On the Distribution and Representation of Schwa in Sliammon (Salish): Descriptive and Theoretical Perspectives

by
Susan Jane Blake
B.A. Linguistics, University of British Columbia, 1987
M.A. Linguistics, University of British Columbia, 1992

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
 in

THE FACULTY OF GRADUATE STUDIES
(Department of Linguistics)

THE UNIVERSITY OF BRITISH COLUMBIA
December 20, 2000
© Susan Jane Blake, 2000

Bibliothèque nationale du Canada

Acquisitions et services bibliographiques
395, rue Wellington
Ottawa ON KIA ON4 Canada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Abstract

The goals of this dissertation are two-fold. My first major goal is descriptive, to contribute to the documentation of the Central Coast Salish language spoken by the Sliammon, Klahoose and Homalco peoples. The primary source of data is my field notes collected from 1988 through 2000 in consultation with Elders resident in Sliammon, B.C.

My second major goal is theoretical, to deepen our understanding of the distribution and representation of schwa in Sliammon. Schwa, often characterized as a brief "neutral" vowel with special properties cross-linguistically, is central to an understanding of Sliammon phonology and morphology.

In Chapter 2, it is hypothesized that schwa is featureless, and that it acquires its surface realization via colouration from adjacent consonants and vowels.

The focus of Chapter 3 is on the prosodic structure of the language, and the independent hypothesis that schwa is also weightless. These generalizations are presented within the Nuclear Moraic Model of Shaw (1993, 1996).

Chapter 4 focuses on schwa-zero alternations. Schwa is proposed to be non-lexical, and schwa epenthesis satisfies the constraint Proper Headedness which requires that a Foot contains a syllable which is headed by a vocalic Nucleus. Schwa epenthesis also satisfies the ban on steminitial consonant clusters. This chapter also provides evidence that Full Vowel Reduction involves the loss of phonological weight (i.e. a mora). The output of Full Vowel Reduction is distinct from schwa in its featural representation, but identical to schwa in its prosodic representation.

Although schwa epenthesis is driven by the constraints on Proper Headedness, there is also evidence that Sliammon has a number of strategies which conspire to avoid schwa in stressed open syllables. Chapter 5 brings together different cases of this, and shows that they receive a unified explanation with reference to the constraint * $\left.{ }^{\text {ó }}\right] \sigma$, and its interaction with other constraints.

Chapter 6 addresses two cases in which schwa epenthesis is systematically avoided: (i) the possessive -hV suffix and (ii) the plural /L'// prefix. Chapter 7 provides a synopsis of the descriptive and theoretical claims of the dissertation. Appendices IV-VII contribute to the basic documentation of Sliammon including: Consonant Contrasts, Root List, Lexical Suffixes, and Affixes/Clitics.

Table of Contents

Abstract ii
Table of Contents iii
Acknowledgements xii
Abbreviations and Symbols xiv
Guide to Pronunciation Guide xix
Chapter 1: Introduction
1.0 General Introduction: Sliammon Language and Culture 1
1.1 Goals of the Dissertation 4
1.2 Previous Scholarship on Sliammon language 7
1.3 Theoretical Framework 8
1.3.1 Representations adopted in this Dissertation 8
1.3.2 Theoretical Models of Phonology 8
1.4 Overview of the Dissertation 8
Chapter 2: Introduction to Sliammon Sound System
2.0 Introduction. 14
2.1 Sliammon Sound System 14
2.2 Consonant System 15
2.2.1 Inventory 15
2.2.2 Consonant Allophones I 16
2.2.2.1 Stops and Affricates 16
2.2.2.1.1 Affrication of Stops 16
2.2.2.1.2 Aspiration 17
2.2.2.1.3 Palatal off-glide on Alveopalatals and plain velars 18
2.2.2.1.4 Secondary Labialization 20
2.2.2.2 Fricatives 21
2.2.2.2.1 Allophones of Θ 21
2.2.2.2.2 Allophones of \mathfrak{s} 23
2.2.2.2.3 Allophones of $\mathrm{x}^{\mathbf{w}}$ 24
2.2.2.2.4 $\mathrm{h} \sim \check{\mathrm{x}}^{\mathrm{w}}$ in the environment of $/ \mathrm{u} /$ 25
2.2.2.3 Sonorant Obstruents $/ \overline{\mathrm{J}}, \mathfrak{J}, \mathrm{g}, \mathrm{g} /$ 25
2.2.2.3.1 Pre-nasalization 25
2.2.2.3.2 Retracted /G/ 26
2.2.2.4 Resonants 27
2.2.2.4.1 Nasals ~ Voiced Stops 27
2.2.2.4.2 Glottalized Resonants 27
2.2.2.4.3 Retraction of Coronals 28
2.2.3 Consonant Allophones II
2.2.3.1 Labialization 30
2.2.3.1.1 C^{0} versus C^{w} 30
2.2.3.1.2 Neutralization of contrast: $\mathrm{C}^{\mathrm{w}} / \mathrm{u}$ 31
2.2.3.2 Glottalization and Phonology of Laryngeals 32
2.2.3.2.1 Allophones of? 32
2.2.3.2.2 Proposal 34
2.2.3.2.3 Glide Vocalization 35
2.2.3.2.4 Glottalization 38
2.2.3.2.5 Deglottalization 39
2.2.3.2.6 Glottal Restructuring 42
2.2.3.2.7 Floating feature: constricted glottis [cgl] 43
2.2.3.2.8 Epenthetic [h] 45
2.2.4 Obstruent/Glide/Vowel Alternations: /J, $\mathfrak{J}, \mathrm{g}, \dot{\mathrm{g}} /$ 46
2.2.5 Laterals /L, L'/ 49
2.2.6 Geminates 51
2.2.7 Consonant Deletion 51
2.2.7.1 Identical Consonants 51
2.2.7.2 Coronal Deletion 52
2.2.7.2.1 t-deletion 52
2.2.7.2.2 n-deletion 52
2.2.7.2.3 \ddagger-deletion 53
2.3 Theoretical Assumptions 54
2.3.1 Features 54
2.3.2 Feature Geometry 54
2.3.2.1 Representation of Sliammon Consonants 55
2.3.2.1.1 Labials 55
2.3.2.1.2 Coronals and Laterals 56
2.3.2.1.3 Alveopalatals 57
2.3.2.1.4 Velars 58
2.3.2.1.5 Post-velars: Uvulars and Laryngeals 61
2.4 Vowel System. 61
2.4.1 Surface Vowel Inventory 65
2.4.2 Vowel Quantity 65
2.4.2.1 Durational Contrast 65
2.4.2.2 Theoretical Assumptions 66
2.4.2.2.1 Representation of Durational Contrast: Nuclear Moraic Model 67
2.4.3 Full Vowels 68
2.4.3.1 Surface Realization of the Full Vowels 68
2.4.3.1.1 Retraction 68
2.4.3.1.2 Place Assimilation 74
2.4.3.1.3 Phonetic effect of Anterior Consonants 75
2.4.3.1.4 Interaction of Retraction and Place Assimilation 76
2.4.3.2 Vowel / Consonant Interaction 78
2.4.3.2.1 Proposed Analysis 80
2.4.4 Schwa Colouration. 85
2.4.4.1 Schwa and Retraction. 87
2.4.4.2 Schwa and Labialization. 89
2.4.4.3 Schwa and Place Assimilation. 90
2.4.4.4 Interaction of Retraction and Place Assimilation. 91
2.4.4.5 Translaryngeal Harmony. 94
2.4.4.6 Summary of Allophones of Schwa. 95
2.4.4.7 Proposed Analysis. 96
2.4.5 Reduced Full Vowels. 97
2.4.5.1 Full Vowel Reduction (laxing) \neq Reduction to Schwa 99
2.5 Summary 100
Chapter 3: Prosodic Structure of Sliammon
3.0 Introduction 104
3.1 Moraic Structure. 106
3.1.1 Coda consonants are moraic 107
3.1.1.1 Compensatory Lengthening. 107
3.1.1.2 Stress Assignment and Vowel Reduction 110
3.1.1.3 Stative -it 111
3.1.1.4 Speakers' Judgements 112
3.1.2 Moraic status of Vowels 114
3.1.2.1 Long Vowels are bimoraic 114
3.1.2.2 Full Vowels are moraic 115
3.1.2.3 Schwa is non-moraic 117
3.1.3 Implications: CC [$\mathrm{C} \partial \mathrm{C}]$ Roots and Minimality 117
3.1.3.1 The Problem 117
3.1.3.2 Discussion and Proposed Analysis 121
3.1.4 Summary 121
3.2 Syllable Structure 123
3.2.1 Simple Syllables 124
3.2.1.1 Onset 125
3.2.1.1.1 The Data 125
3.2.1.1.2 Proposed Analysis 126
3.2.1.1.3 Gemination: Onsets and Faithfulness to Moraic Structure 128
3.2.1.2 Nucleus 129
3.2.1.2.1 Syllables have Nuclei 131
3.2.1.3 No Coda 131
3.2.1.3.1 The Data 132
3.2.1.3.2 Proposed Analysis: NoCoda 133
3.2.2 Complex Syllable-Internal Constituents 134
3.2.2.1 *Complex Onset 134
3.2.2.1. 1 The Data 134
3.2.2.1.2 Proposed Analysis. 137
3.2.2.1.3 Comparative Evidence for lack of Complex Onsets 138
3.2.2.1.3.1 Sliammon / Sechelt Data 138
3.2.2.1.3.2 Sliammon / həńq̉əmin̉əm (Musqueam) Data 138
3.2.2.1.3.3 Proposed Analysis 140
3.2.2.1.3.2 Root Initial Consonant Clusters 141
3.2.2.1.3.2.1 Sliammon / həńq̉əmin̉ərn (Musqueam) Data 141
3.2.2.1.3.2.2 Proposed Analysis 142
3.2.2.1.4 Loan Words: Evidence for lack of Complex Onsets 144
3.2.2.1.5 Apparent Exceptions 145
3.2.2.1.5.1 Initial sC sequences 145
3.2.2.1.5.2 Clitic Initial Constructions 148
3.2.2.1.5.3 Discussion and Proposed Analysis 150
3.2.2.1.6 Word-Internal Complex Onsets 150
3.2.2.1.6.1 The Problem 150
3.2.2.1.6.2 Proposed Analysis 151
3.2.2.2 Establishing Maximal Syllable Size: *Complex Coda 155
3.2.2.2.1 The Data 155
3.2.2.2.2 Proposed Analysis 158
3.2.2.2.3 Diminutive Reduplication and * $\mu \mu \mu] \sigma$ 159
3.2.2.2.3.1 The Data 159
3.2.2.3 Asymmetry in Word-initial and Word-final Consonant Clusters 162
3.2.2.3.1 Minor Syllables in Sliammon. 164
3.2.3 Summary 167
3.3 Introduction to Sliammon Metrical Structure 168
3.3.1 Basic Observation: Primary Stress is Leftmost 168
3.3.2 Foot Form: Trochaic 170
3.3.3 Stressed Schwa 172
3.3.4 Location of Secondary Stresses 173
3.3.5 Lexical Suffixes and Stress Assignment 174
3.4 Summary 178
Chapter 4: Distribution of Schwa in Sliammon
4.0 Introduction 179
4.1 Excrescent versus Epenthetic Schwa 179
4.1.1 The Problem 180
4.1.2 Evidence from Syllabification 181
4.1.3 Discussion and Proposed Analysis 184
4.1.4 Further Implications: Echo Vowels 185
4.2 Distribution of Epenthetic Schwa 188
4.2.1 Some schwas are epenthetic 192
4.2.2 Schwa/Zero Alternations 196
4.2.3 Proposed Analysis 199
4.3 Full Vowel Reduction 201
4.3.1 The Problem 201
4.3.2 Full Vowel Reduction and Foot Structure 202
4.3.2.1 Bisyllabic Trimoraic Feet 203
4.3.2.2 Bisyllabic Bimoraic Feet 206
4.3.2.3 Representation of Full Vowel .Reduction 209
4.3.2.4 Contexts in which Full Vowel Reduction is blocked 210
4.3.3 Implications of Proposed Analysis 211
4.3.3.1 Imperfective Reduplication and Full Vowel Reduction 211
4.3.3.2 Vowel Height Assimilation is Independent of V Reduction 213
4.3.3.3 Summary of Full Vowel Reduction 214
4.4 Strengthening of Schwa: Schwa/Full Vowel Alternations 215
4.4.1 The Data 216
4.4.2 Discussion and Proposed Analysis 220
4.4.3 Implications of Strengthening 222
4.4.4 Theoretical Implications: No Long Schwa 223
4.5 Stable Schwa 226
4.6 Summary 228
4.7 Summary of OT constraints 229
4.7.1. Constraints 229
4.7.2. Effects of Constraint Ranking 230
Chapter 5: Constraints on the Distribution of Schwa in Sliammon
5.0 Introduction 231
5.1 Surface realization of Glottalized Obstruents 233
5.1.1 The Problem 233
5.1.2 Discussion and Proposed Analysis: *́́]o 238
5.2 Surface realization of Glottalized Resonants 240
5.2.1 Glottal Restructuring 240
5.2.2 Proposed Analysis: *ə́ $]_{\sigma}$ 245
5.3 Geminate consonants 246
5.3.1 Geminate Resonants 246
5.3.2 Geminate Obstruents 247
5.4 h -epenthesis 248
5.4.1 Root=LS: h epenthesis 249
5.4.2 Lack of [h] epenthesis after C-final Roots 250
5.4.3 Apparent Exceptions: CəC Roots 251
5.4.4 Proposed Analysis: *ó] 252
5.5 Implications: Imperfective Reduplication 254
5.5.1 Imperfective Reduplication: Strong Roots 254
5.5.2 Imperfective Reduplication: Weak Roots 255
5.5.3 Proposed Analysis: *ว́ $]_{\sigma}$ 257
5.6 Summary: *́́ ${ }^{\circ} \sigma$ 258
5.7 Schwa in a stressed open syllable 259
5.7.1 The Problem 259
5.7.2 Proposed Analysis 259
5.8 Formal Characterization of *2́] σ 260
Chapter 6: Implications and Conclusions
6.0 Introduction 262
6.1 Epenthesis of the Full Vowel [i] and the Possessive Affix -hV 262
6.1.1 Translaryngeal Harmony and the Possessive Affix 262
6.1.1.1 Translaryngeal Harmony 263
6.1.1.2 Discussion and Proposed Analysis 266
6.1.2 Position of the Possessive Affix 266
6.1.2.1 V-final Stems 266
6.1.2.2 C-final Stems 267
6.1.2.3 Stems ending in a C-cluster: [i] epenthesis 267
6.1.2.4 Proposed Analysis of the Position of the Possessive Affix 269
6.2 Implications: Non-reduplicative prefixes 274
6.2.1 Lack of Non-reduplicative C- prefixes 274
6.2.1.1 Loss of lexical nominalizing prefix s 275
6.2.1.2 Discussion and Proposed Analysis 276
6.2.2 /L'-/ Plural 278
6.2.2.1 Historical and Comparative Evidence 279
6.2.2.2 Synchronic Evidence for /L'-/ in Sliammon 281
6.2.2.3 Plural /L'-/ and Diminutive Reduplication 282
6.2.2.4 Plural /L'-/ and Diminutive Plural Reduplication 284
6.2.2.5 Plural $/ L^{\prime}-/$ and Imperfective Reduplication 285
6.2.2.6 Plural /L'-/ and Characteristic Reduplication 287
6.2.2.7 Discussion and Analysis 288
Chapter 7: Conclusion
7.0 Introduction 291
7.1 Summary: Representation of Schwa versus Full Vowels 291
7.2 Phonological Features 292
7.3 Prosodic Structure of Sliammon 292
7.4 Distribution of Schwa 293
7.5 Summary: Strategies to avoid stressed schwa in an open syllable 294
7.6 Status of unstressed schwa in open syllables 296
7.7 Other Implications 297
7.8 Topics for future research 298
References 300
Appendix I: Salish Language Classification and Map 313
Appendix II: Homalco, Klahoose, and Sliammon Language Consultants 315
Appendix III: Transcription Systems 318
Appendix IV: Consonant Contrasts 319
Appendix V: Sliammon Root List 373
Appendix VI: Sliammon Lexical Suffixes 392
Appendix VII: Predicate Complex and Affixes, Clitics and Particles 437

Acknowledgements

First I would like to extend my sincere gratitude to the following Homalco, Klahoose, and Sliammon Elders for sharing their knowledge of the language and culture with me: Mrs. Mary George, Mrs. Agnes McGee, Mrs. Phyllis Dominic, Mrs. Eva Hanson, Mrs. Marion Harry, the late Mr. Joe Mitchell, Mrs. Elsie Paul, Mrs. Sue Pielie, Mrs. Helen Hanson, Mr. Pete Harry, Mrs. Annie Dominick, and Mr. Dave Dominick. I am grateful to the Sliammon Chief and Council, the Sliammon Treaty Society, and community members for the opportunity to study their language. I would also like to express my deepest appreciation to Ms. Betty Wilson who, in collaboration with the Sliammon language working group, provided feedback on an earlier draft of this thesis.

Special thanks to my research supervisor Dr. Patricia A. Shaw, also affectionately known as "Dr. Schwa", who has made this entire process a particularly rewarding intellectual experience. To committee members Dr. Douglas Pulleyblank and Dr. Paul D. Kroeber I also extend my sincere appreciation. Dr. Douglas Pulleyblank will be remembered for asking particularly challenging questions regarding the "theory", and is thanked for sparing me from a lengthy expose on the definition of "stem". Dr. Paul Kroeber, in addition to sharing his wealth of knowledge on Salish languages and Sliammon in particular, also passed on some valuable practical advise. He equates writing a dissertation with making pancakes. This idea is expressed in the following Russian proverb which was handed down to him from his father: pirvey blin komom "the first pancake is always lumpy".

I would also like to acknowledge questions and feedback from the other members of the examining committee present at my oral defense: Dr. Margery Fee, and Dr. Bryan Gick, (University Examiners), Dr. Anthony Dawson (Chair), and Dr. Sharon Hargus (External Examiner). I also appreciate questions and comments from Dr. Emmon Bach, and Dr. M. Dale Kinkade who first introduced me to the study of Salish languages and linguistics.

I am grateful to my friend and colleague Dr. Honoré Watanabe of Kagawa University for his careful commentary on the most challenging aspects of Sliammon morpho-phonology, and for sending cranes to mark each of the small steps along the way.

I would also like to thank the other faculty and visiting scholars at University of British Columbia who have contributed to my studies: Mrs. Ingrid Brenzinger, Dr. G. Carden, Dr. Henry Davis, Dr. Rose-Marie Déchaine, Dr. Ewa Czaykowska-Higgins, Dr. Hamida Demirdache, Dr.

Laura Downing, Dr. Mark Hewitt, Dr. M. Dale Kinkade, Dr. Juta Kitching, Dr. Greg LaMontagne, Dr. Michael Rochemont. Thanks also to the Faculty and students of Girona Summer School of Linguistics (1996), le ragazze italiane, and to my many fellow graduate students at UBC, especially Darin Howe, Taylor Roberts, and Kimary Shahin. To Carmen de Silva and Edna Dharmaratne my most sincere appreciation for everything you have done.

To my Musqueam friends and colleagues, and students and staff of the Musqueam/UBC First Nations Languages Program - you have all brought something very special to my life : hay ce:p q̉a si:?ém! !

I owe a special thanks to my family Marion, Charles and Margaret Blake for their continued moral support and encouragement. It was my parents who first took me to Savary Island as a child and introduced me to the traditional territory of the Sliammon people. With my sister Margaret, I treasure these early childhood memories of the sand dunes, the water, and the enchanted forest.

To my closest friends, each and every one of you has played a special role: Harry and Patricia Bekke (and the kids: Lynx and Mousette); Luca Burroni, Barry and Maureen Clare and family; famiglia Curini-Galletti: Fabio, Lapo, Lucia and Cosimo; Aldona Dyk, Elena Fiume and Ron Yaworsky, daughters Alessia and Katrina; Jane B. Fuller, Caroline Mitchell, Kathleen and Lauren Stone, Monica Sanchez, Stephanie Trenchiansky, Lance Woolard, and the Sons of Joseph Zawenou.

Thanks also to Sonya Usmiani, Dr. Tracey Simmons MacKinlay, the people of Lund and Savary Island, and especially to Willa Lane.

I am also deeply grateful to Shawn David Clare who has managed "linguistics central" for the past 8 months with a sense of humour and levity which has had a profound effect on our collective sense of well-being. For you, pair-o-dice forever !

My doctoral research has been generously supported by the following funding organizations: University of British Columbia, Graduate Fellowship 1994-1995; Social Sciences and Humanities Research Council of Canada, Doctoral Fellowship \#752-96-1924; M and E. Jacobs Research Fund (1996) for research on 'Sliammon Metrical Structure', and the University of British Columbia Teaching and Learning Enhancement Fund Grant ("Cedar-to-CDRom") awarded to Dr. Patricia A. Shaw.

Abbreviations and Symbols

A. Abbreviations

-	a syllable boundary
1	first person
2	second person
Act	third person
Aff	activity suffix
Aux	Affix
C	auxiliary
Caus	any consonant
cgl	causative
CH	Characteristic Reduplication
CJargon	compound ligature
cl	Compensatory Lengthening
CL	coronal
COR	control transitive
CTr	CVC Plural Reduplication
CVCPL	diminutive glottalization
CVPL	dorsal
CəCPL	CoC Plural Reduplication
dem	demonstrative
det	diminutive
DIM	Dimgl

Emph	emphatic
e.o.	each other
Erg	ergative (subject of a transitive predicate)
ex	extension
fem	feminine
Fr.	French
Ft	foot
Fut	future
gen	general
H	high pitch
I.	Indian
Imp	Imperfective
IMP	Imperfective Reduplication
Imper	Imperative
INC	Inchoative Reduplication
Ind	Indirective
Indef	Indefinite
Indep	independent pronominal
Instr	instrumental
Intr	intransitive
K	any obstruent
L	low pitch
LAB	labial
link	linking vowel
LS	Lexical Suffix
lit	literally
M	mid pitch
masc	masculine

neg	negative
Nom	nominalizer
Nuc	nucleus
NTr	noncontrol transitive
O	obstruent
Obj	object
Obl	oblique
OT	Optimality Theory
Pass	passive
past	past tense marker
PHAR	pharyngeal
PL	Plural
PMC	main clause Passive
Po	possessive
PSC	subordinate clause Passive
PrWd	prosodic word
ptc	particle
Q	interrogative, question marker
quot	quotative
R	any resonant
recip	reciprocal
RED	reduplicant
Rflx	reflexive
Rt	Root
Sb	subordinate
sg	singular
s.o.	someone
s.t.	something

stv
Su
Tr
V
B. Sound Symbols
[${ }^{*}$]
[s]
[t^{\oplus}]
[y]
[č]
[${ }^{89}$]
[t]
[3]
[\ddagger
[w]

Cl^{\prime}

C^{h}

2
v́
$\stackrel{\grave{v}}{ }$
:
stative
subject
transitivizer
any full vowel (here $/ i, u, a /$)
voiceless ejective lateral affricate
voiceless alveopalatal affricate
voiceless interdental affricate
voiced palatal glide (resonant)
voiceless alveopalatal affricate
voiceless ejective interdental affricate
voiceless lateral fricative
voiced alveopalatal affricate
"darkened" lateral resonant (effect of post-velars)
voiceless labio-velar glide (resonant)
palatalized consonant
aspirated consonant
schwa
primary stress
secondary stress
vowel length

C. Miscellaneous Abbreviatory Devices

\sim	alternates with. Used with variant output forms
!	fatal constraint violation
\#	word boundary
0	encloses optional element
(...)	marks foot boundary
*	'is not', i.e., in the constraint * C 6
*	constraint violation
*	ungrammatical
-	morpheme boundary
//	underlying representation
$=$	introduces a Lexical Suffix
>>	is more highly ranked than
[...]	infix in input representation
[...]	phonetic form / output candidate
\cdots	marks the winning candidate output form
μ	mora
\checkmark	Root
σ	syllable

Pronunciation Guide

Consonants

/p/ voiceless bilabial stop
as in English [pınč] pinch, [pıknık] picnic, [pómpkın] pumpkin. as in Sliammon [pá?a] one, [?óp^n] ten, [$\check{\mathbf{x}}^{\mathbf{w}}{ }^{\mathbf{o}} \mathrm{xx}^{\mathrm{w}} \mathbf{o p}$] hummingbird.
/ $\mathbf{p} /$ ejective bilabial stop

$/ t^{\ominus} /$ interdental affricate

$/{ }^{\ell} /$ ejective interdental affricate
 [monat $\left.{ }^{9} \grave{\varepsilon} ?\right]$ to beat a drum (in the traditional way), $\left[? \wedge \mathfrak{t}^{\ominus}\right]$ bay.
/t/ voiceless alveolar stop as in English [tent] tent, [tawn] town, [tipi] tepee. as in Sliammon [tîlta ~ tiita] that one, [šètqén] upper lip, [tíhmot ~tímot] really big.
/t/ ejective alveolar stop

$A /$ voiceless lateral affricate (IPA tt) ; also informally referred to as "Charles Atlas"

N/ ejective lateral affricate (IPA tit) ; also informally referred to as "Running Man"

$/ \mathrm{c} /$ voiceless alveo-palatal affricate (IPA $t \mathrm{f}$) as in English [č̌st] chest, [čápəl ~čápl] chapel. as in Sliammon [číčiye?] grandmother, [píču ~ péču] basket, [hoč] I'm going.
/z/ ejective alveo-palatal affricate (IPA tj)

 [θ íč] straight.
/k/ voiceless velar stop as in English [kelp] kelp, [kíčən] kitchen, [kæč] catch. as in Sliammon [képu ~ kyǽpo] coat, [kiks] cookie, [kí:ke?] bug, [lókle~líkle] key, [p’olk] bullhead (fish).
$/ \mathbf{k} /$ ejective velar stop as in Sliammon [kélč̌̌?] small basket for sewing; junk box, [wàwakila] limpets, [ki:kik ~ki:kek] crow, [ḱwkegım] coyote.
$/ \mathrm{k}^{\mathrm{w}} /$ voiceless labio-velar stop as in Sliammon [$\mathbf{k}^{w a ́: n a c ̌ ı m] ~ s i t ~ d o w n, ~[~} \mathbf{k}^{w}$ ásəm] ruffed grouse, [$\left.\mathbf{k}^{\mathbf{w}} \mathbf{u}^{\prime}{ }^{\prime} \mathbf{k}^{\mathbf{w}} \mathbf{u}\right]$ salt water,
 eagle.

Similar to English [kwest] quest, and [kwilt] quilt, except that Sliammon $\mathbf{k}^{\mathbf{w}}$ functions as a single sound rather than a sequence of two sounds, as in English [$\mathbf{k w}$].
$/ \mathbf{k}^{w /} /$ ejective labio-velar stop
as in Sliammon $\left[\mathbf{k}^{w} \mathbf{a}\right.$? $]$ sliced salmon, [$\mathbf{k}^{w o ́ t a} \sim \mathbf{k}^{w u ́ t a] ~ b a r b e c u i n g ~ s t i c k, ~[~} \mathbf{k}^{w a ̂ ? w a] ~ b e l l y, ~}$

/q/ voiceless uvular stop as in Sliammon [qəx̆] many, [qayx̆] Mink (stage name), [méqsın ~míqsen] nose,

/'q/ ejective uvular stop

$/ \mathrm{q}^{\mathrm{w} /}$ voiceless labio-uvular stop as in Sliammon [$\left.q^{\mathrm{w}} \wedge \mathrm{l}^{\prime} \sim \mathrm{q}^{\mathrm{w}} \mathrm{O} \mathrm{l}^{\prime}\right]$ he/she/they came, [tóq${ }^{\text {wimot }}$ maps running,

/'qu/ ejective labio-uvular stop

 feather.

12/ glottal stop / laryngeal stop as in English [?ópən] open, [?0 ?o] oh oh!, [?ǽpal ~ Tx́pl] apple. as in Sliammon [?asx"] seal, [?étton] eat, food, [?₹:?] yes, [$\mathrm{x}^{\mathrm{w}} \mathrm{a}$?] no,
 way, [sápa] two, [šó?ot] choose it, [ֹ̧̧̧̌̌]] tree, relative.
$/ \Theta /$ voiceless interdental fricative
as in English [$\theta \mathrm{n}$] thin, $[\mathrm{p} x \theta]$ path.
as in Sliammon [حáyใăŭӨəm] language of our people; speak well, [θ ó̈en] mouth, [$Ө$ ÉP日a] that one (fem.), [məOkw] blackcap berry, [wale] bullfrog, [qég^Ө] deer.
$/ \mathrm{s} /$ voiceless alveolar fricative as in English [sılk] silk, [skın] skin, [smelts] smelts.
 [a âlos] sea cucumber.
///voiceless lateral fricative as in Sliammon [tá̂Pamın] Sliammon people, [$\dagger \wedge \bar{x}]$ bad, [^xátəm] salt,

/s/voiceless alveo-palatal fricative as in English [̌̌æg] shag (cormorant), [̌̌̌l] shell, [šıp] ship. as in SLiammon [š€?] climb, go up, [šq^m’s] his/her partner, [̌̌ım] dry, [š́qधot] sigh,
 jay.
[x^{*}] voiceless palatalized velar fricative
 Rare in occurrence and not well documented. This sound occurs as a variant of $/ \mathbf{s} /$.
$/ \mathbf{x}^{\mathrm{w}} /$ voiceless labio-velar fricative

[w] voiceless labio-velar glide -- variant of $/ \mathrm{x}^{\mathbf{w} /}$

$/ \bar{x} /$ voiceless uvular fricative as in Sliammon [x̌áqa] butter clam, [xáws] new, [xáwgos] grizzly bear, [x̌áwšın ~ x̌áwšin] bone, [sə́x̌əm] racing canoe, [yর̃x̆t] rib, [̌̌́éx̌yєq̉] crab, [qəx̆] many, [$\left.{ }^{\text {Kã̃atex̆ }}\right]$ grasshopper.
$/ \check{\mathbf{x}}^{\mathrm{w}} /$ voiceless labio-uvular fricative

/h/ voiceless laryngeal / glottal fricative as in English [hémlak] hemlock, [help] help, [helo] hello. as in Sliammon [hâ? ${ }^{\imath} \mathrm{mo}$] pigeon, [hé?gın] strawberry, [hánaqº${ }^{\mathrm{w}}$ os] wolf eel, aggressive, [hảhasəmč] I'm sneezing, [hóm̉hom] blue grouse, [héhawčıs] paddling, [héheg^t] for the first time, [tih~ti:] big, large, [Tah] sore, pain, [q^ht] to lift up.

/m/ bilabial nasal

as in English [mémo] memo, [melt] melt, [mæsk] mask, [mǽgnıt] magnet.
 write, [tam] what?
/ \mathbf{m} / laryngealized bilabial nasal as in Sliammon hamu [há? ${ }^{9}$ mo] pigeon, sama [sá?ma] mussel, [ším̌šım] it's already

/n/ alveolar nasal
as in English [not] note, [natıkal] nautical.
as in Sliammon [nígin] lunch, [níginàye] lunch basket, [nat $\sim \mathrm{n} \wedge t$] night,

/ $\mathbf{n} /$ laryngealized / glottalized alveolar nasal as in Sliammon X̌in̉a [̌̌é?na] oolichan oil, čan̉u [čé?no] dog, [tan̉ $\sim \tan$] that one.
N lateral liquid
as in English [lek] lake, [left] lift.
as in Sliammon [lástpol ~ láspol] soccer ball, [líkəle \sim líkºle] key, [láplàs̆] plank, long board, [čéol^s] three, [?£́q̣ay] barbecued deer meat, [?átnopèl] car, automobile.
/l/ laryngealized/glottalized lateral
as in Sliammon ?aləə [?ápləs] sea cucumber, [$\mathrm{q}^{\mathrm{w}} \boldsymbol{\mathrm { l }}$] to come, [pai ~ pal?] heron, crane.
$/ y /$ alveo-palatal glide
as in English [yes] yes, [yel] yell, [yóge] yoga, as in Sliammon [ý́x̆ay ~ yéx̆ay] berry basket, [yétat] to call s.o., [yéfgay] inner cedar bark, [yéq̇et] disgusted with it, need it, [pí:paye ~ pé:paye] one person, [yíyq̉et] easy, inexpensive, [$\theta a ́ q q a y ~ \sim$ ©á?q^y] sockeye salmon.
/y/ laryngealized/ glottalized alveo-palatal glide as in Sliammon qáỷa [qáPye] water, saýj̆a [sáTyǰE ~ sáỷǰ̌] leaf, [čí:čuỷ] children,

If (voiced) alveo-palatal affricate (non-continuant resonant)
as in English [̌̌lifiš] jellyfish.
 [s.]ésoł] yesterday.
/w/ labio-velar glide
as in English [wasp] wasp, [waš] wash as in Sliammon [walӨ] bullfrog, [wíx̃^s] frog, [páw?us] one dollar, [qawӨ] potatoes, [yí?gaw] partically dried, dried up, [\ddagger f́x̆aw] gone bad.
/ $\mathbf{w} /$ laryngealized/glottalized labio-velar glide
 [wíw̉los] young man, [mé:m^w̉] cat, [tow ~ tu?] ice.
/g/(voiced) velar stop (non-continuant resonant)
as in English [gem] game, [gost] ghost.
as in Sliammon [gáq̉et] it's opened, [gíje] earth, land, [tígy g^{w}] nine,
[pálagıł] one boat, [Oóga, Oógi, hóga] go,

Vowels

[i] high non-back tense oral vowel as in English [ski] ski, [pítsə] pizza, [súsii] sushi, [piǽno] piano.
 pesty.
[1] high non-back lax oral vowel as in English [fiš] fish, [swım] swim, [kınšıp] kinship.

[e] mid non-back tense oral vowel
as in English [gem] game, [snek] snake, [snel] snail.

[ε] mid non-back lax oral vowel
as in English [net] net, [kelp] kelp, [〕̌t] jet, [šel] shell.
as in Sliammon [?étton] eat, food, [Ǩヒ̉kče?] small basket for sewing, junk box,

[u] high back rounded tense oral vowel
as in English [flut] flute, [glu] glue, [flu] flu, [plúto] Pluto, [súmæk] sumac.
as in Sliammon [\mathbf{k}^{w} úsem] green, blue, [múšmuš] cow, [tuk$\left.{ }^{\mathrm{w}}\right]$ to fly,
[$\mathbf{k}^{\mathrm{w} u} \mathbf{k}^{\mathrm{w}} \mathrm{pa}$]] grandfather, [wuk $\left.{ }^{\text {w }}\right]$ scoop net.
[v] high back rounded lax oral vowel as in English [huk] hook, [put] put

[0] mid back rounded tense oral vowel as in English [foks] folks, [most] most, [pok] poke, [smok] smoke, [tótəm] totem.

[$0 \sim 2$] mid back rounded lax oral vowel similar to the [0] in English [horn] horn ,
 [?ámamò?] chiton, [\mathbf{k}^{w} óṅot] porpoise.
[æ] low non-back tense oral vowel
as in English [læmp] lamp, [gæf] gaff, [klæm] clam.
as in Sliammon [kyǽpo] coat, [čéćætən] mouse, [kǽmpùts] rubber boots, [$\left.\mathrm{k}^{\text {wiñ }}{ }^{\text {ºč }}{ }^{\text {w }}\right]$ you carry it.
[a] low central oral vowel

[a] low back oral vowel as in English [swan] swan, [swamp] swamp, [pat] pot, [kad] cod. as in Sliammon [sá?a] two, [?asx $\left.{ }^{w}\right]$ seal, $\left[\mathbf{k}^{w}{ }^{w} x^{w} \mathbf{a}\right.$?] box, [t́áqtaq] slow.
[ə] mid central lax oral vowel
as in English [əgó] ago, [fókəs] focus .
as in Sliammon [tátemčx* ${ }^{\text {w }}$] what are you doing?
[1] low-mid back oral vowel
as in English [b^t] but.

Diphthongs

[iy ~i:]
as in Sliammon [tiymot \sim ti:mot] really big </tih-mut/,
[ey]
as in Sliammon [[J̌čeyš] spear for cod and cod eggs, [$\check{\mathrm{x}}^{\mathbf{w}}$ eyt] stretch it.
[uy]
as in Sliammon [need example].
[uỷ] as in Sliammon [čuỷ] child, [či:čuý] children,

[ay]

[$\partial \mathrm{y} \sim \wedge \mathrm{y}$]
as in Sliammon/say=an̉a/ [s^́yع?na] neck, [yé?gny] inner cedar bark.
[$\wedge \hat{y}]$

[iw] as in Sliammon [wíwlos] young man.
[ew] as in Sliammon [̌̌^́̃ews] pluck a bird, feather a bird, [pewt] lard, rendered-down fat
[ew] as in Sliammon [x̆éw'x̆a?g^t] chipmunk
[$\varepsilon w]$ as in Sliammon [${ }^{〔}{ }^{\ominus}$ Ewq่] red elderberry
[uw'] as in Sliammon [yuw' ~yow'] it's been raining, dried up

[aw] as in Sliammon [páw?us] one dollar, [x̌áwges] grizzly bear, [qawe] potato, [f̊ápaw] busy
[aw] as in Sliammon [̌̌aws] new.
[əw] as in Sliammon [?ว́w?əwək ${ }^{w}$] lots of tobacco
[$\Lambda \dot{w}$] as in Sliammon mimaw [mé:m $\wedge \mathbf{w}$] cat
[ow'] as in Sliammon [tow ~tu?] ice.
[oy] as in Sliammon [̉̇áquo:ye] summer.

Surface Long Vowels

[i:] as in Sliammon [ḱi:kæk̉ik̉] blackbird, [ḱi:kik ~kí:kとk̉] crow, [tí:tolk"um] small roots,

 [sí:saỷ~sáysaỷ] scared.
[e:] as in Sliammon [hé:yn^č ~híyn^č]bottom of a basket, [pé:paye] one person, [né:?£t] be in the way, [mé:m^ẁ] cat.

[o:] as in Sliammon [$\overline{\mathrm{x}}^{\mathrm{w}} \mathbf{o ́ q}^{\boldsymbol{q} \varepsilon t]}$ s.o. snoring (in that state), [móla \sim mó:l^] mill.
[a:] as in Sliammon [páápemč] I'm working (night now), [đ̉á:ławvm] any berry, [?á:yع?] house.
 [?á:sx"č] I'm hurt (cf. Pah be hurt, sore).

Abstract

El Mar Necesitu del mar porque me enseña: no sé si aprendo música o conciencia: no sé si es ola sola o ser profundo o sólo ronca voz o deslumbrante suposición de peces y navios. El hecho es que hasta cuando estoy dormido de algun modo magnético circulo en la universidad del oleaje.

Pablo Neruda

Chapter 1: Introduction

1.0 General Introduction

Sliammon is a Central Coast Salish language spoken just north of Powell River on the Malaspina Peninsula at Sliammon, British Columbia, Canada (cf. Appendix I on Salish Languages, as well as Czaykowska-Higgins and Kinkade (1998)). The term "Sliammon" is used here in this thesis as a cover term to refer to the language of the Homalco, Klahoose, and Sliammon people currently living in Sliammon, B.C. The language is currently spoken by approximately 40 of the 800 residents of Sliammon. According to a number of elders that I have consulted, the Homalco, Klahoose and Sliammon consider themselves "one people with one language".

Traditionally, the Sliammon, Klahoose and Homalco people utilized a vast area of land and waterways for traditional harvesting of annual salmon runs, berry-picking, and hunting. Their traditional territory extends along both sides of the northern Strait of Georgia from Malaspina Strait, in the south, to Desolation Sound and Homfray Channel, to the head of both Toba and Bute Inlets in the north, and the islands between the Mainland and Vancouver Island. These islands include Texada, Harwood, Savary, Hernando, Mitlenatch, Marina, Cortes, West Redonda, East Redonda, Sonora, Stewart and Dent Islands, amongst others (cf. for example Barnett 1955; Kennedy and Bouchard 1983; Sliammon Treaty Society).

Today, many of the Homalco, Klahoose and Sliammon people live at Sliammon, B.C., located just north of the city of Powell River. There is a community at Squirrel Cove on Cortes Island, and many of the Homalco people moved to Homalco Reserve located on Vancouver Island (near Campbell River), when the last families left the Church House village site.

The name Sliammon is an anglicization of /ła?amin/ [łáPamın], a term which refers to the Sliammon people. The word /tišus-m/ [tésosəm] is the place name which refers to Sliammon Bay, Sliammon Creek, and to the Sliammon village which is located near the mouth of the creek. One elder explained that this place name is clearly related to the term /DIM-tisus/ [fétšos] which refers to 'a small saltwater fish' which occupies the large tidepool in front of Sliammon.

The language has also been referred to as Mainland Comox or Comox in previous ethnographic and linguistic research which was intended to indicate the dialect spoken by the Homalco, Klahoose, and Sliammon peoples living on the Mainland in contrast to the Island Comox dialect, originally spoken on Vancouver Island. "Mainland Comox" is a designation which is dispreferred by current speakers of the language since they associate "Comox" with the name of the town of Comox, B.C. which is located in what is now Kwakwakawa'kw or Kwakwalaspeaking territory.

Some people have referred to the language as [?áy?ajüӨom]. However, as one Sliammon
 could be used to describe someone who speaks English well, or French well, or any other language, and is not restricted in its use to mean the language of the Homalco/Klahoose/Sliammon people'. In short, different people have expressed varying opinions regarding the appropriate use and meaning of this word.

There are also separate terms which combine a place name or the name of people living there with the lexical suffix =qin for 'mouth, language' to indicate the local variety of the language spoken by a person from that particular location: [TáPamınqèn] /\&aQamin=qin/ 'Sliammon language', [tó?q'qèn]/tu?q=qin/ 'Klahoose/Squirrel Cove language', and [?ó?phqèn] /pu?p=qin/ 'Homalco/Church House language'. However, there also is some discussion regarding the grammaticality of words with the addition of =qin meaning 'language of x ', and therefore without consensus on the part of the speakers, it would not be appropriate to use this type of construction as a designation for the language. As researchers and visitors, we are looking to the Homalco, Klahoose, and Sliammon people for guidance regarding an appropriate name for their language. In the meantime, in this present work I will continue to use the name "Sliammon" as a cover term
which includes speakers of Homalco, Klahoose, and Sliammon living at Sliammon, B.C. The community has plans to discuss an appropriate name for the language by consulting with Elders from all three bands: Sliammon Band, Klahoose Band (Squirrel Cove), and Homalco Band in Campbell River.

There seem to be very few differences between speakers which can be clearly attributed to "dialect" differences. There are a few lexical items which seem to have restricted distribution or specific pronunciation of individual lexical items, such as Janxw/ [〕̌́nx"] 'salmon, fish' versus
 velar fricative $/ \mathrm{x}^{\mathbf{w} / \text { whereas a Klahoose speaker systematically used the corresponding uvular }}$ fricative $/ \check{\mathrm{x}}^{\mathbf{w}} /$. Nonetheless, these differences seem to be very limited. There may also be a differences in the rate of speech which are readily perceived by native speakers of the language; these latter are not documented in the present work.

There are concerted efforts on the part of the Sliammon, Homalco and Klahoose people to revitalize the use of their language. The Sliammon Language Program in the Powell River School system (accredited by the Ministry of Education) teaches children from kindergarten to grade 12, the language spoken by the Homalco, Klahoose and Sliammon people. The emphasis of the program is on spoken language and oral fluency in its cultural context.

The primary source of the data in this dissertation is my fieldnotes collected from 1988 through 2000 in consultation with Sliammon elders, especially: Mrs. Mary George, Mrs. Agnes McGee, Mrs. Phyllis Dominic, and Mrs. Eva Hanson. Additional data were collected and/or verified with the following elders and/or speakers: Mrs. Annie Dominick, Mr. Dave Dominick, Mrs. Helen Hanson, Mrs. Marion Harry, Mr. Pete Harry, the late Mr. Joe Mitchell, Mrs. Elsie Paul, Mrs. Sue Pielle, and Ms. Betty Wilson. The collaborative Sliammon/UBC orthography workshops held in Sliammon during the summers of 1996-1998 also provided a forum for rechecking additional data. To these many elders who patiently contributed their expertise, I am deeply grateful. Although the majority of my fieldwork was carried out at Sliammon, I also benefited tremendously from working with two Sliammon elders who were residing/visiting Vancouver, and therefore provided the opportunity of meeting on a weekly basis.

In addition to tape recordings, there are two video recordings which were filmed in collaboration with the Sliammon community under the auspices of the UBC Teaching and Learning Enhancement Fund (TLEF), awarded to Dr. Patricia A. Shaw. This video film footage is to be incorporated into multimedia curriculum materials to enhance the community-based teaching of the Sliammon language in traditional cultural contexts. The collaboration and team work involved in these sessions has been invaluable.

1.1 Goals of the Dissertation

The goals of this dissertation are two-fold. My first major descriptive goal is to contribute to the basic documentation of the language spoken by the Sliammon, Klahoose and Homalco peoples. It is my hope that the language data contained within this dissertation will be useful to the Sliammon community and will help further their efforts in language education.

My second major goal is to present an analysis of the distribution and representation of schwa ${ }^{1}$ in Sliammon. This is of both descriptive and theoretical interest. Schwa is the brief "neutral" vowel [ə] which shows special phonological properties in many languages. It is central to an understanding of the Sliammon phonology and morphology. It is argued here that there are three different "kinds" of schwa in Sliammon, as evidenced by their phonological behaviour: (i) excrescent schwas, (ii) epenthetic schwas, and (iii) reduced full vowels, which have the same prosodic structure as schwa.

One of the major goals with respect to the distributional restrictions is to demonstrate that the surface constraint (or constraints) which bans schwa in stressed open syllables (informally abbreviated as, *o $]_{\sigma}$) plays a central role in the organization of the grammar of the language. The phonological constraint *ó] σ when combined with other constraints within the grammar of Sliammon has far-reaching implications for the phonological and morphological structure of the language.

[^0]I am assuming the general model of Optimality Theory in which constraint interaction, conflict and minimal violation determine the optimal output candidates, following Prince and Smolensky (1993), McCarthy and Prince (1993 et seq.), and many subsequent works that have been stimulated by the evolution of this research paradigm.

This thesis presents continued research which I began in the context of my M.A. Thesis (Blake 1992) and addresses several outstanding issues which were raised there. In Blake (1992: 43-45), I observe that schwa in Sliammon tends to occur in the following two contexts: (a) in an unstressed closed syllable (i.e. minimally a CəC syllable) or (b) in an open syllable which bears primary stress, as illustrated by the data in (1-2) (for an overview of the transcription system adopted here, see Guide to Pronunciation (pp.xv-xxvi); Chapter 2; and Appendices III and IV).
(1) Schwa in closed syllables: CaC

Input ${ }^{2}$	Schwa epenthesis	Output	Gloss
PL-pq	pəqpəq	p^́́q${ }^{\text {h }} \mathrm{p} \wedge q^{\text {h }}$	all white
tin-?m	fin?əm	íén?əm	to barbecue (salmon)

(2) Schwa in stressed open syllables: Cé

Input
a. IMP- $\lambda p x^{w}$
b. $\mathfrak{t}^{\theta} \mathbf{k}^{\mathrm{w}} \mathbf{a}^{3}$
c. ngi
${ }^{2}$ Although there are no constraints on inputs within OT, I have provided Input forms (underlying representations) which conform to the following principles: (i) each morpheme has a single underlying representation or "Input form" for phonologically-conditioned allomorphs, and (ii) the Input only contains unpredictabie information. It has been shown by many phonologists working within OT that when GEN creates other Inputs, the surface phonological and morphological constraints of the grammar will nonetheless converge to select the same optimal form. I therefore do not show multiple Inputs for the set of output candidates in this context. Here, the important point is that the surface distribution of schwa is determined by the constraint ranking regardless of whether or not it is present in the Input form. cf. Matthewson (1994: 38) for similar discussion regarding schwa in Lillooet (Salish).

[^1]Although schwa does appear to occur in stressed open syllables as shown by the data in (2) above, there are also a number of strategies which are employed in order to avoid stressed schwa in an open syllable, as shown by the data in (3).
(3) Avoidance of stressed schwa in an open syllable

Input

a. $\theta t^{\dagger \theta} \mathrm{m}$	θt^{\dagger} əm	Өáptom	jig for cod	O' restructuring
b. O'ym	Oəẏm	Өá?yım	to sink	R' restructuring
c. $\hat{t}^{\dagger}{ }^{\text {x }} \mathbf{u}$	\mathfrak{f}^{\ominus} อхй		ling cod	Gemination
d. $\mathrm{p}^{\prime}=\mathrm{iq} \mathrm{q}^{\mathrm{w}} \mathrm{an}$	${ }^{\prime}{ }^{\prime} \theta[h] i q{ }^{\text {wan }}$		black hair	[h] epenthesis
$d^{\prime} .{ }^{\mathbf{x}} \mathrm{X}=\mathrm{i} q^{\mathrm{w}}$ an			black hair	[h] epenthesis
e. $p q=i q^{w} a n$	pral ${ }^{\text {d }} \mathrm{iq}^{\text {wan }}$		blonde hair	[?] epenthesis
f. $\mathrm{px}^{\mathbf{w}} \mathrm{m}+[\mathrm{i}]$	pexwim	púx ${ }^{\text {w }}$ ¢m	steam	V -strengthening

These various different strategies include Glottal Restructuring (3.a-b), Gemination (3.c); [h] or [?] epenthesis (3.d-e), and Vowel strengthening (3.f). What all of these strategies in (3) have in common is that they prevent schwa from occurring in a stressed open syllable, thus avoiding violation of the constraint * $\left.{ }^{\text {万 }}\right]_{\sigma}$.

The contrast between (2-3) raises the following question: under what set of conditions does schwa occur in stressed open syllables? The proposal made in this thesis is that the constraint which aligns the head of the prosodic word (PrWd) to the left-edge of the lexical stem outranks the constraint against stressed schwa in an open syllable. This means that it is more important for primary stress to be properly aligned with the left-edge of the stem domain than it is to obey the constraint which bans stressed schwa in open syllables. In this context, schwa will occur in a stressed open syllable, if no other strategy militates against it.

In this thesis, I claim that the surface distribution of schwa in Sliammon is predictable from surface prosodic constraints. For example, schwa surfaces between a word-initial consonant cluster in order to satisfy the high-ranking constraint against Complex Onsets in the language.

Schwa is also epenthesized in order to satisfy Proper Headedness, the requirement that the syllable which is the head of a Foot contains a nucleus, as shown by the contrast between stressed initial CáC syllables versus final Minor syllables (CC) which have no vocalic nucleus, as will be argued in Chapter 3.

Shaw (1993, 1995, 1996c) characterizes schwa as non-lexical, featureless and non-moraic, drawing on evidence from a wide-range of languages including the Salish languages Statimcets (Lillooet) and Nuұalk (Bella Coola). Kinkade (1998: 208) argues that epenthetic schwa in Upper Chehalis is both non-moraic and unspecified for phonological features, providing comparative evidence supporting the proposed representation of schwa in Sliammon.

This dissertation also aims to contribute to the cross-linguistic studies of schwa in other Salish languages: Bagemihl (1991) on Bella Coola, Matthewson (1994), Roberts (1993), Roberts \& Shaw (1994), Shaw (1993, 1994, 1996) on St'át'imcets (Lillooet), Bianco (1996) on Cowichan, Willet and Czaykowska-Higgins (1995) on Nxa'amxcín (Moses-Columbian), and Kinkade (1998) for Upper Chehalis, so that a cross-linguistic perspective on the behaviour of this vowel emerges.

1.2 Previous scholarship on Sliammon language

Early scholarship on the Sliammon (Comox) language and culture includes: Haeberlin (1918), Sapir (1915), Boas and Haeberlin (1927), Swadesh (1950), Swadesh (1952), and Barnett (1955), amongst others.

There are also a growing number of papers which appear in the pre-prints for the International Conference on Salish (and Neighboring) Languages; these include: J. Davis (197la, 1970b, 1971, 1973), Bouchard (1971), Hamp (1971), Harris (1975), Hagège (1976), Kroeber (1988), Watanabe (1994b, 1996) and Blake (1997a, 1999), most of which are based on fieldwork on the language.

Hagège (1981) produced a descriptive grammar of the language written in French (cf. Kroeber (1989) for a critical review). J. Davis (1970), Blake (1992), and Watanabe (1994a) are Masters Theses on the language, focusing mainly on basic aspects of the phonology and

Reduplication. Watanabe (2000) is a detailed description of the Morphology of the language which documents a number of aspects of the language which have not been discussed elsewhere.

Research on the syntax of the language includes papers by J. Davis (1973, 1978a, 1978b), and Blake (1996, 1997a) on basic clause structure and Passives in Sliammon. Kroeber (1991, 1999) includes many syntactic examples of MComox (Homalco, Klahoose, Sliammon) in the broader context of his research on comparative Salish syntax, and are based on his own fieldwork on the language in the early 1980s. Harris' (1981) dissertation is on the Island Comox dialect; the speaker he worked with the late Mrs. Clifton, passed away several years ago. No other individuals are known to speak this dialect.

There is also a growing body of fieldnotes on the language including: H.G. Barnett UBC Special Collections; W. Suttles (n.d.) Sliammon fieldnotes; J. Davis (1969-1970); Kennedy and Bouchard (1971-1981); P. Kroeber (early 1980s); Blake (1988-2000); Watanabe (1990-2000) collaborative Sliammon-UBC TLEF Project under the direction of Dr. Patricia A. Shaw (19961998), and S. Urbanczyk (1998) working on Klahoose, Cortes Island, B.C.

Kennedy and Bouchard's (1983) publication entitled Sliammon Life, Sliammon Lands reports on detailed ethnographic research from (1971-1.981).

1.3 Theoretical Framework

1.3.1 Representations adopted in this Dissertation

The issue of representation is one which is particularly challenging. I will briefly discuss some of the most common issue regarding documentation, transcription, and levels of representation.

Previous work on the language such as Sapir (1915), J.Davis (1970, 1971), Blake (1992), Watanabe (1994a) include the surface phonetic forms for most if not all examples. One of the potential drawbacks is that a phonetic representation may include a lot of information which is noncontrastive. Nonetheless, a distinct advantage of including all of the surface phonetic forms is so that the reader can readily compare this level of representation with the more abstract phonemic representation, and future scholars will be able to make new hypotheses based on this surface phonetic data. It therefore seems preferable to me to include as much phonetic detail as possible.

At the same time, for practical reasons many forms are not transcribed with comparable phonetic detail. Any phonetic transcription is an abstraction to some degree. The process of transcribing what one hears is, of course, the first level of analysis. In the chapters to follow, the representation adopted for any set of data is somewhat dependent upon the focus of a particular section. The reader is therefore referred to Chapter 2 , where I discuss many of the most frequently occurring allophonic processes which have been the focus of my research on the language. Because of the inevitable variation attested in the speech of any individual or of different individuals within a speech community, the reader is urged to cross-reference all of the available sources on the language in order to ascertain the range of variation in both underlying representation and surface forms.

The representations adopted in this thesis are as follows: phonemic (Input) form and surface (Output) representation. In addition, I often provide for the reader an "intermediate" form which abstracts away from certain aspects of the consonant/vowel interaction in order to make the discussion at hand easier to follow. For example, reconsider the data presented earlier in (1), the first sets of which are reproduced for ease of reference here:
(1) Schwa in closed syllables: CoC

Input	Schwa epenthesis	Output	Gloss
a. PL-pq	pəqpəq	p^́q ${ }^{\text {h }} \mathbf{p} \wedge q^{\text {h }}$	all white
b. tin-?m	tin?əm	tén ${ }^{\text {a }}$ ¢m	to barbecue (salmon)

The data in column 3 the "Output" represents the surface phonetic level, showing in this case the effects of C-V interactions. Even narrower phonetic transcriptions will sometimes appear in square brackets [], when they are used. The data in column 2 abstract away from some of the phonetic detail in Column 3, e.g. vowel height assimilation to adjacent consonants ($i \sim \varepsilon$) ; schwa colouration ($\rho \sim \wedge$) ; aspiration of stops ($q \sim q^{h}$) etc. The data in Column 1 represent an abstraction: the kinds of phonological information which are predictable are not present, e.g. $/ i /$ is regularly realized as $[\varepsilon]$ following a glottalized obstruent; a stop $/ q /$ is regularly aspiratedetc. Column 4 provides a short

English translation. The reader is referred to Chapter 2 and the Appendices for further exemplification.

In each section, I have tried to indicate clearly what phonological properties I am attempting to account for, as well as clearly indicate what properties are to be discussed elsewhere, or are simply not handled in the context of this thesis. Inevitably and regrettably, this thesis is also finite, and discusses only a fraction of the very fascinating linguistic processes integral to this language.

Nonetheless, an area in which I have tried to pay particular attention to detail is in my transcription of the phonetic vowel quality. I have also focused specifically on the realization of glottalized resonants and obstruents, aspiration of syllable-final consonants, the allophonic realization of schwa, and native speaker judgements regarding morafication and syllabification.

Areas which remain particularly problematic both for description and for analysis include stress/pitch interaction and the placement of secondary stress. In cases where I could not decide whether or not there was a secondary stress, I did not mark stress. Therefore, because a form is not marked with secondary stress does not imply that secondary stress does not occur in this word/phrase rather it simply may not be indicated. Primary stress is marked throughout. See §3.3 for further discussion.

It should also be noted that there is a considerable range in variation both within a single individual's speech and across speakers within a community, some documentation of which can be found in Davis' (1970) work. The range of variation is also documented in this thesis by listing the variants. For example, the word for coat is pronounced in a variety of ways: [kápo $\sim k^{y} \not \subset \not \subset p o$]. The tilda [~] separates one variant from another.

The phonemic or Input forms adopted in this thesis and those labelled in Watanabe (2000) as //morpho-phonemic// are similar. Watanabe (2000) does not take into account the effects of syllabification and foot formation in driving vowel reduction, schwa colouration, or vowel height assimilation. His surface representations have phonemic vowels and he generally abstracts away from consonant/vowel interaction. These differences may appear to be significant on the surface but are the result of different focus and investigation of different linguistic properties of the language. I have made a number of choices with respect to representations which attempt to
minimize these differences. For example, to be consistent with Watanabe (2000a) I use $/ \mathrm{J}, \mathrm{g} /$ in the present work rather than the archi-phonemes /Y, W/ of Blake (1992). I have also adopted /i, u, a/ rather than $/ e, o, a /$ for ease of comparison.

1.3.2 Theoretical Models of Phonology

The analysis presented in this dissertation is predicated on two major theoretical claims made within the general theory of phonological systems.

First, I adopt Shaw's (1996c) claim which argues that "an adequate theory of syllable structure must recognize both Nuclear headedness and moraic weight as independent structural properties." Shaw's claims are formulated in Optimality Theoretic terms. In particular, she has proposed the addition of the constraint SYLL MORA which ensures that all syllables have phonological weight. The analysis presented in this thesis draws significantly on Shaw's claims.

Second, I adopt the general model of Optimality Theory (OT), following Prince and Smolensky (1993), McCarthy and Prince (1993 et seq.). OT is a model of output constraints in which constraints are ranked with respect to each other. All constraints are in principle violable, and there is constraint interaction and conflict. An optimal output candidate will often violate a lower-ranking constraint in order to satisfy a higher-ranking, conflicting constraint. The reader is referred to the growing body of literature on OT for additional background and exemplification within this particular theoretical framework, and particularly to McCarthy and Prince $(1994,1995)$ on Prosodic Morphology within OT.

1.4 Overview of the Dissertation

The next section presents an outline of the remainder of the dissertation.
Chapter 2 presents a summary of the consonantal and vocalic sound system of the language, focusing on the phonological weight contrast between the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a} /$ and schwa. Chapter 2 outlines the tenets of the Nuclear Moraic model of Shaw (1993, 1995, 1996a,b,c). In accordance with this theoretical model, I hypothesize here that schwa in Sliammon is both nonmoraic and featureless (cf. Blake 1992, Kinkade 1992, Shaw 1993 et seq.). In addition, this
chapter establishes that the realization of Full Vowel Reduction (laxing) in unstressed syllables in Sliammon is distinct from the surface realization of schwa.

Chapter 3 provides an analysis of the prosodic structure of the language with emphasis on the distribution of schwa. $\S 3.1$ motivates the moraic structure of coda consonants in the language, §3.2 provides a description of some of the basic issues regarding syllabification, emphasizing the interaction between syllable structure constraints and the morphology. $\S 3.3$ provides a preliminary introduction to metrical structure in the language, highlighting the fact that primary stress in Sliammon, unlike many other Salish languages in the family, is fixed on the stem-initial vowel regardless of its inherent weight.

Chapter 4 begins with a basic typology of the different "kinds" of schwa which are found in Sliammon as evidenced by their phonological behaviour: (i) excrescent schwa, (ii) epenthetic schwa and (iii) non-alternating schwas, which are subsumed under (ii). Schwa is proposed to be non-lexical (i.e. not present in the Input), and epenthesis is driven by the constraint Proper Headedness which requires that the Foot contains a syllable which is headed by a Nucleus (specifically, a vowel). $\$ 4.3$ provides evidence that Full Vowel Reduction (laxing) involves the loss of phonological weight, expressed in terms of moras. The output of Full Vowel reduction is distinct from the realization of schwa in terms of its featural representation, but is claimed here to have the same prosodic representation as schwa. This section provides independent data on Full Vowel Reduction which confirms the hypothesis made in Blake (1999).

Although schwa epenthesis is driven by the constraints on Proper Headedness, there is also evidence that the language has a number of strategies which conspire to avoid schwa in a stressed open syllable (*ə〕o). Chapter 5 brings together different cases of surface allomorphy, and shows that they receive a unified explanation with reference to the constraint *ojo.

Chapter 6 addresses further implications for the analysis developed in the context of this dissertation. §6.1 documents and analyzes the variant forms of the possessive -hV suffix in Sliammon, along with its variant sites of affixation (sometimes a suffix, sometimes an infix). §6.2 makes important claims regarding the status and form of prefixes, interacting with pervasive constraints on the morpho-syntactic structure of the language. The effect of these general
constraints on two prefixes in particular is discussed. One is the s-nominalizer, broadly attested across other languages in the Salish family, but conspicuously absent in Sliammon. The second is a plural prefix/infix, here hypothesized to be $/ L^{\prime}-/$, cognate with the plural l-infix of Musqueam and Saanich. The existence of this prefix has not been previously recognized by others working with Sliammon, undoubtedly due to its highly variant realization, viz. [-i? $\sim-u ? \sim-a ?]$. What is shown here is that these variants follow directly from the convergence of hypotheses related to the realization of sonorant $/ L /$, combined with constraints on prefixation. A crucial observation related to both these underlying prefixes is that both, being strictly "consonantal", would violate a pervasive constraint against initial complex clusters if they were simply prefixed, i.e. *s-C..., *L'C... Significantly, o-epenthesis is not an available strategy to rescue either of these cases. The thesis concludes, therefore, with a discussion of how the operative higher order constraints here interact with the constraints governing the realization of schwa which have been motivated in previous chapters.

Chapter 2: Introduction to Sliammon Sound System
How wonderful is the human voice! It is indeed the organ of the soul!The soul of man is audible, not visible. A sound alone betrays the flowing of the eternal fountain, invisible to man!

Henry David Longfellow

2.0 Introduction

The goal of this chapter is to present a detailed overview of the sound system of Sliammon, presenting first the consonant contrasts and then focusing on the vowel inventory.

2.1 Sliammon Sound System

Sliammon, like other Salish languages, has a large consonantal inventory (43 consonants). The contrasts indicated here are based on minimal and near-minimal pairs presented in Appendix IV, and are largely in agreement with work of J.Davis (1970), Blake (1992) and Watanabe (1994a, 2000). The proposed phonemic inventory of the language is presented in (1):
(1) Sliammon Phonemic Inventory (cf. J.Davis 1970, Kroeber 1989, Blake 1992, Watanabe 1994)

Manner ${ }^{\text {Place }}$	Labial	$\begin{gathered} \text { Dental } \\ \text { Interdental } \end{gathered}$	Alveolar	Lateral	Alveo-Palatal Palatals	Velar	Uvular	Laryngeal
Stops plain ejectives	$\begin{aligned} & \mathbf{p} \\ & \mathbf{p} \end{aligned}$	$\begin{aligned} & \hline \overline{\mathrm{t}^{\theta}} \\ & \mathrm{i}^{\Theta} \end{aligned}$	$\begin{aligned} & \mathrm{t} \\ & \mathfrak{t} \end{aligned}$	$\begin{aligned} & \bar{x} \\ & \dot{x} \end{aligned}$	$\begin{gathered} \check{c} \\ \text { č } \end{gathered}$	$\begin{array}{ll} \mathbf{k} & \mathbf{k}^{\mathbf{w}} \\ \mathbf{k} & \hat{k}^{\mathbf{w}} \end{array}$	$\begin{array}{cc} \hline \mathbf{q} & \mathbf{q}^{\mathbf{w}} \\ \dot{\mathbf{q}} & \dot{\mathbf{q}}^{\mathbf{w}} \end{array}$	$?$
Fricatives		θ	s	\pm	$\stackrel{\text { s }}{ }$	$\mathrm{x}^{\mathbf{w}}$	¢ ¢ $^{\text {x }}{ }^{\mathbf{w}}$	h
Non-continuant Resonants					$\stackrel{3}{3}$	g g		
Resonants plain glottalized	$\begin{aligned} & \mathrm{m} \\ & \dot{\mathrm{~m}} \end{aligned}$		$\begin{aligned} & \mathbf{n} \\ & \mathbf{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{ll} \mathbf{y} & \mathbf{L} \\ \dot{y} & \mathbf{L} \\ \hline \end{array}$	$\stackrel{\mathbf{w}}{\dot{\mathbf{w}}}$		
Vowels					i	[จ]		

Each symbol in (1) is an abbreviation for a set of phonological features which will be discussed in more detail in §2.3.2.1.

2.2 Consonant System

2.2.1 The Inventory

There are 19 Stops (13 stops, 6 affricates) plain and glottalized pairs at seven different places of articulation: Labial, Dental, Alveolar, Alveo-palatal, Velar, Uvular and Laryngeal: $/ \mathbf{p}, \dot{p}, t^{\ominus}, \mathfrak{t}^{\theta}, t, \dot{t}, \lambda, \dot{x}, \check{c}, \dot{c}, k, k, k^{w}, \dot{k}^{w}, q, \dot{q}, q^{w}, \dot{q}^{w}, ? /$. Affricates are analyzed here as a species of stop since they clearly pattern with the class of [-continuant]s, and are distinguished by their release features, following Jakobson, Fant and Halle (1952), Czaykowska-Higgins (1988), Shaw (1991), and LaCharité (1993).

The fricatives in Sliammon are $/ \theta, s, \ddagger, \bar{s}, x^{\mathbf{w}}, \check{\mathbf{x}}, \check{\mathbf{x}}^{\mathbf{w}}, \mathbf{h} /$ and are exemplified in Appendix IV. There is no labial or labio-dental fricative in Sliammon, nor is there a velar fricative / $\mathrm{x} /$ (except as an infrequently occurring variant of $/ \widetilde{\mathrm{s}} /$).

The symbols $\widehat{\mathrm{J}}, \mathfrak{J}, \mathrm{g}, \mathrm{g} /$ are used to represent the set of features which display Obstruent/Glide/Vowel alternations. In Blake (1992), I used the archi-phonemes $/ \mathrm{Y}, \mathrm{Y}, \mathrm{W}, \mathrm{W} /$,
 [$\left.g \sim k \sim x^{w} \sim w \sim u \sim o l\right)$ along with their glottalized counterparts; the use of capitalized glide symbols was to emphasize the Resonant behaviour of these sounds. In the present work, the symbols $/ \mathrm{j}, \vec{j}, \mathrm{~g}, \dot{\mathrm{~g}} /$ are adopted for ease of comparison with other research on Sliammon such as Davis (1970), Kroeber (1989, 1991/1999), Watanabe (1994, 2000). However, the arguments regarding resonant status of $/ \mathfrak{j}, \dot{\mathrm{J}}, \mathrm{g}, \dot{\mathrm{g}} /$ and their proposed featural representation is basically the same as those in Blake (1992).

In addition to $/ \mathrm{J}, \mathfrak{\jmath}, \mathrm{g}, \dot{\mathbf{g}} /$, the class of resonants includes $/ \mathrm{m}, \mathbf{m}, \mathrm{n}, \dot{\mathbf{n}}, \mathbf{l}, \mathbf{i}, \mathbf{y}, \dot{\mathbf{y}}, \mathrm{L}, \mathrm{L}, \mathbf{w}, \mathbf{w} /$. The archi-phonemes $/ \mathrm{L}, \mathrm{L} /$ are used to indicate a set of features which show a range of morpho-

This traditional way of presenting the consonant inventory is supplemented with extensive discussion of what these symbols represent - since each symbol is an abbreviation for a set of
distinctive features. The consonant and vowel inventory will be discussed in terms of combinatorial specification §2.3, following Archangeli and Pulleyblank (1994).

Contrast the large consonantal inventory with the relatively small phonemic vowel inventory in (1): /i, $u, a /$ plus [ə]. Although there are a large number of surface vowels in the system, these surface variants arise from consonant-vowel (C-V or V-C) interaction (retraction, labialization, place assimilation) and vowel reduction. The surface realization of schwa is discussed in detail in §2.4.

2.2.2 Consonant Allophones I

The following consonantal allophones are not the focus of this study and are listed here so as not to give a false impression about the Sliammon language. It is beyond the scope of the current dissertation to discuss and document the full range of complexity which characterizes the consonantal sound system of the language. The following consonantal allophones are mentioned here and each one of them is identified as a topic which warrants for future research (i.e. systematic elicitation and acoustic studies). The goal of this section is to define limitations on range of consonantal phenomena to be discussed in the remainder of this thesis, while acknowledging the richness and range of complexity within the consonantal sound system. In general, these data include a level of phonetic detail which is not necessarily transcribed in the remainder of this thesis.

2.2.2.1 Stops and Affricates

2.2.2.1.1 Affrication of Stops

The uvular stops /q, $\dot{q} /$ are often accompanied by a fricative release, indicated here by the raised [\check{x}] after the stop. These affricated stops are written phonetically as [q̌̆] and [q$\dot{q} \bar{x}]$, and appear to be restricted to syllable onset position, as shown by the data in (2-3).
(2) $/ q \rightarrow[q \breve{x}]$

Input
a. qaw̉m
b. CəCPL-qawim
c. CəCPL-maqin
d. pjyqn
e. CəCPL-p̉yqn
(3) $/ \dot{q} / \rightarrow[\dot{q} \times \mathbf{x}]$

Input
a. ' quyk $^{\text {w }}$
b. CəCPL-q̉ayk ${ }^{w}$
qâ?um
qว́wqa?wəm
mə́qmaqən
píqən
p’ə́ypiqən

Output
Gloss
qx̆áiom \sim qá?wvm eye
qx̆́áwqxăa?wum~ó eyes m^́q${ }^{\text {h maquxə }} \quad$ lots of hair

ṕṕp̉iəqx̆әn shoulder shoulders

In contrast $/ \mathbf{q}^{\mathbf{w}}, \mathbf{q}^{\mathbf{w} /}$ are rarely affricated, a fact which is also noted by J.Davis (1970: 40).

2.2.2.1.2 Aspiration

Stops (stops and affricates) are aspirated word-finally, as shown in (4) (cf. Davis 1970: 62)
(4) word-finally

Input		Output	Gloss
a. Ro a čx ${ }^{\text {w }}$ qut			How are you (sg) ?
b. fì a čap ?ut	Pe?̧̌a čap Put		How are you (pl)?
c. P̛龴 čan lut	Piy čan ?ut	Tily čen Ot $^{\text {b }}$	Im fine
	Powk ${ }^{\text {w }}$ št \%ut Poy		We're all fine
e. $\mathrm{i}^{\text {a }}$-mut	PiPmut	Pi:mut ${ }^{\text {¢ }}$ Piymut ${ }^{\text {b }}$	very good

Word-internal syllable-final stops are also aspirated, as shown in (5) (cf. Blake 1992, 1995).
(5) syllable finally

Input

a.	$\mathbf{f}^{0} \mathbf{i p}$-it-mut	toipitmùt		very pointed
b.	CəCPL-pq	pəqpəq	$\mathbf{p}^{\wedge} \mathbf{q}^{\text {h }} \cdot \mathbf{p}_{\wedge} q^{\text {h }}$.	all white
c.	Patnupil	Pátnupil	Rát ${ }^{\text {h }}$ no. pec̀l.	car, auto
c^{\prime}.	Tatmupil	Rátmupil	Pát ${ }^{\text {h }}$. mo.pèl	car, auto
d.	ngapty	nógapti	n^́. $\mathrm{g} \wedge \mathrm{p}^{\mathrm{h}} . \mathrm{ti}$.	women
e.	$\overline{\mathbf{x}}^{\mathbf{w}} \mathbf{u p}-\bar{x}^{\text {w }}$ up	$\overline{\mathbf{x}}^{\mathbf{w}} \mathbf{u p} . \overline{\mathbf{x}}^{\mathbf{w}} \mathbf{u p}$.		hummingbird

The examples in (6) show that aspiration may actually occur at a mora boundary ${ }^{1}$.
(6)

Input
a. èt-t
a^{\prime}. č̀t-t čn sm

そうtt
Eətt čon səm

Output

čit $^{h} t^{h}$
čit $t^{h} t^{h c ̌}$ ın səm

Gloss
cut it
I will cut it up

It should also be noted that it is sometimes quite difficult to distinguish the full release of a stop in the environment before another stop versus the presence of aspiration in this context.

2.2.2.1.3 Palatal Off-glide on Palatals and Plain Velars

The alveopalatal and plain velar (DOR) consonants are often followed by an audible palatal off-glide, as shown by the data in (7-11).

[^2]（7）$\check{\mathbf{c}} \rightarrow[\check{\mathbf{c}}]$（note：［t］represents a dark／retracted 1 and not a voiceless lateral fricative \ddagger ）

Input
a．čalas
b．čalas－s
čălas
čálass
Output
çłéへłへs
cyéłィs：
Gloss three

Wednesday（three）
（8）$\breve{s} \rightarrow\left[\stackrel{s}{\prime}^{\prime}\right]$
Input
a．nš－m
nə์šəm
Output
nis＇om

Output
Gloss
a．$k ə \partial^{\prime}=\mathrm{iq}^{\mathrm{w}}=\mathrm{uj} \mathrm{j}^{2}$

b．\quad CəCPL－kət $=\mathrm{iq}^{\mathrm{w}}=\mathrm{u}{ }^{\mathrm{j}} \mathrm{a}^{2}$
kstika？tiq ${ }^{\text {wiula }}$

pinky，small finger small fingers
（10）$\vec{k} \rightarrow\left[k^{2}\right]$

Input

a．hən̉kala
b．kikak
c．\quad cyk $y m=m i n$
d．$i \mathbb{l} \mathbb{k}=\mathrm{iq}^{\mathrm{w}}$
e．$C \ni C P L-t h k=i q^{w}$
f．tik
（11） $\mathrm{g} \rightarrow[\mathrm{g}]$

Input

a．tigexw／tigux ${ }^{w}$
b．DIM－qag $\theta+[i]=u t$
hán̉kala
kikak
Eyyk［a］？［a］min
tolkiq ${ }^{w}$
tóltalkiqu
tik

Output

hán̉̉̉y ${ }^{\text {y }}$ la
$k^{y_{1}} \cdot \mathbf{k}^{y} \mathbf{y}^{2} \mathbf{k}^{y}$
ci： $\mathfrak{k}^{\mathrm{y}} \mathrm{y}$ 民amen

tik ${ }^{y}$

Output
tígox ${ }^{w} /$ tígux w
qáqəgiӨut
tíg$^{y} v x^{w}$
Gloss
nine
qáqəgyiə ${ }^{\text {®òt }}$

Gloss
pot for cooking
crow
fry pan
nostril
nostrils
slim

This fact is documented by J.Davis (1970: 38,67) and may be explained by the articulation of these consonants which are characterized as having a raised dorsum (DOR [hi]). The $[\mathrm{F}]$ is therefore a release feature associated with a high consonant before the transition to a back non-high vowel.

2.2.2.1.4 Secondary Labialization

Consonants are pronounced with visible lip rounding before the rounded vowel $/ \mathbf{w}$, which is indicated here by the raised ["] , as shown by the data in (12). This is a phonetic effect in these cases since there is no contrast between t^{θ} and $\mathrm{f}^{\theta \mathrm{w}}$ or between ${ }^{\lambda}$ and x^{w}, for example.
(12)

Input		Output	Gloss
a. $t^{\dagger} \mathbf{u t}{ }^{\boldsymbol{\theta}} \mathbf{u} \mathfrak{q}^{\boldsymbol{w}}$			feather
			feathers
			dog salmon
			dog salmon (pl)
c. $\mathrm{CaCPL}-\mathrm{X}_{\mathrm{aq}}{ }^{\text {w }}=$ šn			thighs
	̇̇úpuでja		fast picker, fast hands
			lots of fast pickers

The next examples show that labialization also results in a neutralization of contrast: $/ \mathrm{q}, \mathrm{q}^{\mathrm{w}} /$ merge in favour of $\left[\mathrm{q}^{\mathrm{w}}\right]$ before the labio-velar vowel $/ \mathrm{w} /(=13 . a)$. The related words in (13.a'-a") show that the Root/pq/ [p^́q] white is q-final.

Input

a. $p q=u k^{w_{t}}$
páquk ${ }^{w}$ t
a'. pq
$a^{\prime \prime} . p q-p q$
pəq
paq-paq

Output

p $\wedge^{\prime} q^{w} \mathbf{o k}^{w} t^{h}$
pи́q ${ }^{h}$
$p \wedge \mathcal{q}^{\mathrm{h}} \mathbf{p} \wedge \mathrm{q}^{\mathrm{h}}$

Gloss
white blanket, outfit white all white

One minor and erratic phonetic effect (which will be mentioned here) includes the rounding effect that the consonant \check{c} has on a following vowel, as shown by the morphologically related examples in (14.a-c) versus (14.d).
(14) Lexical Suffix =čis/=čəs hand

Input

a. IMP-hiw=čis-ma
b. $\mathfrak{t}^{\ominus} u ?=$ čis
c. taPa=čis
but
d. Өiya=čis

Өәуа=с̌is
Өícčus ~ Өiyečıs
five 2

2.2.2.2 Fricatives

2.2.2.2.1 Allophones of $/ \theta /$

The articulation of the interdental fricative $/ \theta /$ varies to some degree between $[\theta \sim s]$. The symbol $[\underset{\sim}{[}]$ is used to indicate an interdental s sound; a sound which is intermediate between θ and s. The variant [\$] appears to occur before or after a back vowel u, a, ∂ and may simply be a slightly retracted articulation of $/ \theta /$ so that the transition from an anterior consonant to a back vowel (or vice versa) is made with less articulatory effort.

[^3](15) s in the environment of/a/

Input
a. $\mathbf{k}^{\mathrm{w}} Ө$ ays
$\mathbf{k}^{\text {w }}$ 〇́Өays
Өá?on
Өápөaion
c. $\mathrm{CaCPL}-\theta a$? n

Өát ${ }^{\ominus} \partial{ }^{2}$
d. $\theta a t^{\ominus}{ }^{\prime} \mathrm{m}$
e. CəCPL- $\theta a t^{\ominus}{ }^{\ominus} \mathrm{m}$
$\theta \partial^{\ominus} t^{\ominus} \theta a t^{\ominus} \partial \dot{m}$
f. $D I M-\Theta a^{\ominus}{ }^{\ominus}[\mathrm{m}]=\mathrm{ut}$
g. qiga Θ
qíga
ӨáӨat ${ }^{\text {® }}$ imùt

Output

ӨáPon ~ sápan
ӨálӨaion~sáisaion

qé.g $\wedge \theta \sim$ qé.g \wedge s

Gloss

island

 cohoe salmon (late run)lots of cohoe
Spring salmon
Spring salmon (pl)
small Spring salmon
deer
(16) in the environment of $/ \mathrm{u} /$

Input
a. Oumin
b. CəCPL-Oumin
c. $\theta u \Theta$ in

Өúmən
Өə́mӨumən
Өúधin ~ on
Өá θ Ou in

Output
Өómən~şómən
sómsomən
ӨóӨın
síssonin

Gloss
eyebrow
eyebrows
lips
lots of lips

In the data in (17), $/ \theta /$ is recorded systematically as $[\theta]$.

Input		Output	Gloss
a. $\theta^{\prime} \mathrm{y}^{\prime} \mathrm{a}$	$\theta i \mathrm{~Pa}$	Өír θ ィ	that one (fem)
b. Viy $^{\text {a }}$ umix ${ }^{w}=$ tn	Өiyumix ${ }^{\text {w }}$ tn	Өéyomıx ${ }^{\text {win }}$	floor
c. $q^{w} u p=u \Theta$ in	$\mathrm{q}^{\text {w }}$ upuӨin		beard
d. IMP-maӨiw + [?]	mamaӨiw	mámaӨew	to limp (limping)
e. Өiq=nač	Өiqnač	$\theta \varepsilon ́ q n \wedge c^{\text {h }}$	dig roots

The situation is also complicated by the fact that the Island Comox language is reported to have had [s] where the Mainland dialects (Homalco, Klahoose and Sliammon) use [θ] (cf. Harris (1981) on Island Comox). The interdental fricative may actually have a grooved articulation which makes it sound much closer to [s] - this phenomena is surely the source of some misrecordings where s is written instead of θ.

2.2.2.2.2 Variants of $/ \underset{s}{s} /\left[\check{s} \sim x^{\mathbf{y}}\right]$

Historically, Proto-Salish (PS) *x fronted to š in Sliammon (cf. Thompson (1979a), Kuipers (1981, 1982), Galloway (1988), Kinkade (class notes), and Kroeber (1999:6-10) for a summary of the phonological sound correspondences). One elder spontanteously produced [x^{y}] as a variant of $\tilde{\mathbf{s}} /$, as shown by the following examples. The forms in (18) are cited from a single speaker.

Input
a. $\mathrm{X}^{\text {w }}$ əluwla $=\mathrm{xn}$
a'. xoluwla=s̆n
b. Rimax-ija / ?imax-ija
b'. ?imaš

Output

xááplowlàx $^{\mathbf{y}}{ }^{\text {in }}$
$x^{\text {y }}$ ilowlášın
Témax ${ }^{\text {Yifje }} \sim$ ~émax ${ }^{\text {Yija }}$
Pémıš

Gloss

spiked heels, high heels spiked heels ant (lit: fast walker) walk

The examples in (18.a-b) are apparently old words judging from the comments of the elder, who learned these words from her father. These isolated examples may reflect the final stages of the historical sound shift since the Lexical Suffix (LS) =šən foot, lower leg is most often pronounced as $\left[=\right.$ šən $\sim=$ šın] by other consultants, but is pronounced as $\left[=x^{y}\right.$ ən] in these limited set of examples. Sapir (1915:30) records [$x y$] for ant, and J. Davis (1970) also documents a small number of instances of $\left[x^{y}\right]$. Watanabe (p.c.) also records [$x^{y} x^{\prime} y^{\prime}$ ita•tšın] tip-toeing, walking on one's toes.

2．2．2．2．3 Allophones of $\mathrm{x}^{\mathbf{w}}$

Davis（1970：37）states that $/ x^{w / /}$ is pronounced as［ $\left.x^{w}\right]$ intervocalically，and is often reduced to a voiceless［ w ］elsewhere．I have transcribed［ x^{w} ］both intervocalically，and in word－initial pre－ vocalic position（i．e．syllable Onset position）．The reduction to［w］was also noted and documented in the context of the Sliammon／UBC Orthography Workshops（1996－1998），and is written here as a voiceless labio－velar glide：［w］．

Input		Output	Gloss
a．saftx ${ }^{\mathbf{w}}$	saftx ${ }^{\text {w }}$	sáftw	woman
b．Janx ${ }^{\text {w }}$	janx ${ }^{\text {w }}$	〕én¢	fish，salmon（generic）
c．$\lambda p \mathrm{x}^{\mathbf{w}}$	خәр ${ }^{\mathbf{w}}$	خऽpw	broke
d．Pasx ${ }^{\text {w }}$	？asx ${ }^{\text {w }}$	Pásw	seal
e．tix ${ }^{\text {TOAT }}$	tix ${ }^{*}$ Oat	tix ${ }^{*}$ ©ad	tongue

Notice for example that the second person subject clitic čx ${ }^{\mathbf{w}}$ you（ sg ）is most often pronounced［čw］；however，since it is a frequently occurring morpheme，and［w］is an allophone of $/ \mathrm{x}^{\mathrm{w}} /$ ，it is written as ${ }^{\mathrm{c}} \mathrm{x}^{\mathrm{w}}$ elsewhere in the dissertation and will generally be written that way in order to minimize differences in transcription，and facilitate comparative Salish research．
（20）Second Person Subject Clitic：čx ${ }^{\mathbf{w}}$ you（sg）

Input		Output	Gloss
a．IMP－tam čx ${ }^{\mathbf{w}}$	tatam čx ${ }^{\text {w }}$	tátamčư	What are you doing？
b．IMP－j ${ }^{\text {a }}$ a čx ${ }^{\text {w }}$			Are you（sg）running？
c．phapiom čx ${ }^{\mathbf{w}}$	papim ${ }^{\text {che }}{ }^{\text {w }}$	p’áṗemčw	you＇re working
d．IMP－どag－t čx ${ }^{\text {w }}$	ca－čag－［a］（t）čx ${ }^{\text {w }}$	ċéċegněư	you＇re helping him／her

The fact that $/ \mathrm{x}^{\mathrm{w} /}$ is often realized as a voiceless labio－velar glide［ \mathbf{w} ］provides support for the existence of minor syllables in Sliammon（cf．§3．2．2．3．1）．For example，／sałtxw／［sáftw］woman is syllabified as sát ．two and ča－čag－a（t）čx ${ }^{w}$［čéćegñ̃čw̄］you＇re helping him／her is syllabified as

2.2.2.2.4 $h \sim \check{X}^{w}$ in the environment of $/ \mathbf{u}$

The fricative $/ \mathrm{h} /$ alternates with a surface $\left[\check{\mathrm{x}}^{\mathrm{w}}\right]$ in the environment of $/ \mathrm{u} /$, as shown by the variants in (21).

Input		Output	Gloss
a. puhu	pıuhu		raven
b. nuh-m	nuhem	nóhom \sim nóx̃ ${ }^{\text {TOm }}$	feast, invite for feast

2.2.2.3 Non-continuant Resonants $\mathrm{J}, \mathrm{J}, \mathrm{g}, \dot{\mathrm{g}} /$

2.2.2.3.1 Pre-nasalization

Prenasalization of $/ \mathrm{g} /\left[{ }^{\mathrm{g}} \mathrm{g}\right]$ occurs phonetically in word-initial position (usually utterance/phrase initially in sentential contexts). Prenasalization is related to the timing of articulatory gestures; the onset of voicing occurs before the velum has completely sealed off the nasal cavity. The air which escapes through the nasal cavity produces the pre-nasalized obstruent: $\left[{ }^{\mathrm{y}} \mathrm{g}\right.$]. This is a phonetic effect which is variable, and has not been recorded for many lexical items. It will not be transcribed elsewhere in this thesis.
(22) $\left[{ }^{[} \mathrm{g}\right]$

Input		Output	Gloss
a. gt	gat	7 gát ~ gá \ddagger	shiny
b. gə-gt	gówt		oar
b^{\prime}. CəCPL-gagt	gáwgowt	gúgowit	oars
$\mathrm{b}^{\prime \prime}$. DIM-gt	gígət	gígnt ${ }^{\text {m }}$	small oar
c. gija/ğa ? check	gija	$\square_{\text {gije }}$	soil, ground
c'. CaCPL-gija	gáygǐja	Igi:ǧjec ${ }^{\text {h }}$	lots of soil
d. git ${ }^{\text {¢ }}$ ap	gáqf ${ }^{\text {¢ }}$ ¢p	${ }^{\square}$ gá: ${ }^{\text {¢ }}$ \%p	driving, steering
d ${ }^{\text {c }}$ CaCPL-git ${ }^{\text {¢ }}$ ap	gá?ga?toz̀p		driving around pl.

Note that the corresponding pre-nasalized alveopalatal $\left[{ }^{[y} y\right]$ has not been documented, so that there is an asymmetry between the realization of $/ \mathrm{y} /$ and $/ \mathrm{g} /$, as observed in Blake (1992). Further, this pre-nasalization is not observed before the voiceless velar stops $/ \mathbf{k}, \mathbf{k}, \mathbf{k}^{\mathbf{w}}, \mathbf{k}^{\mathbf{w}} /$.

2.2.2.3.2. Retracted /g/

Davis (1970: 44-45) records the following words which contain a retracted variant of $/ \mathrm{g} /$, written here as [G] (note: the proposed Input forms are mine). He analyzes these examples as cases of free variation in which $/ g /$ is assimilated in the environment of either a preceding or a following (non-adjacent) uvular consonant [q].
(23) Data cited from J.Davis (1970:44-45)

Input	Output	Gloss
a. gaqaӨ	[Gヘ́qaӨ]	married woman ${ }^{3}$
b. ga-gq[aq]aӨ	[Gáwqaqa日]	married women
c. qax̌=igan	[qax̌éGtn]	tell lies
d. qaPagin=aq=awtxw	[qa'aGtna:qawtx"]	bawdy house

J.Davis also cites [Éq? ${ }^{\circ}$ goy] old time wooden spoon but is unable to explain the retraction in this case. It is proposed here that this comes from / cag=Ray/ (help=tree) "wooden-helper" and that/g/ [G] is retracted in the environment of the following glottal (cf. $\S 2.4$ which shows that? patterns with the post-velars in the retraction of the full vowels). It is proposed here that $/ \mathrm{g} /$ is retracted in the environment of any post-velar (PHAR) consonant, this class including /q, $\dot{\mathbf{q}}, \mathrm{q}^{\mathbf{w}}, \dot{\mathbf{q}}^{\mathbf{w}}, \check{\mathbf{x}}, \check{\mathbf{x}}^{\mathbf{w}}, \mathbf{h}, \boldsymbol{\gamma} /$ (cf. §2.3 on phonological features). Additional examples were recorded in the context of the present research:
a.
mga
mega
[m^́G^]
cougar

[^4]
2.2.2.4 Resonants

2.2.2.4.1 Nasals ~voiced stops

Davis (1970: 34) notes that the nasals $/ \mathrm{m}, \mathrm{n} /$ are sometimes strengthened to $[\mathrm{b}, \mathrm{d}]$ in wordfinal position. These are clearly allophones of $/ \mathrm{m} /$ and $/ \mathrm{n} /$. This was also noted for the following lexical items from the most elderly consultants, but does not appear to be present in the pronunciation of younger speakers. Sapir (1915) makes the same observation for Island Comox.
(25) $[\mathrm{m}] \sim[\mathrm{b}]$
Input
a. $\mathrm{jaq}^{\mathrm{w}}-\mathrm{m}$
y̌áq̉ ${ }^{w}$-əm

Output

sweat, perspire
(26) $[\mathrm{n}] \sim[\mathrm{d}]$

Input		Output	Gloss
a. čtux ${ }^{\text {wan }}$	čatux ${ }^{\text {w }}$ an	čítux ${ }^{\text {w }} \wedge \mathrm{n} \sim$ čítux $^{\mathrm{w}}{ }_{\wedge} \mathrm{d}^{\text {d }}$	wild blackberry

2.2.2.4.2 Glottalized resonants

There is some variation in the surface realization of glottalized resonants in word-final position, as shown by the data in (27) and discussed in greater detail in Chapter 5.

Input		Output	Gloss
a. čuf $^{\text {T }}$	čúỷ	čúy ~čúy?	child, baby
b. tam ga tan	tám ga tán	tám g^ tヘ̃n \sim tín?	what's that?
c. DIM-首axay + [?]	̇̇ááxay		old
d. IMP- $\dot{q}^{\mathbf{w}} \theta-\mathrm{m}+[$] $]$			telling a story
e. tom	torn		belt, to tie

2.2.2.4.3 Retracted Coronals

The next section documents retraction of the coronal consonants $/ \mathrm{s} /$ and $/ \mathrm{V}$.
$/ \mathrm{s} /$ is retracted to [s] in a number of contexts:
(28)

Input	Output	Gloss	
a. muPus	muPus	mó?oṣ	head
a'. CəCPL-mu?us	məP-mưus	má-mò?os	heads

The resonant $/ \mathrm{V}$ is often pronounced with a back articulation [\ddagger]. [Note the symbol \ddagger is used for a voiceless lateral fricative; \ddagger for a velarized liquid].
(29)
Input
Output
Gloss
a. CəCPL-loplas̆
lópləplas̆
łə́płəpłaš
planks (< CJargon)

The data in (30) shows that retraction (PHAR) is spread throughout the word.
(30)

Input		Output	Gloss
a. $\dot{\mathrm{q}}^{\text {walas }}$	$\dot{\mathbf{q}}^{\text {walas }}$	$\dot{q}^{\text {wáátıs }}$	raccoon
a'. CəCPL- qualas $^{\text {a }}$			raccoons

There are a small number of "retracted" Roots have been identified in Sliammon; however, this area of the phonology requires further research ${ }^{4}$. Consider the following retracted Root in Sliammon sol- (the retraction is indicated here by underlining the Root) which refers to a circular motion, as "you would turn a glass or the continual rotation of a Ferriswheel". In the surface form,

[^5]both the vowel [ρ] and the coronal consonants [$\mathrm{s}, 1$] are noticably retracted: [$\mathrm{s} \Delta \mathrm{l}$]. The proposal made here is that this morpheme has a PHAR feature associated with it, as indicated by the presence of PHAR in the proposed Input.
(31) Sliammon Retracted Root sel-

Input		Output	Gloss
a. sİPHAR-t čx $^{\mathbf{w}}$	sel (t) $\mathrm{ch}^{\text {w }}$	S.OTČx ${ }^{\text {wh }}$	you turn (it) around
b. IMP-sI+PHAR-m	se-sol-2m	sósolam	(its) turning

The following Cowichan (Hul'qumi'num') cognates may help to explain the source of Retraction in this Sliammon Root. The Cowichan orthographic forms appear in angled brackets $<>$ and are cited from Hukari and Peter (1995: 295). The Output forms have been transliterated based on the Guide to Pronunciation which appears in H\&P (1995:340-341).
(32) Cowichan Cognates

Orthographic Form
a. <sul'-ut>
b. <sul-suli-tun>

Output
sol̉t
solısalton

Gloss
spin wool
spinner, spindle whorl

As shown by the data in (32), the Cowichan Root has a final glottalized l' - the glottalization may well be the source of Retraction in the Sliammon form. This tentative proposal seems to be supported by the observation that glottal stop and glottalized consonants in Sliammon have a lowering effect on adjacent vowels in the language, as will be discussed in §2.4.

2.2.3 Consonant Allophones II

The following issues require particular discussion since these consonantal processes occur pervasively in the language and the reader will need to keep track of these insertion, and deletion phenomena.

2.2.3.1 Issue of Labialization

2.2.3.1.1 C^{o} vs C^{m}

Davis (1970:27-28) notes that the labialized consonants are not perceived as rounded in the environment of a tense rounded vowel. He cites Sapir (1915) on Island Comox, and Newman (1969) on Bella Coola, both of whom make the same observation. Davis represents the rounded series as $/ \mathrm{CO} /$ at the phonemic level which is used to indicate visible labialization without an audible off-glide. He differentiates [C^{0}] from [C^{w}] on the surface, and inserts the off-glide [${ }^{\mathrm{w}}$] by phonological rule (viz. $/ \% / \rightarrow[w] / \ldots$ non-round vowel). The data in (33) illustrate this convention.

Input		Output	Gloss
a. $\mathrm{k}^{0} \mathrm{is} \mathrm{K}^{\mathrm{o}} \mathrm{i}$ Š			Stellar's jay
a'. CVCPL-k ${ }^{\text {O }}$ isk ${ }^{\text {a }}$ iss			Stellar's jays
b. $\mathrm{q}^{\circ}{ }^{\prime}=\mathrm{i} \mathrm{q}^{0}+\mathrm{a}$			knee
			knees
but			
c. koumt	koum	k^{0} úm ${ }^{\text {b }}$	kelp
c. $\mathrm{CVC}_{\text {PL }}-\mathrm{k}^{\circ} \mathrm{um}$ t	$\mathrm{k}^{\circ} \mathrm{um}-\mathrm{k}^{\text {oumb }}$	k^{-0} úmk $^{\text {cuiùm }}{ }^{\text {b }}$	lots of kelp

The distinction between $\left[\mathrm{C}^{0}\right]$ and $\left[\mathrm{C}^{*}\right]$ is not transcribed in the remainder of this thesis. A raised ["] is used throughout to indicate lip rounding, and does not differentiate between lip rounding versus lip rounding with an audible off-glide. The audible off-glide is not perceived before a round
vowel; however, related plural CaC - reduplicative forms confirm that the consonants are labialized, as shown by the data in (34).
a. $\mathrm{C}^{\mathrm{w}} \mathrm{uC}$
$a^{\prime} . \mathrm{C}^{\mathrm{w}} \boldsymbol{\partial}$ -
2.2.3.1.2 Neutralization of contrast: $C / C^{w} \rightarrow C^{w} / u$

It should also be noted that there is a surface neutralization of plain vs. rounded contrast in velars and uvulars in the environment of a tense rounded vowel, as shown by the gaps in the data in Appendix IV.

Evidence for $/ . . \mathrm{Cu}$ / can be seen from the following plural and diminutive plural forms in (35-36). The surface form of the CəC- reduplicative prefix in (35.a) shows that the Root for ling cod is $/ \boldsymbol{t} \check{\mathbf{x}} u /$ with a plain $/ \check{\mathbf{x}} /$ when the triggering context for labialization is absent. The $/ \check{\mathbf{x}} /$ is realized as $\left[\check{\mathrm{x}}^{w}\right]$ before the rounded vowel $/ \mathrm{u} /$. Similar disambiguating behaviour is seen in the other forms here.

Input
a. DIM-CəCPL- $\boldsymbol{\imath}^{9} \mathbf{x} u+[?]$
\mathbf{a}^{\prime}. $\mathfrak{f}^{\ominus} \overline{\mathrm{x}} u$
b. \quad CəCPL-p̉ux̆u=u
b^{\prime}. p’ux̆u
$\mathfrak{t}^{\theta}{ }^{\theta}-t^{\ominus} \partial \breve{x}-t^{\ominus} \partial \check{x} u ?$
$\mathrm{t}^{\boldsymbol{\theta}}$ əx̆u

р’их̆u

Output

	lots of small cod
	ling cod
	small ravens
p’óx ${ }^{\text {w }}$ O	raven (cf. also póho)

In contrast, the $\mathrm{C} \partial \mathrm{C}$ reduplicative prefixes in ($36 . \mathrm{a}^{\prime}-\mathrm{b}^{\prime}$) show that these Roots contain a labialized consonant since labialization surfaces in contexts other than before a round vowel, as in $\check{\mathbf{x}}^{\mathbf{w}}$ əsxiw $^{\mathbf{w}}$ usom for example.

Input		Output	Gloss
a. $\overline{\mathbf{x}}^{\mathbf{w} u s-m}$		$\breve{\mathbf{x}}^{\text {woósom }}$	I. ice cream, soapberry
$\mathrm{a}^{\prime} . \mathrm{CaCPL}-$ x $^{\mathbf{w}}$ us-m			lots of soapberries
b. $\mathrm{puk}^{\mathrm{w}}$	puk ${ }^{\text {w }}$	púk ${ }^{\text {w }}$	book
b'. DIM-CaCPL-puk ${ }^{\text {w }}$	pi-pək ${ }^{\text {w }}$-puk ${ }^{\text {w }}$	pé puk $^{\text {w }}$ pùk ${ }^{\text {w }}$	lots of little books

2.2.3.2 Glottalization and Phonology of Laryngeals

2.2.3.2.1 Allophones of glottal stop /?/

One of the most difficult questions regarding the consonantal inventory of Sliammon is what is the status of ? and h . Are these consonants a stop and fricative respectively, or are they both resonants, or is one an obstruent and the other a resonant? Davis (1970: 35) classifies $/$?, $\mathrm{h} /$ as sonorants, whereas Blake (1992) classifies $/ / /$ as a glottal stop, and $/ \mathrm{h} /$ as a fricative. In the case of $/ \beta /$ there is conflicting evidence. In word-final position, a glottal abruptly stops the air flow and cuts off the preceding vowel, as in the pronunciation of the words in (37).
(37) Word-finally

Input		Output	Gloss
a. DIM-čiya+[?]	či-čya?		grandmother (Dim.)
$\mathrm{a}^{\text {a }}$ čiya	čiya	číya ~číye	grandmother
b. DIM-k ${ }^{\text {w }}$ upa $+[?]$	$k^{w} \mathbf{u}-k^{w} \mathbf{p a}$?	$\mathbf{k}^{\mathbf{w}} \mathbf{u}^{\mathbf{w}}{ }^{\text {w }}$ pa?	grandfather (Dim.)
b^{\prime}. $\mathrm{k}^{\mathbf{w}} \mathbf{u} \mathrm{pa}^{\text {a }}$	k^{w} upa	$\mathbf{k}^{\mathbf{w} u \text { úpa }}$	grandfather
c. DIM-pču+[?]	pi-pču?	pípču?	small basket
c'. pču	pəču	píču \sim piču	cedar root basket
d. DIM-nan+[?]	ni-nan	nén^n̉ ~ nén^n?	nickname (Dim.)
d'. nan	nan	nán	name

Word-final glottals (especially in stressed mono-syllables) are aspirated, providing evidence for their status as stops, as shown by the data in (38). Recall that stops and affricates are aspirated in syllable-final position as discussed in §2.2.2.1.2. Since these word-final glottals patterns with the stops in the language with respect to aspiration, it is proposed here that a full glottal stop [?] is characterized by the features [-cont, PHAR, LAR[cgl]]. Aspiration therefore targets all [-cont] segments in the language.

Input	Output	Gloss
		we're all fine
b. il i		yes
c. tala a $\mathrm{k}^{\mathrm{w}} 2 \theta \mathrm{na}$?	talaha $\mathrm{k}^{\mathbf{w}} \partial \theta$ ná? \sim tálaha $\mathrm{k}^{\mathbf{w}} \supseteq \theta$ ná ${ }^{\text {h }}$	Have you got money?
d. $\mathbf{k}^{\mathbf{w}}$ Ş-t $\mathrm{g} \mathbf{y}$		count it!

This contrasts sharply with perception of some intervocalic glottals derived historically from resonants which typically lack complete closure characteristic of glottal stop. Preliminary spectographic data shows vowel formant structure, and creakiness characteristic of a glottal glide here hypothesized to be comprised of the features [SON, PHAR, LAR[cgl]]. The symbol ['] is used here to represent this creaky voice articulation, following J.Davis (1970).

Input
$\begin{array}{ll}\text { a. paL' } & \text { paia } \\ \text { b. saL, } & \text { saia }\end{array}$

Output
pá’a~páia
sá’a~sá?a two

This observation was documented by Davis (1970), and therefore provides independent confirmation of these facts (cf. J.Davis (1970: 24-27) regarding glottal constriction). Historically, these glottals in Sliammon come from resonants, as shown by the comparative Sliammon, Sechelt
(Central Coast Salish), and Thompson (Interior Salish) evidence in (40). The Sechelt data is cited from Beaumont (1985). The Thompson forms are cited from Thompson and Thompson (1992: 187); the Thompson vowel/e/ is realized as $[\varepsilon \sim æ]$ cf. T\&T (1994: 13-16) for allophones of $/ \mathrm{e} /$.
(40) Comparative data: Sliammon / Sechelt / Thompson

Input		Output	Gloss
a. paL'	pa'a	pá'a ~ pá?a	one (Sl)
a'. pala	pala	pala	one (Se)
a". peye?	peye?	péye?	one (Th)
b. saL'	sa'a	sá’a~sá?a	two (Sl)
b'. seye	seye	séye	two $(T h)$

Not only are these glottals ['] related to resonants from a comparative perspective but within the synchronic grammar of Sliammon they show alternation with the resonants \dot{y} and \dot{w}, as shown by the morphologically related forms in (41).
(41) Sliammon ['/? $\sim \mathbf{w} \sim \dot{y}]$

Input		Output	Gloss
a. paL'	pa'a	pá'a \sim páia	one
a^{\prime}. saL'	sa'a	sá'a ~ sậa	two
b. pal'=us	paw̌us	páw?us ~ páw?	one round object
b'. sal'=us	saw̉us	sáiwws	two dollars
c. paL'-paL'	pry-pa'a	pé:pa'a ~ pé:paia	one person
c^{\prime}. səL'-saL'	səy-sa'a	sé:sa'a ~ sé: ${ }^{\text {a }}$ aia	two people

2.2.3.2.2 Proposal

The proposal made here regarding the characterization of [$2 /$ '] follows from the theoretical perspective adopted regarding the nature of phonological features. If features are linguistic primes,
then what prevents combination of [PHAR, LAR[cgl]] with either of the features [-cont] or [son]? The feature [-cont] characterizes the stops and affricates in the language whereas the feature [son] characterizes the class of resonants in the language.

If the features [PHAR, LAR[cgl]] are combined with [-cont], this produces a glotal stop whereas collocation of the features [PHAR, LAR[cgl]] with [son] produces a glottal resonant or glide (cf. Combinatorial Specification of Archangeli and Pulleyblank (1994)). If Sliammon has both glottal stops [?] and glottal glides ['] in its inventory, then what evidence is provided to the language learner to determine what kind of glottal is present in any particular form? There is at least some evidence based on morpho-phonemic alternation, as shown above, as well as by phonetic cues. In addition, a full glottal stop occurs word-initially (phrase-initially) and wordfinally whereas the glide ['] tends to occur between sonorants, as in (42).
[?] in onset position
[?] in word-final position
['] in intervocalic position
[-cont PHAR LAR[cgl]]
[-cont PHAR LAR[cgl]]
[son PHAR LAR[cgl]]

The hypothesis that there are glottal glides in the language receives some support from the facts regarding Glide Vocalization.

2.2.3.2.3 Glide Vocalization

The data in (43-44) show glide/vowel alternations ($\mathrm{y} \sim \mathrm{i} / \mathrm{e}$ and $\mathrm{w} \sim \mathrm{u} / \mathrm{o}$) which are analized here as glide vocalization.
(43) Glide Vocalization: $y \sim i / e$

Input

Output
táynačton
tátinàčtın

Gloss

skirt
small skirt
b. sayȳa
b'. DIM-say̆ǰa+[?]
c. qayx
c'. DIM-qay $\overline{\mathrm{K}}=\mathrm{u}++[?]$
say̌̌̆a
sa-sy̌̌a?
qay
qa-qy $\bar{x}=u \nmid$
sáqyȳ^
sási.jè $\mathrm{c}^{\text {ch }} \quad$ small leaf
qáyx̆
qáqex̌w ${ }^{w} \nmid$
leaf

Mink, stage name small (young) Mink
(44) Glide Vocalization: $w \sim u / o$

Input

a. qag θ
a' $^{\prime}$. DIM-qag $\theta+[\mathrm{i}]=u t(\mathrm{t})$
$\mathbf{a}^{\prime \prime}$. CaCpl $^{\text {-qag }}=\mathrm{ut}$
qawe
qa-qag[i] $\operatorname{Out}(t)$
qow-qawӨut

Output
qáw θ

qwóq^wӨò

Gloss
potato
small potato
small potatoes

As shown by the data above, the palatal glide y alternates with the [-back] vowel $/ \mathrm{i} /[\mathrm{i} \sim \mathrm{e}$], whereas the labio-velar glide w alternates with the vowel $/ u /[u \sim 0]$. Evidence from the form of the Active Intransitive suffix $/-2 \mathrm{~m} /$ when it is followed by the Instrumental suffix $/=\mathrm{min} /$ suggests that vocalization of ? does occur, surfacing as the corresponding PHAR vowel [a]. It is proposed here that the PHAR glide [son PHAR LAR[cgl]] alternates with the corresponding PHAR vowel in the language, as demonstrated by the following ? \sim a alternations.

The Active Intransitive $/-7 \mathrm{~m} /$ surfaces as [?əm] in the following examples.
(45)

Input		Output	Gloss
a. fin-?m	tin-?am	tén? ${ }^{\text {com }}$	barbecue (fish)
b. sup-?m	sup-?om	sóp?əm ~ sóṗəm	chop (wood) ${ }^{5}$
c. $\mathrm{Pa} \theta-\mathrm{mm}$?aQ-? ${ }^{\text {am }}$?áӨ?^m	to give (s.t. at potlatch)
			pick (berries)

[^6]When the Active Intransitive $/-\mathrm{im} /$ is followed by the Instrumental suffix $=\mathrm{min}$, the identical instances of $\mathrm{m}-\mathrm{m}$ are merged into a single [m], following Watanabe (2000). Notice that the glottal is both preceded and followed by a consonant, as shown by the forms in (46) Column 1.

Input	?-vocalization: [a]	Output	Gloss
	tiè-amin	Hi.ċemen	comb
b. tg-? $\mathrm{m}=\mathrm{min}$	tu?-amin	tưp^men	freezer
b'. tg	tow	tow \sim tư?	ice
c. ${ }^{\text {ct }}$ - $\mathrm{q}-\mathrm{Pm}=\mathrm{min}$	ċat-q-amin	čítqamen	knife
c^{\prime}. $\mathrm{c}_{\text {ct-t-as }}$	と̇t-t-as	cítertns	he cut it
d. $\mathrm{DIM}-\mathrm{msiq}{ }^{\mathrm{w}}-\mathrm{Pm}=\mathrm{min}$	mi-msiq ${ }^{\text {w}}$-amin		pins
d'. msiq ${ }^{\text {w }}$	mosiq ${ }^{\text {w }}$	m^́s ¢ $^{\text {w }}$	purple sea urchin
e. $4 a t-2 \mathrm{~m}=\mathrm{min}$	tat-amin	tátínmen	herring rake
e'. tagat	taigat	tâ?gət ${ }^{\text {h }}$	herring
e". DIM-tagat + [?]	ta-tgat	+áq̊gət ${ }^{\text {h }}$	small herring

In the surface output form, the glottal [?] does not surface - a reflex of the PHAR vowel surfaces instead [-Emen \sim ^men $\sim a m e n$], as shown by the data in (46.a-e) Columns 2 and 3. Conditions governing the realization of $\varepsilon \sim \wedge \sim$ a based on influence of adjacent consonants are detailed in §2.4.

The proposal made here is that the PHAR glide $?$ vocalizes to [a], resulting in the observed surface output $-\operatorname{amin}$. The implications of this proposal are far reaching but suggest that there is full symmetry in the relationship between Glide and Vowels in the language, as in (47).
(47)

Glide Vocalization

DOR[hi, -bk$]$	$\mathbf{y} \sim \mathbf{i}$
LAB DOR	$\mathbf{w} \sim \mathbf{u}$
PHAR	$\mathbf{q} \sim \mathbf{a}$

2.2.3.2.4 Glottalization

Sliammon also has independent processes of glottalization which accompany Diminutive and Imperfective reduplication, as illustrated by the data in (48-49). It will be shown in $\S 5.2$ that glottalized resonants are not permitted in syllable-initial (non-moraic) position in keeping with the generalizations in Blake (1992, 1995).

It is proposed here that glottalization which accompanies Diminutive reduplication targets the right-most moraic resonant within the stem domain, as shown by the data in (48). The floating glottal feature is represented here as [cgl] (constricted glottis) in Column 1.
(48) Diminutive

Input		Output	Gloss
a. $\dot{\mathbf{q}}^{\text {wat-m }}$	$\dot{\text { qu }}$ 'atam $^{\text {a }}$	$\dot{\mathbf{q}}^{\text {wátom }}$	river
$\mathrm{a}^{\prime} . \quad$ DIM $-\dot{\mathbf{q}}^{\mathbf{w}} \mathbf{a t}-\mathrm{m}+[\mathrm{i}]+[\mathrm{cgl}]$	$\dot{\mathbf{q}}^{\mathbf{w}} \mathrm{a}-\mathrm{q}^{\mathrm{w}} \mathbf{i}[\mathrm{i}] \mathrm{m}^{\prime}$		small river, creek
b. tay=nač=tn	tay=nač=ton	táynačton	skirt
b'. DIM-fay=nač=tn+[i]+] ta-ty=nač=t[i]n	đátinàčtın	small skirt
c. yax̆ay	yax̆ay	yヘ́x̆^y	clam basket
c'. DIM-yax̆ay+[cgl]	ya-yx̆ay		small clam basket

The diminutive data in (37.a-c) above show that vowel-final stems also take a final glottal stop.
Glottalization which accompanies Imperfective reduplication targets the right-most moraic resonant (syllable-final) which is within the domain of Stem formation (cf. Appendix VII on the definition of morphological Stem, and Blake (in prep.) on Imperfective reduplication).
(49) Imperfective

Input
a. Pittan Rittan
a'. IMP-Tiftan+[cgl] č
b. $\operatorname{tg}=\mathrm{qin}$
b' $^{\prime}$ IMP-tg $=\mathrm{qin}+[\mathrm{cgl}]$
c. haył-m
c^{\prime}. IMP-hayt-m+[cgl]
d. $q^{\mathrm{w}} \mathrm{as}-\mathrm{Vm}$
d'. IMP-q ${ }^{\text {was }}-V m+[c g l]$
e. ?ah-m č
e^{\prime}. IMP-?ah-m $+[\mathrm{cgl}]$ č

Ti-Pittan č
tag=qin
to- $\operatorname{tg}[\mathrm{a}]=\mathrm{qin}$
hayłəm
ha-hayłəm
$q^{\text {wasam }}$
$q^{\text {wa }}$-quasam
?ah-əm č
?a-?ah-əm č

Output
?
PéTełtìńčch
túwqen ~ túw²qen
tát ${ }^{\text {ºg }}$ gaqèn
háyłəm to flirt
hâhaytım flirting
$q^{\text {wás }} \wedge$ m

?âh_mč
جâPahī ${ }^{\prime}$ čch h

Gloss
eat
I'm eating to answer back answering back flower
blooming, flowering
I got hurt
Im getting hurt

2.2.3.2.5 Deglottalization

The next section discusses deglottalization of a Root-final glottalized resonant in the environment before the Causative suffix/-stg/. Within Roots or Lexical Suffixes (LS), inherent glottalization associated with resonants is retained before another consonant, as shown by the data in (50-51).
(50) Root/LS

Input		Output	Gloss
a. nuw't	nưw ${ }^{\text {d }}$	nóẉ̉ ~ nópwat	older brother, best friend
b. $\mathfrak{t}^{\ominus} \mathrm{a}^{\prime}=$ tn	$\hat{t}^{\theta} \mathbf{a y} \mathbf{y}^{\prime}=$ ton		umbrella
c. $q^{w}{ }^{\text {d }}={ }^{\prime} \times \mathrm{y}=$ šn	$q^{\text {wo }}$ ¢łaỷšən	$q^{\text {wát }}$. fèy . šın	shoes

The examples in (51.a-f) show the retention of glottalization on $=\mathrm{aw}^{\prime} \mathrm{x}^{\mathbf{w}}$, the Lexical Suffix for house, dwelling, building.

