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1. Introduction 

F OR the  purpose of this thesis, a cellular automaton (CA) is a 1-dimensional 

array of flip flops, each being updated synchronously by some function of a local 

neighborhood of cells; this function is called the cell's mle. CA have been proposed 

as an alternative to linear feedback shift registers (LFSR) for pseudorandom pattern 

generators in  circuit testing [l, 21 and ot her applications [3]. 

Autonomous linear finite state machines have been studied extensively using 

the tools of linear algebra and matrix t heory [4, 5, 3, 6, 7, 8, 2, 9, 10, 11, 121. Much 

of this work has been geared towards a priori prediction of a machine's functional 

digraph structure and randornness properties, with applications in testing, coding 

theory, and cryptography. Little has been done along the same lines with respect 

to nonlinear machines, as these mathematical tools assume linearityl . Since linear 

machines represent a diminishing fraction of possible machines, we hypothesize that 

nonlinear CA exist that are better than the traditionally used linear CA at testing 

digital circuits. In this case better refers to being able to cover a target percentage 

of faults with a shorter test sequence length. The question remains: how does one 

acquire such CA? 

The main idea of the  thesis is the employment of a genetic algorithm (GA) 

to evolve CA that test a prescribed percentage of stuck-at faults in a combinational 

circuit using a minimal number of vectors. A GA is a probabilistic search technique 

that models the biological phenornenon of survival of the fittest and natural selec- 

tion. The operation of GA has been described as "remarkably straightforward" [16]. 

GA evolve a population of candidate solutions through many generations, creating 

nevv solutions from old by performing the three genetic operations of reproduction, 

crossover, aad mutation. The algorithm central to this thesis is named the cellular 

automata genetic algorithm (CAGA). 

[3] looks at a very restricted c las  of nonlinear CA, [13, 14, 151 analyzes uniform nonlinear CA, 
[ï] analyzes nonlinear shift registers 



Working with the nonredundant ISCAS '85 benchmarks circuits [l?], it is shown 

that nonlinear CA can be evolved that significantly reduce test lengths over primi- 

tive CA. The initial vector of the test sequence can either be fixed or evolved along 

with the CA rule vector; experiments are performed comparing the two approaches. 

Also, two simple mutation operators are contrasted. We find that on average CAGA 

effectiveness does not vary extensively wit h t hese choices. The crossover probabili ty 

"standard setting" [18] is verified for the CA testing problem. 

Several atternpts to improve CAGA via advanced genetic operators are inves- 

tigated with varying levels of success. A mutation operator called bit  role fiipping 

( B R F )  is defined. BRF has the appealing property of completeiy preserving the 

state-transition space of a CA. Last possible mutation ( L P M )  is another proposed 

advanced mutation operator. LPM maximizes the number of equivalent vectors pro- 

duced by the mutated CA before diverging in state transition space and is found to 

be powerful when it is allowed to introduce radius 2 rules. A technique called good 

neighbor enforcement ( G N E )  is used to irnprove the crossover operator by discourag- 

ing degenerate behavior in offspring. Two variants of GNE are shown to be effective 

against evolution of both nul1 boundary and periodic boundary CA. 

Also addressed is the problem of halting built-in self-test (BIST) testing. A 

new technique is described in which a min ima l  sfopping condition ( M S C )  is sought 

in the test generating FSM. A MSC is a set of generator cells of minimal cardinality 

that uniquely distinguishes the final test vector from al1 others. GA and brute force 

search are discussed as means of finding a MSC. 

The thesis is organized as follows. Chapter 2 gives an introduction to the theory 

of digital circuit testing including the concepts of BIST and pseudorandom pattern 

generation. Chapter 3 forrnally defines cellular automata and summarizes previous 

studies involving CA. In chapter 4, genetic algorithms are explained and exemplified. 

Al1 discussion and results regarding CAGA and the advanced genetic operators are 

presented in chapter 5. The auxiliary chapter 6 proposes the new means of obtaining 

the BIST stopping condition. Finally, the thesis is concluded with chapter 7 in which 



many avenues of future work are suggested. 



2. Digital Integrat ed Circuit Test ing 

2.1 Introduction 

In the contert of the design, production, and use of digital integrated circuits 

(ICs), testing (also called structural testing) refers to a process whose goal is the 

demonstration that a given IC is free from defects [4, 191. Here, a defect is a physical 

anornaly in the chip that results in incorrect behavior and stems from either man- 

ufacturing or deterioration over time. Testing is separate from uerijîcation, during 

which it is checkeci that a prototype adheres to its logical functional specifications 

and electricd parameters. Testing is normally used to assess whether or not a chip 

should be discarded and replaced; the process of actually pinpointing the location 

and nature of a defect falls under fault diagnosis and is not reIevant to this thesis. 

Two distinct testing philosophies exist: functional testing and structural tes thg  

[4, 61. The standard approach prior to the influential paper by Eldred [20] was 

to test a device based on howledge of its functional specification. For example, 

testing an adder would involve checking that it could indeed add two binary numbers. 

Structural testing considers the circuit topology in terms of connections between 

primitive elernents such as AND, OR, and NOT gates. Test vectors are applied to 

the circuit that reveal (via primary outputs) the presence of defects in the primitive 

elements and/or interconnections, For the remainder of t his t hesis, the term testing 

refers to structural testing. 

The set of possible logical effects a defect can have on a primitive element or 

the interconnections must be defined a priori and is called a fault model, which is the 

focus of the next section. Section 2.3 discusses testing under the most common fault 

rnodel, the stuck-at model. In section 2.4 built-in self-test is described, followed by a 

brief discussion of the testing of sequential logic in 2.5. 



2.2 Fadt Models 

A physical defect on a chip may take on many forms. Open interconnections, 

shorts between conductors, excess leakage current, and burnout from electrical over- 

load are but a few examples [4]. The commonality that these imperfections share: 

however, is that they each have the potential to affect the logical behavior of the 

circuit on which they reside. The term fault refers to this logical effect of a defect, 

and is dependent on the fault mode1 being used. 

A fault rnodel provides a means of mathematically abstracting the physical 

defect to a logical effect. An example of a fault model is that of the delay fault, 

in which the defect causes signais in a circuit to be slow-to-rise or slow-to-fall and 

adversely affect the operating speed of a chip. Other fault models include the bridging 

fault, short-circuit fault, inverse fault, and mix-up fault. 

In this thesis only permanent faults are considered. Permanent faults are con- 

trasted by intermittent faults which are sometimes active while sometimes not, and 

transient faults which only occur for a brief period of time. 

The most widely used fault mode1 is the classic stuck-at fault model, proposed 

in 1959 by Eldred [20], in which the fault effect is that a wire or gâte output is 

"stuck-atn Iogic 1 or logic O. If a fault causes such behavior it is dubbed a stuck-at 

fault ; the focus of this thesis is testing for stuck-at faults. The stucli-at fault model 

is essentially the foundation of test theory [6]. 

2.3 Testing for Stuck-At Faults 

Let f be a stuck-at fault in some combinational circuit. A test for f is an input 

vector v such that given v ,  the output of the fault-free circuit differs from that of the 

circuit when f is present. The test set for f is the set of al1 tests for f .  A fault with 

a relatively small test set is referred to as hard to test. Given a set of faults F ,  a 

minimal test set for F is a set of input vectors with minimal cardinality that contains 

a test for each fault in F. If x is a label assigned to  a site in a circuit, the notation 

x / a  represents the fault where x is stuck-at logic a (where a is O or 1). 



Figure 2.1: A circui t  implementing z = (xl + x2)x3 

input Output in Presence of Faults 

Table 2.1: Fault effects for al1 stuck-at faults in t h e  circui t  of figure 2.1 

In this thesis we adopt the single fault assumption which states that at most 

one fault in the given mode1 can be present. Most of the time a multiple fadt (the 

existence of more than one f a d t )  can be detected by the tests for the involved single 

faults [21]. 

By analyzing the structure of a circuit, we can create a complete list of possible 

stuck-at faults and determine tests for each. In the circuit of figure 2.1 we see that 

there are 5 fault sites (labeled XI, x2, XJ, y, and z), and since each may be  stuck-at-0 

or stuck-at-1, there are 10 possible faults in total. The fourth column of table 2.1 

gives the output r of the circuit in the absence of faults. The rightmost ten columns 

give the output of the circuit when each of the ten possible faults are active. When 

a value in one of these columns is enclosed in a box, this indicates that the output 

differs from that of the fault-free circuit for the corresponding input vector. In other 

words, the test set for each fault consists of the input vectors corresponding to the 

rows in which a box is present under the fault. For example, the test set for x3/l is 

{010,100,110), in which the bitstrings represent the respective values of XI, x2, and 



13. Notice that faults such as x2/0 have only one test. Clearly, any minimal test set 

for these ten faults must include such tests, else at Ieast one fault would go untested. 

Thus any minimal test set must contain 101 (test for xi/O), 011 (test for x2/0), and 

001 (test for xi/l ,  x2/1, and y/l). But these three vectors also include tests for x3/0, 

y/O, z/0, and z/l. The only fault left untested is xJ/l ,  for which we arbitrarily choose 

010, giving us the minimal test set {001,010,011,101). 

An important fact illustrated by this exarnple is that we cari usually cover 

ali possible stuck-at faults in an n-input combinational circuit with fa r  fewer input 

vectors than the 2" vectors applied in exhaustive testing. Our example circuit has 

23 = 8 possible input vectors, yet we only need 4 of them to test for al1 possible 

stuck-at faults- 

. Observe that in table 2.1 the columns for xl / l ,  x2/1 and y/l  are identical. 

Such faults are c d e d  functionally equivalent, which is an equivalence relation that 

partitions the set of all stuck-at faults into equivalence classes- The equivalence 

classes for the example circuit are {xl/O), {x2/0), {x3/0, y/O, z/O}, {xl/17 x&, y/l}, 

{x3/l), and {z/l}. Fault equivalence classes are important in testing because once 

a test has been generated for one member of a class, al1 other faults in the class are 

necessarily covered, 

Given a single stuck-at fault f ,  the process of algorithmically finding a test 

vector for f is called test generation. The classic solution to test generation is Roth's d- 

algorithm [22]. PODEM [23,24] uses heuristics to reduce the amount of backtracking 

done by the d-algorithm and is more effective on larger circuits. 

Fauit simulation refers to the converse problem: given a set of faults F and 

some test vector v, which faults of F does v detect? There are many fault simulation 

algorithms, for a good survey see [21]. The fault simulator used in this thesis was 

written by a group at Virginia Polytechnic Institute (Electrical Engineering Dept.) 

and based on the algorithm presented in [25] . 



Test 
Mode 

Test 
Result 

Figure 2.2: Basic BIST architecture 

2.4 Built-In Self-Test (BIST) 

BIST refers to the capability of a circuit or system to test itself and indicate a 

p a s  or fail status using extra test circuitry at the chip or board level [19]. BIST con 

be classified as On-line or 08-line (6, 4, 191. 

In On-line BIST, the circuit contains logical redundancy that allows it to test 

itself while simultaneously perforrning the intended function. When a fault is present 

in a circuit endowed with on-line BIST, it either manages to still function correctly 

or it indicates that it cannot do so. 

Off-line BIST means that the circuit must be put in test  mode in order for 

testing to occur. When in test mode the circuit does not perform its normal function; 

it is essentially taken off-line. Some time (preferably a short time) after being placed 

in test mode, a circuit with off-line BIST will indicate a pass or fail status via one or 

two pins. In most of the literature and the remainder of this thesis, off-line BIST is 

referred to simply as BIST. 

Figure 2.2 depicts the basic BIST architecture. Naturally, there is an overhead 

associated wit h BIST arising frorn the auxiliary circuitry needed, narnely the test 



pattern generator (TPG) and the test response evahator  (TRE). Not explicitlyshown 

ir, figure 2 2  is the BIST controller, which controls the CUT, TPG, and TRE when in 

test mode. Ideally, the TPG would be a ROM storing the vectors of some minimal or 

neâr minimd test set and would feed these vectors in some deterministic order during 

testing; such an approach would keep test time to a near minimum. Similarly: the 

ided response evaluator tvould store the expected output vectors of the circuit under 

the TPG's test sequence (Le. the response of the fault-free circuit), and perform a 

cornparison against each observed output. Lf al1 actual outputs match the expected 

outputs, the chîp passes, else it fails. However, such a scheme consumes a great deal 

of chip area, For example, if the CUT has n inputs and rn outputs, and the test set 

has cardinality T, then the TPG ROM requires nT memory elements while the TRE 

ROM uses mT. 

Two technologies have been developed to reduce this overhead significantly. On 

the T P  G side, pseudorandom pattern gen eration (PRPG) is used, which typically 

requires O(n) memory elements. The cost of PRPG is an increased test sequence 

length. For test response evaluation, a technique based on data compaction cdled 

signature analysis is used. Signature analysis can use as many or as few memory 

elements as desired, though as the number decreases the probability of aliasing in- 

creases. Aliasing occurs when a faulty output stream is passed off as being fault 

free. 

We now take a closer look at these BIST concepts. 

2.4.1 Pseudorandom Pattern Generation 

Recall that the problem of finding a vector that tests a specific fault is called 

test generation. When seeking a test set for a set of faults F, the standard approach 

is given in figure 2.3. The crux of this technique is that once a test vector v is 

generated for a specific fault, all other faults in F that are "accidentally" tested by 

v can be marked as tested. PRPG waç first proposed when test engineers noticed 

that the number of faults tested in this accidental rnanner was large early on in 



f indTestSet ( F )  
S t 0  
while F # (8 do 

chose some arb i t rn ry  f E F 
F + F - {f) 
generate a test v f o r  f 
S t S u ( u }  
foreach f' € F do 

if v t e s t s  $ 
F t F - {f'} 

end foreach 
end while 
return S 

end 

Figure 2.3: Test set generation 

the algorithm [4]. The conclusion reached was that a randomly chosen vector will 

typically test many faults. Thus a random sequence of test vecton can be expected 

to test a large proportion of faults early on in the sequence. Given a set of faults and 

a combinational circuit, the Length of a random test sequence that can be expected 

to detect a given ratio of the faults can be statistically determined [4, 6, 211. In the 

preceding discussion, the term "randomn indicates that each bit in the test sequence 

is O or 1 with equal probability [21]. 

There are sequence generating finite state machines (FSMs) that lend themselves 

to hardware implementation and exhibit many propert ies of true random sequences 

[7, 21,4j. Of course, by definition, a FSM is totally deterrninistic and is therefore the 

antithesis of a random pattern generator; this fact is reflected by the use of the term 

pseudorandom. 

In this context, a FSM can be thought of as a one dimensional array of n 

single bit memory elements, often called cells. The n-vector consisting of the bits 

stored in the cells constitute the machine's state. A FSM is a synchronous device, 

meaning that the state changes on the active edge of a clocking signal according to 

the machine's next state function. The cells thernselves are typically thought of as 



Figure 2.5: An example maximal length t y p e  II LFSR with n = 3 

living on a horizontal line, and are referred to from left to right as al ,  a2, . . . , a,; the 

next states of the cells are respectively a:, a:, . . . , an. 

The most commonly used class of PRPG in BIST are linear feedback shift reg- 

isters (LFSRs) [4, 6 ,  191. LFSRs are a type of feedback shij? register with a linear 

next state function, and fa11 under the umbrella of linear finite state machines (LF- 

SMs). Because of linearity, the next state function of a LFSM cm be expressed as a 

transition matrix A, allowing for analysis using the tools of linear algebra [7: 91. If 

s and s+ are respectively the column vectors representing the current and next state 

of a LFSM, then sf = As, where arithmetic is performed over the Galois field of 2 

elements, GF(2) .  

LFSRs fa11 into two categories: type 1 and type II; both types place restrictions 

on communication between cells (i.e. the next state function). A type 1 LFSR per- 

forms polynomial division, and each ceil's next state function is a linear function of 

its left neighbor and a,. In a type II LFSR , each ce11 receives its next state directly 

from its left neighbor, Le. the state vector is shifted right. The feedback in a type II 

LFSR only cornes into play with al ,  whose next state is a linear function of al1 cells. 

Figure 2.4 and 2.5 respectively show a type I and type II LFSR, both with n = 3. 

Let Ar and ArI be the respective '.ransition matrices of the LFSRs of figures 2.4 

F igure  2.4: An example maximal  length t y p e  1 LFSR with n = 3 

a, ) a3 



and 2.5. For the LFSR of figure 2.4, the next state equations are given by a: = aa, 

a: = a,, and a: = a2 @ a ~ ;  for figure 2.5 these equations are a: = a2 63 as, a: = ai, 

and a$ = a2. From these equations we find: 

and 

Starting from initial state s = [100IT both example LFSRs see aH 2" - 1 = 7 

nonzero states before returning to the initial state. The LFSR of figure 2.4 follows 

the state sequence (100,010,001, 101,111,110,011,100), while the LFSR of figure 2.5 

generates (100,010,101,110,111,011,001,100). LFSMs with this property are called 

maximal length or primitive. 

Another claçs of FSM are cellular automata (CA), which are a focus of this 

thesis and wiU be formally introduced in chapter 3. The next state of each ce11 in a 

CA is restricted to being a function of the cells in a local neighborhood, typically the 

cell itself and its two imrnediate neighbors. Thus al1 nonzero entries in the transition 

matrix of a linear CA (LC4)  lie on the main, super, and sub diagonals. Primitive 

LCA were first proposed as PRPGs for BIST in [l]. Evidence that LCA make better 

BIST test generators than LFSRs is revealed in [ I l ,  121, specifically LCA are better 

detectors of delay faults. Thus targeting stuck-at faults using LCA has the amiable 

side effect of providing tests for many delay faults. CA are discussed in further detail 

in chapter 3 and are used extensively in chapter 5. 

The state sequences generated by primitive LFSRs and CAS have been shown 

to have many characteristics of random sequences. As such, they work well as PRPGs 

for BIST. 



There are rnany techniques to transform the state vector of a FSM into an  

input vector for a CUT? especially if the CUT is sequential- In this thesis, we take 

the simplest approach in which a CUT with n primary inputs is tested using a FSM 

on n cells and the state of cell ai drives the i'" input during testing. 

2.4.2 Signature Analysis 

Several techniques to perform data compaction on the responses (output vec- 

tors) of a circuit to a test sequence [4, 211 exist. The most popular is called signature 

analysis (SA), a term coined in [26]. For a single output CUT, SA is performed typi- 

cally by a LFSR that takes a single input; specifically the CUT7s output. This output 

signal is added rnodulo-2 to the feedback signal driving the leftmost cell of a FSM. 

For example, the LFSR depicted in figure 2.5 could be used as a signature analyzer 

by using a 3-input EXOR gate in place of the 2-input gate, with the additional input 

wired to the output of the CUT. Once the test sequence is complete, the LFSR stops 

accepting input and its final state is the output stream's signature. The signature is 

then compared to the known signature of the fault-free circuit, and the test fails if 

there is a discrepancy. 

