)	(ppm)	(%)		(ppm)	(%)	
0	Jun 6	39100	30.5	7.49	39100	30.5	7.49
26	Jul 2	27000	29.7	-	19000	30.4	-
55	Jul 31	10000	30.9	-	14000	31.3	-
74	Aug 19	4300	31.2	8.23	11000	32.6	8.03
181	Dec 4	1300	29.2	7.25	11000	32.4	7.05

Table 4.6 – Results of TPH, moisture content and pH in reactors

Figure 4.2 TPH vs time for Reactors 1 and 2

Figure 4.3 pH vs time for Reactors 1 and 2

Figure 4.4 Moisture content vs time for Reactors 1 and 2

4.5 Calculation of Rate Constants

Values of ln (C/C₀) are plotted vs time in days in Figure 4.5. Regression analysis was used to determine the rate constants for each reactor. The regression equation for each of the reactors are shown on the graph in Figure 4.5. The rate constants for Reactors 1 and 2 are simply the slopes of the two lines in Figure 4.5. The rate constants are -0.019/day and -0.006/day for Reactors 1 and 2, respectively. Using these rate constants and equation (2.8) developed previously the half-life of the contaminant can be calculated as follows:

$$\ln(C/C_0) = -Kt \tag{4.1}$$

or, rearranging

$$t = -\frac{\ln(C/C_0)}{K} \tag{4.2}$$

where,

C₀ = initial contaminant concentration in soil
C = final or target concentration in soil
K = degradation rate constant
t = degradation time

For Reactor 1, K = -0.019/day, $C_0 = 39\ 100\ \text{ppm}$ and C = 39\ 100/2 = 19\ 550\ \text{ppm}. Therefore, using equation (2), the half-life of the contaminant using the amendments of Reactor 1 is 36.3 days. Similarly, for Reactor 2, K = -0.006/day, $C_0 = 39\ 100\ \text{ppm}$ and C = 19\ 550\ \text{ppm}, the half-life of the contaminant is 121.6 days.

The regulatory criteria for TPH concentration in contaminated soil in Saskatchewan is 1000 ppm. The estimated time to remediate the soil in each of the reactors used in this study can be calculated using equation (2) and the following variables:

C₀ = 39 100 ppm C = 1000 ppm K = -0.019/day for Reactor 1 and K = -0.006/day for Reactor 2

The resulting period to remediate a batch of soil from the site, assuming an average initial TPH concentration of 39 100 ppm would be 192 days and 643 days for Reactors 1 and 2, respectively.

Figure 4.5 $\ln (C/C_0)$ vs time for Reactors 1 and 2

The degradation time of 192 days for Reactor 1 compares very well with the 184 to 230 day range that Viraraghavan *et al.* (1997) reported for biopile composting petroleum hydrocarbon contaminated soil. Their estimate of degradation time was based on degradation rate reported in the literature (Howard *et al.*, 1991). Howard *et al.* (1991) reported degradation rate constants for various hydrocarbon components (BTEX) in the range of -0.027/day for xylenes to -0.18/day for ethylbenzene. Based on several case studies reported by Viraraghavan *et al.* (1997), the average degradation rates reported for TPH was -0.030/day. Saberiyan *et al.* (1996) reported degradation constants for TPH in soil (consisting of diesel fuel and motor oil) of -0.056/day and -0.065/day (consisting of diesel fuel only). These rate constants compare very well to the degradation rate constant

of -0.019/day obtained for Reactor 1. The slight difference between the rate constant obtained for Reactor 1 and those obtained by Saberiyan *et al* (1996) can be explained by the fact that the soil used in this study was mainly contaminated with used oil and those that Saberiyan (1996) reported on were based on a mixture of diesel fuel and motor oil and diesel fuel alone.

Statistical analysis of the data (Appendix D) indicates that the data obtained for Reactor 1 is statistically significant at the 95 percent confidence level. That is, the predicted values of $\ln (C/C_o)$ agree very well with the obtained values. However, the analysis shows that the data from Reactor 2 is not significant at the 95 percent confidence level.

4.6 Preliminary Design of Composting System

Based on the results reported in the thesis and by Viraraghavan et al (1997), it is evident that biopile composting is a feasible alternative for this site. It is further evident that remediation time may be reduced by as much as two thirds if grass clippings or some other source of highly biodegradable solids are added to the contaminated soil.

A static pile composting system could be constructed on the north side of the subject site. It is expected that due to the high volume of soil that must be treated at the site, it would have to be done in batches over a two to three year period. The soil would have to be treated in three batches over a period of three summers. Each batch would be treated in four piles, each with dimensions of approximately 30m X 15m X 2m high. A preliminary, conceptual design and construction plan for a composting system is presented in the following points:

- An area large enough to treat the desired batch of soil would be prepared to prevent runoff and leachate from the piles from entering surface or groundwater systems. This would likely consist of a bermed area with an impermeable liner (either synthetic or a natural soil liner). If a synthetic liner is used, it would have to be covered by a layer of soil to protect it during pile construction.
- The pile(s) would then be constructed within the bermed area on top of the impermeable liner. The pile(s) would likely be constructed in 0.5m to 1.0m layers.
- The contaminated soil would be excavated from the pit and stockpiled for preparation to place into piles. The soil would be mixed with gravel by placing a windrow of each material side by side and then blading the two together to form a mixture of the correct proportions. Once the soil and gravel are mixed together, the grass clippings and fertilizer would be mixed in. This may be accomplished using the windrow method as well.
- Once the components are mixed together adequately, the pile would be constructed. Construction of the pile would consist of placing a 0.5 m thick layer of the mixture on the impermeable liner, then laying a grid of perforated PVC pipe over the layer. Following this, another layer, approximately 1m thick (can be thicker than first layer because aeration pipes are above and below rather than just above), would be added over the piping, then another grid of pipes. This process would continue until the desired pile height is achieved. This would be no more than 6m. The length of the pile would have

to be constructed in short sections to prevent the need for construction equipment to travel over the constructed portions of the pile and prevent compaction of the pile and breakage of the piping. The length of the pile would vary and would depend on the area of land available for treatment.

- After the pile is constructed, the piping would be connected to an air supply.
- It is expected that the air would be blown through the pile and vented to the atmosphere. Adequate moisture within the piles would be maintained by manually sprinkling the pile with water and also from precipitation as it is available. The moisture content would be maintained at approximately 30 percent. This would be ensured through monitoring of the moisture content.
- As each batch of soil is remediated it would be stockpiled until all contaminated soil is excavated. The remediated soil could then be used to refill the excavation.

A schematic of the conceptual composting system is shown in Figure 4.6.

Figure 4.6: Schematic diagram of composting system

CHAPTER 5

SUMMARY, CONCLUSIONS AND FURTHER RESEARCH NEEDS

5.1 Summary

A bioremediation treatability study was conducted, using a composting process, to degrade TPH from soil. The treatability study compared the use of different amendments in an attempt to determine if the remediation time would be affected by the addition of certain amendments to the soil. It was apparent from the study that the type of high-energy source added to the soil would have an effect on the degradation rate of the TPH.

5.2 Conclusions

The following conclusions were drawn from the present study:

• The contaminated soil from the site contains hydrocarbon degrading bacteria. The genus and species of bacteria identified were Aspergillus spp, Actinomycetes spp, Pseudomonas spp, Citrobacter freundi, and Pseudomonas fluorescence. The indigenous bacteria, currently present at the subject site, were found to be capable of degrading the contaminant of concern, namely petroleum products.

- Nutrient levels in the soil suggested insufficient amounts of nitrogen and phosphorus for bioremediation to occur at an optimum rate. To compensate, a nutrient supplement of 40.3 g of ammonium nitrate fertilizer per kg of soil may be needed.
- Based on the results of the treatability study, the half-life of the contaminant at the subject site was estimated to be 36.3 days and 121.6 days with the addition of grass clippings (Reactor 1) and without the addition of grass clippings (Reactor 2), respectively.
- Based on the reaction rate of the contaminant in each reactor, it was estimated that it would take approximately 192 and 643 days to remediate a volume of soil to an acceptable level of TPH using the amendments of Reactors 1 and 2, respectively.
- Neither of the reactors exhibited significant temperature increase during the course of the composting process and the decrease just prior to completion of the composting process that is characteristic of municipal waste composting systems. This was likely due to the fact that the aeration rate was quite high and may have cooled the reactors, preventing a temperature increase, or the percentage of the high energy source (grass clippings) was not sufficient to cause the characteristic temperature rise.

5.3 Further Research Needs

The following studies could be considered in future:

- Further treatability studies to optimize the amount of fertilizer required.
- Further treatability studies utilizing different types and amounts of highly organic substances to determine if the composting process can be accelerated further so that a batch of soil can be remediated in less than the 192 days as indicated by the present study.
- Further treatability studies using different concentrations of contaminants ranging from the lowest to the highest found at the site. This may show an upper limit of petroleum hydrocarbon concentration that may be toxic to the microorganisms and prevent bioremediation.
- A study to determine the optimum air flow rate through the compost pile.
- A pilot-scale study, using the results of this and any other treatability studies that are conducted, to determine the potential success of a full-scale operation.

REFERENCES

Albrecht, C. R. and Balmer, A. G. (1983). "Large-scale composting using the aerated static pile method." *Proceedings of the International Conference on Composting of Solid Wastes and Slurries*, University of Leeds, Leeds, England.

Atlas, R. M. (1975). "Effects of temperature and crude oil composition on petroleum biodegradation." Appl. Microbiol., 30, 396 – 403.

Battaglia, A. and Morgan, D. J. (1994). "Ex-situ forced aeration of soil piles: a physical model." Environmental Progress, 13(3), 178 – 186.

Beaudin, N., Caron, R. F., Legros, R., Ramsay, J., Lawlor, L. and Ramsay, B. (1996). "Cocomposting of weathered hydrocarbon-contaminated soil." *Compost Science and Utilization*, 4(2), 37 – 45.

CCME (1991). "Interim Canadian environmental quality criteria for contaminated sites." Report CCME EPC-CS34, Canadian Council of Ministers of the Environment, Winnipeg, Manitoba, Canada.

Cookson, J. T. (1995). "Bioremediation engineering design and application." McGraw-Hill Inc., New York, N. Y.

Demque, D. E. (1994). "Land treatment testing of diesel contaminated soils using bioremediation." *M. Sc. Thesis, Royal Military College of Canada*, Kingston, Ontario.

Golueke, C. G. (1977). "Biological reclamation of solid wastes." Rodale Press, Emmaus, PA.

Haug, R. T. (1980). "Compost engineering." Ann Arbor Science Publishers Inc./The Butterworth Group, Ann Arbor, MI.

Howard, P. H., Boethling, R. S., Jarvis, W. F., Meylan, W. M. and Michalenko, E. M. (1991). "Handbook of environmental degradation rates." Lewis Publishers, Chelsea, MI.

Jobson, A., Cook, F. D. and Westlake, D. W. S. (1972). "Microbial utilization of crude oil." Appl. Microbiol., 23, 1082 – 1089.

LaGrega, M. D., Buckingham, P. L., and Evans, J. C. (1994) "Hazardous waste management." McGraw Hill Inc., New York, N. Y.

Leahy, M. C. and Brown, R. A. (1994). "Bioremediation: optimizing results." Chemical Engineering, 101 (5),108 - 116.

Maathuis and van der Kamp (1988) "Comprehensive evaluation of resources in the Regina area," Saskatchewan Research Council, Technical Report No. 209.

McKeague, J. A. (1978). "Manual on soil sampling and methods of analyses." Canadian Society of Soil Science, Ottawa, ON.

Pheiffer, T. H., Nunno, T. J. and Walters, J. S. (1990). "EPA's assessment of European contaminated soil treatment techniques." *Environmental Progress*, 9(2), 79 – 86.

Pruess, A. and Saberiyan, A. (1996). "Oats Park School biotreatability study analyses and results – Fallon, Nevada." AGRA Earth & Environmental Limited, Report 21-OBIOLAB-T35.

Quinn, J. W. and Reinhart, D. R. (1997). "Bioremediation of diesel contaminated soil using biopiles." Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 18-25.

Rowell, M. J., Ashworth, J. and Qureshi, A. A. (1992). "Bioremediation of petroleum hydrocarbons in soil environments." *Norwest Soil Research Limited*, Edmonton, Alberta, Canada.

Saberiyan, A. G., MacPherson, J. R., Andrilenas, J. S., Moore, R. and Pruess, A. J. (1996). "A bench-scale biotreatability methodology to evaluate field bioremediation." *Monitoring and Verification of Bioremediation – Battelle Press*, 3(5), 185 – 191.

Savage, G. M., Diaz, L. F. and Golueke, C. G. (1985). "Disposing of organic hazardous wastes by composting." *Biocycle*, January/February, 1985, 31 – 34.

SERM (1995). "Risk based corrective actions for petroleum contaminated sites." Regina, Saskatchewan, Canada.

St-Cyr, M., Nelson, C. H. and Hawke, C. T. (1992). "Bioremediation treats contaminated soils in Canadian winter." *Oil and Gas Journal*, Nov. 1997, 68 – 72.

Stegmann, R., Lotter, S. and Heerenklage, J. (1991). "Biological treatment of oilcontaminated soils in bioreactors." *On-site Bioremediation: Processes for Xenobiotic and Hydrocarbon Treatment*, Butterworth – Heinemann Stoneham, MA, Hinchee, R. E., and Offenbuttel, R. E. (Eds.), 188 – 208.

Tchobanoglous, G, Thiesen, H. and Vigil, S. A. (1993). "Integrated solid waste management – engineering principles and management issues." McGraw-Hill Inc., New York, N. Y.

U. S. EPA, (1989) "Summary Report, In-Vessel Composting of Municipal Wastewater Sludge," EPA625/8-89/016, September, 1989.

U. S. EPA, (1986) "Test Methods for Evaluation of Solid Waste", 3rd Edition, Office of Solid Waste Emergency Response, U.S. EPA, Washington, D. C.

Viraraghavan, T., Mihial, D., Thomson, R. B. and Mortin, M. D. (1997). "Bioremediation of a petroleum-contaminated site – a feasibility analysis." Paper presented at the 52nd Annual Purdue Industrial Waste Conference, W. Lafayette, Indiana.

Westlake, D. M. S., Jobson, A, Phillipe, R. and Cook, F. D. (1974). "Biodegradability and crude oil composition." *Canadian Journal of Microbiology*, 20, 915 – 928.

Williams R. T. and Myler, C. A. (1990), "Bioremediation using Composting" *Biocycle*, November, 1990, 78 - 82.

APPENDIX A

TEST HOLE LOGS

OIL P	IT E	VALU	TION		TEST HOLES		BOREHOLE NO: TH1	
FLEET	ST	REET	UND	FILL	DRILL METHOD: HOLLON	N STEN AUGER WITH	PROJECT NO: JX30012	
CITY	OF I	REGIN	<u> </u>		SPLIT SPOON CORE SA	WPLER	ELEVATION: 605.93 (m)	
SAMP	12	TYPE	Ļ	THIN WALL TUBE DISTURBED			HOLLOW STEM	
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOIL DESCRIP	TION	A HIDROCARBON VAPOLIR (PPI) A 2000 4000 6000 8000 PLASTIC H.C. LIQUIL	COMMENTS	ELEVATION(m)
- 0.0	┢		17	CLAY(FILL 5.5m)-WOIST,VERY	STIFF. HIGHLY	70 40 60 80		┢──
1.0				PLASTIC, BLACK -STRONG HYDROCARBON ODOL -SOME GRAVEL NEAR SURFACT	JR			
- 2.0	HH							
- 3.0	\mathbb{I}	DI		-ARUNDANT REFUSE RELOW 3	ელ			5-605 .0
4.0	H H			-GROUNDWATER AND OIL SEEF ICANT SLOUGHING BELOW 3.8	AGE WITH SIGNIF-			- 602 .0
5.0	H			ĨĊĹĂŶ(FIĹĹ,1.3m)-SIĹŦŸ,VĔŔŸ Ă	IOIST SOFT TO			
5 - 6.0	Ħ	CI		FIRM,MEDIUM PLASTIC,GREY -HYDROCARBON ODOUR				- 600 ·
- 7.0	H			SAND-SILTY,CLAYEY,MOIST,DEN ED,BROWN -GREY BELOW 7.2m	ise,fine grain-			599
9.0		รม						-
- 9.0	H			END TEST HOLE AT 9.1m				E 597.
E 10.0 								- 596 /
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								- 595.
12.0		<u> </u>	<u> </u>	L		LOCCED BY: TK		<u> </u>
A	GF	ra I	Ŀar	th & Environmen	tal Limited	REVIEWED BY: EDF DJM	COMPLETE: 12/13/93	<u> </u>
+176-784		<u></u>		Regilla, Saskalchewal	1	rig. No: 4	l Page	1 61 1

OIL PI	T EN	VALUA	TION		TEST HOLES					BOREHOLE NO: TH2	
FLEET	STR	REET	AND	ALL	DRILL WETHOD: HOLLON	N STEN AU	GER W	ITH		PROJECT NO: JX30012	<u> </u>
CITY C	F R	ECIN/	\		SPLIT SPOON CORE SA	MPLER			00	ELEVATION: 605.66 (m)	
SAMP	LE .	TYPE	_	THIN WALL TUBE DISTURBED	192	<u>_</u>	CASING			HOLLOW STELL UL CORE	
(m) H1430	SAMPLE TYPE	nsc	SOIL SYMBOL	SOII DESCRIP	, TION	A HYDROC 2000 PLASTIC	ARBON 1 4000 N.C	(APOUR 6000	(PPN) A 8000 UQUED	COMMENTS	ELEVATION(m)
- 0.0	Н	SN	HH	SAND(FILL.0.2m)-SILTY, MOIST.	MEDIUM DENSE.		- * -	- B V		+	
- 1.0	H H			BROWN {-TRACE OF CLAY CLAY(FILL,5.1m)-SILTY,MORST, HIGHLY PLASTIC,BLACK -STRONG HYDROCARBON ODOI	VĒRY STIFF,						605.0
3.0		СН							· · · ·		- 603 0
4.0	H H F			-VERY MOIST W/ REFUSE FRO -BROWN AND GREY BELOW 3. -NODERATE HYDROCARBON OF	M 3.4m 10 3.7m 7m DOUR						602.0
- 6.0	H H	SH		SAND-SILTY,CLAYEY,MOIST,DEI ED,BROWN -NODERATE HYDROCARBON OI	nse,fine grain						
1.0				END OF TEST HOLE AT 7 6m			• • •	-	• • •		
- 8.0				NOTE:NO ACCUMULATION OF C SLOUGH IN TEST HOLE IN DRILLING.	ROUNDWATER OR INEDIATELY AFTER			•	- · ·		د. د. د.
- 9.0 									• • •		
- - - - - - - - - - - - - - 	,										- - - - - - - - - - - - - - - - - - -
F		1									- <u>*</u> *
A	CI	RA	Eai	th & Environmer Regina Saskatchewa	ntal Limited	LOGGED B REVIEWED Fig. No: S	Y: TK 8Y: El	DF DJ	M	COMPLETION DEPTH: COMPLETE: 12/14/9	7.6 m 13 Page 1 of 1

oil pi	T EV	VALUA	TION		TEST HOLES				BOREHOLE NO: 1	TH3
FLEET	ST	REET	LAND	FILL	DRILL METHOD: HOLL	DW STEN AUGE	ER WITH		PROJECT NO: JX3	0012
	DF R	EGIN	\ 		SPUT SPOON CORE S	AMPLER			ELEVATION: 605.5	<u>B (m)</u>
SAMP		TYPE	_	THIN WALL TUBE DISTURBED	SPT		SING		HOLLOW STEM	CORE
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOI DESCRII	L PTION	A HYTOROCAR 2000 40 PLASTIC	SON VAPOLIR 000 5000 N.C.	(PPN) ▲ 8000 ▲ LIQUED	COMME	ELEVATION(m)
0.0	\mathbb{H}	-511 -	777	SAND/FILL SOmm)-SILTY HOL	ST MEDILIM DENSE		<u>0900</u>	-	+	
- 1.0	H	Сн		BROWN -TRACE OF CLAY CLAY(FILL,3.5m)-SILTY,MOIST HIGHLY PLASTIC,GREY -MODERATE HYDROCARBON (I,VERY STIFF,	•••			-	- 605 () - 604 ()
- 29	Ħ			-RUCK OK CUNCKETE AT T.8 -GREY AND BROWN BELOW 2	m LOm					
- 3.0										
- 4.0	H	SM		SAND-SILTY, CLAYEY, MORST, DE ED, BROWN AND GREY -SLIGHT HYDROCARBON ODO -SLOUGHED DURING DRILLING	ÎNSE,FÎNE GRAÎN- Ur 3					- 402 3
- 5.0				END OF TEST HOLE AT 4.6m NOTE:NO ACCUMULATION OF SLOUGH IN TEST HOLE I DRILLING.	GROUNDWATER OR MMEDIATELY AFTER			··· • • • ··		- 600 0
- 1.0								· • · · · • • · · · •		
- 1.0								· · · · · ·		- 598.0 - 598.0
- 9.0								· • •		596.0
- 10.0						· · · · · · · · · · · · · · · · · · ·	•			- - -
- 11.0						H	•	· •		
120		L	<u> </u>	L			<u>.</u>			
A(GR	A E	lar	th & Environmen Regina, Saskatchewa	ntal Limited	REVIEWED BY	EDF DJM	[COMPLETION DI COMPLETE: 12	14/93 Poge 1 of 1