Input
a．tiwš－am＝awitx ${ }^{w}$
a＇．IMP－tiwš－am＋［cgl］
b．غ̇ah－am＝aw＇tx ${ }^{w}$
b＇．Éah－am
c．$\jmath^{\mathrm{j}} \mathrm{X}^{\mathrm{w}}=\mathrm{awnt} \mathrm{x}^{\mathrm{w}}$
c＇．jan x^{w}
d．$k^{w} u P u x^{w}=a w t x^{w}$
$d^{\prime} . \hat{k}^{w} u ? u x^{w}$

e＇．？ax̆i θ
f．p’ak ${ }^{w i t=} \mathrm{awhtx}^{\mathrm{w}}$
f．pakwit

Output
tíwšemàw＇tx ${ }^{\text {w }}$
títiw＇̛̌ěèm
céchamàw＇tx ${ }^{w}$
とモ̌h＾m

J̌Én $x^{\mathbf{w}} \sim$ 〕̌Énw

p’ak ${ }^{w i t a ̀ w h t x}{ }^{w}$
pá： $\mathbf{k}^{w^{\prime}} \mathrm{t}$

Gloss
place of leaming
learning
church
pray
cannery
fish
smoke house
smoked fish
bedroom，hotelroom
lay down
floating house
raft

When a Root which ends in a glottalized resonant is followed by a consonant－initial suffix， the glottalization associated with the resonant is lost（cf．$\left.{ }^{7}\right]$［？əy］good；－sx ${ }^{\mathbf{w}}$ form of causative suffix／－stg／），as in the examples in（52）．

Input

b．？ \mathfrak{j}－stg a čx x^{w} to $\mathrm{Pax}{ }^{w}$
b^{\prime} ．？j̀－stg čan tə ？ $\mathbf{a x}^{\mathbf{w}}$

Output
Gloss
Tíys $x^{w} \wedge c ̌ x^{w}$ to cít́t Do you like the rain？
？íys čín tocéíł I like the rain
？íysx ${ }^{\mathrm{w}} \wedge \mathrm{ch}^{\mathrm{w}} \mathrm{t}^{2}$ ？áx ${ }^{\mathrm{w}}$ Do you like the snow？
Píys čín ${ }^{0}$ ？ Ráx w I like the snow

At this point it is not clear whether or not deglottalization is triggered by all consonant-initial suffixes or whether the causative suffix -stg has a special deglottalizing effect ${ }^{6}$.

When a glottalized resonant is followed by a subject clitic rather than a suffix (čx ${ }^{w}$ 'you sg.', stt 'we') or particle (ga 'polite request, imperative'), deglottalization does not occur, as shown in (53). The subject clitic/particle in each case is underlined.
Input
a. čam šin čx ${ }^{w}$
a^{\prime}. IMP-čam šin čx ${ }^{w}$
b. čm čx ${ }^{w}$ ga
c. čḿg ga
čam šin̉ čx ${ }^{w}$
čáčam šin čx ${ }^{\mathbf{w}}$
čəm čx ${ }^{w}$ ga
čə́m̉ ga

Output
čém šín čx ${ }^{w}$
čÉčam šin čx ${ }^{w}$
čím čx ${ }^{w}$ ga

Gloss
Where are you going?
Where are you going?
What's that matter?
Why?

The proposal made here is that because the external argument (i.e. the subject pronoun) is introduced in the syntax (morpho-syntax), it is outside the domain of deglottalization. It is not within the same phonological domain as the Root/Stem which precedes it, and therefore the final glottalized resonant and following consonant are not adjacent to one another. Deglottalization does not occur between independent words either, as shown by the data in (54). The word $\mathrm{q}^{\text {wil }}$ i come surfaces with a final [l'] before qá?men.

Input	Output	Gloss
		Do you want to come with me?
$\mathrm{a}^{\prime} \cdot \mathrm{q}^{\mathbf{w}}{ }^{\prime}$		come

[^7]At this point, there is positive evidence for deglottalization before the causative morpheme. This area of the phonology is most complex (cf. also discussion in Watanabe (2000)), and requires further research (cf. Blake in prep).

2.2.3.2.6 Glottal Restructuring

Glottalized obstruents / $\mathrm{O}^{\prime} /$ are realized as [PO^{\prime}] in the environment after a stressed schwa in order to prevent stressed schwa from occurring in a stressed open syllable (Blake (1995, 1999), Urbanczyk (1999), and §5.1). In the data below, the reader will also note the regular realization of schwa as lowered to [a] before a glottal.
(55)

Input		Output	Gloss
a. $\overline{\mathbf{x}} t^{\boldsymbol{\theta}}-\mathrm{t}$		x̌á? $\cdot \mathrm{f}^{\ominus} \mathrm{t}^{\text {h }}$	weigh it
$\mathrm{a}^{\text {a }}$. $\mathrm{xf}^{\boldsymbol{\theta}}-\mathbf{t}$		x̌á? . ${ }^{\text {¢ }}$ 2t ${ }^{\text {h }}$	weigh it
		xáaft ${ }^{\ominus}$. tot . čın	I weighed it
		x̆á? ${ }^{\text {® }}$. to . tæ̀ . čx ${ }^{\text {w }}$	Did you weigh it?

Chapter 5.1-5.2 provides detailed discussion of the surface realization of both glottalized obstruents and glottalized resonants.

The data in (56) shows that glottal insertion [?] also marks a very limited number of diminutive forms.

Input		Output	Gloss
a. saftx ${ }^{\text {w }}$	saftx ${ }^{\text {w }}$	sáttwo \sim sáftx ${ }^{\text {w }}$	woman
$\mathrm{a}^{\prime} . \mathrm{sa}$ [?] $\mathrm{ftx}^{\mathrm{w}}$	sáPftx ${ }^{\text {w }}$	sápáttx ${ }^{\mathbf{w}} \sim$ sápltx $^{\text {w }}$	little girl
b. wiwlus	wiwlus	wiwlos	young man
b'. wiwlus $+[\mathrm{cgl}]$	wiw̌lus	wé? ${ }^{\text {c }}$ los	young man at puberty

2.2.3.2.7 Floating feature: constricted glottis [cgl]

Consider the realization of the Past Tense marker $/-[\mathrm{cgl}] \mathrm{u} /$ / in (57-60). What we observe from a comparison of the morphologically related forms in (57) is that the past tense morpheme /-[cgl]ut/ (written as //-2uL// by Watanabe (2000: 306)) systematically causes glottalization of a preceding resonant, as in (57.a'-d') Column 2, but fails to affect a preceding fricative (58.a'- d^{\prime}) or stop (59).

Since glottalized resonants are not permitted in syllable-initial position, they are restructured as $3 R$ between vowels (cf. Blake 1992, 1995, 1999 and $\S 5.2$). If this restructuring cannot occur, then association of the floating [cgl] feature is blocked, given the high-ranking constraint which blocks glottalized resonants from Onset position (*R'/Onset). Examples of stem-final resonants
 /x̆p̄/ x̌̌́pi turn back).
(57) preceding Resonant

Input

a. $k^{w} n=i g s-m$
$\mathrm{a}^{\prime} . \mathbf{k}^{\mathrm{w}} \mathbf{n}$-igs-m-[cgl]ut ačaw
b. k^{w} tus-m ga
$\mathrm{b}^{\prime} . \mathrm{k}^{\mathrm{w}}$ tus-m-[cgl]ut ačxw
c. nš-m
c^{\prime}. IMP-nš-m-[cgl]ut čan
d. $s p=i q^{w}$ an
$\mathrm{d}^{\prime} . \mathrm{sp}=\mathrm{iq}^{\mathrm{w}}$ an-[cgl]u千 č
$\mathbf{k}^{\text {waniws }}$.m
$\mathbf{k}^{\text {waniwsam }}{ }^{\text {ałačx }}{ }^{w}$
$\mathbf{k}^{\text {w }}$ ətusəm ga
k^{w} ətusam̉ułačx ${ }^{\mathrm{w}}$
nəšəm
nən̉šəmuł čan
so?piqu"an
ss? ${ }^{\text {piquanut }}$ č

Output
$\mathbf{k}^{\mathrm{wa}}{ }^{\text {ánews }}$ ィm

níšym
niñ̌̌æ ${ }^{\text {P }}$ mòtčın
sá? ${ }^{2}{ }^{2}{ }^{w} \wedge n$

Gloss
rest (-igs body)
turn around (request)
Did you turn around?
swim
I was swimming get hit on the head

I got hit on the head
(58) preceding Fricative

Input

a. IMP-gay-t-as
\mathbf{a}^{\prime}. gay-t-as-[cgl]ut
b. $\mathbf{k}^{\text {way-aš }}$ ga
\mathbf{b}^{\prime}. $\mathbf{k}^{\text {way }}$-aš-as-[cgl]u千
c. $\ddagger \dot{\text { ct }} \mathrm{tga}$
c'. tè-t-as-[cgl]ut
d. $t \mathfrak{k}^{\mathrm{w}}-\mathrm{t} \mathrm{ga}$
d'. IMP-t $\mathbf{k}^{\mathrm{w}}-\mathrm{t}-\mathrm{as}-[\mathrm{cgl}] \mathrm{ut}$
gágayatas
gáyatàsuł
$\mathbf{k}^{\mathrm{wá}} \mathbf{y}$ aš ga
$k^{\text {wáyásààsut }}$
fačt ga
tóčtasuł
tók ${ }^{w}{ }^{w}$ ga
tátkwatàsuł

Output
gńgayè•tıs
gáyetàsot
$\mathbf{k}^{\text {wáyıš }}{ }^{\text {g }}{ }_{\wedge}$
\mathbf{k}^{w} áyı${ }^{\text {šè̀sot }}$
tič̀t ${ }^{\text {º }}$ ga
tič̌htasot

tótk ${ }^{w}$ ətàsó

Gloss
he's asking them he asked him
hide it (request) he hid it cut it (request) he (already) cut it pull it (request) he was pulling it

The [cgl] feature associated with the Past Tense morpheme does not typically glottalize a preceding stop, as shown by the data in (59).
(59) preceding Stop

Input

a. IMP-gay-t-as
a'. gay-t-[cgl]uł č
b. $\mathrm{jtk}^{\mathrm{w}}-\mathrm{t}$

c. $\mathrm{t}^{0} \mathrm{k}^{\mathrm{w}}-\mathrm{t}$
c'. $\mathfrak{f}^{\theta} \mathbf{k}^{\mathrm{w}}$-t-[cgl]uta čxw
gágayatas
gáyatùt č
ǰstkwat
ǰátkwàtułàčx ${ }^{w}$
$\mathrm{f}^{\ominus}{ }^{2} \mathrm{k}^{\mathrm{w}} \mathrm{t}$

Output
gígayè•tıs
gáy tòtč ${ }^{\text {h }}$
ǰítk ${ }^{w} \wedge t^{h}$
y̌itkwàtołæ̀ěx ${ }^{w}$
$\hat{f}^{\theta} \boldsymbol{v}^{\mathbf{w}} \mathbf{t}^{\mathrm{h}}$

Gloss
he's asking them
I asked him
shake it
Did you shake it?
wipe it
Did you wipe it?

The fact that glottalization is not always present in the Output suggests that it lacks segmental status, i.e. a root node. It behaves phonologically like a floating glottal feature since it requires an eligible host in order to be realized. The floating feature is represented here as [cgl], but is represented elsewhere in parentheses (?) to indicate that it does not always have a surface manifestation (cf. Watanabe 2000, for example).

When the past morpheme occurs after a vowel-final object suffix, it is often realized as -h-uf, as in (60.a).
(60.a)

Input		Output	Gloss
a. $\hat{\mathbf{k}}^{\mathrm{w}} \mathrm{n}-\theta \mathrm{i}-[\mathrm{cgl}] \mathrm{t} \mathbf{c}$			I looked at you
b. p’aṗ-?[i]m-Өi-[cgl]ut č	paṕ?imetihuy č	ṗáṗ?عmӨehotč ${ }^{\text {h }}$	I fixed it for you (sg)
b. paph-P[i]m-t-anapi-[cgl]uł	ṗap’?imtanapihułč	paáp̉?ยmtànapèhotčh	I fixed it for you (pl)

I hypothesize that the intervocalic [h] is epenthetic - since it is the default consonant in intervocalic position (cf. §2.2.3.2.8 on h-epenthesis and §2.3.2.1.5 on the featural representation of $/ \mathrm{h} /$). Since the floating ? only targets a resonant (consonants specified as [son]), it is subject to deletion in this context as well ${ }^{7}$.

2.2.3.2.8 Epenthetic Consonant [h]

The consonant [h] is epenthesized between a vowel-final Root and before a vowel-initial Lexical Suffix. The epenthetic laryngeal [h] appears in square brackets in each of the following examples. See $\S 5.4$ for further discussion of the resolution of vowel hiatus ($V-V$ sequences) in Sliammon.
(61) h-epenthesis

Input
a. lamatu=uk ${ }^{w_{t}}$
a'. lamatu

[^8]| b. tala=awus=tn | tala[h]awuston | tála[h]àwustən | eye glasses |
| :--- | :--- | :--- | :--- |
| b'. tala | tala | tála \sim tal^ | money |
| c. kapi=aya | kapi[h]aya | kýápi[h]àye | coffee pot |
| c'. kapi | kapi | kYápi~kápi | coffee |
| d. hm̉u=ay | hə?mu[h]ay | háipmo[h]^y | cascara bark |
| d'. hm̉u | hə?mu | háimo | pigeon |

2.2.4 Obstruent/Glide/Vowel Alternations

This section summarizes the Vowel/Glide/Obstruent alternations (/j/ [j $\sim \mathbf{y} \sim \mathbf{i} / \mathbf{e} \sim c ̌$ c , and $\left./ g /\left[g \sim w \sim u / o \sim k \sim x^{w}\right]\right)$ in Sliammon. Although these alternations have been discussed by previous scholars including Sapir (1915), Davis (1970), Hagège (1981), Kroeber (1989), Blake (1992, 1995), and Watanabe (1994, 2000), there is no agreement as to whether the corresponding underlying "segments" are obstruents or resonants. In order to emphasize the resonant behaviour of these sounds, in Blake (1992) I used the archi-phonemes $/ \mathrm{Y}, \mathrm{Y}^{\prime}, \mathrm{W}, \mathrm{W} /$, distinct from $/ \mathrm{y}, \mathrm{y}, \mathrm{w}, \hat{\mathrm{w}} /$, as an abbreviation for the feature matrices for what in the present work are represented as $/ \hat{\mathrm{J}}, \mathfrak{\mathrm { J }}, \mathrm{g}, \dot{g} /$. I propose here that the lack of agreement $/ \mathrm{J} / \mathrm{Y} /$ or $/ \mathrm{g} / \mathrm{W} /$ is symptomatic of phonological theories which treat "segments" as primitives (cf. Archangeli and Pulleyblank 1994). I claim that the sets of features which show these surface alternations in Sliammon are a set of conflicting features. Consider first the variant phonetic realizations of each of these sets of alternations given in (62-63).

Descriptively, [y] occurs either before another consonant, or at the end of a word. [j] occurs in pre-vocalic position, and the phoneme $/ \bar{y} /$ vocalizes to $\mathrm{i} \sim \mathrm{e}$ (depending on the C-context) when it occupies the nucleus of a syllable. [č] is the surface realization when it occurs in a wordinternal coda followed by [t$]$. In summary, this segment appears on the surface as $[\mathrm{J} \sim \mathrm{c} \sim \mathrm{y} \sim \mathrm{i} \sim \mathrm{e}]$, neutralizing in the appropriate contexts with $/ \mathrm{y}, \check{\mathrm{c}}, \mathrm{i}$.
(62) $/ \mathrm{J} /$

Input		Output	Gloss
a. huj̆-it	[5]	[hó-jit]	ready
b. huj̆	[y]	[hóy]	stop, finish
c. haj̆-hayj-i-t	[$\mathrm{y}, \mathrm{j}]$	[háyhoüt]	everybody's flirting
d. hajt-əm $+[\mathrm{cgl}]$	[y]	[háy¢へ̀m]	flirt
	[i, J$]$	[?ỉajumiš]	very beautiful
f. $\mathrm{tyj}^{-}-\mathrm{taj}^{2}-\mathrm{a}^{3}=\mathrm{us}$	[č]	[tičc .ta?. je?.jıs]	cheeks

The data in (63) shows that [w] occurs before another consonant, and that it alternates with [g] in prevocalic position. The phoneme $/ \mathrm{g} /$ vocalizes when it occupies the nucleus of a syllable, and it surfaces as $\left[x^{w}\right]$ in word-final position. $[k]$ is the surface realization of $/ g /$ when it occurs in a word-internal coda position followed by a voiceless non-continuant. This appears to be in keeping with the generalization the obstruent clusters agree in voicing (lack of feature [sonorant]). The segment/g/surfaces as [g $\sim \mathrm{k} \sim \mathrm{x}^{\mathrm{w}} \sim \mathrm{w} \sim \mathrm{u} \sim \mathrm{o}$], neutralizing in the appropriate contexts with underlying $/ \mathbf{k}, \mathbf{x}^{\mathbf{w}}, \mathbf{w}, \mathbf{u} /$.

Input		Output	Gloss
a. hig=us	[g]	hégus	chief, rich in old way
b. DIM-CəC ${ }_{\text {Pt }}$-hig-us	[w]	héhowhègus	small chiefs
c. mga	[g]	mへ́g.ə	cougar
d. mag-mga	[w]	mówmíg.ə	cougars
e. $\mathrm{C}_{2} \mathrm{Cet}^{\text {- }}$-tagt	[u, g]	đú:tagti	herring (pl)
f. ${\stackrel{\mathbf{k}}{ }{ }^{w} \mathbf{n}-\mathrm{ng}}^{\text {d }}$	[$\mathrm{x}^{\mathbf{w}}$]	$\mathrm{k}^{\text {w }}$ ¢nəx ${ }^{\text {w }}$	see him/her

Two points are crucial to understanding these segments. First, following Blake (1992) the Vowel/Glide/Obstruent altemations are governed by the prosodic organization of the syllable (cf. Blake $(1992,1995)$ and $\S 3.2$ on syllable structure in Sliammon).
[$\check{[J}, \mathrm{g}]$ in syllable onset (non-moraic) position
[y, w] in syllable coda (moraic) position
[i,u] in syllable nucleus (Nuch) position

Second, the defining features for each of the surface variants of $/ \mathrm{J}, \mathrm{g} /$ are given in (65). Their glottalized counterparts are identical, with the addition of LAR[cgl]. Their variant surface realizations result from the systematic non-realization of one (or, in the case of [x^{*}], two) of their underlying features in a particular context. Namely: the feature [-cont] is not realized in moraic position (with the exception of \check{c}), and the feature [son] is lost in word-final position in the case of $\left[x^{w}\right]$. The angled brackets are used here to indicate a feature which is not realized on the surface: $<[f]>$.

Distribution of f-elements for / $\mathbf{j} /$
[й] - [son, -cont, DOR hi, -bk]
[i] - [son, DOR hi, -bk]; <[-cont]>
[y] - [son, DOR hi, -bk]; <[-cont]>
[č] - [-cont, DOR hi, -bk]; <[son]>

Distribution of f-elements for $/ \mathrm{g} /$
[g] - [son, -cont, DOR hi]; <LAB[rd]>
[u] - [son, DOR hi, LAB rd]; <[-cont]>
[w] - [son, DOR hi, LAB rd]; <[-cont]>
[x^{w}] - [DOR hi, LAB rd]; <[son, -cont]>

In accordance with Optimality Theory (henceforth OT), the loss of features is driven by the interaction of conflicting constraints which ensure the creation of optimal prosodic constituents (Prince \& Smolensky 1993, McCarthy \& Prince 1994, Kirchner 1995, among others). In the case of the Sliammon data in question, a high ranking feature co-occurrence constraint drives the underparsing of lexically distinctive features. Align L ($[-$ cont $], \sigma$) determines which features are
underparsed, thus creating both optimal onset, and optimal coda constituents, as proposed in Blake (1995).

Evidence that $/ \overline{\mathrm{J}}, \mathrm{g} /$ are specified as [son] is provided by the fact that they undergo glottalization, along with the other resonants $/ \mathrm{m}, \mathrm{n}, \mathrm{l}, \mathrm{y}, \mathrm{w} /$ in the system, as argued in Blake (1992, 1995). Alternations between [$\mathrm{g} \sim \mathrm{w} \sim \mathrm{x}^{w}$] from /g/ provide evidence that the feature [son] is subject to deletion, and therefore provide evidence that [son] has autosegmental properties and is crucially not an "integral" part of the root node (contra McCarthy (1988), for example). This provides evidence for the position of the feature [sonorant] as a dependent of the Root node within the Feature Geometry which will be presented in §2.3.2.

2.2.5 Laterals $/ \mathrm{L}, \mathrm{L}^{\prime} /$

Following Blake (1992), the symbols $/ \mathrm{L}, \mathrm{L}$ '/ are used to represent sets of features which are realized as $[y \sim w \sim \pm]$ and $[\hat{y} \sim \dot{w} \sim \pm \sim$?] respectively. The distribution of each of these surface variants is dependent upon its position within the word, and on the quality of the adjacent vowel. The proposed status of $/ L, L \prime /$ is motivated by the following morpho-phonemic alternations in (66-67), and by the fact that the independent phonemes $/ t / \pi / / / y /, / w /$ do not undergo these alternations.
(66) /L/

Input		Output	Gloss
a. $n x^{\text {w }}$ iL	nex ${ }^{\text {it }}$	núx ${ }^{\text {w }}$ ¢	dugout canoe
b. $n x^{w} \mathbf{i L}-\mathrm{s}$	nəx ${ }^{\text {wiy-s }}$	núx ${ }^{\text {w }}$ ¢ ${ }^{\text {s }}$	his canoe
b'. $n x^{\text {wiLIL}}$-it	nex ${ }^{\text {i }}$ - ${ }^{\text {-it }}$	núx ${ }_{\text {wiyıt }}{ }^{\text {b }}$	their canoe
$\mathrm{b}^{\prime \prime} . \mathrm{nx}{ }^{\text {wiL }}$-ma	nex ${ }^{\text {wiy-ma }}$	núx ${ }^{\text {w }}$ ¢yma	travel by canoe
c. $t^{\ominus} \mathrm{am}^{\text {a }}{ }^{\mathrm{w}} \mathrm{L}$	$\hat{t}^{\theta} \mathrm{amq}^{\text {w }}{ }^{\text {¢ }}$		cloud
$c^{\prime} . t^{\ominus} \mathrm{am}-t^{\ominus} \mathrm{tamq}^{\mathrm{w}} \mathrm{L}-[\mathrm{i}] \mathrm{m}$	$\mathfrak{t}^{\ominus} \mathrm{am}^{\text {- }}{ }^{\text {® }} \mathrm{amq}^{\text {w }}$ [V]yim		it's foggy

Input		Output	Gloss
a. paL'/paL ${ }^{\text {a }}{ }^{8}$	papa	pápa	one
a'. saL'saL'a	saPa	sâ?a	two
b. paL'=agit	paPagit	pâ?agı	one canoe
b'. saL'=agit	sa?agit	sálagıt	two canoes
c. paL'=us	paw̛us	páw?us ~ páw?us	one round object
c'. saL'=us	saw่us	sáwus check	two dollars
c'. DIM-saL'=us	sa-sw̛us	sásuivs	two sm. round objects
d. $\mathrm{p} \mathrm{LL}^{\prime}$-paL'	pəẏ-pa?a	pé:pala	one person
d'. saL'-saL'	soẏ-sa?a	sé:sa?a	two people
e. paL'=lawi	pay-lawi?	páylàwe?	one bottle (=lawi bottle)
e^{\prime}. saL'=lawi	saý=lawi?	sáylàwe?	two bottles

As observed from the data in (67), $\Lambda^{\prime} /$ becomes [4] in word-final position. Word-internally it becomes [\mathbf{w}] in the context of the round vowel $/ u /$, [?] when it occurs in a total PHAR context (i.e. between a's), and [yं] elsewhere. Notice that in ($67 . e-e^{\prime}$), L '/ becomes $[\dot{y}]$ before the coronal lateral $\Lambda /$ even though it is preceded by the vowel [a]. This reinforces that fact that the glottal [?] from L '/ occurs in a total PHAR context. See also Appendix IV for further examples of the contrasts between $/ L, L /$ and $/ \mathrm{y}, \dot{\mathrm{y}}, \mathrm{w}, \dot{w}, \mathrm{t} /$.

[^9]
2．2．6 Geminate Consonants

The resonants $[\mathrm{n}, \mathrm{m}, \mathrm{l}, \mathrm{y}, \mathrm{w}$ ］are lengthened intervocalically，as shown by the data in（68）．
（68）Resonants
a．IMP－4x̆－m
ゅə－4x－əm
†бłx̆＾m
leaking
 Ұว́łx̆əm：a tº núxi：เ千 Is yr．boat leaking？

Obstruents are lengthened in intervocalic position after an initial stressed schwa，as in（69）．
（69）Obstruents

Input		Output	Gloss
a．$n x^{w i L}$	nəx ${ }^{\text {wiq }}$	núx ${ }^{\text {w }}$ ！．t	dugout canoe
a＇．nx ${ }^{\text {wiL－ma }}$	nox ${ }^{\text {wiy－ma }}$	núx ${ }^{\text {widimà？}}$	travel by canoe
b． $\mathfrak{t}^{\ominus} \stackrel{\mathbf{x}}{ } \mathbf{u}$	\mathfrak{f}^{\ominus} อx̆u		ling cod（fish）
b＇．DIM $-t^{\ominus}$ ¢ $\check{\mathbf{x}} \mathrm{u}+[?]$			small ling cod

Gemination of intervocalic consonants after stressed schwa will be discussed in greater detail in §5．3．

2．2．7 Consonant Deletion

The following deletion processes also affect the surface realization of consonants．

2．2．7．1 Identical Consonants

Davis（1970：42）documents the fact that identical consonants $\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}$ generally reduce to a single instance of that consonant $\left(C_{i}\right)$ ．The data in（45－46）also show reduction of $\mathrm{m}-\mathrm{m}$ to a single instance of m ，as in $/ \mathrm{kt}-\mathrm{a}-$ ？ $\mathrm{m}=\mathrm{min}$／ふ̇tqamin［čítqamen］knife．

A principled exception to this generalization is presented in（70）and involves Root－final－t followed by the－t of the Control Transitivizing suffix．
a．Ėat－t－as
čáttas
［čít？${ }^{\text {a }}$ As \sim čit ${ }^{h}$ ．tas］he cut it

Notice that if consonant deletion were to occur in this context yielding [ěát^s], it would have the effect of leaving schwa in a stressed open syllable. As will be argued in Chapter 5, stressed schwa in an open syllable is systematically avoided, if possible.

2.2.7.2 Coronal Deletion

Sliammon also has a number of consonant deletion processes which involve coronal consonants: t, n, I deleting before other coronal consonants. Consonants which undergo deletion are parenthesized (C) in column 2.

2.2.7.2.1 t-deletion

The data in (71) shows that the t-transitivizer undergoes deletion in the environment before a following č.
(71) t-deletion

Input	t-deletion	Output	Gloss
a. $\mathrm{g} \dot{q}^{\text {w }}$-t ga	gəq̉ ${ }^{\text {w }}$ g $\mathrm{ga}[?]$	góq̉ ${ }^{\text {w }}$ t gáp \sim góq ${ }^{\text {w }}$ t	drag it (request)
b. $\mathrm{gq}^{\text {w-t-as }}$	geq̆ ${ }^{\text {w }}$ təs	góq${ }^{\text {w }}$ tos \sim góq ${ }^{\text {w }}$. tos	s/he drags it
c. $\mathrm{g} \mathfrak{q}^{\mathrm{w}}-\mathrm{t}$ čan			I'm dragging it
d. $\mathrm{gq}^{\text {w }}$-t $\mathrm{c}_{\text {cax }}{ }^{\text {w }}$	ge ${ }^{\text {w }}$ ((t) čax w		you drag it

2.2.7.2.2 n-deletion

Nasal n-deletion is illustrated by comparing related forms of the $\mathrm{LS}=\mathrm{iq} \mathrm{q}^{\mathrm{w}}$ an top of head, high point. The LS is n-final, as shown in (72).
Input
a. tih=iquan
b. $\boldsymbol{f}^{\boldsymbol{\theta}} \mathbf{i} \mathbf{p}=i q^{\mathrm{w}}$ an
tihiq ${ }^{\text {wan }}$
$\mathrm{t}^{\theta} \mathrm{ip}^{\mathrm{p}} \mathrm{iq} q^{\mathrm{w}} \mathrm{an}$
c. $\mathrm{tt}^{\mathrm{\theta}}-[\mathrm{i}] \mathrm{m}=\mathrm{iq} \mathrm{q}^{\mathrm{a}} \mathrm{an}$
d. $s \mathbf{p}=\mathbf{i} q^{\mathbf{w}} \mathbf{a n}-?[\mathrm{i}] \mathrm{m}=\mathrm{min}$

Output	Gloss
tiheq ${ }^{\mathbf{w}} \wedge \mathbf{n}$	big head
	pointed head
táft ${ }^{\text {¢ }}$ emè $\chi^{\text {w }}$ ^n	red head (red hair)
	fish club

When the coronal resonant n precedes either a t or θ, it fails to surface, as shown by the morphologically related forms in (73) (see Watanabe (2000) for some lexical exceptions). Example (73.b) shows that deletion of $/ \mathrm{n} /$ before $/ \theta /$ results in compensatory lengthening of the preceding full vowel. As discussed in §3.1.1.1, compensatory lengthening occurs in stressed syllables and has not been documented in unstressed syllables.

Input

a. x̌im=iquan-t-m
b. $s p=i q^{w a n-\theta-a s}$
c. $x^{w} u l k^{w}-a y-i q^{\mathrm{w}} a n=$ tn
n-deletion
x̌imiq"a(n)təm
sə? ${ }^{\prime}$ iq $^{w a(n) \text { (Aas }}$
$\mathbf{x}^{\text {w }}$ ulk ${ }^{\text {wwayiqwa(n)ton }}$

Output
x̌̌́meqª̂tom
sá?p’ $\varepsilon q^{w a ̀ ̀: ~} \Theta_{\Lambda s}$
$\mathbf{x}^{\text {winl }}{ }^{\text {wàày }}{ }^{\text {wà }}{ }^{\text {àn }}$

Gloss get clawed in the head he hit me on the head hair ribbon

2.2.7.2.3 t-deletion

The example in.(74.a) shows that the past tense marker /-'ut/ is t-final (cf. §2.2.3.2.7 on other realizations of the past tense marker). The data in (74.b) shows that \ddagger deletes before $-s$. Both the past marker /-'ut/ and the third person possessive marker -s are within the affixal domain. Root-

(74) t-deletion

Input	\$-deletion	Output	Gloss
a. gay-t-[cgl]ut č		gáyetò̀č	I asked him
b. mna-2ut-s	məPna-Pu(4)-s	mâ? ${ }^{\text {napòs }}$	his/her child (former)
b^{\prime}. mna	me?na	máina	one's offspring, child

2.3 Theoretical Assumptions

2.3.1 Features

The next section provides a general introduction to the phonolgical features which identify natural classes of sounds which pattern together in the language. These features are listed in (75) and discussed in detail in the following sections.
(75) Features

Continuant [-cont]
Sonorant [son] (all resonants)
Consonant [-cons] (vowels and glides)
Laryngeal: constricted glottis [LAR[cgl]]
Labial (LAB) (primary place: labials)
Round [rd] (labialized consonants: labio-velar and labio-uvulars)
Coronal (COR) (interdentals, coronals, laterals)
Dorsal (DOR) (alveopalatals, palatals, plain velars, uvulars)
High [hi] (alveopalatals, palatals, velars)
Back [-back] (alveopalatals, palatals)
Low [lo] (low vowel /a)
Pharyngeal (PHAR) (post-velars: uvulars and laryngeals)
Lateral (lat): خ, ㅊ, t, l, l, L, L'
Nasal (nas)
Distributed (dist)

2.3.2 Feature Geometry

The phonological features in (75) are represented in the articulator-based Feature Geometry presented in (76), following earlier proposals that features are hierarchically ordered (cf. Sagey (1986), McCarthy (1988), Halle (1992), Archangeli and Pulleyblank (1994), amongst others). I have included only the part of the geometry which is relevant for characterizing the Sliammon data
presented in this thesis. This is essentially the same model argued for in Blake (1992:8-9). The features as well as articulator nodes are privative - they are either present or absent from the representation.

Feature Geometry

[rd] [dist] [-bk][hi][lo]

2.3.2.1 Representation of Sliammon Consonants

The following sections (§2.3.2.1.1-§2.3.2.1.5) provide the feature geometric representations which I am assuming for each of the consonants in the language (cf. also Blake (1992)). The representation of each of the consonants is central to an understanding of the consonant-vowel (C-V) interaction discussed in §2.4. The adjacent consonants also determine the surface realization of schwa which will be discussed in §2.4.4.

2.3.2.1.1 Labials

Labial consonants are specified as LAB and not as LAB[rd] since they do not seem to exert a rounding effect on a preceding schwa unlike velar and uvular consonants which have secondary
labialization. The presence of the feature [rd] entails the existence of the Dorsal node ([rd] כ DOR).

Geometry	\mathbf{p}	$\dot{\mathbf{p}}$	\mathbf{m}	$\dot{\mathbf{m}}$
RN	\circ	\circ	\circ	\circ
$[$ son $]$			$[$ son $]$	$[$ son $]$
$[$ nas $]$			$[$ nas $]$	$[$ nas $]$
$[$-cont $]$	$[-$ cont $]$	$[-$ cont $]$		
LN		\circ		\circ
$[$ cgl $]$		$[\mathrm{cgl}]$		$[\mathrm{cgl}]$
PN	\circ	\circ	\circ	\circ
LAB	LAB	LAB	LAB	LAB

2.3.2.1.2 Coronals and Laterals

The class of coronals includes dentals and alveolars. The dental consonants t^{θ} and f^{θ} and the interdental fricative θ are distinguished from the other coronals in the system by the nature of their consonant release; they are overtly marked as [distributed], as in (78).
(78) Coronals

Geometry	$\mathbf{t}^{\boldsymbol{\theta}}$	${ }^{\text {¢ }}$	θ	t	\underline{t}	s	n	n
RN	-	\bigcirc	-	-	-	-	\bigcirc	-
[son]							[son]	[son]
[nas]							[nas]	[nas]
[-cont]	[-cont]	[-cont]		[-cont]	[-cont]			
LN		\bigcirc			\bigcirc			\bigcirc
[cgl]		[cgl]			[cgl]			[cgl]
PN	-	-	-	-	-	-	-	-
COR	COR	COR	COR	COR	COR	COR	COR	COR
[dist]	[dist]	[dist]	[dist]					

(79) Laterals

Geometry	λ	夫	\pm	1	1	L	L'
RN	-	-	\bigcirc	-	-	-	\bigcirc
[son]				[son]	[son]	[son]	[son]
[-cont]	[-cont]	[-cont]					
[at]	[at]	[lat]	[lat]	[lat]	[lat]	[lat]	[lat]
LN		\bigcirc			-		-
[cgl]		[cgl]			[cgl]		[cgl]
PN	0	0	0	0	\bigcirc	o	-
COR	COR	COR	COR	COR	COR	COR	COR
DOR						DOR	DOR
[hi]						[hi]	[hi]

2.3.2.1.3 Alveopalatals

The alveopalatals in (80) are marked as DOR[hi, -bk] following Blake (1992). Motivation for their DOR[hi, -bk] specification rather than a featural representation such as COR DOR[hi] comes from the fact that alveopalatals front $/ a /$ to $[\varepsilon]$ (see discussion of V-features, §2.4), whereas the class of coronal consonants do not. Alveopalatals are specified as [hi] since they affect the height of the non-low vowel /i/ or $/ \mathrm{l} /$.

Geometry	č	z	S	j	1	y	$\dot{\text { y }}$
RN	-	-	\bigcirc	\bigcirc	-	o	\bigcirc
[son]				[son]	[son]	[son]	[son]
[-cont]	[-cont]	[-cont]		[-cont]	[-cont]		
[lat]							
LN		-			\bigcirc		\bigcirc
[cgl]		[cgl]			[cgl]		[cgl]
PN	\bigcirc	0	\bigcirc	0	-	0	-
DOR	DOR	DOR	DOR	DOR	DOR	DOR	DOR
[hi]	[hi]	[hi]	[hi]	[hi]	[hi]	[hi]	[hi]
[-bk]	[-bk]	[-bk]	[-bk]	[-bk]	[-bk]	[-bk]	[-bk]

2.3.2.1.4 Velars

Both the plain velars and the labio-velars determine the height of adjacent vowels, as will be discussed in §2.4.3-§2.4.4. These consonants are therefore marked as DOR[hi].

Geometry	k	k	$\mathbf{k}^{\mathbf{w}}$	$k^{\text {w }}$	$\mathrm{x}^{\mathbf{w}}$	g	g	w	$\stackrel{\text { w }}{ }$
RN	o	0	\bigcirc	0	\bigcirc	\bigcirc	0	0	0
[son]						[son]	[son]	[son]	[son]
[-cont]	[-cont]	[-cont]	[-cont]	[-cont]		[-cont]	[-cont]		
LN		0		0			\bigcirc		o
[cgl]		[cgl]		$[\mathrm{cgl}]$			[cgl]		$[\mathrm{cgl}]$
PN	-	-	\bigcirc	\bigcirc	\bigcirc	o	0	-	0
LAB			LAB						
[rd]			[rd$]$	[rd]	[rd]	[rd]	[rd]	[rd]	[rd]
DOR	DOR	DOR	DOR	DOR	DOR	DOR	DOR	DOR	DOR
[hi]	[hi]	[hi]	[hi]	[hi]	[hi]	[hi]	[hi]	[hi]	[hi]

2.3.2.1.5 Post-Velars: Uvulars and Laryngeals

The uvulars and laryngeals are represented as in (82). Uvulars are characterized here as complex DOR PHAR whereas laryngeals are specified as PHAR, following Cole (1987), McCarthy (1991), Shaw (1991), amongst others.

Geometry	q	¢	$\overline{\text { x }}$	$\mathbf{q}^{\text {w }}$	$\dot{\mathbf{q}}^{\mathbf{w}}$	$\dot{x}^{\mathbf{w}}$	？	h
RN	－	o	－	－	0	0	\bigcirc	－
［son］								
［－cont］	［－cont］	［－cont］		［－cont］	［－cont］		［－cont］	
LN		－			－		－	
［cgl］		［cgl］			［cgl］		［cgl］	
PN	－	－	o	－	－	－	－	－
LAB				LAB	LAB	LAB		
［rd］				［rd］	［rd］	［rd］		
DOR	DOR	DOR	DOR	DOR	DOR	DOR		
PHAR	PHAR	PHAR	PHAR	PHAR	PHAR	PHAR	PHAR	PHAR

There is some difficulty in determining the appropriate representation of［h］in Sliammon．Schwa colouration before the consonants $?$ and h is not perfectly symmetrical．Schwa systematically lowers to［d］before the glottal［？］，as shown by the data in（83．a－e）and discussed by Kroeber （1989）．The diminutive examples in（83．c＇－e＇）are provided in order to provide morphological evidence for the weak roots（CC）posited in（83．c－e）．

Input
a．m？－t
b．$s p-i q^{w} a n$
c．新tum

d． $\mathrm{m}^{\boldsymbol{q}}{ }^{\mathrm{w}} \boldsymbol{q}^{\boldsymbol{\theta}}$
d＇．DIM－m $\mathfrak{q}^{\mathbf{w}} \mathbf{f}^{\ominus}+[\mathrm{i}]$
e．$k^{\text {wn }}$ nay
\mathbf{e}^{\prime} ．DIM－k ${ }^{w}$ nay $+[?]$
mo？t
sə？piq ${ }^{\text {wan }}$
天̇o？tum

$m ə ? \mathbf{q}^{\mathbf{w}} \boldsymbol{q}^{\boldsymbol{\theta}}$

k^{w} o？nay
$k^{w i} i-k^{w} n a y ́$

Output
map $\mathrm{t}^{\text {h }}$
sóqpeq ${ }^{\text {w }} \wedge n$
关 á？${ }^{\circ}$ tom

$\mathrm{má}^{2} \mathrm{q}^{\mathrm{w}} \mathrm{f}^{\text {® }}$

Notice, however, that schwa varies between [$\kappa \sim$ á] before h, as shown in (84). This type of variation is not recorded before [?].
(84) schwa before h

Input		Output	Gloss
a. qh-t	qaht	qヘiht \sim qáht	lift s.t.
a'. qh-t-'ut čan	qehtut čan	qヘ̂htot čén	I lifted it up
a". qh-t čan sm	qəh(t) čan səm	quâh čén səm	Im gonna lift it up
b. Өh-t	θ ¢h-t	θ Aht \sim Oaiht	prop s.t. up
b'. hu ga Өh-t	hu ga Ozht	hóg^ $\mathrm{OASh}^{\text {b }}$	go prop it up
$\mathrm{b}^{\prime \prime} . \theta \mathrm{h}-\mathrm{Pm}=\mathrm{min}$	Obh-Tamin		centre pole for tent

The data in (85) provides evidence that $/ \mathrm{i} / \mathrm{is}$ retracted and lowered to [ε] in the environment of [h]; therefore, $/ h /$ is marked as PHAR. The different effects on schwa before $/ \lambda /$ may be attributed to the other marked properties of $/ 2 /$.

Input	Output	Gloss	
a.	hiw=čis	hiwčis	héwčıs

The fact that [h$]$ is the epenthetic (Onset) consonant in the language provides support for its default representation; it is the least specified consonant in the system.

2.4 Vowel System

The goal of the remainder of this chapter is to present the phonetic vowel inventory and show how the surface vowels are derived from the four vowel system: i, u, a, a. Schwa is treated as an epenthetic non-moraic Nucleus. Its prosodic distribution and properties will be discussed in more detail in Chapters 3-6 but its phonetic realization is addressed here. §2.4.2 provides evidence for a three way weight contrast in the language: schwa which is proposed to be non-moraic, full vowels which are moraic, and long vowels which are bimoraic, and are derived via Compensatory Lengthening. The hypothesis put forward here is that this weight contrast in Sliammon is encoded phonologically in terms of moraic structure, following the generalizations originally made in Blake (1992), and recast within the Nuclear Moraic Model of Shaw (1993 et seq.). §2.4.3 discusses the full vowels $/ i, u, a /$ and the consonant-vowel interaction which accounts for the variant surface realization of each of these vowels. §2.4.4 documents the effects of adjacent consonants (and vowels) on the surface realization of schwa. §2.4.5 introduces the issue of Full Vowel Reduction which occurs in unstressed syllables; this is discussed further in Chapter 4.

2.4.1 Vowel Inventory

Sliammon has a large number of phonetic vowels, as shown by the inventory in (86), following Davis (1971), Blake (1992), Watanabe (1994).

The surface inventory includes tense and lax variants, front-central-back and hi-mid-low realizations. As shown by (86), there are no front rounded vowels nor are there any low rounded vowels in the system (i.e. [0] is treated as non-low).

The phonetic vowels in (80) are allophones of a vowel system based on three underlying contrasts $/ \mathrm{i}, \mathrm{u}, \mathrm{a} /$ plus an epenthetic default vowel "schwa". The vowel contrast in Sliammon is low/non-low distinction (cf. Blake 1992). The non-low vowels /i, $u /$ are most often realized as $[e, o]$ respectively. The allophones of the low vowel/a/range from $[\varepsilon(æ) \sim a \sim a]$ and depend on the place of articulation of the adjacent consonants. I have changed my former usage (Blake (1992)) of $/ e, o, a /$ as the basic phonemic symbols to adopt $/ i, u, a /$, in order to minimize phonemic transcription differences between authors writing on Sliammon, and to also make it easier for those wishing to do comparative research in Salish. ${ }^{1}$ The underlying representation for each of the Full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a}$ / is presented in (87).
(87) i, u, a

i	u	a

The surface height of the non-low vowels $/ \mathrm{i}, \boldsymbol{u}$ is determined by the height of adjacent consonants, via consonant-vowel (C-V) feature sharing. The phonemes $/ i, u /$ are $[i, u]$ next to alveopalatals/palatals, whereas they are $[\mathrm{e}, \mathrm{o}]$ in a "neutral" context, and are retracted to $[\varepsilon, \nu]$ in the environment of PHAR consonants. The vowel system of Sliammon has received a fair bit of

[^10]discussion in J.Davis (1970, 1971), Kroeber (1989), Blake (1992, 1999), Watanabe (1994). The featural specification of the allophones of the full vowels is provided in (88).
(88)

	/1/			/a/				1 w		
	[i]	[e]	[ε]	[$\varepsilon]$	[a]	[1]	[a]	[u]	[0]	[0]
RN	-	\bigcirc	0	0	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
[-cons]	[-cons]	[-cons]	[-cons]	[-cons]	[-cons]	[-cons]	[-cons]	[-cons]	[-cons]	[-cons]
PN	-	0	-	-	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
LAB								LAB	LAB	LAB
[rd]								[rd$]$	[rd]	[rd]
DOR	DOR	DOR	DOR	DOR	DOR	DOR	DOR	DOR	DOR	DOR
[hi]	[hi]							[hi]		
[-bk]	[-bk]	[-bk]	[-bk]	[-bk]						
[10]					[10]	[10]	[10]			
PHAR			PHAR	PHAR		(PHAR)	PHAR			PHAR

The basic featural identity of $/ \mathrm{i} /$ is DOR [-bk]. Its variant realizations are outlined in (89).
$/ \mathrm{i} /$ is realized as [i] in the environment of a [hi] consonant (alveo-palatals and velars).
$/ \mathrm{i} /$ is realized as $[\varepsilon]$ in the environment of a post-velar consonant (uvulars \& laryngeals), i.e. PHAR.
$/ i /$ is realized as $[\varepsilon]$ in the environment of glottalized consonants.
$/ \mathrm{i}$ / is realized as [e] elsewhere.
$/ \mathrm{i} / \mathrm{is}$ laxed to [L$]$ in unstressed position in the environment of a [hi] consonant.
$/ \mathrm{i} /$ is laxed to $[\varepsilon]$ in other unstressed contexts.

The basic featural identity of $/ u /$ is LAB [rd] DOR. Its variant realizations are outlined in (90).
$/ \mathbf{u} /$ is realized as [u] in the environment of a [hi] consonant (alveo-palatals and velars).
$/ \mathbf{L} /$ is realized as [0] in the environment of a post-velar consonant (uvulars \& laryngeals), i.e. PHAR.
$/ \mathrm{u} /$ is realized as [O] in the environment of glottalized consonants.
$/ \mathrm{u} /$ is realized as [0] elsewhere.
$/ u /$ is laxed to $[v]$ in unstressed position in the environment of a [hi] consonant.
$/ \mathrm{u} /$ is laxed to [O] in other unstressed contexts.

The basic featural identity of $/ a /$ is DOR [lo]. Its variant realizations are outlined in (91).
$/ a /$ is realized as [ε] after a [-back] consonant (alveo-palatals/palatals).
$/ a /$ is realized as $[a \sim æ]$ in the environment of a non-sonorant lateral (λ, x, y).
$/ a /$ is realized as $[a]$ in the environment of post-velars (uvulars and laryngeals), i.e. PHAR. $/ a /$ varies between $[\mathrm{a} \sim \Lambda]$ in the environment of anterior consonants (coronals and labials).
$/ a /$ is realized as [α] elsewhere.
$/ a /$ is laxed to [Λ] in unstressed post-tonic position.

The allophones of schwa are given in (92), and discussed in further detail in §2.4.4.
schwa is realized as [v] in the environment of a tautosyllabic [hi, rd] consonant (labio-velars) schwa is realized as [0 ((rounded midback V) before a non-high [rd] C (labio-uvular) schwa is realized as [l] in the environment of a $[\mathrm{hi},-\mathrm{bk}$] consonant (alveo-palatal/palatal) schwa is realized as [ε] between a [-back] consonant and a PHAR consonant schwa is realized as $[\mathbf{i} \sim t]$ in the environment of a [hi] consonant (plain velars) schwa is realized as [\wedge] is the environment of a plain uvular, i.e. DOR PHAR schwa is realized as $[a]$ in the environment of laryngeals (?, h), i.e. PHAR and LAR.

Sliammon also has a limited number of surface long vowels (i.e. [i:, e:, ε :, u:, o :, a:]) which are all derived through compensatory lengthening, here treated as the loss of a moraic coda consonant. Analyses of how surface long vowels are derived are presented in detail in J.Davis (1970: 52-56), and Blake (1992, Chapter 3), and due to space limitations will not be discussed further here.

The primary focus of the remainder of this chapter is on the weight contrast between schwa and the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a}$ /, and their respective surface phonetic realizations.

2.4.2 Vowel Quantity

The next section explores the evidence for a distinction in vowel quantity or weight, as represented by the prosodic constituant "mora". Sliammon exhibits a weight contrast between the allophones of schwa, and the allophones of the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a} /$.

2.4.2.1 Phonological Weight Contrast

Phonetically the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a}$ / are half-long [$\mathrm{v} \cdot$] in stressed open syllables, as shown by the data in (93). This point is documented independently by Watanabe (p.c.). Notice that the stressed vowel in (93.a) is also recorded with an off-glide [ei]. Diphthongization is another diagnostic for the constrast between schwa on the one hand, and the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a} /$ on the other hand.

Input

a. pilaq
b. Pimin
c. qiga θ
d. $k^{\text {wh }} u p a$
e. ?upan
f. $\check{x} \mathbf{a} \grave{\lambda}$-ng-mi č
g. tapas
h. featiq
i. Pamamu?

Output

pé-lıq ${ }^{\text {h }}\left(\sim\right.$ péil $\wedge q^{\text {h }}$)	bracket fungus
T¢́-mın	door
qé.g^ θ	deer
	grandfather, grampa
?ó $\mathrm{p} \wedge$ n	ten
x̆á̛̇nò mıč	I love you
	cave
$\mathfrak{t}^{\ominus} \mathrm{a}$ áteq	a drop of water
?á-mamò?	chiton

Schwa, on the other hand, is noticeably shorter in duration, and surfaces consistently as a brief lax vowel, as in (94).

Input		Output	Gloss
a. eq	ċat	cít	rain
b. θ ċ	Oəẋ	$\theta i ́ c ̧$	straight
c. $m k^{w-t}$	$\mathrm{mak}^{\mathrm{w}}$-t	múk ${ }^{\text {wht }}$	eat it
		cólomèx ${ }^{\text {witon }}$	floor rug, carpet
e. $\boldsymbol{e}^{\ominus} \mathrm{m}=$ tn	$t^{\text {¢ }}$ Omtn		breast
f. sq̆-t	səq่t	síqut	peel it off
g. mi-t	ma?t	mẩt	get it

Kroeber (1989: 108) also observes that schwa and the surface variants of schwa are generally "lax and a bit shorter than the allophones of non-schwa vowels, at least in stressed open syllables."

2.4.2.2 Theoretical Assumptions

The main purpose of the next section is to put forth a proposal which captures this observed durational contrast. The question which this observation raises is how is this length contrast encoded phonologically?

Blake (1992) proposes that schwa and the following moraic coda consonant share a mora resulting in a mono-moraic syllable whereas a full vowel and following moraic coda consonant are both moraic resulting in a bi-moraic syllable. This entails a syntagmatic rule of weight-by-position which is sensitive to whether or not the coda consonant is preceded by a full vowel or by schwa.

[^11]
2.4.2.3 Representation of Weight Contrast: Nuclear Moraic Model

In this dissertation, this leading idea is recast within the Nuclear Moraic Model of Shaw (1993, 1994, 1996c). Within this model, schwa is Nuclear, and non-moraic. The prosodic representation for schwa is given in (95).
(95) Nuc

The hypothesis put forward within the Nuclear Moraic Model is that schwa is weightless. Since it lacks phonological weight (i.e. a mora), the fact that it is perceptually shorter in duration is encoded in its phonological representation. In addition to the prosodic representation of this vowel (i.e. a bare nucleus), it is also claimed here that schwa lacks inherent phonological features and as such is subject to colouration by adjacent consonants (and vocalic nuclei), as argued in Blake (1992:3542). The range of phonetic colouration of schwa is sketched in $\S 2.4 .1$ above, and explored in greater detail in §2.4.4.

Full vowels, on the other hand, are represented as both Nuclear and moraic, as in (96). The full vowels $/ i, u, a /$ each dominate specific vocalic place features as specified in (88), and schematically represented here as [f].
Nuc
1
μ
1
$[f]$

The fact that schwa is shorter than the full vowels $/ i, u, a /$ is encoded here by a difference in moraic structure. The proposal that schwa is non-moraic in Sliammon is supported by the phonological behaviour of CəC weak roots versus CAC Strong Roots (cf. Blake 1992:40-42; Blake 1999).

This proposed difference in prosodic structure (Nuclear non-moraic versus Nuclear moraic) will play a central role in determining the distribution of schwa. Prosodic structure of Sliammon is discussed in more detail in Chapter 3 where additional evidence is provided in favour of the weight contrast introduced here.

This proposal regarding the distinction between schwa on the one hand, and the full vowels on the other hand draws significantly on the research of Shaw (1993 et seq.) on other neighbouring Salish languages (St'át'imcets (Lillooet), Nuxalk (Bella Coola), and hən’’̉əmin̉ən̉ (Musqueam Salish). This theoretical model provides insight into the behaviour of schwa in Sliammon, and provides an alternative analysis to Blake (1992).

2.4.3 Full Vowels

2.4.3.1 Surface Realization of the Full Vowels

The next section discusses the allophonic realization of the full vowels $/ i, u, a /$.

2.4.3.1.1 Retraction

The Full Vowels are systematically lowered before and after uvulars, and laryngeals $1 / \mathrm{h}$ indicating that these post-velar sounds function together as a natural class. As seen in §2.3.2.1.5, it is proposed that this class is captured by hypothesizing that these segments share PHAR specification. This PHAR specification triggers retraction of $/ \mathrm{i}, \mathrm{u}, \mathrm{a}$, as in (97).
(97) Retraction

/i/	$-$	[ε] / PHAR
/u/	\rightarrow	[0] / PHAR
/a/	\rightarrow	[a] / PHAR

This lowering takes place in both stressed and unstressed syllables, and is illustrated by the data in (98-106). Since full vowels are generally laxed in unstressed closed syllables, the discussion here will focus on full vowels in stressed syllables.

The [-bk] vowel/i/is retracted in the environment before and after post-velars (uvulars and laryngeals), as shown by the data in (98-101). It is retracted in stressed open and stressed closed syllables alike which shows that the presence of $[\varepsilon]$ cannot be attributed to a constraint on closed syllable shortening, for example.
(98) Retraction of /i/ with uvulars

Input		Output	Gloss
a. qiqtip (DIM?)	qiqti?	qéq. . ε ¢ ?	youngest in family
b. L'-DIM-x̆nq̇ + [i$]$	x $\mathrm{x}[\mathrm{i}] \mathrm{i}-\mathrm{x} n[\mathrm{i}]$ '		Owl's Grove
c. mixat	mix̆á	mé. ${ }^{\text {x }}$ ^t	black bear

(99) Retraction of /i/ with laryngeals

Input		Output	Gloss
a. \quad Ril ${ }^{\text {a }}=\mathrm{ay}$	Pilqay	Tél . q̉ay	barbecued deer meat
b. Pittan	Pittan		to eat, food
b'. IMP-Pittan + [$]_{\text {] }}$ č	Ti-Tittań č		Im eating
c. Pinhus	Pinhus	Pén . hos ~ Pén . hos	new moon, month
d. ӨiPOa	ӨirӨa		that one (fem.)
e. higin	hilgin	hé? . gın	strawberry
f. DIM-hkwi? ${ }^{\text {d }}$] $\mathrm{q}^{\mathbf{w}}$	hink $^{\text {w }}$ iPiq ${ }^{\text {w }}$		great-gr. grandmother
g. DIM-higus	hi-hagus	hé . həgus ~héhəgขs	small chief

The data in (100) shows that $/ \mathrm{i} /$ is also systematically retracted in the environment of glottalized consonants.
(100) Retraction of $/ \mathrm{i} /$ with glottalized consonants

Input		Output	Gloss
a. tin	tin	tén	barbecued fish
a^{\prime}. IMP-tin-?m	ti-tin-Tom		barbecuing fish
b. $\mathrm{k}^{\mathbf{w}}$ in	$\dot{\mathbf{k}}^{\text {win }}$	$\mathrm{k}^{\text {w}}$ Én	how many
c. $\mathfrak{t}^{\ominus} i^{\ominus} \mathrm{i}^{\mathbf{i}}{ }^{\mathbf{w}}$	$\hat{t}^{\boldsymbol{i}} \mathbf{i t}^{\boldsymbol{\theta}} \mathrm{ik}^{\mathbf{w}}$	$\hat{t}^{\ominus} \hat{E} \cdot \mathfrak{t}^{\boldsymbol{\theta}} \boldsymbol{\varepsilon} \overrightarrow{\mathbf{k}}^{\mathbf{w}}$	worm
d. $\mathfrak{t}^{\boldsymbol{\theta}} \mathrm{if}^{\boldsymbol{\theta}} \mathrm{iq}$	$\mathfrak{f}^{\boldsymbol{\theta}} \mathbf{i t}^{\boldsymbol{\theta}} \mathbf{i} \mathbf{i q}$		mud
e. tiniq ${ }^{\text {w }}$	tipniq ${ }^{\text {w }}$	$\mathfrak{t} \varepsilon$ ¢. $\mathrm{n} \varepsilon \mathrm{q}^{\mathbf{w}}$	salmonberries

Note that Retraction is obligatory, as indicated by the contrast between the grammatical examples in (101) Column 2 versus the ungrammatical examples in (101) Column 3. Focus on the quality of the stressed vowel in each example. Failure to retract the vowel $/ \mathrm{i} /$ in the environment of a postvelar or glottalized consonant is clearly ungrammatical, judging from comments made by speakers of the language.

Input
a. qiqti?
a^{\prime}.
b. mix̆at
b'.
c. Piftan
c^{\prime}.
d. ?inhus
d'.
e. tin
e'.
f. $\mathbf{k}^{\mathrm{w}} \mathrm{in}$

Retraction
qع́q . te?
mé. ̈n $^{\text {q }}$

ใÉł. t^n

Pén . hos ~ Pén . hos
*?én . hos
*tín
*tén

* $\hat{\mathbf{k}}^{\text {win }}$
*mé. x̆^t
*Rét. t^n
*?in. hos new moon, month
Gloss youngest in family
black bear
*ít.t^n to eat, food
barbecued salmon
how many

f.		* ${ }^{\text {Tén }}$	
g. $\mathbf{f}^{\ominus} \mathbf{i t}^{\ominus} \mathbf{i}^{\mathbf{k}}{ }^{\mathbf{w}}$	$\mathfrak{t}^{\ominus} \boldsymbol{\varepsilon} \cdot \mathrm{t}^{\ominus} \boldsymbol{\varepsilon} \hat{\mathbf{k}}^{\mathbf{w}}$		worm
g'.			
h. tin̉iq ${ }^{\text {w }}$		*íi? . n ¢ $\mathrm{q}^{\mathbf{w}}$	salmonberries
h^{\prime}.		*tér . $\mathrm{n} \varepsilon \mathrm{q}^{\mathbf{w}}$	

The vowel /u/is retracted and realized as [0] before post-velars or glottalized consonants, as shown by the data in (102-104). The retraction of /u/ parallels the observed behaviour of $/ \mathrm{i} /$ discussed in (98-101) above.
(102) Retraction of $/ \mathrm{l} /$ with post-velars

Input

b. $D I M-\bar{x}^{w} u s m+[i]+[?]$
c. puhu
d. Pamamu?
e. čuTçu?
f. \quad IMP- $\mathbf{T u t q}^{\mathbf{w}} \mathbf{u}+[?]$

Output

p’. ho .
?á.ma.mò?. chiton

Gloss
lukewarm water small soapberry raven wren digging clams
(103) Retraction of /u/with glottalized consonants

Input		Output	Gloss
a. $\mathbf{k}^{\text {wu}}$ unut ${ }^{\text {a }}$	$\mathbf{k}^{\text {w }}$ unut ${ }^{\text {a }}$	$\hat{k}^{\text {wosp }}$. not	porpoise
b. humhum	humbhum	hóm . hom	blue grouse
c. tutmum	łułmum	tót. mòm	littleneck clam

Failure to undergo retraction is judged as ungrammatical, as shown by the data in (104).

Input	Retraction	No Retraction	Gloss
a. DIM $-\bar{x}^{\mathbf{W}} \mathbf{u s m}+[i]+[?]$			small soapberry
b. puhu	p̧ ${ }^{\text {. ho }}$.	*pú . hu .	raven
c. Tamamu?	Pá. ma.mò .	* Qá . ma . mù .	chiton
c^{\prime}.		* ¢á . ma. mò?	
d. čuTçu?	\%ot . \%?		
d^{\prime}.			
e. humhum	hóm . hom.	*húm . hom.	blue grouse
e^{\prime}.		*hóm. hom.	
f. łưmum	tót. mòm.		Littleneck clam
f.		*tót . mòm.	

The low vowel/a/ is retracted and realized as [a] in the environment of post-velars, as shown by the data in (105-106).
(105) Retraction of $/ a /$ in the environment of uvulars

Input
a. DIM-qay $\check{x}=u t$
b. IMP-q ${ }^{\text {wasm }}+[?]$
$\mathrm{b}^{\mathrm{\prime}}$. DIM-q ${ }^{\mathrm{w}} \mathrm{asm}+[?]$
c. $\mathrm{DIM}-\mathbf{q}^{\mathrm{w}} \operatorname{aim}[-\mathrm{i}-]+[?]$
d. IMP- $\bar{x}^{\mathbf{W}} \mathbf{a j}-t-\mathrm{awt}$
qa-qy $\bar{x}^{\mathbf{w}} \mathbf{u} \ddagger$

$q^{w a-q}{ }^{w} s[\partial]{ }^{m}$
$\dot{\mathbf{q}}^{\mathrm{w}} \mathrm{a}-\mathbf{q}^{\mathrm{w}} \mathbf{t}[\mathrm{i}] \mathrm{m}^{\mathbf{m}}$
$\check{\mathbf{x}}^{\mathrm{w}} \mathbf{a}-\overline{\mathrm{x}}^{\mathrm{w}} \mathbf{a} \overline{\mathrm{J}}[\mathrm{a}] \operatorname{taw} 4$

Output
qá. qe. $\overline{\mathbf{x}}^{\mathrm{w}} \boldsymbol{v} \ddagger$
$q^{w a ́ d} . q^{w}$. səm
$q^{\text {wáqu}}{ }^{\text {w. }}$ sə ${ }^{\text {m }}$

Gloss
small Mink
blooming, flowering
little flower
small river, creek
fighting each other
(106) Retraction of/a/with laryngeals

Input		Output	Gloss
a. IMP-Ta $-\mathrm{m}+[$] $]$	2a-2a日-əm		giving (at a potlatch)
b. Pah	Tah	2áh	sore, pain
b'. IMP-Pah-m+[?] č	Qa-Tah-əm č	Td. Pa. hîmch	Im hurting
c. IMP- $\mathrm{axx}^{\mathrm{W}}+[$ []	$2 \mathrm{a}-\mathrm{ax}{ }^{\text {w }}$	Pá. $\mathrm{Pax}^{\text {w }}$.	it's snowing
d. DIM-k ${ }^{\text {w }}$ upa $+[?]$	$k^{w} u-k^{w} \mathbf{p a}$?	$\mathrm{k}^{\mathrm{w}} \mathrm{u}^{\mathrm{w}}$. pa? .	grandfather

The allophone [a] (DOR [lo]) and the retracted allophone [a] (DOR [lo] PHAR) are both written as a script ' a ' in the remainder to this thesis.

Retraction results from consonant-vowel feature sharing, as illustrated in (107). A capital Q is used to refer to the class of PHAR consonants in the language.
(107) Retraction
a.

[$\varepsilon]$
b.

[$]$
c.

[a]

As shown by the representations in (107), each retracted vowel $[\varepsilon, \nu, a]$ is characterized by its surface PHAR specification.

2．4．3．1．2 Place Assimilation

The non－low vowels $/ i, u /$ are realized as $[i, u]$ in the environment of DOR［hi］consonants（alveo－ palatals and velars），as shown by the data in（108）．

Input		Output	Gloss
a．DIM－čuj ${ }^{\text {a }}$ ut	ču－çj $=u \nmid$	čúč ．juvt	small child
b．IMP－ju $\overline{\mathrm{x}}^{\mathbf{w}}-\mathrm{t}+$［？］	ju－ju ${ }^{\text {chentat }}$	jú ．jo ．$\check{\mathbf{x}}^{\mathbf{w}} \wedge$ t	vomiting
c．IMP－guh $-\mathrm{Vm}+[7]$	gu－guh－um	gú．gu ．hom	barking

The low vowel $/ a /$ is realized as $[\varepsilon]$ after alveo－palatals，as in（110）．
（110）$[\varepsilon]$

Input		Output	Gloss
a．？aya？－hV	Paya－ha－？	Tá ．ye．hà？	he＇s got a house
b．DIM－saẏja＋［？］	sa－syja？		small leaf
c．DIM－ċañu + ［ ］	ča－čnup	䇉立．no？	little dog
d．DIM－çag＝＇ay + ［？］	ča－çgay		small wooden spoon
e．DIM－janx ${ }^{\text {w }}[-\mathrm{i}-]=\mathrm{u} 4+[?]$	ja－jn $[1] x^{w}=u t$		small fish
f．DIM－yax̆ay + ［ $]$	ya－yx̆ay	yÉy ．x̌＾y	small clam basket
g．IMP－čah－m＋［？］	ċa－çah－əm		praying
g＇．IMP－čah－＇Vg－m	ça－çah－ag－əm	¢¢彑．	they＇re all praying
h．IMP－yax̆ + ［？］	ya－yax	уغ́． $\mathrm{y} \wedge$ ¢̆	sobering up

This is analyzed here as partial assimilation to the preceding alveo-palatal. This is illustrated by the representation in (111).

$\begin{gathered} \text { DOR } \\ {[\text { hi] }} \end{gathered}$

[č६]

The fact that the feature [hi] fails to spread is encoded in the grounded constraints *H/LO and *LO/HI. It is also proposed here that spreading of [-bk] entails the loss of the feature [lo] (if [-bk] then not [lo]).

As noted earlier, the low vowel/a/ is never rounded. This follows from the general lack of low round vowels in system, and is analyzed formally as a high-ranking grounded constraint *LO/RD, following Archangeli and Pulleyblank (1994).

Archangeli and Pulleyblank (1994) develop a model in which features (f-elements) freely combine in order to derive the inventory of consonants and vowels in a particular language. Combinatorial specification is constrained by phonetically-motivated grounded conditions which ban antagonistic articulatory gestures (i.e. a vowel cannot be both high and low at the same time * $\mathrm{HI} / \mathrm{LO}$) and permit combinations which are compatible from an articulatory perspective. It will be argued here that consonant-vowel interaction in Sliammon is also constrained by grounded constraints.

2.4.3.1.3 Effect of Anterior Consonants on /a/

The low vowel /a/ [a] occurs in free variation with [1] in the environment of labial and coronal (anterior) consonants. The effect is gradient and variable. Examples of free variation [á~ 1] are given in (112).

Input
a. \tan
b. man
c. nat
d. pipa
e. ppa
pipa
\tan
man
nat

рэра

Output

tán \sim t^́n	mother
mán \sim m^́n	father
nát \sim n^́t	night
pípa \sim píp \wedge	paper
pópa \sim póp \wedge	pepper

In the context of consonants specified for [hi], /a/ is realized as [1], as shown by the morphologically related forms in (113). The vowel and surface form of the following [hi] consonant $/ \mathrm{g} /$ are underlined in Column 3.
(113)

Input		Output	Gloss
a. maga ${ }^{3}$	maga		cougar
b. DIM-maga=ut	ma-maga-wot	mへ́mıgòwə	little cougar
c. CaCPL-maga	mow-maga	mówmı́gə	cougars
d. mi-mag+[?]	mi-maw	mé:m $\mathrm{m}_{\underline{\text { w }}}$	cat

2.4.3.1.4 Interaction of Retraction and Place Assimilation

In general, Retraction takes precedence over spreading of DOR[hi], as shown in (102.a; 108.b) for example. Retraction and the spreading of DOR[-bk] are sympathetic, as shown by the data in (110.b). The data in (114-115) show some conflicting tendencies. The data in (114) shows that the vowel / $\mathbf{v} /$ is realized as $\operatorname{DOR}[h i]$ when it occurs between DOR[hi] consonants ($\left.\mathrm{k}^{\mathbf{w}}\right\}$] and $\left.x^{w} J_{j}\right)$ even though the vowel $/ \mathrm{w} /$ is immediately followed by the laryngeal constriction associated with $/ 3 /$. This provides evidence that the glottalization associated with $/ \bar{j}$ does not entail the

[^12]presence of the PHAR node (cf. the representation of $/ \mathrm{j} /$ in (80)). The examples involve the surface realization of the $L S=u j a$ hand, lower arm.
(114) $=u j a[=u$ ǐj $\varepsilon]$

Input		Output	Gloss
a. $f^{0} \mathbf{i} \mathbf{k}^{\mathrm{w}}=\mathrm{u}^{\text {a }} \mathrm{a}$			left-handed
b. λ p $x^{w}=u \frac{3}{}{ }^{\text {a }}$			break one's arm, hand

When $/ u /$ is preceded by a labial or coronal consonant, the non-low back rounded vowel $/ u /$ is realized as [o] (its most "neutral" realization), as shown by the morphologically related forms in (115)

Input		Output	Gloss
	čatu? ${ }^{\text {a }}$	čítơ̧̌ ${ }^{\text {b }}$	cut one's hand
	šótpùù̧̌a	šífp’ò?̧̌	slip out of one's hand
	çápmư̌a	cée ${ }^{\text {moorje }}{ }^{\text {b }}$	cold hands

The vowel /a/ also surfaces as [\wedge] in the environment of a uvular, as shown in (116).

Input		Output	Gloss
a. $\dot{\mathbf{q}}^{\text {walas }}$	$\mathbf{q}^{\text {w }}$ alas	$\dot{q}^{\text {wál: }}$ (${ }^{\text {s }}$	raccoon
a^{\prime}. DIM-qं ${ }^{\text {walas }}=\mathbf{u t}$	$\dot{\mathbf{q}}^{\text {wa }}$-q $\mathbf{q}^{\text {walalasu }}$		little raccoon
a". CəCPL-q' ${ }^{\text {walas }}$	$\dot{\mathbf{q}}^{\mathrm{w}} \boldsymbol{\mathrm { p }}$ - $\mathbf{q}^{\text {walas }}$		raccoons
b. x̆ap $^{\prime}$	x̆ap		papoose basket
c. yaxay	yaxay		berry-picking basket
d. q̇ast	¢ ${ }^{\text {ast }}$	q̧ást \sim q̇Ást	special person in yr. life

The example which is of particular interest is the diminutive (DIM) in (116.a'). Notice that the low vowel a is realized as [Λ] is a stressed open syllable which is preceded and followed by a labiouvular consonant. Uvulars are proposed to be DOR PHAR. Notice that the resulting vowel [\wedge] is not rounded which follows from the fact that there are no low round vowels in the language. If the root were $\dot{q}^{\text {wo }}$ alas, we would expect a diminutive form in Ci - as well as labialization of the stressed vowel in a total labio-uvular context (cf. Blake (1992), Watanabe (1994, 2000), and Blake (in prep) on Reduplication in Sliammon). The morphological evidence clearly points to the underlying vowel here being $/ a /$; however, the surface realization [\wedge] instead of [a] entails total Place Assimilation to the uvular. The low vowel/a/ is realized as DOR PHAR. The effects of uvulars (and post-velars in general) on voweis in Sliammon merits further study.

2.4.3.2 Full Vowel / Consonant Interaction

The next section presents a summary of the effects of both preceding and following consonants on the full vowels $/ i, u, a /$. The tables in (117-119) summarize the realization of the full vowels $/ i, u, a /$ in an initial stressed closed syllable.
(117) /i/ DOR [-bk]

C2	LAB	COR	DOR[hi]	PHAR
C1				
LAB	é~í	é	é	$\hat{\varepsilon}$
COR	é	é~í	í	$\hat{\varepsilon}$
DOR[hi $]$	$\hat{\mathbf{i}}$	$\hat{\mathbf{i}}$	$\hat{\mathbf{i}}$	$\hat{\varepsilon}$
PHAR	$\hat{\varepsilon}$	$\hat{\varepsilon}$	$\hat{\varepsilon}$	$\hat{\varepsilon}$

The specification DOR[hi] is used here to include alveopalatals, palatals and velars irrespective of their specification for the feature [back]. PHAR identifies the class of post-velars.
(118) /ú/ LAB[rd] DOR

$\mathrm{Cl} \quad \mathrm{C} 2$	LAB	COR	DOR[hi]	PHAR
LAB	о́	ó~ú	ú	5~0́
COR	ó	ó	ú	5~0́
DOR [bi]	ú	ú~ó	ú	5~0́
PHAR	5~ó	ó	ó	5~ó

It should be noted that the following consonant appears to exert a stronger influence on the resultant vowel quality than the preceding consonant does; although, in the case of the preceding PHAR and following DOR[hi], $/ u /$ is realized as [ó] and not as *[u] showing that Retraction is less costly than DOR[hi] assimilation. This is a classic case of constraint conflict, and provides evidence for the ranking: *DOR[hi] >> *PHAR.

The summary of the surface realization of $/ a /$ in (119) includes a distinction between alveopalatals/palatals (DOR[hi, -bk]) and the velars (DOR[hi]) in order to underscore the effects of a preceding alveopalatal on the realization of $/ a /$, as discussed in (110).
(119) /a/ DOR [lo]

$\mathrm{Cl} \quad \mathrm{C} 2$	LAB	COR	DOR[hi, -bk]	DOR[hi]	PHAR
LAB	á	$\mathbf{a} \sim \hat{\Lambda}$	á	á	á
COR	á	á	á~ ǽ $^{\text {c }}$	á~ ${ }_{\text {á }}$	á
DOR[hi, -bk]	$\hat{\boldsymbol{\varepsilon}}$	É	é $\sim \hat{\varepsilon}$	$\dot{\varepsilon}$	$\hat{\varepsilon}$
DOR[hi]	á~ǽ	á	¢́	d	á
PHAR	á	á	á \sim á	á $\sim \hat{\Lambda}$	á

2.4.3.2.1 Proposed Analysis

The surface vowels can be shown to arise from the interaction of constraints which drive Retraction and Place Assimilation. The intuition behind this analysis is that consonants and vowels which share Place specifications are more highly valued than ones which do not. Consonantvowel feature sharing occurs subject to a set of constraints which are phonetically grounded in the sense of Archangeli and Pulleyblank (1994). Sympathetic (compatible) articulatory gestures are enhanced and licensed whereas antagonistic articulatory gestures are banned by constraints on possible co-articulation. The grounded constraints which are clearly operative in Sliammon are given in (120).
(120) Grounded Constraints

| a. If a vowel is [-bk], then it is not [rd] | ${ }^{*}-\mathrm{BK} / \mathrm{RD}$ |
| :--- | :--- | :--- |
| b. If a vowel is [rd], then it is not [-bk] | ${ }^{* \mathrm{RD} /-\mathrm{BK}}$ |
| c. If a vowel is [lo], then it is not [hi] | ${ }^{\text {LLO/HI }}$ |
| d. If a vowel is [lo], then it is not [rd] | ${ }^{\text {LLO/RD }}$ |

A high-ranking constraint ensures that Retraction occurs (PHAR place is shared with an adjacent vowel) at the expense of spreading [hi]. This generalization suggests that the grounded condition *PHAR/HI is also operative in Sliammon.

If PHAR, then not [hi]
*PHAR/HI

This accounts for the height of vowels which occur after alveopalatals and before uvulars. The study of Glide Vocalization $\S 2.4 .6$ also motivates the constraint in (122).
If [hi], then not PHAR
*HI/PHAR

The effect of adjacent consonants on Full Vowels is summarized in (123).
(123)

Full Vowel	Retraction	DOR [hi]	*DOR[hi] >> *PHAR	Grounded Condition
/i/ DOR[-bk]	[ε]	[i]	[ε]	*-BK/RD
/u/ LAB[rd] DOR	[0]	[u]	[0]	*RD/-BK
/a/ DOR [10]	[a]	[$¢$	[$¢$	*LO/RD
		*LO/HI	*LO/HI	

The output of Full Vowel assimilation to adjacent consonants is subject to the grounded conditions in (120-121). These high-ranking grounded constraints reflect generalizations about Sliammon. There are no front rounded vowels in the language, nor are there any low rounded vowels. These grounded constraints are therefore proposed to be undominated constraints.

The output of Retraction never yields a [hi] retracted vowel (cf. Bessell 1992a). Since full vowels are retracted whenever they are adjacent to a post-velar consonant, I assume that the presence of PHAR (retraction) prohibits the spread of DOR[hi]. This is reflected in the grounded constraint *PHAR/HI in (121)

Sharing of DOR features [hi] and [hi, -bk] occurs from adjacent alveopalatals and velars, the output is given in (123) Column 3. Notice that the low vowel/a/ is never [hi] expressing the fact that vowels can not be both low and high at the same time (120.c). (123) Column 4 shows the effect of consonants on either side of the full vowel. As observed from the data, Retraction (spread of the PHAR node) takes precedence over the spread of the Dorsal feature [hi].

Vowel assimilation to neighbouring consonants in the language seems to be subject to two different sets of constraints - first of all, Faithfulness to the lexical vowel features which establish the contrast between $/ \mathrm{i}, \mathrm{u}, \mathrm{a} /$, and second of all, to the phonetic grounded conditions. A constraint which drives Vowel Assimilation to the neighbouring consonants may be in conflict with the grounded conditions. The grounded constraints must outrank VAssimilation since the opposite
ranking would create total assimilation without consideration for the phonetic viability of such a feature-sharing relation. The tableau in (124) shows the effects of this ranking.

	FArTH I-O[f]	Grounded Conditions	V Assimilation
$\begin{array}{rr}\text { a. } & \left.\begin{array}{rr}V & C \\ 1 & 1 \\ -b k & r d\end{array}\right]\end{array}$			
b. $\begin{array}{cc}V & C \\ \|l\| l \mid \\ 1 & \mid \\ -b k & \text { rd }\end{array}$		*! (*-BK/RD)	
	*!		

As shown by the optimal candidate in (124.a), C-V feature sharing is violated in order to satisfy the high-ranking Grounded constraint *-BK/RD. Violation of this constraint is ruled out as in (124.b). It is also necessary to consider what rules out candidate (124.c).

Since lexical features of each full vowel are present in the output of Vowel assimilation, this means that Faithfulness and the Grounded Constraints both outrank Vowel Assimilation. It is also proposed here that the vowels never lose their featural content in order to assimilate and satisfy the grounding conditions. Faithfulness of the lexical features (FAITH [f]) associated with both consonants and vowels is high-ranking.
(125) Faith[f], Grounding >> V Assimilation

What is the cost associated with Vowel Assimilation? There is no insertion of a feature not present in the Input; rather assimilation involves the insertion of a path (association line) between a vowel and adjacent consonantal place features (i.e. a DEP-PATH violation) (cf. Pulleyblank 1996:289-299).

Faith[f], Grounding \gg V Assimilation \gg DEP-PATH

Consider the partial tableau which shows how this works for the full vowels $/ \mathrm{i}$, u , $\mathrm{a} /$ when followed by a rounded uvular consonant $\left(Q^{w}\right)$. In order to consider a full range of candidates, the optimal candidate as well as other non-optimal ones, I adopt the following conventions here: $[\varepsilon, \nu, a]$ represent the retracted counterparts of the full vowels $/ i, u, a / a s$ above. I will use the addition of a small raised ${ }^{w}\left(\left[\varepsilon^{w}, O^{w}, a^{w}\right]\right)$ to indicate a candidate which has undergone both retraction and labial assimilation (the leftward spread of [rd] from the consonant onto the preceding full vowel ($o r i n$ in the case of \supset sharing of [rd]). The candidates containing $\left[\varepsilon^{w}, \alpha^{w}\right]$ will shown to be non-optimal since they violate the grounded constraints *-BK/RD and *LO/RD respectively.

Input: /C $\mathrm{iQ}^{\mathrm{w} /}$ V: DOR[-bk] $\mathrm{Q}^{\mathrm{w}}: \mathrm{LAB}[\mathrm{rd}]$ DOR PHAR	FAITH [f]	GROUNDING	V ASSIMILATION	DEP-PATH
a. C $\varepsilon \mathrm{Q}^{\mathbf{w}}$			* DOR * ${ }^{\text {RD }}$	*
b. $C \varepsilon^{W} Q^{w}$		*! (*-BK/RD)	+ DOR	**
c. $\mathrm{C} \rho \mathrm{Q}^{\mathrm{w}}$	*! MAX-V [-BK]		W, , -	*

The symbol ü used in (128.c) stands for a front rounded vowel (i.e. the consonant has spread all of its place features and the vowel u has retained its lexical [rd] specification).

Input: /C u š/ u: LAB[rd] DOR š: DOR[hi, -bk]	FAITH [f]	GROUNDING	V ASSIMILATION	DEP-PATH
E a. Cuss			Q, $\quad[\mathrm{bbk}]$,	*
b. C i s	*! <LAB [rd]>			*
c. C ü ${ }_{\mathrm{s}}$		*! (*RD/-BK)		*
d. C o š			*!* DOR[hi, -bk]	.

The tableau in (129) shows that /a/ shares a PHAR specification with a following labiouvular consonant, but that its [rd] specification is not spread onto the vowel due to the high-ranking grounded constraint *LO/RD, which bans low rounded vowels. So although the optimal candidate in (129.a) fails to undergo complete $\mathrm{C}-\mathrm{V}$ feature sharing as shown by the violation of the constraint V-Assimilation, it does so in order to satisfy the higher-ranked constraints on Faithfulness and Grounding. Candidate (129.b) is ruled out since the [rd] specification has been spread onto an adjacent low vowel; this constitutes a violation of the grounded constraint *LO/RD. Candidate (129.c) is ruled out due to a violation of Faithfulness; the feature [lo] which defines the low vowel $/ \mathrm{a} /$ is not present in the Output. Candidate (129.d) is ruled out since consonant-vowel feature sharing (i.e. vowel assimilation) does not take place at all; failure to spread the PHAR node rules this out.

Input: / $\mathrm{Ca} \mathrm{Q}^{\mathbf{w} /}$	FAITH [f]	GROUNDING	V ASSIMILATION	DEP-PATH
比 $\mathrm{a} . \mathrm{Ca} \mathrm{Q}^{\mathrm{w}}$			[[rd]	5
b. $C \mathrm{a}^{\mathrm{w}} \mathrm{Q}^{\mathrm{w}}$		*! (*LO/RD)		प \quad -
c. $\mathrm{C} \circ \mathrm{Q}^{\mathrm{w}}$	$*!<[10]>$	$\text { Ki, , , } \quad \text {, }$		
d. $\mathrm{C} \mathrm{a} \mathrm{Q}{ }^{\text {w }}$			*! PHAR, *[rd]	

2.4.4 Schwa

Schwa in Sliammon is subject to colouration from adjacent consonants and vowels. The allophones of schwa are brief in duration. Their quality results from feature sharing with adjacent consonantal and/or vowel place features, with some degree of variation.

Schwa becomes [$\llcorner\sim t \sim \dot{i}]$ in the environment of alveopalatals, palatals and plain velars. Schwa is realized as [v] in the environment of labio-velars whereas it is slightly lower and rounded $[\rho]$ in the environment of labialized uvulars. Schwa is lowered to [Λ] in the context of plain uvulars, whereas it is lowered to a brief [a] in the environment of ?. It should be noted that [?] appears to have a systematic lowering effect on a preceding stressed schwa, a property not always exhibited by [h]. Schwa before [h] varies $[\wedge \sim a]$, as discussed in §2.3.2.1.5 above. Since schwa is realized as $[\boldsymbol{\partial} \sim \mathrm{L} \sim t \sim v \sim \partial \sim \wedge \sim a]$, it is important to distinguish schwa and the allophones of schwa from the allophones of the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a} /$. The reader is referred to J . Davis (1970 et seq.), Kroeber (1989), Blake (1992), and Watanabe (1994) for similar discussion regarding the surface allophones of schwa.

As argued in §2.4.2.2.1, schwa in Sliammon is analyzed here as a bare Nucleus, devoid of inherent phonological features, and lacking in phonological weight, following Shaw's (1996a, 1996b) analysis of other neighbouring Salishan languages (Lillooet, and Bella Coola). Kinkade (1998: 208) argues that epenthetic schwa in Upper Chehalis is both non-moraic and unspecified for phonological features, providing additional comparative evidence supporting the proposed representation of schwa in Sliammon.

Matthewson (1994: 4) in her discussion of Lillooet schwa states that "consonants on both sides of / $\partial /$ colour its realization, in a non-discrete fashion, suggesting phonetic interpolation effects rather than phonological processes." Sliammon seems to exhibit some patterns of schwa colouration which are systematic; these are (i) Retraction, (ii) Labialization, and (iii) the effects of preceding Alveopalatals. These three effects are therefore derived by constraint interaction. These effects are distinct from the effects of some preceding consonants on schwa - here I have recorded greater amount of variation, the forms are gradient, and do not seem to have the same status within
the grammar - their variability may well be attributed to phonetic interpolation rather than phonological constraints.

The following section provides examples of the allophones of schwa and the range of variation in the output of this vowel.

Schwa is realized as [∂] in a 'neutral' context, as shown by the data in (130). Consider the realization of schwa in the initial stressed closed syllable. These examples are derived via $\mathrm{CaC}-$ Plural reduplication; the schwa in question occurs within the reduplicative prefix. As shown by the placement of stress, the reduplicant occurs within the domain of the Prosodic Word.
(130) CəC- Plural Reduplication

Input

a. CəCPL-p̉ma
b. CaCPL-masiq ${ }^{\text {w }}$
c. CəCPL-Oumin

e. CəCPL-sup=nač=min
f. CəCPL-sma
g. CəCPL-tumiš tom-tumiš
h. CəCPL-tan
i. CəCPL-tala=aya-ap
j. CəCPL-tin
k. CəCPL-tin̉iq ${ }^{w}$

1. CaCPL-X̌apatit root?

n. CəCPL-Tasx ${ }^{W}$
p’əm-p’ə?ma
mos-masiq ${ }^{\text {w }}$
Orm-Oumin
t^{θ} əm- t^{θ} amq $^{w} \ddagger$
sop-supnačmin
səm-so?ma
ton-tan
tal-tala[h]aya[h]ap
ton-tin
tən-ti?niq ${ }^{w}$

Pes-Pasx ${ }^{\text {w }}$

Output
p’ám . pà̀ . ma wooden floats
mós. mn . $\mathrm{s} \in \mathrm{q}^{\mathrm{w}} \quad$ purple sea urchins
Oám. Oo.men eyebrows
$\mathrm{t}^{\ominus} \mathrm{\partial}^{\mathrm{m}} \cdot \mathrm{t}^{\theta} \wedge \mathrm{m} \cdot \mathrm{q}^{\mathrm{w}} \ddagger \quad$ lots of clouds
sóp.sop.n^č.mın stumps
sám.sa?.ma mussels
tóm. to . mıš young men
tón . tan lots of mothers
tól .ta. la. hà. ye. h^p your (pl) purses
tán. ṫ̊n barbecued fish
tán. ṫ ℓ. neq ${ }^{\mathrm{w}}$ salmonberries

q^{w} ́n.$q^{w a ? ~ . n v q} q^{w}$. ta knees
º̀s . Tas . x^{w} seals

2.4-4.1 Schwa and Retraction

Schwa is realized as $[\Lambda$] in the environment before a plain (non-labialized) uvular consonant, as shown by the data in (131.a-f).
(131) $[\wedge]$

Input		Output	Gloss
a. CaCPL-pq	pəq-pəq	ри́q. $\mathbf{p} \wedge$ q	it's all white
b. CəCPL-mqsin	meq-məqsin	m^́q. $\mathrm{m} \wedge \mathrm{q} . \mathrm{stn}$	noses
c. CəCPL-mixat	mox̆-mix̆at		black bears
d. CəCPL-sx̆m	səx̆-səx̆əm		racing canoes
			lots of ling cod
			lots of moccasins

This is analyzed as C-V feature sharing; in particular, sharing of the consonantal place node (PN) as shown by the autosegmental representation in (132).

Schwa is also retracted and realized as [\wedge] before a tautosyllabic glottalized consonant, as shown by the data in (133).
(133) [^]

Input		Output	Gloss
			square
b. \$n't	¢ən̉t	¢ イ́nt	to weave s.t.
c. $m \mathfrak{d}$	moṫ		calm (on water)
d. CəCPL-Paptn	Pəp’-Taptən		green sea urchins
e. CəCPL-tm	təm-təm	tóm. tır $^{\text {m }}$	lots of belts

When schwa follows a uvular or laryngeal consonant it varies between [$\mathbf{a} \sim \wedge$], showing that the preceding segment does not exert as strong an influence on schwa as the one which follows it.
(134) $[$ ~ \sim ヘ $]$

Input

a. CaCPL- qualas $^{\text {walas }}$
b. CəCPL-q ${ }^{\text {w }} \mathrm{ns}$
c. CaCPL-q ${ }^{\mathrm{W}}$ asm
d. CəCPL-Patnupil
e. CaCPL-qap=awus
$\dot{\mathbf{q}}^{\text {w }} \mathbf{\partial l} \mathbf{q}^{\text {Talas }}$
$q^{\text {won }}$ - $q^{\text {wonəs }}$
$q^{\text {wos }}$ - $q^{\text {was }}$.
?ət-Patnupil
qэp-qap’аwиs

Output
$\dot{q}^{\mathrm{w}} \mathrm{A}^{1} \cdot \dot{\mathrm{q}}^{\mathrm{w}} \mathrm{a} \cdot$ les
$\mathrm{q}^{\mathrm{w}} \mathrm{n}_{\mathrm{n}} \cdot \mathrm{q}^{\mathrm{w}} \wedge \mathrm{n} \cdot \mathrm{nts}$
$q^{\text {w }}$ ว́s. $\cdot q^{w} \Lambda$. səm
?Át . Pat . no . pèl
q^́p.q.qu.pa.wvs bats

Schwa becomes [α] before a tautosyllabic glottal, i.e. one not followed by another V. This [a] is brief in duration, and is not as long as [a] from /a/ (cf. Kroeber 1989). Notice that this occurs both before $/$ / $/$ as in (135.a-c), and before the [?] associated with a glottalized resonant, as in (135.d-f). (135) [a]

Input

a. CaCPL-RED-pu?px ${ }^{w}$
b. CəCPL-q ${ }^{w a P A}$

d. sma
pa?-pai-pu?px ${ }^{\text {w }}$

so?ma

Output
pर́? . pa?. pù? . px w
$\mathrm{q}^{\mathrm{w}}{ }^{\text {á }} \cdot \mathrm{q}^{\mathrm{w}} \wedge$? $\ddagger \quad$ lots of raspberries $\check{\mathbf{x}}^{\mathrm{w}}{ }^{\text {á? }} . \check{\mathbf{x}}^{\mathbf{w}} \mathbf{o}$? \quad lots of awls
sápm^ mussel

Gloss
lots of kindling

e. mna	mə?na	má?na ~máin^	child, one's offspring
f. qỷa	qə?ya	qá?ye	water

The autosegmental representation in (136) illustrates lowering of schwa to [a] before ?
(

Although the uvulars and laryngeals form a natural class of PHAR consonants, uvulars are distinct from laryngeals by virtue of their DOR specification (akin to DOR [-hi] within a model which admits binary features). As shown by the data in (135), glottal stop which is specified as both PHAR and LAR [cgl] has a significant lowering affect on schwa, an effect which is not shared with the plain uvulars.

2.4.4.2 Schwa and Labialization

Schwa is realized as [v] when it occurs either before or after a labio-velar consonant, as in (137).
(137) [v] in environment of labio-velar

Input
a. CəCPL-pukw
b. C CPL- $\mathrm{t}^{0} \mathrm{k}^{\mathrm{w}} \mathrm{a}$
c. $\quad \mathrm{C}$ CPL- $-\mathrm{k}^{\mathrm{w}}=$ nač $=$ tn
d. CaCPL-tix ${ }^{\text {Wotat }}$
e. CəCPL- $\mathrm{k}^{\text {wnnay }}$
f. CəCPL-kwaft
pak ${ }^{\text {w }}$-puk ${ }^{\text {w }}$
$\mathfrak{t}^{\ominus} \partial \mathbf{k}^{\mathrm{w}}-\mathrm{t}^{\ominus} \partial \mathbf{k}^{\mathrm{w}} \mathrm{a}$
$\Theta ə \mathrm{k}^{\mathrm{w}}-\Theta \partial \mathrm{k}^{\mathrm{w}}$ načtn
tox ${ }^{W}$-tix ${ }^{\text {w }}$ -
$k^{w} ə n-k^{w} \partial$?nay
$k^{w} \partial t-k^{w}$ aft

Output
púk ${ }^{\mathrm{w}} \cdot$ puk $^{\mathrm{w}} \quad$ lots of books
$t^{\theta} \hat{v} \mathbf{k}^{\mathrm{w}} \cdot \mathrm{t}^{\theta} \partial \cdot \mathrm{k}^{\mathrm{w}} \mathrm{a} \quad$ edible rootstalks
$\theta u \mathbf{k}^{\mathbf{w}} . \theta \imath \mathbf{k}^{\mathbf{w}}$. nàč. $\operatorname{tṇ}$ lots of chairs
túx ${ }^{w}$. tix ${ }^{w}$. Ant tongues t
$\mathbf{k}^{\mathrm{w}} \mathrm{v}^{n} . \mathrm{k}^{\mathrm{w}} \mathrm{a}$? $\mathrm{n} \wedge \mathrm{y} \quad$ lots of lids
$\dot{\mathbf{k}}^{\mathrm{w}} \mathbf{\vartheta ́}^{\prime} . \mathbf{k}^{\mathrm{w}} \wedge \nmid t \quad$ lots of plates
(138)

Schwa is both retracted and rounded before a labio-uvular consonant, as shown in (139).
(139) [$]$

Input
a. CəCPL-Xiq ${ }^{\mathrm{w}}=\mathrm{an} \mathbf{a}^{2}$
b. CəCPL- $\ddot{\star}^{\boldsymbol{\pi}}{ }^{\mathbf{w}}=$ inas
c. CəCPL-tə ${ }^{\text {w }}$
d. CaCPL- $\grave{x} \dot{x}^{\mathbf{w}}=$ ay

Output
Gloss

tóq${ }^{\mathbf{w}}$. to ${ }^{\mathbf{w}}$ arrows

(140)

2.4.4.3 Schwa and Place Assimilation

Schwa is realized as [l] between coronals, and as [L] in the environment of DOR[hi] consonants (alveopalatals and plain velars). The relevant syllable is underlined in the Output column of (141).

Input

a. CəCPL-OuӨin
b. čuf $\mathrm{CaCPL}-\mathrm{saftx}{ }^{w}$
c. CoCPL-X̌áaqan
d. CaCPL-j" $=u m i x{ }^{w}$
e. CəCPL-mačin
f. CəCPL-kapu
$\theta \infty-\theta u \theta$ in
sot-saftx ${ }^{w}$

mač-mačin
kəp-kapu

Output

čúý . sít. sat . txw

mičus. ma.čın
$\mathbf{k}^{\text {yíp }} \cdot \mathrm{k}^{\mathbf{y} æ} \cdot$.po

Gloss

 lips (pl)young women
lots of slugs
car, vehicle
lice
lots of coats
(142)

2.4.4.4 Interaction of Retraction and Place Assimilation

J.Davis (1970) and Urbanczyk (1999) state that schwa becomes [ε] when it occurs after an alveopalatal and before a laryngeal. As documented here in §2.4.4.6, when schwa occurs after an alveopalatal and before a plain uvular stop, it is realized variably as $[\wedge \sim \varepsilon]$. Blake $(1992,1995)$, and Watanabe $(1994,2000)$ make a slightly different claim in which schwa neutralizes with the low vowel $/ a /$ before a laryngeal, and then, like $/ a /$ assimilates to the preceding alveo-palatal yielding [ε]. The morphological status of the Root in question is taken here to be the deciding factor as to whether the vowel is underlyingly an $/ \mathrm{a}$ or is a schwa. If the Root behaves as a Weak Root for morphological purposes, the surface [ε] is analyzed as schwa whereas if the Root were to behave as a Strong Root, then surface $[\varepsilon]$ is analyzed as $/ a /$. Recall that surface $[\varepsilon]$ also comes from $/ \mathrm{i} /$ in the environment of a following post-velar consonant, but that the allophones of schwa are perceptually shorter in duration than the allophones of the full vowels.

Examples in which schwa is realized as [ε] are documented in (143). Notice that in each case both the alveopalatal and the following laryngeal $?$ belong to the same syllable. A comparison of the examples in ($148 . b-b^{\prime}$), repeated here as (143.d-e), shows that this is a necessary condition for assimilation.

Input

a. šm’it
b. hu čap CəCPL-ju?
c. špt ga
d. $\quad c ?=u m i x^{w}=t n$

šə?mit
hu čap \mathfrak{j} ? $?$-ju?
ša?t ga

※̇?načton

Output
šé? . m\&t

šé? g g
cóo . To . $\mathrm{mlx}^{\mathrm{w}}$. ton
čé?. nnč.tın.

Gloss dried (stative) you (pl) go home go upstairs rug on floor small blanket to sit on

The surface realization [ε] involves the rightward spread of DOR[-bk] and the leftward spread of PHAR given the present analysis, as in (144).

The examples in (145.a-c) show that for some speakers Retraction takes precedence over the effect of a preceding alveopalatal, since schwa is realized as [Λ] and not as [ε]. The examples in (145.d-f) show that schwa is realized as [Λ] before a plain uvular, as in (131) above.
（145）［ 1 ］in the environment before a plain post－velar

Input		Output	Gloss
a． z_{q}	$\underbrace{}_{\text {ca }}$	żíq	robin
b． $\bar{c}_{\bar{x}}$		$\underbrace{\text { ¢ }}_{\text {ćn }}$	ripe，cooked，done
c． j q g	јə¢	јイ́q	smooth
d． $\mathbf{p q}$	paq	p íq $^{\text {d }}$	white
e．${ }^{\text {x }}$＇${ }^{\text {a }}$		同へ́q	rot
f． $\mathrm{q} \times \mathrm{x}^{\text {d }}$	qә ¢ $^{\text {d }}$	q ${ }^{\text {¢ }}$	many

Height assimilation of schwa to the following atveopalatal（spread of DOR［hi］）occurs consistently，but the effect of the preceding labialized consonant on schwa varies across speakers， giving the surface variation recorded in（147．a－b）．Again the tautosyllabic consonant which follows schwa exerts a stronger effect on the surface realization of this epenthetic nucleus than the preceding consonant does．
（147）different speakers

Input
a．$\hat{k}^{W} \mathrm{~s}-\mathrm{t}$
b． $\mathbf{k}^{\mathbf{w}}=\mathbf{s}=\mathrm{G}$ in－m
$\mathbf{k}^{\text {wost }}$
$\dot{k}^{\text {whesufinəm }}$
c．CəCPL－k ${ }^{\mathrm{w}}$ nay
k^{w} ən－${ }^{w}$ º？nay

Different Speakers
Gloss

count s．t．
to tell a joke
lots of lids

2.4.4.5 Translaryngeal Harmony

Not only is the surface realization of schwa determined by adjacent consonants, it can also be influenced by the quality of adjacent vowels. The example in (148.a) shows that schwa may be coloured by a preceding vowel, and that assimilation occurs across an intervening laryngeal. The example in (148.b) shows that translaryngeal harmony can also occur in the other direction; schwa becomes harmonic with a following vowel, and assimilation occurs across an intervening laryngeal.

Input		Output	Gloss
a. tg-?m-t-'ứč	tú? ${ }^{\text {amtù }}$ č	túPəmtòtč ~túporntòtč	I froze it for her
b. $\quad 8 ?=u m i x=t n$	$\mathcal{c o s p u m i x}^{\text {w }}$ ton	cóo . O . $\mathrm{mlx}{ }^{\text {w }}$. tan	rug on floor
	ċə? ${ }^{\text {načtən }}$	čéf . nıč.tın.	small blanket to sit on
b". č?-	ċop-	と̇¢-	be on top of

a.
b.

[rd]

[rd]

2．4．4．6 Summary of Allophones of Schwa

The following table presents a summary of the allophones of schwa： C_{1} indicates the place of articulation consonant which precedes schwa，and C_{2} is used to indicate the place of articulation of the consonant which follows schwa．The dotted line（ -- ）indicates that there are no clear examples in the present data base．The gap in（150）involves the plain velars in C_{2} position，a position in which plain velars are severely limited in distribution（cf．Appendix IV）．This is directly due to the fact that Proto－Salishan $* \mathrm{k} / \dot{k}$ were fronted to \check{c} / \dot{k} respectively．Examples of $[\mathrm{k}]$ and $[k]$ within the synchronic grammar are loan words from either English or Chinook Jargon，or the neighbouring Wakashan language Kwakwala．

C_{2}	LAB	COR	Alveopalatal	Velar	Labio－Velar	Uvular	Labio－Uvular	Glottal ？
LAB	ว＇	כ́～র́	á	－－－－	ว́～${ }^{\text {a }}$	র́	ט́～${ }^{\text {¢ }}$	á
COR	万́～র́	á～í	í	í	v́～ú	人́	v́～ó	á
Alveopalatal	í	$\underline{i} \sim \mathcal{E}^{\prime}$	i～í	－－．－	v́～ú	$\bar{\Lambda} \sim \hat{\varepsilon}$	5	É
Velar	i	í	i	－－－－	$\hat{2}^{\mathbf{w}} \sim \underline{v}$	へ́	v́～	á
Labio－Velar	v́	v́	$\boldsymbol{i} \sim \boldsymbol{v}$	\cdots	ú～ó	$\stackrel{\prime}{1}$	v́～	á
Uvular	র́	র́	әу［ e^{\prime} ］\sim र́	－－－－	র̇	$\hat{\Lambda}$	5～3＊	$\boldsymbol{\alpha} \sim \hat{\Lambda}$
Labio－Uvular	Λ	\wedge		\cdots	$\delta^{\mathrm{w}} \sim \mathrm{o}^{\prime}$	$\hat{\wedge} \sim$	5	á
Glottal	$\stackrel{\prime}{\prime}$	$\underline{\partial} \sim \hat{\Lambda}$	2y［i＇］	э́～র́	र́	$\hat{\wedge}$	Λ	á

As we have observed，schwa retracts to［ Λ ］in the environment of plain uvulars（PHAR DOR） whereas it retracts and lowers to a brief［a］in the environment before glottal stop（PHAR）． Retraction always takes place when schwa is adjacent to a post－velar consonant．Schwa is labialized when it precedes a labialized（i．e．［rd］）consonant．As seen from（147）above a preceding Labialized consonant does not tend to affect a following schwa to the same degree that a following labialized consonant does．Labialization spreads leftward but tends not to spread rightward（note
the variability mentioned in §2.4.4.2). Labialization takes precedence over assimilation to a preceding alveopalatal (DOR[-bk]).

2.4.4.7 Proposed Analysis

The analysis proposed here follows from same constraints proposed for the Full Vowels $/ i, u, a /$ and the fact that schwa lacks lexical feature specification.

When schwa is followed by a tautosyllabic laryngeal consonant? it is systematically lowered to [d]. Retraction to the low vowel [d] interacts with Labialization in the following way. Retraction from a following glottal seems to take precedence over rounding from a preceding labialized consonant. This not only shows that Retraction to [a] outranks Labialization but underscores the fact that consonants which follow schwa seem to have a stronger effect than consonants which precede schwa. Notice that retraction to [a] and Labialization are in conflict since there are no low rounded vowels in the language, as discussed in §2.4.3.2.1. Again this follows from the grounded constraint which states that if a vowel is DOR [lo], then it is not round. This is abbreviated as *LO/RD.

A preceding alveopalatal (DOR [hi, -bk]) can affect the height and place of articulation of schwa depending on the place features of the following consonant, as shown by the data in (143-145) above. Alveopalatals generally share their [hi] specification with a following schwa except when schwa is followed by a post-velar (PHAR) consonant. Since retraction of schwa in the environment of a following post-velar consonant (PHAR) seems to be categorical (that is, it always takes place), the failure of [hi] spread from a preceding alveopalatal consonants is analyzed as a high-ranking grounded constraint which states that if the vowel (in this case schwa) is PHAR, then it is not [hi] (*PHAR/HI). A preceding alveopalatal also shares its [-bk] specification with a following schwa as long as schwa is not followed by a tautosyllabic labialized consonant. In this case, rounding takes precedence over the spread of [-bk]. This is analyzed here as a grounded constraint which states that if a vowel is [rd], then it is not [-bk] (*RD/-BK). This constraint also captures the fact that Sliammon lacks front rounded vowels in its inventory.

It is not fortuitous that schwa colouration and the realization of the underlying full vowels show many parallels；in particular，Retraction and the effects of a preceding Alveopalatal．One question we might address here is why does schwa colouration also involve Labialization whereas the realization of the full vowels does not？This is explained in a straightforward manner given the lexical representation of the Full Vowels and the grounded constraints proposed above． Labialization can not occur to either／i／or／a／due to the grounded constraints＊－BK／RD and＊LO／RD． The effects of labialization on $/ u /$ are not perceived since $/ u /$ is lexically specified as LAB［rd］DOR． This observation is important since it provides us with a diagnostic for differentiating schwa（and the allophones of schwa）from a reduced full vowel．Full Vowel Reduction is discussed in the next section．

2．4．5 Reduced Full Vowels

The prosodic properties of Full Vowel Reduction in Sliammon will be discussed in detail in Chapter 4 where it will be argued that reduction is sensitive to stress．A full vowel is reduced in a closed unstressed（post－tonic）syllable in order to improve the resulting Foot structure（cf．§3．3 on Metrical Structure in Sliammon and $\S 4.3$ on Full Vowel Reduction）．Representative data are presented here in（151）in which full vowels alternate with their lax counterparts．
（151）Full Vowel Reduction

Input

a．yax̆－t－anapi－as－＇ut
a＇．yax̆－t－anapi č
b．hi hw č x̌a犬゙－ng－mi

Output
yax̆－［a］t－anapi－s－ut yax̆－［a］t－anapi č hihiwč x̌ȧ̇numi x̆aえ̃numič
yé ．x̆a tà na ．nè̀．sot yé ．x̆a ．tà ．na ．plč．I remembered you（pl） hé：wč x̌át ．no ．me．I love you very much x̌à̉̉ ．no ．mıč．I love you（sg） 1

[^13]| c. Pawuk $^{\text {w-h }} \mathrm{hV}$ č | Pawu-hu-kw ${ }^{\text {w }}$ | P^́. wo . hòkw ${ }^{\text {che }}$ | I have tobacco |
| :---: | :---: | :---: | :---: |
| c^{\prime}. Pawuk $^{\text {w }}$ | Pawuk ${ }^{\text {w }}$ | Rá . wukw ~ Píwukw | tobacco |
| d. tug- θ-as | tug- $[u]-\theta$-as | tó . gu . Ons | she recognizes me |
| d'. tug-t č | tug-[P]<t>c | tó. guç | I recognize her |
| e. DIM-mixat=ut | mi-m<i>x̆atut | mém. ${ }^{\text {xa }}$. tòt | black bear cub |
| e'. mixat | mix̆at | mé. x̆ $^{\text {d }}$ | black bear |
| f. ?iftan-hV č | Pitta-ha-n č | ?ét . ta . hìnč | I've got food |
| f. Piftan | ?ittan | Pét | eat, food |
| g. \quad sup $=$ nač-hV a | supna-ha-č a | sóp . na . hà . ča . | Has he got a tail? |
| g'. sup=nač | supnač | sóp.nscr | tail |

It is proposed that Full Vowel Reduction entails the loss of a mora associated with the Full Vowel, but that the full vowel retains its phonological features, following Blake (1999).

Traditionally, full vowel reduction is often treated as reduction to schwa; that is, the loss of a mora and the phonological features which it dominates. Within Optimality Theory, the constraints which govern the prosodic structure can be ranked independently from the constraints on featural Faithfulness. It therefore seems entirely feasible to "adjust" the prosodic representation (in this case underparse a mora $\langle\mu\rangle$) in order to create an optimal Foot without affecting the featural content which it dominates. In this way, constraint violation is minimal.

It seems important therefore to consider whether or not Full Vowel Reduction in Sliammon is the same as reduction to schwa. It is claimed here that the output of Full Vowel Reduction has the prosodic structure of schwa and the featural content of a full vowel. In order to see this, consider the representation of the three "types" of output vowels (schwa, full vowel and reduced full vowel) presented in (152).

Schwa	Full Vowel	Reduced Full Vowel
C Nuc C	Nuc	Nuc
$1 \cdot 1$	1	1
1	μ	< $\mu>$
1×1	$\left.\right\|_{\mathfrak{r} \in \mathfrak{f}}$	If
[f] [f]	[f]	[f]

Notice that the difference between the surface representation of schwa and the output of full vowel reduction is not whether or not the vowel has features (both do) rather the source of those features. The surface output of schwa is completely determined by the features associated with adjacent consonants (and vowels) whereas the output of Full Vowel Reduction retains its lexical featural content (DOR[-bk] for $/ \mathrm{i} /[\iota]$, LAB [rd] DOR for $/ u /[v \sim \nu]$, and $\operatorname{DOR}[l o]$ for $/ a /[\Lambda]$). The height of the reduced full vowel is still determined by the height of the adjacent consonants; however, the lexical content of the reduced vowel prevents total place assimilation, in keeping with the grounded constraints and faithfulness, as discussed above.

2.4.5.1 Evidence that Full Vowel Reduction (laxing) \neq Reduction to Schwa

The next section presents two cases which supports this claim. Basically, the quality of a reduced full vowel is distinct from the surface realization of schwa in a number of contexts.

The first case involves what happens to unstressed /i/ when it is followed by a labialized consonant $\left(\mathrm{C}^{w}\right)$. If full vowel reduction were the loss of a mora and the phonological features associated with this vowel, then we would expect the surface reduced vowel (i.e. the Output) to be identical to schwa in the same context. The data in ($153 . a^{\prime}-c^{\prime}$) shows that schwa is rounded before a labialized consonant whereas (153.a"-c") Column 3 shows that schwa does not surface as a mid central unrounded vowel [∂] in this context.
(153) Schwa Colouration

Input

a. $\dot{\mathbf{q}}^{w}{ }^{\mathbf{X}}-\mathrm{t}$ ga to $\mathrm{qiga} \theta$

$\mathrm{a}^{\prime \prime}$.
b. $n x^{w i q}$
nox ${ }^{\text {wiq }}$
b'. CəCPL-nx ${ }^{\text {wit }}$
b".
c. $\quad \mathrm{DIM}-\dot{\mathrm{x}} \tilde{x}^{\mathrm{w}}=\mathrm{ay}+[?]$
c. ${ }^{\prime} \check{x}^{w}=a y$
c".

Output

$\dot{q}^{w}{ }^{w} \dot{q}^{w}{ }^{w} \mathfrak{t}^{2}$ čın \quad I'm butchering it

núx ${ }^{w} \imath \ddagger \sim$ núx ${ }^{\text {wit }} \ddagger$ dugout canoe
núx ${ }^{W} n v X^{w} \varepsilon \Psi \quad$ canoes

${ }^{\lambda}{ }^{\prime} \mathbf{x}^{\mathrm{w}} \wedge \mathrm{y}$

* ${ }^{\text {ºx }}{ }^{\mathrm{w}} \wedge \mathrm{y}$

Gloss

> Dicle
chum, dog salmon

Contrast this with the following data in (154) which shows unstressed $/ \mathrm{I} /[\varepsilon / t]$ in the same phonological context (i.e. before a labialized consonant). Notice that reduced/i/surfaces as $[\varepsilon / t]$, and crucially does not surface as [ρ / v], as shown by the starred (${ }^{*}$) forms in (154.a'-e').
(154) Full Vowel Reduction/i/ [E / h]

Input a. masiq ${ }^{w}$	$\begin{aligned} & \text { V-reduction }<\mu> \\ & \left(\text { má }_{\mu} \cdot \text { siq }^{\mathrm{w}}<\mu>\mu\right. \text {) } \end{aligned}$	Output má $\cdot s \varepsilon q^{w}$	Gloss purple sea urchin
a^{\prime}.	*ma. seq ${ }^{\text {w }}$	*masoq ${ }^{\text {w }}$	
	$\left(\hat{t}^{\ominus} \mathrm{i}_{\mu} \cdot \mathrm{p}_{\mathrm{p}} \mathrm{q}^{\mathrm{w}}<\mu>\mu\right.$)		pointed nose
b^{\prime}.			
c. Xiq̣iw		̇̇éq̉Ew	dark
c^{\prime}.			
d. tiqiw	($\mathbf{t i p}_{\mu} \cdot \mathbf{q} \mathbf{i w}<\mu>\mu$)	téqEw	horse
d^{\prime}.	*ti . q ${ }^{\text {a }}$	*tÉqəw	
e. liPagik w	$\left(\mathrm{Pi}_{\mu} \cdot \mathrm{Pa}_{\mu} \cdot \mathrm{gik}^{w}<\mu>\mu\right)$	Pé?agık ${ }^{\text {w }}$	clothes
\mathbf{e}^{\prime}.	*?i. Pa. gak ${ }^{\text {w }}$	* Péalaguk $^{\text {w }}$	

The grounded constraints posited to explain the full vowel allophones §2.4.3 and the output of schwa colouration $\$ 2.4 .4$, also provide an explanation for why reduced $/ \mathrm{i} /[\varepsilon / \mathrm{l}]$ fails to undergo rounding. Since /i/ is lexically specified DOR[-bk], place assimilation and consonant-vowel interaction is subject to the grounded constraint *-BK/RD which states that if a vowel is [-back], then it is not round. Reduction, which is construed as the underparsing of a mora (Max[$\mu]$ violation), does not affect the correspondence relations of the features it dominates. Since schwa lacks inherent place features, it is free to undergo Labialization, thus explaining the observed contrast between the Output of Full Vowel Reduction and Schwa Colouration.

The second case which shows that the Output of Full Vowel Reduction is distinct from schwa colouration involves $/ \mathbf{u} /$ in an unstressed syllable between adjacent coronals, and a comparison with schwa in the same phonological context. Consider the realization of schwa between coronals. As shown by the data in (155) schwa is realized as [\quad ~ \sim i].

Input		Output	Gloss
a. CəCPL-sattx ${ }^{\text {w }}$	sot-saftx ${ }^{\text {w }}$	sítsattx ${ }^{\text {w }}$	women
b. CəCPL-tiniq ${ }^{\text {w }}$	ton-tipniq ${ }^{\text {w }}$	tónṫ¢ ${ }^{\text {neq }}{ }^{\text {w }}$	salmonberries

If full vowel reduction of $/ u /$ were reduction to schwa (i.e. a bare nucleus), then we would expect it to surface as $[\bar{\gamma} \sim 1]$ between coronals. The data in (156) shows that this is not the case. Reduced $/ u /$ is realized as $[v \sim 0$] in keeping with the proposed analysis; crucially it retains its inherent DOR [rd] specification.
（156）Reduced／u／［ $\sim \sim v$ ］

Input		Output	Gloss
a．jas－＇ut	jasuł	jésot	yesterday
\mathbf{a}^{\prime} ．	＊ jas ¢ ${ }^{\text {d }}$	＊jésit，＊jésat	
	入əpxwatvłč	χ ¢ $\mathrm{p}^{\text {watatutc }}$	I broke it
${ }^{\prime}$＇	＊才əpxwatə九¢̆	＊えəpxwatıč	
$\mathrm{b}^{\prime \prime}$ ．	＊入əpx ${ }^{\text {watəれč }}$	＊えəpxwatatč	
c．$\hat{k}^{\text {winunut }}$		$\mathbf{k}^{\text {woó？not }}$	porpoise
c^{\prime} ．			
d．$\check{\mathrm{x}} \mathrm{ar}^{\text {® }}$－Өut	x̆at ${ }^{\text {® }}$ Out	x̌át ${ }^{\text {® }}$ Ost ${ }^{\text {h }}$	fit（clothes）
d＇．			

The explanation is parallel to the one presented above．When moras are parsed into Feet they are subject to constraints on well formedness，in particular Foot Binarity at the moraic level（FTBIN μ ）． The constraint conflict therefore is between the pressure to parse moras（Max［ μ ］）into well－formed Feet，and to construct Feet which obey Foot Binarity．Since the constraint conflict is of a prosodic nature，additional violations of Faithfulness（i．e．the loss of phonological features）will always entail non－minimal violation of the constraint hierarchy．In the case of $/ u /$ ，the loss of the features DOR［rd］would involve exactly these kind of non－minimal violations．The resulting candidate would have more constraint violations，and therefore be less optimal than a candidate which incurs minimal violations（just enough in order to satisfy the constraint ranking）．Consider the following tableau which illustrates this point．
(157) jasư [ǰ́soł] yesterday

Input:	FTBIN μ	FArTH [f]	$\operatorname{MAX}[\mu]$
$\cos \mathrm{a}$.			
	*!		
		*!**	

This is illustrated briefly here to show that the output of Full Vowel Reduction is distinct from Schwa Colouration. Detailed discussion and analysis of the prosodic properties of Full Vowel Reduction will be presented in Chapter 4.