Aliasing occurs when the signature of a faulty circuit is that of the fault free 

circuit, due to error cancellation occurring in the LFSR. When the SA LFSR has a 

degree k characteristic polynomial,2 the probability of aliasing approaches 2-'. This 

result works under the assumption that al1 output streams are equally probable, which 

is seldom valid. However, by selecting the characteristic polynomial of the SA LFSR 

intelligently, some types of errors can be guaranteed to be nonaliasing. For instance, 

if the characteristic polynomial has at least 2 non-zero coefficients, al1 single bit error 

streams are nonaliasing [2 11. 

When the CUT has more than one output, the hardware overhead incurred by 

using a LFSR on each of the m outputs is usually too high. In such circumstances 

a device called a multiple input shift register (MISR) is the common choice. MISRs 

2this term will be defined in section 3.5 



have at  least as many cells as CUT primary outputs. Rather than obtaining its next 

state from its left neighbor as in a LFSR, the next state of a MISR cell is the modulo 

2 addition of its left neighbor and one of the CUT outputs. The feedback structure 

driving the Mt most ce11 remains unchanged. 

CA have been shown as effective for signature analysis as LFÇRs in [27]. 

2.5 Testing of Sequential Circuits 

As this thesis targets combinational logic networks, we only give a brief overview 

of sequent ial test ing techniques. 

Testing of faults in sequential circuitry is a harder problem than that of the 

purely combinational case. Generation of a test set for a sequential circuit is algorith- 

mically more cornplex. The situation is even bleaker when dealing with asynchronous 

circuitry [21]. 

One source of this increase in difficulty is that mmy faults in sequential circuits 

need a test sequence rather than a single vector to be detected. For example, consider 

testing for the output of a flip-flop stuck-at 1. A sequence of a t  ieast one vector will 

be needed to store O in the flip-flop. Beginning in the succeeding dock period, a 

sequence of a t  least one vector must be applied to propagate the error to a primary 

output. 

To alleviate this predicament, the practice is to adopt a design for testability 

(DFT) methodology. Scan design is a popular DFT technique in which the sequential 

network is essentially transformed into a combinational (or at least "less sequential") 

network when in test mode. This is accomplished through the use of scan registers. 

Scan registers include al1 or some of the design's memory elements. When in normal 

operation, these memory elements function as required by the design, though possibly 

with an increased delay. In test mode, the rnemory elements in a scan register are 

transformed into a shift register. The input and output of the shift register are 

connected to chip I/O pins (if external testing) or wired to BIST circuitry. TO apply 

a test to the CUT, test data is shifted into the scan register(s). Next, the CUT7s 



response to the test is latchedinto the scan registers. Finally, the response is shifted 

out to the external tester or SA circuitry. The costs of using scan-based design are 

the increased delay and area of the scan rnernory elements and the increased test tirne 

incurred in the process of shifting test and responses in and out of the scan register(s). 

There are many different scan-based methodologies proposed by researchers and 

in use in industry. These include IBM's Level Sensitive Scan Design [28], Scan Puth 

[29], Random-Access Scan [30], and Scan/Se t Logic [31, 321. 

2.6 Conclusion 

This chapter has provided a brief introduction to a broad discipline that has 

been the focus of much research in both acadernia and industry. We have described 

fundamental concepts such as fault models, st uck-at faults, fault simulation, BIST, 

FRPG, signature andysis, and design for testability. The following chapter gives a 

forma1 definition of cellular automaton and an overview of CA research. 



3. Cellular Autornata 

3.1 Introduction 

Cellular Automata (CA) (singular: Cellular Automaton) were introduced in 

section 2.4 as pseudorandom pattern generators and signatuces analyzers for BIST, 

but we have yet to give a formal definition. 

A CA can be d e h e d  as a d-dimensional lattice of cells, dso called sites, each 

of which exist in one of a finite set of states. The state a t  each cell is updated 

synchronously in discrete time steps according to some function of the states of a 

local neighborhood of cells. The next state function at  a cell is called the cell's rule. 

A unifom CA has the same rule at every cell, while a hybgd CA need not adhere to 

this constraint. CA are also characterized by the neighborhood over which the next 

state rdes are defined. For 1 dimensional CA, the neighborhood is characterized in 

terms of radius; a radius r 1 dimensional CA has each cell's rule depending on the 

cell itself, the r closest cells to the right, and the r closest cells to the left (giving a 

total of 27- + 1 cells affecting the next state of each cell). Radius 1 CA are also called 

nearest neighbor. The number of cells in a CA may be finite or infinite; as the C.4 of 

this thesis are to be implernented in silicon they are al1 finite. For a finite CA7 the 

terms size or length (in the 1-dimensional case) refer to the number of cells, and is 

usually denoted by the variable n. Unless otherwise noted, for the remainder of this 

thesis CA will refer to 1 dimensional nearest neighbor finite CA. When considering 

finite CA there are various ways of defining the neighborhood of the boundary cells, 

i.e. the cells that live on the perimeter of the CA. (In a 1 dimensional CA, these are 

the leftmost and rightmost cells.) Three cornmon approaches are: 

nul1 boundary: the missing cells in the neighborhood assume the constant state 

O 

periodic boundary: the d-dimensional CA is embedded on the d-dimensional 



m . .  m a .  

Figure 3.1: Abstract view of a 1 dimensional, radius 1 CA 

torus rather than d-dimensional Euclidean space. For a 1-dimensional radius 1 

CA with ceUs Q, . . . , G - ~ ,  the next state of ceU Q is a function of G-1, Q, and 

cl while ceU G-1 depends on CO, G-1, and G-2-  

intermediate boundary: for a dimensional CA, ce11 Q depends on Q, cl, and 

cz, ce11 G - ~  depends on ç + l ,  &-a, and G-3. 

Figure 3.1 depicts a segment of a 1 dimensional hybrid nearest neighbor CA. 

When implemented in hardware, each ce1 c; is typically a fiipflop which is updated 

synchronously by the combinational logic fi(c;-l, c;, G + ~ ) .  Clocking lines are omitted 

for clarit y. 

There are various notations in the literature used when discussing CA. In 

this thesis the following notations are adopted- The actual cells are denoted by 

Q, cl, . . . , c,+~, left to right, where n is the number of cells. The states of these cells 
( t )  ( t )  (4 at time t are vo , v,  , . . . , representing the stored values, and the aggregate of 

these is the state uector3 v ( ~ )  = (uO, q ,  . . . , v ~ - ~ ) ! ~ ) ;  if t is understood from the context 

or is arbitrary the exponent is omitted. The rule at cell u is fi(c;-i, c;, ~ + l ) -  If time 

is arbitrary, the next state of cell ci is c?, thus c+ = fi(ci-1, s, cicl) - 

A widely used convention used to identify one of the 256 nearest neighbor rules 

is the ntle number, an integer r with O s r <  255. The rule number of a rule f is the 

decimal equivalent of the binary number ob tained when the values of the rule7s t ruth 

table are listed, i-e. [f(1,1,1) f (1,1,0) .  . . f (0 ,0 ,  

Note that the behavior of a CA throughout time is often referred to as evohtion. 

3often state, CA state, vector, or configuration are used in place of state vector 



Table 3.1: The rules of an example CA 

To avoid confusion with the concept of genetic euolution central to this thesis and 

introduced in chapter 4, this use of the tvord is neglected here. 

Here we give an example of a null boundary CA with n = 5 ceUs, The rules of 

this CA are given in table 3.1; note that as this is a null boundary CA the nonexistent 

cells and cg are taken as constant O. The rule numbers associated with the rules 

fo, - . - , f4 are, respectively, 150, 86, 90, 30, and 90. The junctional digraph of a finite 

CA (or any autonomous FSM) is a digraph in which each of the 2" nodes is a state, 

and a single arc leaving each node follows the transition function. Figure 3.2 depicts 

the functional digraph for the nul1 boundary CA of table 3.1. In this digraph, each 

state is represented by an integer obtained by interpreting the state vector as a 5-bit 

binary nurnber with c4 being the low order bit. 

The remainder of this chapter consists of four sections, each summarizing a 

distinct vein of research on cellular automata. The sections are presented in the 

chronological order of when the research was instigated. John von Neumann coined 

the term cellular automaton and studied them as a medium for computation; his tvork 

is discussed in section 3.2. Perhaps the most famous family of CA are those that con- 

stitute Conway's game of life presented in section 3.3. CA are hailed as the discrete 

analogs of the physicist's dynamical systems and have been studied extensively by 

renowned physicist Steven Wolfram. Wolfram's work is summarized in section 3.4, 

Finally, section 3.5 gives some of the results pertaining to linear CA obtained using 

the tools of matrix algebra. Precluded from this chapter is previous work with evo- 

lutionary techniques targeting CA, which is reviewed in section 5.2, and the VLSI 

testing applications reviewed in section 2.4. 



Figure 3.2: FunctionaI digraph of the CA of table 3.1 

3.2 Von Neumann's Work 

The computer scientist and mathematician John von Neumann performed ex- 

tensive pioneering work with CA. Kowever, he did not investigate CA for mathemat- 

ical properties, but rather as a means of facilitating his search for universal and self 

reproducing computational machines [33]. Von Neumann worked with %dimensional 

infinite cellular space in which each cell's neighborhood consists of itself and four 

immediate neighbors, i.e. those above, below, left, and right of the cell. He defined 

a cellular space with 29 states that is both computation-universal and construction- 

universal- In the set of 29 states there is a special blank state. 
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Computation-universal means that the CA is capable of simulating any Turing 

machine. To achieve this, he describes how, given any (deterministic) finite automa- 

ton, to construct an initial state assignment in the cellular space (with only a finite 

number being non-blank) that simulates the finite automaton. Also, he explains how 

to create physical cellular loops to read and write to the tape, thus emulating the tape 

mechanism of a Turing machine. Finally von Neumann explains the architecture that 

melds these two devices, thus allowing for implementation of any Turing machine in 

the cellular space- 

Inspired by early work by Post and Turing, the primary goal of von Neu- 

mann's work was the investigation of self-reproduct ive systems [34]. Construction- 

universality requires the existence of a Turing machine Mc c d e d  the vniuersal con- 

structor (embedded in cellular space) that, given the description of an arbitrary 

Turing machine M on its tape, Mc will construct M in a blank region of the cellu- 

lar space and begin simulation of M against its input (also specified on Mc's tape). 

von Neumann successfully built a universal constructor in cellular space, and since 

the Turing machine to be constructed by Mc is arbitrary, it could be Mc itself, thus 

self-reproduction was obtained, 

As an interesting note, this work of von Neumann's was performec 

Later, with the aid of the computer, Codd reduced von Neumann's ce1 

one with the same universality properties but with a mere eight states 

d analytically. 

lular space to 

[35] - 

3.3 Conway's Game of Life 

One of the many "gamesn theoretically analyzed in [36] is called the Game of 

Life. The Game of Life (or simply Life) is an infinite Sdimensional CA with binary 

states. Similar to von Neumann's cellular space, Life is a unifonn CA- However in 

Life, the neighborhoods consist of 9 cells: the cell itself, and the eight neighbors 

directly or diagonally adjacent. The two states are dubbed live and dead, and the 

rule is expressed in table 3.2, in which s and sf are the current and next state, 

respectively, and C is the number of [ive cells of the 8 adjacent neighbors. 



s 
liue 

Table 3.2: Life's transition function 

live 
liue 

dead 
dead 

Conway and other researchers were interested in the Iimiting behavior of Life 

from various initial state assignments with a small number of adjacent hue cells. 

Many such configurations received colorful names t hat reflect the induced behavior. 

some examples are the tumblers, barbers pole, spaceships, and glider. Some codigu- 

rations (or patterns) are stable in that Life does not change over time. Others are 

oscillatory, i.e. they cycle through various configurations eventually returning to the  

initial configuration. Translatory patterns are oscillatory, but when a state cycle is 

complete, the pattern has physicdly moved in the Life space, the glider is a simple 

translatory pattern that consists of but 5 live ceus. 

Originaily Conway hypothesized that Life would always yield a bounded number 

C 
2 4 

of [ive cells from finite initial conditions. However this was shown to be false when 

in 1971 a group at MIT discovered the glider gun, rvhich emits a glider every 30 time 

units. Throughout the early 1970s much work was done finding interesting behavior 

in Life, most of which went unpublished [34]. 

Using the existence of &der guns and other constructs, Conway was able to 

create the basic logic gates NOT, AND, and OR, and also memory arrays in Life. 

Thus this simple CA could implement an arbitrary digital cornputer, in which the 

"wiresn were glider paths. The conclusion is that Life is computation-universa1; it 

was also shown t hat Life is construct ion-universal. 

Though these results are theoretically very significant, more relevant to this 

thesis is the unpredictability of the patterns emerging in Life which Conway and 

many others studied. This is exemplified by Conway's enurneration of Life's reaction 

to each of a straight line of n liÿe cells, Z 4 n $ 20, and all 12 possible pentominoes 

5 1 
E {2,3) 

= 3 
+ 3 

sf 
dead 

interpretation 
death by overcrowding 

dead 
liue 
live 
dead 

death by exposure 
survival 
birth 
rernain dead 



[36]. The resulting behaviors clearly do not adhere to any simple means of prediction, 

which suggests a sort of randornness. 

3.4 A P hysicist 's Perspective 

As a physicist, Stephen Wolfram saw CA as a means of (discretely) modeling 

complex physical, chernical, and biological systems. The former child prodigy sought 

a new mode1 for the complexity found in the universe, which traditional mathematics 

had failed to capture. Familiar with the complexity found in Life, Wolfram turned 

to cellular automata for this purpose and during the 1980s embarked on an extensive 

study of CA, publishing around 20 papers on the topic. During the 1990s, he has 

ceased publication of his research, amassing his results for the populace in a 1200 

page text boldly named A New f i d  of Science4. 

Where the vast majority of prior CA studies focussed on 2 dimensional CA, 

Wolfram considered elementary CA to be the logical starting point for his investiga- 

tions. Elementary CA are Z dimensional, uniform, binary CA with nearest neighbor 

communication. Hence an infinite elementary CA can be fully described by the uni- 

form rule, of which there are 2' = 256. In his work, Wolfram presents many visual 

CA growths in which C A  states are represented by a row of pixels (white for 0, black 

for 1), consecutive states in time being depicted on successive lines5. Examination of 

these growths give the observer an intuitive feel for the level of cornplexity inherent 

in the associated CA. 

In [13, 141 CA with legal rules are considered. A legal rule f (ci-1, q, is 

symmetric in c;-1 and Q+I and has f (O, O, O )  = O; there are 32 such rules. Wolfram 

examines the behavior of all 32 infinite elementary CA with legal rules, starting from 

an initial state with exactly one nonzero site. Many of these are found to demonstrate 

fractal patterns with time; the fractal dimensions are calculated. Indeed, the growths 

of these CA hauntingly resemble the Sierpinski arrowhead, one of the many fractal 

*to be released sometime in 2001 
'sec appendix B for examples of CA growths 



sets presented in the classic text on the subject [37]. 

For an alternate approach, periodic boundary elementary CA of relatively srnall 

size n are exarnined on a global level, where al1 2" possible states are considered. Some 

states are more likely to appear than others; i-e. arise frorn multiple possible previous 

states. This phenomenon is called irreversibi l i t  y and accounts for the self-organization 

prevalent in certain rules. Irreversibility implies the existence of funct ional digraph 

nodes with O indegree and others with greater than 1 indegree, this phenomenon is 

present in figure 3.2- Another characterization is the differences in the long term 

effect of commencing CA simulation with initial states of small Hamming distance. 

Wolfram briefly extends his anaIysis to elementary CA with k > 2 possible states per 

cell [11]. 

In [15], Wolfram qualitatively and quanti tatively examines al1 32 legal rules, 

and partitions them into four classifications depending on the limiting behavior a .  

CA time becomes large: 

1. Almost al1 initial states Iead ukimately to a unique homogeneous state. In time 

all information regarding the initial state is lost. 

2. Limit ing behavior is characterized by simple separated structures. Changing the 

value at a cell in the initial state only affects a finite range of cells in successive 

states. 

3. At tracting structures are chaotic patterns. Independent of the initial state, 

these patterns tend to exhibit the same statistical properties. A small change in 

the initial state affects an unbouaded number of cells in future configurations. 

4. The mos t complicated behavior, complex localized structures emerge. The tem- 

poral behavior can only be determined via explicit simulation. Wolfram hypoth- 

esizes that these CA are capable of universal computation. 

Wolfram recognizes the fact that CA can be employed as random sequence 

generators. He investigates the use of an elementary CA with rule 30 c: = q-; @ 



(c; + G + ~ )  as a generator of random sequences extensively [ B I .  Twenty unsolved 

problems in the field of CA are proposed in [39j. 

The preceding discussion has sumrnarized the relevant cross-section of Wolfram's 

(pubiished) work in the field. Omitted is his work applying CA to thermodynamics, 

fluid t heory, and cryp t ography, and analyzing 2 dimensional CA. 

3.5 Algebraic Result s 

Section 2.4.1 gave a brief introduction to the theory of linear finite state ma- 

chines (LFSMs). This section elaborates and discusses the problem of CA synthesis, 

the solution to which is utilized in this thesis. 

LFSM lend themselves to algebraic analysis because of the fact that the tran- 

sition function of a LFSM can be expressed as a transition matrix A. Because the 

transition function of a LFSM can be expressed as a transition matrix over a finite 

field, many properties of these machines can be determined using algebraic techniques. 

Because of linearity, the all O state vector (or, simply, the O state) is mapped to itself 

under the next state function. 

A CA is a LFSM if and only if every rule is itself linear; table 3.3 lists the 

eight possible linear d e s .  Of these eight rules, only the two rules 90 and 150 are 

nondegenerate in that they preserve two-way communicatioa. For example a ceil with 

rule 102 only depends on itself and its right neighbor, thus the ce11 and al1 cells to its 

right are never affected by the cells to the left. 

Associated with a LFSM with transition matrix A is the characteristic poly- 

nomial 4 ( x )  = d e t ( x 1 -  A) .  Much can be deduced regarding the structure of the 

functional digraph of a LFSM from its characterist ic polynomial and transition ma- 

trix. 

The transition function of a group LFSM forms a cyclic group. In a group 

LFSM, al1 states have predecessors. A LFSM is a group LFSM if and only if its 

transition matrix A has det(A) = 1 (31. If #(x) is irreducible, then al1 nonzero states 

lie on cycles of length k, where k is the least integer such that $(s) divides zk - 1 [9]. 



number 
O 

170 
204 
240 
102 
90 
60 
150 

expression 
cf = 0 

Table 3.3: The eight linear nearest  neighbor CA rules 

An irreducible polynomial p ( x )  of degree n is called primitive if the smailest such k 

is 2" - 1. It follows that a LFSM with a primitive characteristic polynomial has al1 

2" - 1 nonzero states on a single cycle; such LFSMs are called mazinzum length or 

primitive. 

Nongroup LFSM have also been studied. Such machines have transient states 

that are not part of a cycle. The functional digraph always consists of one or more 

disjoint cycles called attractors with inverted trees of transients rooted on the cyclic 

nodes. States with no predecessors (i.e. the leaves of these inverted trees) have been 

called garden of Eden states; others are called reachable. It has been shown that in 

a LFSM's functional digraph, the number of predecessors of any reachable state is 

equal to that of the O state [3]. Furthermore, the trees rooted on cyclic states in the 

transition diagram of such CA are ail isornorphic [3, 101. 

