
=CS: Hierarchical Classifier System
with Accuracy -Based Fitness

by

Aaron D. Wieland, B.Sc.

A thesis submitted to

the Faculty of Graduate Studies and Research

in partid fulfillment of

the requirements for the degree of

Master of Computer Sçience

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario

March 28,2001

Q Copyright

2001, Aaron D. Wieland

uisiüons and Acquisitkm et
Bi 'ographii Services setvices bibliographiques bt

The author has granted a non-
exclusive licence aîiowing the
National Li'bmy of Caaada to
reproduce, loan, distniute or sen
copies of this thesis in microform,
paper or electronic formats.

The author =tains ownershq, of the
copy~&ht in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or othcrwjse
reproduced without the author's
pdss ion.

L'auteur a accord6 une licence non
exclusive permettant à la
Bibliothéque nationale du Canada de
q m c k e , M e r , distribuer ou
vendre des copies de cette thèse sous
la fime de microfichelfilm, de
reprodt~dion sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette &se.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
atltoRsation.

Abstract .a

Classifier systems (CSs) are tule-based systems that use a combination of
reinforcement and genetic learning to adapt dynamically to an environment. Performance
may be optimal for simple probtems, but tends ro break down when the solution requires
extended action seguences or the environment is non-Markov, Hieratchical systems may
improve scalability , b y decomposing extended action sequences into shorter su b-
sequences, and by supplying the interna1 state necessary to achieve optimal performance
in non-Markov environments.

HXCS is a novei hierarchical CS, based partly on Wilson's hierarchical
performance and reinforcement algorithm, and p d y on XCS, a CS that bases fitness on
accuracy rather than predicted payoff. It is tested on a simple, non-Mvliarkov mue. HXCS
achieves optimal performance periodically but not consistently, and it is discovered that
the optimal policies are &pendent on infinitesimai differences between payoff
predictions. It is suggested that an appropriate bias would make the algorithm more
robust and reliable.

iii

Table of Contents

LIST OF TABLES ... V

LIST OF FIGURES ...

1 . INTRODUCTION 1

2 . CLASSIFIER SYSTEMS 5

.. The Performance System 6
.. The Credit Assignment System 8

.. The Rule Discovery System 10

........................ 3 . TEMPORAL CREDIT ASSIGNMENT PROBLEM 12

...................*.*......*...,..,.. 4 . XCS: ACCURACY-BASED FITNESS ... 16

... Relationship to Q-leaming 23
... Improving generalization 25
.. Adding intemal memory 28

Using better representations .. 30

..... 5 . PREVIOUS RESEARCH ON EIIERARCHICAL CLASSIFIER SYSTEMS 32

... Hiermhical Chunking Algorithm 32
Anticipatory Classifier Systems ... 36
HCS: Keeping it Within the Family .. 45
Hierarchical Credit Allocation ... 49

... MonaLysa: A Motivationdly Autonomous Animat 54
ALECSYS: Shaping Behaviour .. 63

......... 6 . CRITERIA FOR AN I D W HlERARCEIICAL CLASSIFIER SYSTEM 67

. 7 . EIXCS: A NEW HIERARCHXCAL CLASSIFIER SYSTEM , 73

8 . EXPERIMENTS .. 78

9 . DISCUSSION 1 0 4

... Interpretation of Results 104
... Future Work 105

.. Obstacles to hierarchical leaming 107
... Conclusion 110

.. REFERENCES.. 111

List of Tables

TABLE 1: PLANNING AND REACTIVE CLASSIFIER CONDITION USED w r r ~ HXCS IN
Woo~slOl .. 80

TABLE 2: PARAMETERS USED M THE EXPE~UMENTS. ... 8 1
TABLE 3: h U W I N G AND REACTIVE CLASSIFIERS FOR HXCS WITH BEST PERFORMANCE M

Wo~slOl .. 85
TABLE 4: PLANNING AND REACïiVE CLASSIFIERS FOR HXCS wrrH WORST PERFORMANCE

LN W00~s101 .. 86
TABLE 5: PLANNING AND REACTIVE CLASSIFIER CONDITIONS FOR WOODS 101 W i l U "START

.. WSIT~ON" DETECTOR BIT. 90
TABLE 6: PLANNING AND REACiïVE CLASSiFIERS FOR HXCS WlTH START POSITION BiT

WîTH BEST PERFORMANCE ... 9 1

Lit of Fi-

FIGURE l: ARCHITECTURE OF A STANDARD CLASSIFIER SYSTEM ... 6
FIGURE 2: F~NITE STATE WORLD EXAMPLE ... 35
FIGURE 3: T-MAZE USED IN SEWARD'S EXFERIMENTS ... 43
FIGURE 4: EXAMPLE OF HIERARCHICAL PERFORMANCE AND REINFORCEMENT AL GO^

... 53
... FIGURE 5: THE MONALYSA AR- 55

FIGURE 6: 'ïHE MONOLiTHïC ARCHïTECWRE ... 65
FIGURE 7: 'ïHE S W C H ARCHïïECTtlRE ... 65
FIGURE 8: THE WOODS 10 1 ENVIRONMENT .. 7 9
FtGURE 9: THE Woo~slOl ENVlRONMENT. WITH LABELS ASSIGNED TO THE OPEN

.. wsmows 79
FIGURE 10: XCS M WOODS 101 .. 8 2
FIGURE 1 1: PERFORMANCE OF HXCS w WOODS 10 1 .. 8 8

.............. FIGURE 12: PERFORMANCE OF HXCS Wmi: START POSïïiON BE Di WOODS 101 91
.......................... FIGURE 13: HXCS W ï ï H START POSïïION Bïï AND BIAS M WOODS 10 1 102

FIGURE 14: HXCS Wï ïH START POSITION Bïï AND BiAS THAT 1s APPLED 80% OF THE

1. Introduction

Classifier systems (CSs) are mle-based systems that use reinforcement learning

and Darwinian evolutioa to dynamically adapt to their environment. The advantages of

CSs over certain other f o m of machine leÛniiDg include their suitabiiity for inmementai,

mal-time adaptation, and a simple rule representation that is easy to modify genetically,

yet relatively easy to understand. Like many reinforcement learning systems, however,

CSs have limited scaiability: in complex environments where extended action sequences

are required to obtain a goal, reinforcement is the-consuming and e m r prone.

Various researchers have suggested that CSs wodd perform better if they were

strucnired hierarchically , each proposing his own hierarchical architecture. To evaluate

these highly varied solutions, it is necessary to establish a list of desirable charactecistics.

The following traits should be induded in the curriculum vitae of the i&al hierarchical

CS: (1) capable of planning, (2) lems hietarchicai reiationships dynamicatly, (3)

depends on local versus global information, (4) requires minimal domain knowledge, (5)

robust. In fat , these five attributes may be consikred prerequisites of the tnie goal:

scalabil$y.

Specifications for hierarchical CSs inciude the Hierarchical Chunking Algorithm

(HCA), the Anticipatory CIassZier System (ACS), HCS, MonaLysa, ALECSYS, and

Wilson's hierarchical performance and reinforcement aigorithm. All but the last fail at

least one of the criteria listed above - and the merits of Wison's aigorithm are uncertain,

since it bas never been implemented.

For this reason, it was deemed important to implement a hierarchical CS based on

Wilson's algorithm. Wilson's proposal was published in 1987, however, and CS research

has progressed significantly since then. In fact, Wilson himself has designed a new CS,

XCS, that has performed weil in certain multi-step environments. Uniike traditional CSs

that base the Darwinian fitness of a rule on its predicted payoff, XCS bases fiiness on the

accuracy of the prediction. Therefore, a new hierarchical CS has been implemented,

HXCS, based on both Wilson's hierarchical algorithm and XCS. In addition to the

incorporation of XCS-based algorithms, HXCS differs from the original hierarchicd

algorithm in one important respect: d e s are grouped into distinct reactive and planning

populations, instead of existing in a single homogeneous population.

Although the ultimate goal of hierarchicd systems is to improve scalability, the

motivation for the experiments described here is simply to prove it is possible for

HXCS's performance and reinforcement algorithms to solve a simple problem. The first

step is to show that two populations, one with reactive niles, the other with planning

rules, c m cooperate to solve a problem - one whose optimal policy requires the use of

internal state. In other words, the goal is to demonstrate that HXCS can achieve better

performance than a non-hieratchical CS without any internal state, such as XCS.

Therefore, HXCS was tested in a simple non-Markov maze with two aliasing

positions. To disambiguate these two positions, indistinguishable on the basis of sensory

input alone, requires an additional bit of internal state; thus, the internal message of each

planning d e was a single bit, the minimum needed for optimum policy.

3

Performance was lacklustre for the initial experiments. It was noted that HXCS

was unable to distinguish the two scenarios that involve aliasing positions: (1) startirlg ut

an aliasing position, and (2) passing ihrough such a position. After an extra bit was

added to encode this information, performance improved noticeably. The system even

managed to achieve optimal performance occasionaliy. But a close examination of these

uncornmon optimal solutions led to a disturbing insight: optimal performance depended

on an infinitesimai difference between the ostensibly identical predictions of the best

reactive mle and best planning rule for one position. Solutions rtiat do not include this

feature are vulnerable to useless planning steps. It is suggested that a bias be used to

eliminate redundant planning steps and achieve optimal performance reliably. An initial

attempt to apply such a bias led to decreased performance; it appears that, while the bias

is effective at preserving optimal behaviow for a correct solution, it prevents the system

from leaming ihis solution in the first place.

it is concluded that the aigorithm for HXCS is basically sound, insofar as it is

capable of using internai messages to achieve optimum performance in a non-Markov

environment, an improvement over what is possible for a non-hierarchical CS without

hidden state. Thus, the modest goal set for these initiai experiments was satisfied. But

performance will not be reliable until an appropriate bias is devised to promote the

desired behaviour, Future work will show whether HXCS is truiy scalable; for example,

whether hierarchical reinforcement is successful at decomposing long action sequences

into shoaer, more easiiy leamed sequences. Due to the potential instability caused by the

4

tight coupling between the reactive and planning levels, futther modifications wiiî

probably be needed.

Chapter 2 provides an overview of CSs. Chapter 3 explains why it is difficult for

a CS to leam long action sequences. XCS, a relatively new CS that bases fitness on

accuracy instead of predicted payoff, is described in Chapter 4. Previous hierarchicai

CSs are summarized in Chapter 5. Chapter 6 lists the criteria used to evaluate each

hierarchicai CS. HXCS's aigorithm is described in Chapter 7. Experiments with HXCS

in a simple non-Markov environment are presented in Chapter 8. Finally, Chapter 9

discusses the experimental results and the challenges awaiting future research.

2. Classifier Systems

A proper definition of a classifier system (CS) rnust first explain the larger

context: the problem it was designed to solve. Imagine a cornplex, ever-changing

environment with sparse payoff. An organism inhabiting such an environment must cope

with perpetual novelty, unreliable (noisy) data, and does not receive any reward until it

has completed a sequence of actions. To adapt, the organism must l e m continually, but

cannot spend too much time analyzing its experience if it is to operate in red-time. It

needs to adopt an incremental, model-building approach; the predictions of tentative

hypotheses are continually tested and revised, and new hypotheses are generated.

Traditional aracial intelligence techniques, such as expert systems, fare poorly

in this kind of environment because of their cigidity; they were not designed for online

leaming, and attempts to graft a leaming algorithm ont0 them typically yields awkward

results. CSs, on the other hand, were designed from the start to be highly adaptable.

What follows is a description of the "standard classifier system." One must

remember that the standard classifier system is an almost mythical beast, and is seldom

implemented exactly as presented. In fact, much of this thesis will discuss variatiuns of

CSs that deviate considerably from the overview given in this section.

A CS is nile-based, and is similar to an expert system in this respect. The d e s of

a CS are called classilfiers, and the two terms will be used interchangeably in this thesis.

Al1 communication is performed by passing messages, and multiple mles or messages

may be active simuitaneously. Typicaiiy, both the mies and messages have a simple

representation, which facilitates the use of building blocks to form new and more

5

6

powerful concepts. The CS consists of three interacting subsystems; (1) the perfumance

system, which interacts directly with the environment; (2) the credit assignment system,

which evaluates the effectiveness of d e s ; and (3) the nile discovery system, which is

responsible for generating new d e s and removing ineffective ones.

Figure 1: Architecture of a standard classiiier system.

The Performance System

The CS perceives its environment with the detectors of its input interface, and acts

on its environment with the effectors of its output interface. As mentioned previousiy, di

communication, both between the CS and its environmental interfaces, and within the CS

itself, relies on the passing of messages. Al1 messages are posted to a common message

list. These messages are produced by the input interface, to convey the current state of

the environment, or are produced by the CS'S own classiners, to effect intemal

7

A classifier is a conditiodaction rule. if aU parts of the condition are satisfied by

the cunent list of messages, the classifier is eligible for activation. An activated classifier

posts the message specified by its action to the message list. In a typical CS, the

conditions and actions are both fixed-length strings, as are the messages. The actions and

messages are binary strings. The conditions are temary strings, because, in addition to

the two binary values, each position may have the "don't care" symbol (#). A "don't

care" symbol indicates that the condition will match either a O or a 1 at that position. For

example the classifier 1#00: 11 1 has a condition of 1#00 that is satisfied by either of the

messages 1 0 or 1100. If it is activated, the message 1 11 is posted to the message list.

Booker (1988) provides a concise ovewiew of the performance system's execution

cycle (p, 165):

(1) Place messages tkom the input interface on the current message list;

(2) Compare aii messages to al1 conditions and conduct a competition among relevant

classifiers to determine which ones wili become active;

(3) For each active classifier, generate one message for the new message list;

(4) Replace the current message list with the new message List;

(5) Process the current message list through the output interface to produce system

output;

(6) Return to step 1.

The competition mentioned in step (2) deserves some elaboration. A classifier may

compte only if its condition is satisfied by the current messages (Le., it is "relevant" to

the cunent situation). Each competing classifier makes a bid for the right to become

8

active (the computation of the bid is described in the folîowing section). Classifiers with

higher bids have a greater probabity of being selected.

It may be observed that the execution cycle pennits a high degree of parallelism:

many messages may exist concurrently, and these messages rnay in turn activate many

classifiers. Thus, classiners may be used as elementary building blocks, with clusters of

mles acting together to represent complex concepts; each rule represents a different

aspect of the current situation. Contrast this with a system that permits only one rule to

be active at a tirne; a distinct symbol is needed for every complex concept - if these

concepts are composed of many aspects, the combinatorics soon prove intractable.

One of the Holy Grails of CS research is the emergence of default hierarchies.

The CS first learns some generalizations that capture the simplest statistical regularities in

its environrnent. The rules that capture these regularities are overly general, and are

inappropriate in many contexts. Eventually, the CS learns more specific rules that cover

the special cases where the more general rule does not apply, and outbid the "generals"

when appropriate. This process may continue indefinitely, as the system learns

progressively more specific "exception*' rules, leading to the formation of a default

hierarchy.

The Credit Assignment System

This subsystem is responsible for evaluating the effectiveness of the rules. Each

rule has a strength, a scalar value that represents its estimated utility. If the CS receives a

reward (payoff, reinforcement) from the environment, it is obvious tbat the classifiers

activated that cycle contributed to the attainment of this reward, and their strength should

9

be increased accordingly. But what of previously active classifiers which "set the stage"

for obtaining the reward? In a complex environment with sparse payoff, the CS will

execute many actions before it gets an external reward. Using minimal information, the

CS must decide how credit will be assigned to its classifiers.

One solution is to use a brute-force approach, and record information for every

classifier that is active over an extended period of time. Then, after the CS obtains a

goal, a pst-hoc analysis may be performed to determine which classifiers actuaiiy

contributed to the end result (obviously, it is undesirable to reinforce classifiers that

caused aimless meandering). This approach, sornetirnes called the epochal method, is

expensive both in terms of memory and of processing tirne. Another disadvantage of the

epochal method is that it is not always evident where an "epoch" (trial) should begin or

end.

Because of the disadvantages of epochal methods, most CSs rely on locd

methods of reinforcement. If a rule's action improves the current situation, it is

reinforced. Temporal difference methods are the most widely studied class of local

reinforcement algorithms; for these algorithms, an improvement is indicated by an

immediate reward ftom the environment, or a prediction of future reward.

The temporal difference method most often used by CSs is the bucket brigade

algorithm. It may be explained using a simple economic anaiogy: Each rule is a

"niddeman," with suppliers and consumers. A nile's suppliers are previously active

d e s whose messages satisfied its condition, thereby enablhg it to become active (the

input interface may aiso be a supplier, if the de ' s condition matched messages fiom the

10
environment). Its consumers are those d e s whose conditions were at least partly

satisfied by its message, and who subsequently became active (i.e., won the wmpetition),

The d e pays its bid to its suppliers, which decreases its strength (its "capital"). Its

strength is increased when its consumers pay it with their bids, or when it receives a

reward from the environment.

&ch mle is said to be coupled to both its suppliers and its consuners. More

precisely, two classifiers are coupled if the message of one satisfies at least one of the

conditions of the other. It is the coupling of mles that makes it possible for the CS to

l e m action sequences.

The bucket brigade algorithm works because a mle may becorne strong only if it

is coupled to other niles that lead to a good payoff. Otherwise, the d e progressively

weakens as it pays its bid to its suppiiers and receives little in retum. However, the

bucket brigade algorithm's ability to l em extended action sequences is limiteci in

practice, as will be discussed in a later chapter.

The Rule Discovery System

For a learning system to be tcuiy adaptable, it must be capable of generating new

niles, and of eiiminating ineffective ones. The new rules could be generated entirely at

random, but wild guesses are unlikely to yield useful classifiers. A better approach

would be for the CS to use induction to generate plausible "hypotheses" based on

previous experience. This could be done by using "building blocks" of proven utility to

constmct new des. Fortunately, it is easy to mat each nile as a coilecrion of discrete

parts, owing to its simple representation.

