THE META-POLICY
INFORMATION BASE

Andreas Polyrakis

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science

University of Toronto

© Copyright by Andreas Polyrakis, 2001

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wallington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre rélérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protege cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-58776-2

Abstract

THE META-POLICY INFORMATION BASE

Andreas Polyrakis
M.Sc. thesis, 2001

Graduate Department of Computer Science — University of Toronto

The recent considerable growth of computer networks has revealed significant
scalability and efficiency limitations in the traditional management
techniques. Policy-Based Networking (PBN) has emerged as a promising
paradigm for Network Management. The Common Open Policy Service
(COPS) and its extension for policy provisioning (COPS-PR) are currently

being developed as the protocols to implement PBN.

COPS-PR has received significant attention and seems efficient for several
Management areas. However, the rigidity of its policy-enforcing mechanisms
constrains the intelligence that can be pushed towards the managed devices.
This work attempts to relax this limitation by using meta-policies, rules that
enforce the appropriate policies on the devices. Meta-policies are stored and
processed by the devices, independently of their semantics, making in this way
the model more efficient, scalable, distributed and robust. The additional
functionality is implemented through a new Policy Information Base (PIB)
that we have defined, the Meta-Policy PIB.

-ii-

Acknowledgments

First of all, I need to express my gratefulness to the Department of Computer Science of
the University of Toronto for accepting me into the graduate program and giving me the
opportunity to pursue a graduate degree here. Also, I would like to thank the department

for their financial support, without which I would be unable to complete my studies.

However, most of ail, I would like to thank my supervisor, Prof. Raouf Boutaba from the
University of Waterloo, for his guidance and support. His ideas and comments inspired
me, and his experience and insight in the area of Network Management has been great
assets for my work. He gave me the chance to deal with very interesting topics and live
experiences that I will never forget. I feel really lucky to have had Raouf as my

SUpEervisor.

Apart from Raouf, I would like to thank the rest of his team of graduate students for their
comments and feedback, as well as their encouragement and support. Especially, I would
like to point out Youssef Iragi, whose comments influenced significantly my work and

Salima Omari, for her valuable help.

I am deeply indebted to Prof. Ken Sevcik, for several reasons. Ken was assigned as my
official supervisor from the beginning of my graduate studies, and he took care of all my
administrative issues. However, Ken was also the second reader of this thesis, and his
comments were important, both in the content and the structure of the thesis. Ken is a

brilliant person, which managed to amaze me from the very first time we met.

-1ii-

Two more persons that I need to thank are Prof. Irene Katzela and Fotios Harmantzis,
both from the ECE department. I would like to thank Irene for her guidance at the
beginning of my graduate studies, for her valuable advice and for several useful
conversations throughout the entire period. Fotios is one of the most interesting persons I
met in Toronto. His perception of life, his academic experience and his analytic

reasoning made his advice on several aspects, academic or not, very valuable and helpful.

Of course, I cannot forget the big community of the Greek graduate CS students. They
welcomed me warmly when [arrived in Toronto; they became my friends and
roommates; they showed me around the city; they gave me hints and tips about the life in
Canada and UofT; they helped me out with all these tiny problems that may look huge if
nobody is there to assist you; and, of course, by being computer science graduate

students, their advice was significant for any issue of academic or scientific nature.

Another person I need to thank is Verena. I discussed with her several of the issues that
came up, and her ideas and comments influenced significantly the outcome of this thesis.
However, the main reason that makes me feel indebted to Verena is her moral support
and her presence in my life, which gave me the courage to tackle any difficulty and made

my life pleasant and beautiful.

Last but not least, I need to express my gratitude to my family and friends for supporting,
encouraging and standing by me during all this period. Although I would not like to
thank individuals for the fear of forgetting someone, I would like to mention that without

their physical or mental support, carrying out this work would not be feasible.

Toronto, March 2001
Andreas Polyrakis

-1v-

Table of Contents

ABSTRACT 1T
ACKNOWLEDGMENTS j 101
TABLE OF CONTENTS A\
CHAPTER 1. INTRODUCTION 1
1.1. PURPOSE AND (GOALS aucceeccereeeerccecccsscsscascssssassscsonsssssassrssrosasssasanssssssasasess 1
1.2. DEPENDENCIES vessesensssstassnsnsnssannsassesssasenessesessssessasasanasstansne 2
1.3. ORGANIZATION OF THIS DOCUMENT .cccevceccerscessassercoressasssasssssesassassessesse 3
1.4. TERMINOLOGY ~ (GLOSSARY .cceeceecerrescrcssonsasesoesasasesssosssscsosesceesssasssnsessesas 4
CHAPTER 2. NETWORK MANAGEMENT 5
2.1. DEFINITION ..ccceceee ceesesseseserssensessresnsassasneseasenssaseenierounssssssnsaseananssrsnnsans 5
2.2. THE FCAPS FRAMEWORK .cccccceeececcseoseeseesssessassrasssscassersssassesssasssassnsaness 5
2.3. TRADITIONAL NETWORK MANAGEMENT — SNIMP......eeererercosencosees 6
2.4. STANDARDIZATION ORGANIZATIONS - THE ROLE OF IETFccceueeeaeee 7
2.5. THE FUTURE OF NETWORK MANAGEMENT ..ccccececacsacsscorcccrecccocasnsssssnones 8

2.5, 10 SINIMPV3 oot e e e e et e e e e esaseaseraaeseseebeses s st e st e s e aesnesaeenesenaeesanenneenn 8

2.5.2. ACTIVE MANAGEMENTouttteeeerreeaneessenraasemsensnssssrsssesssssssrssassssesssarsssssssessnssnnesssnns 9

2.5.3. DIRECTORY-ENABLED NETWORKINGccceueiutermecnererereeasmeseasncernsassstssnnesresnssossneens 11

-v-

2.54. POLICY-BASED NETWORKING ...oeeeeueememeeirmreessserassersesssssmmsssssssssmnssessssasmsrrssiesesses 12

2.6. THE BIG PICTURE - OUR CONTRIBUTION ..cccceceeeacesssssasesscsscncasssossssscass 13
CHAPTER 3. POLICY-BASED NETWORKING 15
3.1. OVERVIEW auucuiceececerotscscsscsassenesssssssossasssessarsenssnnsnssanessssssssssssssesasasetssssases 15
3.2. POLICIES INPBN.. eessessesstessstssesssersesststsentttsessnnnassnseassesnnassesassetuse 16
3.3. PBN COMPONENTS eeececeeeressessssassesssssssssrassssssssasssssassnnsssssssssnssssssssssssnses 18
3.3.1. MANAGEMENT CONSOLE....ccccctmeuesrereececmcessrsconressessortssmmmnrsmnssessrmssessssesamsosnsasesses 18
3.3.2. THEPOLICY DECISION POINTS (PDPS) ..o ecceeeecte e creeemneneneeee e 18
3.3.3. THE PoLICY ENFORCEMENT POINTS (PEPS)......cccciitrmciininirtticeeeceeeeieennieee, 19
3.4. THE OUTSOURCING AND THE PROVISIONING MODELS ...cccoeeenacesccseacee 19
3.5. WHY NOT DIRECTORIES? ..ccceureeeaeasecane steeesstssssesesstasannsssnesesenssssssensnsianss 20
3.6. BENEFITS OF PBN ..caueeeeecctocteecnccssctosissssssssnsessncassssassssnssssscssssesssssssssnce 21
3.7. PBN PROTOCOLS: COPS AND ITS EXTENSIONS ..ccecceersccassccscscssssoancns 22
3710 COPS ceoeeeeeeeeeeeeeeeeeeetaeeeses e st sen s sss e b bt a s se e e et sas 23
3.7.1.1. COPS Message FOrmM@Lcouuueeeinuiineimeieeceeeeie ettt 24
3.7.2. COPS EXTENSIONS (CLIENT-TYPES)....cccorterrreureieemecmermerucenssssrrnsemsssssssanaessesassenns 25
3.8. COPS-PR........cvvrrciercccccneannnnses eeteseeesesessrrranasessssssssssssssssrasrasanas 25
3.8.1. THEPoOLICY INFORMATION BASE (PIB).....u et 26
3.8.2. THE STRUCTURE OF POLICY PROVISIONING INFORMATIONcccoceeereemnennnncrenaneenns 27
3.8.3. COPS-PR EXAMPLE..........ccvceisianereeressesresmsesseasssseseassenssensssesssssnsasassesssnessssesernrnns 28
3.9. CONCLUSION....cccrsereaceessesssnrssosssssssnsssssssssssssssssssssssssesasansessasssssanasssssasssss 30
CHAPTER 4. META-POLICIES IN COPS-PR 32
4.1. COPS-PR SHORTCOMINGS «eccceccsssesssssrsssossssssssssssssssssnssssasssssssssssasasssons 32
4.2. MOTIVATION reseseeetionttetttntttttaiesisesasserseserasssntorestetassteraesissnanttes 34
4.3. THE CONCEPT OF META-POLICIES ...ccicicecrasassnsensrscecssssssscncssasassssssssass 34

-vi-

4.4. FORMAL DEFINITION........ S ceevesssusnasnsansnananes SRR, ¥ 4

B.A.]. PARAMETERS «.cnteieeeeetseresssssssssssssssesstosemmsasnsnssssmrsssnsssmsssesesssmsansmaronsssmsnsmsssssssosnssnsen 38

4.5, EXAMPLE auueceereceersecesserssseessssssssnsssmssessassssstsssassssssssssesssasessesssssasssnsesasssase D

CHAPTER 5. REQUIREMENTS AND DESIGN 42
5.1. EARLY REQUIREMENTS.. ceeeessessesasssssssnsessessaansasnsssssassed 2
S5.1.1. GENERAL REQUIREMENTS ...euuutieeeeremtmrcnmecaenseraeseenressessmsssessmmssstessmemsesssesasssassssens 42
5.0.2. WHY APIB T .ottt secess s s s s n s s n s snn s tn s s e s s setesaee sene s sernnsnssons 43
5.1.3. COPS-PR/PIB REQUIREMENTSoceisrttermceremtereemmnrmmnnnsmnresstasanssstensssesseasssocees 44
5.2. ANALYSIS ve sessscssvessonsessesease vereessserssnserasersesesssasned D
5.2.1. COMMUNICATION AND STORAGEc.uutereeuiirrrrrsrensnnsesaisssssssesrossnnanasnssnssnnscosaens 45
5.2.2. META-POLICING DATAoitiiriciiiiticieeeacrnrtneansasn st anasnesssnnessnsseeessasnnnans 45
5.2.2.1. MeIQ-POLICIES ..eueeeeieeeeeeieneccne et e e et s 45
5.2.2.2. CONAIIONS . cuuveeverceeeeererrereeeeeeeeeeereeseeraeseseeeeenneeasrsssasssrsnssaassnieseeesssssessnersassns 45
5.2.2.3. ACHOUS «ceaoeneneeeeeeereeeeereersesesssssesaassessrnnnssssnenssmertonsssssasasssasnsnsnsrsssssssresseennrnrens 48
5.2.2. 4. POFQIMEIETS..ueuneeeeeennaesversereesseseseernrussnnessaceensasemissssssersrrnnmmnnsssnssnsnsssnssssesnsannas 48
CHAPTER 6. THE META-POLICY INFORMATION BASE 49
6.1. PIB DEFINITION ..cccortecesassesssessssssssssesssssassassssnasssssassassassssssssassasssasassassansdd
6.1.1. THE CAPABILITIES GROUP.....cceietrrrmrreneerunnnnenereerenrrrrrnasessstanesnatosatesasaassseesssnsose 50
6.1.2. THE BASE META-POLICY GROUPocomrirreiremmiiiannrerieremerrrresemenssetmnasiseosensessens 50
6.1.3. THE CONDITION GROUP........cutmmuenneneerernrreareeresssesmsssssmmssmmnrmrssrsssisssmsasenseseseassnns 51
6.1.4. THE ACTIONS GROUPccoveeverreeecociiemioreearaaaesiassesssannssssassssssssassstsesssssesssssssseneneses 53
6.1.5. THE PARAMETER GROUPccccoriiriretimiiiiennieiicesssseensnssssnnsesssssasescesssisnassssesssnsnennas 53
6.1.6. OVERVIEWOEFTHE ENTIREPIBoooiiiiiiiiiiiiiiiii ettt 55
6.2. COMMUNICATION & STORAGE ...cccceueeeee cesscsacaransans seseesssssssassssssssnasasees IO
6.2.1.1. REGUESLS ..eeeeeenreeecnreeneeerereeeietesicssissass e saaesa s et s ssnsa st st e ssesbe s e sn e s osbusinnbee 56
6.2.1.2. DECISIONS.ceeeeeeeeeeeereereireeesaseaasasesasasseassensasnssenanessssemmannssrsssssressantesssnssnssnnasasias 56

(IR0 B T £L-J /1o] o X OO 57

6.3. PEP OPERATIONY
6.3.1.1. Installation of meta-policing data.......ccccocoeevvemeeenmieioneoerenaveerecceneeees 58
0.3.1.2. PAIrQmMELETS.........ueeeeeeeeeeeeeeeeeeetteeceee ceerteetnreessteeceseeeenssansens s s s s anneesesens 58
6.3.1.3. CORAIIIONS c.eeeeeeeeeeeeeeeeeceeeaecececncnas coeeaeratstereseseeaemenaas s see s as samn e eesenearans 59
0.3. 1.4, ACHTONS couueeeeeeeeeeeeeeeeeeeeeeeeeeecee e eceesemsnnnesesaeaseaesasas e s oessassssassssonsmemmmannes 60
0.3.1.5. CONSUICES ceeeeaaaneeeeeeeeeeeeeeeeeeeeeeeeeee et v et ceeressassa e se e e e na s ea e s em e tecmnessaaseaaans 60

6.4. BACKWARDS COMPATIBILITY .ccceesaeesssmsaensees cesereesesasesseseenes eesssesnnenns .61

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 63

7.1. CONCLUSIONS .ecccceereanaonces csmesa sanenene cesccasancasssseascscsessansODI

7.2. WORK IN PROGRESSccocveresecenssonsanssssmssassassssssssssssssssssnssssssssssessanssennesd

7.2.1. IMPLEMENTATION AND TESTING..cocceeeieeatimnnreesarereeraeassassesasansnnnmeeceeessreseasaann 64
7.2.2. CONTRIBUTION TOIETFuniiiriee et e et e e s ee e e e e e s s e saesecmmnnanes 66
7.3. FUTURE RESEARCH ...cccceeeictttacccnanescsssesnaccerescscssescasannasssses SR 1
7.3.1. META-POLICY HIERARCHIEScuccttiimmiererictine i necee i e s seeesense s e cessesseesessensaesines 66
7.3.2. META-POLICIES AND ACTIVE NETWORKS ..ccirtiimiiiinireicticnenieciesinenemmnemreeneesaeens 67
7.3.3. META-POLICIES AND DIRECTORIES ..ceeeeeeeramerieireeernreeerererereesseesemessssseemonannnensnnenes 69
7.3.4. MOVING THE PDPS TO THE NETWORK ELEMENTS...ccc.ceuiiiiiriarienecniecneeeneenreseeees 69

REFERENCES 70

APPENDICES 76

APPENDIX A. THE META-POLICY PIB....cuareteirinsnricsccsccacnrancccnaanes S r |

APPENDIX B. RELATED PUBLICATIONS (ABSTRACTS) cccetercsseccsscsessssecessees 108

-viii-

Chapter 1.

Introduction

1.1.Purpose and Goals

This thesis was conducted as a part of a greater research framework that investigates
issues towards self-configurable networks. In order to achieve this goal, we believe that
two conditions must be met. First, the level of abstraction in Network Administration
needs to be raised, so that a higher degree of automation can be allowed. Second,
intelligence needs to be pushed towards the managed devices. These two properties, the
intelligence of the managed devices in combination with a high degree of automation,
will allow the existence of “smart” devices that configure themselves by getting or
generating such configuration data that will allow them to adapt to the network state and
needs at each specific moment. Our research has two dimensions that address these two

conditions, respectively.

Policy-Based Networking (PBN) is a modern trend in Network Management within the
first dimension: It raises the abstraction of Network Management by using high-level
policies, from which configuration data for the network devices are automatically
generated and distributed to the network elements. However, PBN fails to address
sufficiently the second dimension: PNB is not a highly centralized model, since it uses
special policy servers, which can be distributed within the network. Nevertheless, very
little functionality is actually pushed inside the managed devices, which depend on the

constant presence of the policy servers to operate properly.

CHAPTER I: Introduction 2

We believe that PBN is a very promising management technique that will affect
significantly the future of Network Management. The purpose of this thesis is to enhance
the PBN by developing it in the second dimension, too, thus allowing the existence of
self-configurable network elements. More details on our goals, as well as the motivation,

is presented at the next chapters, along with the necessary background information.

1.2. Dependencies

This work defines a COPS-PR PIB, using the SPPI (Structure of Policy Provisioning
Information) specification. At the time this work was conducted, COPS and COPS-PR
were RFCs”, and SPPI was an internet-draft’; hence they may be modified before they
reach their final form. Future versions of COPS and COPS-PR are not expected to
modify the core of the protocols or the PIB functionality and semantics, on which this
work is based. However, modifications of the SPPI specification, which is used to define
the classes of the PIB, may make the output of this work syntactically out of date.
Nevertheless, the revision of the PIB proposed here to make it consistent with the newer

SPPI versions should be an easy task.

" In IETF (Internet Engineering Task Force), each new specification is published as an internet-draft.
These drafts are widely available, have no formal status, are subject to removal at any time and evolve
according to the comments and feedback that they received from the Internet community. If an internet-
draft receives significant attention, becomes relatively stable and mature and is globally approved, it
evolves into an RFC (Request for Comments). The RFC is an official document that describes the
specification in a complete and well-understood way, and is approved by the majority of the Internet
community. As with internet-drafts, RFCs do evolve, however the modifications are usually moderate.
When the RFC has reached a state where no more modifications are considered necessary, it may evolve

into an internet-standard.

CHAPTER 1: Introduction 3

1.3.Organization of This Document

The structure of this document is as follows:

This chapter, Chapter 1, briefly presents the goal of our work and describes the
structure of this document.

Chapter 2 discusses Network Management and the rmodern trends that seem
likely to affect it in the near future.

Chapter 3 presents Policy-Based Networking, COPS and COPS-PR. A small
example demonstrates how COPS-PR works.

Chapter 4 presents the motivation of our work and imtroduces the concept of
meta-policies. The example of the previous chapter is used in order to
demonstrate the use of meta-policies. Finally, meta-policies are formally defined.
Chapter 5 justifies our decision to use a PIB to implement meta-policies,
presents and analyzes the requirements and discusses the design details of the
PIB.

Chapter 6 defines the PIB. The PIB classes are described and how the data
stored into these classes control the behavior of the device is defined.

Chapter 8 concludes this thesis by outlining the work in progress and presenting
our future research goals, which mainly concentrate on further meta-policing
enhancements. We also describe how other managememt techniques (especially
Active Management) can be used to increase the power and efficiency of our

work.

CHAPTER 1: Introduction 4

1.4. Terminology — Glossary

This document follows the terminology adopted by IETF and other standardization

organizations, as outlined in [1]. The most commonly used terms are summarized here:

PBN - Policy-Based Networking: A management technique based on high-level
policies.
PDP - Policy Decision Point: The Policy Server that distributes policing

decisions to the PEPs, according to the high level policies.

PEP - Policy Enforcement Point: The consumer of the policies. It enforces the
policing data received from the PDP to the managed device.

COPS - Common Object Policy Service: The protocol that is currently being
developed by IETF, in order to implement PBN.

COPS-PR - COPS for Policy Provisioning: An extension of COPS, targeting policy
provisioning.

PIB - Policy Information Base: A special tree structure maintained by the PEP,
similar to a Management Information Base (MIB), where all policing data
for this PEP is stored. The content of the PIB determines the behavior of
the device.

PRC - Provisioning Class: A class that defines the format and the semantics of a

piece of policing information inside the PIB.

PRI - Provisioning Instance: A specific instance of a PRC.
PRID - Provisioning Instance Identifier: An identifier that uniquely identifies a

PRI inside a PIB.

Chapter 2.
Network Management

2.1. Definition

Network Management relates to planning, deploying, operating, monitoring and
controlling the network in order to ensure that it is always running undisturbed and
efficiently, while its resources are best utilized. Network Management starts with the
design and deployment of the network; however, after this initial phase, it is mainly
associated with maintenance tasks that collect and analyze data from the various network
elements. These data can reveal abnormal or emergency situations as soon as — or even
before — they occur. Also, these data allow the administrators to monitor the usage of the

network resources, and according to it, fine-tune the network parameters and plan future

upgrades.