LFSR and linear CA can defined by restrictions placed on the entries of the 

transition matrix. A (type 1) LFSR has a transition matrix of the form in figure 

3.3. The sub diagonal consists of al1 ls, al1 other entries are O except the rightmost 

column, the entries {aa ,  a l ,  . . . , a,-l) may be either O or 1. When ai is nonzero this 

indicates that the next state of ceLl c; is the modulo-2 addition ci-1 $ Cn-i, and thus 

the rightmost column dictates the placement of the EXOR gates in the LFSR (see 

figure 2.4). The characteristic polynomial is then given by 



Figure 3.3: General form of a type 1 LFSR transition rnatrix 

Figure 3.4: General form of a hybrid rule  90/150 CA t r ans i t i on  matrix 

Thus, given a polynomial p(x), we can imrnediately construct a LFSR with 

characteristic polynomial p(x) by filling in the rightmost column as per the  coefficients 

in the polynornial. Primitive polynomials exist for al1 degrees n and can be generated 

in polynomial time [40]. These two facts in conjunct allow us to create a maximal 

lengt h LFSR wi t h any nurnber of cells. As mentioned in section 2.4, maximum length 

FSM make good pseudorandom pattern generators for BIST. 

In cont ra t ,  given a polynomial p(x), the problem of finding a CA with charac- 

teristic polynomial p ( x )  is difficult. In fact, the existence of a CA for any irreducible 

polynomial was not proven until 1995 [5]. A hybrid CA with rules 90 and 150 has 

transition matrix of the form of figure 3.4. The sub and super diagonals are al1 ls, 

al1 other entries are O except for the  main diagonal, which has d; = O (d i  = 1) if ce11 

i uses r d e  90 (150). Unlike t h e  entries of the rightmost column of figure 3.3, the 

values of do, d l ,  . . . , dn-l hold no simple relationship to the coefficients of the charac- 



teristic polynomid- Given an irreducible polynomial p(x), the problem of finding a 

CA with characteristic polynomial p(x) is called the CA synthesis problem. Of course 

given a CA? the characteristic polynornial can easily be obtained by computing the 

determinant d e t ( x l  - A)- 

A near-brute force search algorithm is given in [2], but is prohibitively slow for 

large n. In his PhD dissertation [SI, Cattell derives an efficient algorithm for CA 

synthesis. This algorithm uses the CA recurrence relation proved in [2]. Given a 

CA with n cells, let Ak denote the characteristic polynomial of the CA f o m d  by 

removing cells I I - ,  k + 1, . . . , n - 1, thus the characteristic p01~ynomia.l of the original 

CA is 4,. Then the  CA recurrence relation may be stated: 

Cat tell discovers that the CA recurrence relation essentially describes Euclid's 

greatest common divisor algorithm, with Ar the dividend, Ak-1 the divisor, (x + 
d k )  the quotient, and Ak-* the remainder. From this it is determined that a CA 

may be  synthesized from a irreducible polynomial by solving a quadratic equation in 

GF(2"). The relevant quadratic has a known solution, and the result is an efficient 

aIgorithm to solve the synthesis problem. Other contributions of the dissertation are 

the demonstration that any irreducible polynomial has two CA realizations, and a 

proof that no periodic boundary CA has an irreducible characteristic polynomial. 

Cat tell's efficient synthesis algorithm facilitates the production of a large number of 

primitive CA needed for the main work of this thesis. 



4. Genetic AIgorit hms 

4.1 Introduction 

Genetic Algorithms (GA) are a class of search technique based on the natural 

phenomenûn of naturd selection and genetic evohtion. They have been used to 

t ackle hard optimization problems, i.e. those characterized by properties such as 

nonlinearity, discont inuity, hi&-dimensionality, and noisiness. This chapter does not 

attempt to summarize the history of research into the mechanics of GA, nor provide 

an exhaustive enumeration of the abundant areas in which GA have been successfully 

applied. Tt does aim to provide the background necessary for understanding of the 

basics of GA, and out Line other evolutionary computing techniques. 

Section 4.2 describes the simple genetic algorithm, which most GA closely re- 

semble or expand on; an exarnple of the simple GA in action is provided in section 4.3. 

The building block hypothesis is explained in section 4.4, while section 4.5 discusses 

fitness scaling, a mechanism employed in this thesis. Finally some other members of 

the family of Evolu tionary Algorithms are summarized in section 4.6. 

4.2 The Simple Genetic Algorithm 

This section explains the inner workings of a basic genetic algorithm. More ad- 

vanced genetic algorithms involve sophisticated genetic operators, parallel processors, 

and more accurate imitation of natural genetics. 

The operation of a GA is "remarkably straightforward" [16]. Given a specific 

computational problem, a GA works against a population of fixed length strings of 

symbols called individuals or chromosomes. Each individual I encodes a candidate 

solution to the problem at hand, and there exists a fitness function f (1) that maps 

I to a real number called the fitness. The fitness function is chosen by the GA user, 

and should be defined such that better solutions in the underlying problem domain 

receive higher fitness. In other words, f ( I l )  > f (12) should always indicates that 



the solution represented by the chromosome 11 is superior to that of 1 2 -  The GA 

evolves the population through many generations, starting from an initial population 

P(O), which typically consists of completely random individuals. Generation j + 1 

is created from generation j by the application of three genetic operators, called 

crossover, reproduction, and mutation. Each time a genetic operator is applied, the 

individuals involved are selected randomly with probability proportional to the fitness. 

The genetic operators are repeatedly applied until enough new individuals have been 

created to constitute generation j + 1 (in the simplest GA, the size of the population 

is fixed). The  fitness of the individuals of the next generation are then evaluated, and 

the process iterates until some stopping condition is reached. 

The three genetic operators are now described. Crossover takes two individuals 

IL and Iz and randomly selects a crossover point, which is an integer between 1 and 

the length of the strings. The offspring I; ( I ; )  is produced by concatenating the 

prefuc of Il (12) before the crossover point with the suffix of I2 (IL) beginning at the 

crossover point. Mutation replaces a symbol in a chromosome with a randomly chosen 

symbol from the alphabet; each symbol of an individual I is subject to  mutation with 

a typically very small probability. The simplest genetic operator is reproduction, in 

which the selected individual is copied unchanged into the next generation. 

The pseudocode for a genetic algorithrn is given in figure 4.2. This algorithm 

is basically the simple genetic algorithm (SGA) of [16], and is used as the basis for 

al1 GA in this thesis. Note that P and P,., in figure 4.2 are rnultisets, thus the 

imer while loop always completes. Also, the routine randomIndividual() returns 

an individual selected randomly from P with probability proportional to the fitness. 

4.3 An example 

Here we follow a simple genetic algorithm that attempts to maximize the real- 

valued function p(x) plotted in figure 4.2 (p(x) is a quartic polynomial multiplied 

by s in(x)) .  hdividuals are encoded as bitstrings of length 20; each encodes a real 

number by interpreting the string as a binary number with the decimal point after 



c rea t e  i n i t i a l  population P(0)  
P t P(0)  
while h a l t i n g  condition not reached do 

evaluate f i t n e s s  of each individuai  i n  P 
Prie, + 0 
while IP,,! < IPI do 

II t randomIndividua1 () 
i2 t randomIndividua1 () 
i f  rand() < p, then 

{ 1 t crossover(IL, Iz) 
else 

1; + rL 
1; t r2 

e n d i f  
f o r  i + l...n do 

if  rand() < p, then 
mutate ( I i ,  i) 

end if  
i f  rand() < p, then 

m u t  at e (I;, i) 
end i f  

end f o r  

pnew + pneu, u {I;?I;} 
end while 

end while 

Figure 4.1: The simple genetic algorithm 

the 7'" bit from the left. Since the goal is function maximization, we take the fitness 

of an individual as simply the value of p ( z ) .  Also, we wish to find the maximum on 

the interval [O, 1001, so values of x in (100,127) are assigned a fitness of O. In this 

example, the population size used is 10. 

Table 4.1 gives the initial and second generations of an actual run of the GA. 

The individuals of the first generation are chosen completely randornly, with each bit 

being O or 1 with equal probability. The top half of table 4.1 lists the ifidividuals of 

the initial population under the column 'chromosome", each is assigned an ID under 

the leftmost column. To the right of the chromosome is the value of the individual 

when decoded as binary nurnber with the most significant bit corresponding to 26. 



Figure 4.2: The target function in the example GA 

The value of p(x) is given in the next to leftmost colunm. We see that the fittest 

individual of this initial population has fitness 535, while a visual inspection of figure 

4.2 reveds that the greatest possible fitness is close to 900. 

The bottom half of table 4.1 shows the individuals of the second generation, 

produced via applications of the genetic operators of crossover, mutation, and repro- 

duction against individuals of the initial generation. The rightmost colurnn labeled 

"genetic history" indicates what operators and parents from the initial population 

bestowed each individual. crossouer(a, ,û, c) indicates that the individual was formed 

by the crossover operator concatenating the leftmost c bits of individual with ID 

a with the rightmost 20 - c bits of individual P. When individual a was simply 

reproduced wit hout crossover the genetic history s tates reproduce(a) - Finally, an 

additional mut(d) means that the individual arising from the primary operator expe- 

rienced a mutation at bit d, i.e. bit d was flipped. We see that the fittest individual 

of the new generation enjoys an improvemeot over that of the prior. In fact even the 

second fittest is more fit than the initial best. Another important observation is that 

the average fitness across the population has increased drastically, from 191 to 326. 



chromosome 
10100111101110110000 
11000000101000100100 
00100100010101000001 
100l010L011100110110 
10111011000110001001 
11000111000100111011 
01010101011100010000 
11100101000010110011 
11100001011001110101 
11110101111110000001 
10100101011100110110 
10100111101000100100 
10100111110101000001 
10010111101110110000 
11000000101000100100 
11000000101110110000 
00100000010100110110 
00100100010101000001 
00100100001110110000 
10010101011101000001 

genetic history 

Table 4.1: Initial and second generations of t h e  exarnple GA 

4.4 the Building Block Hypothesis 

Given the computational probhm and solution encoding, the budding block hy- 

pothesis is a theory that predicts how well a GA will perform [16]. In the study of 

GA, the term schema refers to special sets of individuaIs, defined as follows. Suppose 

the GA is working against strings of Iength n over an alphabet C. A schema is a string 

of Iength n over the alphabet (C U {*)), where * represents the d o n t  care value, i.e. 

a n y  member of C. A position i in a schema H = ho.. .h,-l is called jixed if hi E C. 

The set of strings represented by a schema H consists of al l  strings X = xo. . . x , - ~  

such that xi = hi if i is fixed; a member of this set is said to match H (and vice 

versa). The defining length b ( N )  of a schema H is the number of positions between 

the rightmost and leftmost iked positions in H (inclusive), while the order O(H) of 

H is simply the number of fixed positions. For example the schema N = * + 0 1 * * 1 has 

b ( H )  = 5 and O(H) = 3. Given a population of individuals, the obserued performance 



of a schema H is the average fitness over al1 individuals matching H. 

Equations can be derived predicting the expected nurnber of individuals in the 

next generation matching a particular schema. When reproduction is the only oper- 

ator taken into account, the resulting equation predicts t hat schema with observed 

performance consistently higher (lower) than the average fitness receive exponentially 

increasing (decreasing) copies in successive generations. When crossover is included 

in the model, we find that schema with good observed performance and short defin- 

ing length are most likely to propagate. This stems from the intuition that schema 

rvith long defining length are more likely to be *'broken7 by crossover. Finallx n-hen 

mutation enters the picture, one finds that another factor in schema survival is the 

order; those with low order are less likely to be destrûyed when mutation is applied. 

The implication is that short? low order schema with high observed performance 

enjoy a representation that increases exponent ially t hroughout GA evolution; such 

schema are called building blocks. This result is known as the Fundamental Theorem 

of Genetic Algorithrns, which 

m ( H ,  t + 1) > 

is formally stated: 

where m ( H ,  t )  is the expected number of inclividuals rnatching scherna N at generation 

t ?  f t ( H )  is the observed performance of H in generation t. ft is the average fitness 

over al1 individuals in generation t ,  and p, and p ,  are the respective probabilities of 

crossover and mutation. 

Now consider the optimal or near-optimal solutions to a problem, and the strings 

they map to under the GA encoding. If the building blocks that match one or more 

of these optimal individuals realize high observed performance, then we can expect 

the GA to converge to a good solution. However, if many of the building blocks also 

match a large number of weak individuals, then they are likeiy to be killed off. This 

concept is referred to as the building blocl; hypothesis. A predicament faced when 

applying a G.4 is determining if the building blocks present in good solutions \ d l  



usually receive above average fitness in ot her individuals t hat t hey represent . This 

can be a complex problem, since a single building block matches a large proportion 

of the entire search space. 

4.5 Fitness Scaling 

This section describes the linear fitness scaling (LFS) of Goldberg's simple GA 

[16]. Fitness scaling maps the rav fitness f returned by the user-defined fitness 

function to a scaled fitness f'. ünder LFÇ. this mapping takes the form f = a f +b. the 

coefficients a and b are recomputed each generation such that the expected number of 

times the fittest individual is selected for participation in a genetic operation is equal 

to the user-specified parameter CmUu, and the average individuals are (each) espected 

to be selected once. Let f,.,' fa,: and f,, respectively denote the masimum. 

average, and minimum raw fitnesses in a specific generation. Then ive require fk,, = 

CmUitfa, and f:, = f,,, i.e. the scaled fitness of the fittest individual is C,,it that 

of the average fitness. These points yield: 

a = /aug(Cmuir-1) 

fmar-fawg 

6 = faYg /ma=-Cmultfaue 
(4.1 

fmaz-favg 

-4 slight problem with this function is that after evolution has occurred for some 

time and fa,, and fm,, become close, the dope of the function can become sufficiently 

steep as to map f,, to a negative value. This is undesirable, since it complicates 

the process of computing selection probabilities. The remedy is to test if eyuation 4.1 

would result with f;,, < O, and if so' define a and 6 such that JL,  = O' keeping the 

constraint f:, = fa,- 

In practice, the values of Grnuit employed are typically in the range [1.2, 21; in 

this thesis, CmUrt = 1.5 [16]. 



4.6 Relat ed Techniques 

GA fa11 under the umbrerla of Euolutionary Algo,rithrns, along with its cousins 

EuoZutionaq Programming, Classifier Systerns, and Genetic Pmpamming. Also in 

this group are Euolu tion Stru tegies, not descri bed here, 

Evolutionary Programming (EP) [41] is a technique similar to G-4, with two 

notable exceptions. EP does not use a crossover operator, the new population is cre- 

ated by applying mutations of various degrees of severity to the previous population. 

Also, the population size need not be constant. EP was originally used (with limited 

success) to evolve small FSM that predict the output sequence of a Markov process: 

such FSMs are of use in artificial intelligence. 

Classifier Systems are a type of genetics-based machine learning system [16]- 

and are briefly described here. Embedded in an environment, classifier systerns receive 

input messages via detectors, which trigger internai if-then niles called classifiers. The 

triggerecl classifiers compete in a credit system, in which those tvith higher strength are 

more likely to \vin the privilege of transmitting to other classifiers or produce output. 

The population of classifiers are subject to a GA: in which they are subject to the 

usual genetic operators. Classifier Systems have been used to teach machines a variety 

skills, including maze navigation [42]. gas pipeline control (431, and Norwegian verb 

forms [44]. 

Genetic Programming (GP) refers to an extension of the GA paradigm in which 

the individuals under evolution are actual cornputer programs. Rat ber t hen being 

encoded as fixed length strings, the programs are processed as rooted, labeled, edge- 

ordered trees. This tree representation is essentially the parse tree a compiler would 

build for the program. Al1 functions used in defining the programs are defined a 

priori in a function set. Crossover is performed bettveen two parent programs by 

randomly selecting a node in each tree, and then swapping the subtrees rooted at  

these nodes. Besides mutation, ttvo other secondary genetic operators are utilized in 

GP. Permutation selects a node, and then permutes the children, in effect permuting 

the arguments to the function. Editing requires a list of editing rules, which are used 



to s i m p w  programs. For example. the occurrence of ( !VOT(NOT(X) ) )  might be 

replaced with (X). Koza [45] provides a comprehensive survey of GP. 



5.  CAGA and Advanced Operators 

5.1 Overview 

This chapter presents the centrai work of the thesis. .As described in chapter 

3, GAs are an approach to complex optimization problems with search spaces too 

large for exhaustive evaluation. The problem we tackle is certainly such, and can be 

fonnally stated as follows: 

Given a combinational n e t w o ~ k  C with n primary inpvts, find an n-cell cd lu lar  

automaton -4 and a Ctinary n-vector v such that  u h e n  started in state v .  -A generates 

tests for al l  single stuck-at faults in C in a m in ima l  number of  dock ticks. 

The size of the search space here is an impressive 2'" (for each primary input ive 

have a CA ce11 defined by an %bit truth table as well as 1 bit for the initial state). The 

encoding used is either a 2.56-ary or 512-ary string of length nt depending on whether 

the initial CA state is included in the chromosome. To what degree this problem and 

choice of encoding satisfies the building block hypothesis is clearly intractable. Thus 

evaluation is performed empirically over the nonredundant ISC.4S '85 benchmark 

combinational circuits [li]. Details pertaining t o  these ten benchmarks can be bund 

in appendix -4- 

The remainder of this chapter is partitioned as follows. Section 5.2 gives a 

brief survey of previous research relating to the creation of "good" CA-based pattern 

generators. In 5.3, the cellular automata genetic algorithm (C-AGA) is presented and 

issues regarding handling of the initial vector and approach to mutation are addressed. 

Also experiments with differing crossover probabilities are performed, Section 3.4 de- 

fines and investigates the use of two advanced "application specific" genetic mutation 

operators as means of improving the power of CAGA. The possibility of improving 

the crossover operator is discussed in 5.5. A simple means of further shortening test 

length is given in section 5.6. The chapter is surnmarized and concluded in section 

5.7. 



5.2 Related Work 

Genetic evolution of CA is not a new concept. Here we summarize previous 

research on finding good CA BIST generators and on the more generai problem of 

finding a CA that satisfies certain randomness properties, such as some subset of 

Knuth's randornness tests [46]. Note t hat the history of %on-evolutionary" C.4 

work is outlined in chapter 3. 

In (451, Koza demonstrates how a random number generating l-dimensional 

uniform CA on 32 cells is evolved. The fitness function is based on the entropy (a  

measure of randomness) of the bit sequence produced by a fixed celi over 4096 clock 

ticks. Somemhat surprisingly, the evolution tends to converge to a rule-JO CA_ mhich 

has previously been shown by Wolfram to satisfy several common randomness tests 

[3S]. Koza also extends his techniques to the evolution of a %-dimensional C.A. 

