
THE META-POLICY

INFORMATION BASE

Andreas Polyrakis

A thesis subrnitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

O Copyright by Andreas Polyrakis, 2001

National Library Bibliothèque natirnale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue WelIington
Ottawa ON K1A ON4 Ottawa ON K I A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, disiribute or seIl
copies of this thesis in microforrn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant a la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduit. sans son
autorisation.

Abstract

THE META-POLICY INFORMATION BASE

Andreas Polyrakis

M.Sc. thesis, 2001

Graduate Department of Computer Science - University of Toronto

The recent considerable growth of cornputer networlcs has revealed significant

scalability and eficiency limitations in the traditional management

techniques. Policy-Based Networking (PBN) has emerged as a promising

paradigm for Network Managemenr. The Cornmon Open Policy Service

(COPS) and its extension for policy provisioning (COPS-PR) are czirrently

being developed as the protocols ru impiement PBN.

COPS-PR has received signzpcant attention and seewzs eficient for several

Management areas. However, the rigide of its policy-enforcing rnechanisms

constrains the intelligence that can be pushed towards the rnanaged devices.

This work attempts to relax this limitation by zising meta-policies, niles that

enforce the appropriate policies on the devices. Meta-policies are stored and

processed by the devices, independently of their semantics, making in this way

the mode1 more efficient, scalable, distn*buted and robzist. The additional

jiinctionality is implemented through a new Policy Information Base (PIB)

that we have defined, the Meta-Policy PIB.

Acknowledgments

First of d l , 1 need to express my gatefulness to the Department of Computer Science of

the University of Toronto for accepting me into the graduate program and giving me the

opportunity to pursue a graduate degree here. Also, 1 would like to thank the department

for their financial support, without which 1 would be unable to complete my studies.

However, most of d l , I would Iike to thank my supervisor, Prof. Raouf Boutaba from the

University of WaterIoo, for his guidance and support. His ideas and cornments inspired

me, and his experience and insight in the area of Network Management has been great

assets for my work, He gave me the chance to deal with very interesting topics and live

experiences that 1 will never forget. 1 feel really lucky to have had Raouf as my

supervisor.

Apart from Raouf, 1 would like to thank the rest of his tearn of graduate students for their

comments and feedback, as well as their encouragement and support. Especially, 1 would

like to point out Youssef Iraqi, whose comments influenced significantly my work and

Salima Omari, for her valuable help.

1 am deeply indebted to Prof. Ken Sevcik, for several reasons. Ken was assigned as my

official supervisor from the beginning of my graduate studies, and he took care of al1 my

administrative issues. However, Ken was also the second reader of this thesis, and his

comments were important, both in the content and the structure of the thesis. Ken is a

brilliant person, which managed to arnaze me from the very first time we met.

Two more persons that 1 need to thank are Prof. Irene Katzela and Fotios Harmantzis,

both from the ECE department. 1 would like to thank Irene for her guidance at the

beginning of my graduate studies, for her valuable advice and for several useful

conversations throughout the entire period. Fotios is one of the rnost interesting persons 1

met in Toronto. Xlis perception of life, his academic experience and his analytic

reasoning made his advice on severai aspects, academic or not, very valuable and helpful.

Of course, 1 cannot forget the big comrnunity of the Greek graduate CS students. They

welcomed me warmiy when 1 arrived in Toronto; they became my friends and

roornrnates; they showed me around the city; they gave me hints and tips about the life in

Canada and UofT; they helped me out with al1 these tiny problems that may look huge if

nobody is there to assist you; and, of course, by being cornputer science graduate

students, their advice was significant for any issue of acadernic or scientific nature.

Another person 1 need to thank is Verena. 1 discussed with her several of the issues that

came up, and her ideas and comments influenced significantly the outcorne of this thesis.

However, the main reason that makes me feel indebted to Verena is her moral support

and her presence in my life, which gave me the courage to tackle any d f i cu l ty and made

my Iife pleasant and beautiful.

Last but not least, 1 need to express my gratitude to my family and friends for supporting,

encouraging and standing by me during ail this period. Although 1 would not iike to

thank individuals for the fear of forgetting someone, 1 would like to mention that without

their physical or menta1 support, carrying out this work would not be feasible.

Toronto, March 200 1

Andreas Polyrakis

Table of Contents

ABSTRACT II

ACKNOWLEDGMENTS III

TABLE OF CONTENTS V

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. NETWORK MANAGEMENT 5

CHAPTER 3. POLICY-BASED NETWORKING 15

.. 3.1. OVERVIEW m~œ.mmmeeme15

3.3. PBN COMPONENTSe..a.18
... 3.3.1. MANAGEMENT CONSOLE 1s

.. 3 -2 .2 . THE POLICY DECISION POINTS (PDPs) 18

............................. 3 -3 .3 . THE POLICY ENFORCEMENT POINTS (PEPs) ,., 1 9

3.4. THE OUTSOURCING AND T m PROVISIONING MODELS 19

3.7. PBN PROTOCOLS: COPS AND ITS EXTENSIONSe=aeme.maeœ.mm22
3.7.1. COPS 23

.. 3.7.1.1. COPS Message Format 24

... 3.7 .2 . COPS EXTE~U'S~ONS (CLIENT-TYPES) -25

3.8. COPS-PR a... e . . o e . o œ m m . m ~ m ~ m e ~ o ~ m ~ m m m ~ ~ ~ m m m m ~ ~ m m ~ . . ~ m . . . e ~ ~ a ~ m m ~ ~ ~ . m . ~ . ~ m ~ m œ a ~ a o e ~ a ~ e œ s m *.marne25

.. 3.8.1. THE POLICY INFORMATION BASE (PB) - 2 6

................................ 3 -8 .2 . THE STRUCTURE OF POLICY PROVISIONING INFORMATION 27

.. 3.8.3. COPS-PR EXAMPLE 28

3.9. C 0 ~ ~ ~ ~ ~ 1 0 ~ . m m m e . e . ~ ~ m ~ m m ~ m ~ a ~ ~ ~ ~ œ c * m œ ~ m ~ ~ e ~ e m ~ m a e ~ m m m ~ m m m ~ ~ ~ ~ ~ e ~ ~ m a m m ~ o o œ m ~ m e ~ ~ a m ~ ~ e ~ ~ ~ e ~ ~ ~ ~ ~ ~ e . e ~ ~ o 3 O

CHAPTER 4. META-POLICIES IN COPS-PR 32

4.1. COPS-PR SHORTCOMINGSa................ m.eme~m~~oœ*aemm~.e.~~~e*m~~eemm~eae32

.. 4.2. MOTIVATION m.0em34
4.3. THE CONCEPT OF -TA-POLICIES ~ . m m . ~ ~ e e m o ~ m . m m ~ ~ ~ e e m m m ~ . ~ m ~ m 3 4

-vi-

CRAPTER 5 . REOUIREMENTS AND DESIGN 42

5.1. EARLY REQUIIREMENSe.........*.......42
.. 5.1.1. GENEEWL REQU~REMENTS -42

5.1.2. WHYAPIB? 43

... 5.1.3. COPS-PWIB REQUIREMENTS 44
L 5.2. ANALYSTSm........*...4~

... 5.2. 1 . COMMUNICATION AND STORAGE 45

.. 5 -2 .2 . META-POLICING DATA -45

5.2.2.1. Meta-policies .. 45

.. 5.2.2.2. Conditions -45

.. 5.2.2.3. Actions 48

5.2.2.4. Parameters48

CHAPTER 6 . THE META-POLICY INFORMATION BASE 49

6.1. PIB DEFINITIONm.......I..................................m....m............... *.am49

.. . 6.1 -1 THE CAPAB ILITIES GROUP -50

.. 6.1.2. THE BASE -TA-POLICY GROUP 50

... 6.1 .3 . THE CONDITION GROUP 1

.. 6.1 .4 . THE ACTIONS GROUP 53

6.1.5. THEPAFUMETERGROUP ... 53

6.1.6. OVERVIEWOFTKEENTIE~EPIB 55

. 6.2.1.2. Decrszons 56

-vii-

6.2.1.3. Reporls .. 57

6.3. PEP OPERATIONœ.œœœ.œœœ,,..,o~~œ.~.~œ~~œ~~~~-. m œ . ~ . ~ . . ~ ~ ~ m m m œ ~ m œ œ ~ ~ . a m ~ m m m ~ ~ œ m ~ ~ m . ~ ~ œ œ m ~ œ ~ ~ a ~ 5 7

.. 6.3.1.1. Installation of rneta-policing data

6.3.1.2. Parameters ,, .. -58

... . 6.3. 1.3 Conditions 59

6.3.1.4. Actions,., 60

6.3.1.5. Conjlicts ... - ... -60
6.4. BACKWARDS COMPATIBILITY ..œ..o.......-. m~.............m...*.~........~.......e......œ.6l

CRAPTER 7 . CONCLUSIONS AND FUTORE WORK 63

7.1. CONCLUSIONS63
7.2. WORK IN PROGRESS~....~œ.~C~~e~œ~.~.~.tœ.~~œmœ~~m.m~~~œœœ.m~.œ.mm..~~.mm~m.64

.......... 7.2.1. IMPLEMENTATION AND TESTING. 64

7 - 2 2 CONTRIBUT~ON TO IETF .. 66

7.3. FU- RESEARCH66
7 .3.1 . META-POLICY HERARCHIES ... -66

7 -3 2 . META-POLICES AND AcTnrE NETWORKS .. -67

7.3.3. TA-POLICES AND DIRECTORIES .. -69

... 7.3.4. MOVING TWE PDPs TO THE NETWORK ELEMENTS 69

REFERENCES 70

APPENDICES 76

................. APPENDIX A. THE MÉTA-POLPCY PIBœ..............œ.......œ.........m77

APPENDIX B . RELATED PUBLICATIONS (ABSTRACTS) 108

Chapter 1.

Introduction

1 .lm Purpose and Goals

This thesis was conducted as a part of a greater research framework that investigates

issues towards self-configurable networks. In order to achieve this goai, we believe that

two conditions must be met, First, the level of abstraction in Network Administration

needs to be raised, so that a higher degree of automation can be allowed. Second,

intelligence needs to be pushed towards the rnanaged devices. These two properties, the

intelligence of the managed devices in combination with a high degree of automation,

wilI allow the existence of "smart" devices that configure themselves by getting or

generating such configuration data that will allow them to adapt to the network state and

needs at each specific moment. Our research has two dimensions that address these two

conditions, respectively.

Policy-Based Neîworking (PBN) is a modern trend in Network Management within the

first dimension: It raises the abstraction of Network Management by using high-level

policies, from which configuration data for the network devices are automatically

generated and distributed to the network elements. However, PBN fails to address

sufficiently the second dimension: PNB is not a highly cenualized model, since it uses

special policy servers, which can be distributed within the network. Nevertheless, very

Iittle functionality is actually pushed inside the managed devices, which depend on the

constant presence of the policy servers to operate properly.

ChXPiSER 1: lntrodrcction 2

We beIieve that PBN is a very promising management technique that will affect

significantiy the future of Network Management. The purpose of this thesis is to enhance

the PBN by developing it in the second dimension, too, thus allowing the existence of

self-configurable network elements, More detaiIs on our goals, as welI as the motivation,

is presented at the next chapters, dong with the necessary background information.

1.2. Dependencies

This work defines a COPS-PR PB, using the SPPI (Structure of PoIicy Provisioning

Information) specification. At the time this work was conducted, COPS and COPS-PR

were RFCS*, and SPPI was an internet-clraft*; hence they may be modified before they

reach their final form. Future versions of COPS and COPS-PR are not expected to

modify the core of the protocols or the PD3 functionality and semantics, on which this

work is based. However, modifications of the SPPI specification, which is used to define

the classes of the P B , may make the output of this work syntactically out of date.

Nevertheless, the revision of the P I . proposed here to make it consistent with the newer

SPPI versions should be an easy task.

* In IETF (Internet Engineering Task Force), each new specification is published as an internet-draft-

These drafts are widely available, have no formal status, are subject to removal at any tirne and evolve

according to the comments and feedback that they received from the Internet community. If an intemet-

drafi receives significant attention, becornes relatively stable and mature and is globally approved, it

evolves into an RFC (Request for Comrnents)- The RFC is an official document that describes the

specification in a cornpiete and well-understood way, and is approved by the rnajority of the lnternet

community. As with internet-drafts, RFCs do evolve, however the modifications are usually moderate.

When the RFC has reached a state where no more modifications are considered necessary, it may evolve

into an intemet-standard.

CHAPTER II Introdztction 3

1.3. Organization of This Document

The structure of this document is as follows:

This chapter, Chapter 1, bnefly presents the goal of Our work and describes the

structure of this document-

Chapter 2 discusses Network Management and the modem trends that seem

likely to affect it in the near future.

Chapter 3 presents Policy-Based Networking, COPS and COPS-PR. A small

exarnple demonstrates how COPS-PR works.

Chapter 4 presents the motivation of our work and iritroduces the concept of

meta-policies. The example of the previous chapter is used in order to

demonstrate the use of meta-policies. Finally, meta-poticies are formaily defined.

Chapter 5 justifies Our decision to use a PIB to implement meta-policies,

presents and analyzes the requirements and discusses t h e design details of the

PIB .

Chapter 6 defines the PIB. The PIB cIasses are described and how the data

stored into these classes control the behavior of the device is defined.

Chapter 8 concludes this thesis by outlining the work i n progress and presenting

Our future research goals, which mainly concentrate o n further meta-policing

enhancements. We also describe how other managemeri t techniques (especially

Active Management) can be used to increase the power and efficiency of Our

work.

CHAPTER 1: Introduction 4

1.4. Terminology - Glossary

This document follows the terminology adopted by IETF and other standardization

organizations, as outlined in Cl]. The most cornrnonly used terrns are summarized here:

PRC

PBN - Policy-Based Networking: A management technique based on high-level

policies.

PDP - Policy Decision Point: The Policy Server that distributes policing

decisions to the PEPs, according to the high level policies.

PEP - Policy Enforcement Point: The consumer of the policies. It enforces the

policing data received from the PDP to the managed device.

COPS - Cornmon Object Policy Service: The protocol that is currently being

developed by IETF, in order to implement PBN.

COPS-PR - COPS for Policy Provisioning: An extension of COPS, targeting policy

provisioning.

PIB - Policy Information Base: A special tree structure maintained by the PEP,

similar to a Management Information Base (M I B) , where al1 policing data

for this PEP is stored. The content of the P B detennines the behavior of

the device.

- Provisioning Class: A class that defines the format and the semantics of a

piece of policing information inside the PIB.

- Provisioning Instance: A specific instance of a PRC.

- Provisioning Instance Identifiec An identifier that uniquely identifies a

PR1 inside a PB.

Chapter 2.
Network Management

2.1. Definition

Network Management relates CO planning, deploying, operating, monitoring and

controlling the network in order to ensure that it is always running undisturbed and

efficiently, while its resources are best utilized. Network Management starts with the

design and deployrnent of the network; however, after this initid phase, it is mainly

associated with maintenance tasks that collect and analyze data from the various network

elernents, These data can reveai abnormal or emergency situations as soon as - or even

before - they occur. AIso, these data allow the administrators to monitor the usage of the

network resources, and according to it, fine-tune the network parameters and plan future

upgrades .

2.2. The FCAPS Framework

Network Management may be divided into severaI functional areas. ISO has

distinguished and standardized five major ones: Fazdt, Configuration, Accozïnting,

Performance and Secun@ Management; this standardization is known as the FCAPS

framework [21, [3], [4]:

Fault Management deals with detecting, isolating, fixing and recording errors that

occur inside the network.

CHAPTER 2: Network Management 6

Configuration Management has to do with maintaining accurate information on the

configuration of the network (hardware and software) and controlling parameters that

relate to its normal operation.

Accounting Management relates to user management and administration, as well as

to accounting and billing for the use of the resources and services.

Performance Management attempts to maximize the network performance. It is

strongly related to QoS provisioning and factors like resource utilization, delay, jitter

and packet loss.

Security Management deals with ensuring security and safety in the network.

Although this work concentrates explicitly on Configuration Management, it covers

implicitly al1 five management areas, since al1 of thern relate somehow to the appropriate

configuration of the network devices.

2.3. Traditional Network

The management of the network devices, such

Management - SNMP

1s routers and switches, has always been a

hard task [4]. Initialiy, the configuration was done through the Cornmand Line Interfaces

of the devices; in most cases, the administrator was required to configure each of the

devices independently, even when these were configured to operate sirnilarly. However,

this soon appeared to be inefficient: while the networks started growing considerably

both in size (number of managed nodes) and in complexity (different types of devices,

number of configuration parameters), the need for automation became apparent.

For several years, the Simple Nehvork Management Protocol (SNMP) gave a

satisfactory solution to the problem. SNMP is based on special databases, called

Management Znformation Buses (MIBs), mahtntained by each network device. MIBs

provided a standard interface to manage objects on the devices, in a less device-

CHAPTER 2: N e w r k Management 7

dependent way. This raised the level of abstraction and allowed devices to be handled in

a more unified way. In this way, SNMP allowed the administrators to manage the

network remotely and to automate various management tasks.

However, SNMP (versions 1 and 2) was designed mainly for monitoring purposes and,

dthough it managed to give a satisfactory soIution to the problem for a while, now it

seems to suffer from significant scalability and efficiency problems [4]: SNMP is a

highly centralized protocol. In fairIy large networks, too many resources may be

consumed just to report normal network operation, while the detection of erroneous

events and the reaction to them may be too slow. Besides, although SNMP managed to

raise the level of abstraction in Network Management, the operations are still device-

dependent. The growth of the modern networks demands a further increase in the level of

abstraction, as well as decentralization of the management centers. These issues are

exarnined by standardization organizations (such as IETF), which guide the future of

Network Managernent-

2.4. Standardizatio Organizations - The Role

of IETF

The Internet Engineering Task Force (IETF) [5] is "the protocol engineering and

development arm of the Internet". Established in 1986, it is "a Iarge open international

cornmunity of network designers, operators, vendors, and researchers concerned with the

evolution of the Internet architecture and the smooth operation of the Internet".

IETF hosts various working groups that cover different areas (e.g., routing, transport,

security, etc.). These groups identify problems in the corresponding areas and address

them by developing standard protocols.

CHAPTER 2: Nettvork Management 8

ETF is closely related to other Internet organizations, such as the Internet Engineering

Steering Group (IESG), the Intemet Architecture Board, (IAB), the Internet Assigned

Numbers Authority (IANA) and Internet Society (LSOC).

IETF plays a crucial role in the evolution of Network Management, since several of its

working groups are related to it. For instance, IETF is the organization that has

standardized the SNMP protocol. IETF atternpts now to address the issues of SNMP

through its next version (SNMP v.3). However, there are serious doubts whether SNMP

will eventually manage to overcome its limitations and become the dominant protocol for

Configuration Management again. This is why IETF also attempts to develop alternative

management techniques that may replace or complement the existing ones. The rote of

ETF and its relation to Network Management will be further discussed later in this

document.

2.5. The Future of Network Management

Traditional management techniques are not sufficient to cover the needs of modem

Network Management. The need to be replaced, updated or augmented with new ones is

evident. Several promising techniques attempt to address the existing issues in various

ways. These techniques are presented in this section.

As mentioned before, SNMPv3 [6] is currently being developed by ETF, in order to

resolve several issues of SNMPv2. In general, the new version attempts to unify the two

different versions of SNMPv3 (versions 2u and 2*) [6]. Also, it attempts to include

administrative and secunty functionality in the protocol. Ho wever, SNMPv3 does not

seem to address adequately the scalability issues of SNMP. Nevertheless, due to its

CWAPTER 2: Network Management 9

simplicity and the wide acceptance and use, it is expected to play a significant role, at

l e s t for monitoring, in the near future-

2.5.2. Active Management

Active Management is an atternpt to take advantage of the properties of Active Networks

in order to enhance the current management techniques, or create new ones.