11

A part's usefulness may be estimated as the average strength of al1 d e s which

use that part. If a part is usefui in many contexc (des), it is plausible that it wüi be a

useful component of new des . However, the explkit computation of the average

strength of al1 d e s with a given part, for ali parts, is too time consuming.

Fortunately, the preferentiai selection of above-average building blocks may be

performed implicitly by selecting high-strength d e s , recombining their parts to create

new d e s . This is precisely what a genetic algorithm is supposed to do; it is for this

reason, the nile discovery system of the typicai CS is a genetic algorithm (GA).

Each cycle of a GA consists of the following steps:

1. Select the parents from cunent "population," preferentiaiiy choosing individuais of

above-average '%tness."

2. Create the offspring by randomly recombining the parts of the parents; various

mutation operators may then be applied to the children.

3. The offspring are added to the population, and luw-fitness niles are removed.

in a CS, the individuals are classifiers, and a classifier's fitness equais its strength.

3. Temporal C d t Assignment Problem

In a single-step problem, where each trial consists of a single decision, deciding

how credit (or payoff) should be assigned to each classifier is relatively simple. The

winning classifier, whose action was last executed, is rewarded if the system receives a

positive reward from the environment; otherwise, it is penalized (Wilson has developed a

somewhat different approach that will be discussed later). Other classifiers are neither

reinforced nor penaiized (unless taxes are applied), as they did not contribute to the

current payoff.

The issue of credit assignment is much more complex for multi-step problems.

The system may make many decisions (execute the actions of many classifiers) before an

environmental payoff is received. When a reward is finally received, it is not obvious

which classifies were responsible; many "stage-setting" classifiers needed to be

activated before the final classifier whose action triggered a reward.

One solution to the temporal credit assignment problem requires that the history

of every decision is recorded; after a reward is received, some form of pst-hoc analysis

may be used to estimate the contribution of each rule to the finai goal. This approach

requires significant bookkeeping, and consumes much memory and processing the.

Most classifier systems restrict themselves to local reinforcement methods, the

most common implementation king the bucket brigade algorithm. Though the bucket

brigade is ideal for efficient on-iine learning, it breaks down when it must reinforce an

extended sequence of decisions. The first time the sequence is executed, the classifier

whose action was last executed receives an extemal reward from the environment. Each

12

13

time this sequence is executed again, a fiaction of this reward is effectively propagated to

the previous classifier; many repetitions are required before the classifier with the fint

action in the sequence receives any part of the reward, and many more are needed before

it is tùlly reinforced (i.e., its strength approaches its asymptotic value).

Wilson (1987) uses a simple simulation to demonstrate this point. Suppose a

bucket-brigade sequence of length n is represented by a list of n classifiers, the strength

of each having been initialized to zero. Let Si(t) be the strength of classifier i after time

step t, and e be the bid factor, a small constant specifying the fraction of a classifier's

strength that is used for its bid. On each repetition of the entire sequence, every classifier

pays a fraction of its bid to its supplier. The classifier's strength at time t + 1 is therefore

Si(t + L) = Si(t) - eSi(t) + eSi-i(t), for t > O

So(t + 1) = So(t) - eSo(t) + R, for the O' classifier* which receives payoff R

directly h m the environment.

All strength updates of one repetition of the bucket brigade sequence are

considered to occur in a single unit of time. As t increases, ail strengths approach an

asymptotic value equai to R 1 e, if the critical level, the point at which a strength is

considend sufficiently close to its tnie value, is considered to be 90% of R / e, the

number of time steps necessacy to reinforce the chah s~iciently is approximately,

190% = (3 + 1.2n) l e

for 0.1 I e S 0.4. Thus, for e = 0.1, a classifier ten steps h m the environmental reward

will requice at least 150 repetitions of the sequence before it is reinforced sufficiently.

14
In fact, learning tirne is much greater in practice, because the selection aigorithm

is usually stochastic, and the system is not guaranteed to take the same path each tirne.

Also, the system may wander its enviconment for a long time before it even has the

opportunity to repeat the same sequence, or "chain."

John HoUand acknowledged the long chain problem, but believed it could be

resolved without any changes to the performance system. "Bridging," or "epoch-

marking," classifiers could propagate the extemal payoff almost directly to early

classifiers. A bridging classiner could be persistentiy active over an interval if its

conditions were continually satisfîed by: (1) unchanging sensory input from the

environment, (2) its own message posted the previous cycle, or (3) a message from

another classifier. Such persistent classifiers would represent goals to be carried out by

the sequences they bridge. Holland believed that hierarchies of goals could arise

naturaily .
Riolo (1987) performed experiments to test the effectiveness of bridging

classifiers. He concluded that they did indeed greatiy reduce the time needed to reinforce

long chains. However, no one has ever proposed a simple method for creating these

classitiers, and they are not spontaneously generated. Without the addition of special,

complex operators, the system would need to maintain many tentative bridges, which

could lead to an intractably large population of classifiers.

Wdson proposed an altemative solution to the long chain pmblem: Decompose

action sequences into modules at different levels of abstraction. The bucket brigade

aigorithm could then be modüied so that each sequence at each level of abstraction would

15

form a separate teinforcement chah This way, long chains would be replaced with

multiple short chains. His proposal will be described in more detail in a later section.

4. XCS: Accuracy-Based Fitness

Observing that attempts to realize the full potential of Hoiland's frarnework had

been mixed, Wilson decided to implement a simple CS that would be easy to study: a

"Zeroth Level Classifier System" (ZCS) (Wilson, 1994). ZCS is basically a standard CS

wiihout a message List, like the "ceactive CSs" used in other studies. Unlike some

researchers, Wilson did not disable the genetic algorithm, as he considered Darwinian

evolution essential to the definition of a CS.

ZCS was tested in two environments, Woodsl and Woods7. Each "woods" is a

grid of cells containing obstacles ("trees" or "rocks") and food. Woodsl is Markov, that

is to say, the environment's next state can be consistently predicted from its current stsite

and the system's chosen action. Woods7 is non-Markov; it contains "aliasing" or

"hidden" States which cannot be disambiguated unless the system maintains a history of

previous inputs or key events. Since ZCS does not have any form of short-term memory

(such as a message List), it cannot possibly achieve optimal performance in this

envimnment.

For each environment, ZCS's performance (measured as the average number of

steps to food) was significantly better than random, but markedly worse than the

optimum, especidly in the case of W d s 7 . Wilson hypothesized that performance was

sub-optimal in the first environment because of prematum convergence; ZCS would

sometimes discover a sub-optimal path, and by reinforcing it, preclude the discovery of

better paths. Of course, optimal performance was not expected in Woods7 for the reason

mentioned above.

16

17

Shortly after ninning these experiments, Wilson tri& a radicaüy different

approach that resulted in a new CS implementation, "XCS" (Wilson, 1995). XCS differs

from its predecessor in several respects, but the key differences are (1) switching h m a

"panmictic" GA to a "niche" GA, and (2) basing classifier fitness on accuracy rather than

strength (predicted payoff).

In a traditionai CS, the GA selects parents from the entire classifier population.

Booker (1982) introduced the concept of "niche," where a niche is approximatety defined

by a group of classifiers that match a set of environmentai inputs. He pointed out that

mating high-fitness classifiers from different niches tends to produce offspring that are

not fit in either niche. Bwker's solution was to limit the GA to the current match set,

ensuring that parents are selected from the same niche. XCS used the same technique

until Wilson (1998) learned that performance was improved if the GA were instead

applied to the action set.

But the most important feature of XCS is accuracy-based fitness. Strength-based

fimess creates many problems (Wilson, 1995). The CS'S environment contains niches

with different payoffs. Classifiers belonging to the more remunerative niches will have a

higher strength and will be ailocated more cesources (classifiers) by the GA. Payoff

sharing -- splitting payoffs arnong the classifiers in the action set - is sometimes used to

mitigate this problem, but this solution creates a new problem: a classifier's strength no

longer directly predicts payoff; instead, predicted payoff equals the sum of the strengths

of dl classifiers in the action set. Since a classifier may belong to multiple action sets

with different payoffs, even this interpretation is inaccurate.

18

Furthermore, even with payoff sharing, the more remunerative niches will receive

more classifiers. This is problematic for sequential problems if payoff is discounted (to

encourage short solution paths) so that "set up" classifiers are weaker than classifiers at

the end of a chah. This problem is solved by the use of a "niche GA" (Booker, 1982),

where the breeding population is restricted to the current match or action set. Since

competition is restricted to the classifiers within a niche, differences in strength between

niches are irrelevant.

The other problem with strength-based fitness is that there is no reason - neither

in theocy nor in practice - why accwate generalizations should evolve. The GA judges

fitness solely by the average payoff received by a classifier, a classifier that receives a

payoff of 100 half the time and 500 the rest of the time is judged equivalent to one that

consistently receives a payoff of 300. Even worse, if a niche GA is used, overgenerai

(inaccurate) classifiers will have more opportunities to reproduce (because they occur in

more match/action sets) and will dorninate the population.

To solve these problems, Wilson decided to base fitness on accuracy of the

predicted payoff instead of the payoff itself. As a result, the focus of the CS was changed

from learning how to exploit remunerative niches to leaming an accurate internai map of

its environment. This map says, "If the cumnt input is x and action a is taken, the payoff

will be p." Put more focmally, the mapping is X x A * P, where X is the set of al1

sensory inputs, A is the set of al1 actions, and P is the set of payoffs. Instead of a strengrh

parameter, each classifier in XCS maintains three parameters: (1) prediction, the

p d c t e d payoff if its condition is satisfied and its action executed; (2) prediction error,

19

the discrepancy between the prediction and the actual payoff received by the system; and

(3)jhess, the accuracy of the prediction, computed as an inverse function of the

prediction error.

XCS is also distinguished by its vse of macroclassflers. A macroclassifier is

simply a classifier with a nurnerosiry that indicates how many normal (micro-) classifiers

it represents. Whenever a classifier is added to the population, the system checks

whether a classifier with the same condition and action already exists. if so, instead of

adding the new classifier, the existing classifier*^ numerosity is incremented by one.

Otherwise, the classifier is added with its numerosity initialized to 1. Deletions are

handled similarly by decrementing ihe target classifier's numerosity by one and removing

the classifier entirely if its numerosity ever drops to zero. The algorithms are adjusted to

account for each classifier's numerosity. Although macrcr,lassifiers were primarily

introduced as an implementation technique for improving performance, diey also aid

analysis, As the system learns, its population size (in terms of macroclassifiers) tends to

shrink as the numerosities of the fittest classifiers are boosted and less fit classifiers are

deleted.

Accuracy-based fitness obviously improves rule discovery; the GA eliminates

overgenerals. But the performance component also benefits; by evolving a relatively

complete map, the risk of premature convergence is reduced.

This map aiso benefits action-selection, since the system tends to evolve at least

one accurate classifier for every niche and action combination. Thus, when making a

selection, the system can compare the payoffs, or system predictions, for each action.

20

Each system prediction is a fitness-weighted sum of the predictions for ail match set

classifiers with a given action.

Exactiy how the system chooses an action is not part of XCS's definition, but for

current irnplemeniations the system alternates between chuosing the action with the

highest system prediction ("pure exploit") and chuoshg an action entirely at riindom

("pure explore") (Wilson, 1996a). It is necessary that every classifier is evaluated

oçcasionally so that iis parameters are updated and eventuaily approach accurate values.

After an action is selected and executed, the parameters are updated for al1

classifiers in the curient action set [A] (for single-step problems or sequential problems

that last a single step) or the previous action set [A].'. The prediction, prediction error,

and fimess updates use a variant of the Widrow-Hoff d e (Le., a recency-weighted

average) called "moyenne adaptive modifiée" or "MAM. With MAM, the fmt several

updates are süaight averages, allowing the panmeter to converge to its me value more

quickly. The updating of [A]_, begins with the calcuIation of a payoff P: P = r.r+ y

max(lP(a), where r-1 is the reward on the previous time step, and y is the discount factor

(O <y SI). if the update occurs in [A], P = r, where r is the current reward. P is then

used to update the prediction p of each classifier in the action set using the Widrow-Hoff

nile with learning rate (O < fi I 1): p t p + g(P - p). The prediciion error E is updated

via the same technique, using the absdute ciifference between the estimated and actuai

payoffs:

e t E +P(]P -pl -&).

2 1
The fitness update is a three-step process. F i t , the accuracy K of each classifier

is calculated: K= 0.1(~&$" for E > Q, else K = 1 (Q specifies an error threshold, below

which the classifier is deemed accurate). Then, each classifier's relative accuracy K' is

calculated as

Finally, the fitnesses are adjusted using the Widrow-Hoff d e : F t F + b(rC - F). The

calculation of ~ w a s originally an exponential function (Wilson, 1995) but the power law

has been found to work better in rnultistep problems (Lanzi and Wilson, 2000).

The genetic algorithm is applied whenever the average number of steps since the

last GA activation for the classifiers in the target action set exceeds a threshold. When

applied, it selects two classifiers from the population with probability proportionai to

their fitnesses, copies them. and applies crossover with probability x and mutation with

probability p. These offspring are then inserted into the population. if the maximum

population size is exceeded, two classifiers are deleted with probability proportional to

their action set size estimate. That is, the lnrger the average size of the action sets to

which a classifier belongs, the greater its chance of deletion. This pressure tends to

equaüze action set sizes, ensuring that the various niches have equivalent resources. The

deletion probability is increased for very low fitness classifiers that have been updated a

sufficient number of times.

Preliminary experimental results led Wilson to develop his generalization

hyphesis: XCS, due to its accuracy-based fitness and niche GA, tends to evolve

accurate and maximaily general maps of the payoff landscape, X x A P. That is,

22

classifiers evolve to be as general as possible while stiil satisfying an accuracy criterion.

Two niches with the same payoff but different sensory inputs can be combineci into a

single niche by evolving classifiers whose conditions cover both sets of inputs. By

evolving accurate, rnaximally general classifiers, the number of "concepts"

(macroclassitiers) that the population needs is minimized.

Obviously, because fitness is based on accucacy, the system tends to evolve

accurate classifiers. But why would they be maximdly general? Wilson imagined the

following scenario. Suppose there are two classifiers, C l and C2, equaily accurate, with

the same action; C2's condition is a genedization of Cl's. Cl and C2 are in the same

action set, so their fitness is updated by the s m e amount, But C2 occurs in more action

sets and therefore has more opportunities to reproduce. This resulcs in more exemplars

(identical copies) of C2, which means that C2 has a higher numerosity. Thus, as a

macroclassifier, C2 wili get a Iarger fraction of the titness update, causing its

reproductive advantage to increase further, and so on -- until Cl is eventually displaced.

Generaiization will continue as long as more general, equally accurate classifiers exist.

XCS successfuily leamed accurate maximal generalizations for the dmultiplexer

and 1 1-multiplexer problems. At the end of an average mn (about 4000 problems), the

system preàiction error was near zero, and the population consisted of maximal

generalizations (with the highest nwnerosities and fimess) and slightly more specific

versions of the generds that were relatively new and inexperienced.

A cornparison between the stacistics for the 6- and I 1-multipiexer problems was

reveaIing: the Il-multiplexer required about thnx times as many steps and the final

23

population was about three times as large. But the ratio of the search space sizes is much

greater: 2 'b6 = 32. This discovery led Wison to develop a n d e r hypothesis: for XCS,

the learning complexity scales according to the number of concepts or generalizations

expressed by the solution, and not exponentially with the dimensionality of the problem

space.

Next, XCS was tested with "Woods2," a more challenging version of Woods1

with two types of food and two types of obstacle, to determine its ability to master

sequential problems, Unlike ZCS, the system approached optimal performance after

approximately 1000 problems. An investigation of the population revealed some

evidence of generaiization, but also many overlapping generalizations. Wilson attributed

this apparent violation of the generalization hypothesis to WoodsS's "sparseness." That

is, the encoding for a classifier condition covers many environmental States that are not

present in Woods2. For example, suppose there are two equally accurate classifiers, C 1

=1#00: 1 and C2 = 1000: 1. if the environment includes state 1000 and not 1100, Cl and

C2 wili occur in exactly the same number of action sets, so the number of reproductive

opportunities for each is the same. Thus, even though Cl is f o d y more general than

C2, this added generality has no effect on its interactions with its environment, and it

cannot displace C2.

24

XCS's parameter updates are based on Q - l d n g (Watkins and Dayan, 1992), an

algonthm tbat is currently popular wiih the reinforcernent leamhg community. Q-

learning associates a Q-value with every input-action pair; this is often implemented with

a table. After each step, the Q-vaiue of the relevant input-action pair is updated, using

the Widrow-Hoff rule, with the surn of the current external reward and the product of a

discount factor (between O and 1) and the largest Q-vdue associated with the fouowing

input:

where x is the current input, y is the subsequent input, a is the leaming rate, R is the

extemal reward, and y is the discount factor.

Previous papers have explored the relatioaship between Q-leaming and specid

versions of the bucket-brigade algorithm, such as the one used by Dorigo and Bersini's

discounted max very simple classfrer system (1994) or Wilson's ZCS (1994). Instead of

a single (2-value, ZCS uses the surn of strengths of the maximum strength action in the

match set, and the update applies to al l classifiers in the action set rather than a single

input-action pair. XCS's update procedure is doser to Q-learning because each cIassifier

uses Q-leaming to predict payoff directiy. But this is stili different from traditional Q-

learaing because XCS updates multiple predictions at once and these values are weraged

to cdculate the system prediction.

It has been proven that, for simple enWonments where the next input and reward

are detedned solely by the current input and the chosen action, Q-leaming can l e m an

optimal poiîcy; for every input x, the system chooses the action a that maximizes the

25

discounted surn of rewards it receives (Wilson, 1995). This proof does not apply to XCS;

indeed, it has not been proven that any implementation of Q-learning with genetalization

is guaranteed to converge on an optimal policy. But this ability to generaiize allows a

solution to be expressed far more compactly than with traditional table-based Q-leamhg

(which requires a slot for every possible input-action combination).