2.2.The FCAPS Framework

Network Management may be divided into several functional areas. ISO has
distinguished and standardized five major ones: Fault, Configuration, Accounting,
Performance and Security Management; this standardization is known as the FCAPS
Jramework (2], (3], [4]:

e Fault Management deals with detecting, isolating, fixing and recording errors that

occur inside the network.

CHAPTER 2: Network Management 6

e Configuration Management has to do with maintaining accurate information on the
configuration of the network (hardware and software) and controlling parameters that
relate to its normal operation.

¢ Accounting Management relates to user management and administration, as well as
to accounting and billing for the use of the resources and services.

e Performance Management attempts to maximize the network performance. It is
strongly related to QoS provisioning and factors like resource utilization, delay, jitter
and packet loss.

e Security Management deals with ensuring security and safety in the network.

Although this work concentrates explicitly on Configuration Management, it covers
implicitly all five management areas, since all of them relate somehow to the appropriate

configuration of the network devices.

2.3. Traditional Network Management — SNMP

The management of the network devices, such as routers and switches, has always been a
hard task [4]. Initially, the configuration was done through the Command Line Interfaces
of the devices; in most cases, the administrator was required to configure each of the
devices independently, even when these were configured to operate similarly. However,
this soon appeared to be inefficient: while the networks started growing considerably
both in size (number of managed nodes) and in complexity (different types of devices,

number of configuration parameters), the need for automation became apparent.

For several years, the Simple Network Management Protocol (SNMP) gave a
satisfactory solution to the problem. SNMP is based on special databases, called
Management Information Bases (MIBs), maintained by each network device. MIBs

provided a standard interface to manage objects on the devices, in a less device-

CHAPTER 2: Network Management 7

dependent way. This raised the level of abstraction and allowed devices to be handled in
a more unified way. In this way, SNMP allowed the administrators to manage the

network remotely and to automate various management tasks.

However, SNMP (versions 1 and 2) was designed mainly for monitoring purposes and,
although it managed to give a satisfactory solution to the problem for a while, now it
seems to suffer from significant scalability and efficiency problems [4]: SNMP is a
highly centralized protocol. In fairly large networks, too many resources may be
consumed just to report normal network operation, while the detection of erroneous
events and the reaction to them may be too slow. Besides, although SNMP managed to
raise the level of abstraction in Network Management, the operations are still device-
dependent. The growth of the modern networks demands a further increase in the level of
abstraction, as well as decentralization of the management centers. These issues are
examined by standardization organizations (such as IETF), which guide the future of

Network Management.

2.4. Standardization Organizations - The Role
of IETF

The Internet Engineering Task Force (IETF) [5] is “the protocol engineering and
development arm of the Internet”. Established in 1986, it is “a large open international
community of network designers, operators, vendors, and researchers concerned with the

evolution of the Internet architecture and the smooth operation of the Internet”.

IETF hosts various working groups that cover different areas (e.g., routing, transport,
security, etc.). These groups identify problems in the corresponding areas and address

them by developing standard protocols.

CHAPTER 2: Network Management 8

IETF is closely related to other Internet organizations, such as the Internet Engineering
Steering Group (IESG), the Internet Architecture Board, (IAB), the Internet Assigned
Numbers Authority IANA) and Internet Society ISOC).

IETF plays a crucial role in the evolution of Network Management, since several of its
working groups are related to it. For instance, IETF is the organization that has
standardized the SNMP protocol. IETF attempts now to address the issues of SNMP
through its next version (SNMP v.3). However, there are serious doubts whether SNMP
will eventuaily manage to overcome its limitations and become the dominant protocol for
Configuration Management again. This is why IETF also attempts to develop alternative
management techniques that may replace or complement the existing ones. The role of
IETF and its relation to Network Management will be further discussed later in this

document.

2.5. The Future of Network Management

Traditional management techniques are not sufficient to cover the needs of modern
Network Management. The need to be replaced, updated or augmented with new ones is
evident. Several promising techniques attempt to address the existing issues in various

ways. These techniques are presented in this section.

2.5.1. SNMPv3

As mentioned before, SNMPv3 [6] is currently being developed by IETF, in order to
resolve several issues of SNMPv2. In general, the new version attempts to unify the two
different versions of SNMPv2 (versions 2u and 2%*) [6]. Also, it attempts to include
administrative and security functionality in the protocol. However, SNMPv3 does not
seem to address adequately the scalability issues of SNMP. Nevertheless, due to its

CHAPTER 2: Network Management 9

simplicity and the wide acceptance and use, it is expected to play a significant role, at

least for monitoring, in the near future.

2.5.2. Active Management

Active Management is an attempt to take advantage of the properties of Active Networks

in order to enhance the current management techniques, or create new ones.

Active Networks [4], [7], [8], [9] is a relatively new concept that emerged from the broad
DARPA community in 1994-95. Architecturally, they can be divided into the Discrete
(or programmable) and the Integrated (or capsule) approach [4], [7], [8], [10]; however
discussing their difference is out of the scope of this document. In Active Networks,
programs can be “injected” into the active devices (such as routers or switches) and
affect their behavior and the way they handle data, even on per-application or per-user
basis. Active routing and switching devices can be programmed to perform complex
tasks and computations according to the content of the packets, which may even be
altered as they flow inside the network. The term “active” is justified in two ways [8]:
First, active devices perform customized operations on the data flowing through them.
Second, authorized users/applications can “inject” their own programs into the nodes,
affecting the way their data is manipulated. Due to these properties, open node

architecture is achieved, where custom protocols and services can be easily deployed.

The radical changes that Active Networks introduce give to computer networks a flavor
of distributed systems, and can be beneficial for a wide range of applications and tools
(4], [8], [10]: Firewalls and proxies; nomadic routers; multimedia, real-time
applications; multi-path routing; these are just the beginning of a long list. Of course,
Network Management techniques can also be enhanced by exploiting the properties of

Active Networks. We have already discussed extensively the impact of Active Networks

CHAPTER 2: Network Management 10

on Network Management [4]. Here, we will just cite the results of the discussions

conducted there.

First of all, Active Networks enable the distribution of the management applications and
tools [4]. Mobile Agents, programs that iravel inside the network and perform several
tasks on behalf of the application that generated them, can be used for this purpose.
Monitoring centers can be distributed in the network, moving the decision taking closer
to the managed devices, and making the monitoring and reactions more prompt and
precise. MIBs can be augmented with customizable variables, and alerts can be initiated
by the devices. Management can become more direct and customizable, and the network
can be managed during abnormal situations, such as high congestion or network

partition. Several deficiencies of SNMP can be overcome.

However, apart from the general advantage of management distribution, Active
Networks have positive impact on each specific FCAPS area, as well. Fine-tuned
monitoring and fast reactions make Fault Management more effective and the network
remains manageable during situations in which errors are present. Flexible and robust
protocols can be easily deployed, and backup mechanisms can be configured.
Configuration management is also significantly enhanced. Mobile agents can be used for
inventory and software management. Resources can be partitioned and Virtual Local
Area Networks (VLANSs) and Virtual Private Networks (VPNs) can be created easily.
Accounting Management becomes more accurate, since the users are billed according to
the real use of the resources, and new types of Service Level Agreements (SLAs) can be
defined. Performance can be increased due to new Quality-of-Service (QoS) protocols
that use resources wisely, better traffic policing and shaping mechanisms, multi-routing
protocols and application-specific handling of the traffic. Security Management can be
enhanced by using special mobile agents that inspect and safeguard the network (e.g., by
blocking Denial of Service attacks or by tracing back attackers with fake IP). Also,

access to the network resources can be controlled more strictly and precisely. Active

CHAPTER 2: Network Management 11

Networks give a new dimension to Network Management by enhancing the existing
methods and techniques and allowing the development of novel, radical ones. More

details can be found in our previous work [4].

Active management has motivated and influenced significantly our work, although it
does not relate to it directly. Our work is placed in context with it in the last chapter of

this thesis.

2.5.3. Directory-Enabled Networking

Another promising trend in Network Management is Directory-Enabled Networking
[11], [12]. Directory-Enabled Networking is based on Directories, special purpose
databases, storing configuration data for network devices and applications. The devices
(or applications) connect to the Directory, query it, retrieve the appropriate configuration
parameters and install them. This model allows a high degree of automation in the
process of configuration management, and makes the concept of “plug-and-play”
networks seem more feasible and realistic. Note that the concept of Directories is not
something new: Directory services, such as DHCP, DNS, authentication, or user
directories, can be found on current networks. However, Directory-Enabled Networking
attempts to integrate all these different directories (which may represented the same or
similar data, but not necessarily in the same format) into a single one that will unify and
hold all such information, and make management easier and more consistent. Work on
this area is mainly coordinated by the Directory Enabled Networks/Desktop Management
Task Force (DEN/DMTF) [13].

Architecturally, Directory servers resemble DataBase Management Systems (DBMSs).
The main difference is that the configuration data seldom change; hence directories are
optimized for rapid responses to high-volume lookups; but their performance in updates

is much poorer. Many other features found in DBMS systems, such as triggers,

CHAPTER 2: Network Management 12

cascading deletes or transaction rollbacks are also of less importance. A matter of a great
importance, however, is consistency and load balancing between several servers that
implement 2 single Directory — because Directories are physically distributed, but

logically centralized systems.

configuration

Earameters

Management
Consoile

Direcotry
Server

o rkstation

Figure 2.1: Directory-Enabled Networking

Directory-Enabled Networking has one significant deficiency: Directories are not
efficient for non-static data. However, in Network Management, dynamic data (such as
resource usage, statistical information or network events) may be necessary for some
aspects of the configuration of the devices. Directories cannot handle such data
efficiently, so other mechanisms are required in order to augment the functionality of the
Directories. However, Directories handle the issue of static configuration data pretty
well, and they are expected to play a significant role in the evolution of Network

Management in the future.

2.5.4. Policy-Based Networking

Finally, another promising technique for Network Management is Policy-Based
Networking. The central concept in Policy-Based Networking is policies, i.e., rules that
determine the behavior of the network nodes. The key idea is that the administrator edits
high-level policies that determine goals (rather than procedures). These policies are
processed by special servers, which, bind them with the current network state, transform

them into dynamic configuration data and send them to the network devices, determining

CHAPTER 2: Network Management 13

in this way their behavior. The advantage of this model is that (i) the high level of
abstraction in editing the policies simplifies the administration of large and complex
networks, (ii) automation ensures the integrity and consistency in the behavior of the
devices across the entire network, and (iii) the dynamic binding of policies at the policy

servers allows new types of policies to be introduced more easily.

Policy-Based Networking will be discussed in detail in the next chapter.

2.6. The Big Picture - Our Contribution

Although all these technologies sound promising and address important issues of
Network Management, none of them seems to be sufficient to handle all of them. For this
reason, it is considered highly unlikely that one of these techniques will manage to

dominate the others.

A more realistic scenario is that these will need to be combined and integrated, in order
to efficiently manage present and future networks: Devices and services can be
automatically configured through directories; the network behavior can be controlled
through policy-based networking; SNMPv3 can be used to perform monitoring tasks in a
secure fashion and active management and mobile agents can be used to enhance all

previous techniques by making them more distributed and efficient.

Our work is, in general, focused on how PBN can become more decentralized and
distributed, and how the other discussed techniques can be used to further improve its
performance and efficiency. PBN raises the level of abstraction of Network Management
and distributes it into the network to a certain degree. However, the intelligence is still
concentrated at the level of the policy servers, which makes the devices depend on them.

Our goal is to push intelligence towards the devices and make them more independent.

CHAPTER 2: Network Management 14

Also, we would like to allow the devices to exploit and integrate the other management
techniques in order to enhance Policy-Based Management. Actually, we believe that
Active Networks will give the devices the resources and the ability to perform complex
tasks that can be exploited in a Policy-Based environment. This capability will allow
them to implement some (and possibly, all) of the PDP functionality and become more

independent and self-controlled.

Chapter 3.
Policy-Based Networking

3.1.Overview

Policy-Based Networking (PBN) has emerged as a promising paradigm for network
operation and management [14], [15]. It is based on high-level control/management
policies [16], [17], [18], i.e. rules that describe the desired behavior of the network, in a
way as independent as possible of the network devices and topology. The key concept in
PBN is that by describing “what” the network is supposed to do, rather than “how”
(which happens with the traditional management techniques), the network details are
hidden from the administrators. This makes the network easier to control, increases its

flexibility, and ensures a consistent behavior across it.

PBN distinguishes two basic entities: the Policy Enforcement Points (PEPs) and the
Policy Decision Points (PDPs) [1], [19]. The PEPs typically reside on the managed
devices and control them according to directions that they receive from the PDPs. The
PDPs process the high-level, abstract policies, along with other data such as network
state information, and take policy decisions in the form of configuration data for the
PEPs. In this way, the high-level policies that the administrator sets are enforced within

the network devices. PBN is illustrated in Figure 3.1.

15

CHAPTER 3: Policy-Based Networking 16

N
nfigur:

Configuration
Data

3.2.Policies in PBN

As mentioned before, the basic concept in PBN is the management/control policies that
describe the desired behavior of the network elements. The concept of policies is not
something innovative; nevertheless, what is new in PBN is that the policies express goals

rather than procedures.

In traditional Network Management, the administrators set some goals, and then create
procedural policies that implement these goals. For instance if the administrator wants to

give high priority to the manager subnet, he/she creates a policy similar to the following:

CHAPTER 3: Policy-Based Networking 17

If ((SourcelP matches 10.10.1.0/24) or (DestinationIP matches 10.10.1.0424))
then {remark with DSCP=6}

This policy has hardcoded the facts that (i) the manager subnet is 10.10.1.0/24, and (ii)
high-priority is achieved by setting the packet’s DSCP to 6.

However, in the PBN approach, the administrator sets as a policy the goal itself:

If ((SourcelP matches Manager Subnet) or (DestinationIP matches Man.ager
Subnet))
then {give high priority}

Of course, in this case, it is implied that the administrator somehow provides additi_onal
information that allows this policy to be interpreted (such as which is the “Mansager
Subnet” or what “high priority” means). However, this information is not hardcoded into
the policies themselves. Hence, if for example the manager subnet is expanded to inc’ lude
10.10.2.0/24, the administrator will only need to declare this fact. All policies relate=d to
this subnet will still be valid, since they do not contain information directly related tco the

network topology or the devices.

® DSCP (Differentiated Services Code Point): In Differentiated Services, the packets receive diffeerent
treatment by the switching devices, according to the TOS field of the IP header (also named DS by—~te in
Differentiated Services terminology). Six of its bits are used as a Differentiated Services Code FPoint
(DSCP) in order to categorize each IP packet to one of the DiffServ classes (the other two bits are not - used

by DiffServ).

CHAPTER 3: Policy-Based Networking 18

3.3.PBN Components

3.3.1. Management Console

Policies are edited using special management tools [20]. These tools provide interfaces
that allow the network managers to edit the policies in a high-level, abstract way (Figure
3.2). Syntax, semantics and basic conflict checking are performed on these policies,

which are then distributed, either directly or through the use of a directory, to the PDPs.

TRV 38 ¥ sy s e e e - . T
0 S L O T b O e I
TN ART 2y Ao S Sy D e Q roe cornns [FPuamae

Sanger
U Yorbarg ety
Lioa TS W s E T rr—y
® avphirbes
A Tmwcormut Syt i
Ig;.-g_.
SR P s s fiues 3 bl b S ot M Pt
> TRAF WA e 2 FAre Sk 16 ae BY afuom A
< [Boden Mak der o POLP GTANGE mI W s 44

P IO
-

Figure 3.2: Policy editing tool (from [20])

3.3.2. The Policy Decision Points (PDPs)

The Policy Decision Points are responsible for mapping the abstract, high-level policies
into low-level, device-specific configuration data [19]. Functionally, the PDP takes
policy information entered from the management system, and process them along with
other data, such as network state information. The PDP combines the policies with this
information and produces the appropriate configuration data for the PEPs that it controls.
The configuration data for each PEP is generated according to the capabilities and

limitations of the device that this PEP controls.

CHAPTER 3: Policy-Based Networking 19

It is important to emphasize that PDPs do not simply distribute policies to the PEPs. The
role of a PDP is (i) to combine the high-level policies with the network state in order to
determine the desired behavior of every device at that specific moment, and (ii) to
generate the appropriate low-level configuration data for each device (in a supported
format and according to its capabilities/limitations) that enforces this behavior. This
implies that if the network state or policies change, the PDP may need to readjust the

behavior of the devices, by sending updated configuration data.

3.3.3. The Policy Enforcement Points (PEPS)

The Policy Enforcement Points are the policy consumers {19]. Their role is to enforce the
configuration data that they receive from the PDPs. The PEPs always obey the

commands they receive from the PDPs.

3.4.The Outsourcing and The Provisioning
Models

PBN is based on a client-server model of interaction between PEPs and PDPs. Two

modes of operation are distinguished: the outsourcing and the provisioning [19], [21].

In the outsourcing model, the PEP receives a signaled event that needs to be treated
according to some policy criteria. If the PEP cannot treat this event according to the
already installed configuration data, it issues a request to the (appropriate) PDP, notifying
it for the event occurrence. The PDP repiies to the PEP by sending the data that must be
installed in order to handle this event. This model is known as the “pull” model since the
PEP “puils” configuration data from the PDP, or as “reactive” model, because the PDP

reacts to the PEP requests.

CHAPTER 3: Policy-Based Networking 20

On the other hand, mn the provisioning model, when the PEP connects to the PDP, the
latter sends to the foxrmer all the applicable policies. These policies are stored in the PEP,
and all incoming evesnts are served according to them. This model of operation is known
as the “push” model since the PDP “pushes” policies to the PEPs, or as “proactive”

model because the PDP sends in advance the appropriate policies to the PEPs.

In both cases, the PIDP is aware of the policies enforced by the PEP, and it may decide to
update them by installing, deleting or replacing them, whenever it decides that they no

longer reflect the des3ired behavior.

3.5. Why Not Directories?

Policy-Based Netwoxking ard Directory-Enabled Networks may seem to have several
similarities: Both attempt the raise of the level of abstraction and the automation in the
configuration of the network devices. Besides, functionally, the PDPs are similar to
Directories, since they both provide the appropriate configuration data to the network

devices. However, significant differences do exist.

Directories are simple databases that supply the devices with responses to the queries the
latter submit. Directories cannot use the data that they store in order to generate other
data. The processing of the data that they produce is restricted to simple database-style

operations.

A PDP, on the other hand, does not simply distribute configuration data. The most
significant and difficult task of the PDP is to generate these data from the high-level

policies, according to the current network state.

CHAPTER 3: Policy-Based Networking 21

To sum up, the difference between Directories and PDPs is that the nature of data that
they distribute is different. Directories are efficient for static configuration data, which
usually provide the basic configuration for the devices. Such data may include the IP and
the subnet mask of the device, the DNS servers or the defauit PDP that controls this
device. The PDPs, on the other hand, provide policies in the form of dynamic
configuration data, which are produced by the PDP according to the current network state

and may be updated at any time.

Directory-Enabled Networking and Policy Based Networking are two technologies that
atternpt to address different kinds of problems, and can be considered as complementary
to each other. They can coexist in the same network in order to maximize its
performance. We have already seen an example of such a cooperation in Figure 3.1,
where directories are used in order to supply the high-level policies to the PDPs of the

network.

3.6. Benefits of PBN

By using policies that describe goals instead of procedures, the policies are separated
from the network details. This approach has several advantages over the traditional
management techniques; the most important of them are [12]:

e High degree of abstraction: The policies are written in a high-level, abstract way, as
independent as possible from the network topology, protocols, services and
applications. The administrators can easily determine the behavior of the network by
reading the policies, even if they were not their authors, or a long time passes. The
behavior of the network is more likely to reflect the goals of the administrators, since
the policies now express exactly these goals, rather than procedures that attempt to
describe them. Changes in the topology of the network, its protocols, services or

applications do not affect the policies, since the goals remain the same — the

CHAPTER 3: Policy-Based Networking 22

modifications are automatically integrated and the same policies remain applicable in
the modified network.

e Automation - Consistency: The PBN model implies high level of automation. This
automation ensures consistency in the device behavior across the network, and
simplifies significantly the process of configuring the devices.

e Dynamic policies: In PBN, the policies are separated from the network details. This
binding only takes place on the policy servers, and it is a dynamic procedure. When
the network state changes, the policies are updated to reflect these changes. This
allows new types of policies to be defined, and gives extra flexibility to the network
managers. An example of a dynamic binding of a policy is the following: Suppose
that the policy “Give high priority to engineers” has been set. Whenever an engineer
logs on to a workstation, the PDP is informed of this fact and generates such
configuration data for the network devices that will give high priority to the specific
workstation. Such policies are very hard to implement with traditional management

techniques.