DIEL STEPT LANDRIL DEAL WETHOD: HOLD WITH ALGER WITH PROJECT HOR. 20012 SUMPLE TYPE DIM WALL TARE DESTINGED DIM WALL TARE DESTINGED DIM WALL TARE DESTINGED DIM WALL TARE DIM WALL	OIL PI	T E	VALU/	TION		TEST HOLES						BOREHOLE NO:	TH4	
GTY OF REGAU [SVIT SPON CORE SAMPLER [LLVATOR: EUS.8] (m) SAMPLE TYPE [MAIL WALL TARE [DISTURBED [ST [LLVATOR: EUS.8] (m) SAMPLE TYPE [MAIL WALL TARE [DISTURBED [ST [LLVATOR: EUS.8] (m) SAMPLE TYPE [MAIL WALL TARE [DISTURBED [ST [LLVATOR: EUS.8] (m) SAMPLE TYPE [MAIL WALL TARE [DISTURBED [ST [LLVATOR: EUS.8] (m) SAMPLE TYPE [MAIL WALL TARE [DISTURBED [ST [ST [COMMENTS SAMPLE TYPE [MAIL TARE [DISTURBED [ST [ST [COMMENTS [ST SAMPLE TYPE [DISTURBED [DISTURBED [ST [ST [COMMENTS [ST SAMPLE TYPE [DISTURBED [ST [ST [ST [ST [ST [ST SAMPLE TYPE [ST	FLEET	ST	REET	LAND	nu	DRILL METHOD: HOLL	OW ST	EN AL	GER V	NTH		PROJECT NO: J	30012	
SAMPLE TYPE DIAL WALL THE LOSS THE LOSS AND STREET STOTE SEED STOTE STANDARD STREET STOTE HIGHLY PASTIC.CREY AND BROWN WITH BLACK STANDARD STREET STOTE HIGHLY PASTIC.CREY AND BROWN WITH BLACK STANDARD STREET STOTE HIGHLY PASTIC.CREY AND BROWN WITH BLACK STANDARD STREET STREET STREET STREET HIGHLY PASTIC.CREY AND BROWN WITH BLACK STANDARD STREET STREET STREET STREET STREET STREET HIGHLY PASTIC.CREY AND BROWN BELOW 1.4m STREET STREET	CITY)F F	EGIN	<u>ا</u>		SPLIT SPOON CORE S	SAMPLE	R		_	- 001	ELEVATION: 605	.81 (m)	
Image: Solid State of the solution of the solut	SAMP	Ľ	TYPE		THIN WALL TUBE OISTURGED			<u> </u>	CASIN	<u> </u>		IOLLOW STEM		
Col C	оертн (m)	AMPLE TYPE	nsc	DIL SYMBOL	SOIL DESCRIP	TION	A RU	1110R00 2000 1.STIC	4000 K.	VAPOU 6000	± (1994) ▲ 10000_ 10000	Сомм	ents	EVATION(m)
13 CLATFILL 2. Im)-SILT MORT VERY STIFF. 14 Image: Provide Structure St	_	S		S				20	40	60				<u></u>
-10 -10 -10 -10 -10 -10 -10 -10	0.0 - 1.0	H	СХ		CLAY(FILL,2.1m)-SILTY,MOIST, HIGHLY PLASTIC,GREY AND BRO STAINING	YERY STIFF, DWN WITH BLACK	A							- 60 5.0
Image: Computer State S	- 20	H			-GREY AND BROWN BELOW 1.4	lm ,								-
34 SAU-SLIT, CLIET, AUDIT, DERSE, FIRE STORM 10 11 11 END OF TEST HOLE AT 4.6m NOTE-NO ACCUMULATION OF GROUNDWATER OR SLOUGH IN TEST HOLE IMMEDIATELY AFTER DRILLING. 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.0 13.0 14.0 14.0 15.0 15.0		Ħ	a		CLAY(TILL)-NOIST, VERY STIFF, TIC, BROWN -SOME BLACK STAINING	NEDIUM PLAS-	• • •				· · · · · · ·			- 6 03.0
AGRA Earth & Environmental Limited Regina, Saskatchewan Regina, Saskatch		H	SH		ED,BROWN	ISE,FINE GRAIN-			1					-602.0
	5.0	H			END OF TEST HOLE AT 4.6m NOTE:NO ACCUMULATION OF G SLOUGH IN TEST HOLE IM	ROUNDWATER OR MEDIATELY AFTER								- 601.0
-7.0 i -1.6 i -1.6 -598 -1.6 -598 -1.6 -598 -1.6 -598 -1.6 -598 -1.0	- 6.0				URILLING.									- 600 .4
10.0 10.0 11.0 12.0 ACRA Earth & Environmental Limited Regina, Saskatchewan LOGGED BT: TK REVIEWED BT: EDF DJM Fig. No: 7 COMPLETION DEPTH: 4.6 m COMPLETIC: 12/14/93	- - - - - - -										-			
11.0 ACRA Earth & Environmental Limited Regina, Saskatchewan Fig. No: 7 P27 ACRA Earth & Environmental Limited Regina, Saskatchewan Fig. No: 7 Poge 1 of 1 P10.0	- 10								••••••	• • •	· · · ·			- 598 .0
10.0 -10.0 11.0 -11.0 12.0 -11.0 AGRA Earth & Environmental Limited Regina, Saskatchewan LOGGED BT: TK REVIEWED BT: EDF DJM Fig. No: 7 COMPLETION DEPTH: 4.6 m COMPLETIC: 12/14/93	- - - - - -			,					• • • ·		· ·			527.0 L
AGRA Earth & Environmental Limited Regina, Saskatchewan Regina Saskatchewan AGRA Earth & Environmental Limited Regina Saskatchewan Regina Saskatchewan Fig. No: 7 Poge 1 of 1	- - - - - -							•		•	• • •			
AGRA Earth & Environmental Limited Regina, Saskatchewan Regina Saskatchewan Regina Saskatchewan Regina Saskatchewan Regina Saskatchewan Regina Saskatchewan Regina Saskatchewan Regina Saskatchewan Regina Saskatchewan		,							•	·· •				- - - - -
AGRA Earth & Environmental Limited Regina, Saskatchewan Regina Saskatchewan Regina Saskatchewan Regina Saskatchewan	£						1							-594.0
Regina, Saskatchewan Fig. No: 7 Poge 1 of	A	GE	RA	Ear	th & Environmen	tal Limited	LOG	GED B IEWED	IT: TK BY: E	DF DJ	M	COMPLETION COMPLETE:	DEPTH: 4.6 (m
	L				Regina, Saskatchewa	n	Fig.	No:	/				Pog	e 1 of 1

OIL P	IT E	VALUA	TION		TEST HOLES			BOREHOLE NO: TH5	
กณ	ST	REET	LAND	FILL,	DRILL METHOD: HOLLO	W STEN AUGER	WITH	PROJECT NO: JX30012	
CITY		EGIN	\ 		SPLIT SPOON CORE S	AMPLER	~m	ELEVATION: 606.13 (m)	
DEPTH (m)	SAMPLE TYPE F	SU	SOIL SYMBOL	SOIL DESCRIP	TION	▲ HTOROCARION 2000 4000 PLASTIC N	I VAPOLIR (PPN) ▲ 5000 3000 LC. LIQUID €I		ELEVATION(m)
0.0		24		SAND(FILL,0.3m)-SILTY,MOIST,	MEDIUM DENSE,			+	606.0
1.9	H H			,BROWN I-TRACE OF CLAY CLAY(FILL,5.5m)-SILTY,MOIST, HIGHLY PLASTIC,BLACK - STRONG HYDROCARBON ODO -GREY BELOW 1.1m	VĒRY STIFF,				605 .0
- 20	Ξ								- 604 .0
- 10		СН		-ABUNDANT REFUSE BELOW 2. -GROUNOWATER AND OIL SEEF ICANT SLOUGHING BELOW 2.9	9m Page with Signif- m				- 603 () -
4.0							• • • • • • • • • • • • • • • • • • •		-602 .0
5.0 	Ħ						• • • • • • • • • • • • • • • • • • •		1 1 1 1 1
- 6.0	H			SAND-SILTY, CLAYEY, MOIST, DEN ED, BLACK AND GREY -SLOUGHED DURING DRILLING	ise,fine grain-		•		5 600.0 5
- - - - - -	H	şm				·	••••		599.0
1 - 8.0	H						• • • • • •		598 (
- - - - - -	H			END OF TEST HOLE AT 9.1m					597.0
10.0 10.0							- - -		596.0
i 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.									5755
-120		<u> </u>				LOCCED BY TH		CONFLETION DEPTH- 9	<u>F</u>
A	GÞ	(A I	tar	UN & ENVIRONMEN Regina Saskatcheway	tal Limited	REVIEWED BY: E	DF DJM	COMPLETE: 12/14/93	de 1 of 1
170176	114					1			

OIL PIT	0	ALUA	TION		TEST HOLES					BOREHOLE N	0: TH6	
กเยา	STR	REEL I	AHD		DRILL WETHOD: HOLLO	W STEM A	UGER W	ALH		PROJECT NO:	JX30012	
CITY O	FR	EGIN	\ 		SPUT SPOON CORE S	NIPLER			- CT .	ELEVATION: (506.24 (m)	
SAMPL	<u>.</u>	TYPE		THIN WALL TUBE			-CASING	;		Iollow Stell	CORE	
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOII DESCRIF	TION	A HYDRC 2000 PLASTIC	CARBON 4000 16.0	VAPOUE 6000	2 (PPM) ▲ 3000 UQUID	COI	AMENTS	(m)
	-						40	60	80	·		_ _
- 1.0		CH Q		CLAY(FILL,2.7m)-SILTY,VERY STIFF HIGHLY PLASTIC, BROWN -TRACE OF SAND AND GRAVE CLAY(TILL)-MOIST, VERY STIFF PLASTIC, BROWN SAND-SILTY, CLAYEY, MOIST, DE ED, BROWN -SLOUGHED DURING DRILLING	noist,firm to L Tō Hārd,mēdium Nše,finē grain-							605.0 605.0 604.0 603.0
8.0 10.0 10.0 11.0				END OF TEST HOLE AT 6.1m NOTE:NO ACCUMULATION OF O SLOUGH IN TEST HOLE II DRILLING.	GROUNDWATER OR WNEDIATELY AFTER							- 598.0 - 598.
120 A (CF	2 1	<u>ו</u> הפיז	th & Environme	ntal limited	LOCCED	BY: TK		·	COMPLET	ION DEPTH: 6.1	
	u	١A	لەن	Pogina Sackatahar		REVIEWE) BY: E	OF D1	м	COMPLET	E: 12/14/93	ma 1 al 1
8/170	TĒ	644		negina, baskatchewa	<u> </u>	1rig. no:	3				ro	garror i

OIL PI	IT E	VALU	ATION		TEST HOLES			BOREHOLE NO: T	H7
FLEET	SI	REET	LAND		DRILL METHOD: HOLLO	W STEN AUGER W	MTH	PROJECT NO: JX30	012
		Q GAN			SPUT SPOON CORE S	AMPLER		ELEVATION: 605.88	(m)
JAMP		IIPE					·	HOLLOW STEN	CORE
(m) HI	LC TYP	JSC	SYMBO	SOI	L	A HIDROCARDON	YAPOUR (PPH) A 6000 8000	COMMEN	
DEP	SAMP	-	SOIL	DESCRI	PTION	PLASTIC 14.0	C. UQUI	D	ELEVA
0.0	Π			CLAY(FILL, 5.3m) - SILTY, MOIS	F,VERY STIFF,		Ţ,		E
L L L L	Ξ			-SLIGHT HYDROCARBON ODO -GREY WITH BLACK STAINING	UR TO 1.5m BELOW 0.3m				
	Ξ			-STRONG HYDROCARBON OD	DUR BELOW 1.5m				
- 20	Ŧ			-ABUNDANT REFUSE BELOW -GROUNDWATER AND OIL SEI SLOUGHING BELOW 1.5m	1.5m EPAGE WITH MODERATE				
- 1.0	H	CH							- 6 03. -
- - - 1.0	H								
5.0									
	ш			SAND-SILTY, CLAYEY, MOIST, D ED, GREY AND BROWN WITH B	ENSE,FINE GRAIN LACK STAINING				
- 6.0	E				•			•••	
7.0	Ħ	SM				i	· • •		599.0 C
1.0				-BROWN BELOW 7.5m					
- 9.0	H			END OF TEST HOLE AT A 1-					
- - - - 10.0						· · · · · ·	•••••		596.1
- 11.0						н в ени в про се с			- 595.0
12.0									- -
A	CR	A E	lar	th & Environmen Regina, Saskatchewa	ntal Limited	LOGGED BY: TK REVIEWED BY: ED Fig. No: 10	FDJM	COMPLETION DEL COMPLETE: 12/	PTH: 9.1 m 14/95 Page 1 of 1

OIL P	IT E	VALU	TION		TEST HOLES					BOREHOLE N	0: TH8			
ณณ	' ST	REET	LAND	FILL	DRILL METHOD: HOLL	OW STEN AL	JGER \	VITH		PROJECT NO	REHOLE NO: TH8 DJECT NO: JX30012 VATION: 606.03 (m) W STEM COMMENTS E COMMENTS 606. 606. 606. 606. 606. 606. 606. 606. 606. 607. 608. 609. 609. 601. 601. 601. 601. 601. 601. 601. 601.			
CITY	OF	EGIN	<u> </u>		SPLIT SPOON CORE S	AMPLER				ELEVATION:	<u>606.03 (m)</u>			
SAMP	יננ	TYPE	,	THIN WALL TUBE OISTURBED	🛛 \$1		CASIN	<u> </u>		HOLLOW STEN	CORE			
OEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOIL DESCRIP	ΓΙΟΝ	A HYDRO 2000 PLASTIC	CARBON 4000 N.	VAPOUR 5000 C.	: (PPi/) ▲ 8000 UQUID	COI	AMENTS	clevation(m)		
		54		CLUD/THE O A COVE CUT A	UD OD WET HOLET	- 20	40	60	80	<u> </u>				
- 1.0	H	S¥ CH		LSAND(FILL,0.2m)-SOME SILT A -TRACE OF CLAY MEDIUM DENSE,BROWN (CLAY(FILL,1.0m)-SILTY,MOIST, -STRONG HYDROCARBON ODOU	ND GRAVEL, MOIST TERY STIFF, R TO 0.9m							- 606./ 		
- 20	Ħ			-MIXED WITH SAND AND GRAVI HIGHLY PLASTIC, GREY WITH BL BLACK BELOW 0.76m	IL TO 0.9m NCK STAINING									
	Ħ	a		CLAY(TILL)-MOIST,VERY STIFF,1 TIC,BROWN	iedium plas-									
- 70	H							· · · · · ·	· · · · · ·			603 .0		
- 4.0	Ē	ĸ		SAND-SILIY,CLAYEY,MOIST,DEN -SLIGHT HYDROCARBON ODOUF ED,BROWN -SLOUGHED DURING DRILLING	se,fine grain- 1 in 3.8m sample							-602.0		
- 5.0				END OF TEST HOLE AT 4.6m NOTE:NO ACCUMULATION OF GR SLOUGH IN TEST HOLE IN DRILLING.	COUNDWATER OR WEDIATELY AFTER		• • •							
- 6.0							1a a					- 690		
- 1.0							i	· · • · ·	· · · · ·					
- 8.0							•••	· · · ·				598 ·		
- 9.0							• • •	· · · ·	· · · · · · ·			5-59? (
- 10.0									- ,			5.95.0 5		
- 11.0												52 5.		
				1								Ę		
A	GR	A I	Ear	th & Environmen	tal Limited	LOCCED B REVIEWED	Y: TK By: Ei	DE O'IM	. <u>.</u>	COMPLET	ON DEPTH: 4.6 : 12/15/93			
17	m			negina, baskatenewai	<u> </u>	Trid: 40: 1	<u> </u>			1	Pa	CIE I OT I		

OIL PI	1 ย	VALUA	TION		TEST HOLES				BOREHOLE NO: TI	-19
FLEET	ST	REET	AND	FILL	DRILL METHOD: HOLLO	W STEN AUG	ER WITH	{	PROJECT NO: JX300	012
CITY)F R	EGIN			SPLIT SPOON CORE SA	NPLER			ELEVATION: 605.89	9 (m)
SAMP	Ľ	TYPE		THIN WALL TUBE ONSTURBED	X \$PT		CASING		OLLOW STEM	CORE
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOIL DESCRIP	TION	▲ #1080C/ 2000 PLASTIC	URBON VAP 4000 60 K.C.	OUR (PPL) ▲ 00 8000 UOUR0	COMMEN	
- 00	$\left \cdot \right $	- 59	爂	SAND(FILL, 150mm)-SOME SILI	AND GRAVEL,					
1.9	H			MOIST, MEDIUM DENSE, BROWN -TRACE OF CLAY CLAY(FILL, 3.6m) - SILIY, MOIST, -MIXED WITH SAND AND GRAVI -STRONG HYDROCARBON ODOU HIGHLY PLASTIC, BLACK AND G	ÆRY STIFF, EL 10 0.9m IR KEY				- 	- 605.0
E 20		CK	VI							- 6 04.0
	ΞĒ			-REFUSE AND ORGANIC WATTE BELOW 2.1m -GROUNDWATER AND OIL SEEP	R IN THIN LAYERS AGE BELOW 2.1m					603.0
E 70	鬥						···•· •	•••••••••		Ē
	Ħ			SAND-SILTY,CLAYEY,NOIST,DEN -Strong Hydrocarbon Odol ED,GREY WITH BLACK STAINING	ISE,FINE GRAIN IR TO 5.5m					
È	쀠		⊞	-SLOUGHED DURING DRILLING						E
- 5.0 	H	SN		-Brown From 5.5m to 7.0m -Slight Hydrocarbon odoui	R BELOW 5.5m			• • • • •		
7.0				-GREY AND BROWN BELOW 7.)m		 t	• • • • •		- 339 -
				END OF TEST HOLE AT 7.6m NOTE:NO ACCUNULATION OF G SLOUCH IN TEST HOLE IN DRILLING.	ROUNDWATER OR IMEDIATELY AFTER		: - • • • · ·	• • • • · · •		
- 9.0						• • • •		.		-97.
- - - - - -							•· •	• •		
- - - - - - - - - - - - - - - - - - -						•				
12.0		<u> </u>		L						
A	GF	RA	Ear	rth & Environmen	tal Limited	LOGGED BY	TK	0.04	COMPLETION DE	Pili: 7.6 m
				Regina, Saskatchewa	n	Fig. No: 12	2	V/m	UMPLEIE: 12/	Poge 1 of 1
93/61/6	114	A.								