Improving generalizaîion
As mentioned previously, the GA used to occur in the match set (as Booker had

originaily proposed) until it was found that performance was improved if it occwred in

the action set (Wilson, 1998). Wilson attributed the difference to asymmetnes in the

problem space: given a maximally general classifier, it is not always true that another

classifier with the same condition but a different action is also maximally general. By

mating classifiers from different action sets, there is a high probability of creating unfit

offspring.

Wilson (1998) aiso introduced a new technique called subsumption deletion, or

simply subsumption, that accelentes genetalization. The idea is simple: if an accurate

classifier is a more general version of another classifier (Le., it subsumes the other

classifier), delete the more specific classifer and increment the more general classifier's

numerosity accordingly. The subsuming classifier must meet a minimum experience

threshold to ensure that its error estimate is accurate. Whenever the GA is executed, the

offspnng are checked against their parents for subswnption. Subsumption is also

activated in the action set every time step, because a classifier may be subsurned by

another that is not its parent.

26

It may be recalled that, in sparse environments such as Woods2, a classifier couId

not be displaced by an equally accurate and fonnally more generai rival if it matched the

same number of situations. Subsumption deletion solves this problem by aliowing the

more general classifier to subsume the other.

After 2000 explore problems in W d d , XCS with an action set GA evolved a

population of 310 classifiers versus the 500 classifiers of its predecessor. When

subsumption was enabled, the population size dropped dramatically to 89 - evidence of

powerful generaiization. Further experiments suggested that this solution is very close to

a minimai cover if the classifiers with low fitness and numerosity are ignored.

For the multiplexer problems, the action set GA made linle difference. This was

expected, since the multiplexer task is perfectly symmetrical; given an accurate

rnaximally general classifier with an action of O, a classifier with the same condition and

an action of 1 is also accurate and maximaliy general.

Wilson's generalization hypothesis, that XCS tends to evolve accurate maximaiiy

general classifiers, was not aggressive enough for Kovacs, who proposed the XCS

Optimality Hypothesis: XCS can evolve optimal populations that map aii input-action

pairs to payoff predictions using the srnailest possible set of non-overlapping classifiers;

more precisely, XCS eventuaily evolves a rnaximally general classifier for each payoff

level with a greater numerosity than any other classifier for that level (Kovacs, 1997).

Kovacs experimented with two methods of evolving an optimal population, [O]:

(1) condensation, and (2) subset extraction. Condensation is a simple technique that

Wilson (1995) had used previously. The system lems normally until it is estünated that

27
the population contains [O] as a subset. Then the systern continues to run with the

mutation and crossover rates set to zero. With the genetic operators effectively disabled,

no new macroclassifiers can be created; the offspring are perfect clones of their parents.

Since the GA continues to breed and delete classifies, the result is to shift numerosity to

the fittest classifiers. Kovacs found that the process could be accelerated by deleting al1

but the most numerous classifier in each action set.

Condensation is simple and elegant. Unfortunately, no one has yet discovered a

diable method for determinhg when condensation should be triggered. Tt should not be

activated until the population contains [O], but how can this be detected? Kovacs

experimented with various triggering conditions, but he aiways needed to include a

generous buffer (Le., run a few thousand more problems after the triggering condition is

satisfied); even worse, the size of this buffer was highly problem-dependent.

Another solution to the problem of discovering [O] would be to periodicdy

check the population and see if it includes [O] as a subset. A brute force implementation

that checked every possible subset for optimality would be far too expensive. Kovacs

made a simplifying assumption: if a classifer belongs to [O], then any classifier with a

greater numerosity also belongs to [O]. This is not strictiy me, but it tends to be true,

and is increasingly Likely to be true as the population evolves.

Kovacs's assumption led to his subset extraction algorithm

Add classifiers that are accurate and sufficientiy experienced to an empty List in order

of decreasing numerosity.

28

As each classifier is added, check whether the list contains a complete overlapping

map. if so, stop.

If, &et ail the classifiers have been added, [O] stili has not k e n found, or the

classifiers overlap, quit.

Subset extraction is sufficiently fast that it can be executed at regular intervals. It is not ,

guaranteed to detect [O] immediately (since those classifiers rnight not have the highest

numerosities), but eventualiy it wiU.

Kovac's experiments reveaied that condensation was faster than subset extraction

ajter it was triggered, but since it was not activated until long d e r [O] already existed,

subset extraction was effectively faster. A better heuristic for detecting [O] would

dramatically improve the usefulness of condensation, however.

Adding internal memory

Without short-term memory, a CS cannot achieve optimal performance in a non-

Markov environment. In his ZCS papes, Wilson (1994) suggested that an internal

memory register be used as a replacement for the traditional message List. The system

would contain a register with b binary bits. Each classifier would be enhanced with an

internai condition and an internai action, each having b characters from (O, 1, #). To

qualify for the cumnt match set, a classifier's external condition has to match the sensory

input as before, and its intemal condition must match the intemal register. The execution

of an internal action changes the regîster's bits: wherever the action's bit is O or 1, the

corresponding register bit adopts the same value, and a # leaves it unchanged. A "no op"

30
chooses the internai action with the highest system prediction; next, a random extemai

action is chosen fiom the internaüextemal action pairs matchhg the selected intemai

action. The intemal state is explored only by the GA. Thus, the laquage is explored

more slowly than its interpreiation. XCSMH successfuily achieved optimal performance

in the more difficult mazes. Curiously, performance was improved when the register had

redundant bits, suggesting thsit the amount of necessary exploration does not increase

exponentially with the register size. There are many possible language-interpretation

combinations that wüi solve the problern; any one wiU do (Wilson, 1999).

Using beîîer represenhîiins

Wilson (1999) defines a predictive regularity as (x, a) +p, where x is an input, a

is an action, and p is the predicted payoff if the input is x and a is performed. ((x),a) +p

represents the set of ail States Xi such that (xi, a) +p; this is cailed a categorical

regulariry. The ideal solution includes only one classifier per categorical regularity.

But XCS's ability to generalize is limited by the expcessiveness of the classifier

encdng, so this may not always be possible. For example, the traditional encoding is

poorly suited to problems with continuous variables; many classifier conditions may be

needed to represent a single interval. In chis case, the usud string of temary digits is

better replaced with pairs of real values representing intervals either as start and end

points or as the centre and spread.

The traditional representation is also less than optimal for non-conjunctive

pcedicates. For example, to represent the condition "A or B" requires (at least) two

classifiers, one with a condition A and one with a condition B. More complex conditions

3 1

such a "A c B" could require indefinitely many classifiers depending on the ranges of A

and B.

Genetic programming (GP) represents its program with Lisp s-expressions,

which can easily express virtually anything so long as a suitable set of functions are

provided. Wilson (1994) imagined s-class@ers, classifiers whose conditions are s-

expressions. Lanzi and Pemcci have tested XCS with s-classifiers and achieved good

results for both the 6-multiplexer and "woods" problems. The flexibiiity of the s-

classifier encoding ensures it is always possible to represent a categoricai regularity with

a single classifier.

Wilson (1999) envisions even more radical experirnents, where a classifier's

predicted payoff is changed from a constant to value that varies with the input. The

condition, rather than king a predicate testing for a match, has become a payoff-

predicting function. The solution's population size could be very small - even a single

classifier. This is similar to the goal of GP, which is to evolve a single program, but

approached dong a different path.

Because s-classifiers have variable length, missing input variables are tceated as

"don't cares." Variable length conditions can also be represented as an unordered

collection of <variable, value> pairs, just as with Goldberg et al.'s "messy G A . Lanzi

developed a "messy XCS" and successfully achieved optimal performance on the test

problems. The evolved population benefits from increased portability; it can be instalied

in a system with extra sensors and through mutation, the population will evolve to use

them.

5. Previous Research on Hierarchical Classifier Systems

Hieratchical Chunking Algorithm

Weiss (1994) wanted to develop a system that used a local leacning scheme to

achieve performance comparable ta that of a global leaming scheme, in his case, the

local method examined was the traditional bucket brigade aigorithm (BBA), and the

global method was the profit sharing plan (PSP) devised by Grefenstette (1988).

The PSP works as follows: I n s t d of assigning credit after every execution

cycle, as with the BBA, classifiers are reinforced upon the completion of an episode, the

interval between extemal rewards. The system must remember al1 classifiers that were

active during an episode; when a reward is received, every one of these classifiers is

diiectly reinforced with the reward. This is in obvious contrast to the BBA, where many

repetitions of a sequence are necessary for an extemal reward to reach the earliest

classifiers.

Grefenstette (1988) used a finite state world (FSW) exarnple to demonstrate the

limitations of the BBA:

Consider the example in Figure 1 Figure 1 here], which shows ten states,

including the initial States A and B and the final states H, 1, and J: The extemai

rewards generated in states H, 1, and J are 1000,0, and 300, respectively. [. . .]
Each exarnple begins in a randomiy selected initiai state and ends when a finai

state is reached. The key fa im of this example is that some d e (%) cm fire in

33

two possible States, one firing leading to high reward and the other leading to low

reward (p. 233).

P.,

Figure 2 Finite Stafe Worki example (Grefensîetîe, 1988, p. 233)

Using the PSP, the system was able to l e m that Rs is better than Fb in state D; using the

BBA, it could not.

The PSP is relatively simple for a global algorithm, but it requires significantiy

more memory than the BBA, and reinforcement is done in "batches," instead of

incrementally, which couid be problematic in a real-the system. Also, the PSP may

permit the growth of 'parasitic" classifiers that serve no useful function, but are

reinforced as well as useful cules. And it is difficult to apply the PSP to environments

where episodes are not well defined.

Weiss's attempt to combine the best features of local and global leaming used the

idea of chunking, a concept first used in psychological models of memory. Two pieces of

knowledge that are highly correlated may be "chunked," allowing them to be treated as a

34

single memory unit. Chunks may in tum becorne components of larger chunks, so the

chunking pmcess is hierarchical. Appropriately, Weiss's application of chunking to

classifier systems is called the hierarchical chunking algorithm (HCA). Cunentiy, the

HCA is applicable only to reactive CSs; that is, systems where only a single winning

classifier is selected each cycle, and there are no interna1 messages.

The HCA is distinguished by its simplicity. If the strength of the winning

classifier is significantiy higher thm the average strength of its cornpetitors, a new

classifier is created that "chunks" the current winner with the winner from the previous

cycle. The new classifier has the same condition as the previous winner (since the action

sequence begins at the previous state), and its action is formed by appending the action of

the current winner to that of the previous winner. Thus, if the previous winner is Ci/Al

and the current winner is C2/A2, where Ci/Ai denotes a conditioa/action pair, the resulting

chunk is CL/AIA2. Conversely, an extended classifier is deleted if its strength is

signifîcantly worse than the average.

A classifier's length equals the number of actions in its action part. A classifier

with a length of 1 is an elementury class@er (al1 rules in a standard CS are elementary

classifiers); a classif?ers with a length greater than one is an extended classifier. The

performance cycle is modified in two ways to accommodate the existence of extended

classifiers: (1) the competition is hierarchical; among the satisfied classifiers, only the

highest-level ones are ailowed to compte; (2) when a classilier's action part (which may

include multiple actions) is executed, each action is processed immediately by the output

35

interface, allowing the system to change the environment before the next action in the

sequence is executed.

The test problem used for an expimental cornparison of the HCA with the BBA

and PSP was a navigation task. The CS navigated 10 x 7 grid with obstacles, learning

over time how to reach a fixed location (the goal state) from each possible location. The

implementation of the PSP was limitecl so as to reinforce only the last four winning

classifiers, instead of every winning classifier in an episode. instead of the traditional

ternary encading for classifier conditions, a decimal encoding was used, thus avoiding the

problems of using a discontinuous encoding to mode1 a continuous environment.

The HCA performed significantly better than the BBA, though not as weU as the

PSP. It was proven that, for only a small increase in computational complexity, a local

leaming algorithm can achieve performance comparable to that of a global algorithm.

However, the HCA has some limitations- It is applicable only to reactive CSs

which lack the advantages of internai message passing and parailelism. For an action

sequence to be represented compactly, there must be an associated "chunk" or extended

classifier; if there are many sequences to be learned, much memory is needed to represent

each one as a single unit.

An extended classifier essentidy "looks for" an initial sensory input, and then

executes a sequence of actions. This technique is fine for a static environment, but is less

appropriate for domains whece the CS'S activity couid be intemtpted at any moment. It is

also problematic if the same sensory input applies to different situations, such that an

36

action sequence that is appropriate for one case is inappropriate for another; this is known

as the aliasing problem, and it is one of the banes of local reinforcement leaming.

But the HCA neatly mitigates much of the long chain problem. If an extended

action sequence is represented by a single d e , or a small number of d e s , the chains are

relatively short. Shorter chains are more quickly reinforced, and are less likely to be

disrupted by d e discovery.

Anticipatory Clossÿier Systems

In psychology, classical reinforcement leaming theory posits that stimulus-

response (S-R) associations are the fundamental units of leaming; if iui organism

executes a response R in the presence of a stimulus S, and receives an environmentai

reward after doing so, that S-R association is reinforced. Tolman, however, detennined

that stimulus-response-stimulus (S-R-S) units were the tme basis of learning, a theory

supported by his experiments with rats navigating ri T-maze. Seward later perfonned

similar experiments that confirmecl Tolmm's theory (Stolzmann, 1996).

More recently, Hoffman developed a variant of Tolman's theory, the theory of

anticipatory behavioural control (Stolzmann, 1996). He replaced the concept of an S-R-

S unit with that of an S-R-C unit, where C represents the behavioural consequences

anticipated by the organism if it executes R in the presence of S. With such units, it is

possible for an organism to leam an internai mode1 of its environment even if there is no

external reward. When the organism reacts to a stimulus, the anticipated consequence

Cm[is compared to the actual consequence Cd. If they are the same, the unit is

reinforced; otherwise S is differentiated, creating a new S-R-C unit.

37

Hoffman preferred to implement bis theory with recurrent neural networks. A

problem with neural networks, however, is that they mode1 only input-output behaviour;

the interna1 steps by which intentional Iearning takes place are not explicitly represented.

Since anticipatory behavioud control is an extension of dassicai reinforcement leaming,

on which CSs are based, Stolzmann (19%) decided that an anticipatory classifer system

(ACS) would be an ideal f o d z a t i o n of Hofian's iheory; in a CS, rules are explicitly

represented, as are the operations that modiQ them.

Whereas Hohan's theory defines two kinds of leaming - (1) differentiation of

the starting situation (condition) and (2) reinforcement of the rule - Stolunann's

implementation also allows (3) differentiation of the anticipated consequences and (4)

diminishing the rule-strength. Unlike a standard CS, ACS does not use a GA for rule

discovery. Instead, credit assignment and rule discovery are integrated, and the system

uses the immediate environment input to compare the anticipated mnsequence with the

actual consequence; fdseIy anticipated properties are noted, and a new, correct classifier

is created. Thus, ACS uses a form of intentional nile discovery.

Each ACS classifier has three parts (Stolmann, 1996):

(1) A condition S that defines an environmental situation; it is defineà as an L-character

string, wbere each chamter is an element of (O, 1, #) and L is the number of

detectors. In other words, it is identical to the condition-part of a standard classifier.

(2) An response R, representing that classifier's action. It is an M-character string, whete

each character is an element of {O, 1, #} and M is the number of effectors. Most CSs

38

do not allow actions to contain Ws; in ACS, a P at R's F?' position means that the

response does not change the z* effector.

(3) A consequence C that represents the attributes of the anticipated environmental state.

Its representation is identical to that of S; a W' at f' position means that the classifier

beiieves R doesnt change the enviromentai attnbute perceived by the fhdetector.

The actual anticipated enviconmental state mZm' is a function of both the current

environmental state mima' and the anticipated consequence Cm': rnZN =

passthrough(mid, Cm'), where the passthrough func tion is defined as

In other words, the Ws in CM' are replaced with the bits at the corresponding positions

d in ml .

Thus, each (S, R, C) classifier may be interpreted as: if the current environment state

satisfies S, send R to the effectors, make a new message from C and the current

environmental state, and add this message to the message List.

The algorithm for a behmioural act, or major cycle, is as follows:

(1) The detectors add the cumnt environmentai state mid to the message iist.

(2) Find the set of al1 classifiers whose S-part matches mld.

(3) Run a strength-based cornpetition to determine which classifier in the match set will

become active.

(4) The winning classifier q sends its reaction Rj to the effectors, causing the CS to

execute a motor action.

39
(5) A new message is formed hom the winner's anticipated consequence Ci and mlm'l

and is added to the k t .

(6) The environment's new state mzd is added to the tist.

(7) The system assumes that rnzd is a direct nsult of executing Rj and compares mzd

with mza"', and applies the equivalent of either credit assignment or rule discovery.

Then the next behavioural act begins, with rnzd nplacing mim1.

Each classifier c has two de-sûengths: (1) sCa"'(t), the accuracy of the

anticipation, and (2) s,(t), the predicted environmental reward, equivalent io the strength

attribute of a standard classifier. The parameter t is the number of behavioural acts

executed by the system.

When ACS received an external reward Nt), it adjusts the predicted payoff for aiî

match set classifiers that correctly predicted the next environmental state:

where breal is the risk factor, a small constant, and spec(Pt) is the specificiry, the number

of non-Wsymbols in en'.

The strength-based cornpetition is similar to that for a standard CS. Each

classifier 6 in the match set makes a bid, and the winning classifier is chosen using

roulette wheel selection. The bid is a function of both of ci's mle-strengths and its

specificity :

b, (t) = sc (t) * s? (t) * 2*"'

40

Since ai i new classifiers are created as more specific versions of their inaccurate parents

it is important for specificity to be a component of the bid to ensure that these exception

rules ovenide th& more generai ancestors. Thus, ACS encourages the formation of

default hierarc hies.

Let cj = (Sj, Rj, CjM') be the winning classifier. The rule discovery component of

ACS, and the updating of the winner's accuracy, is handled by the following cases:

Case 1: The anticipated state m2Mt matches the actual state mZd. No new classifier is

created.