Chapter 3: Prosodic Structure of Sliammon

Raven did not come on Thursday, He sent nothing.
Not a word. Not a sign.
Nothing on Thursday. Nothing on Friday.
Nothing on Saturday. Nothing on Sunday.
Then he sent eagles.
Phyllis Webb

3.0 Introduction

This chapter is a pivotal chapter. It provides additional evidence for a phonological weight contrast between the full vowels and schwa, thus confirming the hypothesis made in Chapter 2, and it motivates the prosodic structures which will be assumed in Chapters 4 and 5. Arguments regarding the moraic structure of the language are presented in §3.1. §3.2 introduces the basic syllable-structure constraints, and $\S 3.3$ is a brief introduction to Sliammon metrical structure.

Kenstowicz (1993), and Blevins (1995) both summarize the central role of the syllable within linguistic theory. Speech sounds are not simply ordered with respect to one another in accordance with the constraints on possible sequencing; rather speech sounds are proposed to be organized into higher prosodic units of Mora (μ), Syllable (σ), Foot (Ft), and Prosodic Word (PrWd), following Selkirk (1980a, 1980b), McCarthy and Prince (1986 et seq.). The modified version of the Prosodic Hierarchy which is adopted here is presented in (1), and re-introduces the Nucleus (N) as a linguistic prime, following work by Shaw (1992, 1993, 1995, 1996).
(1) Prosodic Hierarchy
PrWd
$\stackrel{1}{\mathrm{Ft}}$
\mid
σ
1
N
\mid
μ

Shaw (1995, 1996) provides the syllable typology in (2):
(2) Nuclear Moraic Model of Syllable Structure (Shaw 1993, 1995, 1996)

Super-light non-moraic	Light mono-moraic	Light mono-moraic	Heavy bi-moraic	Heavy bi-moraic	Super-heavy tri-moraic		
a.	b.		c.		d.		e.

This model allows for super-light syllables which are characterized as Nuclear but non-moraic (=2.a). The model also groups mono-moraic nuclear CV syllables (2.b) together with the monomoraic non-nuclear $C C$ syllables in (2.c). Although they differ in the presence/absence of a vocalic Nucleus, the claim made by this model is that they behave in a similar fashion with respect to their phonological weight. The non-nuclear syllables such as the ones in (2.c) provide a representation for obstruent-only syllables; these are also referred to as 'Minor Syllables', following Sloan (1988), Shaw (1996.a, 1996.b). As will be shown in §3.2, Sliammon has minor syllables at the right-edge of the word. The reader is also referred to Shaw (1996.a) on Minor Syllables in Lillooet and Bella Coola, and to Bates and Carlson (1997) on Minor Syllables in Spokane (Salish).

This model also predicts mono-moraic syllables of following form, following Shaw (1996.b):
(3)

Light: mono-moraic
a.

M	
/ N	
1	1
1	μ
1	
	C

The structure in (3) represents a mono-moraic closed syllable which contains a non-moraic Nuclear schwa and a moraic coda consonant. Schwa most often occurs in this configuration, as discussed in detail in Chapter 5.

If schwa is weightless, and syllables are maximally bi-moraic, then we may also expect to find evidence for bi-moraic syllables of the form in (4). (cf. Shaw (1996b) who questions whether or not schwa can license a complex coda.)
(4)

Heavy: bi-moraic
a.

σ	
111	
	\1
1	$\mu \mu$
1	1
] CC

As will be shown in $\S 3.2$, both CaC and CaCC syllables are attested in Sliammon. What is of particular interest is the fact that Sliammon exhibits a constraint against trimoraic CACC syllables whereas CəCC syllables are attested. This contrast provides additional evidence for the hypothesis that schwa is Nuclear and non-moraic whereas the full vowels $/ i, u, a /$ are Nuclear and moraic.

3.1 Moraic Structure

Within this model, the mora (μ) is the basic unit of phonological weight in keeping with a growing body of literature (Hyman (1985), Hayes (1995), Zec (1988), Bagemihl (1991), Pulleyblank (1994), amongst others). Pulleyblank (1994) presents arguments that moras are present in the Input rather than assigned by weight-by-position (cf. Hayes 1995).

It will be argued in this section that Sliammon displays a contrastive weight distinction. In particular, schwa is weightless whereas the full vowels $/ i, u, a /$ are mono-moraic. For example, Weak Roots of the shape CaC are proposed here to be mono-moraic whereas Strong Roots of the shape CAC are bimoraic. (Recall that " A " in CAC stands for a full vowel). The independent existence of Compensatory Lengthening (CL) in the language motivates preservation of underlying
moraic structure and provides evidence that coda consonants are moraic (cf. Hayes 1989 on CL; Blake 1992 on CL in Sliammon).

The goal of §3.1.1 is to establish the fact that coda consonants in Sliammon are moraic. Once this point has been established, §3.1.2 shows that C C syllables behave differently than CAC syllables. Since there is evidence that a single post-vocalic coda consonant is moraic, then this difference in behaviour is therefore attributed to a difference in phonological weight of the vowel; schwa is weightless whereas the full vowels $/ i, u, a /$ are mono-moraic. This corroborates the claim made in Chapter 2 where it was noted that schwa is shorter in duration than the full vowels. The hypothesis that all post-vocalic coda consonants are moraic is central to the discussion of the constraints on the distribution of schwa which will be developed in detail in Chapter 5.

3.1.1 Coda consonants are Moraic

The purpose of this section is to show that post-vocalic coda consonants are moraic in Sliammon. Evidence is presented from Compensatory Lengthening facts §3.1.1.1, Stress assignment and Full Vowel Reduction §3.1.1.2, and the stress properties of the Stative suffix -it §3.1.1.3. The conclusion that coda consonants are moraic in the language finds additional confirmation from judgements regarding prosodic constituency provided by speakers of Sliammon in §3.1.1.4.

3.1.1.1 Compensatory Lengthening

As shown by the data in (5) and following Blake (1992), the loss of a syllable-final glottal [?] gives rise to Compensatory Lengthening of the preceding full vowel nucleus, following Blake (1992). The relevant syllable is underlined in (5) Column 3. Although the data in (5.c-d) show that two variants appear to be in free variation, the existence of vowel lengthening provides evidence for the moraic status of the coda consonant.
(5) Compensatory Lengthening: loss of?

Input
a. gai-gait ${ }^{\ominus}$ ap
gaigait ${ }^{\theta}$ ap
a^{\prime}. ga? ${ }^{\ominus}$ ap
b. $\check{\mathrm{X}}^{\mathrm{w}} \mathrm{at}^{\hat{\theta}}=i q^{w}=\mathrm{u}^{2} \mathrm{a} a$
b' $^{\prime} \check{x}^{w} a^{\beta}=i q^{w}=u j a$
c. tỷta
d. $Ө \dot{y} \theta \mathrm{a}$

Output
gâ? ${ }^{\text {gaP. }} \mathrm{t}^{\ominus} \wedge \mathrm{p}^{\mathrm{h}} \quad$ he's gone driving
gáa: $\tau^{\theta} \wedge \mathbf{p}^{h} \quad$ drive, steer

 tilt $\wedge \sim$ tiit \wedge that one (gen.) $\theta_{i} \theta_{\Lambda} \sim \theta_{i} \cdot \theta_{\Lambda} \quad$ that one (fem)

Loss of syllable-final [h] also gives rise to Compensatory Lengthening, as in (6). The morphologically related forms show that the Root is h-final.
(6) Compensatory Lengthening: loss of h

Input		Output	Gloss
a. tih	tih	til \sim 位:	big
a'. tih=us	tihus	tihos	big head
$\mathrm{a}^{\prime \prime}$. tih $=\mathrm{iq}^{\mathbf{w}}$	tihiq $^{\text {w }}$	tiheq ${ }^{\text {w }}$	big nose
a''. IMP-tih-INC	ti-tih-ih	titihèh	it is getting big
b. IMP-puh-INC	pu-puh-uh	púpubuh	it is getting windy
b'. puh-im	puhiom		to blow (wind)
$\mathrm{b}^{\prime \prime}$. puh-?m[i]	puh?im	púh? $\frac{\text { cm }}{\sim}$ puíhem	it's windy (state)
c. Pah	Pah	3ah	be hurt, sore
c'. Pah-stg	Pahsx ${ }^{\text {w }}$	2á: $\mathrm{sx}^{\text {w }}$	hurts
c". Pah-stg č	Pahsx ${ }^{\text {w }}$ c	[追sxwc	I'm hurt

A third context illustrating Compensatory Lengthening entails the loss of a final n in the environment before t, or θ, as shown by the data in (7.a-b). The form in (7.c) shows that the Lexical Suffix (LS) $=\mathrm{iq}^{\mathrm{w}}$ an head is n -final.
(7) Compensatory Lengthening: loss of n

Input	n-deletion	Output	Gioss
$s{ }^{\prime}=-i q^{w} a n-\theta-a s$			he hit me on the head
x̌im=iqwan-t-m	xímiquà ${ }^{\text {a }}$ ¢ $\mathrm{n} \geq$ tom	x̌émequà ${ }^{\text {a }}$ təm	get clawed in the head
$n p=i q^{\text {w }}$ an	nópiquan		brain

To summarize, the loss of a syllable-final $\{?, \mathrm{~h}, \mathrm{n}\}$ causes Compensatory Lengthening, and therefore provides evidence that post-vocalic syllable-final consonants are moraic. Since h is a fricative, and n patterns with the class of Resonants, the hypothesis made here is that all coda consonants are moraic in Sliammon, following Blake (1992). This is illustrated by the Input/Output representations in (8).

$$
\begin{align*}
& \text { Input Output } \tag{8}
\end{align*}
$$

It should also be noted that Compensatory Lengthening seems to be restricted to stressed syllables. One may also wonder why Compensatory Lengthening does not take place more frequently than it does. Since many cases of consonant deletion (Coronal deletion: n-deletion, \mathbf{t}-deletion, \mathbf{q}-deletion cf. §2.2.7.2) occur in order to reduce the phonological weight of the syllable in question, conservation of the moraic structure via Compensatory Lengthening is non-optimal in these contexts. Furthermore, as will be argued in Chapter 4 there is a high-ranking constraint

PEAK PROM FT which ensures that the phonological weight of the head of the Foot is greater than or equal to the phonological weight of the non－head．Conservation of moraic structure in an unstressed syllable would therefore cause a violation of this constraint．

3．1．1．2 Stress Assignment and Vowel Reduction

One of the central claims made in Chapter 4 is that Full Vowel Reduction occurs in unstressed closed syllables in order to reduce the phonological weight of the non－head．The proposed analysis of the stress facts and of Full Vowel Reduction entail that coda consonants are moraic，as shown by the data in（ $9 . a-d$ ）．The brackets in the Output indicate the foot structure：a period is used to indicate syllable boundaries，and μ indicates the moraic status of each segment．The data in（9．a＇－d＇） provides morphologically related forms which provide evidence for the representations assumed here．

Input
a．\quad saL＇＝awus
a＇．saL＇
b． $\mathrm{X} \mathrm{ip}=$ awus
b＇．艾ip

c＇．DIM－
c＂．IMP－天̈ax̆－INC
d．$\hat{k}^{w} u^{\prime} u^{w}{ }^{w}$

Output
saPa［？］awus
saPa
关ipawus
关ip
خах̆ау

$\dot{\mathbf{k}}^{\text {w }}$ uyuk $^{\text {w }}$
$\mathbf{k}^{\mathrm{w}} \mathbf{u}-\mathbf{k}^{\mathrm{w}} \mathbf{u y u} \mathbf{k}^{\mathrm{w}}-\partial m$
（sá $\left.\mathrm{Pa}_{\mu}\right)\left(\mathrm{la}_{\mu} w v s_{\mu}\right) \quad$ two eyes sápa two （ ${ }^{\prime} e_{\mu} \cdot \mathrm{pa}_{\mu} \cdot \mathrm{wvs}_{\mu}$ ）area below the eye خép under （ ${ }^{\text {áá }} \mu \cdot \check{x}_{\wedge} \mathrm{y}_{\mu}$ ）elder（most respectful）

 （ $\left.\overrightarrow{\mathrm{k}}^{\mathrm{w}} \mathbf{u}_{\mu} \mathrm{yvk}^{\mathrm{w}}{ }_{\mu}\right) \quad$ fish hook，troll

If coda consonants were non－moraic，then there would need to be a different explanation for what drives Full Vowel Reduction．

3.1.1.3 Stative -it

The special stress behaviour of the stative morpheme provides evidence that this suffix is bimoraic: $-i_{\mu} t_{\mu}$. Consider the data in (10) which show that the stative always bears secondary stressed when it follows a Strong Root of the form CAC. This fact is noted and discussed in detail in Watanabe (2000). What is of interest here is that the final CAC syllable is stressed, and resists reduction, as shown by the contrast between the grammatical examples in (10.a-d) and the ungrammatical examples in (10.a'- d^{\prime}).
(10) Stative

Input

a. $\check{\mathbf{x}}^{\mathbf{w}} \mathbf{u}_{\mu} \dot{\mathbf{q}}^{\mathbf{w}}{ }_{\mu}-\mathrm{i}_{\mu} \mathrm{t}_{\mu}$
a^{\prime}.
b. $h u_{\mu} \breve{J}_{\mu}-i_{\mu} t_{\mu}$
\mathbf{b}^{\prime}.
c. $\operatorname{ta}_{\mu} \mathrm{p}_{\mu}-\mathrm{i}_{\mu} \mathrm{t}_{\mu}$
c^{\prime}.
d. $\mathfrak{f}^{9} a_{\mu}{ }^{2} \mu-i_{\mu} t_{\mu}$ d^{\prime}.
μ-conservation
$\check{\mathbf{x}}_{\mu \mu} \cdot \dot{\mathbf{q}}^{\mathbf{w}_{\mu}} \mathbf{t}_{\mu}$
Output

(hó:) (jut)
*(hợtt)
(tá:) (pèt $\left.{ }^{\text {h }}\right)$-(tá:) (pèt ${ }^{\text {th }}$) tight
*(tápet)
($\left.\mathrm{t}^{\ominus} \mathrm{a}:\right)\left(\mathrm{ul}^{\mathrm{h}} \mathrm{t}^{\mathrm{h}}\right)-\left(\mathrm{t}^{\ominus} \mathrm{a} \mathrm{a}\right)\left(\mathrm{y} \mathrm{t}^{h}\right)$ shade

The fact that the stative bears secondary stress and resists full vowel reduction suggests that it is lexically footed (cf. Shaw et.al. 1999). Lengthening of the Root vowel preserves the bimoraic status of the initial syllable, since the Root-final consonant is parsed as an Onset to the stative suffix -it, as shown in (10.a-c). The second variant in (10.d) shows that the phonological weight of the second consonant of the Root is preserved when a vowel-initial suffix is added. The glottal portion [?] of \mathfrak{j} continues to occupy the coda of the first syllable, and the functions as the Onset to the second syllable. This satisfies the Onset constraint while also being Faithful to the moraic structure of the Root, as shown by the Foot structure in (11).

This kind of conservation of moraic structure provides evidence that post-vocalic consonants are moraic, and that the moraic content of Roots is present in the Input. Restructuring of glottalized resonants is discussed further in §5.2. See Appendix V for a list of Strong and Weak Roots in Sliammon.

3.1.1.4 Moraic Structure: Speaker Judgements

Additional confirmation that coda consonants are moraic comes from judgements regarding sub-syllabic constituency provided by speakers of the language. One elder consistently provides moraic units when asked to divide words into "syllables". She often taps out the number of rhythmic beats for each word. It is clear from a comparison of other forms syllabified by other speakers, and from syllable-sensitive processes in the language such as the vowel/glide/obstruent alternations discussed in $\S 2.2 .4$, that the prosodic constituents provided by this speaker are smaller than a syllable. The fact that these are moraic-sized units is inferred by a comparison of a large number of forms which were morafied by this speaker. Relevant data was collected over a two year period and carefully compared with the judgements given by other speakers. A comparison of related data also enables us to rule out (a) morpheme-by-morpheme breakdown, (b) counting vowels, or (c) counting consonants as a possible interpretation of this speaker's judgements. A sample of the clearest data is presented in (12-13) below.

Input a. $\mathrm{tk}^{\mathrm{w}} \mathrm{w}-\mathrm{t}$	Moraic Structure	Output tve ${ }^{w}{ }^{w h}$	Gloss pull it (cedar root)
b. $\mathrm{p} \overline{\mathrm{x}}-\mathrm{t}$	páx ${ }_{\mu}{ }^{\text {t }}{ }_{\mu}$	$\mathrm{p} \tilde{\mathrm{x}}^{\text {ct }}{ }^{\text {h }}$	tear s.t.
c. $\mathrm{Ps} \dot{\mathrm{p}}$		ใว́sp่	finished
d. $\mathrm{pl}^{\mathrm{w}}-\mathrm{t}$	$\mathrm{pan}_{\mu} \mathrm{k}^{\mathrm{w}} \mathrm{ta}_{\mu}$	pan $\mathrm{k}^{\text {w }}$ ¢ $\mathrm{t}^{\text {h }}$	roll it
(13)			
Input	Moraic Structure	Output	Gloss
a. xit^{\ominus}	$\check{x i}_{\mu} \mathrm{t}^{\ominus}{ }_{\mu}$	x̌ét ${ }^{\text {¢ }}$	iron, metal
b. $\mathrm{x}^{\mathrm{w}} \mathrm{ip}-\mathrm{t}$	$\mathbf{x w}^{\mathbf{w}} \mathrm{i}_{\mu} \quad \mathrm{pat}_{\mu}$	$\mathrm{x}^{\mathrm{w}} \mathrm{ipt}^{\text {b }}$	sweep it
\mathbf{b}^{\prime}. $\mathbf{x}^{\mathbf{w}} \mathbf{i p}$-Tamin	$\mathbf{x}^{\mathbf{w}}{ }_{\underline{i}}^{\mu} \mathbf{p}_{\mu} \quad$? $\grave{a}_{\mu} \operatorname{mın}_{\mu}$	xwip ${ }^{\text {wammın }}$	duster, brush

These judgements regarding moraic structure provide further evidence for the non-moraic status of schwa. Compare (12.a) with (13.a) for example. The word t $2 \hat{k}^{w} t$ pull it is parsed prosodically as
 a similar fashion to the first two moras in (13.a): $\breve{x i}_{\mu} \mu^{t}{ }_{\mu}$. However, this is not the case. This kind of contrast provides additional evidence that schwa is non-moraic in these examples.

The data in (14) provides further evidence for the moraic status of post-vocalic consonants.
(14)

Input
a. čap θ
b. $\hat{k}^{\text {waqu }}{ }^{\text {t }}$
c. IMP-t
d. plảasčań

Moraic Structure
$\check{c ̌ a}_{\mu} \quad \mathbf{p}_{\mu} \quad \theta_{\mu}$
$\dot{\mathbf{k}}^{\mathrm{w}} \mathbf{a ́}_{\mu} \dot{\mathbf{q}}_{\mu} \mathbf{t}_{\mu}$

Output
čépe
$\vec{k}^{w a ́ q}{ }^{\text {th }}$
$\mathfrak{t}^{\theta} i^{-}{ }^{0} \mathbf{k}^{\prime} \mathrm{it}^{h}$

Gloss
aunt, uncle
holler, scream
they're all screaming
cone of tree (pine, fir)

3.1.1.5 Onset consonants are non-moraic

Onsets are non-moraic as seen from the data in (15), in keeping with the cross-linguistic generalization that Onsets do not contribute to the phonological weight of the syllable (cf. Hayes 1995).

Input

a. $\mathbf{k}^{w a j ̆-O u t-' u \not ~ a ~ c ̌ x ~}{ }^{w}$

b'. $\left(\right.$ gá $\left._{\mu} \cdot \mathrm{g}_{\Lambda} s_{\mu}\right)\left(\check{\mathrm{x}} \grave{\varepsilon}_{\mu} \cdot \mathbf{T} \varepsilon_{\mu}\right)\left(\mathrm{m} \grave{\Lambda}_{\mu} \cdot \breve{c}_{\mathrm{x}}{ }_{\mu}{ }_{\mu}\right)$

Output

\square

Gloss

Did you suffer?
6 moras; 3 Feet

Are you making lot of noise?
6 moras; 3 Feet

If following Hyman (1985), all consonants and vowels are moraic in the underlying representation, then satisfaction of the undominated constraint which requires that all syllables have Onsets in the language will be ranked higher than $\operatorname{MAX}[\mu]$, the constraint which keeps track of correspondence violations. In particular, a mora which is present in the Input but is absent in the Output incurs a $\operatorname{MAX}[\mu]$ violation, following McCarthy ard Prince (1995 on Correspondence).

3.1.2 Moraic status of Vowels

The data in §3.1.1 establishes that coda consonants are moraic. Now consider the moraic status of the vowels. The following section presents evidence from Stress Assignment in the language which shows that schwa behaves differently than the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a}$. This difference in behaviour is captured by their difference in phonological weight: schwa is non-moraic whereas the full vowels are moraic, thus providing independent confirmation of the hypothesis made in Chapter 2, and additional support for the Nuclear Moraic Model of Shaw (1993 et seq.).

3.1.2.1 Long vowels are bimoraic

Recall that surface long vowels are derived in Sliammon via Compensatory Lengthening. Long vowels are represented as bimoraic, in keeping with standard assumptions of Moraic Theory.
(16) Compensatory Lengthening

Input	Output 1	Output 2	Gloss
a. tẏta	tifta	tí:ta \sim ti:ts	that one (gen.)
b. $\theta \dot{y} \dot{\prime} \mathrm{a}$		Өi: \because a	that one (fem.)
c. mə?-t-as	má?tıs	má:t^s	he got it

$$
\begin{gather*}
\text { NUC } \tag{17}\\
\text { ハ } \\
\mu \mu \\
\backslash \\
\mathrm{V}:
\end{gather*}
$$

The data in (18.a'-c') shows that Strong Roots of the form CAC retain their bimoraic status with the addition of a bisyllabic Lexical Suffix.
(18)

Input		Output	Gloss
a. $\mathrm{ti}_{\mu} \mathrm{h}_{\mu}$	tih	tih \sim ti:	big
a^{\prime}. tih=u隹	tihuein	tí:hòधen	big mouth
b. $\mathrm{q}^{\mathbf{w}} \mathbf{u}_{\mu} \mathrm{p}_{\mu^{-}}$	$\mathrm{q}^{\text {wup- }}$	q^{w} op-	body hair
	$q^{\text {wupiӨx̆an }}$	$q^{\text {wóó:pè } Ө \text { ¢̆^n }}$	hair under arms
$\mathrm{b}^{\prime \prime} . \mathbf{q}^{\mathbf{w}} \mathbf{u p}=\mathbf{u}$ in	$q^{\text {w }}$ upuӨin		beard, facial hair
c. $\dot{\mathrm{q}}^{\mathbf{w}} \mathrm{i}_{\mu} \mathrm{t}_{\mu}$	$\dot{q}^{\text {wit }}$	$\mathbf{q}^{\text {w }}$ ¢́t	beach
c^{\prime}. $\dot{q}^{\mathbf{w}} \mathrm{it}=\mathrm{ax} \mathrm{c}^{\text {an }}$	$\dot{q}^{\text {witax̆an }}$		front of house

As shown by the autosegmental representation in (19), the second consonant of the Root functions as the Onset to the vowel-initial Lexical Suffix, and the full vowel of the Root is lengthened in order to maintain the bimoraic status of the Root.
(19) /tih=uӨin/ [ti:hò日en] big mouth

Both feet satisfy Foot Binarity at the level of the mora (FTBIN μ) and therefore also satisfy Minimality. This results in a surface candidate which has adjacent stresses: (σ)(ò σ).

3.1.2.2 Full vowels are moraic

The stress facts in (20) also provide evidence that coda consonants are moraic in Sliammon since the bisyllabic word [$\left\{^{0} i^{-1} \theta^{y} y_{1 t^{h}}\right]$ they're all screaming bears secondary stress.

Input
a. IMP-t ${ }^{-9} \mathrm{k}-\mathrm{it}$
$a^{\prime} .\left(\mathfrak{f}^{\hat{\theta}}{ }_{\mu} t^{\hat{\theta}}{ }_{\mu}\right)\left(\vec{k}^{y}{ }_{\mu} \mathrm{t}_{\mu}\right)$

Output
$\mathrm{t}^{-\theta} \mathrm{it}^{\theta} \mathrm{Ry}_{1 t^{h}}$
Gloss
they're all screaming
2 feet, 4 moras

If moras are grouped together in a binary fashion in order to form trochees, then CAC . CAC is quadra-moraic and consists of two feet. If coda consonants were non-moraic, then we would

3.1.2.3 Schwa is non-moraic

Compare the behaviour of the full Vowels in (20) with the behaviour of schwa in (21). As shown by the data in (21), two adjacent CaC syllables form a single foot. If schwa were moraic then the output in (21) should be parallel to the stress facts in (20) above. This is not the case, as shown by the ungrammatical examples in (21.a"-b").

Input

a. č̀m-čm to qỷa
a^{\prime}.
a".
b. $\mathrm{pq}-\mathrm{pq}$
b^{\prime}.
b".
b^{\prime}.
$\mathbf{p}^{\prime} \mathrm{q}^{\mathrm{h}} \mathrm{p} \wedge \mathrm{q}^{\mathrm{h}}$
(páq $_{\mu} \cdot \mathrm{p}_{\mathrm{p} \mathbf{q}_{\mu}}$)
${ }^{*}\left(\mathrm{p}{\underset{\mu}{\mu}} \mathrm{q}_{\mu}\right)\left(\right.$ р $\left.\grave{\mu}_{\mu} \mathrm{q}_{\mu}\right) \quad{ }^{*}$ moras

The goal of this section has been to present additional evidence which shows that schwa is distinct from the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a} / \mathrm{in}$ terms of its phonological weight. This provides additional support that schwa is non-moraic (weightless) whereas the full vowels $/ \mathrm{i}, \mathrm{u}, \mathrm{a}$ are mono-moraic. This hypothesis has implications which are explored in the subsequent section.

3.1.3 Implications: CC Roots and Minimality

3.1.3.1 The Problem

Words in Sliammon can be long involving complex affixation and reduplication; however, there are also restrictions on the minimal size of free-standing lexical items.

McCarthy and Prince (1993: 44) provide the following explanation of the derived notion Minimal Word:

The prosodic hierarchy and Foot Binarity, taken together, derive the notion "Minimal Word" (Prince 1980, Broselow 1982, McCarthy and Prince 1986, 1990a, 1991a, 1991b). According to the Prosodic Hierarchy, an instance of the category Prosodic Word (PrWd) must contain at least one Foot (Ft). By Foot Binarity, every Foot must be bimoraic or disyllabic. By transitivity, then, a Prosodic Word must contain at least two moras or syllables.

By observing some of the smallest stressed free-standing words in Sliammon, we can see that Minimality is generally respected. A word which consists of a Foot is either bimoraic $(\mu \mu)$ as shown by the data in (23) or is disyllabic ($\sigma \sigma$) as shown by the data in (24).
(23) Bimoraic Words

Input	Bimoraic Foot	Output	Gloss
a. $\dot{\mathrm{p}} \dot{\mathrm{i}} \mathrm{X}^{\mathbf{w}}$		ṕÉx ${ }^{\text {w }}$	flood
b. tin	$\left(\hat{n}_{\mu} \mathrm{n}_{\mu}\right)$	ṫ̇́n	barbecued salmon
c. ṗuq̧ ${ }^{\text {w }}$	($\mathbf{p}^{\prime} \hat{\mu}_{\mu} \dot{q}^{\mathbf{w}}{ }_{\mu}$)	póóq ${ }^{\text {w }}$	brown, grey
d. čử	(čún ${ }_{\mu} \dot{y}_{\mu}$)	čúỷ	child
e. xat $^{\text {d }}$	(x̆á $_{\mu}{ }^{\prime}{ }_{\mu}$)	x̆at	want
f. \tan	(táh ${ }_{\mu} \mathbf{n}_{\mu}$)	tán	mother

(24) Disyllabic Words

Input	Disyllabic Foot	Output	Gloss
a. ppa	(ря́ . p^)	póp^	pepper
b. pču	(pá . ču)	píču	cedar root basket
c. $\mathrm{q} \mathfrak{\mathrm { j }} \mathrm{i}$	(q̧. . \mathbf{i})		again

Furthermore, at the present point in time only two mono-moraic Roots of the shape CV have been recorded. They are $\theta \mathrm{u}$ and hu which are both variants of the verbal auxiliary go. (cf. Appendix V, and Watanabe 2000 for a similar observation regarding the general lack of CV Roots in Sliammon). This observation seems to indicate that content words which are monomoraic are in some sense "too small", and are therefore generally excluded by constraints on Minimal Word in the language. The question then is how are $\theta u \sim h u$ licensed?

It should also be noted that the verbal auxiliary $\theta u / h u$ occurs in predicate-initial position, and is often followed by a second-position enclitic (subject, imperative, quotative etc.,) which seem to be footed with the preceding auxiliary, as shown by the examples in (25). By subsuming the enclitic within the domain of the Prosodic Word, the resulting Foot satisfies Foot Binarity.

Input

a. hu ga $\hat{\mathrm{t}}^{\ominus} u \bar{x}^{\boldsymbol{w}}=$ unis-m
b. hu ga m?-t
c. hu ga š?
d. hu č IMP-nšm+[?]

Output
húga \hat{t}^{\ominus} úx $^{\text {winnis }}$ um
húga mé?t
húga šf?
húč nónšàm
hóg^ \mathfrak{t}^{\ominus} Óx $^{\mathbf{w}}$ onèsəm go brush your teeth!
hógn mâ? ${ }^{\text {th }} \quad$ go get it!
hóg^ šéf go upstairs!
hóč ${ }^{\text {ninǧšom }}$

Gloss
I'm going swimming

The problem which we need to address here however, concerns the status of free-standing CóC Roots/Stems, such as those cited in (26).

Input	Epenthesis	Output	Gloss
a. $\lambda^{\prime} \mathrm{p}$	ス̇p		deep
b. $\dot{\text { ct }}$ t	cot	cíq	rain
c. $\mathrm{m} \lambda$	mox	mat	calm (on water)
d. pq	peq	p^íq ${ }^{\text {h }}$	white
f. $\overline{\mathrm{x}} \lambda$	¢̆ə	ヘ̌^^	break (e.g. a rope)
g. mq̇	mæ'	míq	full (from eating)

h． q ¢	qә ${ }^{\text {x }}$	qúx	many，lots
i．${ }^{\prime} \mathrm{A} q$	̇̇ı	夫̇へ́q ${ }^{\text {h }}$	outside
j．㲡	そə ${ }^{\text {¢ }}$		rotten（fruit，berries）

Notice that when these Roots occur in a sentential context，they are stressed，as shown by the data in（27）．The predicate in question either occurs in word－initial position，as in（27．a－d）or in the position of the main verb with the presence of a verbal auxiliary or other predicative element （27．e－g）．The example in（27．h）shows the CóC Root in an overt DP preceded by the article k^{w} ．

Input

a．$m \mathfrak{x} \operatorname{sf}^{\ominus} \mathfrak{k}^{w}$
b．pq to ？aya？
c．$\check{\mathrm{x}} \boldsymbol{X}$ to $\check{\mathrm{x}}^{\mathrm{w}} \mathrm{ilm}$
d．$q \check{x} p u ? p x^{w}$
e．hi hw K＇p
f． $\mathrm{k}^{\mathrm{w}} \mathrm{n} \mathbf{a} \check{c x}^{\mathrm{w}} \mathrm{mq}$
g．hu ga $\grave{\lambda} q$
h．hi hw say－mut k^{w} èt

Foot Structure

（pəq）to Ráyє？

（qə́x）pú？ px^{w}
hé：w（ ユ̌́p h ）
\mathbf{k}^{w} ヘ́næčx ${ }^{\mathrm{w}}$（móq̉）

hé：w sáymut ${ }^{\mathrm{h}} \mathrm{k}^{\mathrm{w}}$（čáát）

Output
mni
pи́q ${ }^{\text {b }}$
ェ̌＾\wedge
q \uparrow ́x
そへ́p
míq
关
čít

Gloss
calm today
the house is white
the rope broke
lots of kindling
it＇s really deep
Are you full？
go outside！
it＇s really raining

The（CáC）Root in question is footed as indicated by the presence of primary stress and the brackets to indicate the Foot boundary．It should be noted that the article to and the syntactic nominalizer s are proclitics，and are therefore phonologically dependent on the Prosodic Word which follows in（27．a－c）；these proclitics do not affect the footing of the（CóC）predicate which precedes them．

Given the model adopted in this thesis，schwa is characterized as a bare Nucleus，and does not have any phonological weight associated with it（i．e．it is non－moraic），as argued in Chapter 2. The question，then，is do these stressed lexical words of the form CóC in（26－27）satisfy or violate

Minimality? Recall that Minimality is derived from the Prosodic Hierarchy and its interaction with FOOT BINARITY, as in (22). It is clear from the examples in (26-27) that CóC words do not satisfy Foot Binarity at the level of the syllable since they are clearly not disyllabic; however, do these words satisfy Foot Binarity at the moraic level? In other words, are they represented as in (28.a) or (28.b)?

	Input		Output	Gloss
a.	${ }_{c} \chi_{\mu}$			rain
b.		$\underline{\varepsilon}\left[\partial_{\mu}\right] \Phi_{\mu}$	(${ }_{c} i_{\mu} \mathrm{f}_{\mu}$)	rain

3.1.3.2 Discussion and Proposed Analysis

There seem to be two plausible lines of argumentation. First, although schwa often behaves phonologically as though it is non-moraic, schwa in this context could be constrained to be both Nuclear and moraic in order to satisfy Foot Binarity $(=28 . b)$. The cost of such an analysis would be the insertion of additional structure; in particular, a violation of both DEP[NUC] and DEP[$\mu]$. This implies the following partial constraint ranking:
(29) FTBIN $\mu \gg$ DEP[NUC], DEP[$\mu]$

In this case, Foot Binarity at the level of the mora must be satisfied at the expense of a $D E P[N U C]$ and a $\operatorname{DEP}[\mu]$ violation.

The other possible analysis is that the constraint $\operatorname{FTBIN} \mu$ is ranked in such a way that it is violated in this context, and that these CáC forms represent degenerate feet in Sliammon. Given Optimality Theory, FTBIN μ would be violated in order to satisfy some higher-ranked constraint in the grammar, yielding the output in (28.a). A plausible candidate is the interface constraint which ensures that every lexical content word receives stress. The following discussion pursues this hypothesis.

Prince and Smolensky (1993: 43) discuss $L x \approx P R(M C a t)$ which requires that a member of a morphological category (MCat: Root, Stem, Word) corresponds to a prosodic category (PCat: Foot, PrWd). They also propose that these relations between morphological categories and prosodic categories can be achieved via Alignment (cf. also McCarthy and Prince 1993.b on Generalized Alignment). Alignment ensures that the left or right edge of a morphological category matches with the corresponding edge of the relevant prosodic category, making special reference to an edge (cf. also Chen 1987, Selkirk, Nespor and Vogel, McCarthy and Prince 1993). The alignment constraint in the case of Sliammon is given in (30).

Align L (MStem ; Foot)
Align the left edge of every morphological stem with the left edge of a Foot (Ft).

If the interface constraint Align L (MStem; Ft) is ranked above Foot Binarity ($\mathrm{FTBIN} \mu$, σ), then it will be more important to ensure that the left-edge of every stem is aligned with a Foot than it is to satisfy FTBIN μ. Therefore, CəC Roots, which themselves are well-formed stems, are stressed eventhough they fail to satisfy Foot Binarity, as shown by the partial ranking in (31).
(31) č̀t čat [čít] rain

Input: ${ }^{\text {ct }}{ }_{\mu}$	ALIGNL (MSTEM; FT)	FTBIN μ	DEP[NUC]
		**	*
	*!		*

The optimal candidate in (31.a) is footed and satisfies the Align constraint at the expense of creating a mono-moraic Foot. Candidate (31.b) is ruled out since the lexical content word ${ }^{2}$ at, which is itself a stem, fails to be aligned with the left-edge of the Foot.

One of the questions which this proposal raises is why there is no augmentation in order to satisfy Foot Binarity? If the constraints on Root Faithfulness are dominant, in particular
$\mathrm{DEP}[\mu]_{\text {Root }}$, then strengthening will be ruled out, as shown by the tableau in (32). Weak Roots are faithful to moraic structure.

Input: ${ }^{\text {či }}{ }_{\mu}$	ROOT FAITH: DEP[μ]	ALIGNL (MSTEM; FT)	FTBIN μ	DEP[NUC]
Ea. (çá ${ }^{\text {a }}$)				
b. $\left(\varepsilon^{*}{ }_{\mu}{ }^{\text {¢ }}\right.$, $)$	*!		- ,	
c. $\cot _{\mu}$		*!	\%	+ + ,

This may be considered an unorthodox proposal given the claims of Prince and Smolensky (1993: 109) who suggest that " $L x=P R$ and FTBIN are universally undominated." However, in the true spirit of OT, all constraints are violable. The proposal which is made here is that in a limited set of cases Foot Binarity is violated in order to satisfy Root Faithfulness. A Root in a non-derived domain can be sub-minimal because of Faithfulness. This appropriately characterizes the degenerate mono-moraic ($\mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mu}$) feet in Sliammon. This proposal seems to find support in the fact that these words are shorter in duration than free-standing bimoraic words, such as those in (23), and as documented in Chapter 2.

3.1.4 Summary

This section has presented arguments for the moraic structure which is assumed in this thesis. Of particular importance is the claim that all coda consonants are moraic in Sliammon. In addition, evidence from stress assignment provides support for the claim that schwa is non-moraic in contrast to the full vowels which are moraic, since CəC functions as light whereas CAC behaves as heavy. This claim has interesting implications regarding the licensing of free-standing Cə́C stems.

3.2 Syllable Structure

This section outlines the basic syllable structure constraints in Sliammon, building on the basic descriptive generalizations of Blake (1992). Two new observations are worth noting. First of all, Sliammon makes limited use of so-called "minor syllables"; these are obstruent-only syllables of the shape CC. These non-nuclear syllables occur at the right-edge of mono-morphemic stems, such as sát . tx^{w} woman or $\mathfrak{t}^{\text {Gám }} \cdot \mathrm{q}^{\mathrm{w} \ddagger}$ cloud. These syllables are of particular interest with respect to our discussion of the distribution of schwa in Sliammon since these "extra" consonants do not trigger schwa epenthesis in order to satisfy the constraint that all syllables have Nuclei (cf. §3.2.1.2).

The second observation relates to the general ban on Complex Onsets in the language. Although Sliammon lacks word-initial Complex Onsets, there are a limited number of wordinternal st- Onsets which have not been discussed elsewhere.

3.2.1 Simple Syllables

This section discusses "simple" CVC syllable structure in Sliammon, and establishes the constraints on the occurrence of syllable-internal "constituents" : Onset, Nucleus and Coda. Within the Nuclear Moraic model, the "Onset" is identified as the non-moraic consonant which precedes either a Nucleus, or a moraic consonant (e.g. in the case of a $\mathrm{CC} \mu$ Minor syllable). The term "coda" refers to the moraic consonant which occurs either after the vocalic nucleus and within the same syllable, or after the non-moraic onset in the case of $\mathrm{CC} \mu$ syllables. I will continue to use the convenient labels "onset" and "coda" in the discussion which follows. It will be argued here that all syllables in the language have a single Onset consonant, and that coda consonants are permitted. Section 3.2.1.2 argues that although all content words surface with a vocalic nucleus, not all syllables do. This section makes an important contribution to our understanding of Sliammon phonology in that it documents the existence of so-called Minor Syllables in the language, and explains the observed asymmetry between the numbers of consonants allowed at the beginning of words versus the number of consonants permitted word-finally (cf. Blake 1992 on
extra-metrical consonants at the right-hand edge of the word domain). Complex constituents, such as Complex Onsets and Complex Codas, are discussed in §3.2.2.

3.2.1.1 Onset

3.2.1.1.1 The Data

Words in Sliammon generally begin with a single consonant, as shown by the monomorphemic lexical items presented in (33).

Input		Output	Gloss
a. mixay	méx̃^t		black bear
b. puhu	ṕóho	pó. ho.	raven (messenger)
c. $\mathbf{k}^{\mathrm{w}} u \mathrm{ma}$	$\mathbf{k}^{\text {wúma }}$	$\mathbf{k}^{\mathrm{w}} \mathrm{u}^{\text {. ma }}$.	ratfish
d. $\mathrm{q}^{\mathbf{w}} \mathbf{u w}$ ¢t		$\mathrm{q}^{\mathbf{w}} \mathbf{o}$. wvt .	beaver
e. $\dot{q}^{\text {walas }}$	$\dot{\text { qu}}^{\text {áálns }}$	$\dot{q}^{\text {wáa }}$.lıs	raccoon
f. wax̆as	wáx̆^s	wá. x̌As $^{\text {. }}$	green frog

There are no vowel-initial words in the language, nor is there any evidence for vowel-initial Roots either. Roots are always consonant initial, as shown by the data throughout this dissertation, and by the Root List in Appendix 5. When a vowel-final Root is followed by a vowel-initial Lexical Suffix, an epenthetic [h$]$ intervenes, as shown by the data in (34).
(34) Root=LS

Input

a. wax̆at ${ }^{\text {® }} \mathrm{j}=$ aya
a^{\prime}. wax̆at ${ }^{\ominus}{ }_{i}$
b. kapi=aya
b'. kapi

Output

wáx̆at ${ }^{〔} \varepsilon[h] a ̀ y \varepsilon$
wáxat ${ }^{\text {t }} \varepsilon$
$k^{\text {Yápi[h]àye }}$
$k^{\text {yápi }} \sim$ kápi

Gloss pipe case
pipe (for smoking tobacco)
coffee pot
coffee

	q̧ánayulhlàya	q́Ánayoflàye	sewing needle case
c^{\prime}. $\mathbf{q}^{\prime}=\mathbf{= a y u}$	q́onayu	q́へ́nayo	sewing needle
d. lamatu= $\mathrm{k}^{\mathbf{w}} \mathrm{t}$	lámatu[h]ùk ${ }^{\text {w/t }}$	lámatofhlòk ${ }^{\text {w }}{ }^{\text {b }}$	sheep's wool, I. sweater
d'. lamatu		lámato	sheep (<Fr. via C.Jargon)

Other cases of vowel hiatus within the affixal domain involve deletion, as shown in (35), and discussed in detail in Blake (2000).

Input		Output	Gloss
a. ċa-čag-a ${ }^{\text {a }}$-as	čáčagà ${ }^{\text {Ojs }}$	Cézérgà ${ }_{\text {¢ }}$ s	s/he is helping you (sg)
b. ya-yat-a $\mathrm{O}_{\text {j-as }}$	yáyatà ${ }^{\text {jos }}$	yéyctà ${ }_{\text {a }}$	s/he is calling you (sg)
c. Éa-čag-at-an̉api-as	čáčagatà?napis		s/he is helping you (pl)
d. ya-yat-at-anapi-as	yáyałatànapis	yéyełatànapıs	s/he is calling you (pl)

3.2.1.1.2 Proposed Analysis

The Onset constraint is defined in (36) following Prince and Smolensky (1993:25) and McCarthy and Prince (1993). Since there is no evidence that this constraint is ever violated, it is proposed here that it is undominated in Sliammon.

The constraint ONSET must dominate DEP[h] which militates against the insertion of epenthetic [h]. Since [h] is the least specified consonant in the system, and is arguably characterized as having a PHAR specification, the constraint DEP[h] or DEP[PHAR] will keep track of the cost associated with h-epenthesis.

An [h] which is present in the Output and not present in the Input will incur a DEP[h] violation.

DEP[h$]$ belongs to the family of Faithfuiness constraints within a correspondence model of Optimality Theory, following Prince and Smolensky (1993) and McCarthy and Prince (1994). An [h] which is present in the Output but is not present in the Input violates $D E P[h]$ since there is a lack of correspondence between the Input and the Output.

If ONSET and ROOT FAITH (i.e. MAX[f]) outrank DEP[h], then an epenthetic [h] occurs in order to provide an Onset, and also to avoid deletion of either the vowel belonging to the Root or the vowel belonging to the following Lexical Suffix (LS). As argued in Blake (2000), Lexical Suffixes in Sliammon behave like Roots with respect to vowel hiatus, and are therefore analyzed as bound Roots. As bound Roots, Lexical Suffixes will be subject to Root Faithfulness constraints rather than to Affix Faithfulness, following Blake (1995, 1996, 2000). Consider the tableau in (38) which shows h-epenthesis between a Root and following LS =aya place, container.
(38) tala=aya [tálahàye] purse

Input: tala=aya	ONSET	ROOT FAITH (MAX)	DEP[h]
\cdots a. ta.la.[h]a.ya			
b. ta. la $<\mathrm{a}>$. ya		*!	
c. ta.la.a.ya	*!		

What is interesting about Sliammon is that vowels in hiatus are treated differently depending on their morphological affiliation, but the high-ranking Onset constraint is always satisfied.

3.2-1.1.3 Gemination: Onsets and Faithfulness to Moraic Structure

The data in (39) show that an intervocalic resonant is systematically parsed by speakers as the coda to the preceding syllable and as the Onset to the following syllable. This occurs with CC and CCC Roots in (39), and with some examples of Roots containing a full vowel in (40).

Input	Output	Syllabification	Gloss
a. $q^{w i l}$ a čx $\mathrm{x}^{\mathrm{w}} \mathrm{m}$		$q^{\text {wosil }}$. læč . $\mathrm{x}^{\mathrm{w}} \mathrm{m}$	Are you sg. coming?
b. $\mathrm{q}^{\mathrm{w}} \mathrm{l}$ a čap sm	$\mathrm{q}^{\text {wuflæčipsom }}$		Are you pl. coming?
c. $\mathrm{wn}-\mathrm{Pm}$-min	wónamın	wón . na.mın	a drill
d. $\mathrm{kl} \theta+[\mathrm{i}]$	kílı	kวl. $1 \bullet \theta$	crooked
e. tik ${ }^{\text {a }}$ i]	t́řlık	tol. hik	a hole

(40)

Input
a. $\operatorname{Pima} \theta$
b. Rayiš
c. Paya?-s
d. $\mathrm{CaC}_{\mathrm{PL}}-\mathrm{Jan} \mathrm{x}^{\mathrm{w}}$
e. $k^{w} u l=a w^{\prime} t x^{w}$

Output
Pém^Ө
Ráyiš~ Ráyıš
Ráyع?s

$k^{\text {wúúàwtx }}{ }^{\text {w }}$

Syllabification
?ém. m^ θ
Ráy. yıš
Ráy. ye?s
ǰə́n . yěn . nəx ${ }^{\mathrm{w}} \quad$ lots of fish
$\mathrm{k}^{\mathrm{w}} \mathbf{u}$. làw . tx^{w} school

If all coda consonants are moraic in the language as evidenced by Compensatory Lengthening, and the stress facts in §3.1.1 above, then there is no inherent length contrast in postvocalic consonants in the language. If post-vocalic consonants were ambi-syllabic (non-moraic) then these would be the only non-moraic coda consonants in the language. Since this would be non-structure preserving in the sense of Kiparsky, it is proposed here that these consonants are moraic, and that gemination satisfies the constraint that all syllables have Onsets. In addition,
gemination also satisfies the constraint $\operatorname{MAX}[\mu]$ which ensures a Faithful parse of underlying moraic contrasts. This proposal is confirmed in a number of different ways. Native speakers certainly syllabify these strings differently, and Harris (1981) writing on Island Comox treats these consonants as geminates. Both P. Kroeber and H. Watanabe (p.c.) both note that these consonants may be longer in duration, judging from their own transcriptions of Sliammon. These array of facts leads me to hypothesize here that these consonants are moraic.

Notice that gemination of an intervocalic consonant has the effect of satisfying the highranking Onset constraint in the language while also maintaining the moraic structure of the Root (cf. Chapter 5).

3.2.1.2 Nucleus

This next section addresses the status of the Nucleus in Sliammon. There is a growing body of literature which recognizes the Nucleus as the core of the syllable. For example, Levin (1985) argues that the syllable is projected from a single primitive category Nucleus which is the head of the syllable. Shaw (1992) adduces templatic evidence in favour of a Nucleus based on her analysis of reduplication in Nootka and Nitinaht (Wakashan), and Ojibwe (Algonquian). Early reference to the role of the Nucleus in syllable structure include Trubetzkoy (1939), and Fudge (1976), amongst others (cf. also references in Anderson (1985), and Kenstowicz (1994)). Bagemihl (1991), Shaw (1993, 1996) make reference to the Nucleus in their discussion of Nuхalk (Bella Coola) and St'at'imcets (Lillooet).

Within Optimality Theory, the central role of the Nucleus is characterized by the constraint SYLL NUC, following Prince and Smolensky (1993: 87).
(41.a) SYLL NUC Syllables have vocalic nuclei

Shaw (1996.c) captues this same generalization with reference to Proper Headedness:
(41.b) PROPHEAD O A syllable is headed by a NUC [=SYLL NUC]

This is important since it will be argued in §3.2.2.3 that although many/most syllables in Sliammon satisfy SYLL NUC/PROPHEADG, there are a limited number of obstruent-only syllables in the language -- syllables which clearly violate this constraint .

The presence of a surface full vowel satisfies SYLL NUC / PROPHEAD σ in the data in (42).
(42) Full Vowels

Input		Output	Gloss
a. xit $^{\ominus}$	$\mathrm{x}_{\text {it }}{ }^{\text {® }}$	$\breve{\mathrm{x}} \mathrm{Eft}^{\text {® }}$	iron, metal
b. $\hat{k}^{\text {win }}$	$\hat{k}^{\text {win }}$	$\hat{\mathbf{k}}^{\mathbf{w}}$ £́n	how many?
c. $\ddagger u{ }^{\text {w }}$	fuk ${ }^{\text {w }}$	¢ư̇k ${ }^{\text {w }}$	to fly
d. wuk ${ }^{w}$	wuk ${ }^{\text {w }}$	wuik ${ }^{\text {w }}$	scoop net
e. $\vec{k}^{\text {w}}$ as	$\mathrm{k}^{\text {was }}$	$\mathrm{k}^{\text {wás }}$	hot (temperature)
f. pal'	pal'	pál	heron

The presence of schwa in the Output in (43-44) also satisfies this constraint. Since constraints in OT are constraints on outputs, whether or not schwa is present in the Input is irrelevant to the satisfaction of SYLL NUC - the constraint evaluates whether or not each syllable contains a Nucleus in the Output.
(43) Schwa

Input		Output	Gloss
a. $\mathrm{q}^{\text {J̌u }}$	qəjı	qว์jı	again, still
b. pəču	pəču	píču	cedar root basket
c. nox ${ }_{\text {wit }}$	nex ${ }_{\text {it }}{ }^{\text {d }}$	núx ${ }^{\text {w }}$ ¢	dugout canoe
d. $\mathrm{tak}^{\mathbf{W}} \mathrm{fi}$	$\boldsymbol{t r k}^{\mathbf{w}}{ }^{\text {i }}$	tuk ${ }^{\text {w }}$ fe	rabbit
e. toq' ${ }^{\text {w }}$	to qa' $^{\text {w }}$ a	tá? ${ }^{\text {P }}{ }^{\text {wa }}$	octopus, devil fish
f. qəya	qe?ya	qáâye	water
g. mon̉a	mo?na	mâ?na	one's child, offspring

(44) Schwa epenthesis

Root
a. qj i
b. pču
c. $\mathrm{nx}^{\mathrm{w}} \mathrm{i}+$
d. $\mathrm{tk}^{\mathrm{w}} \mathrm{ti}$
e. $t^{\prime}{ }^{\mathbf{w}} \mathrm{a}$
f. qya
g. mna

Schwa Epenthesis
Output
q[ə]ji
$\mathrm{p}[\supset]$ c̆u piču
$\mathrm{n}[\mathrm{J}] \mathrm{x}^{\mathrm{w}} \mathrm{i} 4$
$\mathrm{t}[\mathrm{a}] \mathrm{k}^{\mathrm{w}} \mathrm{ti}$
$\mathrm{t}[\partial] \mathrm{q}^{\mathrm{w}} \mathrm{a}$
q[ə]ỷa
m[ə]ña
qájıi
núx ${ }^{w}$ เq
túk we
táiq̣ảa
qá?yє
má?na

Gloss

again, still cedar root basket dugout canoe rabbit octopus, devil fish water one's child, offspring

3.2.1.3 Coda

3.2.1.3.1 The Data

Sliammon has syllables which are closed by a moraic coda consonant, as shown by the data in (45). The syllabification in Column 2 is provided by speakers of Sliammon.
(45) Closed syllables

Input

a. $\quad \mathrm{DIM}-\mathrm{K}^{\mathrm{w}}$ upa $+[$ [$]$
b. ẍaṕ
c. $\mathfrak{t}^{\ominus} \mathbf{i} \mathbf{x}^{w}-\mathrm{t}^{\ominus} \mathbf{x}^{w}$
d. muš-muš
e. taq-taq

Syllabification

. $\mathrm{k}^{\mathrm{w}} \mathrm{uk}^{\mathrm{w}} . \mathrm{pa}$.
. x̆ap .
. $t^{\theta^{i}} \mathrm{x}^{\mathrm{w}} . \mathrm{f}^{\theta_{i x}}$.
. muš . muš .
. taq. taq.

Output
$k^{\text {wúk }}{ }^{\text {w }}$ pa?
x̆áp
$\mathfrak{t}^{\ominus} e^{\mathrm{ex}^{w} \mathfrak{t}^{\ominus}} \mathrm{ex}^{w} \quad$ fish hawk
múšmuš cow
táqtaq

Gloss grandfather cradle basket slow

It will be argued in $\S 332.2$.1 that Sliammon generally lacks Complex Onsets, so that $\left[k^{w} p, x^{w} t^{\ominus}\right.$, šm, $\left.q t\right]$ are not licit Onsets.

3.2.1.3.2 Proposed Analysis

Since coda consonants occur frequently in the language, this entails that the constraint NO CODA must be low-ranking in Sliammon. In addition, the family of Faithfulness constraints which ensure that a lexically specified post-vocalic consonant has a surface correspondence must be higher-ranking. The relevant constraints are given in (46).

$$
\begin{array}{ll}
\text { NO CODA } & \text { Syllables are open (M\&P 1993: 10) } \\
\text { MAX[f] } & \begin{array}{l}
\text { Each feature [f-element] in the Input is in a correspondence relation } \\
\text { with a feature in the Output. }
\end{array} \tag{46}\\
\text { DEP[f] } & \begin{array}{l}
\text { Each feature in the Output is in a correspondence relation with a } \\
\text { feature in the Input. }
\end{array}
\end{array}
$$

The constraint $\operatorname{MAX}[C]$ is a constraint which evaluates the cost associated with deletion of a consonant whereas DEP[C] is the constraint which evaluates the insertion of a consonant which is not in the Input. The constraint which ensures that syllables are open (NO CODA) is violated in order to satisfy Faithfulness (MAX and DEP constraints), as shown by the partial ranking in (47) and the tableau in (48).

(47) FAITHFULNESS \gg NO CODA

(48) x̆ap [x̆áp̉] cradle basket

Input: x̆ap	FAITHFULNESS	NO CODA
b. $\check{\mathrm{x}} \mathrm{a}<$ ¢ \gg	*! MAX [C]	\|
c. $\check{\text { x̆ap̉ }}$ [a]	*! DEP[a]	\|

As shown by the tableau in (48), there is a faithful parse of the consonants and vowels in the Input and the correspondence relations between segments/features in the Input/Output are maintained. Since Faithfulness is ranked higher than NO CODA, deletion of the coda consonant is ruled out, as shown by candidate (48.b). Faithfulness also rules out vowel epenthesis which occurs in order to try and avoid a violation of NO CODA, as in (48.c).

3.2.2 Complex Syllable-Internal Constituents

More traditional linguistic theories use surface phonotactics to determine the possible types of syllables in a language. It will be argued in §3.2.2.1, that while Sliammon typically avoids Complex Onsets, a limited number of word-internal [st-] Onsets do occur in order to satisfy higher-ranking constraints on the Alignment of prosodic and morphological constituents. Violation of *Complex Onset is therefore optimal in a specific context - and occurs just when required to do so by a higher-ranking constraint. The ban on Complex Onsets cannot be viewed as a surface true generalization across the entire set of syllabified words. Again it is constraint ranking, constraint conflict and minimal violation which determine the most harmonic output.

In §3.2.2.2, it will be argued that Sliammon avoids heteromorphemic CA-CC syllables since they violate the constraint against trimoraic syllables in the language $\left.\left({ }^{*} \mu \mu \mu\right]_{\sigma}\right)$. At the same time, trimoraic syllables do occur in mono-morphemic Roots, such as CACC. High-ranking Root Faithfulness and the constraint on Root Contiguity drive violation of * $\mu \mu \mu$] σ. It is therefore not possible to make a statement regarding the output of syllabification which follows simply from the surface phonotactics and which does not take the morphological constituency into consideration.

As pointed out by McCarthy and Prince (1993), a model of phonology in which constraints or generalizations about the language must be surface true is untenable. Within OT, the optimal candidate may actually violate a number of constraints in order to satisfy some higher-ranked constraint within the grammar. The syllable typology which immerges is therefore complex and derived from the interaction of prosodic and morphological constraints.

3.2.2.1 * Complex Onset

Not only do syllables in Sliammon have an obligatory Onset but there is also a general lack of word-initial consonant clusters in Sliammon. The general ban on Complex Onsets is discussed in the next section.

3.2.2.1.1 The Data

Schwa occurs between the first two consonants of a CR'V Root, as shown by the data in (49) Column 2. Given a theoretical framework which lacks constraints on Inputs, consider what would happen if the speaker posits an Input representation in which schwa is not present in the Input. As shown by the output forms in (49), schwa occurs between the first two consonants, and avoids a violation of the constraint *COMPLEX ONSET. The ungrammatical forms in (49.a'-e') show that Sliammon lacks word-initial CR' Onsets.
(49) CR'V Roots

Input		Output	Gloss
a. sma	sə? . ma	sápma	mussel
a'. sma		*smá	
a". sma		*sṃ . a a	
b. mna	me?.na	mápna	one's child, offspring
b^{\prime}. mna		*mná	
$\mathrm{b}^{\prime \prime} . \mathrm{mn}$ a		*mp. ia	
c. Plas / Talos	Pa? . las	Páplıs	sea cucumber
c'. Plas		* Plás	
c". Plas		*? . Pas	
d. qya	qə? $\cdot \mathrm{ya}$	qá?y¢	water
d'. qya		*qẏa	
d'. qya		*qi . 7 a .	

e. $\mathbf{k}^{\mathbf{w}} \mathbf{w} \mathbf{a}$
kwº $^{\text {w }}$. wa
$\dot{k}^{\text {wá }}$? ${ }^{\text {wa }}$
stomach, belly
$\mathbf{e}^{\mathbf{\prime}}$. $\mathrm{k}^{\mathrm{w}} \mathbf{w} \mathbf{a}$
*k ${ }^{\mathbf{w}}{ }^{\mathbf{w}}{ }^{\mathbf{w}}$
e". $\dot{k}^{\mathrm{w}} \mathbf{w} \mathbf{a}$
${ }^{*} \mathrm{k}^{\mathrm{w}} \mathrm{u} . \mathrm{Pa}$.

Note also that the resonants $\mathrm{m}, \mathrm{n}, \mathrm{l}, \mathrm{y}, \mathrm{w}$ are not syllabic, as shown by the ungrammatical forms in (49.a"-e"). The glides y, w do not undergo vocalization in this position either in order to satisfy the constraint which requires a vocalic nucleus, as shown by the contrast between (49.a-e) and (49.a"-e") ${ }^{1}$

A survey of word-internal obstruent resonant clusters and the syllabification of these clusters shows that *CR Onsets are banned in word-internal syllables as well.

Input	Syllabification	Output	Gloss
a. Patnupil	Rát. nu. pil	Tátnopèl	car, automobile
a^{\prime}.	* Pá. tnu. pil		
b. sapiin	sáp.lin	sáplen	bread
b^{\prime}.	*sá . plin		
c. Өičmus	Oíč . mus	Oičumos	back of house
c^{\prime}.	* θ í . čmus		
d. Ikli	lák. li	líkle	key
d^{\prime}.	*lá . kli		
e. watla	wát. la	wátla \sim wáthla	sweetheart
e^{\prime}.	*wá tla		
	$\check{\mathbf{x}}^{\mathbf{w}} \mathrm{I}_{\mathbf{X}}{ }^{\boldsymbol{w}}$. lim		string, thread
f.	${ }_{*} \overline{\mathrm{x}}^{\mathbf{w}} \mathbf{i} . \check{\mathrm{x}}^{\mathrm{w}} \mathrm{lim}$		

[^14]Not only does Sliammon lack CR Onsets but it also lacks OO (obstruent) Onsets as well, as shown by the data in (51). It should be noted that it is quite difficult to find mono-morphemic word-internal obstruent clusters since canonical Roots are predominately $\mathrm{CVC} / \mathrm{C} ə \mathrm{C}$ or extended CVCV, CVCVC in shape. I have included diminutive forms since the word-internal consonant cluster occurs within the Root and not across a morpheme boundary, so as to avoid complications with syllabification potentially being affected by the presence of the edge of a morphological category.
(51) word-internal CC clusters

Input	Syllabification	Output	Gloss
a. $\check{\mathbf{x}}^{\mathbf{w}} \mathrm{at}^{\prime}{ }^{\text {w }}-\mathrm{m}$		$\check{x}^{\text {wáát }}{ }^{\text {w }}$ ¢m	thunder
a^{\prime}.			
b. $\mathrm{tk}^{\mathrm{w}} \mathrm{fi}$	tak $^{\mathbf{w}}$. fi	túk ${ }^{\text {w }}$ ¢e	rabbit
\mathbf{b}^{\prime}.	*to. $\mathrm{k}^{\text {w }}$ ti		
c. $\mathrm{DIM}^{\text {- }}$ - ${ }^{\text {u }}$ upa $+[$ [$]$	$\mathrm{k}^{\mathrm{w}} \mathrm{k}^{\mathbf{w}} \cdot \mathrm{pa}$?	$k^{\text {w }}$ úk ${ }^{\text {w }} \mathrm{pa}$?	grandfather
c^{\prime}.	${ }^{*} \mathrm{k}^{\mathrm{w}} \mathrm{u} \cdot \mathrm{k}^{\mathbf{w}} \mathrm{pa}$?		
d. $\mathrm{DIM}^{\text {- }} \mathrm{q}^{\text {asm }}+[?]$	$\mathrm{q}^{\mathrm{w}} \mathrm{q}^{\mathbf{w}}$. səm	$q^{\text {wááqu}}{ }^{\text {w }}$ səm	little flower
d^{\prime}.	* $\mathrm{q}^{\mathrm{w}} \mathrm{a} \cdot \mathrm{q}^{\mathbf{w}}$ som		
e. DIM -X̆us-[i] $\mathrm{m}+[?]$	$\tilde{\mathbf{x}}^{\mathbf{w}} \mathbf{u} \overline{\mathrm{x}}^{\mathbf{w}}$. sim		small soapberry
e'.			

The lack of $C R$ onsets predicts the lack of obstruent obstruent (OO) onsets given the sonority sequencing generalization of Clements (1990). If a language allows an Onset cluster with a level sonority profile it typically allows an Onset cluster which has a rising sonority towards the nucleus (OR), given markedness. Notice that the word-internal cluster is heterosyllabic, as shown by the Sliammon data in (51.a-e).

3.2.2.1.2 Proposed Analysis

The relevant syllable structure constraints are provided in (52)

(52)	NO CODA	Syllables are open	(M\&P 1993:10)
	*COMPLEX ONSET	Syllables do not have complex onsets	

The Sliammon facts in (49-51) show that it is better to incur an extra violation of the constraint NO CODA than it is to violate *COMPLEX ONSET. This partial ranking is given in (53) and illustrated by the tableau in (54).
(53) *COMPLEX ONSET >> NO CODA
(54) DIM-k ${ }^{w} u p a+[?] \quad\left[k^{w} u^{w}{ }^{w} p a ?\right]$ grandfather

$\mathrm{k}^{\text {w }} \mathrm{u}-\mathrm{k}^{\mathrm{w}} \mathrm{pa}$?	COMPLEX ONSET	NO CODA
b. $\mathrm{k}^{\mathrm{w}} \mathbf{u} \cdot \mathrm{k}^{\mathrm{w}} \mathrm{pa}$?	*!	

As observed in §3.2.1.3, Faithfulness (here MAX [C]) is ranked higher than NO CODA in order to prevent deletion of a Root consonant, as shown by the tableau in (55).
(55) DIM- $\mathrm{k}^{\mathrm{w}} \mathbf{u p a + [?]} \mathrm{k}^{\mathrm{w}} \mathrm{u}^{\mathrm{k}}{ }^{\mathrm{p}} \mathrm{pa}$? grandfather

$\mathrm{k}^{\text {w }} \mathbf{u}-\mathrm{k}^{\text {w }} \mathrm{pa}$?	ROOT FAITH: MAX [C]	NO CODA
a. $\mathrm{k}^{\mathrm{w}} \mathrm{u}^{\mathrm{w}} \cdot \mathrm{pa}$?		
b. $\mathbf{k}^{w} \mathbf{u}^{<k^{\prime \prime}>}$. pa?	*!	
c. $\mathrm{k}^{\mathrm{w}} \mathrm{u}^{\text {. }} \mathrm{k}^{\mathrm{w}}<\mathrm{p}>\mathrm{a}$?	*!	(3V6

3.2.2.1.3 Comparative Evidence for the lack of Complex Onsets

The next section provides comparative evidence which shows the lack of complex onsets in the language. As shown above, only a single consonant appears in word-initial position. In fact, one of the striking properties of Sliammon is the absence of the nominalizing prefix s- which is found in all of the other Salish languages (cf. Davis 1970:15 and §5.6).

3.2.2.1.3.1 Sliammon / Sechelt Data

Compare the Sliammon (SI) and Sechelt (Se) forms in (56) which show the absence of this widespread prefix in Sliammon, cited from Blake (1992:49). Sechelt data are cited from Beaumont (1985), abbreviated RCB. The forms he cites are provided in the Sechelt practical orthography and appear in angled brackets $<>$. I have reconstructed the Input/Output forms based on the guide to pronunciation (Beaumont 1985:5-13).
(56) Initial Complex Onsets: A comparison of Sliammon and Sechelt cognates

Input	Output		Gloss	Language
a. $n x^{w} i L$	núx ${ }^{\text {w }}$ ¢ ${ }^{\text {d }}$		dugout canoe	SI
a'. s-nx ${ }^{\text {it }}$ ¢	snóx ${ }^{\text {wit }}$	<snéxwílh>	canoe (RCB)	Se
b. $\dot{q}^{\text {way }}$ y ${ }^{\text {¢ }}$			firewood	SI
b'. s-q' ${ }^{\text {w }} \mathbf{y}$ ¢		<skw'éyex>	firewood (RCB)	Se
c. $\check{\mathrm{x}}^{\mathbf{w}} \mathrm{S}$	$\overline{\mathbf{x}}^{\mathbf{w}}$ 亿́s		animal fat, lard	S1
c'. s- $\breve{\mathrm{X}}^{\mathbf{W}}$ әs	s x'és $^{\text {s }}$	<sxwes>	grease (RCB)	Se
d. tumiš	túmıš		man	S1
d'. s-tumiš	stómıš	<stúmish>	man (RCB)	Se

3.2-2.1.3.2 Sliammon / hśnǵəmin̉əm̉ (Musqueam) Data

The historical loss of the widespread nominalizing prefix s- is shown again by a comparison of Sliammon and həńq̉əmin̉əm (Musqueam) cognates in (57.a-i'). Musqueam (Msq) is a related Coast Salish language spoken in the lower Fraser River delta, and is separated from Sliammon (Sl) by Squamish and Sechelt territories ${ }^{2}$.
(57) Initial Complex Onsets: A comparison of Sliammon and Musqueam cognates

	Output	Gloss	Language
a. nəxwiL	núx ${ }^{\text {w }}$ ¢ $\dagger \sim$ núx ${ }^{\text {w }}$:¢ \dagger	dugout canoe	Sl
$\mathrm{a}^{\text {a }}$. s-nəx ${ }^{\text {cot }}$	snəx ${ }^{\text {w }}$ ¢ ${ }^{\text {d }}$	canoe	Msq ${ }^{3}$
b. q'aṗ $^{\text {a }}$	¢ ${ }^{\text {a }}$ P χ	sea otter	Sl
$\mathrm{b}^{\prime} . \mathrm{s}$-que: $\grave{\chi}$	sq̇æ: ${ }^{\text {¢ }}$	sea otter	Msq
c. $\mathbf{k}^{\mathbf{w}} \mathrm{ak}^{\mathrm{w}}=\mathrm{aj}{ }^{3}$	$k^{w a}{ }^{\text {a }}{ }^{\text {wa }}$ arju	squirrel	Sl
c'. s-k ${ }^{\text {w }}$ aya?	skwáya?	squirrel	Msq
d. č̇əq		robin, tiny bird	Sl
d'. s-k' ${ }^{\text {w }} \mathbf{q}$ eq	$\mathbf{s k}{ }^{\mathbf{w}} \mathbf{q} \mathbf{q} \mathbf{q}$	robin	Msq
e. tagat	tá?gət'	herring	Sl
e'. s-tewat'	stéwot	herring	Msq

[^15]| f. Өəqay | Өə́qəy | sockeye | Sl |
| :---: | :---: | :---: | :---: |
| f. s-Өəqวy | sӨáqəỷ ~sӨáqi? | sockeye | Msq |
| | $t^{\ominus} \mathrm{eft}^{\ominus} \mathrm{ek}^{\text {k }}$ | worm | Sl |
| g'. s-tien ${ }^{\text {en }}$ | $\mathbf{s t}^{\text {¢ }}$ ¢ $\mathbf{k}^{\mathbf{w}}$ | worm | Msq |
| | | mud | Sl |
| | stieichal | mud | Msq |
| i. tumis | tú m ıš \sim tó $\cdot \mathrm{mıs̆}$ | man | Sl |
| i'. s-tamox | stámıx | warrior | Msq |

3.2.2.1.3.3 Proposed Analysis

How do we account for the loss of the nominalizing s-prefix in Sliammon? What would happen if an s-prefix were posited? As observed in (49-51) above, Sliammon generally lacks Complex Onsets. If the constraint which bans complex onsets (*COMPLEX ONSET) is ranked above the constraint which requires a faithful parse of the prefix s-, then it would be better to delete the s-prefix than to violate the constraint which bans complex onsets, as shown by the partial ranking in (58) and the tableau in (59).
(58) *COMPLEX ONSET >> AFFLX FAITH (MAX)

$s-n[v] x^{w}$ it	*COMPLEX ONSET	AFFIX FAITH (MAX)
b. s-núx ${ }^{\text {w }}$ ¢ 4	*!	

This is discussed further in Chapter 5 in which the s-nominalizing prefix is compared with the plural /L'-/ prefix.

3.2.2.1.3.2 Root-Initial Consonant Clusters

If we assume that the distribution of schwa is predicted from the constraint ranking, contrast what happens to an initial C-prefix in Sliammon with what happens to CCVC Roots in the language.

3.2.2.1.3.2.1 Sliammon / hรńq́əmin̉əḿn (Musqueam) Data

The Sliammon and Musqueam cognates in (60) show that Musqueam retains Root-initial complex clusters while Sliammon has an epenthetic [0] between C_{1} and C_{2} of the Root.
(60) Sliammon / Musqueam Comparative Evidence
Output *Complex Onset Gloss Language

*q"'łé? . šən
shoe(s)
Sl
$a^{\prime} . q^{w} \dagger e ́ y=x ə n$
b. q̉áton
*q’łón
shoe
Msq
b'. sq́łan
c. ${ }^{\lambda} 2 x^{w}-\mathrm{t}$

bow of boat Sl
c'. ${ }^{\prime} x^{w}-\partial t$
d. t’aq"əm
*iq*ə́m
bow of canoe
Msq

e. paft
*płát
beat s.o. in a contest
Sl
beat him in a game Msq
e'. pret
f. \dot{k}^{w} əš-t
*R${ }^{W}$ šát
thimbleberry
Sl
thimbleberry Msq
f. $\dot{k}^{w} x$-et
g. $\mathbf{k}^{\text {wod }}$-t

* ${ }^{\mathbf{W}}{ }^{W} \nmid \partial t$
count them
Msq
g'. $\mathbf{k}^{w} \ddagger-e t$
spill it
Sl
spill it
Msq
What we observe is that instead of deleting the first consonant of the Root, schwa always surfaces between C_{1} and C_{2} of the Root in Sliammon. CCVC Roots undergo epenthesis in Sliammon in order to avoid a violation of *COMPLEX ONSET, as illustrated above. This is in contrast to the
treatment of the hypothetical cases discussed above which would involve deletion of a nominalizing prefix s-.

3.2.2.1.3.4.2 Proposed Analysis

If a speaker posits an Input such as /'ंभun/, the relative ranking of *COMPLEX ONSET and DEP[NUC] (the constraint which keeps track of the cost associated with schwa epenthesis) drives schwa epenthesis and selects candidate (61.a) over candidate (61.b).
(61) q́tun q̇áłon bow of the boat

Input: ġłun	COMPLEX ONSET	DEP[NUC]
cre a. ġótun		
b. g’tún	*!	

The tableau in (62) shows that MAX[C] ROOT is also ranked higher than DEP[NUC] since deletion of either C_{1} or C_{2} of the Root in (62.b-c) is clearly less optimal than candidate (62.a) which involves schwa epenthesis.
(62) q̇tun quáton bow of the boat

Input: ġłun	ROOT FAITH: MAX-C ROOT	DEP[NUC]
co a. ġótun		\|
b. < ${ }^{\text {d }}$ >+4ún	*!	
c. $\dot{q}<\$>$ ún	*!	

Notice that is the speaker posits /qंotun/ as the Input, then all three constraints are satisfied in the optimal candidate: q’átun.

By transitivity then, we have established the foliowing partial constraint rankings:
(63) $\begin{array}{ll}\text { *COMPLEX ONSET } & \gg \text { AFFIX FAITH (MAX) } \\ \text { *COMPLEX ONSET } & \gg \text { DEP[NUCI } \\ \text { *COMPLEX ONSET } & \gg \text { NO CODA } \\ \text { MAX-C ROOT } & \gg \text { NO CODA } \\ \text { MAX-C ROOT } & \gg \text { DEP[NUC] }\end{array}$

The data in (64) establishes the relative ranking of DEP[NUC] and NO CODA Consider the status of the following CVC Roots which can appear as unaffixed stems.
(64) CVC Roots

Input

a. tin
b. piq
c. 夫 ̌ $u q^{w}$
d. pukw
e. \tan
f. man
tin
p piq̉

* ${ }^{\prime}$ uq w
puk ${ }^{w}$
\tan
man

Output

tén

p̉ ε q́

púk ${ }^{\text {w }}$
tán ~ tín
mán $\sim m \wedge n$

Gloss

barbecued fish
wide hard
book mother father

Notice that Root Faithfulness and DEP[NUC] must dominate NO CODA since it is better to have a faithful parse of the coda consonant than to allow epenthesis, as shown in (65).
(65) tin [ṫ́n] barbecued fish (salmon)

tin	ROOT FAITH	DEP[NUC]	NO CODA
cos a. tin			
b. $\mathrm{ti} \cdot \mathrm{n}[\mathrm{e}]$		*!	\|
c. $\mathrm{ti}<\mathrm{n}>$	*!		\|

(66) Partial Constraint Ranking by Transitivity

*COMPLEX ONSET	\gg	AFFIX FAITH (MAX)		
*COMPLEX ONSET	\gg	DEP[NUC]	$>$	NO CODA
ROOT FAITH: MAX-C ROOT	\gg	DEP[NUC]	\gg	NO CODA

The next section provides additional evidence for the lack of Complex Onsets in Sliammon.

3.2.2.1.4 Loan Words: Evidence for lack of Complex Onsets

The phonology of words borrowed into Sliammon from English also provides evidence that Complex Onsets are generally banned in the language. Compare the English words in (67.a-b) which contain complex onsets with the corresponding Sliammon loan words in (68.a-b).
(67) English Source
a. plímz
plums
b. brówk
broke
(68) Sliammon loan words

Input
a. plms palmos
b. plok $^{\mathrm{w}}$-it č

Output
pálməs (~ páləməs) plum, plums
pálok ${ }^{\mathrm{w}} \mathrm{\iota c}$ č \quad I'm broke (no money)

In the Sliammon loans, the initial consonant cluster is avoided by the presence of [ó], as shown by the output forms in (68.a-b).

The goal of the preceding section has been to establish the lack of Complex Onsets in the language. The next section addresses some apparent counter examples to this claim.

3.2.2.1.5 Apparent Exceptions to *Complex Onset

3.2.2.1.5.1 Initial sC sequences

The following examples which were uttered in isolation begin with word-initial consonant clusters and therefore appear to be counter examples to the generalization that Sliammon lacks Complex Onsets. All of these examples in (69-70) involve an initial s.

Input

a. $\quad \mathbf{s} \dot{q}^{w a j ̆ i m}$
a". s IMP-qं ${ }^{\text {wajıim }}+$?
b. $s \mathbf{k}^{w_{i c ̌}} \mathbf{i}$
c. s nəq่
(70) time expressions
a. s čapat
b. sčañut
c. s čams
d. s jasut
e. stink $\mathfrak{k}^{w}-{ }^{\prime} u \nmid$

Output

skīícii
snヘ́q́q~sñ́q̉
sčéqat
sčé?nวヤ
sčém̉s

$\mathbf{s t}^{\ominus}{ }^{\text {ók }}{ }^{\mathrm{w}} \mathbf{v}$

Gloss
he's so poor, in poor health
worse than poor, sickly
bothersome, a nuisance
dear, loved one
now when?
why?
yesterday
at the end of a day

Although each example involves a sequence of two consonants (sC) from a linear perspective, the claim which is made here is that these two consonants do not form a constituent (i.e. Complex Onset) within the domain of the Prosodic Word (PrWd).

Evidence that the initial s is segmentable is provided by the contrast between the data provided in (69-70) versus the data in (71) which lacks the initial s. Consider the contrast between the related words and phrases provided by one elder who consistently omits the initial s when she produces these words in isolation. Compare the data in (69-70) with the examples in (71) which lack the initial s- proclitic.
(71) Sliammon data

Input	Output	Gloss
a. $\dot{\mathbf{q}}^{\text {waju⿺辶 }}$		poor, poor in health
b. $\mathbf{k}^{\mathrm{w}} \mathrm{i}$ či	$\mathrm{k}^{\text {whilči }}$	bothersome
c. čam ga		why?
c'. čam čx ${ }^{\text {w }}$ ga	čím ču ${ }^{\text {w }}$ - ga	what's the matter?
d. Jasut	jésot	yesterday(cf. sjěsot)
	$\mathfrak{t}^{\text {¢ }}{ }^{\text {ćk }}{ }^{\text {w }}$	today (cf. $s t^{\ominus}{ }^{\circ} \mathrm{K}^{W}$)
e'. IMP-te ${ }^{\text {e }} \mathrm{k}^{\mathrm{w}}-\mathrm{INC}$		breaking daylight

Since this sproclitic is a sentence-level constituent and is not part of the word, it is omitted in (71.a-e) when the word is pronounced in isolation. When the word occurs in a sentential context, the initial s reappears, as in (72. $\mathrm{a}^{\prime}-\mathrm{a}^{\prime \prime}$) and (72.d). The form in (72.c) shows that the non-reduced form of this phrase involves ?os and that the s is syllabified as the coda of the first syllable; compare this with (71.c) above.
(72) Sliammon data

Input

a. \mathbf{q}^{w} a ${ }^{\text {jum }}$
a'. hi hw s $\mathbf{q}^{\text {wajüim toýta tumiš }}$

b. $\mathbf{k}^{\mathrm{w}} \mathrm{iči}$
c. Pos capat
d. hi hw $\mathrm{k}^{\mathrm{w}} \mathrm{s}$ ča?anuł
e. čam ga
e'. čam čx ${ }^{w}$ ga

Output

$k^{\text {wilicci }}$
Posčé? th Pas. čé?. Pat
hé:w kws čé?anot

čím čx ${ }^{w}$ ə ga what's the matter?

f. jasut	jésot	yesterday
f. s J̌asự	s. . yés . soł	yesterday
g. $t^{\theta} \mathbf{u k}{ }^{\text {w }}$	$\mathfrak{t}^{\text {® }}$ ók ${ }^{\text {w }}$	today
g'. IMP-t ${ }^{\text {® }} \mathbf{u} \mathrm{k}^{\mathrm{w}}-\mathrm{INC}$		breaking daylight
h. mamata	mamata	white person
h'. sq̉ s mamała-s	s íq $^{\text {a }}$ smám^tıs	$s / h e ' s$ a half breed

In (72.f-f) this speaker produces both jésot~s.jésoł for yesterday but clearly considers the initial s in the second variant outside of the domain of the first syllable, as indicated by the judgements regarding syllabification.

A single consonant such as s which is not syllabified as part of the initial Onset, is proposed to be licensed moraically, as shown in (73) below (cf. Bagemihl 1991 on moraic licensing in Bella Coola).
a. $\quad s_{\mu}\left(\breve{j}^{\prime}{ }_{\mu} s_{\mu} \cdot s^{\circ} \dagger_{\mu}\right)$

It should be noted that the elder who systematically omits the initial s in (71) above did produce two words with the initial sC.
(74)
Input
a. $s q^{w a y}$
$s q^{w a y}$

Output
$s q^{w a ́ y} \sim s q^{w} \kappa$ ィ y

Gloss
telephone
this morning

Unfortunately, these two examples have not been systematically tested with other consultants nor have they been tested in different syntactic environments in order to determine the nature of the initial s. Recall that there are a number of sources for initial s: nominalizing prefix s-which has generally been lost, the proclitic s found in subordinate clauses, and a reduced form of $\mathfrak{F a s} / \mathcal{Z a s}$.

The explanation for the existence of $s C$ initial words involves a complex set of factors, such as those in (75).
(75)

- there are a number of s's which precede the stem in linear string
- Markedness: coronal s often found as an exception cross-linguistically
- Existence of word-internal sC onsets to satisfy metrical constraints
- Contact with other Salish-speaking peoples where s-nominalizer is preserved
- Increasing use of English which has many sC -initial words

What is clear is that Sliammon lacks word-initial CC onsets which do occur in many other Salish languages. Ranking of *COMPLEX ONSET relatively high, but as with all constraints it can be violated if constrained to do so by some higher-ranking conflicting constraint. A case in point will be discussed in §3.2.2.6.1.

3.2.2.1.5.2 Clitic Initial Constructions

The following clitic-initial constructions in the language also appear to be exceptions to the proposal that Sliammon lacks Complex Onsets. These constructions are particularly interesting since the first position in the phrase is typically occupied by the predicate or verbal auxiliary. As shown by the data in (76-78), the subject clitics are the first element in the linear string. In fact, the subject clitic is followed by another second position clitic ($k^{w} u, k^{w} i ?, k^{w} a ?$) which indicates that the entire clitic group occupies this first position.

These constructions are of interest from a phonological perspective since we need to determine how these phrase-initial consonants are licensed? The output forms in (76.a-g) were recorded with a very brief excrescent schwa following the clitic which seems to suggest that these clitics are not syllabified with the following syllable, and therefore do not violate
*COMPLEX ONSET. The data in (76) involves the first person subject clitic \check{c} and the clitic $\mathrm{k}^{\mathrm{w}} \mathrm{u}$ whereas (77) involves combination of č with $\mathbf{k}^{w i}$?
(76) First Person (sg) Subject Clitic: č I (usually an enclitic)

Input

a. $\check{c} \mathbf{k}^{w} \mathbf{u} k^{w a n=n a c ̌-i t}$
b. $\check{c}^{k^{w}} \mathbf{u}$ Piftan-it
c. $\check{c} \mathbf{k}^{\mathrm{w}} \mathbf{u}$ đ̉um
d. č $\mathbf{k}^{\mathrm{w}} \mathbf{u}$ q̉aq̉əm

g. $\check{c} k^{w} u \quad q^{w} \partial l^{\prime} g \hat{c}=i q^{w} a n-m$

j. č $\mathrm{k}^{\mathrm{w}} \mathbf{u} \mathrm{q}^{\mathrm{w}} \partial \mathrm{l}^{\prime}$ tuk ${ }^{\mathrm{w}}=\mathrm{an}{ }^{2} \mathrm{a}$

1. ᄃ̌ $\mathbf{k}^{\mathrm{w}} \mathbf{u}$ čag- ux^{w}-an

Output

$\check{c}^{\mathbf{c}} \mathbf{k}^{\mathrm{w}} \mathbf{u} \mathbf{k}^{\mathrm{w}}{ }^{\text {á }}{ }^{\mathrm{a}}{ }^{\text {n }}$ æčit
$\check{c}^{\boldsymbol{a}} \mathrm{k}^{\mathrm{w}} \mathrm{u}$ Téfta•nit
ča $^{2} \mathrm{k}^{\mathrm{w}} \mathrm{u}$ 夫óm
ča $^{2} \mathbf{k}^{\mathbf{w}} \mathbf{u}$ q̉áq́^m
$\check{c}^{2} \mathbf{k}^{\mathbf{w}} \mathbf{u}$ 夫íčtam

č $\mathrm{k}^{\mathrm{w}} \mathbf{u}$ čégux ${ }^{\mathrm{w}} \mathrm{In}$
č $\mathrm{k}^{\mathrm{w}} \mathbf{u} \mathrm{q}^{\mathrm{w}} \mathrm{A}^{\mathrm{l}}{ }^{\text {tax́pos }}$

č $\mathbf{k}^{\mathrm{w}} \mathbf{u}$ čé $\cdot \mathrm{gux}^{\mathrm{w}}$ ın

Gloss

I'm sitting down
I've eaten
I've had enough; I'm almost there
I'm hungry
I'm sleepy
I'm cold; I've gotten cold
I've gone bald
I've already heIped him
I'm getting (going) blind
I'm getting (going) deaf
I'm getting old
I've helped him already
(77) First Person (sg) Subject Clitic: č I

Input

b. č $\mathrm{k}^{\mathrm{w}} \dot{\mathrm{y}}$ čag-t-'ut
b^{\prime}. č $\mathbf{k}^{\mathbf{w}}{ }^{\prime}$ càag-t-an-'ut
c. $\check{c} \mathbf{k}^{w} \dot{\mathbf{y}} \mathbf{k}^{\mathrm{w}} \mathrm{an}=\mathrm{iws}-\mathrm{it}$
d. č $\mathbf{k}^{\mathbf{w}} \mathbf{y}$?iłtan-it-'ut
e. $\check{c} k^{w} \mathfrak{y} h u \check{j}$

Output

č $\mathrm{k}^{\mathrm{w}} \mathrm{i}$? ${ }^{\text {cé }}$.gatanot
č $\mathrm{k}^{\text {wif }} \mathrm{k}^{\text {wánewsit }}{ }^{\text {h }}$

č $\mathrm{k}^{\mathrm{w}} \mathrm{i}$? hóy

Gloss

I've helped him (just now)
I've already helped him
I've already helped him
I already rested
I've already eaten
I'm finished
(78) First Person (sg \& pl) Forms: č I; št we

Input

a. č $\mathbf{k}^{\mathrm{w}} \mathrm{a}$? $\mathrm{O}_{\mathrm{J}} \mathrm{J}^{\mathrm{J}} \mathrm{INC}$ (stv.?)
b. č $\mathbf{k}^{\mathrm{w}} \mathbf{a}$? $\mathrm{ta}(\mathrm{P}) \mathrm{gam}-\mathrm{it}$
c. $\check{c ̌ x}^{w} \mathbf{k}^{\mathrm{w}}$ a? $\mathrm{Paj}^{\mathbf{j}}-\mathrm{INC}$
d. št $\mathrm{k}^{\mathrm{w} a ?}$ ใoj? $^{2}-\mathrm{INC}$
e. šst k^{w} a? tag-am-it-'uł

Output

č $\mathrm{k}^{\mathrm{w}} \mathrm{a}$? tá? $\mathrm{gamint}^{\mathrm{h}}$

št $k^{\text {wap }}$ a tágamìtoł

Gloss

I'm all better now
I announced it
you're all better
we're all better
We announced it

3.2.2.1.5.3 Discussion and Proposed Analysis

It is proposed here that the sentence-initial clitic č is licensed moraically, as evidenced by the excrescent schwa which accompanies the release of this consonant. In particular, \check{c} is not the first member of a complex onset, and therefore does not constitute a violation of the constraint *COMPLEX ONSET. As will be argued in §3.2.2.3, Sliammon has obstruent-only syllables of the form $\mathrm{CC} \mu$. The other subject clitics čx $^{\mathrm{w}}$ and št are proposed to form minor syllables. Since these clitics are unstressed, and schwa epenthesis is proposed to occur within the domain of the stem in order to satisfy PROPER HEADEDNESS at the level of the Foot, these CC syllables are licensed without containing a vocalic nucleus.

3.2.2.1.6 Word-Internal Complex Onsets

3.2.2.1.6.1 The Problem

In the previous sections, it is argued that Sliammon generally lacks word-initial and wordinternal Complex Onsets. The next section presents a systematic set of cases in which *COMPLEX ONSET is violated, as shown by the data in (79). A word-internal st- cluster is parsed as a Complex Onset rather than spanning two different syllables, as shown by a comparison of the grammatical and ungrammatical examples in (79).
(79) Word-internal sC- Onsets and the Causative Suffix/-stg/

Output

a. $\mathrm{j} \nexists \mathrm{t}$-st-ag \ddagger
a^{\prime}.
b. $\mathbf{k}^{\text {w }} \boldsymbol{m n}-\mathrm{stu}-\mathrm{mi} \check{\mathbf{c}}$
\mathbf{b}^{\prime}.
c. $\mathbf{k}^{w} ə \mathrm{n}$-st-anaq
c'.
d. $\vec{k}^{w i-k^{w}}{ }^{w n-s t-a n a-m u t}$
d'.
e. IMP-tiwšam-st-anaq
e'.
f. IMP-tiwšam-stu-mi č
f.

〕̂t . staw
*jlins . tawt
$\mathbf{k}^{\mathrm{w}} \mathrm{v́n}^{\text {. sto }}$. mıč
*k ${ }^{\text {win }}$ ns. to . mıč
\dot{k}^{w} v́n . sta . n^q . person who shows off
*kºúns.ta. n^q.
$\hat{k}^{w_{1}} \cdot \mathrm{k}^{\mathrm{w}} \boldsymbol{\mathrm { O }}$. stà: . nà? . mot he's really showing off

* $^{\text {w }} \mathbf{i}$. $\mathbf{k}^{\text {w }}$ əns . tà: . nà? . mot
tí . tiw . šèm. stìn . n^q teaching
*tí. tiw. šèms. $t \wedge$ n. $n \wedge q$
tí . tiw . šèm . stò . mıč I'm teaching you
*tí . tiw . šèms. tò . mıč

Gloss
have a race (with e.o.)

I'll show it to you

Compare the data in (71) with the data in (79) (both data sets from a single speaker), which show that there is an asymmetry between word-initial syllables versus word-internal syllables. The problem then is how do we account for the contexts in which Complex Onsets are banned, and the contexts in which Complex Onsets are permitted?

All of the examples in (79) involve the Causative Marker /stg-/. The surface st- Onsets occur in both stressed and unstressed syllables so that an explanation for their distribution cannot be attributed to whether or not they occur in a strong/weak metrical position.

3.2.2.1.6.2 Proposed Analysis

These examples receive a principled explanation within an Optimality theoretic grammar given constraint ranking, conflict and minimal violation. The constraint which bans complex onsets (*COMPLEX ONSET) is violated in order to satisfy some higher-ranked constraint(s) within
the grammar. Consider the following analysis which is proposed here in order to account for the data in (79).

Some morphemes prefer to be aligned with the edge of a relevant prosodic category rather than being parsed into different prosodic constituents (cf. McCarthy and Prince (1993b) on Generalized Alignment). I propose the following language-specific instantiation of Alignment which ensures that the left-edge of the Causative morpheme is aligned with the left-edge of a syllable, as in (80).

(80) ALIGN L [CAUS, o]

Align the left edge of the Causative morpheme with the left edge of a syllable.

Consider the following representations which illustrate how satisfaction of this constraint works. The representation in (81.a) violates ALIGN L since the causative morpheme is parsed into two different syllables, whereas the representation in (81.b) satisfies the constraint since the causative morpheme is aligned with the left-edge of a syllable. The example in (81.a'-b') illustrates how this applies to the form: joえ-st-awt have a race with each other, repeated here from (79.a).

Violates ALIGN L	Satisfies ALIGN L
a. * stem-s] [t... $\sigma][\sigma$	b. stem] [-st... $\sigma][\sigma$
	b'. Jtt . stawt

The optimal output satisfies ALIGN L at the cost of violating *COMPLEX ONSET, as shown by the tableau in (82).
(82) $\mathfrak{k}^{\text {won }}$-st-anaq $\left[\mathrm{k}^{\mathrm{w}} \mathrm{v}^{n}\right.$. sta. $\left.\mathrm{n} \wedge q\right]$ person who shows off

$\hat{\mathbf{k}}^{\text {w }}$ on-st-anaq	ALIGN L [CAUS, σ]	*COMPLEX ONSET
		1
b. $\mathrm{k}^{\text {wo }}$ ¢ ns . ta . $\mathrm{n} \wedge \mathrm{q}$	*!	

In addition, if all coda consonants are moraic as argued in §3.1, then syllabifying VCCCV as VCC . CV will create a structure a preceding trimoraic syllable whereas syllabifying the same string as VC . CCV. does not. Notice that the output candidate which violates *COMPLEX ONSET also creates more optimal Foot structure. Consider the following metrical structures in (83) which illustrate this point (cf. §3.3 on Metrical Structure in the language).

	a. ${ }^{\text {J }}$ - - st-agt		have a race; race e.o.
\cdots	a^{\prime}.		*COMPLEX ONSET
	a".		* $(\mu \mu \mu \mu) \mathrm{Ft}$
	a"'.		*CLASH
	b. $\hat{k}^{w} \mathrm{n}$-stu-mi $\check{\mathrm{c}}$	[${ }^{\text {k }}$ v́nstomıč]	I'll show it to you
	b^{\prime}.		*COMPLEX ONSET
	$\mathrm{b}^{\prime \prime}$.	* $\left(\mathrm{k}^{\mathrm{w}} \mathrm{on}_{\mu} \mathrm{s}_{\mu} \cdot \mathrm{to}_{\mu} \cdot \mathrm{mlc} \check{c}_{\mu}\right)$	* $(\mu \mu \mu \mu) \mathrm{Ft}$
	b"'.	${ }^{*}\left(\mathrm{k}^{\boldsymbol{w}} \mathrm{\partial b}_{\mu} \mathrm{s}_{\mu}\right)\left(\mathrm{tò}_{\mu} \cdot \mathrm{mlc}_{\mu}\right)$	*CLASH
	c. $\hat{k}^{w} \mathrm{n}$-st-anaq	[${ }^{\text {k w }}$ º́nst^nəq]	s.b. who shows off
	c^{\prime}.	$\left(\mathbf{k}^{\mathrm{w}} \mathrm{on}_{\mu} \cdot \mathrm{sta}_{\mu} \cdot \mathrm{nzq}_{\mu}\right)$	*COMPLEX ONSET
	c".		* $(\mu \mu \mu \mu) \mathrm{Ft}$
	$c^{\prime \prime}$.		*CLASH

As shown by the syllabification and Foot structure presented in (83.a"), if the s were syllabified with the preceding syllable, this would also have the effect of increasing the moraic count of the entire word. In fact (83.a") is ill-formed because the Foot contains four moras (a non-minimal violation of FTBIN). The constraint ranking must also rule out candidate (83.a"') in which there are two adjacent Feet. By comparing the output candidate in (83.a') with (83.a"'), it seems that creating a bi-syllabic tri-moraic Foot is more highly valued than a sequence of two bi-moraic mono-syllabic feet - in other words, the amount of phonological material which occurs within the Foot domain is maximized, and this results in the violation of the lower-ranked *COMPLEX ONSET constraint. In addition, adjacent stressed syllables (*CLASH) are avoided ${ }^{4}$.

This section presents evidence that *COMPLEX ONSET is violated in order to ensure that the causative morpheme is aligned with the edge of a syllable. By observing the ungrammatical examples in (83.a"'-d"'), failure to properly Align this suffix would also create structures in which the causative morpheme straddles not only two syllables but also two Feet. CRISP ALIGNMENT is therefore satisfied at the expense of a *COMPLEX ONSET violation.

[^16]
3.2.2.2 Establishing Maximal syllable size: *Complex Coda

It appears to be relatively easy to establish the simple syllable types in the language; however, it becomes more difficult to establish the upper limits on the size and shape of syllables in Sliammon.

3.2.2.2.1 The Data

Given the Nuclear Moraic Model of Shaw (1993 et seq.), if schwa is nuclear and nonmoraic in contrast to full vowels which are Nuclear and moraic, then we predict an asymmetry between number of coda consonants licensed by schwa versus the number of coda consonants licensed by a full vowel. Further, if feet are optimally bimoraic in the language (i.e. they satisfy FTBIN μ), then we expect to find (CəCC) and (CAC) Feet. This is in fact the case, as shown by the data in (84-85) which involve mono-morphemic words in the language.

(84) C СС

Input		Output	Gloss
a. $\mathrm{tk}^{\mathrm{w}} \mathrm{s}$	$\mathfrak{t}^{\text {² }}{ }^{\text {w }}$ S	tưk ${ }^{\text {w }}$ S	to burst; gun shot
b. $\begin{aligned} \text { člt }\end{aligned}$	̇̇əečt	ユ̇áčt	sleep
c. $\lambda \mathrm{px}{ }^{\mathrm{w}}$	خəp $\mathbf{x}^{\mathbf{w}}$	خə́px ${ }^{\text {w }}$	break
d. $\mathrm{m} \theta \mathrm{k}^{\mathrm{w}}$	mə $\mathrm{k}^{\mathbf{w}}$	mə́ ${ }^{\text {k }}{ }^{\text {w }}$	blackcap berry
e. pft	poft	páqt	thick
f. $\check{\text { x }} \mathrm{c}^{\text {k }}{ }^{\mathbf{m}}$	x̆ə ${ }^{\text {che }}{ }^{\text {w }}$	x̌át ${ }^{\text {ch }}{ }^{\text {w }}$	design, carved
g. fint	tən่t	tónt	to weave
h. $\mathrm{qm}^{\text {² }}$	qəmk ${ }^{\text {w }}$	qámk ${ }^{\text {w }}$	capsize, tip over
i. $\mathrm{E}_{\mathrm{p}} \mathrm{x}$	ċəpx̆	çópx	dirty

(85) CAC

Input	Syllabification	Output	Gloss
a. tin	tin	tén	barbecued salmon
b. piq	piq ${ }^{\text {a }}$	p̧ $¢$ q́	wide
c. čuf	čuỷ	čúỷ	child
d. $t^{\theta} u^{\text {k }}$	$t^{\ominus} \mathbf{u k}^{\mathbf{w}}$	$\mathfrak{t}^{\text {cók }}{ }^{\text {w }}$	day, light, bright
e. man	man	mán \sim m	father
f. \tan	tan	tán \sim tヘ́n	mother
g. quay	$q^{\text {way }}$	$q^{\text {wáy }}$	talk, speak

The data in (84-85) above satisfy the constraints SYLL NUC and SYLL MORA, as well as the constraint ${ }^{*}[\mu \mu \mu]_{\sigma}$ which assigns a cost associated with super-heavy syllables.
(86)

SYLL NUC Syllables have vocalic nuclei
(P\&S 1993)
SYLL MORA Syllables have phonological weight (Shaw 1995, 1996)

* $[\mu \mu \mu]_{\sigma} \quad$ Syllables are not trimoraic

CəCC syllables do incur a *COMPLEX CODA violation, but do so in order to satisfy the highranking Root Faithfulness constraints.

Now consider the following data which contain trimoraic CACC syllables. Notice that these examples involve mono-morphemic Roots in the language, as opposed to trimoraic syllables which may arise as a result of morphological concatenation. As will be shown in §3.2.2.2.3, trimoraic syllables are avoided when they arise across a morpheme boundary whereas they are licit in the mono-morphemic forms in (87).
(87) CACC

Input	Output	Gloss
a. $\dot{k}^{W} \mathrm{i}^{\prime}{ }^{\prime} \mathrm{t}$	$\hat{k}^{\text {w }} \mathrm{ex}^{\prime} \mathrm{t}^{\text {h }}$	upstream area
b. piwt	péwt	rendered fat, lard
c. kiks	kiks	cookie
d. $\mathrm{x}^{\mathrm{w}} \mathrm{uk}^{\mathrm{w}} \mathrm{t}$	$\mathbf{x}^{\mathbf{w}} \mathbf{u}^{\mathbf{w}}{ }^{\text {b }}{ }^{\text {h }}$	nothing, none
e. $\mathrm{k}^{\mathrm{w}} u \mathrm{~m}$ t		kelp
f. čap@	čép θ	aunt, uncle
g. Pasx ${ }^{\text {w }}$	Rásx ${ }^{\text {w }}$	seal
h. $\mathrm{Paq}^{\mathrm{w}} \mathrm{t}$	Páq ${ }^{\text {w }}{ }^{\text {h }}$	downstream area

The examples in (87) entail that ROOT FAITH outranks the constraint which bans trimoraic syllables.
(88) ROOT FAITH $\left.\gg{ }^{*} \mu \mu \mu\right]_{\sigma}$
(89) k^{w} ung [$\mathrm{k}^{\mathrm{w} u ́ m} \mathrm{t}$] kelp

Input: $\mathrm{k}^{\text {w }} \mathbf{u m h}$ t	ROOT FAITH	* $[\mu \mu \mu] \sigma$
a. $\mathrm{k}^{\text {wingrnt }}$		
b. $\mathrm{k}^{\mathrm{w}} \mathrm{u}^{\prime}<1>$	*!	Wrekiverker
c. $\mathrm{k}^{\mathrm{w}} \mathbf{u}^{\prime}<\mathrm{m}^{\prime}>\mathrm{t}$	*!	

The optimal candidate in (89.a) violates the constraint against trimoraic syllables (${ }^{*}[\mu \mu \mu]_{\sigma}$) in order to satisfy the higher-ranking Root Faithfulness constraints which ensures that there is a correspondence relation between the Input and the Output.

Notice also that although schwa epenthesis takes place for purposes of stress assignment (cf. §4), schwa epenthesis does not occur in order to break up the final consonant cluster, as in (90).
(90)

Input	Output		Gloss
a. $\vec{k}^{\mathbf{w}} \mathrm{i}^{\prime} \mathrm{t}$	$\hat{k}^{\text {weet }}$ ¢		upstream area
b. piwt	péwt	*píw[${ }^{\text {] }}$]	rendered fat, lard
c. kiks	kíks	*Kík[ə]s	cookie
d. $x^{w} u k^{w} t$			nothing, none
e. $k^{w} u$ mbt	$\mathrm{k}^{\text {wium }}$ ¢	* $\mathrm{k}^{\mathbf{w}} \mathbf{u}$? $\mathrm{m}[\mathrm{e}] \mathrm{t}$	kelp
f. čapө	čépe	*čép $[ə] \theta$	aunt, uncle
g. Pasx ${ }^{\text {w }}$	Pásx ${ }^{\text {w }}$	* ${ }^{\text {Pás }}$ [ə] ${ }^{\text {w }}$	seal
h. $3 \mathrm{aq}^{\mathrm{w}} \mathrm{t}$	Páqu*t	* áaq $^{\text {w }}$ [ə]t	downstream area

3.2.2.2.2 Proposed Analysis

Schwa epenthesis into a Root not only incurs a DEP[NUC] violation but also violates O CONTIGUTTY of the Root which ensures that the contiguity relations in the Output are in correspondence with the contiguity relations in the Input (cf. McCarthy and Prince (1995:371) and Lamontagne (1996)on Contiguity). This effectively assigns a cost associated with insertion into the Root which interrupts the contiguity of the string. If O-CONTIG ROOT dominates DEP[NUC], then schwa epenthesis will be prevented within the Root unless constrainted to do so by some higher-ranking constraint (cf. §3.2.2.3 where ROOT CONTIGUITY is violated in order to satisfy PROPER HEADEDNESS). Consider the tableau in (91) which shows the effects of this partial ranking.
(91) čap Θ [čép θ] parent's sibling; aunt, uncle

čap θ	O-CONTIG ROOT	DEP[NUC]
* a. čáp θ		
b. čáp[ə] θ	*!	Whaty

Contiguity must also dominate the constraint which bans trimoraic syllables, as shown by a comparison of the candidates in (92).
(92) čapӨ [č̌́pө] parent's sibling; aunt, uncle

Input: čapө	ROOT FAITH	O-CONTIG RT	* $[\mu \mu \mu] \sigma$	DEP[NUC]
\cdots a. čáa $\mathrm{p}_{\mu} \theta_{\mu}$				
b. čáa ${ }^{\text {p }}[2] \theta_{\mu}$		*!		
c. čća ${ }_{\mu} \mathrm{p}_{\mu}<\theta_{\mu}>$	*!		Whivex	
d. čá ${ }_{\mu}<p_{\mu}>\theta_{\mu}$	*!	Vrk,ky, vky		

Notice that this is different from what happens across a Root/Affix boundary, as shown by the data in the following section.

3.2.2.2.3 Diminutive Reduplication and * $\mu \mu \mu$] σ

The next section shows that morphologically-triggered vowel deletion associated with Diminutive reduplication is blocked in cases where this would otherwise create super-heavy CACC syllables.

3.2.2.2.3.1 Diminutive Reduplication

In CV- diminutive reduplication, the Root vowel is deleted as shown by the data in (93), and discussed in Davis (1970), Kroeber (1989), Blake (1992), Watanabe (1994, 2000).
(93) Diminutive Reduplication

Input		Output	Gloss
a. x'wilm $^{\text {chem }}$			rope
a^{\prime}. $\mathrm{DIM}^{\text {- }}{ }^{\mathbf{w}} \mathbf{i l}[-\mathrm{i}-] \mathrm{m}+[?]$	$\check{\mathrm{x}}^{\mathbf{w}} \mathbf{i}-$ x $^{\mathrm{W}} \mathrm{lim}$		string, thread
b. $\breve{\mathrm{x}}^{\mathbf{w} u s-m}$	$\check{x}^{\text {w }}$ usəm		soapberry
	$\check{\mathbf{x}}^{\mathbf{w}} \mathbf{u}-\breve{\mathbf{x}}^{\mathbf{w}} \mathbf{s i m}$		small soapberry
c. $\mathfrak{t}^{\ominus} \mathbf{u m}=a j u$	${ }^{\ominus}$ uma\̌u	\mathfrak{t}^{\ominus} ómaľy	barnacle
c'. $D I M-t^{*} u m=a j u=u t+[?]$	$t^{\ominus} u$-t ${ }^{\ominus}$ may̆uput		small barnacle
d. $q^{\text {wasm }}$	$\mathrm{q}^{\text {wasəm }}$	$q^{\text {wásım }}$	flower
d'. DIM-q ${ }^{\text {a }}$ asm+[?]	$q^{\text {w }} \mathrm{a}-\mathrm{q}^{\text {w }}$ səm ${ }^{\text {m }}$	$q^{\text {wááqu}}{ }^{\text {w }}$ səm	little flower
e. Ėañu	çañu	čéfno	dog
e'. DIM-çañu+[?]	ċa-čnu?	çéċno?	little dog
f. yax̆ay	yax̆ay	у^́x̆^у	clam basket
f. DIM-yax̆ay $+[?]$	ya-yx̆ay		small basket

Vowel deletion associated with Diminutive Reduplication is blocked if it creates a sequence of three consonants following the full vowel (i.e. a trimoraic syllable), as shown by the contrast between the data in ($94 . \mathrm{a}^{\prime}-\mathrm{d}^{\prime}$) and the ungrammatical examples in ($94 . \mathrm{a}^{\prime \prime}-\mathrm{d}$ ").
(94)

Input
a. wale
a^{\prime}. DIM-wal[-i-j $\theta+[?]$
a".
$\mathrm{a}^{\prime \prime \prime}$.

[^17]| b. čayš | čayəš | čéyıš~čégyıs | arm, hand |
| :---: | :---: | :---: | :---: |
| b'. DIM-čay[-i-]š+[?] | ča-ča? . yiš | čéččỷıš | small hand |
| $\mathrm{b}^{\prime \prime}$. | *ča-č? . yiš | | $\left.{ }^{*} \mu \mu \mu\right] \sigma$ |
| b"'. | *ča-č . ýiš | | *R'/Onset |
| c. $\mathrm{k}^{\mathrm{w}} \mathrm{u}$ mit | $\mathrm{k}^{\text {w }}$ umb | $k^{\text {w }}$ úm ${ }^{\text {d }}{ }^{\text {h }}$ | kelp |
| | $\mathrm{k}^{\mathrm{w}} \mathbf{u}-\mathrm{k}^{\mathrm{w}}$ um . tut | $\mathrm{k}^{\text {wúk }}{ }^{\text {w }}$ umtù ${ }^{\text {d }}$ | small kelp |
| c". | ${ }^{*} \mathrm{k}^{\mathrm{w}} \mathrm{u}-\mathrm{k}^{\mathrm{w}} \mathrm{m}$. tut | | $\left.{ }^{*} \mu \mu \mu\right] \sigma$ |
| d. ' ${ }^{\text {a ayk }}{ }^{\text {w }}$ | ' $^{\text {ay }}{ }^{\text {w }}$ | ¢ ${ }^{\text {q̇́y }}{ }^{\text {wh }}$ | bald eagle |
| | q̇a-q̇ay. $\mathrm{k}^{\text {w }}$-ut | q̧ágayk ${ }^{\text {Tù }}$ | young eagle |
| d". | *q'a-q̇y . $\mathbf{k}^{\text {w }} \mathbf{u t}$ | | $\left.{ }^{*} \mu \mu \mu\right] \sigma$ |

Candidates ($94 . \mathrm{a}^{\prime \prime \prime}-\mathrm{b}$ "') are ruled out by the high-ranking constraint which bans glottalized resonants in Onset position. Candidates (94.c"-d") also involve sonority reversals within the coda: (94.c")

The following mono-syllabic Roots also retain the Root vowel, as shown by the data in (95). These CVC stems take the Ci-diminutive prefix, a fact which is also noted by Watanabe (2000). The ungrammatical forms in ($95 . \mathrm{a}^{\prime \prime}-\mathrm{c}$ ") show that deletion of the Root vowel would create hetero-morphemic trimoraic syllables of the from CA-CC.

Input		Output	Gloss
a. puk ${ }^{\text {w }}$	puk ${ }^{\text {w }}$	púk ${ }^{\text {w }}$	book
a^{\prime}. DIM-puk ${ }^{\text {w }}$	pi-puk ${ }^{\text {w }}$	pépuk ${ }^{\text {w }}$	small book
$\mathrm{a}^{\prime \prime}$.	* ${ }^{\text {i }}$-pk ${ }^{\text {w }}$		* $\mu \mu \mu \mathrm{l} \boldsymbol{\sigma}$
	* 2 p	才óp	deep
b'. DIM-̇əp		天í̇̇p	Little bit deep
$\mathrm{b}^{\prime \prime}$.	* i i - ${ }^{\text {¢ }}$ p		$\left.{ }^{*} \mu \mu \mu\right] \sigma$

c. $\mathrm{k}^{\mathrm{w}} \mathrm{as}$	$\hat{k}^{\text {was }}$		hot
c'. DIM-kwas	$\hat{k}^{\boldsymbol{w}} \mathbf{i - k}{ }^{\text {w }}$ as	$\hat{\mathbf{k}}^{\mathbf{w}} \mathrm{E}^{\mathbf{k}}{ }^{\mathbf{w}}$ As	little bit hot
c".			* $\mu \mu \mu$] σ

As observed in this section there is a general constraint against super-heavy syllables in Sliammon as shown by the Diminutive examples in (94-95). Mono-morphemic Roots of the shape CVCC violate the constraint $\left.{ }^{*} \mu \mu \mu\right]_{\sigma}$ in order to satisfy the constraints on Root Faithfulness. As argued in (91-92) above, mono-morphemic Roots do not take schwa epenthesis either, due to the relatively high-ranking constraint on Root O -Contiguity.

Having discussed both simple syllable structure in Sliammon, and the constraints on maximal syllable size, consider the following residual issue.

3.2.2.3 Asymmetry between beginning of words and ends of words

Ore of the properties which characterizes Sliammon words is that the beginnings of words are restricted to a single consonant before the stressed vowel, as in (96).
(96)

Input
a. $k^{w_{i s ̌}^{s}}{ }^{w_{i}}{ }^{\text {s. }}$
$k^{w_{i}}{ }^{\text {sis }}{ }^{\mathbf{w}}{ }^{\mathbf{i}} \mathbf{i s}$
b. $\hat{k}^{\mathrm{w}} \mathrm{uta}$
c. $\overrightarrow{\mathrm{k}}^{\mathrm{w}} \mathrm{as}$
d. $m \dot{q}^{w} \mathfrak{t}^{\boldsymbol{\theta}}$
$m[a ́] \mathfrak{q}^{w} \mathfrak{t}^{\theta}$

Output Gloss

kúta barbecue stick
kª́s $^{\text {ás }}$ hot

Contrast this with what happens at the ends of words. As can be observed from the data in (97), words in Sliammon often end in long string of consonants.
(97)

Input		Output	Gloss
a. $t^{\ominus} \mathrm{amq}^{\mathrm{w}} \mathrm{L}$	$t^{\ominus} \mathrm{amq}^{\text {w }} \ddagger$	$\mathfrak{t}^{\text {¢ ámq }}{ }^{\text {w }}$ ¢	cloud
a^{\prime}.		* ${ }^{\text {® }}$ ámq ${ }^{\text {w }}$ 2t	
b. sattx ${ }^{\text {w }}$	sattx ${ }^{\text {w }}$	sáftx ${ }^{\text {w }} \sim$ sáftwo	woman
b^{\prime}.		*sáqtox ${ }^{\text {w }}$	
c. $\mathrm{q}^{\text {dx }} \mathrm{m}$	q ${ }^{\text {P }}$ Ptx ${ }^{\text {w }}$		to burn (fire)
c^{\prime}.		* ${ }^{\text {gap }}$ tox ${ }^{\text {w }}$	
d. IMP-q' $\mathrm{tx}^{\mathbf{w}}$		quáq́tx ${ }^{\text {w }}$	burning
d'.		${ }^{*}$ qááqtox ${ }^{\text {w }}$	
e. $\mathrm{pu} p \mathrm{px} \mathrm{w}^{\text {d }}$	puPpx ${ }^{\text {w }}$	púppx ${ }^{\text {w }}$	kindling
e'.			

How do we explain this observed asymmetry? Why is there only ever a single consonant at the beginning of words in Sliammon but the language tolerates many consonants word-finally? In particular, examples like those in (97.a-e) clearly exceed the constraints on maximal syllables established in §3.2.2 above.