3.7.PBN Protocols: COPS and Its Extensions

IETF attempts to standardize the communication between PDPs and PEPs through the
Common Open Policy Service (COPS) [21] protocol and its extensions. COPS is being
developed by the Resource Allocation Protocol (RAP) [22] working group. Although
RAP purpose is to “establish a scalable policy control model for RSVP” [22], COPS has
received significant attention from other research groups, within and outside IETF, and

applications based on it have already emerged [12], [20], [23], [24], [25].

CHAPTER 3: Policy-Based Networking 23

3.7.1. COPS

The policy protocol is designed to communicate self-identifying policy-related
information, exchanged between the PDP and the PEP. In COPS, each PEP may have
one or more clients of different client-types; different client-types exist for the different
policing areas (security, QoS, admission control, accounting, etc). By supporting the
appropriate clients-types, the PEP provides a way to control the various management

aspects of the device.

In COPS, when a PEP boots, it connects to the PDP and its clients identify themselves by
reporting their capabilities and limitations. Note that a PEP may have clients that each
connects to a different PDP. In the outsourcing mode, if the PEP receives an event that it
does not know how to treat, it issues a request to the PDP, asking for configuration data
for this event. In the provisioning model, the clients register their capabilities to the PDP,
and the PDP sends the appropriate policies (in a pre-agreed format) that the PEPs should
enforce. In both cases, the PDP may update the configuration data of the PEPs. COPS
also describes synchronization procedures between the PDP and the PEP, and it defines
how the PEP should react if the connection to the PDP is lost. Furthermore, COPS

defines mechanisms that secure and ensure the integrity of the exchanged messages.

COPS does not define the format or semantics of the exchanged configuration data; it
just provides the means to exchange such data. The definition of the format and
semantics of the exchanged data has to be defined per client-type in additional

documents (typically developed by IETF).

CHAPTER 3: Policy-Based Networking 24

3.7.1.1. COPS Message Format

All COPS messages consist of a common header and a number of objects. The header of
the message (8 octets — Figure 3.3) identifies the type of the exchanged message. Ten

types of messages exist [21]:

1. Request (REQ) 6. Client-Open (OPN)

2. Decision (DEC) 7. Client-Accept (CAT)

3. Report State (RPT) 8. Client-Close (CC)

4. Delete Request State (DRQ) 9. Keep-Alive (KA)

5. Synchronize State Req (SSQ) 10. Synchronize Complete (SSC)

A detailed description of COPS is out of the scope of this document. However, we would
like to mention that the PEP initially sends a Request message (REQ), where it reports its
capabilities and limitations and asks for configuration data. PDP decisions, solicited or
not, are encapsulated within Decision messages (DEC). Report messages (RPT) are used
to report the success or failure of installing the PDP decisions, and to report the usage of
the policies (e.g., for accounting purposes). For more details, the reader may refer to

“The COPS Protocol” from IETF [21].

At the time this document is written, COPS is an RFC, hence modifications may take

place in the future.

0 1 2 3
Version| Flags Op Code Client-type
Message Length
...(COPS objects follow)...

Figure 3.3: COPS Header Format

CHAPTER 3: Policy-Based Networking 25

3.7.2. COPS Extensions (client-types)

The IETF RAP working group has also defined aiready some client-types for COPS.
These client-types are considered as extensions of the base COPS protacol, since they
define details for the format and semantics of the configuration data that is exchanged
between the PDPs and the PEPs. The most important extensions at this time are the
COPS usage for RSVP [26] and COPS usage for Policy Provisioning, or COPS-PR [27].

Here, we are particularly interested in the latter, which will be described in the next

paragraphs.

3.8. COPS-PR

RAP has developed COPS for Policy Provisioning (COPS-PR) [27] as an extension (or,
client-type) of COPS. COPS-PR was initially biased towards DiffServ policy
provisioning {28]. However, it appears to be suitable for several other management areas

(accounting [29], IP filtering [30], [27], security [31], etc. [32], [33], [34]).

As its name implies, COPS-PR operates only in a provisioning style, where the PDP
downloads all the relevant policies in its PEPs, and the latter serve all incoming events
according to these policies. In COPS-PR, the clients connect to the appropriate PDP
(different PDPs may control different clients in a single PEP), report their capabilities
and limitations, and request the initial policies to be downloaded to them. The PDP
processes the request of each client and, according to the global policies and network
state, generates and downloads the appropriate configuration data. If the network state or
the policies change afterwards, the PDP may decide to update these configuration data, in

order to keep the behavior of the managed device consistent.

CHAPTER 3: Policy-Based Networking 26

3.8.1. The Policy Information Base (PIB)

In COPS-PR, each client has to maintain a special database, called Policy Information
Base (PIB) [35], where it stores all the received configuration data. The PIB is a
structure similar to a MIB, and can be described as a conceptual tree namespace, where
the branches represent structures of data, or Provisioning Classes (PRCs), and the leaves
represent instances of these classes, called Provisioning Instances (PRIs). PIBs are
defined by COPS-PR only as abstract structures; the details of each PIB (PRCs and their
semantics) are specified in separate standard documents (such as internet-drafts or
vendor private documents). Different PIBs are defined in order to cover the various
management areas (Differentiated Services, accounting, security etc). PIBs are defined in
a high abstraction level; in this way they hide the details of the underlying hardware and
provide to the PDP a unified way to control the behavior of the devices, over a specific

management area, across the entire network.

PRC | PRI]
[PRI]
PRI
PRC | PRI |
[PRI |
PRC | PRI |

Figure 3.4: PIB structure

PRIs are identified within the PIB through a PRI identifier (PRID). The PDP can install
or update PRIs by sending an install decision specifying the appropriate PRIDs and their
values, or remove PRIs with a remove decision containing the PRIDs of the PRIs to be
removed. Policies are formed as a set of PRIs in the PIB; by adding or removing PRIs,

the PDP can implement the desired policies, which will be enforced at the device.

CHAPTER 3: Policy-Based Networking 27

It is important to highlight that the policies that each PIB can implement are predefined
(in the standard documents that define this PIB). In order to control a device, the PDP has
to map the high-level network policies and the network state into policies that can be

implemented in the PIB of the PEP.

The Framework Policy Information Base [35] defines a PIB with classes that are

common to all PIBs. This PIB should be implemented by all COPS-PR clients.

3.8.2. The Structure of Policy Provisioning Information

PIBs are defined using the Structure of Policy Provisioning Information (SPPI)
specification [36]. Since PIBs resemble MIBs, SPPI is based on the SMI (Structure of
Management Information) [38]. Although describing the SPPI in full is out of the scope
of this document, we will attempt to give an overview of the most important

characteristics that will be used later on.

PIBs are constructed as a tree of PRCs, with PRIs as leaves. The entire tree is under a
single, root PRC, with a specific identifier (PRID), usually assigned by IANA (for public
PIBs) or the vendor (for private PIBs).

Two types of PRCs exist. The first type is PRCs that group other PRCs. Such PRCs are
represented as intermediate nodes in the tree, without having any leaves directly attached
to them. Each PRC is described as a table with defined columns-attributes. Each attribute
has a specific semantic and type. Each row of the table is a PRI of the specific class.
Hence, by defining the column of the table, the attributes and the semantics of the PRIs

are defined.

It is important to distinguish the definition of the PIB from its actual data. The definition

of the PIB includes the definition of the classes (tables) and their organization into

CHAPTER 3: Policy-Based Networking 28

groups. On the other hand, the PRIs are the instances of these classes, and comprise the

actual data that is placed in the PIB.

3.8.3. COPS-PR Example

We shall use a small filtering PIB in order to show how COPS-PR works. The network
of our example is the network of a small company (Figure 3.5), with the following
topology:

o [AN address range: X.Y.0.0/16

e Subnets X.Y.1.0/24 (public), X.Y.2.0/24 (administrators), X.Y.3.0/24 (employees)

e A central router A that routes the LAN and Internet traffic, and serves as the Internet

gateway.

Suppose that the following high-level abstract access rules have been set:

#1. Internal LAN traffic is always allowed

#2. The administrator can always access the Internet, whenever and from wherever
he/she is logged in.

#3. During overall congestion, traffic berween the employee domain and the Internet is
denied.

#4. Internet can be accessed only during working hours (Monday to Friday, 9:00-17:00)
(Rule #1 has the highest priority, rule #4 the lowest)

Also, suppose that the term “overall congestion™ is evaluated according to whether router

A is congested, i.e., based on the load of its interfaces.

CHAPTER 3: Policy-Based Networking 29

WorkStations WorkStations
Domain Manager Employees
X.¥.1.0 Domain Domain
X.Y.2.0 X¥.30

Figure 3.5: The topology of the company example network

Suppose that the (PEP of the) routers of the network support a PIB with a single PRC.
PRIs of this PIB describe source/destination criteria that allow access to IP traffic within
the network. Each PRI in this PIB is a stand-alone policy of the form:

If ((Source matches Srcaddr/Srcmask) and (Destination matches Destaddr/Destmask))

then allow

Traffic that matches at least one PRI in the PIB is allowed. Traffic that does not match

any criteria (policies in the PIB) is, by default, denied.

Suppose now that the following events take place:

08:59: No administrator logged on 15:11: administrator logs on at X.Y.3.7
09:00: start of working day 15:20: no congestion

11:00: congestion detected 17:00: end of working day

11:05: no congestion 17:15: administrator logs out

15:08: congestion derected

CHAPTER 3: Policy-Based Networking 30

Figure 3.6 demonstrates snapshots of the PIB of Router A during the day: When the
router boots, the PDP sends a policy that allows all LAN traffic (PRID #1), which
implements policy #1. When the PDP detects the beginning of the working day (09:00),
policy #4 becomes applicable, and a PRI that allows traffic to/from the Internet is added
into the PIB (PRI #1 is now redundant; the PDP may decide to keep it or not; however
this does not affect significantly our analysis). When congestion is detected (11:00), the
PDP attempts to install policy #3. This policy is in conflict with the already installed
policy #4; however policy #3 has higher priority, and hence the employee subnet is
banned from Internet traffic. After a while (11:05), the network is no longer congested,
and the PIB is restored to its previous state. When the network becomes congested again
(15:08), the PIB has to be updated once more, as before. When the administragor logs on
at the guest subnet, however (15:11), traffic to/from the Internet to his/her IP is allowed.
Note that policy #2 is in conflict with policy #3, which bans traffic to the employee
subnet, however the former wins since it has a higher priority. When the network
becomes decongested (15:20), policy #3 is uninstalled, and policy #4 is installed again.
At the end of the working day (17:00), policy #4 is also uninstalled, and finally, when the

administrator logs out, policy #2 is uninstalled as well, denying all Internet access.

3.9.Conclusion

This section introduced Policy-Based Networking and outlined the COPS Protocol and
its extension for policy provisioning (COPS-PR). A simple example demonstrated how a
PDP controls a COPS-PR PEP (and consequently the behavior of the device) by
modifying the configuration data stored in its PIB. Despite its simplicity, this example is
sufficient to reveal some shortcomings of COPS-PR. The next chapter presents these
shortcomings, discusses how they motivated our work, and presents the concept of meta-

policies, which is our proposal to overcome these deficiencies.

CHAPTER 3: Policy-Based Networking

31

Boot,
request for
PIB data

“——
Router A
Beggining of
working day
-

Clock service,
PDP clock

Congestion
——

Router A
MiB

No

Congestion
-+

Router A
MIB
Congestion
-

Router A
MmiB

Administrator

LAN access
—_—

Deny Intemet

Allow Intemnet

Deny Internet

Aliow Intemet

DstAddr

Prid: index

DstAddr: Destination [P

DstMask: Destination Mask

SrcAddr: Source [P

SrcMask: Source Mask

toem glozee; ‘

to employeeg bl ot

to emgloyee§] "

/ILAN

//LAN
//nternet

/[LAN

/fpublic to everywhere
//everywhere to public
//managers to everywhere
//everywhere to managers

//LAN
//Internet

//LAN

/fpublic to everywhere
/feverywhere to public
/fmanagers to everywhere
/feverywhere to managers

jpaged in to admin i
1 Y. IILAN
Authentication 3 1X.Y.1.0] 24 | **** ! * || //public to everywhere
server 4 | **xx| * 1XY.1.0] 24 |{ /everywhere to public
S 1XY.2.0] 24 *¥*x**x] * //managers to everywhere
6 | xrxx| * X Y.2.0] 24 || //leverywhere to managers
7 | X.Y3.7] 24| *¥*x*x| * //admin to everywhere
8 | ****| * X Y.3.7{ 24 }| //everywhere to admin
No Allow Internet
Congestion to employees
R s — ™ /Mnternet
Router A /LAN
MIB /fadmin to everywhere
End of Deny Internet, /leverywhere to admin
working day il except of admin|
- —_—
Clock service, /[LAN
PDP clock /fadmin to everywhere
EAdministrator /leverywhere to admin
logged cut
-
Authentication /ILAN
server

Figure 3.6: Instances of the PIB of router A

Chapter 4.
Meta-Policies in COPS-PR

4.1.COPS-PR Shortcomings

The previous example demonstrates how the COPS-PR protocol is used in order to
communicate policing information between a PDP and a PEP, and how a PIB is used by
the latter in order to store this information. However, this example also reveals some

shortcomings of this model.

In COPS-PR, the high-level policies are reflected into the PIBs of the devices. PRIs are
installed in or removed from the PIB according to the current (network) state. When
various events take place, the state changes and the PIB is modified. Of course, the
occurrence of the same event more than once may lead to different PIB contents. (For
example, the end of congestion at 11:05 and 15:20 results in different PIB instances.) The
occurrence of the same events does not even imply that the PDP will send exactly the
same commands to the PEP. However, there is a certain correlation between the network

events and the PIB contents, which this model fails to take into consideration.

This shortcoming of COPS-PR has a great impact on its efficiency and performance. In
several cases the PDP has to send the same (or similar) commands, when the same event
occurs. In the previous example, for instance, while the network alternates between the
states “congested” and ‘“not congested”, the PDP needs to install and remove the PRIs

that deny Internet access to the employee domain. In a more complex example, a big set

32

CHAPTER 4: The Concept of Meta-Policies 33

of PRIs might need to be updated. The PEP needs to be directed about how to treat an
event, even if this event has occurred several times in the past. Hence, more PDP
resources (to regenerate the policies each time) and more bandwidth (to send them) are

consumed, than necessary.

A second limitation lies in the rigidity of the PIBs. PIBs are predefined structures, and
the high-level policies cannot directly map into them. The PDPs need to dynamically
project the high-level policies into policies that can be represented in the PIB. All
policies that do not precisely map to a supported policy type need to be processed at the
PDP level. In the previous example, the policy “During overall congestion, traffic
between the employee domain and the Internet is denied” cannot fit into the PIB, and has
to be processed by the PDP. The latter, depending on the overall network state, produces
the PRIs that are in conformance with the initial policy, for the given congestion status.
Then, the PEP implements the policies that these PRIs describe. In this case, the high-
level policy has to be processed partially by the PDP, and partially by the PEP.
Obviously, the involvement of the PDP in cases like this is usually neither efficient nor
desired. For the previous policy, for example, the PDP needs to query the MIB of router
A in order to determine if there is congestion; then send the appropriate policies back to
the router’s PIB. Obviously, this policy could be entirely processed at the PEP-level,
since congestion could be evaluated locally by the PEP. Similarly, for the policy “The
Internet can be accessed only during working hours”, the PDP is necessary in order to
determine the condition “working hours”, since this condition cannot be stored in the PIB
of the router. However, supposing that there is a clock service that broadcasts the date
and time over the network, this policy could also be evaluated entirely at the PEP-level.
The rigidity of the PIBs, though, does not allow any other kind of policies to be evaluated
by the PEP apart from these supported by the PIB, making in this way the presence of the
PDP necessary, even in cases where this could be avoided. This is a significant
drawback, since it makes the model very vulnerable to PDP errors or malfunctions and to

network error situations, such as network congestion or network failures.

CHAPTER 4: The Concept of Meta-Policies 34

4.2. Motivation

The previously discussed limitations motivated our work: The intelligence of the COPS-
PR model seems to be concentrated at the PDP level. PDP decisions always download
policies into the PEP, even when the same events reoccur. The PIB is a rigid structure
that allows only limited types of policies to be pushed into the PEP. The PEP depends on

the PDP presence, even in cases where this is not absolutely necessary.

This work attempts to extend the policy functionality of the PIB, so that the PEP will be
able to take more decisions simply by examining events. Initially, the PDP downloads
the applicable policies and directs the PEP how to react on certain events. Apart from
that, the role of the PDP is downgraded mainly to communicating such events to the
PEP, rather than modifying the configuration data. Also, the PEP can be programmed to

monitor some of these events by itself and initiate the appropriate actions.

Assuming this extended functionality, the PDP is able to control the PEP mainly by
communicating events, rather than policies. Also, the PEP is able to take certain policing
decisions by itself. In this way, intelligence is pushed towards the PEP. From a different

point of view, this work pushes some of the PDP functionality inside the PEP.

In order to achieve the described functionality, we use meta-policies, a concept which is

defined and discussed in this chapter.

4.3. The Concept of Meta-Policies

In the example of the previous chapter, there was the policy:
During overall congestion, traffic between the employee domain and the Internet is

denied.

CHAPTER 4: The Concept of Meta-Policies 35

Suppose that this is the only policy of a small network, consisting of two routers, A and
B, where router A is the central router of the network, and B a router of a sub-domain.
Also, suppose that these routers have a small filtering PIB like the one examined before,
and that the condition “overall congestion” is indicated through some MIB variables of

router A.

Whenever congestion is detected, the PDP sends to the PEPs of the routers some
configuration data that install some PRIs and update their behavior. Since we have only
one policy for this network, each router receives the same commands each time that
congestion is detected. Let us call these data DataA and DataB. These PRIs are

uninstalled when congestion ends.

Suppose now that the PDP could send to the two routers the following commands, which

we shall call meta-policies:

Router A: Router B:
e [f(Congestion) then {DataA} e [f(Congestion) then {DataB}

Finally, suppose that the PDP somehow directs the PEP of router A on how to evaluate

the parameter “Congestion” from the appropriate variables of its MIB and informs the

PEP of router B that the value of “Congestion” will be sent to it, each time that it

changes. In this case, we can observe the following:

e The PDP only needs to send the meta-policies once. Then the PEPs have all the
necessary information to react according to current network state, as long as they are
informed about it somehow.

e Router A can evaluate the two meta-policies locally and independently of the PDP.
This means that the PDP does not need to process the original policy for router A any
more. Also, the PEP will operate according to the administrative goals even in cases
of high congestion (that would delay the PDP from querying the MIB of router A and

update its PIB), or even while the PDP is down or unreachable.

CHAPTER 4: The Concept of Meta-Policies 36

o Router B still needs to be guided by the PDP. However, the PDP does not need to
send policy commands in the form of configuration data (DataB) anymore; it must
send only the value of the variable “Congestion”. In this way, the PDP load is
decreased, less bandwidth is consumed, and the PDP Decision message is less likely

to get lost or corrupted (since it is significantly smaller).

Although the case of a network with more than a single policy complicates the situation,
based on the previous discussion, we can observe that in general, each high-level policy
requires some specific PRIs to exist (or not exist) in the PIB of each device, depending
on the network state. Each network event makes applicable some policies that were not
applicable before and vice-versa. This means that we can associate combinations of

events with PRIs that need to exist in the PIB.

Meta-policies attempt to take advantage of exactly this observation. They associate
combinations of network events with PRIs that need to be installed. The event
combination comprises the condition of the meta-policy; the modifications of the PIB
that these events trigger are its acfions. Meta-policies are generated by the PDP and they
are sent to the PEP. The PEP processes these meta-policies and updates its PIB. The
decision that the PEP takes is the same that the PDP would take, for the same network
events. Of course, in order to do so, the PEP must be aware, somehow, of all the relevant
network events. The PDP could be used for this purpose and inform the PEPs about
network events that need a global (or at least a relatively “large”) network view to be
evaluated. In this case, the PEP still depends on the PDP, but less network and PDP
resources are consumed. However, the PEP can be informed of network events from
other sources, as well: For instance, the PEP may use the MIB of the device where it
resides to evaluate local events. A network service or server (like a clock or a notification
service) can also be used. Even more, mobile agents can be used to collect and provide

notification of such events. The latter implies some degree of programmability and

CHAPTER 4: The Concept of Meta-Policies 37

openness at the architecture of the PEP; however, such features are becoming availables

more and more in modern devices.