Cellular Programming refers to the local evolution of non-uniform CA to per- 

form computational tasks [47]. Cellular programming bas been investigated when 

the target computational task is random sequence generation. Instead of a population 

of CA, cellular programrning involves a single non-uniform CA. In each generation. 

a fitness is assigned to each ce11 based on the entropy of the bit sequence produced 

by t h e  cell. The reproduction and crossover operators are only performed between 

the rules of adjacent cells; mutation is also applied. It is demonstrated that as this 

evolution proceeds, the average entropy of al1 cells in the CA approachs the maximum 

possible value [G]. 

There has been extensive research on applying GAs to various VLSI problems 

by the Electronic CAD 9i Reliability Group at Politecnico di Sorino in Italy: the 

sequel elaborates. 

The most relevant to  the work of this thesis is that of Chiusano et al. who 

implement a GA working on a population of non-uniform nonlinear C-4 with fitness 

based on fault coverage of a specific CUT [49]. A restricted %-dimensional CA is the 

theme structure: this variation has a width of n cells, where the CUT has n prirnary 

inputs, and a vertical dept;h of 2 cells. Chiusano et al. target the stuck-at faults of 



sequential circuits. As outlined in section 2.5, testing sequential circuits is a harder 

problem then the testing of purely combinationd networks. The motivation behind 

the use of this 2 x n CA structure is to provide the generator with the resources to 

produce the ordered sequences necessary when testing sequential CGTs. 

Low power BIST adds another dimension of complication to the  standard testing 

problem in that the power consumption of the chip when in test mode is sought to 

be rninimized (or at least constrained). Ln [50], Corno et al. describe a technique for 

synthesis of nonlinear CA when the objective is low power BIST. T h e -  do not use 

a GA, but rather another probabilistic algorithm: Random Mutation Hill Clirnber. 

This technique involves evaluation of randomly chosen mutations on a CA until an 

improvernent is found, then feeding back the new CA into this process. Of course the 

fitness function here is not only based on fault coverage and test length, but also an 

estimation of power consumption. Though the search algorit hms differ. an important 

similarity between this thesis and the work in (501 is that both use primitive CA as 

starting points. 

In [5 11, the group use a GA for automatic test pattern generation for sequential 

Iogic. A significant contribution is the concept of irnproving a GA by using advanced 

genetic operators that are specific to the underlying problern. Development and 

evaluation of such operators is a primary effort of this thesis. 

The Politecnico di Torino group has also investigated the genetic evolution of 

a CA for what is dubbed circular CA BIST, in which the same C-4 is used as the 

TPG and output compactor [52, 531. Other areas of VLSI in which this group 

has explored the use of G.4s include: floorplan area opt imization [54] : automatic test 

pattern generation [55,56: 571, selection of fLip-flops for partial scan [ S I ,  non-aliasing 

output compact ion [59], and equivalence verificat ion [60]. 



5.3 The Cellular Automata Genetic Algorit hm 

5-3.1 CAGA Described 

In this section the central idea of the thesis is presented: a genetic algorithm that 

evolves a nonlinear CA that is "good" at testing some target combinational circuit 

for stuck-at faults. Here, "good" translates to -able to  detect some target percentage 

of ail stuck-at faults in as few clock ticks as possible". This subsection describes the 

dgorithm, its parameters, and which parameters \viU remain fixed throughout the 

t hesis. Section 5 - 3 2  considers two different mutation strategies and inclusion of the 

initial CA state in the chromosome. Section 5.3.3 presents a set of esperirnents that 

justifies using a crossover probability of 0.6. 

The CAGA algorit hm is essentially the simple genetic algorit hm (SGA) given bj- 

Goldberg [16] applied to  an initiai population of distinct primitive C.A. These CA are 

al1 of length n, where n is the number of primary inputs to the target circuit (CCT). 

The test vector seen by the circuit is simply the state of the CA' i.e. no additional 

gating or cells are used. The raw fitness f,., of a C.4 is determined as folloms. Fault 

simulation determines the test length t required for the target coverage. Fcor. The 

parameter Tm,, controls the maximum number of vectors to generate before fault 

simulation halts, i.e. if a CA has not achieved the target coverage after Tm,, vectors. 

a value of t = Tm,, is returned. f,,, is then computed using the simple Formula 

f,,, = Tm., - t. The choice of Tm,, itself is such that most of the initial population 

has positive raw fitness. The actual value of Tm,, for each benchmark is given in 

appendix A. 

In CAGA, the chromosomes have length n and the value at position i holds 

the rule nurnber at cell i of the associated CA. If Goldberg7s SGA paradigrn ivere 

to  be followed precisely, the initial population would consist of completely random 

individuals, i.e. the rule of each ce11 of each individual would be selected uniformly 

from the set {0,1, ..., 25.5). One does not intuitive- suspect that a CA created in such 

a marner is very likely to be even a mediocre test generator; this suspicion stems 

from both preliminary e-qerimentation and the fact that randomly genërated CA do 



not normally generate sequences with good randomness properties. 

If such an initial population was employed, Tm,, would necessariIy be very large, 

thus impeding run times significantly. To remedy this situation, CAGA is initially 

populated with (usuaUy distinct) primitive CA. This initial population of N primitive 

CA is obtained by using Cattell's eEcient CA synthesis algorithm, derived in [SI: to 

each of a population of degree n primitive polynomials. In turn, the list of primitive 

poLynomials is generated efficiently using the algorithm outlined in [4O]. Note that 

when n is sufficiently small cornpared to No i-e. when there is less than i\- primitive 

CA of length n, the initial population will have duplicates. 

Deterrnining the optimal population size for a GA is nontrivial. Too srna11 of a 

population causes premature convergence, while using a very large population incurs 

long computation times due to processing of redundant individuals. However. the 

focus of this thesis is obtaining good results in some reasonabIe amount of time, rather 

than doing so as efficiently as possible. In the absence of GA runtime constra.int. the 

use of a conservative (Le. large) population size is "good practice" [61]. -4s such. a 

population size of 300 is used. 

According to De  Jong's landmark dissertation [62]- crossoïer and mutation 

probabilities of p, = 0-6 and p,  = O . O O l l  respectively. gave consistently good per- 

formance over his benchmark functions. These parameter values have since been 

incorporated so often that they have become known as the "standard settings" [U]. 

We present a set of experiments that verify that the standard setting for p, is a good 

choice for the problem at hand. Mutation on the other hand is specified on a "per 

individual" basis, rather than per gene or bit. Given a value for p,  typically in the 

range [0.10,0.15], each gene is mutnted with probability 1 - (1 - the effect of 

which is that a C-4 undergoes u t  k a s t  one mutation with probability p,. 

The scaling coefficient Cmrt gives the expected number of tirnes the fittest ÇA 

from generation g will be selected for reproduction in generation g + 1: see section 

4.5. Values between 1.2 and 2.0 have been successful in practice [16]; here the value 

of 1.5 is used. 



An auxiliary mechanism used in CAGA not present in Goldberg's SGA is that 

the fit test Iz,,, individuals of generat ion g are reproduced unalt ered into generat ion 

g + 1. This allows for use of a higher than normal mutation rate; since the elite 

individuals are never lost in the evolution. Of course; use of a higher mutation rate 

further encourages the introduction of nonlinearities; t hus allowing for CA wit h large 

numbers of n o d n e a r  rules to be visited in the search process. A value of 10 is used 

for hep; the fittest krep distinct CA are reproduced each generation in this manner, 

but still included in the mating pool for creation of the remaining iV - k individuals. 

Regarding the fault simulator itself. the parallel pattern fault simulator /sim 

[Z5] has been integrated into the genetic algorithm code' thus preventing the overhead 

of making caUs to an external executable and transferring test data via temporary 

files. The fsim algorithm simulates packets of consecutive vectors in parallel. the size 

of these packets being dictated by the parameter 6, mlùch is typically a power of 2. 

Typically the larger 6 is. the faster fsim runs, however. the test length returned by 

fsim is a multiple of 6. Thus the granularity of fitness lelrels is adversely aflected by 

large b. Given these tradeoffs, it makes sense to set 6 proportional to the expected 

test length of the CUT. 

Findly. CAGA needs to have a halting condition. The choice made here is to 

run al6 experiments such that after given number Ag of generations without seeing an 

improvement, CAGA halts. Obviously the higher Ag is set: the more likely C-AGA is 

to rnake an improvement and buy another Ag generations to work with. Unless oth- 

erwise noted, a value of 200 is used in this thesis: as this tends to keep the algorithm's 

runtime down to about 3 or 4 days for the "hardest" circuit. 

The parameters of CAGA are now summarized: 

O the n-input combinational GUS, given in the ISCAS 'SJ netlist format. 

crossover probability p, = 0.6. 

mutation probability p,. 

population size N = 300. 



0 P(0): the initial population of N primitive CA. 

Cdt = 1.5: the coefficient used in the linear scaling function; determines the 

expected number of selections of the fittest individual of a generation. 

k = O :  the number of CA that are reproduced unchanged in the next pop- 

ulation. 

Tm,,, the maximum nurnber of vectors used to evaluate the raw fitness of a CA. 

b E {1_ 2,4, S, 16,321, the number of inputs vectors processed by the fault sim- 

ulator in parallel. 

F,,, the target fault coverage (espressecl as a percentage). 

Ag = 200, the number of generations without improvement before Ci-4GA halts. 

In al1 experiments, Fcov = 100%. with the exception of experiments in which 

either of ~26'70 or ~ 1 3 3 2  are the CUS. For these two circuits, test lengths required from 

typical primitive CA for 100% coverage are at least an order of magnitude greater 

than the other benchmarks. As such, the coverage used for ~ 2 6 7 0  and ~7.532  is alwajs 

99%. 

5.3.2 Choices Regarding Mutation and Initial Vectors 

There are two issues left unresolved regarding the use of GA techniques to et-olve 

a CA for BIST. One pertains to how mutation is performed; the other deals wit h the 

handling of the initial vector of the CA being processed by the G-4. We discuss two 

possible choices for each and then give results from a set of experiments conducted 

to evaluate al1 four possible combinations of approaches. 

5.3.2.1 Slight or Full Rule Mutation 

If we view the chromosomes as length n strings over a 256-ary alphabet, then 

the mutation operator, when applied. fdly replaces a cell's rule with a rule drawn 



uniforrnly from (OJ, ..., 2Xi). .L\lternatively, once a gene has been singled out for 

mutation, the operation could be performed by randomly flipping one of the eight 

bits defining the truth table of the nile of the corresponding cell. The effect of this 

Wight" mutation is either the addition or deletion of one rninterm from the rule. It is 

unobvious which of the two operators is likely to result in a more productive GA. On 

one h u d ,  slight mutation would intuitively seem to have a less drastic effect on the 

structure of the functional digraph of a C-4, and, indeed, its ability to test. On the 

other hand, full mutation encourages a more t horough exploration of the search space, 

allowing the more unbalanced rules to  be quickly introduced into the population. 

For instance: slight mutation causes a linear rule to become a rule with either 

3 or 5 ones in its truth table. Suppose the hard to test faults in the C U 7  are mostly 

tested by vectors with O on input i. Then it would seem that shorter test lengths 

would be promoted by placing a rule with only one or two minterms at cell i. For 

CAGA to arrive a t  such a rule under slight mutation, two or three mutations at 

the appropriate positions must occur - an unlikely event. Full mutation facilitates 

direct introduction of such rules. but also is more likely to bring about trivial rules 

or rules that break two-way communication in the CA, though this breakage might 

not necessarily be detrimental. Clearly? e-xperirnentation is necessar?; to determine 

the better mutation operator. 

5-3.2.2 Inclusion of Initial Vector in the Chromosome 

In this section we address the question as to whether the initial vector should 

be included in the chromosomes of the G.4. Suppose we choose some arbitrary initial 

vector v(O) that d l  CA in au generations are seeded with before fault simulation. This 

somewhat limits the GA'S ability to find the best CA/initial vector pair in that the 

initia1 vector is fixed. In efFect the problem being addressed is that of finding the best 

C.4 for testing the CCT with the prescribed initial vector. 

The alternative is to include the initial vector in the chromosome of the in- 

dividuals, and d o w  the initial vector to be unique to each individual and undergo 



circuit 
cl355 
cl908 
~26'70 
c3540 
cd32 
c499 
c.5315 
c62SS 
c '75 5 2 
csso 

FIV 
1240 
4320 

29024 
5368 

180 
508 

1216 
5 5 

5lS4 
3136 

VIV 
963 

1992 
1216 
1488 
164 
304 

104s 
31 

'304s 
:36S 

Full Mutation 
FEV 
1000 
2036 
1243 
3072 

180 
280 
992 
34 

2144 
352 

Table 5.1: Results of mutation and initial vector approach experiments 

crossover and mutation in conjunction with the d e  array. Note that inclusion of the 

initial state increases the alphabet size from 256 to 512 (each CA ce11 is now defined 

by 9 bits). Under this approach, each primitive CA in P(O) is assigned a ranclomlg 

selected initial vector. These vectors are constructed by setting the ith bit to O or 1 

with equal probability. The crossover operator proceeds as eupected; given individu- 

als A and B, a crossover point k is randomly selected, and the two offspring consist. 

respectively, of the concatenation of the first k rules and initial state bits of -4 (B) 

mith the Iast n - k rules and initial state bits of B (-4). CVhen a gene is selected for 

mutation, slight mutation is performed by uniformly choosing and flipping one of the 

9 bits. Thus the initial bit of the selected ce11 is flipped with probability 1/9. while 

the rule is modified with probability S/9. Full mutation uniformly selects a new rule 

and initial bit, Le. a new symbol from the 51'2-ary alphabet is chosen to replace the 

current symbol. 

We cal1 these two approaches fixed initial vector (FIV) and variable initial uec- 

tors (VIV), respectively. As in the question of slight verses full mutation. it is unclear 

wliether FIV or VIV will result in the superior CAGA 



5.3.2.3 Results 

E-xperiments were r u  for each of the four possible choices: slight mutation with 

FIV: slight mutation with VIV: full mutation with FIV: and ful l  mutation with VIV. 

For the F K  experiments, the initial vector used kvas always u(O) = 101010 . . . . The 

results are summarized in table 5.1. The fkst column gives the name of the CUT 

(see appendix A for details). The nert two columns give the best of initial population 

(BOIP) for the experiments with fixed and variable initial vectors, respectively. The 

BOIP is the  shortest test length required over al1 primitive CA in l ' ( O ) ,  i-e. the best of 

1300 primitive CA. Of course this only varies between FIV and VIV runs as the type of 

mutation employed has no affect on P(0) .  BOIP is included here to demonstrate the 

power of CAGA regardless of which of its four variants is used. One will observe that 

the effectiveness of CAGA varies from profound (against ~2670) to almost negligible 

( ~ 4 3 3 ) .  

The rightmost four columns give the test length required by the best CA found 

by each of the four CAGA variants. The lowest test length on each row is indicated in 

bold font. We observe that these "winning' C-4 are quite evenly clistributed across 

the four columns. 

As the running time of CAGA against these particular benchmarks and param- 

eter values is on the order of several days, time did not allow execution of multiple 

runs with differing drand48 () seeds. Of course doing so would strengthen the re- 

peatability of these experiments. The results of the four approaches in table 5.1 

dong with results forthcoming in this thesis verify that C.4G.4 always finds CA with 

test Iengths in the same "ballpark" for a given benchmark6. .%O omitted from this 

thesis is the exact distribution of fitnesses in the final generation of C-AGA. Typically 

these populations have many very fit individuals that are closely related, i.e. of small 

or zero Hamming distance, as well as weak indiv idds  that were created by "bad' 

genetic operations against the previous generation. 

To provide another view of the data, table 5.2 expresses the test Lengths as 

notable exception are two experiments for c2670 in table 5.4 



Table 5.2: Results of mutation and FIV/VTV experiments, as percent 
improvement 

-- 

- 

percentage irnprovement over the best of the two BOIPs. It appears that on average 

slight mutation achieves a bet ter improvement ratio. The best combinat ion of options 

occurs when slight mutation is used with VIV. providing a mean improvernent of 

47.7%. 

circuit 
cl355 
cl908 
c2670 
c3340 
~4.3'3 
c499 
c.5315 
c6-88 
~75.52 
cSS0 
average 

These experiments do not strongly point a t  one approach as t h e  rnost powerful. 

We wi11 later find this beneficial, as tivo advanced genetic operators are introduced. 

One of these requires VIV, while the other can be thought of as a strategically applied 

slight mutation. Due to the results of this section, we can be confident that these 

advanced operators will not inherently weaken CXGA. 

Appendix B contains C,4 growths for the best of initial population and best 

evolved CA for each benchmark in the experiments for full mutation with FIV7. Note 

SLight Mutation 

that some best evolved nonlinear CA growths have distinctive features not seen in 

any of the primitive CA, i-e. those for c2670, c499, ~6288, and ~'7552. 

FIV 
18.5 
52.2 
9S.1 
46-0 
9 d..d 9 

10 -8 
40.1 
130 .O 
67.:3 
81-0 
46.2 

Full Mutation 

'thou& these experiments were not the most successful of the four combinations, full mutation 
typically results in a more visually pronounced differeace between the two growths. 

VIV 
19-9 
53-9 
95-23 
73.3 
8.9 

24.8 
13-23 
38.0 
60.5 
88-1 
47.7 

FIV 
17.2 
52.4 
95.7 
44.8 
0.0 

30.1 
18.4 
31.0 
58.6 
88.6 
43.8 

VIV 
21-19 
63-52 
98-02 
22-13 

9 -.-- 33 

13-86 
32.24 
76-00 
6S.52 
78-76 
32.6 
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circuit - 
cl335 
cl908 
c2670 
c3540 
c432 
c499 
~ 5 3 1 5  
c62SS 
~7.552 

pc = O.s 
SSS 

1424 
118-2 
3440 

180 
276 
800 
3.5 

350s 
448 

average 
u 

best 
0 s  
0.8 
0.0 
0.4 
0.4 
0.8 
0.8 
0.4 
0.6 
0.6 

0-56 

Table 5.3: Experiments with differing values of p, 

5.3.3 Crossover Probability Experiments 

As stated in section 5.3.1. previous tvork in the study of GAs has determined 

that using p, = 0.6 seems to provide good results in a wide variety of GA applications. 

In this section Ive verify that this is indeed true for the problem at hand. Experiments 

were run with five different values of p,, 0: 0.2, 0.4, 0.6, and 0.8. This was the on- 

parameter varied across these runs. FIV with v(O) = 1010 . . . was used; full mutation 

kvas applied with probability p,  = 0.15. 

Table 5.3 lists the  results for each value of p,. The final colurnn indicates the 

value that caused CAG-4 to arrive at the best CA for the given CUT. When these 

best values of p, were averaged, the result was 0.56. which indicates that p, = 0.6 is 

a reasonable choice for this paramenter. Typical of GA research, there is a deviant 

instance in which the algorithm was 'lucky", namely the esperiment for benchmark 

c2670 rvith p, = O; of course without the crossover operator: the algorithm cannot be 

considered truly genetic. 



5.4 Advanced Mutation Operators 

5.4.1 Bit Role Flipping 

5.4.1.1 Discussion 

Bit role f l ipping (BRF) is the name given to a mutation like rnechanism that 

completely preserves the state-transition structure of a CA. Similar to full and slight 

mutation, BRF is done tvith respect to a CA cell, say ce11 c;. Then the sole difference 

between the state-transition diagram of a CA and its BRF-mutated clone is that 

every vector has the bit at position i flippecl. BRF not only changes the rule at ceil 

î.: but also the rules at the neighboring cells ci-1 and c;+~.  