In Blake (1992), these extra consonants are treated as extrametrical; however, it was necessary to admit more than a single consonant at the right-hand edge of the word. Since extrametricality is typically limited to a single consonant or prosodic unit at the edge of a domain, treating these consonants as "extrametrical" seems somewhat questionable.

3.2.2.3.1 Minor Syllables in Sliammon

Syllabification of these examples in (98) Column 2 shows that the final CC is systematically treated as a separate constituent. The syllable boundary is marked with a period, and reflects the judgements of Sliammon speakers.

Input	Syllabification	Output	Gloss
a. $t^{9} \mathrm{amq}^{\mathrm{w}} \mathrm{L}$	$\mathrm{t}^{\text {® }} \mathrm{am} \cdot \mathrm{q}^{\text {w }} \downarrow$	\dagger^{\ominus} ámq $^{\text {w }} \downarrow$	cloud
b. saftx ${ }^{\text {w }}$	sat.tx ${ }^{\text {w }}$	sáftx ${ }^{\text {w }} \sim$ sádtwo	woman
c. $\mathrm{q}^{\mathbf{t}} \mathrm{x}^{\mathbf{w}}$	q̇ว? $\mathrm{tx}^{\mathbf{w}}$		to burn (fire)
d. IMP-q̧tx ${ }^{\text {N }}$	¢́ว ${ }^{\text {c }}$. $\mathrm{tx}^{\mathbf{w}}$	q́áq́tx ${ }^{\text {w }}$	burning
e. puppx ${ }^{\text {w }}$	puf. px ${ }^{\text {w }}$	púppx ${ }^{\text {w }}$	kindling

Shaw (1993, 1995, 1996) discusses the role of minor syllables in Berber, Mon-Khmer, and Salish languages, with examples from Lillooet (St'at'imcets) and Bella Coola (Nuxalk). A minor syllable is comprised of an Onset consonant followed by a moraic coda consonant. Within Shaw's Nuclear Moraic Model which I adopt here, a minor syllable is mono-moraic, but non-nuclear.

$$
\begin{gather*}
\sigma \tag{99}\\
\\
/ 1 \\
\\
/ \mu \\
/ \\
\hline
\end{gather*}
$$

Blake (1995, 1999) claims that Sliammon has minor syllables, as shown by the data in (98).
Shaw (1996) also refers to minor syllables as "headless" syllables since they do not contain a nucleus. In her discussion of headless syllables and their interaction with stress, Shaw (1996: 4)
states that a headless syilable has the following properties: (a) it cannot meet the requirements of either SYLL NUC or Proper Headedness at the level of the syllable, (b) it is constrained to metrically weak positions, and (c) it is mono-moraic (i.e. metrically light).

Notice that there is a kind of complementarity between the locus of stressed schwa and the occurrence of minor syllables in Sliammon. Sliammon has minor syllables - syllables which violate the constraint SYLL NUC. This means that schwa epenthesis is not driven by the constraint SYLL NUC otherwise we would expect all syllables in Sliammon to have vocalic nuclei. It is claimed here that epenthetic schwa in Sliammon is inserted in order to satisfy Proper Headedness at the level of the Foot. Shaw (1996.c) proposes that Proper Headedness is a family of three independent and rankable constraints, as defined in (100).
(100) Proper Headedness of Shaw (1996c:10) (cf. Ito and Mester 1992; Ola 1995)
a. PROPHEAD PW
A Prosodic Word is headed by a Foot
b. PROPHEAD FT
A Foot is headed by a Syllable
A Syllable is headed by a NUC
[=SYLL NUC]

As can be seen from the data in (98), minor syllables in Sliammon do not occur in a stressed syllable (i.e. as the head of a metrical foot). Furthermore, schwa epenthesis occurs between C_{1} and C_{2} of the Root, as shown in (101).
(101) èt / čat [čıt ${ }^{\prime}$] rain

Input: ct ${ }^{\text {ct }}$	PROPHEAD	DEP[NUC]
as at éré]t		
b. ${ }_{\text {c }}$ t	*!	Whak

Input: ${ }^{\text {et }}$	PROPHEAD	O-CONTIG ROOT
b. ét	*!	

Evidence from §3.2.2.2 above shows that O-CONTIG ROOT >> DEP[NUC], therefore by transitivity the partial ranking in (103) is established.
(103) PROPHEAD > O-CONTIG ROOT >> DEP [NUC]

Contrast this with an example like sattx ${ }^{\mathbf{w}}$ [sáttx $^{\mathrm{w}}$] woman.

Input: saftx ${ }^{\text {w }}$	PROPHEAD	O-CONTIG ROOT	DEP[NUC]
as a sát .tx ${ }^{\text {w }}$			
b. sát . t[o] $\mathrm{x}^{\text {w }}$		*!	

Notice that the optimal candidate in (104.a) violates SYLL NUC / PROPHEADo since the final syllable lacks a vocalic Nucleus but that it does so in order to satisfy O-CONTIG ROOT.

In addition to minor syllables which occur within the domain of the Root, the subject clitics also surface as CC minor syllables, as shown by the data in (105-106). Judgements regarding syllabification are given by the speakers.
(105) word-final minor syllables

Input

a. qp-t-'uł a čxw

c. qmảw-'uł a čx ${ }^{w}$
qáp. tu. fà. čx ${ }^{\mathbf{w}}$.
x̆óp . ju . fà . čx ${ }^{w}$.

Input

a. \hat{k}^{w} ? iš-it št
b. tg=qin-t-'ut sht
c. IMP-Oiq=nač-'ut št

Foot/Output
(${ }^{\text {kwó }}$. Re) (šit . št ${ }^{\text {b }}$)
(túw . qع) (tò . št th)

Did you tip over?

Gloss

Did you touch it?
Did you turn back?
 e. qms-t-’ut št (qám . s[a]) (tòt. šth) *(qám . $\mathrm{s}[\mathrm{a}]$) (tòt. šət) we stored it away

Compare the output form in (106) Column 2 with the ungrammatical forms in (106) Column 3. As can be observed from the foot structure, the minor syllable (sst μ) occurs in unstressed position. If schwa epenthesis in Sliammon is driven by the need to satisfy Proper Headedness, then it is unnecessary to epenthesize schwa into a metrically weak (non-head) position. Basically, schwa is epenthesized in order to be stressed.

3.2.3 Summary

This section provides the basic syllable structure to provide background for discussion regarding syllabification entailed in the remainder of the thesis.

[^18]
3.3 Introduction to Sliammon Metrical Structure

This section presents some of the basic properties regarding metrical structure in Sliammon. Although a complete analysis of Sliammon stress assignment is clearly beyond the scope of this thesis, the a number of the phonological properties of the language which are discussed in some detail (Schwa Epenthesis and Full Vowel Reduction) require some familiarity with the basic stress facts of the language. The most important generalization regarding stress in Sliammon for our present purposes relates to the position of primary stress.

3.3.1 Basic Observation: Primary Stress is Leftmost

Primary stress in Sliammon occurs on the first syllable of the stem, as shown by the data in (107). This is true of the vast majority of the data collected in this study, and accords well with the descriptive generalizations of Davis (1970), Kroeber (1989), Blake (1992) and Watanabe (1994, 2000). Primary stress is marked by an acute accent over the vowel in the stressed syllable (v).

Primary stress is left-most, as shown by the data in (107).

Input

a. Kin̉a
b. pilaq
c. $\grave{k}^{\mathrm{w}} \mathrm{uta}$
d. $\dot{k}^{w} \mathbf{u}{ }^{\prime} u x^{w}$
e. watla
f. palat ${ }^{\text {® }}$
g. pču
h. $m n a t^{\ominus} i$
i. knika

夫irna
pilaq
$k^{\text {whuta }}$
$\hat{k}^{w} \mathbf{u}{ }^{\text {Pux }}{ }^{\mathbf{w}}$
watla
palat ${ }^{\ominus}$
p [ə]ču
$\mathrm{m}[\mathrm{J}] \mathrm{nat}^{\boldsymbol{\theta}} \mathrm{i}$
$\mathrm{k}[\mathrm{O}] \mathrm{nika}$

Output

Xé̂́?na~ Xén̉a oolichan oil
péil^q $q^{\text {h }} \sim$ pél^q $^{\text {h }} \quad$ bracket fungus, mushroom
$\hat{\mathbf{k}}^{\mathrm{w}}$ óta $\sim \hat{\mathbf{k}}^{\mathrm{w}} \mathbf{u ́ t} \mathrm{a} \quad$ barbecuing stick

wáthla \sim wáthlı sweetheart
p’álıt ${ }^{\text {® }}$ skunk
píču \sim píču \sim péču cedar root basket
mónat ${ }^{2 \ominus} \varepsilon$
kínike~kínєkィ coloured person

Primary stress also occurs on reduplicative prefixes, as shown by the data in (108.a-f). This provides evidence that the reduplicative prefixes (Plural, Diminutive, and Imperfective) in Sliammon are within the domain of the stem (cf. Davis (1970), Kroeber (1988, 1989), Blake (1992, in prep.) and Watanabe (1994, 2000) on Reduplication, and Sapir (1915) on Reduplication in Island Comox). See Appendix VII on the identification of the morphological stem domain.

Input		Output	Gloss
a. $\mathrm{CaCPL}_{\text {Pl-mixat }}$	məx̆-mix̆at	m^́x̆mex̆^t	black bears
a'. mix̆at	mix̌at	méx̆ヘ¢	black bear
b. DIM-jॅanx ${ }^{\text {w }}[-\mathrm{i}-\mathrm{]}=\mathrm{ut}+[$ [$]$	ja-j̆n[i] ${ }^{\text {w }}$ ut		small fish
b^{\prime}. $\mathrm{Janx}^{\mathbf{w}}$	ǰanx ${ }^{\text {w }}$	J̌Énx ${ }^{\text {w }}$	fish, salmon (generic)
c. DIM-CəCPL-puk ${ }^{\text {w }}$	pi-pak ${ }^{\text {w }}$-puk ${ }^{\text {w }}$	pé•puk ${ }^{\text {w }}$ pùk ${ }^{\text {w }}$	lots of little books
c^{\prime}. $\mathrm{puk}^{\text {w }}$	puk ${ }^{\text {w }}$	púk ${ }^{\text {w }}$	book
d. DIM-CaCPL-higus	hi-how-higus	héhəwhègus	small chiefs
d'. higus	higus	hégus ~ hégus	chief
e. $\quad \mathrm{MP}-\mathrm{t}^{\ominus} \mathrm{u} k^{\mathrm{w}}-\mathrm{INC}$	$t^{\ominus} u-t^{\gamma} \mathbf{u} \hat{k}^{w}-u k^{w}$		breaking daylight
e^{\prime}. $\mathbf{t}^{\ominus} \mathbf{u} \mathbf{k}^{\text {w }}$	$t^{\ominus} \mathbf{u k}{ }^{\text {w }}$	$\mathrm{t}^{\ominus} \mathrm{ók}^{\text {w }}$	day, light
f. IMP-Tajušm-t-agt	Pa-Tajušom'tawt		exchanging gifts
f. Pajušmb-t-agt	Pajušorntawt		exchange gifts (e.o.)

Stressed syllables in Sliammon tend to be markedly higher in pitch than their unstressed counterparts, a fact which is also discussed by Watanabe (2000). The observed pitch patterns are indicated in (109), where $[\mathrm{H}]$ indicates a syllable which bears a relatively high pitch, and [L] indicates a syllable which is lower in pitch.

Input		Output	[pitch]	Gloss
a. PimaO	Pima ${ }^{\text {a }}$	Tع́m^ θ	[HL]	grandchild
b. Pusa	Tusa	Pósa	[HL]	blueberry
c. qa?qa	qapqa	qá?qa	[HL]	mat, mattress
d. tgm	$\mathrm{f}[\mathrm{D}] \mathrm{g}[\mathrm{o}] \mathrm{m}$	tágam	[HL]	sun, moon
e. q̇snaj	q'[ə]snay		[HL]	dress, shirt
f. ${ }^{\text {quga }}$	q́ $[$] $]$?ga	quá? \wedge	[HL]	cane, walking stick

Although there does seem to be a strong correlation between high pitch and metrical prominance, J.Davis (1970) observes that pitch and stress can also occur independently of one another. The reader is also referred to Watanabe $(1998,2000)$ for interesting findings regarding the interaction between stress and pitch. In his discussion, he defines many of the complex issues and problems for further research.

3.3.2 Foot Form Trochaic

Sliammon has left-headed (trochaic) feet as shown by the data in (110.a-g). The ungrammatical forms in (110.a'-g') confirm that feet are not right-headed (iambic).
(110) Left-dominant, Trochaic Feet

Input		Output	Gloss
a. čiya	čiya	číy $\sim \sim$ číla	grandmother, granny
a^{\prime}.		*čiyé ~*čiyá	
b. $\mathrm{k}^{\mathrm{w}} \mathbf{u}{ }^{\text {a }}$	$\mathbf{k}^{\text {w }} \mathbf{u} \mathbf{a} \mathbf{a}$	$\hat{k}^{\text {wotota }} \sim \dot{k}^{\text {wúuta }}$	barbecuing stick
b^{\prime}.			
c. wikali	wikali		hermit crab
c^{\prime}.			

d． $\mathrm{mnat}^{\boldsymbol{\theta}} \mathbf{i}$	$\mathrm{m}[\mathrm{J}] \mathrm{nat}^{\text {® }} \mathbf{i}$	mónat ${ }^{\text {® }} \boldsymbol{\varepsilon}$	drum
d＇．		＊mənát ${ }^{\text {¢ }} \boldsymbol{\varepsilon}$	
e．IMP－čag－t－ase＇．	ča－čag［a］tas	ćéċggàtıs	s／he is helping her
f．yał－t－anapi－m－＇ut	yat［a］tanapimut	yéłatànapèmut	you（pl）got called
f．		＊yztátanàpemòt	
g．$\check{\mathrm{x}}^{\mathrm{w}}$ up＝inas $=$ tn	xx $^{\text {w }}$ upinastn	$\breve{X}^{\text {wóópenàstṇ }}$	brooch
g＇．		＊${ }_{\mathbf{X}}{ }^{\text {wopén }}$ ¢ ${ }^{\text {stàn }}$	

In sentential contexts，mono－syllabic content（lexical）words are also stressed，as shown by the examples in（111）．The grammatical markers（particles and clitics），on the other hand，are typically unstressed and phonologically dependent（cf．Appendix VII on affixes and clitics）．
（111）Sentential Contexts

Input

a．犬ina a $\mathrm{k}^{\mathrm{w}} \theta$ na？ na？
a＇．na？

b＇$^{\prime}$ १＇
c． pq to Raya？
pəq
c＇．pq
pəq
d．hu ga š？
d＇．š？
šə？
šə？

Output
Gloss
夫̇é？na［h］＾ $\mathrm{k}^{\mathrm{w}} \partial \theta$ ná？Do you have oolichan oil？
ná？belong to

Rî good
póq ${ }^{\text {h }}$ to Ráy ？
pヘ́q
hó gn šé？
š ε ？
the house is white white go upstairs！ go upwards

Since mono－syllabic lexical items are stressed in sentencial contexts，they are also marked with primary stress in isolation，as in（112）．
Input
Output

Gloss

a．tin
ṫย́n
b．fixw
c．$\dot{\mathrm{p}} \mathrm{X}^{\mathrm{w}}$
fíx ${ }^{\mathbf{w}}$
p’ $\varepsilon^{\text {Ex }}{ }^{w}$
d．wuk ${ }^{w}$
wứk ${ }^{w}$
e．$\ddagger u \hat{k}^{w}$
f．夫 夫uqu
đúk ${ }^{\text {w }}$
barbecued salmon
lose a loved one
flood
g．$\ddagger u{ }^{\text {w }}{ }^{w}$
h． $\mathfrak{k}^{\text {was }}$
＊óqu ${ }^{\text {w }}$
i．$\hat{k}^{\mathrm{w}} \mathrm{ac}$
tóq̉ ${ }^{w}$
kª́s $^{\text {wa }}$
j． $\mathrm{Pax}^{\mathrm{w}}$
$\dot{k}^{w a ́ c}$
k．㖣
Ráx ${ }^{w}$

1． pq
čít
m．户’ θk
n．$t^{\ominus} \mathrm{ms}$
o． $\mathrm{tk}^{\mathrm{w}} \mathrm{s}$
p． $\mathrm{m} \theta \mathrm{k}^{\mathrm{w}}$
pи́q
p’ə́ Θk
\mathfrak{t}^{\ominus}＾́ms
soaked
tók ${ }^{\mathrm{w}} \mathrm{s}$
mə́ $\mathrm{k}^{\mathbf{w}}$
to burst
blackcap berry

3．3．3 Stressed Schwa

Many Salish languages avoid stressing schwa if there is a full vowel in the syllable to its right（cf．Thompson and Thompson（1992），Czaykowska－Higgins and Kinkade（1997：15－16）and the references cited therein，Bianco（1995，1996），Shaw et．al．（1999），amongst others）．Stress in Sliammon is always leftmost even if it means stressing schwa rather than an adjacent full vowel，as shown by the data in（113）（cf．Blake 1992，1995，and Urbanczyk 1999）．

Input

a. qẏa
b. q́ğ
c. mna
a. $\mathrm{tk}^{\mathrm{w}} \mathrm{f}$

Schwa epenthesis
q[ə]?ya
qं[ə]?ga
m[ə]?na
$t[ə] k^{w} \ddagger i$

Output
qá?yモ
quá?ga ~ quá?g^ cane, walking stick mápna child, offspring
tükwer rabbit

3.3.4 Location of Secondary Stresses

Now consider longer words which have more than a single degree of stress. The primary stress is located at the left-hand edge of the word, as shown by the data in (114). Secondary stress is marked by the grave accent [v]. The syllable which bears primary stress tends to be higher in pitch, as indicated in Column 4 ($\mathrm{H}=$ high, $\mathrm{M}=\mathrm{mid}, \mathrm{L}=$ low pitch).
(114) Primary and Secondary Stresses

| | Input | | Output | [pitch] |
| :--- | :--- | :--- | :--- | :--- | Gloss

Some forms are recorded with adjacent stressed syllables, as shown by the data in (115).
a. laplaš
laplaš
láplàs̆
plank, long board
b. kamputs
kamputs kámpùts rubber boots

The stative forms in (116.a-e) also have adjacent stresses, and are accompanied by [HH] pitch pattern, as documented by Watanabe (2000).
(116) Stative $/-\mathrm{it}_{\mu \mu} /$

Input		Output	[pitch]	Gloss
a. $\mathrm{q}^{\mathrm{w} a c^{3}-\mathrm{it}}$	$q^{\text {wackit }}$	$\mathrm{q}^{\text {wáa }}$: $\mathrm{c}_{\text {it }}{ }^{\text {b }}$	[HH]	burping, belch
a'. $q^{w a c z-i t ~} \check{c}$		$q^{\text {wá:čiču }}$	[HH]	I'm burping
$\mathrm{a}^{\prime \prime}$. IMP-q $\mathrm{q}^{\mathbf{w} \mathrm{a}^{\text {c c }} \text { c }}$		$q^{\text {wáqu }}{ }^{\text {wackeč }}{ }^{\text {h }}$		I'm burping
b. $\mathrm{q}^{\mathbf{w} i \mathbf{q}^{\mathrm{w}}-2 \mathrm{~m}+[\mathrm{i}]}$	$q^{\text {wid }}{ }^{\text {w }}$ 'Tim	$q^{\text {wéça }}{ }^{\text {Wrèm }}$	[HH]	s.b. is nailing
c. ${ }^{\prime} u \check{X V}^{w}-i t$	${ }^{\chi} \mathrm{ux} \bar{x}^{\text {wit }}$		[HH]	crying
				we were all crying
d. tap-it	tap-it	tá:pèt ${ }^{\text {h }}$	[HH]	tight
d'. IMP-tap-INC	ta-tap-ap	tátap^p ${ }^{\text {h }}$		getting tighter
e. gan-[i]m	ganim	gá:nèm	[HH]	orphan
e'. IMP-gan-[i]m+[?]	ga-gan-im	gág^nem		having no parents

3.3.5 LSs and Stress Assignment

One area which has not been discussed in any detail elsewhere, but warrents mention here is the role which Lexical Suffixes play in stress assignment in Sliammon. Bi-syllabic Lexical Suffixes tend to be stressed in Sliammon, as shown by the data in (117). From a historical/comparative perspective, Lexical Suffixes in Salish languages may originate from independent Roots with the loss of the initial consonant, following Egesdal (1981), Mattina (1987), and Kinkade (1998). Blake (2000) argues that LSs in Sliammon behave like bound Roots with
respect to the resolution of vowel hiatus in the language. It is proposed here that the root-like status of Lexical Suffixes in Sliammon may also explain the observed stress properties ${ }^{1}$.
(117) LSs and stress assignment

Input	Output	Gloss
a. $\mathbf{t}^{\boldsymbol{\theta}} \mathrm{iy}{ }^{2}=$ =agic	$\mathfrak{t}^{\text {®íyčàà }}$ gič ${ }^{\text {h }}$	twisted spine (${ }^{\theta} \mathrm{iy}$ ç twisted, =agicct spine)
b. ${ }^{\text {xawsumin }=\text { agic }}$	x̌áwšinà ${ }^{\text {P }} \mathrm{glc}$	spine ((xawšin bone)
c. $\chi \mathrm{px} \mathrm{w}^{\mathrm{w}}=\mathrm{ag} \mathrm{i}$ č		break one's back ($\lambda \mathrm{px}{ }^{\mathrm{w}}$ break)
d. IMP-q ${ }^{\text {ay }}$ = $=a x ̆ i \theta$		talking in one's sleep ($=\mathrm{axi} \mathrm{\theta}$ bed)
e. Pusa=aja	Pósahà̧̧̌	blueberry leaves (?usa blueberry)
f. q̇nayu=aya	q́ánayohàye	sewing needle case ('̇ənayu sewing needle)
g. $\dot{p} \dot{q}=$ aya	ppá\}ảàye	stove pipe ('pəq smoke, =aya container)
h. ngin=aya	níginàye	lunch basket (nəgin lunch)

The LSs =uł young of a species usually bears secondary stress, as shown by the data in (118).

Input		Output	Gloss
a. ${ }^{\text {quayk }}{ }^{\text {w }}$	q'ayk ${ }^{\text {w }}$	q̇へ́yk ${ }^{\text {wh }}$	bald eagle
a'. DIM-q̇ayk ${ }^{\text {w }}=\mathrm{ut}+[?]$	q̇a-q̇ayk ${ }^{\text {w }}$ ut	q̧áq̉^yk ${ }^{\text {wìu }}$	small eagle
b. $\mathrm{k}^{\mathrm{w}} \mathrm{u}$ 'nt	k^{w} un't	k^{w} úmıt	kelp
b^{\prime}. DIM-k ${ }^{\text {w }}$ mint-ut+[?]	$\mathbf{k}^{\mathrm{w}} \mathbf{u}-\mathrm{k}^{\text {w }} \mathbf{u m t u t}$	$k^{\text {wúak }}{ }^{\text {w }}$ umtù ${ }^{\text {d }}$	small kelp
c. tagat	taigat	tá?got \sim tá?gnt	herring
c'. DIM-tagat=ut+[?]	ta-tgatut	tátgatôł	small herring
d. Janx ${ }^{\text {w }}$	J̌anx ${ }^{\text {w }}$	J̌énx ${ }^{\text {w }}$	fish (generic)
d'. DIM-jan ${ }^{\text {w }}[-\mathrm{i}-]=\mathrm{ut}+[?]$	ǰa-jnix ${ }^{\text {w }}$ ¢		small fish

[^19]| | $\widetilde{\mathrm{x}}^{\mathbf{w}} \mathrm{ax}^{\mathbf{w}} \mathbf{n i}$ ？ | | bullhead |
| :---: | :---: | :---: | :---: |
| | | | small bullhead |
| f． $\begin{aligned} & \text { y } \\ & \text { m }\end{aligned}$ | Xẏom | 文iPom | cockle |
| f．DIM－Xym［－i－］－ut | | 光ãai ${ }^{\text {a }}$ mòt | small cockle |
| g．t^{\ominus} umaju | \mathfrak{t}^{\ominus} umą̧u | ${ }^{\text {tómary }}$ ¢ | barnacle |
| g＇．DIM－t ${ }^{\text {® }}$ umaju $u=u t$ | | | small barnacle |
| h．sma | so？ma | sá？ma | blue musseI |
| h＇．DIM－sma $=$ ¢ + ＋［？］ | si－sma？ut | sísmapòt | small blue mussel |
| i．${ }^{\text {pux }}{ }^{\text {w／u}}$ | p $\mathbf{u x}^{\text {w }} \mathbf{u}$ | ṕóx ${ }^{\text {w }}$ o | raven |
| i＇．DIM－ṗux̌u＝ut＋［？］ | | | small raven |

Other LSs，such as＝inas，do not bear secondary stress if it creates a stress clash，as shown by the comparison between the data in（119－120）．
（119）＝inas chest
Input
Output
Gloss
a．ntx̆－［i］m＝inas
b．$\quad I M P-j \mathbf{k}^{\mathrm{w}}-\mathrm{m}=\mathrm{inas}$
b＇$^{\text {．}}$ IMP－${ }^{\mathbf{j}}{ }^{\mathbf{w}}$
notx̌im＝in＾s
$\breve{\mathrm{j}}-\mathrm{j} \mathrm{j}^{\mathrm{w}}-[\mathrm{a}] \mathrm{m}=\mathrm{in} \wedge \mathrm{s}$
ј $\partial-\mathrm{j}^{\mathrm{k}}{ }^{\mathrm{w}}$

〕̌Éyk ${ }^{w}$
nへ́t．x̌e．mè ．n＾s．heart beat jééy． $\mathrm{k}^{\mathrm{w}} \mathrm{a} \cdot \mathrm{mè} . \mathrm{n} \wedge$ s．heart burn rubbing

Output

$q^{\mathrm{w}} \mathrm{up}=\mathrm{in} \wedge s$
x̆at ${ }^{\ominus}=$ in $\wedge s$
${ }_{\lambda}{ }^{2} \mathrm{~K}^{\mathrm{w}}=\mathrm{in} \wedge \mathrm{s}$
（120）$=$ inas chest
b．$\check{\mathrm{x}} \mathrm{at}^{\ominus}=$ inas
c． $\mathrm{X}^{\mathrm{w}}=\mathrm{in}$ as

Input

a．$q^{w} u p=i n a s$
q＂ó ．pe．n＾s．
x̌á ． $\mathrm{t}^{\ominus} \mathrm{e} \cdot \mathrm{n} \wedge \mathrm{s}$ ．

Gloss
hair on chest
breast bone，sternum
heart

Although primary stress is most often leftmost as discussed above，it is a point which requires further investigation；exceptions to the generalization that primary stress is leftmost
involves words which contain Lexical Suffixes. I have recorded some examples in which primary stress is right-most rather than left-most, as shown by the data in (121). Notice that these examples have a [MLHL] pitch pattern; primary stress is correlated with the syllable which bears the highest pitch.

Input		Output	[pitch]	Gloss
a. $\dot{\mathbf{q}}^{\mathbf{w}} \mathbf{u w}=$ aña	$\dot{\text { q }}^{\text {w }} \mathrm{uw}=$ alana	¢ ${ }^{\text {wòowa }}$ ª́na	[MLHL]	ear
b. $\mathrm{DIM}-\mathrm{q}^{\mathrm{w}} \mathrm{up}=\mathrm{an}{ }^{\text {a }}$	$q^{w} u-q^{w} p=a 3$ ana	$q^{\text {wò̀ }}{ }^{\text {w }}{ }^{\text {paPána }}$	[MLHL]	hair sticking out ears
c. $\breve{x}^{\mathbf{w}} \mathrm{a} \mathbf{w}^{\prime}=\mathrm{iq}^{\mathbf{w}}=\mathrm{u}^{\prime} \mathrm{a}$			[MLHL]	finger
d. $\lambda^{2} a \bar{x}=i q^{w}=u j a$			[MLHL]	thumb
e. $k i t=i q^{w}=u j a$			[MLHL]	pinky, little finger

These examples all involve Lexical Suffixes, as indicated by the equals sign ($=$) which precedes the LS (cf. also Appendix VI). The examples in (121.c-e) contain two adjacent LSs. The surface stress patterns resemble the same stress patterns associated with compounds in the language, as shown by the single example in (122). Compounds are rare in Sliammon, as discussed by Hagège (1976), and Watanabe (2000).
(122)

a.	pq-ał-čayiš	pəqałčayiš	pìq:^tčéyıš
a'.	pq	peq	páq
a". čayiš	čayiš	čéyıš	white
		hand	

For our present purposes, I will continue to assume that primary stress is left-most but acknowledge that a complete analysis of Sliammon metrical structure is still wanting, and there are many questions which remain for future research. In particular, although the locus of primary
stress is fairly well established, the generalizations regarding secondary stress placement are not well understood.

3.4 Summary

This chapter provides discussion and independent motivation for the prosodic structures which are assumed in the remainder of the thesis. As argued in §3.2, the distribution of schwa is often determined by the requirement that each Foot contains a vocalic nucleus, and is not driven solely by constraints on syllabification, since Sliammon has vowelless syllables in word-final position.

Chapter 4

Distribution of Schwa in Sliammon

Raven has blue eyes, like the waters of [Harwood Island] on a good day. He also carries a black magic umbrella. This makes me want to sing. Caw caw. Or cry.

PhyIlis Webb

4.0 Introduction

In this chapter, I argue that there are three different schwas in Sliammon, as evidenced by their phonological behaviour: (i) Excrescent (or transitional) schwa, which is written as a small raised schwa [${ }^{\circ}$] to differentiate it from all other schwas, which are written as [ə], (ii) Epenthetic schwa (E-schwa), which displays $2 \sim \varnothing$ alternations, and (iii) Non-alternating schwa (S-schwa) which does not show any surface alternation, and is subsumed under (ii). The terms E-schwa, and S-schwa are descriptive, pre-theoretical terms used here following van Oostendorp (1999) in order to underscore "the various roles which schwa can play in the phonology of a language". Van Oostendorp (1999) also includes the term R-schwa to refer to schwas which shows full vowel/schwa alternations. It will be argued in $\S 3.3$ that Full Vowel Reduction in Sliammon is distinct from reduction to schwa. Although the resultant reduced full vowel shares the same prosodic representation as schwa (i.e the reduced full vowel is proposed to be Nuclear and nonmoraic), it retains its distinctive feature specification. The traditional designation "Reduced Vowel" is maintained in order to emphasize the fact that it does not neutralize with schwa.

4.1 Excrescent versus Epenthetic Schwa

In terms of accounting for the distribution of schwa in Sliammon, it is necessary to distinguish 'epenthetic' schwa from 'excrescent' schwa, following work by other Salishan scholars, such as Bagemihl (1991), Bessell (1992), Matthewson (1994), and Kinkade (1997). In the section
which follows, I will outline the phonological distribution and surface alternations which do provide evidence for the distinction between epenthetic schwa on the one hand, and excrescent schwa on the other hand.

4.1.1 The Problem

In Sliammon, some schwas surface consistently in each token of a given word. This holds of different instances of the same word from the same speaker as well as across speakers, as in (1-2).

(1) Same Speaker

Input
a. $\ddagger \bar{x}$
b. ${ }^{2} 4$
c. $m \neq$
d. q̉ỷa
e. $q^{\text {wasm }}$
f. $p q=u k^{w} t+[i]$
(2) Different Speakers

Input
a. P’q
b. pq
c. $s \mathrm{xxm}$
d. $q^{w l}$
e. $\mathrm{m} \theta \mathrm{k}^{\mathrm{w}}$
f. ngin

Schwa [ə]
p’[ə]q
$\mathrm{p}[$ อ $] \mathrm{q}$
$\mathrm{s}[\mathrm{O}] \mathrm{x}[\mathrm{a}] \mathrm{m}$
$\left.q^{w}[\rho]\right]^{\prime}$
$\mathrm{m}[ə] \Theta \mathrm{k}^{\mathrm{w}}$
n[a]gin

Output: Multiple speakers
p’ィ́q
pи́q
síx̆^m
$q^{w} \wedge i l$
mó $^{\boldsymbol{G}} \mathbf{k}^{\mathbf{w}}$
nígin \sim nígın

Gloss
bad
rain
calm (on water)
water
flower
dressed in white
$p^{\prime} q^{w}{ }^{w}{ }^{w i t}{ }^{\text {h }}$

Gloss

smoke
white
racing canoe
they came
blackcap berry
packed lunch

Contrast this with the data in (3-4). In these examples the schwa [${ }^{\circ}$] is very brief and more variable in its surface realization. For example, a speaker may pronounce a very brief schwa in one token of a given word whereas in other instances this brief transitional vowel is not recorded, as in (3).

(3) Same Speaker

Input

Output 1

Output 2

yé? ${ }^{\circ} \mathrm{g} \wedge y$

θ ヘ́mš̌ ${ }^{\text {? }}$

Gloss rope inner cedar bark one year (one snow) twenty

The output forms in (4) Columns 3-4 show that the presence of this brief schwa [] also varies across speakers.

(4) Different Speakers

Input
a. $\mathrm{tm}=\mathrm{us}=\mathrm{tn}$
b. ${ }^{\text {q.snaj }}$
c. Patnupil
d. lkli

f. L'-xíi-x̆niq̣
te?mustən
q’əsnaỷ
Patnupil
lakli
x $[i P] i-x ̆ n i q ̆ ~$

Speaker 1
tá ${ }^{\text {moston }}$
q̇へ́sn^ỷ
Rátnopèl
líkle

Speaker 2
tá ${ }^{2}$ moston

Pát?nopèl
lík ${ }^{2}$ le
је́ใวје relative, friend

Gloss headband shirt, dress auto, car key Owl's Grove

These variable transitional schwas are very brief in duration, audibly shorter than the instances of schwa which surface consistently. The transitional schwas are inserted either after a glottal, as in
(3) or between consonants when the second consonant is a resonant, as in (4).

4.1.2 Evidence from Syllabification

There are some schwas which are syllabified as separate syllable peaks, and other schwas which are not. This contrast is shown by the data in the syllabification columns of (5-6). Recall from §2.4.2.2.1 and §2.4.4, that schwa lacks inherent features, and as such is subject to colouration
from adjacent consonants which accounts for the range of surface outputs in（5）Column 3 and（6） Column 2.

In the data in（5），the stressed initial schwa［ó］functions as a syllable peak．The syllabification of each form is given in Column 4.
（5）Schwa functions as a syllable peak

Input

Output

Syllabification

Gloss

Contrast this with the syllable judgements in the next set of data．The data in（6．a－b）shows presence of a brief schwa $\left[{ }^{\circ}\right]$ in the environment before a word－initial resonant．In（6．c－e）a brief schwa［ ${ }^{\ominus}$ ］occurs either before or after a resonant when it is adjacent to a voiceless obstruent．In （6．f）it occurs between two identical stops．A comparison of the syllabification of forms in（6） Columns $3-4$ shows that these instances of schwa are not considered separate syllable peaks by Sliammon consultants，in contrast to the data in（5）above（cf．§3．2 for constraints on syllabification）．［h］is the least－marked epenthetic consonant in the language，and is inserted here to show that the ungrammatical examples in Column 4 are not ruled out independently by the Onset constraint．
（6）Brief schwa \neq Syllable peak

Input
a．yp－t
b．$y \check{c}+[i]$
c．m ㅊ－mut
d．IMP－x̆at－mut
e．qayx̆
f． èt－t－as 2
［ čátTtas］2

Syllabification
yáp’t
yíč
mə̂̉ ．mùt
x̌á．x̆ał．mùt
qáy． x $^{\prime}$
Cót．tas
＊Syll Peak
＊$[\mathrm{h}]^{3}$ ．yáp’t
＊ h$]^{2}$ ．yič
＊má．犬̉a ．mùt

＊qá $\cdot y^{\text {ºx }} \quad \operatorname{Mink}$
＊ど́ ．to ．tas he cut it

It seems worthwhile to note that these brief schwas [${ }^{2}$] in ($6 . \mathrm{c}-\mathrm{e}$) occur between an obstruent and following resonant or vice versa, and provide a transition between consonants with different major class features. Recall from §2.3.2 that obstruents are unmarked for the feature [sonorant] whereas resonants are lexically specified as [sonorant].

Contrast this with what happens in (7). Here a brief schwa [${ }^{2}$] occurs between a front (i.e.[-bk]) vowel $[\mathrm{i} \sim \mathrm{e} \sim \varepsilon]$ and a following post-velar consonant. (Note: the symbol [ł] represents a backed/retracted variant of $/ \mathrm{I}$, and not a voiceless lateral fricative.) In this case, the brief schwa [${ }^{2}$] provides a transition between a vowel and a following consonant produced at opposite places of articulation; for example, between the [-bk] vowel and a uvular stop, as in (7.a-b). When the tongue moves from the anterior portion (front) of the oral cavity towards the uvula, it moves through a neutral position. This brief neutral transition is perceived as a transitional schwa. These are cases of diphthongization and will not be discussed further here.

Input

Output

$q^{w e ́ s} q^{w a y}$
pírqqn

č モ́łł^s

Gloss

talking
shoulder blades
fence three

So what we have observed in this section is that [ə] and [${ }^{2}$] are syllabified differently; [ə] functions as a syllable peak whereas [${ }^{\imath}$] is ignored for purposes of syllabification. The next section characterizes this observed difference in terms of epenthetic versus excrescent schwa.

4.1.3 Discussion and Proposed Analysis

In his paper on syllable structure in Bella Coola, Bagemihl (1991: 600) discusses the characteristics of excrescent vowels, following work by Levin (1987) ${ }^{1}$. These generalizations are presented in (8) below and are cited from Bagemihl (1991):

(8) Excrescent vowels

a. The quality of an excrescent vowel is variable, frequently tends towards schwa, and is generally determined by phonetic coarticulation effects. The surface quality of an excrescent vowel does not necessarily correspond to any of the underlying vowel qualities of the language.
b. The insertion of an excrescent schwa is triggered by the need for a transition between adjacent articulations, and is not inserted in order to syllabify stray consonants. Phonological rules do not refer to an excrescent schwa.

The central claim to be made in this section is that these brief transitional [${ }^{\circ}$] schwas in Sliammon show the same cluster of properties attributed to excrescent vowels in (8.a-b) above. Given the present analysis of the phonology and morphology of the language, there is no evidence that these excrescent voweis are referred to by phonological constraints within the grammar. I conclude that these brief transitional schwas are phonologically inactive, and therefore excrescent. I propose a sub-classification of two types of excrescent vowels, the second constituting what are commonly referred to as "echo vowels". ${ }^{2}$

[^20]
4.1.4 Further Differentiation: Echo Vowels

There is often an echo vowel, represented here as a raised excrescent vowel $\left[{ }^{\varepsilon},{ }^{2}\right]$, after a syllable final glottal, as shown by the data in (9) Column 3. It is typically a copy of the preceding vowel.

(9) Echo Vowels

Input Output
a. Pil-it

Pi?lit
b. qaw̉um qa?wum
c. $\mathrm{tl} \stackrel{c}{c}+[\mathrm{i}]$
topl[i]č

e. $q^{w i}$
$q^{\text {wől? }}$

ใéq ${ }^{\ell}$ let
qáp a_{w} vm
tá ${ }^{\text {alilč }}$
q’ápa ${ }_{\text {wut }}{ }^{\text {® }}$
$q^{\text {wól }}{ }^{\text {º }}$

Syllabification

ใє́? . let
qá? . wum
tá? . lič
q̣á? . wut ${ }^{\text {® }}$
$q^{\text {wól }}$
*Syllable peak Gloss

* $\boldsymbol{q}^{\boldsymbol{\varepsilon}} . \boldsymbol{\gamma}^{\varepsilon}$. let shallow
*qá. pa. wvm eye
*tá. pa. $\mathrm{llč} \quad$ round
*q̉á . pa . wut ${ }^{\text {® }}$ uvula
*q${ }^{\text {wól }}$. $\mathrm{p}^{\partial} \quad$ come

Echo vowels, like excrescent schwas, are not considered separate syllable peaks by Sliammon consultants, as shown by the contrast between the data in (9) Columns 4-5. Echo vowels may represent a broken vowel in which the glottal constriction (laryngealization), written as [?], represents the most prominent glottal pulse during the articulation of a creaky vowel. The glottal constriction may be articulated with the supra-laryngeal tract in the vowel configuration, a configuration which may continue slightly after laryngealization has ceased (or the glottal stop has been released), producing an echo vowel: $v \hat{P}^{v}$ (cf. Bessell (1992:6) for similar argumentation for Ntakapmxcin (Thompson Salish), and Chomsky and Halle (1968: 315-316) for a discussion of glottal constriction).

Since excrescent vowels and echo vowels are not referred to by phonological constraints nor do they figure into the prosodic structure of the language (i.e. they do not function as syllable nuclei), they are not discussed further in subsequent chapters. It is worth emphasizing that anyone working on the language for the first time will need to make the distinction between excrescent schwa versus other instances of schwa.
[${ }^{\circ}$] excrescent schwa
[ə] schwa

The next section presents the distribution and analysis of epenthetic schwa (E-schwa) which shows schwa \sim zero alternations.

4.2 Distribution of E-schwa

4.2.1 Some schwas are epenthetic

Diminutive CV- reduplication is accompanied by deletion of the Root vowel, as discussed by Kroeber (1989), Blake (1992), Watanabe (1994), and illustrated by the data in (11). The reduplicant is a CV- prefix (a monomoraic open syllable) and in these examples is immediately followed by the Root. The Root vowel does not surface in the diminutive, as shown by (11.a'-d') Columns 3 and 4. The use of the angled brackets $<>$ in Column 3 shows which vowel is deleted.
(11) Deletion of the Root vowel in Diminutive

Input	Red+Base	V-deletion	Output	Gloss
a. $\breve{\mathrm{x}}^{\text {wilm }}$			$\check{\mathbf{x}}^{\text {wéf }}$ ¢ $1 \wedge m$	rope
a'. $\quad \mathrm{DIM}-\breve{\mathrm{x}}^{\mathrm{w}} \mathrm{ilm}+[\mathrm{i}]+[?]$	DIM-(T $^{\text {Wililim }}$)	$\breve{\mathrm{x}}^{\mathbf{w}} \mathbf{1}-\breve{\mathrm{x}}^{\mathbf{w}}<\mathrm{i}>\mathrm{lim}$		string, thread
b. $\check{\mathrm{x}}^{\mathrm{w}} \mathrm{us}-\mathrm{m}$		$\check{x}^{\text {wiússom }}$	x'wósum $^{\text {cos }}$	soapberry
	DIM-(x $^{\text {wius }}$ (im)			small soapberry
c. yax̆ay		yáx̆ay	y ¢́x̆^y	clam basket
c'. DIM-yax̆ay + [?]	DIM-(yáx̆aỷ)	yá-y<a>x̆ay	yéyx̆^ẏ	small basket

The following diminutive and non-diminutive pairs in (12.1) and (12.2) show that some schwas are clearly epenthetic, an observation also made by Watanabe (2000). When the Root is followed by a consonant-initial suffix (e.g. =nač, or =šn) or is comprised of more than two consonants, then this gives rise to a string of word-internal consonants. An epenthetic schwa [ə]
appears after the second consonant of the Root, as shown by the data in (12.1.a'-b') and (12.2.a'-c'), in order to provide a more optimal syllabification. The ungrammatical forms in (12.1a"-b") and (12.2 a "-c") show that these forms do not satisfy the prosodic constraints on syllable and Foot as well as the outputs in (12.1a'-b') and (12.2a'-c') do. (cf. Chapter 3 and Chapter 7 (§7.0)).
(12.1) Diminutive Reduplication

Input	Syncope	Output	Gloss
a. $q^{\text {w/up}}$ =šn			hair on legs
$\mathrm{a}^{\prime} . \quad \mathrm{DIM}-\mathrm{q}^{\mathbf{w}} \mathrm{up}=\mathrm{s}[\mathrm{i}] \mathrm{n}+[?]$			bit of hair on le
a".			
a''.			
b. Patnupil		?atnupil	car, automobile
b'. DIM-Patnupil	Pá-T<a>tnupil	Tá-Pt[o]nupel	small car
$\mathrm{b}^{\prime \prime}$.		* Pá-it. nopil	
$\mathrm{b}^{\prime \prime}$.		* Pa-?[0]tnupil	
(12.2) Diminutive Reduplication			
Input		Output	Gloss
a. $\theta \mathbf{k}^{\mathbf{w}}=\mathrm{nac}=$ =tn	$\theta[ə] \mathrm{k}^{\mathbf{w}}=\mathrm{nac}=$ tn	Qúk ${ }^{\text {wnačton }}$	chair
$\mathrm{a}^{\prime} . \quad \mathrm{DIM}-\theta \mathrm{k}^{\mathrm{w}}=\mathrm{nac}=\operatorname{tn}+[\mathrm{i}]+[?]$		$\theta i \underline{\theta} \mathrm{k}^{w}[\rho]$ načtin	small chair
a".		${ }^{*}$ OíOk $^{\text {w }}$. nač . tin	
a"'.		*ӨíӨ[a] ${ }^{\text {w }}$ načtin	
b. $\mathrm{tk}^{\mathrm{w}} \mathrm{ti}$	$\mathrm{t}[\mathrm{z}] \mathrm{k}^{\mathrm{w}} \mathrm{ti}$	túkwi	rabbit
b'. DIM- $\mathrm{tk}^{\text {w }}$ i	ti-tk ${ }^{\text {w }}$ [ə] 4 i	títkw[ə] ${ }^{\text {c }}$	small rabbit
b^{\prime}.		* $\mathrm{ti-tk}{ }^{\text {w }}$. j j	
b"'.		*ti-t[olk ${ }^{\text {w }}$ ¢i	
c. $\lambda \mathrm{q}-\mathrm{m}=\mathrm{atat}$	$x[\partial] q[0] m=a t a t$	Xへ́qəmàtæ!	mattress
c'. DIM-̇q-m=atat+[?]	λ_{i-} - $\mathrm{kq}^{\text {[0] }}$]matat	ᄎi-̇ıa[a]?màtıt	small mattress
c".		* $\lambda \mathrm{i}$ - zg . matat	

Comparison of the simplex forms with their corresponding diminutives shows that a vowel occurs between the first and second consonant of the Root, as in (12.1.a-b) whereas it appears after the second consonant of the Root in the corresponding diminutive (12.1.a'-b'). This may look like vowel metathesis and reduction. However, it is here hypothesized that the different syllabification results from syncope of the Root vowel and schwa epenthesis. The portion of the word which corresponds to the Root is underlined in Column 3.

If schwa is epenthetic in (12.1) and (12.2), then perhaps the distribution of schwa is predictable in all contexts in which it occurs. This means that the distribution and surface realization of schwa should follow from its phonological representation and the interaction of the constraints on prosodic representations.

There have been a number of recent proposals for other Salish languages which suggest that schwa is not present in the underlying/Input representation and that its distribution is entirely predictable (cf. Matthewson (1994), Roberts and Shaw (1995), Kinkade (1997), Shaw (1996.b)). This is the position which is adopted here as well. The task therefore becomes showing that the contexts in which schwa does occur can be determined by constraints within the grammar.

4.2.1.1 Related Theoretical Issues

Before continuing with the discussion of epenthetic schwa, note that there is some data which presents an opportunity to explore related issues of theoretical interest. The data in (13) shows surface [\wedge] which occurs between a Root and a following Lexical Suffix (=LS).
(13) Epenthetic [^]

Input

a. ptq́=šin (stv)
a'. płq̇=šin-'uł a čx ${ }^{w}$
b. čl $\mathfrak{q}=$ =sin-m

Output

pźłq́ $[\wedge]$ šin
pátq̉[^]]šè?nołææčx ${ }^{w}$
čílq̉[^]s̆̈nən

Gloss

to slip (foot slips)
Did you slip?
cross one's legs

The question which arises is does [\wedge] come from epenthetic [ə] (i.e. a bare NUC), as in (14) or an epenthetic full vowel $[\mathrm{V}](\mathrm{NUC} \mu)$, as in (15)? Recall from §2.4.2.2.1 that the full vowels are Nuclear and moraic whereas schwa is characterized as a bare Nucleus, in keeping with the Nuclear Moraic Model.

Input	[NUC]
a. ptá=šin (stv)	
a'. ptà=šin-'ut a čx ${ }^{\text {w }}$	
b. člı ${ }_{\text {l }}=$ šin-m	

Output	Gloss
pát¢̣[^] ${ }^{\text {cinin }}$	to slip (foot slips)
pátq̉[^]š̌̀ ${ }^{\text {n }}$ notæ̀čx ${ }^{\text {w }}$	Did you slip?
	cross one's legs

Input	[$\mathrm{NUC} \mu$]
a. ptq̇=šin (stv)	(pát ${ }_{\mu} \cdot \underline{\text { q̇ }}[\mathrm{V}]_{\mu}$) (s̆in)
$\mathrm{a}^{\prime} . \mathrm{ptq}$ ¢ $=$ šin-'ut a čx ${ }^{\text {w }}$	
b. Ělıġ=šin-m	(čál ${ }_{\mu} \cdot \mathrm{q}$ [$[\mathrm{V}]_{\mu}$) (šinəm)

Output Gloss

 półq̉[^]šin to slip (foot slips) páłq̉[^] $]$ šè?nołæ̀čx̌ ${ }^{w} \quad$ Did you slip? čílq̉[^]šinəm cross one's legsThe reason it is difficult to tell is that [1] occurs in unstressed post-tonic position, a position which is particularly susceptible to full vowel reduction (/a/ to [1]). Note however that [Λ] also arises from height assimilation and is conceivably a variant of either epenthetic schwa (a bare [NUC]) or an epenthetic full vowel [V] in this phonological context (cf. §2).

Although we have been discussing schwa epenthesis (i.e. epenthesis of a bare NUC), the Foot structure in (14-15) Column 2, indicated by the parentheses (), suggests that surface [\wedge] is moraic, since Feet in the language are hypothesized to be minimally bimoraic. If [ə] is Nuclear but non-moraic, then the representations in (14) Column 2 will violate the constraint which ensures that Feet are minimally bimoraic (i.e. Foot Binarity), as shown by the initial mono-moraic Foot.

Epenthesizing a vowel which is both NUC and moraic therefore creates more optimal Foot structure, as shown by the structure of the left-most foot in each example in (15) Column 2.

In (12) above, epenthesis of a bare [NUC] is the minimal amount of structure needed in order to syllabify the word-internal stray consonants. Since Minimality requirements are met in (12), the insertion of prosodic structure is strictly minimal. Contrast this with (15) which requires the addition of extra prosodic structure (both a NUC and a mora) in order to syllabify the string of consonants, and provide a more optimal Foot structure which crucially meets the constraints on Minimality. This shows that schwa epenthesis occurs not only to create optimal syllables but also to create optimal Feet. This provides additional evidence for the generalization in §4.2.3 that schwa is epenthesized for purposes of stress assignment. Strengthening of schwa [NUC] to an epenthetic full vowel [$N U C \mu$] is addressed in §4.4.

The data in (13-15) also raise the following interesting issues. If schwa is non-moraic and syllables can be bimoraic ($\mathrm{C}_{2} \mathrm{C}_{\mu} \mathrm{C}_{\mu}$), then why is epenthesis necessary here at all? What prevents the ungrammatical forms in (16) Column 3 ?

Input
a. pı' $=$ =sin (stv)
$a^{\prime} . ~ p \nmid \dot{q}=$ =sin-'ut a čx ${ }^{w}$
b. člq̆ $=$ šin -m

Output

 pátq̉^šinpáłq̉^š̌̀?nołæ̀čx ${ }^{w}$
*と̇́́lq̉^s̆inəm

No epenthesis
*półq̉. šin

*と̉ilq̉. šinəm

Gloss to slip (foot slips)

Did you slip?
cross one's legs

Although the forms in (16) Column 3 may satisfy syllable structure constraints, notice that these candidates have adjacent stresses which constitutes a violation of ${ }^{*}$ CLASH, a constraint which militates against adjacent heads of Feet. Vowel epenthesis therefore not only creates well formed syllables but it also creates optimal Foot structures, while avoiding a violation of *CLASH. The epenthetic [NUC] intervenes between adjacent heads: ó σ ò . This means that *CLASH is ranked above DEP[NUC], as shown by the partial constraint ranking in (17).
(17) pṭُ=šin [pół̣́^šin] to slip (foot slips stv.)

ptg $=$ =̌in	*CLASH	DEP[NUC]
b. (pátả)(s̆in)	*!	Whay

The other question which requires consideration is why does vowel epenthesis occur in the position in which it occurs. What prevents forms like those in (18) Column 3? The epenthetic vowel [Λ] appears in square brackets.

Input

a. ptq́=šin (stv)
$a^{\prime} . \quad$ pł’̣’=šin-'uł a čx ${ }^{w}$
b. čl $\mathfrak{l} \dot{1}=$ šin -m

Output

páł̛̣ $[\wedge]$ šin

čálq̉[^]š̆inəm
*Locus of [A]
*pá . t[^] ${ }^{\text {. }}$. šin

*と̉る . l[^] q . šinəm

Gloss

to slip (foot slips)
Did you slip?
cross one's legs

It is proposed here that the ungrammatical forms in (18) Column 3 violate at least two constraints which are argued to be operative in the language. First, as will be argued in Chapter 5, there is a highly-ranked constraint which militates against schwa in a stressed open syllable (informally, *źlo) basically following Blake (1992), and Shaw (1995, 1996). Secondly, the epenthetic vowel [\wedge] has been epenthesized into a Root, violating Root Contiguity. Root O-Contiguity in Sliammon is proposed to rule out Root-internal epenthesis, and is a particular instantiation of the general O Contiguity constraint of McCarthy and Prince (1995:371): "The constraint O-CONTIG rules out internal epenthesis: the map $\mathrm{xz} \rightarrow \mathrm{xyz}$ violates o-CONTIG, but $\mathrm{xy} \rightarrow \mathrm{xyz}$ does not." (cf. also LaMontagne 1996). The idea here is that epenthesis is more optimal at the edge of a morpheme, especially a Root, than it is in the middle of a morpheme. In contrast, the optimal forms in (18) Column 2 show that stressed schwa occurs in a closed syllable thereby satisfying *ó ${ }_{\sigma}$, and that
[\wedge] epenthesis has taken place at a morphological boundary (between the Root and following LS thus satisfying Root Contiguity (O-CONTIG ROOT)). The output forms in (18) Column 2 do not violate either of these constraints, as shown by the tableau in (19).

ptg $=$ =̌in	*2́] σ	O-CONTIG ROOT
¢ot a. [pát . q̉] Root [Λ] Šin		
b. *[pá . +[^] $\left.{ }^{\text {a }}\right]_{\text {Root }}$ šin	*!	

This raises a related issue: if violations of Root Contiguity are avoided, then what about the initial epenthetic [ó] schwa? Doesn't it also incur a Root contiguity violation? The answer is yes, but here Root Contiguity (O-CONTIG ROOT) is violated in order to satisfy the higher ranking constraints on Proper Headedness, and the Align Left Constraint which ensures that primary stress is aligned with the left-edge of the stem.

4.2-1.2 Language -internal Evidence for Schwa Epenthesis

Further to the cross-linguistic evidence from across the Salish language family for the nonphonemic status of schwa, this section provides three language-internal arguments which support the hypothesis that schwa is epenthetic in Sliammon. These arguments are based on the canonical shapes of Roots in the language.

First, there are no Roots which surface with an initial consonant cluster in the language, as illustrated by the unattested Output forms in (20). The reader is referred to Appendix V for a representative sample of Roots in Sliammon which provides verification of this generalization.

Output

a. *CCV....
b. *ССә....

Sliammon does have roots of the shape CACA (where A is a full vowel), as shown by the data in (21).

Input	Output	Gloss
a. čiya	číly \sim čilya	grandmother, grandma
b. Xin̉a	才élina	oolichan oil
c. k^{w} upa	$\mathrm{k}^{\text {wúpa }}$	grandfather, grampa
d. Pusa	Pósa	blueberry
e. $\hat{k}^{\text {w }} \mathbf{u} \mathbf{a}$	$\hat{k}^{\text {wútita }}$	barbecue stick
f. ċan̉u	čé?no	dog
g. x̌ak $^{\mathbf{w}} \mathbf{u}$	čák ${ }^{\text {w }} \mathbf{u}$	cow's parsnip
h. $\dot{k}^{\mathbf{w}} \mathrm{ax}^{\mathbf{w}} \mathrm{a}$	$\dot{k}^{\text {wáa }}{ }^{\text {wa }}$	box

Sliammon also has Roots of the shape CəCA (i.e. where $\boldsymbol{\rho}$ surfaces between the initial two consonants; under the hypothesis that schwa is epenthetic, these roots would be /CCA/), as shown by the data in (22).
(22) CəCA Roots

Input		Output	Gloss
a. ${ }^{\text {xppi }}$	x̆ópi	х̆^́pi	to turn back
b. pču	páču	píču	basket
c. $\mathfrak{t}^{\ominus} \check{\mathrm{x}} \mathrm{u}$		$\mathrm{t}^{\ominus}{ }^{\text {¢ }} \mathrm{X}^{\text {w }} \mathrm{O}$	ling cod
d. qya	qopya	qápya \sim qáPy	water
e. mna	mə?na	máina	child, offspring
f. sma	sə ${ }^{\text {ma }}$	sâ?ma	musseI

The absence of CC-initial roots on the surface is accounted for by the combined effects of the constraints *COMPLEX ONSET and DEP[NUC] (schwa epenthesis). Since complex onsets are
generally banned in Sliammon, schwa epenthesis occurs in order to satisfy the higher-ranking constraint * COMPLEX ONSET.

Although there are CACA and CaCA Roots in Sliammon, there are no Roots attested of the form CəCə or CACə, i.e. where the second vowel is schwa:

* CaC , * CAC

If the distribution of schwa were idiosynchratic, akin to the distribution of the full vowels $/ i, u, a /$ in the language, then we would expect to find the same patterns of distribution within the Root domain. Instead what we observe from the data in (21-22) versus (23) is that there is an asymmetry between the distribution of the full vowels in Roots and the distribution of schwa.

The analysis which is presented in this chapter not only predicts the occurrence of CəCA Roots but also the absence of * C Cə and * CAC Roots. The asymmetry between the existence of roots with schwa as the first vowel versus the absence of roots with schwa as the second vowel (* ${ }^{*}$ Сә, ${ }^{*} \mathrm{CAC}$) is explained as follows. Proper Headedness at the level of the Foot ensures that schwa is epenthesized after the first consonant $(/ \mathrm{CCA} / \rightarrow \mathrm{C}$ (áCA) in order to provide a Nucleus as the head of the stress foot and also to satisfy *Complex Onset, whereas there is no motivation for the presence of the second schwa in the unattested Roots * C Cə and *CACə. Note that Foot Binarity is satisfied at the level of the mora since free-standing CAC Roots are bimoraic and independently footed in the language. If schwa were present in underlying representation and therefore claimed to have an unpredictable distribution, we would fail to have an explanation for the observed asymmetry in CVCV Root canons.

Another similar argument comes from the observed shapes of CVCC Roots in the language. Sliammon has a general constraint against CARR Roots in the language, indicating that there is a general constraint against adjacent resonants (*RR) in the language.

If we then consider the inventory of CVC Roots in the language, we observe another asymmetry. CAC Roots have the following canonical shapes where $\mathrm{O}=\mathrm{obstruent}$ and $\mathrm{R}=$ resonant. Bound Roots are followed by a hyphen (i.e. CAC-) whereas free-standing Roots are not marked in this manner. CAC Roots exhibit the full range of logical possible combinations of Obstruents and Resonants in combination with the full vowels $/ i, u, a /$, as shown by the data in (25).
(25) CAC Roots

Attested Patterns
 Examples:

a. OAO Roots

夫ip under
b. OAR Roots
c. RAO Roots
\dot{k}^{w} in how many
Xup to heal
夫 $\begin{aligned} & \text { ªx̆- old }\end{aligned}$
yiq̉- need (s.t.)
k^{w} um- red, flushed tam what
d. RAR Roots
niy- forget
wuk ${ }^{\text {w }}$ scoop net nat night
wuw- sing
man father

Contrast this with the possible combinations of Obstruents and Resonants in combination with the vowel schwa. There are $\mathrm{O} \partial \mathrm{O}, \mathrm{O} ə \mathrm{R}$ and $\mathrm{R} ə \mathrm{O}$ Roots in the language, but RəR Roots are conspicuously absent, as shown in (26-27).
(26) CaC Roots

The gap in the attested CəC Root patterns is explained if schwa is epenthetic whereas the observed contrast does not have a well-motivated explanation if schwa were present in underlying representation.

These three arguments pertaining to permissable Roots canons in the language provide compelling internal evidence that schwa is epenthetic in Sliammon.

4.2.2 Schwa / Zero Alternations

There are many sets of morphologically related words in Sliammon which show schwazero alternations: $\boldsymbol{\rho \sim \emptyset \text { . Consider the following Nouns and their corresponding diminutive forms }}$ which show that surface schwa alternates with zero: ($\partial \sim \emptyset$). These data are presented under the hypothesis that schwa is not present in the Input (i.e. it is non-lexical) and that we can determine where it occurs.

Note that Weak Roots take Ci - as the diminutive reduplicative prefix rather than $\mathrm{C}-$-, as in (28.a'f'). Diminutive is also marked by glottalization of the rightmost syllable-final resonant (with a number of complexities). Further, certain lexical items may also take the lexical suffix /=ut/ young of a species, in addition to the Ci - reduplicative prefix. Stems which end in a consonant cluster also take an [i] "infix" in the diminutive. The point which is of relevance here is the presence and absence of schwa between the first and second consonants of the Root. The simplex forms in (28.a-f) all have schwa between C_{1} and C_{2} of the Root, as shown by the forms in Column 2. The related diminutive forms in ($28 . a^{\prime}-f^{\prime}$) do not have a schwa in this position, as indicated by the space \qquad .
(28) Epenthetic Schwa

Input	Schwa $\sim \varnothing$	Output	Gloss
a. Өyat	Oáyat	Өápyet	lake
a^{\prime}. DIM-Өyay	Өi-Q yat	ӨíӨy¢ ${ }^{\text {¢ }}$	small lake
b. $k^{\text {w }}$ nay	$\mathrm{k}^{\text {wónjay }}$	$k^{\text {wáápn^y }}$	lid
b^{\prime}. DIM-k ${ }^{\text {wnnay }}$	$\mathbf{k}^{\text {wil- }}{ }^{\mathbf{w}}{ }_{-}{ }^{\text {nay }}$	$\mathrm{k}^{\mathbf{w}}{ }^{\mathbf{k}}{ }^{\mathrm{w}} \mathrm{n} \wedge \mathrm{y}$	small lid
c. sma	sám̉a	sápma	mussel
c'. DIM-sma $=$ ut	sí-s_ma?ut	sísmaiòt	small mussel
d. pskt	póskət	páskıt	biscuit, pilot bread
d. DIM-pskt+[i]=ut	pí-p_skitù	pépsk ${ }^{\text {y }}$ i -ò ${ }^{\text {¢ }}$	small biscuit

e. sx̆m	sóx̆əm	SÁx̆^m	racing canoe
e^{\prime}. DIM-sx̆m $+[\mathrm{i}]$	sí-s_x ${ }_{\text {c }}$ [i]m	sísx̌¢m	small racing canoe
f. ms	mós	més ~ mós	mink
f. DIM-ms $=\mathrm{u}^{+}+[$[$]$	mí-m_sut	mé ${ }^{\text {® }}$ msuł	small mink

The existence of schwa/zero alternations illustrated by the data in (28) raise the following questions: what determines the contexts in which schwa surfaces and those contexts in which is does not? Is the distribution of this vowel is predictable? Consider the distribution of schwa and \varnothing in (28). In (28.a-f) Column 2, schwa occurs between the first two consonants (C_{1} and C_{2}) of the Root in order to syllabify this initial consonant cluster since there is a highly ranked constraint against complex onsets (*COMPLEX ONSET) in Sliammon (cf. §3.2.2.1). Furthermore, insertion of an epenthetic schwa [NUC] satisfies Proper Headedness and the requirements that primary stress is aligned with the left-edge of the stem. Consider the following partial tableau which shows the ranking of *COMPLEX ONSET with respect to DEP[NUC]. Recall that schwa becomes [a] before [?] (cf. §2.4.4.1), and that intervocalic R’ are realized as VPRV since there is a high-ranking constraint against R' in Onset position (cf. §5.2).
(29) Өyał Өó?yał [$\because a ́ i y \varepsilon \ddagger] ~ l a k e ~$

Oyat	*COMPLEX ONSET	DEP[NUC]
b. Ợát	*!	

Contrast this with the diminutive examples in ($28 . a^{\prime}-f^{\prime}$) in which the first consonant of the Root $\left(C_{1}\right)$ functions as the coda to the first syllable whereas the second consonant (C_{2}) of the Root functions as the onset to the second syllable. Since the consonants are syllabified, schwa epenthesis is not required. Furthermore, the vowel of the diminutive prefix receives primary stress. It therefore satisfies both the Align L constraint and Proper Headedness (cf. Chapter 3). Since the
constraints which drive schwa epenthesis are satisfied，there is no reason to have surface［ $[\mathrm{D}$ ］in the post－tonic unstressed syllable．The fact that schwa is not present between C_{1} and C_{2} of the Root is indicated by the underlined space \qquad in Column 2．（Note：I have not presented a formal account of Reduplication here－or established how to define the Base for purposes of Reduplication．Since Diminutive Reduplication involves syncope of the Full Vowel，this seems to entail checking that the vowel of the Input is identical to the vowel of the Reduplicant（I－R relation，in sense of McCarthy and Prince 1995；see Shaw（1998）on Lillooet Diminutive Reduplication）．The purpose here is to compare morphologically related words－simplex and related reduplicative forms．

A further instance of ∂ alternating with \varnothing is shown by the Perfective and Imperfective pairs in（30）．（Here I am assuming that Base－Reduplicant（B－R）Identity is an Output－Output relation， following M\＆P（1995），as indicated in Column 2）．
（30）Epenthetic Schwa

Input	Red＋Base	Schwa $\sim \boldsymbol{\varnothing}$	Output	Gloss
a．$\lambda \mathrm{px}{ }^{\text {w }}$		đópx ${ }^{\text {w }}$	夫${ }^{\text {¢ }} \mathrm{px}^{\text {w }}$	break
a＇．IMP－ apx $^{\mathbf{w}}-\mathrm{t}$ č	IMP－（才ə́px ${ }^{\text {woč }}$ ）			I＇m breaking it
b．$\theta \mathrm{t}^{\theta}-\mathrm{m}$		θ Ópt ${ }^{2 \theta}$ mm	Өápt ${ }^{\ominus}$ om	jig for cod
b＇$^{\prime}$ IMP－ $\mathrm{tt}^{\boldsymbol{\theta}}-\mathrm{m}+[?]$ č		θ Ө́－$\theta<\partial>\mathfrak{t}^{\ominus}$ əm ${ }^{\text {mac }}$		I＇m jigging
c． Jj^{\prime}		〕〇̇入	¢ $¢$	to run
c＇．IMP－${ }^{\prime} \chi^{\prime}$	IMP－（ॅót ${ }^{\text {a }}$	ј $2-\mathrm{j}<2>\lambda^{2}$	jıy	he＇s running
d． ns －m		néšəm	níšəm	swim
d＇．IMP－nš－m＋［？］	IMP－（ṅóšəm）		níņšəm	swimming
e．$\vec{k}^{\mathbf{w}} \boldsymbol{q}$		$\mathbf{k}^{\text {woz }}$ ¢	$\mathbf{k}^{w} \mathbf{v} \ddagger$	spill
e＇．IMP－$\vec{k}^{\mathbf{w}} \mathbf{T}$	IMP－（kº́t ${ }^{\text {（ }}$	$\overrightarrow{\mathbf{k}}^{\mathbf{w}} \boldsymbol{\partial}-\mathbf{k}^{\mathbf{w}}<\boldsymbol{\partial}>\mathbf{+}$	$\mathfrak{k}^{w} \mathfrak{u}^{\mathbf{k}}{ }^{\mathbf{w}} \uparrow \sim \mathfrak{k}^{\mathbf{w}} \mathbf{v} \mathbf{k}^{\mathbf{w}} \uparrow$	spilling
f．$k^{w} \ddagger-t$		$\mathbf{k}^{\text {wóq }}$ t	$\mathbf{k}^{\text {wóátt }}$	untie it
f．IMP－ $\mathbf{k}^{\mathbf{W}+-t}$	IMP－（ $\mathbf{k}^{\mathbf{W} \text { 〇́＇t }}$ ）	$\mathbf{k}^{\mathbf{w}} \boldsymbol{\partial}-\mathbf{k}^{\mathbf{w}}<\boldsymbol{\rho}>\mathbf{t t}$	$\mathbf{k}^{\mathbf{w}} \mathbf{v} \mathbf{k}^{\mathbf{w}} \mathbf{4 t}$	untying it
g．et		ċát	cít	rain
g．IMP－çt	IMP－（çát）	ぐっ－を＜ə＞4	čičt \sim c ciicl 4	raining

h. $\check{\mathrm{x}}^{w} \mathfrak{X}=$ igan

In (30.a-h), schwa occurs between the first two consonants of the Root (C_{1} and C_{2}) in order to syllabify this initial consonant cluster and satisfy the metrical constraints, just as in (28) above. Contrast this with the Imperfective example in (30.b') in which the first consonant of the Root (C_{1}) functions as the coda to the first syllable whereas the second consonant of the Root $\left(\mathrm{C}_{2}\right)$ is the onset to the second syllable. In this case, both consonants are syllabified, and schwa does not occur, as indicated by the $<\partial>$. Note that the Imperfective reduplicative prefix also bears primary stress. It occurs within the stem domain and satisfies the constraints on Proper Headedness and Align L.

4.2.3 Proposed Analysis

McCarthy and Prince (1994), Alderete (1997), van Oostendorp (1999) posit a constraint *SCHWA which is a particular instantiation of the family of *Structure constraints. *SCHWA is a constraint which assigns a cost to each instance of schwa which appears in the Output and is a general ban against additional unmotivated structure. Van Oostendorp (1999) suggests that evidence for such a constraint comes from languages which ban schwa all together, and from other languages in which schwa has limited distribution. The constraint *SCHWA will prevent rampant insertion of schwa ; schwa will only appear in those contexts in which it is constrained to do so by some higher-ranking constraint within the grammar. I adopt DEP[NUC] as the correspondence version of this constraint, following Shaw (1995, 1996) (cf. M\&P 1995 on Correspondence). Schwa epenthesis, which is claimed to be insertion of a bare Nucleus within the Nuclear Moraic Model, incurs a violation of DEP[NUC].

If there is a cost associated with schwa [NUC] epenthesis, then we can explain why we
 * $\lambda[2] \lambda[\rho] p x^{w} \wedge c ̌$ which entails an additional instance of schwa epenthesis which is not needed in order to satisfy constraints on prosodic structure. The ungrammatical form *[خə́ . خəp . $\mathbf{x}^{\mathbf{w}} \wedge$ ^č] also
violates the constraint which bans stressed schwa in an open syllable (*) ${ }^{*}$ o) which will be discussed in Chapter 5.

All Sliammon scholars to date have noted that primary stress in the language tends to be word-initial. Following Blake (1999) this is analyzed as resulting from a high-ranked constraint which ensures that the left-edge of the prosodic word (PrWd) is aligned with the left-edge of the lexical stem.
(31) Align L

The left-edge of the prosodic word (PrWd) is aligned with the left-edge of the stem

This constraint interacts with Proper Headedness is repeated here in (32), following Shaw's (1996c) formulation.
(32) Proper Headedness Shaw (1996c:10) (cf. Ito and Mester 1992; Ola 1995)
a. PROPHEAD PW
A Prosodic Word is headed by a Foot
b. PROPHEAD FT
A Foot is headed by a Syllable
c. PROPHEAD ${ }_{\sigma}$
A Syllable is headed by a NUC
[=SYLL NUC]

By epenthesizing schwa between C_{1} and C_{2} of the Root in (30.a-h) above, the syllable structure constraint which strongly disprefers complex onsets (*COMPLEX ONSET) in the language is also satisfied (cf. (29)).
(33) Tableau: $\lambda p x^{w}$ خə́p x^{w} break

Xpx ${ }^{\text {w }}$	ALIGN L PRWD	PROPER HEAD	COMPLEX ONSET	DEP[NUC]
b. χ (páx $^{\text {w }}$)	*!		\|evek	
c. $\left(\lambda \mathrm{px} \mathrm{m}^{\mathrm{w}}\right)$		*!	\|	
d. (¢póx $^{\text {w }}$)			*!	

To summarize, epenthetic schwa in Sliammon plays several important functions:
(i) epenthetic schwa satisfies syllable structure constraints, the one motivated here being the ban on Complex Onsets (cf. §3.2.2.1), (ii) it provides a nucleus (i.e. a head) which satisfies the constraint which ensures that the Foot which is the head of the prosodic word is properly headed, (iii) it ensures that stress is located as close to the left-edge of the stem as possible, and (iv) an epenthetic [NUC] is epenthesized into a word-internal syllable in order to create structures which avoid violations of *CLASH. The fact that epenthetic schwa does not occur in all metrically weak wordfinal CC syllables is discussed in §3.2.2.3.1.

4.3 Full Vowel Reduction

4.3.1. The problem

Sliammon has a large number of related words which show full vowels alternating with lax vowels, as illustrated by the data in (34). The syllables showing the alternations are underlined in the Output column of (34).
(34) Full Vowels Alternate with Lax Counterparts

Input

a. yax̆-t-anapi-as-'ut
a^{\prime}. yax̆-t-anapi č yax̆-[a]t-anapi č
b. hi hw č x̌à̇-ng-mi

c. Pawuk $^{\mathrm{w}}-\mathrm{hV}$ č \quad ?awu-hu-k ${ }^{\mathrm{w}}$ č
c^{\prime}. Pawuk ${ }^{\mathbf{w}} \quad$ Pawuk ${ }^{\text {w }}$

Output
yé .x̆a tà .na .pè .sot
yax̆-[a]t-anapi-s-ut yax̆-[a]t-anapi č yé. x̆a.tà .na.plč
hihiwč x̆ä̆numi
x̆aえ̃numič

Gloss
He was thinking of you
I remembered you (pl)
I love you very much
I love you (sg) ${ }^{3}$
I have tobacco
tobacco

[^21]| d. tug- θ-as | tug-[u]- θ-as | tó . gu . Өns | she recognizes me |
| :---: | :---: | :---: | :---: |
| d'. tug-t č | tug-[e$]<\mathrm{t}>$ c ${ }_{\text {c }}$ | tó . guç | I recognize her |
| e. DIM-mixat=ut | $\mathrm{mi}-\mathrm{m}<\mathrm{i}>$ ¢̆ałut | mém. ${ }^{\text {xa }}$. tò ${ }^{\text {f }}$ | black bear cub |
| e'. mixat | mixat | mé. ¢̆ $^{\text {¢ }}$ | black bear |
| f. ?ittan-hV č | Pifta-ha-n č | PÉt . th. hìnč | I've got food |
| f. Piftan | Tiftan | PÉt.tan | eat, food |
| g. sup=nač-hV a | supna-ha-č a | sóp . na . hà . ča . | Has he got a tail? |
| g'. sup=nač | supnač | sóp. n ¢ ${ }_{\text {c }}$ | tail |

Notice that $/ \mathrm{i} /$ is realized as [e] in an open syllable (34.a-b) whereas it surfaces as [L] in a closed syllable (34.a'-b'). The vowel $/ \mathrm{u} /$ is $[\mathrm{o}, \mathrm{u}]$ in an open syllable ($34 . \mathrm{c}-\mathrm{d}$) whereas it surfaces as its lax [v] counterpart in an unstressed closed syllable, as in (34.c'-d'). The vowel/a/ is realized as [a] in an open syllable as in (34.e-g) whereas it surfaces as [1] in a closed syllable, as in (34.e'-g'). The full vowel counterparts occur in unstressed open syllables whereas the lax variants occur in unstressed closed syllables. The alternation between the tense and lax vowels is referred to here as Full Vowel Reduction, following Blake (1999).

The question which is addressed in the next section is what is the appropriate characterization of Full Vowel Reduction in Sliammon? What is clear about Full Vowel Reduction (or shortening) in Sliammon is that it is crucially dependent on Stress Assignment.

4.3.2 Full Vowel Reduction and Stress Assignment

It is hypothesized that Full Vowel Reduction is driven by Foot structure constraints in the following way. Recall that syllables in Sliammon are grouped together into left-dominant feet (or trochees) as discussed in §3.3. Feet are proposed to be ideally bi-moraic ($\mu \mu$) (that is they satisfy $\operatorname{FtBin} \mu$) but may be tri-moraic ($\mu \mu \mu$) (i.e. an "uneven" trochee), under pressure to incorporate moras into syllables (Parse- μ-to- σ), and incorporate syllables into Feet (Parse- σ-to Foot). The best foot of course is the one which satisfies both FTBIN μ and FTBINo (i.e. Cv́ . Cv). Since output forms cannot satisfy all conflicting constraints simultaneously, the optimal form will
be the one which is most harmonic and incurs minimal constraint violation. Under the hypothesis that a full vowel is moraic and a reduced vowel is not, Full Vowel Reduction can be explained as follows: A full vowel in a weak metrical position loses a mora $\langle\mu\rangle$ in order to optimize the resulting Foot structure. Full Vowel Reduction occurs in order to create a well-balanced bi-syllabic bi-moraic trochee or a quantitatively 'even' trochee, as discussed in §4.3.2.1, and also occurs in order to create a single bisyllabic trimoraic foot, as will be shown in §4.3.2.2.

4.3.2.1 Bisyllabic Bimoraic Foot

Kager (1995: 400) in his summary of stress systems states that languages which have moraic trochees "are predicted to display processes that increase durational evenness within the foot." Shortening to a reduced full vowel can be viewed as a prosodic constraint which "modifies an uneven trochee into a rhythmically balanced even bi-moraic trochee". This is represented here as shown in (35).

Input

Output
a. $\quad\left(\sigma_{\mu \mu} \sigma_{\mu}\right)_{\mathrm{Ft}}$
$\left(\sigma_{\mu} \sigma_{\mu}\right) \mathrm{Ft}$

This is similar to what happens in Sliammon. As shown by the Sliammon data in (36), vowel reduction occurs in the unstressed syllable, underlined in Column 3.

Input
a. gaqi θ
b. qx -mut
c. qiga θ
d. mija θ
e. čt-t-as

V-reduction
gáq ε ©
qáx̆mut
qíg^ θ
míj^ Θ
čát-tへs

Output
gágeq
qর́x̆xumt
qég $\wedge \theta$
míàn θ
cítuns

Gloss

husband
many, lots
deer
flesh, meat
he cut it

The loss of a mora creates an optimal bi－moraic trochee，by reducing the phonological weight of the non－head，as shown schematically in（37）．In the Output，each syllable within the Foot contains a mora：（ $\boldsymbol{\sigma}_{\mu}$ ．σ_{μ} ）．
Input
Output
a．$\left(\sigma_{\mu}^{\prime} \cdot \sigma_{\mu \mu}\right)$
（ ${ }^{\prime} \mu, \sigma<\mu>\mu$ ）
${ }^{*}\left(\dot{\sigma}_{\mu}-\sigma_{\mu \mu}\right)$

In particular，the constraint PEAK PROM FT makes sure that the head of the Foot is equal to（or greater than）the phonological weight of the non－head．The data in（38）show the contrast between the licit forms in Column 2 which have undergone vowel reduction in comparison to the ungrammatical but totally faithful candidates in（38）Column 3.

Input	V－reduction	＊V－reduction	Gloss
a．gaqi θ	gá ．$_{\text {q }} \mathbf{q} \Theta \mu$	＊gá μ ．qe $\mu \Theta \mu$	husband
b． q ¢̆－mut	qáx̆ μ ．mvt μ	＊qźx̆ μ ．mu ${ }^{\text {d }} \boldsymbol{\mu}$	many，lots
c．qiga θ	qé μ ． $\mathrm{g} \mathrm{\wedge}$ 明	＊qé μ ．ga $\mu \Theta \mu$	deer
d．mija θ	mí μ ．j \wedge 园	${ }^{\text {mí }}$ ．．ја $\mu \Theta \mu$	flesh，meat
e．Ėt－t－as	Ė大t μ ．tıs μ		he cut it

Since stress is always fixed on the word－initial syllable in Sliammon，surface candidates like those in（38）Column 3 are ill－formed since the syllable which functions as the weak member of the Foot is heavier $(\mu \mu)$ than the head of the Foot (μ) ．Shaw（1998）proposes the constraint PEAK PROM FT（as a refinement of PEAK PROM as defined by Prince and Smolensky 1993）which captures the generalization that the prominence of the head of a Foot（as defined by moraic weight） is greater than or equal to the prominence of the non－head．

The prominence of the Head of a foot \geq the non-head.
i.e. $\mathrm{FT}=($ (́́ ...v), (v́....ə), (ว́...ə), *(á...v)

The idea here is that the weight of the stressed syllable as a whole, not just the nuclear head is equal to or greater than the phonological weight of the unstressed syllable: $\mathrm{FT}=(\sigma, \sigma \mu \sigma \mu),(\sigma \dot{\sigma} \mu \boldsymbol{\sigma})$, ($\sigma=\sigma \mu),{ }^{*}\left(\sigma^{\prime} \sigma \mu\right),{ }^{*}(\sigma \dot{\sigma} \mu \mu \mu)$. The loss of a mora $<\mu>$ is therefore a minimal violation of Faithfulness which satisfies this constraint PEAK PROM FT. It also creates an even bi-moraic trochee which best satisfies Foot Binarity (cf. $\S 4.7$ for a summary of the constraints).
(40) gaqi [gáq ε] husband

gaqi $\theta \mu . \mu \mu$	PEAK PROM FT	STRESS-TO-W	*CLASH	FTBIN μ	MAX[μ]
		-			*
$\mu .<\mu>\mu$					
b. gá . qe Θ	*!	*		*	
$\mu . \mu \mu$					
c. gá: . q q				*	
$\underline{\mu} . \mu$					

Candidate (40.c) requires some discussion. Given the present constraint ranking, we might ask what prevents the three moras from being distributed such that the stressed syllable contains a long vowel. If the moras are linked to the vowels in the Input, then (40.c) will violate constraints on the insertion and deletion of Paths (autosegmental associations between Root node and mora; cf. Archangeli and Pulleyblank 1994).

4.3.2.2 Bisyllabic Trimoraic Foot

In the this case, vowel reduction reduces the total number of moras from four to three so that both syllables can be incorporated into a single metrical Foot. Vowel reduction occurs in metrically weak (unstressed) syllable, as shown schematically in (41).

Input Output

a. $\left(\sigma_{\mu \mu} \cdot \sigma_{\mu \mu}\right)$
$\left(\sigma_{\mu \mu} \cdot \sigma_{<\mu>\mu}\right) \quad{ }^{*}\left(\sigma_{\mu \mu} \cdot \sigma_{\mu \mu}\right)$

Consider the data in (42) which provides motivation for this claim. (Recall that schwa becomes [ε] after an alveopalatal and before a glottal, as discussed in Chapter 2. This accounts for the surface form in (42.a)).
(42) Root-suffix

Input	V-Reduction	Output	Gloss
a. š?t-mut	šó?t . mut	šá? ${ }_{\text {ctmut }}^{\text {[šÉ? }}$ tmvt]	very high
b. sup=nač	súp. n^Ač	sópnıč	tail
c. $\mathfrak{t}^{\ominus} \mathrm{i} y$ č=agič		tôiyčà ${ }^{\text {costč }}$	twisted spine

As shown by the examples in (42), the vowel in the unstressed syllable is "reduced" in the surface form: $/ u /[v]$ as in (42.a), and $/ a /[\Lambda]$ as in (42.b), and $/ i /[\iota]$ as in (42.c). Full Vowel Reduction is interpreted as a reduction in vowel quantity (i.e. the loss of a mora) since it is clearly motivated by Stress Assignment (i.e. the prosodic constraints on Foot Structure), as shown in (43).
 which undergoes reduction, as indicated by the Foot structure in (43.c).

Input	Foot Structure	No Reduction	Gloss
a. šit-mut	(šápt ${ }_{\mu \mu} \cdot \mathrm{mvt}_{\mu}$)	*(šá ${ }^{\text {t }} \mu \mu$. mut $\mu \mu$)	very high
b. sup=nac̆	(sóp $_{\mu} \mu$. n^č̆ μ)	*(sóp $\mu \mu$. nač $\mu \mu$)	tail
			twisted spine

Vowel reduction in Sliammon is analyzed here as the loss of the mora $<\mu>$ associated with the vowel in the second syllable without any alteration to either its nuclear (NUC) or featural content. What is significant about this proposal is that full vowel reduction is characterized as a change in vowel quantity and not vowel quality. Recall that $\S 2.4 .5$ establishes that the realization of reduced full vowels is distinct from that of schwa. Since the head of the Foot (i.e. the stressed syllable) prefers to be prominent, it is the vowel in the weak syllable which surfaces as non-moraic, excluding surface forms like the ones in (44) Column 3.
(44) Vowel Reduction does not take place in a stressed syllable

Input	Output	*Reduction	Gloss
a. špt-mut	šé?tmvt		very high
b. sup=nač	sópnač	*(sóp ${ }^{\text {. }}$ nač ¢ $_{\mu}$)	tail
c. $\mathfrak{t}^{\boldsymbol{\theta}} \mathrm{iy} \chi^{2}=$ agic ${ }^{\text {c }}$			twisted spine

Recall that stress is strictly word-initial in Sliammon regardless of the quality of the initial vowel (see §3.3, as well as Davis (1970), Hagège (1981), Kroeber (1989), Blake (1992, 1995), Watanabe (1994), and Urbanczyk (1999)). In (41-42) above, vowel reduction $\langle\mu\rangle$ not only allows both syllables to be incorporated into a single metrical foot, but it also enhances the relative prominance of the head of the Foot. The cost associated with Full Vowel Reduction is a MAX- μ violation. The fact that stressed syllables prefer to be heavy is encoded in the following constraint, following Prince and Smolensky (1993) and others, including Blake $(1995,1999)$.

A stressed syllable prefers to be heavy

Consider the partial tableau in (46) which shows how this works.
sup=nač [sópnnč] tail

sup=nač $(\mu \mu . \mu \mu)$	STRESS TO WEIGHT	FTBIN μ	$\operatorname{MAX}[\mu]$
G a. ($\mathrm{só}_{\mu} \mathrm{p}_{\mu} \cdot \mathrm{n} \wedge \check{c}_{\mu}$)			5ysky
b. $\left(\right.$ só $\left._{\mu} \mathrm{p}_{\mu} \cdot \mathrm{na}_{\mu} \check{\mathrm{c}}_{\mu}\right)$		*!	\|erkshevertu
c. $\left(s^{s} \mathrm{p}_{\mu} \cdot \mathrm{n} \mathrm{\wedge} \check{c}_{\mu}\right)$	*!	Whaver	
d. (ś $^{\prime}{ }_{\mu} \cdot n \mathrm{na}_{\mu} \check{c}_{\mu}$)	*!		

What rules out candidates like (só $\left.{ }_{\mu} \mathrm{p}_{\mu}\right)\left(\right.$ n $\left.\grave{\mu}_{\mu} \check{c}_{\mu}\right)$ in which there is total faithfulness (correspondence) between moras? In this case, seems that *CLASH must be ranked higher than FTBIN μ, as shown in (47).

sup $=$ nač $\mu \mu \mu \mu$	STRESS-TO-WEIGHT	*CLASH	FTBIN μ	MAX[μ]
a. ($\mathrm{só}_{\mu} \mathrm{p}_{\mu} \cdot \mathrm{n} \wedge \check{c}_{\mu}$)				
b. (ón $_{\mu} \mathrm{p}_{\mu}$) $\left(\right.$ nà $\left.{ }_{\mu} \check{c}_{\mu}\right)$		*!	Fw,w,y,	$\text { N, } \times$

Notice that (47.a) also satisfies FTBINO since the output is comprised of a single bi-syllabic foot whereas (47.b) violates FTBINO twice. In the non-optimal form (47.b) there are two feet, and each foot is comprised of a single syllable which violates FTBINO twice.

4.3.2.3 The Representation of Vowel Reduction

A reduced full vowel (R-schwa) is analyzed here as a nuclear non-moraic vowel (i.e. schwa) which has the place specifications of the underlying full vowel, as shown in (48).
(48) Nuc

I
RN
Place
1
[f]

Full Vowel Reduction incurs the loss of a mora, as shown in (49). Notice that the vocalic place features remain unchanged.

Input	Output
NUC	NUC
1	\mid
μ	$<\mu>$
\mid	1
RN	RN
Place	Place
$[f]$	$[f]$

As can be seen from the phonological representation in (49), the Output of Full Vowel Reduction is distinct from epenthetic schwa [NUC] which is devoid of inherent place features. Epenthetic schwa is realized as $[\imath \sim t, \varepsilon, v, \nu, \wedge$, a] depending on the adjacent consonants and vowels, as shown in Chapter 2. Recall that the distinction between a reduced full vowel and epenthetic schwa (E-schwa) is manifest in surface representations in Sliammon, as discussed in §2.4.5.

The claim made in this section is that full vowel reduction in Sliammon is not the loss of the phonological features associated with the vowel; rather it is construed as the loss of phonological weight, i.e. as the loss of a mora. The resulting "reduced" full vowel has the prosodic representation of schwa since it is Nuclear (NUC) but non-moraic, but retains the inherent feature specification of the full vowel. It is claimed here that it is this duality which defines a reduced vowel.

4.3.2.4 Contexts in which Full Vowel Reduction (R-schwa) is Blocked

Although many post-tonic full vowels surface as a reduced full vowel, there are a systematic set of cases in which vowel reduction is blocked. In the examples in (50), a full vowel appears in the Output instead of a reduced vowel. As expected under the present analysis, vowel reduction does not seem to take place as freely in a bimoraic, bi-syllabic Foot of the form ($\mathrm{C}^{\prime} \mu \cdot \mathrm{C} v_{\mu}$) as shown by a comparison between the data in Column 2, and the less optimal forms in Column 3.
(50) Vowel reduction is blocked: $(\mu \mu) \rightarrow^{*}(\mu)$

Output form a. gágeӨ̀̀g^n	Morafication / Footing $\left(g_{\mu} \mu \cdot g e_{\mu}\right)\left(Ө \grave{e}_{\mu} \cdot g \wedge n_{\mu}\right)$		Gloss doe, female deer
b. túwumàẏe	$\left(\right.$ tú $\left._{\mu} \cdot \mathrm{wu}_{\mu}\right)\left(\right.$ mà $_{\mu} \cdot$ y $\left.^{\prime}{ }_{\mu}\right)$	* tú $\left._{\mu} \cdot \mathrm{wv}\right)\left(\mathrm{mà}_{\mu} \cdot\right.$ y $\left.^{\mu}{ }_{\mu}\right)$	cold wind, Westerly
c. \mathfrak{t}^{\ominus} át $^{\dagger} \mathrm{aw}$			hail
d. ${ }^{\text {kaxasasà? }}$ ¢q			becoming warmer
e. náčawigı \dagger			one boat
f. đ̇áx̆ajùnıs			wisdom teeth
g. tátoӨèn^č	$\left(\right.$ tá $\left._{\mu} \cdot \mathrm{to}_{\mu}\right)\left(\Theta \grave{e ̀ ~}_{\mu} \cdot \mathrm{n} \wedge \check{c}_{\mu}\right)$	${ }^{*}($ tá $\mu \cdot \mathrm{to})\left(\Theta \grave{e ̀ ~}_{\mu} \cdot \mathrm{n} \wedge \check{c}_{\mu}\right)$	gluteous muscle

The relevant generalization is that the weak metrical syllable is in all these cases an open syllable. If vowel reduction is the loss of a mora, then we can explain why it is blocked in this context.

Vowel reduction in this context would create a less optimal mono-moraic ($\sigma_{\mu} \sigma$) Foot, which violates $\operatorname{FTBIN} \mu$. I conclude that the constraint which ensures that Feet are minimally bi-moraic ($\operatorname{FTBIN} \mu$) must be relatively high-ranking in Sliammon, as argued in Chapter 3. This is contrasted with cases like those in (36-38) in which vowel reduction does take place in order to ensure that Feet are binary at the moraic level.

4.3.3 Implications of the Proposed Analysis of Full Vowel Reduction

4.3.3.1 Imperfective Reduplication and reduced full vowel

Consider the interaction between Imperfective reduplication and Full Vowel Reduction. Strong Roots (i.e. Roots with an initial full vowel i, u, a) take an initial CV- reduplicant in the Imperfective and retain the root vowel, as shown by the data in (51). The syllabification of each of the following Imperfective forms is affected by suffixation. This will subsequently be constrasted with the realization of non-suffixed Imperfective reduplicative data.

Input

a. tin
a^{\prime}. IMP-tin-Pəm
b. \quad ilig $=a y$
b'. IMP-Rilq́=ay
c. $\mathfrak{j u}-\mathrm{t}$
c'. IMP-jue-t-as
d. sup-?m
d'. IMP-sup-?m
e. q^{w} as-m
e^{C}. IMP-quas-m+[?] IMP-(quásəm)
f. \quad a $\theta-$?m
f. IMP-?aO-?m

IMP-(?áӨəm)

Output
tén
ťદ́ṫยn?วm
Pélq̉ay
Té? $\varepsilon \nmid q ̣ a ̀ y ~$
jứ̛̀t
čúguUOt \wedge s
sóp’om
sósop’om
$q^{\text {wás }}$ m
qwáqwasə ${ }^{\text {wh }}$
Pá $($ (?) $\wedge m$

Gloss

barbecued fish
barbecuing (fish)
barbecue deer meat
barbecuing deer meat
to push s.t.
s/he is pushing it
to chop wood
chopping (s.t.)
flower
blooming, flowering
to give (like at a potlatch)
giving

Notice that both the full vowel of the reduplicant and the full vowel of the Root may occur in open syllables, as indicated by the underlined portion in (51.c'-f) Column 3. Also notice that the relationship between the Base and the Reduplicant requires that the vowel of the Root and the vowel of the reduplicant have the same basic vowel quality (i.e. $\mathrm{Ci}-\mathrm{CiC}, \mathrm{Cu}-\mathrm{CuC}, \mathrm{Ca}-\mathrm{CaC}$). They are still subject to height/place assimilation constraints discussed in Chapter 2, as shown by the data in (52). In (52.a'), the vowel /i/ is realized as [e] before $\hat{\mathrm{k}}^{\mathrm{w}}$ and as [i] between coronals. In (52.b') $u /$ is realized as $[u]$ in the environment of alveopalatals and as [o] before $\check{\mathbf{x}}^{w}$.

Input
a. $\Psi_{i k}{ }^{w}-7 m$
a'. IMP-4ikw-?m
b. $\check{\mathrm{J}} \breve{\mathrm{X}}^{\mathrm{w}}-\mathrm{t}$

Output

Gloss

to sew (s.t.)
vomit
vomiting

Now consider what happens to the Root vowel in unsuffixed Imperfective forms. As shown by the data in (53.a-c) Column 3, the Root vowel surfaces in an unstressed closed syllable (relevant syllable is underlined). The Root vowels vary somewhat in their realization [$0 \sim 0$] and $[\mathrm{a} \sim \wedge]$.

Input
a. IMP-̇ँup
a'. 夫̌up
b. IMP-Rax ${ }^{w}$
b'. Pax ${ }^{w}$
c. IMP-yax̆
c'. yax̆

Red+Base
IMP-(X̉úp)

IMP-(Páx*)

IMP-(yáx̆) ya-yax̆
уع́yıx̆
yéx̆

Gloss it's healing to heal, heal up snowing snow (falling) sobering up to sober up

The question which is raised here is do Root vowels in a Base-Reduplicant relation also undergo full vowel reduction in closed unstressed syllables? The output forms in (53) suggest that full vowel reduction occurs here as well. If reduction is the loss of a mora as argued above, and the phonological features of the full vowel are retained, then the vowel of the Base and the vowel of the Reduplicant still satisfy the Indentity constraint on Vowel feature specifications. It appears to be possible to satisfy the prosodic constraints which drive Full Vowel Reduction and the vowel Identity constraint on vowel features at the same time. Although the interaction between Full Vowel Reduction and other morphological processes, especially Reduplication, requires further research, the initial findings discussed here provide support for the proposed analysis of Full Vowel Reduction.

4.3.3.2 Height Assimilation independent of Full Vowel Reduction

Consider the examples in (54) which show that stressed á varies between [á $\sim \kappa$ i]. It is worthwhile to point out that these instances of [κ] cannot be the result of Full Vowel Reduction because they are all stressed.

Input
$\begin{array}{ll}\text { a. } & \tan \\ \text { b. } & \tan \\ \text { c. nan } & \text { man } \\ \text { c. } & \text { nat }\end{array}$

Output

tán \sim tín	mother
mán \sim mín	father
nát \sim nヘ́t	night

It is necessary to distinguish the examples in (54) from examples like those in (34) above, since if the variant [i] in (54) were the result of Full Vowel Reduction, then these examples would be mono-moraic. As shown in Chapter 3, independent words tend to satisfy Minimality; that is they are minimally bimoraic. The variation between [á $\sim \hat{\kappa}$] cannot be the result of Full Vowel Reduction since output forms like $[t \wedge ́ n<\mu>\mu$] would be sub-minimal (i.e. mono-moraic), as shown by the contrast between the data in (55) Columns 2-3.

Input	Ouput	＊Vowel Reduction	Gloss
a． \tan		＊tín μ	mother
b．man		＊mへ́n μ	father
c．nat	ná $\mu \mathrm{t} \boldsymbol{\mu} \sim \mathrm{n}$ 人́ $\mu \mathrm{t} \mu$	＊nへ́t μ	night

The alternations like tán \sim tín therefore must be due to something else．It is proposed here that this is vowel height assimilation before a coronal consonant．（Recall that the resultant height of the vowels i, u, a, ∂ is determined by the height of the adjacent consonants，as discussed in Chapter 2）． This means that a following coronal consonant affects the height of $/ a /$ but does not affect its prosodic representation．The independent existence of constraints on height／place assimilation at the sub－segmental level（via feature sharing）makes the identification of Full Vowel Reduction more difficult．The presence or absence of stress provides some evidence．Full Vowel Reduction is therefore complicated somewhat by the independent existence of vowel－consonant interaction in the language．

4．3．3．3 Summary of Full Vowel Reduction

Consider the Output representation of a Reduced Full Vowel repeated here in（56）in which the Nucleus dominates the inherent features［f］．
Nuc
।
$<\mu>$
｜
$[f]$

Given the distinction between Nuclear versus Nuclear moraic vowels inherent in the Nuclear Moraic Model adopted in this thesis（Shaw 1993 et seq．），the inventory of Output vowels is exactly what we might expect given the range of possible combinations．Since all vowels are Nuclear，consider the possible logical combinations of the Nucleus（NUC）with moras and features presented in（57）．

Full Vowel	Reduced Full Vowel	E-Schwa	Epenthetic Full V
Nuc	Nuc	Nuc	Nuc
\mid	\mid		\mid
μ	$<\mu>$		μ
\mid	\mid		
f$]$	$[\mathrm{f}]$		
$\mathrm{i}, \mathrm{e}, \mathbf{u}, \mathbf{o}, \mathbf{a}$	$[\mathrm{l}, \varepsilon, v, \nu, \Lambda]$	$[\mathrm{l}]$	$[\mathrm{l}]$

So far we have discussed the contrast between Full vowels, epenthetic schwa (E-Schwa) and Reduced Full Vowels. The fourth logical possibility is represented in (57) Column 4. This is the representation of an epenthetic Full Vowel. We now turn to discussion of Full Vowel epenthesis as an instance of Vowel Strengthening in the next section. What is of particular interest is the fact that Weak Roots (Roots which typically surface with an initial schwa) show schwa/full vowel alternations. It is proposed that these are cases in which schwa is strengthened to a full vowel.

4.4 Strengthening of Schwa: Schwa / Full Vowel Alternations

Strengthening of Stressed Syllables

Kager (1995: 367) notes that "stress tends to be enhanced segmentally: stressed syllables may be strengthened by vowel lengthening or by gemination, while stressless syllables may be weakened by vowel reduction." There are a number of Roots in Sliammon which show many of the morphological diagnostics for Weak Roots (i.e. /CC/ CəC, /CCC/ CəCC) but which surface with a full vowel in a stressed open syllable, instead of schwa. These schwa/full vowel alternations are proposed to follow from the well-formedness constraints on the prosodic representations. The presence of a full vowel, instead of schwa, can be viewed as a form of strengthening or fortition which favours a nucleus with phonological weight ($\mathrm{NUC} \mu$) in a stressed open syllable. Kinkade (1997) makes a similar observation and proposal for Upper Chehalis
(Tsamosan Salish) showing that schwa alternates with full vowels; the full vowel occurs in a stressed open syllable (cf. Rowicka (2000) for a theoretical treatment within a Strict CV- model of syllable structure, citing data from Kinkade 1991).

4.4.1 The Data

The following data show alternations between stressed schwa in a closed syllable (58.a-d) versus a full vowel in a stressed open syllable (58.a'-d'). This first set of data shows á ~ú; other data exemplify ing ó ~á follow in (61-63). The epenthetic vowels which alternate appear in square brackets [] in Column 2 and are underlined in Column 3.
(58) ふ́~ú

Input	万~ú	Output	Gloss
a. $\mathbf{t}^{\boldsymbol{\theta}} \mathbf{k}^{\mathbf{w}}-\mathbf{t}$	$\mathrm{t}^{\ominus}[\underline{\square}] \mathrm{k}^{\mathbf{w}} \mathrm{t}$	$\underbrace{\ominus} \mathrm{u}^{w}{ }^{\text {w }}$	wipe s.t.
a^{\prime}. $\mathfrak{t}^{\theta} \mathbf{k}^{\mathbf{w}}=\mathrm{u}^{\mathfrak{j}} \mathrm{a}=$ tn			napkin (wipe=hands)
b. $\breve{\mathrm{X}}^{\mathbf{w}} \mathrm{m}$	$\breve{x}^{\text {w }}[$ ¢́] $] m$		swift, fast
b^{\prime}. $\check{\mathbf{x}}^{\mathbf{m}} \mathrm{m}=\mathrm{aq}=\mathbf{k}^{\mathrm{w}} \mathbf{u}$	$\check{\mathbf{x}}^{\mathbf{w}}$ [ú] $\mathrm{ma}^{\text {a }} \mathrm{k}^{\mathbf{w}} \mathbf{u}$	x'ómatk $^{\text {w }} \mathbf{u}$	Homathko River
c. $\operatorname{IMP}-\mathrm{px}{ }^{\mathrm{w}}[-\mathrm{i}-] \mathrm{m}+[?]$	$\mathrm{p}[\mathfrak{\prime}] \mathrm{px}{ }^{\text {wim }}$ \%		starting to steam
c'. $\mathrm{px}^{\mathbf{w}}-\mathrm{m}+[\mathrm{i}]$	p [ú] $\mathrm{x}^{\mathrm{w}} \mathrm{im}$	púx ${ }^{\text {w }} \mathrm{em} \sim$ púx ${ }^{\text {w }}$ ¢m	steam
d. $\mathrm{DIM}^{\text {- }} \mathrm{k}^{\mathrm{w}} \Theta=$ ays $[-i-]$	$\mathrm{k}^{\mathrm{w}}[\mathrm{o}] \mathrm{k}^{\text {w }}$ Oayis	$\mathrm{k}^{\text {was }}{ }^{\text {w }}$ ®ayıs	small island
$d^{\prime} . k^{\text {w}} \Theta=$ ays	$\mathbf{k}^{\mathrm{w}}[\mathbf{u}]$ Өays		island

Notice that epenthetic schwa (i.e. a bare NUC) [$\mathfrak{v}, \partial ́, ~ i ́]$ tends to occur in a closed syllable whereas the full vowel ú [ó~ú] occurs in a stressed open syllable.

The ungrammatical forms in (59.a'- d^{\prime}) Column 3 show that schwa is avoided in a stressed open syllable. This is the context in which stressed ú occurs instead. Notice that the corresponding forms in (59.a-d) show that schwa does occur in an initial stressed syllable, if and only if the syllable is closed. The full vowel ú and schwa are in complementary distribution in this context.

Input	Syllabification	Ungrammatical	Gloss
a. $t^{\ominus} \mathbf{k}^{\mathbf{w}}-\mathbf{t}$	\mathfrak{t}^{\ominus} [ə́] $\mathbf{k}^{\boldsymbol{w}} \mathbf{t}$		wipe s.t.
a'. $t^{\theta} \mathbf{k}^{\mathbf{w}}=\mathrm{u}^{\prime} \mathrm{j}^{\text {a }}=$ tn	$\mathrm{t}^{\text {® }}$ [ú] . $\mathrm{k}^{\mathrm{w}} \mathbf{u}$ P . ja . tan		napkin (wipe=hands)
b. $\check{\mathrm{x}}^{\mathrm{w}} \mathrm{m}$		* ${ }_{\text {¢̇ºúm }}$	swift, fast
b^{\prime}. $\check{\mathbf{x}}^{\mathbf{w}} \mathrm{m}=\mathrm{a}^{\prime}=\mathrm{k}^{\mathbf{w}} \mathbf{u}$	$\check{x}^{\mathbf{w}}\left[u^{\prime}\right] . \operatorname{may} \cdot \mathrm{k}^{\mathrm{w}} \mathbf{u}$		Homathko River
c. IMP-px ${ }^{\text {m }}[-\mathrm{i}-] \mathrm{m}+[?]$	$\mathrm{p}[\mathrm{o}] \mathrm{p}$. $\mathrm{x}^{\mathrm{w}} \mathrm{im}$.	*púp $\cdot \mathrm{x}^{\text {wim }}$.	starting to steam
$c^{\prime} . \mathrm{px}-\mathrm{m}+[\mathrm{i}]$	$\mathrm{p}[\mathrm{u}] . \mathrm{x}^{\text {wim }}$	*pó $\mathrm{x}^{\text {wim }}$	steam
d. $\mathrm{DIM}^{\text {- }} \mathrm{k}^{\mathrm{w}} \theta=\mathrm{ays}[-\mathrm{i}-\mathrm{]}$	$\mathbf{k}^{\mathbf{w}}[\mathfrak{\square}] \mathrm{k}^{\mathbf{w}}$. Өa . yts	${ }^{*} \mathrm{k}^{\mathrm{w}} \mathrm{u}^{\mathrm{w}}$. \cdot a. yis .	small island
d'. $\mathbf{k}^{\text {w }}$ = $=$ ays	$\mathbf{k}^{\mathrm{w}}[\mathrm{u}]$. Өays [$\left.\mathrm{k}^{\mathrm{w}} \mathrm{v}^{\prime} ..\right]$	${ }^{*} \mathrm{k}^{\text {w}}$ ¢ ${ }^{\text {e }}$. Өays	island

What seems to be happening is that Weak Roots take a schwa in order to ensure that the stressed syllable contains a Nucleus, satisfying Proper Headedness as argued in §4.2.3. In an open syllable, both a Nucleus and a mora surface in order to ensure that the head of the Foot has both a Nucleus and phonological weight, thus avoiding stressed schwa in an open syllable: *ѓ $]_{\sigma}$. The fact that schwa tends not to occur in a stressed open syllable is explored in detail in Chapter 5.

It should be noted here that some Weak Roots also show variation in the way in which they are strengthened. As indicated above, stress can be enhanced either by (i) vowel lengthening (strengthening) or (ii) by gemination. The data in (60) show vowel strengthening in ($60 . \mathrm{a}^{\prime}-\mathrm{c}^{\prime}$) and consonant gemination in ($60 . \mathrm{a}-\mathrm{c}$ "). The diminutive forms in ($60 . \mathrm{a}-\mathrm{c}$) show that these are Weak Roots.

Input	Epenthesis	Output	Gloss
a. $\operatorname{DIM}-\mathrm{t}^{\ominus} \check{\mathrm{x}} \mathbf{u}+[?]$	$\mathrm{t}^{\ominus} \mathrm{i}-\mathrm{t}^{\boldsymbol{\theta}} \overline{\mathrm{x}}^{\text {w }} \mathbf{u}$?		small ling cod
$\mathrm{a}^{\prime} . \hat{t}^{\theta} \check{\mathbf{x}}^{\mathbf{w}} \mathbf{u}$			ling cod
			ling cod

b. DIM-nx ${ }^{\text {wiL }}$	$n \mathrm{ni}-\mathrm{nx}{ }^{\text {w }}$ it		small canoe
b^{\prime}. $n x^{\text {w }} \mathbf{i L}$	n [ú] $\mathrm{x}^{\mathbf{w}} \mathrm{i}$ ¢		dugout canoe
b'. $\mathrm{nx}^{\mathrm{w}} \mathrm{iL}+\mathrm{hVPoss}$	$n[u ́] x^{\text {w }}$ i-hi-t	núx ${ }^{\text {wehèt }}$	he has a canoe
$b^{\prime \prime} . \mathrm{nx}{ }^{\text {wiL }}$	n [2] x^{w} it ${ }^{\text {d }}$	nux ${ }^{\text {w-ı! }}$	dugout canoe
c. $\mathrm{DIM}-\mathrm{X}^{\prime} \check{\mathrm{x}}^{\mathbf{W}} \mathrm{ay}+[?]$			small chum
c'. ${ }^{\prime} \bar{x}^{\text {way }}$ ay	$\dot{\lambda}$ [ú] . $\overline{\mathbf{x}}^{\text {w }}$ ay .		chum, dog salmon
c". ${ }_{\chi} \overline{\mathrm{x}}^{\text {w/ }}=a y$	$\dot{\chi}[\underline{\square}]$ x $^{\text {w }}$ ay		chum salmon

Clearly both strategies can be used in order to avoid stressed schwa in an open syllable. At the present time, it is unclear why the Roots in (60) variably show either Vowel Strengthening or Consonant Gemination whereas vowel strengthening alone is recorded for the data in (58-59).

It is proposed here that vowel strengthening is insertion of both a Nuc and a mora (a DEP NUC and a DEP- μ violation) in order to satisfy the constraints that the Foot is Properly Headed and bears phonological weight (cf. Chapter 3).

One question which we need to address is: if strengthening is insertion of [$N U C \mu$], then how are the features of the full vowel determined? Why is the full vowel in (58-59) above realized as [$\mathbf{u} \sim$ o] and not as [$\bar{i} \sim$ é] or [á]? It is proposed here that the features of the full vowel are determined by the nature of the adjacent consonants. In particular, the full vowel [u] appears to be epenthesized in a stressed open syllable in the environment of either a preceding or following labialized consonant. The vowel quality is due to assimilation (feature sharing) with adjacent consonants and is not determined by markedness considerations.

Now consider examples in which stressed á in a closed syllable alternates with á in an open syllable.
(61) ว́~á

Input
a. $\check{x} t^{2} \mathbf{k}^{w}$
$\mathbf{a}^{\prime} . \breve{x}{ }^{\prime} \mathbf{k}^{w}+[\mathbf{i}]$

Epenthesis

x $\check{x}\left[\right.$ á ${ }^{\text {tik }}{ }^{w}$

Output
x̌áték ${ }^{w}$
x̌ătek ${ }^{w}$

Gloss
design
design's already there

b．tólk－t		ţ̧ ${ }^{\text {chen }}$	make a hole
$\mathrm{b}^{\mathbf{\prime}}$ ． $\mathrm{t} \mathbf{l k}+[\mathrm{i}]$	t［á］lik	$\underline{\text { tálck }} \sim$ tólı	a hole
c． 2 sp	P［＇s］sp	？ásp	finish
$c^{\prime} .2 \mathrm{sp}+[\mathrm{i}]$	P［á］sip		it＇s finished
d．λ Ims＝tan		Xámston	village，community
d＇．${ }^{\prime \prime} \mathrm{ms}+[\mathrm{i}]$	$\dot{\lambda}$［a］mis	̇ómes～̇̇ámes	where one resides

Syllabification of these examples in（62．a＇－d＇）Column 3 shows that schwa is avoided in a stressed open syllable．Notice that while the less optimal examples in（62．a＇d＇）Column 3 are bimoraic，the head of each Foot is weightless and the non－head is heavy（bimoraic）．This is clearly less optimal than the attested Output forms in（62．a＇－d＇）Column 2．The Output forms in（62．a＇－d＇） Column 2 show that vowel strengthening ensures that a full vowel occurs in a stressed open syllable．

Input
a．$\check{\mathrm{x}} \mathrm{t}^{\mathrm{k}}{ }^{\mathrm{w}}$
a^{\prime}. x̌t $^{\mathbf{k}} \mathrm{k}^{\mathrm{w}}+[\mathrm{i}]$
b．tólk－t
\mathbf{b}^{\prime} ． $\mathbf{t} \mathbf{k}+[\mathbf{i}]$
c． 2 sp
c＇． ？spं $+[i]$
d．${ }^{\prime} \mathrm{ms}=$ tan

Syllabification

x̆á \cdot tek $^{\text {w }}$ ．
ťál．k̉ət．
tá lık．
Rásp．
？র́．scp．
夫̇óm．ston．
赵 m ．

Ungrammatical
＊${ }^{\text {xát }}{ }^{\text {k }}{ }^{w}$

＊tál．Kəət．
＊tó ．lik ．
＊Tásp’
＊？á ．sep ．
＊スám．stən．
＊đ̇̇́ ．mes．

Gloss design
design＇s already there make a hole
a hole
finish
it＇s finished
village，community
where one resides

Now compare the licit forms in（62．a－d）Column 2 with the ungrammatical examples in（62．a－d） Column 3．The contrast between these two sets of forms shows is that epenthesis is always minimal．Epenthesis of schwa（a bare NUC）satisfies the constraints which require that the Foot be
properly headed whereas epenthesis of a full vowel (NUC μ) in this context produces less optimal Foot structure since an additional mora has been added. The ungrammatical forms in (62.a-d) are trimoraic rather than bimoraic. These forms constitute unmotivated violations of Foot Binarity and are therefore sub-optimal.

The full vowel ($\mathrm{NUC} \mu$) is realized as á $[$ á $\sim \hat{\Lambda}$] in the context of a uvular or glottalized consonant. Notice that the presence of a following labialized consonant takes precedence over a preceding glottalized consonant in determining the realization of the epenthetic full vowel, as shown by examples like (58.a').

Consider the following morphologically related words which also illustrate the $\rho \sim$ a alternation, but indicate that it is not necessarily restricted to the initial stressed syllable, as in (63.b-b').

Input	Epenthesis	Output	Gloss
a. $\mathrm{m} \theta \mathrm{q}^{\mathrm{w}}$	$\mathrm{m}\left[\check{\text { ¢ }}\right.$] $\Theta \mathrm{q}^{\mathbf{w}}$	$\underline{m} n^{\prime} \theta q^{\mathbf{w}}$	torch
a^{\prime}. mӨiq ${ }^{\text {w }}$	$\mathrm{m}\left[\right.$ á Oiq $^{\text {w }}$	má $^{(1) \varepsilon q^{w}}$	torch
b. $\mathrm{DIM}^{\text {-m }}$ - $\mathrm{q}^{\mathbf{w}}$	mí-m[2] $\mathrm{q}^{\mathbf{w}}$	mé-m^ $\mathrm{m}^{\text {w }}$	small torch
$\mathrm{b}^{\prime} . \mathrm{DIM}-\mathrm{m} \mathrm{\theta q}{ }^{\mathbf{w}+[i]}$	mí-m[a] iq $^{\text {w }}$	mé-mȧ $\theta \varepsilon q^{\text {w }}$	small torch

The diminutive forms in (63.b-b') make this look like a Weak Root; however, there are a small number of unaffixed Strong Roots which take a Ci-diminutive prefix as well. Additional research is required in order to determine the status of this Root.