An important issue that needs to be addressed is conflicts. Valid meta-policies may be
conflicting under certain circumstances. Besides, meta-policies may conflict with PRIs
directly installed into the PIB by the PDP. As in COPS-PR, the PDP must resoive these
conflicts before sending any commands to the PEP. Conflicts between meta-policies carm
also be resolved at the PEP level, as long as these policies are associated with priorities.,

provided by the PDP.

Finally, note that the mapping between meta-policies and high-level policies is no&
necessarily one to one. Some high-level policies may not be applicable for a devices
some may be combined into a single meta-policy; and some others may need to be splitk
into more that one. Besides, the PDP may still decide not to produce a meta-policy for aa
high-level policy, and implement it by directly installing and uninstalling PRIs into the=
PIB.

4.4. Formal Definition

We define a meta-policy as a rule of the form:
if (condition) then {actions}

where “condition” is a logical expression, e.g., “(C>80%) and (D=true)”,

and "actions"” is a set of PIB commands that install PRIs into the PIB.

Since the actions encode a specific policy, this rule is a rule on how policies are

enforced; this is why it is called a “meta-policy”.

CHAPTER 4: The Concept of Meta-Policies 38

Each meta-policy is generated for a specific PEP, according to its capabilities, limitations

and the device on which it resides; hence it is meaningful only for this PEP.

Meta-Policies are generated by the PDP and consumed by the PEP. The PEP evaluates
the condition of each meta-policy, and when it evaluates true, it enforces the actions. The
key idea in meta-policies is that the PEP can store and process these meta-policies
without knowing their complete semantics: The condition is treated as a logical
expression; the actions, pre-generated by the PDP, just denote PRIs that must be
installed, something that can be performed by the PEP without understanding policies
they implement. In this way, the PEP can process any meta-policy, independently of its

complexity and its meaning.

Also, each meta-policy must be assigned a priority. This priority is used by the PEP in
order to resolve any conflict between two meta-policies that may need to be activated at

the same time, but have conflicting actions.

Both the condition and the actions may contain parameters (such as “Congestion” or
“WorkTime"); the values for these parameters are either sent by the PDP or evaluated by
the PEP, according to directions provided by the PDP. The parameters that a meta-policy

uses must be installed by the PDP prior to installing the meta-policy.

4.4.1. Parameters

The parameters are used in meta-policy conditions in order to determine when a meta-
policy must be activated. Moreover, they are used by meta-policy actions in order to
dynamically bind the network state within policies. For instance, in the previous example
we could have a meta-policy “if (AdminLogged) then (install (7, AdminlP, 24, ** %%
24,), install (8, *.** *24, AdminIP, 24) }”, which installs the PRIs that give to the

CHAPTER 4: The Concept of Meta-Policies 39

administrator access to the entire network. This meta-policy contains two parameters:

Adminlogged and AdminIP.

When installing a parameter, the PDP must also specify an evaluation method for it. For
instance, the PEP can be directed to get a value for a parameter from the MIB of the
device. Or, the PDP could provide the value for this parameter. However, other methods
are also possible, depending on the capabilities of the device, such as to download and
execute a script, use mobile agents, or get the desired information from some server or

service (e.g., clock service).

4.5. Example

Consider the company example that we studied before. We shall examine how it is

affected by meta-policies.

First of all, the policy #1, “Internal LAN traffic is always allowed”, must always be
enforced. Hence, the PDP directly enforces this policy by installing the PRI #1 into the
PIB (Figure 4.1), when the router boots.

In addition, the PDP downloads to the PEP the following meta-policies:
o if (WorkTime) then {install (2,%.% * % 24, * % % * 24)}
o if ((if1UtI>80%) or (if2Uti1>80%) or (if3Util>80%)) then {
install (3,X.Y.1.0,24,*.*.*.%24), install (4, **.*.*24, X.Y.1.0,24)
install (5,X.Y.2.0,24,*.*.*.%24), install (6, * *.** 24, X.Y.2.0,24)
/
o if (AdminLogged) then

CHAPTER 4: The Concept of Meta-Policies 40

and informs the PEP that the two first meta-policies are conflicting, and the second one

has higher priority.

Since the meta-policies contain parameters, the PDP also has to inform the PEP of the
evaluation method for these parameters. In our example, the PDP sends the values of the
parameters “WorkTime”, “AdminlLogged” and “AdminIP’>, and it directs the PEP to
evaluate by itself the parameters “iflUtil”, “if2Utl", “if3Utl" through the appropriate

MIB variables that denote the usage of the router’s interfaces (Figure 4.1).

The PEP monitors the parameters, and when their values change, it re-evaluates the
affected conditions. While the condition of a meta-policy is met, the corresponding PRIs
are installed in the PIB. In this way, the PIB always contains the appropriate PRIs that

implement the desired behavior.

Meta-policies allow the PDP to download initially the applicable policies and meta-
policies and then, control the PEP mainly by reporting network events. Moreover, some
of these events can be monitored by the PEP itself, without the involvement of the PDP.
Note that such events do not have to be local; the PEP can be programmed (e.g. by
downloading and executing some scripts, or through mobile agents) to monitor such
events through another server or service: for instance, the parameter “WorkTime” could
have been monitored by the PEP through a network clock service, without the

involvement of the PDP.

CHAPTER 4: The Concept of Meta-Policies

41

MIB of
Router A

Congestion

MIB of
Router A

Administrator

pgged is

Authentication
server

AdminLogged=true, AdminiP=X.Y.3.7

PDP

No Congestion

MiB of

Router A
WorkTime=False

End of
working day
- —

Clock service,
PDP clock
Administrator
logged out
—

PDP

AdminLogged=false, AdminIlP=0.0.0.0

Authentication
server

Parameter evaluation methods
parameter: evaluation method JidiCondition Actions
WorkTime: value sent by the PDP 1|WorkTime install (2,7.7.".7,24,%.".",",24)
AdminLogged: value sent by the PDP 2{(if1UtiI>80%) ortinstall (3,X.Y.1.0,24,%.*..* 24)
AdminIP: value sent by the PDP (if21ti1>80%) orlinstall (4, *.*.".",24, X.Y.1.0,24)
iflUtil: MIB variable a.b.c.d.el (if3UtI>80%) install (5,X.Y.2.0,24,".".".~,24)
e e p e ol 6, 24, Y2020
- — 3|AdminLogged |instali(1,AdminlP,24,%.7.°.*,24)
e e e e e WorkTime: FALSE install(1, =.*.” .24 AdminIP,24.)
AdminLogged: FALSE RN 11ieher lower
2 1
Boot - Initial policies and
-4—”-; D meta-policies
Router A
PDP
Beggining of .
, working day \ ne=
—]
Clock service, Y 0 SN
" [JX.Y.**] 24 | X.Y.*.*| 2
PDP clock PDP Congestion R A AT RO R
4 p e+] * [XY.1.0] 24
MIB of 5 IXY20({24] ****| =
Router A 6 | ****) * |X.Y.20} 24
No Congestion T XY **] 24 | X.Y.*.%] 24

[« LV] N (%] I

24

24

24

LR =Y L%] 28 (9] o

24

O~ =12

Figure 4.1: Instances of the PIB of router A

Chapter 5.

Requirements and Design

The previous section introduced the concept of meta-policies and demonstrated how
these can be used to extend the functionality of the PEP. This section analyses the
requirements, justifies our choice to use a PIB to implement the additional functionality

and discusses design issues of the PIB.

5.1. Early Requirements

5.1.1. General Requirements

The central concept in our work is meta-policies, i.e., rules of the form “if (conditions)

then {actions}”.

Each condition is a Boolean expression, comprised of a number of simpler conditions.
Ultimately, all conditions are decomposed into primitive logical expressions, such as
arithmetic comparisons (X+Y>10), Boolean expressions (Congestion==True) network

expressions (IP matches X.Y.Z.W), etc.

The actions install PRIs into the PIB. Each action identifies a single target PRI and the

value that must be installed into it.

42

CHAPTER 5: Requirements and Design 43

Both conditions and actions may be parametric; hence a way to communicate, store and
process parameters is also necessary. Each parameter has a type, which denotes what
kind of information it stores (integer, IP address, octet string, etc). Also, each parameter
has a way to be evaluated. Several evaluation methods may exist. We distinguish two
basic evaluation methods: First, a parameter can get its value from the MIB or PIB of the
device. Second, the value can be sent by the PDP initially, and then be updated (by the
PDP) whenever it changes. However, other evaluation methods may also exist,
depending on the capabilities of the device. For instance, an active/programmable device
may download and execute code that will evaluate this parameter. Although it is
practically impossible to support any possible evaluation method, it is desirable that the
basic methods that we define can be extended with other methods (standard or vendor-

specific).

5.1.2. Why a PIB?

The proposed enhancements require meta-policing information to be exchanged between
the PDP and the PEP, and be stored and processed by the latter. Hence, a crucial question
that must be tackled in the early design phase is what protocols and data structures will
be used. We decided to use COPS-PR to communicate such data and define a PIB to
store them at the PEP (as opposed to defining another protocol and/or storage structure,
or extending the existing ones). This decision was based on a number of reasons:
® Meta-policies need to be sent to the PEP in a provisioning style, and COPS-PR is
a protocol defined for policy provisioning.
® Our work is in line with the work conducted in IETF. No new protocols need to
be developed, and the proposed PIB can easily be adapted by the Internet
community (researchers and vendors). Even legacy devices can support the

proposed PIB (e.g., with software updates).

CHAPTER 5: Requirements and Design 44

@® By using a PIB to store meta-policies, meta-policing data are treated as any PIB
data. Consequently, meta-policies on meta-policies could also be defined (this is
discussed at the last chapter, as future work).

® Finally, by using COPS-PR and PIBs, the design and the implementation is
simplified: the definition of a PIB is much simpler that defining a new protocol.
Meta-policy exchange and storage is already handled by the protocol and does not
need to be addressed by us. The implementation is based on existing, tested tools.
The reuse of knowledge and code makes the design, implementation and testing

safer and easier, and minimizes the chance for errors.

In general, although the choice of using a PIB and COPS-PR introduces some further

requirements, it does not prevent or hinder us from meeting any of our goals.

5.1.3. COPS-PR/PIB Requirements

Our decision to define a PIB and use COPS-PR to implement our proposal implies that
the SPPI specification must be used to define the PIB. SPPI [36] demands all data to be
placed in tabular format (each table is a PRC, and the rows of the tables the PRIs). SPPI
also demands strong typing of the attributes of the PRIs. However, the SPPI is very
flexible in defining new types; this feature is exploited in order to overcome the previous

restriction.

CHAPTER 5: Requirements and Design 45

5.2. Analysis

5.2.1. Communication and storage

By choosing to define a PIB and use COPS-PR, all communication and storing is
addressed by the protocol itself: When the PEP connects to the PDP, it reports its meta-
policing capabilities and limitations. According to these capabilities and limitations, the
PDP downloads all the appropriate meta-policies. These meta-policies are stored in the

PIB and remain there, until they are updated by the PDP.

5.2.2. Meta-Policing Data

5.2.2.1. Meta-policies

Meta-policies consist of a condition and a set of actions. Since valid meta-policies may
conflict under certain circumstances, the PDP must be able to declare potentially
conflicting meta-policies and denote priorities between them. Also, the status of the
meta-policies (i.e., whether they are active, whether they suppress a meta-policy with

lower priority or whether they are suppressed) may need to be reported to the PDP.

5.2.2.2. Conditions

Each meta-policy must contain exactly one condition. As mentioned before, the
condition is decomposed into one or more primitive expressions that need to be
evaluated. Each of these primitives must contain at least one parameter (otherwise, a

simpler condition without them exists, since that primitive expression always evaluates

CHAPTER 5: Requirements and Design 46

either true or false). We distinguish two categories of primitives: Boolean and generic

expressions.

Boolean expressions are a subset of the generic expressions, but due to their simplicity
and commonality, they are treated separately. Such primitives are evaluated according to
the value of a Boolean parameter. For instance, in the expression ((X>Y) &&

(!Congestion) && (WorkTime)), Congestion and WorkTime are such primitives.

Generic expressions contain all the other logical expressions that cannot be decomposed
into simpler Boolean primitives. Examples of such primitives are “X>Y”, “IP matches
XY.ZW” or “8:00am < time < 5:00pm). Each PEP can only support specific types of
such expressions (e.g., arithmetic), which are reported along with the other PEP
capabilities to the PDP. The PDP can only send to the PEP expressions that are supported
by the latter.

An important issue is that such expressions need to be standardized in order to be
transmitted and stored in the PIB. However, different types of expressions require
different operators (e.g., arithmetic expressions need operators like “+7,7-“">", while
network conditions need operators such as “matches” and “subnet’). Besides, the set of
types of such expressions is infinite, since any kind of expressions may be valid: the
expression “colorl darker that color2™ is a valid expression (although probably totally
useless for network management). The point is that all types of possible expressions,
cannot be predicted in advance, but they need to be standardized. Of course, we could
choose to standardize only a few types of expressions that are most commonly used, but

this would restrict the applicability of our work.

The solution given to this problem was to define an open, generic mechanism to handle

such expressions. The details of this generic mechanism can be defined per expression

CHAPTER 5: Requirements and Design 47

type (arithmetic, IP expressions, etc). Common expression types have already been

defined by us, but these types can easily be extended to include other ones, as well.

More specifically, all expressions are encoded using XML. XML uses tags that give
semantics to the data of the XML document. However, the semantics of these tags are
defined in separate documents, called Document Type Definitions (DTDs). These DTDs
specify the details of the generic mechanism, per expression type. Each PEP reports to
the PDP the DTDs that it supports, through an identifier, which uniquely identifies these
DTDs (which is the URL where these are published; this is the standard method adapted
by the XML standard). By reporting an XML DTD, the PEP declarxes that it can interpret
any XML document (that encodes an expression) written according to this DTD. For
example, if a DTD defines tags for numerical operations (+,-,*,/.div) and comparisons
(>,=.>=,<,<=,=) then the PEP should be able to understand any arithmetic expression that
uses these operators. The PDP, according to the expression that it wants to encode,

chooses the most appropriate DTD, encodes the condition and trans mits it.

By using XML DTDs we manage to:
e Standardize the exchange of general expressions
e Accomplish a uniform way of storing them into the PIB
e Leave the PIB open to any type of expressions
e Allow each PEP to implement only the functionality that it needs, or that is

appropriate, according to 1ts resources.

Note that the PDP is always able to find a way to send an expression, even if this is
not optimal: Even if the appropriate DTD is not supported, the expression may be
transformed to a supported one. In the worst case, the entire expression is represented

as a Boolean parameter, and the PDP sends the value for this parameter.

CHAPTER 5: Requirements and Design 48

5.2.2.3. Actions

Each meta-policy is associated with a set of actions. Normally, this set should contain at
least one action (a meta-policy without actions is useless; however this situation may
exist while the PDP temporarily deactivates or updates a meta-policy). Each action is a
binding of a PRID pointing to a single PRI, and the value that must be installed into it.

This value can be either static or dynamically evaluated through a parameter.

5.2.2.4. Parameters

Each parameter may be used by the conditions or actions of one or more meta-policies.
Parameters that are not referenced by any meta-policy may also exist (although this

situation should only be temporal).

Each parameter must be associated with an evaluation method. At least two evaluation
methods must be available: Through the MIB or PIB of the device, or through the PDP.
However, the vendor should be able to extend these methods. Parameters that are
evaluated through the MIB need to be associated with the frequency that the MIB must
be polled, to update the value. Obviously, the MIB OID has to be provided, as well.

Parameters that are evaluated by the PDP must maintain the last value sent by the PDP.

Chapter 6.
The Meta-Policy Information Base

This section defines the Meta-Policy PIB classes and discusses the operation of the PEP
and the PDP. The full version of the document that defines the PIB is presented as

Appendix A.

6.1. PIB Definition

According to the previous analysis, we defined the classes (tables) that comprise the
Meta-Policy PIB. The PIB is defined according to the IETF specifications (i.e., using
SPPI).

The PIB is divided into five groups:

® The Capabilities Group contains the Provisioning classes (PRCs) that store the
capabilities and limitations of the PEP (as far as the meta-policy PIB is concerned).
The PRIs of these classes are reported to the PDP when the PEP connects.

® The Base Meta-Policy Group contains the classes that form the meta-policies,
define their relative priority in case of conflicts, and report their status.

® The Condition Group provides classes for forming the conditions of the meta-
policies.

® The Action Group includes the PRCs that define the actions of the meta-policies.

e The Parameter Group contains the PRCs where the parameters and their evaluation

methods are stored.

49

CHAPTER 6: The Meta-Policy Information Base 50

6.1.1. The Capabilities Group

This group contains a single class, the xmIDTD class. This contains the XML DTDs that
the PEP supports, for encoding expressions. Each row of the xmIDTDTable consists of
an identifier and the DTD URL. The rows of this table are reported to the PDP in the
REQ message.

6.1.2. The Base Meta-Policy Group

This group contains three classes: the metaPolicy, the metaPolicyStatus and the

metaPolicyPriority classes.

The metaPolicy class is the PRC where meta-policies are constructed. Each instance of
this class represents exactly one meta-pokicy. The meta-policy comprises an identifier, a
name, a reference to a condition (in the condition class, described later) and an action tag.
The action tag identifies a group of actions from the action class (also described later),

which must be executed when the meta-policy is activated.

The metaPolicyStatus class is a PRC that AUGMENTS the previous class (AUGMENTS
is an SPPI term that means that there is a one to one correspondence between the
instances of these classes). Each PRI of this PRC reports whether the corresponding
meta-policy is active, and whether it is suppressed by another meta-policy with higher
priority or it suppresses a meta-policy with lower priority. This class is used to report to
the PDP the meta-policy status. However, its PRIs can also be used as PIB parameters for
other meta-policies, so as to construct conditions that are based on whether installed

meta-policies are active, inactive or suppressed.

Finally, the metaPolicyPriority class reports conflicting meta-policies and direct the PEP

how to resolve these conflicts. Each PRI identifies two meta-policies, and defines which

CHAPTER 6: The Meta-Policy Information Base 51

one has the higher priority. PRIs with two simultaneously active meta-policies must not

exist in this table.

met,] metaPolicvPrioritvTable
@) metapolicyPria @1/ metarolicyPriorityPrid
to
condition metaPolicyName C——J higherPriority
4——&—(}3 metaPolicyCondition <}3 iowerPriority

% 5 acton "% metaPolicyActions

PRC 1 L 1§ o

1:
metaPolicyStatusTable
metaPolicyActive

metaPolicySuppress

Figure 6.1: The Base Meta-Policy Group classes

6.1.3. The Condition Group

This group contains four classes: the condition, the complexCondition, the

booleanCondition and the generalCondition classes.

The condition class is the base PRC of this group. Each PRI represents a logical
expression and consists of an identifier and an attribute that indicates whether the result
of the evaluation should be logically inverted. PRIs of this table must always be
associated with PRIs of another class that EXTENDS the base one. (EXTENDS is also
an SPPI term, that means that the PRI of this PRC can only exist as extensions of a PRI
in the base PRC. These PRIs are referenced through the identifier of the base PRI, and if

the latter is uninstalled, the former is uninstalled as well).

Some (but not all) of the rows of this table are used in order to represent conditions of
meta-policies. As explained before, a condition may comprise several simpler conditions,

which are also stored as PRIs in this table.

CHAPTER 6: The Meta-Policy Information Base 52

In order to break down a condition into simpler ones, the complexCondition class is used.
This class EXTENDS the base condition class. Each PRI consists of two references to
the condition class, and an operator. The references reference two logical conditions, and
the operator defines a logical operation between these two conditions. In this way, the
PRI in this table defines a more complex condition. Obviously, the PDP must not install

rows that reference themselves, directly or interectly.

complexConditionTable

yd operator
,/ ’ <1|3 leftTerm
Ve
conditionTable 4 <}: rightTerm
—~ @M conaitionPrid booleanConditionTable
metaPolicy - ; <}: — |_to parametery
PRC conditionReverse \ parameterReference PRC
\ generalConditionTable
. to xmIDTD
N\ <:3 xmIDTDRef ——;RC—->

xmlCondition

Figure 6.2: The Condition Group classes

The booleanCondition class also EXTENDS the base table. Each PRI contains a
reference to a parameter, which must be of type “TrueValue” (i.e., Boolean). The value

of the condition is evaluated according to the value of this parameter.

Finally, the generalCondition class is used to allow conditions to be evaluated through
more complex expressions. Each row consists of a reference to the xmIDTD class and a
string, which encodes an expression in XML. The reference to the xmIDTD class defines
the XML DTD that must be used in order to interpret this expression. The expression

encoded must be a logical expression, i.e., it must evaluate to either true or false.

CHAPTER 6: The Meta-Policy Information Base 53

6.1.4. The Actions Group

This group consists of three classes: the action, the actionValue and the

actionParametricValue classes.