Active Networks [4], [7], [8], [9] is a relatively new concept that emerged from the broad

D A W A community in 1994-95. Architecturally, they can be divided into the Discrete

(or programmable) and the Integrated (or capsule) approach [4], [7], [8], [IO]; however

discussing their difference is out of the scope of this document. In Active Networks,

progarns c m be "injected" into the active devices (such as routers or switches) and

affect their behavior and the way they handle data, even on per-application or per-user

basis. Active routing and switching devices can be prograrnmed to perform complex

tasks and computations according to the content of the packets, which may even be

aitered as they flow inside the network. The term "active" is justified in two ways [8]:

First, active devices perform custornized operations on the data flowing through them.

Second, authonzed usersfapplications can "inject7' their own prognms into the nodes,

afTecting the way their data is manipulated. Due to these properties, open node

architecture is achieved, where custom protocois and services cm be easily deployed.

The radical changes that Active Networks introduce give to cornputer networks a flavor

of distributed systems, and can be beneficial for a wide range of applications and tools

[4], [8], [IO]: Firewalls and proxies; nomadic routers; multimedia, real-time

applications; multi-path routing; these are just the beginning of a long list. Of course,

Network Management techniques c m also be enhanced by exploiting the properties of

Active Networks. We have already discussed extensively the impact of Active Networks

CHAPTER 2: Network Management 10

on Network Management [4]- Here, we will just cite the results of the discussions

conducted there.

First of d i , Active Networks enabie the distribution of the management applications and

tools [4]. Mobile Agents, prograrns that travel inside the network and perform several

tasks on behalf of the application that generated them, c m be used for this purpose.

Monitoring centers can be distnbuted in the network, moving the decision taking cioser

to the rnanaged devices, and making the monitoring and reactions more prompt and

precise. M7Bs can be a~~gmented with customizable variables, and alerts can be initiated

by the devices. Management can become more direct and custornizable, and the network

can be managed during abnormal situations, such as high congestion or network

partition. Several deficiencies of SNMP can be overcome.

However, apart from the general advantage of management distri bution, Active

Networks have positive impact on each specific FCAPS area, as well. Fine-tuned

monitoring and fast reactions make Fault Management more effective and the network

remains manageable dunng situations in which errors are present. Flexible and robust

protocols can be easily deployed, and backup mechanisms can be configured.

Configuration management is also significantly enhanced. Mobile agents can be used for

inventory and software management. Resources can be partitioned and Virtual Local

Area Networks (VLANs) and Virtual Private Networks (VPNs) c m be created easily.

Accounting Management becomes more accurate, since the users are billed according to

the real use of the resources, and new types of Service Level Agreements (SLAs) can be

defined. Performance can be increased due to new Quality-of-Service (QoS) protocols

that use resources wisely, better traffic policing and shaping mechanisms, multi-routing

protocols and application-specific handling of the trafl5c. Security Management c m be

enhanced by using special mobile agents that inspect and safeguard the network (e-g., by

blocking Denial of Service attacks or by tracing back attackers with fake IP). Also,

access to the network resources can be controlled more strictly and precisely. Active

CHAPTER 2: Network Management I l

Networks give a new dimension to Network Management by enhancing the existing

methods and techniques and allowing the development of novel, radical ones. More

details can be found in Our previous work [4].

Active management has motivated and influenced significantly our work, although it

does not relate to it directly. Our work is placed in context with it in the last chapter of

this thesis.

2.5.3. Directory-Enabled Networking

Another promising trend in Network Management is Directory-Enabled Networking

1 [12]. Directory-Enabled Networking is based on Directories, special purpose

databases, stonng configuration data for network devices and applications. The devices

(or applications) connect to the Directory, query it, retneve the appropriate configuration

parameters and install them. This mode1 allows a high degree of automation in the

process of configuration management, and makes the concept of "plug-and-play"

networks seern more feasible and redistic. Note that the concept of Directories is not

something new: Directory services, such as DHCP, DNS, authentication, or user

directones, can be found on current networks. However, Directory-Enabled Networking

attempts to integrate al1 these different directories (which may represented the same or

sirnilar data, but not necessarily in the sarne format) into a single one that will unify and

hold al1 such information, and make management easier and more consistent. Work on

this area is mainly coordinated by the Directory Enabled NetworkslDesktop Management

Task Force @EN/DMTF) [13].

Architecturally, Directory servers resemble DataBase Management Systems (DBMS s).

The main difference is that the configuration data seldom change; hence directories are

optimized for rapid responses to high-volume lookups; but their performance in updates

is much poorer. Many other features found in DBMS systems, such as triggers,

CHAPTER 2: Network Management 12

cascading deletes or transaction rollbacks are aIso of less importance. A matter of a great

importance, however, is consistency and load balancing between several servers that

implement a single Directory - because Directories are physically distributed, but

logicatl y centralized systems.

Router
($$b
Switch

configuration
tparameters

Management
Consoile

Server

Directory-Enabled Networking has one significant deficiency: Directones are not

efficient for non-static data. However, in Network Management, dynamic data (such as

resource usage, statistical information or network events) may be necessary for some

aspects of the configuration of the devices. Directories cannot handle such data

efficiently, so other mechanisrns are required in order to augment the functionality of the

Directories. However, Directories handle the issue of static configuration data pretty

well, and they are expected to play a significant role in the evolution of Network

Management in the future.

2.5.4. Policy-Based Networking

Finally, another prornising technique for Network Management is Policy-Based

Networkirzg. The central concept in Policy-Based Networking is policies, Le., rules that

determine the behavior of the network nodes. The key idea is that the administrator edits

high-level policies that determine goals (rather than procedures). These policies are

processed by special servers, which, bind them with the current network state, transform

them into dynamic configuration data and send them to the network devices, determining

CNAPTER 2: Network Management 13

in this way their behavior. The advantage of this mode1 is that (i) the high level of

abstraction in editing the policies simplifies the administration of large and cornplex

networks, (ii) automation ensures the integrity and consistency in the behavior of the

devices across the entire network, and (iii) the dynamic binding of policies at the policy

servers allows new types of policies to be introduced more easily.

Policy-Based Networking will be discussed in detail in the next chapter.

2.6. The Big Picture - Our Contribution

Although al1 these technologies sound promising and address important issues of

Network Management, none of them seems to be sufficient to handle al1 of them. For this

reason, it is considered highly unlikely that one of these techniques will manage to

dorninate the others.

A more realistic scenario is that these will need to be combined and integrated, in order

to efficiently manage present and future networks: Devices and services cm be

automatically configured through directories; the network behavior can be controlled

through policy-based networking; SNMPv3 can be used to perfom monitoring tasks in a

secure fashion and active management and mobile agents can be used to enhance al1

previous techniques by making them more distributed and efficient.

Our work is, in general, focused on how PBN can become more decentralized and

distributed, and how the other discussed techniques can be used to further improve its

performance and efficiency. PBN raises the level of abstraction of Network Management

and distributes it into the network to a certain degree. However, the intelligence is still

concentrated at the level of the policy servers, which makes the devices depend on them.

Our goal is to push intelIigence towards the devices and make them more independent.

CHAPTER 2: Ilretwork Management 14

Also, we would like to aIlow the devices to exploit and integrate the other management

techniques in order to enhaxe Policy-Based Management- ActualIy, we believe that

Active Networks will give the devices the resources and the ability to perfonn complex

tasks that c m be exploited in a Policy-Based environment. This capability will allow

them to implement some (and possibly, d l) of the PDP functionality and becorne more

independent and self-controIIed.

Chapter 3.

Policy-Based Networking

3.1. Overview

Policy-Bused Nehvorking (PBN) has ernerged as a promising paradigm for network

operation and management [14], [15]. It is based on high-Ievel control/management

policies [16], [17], [18], i.e. mIes that describe the desired behavior of the network, in a

way as independent as possible of the network devices and topology. The key concept in

PBN is that by descnbing "what" the network is supposed to do, rather than "how"

(whic h happens with the naditional management techniques), the network details are

'nidden from the administrators. This makes the network easier to control, increases its

flexibility, and ensures a consistent behavior across i t.

PBN distinguishes two basic entities: the Policy Enforcement Points (PEPs) and the

Policy Decision Points (PDPs) [I l , [19]. The PEPs typically reside on the managed

devices and control them according to directions that they receive from the PDPs. The

PDPs process the high-level, abstract policies, dong with other data such as network

state information, and take policy decisions in the form of configuration data for the

PEPs. In this way, the high-Ievel policies that the administrator sets are enforced within

the network devices. PBN is ihstrated in Figure 3.1.

Configuration

3.2. Policies in PBN

As mentioned before, the basic concept in PBN is the managementfcontrol policies that

describe the desired behavior of the network elements. The concept of policies is not

something innovative; nevertheless, what is new in PBN is that the policies express goals

rather than procedures.

In traditional Network Management, the administrators set some goals, and then create

procedural poiicies that irnplement these goals. For instance if the adrninistrator wants to

give high priority to the manager subnet, he/she creates a policy simiiar to the following:

C W T E R 3: Polky-Based Networking 17

I f ((SourcelP matches Iû.1U.I.O/34) or (DestinationP nzatches I0.10. I.Om4))

then (rernark with DSCP=6]

This policy has hardcoded the facts that (i) the manager subnet is 10.10.1.0/24, a n d (ii)

high-prionty is achieved by setting the packet's DSCP* to 6.

However, in the PBN approach, the administrator sets as a policy the goal itself:

I f ((SorircelP marches Manager Subner) or (DesrinationlP matches Man.ager

Szi bnet))

therz (give high priclrity]

Of course, in this case, it is implied that the administrator somehow provides additLonal

information that allows this policy to be interpreted (such as which is the "Maniager

Subnet" or what "high prionty" means). However, this information is not hardcoded into

the policies themselves. Hence, if for example the manager subnet is expanded to inc: lude

10.10.2.0/24, the adrninistrator will only need to declare this fact. Al1 policies related to

this subnet will still be valid, since they do not contain information directly related t a the

network topology or the devices.

DSCP (DiJferentiaîed Services Code Point): In Differentiated Services. the packets receive diffsrent

treatment by the switching devices, according to the TOS field of the IP header (also narned DS b y t e in

Differentiated Services terrninology). Six of its bits are used as a Differentiated Services Code Point

(DSCP) in order to categorize each IP packet to one of the DiffServ classes (the other two bits are not used

by DiffServ).

CHAPTER 3: Policy-Bmed Networking 18

3.3. PBN Components

3.3.1. Management Console

Policies are edited using speciai management tools [20]. These tools provide interfaces

that allow the network managers to edit the policies in a high-level, abstract way (Figure

3.2). Syntax, semantics and basic conflict checking are performed on these policies,

which are then distributed, either directly or through the use of a directory, ta the PDPs.

3.3.2. The

The Policy Decis

c F i p r e 3.2: Policy editing tool Cfrom [20])

Policy Decision Points (PDPs)

ion Points are responsible for mapping the abstract, high-level polic ies

into low-level, device-specific configuration data [19]. Functionally, the PDP takes

policy information entered from the management system, and process thern dong with

other data, such as network state information. The PDP combines the policies with this

information and produces the appropriate configuration data for the PEPs that it controls.

The configuration data for each PEP is generated according to the capabilities and

limitations of the device that this PEP controls-

It is important to emphasize that PDPs do not simply distribute policies to the PEPs. The

role of a PDP is (i) to combine the high-level policies with the network state in order to

determine the desired behavior of every device at that specific moment, and (ii) to

generate the appropriate low-Ievel configuration data for each device (in a supported

format and according to its capabilities/limitations) that enforces this behavior. This

implies that if the network state or poiicies change, the PDP may need to readjust the

behavior of the devices, by sending updated configuration data.

3.3.3. The Policy Enforcement Points (PEPs)

The Poiicy Enforcement Points are the policy consumers [19]. Their role is to enforce the

configuration data that they receive from the PDPs. The PEPs always obey the

comrnands they receive from the PDPs.

3.4. The Outsourcing and The Provisioning

PBN is based on a client-sewer model of interaction between PEPs and PDPs. Two

modes of operation are distinguished: the outsourcing and the provisioning [19], [2 11.

In the outsourcing model, the PEP receives a signaled event that needs to be treated

according to some policy criteria. If the PEP cannot treat this event according to the

already instdled configuration data, it issues a request to the (appropriate) PDP, notifying

it for the event occurrence. The PDP replies to the PEP by sending the data that must be

installed in order to handle this event. This model is known as the "pull" model since the

PEP "puils" configuration data from the PDP, or as "reactive" rnodei, because the PDP

reacts to the PEP requests.

C W T E R 3: Policy-Based N e ~ o r k i n g 20

On the other hand, i n the provisioning model, when the PEP connects to the PDP, the

latter sends to the former all the applicable policies. These policies are stored in the PEP,

and al1 incorning events are served according to thern. This model of operation is known

as the "push" model since the PDP "pushes" policies to the PEPs, or as ccproactive"

model because the PDP senOs in advance the appropriate policies to the PEPs.

In both cases, the PDP is aware of the policies enforced by the PEP, and it may decide to

update them by installing, deleting or rephcing them, whenever it decides that they no

longer reflect the desired behavior.

3.5. Why Not Directories?

Policy-Based Networking and Directory-Enabled Networks may seem to have several

sirnilarities: Both attempt the raise of the Ievel of abstraction and the automation in the

configuration of the network devices. Besides, functionally, the PDPs are sirnilar to

Directories, since they both provide the appropriate configuration data to the network

devices. However, significant differences do exis t.

Directories are simple databases that supply the devices with responses to the queries the

latter subrnit. Directories cannot use the data that they store in order to generate other

data. The processing of the data that they produce is restricted to simple database-style

operations.

A PDP, on the other hand, does not simply distribute configuration data. The most

significant and difficult task of the PDP is to generate these data from the high-level

policies, according to the current network state.

To sum up, the difference between Directories and PDPs is that the nature of data that

they distribute is different. Directories are effxcient for static configuration data, which

usually provide the basic configuration for the devices. Such data may include the Il? and

the subnet mask of the device, the DNS servers or the default PDP that controls this

device. The PDPs, on the other hand, provide policies in the fonn of dynarnic

configuration data, which are produced by the PDP according to the curent network state

and may be updated at any time.

Directory-Enabled Networking and Policy Based Networking are two technologies that

attempt to address different kinds of problems, and can be considered as complementary

to each other. They can coexist in the same network in order to maximize its

performance. We have already seen an example of such a cooperation in Figure 3.1,

where directones are used in order to supply the high-Ievel policies to the PDPs of the

network.

3.6. Benefits of PBN

By using policies that describe goals instead of procedures, the policies are separated

from the network details. This approac h has several advantages over the tradi tional

management techniques; the most important of them are [12]:

High degree of abstraction: The policies are written in a high-level, abstract way, as

independent as possibIe from the network topology, protocols, services and

applications. The administrators can easily determine the behavior of the network by

reading the policies, even if they were not their authors, or a long time passes. The

behavior of the network is more likely to reflect the goals of the administrators, since

the policies now express exactly these goals, rather than procedures that attempt to

describe them. Changes in the topology of the network, its protocols, services or

applications do not affect the policies, since the goals remain the same - the

modifications are automatically integrated and the same policies remain applicable in

the modified network.

Automation - Consistency: The PBN model implies high level of automation. This

automation ensures consistency in the device behavior across the network, and

simplifies significantly the process of configuring the devices.

Dynamic policies: In PBN, the policies are separated from the network details. This

binding only takes place on the policy servers, and it is a dynamic procedure. When

the network state changes, the policies are updated to reflect these changes. This

allows new types of policies to be defined, and gives extra flexibility to the network

managers. An example of a dynarnic binding of a policy is the folIowing: Suppose

that the policy "Give high priority to engineers" has been set. Whenever an engineer

logs on to a workstation, the PDP is informed of this fact and generates such

configuration data for the network devices that will give high priority to the specific

workstation. Such policies are very hard to implement with traditional management

techniques.

3.7. PBN Protocols: COPS and Its Extensions

lETF attempts to standardize the communication between PDPs and PEPs through the

Cornmon Open PoZicy Service (COPS) [21] protocol and its extensions. COPS is being

developed by the Resorcrce Allocation Profocol (RAP) [22] working group. Although

RAP purpose is to "establish a scalable policy control model for RSVP7' [22], COPS has

received significant attention from other research groups, within and outside IETF, and

applications based on it have already emerged [IS], [20], [23], 1241, [35] .

CWAPTER 3: Policy-Based Networking 23

3.7.1. COPS

The policy protocol is designed to cornrnunicate self-identifying policy-related

information, exchanged between the PDP and the PEP. In COPS, each PEP may have

one or more clients of different client-types; different client-types exist for the different

policing areas (security, QoS, admission control, accounting, etc). By supporting the

appropriate clients-types, the PEP provides a way to control the various management

aspects of the device.

In COPS, when a PEP boots, it connects to the PDP and its clients identify themselves by

reporting their capabilities and limitations. Note that a PEP may have clients that each

connects to a different PDP. In the outsourcing mode, if the PEP receives an event that it

does not know how to treat, it issues a request to the PDP, asking for ~onfi~pration data

for this event. In the provisioning model, the clients register their capabilities to the PDP,

and the PDP sends the appropriate policies (in a pre-agreed format) that the PEPs should

enforce. In both cases, the PDP may update the configuration data of the PEPs. COPS

also describes synchronization procedures between the PDP and the PEP, and it defines

how the PEP should react if the connection to the PDP is lost. Furthermore, COPS

defines mechanisms that secure and ensure the integrity of the exchanged messages.

COPS does not define the format or semantics of the exchanged configuration data; it

just provides the means to exchange such data. The definition of the format and

semantics of the exchanged data has to be defined per client-type in additional

documents (typically developed by IETF).

CNAPTER 3: Policy-Based Networking 24

3.7.1.1. COPS Message Format

Al1 COPS messages consist of a common header and a number of objects. The header of

the message (8 octets - Figure 3.3) identifies the type of the exchanged message. Ten

types of messages exist [2 11 :

1. Request (REQ) 6. Cllent-Open (OPN)

3, Decision (DEC) 7. Client-Accept (CAT)

3, Report State (RPT) 8. Client-Close (CC)

4- Delete Request State (DRQ) 9. Keep-Alive (KA)

5. Synchronize State Req (SSQ) 10. Synchronize Complete (SSC)

A detailed description of COPS is out of the scope of this document. However, we would

like to mention that the PEP initidly sen& a Request message (REQ), where it reports its

capabilities and limitations and asks for configuration data. PDP decisions, solicited or

not, are encapsulated within Decision messages (DEC). Report messages (RPT) are used

to report the success or failure of installing the PDP decisions, and to report the usage of

the policies (e-g., for accounting purposes). For more detaiIs, the reader may refer to

"The COPS Protocol" frorn lETF [2 11.

At the time this document is written, COPS is an RFC, hence modifications may take

place in the future.

O 1 2 3

Version1 Flags

Message Length

. . ,(COPS objects follow). - .
Figure 3.3: COPS Header Format

Op Code Client-type

CNAPTER 3: Policy-Based Networking 25-

3.7.2. COPS Extensions (client-types)

The IETF RAP working group has aiso defined aiready some client-types for COPS.

These client-types are considered as extensions of the base COPS protocol, since they

define details for the format and semantics of the configuration data that is exchanged

between the PDPs and the PEPs. The most important extensions at this time are the

COPS usage for RSVP [26] and COPS usage for Policy Provisioning, or COPS-PR [27].

Here, we are particularly interested in the latter, which will be described in the next

paragap hs .

3.8. COPS-PR

RAP has developed CORS for Policy Provisioning (COPS-PR) [27] as an extension (or,

client-type) of COPS. COPS-PR was initially biased towards DiffServ policy

provisioning [28]. However, it appears to be suitable for several other management areas

(accounting [Dl, IP filtering [30], [27], secunty [31], etc. [32], [33], [34]).