Case 1.1: Ri changes the cumnt state (Le., mzrm does not match mld).

s;(t + 1) = (1 - bm) * sr (t) + bm , where bm is a small constant

Case 1.2: The envimnrnental state has not changed (rnzML = mid). The winner's

accuracy-based strength is diminished, since its reaction was useless.

s:(t +1) = (1-bar)*sr(r)

if s" < 6,,. c, is deleted.

Case 2: mzWL does not match

Case 2.1: Al1 the components of Si for which m2" does not match mtmd are #S.

The rule is not specific enough, so a new classifier is created that is different from

Cj only in the non-matching components of Si and cirnt; for these compoaents, S,

= mlML (the classiner*~ assumptions are conected) and CnCWmt = m p (the

classifier's expectations are corrected).

Case 23: ci's assumptions and expectations are not correctable; its strength is

decreased as it is for Case 1.2. No new classifier is created.

41

Stolniam calls ACS a "quasi-reactive" CS. It is reactive because of the "winner-

takes-alln competition and the absence of intemal messages. But it is possible for ACS to

use its intenial mode1 of the environment to build cbains of classiners. If a classifier's

anticipation of the khavioural consquences of its activation is certain (i.e., it is accurate;

scm'(r) 2 1 - whece is a smail constant), then the interna1 representation of the

previous environmentai state can be replaced by the anticipated consequence. This can

Save time, since the CS does not need to wait for the detectors to send the next message.

The bid competition is then based on the anticipated environmental state. When the last

classifier receives an extemal reward, ail classifiers in the chah get the reward, as per

Grefenstette's profit-sharing plan (PSP) (1988).

An ACS cm dso Save time by building behavioural sequences. if&, Ri, ciM'),

(S2, R2, CZm) is a chah of two classifiers, this behaviour can be encoded in a single new

classifier: (Si, (Ri, R*), Pussthroush(~~) clMf)). The compound reaction (RI, R2) tells

the system to first send R1, and next Rz, to the effectors. The consequence of the new

classifier must be passthruugh(C~""', CzM') rather than C2iL"t so that the specific

anticipations of Ci"' are retained. A behavioud sequence can have more han two

reactions, since it can be formeci h m classifiers that already contain behaviourd

sequences.

Finally, an ACS can Save time by shortening behavioural sequences. if the two

reactions Ri and R ~ + I are independent (Le., Ri matches Rkr), passthrough(R, Ri+,) =

passthruugh(l&, Ri,) my be substituted for (Ri, Ri+& However, for this to work, the

order in wfiich Ri Ri+i are executed should not matter. For example, to safely change

42
lanes, the driver must check the other lane for traffc and then move to that lane if it's

clear. Although the two reactions are independent, it would be unwise to check for trafnc

while changing lanes.

Stolzmann used ACS to simulate Seward's experiments with rats in a T-maze, just

as Rio10 had done with CFSC2, a CS capable of lookahead planning (Riolo, 1991). Rio10

sumrnarizes the results of the real wodd experiments as foilows:

In a pre-reward phase, satiated rats are allowed a number of trials in the maze

shown in Figure 1 Figure 2 here], where a trial consists of king placed in the

stact box S, making a choice to go left or right, and then king removed from one

of the end boxes, F or E, depending on the choice made. (there is no food in

either end box). Next the rats are not fed for 24 hours, placed directly in one of

the end boxes with food in it, and allowed to eat for one minute. Then the rat is

placed in box S and the direction the rat chooses on thefirst pst-eating mil is

recorded, i.e., toward the box with the food or not. Typical results are: (1) Rats

not given pre-reward trials but with identical end boxes again go toward the box

with food 50% of the time, as expected if they guess with no information; (2) Rats

allowed pre-reward trials but with identical end boxes again go toward the box

with the food 50% of the time; (3) But rats allowed pre-reward trials with boxes

that are easily distinguishable for a rat (e-g., one has white walls and the other has

dark), choose the path to the box with food 90% of the time, even though that

choice of tum-left (or turn-rïght) has never kd to a food reward! wolo, 1991, p.

3 171

43

Seward's experiment pmved that rats dont l e m through the reinforcement of S-R units,

because they learned an intemal map of the maze in the absence of any extemal reward.

Figure 3: T-maze used in Seward's experimenîs (Stoizma~, 19%, p. 11)

To permit the ACS to detect the required environmenial attributes, it was given

five effectors:

dl: 1s it possible to go forward? (O or 1)

d2: 1s it possible to go left? (O or 1)

d3: 1s it possible to go right? (O or 1)

4: 1s it the black box, the white box, or neither? (1,2 or O)

d5: 1s there food? (O or 1)

The ACS hod one effector capable of several actions: move (Qonvard, move (l)eft, move

(r)ight, and (w)ait. It was aiiowed to build behavioural sequences with a maximum of

two reactions. Neither chah-building nor behavioural sequence shortening were

permitted.

Each experiment began with a pre-reward phase consisting of 200 trials in a T-

maze without food. The initiai nile population consisted of one maximally general

classifier per reaction: (#####, f, #####), (####, 1, #####),(#####, r, #####),(#####, w,

#####). During this phase, the ACS would leam an interna1 modei of the T-maze, and

then wodd usuaiiy buiid behavioutal sequences that would allow it to go directiy h m S

44

to F or h m S to E. Next, to sirnulate feeding the rat in box F, classifiers that anticipated

the attributes of F were reinforced.

When Seward tested 32 rats in a maze with distinguishable end boxes, four chose

the wrong direction. The simulation results were similar, except that wrong decisions

were slightly more frequent. This occurred because if ACS chose the wrong direction

(right) the first time, it would calculate a better (more accurate) classifier than the one

never used for going left. Such premature convergence illustrates the explore/exploit

dilemma (Wilson, 1996); the system may chwse to usuaily exploit an existing accurate

path instead of exploring other possibilities. This tendency is controlled by bM' and

sM'(0) .
When the end boxes were not distinguishable, the simulation results were similar

to their real world counterparts: the wrong direction was chosen approxùnately 50% of

the time. The expenments with no pre-reward phase were not simulated; it is obvious

that an ACS with no experience has a 50% chance of chwsing either direction.

Like Weiss (1994), Stolzmann presented his CS implementation as a solution to the

locali tylglobality dilemma.

Weiss's HCA provides one solution to the locality/globality dilemma for reactive

CSs. An ACS that uses behavioural sequences but not chahs also qualifies as a reactive

CS, and is capable of learning the correct behaviour for Grefenstette's environment

(Figure 1). As the ACS encounters cases where it fails to correctly anticipate the

consequences for a reaction, a new classiner is created that accurately anticipates the

consequences. Kall the FSW's States are visited at least once, ai l of the anticipations will

45

be accurate. As the anticipatory rule-strengths of these classifiers are reinforced, the

rules become certain; this allows the system to build behavioural sequences. if the

maximum sequence length is at least two, the ACS will l e m how to travel to 1 or J when

the current state is D; since the reward for reaching J is 300 versus O for reaching 1, the

classifier that moves the system fiom D to J wiii have the higher reward strength and wiU

tend to win the competition. ACS's behavioural sequences are analogous to Weiss's

"chunks."

HCS: Keeping it Within the Famikj

A genetic algorithm may seem like the perfect solution for discovering new rules,

but it also poses a serious problem: the GA tends to disrupt the cooperative stnictures the

CS needs to lem. This dilemma has two aspects: (1) the nile clustenng problem, and (2)

the rule association problem (Shu 199 1).

Rule clustering refers tu the system's need to l e m a group of complementary

sub-solutions, instead of optirnizing for a single, best solution. A behaviour that is

optimal under one set of circumstances may be whoiiy inappropriate under another.

There is a danger that the GA may favour the "best d e " (the one with the highest

strength), and aüow its pattern to dominate the population. This is akin to the problem of

premature convergence with GAs used for function optimization.

To solve a problem of any significant complexity, classifiers need to coopecate

with one another. These cooperative structures include default hierarchies and classifier

chahs. Unfominately, the GA is obiivious to such bonds, and tends to disrupt them; this

is the d e association pmblem. The GA seeks only to propagate the patterns of rules

46

with above-average fitness. Part of the problem is that a classitïer's fitness traditionally

equals its predicted payoff (strength); unlike the accucacy-based fitness of XCS.

Here are a couple of examples showing why the GA is likely to destroy

cooperative structures. The bucket brigade algorithm causes classifiers at the end of a

chah (close to where the goal is actually attained) to have a higher strength than those at

the start of the chain. As a result, the GA tends to select the final classifiers in the chah

for reproduction, and delete the important stage-setting classifiers.

A sirnilar problem exists for default hierarchies. Classifiers representing

exceptional cases should ovemde the decisions of more general classifiers when

appropriate. To this end, the bidding competition is usually biased towards more specific

classifiers. Unfortunately, the system cannot distinguish between a true exception and a

mle that is merely a less general version of an existing classifier. The result: the

"generals" are starved, and are deleted by the GA.

Shu and Shaeffer (1991) decided that the best way to preserve important

relationships among classifiers was to make these relationships explicit. Classifiers are

grouped as families according to relations; these relations could be defined as default

hierarchies or classifier chains, for example.

The performance and genetic algorithms were modified to take these groupings

into account. A classifier's bid depends not only on its own strength, but also that of its

family; a family's strength is the sum of the strengths of its members.

Because it is undesicable for the GA to mate competition amongst a cluster of

cooperating classifiers, the d e discovecy subsystem was modified so that the probability

47

of a genetic operation between families is much higher than that of one between

classitiers within a famiiy. Inter-family mssover cm fake one of two fonns: (1) a

tandom nuniber of classifiers from one family are swapped with those of another; (2) a

crossover point is randomly chosen, and every classifier within a family swaps the

segment after that point with the cotresponding classifier in another fmily. Deletion

always occurs at the family level.

Shu and Shaeffer cakd their system HCS, because it was a hierarchically

stnictured classifier system. The m ~ c a t i o n s were intended to d u c e both the mle

clustering and nile association problems. One form of the mie clustering problem occurs

when two classifiers belonging to a solution set are mssed, producing offspring that do

not belong to the solution set. Because of the specified relation, however, it is likely that

the classifiers will remain in the same family; since mating rarely occurs between

classifiers within the same famiIy, the risk of incompatible offspnng is low. There is also

less chance of prernature convergence, which is caused when a "super-classifier" in the

initial population quickly crowds out patterns belonging to other solution sets wirh its

offspring. The same situation in an HCS would require a "super-family" in the initial

population - a much mer event.

The d e association problem is ddressed by defining relations that explicitly

gmup the classifiers into families containhg chains or default hierarchies. Then, it is Iess

probable that the GA wiU disrupt a mperative structure, since intra-family cornpetition

is rare. In the case of &fa& hierarchies, the problem of distinguishing me exception

classifiers h m classiners that are already covered by more generai ones disappars; only

48

true exception classifiers will belong to the family for a given hierarchy. This makes it

possible to have a bidding scheme that favours more specific classifiers only lmally

within the family. This way, the generai classifiers arent starved by more specific

variants of the same pattern.

The HCS was tested with a suite of boolean hnctions. AU families within a given

population had the same size. Curiously, no relation was specified; the classifiers were

grouped randomly. The experirnents used a variety of population and family sizes.

It was found that, when the population size was small relative to the problem

space, larger family sizes tended to improve performance; the families allowed multiple

sub-solutions to develop without interfering with one another. For the same reason, the

HCS was more stable overail than a traditional CS.

If the famiIy size was t w large, however, performance could &grade, because the

population's classifiers would be bound within a relatively small number of families.

Also, larger families imply a greater risk of parasitic classifiers, which aise when

ineffective classifiers survive because they belong to a strong family.

The HCS offers a middle ground between the Michigan and Pittsburgh

approaches (Shu 199 1). Like the Pitt method, the HCS encourages and protects

cooperating classifier structures, but is less computationaliy cornplex, both in time and

space. Classifiers are grouped into smaü structures, not complete programs, and credit

assignment is based on individual classifiers as in the Michigan approach.

As describeci in the section about the temporal credit allocation problem, the

bucket brigade algorithm @BA) is poor at reinforcing long action sequences. Holland

thought "bridging classiners" could arise naturally, and would represent behavioural

modules (goals) w hile feeding rewards directly to stage-setting classifiers (Wilson, 1987).

Wilson was not so optimistic. He proposed an alternative soiution to the long

chain problem: Decompose action sequences into modules at different levels of

abstraction. The bucket brigade algoriihm could then be modified so that each sequence

at each level of abstraction would form a separate reinforcement chain. This way, long

chains would be replaced with multiple short chains (Wilson, 1987). The message list,

which is homogeneous in a standard CS, becomes hietarchical, with only one message

allowed pet level at a time (ibis restriction was included as a simplification).

Moditications to the performance and credit assigmnent algorithm are required to

implement this proposal. Wilson's hierarchical credit allocation (HCA) algorithm is

summarized as follows (Wilson, 1987):

At any moment, the system's phase is either "ascent" or "descent". Duhg the

"descent" phase, the bidding cornpetition is restricted to classifiers matching both the

curent environmental input and the last (lowest-level) message posted to the List. The

winner's strength is reduced by its bid, and then it posts its message beIow the towest-

level message. The process is repeated until the winning classifier's message is an

extemal action. In this case, the message is executed through the output interface, and is

not posted to the list. Then, the system's phase becomes "ascent."

50
While ascending, the match set includes classitiers that match both the cunent

environmental input and any message in the List. The winner has its strength reduced and

message posted as during descent, with an important merence: the winner pays its bid to

the classitiers that posted the messages below the one it matched, and those messages are

removed from the list.

if payoff is received from the environment, it is paid to each of the classifiers that

posted messages curently on the List, as well as to the classifier whose action was just

executed, al1 messages are erased, and the phase becomes "descent."

Wilson's detailed description of his hierarchicai performance and reinforcement

algorithm is as foiiows (Wilson, 1987):

Obtain the current message E from the environmentai input interface.

if phase = "descent", form the match set [Ml of al1 classifiers which match both E

and the lowest level message on the message list, else

If phase = "ascent", fom the match set of al1 classifiers which match both E

and any message on the message List.

Compute the bid B of each classifier C in FZj.

Select a classifier C* from Fr].

Reduce C*'s sangth by the amount of its bid;

then

if phase = "ascent", pay an amount equai to B to each of the classifiers (if any)

which sent messages Iower on the list than the message matched by C*, erase those

5 1

lower messages, and pay an amount B to the classifier whose action was canied out

on the previous the-step.

If C*'s message is an extemal action, set phase = LLascent",

Else post the message on the next lower empty level of the message list and set

phase = "descent".

If the message of step 6 was an action, take it.

if payoff R is received from the environment, pay arnounts R to each of the

classifiers who sent messages now on the list, erase al1 messages, pay an amount R

to the classifier whose action was just taken, and set phase = "descent".

In essence, the system behaves as îhough it is pmgressively dniiing down fiom high-level

goals to lower-level goals, and finally to the motor actions that achieve those goals.

Figure 4 provides an example of how the algorithm solves a problem. At to, the

phase is "descent," the environmentai state is EL, and the message Ml is added to an

empty message List, which is assumed to tepcesent an internai goal such as obtaining

fd. At t ~ , the environmental state is unchangai, so the match set includes classifiers

matching both El and Ml. The winning classifier's message, M2, is then posted below

Mi. At t2, the winner is chosen ftom classifiers rnatching El and Mz, and its message M3

is appended to the list. At t4, the cornpetition includes classifiers matching El and M3.

This tirne, the wimer is an extemal action rathet than an internai message, and the action

is executed. The environmental state changed to E2 and the system's phase becomes

"ascent." At ts, the match set includes ail classifiers matching E2 and any message in the

List. Once again, the wimer is an extemal action, which is executed, changing the

52

environmental state to E3. Because of the extemai action, the phase is still "ascent," and

the match set at ts includes ai i classifiers matching E3 and any message on the list. The

winner's message & is internai; its condition matched MJ, so M3 is replaced by Ni and

the phase becornes "descent." One could Say that the behavioural module represented by

M3 has been completed.

Eventuaüy, at tls, the system executes an action that is rewarded by the

environment. The classifiers that posted messages MI and Ms (currently on the List)

receive the full reward R, and so does the classifier that executed the last action. The

arrows in the diagram indicate the flow of reinforcement signais; e.g., when is posted,

its classifier pays its bid to the classifiers that posted Mg, as weii as to the classifier whose

action was just executed (because these rules were responsible for activating fi's

classifier). The hierarchicai distribution of payoffs rneans that the average payment

sequence length is O(log n) rather than O@), where n is the number of decision steps.

Environment E:
1 1 1 1 2 3 3 4 5 5 8 7 8 8 9 t O l l

Figure 4: Example of Hierarcbical M a m a n c e and Reinforcement Algorithm (Wilson, 1 9 0

54

MonaLysa: A MdimvalioioaUy Autonomuus AnÙna!

Domart and Meyer (1994, 19%) wanted to design a conml architecture that was

capable of learaing situated plans, Traditional planning algorithms construct a complete,

static, up-front plan that is then used to control a robot's behaviour. ûonnart and Meyer,

on the other hand, believed plans should be more dynamic: the robot acts reactiveiy at

first, and pians are subsequencly abstracted €rom its experience; instead of plans that are

fked in advance and slavishly followeâ, they are built incrementally, may be adapted at

any time, and rnay be overriden in response to the robot's immediiite sensory information.

The resulting architecture was named MonaLysa, an amusingly awkward acronym

that stands for MûtivatioNalLY AutonomouS Anirnat Though it is sufficiently flexible

to be adapted to any domain, the implementation was built to sdve navigational

problems. The virtual animat has proximate sensors that allow it to sense the presence or

absence of an obstacle immediately in front, 90' to its right, or 90" to its left. It can

estimate the coordinates of its current position and the direction of the goal to be reached.

The animat has ihree actions: move forwatd, move 90" to the right, and move 90" to the

left, where the size of a move equals the animat's length.

MonaLysa's architecture consists of five modules, shown in Figure 5: (1) the

reactive module, (2) the planning module, (3) the context manager, (4) the auto-analysis

module, and (5) the internai reinforcement module. The cooperation of these modules

enable the animat IO reactively escape any obstacle by skirting it, and to analyze its path

aftetwards to discover a plan that will enable it to avoid the obstacle h m a distance in

the future.