4.4.2 Discussion and Proposed Analysis

Consider first an analysis of (63.a).
(64) $\mathrm{m} \Theta \mathrm{q}^{\mathrm{w}}$ mə́ $\mathrm{\theta q}^{\mathrm{w}}$ torch

$\mathrm{m} \theta \mathrm{q}^{\mathbf{w}} \mu \mu$	FTBIN μ	DEP $[\mu]$	DEP[NUC]
Eir a. mó ${ }^{\text {Nuc] }} \theta_{\mu} \mathrm{q}^{\mathrm{w}}{ }_{\mu}$		\| Sky	
b. má ${ }^{\text {d }}$ UC $\left.\mu\right] \theta_{\mu} \mathrm{q}^{\mathbf{w}}{ }_{\mu}$	*!		Wvekyveverev

(65) $\mathrm{m} \Theta[i] q^{w}\left[\right.$ áa $\left.^{\mathrm{E}} \varepsilon q^{w}\right]$ torch

$\mathrm{m} \theta q^{\mathbf{w}} \mu \mu+[\mathrm{i}] \mu$	SYLL PROM FT	FTBIN μ	DEP[μ]	DEP[NUC]	$\operatorname{MAX}[\mu]$
a. má $\left.{ }^{\text {Nuc }} \boldsymbol{\mu}\right] . \theta \varepsilon_{<\mu>}{ }^{\text {w }}{ }_{\mu}$				5yswivit	
b. mó[Nuc] $\cdot \theta^{*}<\mu>\mathrm{q}^{\text {w/ }}{ }_{\mu}$	*!		5vesk	15vivivevex	
c. mə́[Nuc] . $\theta e_{\mu} \mathrm{q}^{\mathrm{w}}{ }_{\mu}$	*!				
d. m[i] ${ }^{\text {d }} \mathrm{q}^{\mathbf{w}} \mu \mu \mu$		*!	53k	5ve	
e. má ${ }^{\text {Nuc }}$]]. $\theta_{\mu} q^{\text {w }} \mu$	*!				Nasy

Candidate (65.d) requires further discussion. Although FTBIN μ successfully rules out this candidate, it should also be noted that the expected position of the [i] infix is between the final two consonants of the Root, so that this candidate also represents non-minimal violation of the Alignment constraint which governs the position of this affix.

If $\operatorname{FTBIN} \mu$ dominates $\operatorname{MAX}[\mu]$ and $\operatorname{DEP}[\mu]$, then why are there CACC surface forms in Sliammon like those in (66)? In keeping with our present assumption regarding morafication which is that the full vowels and all coda consonants are moraic, forms like CACC where A is a full vowel appear to be trimoraic.
(66)

a. $\mathrm{q}^{\mathrm{w}} \mathrm{an} \check{\mathrm{x}}$	$\mathrm{q}^{\mathbf{w}} \mathrm{a}_{\mu} \mathrm{n}_{\mu} \breve{\mathrm{x}}_{\mu}$	[${ }^{\text {wán }}$ ¢ $]$	crab apple
b. wale	wa $_{\mu} \mathrm{l}_{\mu} \theta_{\mu}$	[wál θ]	bullfrog
c. piwt	$\mathrm{pi}_{\mu} \mathbf{w}_{\mu}{ }^{4} \boldsymbol{\mu}$	[péwł]	rendered fat, lard
d. qawe	$\mathrm{qa}_{\mu} \mathrm{w}_{\mu} \Theta_{\mu}$	[qáw θ]	potato, potatoes

Notice that these forms are all mono-morphemic Roots. If the constraints on Root Faithfulness (ROOT FAITH: MAX ROOT, DEP ROOT) outrank Foot Binarity (FTBIN μ) and the context free constraints $\operatorname{DEP}[\mu]$ and $\operatorname{MAX}[\mu]$, then it will be more important to keep lexically specified Root material, violating FTBLN μ in order to satisfy the higher-ranking constraint on ROOT FAITH. Consider the tableau in (67) which shows how this works.

$q^{\text {w }}$ an $\overline{\mathrm{x}} \mu \mu \mu$	ROOT FAITH	FTBIN μ	$\operatorname{DEP}[\mu]$	$\operatorname{MAX}[\mu]$
a. $\mathrm{q}^{\mathrm{w}}{ }^{\text {an }}$ ¢ $(\mu \mu \mu)$			Wx-w,	
b. $q^{\text {wón }}$ ¢ $(<a \mu>\mu \mu)$	*!	5, 4,		FW,

Forms like those in (68) provide evidence for a different analysis: $(\mathrm{CV} \mu . \mathrm{CC} \mu)$
a. Jan x^{w}

fish, any fish

The reader is referred to §3.2.2.3.1 and the discussion of minor syllables in Sliammon.

4.4.3 Implications of Strengthening of Weak Roots for Vowel Ablaut

It is proposed here that many of the Weak Roots which show schwa/full vowel alternations are phonologically conditioned. Schwa surfaces in a closed syllable (under primary stress) whereas a full vowel surfaces in an open syllable.

Watanabe (2000) maintains that the full vowel allomorph is associated with plural forms. The situation is complicated by a number of factors and appears to require further research. Representative data are cited in (69) from Watanabe (2000).
(69) Watanabe (2000)

It (a string-like object) breaks
(HW 2000: 290)
a'. x̆aえ-aw They (string-like objects) break

b.	рəх̆	It got ripped
b^{\prime}.	pax̆-aw	It ripped all apart
c.	x^{w} วtm-a-t $\mathrm{t}^{\boldsymbol{\theta}}$ วm	I will drop it
c^{\prime}.	$\mathbf{x}^{\mathbf{w}}$ atim-a-t t^{\dagger} วm	I will drop them
d.	q̇otx ${ }^{\text {w }}$-a-t-as	He burned it
d'.	q́atix ${ }^{\text {w }}$-a-t-as	He burned them

(HW 2000)
(HW 2000: 291)
(HW 2000: 292)

Note that all of the forms cited by Watanabe are compatible with the analysis proposed here, namely the full vowel [a] surfaces where there would otherwise be a stressed schwa in an open syllable. Many of the cases of 'plurality' cited by Watanabe (2000:287-296) involve a plural object interpretation. Third person objects in Sliammon are not generally marked overtly on the predicate, and do not generally show morphological marking which distinguishes plural objects from singular objects. Therefore, in order to argue that a particular vowel quality indicates the 'plural', it seems necessary to show that these forms not only occur with an overt plural object NP but that they cannot occur with an overt singular object NP. It is the elicitation of these pairs of grammatical and ungrammatical examples which is required in order for the argument to go through. Neither Watanabe nor I (unfortunately) have the requisite data to test this. Notice too that (69.a'-b') take the plural marker $/ \sim \mathrm{Vg} / \mathrm{aw}$, so that the source of the plural interpretation is probably due to the presence of the plural marker rather than to the vowel quality of the Root.

The proposal advanced here is that the appearance of the full vowel instead of schwa is phonologically conditioned, as argued in §4.3.4. This is not intended to exclude genuine cases of morphologically or lexically-conditioned vowel ablaut, rather to point out that there are schwa/full vowel alternations which are sensitive to the prosodic structure of the language, and need not be marked specially in the lexicon (cf. Kinkade (1997) on Upper Chehalis for a similar conclusion).

4.4.4 Further Theoretical Implications

The Nuclear Moraic Model (Shaw 1993 et seq.) adopted here shows the incremental relationships between schwa, full vowels and long vowels, as in (70). It also predicts the fact that
long schwa [a:] does not exist. Weight by definition is determined by the moraic count of the segments involved and their relative position within the syllable. Schwa is strengthened to a full vowel, as argued in $\S 4.4$ whereas full vowels are strengthened to yield a surface long vowel [V:].
(70) Schwa is weightless (cf. Nuclear Moraic Model Shaw 1993 et seq. and §3.0)

Schwa weightless	Full Vowel mono-moraic	Long Vowel bi-moraic
Nuc	Nuc	
\prime	1	Nuc
\prime	μ	Λ
\prime	1	$\mu \mu$
$[\partial]$	$[\alpha f]$	$\backslash /$
$\alpha]]$		

The model therefore provides a unified account of strengthening and reduction by stating that strengthening involves the addition of a mora whereas weakening (reduction) involves deletion of a mora - the prosodic unit which characterizes phonological weight, as in (71). Kinkade (1997) makes essentially the same point for Upper Chehalis.
a. Vowel Reduction
delete $[\mu]$
$\operatorname{MAX}[\mu]$
§4.3
b. Vowel Strengthening
add [μ]
DEP[μ]
§4.4

If we were to adopt a model in which schwa and the full vowels $/ i, u, a /$ have the same prosodic representation; in particular, all vowels [i, u, a, 2] are uniformly moraic, as in (72), then how would we characterize the special behaviour of schwa in Sliammon?
(72) Uniform Model of Vocalic Weight

σ	σ
$/ 1$	$/ 1$
$\mu \mu$	$\mu \mu$
11	1
$C \quad \mathrm{C}$	CVC

Given the model in (72), the property which typically characterizes schwa is its lack of phonological features. Let's see how this model would account for the observed behaviour of schwa. Why is stressed schwa in an open syllable avoided? One would need to claim that schwa requires a coda consonant to close the syllable in order to provide features for schwa - a kind of licensing mechanism (cf. Blake 1992). Schwa needs to enter into a feature-sharing relation in order to be licensed.

Another question which arises with the model in (72) is what prevents long schwa? If schwa is moraic then why aren't there long schwas just like there are long vowels? A logical argument here would be that it is derived from the fact that schwa has no features - since it has no features, there is nothing to spread. However, if schwa and the full vowels both have the same prosodic representation, then why is schwa epenthesized into a closed syllable whereas the full vowels [i, u, a] are epenthesized into an open syllable? Again this would be related to the featureless status of schwa - epenthesis of a full vowel entails both insertion of a mora and the feature(s) association with that vowel - epenthesis of schwa is therefore less costly since if schwa is featureless it does not incur any *[f] violations.

Within the Nuclear moraic model, schwa in a stressed open syllable is dispreferred since it consists of a syllable which lacks phonological weight (see detailed discussion in Chapter 5). Within the model in (72), one would have to say that schwa in an open syllable is not licensed again by its failure to acquire phonological features from a tautosyllabic consonant to its right. This implies that schwa only gets features from the consonant which follows it and not from the consonant which precedes it. To some extent, we have seen that consonants which precede vowels do exert less effect on them than the consonants which follow them, but if we consider rounding of schwa in the environment of a labialized consonant, the labialized consonant may either precede or follow schwa (cf. §2.4).

Given a model in which schwa and the full vowels are both moraic, we need to ask how to characterize Full Vowel Reduction? Full vowel reduction to schwa would have to be characterized as the loss of features associated with the full vowel. Then we need to ask, why would a full
vowel lose its features in an unstressed syllable? One would need to give an explanation of the following kind: the articulatory target is not fully realized in unstressed syllables. Although the tongue is heading towards the production of [a], it falls short of this articulatory target in post-tonic position, and is realized as [Λ]. This approach entails the loss of phonological features but no change to the prosodic structure of the reduced full vowel. This approach would have trouble explaining the lack of identity between the realization of schwa and the laxed variants of full vowels since it claims that they should be identical.

I have just sketched an alternative type of analysis to the one presented here but I do not find the motivation as compelling as the model and proposal which is argued for here.

In particular, schwa is different from a full vowel in two ways - lack of phonological weight and lack of vowel features. As argued in Chapter 2, one of the basic observations regarding schwa (and the variants of schwa) in Sliammon is that there is a weight contrast between the full vowels i, u, a and schwa. Schwa is perceptibly briefer in duration. This weight contrast is derived in a straight forward manner within the Nuclear Moraic Model since schwa is non-moraic whereas full vowels are moraic.

4.5 Non-alternating Schwas

There are some examples of what I will call "non-alternating" schwas in the language (cf. van Oostendorp (1999) on "stable" schwa). One example involves the various forms of the clitics used to express the Future tense in Sliammon, as illustrated in (73). The first person singular and plural, and second person singular forms appear to have resulted from the fusion of the future clitic $/ \mathrm{sm} /$ with the preceding subject clitics to yield $t^{\theta} \partial m$, štəm and $\check{c} x^{w} \partial m$ respectively. The second person singular and first person plural subject clitics are čx ${ }^{w}$ and $\check{s t}$, whereas t^{θ} is the form of the first person possessive marker. The second person plural involves the subject clitic čap 'you (pl)' followed by the future marker som. The third person forms are uniformly som. The form som is expected in intransitive clauses where the 3rd person subject is unmarked, a point also made by Watanabe (2000: 45-47).
(73) Future
a. 1 sg subject + future $t^{\ominus} \mathrm{m}^{4}$
I will
b. 2sg subject + future
čx ${ }^{w}$ əm
You (sg) will
c. 3rd subject future
səm
S/he will
d. lpl subject + future
štom
We will (with CaCPL RED of predicate)
e. 2 pl subject future č p səm
You (pl) will (with CəC PL $^{\text {RED of predicate) }}$
f. 3rd pl subject future səm They will ... (with -'Vg plural suffix)

Consider the following data which exemplifies the Future Paradigm. The subject plus future clitics are underlined.

Input

a. $\quad \tan \mathfrak{t}^{\boldsymbol{\theta}} \mathrm{m}$
b. $\quad \tan \check{c} x^{w} m$
c. $\tan \mathrm{sm}$
d. $\mathrm{C}_{2} \mathrm{C}_{\mathrm{PL}}-\tan$ št m
e. $\mathrm{CaC}_{\mathrm{PL}}$-tan čap sm
f. $\tan ^{-}{ }^{\prime} \mathrm{Vg} \mathrm{sm}$

Output

tán t^{θ} em

tán səm
tóntan štom
tóntan č̌̀p sam
tá?naw som

Gloss

I will be a mother
You (sg) will be a mother
She will be a mother
We will be mothers
You (pl) will be mothers
They will be mothers

Notice that the first and second person plural forms are accompanied by $\mathrm{C}_{2} \mathrm{C}_{\mathrm{PL}}$ - reduplication of predicate, and that the 3rd person plural 'they' involves the -' Vg plural suffix.

[^22]The point which is central to the discussion at hand is the distribution of schwa in these forms. The schwa which occurs after the subject does not alternate with "zero": it is always present in the surface form, as shown in (74.a-f). Even though there is no evidence for schwa/zero alternations, it is here claimed that these schwas are epenthetic in the environment before the resonant -m . Note that epenthesis of schwa [2] before a resonant is predictable (cf. Matthewson 1994 on Státimcets, and Kinkade 1998 on Upper Chehalis, for example) ${ }^{5}$. The lack of surface alternations is attributed to the position of these clitics within the morpho-syntax. These elements occur within the clitic group and occupy the second position within the sentence. They follow the predicate complex when it occurs in word-initial position. As clitics, they are outside of the domain of the word-formation processes such as reduplication and suffixation, contexts in which schwa/zero alternations are well-attested.

4.6 Summary

This chapter has presented evidence for different kinds of alternations involving schwa. It is claimed here that schwa in Sliammon is basically an epenthetic prosodic position; namely, a bare nucleus [NUC] which is inserted in order to satisfy constraints on prosodic structure in the language - foot structure and Proper Headedness in particular, following research by Shaw (1993 et seq.) on other related Salish languages. Since schwa is a bare [NUC], we can derive that fact that schwa is also featureless, as argued in Chapter 2.

Excrescent schwas discussed in §4.1 are claimed to be transitional vowels which are the result of co-articulatory effects and are not phonologically active. In contrast, epenthetic schwa occurs in stressed closed syllables, as argued in §4.2. A reduced full vowel, is claimed to have the prosodic structure of schwa and the featural representation of a full vowel, and is claimed to arise from the loss of a mora in an unstressed closed syllable §4.3. Not only are full vowels reduced to

[^23]prosodic schwa, but some Weak Roots show schwa/full vowel alternations in which schwa [NUC] is strengthened to an epenthetic full vowel. In these cases, the surface vowel has the prosodic representation of a full vowel but the melodic structure typically associated with schwa; it is featureless (§4.4). Since schwa is claimed to be non-moraic, following the basic hypothesis of the Nuclear Moraic Model (Shaw 1993 et. seq.), we can also derive the fact that there are no long schwas.

It should also be noted that the patterns presented here for Sliammon schwa are strikingly similar to those documented by Kinkade (1997) for Upper Chehalis. This is of significant interest since Sliammon and Upper Chehalis are related Salishan languages which belong to different branches of the language family and are separated geographically from one another (located at extremes of area occupied by the language family).

4.7 Summary of OT Constraints

4.7.1 Constraints

(75) Faithfulness Constraints

Constraint	Effect
DEP[NUC $]$	Prohibits insertion of an empty Nucleus (NUC)
DEP[$\mu]$	Prohibits insertion of a mora
MAX $[\mu]$	Prohibits deletion of a mora
ROOT FAITH	Faithfulness (MAX and DEP) constraints relativized to Root

(76) Syllable Structure

Constraint	Effect
*COMPLEX ONSET	Syllables do not have complex onsets
*ól σ	Schwa does not occur in a stressed open syllable

(77) Prosodic Constraints

Constraint	Effect
ALIGN L PRWD-TO-STEM	The PrWd is aligned with the left-edge of the stem
PROPHEAD PW	A Prosodic Word is headed by a Foot
PROPHEAD FT	A Foot is headed by a syllable
PROPHEAD σ	A syllable is headed by a NUC [=SYLL NUC]
STRESS-TO-WEIGHT	A stressed syllable prefers to be heavy (i.e. bimoraic)
SYLL PROM FT	The weight of the stressed SYLL \geq weight of the unstressed SYLL
FTBIN μ	Feet are bimoraic
FTBINO	Feet are bisyllabic
CLASH	Avoidance of adjacent heads of feet: $(\sigma)(\dot{\sigma})$

(78) Contiguity

Constraint	Effect
O-CONTIG ROOT	Insertion (DEP) into a Root disrupts adjacency relations (CONTIG)

4.7.2 Effects of Constraint rankings

Partial Ranking	Effects
*CLASH >> DEP[NUC]	epenthesis of schwa in order to avoid adjacent Heads of Feet
*CONSET >> DEP[NUC]	epenthesis of schwa avoids a Complex Onset violation
PROPHEAD >> DEP[NUC]	epenthesis of schwa ensures that each PrWd is headed by a V NUC
ALIGNL \gg DEP[NUC]	schwa inserted so that Head of PrWd is aligned with left-edge of stem
$\operatorname{FTBIN}[\mu] \gg \operatorname{MAX}[\mu]$	A mora is deleted in order to satisfy FOOT BINARITY [μ]
S-TO-W >> FTBIN[μ]	more important to have heavy head than satisfy $\operatorname{FTBIN}[\mu]$
PEAKPROM FT \gg MAX[μ]	deletion of a mora from non-head, so that weight of the stressed Syll is greater than or equal to the weight of the non-head (unstressed) Syll.
FTBIN $\mu \gg$ DEP[μ], DEP[NUC]	epenthesis of [NUC μ] in order to make sure that Feet are bimoraic
ROOT FAITH \gg FTBIN[μ]	more important to have Root I/O correspondence than satisfy FTBIN[μ]

Chapter 5:

Constraints on the Distribution of Schwa

> Raven has all the girls he needs.
> He's got machismo and charisma.
> He sings Cole Porter songs in the shower and thinks he's James Cagney. When he's dry he plays the piano choosing a Chopin nocturne, so touching.

Phyllis Webb

Stressed schwa "tends to occur only in closed syllables in Salish languages."
Kinkade (1997: 206), citing Patricia A. Shaw (p.c.)

5.0 Introduction

As we saw in the last chapter, schwa is epenthesized in order to satisfy Proper Headedness; it also prevents violation of *Complex Onset. Although schwa is epenthesized under pressure from higher-ranked constraints, there are also conflicting constraints on the contexts in which schwa can occur. This chapter brings together a range of seemingly unrelated data and aims to show that an explanation for the range of observed allomorphy is due to the constraint which bans stressed schwa in an open syllable, informally *ó $]_{\sigma}$, and its interaction with other constraints. Although schwa does occur in a stressed open syllable in a limited number of cases, as shown in $\S 5.7$, there are also phonological constraints operative in Sliammon which militate against this configuration. This is a classic case of constraint conflict; a formal analysis will be presented within a correspondence version of Optimality Theory.

In this chapter, it is observed that the main strategy used in order to avoid a stressed schwa in an open syllable in Sliammon is to close the syllable with a moraic coda consonant: $\mathrm{Cár}_{\mu}$. The range of examples which will be discussed in this chapter are summarized in (1).
(1) * $\left.{ }^{2}\right] \sigma$

Input	* 5]	Output	Section
a. $\mathrm{CaO}^{\prime} \mathrm{V}$	*Cá . O'V	Cáp. $\mathrm{O}^{\prime} \mathrm{V}$	§5.1 Glottalized Obstruents
b. CaR'V	*Cá. R'V	Có? RV	§5.2 Glottalized Resonants
c. CaOV	*Cá. OV	CaO:V	§5.3 Gemination
d. $\mathrm{CaC}=\mathrm{V}$	* C . $\mathrm{C}=\mathrm{V}$	C C=[h$] \mathrm{V}$	§5.4 [h]-epenthesis

What do these examples have in common? At first blush, there does not seem to be any reason to believe that the surface realization of glottalized obstruents and resonants is related to consonant gemination or h -epenthesis; however, the goal of this chapter is to show that these seemingly unrelated cases of surface allomorphy receive a single principled analysis which makes reference to the phonological constraints on syllabification and foot formation.

As argued in the previous chapter, Roots which have an initial consonant cluster require schwa epenthesis in order to satisfy Proper Headedness at the level of the Foot, as well as to satisfy the constraint which bans Complex Onsets in the language. In each optimal output candidate in (1), the second syllable satisfies the Onset constraint while the first syllable satisfies the constraint which bans schwa in a stressed open syllable. Simultaneous satisfaction of both constraints is achieved by associating some of the features of C_{2} with the coda of the first syllable, and the remaining features with the Onset of the second syllable, as will be shown in detail in §5.1-5.4.

The remainder of this chapter is organized as follows: §5.1-5.2 discuss the surface realization of glottalized consonants in the language; in particular, the fact that the laryngeal constriction can be sequenced independently of the oral closure and release. The relative timing of the oral and laryngeal gestures makes it possible to satisfy both constraints. In addition, presence of the coda consonant following stressed schwa implies that there is conservation of underlying moraic contrasts and ensures that the weight of the head of the Foot is greater than or equal to the weight of the non-head. $\S 5.3$ discusses gemination of an intervocalic consonant whereas $\S 5.4$ shows that some unexpected cases of h -epenthesis follow from the ranking of *2́] . $\S 5.5$ explores
the implications of the proposed analysis for Imperfective reduplication．§5．7 discusses a number of cases in which schwa does occur in a stressed open syllable，providing evidence that the constraint＊$\left.{ }^{*}\right]_{\sigma}$ is itself violable，and must be ranked below the constraint which aligns primary stress with the left－edge of the Prosodic Word（PrWd）．The final section §5．8 discusses the formalization of the constraint＊$\left.{ }^{*}\right]_{\sigma}$ ．

5．1 Surface realization of Glottalized Obstruents

The first case which is considered involves the surface realization of glottalized obstruents．

5．1．1 The Problem

Glottalized obstruents（stops and affricates：$\dot{p}, \hat{t}^{\ominus}, \dot{\mathfrak{t}}, \vec{\chi}, \dot{c}, \vec{k}, \dot{k}^{w}, \dot{q}, \dot{q}^{w}$ ）are weakly ejective， as initially noted by J．Davis（1970），and are generally realized with the glottal release following the obstruent．Data conforming to these generalizations are given in（2）．
（2）

Input
a．ps
a^{\prime} ．$p=q^{\prime} q^{w}$
b．fup＝us－t ga
c．x̆ap
d． $\mathrm{t}^{\theta} \mathrm{it}^{\ominus} \mathrm{it}$
e． $\mathbf{t}^{\theta} \mathbf{u t}^{\theta} \mathbf{k}^{\boldsymbol{w}} \mathbf{u m}$
f．tin
g．tupit
h．tatmi？im $+[\mathrm{cgl}]$
i．夫̇um
j．IMP－̇̈ut

1．IMP－華qi千
m．čl $\mathfrak{l q}-\mathrm{t}$
p’os
p’s：iq＂an
tupust ga
x̆aṕ
$t^{\theta} i^{\ominus}{ }^{\ominus} \mathbf{i t}^{?}$
$t^{\theta} \mathbf{u t}^{\theta} \mathbf{k}^{\mathrm{w}} \mathbf{u m}$
tin
tupit
tatmiPim
Xum
Xu－Xu u
夫丷ах̆ау

čalq̉at

Output
phís
p’и́s：$\varepsilon q^{\text {win }} \wedge$
tópost ${ }^{\text {h }} \mathrm{gn}$
x̆áp

$\mathrm{t}^{2 \theta} \mathrm{o}^{\prime} \mathrm{t}^{\mathrm{k}} \mathrm{k}^{\mathrm{w}} \mathrm{òm}$
tén
tó $\cdot \mathrm{pt} \mathrm{t}^{\text {h }}$
tátme？ın＇m
Xóm

夫${ }^{\text {夫áx̆ィy }}$

čílq̉へ $t^{\text {h }}$

Gloss

numb
numb head，can＇t think
peel it！
cradle basket
narrow
half－smoked fish
barbecued salmon
sun－dried fish（cod）
gambling，bingo
enough
s／he is growing
elder，old person
giving birth
sign one＇s name

n. $z^{\prime} \bar{x}$	çax		ripe, done, cooked
0. naz	nacz	náċ	different
o'. na-nač	nanač	nán^č	wrong
p. $\mathrm{kil} \theta+[\mathrm{i}]$	$\mathfrak{k i l}[1] \theta$	kélı θ	crooked
q. kikik	kikik	Kíkık ~ Kík̇k	crow
r. tik+[i]	tol[i]k	tólık \sim tólck	a hole
s. $\mathbf{k}^{\mathrm{w}} \mathbf{u n n u t}$	$\mathrm{k}^{\mathbf{w} u \text { Pnut }}$		porpoise
t. $\mathbf{k}^{\mathbf{w}} \mathbf{u} \mathbf{P u x}{ }^{\mathbf{w}}$			smoked fish
u. takw ${ }^{\text {w }}$	tak ${ }^{\text {w }}$	ták ${ }^{\text {w }}$	swell up
v. qıis-t	quisot	q̇és $\varepsilon^{\text {th }}$	tie it
w. ${ }^{\text {quis-?m }}$	¢ q is? ${ }^{\text {am }}$	q̧és?^m	tie (s.t.)
x. pıiq́	piq	p’ ǵq $^{\text {d }}$	wide
y. mq	məq่	m^́q́	full (from eating)
z. $\dot{\mathbf{q}}^{\text {wit }}$	$\dot{q}^{\text {wit }}$	$\dot{q}^{\mathbf{w}} \underline{\varepsilon}^{\text {t }}$	beach

In a certain limited set of cases, glottalized obstruents involve restructuring of the glottal portion of the ejective so that glottal closure precedes the obstruent, but with the apparent retention of the laryngealization associated with the obstruent, following Kroeber (1989), Blake (1995, 1998, 1999), Urbanczyk (1999.a on Klahoose), as shown by the data in (3.a-g).
(3)

Input	? in coda	Output	Gloss
$\mathrm{t}^{\text {¢ }}{ }^{\text {wa }}$	tố ${ }^{\text {a }}{ }^{\text {Ta }}$		devil fish, octopus
	jó? . $\mathrm{k}^{\text {wu }}$ usəm	ǰEPk ${ }^{\text {wu }}$ usəm	paint one's face
			Are you going to run?
$t^{8} \mathrm{c}$-INC-NTr-an	$\mathfrak{t}^{\text {º }}$ á? . çačux ${ }^{\text {wan }}$		I made it bitter
' ${ }^{\prime} \dot{\prime}=\mathrm{aya}$	ṕá? . q̉aya	ṕá?q̉aye	chimney, stove pipe
q̇it-m	q̧áp . tom	¢ qáptom	heavy
$p t^{\otimes} t$	ṗá? . $\mathfrak{t}^{\text {® }}$ t	páat ${ }^{\text {® }}$ t	tin can

For each of the forms cited in (3), the morphologically related forms in (4) show that it is truly a glottalized obstruent (O^{\prime}), and not a / $/ /$ which is the second consonant of the Root.
(4)

Input		Output	Gloss
a. DIM-tị ${ }^{\text {a }}$ a			small octopus
b. $\mathrm{jk}^{\mathrm{w}}-\mathrm{Pm}$			paint (s.t.)
b^{\prime}. $\mathbf{j k}^{\mathbf{w}}$-t	j jók $^{\text {w }}$ w		rub it
c. ${ }^{\prime} \chi^{\prime}$	jôt ${ }^{\text {ch }}$	jıt	run
c'. $\mathrm{C}_{2} \mathrm{ClL}^{-\mathrm{j}}{ }^{\prime} \mathrm{t}^{\dagger} \partial \mathrm{m}$			I'll go running
d. $\mathfrak{f}^{\theta} \dot{\boldsymbol{c}}$	$\mathrm{t}^{\text {® }}$ ว ${ }^{\text {ch }}$		bitter
e. p ' ${ }^{\text {d }}$	p’ə ${ }^{\text {a }}$	pı́q̆	smoke
f. $\dot{q} \mathfrak{t}-\mathrm{m}-3 \mathrm{~m}=\mathrm{min}$	q̇otma?amin	q̇íṫmaiñmı	sinker (fishing line)
g. CaCPL-p $\mathrm{p}^{\dagger} \mathrm{t}$			lots of tin cans
g'. DIM ' $^{\text {¢ }}{ }^{\text {® }} \mathrm{t}-[\mathrm{i}]$		péépait ${ }^{\text {® }}$ t $t^{\text {h }}$	small tin can

The problem then is to determine in what context(s) glottalized obstruents are post-glottalized as in (2) and (4), and in what contexts the glottal constriction also precedes the obstruent (3O'), as in (3).

The data in ($5 . \mathrm{a}-\mathrm{l}$) below provide evidence that glottalized obstruents are realized as post-glottalized following any consonant or full vowel. Further, a surface form with a preceding glottal closure was systematically rejected, as shown by the ungrammatical forms in (5.a-l) Column 3.
(5)

Input

a. $p u-p t^{\theta}=$ ayin
b. $\boldsymbol{t}^{\ominus} \mathrm{i}-\mathrm{t}^{\ominus} \mathrm{p}=$ ayin
c. $\mathrm{CH}-\mathrm{t}^{\boldsymbol{\theta}} \mathrm{amq}^{\mathrm{w}}=\mathrm{ay}$ 元

Output

pópt ${ }^{\ominus}$ ayen \quad *pópit ${ }^{\ominus}$ ayen

*? ${ }^{\prime}$

Gloss

 uneven, crooked shape triangle| | | | Did you tip over? |
| :---: | :---: | :---: | :---: |
| e. $x^{w} a-x^{\text {walpalip }}$ | | | see-saw (playground) |
| f. IMP-tanat | tátaponnt | * tápitapn^t | playing with rag dolls |
| g. DIM-XİX + [i$]$ | | | grasshopper |
| h. ċaçamiq ${ }^{\text {w }}$ | čéćcımeq ${ }^{\text {w }} \sim$ čéċcameq $^{\text {w }}$ | | great-grandmother |
| i. nač-mut | náč ${ }^{\text {mot }}{ }^{\text {h }}$ | * ná?čmot | really different |
| j. IMP-tut-t+[?] č | tótotù ${ }^{\text {ch }}$ | | I'm inhaling it |
| k. $\mathrm{x}_{\mathrm{it}}{ }^{\text {® }}$ | | | iron (metal) |
| 1. IMP-tik ${ }^{\text {w }}$ - ${ }^{\text {am }}+[$ [$]$ | ¢ítekºr ${ }^{\text {m }}$ | | sewing (s.t.) |

Contrast this with the behaviour of the forms in (6.a-e), in which the glottalized obstruent is always preceded by a glottal closure [PO^{\prime}]. Notice that what these examples have in common is that they involve Weak Roots / $\mathrm{CC} /[\mathrm{C} \partial \mathrm{C}]$. The [?] in the forms in (6) Column 2 functions as the coda to the initial syllable, and therefore satisfies the constraint against schwa in a stressed open syllable. Compare these examples with the ungrammatical forms in (6) Column 3, which violate this constraint. Since the Output candidates in Column 4 satisfy *ó $]_{\sigma}$, and glottalized obstruents are not restricted in syllable-initial position, as shown in (2), no other changes between the Input and the Output take place. The Output forms show the effects of schwa colouration (C-V feature sharing), as discussed in §2.4.4.

Input
a. $k t=i q^{w}=u{ }^{3} a$
b. $\check{\mathbf{x}}^{\text {w }} \boldsymbol{X}=\mathrm{igan}$
c. $g \dot{q}=i$ pan
d. $\theta t^{\theta}-\mathrm{m}$
e. $\mathfrak{q} t-m$ 7 in coda

$\check{x}^{\text {ºź? }}$. カ̉igan
gá? . q̉i 1 pan
Өá? . t^{\ominus} อm
q̉á? . tam

*J]

*gá . q’ $\varepsilon: p \wedge n$

*q̉á . ṫəm

Output

gヘ́?.q̉ย:p^n
Өá?. ${ }^{\ominus}$ əm
q̣á?.tom

Gloss
pinky (finger)
half full
it has no lid
jig for cod
heavy

It should be noted that glottal restructuring also occurs with Roots／Stems which have an initial consonant cluster，and where the second consonant is a glottalized obstruent（ O^{\prime} ），as shown by the forms in（7）．
（7）

Input	7 in coda	＊$]_{0}$	Output	Gloss
a．$\check{\text { x＇}}$＇$^{\prime}{ }^{\text {an }}=$＇ay				Indian tea
b． $\mathrm{mt}^{\ominus} \mathrm{u}^{\dagger}$	mó？¢ ¢ ${ }^{\text {¢ }}$ ¢ \ddagger	＊má．${ }^{\text {® }}$ ot		pus

These Roots／Stems may involve suffixes which are no longer analyzable from a synchronic perspective，in which case，they could be grouped together with the Weak Roots in（6），or they may belong to the class of CCVC roots which are far fewer in number than other Root shapes（cf． Appendix V）．

A comparison of the data in（8．a－h）Columns 2 and 3 shows that when schwa occurs in a syllable closed by an ejective obstruent，restructuring into a［？O＇］sequence does not take place．
（8）

Input

a．IMP－Xp－INC
b．IMP－č px －INC
c．p’q
d．IMP－ṕq－INC
e．対

g．旼t
h． $\mathrm{CH}-\mathrm{gt}^{\ominus}$

Output

čáč ．pəp
p’áq̆
p’ə́p ．q’əq่

ズáčt

Gloss

getting deeper
getting dirty
smoke
getting smokey
rot
getting rotten
sleep
person who is a tease

To summarize, the realization of $/ \mathrm{O}^{\prime} /$ is in complementary distribution:
(9)
a. $/ \mathrm{O}^{\prime} / \rightarrow \quad \rightarrow \quad\left[\mathrm{O}^{\prime}\right] /$ á__ V
b. $/ \mathrm{O}^{\prime} / \rightarrow \quad \mathrm{O}$ ']/elsewhere

Kroeber (1989: 107) notes that "a number of instances of surface short a are in fact produced from underlying $\boldsymbol{a}^{\prime \prime}$, as shown in (10).
$\partial \rightarrow \alpha P / \# C _C ’ V$
where C^{\prime} is a glottalized stop or affricate, and \#=word boundary

Notice that the formulation given by Kroeber includes the word boundary \#, indicating that this set of properties hold at the left-edge of the word domain. Note however that primary stress is also strictly aligned with the left-edge of the word in Sliammon, as discussed by Davis (1970; cf. also §3.3). As argued in Blake (1995, 1999; cf. also Urbanczyk (1999.a), stress is the crucial condition, not the fact that these examples occur word-initially. That is, this restructuring of a glottalized obstruent into a $9-O^{\prime}$ sequence captures a property of the syllable bearing primary stress (i.e. the head of the Prosodic Word).

§5.1.2 Proposed Analysis

The question which we need to ask here is why is schwa systematically avoided in stressed open syllables? Since optimal syllables have both a nucleus and phonological weight, it is better for schwa to occur in a stressed syllable closed by a moraic coda consonant CáC μ than for schwa to occur in an open stressed syllable which has no moraic content. Furthermore, the syllable which is the head of the stress Foot needs to satisfy PEAK PROM FT, the constraint which ensures that the phonological weight of the stressed syllable is greater than or equal to the weight of the non-head (cf. Chapter 3).

Onset formation and faithfulness to underlying moraic structure are both satisfied if the laryngeal features of the glottalized obstruent occupy the coda of the first syllable while the obstruent occupies the Onset to the following syllable, as shown by the structure in (11).

Recall that schwa is systematically lowered to a brief [a] in the environment before 7 (cf. (10) and Chapter 2). There is independent evidence from Compensatory Lengthening facts that glottals in coda position are moraic, as shown by the sets of alternations in (12). The forms in (12) Column 3 show that loss of a syllable-final glottal induces Compensatory Lengthening of the preceding vowel (cf. Blake 1992, and §3.1.1.1).
(12)

Input	V? coda	CLengthening	Output	Gloss
	$\mathrm{x}^{\text {wugurupmàya }}$	$\mathrm{x}^{\text {wujunu:màya }}$	$\mathrm{x}^{\text {wúju }}$? $\mathrm{m}_{\text {mày }}$	store
b. $¢ \subset \sim=$ nač $=$ tn	ċá?načton	çá:načton	çé:n^čtṇ	cushion
c. nip-'ut ? mut	níput Pá?mut	----	né\}ot Pá?mvt ${ }^{\text {h }}$	s/he was home
c^{\prime}. Pmut-'u才 č	Po?mutut č	Rá:mutùt č	Rá:motòt č	I was home
d. toyta	tîta	ti:ta	típtı ~titı	that one (gen.)
e. Өெу̇өa	Oir ${ }^{\text {a }}$	Өi: $\because \mathrm{a}$		that one (fem.)

The proposal here is that the [?] is moraic, and therefore satisfies the constraint that syllables have phonological weight. The constraint is formalized as SYLL MORA, following Shaw (1996).

In summary, glottalized obstruents are generally post-glottalized [O^{\prime}]. Glottalized obstruents are realized as [PO^{\prime} '] when they occur in intervocalic position following a stressed schwa. The output candidate satisfies the constraint which bans schwa in a stressed open syllable: $\left.{ }^{*}\right]_{\sigma}$. This particular approach extends to the analysis of the surface realization of glottalized resonants presented in the next section.

5.2 Surface realization of Glottalized Resonants

Reduplicative facts show that glottalized resonants pattern as unitary segments with respect to these morphophonological processes, and thus motivate the existence of underlying glottalized resonants. Harris (1981) for Island Comox, Davis (1978), Blake (1992, 1995) and Watanabe (1994) posit underlying glottalized resonants $/ \mathrm{R}$ '/ in Sliammon, a position which entails that the surface distribution of glottalization associated with the resonant is entirely predictable.

5.2.1 Glottal Restructuring

In Sliammon, underlying glottalized resonants / $\mathrm{R}^{\prime} /$ often surface sequentially, as in (13-14).
In (13.a-j) an intervocalic glottalized resonant surfaces as pre-glottalized: [PR].
(13) $\mathrm{R}^{\prime} \rightarrow[? R]$

Input
a. tiniq ${ }^{w}$
b. Xina
c. $\check{\mathrm{x}}^{\mathrm{w}} \mathrm{il}$ 'm
d. Talas
e. payan
f. q^{w} wit
g. $k^{\mathrm{w}} \dot{w} \mathbf{i c}$
h. sma
i. qẏa
j. \quad ćm̉=uja
v́? . Rv
tî? . niq ${ }^{w}$
夫í? na
$\breve{x}^{\text {wip }}$. lom
?á? . las
páp. yan
$q^{\text {wó? }}$. wit
\mathbf{k}^{w} อ̀? . wič
sáp.ma
qó? . ya
čá? . mu? . ja

Output
téén ${ }^{\text {qu }}{ }^{w h}$

Ráplıs sea cucumber
pápəyın~ṕpápəyen bark

$\mathbf{k}^{\mathrm{wá} \text { ?wlec }} \quad$ sturgeon
sáima blue mussel
qálye water

Gloss
salmonberry
rope
cold hands

When a glottalized resonant occurs in word-final position, the output is variable. Blake (1992) most often records [R ? $\sim \mathrm{R}$ '], as in [čúy? ~čúý] child or [pál? ~ pál] heron, crane, whereas Watanabe (1994:224) states that the "resonant is chopped off abruptly by the closure of the glottis, or the closure may occur somewhere in the middle of the resonant. In such cases, an echo of the resonant, often voiceless, is heard after the glottal closure is released, i.e. [$\mathrm{m} \mathrm{P}^{\mathrm{m}} \sim \mathrm{Pm}$] for example." Watanabe (1994) cites [típm $\left.\sim \mathrm{t}_{\mathrm{K}} \mathrm{i}^{\mathrm{m}}\right]$ belt and [tán $\left.\mathrm{p}^{\mathrm{n}}\right]$ that one as examples. In my own fieldnotes, the glottal portion most often follows the resonant (post-glottalized) in stressed monosyllables, as shown by the stressed forms in (14.a-f).
(14) $/ R^{\prime} / \rightarrow\left[R 7 \sim R P^{R}\right]$

a. tm	tom	tı́m $\mathrm{P}^{\mathrm{m}} \sim$ tím?	belt
b. $\mathrm{q}^{\mathbf{w}} \mathrm{l}$	$q^{\text {w }}$ ¢ ${ }^{\text {P }}$	q^{w} ¢́l? $\sim \mathrm{q}^{\mathrm{w}}$ 欠́l?	come
c. $\operatorname{tam} \mathrm{k}^{\mathrm{w}}$ šin	tam $\mathrm{k}^{\mathbf{w}}$ šin	tám k^{w} ¢̌ín?	What was that?
d. pal	pal ${ }^{\text {a }}$	pál?	heron
e. čuy	čuý	čúy?	child, young
f. tw	tow	túw?w	ice

Contrast this with the realization of $/ R^{\prime} /$ in unstressed syllables in (15.a-d). These glottalized resonants tend to surface with creaky voice articulation, and seem to lack the distinctive full glottal closure $\left[P R \sim R P^{R} \sim R\right.$? $]$ associated with the examples in (14) above.
(15) $/ \mathrm{R}^{\prime} / \rightarrow\left[\mathrm{R}^{\prime}\right]$

Input		Output	Gloss
a. hiyum	hiyum	héyum	seagull
b. CəCPL-say̌a	səy-say̌j̆a	sísay̌je	leaves
c. $\mathrm{q}^{\mathrm{w}} \mathrm{q}=\mathrm{ay}$			driftwood
d. x̌aws	x̆aws	x̌áw̉s \sim x̌へ́ćw	new

Blake (1992) argues that the prosodic position in the syllable plays an important role in determining the distribution of the glottal constriction with respect to the oral closure. Glottalized resonants are generally banned in non-moraic (syllable onset) position as evidenced by the lack of word-initial [R'] in the language. It is proposed here that this is encoded in the constraint *R'/Onset. The lack of absolute word-initial glottalized resonants follows from the fact that an initial glottalized resonant does not have access to a preceding syllable so that restructuring can not take place.

In word-internal intervocalic position, glottalized resonants are restructured as in (13) above, whereas glottalized resonants occur freely in moraic (coda) position either word-internally or word-finally. Blake (1995) makes two additional observations: (i) Foot structure (i.e. stress assignment) plays an important role in determining the surface realization of glottalized resonants, and to a lesser extent (ii) the features of the adjacent consonants and vowels also play a role. The surface realization of $/ \mathrm{R}^{\prime} /$ is then governed by a number of different prosodic and melodic factors:
(16) (a) syllable structure
(b) foot structure
(c) melodic structure (features)

The patterns which are observed are as follows. Glottalized resonants (R^{\prime}) have a complete glottal closure and release [R?] in the coda of a stressed word-final syllable (i.e. a monosyllable), as shown by the data in (14), whereas glottalized resonants are realized with creaky voice [R '] in unstressed codas, as shown by the data in (15). This is summarized in (17).
(17) Foot Structure and R'
(i) CVR' \rightarrow [Cv́R?] post-glottalized (full glottal closure) in the coda of a stressed syllable.
(ii) CVR' \rightarrow [..CvR']creaky voice (partial glottal closure) in the coda of an unstressed syllable.

In a metrically prominent position under primary stress one finds a maximal syllable whereas in a metrically weak position, one finds a non-maximal syllable with creaky voice articulation throughout the resonant rather than full glottal closure after.
(i) maximal [CVR?] syllable in metrically prominant position (primary stress)
(ii) non-maximal [CvR'] syllable in metrically weak position

Consider another context in which glottalized resonants are realized sequentially: this is the case in which a Root-final glottalized resonant is followed by a vowel-initial Lexical Suffix. This word-internal, intervocalic glottalized resonant is restructured so that the glottal portion of the glottalized resonant remains in coda (moraic) position. The resonant portion functions as the Onset to the following syllable as illustrated by the data in (19.a-c), satisfying the high ranking constraint that all syllables in the language have an Onset. The ungrammatical forms in (19) Column 3 are ruled out by the constraint against [R '] in Onset position.

Input	Output	*R'/Onset	Gloss
a. $q^{w} a n=i q^{w} \ddagger \mathrm{a}$	$q^{\text {wááa }}$. nvqw ${ }^{\text {w }}$. \ddagger a	* $q^{\mathbf{w}}{ }^{\text {a }}$. ṅvq${ }^{\text {w }}$. ¢a	knee
b. $\ddagger \times n=u{ }^{\text {w }}$	tápa ${ }^{\text {a }}$ nvk ${ }^{\text {wh }}$	* \ddagger á . ṅvk ${ }^{\text {wh }}$	mountain goat skin
	çépo. mop. ${ }^{\text {¢ }} \varepsilon^{\text {h }}$		cold hands

It is proposed here that glottalized resonants / R '/ are sets of phonological features which can be reconfigured in order to satisfy this constraint on metrical prominence, following Blake (1995, 1999). In particular, the proposal made here, in keeping with Blake (1992), is that the coda ? continues to occupy the mora associated with the second consonant of the Root and therefore satisfies Faithfulness of the underlying moraic structure. By retaining the underlying moraic structure, the phonological weight of the stressed syllable is also enhanced. All other features of the Resonant are parsed into the Onset position.

Consider the following examples in (20) which show this deconstruction of/R'/ has the consequence that stressed schwa surfaces in a closed syllable, and therefore satisfies the constraint: *2́ $]_{\sigma}$. Since / $\mathfrak{J}, \mathfrak{\jmath}, \mathrm{g}, \mathrm{g} /$ function as resonants (i.e. they pattern with the resonants in processes involving resonant glottalization), I have included examples with $/ \mathrm{J}, \mathrm{g} /$ here in addition to $/ \mathrm{m}, \mathrm{n}, \mathrm{y} /$. See Blake (1992, 1995) for argumentation regarding the Resonant status of $/ \mathfrak{J}, \mathfrak{\jmath}, \mathrm{g}, \dot{\mathrm{g}} /$.
(20) C_{2} is a glottalized resonant

Input	Output	* C5 and *R'/Onset	Gloss
a. ṗma	ṗáporma	*ṕ̧ . m̉a	wooden float
b. šmb-it	šÉfomet ${ }^{\text {h }}$	*š̌̌ . mıg	dried
c. $\mathrm{tm}=\mathrm{us}-\mathrm{tn}$	tâ? ${ }^{\text {mòstṇ }}$	*tá . mòòstṇ	headband
c^{\prime}. $\mathrm{tm}=\mathrm{iws}-\mathrm{tn}$	tá?mewston	*tá. mewston	garter (stockings)
c'. trm=igan-tn	tá?megàtṇ	*tá . megàtṇ	tied round waist
d. $\mathrm{k}^{\text {w }}$ nay	$\mathrm{k}^{\text {wáp }} \mathrm{n} \wedge \mathrm{y}$	* $\mathrm{k}^{\text {w}}$ 。 . ṅ^y	cover, lid
e. $\theta \dot{y}-\mathrm{m}$	Өápoytm	*өs. ẏəm	to sink
f. ? $^{j}-\mathrm{m}=\mathrm{uja}$			right hand
g. $4 \mathrm{~g}=\mathrm{it}^{\ominus} \mathrm{a}-\mathrm{m} \mathrm{ga}$	tápagit ${ }^{\text {® }}$ \% ga	*łá. git ${ }^{\text {® }}$ \%m ga	take it off?
h. q q'ga	q̧áága	*q’á. g̀	walking stick

Compare the Output in (20) Column 2 with the unattested forms in (20) Column 3. The surface forms involve (i) schwa epenthesis, (ii) the restructuring of the glottalized resonant [?R] with loss of laryngealization on R , and (iii) lowering of schwa to [a] before the glottal. The surface forms in Column 2 avoid violations of at least two constraints in the language: (a) the constraint which bans schwa in a stressed open syllable, and (b) the constraint against glottalized resonants in syllable onset (non-moraic) position, as in (21).
a. *́ $]_{\sigma} \quad$ Schwa does not occur in a stressed open syllable
b. *R'/Onset Glottalized resonants do not occur in syllable Onset (non-moraic) position

Contrast this with the ungrammatical forms in (20) Column 3 which violate both of these constraints. Since the output candidates satisfy both *' $]_{\sigma}$ and *R'/Onset, one would not expect to find surface forms of the shape: [Cá?R'V ...] since this would still violate *R'/Onset. Examples like [CáR'. V] are also ruled out by high-ranking constraint which ensures that all syllables have Onsets in Sliammon, as argued in Chapter 3.

5.2.2 Proposed Analysis

Formalization of the analysis sketched in the preceding section is developed below, and refers to the constraints presented in (21-22).

ONSET	Syllables have onsets.
PEAK PROM FT	Within a Foot, the weight of the stressed syllable (i.e. the Head) is
greater than or equal to the weight of the unstressed syllable.	
NO CODA	Syllables are not closed by a Coda (i.e. a non-Nuclear mora).

Consider the tableau in (23) which shows how the proposed constraint ranking predicts the surface form in (23.a) and rules out the candidates in (23.b-c). This is a partial constraint ranking which assumes that schwa occurs in the optimal position (cf. §Chapter 3-4), and does not deal with deriving the effects of schwa colouration; in particular, the lowering of schwa to [a] before ? (cf. §2.4.4).
(23) p’m̉a p’á?.ma [p’á?ma] wooden float

Input: ṕma	$\mu \mu \mu$	ONSET	SYLL PROM	*R'/ONSET	*) ${ }^{\text {] }}$ O	NO CODA
cr a. póp . ma	$\mu . \mu$					
b. p̧á . ma	$-{ }_{-}$		*!	Fek		Whablek
c. p póm . a	$\mu . \mu$	*!		Rede		

The optimal candidate in (23.a) satisfies the top-ranking constraints at the cost of incurring a NO CODA violation. Candidate (23.b) violates a number of these constraints since schwa occurs in an open stressed syllable, and a glottalized resonant occurs in Onset position. In addition, the phonological weight of the head of the Foot is less than the weight of the non-head. This incurs a SYLL PROM violation. Candidate (23.c) violates the high-ranking constraint which ensures that all syllables have onsets in Sliammon.

One question worth exploring is why is the glottalized resonant systematically realized as [? . R] rather than [R.?]? That is, what rules out a candidate like [p’́m . Pa], and makes it less optimal than candidate (23.a) pá? . ma ?

5.3 Geminate Consonants

The next section discusses syllabification of a single intervocalic consonant with the observation that resonants and obstruents are lengthened after stressed schwa. These consonants are pronounced as geminates. In contrast, consonants are not lengthened when they occur in intervocalic position after a stressed full vowel. It will be argued that this is another case in which the observed contrast is governed by the constraint $\left.{ }^{*}\right]_{\sigma}$.

5.3.1 Geminate Resonants

Resonants are lengthened when they follow a stressed schwa, as shown by the data in (24).
(24) Cə́R:V

Input

a. 〕̌mitań
a'. J̌mitańč
b. čni

Syllabification

ǰám . me . tan
ǰám.me.tıṃč
čón.ni
kºśn . ne . tùt . čit $^{\text {ºn }}$

Output
y̆ım:etàm
y̆ım:etı̀nččh
čín:
\mathbf{k}^{w} ẃn:etò ${ }^{\text {čit }}{ }^{\text {h }}$

Gloss

it's not the right way
I'm uncomfortable
it's me
I've seen it already

Syllabification presented in Column 2 represents speakers' judgements, and is correlated with the increased duration which is documented in Column 3. In contrast, resonants are not lengthened when they occur in intervocalic position following a stressed full vowel, as shown by the data in (25).
(25) No Gemination

Input

a. pilq
a'. DIM-pilq-[i]
b. tumiš
c. lamatu
d. $\mathbf{q}^{\text {walas }}$
e. $\mathbf{t} \mathbf{a y}=\mathrm{aq}=\mathrm{min}$
f. hajuq ${ }^{w}$
g. mawič
h. DIM-wale-[i]+[?]
h'. wale
pileq
pi-p[a]l[i]q
túmıš
lámatu
$\dot{q}^{\text {ºálıs }}$
táyeqmın
hájuq ${ }^{w}$
máwič
wá-wal'[i] θ
wál θ

Output
pé. l^q
pé. $\mathrm{p} \wedge . \mathrm{l} \varepsilon \mathrm{q}^{\mathrm{h}}$
tú . mıš
lá . ma . to

tá. yeq. mın. clam shell
há . गॅدq ${ }^{w}$
má. wlč
wá . wa? . lı θ.
wál θ

Gloss
bracket fungus
small bracket fungus
man
sheep
raccoon
steam cook
fawn, young deer small bullfrog
bullfrog

5.3.2 Geminate Obstruents

The next section shows that intervocalic obstruents show the same behaviour as intervocalic resonants. When an obstruent occurs between two full vowels, gemination does not take place as in (26), whereas when an obstruent occurs after a stressed schwa and before a following full vowel, it is lengthened, as in (27) Column 3.

Input	Syllabification	Output	Gloss
a. tiqiw	ti. qiw	té. qew	horse
b. tutay	tu. tat	tó. tıt	bed
c. čaçaš			snag (tree)
d. ${ }^{\text {quaqiq }}{ }^{\text {w }}$	q'a. qiq $^{\mathbf{w}}$		bladder wrack

（27）Gemination

Input	Syllabification	Output	Gloss
a．ppa	páp ．pa	ра́p：＾	pepper
			Did you catch it？
b^{\prime} ．$\lambda \mathrm{k}^{\mathbf{w}}-\mathrm{t}$ ga	夫ókwt ga	$\chi \chi^{\prime} \mathrm{k}^{\mathrm{w}} \mathrm{g} \mathrm{g}^{\prime}$	catch it！
c．tq＝ipan－t ga	táq ．qi ．pa（n）t ．ga	tヘ́q：epへ̀t ga	close the lid
c＇．tq＝ipan－t－＇u¢ a čx ${ }^{\text {w }}$	táq ．qi ．pà（n）．tu．tà．čx ${ }^{\text {w }}$	tíq：epàtołæ̀čw	Did you close it？
c＂．tq－t－’ut čan	tóq．． $\mathfrak{\text { t }}$ ．č̌ın	tヘ́qtołčın	I closed it
d． $\mathrm{q}^{\mathrm{w}} \mathrm{s}-[\mathrm{i}] \mathrm{m}$	$q^{\text {wás }}$ ． sim	q^{w} ¢́s：em	white foam，froth
e． q ¢ $=$ ami \dagger		qúx̆：amit	lots of food
e^{\prime} ．q ¢	qว์x		lots，many
f．\ddagger ¢ $=$ aqap	táx̆． x a ．qap	tヘ́x̆：aq＾p	bad smell
f．$\ddagger \underset{\mathrm{x}}{ }$	táx	†べর	bad
g．m $\mathrm{m}=\mathrm{awu}$	móx ． x a ．wut	mÁx̆：awvt	half moon

Gemination is a form of Coda／Onset formation which ensures the optimal satisfaction of three independent constraints：（i）that the head of the Prosodic Word best satisfies constraints on phonological weight；（ii）Faithfulness to underlying moraic structure；and（iii）avoids violation of the constraint＊อ＇］${ }^{6}$ ．

5.4 h －epenthesis

Epenthesis of the least marked consonant［h］is one way of resolving vowel hiatus in Sliammon．When a vowel－final Root is followed by a vowel－initial Lexical Suffix，［h］surfaces between the two vowels in order to avoid hiatus．Since h－epenthesis is driven by the constraint which bans vowels in hiatus，epenthetic［ h ］is not expected after Roots which end in a consonant． However，when a CaC Root is followed by a vowel－initial LS，an epenthetic［h］does surface．

This section aims at accounting for this rather unexpected pattern. It will be argued that [h] epenthesis occurs after C C Roots in order to satisfy the constraint * $]_{o}$.

5.4.1. Root=LS: h-epenthesis

When a vowel-final Root is followed by a vowel-initial Lexical Suffix (=LS), an [h] surfaces between the two vowels, as shown by the data in (28.a-h). The data in (28.a'-h') shows that the Root is vowel-final. The LSs =aya place, container, $=u k^{\mathrm{w} t}$ blanket, covering, =aja leaves, foliage, =awus eye, and =aw'tx building are all vowel-initial (cf. Appendix VI for additional examples of each LS).
(28) Root=LS

Input
a. kapi=aya
a'. kapi
b. šuk ${ }^{\mathrm{w}} \mathbf{a}=\mathrm{aya}$
b'. šuk ${ }^{w}$ a
c. $\mathfrak{t}^{\ominus} \mathbf{y} a=a y a$
c'. \mathfrak{t}^{9} ỳa
d. tala=aya
d'. tala
e. lamatu=ukwt
e'. lamatu
f. Pusa=aja
f. Pusa
g. tala=awus=tn
g. tala
h. piya=awtx ${ }^{\text {w }}$
h'. piya
[h] epenthesis
kapi[h]aya
kapi
šuk ${ }^{w}$ a[h]aya
šuk ${ }^{\text {wa }}$
t^{\ominus} ə? ya [h]aya
t^{\ominus} ә? ${ }^{\text {ya }}$
tala[h]aya
tala
lamatu[h]uk ${ }^{w}$ t
lamatu
Tusa[h]a?̌̌a
Tusa
tala[h]awuston
tala
piya[h]aw̉tx ${ }^{\text {w }}$
piya

Output
k^{y} ǽpihàyを coffee pot
$\mathbf{k}^{\text {Y}}{ }^{\text {ǽpi }} \sim \mathbf{k}^{\text {y }}$ घ́pi
šúkwahàye
šúk ${ }^{w}$ a

toá? $^{\text {áye }}$
tálahày
tála
lámatuhù ${ }^{w}{ }^{w} t$
lámatu ~ lámato
Pósahàǐ̌̌
Pósa
tálahàwustən
tala
píyehìwtx"
píye

Gloss

 coffee (<English)sugar bowl
sugar (<English)
refrigerator
store food
wallet
money (loan)
sheep's wool; sweater
sheep (Fr. < C.Jargon)
blueberry bush
blueberry
eye glasses
money (loan)
drinking place, pub
beer (< English)

5．4．2 Lack of［h］epenthesis after C－final Roots

If the Root／Stem ends in a consonant，then generally no［h］surfaces，as shown by（29－32）．
（29）LS＝aya place，container

Input

a． puk $^{\mathrm{w}}=$＝aya
a^{\prime} ．$p^{w}{ }^{w}$
b．$\quad x^{w} u \bar{j}-m=a y a$
$b^{\prime} . x^{w} \mathbf{u j}-m$
c．ngin＝aya
c＇．ngin
d． $\mathbf{k}^{\boldsymbol{w}} \partial \mathrm{\partial t}=\mathrm{aya}$
d＇． $\mathbf{k}^{\mathrm{w}} \mathrm{ft}$
e．Kat－m＝aya
e^{\prime} ．X＇at－m
f．$\dot{\mathbf{p}} \mathbf{q}=\mathrm{aya}$
f．p’q
g．$w \partial \check{x} w \partial \check{x}=a y a$
g＇．CH－w \mathbf{x}

No［h］epenthesis
pú：${ }^{w \text { wàya }}$
puk ${ }^{\text {w }}$
$\mathrm{x}^{\mathrm{w} u ́ j u} u m a ̀ y a$

nóginàya
nogin
k＇wóttàya

Xáłəmàya check－ə－
夫̌ałam
p’ó？${ }^{\text {guaya }}$
p’ag
wóx̆wəx̆àya check ∂ wи́x̆wnx̆ày
wəx̆－wəx̆
Output
pú：kwàye
púk ${ }^{w}$
$\mathrm{x}^{\mathrm{w} u ́ j}$ umàyє
$\check{\mathbf{x}}^{\text {u }}$ újum

Xáłom salt
níginàye lunch basket
nígin Iunch
\mathbf{k}^{w} 今́ftaye cupboard
k^{w} íft plate
خátomàye salt shaker
páágaye stove pipe
ṕへ́q́ smoke
(31) LS =aja leaves, foliage

Input	No [h] epenthesis	Output	Gloss
a. $\check{\mathbf{x}}^{\mathbf{w}} \mathrm{us}-\mathrm{Vm}=\mathrm{aja}$			soapberry leaves

(32) LS =awus eye

Input	No [h] epenthesis	Output	Gloss
a. ${ }^{\text {xip }}=$ awus	犬ipawus	̇̇épawus	area below the eye
b. $q^{w} u p=a w u s$	$\mathrm{q}^{\text {wúpawus }}$	$\mathrm{q}^{\text {wópawus }}$	eyelashes
c. tak $^{\mathbf{w}}=\mathrm{awus}$	ták ${ }^{\text {wawus }}$	qákªwos	swollen eye

5.4.3 Apparent Exceptions

When a CəC Root is followed by a vowel-initial Lexical Suffix, an intrusive [h] surfaces. Given the behaviour of other consonant-final roots above, this is somewhat unexpected. The analysis proposed here is that the [h] functions as the Onset to the following syllable, and therefore prevents a violation of the constraint *ó $]_{\sigma}$. Consider the data in (33).
(33) [h] epenthesis

Input
a. $\mathrm{p}^{\prime}=\mathrm{iq}^{\mathrm{w}}$ an
b. $x^{w} s^{-i} q^{w}$ an
c. $\check{\mathrm{x}} \mathrm{s}=\mathrm{aya}$

f. $\mathrm{t}^{2}=\mathrm{iq} \mathrm{q}^{\mathrm{w}}$
g. $\dot{q} \check{\mathrm{x}}=\mathrm{awus}$
[h] epenthesis
p’ $\partial \theta[h] i q^{w}{ }^{\text {an }}$
x^{w} วs[h]iq${ }^{\mathrm{w}}{ }^{\text {an }}$
x̆әs[h]aya
čał[h]uk ${ }^{w} t$

təš[h]iq ${ }^{w}$
q’ə̆ $[\mathrm{h}]$ awus

Output
Gloss
black hair
black hair
oil can
rain coat
rain pants
nasal mucus, snot
black eye

Notice that in each example, epenthetic [h] is preceded by a fricative. My current database includes only a single example of a CəC Root ending in a stop followed by a vowel-initial LS. As seen in (34), it takes an epenthetic [?].
(34) [?] epenthesis

Input	[7] epenthesis	Output	Gloss
a. $\mathrm{pq}=\mathrm{iq}{ }^{\text {wan }}$	peq[${ }^{\text {] }} \mathrm{iq}^{\text {wan }}$		blonde hair

The presence of [?] in this case may be determined by the [-continuant] specification of the preceding consonant. The least marked consonant [h] appears to be epenthesized between vowels, as in (28) and after fricatives, as in (33) whereas [?] occurs with CəC Roots ending in a stop.

5.4.4 Proposed Analysis

As shown by the ungrammatical forms in (35), if a laryngeal $[\mathrm{h}, ?]$ were not epenthesized, then this would leave schwa in a stressed open syllable.

Input	Output	* 5]	Gloss
$\dot{\mathrm{p}} \hat{\mathrm{O}}=\mathrm{iq} \mathrm{q}^{\text {an }}$		${ }^{*}{ }^{\text {pha }}$. $\theta \varepsilon q^{\text {w }}$ ^n	black hair
$x^{w} s=i q^{\text {w }}$ an		* $\mathbf{x}^{\mathbf{w}} \mathrm{z}^{\text {. }} \mathbf{s \varepsilon q} \mathrm{q}^{\mathbf{w}} \wedge \mathbf{n}$	black hair
$\check{\text { xhs }}=\mathbf{y y}$	x̆íshaye		oil can
	číthuk ${ }^{\text {w }} \mathrm{t}^{\text {h }}$	*çó . $\ddagger u \mathrm{k}^{\mathbf{w}} \mathrm{t}$	rain coat
	ćíthuk ${ }^{\text {w }}$ tnà ${ }^{\text {ch }}$	*Ė. . fuk ${ }^{\text {witnàč }}$	rain pants
	tíšh $\varepsilon q^{\text {w }}$	*tó . š q $^{\text {w }}$	nasal mucus, snot
$\dot{\mathrm{q}} \mathrm{x}=\mathrm{awus}$	q́íx̆hawus	*q̇ə . x̆awus	black eye
$p q=i q^{\text {w }}$ an			blonde hair

Epenthesis of the laryngeal $([\mathrm{h} / \uparrow])$ ensures that stressed schwa occurs in a closed syllable. This means that the cost associated with epenthesis must be less than the cost associated with leaving schwa in a stressed open syllable. The partial constraint ranking is given in (36).

$$
\begin{equation*}
\text { *த́ }]_{\sigma} \quad \gg \quad D E P[h / Z] \tag{36}
\end{equation*}
$$

Notice that epenthesis occurs at a morphological boundary, and therefore does not interrupt the Contiguity of either the Root or the following Lexical Suffix. This is shown by the tableau in (37).
(37) x̆s=aya [x̆́́shayを] oil can

$\check{\mathrm{x}}[0] \mathrm{s}=$ aya	O-CONTIGUITY ROOT	* ${ }^{\prime}$] σ	DEP[h/?]
©̛̣o a. x̌ós . [h]a . ya			
b. x̌á . sa . ya		*!	
c. x̌ə́[h] . sa . ya	*!		$1 \text { hreverw, }$

The optimal candidate (37.a) entails a low-ranking DEP[h] violation in order to satisfy the higher ranking constraint *ó] σ. Notice that epenthesis of this unmarked consonant occurs after the Root x̆əs- oil and before the LS =aya place, container. Since epenthesis occurs between morphemes, the high-ranking constraint which ensures that Roots are a continuous uninterrupted substring (OContiguity Root) is also satisfied. The output candidate in (37.b) is ruled out by the constraint which bans schwa in a stressed open syllable, whereas candidate (37.c) entails epenthesis within the domain of the Root. This incurs a fatal violation of the high-ranking Contiguity constraint.

The next section explores the implications of the analysis with another morphophonological process: Imperfective reduplication.

5.5 Implications: Imperfective Reduplication

5.5.1 Strong Roots

Kroeber (1989:109) observes that when strong roots undergo CV- Imperfective reduplication they retain their root vowel. Examples of perfective and imperfective pairs from my own research include the following examples, and confirm Kroeber's findings. CAC roots are presented first in (38-40) whereas the perfective and imperfective pairs of $\mathrm{C} \partial \mathrm{C}$ roots will be presented in (41).

For CAC roots, the Imperfective aspect is formed by reduplicating the initial consonant $\left(\mathrm{C}_{1}\right)$ and the vowel of the base with no reduction of the original root vowel. CAC Roots retain the root vowel $\left(\mathrm{V}_{2}\right)$ in the output form when they undergo Imperfective reduplication: $\left[\mathrm{CV}_{1}-\mathrm{CA}_{2} \mathrm{C} \ldots ..\right]$. Note also that the vowel of the reduplicant has the same basic vowel quality as the root vowel: [$\mathrm{Ci}-\mathrm{CiC}$... , $\mathrm{Cu}-\mathrm{CuC} . . ., \mathrm{Ca}-\mathrm{CaC} .$.], as shown in $(38-40)$ below. As can be observed from the Imperfective (IMP) examples, the second consonant of the root is never copied (cf. Sapir (1915), Blake (1992), Watanabe $(1994,2000)$ on Imperfective reduplication).

CAC Roots
(38) Imperfective Reduplication: CiC Roots

Input

a. $\mathrm{p}_{\text {it }}{ }^{\ominus}-\mathrm{ay}=\mathrm{it}^{\dagger \theta} \mathrm{a}$	pit ${ }^{\text {® }}$ ayit ${ }^{\text {® }}$ a		wash clothes
a^{\prime}. IMP-pit ${ }^{\ominus}-\mathrm{ay}=\mathrm{it}^{\ominus} \mathrm{a}$			washing clothes
b. Pilqay	Pilq̉ay	Télq̉ay ~ Péłq̣ay	barbecue deer
b^{\prime}. IMP-Pilq̆ay	२i-Pilquay	Pépełq̇ày	barbecuing deer
c. ?im-as̆	Timaš	Pémaš	walk
c'. IMP-Pim[-'Vg-][i]š	?i-Tim-ig-is	ใé? $\frac{1}{}$ megis	people walking
d. Piftan	Tiftan	Péttın	eat
d'. IMP-3iftan+[?] č	Pi-Piftań c c		I'm eating
e. tin	tin	tén	barbecued fish
e'. IMP-tin-?m	ti-tin-Pom	téten?วை	barbecuing fish
f. $\theta i q \chi-m$	Oiquom	Өźq̧əm	dig
f. IMP-Өiq̆-t-as	Өi-Өiq̇-[a]-t-as		s.o. is digging it

(39) Imperfective Reduplication: CuC Roots

a. juelt	ju®-ə-t	jưout	push it
a^{\prime}. IMP-jue-t-as	јu-ju	y̆újuӨotəs	he is pushing it
b. sup-7m	sup-?əm	sópəm ~ sópəom	chop wood
b^{\prime}. IMP-sup-?m	su-sup-? ${ }^{\text {am }}$	sósopom	chopping wood
c. $\mathrm{gux}^{\mathrm{w}}-\mathrm{m}$	gux ${ }^{\text {w }}$-am	$g^{\mathbf{w}} \mathbf{u ́ x}^{\mathbf{w}} \boldsymbol{v}$ m	bark (as dog)
c'. IMP-gux ${ }^{\text {w }}$-m	gu-gux ${ }^{\text {w }}$-əm	$g^{\text {w }}$ úg $^{\text {w }} \mathbf{u x}{ }^{\text {w }}$ v̀m	barking
d. $\mathrm{J}^{\prime} \check{\mathrm{x}}^{\mathrm{w}}-\mathrm{t}$		jóśw ${ }^{\text {w }}$	vomit
d'. IMP-jux ${ }^{\text {w }}$-t	ј̌u-jux̆w-ət		vomiting
e. Pułq $^{\text {w }} \mathrm{u}$	Pułqw ${ }^{\text {w }}$	Pótq ${ }^{\text {w }}$	dig clams
e'. IMP-Pułq ${ }^{\text {w }} \mathbf{u}+[?]$	Pu-putq*u?		digging clams

(40) Imperfective Reduplication: CaC Roots

a. Ėag-anaq	cag-anaq	çég^n^q	help s.o.
a^{\prime}. IMP-çag-anaq	ċa-čag-anaq	zéċegın^q	helping s.o.
b. hayt-m	hayt-əm	háyłım ~ háytım	flirt
b'. IMP-hayt-m + [${ }^{\text {] }}$	ha-haył-əm	háhaytım	flirting
c. $\mathrm{q}^{\mathrm{w}} \mathrm{asm}$	$\mathrm{q}^{\text {wasam }}$	$\mathrm{q}^{\text {wásom }}$	flower
c'. IMP-q ${ }^{\text {asm }}+$ + $\left.{ }^{\text {d }}\right]$	$\mathrm{q}^{\text {wa- }} \mathrm{q}^{\text {was }}$ - ${ }^{\text {m }}$	$q^{\text {wáq }}{ }^{\text {was }}$ asm	flowering
d. $P \mathrm{ax}^{\mathrm{w}}$	Pax ${ }^{\text {w }}$	Páx ${ }^{\text {w }}$	(falling) snow
d'. IMP-Pax ${ }^{\text {w }}$	Pa-Pax ${ }^{\text {w }}$	PáPax ${ }^{\text {w }}$	it's snowing

5.5.2 Weak Roots

Contrast this with the behaviour of Weak Roots which surface with an initial Coreduplicative prefix followed by the CC form of the Root: [$\mathrm{C}-\mathrm{CC}$], as illustrated by the data in (41). Weak roots lack a vowel between the first and second consonants of the Root. If schwa is epenthetic, then these may be considered vowelless roots which do not have schwa epenthesis after the first consonant of the root in Imperfective forms: ${ }^{*} \mathrm{C} \partial-\mathrm{C}[\rho] \mathrm{C}-\mathrm{VC}$, since the root final
consonant is syllabified as the Onset to the following syllable. If schwa is present in the Input, then syncope of the root vowel takes place in order to satisfy constraints on syllabification. In particular, syncope would occur in order to prevent a violation of *ó $]_{\sigma}$. The data below are presented under the hypothesis that these roots are vowelless, and schwa is epenthetic.
(41) Imperfective Reduplication: Weak Roots

Input		Output	Gloss
a. $\lambda \mathrm{px}{ }^{\mathbf{w}}$	خәрx ${ }^{\text {w }}$	خópx ${ }^{\text {w }}$ ~ خə́pw	break
a'. IMP- λ px ${ }^{\text {w/t }}$ c ${ }_{\text {c }}$			I'm breaking it
b. $\check{x}^{w \prime}{ }^{\prime}=$ igan	$\check{\mathrm{x}}^{\mathbf{w}} \mathrm{\partial}^{\chi}=$ =igan		half full
b'. IMP- $\overline{\mathbf{x}}^{\mathrm{W}} \mathrm{X}^{\prime}=$ igan	$\check{\mathrm{x}}^{\boldsymbol{w}} \partial-\breve{\mathrm{x}}^{\boldsymbol{w}} \boldsymbol{\chi}=$ igan		half filling s.t.
c. $\mathrm{tk}^{\mathbf{W}-\mathrm{t}}$	ta $\mathbf{R}^{\mathbf{w}}$-t		pull it
c'. IMP-tik ${ }^{\text {w }}$-t-as	to-t ${ }^{\text {w }}$-t-as	tót ${ }^{\text {w }}$ tas \sim tót ${ }^{\text {ckitus }}$	he's pulling it
d. $\vec{k}^{\mathbf{w}} \mathbf{T}$	$\mathrm{K}^{\mathbf{w}} \mathrm{OH}$	$\mathbf{k}^{\text {w }}$ ́4	spill, tip over
d'. IMP- $\mathrm{k}^{\mathbf{w}} \boldsymbol{t}$		$\hat{k}^{\text {wiúk }}{ }^{\text {w }} \ddagger$	spilling
e. $\dot{q}^{w} \check{\mathrm{X}}-\mathrm{t}$ čn sm			I'll fillet it (fish)
			I'm filleting it
f. $\theta t^{\theta}-\mathrm{m}$	$\theta \partial \mathrm{Pt}^{\text {® }}$ \%m	Өá? ${ }^{\text {® }}$ ¢m	jig for cod
f. IMP $-\theta \mathrm{t}^{\ominus}-\mathrm{m}+[$? $]$ č	$\theta \rho-\theta t^{\dagger} \boldsymbol{\partial m}$ m ć		
g. $\operatorname{tg}=\mathrm{qin}$	towqin	túwqen	answer back
g'. IMP-tg $=$ qin $+[?]$	to-tg-[a]-qin	tótgaqın̉	answering back

Kroeber (1989) also notes that a number of roots of the shape $\mathrm{Cah}, \mathrm{Ca}$? display the pattern shown by weak roots of the shape $\mathrm{C} \boldsymbol{C}$. He states that these are likely roots of the form $\mathrm{C} \boldsymbol{\mathrm { O }}, \mathrm{C}$? in which the schwa is lowered before a laryngeal. This is the position adopted here and represented in (42) Column 2.
(42) Imperfective Reduplication: Ch, C? / Coh, Co? Roots
a. qh-9m
a^{\prime}. IMP-qh-?m
b. mi-t
qəh-? 2 m
qáh?əə
lift (s.t.)
qə-qh-[a]?
qর́qha?лm
lifting (s.t.)
mo?-t
mất
take it
b'. IMP-m?-t-as+[?]
mo-m ${ }^{2}$-[a]-t-as
má?mat^s $s / h e$ is taking it

Notice that the reduplicative prefix in word-initial position receives primary stress in keeping with the generalization that stress in Sliammon is aligned with the left-edge of the stem. Consider further discussion of what prevents schwa from occurring between C_{1} and C_{2} of the Root. For example, why is [tátgaqen’] answering back optimal rather than the ungrammatical example *[tátəgaqєń]. Not only does *[tátəgaqєń] violate the constraint *ə́] $\boldsymbol{\sigma}$ but it also creates a structure in which the second instance of schwa occurs in an unstressed open syllable in post-tonic position. If schwa is non-moraic, then both the first and the second syllables lack phonological weight: CóCə. In contrast, the optimal candidate [tátgaqen̉] satisfies *ó]o since schwa occurs in a closed syllable. In addition, the coda consonant t creates a mono-moraic closed syllable - a syllable which has phonological weight.

5.5.3 Discussion and Analysis

Consider the forms in (43)

Input		Output	Gloss
a. $\hat{k}^{\mathbf{w}} \boldsymbol{j}$		$\mathbf{k}^{\text {w }}$ ช́t	spill, tip over
$\mathrm{a}^{\text {a }}$. IMP- $\mathrm{k}^{\text {w }} \ddagger$	$\dot{\mathbf{k}}^{\boldsymbol{w}} \boldsymbol{\partial}-\mathrm{k}^{\text {w }}$ ¢		spilling
b'. IMP-k ${ }^{\text {w }} \boldsymbol{\text { at }}$			spilling
c'. IMP- ${ }^{\text {² }}$ t			spilling

As argued in §5.1, glottalized obstruents are re-structured (i.e. $\boldsymbol{\gamma \mathbf { k } ^ { * }}$) so that stressed schwa occurs in a closed syllable. One question which arises is why the output candidate in (43.a') is more
harmonic than the sub-optimal candidate in (43.b')? What constraints or set of constraints rule out (43.b')? Consider the tableau in (44) which outlines an analysis.

IMP- ${ }^{\text {Tw }}$ ¢	*2́jo	SEG-INTEGRITY	DEP[ə]
		*!	
	*!	\|abluk	

The optimal candidate (44.a') incurs only one violation of the constraint DEP[ə], which alone suffices to create an output form which satisfies *ә́] σ without requiring the deconstruction of /O'/ into [3O'], violating what may be termed segmental /O'/-integrity. Note that regardless of the ranking of these constraints, both other candidates incur two violations of DEP[ə], as well as a violation of one of the other crucial constraints.

Consider what further objections there would be to a surface candidate like $*\left[{ }^{\mathbf{k}}{ }^{w} \check{\mathrm{k}}{ }^{\mathrm{k}} \partial \downarrow\right]$ $\left(=44 . c^{\prime}\right)$. Notice that this candidate also violates PEAK PROM FT since the unstressed syllable is mono-moraic whereas the syllable bearing primary stress is non-moraic.

5.6 Summary

In summary, there are a number of seemingly unrelated cases which receive a uniform account given the constraint $\left.\left.{ }^{*}\right]^{2}\right]_{\sigma}$. Each set of examples involves ensuring that the optimal output candidate involves a closed CáC syllable as opposed to an open Cá syllable. Even though this is a configuration which is avoided if possible, the next section explores examples which do seem to involve schwa in a stressed open syllable - this is a classic case of constraint conflict and we need to ask what would compel a violation of * $\left.{ }^{2}\right]_{\sigma}$.

5.7 Stressed schwa in an open syllable

5.7.1 The Problem

Consider the following examples which provide evidence that schwa does occur in a limited number of stressed open syllables.

a. ngi a wut-t	nagi a wutət		Did you bend it?
b. ${ }^{\text {a }} \mathrm{g}-\mathrm{m}+[\mathrm{i}]$	q̇əg-[i]m		howl; siren going

5.7.2 Proposed Analysis

As argued above, it is important that primary stress is aligned with the left-edge of the stem, and that the constraint * $\mathfrak{\jmath}] \sigma$ is also satisfied. The best output is a candidate which satisfies both of these constraints, if possible. If not, then the highest-ranking constraint takes precedence. In this case, it is more important for the head of the Prosodic Word to be aligned with the left-edge of the Stem than it is to satisfy *$\left.{ }^{*}\right]_{\sigma}$, as shown by the output and syllabification of the examples in (68.a-b). This is important since it establishes the relative ranking of these two constraints.

ALIGN L PRWD >> *ว ${ }^{\circ}$

In addition, since Complex Onsets are generally ruled out in Sliammon, as argued in §3.2.2.1, candidates such as *ngí and *q̉gím are clearly not optimal. This entails that *Complex Onset outranks *ว́] σ.
*Complex Onset >> *́j]

The question which arises with respect to ($68 . \mathrm{a}-\mathrm{b}$) is why the intervocalic [g] fails to undergo gemination in order to avoid a violation of *ź] σ similar to the cases discussed in §5.3? Recall from §2, that the sonorant obstruent $/ \mathrm{g} /$ is variably realized as $\left[\mathrm{g} \sim \mathrm{k} \sim \mathrm{x}^{\mathrm{w}} \sim \mathrm{w} \sim \mathrm{u}\right.$] depending on its syllabic position. In particular, in word-internal syllable-final position /g/ surfaces as [w], and in

Onset position/g/ surfaces as [g]. Since geminates are by definition a single set of features associated with two prosodic positions, the candidates *níg:i and *qंíg:ım violate the constraints on the realization of $/ \mathrm{g} /$. The candidates *[nów. i] and *[’’əw. $\mathrm{\imath m}]$ provide evidence that Onset outranks *ว́] σ.
(71) Onset \gg *ó] σ

5.8 Formal Issue: The constraint * $\$] \sigma$

As we have observed, stressed schwa in an open syllable tends to be avoided, if possible. It seems important to consider what generalization(s) the informal constraint *ó $]_{\sigma}$ captures. Cá constitutes a weightless syllable which, within the framework adopted here, is Nuclear but has no moraic content, following Shaw (1995, 1996). Shaw (1996) posits that optimal syllables are both nuclear and moraic; that is, they satisfy the constraint which states that all syllables have nuclei (SYLL NUC), and that all syllables have phonological weight (SYLL MORA), where weight is represented in terms of moras. An epenthetic schwa is characteristically inserted to ensure satisfaction of SYLL NUC. Under the further hypothesis that schwa itself is weightless, then a schwa in an open syllable fails to satisfy the constraint on phonological weight (SYLL MORA). If there are two syllables within the stress foot , the initial Có. syllable may also violate PEAK PROM FT.

Consider the following Foot structure which clarifies this point further. If schwa is nonmoraic, then schwa in a stressed open syilable violates SYLL MORA since the first syllable lacks phonological weight. In addition, in order to satisfy $\operatorname{FTBIN} \mu$, the non-head would have to be bimoraic, leading to a non-optimal structure like the one in (72).
(72)

This represents a surface candidate in which the phonological weight of the head of the Foot is less than the weight of the non-head; this violates PEAK PROM FT as discussed in detail in Chapter 4 (§4.3.2.1). Foot well-formedness is therefore at the heart of the issue. The constraints in the grammar drive durational evenness typical of trochaic systems, and prominence of the head of the Foot, as shown by the more optimal structures like the one in (73). (Note: the structure in (73) also assumes that Full Vowel Reduction has takes place in the weak member of the Foot).

This chapter provides both formalization and a proposed explanation of the basic insight presented in Blake (1992) that schwa in Sliammon is licensed by a moraic coda consonant.

Chapter 6: Two Further Implications

Anicca, Dukkha, Anatta

6.0 Introduction

This chapter explores two further implications for the analysis developed in the context of this dissertation. $\S 6.1$ documents and analyzes the variant forms of the possessive -hV suffix in Sliammon. The account presented here accounts for its variable behaviour: it is a suffix following vowel-final stems whereas it is an "infix" following consonant-final stems. Stems which end in a consonant cluster take [i] epenthesis rather than schwa epenthesis. The fact that the vowel [i] is epenthesized is somewhat unexpected given the hypothesis that schwa is the epenthetic vowel in the language. $\$ 6.2$ makes important claims regarding the status and form of prefixes, interacting with pervasive constraints on the morpho-syntactic structure of the language. The effect of these general constraints on two prefixes in particular is dicussed. One is the s-nominalizer, broadly attested across other languages in the Salish family, but conspicuously absent in Sliammon. The second is a plural prefix/infix, here hypothesized to be $/ L^{\prime}-/$, cognate with the plural 1 -infix in Saanich. The existence of this prefix has not been previously recognized by others working on Sliammon, undoubtedly due to its variable realization, viz. [-ip $\sim-u ? \sim-a ?]$. What is shown here is that these variants follow directly from the convergence of hypotheses related to the realization of sonorant $/ L /$, combined with constraints on prefixation. A crucial observation related to both these underlying prefixes is that both, being strictly "consonantal", would violate the constraint *Complex Onset if they were simply prefixed, i.e. *s-C..., *L'-C... Significantly, ə-epenthesis is not an available strategy to rescue either of these cases.

6.1 Possessive Affix: -hV

6.1.1 Translaryngeal Harmony and the Possessive Affix

Sliammon has a possessive affix which is translated with the following range of meanings: 'have, own, be wearing, have s.t. with oneself' or 'have' in the sense of 'caught, shot'. The possessive data presented here are cited from a single speaker but are entirely consistent with the documentation of the possessive suffix -hV recorded by Watanabe (2000).

6.1.1.1 Translaryngeal Harmony

The possessive affix is proposed to be an initial h followed by an unspecified full vowel V (Nuch):/-hV/. Stated in prosodic terms, this affix consists of a mono-moraic "core" syllable. The vowel quality of the unspecified full vowel is determined by the quality of the immediately preceding full vowel, as shown by the data in (1-3). The position of the affix will be discussed in detail in §6.1.2. Basically, it is suffixed to a vowel-final stem, but with consonant-final stems it is infixed into the stem from the right margin, such that it is positioned immediately before the stemfinal consonant. For the moment, our focus is on the quality of the vowel of the possessive affix. For example, if the final vowel of the stem is $/ \mathrm{i}$, then the vowel in the possessive affix is also $/ \mathrm{i}$, as shown by the data in (1).
(1) Final vowel /i/

Input	i-hi-	Output	Gloss
a. Patnupil	Ratnupil	Pátnopèl	car
a'. Patnupil-hV č	Pamupi-hi-l č	Rátnope-hèlč	I have a car
b. $\mathrm{nx}^{\text {wiL }}$		núx ${ }^{\text {w }}$ เ¢	dugout canoe
	nəx ${ }^{\text {w }}$-hi- ${ }^{\text {d }}$	núx ${ }^{\text {whehè } ¢ \sim n \cup ~}$	He has a canoe
c. qayix	qayix	qáy¢x̆	fish eggs, roe
c'. qayix̆-hV	qayi-hi-x̆	qáyehèx	It has eggs, roe
d. Pimin	?imin	?émın	door
d'. ?imin	Pimi-hi-n	? ̧́me-hèn	It's got a door
e. tin	tin	tén	barbecued fish
e'. tin-hV č	tijhi-n č	t'É-henč ${ }^{\text {b }}$	I've got b. fish
f. saplin	saplin	sáplen	bread
f. saplin-hV č	sapli-hi-n č	sáplehènč ${ }^{\text {h }}$	I have bread
g. ċtq-? $m=m i n$	cotqamin	čítqamen	knife
g'. čtq-? $\mathrm{m}=\mathrm{min}$	Ėtqami-hi-n č	čítqa mehènč ${ }^{\text {h }}$	I have a knife

When the final vowel of the stem is $/ \mathrm{u} /$, the vowel of the possessive affix is also $/ \mathrm{u} /$, as shown by the data in (2).
(2) Final vowel/u/

Input
u-hu-
a. pukw
$a^{\prime} . p u k^{w}-h V$ č
b. Pawuk ${ }^{w}$
b'. $_{\text {Pawuk }}{ }^{\text {w }}$-hV č
c. ċańu
c'. Éanu-hV č
d. kapu
d'. kapu-hV č
puk ${ }^{\mathbf{w}}$
pu-hu-k ${ }^{\mathbf{w}}$ č
Tawuk ${ }^{\text {w }}$
Pawu-hu-k ${ }^{w}$ č
ca? ${ }^{2}$ nu
ča?nu-hu č
kapu
kapu-hu č

Output
púk ${ }^{w}$
púhohòk ${ }^{w{ }^{w}}{ }^{\text {ch }}$
TÁWukw
Tíwohòk ${ }^{\text {wech }}{ }^{\text {h }}$
čé?no
čé?nohòč
$\mathbf{k}^{\text {y }}$ £́po $\sim \mathrm{k}^{\text {y }}$ ǽpo \sim kápo
k^{y} ह́pohòč ${ }^{\text {h }}$

Gloss
book
I have a book tobacco

I have tobacco dog I've got a dog coat I've got a coat on

The data in (3) shows that when the stem-final vowel is $/ a /$, then the vowel of the possessive affix is also $/ a /$.
(3) Final vowel/a/

Input	a-ha-	Output	Gloss
a. mixat	mix̆at	méx̆^t	bear
a'. mix̆at-hV č	mix̆a-ha-t č	méx̆ahitcč ${ }^{\text {d }}$	I shot/ caught a bear
b. qiga Θ	qigae	qé-g^ θ	deer
b'. qiga θ-hV č	qiga-ha- θ č	qégahへ̇Өc̆ ${ }^{\text {h }}$	I've got a deer
c. Ẋina	̇̇ipna	夫 ¢́p na ~ Xérnns	oolichan oil
c^{\prime}. ̇̇ina-hV č	̇̇i ${ }^{\text {inna-ha }}$ c		I have oolichan oil
d. gaqa θ	gaqa Θ	gáq^ө	husband
d'. gaqa -hV č	gaqa-hą- θ č	gáqahì ${ }^{\text {ch }}$	I have a husband

e. sup=nač	supnač	Sóp²n^č	tail
e'. sup=nač-hV	supna-ha-č	sópnah^č	He's got a tail
f. Paya?	Saya?	Páy¢?	house
f. Paya?-hV	Paya-ha-?	Páychà?	He's got a hous

As can be seen from (1-3) the vowel quality of the affix -hV corresponds to the quality of the immediately preceding full vowel, yielding [...i-hi , ...u-hu, ...a-ha] respectively.

The quality (i.e. features) of other non-adjacent vowels does not affect the vowel quality of the possessive affix, as shown by the contrast between the grammatical forms in (4) Column 2 and the ungrammatical data in Column 3.

Input	
a.	$n x^{w} i L-h V ~ c ̌ ~$
b.	saplin-hV č
c.	Pawuk ${ }^{w}-h V$ č
d.	čan̉u-hV č
e.	qiga日-hV č
f.	supnač-hV

Harmony
noxwi-hi-t č
sapli-hi-n č
Pawu-hu-kw č
ča?nu-hu č
qiga-ha $-\theta$ č
supna-ha-č
*Harmony
*nəxwi-hə-t č
*sapli-ha-n č
*Rawu-ha-k ${ }^{\text {w }}$ č I have tobacco
*Éan̉u-ha č
*qiga-hi- θ č
*supna-hu-č

Gloss

I have a canoe
I have bread

I've got a dog
I've got a deer
He's got a tail

From the above data, it is clear there is no evidence that the featural specification of any of the adjacent consonants determines the basic vowel qualityl.

[^24]
6.1.1.2 Discussion and Proposed Analysis

The possessive affix is always preceded by a full vowel to its left, as seen by the data in (1-4) above. The vowel of the possessive affix is always identical to the full vowel which precedes it. It is proposed here that this is a form of translaryngeal harmony - the rightward spreading of the features of the full vowel onto an empty full vowel to its right, as in (5).

Since [h] is proposed to be minimally specified as PHAR in Sliammon, the presence of the PHAR node will not block the harmony. Since the possessive affix always occurs towards the right-edge of the stem, it is often outside of the domain of Limited Vowel Harmony, and is therefore analyzed here as a separate example of translaryngeal harmony in the language. For independently motivated examples of Translaryngeal harmony, see §2.4.4.5 and discussion in Watanabe (2000).

6.1.2 Position of the Possessive Affix

Now consider the position of the possessive affix /-hV/.

6.1.2.1 Vowel-final stems

The possessive affix -hV is a suffix after vowel-final stems, as shown by the data in (6).
(6) Vowel-final stems

Input		Output	Gloss
a. Ėañu-hu č	ċan̉u-hu č	čé?	I've got a dog
b. $t^{\theta} \check{\mathbf{x}}^{\mathbf{w}} \mathbf{u}$-hu $\mathrm{c}_{\text {c }}$			I got a ling cod
c. kapu-hu č	kapu-hu č	$k^{\mathbf{y}} \underline{\varepsilon ́ p o h o ̀ ~}^{\text {ch }}$	I've got a coat on
d. Ẋina-ha č	̇̇ina-ha č	̇̇É? ${ }^{\text {nahàč }}{ }^{\text {h }}$	I have oolichan oil
e. q́gga-ha č	q̇ə?ga-ha č	q́áqgahač ${ }^{\text {h }}$	I've got my cane

f. watla-ha č	watla-ha č	wátlahač ${ }^{\text {h }}$	I have a sweetheart
g. $\mathbf{k}^{\text {wuta-ha č }}$	$\mathbf{k}^{\text {wututa-ha č }}$	$\mathbf{k}^{\text {wutahahàch }}$	I've got a barbecue stick
h. tala-ha č	tala-ha č	tálahàč ${ }^{\text {n }}$	I've got money

6.1.2.2 Consonant-final stems

When the stem ends in a consonant, the possessive affix -hV is Aligned to the right edge of the stem-final vowel, and the final consonant of the stem follows the suffix: $/ . . \mathrm{VC}-\mathrm{hV} / \rightarrow$ [V-hV-C]. On the surface, the possessive affix appears to be "infixed". This suffix is mis-aligned with the edge of the stem by a single consonant, as shown by the data in (7). Recall that \bar{c} is the 1 sg subject clitic I and is therefore not considered part of the stem.
(7) Consonant-final stems

Input	Position of -hV-	Output	Gloss
$n x^{\text {wiL }}$-hV	nəx ${ }^{\text {wi-hi-t }}$	núx ${ }^{\text {wehèt }}$	He has a canoe
Paya?-hV	Raya-ha-?	Ráyehà?	He's got a house
Pimin-hV	Pimi-hi-n	?éme-hèn	It's got a door
tin-hV č	ti-hi-n č	téhenč ${ }^{\text {ch }}$	I've got b. fish
Patnupil-hV č	Ratnupi-hi-l č	Rátnope-hèlč ${ }^{\text {h }}$	I have a car
Pawuk ${ }^{\text {w }}$ hV č	Sawu-hu-k ${ }^{\text {w }}$ č	7^́wohòk ${ }^{\text {wčh }}$	I have tobacco
pun-hV č	pu-hu-n č	púhonč ${ }^{\text {h }}$	I have a spoon
mimaw-hV č	mima-ha-w ${ }^{\text {c c }}$	mé•mahàw ${ }^{\text {ch }}$	I've got a cat

6.1.2.3 Stems ending in a consonant cluster

Now consider what happens to stems which end in a consonant cluster. The possessive affix is mis-aligned by a single consonant at the right-hand edge of the stem domain, and the vowel [i] is epenthesized before the affix, as shown by the data in (8).
(8) Final CC clusters and [i] epenthesis

Input	Position of -hV	Output	Gloss
a. $\mathrm{J}^{\text {and }}{ }^{\text {w }}$-hV č	jan l [$]$-hi-x ${ }^{\text {w }}$ č	jěnehèx ${ }^{\text {wčch }}$	I've got a fish
a^{\prime}.	${ }^{\text {J Ja-ha-nx }}{ }^{\text {w }}$ c		
$\mathrm{a}^{\prime \prime}$. J Janx ${ }^{\text {w }}$	J̌anx ${ }^{\text {w }}$	〕ॅÉn ${ }^{\text {w }}$	fish
b. saftx ${ }^{\text {w }} \mathrm{h} \mathrm{V}$	satt[i]-hi-x ${ }^{\text {w }}$	sáfte-hèx ${ }^{\text {w }}$	He has a wife
b^{\prime}.	*sat-ha-tx ${ }^{\text {w }}$		
b^{\prime}.	*sa-ha-ftx ${ }^{\text {w }}$		
$\mathrm{b}^{\prime \prime}$. sattx ${ }^{\text {w }}$		sáttx ${ }^{\text {w }} \sim$ sáftwow	woman
c. $\mathfrak{t}^{\ominus} \mathrm{ay}=\mathrm{tn}-\mathrm{hV}$	${ }^{\text {® }}$ ayt[i]-hi-n	\mathfrak{t}^{\ominus} áy ${ }^{\text {a }}$	have an umbrella
c^{\prime}.	* ${ }^{\text {® }}$ a-ha-ytən		
c'. $\mathfrak{t}^{\ominus} \mathrm{ay}=$ tn		teáytan	umbrella
d. $\theta \mathrm{k}^{\mathrm{w}}=\mathrm{nac}=\mathrm{tn}-\mathrm{hV} \check{\mathrm{c}}$	$\theta ə k^{w}$ načt[i]-hi-n č		I've got a chair
d^{\prime}.	* $\because a \mathrm{k}^{\text {w }}$ na-ha-čton		
$\mathrm{d}^{\prime \prime} . \theta \mathbf{k}^{\mathbf{w}}=$ nač=tn	Өək ${ }^{\text {w }}$ načtən	Oúk ${ }^{\text {wn }}$ ncčtən	chair
e. $\operatorname{tm}=u s=t n-h V$	to?must[i]-hi-n	tá?məstèhen	have a headband on
e'.	*tarnu-hu-stən		
e". tm $=$ us=tn	trmuston	tá?mostən	headband
f. $\dagger \mathrm{tay}=\mathrm{na} \check{c}^{=}=\mathrm{tn}-\mathrm{hV}$	†aynačt[i]-hi-n	táyn^čtèhen	have a skirt on
f.			
f'. \ddagger ¢ ${ }^{\text {a }}=\mathbf{n a c}=$ =tn	tay=nač=tən	łáynačton	skirt

Notice that the possessive suffix -hV is not mis-aligned by two (or more) consonants, as shown by the ungrammatical examples in ($8 . \mathrm{a}^{\prime}-\mathrm{f}$). In fact, the possessive suffix needs to be aligned as close to the right-edge of the stem as possible, and may only be mis-aligned by a single consonant. In addition, the possessive suffix is always preceded by a vowel. The examples in (8) above show that vowel epenthesis occurs in order to ensure that a vowel precedes this suffix. The vowel in
each case is the full vowel [i]. Schwa is not epenthesized in this context, as shown by the ungrammatical examples in (9.a-f).
(9)

Input [i] epenthesis *-epenthesis Gloss
a. jan $x^{w}-h V \check{c}$
y̆an[i]-hi-x ${ }^{w}$ č
${ }^{*}{ }^{\text {ja }}$. $\mathrm{n}[\mathrm{e}] \cdot \mathrm{hVx}{ }^{\mathrm{w}}$
I've got a fish
b. saftx ${ }^{\mathrm{w}}-\mathrm{hV}$
satt[i]-hi-x ${ }^{\text {w }}$
*sał . t[ə] . hVx ${ }^{w} \quad H e$ has a wife
c. t $^{\theta}$ aytn-hV
t^{\ominus} ayt[i]-hi-n
d. $\mathrm{Ok}^{\mathrm{w}}=\mathrm{nac}=\mathrm{tn}-\mathrm{hV}$ č
$\theta_{2}{ }^{\text {wn načt }}[\mathrm{i}]-\mathrm{hi}-\mathrm{n} \check{\mathbf{c}}$
e. $\operatorname{tm}=u s=t n-h V \quad$ toPmust[i]-hi-n
f. tay=nač=tn-hV
łaynačt[i]-hi-n

* ${ }^{\text {® }}$ ay $. \mathrm{t}[\mathrm{e}] . \mathrm{hVn}$ have an umbrella
${ }^{*}$ Өák ${ }^{\text {w }}$ nač $. \mathrm{t}[\partial] . \mathrm{hVn}$ čI've got a chair
*tá?mus.t[ə]. hVn have a headband on
* táynač. $\mathrm{t}[\mathrm{\partial}]$. hVn have a skirt on

Furthermore, the vowel of the possessive suffix harmonizes with the immediately preceding, full vowel, as shown in §6.1.1.1 above. If schwa were epenthesized as in (9) Column 3, the harmonic features would have to spread from some other source onto the vowel of the possessive suffix -hV since schwa is a bare Nucleus with no inherent features, as argued in Chapters 2.

Since [i] is epenthesized, the vowel quality of the possessive affix harmonizes with this preceding epenthetic vowel [i]. This means that stems with final $/ \mathrm{i} /$ neutralize on the surface with stems with a final consonant cluster with the addition of the possessive suffix. The related nonpossessed stems are provided in parentheses in order to show whether or not the [i] is an inherent part of the stem or epenthesized in order to provide a full vowel nucleus.

6.1.2.4 Analysis of the Position of the Possessive Affix

A formal analysis of the position of the Possessive affix in Sliammon must capture a number of descriptive facts:

- The possessive affix is always preceded by a full vowel
- After V-final stems, the possessive affix /-hV/ is a suffix
- After C-final stems, the possessive affix /-hV/ is infixed
- It can be misaligned by one and only one consonant

McCarthy and Prince (1993: Chapter 7) provides a description and analysis of a number of similar cases. For example, Ulwa, a language of the Atlantic coast of Nicaragua, shows similar properties in which the possessive marker is sometimes a suffix and sometimes an "infix" (M\&P 1993:105). The formal analysis draws on constraint interaction in which a prosodic constraint (or constraints) \mathbf{P} is ranked above a morphological constraint (or constraints) \mathbf{M} following the general schema in (11):
(11) $\quad \mathrm{P} \gg \mathrm{M}$

The prosodic constraint (P) defines the prosodic base of affixation and functions as a constraint on the prosody/morphology interface, "demanding that the affix be preceded or followed by a phonological string of a particular type" (M\&P 1993: 108). The tension in the grammar arises by conflict with a morphological (M) constraint Leftmost or Rightmost (instances of Edgemost) which characterize prefixing or suffixing (cf. (12) below for the formalization of Rightmost in terms of an Align constraint). The effects of the prosodic constraint will only be felt if it is ranked above the morphological constraint in keeping with the schema in (11). Consider an extension and application of the analysis and ideas developed in M\&P (1993) to an analysis of the Sliammon possessive -hV morpheme.

Consider the constraints needed for an analysis of the possessive affix in Sliammon. It is claimed here that this affix is basically a suffix, and as such is subject to the morphological constraint Edgemost ($\mathrm{R},-\mathrm{hV}$), referred to informally as RIGHTMOST POSS. The Align version of this constraint is provided in (12).

RIGHTMOST POSS:

(12) ALIGN (-hV, L ; Stem, R)

The left-edge of the possessive morpheme -hV is aligned with the right-edge of the stem; it is a suffix.

If the align constraint RIGHTMOST pOSS were undominated, then the possessive marker in Sliammon would always surface as a suffix. Notice however that this is not always the case, as noted above. In particular, it is infixed when it follows C-final stems. There is one condition, however, which seems to hold of all surface forms: the possessive affix -hV in Sliammon is always preceded by a full vowel. Consider then the phonological (\mathbf{P}) constraint which captures this generalization. Since the prosodic constraint needs to refer to authentic units of prosody, following M\&P (1993:32), it is formulated in terms of the following Alignment constraint.
(13) ALIGN POSS-to-NUC μ

Align (-hV, L; Nuch, R)
The left-edge of the possessive morpheme is aligned with the right-edge of a full vowel.

This interface constraint ensures that the left-edge of the affix -hV is aligned with the right-edge of a nuclear mora (i.e. a full vowel). This phonological constraint therefore defines the base of affixation, and delimits possible affixation sites. Consider the following tableau which shows how the morphological constraint RIGHTMOST POSS interacts with the Alignment constraint: ALIGN POSS-to-NUC μ.
(14) Possessive -hV with Consonant-final stems

Input: /ṫin-hV/	ALIGN POSS-to-NUC μ	RIGHTMOST POSS
a. ti-hV-n		
b. tin-hV	*!	

The tableau in (14) shows that the optimal candidate (14.a) violates the constraint RIGHTMOST POSS minimally in order to satisfy the high-ranked phonological constraint (Align-to-Nuch) which aligns this affix with the right-edge of a full vowel. The possessive affix is mis-aligned in order to satisfy this higher-ranking phonological constraint. Candidate (14.b) is less optimal since it violates the high-ranking ALIGN constraint. The interaction between these two constraints therefore ensures that the possessive affix is "infixed" after C-final stems.

Now consider how this constraint ranking affects the position of the possessive affix with V-final stems.

(15) Possessive -hV with Vowel-final stems

Input: kapu-hV	ALIGN POSS-to-NUC μ	RIGHTMOST POSS
Eop a. kapu-hV		Whaviver wiver
b. kap-hV-u	*!	KK,
c. $\mathrm{ka}-\mathrm{hV}$-pu		*!*

The optimal candidate in (15.a) satisfies both constraints since the left-edge of the affix is aligned with the preceding full vowel and -hV is a suffix. Mis-alignment of the affix by infixing it into the stem creates unnecessary constraint violations, thus ruling out candidates (15.b-c).

Now consider the analysis of the cases which end in a consonant cluster. Recall that these cases involve [i] epenthesis in order to provide a vowel preceding the affix. Since [i] is epenthesized rather than either [u] or [a], the cost associated with [i]-epenthesis must be less than the cost associated with epenthesis of either of the other full vowels. This motivates the partial ranking in (16).

```
DEP[u], DEP[a] >> DEP[i].
```

These constraints on vowel-epenthesis are ranked below the ALIGN constraints, as shown by the tableau in (17). The phonological constraint ALIGN POSS-to-NUC μ and the morphological constraint RIGHTMOST POSS govern the surface position of the -hV affix.
(17) The position of the Possessive affix with CC-final stems

Input: $\mathrm{Janx}^{\mathbf{w}}-\mathrm{hV}$	ALIGN POSS-to-NUC μ	RIGHTMOST POSS	DEP[a], DEP[u]	DEP[i]
a. jan [i]-hi-x ${ }^{\text {w }}$			5es,	
b. 〕.anx ${ }^{\text {w}}$-hV	*!*		Kk,	WN+TVy
c. $\mathrm{j}^{\text {an }}$-hV- x^{w}	*!		Sk hy	5veves
d. ¢ y -ha-nx ${ }^{\text {w }}$		**!	Vghyvevk	
e. ${ }^{\text {ja }}$-ha-n $[\mathrm{i}] \mathrm{x}^{\mathbf{w}}$		**!*		
f. Jan[a]-ha-x ${ }^{\text {w }}$		*	*!	Yivert
g. J̌an $[\mathrm{u}]$-hu-x ${ }^{\text {w }}$		*	*!	\square

Consider why [i] epenthesis does not occur in C-final forms like those in (7) above. The relative ranking of $\operatorname{DEP}[i]$ with respect to RIGHTMOST POSS ensures that misalignment is minimal and that vowel epenthesis does not occur unless it is driven by a higher-ranking constraint, as in (18)

Input: tin-hV	ALIGN POSS-to-NUC μ	RIGHTMOST POSS	DEP[i]
a. ti-hV-n			Wheng
b. tin-hV	*!		
c. tin][i]-hV		*!	6veverkx

Another question which is central to this thesis is why schwa epenthesis does not occur in CC-final stems? What rules out the surface forms in (9) Column 3 above? There seem to be potentially two constraints which conspire to prevent this as an optimal output form. First, epenthesis of schwa involves epenthesis of a bare Nucleus and therefore would not provide the phonological features required in order to satisfy the constraints on translaryngeal harmony. In addition, the way in which the ALIGN constraint is formalized, entails alignment to a vocalic head which is both Nuclear and moraic. Since schwa is Nuclear but non-moraic, [o] epenthesis fails to satisfy the ALIGN constraint.

In addition, this raises another related question; the central claim throughout this thesis is that schwa does not optimally occur in a stressed open syllable. The question is whether or not it ever occurs in an unstressed open syllable? Given the defective distribution of schwa and the surface patterns discussed in §2, schwa does not seem to occur in this position either.

6.2 Implications: Non-reduplicative C-Prefixes in Sliammon

Sliammon is typically characterized as a language which has lost all non-reduplicative C prefixes due to the constraint against word-initial consonant clusters in the language (J.Davis 1970, Blake 1999). This is attributed to fixed word-initial stress, and the influence of neighbouring Wakashan languages. Section 6.2.1 provides historical comparative evidence for the loss of the common pan-Salish nominalizing prefix s-in Sliammon, and provides an account of why this single C - prefix does not surface.

Section 6.2.2 provides evidence for the existence of an $/ L^{\prime}-/$ plural marker in Sliammon. Although this morpheme always appears "infixed" within the stem domain, it is aligned as closely as possible with the left-edge of the stem. Since mis-alignment is always limited to a single consonant, this morpheme displays classic characteristics of a prefix (cf. McCarthy and Prince 1994). This is particularly interesting given that Sliammon is usually characterized as the only Salish language which lacks non-reduplicative prefixes (cf. Kroeber 1999:11-13). Although the Plural /L'/ morpheme always surfaces as an "infix", it is claimed here that it has the basic
properties of a non-reduplicative C - prefix. The question then is why does the s-nominalizing prefix systematically undergo deletion whereas the Plural /L'-/ prefix is consistently misaligned?

6.2.1 Loss of the Lexical Nominalizing prefix s-in Sliammon

This first case deals with the loss of the lexical nominalizing prefix s-in Sliammon.

6.2.1.1 Comparative Evidence

One of the striking properties of Sliammon is the absence of the lexical nominalizing prefix s- which is found in all of the other Salish languages (cf. Davis 1970:15, Blake 1992, Kroeber 1999:11-13). Compare the Sliammon (Sl) and Sechelt (Se) forms in (19) which show the absence of this widespread prefix in Sliammon (data set cited in Blake 1992). The Sechelt data are cited from Beaumont (1985), abbreviated RCB, in the orthographic form presented there, and represented within angled brackets. A phonetic representation consistent with the conventions adopted in the present work is given in the Output column.

Proposed Input	Output	Gloss	Source
$n x^{w}$ it	núx ${ }^{\text {w }}$ เ¢	dugout canoe	SI
<snéxwílh>	snóx ${ }^{\text {wíq }}$	canoe	Se RCB 1985:25

b. $\dot{q}^{\mathbf{w}} \mathrm{y}^{\prime} \mathrm{x}^{\text {a }}$		firewood	S1
b'. <skw'éyex>	sq̊*ว́yıx̆	firewood	Se RCB 1985:153

c. $\check{\mathrm{X}}^{\mathrm{w}} \boldsymbol{\mathrm { S }}$	$\check{x}^{\text {w }}$ ¢́s	animal fat, lard	SI
c'. <sxwes>		grease	Se RCB 1985:276
d. tumiss	túmıš	man	Sl
d'. <stúmish>	stómıš	man	Se RCB 1985:24

Sliammon also lacks other non－reduplicative consonantal prefixes（C－）often found in other Salish languages．The reader is referred to（Beaumont（1985：184，fn．30）on the $\mathrm{x}^{\mathbf{w}}$－prefix in Sechelt；van Eijk（1997：48－53）on Lillooet；Suttles（in press）on Musqueam（həṇ́’əmin̉əm）Salish；Kinkade （1991：365）on Upper Chehalis，amongst others，for examples of C－prefixes in other Salish languages．Kroeber（1999：11－13）includes general discussion and additional references．

6．2．1．2 Discussion and Proposed Analysis

It is argued here，following Blake（1999），that the lack of non－reduplicative single C－ prefixes follows from（i）the constraint on stressed schwas in open syllables（＊）$\left.{ }^{\circ}\right]_{\sigma}$ ），and（ii）from the undominated interface constraint which requires that the left－edge of the Prosodic Word be aligned with the left－edge of the morphological Stem．The discussion will focus on the s－ nominalizing prefix．

Reduplicative prefixes（Diminutive，Plural ；Imperfective，and Characteristic）are within the domain of stem－formation in Sliammon，as well as within the domain of the Prosodic Word since they receive primary stress in word－initial position，as shown by the data in（20）．

Input		Output	Gloss
a．$\breve{\mathrm{x}}^{\text {willm }}$	¢xwiplom $^{\text {w }}$	$\check{x}^{w} \chi^{\chi}{ }^{\circ} \operatorname{lnm}_{\wedge}$	rope
	$\check{\mathbf{x}}^{\mathbf{w}} \mathrm{i}-\mathrm{x}^{\mathbf{w}} \mathrm{lim}$		string，thread
b．犬̇laq̉n	夫̇วPlaçon	犬̇ápəlaq̉＾n	slug
b＇．CaCPL－－x̌lag̣n			lots of slugs
c．tin	tin	tı́n	barbecued fish
c＇．IMP－tin－Pm	ti－tin？${ }^{\text {a }}$	ṫと́ṫn？${ }^{\text {a }}$	barbecuing fish
d．$\ddagger \underline{\mathrm{x}}$	Ұəх̆	4べх	bad
d＇． $\mathrm{CH}-\mathrm{t} \mathbf{x}+[\mathrm{i}]$			weak

Non-reduplicative prefixes are hypothesized to be outside of the domain of morphological stem formation in most other Salish languages (Czaykowska-Higgins and Kinkade 1997:25; Czaykowska-Higgins 1997:153-195 on Moses-Columbia Salish (NxaPamxcín)). Consider what would happen if a non-reduplicative s- prefix were posited in the Input form.

If an s - nominalizing prefix were posited in the Input then the surface constraint in the grammar would militate against surface realization of that prefix at the cost of underparsing the features associated with /s- /. This means that Align $\mathrm{L} \operatorname{PrWd},{ }^{*}$ Complex Onset, *ó $]_{\sigma}$ are both ranked higher than MAX[s]-Affix, as in (21).
(21)

$$
\text { ALIGN L PrWd, *COMPLEX ONSET, *́́] } \ggg \text { MAX[s]-Affix }
$$

The tableau in (22) shows the evaluation of the candidates.
(22)

Input: s-CVCV	ALIGN L PrWd	COMPLEX ONSET	* ${ }^{\text {jo }}$]	MAX[s]-Affix
est a. Cú. Cv		Mrywh why	Hex, ivesy	
b. s.Cv́ . Cv	*!		CY	Yykyky
c. . sCv . Cv	*!			Why,
d. sá . Cv. Cv	*!			Kryzever
e. C[s-]v́ . Cv		*!		Y,
f. Cú[s-]. Cv				Ykveverk

Notice that the optimal candidate in (22.a) violates MAX[s]-Affix where each of the other candidates is ruled out by violation of a higher-ranking constraint. The period marks a syllable boundary. The presence of the s-nominalizing prefix in candidate (22.c) is ruled out by the highranking constraint which ensures that the left-edge of the Prosodic Word is aligned with the leftedge of the stem. Since non-reduplicative prefixes are located outside of the stem domain, the
presence of the initial s - creates a violation of this constraint. Candidate (22.c) also violates the constraint against Complex Onsets in the language. Epenthesis of schwa in order to try and save this prefix, as in (22.d) is also ruled out. Not only does this candidate violate Alignment, but it also violates the constraint $\left.{ }^{*}\right]_{\sigma}$. Candidates (22.e-f) are both ruled out since they violate Contiguity of the Root without improving the resultant output. These candidates involve attempts to "infix" the s-prefix in order to parse this morpheme. Although this is non-optimal in the case of s-, it will be argued in the next section that this is optimal in the case of the Plural $/ L^{\prime}-/$ morpheme.