The action class is the base PRC for storing meta-policy actions. Each PRI contains a
tag-reference attribute, which is used to group the actions of a single meta-policy. Each

PRI of this class specifies a target PRID that specifies the PRI that must be installed.

The value that must be installed at the target PRID is determined either in the
actionValue class or the actionParametricValue class. Both classes EXTEND the base
one and provide the value that must be installed for the specific target PRID. The former
provides a value, encoded according to BER (Basic Encoding Rules [37]), while the

latter specifies a parameter, from which the value is evaluated.

from actionTable actionValueTable
metaPolicy O actionpria actionValueEpd
PRC .
—FRC o @ | actionrerTag %" actionParametricValueTable
. . X to
actionTargetPrid R
g N <}:| ParameterRef S aramater
PRC

Figure 6.3: The Actions Group classes

6.1.5. The Parameter Group

This group contains three tables: the parameter, the mibPibParameter and the

pdpParameter classes.

The parameter class is the base class for representing parameters. Each PRI consists of an
identifier, a name and an attribute that denotes the type of the parameter. Each PRI must
be associated with a PRI of a class that EXTENDS this one.

CHAPTER 6: The Meta-Policy Information Base 54

The mibPibParameter class is such a PRC. It defines a MIB or PIB identifier from which
the parameter gets its value. Of course, this identifier must point to an existing variable.
Each row also defines the frequency with which this value will be updated. Note that the
MIB and PIB identifiers have a different name space, i.e., their prefixes are different;
hence, the identifier itself includes the information whether this is a MIB or PIB

reference.

The pdpParameter class also extends the base parameter class. Each PRI contains a single
attribute that encodes, in BER, the value of the parameter. The PDP updates this PRC

whenever this is necessary (usually when the value changes).

from mibPibParameterTable
actionParametricValue targetOID
PR\ parameterTable EvaluationFrequency
(] parameterPrid pdpParameterTable
frorr/ parameterName lastValue

booleanCondition
PRC

Figure 6.4: The Meta-Policy Group classes

CHAPTER 6: The Meta-Policy Information Base 55

6.1.6. Overview of the Entire PIB

Figure 6.5 demonstrates the entire Meta-Policy PIB. The groups are demonstrated as
grayed boxes, containing the Provisioning Classes. The Provisioning represented as
tables of their attributes. The figure illustrates the Instance Identifiers, the References to

Instance Identifiers, the Group Tags, and the Group Tag References, as well as the
“augmented” and “extended” classes.

melaPolicvProrityTable
xmiDTDTable ; 01 metapoiicyPia @3 | metaratcyPriodiyPria
h xmIDTDPrid -
metaPolicyName <:t higherPriority
xmIDTDURL \
metaPolicyCondition (:: lewerPriarity
\ metaPolicyActions A
T w % T § 1% 4\
metaPolicyStatusTable |
metaPalicyActive “
metaPolicySuppress ‘\
T
complexConditionTable \\
/ operator \
<§3 leftTenm \\
/ = \ actionTable ctionVaiueTable
g.O_:diHo‘r;;aPl::e L1 | rightTemm : \| O actionPria actionVaiueEpd
°°"". booleanConditionTable @ | actionrerrag actionParametricValueTable
conditionReverse laference ¢ actionTargetPrid ParameterRef
generalConditionTable
—«3| xmioTORE!
xmiCondition
mibPibParameterTable Legend
targetOiD Q| instance Identifier
parameterTable EvaluationFrequency 2| nstance 1a Reterence
&%) parmeterria pdpParameterTable N | Group Tag
parameterName | Ilaslva!ue ‘ Group Tag Reterence
Figure 6.5: The Meta-Policy PIB

CHAPTER 6: The Meta-Policy Information Base 56

6.2. Communication & Storage

The communication and the storage of meta-policies are performed as defined in the
COPS-PR protocol. A brief outline will be presented here; for more details, the reader

may refer to the “COPS Usage for Policy Provisioning” from IETF [27].

6.2.1.1. Requests

As described by the protocol, when the PEP opens a connection to the PDP, it sends a
configuration request (REQ) message, asking for all the applicable policing data. This
REQ message also reports the capabilities and limitations of the PEP. According to the
SPPI [36], this is performed by sending all the PRIs that are defined with the PIB-
ACCESS clause set to “notify” or “install-notify”. Thus, a PEP that implements the
Meta-Policy PIB must include in this message the PRIs of the xmIDTD class, which

report the capabilities of the PEP to interpret XML-encoded expressions.

6.2.1.2. Decisions

The PDP sends solicited decision (DEC) messages as replies to REQ messages, or
unsolicited messages, whenever the policing data into the PIB needs to get updated.
Meta-policing data is handied as any other kind of PIB data, hence the format of DEC
messages and the way these are installed into the PIB are exactly as defined in the COPS
protocol. As defined by the SPPI, the PIB can only install/modify PRIs with the PIB-
ACCESS clause set to “install” or “install-notify”.

Notice, however, that meta-policy data may now report network events to the PEP, since
the PDP may send values for parameters that represent such events (e.g., the PDP may

report congestion by setting the value of a parameter in the PIB of the PEP).

CHAPTER 6: The Meta-Policy Information Base 57

6.2.1.3. Reports

According to COPS-PR, the PEP reports the success or failure of the DEC message with
a report message (RPT). DEC’s that update the meta-policy classes are treated as any
other DEC messages, hence the PEP must issue reports on whether the PRIs were
installed/removed successfully. Note that this has nothing to do with whether the actions
of the meta—-policies are actually enforced successfully. These messages report whether
the meta-policy itself was successfully installed/uninstalled, i.e., if the operation is valid

according to the meta-policy PIB specification.

RPT messages are also sent unsolicited to report accounting related information. The
reported PRTIs have the PIB-ACCESS clause set to “report”, hence the PRIs of the
activeMetaPolicy class are reported to the PDP.

Finally, unsoslicited RPT messages can report PEP errors that are not related to a specific
DEC message. Such RPT messages can be triggered by badly behaving meta-policies,
(e.g., that atgtempt to install invalid or conflicting PRIs). Although the content of the
meta-policies should be checked when the meta-policy is installed, this check cannot
detect all posssible errors (this should be done by the PDP before sending the meta-
policies), hemce such situations may arise. Such errors are resolved according to the

COPS-PR protocol.

6.3. PEP Operation

This section describes in general the behavior of the PEP and discusses how the data of

the meta-policy PIB should be interpreted by it.

CHAPTER 6: The Meta-Policy Information Base 58

6.3.1.1. Installation of meta-policing data

When meta-policing data are to be installed into the PIB, the PEP needs to perform some
basic tests to ensure that these data conform to the rules set in the PIB definition. Such
tests include:

& Integrity: The installed PRIs contain the appropriate number and type of attributes.

& Consistency: The PRIs must not form illegal or invalid meta-policies in the PIB. For
instance, references to non-existing PRIs are in several cases illegal: the installation
of a condition cannot be performed, unless the parameters that it contains have been
installed already, or they are installed in the same DEC message. A meta-policy
cannot be declared as conflicting with itself. A condition cannot consist of two
simpler conditions, one of which is the initial condition itself. The PEP should check
for such situations before modifying the PIB.

& Conflicts: Whenever two meta-policies may be conflicting, the PDP should direct the
PEP how to resolve the conflict through the metaPolicyPriority class. The PEP
should check for conflicts that are not reported in this class. Also, the PEP should
check for conflicts between the actions of meta-policies and PRIs directly installed by

the PDP.

Whenever the PEP detects an erroneous situation like this, the entire DEC message must
be rejected, and an RPT message indicating the cause of the error must be sent to the

PDP (as defined in COPS-PR).

6.3.1.2. Parameters

The PIB defines two types of evaluation methods for the parameters: The values are
either sent by the PDP, or they are evaluated from the MIB/PIB of the device. However,
apart from these two integrated methods, new methods may be added in the future by

defining classes that extend the parameter table.

CHAPTER 6: The Meta-Policy Information Base 59

Independently of the way a parameter is evaluated, the parameter triggers the
reevaluation of the logical expressions in which it is contained. Also, if the parameter is
used in the actions of an active meta-policy, whenever its value is modified, the related

PRIs must be updated.

6.3.1.3. Conditions

As mentioned before, the condition of each meta-policy is decomposed into primitive
logical expressions. Each logical expression contains a number of parameters, which
must exist in the PIB before the logical expression is installed. When a logical expression
is installed, it is evaluated according to the current values of its parameters. The overall

condition is evaluated according to the evaluation of these logical expressions.

The triggering of the re-evaluation of the logical expressions was discussed in the
previous section. Whenever the result of a logical expression is modified (i.e., it becomes
true from false or vice versa), the condition that contains this expression needs to be
reevaluated. The reevaluation of a condition may trigger the reevaluation of other, more
complex conditions, containing this condition. For instance, for the condition
(A&&(B||(C&&D))), assuming that A, B, C, D are primitive expressions, if D becomes
true after being false, then the condition (C&&D) will be reevaluated. If its value
changes to true, then the condition (B|[(C&&D)) will be reevaluated. If its value also
changes, the whole condition needs to be reevaluated. This procedure implies that the
previous state of each condition is temporarily stored by the PEP, so that this comparison

can be performed.

Also, the PEP may decide not to reevaluate a condition, if this is not considered
necessary. For instance, in the previous case, if A is false, the values of B, C and D
cannot influence the value of the entire condition, which will be false. However, if A

becomes true, the reevaluation of the rest of the condition must be triggered by the PEP.

CHAPTER 6: The Meta-Policy Information Base 60

6.3.1.4. Actions

When the condition of a meta-policy evaluates true, if the meta-policy is not reported to
be conflicting with another one with higher priority, the meta-policy is activated. The
meta-policy stays active while its condition is met, and no other meta-policy with higher

priority is activated.

When a meta-policy is activated, its actions are executed, installing the appropriate PRIs
into the PIB. The actions of a PIB cannot modify existing PRIs, because this would be
considered as a conflict with the meta-policy or the direct PDP command that installed
these PRIs. However, a meta-policy may update its own PRIs (i.e, the PRIs that the meta-
policy has installed into the PIB), if the values of these PRIs are parametric, and the

values of these parameters change.

When a meta-policy is deactivated, the PRIs installed by this meta-policy are removed
from the PIB. Since neither any other meta-policy nor the PDP could modify these PRIs
while the meta-policy was active, the removal of the PRIs leaves the PIB consistent.
When a meta-policy is deactivated, any meta-policies suppressed by this one may be

activated (if their condition is still met and they are not suppressed by any other meta-

policy).

6.3.1.5. Conflicts

Normally, all conflicting meta-policies are reported by the PDP in the appropriate class
of the PIB (metaPolicyPriority class). When the condition of a meta-policy evaluates
true, the PEP has to check the PRIs of this class in order to ensure that no meta-policy
with higher priority is active. If no higher-priority meta-policy exists, the meta-policy is
activated, else it remains inactive and it is denoted at the metaPolicyStatus class as

suppressed. Before the meta-policy is activated, the PEP must deactivate any other meta-

CHAPTER 6: The Meta-Policy Information Base 61

policies that conflict with this one and have lower priority (and declare them as

suppressed, in the metaPolicyStatus class).

Note that the priorities declared by the PDP are relative priorities (in the form: meta-
policy A has higher priority than meta-policy B). Also, note that if a meta-policy A has
higher priority than B, and B has higher than C, then A does not necessarily conflict with
C, hence both A and C may be active (e.g., as in the example presented in Chapter 4).
However, if A and C conflict with each other, A can only have higher priority than C
(otherwise, we are lead into a deadlock situation, where the conflict between A, B, C

cannot be resolved).

Although all conflicting meta-policies should be reported by the PDP, the PEP should
check for conflict both when the meta-policies are installed and executed (since run-time
conflicts may also occur). Besides, meta-policies may conflict with PRIs directly
installed by the PDP (although such situations should also be prevented at the PDP
level). However, if such an abnormal situation occurs, the PEP should either refuse to
execute the PDP decision that causes this conflict (installation conflicts) and issue the
appropriate solicited failure report message, or refuse to execute the meta-policy that
causes the conflict (run-time conflicts) and report the event with an unsolicited failure

report message.

6.4.Backwards Compatibility

The proposed PIB does not create any backwards compatibility issues, when PDPs that

support the proposed PIB are required to cooperate with PEPs that do not, and vice versa.

If a PEP that does not implement the meta-policy PIB connects to a PDP that supports it,

then in the request message of the former no meta-policy classes will be reported. Hence,

CHAPTER 6: The Meta-Policy Information Base 62

the PDP is not allowed to send meta-policing data, and it should assume that it must
control the PEP in the traditional way, i.e., by directly installing and removing PRIs into

its PIB.

If a PEP that supports the meta-policy PIB connects to a PDP that does not, then the PDP
will not recognize the meta-policy classes, reported by the PEP in the request message. In
this case, as defined by COPS-PR [27], the PDP will not send any configuration data for
these classes, and it will control the PEP just by sending commands that directly install or
remove PRIs to the rest of its PIB. Hence, the PEP will receive no meta-policies and it

will operate as if it did not implement the extra functionality.

Chapter 7.
Conclusions and Future Work

The previous chapters introduced the concept of meta-policies, demonstrated their usage
and defined the Meta-Policy Information Base. This section presents our work in
progress, discusses some interesting research issues related to this work, and concludes

this thesis.

7.1.Conclusions

This thesis introduced the concept of COPS-PR meta-policies and proposed, presented
and defined a Policy Information Base (PIB) that attempts to push some of the COPS-PR

PDP functionality and intelligence towards the PEPs, by using such meta-policies.

This document discussed the current situation in network management and outlined the
modern trends and techniques. It introduced Policy-Based Networking, COPS, COPS-PR
and PIBs, and demonstrated how these work. Based on these, the motivation of our work
was presented, the concept of meta-policies was introduced, and an example of how the
latter can enhance the current techniques was demonstrated. The requirements for the
proposed PIB were presented and analyzed, and the PIB and the PEP operation were

defined. Finally, our work in progress and our future research goals were outlined.

63

CHAPTER 7: Conclusions and Future Work 64

7.2.Work in Progress

7.2.1. Implementation and Testing

The definition of a PIB consists of the definition of the Provisioning Classes (PRCs) and
the definition of the operation of the PEP, i.e., how the latter interprets the data stored in
the PIB. Nevertheless, it does not require defining the behavior of the PDP, which is
allowed to use the provided functionality in any desired fashion. The additional
functionality obviously improves the existing techniques in some aspects, since the Meta-
Policies allow the PEP to operate correctly in cases where a PEP with no meta-policy
support would fail (see example in section 4.5). From this point of view, the work

presented in this thesis is complete.

However, we are currently implementing a PEP with meta-policy capabilities, in order to

test and compare our proposal with PEPs without meta-policies.

As far as implementation is concerned, we are currently building a PEP that implements
the meta-policy PIB. As already discussed and as explained later in more detail, since our
work is strongly related to active networks, we implement a PEP that resides on an active
router. More specifically, for our experiments, we have at our disposal two Nortel
Accelar 1100-B routers (formerly named Passport 1100-B). These routers can download
and execute code within the Oplet Runtime Environment (ORE) [39]. ORE is an
environment where java classes can be executed. Java classes that allow configuring the
parameters of the routers are provided by the vendor. We are currently implementing a

PEP that implements the proposed PIB in this environment.

However, implementing the meta-policy PIB is meaningless, unless another PIB exists

on the same PEP, which will be controlled by meta-policies. Unfortunately, the PIBs

CHAPTER 7: Conclusions and Future Work 65

proposed in IETF are currently in a very premature stage, and no freely available
implementation or code of any of them exists. Hence, we have also designed a simple
PIB for the purposes of our experiments, and we are currently implementing it. This PIB

will be executed within ORE as well, and it is written in Java.

Moreover, COPS-PR is also in a premature stage. No suitable free implementation for
the protocol exists right now. IPHighway and Intel have independently developed two
open-source COPS SDKSs [23], [24], which provide the client-side interface for the basic
COPS functionality; Vovida recently released free source that implements the COPS
stack, with COPS-PR support [25]. However, in all cases the code is written in C/C++.
Hence, for our experiments we also encode in Java the classes that implement a
simplified version of COPS-PR. (We have not implemented some COPS messages used

for integrity, security, etc, that do not affect our work.)

Finally, in order to test and compare the proposed PIB, we will also need a PDP to
control this PIB. Currently, no free PDP implementation exists. Intel unofficially claims
to have implemented a PDP that can be purchased, but no official presentation of this
PDP has been done yet. [PHighway has developed a “COPS Proxy” which seems to be
functionally similar to a PDP, although with reduced functionality and intelligence.
However, for our experiments we need a PDP that (i) supports COPS-PR, and (ii) can be
extended to support the proposed PIB. These implementations meet none of these
requirements adequately. Thus, we will probably need to write a simple PDP, as well,

that will control the proposed PIB.

After implementing the PIB, the PEP and the PDP, we plan to test the proposed PIB with
regard to its performance and efficiency, and compare it with the existing techniques
(COPS-PR without meta-policies). Unfortunately, the results of the test are subjective,
and depend to the chosen set of policies. An objective comparison could only be

performed in a real environment, with real policies, PDP and PIBs. However, such an

CHAPTER 7: Conclusions and Future Work 66

option is, for the time being, not possible, since COPS-PR has not yet been extensively
used in real environments. Thus, our testing and comparison will be carried out with a
synthetic set of policies, and it will mainly concentrate on resource usage at the PEP and
PDP, as well as the network usage. Also, we will demonstrate scenarios where meta-
policies allow the PEP to operate correctly (such as PDP failures). Finally, our
experiments will test how active networks and directories can be used to enhance meta-

policies.

7.2.2. Contribution to IETF

The contribution of this work is the definition of the meta-policy PIB. We have already
published early versions of this work and we are currently submitting new ones. In
particular, we are in the process of submitting an Internet-Draft at IETF. Any publication
at IETF is reviewed and criticized by any interested individual or party of the Internet
community, and either evolves to an Internet-Standard, or it is rejected. By exposing our
work directly to IETF, we allow the Internet Community to criticize it and adopt all or
parts of it. Also, the feedback and comments that will be acquired through this process
will allow us to estimate the interest of other academic and industrial research groups in
it, and will affect our future work. The proposed PIB, as presented in Appendix A, will
soon be submitted and published under the RAP working group of IETF.

7.3. Future Research

7.3.1. Meta-Policy Hierarchies

The goal of this thesis was to enhance the functionality of the PEPs with meta-policies

that manipulate the PIB data, according to the high-level network policies. However, the

CHAPTER 7: Conclusions and Future Work 67

meta-policies themselves are also PIB data, hence meta-policies that control meta-
policies can also exist. As a matter of fact, the PIB defined here allows an unlimited

number of levels of meeta-policies to be stored in the PIB and control its content.

By constructing hieramchies of meta-policies, more functionality and intelligence can be
pushed towards the PEP. For instance, 2" level meta-policies can be used to group 1*
level meta-policies fo-r different generic network states: Different meta-policies can be
applicable when the network operates normally, when it is under maintenance, when it is
under attack or when it is congested. A second example is the use of meta-policies that
self-generate a set of similar meta-policies that control the PEP: A meta-policy could

create meta-policies, each of which grants to a user of a group specific privileges.

While allowing hierarchies of meta-policies significantly increases the intelligence of the
PEP, this functionalitsyy was not one of the goals that drove the design of the proposed
PIB. Orne of our futures goals is to examine how this affects this work. More specifically,
we are interested in examining what types of meta-policies might be beneficial, and
whether these can be implemented in the proposed PIB. We know already that the
proposed PIB can support some hierarchies of meta-policies. However, we need to
examine whether the provided functionality is sufficient and whether it can be
implemented to efficiemntly support any desired type of meta-policy hierarchies. If not, we

would like to investiga-te the required modifications.

7.3.2. Meta-Policies and Active Networks

As stated several times throughout this document, our work was inspired by Active
Networks. Although the proposed PIB does not explicitly demand an active (or
programmable) enviromment, the whole concept of downloading intelligence into the
network devices and distributing functionality into them assumes that the network

elements have the abiBity and the resources to perform advanced operations and tasks.

CHAPTER 7: Conclusions and Future Work 68

Legacy devices could implement this PIB; nevertheless, such devices usually have
limited resources and capabilities, hence only a small number of complex meta-policies
could be efficiently handled by them. On the other hand, an active device has the
capabilities and the resources to perform complex computations and tasks, and thus, to

process and enforce meta-policies efficiently.