As its name implies, COPS-PR operates only in a provisioning style, where the PDP

downloads al1 the relevant policies in its PEPs, and the latter serve al1 incorning events

according to these policies. In COPS-PR, the clients connect to the appropnate PDP

(different PDPs may control different clients in a single PEP), report their capabilities

and limitations, and request the initiai policies to be downloaded to them. The PDP

processes the request of each client and, according to the global policies and network

state, generates and downloads the appropriate configuration data. If the network state or

the policies change afterwards, the PDP may decide to update these configuration data, in

order to keep the behavior of the managed device consistent.

CHAPTER 3: Policy-Based Networking 26

3.8.1. The Policy Information Base (PIB)

In COPS-PR, each client has to maintain a special database, called Policy Information

Base (PIB) [35], where it stores al1 the received configuration data. The PIB is a

structure sirnilar to a MDB, and can be descnbed as a conceptual tree namespace, where

the branches represent structures of data, or Provisioning Classes (PRCs), and the leaves

represent instances of these classes, called Provisioning Instances (PRIs). PIBs are

defined by COPS-PR only as abstract structures; the details of each P I . (PRCs and their

semantics) are specified in separate standard documents (such as intemet-drafts or

vendor private documents). Different PIBs are defined in order to cover the various

management areas (Differentiated Services, accounting, security etc). PIBs are defined in

a high abstraction level; in this way they hide the details of the underlying hardware and

provide to the PDP a unified way to control the behavior of the devices, over a specific

management area, across the entire network.

Figure 3.4: P1B structztre

PRIs are identified within the PIB through a PR1 identifier (PRID). The PDP can install

or update PRIs by sending an install decision specifying the appropriate PRlDs and their

values, or remove PRIs with a remove decision containing the PRIlDs of the P N s to be

removed. Policies are forrned as a set of PRIs in the P I . ; by adding or removing PRIS,

the PDP can implement the desired policies, which will be enforced at the device.

CHAPTER 3: Policy-Based Networking 27

It is important to highlight that the policies that each PIB can implement are predefined

(in the standard documents that define this PB). In order to control a device, the PDP has

to map the high-level network policies and the network state into policies that can be

implemented in the PIE3 of the PEP.

The Frarnework Policy Information Base [35] defines a PIB with classes that are

cornrnon to al1 PIBs. This P B should be impleinented by al1 COPS-PR clients.

3.8.2. The Structure of Policy Provisioning Information

PIBs are defined using the Structure of Policy Provisioning Information (SPPI)

specification [36]. Since PBs resemble MIBs, SPPI is based on the SMI (Structure of

Management Information) [38]. Although describing the SPPI in full is out of the scope

of this document, we will attempt to give an overview of the most important

characteristics that will be used later on.

PlBs are constructed as a tree of PRCs, with PRIs as leaves. The entire tree is under a

single, root PRC, with a specific identifier (PRID), usually assigned by M A (for public

PIBs) or the vendor (for private PIBs).

Two types of PRCs exist. The first type is PRCs that group other PRCs. Such PRCs are

represented as intemediate nodes in the tree, without having any leaves directly attached

to rhern. Each PRC is described as a table with defined columns-attributes. Each attribute

has a specific semantic and type. Each row of the table is a PRI of the specific class.

Hence, by defining the column of the table, the attributes and the semantics of the PRIs

are defined.

It is important to distinguish the definition of the PIB from its actual data. The definition

of the PIB includes the definition of the classes (tables) and their organization into

C W T E R 3: Policy-Based Netwo rking 28

groups. On the other hand, the PRIS are the instances of these classes, and comprise the

actual data that is placed in the PB,

3.8.3. COPS-PR Example

We shall use a small filtering PIB in order to show how COPS-PR works. The network

of Our exarnple is the network of a small Company (Figure 3 . 3 , with the following

topology:

LAN address range: X.Y.0.0116

Subnets X.Y. 1 .O/% (public), X.Y.2.0124 (administrators), X.Y.3.0124 (employees)

A central router A that routes the LAN and Internet traffic, and serves as the Internet

gateway.

Suppose that the following high-level abstract access m1es have been set:

#I. Intemal LAN trafic is always ullowed

#2. The administrator can always access the Internet, whenever and from wlzerever

he/she is logged in.

#3. During overull congestion, trafic between the employee domain and the Intenzet is

den ied.

#4. Intemet can be accessed only dztnng working hozrrs (Monday to Friday, 9:OO-I 7:OO)

(Rule #I has the highest prioriiy, rule #4 the lowest)

Also, suppose that the term "overall congestion" is evaluated according to whether router

A is congested, Le., based on the load of its interfaces.

Seruers
Managers

Public WorkStations
Employees

WorkStations

Manager
X.Y.1 *O Oomain

X.Y.2.0

- -

Figure 3.5: The ropology of the company example nerwork

Suppose that the (PEP of the) routers of the network support a PIB with a single PRC.

PRIS of this PIE! describe sourcefdestination criteria that aIIow access to IF' trafic within

the network. Each P M in this P B is a stand-aione policy of the f o m :

if((Source matches Srcaddr/Srcmask) and (Destination matches Desfaddr/Desbnask))

ttzen allow

Traffic that matches at ieast one PRI in the PIB is aIlowed. Trafic that does not match

any criteria (policies in the PB) is, by default, denied.

Suppose now that the foIIowing events take place:

0859: No administrator Zogged on 1511: adminisrrator logs on at X. Y.3.7

09:OO: start of working day 15:20: no congestion

11:OO: congestion detected 17:00: end of rvorking d q

II:05: no congestion L 7:15: administrator Zogs ozit

15:08: congestion detected

CHAPTER 3: Policy-Based Netwo rking 30

Figure 3.6 demonstrates snapshots of the PI13 of Router A during the day: When the

router boots, the PDP sends a poiicy that allows ail LAN traff~c (PRID #1), which

implements policy #I. When the PDP detects the begnning of the working day (09:00),

poIicy #4 becomes applicable, and a P N that allows t r a c toffrom the Internet is added

into the PIB (PEU #1 is now redundant; the PDP may decide to keep it or not; however

this does not affect significantly Our analysis). When congestion is detected (1 LOO), the

PDP attempts to instail poiicy #3. This policy is in conflict with the already installed

policy #4; however policy #3 has higher priority, and hence the employee subnet is

banned from Intemet traffic. After a while (11:05), the network is no longer congested,

and the PIB is restored to its previous state. When the network becomes congested again

(15:08), the PIB has to be updated once more, as before. When the administrator logs on

at the ,ouest subnet, however (15:11), traffic to/from the Intemet to hisher IP i s allowed.

Note that policy #2 is in conflict with policy #3, which bans trafic to the employee

subnet, however the former wins since it has a higher priority. When the network

becomes decongested (15:20), policy #3 is uninstalled, and policy #4 is installed again.

At the end of the working day (17:00), policy #4 is also uninstalIed, and finally, when the

administrator logs out, policy #2 is uninstalled as well, denying dl Internet access.

3.9. Conclusion

This section introduced Policy-Based Networking and outlined the COf S Protocol and

its extension for policy provisioning (COPS-PR). A simple example demonstrated how a

PDP controls a COPS-PR PEP (and consequently the behavior of the Gevice) by

modifying the configuration data stored in its PIB. Despite its simplicity, this example is

sufficient to reveal some shortcomings of COPS-PR. The next chapter presents these

shortcomings, discusses how they rnotivated our work, and presents the concept of meta-

policies, which is our proposal to overcome these deficiencies.

CHAPTER 3: Policv-Based Networkina 31

Boot.
request for
PI6 data *

Router A

Beggining of
worùing day -

PDP clock PDP 1

€3 Congestion -
Router A

MI6 PDP 1
No Allow lntemet

Congestion -
Router A

MIB

Congestion Deny lnternet -
Router A

1 Prid: index

MIE PDP

Administrator

Allow lnternet

Figure 3.6: Instances of the PI13 of router A

. ~sddd-nation
DstMask: Destination Mask
SrcAddr: Source IP

//LAN
//public to everywhere
fleverywhere to public
//managers to everywhere
Ileverywhere to managers

/ILAN
//public to everywhere
Ifeverywhere to public
//managers to everywhere
Ileverywhere to managers

/IL AN
//public to everywhere
Ileverywhere to public
//managers to everywhere
//everywhere to managers
//admin to everywhere
//everywhere to admin

Ifinternet
//LAN
Iladmin to everywhere
//eveyvhere to admin

ILAN
//admin to everywhere
//everywhere to admin

Chapter 4.

Meta-Policies in COPS-PR

4.1. COPS-PR Shortcomings

The previous example demonstrates how the COPS-PR protocol is used in order to

communicate policing information between a PDP and a PEP, and how a PIE3 is used by

the latter in order to store this information. However, this exarnple also reveals some

shortcomings of this model.

In COPS-PR, the high-level policies are reflected into the PIBs of the devices. PRIs are

installed in or removed from the PIB according to the current (network) state. When

various events take place, the state changes and the PIE3 is modified. Of course, the

occurrence of the sarne event more than once may lead to different PIE3 contents. (For

exarnple, the end of congestion at 11:05 and 1520 results in different PIB instances.) The

occurrence of the same events does not even imply that the PDP will send exactly the

sarne cornrnands to the PEP. However, there is a certain correlation between the network

events and the PIB contents, which this mode1 fails to take into consideration.

This shortcoming of COPS-PR has a great impact on its efficiency and performance. In

several cases the PDP has to send the sarne (or sirnilar) commands, when the same event

occurs. In the previous example, for instance, while the network aitemates between the

States "congested" and "not congested", the PDP needs to install and remove the PRIs

that deny Internet access to the employee domain. In a more complex example, a big set

CHAPTER 4: The Concept of Meta-Policies 33

of PRTs might need to be updated, The PEP needs to be directed about how to treat an

event, even if this event has occurred several times in the p s t . Hence, more PDP

resources (to regenerate the policies each time) and more bandwidth (to send them) are

consumed, than necessary.

A second limitation lies in the ngidity of the PIBs. PIBs are predefined structures, and

the high-level policies cannot directly map into them. The PDPs need to dynamicaily

project the high-Ievel policies into policies that can be represented in the PB. Al1

policies that do not precisely map to a supported policy type need to be processed at the

PDP Ievel. In the previous example, the policy "During overall congestion, traffic

between the employee domain and the Intemet is denied" cannot fit into the PB, and has

to be processed by the PDP. The latter, depending on the overall network state, produces

the PRIS that are in conformance with the initial policy, for the given congestion status.

Then, the PEP irnplements the policies that these PRIS descnbe. In this case, the high-

level policy has to be processed partially by the PDP, and partially by the PEP.

Obviously, the involvement of the PDP in cases like this is usually neither efficient nor

desired. For the previous policy, for example, the PDP needs to query the MIB of router

A in order to determine if there is congestion; then send the appropriate policies back to

the router's PB. Obviously, this policy could be entirely processed at the PEP-ievel,

since congestion could be evaluated locally by the PEP. Similarly, for the policy "The

Internet can be accessed only during working hours", the PDP is necessary in order to

determine the condition "working hours", since this condition cannot be stored in the PIB

of the router. However, supposing that there is a clock service that broadcasts the date

and time over the network, this policy could also be evaluated entirely at the PEP-level.

The rigidity of the PBs, though, does not allow any other kind of policies to be evaluated

by the PEP apart from these supported by the PIB, making in this way the presence of the

PDP necessary, even in cases where this could be avoided. This is a significant

drawback, since it makes the mode1 very vulnerable to PDP errors or rnalfunctions and to

network error situations, such as network congestion or network failures.

CHAPTER 4: me Concept of Meta-Policies 34

4.2. Motivation

The previously discussed limitations motivated our work: The intelligence of the COPS-

PR mode1 seems to be concentrated at the PDP level. PDP decisions always download

policies into the PEP, even when the same events reoccur. The PIB is a rigid structure

that allows only limited types of policies to be pushed into the PEP. The PEP depends on

the PDP presence, even in cases where this is not absolutely necessary.

This work attempts to extend the policy functiondity of the PIB, so that the PEP will be

able to take more decisions sirnply by examining events. Initially, the PDP downloads

the applicable policies and directs the PEP how to react on certain events. Apart from

that, the role of the PDP is downgraded mainly to communicating such events to the

PEP, rather than modifying the configuration data. Also, the PEP can be progammed to

monitor sorne of these events by itself and initiate the appropriate actions.

Assuming this extended functionality, the PDP is able to control the PEP mainly by

communicating events, rather than policies, Also, the PEP is able to take certain policing

decisions by itself. In this way, intelligence is pushed towards the PEP. From a different

point of view, this work pushes some of the PDP functionality inside the PEP.

In order to achieve the described functionality, we use mefa-policies, a concept which is

defined and discussed in this chapter.

4.3. The Concept of Meta-Policies

In the example of the previous chapter, there was the policy:

During overall congestion, trafic between the employee domain and the Zntemet is

denied.

CHAPTER 4: The Concept of Meta-Policies 35

Suppose that this is the only poIicy of a small network, consisting of two routers, A and

B, where router A is the central router of the network, and B a router of a sub-domain-

Also, suppose that these routers have a small filtering PIB like the one examined before,

and that the condition "overai1 congestion" is indicated through some MIB variables of

router A.

Whenever congestion is detected, the PDP sends to the PEPs of the routers sorne

confi3wation data that install sorne PRIs and update their behavior. Since we have only

one policy for this network, each router receives the same commands each time that

congestion is detected. Let us cal1 these data DataA and DataB. These PRIs are

uninstdled when congestion ends,

changes. ln this case, we can observe the following:

The PDP only needs to send the meta-policies once. Then the PEPs have al1 the

Suppose now that the PDP could send to the two routers the following comrnands, which

we s hall cal1 mefa-policies :

necessary information to react according to current network state, as long as they are

informed about it somehow.

Router A c m evaluate the two meta-policies locally and independently of the PDP.

This means that the PDP does not need to process the original policy for router A any

more. Also, the PEP will operate according to the administrative goals even in cases

of high congestion (that would dehy the PDP from querying the MIS of router A and

update its Pm), or even while the PDP is down or unreachable.

Router A:

If (Congestion) then {DafaAl

Router B :

If(Congestioa) then {DafnBI

Finally, suppose that the PDP sornehow directs the PEP of router A on how to evaluate

the parameter "Congestion" from the appropriate variables of its MIB and informs the

PEP of router B that the value of "Congestion" will be sent to it, each time that it

CICLAPTER 4: The Concept of Mera-Policies 36

Router B still needs to be guided by the PDP. However, the PDP does not need to

send policy comrnands in the form of configuration data (DataB) anyrnore; it must

send onIy the value of the variable "Congestion". In this way, the PDP Ioad is

decreased, less bandwidth is consumed, and the PDP Decision message is less likely

to get Iost or compted (since it is siagpificmtIy smaller),

Although the case of a network with more than a single policy complicates the situation,

based on the previous discussion, we can observe that in general, each high-level policy

requires some specific PRIs to exist (or not exist) in the PIB of each device, depending

on the network state. Each network event makes applicable some policies that were not

apphcable before and vice-versa. This means that we can associate combinations of

events with PRIS that need to exist in the PIB,

Meta-policies attempt to take advantage of exactly this observation. They associate

combinations of network events with PRIs that need to be instailed- The event

combination comprises the condition of the meta-policy; the modifications of the PIB

that these events trigger are its actions. Meta-policies are generated by the PDP and they

are sent to the PEP. The PEP processes these meta-policies and updates its PB. The

decision that the PEP takes is the sarne that the PDP would take, for the same network

events. Of course, in order to do so, the PEP must be aware, somehow, of al1 the relevant

network events. The PDP could be used for this purpose and inform the PEPs about

network events that need a global (or at Ieast a relatively "large") network view to be

evaluated. In this case, the PEP still depends on the PDP, but less network and PDP

resources are consumed. However, the PEP can be inforrned of network events from

other sources, as well: For instance, the PEP may use the MIB of the device where it

resides to evaluate local events. A network service or server (Iike a clock or a notification

service) can also be used. Even more, mobile agents can be used to collect and provide

notification of such events. The latter implies some degree of programmability and

CHilPTER 4: The Conce~t o f Meta-Policies 3 7

openness at the architecture of the PEP; however, such features are becorning available:

more and more in modem devices,

An important issue that needs to be addressed is conflicts. Valid meta-policies may b e

conflicting under certain circumstances. Besides, meta-policies may conflict with PRIS

directly installed into the PIB by the PDP. As in COPS-PR, the PDP must resolve these

conflicts before sending any commands to the PEP. Conflicts between meta-policies carri

also be resolved at the PEP level, as long as these policies are associated with priorities-,

provided by the PDP.

Finally, note that the mapping between meta-policies and high-level policies is no#

necessarily one to one. Some high-level policies may not be applicable for a device,

some may be combined into a single meta-policy; and some others may need to be splitr

into more that one. Besides, the PDP may still decide not to produce a meta-policy for a

high-level policy, and implement it by directly installing and uninstalling PRIs into the

PIB .

4.4. Formal Definition

We define a meta-policy as a mIe of the form:

if(condirion) rhen {actions}

where "condition " is a logica! expression, e-g., "(C>80%) and @=truc)",

and "actions" is a set of PD3 commands that install PRIs into the P B .

Since the actions encode a specific policy, this rule is a rule on how policies are

enforced; this is why it is called a "meta-policy".

CHAPTER 4: The Concept of Meta-Policies 38

Each meta-policy is generated for a specific PEP, according to its capabilities, limitations

and the device on which it resides; hence it is meaningful only for this PEP.

Meta-Policies are generated by the PDP and consumed by the PEP. The PEP evaluates

the condition of each meta-policy, and when it evaluates true, it enforces the actions. The

key idea in meta-policies is that the PEP can store and process these meta-policies

without knowing their complete semantics: The condition is treated as a logical

expression; the actions, pre-generated by the PDP, just denote PRIs that must be

installed, something that can be perforrned by the PEP without understanding policies

they implement. In this way, the PEP can process any meta-policy, independently of its

complexity and its rneaning.

Also, each meta-policy must be assigned a prïority. This prionty is used by the PEP in

order to resoive any conflict between two meta-policies that may need to be activated at

the same time, but have conflicting actions.

Both the condition and the actions may contain pararneters (such as "Congestion" or

"WorkTime"); the values for these pararneters are either sent by the PDP or evduated by

the PEP, according to directions provided by the PDP. The pararneters that a meta-policy

uses must be installed by the PDP pnor to installing the rneta-policy.

4.4.1. Parameters

The parameters are used in meta-policy conditions in order to determine when a meta-

policy must be activated. Moreover, they are used by meta-policy actions in order to

dynamically bind the network state within policies. For instance, in the previous example

we could have a meta-policy "if (AdminLogged) rhen finstall (7, AdminIP, 24, *-*. *. *,
241), install (8, ?*.*.*124, AclminlP, 24))", which instalis the PRIs that give to the

CHMTER 4: The C o n c e ~ t of Meta-Policies 39

administrator access to the entire network. This meta-policy contains two parameters:

AdminLogped and AdrninIP.

When installing a parameter, the PDP must also specify an evaluation method for it. For

instance, the PEP can be directed to get a value for a parameter from the MIE3 of the

device. Or, the PDP could provide the value for this parameter. However, other methods

are also possible, depending on the capabilities of the device, such as to download and

execute a script, use mobile agents, or get the desired information from some semer or

service (e.g., dock service).

4.5. Example

Consider the Company example that we studied before. We shalI examine how it is

affected by meta-policies.

First of d l , the policy #l, "lnternal LAN trafic is always allowed", must always be

enforced. Hence, the PDP directIy enforces this policy by installing the PR1 #1 into the

PEI (Figure 4. l), when the router boots.