OIL P	IT E	VALU	TION		TEST HOLES						BOREHOLE NO): TH10	
REE	SI	REET	LAND	กน	DRILL METHOD: HOLLOW	r ste	N AU	GER V	nth		PROJECT NO:	JX30012	
CITY		REGIN			SPLIT SPOON CORE SAU	NPLEF	<u>}</u>				ELEVATION: 6	05.58 (m)	
SANP	T	T	┱┻	THIN WALL TUBE		Ē		CASING	;	_Щ	HOLLOW STEM	CORE	
(m) H	LE TYPE	ISC	SYMBOL	SOIL		A H	10ROC/	JRBON 4000	VAPOLI 6000	(PPN) A	CON	INENTS	(m)NOI
DEPI	SAMP	[ន្ត្រ	DESCRIP	TION	7 03 ⊢		اللہ ۹	c.	0000 			ELEVAI
•00	ſ	534		SAND(FILL,75mm)-SOME SILT MOIST,MEDIUM DENSE,BROWN	AND GRAVEL,			40					
- - 1.0				(CLAY CLAY(FILL,5.2m)-SILTY,MOIST, HIGHLY PLASTIC,BLACK	VĒRY STIFF,								
	Ħ			-MIXED WITH SAND AND GRAV -STRONG HYDROCARBON ODOL	EL JR • ·						-		E - 604.
- 20	H			-GREY AND VERY LITTLE SAND BELOW 2.0m	AND GRAVEL								
- 3.0		CH		-ABUNDANT REFUSE BELOW 2. -GROUNDWATER AND OIL SEEF SLOUGHING BELOW 2.7m	.7m PAGE WITH MODERATE			•••••					
	H					· · · · · · · · · · · · · · · · · · ·			••••••••••••••••••••••••••••••••••••••				
- 5.0	ш												-601.
6.0				SAND-SILTY, CLAYEY, NOIST, DER -MODERATE HYDROCARBON OC ED, GREY WITH BLACK STAINING -SI QUEYED DUBWE DBUL WE	ISE,FINE GRAIN Our	•							
- 7.0	ш	SW				•			· · · · · · · · · · · · · · · · · · ·				
- 8.0	н П			END OF TEST HOLE AT 7.6m NOTE:NO ACCUNULATION OF G	ROUNDWATER OR			•					598
•				DRILLING.	MLUIAILLT AFILK	: 							-597
- 3.9						••••		ی دی	•	• • • • •	1		1
- 10.0								•					uuluu
11.0						•				- Ja - - -			- 595.
12.0													-594
A	GF	RA I	Ear	th & Environmen	tal Limited		O BY	: TK	16 0 P		COMPLETE	N DEPTH: 7.6 m	1
				Regina, Saskatchewar	n	Fig. N	lo: 13	EL	n van	·		Pone	1 61 1
15/11/14	11:1	244				_				_		1 4 4 6	

OIL P	IT E	YALU/	TION		TEST HOLES				BOREHOLE NO:	TH11	
FLEET	ST	REET	LAND	fill	DREL METHOD: HOLLO	W STEN AUGER W	NITH		PROJECT NO: .	X30012	
CITY	OF 1	ALCEN.	<u> </u>		SPLIT SPOON CORE SA	MPLER			ELEVATION: 60	5.67 (m)	
TH (m) HI	PLE TYPE F	nsc	SYMBOL			A HYDROCARDON 2000 4000	VAPOUR (M	₩). 20	Сом	AENTS	ATIOK(m)
BO	SAM		S	DESCRIP	TION	20 40	60 8				ELEV
- 1.9 - 2.9 - 3.0 - 6.0 - 5.0	R H H H H H H	CR SM		SAND-SILTY, OLAYE, MOIST, MEDIUM DENSE, BROWN -TRACE OF CLAY CLAY(FILL, 4.2m)-SILTY, MOIST, HIGHLY PLASTIC, BLACK -MIXED WITH SAND AND GRAV -STRONG HYDROCARBON ODOI -TRACE OF REFUSE FROM 2.7 SAND-SILTY, CLAYEY, MOIST, DED -MODERATE HYDROCARBON OD ED, GREY WITH BLACK STAINING -SLOUGHED DURING DRILLING -VERY SILTY, BROWN AND GRE HYDROCARBON ODOUR FROM -LESS SILTY, BROWN AND NO IO 6.0m END OF TEST HOLE AT 6.0m NOTE:NO ACCUMULATION OF G SLOUGH IN TEST HOLF IN	AND GRAVEL VERY STIFF, TEL UR MSE,FINE GRAIN- DOUR C Y WITH SLIGHT S.Om TO S.4m DOOUR FROM S.4m COUNDWATER OR INEDIATELY AFTER						605.0 604.0 604.0 603.0 607.0
- 7.0 - 8.0 - 10.0 - 11.0				SLOUGH IN TEST HOLE IN DRILLING.	INEDIATELY AFTER				COMPLETIO	1 DEPTH: 6.1 (- 598. - 598. - 597. - 597. - 597. - 597. - 597.
A	GR	A E	Sar	th & Environmen	ital Limited	REVIEWED BY	DF D.M	~	COMPLETO	12/15/93	н
				Regina, Saskatchewa	n	Fig. No: 14				Page	1 of 1

•

OIL PIT	EV	ALU/	TION		TEST HOLES	`			BOREHOLE NO: TH12	
FLEET S	STR	EET	LAND	FILL	DRILL METHOD: HOL	LOW STEN AU	ger with		PROJECT NO: JX30012	
CITY OF	FR	EGIN	\		SPLIT SPOON CORE	SAMPLER			ELEVATION: 605.539 (m)	
SAMPL	<u>E 1</u>	YPE		THEN WALL TUBE OF OISTUR			CASING		IDLLOW STEM	
DEPTH (m)	SAMPLE TYPE	usc	SOIL SYMBOL	SC DESCR)IL IPTION	A HTOROC 2000 PLASTIC	ARBON YAPO 4000 600 K.C.	UR (194) A 0 8000 LIQUD	Comments	ELEVATION(m)
	╉	SH		SAND(FULLO 2m)-SOME S	T AND GRAVEL		40 60		+	╞╴
- 1.0	щ			MOIST, MEDIUM DENSE, BRO' - TRACE OF CLAY CLAY(FIEL, 4.1m) - SILTY, MO HIGHLY PLASTIC, BLACK	IST,VERY STIFF,	-				
- 2.0	Ш			-VERY STRONG HYDROCAR -TRACE OF REFUSE FROM	BON ODOUR TO 3.5m 0.6m TO 2.7m					
	π	CN		-THIN SAND AND GRAVEL WATER SEEPAGE FROM 2.	LAYERS WITH GROUND- 3m TO 2.9m				+ 	
- 0.2	т			-BROWN (WITH BLACK ST/ BELOW 2.9m	INING) AND STIFF					
- 4.0	T			-strong hydrocarbon (DOUR BELOW 3.5m		•			r
- 5.0	I			SAND-SILTY, CLAYEY, NOIST -STRONG HYDROCARBON (ED, BROWN	DENSE,FINE GRAIN-		•			- 8
	Т	C 14		-SLOUGHED DUXING DRILL -GREY(WITH BLACK STAINI BETWEEN 5.2m AND 5.8m	ING NG),VERY SILTY t					
- 6,0	π			5.8m TO 7.6m	COCARDUN ODOUR FROM					1
- 7.0	Ŧ									1
- 8.0				I-NO ODOUR AT 7.6m END OF TEST HOLE AT 7.6 NOTE:NO ACCUNULATION (SLOUGH IN TEST HOL	m F GROUNDWATER OR E IMMEDIATELY AFTER			• • • • • • • • • • • • • • • • • • •		
- 9.0				ORILLING.			<u> </u>			r in les
- 10.0								· · · · · · · · · · · · · · · · · · ·		سليسلد
- 11.0							• • • 			5
12.0										E 3
AC	R	A I	Ear	th & Environm	ental Limited	LOCCED BY REVIEWED	: TK By: Edf d	M	COMPLETION DEPTH: 7.6 n COMPLETE: 12/15/93	n

. ----

.

OIL P	ITE	VALUI	TION		TEST HOLES		BOREHOLE NO: TH13			
FLEET	ST	REET	LAND	RUL	DRILL METHOD: HOLLO	W STEN AUG	PROJECT NO: JX30012			
	OFI	E GIN			SPLIT SPOON CORE S	MPLER			ELEVATION: 605.6	3 (m)
SAMP	<u>זוי</u>	TYPE	_	THIN WALL TUBE DISTURBED			ASING	UU	HOLLOW STEM	CORE
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOII DESCRIP	, TION	A HYDROCA	RSON VAPO 4000 6000 N.C.	UR (PPN) A B000 UQUID	COMME	ELEVATION(m) SILV
	+	3	777	SAND/FUL 75mm)-SOME SILT	AND GRAVEL		40 60			
- 1.0	HHHHH	CH Cl		JANDERLAG SHITTY-SUBLE SILTY MOIST, MEDIUM DENSE, BROWN L-TRACE OF CLAY CLAY(FILL, 1.8m)-SILTY, MOIST, HIGHLY PLASTIC, BLACK -MODERATE HYDROCARBON OU -SANDIER AND GREY FROM 1. CLAY(TILL, FILL?)-NOIST, VERY PLASTIC, GREY AND BROWN -STRONG HYDROCARBON ODOI -BROWN AND SLIGHT HYDROC 2.3m SAND-SILTY, CLAYEY, NOIST, DE ED, BROWN -SLOUGHED DURING DRILLING	vēry stiff, El Your 4m to 1.8m Stiff, Mēdium Jr Arbon Odour Below Isē, finē grain-					603.0 603.0
	Ħ	SM					····			E-601 0
- S.O	H H			-STRONG HYDROCARBON ODO BROWN FROM 5.1m AND 5.8r -LESS HYDROCARBON ODOUR 5.8m END OF TEST HOLE AT 6.0m	JR AND GREY AND n AND BROWN BELOW	, , , , , , , , , , , , , , , , , , ,	· · · · · · ·			- 600 :
7.0				SLOUGH IN TEST HOLE IN DRILLING.	ROUNDWATER OR INEDIATELY AFTER	· · · · · · · · · · · · · · · · · · ·	1 • • • • • • • • •	•••		
- 8.0							· · · ·			597.9
- 10.0								• • •		
- 						i .				- 595 (
120		1		L						E
A	GF	RA 1	Ear	th & Environmen	tal Limited	LOGGED BY	TK	81	COMPLETION D	EPTH: 6.1 m
				Regina, Saskatchewa	<u>n</u>	Fig. No: 16	UP U	Mit.	LUMPLEIL: 12	Page 1 of 1

oil pi	T E	VALUA	TION		TEST HOLES		_	BOREHOLE NO: TH14		
<u>net</u>	ST	REET	AND	าน	DRILL METHOD: HOLLO	W STEN AUGER WITH		PROJECT NO: JX30012		
CITY C)F F	EGIN	<u>ا</u>		SPLIT SPOON CORE SA	NPLER		ELEVATION: 606.15 (m)		
SAMP	LE	TYPE		THIN WALL TUBE 🛛 DISTURBED	সম	A-CASING	Ш,	HOLLOW STEM		
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOIL DESCRIP	TION	▲ NTDROCARBON VAPOUR (PP 2000 4000 6000 800 PLASTIC K.C. U	10) ▲ 20 	Comments	ELEVATION(m)	
. 6.0	П	31	77	SAND(FILL, SOmm)-SOME SILT	AND GRAVEL		T	1	-006.0	
- 1.9	I H			NOIST.MEDIUM DENSE,BROWN -TRACE OF CLAY CLAŸ(FILL,8.5m)-SILTY,MOIST, HIGHLY PLASTIC,BROWN -MIXED WITH SAND AND GRAV	VÊRŶ STIFF,				- - 605.0	
	۳			-REFUSE AT 1.5m WITH MODE	RATE HYDROCARBON		-		F	
- 20	H			ODOUR					404.0	
- 3.9	百		V//	-REFUSE AT 3.0m WITH STRO	NG HYDROCARBON	anna anganna an a' ang	· · •	1	E-603.0	
- 1.0	H	СК		-GROUNDWATER AND OIL SEEF ING FROM 3.0m TO 4.6m ODOUR -SAND AND GRAVEL LAYERS F	AGE WITH SLOUGH-					
	H		V//						ΕI	
- 5.0	н									
6.0				-MODERATE HYDROCARBON AN FROM 6.0m TO 8.5m	ID METHANE ODOUR	••••••••••••••••••••••••••••••••••••••	••••		- 600 .0	
- 7.0									- 599.0	
	٣	}	V/						E	
- 10							• •		541.0	
	Ħ	a		CLAY(TILL)-MOIST, VERY STIFF, BLACK	GREY WITH		•••			
È	戸			-MODERATE METHANE ODOUR					-597.0	
10.0		SN		SAND-SILTY,CLÄYEY,NOIST,DEI -MODERATE HYDROCARBON AI ED,GREY WITH BLACK STAININ -SLOUGHED DURING DRILLING -YERY SILTY,BROWN AND SIK	NSE,FINE GRAIN- ND METHANE ODOUR G	· · · · · · · ·			- 	
ŧ	Þ	1	1998	ODOUR BELOW 10.4m					Ē	
- 11.0 - - - - 12.0				END OF TEST HOLE AT 10.7m NOTE:NO ACCUMULATION OF (SLOUGH IN TEST HOLE I) DRILLING.	ROUNDWATER OR INEDIATELY AFTER				-595.0	
A	GI	RAI	Eai	th & Environmen	tal Limited	LOGGED BY: TK	· · · · ·	COMPLETION DEPTH: 10.7	m	
		_		Regina Saskatchewa	n	FIG. No: 17		COMPLETE: 12/16/93	1.01	
4.4.7					••	1.13. 104. 11	_	rage	IDEL	

•

OIL P	IT E	VALU	TION		TEST HOLES		BOREHOLE NO: TH15					
PLET	ST	REET	LAND	Fill	DRILL WETHOD: HOL	LOW STEN AL	PROJECT NO: JX30012					
		CLGIN			ISPUT SPOON CORE	SAMPLER				ELEVATION: (i05.63 (m)	
SANP	μ Π	1112		THIN WALL TUBE 1/ DISTURBED	X IST	⊟^'	-CASING		_ <u>UU</u> !	Iollow Stem	CORE	
(m) H193	MPLE TYPE	nsc	IL SYMBOL	SOIL DESCRIP	, TION	A NTORO 2000 PLASTIC	CARBON V. 4000 (APOUR 6000	(PPH) A 8000 LIQUID	CO	(MENTS	VATION(m)
	3		X	220000		20	40	60	(80			EE
- 1.0	H			CLAY(TILL)-MOIST,VERY STIFF,I TIC,BROWN	AEDHUM PLAS-							- 605 .0
20	H H	a			•							
- 3 0	H	u /a		SILT-CLAYEY, SANDY , MOI ST, STIF BROWN	F,LOW PLASTIC,		•••••		.			
4.0 -		SW		SĂND-SILÎY, CLAYEY, MOIST, DEN ED, BROWN -SLOUGHED DURING DRILLING	ŝe, finë Grain-			•				- 402 .0
5.0 - 5.0				END OF TEST HOLE AT 4.6m NOTE:NO ACCUMULATION OF GR SLOUGH IN TEST HOLE IN DRILLING.	ROUNDWATER OR MEDIATELY AFTER		••• •	•				E 601.0
5.0 							····· • · · · · · · · · · · · · · · · ·	•••••	. .			
8.0							•	•	•			598.0
- - - - -							•••••	• •				-597.0
- - - - -						· • • • •	···· ·					536.0
	ורד סי	A E		th & Province			(• TX		_~~_			_ <u>t</u>
AL	ภาษ	.A C		Regina, Saskatchewan		REVIEWED Fig. No: 11	BY: EDF B	DJM		COMPLETE	: 12/16/93 Page	

OIL PI	TE	VALUA	TION		TEST HOLES		BOREHOLE NO: TH16		
FLEET	STI	REET	AND	<u> </u>	DRILL METHOD: HOLLO	W STEN AUGER WITH	PROJECT NO: JX30012		
	XF R	ECIN			SPUT SPOON CORE S	WPLER	ELEVATION: 605.82 (m)		
SAMP		TYPE		THIN WALL TUBE / DISTURBED			HOLLOW STEM		
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOIL DESCRIP	TION	A NTOROCURION VAPOUR (PPV) A 2000 4000 4000 1000 PLASTIC N.C. LIQUE	Comments	ELEVATION(m)	
- 6.0	\square		-	SAND ET LA 2	ND CRAVEL UNIST				
- 1.0	H			MEDUAN DENSE, BROWN IRRACE OF CLAY CLAY(FILL,4.9m)-SILTY, MOIST, HIGHLY PLASTIC, BROWN -MIXED WITH RANDOM LAYERS GRAVEL -STRONG HYDROCARBON ODOL	VĒRY STIFF,			60 5.0 6 04.0	
10	H	OI		-ABUNDANT REFUSE BELOW 0.	6m			605.0	
4.0	н			-groundwater and oil seef	PAGE AT 3.8m			6 02.0	
- 5.0	H			SÁND-SILTY, CLAYEY, MOIST, DED -MODERATE HYDROCARBON OC	ISE,FINE GRAIN			60 1.0	
- 6.0	н	24		ED,GREY WITH BLACK STAINING -SLOUGHED DURING DRILLING -BROWN AND NO ODOUR BELC END OF TEST HOLE AT 6.0m	₩ 5.8m			600 ()	
7.0				NOTE:NO ACCUMULATION OF G SLOUGH IN TEST HOLE IN DRILLING.	ROUNDWATER OR NEDIATELY AFTER			599 .0	
1 0								598.0	
9. 0								·597.4	
- 10.0								596 .0	
- - - - - - - - - - - - - - - - - - -						· · · · · ·		-595 vi	
<u>[12.0</u>							F	59 (.)	
A	GF	RAI	Ear	th & Environmen	tal Limited	LOGGED BY: TK REVIEWED BY: EDF DJM	COMPLETION DEPTH: 6.1 m COMPLETE: 12/16/93		
				Regina, Saskatchewai	<u>n</u>	Fig. No: 19	Poge I o	of 1	

OIL P	IT E	VALU	TION			TEST HOLES				BOREHOLE NO: TH17			
FLEET	ST	REET	LAND	<u>ЯЩ</u>		DRELL METHOD: HOLL	OW STEN	AUGER	WITH		PROJECT NO: JX30012		
CITY		REGIN	<u> </u>		1	SPLIT SPOON CORE S	SAMPLER				ELEVATION: 605.	72 (m)	
E)	TYPE F		HB0L		SOIL	<u></u>		ROCALBON			COMMI	ENTS	N (m)
DEPTH	SAMPLE	ns	SOIL SY	Ľ)ESCRIP	TION	PLAST	<u>с н</u>	.c.				LEVATIO
- 00		84	明	SAND(FILL,0.3m MOIST.MEDIUM D)-some silt a Dense.brown	IND GRAVEL.		40	60			. <u></u>	
- - - - - - -	H H			TRACE OF CLAY CLAY(FILL, 3.0m) HIGHLY PLASTIC -MIXED WITH S/)-îsiî.tîy,îmôistî, ,grey with bl And and grav	VERY STIFF, ACK STAINING EL	- •						605 .0
- 2.0		СИ		-STRONG HYDR -GREY BELOW 1 -ABUNDANT REI	OCARBON OOOL 1.1m FUSE BELOW 1.	JR . .3m							
e	H			SAND-SHTY CI	NEY NOIST OF N	ISE FINE GRAIN-				•			
4.0	H H	54		-STRONG TO MC ED.GREY AND BE -SLOUGHED DUI 5.0m	DDERATE HYDRO ROWN RING DRILLING	OCARBON ODOUR TO		•					
- 5.0 - 6.0	H H			-BROWN AND N	O ODOUR BELO	₩ 5.0m							
7.0				end of test ho note:no accun slough in drilling.	ole at 6.0m (Ulation of Gi test hole in	ROUNDWATER OR NEDIATELY AFTER		· · · · · · · · · · · · · · · · · · ·					
8.0								.	••••••••••••••••••••••••••••••••••••••	• • • • •			-598.0
- 9.0									- - •	·			-597.0
10.0									 				-596.0
11.0 1 1 1 1 1 1 1							•	•					
120		ـــــــــــــــــــــــــــــــــــــ	<u> </u>	4 b 0 D			LOGGED	BY: TK			COMPLETION (EPTH: 61 m	<u> </u>
	٦IJ	IA I	rat	Regine Sec	ITONMEN	tal Limited	REVIEW	D BY: E	OF OJ	4	COMPLETE: 12	/16/93	
174174	1121	-		_ iregina, oa:	<u>avarciie#81</u>	<u>.</u>	ING. NO	20				Page	<u>i of 1</u>

•

OIL P	IT E	VALU	ATION			TEST HOLES						BOREHOLE NO: TH18		
REE	ST	REET	LAND	กน		DRILL METHOD: HOLL	ow st	EM AL	JGER 1	MITH		PROJECT NO: JX30012		
CITY	OFI	REGEN	A			SPLIT SPOON CORE S	AMPLE	R				ELEVATION: 605.76 (m)		
SAMP	ĽΕ			THIN WALL TUBE	ISTURBED	S₽1		<u>۸</u>	-CASIH	<u> </u>		HOLLOW STEM		
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	DES	SOIL CRIP	TION	A RU	11080 2000 STIC	4000 K	YAPOU 6000 C.	COMMENTS	LEVATION(m)		
	Ľ		-					20	40	60	80			
- 1.0	H	-		,SAND(FILL,50mm)-SI MOIST,MEDIUM DENSE (TRACE OF CLAY CLAY(FILL,5.0m)-SIL HIGHLY PLASTIC,BROW	ome silt , brown fy, mõist, v vn and g	AND GRAVEL, VĒRY STIFF, REY							1 	
- 20	H H			NIXED WITH RANDOI SLIGHT HYDROCARB GRAVEL BLACK WITH STROM REFUSE BELOW 1.2n	h layers on odoui g hydroc	of Sand And R To 1.2m Arbon Odour And								
- 10	H	UK .		-NORE ABUNDANT RE	FUSE BEI	.0W 2.3m	4	•					- 6 03.	
	H H							•					- 602.	
- 5.0	Ħ	SM		SAND-SILTY, CLAYEY, A -SLIGHT TO MODERAT ED, GREY AND BROWN 5 7-	ioist,den 1e hydro	SE,FINE GRAIN- CARBON ODOUR TO	-							
- 6.0	H		HEFT	-SLOUGHED DURING I -BROWN AND NO ODI END OF TEST HOLE A	DRILLING DUR BELO T 6.0m	W 5.7m	ſ	•••	-				•	
7.0				NOTE:NO ACCUMULATI SLOUGH IN TEST DRILLING.	ion of Gi Hole im	COUNDWATER OR MEDIATELY AFTER		• •		· • •	· · · · · ·			
8.0								. <u>i</u>					- 298	
- 1.0								•••		• • •	•. •			
- - - -								•			••••••• •		1-596. 1-	
- - - - - - - -													1.595	
E 12.0			1										- 594	
A	GR	RA I	Ear	th & Environ	nmen	tal Limited	LOCC	ED BI	r: TK Br: Fr	D.M		COMPLETION DEPTH: 6.1	m	
5/11/1	11.19			Regina, Saskat	<u>chewar</u>	L	Fig.	Yo: 2	1			Po	ge 1 of 1	

OIL PIT EVALUATION	I TES	t holes			BOREHOLE NO: TH19	
FLEET STREET LAND	FTLL DRIL	L WETHOD: HOLLOW ST	TEN AUGER WITH		PROJECT NO: JX30012	
					ELEVATION: 605.42 (m)	
DEPTH (m) SAWPLE TYPE USC SOIL SYMBOL	SOIL DESCRIPTIO)N R	MTDROCARBON VAROU 2000 4000 6000 ASTIC N.C.	LILI - 2000 LICUID	COMMENTS	
ел - 1.9 Н сн	CLAY(FILL, 1.2m)-SILTY, MOIST, VERY HIGHLY PLASTIC, BROWN -HIXED WITH SOME OF SAND AND CLAY-SILTY, MOIST, VERY STIFF, HIGHI TIC, BROWN	STIFF, GRAVEL				-իունուսնու
- 2.0 III a	CLAY(TILL)MOIST, VERY STIFF, MEDIL TIC, BROWN	IM PLAS-				سياسيلي
- 4.0	SAND-SILTY,CLAYEY,MOIST,DENSE,FI ED,BROWN -SLOUGHED DURING DRILLING	NE GRAIN-			•	لتنقينا والمستلقة
- 5.0						بتنابيتهم بالتعم
- 6.0	END OF TEST HOLE AT 6.0m NOTE:NO ACCUMULATION OF GROUN SLOUGH IN TEST HOLE INVERSI	DWATER OR	*T	••••••••••••••••••••••••••••••••••••••		
- 7.0	DRILLING.			• • •		
- 9.0			· · · · · · · · · · · · · · · · · · ·	••••• •		
- 10.0		·	· · · · ·			
- 11.0			· · · · · · · · · · · · · · · · · · ·	•		
ACRA Far	th & Fryironmontal	Limited Log	GED BY: TK		COMPLETION DEPTH: 4.6	<u>-</u>
	Regina, Saskatchewan	LIIIILEU REVI	EWED BY: EDF DJ	М	COMPLETE: 12/16/93 Poge	11