Given the rule fi at ce11 s7 define functions f;R, j:: and fi" as Follows. 

We rnay now define the effect of BRF at ce11 ci : fi is replaced with F. and 

the neighboring rules fi-l and ficl are replaced mith fP_, and fk1: respectivel- 

Additionally, the bit at position i in the initial vector II(') is flipped. 

The motivation behind the BRF operator is twofold. First, preserk-ation of the 

state-transition structure guarantees that if a CA-initial-vectur pair I = (-A: do)) 

achieves the target fault coverage in k vectors; then the individual f = (B, u t 0 ) )  

resulting from an application of BRF will not uisit a repeated state in the first li dock 

ticks. The sarne assertion cannot be made with regard to slight or full mutation 

and hence we may confidently apply BRF with higher probability than slight or full 

mutation. Second, the vectors generated by the two individuals are uery similar. 
- 

nameiy for all t 2 O: u( ' )  and z r ( t )  are the same with the exception ~ r j ' )  = vit) for sorne 



1 circuit 
cl355 

1 cl908 
~26'70 
c3.540 
c432 
c499 
c.5315 
c62SS 
~'7.5.52 
csso 

Table 5.4: BRF results for various values of PBRF and p,  

5-4.1.2 Results 

BRF \vas incorporated into GAGA by performing the operation at  the same 

stage as full mutation with probability PBRF, independent of application of full mu- 

tation. Four experiments were performed, with varying values of PSRF and p,; table 

-5.4 summarizes. The third and fourth columns give results for PBRF set to 0.2 and 0.4 

respectively: both using p, = 0.15. In the fifth and sixth columns the full mutation 

operator was never applied, with respective values of PBRF 0-15 and 0.5. 

Note that application of the BRF operator on a linear CA simply negates the 

rules at  the ceIls neighboring the point of mutation and the bit at the point of mutation 

in the initial vector. Since P(0)  consists entirely of the linear rules 90 and 150 only it 

foIlows that al1 individuals in the experiments with p,  = O only have these two rules 

and their nonlinear negations, 165 and 105. 

In table 5.4 the second column reproduces the best test lengths over al1 four 

columns of table 5.1- Bold values in table 5.4 indicate test lengths that are better 

than the second column. BRF seeins to work well against some benchmarks while the 

operator impedes evolution for others; there does not appear to be any predictable 

pattern in table 5.4. For example, the rightmost column in which only BRF mu- 

tation is used (with the very high probability p ~ m  = 0.5), the GA outperformed 

al1 experiments of section 5.3.2.3 for three benchmarks. However the same param- 



eter set failed miserably for others, the most prominent being ~2640. For exactly 

half of the benchmarks, at least one of the paramenter sets of table 5.4 obtained a 

better CA. The most influenced benchmark was ~1355, for which three of the four 

BRF experiments achieved better results then the previous experiments. In the fol- 

lowing section tve discuss another advanced mutation operator which provides more 

consistent improvement . 

5.4.2 Last Possible Mutation 

5.4.2.1 Discussion 

Very Little can be said about the vector sequence generated by a mutated in- 

dividual when cornpared to that of the original. Last Possible Mutation (LPkI) is a 

mutation operator that seeks to remedy this situation. 

The folloiving discussion requires the definition of S. mhich is used in the context 

of an individual 1 and a mutated clone f. If 1 and f generate sequences do)_ u ( ' ) .  . . . 
and u(O), r(')? . . . respectively, let f denote the largest time such that do) = u(O), u ( ' )  = 

u('), . . . , z>(Q = u(Q. Then LPM c m  be described as a slight mutation in which the 

point of mutation, rather than being selected at  random, is chosen such that  î is 

maximized. 

The motivation behind LPM is this. Recall that when pseudorandom testing? 

the majority of the faults are detected early on in the test sequence, Thus a fit 

individual 1 would be expected to cover a large number of faults during the onset of 

its sequence. The test length required by I is determined by how soon I reaches the 

desired coverage following this massive and early =fault consumption" . If a mutated 

clone Î of I is created such that t is large, we would espect the probabilit- of I being 

fitter to be higher than if f has few or no vectors in common with 1. 

LPM is best thought of as a strat~ggically applied slight mutation. Recall that 

slight mutation invalves randomly fipping one of the S defining bits of a rule. Let 

vi, vicl) be the rule of cell i, and let f;"bc(v;-l, u;, u;+') be the rule formed 

when fi undergoes a slight mutation at row (a, b, c). More specifically. for some 



3-tuple ( a ,  b, c ) ,  we have 

f:bc(ui-lT vi? ~ i+1)  

Now consider an individual I defined by the C.4 initial vector pair (Al v(O)). 

Let f be the individual fomed when rule fi of 1 undergoes slight mutation and is 

replaced with fpbc. Then it follows that the vector sequence generated by î will be 

identical to  that of 1 up to and including the f i s t  occurrence of a vector c(') such 

that ( u ~ - ~ ~  u;: u ~ + ~ ) ( '  = (a, 6. c). This arises frorn the fact that the oest state function 

of both CA only differ for such vectors. 

As previously explained, the correlation between the test Iengths required by i 

and f would intuitively seem dependent on i, a s  both individuals7 vector seyuences 

have a t  least S vectors in common, 

But how can we force t^ to  be large? For each CA ce11 c;, the CA object associates 

S bits of memory mi(0), mi( l ) ,  . . . m;(f  ): initiaiiy zeroed. Before the transition from 

CA time t to  t + 1, mi((ui-lviui,l)(t)) is set for each ce11 c;, mhere (ci-~uivi+I)(t) is 

interpreted as a 3-bit binary number. -4ny time a bit is set, the ce11 and bit number 

are stored as a pair in a list called the LPM list. The LPM list is overwritten each 

time step, unless no bits are set. At the end of CA simulation, i.e. when the target 

fault coverage is realized or T,,, vectors have been generated, the LPM list will 

necessarily contain at least one celllbit number pair. Execution of the LPM operator 

is performed by simply flipping the mle bit corresponding to an LPM List element 

(chosen randomly if there is more than one). 

For an example: the vector sequence generated by a (primitive) C-4 with rule 

vector (130,90,90, 150,150) is given in table 5.5. The values stored in m 1 ( j ) ?  ~ ( j ) :  

and rns(j), O $ j 5 7, over tinie are given in the 24 columns with numerical headings 

(the headings are the values of j). One observes that a t  time t = 0, the neighborhoods 

of cl, cz, and c3 axe respectively 01 1, 110, and 100. The decimal eqirivalents of these 

binary numbers are 3, 6, and 4, respectively, thus the only bits that are set in the first 



row of table 5.5 are m1(3),  m2(6) and rn3(l). As time progresses. more and more of 

these bits become set, the last being rn3(0) at  t ime t = 15. We see that a t  times such 

as 7,10,11~14,15,18, . . . , no bit is set, and therefore the LPM list retains its previous 

contents. At the end of simulation the LPM list contains the sole cell/bit number pair 

(3,O). The LPM operator can now be applied by replacing f3 with f!007 resulting in 

the rule vector (l50,90,90, 151,150). Note that the new CA has = 101 10 = u ( ' " ) ~  

thus, in this case: LPM causes the CA to fa11 into a short cycle. However, when 2" is 

large compared to î. the probability that the LPM-mutated C h  will fa11 into a short 

cycle is very small. The crus of this example is the fact that when started in the 

state 01100. the two CA (lEiO,gO, 90.1.50,150) and f 150, 90,90,1.51? 150) generate 19 

equal vectors before differing. 

In the previous example tve saw that the time of last possible mutation (SOLPM) 

was 18, i-e. the vector at CA time 19 is the first differing vector generated by the 

LPM-mutated clone. Given n: the width of a CA, we wish to determine the espected 

number of vectors generated before TO LPM, cal1 t his value ELpil f (n) .  Considering 

any three adjacent CA cells ci: we view their combined state as a symbol 

over the S-ary alphabet {000,001.010,O11~100,1OI,llO~lll) and refer to this symbol 

as the symbol ut celd c;. As CA time progresses, we may observe the number of unique 

symbols that have been encounterred. This is equal to the number of bits set in mi. 

We assume that a t  any point in time the next syrnbol is chosen from a uniform dis- 

tribution independent of the sequence of symbols seen before hand. This assumption 

is clearly not valid, especially with regards to rules with unbalanced t rut h tables. 

Another assumption taken in this analysis that does not accurately reflect reality is 

the independence of neighboring symbols. For example, if the symbol at ce11 c; is 001, 

than the only two possible symbols at ce11 c;+t are 010 and 01 1. However, we will see 

that the approximated values of ELpM(n)  and observed TOLP-lls for primitive CA 

correspond. 

Suppose at some time t we have encountered d of the S symbols. Then the 

probability of the next symbol being a new s - n b o l  is (8 - d)/S,  while the probability 





that the symbol has already been seen is d/S. This defines an absorbing Markov chain 

of S states [63] with the following transition matrix. 

Using this model, we may quite easily compute the mean number of steps before 

absorption, i.e. the number of time steps before al1 8 symbols have appeared [63].  

However, this is not the solution to  our original problem. Under the assumption 

that the sequence of neighborhood configurations for each of the n cells of a C.4 are 

independent, we conclude that ELper(n) is the expected mazimum time to absorption 

(TTA) over n independent runss of the Markov chain tvith transition matris.W, The 

following solution to this problem is due to [64]. 

Let rn be the column of the single absorbing state of the transition matrix M 

of a Markov chain with n statesg, and suppose column 1 represents the unique start 

state. Let {Ti?. . . , T,} be the set of n random variables denoting the TTA of n runs 

of the Markov chain. Then the probability that the TTA for run i is no more than 

some integer t is P(Ti 5 t )  = (i\;i')i?,. Over al1 n runs: the probability that none of 

the n TTAs exceed t is 

'A slightly more accurate analysis might reduce this number to n - 2 as the  two boundary cells 
have neighborhoods that are restricted to 4 symbols. 

'in our case rn = 8 and n = 8 
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Wow defining T,,,(n) = rnax(Tl,. . . , T,), the probability that Tm,&) is e q u d  to t 

Hence the expected value of T,,,(n) is 

Figure 5.1 shows this value'0 (labeled "rad 1 computed' ) for a range of values 

of n that spans the input cardinalities of the benchmark set and indeed the majority 

of practical combinationd circuits, Thus, for circuits with at least '30 primary inputs, 

we would expect that the first 50 vectors geoerated by sorne individual I to be the 

same as those generated by the individual obtained by performing LPM against I .  

Kow suppose we repeat the preceding theory with respect to radius -2 CA. in 

which the next state of ce11 c; depends on the five cells c;-2.. . . c;+z. Then the  

neighborhood state of an interna1 ce11 is a 5-vector corresponding to one of Z5 = 32 

possible symbols. The irnplied Markov chain now has 32 states and its transition 

matrix, Ad2 is defined by ( L I I ~ ) ~ , ~  = i/32 for 1 5 i 5 32 and (L\&)~,~+~ = (32 - 4 / 3 2  

for 1 5 i 5 31, with al1 other entries O. The expected point of LPM ELP,if2(n) can 

be computed by replacing the matrix k1 with 1W2 in equation 5.1 and taking rn = 132; 

this function is ako plotted in figure 5.1 as the function labeled "rad 2 cornputed". 

One can observe that for radius 2 C-47 the LPM operator is espectecl to preserve the 

first two to three hundred vectors. 

In general: radius 2 CA incur a substantial increase in hardware resources over 

their radius 1 cousins: since the next state rules depend on 5 cells ratlier than 3 .  The 

beauty of the radius 1 CA for implementation in çilicon is the simple and local logic 

driving its flip-flops; increasing the radius of a CA decreases both the simplicity and 

locality of this logic. As such, the focus of this thesis has been restricted to radius 1 

LOcomputed using a C program, using 500 for cm 



Figure 5.1: Computed and observed radii 1 & 2 TOLPM (primitive CA) 
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CA. However, if we track the 5-neighborhood states of a radius-1 CA and apply LPM 

a s  if the CA was of radius 2, the result will be a CA in which al1 cells except the 

mutated one stiIl have 3-vaxiable next s tate rules. The mutated cell's ride is altered to 

depend on is -next-to-next-door7 neighbors, but all other rules keep the simple and 

local properties. With this very small (and constant) hardware price cornes a major 

increase in the number of identical states visited by a CA and its mutated clone. For 

the remainder of the thesis, LPMZ refers to the aforementioned version of LPM that 

slightly breaks the definition of the radius 1 CA. 

- 
rad 1 comiuted - 1 1 I 

rad 7 experimentd ---- 
- rad 2 cornputecf -------- 

rad 2 experimental - 
,-----C-c-- 

.L___________--------- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - A - - - - - - - - - - - - - - -  __________------- 
- - 

./ 
.I." 

- .  - : - /- ; - 

5.4.2.2 Experiments and Resuits 

Experments pertaining to the LPM operator were performed in an atternpt to 

answer the following three questions: 

1. How well does equation 5.1 predict the expected point of LPM? 

2. How often does application of LPM give an improvement'? 

3. 1s CAGA more powerful when augmented with LPM? 



Item 1 was addressed by selecting 300 arbitrary primitive CA and simulating 

from a random initial state. The TOLP-M for both radius 1 and radius 2 neighbor- 

hoods were recorded; this was done for CA widths n E {IO, 20, . . . ,250). The results 

are compared to the expected TOLPM (computed via equation 5.1) in figure 3.1. We 

see that the  equation predicts qui te weU, though seems to be slightly lower than t han 

the empirical results. This discrepancy is most pronounced for the radius 2 LPM. 

To resolve item 2? 300 primitive CA of appropriate width were obtained for 

each of the benchmarks. Since we mish to  determine if applying LPM is more ben- 

eficial than simple slight mutation; for each CA the test length of the original CA' 

a slightly rnutated clone- and a LPM-mutation clone were cornputed. E-xtending the 

e-xperimentation to LPM2, the control mutation operator is the radius 2 ecpivalent of 

radius 1 slight mutation, SM2. SM2 is executed by considering the radius 1 rule as a 

radius 2 rule that happens to be independent of both -outer" neighbors. and Bipping 

one randomiy selected bit in the 32 bit t m t h  table. -Again. the initial vectors were 

chosen randomly- 

Table 5.6 gives the resdts. The numbers in table 5.6 indicate the nurnber of C.4 

(of the 300 total) for which the mutation operator resulted in a CA with test length 

strictly less than the original CA. To facilitate accurate results, the fsim packet size 

used \vas 1. Some of the values of Tm,, were increased for these experiments. so that 

at most 1 of the 300 "CA families" al1 failed. 

These numbers indicate that radius 1 LPM does not provide a significant im- 

provernent over SM. Hoivever, LPMâ sees far more improvements on test length than 

radius 2 slight mutation. This c m  be accounted for by the fact that the number of 

vectors a LPbIIIP mutated clone has in common with the original CA is typically 4 to 

6 times that  of a LPM mutated clone. 

Note that  the only CUT for which LPM2 was not more successful than Sh12 

was c628S. The LPM2-CAGA code only keeps track of which minterms of each cell's 

rule are used up until the target coverage is reached. The result of t his is that when 

the typical CA in the population is LPMZ-mutated, only the last few (probably I or 



Table 5.6: Effectiveness of various mutations on primitive CA 

,, 

reproduce k,.,, b e s t  i nd iv idua l s  
i + be, 
while i < !v do 

mate, l t randomIndividua1 () 
if d rand480  < pl,, 

t h e n  add lpm-mutated clone of mate-1 t o  new popula t ion  
i +- i + l  

e l s e  
mate-2 t randomIndividual() 
recombine mate-1 and mate-2 as p e r  CAGA 
i t i + 2  

end if  
end while  

Figure 5.2: Incorporation of the LPM operator into GAGA 

2) vectors are changed. For the new individual to achieve a better test length than its 

unmutated clone, the new vectors i t generates after diverging must cover the untested 

faults in less time. Since these last faults are typically hard to test, i t is unlikely that 

these vectors will fulfill this requirement . 

Figure 5.2 gives the evolve algorithm used to integrate LPM or CPM2 with 

CAGA in order to address item 3. Since applying the operator only makes sense if 

the target is among the fitter individuals, the LPM operator is done as an alternative 

to the normal recombinat ion operators of crossover and normal mutation. Wheo 
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149 
I l 2  
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142 
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circuit 1 
cl355 
c190S 
c2670 
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~ 0 3 1 5  
c62SS 
~735'2 
cSS0 
total ,, 
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c499 324 
~531-5 896 
c62SS :3 S 
~ 7 5 5 2  1504 
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7 -1 

II average 1 -38-S 

Table 5.7: LPM results 

an individual is selected, its LPM-mutated clone is added to the new population 

with probability pi,, Otherivise, the individual is processed exactly as in CAGA. 

Specificdy: a mate is chosen and the two are crossed over with probability p,: and 

fully mutated with probability p,. 

For these experiments, a value of 0.2 was used for pr,,?. 'iote that in LPII- 

CAGA, the actual probability that a selected individual will be involved in crossot-er 

is reduced from p, to p , ( l  - pb,)- In an attempt to maintain consistency and offset 

this reduction, p, mas increased from 0.6 to 0.7. The probability of mutation used 

was p ,  = 0.1, the initial vector used was fixed at 101020.. .. 

Table 5.7 gives the results when CAGA is augmented with LPM. As a control. 

a batch of experiments was performed in which the LPM operator was replaced with 

slight mutation. In other words, the algorithm of figure 5.2, the SM-mutated clone 

is added instead of the LPM-mutated clone, in line 6. The resulting test Iengths for 

LPM-CAGA and the control are in the columns labeled LPM a d  SM, respectively-. 

The rightmost column give the percentage improvement that LPM gave. The results 

are less than encouraging, on average the LPM-C-4GA runs San- a -333.5% -5nprove- 

mentn over the control esperiments. We hypot hesize t hat the  number (35-60) vectors 

t hat axe shared between an individual and its LPM-rnutated clone is not large enough 

to incur a significant correlation between their fitnesses. 



circuit SM2 
cl355 1040 
cl908 2168 
c2670 1536 
c3540 2752 
c432 176 
c499 332 
c5.315 936 
c6288 36 
~7.5.52 4128 
c8SO 365 

1016 
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'21304 
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1364 
SSS 
41 

4640 
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"~6'288 omitted 

Table 5.8: LPM2 results 

Table 5.8 illustrates the effect LPM:! has on CAGA. The column labeled LPM2 

gives the minimal test length found by CAGA augmenteci with the L P W  operator. 

-4s for radius-1 LPM, control experiments cvere executed. In t hese, the LPM? operator 

(Iine 6 of figure 5.2 was replaced with the radius-? equivalent of slight-mutation. SSI2. 

Gnder SM2, a single rule is picked at random, converted to an equivalent radius-? ruIe 

if necessary, and then one rmdomly selected bit in the 32 bit truth table is negated. 

This, in effect, is exactly what LP-VE does, with the exception that the choice of rule 

and bit is done wisely. 