6.2.2 L'-/ Plural

In this section, I would like to reconsider $C_{1} V P V$ - and $C_{1} V P V C_{2}$ - reduplication proposed in Watanabe (2000:243-246) and suggest that these "prefixes" are comprised to two separate morphemes: a reduplicative prefix and a plural marker: $\Lambda^{\prime}-/$ which has a least three different phonologically conditioned allomorphs: [-ip-~-u?-~ a?-], and is basically "prefixal" in nature. The section is organized as follows. First independent evidence is presented for the existence of a plural /L'/ affix in Sliammon (distinct from the plural -PVg suffix). Historical and comparative evidence is provided in order to provide a background for the existence of such an affix in Sliammon, and to place it within the broader Coast Salish context. The final four sections show that the plural morpheme /L'/ can co-occur with Diminutive, Diminutive Plural, Imperfective and Characteristic reduplication thus explaining the difficulty Watanabe (2000) experiences in determining a consistent meaning for $C_{1} V P V-$ and $C_{1} V P V C_{2}$ - reduplication.

The plural prefix /L'/ is always minimally misaligned in order to satisfy the Alignment constraint which ensures that the left edge of the Prwd is aligned with the left-edge of the morphological stem. /L'// vocalizes and surfaces as [iP, u?, a?]. Since /L'/ represents a set of features which can function as the head of the syllable, the misalignment of $/ \mathrm{L}$ '// results in its constituting the initial syllable nucleus.

Plural Infix

Consider the following pairs of related words which show that a -V?- "infix" indicates plurality. Notice that this infix always occurs after the left-most consonant in the word.
(23)

Input	Position of [affix]	Output	Gloss
pip-it	piPit	pé? $\frac{1}{}$	stuck together
[L^{\prime}] ${ }^{\text {p }}$ if-it	p[ip]iPit	pé? ${ }^{\text {Pet }}$	really stuck together
jaja	ja̧̧a	วิÊ¢̧¢	relative
$[L ']+j a j a$	j$[\mathrm{aP}]$ aja?		relations ${ }^{2}$

6.2.2.1 Historical Comparative Evidence

The plural l-infix [ol \sim ?le] is well documented in a number of other closely related Coast Salish languages such as Halkomelem (Cowichan and Musqueam dialects), and Saanich. Below I present comparative evidence from Saanich drawing on the research of Montler (1986:105) who states that the [l] infix "is by far the most common form of the plural." In words which consist of only a (C)CVC syllable in Saanich, the infix [?lə] appears after the stressed vowel in order to indicate the plural, as shown by the examples in (24).
(24) Saanich (North Straits Salish)

Position of [affix]
Gloss
a. $\mathrm{st}^{\imath} \mathrm{a}$ á?le]m bones
b. sčá[Plə] lots of wood
c. sá[?lo] \ddagger roads, doors
d. ná[?lo]s they're fat
(data Montler 1986: 106)
Root
(cf. $\sqrt{\mathrm{t}^{\ominus}} \mathrm{am}$)
(cf. Včał)
Sa
(cf. Vsa4) Sa
(cf. $\sqrt{ }$ nas) \quad Sa

[^25]In longer forms, the infix is [-al-] is placed immediately after the first consonant of the Root, as shown by the Saanich data in (25). The left-edge of the Root is indicated here by the symbol $\sqrt{ }$.

(25) Saanich (North Straits Salish)		(data Montler 1986:105-106)		
Position of [affix]	Gloss	Related	word	Source
a. $\mathrm{s} \sqrt{ } \mathrm{P}[\mathrm{\rho}]$]á $\Theta=$ os	faces	s?áӨas	face	Sa
b. $\sqrt{\text { sta }}[\mathrm{l}]$] $=$ éqs-t	He sharpened some points	špáqst	He sharpened it	Sa
	lips	stpáӨon	lip	Sa
d. \sqrt{s} [əl]éq-ət	They're outside	séqəт	He's outside	Sa
e. $\sqrt{\mathrm{m}}[\mathrm{ol}]$ áay	baskets	máay	basket	Sa
	masts	níq̇on	mast	Sa

Montler (1986: 107) also documents the [al] form with reduplicative prefixes, as shown by the data in (26).
(26) Saanich (North Straits Salish)

Position of [affix] Gloss
a. $\left.\dot{k}^{\mathrm{w}}[\rho]\right] \partial+\sqrt{\mathbf{k}^{\mathrm{w}}} \partial \mathrm{w}^{\prime} \mathrm{y}^{\mathrm{N}} \mathrm{k}^{\mathrm{w}} \quad$ little fishhooks
b. s-t[ai]á $+\sqrt{ }$ təlow' creeks
c. $\dot{\mathbf{k}}^{\mathrm{w}}[\mathrm{O}] \partial+\sqrt{\mathrm{k}^{w} \text { átə? crows }}$

Morpheme Gloss
Source
DIM[PL] $+\sqrt{ }$ fishhook \quad Sa
s-DIM, ACT[PL] $+\sqrt{ }$ river $\quad \mathrm{Sa}$
DIM[PL] $+\sqrt{ }$ raven $\quad \mathrm{Sa}$
s -CHAR $[\mathrm{PL}]+\sqrt{ }$ speak $\quad \mathrm{Sa}$

This is the same position occupied by the $\Omega^{\prime}-/$ infix in the Sliammon reduplicative examples which will be discussed in (§6.2.2.3-6.2.2.6).

From a historical/comparative perspective l'ə [?lə] in Saanich corresponds to $/ \mathrm{L} /$ [$\dot{y} \sim \dot{w} \sim a ?]$ in Sliammon. The development of Proto Salish *l' is summarized in (84) drawing on historical/comparative research by Swadesh (1952), and Harris (1981 for Island Comox). The Proto Salish development of PS ${ }^{*}$ to $\mathrm{y} \sim \mathrm{w}$ in Sliammon is well attested in the historical comparative literature (cf. Thompson (1979), Kuipers (1981-82), Kinkade (class notes), and

Kroeber (1999), for example). What is less well understood is the development of PS *i to $\mathrm{Pa} \sim \mathrm{a}$? in the environment of the low vowel a (cf. Blake 1992).

```
Development of Proto-Salish *1' in Sliammon
    PS *'` > \dot{W}\quad in the environment of a round vowel: u/o
    > ? in the environment of the low vowel: a
    > \dot{y}}\mathrm{ elsewhere
```

Within the synchronic grammar of the language, the sound (collocation of features) which shows this range of surface alternation is represented by the symbol $/ L^{\prime} /$, since it exhibits the alternations characteristic of /L'-/ (cf. §2.2 and Appendix IV). What is here posited as the plural /L'-/ does not surface as [4] since it never occurs word-finally, but does show alternations between
 the contexts in which they occur.

6.2.2.2 Synchronic evidence in Sliammon

This section provides synchronic evidence for [$\hat{y} \sim \mathbf{w} \sim a$?] alternations in Sliammon. Perhaps the best examples come from a detailed investigation of the numbers one and two and the related words which are derived from these roots.
(28)

Input		Output	Gloss
a. paL'	pa?a	pápa	one
a'. saL'	sapa	sápa	two
b. $\mathrm{paL}^{\prime}=$ agi \dagger	paPagit	páPagı ${ }_{\text {d }}$	one boat, canoe
b^{\prime}. saL' $=$ agi \dagger	sapagit	sáPagı \ddagger	two boats, canoes
c. $\mathrm{paL}{ }^{\prime}=\mathrm{us}$	paw'us	páw?us	one dollar
c'. saL'=us	sawus	sáwPus	two dollars
c'. DIM-saL'=us	sa-sw̛us	s ¢́su?	two sm. round things

d. CəCPL-paL' (pəL-paL')	pəy-paPa	pé:paia	one person 3
d'. CəCPL-saL' (səL-saL')	səy-saPa	sé:sa?a	two people

(29) Distribution of $/ L^{\prime} /$
? in the environment of the low vowel: a
$\mathbf{w} \quad$ in the environment of a round vowel: u / o
y elsewhere

Notice that y and \mathbf{w} surface as $[? \mathrm{i} \sim \mathrm{i} ?]$ and $[? \mathrm{u} \sim \mathrm{u} ?]$ respectively. This $/ L \prime /$ infix is clearly distinct from the -'Vg plural suffix (cf. Watanabe 2000 for discussion of the -(?)Vg plural).

6.2.2.3 Plural Infix and Diminutive Reduplication

Given both the synchronic and diachronic evidence for the existence of a plural /L'/ affix in Sliammon, it is proposed here that what Watanabe identifies as the CVPV- prefix, which indicates diminutive plurals, consists of two morphemes: the plural $/ L^{\prime}-/$ morpheme and the CVdiminutive prefix, as indicated schematically in (30) and illustrated by the data in (31). The + sign is used between the Plural /L'-/ and the first element of the stem in order to highlight the nonconcatenative nature of this affix.
PLURAL[L'-] + DIM - Root

[^26]The plural infix /L'/ is realized as $\dot{y}[-i p-]$ after the initial consonant and before the vowel i, as shown by the diminutive plural forms in (31).
(31) Plural Infix: $/$ '/ ỳ [ε ? \sim e? $\sim i$ i $]$

Input	Position of [affix]	Output	Gloss
a. tiqiw	tiqiw	téqew	horse
a'. DIM-tiqiw+[?]	titqiw	tétq¢ ${ }^{\text {w }}$	small horse
a'. [L']+DIM-tiqiw	t[ẏ]i-tqiw	tépstqèw	small horses
b. ${ }^{\text {ct }}$ ¢	ċat	číq	rain
b'. [L'] + DIM $-\mathrm{c}^{\prime} \mathrm{T}=\mathrm{uk}{ }^{\mathrm{w}} \mathrm{t}+[\mathrm{i}]$	$\underline{c}[\hat{y}] \mathrm{i}-\bar{c}^{\prime} \mathrm{q}=\mathrm{uk}{ }^{\mathrm{w}}[\mathrm{i}] \mathrm{t}$	ćílıčłòk ${ }^{\text {w }}$ เt	Iots of little raincoats
c. $\mathrm{puk}^{\mathrm{w}}$	puk ${ }^{\text {w }}$	púk ${ }^{\text {w }}$	book
c^{\prime}. DIM-puk ${ }^{\text {w }}$	pi-puk ${ }^{\text {w }}$	pépuk ${ }^{\text {w }}$	little book
c". DIM-PL-puk ${ }^{\text {w }}$	pi-pək ${ }^{\text {w }}$-puk ${ }^{\text {w }}$	pépuk ${ }^{\text {w }}$ pùk ${ }^{\text {w }}$	Iots of small books
c''. $\left[\mathrm{L}\right.$ ']+DIM-puk ${ }^{\text {w }}=$ ¢ \dagger	$\mathrm{p}[\hat{y}] \mathrm{i}-\mathrm{puk}{ }^{\mathbf{w}}=\mathbf{u} \dagger$		Iots of little books
d. $\mathrm{f}^{\ominus} \mathrm{it}^{\ominus} \mathrm{ik}^{\mathrm{w}}$	$\mathrm{t}^{\boldsymbol{\theta}} \mathrm{it}^{\boldsymbol{\theta}} \mathrm{ik}^{\mathbf{w}}$	t^{\ominus} ét ${ }^{\ominus} \mathrm{e} \mathrm{k}^{\mathrm{w}}$	worm
d'. [L'] ${ }^{\text {d }}$ DIM $-\mathbf{t}^{\boldsymbol{\theta}} \mathrm{it}^{\ominus} \mathrm{i}^{\mathbf{i}}{ }^{\mathbf{w}}$			small worms

Contrast this with the data in (32) which shows that the plural infix $/ L /$ is realized as $\mathbf{w}[-u P-]$ in the environment of a round vowel.
(32) Plural Infix: $/ \mathrm{L} / /-\mathrm{w}-\sim-\mathrm{u}$? $-[\mathrm{o} ? \sim \mathbf{w}]$

Input
a. DIM-大̌uqu ${ }^{\text {wit }}$ it
a^{\prime}. $\left[L^{\prime}\right]+D I M-X^{\prime} u q^{w}-i t$
b. mušmuš
b'. [L']+DIM-mušmuš
c. tuk w
c'. IMP-tuk ${ }^{w}$
c'. [L’]+DIM-tuk ${ }^{\text {w }}$

Position of [affix]
$\lambda^{\lambda} u-\grave{\lambda} q^{w i t}$
$\dot{X}\left[\begin{array}{c}\dot{w}] u-\dot{x} q^{w} \\ \text { it }\end{array}\right.$
mušmuš
$\mathrm{m}[\mathbf{w}] \mathrm{u}-\mathrm{mšmuš}$
łuk ${ }^{w}$
tu-tuk ${ }^{w}$
$\Phi\left[{ }^{\mathbf{w}}\right] \mathbf{u}-\uparrow \mathbf{k}^{\mathbf{w}}$

Output

múšmuš
móPomšmùš
túk ${ }^{w}$
tútuk ${ }^{\text {w }}$
tópotk ${ }^{w}$ a plane

The choice of either the $-\dot{y}$ - and $-\mathbf{w}$ - allomorphs of the plural infix $/ L /$ is determined by the following vowel and reflects the historical sound changes discussed in (27). Note also that the plural $/ L$ '/ infix occupies the position immediately following the first consonant of the stem, and therefore accords well with the Saanich and Halkomelem data. Consider the data in (33) which shows that $/ \mathrm{L}$ '/ is realized as [-a?-] before the low vowel a.
(33) Plural Infix: /L'/ [-a?-]

Input	Position of [affix]	Output	Gloss
a. $\mathrm{q}^{\mathrm{w}} \mathrm{at}-\mathrm{m}$	$\dot{q}^{\text {watatam }}$	q'átrom $^{\text {d }}$	river
$\mathrm{a}^{\text {'. }}$ DIM-q ${ }^{\text {watat-m }}+[\mathrm{i}]+[?]$	$\dot{\mathbf{q}}^{\mathbf{w}} \mathrm{a}-\mathrm{q}^{\text {w }}$ tim ${ }^{\text {m }}$	qu$^{\text {wáqu }}{ }^{\text {w }}$ tem	creek
$\mathrm{a}^{\prime \prime} .\left[L^{\prime}\right]+\mathrm{DIM}-$ ' $^{\text {w }}$ at-m $+[\mathrm{i}]$	$\dot{q}^{w}[a P] a-\dot{q}^{w}$ tion	$\dot{q}^{w a ́ p a q ̉ ~}{ }^{\text {w }}$ tern	creeks (dim. pl.)

Notice that the presence of diminutive reduplication triggers deletion of the Root vowel as discussed independently in Davis (1970), Kroeber (1989), Blake (1992, 1999, in prep.), Watanabe (1994, 2000).

Predictions

If $[-i$ i,$--\mathrm{u} ?-,-\mathrm{a}$?-] are phonologically conditioned allomorphs of the plural morpheme $/ \mathrm{L}$ ' $-/$, and add plural semantics to the above diminutive forms as proposed above, then one expects this infix to co-occur with other Roots and stems, adding plural or augmentative semantics in these cases as well. Consider the range of reduplicative data presented below which provides support for this position.

6.2.2.4 Plural Infix and Diminutive Plural Reduplication

The following example shows that the plural $L^{\prime}-/$ affix can also co-occur with roots/stems which have undergone diminutive plural reduplication, and is translated as 'lots of little bits of'. Diminutive Plurals are doubly reduplicated forms ($\mathrm{Ci}-\mathrm{C} \partial \mathrm{C}$) in which the Diminutive morpheme
precedes the CəC reduplicant (cf. Blake 1992, Watanabe 1994; Urbanczyk (199x) on Lushootseed). The plural /L'/ occurs immediately after the stem-initial consonant, in this case after the initial consonant of the diminutive reduplicant, as shown by (35.a"').
(34) PLURAL[L'-] + DIM - CaCPL - Root

Input	Position of [affix]	Output	Gloss
a.	saplin	saplin	sáplen

6.2.2.5 Plural Infix and Imperfective Reduplication

The plural /L'/ infix also co-occurs with Imperfective reduplication, as shown by the data in (37).
(36) PLURAL[L'-] + IMP - Root
(37)

Input	Position of [affix]	Output	Gloss
a. $\mathrm{t}^{\boldsymbol{r}} \mathrm{q}$ - Pm	təəq่ใəm		throw (s.t.)
			throwing (lots) ${ }^{4}$

[^27]b. ym-t
b'. [L'] + IMP-ym-?m
b". [L']+IMP-ym-?m
c^{\prime}. $\left[L^{\prime}\right]+\mathbb{M P}-$ Xiq $^{\mathrm{w}}-$?m
d. ns̆-m
d'. [L']+[MP-nš-m
e. $\check{\mathrm{x}}^{W_{\mathrm{J}}-\mathrm{t}}$

f. $\breve{x}^{\text {way }}$ ay m
f. IMP- $\check{x}^{w} a y-m+$?
$\mathrm{f}^{\prime \prime}$. [L']+IMP-x̆"ay-m+?
g. 误
g'. [$\left.L^{\prime}\right]+I M P-{ }^{-1} \chi^{\prime}$
yəm-t
$y[\hat{y}] \partial-y m-a-$ Pom
$y[\hat{y}]-y m-a-P \partial m \quad$ yíiimà? $2 m$

nəš-əm
n[ỷ]ว-nšəm
ẍ $^{\text {w }}$ әyt

$\check{x}^{\text {w }}$ ayəm
$\check{\mathrm{x}}^{\mathrm{w}} \mathrm{a}-\check{\mathrm{x}}^{\mathrm{w}} \mathrm{y}$ ım

јəə

yímt
yílimà?
níšəm
nî̉ınšım
ẍwéyt $^{\text {w }}$

ẍª́yım

yit

kick it
soccer game
soccer game
playing catch
swim
they're swimming
stretch it s/he is stretching it to dive
diving
diving many times
run
they're running

The plural infix may co-occur with diminutive and imperfective reduplication to give a reading such as: raining a little bit, sprinkling, drizzling.

```
PLURAL[L'-] + DIM - IMP - Root
```

Data exemplifying this morphological collocation follow:

Input	Position of [affix]	Output	Gloss
a. ċf $^{\text {d }}$	ċat	čít	rain
a'. IMP-ct	ċa-čt	čícot	it's raining
a'. [L']+DIM-IMP-čt		čípičičut	raining a little bit

6．2．2．6 Plural Infix and Characteristic Reduplication

The plural infix／L＇／also co－occurs with Characteristic reduplication．Example（40．a＇）was described as meaning calm for a long time（constant over a period of time；e．g．it＇s been calm for a week／month now）．
a．mえ̀－mut
maximut
mî̃ormot
a＇．［L＇］$+\mathrm{CH}-\mathrm{m} \AA$
$\mathrm{m}[\mathrm{a}$ ？$] \mathrm{a}$ だ－məズ

very calm（on water） calm for a long time

The combination of Characteristic reduplication and plural infixation seems to account for the $\mathrm{C}_{1} \mathrm{VPVC}_{2}$－forms cited in Watanabe（2000：246）．I have retranscribed Watanabe＇s data to conform to the transcription system and representations adopted in this work and present this data in（41）． Crucially the surface sequence $\mathrm{C}_{1} \mathrm{VPVC}_{2}$－is proposed here to be composed of two morphemes： Characteristic reduplication and the plural／L＇／／prefix．Notice that the examples involve weak CəC Roots and Characteristic reduplication which appears to involve a CaC －prefix．The plural morpheme／L＇－／is realized as［a？］before an adjacent［a］．
（41）data cited from Watanabe（2000：246）

Input
 Gloss

a．$h q^{w}-\mathrm{t}$
a^{\prime} ．$\left[L^{\prime}\right]+\mathrm{CH}-h q^{\mathrm{w}}-\mathrm{t}$
b．$\lambda \check{x}^{w}-t$
b＇．［L＇］$+\mathrm{CH}-\lambda \check{x}^{\mathrm{w}}-\mathrm{t}$
c．Ẋ ${ }^{\text {q．}}$
c．$\left[L^{\prime}\right]+\mathrm{CH}-{ }^{\prime} \dot{\prime} \dot{q}$
d． $\mathfrak{j} \mathbf{k}^{\mathrm{w}}-\mathbf{t}$
d＇．［L＇］ $\mathrm{CH}-\mathrm{j} \mathbf{k}^{\mathrm{w}}-\mathrm{t}$
e．$\dot{k}^{w} \mathrm{f}$
e＇．$\left[L^{\prime}\right]+\mathrm{CH}-\mathrm{k}^{\mathrm{w}} \boldsymbol{f}$
$\mathbf{k}^{w}[a ?] a \downarrow-\mathbf{k}^{\mathrm{w}}$ ət
sniff at it
keep smelling it，keep sniffing at it
spit it out
spitting all over the place
get rotten
all（e．g．apples）are getting rotten
rub it
rubbing both（e．g．legs）
it spilled
it spilled all over the place

f. $m x$	mox	calm (on water)
f. $\left[L^{\prime}\right]+\mathrm{CH}-\mathrm{m} \lambda$	m[a?]ȧ̇-mox'	calm spot all over the place
g. ps	pes	it is numb
g'. [L']+CH-ps-INC	$\mathrm{p}[\mathrm{a}]$]as-pas-əs	they (e.g. both legs) are numb
h. tt	tot-t	turn it (e.g. page)
h'. [L']+CH-tt-t	t[a?]ał-təft	spreading out many of them (e.g. blankets)
i. x̌t $^{\text {d }}$	x̆ว ${ }^{\text {c }}$	get angry
	¢̆[aP]at-x̆ə	getting (really) angry

The translations of (41.a'- i^{\prime}) are consistent with Characteristic reduplication which occurs with descriptive predicates and emphasizes a characteristic trait or tendency, and the augmentative nature of the plural /L'-/ affix ${ }^{5}$. The proposed re-analysis of these forms is transparent, given the identification of Characteristic reduplication (cf. Blake 1992, Watanabe 2000, and Blake (in prep)) and the existence of the plural /L'-/ morpheme.

6.2.2.7 Discussion and Proposed Analysis

The formal analysis developed in this section basically follows the line of analysis proposed by McCarthy and Prince (1994) for similar types of cases involving "infixation". Although the plural /L'/ marker in Sliammon is aligned as close to the left-edge of the stem as possible (i.e. it is a prefix and tries to satisfy LEFTMOST), it is always mis-aligned by a single consonant in order to satisfy the higher-ranking constraint which ensures that the left edge of the Prosodic Word is aligned with the left-edge of the stem. This partial ranking is presented in (42). (42) ALIGN L PRWD \gg LEFTMOST
${ }^{5}$ See Thompson and Thompson (1992) for a description of the range of meanings typically associated with Characteristic reduplication in Thompson (Salish), for example.

This has the effect of positioning this affix consistently after the first consonant of the stem. As shown by the following data, this could be the Root-initial consonant as in (43.a'-b'), or the first consonant of the left-most reduplicative prefix, as in (43.c'-e').

a. pip-it	piPit	pé? $\frac{1}{}$	stuck together
a'. [L'] ${ }^{\text {d }}$ pip-it	p[iP]iPit	pé? ¢ $_{\text {ct }}$	really stuck together
b. J̌aja	јаҮ̧̃a		relative
b'. [L']+јајЈa	〕[aP]aya?		relations
c. DIM- ${ }^{\text {u }} \mathrm{uq}^{\mathrm{w}}-\mathrm{it}$	${ }^{\prime \prime} u$ - ${ }^{\prime} q^{\text {w }}$ it		spotted
			patches, little spots
d. saplin	saplin	sáplen	bread
d'. [L']+DIM-PL-saplin	$s[\hat{y}] \mathrm{i}$-səp-saplin	séfesəpsàplen	lots little bits of bread
e. IMP- $\check{\mathrm{x}}^{\mathbf{w}}$ ay $-\mathrm{m}+[$ [$]$	$\check{x}^{\mathbf{w}} \mathrm{a}-\check{\mathrm{x}}^{\mathbf{w}} \mathrm{y}$ ım		diving
			diving many times

Notice that the output of $/ L^{\prime}-/$ "infixation" entails glide vocalization, and creates a surface CVPV sequence; it creates an open [CV. CV] syllable structure which satisfies the constraints ONSET, NOCODA and SYLL NUC discussed in Chapter 3. Misalignment of $/ L^{\prime}-/$ in order to satisfy the high-ranking ALIGN constraint does not create unnecessary violations of prosodic constraints, unlike infixation of s - as discussed in §6.2.1.1-6.2.1.2, although the cost associated with infixation is that it violates Contiguity. The other difference between the treatment of $/ \mathrm{s} / /$ and $/ \mathrm{L} \cdot /$ follows from their respective featural representation. The plural morpheme $/ L^{\prime}-/$ consists of a resonant which can be realized as a vocalic Nucleus, whereas /s-/ is not an eligible prosodic head.

Word-initial vocalization of the $/ L^{\prime}-/$ prefix in candidates such as * Yipipit from the Input $/[L ’]+\mathrm{pi} ?-\mathrm{it} /$ would violate the ALIGN constraint, since the left-edge of the PrWd fails to be aligned with the left-edge of the stem.

The data and analysis presented in this section are significant since they identify a nonreduplicative prefix in Sliammon, the $/ L^{\prime}-/$ Plural, and show that this prefix is "infixed" after the
first consonant of the stem. Furthermore, /L'-/ has phonological features which allow it to vocalize and function as a vocalic Nucleus. Schwa epenthesis fails to occur as in *L'[ə]-piPit. Since stress must be aligned with the left-edge of the stem, schwa epenthesis in this context does not improve satisfaction of the Alignment constraint. This analysis of CVPV and CVPVC into separate morphemes C[V7]V and C[V7]VC also enables us to reduce the inventory of proposed types of Reduplication in Sliammon, and explains the interpretation of the data in §6.2.2.

Chapter 7: Conclusion

> "Language is the most massive and inclusive art we know, a mountainous and anonymous work of unconscious generations."

Edward Sapir (1921:220)

7.0 Introduction

This chapter highlights the central descriptive observations and theoretical claims made in this dissertation. It also recaps some of the theoretical implications of the proposed analyses.

The primary source of the data in this dissertation is my fieldnotes collected from 1988 2000 in consultation with elders resident in Sliammon (cf. Appendix II). The body of the dissertation is supplemented with a set of Appendices which document important aspects of the phonology and morphology of the language: Appendix IV on Sound Contrasts, Appendix V on Root Canons, Appendix VI on Lexical Suffixes, and Appendix VII on the predicate complex, the primary affixes (prefixes and suffixes) and clitics attested in the data. The subsequent sections focus on the descriptive and theoretical claims made in the preceding chapters.

7.1 Summary: Representation of Schwa vs. Full Vowels

In this dissertation, I have argued that schwa in Sliammon is characterized as a bare Nucleus. Schwa is proposed to be non-moraic (i.e. it is weightless), and it lacks inherent phonological features. The allophones of schwa are brief in duration, and acquire their phonological features via colouration from adjacent consonants (and vowels), as discussed in detail in Chapter 2. It is proposed that this representation of schwa accounts for its phonological behaviour. This is contrasted with the proposed representation of the full vowels $/ i, u, a /$ in Sliammon which are claimed to be both Nuclear and moraic at the prosodic level. Full vowels are also specified for inherent phonological features at the melodic level.

One of the major claims of this dissertation is that Full Vowel Reduction in Sliammon is not reduction to schwa. A reduced full vowel entails the loss of a mora resulting in a surface vowel which has the same prosodic representation as schwa (i.e. it is Nuclear but non-moraic), but
crucially a reduced full vowel retains the features associated with the underlying full vowel. This is evidenced by the distinct realization of schwa versus a reduced full vowel in comparable environments.

Although the output of schwa colouration is distinct from the output of Full Vowel Reduction, the claim made here is that they share the same prosodic representation -- both are Nuclear and non-moraic.

7.2 Phonological Features

From a descriptive perspective, this dissertation has aimed at documenting the full range of consonant/vowel interactions, in addition to the effects of prosody on the surface output representations. In Chapter 2, it is argued here that Vowel Assimilation to adjacent consonants (and vowels) is subject to Grounded Constraints, following Archangeli and Pulleyblank (1994). The presence versus absence of inherent phonological features associated with the full vowels versus schwa, which is featureless, in conjunction with the Grounded Constraints in the language accounts for observed differences in Vowel Assimilation.

In Chapter 2 it is argued that the uvulars and laryngeals function as a natural class of postvelar consonants (i.e. PHAR), causing retraction of a preceding vowel. The dissertation also claims, following Kroeber (1989) and Blake (1992), that schwa is lowered and retracted to [a] in the environment before ?. This generalization has important implications for the representation of laryngeals.

7.3 Prosodic Structure of Sliammon

This dissertation makes a number of important claims regarding the prosodic structure of the language. Coda consonants in Sliammon are claimed to be moraic, as evidenced by Compensatory Lengthening in the language. The failure of schwa to undergo Compensatory Lengthening, and the contrast in the behaviour of CaC versus CAC syllables is therefore attributed to the phonological weight of the Nucleus. C C μ is mono-moraic whereas $\mathrm{CA} \mu \mathrm{C} \mu$ is bimoraic. Consequently, this thesis provides substantial empirical evidence for Shaw's (1996c) claim that "an
adequate theory of syllable structure must recognize both Nuclear headedness and moraic weight as independent structural properties". Chapter 3 motivates syllable structures and metrical structures which are assumed in the remainder of the thesis; arguments are provided from a wide variety of constructions, as well as from native speaker judgements regarding morafication and syllabification.

7.4 Distribution of Schwa

One of the important generalizations regarding the distribution of schwa is the complementarity between the locus of stressed schwa and the occurrence of minor syllables in Sliammon. It is argued in Chapter 3 (§3.3) that Sliammon has left-headed trochaic feet. CC Roots therefore take schwa epenthesis in order to satisfy the constraint Proper Headedness at the level of the foot ($=2 . \mathrm{a}-\mathrm{a}^{\prime}$). In contrast, final extra consonants which occur at the right-edge of mono-morphemic words resist schwa epenthesis, as shown in (2.b-b").
(2)

Input		Output	Gloss
a. èt	čat	číq	rain
a^{\prime}.		* ${ }_{\text {c }}$ ¢	
b. saftx ${ }^{\text {w }}$	saftx ${ }^{\text {w }}$	sát . tx ${ }^{\text {w }}$	woman
b^{\prime}.		*sát . $\mathrm{t}[\mathrm{z}] \mathrm{x}^{\mathbf{w}}$	
$\mathrm{b}^{\prime \prime}$.		*sá . t [o]tx ${ }^{\text {w }}$	

Consider the tableau which characterizes the difference between these examples.
(3)

Input: çt	PROPHEAD FT	O-CONTIG ROOT	DEP[NUC]
a. ¢̇[อ́]			
b. ${ }_{\text {ct }}$ t	*!		
Input: sattx ${ }^{\text {w }}$	PROPHEAD FT	O-CONTIG ROOT	DEP[NUC]
a'. sáf.tx ${ }^{\text {w }}$			
b^{\prime}. sáa . $\mathrm{t}[\mathrm{\partial}] \mathrm{x}^{\mathbf{w}}$		*!	
c^{\prime}. sá . $\mathrm{T}[\mathrm{\partial}]$ tx ${ }^{\text {w }}$		*!	
d'. sá . t[ə] . t[0] ${ }^{\text {w }}$		*!	

Schwa epenthesis occurs in (3.a) in order to satisfy the high-ranking constraint on Proper Headedness at the level of the foot, whereas in (3.a') Proper Headedness is satisfied by the initial vowel $/ \mathrm{a} /$. In (3.a') schwa epenthesis is blocked between the final consonant cluster since it would otherwise violate Root Contiguity. Notice that this analysis confirms Shaw's (1996c) hypothesis that Proper Headedness consists of three independent and rankable constraints within the grammar, summarized again in (4).
(4) Proper Headedness Shaw (1996c:10) (cf. Ito and Mester 1992; Ola 1995)
a. PROPHEAD PW
A Prosodic Word is headed by a Foot
b. PROPHEAD FT
A Foot is headed by a Syllable
c. PROPHEAD ${ }_{\sigma}$
A Syllable is headed by a NUC
[=SYLL NUC]

Notice that the final minor syllable (tx^{*}) in sát . tx^{w} in (3.a) violates Proper Headedness at the level of the syllable (=SYLL NUC), since it lacks a vocalic Nucleus. This means that the constraint on OContiguity of the Root must also outrank PROPHEAD $_{\sigma}$ as shown by the tableau in (5).
(5)

Input: sattx ${ }^{\text {w }}$	PROPHEAD FT PROPHEAD PW	O-CONTIG ROOT	PROPHEAD σ	DEP[NUC]
a. sáf.tx ${ }^{\text {w }}$			Wheramer	Frkremer
b. sát . $\mathrm{t}[\mathrm{\partial}] \mathrm{x}^{\mathbf{w}}$		*!	W ${ }^{\text {a }}$ -	W, ${ }^{\text {a }}$

Throughout the dissertation the distribution of schwa is subject to the distinction between derived and non-derived morphological environments. The observed asymmetries in Root canons in Sliammon (Chapter 4) provide language-internal evidence for the claim that schwa is epenthetic rather than present in the underlying representation.

7.5 Summary: Strategies to avoid Stressed Schwa in an open syllable

In Chapter 5 it was argued that stressed schwa in Sliammon tends to occur in closed syllables. Although stressed schwa does occur in a stressed open syllable in a limited number of cases involving intervocalic non-continuant resonants $/ \mathrm{J}, \mathrm{g}$, there are also phonological constraints
operative in Sliammon which militate against this configuration. In Chapter 5, it is argued that a wide range of seemingly unrelated allomorphy receives a unified explanation with reference to the constraint which bans schwa in stressed open syllables *oj], and its interaction with other constraints in the grammar. The strategies discussed in the context of this dissertation are summarized in (6).
(6) Strategies to avoid violation of *́j] σ

Input	Output	* 5] σ	Strategy
a. $\mathrm{CaO}^{\prime} \mathrm{V}$	Cá? . O'V	* ${ }^{\text {Cá }}$. O’V	Restructure glottalized obstruent §5.1
b. CaR'V	Cép.RV	* ${ }^{\text {Có }}$. R'V	Restructure glottalized resonant §5.2
c. C ¢ CV	Cə́C:V	* Cá. CV	Gemination of intervocalic consonant §5.3
d. $\mathrm{CaC}=\mathrm{V}$	C ¢́C=[h$] \mathrm{V}$	*Cá. CV	[h] epenthesis after fricatives $\S 5.4$
e. $\mathrm{C} \partial \mathrm{C}=\mathrm{V}$	$\mathrm{CáC}=[7] \mathrm{V}$	*Cá. CV	[?] epenthesis after stops and affricates §5.4
f. C С Ci$] \mathrm{C}$	C[á]C[i]C	*Cé. C[i]C	Strengthening of schwa to a full vowel §4.4

What all of these strategies have in common is that they conspire to prevent schwa from occurring in a stressed open syllable. They do so by closing the syllable with a moraic coda consonant: С $\check{\mathrm{C}} \mathrm{C}$.

One further question which the summary in (6) raises is: what is the distribution of these different strategies? For example, when do we get Glottal Restructuring as opposed to Gemination? Generally, the strategies are entirely predictable, based on phonological properties. If the medial consonant is either a glottalized obstruent or a glottalized resonant, then ordering of the glottal release with respect to the oral closure is the strategy which is adopted (=6.a-b). In the case that the medial consonant is non-glottalized, there are alternative strategies. Gemination and $[\mathrm{h} / \mathrm{?}]$ epenthesis (6.c-e) are strategies which are used by different speakers. Epenthesis of $[\mathrm{h} / 7]$ is documented between a Root and a following Lexical Suffix, whereas Gemination is documented in a wider-range of contexts. At the present point in time, it is also difficult to tell whether or not this variation should be attributed to individual differences between speakers, or if this distinction should be attributed to dialectal differences. Finally, strengthening of schwa to the full vowel [a]
co-occurs with the infixation of the stative morpheme [i], as in (6.f). The non-continuant resonants $\mathrm{j}, \mathrm{g} /$ resist Gemination due to the constraints which govern the vowel/glide/obstruent alternations. As documented in Blake (1999), there are also other cases of allomorphy whick are affected by the constraint *́j]. Further research will entail documentation and ana'ysis of other allomorphy which shows similar behaviour.

In Chapter 5, it is argued that the informal constraint *ó] σ captures a prevalent generalization regarding foot structure in the language. The illicit surface form *Cá . CAC violates the constraint SYLL MORA (cf. Shaw 1995, 1996), since the first syllable lacks phonological weight, expressed in the dissertation in terms of moras. In addition, the second syllable is bimoraic $\mathrm{CAC} \mu \mu$. This creates an ill-formed structure in which the phonological weight of the head of the foot is less than the phonological weight of the non-head. This violates the constraint PEAK PROM FT which is argued to have a significant role to play in the prosodic organization of the grammar. Optimal surface forms like C 追 μ. C С μ show that the constraints in the grammar drive durational evenness which is typical of trochaic systems (cf. Hayes 1995, Kager 1995).

7.6 Summary: Status of unstressed schwas in open syllables

Much of the discussion in this thesis focuses on the distribution of stressed schwa. In this section, I briefly summarize one case of schwa epenthesis in an unstressed word-medial syllable. Consider the analysis of the diminutive form in (7.a'), repeated here from Chapter 4 (§4.2.1).

Input	V-Syncope in DIM	Output	Gloss
a.	$q^{w} u p=s ̌ n$		$q^{w o ́ p s ̌ l n ~}$

When a CAC Root undergoes diminutive reduplication (DIM) and is followed by a consonantinitial suffix, such as =šn, this collocation of morphemes along with morphologically triggered root-vowel deletion gives rise to a string of word-internal consonants: [CA-CC-CV...]. Since trimoraic syllables are avoided $\left.{ }^{*} \mu \mu \mu\right] \sigma$, and complex onsets are also pervasively banned in the
language, schwa epenthesis occurs in order to optimize syllable structure constraints, and parse the Root-final consonant. The formal analysis is recapitulated here in (8).
(8) Input: DIM-q*up=šn $+[i]+[?]$ Output: [$q^{w}{ }^{w} q^{w}{ }^{\text {w }}$ pašiñ $]$ bit of hair on legs

	Root Faith	*COnset	O-Contig Root	* $\mu \mu \mu \mathrm{l}$]	DEP[Nuc]
					295\%\%
b. $q^{\text {wóóq }}{ }^{\text {w }}<\mathrm{p}>$. šiń	*!	Wextyen			hever
c. $q^{w} \delta^{<}<q^{w}>p$. šin .	*!	(, wave		5vesk	
		*!		Wrywive	
			*!	Y,	
f. $q^{\text {wóqu*p }}$. šińn				*!	,

In summary, an attempt to improve the resulting syllable structure by deletion of either Root consonant is ruled out by Root Faithfulness, as in (8.b-8.c). Candidate (8.d) violates the highranking constraint against complex onsets in the language, whereas schwa epenthesis in (8.e) violates the contiguity relations between C_{1} and C_{2} of the Root. The optimal candidate (8.a) incurs a $\operatorname{DEP}[\mathrm{Nuc}]$ violation, the cost associated with inserting schwa, but notice that schwa is inserted between the Root-final consonant and the initial consonant of the following Lexical Suffix $=s[i] n$. The position in which schwa is inserted produces optimal prosodic constituents without creating violations of either Root Faithfulness or O-Contiguity Root. In general, non-initial schwa epenthesis takes place between morphemes in order to avoid disrupting Root contiguity.

7.7 Other Implications: Peak Prom Ft and Full Vowel Epenthesis

Chapter 6 discusses two further implications for the analysis developed in the context of this dissertation. Section 6.1 documents and presents an analysis of the variant forms of the -hV possessive suffix in Sliammon. In particular, stems which end in a consonant cluster are shown to take [i] epenthesis rather than schwa epenthesis [o] before the -hV suffix, as shown by the representative example in (9).
a. $\operatorname{tm}=\mathbf{u s}=\operatorname{tn}-\mathrm{hV}$
ta Pmust $[\mathrm{i}]$-hi-n
tá?mostèhen
have a headband on
b.
*to?must[ə]-hə-n
*tá?mostə̀hən

By comparing the well-formedness of the resultant Foot structure in (10.a) versus (10.b), we can explain why (10.b) is ruled out.
a. $\operatorname{tm}=u s=t n-h V$
te?must[i]-hi-n
(tá? μ. mos $\mu)($ tè μ. h hen μ)
have a headband on
b.
*tə?must[ə]-hə-n *(tá? μ. mos μ)(t̀̀ . hənu)

In particular, focus on the well-formedness of the second foot: (tè $\mu \cdot h \varepsilon n \mu$). In the optimal output form, the foot (tè $\mu . \operatorname{h\varepsilon n\mu })$ satisfies Foot Binarity at both the syllabic and moraic levels. In addition, this foot also satisfies PEAK PROM FT which requires that the phonological weight of the head of the foot (i.e. the syllable: tè μ) is equal to or greater than the phonological weight of the non-head (i.e. the syllable: hen μ). It is hypothesized here that Full Vowel Reduction applies in unstressed syllables in (9-10), in keeping with the generalization regarding Full Vowel Reduction (cf. §4.3). Compare this with the well-formedness of the second foot in the ungrammatical example in (10.b). The foot *(t̀̀ . hən μ) is comprised of an initial weightless syllable followed by a mono-moraic syllable (hən μ). This not only violates Foot Binarity at the level of the mora, but it also violates PEAK PROM FT since the unstressed syllable (hən μ) is heavier than the head of the foot (t̀̀). This is an example of the ways in which the initial analysis presented in Chapters $3 \& 4$ can be extended in order to account for other data involving vowel epenthesis, like those presented in Chapter 6 (§6.1).

7.8 Comparative Research

This study clearly indicates that schwa is weightless in Sliammon; therefore, another project for future research will involve a comparison of the distribution and representation of schwa in

Sliammon to the distribution and representation of schwa in other Salish languages (e.g. Bagemihl 1991; Matthewson 1994; Kinkade 1993/1998; Willet and Czaykowska-Higgins 1995; Shaw et. al. 1999; Urbanczyk 1999a.b, amongst others). Further, the theoretical implications regarding weightless nuclei and headless minor syllables sets the stage for further comparison with other languages outside of the Salish language family which have been argued to have weightless vowels (cf. Michelson 1989, and Kager 1990).

Van Oostendorp (1999a) in his discussion of the role of schwa in phonological theory attributes the behaviour of schwa to various subtheories:
> "In order to fully understand the behaviour of schwa, we need a fully developed theory of syllable structure, of metrical structure, of segmental structure, and of the way in which these different dimensions of phonological structure can interact. Inversely, while developing these subtheories, we sharpen our view of schwa."

The analysis of the distribution and representation of schwa in Sliammon does involve issues regarding segmental structure, syllable structure, and metrical structure but also adds to this list the interaction of phonological and morphological components of the grammar. These findings further underscore van Oostendorp's (1999a) concluding remarks:
"I suspect that we will not have a satisfying theory of schwa until we have a satisfying Theory of Everything. "

I would like to conclude in the traditional way of the Homalco, Klahoose, and Sliammon people:

hám $\mathrm{k}^{\mathrm{w}} \mathrm{u}$ १î? $\mathrm{miñ}$.

References

Abbreviations used in References:

AL	Anthropological Linguistics
BLS	Berkley Linguistics Society
CJL	Canadian Journal of Linguistics
CLS	Chicago Lingusitics Society
ICS(N)L	International Conference on Salish (and Neighbouring) Languages
IJAL	International Journal of American Linguistics
LI	Linguistic Inquiry
NLLT	Natural Language and Linguistic Theory
UBCWPL	University of British Columbia Working Papers in Linguistics
UCPL	University of California Publications in Linguistics
UHWPL	University of Hawaii Working Papers in Linguistics
UMOP	University of Massachusetts Occasional Papers
UMOPL	University of Montana Occasional Papers in Linguistics
WCCFL	West Coast Conference on Formal Linguistics
WSCLA	Workshop on Structure and Constituency in Languages of the Americas

Anderson, Stephen. 1985. Phonology in the twentieth century , University of Chicago Press, Chicago.

Archangeli, Diana and Douglas Pulleyblank. 1994. Grounded Phonology. MIT Press, Cambridge, Massachusetts.

Bagemihl, Bruce. 1998. 'Maximality in Bella Coola (Nuxalk),' in Ewa Czaykowska-Higgins and M. Dale Kinkade (eds.), Salish Languages and Linguistics: Theoretical and Descriptive Perspectives, Mouton de Gruyter, Pp. 71-98.
\qquad . 1991. 'Syllable Structure in Bella Coola,' LI 22, 589-646.

Bar-el, Leora, and Linda Tamburri Watt. 1998. 'What Determines Stress in Skwxwu'7mesh (Squamish)?' in Papers for the 33rd ICSNL, University of Washington, Seattle, WA.

Barnett, Homer G. 1955. The Coast Salish of British Columbia. University of Oregon, Portland, Oregon.
\qquad . fieldnotes, University of British Columbia, Special Collections

Bates, Dawn. 1992. 'Simple syllables in Spokane Salish,' LI 23: 653-659.
Bates, Dawn and Barry F. Carlson. 1998. 'Spokane (Npoqínišcn) syllable structure and reduplication,' in Ewa Czaykowska-Higgins and M. Dale Kinkade (eds.), Salish Languages and Linguistics: Theoretical and Descriptive Perspectives, Mouton de Gruyter, Pp. 99-123.

Beaumont, R. C. 1985. She Shashishalhem: The Sechelt Language, Theytus Books, Penticton, B.C.

Bell, Alan and Joan Bybee Hooper (eds.) 1978. Syllables and segments, Amsterdam: North Holland.

Bessell, Nicola. 1992a. Towards a phonetic and phonological typology of post-velar articulation. Ph.D. Dissertation, University of British Columbia, Vancouver.
\qquad . 1992b. 'The Typological Status of $/$?, h/,' in C.Canakis, G.Chan and J.Denton, eds., Papers from the 28th CLS Vol.1: 56-71.

Bianco, Violet. 1995. 'Stress in Lushootseed -- A Preliminary Analysis,' in Papers for the 30th ICSNL, University of Victoria, Victoria, B.C.
\qquad . 1996. The Role of Sonority in the Prosody of Cowichan. MA Thesis, University of Victoria, Victoria, B.C.
\qquad - 1998. 'Stress Assignment in Halkomelem-Cowichan Roots,' in Papers for the 33rd ICSNL, University of Washington, Seattle, WA.

Blake, S. J. 1992. Two Aspects of Sliammon Phonology: Glide/Obstruent Alternation and VoweI Length, MA Thesis, University of British Columbia, Vancouver, BC.
\qquad . 1995a. 'Syllabicity Alternations in Sliammon,' paper presented at the Workshop on Features in Optimality Theory, University of Arizona, Tuscon.
\qquad . 1995.b. 'Glottalized Resonants in Sliammon,' paper presented at the CLA, UQAM, Montréal, Quebec.
\qquad . 1996. Passives and Object Control in Mainland Comox (Salish): A Reanalysis of Raising-to-Object, Ph.D. Syntax Generals paper, ms., University of British Columbia.
\qquad . 1997a. Root and Affix Faithfulness in Lillooet (Salish), Ph.D. Phonology Generals paper, ms., University of British Columbia.
\qquad . 1997b. 'Another Look at Passives in Sliammon (Salish),' in Papers from the 32nd ICSNL, Peninsula College, Port Angeles, WA, Pp.86-143.
\qquad . 1998. 'The OCP and Root-Affix Faithfulness in Lillooet Salish,' paper presented at the 33rd ICSNL, University of Washington, Seattle, WA.
\qquad . 1999. 'Toward an analysis of Schwa in Sliammon,' in Papers for the 34th ICSNL, SCES and SFU, Kamloops.
\qquad - 2000. Lexical Suffixes are Bound Roots: Phonological Evidence from Lillooet and Sliammon, invited presentation at WSCLA 5, University of Toronto.
\qquad . (in prep). Reduplication in Sliammon, ms. University of British Columbia.

Boas, Franz and Herman Haeberlin. 1927. 'Sound Shifts in Salishan dialects,' in IJAL 4: 117136.

Bouchard, Randy and Dorothy I.D. Kennedy. 1973-1978. Comox ethnobotany. Unpublished field notes. Victoria: British Columbia Indian Language Project.

Broselow, Ellen. 1982. On predicting the interaction of stress and epenthesis, Glossa 16: 115-32.
Carlson, Barry F. 1989. 'Reduplication and stress in Spokane,' IJAL 55: 204-214.
\qquad and Dawn Bates. 1991. 'A few more facts about Spokane stress,' paper presented at the 26th ICSNL, Vancouver, B.C.

Chomsky, Noam and Morris Halle. 1968. The Sound Pattern of English. Cambridge and London: MIT Press.

Clements, George N. 1990. 'The role of sonority cycle in core syllabification,' in Papers in laboratory phonology 1: Between the grammar and physics of speech, J. Kingston and M. Beckman eds., Pp. 283-333

Cole, Jennifer. 1987. Planar phonology and morphology, Doctoral dissertation, MIT.
Cook, Eung-Do. 1994. 'Against moraic licensing in Bella Coola,' LI 25.2: 309-326.

Crowhurst, Megan. 1991. Minimality and foot structure in metrical phonology and prosodic morphology. Ph.D. Dissertation, University of Arizona, Tucson.

Czaykowska-Higgins, Ewa. 1988. Investigations into Polish Morphology and Phonology. Ph.D. Dissertation, MIT.
\qquad - 1998. 'The morphological and phonological constituent structure of words in mosesColumbia Salish (NxaPamxcín),' in C-Higgins and Kinkade, eds., Salish Languages and Linguistics: Theoretical and Descriptive Perspectives. Trends in Linguistics Studies and Monographs 107. New York and Berlin: Mouton de Gruyter, Pp. 153-195.

Czaykowska-Higgins, Ewa and M. Dale Kinkade, eds., 1998. Salish Languages and Linguistics: Theoretical and Descriptive Perspectives. Trends in Linguistics Studies and Monographs 107. New York and Berlin: Mouton de Gruyter.

Davis, J. H. 1970. Some Phonological Rules in Mainland Comox, MA Thesis, University of Victoria.
\qquad . 1971a. 'Four forms of the verb in Sliammon,' in Papers for the 6th ICSL, Victoria, B.C.
\qquad . 1971b. 'Notes on Mainland Comox Phonology,' in Studies in Northwest Indian Languages Publication of the Sacramento Anthropological Society 11, 12-31.
\qquad . 1973. 'Permutations of a Sliammon sentence,' in Papers for the 8th ICSL, Eugene, Oregon.
\qquad . 1978a. 'Pronominal Paradigms in Sliammon,' in Papers for the 13th ICSL, Victoria, B.C.
\qquad 1978b. 'Sliammon subordinate clauses with the proclitic //s// and a possible syntactic change,' in Papers for the 13th ICSL, Victoria, B.C.

Davis, Stuart. 1984. 'Moras, light syllable stress and stress clash in Squamish,' WCCFL 3: 6274.

Doak, Ivy G. 1987. 'Coeur d'Alene vowel harmony,' in Papers for the 22nd ICSNL, Victoria, B.C.
\qquad . 1992. 'Another look at Coeur d'Alene harmony,' IJAL 58: 1-35.
Egesdal, Steven M. 1981. Some ideas on the origin of Salish lexical suffixes, in UHWPL 13: 319.

Elmendorf, William W. and Wayne Suttles. 1960. 'Pattern and Change in Halkomelem Salish Dialects,' in AL 2(7):1-32.

Galloway, Brent. 1990. A phonology, morphology, and classified word list for the Samish dialect of Straits Salish. Canadian Museum of Civilization. Canadian Ethnographic Service, Mercury Series Papers 116. Hull, Québec.
\qquad . 1993. A grammar of Upriver Halkomelem. UCPL 96, Berkeley, CA.

Gerdts, Donna B. 1988. Object and absolutive in Halkomelem Salish. New York: Garland Publishing.
___ and Karin Michelson (eds.). 1989. Theoretical Perspectives on Native American Languages. New York: State University of New York Press.

Gick, Bryan. (in press) 'An X-ray investigation of pharyngeal constriction in American English Schwa,' to appear in Phonetica.

Haeberlin, Herman. 1918. 'Types of reduplication in the Salish dialects,' IJAL 1: 154-174.
\qquad . 1974. 'Distribution of the Salish Substantival [Lexical] Suffixes,' M. Terry Thompson (ed.), AL $16: 219-350$.

Hagège, C. 1976. 'Lexical Suffixes and Incorporation in Mainland Comox,' in Papers from the 11th ICSL, Seattle, WA.
\qquad 1978. 'Lexical suffixes and incorporation in Mainland Comox,' Forum Linguisticum 3: 57-71.
\qquad . 1981. Le Comox lhaamen de Colombie Britannique. Amerindia Numéro Special 2. Paris, France.

Halle, Morris. 1995. 'Feature Geometry and Feature Spreading,' LI 26:1-46.
Hamp, Eric. 1971. 'Some phonetic rules for Mainland Comox Vowels,' in J. Hoard and T. Hess, eds., Sacramento Anthropological Papers 11: Studies in Northwest Indian Languages, Sacramento, CA., Pp. 32-42.

Hargus, Sharon and Virginia Beavert. 2000. 'Predictable vs. Underlying Vocalism in Yakima Sahaptin,' ms. University of Washington and Heritage College.

Harris, Herbert R., II. 1977 (1981). A Grammatical Sketch of Comox. Ph.D Dissertation, University of Kansas.

Hayes, Bruce. 1989. Compensatory Lengthening in Moraic Phonology. LI20:253-306.
\qquad . 1995. Metrical Stress Theory: Principles and Case Studies. University of Chicago Press, Chicago and London.

Hewitt, Mark. 1994. Deconstructing Foot Binarity in Yupik, ms., University of British Columbia
Hoard, James E. 1978. 'Syllabification in Northwest Indian Languages, with remarks on the nature of Syllabic Stops and Affricates,' in Syllables and Segments, A.Bell and J.B. Hooper (eds.), Pp. 59-72. North Holland Publishing Company.

Howe, Darin and Douglas Pulleyblank. (in press). 'Patterns and timing of glottalisation,' to appear in Phonology.

Hukari, Thomas E. 1977. 'Resonant devoicing in Cowichan,' CJL 22: 47-61.
\qquad . 1978. 'Halkomelem nonsegmental morphology,' in Papers for the 13th ICSL, Victoria, B.C.
\qquad . 1981. 'Some phonological problems in the Cowichan l-infix plural,' in Papers for the 16th ICSNL, Missoula, Montana.
\qquad . 1982. 'Glottalization in Cowichan,' in Working Papers of the Linguistics Circle of the University of Victoria, Vol.1, No.2: 233-250.
\qquad and Ruby Peter, eds., 1995. The Cowichan Dictionary of the Hul'gumi'num' Dialect of the Coast Salish People. Cowichan Tribes.

Hyman, Larty. 1985. A Theory of Phonological Weight. Dordrecht: Foris.
Idsardi, William J. 1991a. 'Stress and glottalized sonorants in Shuswap,' in Papers for the 26th ICSNL, Vancouver, B.C.
\qquad . 1991b. 'Stress in Interior Salish,' CLS 27: 246-260.

Itô, Junko. 1986. Syllable Theory in Prosodic Phonology. Ph.D. Dissertation, University of Massachusetts, Amherst. Published by Garland Press, New York, 1989.
\qquad . 1989. 'A prosodic theory of epenthesis,' NLLT 7:217-259.
\qquad and A. Mester. 1993. 'Licensed Segments and Safe Paths,' in C. Paradis and D. LaCharité eds., Special Issue of the Canadian Journal of Linguistics: Constraint-based Theories in Multilinear Phonology .
\qquad and A. Mester. 1994. 'Reflections on CodaCond and Alignment,' in Phonology at Santa Cruz, vol.3:27-46, University of California, Santa Cruz.
\qquad and A. Mester. 1996. 'Structural Economy and OCP Interactions in Local Domains,' paper presented at WECOL 1996, University of California, Santa Cruz, CA.

Jakobson, Roman, Gunnar Fant, and Morris Halle. 1952. Preliminaries to Speech Analysis. Cambridge, MA: MIT Press.

Kager, René. 1990. 'Dutch Schwa in Moraic Phonology,' in Ziolkowski et al., eds., CLS 26: 2.
\qquad . 1995. 'The Metrical Theory of Word Stress,' in The Handbook of Phonological Theory, John A. Goldsmith ed., Blackwell, Pp. 367-402.

Kennedy, Dorothy, and Randy Bouchard. 1983. Sliammon Life, Sliammon Lands, Talonbooks, Vancouver.
\qquad . 1990. 'Northern Coast Salish (Comox, Pentlatch, and Sechelt),' in Handbook of North American Indians, Volume 7: Northwest Coast, edited by Wayne Suttles, Smithsonian Institution, Washington, D.C., Pp. 441-452.

Kenstowicz, Michael. 1994. Phonology in Generative Grammar. Oxford: Blackwell.
Kinkade, M. Dale. 1991. Upper Chehalis dictionary, UMOP 7, University of Montana, MT.
\qquad . 1993. 'The chimerical schwas of Salish,' paper presented at the 92 nd Annual Meeting of the AAA/32nd Conference on American Indian Languages, Washington, D.C.
\qquad . 1998a. 'How much does a schwa weigh?' in Ewa Czaykowska-Higgins and M. Dale Kinkade (eds.), Salish Languages and Linguistics: Theoretical and Descriptive Perspectives, Mouton de Gruyter, Pp.197-216.
\qquad . 1998b. 'Origins of Salish Lexical Suffixes' in Papers for the 33rd ICSNL, University of Washington, Seattle, WA.

Kirchner, R. 1995. 'Contrastiveness Is an Epiphenomenon of Constraint Ranking,' forthcoming in BLS.

Kroeber, Paul D. 1985. 'Inchoatives in Mainland Comox,' in Papers from the 20th ICSNL. Vancouver, B.C.
\qquad . 1988. 'Inceptive Reduplication in Comox and Interior Salishan,' in IJAL 54:141-67.
\qquad . 1989. 'Review of Le Comox lhaamen de Colombie Britannique: Présentation d'une Langue Amérindienne, by Claude Hagège,' IJAL 55:106-16.
\qquad . 1991. Comparative syntax of subordination in Salish. Ph.D. Dissertation, University of Chicago.
\qquad . 1999. The Salish Language Family: Reconstructing Syntax, University of Nebraska Press, Lincoln and London [revised version of Kroeber 1991].

Kuipers, Aert. 1981. 'On reconstructing the Proto-Salish sound system,' in IJAL 47: 323-335.
\qquad . 1982. Towards a Salish etymological dictionary II. Lingua 57: 71-92.
LaCharité, Darlene. 1993. The Internal Structure of Affricates, Ph.D. Dissertation, University of Ottawa.

LaMontagne, Greg. 1996. Relativized Contiguity. Part l: Contiguity and Syllabic prosody, ms., University of British Columbia.

Lombardi, Linda. 1995. 'Laryngeal Neutralization and Syllable Wellformedness,' NLLT 13: 3974.

McCarthy, John. 1988. 'Feature Geometry and Dependency: A Review,' Phonetica 43/45, 84108.
\qquad . 1991. The Phonology of Semitic pharyngeals, ms., UMass, Amherst.
McCarthy, J. and A. Prince. 1990. Foot and word in prosodic morphology: The Arabic broken plural, $N L L T$ 8:209-84.
\qquad . 1993a. Prosodic Morphology I: Constraint Interaction and Satisfaction, ms., University of Massachusetts, Amherst and Rutgers University.
\qquad . 1993.b. 'Generalized Alignment,' in Yearbook of Morphology, Geert Booij and Jaap van Marle, eds., Dordrecht: Kluwer, Pp. 79-153.
\qquad . 1994. The Emergence of the Unmarked: Optimality in Prosodic Morphology, ms., University of Massachusetts, Amherst and Rutgers University.
\qquad . 1995. 'Faithfulness and Reduplicative Identity,' in UMOP 18: Papers in Optimality Theory, Jill Beckman, Laura Walsh Dickey, and Suzanne Urbanczyk eds., Pp.249-384. Matthewson, Lisa. 1994. 'Optimality and St'át'imcets Syllable Structure,' paper presented at the meeting of the CLA, Calgary, Alberta.
\qquad . 1998. Determiner Systems and Quantificational Strategies: Evidence from Salish. Holland Academic Graphics, The Hague.

Mattina, A. 1987. On the origin of Interior Salish lexical affixes, paper presented at the 26 th conference on American Indian Languages, 86th annual meeting, American Anthropological Association, Chicago.

Michelson, Karin. 1989. 'Invisibility: Vowels without a Timing Slot in Mohawk,' in Theoretical Perspectives on Native American Languages, Donna B. Gerdts and Karin Michelson, eds., State University of New York Press, Pp. 38-69.

Montler, Timothy. 1986. An outline of the morphology and phonology of Saanich, North Straits Salish, UMOPL 4, University of Montana, MT.

Neruda, Pablo. 1974. Five Decades: Poems 1925-1970: A Bilingual Edition, edited and translated from the Spanish by Ben Belitt, Grove Press, N.Y.

Ola, Olanike. 1995. Optimality in Benue-Congo Prosodic Phonology and Morphology, Ph.D. Dissertation, University of British Columbia.
\qquad . 1995. 'Properheadedness and Binarity: Prosodic Words in Yoruba,' in A. Akinlabi (ed.) Theoretical Approaches to African Linguistics. Trenton, N.J.: Africa World Press, Inc.

Prince, A. 1980. 'A metrical theory for Estonian quantity,' LI 11:511-562.
Prince, A. and P. Smolensky. 1993. Optimality Theory: Constraint Interaction and Satisfaction, ms., University of Massachusetts, Amherst and Rutgers University.

Prokosch, E. 1939. A Comparative Germanic Grammar. Philadelphia: Linguistic Society of America.

Pulleyblank, D. 1994. 'Underlying Mora Structure,' $L I$ 25.3:344-353.
\qquad . 1996. 'Neutral Vowels in Optimality Theory: A Comparison of Yoruba and Wolof,' in СЛ 41.4: 295-347.

Pullum, Geoffrey and William Ladusaw. 1986. Phonetic Symbol Guide, The University of Chicago Press.

Remnant, Daphne E. 1990. Tongue Root Articulations: a Case Study of Lillooet, MA Thesis, University of British Columbia, Vancouver, B.C.

Roberts, Taylor. 1993. 'Lillooet stress shift and its implications for syllable structure and prosody,' paper presented at the 28th ICSNL, Seattle, WA.

Roberts, Taylor and Patricia A. Shaw. 1994. 'Optimality in the St'át'imcets (Lillooet Salish) Stress System,' paper presented at the meeting of the CLA, Calgary, Alberta.

Sapir, E. 1915. Noun Reduplication in Comox, a Salish Language of Vancouver Island, Canada Department of Mines, Geological Survey Memoir 63, Anthropological Series, No. 5. Ottawa: Government Printing Bureau.
\qquad . 1921. Language. New York: Harcourt, Brace and World.

Selkirk, E. 1995. 'The Prosodic Structure of Function Words,' in UMOP 18.
Shahin, Kimary N. 1997. Postvelar Harmony: an Examination of its Bases and Crosslinguistic Variation, Ph.D. Dissertation, University of British Columbia, Vancouver.
\qquad and Susan J. Blake and Eun-Sook Kim (eds.). 1999. The Proceedings of the Seventeenth West Coast Conference on Formal Linguistics, Stanford: CSLI Publications.

Shaw, Patricia A. 1992. 'Templatic Evidence for the Syllable Nucleus', in the Proceedings of NELS 23, Amherst: GSLA.
\qquad . 1993. 'Minimal Prosodic Constituency,' paper presented at the 23rd WECOL, Seattle, Washington.
\qquad - 1994. 'Minimality and Markedness,' paper presented at the Workshop on Prosodic Morphology, Rijks University, Utrecht.
\qquad - 1995. 'On Syllabic Obstruents,' paper presented at the Canadian Linguistics Association Meeting, Montréal, Quebec.
\qquad . 1996a. 'The Non-nuclear Status of Syllabic Obstruents in Berber,' paper presented at the LSA, San Diego.
\qquad . 1996b. 'Headless and Weightless Syllables in Salish,' paper presented at the University of Victoria, Victoria, B.C.
\qquad . 1996c. 'Degenerate Syllables,' paper presented at the 8th International Phonology Conference, Vienna.
\qquad . 1998. 'Escher Effects in Morphology,' paper presented at the Meeting of the Canadian Linguistics Association.
\qquad and Susan J. Blake, Jill Campbell, Cody Shepherd. 1999. 'Stress in hən’q̉əmin̉əm’ (Musqueam) Salish' in Proceedings from WSCLA 4, UBCWPL 2, Vancouver, B.C.

Suttles, Wayne. (in press). A Reference Grammar of the Musqueam Dialect of Halkomelem. First Nations Languages Series, University of British Columbia Press, Vancouver, B.C.

Suttles, Wayne (vol.ed), and William C. Sturtevant (gen.ed.). 1990. Handbook of North American Indians, Volume 7: Northwest Coast. Washington, Smithsonian Institution.

Swadesh, Morris . 1950. 'Salish internal relationships,' in IJAL 16: 157-167.
\qquad . 1952. 'Salish phonologic geography,' in Language 28: 232-248.

Thompson, Laurence C. 1979. 'Salishan and the Northwest,' in Lyle Campbell and Marianne Mithun (eds.), The languages of North America: Historical and comparative assessment, p.692-765.
\qquad and M. Dale Kinkade. 1990. 'Languages,' in Wayne Suttles (vol.ed.), Handbook of North American Indians, Vol.7: Northwest Coast. Washington, D.C., Smithsonian Institution, pp. 30-51.
\qquad and M. Terry Thompson. 1992. The Thompson Language. University of Montana Occasional Papers in Linguistics 8, University of Montana, MT.

Turner, Nancy J. 1995. Food Plants of Coastal First Peoples, Royal British Columbia Museum Handbook. UBC Press in collaboration with the Royal British Columbia Museum, Vancouver, B.C.
\qquad 1998. Plant Technology of First Peoples in British Columbia, Royal British Columbia Museum Handbook. UBC Press in collaboration with the Royal British Columbia Museum, Vancouver, B.C.

Urbanczyk, Suzanne C. 1992. 'Representing Glottalized Sonorants,’ in C.Canakis, G.Chan and J.Denton, eds., Papers from the 28th CLS Vol.I: 530-542.
\qquad . 1996. Patterns of Reduplication in Lushootseed, Ph.D. Dissertation, UMass, Amherst.
\qquad . 1999a. 'Why Stressed Schwa is Marked: Evidence from Ay7ajuthem,' handout from LSA talk.
\qquad . 1999b. 'Echo Vowels in Coast Salish,' in UBCWPL 2, University of British Columbia, Vancouver.
\qquad . 1999c. 'A-Templatic Reduplication in Halq'eméylem,' in Shahin et al. (eds.) The Proceedings of the Seventeenth West Coast Conference on Formal Linguistics, Stanford: CSLI Publications.
van Eijk, Jan. 1998. 'CVC reduplication in Salish,' in Ewa Czaykowska-Higgins and M. Dale Kinkade (eds.), Salish Languages and Linguistics: Theoretical and Descriptive Perspectives, Mouton de Gruyter, pp. 453-476.
\qquad . 1997. The Lillooet Language: Phonology, Morphology, Syntax. UBC Press, Vancouver, B.C. [published version of van Eijk 1985].
\qquad . 1985. The Lillooet Language: Phonology, Morphology, Syntax. Ph.D. Dissertation, University of Amsterdam.
van Oostendorp, Marc. 1999. 'Schwa in Phonological Theory,' in GLOT International.
\qquad . 1999. 'A Schwa Bibliography, in GLOT International, and also available at (www.vanoostendorp.nl).

Watanabe, Honoré. 1994a. A report on Sliammon (Mainland Comox) Phonology and Reduplication. MA Thesis, University of Hokkaido, Sapporo, Japan.
\qquad 1994b. 'A report on Sliammon (Mainland Comox) reduplication,' in Papers for the 29th ICSNL, Salish Kootenai College, Pablo, Montana.
\qquad 1996. 'Sliammon (Mainland Comox) transitive constructions with - Pem, -ni, and -mi,' in Papers for the 31st ICSNL, University of British Columbia, Vancouver, B.C.
\qquad . 1997. 'Indirective (Applicative) in Mainiand Comox Salish,' in Gengokenkyu, Journal of the Linguistic Society of Japan, 111, pp.18-41.
\qquad . 1998a. 'sapia no komokkusugo chosa' (Sapir's Research on Comox), Bulletin of the Edward Sapir Society of Japan 12, pp.15-30. [in Japanese]
\qquad 1998b. 'On Indicating 'Plurality' in Mainland Comox,' in Osahito Miyaoka and Minoru Oshima eds., Languages of the North Pacific Rim, Vol.4:17-32, Kyoto University, Japan.
\qquad . 2000a. A Morphological Description of Sliammon, Mainland Comox Salish, Ph. D. Dissertation, Kyoto University, Kyoto, Japan.
\qquad . (in press). 'Lexical Suffixes and Two Intransitive Suffixes in Sliammon Salish,' in Osahito Miyaoka and Fubito Endo eds., Languages of the North Pacific Rim Vol.6. Faculty of Informatics, Osaka Gakuin University, Japan.

Webb, Phyllis. 1982. The Vision Tree: Selected Poems, Talonbooks, Vancouver, B.C.
Willet, Marie Louise, and Ewa Czaykowska-Higgins. 1995. 'Toward an Analysis of Syllable Structure in Nxa'amxcin,' in Papers for the 30th ICSNL, University of Victoria, Victoria, B.C.

Zec, Draga. 1988. Sonority constraints on prosodic structure. Ph.D. Dissertation, Stanford University, Stanford, CA.

Zoll, Cheryl. 1995. 'Cheating Charon: Ghosts that float,' paper presented at HILP 2, Amsterdam.

Appendix I: Salish Language Classification

The purpose of this appendix is to situate the language of the Homalco, Klahoose, and Sliammon peoples with respect to the other Salishan languages within the family. The Salish language family is comprised of 23 languages, as outlined in (1) following Czaykowska-Higgins and Kinkade (1998).
(1) Salish Languages (cf. Czaykowska-Higgins \& Kinkade 1998, and Kroeber 1999).

I Bella Coola
II Coast Salish
Comox : Island Comox, and Mainland Comox : Homalco, Klahoose, Sliammon
Pentlatch
Sechelt
Squamish
Halkomelem
Northern Straits
Klallam
Nooksack
Lushootseed
Twana
III Tsamosan
Quinault
Lower Chehalis
Upper Chehalis
Cowlitz
IV Tillamook
V Interior Salish
Lillooet

Thompson
Shuswap
Colville-Okanagan
Columbian
Spokane-Kalispel-Flathead
Coeur d'Alene

As mentioned in Chapter 1, the language spoken by the Homalco, Klahoose, and Sliammon peoples is often referred to as "Comox" in order to include the Island Comox language once spoken on Vancouver Island and the language spoken by the Homalco, Klahoose and Sliammon people, traditionally spoken on the Mainland. The language spoken by the Homalco, Klahoose, and Sliammon peoples is the northernmost of the Coast Salish languages. For a detailed discussion of the Northern Coast Salish (Comox, Pentlatch, and Sechelt), the reader is referred to Kennedy and Bouchard (1990:441-452) in Handbook of North American Indians, Volume 7: Northwest Coast, edited by Wayne Suttles, Smithsonian Institution, Washington, D.C.

The reader is also referred to the maps and place names which appear in Kennedy and Bouchard (1983: 149-170). The non-Salishan neighbours of the Mainland Comox (Homalco, Klahoose, and Sliammon) are the Chilcotin (Athabaskan) to Northeast, and the Kwakwala (Northern Wakashan) to the Northwest. The Sechelt (Coast Salish) are located to the south of Sliammon territory, and Lillooet (Northern Interior Salish) to the east across the Coastal Mountains.

Appendix II: Language Consultants

This appendix contains a biographical sketch for each of the language consultants who have so generously contributed to the documentation of the language presented in the context of this dissertation: čéćehatànapıč ! The consultants names appear in alphabetical order.

Dominic, Phyllis

Born: May 4th, 1940 at Sliammon. Her grandfather was Johnny Dominic of Squirrel Cove. Mrs. Phyllis Dominic was raised by her paternal grandparents at Squirrel Cove on Cortes Island, and moved back to Sliammon at age nine.

George, Mary

Mrs. Mary George (née: Tom) was born August 2, 1924 at Sliammon, B.C. Her grandfather (her father's father) was Chief Tom (Thomas Timothy) of Sliammon, who played a significant role in providing her with her knowledge of the language. Mrs. Mary George was monolingual in Sliammon up until age six when she attended elementary school at Sliammon, and learned some English. She never attended residential school. Mrs. Mary George has lived at Sliammon all her life, and has been a language consultant for many years.

Hanson, Eva

Born: November 5, 1927.
Mrs. Eva Hanson's mother was Cecilia Galligos of Sliammon, and her father was Albert Wilson of Church House. Mrs. Eva Hanson grew up in Homalco territory, and attended the school at Church House up until grade 6. She did not attend residential school. She moved to Sliammon in 1980.

Harry, Marion

Born: April 30, 1937 at Church House, B.C.
Mrs. Marion Harry's father was Johnson Wilson of Church House, B.C. Her great-grandfather was George Wilson of Church House. Her mother was Josephine George of Church House, B.C. Mrs. Marion Harry's maternal grandfather was the well-known carver Frank George, also of Church House, B.C. Mrs. Marion Harry was monolingual until age 5 when she left Church House to attend residential school in Sechelt. She returned to Church House, and then moved to Sliammon in 1968. She currently teaches the Sliammon language in the Powell River school district.

Harry, Pete

Born: April 17, 1939 at Church House, Bute Inlet.
Mr. Pete Harry's mother was Elizabeth (Hackett) Harry of Church House, and his father was Jimmy G. Harry also of Church House, B.C. Mr. Pete Harry was monolingual until about age 12, and moved to Sliammon from Church House in 1968.

McGee, Agnes

Born: November 14, 1923
Mrs. Agnes McGee's father was Jimmy Timothy of Sliammon and her mother was Molly Timothy (née: George) of Sliammon. Mrs. Agnes McGee's paternal grandparents were Captain Timothy of Sliammon, and Anne Timothy of Cape Mudge. Agnes' maternal grandparents were Bob and Jeannie George of Sliammon. Agnes' first language is Sliammon which she spoke at home. Her parents Jimmy and Molly spoke both Sliammon and Chinook Jargon. Agnes McGee attended the elementary school in Sliammon and did not attend Residential School.

Mitchell, Joe

Born: October 16, 1935 in Squirrel Cove
Mr. Joe Mitchell's mother was Rose Dominick (Klahoose) from Squirrel Cove, Cortes Island. His father was William Mitchell, originally from Sechelt. Mr. Joe Mitchell moved to Sliammon in 1959 and in 1971 was elected Chief. He actively pursued his interests in the relationship between language and culture. He was an expert story-teller who brought these traditional oral teachings to life. He passed away May 11th, 2000 at Sliammon.

Paul, Elsie

Born: September 21, 193I at Sliammon
Mrs. Elsie Paul's parents were Gilbert Francis and Lily (Timothy) Francis of Sliammon. Her maternal grandparents were Jim and Molly Timothy of Sliammon. Mrs. Elsie Paul was raised by her maternal grandmother Mrs. Molly Timothy. Mrs. Elsie Paul's first language is Sliammon, and she learned to speak English as a second language. Mrs. Elsie Paul continues to share her knowledge of the language and traditional teachings both within the community and within the broader cross-cultural context of the school system and other agencies.

Pielle, Sue (née: Mitchell)

Born: December 23, 1932 in Sliammon
Mrs. Sue Pielle is the daughter of Rose Dominick (Klahoose, Squirrel Cove) and William Mitchell (Sechelt); she is Mr. Joe Mitchell's older sister. Mrs. Sue Pielle started to teach the language in 1977 at the alternate school at Sliammon. In 1982 she began to teach the language and traditional culture at the Sliammon či:čuý school. She continues her active involvement in the Sliammon language program, and has been very involved in producing a number of Sliammon books and videos.

Appendix III：Comparison of Transcription Systems

The following appendix is intended as a guide to the transcription systems used from （1971－present）in order to write the Mainland dialects：Homalco，Klahoose，and Sliammon． Given certain issues of complexity in establishing direct correspondences for the transcription systems of Sapir（1915）and Barnett（fieldnotes），they are not included in the table below．The system adopted in this thesis appears as Current System．
（1）Mainland Comox：Language of the Homalco，Klahoose，and Sliammon peoples

Current System	Davis（1971 et seq）	Hagège（1981）	Kennedy \＆Bouchard（1983）
p，p	p，p	p，p	p，p
$\mathrm{t}^{\text {® }}$ ， $\mathrm{t}^{\text {® }}$	c，ç＇	$\mathcal{C}^{\prime}, \mathrm{c}^{\prime}$	th，th＇
t，t＇	t，t＇	t，t＇	t，t＇
入，λ	夫，成	夫，成	tl, tl
č，ċ	č，${ }^{\text {c }}$	č，${ }^{\text {c }}$	ch，ch＇
k，k	$\left.\mathrm{k}, \stackrel{\mathrm{k}}{ }{ }^{\text {［ }} \mathrm{k}^{y}, \mathrm{k}^{y}\right]$	k，${ }^{\text {k }}$	k，k
$\mathrm{k}^{\mathbf{w}}$ ， $\mathrm{k}^{\mathbf{w}}$	$\mathrm{k}^{\mathrm{w}} / \mathrm{k}^{0}, \mathrm{k}^{\mathrm{w}} / \mathrm{k}^{\text {o }}$	$\mathrm{k}^{\mathbf{w}}, \mathrm{k}^{\mathbf{w}}$	kw，kw＇
q，${ }^{\text {q }}$	q，＇，	q，${ }_{\text {q }}$	k，k＇
$\mathrm{q}^{\mathbf{w}}, \dot{\text { q }}^{\mathbf{w}}$		$\mathrm{q}^{\mathbf{w}}, \mathrm{q}^{\mathbf{w}}$	kw，kw＇
θ	θ	θ	th
s	s	s	s
4	t	！	lh
š	s	s	sh
$\mathrm{x}^{\mathbf{w}}$	$\mathrm{x}^{\mathrm{w} / \mathrm{x}^{0}}$		xw
$\overline{\mathrm{x}}, \overline{\mathrm{x}}^{\mathbf{W}}$	$\underline{x}, x^{w / x^{0}}$	$\underline{x}, \underline{x}^{\mathbf{w}}$	X，XW
m, m	m, m	m	m, m
n，${ }^{\text {n }}$	n, n	n	n，n
1，I＇	1，I＇	L	1，i＇
y，y	y, y	y	y，y
w，w	w，w	W	w，w
h	h	h	h
？，＇	？，＇	$?$	7
İ，${ }^{\text {J }}$	J，？ J	j	j，？${ }^{\text {j }}$
g，＇g	g，？g	g	g，？g
／L，$L^{\prime} /[y \sim w \sim q \sim ?]$	$y \sim w \sim \pm \sim ?$		$\mathrm{y} \sim \mathrm{w} \sim+$～？
／i／	／V	／e／	$\mathrm{i} / \varepsilon /[\varepsilon \sim \mathrm{e} \sim \mathrm{I} \sim \mathrm{i} \sim \mathrm{ei}]$
／${ }^{\prime}$	／u／	／o／	u $/ \mathrm{o} /[\mathrm{o} \sim \mathrm{u} \sim 0]$
／a／	la／	／a／	a／a／［a］
\bigcirc	$1 / 2$	$1 / 2$	$\mathrm{e} / \mathrm{l} /[\wedge \sim \partial \sim \mathrm{v}[\mathrm{v}]]$
i：	i：	e：	il
u：	u：	o：	uu
a：	a：	a：	aa

（2）

Current System	Kroeber（1991／1999）	Blake（1992）	Watanabe（1994，2000）
p，p	p，p	p，p	p, p＇
$\mathrm{t}^{\dagger}, \mathrm{t}^{\ominus}$	$\mathrm{t}^{\ominus}, \mathrm{t}^{\ominus}$	¢，¢＇	$\mathrm{t}^{\theta}, \mathrm{t}^{\prime}{ }^{\text {e }}$
t, t	t, t	t，t	t， t^{\prime}
č，${ }^{\text {c }}$	č，ċ	č，¢ ¢	č，č＇
入，入	立，成	λ, χ	ᄎ，λ＇
k，k	k，k	k，k	k，${ }^{\prime}$
$\mathrm{k}^{\mathrm{w}}, \mathrm{k}^{\mathrm{w}}$	$\mathrm{k}^{\mathrm{w}}, \mathrm{k}^{\mathrm{w}}$	$\mathrm{k}^{\mathrm{w}}, \mathrm{k}^{\mathrm{w}}$	$\mathrm{k}^{\mathrm{w}}, \mathrm{k}^{\text {＇w }}$
q，${ }^{\text {q }}$	9，${ }_{\text {d }}$	q，${ }^{\text {q }}$	q，q＇
$q^{\mathbf{w}}, \dot{q}^{\mathrm{w}}$	$\mathrm{q}^{\mathbf{w}}, \dot{q}^{\mathbf{w}}$	$\mathrm{q}^{\mathbf{w}}, \dot{q}^{\mathbf{w}}$	$\mathrm{q}^{\mathrm{w}}, \mathrm{q}^{\text {w }}$
θ	θ	θ	θ
s	s	s	s
\pm	t	4	t
s	$\stackrel{\text { s }}{ }$	š	š
$\mathrm{x}, \mathrm{x}^{\mathbf{w}}$	$\mathrm{x}^{\mathbf{w}}$	x， $\mathrm{x}^{\mathbf{w}}$	$\mathrm{x}^{\mathbf{w}}$
	x， x $^{\text {w }}$	$\underline{x}, \mathrm{x}^{\mathbf{w}}$	\underline{x}, x^{w}
$\mathrm{m}, \mathrm{m} \quad[? \mathrm{~m}, \mathrm{mP}, \mathrm{m}]$	m, ？ m / m ？	m, m［ $\mathrm{m} \mathrm{m}, \mathrm{m} ?, \mathrm{~m}]$	$\mathrm{m}, \mathrm{m}^{\prime}\left[? \mathrm{~m}, \mathrm{~m} ?, \mathrm{~m}^{\prime}\right]$
$\mathrm{n}, \mathrm{n} \quad[\mathrm{P}, \mathrm{n}$ ， n$]$	$\mathrm{n}, \mathrm{p} / \mathrm{n}$ ？	$\mathrm{n}, \mathrm{n} \quad[\mathrm{n}, \mathrm{n}$ ， n$]$	$\mathrm{n}, \mathrm{n}^{\prime} \quad\left[\mathrm{n}, \mathrm{n}\right.$ ， $\left.\mathrm{n}^{\prime}\right]$
$\underline{1,1} \quad[? 1,17,1]$	1， $1 / / 1 ?$	$1, l^{\prime} \quad[P 1,12,1]$	1，${ }^{\prime} \quad[P 1,17,1]$
$y, \dot{y} \quad[? \mathrm{y}, \mathrm{y}$ ？, y$]$	$\mathrm{y}, \mathrm{iy} / \mathrm{y}$ ？	$\mathrm{y}, \mathrm{y} \quad[\mathrm{y}, \mathrm{y}, \mathrm{y}, \mathrm{y}]$	y，y＇［P1，17， 1$]$
	w，？w／w？	w，w［？w，w？${ }^{\text {w }}$ ］	w，w＇［？w，w？，w $]$
h	h	h	h
？	？	？	$?$
J，${ }^{\text {J }}$	¢，？${ }^{\text {r }}$	$\mathrm{Y}, \mathrm{Y}^{\prime}[\mathrm{j} \sim \mathrm{y} \sim \mathrm{i} \sim \mathrm{c}]$	j，j
g, g	g, Pg	W, W＇$\left[\mathrm{g} \sim \mathrm{W} \sim \mathrm{u} \sim \mathrm{x}^{\mathbf{W}}\right]$	g，g＇
L，L＇	［ $4 \sim y \sim w \sim ?]$	L，L＇［ $\dagger \sim y \sim w \sim ?]$	L，L＇
／i／	－	le／	／i／
／u／	u	／o／	／${ }^{\prime}$
la／	a	la／	／a／
2	∂	／a／	$12 /$
long vowel V：	V ．	V ：	V：［i：，ε ：，u：，o：，a：］
half long V ．	\cdots	V ．	V．

Appendix IV: Consonant Contrasts

IV. 0 Introduction

The data in this Appendix provide evidence for the Consonant contrasts in Sliammon. The examples are organized from a phonological perspective, first by Manner of Articulation: Stops (stops and affricates) §IV.1, Fricatives §IV.2, Sonorant Obstruents /J, j$, \mathrm{g}, \mathrm{g} / \S I V .3$ and Resonants in §IV.4. Then within each section, the sounds are presented by Place of Articulation starting with anterior consonants moving progressively further back in terms of Place of Articulation: Labials, Interdental/Dental, Alveolars, Alveopalatals, Velars, Uvulars, and Laryngeals. Each plain sound precedes its glottalized/labialized couterpart. Every attempt has been made to provide a few examples of each consonant sound in word-initial, word-medial (syllable initial and syllable final), and word-final position in the environment of each one of the vowels: $i, u, a,[2]$. Word-internal examples of glide vocalization are also given. The data in the left-hand column shows the phonemic vowel quality plus the effects of schwa epenthesis whereas the data in the right-hand column is the surface output form. The exact morphological composition of each word is not indicated here, although suffixes are introduced by a hyphen (-) and Lexical Suffixes by the use of an equals sign $(=)$. An epenthetic h appears in square brackets: $[\mathrm{h}$], as does the stative infix [i], and [i] associated with diminutives. There are still some gaps in the data as indicated by the dotted line ----. This appendix should therefore be considered a document which represents work in progress, and can be subsequently refined and updated. Place names cited from Kennedy and Bouchard are marked K\&B (1983).

IV. 1 Obstruents: Stops and Affricates

The Sliammon Stops and Affricates are presented in the following order by Place of Articulation from sounds produced with primary stop closure in the front portion of the oral cavity to sounds produced progressively farther back in their Place of Articulation (LAB, COR, DOR, PHAR):

p

（1）word－initial position
a．pit
piləq
piw ${ }^{1}$
pišpiš
b．pus＝tat
pus－ $\mathrm{Pm}=\mathrm{min}$
puk $^{\text {w }}$
pun
pu？px ${ }^{w}$
pux ${ }^{w}-[i] m$
puh－Rom
puえ゙－［i］m
c．pal
pa－paq－aq
paL＇
d．pač－p［i］č
pott
paq
$p 2 q^{w}=a y$
pəskit

［pey ${ }^{\text {Y }} \sim$ p péit］	low
［péilıq ${ }^{\text {h }} \sim$ pél $^{\text {d }}{ }^{\text {h }}$ ］	bracket fungus，mushroom
［péwt］	rendered fat，lard
［pisispiśs］	here kitty，kitty（calling cat）
［póş＾＾）	Adam＇s apple
	baking powder
［púkw］	book
［pun］	spoon
［pú？px ${ }^{\text {w }}$ ］	kindling
［púx wem］ú：	steam
［púh？＾m～pú：？＾m］	wind
［pú：${ }^{\text {®em］}}$	dust
［páli］	heron
［pápaqaq］	dawn
［pápa］	one
［páčpič］	awake
［ри́tt］	thick
［p＾q ${ }^{\text {h }}$ ］	white
［pへ́q ${ }^{\text {way }}$ ］	rotten wood
［páskıt ${ }^{\text {h }}$ ］	pilot bread（English buiscut）

(2) medial position: between vowels (syllable initial before i, u, a, ə)
a. Xip=iws
kapi
nəp $=i q{ }^{\text {wan }}$
pi-Pi-pi-pukw ${ }^{w}$
b. $q^{w} u p=u \theta$ in
kapu
c. $Ө$ ара $\check{x}^{w}=u s$
?upan
夫ip=awus
tap $=$ aymix $^{w}=$ tan
$k^{\text {wiupa }}$
d. mapal=awus
pəpa
рәра=ауа
[丸̌́pews]
[kápi ~ kyápi]
[$n \wedge ́ p \varepsilon ́ q{ }^{w} \wedge n$]
[pé? ε pèpuk ${ }^{*}$]

[kǽpo]
[$\because a ́ p a$ ẍºs $^{\text {ºs }}$
[?о́рлп]
[خ̇é-pawus]
[tápaymìx ${ }^{w}$ ton]
[$k^{w u ́ p a ~} \sim k^{w}{ }^{\text {úp }}$ _]
[máp^làwus]
[рә́р^]
[páp^hàyє]
underwear
coffee
brain
little books (dim.pl.)
beard
coat
antler, horn
ten
below the eye
brassiere, bra (cf. táptən)
grandfather, grampa
pupil (eye)
pepper
pepper shaker
(3) medial position: before a consonant (syllable final after $\mathrm{i}, \mathrm{u}, \mathrm{a}, \boldsymbol{\partial}$)

a. tip=tən	[\ddagger épton]	eyelashes
b. $\breve{\mathrm{x}}^{\text {w }} u p-\breve{\mathrm{x}}^{\text {w }} u p$	[$\breve{\mathrm{x}}^{\mathrm{w}} \bigcirc \mathrm{p}^{\mathrm{h}} \breve{\mathrm{x}}^{\mathrm{w}} \bigcirc \mathrm{p}^{\mathrm{h}}$]	hummingbird
sup=nač	[sópn^č]	tail
c. saplin	[sáplen]	bread
$\mathrm{k}^{\mathbf{w}} \mathbf{u p}=a p=s ̌ i n$	[k^{w} úpapšin]	heel
tap $=$ ton	[táptən \sim táptn]	corset (tight=thing)
d. nəp=šən	[nว́pšın]	marrow
nop=nač	[nópn^č]	pants
х̆эрјॅа $=\mathrm{k}^{\mathbf{w}} \mathbf{u}$		back eddy
qap-t	[q^́pt ${ }^{\text {b }}$]	touch it
e. $\mathrm{k}^{\mathrm{w}} \mathbf{u}-\mathrm{k}^{\mathrm{w}} \mathrm{pa}$-?	[$\mathrm{k}^{\text {wúk }}{ }^{\text {w/ }} \mathrm{paP}$]	grandfather

(4) word-final position (syllable coda after $i, u, a, ~ ə)$
a. -ip

b. $\check{\mathrm{X}}^{\mathbf{w}} \mathbf{u p}-\breve{\mathrm{X}}^{\mathbf{w}} \mathbf{u p}$		hummingbird
Өijıiq"up		hat
Pupp	[?ó?p ${ }^{\text {h }}$]	Church House (place name)
夫̇up	[${ }^{\text {®óp }}{ }^{\text {h }}$]	heal
c. Paya?-ap	[Páye?^́p]	your (pl) house
tuy ${ }^{\text {=ap }}$	[túyPap]	follow behind s.o.
tat-nač=ap	[tátnáčep]	hip
čapө	[č̌̌p θ]	aunt, uncle
d. 夫̇əp	[${ }^{\prime} \wedge \mathrm{p}$]	deep

’

(5) word-initial position (syllable onset before i, u, a, ∂)
a. pipi
p iq
piyqin
$\dot{p} i^{\ominus}=a y=i i^{\theta} a=t ə n$
pit ${ }^{\ominus}$ -
pi-pot ${ }^{\ominus}[i] t$
b. puqu ${ }^{w}$

puhu
c. paq̉əm
palat ${ }^{\text {® }}$
p’ə $=$ =aya
p’ayan
[p’́çey \sim ṕ ́ćpei]
[p $\mathrm{ṕq}$ ’]
[p’éiqen ~ p’éiq६n]

[p’épa? ${ }^{\ominus} t^{\text {t }}{ }^{\text {b }}$]
[p’ọ́w]
[p’óq̉ ${ }^{w}{ }^{\text {oq }}{ }^{w}$]
[p’óho] [póx ${ }^{w}$ o]
[p’áq́^m]
[pálınt ${ }^{\text {r }}$]
[p’á?q̉áyl]
[páỷยn~ pápəyєn]
thin
wide
shoulder, shoulder blade washing machine squeeze, wring out (s.t.)
small tin can
brown, grey
get moldy
raven
green, yellow, orange
skunk
smoke vent, stovepipe
fir bark, bark of any tree
d. p’ə
p’ $ə \theta \mathrm{k}$
p’gaý
p’q̣
$p \partial^{*}{ }^{\ominus} t$
$\dot{p}^{2} t^{\ominus}-$ phet $^{\boldsymbol{\theta}} \mathbf{t}$
[ṕńӨ]
[ṕヘ́Ok]

[ṕńq̆]
[páat $t^{\ell t^{h}}$]
[p’át $\left.{ }^{\ominus}{ }^{\prime}{ }^{\prime} ? t^{\ominus}{ }^{\ominus} t^{h}\right]$
black
bullhead (fish)
halibut
smoke (from fire)
tin can
tin cans
(6) medial position: before vowel (syllable initial)
a. p’zy-p’iyqin

shoulders (pl.)
b. ?apuk ${ }^{w}$

maggots
tup -at
[tópot]
to peel (s.t.)
c. tapas
[tápas]
cave
d. --p’
(7) medial position: before a consonant (syllable final)
a. --ip C
b. pup̉̉ว ${ }^{2} \mathrm{x}^{w}$
c. Pap’tən
d. $s ə \dot{p}^{=}=$šən
p’ax̆-p’x̆u
(8) word-final position
a. Pasip’
[7ásep’]
b. tup
[tóp’]
$\check{x}^{w} u p$
[x' $^{\text {wóph }}$]
c. x̆ap’
[xáp̉]
d. yәp
[yıp’]
Pasp
[?ว̊sp’]
e. $\breve{\mathbf{x}}^{\mathrm{w}} \mathbf{u} \mathrm{P}_{\mathrm{x}}{ }^{\mathrm{w}} \dot{\mathrm{p}}$

to call s.b. down
peel
pierce, poke
cradle basket
to break (as cup)
end, finish
awl

\mathbf{t}^{0}

The sound t^{θ} occurs in a very limited number of morphemes. The sound t^{θ} is the form of the first person singular possessive pronoun my, as in the following examples.

[tə t^{θ} Páye?] my house
[páw?us tot ${ }^{\theta}$?ápls] I've got one apple

As documented by Kroeber (1999:177) the nominalizer proclitic s is omitted after the possessive proclitic t^{θ} (as well as $\theta 2$ sgposs, and ms 1 plPoss). Kroeber observes that the possessive proclitics favour the presence of the determiners for phonotactic support since Sliammon (MComox) in general lacks initial consonant clusters. Consider the following data from Kroeber (1999) which shows the first person singular possessive proclitic \mathfrak{t}^{θ} in nominalized clauses.
(10) data from Kroeber (1999: 177)

They (might) say about me that I am a sand dune

Impf-snow this.morning det lsg.Poss(+Nom) wake-past

It was snowing this morning when I woke up

The glottalized counterpart t^{ϑ}, on the other hand, occurs with much greater frequency.
\mathfrak{t}^{θ}
(11) word-initial position (syllable onset before i, u, a, ∂)

a. $\mathfrak{t}^{\ominus} \mathrm{i}: \mathbf{t}^{\ominus} \mathrm{it}$	[$\left.\underline{t}^{\ominus} \varepsilon^{\prime} \cdot t^{\ominus} \varepsilon t\right]$	narrow
t^{θ} ič-ič	[${ }^{\text {® }}$ ¢́čič]	get bitter
	[tééyıč]	twisted
$\hat{t}^{\ominus} \mathrm{ik}^{\mathbf{w}}$ -	[$\left.{ }^{\bullet}{ }^{\ominus} \varepsilon \dot{\mathbf{k}}^{\mathrm{w}}-\right]$	left (as in left-handed)
$\mathbf{t}^{\boldsymbol{\theta}} \mathrm{iwq}^{\text {w }} / \mathrm{t}^{\ominus} \mathbf{i w q}$		red elderberry
b. $\mathfrak{t}^{\ominus} \mathbf{u} \vec{k}^{w}$	[${ }^{\text {¢ }} \mathrm{ok}{ }^{\text {² }}$] $]$	day, light, bright
$\mathrm{t}^{\ominus} \mathrm{um}=\mathrm{aju}$	[${ }^{\text {®ómáQ̌yu] }}$	barnacle
		ling cod
$t^{\text {¢ }}$ usus	[t¢ósos]	dusk
$t^{\ominus} \mathrm{u}$? $=$ čis	[t ${ }^{\ominus}$ ó?čıs]	seven
		dish pan
c. \mathfrak{t}^{\ominus} apiš	[${ }^{\text {®}}$ ápıš]	throw it
$t^{\ominus} \mathrm{a}^{\text {c }}$ [i] ${ }^{\text {d }}$	[t¢áçéct]	numb
$\mathrm{t}^{\text {®atiq }}$	[${ }^{\text {¢ }}$ áṫ乇¢̉]	a drop of water
d. $t^{\theta} \partial \chi^{\prime}$	[${ }^{\ominus}{ }^{\text {a }}$ ¢ ${ }^{\text {c }}$]	bitter, sour
$\dagger^{\text {®oms }}$	[${ }^{\text {® }}$ Amš]	soaked
$\mathfrak{t}^{\text {®ačili }}$	[${ }^{\text {® }}$ áčele \sim ~ ${ }^{\text {® }}$ Óčéle]	kingfisher
$\mathrm{t}^{\text {¢ }}$ วmtəq	[${ }^{\ominus} \wedge$ ¢́mtıq]	eulachon, candlefish
t^{\ominus} วm=tən	[${ }^{\text {® }}$ ámtən]	breast
\mathfrak{t}^{\ominus} Ot=tn	[t ${ }^{\text {® }}$ átṭ̣]	Refuge Cove K\&B(1983)
$\mathrm{t}^{\ominus} \mathrm{Jk}^{\mathrm{w}}-\mathrm{t}$	[$\left.t^{\ominus} v k^{w} t\right]$	wipe it

(12) medial position: (syllable initial before i, u, a, ∂)

a. $\hat{t}^{\theta} \mathrm{i}-\mathrm{t}^{\ominus} \mathrm{i} \mathbf{k}^{\mathbf{w}}$		worm
$\mathrm{t}^{\text {® }} \mathrm{i}-\mathrm{t}^{\text {® }} \mathrm{iq}$	[$\left.\mathfrak{t}^{\ominus} \varepsilon \varepsilon^{\dagger} \hat{\theta}^{\dagger} \varepsilon q\right]$	mud
$t^{\ominus} \mathrm{ix}^{\mathrm{w}}-\mathrm{t}^{\ominus} \mathrm{ix}^{w}$	[$t^{\ominus} \mathrm{e}^{\mathrm{w}} \mathrm{t}^{\boldsymbol{\theta}} \mathrm{ex}^{\mathrm{w}}$]	fish hawk
x̆at ${ }^{\ominus}=$ inas	[$\mathrm{x} a ́: t^{\text {®énnss] }}$	bone centre of chest
monat ${ }^{\text {® }} \mathrm{i}$	[mə́nat ${ }^{\text {® }}$ ¢ ${ }^{\text {] }}$	drum
b. $t^{\varphi} u-t^{\dagger} u \dot{q}^{\text {w }}$		feather
$n \mathrm{nat}^{\text {® }}=\mathrm{us}$-əm	[át $^{\text {® }}$ OS \wedge m]	nod one's head
c. $g \partial t^{\theta}-\mathrm{amin} / \mathrm{gt}-\mathrm{Pm}=\mathrm{min} /$		chisel
		wash clothes
$\dot{p} \mathrm{it}^{\ominus}=\mathrm{ay}=\mathrm{it}^{\ominus} \mathrm{a}=\mathrm{tan}$		washing machine
$t^{\ominus} \partial \check{x}^{\prime}=i^{\theta} \mathrm{a}$		worn out (e.g. clothing)
haj $=1 i^{+\theta}=$ ton	[hájit ${ }^{\text {®áatṇ] }}$	frame for tanning hides
d. $\theta \mathrm{at}^{\ominus} \mathrm{\partial m}$		spring salmon
		breasts (pl)
		blanket

(13) medial position: before a consonant (syllable final)
a.

b. $--u^{\text {i }}{ }^{\theta}$
c. $\mathrm{t}^{\ominus} \mathrm{a}-\mathrm{t}^{\ominus} \mathrm{j} \mathrm{j}$ imin
$\check{x} a^{\ominus}{ }^{\ominus}-\theta u t$

$\hat{k}^{w} \boldsymbol{x t}^{\theta}=$ nač-t
$\dot{k}^{\mathrm{w}} \boldsymbol{\mathrm { t }}{ }^{\dagger \theta=}=\mathrm{nač}=\mathrm{igit}$
$\mathfrak{t a t}^{2}{ }^{\theta}$ s̆

[x̌át ${ }^{\theta}$ Өot]

[$\left.k^{w} v^{\prime} t^{\theta} \mathrm{n} \wedge c ̌ t\right]$
[$\mathfrak{k}^{\text {wát }}{ }^{\ominus}$ načígif]

shadow
to fit (as coat, clothes)
wrist
turn s.t. upside down
Alpha Bluff K\&B(1983)
overturned canoes
to squirt
(14) word-final position

a. xit^{\ominus}		uncooked
$\overline{\mathrm{x}} \mathrm{i}^{\ominus}$	[$\check{\mathbf{x}}^{\boldsymbol{c} \mathrm{t}^{\ominus} \text {] }}$	iron (metal)
b. $-u^{\text {® }}$		glutton, uvula
c. palat ${ }^{\text {® }}$	[pálııt ${ }^{\text {® }}$]	skunk
d. Pat^{\ominus}		bay
¢ $\mathrm{at}^{\boldsymbol{\theta}}$ -	[q3at ${ }^{\text {® }}$-]	gather
e. $m ə \dot{q}^{w} t^{\text {e }}$	[mápq ${ }^{w} t^{*}{ }^{\text {® }}$]	wild onions, onion

t

(15) word-initial position

a. tih	[tih \sim ti:]	big
titik	[títik] i:	skinny
tiqiw	[téqEw]	horse
tix ${ }^{\text {w }}$ - ${ }^{\text {a }}$	[tíx ${ }^{\text {® }}$ ^t]	tongue
b. tuq̉ ${ }^{\text {m }}$ um	[tóq̧ ${ }^{\text {w }}$ ¢m]	a cold
tumis	[túmıš]	man
	[tótex ${ }^{\text {w }} \ddagger$ af $]$	necklace
c. $\operatorname{tai}[1] \mathrm{c}$	[tálıč]	round
teq ${ }^{\text {w }} \mathbf{a}$	[táqq̉ ${ }^{\text {w }}$ a]	octopus, devil fish
takin / takən	[tákın]	stockings
\tan	[tan]	mother
taPa=čis	[tálačis]	to travel
d. $\mathrm{tak}^{\mathbf{w}}=\mathrm{an} a$	[túk ${ }^{\text {wana }}$]	deaf
tosit	[tíset]	near
tak ${ }^{\text {w }}$ i i	[túk ${ }^{\text {wiqe] }}$	rabbit
tom	[tıṁ] tヘ́m?	belt
t--tow	[titu?]	starting to freeze, icy

(16) medial position: before a vowel or syllabic consonant (syllable initial)

a. $\hat{\mathbf{k}}^{\mathrm{w}} \boldsymbol{\partial}=\mathrm{ic}$ čən	[${ }^{\text {ww}}$ Útéčən]	humpback salmon
sop $=$ ajuitiq	[sáippaj̆ıteq]	get hit on the chin
b. saftx ${ }^{\text {w }}$ s	[sáqtos]	his wife
c. tup-tamiš /tu-tumiš+[?]/	[túPtárııš] : tu-ta?mıš	little boy
d. tip=ton	[tépton]	eyelashes
tom $=$ us=ton	[tá?móstṛ]	headband
$\dot{q}^{\text {watam }}$?		river
e. Ruftx ${ }^{\text {w }}$	[?ót . tx ${ }^{\text {w }} \sim$ Pót . two $]$	enter
sattx ${ }^{\text {w }}$	[sáł . tx ${ }^{\text {w }} \sim$ sáq . two $]$	woman
sa[?]ttx ${ }^{\text {w }}$	[sáqt . tx ${ }^{\text {w }} \sim$ sáqł . two $]$	young girl at puberty
Rattx ${ }^{\text {w }}$	[${ }^{\text {át . } \mathrm{tx}^{\text {w }} \sim \text { Pát . two] }}$	room
Piytx ${ }^{\text {w }}$	[Péy . tx ${ }^{\text {w }}$ ~ Péy . tor]	roof

(17) medial position: before a consonant (syllable final)

a. ti-th=unax ${ }^{\text {w }}$	[títhónax ${ }^{\text {w }}$]	rough water
b. tuťx ${ }^{\text {a }}=4 a \ddagger$	[tótx̌ ${ }^{\text {w }}$ 'ay ${ }^{\text {a }}$	necklace
c. $\mathrm{s}^{\mathrm{s}} \mathrm{t}=\mathrm{q}$ in	[šÉtq¢n]	upper lip
tat=nač=ap	[tátnáčep]	hip, rump
	[Ěítqàmın ~ čétqàmın]	knife
$\dot{q} \partial \mathrm{c}^{\mathrm{w}}$-2t	[$\mathbf{q}^{\text {人́tx }}{ }^{\mathbf{w}} \mathrm{At}$]	burn it

(18) word-final position
a. $\breve{\mathbf{x}}^{\text {wipinit }}$
[$\left.{ }^{w}{ }^{w} \varepsilon \in \varepsilon t\right]$
wedge
$\dot{q}^{w i t}$
$\check{x}^{\mathbf{w}}$ uwit
[$\left.{ }^{\prime}{ }^{w} \varepsilon t\right]$
[${ }^{\text {xwówet] }}$
beach
ditch, hallow

tup-it	[tópit] tó:pit ${ }^{\text {t }}$?	wind, sundried fish
tupamt	[tó? ${ }^{\text {amt] }}$	paddle
c. tap $=$ us	[tápos ${ }^{\text {c }}$	blind
tapas	[tápas]	cave
tamšin	[támšın]	twins
tam ${ }^{\text {a }}$ \% ${ }^{\text {w }}$	[támbx ${ }^{\text {w }}$]	gooseberry
tal	[tal] tal	basket ogress
tałam	[tåłəm ~ tåt ${ }^{\text {l }}$ ¢m]	cedar sticks (for basket)
tays	[tayš]	blanket
taqa	[táqa]	salal berry
tam-Rom	[támPəm]	to guess
d. '̇əp=qin-? ${ }^{\text {am }}$	[ťápq\&n̉วm] ṅ	cook bread by campfire
top $=$ qin	[tópqın]	campfire bread
tot $^{\dagger}-[\mathrm{i}] \mathrm{m}$		red
tok $^{\text {w }}$ s	['2k $^{\text {w }} \mathrm{s}$]	to burst
tวq่t	[táqq̉t]	mountain
tıq*อm		thimbleberry
fวx̆əm	[ṫへ́x̆əm]	six
tagəm	[ṫへ́gəm]	moon, sun
	[tárg^9 ${ }^{\text {T] }}$	clay

(20) medial position: before vowel (syllable initial)
a. tit-tos-tis
teatiq
[tétóstés]
tiy-tiy=mix ${ }^{w}$ / toy-tiy=mix ${ }^{w}$
[${ }^{\text {ºát }} \mathrm{t} \varepsilon$ q̉]
b. --tu
c. taq-taq
[táqtaq ~ táqí̀iq]
any bird
drop of water, to drip
lots of medicine

slow

kwuta		barbecuing stick
	[tíṫởtaq̉ąáq] stress!	barn swallow
giṫ ${ }^{\text {x }}$ w	[gítə ${ }^{\text {x }}$]	Mary Point (Cortes Island)
gat-at	[gíṫıt]	to pry up

(21) medial position: before a consonant (syllable final)
a. tī-tšus
b. ---ut'C
c. ta-ṫm-añaq
d. $x^{w} \partial t^{\prime}=m ə x^{w}$

e. $\check{x} \partial{ }^{t}{ }^{\mathbf{k}}{ }^{w}$
word-final position
a. ---it
b. gaiut
$\hat{k}^{\text {w }}$ unut
c. tagat
d. $\mathrm{kgt} / \mathrm{kit}$
$\mathrm{k} \boldsymbol{t}^{2}=\mathrm{iq} \mathrm{q}^{\mathrm{w}}=\mathrm{u}^{\mathrm{j}} \mathrm{a}$
$\mathbf{k}^{\mathrm{w}} \boldsymbol{\mathrm { t }} \mathrm{t}$

خ

(23) word-initial position
a. $X_{i s}=q i n$
b. λu
c. $\lambda a-\lambda a p x^{w}$

Xaš-̇iš-əm
[$\chi i s ̌ q$ qn]
[téťšyos]
[tátmà?n^q]
[x^{w} vitmux w]

[gá?ot']
[${ }^{\text {kwóó?not] }}$
[tá?gıt]
[kıt']

$\left[\mathrm{k}^{\mathrm{w}} \wedge \mathrm{t}\right]$
[خáخ^px"]
[ไášخišəm]
small salt water fish
to imitate s.b.
to drop s.t.
skull
totem pole
oar
porpoise
herring
little; little finger
pinky, little finger
go upstream

خas	［ \as］	glass
	［ ${\text { дәрх }{ }^{\text {w }} \text { ］}}^{\text {］}}$	broke
خəəəm	［ λ へ́q＾m］	grass，straw
		straw hat
خ ̇s－t	［ خóst］	punch him
えət－えaఫ－？ $\mathrm{m}=\mathrm{min}$		iron（for ironing clothes）
$\chi \partial \bar{x}^{\text {w }}$－t		spit it out
丸əm̉̇əm	［ イヘ́m̉̇əəm］	wet
خərm－at		wet it
خว－大［ə］m－at	［ Xó̇aPmıt］	wetting it

（24）medial position：before vowel（syllable initial）
a．$\check{x} \partial \lambda=i w s$
b．$--\lambda u$

$x^{w} \partial \lambda=a \jmath{ }^{3} u$
d．p’ə－əm
（25）medial position：before a consonant（syllable final）
a．$---i \neq C$
b．$--u x C$
c．$\lambda \mathrm{xa}-\mathrm{Xq} \mathrm{q}-\mathrm{t}-\mathrm{awt} \mathrm{t}$
d．p’əえš＝igə $\ddagger /$ p’ $\partial \grave{x}=$ igi \dagger

［p’へ́オəm］
［x̆へ́̇ews］
［Xíṅᄎan］
［x＂v́خa？${ }^{\text {Tu }} u$ ］
－－－－

［خáxqatàwt］
［p’＾́才šígıł］

feather，pluck a bird
real shy trout，any kind of trout pick fruit
whispering to each other launch a canoe breaking it
（26）word－final position
a．$-\mathrm{i} \lambda$
b．$--u \lambda$
c．$\check{x} a \lambda$
［x̆a夫］
d．－－ə入

＊

（27）word－initial position

a．Xiq̉iw		dark
		fast
${ }_{\chi} \mathrm{ip}=\mathrm{q}$ in	［ χ épq¢n］	lower lip
$\chi \mathrm{Xip}=\mathrm{it}^{\ominus} \mathrm{a}$		woman＇s slip
犬̇ina	［ $̇$ étna～đ̇én̉a］	oolichan oil
b．夫̇um－it	［ ${ }^{\text {cómet］}}$ 入ó：mèt？	enough
夫̇u－${ }^{\text {¢ }} 4=$ ay－əm	［̇̇ó̇̇táyom］	adopted child
̇ut	［ ${ }^{\text {cot }}$ ］	to grow（as plant）
̇̇u－̇̇ut		$s / h e$ is growing
̇up	［ ${ }^{\text {ºpp }}$ ］	to heal
	［ ${ }^{\text {a aqt }}$ ］	long
	［ Xált？om］／［̇áptom］	wolf
夫 天atam	［ χ átəm］	salt
${ }_{\chi}{ }^{\prime} \mathrm{ax}=\mathrm{ay}$	［ ${ }^{\text {cáx̆ay }}$ ］	elder（most respectful term）
	［ ̇áyıt］／［̇áyet～Xáy＾t］	hold it
̇̇a－̇̇ay－a－t－as	［ $̇$ áãayètıs］	s／he is holding it
d．夫 ＊p	［ ${ }^{\text {® }}$ ¢p］	deep
	［ ${ }^{*} \wedge q^{\text {w }}$ ］	hard，solid
夫丷天 ${ }^{\text {¢ }}$		rotten
入ə ${ }^{\text {d }}$	［ ${ }^{\text {cıq］}}$	to go outside

	[ºúkwéénss] $^{\text {c }}$	heart
		mocassins
		wall
		chum, dog salmon
̇̇əms=tən	[${ }^{\text {®ímstın] }}$	village
夫ə $\left.{ }^{\text {c }} \mathrm{i}\right] \mathrm{m}$	[χ^{\prime} ís $\varepsilon \mathrm{m}$]	green, yellow, orange
		square

(28) medial position: before vowel (syllable initial)
a. --
b. ---̇̇u---
c. $\breve{x}^{w} \partial{ }^{2}=a y$
$\mathrm{k}^{\mathrm{w}} \mathbf{u p}=$ خ̀ač

d. X̌ə 2 m -X̌əms

mountain goat
Hernando Island grasshopper (dim.) many houses, village village at head of Toba Inlet
(29) medial position: before a consonant (syllable final)
a. $\dot{k}^{w i}{ }^{\prime} t$
[$k^{\mathrm{w}}{ }^{\mathrm{i}} \mathrm{\lambda} t$]
b. $\dot{k}^{w} \mathbf{u} \dot{\lambda}^{\dot{R}}=\mathbf{k}^{w} \mathbf{u}$
[$\mathbf{k}^{w}{ }^{w} \hat{u}^{2} k^{w} u$]
c. $\dot{x} \mathrm{a}-\vec{x} \check{x}=a y+[?]$

d. $\check{\mathrm{x}}^{\mathrm{w}} \partial{ }^{2}-\breve{\mathrm{x}}^{\mathrm{w}} \partial \check{\mathrm{X}}=\mathrm{ay}$
mə $\dot{X}^{\prime}=$ nač

upstream area
salt water
old person (cf. đ̌áx̆ayelder)
Goat Lake
Mitlenatch Island
(30) word-final position

[čičicỉ] ~čí:
short

b. $---u{ }^{\prime}$
c. $\check{x} a \neq \nexists$
[x áá $]$
scar, a scar

want
d. mox
[max 지
[1 t $]$
e. qua $^{\prime}{ }^{\prime}$
[q̉aㅊㅊ]
calm water
run
otter

c

(31) word-initial position
a. či-čiya+?
[číčiye?~číčlye?]
[číye~ číya]

[čígítəm]
b. čuỷ cf. cčuj̉/
[čúỷ]
c. čayiš
[čéyıš]
d. čəẏ-čuỷ cf. /čuj̉/
[čí:čuỷ ~číičuỷ]
(32) medial position: before vowel (syllable initial)
a. $\mathfrak{t}^{\text {®ochili }}$
$k^{w i t=i c ̌ ə n=s ̌ ə n / k^{\prime}}{ }^{w}$
či-čiya+?
hig=čis-ma

[$k^{\text {wítičı̆ }}$ nšın]
[číčiyz?~číčlyE?] grandmother
b. pəču
pi-pču+?
c. pəq-at-čayiš
čəy-čayiš
d. wa२č=aw'tx ${ }^{w}$

Pinčan
[héwčisma]
[píču ~ piču ~péču] basket (generic)
[pípčo? ~ pépčo?] small basket
[pìqatčéyıš]
palm
[číčeyıš] arms, hands (pl)
d. waič=awtw
[wápčəờtx ${ }^{w} \sim$ wá ${ }^{-c ̌ u P t x}{ }^{w}$] bathroom
[?Énčเn]
(33) medial position: before a consonant (syllable final)
a. Oičmus
b. učC
c. łay=nač=tən
d. yi:=nač-t ?
(34) word-final position
a. $\operatorname{tal}^{\prime}[i]$ č
quipič
x̌ỉič
b. --uč
c. nəp=えас̆
paq́ $=$ nač
d. maӨač
$x^{w u m b y a c ̌ ~}$
$k^{\text {w }}$ əw’əč
$\boldsymbol{\varepsilon}$
(35) word-initial position
a. či-čtiỳəx̆

b. ču?-ču?
c. ' ' $\mathrm{ag}=$ 'ay
čag=tən
čañu
d. ĖəX̆
ċat
ċəət=ayaqw ${ }^{\text {w }}$
[\because ičmós]
\qquad
[táynàčtən]
[$1 \mathrm{l}: n \wedge c ̌ t]$
[tálıč]
[q̊ér\&č]
[̌̌é?eč]