OIL P	IT E	VALU	THON		TEST HOLES					BOREHOLE NO: TH20		
FLET	ST	REET	LAND	FILL	DRILL METHOD: HOLLO	W STEN A	UGER V	ALLH		PROJECT NO: JX30012		
CITY	OFI	ECIN	<u>^</u>		SPUT SPOON CORE S	AMPLER				ELEVATION: 605.72 (1	n)	
SAMP	' <u>u</u> 111	ITPL		THIN WALL TUBE		<u>=</u> =^*	-CASING	; 			ORE	
EPTH (m)	JAYT JIAN	usc	IL SYUBOL	SOII	ΤΙΟΝ	A HTORO 2000 PLASTIC	CARSON 4000 16.0	VAPOUS 6000	! (PPM) ▲ 8000 LIQUID	COMMENT	VATION(m)	
ō	S		8		11010	<u>ا ب</u>					12	
	H H H H H H H SW	321 CH GI		DESCKIP SAND(FILL, SOMM)-SOME SILT MOIST, MEDIUM DENSE, BROWN TRACE OF CLAY CLAY(FILL, 2.7m)-SILTY, MOIST, HIGHLY PLASTIC, BLACK -MIXED WITH SAND AND GRAV -STRONG HYDROCARBON ODOU -SILTIER AND SANDIER FROM -GREY BELOW 2.0m CLAY(TILL)-MOIST, VERY STIFF, TIC, GREY -BROWN WITH BLACK INTRUSK HYDROCARBON ODOUR BELOW SAND-SILTY, CLAYEY, MOIST, DEN -STONG HYDROCARBON ODOU ED, BROWN -SLOUGHED DURING DRILLING -GREY AND SLIGHT HYDROCAR 4.5m END OF TEST HOLE AT 4.6m NOTE:NO ACCUMULATION OF GI SLOUGH IN TEST HOLE IM DRILLING.	I IUIN AND GRAVEL, VERY STIFF, EL JR 1.2m TO 1.8m MEDIUM PLAS- DNS AND STRONG 2.9m JR TO 4.5m BON ODOUR BELOW ROUNDWATER OR MEDIATELY AFTER						405.0 - 605.0 - 604.0 - 602.0 - 602.0	
L 10.0						• • •						
F 12.0											-594.0	
1	?R	۸ ۲	lar	th & Environmen	tal limited	LOCCED BI	r: TK			COMPLETION DEPTH	<u>+</u>	
1 ~	. 11	מו	JGT		tai minited	REVIEWED	BY: ED	FDJM		COMPLETE: 12/17	/93	
K AL/M	11.74			<u>regina. Saskatchewai</u>	1	Fig. No: 2	3				Page 1 of 1	
OIL P	T E	VALU	TION		TEST HOLES		BOREHOLE NO: TH21					
---------------------------------	-------------	----------	-------------	---	--	---	-----------------------------	--------------------------------	------------------------------	--		
REE	ST	REET	LAND	กน	DRILL METHOD: HOLL	OW STEM AU	ger with	l	PROJECT NO: JX3	0012		
)F F	REGIN	<u> </u>		SPLIT SPOON CORE :	SAMPLER			ELEVATION: 605.7	99 (m)		
SAMP	Ľ	TYPE		THIN WALL TUBE OISTURBED	<u></u>		CASING		HOLLOW STEM	CORE		
(m) H1430	SAMPLE TYPE	nsc	SOIL SYMBOL	SOII DESCRIP	, TION	A HITOROC	4000 E0 4000 E0 11.C.	0UR (PPH) A 10 8000 UQUE	Сомме	ELEVATION(m)		
60	H	- 54	W	SAND(FILL, O. 1 m)-SOME SILT A	ND GRAVEL,				1	<u>-</u>		
1.1	H H H	CH		MOIST, MEDIUM DENSE, BROWN TRACE OF CLAY CLAY(FILL, 4.3m) - SILTY, MOIST, HIGHLY PLASTIC, BLACK - MIXED WITH SAND AND GRAV - STRONG HYDROCARBON ODO - GREY AND BROWN BELOW O. - SILTIER AND SANDIER FROM - SILTIER AND SANDIER FROM	VĒRY STIFF, EL JR ISm 1.2m TO 1.8m					- 605.0 - 604.0		
- 10	щ			-GROUNDWATER AND OIL SEEF 3.4m	AGE FROM 2.6m TO					-603.4		
- 4.0	Ħ			ODOUR BELOW 2.9m	ONG HIDROCARBON					-602.0		
5.0	Ξ	a		CLAY(TILL)-MOIST,VERY STIFF, GREY AND BROWN NODERATE HYDROCARBON OD SAND-SU TY CLAYEY WOIST OF	KEDIUM PLAS-			•		601 .9		
- - - -	щ	SM		-STRONG HYDROCARBON ODOL ED, BROWN -SLOUGHED DURING DRILLING	IR TO 5.3m		• •			- 600 - 2 		
- 7.0				END OF TEST HOLE AT 6.0m NOTE:NO ACCUMULATION OF G SLOUGH IN TEST HOLE IN DRILLING.	ROUNDWATER OR MEDIATELY AFTER							
- - - - -										598 0 		
- - - - - - -							· • · • •	· • • • •				
10.0 								· ·		596.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
- - - - - - -						· • • • • • • •		• • •				
120		<u> </u>	1	l						F-594.0		
A	GR	A I	Ear	th & Environmen Regina, Saskatchewar	tal Limited	LOGGED BY: REVIEWED E Fig. No: 24	: TK DY: EDF (M	COMPLETION D COMPLETE: 12	EPTH: 6.1 m /17/93 Page 1 of 1		

•

OIL P	IT E	VALUA	TION		TEST HOLES			BOREHOLE NO: 101		
กสา	ST	REET	LAND	FILL	DRILLING WETHOD:150	mm SOLID STELI AUGER		PROJECT NO: JX30012A		
	OFR	EGIN	1					ELEVATION: 606.05 (m)		
SAMP	LE	TYPE		THIN WALL TUBE 🛛 DISTURBED	🛛 🛛 🕅	A-CASING	_ <u>U</u>	IOLLOW STEN		
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOII DESCRIP	TION	A ITOROCARBON VAPOUR 2000 4000 8000 PLASTIC IL.C.	(PPH)▲ 2000 UQUID	COMMENTS	ELEVATION(m)	
80						20 40 60	80	<u> </u>		
1.0		CH		CLAT(FILL,U.9m)~BROWN CLAT(TILL)-BROWN					606.0	
2.9		a			•		····· • • • • • • • • • • • • • • • • •		601.0	
- 3.0									601.0	
4.9				END OF TEST HOLE @ 3.8m					6 02.0	
- 5.0							···••		601.	
6.0						······································	· · · ·		600 .0	
- 7.0							· • •		597 .0	
- 8.0						· · · · · · · · ·	•••			
- 3.0						· · · · · · · · · · · · · · · · · · ·				
						· · ·	•		596.	
							•		- 595.	
			<u>.</u>	1) A D ·		LOGGED BY. TK		COMPLETION DEPTH- 3.8 m	<u> </u>	
A	GR		uar	IN & ENVIRONMEN Regina, Saskatchewa	ital Limited	REVIEWED BY: DJN EDF Fig. No: 25		COMPLETE: 94/11/09 Page	1 of 1	

OIL P	. PIT EVALUATION TET STREET LANOFILL					TEST HOLES						BOREHOLE NO: 102			
กเถา	STR	EET I	AND	TUL	· · · · · · · · · · · · · · · · · · ·	DRALLING METHOD: 150	nn	SOLIC	STEI	AUGE	R	PROJECT	NO: JX	30012A	
CITY	OF R	EGINA	1									ELEVATIO	N: 606	.02 (m)	
SAMP	י באי	TYPE		THIN WALL TUBE	OISTURBED	পথ		Ľ	-CV2	NG		HOLLOW ST	EM	CORE	
(m) HTH	PLE TYPE	nsc	L SYMBOL		SOIL	TION	-	KYDRO 2000 ASTIC	CARBO 4000	K VAPOU 6000 K.C.	R (1994) A 2000		Conn	ents	VATION(m)
ä	3		S		DESCIMI	11014		⊢		•					12
0.0		5¥ CI		SAND(FILL, 200 CLAY(FILL, 1.0n -SLIGHT ODOU	mm)-BROWN 1)-GREY R			_20		60	80				601
- 1.0				ĊĹĂŸ(ŤĬĹĹ)–ĠŔ	Ēř						•				- 605 .
- 20		a				·									- 60 4,
- 3.0				end of test i	10LE @ 3.0m				.						603 .
- 4.9									•	•	•				
- 5.0									••••		• • • •				- 601. -
- 6.0								•	•		· • • •				600.
7.0									*		• · ·				
															598.
- - - - - -								:	••	• •					-597.
2.01 10.0 1								· •	· · · · ·						-596
E E E E E E E E E E E E E E E E E E E								· •	•••••	· · · ·					595
E 12									••						Ē
A	GR	A I	Ear	th & En	vironmen	tal Limited	200	CED IFWE	BY: TH		r	COMP	LETION	DEPTH: 3.0) m
1				Regina S	askatchewa	'n	100	Not	26					Pr	at 1 of 1

OIL PI	IT E	VALUA	TION		TEST HOLES						BOREHOLE NO: 103		
FLEET	st	REET	LAND	Fill	DRILLING METHOD:150	mm S	OLID	STEM	AUGET	<u>۱</u>	PROJECT NO	JX30012A	
	OFF	EGIN	<u>ا</u>				_				ELEVATION:	506.22 (m)	
SAMP	LE	TYPE		THIN WALL TUBE 🛛 DISTURBED	SPT		<u>۱</u>	CASIN	<u> </u>	1	IOLLOW STEM	CORE	
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOII DESCRIP	TION	41 70	17080 2000 STIC	CARBON 4000 K.	YAPOUR 6000 .C.	: (PPN) ▲ 2000 UQUID	coi	MENTS	ELEVATION(m)
	H					+	20	40	60	80	<u> </u>		_ <u>L</u>
- 1.0		СИ		-GREY WITH STRONG HYDROCJ 0.7m -TRACE OF ROOTLETS AND GL -TRACES OF WOOD,GLASS ANI	ARBON ODOUR BELOW ASS PIECES © 1.2m D BRICK PIECES								-605.0
- 10		۵		FROM 1.8m TO 2.4m CLAY(TILL)-GREYISH BLACK									
- 4.0		54		SAND-GREYISH BLACK END OF TEST HOLE @ 3.8m									-402.0
- 5.0						· · · ·				• • • • • • • • • • • • • • • • • • •			- 601 .0
6.0							•.	•••••		• • •			- - 600.(
								i		• • •			- 559.0
1.0						-	: 		· • • • •	 			- 598.
10.0							• •			••••			
- - - - - - - - -							••••• • • • • • •	• ··· •·· · ·- ··· • ··•	••••••••••••••••••••••••••••••••••••••	•			
- 12.9	<u> </u>	<u> </u>	<u>_</u>			Tiocr	<u>- 12</u>	Y. TY					<u> </u>
A	Gł	KA	tar	th & Environmen Regina Saskatchewa	ital Limited	REVI Fiq.	EWED	8Y: 0 27	JN ED	F	COMPLET	E: 94/11/09 Po	ge 1 of 1

OIL PI		VALUA	TION		TEST HOLES					BOREHOLE NO: 104			
FLEET	ST	REET	LAND	FILL	DRILLING METHOD: 150n	nm SOLIO	STEM	NUGER	!	PROJECT NO:	JX30012A		
CITY C	FR	EGIN							-	ELEVATION: 6	<u> (05.96 (m)</u>		
SANP	<u>בו</u>	IMPE		THIN WALL TUBE OISTURBED			CASING			HOLLOW STEM	CORE		
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOI DESCRII	L PTION	A NYDROC 2000 PLASTIC	4000 11.0	6000	▲ (hmi) 2006 UQU	COL	INENTS	 ELEVATION(m)	
0.0	$\left \cdot \right $	54		SAND(FILL 0.15m)-BROWN		20	40	- 60				+	
- 1.0		СЯ		CLAY(FILL, 1.5m)-GREY -SLIGHT HYDROCARBON ODO FROM 0.15m TO 0.76m -STRONG HYDROCARBON ODO 2.7m	UR AND DISCOLOURED DUR FROM 0.76m TO							- 605 .0	
- 24		CX		-TRACES OF WOOD PIECES / 1.0.76m TO 1.1m CLAY-MOTTLED GREY AND BI -GREYISH-BLACK FROM 2.0m	NO INSULATION FROM ROWN n TO 2.7m							- 10 4.0	
- 3.0		a		CLAY(TILL)-WOTTLED BROWN -WODERATE TO SLIGHT HYDR 2.7m TO 3.4m	ISH GREY ROCARBON ODOUR FROM]						603. 0	
4.0		SM		SAND-BROWN -SLIGHT STAINING WITH STR ODOUR BELOW 3.4m END OF TEST HOLE @ 3.8m	DNG HYDROCARBON							602 .0	
- 5.0												5 5 601.0 5 5 5	
6.0						••.		••••• ••••• •••••				600 .0,	
- - - -							8					559.0	
1.0 1.0								••••				598 .9	
5.0 								••••	- - - - -			597.0	
10.0							• •• ••		•			596 .0	
												595.0	
F	<u> </u>				- 1 - 1 - 1 - 1 - 1	LOCCED F	Y: TK				KIN DEPTH- 3.8	 	
A	Gł	KA.	Lai	Regina Saskatchew	intal Limited	REVIEWED	BY: 0	un ed	F	COMPLET	E: 94/11/09		
		11 I.T				jrig. No:	60			1	Po	74 1 0	

•

DIL PIT EVAL	UATION		TEST HOLES				BOREHOLE NO: 105			
LEET STREET	T LAHD	กน	DRILLING METHOD: 150	imm SOLID ST	TEM AUGE	R	PROJECT NO:	JX30012A		
XITY OF REGI	HA						ELEVATION: 6	05.98 (m)		
SAMPLE TYP	ינ בי	THIN WALL TUBE OISTURBED	X \$PT		LSING		HOLLOW STELL	CORE		
TH (m) ULE TYPE USC	SYMBOL	SOIL		A HIDROCAR 2000 40	100N YAPOU	(PPM) ▲ 8000	сои	MENTS	(TION(m)	
SANF	Sol	DESCRIP	TION		W.C.	0000 1			ELEVI	
6.0 5	1 ===	SAND-BROWN	<u></u>	- 20 4						
-1.0 C		CLAY(FILL, 0.61m)-GREY -SLIGHT HYDROCARBON ODOUR -PIECES OF WOOD AND PLAST	 2 C		•		•		605.0	
		CLAY(TILL)-BROWN	•		•		-		Luun	
2.9 0		-BLACK STAINING AND STRONG ODOUR FROM 2.1m TO 3.0m	HYDROCARBON		****		• •			
. so				-	· ·				E-603.0	
					·····					
4.0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • • •	• • •			E 602.0	
5.0					• • •				E-601.0	
					·	**				
6.0				•,		•			600 .	
7.0				· · ·		• • • • •			1 	
8.0					• • • •	••••			598.	
5.0						•••				
10.0									-596.	
11.0									1 595	
12.0									- 594	
ACRA	Ear	th & Environmen	tal limited	LOCCED BY:	TK		COMPLETK	N DEPTH: 3.0 n	n	
nunn	Gui	Regina, Saskatchewar		REVIEWED BI	I: DJN EDI		COMPLETE	: 94/11/09 Page	1 of 1	

OIL P	ίT Ε	YALUA	TION	······································	TEST HOLES	TEST HOLES					BOREHOLE NO: 106			
<u>FLET</u>	ST	REET	LAND	Fill	DRILLING KETHOD:15	0mm SOLIO	STEM	AUCEI	2	PROJECT NO	: JX30012A			
CITY	OFF	RECEN	\ 							ELEVATION:	605.65 (m)			
SAMP	ίĿ Γ	ITPE	_	THIN WALL TUBE		<u> </u>	CASIN	j	<u> </u>	IOLLOW STELL	CORE			
(m) HT	DLE TYPE	nsc	SYMBOL	SO	IL	▲ #110R00 2000	4000	VALFOLIE 6000	(17%) A 2000	COI	MENTS	ATION(m)		
ä	SAN		2 S	DESCRI	PTION	20						ELEV		
0.0	Н		11	CLAY(FILL, 1.1m)-BROWN					Ť					
		a		-RUBBLE INTERMIXED & BL STRONG HYDROCARBON OD	ACKISHGREY WITH OUR FROM 0.3m TO					•		-005.		
E 1.0				L.1m CLAY(TILL)-BROWN						•		-		
				ODOUR BELOW 1.2m	UNG HTURUÇARBUN							-604.		
		a								•				
- 3.0												60 3.1		
				END OF IEST HOLE & S.UM			··· • •		•••••			-602.		
- 4.0							··· • •	•••						
												- 10 1.0		
- 5.0							•••••							
- 6.0							·· · ·		•			- 600 .) E		
						••								
- 7.0										•				
		1					• •••••	• • •				598.		
E 80												يراب		
							• • • •					-597. E		
F 9.0														
- 10.0												596.) 		
							·•		.			- - 		
E - 11.0							÷							
							• •					-594.		
120	<u>/ n</u>		1 ? = =	the fee Denvine and the		LOGGED B	r: TK			COMPLET	ON DEPTH: 3	.0 m		
	٩IJ	i Al	Jar	III & Environme	intal limited	REVIEWED	<u>87:</u> DJ	n Edf		COMPLET	: 09/11/94			
L				<u>Regina Saskatchew</u>	ran	Fig. No: 3	0					Page 1 of 1		

-

OIL P	IT E	VALU	TION		TEST HOLES			BOREHOLE NO: 107				
FLEET	ST	REET	LAND	กแ	DRILLING METHOD:15	0mm SOLID	STEM	AUGEI	2	PROJECT NO:	JX30012A	
City	OF F	REGIN	1							ELEVATION: 6	i05.51 (m)	
SAMP	Ľ	TYPE		THIN WALL TUBE OSTURBED	🛛 🕫		-CASIN)])	IOLLOW STEM	CORE	
DEPTH (m)	AMPLE TYPE	nsc	OIL SYMBOL	SOI DESCRII	L PTION	A HYDRO 2000 PLASTIC	CALHON 4000 N.	VAPOUE 6000	(PPN) A 2000 UQUID	COL	avents	EVATION(m)
	S		Š			20	40	60	80			
0.0 1.9		a		CLAY(FILL,0.3m)-BLACKISH (,-GARBACE & SUGHT ODOUR CLAY(TILL)-BROWN	REY _TO_0_3m	• •						- 40 5.0
- 2.0				END OF TEST HOLE @ 1.5m	•							- 604 .0
- 1.0												- 603.0 -
- 4.0								: 				- 602 .
- 5.0												
- 6.0								: :				- 600)
- 7.0								···	· .			
- 1.0							• •	· • •	•••			598.
9.0								···•·	· · · · ·			-597.0
- 10.0							•••••	•	•••			-
- 11.0						1	• • ·· ··	•				- 595.
1 <u>2.0</u>		A [th & Environme	tal limitad	LOCCED B	<u>Y: TK</u>		•		ON DEPTH: 1.1	5 m
A	ן ר יייי		.a.I	Regina, Saskatchewa		REVIEWED Fig. No: 3	8Y: D.	in Edf		COMPLETE	: 09/11/94 Po	1 of 1

•

OIL P	L PIT EVALUATION EET STREET LANDFILL					TEST HOLES			BOREHOLE NO: 108			
FLEET	ST	REET	LAND	FILL		DRALLING METHOD:150	mm SOLID STEW AUGER		PROJECT NO:	JX30012A		
CITY	OF I	REGINI	L.						ELEVATION: 6	06.14 (m)		
SAMP	Ľ	TYPE		THIN WALL TUBE	DISTURBED	SPT	A-CASING		HOLLOW STEM	CORE		
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL		SOIL DESCRIP	TION	A NTOROCARBON VAPOUR () 2000 4000 6000 B PLASTIC N.C. 20 40 60	1000 A	cor	iments	ELEVATION(m)	
0.0	T		77	CLAY(FILL, 4.6m	n)-GREYISH BRO	WN					606.0	
- 1.0				-WOTTLED GRE FROM 0.9m T -STAINED GRE ODOUR BELOV -TRACE OF WO	EY-BROWN WITH 0 1.2m Y WITH STRONG V 1.2m DOD & ROOTS FI	Slight odour Hydrocarbon Rom 1.2m to 2.7m			 		605.0	
- 10		a		-SEEPAGE ANI	D WIRE @ 3.4m			· · · ·			603 .0	
- 4.0 -								•			- 602 .0	
- 5.0				UNABLE TO DR QUANTITY OF	NULE & 4.6m NILL PAST 4.6m (WIRE,	DUE TO LARGE		•			601 .0	
- 6.0 -								4 - 4			- 	
- 7.0								•••			539.0	
L 8.0								• •·			- 598 .(
- 9.0								· ·				
E 10,1											596.4	
12 12	0										-595/	
1	C	R۵	Ea	rth & En	vironmer	tal Limited	LOGGED BY: TK		COMPLET	ION DEPTH: 4	.6 m	
		744		Regina S	Saskalchewa	n	REVIEWED BY: DJW EDF Fig. No: 32	·	CONPLET	<u>E: 09/11/94</u> F	age 1 of 1	