The columns labeled LPM2 and SM2 gave the LPM2 and control results: re- 

spectively. One will observe that LPM2 outperforms the controlS demonstrat ing t hat 

it indeed is a useful approach to mutation. The increase in expected shared vectors 

between an individual and its mutated clone when LPM.2 is used seems to be substan- 

tial enough to have a significant effect on the correlation between the two's ability to 

test. 

Because of our previous discussion on the affect LPM2 on c62SS. ive conclude 

that it is justified to leave out the results for this benchmark from the computation of 

the average, and that it only makes sense to use LPMP in CAGA when the "bal1 Park" 

test length of good testers is somewhat greater than the expected time of LP412. 



This said, the average improvement of LPM2 over the radius-? slight mutation is 

an impressive 13.8%. This suggests that: for circuits with sirnilar test length recpire- 

ments as those in the benchmark set, LPM2 is a powerful augmentation to C-4G-4. 

If hardware restrictions are somewhat relaxed, one would expect LPM stretched over 

high radii to be useful when the test length magnitudes are greater. The column 

labeled "LPM2 5-rules" in table 5.8 gives the average number of radius 2 rules found 

in the best CA; when compared to the number of C.4 cells given in the rightmost 

column tve see that on average only 6% of the cells use the larger neighborhood. This 

is a reasonable trade off for the decrease in test length. 

In the folocving section we consider advanced techniques for the crossover op- 

erator. 

5.5 Can we Perform "Intelligent" Crossover? 

In this section we consider the interactions between neighboring rules in a CA- 

and attempt to discourage degenerate behavior. In section 5.5.1, the concepts of 

sinks, abandons , and good neighbors axe defined. A fast algorithm to detect sinks 

is given in section 5-52. In section 5 - 5 3  a technique that reduces CAGA run time 

is described. Section 5.5.4 gives experimental results when good neighbor techniques 

are used against nul1 boundary CA. In section 5.5.5 a phenornenon called boundary 

subcycles is described; the frequency of which is arguably Iessened by using the pe- 

riodic boundary condition; pertaining experimental results are presented in section 

5.5.6. 

5.5.1 Good Neighborhoods 

In section 5.4, we looked at two different variations on the mutation operators 

that attempt to irnpror-e CAGA. Given a relatively fit individual, these operators 

increase the probability that the mutated-clone would also be fit, or, equivalent l~ 

they decrease the probability that the clone would be highly unfit. In t his section we 

attempt to improve the crossover operator using the same philosophy. Under our GA 



parameters, the crossover operator is applied much more frequently t han mutation, 

hence we expect that improvement of crossover might have a more drastic effect on 

CAGA. 

Inspection of a sample of the wont individuals in various generations of CAGA 

reveaied two undesirable phenomenon in these C.4. To assist in Our discussion of these 

traits; we introduce the following definitions: 

Definition 1 Giuen a CA, suppose there exisfs a 12-uector w (k < n} and index 

i (O 5 i 5 n - X-J with the property that (ci,--. . ~ + k - ~ ) ( ' )  = ut olways  irnplies 

(ci7 . . . ; c ;+~- l ) (~ )  = UJ for al1 t 2 t^. Then the cells {cio . . . . s+~-~} are cnlled a k- 

sink and  the C-4 is said to be Lsiniiing. A C.4 uith no k-sink is called 12-nonsinking. 

We ssay that {c;, . . . , ~ + k - ~ )  sink into W. 

Definition 2 Given a CA, suppose there exists a k-uector ui (k < n) and index 

i (O 5 i 5 n - k) with the property that (e;, . . . C;+I.-~)(') # PO a!l~.ags impli~s 

(c;, . . . ? c;+k-l)(') # tu for al1 t 2 t^. Then the celb {ci.. . . c;+k-l} are called a k- 

abandon a n d  the CA is said to be k-abandoning. -4 CA with no k-abandon is called 

k-nonabandoning. The uector w is called the abandoned .uector. 

Clearly, the presence of sinks or abandons degrades pseudorandomness. How- 

ever, do either phenomenon impede testing? If a k-sink esists. then al1 vectors pro- 

duced after time i will have certain cells at fked values, thus any fâults that require 

vectors with different values in t hese cells can never be detected after time t^. In the 

presence of a k-abandon, once a v d ~ ~ e  other than w is seen at  the involved cells, no 

vector that includes zu at these positions is ever generated again. When X- is small. 

the effect is a reduction in the set of cubes the CA generates vectors from. Note that 

a 1-abandon and a 1-sink are equivalent. 

In terms of CA growths, sinks manifest themselves as vertical stripes in the 

bitmap as is visible in the right half of some of the figures in appendix B. Figure B.3 

has a wide sink near the left side and a single cell that sinks to O on the right. The 

CA of figures B.8 and B.9 are also noticeably sinking. Abandons do not generally 



have a simple visual manifestation. 

We now give examples of neighboring CA d e s  that result in a 2-abandon and 

a 2-sink. 

The neighboring d e s  (149, '76) resdt in a %abandon, the abandoned vector 

being (il). Consider four adjacent CA cells (a. b: c: d)? with cells b and c having rules 

149 and 76, respectively. Expressing these d e s  algebraically yields bf = b ~ +  ac+abc_ 

and cf = hc f cd. For the next value of (b, c) to be ( 11 ) we need: 

(b+,cç) = ( I l )  bfcf = 1 

+ (62 + az + abc)(& + cd) = i 

abcd = 1 

+ (a, b, ct d )  = (1110) 

Thus the only way (b, c) can reach the state (11) is mhen the previous state of 

(a, 6. c, d) is (1110). But in this previous state. we have (6; c) = (11). Therefore once 

(6, c) enter a state other than (11): the two cells will never return to this state. 

Now we examine the neighboring rules (106.232): these cause a 2-sink into 

the vector (00). Let (a, b. c, d) be four neighboring CA cells: and suppose b and c 

have respective rules 106 and 232. Then the ne'ct state functions for 6 and c are 

bf = Cc + bc + abë and c+ = cd + bd + bc. To show that b and c sink to (00). note 

that the cofactors bilb,o,,o and ~ ~ l ~ , ~ , , ~  are both the constant function O. Thus 

once (b, c) equals the vector (00) these two cells ivill remain in this state for al1 future 

times, regasdless of the bits stored in a and d: i-e. (b, c) sinks to (00). 

An observation1' that has an important impact on CAGA is that primitive CA 

are le-nonsinking and k-nonabandoning for al1 k < n. Therefore, starting from an 

initial population of primitive CA, if ive are cautious when applying mutation and 

crossover, we can ensure that no k-sinking or k-abandoning CA are born. Given 

a k-vector r = ( fo, - - - , fk-1) of rules, we can check if the presence of r in a CA's 

rule vector would imply a k-sink or a k-abandon; if neither occurs we cal1 r a good 

"for k = n, the ail zero vector O is both sunk into and abandoned 



neighborhood. For the problem of checking for an abandon, exponential time brute- 

force search may be the only option. Hoivever in section 5.5.2 Rie describe a linear 

time algorithm for detecting sinks. 

When two CA are cut and joined in a crossover operat ion: there are (at most ) 

2 ( k  - 1) new k - d e  vectors created. Suppose CA -4 and B axe to be involvecl in 

a crossover operation, and the mle vectors of the respective CA are (ao. . . . . a,-l) 

and (bO,. . . b,-L). Given the random crossover point c7 the two offspring -4' and B' 

have respective rurule vectors (aol - . . ; a,: bc+l?. . . . b,-i) and (bo. - - - .  6,. < L , + L . .  . -. a,-1)- 

Then the 2 ( k  - 1) new k-rule vectors are: 

ac-li a,, bC+l : - - - bC+x:-4: bC+k-3 new k-neighborhoocls in A' 

To ensure that no k-"bad neighborhoods" a i s e  from the proposed crossover 

operation, we must verify that each of these fi-vectors is a good neighborhood. If 

this is not satisfied, the crossover point c is rejected and the sequence of crossover 

points c - 1; c + 1, c - 2,  c + 2, . . . (mod(n - 1)) is followed until a point is found t bat 

does not induce a bad neighborhood. We cal1 this mechanism k-good neighborhood 

enforcement (II-GNE). Note that k-GNE does not necessarily irnply that no kt-bad 

neighborhoods will arise for k' < k. When GXE is used for al1 k' 5 R' we describe 

the mechanism as k-maximal good neighborhood enjowement (k-MGNE). 



Recall that for k = 1, "sinkn and "abandon" degenerate to equivalent d e h i -  

tions. In this case, the concepts of sinking and abandoning do not refiect interactions 

between neighboring rules, but are an intrinsic property of single rules. We cal1 such 

rules sinking rules- It is easy to show that a rule f (a, 6,  c) is sinking if and only if 

f ls=* = a for some CY E {O, 1): ive. a cofacter of f when the center variable is fixed 

is precisely the constant function of the fked value. There are 31 sinking rules for 

radius 1 CA; by elirninating them from the possible rules that may be introduced via 

full mutation. tve are guaranteed to have no 1-sinks. 

5.5.2 Linear Time Sink Detection 

Let r = T j , - .  . , r j + k - l  be the respective mies of k adjacent CA c e h  C = 

{ c i : -  - - : c ~ + ~ - ~ ) .  We May determine if C is a sink with time complexity O(k) .  To aid 

comprehension, we use as an example the rule vector 216: 245, :37, 2%: 10s: the truth 

tables of which are given in table 5.9. Recall from section 5.4.2.1 that the symbol at 

cell i is defined as the aggregate of cell states q - l c ; ~ + ~ .  Also? ive  refer to the two 

cells and cj+k as the b o r d e ~ n g  cells, while the two cells cj and C j + k - ~  are the 

endmost cells. We wish to find a k-vector .u = u o , .  . . , u k - ~  such that the k equations 

5.2 hold: r is a sink if and only if such a zr esists. 

I J + ~ - ~ ( u ~ - ~ ~  Uk-2: ~ k - 1 )  = zlk-2 

~ j + k - 1  ( ~ k - 2  Uk-17 -) = u k - 1  

The '-' characters in the first and last 0.f equations 5.2 denote don7 care, i.e. 

these two equalities must hold independent of the respective bordering cell. For each 

solution of each equation, the algorithm creates a node labeled with the corresponding 

symbol. The nodes of the two endmost cells are labeled using '-' to represent the 



bordering ce11 value (thus there are but four possible nodes for each endmost cell). 

Since there are exactly eight symbols per ceU (with the previously noted exceptions), 

and determining if each is a solution involves a single rule evaluation. this phase 

requires a constant time per cell. Ln table 5.9 the solutions to eyuations 5.2 for the 

example rule vector are indicated by a box around the function value, Note that the 

solutions for the endmost cells adhere to the additional requirement of independence 

from the corresponding border cell. Figure 5.3 exemplifies this step. Each column of 

s p b o I s  corresponds to the set of possible nodes for the associatecl cell: those that 

are actuall- manifested (i.e. the solut ions) are indicated wit h ovals. 

The final phase of the algorithm is to create a directed acyclic graph ( D-AG) mith 

the existing nodes. Beginning with the nodes of the leftmost ce11 cj and proceeding 

rightwards, arcs are introduced as follows. An arc is created from a node 1abeIed abc 

of s to a node labeled bcd of ci+l ahen either of the foilowing hold: 1) the indegree 

of abc is greater than O, or 2) c; is the left endmost cell. Creation of al1 arcs incident 

from al1 nodes of a ce11 takes constant time. This follows from the facts that there are 

at most S nodes per cell, and there are at most 2 arcs that may be made incident from 

each (given a node labeled abc ive have but two choices for d' thus trvo choices for 

bcd). In Figure 5.3 we observe several nodes that are left unconsidered when addinp 

arcs, since they have indegree of O. 

If during the algorithm i t should occur that no arcs are added between nodes of 

cell ci and cell c;+i, then C is not a sink. However if we successfully create a directed 

path from a node of the left endmost ce11 cj to one of the right endmost ce11 cj+k-l, then 

C is a sink. Furthermore, each such path in the DAG represents a unique subvector 

that C sinks to. In our example there are esactly 4 paths from the left side to the 

right side of the DAG, corresponding to the 1 vectors {01000.01001. 110001 11001). 

In conclusio~, the algorithm outlined in this section cvill detect a k-sink cvith 

t ime complexity 6 ( k ) .  



Table 5.9: Preprocessing phase  of the sink detec t ion  algorithm 

Figure 5.3: A DAG of t h e  sink detec t ion  a lgor i thm 

5.5.3 Dynamic Max T i m e  Reduction 

.4n auxiliary mechanism not previously used was employed in the evperiments 

of this section. Recall that CAGA requires the parameter Tm,,: which dictates the 

maximum number of vectors to produce from an individual before "giving up" i.e. if 

the sequence generated by the CA has not met the target fault coverage FCotr b -  t ime 

Tm,,, the individual is assigned a fitness of O and fault simulation terminates- The 

value of Tm., was chosen such that most of the initial population P(0)  had positive 

fitness. However, in the advânced generations the population as a whole has an 



average raw fitness much greater than that of P(0);  i-e. the rnajority of the  individuals 

require much less t han T,,, clock t icks to achieve Fcov- In t hese generat ions, the very 

few individuals that require close to Tm,, vectors or those that never detect Fcou of 

the faults become progressively less valuable to the genetic algorithm, yet they take 

the most computation time during fault simulation. 

The natural remedy to this inefficiency is to reduce 'Tm,, as CAGA evolves. 

We c d  this dynamic max time reduction (DN1TR)- DMTR was implemented such 

that the value used for Tm,, in generation g, T,,,(g), is such that 90% of P(g - 1) 

require less than T',,(g) vectors, as long as this value is at least :3 times that of the 

fittest individual in P(g  - 1) (otherwise T,,,(g) = Tm,x(g - 1)). The reason for this 

second constraint is to prevent Tm,, from becoming too small, i.e. so that in future 

generations it won% be "hard" for an individual to receive nonzero fitness. 

5.5.4 Nul1 Boundary CA Results 

Original experiments employing 3-GNE revealed less t han sat isfactory results 

that are not repeated here. These experiments used full mutation and FIV, wit h the 

usual parameter settings of population size N = 300 and GA halting after Ag = 200 

generations w-ithout irnprovernent. At first, this was t hought to indicate t hat , contrary 

to intuition, GNE does not improve CAG-4. However, after closer investigation, we 

hypothesize that this may be accounted for as follows. Consider the nondegenerate 

linear ruleç 90 and 150 (recall f90(~;-l: xi, zi+l) = ~ i - ~ @ x i + ~  and f 1 5 0 ( ~ i - 1 :  -rii = 

xi-1 rn xi these are the only two rules present in primitive CA. With the 

exception of the leftmost and rightrnost ce11 in the CA, neither of these rules can 

exist with the endmost cells of a sink. This is a direct implication of the fact that 

both of these functions have the property that nepation of one of the dependent 

variables or always negates the function itself. 

When CXGA works against an initial population P(O) consisting entirely of 

primitive CA, theçe two rules are the dominant rules (count wise) for man?; genera- 

tions, since only the secondary genetic operator of mutation can introduce different 
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Table 5.10: Good neighborhood enforcement for nul1 boundary CA 

rules. Inspection of the fittest individuals in the final generation of these experiments 

confirm that even after hundreds of generations, the rules 90 and 150 are still by far 

the most numerous rules. Thus, in these experiments, the event that GNE actually 

rejects a candidate crossover point is rare. In conclusion, GNE has little impact on 

CAGA when the majority of the mles in the populztion are 90 and 1-50. 

Under this observation, we attempt to seed CAGA with parameters that i d 1  

result in a greater proportion of nonlinear riiles. Boosting both N and Ag intuitively- 

has this consequence; if CAGA is allowed to evolve a larger population for a longer 

time, the eEect of -mutation should become more dominant. The values Ar = 500 and 

Ag = 1000 were used to verify this theory. 

Results of these CAGA runs are given in table 5.10. The control esperiment 

(CTRL) uses full mutation, FIV, and the complete rule space, i-e. {O,. . . : 2 3 5 } -  

Experiments of the columns labeled MGNE employed 3-MGYE and used the same 

parameter settings as CTRL. Under "TL" the minimum test lengths are listed, while 

the "%impr3 column gives the percentage improvement over CTRL. The improve- 

ments range from -16.7% to 61.0% with a mean value of S 3 % ,  which is substantiai. 

Intuitively, sinks are bad for testing, however, abandons might not be as prob- 

lematic. Suppose there is a k-abandon A and the abandoned subvector is W. Such a 



defect in randomness only negatively affects testing when there is a hard to test fault 

f ivith a significant number of vectors in the test set of f having -4 = za. Based on 

this intuition, we performed experiments using GNE with no abandon checking; we 

call this mechanism sink auoidance (SA) - 
The columns in table 5.10 labeled "SA" Iists the results of experiments that 

differ from MGXE only in that no abandon checking is done. i-e. no Il-sinlis for 

k E {1,2,3) are created by any genetic operation. Here the range of improvements 

is -16.7% to 42.3%, with mean '7.1%. It is interesting to note that both MGNE 

and SA provide a positive augmentation to CAGA against benchmarks ~ 2 6 7 0 .  ~3340.  

c499, c5:315: and cSS0, while for 4 3 2  and c'i-5-52 it appears that MGNE and S-4 

are detrimental1* to CAGA performance. Clearly there is some consistency in GNE 

effectiveness against various CüTS. However it is unclear if there evist techniques to 

determine a priori if GNE should be used for a given circuit, and, if so, rvhich 'flavor" 

of GNE should be applied. 

In the next section we discuss a degenerate CA behavior that is a generalization 

of sinking. 

5.5-5 Boundary Subcycles 

Again we turn to informal inspection of the worst CA in an attempt to assess 

what phenomenon causes birth of undesirable individuals in the experiments of section 

8.5.4. There are various unwanted rule interactions that are not filtered out b -  GNE 

and would seem to be computationally hard to detect. 

These problematic rule interactions cause a subcycle which is a generalization 

of a sink in which some neighborhood of cells C = { c j : - - - ,  c j + k - l )  of size k enters 

a cycle of length at most 2k that is never broken by the bit sequences seen at cj-i 

and c j+k .  In other words, the next configuration of C' is independent of both cj-l 

and ci+, for all times after the subcycle is enterred13. CVe found that when subcycles 

occur they usually reside on the Ieft or right end of the CA. This is expected, since 

"of course this consistency could be attributed to the CTRL runs being "lucky" 
13a subcycle with cycle length of 1 is simply a sink 



(under the null boundary condition) on the left end cj-1 is always O and on the right 

end cj+k is aIways O. Thus at the left (right) end, the next substate of C is triviail' 

independent of ( c ~ + ~ )  for a11 configurations. It follows that subcycles are more 

Likely to occur on the CA boundary; we call these b o u n d a q  subcycles. 

A subcycle in a C-4 growth appears as a column with a vertically repeating 

pattern. In the right side growth of figure B.5 there is a very wide boundary subcycle. 

The nonlinear growth of figure B.7 has a 3-ceil internal subcycle which appears to 

degrade randomness of nearby cells; it is possible that this subcycle is part of a \vider 

and longer subcycle. 