However, the most important property of Active Networks, as far as our work is
concerned, is the ability to extend the defined PIB. First, the XML DTDs that a device
supports can be easily enhanced to support newer DTDs, by downloading modules that
process these DTDs and by declaring these DTDs in the xmIDTD PRC. Second, and
most important, the parameter evaluation methods can be extended, as well. This is a
very important property, since the extension of the evaluation methods allows the PEP to
monitor and enforce more meta-policies by itself, independently of the PDP. The
extension of the evaluation methods can be performed centrally (to ensure automation
and consistency), according to the network topology and services. For instance, active
code that queries a directory or an authentication server can be made available and be
used by some PEPs in order to provide a value to a PIB parameter. Supposing that the
PDP is aware of the existence of a library with such code, as well as of which devices
can download and use this code, the PDP can command the PEPs of these devices to use
this code to compute some values of the meta-policy parameters. Notice that the code in
this library may either be provided by the vendors and be network-independent, or be
written or customized by the administrators and be network-specific. The only
requirements are that the PEPs will be able to be directed to download this code, and the

PDP will be aware of how this code can be used.

The previous discussion makes it obvious that Active Networks significantly affect our
work. As future work, we would like to investigate how such Active Network properties

can be best exploited.

CHAPTER 7: Conclusions and Future Work 69

7.3.3. Meta-Policies and Directories

Another interesting research topic is how our work can be enhanced by using Directories.
As mentioned already, we envision PEPs that can downioad modules or code in order to
extend their abilities. Such modules and code could be stored in a Directory Server.
Besides, some types of policing information that changes infrequently, used in order to
compute PIB parameters, could be stored in Directories as well, and be fetched directly
by the PEPs. We intend to investigate in more detail how Directories can influence our

work.

7.3.4. Moving the PDPs to the Network Elements

Another interesting observation is that, by using meta-policies, a great degree of
functionality can be pushed towards the PEP. Actually, the main difference between a
PDP and a PIB loaded with meta-policies is that the latter cannot translate the high-level
policies into low-level PIB commands (meta-policies or normal policies). However,
future devices with more resources and capabilities could host an extra module that
implements this functionality. In this case, the entire PDP could be hosted on the network
element. This topic is currently considered very promising, and it is also included in our

future research goals.

References”

[1].

[2].

[31.

[4].

(51

[6].

[7].

A. Westerinen, J. Schnizlein,J. Strassner, Mark Scherling,Bob Quinn,Jay Perry,
Shai Herzog, An-Ni Huynh, Mark Carlson, Steve Waldbusser;
"Terminology'';

IETF, Internet-Draft, draft-ietf-policy-terminology-02.txt, November 2000
(http:/fwww.ietf.org/internet-drafis/draft-ietf-policy-terminology-02.txt)

Heinz-Gerd Hegering, Sebastian Abeck and Bernhard Neumair;
“Integrated Management of Networked Systems”’;
Morgan Kaufman, 1999.

“FCAPS Overview’’;
http://www . fore.com/products/fv/fv_fcaps_wp.html [September 2000]

R. Boutaba, Andreas Polyrakis;
“Projecting FCAPS to Active Networks”;
accepted at IEEFE EntNet 2001; Atlanta, GA, USA; 4-6 June, 2001

“Internet Engineering Task Force”;
http:/fwww.ietf.org/
“SNMP Version 3 (snmpv3)*;

hup:/fwww.ietf.org/html.charters/snmpv3-charter.html

David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden;

° All URLs were valid on the 15%® of April, 2001, unless otherwise stated. All IETF Internet-Drafts and
RFCs were available at [ETF web stite [5] on the 15% of April, 2001, unless otherwise stated.

70

References

“A Survey of Active Network Research’;
[EEE Communications Magazine, Vol. 35, No. 1, January 1997, pp.80-86

[8]. Konstantinos Psounis;
“Active Networks: Applications, Security, Safety, and Architectures”;
[EEE Communications Surveys, Vol. 2, No. 1, First Quarter 1999
(hitp://www.comsoc.org/pubs/surveys/1q99issue/psounis.html)

[9]. Jonathan M. Smith, Kenneth L. Calvert, Sandra L. Murphy, Hilarie K. Orman,
Larry L. Peterson;
“Activating networks: a progress report’;
IEEE Computer, Vol. 32, No 4, April 1999, pp.32-41

[10]. D. L. Tennenhouse and D. J. Wetherall;
“Towards an Active Network Architecture’;

Computer Communication Review, Vol. 26, No. 2, April 1996.

[11]. “Directory-Enabled Networks”’;
3COM, White paper, July 1998.

[12]. “Policy-Powered Networking and the Role of Directories”;
3COM, White paper, July 1998.

[13]. “DMTF Home page’’;
http://www.dmif.org/
[14]. Susan J. Shepard;

“Policy-based networks: hype and hope‘¢;
IT Professional, Vol. 2, No. 1, January-February 2000, pp.12 -16

[15]. “Introduction to Policy-based Networking and Quality of Service’’;
IPHighway, White paper, January 2000

[16]. R. Boutaba, K. ElI-Guembhioui, P. Dini;

"An Qutlook on Intranet Management'';

References 72

[17].

[18].

[19].

[20].

[21].

[23].

[24].

[25].

IEEE Communications Magazine, Special issue on Intranet Services and

Communication Management, October 1997, pp.92-97

R. Boutaba, S. Znaty,

'"An Architectural Approach for Integrated Networks and Systems
Management'';

ACM-SIGCOM Computer Communication Review, Vol. 25, No 5, October 1995,
pp. 13-39

M. Sioman;

""Policy Driven Management For Distributed Systems'';

Plenum Press Journal of Network and Systems Management, Vol. 2, No. 4,
December 1994, pp. 333-360

‘“Policy Standards and IETF Terminology’’;
IPHighway, White paper, January 2000.

“Policy Based Networking Products, Design and Architecture’’;
IPHighway, White paper, January 2000.

D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry;
"The COPS (Common Open Policy Service) Protocol'';
IETF, RFC 2748, January 2000;
(http://www.ietf.org/rfc/rfc2748.txt)

. “Resource Allocation Protocol (rap)’’;

hutp://www.ietf.org/html.charters/rap-charter.html

“Intel COPS client Software Development Kit”’;
hup://www.intel.com/ial/cops/

“IPHighway — COPS open source’’;
hetp:/fwww.iphighway.com/opensourcel .htm

“COPS Download Page’’;
http:/fwww.vovida.org/protocols/downloads/cops/

References 73

[26]. S. Herzog, Ed., J. Boyle, R. Cohen, D. Durham, R. Rajan, A. Sastry;
"COPS usage for RSVP”;
IETF, RFC 2749, January 2000
(http:/fwww.ietf.org/rfc/rfc2749.txt)

[27]. K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F.
Reichmeyer, R. Yavatkar, A. Smith;
""COPS Usage for Policy Provisioning'';
IETF, RFC 3084, March 2001
(http:/fwww.ietf.org/rfc/rfc3084.1xt)

{28]. M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, A. Smith, F. Reichmeyer;
‘“Differentiated Services Quality of Service Policy Information Base”’;
[ETF, Internet-Draft, draft-ietf-diffserv-pib-03.1xt, March 2001
(http:/fwww.ietf.org/internet-drafts/draft-ietf-diffserv-pib-03.txt)

[29]. D. Rawlins, A. Kulkarni, K. Ho Chan, D. Dutt,
“Framework of COPS-PR Policy Information Base for Accounting Usage”’;
IETF, Internet-Draft, draft-ietf-rap-acct-fr-pib-01.txt, July 2000
(http:/fwww.ietf org/internet-drafts/draft-ietf-rap-accr-fr-pib-01.ixt)

[30]. 1. Ottensmeyer, M. Bokaemper, K. Roeber;
‘“A Filtering Policy Information Base (PIB) for Edge Router Filtering Services
and Provisioning via COPS-PR”;
IETF, Internet-Draft, draft-otty-cops-pr-filter-pib-00.txt, November 2000
(http:/fwww.ietf.org/internet-drafis/draft-otty-cops-pr-filter-pib-00.txt)
[31]. M. Li, D. Ameson, A. Doria, J. Jason, C. Wang;
“IPSec Policy Information Base’’;
IETF, Internet-Draft, draft-ietf-ipsp-ipsecpib-02.txt, March 2001
(http:/fwww.ietf.org/internet-drafts/draft-ietf-ipsp-ipsecpib-02.txt)
[32]. T. Anderson, D. Putzolu, A. Doria, J. Yong, J. Sydir, B. Srinivasan;
“Multiple Virtual Router Partitioning Policy Information Base”;

References 74

[33].

[34].

[35].

[36].

[371.

(38].

Internet Draft draft-anderson-mvr-pib-00.txt, July 2000
(hntp://www.ietf org/internet-drafts/draft-anderson-mvr-pib-00.ixt) [discontinued]

T. Anderson, A. Doria, J. Yong, S. Crosby;

“IP Forwarding PIB”’;

IETF, Internet-Draft, draft-khosravi-ip-fwd-pib-00.txt, July 2000

(http:/fwww.ietf . org/ireternet-drafts/draft-khosravi-ip-fwd-pib-00.txt) [discontinued]

Harsha Hegde, Brad Stone;

'""Load Balancing Policy Information Base'';

IETF, Internet-Draft, draft-hegde-load-balancing-pib-00.txt, February 2001
(http:/fwww.ietf.org/ircternet-drafis/ drafi-hegde-load-balancing-pib-00.txt)

M. Fine, K. McCloghrie, J. Seligson, K. Chan; S. Hahn, R. Sahita, A. Smith, F.
Reichmeyer;

"Framework Policy Information Base'',

[ETF, Internet-Draft, draft-ietf-rap-frameworkpib-04.txt, November 2000
(hitp:/fwww.ietf.org/inzerner-drafis/draft-ietf-rap-frameworkpib-04.txt)

K. McCloghrie, M. Fine, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, F.
Reichmeyer;

"Structure of Policy Provisioning Information (SPPI)'';

IETF, Internet-Draft, draft-ietf-rap-frameworkpib-06.txt, February 2001
(htip:/fwww.ietf.org/interner-drafts/ drafi-ietf-rap-frameworkpib-06.txt)

“Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1)%;
Information processing systems - Open Systems Interconnection, International

Organization for Standardization, International Standard 8825, December, 1987

K. McCloghrie, D. Perkins, J. Schoenwaelder, J. Case, M. Rose and S. Waldbusser;
""Structure of Management Information Version 2 (SMIv2)";

IETF, RFC 2578, April 1999

(http:/fwww.ietf.org/rfc/rfc2578.txt)

References

75

[39]. “Oplet Runtime Environment”

http://www.openetlab.org/ore.htm

[40]. R. Boutaba, Andreas Polyrakis;
“Towards Extensible Policy Enforcement Points’’;
IEEE Workshop on Policies for Distributed Systems and Networks, Bristol, U.K.,
29-31 January 2001, pp. 247-261

[41]. R. Boutaba, Andreas Polyrakis;
"COPS-PR with Meta-Policy Support'';
IETF, Internet-Draft, draft-boutaba-copsprmp-00.txt, April 2001
(http://www.ietf.org/internet-drafts/draft-boutaba-copsprmp-00.ixt)

Appendices

76

Appendices

77

Appendix A. The Meta-Policy PIB

INTERNET-DRAFT Andreas Polyrakis
Resource Allocation Working Group (RAP) University of Toronto
Intended Category: Standards Track Raouf Boutaba

Expires: October, 2001 University of Waterloo

The Meta-Policy Information Base (M-PIR)

draft-ietf-rap-mpib-00.txt

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026. Internet-Drafts are
working documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress".

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts. txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 1]

Appendices 78

The Meta-Policy Information Base April 2001
Abstract

This document introduces the concept of COPS-PR meta-policies, and
defines the Meta-Policy Information Base.

The meta-policy PIB does not introduce a new policing area. On the
contrary, it defines some provisioning classes that can be used by
all other PIBs, in order to add meta-policing functionality into
them. The meta-policy PIB, like every PIB, stores policing
information that controls some policing mechanisms of the device.
However, unlike other PIBs, the policing mechanism controlled by the
meta-policy PRCs is the PIB itself. The data maintained by these
PRCs implement policies that control other policies, this is why
they are called meta-pclicies.

Meta-policies is an attempt to push intelligence towards the COPS-PR
PEPs and overcome the rigidity of their PIBs. Through meta-policies,
more policing information and functionality can be pushed towards
the PEP, less interaction with the PDP is necessary, and less
network and PDP resources are consumed. The PEP is more independent
and it can bear longer PDP absences.

Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in [RFC-2119].

Glossary - Terminology

This document follows the terminology of [P-TERM]. However, the most
commonly used terms are cited again here:

PDP Policy Decision Point. See [RAP-FRM].
PEP Policy Enforcement Point. See [RAP-FRM].
BRC Provisioning Class. See [COPS-PR].

PRI Provisioning Instance. See [COPS-PR].
PIB Policy Information Base. See [COPS-PR].

PRID Provisioning Instance Identifier. Uniquely identifies an
instance of a PRC. See [COPS-PR].

R.Boutaba, A.Polyrakis Intermet-Draft, expires Oct.2001 [page 2]

Appendices

The Meta-Policy Information Base April 2001
Table of Contents

Status o0f this MemMO. .. .ttt it it i ittt et ettt e e e e e e e eeeean 1
28 <= w o= Vo 2
Conventions used in this document.ttt oo eeenunn 2
GloSSAry = TerMiNOLOgY - c v v v o o e m e e te et e e e ee oo eeeeeeeeeeeeeeeeeenan 2
Table Of ContentS. .. it ittt e et it it e e et et e e e e e e e e e e e e eeean 3
P 55 o o of T 1 Tt o 1= 7 K0 4
AP A - 9 = 0 P 1 B =¥ o3 =) o .- 25 4
1.2.The concept of Meta-Policies.ttt ieeeeeaann 4
1.3 .Why Meta-PoOLliCies 2. @i ittt it e ettt et et e e e e eaeeeeaaenn 5
2. Formal DefinitCion. ..ottt ittt i ittt e ettt e e e e e e e e 6
2.l Meta-POliCieS . i ittt e e e e ettt et 6
AN =5 o=) 11 1=] ol = o 7
3 .Representation of Meta-Policies in the PIB...... .o omenenenennn. 7
C T D (=T o R o T I = = 7
K - B o3 o 1o 8 ob N} « =30 7
I JC IO Yo o o « ¥ 9
I O - Bt U 1T o = o= R 9
4.Structure of the M-PIB.t ittt teeee e eeessenecanaeaennan 9
4.1.The Capabilities GroUD -« « -ttt v ittt neeeetteeeeeeeaeeacaenaeen. 9
4.2 .The Meta-POliCy GIOUD . c c t v v o et temen e eeeeneeneeeeeeeeannene- 9
4.3.The Condition GrOUD. « c v vt ettt aunaneneanenaneeenennneeananenan 10
4.4.The ACLIONS GEOUD - c t o e e et ot te oo e ae e e e eeae e eeoeee e eneeas 11
4.5.The Parameter GLOUD. -« c v s a e m e e et aoeme e et ee e e e eee e e e e eaeeeeas 11
S.Definition of the Meta—Policy PIB. ...t iun et eeoe e eeeeeeennn 11
T \bRetoTod =R e Baled 1 =N o A o < N 28
b = ot o LY 28
Appendix A - Sample XML DTD for encoding conditions.............. 30
Full Copyright Statement. . . .« et ittt et e e e e e e eeeeees 31

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 3]

Appendices

80

1.

The Meta-Policy Information Base April 2001

Introduction

1.1. PIB Limitations

PIBs are rigid structures. The PIB of a device follows specific
standards and can only store specific types of policies. Several
policies that could be processed entirely at the PEP level may need
to be partially processed by the PDP. For example, a PEP that
implements a small PIB that performs filtering according to the
IP/Mask/Port of the source/destination of the packets cannot
implement the policy “between 5pm and 8pm do not allow traffic from
IP X7, even if a clock exists on the device. In this case, the PDP
partially evaluates the conditions of the policy and installs,
according to the time, the appropriate filter in the PIB of the PEP.
Obviously, it would be more efficient if the involvement of the PDP
could be avoided and the entire policy could be processed entirely
at the PEP level.

A second observation is that the PDP may need to send the same or
similar commands to the PDP, when the same network events occur. For
example, suppose that there is a policy: “give to administrators
high priority”. If an administrator logs on at a workstation and
after a while to another one, the PDP will need to send similar
commands to the PEP. Or, each time congestion is detected in the
network, the PDP may need to modify the contents of the PIB to
reflect similar policies.

The latter limitation has been identified and has been partially
tackled in the framework PIB [FR-PIB]: The section “Multiple PIB
instances” describes how the PDP can activate, with a simple
command, different instances of the same PIB that relate to
different network states.

1.2. The concept of Meta-Policies

Inspired by the previous, this document describes how the same can
be done in smaller portions of the PIB, i.e., how the PDP can send
in advance sets of commands that modify the PIB, which will be
activated with simple PDP commands. Moreover, this document
describes how the PDP can direct the PEP how to perform the
activation of these sets by itself, independently of the PDP, if
this is considered efficient or desirable.

This additional functionality is implemented through some extra PRCs
that supplement and control the PIB of the device. Data on these
PRCs control the data (policies) of the entire PIB; this is why the
policies implemented in these classes are called “meta-policies”.

Meta-policies are simple rules that monitor some events, and
according to their values install or remove PRIs from the PIB.
Notice that, according to the previous, meta-policies have, in
principle, the same functionality with the PDP that controls the

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 (page 41}

Appendices

The Meta-Policy Information Base April 2001

device. Indeed, meta-policies attempt to push intelligence and EDP
functionality towards the PEP. However, this does not oppose to the
requirement that the PEP must always obey to the PDP, because me=ta-
policies are rules produced by the PDP, hence the PDP ultimatelyw
controls the exact behavior of the PEP.

As mentioned before, meta-policies monitor some events and perfocorm
some actions. However, this does not imply that all monitoring hnas
to be performed by the PEP. The PDP still maintains the overall
picture of the network and informs the PEP of global events.
However, several events can be monitored by the PEP itself. Sucha
events may be local events that derive from the MIB (or even thee
PIB) of the device. Alternatively, the PEP may get such informat:cion
from a third network service or server, e.g., clock service,
authentication service, etc. (notice that this does not reduce t:he
scalability of the model: again, N PEPs connect to 1 server).

Depending on the values of the network events, meta-policies modlify
the PIB of the device. Each meta-policy is associated with a
combination of events; when these events occur, the meta-policy is
activated and some PRIs are installed into the PIB. These PRIs a.re
uninstalled when these events do no longer apply. The actions th.at a
meta-policy takes are predetermined by the PDP. In order to do s.o,
the PDP must associate with these actions the events that reflec t
such network state that will ensure that these actions will not Tbe
conflicting with any other installed actions, or that the policises
formed in the PIB are invalid or incorrect. Also, since two valied
meta-policies may be conflicting under certain circumstances, thee
PDP must provide some relative priority order between such meta-
policies, which will allow the PEP to take the correct decision.

Notice that meta-policies do not prohibit the PDP from controllimmg
the entire PIB of the device. On the contrary, the PDP has two waays
to modify the PIB: Either directly, by installing or removing PRIIs,
or indirectly, by installing meta-policies that install or removee
these PRIs, when appropriate. Of course, meta-policies introduce
extra complexity at the PDP, since it alsoc has to ensure that PRIs
installed directly cannot conflict with decisions taken by any
installed meta-policy.

1.3. Why Meta-Policies?

Meta-policies push some of the PDP functionality towards the PEP..
This approach has several advantages:

1. The PDP is relieved from some of the policy processing. Since the
global network policies seldom change, meta-policies are usuallly
generated once and sent to the PEP. The PDP does not have to re-
generate similar COPS-PR commands each time that the network
conditions change.

2. Less network resources are consumed. Instead of sending whole
policies, the PDP can activate the pre-installed meta-policies by

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 5]

Appendices 82

The Meta-Policy Information Base April 2001

communicating network events. Also, the PEPs can be programmed to
monitor local events, which means that these events do not need to
be communicated to the PDP, and then back tc the PEP.

3. The PEPs become more independent, since they are able to take more
decisions, according to various network events. Thus, they can
operate correctly during larger PDP absences, and they are less
affected by situations such as congestion, high network delays,
packet loss and PDP coverload.

4. The fact that the behavior of the PEPs can be controlled with
smaller messages (network events instead of whole policies) makes
the model more robust in erroneous network situations, such as
congestion and high packet loss.

In general, meta-policies contribute towards the scalability,
distribution, robustness and fault-tolerance of the COPS-PR model.

Note that meta-policies allow the PDP to push towards the PEP as
little intelligence as a few simple meta-policies or as much as
integrating almost the entire PDP functionality into it.

2. Formal Definition

2.1. Meta-Policies
We define a meta-policy as a rule of the form:
if (condition) then ({actions}

where “condition” is a logical expression,
e.g., “(C>80%) and (D=true}”,
and "actions" is a set of commands that install PRIs into the PIB.