Fïgure 5: The MonaLysa architecture @on- Pad Meyer, 1996, p. 2).

The reactive module decides which motor action to perform at every moment. [t

contains rules that cespond to a combination of the current environment input and the

animat's own interna1 context. Because the implementation was designed to solve

navigational tasks, the intemal context is the direction of the current goal, as specified by

the context manager. Each reactive d e has the form:

If csensory information> and <direction of current goab Then <action>

A coocreta example of swh a rule R would be 100 1001 01, where "100" indicam mat

there is an obstacle in fiont of the animat but both sides are clear ("0"). "001"

indicates that the c m n t goal is 45' to the right. The action, "Ol", means "move 90' to

the right."

56

For each pair of conditions, aensory information> and <direction of current

goab, there are three des , one for each action. From the matching d e s , a winner is

chosen probabilisticaliy based on strength. When the system is initialized, ali 192

possible rules (8*8*3) are created in advance, and the number never varies. Donnart and

Meyer (1996) mention that a genetic algorithm has been used to discover more general

rules.

The purpose of the planning module is to decompose tasks into subtasks based on

the current seosory input. Like the reactive module, it contains d e s . Each rule has the

forrn:

If eçensoxy information> and ecurrent taskr Then csubtaskr

where Csensory information> includes information from the proximate sensors, the

animat's coordinates, and its current orientation, and ecurrent task> is the topmost iask

in the context manager's pile. if the nile is ûiggered, <subtask> is added to the context

manager's pile, on top of Ccurrent task>. A task is represented as a pair of coordinates

that speciS, the initial and final (goal) positions. For example, the planning nile P:

5J 1 O01 1 ûûû 1 3,O:3 J 5,1;5,2 means "if the current position is (5,1), the animst is

headed north-east ("00lW), there are no obstacles ("OOO), and the current task is moving

to (3'5) h m (3.0)' then the new sub-goal is to move fiom (5.1) to (5,2)."

Each planning d e has two strengths, a local strength that determines its

probability of king higgered when its condition is satisfied, and a global strength that

determines its probabiiity of king deleted should the population exceed its maximum

size. The planning module is initially empty; it acquires d e s as they are genecated by

the auto-analysis module.

57

The context manager is responsible for supplying an interna1 context to the other

modules. For the reactive module, this is the direction of the current goal; for the other

modules, it is the current task. The context manager contains a pile of tasks, with the

current task at the top. New tasks are added by the auto-analysis module and the

planning module. If the task is posted by the planning module, the corresponding goal is

described by its final courdinates. The auto-andysis module posts a "skirting" task when

an obstacle is detected; the corresponding goal is the projection of the animat's current

position ont0 the line that must be crossed to skirt the obstacle (the projection, and

corresponding direction, varies as the animat moves).

The auto-analysis moduie analyzes the animat's current behaviour to alter the

current task and to create planning mies that will improve future behaviour. It is

responsible for detecting obstacles, triggering skirting behaviour, and discovering the

salient States in the environment through which the animat can travel to avoid obstacles

efficiently in the future.

Hem, an obstacle is defined as "any material element that prevents execution of

the best action the robot can perfom in order CO move in the direction of its current goal"

(Donnart & Meyer, 1996, p. 3). If the animat detects a material element, it locates the

best reactive d e that could be activated for the current goal direction if it did not detect

any materid elements. If this nile's move cannot be executed because of the material

element, the element qualifies as an obstacle, and a skirting task is sent to the context

manager. This process is repeated for the second best nile, etc. Regardless of whether

the material element is an obstacle, the animat then chooses a reactive rule that is

58

satisfied by the actuai sensory input and current goai direction (of course, if an obstacle

was detected, and a skirting task was psted, the goal wiil have changed). if a materiai

element prevents the actual action, the nile's strength is set to zero, and candidates ftom

the other matching rules are selected until one with a legal action is found. (In general, a

nile with an illegai action has its strength reduced by a fraction; for environments with

noisy inputs, this fraction should be less than 1 (Dounart, personai communication).

A skirting subtask is added to the top of the context manager's pile whenever an

obstacle is detected. The subtask specifies the Line that the animat must cross to

circumvent an obstacle. It has the form <coordinates ofthe place><direction vector of

the straight line to be crossed>. If a new obstacle is detected, a new skirting subtask is

stacked on top of the current one. In the pnicess of trying to achieve the cunent goal, the

animat may achieve a task lower in the pile; in this case, aH higher tasks are aiso erased.

By triggering reactive niles and generating skirting subtasks, the animat is

guaranteed to eventually find a path that leads to its goal. This path may be relatively

inefficient, however. In order to extract an efficient plan from its trajectory, the auto-

analysis module anaiyzes the path taken and extracts its salient states (landmarks, in the

case of a navigationai application). The system has a domain-specific heuristic function

that is used to evaluûte its intenral satisfaction ((the degree to which a rule brought the

animat closer to or further h m its goal) after each move. The system calculates the

ciifference between the internai satisfactions of successive actions, and identifies a

sati@action state wherever this gradient is positive. Then, the process is applied

recursively to the imaginary path formed by these satisfaction states until no more strites

59

can be eliminated. The salien? states are the final set of satisfaction states, and are used

to generate planning rules that wiii allow the animat to skirt obstacles more efficiently in

the future.

Finally, there is the intemal reinforcement module (perhaps its original name, "the

intemal reûibution module," [Donnart & Meyer, 19941 was deemed too ruthless). Its

purpose is to modify the strengths of the rules in the reactive and planning modules. A

reactive rule is reidorced whenever it is triggered; the value of the reinforcement

depends on the internal satisfaction derived fiom executing the rule's action:

S(R),+, = (1-a) *SIR), t a * satisf
dist - goal(u) - dist - goal(u + 1) + max- dist

satisf =
max- dist * 2

where S(R), is the strength of d e R after u triggers, distjoal(u) is the estimated distance

to the current goal (the Euclidean distance, for the test implementation), and a and

mar_dist are constants. ifmctlcmctlcdist is set to the maximum distance by which a move cm

bring the animat closer to or further h m its goal, satisfwill always be between O and 1.

Rules in the planning module have two strengths, one local and the other global.

The local strength estimates the usefulness of decomposing a ta& into the proposed

subtask. Even if this decomposition is useful, however, the mle is not valuable if the task

rarely occurs; the global strength is used to suppress d e s that are unlikely to be used.

The idea behind the calculation of the local strength is straightforward: the shorter

the path to the goal when the planning nile is applied versus when it is not, the higher the

nile's strength should be. To calculate the I d strength of d e PI, LS(PI), that

60
decomposes a task Tinto a subtask TI, one must first calculate the average cost of all

paths tested by the animat that achieve T without decomposition, ACIT):

where u is the nwnber of tirnes T was achieved without using any planning rules, and C is

the cost (number of moves) of the u+lth path. Then, calculate the average cost of aü

paths that achieve T that use the rule P l :

where u is the number of times task T was achieved using planning mle P l , and C is

again the cost of the u+lth path. It may be observed that the average costs are computed

incrementally. These updates occur when task T is achieved; the cost C of the path is

used to "reinforce" the average costs of al1 the planning rules that decomposed T; this

implies the sequence of planning niles must be memorized, and that the update is a form

of profit sharing algorithm (Grefenstette, 1988). Finally, the local strength of Pl is

computed.

On each time step when the current task is one that was generated by the planning

module, the planning module decides whether to decompose the task into a subtask by

triggering a matching nile. The decision is a probabilistic choice based on the local

6 1

strengths of the eligible d e s (the strength for the "no decomposition" option is always

l), weighted by the exploration-exploitation coefficient.

The global strength of Pl is calculated as foliows: GS(P1) = LS(P1) * GS(T).

GS(T) is the average of the global strengths of al1 niles P that could p s t Ton the context

manager's pile:

GS(T),,, = (1-a)*GS(T), +a *GS(P),,,

where u is the number of times task T was achieved, and v is the number of times rule P

was triggered.

The test environment for the simulation consisted of a square. The anirnat was to

l e m how to reach a goal position from a start position. The achievement of its goal

marked the end of an iteration. The environment could contain any number of obstacles;

e.g., a barrier, a U-shaped dead-end, or a double-spirai. Each expriment had two phases:

(1) reactive mode, where the planning d e s were learned but not used; and (2) planning

mode, where the planning niles were ailowed to generate sub-goals.

For each environment (e.g., no obstacles, barrier, dead-end, double-spiral),

MonaLysa quickly lemed the reactive niles need to skirt any obstacles; performance was

good within 200 iterations, and typicaily far fewer. When the environment was cbmged

every 50 iterations (without resetting the system's des), the animat quickiy adapted,

proving that the reactive rules leamed in one environment were sufnciently useful in

others.

62

Similar tests against the animat's planning rules proved that it was capable of

remembenng multiple plans. If the animat learned to skirt a dead end efficiently by

travelling on the left, and an obstacle was added to the left side, it quickly leamed that it

was more efficient to favow a path to the nght (which had apparently been leamed

previously). If yet another obstacle was added to the cight side, the animat would soon

return to travelling dong the left path.

MonaLysa was also tested in the "real world," as the controller for a Khepera

robot. The tum angle was changed from 90" to 45" to compensate for the unreliable

sensors. The robot could stop and choose another action before it had completed a 5.5

cm "step" in response to changed sensor information. The results were sirnilar to those

for the virtuai simulation,

In summary, the MonaLysa is capable of rapidly learning how to efficiently

navigate araund complex obstacles. It avoids the temporal credit assignment problem for

both reactive and planning niles. The reactive niles rite reinforced immediately after they

are triggeted, thanks to the system's intemal satisfaction function. The planning niles

benefit ftom the hiecarchicai structure of the tasks and subtasks they implement; when a

task is achieved, the reward is used to reinforce every nile that contributed to the result,

either directiy to the task or to one of the subtasks. This approach of mernorizhg a

behavioural sequence and directly applying a ceward to every member is akin to

Grefenstette's (1988) profit-sharing plan. For this reason, Domart and Meyer (1996) cal1

theu method a hierarchical profit-shanng algorithm.

63

ALECSYS: Shqing Behu-r

Reinforcement learning tends to be slow. Many iterations are needed before the

system l e m s appropriate behaviour. As the search space grows, so does the leaming

cornplexity. In the case of CSs, complex problems usually requh large classifier

populations, which means that the generation of the match set, rule discovery, etc. take

longer.

One approach to irnproving CS petformance is to execute many operations in

parallel. The various components of the CS aigorithm couid becorne separate processes

assigned tu diffemt processors, In some cases whem a prucess applies an operation to a

group of dassifiers, its operation can be applied to each classifier independentiy (cg.,

nile matching). This process can therefore be split into multiple processes, each one

assigned to its own processot and responsible for a subset of the classifier group. There

is still only one flow of control - for example, the match set must be f o d before the

bid cornpetition begins -but it is applied to many data simultaneously.

While this form of low-level parallelism can accelerate learning, its scalability is

limiteci. As new nodes are added io a network, the communication overhead grows, so

that the speedup is less than linear. Also, it does no& reduce the complexity of the

problem faced by the CS. Cornplexity is increased when the CS must solve problems

with multiple goals. One solution is decompose the problem by allocating a separate CS

to each goal. These CSs may M concurrentiy, allowing a higher-level parallelism:

multiple flows ofconml. Now, however, there is an additional problem: how will the

behaviours of these CSs be coordinated?

64

ALECSYS is a CS architecture that implements both forms of paraüelism, low-

and high-level (Dorigo and Sirton, 1991; Dorigo, 1995). It is the high-level parallelism

that is relevant to the study of hierarchical CSs. Like the MonaLysa, it has been tested in

both sirnulated and physical environments. The robot, whether victual or real, is called an

"AutonoMouse." The simulation environment is two-dimensional, and contains three

objects: a moving light source, a predator that appeacs periodically and can only be

"heard," and the AutonoMouse's lair (Dorigo, 1995).

In this environment, the AutonoMouse is expected to l e m a couple of basic

behaviours. F i t , a "playing" behaviow; the AutonoMouse likes to follow the moving

light source. Second, a "hiding" behavior; when the AutonoMouse hem a predator, it

should reach its lair as quickly as possible and stay there until it leaves. Then, there is the

global behaviour that emerges h m coordinating the two basic behaviours; in this case,

the desirable behaviour is as follows: "The simulated AutonoMouse plays with (follows)

the light source. When it happens to hear a predator, it suddeniy gives up playing, mns to

the lair and stays there until the predator goes away" (Dorigo, 1995, p. 18).

Two leaming architectures were testai: a "monolithic" architecture and a "switch"

(or hieratchical) architecture. The monolithic architecture consists of a single low-level

parallel CS ("CS-global") spread a c m three transputers. The switch architecture uses

three hierarchicaiiy-organized CSs: two CSs ("CS-play" and "CS-hide") to l e m the basic

behaviours, and a third one ("CS-switch") to leam how to switch between them; one

transputer is allocated to each CS. The architectures are illustrated in Figures 6 and 7.

Figure 6: The monoliîhic architecture (Dorigo, 1995,
p. 20).

Figure I: Tbe switch architecture @origo, 1995, p.
20).

Playing behaviour requires knowledge of the light's position and distance.

Knowledge of the predator's presence and the position and distance of the lair is needed

for the hiding behaviow. For the monoiithic architecture, this information is combined as

a single sensocy message; the classifier conditions have the same length as the messages.

An advantage of the switch architecture is that CS-play does not need the predator or lair

information and CS-hide does not need to know about the Iight, so the sensory messages

and classifier conditions for each of the CSs are shorter than for CS-global. When

classifier for one of the basic CSs triggers a motor action, it also sends a bit to CS-switch;

so CS-switch's sensory message has two bits, one for each basic CS. The meaning of

these bits is not predefined but learned.

A trainer, or reinforcement program (RP), observes the AutonoMouse and sends

reinforcernent signals after each action. RP combines RP-play, which rewards the agent

if its last move does not increase its distance h m the light source, and RP-hide, which

rewards the agent if it reduces its distance h m the lair (or, if it is aheady in the lair,

stays still). (In some experiments, RP would also punish the agent if its behaviour was

66

undesirable.) RP uses RP-hide if the predator is present, RP-play otherwise. (It is worth

noting that RP plays a role similar to that of the MonaLysa's internal satisfaction

function; it encodes special domain knowledge that is used to reinforce the system on

every step. It doesn't matter whether the heuristic function is "inside" the animat or in an

intelligent critic "outside".)

For the switch architecture, reinforcement is complicated by the need for a

shaping policy. Two policies were tested, "holistic" and "modular". The hoiistic poiicy

treats the entire leaniing system as a black box; each reinforcement is given to al1 three

CSs. The disadvantage of this approach is that the "wrong" reinforcement can be given

to a component CS. For example, a correct action can result from two wrong actions, or

a CS can be punished because of another CS'S mistake.

The modular policy requires a stepwise approach. The basic CSs are trained

first, possibly in parallel, until they achieve good performance. Then, they are frozen,

and CS-switch is trained. RP-play is used to train CS-play, RP-hide to train CS-hide.

The experirnents showed that the switch architecture always outperformed the

monolithic one, possibly because its classifiers were shorter, hence its search space was

smaller. The modular shaping policy outperformed the holistic shaping policy when both

were aven comparabIe cornputationai the.

6. Criteria for an Ideal Hieramhid Classifier System

Now that an ovewiew of several implementations of hierarchical CSs has been

presented, it is tirne to constnict a list of desirable atûibutes, against which each of these

control architectures may be compared. The ideai hierarchical CS should: (1) be capable

of planning, (2) leam hierarchical reliitionships dynamically, (3) depend on local versus

global information, (4) require minimal domain knowledge, and (5) be robust.

(1) Capable of planning

Planning implies the abity to decompose a task into subtasks. By doing so, classifier

chains are shortened; shorter chains are reinforced more quickly, and are less

vulnerable to disniption. The system is aware of its current task, and uses this

intemal context to help decide its next action.

(2) Learn Merarchical relationships dynamically

The hierarchical relationships are not pre-defined by a designer, but are instead

learned by the system from accumulated experience. (If the system is capable of

planning, these relationships describe how taslis, or behavioural modules, may be

decomposed into subtasks.) The value of these relationships are continually re-

evaluated, and may evolve over time.

(3) Depend on local versus global information

In an eadier section, the strengths aad weaknesses of a global leadng scheme (e.g.,

Grefenstette's profit-sharing plan) were compared with that of a local one (e.g., the

bucket brigade algorith). Global ieaniing schemes offer potentially better

performance but require extra memory and computation. Systems that use local

67

65

algorithrns are most suitable to incremental, real-tirne leataing, and are arguably more

"animat-like" in the sense that they are more similar to primitive biological

organisms.

(4) Require minimal domain knowledge

Many sequential problems do not offer the system any reward until a final goal is

attained. This makes it difficult to determine how "stage-setting" d e s should be

reinforced. To aid learning, domain knowledge may be added to the architecture, in

the fom of special operators or a function that cornputes a reinforcement signal after

every action. Obviously, an architecture that does not require such knowledge is

more flexible and easier to set up, especially when the domain is ill-understood.

(5) Robust

This attribute may be considered a side-effect of (2). Hierarchical plans should not be

bnttle; if the environment changes, the system should be capable of adapting existing

plans to new circumstsuices. Also, it should handle noise gracefuliy.

The tme goal of these five characteristics is to improve scalability. Hierarchicai

decomposition is a means of making learning systems more scalable. Long chains that

are difficult to reinforce are broken down into shorter chains that are more manageable.

In order to be tmly scalable, the depth of the hierarchy should be unbounded; extra

hierarchicai levels may be added as further decomposition is required. Furthemore, the

various tasks or behavioural modules should serve as building blocks for new modules,

allowing a module to be re-used by multiple higher-level modules. If these relationships

are leamed automatically, the human programmer is absolved of the need to hand code an

69

a r b i t d y complex hierarchy. By depending on local versus global information, the

space and tirne complexity required for learning rernains manageable for complex

problems.