The fact t hat subcycles are more likely to occur on CA boundaries is the primar- 

motivator for the svork of the  nest section- 

5.5.6 Periodic Boundary CA Results 

In this section we employ CAGA to run against periodic boundary CA (PBCA). 

Recall that null boundary C-4 assume the constant value O at the nonexistent cells 

left of co and right of G-1- In PBCA, co and ~ - 1  are logicallq- adjacent. i.e. the left 

neighbor of co is c,+I. while ~ - ~ ' s  right neighbor is CO. A worthy analogy States that 

a null boundary CA is to a line segment as a PBCA is to a circle. The hope here is 

that eliminating the nuil boundary condition will result in fewer subcy-cles because 

man. potential boundary subcycles will be eliminated. 

An issue we face when using PBCA in C.4GA pertains to the initial population. 

It has been shown that no PBCA has an irreducible characteristic polynomial [Z]. 

Hence P ( 0 )  must be populated with individuals that are inferior to primitive C-4 in 

terms of pseudorandomness. We are forced to evolve humans from mice rather than 

from monkeys; the PBCA of P(0) are created by randomly assiping each ce11 to 

either nile 90 or rule 1-50. 

Another consequence of the periodic boundary condition is that it becomes 

natural to think of the chromosomes as being circular, i-e. as having no "ends". As 

such, we use a variation of crossover called circular crossover. Circular crossover 
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Table 5.11: Good neighborhood enforcement for periodic boundary CA 

selects ttvo crossover points and swaps the segments of the parent's chromosomes 

between these points to obtain the two offspring. We add the additional constraint 

that the distance between the two crossover points is at least 5 positions in both 

directions around the circular chromosome. 

Referring to table 5-11, we again find that MGNE and SA both give positive 

average improvement. Al1 experiments ran against the same parameter set as those 

of table 5.101 except PBCA were used and P(0)  was created randoml. For MGXE. 

the improvements were as low as -4'2.0% and as high as 64.4%. and averaged 4.0%. 

Under SA, the range shifted up to -20.4% to 71.1% and the mean irnprovement over 

CTRL was 7.2%. 

Table 5.12 provides a comparison of the data of table 5.10 and 5-11, i.e. a 

comparison of the results of the nul1 boundary CAGA runs of section 5.5.4 and the 

PBCA CAGA runs of this section. The numeric columns of table 5.12 give the 

percent improvement of PBCA experiments over null boundary experiments for the 

corresponding CAGA settings. Evolution of PBC-4 with sink avoidance seerns to be 

the most powerfd combination; an average improvement of 10.0% is achieved when 

SA is used against PBCA rather than null boundary CA. 

We hypothesize that sink avoidance attains greater results for PBCA than for 



Table 5.12: Improvement of PBCA over null boundary 

- 

null boundary CA as follows. Boundary subcycles are a hindrance in evolutioa of 

null boundary CA, possibly more so than sinks. Since boundary subcycles are less 

frequent in PBCA, sinl;s may be a more common reason for low fitness. By preventing 

sinks in PBCA, C-4GA avoids production of many clegenerate CA- and in the end 

usually finds a better solution to the CA testing problem. 

5 -6 Test Sequence Truncation 

5.6.1 Description 

In this section we present a simple technique t hat can potentiallÿ further shorten 

the required test length for a test generator. The technique, caIl test  sequence trun- 

cation (TST), is shown to be effective against many of the -'good" CA produced by 

genetic means. 

Recall that the fault simulator takes a parameter b that controls the nurnber 

of vectors that are fault simiilated in parallel. Let T be the true test length and 

T' the test length returned by the Çault simulator. Then T' is actually the smallest 

multiple of b greater than or equal to S. If b = 1 or we are lucky, T' = T. Otherwise 

it follows that there are up to b - 1 extra test vectors at the end of the seyuence 

that are unnecessary for the target coverage. The true value of T can easily be 

computed following completion of the GA by setting b = 1 and performing a final 
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fault simulation. Therefore several vectors rnay be shaved off of the end of the test 

sequence; we call t his tail truncation, 

However, we may dso  remove vectors from the beginning of the sequence. Let 

5' = ZAO), . . . y dT-') be a tail tmncated test sequence. It follows that rernoval of dT-') 

from S will not provide the desired fault coverage F,,,. This is because JT-') is the 

vector that causes the fault coverage of S to  go from being less than Fc,, to  being 

greater or equal to F,,,. But the same cannot necessarily be said about the initial 

vector v(O). As Long as each fault detected by v(O) is alço covered by some vector in 

v(l)?. . . , JT-'): we may clearly remove d o )  from the test sequence. This reasoning can 

be extended to a maximal number of vectors as follows: Let i be the minimum integer 

such that di) detects at  least one fault f such that f is not detected by a n -  vector in 

v('+ '1:. . - ; v(~-'). Then the sequence Sf = u(')? . . . . v(~-') has the same fault coverage 

as S7 but is shorter than 5' tvhen i > O .  B y  using the same machine that generates S, 

but seeding with initial state di) rather than v(O), ive have found a generator/initial 

state combination that produces Sf. This can be done algorit hmically quite quickly 

by using a binary search and fault simulations to determine i. ive call tbis form of 

truncation head tmncat ion .  

5-6.2 Results 

To demonstrate the effectiveness of TST, the CA resdting from a previous 

esperiment were subjected to TST. The set of experiments used were those using full 

mutation and FIV that were summarized in table 5.1. Each CA underwent first tail 

and then head truncation. 

The resiilts are shown in table 5.13. We see that TST is an effective device; on 

average the required test length was reduced by %6.2? ahich is certainly worth the 

effort, which is minor. 
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Table 5.13: Test sequence truncation results 

5.7 Conclusion 

In this chapter we have not only successfully applied the simple genetic algo- 

rithm to evolve CA that are good at testing a target circuit, ive have also explored 

several mechanisms that improve the GA. 

Empirical evidence was presented that indicates that none of the four combina- 

tions of choices regarding FIV/VIV and slight or full mutation is especially superior 

or inferior. The standard GA setting of p, = 0.6 kvas verified to be appropriate. 

Two new mutation operators were proposed, BRF and LPM. BRF proved to 

work well against some CUTs, while poorly against others. However, when other 

forms of mutation are omitted, BRF will only yield CA witb rules 90. 10.5: 130. and 

165 (when the initial population is entirely primitive CA), mhich may be desirable 

if CA regularity is an asset. LPM did not seem to out perform slight mutation 

mhen radius 1 neighborhoods were used, however the extension LPkE proved to be 

more beneficial than radius 2 slight mutation. The mathematics of Markov chains 

was used to compute the approximate expected time of last possible mutation, and 

experimentation showed that  the result ing equation approximates reality quite closely. 

A mechanism that avoids selection of bad crossover points or mutation choices 

was proposed, which avoids creation of sinks and abandons. We found that this 

mechanism improves CAGA, as does a simplified version that only prevents sinks. 



These improvements held for both n d  boundary and periodic boundary CA; the most 

powerfd noniinear CA were found when CAGA evolved PBCA using sink avoidance. 

-4 linear time algorithm for sink detection was defined. 

Finally we give a simple technique to further reduce test length called test 

sequence truncation. Test sequence truncation provided a mean test length reduction 

of %6.9 for a set of CA evolved by CAGA. 

The next chapter describes auxiliary work that gives a nen- method to obtain a 

stopping condition for BIST testing. 



6. M i n i d h g  a Test Stopping Condition 

6.1 Problem Definition and Background 

In this chapter we apply a genetic algorithm to another problem in BIST, namely 

that of stopping the test pattern generation. -4 genetic algorithm is used to evoIve 

a smaU subset of a test generator's state variables that can be used co uniquel- 

distinguish the final vector from al1 other patterns. 

Suppose one has chosen a suitable pseudorandom test pattern generator G and 

initial state do) for a target circuit. Furt hermore? fault simulation has determined 

that T + 1 test vectors are necessary to achieve the target coverage when G is seeded 

with do). The designer proceeds by obtaining the fault free output sequence of the 

CUT for the T + 1 input vectors7 and computing the signature Ieft by the sequence in 

the output compactor. For the BIST to work, the output compactor device needs to 

stop accepting input exact ly T + 1 clock ticks following instigation of testing. Clearly 

an additional input line to the output compactor must be implemented such that 

when asserted, the compactor halts and the signature cornparison is performed. The 

question remains: what logic drives this signal'? 

Though details pertaining to BIST controller architecture are rare in the litera- 

ture, the typical solution involves the use of a dedicated counter to keep track of the 

number of tests. More specificaliy, if the test sequence is of length T, an accumulator 

of rZog2T] bits is Ioaded with the binary representation of T + 1 upon test ini tializa- 

tion. The accumulator is decremented after each test is applied. i.e. ~vi th the system 

clock. The contents of each memory element in the accurnulator are fed into a KO R 

gate, the output of which will rise only when al1 cells are zero indicating that al1 tests 

have been applied [65]. 

In this chapter a new technique is proposed, which reduces BIST circuitry area 

by eliminat ing the need for the accumulator. 

A definition is needed to  describe the approach to the test stopping problem 



. - 
taken herein. Let S be a k-subset of Zn, Say S = ( z , , r 2 , .  . . . ir-) where il < il < 

. - -  < ik- Let v be a binuy n-vector. Then d e h e  substate(S7.vj as the vector 

( u  v - . , W .  We Say vectors v and u are equal in  substate S if substate(S ,v)  = 

sztbstate(S, u), 

Now consider a subset S = { i l :  il, . . Y ii) of Zn with the following property. For 

all t in [OY T - 11- substate(S, dt) )  # substate(S? dT)). Then the subset of generator 

cells {c;, , ci, . . . , c;,) uniquely distinguishes dT) from dl other test vectors in the 

test sequence. If k is small enough, then it becomes feasible to create a k-input AXD 

pate (or, equivalently, a cascade of lesser input AND gates) with input j hooked into 

the state of if = 1: or the state negated otherwise. We call $ a stopping 

condition (SC); more specificdy, if k = [SIY we call S a k-SC. If t here does not exist 

a k'-SC for any k' < k. we call S a minimal stopping condition ( M X ) .  Clearly the 

size of the chosen SC directly affects the hardware requirements of the logic driving 

the stop-test signal, thus finding a minimal or near-minimal SC is beneficial. 

Let us exemplify this approach- Suppose some IO-input CUT is to be tested 

by the primitive C-4 with mle vector (150,90: 90,90.90,90, 90: 90. 150.150). When 

seeded with the initial state vector do) = 01001 10001. 26 vectors are required to 

achieved the desired fault coverage, i.e. Ive wish to stop the test procedure imme- 

diately following CA tirne t = 25. Table 6.1 gives the content of the 10 C A  cells 

CO,. - . , cg for û 5 t 5 15. The rightmost colunin in table 6.1 gives the substate 

vector s ~ b s t a t e ( ( 4 ~  6; 91, ~ ( ' 1 )  = ( u ~ u ~ u ~ ) ( ~ ) .  Note that the first value of t such that  

(v4v6vs)(') = 100 is t = 25. Thus this substate c m  be used to uniquely identify the 

2sth vector, i.e. 4,6,9 is a 3-SC. If one wires the inputs of a 3-input ..\ND gate to the 

CA state variables 4, z, and q7 the output of this gate c m  be used as a stop-test 

signal for whichever devices require such an assertion. In the example of table 6-2,  

{1,6,9) is the onlÿ 3-SC; furthermore it is a MSC since there are no 2-SCs or 1-SCs. 



Table 6.1: Minimal test stopping condition example 

6.2 Analysis 

Here we wish to determine the expected cardinality of the MSC. Suppose ive 

are given a sequence v(O), . . . dT) of T + 1 n-vectors, assurned to be produced ran- 

domly. Let be the random variable denoting the cardinality of a W C :  we seek 

the expectation E ( K )  in terms of T and n. Deducing an exact equation is hard, here 

we simply derive a iower bound on E ( K ) .  We d l  see t hat the cardinalities of the 

MSCs found via a GA are very close to this lower bound, allowing us to conclude 

that the GA performs well. We assume that the vectors are produced at random- 

with each vector being drawn from a uniform distribution. The fact that there are 



no repeat vectors in a sequence from a test generator is O -  taken into account when 

determining the probability that there exists an n-SC (this probability is 1 if there 

are no repeated vectors allowed). 

We first determine s(k,  T ) :  the probability that a fixed k element substate vector 

w of v ( ~ )  is a SC. Given a value of t: with O 5 t < T ,  the probability that w is not 

equal to the same substate of v(') is simply 1 - 2-k The probability that w is not 

equal to the same substate for any t: O 5 t < T, is therefore (1 - ~-7~. as the vectors 

are independently produced. Thus s(k:  T) = (1 - T V T .  
Letting e ( k )  denote the probability of esistence of a k-SC: ive now consider the 

complementary probability ec(k) = 1 - e(k); this is the probability there is no k-SC. 

Choosing some fixed k-substate w7 the probability that iu is not a SC is sC(k, T) = 

1 - s T )  = 1 - (1 - 2 )  Let w' be a k-substate different from W .  and let 

m = Izu n id[. Let A denote the event that w is not a SC and B denote the event 

that w' is not a SC. If m = 0: i.e. w and cc' do not share any bit positions. then 

the probability of B given -4: P(Bl-4) = sc(lzl T ) .  as the two events are independent. 

However when m > O we find that P(B1--1) > sC(k:  T ) .  This is explained as folloms. 

Suppose w is not a SC, then we know that there exists r > O vectors in 

do). . .dT-'1 that equai zAT) in w; let 21 be one of these vectors. The probability 

that u matches zu' is no longer 2-5 it is increased to 2m-\ (Since rn > O. we have 

Y-5 Y')- Thus the  probability that w is not a SC is: 

If the events tha t  each of al1 N = (;f) possible k-substate are not SCs were 

independent, we could express ec(k) = sC(k, T)". However, as the above argument 

demonstrates, even assuming that one k-substate is not a SC implies that the proba- 

bilities of (b) - r ik)  - 1 other k-substates are each increased to some d u e  greater 



t han sC(k ,  T ) .  Through similar reasoning it follows t hat t his effect is compounded the 

more substates we mark as non-SCs. FVe must conclude e c ( k )  2 sC(k ,  T) ( ; ) .  which 

implies 

We may now use equation 6.1 to obtain a lower bound on E(I\'). Consider the 

cumulative distribution function p ( 1 -  5 k), i.e. the probability t hat the cardinality 

of a MSC is at most k. It is trivially true that if a SC exists with cardinality k, then 

for al1 kf with k 5 k' 5 n there &st SCs of size k f .  Conversely, if there does not esist 

a SC of cardinality k, then it is implied that for al1 kt with O < kf  5 k there does not 

exist a kf-SC. It follows that p ( h r  < k) = e ( k ) .  We proceed: 

Since p ( K  5 n) = 1 and p ( K  5 0) = 0: 

Now using 6.1 we obtain: 

Figure 6.1 plots the bound E f ( K )  from equation 6.2 for T E {103: 10': IO5) 

and n E [20,200]. It appears that once n is large enough, the lower bound becomes 



5 L  1 1 1 1 
1 1 1 t I 

20 40 60 80 1 O0 120 140 160 180 200 

n 

Figure 6.1: Lower bound on E ( K )  for various n and T 

only dependent on T:  assuming the values of 6, 9, and 12 for the respective values 

of T .  Therefore, somewhat counterintuitively if T is fised and n is allowed to grou- 

indefinitely, the expected size of a MSC will never be less than some constant value. 

6.3 Irnplementation of MSCGA 

In this section we describe the ilfinimal Stopping Condit ion Genet ic -4lgorithm 

(MSCGA): which attempts to find a small SC for a given sequence of vectors. The 

individuals in MSCGA are simply various substates. If an individual is a M C ,  it is 

assigned fitness proportional to (n - k)*. On the other hand. if an individual is not 

a SC, it is assigned a fitness of O. 

We f i s t  discuss the encoding of substates, and then describe the crossover and 

mutation operators in MSCG-JI. 

6.3.1 Encoding 

In theory, an individual is represented by an n symbol string over the alphabet 

{X: -1; finding X (-) at position j in the string means that ce11 j of the generator is 

included (not included) in the substate. In practice, an individual I is stored as two 



bitstrings called &(I) and Bo(l).  A 1 at position j in &(1) means that j is included 

in the substate and v $ ~ )  = 1. Conversely, a 1 a t  position j in Bo(I) also means that 

j appears in the substate, but vy' = O. When position j of neither strings is set; 

this indicates that ce11 j is not used in the substate. Of course, since the final vector 

is known to the GA a priori, only one of Bi ( I )  or & ( I )  can ever be set at each 

position over al1 possible individuals. This encoding lends itself to bit-level machine 

manipulation ivhen performing vector comparisons. and thus aids in accelerating the 

algorithm. For example, the SC illustrated in table 6.1 would be encoded with 

6.3.2 Genetic Operators 

The genetic operator of crossover is carried out as expected. Suppose -4 and 

B are individuals that axe to partake in crossover. The crossover point r is chosen 

uniformly from the set Zncl. The first offspring C is created such that Bi(C) is the 

concatenation of the leftmost x bits of Bi(.4) with the rightmost n - z bits of Bi(B). 

The second offspring D is created such that Bi( D) is the concatenat ion of the leftmost 

x bits of Bi(B)  with the rightmost n - x bits of B;(A) .  

When an individual I is to be mutated, the straightforward approach would be 

to select a bit position x at random, and then either add x to the substate if it is 

not included, or remove x if it is already a member. However, if the GA evolves to 

the point at which the average substate cardinality is significantly less than n/2  (a 

common occurrence): then mutation would most likely cause elements to be added to 

substates. As we are seeking to minimize a SC; this is undesirable. 

To avoid t his, the employed mutation operator increases or decreases the size 

of the effected substate with equal probability. Tf the operator chooses to add an  

element, one of the missing elements is selected a t  random and the appropriate bit of 

either Bo([) or BI (1) is set. Otherwise a random member of the substate is removed 

by clearing a bit in either of the bitstrings. 



6.4 Experiments and Result s 

Experiments were first performed by applying MSCGA to the test stopping 

problern. "Pseudon test sequences were created using the standard C library Function 

drand48(), each bit in each vector being set with probability 1/2. A mechanism 

was used to ensure that no repeat vectors would be present in the sequence. The 

sequence was then fed to the GA- Members of the initial population were also created 

randomly, with each position being included in the SC with probability 1/2. Other 

paramet ers are: 

O crossover probability p, = 0.6 

O mutation probability p, = 0.13 

population size iV = 300 

0 the fitness scaling coefficient C,,ft = 1.5 

O the oumber of individuals reproduced unchanged in the nert  generation li,., = 

10 

O the number of generations without improvement before MSCG-4 halting Ilg = 

200 

Note that p,  is slightly smaller than the mutation probability used in ChG-4 

(0.15). This parameter was lowered here because of the hunch that mutation plays a 

less important role in MSCGA than in CAGA. Table 6.2 summarizes the results. Each 

number in the table is the average minimal SC cardinality found by the GA over 5 

runs, each run using a different randomly generated test sequence. The actual integral 

values averaged for each entry differed by at most 1, suggesting a low variance. The 

values in each row correspond to  the same generator width n, while columns indicate 

test length T. 