[p’áq̣n^č]
[máӨ^č]
[$x^{\text {wúm̉ylč] }}$
[$\mathrm{k}^{\mathrm{w}} \mathrm{v}^{\mathbf{w}} \mathrm{wč}$]
[číčtíỳ̀̀x]
[číka? $\mathrm{i} m ı n]$
[čอ์?
[č̌́?gıy ~čápagay]
[čÉwton]
[čé?no]

[${ }^{c} \nmid+$]

back of house
skirt
to coil up
round moose salmon after spawning

guts

Canada goose

cormorant, helldiver skin sturgeon
sandpiper
frying pan
wren
wooden spoon
helper (the elders' helper)
dog
ripe, cooked
rain
rain hat

çat=nač		rain pants
ċəə	[${ }_{\text {çaq] }}$	tiny bird, robin
ċəવ̇		fence
	[čóTomè ${ }^{\text {w }}$ tən]	floor rug, carpet

(36) medial position: between vowels (syllable initial)
a. $\check{x} i z ̌ z-i \grave{c}$
$t^{\ominus} \partial{ }^{2}=\partial t p=a y$
mačin=tən
b. 犬̇ičus
mačusaỷa / məč-
c. z_{a}-čagag-a- θ-as
ča-čatan
sačəy=uk ${ }^{w} t$
d. tič̀-at
q̉açam
[x̌écicič]

[má?činton~tn]
[X̌í:čos ~ Xíi:čus]
[máčusà?ye]

[sáqè̇^ypù̀ ${ }^{\text {w }}{ }^{\text {h }}$]
[${ }^{\text {fičict }}$]
[q’ačəm]
medial position: after a consonant (syllable initial)
a. səčวy
[sá? ${ }^{\text {ci }}$]
gəç $=i q^{w}$ an
[gヘ́č εq^{w} n]

c. p’alasčən /p’alasčin
[p’ápəlasč̀n]
tanned leather hide
bald, partially bald
mosquito
pine cones
(38) medial position: before a consonant (syllable final)

[čičtiyax̌òòt]
b. učC
c. $q^{w a c k t}$
[$q^{w a c ̌ t}$]
[${ }^{\prime}$ ́čt]
small sandpiper
\qquad
to burp, to belch sleep
(39) word-final position
a. $\check{x} i c ̌-i z ̌ ~$
[x́ééié i]
b. uč
c. p’a?ač
$\hat{k}^{\mathrm{w}}{ }^{\mathrm{a}} \mathrm{c}^{\mathbf{c}}$
d. $Ө$ əç
[$\theta, c ̌$]
Fall, Autumn
fishing net
dogfish
straight

k

(40) word-initial position
a. kiks
[kiks]
b. kul=awtx ${ }^{\mathbf{w}}$
c. kapi
kamputs
$\left[k^{w u ́ l a w ̉ t x}{ }^{w}\right]$
[kápi ~ k $^{\text {yápi] }}$
kanti
d. kəpəm
kət

[kǽmpùts]
[kǽnte]
[$\mathrm{k}^{\text {y }}$ ípəm \sim kíp:əm]
[kıt']
kək-kiks
kənika

[kíkkiks]
[kínike~kín $\varepsilon k \wedge$]
cookie (<English cakes)
school (cf. $\mathrm{k}^{\mathrm{w} u l} / \mathrm{kul}$ school)
coffee
rubber boots
candy
button
small finger, pinky
little finger, pinky
lots of cookies
coloured person
(41) medial position: before a vowel (syllable initial)
a. kiki?
[kí:ke?~kí: ${ }^{y} \varepsilon$?]
bug
takin
[tákın]
stocking, sock
takin $=$ ayuq $^{\text {w }} /-$ aýuq $^{\text {w }}$
[ták ${ }^{\text {y }}$ inàyoq ${ }^{\text {T] }}$]
knitted toque
b．titul $=\mathrm{k}^{\mathrm{w}} \mathbf{u m}$
c．－－－ka
d．－－－kə
（42）medial position：before a consonant（syllable final）
a．kiks
［kiks］
cookie（＜English cakes）
b． ukC
c．hənkネala／hən̉k خala hənkala／hən̉kala
［hánk丸àla～hín̉kᄎala］pot（cook in）
 pot（cook in）
d．lokli tak－takin
［líkle］
key
［tíktæ̀̀kın］
stockings（pl）
（43）word－final position
a．ik
b．uk
c．ak
d．’’ə k^{2}
［p’O日k］
k
（44）word－initial position
a．kki－ǩ̌̌a？

kiltust
kig－kigəm
kil［i］θ
［kéltost］
［ḱ́wkegım］
［kélı θ ］
b．ku
c．kaßəm k^{w} ki－kik

d．kəpayəxw
［kíp’ayux ${ }^{w}$ ］
small basket for sewing to hang s．t．up
coyote crooked（cf．kal θ－）
－－－－
(45) medial position: before vowel (syllable initial)
a. wa-wakila
wikali?
[wàwakila]
limpets
[wîk ε Ple \sim wîka?le]
hermit crab
b. x̆ay-x̆əyk̉us / X̆əy-x̆əykus
[x̌áyx̆ek̉wus]
c. ćayk-[a]Ramin
[číka?え̀mın]
nightmare
d. $--{ }^{-k} \Rightarrow$
(46) medial position: before a consonant (syllable final)
a. k̉i-kča?
[kékč̌̌?]
b. -uk C
c. -ak C
d. --ək C
(47) word-final position
a. tal[i]k (: tálık)

a hole
ki-kik [kí:kik̀~kîk $\approx k$]
crow
ti-tik
[títik]
b. ---uk
c. --ak
d. $--\partial k$
word-initial position
a. $\mathbf{k}^{w_{i \check{s}}-k^{w}{ }_{i \check{s}}}$

b. $k^{w} u s-[i] m$
$k^{\text {w }} u s ə n / k^{\text {w }} u \sin$
$k^{\text {w }}$ uma?
c. $k^{\text {was }}$ am
d. \mathbf{k}^{w} วtəm
$k^{\text {won }}{ }^{\text {n }} / \mathrm{k}^{\mathrm{w}}$ an
$k^{w} \partial \dot{y}$
qəऍ̆i $\mathbf{k}^{\mathrm{w}} \boldsymbol{\partial}{ }^{\boldsymbol{y}}$
$k^{\mathrm{w}} \boldsymbol{y} \mathbf{y}=$ min
\mathbf{k}^{w} əw’əč
[$k^{\text {wísisem] }}$

[$\mathrm{k}^{\mathrm{w} u ́ m a ?] ~ r a t f i s h ~}$
[$\mathrm{k}^{\mathrm{wás}}$ am] grouse
[$\mathrm{K}^{\mathrm{w} \text { átəm] get sick }}$
[$\left.\mathrm{k}^{\mathrm{w}} \mathrm{\Lambda n}^{n}\right]$ that
$\left[\mathrm{k}^{\mathrm{w}} \mathrm{i} ? \sim \mathrm{k}^{\mathrm{w}} \partial \mathrm{y}\right] \quad$ morning
[qūji $\left.\mathrm{k}^{\mathrm{w} i} \mathrm{i}\right]$ early morning
[$k^{\text {wáymın }] ~ b r e a k f a s t ~}$

(49) medial position: before a vowel (syllable initial)

a. hi-hkwiPiq ${ }^{\text {w }}$		great-great-grandmother
tuk ${ }^{\text {w }}=$ igiL $=$ ton	[Húk $^{\text {w }}$ igìytən]	canoe bailer
b. $\hat{k}^{\mathrm{w}} \mathrm{u}^{\prime}=\mathrm{k}^{\mathrm{w}} \mathrm{u}$		salt water
$\boldsymbol{s i n}=\mathrm{k}^{\mathbf{w}} \mathbf{u}$	[sénk $^{\text {w/u }} \sim$ sénk $^{\text {w }}$ \% ${ }^{\text {] }}$	ocean
saL' $=\mathrm{k}^{\mathbf{w}} \mathrm{um}$	[sáwk ${ }^{\text {wium] }}$	two (cedar) roots
c. $\mathrm{nuk}^{\mathrm{w}}=\mathrm{ay}=\mathrm{mix}{ }^{\mathrm{w}}$	[${ }^{\text {ók }}{ }^{\text {wàaymıx }}{ }^{\text {] }}$]	population of village
nik ${ }^{\text {w }}=$ ayu	[nik ${ }^{\text {wayu] }}$	lamp
ni-nk ${ }^{\text {w }}=\mathrm{ayu}+$?	[nínk ${ }^{\text {wàpyu] }}$	small lamp
d. $s^{\text {a }}{ }^{\text {w}}$-əm $/ \mathrm{suk}^{\mathrm{w}}$-um	[súk ${ }^{\text {w }}$ vm]	to shiver
q zk^{w}-m-aӨut		stop doing s.t.
$\hat{k}^{\text {w/u}} \mathbf{u}-\mathrm{k}^{\mathrm{w}}$ uyuk ${ }^{\text {w}}$-əm		trolling
palk ${ }^{\text {w }}$ - 2 t	[pálk ${ }^{\text {w }}$ ^t]	to roll s.t. over

(50) medial position: before a consonant (syllable final)
a. ...ik ${ }^{\mathrm{w}} \mathrm{C}$
b. puk ${ }^{\mathrm{w}}-$ puk $^{\mathrm{w}}$
c. $--\mathrm{ak}^{\mathrm{w}} \mathrm{C}$
d. $\operatorname{tak}^{\mathrm{w}}-\operatorname{tak}^{\mathrm{w}} \ddagger \mathrm{i}$ $\theta ə k^{w}-\theta ə k^{w}=n a c ̌=t ə n$ hak $^{\mathrm{w}}$-t ga to θ kapu
e. ti-tk ${ }^{\mathrm{w}} \mathrm{t} \mathbf{i}+$?
(51) word-final position
a. saỷik ${ }^{\mathbf{w}}$
b. $\mathrm{puk}^{\mathrm{w}}$
kwnuk w
tan̉uk ${ }^{\text {w }}$
c. 'qayk $^{\mathbf{w}}$

d. $m ə \theta k^{w}$
$\mathrm{mak}^{\mathrm{w}}$-t
jॅatk ${ }^{w}$

$\mathbf{k}^{\mathbf{w}}$

(52) word-initial position
a. $\vec{k}^{w i n}$
$\dot{k}^{\mathrm{w}} \mathrm{i}{ }^{\mathrm{Z}} \mathrm{t}$
$\mathbf{k}^{\mathrm{w}} \mathrm{it}=\mathrm{igs}$
b. $\hat{k}^{w} u ? u x^{w}$

knata $^{\text {w }}$
[sáỷık ${ }^{w} \sim$ sáqulk $^{\text {w }}$]
[puk ${ }^{\text {w }}$]
[$\mathfrak{k}^{w o ́ y}{ }^{\text {ond }}{ }^{w}$]
[${ }^{\text {ª́ }}{ }^{2}{ }^{n} v k^{w}$]
[q’áyk ${ }^{\text {w }}$]

[$\mathrm{m}^{2} \mathrm{Kk}^{\mathrm{w}}$]
[múk ${ }^{w} t^{\text {h }}$]
[̌̌ítk"]
books
rabbits (pl.)
chairs (pl.)
hang up your coat (request)
small rabbit
tide flats
book (<English book)
fish hook, troll
animal hide
bald-headed eagle
front yard (facing beach)
blackcap berry
taste it, eat it
shake
how many
upstream area vest
smoked salmon, fish
smoke house
barbecuing stick

$\dot{k}^{\text {w }}$ unut ${ }^{\text {a }}$		porpoise
$\mathbf{k}^{\text {w }} \mathbf{u t}=$? ${ }^{\text {ay }}$	[$\mathbf{k}^{\text {wóót?ay }} \sim \dot{\mathbf{k}}^{\text {wótótay }}$]	maple tree
c. $\hat{\mathbf{k}}^{\mathrm{w}} \mathrm{as}$	[$\mathbf{k}^{\text {was }}$]	hot
		burn one's tongue
$\hat{k}^{\text {was }}{ }^{\text {ch }}$		dogfish
$\mathbf{k}^{\mathbf{w}} \mathrm{ax}^{\mathbf{w}} \mathrm{a}$	[$\mathrm{k}^{\text {wáa }}{ }^{\text {w }} \mathrm{a}$] $]$	box
$\mathrm{k}^{\text {wawa }}$	[${ }^{\text {wááqwa] }}$	belly, stomach
d. $\hat{k}^{w} \boldsymbol{\partial t}$	[${ }^{\text {k }}$ º́t ${ }^{\text {c }}$]	go upstream
		lots of dogfish (pl.)
$\dot{k}^{w} \boldsymbol{p}$?sta	[$\mathbf{k}^{\text {wapasta }}$	cup
$\hat{k}^{w i-k^{*}}{ }^{\text {w }}$? ${ }^{\text {sta }}$		small cup
$\hat{k}^{\text {woses-əm }}$	[${ }^{\text {w}}$ º́səm]	toasted herring
		cook herring over open fire
$\mathbf{k}^{\text {w }}$ ¢ \dagger	[$\mathbf{k}^{\text {w }}$ ¢ ${ }^{\text {d }}$]	spill
$\mathbf{k}^{\text {wodt }}$ (${ }^{\text {k }}$ watt ? ${ }^{\text {a }}$)	[k^{w} ¢́¢t]	plate, tray
$\mathbf{k}^{\text {w}}$ əšt		to count s.t.

medial position: before a vowel (syllable initial)

a. $t^{\ominus} u k^{\prime} w_{i}=k^{w} u$		to dip up water
		lots of fish hooks
c. $x^{w} \mathbf{u k}{ }^{\text {w }}=$ ayin	[$\mathrm{x}^{\text {wíu }}$: ${ }^{\text {waday }}$ [n]	skunk cabbage
	[$\mathbf{k}^{\text {wáaj }}{ }^{\text {wamame }}$]	weasel
$k^{\text {w }} \mathrm{i}-\mathrm{k}^{\mathrm{w}} \mathrm{a}^{\text {c }}$		small dogfish
		lots of small dogfish (dim.pl.)
di ${ }^{\text {w }}$ - Pəm Intr.		to sew (s.t.)
tik ${ }^{\text {w }}$ - ${ }^{\text {t }}$		sew it

(54) medial position: before a consonant (syllable final)

tikºwhan
b. $\mathbf{k}^{w} \mathbf{u}-\mathbf{k}^{w} \mathbf{q}=a y+[?]$
c. $\vec{k}^{w} \mathbf{a}-\vec{k}^{w}$ Өəm
 tə $\vec{k}^{w}-t ə \vec{k}^{w}-t$ ga うॅə $\hat{k}^{\mathbf{w}}-\mathbf{t}$
word-final position
[tík w'̃ač]

[ḱㅜ́úk'way]
[$\mathbf{k}^{w a ́ k}{ }^{w}{ }^{w} \Theta \wedge \mathrm{~m}$]
[tヘ́k ${ }^{w} t v k^{w} t \wedge s$]
[túkwtukwt ${ }^{w}$ ga]
[$\check{\jmath} \mathrm{k}^{\mathrm{w}} \mathrm{t}$]
gunny sack to repair a net small maple tree to tell news they are pulling it pull them all up! rub it
a. Pi-Ragik w
$t^{\ominus} i-t^{\ominus} \mathfrak{k}^{w}$
b. $\mathfrak{t}^{\boldsymbol{\theta}} \mathbf{u k} \mathfrak{k}^{w}$
$\mathfrak{t}^{\ominus} \mathbf{u} \mathbf{k}^{w}-u \mathbf{k}^{w}$
jukw / juPk ${ }^{w}$
wukw
\$uk ${ }^{w}$
c. tak w
d. $\jmath^{\mathrm{j}} \mathrm{k}^{\mathbf{w}}$
e. $q \ni \mathrm{~m}^{w}$ Puwk ${ }^{w}$
(56) between consonants
a. X̌ə $\mathfrak{t}^{\mathrm{k}}{ }^{\mathrm{w}}-\mathrm{s}$
[RiRagik ${ }^{w} \sim$?éRagikw]
[$\left.t^{\ominus}{ }^{\ominus} \cdot t^{\ominus} \mathrm{ek}^{w}\right]$
[${ }^{\ominus}{ }^{\ominus} \mathbf{k k}^{W}$]

[wuk ${ }^{w}$]
[4uk]
[tak $^{\text {T}}$]
[$\mathrm{y}^{2}{ }^{\mathrm{w}}{ }^{\mathrm{w}}$]
[q^mk ${ }^{*}$]
[?ú: $\left.{ }^{\text {n}}\right]$
clothes
worm
day
becoming day
Indian rice
scoop net
to fly
to swell up
get rubbed
to capsize, tip over
all
its design

Note: The contrast between $/ q /$ and $/ q^{w} /$ is neutralized in favour of $\left[q^{w}\right]$ in the environment of the round vowel $/ \mathrm{u} /$. There are many examples of q^{w} in the environment of u but it is very difficult to find cases of q in the environment of u. The contrasts between $/ \dot{q} /$ and $/ \mathcal{q} w /$, and $/ \check{x} /$ and $/ \bar{x}^{w} /$ are also neutralized in this context in favour of the labialized allophones [$\dot{q}^{\mathbf{d}}$] and [$\check{x}^{\mathbf{w}}$].
q
（57）word－initial position
a．qiyup
［qéyvp～qéiyvp］
［qéga $\theta \sim$ qég＾Θ ］
stern of a boat qiga θ
deer
b．qu
c．qaw̉um
［qá？wum］
qaymix ${ }^{w}$
qayx̆
［qáymıx＂］
［qayx̆］
person
qаух̆а $=$ خ̉ač
［qáyx̆ađ̈ač～qáyx̆ả̛へč］
kidney
d．qәр＝iws－əm
［qápewsəm］
$q \not 2 \check{x}$
［q＾x̆］
qәృ̄
qams－at－ut št
［q＾и́ji］
qวms－［a］？m＝min＝aya qәẏa
［qÁmsatòtšt ${ }^{\text {h }}$ ］
［qímsà ${ }^{\circ}$ ºmenàye］ ［qá？yを］
make the sign of the cross
many
again
we stored it away
cupboard
water
（58）medial position：before a vowel（syllable initial）
a．\quad əə $\check{x}=q$ in
tiqiw
［ $4 \wedge$ ヘ́x̆q n ］
［téq̌w］
b．－－－qu
c．taqa
［táqa］
qi－qap＝awus
［qéqap̉aw ${ }^{\mathbf{s}}$ ］stress
pəq－a4＝šən
［píqatšın］
 təq－iq ${ }^{w} a(n)-t$
［†ヘ́qлmen］／［tヘ́qímen］

raspy throat horse
－－－
salal berry bat bottom of foot war spear spear it on the head（codfish）
（59）medial position：before a consonant（syllable final）
a．hiqs－amin
b．－－uqC

d．maqsan
šeq－Out
ṫəq－t čax ${ }^{w}$
［丸áqえaq？om］
［míqsın～míqsen］nose
［šíqधot］
［ ${ }^{\text {ćnqt }}{ }^{\text {th }}$ čè x^{w} ］
［q̉é：sct］
［’’́モ̌x̌eq ${ }^{\mathrm{w}} \wedge n ə m$ ］
［q’éq̉a？g＾］
q̀i－q̉ə？ga
b．q’u－－－
c．q́atan
q’a？ut ${ }^{\ominus}$
quak ${ }^{\mathbf{w}}$
d．ஷ’əs－q̇əs

［ q’átan \sim q̉áṫən］
［ ${ }^{\text {áá }}{ }^{\text {ot }}{ }^{\text {® }}$ ］

［’’óṡ̇̇æč］
（60）word－final position
［pé：péyeq］
b．－－uq
c．RED－say－ $\mathrm{n}=\mathrm{aq}(\sim$ also $=\mathrm{aq})$
［sísay $\left.{ }^{2} \mathrm{n} \wedge q\right]$
d．piləq
paq
［péplıq］
［р＾q］

t^{\ominus} วmtaq
［ ${ }^{\text {̌ }} \wedge q$ ］
［ ${ }^{\text {®} \text { อ́mt }}$ คq］
a．pi：piyiq
sledge hammer
－－－－
groin，pubic area
mushroom，bracket fungus
white
out
oolichans
（61）word－initial position

a．q̇is－it	［q’é： sct ］	to tie s．t．
	［q＇éx̌eq ${ }^{\text {w }} \wedge$ nəm］	dye hair
¢̀i－q̇ə？${ }^{\text {a }}$	［q’éq̇a？g＾］	small walking stick
b．q̇u－－－	－－－－	－－－
c．q̇atan	［q’átan \sim qááton］	rat
q̇ąut ${ }^{\text {® }}$	［q̉á？ot ${ }^{\text {® }}$ ］	uvula，glutton
q̇ayk ${ }^{\text {w }}$	［q’áyk ${ }^{\text {w }}$ ］	bald eagle
d．¢̇əs－q̇əs	［＇¢̇へ́sq̇＾s］	tired of sitting
	［q’ว́ṡ̇æ	laughed so hard

canoe pole

\qquad
whispering（s．t．）
sigh
you paste it on，glue it

q̇o?ga	[q̆óqg^]	walking stick, cane
q̇ə?ga-ha-ha čx ${ }^{\text {w }}$		Have you got yr. cane?
		lots of walking stick

(62) medial position: before a vowel (syllable initial)
a. gaq̧-it
b. $\check{\mathrm{x}}^{w} \mathrm{a}{ }_{\mathrm{q}}{ }^{\mathrm{w}} \mathrm{um}$
[gáq̉ t t]
it's opened

c. $\mathrm{Pa}-\mathrm{Paq}-\partial(\mathrm{t}) \check{\text { c }}$
qंว-q̉ayas
[${ }^{\text {ááaq̣ィс̆] }}$
[qंィ́q’ayıs]
qंəy-q̉ayk ${ }^{w}$

$\dot{\text { p̀ }} \boldsymbol{q}=\mathbf{a y a}$

d. pətq̆-əm
[pи́tq̣วm]
slippery
(63) medial position: before a consonant (syllable final)
a. tiq̉=tn
b. --uq̆C
c. $\mathrm{k}^{\mathrm{w}} \mathrm{aq} \mathrm{t}$
d. saq̀-t

* ${ }^{2} \dot{\text { q. }}=$ šin
yəq่-t-u4 čan
məq่-mut
word-final position
a. $\check{x} i-\mathrm{x} n i q{ }_{\mathrm{q}}$
x̌i- $\mathrm{i}-$-x̆niq̉
piq́ tułat
b. ---uq่
c. ---aq่
d．p’ag
［p’́q́q］
夫夫ə
［ ${ }^{\chi}$＾́q̉］
દ̌ョั่
səq่
məq่

［síq̉］
［m＾́q̉］
smoke from fire rot fence fifty cent piece；half full（from eating）
$\mathbf{q}^{\mathbf{w}}$
（65）word－initial position
a．$q^{w i q}{ }^{3}{ }^{m} \partial m$
［ $\left.q^{w}{ }^{\text {Éq }}{ }^{\text {w }} \partial \mathrm{m}\right]$
to nail（s．t．）
b．$q^{\text {wuwit }}$
$q^{w u}==n a c ̌=t a n$
c．$q^{w a w i q}$
$q^{\text {wapt }}$
$q^{\text {wasam }}$
［ ${ }^{\text {wówit］}}$

beaver
cushion
［q＂â？wit $\sim q^{\text {wâ？}}$ wet］
pitch，chewing gum
raspberry
flower
d．$q^{\mathrm{w}} \mathrm{I}^{\mathrm{l}}$
q^{w} ənis
［qwa？t］
［qwásəm $\sim q^{w a ́ s ~} \wedge m$ ］
he，she，they came whale（humpback not orca）
$q^{\mathrm{w}} \partial \downarrow=\mathrm{a}=\mathrm{y}=$ šn
［ $\left.q^{\text {win }} 1\right]$
［ ${ }^{\text {w}}$＾́nes $\sim q^{\text {wº́nıs }}$ ］
［q＂ə́te？šin］
shoes
（66）medial position：before a vowel（syllable initial）
a． $\mathrm{Paq}^{\mathrm{w}_{i \mathrm{~s}}}$
［’áqweš］
［hánaq＂os］

d．tuq＂əm
［tóq ${ }^{\text {w }}$ วm］
e．$q^{w} \partial-q^{w} \partial l^{\prime}$
［ $\left.q^{w}{ }^{\text {óq }} q^{\mathrm{w}} \wedge 1\right]$
［ $q^{\mathrm{w}}{ }^{\text {S }} \mathrm{q}^{\mathrm{w}}{ }^{\mathrm{h}}$ to láspol］
go downstream
b． hanaqu $^{w} u s / h a n a q^{w}=u s$
c．tuq ${ }^{\mathrm{w}}=a n{ }^{\text {a }}$
［
wolf eel；aggressive
snail，deaf
f．$q^{\mathrm{w}} \partial q^{\mathrm{w}}-\mathrm{t}$ to laspul
redcaps，thimbleberries
coming
head the ball！（soccer） medial position: after a consonant and before a vowel (syllable initial)
a. $\mathrm{Cq}^{\mathrm{w}} \mathrm{i}$
b. $q^{w} u p-q^{w} u p=a w u s$
c. $q^{w} \partial y^{\prime}-q^{w} a y$
$q^{\text {w }} 2 s-q^{\text {was }}$ asm
d. $\mathrm{Cq}^{\mathrm{w}} \boldsymbol{\rho}$
[$\mathrm{q}^{\mathrm{w}} \mathbf{o ́}^{\text {ph}} \mathrm{q}^{\mathrm{w}}$ opàwus]

[$q^{\text {wás }} q^{\text {wàs }}$.
eyelashes (pl) talkative lots of flowers
(68) medial position: before a consonant (syllable final)
a. $q^{w} a n=i q^{w} \nmid a$
[$\left.q^{w a ́ p{ }^{\text {a }}}{ }^{n} \varepsilon q^{w} \nmid a\right]$
knee
b. fuq ${ }^{w} m u t$
$q^{w} u q^{w T}-a t=k^{w} u$
[tóq $\left.{ }^{w n o t}\right]$

c. $q^{\mathrm{w}} \mathrm{a}-\mathrm{q}^{\mathrm{w}} \mathrm{y}$-inat ??
d. $q^{w} \partial-q^{w} w \partial \check{x}$
$q^{w} a-q^{w} w \partial \check{x}$

[$q^{w}{ }^{\prime \prime} q^{w}{ }^{w} \boldsymbol{w x}$]
[$q^{w a ́ q}{ }^{w ə}{ }^{w} \lambda \grave{x}$]
heqw-t ga
[$h \tilde{\Lambda}^{\mathrm{w}} \mathrm{t}^{2} \mathrm{~g} \Lambda$]
word-final position
a. ča-čamiqu ${ }^{w}$

great-grandparent
tiniq ${ }^{w}$
masiq ${ }^{\text {w }}$
[ť́?nєqw]
[más $\varepsilon q^{w} \sim$ mńs $^{\mathrm{s}} \mathrm{q}^{\mathrm{w}}$]
[q’áq $q^{*}{ }^{*}$]
q.aqiq $^{\mathrm{w}}$
qәỷiq ${ }^{w}$
b. 夫̇uq ${ }^{w}$
Өəјариq ${ }^{\text {w }}$
[qé• $\varepsilon \varepsilon q^{w]}$
[${ }^{*}{ }^{\circ} \mathrm{oq}^{*}$]
hard

c. čat $^{2}=$ ayaq $^{\text {w }}$
d. haj̆eqw ${ }^{\text {w }}$
[čiłayeq ${ }^{w} \sim$ čétay q^{w}] rain hat
haǰəq $^{w} /$ haj̆aq w

[hájuqq"]
to dig (a pit)
[háǰ^q"]

e. ${ }^{9} a m q^{\omega} L$
[${ }^{\text {® }}{ }^{\text {ámq }}{ }^{\text {wq }}$]
cloud

$\mathbf{q}^{\mathbf{w}}$

(70) word-initial position

a. $\dot{\mathrm{q}}^{\mathrm{w}} \mathrm{it}$	[$\left.{ }^{\prime}{ }^{w} \varepsilon t\right]$	beach
	[q'wîìšıı]	starfish (beach=foot, leg) ${ }^{1}$
$\dot{q}^{\text {witaxazan }}$		front of house (faces beach)
b. $\dot{q}^{\text {wum }} \mathbf{u}=$ ana		ear
c. $\dot{q}^{\text {wabas }}$ / $\dot{q}^{\text {walas }}$	[${ }^{\text {wálıs] }}$	raccoon
$\dot{q}^{\text {wa }}{ }^{\text {jux }}$		wood, firewood
d. $\dot{q}^{\text {w }}$ ¢s $\mathrm{i}^{\text {i }}$		lung
		starfish (pl.)
$\dot{q}^{\text {w }}$ tom		niver
$\dot{\text { q }}^{\text {w }}$ x̆-t ga to $\mathrm{qiga} \mathrm{\theta}$		butcher the deer! (cf. fillet)
$\dot{q}^{\text {w }} \boldsymbol{\text { x }}$ ¢		slough

(71) medial position: before a vowel (syllable initial)
a. $\check{\mathrm{x}}^{\mathrm{w}} \mathrm{u} \mathfrak{q}^{\mathrm{w}}-\mathrm{it}$
b. $\dot{q}^{w} \partial w-\dot{q}^{w} u w=a n a$
$\mathrm{puq}^{\text {w }}=\mathrm{us}=$ ten
c. \dot{q}^{w} al- $\dot{q}^{w a l a s}$
yíqªm

d. tuqu ${ }^{w}$ m
$\check{x}^{w} a t \not \dddot{q}^{w} \partial m$
s.o. snoring

ears (pl)
[póq̉wostən ~ pú: $\mathfrak{q}^{\text {wos }}{ }^{\text {ostən] }}$
face powder
 raccoons

dishes, all the plates
have a cold
thunder (cf. puffball)

[^28](72) medial position: before a consonant (syllable final)

b. $\mathfrak{t}^{\ominus} \mathbf{u} \dot{q}^{w}-t^{\ominus} u \dot{q}^{w}-u \mathfrak{q}^{w}$
c. $m ə \dot{q}^{w}-\mathbf{m} \dot{q}^{w} \mathfrak{f}^{\ominus}$
d. gaq $^{\mathrm{w}}-\mathrm{t}$
$\dot{q}^{w} \partial-\dot{q}^{w}{ }^{w}-\mathbf{t}$ čən
məq่ ${ }^{w-t}$
word-final position
a. $--i \mathfrak{q}^{w}$
b. fuq̉ ${ }^{\boldsymbol{w}}$
$s u q u^{w} / s w \mathfrak{q}^{w}$
\not uqa $^{\mathrm{w}}$-tuq̉ ${ }^{\mathrm{w}}$
$t^{\theta} u-t^{\theta} u \dot{q}^{w}$
c. $--\mathbf{a q}^{\mathrm{w}}$
d. $\ddagger \mathfrak{q}^{\mathbf{w}}$
$\dot{q}^{w} / \mathbf{k}^{w}$

[toq̉"]
[suq̉*]

d. Pos-Pasx ${ }^{w}$
[Pás?asx"]
seals
Pow- Pawuk ${ }^{w}$

(75) medial position: between vowels (syllable initial)

a. tiPi	[ṫ́? $]^{\text {] }}$	this one here
s[i?]i-səp-saplin		lots of little bits of bread
nip-it	[né:? 2 t]	be in the way
b. $\mathrm{x}^{\mathrm{w}} \mathrm{u}$ Pus	[$\mathrm{x}^{\text {wúpos] }}$	porcupine
mu?us	[mó?os]	head
šup-at	[šó?ot ~ šó?ot]	choose it
tupup / tupup / tup	[tó?op \sim tól $^{\text {opp }}{ }^{\text {h }} \sim$ tóp $^{\text {h }}$]	stove
c. $\check{\text { xaPay }}$	[xxá?ay]	bog cranberry
	[?áy?ajù ${ }^{\text {U }}$ om]	language of our people
nam-Pamin /nam-?m=min/	[námPamen]	pen, pencil, s.t. write with
d. ẊiPam	[χ_{1}^{1} - 3 em]	cockle
	[${ }^{\text {cóqomè }}{ }^{\text {w }}$ ton]	floor rug, carpet
x̌ə ${ }^{\text {a }}$	[x̌ápa]	butter clam

(76) medial position: before a consonant (syllable final)
a. Өəy’Өa / ӨiPӨa

b. ču?
c. Өa?pač

Ta-Tas $x^{w}+[i]=u t$
$\check{\mathrm{x}}^{\mathrm{w}} \mathrm{a}$? $\check{x}^{w} \mathrm{it}$
d. mo?-mu?us
mo?-t
$m ə ?-x^{w}$-an k^{w}
[Ө ε 民Өa]
[θ ह́ $\mathrm{qq}^{w s ̌ i n}$]
[čอ์? ${ }^{\circ}$ o?]
[Өá?pмс̆]
[?á? ${ }^{2}{ }^{2} \mathbf{x}^{w} \mathbf{u ̀ q}$]
[\check{x}^{w} á $\left.{ }^{2} \check{x}^{w} \varepsilon t\right]$
[má:mò?os] a:
[mápth]
[máp ${ }^{2} x^{w} \wedge n k^{w} u$]
that one (fem.)
left foot
wren
antlers
seal pup (dim.)
egg, eggs
heads (pl)
get s.t.
I've got it now (NTr.)

ス̇ə? ${ }^{\text {tum }}$
そi-
(77)
word-final position
a. qi-qti+?
$k^{w} ə$ ́ $^{\prime}$
b. Өu j̆up / hu j̆u?

Pamamu?
č̀ $\mathrm{a}-$ ह́n $_{n} u+?$
$q^{w} u$?
c. $\mathrm{k}^{\mathrm{w}} \mathrm{uma}$?

Raya?
mi-mna? (cf. mən̉a)
$k^{w} u-k^{w} p a+?$
x^{w} a?
d. šə?
${ }_{c}{ }_{a} ?=$ nač=tn
${ }_{c}{ }_{2} ?=$ umix $^{w}=\mathrm{tn}$
čə?-

wolf
young wolf, wolf cub
youngest in family tomorrow
to go home chiton small dog, puppy get water, fetch water ratfish house small child, baby grandfather (Dim.) no (Neg) climb, go up small blanket to sit on rug on floor
be on top of

The fricatives in Sliammon are presented in the following order: $\theta, \mathbf{s}, \pm, \check{s}, x^{w}, \check{x}, \check{x}^{w}, h$. Examples of which are given in the next section.
$\boldsymbol{\theta}$
(78) word-initial position

	[θi čılı \sim Oíčım]	up in the back woods
Өiq-Təm		dig (s.t.)
$\theta i q=n a c$	[Θ éqn^č ${ }^{\text {h }}$]	dig roots
Өi-Өyat	[$Ө$ ¢́Эyèt]	small lake
$\theta \mathrm{iy}=\mathrm{mmix}^{\mathbf{w}}=$-ton	[Θ éyomì ${ }^{\text {w }}$ tən \sim mix ${ }^{\text {w }}$]	floor
b. Oumin	[Θ ómın]	eyebrow
c. Өapax̆=us	[\because ápax̆os]	male deer; horns on head
Өatixim		small waterfall
d. $\operatorname{\text {doċ}}$	[θ ¢ç]	straight
Өoyat	[$\Theta a ́ p ə y$ y \ddagger]	lake

(79) medial position: between vowels (syllable initial)
a. $\theta u \theta$ in
[Θ ó $\theta \varepsilon n]$
mouth
$q^{\text {w }} \mathbf{u p}=u$ - in
$\mathrm{\theta iw}=\mathrm{u}$-in=tan
$k^{w i x}{ }^{w}=u \theta i(n)=\tan$
[q"ó:pò ${ }^{\text {onn }}$]
beard
$\mathrm{k}^{\mathrm{w}} \partial \mathrm{n}-[\mathrm{i}]$ Out
təš-Өut

d. Өəẏ-Өəýat
[ӨéwvӨètən ~ Ө́́wvӨغ̀tən]
table
[$\mathrm{k}^{\mathrm{w}}{ }^{\mathrm{w}}{ }^{\mathrm{w}} \mathrm{u} \theta$ ètan] lipstick
[$\mathrm{k}^{\mathrm{w}} \mathrm{w}^{\text {wne }} \cdot$ ot $\left.^{\mathrm{h}}\right] \quad$ watch out, be careful
[tíšधot] to get close
Өa-Өat ${ }^{\ominus} \mathrm{im}=u \nmid$
[$Ө a ́ Ө a p i s ̌ c ̌] ~$
I'm bathing now

[Өi:Өарәуعł] small Spring salmon lakes (pl)
(80) medial position: before a consonant (syllable final)
a．$q^{w u p=i \theta x ̆ a n ~}$
夫̌u θ－Rom
c．$a \Theta C$
d．θ 今́ $-\theta t^{\vartheta} \partial \mathrm{m}$ tə $\boldsymbol{\theta}=\boldsymbol{t a n}$ p’ $ə \mathrm{Ek}$
（81）word－final position
a． $\operatorname{kil}[i] \theta$
b． $\mathrm{ni} ?=\mathrm{aj} u=\mathrm{u} \Theta$ ？？？
c．qiga θ

d．p’ə
e．$m ə \theta \mathbf{k}^{\mathbf{w}}$
wale
qaw θ
s
（82）word－initial position
a．$\quad \sin =k^{w} \mathbf{u}$
［sóput］chop it
［sénk ${ }^{\mathrm{w}} \mathrm{o} \sim$ sénk $^{\mathrm{w}} \mathrm{u}$ ］
［súpk ${ }^{w} \varepsilon m$ ］
［kéle Θ ］
［nî？aZjuӨ］～［ni：］
［qég＾ө］
［mヘ̃ǰモӨ］
［р’＾ө］
［ $\mathrm{m}^{2} \mathrm{Ak}^{\mathrm{w}}$ ］
［wale］
［qáwe］
［sáttx ${ }^{w} \sim$ sáttw $]$
［s＾q́t］
［səq่～s＾q̉］

［ $\mathbf{s k}^{\mathbf{W}_{i}}{ }^{\mathbf{c}} \mathbf{i}$ ］
c．saftx ${ }^{\mathbf{w}}$
d．səq่－t
səq่
e．$\quad \mathbf{s} \dot{q}^{w} \supseteq \jmath \mathrm{j}-[i] m$
sk＇wiči
b．\quad supk $^{\mathrm{w}}-[\mathrm{i}] \mathrm{m}$ sup－ət
 ［？â？jômet］to understand hew，work with stone －－
jigging perfume bullhead
crooked
bait a line，bait a trap
deer
meat
black
blackcap berry
bullfrog
potato，potatoes
potat potatos
(83) medial position: between vowels (syllable initial)
a. $\operatorname{si}-$ si $^{\circ} \mathrm{\theta it}^{\ominus} \partial \mathrm{m}$
b. Ěusug-ət
c. səẏ-say

Pusa
d. vsə
e. \hat{k}^{w} aista
medial position: before a consonant (syllable final)
a. \quad si-sk ${ }^{\mathrm{w}} \mathrm{im}$
b. muPus-s k^{w} jan x^{w}
c. $\operatorname{sas}^{x^{w}}{ }^{\text {in }} \sim \operatorname{sa}$? $s x^{w}$ in
d. q̀os=خ̀ač
(85) word-final position
a. ti-ṫəs-tis
b. $\mathrm{t}^{\theta} \mathrm{it}^{\boldsymbol{\theta}}=$ awus

c. Xas
\mathbf{k}^{k} as
d. q̉əs-q̆วs
pas

[mó?os: $\mathbf{k}^{\text {wa }}$ jénx ${ }^{w}$]

[q’へ́sخææč]
shaking
fish's head; head of fish two the same, a pair laughed so hard
[tétóstés]
any bird
[${ }^{\ominus} \varepsilon^{\ominus} t^{\theta}$ wus $\left.\sim \mathfrak{t}^{\ominus} \varepsilon^{\prime} t^{\ominus} \partial_{\text {wus }}\right]$
peeping, spying
[tárq̉ ${ }^{\text {wos }}$]
[خas]
[$\mathrm{k}^{\text {wás }}$]
rock cod
glass (<English glass)
hot

[pás] numb, get numb
word－initial position
a． $\operatorname{fix}^{\mathbf{w}} \mathbf{C}$

$\Varangle \mathrm{ik}^{\mathrm{w}}=\mathrm{ay}=\mathrm{i} \mathrm{t}^{\boldsymbol{\theta}} \mathrm{a}=\mathrm{t} \boldsymbol{\mathrm { m }}$
b．tup＝us
fuq̉ ${ }^{W}$－u－Өut stress
c．faPamin
d．$\ddagger 2 \overline{\mathrm{x}}$
łə $=$－tən
tə $^{\mathbf{w}}=\mathbf{a n}{ }^{\text {a }}=$ tən
［ $\ddagger{ }^{\prime \prime}{ }^{w} \mathbf{c}$ ］

［tó：pos］

［tá？amın］
［ $4 \wedge \check{x}]$
［廿ə́Өtən～†ヘ́Өtən］

I lost a loved one
to sew（s．t．）
sewing machine
half bald
to clear up（weather）
Sliammon
bad
perfume
earring
（87）medial position：between vowels（syllable initial）
a．vti
b．$q^{\text {witut－um }}$
c．tutat
$q^{w} \partial \ddagger=a \dot{y}$
d．夫̌atəm
［ qu＇śtom $^{\text {w }}$
［tółat］

［خ̉́təm］
to wade bed driftwood salt
（88）medial position：after a consonant and before a vowel（syllable initial）
a．$t^{2} \mathrm{k}^{\mathrm{w}} \mathrm{fi}$
b．Ctu

d． łə $^{\mathrm{w}}-$ łə $^{\mathrm{w}}=\mathrm{an}{ }^{\text {na }}=$ tən
［túk ${ }^{w} \neq$ ］
－．．．
［tónła？nvk ${ }^{w} \sim$ tínła？nvk ${ }^{w}$ ］animal hides

（89）medial position：before a consonant（syllable final）

a．$\dagger \mathrm{i}-\uparrow$ ¢̌－umiš	［ \uparrow ćtx̌omıš］	little bit ugly
b．tut－amin／tut－？ $\mathrm{m}=\mathrm{min}$／	［tót＾men］	counter top
c．$\ddagger \mathrm{a}-\mathrm{t} \mathrm{n}^{\prime}[\mathrm{i}] \mathrm{k}^{\mathbf{*}}$	［tátn¢k ${ }^{\text {w }}$ ］	small hide

$\mathbf{k}^{\text {waft }}$	[${ }^{\text {wafatt] }}$	plate
d. to-tqiš		going across
sət-sattx ${ }^{\text {w }}$		women (as in young women)

(90) word-final position
a. qwowit
$\mathfrak{t}^{\ominus}{ }^{\text {amqu }}{ }^{\boldsymbol{w}}[\mathrm{i}] \mathrm{L}$

c. pus=4ał
tix ${ }^{\text {w }}$-at
Ǫýat
d. $\operatorname{tax}{ }^{\mathrm{w}}-\mathrm{tix}^{\mathrm{w}} \Theta a t$
məx̆awu
e. $\mathfrak{t}^{\ominus}{ }^{\text {ammq}}{ }^{\omega} L$
$\mathbf{~}$
(91) word-initial position
a. šə $\boldsymbol{P}=\mathrm{igs}$
šimən / šəmən
b. šuP-ət
c. šas-ət
šawt
d. šəm
šə $\boldsymbol{m}=\mathbf{a y}=$ it $^{\ominus} \mathbf{a}=\operatorname{tən}$
šəms
šəq- - ut
[šé? ${ }^{\text {cws] }}$
[ším^n]
[šó?ot]
[รัย́s $\wedge t]$
[ร̌モ́wt~šíwt]
[šıın]
[š̌́ ${ }^{\circ}{ }^{\circ}$ mayit ${ }^{\text {® }}$ atən]
[šıms]
[šíq $\theta_{\text {ot }}$
pitch, chewing gum clouded over, overcast
bikini underwear
Adam's apple
tongue
lake
tongues (pl)
half moon
cloud
high=body gloss
enemy
choose it
sneak up to it
door, path, trail
dry
clothes dryer
it's ours
sigh
(92) medial position: between vowels (syllable initial)
a. čišičx ${ }^{\mathbf{w}} /$ čišit ču $^{\mathbf{w}}$ tr.?
[čísiičx ${ }^{\text {w }}$]
təqiš=ayin
[tヘ́qعšéyın]
b. tišus-əm
[téšosəm]
c. ša-šat=ap=šən
[šéšctàpȟ̌̌n]
d. $t i s ̌=i q^{w}$

to challenge (to a race)
bridge
Sliammon (place name)
high heels
snot, nasal mucus
(93) medial position: before a consonant (syllable final)
a. $k^{w_{i}}{ }^{\mathrm{s}}-\mathrm{k}^{w_{i}} \mathbf{i s}$

b. muš-muš
c. ašC
d. $q^{\text {we }} \supseteq$ s̆?im
[q^{w} ก̄s̆ Sem]
dolphin
(94) word-final position
a. tumiš
čayiš
[túmıš~tú $\cdot \mathrm{m} เ$ š]
[čéyıš ~čééyıš]
man
[múšmuš]
c. tam-aš
[tímaš~tímıš]
d. pan-aš
namb-aš
[pヘ́n^š]
to bury (tr.?)
e. tayš
[ná?m^š]
taw-š
[t̉ayš ~ táylš]
[tíwš]
leave it
(95) $\quad\left[\mathrm{x}^{y}\right]$ as allophone of / $\mathrm{s} /$
a. $x^{\text {wolunwla }}=$ xən
[$x^{w a ́ p l o w l a ̀ x ~}{ }^{y}$ ın]
[x ŷllowlášın]
a". ša-šat=ap=šən
[šéšctàph ${ }^{h}$ šn]
b. २imaš
[?દ́m^š]
spiked heels, high heels spiked heels
high heels
walk

$\mathbf{x}^{\mathbf{w}}$
(96) word-initial position

a. $\mathrm{x}^{\mathrm{w}} \mathrm{it}^{\ominus}=$ ton	[$\mathrm{x}^{\mathbf{i t i}}{ }^{\text {® }}$ ton]	swing for a baby
$\mathrm{x}^{\mathrm{w}} \mathrm{ip}=u m \mathrm{mix}$	[$\mathrm{x}^{\text {wipomex }}{ }^{\text {w }}$]	to sweep the floor
$\mathrm{x}^{\mathbf{w}} \mathrm{ip}=\mathrm{umix}^{\text {w }}=$ =ton	[$\mathrm{x}^{\text {wiphomi }}{ }^{\text {w }}$ ton]	a broom
b. $x^{w} u k^{w} t$	[$\mathrm{x}^{\mathbf{w}} \mathrm{u}^{\mathbf{w}}{ }^{\text {t }}$]	nothing
c. $\mathrm{x}^{\mathrm{w}} \mathrm{a}$?	[$\mathrm{x}^{\mathrm{w}} \mathrm{a}$]]	no
d. $\mathrm{x}^{\mathrm{w}} \partial \mathrm{t}$ ($\check{\mathrm{X}}^{\mathrm{w}} \partial \mathrm{t}$?)	[$\mathrm{x}^{\mathrm{w}} \mathrm{v}_{\text {] }}$]	Swainson's thrush

(97) medial position: between vowels (syllable initial)

a. nox ${ }^{\mathbf{w}} \mathrm{i} \dagger$ / $\mathrm{n} \mathrm{x}^{\mathbf{w}} \mathrm{iL} /$		dugout canoe, canoe
b. $x^{w} u-x^{w} u$ ¢ ${ }^{\text {a }}$		sales person
c. $\mathrm{x}^{\mathrm{w}} \mathrm{a}-\mathrm{x}^{\mathrm{w}} \mathrm{a}$?	[$\mathrm{x}^{\text {wáx }}$ wap]	not yet
čatux ${ }^{\text {wan }}$	$\left[\right.$ čítux $^{\mathrm{w}} \wedge \mathrm{n} \sim$ čítux $\left.^{\mathrm{w}} \wedge \mathrm{n}\right]$	blackberry
d. $\mathrm{Vx}^{\text {w }} \boldsymbol{2}$	---- -	--

(98) medial position: before a consonant (syllable final)
a. tix ${ }^{w}$ Өat
[tíx ${ }^{w}$-at]
tongue
b. tux ${ }^{w}$ Pom
[túxw? ${ }^{\text {win }}$]
huckleberry
c. $\mathrm{ax}^{\mathrm{w}} \mathrm{C}$

[${ }^{\prime}{ }^{2} \mathrm{xx}^{\mathrm{w}} \mathrm{t}$]
to beat s.o. in a contest

dugout canoes

[^29]| a．qaymix ${ }^{\text {w }}$ | ［ ${ }^{\text {áy }}$ mmı ${ }^{\text {w }}$ ］ | person，native person |
| :---: | :---: | :---: |
| tix ${ }^{\text {w }}$ | ［ ${ }^{\text {ix }}{ }^{\text {w }}$ ］ | lose a loved one |
| b．$u x^{\mathbf{w}}$ | －－－ | －－－ |
| c． $\mathrm{Pax}^{\mathrm{w}}$ | ［ $\mathrm{axx}^{\mathrm{w}}$ ］ | falling snow |
| Pa－ $2 \mathrm{ax}{ }^{\text {w }}$ | ［ ${ }^{\text {ápax }}{ }^{\text {w }}$ ］ | it＇s snowing |
| ti－th＝unax ${ }^{\text {w }}$ | ［títhòn $n x^{w}$ ］ | big waves |
| d．tu？nex ${ }^{\text {w }}$ | | cattails，bulrushes |
| tagix ${ }^{\text {w }}$ | ［tígy ${ }^{\text {v }}{ }^{\text {w }} \sim \mathrm{t}^{\prime} \mathrm{g}^{\mathbf{y}} \mathrm{ix}^{w}$ ］ | nine |

X

（100）word－initial position

b．x̆u－－－
c．$\check{\mathrm{x}} \mathrm{at}^{\ominus}=$ inas
x̆ã̌a \mathbf{k}^{w} kiks
x̆aえ a $\mathbf{k}^{\mathrm{w}} \partial \theta$ Riftan
x̌ák ${ }^{\text {w }} u$
x̆awgas
x̆aws
d．х̆әpi

x̆ə？a

Owl＇s Grove（place name）
［x̆á：t^{\ominus} en＾s \sim x̌á $\cdot t^{\theta}$ en $\wedge s$ ］

［ x̌ák $^{w} u$ ］
［x̆áwgıs～x̆́́wgıs］
［x̆aws］
［x̆ 亿́pi］

［x̌á？a］
butter clam
（101）medial position：between vowels（syllable initial）
a．Өatix̌im
b． \mathfrak{t}^{\ominus} 〇x̆u
b＇．DIM－CəCPL－t ${ }^{\natural}{ }^{9} \mathbf{x} u+[?]$
［ $\because a ́ t \varepsilon x ̆ \varepsilon m] ~$

small waterfall
ling cod
lots of small cod

Kureur	[xeb]	xeb	p
plo su!nos	[xvxex]	xe-xez	
	[хе¢¢¢b]	хекеb	\bigcirc
----	----	xn--	-q
ェ2ddoчsse.sf	[xзıехех]	x[!]ex-ex	e
		[euty-pion	(+0 I)

diasied smoojo stol

q. ${ }^{I}$ sоұоор пе!

YIOJ
quis

[XVMexym]
[$7 \mathrm{x} v \mathrm{~V}$]
[4!3xxex]

[uәu!

хем-хем 'p
$1 \mathrm{xxe} \kappa$
4!
Dxn 9

¿ beßx-tux e

--	---	-exว ${ }^{-}$- ${ }^{\text {d }}$
иәло әлемолы!u		
әи!углјом	[u!	
----	---	--nxว-- - ${ }^{\text {- }}$
---	----	-

(

әoure stuioex	[urvxys ~ uexes]	mexes
поош IV $^{\text {eq }}$	[фпмvxyum ~ ¢емvxvyu]	$\ddagger \mathrm{ncz}=$ xem
	[uvxerd.o. ${ }_{\text {m }}$]	uexat $=\mathrm{dn}_{\mathrm{m}} \mathrm{b}$
д2yseq urep		Kexen
reaq yopiq	[¢vx3u]	\ddagger ¢x̣!u

wวx̆-wəx̆
e. qayx̆
[qáyx̌]
cigarette
Mink (stage name)

$\mathbf{x}^{\mathbf{w}}$

(105) word-initial position

a. $\breve{\mathrm{x}}^{\mathbf{w}} \mathrm{i} \chi=\mathrm{X}=\mathrm{y}$		mountain goat
b. $\check{\mathrm{x}}^{\mathbf{w}} \mathrm{us}-\partial \mathrm{m}$	[x'óósom] $^{\text {c }}$	Indian ice cream
c. $\breve{\mathrm{X}}^{\mathbf{w}} \mathrm{a}-\breve{\mathrm{x}}^{\text {w }}$ ani		tidepool sculpin, bullhead
	[x $^{\text {wapa }}{ }^{\text {a wit }}$] stress	fire
d. $\check{\mathbf{x}}^{\mathbf{w}} \partial \mathrm{p}=$ ayin		Labrador tea
$\check{\mathbf{x}}^{\text {w }}$ əs	[$\overline{\mathbf{x}}^{\mathbf{w}} \boldsymbol{\wedge} \mathbf{s}$]	oil
		oil container

(106) medial position: between vowels (syllable initial)
a. $\check{\mathrm{x}}^{\mathrm{w}} \mathrm{i} \mathfrak{i} \mathrm{i}-\check{\mathrm{x}}^{\mathrm{w}} \mathrm{i} \mathrm{y}$
[$\left.\check{\mathbf{x}}^{w} \varepsilon \in ? \varepsilon \check{x}^{w} e y\right]$
b. $\check{\mathrm{X}}^{\mathrm{w}} \mathrm{u}-\check{\mathrm{X}}^{\mathrm{w}} u \dot{\rho}=\mathrm{ay} \dot{\prime}(\mathrm{n})$ č

c. $\breve{\mathrm{x}}^{w} a-\breve{x}^{w} a y-\partial m$
[xááán $^{\text {way }}$ ayìm?]
sux̆ ${ }^{W}$ a
[sóx ${ }^{w}$ a]
t^{\ominus} x w-am-Pamin

夫$ə ⿰ \check{x}^{w}=a y$
[ㅊ́ $^{\mathrm{x}}{ }^{\mathrm{w}} \wedge \mathrm{y}$]
d. $\check{\mathrm{y}} \breve{x}^{\mathrm{w}}-2 \mathrm{t}$
[${ }^{\circ}$ óx $^{w} \wedge t$]
elastic
making a basket
housefly (cf. $\check{\mathrm{x}}^{\text {way }}$-əm dive)
urine; to urinate
dish pan
chum salmon, dog salmon to vomit (tr.? vowel)
(107) medial position: before a consonant (syllable final)
a. $\breve{\mathrm{X}}^{\mathrm{w}}{ }_{\mathrm{X}}{ }^{\mathrm{W}} \mathrm{P}=$ igan $-\partial \mathrm{m}$

to doubt s.b.
b. $\check{\mathrm{x}}^{\mathrm{w}} \mathbf{u} \mathrm{P}^{\mathrm{x}}{ }^{\mathrm{w}} \dot{\mathrm{p}}$

awl

c. $\check{\mathbf{X}}^{\mathbf{w}} \mathrm{a}-\overline{\mathrm{X}}^{\mathbf{w}} \mathbf{n i}$ ta $\check{x}^{w}-n[i] x^{w}-a n$
[x́áx $^{\text {rn }} \mathrm{n}$?]
[tóx $\left.{ }^{w} n e \cdot x^{w} \wedge n\right]$
bullhead, tidepool sculpin
I know
d. $\lambda \partial \bar{x}^{\mathrm{w}} \mathrm{t}$
[$\left.\bar{\chi} v \bar{x}^{w} t\right]$
to spit
(108) word-final position
a. ${ }^{p} \ddot{x}^{w}$
b. q’əp’ux̆ ${ }^{w}$
c. $\mathrm{y}_{\mathrm{ax}}{ }^{\mathrm{w}}$

јах̆ ${ }^{w}-ə t$
d. gitə \breve{x}^{w}
[git̀x̆"]
to thaw s.t.
Mary Point K\&B(1983 \#47)
h
(109) word-initial position
a. hiw=čis
higan
hiy=nač
b. huč
humb-hum
c. hamu
hanaqus
d. haw-?amin /haw-?m=min/
how-higus
[héwčıs]
[hé?g^n]
[híyn^č~héyn^c̆]
[hoč]
[hómhom]
[há?mo ~hápamo]
[hánaq ${ }^{\text {wos }}$]
[hर́w?^men]
[híwhegus]
(110) medial position: between vowels (syllable initial)
paddle
strawberry
bottom of basket
I'm going
blue grouse
pigeon
wolf eel; aggressive
kettle
chiefs
a. hi:hif / həỷhəý
b. puhu=qin
ćał=uk ${ }^{\mathrm{w}}$ t=nač
c. ha-has-am č
kapi=aya
d. hi-həw=čis-ma
[hér:hey? ~héi:hei?]
[p’óhoqen]

[háhasamč]
[kápihàye]
[héhıwčisma]
arrow
raven's call
rain pants
I'm sneezing
coffee pot
get there by paddling
(111) medial position: syllable initial
a. həy-hiyum
b. Pinhus

ti-th=unax ${ }^{\text {w }}$
c. tih=aya
ti-th=aya + ? $/$ ti-th $=$ aya- $[i]+$?
d. xhe
[híy ${ }^{\text {Oh heyom? }}$]
[Pénhos]

[títhòn $\wedge x^{w}$]
[tihaye]
[títhàyi?]

(112) medial position: before a consonant (syllable final)
a. ...ihC
b. puh-Pom
c. čah-čah-əm

d. qəh-t
(113) word-final position
a. tih
[tih~ti:]
b. uh
c. Pah
d. qəh-t
[$\left.\mathrm{Pah} \sim 7 \mathrm{a}^{\mathrm{h}}\right]$
[q^ht]
seagulls (pl)
new moon, new month rain coat big waves teapot, cup of tea small teapot
\qquad

windy, to blow (wind)
to greet, to thank to send s.o. hoist it up, lift it up

big

sore, pain
hoist it up, lift it up

IV． 3 Sonorant Obstruents

ј， $\mathfrak{\jmath}, \mathrm{g}, \mathrm{g}$

〕 which is realized as $[\mathrm{j} \sim \mathrm{y} \sim \mathrm{i} \sim \mathrm{e} \sim \mathrm{c}]$
（114）word－initial position

a．jıičayš／J̌əčayš	［ไ¢čeyš］	spear for cod \＆cod eggs
b．$\breve{J u k}^{\mathrm{w}}-ə \mathrm{t}$	［ chák $^{w} v \mathrm{t}$ ］	smash it up
juw ${ }^{\text {chak }}{ }^{\text {w }}$		a wave（of water）
c．y̌aja		tree
jan ${ }^{\text {w }}$		fish，any fish
d．J̌ətk ${ }^{\text {w }}$	［̌̌ótk ${ }^{\text {w }}$ ］	shake
jot	［ ${ }^{\prime}$＇${ }^{\text {c }}$ ］	run
		car（runs on ground）
		nail polish
јə¢－？${ }^{\text {com－} \theta \text {－as }}$		s／he paid for me
ǰəqiš		crawl

（115）medial position：between vowels（syllable initial）
a．\quad ̇ip＝ajıitiq
t^{θ} aǰ－it ga
$q^{\text {waju－［i］m }}$
qəऍ̆і
b．v〕̆u
c．Pimax－ija
$t^{\ominus} \mathbf{a j}_{j}=$ awus $=$ ton
mija θ
gəја／gij̀a
d．tat＝nač＝ap
［ ＇x́pă̌ttèq］
［t̂ăjuitgà］
［ $q^{\text {wájú }} \mathrm{m} \sim q^{\text {wáajem }}$ ］
［qヘ̂́ji］

［t ${ }^{\ominus}$ àjॅ̌wústən］

［gǐ̌̌］
［tátnay̆ł̣ip ${ }^{\text {h }}$ ］
chin
put it in the shade！
moss
still
－－－－
ant（cf．Pimaš walk） sun glasses，shade eyes meat earth，ground，dirt whole leg，hip
e．ృॅən－ј̆ənis

teeth
（116）medial position：before a consonant（syllable final）
a． ijC
b．$\quad \mathrm{uj} \mathrm{C}$
c． $\mathfrak{t}^{\ominus} \mathbf{a j}_{\mathfrak{j}}=$ tən
d．čaj̄－čū
j 0 －${ }^{\mathrm{j} \lambda}$
həゴ－mix ${ }^{\text {w }}$
［híymıx ${ }^{*}$ ］
（117）medial position ：between consonants：vocalization

［1：$:$ ㅊ
b．jॅo－j̆qiš＋［？］
［ $11: q \varepsilon s ̌$ ］
（118）word－final position
a．ij
b．huj̆
c． aj
d．həコ̆
hə－hј＝igiL＋［？］
［həy］
［háh ${ }^{\text {jıgı }} \mathrm{g}$ ¢ $]$

f

（119）word－initial position－systematic gap ：＊R＇／word－initially
（120）medial position：between vowels（syllable initial）

x̆ə 〕̛is

I＇ve got my dress on
rock

［x̆á？ $\mathfrak{j} i s]$
［x̌é•x̆ǎ̌̌is］
running（cf．jəə犬̉ run ）
sun umbrella（cf．shade） children running（IMP） build a house
crawling（cf．ǰəqiš crawl）
stop
－－－－
build
building a boat

		little bit of wood
b．$\left.P^{\prime}\right\}^{\prime}=u \mathrm{mis}$	［ 7 áp̌umıš］	bright coloured，beautifil
	［ $k^{\text {wáa }}{ }^{\text {wáárju }}$ ］	squirrel
$t^{\text {® }}$ um＝aju		bamacle
		trout
x^{w} วju	［ ${ }^{\text {wáá？}}$ ¢ ${ }^{\text {a }}$	bait
c．$\check{x}^{\text {w／us }}$－um＝aja		soapberry leaves
१up＝aja $=$ čis	［？ópǎ̧̧ĕčis］	mittens（ten fingers）
		thumb
wač＝uja	［wáčữ¢ ${ }^{\text {c }}$	wrist watch
wač＝uja $=$ ton	［wáču？̌j̧t＾n］	wrist watch
Pimax－ija		ant（cf．Timaš walk）
ใəj ${ }^{\prime}=\mathrm{aq}-ə \mathrm{~m}$	［Pá：ǰ¢q＾m］	rainbow
d．q̇əsnaj－əm	［q’へ́snajım］	to get dressed

（121）medial position：after a consonant
a． $\mathrm{C} \mathrm{C}_{\mathrm{i}}$
a．\quad cu－çjeut

a．C〕a
a．C〕龴⿵
（122）medial position：before a consonant（syllable final）
a．ijC
b．$u j \mathrm{C}$
c．$\dot{q}^{w a j}{ }^{3} \check{\mathrm{X}}$

čəẏ－čuỷ／čoj’－čuj’／

［x̌é－x̆a？̌̌is］
［čí：čuỷ］
small child
－－－－
－－－－
wood，firewood
rocks（ pl ）
čəý-čuý /čəy'-čuǰ/
children
（123）word－final position
a．ij
b．čử
čəjॅ̌̆u
c．q̇əsnał̉
d．$\left\{{ }^{3}{ }^{3}-\partial{ }^{2}\right.$

［čuỷ］
［čí：čuỷ～čí：čuý］

［？áŤəəy］
［TáP’ìip～Ráryi：］
child children shirt，dress get better making it good
$\mathbf{g} \quad$ is realized as $\left[\mathrm{g} \sim \mathbf{w} \sim \mathbf{u} \sim \mathbf{k} \sim \mathrm{x}^{\mathrm{w}}\right]$
$\mathrm{g} \sim \mathrm{k}$ voicing assimilation in Consonant clusters
（124）word－initial position

a．git ${ }^{\text {® }}$ it $\check{c} \mathrm{x}^{\mathbf{w}}$	［git ${ }^{\text {® }}$ ¢ čx $^{\text {w }}$ ］	chop wood（you？）
b．guh－əm	［gúhom］	to bark（as a dog）
gu－guh－əm	［gúguhom］	barking
c． ga	［ga $\sim \mathrm{g}$ ¢］	imperative particle
Pittan ga	［Péttəng＾］	go ahead，eat！
gaPut＇	［gá？ot］	oar
gat－ət	［gヘ́tıt］	to pry up tr．？
d． $\mathrm{gat}^{\beta}=\mathrm{ak}^{\mathrm{w}}$ up	［gáat ${ }^{\text {® }} \mathrm{ak}^{\text {w }}$ up］	to split wood
gaċ $=1 q^{\text {w }}$ an		bald，partially bald
$\mathrm{g} 2-\mathrm{g}=\mathrm{c}^{\prime} \mathrm{iq}^{\text {w }}$ an		all bald head
gəq่－t	［gへ́q̧ ${ }^{\text {t }}$ ］	open it（door，window）
gəx̆¢	［gへ́x̆4］	brave

medial position: between vowels (syllable initial)

a. saygit	[sáygı $\ddagger \sim$ s Áygl $^{\text {d }}$]	diaper
kig-kigəm	[k̇Éwkegım]	coyote
${ }^{*} \mathrm{i}=\mathrm{ig}$ [i]s	[λ épegis]	long johns
$\chi^{2}-{ }^{\prime \prime} \mathrm{p}=\mathrm{ig}[\mathrm{i}]$ S	[${ }^{\text {ćéñpegis] }}$	small underwear
$k^{\text {w }}$ um=igs	[$\mathrm{k}^{\mathrm{w} u} \mathrm{~m}_{\text {mews }}$]	red snapper
$\mathbf{k}^{\mathbf{w}} \mathbf{u}-\mathbf{k}^{\mathbf{w}} \mathbf{m}=\mathrm{ig}[\mathrm{i}]$]		small red snapper (dim.)
PiPagik ${ }^{\text {w }}$		clothes
nəgin	[nígin \sim nígın]	lunch, bag lunch
nəgin=aya	[n íginàye]	lunch basket
tig-[i]m	[téligım]	sweet
b. higus	[hégus ~ hé-gus]	chief
še?t higus	[šé? ${ }^{\text {chégus] }}$	God
	[${ }^{\text {cágatex̆] }}$	beating on a drum (${ }^{\text {a atx }}$ tap)
ċag-2t	[čég^t]	help him!
hag-2t	[hág^t]	warm it up
qiga	[qég^ө]	deer
məga	[mへ́g. $2 \sim$ mág.^]	cougar
d. t^{\dagger} agat $=\mathrm{q}^{\mathrm{w}}=\mathrm{uj} a=$ ton		ring
ṫ3gam	[ṫへ́gəm]	sun

(126) medial position: after a consonant and before a vowel (syllable initial)
a. ni-ngin=aya+[?]
[nínginàye?]
b. hi-hgus
[héhgus]
c. x̆awgas
[x̆áwg^s]
grizzly bear
d. tax̆g-2t
[táx̆gnt] to destroy it
(127) medial position: before a consonant (syllable final)
a. kig-kigem
[ḱźwkegım]
coyote
夫ip=igs
[خ̇épews]
underwear
$k^{\text {w }} u m=$ igs
[k^{w} úmews]
red snapper
$\mathrm{k}^{\mathrm{w}} \mathrm{it}=\mathrm{igs}$
[${ }^{\mathrm{k}}{ }^{\mathrm{w}} \mathrm{E}:$ tews]
vest
$\mathrm{tig}=\mathrm{qin}=\mathrm{t}$ әn
[t̂́kqètən]
dessert (cf. tigim sweet)
b. ugC
c. Ėag-ng-may-əm
[ěéwnomর́yım]
I received help (from him)
hag-lam
[hıg? $\mathrm{mm} \sim$ hág? $\wedge m$]
warm (s.t.)
 tag=qin
 te-tg=qin $+[?]$
[túwqen \sim túw 2 qen] answer back [tót²gaqєn̉] answering back
(128) word-final position
a. ig
b. ug
c. ag
d. yag-ag
[yágəw]
it got dry, getting dry
g
(129) word-initial position - systematic gap: *R'/Onset
(130) medial position: between vowels (syllable initial)

a. x̆awš=agič $^{\text {a }}$		spine
$\dagger \partial g=i t^{\ominus} \mathbf{a}$		naked, without clothes
məmyagi? / mam ??	[múmyæ?ge?]	bumble bee
sa-sygit	[sásiPglt]	small diaper
b. mi-mmag $=$ ut	[mém².mągut]	real small kitten

Appendix V: Sliammon Root List

This Appendix contains a representative sample of Roots in the language. The Root is the lexical core of content words (i.e. words which are translated as nouns, verbs, adjectives and adverbs in English). The Root is also the only obligatory element within the predicate complex (cf. Appendix VII) which is comprised of a Root plus affixes. This Appendix also provides information regarding the attested Root canons in Sliammon. It is organized in the following way: Roots with an initial Full Vowel/i, $u, a /$ are abbreviated here as CAC... and are often referred to as Strong Roots, as compared with Weak Roots which surface with an initial schwa: CəC.... Bound Roots are followed by a hyphen whereas free-standing Roots/Stems are not. There are a number of generalizations which emerge from this Appendix. There is only one CV Root in the language $/ \mathrm{Hu} /$ or /hu/ which is the verbal auxiliaryto go. The majority of Roots have at least two consonants (C_{1} and C_{2}). There are also longer extended Roots (CVCVC), which are themselves often Stems. Roots which are even longer in shape tend to be either borrowed words, such as ?atnupil, ?atmupil [?átnopèl] 'car' from English 'automobile', or words which are most often translated as Nouns in English. Some of these longer Roots/Stems are unanalyzable from a synchronic perspective. There is also a small class of inherently reduplicated Roots/Stems, such as $\mathrm{t}^{\boldsymbol{\theta}} \mathrm{it}^{9} \mathrm{ik}^{\mathrm{w}}$ ' ${ }^{\text {worm', and }}$ muš-muš 'cow' which must be based on the Roots $\mathrm{t}^{\boldsymbol{\theta}} \mathrm{ik}^{\mathrm{w}}$ and muš respectively; however, these Root are not independently attested.

CA	$\mathrm{hu} \sim \theta \mathrm{u}$	go
CAC-	+ik ${ }^{\text {w }}$ -	sew (cf. sewing machine; gunny sack; repair net)
CAC		Indian rice (cf. juk ${ }^{\text {w }}$ get crushed)
CAC- / CaC	hiy-, həj	make, build (cf. = nač bottom of basket)
CAC	$\hat{k}^{\text {wabac }}$	dogfish
CAC	$\mathrm{k}^{\mathrm{w}} \mathrm{as}$	hot (cf. burn one's tongue)
CAC	$\mathrm{k}^{\mathbf{w}}$ in	how many
CAC-	$\mathrm{k}^{\mathrm{w}} \mathrm{it}$ -	top of (cf. top of foot, $\mathrm{k}^{\text {witiws }}$ vest)
CAC-	$\hat{k}^{w} u{ }^{\prime}{ }^{\text {k }}$	salty (cf. $\hat{k}^{\mathrm{w} u} \mathrm{u}^{\chi} \mathrm{k}^{\mathrm{w}} \mathrm{u}$ salt water)

CAC－	$\mathbf{k}^{\text {w }} \mathbf{u t}$	Root（cf． k^{kw} ut＝＇ay maple tree）
CAC－	kap－	to crow（cf．ka？－əm）
CAC－	kig－	Root（cf．kig－kig－əm coyote）
CAC－	才ax̆	old（cf． 入lax＝ay elder ；thumb）
CAC	犬ip	under，beneath，below
CAC	̇ư	to grow（as plant）（cf．also adopt a child）
CAC－	＊${ }^{\prime}$ O－	
CAC－	Xum－	enough，sufficient（cf．Xum－it enough）
CAC	夫up	to heal
CAC	xas	glass（＜English glass）
CAC－	Xiš－	root（cf． $\begin{aligned} & \text { i } \\ & \text { ču } \\ & \text { qin } \\ & \text { saliva）}\end{aligned}$
CAC	$\underline{P a t}{ }^{\ominus} / \mathrm{Pat}^{\ominus}$	bay
CAC	？${ }^{\text {ah }}$	sore，pain
CAC－	Paq̇－	get chased（cf．chase him）
CAC－	Paqw－	go downstream（as in $\mathrm{Paq}^{\mathrm{w}}$－iš to go downstream）
CAC	？ $\mathrm{ax}^{\mathbf{w}}$	falling snow
CAC－	Pay－	Root（cf．＝ičin back（of body）；say－entire，whole）
CAC－	Pim－	walk（cf．pim－aš walk－aš Intr．）
CAC	$\mathrm{j}_{\text {ax }}{ }^{\text {w }}$	to thaw，to melt
CAC	¢̆u？	home（cf．hu ga jup go home！）
CAC－	J〕ux̆ ${ }^{\text {w－}}$	vomit（cf．jux ${ }^{\text {w }}$－at to vomit）
CAC－	$\check{x}^{\text {wah }}$－	get sent（cf．－Pam to send s．o．）
CAC	$\check{\mathrm{x}}^{\text {was }}$	oil，fat（cf．suet）
CAC－		Root（cf． x＇wi $^{\text {i }}$ ay mountain goat ，＝ay animate ）
CAC－	$\check{x}^{\text {w }} \mathbf{u p}$－	poke（cf．making a basket）
CAC	tak $^{\text {w }}$	to swell up
CAC－	tay－	Root（cf．tay＝nač＝ton skirt）
CAC	tix ${ }^{\text {w }}$	lose a loved one

CAC	tuk ${ }^{\text {w }}$	to fly
CAC	\$uq̆ ${ }^{\text {w }}$	clear skies
CAC-	tup-	Root (cf. $=$ us half bald)
CAC-	tup-	peel (cf. tup-ut to peel it)
CAC	tal	basket ogress (cf. Watanabe 2000 : ṫl)
CAC	taq̇-	Root (cf. ti-tog-tád=apaq barn swallow)
CAC-	${ }^{\text {® }}$ ¢ ${ }^{\text {¢ }}$	to shade (from sun)
CAC-	tig-	sweet (cf. tigim sweet)
CAC	tin	barbecued salmon
CAC-	tiq'	sharpen (cf. tîquis to sharpen a blade)
CAC-	tip-	barbecue meat
CAC-	tis-	Root (cf. any bird)
CAC-	tiš-	body fluid, mucus (cf. saliva, snot, eyes watering)
CAC	$\mathrm{t}^{\ominus} \mathrm{uk}^{\mathbf{w}}$	day, light, bright
CAC-	$t^{\ominus} \mathrm{u}$ -	Root (as in $\mathrm{t}^{\ominus} \mathrm{u}$? $=$ čis seven)
CAC-	${ }^{\text {t }}$ um-	Root (cf. $\mathrm{t}^{\text {® }} \mathrm{um}=\mathrm{aju}$ barnacle)
CAC-	tug-	be recognized (cf. túgex ${ }^{\text {w }}$ recognize s.b.)
CAC-	tuq ${ }^{\text {w }}$	Root (cf. túq ${ }^{\text {w }}=$ an̉a snail, deaf)
CAC-	tuq ${ }^{\text {w- }}$	Root (tuq ${ }^{\text {w}}$-əmredcaps, thimbleberries; snail, deaf)
CAC	xà ${ }^{\text {¢ }}$	want
CAC-	¢̆at ${ }^{\text {® }}$	Root (cf. breast bone, sternum)
CAC-	ċax-	cook, fry (cf. microwave oven)
CAC-	čag-	help (cf. čag='ay wooden spoon; čag-at help s.o.)
CAC-	ċah-	to greet, to thank, to pray (with -om)
CAC-	čit-	dance
CAC	čư [čúỷ]	baby, child (not ones offspring)
CAC	х̆ар	cradle basket
CAC-	Oap-	bathe (cf. tub, bath tub)

CAC-	Oiy-	Root (cf. floor)
CAC-	gat-	to pry up (cf. gat-at to pry it up)
CAC-	guh-	bark (cf. guh-um to bark (as a dog))
CAC-	has-	sneeze (cf. -əm sneeze)
CAC-	hiw-	rich in the old way (cf. higus chief; hiwčis paddle)
CAC	huj	finish
CAC	$\overline{\mathrm{x}} \mathrm{it}^{\ominus}$	iron (metal)
CAC	$\overline{\mathrm{xit}}{ }^{\ominus}$	uncooked
CAC-	x̌iç-	Root (cf. x̌ič-iž Fall, Autumn)
CAC		that
CAC-	$\mathbf{k}^{\mathbf{W}} \mathbf{i} \mathbf{x}^{\mathbf{w}}$	Root (cf. $\mathrm{k}^{\mathbf{w}} \mathrm{ix}^{\mathbf{w}}=\mathrm{u}$ Oin $=$ ton lipstick)
CAC-	$\mathrm{k}^{\mathrm{w}} \mathbf{u m}$ -	reddish, pink, flushed (cf. $\mathrm{k}^{\mathrm{w}} \mathrm{um}=$ iws red snapper)
CAC-	$\mathbf{k}^{\text {w }} \mathbf{u p}$ -	
CAC-	$\mathrm{k}^{\mathbf{w}} \mathbf{u s}$ -	Root (cf. k^{w} úsem green, blue $\mathrm{j}^{\text {w }}$ usən star)
CAC	lus	Rose (name)
CAC-	mač-	Root (cf. máčusà?ya flea)
CAC	man	father
CAC-	mux̆ ${ }^{\text {w }}$	Root (cf. mux̆ ${ }^{\text {w }}=$ aju belly button, navel)
CAC	mus	four
CAC-	$n \mathrm{na}^{\text {® }}$ -	nod (cf. nát ${ }^{\text {® }}$ usəm to nod one's head) check
CAC-	nam-	like, similar
CAC-	nam-	to get rid of (cf. nam-aš get rid of s.t.)
CAC-	nam-	write (cf. -Tom 'to write'; -Pamin pen, pencil)
CAC	nan	name
CAC	nat	night
CAC	ni?	be there
CAC-	nuh-	invite to a feast, potlatch (with Mdl. nuh-um)
CAC	$\dot{q}^{\text {wis }}$ it	beach

CAC-	$\mathbf{q}^{\text {wuw- }}$	Root (cf. ' $^{\text {wíw }}$ =ana ear)
CAC-		to gather people together (cf. gat $^{\boldsymbol{\theta}}$-aw plural suffix)
CAC-	q̇ack-	bite (cf. qa ${ }^{\text {cke-əm to bite) }}$
CAC-	q̇ix̆-	dye (cf. $\mathrm{q} \mathrm{ix}=\mathrm{iq}^{\text {wan}}$-əm dye hair)
CAC	quis	get tied
CAC	paL'/paL'a	one
CAC	pal'	heron
CAC	pit	low
CAC-	puh-	blow (cf. puh-? ${ }^{\text {am windy, to blow) }}$
CAC	puk ${ }^{\text {w }}$	book
CAC	pun	spoon (<English)
CAC-	puq̧ ${ }^{\text {w }}$ -	powder (cf. face powder)
CAC-	pus-	have lump, raised area (cf.lump neck; Adam's apple)
CAC-	$q^{\text {wañ }}$ -	Root (cf. $=$ iq ${ }^{\text {w/da }}$ knee)
CAC-	$q^{\text {was- }}$	bloom (cf. $\mathrm{q}^{\text {was-am }}$ flower)
CAC	$q^{\text {way }}$	talk, speak
CAC-		
CAC-	$q^{\text {wut- }}$	wade (with MdI. $\mathrm{q}^{\text {w}} u t-\mathrm{um}$ to wade)
CAC-	$\mathrm{q}^{\mathbf{w}} \mathbf{u}$ -	Root (cf. quúenàčton cushion)
CAC-	$\mathrm{q}^{\text {wup- }}$	body hair
CAC	saL'/saL'a	two
CAC-	say-	whole, entire (?) (cf. say=ana neck)
CAC-	sil-	Root (cf. sil=awtx ${ }^{\text {w }}$ tent)
CAC-	sin-	Root (cf. $\sin =k^{\text {w/ }} \mathrm{u}$ ocean)
CAC-	šas-	sneak up (cf. šas-at to sneak up to it)
CAC-	šat-	high (cf. high heels)
CAC-	šu?-	choose, select (cf. šup-ut choose it)
CAC	suq̉ ${ }^{\text {w }} / \mathrm{sww}^{\text {d }}{ }^{\text {w }}$	crazy

CAC-	sup-	chop (cf. stump, tail)
CAC	tan	that one
CAC-	tam-	to desire (cf. tam-aš to desire s.t.)
CAC	tam	what?
CAC	\tan	mother
CAC-	tap-	tight (cf. brassiere, corset)
CAC	tih	big
CAC-	tug ${ }^{\text {w }}$ -	Root (cf. tuq' ${ }^{\text {w }}$-əm have a cold)
CAC	wač	watch (<English)
CAC	wuk ${ }^{\text {w }}$	scoop net
CAC-	wuç-	knuckle, poke (cf. wuç-utto knuckle s.o.)
CAC	x^{w} ? ?	no
CAC-	$\mathrm{x}^{\mathrm{w}} \mathrm{it}^{\text {® }}$	swing (cf. $\mathrm{x}^{\text {wite}}{ }^{\text {® }}$ ton swing for a baby)
CAC-	$\mathrm{x}^{\mathbf{w}} \mathbf{i p}$ -	sweep (cf. sweep floor; broom)
CAC-	$\mathbf{x}^{\mathbf{w}} \mathbf{u} \mathbf{k}^{\mathbf{w}}$ -	Root (cf. $\mathrm{x}^{\text {wú }}$: $\mathrm{k}^{\text {way }}$ (${ }^{\text {a }}$ skunk cabbage)
CAC-	yat-	call (cf. yat-at to call s.o.)
CAC-	yiq̧-	need (cf. yiq-it disgusted with it; need it)
CAC		flood
CAC-	p ${ }^{\text {it }}{ }^{\text {® }}$	wash (wring out, wash by hand)
CAC	pic ${ }^{\text {a }}$	wide
CAC	ṗuqu $^{\text {w }}$	brown, grey
CACaC	夫 入atom	salt
CACaC	XiPom	cockie
CACəC	Palas / Tolas	sea cucumber
CACaC		blanket
CACaC	$\breve{x}^{\text {wil }}$ ¢ ${ }^{\text {a }}$	rope
CACaC	tałom	cedar sticks (for basket)
CACəC		gooseberry

CACaC	$\theta a{ }^{\ominus}$ ¢m	spring salmon
CACaC	kipəm	button
CACəC	maӨač	cormorant
CACaC	qaw̉əm	eye
CACaC	šəmən	enemy
CACaC	wuwzm	sing
CACaC	palat ${ }^{\text {® }}$	skunk
CAC С	pagàm	green, yellow
CACA		belly, stomach
CACA	$\hat{k}^{w} \mathrm{ax}^{\mathrm{w}}{ }^{\text {a }}$	box
CACA	$\hat{k}^{\text {w }}$ uta ${ }^{\text {a }}$	barbecue stick
CACA	犬̇ina	oolichan oil
CACA	?usa	blueberry
CACA	jaja	relative, tree
CACA	taqa	salal berry
CACA-		to dip up (cf. $=\mathrm{k}^{\mathrm{w}} \mathrm{u}$ dip $u p$ water)
CACA	¢̆ ák $^{\text {w }} \mathbf{u}$	cow parsnip, Indian rhubarb
CACA	çañu	dog
CACA	čiya	grandmother
CACA	hamu	pigeon
CACA	$k^{\text {w }}$ uma / k^{w} uma?	ratfish
CACA	$k^{\text {win }}$ upa	grampa
CACA	kapi	coffee
CACA	kapu	coat
CACA	lusi	Rose (name)
CACA	mula	mill (<English)
CACA	šukwa	sugar (<English)
CACA	sux̌ ${ }^{\text {a }}$	urine; to urinate

CACA-	taPa-	travel (taPa=čis to travel, =čis LS)
CACA	tala	money
CACA	waỷi	skate (fish)
CACA	puhu	raven
CACA(C)	pipi / phipiy	thin
CACAC	$\mathbf{k}^{\text {wiunut }}$	porpoise
CACAC	$\hat{k}^{\text {w }} \mathbf{u} \mathrm{Pux}^{\text {w }}$	smoked salmon, smoked fish
CACAC		fish hook, troll for salmon
CACAC	̇̇iczus	Spring (season)
CACAC	̇̇iquiw	dark
CACAC	Tax̆iӨ	lie down
CACAC	Pawuk ${ }^{\text {w }}$	tobacco
CACAC	Raya?	house
CACAC	Papuk ${ }^{\text {w }}$	maggots
CACAC	Pima	grandchild
CACAC	? imin	door
CACAC	Pupan	ten
CACAC	juwak ${ }^{\text {w }}$	a wave (of water)
CACAC	$\check{x i}^{\text {wiusum }}$	Indian ice cream
CACAC	$\check{x}^{\text {w u u }}$ it	ditch, hallow
CACAC	tanuk ${ }^{\text {w }}$	animal hide
CACAC	tagat	herring
CACAC	tix̌iw	to catch a disease
CACAC	tapas	cave
CACAC	tiniq ${ }^{\text {w }}$	salmonberries
CACAC	t^{\ominus} atiqu	a drop of water
CACAC	\hat{t}^{\ominus} ackit	numb
CACAC		twisted

CACAC-	tisus	small salt water fish (tisisusom Sliammon; sm. fish)
CACAC	tułat	bed
CACAC	tupit	wind, sundried fish
CACAC	x̆a ${ }^{\text {ay }}$	bog cranberry
CACAC	čalas	three
CACAC	čayis	arm, hand
CACAC-	Өарахّ ${ }^{\text {w- }}$	Root (cf. =us antler, horn)
CACAC	\ominus apis	bathe
CACAC	Oičim ~ Oičim	up in the back woods
CACAC	θ U日in	mouth
CACAC	Oumin	eyebrow
CACAC	gaput	oar
CACAC	haǰaq ${ }^{\text {w }}$	to dig (a pit); steam-cook
CACAC	higan	strawberry
CACAC	hiyum	seagull
CACAC	x̌iPič	salmon after spawning
CACAC	kiki?	bug
CACAC	layam	devil
CACAC-	mapal-	dark (cf. mapal=awus pupil (eye))
CACAC	maqin	hair
CACAC	masiq ${ }^{\text {w }}$	purple sea urchin
CACAC	mawič	male deer, buck (< Chinook Jargon)
CACAC	miPin	wild carrots, carrot
CACAC	mixá	black bear
CACAC	mimağ [mémaw̉]	cat (cf. məga cougar)
CACAC	muTus	head
CACAC	$\mathbf{q}^{\text {Talas }}$	raccoon
CACAC	¢aput ${ }^{\text {® }}$	uvula; glutton

CACAC	q̇agan	rose hip
CACAC	quatan	rat
CACAC	¢ ${ }^{\text {aqiqq }}{ }^{\text {w }}$	sea wrack, bladder wrack (type of seaweed)
CACAC	q̇iPič	moose
CACAC	pilaq	bracket fungus, mushroom
CACAC	$q^{\text {wawhit }}$	pitch, chewing gum
CACAC	$\mathrm{q}^{\text {wuwit }}$	beaver
CACAC	qayax	digging stick, root digger
CACAC	qiPiq ${ }^{\text {w }}$	any kind of fruit juice
CACAC	qigae	deer
CACAC	qiyup	stern of a boat
CACAC	takin	stocking, sock
CACAC	talič	round
CACAC	tiqiw	horse
CACAC	titul	small
CACAC	tumiš	man
CACAC	wax̆as	frog
CACAC	$\mathrm{x}^{\text {wupus }}$	porcupine
CACAC	yayiz / yaỷa	oregon grape berry
CACAC	yax̆ay	berry basket, clam basket
CACAC	yiwup	sail
CACAC	palat ${ }^{\text {® }}$	skunk
CACAC	pagio	deadfall
CACACA	lamatu	sheep (<Chinook Jargon)
CACACA	wikali / wikala	hermit crab (cf. wa-wakila limpets)
CACACAC	J̇agatix	beating on a drum
CACACAC	PiPagik ${ }^{\text {w }}$	clothes
CACACAC	hikwipiq ${ }^{\text {w }}$	great-great-grandmother (cf. hi-hkwipiqw)

CACACCəC	p̉alasčəən /phalasčin	pine cones
CACC	$\mathbf{k}^{\text {waft }}$	dish, plate
CACC	$\mathbf{k}^{\text {wagag }}$	to scream
CACC	$\vec{k}^{\mathbf{w}} \mathrm{i}^{\text {² }} \mathrm{t}$	upstream area
CACC	Jaqt	long
CACC	Paq ${ }^{\text {w }}$ t	downstream area check
CACC	Tasx ${ }^{\text {w }}$	seal
CACC-	Pilq̇-	Root (cf. Tilq̉ay barbecued deer meat)
CACC	PuPp	Church House (place name)
CACC	J̌anx ${ }^{\text {w }}$	fish, any salmon
CACC-		thunder
CACC	tays	blanket
CACC		red elderberry
CACC	x̆aw's	new
CACC	čap θ	parent's sibling, aunt, uncle
CACC-	Өiiqw ${ }^{\text {- }}$	left, left-hand side (cf. =šin left foot)
CACC	$\mathrm{k}^{\text {w }}$ umt	kelp
CACC	kiks	cookie
CACC-	mamk-	Root (cf. mamak=igs=tan window, mirror)
CACC	maqu ${ }^{\mathbf{w} \mathbf{t}^{\text {® }}}$	wild onions, onion
CACC	malq ${ }^{\text {w }}$	fawn, young deer
CACC	$\dot{\text { q }}^{\text {waja }}{ }^{\mathbf{j}}$	wood, firewood
CACC	q ${ }^{\text {a }}$ 決	otter
CACC	' $^{\text {a }}$ ak ${ }^{\text {w }}$	bald-headed eagle
CACC	piwt	rendered fat, lard
CACC		raspberry
CACC	$q^{\text {wa }}{ }^{\text {cht }}$	to burp, to belch
CACC	$\mathbf{q}^{\mathbf{w}}$ anx ${ }^{\text {r }}$	crab apple

CACC	qaw	potato, potatoes
CACC	qayx	Mink (stage name)
CACC-	talč'-	be round (cf. talici]c round)
CACC-	wapč-	bowel movement (cf. wápč=awtx ${ }^{\text {w }}$ bathroom)
CACC	wal θ	bullfrog
CACC	$\mathbf{x}^{\mathbf{w}} \mathbf{u k}^{\mathbf{w}} \mathrm{t}$	nothing, none
CACC	yax̆t	rib
CACCoC	Paphton	green sea urchin
CACCっC	tupnex ${ }^{\text {c }}$	cattails
CACCaC	tux ${ }^{\text {win }}$ \%m	huckleberry
CACCA	$\mathrm{k}^{\text {w }}$ ułma	to borrow
CACCA	malya	get married
CACCA-	qayx̆a-	Root (cf. qáyx̌a=̇̇ас̆ kidney)
CACCA	say̧ı̆a	leaf
CACCA	watla	sweetheart
CACCAC	̇̇a?tum	wolf (cf. ̇aptium)
CACCAC	Tittan	eat, food
CACCAC	$\check{\mathrm{x}}^{\mathbf{w}} \mathrm{a} 9 \mathrm{x}^{\mathbf{w}} \mathrm{it}$	egg, eggs
CACCAC		hummingbird
CACCAC	łułmum	littleneck clam
CACCAC		oysters
CACCAC	tuq ${ }^{\text {w mut }}$	saps running
CACCAC	taqtaq	slow
CACCAC	$\mathrm{t}^{\boldsymbol{\theta}} \mathrm{ix}^{\mathrm{w}} \mathrm{t}^{\boldsymbol{\theta}} \mathrm{i} \mathrm{x}^{\mathbf{w}}$	fish hawk
CACCAC	çupçu?	
CACCAC	xawgas	grizzly bear
CACCAC	$\theta a ? p$ cac	antlers
CACCAC	humbhum	blue grouse

CACCAC		Steller＇s jay
CACCAC	laplas̆	plank，long board（＜Chinook Jargon）
CACCAC	laspul	soccer ball（cf．～lastpul）
CACCAC	mušmuš	cow
CACCAC	qaymix ${ }^{\text {w }}$	person，native person，First Nations person
CACCAC	saplin	bread
CACCAC	siwsiw	stinging nettles
CACCAC	tuy？ap	follow behind s．o．
CACCAC	wiwlus	young man at puberty
CACCACAC	7atnupil，7atmupil	car，auto（＜English automobile）
CACCACC	kamputs	rubber boots（＜English gum boots）
CACCC	Tapls	apple（＜English apples）
CACCC	$t^{\ominus} \mathrm{amq}^{\mathrm{w}} \mathrm{L}$［ $t^{\ominus} \mathrm{amq}^{\mathrm{w}} \mathrm{f}$ ］	cloud
CACCC	sattx ${ }^{\text {w }}$	woman
CACCCA	$\mathrm{k}^{\text {wapasta }}$	cup
CACCCAC	\＃apt？um	wolf
CACCCAC	lastpul	soccer ball（cf．\sim laspul）
CaC		tomorrow（cf． $\mathrm{k}^{\mathrm{w}} \mathrm{i}$ ？səm tomorrow）
$\mathrm{CaC}-$	$\mathbf{k}^{\text {w}}$ ən－	see（cf．watch out，see）
$\mathrm{CaC}-$	$\mathrm{k}^{\text {T}} \mathrm{sc}^{\text {ch－}}$	count（cf． $\mathrm{k}^{\text {w}} \mathrm{\partial s}^{\text {－t }}$ count it）
CaC－	$\mathbf{k}^{\text {w }}$ t－	hump，bump（cf． $\mathrm{k}^{\text {w}}$ ¢́tičən humpback salmon）
CəC－		Root（cf． 犬 $^{\circ}{ }^{\text {w }}=\mathrm{ay}$ chum，dog salmon ）
CəC	夫้ว ${ }^{\text {c }}$	decay，rot，rotten
CaC	夫əp	deep，bottom
CaC	夫 ขq	out，go outside
CaC	${ }^{\text {夫 }}$ ¢ ${ }^{\text {w }}$	hard，solid
CəC－	Ẋəs－	green，yellow，orange（cf．キैวs－［i］m）

CəC－		beat，win（cf．${ }^{\text {Kax }}{ }^{\text {w－t }}$ beat s．o．in contest）
CaC－		spit（cf． $\mathrm{X}^{\text {a }}{ }^{\text {w－t }}$ to spit it out）
CaC －	ᄎəı＇	wet（cf．خəm－ᄎəm wet）
CəC－	خə ${ }^{\text {¢ }}$	Root（cf．̇ə ${ }^{\text {dem grass，straw）}}$
CaC	Paj	good
CəC－		paint，rub（cf．ǰəkw－t paint it，rub it
CaC	јəə入	run
CaC	ј̌2¢ ${ }_{\text {¢ }}$	smooth
$\mathrm{CaC}-$		
CəC	$\check{\mathbf{x}}^{\mathbf{w}} \boldsymbol{\partial s}$	oil
$\mathrm{CaC}-$		Root（cf．＝ayin Labrador tea）
C 2 C	х̆ә入	break（rope，string）
CaC－	х̆əえ－	pluck（cf．x̆ə $\begin{aligned} & \text {＝iws } \\ & \text { pluck／feather a bird）}\end{aligned}$
CaC	tox̆	bad（cf．＝qin raspy throat）
CəC－	¢ən่－	to weave（cf．ton－t to weave blankets）
CəC－	Łəğ－	be without（cf．tag＝it ${ }^{\text {¢ }}$ a naked，without clothes）
CaC	¢ə9${ }^{\text {w }}$	arrow
CaC－	toq ${ }^{\text {w－}}$	Root（cf．earring）
CaC－	tat $^{\boldsymbol{\theta}}$－	
CaC－	toq－	adhere（cf．toq－t paste it on，glue it）
CaC－	\hat{t}^{\ominus} วх̆－	be worn out（cf． $\mathrm{t}^{\ominus} \partial \check{\mathrm{x}}=\mathrm{it}^{\ominus} \mathrm{a}$ clothes worn out）
CaC	t^{\ominus} əč	bitter，sour（cf．mosquito；Sitka spruce）
CaC－	$\mathrm{t}^{\ominus} \mathrm{\partial k}^{w}-$	wipe（cf． t^{\ominus} อ k^{w}－t wipe it）
СəС－	\mathfrak{t}^{\ominus} อm－	Root（cf．teosmtən＇breast＇）
CaC		ripe，cooked
CaC－	cap－	on top of（cf．［čufumix ${ }^{\text {w }}$ ton＇floor rug，carpet＇）
CaC	çat	rain
CaC	čəવ ${ }^{\text {ch }}$	fence

CaC	¢̇ə ${ }^{\text {c }}$	tiny bird, robin
CaC-	čat-	cut, slice (cf. čat-q=àmin knife ; cet-Pamin saw)
CaC-	$\theta \partial t^{\dagger}-$	jig (cf. θ ¢t ${ }^{\ominus}$-əm to jig for cod)
CaC	Өəç	flat, straight
CaC-	$\theta \mathrm{ak}^{\mathrm{w}}$ -	Root (cf. $\theta^{\text {ák }}{ }^{\text {wnàčton }}$ chair)
CaC-	Өə¢̇-	Root (cf. Өoq=ay sockeye salmon)
CaC-	get ${ }^{\text {- }}$	split (cf. $=\mathrm{ak}^{\mathrm{w}}$ up to split wood)
CaC-	gač-	bald, bare (cf. =iqwan bald, partially bald)
CaC	gə ${ }^{\text {g }}$	open (cf. gaq́-it it's opened)
CəC-	gə ${ }^{\text {T- }}$	drag (cf. gə ${ }^{\text {x-t }}$ drag it)
CaC	$\mathrm{k}^{\mathrm{w}} \partial \mathrm{y}^{\text {[}}$ [$\mathrm{k}^{\mathrm{w}} \mathrm{i}$]	tomorrow
CaC-	mə㐅̆-	Root (cf. mox̆=awə half moon)
CaC	max	calm (on water), no wind
CaC-	me?-	take (cf. má? ${ }^{\text {amk }}{ }^{\text {wum }}$ (pick berries)
CaC-	$\mathrm{mak}^{\mathbf{w}}$ -	eat (cf. mok ${ }^{\text {w}}$-t eat it)
CaC	məq่	to get full from eating
CəC-	mə ${ }^{\text {w }}$ -	swallow (cf. məq่"-i swallow it)
CaC	mas	mink
CaC-	nəp-	under, inside
CaC-	nəq-	Root (cf. nə-nq-əm killer whale)
CəC-	nəy-	forget (cf. 'to forget s.t.')
CaC -	q̇ən-	Root (cf. q̉on=ayu needle)
$\mathrm{CaC}-$	¢̇วs-	tired (cf. q̇os=̇̇ač laugh so hard)
CaC -	pan-	bury (cf. pən-aš bury it)
CəC	paq	white
CəC-	pəq ${ }^{\text {w- }}$	to rot, to decay
CəC-	$\mathrm{q}^{\text {wo }}$ -	wash ashore (cf. $\mathrm{q}^{\text {wo }}$ 位y driftwood)
CəC	$q^{\text {w }}$ al	come

CaC	qә ${ }^{\text {x }}$	many
CaC	qəy	to die (cf. qəẏ-t kill it)
CaC -	qəh-	hoist, lift (cf. qəh-t lift it up)
CaC-	qəp-	Root (cf. qəp=iws-əm make the sign of the cross)
CaC-	sə ¢̈- $^{\text {- }}$	Root (cf. sex̆-əm racing canoe)
CaC	sal-	turn, spin (solsol turning, spinning)
C С	sə¢	half, fifty-cent piece, half-breed
CaC	sə¢่	peel (cf. seq̆-t peel it off (e.g. wild cherry bark))
CəC-	sop-	get hit
CəC-	še?-	high, go up
CəC-	šən'	dry (cf. šom-šom it's already dried)
CəC-	šaq-	sigh (cf. šə́qӨut sigh)
CaC-	tak ${ }^{\text {w }}$ -	pull (cf. tak ${ }^{\text {w-t }}$ pull it)
CaC	teg	freeze (cf. tog't freeze it)
CaC	tom	to tie, belt
CəC-	$\operatorname{tak}^{\mathbf{w}}$ -	Root (cf. tók ${ }^{\text {waña deaf) }}$
CaC-	teš-	Root (cf. -Out to get close)
CaC	$\mathrm{x}^{\text {w }}$ ¢	Swainson's thrush
CaC	yag	it's been raining, and it's dried up
CəC	уəp’	to break (as cup)
СәС-	phog-	Root (cf. pag=ay flounder, halibut)
CaC	pəə	black
CaC	p’ą	smoke (from fire)
CəCəC		six
CaCaC	ṫəg่ə ${ }^{\text {w }}$	clay
CaCaC	tagam	moon, sun
CaCaC	tıq*əขm	thimbleberry
CaCaC	\mathbf{k}^{w} əw่วธ̆	sturgeon

CaCaC		grouse
$\mathrm{CaCaCəC}$	pelomes	plum (<English plums)
CəCA	x̆ə?	butter clam (cf. diminutive $\check{\text { x̆i-x̆ }}$ (${ }^{\text {a }}$)
CəCA	х̆әрі, х̆әрј	to turn back
C СA	$t^{\theta} \partial^{\text {x }} \mathbf{u}$	ling cod
CaCA	mona	one's child, offspring
CəCA	moga	cougar
CəCA	pəču	basket (generic)
CaCa	pəpa	pepper
CaCA	qәйі , qәј̆у	again, still
CaCA	qәya	water
CaCA	səma	mussel
CəCA	teq̧ ${ }^{\text {wa }}$	octopus, devil fish
CəCAC	Polas / Palos	sea cucumber
CaCAC	x̆ejo is	rock
CəCAC	toqis	go across
CəCAC	Өəỷat / Өəy̆it	lake
CaCAC	məૉа / məృ兀 θ	meat
CaCAC	močin	Iouse (cf. $=$ ton fine-toothed comb)
CəCAC	məsiq ${ }^{\mathbf{w}}$, məsiq${ }^{\text {w }}$	purple sea urchin (cf. mos ${ }^{\text {w }}$ soft ${ }^{\text {a }}$
CaCAC	n $\mathrm{xa}^{\text {wif }}$	dugout canoe
CəCAC		scar, a scar
CaCAC	q̇əpıux ${ }^{\text {w }}$	nut
CəCAC	$\mathrm{q}^{\text {w}}$-nis / $\mathrm{q}^{\text {w }}$-nəs	whale (not orca/killer whale)
CaCAC	sak ${ }^{\text {w/um }}$	shiver
CəCACA	t^{\ominus} əəčali / t ${ }^{\text {® }}$ Očili	kingfisher
CaCACA	kənika	coloured person
CaCACA	mətula	Victoria

CaCACA(C)	monat ${ }^{\ominus} \mathrm{i}$, mənat $^{\ominus} \mathrm{i}$ i?	drum
CəCACAC		slug
CaCACAC	čatux ${ }^{\text {wan }}$	blackberry
Сə-CACAC	q̇o-q̇ayas	barrel
CaCACCA	$\mathrm{x}^{\text {woluwla }}$	spiked (cf. spiked heels, high heels)
CəCC	$\hat{k}^{\text {w }}$ ¢tt	plate, tray
CəCC-	kale-	bent, crooked (cf. killi] be crooked)
CaCC		sleep
CəCC-	K̇ams-	reside, house (cf. 夫̇əmis reside; ̇̇mstan village)
CəCC	丸әрх ${ }^{\text {w }}$	broke (cf. đáđapx ${ }^{\text {w }}$ pocket knife)
CaCC	Pesp	end, finish (cf. 7as[i]p to call s.o. down)
CaCC		be all gone; none; all
CaCC	x̌ot ${ }^{\text {k }}{ }^{\text {w }}$	have a design, get carved
$\mathrm{CaCC}-$	†əйg-	to destroy
CaCC	$\mathfrak{t o t}^{\text {ºs }}$	to squirt
CaCC	'̇ak $^{\text {w }}$ S	to burst
CaCC-	tolk-	get/make hole
CaCC	f^{\ominus} วms	soaked
CaCC	lops	canvas shoes, runners
CaCC	mə ${ }^{\text {a }}{ }^{\text {w }}$	blackcap berry
CaCC	malx ${ }^{\text {w }}$	dipper, Greybird
CəCC-	məsq̊ ${ }^{\text {w- }}$	soft (cf. məsỉ ${ }^{\text {w-om }}$ soft)
C ¢CC-	¢̇ə ${ }^{\text {x }}$ -	Root (cf. q'átix $^{\mathbf{w}}=\mathrm{us}$ skull)
CaCC-	potq̇-	slippery (cf. potq̇-om slippery)
CaCC	pott	thick
CaCC-	palk ${ }^{\text {w}}$ - , palk ${ }^{\text {w }}$ -	roll (cf. polk ${ }^{\text {w}}$-2t roll s.t. over)
CaCC	qəm ${ }^{\text {k }}{ }^{\text {w }}$	to capsize, tip over
CəCC-	qams-	store away

CaCC-	ṗəᄎš-	float, surface (cf. połtsígit launch a canoe)
CaCC	pet ${ }^{\text {® }}$ t	tin can, tin
CaCC		bullhead (fish)
CaCCaC	${ }^{\text {¢ }}$ วmtəq	oolichan, candlefish
CaCCaC	məqsən	nose
CaCCaC	pelmes	plum (<English plums)
Cə-CCaC		duck, any duck
CəC-CəC	wวx̆-wวx̆	cigarette
CaCCəC		skin
CaCCA	Өəÿa / өir ${ }^{\text {a }}$	that one (fem.)
CaCCA	lakli	key (Fr. <Chinook Jargon)
CaCCA	$\dot{\mathbf{q}}^{\text {w }}$ อs? i	Iung
CəCCA	toẏta	that one (gen.)
CəCCA	tak ${ }^{\text {w }}$ ti	rabbit
CəC-CAC	̇əṅ-̇an	real shy
CaCCAC	q̇əsna̧	dress
CaC-CAC	pəč-pič	awake
CəCCAC	$\mathrm{q}^{\text {w}}$ ¢š2im	dolphin
CəC-CAC	soy-saỷ	scared
CəCCACA	hənkala /həṅkala	pot (cook in)
CəC-CACA	x̆əg-x̆agat	chipmunk
CaCCCACA	hənk ala / hən̉k ala	pot (cook in) (cf. Watanabe 2000: hanktala)

Appendix VI: Sliammon Lexical Suffixes

The following Lexical Suffixes (LS) are a sample of those attested in the data collected in this study (1988-2000) and are listed alphabetically by their general English gloss. For the most part, I use the "cover" terms adopted in Watanabe (2000) for ease of cross-reference, and include additional glosses which indicate the range of extended meanings for each LS. The examples are organized from a phonological perspective within each data set and are listed according to the place and manner of articulation of the root-initial consonant and first vowel of the root: i, u, a, ∂. Exceptions to this include forms involving numbers in which case it seems more natural to cite them in numerical order.

Some of the LSs discussed by Watanabe (2000, Chapter 8) do not occur in the present data base, and are therefore not discussed here; these include: =čsən Forehead, =iӨx̆an Armpit, =am Inside of a container, $=a n x^{w}$ Fish runs, $=$ on?ał Child, and $=$ tał Fathom. The reader is referred to Watanabe (2000: 186-189) for a discussion of the stative/non-stative forms of these LSs. I have listed the non-stative forms here and indicate stative forms where relevant.

Lexical suffixes identified here which do not appear in Watanabe (2000) include the following: =xï θ Bed, =aymix ${ }^{w}$ Breast, =anč Character, =tan Enclosure, =ay Person (nonproductive), =ay-i People, =igan Sentiments, =əqsən Nose (non-productive), =əさp Tree (nonproductive), =aju Way to get food; bait (?).