OIL PI	T EV	VALUA	TION		TEST HOLES			BOREHOLE NO: 109	
ณฑ	ST	REET	LAND	FILL	DRILLING KETHOD:150	mm SOLID STEW AUGER		PROJECT NO: JX30012A	
CITY C	X R	EGIN	\				- m	ELEVATION: 605.86 (m)	
SANP	Ľ	TYPE	_	THIN WALL TUBE			LIII H	IDLLOW STEM	
H (m)	JYPE	sc	SYMBOL	SOIL	ı	A HTDROCARSON YAPOUR (1 2000 4000 5000 8	17%) A 1000	COMMENTS	tion(m)
DEP1	SAMP	2	SOIL	DESCRIP	TION	PLASTIC N.C.	0000 (80		ELEVA
10				CLAY(FILL,4.9m)-WOTTLED GRI BLACK	EY BROWN WITH		Ţ.		Ē
1.0				-SLIGHT ODOUR FROM 0.7m T -GARBAGE INTERNIXED BELOW -GREYISH-BLACK WITH STRON 1.2m	0 1.2m 0.7m G ODOUR BELOW				- 605 .0
- 20		a							- 10 4.0
3.0				-SLIGHT SEEPAGE 🛛 2.6m					- 603 .0
				-SEEPAGE, WIRE & WOOD @ 3.	7m 110N 9 4.3m				- 602 .0
50		SM		SAND-MOTTLED GREY BLACK		·	•		
- 1 0				END OF TEST HOLE @ 5.3m			• • •		
1.0							 		-
1 1 1 1 1 1							· ·		-
9.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							•		
- - - - - - - -									-
- - - - - - - -						· · · · · · · · · · · · · · · · · · ·			-
120							•		-594
A A	GF	RY (Ľai	rth & Environmen	tal Limited	REVIEWED BY: D.M. FDC		COMPLETE: 09/11/94	n .
17				Regina, Saskatchewa	n	Fig. No: 33		Por	1 1 of 1

DIL PIT EVALUAT	TION		TEST HOLES		80	BOREHOLE NO: 110		
FLEET STREET L	AHD	лц	DRILLING METHOD: 150	nm SOLID STEW AUGER	PR	DJECT NO: JX3001	<u>2A</u>	
CITY OF REGINA	\				្រាញ	VATION: 605.75 (m)	
SAMPLE TYPE		THIN WALL TUBE OISTURBED	SPT		HOLL	owr stem 🔲 🤇	ORE	
DEPTH (m) <u>SAMPLE TYPE</u> USC	SOIL SYMBOL	SOIL DESCRIP	TION	A NTDROCLABON VAPOUR (PP4) 2000 4000 5000 3000 PLASTIC K.C. UD) A XUIO 1	COMMENT	CO ELEVATION(m)	
		CLAY(FILL 3 4m)-MOTTLED GR	Y BROWN WITH					
- 1.0		STRONG ODOUR THROUGHOUT -STRONG ODOUR THROUGHOUT -WOOD & RUBBLE FORM 0.7m	1 10 3.4m				-405.0	
- 2.0			•				- 604.0 - 603.0 - 603.0	
- 3.0		-SELPAUL, WIRL & WOOD @ 2. SAND-MOTTLED GREY BLACK	/m 		÷			
- 4.0	H	END OF TEST HOLE @ 3.8m					- 602.0	
- 5.0					• •••			
- 6.0							500.0	
- 7.0								
- 1.0							- 	
9.0							597.0 	
- 10.0							596.(
- 11.0							595. 595.	
12.0							-594.	
AGRA	Ea	rth & Environmer	ntal Limited	LOGGED BT: TK		COMPLETION DEP	1H: 3.8 m	
		Regina Saskatchewa	n	Fig. No: 34		1000FLE1E: 09/1	Poge 1 of 1	
	_	- we mu casaacciicac		1.13				

OIL PI	TE	VALUA	TION		TEST HOLES						90REHOLE NO: 111		
FLEET	sti	REET I	AND	TU	DRILLING METHOD:150m	um SOL	10 S	TEN	AUGET	2	PROJECT NO	: JX30012A	
CITY (XF F	EGIN									ELEVAIRON:	605.54 (m)	
SAMP	LE	TYPE		THIN WALL TUBE OISTURBED		E] <u> </u>	ASING			HOLLOW SIEM		
EPTH (m)	NPLE TYPE	nsc	IL SYMBOL	SOI DESCRI	L PTION	A HTT 20 PLAST	080C4 00 /	1290H 14900 14.0	6000	t (PPN) ▲ 8000	00	MMENTS	EVATION(m)
ā	SA		ß			2	0	40	60	80			
1.0		зи α		SAND(FILL,0,1m)BROWN CLAY(FILL,1,7m)-MOTTLED C -NODERATE ODOUR -GREY WITH STRONG ODOUR	REY-BLACK								- 605.0
- 20				CLAY(TILL)-GREY -STRONG ODOUR THROUGHO									- 601.0
- 10		а я		-BROWN WITH BLACK STREA 11.5m SAND-BROWN	KS FROW 2.9m TO								- 607 .0
4.0 				-DISCOLORATION AND STRO END OF TEST HOLE @ 3.8m	<u>NG ODQUR THROUGHQUT</u>								-
								•••••		•••••			- 600.0 - 599.0
7.0							-	i t		· · · · · · · · · · · · · · · · · · ·			598.0
1 8.0 1 - 8.0							-	·	• • •	· · · · · · · ·			
5.0								.	•••••				
	.0					· · · · ·		•••					
	0.						•	•	-	• -			-594
-	10	 D	P ~	rth & Fryirorm	antal limited	LUCC	ED B	Y: TK			COMPL	ETION DEPTH:	3.8 m
	٩Ŀ	RΛ	Ľд		entai miniteu	REVIE	WED	8Y: (JIN E	DF	KOMPL	EIE: 09/11/9/	Pone 1 of 1
вла	766 11	ES LAM		Regina, Saskatche	wan	(r 19. 1	10: .		_		l		

IL PIT E	VALUA	TION		TEST HOLES					BOREHOLE N	0: 112	
นถา รา	EET I	ANDF	RT	DRILLING METHOD:150n	nm SOLID	STEM	AUGER		PROJECT NO	JX30012A	
TTY OF F	EGIN	1							ELEVATION:	605.52 (m)	
SAMPLE	TYPE		THIN WALL TUBE OISTURGED	🗙 झग		-CASING	;	III H	IOLLOW STEM	CORE	
PTH (m) PLE TYPE	usc	L SYMBOL	SOIL		A HTDROU 2000 PLASTIC	CAURIDAN 4000	VAPOUR 6000	(PPN) A 3000	COI	MMENTS	VATION(m)
DE		S	DESCIME	TION							513
-00	54		SAND(FILL,0.3m)-BROWNISH- CLAY(FILL,1.5m)-GREYISH-BL	BLACK AČK		•					
- 1,0	CX		-SIKONG ODOUR INKOUGHDU	·							
- 2.9			CLAY(TILL)-GREVISH-BROWN								- 604.5
- 10	a		-Discolored a sinone ope								603 .9
-	54		SAND-GREYISH BROWN			••••					402 .0
- 4.0			END OF TEST HOLE @ 3.8m		 						
- 5.0						••••••		•			
- 6.0					••• ••	• • •		• • •			
- 7.0					•						- 599.0 -
								• • •			- 598 .9
- 8.0						•••	•	•••••			-597 ·)
- 9.0						• • •	•	• • • •			
- 10.0								• • • •			
- 11.0					an Ar	••••••	·····		r		- 595 ii
							· · ·		•		-594.)
AC.	RA	Rai	th & Environme	ntal Limited	LOGGED	BY: TK			COMPLE	TION DEPTH: 3	.8 m
nu	114	נסט	Desing Socketab		REVIEWE	D BY: (DJM ED	NF	COMPLE	TE: 09/11/94	
1. 1971/10-11	0		Regina, Saskalchewa	in	Itig. No:	36					rege i of i

OIL P	IT Ę	VALUA	TION			TEST HOLES						BOREHOLE N	D: 113	
FLEET	ST	REET	LAND	FILL.		DRILLING WETHOD:15	0mm :	OUO	STEL	AUGE	R	PROJECT NO:	JX30012A	
CITY	OFI	REGIN	١									ELEVATION: 6	05.60 (m)	
SAMP	Ľ	TYPE	_	THIN WALL TUBE	OISTURBED	হগ			-CASI	<u>IG</u>	U	HOLLOW STEM		
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	I	SOIL ESCRIP	TION		NTORC 2000 STIC	1000 1000	6000	R (17%) ▲ 1000 UQUID	CON	IMENTS	ELEVATION(m)
- 0.0			HH	SAND/FILL.0.5m	-BROWNISH-B	LACK	╉	1		T		+		
1.9		S M		CLAY(FILL,1.7m -SLIGHT ODOUI -STRONG ODOU -TRACE OF GAI -GREEN DISCOI -TRACE OF ROI)-GREYISH-BÚ R FROM 0.5m Tú R BELOW 0.8m RBAGE © 0.8m LORATION 8ELOV DILETS FROM 1.	ČK CK D 0.8m V 1.4m 7m TO 1.8m								- 405 .0
Ē			1	CLAY(TILL)-CRE	YISH-BROWN		• • •							Ē
- 3.0		a							•••••					60 3.0
- - - - - - -				END OF TEST H	OLE @ 3.0m									602.0
5.0														- - - - - -
								••••						400.0
- - - - - - - - - - - - - - - - - - -											•			-599.0
L L L L											•			
- - - - - - - -									• •					
L L L L L L L L L L L L L L L L L L L											• • • • • • • • • • • • • • • • • • •			
							-	· • • • •						- 595.0
E 12.0			1					-						E
	n E		2	th & Fran	inon		TUCC	ED B	Y: TK		<u> </u>	COMPLETIN	ON DEPTH: 3.0	<u></u>
	uľ	VH I	rat		ironmen	tai Limited	REVI	WED	BY: C	NIN ED	f	COMPLETE	: 09/11/94	
				<u> Regina. Sa</u>	<u>iskatchewar</u>	l	Fig.	No: .	57				Pag	a 1 of 1

·

•

OIL PI	T E	VALUA	TION		TEST HOLES			BOREHOLE NO: 114	
REET	ST	REET	LAHD		DRILLING WETHOD: 150	mm SOLID STEM AUGER		PROJECT NO: JX30012A	
)F I	EGIN/	۱ 					ELEVATION: 605.55 (m)	
SAMP	Ľ	TYPE		THIN WALL TUBE 🛛 DISTURBE	D 🔀 SPT	ELY-CYRING		HOLLOW STEM	
(m) H143(WPLE TYPE	nsc	DIL SYMBOL	SO DESCRI	IL PTION	A HTDROCARBON VAPOUR (PP 2000 4000 6000 800 PLASTIC N.C. U	u)▲ c	Comments	EVATION(m)
-	2		N N			20 40 50 80	-1		
- 1.9		34 CH		SAND(FILL, SOmm)-BROWN CLAY(FILL, 1.2m)-GREY-BL/ -SLIGHT 000UR TO 0.8m -STRONG 000UR FROM 0.8 -TRACE OF PLASTIC @ 0.8m	CK m TO 1.2m			-	
- 24		a		-CREEN DISCOLORATION AN THROUGHOUT	n strong odour			•	
3.0		Ś		SAND-GREVISH-BROWN -GREEN DISCOLORATION AN <u>THROUGHOUT</u> END OF TEST HOLE @ 3.8m	D STRONG ODOUR				- - - - - - - - - - - - - - - - - - -
- 5.0									601.0
- 6.0 - 7.0							-	•	· · · · · · · · · · · · · · · · · · ·
- 8.0									
9.0									-596.0
10.0									595.0
11.0						••••••••••••••••••••••••••••••••••••••			
	'nρ) A (2	th & Fraincon	ntol limitod	LOGGED BY: TK		COMPLETION DEPTH: 3.8 r	n
	ม (וסנ	Regina, Saskatchev	an Linned	REVIEWED BY: DJN EDF Fig. No: 38		COMPLETE: 09/11/94 Poge	1 of 1

٠

.

•

OIL PI	TE	VALUA	TION		TEST HOLES		BOREHOLE NO: 11	6
กเถ	ST	REET	LAND		DRILLING KETHOD:150	mm SOLID STEM AUGER	PROJECT NO: JX300	124
							ELEVATION: 605.58	(m)
SAMP		ITPL	T III	ININ WALL IVER // DISTURBED			I HOLTOM ZIEM	CORE
EPTH (m)	MPLE TYPE	nsc	IL SYMBOL	SOIL DESCRIP	, TION	A KTOROCARDON VAPOUR (PP4) 2000 4000 6000 8000 PLASTIC N.C. LIG		(m)NOILAY
0	Š		ß			20 40 50 80		13
0.0		-511		SAND(FILL,50mm)-BROWN CLAY(FILL,1.5m)-GREY BLACK -STRONG ODOUR BELOW 0.054	n			- 605. 0
1.0		a		-WET AND RUBBISH FROM 1.1	m TO 1.7m			
20		a		CLAY(TILL)-BROWN WITH GREY	STAINING			
10				LINU VE IEJI NULE V 2.3M			• · · · · · · · · · · · · · · · · · · ·	- 405.0
4.0							-	- 6 02.0
5.0							· .	
6.0								- 600.0
7.0								5 599.0 5 5
- 1 0								598.0
s.a								597.)
- - - - - - - - -								596.0
- - - - - - - - - - - - - - - - - - -								595.0 2 2
12.0								
A	Gŀ	KA I	Ear	th & Environmen	tal Limited	REVIEWED BY: DJN EDF	COMPLETE: 09/1	in: 2.3 m
				<u>Regina, Saskatchewa</u>	n	Fig. No: 40		Page 1 of 1

.

. **n**. -

OIL PIT EVALUATION		TEST HOLES				BOREHOLE NO: 117	/
FLEET STREET LANDE		DRILLING METHOD:150	nm SOLIO STE	EM AUGE	R	PROJECT NO: JX3001	24
CITY OF REGINA						ELEVATION: 605.74 (r	n)
SAMPLE TYPE	THIN WALL TUBE OISTURBED			SING	<u> </u>	IOLLOW STEM	ORE
H (m) SC SYMBOL	SOIL		A HTDROCARD 2000 400	ON YAPOU Do 6000	R (PP1) A 2000	COMMENT	S (W)NOI
DEPTI SOIL S	DESCRIP	TION	PLASTIC	RC .	LIQUID		LEVAI
			20 4	60	80		<u>_</u>
	SAND(HILL, 0.1m)-BROWN						Ē
	-GREYISH BLACK & STRONG OF	OUR BELOW 0.5m	i	····	••••••••••	Í	Ē
							E
	-RUBBLE & WOOD WITH SEEPA	GE BELOW 1.1m					Ē
	CLAY(TILL)-GREY WITH BLACK	STREAKS	1 1 1	····•	••••••••••••••••••••••••••••••••••••••		Ē.,
20	-STRONG ODOUR THROUGHOUT				.		E
•							E
					••• •• ••		Ē
			-		-603.0
	-STRONG ODOUR THROUGHOUT	~ 3186853		:	•		E
	END OF TEST HOLE @ 3.0m			• •	• • •		Ē
							Ε
				· · · ·			E
							= 60 1.0
							Ē
				· · · ·	·		E
							-600.«
- 0.0				• •	• •		Ē
							Ē
							E-599.0
- 7.0				•	• ••• •		Ē
				l.	• • •/		Ē
				-			-598.0
- 8.0			·····		• • •• •		Ē
							E
							-597.0
- 9.0				-		1	È
							Ę
					-		-596.0
- 10.0						ł	F
							ŧ
							E-595.0
- 11.0			.	• •			F
					:		ŧ
			1				
			LOCCED RY- T	<u></u>	· · · · · · · · · · · · · · · · · · ·	COMPLETION DEPTH	<u> </u>
AGRA Ear	th & Environment	tal Limited	REVIEWED BY:	DJN ED	F	COMPLETE: 09/11	/94
	Regina, Saskatchewan	L	Fig. No: 41				Page 1 of 1

OIL P	IT E	YALU	NOIT		TEST HOLES					BOREHOLE NO: 118	
FLEET	i st	REET	LAND	RUL	DRILLING KETHOD: 150	mm SOLID	STEM	AUGEI	8	PROJECT NO: JX30012A	
CITY	OF	REGIN	4						_	ELEVATION: 605.52 (m)	
SANF	31	TYPE		THEN WALL TUBE OFSTURE			-CASING	;		HOLLOW STEM	
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SO DESCR	IL IPTION	A HYTOROU 2000 FLASTIC	CARBON 4000 KJ	YAPOU 6000	± (MP1) ▲ 2000 LIQUID	COMMENTS	cLEVATION(m)
00	-						40	60	- 01		
1.0		а/сн		-GREYISH BLACK WITH STR 0.3m	ong odour below						- 605.0
- 20		a		clay(till)-grey stained -strong odour through	 out					· · · · · · · · · · · · · · · · · · ·	- 60 3.0
4.0				END OF TEST HOLE @ 3.0n	n						601.0
6.0							• • • •		• •		- 600.0
						· · · · · · · · · · · · · · · · · · ·	• • • • •	-	•••		598.0
1.0 1.0 1.0							•. • •	•••••	· · •		
- - - - - - - - - - - - - - - - - - -							• • •	-			595.0
- - - - - - - - - - - - - - - - - - -							•				594.0
A	CI	RA I	Far	th & Fryironm	antal Limited	LOCCED 8	Y: TK			COMPLETION DEPTH:	3.0 m
	.ul			Regina. Saskatche	Wan	REVIEWED	87: 0. 12	IN ED	F	COMPLETE: 09/11/9	4 Page 1 of 1
5/11/0	1 11.	SAME .									

•

OILP	IT E	VALUA	TION		TEST HOLES					_	BOREHOLE NO	: 119	
FLEET	ST	REET	LAND		DRILLING METHOD: 150	nm S	GUD	STEM	AUGE	R	PROJECT NO:	JX30012A	
		EGIN	\ 					61 CH			ELEVATION: 6	25.47 (m)	
SAMP		ITPL				-		-0.511	U	<u> </u>	INTAR 2157	ULICORE	
)EPTH (m)	MPLE TYPE	usc	DIL SYMBOL	SOIL DESCRIP	TION	-	NTDRO 2000 STIC	CARSON 4000	5000	R (794) A 3000 LIQUID	Сом	MENTS	EVATION(m)
-	3		ß			'	20	40	60		-		13
3		а/а		CLAY(FILL,1.7m)-BROWN -GREYISH BLACK WITH STRONG 0.3m	ODOUR BELOW						-		605.0
- 20		a		-WET WITH TRACES OF WOOD CLAY(TILL)-GREY STAINED -STRONG ODOUR THROUGHOUT	PIECES_BELOW_1_5m_								- 60 U
- 10				LINU UT IESI MULE 19 2.3m									- 602.1
- 4.0							••••	• •					- - - - - - - - - - - - - - - - - - -
- 3.0							• • • • • •	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •				
- 7.0								· · · · · ·	•	- - - - - -			599.
- 8.0								• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	•			-598.
5.0							•	• • •	••••				- -
10.0								• •					- 595.1
- 11.0							••••	••	•	19 - 11 - 11			594.
	CR	A F	lar	th & Environmen	tal Limited	LOCC	ED B	Y: TK			COMPLETIO	N DEPTH: 2.5	i m
		-4 L L		Regina Saskatchewar		iæ Vil Fig.	LWED No: 4	811: 0 13	UN ED	t	COMPLETE	09/11/94 Fo	ge [of]

·

OIL P	IT E	VALU/	TION		TEST HOLES					BOREHOLE NO: 120)
FLEET	ST	REET	LAND	กป	DRILLING METHOD:150	nm SOLID	STEM	AUGE	R	PROJECT NO: JX3001	24
CITY (OFI	ECIN	<u>۸</u>		<u> </u>					ELEVATION: 605.61 (m)
SAMP		ITPE	, I	THIN WALL TUBE		<u>_ =^</u>	-CASIN	Ç		HOLLOW STEM	ORE
H (m)	E TYPE	sc	SYMBOL	SOII	L	A NTORO 2000	CARION 4000	YAPOU 6000	R (PPL) A	COMMENT	S (m)NOI
DEPT	SAMPI		Solt	DESCRIP	TION	PLASTIC	<u>الا</u>	د —	UQUO 		ELEVA
	Н	SM		SAND/FILL 0 2m)-880WN		20	40	60	<u> </u>	<u> </u>	
				CLAY(FILL,2.2m)-GREY BLACK		1					F
F				-STRONG ODOUR THROUGHOU							-605 .0
- 1.0				-TRACES OF GARDAGE/RUDDE	L BELUW V.OM				<u> </u>	-	F
		α					ļ			-	Ē.
Ē			V//		•					1	–604. 0 F
- 2.0									††		Ē
			H	CIAY/THE L-CREVISH RROWN -							ŧ
			V//	-GREEN DISCOLORATION AND	strong odour					1	E
- 70		α		Throughout				•••••			Ē
Ē											Em
÷			H	SAND-GREY BROWN		4					5
- (,)		224		-GREEN DISCOLORATION AND	STRONG ODOUR				•		
-				END OF TEST HOLE @ 4.6m		1					
- s.o	11					4	•••••		•••••		Ē
											Ē
											600 .0
- 6.0						*****	•••••	•••••	••••••••••		Ē
						••			·····		Ē.,
			1								
- 7.0							÷	•	•···•		Ē
								•	• • •		E.m.
							1				5
- a.u							:	•••••			E
Ē							.	•• •			- <u>49</u> 7
E			1								E
ŧ								1			E
E						·····	<u>.</u>		•••		596.0
E 10.0								ļ			Ē
Ē											ŧ
ŧ				l			••••••••••••••••••••••••••••••••••••••	• • •			- 595.0
F 11.0						1	.	: 			Ę
ŧ							•				Ē
E						1	•••••••• :	· •.	· t ·		-594.0
12.0			<u> </u>	1 a 11 ·			Y. Tr	<u></u>	<u> </u>		<u>F</u>
A	Gt	KA I	tar	un & Environmen	ital limited	REVIEWED	BY: D	JN ED	F	COMPLETE: 09/11	/94
H. MI /				Regina, Saskatchewa	<u>n</u>	Fig. No:	u				Page 1 of 1