It is now possible to compare each hierarchical CS against the above iist of

desirable attributes. Weiss's hierarchical chunking algorithm [HCA) and Stolzmann's

anticipatory classifier system (ACS) may be considered equivalent for the purpose of the

cornparison, since they are both reactive CSs that can "chunk" ordinary classifiers to

create new d e s whose action part is a behavioural sequence. Neither CS is capable of

explicit planning; then is no interna1 context describing the system's current goal.

Hierarchies are learned dynamically, though the concept of hierarchy is limitai to a flat

sequence of motot actions. Boih CSs depend solely on local information to create new

chunks, as they need rernember only the previously active rule. They do not use any

special domain howledge. They are scalabie in the sense that larger and larger chunks

may be evolved over time, resulting in arbitrarily short classifier chahs. On the other

hand, in a complex environment with many implicit g d s and sub-goals, the nurnber of

chunks required to represent every usehl action sequence may be prohibitively large.

It is interesting to apply the robustness criterion to HCA and ACS. Because each

"hierarchy" is encoded as a simple action sequence, it is unlikely that &se CSs could

adapt rapidly to a changing environment. Consider a CS that is not iimited to a flat

hieracchy. Suppose that it needs to acmmpiish a task T that bas been decomposed into

subtasks A, B, and C; A is achieved by executing the motor action sequence AL, A*, A3,

B via BI, B2, B3, and C via CI, C2, C3. If the environment changes such that A can no

70

longer be achieved using At, A2, and A3, but is instead satisfied by executing A,,, As A6,

the system can adapt by modiEying the relationships between A and the reactive d e s it

depends on; the rest of the hierarchy remains intact. Contrast this robustness with that of

a CS that depends on a flat hierarchy. A classifier that couid be said to represent task T

wouid directly encode the action sequence AL, A2, A3, Bl, B2, B3, CL, C2, C3. After the

environment changes, the classifier is mostly useless, except as a source of genetic

material for new classifiers. Since reinforcement leaming generally pennits much faster

adaptation than nile discovery, the CS will adapt much more slowly than one capable of

hierarchical planning. Perhaps the population also includes classifiers that chunk the sub-

sequences (e.g,, BI, Bz, B3), in which case adaptation is accelerated; of course, if a chunk

exists for every potentiaüy useful action sequence, there is the risk of a combinatorial

explosion.

The robustness problem is even greater if a subtask is depended upon by many

tasks. HCA and ACS can "reusen a subtask only by including a copy of the associated

action sequence within every chunk that uses it. if an environment change affects the

means by which a subtask is achieved, every chunk that embeds the action sequence that

was used to accomplish that subtask becomes invalid. Even if one chunk is "comcted

via the GA or other nile discovery mechanism, the other chunks remain invalid and must

be addresseci separately. In contrast, for a CS capable of hierarchical planning, the

correction of the plans for a subtask automaticaiiy benefits aii tasks that depend on it.

Object-oriented design prïncipIes provide a usefhl analogy; clients shouid depend upon

abstract interfaces rather than concrete implementations. By depending upon

71
abstractions, implementations may be changed without aff'ecting the clients. If the clients

depend upon a concrete implementation, a change forces aiI of them to recompile

(Martin, 1995).

Shu and Shaeffer's hiecarchicai classifier system (HCS) requires a relation that

defines how classifiers are grouped into families. If the relation were chaining, each

family would represent a behaviourai module. (It is not obvious how such a relation

would be enforced; Shu and Shaeffer's experiments did not specify any relation.) HCS is

not capable of planning, since there is no internai context that indicates the current task;

families protect useful relationships, but do not direct the execution of action sequences.

Relationships are learned dynamicdly, but hieriarchies are limited to one level; there are

only families and classifiers. The architecture could be extended to allow nested

families, but these sub-families would not be sharable between families. Thus, families

are not reusable building blocks, miiking HCS's robustness and scaiabiiity suspect. HCS

does not require global information, nor does it depend on special domain knowledge.

ALECSYS does not leam hierarchical relationships dynamically; instead, the

decomposition of goals into sub-goals is done in advance by the designer. Nor is the

system capable of planning, for its goais are independent of one another; e.g., the animat

is either "playing" or "hiding" at any moment - it never plans to play and then hide in

order to accomplish a goal. Leamhg is strictly local. On the other hand, ALECSYS

does depend on special domain knowledge. This knowledge is embedded within the

reinforcement program, which determines how to reward the animat after each action.

ALECSYS is scaiable because the predefined hierarchy has an arbitrary depth. The

system was not tested in changing environments, but it has been proven that it can handle

noisy real-world environments, even when the robot's sensors and motors are

intentionaüy damaged.

The remaining two architectures, MonaLysa and Wilson's hiecarchical CS, are

exceptionai in that they are both capable of planning. MonaLysa uses its experience to

dynamically create hierarchicai relationships. Planning niles are reinforced via a

hierarchical profit sharing plan; this requires the mernorization of extended sequences,

hence the leaming scheme is global. To adapt MonaLysa to a particular problem requires

a significant iunount of domain knowledge; the internai satisfaction function and the

auto-analysis module are both problem-specific. MonaLysa is both robust and scalable;

existing niles are rapidly adapted to a new environment, and tasks may be recursively

decomposed into sub-tasks indefinitely.

Wilson's architecture is theotetical; it is not explained how behavioural modules

are discovered. ClassiFrers are reinforced by a hierarchical bucket brigade algorithm;

although the hierarchical message list may contain multiple messages, they are al1

relevant to the current action, so the l d g scheme is essentiaily local. The architecture

does not require any speciai domain knowledge. Although Wilson's CS has never been

implemented and tested, its hierarchicaiiy structured behavioural modules fom natucal

building blocks that should be easy to adapt to new situations. The possibility for

arbitrariiy deep hierarchies implies scalabity.

7. HXCS: A new hietarchical classifier system

Wilson's hierarchicai performance and reinforcement algorithm (Wilson, 1987)

has the potential to satisfy most of the criteria that are desirable in a hierarchicai CS. It

hm never been implemented, however. As a consequence, some missing details need to

be supplied by the irnplementer.

For example, Wilson's aigorithm assumes that classifiers have two different kinds

of messages (actions): extemai actions, that act directly on the environment, and internai

messages, that affect only the CS'S internai state. Obviously, the CS must be able to

distinguish the two. One approach is to extend messages with "tag bits" that indicate the

message type (Riolo, 1990). Another approach is to place classifiers with extemai

actions and classifiers with internai messages in distinct populations (similar to the

MonaLysa architecture). The latter approach may be extended further so that classifiers

with interna1 messages are dividcd into multiple populations, each representing a

particular level of abstraction.

Wilson's paper on hierarchicai credit allocation was published long before he began

studying XCS and accuacy-based fitness. Since XCS hm proven supenor to traditional,

strength-based implementations, it makes sense to update his hierarchical algorithm with

XCS-derived modifications. This remainder of this section wiil describe an

hplementation of a hierarchical CS, based on both the hierarchical credit allocation

aigorithm and on XCS, named WXCS."

The concept of "level" is fundamental to the definition of HXCS. The CS contains

multiple populations, hcluding a reactive population (the lowest level) and an arbitraty

73

74

number of planning populations. The reactive population is Level0, the first planning

population is Level 1, the second planning population is Level2, etc. The level of an

action set is the same as that of the population fiom which it was formed. The level of a

message (intemal action) is the same as that of its action set.

Classifiers in the reactive population have the form cintemal messagexsensory

inputxcextemal action>, interpreted as, "if csensory inpub matches the current sensory

input and untemal message> matchesthe Level 1 message currently on the List, execute

<externat action>." Planning classifiers have the form tintemal messagexsensory

inputxcinternal messages, which means, "if csensory input> matches the current

sensozy input and tinternal message> matches the message one level above my own, post

<interna1 message> to the List," A sensory input is sometimes referred as an

"environmental input," "environmental state," 'benvironmental message," or a "detector

message.*' Extemal actions are also called "effector messages," "motor actions," or

simply "actions." internal messages are sometimes called "internal actions" or

"messages."

The following is a step-by-step description of performance and reinforcement

algorithm for HXCS:

1. Obtain the current message E from the environmental input interface.

2. If phase = "descent", for each population, form the match set FI] of aü classifiers

which match both E and the last message in the list, else

75

If phase = "ascent", for each population, fonn the match set FI] of al1 classifiers

which match both E and the message at the level one step above that of the

population.

3. tf phase = "descent," compute the prediction array for the match set of the active

population and select the winning action (the selection policy is unspecified; it

could be "roulette wheel," "pure explore," or "pute exploit") .
if phase = "ascent," compute the prediction array for the match set of each

population. Select an action from each prediction array. Form a new array by

pooling the selected actions; the system prediction for each action equals the

maximum system prediction of its population's match set. Select the final winner

from this array.

Let A* be the winning action.

4. if phase = "ascent", update aU action sets for messages lower on the list than the

message that satisfied the match set for A*'s population, erase those lower

messages, and update the action set for the action that was cacried out on the

previous the-step.

5. if A* is an external action, set phase = "ascent",

Else p s t the message on ihe next lower empty level of the message list and set

phase = "descent".

6. If A* was an external action, take it.

76

If payoff R is received from the environment, update ai l action sets for messages

now on the List, erase al1 messages, updaie the action set whose action was just

taken, and set phase = "descent".

R e m to step 1.

Action sets are updated as in XCS. The payoff used to update the classifier

predictions is the extemal reward if one was received. Oihenvise, the payoff is the

discounted maximum system prediction. During "descent," the maximum is selected

from the prediction array for the active population. During "ascent," when there may be

multiple competing populations, the maximum is selected from the pooled values of al1

the prediction arrays.

The genetic algorithm also executes as in XCS, in the winning action set, either for

the current cycle (if a reward was received and the episode has ended) or the previous

cycle. The GA is not used in the experiments desctibed in the following section.

There are a couple of important differences between HXCS and Wilson's original

algorithm. F i t , there are multiple populations rather than a single one. Only classifiers

from the population one level below that of a given message may match that message,

whereas Wilson allowed any classifier to be satisfied by a message. This meant that a

classifier could participate at multiple levels of abstraction. It is hypothesized that

allowing each classifier to participate at only one level of abstraction lads to a more

stable solution. XCS is an improvement over d i e r CSs partiy because it tends to

suppress classifiers that belong to multiple niches with differing payoffs, and tends to

evolve classiners that accurately map the payoff landscape. It is plausible that preveating

77

classifiers h m belonging to niches a& different hierarchical levels yields a sirnilar

benefit.

The other major difference between HXCS and the original hierarchical allocation

algorithm is that the former is based on XCS instead of the traditional sûength-based

CSs. Action selection, parameter updates, and d e discovery are all performed as in

XCS. In the original algorithm, the winner of the selection process was an individual

classifier; in HXCS, as in XCS, the winner is an action, Similarly, parameter updates are

applied to action sets instead of a single classifier.

8. Experiments

HXCS's hiecarchical message List provides intemal state, making it possible to

l e m an optimal policy for non-Markov environments. Recent experiments with CSs

have tested this ability using ''wwoods" envhnments. A woods is a grid-based

environment; a celi may be empty, or contain an obstacle (a "tree" or ''rock") or food.

The vimial organism that navigaies the woods is called an "animat." The fust

experiments with woods were run by Wihon (1985). who used a simple, memory-less

CS.

One example of a non-Markov woods is Woods10 1, more generally known as

"McCalium's Maze" (LanW, 1998), as shown in Figure 8. A 'T' represents a "tree"

(obstacle) and the "F' indicates food (the goal). The animat is awace of the eight

adjacent ceils and nothing else, which is why the two cells indicated in the figure are

indistinguishable. The animat's detectors encode a blank cet1 as "00," a tree ceil as "01,"

and the food ce11 as "1 1 ." Each deiector message is a concatenation of the codes for al1

adjacent ceils, beginning with cell to the north and proceeding clockwise. For example,

the detector message for the two aliasing positions is ''û101000001000001." On each

tirne step, the animat may move to any adjacent ceU that does not contain a tree. The

eight possible actions are encoded as the-digit binary strings, with "000" representing a

move to the no&, ''001" a move to the north-east, etc.

FlgUrt! 8: The WaodslOl environment. AUrrsing posiîions are iudicaîed by Che arrows. (bumi, 1I98)

HXCS's architecture allows for an arbitrary number of planning populations, but

only one is used in the following experiments; this means that the message iist coniains a

single dot. The genetic algorithm is disabled; the intent is to test the performance and

reinforcement algorithm without the added complication of rule discovery. The reactive

and planning populations are initialized with a set of classifiers covering every possible

combination of input and action. Although a classifier condition is encoded as a temary

string, it is more intuitive to describe the part that matches the current sensory input in

terms of the grid positions it matches. Figure 9 assigns an alphabetic label to every open

position in Woods 101.

Figure 9: The WoodslOl environment, with iabels dgned to the open positions.

Since there are two aliasing positions in WoodslOl that need to be distinguished, intemal

messages need by only a single bit. The conditions of the planning and reactive

classifiers used in the experiments are listed in Table 1. Interna1 messages king one bit,

the number of planning classitiers is 8 (conditions) * 2 (actions) = 16. There are eight

80

extemal actions, so the number of reactive classifiers is 9 (conditions) * 8 (actions) = 72.

Note that the condition of a reactive classifier has the fom <intemal message>,<sensory

input>. All the reactive classifiers ignore the intemal message, Save those that match the

aliasing positions. Note that because there is one classifier per combination of seasory

input and action, every action set will contain exactly one classifier.

Tabh 1: Planning and mctive ciassüler condition used witb HXCS in WoodslOl. The Mers
correspond to îhe labeis in Figure 9. "a 1 i" means tbat the condition m a t c h boîh a and i.

Pianning classifier conditions
a l i
b
C

d l f
e
g
h
j

Reactive classifier conditions
,a l i

X* b
#* c

W l f
L d l f
#, e
#9 s
#* h
#* j

At the start of each problem, the animat is moved to a random open position; the

problem ends once the food is attained. Upon reaching the food, the system receives a

reward of 1000; ail other moves have a reward of zero. Each expriment wnsists of two

periods, a Ieiirning period and a test period. The learning period covers the fmt 13,000

problems, 6500 in explore mode and 6500 in exploit mode; the system alternates between

the two modes. During exploitation, the action with the lacgest system prediction is

always chosen h m the üst of candidates. During exploration, the action is chosen

completely at random with probability p,, deterministically as per exploitation otherwise.

(N o d y , the two modes are also distinguished by the possible application of the

8 1

genetic algorithm during exploration, but this distinction is not relevant here since d e

discovery is disabled.) The test period consists of 2500 problems, ail in exploit mode.

The parameters used are listed in Table 2.. The probability of selecting an action

at random during exploration, p,, is 1.0 for both the planning and reactive levels unless

otherwise indicated. Performance is reported as a moving average of the number of steps

taken to reach the food over the last 50 exploitation problems. Unless specified

otherwise, al1 results are averaged over ten experiments.

Table 2: Plirameters used in lhe e%perimenSs. For more information on their use, see Butz and
W h n (2000).

Parameter Description Value
l3 Learning rate 0.2
Y Discount factor 0.7 1
Eo Error ihreshold (accuacy criterion) 0.0 1
pi Initial prediction 10.0
Er Initial prediction error 0.0
Fi Initial fitness 0.0 1

Before presenting the results of experiments with HXCS, however, it is important

to present the results for an unmodified XCS, using the same parameters listed above.

The only difference, other than the non-hierarchical architecture, is that the conditions of

the (reactive) classifiers are not matched against intemal messages. For this reason, the

population contains eight distinct conditions, hence 64 macroclassifiers. Of course, XCS

cannot possibly l e m an optimal poticy, since it has no interna1 state to disambiguate the

aliasing positions. XCS1s performance in Woods 101 is shown in Figure 10.

Figure 10: XCS in Woods101

XCS's performance during the test period (starting at 6500 exploitation problems) is

somewhat surprising. The test period, when the system always exploits existing

knowledge, is n o d y an opportunity for performance to improve and stabilize.

Instead, the number of steps taken to reach the goal increases dramatically. By the end of

the test period, the average number of steps is 278!

inspection of the classifier population before and after the onset of the test period

suggests the m o n for the ciramatic change. As has been mentioned previously, XCS has

no means of distinguistiing b e w n the aliasing positions. During the test period, the

action with the highest system prediction is always selected. This means thût, at any

given moment, the system is able to reach the food from only one of the two aliasing

83

positions. Should the animat find itselfat the other aliasing position, it will waver back

and focth until reinforcement alters the system predictions to make it possible to move

past the aliasing position to the food. Now, however, the animat will no longer be

capable of reaching the food from the first aliasing position - until another lengthy pend

of reinforcement tips the balance the other way, etc.

If XCS had been allowed to execute normally, with the genetic algorithm and

generalization enabled, its solution would be more robust. With a much more varied pool

of classifiers to draw upon, it could maintain solutions for both aliasing positions

concurrently . The poor performance during the test pend is problernatic, making the

experiment's usefulness as a baseline dubious.

The optimal average number of steps to the food is 2.90. Since XCS's average

number of steps is never better than 4.99, and frequentiy exceeds 6.00, there is obviously

room for improvement.

The results for HXCS in Woods101 are shown in Figure Il. HXCS can take

different kinds of action: a planning step, involving the posting of an intemal message to

the list; and a reactive step, involving the execution of an external action. The

performance for the planning and reactive levels are both graphed, dong with their

cumulative totals. At the end of the test period, the average number of planning steps is

2.91, and the average number of reactive steps is 4.22, for a total of 7.13 steps. The

appropriate weighting for the planning and reactive steps is highly context dependent. If

the goal is to minimize the number of decisions, intemal or extemal, then it makes sense

to add the two values together. On the other hand, if the executing a motor action is

84

significantly more costly than posting an internai message (e.g., the animat is a physical

robot, or part of a simulation where moves have an energetic cost), the number of

planning steps may be mostly ignored.