Ankle	$=\mathrm{ayi} \mathrm{q}^{\mathrm{w}}$ an
Appearance	=umiš
Area between legs	$=\mathrm{aq},=\mathrm{aq}$
Arm	=ayax̆an, =aẏax̆an
Armpit	-iӨx̆an
Back	=agic
Back	-ičon
Bed	$=$ x̆i θ
Belly	= law i

Berries	=um, =uma
Blanket	$=\mathbf{u k}{ }^{\mathbf{w}}$-t
Body	$=\mathrm{igs}$
Bottom	=nač
Breast	$=\mathrm{aymix}^{\text {w }}$
Breath	=apatat
Canoe, vehicle	=igit
Character	$=\mathrm{anč}$
Cheek	=ajus
Chest	-inas
Chin	$=\mathrm{aj}$ ¢itiq
Clothes, cloth	$=\mathrm{it}^{\ominus} \mathrm{a}$
Cloud, sky above	=ayi=tn
Corner	=axan
Cup-shaped object	=awut
Day of week	$=$ s
Door	=šagt
Ear (HW)	$=\mathrm{aPana}$
Enclosure	$=\tan$
End, shape	$=$ ayin $\sim=$ ayin
Eye	=awus
Fathom	=tat
Field	=iyaPk ${ }^{\text {w }}$
Finger	$=i q^{w}=u^{3} \mathrm{a}$
Fire, firewood	$=\mathbf{a k}^{\mathbf{w}} \mathbf{u p}$
Floor	$=u m i x{ }^{\text {w }}$
Food	=taw
Foot, lower leg	$=$ šan / $=$ šin

Hand (non-productive)	$=$ čis
Hand (productive)	=uja
Hat	$=\mathrm{ayuq}^{\text {w }} \sim=$ ayPiq $^{\text {w }}$
Head, round object	=us
Heel	=ap=šon
House	$=\mathrm{mix}^{\mathbf{w}}$
House, dwelling	$=\mathrm{aw} \mathrm{m}^{\text {c }}$ w
Instrument	=ayu
Instrument	$=\min$
Instrument	$=\mathrm{tn}$
Intestine	$={ }^{\text {a }}$ ač
Intestine	=ayč
Knee	$=\mathrm{iq}{ }^{\text {w }}$ ¢ ${ }^{\text {a }}$
Leaf, stalk	=aja
Lid	=ipan
Mattress	$=\mathrm{aqat}$, $=\mathrm{a}$? 4
Mouth (inside), language	= q in
Mouth, lips (external)	$=\mathrm{u}$ in
Neck, ear	= ana
Net	=jan
Nose (non-productive)	$=2 \mathrm{qs}$ n
Nose	$=\mathrm{i} q^{\mathbf{w}}$
Outside	=awut
People	$=a y-\mathrm{i}$
Person (non-productive)	$=a y$
Person	$=\mathrm{ay}-\mathrm{a}$
Place	=aya (\sim =ala $)$
Rock	=ays

Roof
Roots
Sentiments, inner part
Shoulder
Side (of body)
Smell
Tens
Thigh
Throat
Throat
Throat
Times
Times: combined
Toe
Tongue
Tooth, cutting edge
Top of head
Tree, bush (non-productive)
Tree, bush (productive)
Water
Wave (of water)
Way to get food
Wind, weather
Young of species
$=t \mathrm{X}^{\mathrm{w}}$
$=\mathrm{k}^{\mathrm{w}} \mathbf{u m}$
=igan
$=$ apamčis
=wum
=aqap
$=$ sa?
$=$ anaq
$=\mathrm{agt}^{\ominus}$
$=q a \chi a y,=q \lambda a y$

$=a \ddagger$
$=i 4$
$=\mathrm{aw} u=$ šən
$=i x^{w}$ Өat
$=$ unis, $=$ nis
$=i q^{\mathrm{w}}$ an
$=21 p$
$=$ Pay
$=k^{w}$
$=u n a{ }^{w}$
$=\mathrm{aju}$
$=\mathrm{aPaq}$
$=$ úq

Examples:

Ankle: $=$ aỷiq̉an $^{w} \quad$ Indep. form:
(1)
a. \quad say=ayiq̉ ${ }^{w}$ an

ankle

Appearance: $\quad=u m i s ̌$
Indep. form:
(2)
a. tih=umiš
[tíhomiš~ ~tihomıš]
chubby, fat (cf. tih big)
b. namn=umiš
[ná?mòmıš]
c. $\ddagger \overline{\mathrm{X}}=\mathrm{umis}$

look like s.o. (cf. nam like, similar)
d. $\mathrm{P}_{\mathrm{J}}^{\mathrm{J}}=\mathrm{umiš}$
[?áج̌̌umıš] ugly, bad looking (cf. łəx̆ bad)
beautifuI (lit: good looking)

Area between legs, inside of thigh $=a \dot{q} \sim=a q$
Indep. form:
(3)
a. $q^{w u p}=a q$
[q $\left.{ }^{w o ́ \cdot p \wedge q}\right]$
pubic hair
b. \quad MP-sum $=a q$ - - ay-m a^{1}
[só:sòm^q̉Өèma] Are they gathering around you?
b'. IMP-sum=aq̇-t-uw-m
[sósoməq่tùwvm] they're gathering around us (cedar roots)
c. RED-say-n=aq
[sísay$\left.{ }^{2} n \wedge q\right]$ groin, pubic area

This LS may also occur in a number of wildlife terms:
(4)
a. DIM-puף=nač=aq-aq+[?]
b. \quad tay $=a q=m i n$
c. $\quad \mathbf{I M P}-\mathrm{q}^{\mathrm{w}} \mathrm{atil}=\mathrm{aq}$
[táyeqmin] clam shell
[$q^{w a ́ q} q^{w a t e ̀ l \wedge q ̉] ~ b u t t e r f l y ~(r e f l e c t s ~ m o t i o n) ~}$
d. $\sum_{l}^{\prime}=a \neq n$
[đá?lạ̉^n] slug

[^30]

Arm, upper (elbow to shoulder):
 =ayax̆an, =yx̆an

(5)
a. $\mathrm{Tiq}^{\mathrm{w}}-\mathrm{im}=a y-\mathrm{ax̆an}$
b. $q^{w} u p=y x ̆ a n$
b^{\prime}. $\quad D I M-q^{w} u p=a y-a x ̆ a n$
c. $\mathbf{s a y = a y ́ - a x ̆ a n ~}$
d. $\theta \dot{g}=a y-a x ̆ a n$
e. \quad と \quad n'=ay-ax̆an č
f. $\quad \mathrm{DIM}-\mathrm{q} \dot{\mathrm{C}}=\mathrm{ay}-\mathrm{ax̆an}$ č

Armpit, underarm

[$q^{\text {wópex̆ }} \wedge$ n]
[q"óqwpayàx̆^n] hair on arms
[sáya?yìx̆^n] elbow (cf. say-)
[$\because a ́ ? g a y \varepsilon ̀ x ̆ \wedge n] ~ s l i v e r ~ i n ~ e l b o w ~$

[q’áq̉خ̉ayìx̌ənč] I've got short sleeves (cf. q̉̇ short)
[q"ópeӨй^n] hair under arms
$=i c ̌ ə n,=i c ̌ i n(s t v$.$) \quad Indep. form: Rayičin [Ráyylčın] back$
(6)
a. $\dot{q}^{w} t=i c ̌ ə n$
a^{\prime}. $\quad \mathrm{DIM}-\dot{q}^{\mathrm{w}} \mathrm{t}=\mathrm{ič} ə n$
b. $\overrightarrow{\mathbf{k}}^{\mathrm{w}} \mathrm{t}=\mathrm{ic} ə \mathrm{O}$
$\mathrm{b}^{\prime} . \hat{k}^{\mathrm{w}} \mathrm{t}=\mathrm{ič} \boldsymbol{\mathrm { c }} \mathrm{n}=\mathrm{s} \mathrm{n}$
c. $m \check{x}=i c ̌[i] n$

Back, spinal column: =ag̉ič, =agič (stative) Indep. form: Payičin [Páyyıčın] back
(7)
a. p piq̉=agič
[p’éq̉agıč]
turtle (cf. piq̉ wide)
b. $\mathbf{t}^{\ominus} \mathrm{iy}{ }^{\prime}=$ =agic
[t ${ }^{\text {®íyćàà? }}$ gič ${ }^{h}$] twisted spine (cf. ${ }^{\text {P }} \mathrm{iy}$ é twisted)
c. wuč=agič č
[wú:čeglč̌hčh]
I have s.t. poking my back
d. X̆awšin=agič
e. $\chi p x^{w=a g ́ i c ̌ ~}$
[λ ヘ́pxª́áqıč]
break one's back (cf. $\mathrm{Xpx}^{\mathrm{w}}$ break)
f. $x^{2} t=a g i c$
 stiff back

Bed: $\quad=$ x̆i $\theta,=$ ax̆i \quad Indep. form: Rax̆i $[? a ́ x ̆ \varepsilon \Theta]$ lay down
(8)
a. $\operatorname{sux}^{\mathbf{w}} \mathrm{a}=\mathrm{x} i \theta$
[sóx $\left.{ }^{w} a \check{x} \varepsilon \Theta\right]$
to wet one's bed (cf. sux̆wa urinate)
a^{a}. $s u x^{w} a=i g s-m$
[sóx ${ }^{w}$ ewsəm]
b. IMP-q ${ }^{\text {w }} a y=a x ̆ i \theta$

to wet one's pants
talking in one's sleep (cf. quay speak, talk)

Belly, counting bottles: =lawi
(9)
a. paL'=lawi
[páylàwe?]
one bottle
b. saL'=lawi
[sáylàwe?]
two bottles
c. mus=lawi
[móslàwe?]
four bottles
d. $\mathfrak{q} a ?=l a w i$
[q’á?lawe?]
sea worm

Berries:

$=u m a,=u m$
(10)
a. tin=uma
[ṫ́noma]
berry (cf. ten barbecue fish)
b. $m a ? \partial m k^{w}=u m$
[máp^mkkivi]
pick berries

Blanket, covering, hide, pelt, skin: $=\mathrm{uk}^{\mathrm{w}}-\mathrm{t}$

(11)
a. $k^{w} u m=u k^{w}-t$
[$k^{w u ́ m u k}{ }^{w} t$]
red blanket (cf. k^{w} um- red)
b. takin $=\mathrm{uk}^{\mathrm{w}}-\mathrm{t}$
[tákinùk ${ }^{w}{ }^{\text {h }}$]
sweater (cf. takin stocking, knitted)
c. \quad tan $=u k^{w}$
[tápan ${ }^{n}{ }^{\text {k }}{ }^{w h}$]
deer skin
d. $\mathrm{pq}=\mathrm{uk} \mathrm{k}^{\mathrm{w}} \mathrm{t}$
[pи́qok ${ }^{w t}{ }^{\text {h }}$]
white blanket (cf. pq [píq]white)
e. $\mathrm{CaCPL}_{\mathrm{PL}}-\mathrm{t}_{\mathrm{m}} \mathrm{m}-\mathrm{uw}=\mathrm{uk} \mathrm{k}^{\mathrm{w}}-\mathrm{t}$
 making a quilt (cf. tom tie, belt)

f. $\mathbf{t t}^{\boldsymbol{\theta}} \mathrm{im}=u k^{w}-\mathrm{t}$	[tâqt ${ }^{\text {® }} \mathrm{emvk}{ }^{\text {w }}{ }^{\text {h }}$]	
		rain coat (cf. ext [čít] rain)
h. $\mathbf{k}^{\mathbf{w}} \operatorname{sim}=u k^{\mathbf{w}}-\mathrm{t}$		blue jeans (cf. $\mathrm{k}^{\text {w}}$-sim blue)
i. $\check{\mathrm{x}}^{\mathbf{w}} \mathrm{i} \boldsymbol{\lambda}=\mathrm{a}_{\mathrm{j}}=u k^{w}-t$		

Body, whole body: $\quad=i g s(=i w s),=i g[i] s \quad$ Indep. form: giPiws [gíReyus] whole body
a. mija $=$ =igs
b. $\begin{aligned} & \mathrm{X} \\ & \mathrm{ip} \\ & \mathrm{F} \\ & \mathrm{igs}\end{aligned}$
c. èin=igs
d. $\vec{k}^{\mathbf{w}} \mathrm{it}=\mathrm{igs}$
e. qiga $=$-igs
f. $k^{w} u m=i g s$
g. $\mathbf{k}^{\mathrm{w}} \mathrm{an}=\mathrm{igs}-\mathrm{m}$
g^{\prime}. $\mathrm{k}^{\text {wan }}=$ igs-m-'ut a čx ${ }^{w}$
$g^{\prime \prime} . k^{\text {wan }}=$ igs-it č
h. $\mathrm{p}^{\prime} \mathrm{x}_{\mathrm{s}}=\mathrm{ig}{ }^{2}$
i. $p q=i g s$
j. $\quad \mathrm{tm}=\mathrm{igs}=\mathrm{tn}$
k. $\grave{x} q=i g s-m$

1. $q \mathbf{p}=$ igs -m
m. $\check{x} \lambda=i g s$
n. IMP-Ph=igs č
[méjuaӨews]
[’̇épews]
[či:news]

[qé:gaӨews] deer meat (cf. qigaӨ deer)
[\mathbf{k}^{w} úmews] red snapper (cf. $\mathbf{k}^{\mathrm{w}} \mathrm{um}^{\text {- red }}$)
[$\mathrm{k}^{\mathrm{wan}}{ }^{\text {news }} \mathrm{m}$] to rest (one's body) (cf. k^{w} an- rest)
[$\mathrm{k}^{\mathrm{w}}{ }^{\text {ánewsà? }}$ motæ̀čx ${ }^{w}$] Did you rest?
[$\mathrm{k}^{\text {wánewsičh }}{ }^{\text {}}$] I already rested
[píqews] pale body (cf. pəq white)
[\grave{x} íqewsəm] chicken pox
[q^́pewsəm]
[x̆́ñews]
[?áPhewsč]
[p’^́tšèws] chicken pox, measles (p’خš come to surface)
[tâimewstən] garter (for stockings) (cf. təm to tie, belt)
flesh (mij̆ä meat, flesh)
underwear (cf. Xip under)
bone up front of lower leg, shin make sign of the cross to feather a bird (cf. x خ- pluck) my body is aching (cf. ?oh ache, sore)
[^31]Bottom, base, behind, backsides: =nač
a. $\mathfrak{t}^{\theta} \mathfrak{i} \dot{p}=$ nač
b. tih=nač
c. $\operatorname{RED}-\dot{c} \dot{i} \dot{\chi}=n a c ̌$
d. huč Өiq=nač-'ut
d'. IMP- $\mathrm{\theta iq}=\mathrm{nač}$ č
e. hiy=nač
f. $q^{w} u \theta=n a c ̌=t n$
g. sup=nač
h. $\quad \mathrm{CaCPL}_{\mathrm{PL}}-\mathrm{sup}=\mathrm{nač}=\mathrm{min}$
i. IMP-jug-nač-t-as
j. \quad ?u? ttx $^{w}=$ nač
k. \quad tat $=$ nač $=a p$

1. 夫̇̉aqt-nač
m. kali=nač
n. $k^{w a n=n a c ̌-m ~}$
o. DIM-sax̆wil=nač
p. tay=nač=tn
p'. CəCPL-tay=nač=tn
q. $\check{\mathrm{x}}^{\mathrm{w}} \mathrm{atq}^{\mathrm{w}}-\mathrm{am}-\mathrm{u}=\mathrm{nac}$

[tí:nəč" ${ }^{\text {b }}$
[čí:čılı ${ }^{2}$ nač]
[hóč Өéqnačuł]
[Θ é Θ eqnàčhčch]
[héyn^č] ~ [híyn^cč]
[$q^{\text {wóó }}$ O nàčṭ̣]
[sópnač]
[sópsop ${ }^{\text {n }}$ əčmìn]
[ŭjŭugnàčt^s]
[?ó? ttunæč]
[tátnàčep ~ tát${ }^{\circ}$ načıp] hip, buttocks, whole hip
['̛áqtənač]
[kélin^č]
[$k^{\text {wánačım] }}$
[sás $\left.{ }^{2}{ }_{\mathrm{x}}{ }^{w} \varepsilon \ln \grave{c} c ̌\right]$
[łáynačton]
[fi:łaynàčṭ̣]
[ẍwátaq̉ $\left.^{\text {wamònač }}\right]$
pointed tail (cf. $\mathrm{t}^{\boldsymbol{\theta}} \mathrm{ip}$ sharp, pointed)
it's empty (cf. tih big)
short tail (cf. čỉ short)
I went digging roots
I'm digging roots (cf. Өiq dig)
bottom of a basket
cushion
tail (cf. sup- chop)
stumps (cf. sup- chop)
he's coiling it up (a rope)
salamander ${ }^{3}$ (cf. Ruttx ${ }^{w}$ come inside)
high-waisted (cf. Xaqt long)
Kelly!!! (expressing frustration)
sit down (cf. $\left.\mathrm{k}^{\mathrm{w}} \mathrm{an}-r e s t\right)$
salt grass ${ }^{4}$
skirt
lots of skirts
puff ball ${ }^{5}$ (cf. $\check{\mathrm{x}}^{\mathrm{w}} \mathrm{at}^{\mathrm{q}}{ }^{\mathrm{w}}$-am thunder)
${ }^{3}$ Apparently you are not supposed to go near salamanders; be careful not to step over them, touch them nor make fun of them. If you do, he'll follow you home and crawl up your bum.
${ }^{4}$ Salt grass grows on the tidal flats. The male plant flowers - the Sliammon people ate the stocks of the female plants only.
${ }^{5}$ The word for this bell-shaped mushroom literally means "thunder-shit". Traditionally, the dust from the puff ball was used to help clean clothes. The dust from the puff ball was also mixed with urine in order to make a hair tonic, which made one's hair shiny.
(14) CC Roots

a. λ ṁ χ m $=$ nač		wet bum (cf. ᄎərṅom wet)
b. čn=nač	[čínnač]	head of the inlet
c. $\dot{E} ?=-\mathrm{nac}=$ tn	[čénàččun ~ čé?nàčtın] small blanket to sit on	
d. $\mathbf{k}^{\mathbf{w}} \boldsymbol{m}=\mathrm{nac}$		cedar roots
d'. DIM-k ${ }^{\text {w }}$ ' $=$ nač		small (cedar) roots
e. $\vec{k}^{w} t^{\theta}=$ nač-t ${ }^{6}$		turn it over (a boat) (cf. $\mathrm{k}^{\text {w}}$ ət go over)
f. $\dot{q}^{\prime}=$ =nač		bobbed tail, like bob-cat (cf. q $̇$ d bobbed)
g. $\theta \mathrm{k}^{\mathrm{w}}=\mathrm{nac}=$ tn		chair
g'. $\theta \mathrm{k}^{\mathbf{w}}=\mathrm{nac}=$ =tn-hV č		I've got a chair
h. $s q=n a c ̌$	[síqnač]	tow, towing
i. $\quad \mathrm{m} \lambda \boldsymbol{\lambda}=\mathrm{nac}$		Mitlenatch Island (cf. mo入t calm)
j. $n \mathrm{p}=\mathrm{nač}$	[nヘ́p ${ }^{\text {hnač }}{ }^{\text {h }}$]	pants, underpants (cf. nəp-inside)

(15) CCC Roots

b. \quad sitt $+[i]=$ nač
[ší:thnàch] on edge of seat; ready-to-run; bottom in air
c. $1 P t=n a c ̌$

Breast. $\quad=$ aymix $^{\mathrm{w}} \quad$ Indep. form: $\mathrm{t}^{\ominus} \mathrm{m}=\mathrm{tn}$ [t^{\ominus} ómtən \sim tḥ breast
a. tap=aymix ${ }^{\mathrm{w}}=$ tn
[táp^ymix ${ }^{w}$ tṇ]
brassiere, bra (tap- tight)
b. $\mathrm{np}=$ aymix $^{\mathrm{w}}$
[nápaymıx ${ }^{w}$]
breast milk (cf. nop- inside)
c. $\mathrm{DIM}-\mathrm{lt}=\mathrm{aymix}^{\mathrm{w}}$
[léltaymı x^{*}]
breasts hanging (without a bra)

[^32]Breath:
$=\mathrm{aPatat},=\mathrm{aPa}=\mathrm{tat}$
(17)
a. \quad uwk ${ }^{w}=$ aPałat
[?ú: ${ }^{\text {kwapałał] }}$

Canoe, boat, vehicle: $\quad=i g i t$

(18)
a. čalas=igit
b. $\dot{p} \neq \stackrel{s}{s}=$ igit
c. $\mathfrak{t}^{\ominus} \check{\mathrm{x}}=\mathrm{nac}=\mathrm{c}=\mathrm{git}$
d. IMP-tq́-ay=igi4
Character, humour, kind: =anč (19)
[čélısigıd]
[р’и́才šigıt]

[tへ́q̛̣̉ay̆̀g^đ]
[háhəjıgı+]
a. $\mathrm{DIM}-4 \mathrm{x}=\mathrm{anč}-\mathrm{m}+[\mathrm{i}]+[?]$
['éqxanančım]

Cheek:

$=$ asis
(20)
a. $X_{i k^{w}}=\frac{\mathrm{a}}{\mathrm{j}} \mathrm{is}$

[$q^{\text {wómà }}$ ไy̆ıst ${ }^{\text {h }}$]
c. tat=aj̉is
[táta?̌̌ıs]
cheek (cf. tat-)
Chest:
$=$ inas
(21)
a. Piy=inas-mč Pay-
[?éyin^səmč]
b. $q^{\mathrm{w}} \mathbf{u p}=\mathrm{inas}$
[q*ópen^s]
hair on chest
c. $\check{x} \mathrm{at}^{\ominus}=$ inas
[x̌á: ${ }^{\ominus}$ enns]
breast bone, sternum
d. $x^{x} k^{w}=$ inas
e. IMP-je ${ }^{\mathbf{w}}-\mathrm{m}=$ inas
f. $n t \bar{x}-[i] m=$ inas

Chin:
(22)

(23) $=i t^{\ominus} a$
g. ${ }^{\lambda} i p=i t^{\ominus}$
a. $\quad \mathbf{g}=i i^{\ominus} a-m$
a^{\prime}. $\mathbf{t} \dot{g}=\mathrm{it}^{\boldsymbol{\theta}} \mathrm{a}(?)$
[${ }^{\text {丸́pet }}{ }^{\text {® }} \wedge$]
[4ápagit ${ }^{\bullet}$ วm]
[tá?git ${ }^{\ominus} \wedge \sim$ tá?git ${ }^{\ominus}$ à?] naked
(23.1) $-a y=i t^{\ominus} \mathbf{a} \sim-a y=i t^{\ominus} a$
a. p $\mathrm{it}^{\ominus}-\mathrm{ay}=\mathrm{it}^{\ominus} \mathrm{a}$

a^{\prime}. $p_{i t} t^{\theta}-a y=i t^{\theta} a=t n$
[${ }^{\varepsilon ́ t} t^{\ominus}{ }^{\ominus}$ ayit ${ }^{\ominus}$ atən]
[4é: ${ }^{\text {wayit }}{ }^{\text {ºnatìn] }}$

washboard
c. $\breve{\mathrm{x}}^{\mathbf{w}} \mathrm{iq}^{\mathrm{w}}-\mathrm{a} \dot{\mathrm{y}}=\mathrm{i} \mathrm{t}^{\ominus} \mathrm{a}=$ tn

clothes hangingon line (hak ${ }^{\mathrm{W}} / \mathrm{h}_{\mathrm{k}} \mathrm{k}^{\mathrm{w}}$ hang up)
a. $\quad \mathrm{it}^{\theta}-\mathrm{m}$
[Pit^{\ominus} əm]
blanket
a^{\prime}. Pt^{\ominus} amas
[? $\mathrm{n}^{\ominus}{ }^{\ominus} \mathbf{a}$?mıs] shawl

Cloud, sky above, weather: $\quad=a y i=$ tn
Indep. form: $\mathfrak{t}^{\ominus} \mathrm{amq}^{\mathrm{w}} \ddagger$ cloud
(25)
a. ni ? $=$ ayi $=$ tn
[néPayiton]
cloudy, thick clouds (ni? exist, be there)

b. mahi=ayi=tn	[máhy£yiton]	mid-day, noon
c.	[čítayiton]	looks like rain (see it in the sky); rain clouds
Comer:	=ax̆an	

a. $\dot{\mathbf{q}}^{\text {wit }}=\mathrm{ax̆an}$

b. $\operatorname{\forall ič-m=ax̆an~}$
[Өíčmàx̆^n]
front of the house (cf. $\dot{q}^{w i t}\left[\mathbf{q}^{w} \varepsilon t\right]$ beach)
back of the house (go round the back)

Cup-shaped object, canoe, half-shell: =awut
a. mus=awut
b. $\mathbf{t}^{\ominus} \mathbf{u} \boldsymbol{P}=\check{c} i s=a w u \nmid$
c. Pupan=awu†
d. mus=awuł mtay
e. Өiya=čis=awut mtay
f. $\mathfrak{t r x}=$ =awuł m’ay
g. $\mathbf{t}^{\ominus} \mathbf{u}$? $=$ čis=awu máay
h. ta? $\mathrm{a}=$ čis=awut mtay
i. tigix ${ }^{\mathrm{w}}=$ =awut mfay
j. Pupan=awuł miay
k. mx̆=awut

1. $\mathrm{np}=\mathrm{awnt}$

n. Puwut
[Өíy
[ṫíx̆^màwuł máPṫ^y]
[mósawuf]
[tº́óTčisàwut]
[?óp^nàwut]
[mósawuł mápṫ^y]
[tºópčisàwut mápṫıy]
[táPačisawuł mápṫ^y]
[tígyixwàwuł mápṫ^y]
[?óp^nàwuł mápṫ^y]
[mńx̆awvł]
[nópawuł]

[?ówvł]
four boats seven boats
ten boats
four horse clams on the half shell five horse clams on the half shell six horse clams on the half shell seven horse clams on the half shell eight horse clams on the half shell nine horse clams on the half shell ten horse clams on the half shell half moon in a boat, in a car (cf. nəp- inside) sides of a basket to board a canoe, to get on a boat

Day (of the week): =s
a. $\quad \mathrm{paL}={ }^{\prime}{ }^{7}$
[pá?as]
[sá?as]
[čé:lıs:]
[mós: ~ móss]
[Ө́y\&čıs:]
=šawt, =šaw, =šagt Indep. form:
a. 夫a=šaw- Pm
a'. えa=šaw-t-’ut č
b. $k^{\mathrm{w}} \mathrm{t}=$ šaw \boldsymbol{t}
c. $\mathbf{k}^{\mathrm{w}}=$ =šaw $\ddagger \mathrm{ga}$

Ear (see also Neck): $\quad=$ Pana ${ }^{9},=$ ana
[đášzw?əm]
[Xás̆swtòtč]
[k^{w} v́tš̌ $\mathrm{w} \nmid$]

a. DIM-tih=?ana
[títhaiàna]
big ears
to knock, rap (on s.t. esp. door)
I knocked on his door switch to other side of road (k^{w})t go over) stay on the side of the road!

[^33]b. \quad CaCPL- ${ }^{-1} \mathrm{iq}^{\mathrm{w}}=$ Pana

earlobes
c. \quad DIM-q ${ }^{\text {w }} u p=$ Pana
[q*óqwwa?àna] hair sticking out of ears
d. $\mathrm{paL}=$ =?ana
[pay?ana]
bundle of roots (packed on shoulder)
e. $t^{0} \ddot{x}^{w}=a n ̃ a-m$

wash one's ears
f. tlk=?ana
[tヘ́lǩqàna]
hole in ear

Enclosure:

$=\tan$
Indep. form:
a. $\quad \mathrm{ap}=\tan$
[?áp’ton]
green sea urchin
b. $X^{\prime} \mathbf{q}^{\mathbf{w}}=\tan$

c. $\dot{X} \mathrm{~ms}=\tan$
[ユ́mstan]
house(s), village (Xómes where one resides)

End, extremity, shape: $\quad=a y i n,=a y i n$
a. $\mathrm{t}^{\hat{\theta}} \mathrm{i} \mathfrak{p}=$ ayin

[${ }^{\imath}$ éppayın]

sharp, pointed (ends)
b. \quad DIM-put ${ }^{\ominus}=$ ayin
[pópt ${ }^{\ominus}$ ayen]
c. $\mathbf{x}^{w} \mathbf{u} \dot{k}^{w}=$ ayin
[$x^{w} u ́: k^{w a ̀ y ı n] ~}$

Indian Hellebore 10
d. $\mathfrak{q} a{ }^{c}=a y i n$
[sáyayin̉] HLH
f. jॅaq̇=ayń
g. RED-tl[i] $\bar{c}=a y i n$

Texada Island, Blubber Bay
leaning, tilted, not upright
oval, has rounded ends (cf. tal'[i]č round)

[^34]| | | long, with square ends |
| :---: | :---: | :---: |
| i. Өqt=ayin | [Θ র́qutàyıṅ] | leaning (board leaning on roof); Өíqıt steep |
| i'. Өqt=ayin toyta | [Өíqutàyın títa] | he's standing there doing nothing (leaning) |
| j. tqiš=ayin | [tíqešàyın̉] | bridge |
| k. $\ddagger \dot{q}=$ ayin=tn | [4へ́qayitən] | pike pole (used by boom man) |
| 1. 17t=ayin | [láptàyın] | lob-sided (lâ?ttt flopped on couch, flabby) |

Eye: =awus Indep. form: qaw̉um [qá?wom] eye
(33)

a. tik=awus-m	[tíkewùsəm]	to wink
b. DIM-t ${ }^{\text {® }}$ ip $=$ awus		slanted eyes (cf. ${ }^{\text {® }}$ ip-pointed)
c. Xip=awus	[${ }^{\text {cépawus] }}$	area below the eye (cf. $\mathrm{Xi}_{\mathrm{ip}}$ under)
	[$q^{\text {wópq }}{ }^{\text {wopopàwus] }}$	eyelashes (cf. $\mathrm{q}^{\text {wup }}$ body hair)
e. tala=awus	[táləhàwus]	eye glasses (cf. tala money)
f. tak $^{\text {w }}=$ awus ${ }^{\text {c }}$	[ták ${ }^{\text {wawùsč }}{ }^{\text {b }}$]	my eye is swelling up ([tá: $\mathbf{k}^{w} \mathrm{\Sigma} \mathrm{\Sigma} \mathrm{t}$] swollen)
g. $\mathrm{CaC}_{\text {PL- }} \mathbf{q a p}=$ awus ${ }^{11}$	[qÁṕpqapaw ${ }^{\text {² }}$ s]	bats (qap- cover)
h. špt=awus	[šáPtawus ~ šétawus]	area above eye, eyelid (cf. şit high, above)
		tapping on window (cf. ス̌atx- tap)

Field:

(34)
a. sýikw
[sá?yıkw]
prairie, tide flats
c. sýik ${ }^{w}-\mathrm{it}$ (stv.)
[sé?yek ${ }^{w} \mathrm{tt}$]
mud flat, point of land when tide's out

[^35]

b. $\quad q a p=i q^{w}=u j a=t n$

c. $s ? t=i q^{w}=u j a$
[sápəteq ${ }^{\text {wòŗje] }}$] to signal with the thumb (šipt- go upwards)
d. $k i{ }^{\prime}=\mathrm{iq}^{\mathrm{w}}=\mathrm{u} \mathrm{j}^{\mathrm{a}} \mathrm{a}$

pinky, little finger (cf. $\mathrm{kit}^{\mathrm{y}} \mathrm{k} \mathrm{t}{ }^{\prime}$ small)
$d^{\prime} . k t=i q^{w}=u j^{2} a$

e. $\check{\mathbf{x}}^{w} \hat{t}^{\theta}=\dot{q}^{w}=u j^{2} a$

f. $\chi^{\chi} \bar{x}=i q^{w}=u j a$

thumb (cf. خँ ax old)

a. \quad Pałay $-\mathbf{a j}_{j}=a k^{w} \mathbf{u p}=$ tn
[?áłayèj̀ $\mathrm{k}^{\mathrm{w}} \mathbf{\mathrm { u } p \mathrm { ptṇ }}$

a^{\prime}. Pałaý-aj$=a k^{w} u p=t n$
[PáłaPyèjck ${ }^{\text {wùptñ] }}$ poker for the fire ${ }^{12}$
b. $\dot{q}^{w u P i n=a t-k^{w} u p}$
 ashes ${ }^{13}$
c. \quad IMP- it t $=\mathrm{ap}$

gathering firewood
$c^{\prime} . ~ g i i^{\theta}=a p=u k^{w}$
[git $^{\text {º }}$ apuk ${ }^{w}$]
split firewood
d. IMP-git ${ }^{\ominus}=a p=u k^{w} \check{c} \quad$ [gígit ${ }^{\ominus} a ̀ p v k^{w c ̌}{ }^{\text {h }}$]

I'm splitting firewood

Floor, earth, ground, land: $\quad=u^{\prime}{ }^{\text {w }}$
Indep. form:
a. $\mathrm{X}^{\mathrm{w}} \mathrm{ip}=\mathrm{umix}^{\mathrm{w}}$
["wípomı $^{\text {w }}$]
sweep the floor (cf. $\mathrm{x}^{\text {wip }}$ iom sweep (s.t.))

[^36]b. Eqat=umix ${ }^{w}$
c. IMP-čt=umix ${ }^{\mathrm{w}}+[?]$
$c^{\prime} . c_{t}=u m i x=t n$
d. $\quad \mathrm{CaC}_{\mathrm{PL}}-\mathrm{j}^{\mathrm{j}}=\mathrm{umix}{ }^{\mathrm{w}}$
e. RED-tač=umix ${ }^{w}$
f. $\quad \dot{e} ?=u_{m i x}^{w}=t n$
[Θ íq^tòmıx ${ }^{w} \sim$-tù-] steep hill, shore
[čícito? ${ }^{\circ} \mathrm{m} \mathrm{x}^{\mathrm{w}}$] he's cutting the grass (cf. ©̉at cut)
[čítòmıx ${ }^{\text {w }}$ tə̀n] scythe (for cutting grass)

[títačòmıx"] any animal
[Éó?omèx ${ }^{\text {wr ton] rug on floor }}$

Food, food supplies (stored away) =amif (38)
a. suwtič=amif
b. \quad uw ${ }^{w}=$ amit
c. $\mathrm{q} \check{\mathrm{x}}=\mathrm{ami} \ddagger$
c'. $q \overline{\mathrm{x}}=\mathrm{amiq}$
d. $\mathrm{qms}=\mathrm{amit}$

Food: =yaw
(39)
a. $\mathrm{t}^{\ominus} \check{\mathrm{x}}=$ taw-m
b. $\dot{K}=$ = taw-um
[Ẋáqawom]
gather food in salt water (cf. $\mathrm{t}^{\boldsymbol{\theta}} \ddot{\mathrm{x}}^{\mathrm{w}}$ wash) any berry
$=$ šən $\sim=$ šin $\sim=$ šin (40)
a. $n p=s ̌ i n$
a^{\prime}. $\mathrm{np}=\mathrm{s}$ 厄⿱ $\quad \mathrm{n}$
b. $t^{\ominus} \overline{\mathrm{x}}^{\mathrm{w}}=\mathrm{šin}-\mathrm{m}$
c. $\mathbf{s p}=$ šə
$c^{\prime} . ~ s \dot{s}=$ šin-'uł č
[nə́pšin]
[nə́pšın]

[síp ${ }^{\text {® }}$ šın]

trip, foot caught in s.t. bone marrow
wash one's feet (cf. $\mathrm{t}^{\ominus} \partial \check{\mathrm{x}}^{\mathrm{w}}$ wash)
get hit on the leg (cf. sp get hit)
I got hit on the leg (cf. sp get hit)

Indep. form: $\mathrm{i} i 4 t$ nn [?étton] food, to eat
winter food (cf. sówtič ~ sótıč winter)
to run out of food (Puw ${ }^{\text {w }}$ all used up, none)
lots of food (cf. q̌x [q^x̌] lots, many)
lots of food (cf. qx [$\mathrm{q} \wedge \overline{\mathrm{x}}]$ lots, many)
food stored for winter (cf. qoms- store away)

Indep. form: Piłtan [?Éftın] food, eat

Indep. form: ǰsn [ૉ̌̌šın] foot, lower leg
d．$q^{w u p=s ̌ o n ~}$
d^{\prime} ．\quad DIM－quw $=s[i] n+[7]$
e．$\check{x} a w=s ̌ i n$
f．q^{w} łay $=$＝̌̌on
g． स̀ $_{\mathbf{q}}=$ šən
k． $\mathrm{pq}=\mathrm{sin}$
$\mathrm{k}^{\prime} . \mathrm{CV}_{\mathrm{pL}}-\mathrm{pq}=$ šəə
1． $\mathrm{k}^{\mathrm{w}} \mathrm{aq}-\mathrm{at}=$ šən
m．ptqं＝šin（stv．）

n． $\mathrm{h}=$＝ sin
o．$D \mathbb{M}-$ xixi $^{\ominus}-\mathrm{a} 4=$ šin $+[?]$

q． wuçol－aq＝šin č
r．θ g̀aq＝šin
［ ${ }^{\text {w＂ópš̌ın］}}$

［x̌áw ${ }^{\text {šın }} \mathrm{n}$ ］
 ［丸̇ィ́q́šın］
［pへ́qšin］
［pápqšın］
［ ${ }^{\text {wáảałǎ̌̌nn］}}$
［páqủəšin］

［hর́yšıñ～háyšiñ］

［čílq̉əsัinəm］
［wú：čモ tšınč］
［Өáqgatšin］
hair on legs
little bit of hair on legs（cf．$q^{\text {wup－hair）}}$
bone
shoe，shoes（cf．qű́łaỷ driftwood） moccasins
white root ${ }^{14}$（cf．paq white）
white feet，lower legs（lack of sun exposure）
split sole（of foot）
to slip（foot slips）
Did you slip？（already happened）
ladder
cork boots（loggers cf． xit $^{\ominus}\left[\right.$ x̌e $\left.^{\ell \ominus}\right]$ iron）
cross one＇s legs
I have s．t．poking under my foot
sliver in foot

Although the following lexical items are not analyzable from a synchronic perspective，they may contain this LS．
a．$\dot{\mathrm{q}}^{\mathrm{w}} \mathrm{it}-\mathrm{q}=\mathrm{s} \neq \mathrm{n}$
 starfish（cf．\dot{q}^{w} it beach－＂beach foot＂）
b．$r^{\ominus} u k^{w}=$ sin $-m$
［ $\left.{ }^{\text {to }}{ }^{\text {ón }}{ }^{\text {wssinam }}\right]$ spring tide，day－time tide（ $\mathrm{t}^{\ominus} \mathrm{uk}^{\mathrm{w}}$ daylight）
c． $\mathrm{IMP}-\mathrm{Ki} \mathrm{q}^{\mathrm{w}}=$ šin－m
 becoming a night－tide
Hair：\quad iy－qin \sim i－qin \quad Indep．form：maqin［máqen］hair

[^37]
b. taqu $^{w}=\mathrm{iq}$ in
c. CapL-taqu ${ }^{w}=$ iqin
d. $\mathbf{k}^{\mathbf{w}} \mathbf{u m}=\mathrm{aqin}$
e. $\mathrm{pič}=\mathrm{aq}$ in
f. čəp=aqin

Hand (not productive): =čis
(43)
a. Өiya=čis
a. $\mathfrak{t}^{\ominus} \mathbf{u} \mathbf{P}=$ čis
c. $\operatorname{taPa}=$ čis
b. IMP-hiw=čis-ma

Hand (productive):
a. $\quad \lambda p x^{w}=u j a$
b. čt=uj̉a
c. \quad šf $\dot{p}=u \mathfrak{j} a$
d. \quad ćm \quad =uja
e. $\mathfrak{t}^{\theta} \mathfrak{k}^{w}=u^{\mathfrak{j}} \mathrm{a}$

g. $\grave{x} i p=u j a$
h. $\Theta g=u j a$
i. $\mathfrak{t}^{\theta} \mathbf{k}^{w}=\mathbf{u} \mathfrak{j}^{\mathfrak{a}}==\mathrm{tn}$

[číto? ${ }^{\text {ju }}{ }^{h}$] cut one's hand
[šítp’òł̌̌६] to slip out of one's hand
[čé ${ }^{2}$ moplje $^{\text {b }}$] cold hands

[p’ét ${ }^{\ominus}$ ơ̌ǰtołč] I squeezed her hand (cf. pit ${ }^{\ominus}$ - squeeze)

[$\because a ́ ? g u \uparrow ̌ j \varepsilon \sim$ Oá?guj̆e?] sliver in hand
[$\left.\mathfrak{t}^{\ominus}{ }^{\circ} \mathrm{k}^{\mathrm{w}} \mathrm{u}_{\mathrm{j}} \mathrm{jàtn}\right] \quad$ napkin (cf. $\mathrm{t}^{\ominus} \mathrm{ok}^{\mathrm{w}}-\mathrm{t}$ wipe it)

[${ }^{\text {táq̉ }}{ }^{\text {weqnen] }}$

[k^{w} úmaqın]
[píčaqen]
[čípaqen]
[Өíy\&čıs]
[${ }^{\gtrless}$ Ö? ${ }^{\text {oris }}$]
[tá?ačis]
[héhəwčis ${ }^{y}{ }^{\text {ma }}{ }^{\text {h }}$]
$=u j a \sim=u j \sim=u j ̆ a ? ~(s t v)$ Indep. form: čayiš [čéyıš] hand

There is also another allomorph (surface variant) of this $\mathrm{LS}=u y$. Recall that $\mathfrak{\jmath}$ alternates with \dot{y}. (45)

a. Өjap $=u^{\mathbf{w}}$

b. takin=ayuq ${ }^{\text {w }}$
[ták ${ }^{\text {y }}$ inàyoq ${ }^{\text {w }}$] knitted hat, toque
c. えqam=ay?iq ${ }^{w}$
[λ íqamày? $\varepsilon q^{\mathrm{wh}}$] straw hat
d. $\boldsymbol{c}_{4} 4=a y$ Piq ${ }^{w}$
[číqay(?) $\left.\varepsilon q^{w}\right]$ rain hat

a. $\quad \mathbf{s p}=i q^{w}{ }^{\text {an }}-\theta$-as
[sá?p̉ $\left.\varepsilon q^{w a ̀: ~} \because \wedge s\right]$ Indep. form: mu?us [mó?os] head
$\mathrm{a}^{\prime} . \quad \mathrm{sp}=i q^{\mathrm{w}} \mathrm{an}-\mathrm{Pm}=\mathrm{min}$
[sá?p’èqªn?èmın] he hit me on the head
b. $\quad I M P-7 t-m=i q^{w}$ an
[?á?ṫəmèq ${ }^{\mathrm{w}} \wedge \mathrm{n}$] fish club, club (esp. for salmon)
c. $\check{\mathrm{x} i m}=\mathrm{iq}^{\mathrm{w}}$ an-t-m
[x̌émeq"âtom]
hair is falling out
d. $t i h=q^{w}$ an
[tih $\left.\varepsilon q^{\text {wi }} \wedge n\right]$
get clawed in the head
e. $\mathrm{t}^{\boldsymbol{\theta}} \mathrm{ip}=\mathrm{i} q^{\mathrm{w}} \mathrm{an}$

big head
f. $n p=i q^{w} a n$
[nə́p $q^{*}{ }^{\text {wan] }}$
pointed head
 brain

h. $g{ }^{z}=i q^{w} a n$
 (partially) bald
i. $\quad \dot{p}=q^{w}{ }^{w} a n$

j. $\quad x^{w} u{ }^{w}{ }^{w}-a y=i q^{w} a n=t n$
[$x^{w u ́ l}{ }^{\text {kààyeqwàton] }}{ }^{\text {wair ribbon }}$
k. $\mathrm{pq}=\mathrm{iq}^{\mathrm{w}} \mathrm{an}$
[pи́qheqəən]
blonde hair, female name (pəq [p^q] white)

1. $\mathrm{paL}^{\prime}=\mathrm{iq}^{\mathrm{w}} \mathrm{an}^{15}$
m. $\check{s} 7 t=i q{ }^{w}$
n. $q{ }^{\prime}{ }^{\prime}=i q^{w} a n$
$n^{\prime} . \dot{q}^{i} i=i q^{\mathbf{w}}$ an
o. $\operatorname{tt}^{\ominus} \mathrm{im}=\mathrm{q}^{\mathrm{w}} \mathrm{an}$
p. $\dot{q} \dot{\mathrm{x}} \mathbf{x}=\mathrm{iq}^{\mathrm{w}} \mathrm{an}-\mathrm{m}$
q. $\mathbf{j}^{\mathbf{k}}=\mathrm{iq}^{\mathrm{w}} \mathrm{an}-\mathrm{m}$
r. $x^{w} s=i q^{w} a n$
s. $\mathrm{p}-\mathrm{iq} \mathrm{q}^{\mathrm{w}} \mathrm{an}$
t. puq́=iqwan
u. $p q-i q^{w a n}$
v. $\check{x} i s=i q^{w} a n$
w. $\operatorname{IMP}-{ }_{c}^{z} i y s=i q{ }^{w}$ an
[páw? ${ }^{\text {qu }}{ }^{w}$ n]
[š̌́? ${ }^{\text {teq }}{ }^{\text {w }} \wedge$ n \sim šá $]$

[táft $\left.{ }^{\text {® }} \mathrm{em}^{\mathrm{c}} \mathrm{q}^{\mathrm{w}} \wedge \mathrm{n}\right] \quad$ red head (red hair)
[q’éx̌eq ${ }^{\text {winnom] dye hair }}$

[x^{w} v́shèq $^{\mathrm{w}}$ ən] black hair
[p’^́धheq"ən] black hair
[p’óq̉eqºn] light brown hair (po ${ }^{w}{ }^{\text {w }}$ grey, brown)
[píqeqwan]

[čéċeyeseq ${ }^{\mathrm{w}} \wedge \mathrm{n}$] hair is all tangled
one coiled bundle of cedar roots top of mountain blonde curly hair

Head, face, round objects (money, fruit): =us (48)
a. tup $=u s-t$
b. $n a^{\theta}=u s-m$
c. $12 t=u s$
d. $k^{w} t=u s-m$
$d^{\prime} . k^{\text {wh }}$-us-m-'ut a čx ${ }^{w}$
e. $w u \not{ }^{c}=u s-\theta i t^{\dagger}$ อm
[tóp’ost]
[nát ${ }^{\text {® }}$ osəm]
[lá?tos]
[k^{w} v́tosəm]

[wú:čosӨct ${ }^{\ominus}$ อm] I'll knuckle you in the head (cf. knuckle s.o.)

[^38]f. piqu=us
g. $\mathrm{inx}^{\mathbf{w}}=\mathrm{us}-\mathrm{t}$
h. $s a \bar{x}^{w}=u s-m$
h^{\prime}. sax̆ $^{\boldsymbol{w}}=u s-m$-'ut a čx ${ }^{w}$
i. $\dot{q} \not{ }_{\mathbf{x}}{ }^{\mathbf{w}}=\mathrm{us}$
j. tī̆=us-m
k. $\quad \mathrm{IMP}-\mathrm{PJ}_{\mathrm{j}}-\mathrm{am}=\mathrm{us}=\mathrm{tn}$

1. tih=us
m. 츠옹=us
$\mathrm{m}^{\prime} . \mathrm{pq}=\mathrm{us}$
n. nam=us
o. $\operatorname{tm}=u s=t n$
p. CəCPL-mčin=us
q. $\mathrm{paL}=\mathrm{us}$
r. $\quad \mathrm{saL}^{\prime}=\mathrm{us}$
s. sow=us-m

Heel, behind

a. \quad DIM $-\mathrm{t}^{\ominus} \mathrm{i} \dot{p}=\mathrm{ap}=\mathrm{s}[\mathrm{i}] \mathrm{n}$
b. $k^{w} u p-k^{w} u p=a p=s{ }^{n} n$
c. tuy=ap
c'. tuy=ap-t-'ut č
d. taq̉ $^{\mathrm{w}}=\mathrm{na}{ }^{-}=\mathrm{ap}$

Heel (non-productive)

(50)
a. $x^{w a l u w l a x i n}$

[sáx́wosəm] shave one's face (sax̆w shave)
[sáx̆ ${ }^{w}$ osà ${ }^{\circ}{ }^{\circ}$ mołæ̀čx $\left.{ }^{w}\right]$ Did you shave?

[tǐio:səm] wash one's face

[ti:hos]
[Xísemos]
[píqos]
[námus]
[táp ${ }^{2}$ mòstṇ]
[míča ma?čınos]
[páw?us]
[sáw?us ~ sáw?vs]
[só?wusəm]
$=a p$
[$t^{\bullet} \varepsilon^{\varepsilon} \varepsilon^{\ominus}$ p’apšin]
[$\left.k^{w}{ }^{\text {úp }} k^{w} u p ? \wedge p s ̌ ı n\right]$
[tóy^p]
[tóy \wedge ptò ${ }^{\text {č] }}$
[łáq̉ ${ }^{\text {wnačı }}{ }^{\text {p] }}$
$=x \neq n \sim=x$ in
[xáálowlàxın]
high heels (narrow, sharp, pointed heels) heels (plural) follow behind (s.b.) (at heels) I followed behind him one braid of hair (down back)
spiked heels, high heels (like deers hooves)

Hip: $\quad=\operatorname{amap} \sim=$ =map \quad Indep. form: $q m p$ [q^́m^p] thigh, top of leg
a. $q m p$
a. ${ }^{\text {CaC }}{ }_{\text {PL }}-q \mathrm{mp}$

House, dwelling, room:
a. tiwš-am=aw'tx ${ }^{w}$
[tíwš̌màw ${ }^{\text {tow }}{ }^{w}$]
[$\mathbf{k}^{\text {w }}$ úlaw̉tx ${ }^{w}$]

[č̌̌hamò?tx ${ }^{w}$]
[ॅ̌Énx ${ }^{\left.w a ̀ w t x^{*} \text {] }\right] ~}$
[k^{w} v́təmawtx $\left.^{\mathrm{w}} \sim \mathrm{k}^{\mathrm{w}}{ }^{\mathrm{E}} \mathrm{t}\right]$ hospital, sick house (cf. k^{w} ət-əm be sick)

e. $\operatorname{sux}^{w} a=a{ }^{w} t x^{w}$
[sóxiwhàwtxw] bathroom (cf. sux̆wa urine)
f. wa?č $=a w^{\prime} t x^{w}$
g. qaPay=aẃww
h. $\mathfrak{k}^{w} u P u x^{w}=a w^{\prime} t x^{w}$
i. \quad IMP-qs-im+[?]=awtx ${ }^{w}$
j. $\quad \mathrm{CaC}_{\mathrm{PL}}-\mathrm{tm}=\mathrm{aw} \mathrm{tx}^{\mathrm{w}}$
j'. RED-tm=aw' ${ }^{\mathbf{w}}$
k. $2 \mathrm{ax̆i} \theta=\mathrm{awn} \mathrm{x}^{\mathbf{w}}$

qヘ́m^p~qám:^p lap
qə́mqəт^p both thighs, one's lap
$=\mathrm{aw}^{\prime} \mathrm{tx}^{\mathrm{w}}$
Indep. form: ?aya? [?áyع?] house
place of learning (cf. títiw̌̌s̀̀ m̉ learning) school ($<\mathbf{k}^{\mathrm{w} u l} / \mathrm{kul}$ school) church (cf. ćah-m pray)

c. $\mathrm{J}_{\mathrm{an}} \mathrm{x}^{\mathrm{w}}=\mathrm{aw} \mathrm{w}_{\mathrm{t}}{ }^{\mathrm{w}}$
d. $k^{w} t-m=a w^{\prime} t x^{w}$
d'.

bathroom (cf. wa?č bowel movement)

[q^́qse?màw̉tx"]
[tómtamàwtx ${ }^{w}$] jail (cf. tm [tım̉] tie up)
[támtəmPà?wtx"] jail (cf. titm-it [tétmèt] tied, bound up)

[p’ákwitàw̉txw] floating house (cf. páa: ${ }^{w}{ }^{w} t t$ raft)

House, foundation, people: $=$ mix $^{w 17}$
a. tiy=mix ${ }^{w}$
[tíymux ${ }^{w}$]

c. $h y=-\mathrm{mix}^{w}$
c'. IMP-hy=mix ${ }^{\mathbf{w}}$
d. hiy=mix ${ }^{w}$
(54) with LS =ay
a. $\quad \mathrm{q} a \mathrm{t}^{\boldsymbol{\theta}}=\mathrm{ay}=\mathrm{mix}^{\mathrm{w}}$
b. tač=ay=mix ${ }^{w}$
c. $n a z=a y=m i x^{w}$
d. $\mathrm{nuk}^{\mathrm{w}}=\mathrm{ay}=\mathrm{mix}^{\mathrm{w}}$
(55) with -'Vg Plural
 them)
b. nač-' $\mathrm{Vg}=\mathrm{mix}^{\mathrm{w}}$
c. \quad aw $k^{w}-{ }^{\prime} V g=\mathrm{mix}^{\mathrm{w}}$

Instrument: $\quad=\mathrm{min}$
['qá?q̉amıx ${ }^{w}$]
[híymex ${ }^{\text {w }}$]
[híhemıx ${ }^{w}$]

$$
=\mathrm{ay}=\mathrm{mix}^{\mathrm{w}}
$$

['̣áat ${ }^{\text {® }}$ aymix ${ }^{w}$]
[táčaymıx"]
[nác̉aymıx ${ }^{*}$]
[nókwaymıx ${ }^{\text {w }}$]
$={ }^{\prime} \mathrm{Vg}=\mathrm{mix}^{\mathbf{w}}$

[náč^wmıx ${ }^{w}$]

Indep. form:
[héymıx ${ }^{\text {w }} \sim$ hí:mıx ${ }^{\text {w }}$] build a house, a home
gathering different peoples (' ${ }^{2}{ }^{\text {t }}$-aw gather
Indep. form: qaymix ${ }^{w}$ [qáymıx ${ }^{w}$] person gathering of people (maybe: $\dot{q}^{\partial} t^{\boldsymbol{\theta}}$-) all our own people (cf. tač-) stranger (people from elsewhere) population of village stranger (cf. na ${ }^{\mathcal{Z}}$ different) all nationalities (cf. Pawk ${ }^{\mathbf{w}}$ - variety)
${ }^{17}$ There are some instances of surface [mix ${ }^{w} \sim$ è $\left.{ }^{2} \mathrm{mix}^{w}\right]$ which although they appear to contain the $\mathrm{LS}=$ mix $^{\mathrm{w}}$ may arise from a different source, namely the stative middle suffix -[i]m followed by the -(?)Vg plural affix. For example, the word which means 'they're laughing' is [qńsqesè?mix"] may come from /REDPL-qs-[i]m-१Vg/ \gg qas-qəs-im-ig. Recall that g becomes x^{w} in word-final position, as shown by the alterations in $\S x . x$. The presence of the glottal stop in [qísqesè?mix"] suggests this analysis rather than */RED ${ }_{\text {PL }}$-qs=ay=mixw/. This lexical suffix and related forms require additional research.
a． $\mathrm{x}^{\mathrm{w}} \mathrm{ip}-\mathrm{Pm}=$ min

c． $\mathrm{pus}-\mathrm{Pm}=\mathrm{min}$
d．tut－？m＝min
e．${ }^{\ominus} \overline{u x}^{\omega}-a m-2 m=\min$
f． Out＝min
g．nam－$-\mathrm{m}=\mathrm{min}$
h．nam＝us－？m＝min
i．$t \mathrm{t}^{\mathbf{c}}-\mathrm{P} \mathrm{m}=\mathrm{min}$
j．$\quad \mathrm{tg}-\mathrm{Pm}=\mathrm{min}$
k．$\quad \mathrm{DIM}-\stackrel{\mathrm{c}}{\mathrm{x}}-\mathrm{P} \mathrm{m}=\min +[?]$
k^{\prime} ．$\check{\mathrm{c}} \mathrm{x}-\mathrm{Pm}=\mathrm{min}$
1．$\dot{\mathrm{q}} \mathrm{t}-\mathrm{m}-\mathrm{P} \mathrm{m}=\mathrm{min}$
m．$\theta_{\hat{c}-7 m=m i n}$
n．$\theta \mathrm{h}-\mathrm{Pm}=\mathrm{min}$
o．$f t-P m=m i n$
p． $\mathrm{hw}-\mathrm{Pm}=$ min
q． $\mathrm{gt}^{\theta}-3 \mathrm{~m}=$ min
r．$n p-3 m=\min$
s．\quad tq $q-7 \mathrm{~m}=\mathrm{min}$
t．$\quad^{9} \mathbf{w} \mathbf{k}^{\mathrm{w}}-\mathrm{Pm}=$ min
u．DIM－msiq ${ }^{\mathrm{w}}-3 \mathrm{~m}=$ min

Instrument：

（57）check all for［ t ］

a^{\prime} ．$k^{w i x}{ }^{w}=u \Theta i n=t n$
b．$\theta i y=n a c ̌=t n$
［ $x^{\text {wip }}$ Pràmen～－mın］

［pús？${ }^{\text {mmen } \sim-m ı n] ~}$
［tót？ Am mn］

［ θ ótmen］
［nám？＾men］
［námosì̀men］
［tiécis＾men］
［tự＾men］
［ čéžăa？men］

［ \because ič？${ }^{2}$ ィmen］
［ θ л̌h？\wedge men］

［hへ́w？omın］
［gヘ́t t $^{\beta}$ Pàmın］
［nápجamen］
［ čítqàmen～－mın］
＝tn

［Өヒ́ynлčtən］

［mémsèq $\left.{ }^{\mathrm{w}} \wedge \mathrm{mè̀n}\right] \quad$ pins（məsiq${ }^{\mathrm{w}}\left[\mathrm{m} \wedge \mathrm{seq}^{\mathrm{w}}\right]$ purple sea urchin）
rouge
lip stick
saucer（old word）
c．Oiy＝umix ${ }^{w=t n}$
［日éyomıxwtən］floor
d．$\theta i w=u \theta_{i n}=\mathrm{tn}$
［日éwvӨèton］table
e．x^{w} ip $=u m i x^{w}=$ tn
［ $\mathrm{X}^{\text {wipomt }}{ }^{\text {w }}$ tan］
broom（cf． $\mathrm{x}^{\mathrm{w} i p-}$ sweep）
f．$x^{w i t}{ }^{\theta}=$ tn
［ $\mathrm{x}^{\mathrm{w}} \mathrm{it}^{\theta}$ ton］
swing for a baby （cf． $\mathrm{x}^{\mathrm{w}} \mathrm{it}^{\ominus} \varepsilon^{\varepsilon} \ell^{\circ} \mathrm{ot}$ a spring in one＇s step）
g． puqu $^{\text {w }}=u s=$ tn
［pú：qºwostən］
face powder
h．tap $=$ tn
［táptṇ］

［ $\because a ́ p t ı n]$
［ \uparrow º́mton］
1．$\quad \varepsilon ?=\mathrm{u} \theta \mathrm{in}=\mathrm{tn}$
［čó？o＠ètən］

n．šm $\mathrm{m}-\mathrm{ay}=\mathrm{it}^{\ominus} \mathrm{a}=\mathrm{tn}$
［š̌́？mayit ${ }^{\circledR \theta}$ atən］
corset（with garter for stockings）（tap－tight）
i．\quad quat ${ }^{\ominus}=$ tn
j．$Ө a p=-\mathrm{tn}$
k．$t^{\ominus} \mathrm{m}=\mathrm{tn}$
m $4=$ tn
o． $\mathfrak{j}^{\mathbf{k}}{ }^{w}=\mathrm{i} q^{\mathrm{w}}=\mathrm{u} \mathrm{j}^{2}=\mathrm{tn}$
 nail polish（cf．〕̌ə ${ }^{\mathrm{w}}$ rub，paint）
p．$n p=n a c ̌=t n$
［nə́pnačtən］
saucer（for tea cup）（nəp－inside，under）

Instrument：

＝ayu
a．\quad qn＝ayu
［q’＾́nayu］
needle（for sewing）

Intestine，abdomen，stomach，sack：＝خ̀̉ač
（59）
a． $\mathrm{tik}^{w}=\mathrm{K}_{\mathrm{K}} \mathrm{ac}$
［＇tík ${ }^{\text {w }}$ ªč］
gunny sack（cf．tik ${ }^{\text {w }}$ sew）
b． $\mathbf{k}^{\mathrm{w}} \mathbf{u p}=\AA$ 天 ${ }^{\text {c }}$

Hernando Island（cf． $\left.\mathrm{k}^{\mathrm{w}} \mathrm{up}-h i l\right)$
c．say＝خ̀̉ač－m
［sáẏ̇ačım］
diarrhea（say－whole？）
d．qayx̆a＝خ̀ač
［qáyx̆ađ̉ač］
kidney（internal body part）
e． $\mathrm{p} \overline{\mathrm{x}}=\overline{\mathrm{x}} \mathrm{ac}$
［póx̃天̈ač］
 to break open，explode（cf．px̆ break open）
f．$q \mathbf{k}^{\mathbf{w}}=\grave{\lambda} a c ̌=t n$

	[9’へ́ṡ̇æč]	laughed so hard (cf. q's tired)
h. $\mathrm{q}^{\mathbf{w}} \mathrm{s}=$ خ̇ač		human liver
i. $n \mathrm{p}=\mathrm{X}^{\text {a }}$ č		fish, deer guts (cf. np-inside)

Intestine, stomach: $\quad=a y \not z^{2}$

a. $\quad \mathrm{h}=\mathrm{hy}$ ̌
[?áh $\wedge y$ č̀]
b. $\ddagger \check{x}=a y^{k}+[i]$
[\ddagger ñxayič $]$
c. $\Psi \check{x}=a y \check{y}-\mathrm{in}$
[${ }^{\text {tíx̌ayč̌̌ın] }}$
upset stomach (cf. / $\mathrm{Ph} /$ Pah sore)
not felling well (cf. /4x̌/ tíx bad) hair standing on end

a. $\dot{\varepsilon} q^{w}=i q^{w} \ddagger a-? m$

b. RED-tm $=i q^{w} f a=t n$
[tómtaimèqwatṇ] rag tied around knees (cf. tom belt, tie)

Leaf, stalk, root (of plant) foliage: =aja

under brush
b. DIM-tul $=a j a+[?]$
[tótəlàケje?]
c. tuq ${ }^{\mathrm{w}} \partial \mathrm{m}=\mathrm{a}_{\mathrm{J}} \mathrm{a}$ a

d. $\breve{\mathbf{x}}^{\mathrm{w}} u \mathrm{~s}-\mathrm{m}=\mathrm{aja}$

e. $\mathrm{paL}^{\prime}=\mathrm{a}^{3} \mathrm{a}$
[pá\{â̧̌̌]
edible stalk ${ }^{18}$
f. $\check{x} a ?=a \jmath \frac{\jmath}{a}$

bog cranberry bush (cf. x̆a? bog cranberry)

[^39]| g. yamaǰ $=\mathrm{aj}^{\text {a }}$ | | knot (on a tree) |
| :---: | :---: | :---: |
| h. ${ }^{\prime} q=a^{3} \mathrm{a}$ | | bloom, when buds are coming |

Lid (lid for a basket, pot): =ipan, =ippan Indep. form: $k^{w} n{ }^{n} a y ~\left[k^{w a ́ p n} n y\right]$ cover, lid
a. $\mathbf{g q}=i p a n$

b. pus=ippan
[púse? ${ }^{\text {Pp }}$ คn]
basket lid

Mattress: -apat , =ałat, -ałałat on

b. $\lambda q m=a \neq a t$
c.

Mouth (outside), lips: $\quad=u \theta i n,=u \Theta i n(s t a t i v e)$ Indep. form: $\Theta u \Theta$ in [Θ ó $\left.\cdot \theta \mathrm{ln} \sim \theta_{0} \cdot \theta \varepsilon \mathrm{n}\right]$ mouth
a. tih=u $=$ in
[tíhoӨen]
[λ ह́poӨın]
[$q^{\text {wóq }}{ }^{\text {wh }}$ pò $\left.\Theta ı n\right]$
[$\mathrm{q}^{\text {wópo }}$ © n]
[hójöィın]
[hójoӨ̌̀n]
e. $\dot{q}^{w a y c ̌}=u \Theta$ in

[łǽTq ${ }^{w o \Theta e ̀ n ə m] ~}$
[?áxwəృјӨın]
[tíq**oӨen~-oӨtn]
[${ }^{\text {kw}}{ }^{\text {w }}$ ÚšoӨènəm]
big mouth
lower lip
grey cod (lit: whiskers on face)
hair on lip
finish eating
be finished eating
razor clam
lick one's lips
can't finish what's on your plate
fish trap (on river)
to tell a joke (cf. $\mathbf{k}^{\text {wos }}$ -)

i'. $\mathbf{k}^{\mathbf{w}} \mathbf{s}=\mathbf{u}$-in-m	[$\mathbf{k}^{\text {wi}}$ iš̌OOènəm]	to tell a joke
j. IMP-qs-m=uӨin-m+[?]	[qáqsa?moӨè?nəm]	singing (know words and song)
k. $\mathbf{s} \mathbf{p}=\mathbf{u} \boldsymbol{\theta}$ in	[sápəp’ò ${ }^{\text {ctn] }}$	get hit on the mouth
\mathbf{k}^{\prime}. spou®in-'ut č	[sápəjpo:Өè?notč ${ }^{\text {h }}$]	I got hit on the mouth
1. šithuӨin	[šá?tò̀en]	upper lip

This LS also has the allomorph [$=\mathrm{u} \theta$] which occurs in a number of lexical items:
a. RED- POJ $^{2}=u \theta-\mathrm{m}$
[?áyPa?jùuəm]
Sliammon language; speak well

Mouth (inside), language, voice: =qin
Indep. form: sayqin [síyqəon] mouth
a. $\mathrm{tig}=\mathrm{qin}=\mathrm{tn}$
b. $\begin{array}{ll}\text { is } & =q i n \\ \end{array}$
b^{\prime}. Xiš $^{\prime}=q i n-m$
c. mija $\theta=$ qin
d. $\quad \mathrm{tu}$? $\mathrm{q}=\mathrm{q}$ in
e. 芙uq̉ ${ }^{w}=q$ in
f. $q^{w} u m=q i n-t$
g. $\quad \mathrm{Pu} P \mathrm{p}=\mathrm{qin}$
h. ta?amin=qin
i. \quad qaymix ${ }^{w}=$ qin
i'. RED-qaymix ${ }^{w}=q i n-m$
j. $\quad \dot{\text { q. }}{ }^{\left(k^{\mathbf{w}}\right.}=$ qin
k. $\operatorname{tg}=\mathrm{qin}$
k'. IMP-tg=qin $+[?]$
[t̂̉kqeton]
[λi is̆q $\ell n]$
[Xišq๕nəm]
[méjaӨqın]
[tó?q${ }^{\text {h }} \mathrm{q} \varepsilon \mathrm{n}$]
[${ }^{\prime}$ óq$^{w q q}{ }^{\text {q.n }}$]
[$q^{\text {wómqqt }}{ }^{\text {h }}$]
[?ó? ${ }^{\text {h }}$ qen]
[tá?amınqєn]
[qáymıx ${ }^{\mathrm{w}} \mathrm{q} \varepsilon \mathrm{n}$]
[qə́yqุ^ymıx"qènəm] speaking Indian (cf. qaymix ${ }^{w}$ FN person)
[q̉áyk ${ }^{w} q$ ñ]
[túwqen] ~ [túwqen] to answer back
[tótºgaqın̉] answering back

1. $\check{s} p=q$ in ${ }^{19}$

1'. \quad s $?-\mathrm{t}=\mathrm{qin}$

Neck (see also: Ear): =ana
a. $t^{\ominus} \mathrm{i} y \mathrm{z}=$ ana 2
[${ }^{\ominus}$ ©iyč̀̀̀?nn]
b. pus=ana
c. say=ana ${ }^{20}$
d. X̌ay=aña
e. $\check{x} \mathbf{q}=a n{ }^{\prime} a$

f. $\quad \chi p x^{w}=a n{ }^{\text {a }}$

Net, fishing net:
(69)
a. tikº̄=jan

Nose (non-productive): $\quad=\mathrm{qsn}$ [=əqsən] Indep.form: $\mathrm{mqsn}[\mathrm{m}$] qsin$]$ nose (70)
a. IMP-१̌̆=qsn-Rom č
b. $\quad \mathbf{\prime} \mathbf{g}=\mathrm{qsn}$

I sneezed real good
[?á?geqsın]
turn it right-side up (cf. š? high, upwards) roof of mouth

Indep. form: sayana [sáye?na] neck
twisted neck
lump on neck
neck
handles (on purse, basket)
whirl pool
huge whirl pool; place name ${ }^{21}$
break one's neck

Indep. form:
$=$ jan

[^40]a. $\mathrm{kil} \theta=\mathrm{iq}^{\mathrm{w}}$

crooked nose (cf. kil[i] crooked)
b. $\mathfrak{t} \mathbf{k}=\mathrm{k}^{\mathrm{i}} \mathrm{q}^{\mathrm{w}}$
[t̂̃イkeq"] nostril
c. $\mathrm{tih}=\mathrm{iq} \mathrm{q}^{\mathrm{w}}$
[tíheq"] big nose
d. $i=i=i q^{w}$
[tíšeq"] snot, nasal mucus
e. $\lambda \mathrm{xaq}=\mathrm{iq} \mathrm{q}^{\mathrm{w}}$
 long beak

People: =ayi

The following forms were systematically elicited from one speaker with the LS =ayi rather than the form =aya cited in (74)below.
(73)

a. mus=ay-i	[mósayi]	four people
b. Өiyačis=ay-i	[Өíyečsàyi]	five people
c. $\mathrm{f} \times \mathrm{x} \mathrm{m}=\mathrm{ay}-\mathrm{i}$		six people
	[${ }^{\text {ºóơčisày }}$] $]$	seven people
e. taPačis=ay-i	[táPači:sàyi]	eight people
f. tigix ${ }^{\text {w }}$ ay-i	[tígix ${ }^{\text {w }}$ y y]	nine people
g. ?upan=ay-i	[?ó:p^nàyi]	ten people
Person:	=aya $\sim=$ ayar (Stv.)	Indep. form: qaymix ${ }^{\text {w }}$ person
(74)		
a. mus=aya ${ }^{22}$	[mósaye]	four people
b. Өiyačis=aya	[\because íy čsày¢]	five people
c. \quad ¢̌əm=aya		six people

[^41]

$a^{\prime} . \quad D I M-\bar{x} a \bar{x}=a y+[?]$
[خ̛ółayım]
[mómnałe ${ }^{\text {y }}$ t]
b. 夫uy=ay-m
c. IMP-mna=ay-t

elder
to raise a child
having a baby

e. taPačis=aya
f. tigix $^{W}=$ aya
g. Pupan=aya
h. DIM-mus+[?]=aya PL-čuỷ[mó?msaye číčuỷ]
i. DIM-Ľ̉əəm=aya PL-čuý [t̂éx̌x̆лmàye číčuỷ]
j. DIM-?upan+[?] PL-čuỷ [?ó:?əp^n̉ číčuỷ]
k. $q \bar{x}=a y a ? ~ S t v$.

Person, child:
(75)
[tº́pčis:àyع]
[táRačis:àye]
[tígix w̌̀yє]
[?ó:p^nàye]
[qə́x̆hayє?]
=ay
[qóx̆hayє?]

Consider the additional data which are words for living creatures which also end in =ay, a form of the lexical suffix for person.
(76) Animate, life form, person:
a. tip=ay
b. \quad iilq́ay
c. Pułq=ay
d. $p \mathrm{~g}=\mathrm{ay}$
e. $\dot{p} \dot{g}=a y$
f. $\dot{x}^{\tilde{x}^{w}=a y}$
g. $\theta \dot{q}=a y$
h. $\check{x}^{w i} \bar{X}=a y$
=ay Gloss
barbecue meat (Kl)
barbecued deer meat
snake
halibut
flounder
chum, dog salmon
sockeye salmon
mountain goat

We might ask why words like barbecued meat, mountain goat and horse clam would containt the same LS which is also used to mean person? I believe that an explanation can be found in the traditional oral teachings <xwáxwa7jím> [$\mathrm{x}^{\mathrm{wa}} \mathrm{a}^{\mathrm{w}}$ ą̧jèm $]$ of the Homalco, Klahoose, and Sliammon people, as documented by Kennedy and Bouchard (1983:95):

These [$x^{w a ́ x} x^{w a ? \grave{j}} \mathbf{y}$ m’] of the Sliammon tell of events that took place in the beginning of time, during what we might call the "Mythological Age." In the Mythological Age, things were not as they are today. The world was in a state of disorder and uninhabitable for the present-day Indian people. Beiners who resembled humans, but who had animal spinits and the names of what came to be animals, roamed the land. Cannibalistic monsters and even mountains and winds preyed on the unsuspecting, until at last the animal-people tamed them and transformed the world into a safe place. Because of the activities of the animal-people, both animals and humans came to have certain charactenstics. The Sliammon people consider these accounts of the Mythological Age to be true, for the existence of the world, as it is, is proof [emphasis mine].

Place, container, basket: (77)	$=\mathrm{aya},=\mathrm{ya}$?	Indep. form: pəču [pıču] basket
a. $\check{\mathrm{x}}^{\mathbf{w}} \mathrm{a}^{\text {w }} \mathrm{it}=$ aya	[x áăětàyi]	
b. PiPagik $^{\text {w }}=$ aya	[?éPagik"àye]	clothes basket (cf. PiPagik ${ }^{\text {w }}$ clothes)
c. $\dot{p} \dot{q}=\mathrm{aya}$	[p’á?q̧àyl]	chimney, stove pipe (cf. p̉oq smoke)
d. wapč=aya	[wá?čey¢]	anus (cf. wa?č bowel movement)
e. qaw $\theta=a y a$	[qáwӨàye]	sack of potatoes (cf. qaw potato)
f. Papls=aya	[Páplısàyi]	box of apples (cf. Rápls apple)
g. ? $^{\text {ayax }}{ }^{\text {w }}=$ aya	[Táyex ${ }^{\text {w }}$ ye]	berry-picking basket

g'. \quad Pay $x^{w=}=a y a$
h. $\begin{aligned} \text { atm=aya } \\ \text { a }\end{aligned}$
i. $q^{\text {wasam=aya }}$
j. $\quad \mathbf{x}^{\mathbf{w}} \mathbf{u}$-um=aya
k. $\mathbf{k}^{\mathbf{w}} \mathbf{a n = n a c ̌ - m = a y a ~}$

1. ngin=aya
m. 3 ㅊ- $-\mathrm{mm}=\mathrm{min}=$ aya
n. qms-?m-min=aya
o. tš-m=igan=tn=aya
p. $\mathrm{ti}=\mathrm{aya}$
q. kapi=aya
r. wax̆at ${ }^{\ominus} \mathrm{i}=$ aya
s. q̇nayu=aya
t. mak ${ }^{\text {w }} \mathrm{a}=\mathrm{aya}$
t'. mak $^{2}{ }^{w_{a}}=a y a$?
u. Xińa=aya
v. tala=aya
w. $\mathrm{t}^{\natural} \mathrm{y} a=a y a$
x. šuk ${ }^{\text {w }} \mathbf{a}=a y a$
y. pəpa=aya
[?áyux ${ }^{\text {w }}$ ^y ε]
[̉áłəmàyદ]
[$q^{\text {wáśs }}$ _màye((7)]
[$x^{\text {wúúu} u-m a ̀ y \varepsilon] ~}$
[$k^{w a ́ n}$ •ačmày]
[níginaye]
[$7 \wedge$ ^̉amenàye]
[qヘ́msà ${ }^{2}$ menàyє]
[tǐšəmègatınàye]
[tihaye]
[$\mathrm{k}^{\text {y̌ápihàye] }}$
[wáx̆at ${ }^{\text {® }}$ ehày]
[qंÁnayohàyє]
[mâk ${ }^{\text {wahày }}$]
[mák ${ }^{\text {wapày }}$?]
[$\lambda \in$ ह́? nahàye]
[tálohày]
[${ }^{\text {®®âqugehàye] }}$
[šúkwahày\&]
[pə́p^hày६]
berry-picking basket
salt shaker (cf. [خ̌átəm] salt)
flower pot, vase (cf. quasam flower)
store (cf. $\check{x} u \bar{j}-v m$ sell)
backsides (place where you sit) (kwan- rest)
lunch basket (cf. nágin bag lunch, lunch)
garbage can, pail (cf. ? $\hat{\text { Ox }}$-am garbage)
cupboard (cf. qəms- get stored)
milk jug (cf. təš- mucus)
tea, cup of tea, teapot
coffee pot (cf. kapi coffee)
pipe case (smoking) (cf. wáx̆at ${ }^{\forall} \mathrm{i}$ pipe)
needle case (sewing) (cf. q̉án=ayu needle)
coffin (cf. mak ${ }^{w a}$ corpse)
graveyard (cf. makwa corpse)
oolichan oil container (خ̌é?na oolichan oil) purse (cf. tala money) refrigerator, storage box (t ${ }^{9}$ â?ye food stores) sugar bowl (cf. súkiwa sugar) pepper mill, shaker (cf. pə́p^ pepper)

There is at least one word which may have an 1-variant of this lexical suffix =ala (78)
a. hnk=ala [hónkela~hónkàla] pot one cooks in

$$
\text { Rock: } \quad=\text { ays } \quad \text { Indep. form: x̆aj̉is [x̆á?̌is] rock }
$$

(79)
a． $\mathbf{k}^{\mathbf{w}} \boldsymbol{\theta}=$ ays

island
b． $\mathrm{DIM}-\theta a \overline{\mathrm{x}}=\mathrm{ays}+[?]$
［ӨáӨx̌àỷs］
pebbles

Roof（see also house，building）：$=\mathrm{x}^{\text {w }}$
（80）
a． $\mathrm{saq}=\mathrm{tx}$
［sáqtx ${ }^{*}$ ］
［？ó？ottxw］
［？éyitxw］
roof（of a building）

Roots（cedar，spruce，root of tree），rope：$=k^{\text {wu }} u m{ }^{23}$ Indep．form： $\mathrm{k}^{\mathrm{w}} \mathrm{m}^{\prime}=\mathrm{nač}\left[\mathrm{k}^{\mathrm{w}}{ }^{\text {á？}}\right.$ ィmnač］root
a．titul $=k^{w} u m$
b．$\quad \mathrm{saL},=\mathrm{k}^{\mathrm{w}} \mathrm{um}$
c．$p^{\mathbb{q}}=k^{w} \mathbf{u m}$
pótk ${ }^{w}$ ùm thick rope
d． tih $=k^{w} u m$
tíhkwn
big（thick）rope
e． $\mathbf{k}^{\mathbf{w}} \mathbf{q}=\mathbf{k}^{\mathbf{w}} \mathbf{u m - t}$
$\mathbf{k}^{\mathrm{w}} \mathbf{v i ́ q}^{\mathbf{w}} \mathbf{u m t}$
untangle s．t．（roots，wool）

Sentiments，spirit，inner part，inside（body），side of body，size：＝－igan

a． $\mathbf{t}^{\theta} \mathrm{i} \mathbf{k}^{\mathrm{w}}$－t＝igan		left－side of body
b．tič＝igan č	［tíčigへ̀nč ${ }^{\text {b }}$ ］	I＇m disappointed（cf．tiyč－／tayč－miss）
b^{\prime} ．tič＝igan－ng－mš－as	［tičigigntomš̌s］	he disappointed me
c．$\dot{\mathrm{q}} \mathrm{i} \check{\mathrm{X}}=\mathrm{igan}-\mathrm{Pm}$	［q’éx̌eg＾n？${ }^{\text {a }}$ ］	cheat
d．IMP－qix - －igan－m＋［？］	［qéqəx̌èga？${ }^{\text {nòm }}$ ］	he＇s telling lies
e．夫̇ašl－igan－m＋［i］	［ ＇áštegànım］	feeling anxious，worried，uneasy
	［ ${ }^{\text {ááẋeg＾n］}}$	wise（person）（cf． 入ax̆ old）

[^42]g. $q^{w a y=i g a n}$
h. IMP-qway=igan
i. Ray?=igan-s
j. IMP-p?=igan+[?]
k. ťs-am=igan=tn

1. $D I M-c^{\prime} \vec{A}=$ igan
m. $\dot{\mathbf{k}}^{\mathbf{w}} \mathrm{n}=\mathrm{ay}=\mathrm{igan}-\mathrm{Pm}+[\mathrm{i}]$
n. šp-t $q^{w a y=i g a n ~}$
o. $\check{\mathrm{x}}^{\boldsymbol{w}}{ }^{2}=\mathrm{igan}$
p. hw-igan
q. IMP- Ph -ay-igan=us
r. 73j-am-t=igan
s. ny=igan ${ }^{24}$
s'. IMP-ny=igan
t. \quad x̆mı"igan
[q*áyegən]
[$q^{w a ́ q}{ }^{\text {wayegan }}$
[?áyجi:g^ns]
[ра́p?\&?g^n]
[ťíšəmègatın]
think about it ("inner voice" cf. q"ay talk) talking to oneself inner part of cedar tree pregnant milk (cf. ths mucus)

[šé? ${ }^{\text {th }}$ quáyignn] proud, high minded $^{\text {win }}$

[híwhegan] silly, off beat
[?á?hayiganos] scary face (cf. ih [Pah] hurt, sore)
[?á?j̄モmtèg^n] right-side of body
[níyegan] to calm down, cool off (cf. ny forget)
[nə́nyig^n] forgetting
[x̆^́mj̆ig^n] want what you can't have, covet (s.t.)

Shoulder: =am-čis, =aPàmčis, =aPamčis (stv.)

Side (of body): $\quad=$ wum , =wum (stv.)
a. tait=wum side of the body (cf. tat \sim taipt side)

Smell, odour:
$=$ aqap
Indep. form:
(85)
a. \ddagger x̆ $=\mathrm{aqap}$
[4へ́x̆:aq^p]
bad smell

[^43]
Tens (in counting): $=$ šá?

a. \quad am=ša?
b. čanə $x^{w}=$ ša?
c. $\quad \mathrm{mus}=\mathrm{ad}=\mathrm{s} \mathrm{sa}$?
d. Өiyačis=ad=ša?
e. ť̌̈əm=at=ša?
f. $\mathfrak{t}^{\text {® }}$ ựčis=aq=ša?
g. ta?ačis=ał=ša?
h. tigix ${ }^{w}=a 4=$ sa?

Thigh:

(87)
a. RED-say=anaq

Throat:
(88)
a. $\operatorname{tm}=q \lambda a y=t n$
[tímqخaytın]
rag tied around neck (təm to tie, belt)
Throat: =łat
(89)

a. DIM-tuq $=$ ta + +[?]	[tótqłat \sim tótq ${ }^{\text {w }}$ ¢ at]	necklace check: tutq[ə]ła \dagger
a'. DIM-tux ${ }^{\text {w }}=\Varangle$ tat		necklace
b. $\check{\mathrm{x}}^{\mathbf{w}} \mathrm{um}= \pm \mathrm{ta}$	[${ }^{\text {w }}$ ómtat]	windpipe
c. pus=tat	[pústat ~ pústot]	Adam's apple, glottis (cf. pus- lump)
d. tak $^{\mathbf{w}}=\mathrm{tat}$	[ták ${ }^{\text {w }} \ddagger$ at]	mumps, throat swells (cf. tak ${ }^{\text {w }}$ swell up)
e. $\mathrm{T}^{\prime}=$ tat-mut	[?i:fàtmot ${ }^{\text {b }}$]	really enjoy what is eaten

Throat: $\quad=a w t^{\ominus},=a g[i] t^{\ominus}(s t v$.$) Indep. form: q̣áqut { }^{\gamma}$ uvula, glutton
(90)
a. $\quad \mathrm{q} a \mathrm{P}=\mathrm{ag}^{\ominus}$
[${ }^{\prime}$ á? $\wedge w t^{\ominus}$]
glutton, eat lots
b. $\mathbf{t} \boldsymbol{q}=\mathrm{ag} \mathrm{t}^{\ominus}$
[tı́qं^wt ${ }^{\ominus}$]
choke
c. $\Phi \check{x}=a g t^{\ominus}$
[\ddagger ก́x̆aw ${ }^{\ominus}$]
sore throat

Times, number of times: =at
(91)

a. mus=at	[mó:są]	four times ${ }^{25}$
a^{\prime}. mus	[mós]	four
b. Өiya $=$ čs $=\mathrm{at}$	[Өíyečsàł]	five times
b. Өiya=čis	[Өíyec̆ıs]	five
c. təx̆วm=ał	['^́ñ̌^mat]	six times
c'. tx̆m	[t'^́x̆əm]	six
d. $\mathfrak{t}^{\ominus} \mathbf{u}$? $=$ čis $=$ at	[${ }^{\ominus}$ ¢ópči:sà ${ }^{\text {a }}$]	seven times
d'. $\mathfrak{t}^{\bullet} \mathbf{u}$? $=$ čis	[${ }^{\text {®oópčıs }}$]	seven
e. ta?a=čis $=\mathrm{a} \ddagger$	[táPac̆i:sà̀]	eight times
e'. taPa=čis	[tá?ačıs]	eight
f. tigix ${ }^{\mathbf{w}}=\mathrm{ay}$		nine times
f. tigəx ${ }^{\mathbf{w}}$	[tígux ${ }^{\text {w }}$]	nine
g. Pupan=at	[?ó:pà:n^t]	ten times
g'. Pupan	[?op^n]	ten
h. Pupan=at hikw ${ }^{\text {w }}$ paL'	[?ó:p^nət h	eleven times

 speaker also produced [pá?a?ał] for 'once'.

a. tap $=a w$ un $=$ šn	[4ảpap ${ }^{\text {wouv̌šn] }}$	to stumble, stub toe
b. $q 9 p=a w u=s$ sin $^{\text {a }}$	[qápauùsis]	toe nail
$\mathrm{b}^{\prime} . \mathrm{qap}=\mathrm{aw} u=\mathrm{sin}_{\mathrm{in}}=\mathrm{tn}$	[qápawušitən]	toe nail
	[¢́áxaPwušın] check	big toe (cf. $\begin{aligned} & \text { त̇x } \\ & \text { old) }\end{aligned}$

(93)
a. tix ${ }^{W}$ ©at
[tix" ${ }^{\text {®at] }}$
tongue

Tooth, cutting edge, protruberance: $=$ unis, $=$ nis Indep. form: \mathfrak{y} inis tooth (94)

a. RED-tih=unis	[t́thonıs ~ títhones]	big teeth
b. ̇̇ax̆aj=unis	[入áxăăùnıs]	wisdom teeth (elder-teeth)
c. $\mathrm{pq}=\mathrm{unis}$	[$\chi^{\prime \prime} \mathrm{q}^{\mathrm{w}}$ onts]	white teeth
d. $\mathrm{t}^{0} \mathrm{x}^{\mathrm{x}}=$-unis-m		brush one's teeth

Example with =nis:
(95)
a. $\quad 4 \mathrm{X}=\mathrm{nis}$

b. $\quad P^{3}=$ nis
[Ri:nes]
 sharp (object e.g. knife)

Tree，bush，wooden（productive LS）：＝＇ay
（96）Obstruent final stem

b． $\mathfrak{t}^{\boldsymbol{\theta}} \mathrm{iwq} \mathbf{q}^{\prime}=\mathbf{a y}$
c．tiniq ${ }^{w=}=$ ay
d．čilas＝＇ay
e．tu？$x^{w}=$＇ay
f． $\mathbf{k}^{\mathbf{w}} \mathbf{u q}=$＇ay
f．DIM－${ }^{\mathrm{w}} \mathbf{u \neq}=$＇ay
g． $\mathrm{puq}^{\mathrm{w}}=$＇ay
h．t＇q＝＇ay
i．tamə ${ }^{\boldsymbol{w}=\text {＝＇ay }}$

k． $\mathbf{q}^{\mathrm{w}} \mathrm{an} \check{\mathrm{x}}=$＇ay
1． $\mathrm{mt}^{\boldsymbol{\theta}}=\partial{ }^{\prime} \mathrm{tp}=’ a y$
m．číl＝＇ay
n． $\mathfrak{t}^{2 \theta} \dot{C}=\partial \mathrm{tp}=$＇ay ${ }^{28}$
o．$q^{w} f=$＇ay
p．$m \theta k^{w}=$＇ay
［p’éy̆x̆＾y］

［čílıs？ 1 y］cherry tree ${ }^{26}$
［tó？${ }^{\mathbf{w}}{ }^{\mathrm{A}} \mathrm{y}$ ］\quad Grand Fir ${ }^{27}$
［k＇wót？ay］

［ póq $^{w} \wedge y \sim$ póq$^{w} \wedge y$ ］

［tâ？mvx way］
［ $q^{\text {wááqtıỷ］}}$
［q＊ánx̆＾y］
［má？ť้วłрлу］
［どモ์？${ }^{\text {ṫ＾y］}}$

［ $\left.\mathrm{m}^{\prime} \Theta \mathrm{k}^{\mathrm{w}} \mathrm{ay} \sim \mathrm{m} \kappa^{\theta} \theta \mathrm{k}^{\mathrm{w}} \wedge \mathrm{y}\right]$ blackcap berry bush

[^44](97) Resonant final stem

a. higan='ay	[hé?gənıy]	strawberry plant
b. 'uq ${ }^{\text {w }}-\mathrm{m}=$ 'ay		thimbleberry bush (a.k.a. red caps)
c. tux'wom='ay		huckleberry bush
d. RED-k'um='ay	[$\mathrm{k}^{\mathrm{w}} \mathrm{v}^{\prime} \mathrm{k}^{\mathrm{w}}$ vmPay]	arbutus tree ($\mathrm{k}^{\text {wium- red) }}$
e. $\check{\mathbf{x}}^{\text {w}}$ usum='ay	[x'wósomay] $^{\text {che }}$	soapberry bush (x $^{\text {w}}$ usum soapberry)
f. payan='ay	[pápyèn?^y]	douglas fir, fir tree
g. cag='ay	[čâag^y]	wooden spoon (cf. ċag- help)
h. trxm='ay		red cedar tree
i. tym='ay	[téẏm^y]	wild cherry tree
j. čtux ${ }^{\text {a }}$ an='ay	[čítux ${ }^{\text {m }}$ n ${ }^{\text {adày] }}$	blackberry bush, canes
k. '̇'gan='ay	[q̆á?gın2^̀y]	rose bush
1. $\check{\mathbf{x}}^{\prime \prime} \mathbf{p} a \mathrm{an}=$ 'ay		Labrador tea (bush)

(98) Laryngeal final stems
a. $q^{w} u ?=$ 'ay

Hemlock (western)
a'. $\operatorname{RED}_{\mathrm{PI}}-\mathrm{q}^{\mathrm{w}} \mathrm{u}$?='ay
[$q^{\mathrm{w}}{ }^{\circ}:$ qu $^{\mathrm{w}} \mathrm{o}:$? $\left.\wedge \mathrm{y}\right] \quad$ lots of hemlock
b. $\check{x} a ?=$ 'ay
[x̌á?ay]
bog cranberry
(99) Vowel final stem
a. Pusa='ay
b. qaiqa='ay
c. hamu='ay
[?ósa?^y ~ ?ósah^ý]
[qá?qa?ıy]
[há?mohny] check
high blueberry bush bulrush, cattail stalk (for mattress making) cascara tree (lit: pigeon=tree) ${ }^{29}$

[^45]The LS ='ay may also refer to long, outstretched objects as shown by the following examples.
a. $\mathrm{Jm} \mathrm{m}-\mathrm{an}$
[yıim? ln]
a^{\prime}. $\mathbf{3} \mathbf{m}=$ 'ay
[ૉım?ay]

Tree, bush (non-productive LS):
= əłp
(101)

b. $m t^{\ominus}=2 t p=, a y{ }^{30}$
[mápəṭəґp̉лу]
Sitka Spruce
wood

Water:
$=\mathrm{k}^{\mathrm{w}} \mathbf{u}$
Indep. form: qya [qá?yє] water
(102)
a. $\quad \sin =\mathrm{k}^{\mathrm{w}} \mathrm{u}$
[sénk ${ }^{\mathrm{w}} \mathrm{u} \sim$ sénk $^{\mathrm{w}}$ o]
ocean
b. $t^{\theta} i i^{\ominus} i q-a \neq k^{w} u$

muddy water (cf. \mathfrak{t}^{\ominus} ét $^{\ominus} \mathrm{eq}$ mud)
c. miqं-at=k $\mathrm{k}^{\mathrm{w}} \mathrm{u}-\mathrm{t}-\mathrm{an}$
[méq̉ałk ${ }^{w}$ ùtın]
I'm soaking it (soak clothes)
d. $\vec{k}^{w} u{ }^{2}=k^{w} u$
[$\hat{k}^{w u ́ v i} k^{w} u$]

[^46]e. $q^{w} u q^{w} ?-a q=k^{w} u$

soup
f. ${ }^{\prime} \dot{q}-\mathrm{aq}=\mathbf{k}^{\mathbf{w}} \mathbf{u}$
[Xá? ${ }^{\text {áałk }}{ }^{w} u$]
yeast (for making bread) (犬̉əq่ rot, ferment)

back eddy
h. $\quad \overbrace{\mathbf{j}}^{\mathbf{j}} \mathrm{a}^{2}=\mathrm{k}^{\mathrm{w}} \mathrm{u}$
[?áŢ̌E4k ${ }^{w \mathbf{u}}$] good, clear water

Wave (of water): $\quad=u n a x^{\text {w }}$
(103)
a. ti-tih=unax ${ }^{\text {w }}$
[títhonax ${ }^{\text {w }}$]
big waves

Wind, weather: =a?aq
a. taq=aPaq taq- ?
[táqa? $\wedge q]$
a^{\prime}. RED-taq=a?aq
[títqa?aq]
south-east wind
$\mathbf{a}^{\prime \prime}$. taq-a?=aPaq
['áq̉ałà?aq]
barn swallow
b. $\mathfrak{k}^{\text {was }}-\mathbb{I N C}=\mathrm{a}$?aq
[${ }^{\text {kwásasà? }}$ aq] becoming warmer
c. fayiš=a?aq
[táyišモRaq]
[čé?mamà?^q] cold wind
d. \quad ém $-\mathrm{INC}=\mathrm{a}$?aq

e. $\dot{q}^{\mathrm{w}} \mathrm{yt}=\mathrm{a}$ aq
['º́śyt $^{w} \uparrow a q^{h}$]
wind from the north

Young of a species, offspring, smaller in size: =út (105)
a. $\check{\mathbf{x}}^{w} a \check{x}^{w} a n i=u \neq$
b. x̌ix̌iyaq̉-ut
c. DIM-tagat=ut+[?]
d. $\breve{\mathbf{x}}^{w} u p \check{x}^{w} u p-u \uparrow+[?]$
e. DIM-Xip=igs $+[\mathrm{i}]=\mathrm{u} \boldsymbol{t}$
f. $\quad D I M-k^{\mathbf{w}} \mathbf{m}^{\prime}=\mathrm{nač}=u \neq$

[x̌éx̌iy\&q’ว̀ł]
[tátgatòł]

[${ }^{\text {xéx́pegegs-ot] }}$
[$\mathbf{k}^{\text {wik }}{ }^{\text {w }}$ Təmnàčuł]
small bullhead (cf. $\breve{\mathbf{x}}^{w}{ }^{\mathrm{a}} \breve{\mathrm{x}}^{w} \mathrm{n} \varepsilon$? bullhead)

small herring (cf. táig^t herring)
small hummingbird
bikini underwear (extra small)
extra small (cedar) roots
g. DIM-mimg-ut
[mé-mmaiguł]
real small kitten

Possible lexical suffixes

Way of getting food, bait =aju

(106)
a. $\quad m u \check{x}^{w}=a{ }^{2} u$
[móxiwǎu]
belly button
b. $\mathfrak{t}^{\theta} u m=a_{j}^{2} u$

barnacle
c. $x^{w} \lambda=a^{j} u$
[x^{w} v́xaて̌u]
trout

It may also occur in the following word for squirrel (107)
a. $k^{w}{ }^{w} k^{w} a j u$
[$k^{w a ́ a} \cdot k^{w} a$ ºju]
squirrel

Appendix VII:

The Predicate Complex and Affixes, Clitics, and Particles

This appendix provides a brief outline of the internal structure of the predicate complex, and documents the affixes and clitics which appear in the present work. The reader is referred to Appendix VI for information regarding the Lexical Suffixes in the language, and to Appendix V for a sample Root list. See also Watanabe (2000) for discussion of the form and functions of these affixes and clitics, as well as additional morphemes which are not cited in this present work.

This section presents a brief introduction to the internal structure of the predicate complex and is intended as a sketch which will provide appropriate background information on the morphology of the language, and is in no way intended as an exhaustive study. The reader is referred to J.Davis (1978), Kroeber (1988, 1991/1999), Blake (1996/1997) and Watanabe (2000) for further details. The structure of the predicate is often complex, as illustrated by the schema in (1). This schema is adapted from Watanabe (2000: 37) and includes the non-reduplicative plural prefix L'- which is motivated by the description and analyses discussed within this dissertation.

(1) Predicate Complex

The Root is the only obligatory morpheme within the predicate complex, and contributes significantly to the meaning of the predicate. The morphological Root is the central core and is located within the innermost morphological domain: $[\mathrm{ROOT}]_{1}$. As proposed in Blake (2000), Lexical Suffixes (LSs) behave like bound Roots in Sliammon. This fact therefore raises the question of whether or not there is also a compound Root domain which includes the Root and an adjacent LS: $[$ ROOT $=$ LS $]$. The second domain in (1) (labelled ${ }_{2}[\ldots]_{2}$) is hypothesized to contain those suffixes and reduplicative prefixes which make up the morphological Stem domain. This domain includes the transitivizers and intransitive markers, although notice that this domain
boundary is often obscured at the right-edge when the transitivizer is fused with the following Object suffix. Reference to the morphological stem or "Stem" domain is made throughout the dissertation. The third domain in (1) is the domain of the morphological word and includes the object and subject suffixes, as well as the non-reduplicative plural prefix $/$ '-/ discussed in Chapter 6. The fourth domain in (1) is a prosodic domain which corresponds to the Prosodic Word domain. This schema is a working hypothesis regarding the internal structure of the predicate. The predicate complex may well have a more highly-articulated internal structure than is indicated in (1), but explicit motivation of each morphological and phonological domain is beyond the scope of the present study (cf. Czaykowska-Higgins (1998) on Moses-Columbian Salish).

The data in (2) is organized in the following manner. Each morpheme is listed by a term which reflects the function of each affix/clitic. The middle column provides the proposed Input represenation for each affix/clitic, and the third column give an indication of the range of variants or "allomorphs" for each morpheme. Prefixes are followed by a hyphen (e.g. L'- plural prefix) whereas suffixes are preceded by a hyphen (e.g. -t Control Transitive suffix). Clitics appear without hyphens, and are separated from adjacent morphemes in the Input by a space (e.g. a

Name	Input	Variants
Active intransitive: Intr.	-Pm	
Active intransitive + stative	-?[i]m	[? $\varepsilon \mathrm{m} \sim \ldots$...]
auxiliary: be.there / it was	hi/hit	
clitic	$\mathrm{k}^{\mathbf{w}} \mathbf{u}$	[$\mathrm{k}^{\mathrm{w}} \mathbf{u}$]
clitic (just now?)	$\mathbf{k}^{\mathbf{w}} \mathbf{i} / \mathbf{k}^{\mathbf{w}} \mathbf{y}$	[$\mathbf{k}^{\mathbf{w}} \mathbf{i} \sim \mathrm{k}^{\mathbf{w}} \mathbf{i}$] $]$
compound ligature	$-\mathrm{aL}$	[at ${ }_{\text {ay }} \sim \mathrm{aw} \sim \ldots$...]
conjectural clitic/particle	ċa	[$¢$ č] (cf. Watanabe 2000)
desiderative	-am	[am]
diminutive glottalization	[7$] /[\mathrm{c} . \mathrm{gl}]$	targets resonants

diminutive infix	[-i-]	
direct evidence (clitic)	k^{w} a	[$\mathbf{k}^{\mathrm{w}} \mathrm{a} \sim \mathrm{k}^{\mathrm{w}} \mathrm{a}$?] (Watanabe 2000)
established marker (cf. hi hw)	hw	[həw ~ haw]
future: 1sg.Su.+Fut.	$\mathrm{t}^{\ominus} \mathrm{m}$	[t^{\ominus} วm]
future: 2 sg . Su. + Fut.	$\check{c} \mathrm{Cx}^{\mathbf{w}} \mathrm{m}$	
future: 1pl. Su. +Fut.	št m	[štəm]
future: 2pl. Su. Fut.	čap sm	[čap səm~č¢p səm]
future: 3rd person Fut.	sm	[səm]
if	ga	[ga]
imperative: polite request	ga	[ga ~gA]
imperative (second request)	gi?	[gip ~ gi:?]
imperfective glottalization	[3]/[c.gl]	targets resonants
indefinite 3person object: someone	-anaq	[-an^q]
intensive: very	-mut	[-mut $\sim-$ mot $\sim-m v t]$
intransitive	-as	[-^š] (e.g. [?ém^š] walk)
means, by means of	-ma	[-ma]
middle (cf. HW 1997)	-m/-Vm	$[-\mathrm{m} \sim \mathrm{Nm} \sim \mathrm{tm} \sim \mathrm{vm} \sim \mathrm{am}]$
middle + stative	-[i]m	
nominalizer (syntactic)	s	[s...]
oblique marker	?	[?ə ~Ø]
particle	Put	[7ot]
passive (main clause)	-m	[əm]
passive (subordinate clause)	-it	[-it \sim-et]
past	-'ut	[U ¢ \sim ot \sim Pot \sim R'-ot \sim o]
plural (kinship)	-tan	[$\tan \sim \operatorname{tin} \sim \mathrm{t} \wedge \mathrm{n}$]
plural suffix	-'Vg	[-ig $\sim-\mathrm{ug} \sim \cdot \mathrm{ag} \sim \mathrm{aw} \sim \ldots$...]
plural prefix (non-reduplicative)	L'-	[iP ~up ~ap]
question marker: yes/no Q (clitic)	a	$[\mathrm{a} \sim \boldsymbol{x} \sim \mathrm{h} \wedge \sim \mathrm{Pa} \sim \mathrm{P}$ ¢ $]$

quotative	$\mathbf{k}^{\mathbf{w}} \mathbf{a}$	[$\mathbf{k}^{\mathbf{w}} \mathbf{a} \sim \hat{\mathbf{k}}^{\mathbf{w}} \mathbf{a}$] $]$
reciprocal:	-agt	[-awt ~]
Reduplicative Affixes:		
CH (Characteristic reduplication)	CVC- / CəC-	depends on shape of Root
DIM (Diminutive reduplication)	CV- / Ci-	$\mathrm{Ci} \sim \mathrm{Cu} \sim \mathrm{Ca}$
IMP (Imperfective reduplication)	CV-	$\mathrm{Ci} \sim \mathrm{Cu} \sim \mathrm{Ca} \sim \mathrm{C} \boldsymbol{}$
INC (Inchoative reduplication)	$-\mathrm{VC}_{2}$	$-\mathrm{iC} \sim-\mathrm{uC} \sim-\mathrm{aC} \sim-\partial \mathrm{C}$
$\mathrm{C}_{2} \mathrm{CPL}_{\text {(Plural reduplication) }}$	CəC-	$\mathrm{ClC} \sim \mathrm{CvC} \sim \mathrm{CaC} \sim \mathrm{C}$ ¢ \ldots
Capl (plural prefix)	Ca-	Ca
reflexive: CTr.+Reflex.	--ut	[-Өot \sim-aӨot $\sim-$ ueut \sim i θ ut]
stative (infix and suffix)	[i]/-it	$[-\mathrm{it} \sim \mathrm{èt} \sim \mathrm{et} \sim[\mathrm{i}]$]
transitivizer: Caus.	stg	[stu $\left.\sim \mathbf{s t} \sim \mathrm{stax}^{\mathbf{w}} \sim \mathbf{s x}{ }^{\mathbf{w}} \sim \mathbf{s t a g}\right]$
transitivizer: CTr.	-t	[$\lambda t \sim v t \sim s t \sim t t \sim \varepsilon t \sim t \sim \varnothing . .$.
transitivizer: NTr.	ng	[$\mathrm{nu} \sim \mathrm{n} \sim \boldsymbol{\partial x} \mathrm{x}^{\mathbf{w}} \sim \mathrm{nag}$]
transitivizer: Tr .	-aş	[aš ~ Aš]

The summary in (3-5) provides the Subject and Object pronominal markers in the language. Notice that the form of the Object suffixes is dependent upon which transitivizer ($-\mathrm{t},-\mathrm{ng},-\mathrm{stg}$) precedes it.

Pronominal Markers in Sliammon

(3) Pronominal Subject Markers
(cf. Davis 1970 et seq., Kroeber 1991/1999, Watanabe 1994/2000, Blake 1996/1997)

Person	Main Clause-full	Main Clause-reduced	Subordinate (conjunctive)	Possessives
1 sg	čan, čan	č	-an	t^{θ}
2sg	čax ${ }^{\text {w }}$	čx ${ }^{\text {w }}$	-ax ${ }^{\text {w }}$	θ
1pl	čat	št	-at	ms
2pl	čap	čap	-ap	-ap
3person	$\begin{aligned} & 0 \text { Intrans (3Abs) } \\ & \text {-as Trans (3Erg) } \end{aligned}$	$\begin{array}{\|l\|l} \hline 6 & \text { Intrans (3Abs) } \\ \text {-as Trans (3Erg) } \\ \hline \end{array}$	-as	$\begin{array}{\|l\|} \hline-\mathrm{s} \text { (3sg) } \\ \text {-it (3pl) } \\ \hline \end{array}$

(4) Object Suffixes -Active paradigm (with relevant transitivizer)

Person	\qquad	Noncontrol Transitive -ng	$\begin{aligned} & \hline \text { Causative } \\ & \text {-stg } \\ & \hline \end{aligned}$
1sg Obj	- θ (fused)	-nu-mš	-stu-mš
2sg Obj	$-\theta \mathrm{i}$ (fused)	-nu-mi	-stu-mi
1pl Obj	-t-umut	-nu-mut	-stu-mut
2pl Obj	-t-anapi	-n-anapi	-st-anapi
3 Obj	-t-0	-(n) $\mathrm{ex}^{\mathrm{w}}-\varnothing$	-stax ${ }^{\text {w }}-\varnothing \rightarrow-\mathrm{sx}^{\text {w }}-\emptyset$

(5) Object Suffixes -Passive paradigm (with relevant transitivizer)

Person	Control Transitive $-\mathrm{t}$	Noncontrol Transitive -ng	$\begin{array}{\|l} \hline \text { Causative } \\ \text {-stg } \\ \hline \end{array}$
1sg Obj	- $a y$ (fused)	-nu-may	-stu-may
2sg Obj	- i i (fused)	-nu-mi	-stu-mi
Ipl Obj	-t-uw	-nu-muw	-stu-muw
2pl Obj	-t-anapi	-n-anapi	-st-anapi
3 Obj	-t-Ø	-nu- \emptyset (main clause) -nəg- \varnothing (sb. clause)	$\begin{array}{\|l\|} \hline \text {-stu- } \varnothing \text { (main clause) } \\ \text {-stog- } \varnothing(\text { sb. clause) } \\ \hline \end{array}$

The articles in (6) appear frequently in sentential examples. A determiner typically precedes an overt Noun, and also co-occurs with the $1 \& 2$ sg and Ipl. possessive pronouns.
(6) Determiners (Davis 1974)

Determiners/Articles: Subordinate clauses:
to visible
\mathbf{k}^{w} nonvisible
š remote
\pm (dim./sg. fem.)
to introduces embedded clause whose truth is readily perceivable.
$\mathbf{k}^{\mathbf{w}}$ introduces embedded clause whose truth is not readily perceivable.
s [$[\mathfrak{s}]$ introduces embedded predication which is remote in time.
\pm is also used in embedded contexts-function not yet determined.

[^0]: ${ }^{1}$ The symbol schwa [0] comes from the Roman alphabet; it is a lower-case e which has been rotated 180°. The name schwa or shva (Hebrew sh'wa) comes from traditional Hebrew grammar, according to Pullam and Ladusaw (1986) who cite Prokosch (1939:94).

[^1]: ${ }^{3}$ This edible root grows in clumps and is prepared in a traditional rock-pit fire. It is steamed, peeled and eaten. MG calls them 'Indian bananas' due to their characteristic yellow colour, clustering bunches, and the fact that they are easily peeled (once cooked). This root, along with sea urchin, is considered a delicacy. The plant itself is a fine-stemmed fern. These roots may well be the rhizomes of the spiny woodfern.

[^2]: ${ }^{1}$ Bagemihl (1991: 635:fn 50) suggests that aspiration in Bella Coola may occur at a mora boundary: $\mathrm{C} \rightarrow[+\mathrm{sp}$ $\mathrm{gl}] \quad$ _ μ.

[^3]: further research.

[^4]: ${ }^{3}$ The current most well-accepted translation of gáqaӨ is husband; gáwqasəm means playing house; living together.

[^5]: ${ }^{4}$ Retraction has received quite a lot of attention in the discussion of Interior Salish languages (cf. van Eijk (1985/1997), Remnant (1990), Bessell (1992), Shahin (1995) on Lillooet (N.Interior Salish); Doak (1989), amongst others, and Czaykowska-Higgins/Kinkade (1998) for general discussion regarding retraction.

[^6]: ${ }^{5}$ The word sop?əm means hit something, and gati ${ }^{\ell} k^{w} u p$ is also used to mean chop wood.

[^7]: ${ }^{6}$ Watanabe (p.c.) proposes that this is an idiosynchratic property of the causative suffix. This is left for a topic for further research.

[^8]: ${ }^{7}$ Watanabe (p.c.) records two cases in which a vowel-final Root/LS takes -?ut rather than -h-ut: Putquu-fut and not

[^9]: ${ }^{8}$ Determining the underlying representation for the Roots one and two is somewhat problematic. These Roots often behave as though they are consonant-final. For example, they do not induce h-epenthesis with the addition of a vowel-initial LS; however, if the Roots are of the shape paL' and saL', then one might expect pat and sat when L' occurs in word-final position. This issue is not resolved here; it remains a topic for further research.

[^10]: ${ }^{1}$ Kinkade (1997: 212, fn.1) makes a similar point with respect to the phonemic vowel inventory of Upper Chehalis.

[^11]: ${ }^{2}$ The labialization of schwa to [3] in this context comes from the full vowel $/ u /$ in the following syllable. This is
 phonological contexts, as shown by forms like $/ \dot{\varepsilon} ?=n a c=t n /[\hat{\varepsilon} \hat{\varepsilon}$ n $n \not x t n]$ small blanket to sit on.

[^12]: 3 This Root also shows some irregular bebaviour. It is written elsewhere in this dissertation as /mga/ moga 'cougar'; however, the diminutive form with the retention of the Root vowel is expected with strong roots of the form CACA, and not with weak CCA Roots.

[^13]: ${ }^{1}$ Notice that if this proposal is correct，then we have evidence that the first person subject clitic $\check{c} I$ in these contexts is syllabified with the preceding object suffix and is therefore part of the Prosodic Word domain．This will become important in determining the position of clitics within prosodic and morphological domains（cf．Selkirk 1995 on the position of clitics，and Watanabe 2000 on clitics in Sliammon）．

[^14]: ${ }^{1}$ It is not that glides never undergo glide/vowel alternations; they do. The factor which may be affecting the surface form in these cases is the presence of a glottalized resonant R^{\prime}. Notice that CVR'V is systematically realized as CviRRv and not as *CVRiv (§5.2). Glottalization occurs adjacent to the stressed vowel and occupies syllable coda position, not the Onset of the weak member of a stress foot.

[^15]: ${ }^{2}$ The həṇ̇̇əmin̉ว่ (Musqueam) data are cited with permission from the collaborative Musqueam/UBC FNLG materials: © 1999 Musqueam Indian Band and UBC FNLG. I gratefully acknowledge the contribution of all of the elders who have made this research possible; especially Adeline Point, the late Edna Grant, the late Arnold Guerin, the late Dominic Point: hay ce:p qa si:?em.
 ${ }^{3}$ These cognates exhibit other well-attested sound correspondences: $\mathrm{Sl} \dot{\check{c}}$ corresponds to $\mathrm{Msq} \dot{\mathrm{k}}^{\mathrm{w}}$. Sl g corresponds to Msq w; Sl š corresponds to Msq X. In addition, Proto-Salish *u became a/e in hən่q̉əmiñon, as noted by Elmendorf and Suttles (1960), and u in Sliammon. See also Kuipers (1981, 1982), Kinkade (1998), Kroeber (1991/1999) for comparative Salish sound correspondences, and Suttles (forthcoming) on hən่q̧əmin̉əm.

[^16]: ${ }^{4}$ The constraint *CLASH is not an undominated constraint in Sliammon. It can be violated just in case the word is
 [tí:hò θ en] big mouth; sil=aẃtx ${ }^{w}$ [sé:làwtxw ~ sé:làwtw] tent. In these cases, it is more important to stress the adjacent lexical heads than it is to satisfy the constraint which disprefers adjacent feet (*CLASH).

[^17]: ${ }^{5}$ B.Wilson (p.c.) has also documented wáwləe for the diminutive of bullfrog.

[^18]: ${ }^{6}$ This predicate means 'to gather people together from different places', and is related to the word kathaumixw 'a gathering together of different peoples' which is the name given to the International Choral Festival held in Powell River once every two years.

[^19]: ${ }^{1}$ Kinkade (1973), Czaykowska-Higgins (1996, 1998), Shaw et al. (1999), Tamburri Watt (1999, 2000) discuss LSs and stress assignment in a number of other Salish languages.

[^20]: ${ }^{1}$ Matthewson (1994), Bianco (1996), and Kinkade (1997) present similar argumentation, citing Bagemihl's (1991) research on syllable structure in Bella Coola.
 ${ }^{2}$ I use the term "echo vowel" to refer to the brief vowel often heard after laryngeal closure (cf. Bessell 1992). This is distinct from the "linking" vowel in Sliammon associated with Control Transitive Allomorphy (cf. J.Davis 1970 et seq., Kroeber 1989, Blake 1999, Watanabe 2000).

[^21]: ${ }^{3}$ Notice that if this proposal is correct, then this constitutes evidence that the first person subject clitic $\mathfrak{c} I$ in these contexts is syllabified with the preceding object suffix and is therefore part of the Prosodic Word domain. This will become important in determining the position of clitics within prosodic and morphological domains, and is identified as a topic for future research (cf. Selkirk 1995 on the position of clitics, and Watanabe 2000 on clitics in Sliammon).

[^22]: ${ }^{4} \mathrm{I}$ have also documented some examples which take čan_sam and čan_sam in the Future. Relevant examples

 which I have recorded involve Weak Roots of the form C 2 C ; in addition, quite a number also involve transitive sentences with inanimate 3rd person objects. This construction is also documented in Blake (1996, 1997), as in
 research is required in order to determine the distribution of $t^{\dagger} ə m$ versus čan səm/ट̌ən səm.

[^23]: ${ }^{5}$ Schwa epenthesis is often not recorded in Sliammon with the instrumental LS $=\mathrm{tn}$. The resonant n is often syllabic after the homorganic stop t , as in tápṭ corset and quát ${ }^{\ominus}$ ṭ̣ hair grease, hair oil.

[^24]: ${ }^{1}$ As expected, the consonants do incrementally affect the height of the resultant surface vowel, as shown by the Output forms in (1-4). The $[-\mathrm{bk}]$ vowel/i/ is realized as $[\mathrm{e} \sim \varepsilon]$ in the environment of [h], as shown by the examples in (1). The round vowel $/ u /$ is realized as $[0]$ in the environment of $[\mathrm{h}]$, as shown by (2). The vowel $/ \mathrm{a} /$ is [a] as in (3) whereas it is phonetically raised to [1] before a coronal.

[^25]:

[^26]: ${ }^{3}$ Notice that the present analysis does away with the need to suggest that there is a separate reduplicative pattern $\mathrm{Ci} / \mathrm{Ci}$:- in order to account for these plural forms. They are exactly what is expected of $/ \mathrm{L}^{\prime}-/$ in the phonological context in which it occurs: paL-paL' > pay-paPa > [pé:paia] one person. Glottalization associated with $/ \mathrm{R}^{\prime} /$ is systematically lost within the CəC- reduplicative prefix, as documented by Blake $(1992,1995)$ and Watanabe (1994).

[^27]: ${ }^{4}$ The example given by the consultant is that you would use this if you were throwing more than one rock, throwing lots of rocks. Do note that the predicate is formally intransitive as indicated by the presence of the Active Intransitive marker $/ \mathrm{Rm} /$; however, the implied object (expressed overtly by a NP preceded by the oblique marker \imath°) can be singular or plural.

[^28]: ${ }^{1}$ This needs more work - the vowel makes this look like $\dot{k}^{\mathrm{k}} \mathrm{it}$ - however, there is also a stem $\dot{\mathbf{q}}^{\mathrm{w}} \mathrm{it=šn}$ which means go down towards the water - this.

[^29]: ${ }^{2}$ The suffix $=i j a /=i j a$ may be a [-back] variant of the $L S=u j a$ hand, arm judging from the literal meaning of the word and the relationship to the Root Timas//imax walk.

[^30]: ${ }^{1}$ The stem sum=aq-at is used to mean 'gather underneath one, to come up underneath one, to gather plentifully around one' and is used to refer to tasks/harvesting which are done between the legs, like root digging, clam digging, and berry picking.

[^31]: ${ }^{2}$ This can be used to refer to any skin affliction in which the infection comes to the surface of the skin. See also
 this root means something like be on the surface, come to the surface.

[^32]: ${ }^{6}$ This means to 'turn the boat upside down' or 'turn it bottom up' so that the rain, sand, etc., won't get in it.

[^33]: ${ }^{7}$ This is the only LS reported for Sliammon which consists of a single consonant. In terms of its canonical shape, it is suspect since all other lexical suffixes in the language are either minimally bimoraic, such as -VC or consist of a syllable C C, such as $=$ šan. It may be possible to analyze the final s as the third person possessive marker - s rather than as a LS. This is a topic for further research.
 [x^{\prime} áatnıth] $^{\text {h }}$ (lit: holy night) Sunday. One consultant also reports that her parents used [yéfyaw] Monday instead of the form given above. Sundays are counted in order to keep track of the weeks, moons are counted in order to keep track of the months, and snows are counted for the years: [pá?a đáx?ałnıt] one (Sunday) week, [páia ling^m] one (moon) month, and [pápa quó?m^y] one (snow) year.
 ${ }^{9}$ Watanabe (2000:190) posits $=\mathrm{a}$ Pana, $=\mathrm{a}$? ${ }^{2}$ na (stv.) as the form of the LS for ear. From the perspective adopted here the first [a] appears to come from epenthetic [a] after a consonant cluster and before the LS =Pana, as in /tlk=?ana/

[^34]: ${ }^{10}$ The bulb of the Indian Hellebore (also known as False Hellebore) is recognized as a deadly poison. It looks like a sweet potato, and is finely grated in order to make a purified liquid tonic. The purified liquid is then used in very small amounts for cleansing and purification in a personal sweat lodge. It causes a violant physical reaction and is noted to improve one's sense of smell. It was sometimes administered to a hunting dog in order to ensure that the dog's sense of smell was keen. The purified liquid is also used on cuts and bruises.

[^35]: ${ }^{11}$ According to one consultant, the Sliammon people believe that if a bat gets you and puts its wings over your eyes you won't be able to see; you'll be blinded. This as the reason why you're not supposed to make fun of bats.

[^36]: ${ }^{12}$ They used to use an iron-wood (Rock Spiraea) stick to fix the fire.

[^37]: ${ }^{14}$ This is a white root which grows at the head of the inlet，and is eaten by geese．Perhaps water parsnip，or salt grass（？）．

[^38]: ${ }^{15}$ This term refers to a bundle of cedar roots which are aiready cleaned and split. The lengths of cleaned roots are doubled over, hung to dry and then bound at one end. The resulting bundle bears a strong resemblance to the shape and size of a human head.
 ${ }^{16}$ One elder suggets that this name for Savary Island may mean "having water on top" - referring to the fact that Savary Island has a large number of fresh water springs and that the fresh water is very close to the surface. I have recorded two different variants of this place name which requires further checking to confirm the appropriate form. In the meantime, I include both variants here.

[^39]: ${ }^{18}$ These are the edible stalks from the salmonberry and thimbleberry bushes. MG recommended picking the new shoots which are nearest to the ground. The skin is peeled off before eating. These are the first tender young shoots of the year, and maybe reflected in the morphological composition of this word: /paL'/ pala 'one', perhaps 'first=stalk; first=growth'.

[^40]: ${ }^{19}$ This word means to 'turn s.t. (e.g. a boat) so that the open part is facing the sky'.
 20 The root say- 'whole, entire' occurs frequently as in sáyłat 'throat', say-mut as in sáymut čít 'it's pouring, raining very hard'.
 ${ }^{21}$ One consultant gave this form as the name for Surge Narrows; another consultant said that Surge Narrows is called [atpo?os]. This needs to be checked further.

[^41]: ${ }^{22}$ The forms for $1-3$ people are as follows: [pi:paye] ~[pé:paza] 'one person', [sésaza] 'two people', [če:tayi] 'three people'.

[^42]: ${ }^{23}$ There is also an independent bound root $\mathrm{k}^{\mathrm{w}} \mathrm{um}$－which means reddish，pinkish，flushed．

[^43]: ${ }^{24}$ This means 'to calm down or cool off after having been mad about something'.

[^44]: ${ }^{26}$ This root appears to be borrowed from the English plural form＇cherries＇［cériz］since the root in Sliammon has a final［s］（devoicing of z to s ）．This occurs in a number of other borrowings from English into Sliammon，such as ［kiks］＇cake＇from English＇cakes＇，［t $\mathrm{t} k \mathrm{k}$ ］＇duck＇from English＇ducks＇，．This has been observed for a number of other Salish languages including Musqueam（hən่q̉əmin̉əm）（Suttles），Island Halkomelem Gerdts（p．c．）．
 ${ }^{27}$ The bark of the Grand Fir is very thick and expands when it is burnt．JM tells of a friend with a round tin heater who put too much Grand Fir bark into his heater－the bark expanded and ruined the heater！
 ${ }^{28}$ This root for Sitka Spruce is clearly morphologically complex：$/ \boldsymbol{t}^{\theta} \dot{c}=a t p=a y /$ ．The first lexical suffix $=\partial+p$ appears to be related to＝atp＇tree，bush，plant＇found，for example，in Lillooet（Salish）：van Eijk（1985：102）． Since the productive lexical suffix for＇tree＇＝Tay is also added in the,I assume that $=ə \nmid p$ is lexicalized here．

[^45]: ${ }^{29}$ Apparently the pigeons like to sit in this tree - one consultant explained that it is because the bark is just about the same colour as the pigeons and that they are well camouflaged there. The bark is used to make a laxative tea.

[^46]: ${ }^{30}$ The stick used for stringing clams needed to be a hardwood so that it would not burn as the clams were cooked over the fire. The Sliammon people used the branches of either the Common Snowberry (Symphoricarpos albus, Turner 1998: 165) or Oceanspray, also know as "Ironwood" or Rock Spiraea (Holodiscus discolor, Turner 1998: 181).
 water' and wonder if there may also be $a=q^{w} u$ variant of this lexical suffix in addition to the $=k^{w} u$ variant. Notice
 'digging clams'. Perhaps there is some difference in meaning signaled by the choice of $=k^{w} \mathbf{u}$ versus $=q^{w} \mathbf{u}$. Perhaps the $=k^{w^{u}} u$ variant is the stative form $/=q^{w} u+s t v . /$ whereas $=q^{w} u$ is the non-stative counterpart. Do notice that the stative is often formed by $[-\mathrm{i}-]$ insertion. From a featural perspective, this is characterized as Dor [-back] (or Cor [ATR]) which if added to the features of the labio-uvular stop q^{w} could conceivably front q^{w} to \mathbf{k}^{w}. This line of argumentation may be useful in solving some of the other velar/uvular altemations observed in other Salish languages.