OIL P	IT E	VALU/	TION		TEST HOLES					BOREHOLE NO	: 121	
FLED	r st	REET	LAND	กบ	DRILLING METHOD:150n	nm SOLID	STEM	AUGE	R	PROJECT NO:	JX30012A	
CITY	0F 1	REGIN	<u>ا</u>							ELEVATION: 6	05.64 (m)	
SAME	Π Γ	IYPE	┯┻	THIN WALL TUBE	⊠ গণ		CASING	;	<u> </u>	ICILION STEN	CORE	
EPTH (m)	NPLE TYPE	nsc	IL SYMBOL	SOIL	TION	A HYDROC 2000 PLASTIC	4000 KJ	VAPOU 5000	R (MPN) ▲ 3000 LIQUID	Сож	MENTS	(m)NOIL
a	S		ន្រ			<u></u>						12
	SAU SAU	C Su		SAND(FILL, SOMM) BROWN CLAY(FILL, 2.8m) BROWN GREYISH BROWN AND STRONG TO 1.2m TRACES OF GARBAGE/RUBBLE 1.4m TRACES OF WOOD/ROOTLETS SAND-GREY BROWN GREEN DISCOLORATION AND S MODERATE ODOUR THROUGHOI END OF TEST HOLE @ 3.0m	орошк FROM 0.6m • 0.8m,1.2m TO • FROM 2.1m TO 2.7m • TRONG TO л							
11.0							•	• •••	• • •			
E 120						L. : :						Ē
A	CF	RA I	Ear	th & Environmen	tal Limited	LOGGED 8	r: TK			COMPLETK	ON DEPTH: 3.0	m
1				Dating Carladabarra	an minited	REVIEWED	81: D.	IN ED	F	COMPLETE	: 09/11/94	
8/1/7	1014	-		Regilla, Saskalchewar	1	Hg. No: 4	2				Pog	e 1 of 1

OIL PI	1 8	VALUA	TION		TEST HOLES					BOREHOLE N	0: 122	
REET	ST	REET I	LAND	FILL	DRILLING METHOD:150m	im SOLID	STEM	AUGER		PROJECT NO	: JX30012A	
CITY)F R	EGIN	l I							ELEVATION:	605.59 (m)	
SAMP	LE I	TYPE		THIN WALL TUBE DISTURBED	🗙 झा		CASING	;		IOLLOW STEM		
0EPTH (m)	SAMPLE TYPE	usc	SOIL SYMBOL	⁻ SOIL DESCRIP	TION	▲ NTDRO 2000 PLASTIC	CARBON 4000 11.1	VAPOUR 6000	(MPN) & 8000 UDUD	co	nments	ELEVATION(m)
	Ľ				·	20	40	<u>60</u>	- 10	 		
- 0.0 		к Б		SAND() ILLO.3m)-BROWN CLAY(FILLO.8m)-BROWN, TRAC -CREYISH BLACK AND STRONG TO 1.1m	ES OF WOOD ODOUR FROM 0.5m							405.0
20		a		-STRONG ODOUR FROM 1.1m	TO 2.6m					-		- 604.0
- - - - - - -		SM		SAND-GREY BROWN -GREEN DISCOLORATION AND THROUGHOUT	NODERATE ODOUR							-605.0
							• • •	• • • •				- 601. 0
5.0 								• • •				
- 6.0 						**		 				-599.0
- - - - - - - - - - - - - - - - - - -							; i 		-			598.0
5 						••	· · · · · · · · · · · · · · · · · · ·	• • ·	: <u>.</u>			- 597.0
L L L L L L L L L	,											- 595.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•						••••••••••••••••••••••••••••••••••••••		 •••			534.0
12	0						07. TV			I ICOURT C	TION DEDTU. 1	<u> </u>
A	G	RA	Ea	rth & Environmen Regina, Saskatchewa	ntal Limited	REVIEWE	0 BY: 0 45	IJM EC	УF	COMPLE	TE: 09/11/94	Page 1 of 1

DILLTS ENERT LAUGEN DOBLING METHOD: Some SQUD STEM AUGR PROJECT VB:: TOOD 7.2 CITY OF RECENAL DESCRIPTION DESCRIPTION DESCRIPTION CE SO SO DESCRIPTION PROJECT VB:: TOOD 7.2 COMMENTS DESCRIPTION PROTECT WB:: TOOD 7.2 COMMENTS CE SO SO DESCRIPTION PROTECT WB:: TOOD 7.2 COMMENTS DESCRIPTION PROTECT WB:: TOOD 7.2 COMMENTS COMMENTS PROTECT WB:: TOOD 7.2 PROTECT WB:: TOOD 7.2 PROTECT WB:: TOOD 7.2 CO<	IL PIT EVAL	UATION		TEST HOLES			BOREHOLE NO: 123	
CITY OF REGNA Impair wall tage [] perturbed Start [] Perturbed Impair wall tage [] perturbed Start [] Perturbed Impair wall tage [] perturbed Start [] Perturbed Impair wall tage [] perturbed COMMENTS SAMPLE TYPE Impair wall tage [] perturbed Start [] Perturbed And [] Perturbed COMMENTS Sample for type DESCRIPTION Past wall tage [] Perturbed COMMENTS Sample for type DESCRIPTION Past wall tage [] Perturbed COMMENTS Sample for type DESCRIPTION Past wall tage [] Perturbed COMMENTS Sample for type DESCRIPTION Past wall tage [] Perturbed COMMENTS Sample for type DESCRIPTION Past wall tage [] Perturbed COMMENTS Sample for type Sample for tage [] Perturbed Sample for tage [] Perturbed COMMENTS Sample for tage [] Perturbed Sample for tage [] Perturbed Past manual tage [] Perturbed Commental Limited Sample for tage [] Perturbed Past manual tage [] Perturbed Past manual tage [] Perturbed Past manual tage [] Perturbed Sample for tage [] Perturbed Past manual tage [] Perturbed	LEET STREET	T LAND	กแ	DRILLING METHOD: 150	mm SOLID STEW AUGER		PROJECT NO: JX30012A	
SMPLE TYPE ■ Rev VALL THE C DISTURBO ST = A-CASHS []] FOLLOW STEM []] CORE C = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ITY OF REG	INA					ELEVATION: 605.47 (m)	
End SOIL	ANPLE TYP	29	THIN WALL TUBE DISTURBED	🛛 🗺	T -craike	ЦИ	ICLOW STEM	
B S DD000111101 B B SM007110.3m)-BRYNN CA B SM007110.3m)-BRYNN CA CANTRELOS FOU 0.5m TO 0.6m -10 CANTRELOS FOU 0.5m TO 0.6m -10 CANTRELOS FOU 0.5m TO 0.6m -11 CANTRELOS FOU 0.5m TO 0.6m -12 CANTRELOS FOU 0.5m -13 CANTRELOS FOU 0.5m -14 CANTRELOS FOU 0.5m -15 FOU 0.5m FOU 0.5m -16 FOU 0.5m FOU 0.5m -17 FOU 0.5m FOU 0.5m -18 FOU 0.5m FOU 0.5m -19 FOU 0.5m FOU 0.5m -10 FOU 0.5m FOU 0.5m -1	PTH (m) IPLE TYPE LISC	L SYMBOL	SOI	L	A NTOROCARBON VAPOUR (PP 2000 4000 6000 800 PLASTIC N.C. L	¥) ▲ 10 10000	COMMENTS	VATION(m)
Ca Su RE SAND/FILO.Sm)-GROWN CLAY(FILLO.Sm)-GROWN & BLACK -SUGHT COMPREDUCTION GROWN & BLACK -SUGHT COMPRETION GROWN & BLACK -SUGHT COMPRE	SAL D	SOI		11010	20 40 60 80	⊣ \$		ELE
Competitional control of the second	00 5		SAND(FILL,0.3m)-BROWN					Ē
12 -Subert Dougle (PAM) 6.5m 13 -Subert Staning to 0.5m 14 -Subert Staning to 0.5m 150 -Subert Staning to 0.5m 16 -Subert Staning to 0.5m 17 -Subert Staning to 0.5m 18 -Subert Staning to 0.5m 19 -Subert Staning to 0.5m 10 -Subert Staning to 0.5m	a	n 🕅	CLAY(FILL, 0.3m)-GREVISH 8R	OWN & BLACK]			
La CALLET STANK TO 0.9m -SUCHT STANK TO 0.9			C-SLICHT ODOUR FROM 0.3m	TO_0.6m				F
AGRA Earth & Environmental Limited Regina, Saskatchevan Fig. 8:47 Complete of the figure of the f	1.0		-SUCHT STAINING TO 0.9m			Ť		Ē
La DND OF TEST HOLE & 2.3m La DND OF TEST HOLE & 2.3m La La L	c	: V/						-60
10 DND OF TEST HOLE @ 2.3m 10 Image: Completion of the second				•				Ē
LO AGRA Earth & Environmental Limited Regina, Saskatchewan Figure 2.3m COMPLETION OF THE 2.3 m COMPL	20					-		Ē
Lo di Lei noir o ranni Lo di Lei noir o ranni Li di Lei no ranni Li di Lei noir o ranni Li di Lei noir o ranni Li di Lei		12	FND OF TEST HOLE & 2 5m		-]	٤
10 .10 10 .10 10 .10 10 .10 10 .10 10 .10 10 .10 100 .10 110 .10 110 .10 1110 .10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>È</td>								È
4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	مد					_		Ē
AGRA Earth & Environmental Limited AGRA Earth & Environmental Limited Regina, Saskatchewan								Ē
40								E-60
10 10 10 1 10 1 10 1 100 1								E
10 10 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 11.0 1 120 1 130 1 140 1 150 1 150 1 160 1 170 1 170 1 170 1 170 1 170 1 170 1 170 1 170 1 170 1 170 1 <t< td=""><td>4.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>F</td></t<>	4.0							F
AGRA Earth & Environmental Limited Regina, Saskatchewan AGRA Earth & Environmental Limited Regina, Saskatchewan Regina, Saskatch						.		-60
10 100 100 1 <td>11</td> <td></td> <td></td> <td></td> <td>: : · · · · ·</td> <td></td> <td></td> <td>Ē</td>	11				: : · · · · ·			Ē
4.0 1.0 -1.0	5.0	Î			· · · · · · · · · · · · · · · · · ·			F
4.0 1 11.0 1 12.0 1 AGRA Earth & Environmental Limited Regina, Saskatchewan 1000 EDF: DM EDF COMPLETION OFFTH: 2.3 r 1/34								E-60
4.0								Ē
-1.0 -1.0 -1.0 -1.0 AGRA Earth & Environmental Limited Regina, Saskatchewan -1.0 -1	- 6.0				- mar arman a straat i s			Ē
-1.0 i -10.0 i -11.0 i<						:		Ē.,
-100 -100 -100 -100 -100 -100 -100 -100 -110 AGRA Earth & Environmental Limited Regina, Saskatchewan -100 -1						ن. ب		F
AGRA Earth & Environmental Limited Regina, Saskatchewan AGRA Fig. No: 47 Pogu								Ē
-100 -100 -100 -100 -110 AGRA Earth & Environmental Limited Regina, Saskatchewan -110 -100 -1	- /.0							F
-10.0 -10.0 -11.0 AGRA Earth & Environmental Limited Regina, Saskatchewan -11.0								F-89
- 10.0 - 10.0 - 11.0 - 11.0					: :	•		F
- 3.0 - 10.0 - 11.0 - 11.0 - 11.0 - 12.0 AGRA Earth & Environmental Limited Regina, Saskatchewan - 12.0 - 12.	- 8.0	1					1	Ē
- 10.0 - 10.0 - 11.0 - 11.0 - 11.0 - 11.0 - 12.0 AGRA Earth & Environmental Limited Regina, Saskatchewan - 12.0 - 12			1					[-ss
- 10.0 - 10.0 - 11.0 - 11.0 - 11.0 - 11.0 - 12.0 AGRA Earth & Environmental Limited Regina, Saskatchewan - 11.0 - 11						:		E
-10.0 -11.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1	- 9.0							E
-10.0 -11.0 -11.0 AGRA Earth & Environmental Limited Regina, Saskatchewan Reviewed BY: DJM EDF Fig. No: 47 Poge								E.
- 10.0 - 11.0 - 11.0						. <u>-</u> .		Ē
- 11.0 12.0 AGRA Earth & Environmental Limited Regina, Saskatchewan Reviewed BY: DJM EDF COMPLETION DEPTH: 2.5 r REVIEWED BY: DJM EDF COMPLETIC 09/11/94 Fig. No: 47 Poge	- 10.0							E
-11.0 12.0 AGRA Earth & Environmental Limited Regina, Saskatchewan AGRA Fig. No: 47 COMPLETION DEPTH: 2.5 r REVIEWED BY: DJM EDF COMPLETIC: 09/11/94 Fig. No: 47 Poge								E
AGRA Earth & Environmental Limited Regina, Saskatchewan Reviewed BY: DJM EDF Fig. No: 47 Reviewed BY: DJM EDF COMPLETION DEPTH: 2.3 r Reviewed BY: DJM EDF Fig. No: 47 Poge			1		2 4 1 4 1 4 1	•		E-*
AGRA Earth & Environmental Limited LOGGED BY: TK COMPLETION DEPTH: 2.3 r REVIEWED BY: DJM EDF COMPLETE: 09/11/94 Regina, Saskatchewan Fig. No: 47 Poge								F
AGRA Earth & Environmental Limited LOGGED BY: TK COMPLETION DEPTH: 2.3 r Regina, Saskatchewan Fig. No: 47 Poge	- 11.0							Ē
AGRA Earth & Environmental Limited LOGGED BY: TK COMPLETION DEPTH: 2.3 r REVIEWED BY: DJW EDF COMPLETE: 09/11/94 Regina, Saskatchewan Fig. No: 47 Poge						•		F.
AGRA Earth & Environmental Limited LOCCED BY: TK COMPLETION DEPTH: 2.5 r Regina, Saskatchewan Fig. No: 47 Poge								E
AUKA BAFUN & ENVIRONMENTAL LIMITED REVIEWED BY: OJM EDF COMPLETE: 09/11/34 Regina, Saskatchewan Fig. No: 47 Poge				-L-1 T:	LOCCED BY: TK	<u>.</u>	COMPLETION DEPTH: 2.3 m	
Regina, Saskatchewan Fig. No: 47 Poge	AGKA	La	rin & Environme	ntal limited	REVIEWED BY: DJM EDF		COMPLETE: 09/11/94	
			Regina Saskatchew	an	Fig. No: 47		Poge	1 of

FLEET STREET LAND CITY OF REGINA SAMPLE TYPE JALL JIC (W) HL	THIN WALL TUBE OSTURAED	DRILLING METHOD:150		STEN Casing	AUGET		PROJECT NO: JX300 ELEVATION: 605.70	(m)
CITY OF REGRAA SAMPLE TYPE JOBMAS (W) HL	THIN WALL TUBE OSTURBED	🔀 इम		CASIN		- 00	PROJECT NO: JX30012A ELEVATION: 605.70 (m)	
SAMPLE TYPE DIST		SPT		-CASING	۰. ۱		unu mireteu 🔳	0000
TH (m) <u>de type</u> usc Symbol	SOIL							CURL
		τιων	A HTDROG 2000 PLASTIC	CARBON 4000 K.	YAPOUR 6000	▲ (PPH) ▲ 3000	COMMEN	VATION(m)
SQI SAN			20	40	60	1		ELE
	CLAY(FILL, 1.1m)-BROWN							
-1.0 CA	-GREY BLACK AND MODERATE TO 1.1m -TRACE OF WOOD & ROOTLETS .0.8m	000UR FROM 0.5m ; FROM 0.6m TO	••••••••••••••••••••••••••••••••••••••					- 605. 0 -
-2.9 a	CLAY(TILL)-GREY BROWN -GREEN DISCOLORATION AND S THROUGHOUT	strong odour						- 404.0
-10 SM	SAND-BROWN -SLICHT GREEN DISCOLORATIO ODOUR THROUGHOUT	n and strong		• • • • • •				
- 4.0	LENG OF TEST MULE & S.U.C.SIT	•			•••• ÷ • • •	:		
- 5.0				• •		• • •		- 601.0 - - - -
- 6.0			· · · ·	• •	• •			- 600 .0
7.9					• · · · · • • · · ·	• • • • •		
- 8.0			· · · · · · · · · · · · · · · · · · ·	· ·		 		
9.0					•••			597.9
0.01				· ·	: - -			
- 11.0								
12.0								594.
AGRA Ea	rth & Environmer Regina, Saskatchewa	ntal Limited	LOGGED REVIEWEL Fig. No:	87: TK D 87: (48	DJN EL)F	COMPLETION DI COMPLETE: 09	PTH: 3.0 m /11/94 Page 1 of 1

OIL P	IT È	YALU	KOTT		TEST HOLES			BOREHOLE N	0: 125		
NET	ST	REET	LAND	FILL	DRILLING METHOD:150	mm SOLID STEI	AUGE	R	PROJECT NO:	JX30012A	
CITY	OF	REGIN	٨						ELEVATION: 6	i05.64 (m)	
SANP	Ľ	TYPE	.	THIN WALL TUBE OISTURBED	\$श	<u> </u>	NG	!	ICULOW STEM	CORE	
EPTH (m)	JAYT JUAN	nsc	IL SYMBOL	SOIL	TION	▲ INTOROCARDO 2000 4000 PLASTIC	N YAPOU 6000 K.C.	t (PPH)▲ 8000 UQUID	CON	iments	VATION(m)
ā	3		S	Dibouti	11011	 	•				12
0.0	┢	-58	777	SAND(FUL.50mm)-RROWN	<u> </u>	20 40	- 60		+		
E		İ	<i>[]]</i>	CLAY(FILL, 1.2m)-GREY AND B	LĀCK	1					E
- 1.4		Сн		-STRONG ODOUR FROM 0.6m	TO 1.2m						- 605 .0
				CLAŸ(TIĽL)-GREY BLACK -STRONG ODOUR FROM 1.2m	 T0 1.8m .	•		• • •			
- 20		a		-GREEN DISCOLORATION AND 1 1.8m TO 2.6m	NODERATE FROM			••• • • •			
- 3.0		21		SAND-BROWN -SLIGHT DISCOLORATION AND 8ELOW 2.6m	NODERATE ODOUR	1					- 603 .0
				END OF TEST HOLE @ 3.0m			• ••••••				-602.0
4.0							•	· · ·			
- 5.0											E 60 1.0 E
	ŀ							: 			E
6.0							•				
						••	;				E-599.0
- 7.0						1 1		••• • •·			-
- 8.0								· · · · ·			598.0
9.0							·	•			-517
							•	• • • •			596.
											-595
- 11.0 -							· • •				
12.0						····· • • • • • • •	· · · · ·	• • •			-594
A	GE	RA I	Ear	th & Environmen	tal Limited	LOGGED BY: TK	0.00.00		COMPLETI	ON DEPTH: 3.0	m
				Regina, Saskatchewa	n	Fig. No: 49	UJM ED	r		.: 09/11/94 Pog	• 1 of 1

OIL P	IL PIT EVALUATION TEST HO					TEST HOLES					BOREHOLE N	0: 126	
REE	ST	REET	LAND	FIL		DRILLING METHOD:1	50mm SOLID	STEM	AUGER	<u> </u>	PROJECT NO:	JX30012A	
CITY	of F	EGIN	۱ 								ELEVATION: (05.65 (m)	
SAME	ΨĽ,	TYPE	_	THIN WALL TUBE	STURBED			-CASIM	;	<u>ш</u>	HOLLOW STEM	CORE	
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	DES	SOIL CRIP	rion	A HITORO 2000 PLASTIC	CARION 4000 N.	YAPOUR 6000 C.	(PPH)▲ 8000 UQUID	CO	(MENTS	elEvation(m)
- 0.0	┼┦	~		(1 4Y/5111 0 3m)-890	WM		20	40	60		 	·	_ <u>+</u>
		CH CH		CLAY-BROWN									
				CLAT(IILL)-BRUWN					•••••				E 604.(
- 20		a						• •	• • • • • •	····			- 603 .0
<u>مد –</u>				END OF TEST HOLE O	3.0m	<u></u>							
5.0								· · · · · · · · · · · · · · · · · · ·	· · · ·	n yn h			
6.0							• • • •	• • • • • • • •	· · · · · · · · · · · · · · · · · · ·				
1.0								1					
- - - - - - - - - - - - - - - - - - -									• • •				2 598. 1 1 1
5.0 E							· • • • • • • • • • • • • • • • • • • •	••••••	•••				
E E E E E E		-					· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	• • •	• • •			- - - - - -
E E E E E E E E E E E E E E E E E E E								•• ••	•				
121													-594.
A	GH	KA I	sar	th & Enviro	nment	al Limited	REVIEWED	8Y: D.	in Edf		COMPLET	: 10/11/94	
KA1/6	1 41.53	~		Regina, Saskat	<u>chewan</u>		Fig. No: 5	<u>x</u> 0				Pac	ge 1 of 1