Since the actions encode a specific policy, this rule is a rule on
how policies are enforced; this is why it is called “meta-policy”.

Each meta-policy is generated for a specific PEP, according to its
capabilities, limitations and the device on which it resides. The
PEP evaluates the condition of each meta-policy, and when it
evaluates true, it enforces the actions. When it becomes false, the
PRIs are uninstalled. The key idea in meta-policies is that the PEP
can store and process these meta-policies without knowing their
exact semantics: The condition is treated as a logical expression;
the actions, pre-generated by the PDP, just denote PRIs that must be
installed, and this can be done by the PEP without knowing the
policy they really implement. In this way, the PEP can process any
meta-policy, independently of its complexity and its meaning.

Both the condition and the actions may contain parameters (such as
“Congestion” or “Time”); the values for these parameters are either

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 6]

Appendices

The Meta-Policy Information Base April 2001

sent by the PDP or evaluated by the PEP, according to directions
provided by the former.

2.2. Parameters

The parameters are used in meta-policy conditions in order to
determine when a meta-policy must be activated. Moreover, they are
used by meta-policy actions in order to dynamically bind the network
state within policies. For example, the meta-pclicy *“if
(AdminLogged) then {give high priority to AdminIP}”, contains the
parameters AdminLogged and AdminIP.

When installing a parameter, the PDP must specify an ewvaluation
method for this parameter. For instance, the PEP can be directed to
get a value for a parameter from the MIB or the PIB of the device.
Alternatively, the PDP could provide the value for this parameter.
However, other methods are also possible, depending on the
capabilities of the device, such as to downlcad and execute a
script, use mobile agents, or get the desired information from some
server or service.

3. Representation of Meta-Policies in the PIB

3.1. Meta-policies

Each meta-policy is comprised of two parts: The “condition” and the
*actions”. The “condition” is a logical expression that may be
divided into simpler conditions. The “actions” is a group of PIB
commands that install or remove PRIs. A meta-policy MUST always be
associated with a condition, and it 1s expected to be associated
with one or more actions (meta-policies without actions should
normally occur only as the result of temporal deactivation of its
actions) .

Since meta-policies may be conflicting, the relative priority
between potentially conflicting meta-policies MUST be declared in
the PIB.

3.2. Conditions

The “condition” of a meta-policy is a logical expression that
determines when the meta-policy must be activated. Each meta-policy
must contain exactly one condition. The condition may consist other
simpler conditions; and these conditions may similarly be comprised
of even simpler conditions, etc. In this way, the condition is
eventually decomposed in primitives that are logical expressions
(i.e., they evaluate true or false), but cannot be further
decomposed (i.e., the expression (X>Y).

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 fpage 71

Appendices

84

The Meta-Policy Information Base April 2001

This document distinguishes two types of such primitives: Booleans
and generic 1l ogical expressions. Booleans are a subset of the
generic expre ssions, but due to their simplicity and commonality,
they are trea ted separately. Such primitives are evaluated according
to the value <©f a Booclean parameter. For instance, the condition
(X>Y) && (!Comgestion) && (WorkTime) is decomposed into three
primitives: “X>Y”, “Congestion” and “WorkTime”. From these three
primitives, omly the two are Booleans. Booleans MUST be supported by
all meta-poli<y PIBs.

Generic expresssions contain all the other logical expressions that
cannot be decomposed into simpler primitives. Examples of such
primitives are “"X>Y”, “IP matches X.Y.Z.W” or “8:00am < time <
5:00pm) . Each PEP can only support specific types of such
expressions (e.g., arithmetic), which are reported along with the
other PEP capabilities to the PDP. The PDP can only sent to the PEP
expressions tEat are supported by the latter.

In orxder to ericode and communicate such generic conditions, XML is
used. The PEP supports some XML Document Type Definitions (DTDs),
which describ= the semantics of XML tags that can be used to
described suck an expression. For instance, a simple DTD that
defines XML tags for encoding arithmetic expressions is presented in
Appendix A°. The PDP encodes the condition (if this is feasible)
according to one of these DTDs, and sends it to the PEP, notifying
it which DTD 3t chose. The PEP MUST be able to interpret any kind of
expressions erwcoded according tc the DTDs that it supports (with the
exception of sSome limitations like the size of the XML document,
etc, that it rzeports to the PDP in the REQ message). In this way,
complex expressions can be communicated from the PDP to the PEP and
be evaluated bbby the latter. Notice that each atom conditions should
be parametric (it does not make sense to use constant conditions),
the DTDs MUST provide a way to reference to the parameters that are
installed in t=he PEP, through their identifiers.

For example, suppose that the PDP needs to send to the PEP the
expression A “A+B>7". The PEP has reported that it supports the DTD
of Appendix A_ In this case, the expression will be sent as:

<ar_cond comp='GT'>
<expr>
<expr>><par>l</par><arop op=’'+’'></arop><par>2</par></expr>
</expr>
<expr>
<num>7</num>
</expr>
</ar_cond>

(Parameters “A.” and “B” are mapped to the Parameter IDs 1 and 2,
respectively)

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 {page 8]

" Appendix A of this specification, not of the entire document

Appendices 85

The Meta-Policy Information Base April 2001

Note that the XML-encoded expression does not describe how the
parameters are evaluated. It only references the parameters that are
used in order to evaluate this expression.

3.3. Actions

The Actions of a meta-policy is a group of commands that install
PRIs into the PIB. Each action MUST specify a target PRID that
specifies a single PRI, and the value that will be installed into
it. This value may be either a BER-encoded value, sent by the PDP,
or the value of a parameter.

3.4. Parameters

Two standard types of parameters are defined in this document. The
first type is parameters, the values of which are sent by the PDP.
The second one is parameters that are evaluated by the MIB or the
PIB of the PEP. However, the evaluation methods of the parameters
can be extended (this is described later in this document). For
instance, the vendors of a device with open node architecture
(programmable/active device) may define a way through which scripts
or code can be downloaded and executed in order to evaluate a
parameter.

4. Structure of the M-PIB

The Meta-Policy PIB consists of five groups.

4.1. The Capabilities Group

This group contains a single table, the xmlDTDTable. This contains
the XMI, DTDs that the PEP supports, for encoding expressions. Each
row consists of an identifier and the DTD URL. The rows of this
table are reported to the PDP in the REQ message.

4.2. The Meta-Policy Group

This group contains three tables: the metaPolicyTable, the
metaPolicyStatusTable and the metaPolicyPriorityTable.

The metaPolicyTable is the table where meta-pclicies are
constructed. Each row represents exactly one meta-policy. The meta-
policy comprises an identifier, a name, a condition and an action
tag. The condition is a reference to the conditionTable that we will
describe later in this document, which encodes conditions. The
action tag identifies a group of actions from the actionTable that
must be executed when the meta-policy is activated.

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 91

Appendices

86

The Meta-Policy Information Base April 2001

The metaPolicyStatusTable is a table that AUGMENTS the previous
table (this means that there is a 1-1 correspondence between the
rows of these tables). Each row of this table reports whether the
corresponding meta-policy is active, and whether it suppresses or it
is suppressed by anoter meta-policy with higher priority. This table
is used to report to the PDP the meta-policy status. This class,
unlike the metaPolicy class, 1s only used to report the status of
the meta-policies to the PDP and it cannot be modified by it.

Finally, the metaPolicyPriorityTable is used by the PDP in order to
report to the PEP conflicting meta-policies, and direct it how to
resolve the conflict. Each row identifies two meta-policies, and
defines which one has the higher priority. Rows with two active
meta-policies MUST NOT exist in this table.

4.3. The Condition Group

This group contains four tables: the conditionTable, the
complexConditionTable, the booleanConditionTable and the
generalConditionTable.

The conditionTable is the base table of this group. Each row
represents a logical expression. It consists of an identifier and an
attribute that defines whether the condition should be logically
reversed (i.e., whether its negation must be computed, instead).
Rows of this table MUST always be associated with rows of an other
table that extends the base one.

Some (but not all) of the rows of this table are used in order to
represent conditions of meta-policy. Other rows, though, can be used
to break down a complex condition to simpler ones.

In order to achieve that, the complexConditionTable is used. This
table EXTENDS the base conditionTable. Each row consists of two
references to the conditionTable, and an operator. The references
reference two other logical conditions, and the operator defines a
logical operation between these two conditions. In this way., the row
in this table forms a more complex condition. Obviously, the PDP
must not install rows that reference themselves, either explicitly
or implicitly.

The booleanConditionTable is a table that also extends the base
table. Each row contains a reference to a parameter, which must be
of type “TrueValue”. The value of the condition is evaluated
according to the value of this parameter.

Finally, the generalConditionTable is used to allow conditions to be
evaluated through more complex expressions. Each row consists of a
reference to the xmlDTDtable and a string, which encodes in XML an
expression. The reference to the xmlDTDtable defines the XML DTD
that must be used in order to interpret this expression. The

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 10}

Appendices 87

The Meta-Policy Information Base April 2001

expression encoded MUST be a logical expression, i.e., it MUST
evaluate either true or false.

4.4. The Actions Group

This group consists of three tables: the actionTable, the
actionvValueTable and the actionParametricValueTable.

The actionTable is the base table for storing meta-policy actions.

Each row contains a tag-reference attribute that groups the actions
of a single meta-policy. Each row specifies the PRID of the PRI to

be installed.

The value of the PRI is determined either in the actionValueTable or
the actionParametricValueTable. Both tables EXTEND the base one and
provide the value that must be installed for the specific target
PRID. The former provides a BER-encoded value, while the latter
specifies a parameter, from where the value is evaluated.

4.5. The Parameter Group

This group contains three tables: the parameterTable, the
mibPibParameterTable and the PDPParameterTable.

The parameterTable is the base table for representing conditions.
Each row constist of an identifier, a name and an attribute that

denotes the type of the parameter. Each row in this table must be
associated with a row of a table that EXTENDS this one.

The mibPibParameterTable is such a table. It defines a MIB or PIB
identifier from where the parameter gets its value. Of course, this
identifier must point to an existing variable. Each row also defines
the frequency that this value will be updated.

The pdpParameterTable also extends the base parameterTable. Each row
of this table contains a single attribute that encodes, in BER, a
single value. The PDP sends the values for this row.

Definition of the Meta-Policy PIB

META-POLICY-PIB PIB-DEFINITIONS ::= BEGIN

IMPORTS
Unsigned32, timeticks,
MODULE-IDENTITY, OBJECT-TYPE,
InstanceId, Referenceld
FROM COPS-PR-SPPI
TEXTUAL-CONVENTION

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 11]

Appendices 88

The Meta-Policy Information Base April 2001
FROM SNMPvV2-TC:;

metaPolicyPib MODULE-IDENTITY

SUBJECT-CATEGORY { all }

LAST-UPDATED "200104010000"

ORGANIZATION "IETF"

CONTACT-INFO " Andreas Polyrakis
Dept. of Computer Science,
University of Toronto,
10 King's College Road,
Toronto, Ontario,MSS 3G4, Canada.
e-mail: apolyr@cs.toronto.edu
Phone: ++1 (416) 978-4837
Fax: ++1 (416) 978 1831

Raouf Boutaba
Dept. of Computer Science,
University of Waterloo,
200 University Avenue West,
Waterloo, Ontario N2L 3Gl, Canada
e-mail: rboutaba@bbecr.uwaterloo.ca
Phone: ++1 (519) 888 4567 ext.4820
Fax: ++1 (519) 885 1208"
DESCRIPTION
"The meta-policy PIB module. It contains the classes
that are necessary for the provisioning of meta-policy
related information. This module is applicable,
but not mandatory, to all subject-categories"

::= { tbd }
-~ The root OID for PRCs in the Meta-Policy PIB

-—-— Textual Conventions

BERValue ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"A sequence of octets that encodes a value using BER.
The suppoted BER types are:

Type | BER identifier
____________________ | —m—m -
INTEGER | 02
BIT STRING | 03
OCTET STRING | o4
NULL | 05
OBJECT IDENTIFIER | o6
IP ADDRESS | 40

By using this type., the PEP can store values for different
types
of parameters in the same class (PRC)."

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 121}

Appendices

89

The Meta-Policy Information Base April 2001

SYNTAX OCTET STRING (SIZE (0..16))

XMLString ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A string that contains a logical expression encoded using
XML .
The semantics of the XML tags are defined in special DTDs,
which

the PEP has denoted that it supports to the PDP.*
SYNTAX OCTET STRING (SIZE (0..1024))

--- End of Textual Conventions

—-- Meta-Policy Capabilities Group
metaPolicyCapabilitiesClasses
OBJECT IDENTIFIER ::= { metaPolicyPib 1 }

-—-— Meta-Policy Capabilities Table
xmlDTDTable OBJECT-TYPE
SYNTAX SEQUENCE OF xmlDTDEntry
PIB-ACCESS notify
STATUS current
DESCRIPTION

"Each instance of this class specifies
identifies an XML DTD supported by the
logical expressions. If this class has
then the PEP supports only expressions
with boolean predicates and operators,

a PRC that

PEP for encoding
no instances,
that are formed
and in this case

the PDP MUST not attempt to install any XML-encoded
expressions in the generalConditionTable."
::= { metaPolicyCapabilitiesClasses 1 }
xm1DTDEntry OBJECT-TYPE
SYNTAX MetaPolicyCapabilitiesEntry
STATUS current
DESCRIPTION
"An instance of the xmlDTDTable class that determines an
XML, DTD that can be used to encode a logical expression®
INDEX { metaPolicyPrid }
::= { metaPolicyTable 1 }

XmlDTDEntry ::=
SEQUENCE {
xmlDTDPrid Instanceld,
xm1DTDURL SnmpAdminString

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 13]

Appendices

90

The Meta-Policy Information Base April 2001

}

xmlDTDPrid OBJECT-TYPE

SYNTAX Instanceld

STATUS current

DESCRIPTION
"An arbitrary integer that uniquely identifies an
instance of the xmlDTD class.”

::= { xmlDTDEntry 1 }

xmlDTDURL OBJECT-TYPE

SYNTAX SnmpAdminString
STATUS current
DESCRIPTION

"The XML DTD URL. A string that indicates the URL of an

XML DTD that can be used for encoding expressions.
These DTDs can be defined either by standardization
organizations, such as IETF, or be vendor specific.

When the PDP receives a URL that uniquely identifies
such a DTD, it knows that it may encode expressions
according to this DTD that the PEP will be able to

evaluate."
::= { xmlDTDEntry 2 }

--End of xaulDTDTable

-~ Base Meta-Policy Group
metaPolicyClasses
OBJECT IDENTIFIER ::

{ metaPolicyPib 2 }

--—- Meta-Policy Table
metaPolicyTable OBJECT-TYPE
SYNTAX SEQUENCE OF metaPolicyEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION

"Each instance of this class specifies a PRC that
represents a meta-policy. Each meta-policy, apart

from a unique identifier and an optional name,

ic

constists of a condition and a group of actions”"

:= { metaPolicyClasses 1 }

metaPolicyEntry OBJECT-TYPE
SYNTAX MetaPolicyEntry
STATUS current
DESCRIPTION

"An instance of the metaPolicy Class that represents

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001

[page 14]

Appendices

91

The Meta-Policy Information Base= April 2001

a meta-policy."
INDEX { metaPolicyPrid }
::= { metaPolicyTable 1 }

MetaPolicyEntry ::=
SEQUENCE {
metaPolicyPrid InstanceId,
metaPolicyName SnmpAdminStr-ing,
metaPolicyCondition ReferenceId,
metaPolicyActions TagId
}

metaPolicyPrid OBJECT-TYPE
SYNTAX InstancelId
STATUS current
DESCRIPTION
"An arbitrary integer that uniquely idlentifies an
instance of the metaPolicy class."
::= { metaPolicyEntry 1 }

metaPolicyName OBJECT-TYPE

SYNTAX SnmpAdminString

STATUS current

DESCRIPTION
*"A display string that represents the :name of the
meta-policy. It is reccomented that di fferent
meta-policies have different names. However, similar
meta-policies may have the same name.
Also, an empty string can be used as a name."

::= { metaPolicyEntry 2 }

metaPolicyCondition OBJECT-TYPE

SYNTAX ReferencelId

PIB~REFERENCES contitionTable

STATUS current

DESCRIPTION
"This attribute associates the specifiec meta-policy with
a condition in the condition Class. Thee condition MUST
exist when the meta-policy is installeod. The meta-policy
MUST always be assosiated with one conedition (which means
that the attribute can never be null/izmmvalid."

::= { metaPolicyEntry 3 }

metaPolicyActions OBJECT-TYPE
SYNTAX TagId
PIB-~-REFERENCES actionsTable
STATUS current
DESCRIPTION
"A tag that maps this instance (meta-peolicy) to a group
of actions in the actions Class. Althowgh the tag should
map to at least one action, there migh®#t be cases where a
meta-policy is associated to no actionss. However such
cases should be avoided and only be termporal."
= { metaPolicyEntry 4 }

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 15]

Appendices

The Meta-Policy Information Base April 2001

--End of metaPolicyTable

-~ Meta-Policy Status Table
metaPolicyStatusTable OBJECT-TYPE
SYNTAX SEQUENCE OF metaPolicyStatusEntry
PIB-ACCESS REPORT-ONLY
STATUS current
DESCRIPTION
"This class augments the metaPolicy class.
Each instance of this class defines a PRC that is used
in order to report to the PDP the status of the
meta-policies.

Also, information form this table can be used as a
parameter to ancther meta-policy, as an alternative
way to ensure that two priorities cannot be
activated at the same time."

::= { metaPolicyClasses 2 }

metaPolicyStatusEntry OBJECT-TYPE

SYNTAX MetaPolicyStatusEntry

STATUS current

DESCRIPTION
"An instance of the metaPolicyStatus class that reports
the status of the corresponding meta-policy in the
metaPolicy class."”

AUGMENTS { metaPolicyEntry }

::= { metaPolicyStatusTable 1 }

metaPolicyStatusEntry ::=
SEQUENCE (
metaPolicyActive Truthvalue,
metaPolicySuppressed TruthValue
}

metaPolicyActive OBJECT-TYPE
SYNTAX TruthValue
STATUS current
DESCRIPTION
"True while the meta-policy is active"
::= { metaPolicyStatusEntry 1 }

metaPolicySuppress OBJECT-TYPE
SYNTAX Truthvalue
STATUS current
DESCRIPTION
"If this meta-policy is prevented from being active by
an other meta-policy (but its conditions are met), this
attribute is set to true.

If this meta-policy prevents another meta-policy from
being active, then this attribute is true.

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 161

Appendices 93

The Meta-Policy Information Base April 2001

In other words:
Active | Suppr. |

true | true meta-policy active,
it suppresses another one
true | false meta-policy active,

l
|
l
| does not suppress another one
false | true | meta-policy inactive
| because it is suppressed by another one
| meta-policy inactive because
| the conditions are not met

false | false

metaPolicyStatusEntry 2 }
etaPolicyStatusTable

;
o7
0
Mo
= I

--—- Meta-Policy Priority Table
metaPolicyPriorityTable OBJECT-TYPE
SYNTAX SEQUENCE OF metaPolicyPriorityEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"This table reports conflicting meta-policies.
When a meta-policy needs to be activated, the PEP
MUST check if it is conflicting with ancother meta-policy,
which is already active or needs to be activated at the
same time. If so, the one that is referenced in the
higherPriority attribute is activated and the other one
is deactivated or remains deactivated. Similarly, when a
meta-policy is deactivated, the PEP must check if a
lower-priority meta-policy must now be activated."
::= { metaPolicyClasses 3 }
metaPolicyPriorityEntry OBJECT-TYPE
SYNTAX MetaPolicyPriorityEntry
STATUS current
DESCRIPTION
"An instance of the metaPolicyPriority Class that
identifies the relative priority between two
meta-policies.”
INDEX { metaPolicyPrid }
::= { metaPolicyPriorityTable 1 }

MetaPolicyPriorityEntry ::=

SEQUENCE {
metaPolicyPriorityPrid Instanceld,
higherPriority Referenceld,
lowerPriority Referenceld,
}

metaPolicyPriorityPrid OBJECT-TYPE

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [(page 17]

Appendices

The Meta-Policy Information Base April 2001

SYNTAX InstanceId

STATUS current

DESCRIPTION
"An arbitrary integer that uniquely identifies an
instance of the metaPolicyPriority class."