Curiously, during the test period, the number of reactive steps decreases while the

number of planning steps increases. Examination of the classifiers More and after the

onset of training reveais that the latter phenomenon is caused by the strengthening of

planning rules matching positions e and j - cells one and two steps, respectively, h m the

food. Positions d and f are aiso two steps from the food, but the classifiers that match

them are not accurate because of confusion caused by the aliasing. The classifier

populations for the best and worst experiments are listed in Tables 3 and 4.

During the ascent phase, the reactive and planning populations compete to

execute their decisions. The test pend allows the prediction of one of the planning

classifiers matching e and one matching j to converge to 1000. This is desirable, since

once a planning classifier matching one of these positions has posted its message, no

more planning decisions need be executed before the goal is reached; the classifier should

therefore reliably receive the full reward of 1000. Once this convergence has occurred,

however, these planning classifiers are able to compete with the reactive classifiers

corresponding to the same positions. If the animat begins at e or j, one of the planning

classifier matching this position should p s t its message. However, if the animat begins

at aaother position and moves to e or j, these planning classifiers should not post any

messages; the internai messages are useful only as a means of distinguishing the aliasing

positions, which have been encountered already. Thus, during testing, the number of

85

planning steps is inflated because planning classifiers matching e and j p s t h i r

messages even when they do not aid performance.

Table 3: Phning and reactive classüîen for ELXCS with best performance in
WUodslOl

Pred.
145.26
357.91
504.10
158.72
108.56

1000.00
710.00
186.21
259.03

1ooO.00
504.10
208.80
504.10
186.35
382.84

1000.00

Pred.
215.63
143.62
145.M
142.0 1
147.18
140.28
142.94
142.46
185.3 1
301.17
188.01
187.36
185.57
185.03
186.08
186.95
156.45
172.74
504.10

Ermr
43.18
0.00
0.00

29.30
14.19
0.00
0.00

86.80
127.32

0.00
0.00

109.47
0.00

14.37
301.61

0.00

Error Cond.
4.21 1,d(f

29.02 1,dlf
29.36 1, d 1 f
28.57 1, d 1 f
28.16 #, e
28.05 #, e
28.73 #, e
28.94 #, e
55.83 #, e
20.15 #, e
45.84 #, e
44.97 #, e
6.34 #, g

46.50 #, g
45.41 #, g
45.82 #, g
47.07 #, g
47.30 #, g
0.00 #, g

Action
100
101
1 10
I l l
000
001
010
O1 1
100
101
110
111
000
001
010
01 1
100
101
110

Error
65.68

10.64
130.21
62.84
0.00
0.00

30.2 1
0.00
0.00
0.00

29.95
0.00

46.67
46.26
46.79
45.88
41.38
46.99
22.43

Table 4: Planning and reactive classifiers for HXCS with worst performance in

Cond.
a l i
a l i
b
b
C

C

dl f
dl f
e
e
g
g
h
h
j
j

Cond.
#,a (i
#,aji
#,ali
, a l i
,a (i

Msg.
O
1
O
1
O
1
O
1
O
1
O
1
O
1
O
1

Action
000
001
010
O1 1
100

Pred.
28.89

375.24
536.6 1
57.48

394.78
55.48

119.8 1
493.64

1000.00
123.48
125.10
332.29
368.91
83.13

1ooo*Oo
212.94

Pred.
202.78
115.18
1 14.44
1 16.05
116.26

Emr Cond. Action Pred. E m r
14.05 1, d 1 f 100 163.43 56.65
31.66 1, d 1 f 101 303.3 1 189.96
31.59 1,dlf 110 163.41 75.63
31.78 1,dlf 111 164.20 56.78
3196 #, e 000 504.10 0.00

It is worth noting that only one of the two planning classifiers e and one of the

two rnatching j predict a payoff of 1000. Logicaüy, the classifiers for both messages, O

and 1, should share the sanie prediction, since the intemal state is irrelevant once the

animt has passed through the aliasing positions.

There is yet another problem. At the beginning d a problem, w hen the animat is

randomly moved to an open cell, its start position may be one of the aliasing positions, d

or$ Since the animat has not yet had encountered any cues that could disambiguate the

aliasing, it cannot possibly make an optimal decision reliably. in fact, though it has k e n

mentioned that the optimal number of reactive steps is 2.90, this is not entirely tnte. If

the animat always travelied the shortest distance between its start position and the food,

the average number of steps would be 2.70. But because an animat that begias a problem

at an aliasing celi cannot know the correct direction, an extra step is required for it to

orient itself when it st;irts at d orfi

89
This limitation means that the planning classifies matching d and f wiii never be

able ta distinguish the aiiasing States, and this handicap affects the reactive classifiers tbat

depend on them either directly or indirectly. Looking at îhe sample classifier

populations, one notes tbat most of the reactive classifiers matching positions at or

preceding d or f are inaccurate.

But there are two distinct scenarios involving the aliasing States: (1) the animat

has started at an aliasing state, and (2) the animat is passing through an aliasing state. In

the former scenario, the aniinat cannot reliably make the correct decision, but in the latter

it can because it will have encountered cues that indicate whether it is travelling almg the

left or right corridor. if distinct ciassifiers were used for each scenario, the inevitable

uncertainty of scenario (1) need not affect the accuracy of classifiers used in scenario (2).

One solution is to add an extra bit to the detector messages that is on if the animat

has not yet moved from its start position and off otherwise. (AlternativeIy, the bit could

be part of the animat's inkrnal state.) This "start position bit" is not useful Save for

classifiers matching d andf. The revised planning and reactive classifier conditions are

show in Table 5. The planning and rençtive populations now contain 18 and 88

classifiers, mpectively.

Table 5: Pianaing aod readve elrrpafller conditions for Woods101 wiîh "start position" detcetor bit.

Reactlve classifier conditions
#, #, a (i
#, #, b
#, #, c

o,o, 1 f
0,L d 1 f
Lo, d 1 f
1, L d l f
#, #, e
#, #, g
#, #, h
#, #, j

The experimentd resdts for HXCS with the start position detector bit are shown

in Figure 12, The performance is significantly better than for HXCS without the extra

bit; by the end of the test period, the average number of planning and reactive steps are

1.83 and 3.54, respectively, for a total of 5.37 steps. As before, the number of planning

steps increases during the test period. in one of the ten experiments, optimal performance

was attained: 1.24 planning steps and 2.72 reactive steps (actually, 2.72 is better than the

optimum of 2.90; this is obviously impossible, and is probably due to sampiing error).

The final population for this experiment is iisted in Table 6.

Figure 12: Performance d HXCS with start position bit in WUodslOl.

Table 6: Planning and reactive classsflers for HXCS with start position bit with best
performance
Condition Message Pcdcîion E m r

Action
000
001
O10
01 1
100
101
110
111
000
001
O10
O1 1
100
101
110
11 1
O00
001
0 10
01 1
100
10 1
110
11 1
O00
001
O10
01 1
100
10 1
110
111
O00
O01
010
O1 1
100
101
110
111
O00
001
O10

Emr Condition
0.00 l,O,dlf
2.36 1, O, d 1 f
2.30 1, O, d 1 f
2.15 l,O,dlf
3.20 1, 1, d 1 f
1.97 1, 1, d 1 f
2.36 1, 1, d 1 f
3.21 1, 1, dl f
8.52 1, 1, d f
0.00 1, 1, d J f
6.09 1, 1,dl f
5.85 1, 1, d 1 f
3.44 #,#, e
5.23 #, #, e
6.24 #, #, e
8.13 #,#,e
6.95 ii, #, e
7.41 #,#,e
0.00 #, #, e

10.67 #, #, e
7.12 #,#, g
8.97 #, #, g
6.82 #, #, g
5.74 #, #, g

58.96 #, #, g
26.74 #, #, g

123.46 #, #, g
190.43 #, #, g
55.19 #,#, h
0.00 #, #, h

120.45 #, #, h
61.02 #,#, h
39.37 #, #, h
43.70 #, #, h

112.72 #, #, h
238.25 #, #, h
36.86 #, #, j

234.20 #, #, j
138.20 #, #, j
52.64 #, #, j
33.33 #, #, j
25.22 #, #, j
72.79 #, #, j

The number of reactive steps for the best experiment is optimal, but what of the

number of planning steps? The optimal number of planning steps has not yet been

mentioned. in part, this is because it is difncult to specify. If the animat begins at a or i,

it cannot yet know which comdor it is travelling. Once it moves forward a step and

reaches b or h, it is possible to post an intemal message that identifies the corridor. So,

from a or i, two planning steps are needed. Positions b, c, g, and h may al1 be used to

identiQ the comdor, so only one planning step is needed. If the animat starts at one of

the aliasing States, d and5 it cannot reliably make the correct decision, so as soon as it

moves a (reactive) step, another, more accurate planning classifier can post a message.

Thus, fiom d or& two planning steps are required. Positions e or j are encountered after

the aliasing positions, so the internai messages serve no useful function; only one

planning step is required for an animat that starts there. The average number of planning

steps for the optimum is therefore 1.4.

Or perhaps not. When the animat starts at d orf, it will make a good decision half

the tirne, so no extra planning step is required. In this case, the optimal solution uses 1.3

planning steps on average. But the animat will also guess the "correct" intemal message

half the time at a or i, so the average number of planning steps for an optimal policy is

actually 1.2. The number of planning steps for the best experiment is 1.24, which is very

close to this ideal value.

Note that the optimum number of planning steps is not a minimum Like the

optimum number of reactive steps. Unlike a reactive step, a planning step is abstract and

94

is not subject to physicai constraints. Thus, it is dways possible for a problem to be

solved with only one planning step, since the lifetime of an interna1 message can span any

number of reactive steps.

An example of how the classifiers in Table 6 are used to solve a problem is useful

both to illustrate the aigorithm and to better interpret the classifier parameters. The

following example is drawn from an actuai execution trace. The system is in exploit

mode, so the action with the action (or message) with the highest system prediction is

aiways chosen.

1. The animat begins at ce11 a. Phase = "descent". The message List is empty. The start

position bit is on. The initial match set includes two classifiers: (1) #, a) i : O and (2)

#, a 1 i : 1. Theit system predictions are 7 10.00 and 1 14.90, respectively. (Since there

is only one classifier per combination of input and message, the system prediction

equals that classifier's prediction.) Classifier (1) has the highest system prediction, so

its message (O) is posted to the list

2. No extemai action has been executed yet, so the animat is stiii at a. Since phase =

"descent" and a planning step has already been taken, the match set includes reactive

classifiers matching both a, the internai message of O, and the start position bit (which

is stili on). The list of matches and their predictions are:

(1) #, #, a 1 i : 000; P = 710.00

(2) #, #, a 1 i : 001; P = 199.14

(3) #, #, a 1 i : 010; P = 194.88

(4) #, #, a 1 i : 011; P = 19752

(5) #, #, a 1 i : 100; P = 196.19

(6) #, #, a 1 i : 101; P = 198.15

(7) #,#,a(i : 110;P=200.60

(8) #,#,al i : 111; P = 197.53

Classifier (1) has the highest prediction, which means its action has the highest

system prediction, so action 000 ("move one step to the north") is executed. The

animat moves to ce11 b, phase = "ascent," and the start position bit is tumed off.

3. Because phase = "ascent," actions are chosen from both the planning and reactive

populations. The match set for the planning population includes: (1) #, b : O (P =

1000.00 and (2) #, b : 1 (P = 265.68). Classifier (2) has the highest prediction, so its

message is chosen at the planning level. At the reactive level, the candidates are:

(1) #, #, b : 000; P = 271.53

(2) #, #, b : 001; P = 5M.10

(3) #, #, b : 010; P = 273.25

(4) #, #, b : 011; P = 277.44

(5) #, #, b : 100; P = 202.95

(6) #, #, b : 101; P = 275.22

(7) #, #, b : 110; P = 272.99

(8) #,#, b: 111; P=274.45

Classifier (2) has the largest prediction, so its action wins at the reactive level. Next,

the maximum system predictions for the planning and reactive levels are compared.

Since 1000.00 is greater than 504.10, the planning level wins, and the intemal

%

message of O is posted to the List, replacing the previous message (also O). The

c!assifier that posted the original message (#, a (i : O), has its prediction updated with

the discounted maximum system prediction - that is, 1000.00 * 0.71 (the discount

factor) = 710.00. Since the prediction had already converged this value, there is no

change. The sarne is tnie for the reactive classifier responsible for last motor action

(#, #, a 1 i : 000). The phase is changed to "descent."

4. The competition is limited to the reactive population. The match set contains:

(1) #, #, b : 000; P = 271.53

(2) #, #, b : 001; P = 5O4.10

(3) #, #, b : 010; P = 273.25

(4) #, #, b : 011; P = 277.44

Action 001 is executed, moving the animat one step north-east to ce11 d. The phase is

changed to "ascent*'.

5. The competition includes both the planning and reactive populations. The candidates

at the planning level are (1) O, d 1 f : O If = 380.89) aud (2) 0, d 1 f : 1 (P = 372.76).

The match set for the reactive level includes those rules that are satisfied by the

current state (d orf), intemal message (l), and start position bit (off = 0):

(1) 0,1, d 1 f : 000; P = 38 1.67

(2) 0,1, d 1 f : 001; P = 347.60

(3) 0.1, d 1 f : 010; P = 374.58

(4) 0.1, di f : 011; P=7lO.00

(5) 0,1, d 1 f : 100; P = 352.38

(6) 0, 1, d 1 f : 101; P = 368.32

(7) 0,1, d 1 f : 110; P = 364.44

(8) 0,1,dIf: 111;P=355.16

Classifier (4) has the highest prediction, so action 01 1 is executed, moving the animat

south-east to ce11 j. Because a motor action was executed, the phase remains

"ascent." The classifier that executed the previous motor action (#, #, b : 001) is

reinforced with (4)'s discounted payoff (0.71 * 7 10.00 = 504.10), with no effect since

the target classifier's prediction has aiready converged to this value.

6. The match set at the planning level includes: (1) #,j: O (P = 574.05), and (2) #, j : 1 (P

= 100.00). Classifier (1)'s action wins. The match set at the reactive level is:

(1) #, #, j: OOO; P = 504.10

(2) #, #,fi 001; P = 413.67

(3) #, #, j: 010; P = 7 10.00

(4) #,#,fiOll;P=7lO.OO

(5) #, #,j: 100; P = 1000.00

(6) #, #, j: 101; P = 710.00

(7) #, #,fi 1 10; P = 710.00

(8)#,#,j: 111;P=409.28

98

Thus, action 100 ("move south") wins at the reactive level. The maximum system

prediction for the planning and reactive levels are both 1000.00. With the current

implementation, ties are resolved in favour of the planning level. So the intemal

message is changed to 1. The phase becomes "descent."

7. The match set includes the same reactive classifiers as in the previous step. Action

100 is executed, moving the animat to the food and ending the problem. The

planning classifier, #, j : 1, that posted the current message, and the reactive classifier,

#, #, j : 100, that executed the last motor action, are both reinforced with the external

reward of 1000.

In the above example, the classifiers with the highest predictions tend to also have the

iowest prediction errors. An accurate classifier's prediction reflects the number of steps

(planning or reactive) that fa11 between the activation of its message or action and the

receipt of an extemai reward. So, a reactive classifier whose action immediately brings

the animat to the food, or a planning classifier whose message is stiil on the list when

food is found, has a prediction equal to the extemal reward of 1000. if the classifier is

separated fiom the reward by one step, its prediction is 1000 * 0.71 = 710, if the distance

is two steps, the prediction converges to 1000 * 0.712 = 504.1, etc. These values apply

only to accurate classifiers.

In examining the planuing classifiers for States b and c, one notices that the d e s

for message O are accurate with predictions of 1000, while the niles for message 1 has

low predictions and poor accuracy. The reverse is mie for the planning classiners

matching g and h. HXCS has learned to associate O with the West corridor and 1 with the

99

east corridor. This information is used by the reactive classifiers matching d and f to

disambiguate the aliasing.

Classifier "#, #, a 1 i : 000," has a prediction of 7 10, indicating that after its action

is executed, the animat is one step h m the reward. In fact, the anirnat is three (reactive)

steps fiom the food. However, on the step that foilows its motor action, the planning

classifier "#, b : O" posts its message, and its prediction of 1000 is used to reinforce the

reactive classifier whose action enabled it to become active. One could Say that "#, #, a 1

i : 000" is only one planning step fkom the reward.

Except that the example described above suggests otherwise. There was an

additional planning step, occurring on step 6, where the planning classifier "#, j : 1"

posted its message. The extra step serves no useful purpose. Furthermore, if this exm

step occurs consistently (which it would, during the test period), the planning classifier

that posted the previous message (#, b : O) should have a prediction of 710 rather than

1000. The reactive classifier that preceded #, b : O would have a prediction of SO4.l

rather than 7 10, etc. According to the performance log, the system executed an average

of 1.20 planning steps pet problem; if the extra planning step is always executed, this

number would have to be higher.

The classifier parameters for the HXCS that achieved optimal performance were

saved to a file, and were later reloaded in order to create the example. Floating point

numbers are notoriously fickle. The predictions for the best reactive and planning

candidates in step 6 are both reported as 1000.0. If these values were misleading, such

that the best reactive classifier's prediction was actuaily larger than the best planning

100

classifier's prediction by an infinitesimal amount, the redundant planning step would be

avoided. When these values were saved to a text Me, this rninisct.de difference would be

lost due to rounding; after reloading these classifier paraineters, the system wouid behave

differently. An informal expriment proved that this can indeed happen.

Obviously, it is undesirable for a baming algorithm to be dependent on such

fragile serendipity. The planning classifiers matching positions e and j should predict a

payoff of 1 0 , because once one of hem posts its message, there is no reason to p s t

any subsequent messages before the food is obtained; the message will still be on the list

when the goal is reached, so the classifiers are updated with the full reward. But if the

animat is passing through e or j, no message should be posted, since interna1 messages

are useless after the animat has passed one of the aliasing positions (unless it backtracks).

This kind of behaviour is unlikely to occur using the current implementation (it occws

only when the classifier predictions are infinitesimally dierent in just the right way); if

planning classifiers for e and j have predictions of 1 0 , it is likely that they will p s t

their messages (which will have the maximum possible system prediction) even when

they serve no useful purpose.