In addition, the PDP downloads to the PEP the following meta-policies:

if (WorkTirne) then f install(2, *.. JF. 124, *. *. c.> *,',34))

if((iflUtil>80%) or (zflUtiZ>80%) or (@UtiZ>80%)) then (

install(3,X. Y. I.0,34, *. *. *. *,24), install(4, *. *. *. *,24, X. Y.I.0,24)

install (5,X.Y.2.0,24,*.*.*.*,24), install(6, *.*.*.* ,24, X.Y.2.0,24)

1
if (Adminlogged) then

{install(1,AdminIP,24, * * * *,24). instalZ(l. *. * *. *, 24, AdminZP, 24,))

CHAPTER 4: The Concept of Meta-Policies 40

and informs the PEP that the two first meta-policies are conflicting, and the second one

has higher priority.

Since the meta-poIicies contain parameters, the PDP also hm to inform the PEP of the

evaluation method for these parameters. In Our example, the PDP sends the values of the

parameters "WorkTime", "AdminLogged" and "AdminIP", and it directs the PEP to

evaluate by itself the parameters "iflUtil'7, "if2Util", "if3UtiI" through the appropriate

MIB variables that denote the usage of the router's interfaces (Figure 4.1).

The PEP monitors the parameters, and when their values change, it re-evaluates ~ h e

affected conditions. While the condition of a meta-policy is met, the corresponding PRIS

are installed in the PB. In this way, the PIB always contains the appropriate PRIS that

implement the desired behavior.

Meta-policies allow the PDP to download initially the applicable policies and meta-

policies and then, control the PEP mainly by reporting network events. Moreover, some

of these events can be monitored by the PEP itself, without the involvement of the PDP.

Note that such events do not have to be local; the PEP can be progamrned (e-g. by

downloading and executing some scripts, or through mobile agents) to monitor such

events through another semer or service: for instance, the parameter "WorkTime" could

have been monitored by the PEP through a network dock service, without the

involvement of the PDP.

CHAPTER 4: The Concept of Meta-Policies 41

WorkTtme: value sent by the PDP
AdminLogged: value sent by the PDP

AdminIP: value sent b the PDP
iflutil: MIB variable a.b.c.de1
inutil: MIB variable a.b.c.d.e2 1 1 i8Util: MIB mrïable ab.c.de3 install (6. '.'.'.' ,24, X-Y.2.0.24)

3 Adrninbgged instalI(1 .AdrninfP.24,'.'.'.'.24) 1 1

Boot Initial policies and

Router A
PDP

Beggining of

PDP dock PDP

u
MI8 of

Router A

Router A

Adrninistrator
AdminLogged=true, AdrninlP=X.Y.3-7

Authentication
selver PDP

No Congestion Ft-.F
End of -

PDP clock

MIB of 1
Router A

Adrninistrator 1 IoggecI 0% Admini.ogged=false, AdrninlP=O-0.0.0

Authentication
semer PDP

I
Figure 4.1: Insfances of the PIB of router A

Chapter 5.

Requirements and Design

The previous section introduced the concept of meta-policies and demonstrated how

these can be used to extend the functionality of the PEP. This section analyses the

requirements, justifies our choice to use a PIB to implement the additional functionality

and discusses design issues of the PB.

5.1. Early Requirements

5.1 .1. General Requirements

The central concept in Our work is meta-policies, i-e., niles of the form "if(corzditions)

then {actions) ".

Each condition is a Boolean expression, comprised of a number of simpler conditions.

Ultirnately, al1 conditions are decomposed into primitive Iogical expressions, such as

arithmetic comparisons (X+Y>10), Boolean expressions (Congestion=True) network

expressions (If? matches X.Y.Z.W), etc.

The actions install PRIS into the PIB. Each action identifies a single target PR1 and the

value that must be installed into it.

C W T E R 5: Requirernents and Design 43

Both conditions and actions may be parametric; hence a way to comrnunicate, store and

process parameters is d s o necessary. Each parameter bas a type, which denotes what

kind of infmnation it stores (integer, 1 . address, octet string, etc). Also, each parameter

has a way to be evaiuated. Severai evaluation methods may exist, We distinguish two

basic evaluation rnethods: First, a parameter can get its value from the MIE3 or PIB of the

device. Second, the value can be sent by the PDP initidly, and then be updated (by the

PDP) whenever it changes. However, other evaluation methods may also exist,

depending on the capabili ties of the device. For instance, an active/programmable device

may download and execute code that will evaluate this parameter. Although it is

practicaily impossible to support any possible evaluation method, it is desirable that the

basic methods that we define c m be extended with other methods (standard or vendor-

specific).

5.1.2. Why a PIB?

The proposed enhancements require meta-policing information to be exchanged between

the PDP and the PEP, and be stored and processed by the latter. Hence, a crucial question

that rnust be tackled in the early design phase is what protocols and data structures will

be used. We decided to use COPS-PR to comrnunicate such data and define a P B to

store them at the PEP (as opposed to defining another protocol andot storage structure,

or extending the existing ones). This decision was based on a number of reasons:

Meta-policies need to be sent to the PEP in a provisioning style, and COPS-PR is

a protocol defined for policy provisioning.

Our work is in line with the work conducted in IETF. No new protocols need to

be developed, and the proposed PIE3 can easily be adapted by the Intemet

comrnunity (researchers and vendors). Even legacy devices can support the

proposed PIB (e-g., with software updates).

CHAPTER 5: Requirements and Design 44

By using a PIB to store meta-policies, meta-policing data are treated as any PIE

data. ConsequentIy, meta-policies on meta-policies could also be defined (this is

discussed at the last chapter, as future work).

4 Finally, by using COPS-PR and PIBs, the design and the implementation is

simplified: the definition of a PIB is much simpler that defining a new protocol.

Meta-policy exchange and storage is already handled by the protocol and does not

need to be addressed by us. The implementation is based on existing, tested tools.

The reuse of knowledge and code makes the design, implementation and testing

safer and easier, and rninirnizes the chance for errors,

In general, although the choice of using a PIB and COPS-PR introduces some further

requirements, it does not prevent or hinder us from meeting any of our goals.

5.1.3. COPS-PWPIB Requirements

Our decision to define a PIB and use COPS-PR to implement our proposal implies that

the SPPI specification rnust be used to define the PB, SPPI [36] demands al1 data to be

placed in tabular format (each table is a PRC, and the rows of the tables the PRIS). SPPI

also demands strong typing of the attributes of the PRIS. However, the SPPI is very

flexible in defining new types; this feature is exploited in order to overcome the previous

restriction.

C W T E R 5: Requirements and Design 45

5.2. Analysis

5.2.1. Communication and storage

By choosing to define a PIB and use COPS-PR, al1 communication and storing is

addressed by the protocol itself: When the PEP connects to the PDP, it reports its meta-

policing capabilities and limitations. According to these capabilities and limitations, the

PDP downloads dl the appropriate meta-policies, These meta-policies are stored in the

PIB and remain there, until they are updated by the PDP.

5.2.2. Meta-Policing Data

Meta-policies consist of a condition and a set of actions. Since valid meta-policies may

conflict under certain circurnstances, the PDP must be able to declare potentially

conflicting meta-policies and denote priorïties between them. Also, the status of the

meca-policies (Le., whether they are active, whether they suppress a meta-policy with

lower priority or whether they are suppressed) may need to be reported to the PDP.

5.2.2.2. Conditions

Each meta-policy must contain exactly one condition. As mentioned before, the

condition is decomposed into one or more primitive expressions that need to be

evaluated. Each of these primitives must contain at least one parameter (othenvise, a

simpler condition without them exists, since that primitive expression always evaluates

CHAPTER 5: Reqzlirements and Design 46

either true or false). We distinguish two categories of primitives: Boolean and generic

expressions.

Boolean expressions are a subset of the generic expressions, but due to their simplicity

and commonaiity, they are treated separately. Such primitives are evaluated according to

the value of a Boolean parameter. For instance, in the expression ((X>Y) &&

(!Congestion) && (WorkTime)), Congestion and WorkTime are such primitives.

Generic expressions contain ail the other Iogical expressions that cannot be decomposed

into simpler Boolean primitives. Examples of such primitives are "X>Y", "P matches

X.KZ W" or "8:OOarn c tirne < 5:UOpm). Each PEP can only support specific types of

such expressions (e-g., arithmetic), which are reported dong with the other PEP

capabilities to the PDP. The PDP can only send to the PEP expressions that are supported

by the latter.

An important issue is that such expressions need to be standardized in order to be

transrnitted and stored in the PB. However, different types of expressions require

different operators (e-g., arithmetic expressions need operators like "+","-",">", while

network conditions need operators such as "matches" and "subnet"), Besides, the set of

types of such expressions is infinite, since any kind of expressions may be valid: the

expression "colorl darker that color3" is a valid expression (although probabIy totdly

useless for network management). The point is that al1 types of possible expressions,

cannot be predicted in advance, but they need to be standardized. Of course, we could

choose to standardize only a few types of expressions that are most cornrnonly used, but

this would restrict the applicability of Our work.

The solution a v e n to this problem was to define an open, generic rnechanism to handle

such expressions. The details of this generic mechanism can be defined per expression

CHAPTER 5: Requirernents and Design 47

type (arithmetic, IP expressions, etc). Cornmon expression types have already been

defined by us, but these types can easily be extended to include other ones, as well.

More specifically, al1 expressions are encoded using XML. XML uses tags that give

semantics to the data of the XML document. However, the semantics of these tags are

defined in separate documents, called Document Type Definitions (DTDs). These DTDs

specify the details of the generic mechanism, per expression type. Each PEP reports to

the PDP the DTDs that it supports, through an identifier, which uraiquely identifies these

DTDs (which is the URL where these are published; this is the standard method adapted

by the XML standard). By reporting an XML DTD, the PEP declares that it can interpret

any XML document (that encodes an expression) written according to this DTD. For

example, if a DTD defines tags for numerical operations (+,-,*,/,div) and cornparisons

(>,=,>=,<,<=,=) then the PEP should be able to understand any arithmetic expression that

uses these operators. The PDP, according to the expression that it wants to encode,

chooses the most appropriate DTD, encodes the condition and transmits it.

By using XML DTDs we manage to:

Standardize the exchange of general expressions

AccompIish a unifom way of storing them into the PIE3

Leave the PR3 open to any type of expressions

AlIow each PEP to implement only the functionality that it needs, or that is

appropriate, according to its resources.

Note that the PDP is always able to find a way to send an expression, even if this is

not optimal: Even if the appropriate DTD is not supported, the expression may be

transfonned to a supported one. In the worst case, the entire expression is represented

as a BooIean parameter, and the PDP sends the value for this parameter.

CHAPTER 5: Reqzïirenzents and Design 48

5.2.2.3. Actions

Each meta-policy is associated with a set of actions. NonnaIly, this set should contain at

least one action (a rneta-policy without actions is useless; however this situation rnay

exist while the PDP temporarily deactivates or updates a meta-policy). Each action is a

binding of a PRID pointing to a single PRI, and the value that must be instdled into it.

This value can be either static or dynamically evaluated through a parameter.

5-2-2.4. Parameters

Each parameter may be used by the conditions or actions of one or more meta-policies-

Pararneters that are not referenced by any meta-policy may also exist (although this

situation should only be temporal).

Each parameter must be associated with an evaluation method. At least two evaluation

methods must be available: Through the MIB or PIB of the device, or through the PDP.

However, the vendor should be able to extend these methods. Pararneters that are

evduated through the MIB need to be associated with the frequency that the ME3 must

be polled, to update the value. Obviously, the MD3 OID has to be provided, as well.

Parameters that are evaluated by the PDP must maintain the last value sent by the PDP.

Chapter 6.
The Meta-Policy Information Base

This section defines the Meta-Policy PIB classes and discusses the operation of the PEP

and the PDP. The full version of the document that defines the P I . is presented as

Appendix A.

6.1. PIB Definition

According to the previous analysis, we defined the cIasses (tables) that comprise the

Meta-Policy PIB. The PIB is defined according to the IETF specifications (i.e., using

SPPI).

The P B is divided into five groups:

The Capubilities Grozip contains the Provisioning classes (PRCs) that store the

capabilities and limitations of the PEP (as far as the meta-policy PIB is concerned).

The PRIS of these classes are reported to the PDP when the PEP connects.

The Base Meta-Policy Group contains the classes that form the meta-policies,

define their relative priority in case of conflicts, and report their status.

The Condition Gruup provides classes for forming the conditions of the meta-

policies.

The Action Group includes the PRCs that define the actions of the meta-pohcies.

The Parameter Gmup contains the PRCs where the parameters and their evaluation

methods are stored.

CHAPTER 6: The Meta-Policy Information Base 50

6.1.1. The Capabilities Group

This group contains a single class, the xmiDTD class. This contains the XML DTDs that

the PEP supports, for encoding expressions. Each row of the xrnlDTDTable consists of

an identifier and the DTD URL. The rows of this table are reported to the PDP in the

REQ message.

6.1.2. The Base Meta-Policy Group

This group contains three classes: the metaPoiicy, the metaPolicyStatus and the

metaPolicyPnority classes.

The metaPolicy class is the PRC where meta-policies are constructed. Each instance of

this cIass represents exactly one meta-poiicy. The meta-policy comprises an identifier, a

name, a reference to a condition (in the candition class, described later) and an action tag.

The action tag identifies a group of actians from the action class (also described later),

which must be executed when the meta-policy is activated.

The metaPolicyStatus class is a PRC that AUGMENTS the previous class (AUGMENTS

is an SPPI t e m that means that there is a one to one correspondence between the

instances of these classes). Each PR1 o f this PRC reports whether the corresponding

meta-policy is active, and whether it is suppressed by another meta-policy with higher

priorïty or it suppresses a meta-policy with lower priority. This class is used to report to

the PDP the meta-policy status. However, its PRIS can also be used as PIB parameters for

other meta-policies, so as to construct canditions that are based on whether installed

meta-policies are active, inactive or suppressed.

Finally, the metaPoIicyPriority class reports conflicting meta-policies and direct the PEP

how to resolve these conflicts. Each P M identifies two meta-policies, and defines which

CrtAPTER 6: The Meta-Policy Information Base 51

one has the higher ptiority. PRIs with two simuItaneousIy active meta-policies rnust not

exist in this table.

91 rnetaPolicyPrid 91 metaPolicyPriorityPrid
to

condition metaPolicyName higherpriority
+ PRC

I ' . rnetaPolicyCondition iowerPriority
T -

Ft'gure 6.1: The Base Meta-Policy Grozrp classes

6.1.3. The Condition Group

This group contains four classes: the condition, the cornplexCondition, the

booleanCondition and the generdcondition classes.

The condition class is the base PRC of this group. Each PRI represents a logical

expression and consists of an identifier and an attribute that indicates whether the result

of the evaluation should be logically inverted. PRIs of this table must always be

associated with PRIs of another class that EXTENDS the base one. (EXTENDS is also

an SPPI tem, that means that the PR1 of this PRC can only exist as extensions of a PR1

in the base PRC. These PRIs are referenced through the identifier of the base PM, and if

the latter is uninstalled, the former is uninstalled as well).

Some (but not d l) of the rows of this table are used in order to represent conditions of

meta-policies. As explained before, a condition may comprise several simpler conditions,

which are also stored as PRIS in this table.

CHAPTER 6: The Meta-Policy Information Base 52

In order to break down a condition into simpler ones, the complexCondition class is used.

This class EXTENDS the base condition class. Each PR1 consists of two references to

the condition class, and an operator, The references reference two lo@cal conditions, and

the operator defines a logicai operation between these two conditions. In this way, the

PR1 in this table defines a more complex condition. Obviously, the PDP must not install

rows that reference themselves, directly or interectly.

com~lexCondition Table

-.
\ ''1. generalcondition Table

condition Table

metaPolicy
PRC

Figure 6.2: me Condition G ~ O & cl&es

The booleanlondition class also EXTENDS the base table. Each PR1 contains

'\. '

a

reference to a parameter, which must be of type ''TmeVdue" (i.e., Boolean), The value

of the condition is evaluated according to the value of this parameter.

b

,
i

Finally, the generalCondition class is used to allow conditions to be evaluated through

more complex expressions. Each row consists of a reference to the xrnlDTD cIass and a

string, which encodes an expression in XML. The reference to the xmlDTD class defines

the XML DTD that must be used in order to interpret this expression. The expression

encoded must be a logical expression, i.e., it must evaluate to either true or false.

conditionPrid
to parameter)

conditionReverse PRC

@
r

mlDTDRef
to xmlDTD

PRC

CEtAPTER 6: The Meta-Policy Information Base 53

6.1.4. The Actions Group

This group consists of three classes: the action, the actionvalue and the

actionParametricValue classes.

The action class is the base PRC for storing meta-policy actions. Each PR1 contains a

tag-reference attribute, which is used to group the actions of a single meta-policy. Each

PR1 of this class specifies a target PRID that specifies the PRI that must be installed.

The value that m u t be installed at the target PRID is deterrnined either in the

actionvalue class or the actionParametricValue class. Both classes EXTEND the base

one and provide the value that must be installed for the specific target PRID. The former

provides a value, encoded according to BER (Basic Encoding Rules [37]), while the

latter specifies a parameter, €rom which the value is evaluated.

I 1

Figure 6.3: The Actions Gro~dp classes

action Table

6.1 S. The Parameter Group

from
meta~o l iq

* ----

This group contins three tables: the parameter, the mibPibParameter and the

pdpparameter classes.

The parameter class is the base class for representing parameters. Each PR1 consists of an

identifier, a name and an attribute that denotes the type of the parameter. Each PRI must

be associated with a PR1 of a class that EXTENDS this one.

PRC

h/ actionPrÏd actionValueEpd

9 actionRefi-ag

actionTargetPrid

C m T E R 6: TIte Meta-Policy Infannation Base 54

The mibPibParameter class is such a PRC. It defines a MIB or PIB identifier from which

the parameter gets its value. Of course, this identifier must point to an existing variable.

Each row also defines the frequency with which this value wiII be updated. Note that the

MD3 and PIB identifiers have a different name space, Le., their prefixes are different;

hence, the identifier itself includes the information whether this is a M7B or P B

reference.

The pdpParameter class also extends the base pararneter class. Each PR1 contains a single

attribute that encodes, in BER, the value of the pararneter. The PDP updates this PRC

whenever this is necessary (usually when the value changes).

from mibPibParameterTable
actionParametricValue

fro
booleanCondition

PRC

Figrcre 6.4: The Meta-Policy Grotip classes

CHAPTER 6: The Meta-Policv Infornation Base 55

6.1.6. Overview of the Entire PI9

Figure 6.5 dernonstrates the entire Meta-Policy PIB. The groups are demonstrated as

grayed boxes, containing the Provisioning Classes- The Provisioning represented as

tables of their attributes. The figure illustrates the Instance Identifiers, the References to

Instance Identifiers, the Group Tags, and the Group Tag References, as well as the

ccau,omented'' and "extendeci" classes.

Figure 6.5: The Meta-Policy PZB

CrtAP'TrER 6: The Meta-Policy Information Base 56

6.2. Communication & Storage

The communication and the storage of meta-policies are performed as defined in the

COPS-PR protocol. A brief outline will be presented here; for more details, the reader

may refer to the TOPS Usage for Policy Provisioning" from ETF 1271.

6.2.1.1. Requests

As described by the protocol, when the PEP opens a connection to the PDP, it sends a

configuration request (REQ) message, asking for al1 the applicable policing data This

REQ message also reports the capabilities and Limitations of the PEP. According to the

SPPI [36], this is performed by sending dl the PRIs that are defined with the PB-

ACCESS clause set to "notify" or "instalt-notify". Thus, a PEP that implements the

Meta-Policy PIE3 must include in this message the PRIs of the xmlDTD class, which

report the capabilities of the PEP to interpret XML-encoded expressions.

6.2.1.2. Decisions

The PDP sends solicited decision @EC) messages as replies to REQ messages, or

unsolicited messages, whenever the policing data into the PIE! needs to get updated.

Meta-policing data is handled as any other kind of PIB data, hence the format of DEC

messages and the way these are installed into the PIB are exactly as defined in the COPS

protocol. As defined by the SPPI, the P B can only install/modify PRIç with the PIB-

ACCESS clause set to "install" or "install-notify".