OIL P	IT E	VALU/	TION		TEST HOLES			BOREHOLE NO: 127		
FLEET	ST	REET	LAND	กบ	DRILLING METHOD:1	50mm SOLID	STEM AL	JGER	PROJECT NO: JX30012A	
	DFI	REGIN	<u> </u>						ELEVATION: 605.73 (m)	
SAMP	u.	<u>1995</u>		THIN WALL TUBE			-CASING		HOLLOW STEM	
DEPTH (m)	AMPLE TYPE	nsc	OIL SYMBOL	SOIL DESCRIP	FION	A NTORO 2000 PLASTIC	CLUEBON VAL 4000 BI	POUR (PPL) A 000 1000	COMMENTS	EVATION(m)
Ľ	S		ŝ			20	40 (FO		13
- 1.9		CH CH		CLAY(FILL,460mm)-BROWN WI STAINING '-SLIGHT ODOUR CLAY-BROWN	ih slicht grey					605.0
-29		a		CLAY(TILL)-BROWN						
د د -				SĀND-GRĒY						- 60 3.0
- - - - -		HR.		-STRONG ODOUR FROM 3.2m T BROWN & TRACE OF ODOUR B END OF TEST HOLE @ 3.8m	0 3.5m ELOW 3.5m					- 602.0 -
- 5.0										
- 6.0										- 60 0.0
- 1.0							•			-5999.0
- 1.0										-598.0
- 1.0										-597.0
- 10.0							· · · · ·	2		-596.0
- 11.0								• • • • • • • • • • • • • • • • • • • •		-595.1
						LOCTED BY	· TY			
AC	۶K	AĽ	ar	Regina Saskatobarra	al Limited	REVIEWED	BY: DJM	EDF	COMPLETE: 10/11/94	n
15761764 2	EV.	N		ASELLIG. DOSKOLCHEWAN	1110. NO: 5	L		Page	1 of 1	

•

OIL P	IT E	VALUA	TION		TEST HOLES			BOREHOLE N	0: 128			
FLEET	ST	REET	LAKD	RU	DRILLING KETHOD:150	mm SOLID	STEN A	LIGER		PROJECT NO	: JX30012A	
	OFI	REGIN	<u> </u>							ELEVATION:	605.74 (m)	
SAMP	UE T	TYPE		THIN WALL TUBE 2 DISTURBED	\$97		-CASTING			IOLLOW STEM	CORE	
PTH (m)	PLE TYPE	usc	L SYMBOL	SOIL	πιωι	A 111080 2000	CARSON VI 4000 0	A.POUR 6000	(1994) A 2000	COI	MENTS	ATION(m)
ä	SAL		S	DESCRIP	TION	20	40	60				ELEV
- 0.0		ᅄ		CLAY(FILL,460mm)-BROWN WI	TH SLIGHT GREY							
- 1.4		CH	Y	L-SLIGHT ODOUR CLAY-BROWN		1						E 605.0
		a		CLAY(TILL)-BROWN	•••••							
E 20				-GREY STAINING AND STRONG	000UR 8ELOW 2.0m				-			E
				END OF TEST HOLE @ 2.3m		4.40		-	-			E 603.0
- 70												-
- 4.0									-			-602.0 -
									····· ·· ·			E E en o
- s.o						9 () a i		•				Ē
6.0							······································	•	· · · · · · · · ·			600 .0
								-				
- 1.0 -							i		·· •····•			
8.0								• •				-598.0
							· · •	. .				
- 9.0 E							<u>-</u>	•••	• . •			E 397 1)
10.0								• •	• •			596.0
									 			1
E - 11.0 E												E-595.0
						•••			•			-594.0
1	70			th le Province		LOGGED B	T: TK	-i	<u></u>	CONPLETE	ON DEPTH: 2.5	<u> </u>
	JU		וסי	Regina Saskatcheway		REVIEWED	BY: DJI	EDF		COMPLET	E: 10/11/94	1.41
A ALZ		N.	_		L	11.1d' 10: 2	4				Poge	liofi

OIL P	IT E	VALU	TION		TEST HOLES			BOREHOLE NO: 129			
กต	ST	REET	LAND	FILL	DRILLING METHOD:15	Omm SOLID	STEW	AUGE	2	PROJECT NO: JX30012A	
CITY	OF .	REGIN	<u>ا _</u>							ELEVATION: 606.11 (m)	
SAMP	Ľ	TYPE	_	THIN WALL TUBE DISTURBED	SPT		-CASIN	C		ICILOW STEM	
(m) H	LE TYPE	1SC	SYMBOL	SOII	a la companya da companya d	▲ HTDR0 2000	CARBON 4000	VAPOUR 6000	(PPN) A 8000	COMMENTS	(m)NOI
DEPI	SAMP		SOIL	DESCRIP	TION		<u>لا</u>	с. 			ELEVA
0.0	┢─	SM	E	SAND(FILL, 0.3m)-BROWN			40	<u></u>			-606.0
È.			77	CLAY(FILL,0.6m)-BROWN		• •		•			E
		ମ	0/								ŧ
E- 1.0				CLAY(TILL)-BROWN		1	 .				- 605 .0
Ē											E
		a			•						E
- 20											Fron
Ē				END OF TEST HOLE @ 2.3m							Ē
E		1								-	Ē
- 10								••••	····		- 603 .0
											Ē
							•				Ę
- 4.0											- E-602.0
											Ē
									:		Ē
— 5.0 :							••••		•••••		- E 6013
											E
									:		Ē
- 6.0						·····į····· į•·····i	···· • • • •	••••••			- 60C.
						· • •					Ę
											Ē
- 7.0							• • •		• •••		- - 599 .0
											Ē
											Ē
- 8.0								• • •	· • •		-598.4
								<u>.</u>			Ę
								-			Ę
- 3.0							••••				597.
									· -		Ē
											Ē
- 10.0											596.0
											Ē
											Ē
-							, .				E
120						1	1	; .			Ę
AC	R	A F	ar	th & Environmen	tal Limited	LOCCED BI	r: TK			COMPLETION DEPTH: 2.1	m
				Regina Saskatchewar		REVIEWED	<u>87: Dj</u> 3	n EDF		COMPLETE: 10/11/94	ne 1 of 1
			_	The CHOMALPHENCH	•	pinge more at	.				yna 6 94 -

OIL PIT EVALUATION TEST HOLES						TEST HOLES							HOLE NO): 130	
FLEET	\$T	REET	LAND	ALL		DRILLING WETHOD: 150	Omm Si	0.00	STEN	AUGE	2	PROJ	ECT NO:	JX30012A	
CITY	of f	ECHN/	<u> </u>			l					_	10.00	TION: 6	05.88 (m)	
SAMP	Ľ	TYPE	, L	THIN WALL TUBE	OISTURGED	<u></u>	<u> </u>	<u>=</u>	CASIH	<u> </u>		HOLLOW	STEM	COR	
DEPTH (m)	SANPLE TYPE	nsc	SOIL SYMBOL	I	SOIL ESCRIP	TION	A H 2 PLAS	TEROC SOG	4000 L.	YAPOU 6000	(PPN) / 8000 UQU	0	COM	IMENTS	ELEVATION(m)
0.0	┼╌┥			CLAY(EUL 15m)		+	20	-40	60					
- 1.0		СН		-SLIGHT TO NO	CES FROM 1.2n	n TO 1.5m									1 1 1 1 1 1
- 2.0		R		SAND-BROWN -MODERATE OD -PIECES OF CO CLAY(TILL)-GRE	our Througho NCRETE From 1	UT 1.5m TO 2.4m									
- 70		a		-strong oddu	ir throughout						-				- 403 .
- 1.0		54		SÁND-GREYISH -Strong Odou End of test h	BROWN IR THROUGHOUT OLE B 4.6m						• • • • • • •				
- 5.0 - 6.0															- 600.
- 7.0									e e		· · · · · · · ·	· ••			
- 1.0								•••••	·		• • •				598
9.0										••••••••••••••••••••••••••••••••••••••	••••				1-597. 1-1-5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
- 10.0								•	••••••••••••••••••••••••••••••••••••••	•					- 596
- 11.0								-	••••• •• •••						- 555
	<u>~</u>			th & E		hal fimile 1		ED B	r: TK	· · ·		- <u>-</u> - [a	ONPLETK	IN DEPTH:	4.6 m
	AGRA Earth & Environmen Regina, Saskatchewa						REVIE Fig. 1	WED lo: 5	8 <u>7:</u> D 4	JN EDI	-	C	OMPLETE	: 10/11/9	4 Page 1 st 1

OIL PI	T E	VALU	TION		TEST HOLES		BOREHOLE NO:	131					
ก.ยา	ST	REET	LAND	FILL	DRILLING WETHOD:15	0mm S	ouo	STEM	AUGE	2	PROJECT NO:	X30012A	
		ECIN.								00.	ELEVATION: 60	5.94 (m)	
SAMP	ե	ITPL	T	THIN WALL TUBE			34.	CASIN	;		IOLLOW STEM	CORE	
EPTH (m)	KPLE TYPE	nsc	IL SYMBOL	SOIL	, TION	A I	(110800 2000 STIC	4000 K.	VAPOU 6000	± (??%) ▲ 2000	сом	VENTS	VATION(m)
	S		ន	D DOURI	11010	1	20	40	E 1				12
. 03		CH		CLAY(FILL,0.9m)-BROWN WITH STAINING & ODOUR	SLIGHT GREY							<u></u>	
		a		CLAY(FILL, 0.9m)-BROWN WITH STAINING & ODOUR	SUGHT GREY								
20		a		CLAY-GREY -STRONG ODOUR FROM 1.8m	TO 2.6m								
er - 10		a		CLAY(TILL)-BROWN WITH BLAC -NODERATE ODOUR FROM 2.6	K STREAKING n TO 3.5m	- 		•					- 603 .0
		SM		SAND-BROWN END OF TEST HOLE @ 3.8m									E-602.0
- 5.0													601.
- L O						· · · · · · · · · · · · · · · · · · ·	•						- 60C.
7.0									 	·····			-599.0
							· · · · · ·						-598
5 - 9_0 -						1 1	••••••	· · · ·	• • • • •	····			597.
10.0													596.
- - - - - -						⁺ -	 		· • ·				
ŧ "							• •		••••	•			Ē
Δ(רד היי	A F	l lar	th & Fnyironmon	tal limited	LOCC	ED 81	: TK			COMPLETION	1 DEPTH: 3.8 m	<u>774.</u> 1
			<u> </u>	Regina. Saskatchewar		REVIE Fig. 1	WED lo: 5	8 1: DJ 5	n edf		COMPLETE:	10/11/94 Page	1 of 1

OIL P	IT E	VALU	ATION		TEST HOLES					BOREHOLE NO	: 132	
FLET	st	REET	LAND	กป	DRILLING METHOD:15	iamm SOLID	STEN	AUGE	R	PROJECT NO:	JX30012A	
CITY	OF	REGIN	<u> </u>					_		ELEVATION: 60	15.96 (m)	
SAN	<u>u</u>	TYPE	- - -	THIN WALL TUBE 2 DISTURBED	Set	_ =	CASING	;	U	IOLLOW STEM	CORE	
0EPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOIL DESCRIP	TION	A HYOROC 2000 PLASTIC	4000 KLC	VAPOU 6000	t (PPN) ▲ 8000 UQUID	сои	MENTS	LEVATION(m)
- 0.0	┢			CIAY (FILL O 9m)-COFY PROWN			40	60		<u> </u>		<u> </u>
		а		TRACE OF ODOUR		-						
- 1.0		ан/а		CLAY(FILL, 1.1m)-GREY BROWN -MODERATE ODOUR THROUGHO	w	-						-605.0
-20				CLAY-GREVISH BLACK & BROW -STRONG ODOUR THROUGHOUT	N	-						-401.0
- 10		a										-401.0
4.0						-						-602.0
5.0		Ci Swi		-BLACKISH GREEN DISCOLORAT ODOUR THROUGHOUT SAND-GREYISH BROWN	10N & STRONG	-	······································	•	- - -			-601.0
L 6.0				-GREEN DISCOLORATION AND S THROUGHOUT END OF TEST HOLE @ 5.3m	TRONG ODOUR		•••••	- - -				600 .0
7.0							1					-
- 8.0							····••					-598.0
9.0							· · ·	•				-517.0
- 10.0												596.0
i1,0					·							595.0
120					1		• 17					594.0
	Чi	Ał	Lar	th & Environmen	tal Limited	REVIEWED	- IK BY: DJI	N FDF		COMPLETIO	10/11/44	<u>n</u>
L				Regina, Saskatchewar	L	Fig. No: 56	5				Page	1 of 1

OIL PI	ת בי	ALU/	TION		TEST HOLES		BOREHOLE NO:	133			
RET	ST	EET	LAND	กน	DRILLING KETHOD: 15	mm SOLID ST	TEM AU	GER	PROJECT NO:	X30012A	
	DF R	EGIN	\ 						LELEVATION: 60	6.14 (m)	
SANP	τ	ITPE		THIN WALL TUBE OSTUR	900 X SPT		LSING	<u> </u>	HOLLOW STEN	UI CORE	
EPTH (m)	NPLE TYPE	nsc	IL SYMBOL	S	OIL 21PTION	A HYDROCAJ 2000 A PLASTIC	18001 VAP 000 60 16.C.	OUR (PPN) / 00 8000 UQU	COM	(ENTS	VATION(m)
ā	3		S			<u></u>					13
0.0		514		SAND(FILL, SOmm)-BROWN CLAY(FILL, 2.8m)-BROWN	1		••••••				606.0
- 1.0		a		-greytsh black and st	RONG ODOUR FROM 1.4m						-605.0
- 24				-WOOD & RUBBLE @ 1,44 -CONCRETE,WOOD,BRICK FROM 2.0m TO 2.6m	n WITH SAND & GRAVEL						
- 3.0				CLAY(TIL)-GREY WITH BL -STRONG ODOUR FROM 2	ACK STREAKS .9m TO 5.8m		••				603.0
- 1.0		a						· · · · · · · · · · · · · · · · · · ·			602 .0
- 5.0											
- 60		SM	H H	SAND-BROWN END OF TEST HOLE @ 6.1	m		• • • • • •				E-600.0
- 7.0							· · ·	• • • • • • • • •			559.0
- 1.0						· · · · · · · · · · · · · · · · · · ·	· · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-598.0
- 9.0						· · ·	· · ·	۔ ــــــــــــــــــــــــــــــــــــ			-397.0
- 10.0						n <u>n</u>					556.0
- 11.0							• ••••	· · · · · · · · · · · · · · · · · · ·			
12.0							: :				E
A	GR	A	Ear	th & Environm Regina, Saskatche	ental Limited	LOGGED BY: REVIEWED BY Fig. No: 57	tk 1: Djil 1	EDF	COMPLETION COMPLETE:	0EPTH: 6.1 m 10/11/94 Page	

OIL PI	TE	VALUA	TION		TEST HOLES	EST HOLES): 134		
RET	ST	REET	LAND	FILL		DRILLING METHOD:15)mm \$0	ud s	TEN	AUGER	2	PROJECT NO:	JX30012A	
	OFF	EGIN	\ 									ELEVATION: 6	05.86 (m)	
SAMP	11	TYPE	_	THIN WALL TUBE	0 OKSTURBED	প্রথ	<u> </u>	-A-C	ASING	;		IOLLOW STEM	CORE	
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	[SOIL ESCRIP	FION	A IIT 20 PLAST	DROCAU 004	KBOK 1 1000 11.1	VAPOUR 6006	(PPh() A 8000 UQUID	con	iments	ELEVATION(m)
- 0.0	┝┥		H	SAND(FILL.460n	m)-BROWN			9	40	<u>60</u>		<u> </u>		
		SM		CLAY(FILL, 1.5m	J-GREY		·		-					- 605. 0
- 29		CK		-GREYISH BLAC 2.0m -CONCRETE PIE -WOOD_PIECES	K & SLIGHT OD CES & 1.4m FROM 1.5m TO	OUR FROM 1.4m TO								E E E E E E
- 70		a		CLAY(TILL)-GRE -STRONG ODOU	YISH BLACK R FROM 2.0m 1	'0 4.0m					· · · · · · · · · · · · · · · · · · ·			
0		SM		SÂND-BRÔWN			-		-					- 60 2.0
5.0				END OF TEST H	OLE @ 4.6m						: • • • • • • • • • • • • • • • • • • •			5 601.0 5 5
6.0									••••••	• • •				
- 1.0									1					599.0
- 3.0								:	• •		• •			598.0
- - - - - - -									· · · ·	<u>.</u>				597.0
L 								•	•	- ;-				556.0
t 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0											ŧ			
E 12.0														-594.0
Δ(CR	AF	lar	th & Env	ironmen	al Limited	LOCCE) BY:	TK			COMPLETK	IN DEPTH: 4	.6 m
				Regina Sa	skatchewan		REVIEW Fig. No	ED 8 58	<u>Y: DJ</u>	n edf		COMPLETE	: 10/11/94 P	loge 1 of 1

·

OIL PI	IT E	VALUA	TION		TEST HOLES						BOREHOLE N	10: 135	
I PLEET	st	REET	LAND	FILL	DRILLING METHOD:150	mm S	OUD	STEN	AUGE	R	PROJECT NO	: JX30012A	
	OFI	REGIN	<u> </u>			,	_				ELEVATION:	<u>606.10 (m)</u>	
SAMP	Ľ,	ITPL		THIN WALL TUBE OISTURBED	X SPT	B	<u>=</u> /-	CASIN	;	U	IOLLOW STEM	CORE	
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOIL DESCRIP	TION	AI PLA	170800 2000 STIC	4000 K.	VAPOU 6000 C.	R (MPSI) A 2000 LIQUID	CO	MMENTS	LEVATION(m)
- 88-							20	40	60	80	ļ		<u> </u>
1.0		С		CLAY(FILL, 1.6m)-BROWN CLAY(FILL, 1.6m)-BROWN -STRONG ODOUR FROM 0.3m -GREYISH FROM 0.3m TO 1.4r -CONCRETE PIECES @ 0.61m -TRACES OF WOOD & PLASTIC	10 1.7m n FROM 0.9m TO	•							- 406.0
- 20				1.7m -BLACK FROM 1.4m TO 1.7m CLAY(TILL)-GREY BLACK	• 	-							
د د ا		a			2.4m IU 3.4m			•	•				- 603.0
				END OF TEST HOLE @ 3.8m									
- 5.0									••••				-
- . .						··· •·	•	· • •	••••	· · · · · · · · · · · · · · · · · · ·			E 600.0
- 7.0								•					599.0
1.10									-	· · · ·			598.0
- 9.0 							, ,	حد جد، بور جد، بور	••••••••••••••••••••••••••••••••••••••	• • • •, • • •			597.0
- 10.0 -							• • • •			• •			596.0
L 11.0									-				-
12.0	Ϋ́						-						<u> </u>
A(зR	A E	ar	th & Environmen	al Limited	REVIS	U BT	: <u>(K</u> RY- n i			COMPLETI	UN DEPTH: 3.8 m	·
				Regina, Saskatchewar	L	Fig. 1	lo: 59)				Page	1 of 1
OIL P	PIT EVALUATION TEST HOLES				TEST HOLES					BOREHOLE NO: 136			
------------------	---------------------------	-------	------------	---	-------------------	-----------------------------	---------------------------------------	---	-------------	------------------	------------------	-----------------	
FLEET	s s	REET	LAHD	กม	DRILLING METHOD:1	50mm SOLID	STEM A	UGER		PROJECT NO:	JX30012A		
CITY	OF	REGIN	<u>^</u>		L			_	<u> </u>	ELEVATION: 6	05.35 (m)		
SAMI	τ <u>ι</u>	T	┯┻	THUE WALL TUBE			CASING		Шч	IOLLOW STEM	CORE		
DEPTH (m)	ANPLE TYPE	usc	OIL SYMBOL	SOIL DESCRIP	TION	A HYDROC 2000 PLASTIC	AKBON YA 4000 g N.C.	Poue (Pi 000 80	14) ▲ 00	COL	iments	EVATION(m)	
	Ľ					20	40	60 8	<u> </u>			<u>च</u>	
		8		CLAY(FILL,0.1m)-BROWN XSPHALT (75mm) CLAY(FILL,1.5m)-BROWN					••••			605.0	
		CH		-GREY BROWN WITH BLACK ST ODOUR FROM 0.9m TO 1.7m	reaks & slight		•••••••••	: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					
- 20		a		CLAY(TILL)-GREY BROWN -GREEN DISCOLORATION AND S BELOW 1.7m	light odour								
- 10				END OF TEST HOLE @ 2.3m			•••••••••	••••••••••••••••••••••••••••••••••••••	•				
4.0								i				602.0	
- 10												E 601.0	
							· · · · · · · · · · · · · · · · · · ·					- 600.0	
- 6. 0							. .						
- 7.0								••••	•			598.0	
6.0						-		- ·					
- 9.0						•• ••••						- - - 	
- 10.0													
- 11.0						4 • •						- 595.0	
12.0				• 19 4 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1 - 19 1			ана а 1 <u>1</u>					-594.0	
AC	R	A E	art	th & Environment	al Limited	LOGGED BY:	TK			COMPLETIO	N DEPTH: 2.3	n	
5. 8 1/16				Regina, Saskatchewan		Fig. No: 60	T: DJM	LDF		COMPLETE:	10/11/94 Poor	1 of 1	

•

•

OIL PI	T EVALUATION TEST HOLES						BOREHOLE NO: 137			
ณยา	ST	REET	LAND	FILL	DRILLING METHOD:150	nm SOLID STEW AUGER		PROJECT NO: .	X30012A	······
CITY)F F	EGIN/	<u> </u>		<u> </u>			ELEVATION: 60	5.633 (m)	
SANP	<u>11</u>	TYPE		THIN WALL TUBE OISTURBED	X SPT	A-CASING	Шч	ICULOW STEL	CORE	
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOII DESCRIP	TION	A HTDEOCARBON VAPOUR (F 2000 4000 6000 8 PLASTIC K.C.	171()▲ 000 UQUID 	сом	MENTS	clevation(m)
	1					20 40 60	40			_ <u>_</u>
E		8		SAND(FILL,0.3m)-BROWN						
1.0 1.0		ы		CLAY(FILL 1.5m)-CREYISH BR -SLIGHT ODOUR FROM 0.4m 1 -STRONG ODOUR FROM 0.9m -GREY & SLIGHT ODOUR FROM	DWN TO 0.8m TO 1.1m 1 1.1m TO 2.0m					- 605.0
- 20			Ŵ		•					- 1 04.0
		a		-STRONG ODOUR THROUGHOU	T					F03.0
£ 10				-green discoloration from	l 2.7m 10 3.2m		-			Ē
		54		SAND-GREYISH BROWN -GREEN DISCOLORATION & ST THROUGHOUT	RONG ODOUR		••			-602.0
				ERU OF ICSI HOLE OF S.BIT			•			-601.0
5.0										-
- 6.0										
1.0							 . 			
										598.0
							• •			
5 - 9.0 -							· .			- 597.9
- - - - - - - - - - - - - - - - - - -										
E - 11.0						1 .				5-595.0
										-594.9
		· > / 1	 []	th & Province	tol [imited	LOGGED BY: TK		COMPLETIO	N DEPTH: 3.8	<u></u>
	٩Ľ	VA I	rgi	un a environmen	ital minited	REVIEWED BY: DJN EDF		COMPLETE:	10/11/94	
				<u>Regina, Saskatchewa</u>	n	Fig. No: 61			Pag	s [of]

.