One solution is to bias action selection (Booker, 1990) so as to discourage useless

planning steps. During the ascent phase, when the planning and reactive levels are

competing for the next action, the planning Ievel could be prevented h m winning if the

maximum system prediction is not pa te r than that of the current message. The

assumption is that if the proposed message leads to the same payoff as the current one,

there is no reason to post it. The results for HXCS with the bias are shown in Figure 13.

LOI

The bias is not enabled until the onset of the test pend; if enabled fiom the beginning, it

could cripple exploration.

Performance is abysmal. By the end of the test period, the average number of

reactive steps is 357.75! Ironicaiiy, the number of planning steps, which the bias was

supposed to decrease, does not change noticeably. By examining an execution trace, and

by inspecting the classifiers, a partial interpretation of the disaster is possible. In each

experiment, one of the two planning classifiers that matches d or f and a start position bit

of zero (i.e., the animat did not begin the episode at d orfi has a prediction of 1000. For

an optimal policy, the planning classifiers matching d or f should never post their

message unless the animat begins atone of these cells (Le., the start position bit is 1)-

Because a planning classifier for one of the aliasing positions has the maximum possible

prediction, its message will always be posted. The internai message is used to

disambiguate an aliasing state, but because the same message is always posted upon

reaching such a state, no disambiguation is possible; the same motor action will be

chosen regardles of whether the animat is at d or5 until the choice is aItered by a series

of reinforcements. In other words, HXCS with the bias behaves similarly to XCS, which

is not exactly a sign of progress.

Figure 13: HXCS with start position bit and biss in WoodslOl. The bias is enabled at the onset of

the test period (aiter 6500 exploiîaîion probaoms).

Perhaps it is too extreme to always require a message's system prediction to be

larger than the system prediction of the current message. By adding a littie randornness,

a planning classifier for d and f could be prevend from obtaining a stranglehold on the

system's behaviour. The results in Figure 14 are for a bias that is applied 80% of the

time. As before, the bias is disabled during the leamhg period. The softening of the bias

does indeed prevent the terrible performance of the previous experiment, but performance

is worse than for HXCS without any bias. By the end of the test period, the number of

planning steps is 2.02 and the number of reactive steps is 3.65. Results for a bias that is

applied 90% of the t h e (not shown) were slightly worse.

103

So, whiie a bias is g d for enforcing the desired behaviour on a system that bas

already learned the correct classifier parameters, it appears that it tends to interfere with

the leamhg of these parameters.

Figure 14: HXCS with start psition bit ood bias that is appiied 80% of the th. The bias is

enabied at the onset of the test period, after 6500 exploitation problems.

9. Discussion

Interpretatbn of Results

HXCS was able to achieve optimal performance in Woods 10 1 with the addition

of the start position bit. Optimality was attained, however, in only a fraction of

expenments. Even worse, optimality depended on iniinitesimai differences between

ostensibly identicai prediction values.

For illustration, consider an extremely simple woods consisting of two empty

cells (labelled a and b) and a food cell, F:

Suppose the HXCS for this environment has two planning classifiers, Pa, matching a, and

Pb, matching b. Simiiarly, it has two reactive classifiers, Ra and Rb, each advocating a

move to the right. The discount factor is 0.71, and the reward for obtaining food is 1000.

If the animat starts at a, Pa will post its message. No other planning steps (message

postings) should occur before the animat reaches F, since the intemal messages do not aid

performance (this includes P i s message, but the aigorithm requires that every pcoblem

begin with a planning step). Therefore, under an optimal policy, P,'s message will still

be active when the reward is received for reaching the food, and P i s prediction wiü

equal 1000, the undiscounted reward. The same is hue of position b and Pb. Rb's

prediction wili also be 1000, since its action leads directly to the food. Ra is reinforced

by Rb, so its prediction equais Rb's discounted prediction, 1000 * 0.71 = 710.

105
But the large system prediction for P i s message means that Pb h a a high

probability of posting its message once the animat reaches b, even if it started at a,

resulting in a useless planning step. Because of the extra step, P i s prediction will reflect

the discounted reward (Pis prediction multiplied by the discount factor) and become less

than 1000 (the accwacy of its prediction could also suffer, since Pb may win the

competition and post its message only part of the time).

The useless planning step is consistently avoided, however, if PGs prediction

actualiy converges to a vaiue marginaiiy iess than Rb's prediction. When the animat

moves fiom a to b, the phase becomes "ascent" resulting in a competition ktween the

reactive and planning levels for the next decision. If Rb's prediction is greater than Pis

prediction, &'s action will always be executed in preference to the posting of Pb's

message (assurning action selection is deterministic). Thus, there is no redundant

planning step.

Future Work

The experiments reported for HXCS are extremely limiteci in scope. The

classifier populations are pre-initialized with an appropriate set of niles, and never

change (excepting the parameters of individual niles). The ability of HXCS to discover

good classiners needs to be tested, by initialking the system with an empty or random set

of d e s and enabling the genetic algorithm.

To date, HXCS has been tested in only one environment. Woods 101 tests

HXCS's ability to use intemal messages to learn an optimal policy for a non-hbrkov

environment. One benefit of hierarchicai reinforcement is the shortening of d e chahs,

106

so that classifier parameters may converge to their true values more quickly; the rule

chains in Woods101 are too short for this advantage to be properly evaluated. Future

experiments could use woods where the average distance to the goal is much pater.

Also, it is intended that HXCS evolve hierarchically organized behaviowal

modules that explicitly convert a goal into tasks and sub-tasks. This kind of structure

both facilitates analysis of what a system has leamed, and provides the system with

reusable building blocks that improve learning. To assess HXCS's ability to leam

behavioural modules, it is best to use a problem with an obviously hierarchical solution.

For example, the navigational task of reaching a landmark cm be decotnposd into sub-

tasks involving landmarks encountered en route (as per experiments with the MonaLysa

architecture). The learning of grammatical syntax, where behavioural modules

correspond to non-tenninals, is another possibility.

HXCS has been tested with one planning level, but it may theoreticdiy

accommodate an arbitrary number of levels. How practical is it to co-evolve multiple

planning levels plus the reactive level? Also, how does one know in advance how many

levels are needed for a given problem? One possibility is to start with one (or zero)

planning levels and add more as needed, incrementally extending the hierarchy's depth.

This approach depends on a triggering function that specifies when a new level is

required. For example, the function might check whether the system error is above a

threshold for an extended period.

Also, what shaping policy is best for training the various levets? Two policies

were tested with ALECSYS: (1) a hofistr'c policy, where al l modules were trained

107

concurrently, and (2) a modular policy, where modules were trained one at a time and

then fiozen, moving bottom-up. The same policies could be applied to HXCS's levels.

Experimental results suggested that HXCS needs some kind of bias to eüminate

redundant planning steps and reliably achieve optimal performance. Unfortunately, one

failed attempt to devise such a function has shown that a bias may interfere with

exploration and actuaily decrease performance. More study of potential biases is

required.

Lanzi's expenments with XCSM showed that performance was improved when

the number of register bits was greater than the minimum required to disambiguate the

aliasing States. The same could be true of HXCS and the length of its intemal messages.

Redundant message bits could provide an altemative to the start position bit extension. If

the messages posted when the animat started at an aiiasing position were different from

those posted when it passed through such a position, accurate reactive classifiers

matching the latter could be distinguished from inaccurate classifiers matching the

former.

Obstacles to hiemhical learning

Lanzi's study of XCSM, another variation of XCS with intemal state, yielded

some interesting observations applicable to HXCS. In XCSM, each classifier has, in

additional to the conventional extemal condition and extemal action, an interna1

condition matching the memory register and an external action that modifies this register.

Although XCSM was able to l e m an optimal solution in WoodsLOl, performance

deteriorated in more difncult woods. It was discovered that XCSM's policy for exploring

108

actions was responsible for the problem. Dunng exploration, both the internal and

extemal actions were chosen at random. Internai actions were explored at the same rate

as externai actions, making it diiEcult for XCSM to CO-evolve a "language" (of register

settings) and its "interpretation." Put another way, because the register bits do not have a

stable "meming," classifiers receive variable payoff within the same context, making

them inaccurate (LanW and Wilson, 2000). According to hierarchy theory, the upper

levels of a hierarchy should be more stable than the lower levels (Ah1 and Allen, 1996).

The solution was to modifi action selection during exploration; the intemal action is

chosen first, deterministically, followed by the extemal action, chosen randornly as

before. Internai actions were therefore never explored by the reinforcement component,

oniy the genetic algorithm. The intemal language being explored relatively sdowly, it was

now easier to leam a useful interpretation. This modüled version of XCSM was called

XCSMH (Lanzi, 1998; Lanzi and Wilson, 2000).

HXCS also uses a language (of internal messages posted by the planning level)

that is interpreted (by the reactive level). If planning and reactive niches are explored at

the same rate, classifiers will tend to be inaccurate. A reactive classifier mats a message

the same way regardless of which planning classifiers posted it; to the reactive classifier,

the context is the same, yet the payoffs will often be different. Unfortunately, the

solution developed for XCSM is not directly applicable to HXCS. in XCSM, the reactive

classifiers are extended with internal parts; in HXCS, the reactive and planning levels are

distinct sets of classifiers. If planning messages are always explored deterministically,

many planning classifiers will never be evaluated. One solution is to select messages

LW
deterministicaiiy most of the tirne, but inject enough randomness to ensure that al1

planning classifiers gain experience.

In the original implementation of XCS, actions are selected completely at random

during exploration; this policy is caiied "pure explore" (Wilson, 1995). Lanzi used a

modified strategy: actions are selected at random with probability ps; the rest of the time,

actions are selected deterministicaiiy, as is done during exploitation. Pure explore is

equivalent top, = 1.0, Exploration at the planning level of HXCS could be slowed by

setting p, at the planning level @ph) to a value significantly smailer than that of p, at

the reactive l e v e l @ F q . In fact, such expefiments have already k e n nin (e.g.,

pS~l-g - - 0.3, ps-tive - - 1 .O, and pSWng = 0.1, pIno*ivC = 0.3), but there was no evidence

of improved performance.

This lack of improvement may be partly due io the two-way coupling between the

planning and reactive levels. The reactive level depends on accurate planning classifiers,

but the reverse is also me. The more frequently actions at the reactive level are chosen

randomly, the longer the animatis average path wiii be. During such undirected

meandering, there is an increased likeiihood of additionai planning steps. Because the

number of planning steps that foflow the posting of a message is variable, the planning

classifiers wiil be inaccurate.

The close coupling between the planning and reactive levels makes it difficult to

leam stable hietarchies. Randomness and inaccuracy at the planning level affect the

reactive level (because reactive classüiers interpret internai messages, and sometimes

receive payoff directiy h m the planning level), and the same is true of the reactive

110

level's influence on the planning level (because the number of planning steps is

Conclusion
Hierarchical system have the potential to scale much better than non-hieratchical

systems. A hierarchical CS can break complex tasks into more manageable subtasks, and

may use either internai messages or action sequence "chunks" to achieve optimal

performance in non-Markov environments. HXCS does not require any special domain

knowledge, hierarchical relationships are leamed rather than pre-designed, and it is

iafinitely extensible. In pmctice, however, it has only k e n tested in a simple, non-

Markov environment. Tt is capable of learning an optimal poücy in WoodslOl, but dms

not do so consistently, partly due to the tight coupling between levels. Behavioural

biases and new exploration strategies may allow this limitation to be overcome.

References

Ahl, V., and Allen, T. F. H., Hierarchy Theory : A Vision, Vocabulary, and
Epistemology, Columbia University Press, New York, 1996,206 pp.

Booker, L. B., "Classifier Systems that Lem Intemal World Models," Machine
Leaming, 3, pp. 161-192, 1988.

Booker, L. B., "Instinct as an inductive Bias for Learning Behavioral Sequences," From
Animals to Animats 1. Proceedings of the First International Conference on
Simulation of Adoptive Behavior (SABW), Meyer and Wilson, Eds: The MIT
PressBradford Books, pp. 230-237, 1990.

Booker, L. B., Intelligent behavior as an adaptation to the task environment, Ph.D.
Dissertation (Cornputer and Cornmunication Sciences), The University of
Michigan, 1982,236 pp.

Booker, L. B., Riolo, R. L., and Holland, J. H,, "Leaming and Representation in
Classifier Systems," Art@cial Intelligence and Neural Nenuorks, Honavar and
Uhr, Eds: Academic Press, pp. 58 1-613, 1994.

Butz, M. V. and Wilson, S. W., An Aigorithmic Description of XCS, IlliGAL Report No.
2000017,17 pp., 2000.

Cliff, D. and Ross, S., Adding Temporary Memory to ZCS, Technical Report CSRP347,
School of Cognitive and Computing Sciences, University of Sussex, 1995.

Donnart, J. Y., and J. A. Meyer, "A Hienuchical Classifier System Implementing a
Motivationdy Autonomous Animat," From Animals to Animats 3: Proceedings
of the 3d Int. Con$ on Simulation of Adoptive Behmiour, Ciiff et al., Eds: The
MIT RessJBraford Books, pp. 144453, 1994.

Donnart, J. Y., and J. A, Meyer, 'Uaraing Reactive and Planning Ruies in a
Motivationally Autonomous Animat," IEEE Transactions on Systems, Man and
Cybemetics - Part B: Cybernetics, 26(3), pp. 381-395-1996.

Dorigo, M. and Bersini, H., "A Cornparison of Q-Learnin and Classifier Systems,"
9% From Animals ro Animats 3: Proceedings of the lnt. Con$ on Simulation of

Ahprive Behaviour, Cliff et ai., Eds: The MIT Press/Brafod Books, pp. 248-255,
1994.

112

Dorigo, M., "Alecysys and the Autonomous: Learning to Control a Real Robot by
Distributed Classifier Systems," Machine Leaming, 19, pp. 209-240, 1995.

Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine
Learning, Addison-Wesley, 1989,241 pp.

Grefenstette, J. J., "Credit Assignment in Rule Discovery Systems Based on Genetic
Algorithms," Machine Learning, 3, pp. 225-245, 1988.

Kovacs, T., "XCS Classifier System Reliably Evolves Accwate, Complete, and Minimal
Representations for Boolean Functions", Soft Computing in Engineering Design
and Manufacturing (WSC2), Row, Chaudhry, and Pant, Eds: Springer-Verlag
London, 1996.

LanW, P. L. and Wilson, S. W., 'Toward optimal classifier system performance in non-
Markov environments," Evolutionary Computation, 8(4), pp. 393-418,2000.

LanW, P. L., "A Study of the Generalization Capabilities of XCS," Proceedings of the 7th
Intemational Conference on Genetic Algorithms (ICGA97). Back, Ed: Morgan
Kaufmann, pp. 41 8-425.

LanW, P. L., "An analysis of the memory mechanism of XCSM," Genetic Programming
1998: Proceedings of the Third Annual Conference, Koza et al., Eds: Morgan
Kaufmann, pp. 643-65 1, 1998.

Lanzi, P. L., "Adding Memory to XCS," Proceedings of the IEEE Conference on
Evolutionary Computation (lCEC98). IEEE Press, 1998.

Martin, R. C., Designing Object-Oriented C u Applications Using the Booch Method,
Prentice-Hal, Inc., 1995,528 pp.

Riolo, R. L., "Bucket Brigade Performance: 1. Long Sequences of Classifiers,"
Proceedings of the Int, Con$ on Genetic Algorithms, Grefenstette, Ed:
Lawrence Erlbaum Associates, pp. 184-195, 1987.

Riolo, R. L., "hkahead Planning and Latent LRarning in a Classifier System," From
Animals to Animats 1. Proceedings of the First International Conference on
Simulation of Adaptive Behavior (SABN, Meyer and Wilson, Eds: The MIT
ResdBradford Books, pp. 3 16-326, 1990.

Shu, L., and J. Schaeffer, "HCS: Adding Hiecarchies to Classifier Systems," Proceedings
of the 4Ih Int. Con$ on Genetic Algorith, Belew and Booker, Eds: Morgan
Kaufmann, pp. 339-345,1991.

113
Stolwnann, W., Leaming Classifier Systems using the Cognitive Mechanism of

Anticipatory Behaviorai Control- Detailed Version, Report No. 4, Osnabrück:
FMD, AG Mathesis, 19 pp., 19%.

Watkins, C., and P. Dayan, b'Technical Note: Q-leaming," Machine Leaming, 8, pp. 279-
292,1992.

Weiss, G., "Hieracchical Chunking in Classifier Systems," Proceedings of the Twelfih
National Conference on Artipcial Intelligertce, AAAI PressiThe MIT Press, Vol.
2,1994,1335-1340.

Wilson, S. W., State of XCS Classifier System Research, Technical Report No. 99.1.1,
Prediction Dynamics, 1999,21 pp.

Wilson, S. W., "Explore/exploit strategies in autonomy," From animals to animats 4:
Proceedings of the Fourth International Conference on Simulation of Adaptive
Behavior, Maes, Mataric, PoUack, Meyer, and Wilson, Eds.: The MIT
Press/Bradford Books, pp. 325-332,1996.

Wilson, S. W., "Classifier Fitness Based on Accuracy," Evolutionary Computation, 3(2),
pp. 149-175,1995.

Wilson, S. W., "Generalization in XCS," unpublished contribution to the ICML
'96 Workshop on Evolutionary Computing and Machine Leaming., 1996.

Wilson, S. W., "Hierarchical Credit Allocation in a Classifier System," Genetic
algorithms and simulated annealing, Davies, Eù.: Pitman, pp. lO4- 1 15, 1987.

Wilson, S. W., "ZCS: A Zemth Oder Classifier System," Evolutionary Comptarion,
2(1), pp. 1-18, 1994.

Wilson, S. W., and D. E. Goldberg, "A critical review of classifier systems," Proceedings
of the First International Conference on Generic Algorirhms and 7'heir
Applications, Davis, Ed.: Morgan Kaufmann, pp. 244-255, 1989.