Notice. however, that meta-policy data may now report network events to the PEP, since

the PDP may send values for parameters that represent such events (e.g., the PDP may

report congestion by setting the value of a parameter in the PIB of the PEP).

CHAPTER 6: The Meta-Policy Information Base 57

6.2.1.3. Reports

According t o COPS-PR, the PEP reports the success or failure of the DEC message with

a report message (RPT). DEC's that update the meta-policy classes are treated as any

other DEC messages, hence the PEP must issue reports on whether the PRIs were

installed/removed successfuIly. Note that this has nothing to do with whether the actions

of the meta-policies are actually enforced successfully. These messages report whether

the meta-policy itself was successfully installed/uninstalled, Le., if the operation is valid

according to the rneta-policy P B specification.

RPT messages are also sent unsolicited to report accounting related information. The

reported P R 3 have the PIB-ACCESS clause set to "report", hence the PRIs of the

activeMetaPoIicy cIass are reported to the PDP.

Finally, unsolicited RPT messages c m report PEP errors that are not related to a specific

DEC message. Such RPT messages can be triggered by badly behaving meta-policies,

(e-g., that attempt to install invalid or conflicting PRIs). Although the content of the

meta-policies should be checked when the meta-policy is installed. this check cannot

detect ail possible errors (this should be done by the PDP before sending the meta-

policies), hemce such situations may anse. Such errors are resolved according to the

COPS-PR pratocol.

6.3. PE P Operation

This section describes in general the behavior of the PEP and discusses how the data of

the meta-policy P B should be interpreted by it.

CHAPTER 6: The Meta-Policy Information Base 58

6.3.1.1. Installation of meta-policing data

When meta-policing data are to be installed into the PIB, the PEP needs to perfom some

basic tests to ensure that these data conform to the rules set in the PTB definition- Such

tests include:

r Integnly: The installed PRIs contain the appropriate number and type of attributes.

r Consistency: The PRIs m u t not form illegal or invalid meta-policies in the PIB. For

instance, references to non-existing PRIs are in several cases illegal: the installation

of a condition cannot be performed, unless the parameters that it contains have been

instailed aiready, or they are installed in the same DEC message. A meta-policy

cannot be declared as conflicting with itself. A condition cannot consist of two

simpler conditions, one of which is the initial condition itself. The PEP should check

for such situations before modifying the PB. - Conflicts: Whenever two meta-policies may be conflicting, the PDP should direct the

PEP how to resolve the conflict through the metaPolicyPriority class. The PEP

should check for conflicts that are not reported in this class. Also, the PEP should

check for conflicts between the actions of meta-policies and PRIs directly installed by

the PDP.

Whenever the PEP detects an erroneous situation like this, the entire DEC message must

be rejected, and an RPT message indicating the cause of the error must be sent to the

PDP (as defined in COPS-PR).

6.3.1.2. Parameters

The P B defines two types of evaluation methods for the parameters: The values are

either sent by the PDP, or they are evaluated from the MIBPIB of the device. However,

apart from these two integrated methods, new methods may be added in the future by

defining classes that extend the parameter table.

CHAPTER 6: The Meta-Polint Information Base 59

Independently of the way a parameter is evaluated, the paramcter triggers the

reevaluation of the Iogical expressions in which it is contained. Also, if the parameter is

used in the actions of an active meta-policy, whenever its value is modified, the related

PRIS must be updated.

6.3.1.3. Conditions

As mentioned before, the condition of each meta-policy is decomposed into primitive

logical expressions. Each logical expression contains a number of parameters, which

must exist in the PIB before the logical expression is instdled. When a Iogical expression

is installed, it is evaluated according to the curent values of its parameters. The overall

condition is evaluated according to the evaluation of these logical expressions.

The triggering of the re-evaluation of the logical expressions was discussed in the

previous section. Whenever the result of a logical expression is modified (Le., it becomes

true from false or vice versa), the condition that contains this expression needs to be

reevaluated. The reevaluation of a condition may trigger the reevaluation of other, more

complex conditions, containing this condition. For instance, for the condition

(A&&(BI[(C&&D))), assuming that A, B, C, D are primitive expressions, if D becornes

m e after being false, then the condition (C&&D) will be reevaluated. If its value

changes to m e , then the condition (B[((C&&D)) will be reevaluated. If its value also

changes, the whole condition needs to be reevaluated. This procedure implies that the

previous state of each condition is temporady stored by the PEP, so that this cornparison

can be perforrned.

Also, the PEP may decide not to reevaluate a condition, if this is not considered

necessary. For instance, in the previous case, if A is false, the values of B, C and D

cannot influence the value of the entire condition, which will be false. However, if A

becomes true, the reevaluation of the rest of the condition must be triggered by the PEP.

CHAPTER 6: The Meta-Policy Information Base 60

6.3.1.4. Actions

When the condition of a meta-policy evaluates tme, if the meta-policy is not reported to

be conflicting with another one with higher prionty, the meta-policy is activated. The

meta-policy stays active while its condition is met, and no other meta-policy with higher

priority is activated.

When a meta-policy is activated, its actions are executed, installing the appropriate PRIS

into the PIB. The actions of a PIB cannot modify existing PRIs, because this would be

considered as a conflict with the meta-policy or the direct PDP command that installed

these PRIS. However, a meta-policy may update its own PRIs (i.e, the PRIS that the meta-

policy has installed into the PB), if the values of these PRIs are pararnetnc, and the

vdues of these parameters change.

When a meta-poiicy is deactivated, the PRIs installed by this meta-policy are removed

from the PIB. Since neither any other meta-policy nor the PDP couId modify these PRIs

while the meta-policy was active, the removal of the PRIs leaves the P B consistent.

When a meta-policy is deactivated, any meta-policies suppressed by this one may be

activated (if their condition is still met and they are not suppressed by any other meta-

policy).

6.3.1.5. Confiicts

Normally, al1 conflicting meta-policies are reported by the PDP in the appropriate class

of the PIB (metaPolicyPriority class). When the condition of a meta-policy evaluates

tme, the PEP has to check the PRIs of this class in order to ensure that no meta-policy

with higher priority is active. If no higher-prionty meta-policy exists, the meta-policy is

activated, else it remains inactive and it is denoted at the metaPolicyStatus class as

suppressed. Before the meta-policy is activated, the PEP must deactivate any other meta-

C W T E R 6: The Meta-Policy Infomarion Base 61

policies that conflict with this one and have lower prionty (and declare them as

suppressed, in the metaPolicyStatus class).

Note that the priorities declared by the PDP are relative priorities (in the form: meta-

policy A has higher priorïty than meta-policy B). Also, note that if a meta-policy A has

higher prïority than B, and B has higher than C, then A does not necessariiy conflict with

C, hence both A and C may be active (e-g., as in the example presented in Chapter 4).

However, if A and C conflict with each other, A can only have higher pnority than C

(otherwise, we are lead into a deadlock situation, where the conflict between A, B, C

cannot be resolved).

AIthough al1 conflicting meta-policies should be reported by the PDP, the PEP should

check for conflict both when the meta-policies are installed and executed (since run-time

conflicts may also occur). Besides, meta-policies may conflict with PRIS directly

installed by the PDP (although such situations should dso be prevented at the PDP

level). However, if such an abnormal situation occurs, the PEP should either refuse to

execute the PDP decision that causes this conflict (installation conflicts) and issue the

appropriate solicited faiIure report message, or refuse to execute the meta-poIicy that

causes the conflict (run-time confIicts) and report the event with an unsolicited failure

report message.

6.4. Backwards Compatibility

The proposed PIB does not create any backwards compatibility issues, when PDPs that

support the proposed P B are required to cooperate with PEPs that do not, and vice versa.

If a PEP that does not implement the meta-policy PIB connects to a PDP that supports it,

then in the request message of the former no meta-policy classes will be reported. Hence,

CHAPTER 6: The Meta-Policy lnfomation Base 62
- - -

the PDP is not allowed to send meta-policing data, and it should assume that it must

control the PEP in the traditional way, Le., by directly installing and removing PRIs into

its PlB.

If a PEP that supports the meta-policy PIB connects to a PDP that does not, then the PDP

will not recognize the meta-policy classes, reported by the PEP in the request message. In

this case, as defined by COPS-PR [27], the PDP will not send any configuration data for

these classes, and it will control the PEP just by sending commands that directly install or

remove PRIs to the rest of its Pm. Hence, the PEP wilI receive no meta-policies and ir

will operate as if it did not implement the extra functionality.

Chapter 7.
Conclusions and Future Work

The previous chapters introduced the concept of meta-poIicies, demonstrated their usage

and defined the Meta-PoIicy Information Base. This section presents Our work in

progress, discusses some interesting research issues related to this work, and concludes

this thesis.

7.1. Conclusions

This thesis introduced the concept of COPS-PR meta-policies and proposed, presented

and defined a Policy Information Base (PB) that attempts to push some of the COPS-PR

PDP functionality and intelligence towards the PEPs, by using such meta-policies.

This document discussed the current situation in network management and outiined the

modem trends and techniques. It introduced Policy-Based Networking, COPS, COPS-PR

and PBs, and demonstrated how these work. Based on these, the motivation of Our work

was presented, the concept of meta-policies was introduced, and an exarnple of how the

latter c m enhance the current techniques was demonstrated. The requirements for the

proposed P B were presented and analyzed, and the PIB and the PEP operation were

defined. Finally, our work in progress and our future research goals were outlined.

CNclPTER 7: Concl~rsions and Frltrt re Work 64

7.2. Work in Progress

7.2.1. lmplementation and Testing

The definition of a PIB consists of the definition of the Provisioning Classes (PRCs) and

the definition of the operation of the PEP, Le., how the latter interprets the data stored in

the PB. Nevertheless, it does not require defining the behavior of the PDP, which is

allowed to use the provided functionaiity in any desired fashion. The additional

functionality obviously improves the existing techniques in some aspects, since the Meta-

Policies allow the PEP to operate correctly in cases where a PEP with no meta-policy

support would fail (see exarnple in section 4.5). From this point of view, the work

presented in this thesis is complete.

However, we are currently irnplementing a PEP with rneta-policy capabilities, in order to

test and compare our proposal with PEPs without meta-policies.

As far as impIementation is concerned, we are currently building a PEP that implements

the meta-policy PB. As akeady discussed and as explained later in more detail, since Our

work is strongly related to active networks, we implement a PEP that resides on an active

router. More specifically, for Our experiments, we have at our disposa1 two Norte1

Accelar 1100-B routers (formerly narned Passport 1100-B). These routers can download

and execute code within the Oplet Runtime Environment (ORE) [39]. ORE is an

environment where java classes can be executed. Java classes that allow configuring the

parameters of the routers are provided by the vendor. We are currently implementing a

PEP that implements the proposed P B in this environment.

However, implementing the meta-policy PIB is meaningless, unless another PIE3 exists

on the sarne PEP, which will be controlled by meta-policies. Unfortunately, the PIBs

CHAPTER 7: Concl~tsions and Fz~mre Work 65

proposed in IETF are currently in a very premature stage, and no freely available

implementation or code of any of them exists. Hence, we have also designed a simple

PD3 for the purposes of Our experiments, and we are currently implementing it. This P I .

will be executed within ORE as well, and it is written in Java-

Moreover, COPS-PR is also in a premature stage. No suitable free implementation for

the protocol exists right now. IPHighway and Intel have independently developed two

open-source COPS SDKs [23], [24], which provide the client-side interface for the basic

COPS functionality; Vovida recently released free source that implements the COPS

stack, with COPS-PR support [25]. However, in al1 cases the code is written in C/C++.

Hence, for Our expenments we also encode in Java the classes that implement a

simplified version of COPS-PR. (We have not implemented some COPS messages used

for integrïty, secunty, etc, that do not affect Our work.)

Finally, in order to test and compare the proposed PIB, we will also need a PDP to

control this PIB. Currently, no free PDP irnplementation exists. Intel unofficially daims

to have implemented a PDP that can be purchased, but no official presentation of this

PDP has been done yet. IPHighway has developed a "COPS Proxy" which seems to be

functionally sirnilar to a PDP, although with reduced functionality and intelligence.

However, for our experiments we need a PDP that (i) supports COPS-PR, and (ii) can be

extended to support the proposed PIB. These implementations meet none of these

requirements adequately. Thus, we will probably need to wnte a simple PDP, as well,

that wiIi control the proposed PIB.

After implementing the PIB, the PEP and the PDP, we plan to test the proposed PI33 with

regard to its performance and eficiency, and compare it with the existing techniques

(COPS-PR without meta-policies). Unfortunately, the results of the test are subjective,

and depend to the chosen set of policies. An objective comparison could only be

performed in a real environment, with real policies, PDP and PIBs. However, such an

CHAPTER 7: Conclusions and Fzlture Work 66

option is, for the time being, not possible, since COPS-PR has not yet been extensively

used in real environrnents. Thus, our testing and cornparison wiI1 be carried out with a

synthetic set of policies, and it will mainly concentrate on resource usage at the PEP and

PDP, as well as the network usage. Also, we will demonstrate scenarios where meta-

policies allow the PEP to operate correctly (such as PDP failures). Finally, Our

experiments will test how active networks and directories c m be used to enhance meta-

policies.

7.2.2. Contribution to IETF

The contribution of this work is the definition of the meta-policy P B . We have already

published early versions of this work and we are currently submitting new ones. lii

particular, we are in the process of subrnitting an Internet-Draft at IETF. Any publication

at lETF is reviewed and criticized by any interested individual o r party of the Intemet

comrnunity, and either evoIves to an Internet-Standard, or it is rejected. By exposing Our

work directly to IETF, we aIIow the Internet Community to criticize it and adopt al1 or

parts of it. Also, the feedback and cornrnents that will be acquired through this process

will allow us to estimate the interest of other acadernic and industrial research groups in

it, and will affect our future work. The proposed PIB, as presented in Appendix A, will

soon be submitted and published under the RAP working group of IETF.

7.3. Future Research

7.3.1. Meta-Policy Hierarchies

The goai of this thesis was to enhance the functionality of the PEPs with meta-policies

that manipulate the PIB data, according to the high-level network policies. However, the

CHAPTER 7: ConcZzrsions and Future Work 67

meta-policies themselves are also PIB data, hence meta-policies that control meta-

policies can also exist. As a matter of fact, the PIB defined here allows an unlirnited

number of IeveIs of meta-policies to be stored in the PIB and control its content.

By constructing hierarchies of meta-policies, more functionality and intelligence can be

pushed towards the PEP. For instance, 2nd level meta-policies can be used to group 1"

level meta-policies f e r different generic network States: Different meta-policies can be

applicable when the network operates normally, when it is under maintenance, when it is

under attack or when it is congested. A second example is the use of rneta-poticies that

self-generate a set of similar meta-policies that control the PEP: A meta-policy could

create meta-policies, each of which gants to a user of a group specific pnvileges.

While allowing hierarchies of meta-policies sigrtificantly increases the intelligence of the

PEP, this functionality was not one of the goals that drove the design of the proposed

PlB. Orie of our future goals is to examine how this affects this work. More specifically,

we are interested in examining what types of meta-policies rnight be beneficial, and

whether these can b e implemented in the proposed PIB. We know already that the

proposed PIE3 can sugport some hierarchies of meta-policies. However, we need to

examine whether t h e provided functionality is sufficient and whether it can be

irnplemented to efficiently support any desired type of meta-policy hierarchies. If not, we

wouId like to investigate the required modifications.

7.3.2. Meta-Policies and Active Networks

As stated several times throughout this document, Our work was inspired by Active

Networks. Although the proposed PIB does not explicitly demand an active (or

programmable) enviroment, the whoIe concept of downloading intelligence into the

network devices and distributing functionality into them assumes that the network

elements have the abiEity and the resources to perform advanced operations and tasks.

CHAPTER 7: Conclusions and Futzcre W o rk 68

LRgacy devices could implement this P B ; nevertheless, such devices usually have

limited resources and capabilities, hence only a small number of complex meta-policies

could be efkiently handled by them. On the other hand, an active device has the

capabilities and the resources to perform complex computations and tasks, and thus, to

process and enforce meta-policies efficiently.

However, the most important property of Active Networks, as far as Our work is

concerned, is the ability to extend the defined P I , . First, the XML DTDs that a device

supports can be easily enhanced to support newer DTDs, by downloading modules that

process these DTDs and by declaring these DTDs in the xmDTD PRC. Second, and

most important, the parameter evaluation methods can be extended, as well. This is a

very important property, since the extension of the evaluation methods allows the PEP to

monitor and enforce more meta-policies by itself, independently of the PDP. The

extension of the evaluation methods can be performed centrally (to ensure automation

and consistency), according to the network topology and services. For instance, active

code that quenes a directory or an authefitication semer can be made available and be

used by some PEPs in order to provide a value to a PIB parameter. Supposing that the

PDP is aware of the existence of a library with such code, as well as of which devices

c m download and use this code, the PDP can command the PEPs of these devices to use

this code to cornpute some values of the meta-policy parameters. Notice that the code in

this library rnay either be provided by the vendors and be network-independent, or be

written or custornized by the administrators and be network-specific. The only

requirements are that the PEPs will be able to be directed to downIoad this code, and the

PDP will be aware of how this code can be used.

The previous discussion makes it obvious that Active Networks significantiy affect our

work. As future work, we would like to investigate how such Active Network properties

c m be best exploited,

CHAPTER 7: Conclusions and Future Work 69

7.3.3. Meta-Policies and Directories

Another inteïesting research topic is how Our work can be enhanced by using Directories.

As mentioned already, we envision PEPs that can downioad modules or code in order to

extend their abilities. Such modules and code couId be stored in a Directory Server.

Besides, some types of policing information that changes infrequently, used in order to

compte PR3 parameters, could be stored in Directories as well, and be fetched directly

by the PEPs. We intend to investigate in more detail how Directories can influence our

work.

7.3.4. Moving the PDPs to the Network Elements

Another interesting observation is that, by using meta-policies, a great degree of

functionality c m be pushed towards the PEP. Actually, the main difference between a

PDP and a PIB loaded with meta-policies is that the latter cannot translate the high-level

policies into low-Ievel PD3 cornmands (meta-policies or nomai policies). However,

future devices with more resources and capabilities could host an extra module that

irnplements this functionality. In this case, the entire PDP coüld be hosted on the network

element. This topic is currently considered very prornising, and it is also included in Our

future research goals.

References*

A. Westerinen, J. Schnizlein,J. Strassner, Mark Scherling,Bob Quinn,Jay Perry,

Shaî Herzog, An-Ni Huynh, Mark Carlson, Steve Waldbusser;

"Terminology" ;

IETF. bzternet-Drufi, drap-ietf-policy-temzinology-02. txt, Novem ber 2000

(http://www. ie$ org/intemet-drafrs/drafr-ie@-policy-terminology-03.txt)

Heinz-Gerd Hegerïng, Sebastian Abeck and Bernhard Neurnair;

"Rntegrated Management of Networked Systems";

Morgan Kazifinan, 1999.

'LFCAPS Overview";

http://www,fore. com/prodzccts/fi/fi f caps-wp html [Seprember 30001

R. Boutaba, Andreas Polyrakis;

'Trojecting FCAPS to Active Networks";

accepted at IEEE EntNet 200 1; Atlanta, GA, USA; 4-6 Jzute, 2001

"Internet Engineering Task Force";

hnp://www. ietf: org/

"SNMP Version 3 (snmpv3)";

http://www. ie~org/html.cCzarters/snmpv3-charter.hmzl

David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.

Wetherall, and Gary J. Minden;

* Al1 URLs were valid on the 15& of April, 2001, unless otherwise stated. Al1 IETF Intemet-Drafts and

RFCs were available at IETF web site [SI on the 15" of April, 2001, unless otherwise stated.