Given that our lower bounds on the expected cardinalities of MSCs for T = IO3, 

T = IO4, and T = IO5, were respectively 6, 9, and 12, we conclude that MSCGA 



Table 6.2: Average stopping condition cardinalities over various test 
lengths and generator widths 

performs quite well, as the average best individual found was always no more than 

2 bits larger than these numbers. Of course, given that we have only computecl a 

lower bound on the expected cardinality of a MSC: it is cluite possible t hat the actual 

e-xpected values are even closer to these results. 

For further experiments. we modify MSCGX such that the fitness evaluation is 

not only based on the SC size, but also a second metric - the span OF the SC. The 

span of the SC is the value of bR - bL + 1, where bR and bL are the rightmost bit 

and the leftrnost bit in the SC: respectiveiy In a design environment in rvhich t h e  

logical relative positions of test generator cells is correlated to the physical layout at 

fabrication- a smailer span is preferable. This is because the longer the span, the 

longer the wires that carry the SC ceIl values to the conjunctive netrvork that detects 

the h a 1  vector. 

As in the previous esperiments, a substate (individual) that is not a SC receives 

a raw fitness of O. Those that are SCs obtain a raw fitness proportional to the the 

square of the cliffereuce of the total number of cells and those involvecl in the SC. 

However, to promote low spans, an additional quzntity based on the span is added 

to this value. If w and s are the weight and span of a SC, then the raw fitness is 



size 
7.4 
'7-0 
'7-0 
7-0 
7-0 
7.0 
7-0 
6.8 
7-2 
6-8 

size 
10.4 
10.0 
10.2 
10.0 
10.0 
10.0 
10.2 
10.0 
10.0 
10-0 

span 
15.6 
25. O 
32.4 
34.0 
-23.5 
Z5.2 
60 -8 
73.6 
67.6 
94.8 

size 
13-6 
13-6 
13-2 
1:32 
13.4 
li3-O 
L3.4 
13-2 
132 
13-1 

span 
17.4 
-27.0 
35. O 
35.6 
56.2 
57.4 
83 -6 
'76 -8 
80.6 
110.4 

Table 6.3: MSCGA with span minimization results 

computed as: 

Essentially t his defines a two t iered fitness measure in which a SC wit h weight zü will 

always receive a higher raw fitness than one with weight IL. + 1: while two SCs with 

equal weight will be assigned raw fitnesses such that the one with loiver span will be 

fitter. 

The resdts of these experiments are given in table 6.3 .  For each (n' T) pair, the 

numbers in the table are averages over 5 separate MSCGA runs. It seems that the 

span of the resulting best individual is usually not much more than 1/2 of the total 

width of the generator. We note that the size of the best SC found by MSCGA is not 

affected by this slight change in fitness measure, thus we gain a more 'compact" SC 

without sacrificing SC cardinality. 

6.5 Cornparison Against Brute Force Search 

In the previous section it was demonstrated that a SC with cardinality close to 

the expected minimum can be found via GA techniques. Utilizing bit level manipu- 

lation for vector cornparison, these G.4s run much faster than CAGA of the previous 



chapter, however for test lengths of los, MSCGA still takes about an hour to com- 

plete. The question rernains: is exhaustive search of all SCs of some cardinality k a 

superior approach? 

Suppose we have determined that the e'cpected MSC cardinality is kJ then the 

previous question is very similar to the question: what is the ratio r of the expected 

number of b-SCs to (;) : the total number of k-substates:' There exist algorithms to 

generate al1 (L) k-subsets of an n element set thae run in constant amortized time 

[6û]. FVë would expect to have to examine only about r / ( : )  substates before finding 

a b-SC. It is quite conceivable that this scheme would find a &SC much Faster than 

MSCGA. 

To test this hqpothesis, random test sequences of length T = LOO0 were created 

as before, but rather than using MSCGA to find a SCI brute force search O\-er al1 

kubs ta t e s  was used in an attempt to identif?; a 7-SC. The results in the second 

column of table 6.2 suggest that 7-SCs usually exist for this test length. The results 

indicated that in this case r is sufficiently high so that a 7-SC is always found within 

seconds. This appears to render MSCGA an ineffcient approach to the problem. 

However, use of MSCGA is warrantecl by the folloming observation. MSCG-4 

does not use the parameter k passed to the brute force search, and thus is capable 

of finding a SC with cardinality less than k, if one exists. If a MSC with cardinaiity 

k' < E ( K )  exists, one would expect the number of such MSCs to be very small. 

For such a test sequence, brute force search would typically need to exhaust a large 

fraction of the whole search space. Noting that the size of the search space is (l,). 
the time requirements of the brute-force algorithm could easily be  prohibitive. 

E-xperiments were performed to determine if MÇCGA could locate a MSC with 

lower than expected cardinality. Similar to those of section 6.4, t hese experiments 

worked with randomly generated test sequences. However, an additional mechanism 

was added to the code such that given parameters k and rn, a set S of rn random k- 

substates is created. To create the actual test sequence, a final vector dT) is randomly 

chosen, and then the rernainder of the test sequence do), . . . , v(~-') are selected such 



T'able 6.4: Artificial S C  injection with k = 6 and T = 1000 

that no vector di), O 5 i < T matches dT) in any substate w E 5'- In this fashion. m 

k-SCs are artificidy injected into the sequence. 

Table 6.4 summarized the MSCGA runs that with artificial injection of 6-SCs 

for test sequences of length 1000 (recall that the experiments of table 6.2 suggested 

that 7 mas the smallest SC normally found by MSCGA for T = 1000). Experiments 

were performed for both m = 100 and m = 1000. Each value in the --average ISCIy 

columns in table 6.1 is taken over 15 runs. One observes that even when o n l -  100 of 

the (6) possible 6-substates are forced to be SCs, MSCGA is still capable of locâting 

one of them. When rn = 1000 it appears that there are enough "forced" 6-SCs such 

that their intersections imply a high proability of the existence of 5-SCs: furthermore 

MSCGA seems to be able to locate these 5-SCs quite frequently. .-\lso included in 

table 6.4 are the values of ml(:) for the vxious n and rn values. These give an 

indication that, for these test sequences, brute force search is analogous to looking 

for a needle in a haystack. 

At this point one might suggest that real pseudorandom test generators are 

highly unlikely to have smaller than expected SCs in their sequences. However' 

suppose we were t o  obtain an exact expression for the expected minimal stopping 

condition, say E(hP) = f (n, T). We know that f (n, T) increases continuously with 

T, thus there are many values of (n, T )  such that f(n,  T )  is close to  k + $ for some 

integer k, i.e. f(n, T) is near equidistant from k and k + 1. Now does one run the 

brute force search against al1 12-substates or al1 (k + 1)-substates.? Of course finding 



a k-SC is preferable, yet we are not very confident that one exists. If no k-SC esists, 

running the brute force search for a ISC is futile and costly. Running the brute force 

search for a (k + 1)-SC will certainly be successful~ but will result in a suboptimal 

solution if there indeed exists a k-SC. In such a situation, use of MSCGA is clearly 

the superior option, as the previous experiments demonstrate. 

6.6 Conclusion 

This chapter7s contributions are threefoId. A new technique for obtaining a 

test balt signal has been proposed. This technique uses only a subset of the test 

generator's cells ancl requires no additional memory elements. -4 lower bound on 

the number of generator cells needed to be tapped to create this signal is derived. 

Finally, the use of a genetic dgorithm to Iocate such cells is explorecl and contrasted 

with using brute force search. 



7. Conclusions and Future Work 

It is unclear t o  what extent C 4  conform to the builaing block h y p h e s i s ,  which is a 

means of determinhg a priori how effective GA techniques ivill be against a problem. 

However, results of this thesis indicate that C-4GA can usually improve significantly 

over prirnit ive CA for testing. Empirical evidence cvas presented t bat indicates t hat 

in the simple CAGA, slight mutation is slightly more effective than full mutation. 

Two advanced mutation operators were introdticed: Bit Role Flipping and Last 

Possible Mutation. BRF seemed to work well against sorne benchmarks but was 

detrimental For others. The mathematics of Markov chains was used to compute 

the expected time of LPM, and experimentation with primitive CA showed that the 

resulting equation is a good predictor. Though uneffective for the test lengt hs required 

by our target benchmarks, when extended to  LPM2 the operator was shown to be a 

porverful au,mentation to CAGA, outperforming radius 3 slight mutation. The price 

of using LPM2 is the emergence of radius 2 rules, mhich are more cost ly to implement 

in hardware- 

Mechanisrns that avoid degenerate CA behavior were explored. Preventing nar- 

row abandons and sinks or simply sinks alone proved to be good practice when evolv- 

ing both nul1 boundary and periodic boundary (2.4. A fast algorithm to prevent sinks 

was given. On average the shortest test lengths were obtained by periodic boundary 

CA when evolved using sink avoidance. 

Auxiliary work on obtaining a BIST stopping condition \vas presented. A lower 

bound on the expected minimum number of pseudorandom pattern generator cells 

needed to uniquely distinguish the final test vector kvas derived. Use of GA and brute 

force search techniques for stopping condition identification were compared. The 

results indicate that under typical test lengths and generator widths, only a fraction 

of the cells are necessary to form a stopping condition. 

On a higher level, we have shown t hat genet ic evolution of CA for test generat ion 



can be enhanced by the i~tilization of aclvmced genetic operators that are devised 

specifically for CA. Such a philosophy is surely applicable to other genetic algorithm 

applications. 

The potential avenues of research that could emerge from the work of this thesis 

are abundant; the remainder proposes several. 

7.1 GA fine t uning 

Due to the large number of parameters controlling the genetic algorithms pre- 

sented in this thesis, it is doubtful that the combinations of values chosen herein are 

the best. Experimentation with different values of any of the CAG.4 parameters listed 

in section 5.3.1 could reveal a more productive actual parameter set. 

Using completely random nonlinear C-4 rather than primitive C-L in the initial 

population will clearly result in a less fit initial population and rvould require a much 

larger value of Tm,. However, it is quite plausible that over many generations such 

a starting point would result with better test generaton. 

7.2 Alteration of GA goal 

At the onset of this research, successful experiments (not discussed in the t hesis) 

were executed that took a different approach to the testing problem. Rather than 

fkxing Fcov ând attempting to minimize the number of vectors needed. the number of 

vectors generated was fixed and the genetic algorithm sought to maximize the fault 

coverage. Furt her research along t hese lines would certainly be interes t ing. 

Other test generator attributes could potentiaIly be optimized via GA tech- 

niques. For example, limiting the power consumption incurred during testing (as in 

[SOI) is a worthwhile quest. Another option is to consider more complex fault models 

during fault simulation. 



7.3 GA Distribution 

GAs lend themselves to immediate parallelization in that the evaluations of the 

fitness function against each individual in a generation are totally independent. Thus 

distribut ing t hese evaluations across a network can vastly accelerate the algorit hm, 

allowing for more generations and larger population sizes to be processed. Aside from 

this Gobviousn means of GA distribution, there are more advanced paradigms such 

as the island .model- 

7.4 Evolution of Feedback S hift Registers 

In practice? feedback shift registers axe used as BIST generators more often than 

CA. This is likely due to the fact that in general a shift register ce11 takes up less area 

than a CA ce11 [Il. 

A nonlinear type II FSR is defined totally by one function of n variables. i.e. the 

logic driving the leftmost cell. These machines are discussed in [il- Because of the 

successes of this thesis with the evolution of CA: it would seem reâsonable to use a G-4 

to evolve nonlinear FSR that rninimize test length. Of course the encoding scheme 

used for the feedback function is an issue that would need intelligent resolution. since 

manipulation of ent ire truth tables is clearly infeasible when n is much greater t han 

10. A possible solution might employ a decision diagram representation. 

7.5 Sequential Circuits 

Based on the results of this thesis, extension of the CAGA to evolve CA with 

cells involved in a CUT7s scan path should certainly be worth the effort. When 

testing a combinational circuit. the temporal cost of a single test is typically one 

ctock tick, while under a scan-based architecture application of a single test takes 

multiple ticks because of the scan-in/scan-out operations. Thus reduction of test 

leogth is an important pursuit for scan-based designs. 



7.6 Signature Analysis 

hfoving our attention to -the other shoren of BIST, synthesis of a signature 

analyzer that somehow reduces the probability of aliasing given a CUS and test se- 

quence might be a job for a GA. However; the obvious way to evaluate an individual's . 

fitness is to compute the signature left by each of the faulty output streams and count 

how many match the fault free signature. Given the typical number of faults and test 

vectors, the time requirements of such a program would be ver-  high. Perhaps a more 

cunning approach exis ts. 

7.7 MSCGA 

Recall that the MSCGA of chapter 6 assigns a zero fitness to substates that are 

not stopping conditions, The algorithm may perform better when a more intelligent 

fitness function is used, i.e- one that incorporates the number of times a substate 

matches into its computation. This stems from the fact that a substate that matches 

only a small number of times is likely converted to a true stopping condition in a small 

edit distance. Of course non-genetic means of obtaining a MSC esist and warrant 

further research. 

7.8 Detection of Abandons 

Though checking for small abandons in section 5.5 suggested that abandons 

do not impede CAGA (avoiding sinks alone gave similar results), existence of a fast 

detection algorithm would facilitate experimentation with larger abandons. Finding 

such an algorithm or proving the problem NP-complete would be beneficial. 

7.9 Further Sink Prevention Experimentation 

The experiments of section 5.5 were performed prior to discover of the fast 

sink detection algorithm. Running experiments wit h k-sink prevention for larger k 

will certainly reveal more information wit h regards to the value of t his mechanism. 



Generalization to short subcycle detection and determining probabilities of sinks and 

short subcycles are ot her possible areas of valuable research. 
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APPENDIX A 

Benchmark Circuits 

Table A.1 Lists various attributes of the ISCAS '85 Benchmark Circuits [li. 671. 

Note that the numeric part of the circuit name is the number of interna1 wires, and 

the number of faults is counted afier equivalence fa& collapsing. Circuits c499 and 

~13.53 are functionally equivalent; al1 EXOR gates in c499 have been espanded into 

the four NAND gate implementation in ~ 1 3 5 5 .  

circuit 
c432 
c499 
c8SO 
cl355 
c190S 
~26'70 
~13540 
c53 1.5 
c62SS 
~ 7 5 5 2  

function 
Priority Decoder 

ECAT 
ALU and Control 

ECAT 
EC -4T 

ALE and Control 
ALU and Control 
-4LU and Control 
16-bit Multiplier 

ALW and Control 

total gates 
1 160 (1s EXOR) 

202 (1s EXOR) 
:383 
546 
880 
1193 
1669 
2307 
2406 
3312 

Table A.1: The Benchmark Combinational Circuits 

inputs 
36 

outputs 
7 

faults 
524 

Tm,, 
1000 



APPENDIX B 

Example CA Output Plots 

This appendir provides CA growths for the best of initial population and best evolved 

CA for the experiments using full mutation and fixed initial vector of section 3.3.2.3. 

The growths use the same initial vector as used in the CAGA runs, and span 600 

time steps. Note that the benchmark c432 is omitted since CAGA provided no im- 

provernent over the initial population iri this experimental run- 



Best primitive CA Best evolved CA 

Figure B.1: CA growths for cl355 



Best primitive CA Best evolved CA 

Figure B.2: CA growths for cl908 



Best primitive CA Best evolved CA 

Figure B.3: CA growths for c2670 



Best primitive CA Best evolved CA 

Figure B.4: CA growths for c3540 



Best primitive CA Best evolved CA 

Figure B.5: CA growths for c499 



Best primitive CA Best evoived CA 

Figure B.6: CA growths for c5315 



Best primitive CA Best evolved CA 

Figure B.7: CA growths for c6288 



Best primitive CA 

Figure B.8: 

Best evolved CA 

Cil  growths for c7552 



Best primitive CA Best evolved CA 

Figure B.9: CA growths for c880 



APPENDIX C 

libfsim User Manual 

The fault simulator used in this thesis is based on the algorithm of r%]. This algo- 

rit hm was implemented in a C program called f sim by the aut hors of [BI. To facili- 

tate the massive number of fault simulations needed during the execution of CAGA, 

this code was rnodified so that the fault simulator could be accessed via function calls 

into a library called libf sim. Prior to t hese modifications the fault simulation was 

performed by involiing an external f sim process for each simulation and passing test 

vectors via temporary files. For information on using the f s i m  program (found at  

/home/csvlsi/sw/bin/fsim), see the document /home/csvlsi/sw/doc/fsim.doc (both 

on the UVic VLSI group research machine shannon). The remainder of this ap- 

pendir explains how use libf i m s  in a C or C++ program and describes its t hree 

access routines. 

The libfsim code is available on shannon, under /home/jbingham/libfsim/. This 

directorÿ contains the libfsim source: header. and object files, a makefile, and the 

source for two erarnple main programs (c-prog . c and cpp-prog. cc) that run some 

fault simulations. So use l i b f  s i m ,  f sim. h must be #included in the source, and 

l i b f  sim.a must be linked during compilation; the source may be compiled as either 

C or C++. 

l i b f  s i m  requires the user to have implemented a function adhering to the fol- 

lowing prototype: 

void g e t T e s t P a t t e r n s  ( i n t  n, i n t  an , i n t  ba t chs i ze )  

libf sirn calls g e t T e s t P a t t e r n s  0 to retrieve a batch of test vectors. These vectors 

are of width n and are returned in the array a 0  ; b a t c h s i z e  determines the number 

of vectors. If b is equal to batchsize then the b n-vectors z.(O), . . . , db-') are stored in 

a O as follows. The low order bit of alil stores the value vjO), the second lowest order 



bit of a[g stores the value vj'), etc.; for O 5 i < n. Thus, &en getTestPatterns() 

0-1) returns, the jth lowest order bit of aCil must store the bit ui . 

The l i b f  s i m  initialization function is: 

void f sim-init (char * n a e l ,  i n t  batchsize) 

The character pointer argument must point to a string containing the path to the 

circuit description file (in ISCAÇSJ format [67]). The second argument must be a 

power of 2 between 1 and 32 inclusive and tells fsim how many vectors to process in 

parallel; the higher t his number the faster the fault simulation algorit hms performs, 

but the resulting test lengths are rounded up to the nearest multiple of batchsize. 

This same value t d l  always be passed to ge tTes tPa t te rns0  when called by the 

li brary- 

Actual fault simulation is performed by: 

i n t  fsim,sim(float cov, i n t  maxVectors) 

f s i m s i m  takes a float in the unit interval that specifies the desired fault coverage: for 

100% fault coverage this parameter should be 1.0. The second argument determines 

the maximum number of vectors to process before returning. The return value is 

the lowest multiple of bat chsize (as passed to f s i m i n i t  ( ) ) greater or equal to the 

nurnber of vectors needed to reach the desired fault cot-erage or maxVectors. 

Finally, before subsequent calls to f s i m s i m  are made, this function must be 

called: 

void f s ira-reset () 

It cleans up all interna1 data structures used by the fault simulator, and need not be 

called before the very h s t  simulation during runtime. 
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