.

OIL P	PIT EVALUATION TEST HOLES				TEST HOLES		BOREHOLE NO: 138	
REI	I ST	REET	UND	FILL	DRILLING METHOD:150	mm SOLID STEN AUGER	PROJECT NO: JX30012	
CITY	OFF	EGIN	A.				ELEVATION:	
SAMP	11	TYPE	-	THIN WALL TUBE OISTURBED	इश		HOLLOW STEM	
DEPTH (m)	SAMPLE TYPE	nsc	SOIL SYMBOL	SOIL DESCRIP	TION	▲ HTDROCARBOH VAPOUR (PPH) ▲ 2000 4000 6000 8000 PLASTIC N.C. LIQUI	COMMENTS	(m) (m)
- 0.0	┢┥		┢	ASPUALT(225mm)	·	20 40 60 80		۵۵ ۵۵
		СН		CLAY(FILL, 1.0m)-GREYISH BRC -SLIGHT ODOUR	ŴN			-1.0
2.8		a		- SLIGHT STAINING TO 2.1M	·			-2.0
4.9		SM		SAND-BROWN -SLIGHT HYDROCARBON ODOUG END OF TEST HOLE @ 4.0m	!			-4.0
5.0								-5.0
- 6.0						••••••••••••••••••••••••••••••••••••••		-6.0
- 7,0								-7.0
								-8.(
- 5.0						· · · · · · · · · · · · · · · · · · ·		-9.0
- 10.0						· · · · · · · · · ·		-10.9
11.0						· · · · · · · · ·		-11.
A(A E	lar	th & Environmen	al Limited	LOGGED BY: TK	COMPLETION DEPTH: 4.0 m	-12
H.A.(764	-			Regina, Saskalchewan		Fig. No: 62		Ē 1

.

OIL PIT EVALUATIO	N	TEST HOLES		BOREHOLE NO: 139	
FLEET STREET LAI	IDFILL	DRILLING METHOD:150	mm SOLID STEW AUGER	PROJECT NO: JX30012	
CITY OF REGINA				ELEVATION:	_
SAMPLE TYPE	THIN WALL TUBE 🛛 DISTURBED	প্লে		DILLOW STELL CORE	
DEPTH (m) SANPLE TYPE USC	SOII DESCRIP	, TION	▲ NTDROCARBON VAPOUR (PP4) ▲ 2000 4000 6000 8000 PLASTIC X.C. LIQURD	COMMENTS	ELEVATION(m)
	ACOULT 7/225		20 40 60 80		- 60
- 1.9	(ASPIAL ((225mm)) CLAY(FIEL, I.Om)-GREYISH BR -SUCHT HYDROCARBON ODOU CLAY(TILL)-BROWN	WN R			1.0
- 2.0 a		•			2.0
- 1.0	SAND-BROWN				10
- 4.0	END OF TEST HOLE @ 4.0m				4.0
- 5.0					54
- 6.0					
- 7.0					7.(
- 8.0					8.
- 9.0					9.
- 10.0					-10
- 11.0					11
		1 1 1	LOGGED BY: TK	I COMPLETION DEPTH: 4.0 m	-17
AGKA Ea	Regina. Saskatchewa	tal Limited	REVIEWED BY: DJM EDF Fig. No: 63	COMPLETE: 22/12/94 Page 1	of

.

APPENDIX B

OTHER ANALYTICAL RESULTS

BTEX, TSH, PEHNOLS, ETHYLENE GLYCOL AND PCBs										
Test	Denth				Param	eter				
Bole	(m)	Benzene	Toluene	Ethyl- benzene	Xylenes	TSH	Phenols	Ethylene Głycol	PCBs	
I	3.3					180,000				
1	3.8	47	36	37	835			<2	<0.1	
2	2.2	11	2.9	5.5	26	14,000	2.5			
2	6.1	1.2	1.7	1.8	14		0.53			
3	1.5					4,900				
5	2.3					89				
6	3.8					33,000				
7	3.8					120,000				
8	3.8					<1				
9	3.0					29,000				
10	3.8					190,000				
11	1.5					16,000				
12	2.3					15,000				
12	3.0	<0.1	9.5	6.0	36			<2	<0.1	
13	2.3					<1				
14	3.0	<0.1	0.5	3.3	5.1			<2	<0.1	
16	2.3	<0.005	<0.005	<0.005	<0.005	</td <td>0.07</td> <td></td> <td></td>	0.07			
16	6.1	<0.005	0.078	<0.005	0.070	6,700	<0.02			
17	2.3	2.3	0.8	3.8	97			<2	<0.1	
17	3.0					31,000				
18	5.3					60,000				
19	4.6	<0.005	<0.005	<0.005	<0.005	<1	0.04			
20	3.8	0.26	0.23	1.2	1.1	18,000	0.05			
21	5.3	1.5	1.2	0.071	1.9	69,000	0.42			
SERM	l Guideline	0.5	3.0	5.0	5.0	N/A	N/A	N/A	N/A	
CCME	E Guideline	0.5	3.0	5.0	5.0	N/A	1.0	N/A	5	

Notes: "<" means that the result was less than the method detection limit indicated. "---" denotes that these samples were not analyzed for the parameter indicated. N/A denotes that a guideline concentration does not exist for that parameter.

SOLVENT SCAN RESULTS										
	Concentration (mg/kg)									
Parameter	Test Hole and Depth (m)									
	1(3.8)	2(2.2)	2(6.1)	12(3.0)	14(3.0)	16(2.3)				
Acetone	0.7	96	1.71	0.8	1.1	0.39				
Benzene	47	5.77	0.31	<0.1	<0.1	<0.01				
n-Butyl Alcohol	<0.2	<0.02	<0.02	<0.2	<0.2	<0.02				
Carbon Disulfide	0.5	<0.02	12.8	0.3	0.2	<0.02				
Cresols/Cresylic Acids	<0.5	<0.2	<0.2	<0.5	<0.5	<0.2				
Cyclohexanone	<0_5	<0,2	<0.2	<0.5	<0.5	<0.2				
Ethyl Acetate	<1.0	<0.2	<0.2	<0.1	<1.0	<0.2				
Ethyl Benzene	37	<0.02	1.43	6.0	3.3	<0.02				
Ethyl Ether	<0.2	1.51	<0.02	<0.2	<0.2	<0.02				
Isobutanol	<0.2	<0.02	<0.02	<0.2	<0.2	<0.02				
Methanol	<0.4	<0.05	0.34	<0.4	<0.4	<0.05				
Methyl Ethyl Ketone	10	3.22	0.20	10	4.3	<0.02				
Nitrobenzene	<0.4	<0.1	<0.1	<0.4	<0.4	<0.1				
2-Nitropropane	<0.5	<0.1	<0_1	<0.5	<0.5	<0.1				
Pyridine	<0.8	44.0	1.19	<0.8	<0.8	<0.3				
Toluene	36	0.46	0.32	9.5	0.5	<0.02				
Xylenes	835	5.06	7.03	36	5.1	<0.02				

SOLVENT SCAN RESULTS (cont'd)										
		Concentration (mg/kg)								
Parameter	Test Hole and Depth (m)									
	16(6.1)	17(2.3)	19(4.6)	20(3.8)	21(3.8)					
Acetone	0.66	<0.1	<0.01	0.15	19.6					
Benzene	<0.01	<0.1	<0.01	<0.01	0.63					
n-Butyl Alcohol	<0.02	<0.2	<0.02	<0.02	2.94					
Carbon Disulfide	<0.02	<0.2	<0.02	<0.02	2.1					
Cresols/Cresylic Acids	<0.2	<0.5	<0.2	<0.2	<0.2					
Cyclohexanone	<0.2	<0.5	<0.2	<0.2	<0.2					
Ethyl Acetate	<0.2	<1.0	<0.2	<0.2	6.7					
Ethyl Benzene	<0.02	<0.2	<0.02	0.93	0.68					
Ethyl Ether	<0.02	<0.2	<0.02	<0.02	<0.02					
Isobutanol	<0.02	<0.2	<0.02	<0.02	<0.02					
Methanol	<0.05	<0.4	<0.05	<0.05	1.15					
Methyl Ethyl Ketone	<0.02	<0.2	<0.02	<0.02	0.36					
Nitrobenzene	<0.1	<0.4	<0.1	<0.1	<0.1					
2-Nitropropane	<0.1	<0.5	<0.1	<0.1	<0.1					
Pyridine	<0.3	<0.8	<0.3	3.3	7.20					
Toluene	<0.02	<0.2	<0.02	<0.02	0.21					
Xylenes	<0.02	<0.2	<0.02	0.69	1.54					

Note: "<" means that the result was less than the method detection limit indicated.

HERBICIDE SCAN RESULTS										
	Concentration (µg/kg) Test Hole and Depth (m)									
Parameter										
	2(2.2)	2(6.1)	16(2.3)	16(6.1)	19(4.6)	20(3.8)	21(5.3)			
Bromoxynil	<40	<40	<40	<40	<40	<40	<40			
Dicamba	<40	<40	<40	<40	<40	<40	<40			
2,4-D	<20	<20	<20	<20	<20	<20	<20			
Diclofop-methyl	<10	<10	<10	<10	<10	<10	<10			
Picloram	<50	<50	<50	<50	<50	<50	<50			
МСРА	<20	<20	<20	<20	<20	<20	<20			
Trifluralin	<20	<20	<20	<20	<20	<20	<20			
Triallate	<40	<40	<40	<40	<40	<40	<40			

Note: "<" means that the result was less than the method detection limit indicated.

EXTRACTABLE ORGANO-CHLORINE RESULTS								
Demonster	Test Hole and Depth (m)							
Parameter	1(3.8)	12(3.0)	14(3.0)	17(2.3)				
Bromine	0.76	0.21	<0.2	<0.2				
Chlorine	13	1.9	9.1	1.8				

ICP TRACE ELEMENT SCAN RESULTS									
			Concenti	ration					
Parameter			Test Hole and	Depth (m)	*******				
	1(3.8)	12(3.0)	14(3.0)	17(2.3)	CCME Guideline				
Aluminum	7520	8410	11100	14100	N/A				
Arsenic	8.9	7.4	7.5	8.3	30				
Barium	138	167	133	186	500				
Beryllium	<0.1	<0.1	<0.1	<0.1	4				
Cadmium	<0.5	<0.5	<0.5	<0.5	5				
Calcium	31000	22100	19900	21300	N/A				
Chromium	17	18	18	28	250				
Cobalt	7	7	8	10	50				
Copper	52	28	26	82	100				
Iron	12500	12700	12900	16000	N/A				
Lead	131	90	35	110	500				
Magnesium	7970	9760	8720	9630	N/A				
Manganese	385	237	376	357	N/A				
Mercury	0.5	<0.1	<0.1	<0.1	2				
Molybdenum	<5	<5	<5	<5	10				
Nickel	17	14	16	22	100				
Phosphorus	313	317	342	376	N/A				
Potassium	1930	1730	2560	2990	N/A				
Selenium	0.4	0.2	0.3	0.2	3				
Sodium	1060	651	698	412	N/A				
Thallium	<10	<10	<10	<10	N/A				
Vanadium	21	21	27	32	200				
Zinc	72	63	51	273	500				

Notes: "<" means that the result was less than the method detection limit indicated. N/A denotes that a guideline concentration does not exist for that parameter.

APPENDIX C

.

GAS CHROMATOGRAPHS

Method File : C:\STAR\SEMCAL.MTH Sample ID : 4254jx30012,3-2-5

Injection Date: 7-JUL-94 7:05 AM

÷

Operator :	B. Chomin	Detector Type:	ADCB (1 Volt)
Workstation:	MS-DOS_6	Bus Address :	16
Instrument :	3400	Sample Rate :	10.00 Hz
Channel :	λ = fid	Run Time :	28.002 min

Chart Speed = 0.60 cm/min Attenuation = 100 Zero Offset = 5% Start Time = 0.000 min End Time = 28.000 min Min / Tick = 1.00

Method File : C:\STAR\SEMCAL.MTH Sample ID : 4263x30012,6-6-12 Injection Date: 7-JUL-94 11:38 AM Operator : B. Chomin Detector Type: ADCB (1 Volt) Bus Address : 16 Sample Rate : 10.00 Hz Workstation: MS-DOS_6 Instrument : 3400 Channel : A = fidRun Time : 28.002 min Chart Speed = Start Time = 0.60 cm/min 0.000 min Zero Offset = 5% Min / Tick = 1.00 Attenuation = 100 End Time 28.000 min = _ -_ _ C 10 _ C 12 C 14 -_ C 16 --C 20 -C 24 _ C 28

Run File : C:\STAR\MODULE16\svar105.RUN Method File : C:\STAR\SEMCAL.MTH Sample ID : 4273x30012,10-5-12 Injection Date: 7-JUL-94 2:25 PM Operator : B. Chomin Detector Type: ADCB (1 Volt) Workstation: MS-DOS_6 Instrument : 3400 Bus Address : 16 Sample Rate : 10.00 Hz Channel : A = fidRun Time : 28.002 min Chart Speed = 0.60 cm/min Attenuation = 100 Zero Offset = 5% Start Time = 0.000 min End Time = 28.000 min Min / Tick = 1.00-_ _ _ C 10 C 12 C 14 -C 16 -C 20 C 24 C 28

: C:\STAK\MUDULE16\SVar108.RUN VAII LITE Method File : C:\STAR\SEMCAL.MTH Sample ID : 4275x30012,11-2-5 Injection Date: 7-JUL-94 4:14 PM Detector Type: ADCB (1 Volt) Bus Address : 16 Sample Rate : 10.00 Hz Run Time : 28.002 min Operator : B. Chomin Workstation: MS-DOS_6 Instrument : 3400 Channel : A = fidChart Speed = 0.60 cm/min Attenuation = 100 Zero Offset = 5% End Time = 28.000 min Start Time = 0.000 min Min / Tick = 1.00_ . -C 10 C 12 C 14 -C 16 ---C 20 C 24 ı -_ mannen -_ C 28 -

Run File Run File : c:\star\module16\svar092.run Method File : C:\STAR\SEMCAL.MTH Sample ID : 4294jx30012,16-8-20

Injection Date: 7-JUL-94 5:53 AM

Operator :	B. Chomin	Detector Type:	ADCB (1 Volt)
Workstation:	MS-DOS_6	Bus Address :	16
Instrument :	3400	Sample Rate :	10.00 Hz
Channel :	$\lambda = fid$	Run Time :	28.002 min

Chart Speed = 0.60 cm/min Attenuation = 100 Start Time =

Run File : C:\STAR\MODULE16\SVAR100.RUN Method File : C:\STAR\SEMCAL.MTH Sample ID : 4295x30012,17-4-10 . • • Injection Date: 7-JUL-94 11:02 AM Operator : B. Chomin Detector Type: ADCB (1 Volt) Workstation: MS-DOS_6 Bus Address : 16 Sample Rate : 10.00 Hz Instrument : 3400 Channel : A = fidRun Time : 28.002 min Chart Speed = Start Time = 0.60 cm/min 0.000 min Attenuation = End Time = Zero Offset = 5% Min / Tick = 1.00 100 28.000 min C 10 C 12 C 14 -C 16 -C 20 C 24 C 28

. Run File : C:\STAR\MODULE16\svar106.RUN Method File : C:\STAR\SEMCAL.MTH · . Sample ID : 4299x30012,18-7-17 Injection Date: 7-JUL-94 3:01 PM Operator : B. Chomin Detector Type: ADCB (1 Volt) Workstation: MS-DOS_6 Instrument : 3400 Bus Address : 16 Sample Rate : 10.00 Hz : 28.002 min Channel : A = fidRun Time Chart Speed = 0.60 cm/min Attenuation = 100 Zero Offset = 5% 0.000 min Start Time = End Time = 28.000 min Min / Tick = 1.00_ C 10 C 12 C 14 -C 16 -C 20 C 24 C 28

Title : TOTAL SEMI-VOLATILE HYDROCARBONS Run File : C:\STAR\MODULE16\SVAR097.RUN Method File : C:\STAR\SEMCAL.MTH Sample ID : 4304x30012,20-5-12 Injection Date: 7-JUL-94 8:54 AM : B. Chomin Detector Type: ADCB (1 Volt) Operator Workstation: MS-DOS_6 Bus Address : 16 Sample Rate : 10.00 Hz Instrument : 3400 : 28.002 min Channel $: \lambda = fid$ Run Time Chart Speed = Start Time = on = 100 Zero Offset = 5% = 28.000 min Min / Tick = 1.00 0.60 cm/min Attenuation = 0.000 min End Time -C 10 C 12 C 14 -C 16 -C 20 C 24 _ _ _ -C 28 -

154

Title : TOTAL SEMI-VOLATILE HYDROCARBONS Run File : C:\STAR\MODULE16\svar104.RUN Method File : C:\STAR\SEMCAL.MTH Sample ID : 4308x30012,21-7-17 Injection Date: 7-JUL-94 1:49 PM Operator : B. Chomin Detector Type: ADCB (1 Volt) Workstation: MS-DOS_6 Bus Address : 16 Instrument : 3400 Sample Rate : 10.00 Hz Channel $: \lambda = fid$: 28.002 min Run Time Zero Offset = 5% Min / Tick = 1.00 Chart Speed = 0.60 cm/min Attenuation = 100 Start Time = 0.000 min End Time 28.000 min = ~ _ ----_ --C 10 _ _ C 12 -C 14 -C 16 --C 20 _ C 24 _ -C 28

155

• •

APPENDIX D

STATISTICAL ANALYSES

REGRESSION ANALYSIS

.

SUMMARY OUTPUT (Reactor 1)

Regression Statistics				
Multiple R	0.961696708			
R Square	0.924880558			
Adjusted R Squ	0.899814078			
Standard Error	0.438217632			
Observations				

ANOVA

	df	SS	MS	F	Significance F	
Regression	1	7.091028722	7.091028722	36.92576911	0.00894699	
Residual	3	0.576104078	0.192034693			
Total	4	7.6671328				
						11
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 93%
Intercept	-0.183070562					
X Variable 1	-0.019138831	0.003149565	-8.076657725	0.00894699	-0.029162163	-0.00911549

RESIDUAL OUTPUT

Observation	Predicted Y	Residuals	Standard Residuals
1	-0.183070562	0.183070562	0.482389711
2	-0.680680166	0.310680166	0.818640167
3	-1.235706263	-0.128293737	-0.338053142
4	-1.59934405	-0.60865595	-1.603804371
5	-3.647198959	0.243198959	0.640827635

SUMMARY OUTPUT (Reactor 2)

Regression Statistics				
Multiple R	0.751617393			
R Square	0.564928706			
Adjusted R Squ	0.419904941			
Standard Error	0.402916769			
Observations	5			

ANOVA

	đf		SS	MS	F	Significance F
Regression		1	0.632390232	0.632390232	3.8954216	0.142933386
Residual		3	0.487025768	0.162341923		
Total		4	1.119416			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-0.472919169					
X Variable 1	-0.005715489	0.00289585	-1.973682244	0.142933386	-0.014931386	0.003500409

RESIDUAL OUTPUT

Observation	Predicted Y	Residuals	Standard Residuals
1	-0.472919169	0.472919169	1.355317179
2	-0.621521871	-0.100478129	-0.287955624
3	-0.78727104	-0.23972896	-0.687028144
4	-0.895865322	-0.372134678	-1.066483567
5	-1.507422599	0.239422599	0.686150155