References 71

"A Suwey of Active Network Research";

IEEE Communications Magazine, Vol. 35, No. 1, January 1997, pp.80-86

Konstantinos Psounis;

"Active Networks: Applications, Security, Safety, and Architectures";

IEEE Communications Szrrveys, Vol. 2, No. 1, First Qrrarter 1999

(ht tp: / / rnv . cornsoc. org/pz~b~/s~rrveys/1q99issue/psounis. html)

Jonathan M. Smith, Kenneth L. Calvert, Sandra L. Murphy, Hifarie K- O m a n ,

Larry L- Peterson;

"Activating networks: a progress reporty';

IEEE Compzcter, Vol. 32, No 4, Apnl 1999, pp.32-41

[IO]. D, L, Tennenhouse and D, J. Wetherall;

"Towards an Active Network Architecturey';

Compzrter Comrnunicarion Review, Vol. 26, Na. 2, A p i l 1996.

[Il]. c'Directory-Enabled Networksy';

3COM, White paper, J d y 1998.

[12]. cTolicy-Powered Networking and the Role of Directories";

3COM, White paper, Jrtly 1998.

[13]. WMTF Home pagey';

http://www.dm$ org/

[14]. Susan 1. Shepard;

'Tolicy-based networks: hype and hopec';

lT Professional, Vol. 2, No. 1, January-Febntary 2000, pp. 12 -16

[15]. c'Introduction to Policy-based Networking and Quality of Serviceyy;

IPHighwq, White paper, h n u a r y 2000

[ld]. R. Boutaba, K. El-Guemhioui, P. Dini;

"An Outlook on Intranet Management";

References 72

IEEE Communications Magazine, Special issue on Intranet Services and

Commzmication Management, October 1997, pp.92-97

[17]. R, Boutaba, S. Znaty,

"An Architectural Approach for Integrated Networks and Systems

Management";

ACM-SIGCOM Compziter Cornniunication Review, Vol. 25, No 5, October 1995,

pp- 13-39

[BI. M. Sloman;

"Policy Driven Management For Distributed Systems" ;

Plenum Press Jozlnzal of Nework and Systems Management, Vol. 2. No. 4,

December 1994, pp. 333-360

[19]- 6Toli~y Standards and IETF Terminology";

ZPHighway, White paper, January 2000.

[20]. 'Tolicy Based Networking Products, Design and Architecture";

IPHighway, White paper, Janzrary 2000.

[21-J. D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry;

"The COPS (Common Open Policy Service) Protocol";

IETF, RFC 2748, Janzrary 2000;

(http://w w W . ie$ org/ .c / fc2 748. txt)

[Z]. "Resource Allocation Protocol (rap)";

http://www. ie~org~zml.charters/mp-char~er. htrnl

[23]. ''Intel COPS client Software DeveIopment Kit";

http://~~ww.intel.com/ial/cops/

1241. 9PHighway - COPS open source";

http://www. iphighway. condopensourcel . htm

[25]. "COPS Download Page";

http://www.vovida.org/protocoZs/downloads/cops/

References 73

[26]. S. Herzog, Ed., J. Boyle, R. Cohen, D. Durham, R. Rajan, A. Sastry;

" COPS usage for RSVP";

IETF, W C 2749, Janzrary 2000

(h ttp://'. iet$ O rg/ic/rc2 749. txt)

[27]. K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F.

Reichmeyer, RI Yavatkar, A. Smith;

"COPS Usage for Poiicy Provisioning";

IETF, RFC 3084, March 2001

(h ttp://www. ietf: O rg/rfc/rjic3084. txt)

1281. M. Fine, K. McCloghrie, J. Seligson, K. Chan, S . Hahn, A. Smith, F. Reichrneyer;

'Wifferentiated Services Quality of Service Policy Information Base";

IETF, Intemet-Dm, drafr-ietf-differv-pib-03.txt, March 2001

(hnp://www. ietf: org/intemet-drafts/drafr-ietf-diffserv-pib-03.t~xt)

[29]. DI Rawlins, A. Kulkarni, K. Ho Chan, D. Dutt,

'Tramework of COPS-PR Policy Information Base for Accounting Usage";

IETF, in temet-Drufi, drap-ietf-rap-acct-fr-pib-01 . txt, h Z y 2 000

(http://~~w.ietf:org/intemet-drafts/draft-ietf-rap-acct-fr-pib-OI. t-xt)

[30]. J. Ottensmeyer, M. Bokaemper, K. Roeber;

"A Filtering Policy Information Base (PIB) for Edge Router Filtering Services

and Provisioning via COPS-PR";

IETF, Internet-Dr& draft-oity-cops-p r--lte r-pib-OO. txt, November 2000

(http://www. ietf: o rg/inremet-dra$s/druft-otty -cops-pr-filte r-pib-00. txt)

1311- M. Li, D. Arneson, A. Doria, J. Jason, C. Wang;

' WSec Policy Information Base";

IETF, Intemet-Draft, drap-ietf-@sp-ipsecpib-03.txt, March 2001

(http://www. ie~org/intemet-dra$s/dra~-ietf-ipsp-ipsecpib-02.txt)

[32]. T. Anderson, D. Putzolu, A. Doria, J. Yong, J. Sydir, B. Srinivasan;

"Multiple Virfual Router Partitioning Policy Information Base";

Re feren ces 74

Internet Drafi drap-amderson-rnvr-pib-OO. txt, hrly 2000

(hnp://~ww.ie$org/intemet-drafis/dra~-anderson-mvr-pib-OO.t) [discontinned]

[33]. T. Anderson, A. Doria, J. Yong, S. Crosby;

(1P Forwarding PIB";

IETF, Internet-Drap, draft-khosravi-ip-fid-pib-00-txt, Jcrly 2000

(http://www. ietf: org/internet-drafts/drafr-khosravi-ip-fivd-pib-OO. txt) [discon tinued]

[34]. Harsha Hegde, Brad S tone:

"Load Balancing PoLicy Information Base";

IETF, Intemet-Drafr. drap-hegde-load-balancing-pib-00.m, Febnrary ZOO1

(hnp://www.-ie$org/i~t:temet-drafts/ drap-hegde-load-baiancing-pib-00.m)

[35]. M. Fine, K. McCloghrie, J. Seligson, K. Chan; S. Hahn, R. Sahita, A. Smith, F.

Reichmeyer;

"Framework Policy Information Base",

IETF, Internet-Drap, draft-ietf-rap-framei.vorkpib-04.txt, Novernber 2000

(hrtp://www. ietf: org/intemet-drufis/drafr-ietf-rap-~ameworkpib-04.t,ut)

K. McCloghrie, M. Fine, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, F.

Reichmeyer;

"Structure of Poücy Provisioning Information (SPPI) " ;

IETF, Intemet-Drap, drafr-iev-rap-framewor@ib-06.txt, Febnrary 2001

{http://ww W. ietf org/intemet-draps/ drafr-ietf-rap-parne workpib-06.t~)

66Specification of Basic Encoding Rules for Abstract Syntax Notation One

(ASN.1)";

Information processing systems - Open Systems Interconnection, International

O rganization for Standardization, International Standard 8835, Decem ber, 1987

K. McCloghrie, D. Perkins, J. Schoenwaelder, J. Case, M. Rose and S. Waldbusser;

"Structure of Management Information Version 2 (SMIv2)";

IETF, RFC 2578, ApriL 1999

(http ://www . i eg org/$c/$c2578. ixî)

References 75

[39]. CCOplet Runtime Environment"

http://www. openetlab.org/ore, h m

[40]. R. Boutaba, Andreas Polyrakis;

CLTo~ards Extensible Policy Enforcement Points";

IEEE Workshop on Policies for Distribclted Systems and Networksy Bristol, U.K.,

29-31 January 2001, pp. 247-261

[4 LI. R. Boutaba, Andreas Polyrakis;

"COPS-PR with Meta-Policy Support";

lETF, Interner-DraJT, drap-bouraba-copspmtp-OO.t,rt, A p d 2001

(http://www. ie$org/nternet-drafr~fdrafr-boutuba-copspmp-OO.txt)

Appendices

Appendices 77

Appendix A. The Meta-Policy PIB

INTERNET-DRAE'T Andreas Polyrakis
Resource Allocation Working Group (RAP) University of Toronto
Intended Category: Standards Track Raouf Boutaba
Expires : October, 2001 University of Waterloo

The Meta-Policy Information Base (M-PIB)

Status of this Memo

This document is an Internet-Draft and is in full conformance with
al1 provisions of Section 10 of RFC2026. Internet-Drafts are
working documents of the Internet Engineering Task Force (IETF) , its
areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any the, It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress".

The list of current Intemet-Drafts can be accessed at
http://www.ietf.org/iet£/iid-abstracts-txt

The lise of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadowhttp://www.ietf.org/shadow,html,h~~

R. Boutaba, A. Polyrakis Internet-Draf t, expires Oct ,2001 [page 11

Appendices 78

The Meta-Policy Information Base April 2001

Abs trac t

This document introduces the concept of COPS-PR meta-policies, and
defines the Meta-Policy Information Base,

The meta-policy PIB does not introduce a new policing area- On the
contrary, it defines some provisioning classes that can be used by
a l 1 other PIBs, in order to add meta-policing functionality into
them, The rneta-policy PIB, like every PIB, stores policing
information that controls some policing mechanisms of the device,
However, unlike other PIBs, the policing mechanisrn controlled by the
meta-policy PRCs is the PIB itself- The data maintained by these
PRCs implement policies that control other policies, this is why
they are called meta-policies.

Meta-policies is an attempt to push intelligence towards the COPS-PR
PEPs and overcome the rigidity of their PIBs- Through meta-policies,
more policing information and functionality can be pushed towards
the PEP, less interaction with the PDP is necessary, and less
necwork and PDP resources are consumed. The PEP is more independent
and it can bear longer PDP absences,

Conventions used in this document

The key words "MIJSTn, "MIJST NOT", "REQUIRED", "SHALL", "SEILL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDEDn, "MAY", and "OPTIONAL" in
this document are to be interpreted as described in [WC-21191-

This document follows the terminology of [P-TERMI. However, the most
cornmonly used te= axe cited again here:

PDP Policy Decision Point. See [RAP-FRMI-
PEP Policy Enforcement Point, See [RAP-FRM] .
PRC Provisioning Class - See [COPS-PR] .
PR1 Provisioning Instance- See CCOPS-PR].
PIB Policy Information Base. See [COPS-PR].
PRID Provisioning Instance Identifier. Uniquely identifies an

instance of a PKC. See [COPS-PR] ,

R-Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page 21

Appendices 80

The Meta-Policy Information Base April 2001.

1. Introduction

I 1-1, PIB Limitations
PIBs are rigid structures. The PIB of a device follows specific
standards and can o ~ l y store specif ic types of policies - Several
policies chat could be processed entirely at the PEP level may need
to be partially processed by the PDP, For example, a PEP that
implements a small PIB that perf orms f iltering according to the
IP/Mask/Port of the source/destination of the packets cannot
implernent the policy "between 5pm and 8pm do not allow traffic from
IP x", even if a clock exists on the device. In this case, the PDP
partially evaluates the conditions of the policy and installs,
according to the the, the appropriate filter in the PIB of the PEP -
Obviously, it would be more efficient if the involvement of the PDP
could be avoided and the entire policy could be processed entirely
at the PEP Level,

A second observation is that the PDP may need to send the same or
similar commands to the PDP, when the same network events occur. For
example, suppose that there is a policy: "give to administrators
high priority". If an administrator logs ori at a workstation and
after a while to another one, the PDP will need to send similar
commands to the PEP. Or, each the congestion is detected in the
network, the PDP may need to modify the contents of the PIB to
reflect similar policies,

The latter limitation has been identified and has been partially
tackled in the framework PIB [FR-PIB]: The section "Multiple PIB
instances" describes how the PDP can activate, with a simple
command, different instances of the same PIB that relate to
different network states.

1-2. The concept of ~eta-Poiicies

Inspired by the previous, this document describes how the same can
be done in smaller portions of the PIB, i-e., how the PDP can send
in advance sets of CO-wnds that modify the PIB, which will be
activated with simple PDP commands. Moreover, this document
describes how the PDP can direct the PEP how to perforrn the
activation of these sets by itself, independently of the PDP, if
this is considered efficient or desirable.

This additional functionality is implemented through some extra PRCs
that supplement and control the PIB of the device. Data on these
PRCs conrrol the data (policies) of the entire PIB; this is why the
policies implemented in these classes are called "meta-policiesm.

[Meta-policies are simple rules that monitor some events, and
accordîng to their values install or remove PRIS £rom the PIB.
Notice that, according to the previous, meta-policies have, in
principle, the same functionality with the PDP that conrrols the

1 R-Boutaba, A. Polyrakis Internet-Draf t, expires Oct. 2001 Cpase 4 1

Appendices 81

The Meta-Policy Information Base April 20001

device, Indeed, meta-policies atternpt to push intelligence and E D P
functionality towards the PEP. However, this does not oppose to the
requirement that the PEP must always obey to the PDP, because rneta-
policies are rules produced by the PDP, hence the PDP ultimatelys.
controls the exact behavior of the PEP.

As mentioned before, meta-policies rnonitor some events and perf oonn
some actions, However, this does not imply that al1 monitoring hnas
to be performed by the PEP. The PDP still maintains the overall
picture of the network and informs the PEP of global events.
However, several events can be monitored by the PEP itself. Such
events may be local events that derive £rom the MIB (or even the
PIB) of the device- Alternatively, the PEP may get such informatzion
£rom a third network service or server, e-g., clock service,
authentication service, etc. (notice that this does not reduce t~he
scalability of the model: again, N PEPs connect to 1 semer) -
Depending on the values of the network events, meta-policies modlify
the PIB of the device. Each meta-policy is associated with a
combination of events; when these events occur, the meta-policy is
activated and some PRIs are installed into the PIB. These PRIs aLre
uninstalled when these events do no longer apply. The actions thLat a
meta-policy takes are predetedned by the PDP, In order to do seo,
the PDP rnust associate with these actions the events that ref1ec.t
such network state that will ensure that these actions will not Tbe
conflicting with any other installed actions, or that the polici+es
formed in the PIB are invalid or incorrect. Also, since two valied
meta-policies rnay be conflicting under certain circumstances, thre
PDP must provide some relative priority order berween such meta-
policies, which will allow the PEP to take the correct decision.

Notice that meta-policies do not prohibit the PDP from controllirmg
the entire PIB of the device. On the contra,y, the PDP has two woays
to modify the PIB: Either direttly, by installing or removing PRIS,
or indirectly, by installing meta-policies that install or removee
these PRIs, when appropriate- Of course, meta-policies intxoduce
extra complexity at the PDP, since it also has to ensure that P R 3 s
installed directly cannot conflict with decisions taken by any
installed meta-policy.

1.3. Why Meta-Policies?

Meta-policies push some of the PDP functionality towards the PEP,
This approach has several advantages :

1. The PDP is relieved from some of the policy processing. Since the
global network policies seldorn change, rneta-policies are usualnly
generated once and sent to the PEP- The PDP does not have to re-
generate similar COPS-PR commands each the that the network
conditions change.

2, Less network resources are consumed- Instead of sending whole
policies, the PDP can activate the pre-installed meta-policies by

R-Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page SI

Appendices 82

The Meta-Policy Information Base April 2001

communicating network events. Also, the PEPs can be programmed to
monitor local events, which means that these events do not need to
be com.unicated to the PDP, and then back to the PEP.

3 , The PEPs become more independent, since they are able to take more
decisions, according to various network events - Thus, they can
operate correctly during larger PDP absences, and they are less
affected by situations such as congestion, high network delays,
packer loss and PDP overload.

4. The fact that the behavior of the PEPs cm be controlled with
smaller messages (network events instead of whole policies) makes
the model more robust in erroneous network situations, such as
congestion and high packet loss.

In general, meta-policies contribute towards the scalability,
distribution, robustness and fault-tolerance of the COPS-PR model.

Note that meta-policies allow the PDP to push towards the PEP as
little intelligence as a few simple meta-policies or as much as
integrating almost the entire PDP functionality into it -

2. Formal Definition

2.1, Meta-Policies

We define a mera-policy as a rule of the form:

if (condition) then {actions)

where "conditionw is a logical expression,
e-g., " (C>80%) and (D=true) ",
and "actions" is a set of commands that install PRIs into the PIE.

Since the actions encode a specific policy, this rule is a rule on
how policies are enforced; this is why it is called "meta-policyM.

Each meta-policy is generated for a specific PEP, according to its
capabilities, limitations and the device on which it resides. The
PEP evaluates the condition of each meta-policy, and when it
evaluates true, it enforces the actions. When it becornes false, the
PRIs are uninstalled. The key idea in meta-policies is that the PEP
can store and process these meta-policies without k=owing their
exact semantics: The condition is treated as a logical expression;
the actions, pre-generated by the PDP, just denote PRIs that must be
installed, and this can be done by the PEP without knowing the
policy they really irnplement. In this way, the PEP can process any
rneta-policy, independently of its cornplexity and its meaning.

Both the condition and the actions may conts-in parameters (such as
"Congestionw or "Tirne"); the values for these parameters are either

R-Boutaba, A-~olyrakis Internet-Draft, expires Oct -2001 [page 61

Appendices 83

The Meta-Policy Information Base April 2001

sent by the PDP or evaluated by the PEP, according to directions
provided by the former.

2 .2 . Parameters

The parameters are used in meta-policy conditions in order to
determine when a meta-policy must be activated. Moreover, they are
used by meta-policy actions in order to dynamically bind tàe network
state within policies. For example, the meta-policy 'if
(AüminLogged) then {give high priorîty to AdminIP)", contains the
parameters AdminLogged and AdminIP ,

When instaïïing a parameter, the PDP muSt specify an evaluation
method for this parameter. For instance, the PEP can be directed to
get a value for a parameter £rom the MIB or the PIB of the device.
Alternatively, the PDP could provide the value for this parameter.
However, other mechods are also possible, depending on the
capabilities of the device, such as to download and execute a
script, use mobile agents, or get the desired information £rom some
server or service.

Representation of Meta-Policies in the P I B

Each meta-policy is comprised of two parts: The "condition" and the
"actions". The "condition" is a logical expression that may be
divided into simpler conditions. The "actionsn is a group of PIB
commands that install or remove PRIS, A rneta-policy MIJST always be
associated with a condition, and it is expected to be associated
with one or more actions (meta-policies without actions should
normally occur only as the result of temporal deactivation of its
actions) .

Since meta-policies may be conflicting, the relative priority
between potentially conflicting meta-policies MUST be declared in
the P I B -

3.2, Conditions

The "condition" of a meta-policy is a logical expression that
determines when the meta-policy must be activated. Each meta-policy
muse contain exactly one condition. The condition may consist other
simpler conditions; and these conditions may shilarly be comprised
of even simpler conditions, etc- In this way, the condition is
eventually decomposed in primitives that are logical expressions
(i. e., they evaluate true or false) , but cannot be further
decomposed (i . e . , the expression (X > Y) -

R,Boutaba, A. Polyrakis Internet-Draf t, expires Oct -2001 [page 71

Appendices 84

The Meta-Policy Information Base April 2001

This document dis tinguishes two types of such primitives : Booleans
and generic logical expressions- Booleans are a subset of the
generic expressions, but due to their simplicity and commonality,
they are treated separately. Such primitives are evaluated according
to the value ef a Boolean paraïneter. For instance, the condition
(X>Y) && (!Congestion) && (WorkTime) is decomposed into three
prinütives: "X>Ym, "Congestion" and "WorkTimem. From these three
primitives, only the two are Booleans, Booleans MTJST be supported by
al1 meta-policy PIBS .

Generic expressions contain al1 the other logical expressions that
cannot be decamposed into simpler primitives, Examples of such
primitives are "X>Yn, 'IP matches X-Y.Z .Wm or "8: 00am c the <
5:OOpml - Each PEP can only support specific types of such
expressions (e .g., arithntetic) , which are reported along with the
other PEP capabilities to the PDP. The PDP can only sent to the PEP
expressions that are supported by the latter.