::= { metaPolicyPriorityEntry 1 }

higherPriority OBJECT-TYPE

SYNTAX Referenceld

PIB-REFERENCES metaPolicyTable

STATUS current

DESCRIPTION
"This attribute references to the meta-policy that
has higher priority than the one referenced by the
lowerPriority attribute”

::= { metaPolicyPriorityEntry 2 }

lowerPriority OBJECT-TYPE

SYNTAX ReferenceId

PIB-REFERENCES metaPolicyTable

STATUS current

DESCRIPTION
"This attribute references to the meta-policy that
has lower priority than the one referenced by the
higherPriority attribute"

::= { metaPolicyPriorityEntry 3 }

--End of metaPolicyPriorityTable

-- Condition Group
conditionClasses
OBJECT IDENTIFIER ::= { metaPolicyPib 3 }

-- Condition Table
conditionTable OBJECT-TYPE
SYNTAX SEQUENCE OF conditionEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"Each instance of this PRC represents a boolean
expression. The conditionss of the meta-policies are
instances of this class. However, if the condition of
a meta-policy contains more than one predicate, the
predicates are also instances of this PRC.

For instance, Suppose that we want to encode a condition
A, which is evaluated as (B OR C), where B and C scome
other boolean expressions.

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 {[page 18]

Appendices 95

The Meta-Policy Information Base April 2001
In this case, A, B and C are instances of this PRC.

All instances of this PRC MUST be extended by an instance
of one of the rest PRCs of this group, in order to denote
if this condition should be evaluated based on simpler
conditions, if it is a boolean operand or an other
logical expression.”
::= { conditionClasses 1 }
conditionEntry OBJECT-TYPE
SYNTAX ConditionEntry
STATUS current
DESCRIPTION
"An instance of the condition Class that defines a
boolean condition”
INDEX { conditionIndex }
::= { conditionTable 1 }

ConditionEntry ::=
SEQUENCE ({
conditionPrid Instanceld,
conditionReverse Truevalue
}

conditionPrid OBJECT-TYPE
SYNTAX InstanceId
STATUS current
DESCRIPTION
"An arbitrary integer that uniquely identifies an
instance of the condition class."
::= { conditionEntry 1 }

conditionReverse OBJECT-TYPE
SYNTAX Truevalue
STATUS current
DESCRIPTION
"if true, the negation of the logical expression
is evaluated, instead."
::= { conditionEntry 2 }
-- END OF conditionTable

-—- Complex Condition Table
complexConditionTable OBJECT-TYPE
SYNTAX SEQUENCE OF complexConditionEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"Bach instance of this PRC represents a complex
condition. It consists of two simplier conditions,
and a logical operator that determines how the two
terms are assosiated to compose the more
complicated condition"®

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 19]

Appendices 96

The Meta-Policy Information Base April 2001
::= { conditionClasses 2 }

complexConditionEntry OBJECT-TYPE

SYNTAX ComplexConditionEntry

STATUS current

DESCRIPTION
"An instance of the complexCondition class that breaks a
complex condition into two simpler ones."

EXTENDS { conditionTable }

::= { complexConditionTable }

ComplexConditionEntry ::=

SEQUENCE (
operator Unsigned32,
leftTerm ReferenceId,
rightTerm ReferenceId
}

operator OBJECT-TYPE
SYNTAX Unsigned32 (
AND (0},
OR (1)
}
STATUS current
DESCRIPTION
"The logical operator in the complex condition"
::= { complexConditionEntry 1 }

leftTerm OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES conditionTable
STATUS current
DESCRIPTION
"A reference to the first simpler condition."
::= { complexConditionEntry 2 }

rightTerm OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES conditionTable
STATUS current
DESCRIPTION
"A reference to the second simpler condition."®
::= { complexConditionEntry 3 }
-— END OF complexConditionTable

~- Boolean Condition Expression Table
booleanCeonditionTable OBJECT-TYPE
SYNT2X SEQUENCE OF booleanConditionEntry
PIB-ACCESS INSTALL
STATUS mandatory
DESCRIPTION
"Each instance of this class extends the condition class

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 (page 20]

Appendices

97

The Meta-Policy Information Base April 2001

and represents a boolean parameter from which the
condition is evaluated."”
::= { metaPolicyPibClasses 2 }

booleanConditionEntry OBJECT-TYPE

SYNTAX BooleanConditionEntry

STATUS mandatory

DESCRIPTION
"An instance of the booleanCondition class that defines
the booclean parameter that gives values to the
corresponding condition.”

EXTENDS { conditionTable }

::= { booleanConditionTable 1 }

BooleanConditionEntry ::=
SEQUENCE ({
parameterReference ReferenceId
}

parameterReference OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES parameterTable
STATUS current
DESCRIPTION
"A reference to a parameter from where the condition is
evaluated. This condition MUST be of type boolean
(Truthvalue) ."
::= { booleanConditionEntry 1 }
-- End of booleanConditionTable

-- Generic Condition Table
genericConditionTable OBJECT-TYPE
SYNTAX SEQUENCE OF genericConditionEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"Each instance of this class extends the condition class
and assosiates the corresponding condition with a complex
logical expression, from where the condition is
evaluated."
::= { conditionClasses 2 }

genericConditionEntry OBJECT-TYPE

SYNTAX GenericConditionEntry

STATUS current

DESCRIPTION
"An instance of the generalCondition class that defines
the logical expression for the corresponding condition
of the condition class."

EXTENDS { generalConditionTable }

::= { conditionNumericalExpressionTable }

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 21]

Appendices

The Meta-Policy Information Base April 2001

GenericConditionEntry ::=
SEQUENCE {
xml1DTDRef Referenceld,
xmlCondition XMLString
}

xmlDTDRef OBJECT-TYPE

SYNTAX ReferenceId

PIB-REFERENCES xmlDTDTable

STATUS current

DESCRIPTION
"A reference to the xmlDTD class that deterrmies which
of the XML DTDs that this PEP supports is used in
order to enccde the expression."

::= { genericConditionEntry 1 }

xmlCondition OBJECT-TYPE
SYNTAX XMLString
STATUS mandatory
DESCRIPTION
"The XML-encoded expression."
::={ genericConditionEntry 2 }
-- End of genericConditionTable

-- Actions Group
actionClasses
OBJECT IDENTIFIER ::= { metaPolicyPib 4 }

-- Actions Table
actionTable OBJECT-TYPE
SYNTAX SEQUENCE of actionEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"Bach instance of this class stores an acticon of
a meta-policy."
::= { actionClasses 1 }

actionEntry OBJECT-TYPE

SYNTAX ActionEntry

STATUS current

DESCRIPTION
"An instance of the action class that stores: an action
of a meta-policy."

INDEX { actionPrid 1}

::= { actionTable 1 }

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.20 01 ([page 22]

Appendices 99

The Meta-Policy Information Base April 2001
ActionEntry ::=
SEQUENCE {
actionPrid InstanceId,
actionRefTag TagReferenceld,

actionTargetPrid Prid
}

actionPrid OBJECT-TYPE
SYNTAX InstanceId
STATUS current
DESCRIPTION
"An arbitrary integer that uniquely identifies an
instance of the action class."
::= { actionEntry 1 }

actionRefTag OBJECT-TYPE

SYNTAX TagReferenceld

PIB-TAG metaPolicyActions

STATUS current

DESCRIPTION
"An attribute that defines a Tag Group of actions.
All actions with the same tag are grouped as the actions
of a single meta-policy."

::={ actionEntry 2 }

actionTargetPrid OBJECT-TYPE
SYNTAX Prid
STATUS current
DESCRIPTION
"The PRID of the PRI to be installed/updated.
The PRID must point to a single PRI."
::={ actionEntry 3 }
-- END OF actionsTable

-— Action Value table
actionvalueTable OBJECT-TYPE
SYNTAX SEQUENCE OF actionValueEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"Each instance of this c¢lass extends the corresponding
instance of the action class. It provides the BER-encocded

that will be installed at the corresponding PRI."
:= { actionClasses 2 }

actionValueEntry OBJECT-TYPE
SYNTAX ActionsValueEntry
STATUS current
DESCRIPTION
"An insance of the actionValue class. It provides
the value (encoded with BER) that will be installed at

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 23]

Appendices 100

The Meta-Policy Information Base April 2001

the PRI denoted by the corresponding instance of the
action class."

EXTENDS { actionEntry }

::= { actionValueTable 1 }

ActionValueEntry ::=
SEQUENCE ({
ActionvValueEpd BERValue
}

actionvValueEpd OBJECT-TYPE
SYNTAX BERValue
STATUS current
DESCRIPTION
"This attribute contains the BER-encoded value of the
PRI to be installed/updated."
::={ actionValueEntry 1 }
-- END OF actionValueTable

-- Action Parametric Value Table
actionParametricValueTable OBJECT-TYPE
SYNTAX SEQUENCE OF actionParametricValueEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"Each instance of this class that extends the
corresponding instance of the action class. It provides
with the
parametric value that will be installed at the
corresponding PRI."
::= { actionClasses 3 }

actionParametricValueEntry OBJECT-TYPE

SYNTAX ActionParametricValueEntry

STATUS current

DESCRIPTION
"An insance of the actionvValue class. It provides with
the parametric value that will be installed at the PRI
denoted by the corresponding instance of the action
class."

EXTENDS { actionEntry }

::= { actionParametricValueTable 1 }

ActionParametricValueEntry ::=
SEQUENCE (
ParameterRef ReferenceId
}

ParameterRef OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES parameterTable
STATUS current

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001l [page 24]

Appendices 101

The Meta -Policy Information Base April 2001

DESCRIPTION
"A reference to a the parameter, from where the value
of the installed PRI should be obtained. Whenever the
value of the parameter changes, the installed PRI
MUST be updated."
::={ actionParametr icValueEntry 1 }
-- END OF actionParametr icValueTable

-- Parameter Group
parameterClasses
OBJECT IDENTIFIER : := { metaPolicyPib S }

- Parameter Table
parameterTable OBJECT-TYFPE
SYNTAX SEQUENCE OF parameterEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"Bach instance of this class defines a parameter
that has been 3Anstalled on the PEP. This class
MUST be extended by a class that defines how
the value of the parameter will be evaluated."
::= { parameterClasses 1}

parameterEntxy OBJECT-TYPE

SYNTAX ParameterEntry

STATUS current

DESCRIPTION
"An instance of the parameter class that installs
a parameter into the PEP."

INDEX { parameterPrid }

::= { parameterTable 1 }

ParameterEntry ::=
SEQUENCE (
parameterPrid Instanceld,
parameterName SNMPAdminString,
parameterType Unsigned32
}

parameterPrid OBJECT-TYPE
SYNTAX InstanceId
STATUS current
DESCRIPTION
"An arbitrary integer that uniquely identifies an
instance of the parameter class."”
::= { parameterEntry- 1 }

R.Boutaba, A.Polyrakis ZInternet-Draft, expires Oct.2001 [page 25]

Appendices 102

The Meta-Policy Information Base April 2001

parameterNameOBJECT-TYPE

SYNTAX SNMPAdminString

STATUS current

DESCRIPTION
"A string that represents the name of the parameter.
It is reccomented that different parameter have different
names. However, similar parameter may have the same name.
Also, an empty string can be used as a name."

::= { parameterEntry 2 }

parameterTyoe

SYNTAX Unsigned32 {
INTEGER (02)
BIT STRING (03)
OCTET STRING (04)
NULL (05)
OBJECT IDENTIFIER (06)
IP ADDRESS (40)
}

STATUS current

DESCRIPTION
"The BER type of the parameter.
The suppoted BER types are:

Type | BER identifier
____________________ I e ——
INTEGER 02
BIT STRING 03
OCTET STRING 04

OBJECT IDENTIFIER
IP ADDRESS
::= { parameterEntry 3 }
——- END OF parameterTable

l

l

I
NULL | 05

l

|

-- MIBPIB Parameter Table
mibPibParameterTable OBJECT-TYPE
SYNTAX SEQUENCE OF mibPibParameterEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"This class extends the parameter class.
Each instance of this class assosiates to the
corresponding parameter a MIB or PIB variable, from
where the parameter is evaluated”
::= { parameterClasses 2 }

mibPibParameterEntry OBJECT-TYPE
SYNTAX MibPibParameterEntry
STATUS current
DESCRIPTION
"An instance of the mibPibParameter class that provides

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 26]

Appendices 103

The Meta-Policy Information Base April 2001

the identifier of the MIB/PIB variable from where the
corresponding parameter is evaluated."

EXTENDS { parameterEntry }

::= { mibPibParameterTable 1 }

MibPibParameterEntry ::=
SEQUENCE ¢
targetOID OBJECT-IDENTIFIER,
EvaluationFrequency timeticks

}

targetOID OBJECT-TYPE

SYNTAX OBJECT-IDENTIFIER

PIB-ACCESS INSTALL

STATUS current

DESCRIPTION
"The object identifier of the MIB/PIB variable.
The MIB/PIB variable MUST exist in the MIB/PIB of the
device. Also, the type of the target variable MUST be
compatible with the type of the corresponding PRI of the
parameter Class."

::={ mibPibParameterEntry 1 }

EvaluationFrequency OBJECT-TYPE
SYNTAX timeticks
STATUS current
DESCRIPTION
"The frequency of updating the parameter in milliseconds"
::={ mibPibParameterEntry 2 }
-- END of mibPibParameterTable

~- PDP Parameter Table
pdpParameterTable OBJECT-TYPE
SYNTAX SEQUENCE OF pdpParameterEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION
"This class ‘extends the parameter class. Each instance
of this class contains the value of the corresponding
paramter. This value is send by the PDP and updated
whenever necessary."
::= { parameterClasses 3 }

pdpParameterEntry OBJECT-TYPE

SYNTAX PdpParameterEntry

STATUS current

DESCRIPTION
"an instance of the pdpParameter class that stores the
value, sent by the PDP, for the corresponding parameter."

INDEX { parameterIndex }

::= { pdpParametersTable 1 }

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 27]

Appendices 104
The Meta-Policy Information Base April 2001
PdpParameterEntry ::=
SEQUENCE {
lastValue BERValue

}

lastValue OBJECT-TYPE
SYNTAX BERValue
STATUS current
DESCRIPTION

"The latest value of the parameter, encoded with BER.
The BER-encoded value must be of the same type as the
corresponding PRI of the parameter class."

{ pdpParameterEntry 1 }

-—- END OF pdpParameterTable

Authors’ Information

Andreas

Polyrakis

Dept. of Computer Science,
University of Toronto,

10 King'
Toronto,

s College Road,
Ontario,M5S 3G4, Canada.

Phone: ++1 (416) 978-4837
Fax: ++1 (416) 978 1931

Raouf Boutaba

Dept. of Computer Science,
University of Waterloo,

200 University Avenue West,
Waterloo, Ontario N2L 3G1l, Canada

e-mail:

rboutaba@bbcr.uwaterloo.ca

Phone: ++1 (518) 888 4567 ext.4820
Fax: ++1 (519) 885 1208

References

[P-TERM]

A. Westerinen, J. Schnizlein, J. Strassner, Mark
Scherling, Bob Quinn, Jay Perry, Shai Herzog, An-Ni Huynh,
Mark Carlson, “Policy Terminology”, Internet draft, draft-
ietf-policy-terminology-00.txt, July 2000

[RAP-FRM] R. Yavatkar, D. Pendarakis, "A Framework for Policy-based

[coPps]

Admission Control", IETF RFC 2753, January 2000.

Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja., R.,
Sastry., A., "The COPS (Common Open Policy Service)
Protocol", IETF RFC 2748, Proposed Standard, January 2000.

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 28]

Appendices

105

The Meta-Policy Information Base April 2001

{COPS-PR] K. Chan, D. Durham, S. Gai, S. Herzog, K. McCloghrie, F.

[SPPI]

Reichmeyer, J. Seligson, A. Smith, R. Yavatkar, "COPS
Usage for Policy Provisioning," draft-ietf-rap-pr-05.txt,
October 30, 2000.

K. McCloghrie, et.al., "Structure of Policy Provisioning
Information, " draft-ietf-rap-sppi-05.txt, February 2001.

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 ([page 29]

Appendices 106

The Meta-Policy Information Base April 2001
Appendix A - Sample XML DTD for encoding conditions

<t!—Simple DTD for arithmetic expression representation -->

e e >
<!—Since these XML documents will be both -->
<!—generated and consumed by machines, the -->
<!—readability of the tags is not very -—>
<!—important. However, since there might be-->
<!—concerns about the XML document size, >
<!—the tag names were kept as small as -—>
<!—possible. -
<l e >
<f{— Only arithmetic expressions are supported. -->
<ti— The attribute defines the comparison type -->
<!— GT = Greater than, LT = Less than -->

<!— EQ Equal, NE = Not equal -->
<!— GE = Greater or equal, LE = Less or equal -->
<!ELEMENT ar_cond (expr, expr}>
<!ATTLIST ar_cond

comp (GT | LT | EQ | NE | GE | LE) #REQUIRED
>

<!{ELEMENT expr ((expr, arcp, expr) | par | num)>
<!ELEMENT par #PCDATA>
<!ELEMENT num #PCDATA>

<!ELEMENT arop EMPTY>
<!ATTLIST arop

op (+ | - | * | /) #REQUIRED
>

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 ([page 30}

Appendices 107

The Meta-Policy Information Base April 2001

Full Copyright Statement
Copyright (C) The Internmet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
develcping Internet standards in which case the procedures for
copyvrights defined in the Internet Standards process must be
follewed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

R.Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 31]

Appendices 108

Appendix B. Related Publications (Abstracts)

TOWARDS EXTENSIBLE

POLICY ENFORCEMENT POINTS [40]

{EEE Workshop on Policies for Distributed Systems and Networks;
Bristol, U.K.; 29-31 January, 2001; pp. 247-261

Raouf Boutaba Andreas Polyrakis
University of Waterloo University of Toronto
Dept. of Computer Science Dept. of Computer Science
rboutaba@bbcr.uwaterloo.ca apolyr@cs.toronto.edu

Abstract

For several years, Configuration Management has been conducted mainly through command line
or SNMP. However, while computer networks started growing bigger in size and complexity, it
became apparent that these approaches suffer from significant scalability and efficiency
limitations. Policy-Based Networking (PBN) seems to be a promising alternative for
Configuration Management, and has already received significant attention. This approach
involves the processing of the network policies by special servers (PDPs) that send the
appropriate configuration data to the Policy Enforcement Points (PEPs) that reside on the
managed entities. COPS and its extension for policy provisioning, COPS-PR, are currently being
developed by IETF to implement PBN. In COPS-PR, the PDP installs to the PEP policies that the
latter should enforce. However, the types of policies that the PEP can understand are limited and
hardwired to it by the manufacturer. In this paper, we propose an architecture that attempts to
raise such limitations and push the decision taking from the policy servers to the managed

devices.

Appendices 109

PROJECTING FCAPS TO

ACTIVE NETWORKS [4]
accepted in IEEE EntNet 2001; Atlanta, GA, USA; 4-6 June, 2001

Raouf Boutaba Andreas Polyrakis
University of Waterloo University of Toronto
Dept. of Computer Science Dept. of Computer Science
rboutaba@bbcr.uwaterloo.ca apolyr@cs.toronto.edu

Abstract

Active Networks is one of the most promising and discussed trends in the area of Computer
Networks. It allows us to program the network nodes to perform advanced operations and
computations, and thus, control their behavior. These properties change considerably the scenery
in the area of computer networks and, consequently, affect Network Management. Indeed, Active
Networks do not only open the way to enhance current management techniques and improve their
efficiency, but they also create perspectives to deploy novel ones. This paper attempts to present
the impact of Active Networks upon the current Network Management techniques. In order to
achieve this, Network Management is examined through the five areas of the FCAPS framework;
for each one, the limitations of the current applications and toclls are presented, and how these
can be overcome by exploiting Active Network properties is discussed. The contribution of this
paper is to gather and classify the various ideas found in the literature in this area, combine then

and propose some new ones

Appendices

110

COPS-PR WITH META-POLICY SUPPORT [41]
Published as an independent submission at IETF, April 2001

Raouf Boutaba Andreas Polyrakis
University of Waterloo University of Toronto
Dept. of Computer Science Dept. of Compu:er Science
rboutaba@bbcr.uwaterloo.ca apolyr@cs.toronto.edu

Abstract

In COPS-PR, the (clients of the) PEPs use special structures, called Policy Information Bases

(PIBs) that store the policies that are sent by the PDPs. PIBs are well-defined structures that are

not meant to be modified to adapt to the needs of each network. This makes COPS-PR PEPs rigid

and inflexible. This document describes an extension of the COPS-PR protocol that allows the

PEPs to store meta-policies that control the content of their PIBs. The set of meta-policies that

the PEPs can store is not predefined and customized policies can be supported. The use of meta-

policies pushes intelligence towards the PEPs and makes them more self-dependent. In this way,

the model becomes more distributed, scalable and fault-tolerant, while the bandwidth

consumption and the (real-time) processing load of the PDP are reduced.