In order to ericode and comunicate such generic conditions, XML is
used, The PEP supports some XML Document Type ~efinitions (DTDs),
which describe the semantics of X M L tags that can be used to
described such an expression. For instance, a simple DTD that
defines XML tags for encoding arithmetic expressions is presented in
Appendix A-. Fhe PDP encodes the condition (if this is feasible)
according to one of these DTDs, and sends it to the PEP, notifying
it which DTD 9 t chose. The PEP MUST be able to interpret any kind of
expressions emcoded according to the DTDs that it supports (with the
exception of some limitations like the size of the X M L document,
etc, that it reports to the PDP in the REQ message) . In this way,
cornplex expressions can be communicated £rom the PDP to the PEP and
be evaluated by the latter. Notice that each atom conditions should
be parametric (it does not make sense to use constant conditions),
the DTDs MUST provide a way to reference to the parameters that are
installed in the PEP, through their identifiers.

For example, suppose that the PDP needs to send to the PEP the
expression A "A+B>7", The PEP has reported that it supports the DTD
of Appendix A- In this case, the expression will be sent as:

(Parameters "A" and "B" are mapped to the Parameter IDs 1 and 2,
respectively)

R-Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page 81

- - -

* Appendix A of this specification, not of the entire document

Appendices 85

The Meta-Policy Information Base April 2001

Note that the XML-encoded expression does not describe how the
parameters are evaluated. It only references the parameters that are
used in order to evaluate this expression.

3 - 3 - Actions

The Actions of a meta-policy is a group of commands that install
PRIS into the P I B - Each action MUST specify a target PRID that
specifies a single PRI, and the value thar will be installed into
it. This value may be either a BER-encoded value, sent by the PDP,
or the value of a parameter.

3 . 4 . Parameters

Two standard types of parameters are defined in this document. The
first type is parameters, the values of which are sent by the PDP.
The second one is parameters that are evaluated by the MIB or the
PIB of the PEP. However, the evaluation methods of the parameters
can be extended (this is described later in this document). For
instance, the vendors of a device with open node architecture
(programmable/active device) may define a way through which scripts
or code can be downloaded and executed in order to evaluate a
parameter,

4- Structure of the M-PIB

The Meta-Policy PIB consists of five groups.

4.1. The Capabilities Group

This group contains a single table, the dDTDTable- This contains
the X M L DTDs thar the PEP supports, for encoding expressions. Each
row consists of an identifier and the DTD URL. The rows of this
table are reported to the PDP in the REQ message.

4 - 2 . The Meta-Policy Group

This group contains three tables: the metaPolicyTable, the
metaPolicyStatusTable and the metaPolicyPriorityTable.

The metaPolicyTable is the table where meta-policies are
constructed. Each row represents exactly one meta-policy. The meta-
policy comprises an identifier, a name, a condition and an action
tag. The condition is a reference to the conditionTable that we will
describe later in this document, which encodes conditions. The
action tag identifies a group of actions from the actionTable that
must be executed when the meta-policy is activated.

R-Boutaba, A-Polyrakis Internet-Draft, expires 0ct-2001 [page 91

The Meta-Policy ~nformationBase April 2001

The metaPolicyStatusTable is a table that AUGMENTS the previous
table (this means that there is a 1-1 correspondence between the
rows of these tables). Each row of this table reports whether the
corresponding meta-policy is active, and whether it suppresses or it
is suppressed by anoter meta-policy with higher priority. This table
is used to report to the PDP the meta-policy status- This class,
unlike the metaPolicy class, is only used to report the status of
the meta-policies to the PDP and it cannot be modified by it.

Finally, the metaPolicyPriorityTable is used by the PDP in order to
report to the PEP conflicting meta-policies, and direct it how to
resolve the conflict. Each row identifies two meta-policies, and
defines which one has the higher priority. Rows with two active
meta-policies MüST NOT exis t in this table.

I 4.3. The Condition Group

This group contains four tables : the condi tionTable , the
complexConditionTable, the booleanConditionTable and the
generalConditionTable,

The conditionTable is the base table of this group. Each row
represents a logical expression, It consists of an identifier and an
attribute that defines whether the condition should be logically
reversed (i ,e., whether its negation must be computed, instead) .
Rows of this table MUST always be associated with rows of an other
table that extends the base one-

Some (but not all) of the rows of this table are used in order to
represent conditions of meta-policy. Other rows, though, can be used
to break down a complex condition to simpler ones.

In order to achieve that, the complexConditionTable is used. This
table EXTENDS the base conditionTable. Each row consists of two
references to the conditionTable, and an operator, The references
reference two other logical conditions, and the operator defines a
logical operation between these two conditions. In this way, the row
in this table f o m a more complex condition. Obviously, the PDP
must not install rows that reference themselves, either explicitly
or implicitly-

The booleanConditionTable is a table that also extends the base
table. Each row contains a reference to a parameter, which must be
of type "TrueVaiueW. The value of the condition is evzluated
according to the value of this parameter.

Finally, the generalConditionTable is used to allow conditions to be
evaluated through more complex expressions. Each row consists of a
reference to the dDTDtable and a string, which encodes in X M L an
expression. The reference to the xmlDTDtable defines the XML DTD
that must be used in order to interpret this expression. The

I R-Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page 101

The Meta-Policy Information Base April 2001

expression encoded MUST be a logical expression, i-e-, it MUST
evaluate either true or false.

4 - 4 , The Actions Group

This group consists of three tables: the actionTable, the
actionvalueTable and the actionParametricValueTable,

The actionTable is the base table for stsoring meta-policy actions-
Each row contains a tag-reference attribute that groups the actions
of a single meta-policy, Each row specifies the PRID of the PR1 to
be installed.

The value of the PR1 is determined either in the actionvalueTable or
the actionParametricValueTable. Both tables EXTEND the base one and
provide the value chat must be installed for the specific target
PRID- The former provides a BER-encoded value, while the latter
specifies a parameter, £rom where the value is evaluated.

4 . 5 . The Parameter Group

This group contains three tables: the parameterTable, the
mibPibParameterTable and the PDPParameterTable.

The parameterTable is the base table for representing conditions-
Each row constist of an identifier, a name and an attribute that
denotes the type of the parameter. Each row in this table must be
associated with a row of a table that EXTENDS this one.

The mibPibParameterTable is such a table. It defines a MIB or PIB
identifier from where the parameter gets its value. Of course, this
identifier must point to an existing variable. Each row also defines
the frequency that this value will be updated.

The pdpParameterTable also extends the base parameterTable, Each row
of this table contains a single attribute that encodes, in BER, a
single value- The PDP sends the values for this row.

~efinition of the Meta-Policy PIB

META-POLICY-PIB PIB-DEFINITIONS ::= BEGIN

IMPORTS
Unsigned3 2, timeticks ,
MODULE-IDENTITY, OBJECT-TYPE,
InstanceId, ReferenceId

FROM COPS-PR-SPPI
TEXTUAL-CONVENTION

R-Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page 111

Appendices 88

The Meta-Policy Information Base April 2001

FROM SNMPV2-TC;

metaPolicyPib MODULE-IDENTITY
SUBJECT-CATEGORY { a11
LAST-UPDATED "200104010000"
ORGANIZATION " IETF "
CONTACT-=O " Andreas Polyrakis

Dept- of Computer Science,
University of Toronto,
10 King's Coilege Road,
Toronto, Ontario, MSS 3G4, Canada
e-mail : apolyr@cs . toronto . edu
Phone: t+l (416) 978-4837
Fax: +tl (416) 978 1931

Raouf Boutaba
Dept. of Computer Science,
University of Waterloo,
200 ~niversity Avenue West,
Waterloo, Orrtario N2L 3G1, Canada
e-mail: rboutabaBbbcr.uwaterloo,ca
Phone: +cl 1519) 888 4567 ext.4820
Fax: ++1 (519) 885 1208"

DESCRIPTION
"The meta-policy P I B module. It contains the classes
that are necessary for the provisioning of meta-policy
related information, This module is applicable,
but not rnandatory, to al1 subject-categoriesn

::= { tbd)
-- The root OID for PRCs in the Meta-Policy PIB

--- Textual Conventions

BERValue : : = TEXTUAL-CONVENTION

STATUS current
DESCRIPTION

"A sequence of octets thar encodes a value using BER-
The suppoted BER types are:
Type -------------------- I
INTEGER

I

BIT STRING
I

OCTET STRING
I

NULL
I
I

OBJECT IDENTIFIER 1
IP ADDRESS 1

By using this type, the PEP can store values f o r different
cypes

of parameters in the same class (PRC) - "
II

R-Boutaba, A-Polyrakis ~nternet-Draft, expires Oct.2001 [page 121

Appendices 89

The ~eta-Policy Information Base April 2001

SYNTAX OCTET STRING (SIZE (0,-16))

XMLString : : = TEXTUAL-CONVENTION
STATUS c m e n t
DESCRIPTION

"A string that contains a logical expression encoded using
X M L -

The semantics of the XML tags are defined in special DTDs,
which

the PEP has denoted that it supports to the PDP. "
SYNTAX OCTET STRING (SIZE (0--1024))

--- End of Textual Conventions

-- Meta-Policy Capabilities Group
rnetaPolicyCapabilitiesC1asses

OBJECT IDENTIFIER ::= { metaPolicyPib 1 1

--- Meta-Policy Capabilities Table

xmlDTDTable OBJECT-TYPE

SYNTAX SEQUENCE OF xmïDTDEntry
PIB-ACCESÇ notify
STATUS current
DESCRIPTION

"Each instance of this class specifies a PRC that
identifies an XML DTD supported by the PEP for encoding
logical expressions. If this class has no instances,
then the PEP supports only expressions that are formed
with boolean predicates and operators, and in this case
the PDP MUST not attempt to install any XML-encoded
expressions in the generalConditionTable."

::= { metaPolicyCapabilitiesCIasses 1 1

dDTDEntry OBJECT-TYPE
SYNTAX MetaPolicyCapabilitiesllritry
STATUS current
DESCRIPTION

" A n instance of the dDTDTable class that determines an
XML DTD that can be used to encode a logical expression"

INDEX { rnetaPolicyPrid 1
: := C metaPolicyTable 1 }

XmïDTDEntry : : =
SEQUENCE {

xmlDTDPrid
dDTDURL

Ins tanceId,
SrunpAdminS tring

~.~outaba, A. Polyrakis ~nternet-~raf t, expires Oct -2001 [page 13 1

Appendices 90

T h e Meta-~olicy Information Base April 2001

dDTDPrid OBJECT-TYPE
SYNTAX InstanceId
STATUS current
DESCRIPTION

"An arbitrary integer that uniquely identifies an
instance of the d D T D class-"

: : = { >nrilDTDEritry 1 }

dDTDURC OBiJECT-TYPE
SYNTAX SnmpAdminString
STATUS current
DESCRIPTION

"The X M L DTD URL- A string that indicates the URL of an
XML DTD that can be used for encoding expressions.
These DTDs can be defined either by standardization
organizations, such as IETF, or be vendor specific,

When the PDP receives a URL that uxriquely identifies
such a DTD, it knows that it may encode expressions
according to this DTD that the PEP will be able to
evaluate."

: := { xinlDTDEIltxy 2 }

-- Base Meta-Policy Group
metaPolicyClasses

OBJECT IDENTIFIER ::= { rnetaPolicyPib 2)

--- Meta-Policy Table

metaPolicyTable OBJECT-TYPE

SYNTAX SEQUENCE OF mecaPoiicyEntry
PIB-ACCESS mSTALL
STATUS current
DESCRIPTION

" E a c h instance of this class specifies a PRC that
represents a meta-policy. Each meta-policy, apart
from a unique identifier and an optional name, it
constists of a condition and a group of actions"

::= { metaPolicyClasses 1 1

metaPolicyEntry OBJECT-TYPE
SYNTAX MetaPolicyEntry
STATUS current
DESCRIPTION

"An instance of the metaPolicy Class that represents

R.Boutaba, A. Polyrakis Internet-Draf t, expires Oct -2001 Cpaae 14 1

Appendices 91

The Meta-Policy Information Base April 2001

a meta-policy."
INDEX E metaPolicyPrid)
T E = { metaPolicyTable 1)

Ins tanceId,
SnmpAdminS trring ,
Re£ erenceId,
TagId

metaPolicyPrid OBJECT-TYPE
SYNTAX Instancerd
STATUS current
DESCRIPTION

" A n arbi trary integer that uniquely idfentif ies an
instance of the metaPolicy class."

::= { metaPo1icyEntx-y 1)

metaPolicyName OBJECT-TYPE
SYNTAX SnmpAüminString
STATUS current
DESCRIPTION

"A display string that represents the Iname of the
meta-policy- It is reccomented that di fferent
meta-policies have dif ferent names. However, similar
meta-policies may have the same name.
Also, an empty string can be used as a name."

::= { metaPolicyEntry 2)

rnetaPolicyCondition OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES contitionTable
STATUS current
DESCRIPTION

"This attribute associates the specifie meta-policy with
a condition in the condition Class. The condition MUST
exist when the meta-policy is installead. The meta-policy
MUST always be assosiated with one condition (which means
that the attribute can never be null/imvalid."

: := (metaPolicyEntry 3)

metaPolicyActions OBJECT-TYPE
SYNTAX TagId
PIB-KEFERENCES actionsTable
STATUS current
DESCRIPTION

"A tag that maps this instance (meta-pmlicy) to a group
of actions in the actions Class. Althourgh the tag should
map to at least one action, there mighat be cases where a
rneta-policy is associated to no actions. However such
cases should be avoided and only be temporal. "

::= { metaPolicyEnlry 4)

I R-Boutaba, A-Polyrakis Internet-Draft, expires C3ct-2001 [page 151

Appendices 92

The Meta-Policy Information Base April 2001

-- Xeta-Policy Status Table
- -
metaPolicyStatusTable OBJECT-TYPE

SYNTAX SEQUENCE OF metaPolicyStatusEntry
PIB-ACCESS REPORT-ONLY
STATUS current
DESCRIPTION

"This class augments the metaPolicy class.
Each instance of this class defines a PRC that is used
in order to report to the PDP the status of the
meta-policies,

Aiso, information form this table can be used as a
parameter to another meta-policy, as an alternative
way to ensure that two priorities cannot be
activated at the same the. "

::= { metaPolicyClasses 2)

metaPolicyStatusEntry OBJECT-TYPE
SYNTAX MetaPolicyStatusEntry
STATUS current
DESCRIPTION

" A n instance of the metaPolicyStatus class that reports
the status of the corresponding mzta-policy in the
metaPolicy class."

AUGMENTS C metaPolicyEntry }
::= { metaPolicyStatusTable 1)

metaPolicyStatusEntry : : =
SEQIJENCE {

metaPolicyActive TruthValue,
metaPolicySuppressed TruthValue

1

metaPolicyActive OBJECT-TYPE
SYNTAX TruthValue
STATUS current
DESCRIPTION

"Tme while the meta-policy is active"
::= { metaPolicyStatusEntry 1 1

metaPolicySuppress OBJECT-TYPE
SYNTAX TruthValue
STATUS current
DESCRIPTION

"If this meta-policy is prevented from being active by
an other meta-policy (but its conditions are met), this
attribute is set to true.

If this meta-policy prevents another meta-policy £rom
being active, then this attribute is true.

R-Boutaba, A-Polyrakis Internet-Draft, emires Oct.2001 l~acre 161

Appendices 93

The Meta-Policy Information Base April 2001

In other
Active 1

truc 1

true 1

false (

false 1
11

meta-policy active,
it suppresses another one
meta-policy active,
does not suppress another one
meta-policy inactive
because it is suppressed by another one
meta-policy inactive because
the conditions are not met

--- Meta-Policy Priority Table

metaPolicyPriorityTable OBJECT-TYPE

SYNTAX SEQUENCE OF meta~olicyPriorityEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION

"This table reports conflicting meta-policies.
When a meta-policy needs to be activated, the PEP
MlJST check if it is conflicting with another meta-policy,
which is already active or needs to be activated at the
same t h e . If so, the one that is referenced in the
hîgher~riorit~ attribute is activated and the other one
is deactivated or remains deactivated. Similarly, when a
meta-policy is deactivated, the PEP must check if a
lower-priority meta-policy must now be activated."

. . - - .- C metaPolicyClasses 3 1

metaPolicyPriorityEntry OBJECT-TYPE
SYNTAX MetaPolicyPriorityEntry
STATUS current
DESCRIPTION

" A n instance of the metaPolicyPriority Class that
identifies the relative priority between two
meta-policies . "

INDEX { metaPolicyPrid 1
::= { metaPolicyPrioriryTable 1)

MetaPolicyPriorityEntry ::=
SEQUENCE {

metaPolicyPriorityPrid InstanceId,
higherpriori ty Re£ erenceId,
lowerpriority Ref erenceId,

1

metaPolicyPriorityPrid OBJECT-TYPE

~,~outaba, ~.~olyrakis ~nternet-Draft, expires Oct-2001 [page 171

Appendices 94

The Meta-Policy Information Base April 2001

SYNTAX Ins tancerd
STATUS current
DESCRIPTION

"An arbitrary integer that uniquely identifies an
instance of the metaPolicyPriority class."

: : = { metaPolicyPriorityEntry 1)

higherpriority OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES metaPolicyTable
STATUS current
DESCRIPTION

"This attribute references to the meta-policy that
has higher priority than the one referenced by the
1owerPriority attribute"

::= { metaPolicyPriorityEntry 2)

1owerPriority OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES metaPolicyTable
STATUS current
DESCRIPTION

"This attribute references to the meta-policy that
has lower priority than the one referenced by the
higherpriority attributen

::= { metaPolicyPriorityEntry 3 1

-- Condition Group
conditionClasses

OBSECT IDENTIFIER ::= { metaPolicyPib 3

-- Condition Table
--
conditionTable OBJECT-TYPE

SYNTAX SEQUENCE OF conditionEntry
PIB-ACCESS JXSTALL
STATUS current
DESCRIPTION

"Each instance of this PRC represents a boolean
expression. The conditionss of the meta-policies are
instances of this class. However, if the condition of
a meta-policy contains more than one predicate, the
predicates are also instances of this PRC.

For instance, Suppose that we want to eacode a cocdition
A, which is evaluated as (B OR C) , where B and C some
other boolean expressions.

R-Boutaba, A-Polyrakis Internet-Draft, expires Oct-2001 [page 181

Appendices 95

The Meta-Policy Information Base April 2001

I In this case, A, B and C are instances of this PRC.

Al1 instances of this PRC MUST be extended by an instance
of one of the rest PRCs of this group, in order to denote
if this condition should be evaluated based on simpler
conditions, if it is a boolean operand or an other
logical express ion. "

::= { conditionClasses 1)

conditionEntry OBJECT-TYPE
SYNTAX ConditionEntry
STAWS current
DESCRIPTION

"An instance of the condition Class that defines a
boolean condition"

INDEX E conditionIndex 1
::= { conditionTable 1 }

ConditionEntry ::=
SEQUENCE {

conditionPrid Ins tanceId,
conditionReverse Truevalue

conditionPrid OBJECT-TYPE
SYNTAX Ins tanceId
STATUS current
DESCRIPTION

"An arbitrary integer that uniquely identifies an
instance of the condition cl as^.^

: := { conditionEntry 1)

conditionReverse OBJECT-TYPE
SYNTAX Truevalue
STATIJS current
DESCRIPTION

"if true, the negation of the logical expression
is evaluated, instead. "

::= { condition-try 2 1
-- END OF conditionTable

--
-- Complex Condition Table
--
complexConditionTable OBJECT-TYPE

SYNTAX SEQUENCE OF complexConditionEntry
PIB-ACCESS INSTALL
STATUS curren t
DESCRIPTION

"Each instance of this PRC represents a cornpiex
condition. It consists of two simplier conditions,
and a logical operator that determines how the two
tenns are assosiated to compose the more
complicated condi tionn

I R-Boutaba, A-Polyrakis Internet-Draft, expires Oct-2001 [page 191

~ The Meta-Policy Information Base April 2001

complexConditionEntry OBJECT-TYPE
SYNTAX ComplexConditionEntry
STATUS current
DESCRIPTION

"An instance of the complexCondition class that breaks a
complex condition into two simpler ones. "

EXTENDS { condirionTable)
: : = C complexConditionTable 1

ComplexConditionEntry ::=
SEQUENCE {

operator Uns igned3 2,
le£ tTenn ReferenceId,
rightTerrn ReferenceId

1

operator OBJECT-TYPE
SYNTAX Unsigned32 {

(O),
OR (11
1

STATUS current
DESCRIPTION

"The logîcal operatox in the complex condition"
::= { complexConditionEntry 1 1

le£ tTerm OBJECT-TYPE
SYNTAX Referenceld
PIB-REFERENCES conditionTable
STATUS current
DESCRIPTION

"A reference to the first simpler condition."
: : = C complexConditionEntry 2 1

rightTerm OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES conditionTable
STATUS current
DESCRIPTION

"A reference to the second simpler condition,"
::= C complexConditionEntry 3)

-- END OF complexConditionTable

-- Boolean Condition Expression Table
--
booleanConditionTable OBJECT-TYPE

SYNTPX SEQUENCE OF booleancondi tionEntry
PIB-ACCESS INSTALL
STATUS mandatory
DESCRIPTION

"Each instance of this class extends the condition class

R-Boutaba, A-Polyrakis Internet-Draft, ewires Oct.2001 I~ase 201

Appendices 97

The Meta-Policy Information Base April 2001

and represents a boolean parameter £rom which the
condition is evaluated,"

s r = { metaPolicyPibClasses 2)

booleanConditionEntry OBJECT-TYPE
SYNTAX BooleanConditionEntry
STATUS mandatory
DESCRIPTION

"An instance of the booleznCondition class that defines
the boolean parameter that gives values to the
corresponding condition."

EXTENDS { conditionTable }
::= { booleanConditionTable 1)

BooleanConditionEntry ::=
SEQWENCE {

parameterReference ReferenceId
1

parameterReference OBJECT-TYPE
SYNTAX ReferenceId
PIB-F!FERENCES parameterTable
STATUS current
DESCRIPTION

"A reference to a parameter £rom where the condition is
evaluated. This condition MWST be of type boolean
(Truthvalue) . "

::= C booleanConditionEntry 1)
-- End of booleanConditionTable

-- Generic Condition Table
--
genericConditionTable OBJECT-TYPE

SYNTAX SEQUENCE OF genericConditionEntry
PIB-ACCESS 1 NSTALL
STATUS current
DESCRIPTION

"Each instance of this class extends the condition class
and assosiates the corresponding condition with a cornplex
logical expression, £rom where the condition is
evaluated. "

::= C conditionclasses 2 1

genericConditionEntry OBJECT-TYPE
SYNTAX GenericCondi tionEnt~1
STATUS current
DESCRIPTION

"An instance of the generalcondition class that defines
the logical expression for the corresponding condicion
of the condition class , "

EXTENDS (generalConditionTable 1
::= C conditionNumericalExpressionTable 1

R. Boutaba, A. Polyrakis Internet-Draf t, expires Oct -2001 [page 211

The Meta-Policy Information Base April 2001

GenericCondiLionEntry ::=
SEQUENCE {

xdDTDRef Ref erenceId,
xmlcondition XMLString

1

dDTDRef OBJ'ECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES xmlDTDTable
STATUS current
DESCRIPTION

"A reference to the d D T D class that detemies which
of the X M L DTDs that this PEP supports is used in
order to encode the expression,"

: := (genericConditionEntry 1)

xmicondition OBJECT-TYPE
SYNTAX XMLS tring
STATUS mzndatory
DESCRIPTION

"The XML-encoded expression."
::={ genericConditionEntry 2 1

-- End of genericConditionTable

-- Actions Group
actionClasses

OBJECT IDENTIFIER ::= { metaPolicyPib 4)

--
1

-- Actions Table
--
actionTable OBJECT-TYPE

SYNTAX SEQUENCE of actionEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION

"Each instance of this class stores an acticin of
a meta-policy."

::= C actionClasses 1 1

actionEntry OBJECT-TYPE
SYNTAX ActionEntry
STATUS current
DESCRIPTION

" A n instance of the action class that stores; an action
of a meta-policy."

INDEX { actionPrid 1
::= { actionTable 1 1

I R-Boutaba, A-~olyrakis Internet-Draft, expires Oct.20~01 [page 221

Appendices 99

The Meta-Policy Information Base April 2001

ActionEntry : : =
SEQUENCE C

actionPrid Ins tanceId,
ac tionRef Tag TagRef erencerd,
actionTargetPrid Prid

1

actionPrid OBJECT-TYPE
SYNTAX InstanceId
STATES current
DESCRIPTION

"An arbitrary integer that uniquely identifies an
instance of the action class - "

: : = C actionEntry 1)

actionRefTag OBJECT-TYPE
SYNT-AX TagRef erenceId
PIB-TAG rnetaPolicyActlions
STATUS current
DESCRIPTION

" A n attribute that defines a Tag Group of actions.
Ail actions with the same tag are grouped as the actions
of a single meta-policy."

::={ actionEntry 2 1

actionTargetPrid OBJECT-TYPE
SYNTAX Prid
STATfiS current
DESCRIPTION

"The PRID of the PR1 to be instalied/updated.
The PRID must point to a single PRI."

::={ actionEntry 3)
-- END OF actionsTable

--
-- Action Value table
--
actionValueTdble OBJECT-TYPE

SYNTAX SEQUENCE OF actionValueEhtry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION

"Each instance of this class extends the corresponding
instance of the action class. It provides the BER-encoded

value
that will be installed at the corresponding PRI."

::= { actionClasses 2)

actionValueEnrry OBJECT-TYPE
SYNTAX ActionsValueEntry
STATUS current
DESCRIPTION

"An insance of the actionvalue clzss. It provides
the value (encoded with BER) that will be installed at

R-Boutaba, A-Polvrakis Internet-Draft, expires Oct-2001 Cuaqe 231

Appendices 100

The Meta-Policy Information Base April 2001

the PR1 denoted by the corresponding instance of the
action class. "

EXTENDS Z actionEntry)
: := { actionValueTable 1 }

ActionValueEntry ::=
SEQUENCE {

Act ionValueEpd BERValue
1

actionValueEpd OBZ3CT-TYPE
SYNTAX BERValue
STATUS current
DESCRIPTION

"This attribute contains the BER-encoded value of the
PR1 to be installed/updated,"

::={ actionValueEntry I }
-- END OF actionvalueTable

-- Action Parametric Value Table
--
actionParametricValueTable OBJECT-TYPE

SYNTAX SEQUENCE OF actionParametricValueEbtry
PIE-ACCESS INSTALL
STATUS current
DESCRIPTION

"Each instance of this class that extends the
corresponding instance of the action class. It provides

wi th the
parametric value that will be installed at the

corresponding PRI-"
::= { actionClasses 3 }

actionParametricValueEntry OBJECT-TYPE
SYNTAX ActionParametricValueEntry
STATUS current
DESCRIPTION

"An insance of the actionvalue class. It provides with
the parametric value that will be installed at the PR1
denoted by the corresponding instance of the action
class . "

EXTENDS { actionEntry)
::= { actionParametricValueTable I)

ActionParametricValueEntry ::=
SEQUENCE {

ParameterRef Ref erenceId
1

ParameterRef OBJECT-TYPE
SYNTAX ReferenceId
PIB-REFERENCES parameterTable
STATUS current

x.Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page 241

Appendices 101

The ~eta-~olicy Information Base April 2001

DESCRIPTION
'A reference ta a the parameter, from where the value
of the installed PR1 should be obtained. Whenever the
value of the parameter changes, the installed PR1
MUST be updated, "

::=C actionParametricValueEntry 1)
-- END OF actionParametricValueTable

-- Parameter Group
parameterClasses

OBJECT ~DENTIFIER : Z = (metaPolicyPib 5 1

-
- Parameter Table
-
parameterTable OB3ECT-TYPE

SYNTAX ÇEQWENCE OF parame terEntry
P IB -ACCESS INSTALL
STATüS current
DESCRIPTION

"Each instance of this class defines a parameter
that has been ïnstalled on the PEP. This class
MUST be extended by a class that defines how
the value of the parameter will be evaluated. "

: : = { parameterclasses 1)

parame t e rEn try OB JECT -TYPE
SYNTAX ParameterEntry
STATUS current
DESCRIPTION

"An instance of the parameter class that installs
a parameter into the PEP."

INDEX C parameterPrLd)
: := (parameterTable 1)

parameterPrid OBJECT-TYPE
SYNTAX Ins tanceId
STATUS current
DESCRIPTION

" A n arbitrary integer that uniquely identifies an
instance of the parameter class. "

: : = (parameterEntry 1)

R-Boutaba, A-Polyrakis fnternet-Draft, expires 0ct-2001 [page 251

Appendices 102

The Meta-Policy Information Base April 2001

parameterNameOBJECT-TYPE
SYNTAX SNMPAdminS tring
STATUS current
DESCRIPTION

"A string that represents the name of the parameter.
It is reccomented that different parameter have different
names. However, similar parameter may have the same name.
Also, an empty string can be used as a name, "

: : = { parameterEntry 2 1

parame terTyoe
SYNTAX Unsigned32 {

INTEGER (02)
BIT STRING (03)
OCTET STRING (04)
N a L (05)
OBmCT IDENTIFIER (06)
IP ADDRESS (40)
1

STATUS curreat
DESCRIPTION

"The BER type of the parameter-
The suppoted BER types are:
m e 1 BER identifier --------------------I----------------
INTEGER
BIT STRING

I 02
OCTET STRING

1 O3
1 O4

NlJLL I 0s
OBJECT IDENTIFIER 1 06
IP ADDRESS 1 40"

: := { parameterEntry 3 1
-- END OF parameterTable

--
-- MIBPIB Parameter Table
--
rnibPibParameterTable OBJECT-TYPE

SYNTAX SEQUENCE OF mibPibParameterEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION

"This class extends the parameter class,
Each instance of this class assosiates to the
corresponding parameter a MIB or PIB variable, £rom
where the parameter is evaluated"

::= { parameterClasses 2)

mibPibParanteterEntry OBJECT-TYPE
SYNTAx MibPibParameterEntry
STATUS current
DESCRIPTION

" A n instance of the rnibPibParameter class that provides

I ~.~outaba, A-Polyrakis Internet-Draft, expires Oct-2001 [page 261

Appendices 103

The Meta-Policy Information Base April 2001

the identifier of the MIB/PIB variable £rom where the
corresponding parameter is evaluated."

EXTENDS { parametarEntry)
::= { mibPibParametexTable 1)

MibPibParameterEntry ::=
SEQIENCE {

targetOID OBJECT-IDENTIFIER,
EvaluationFrequency timeticks
1

targetOFG OBJECT-TYPE
SYNTAX OBJECT-IDENTIFIER
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION

"The object identifier of the MIB/PIB variable.
The MIB/PIB variable MUST exist in the MIB/PIB of the
device. Also, the type of the target variable MUST be
compatible with the type of the corresponding PR1 of the
parameter Class,"

: : ={ rnibPibParameterEntry 1)

EvaluationFrequency OBJECT-TYPE
SYNTAX timeticks
STATUS current
DESCRIPTION

"The frequency of updating the parameter in milliseconds"
::={ mibPibParameterEntry 2)

-- END of mibPibParameterTable

-- PDP Parameter Table
--
pdpParameterTable OBJECT-TYPE

SYNTAX SEQUENCE OF pdpParameterEntry
PIB-ACCESS INSTALL
STATUS current
DESCRIPTION

"This class 'extends the parameter class. Each instance
of this class contains the value of the corresponding
paramter. This value is send by the PDP and updated
whenever necessary . "

::= (parameterClasses 3)

pdpParameterEntry OBJECT-TYPE
SYNTAX PdpParameterEntry
STATUS current
DESCRIPTION

" A n instance of the pdppararneter class that stores the
value, sent by the PDP, for the corresponding parameter."

INDEX { parameterIndex)
::= { pdpParametersTable 1)

R-Boutaba, A.Polyrakis Internet-Draft, expires Oct.2001 [page 271

Appendices 104

The ETeta-Policy Information Base April 2001

PdpParameterEntry ::=
SEQUENCE {

las tValue BERValue
1

lastValue OBJECT-TYPE
SYNTAX BERValue
STATUS current
DESCRIPTION

"The latest value of the parameter, encoded with BER.
The BER-encoded value must be of the same type as the
corresponding PR1 of the parameter class."

: : ={ pdpParameteri3ntr-y 1)
-- END OF pdpParameterTable

END

AuLhors ' Information

Andreas Polyrakis
Dept- of Computer Science,
University of Toronto,
10 King's College Road,
Toronto, Ontario,MSS 3G4, Canada.
Phone: ++1 (416) 978-4837
Fax: ttl (416) 978 1931

Raouf Boutaba
Dept. of Computer Science,
University of Waterloo,
200 University Avenue West,
Waterloo, Ontario N2L 3Gl, Canada
e-mail: rboutaba@bbcr.uwaterloo.ca
Phone: ++1 (519) 888 4567 ext.4820
Fax: +cl (519) 885 1208

Ref erences

[P-TERMI A. Westerinen, J. Schnizlein, JI Strassner, Mark
Scherling, Bob Quinn, Jay Perry, Shai Herzog, An-Ni Huynh,
Mark Carlson, "Policy Terminology", Internet draf t, draf t-
ietf-policy-teminology-OOOtxtI July 2000

[RAP-FRMI R. Yavatkar, D. Pendarakis, "A Framework for Policy-based
Admission Control", IETF RFC 2753, January 2000.

CCOPS 1 Boyle, J., Cohen, R , , Durham, D-, Herzog, S., Raja, R.,
Sastry, A., "The COPS (Common Open Policy Service)
Protocol", IETF RFC 2748, Proposed Standard, January 2000.

R.Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page 281

Appendices 105

The Meta-Policy Information Base A p r i l 2001

CCOPS-PR] K- Chan, D- Durham, S - Gai, S- Herzog, K- McCloghrie, F,
Reichmeyer, J- Seligson, A. Smith, R - Yavatkar, "COPS
Usage for Policy Provisioning," draft-ietf-rap-pr-05-txt,
October 30, 2000.

[SPPI] K. McCloghrie, et-al,, "Structure of Policy Provisioning
Information," draft-ietf-rap-sppi-05-txt, February 2001-

Et-Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page 291

Appendices 106

The Meta-Policy Information Base April 2001

Appendix A - Sample XML DTD for encoding conditions

c!-Simple DTD for arithmetic expression represeritation -->

<!-Since these X M L documents will be both -->
<!-generated and consumed by machines, the -->
c!-readability of the tags is not very -->
<!-important, However, since there might be-->
c!-concerns about the XML document size, -->
<!-the tag names were kept as small as -->
c !-possible, -->
<!-- >

<!- Only arithmetic expressions are supported. -->
c!- The attribute defines the cornparison type -->
<!- GT = Greater than, LT = Less than -->
c!- EQ = Equal, NE = Not equal -->
<!- GE = Greater or equai, LE = Less or equal -->
c ! ELEMENT ar-con6 (expr , expr) >
c!ATTLIST ar-cond

comp (GT 1 LT 1 EQ 1 NE 1 GE 1 LE 1 #R!ZQUIRED
>

< ! ELEMENT expr ((expr, arop, expr) 1 par I numl >
c!ELEL4ENT par #PCDATA>
c ! ELEMENT num #PCDATA>

C!ELEMENT arop EMPTY>
c!ATTLIST arop

op (+ 1 - [* 1 / l #REQUIRED
>

R-Boutaba, A.Polyrakis Internet-Draft, expires 0ct.2001 [page 301

Appendices 107

The Meta-Policy Information Base April 2001

1 Full Copyright Statement
Copyright (Cl The Internet Society (2000). Al1 Rights Reserved,

This document and translations of it may be copied and furniçhed to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph
are included on al1 such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Pnternet standards in which case the procedures for
copyrights defined in the Interner Standards process must be
followed, or as required to translate it into languages other than
English,

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS 1s" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

R-Boutaba, A-Polyrakis Internet-Draft, expires Oct.2001 [page 311

Appendices 108

Appendix B. Related Publications (Abstracts)

TOWARDS EXTENSIBLE

POLICY ENFORCEMENT POINTS [40]

lEEE Workshop on Policies for Distnbuted Systems and Networks;

Bristol, U. K.; 29-31 Janziary, 2001; pp. 247-261

Raouf Boutaba Andreas Poiyrakis

University of Waterloo University o f Toronto

Dept. of Cornputer Science Dept. of Cornputer Science

rboutaba@bbcr.uwaterloo.ca apolyr @cs.toronto.edu

For several years, Configuration Management has been conducted mainly through cornmand üne

or SNMP. However, while computer networks started growing bigger in size and complexity, it

became apparent that these approaches suffer from significant scalability and eff~ciency

limitations. Policy-Based Networking (PBN) seems to be a promising alternative for

Configuration Management, and has already received significant attention. This approach

involves the processing of the network policies by speciai servers (PDPs) that send the

appropriate configuration data to the Policy Enforcement Points (PEPs) that reside on the

managed e~tities. COPS and its extension for policy provisioning, COPS-PR, are currently being

developed by IETF to implement PBN. In COPS-PR, the PDP instdls to the PEI? policies that the

latter should enforce. However, the types of policies that the PEP c m understand are limited and

hardwired to it by the manufacturer. In this paper, we propose an architecture that attempts to

raise such limitations and push the decision taking fkom the policy servers to the rnanaged

devices.

Appendices 109

PRO JECTING FCAPS TO

ACTIVE NETWORKS [4]
accepred in IEEE EntNet 200 1; Atlanta, GA, USA; 4-6 J une, 2001

Raouf Boutaba Andreas Polyrakis

University of Waterloo University of Toronto

Dept. of Cornputer Science Dept. of Conzprcter Science

rboutaba@bbcr.uwaterloo.ca apolyr@cs.toronto.edu

Active Networks is one of the most promishg and discussed trends in the area of Cornputer

Networks. It allows us to program the network nodes to perfonn advanced operations and

cornputations, and thus, control their behavior. These properties change considerably the scenery

in the area of computer networks and, consequently, affect Network Management. Indeed, Active

Networks do not oniy open the way to enhance current management techniques and improve their

efficiency, but they also create perspectives to deploy novel ones. This paper attempts to present

the impact of Active Networks upon the current Network Management techniques. In order to

achieve this, Network Management is exarnined through the five areas of the FCAPS b e w o r k ;

for each one, the limitations of the current applications and t o J s are presented, and how these

cm be overcome by exploithg Active Network properties is discussed. The contribution of this

paper is to gather and classifi the various ideas found in the literature in this area, combine then

and propose some new ones

COPS-PR WITH META-POLICY SUPPORT 1411
Published as an independent srtbmission at IETF, April2001

Raouf Bouta ba Andreas PoIyrakis

Universiîy of Waterloo University of Toronto

Dept. of Cornputer Science Depr. of Compkzr Science

rboutaba@ bbcr.uwaterloo.ca apolyr@cs.toronto.edu

In COPS-PR, the (clients of the) PEPs use special structures, cdIed Policy Information Bases

(PIBs) that store the policies that are sent by the PDPs. PIBs are well-defined structures that are

not meant to be modified to adapt to the needs of each network. This makes COPS-PR PEPs rigid

and inflexible. This document describes an extension of the COPS-PR protocol that allows the

PEPs to store meta-policies that control the content of their PIBs. The set of meta-policies that

the PEPs c m store is not predefmed and custornized policies can be supported. The use of meta-

policies pushes intelligence towards the PEPs and rnakes them more selfdependent. In this way,

the mode1 becomes more distributed, scaIable and fault-tolerant, while the bandwidth

consurnption and the (real-time) processing load of the PDP are reduced.

