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ABSTRACT

Maximum length linear Cellular Automata (CA) have been proposed as good pseudo-
random test generators for built-in self-test (BIST) of combinational circuits. How-
ever, linear CA account for but a small fraction of possible CA and it 15 hypothesized
that appropriate introduction of nonlinear rules may result in a shorter test length.
Beginning with an initial population of maximum length CA. a genetic algorithm
[GA) is used to evolve CA that achieve some target fault coverage with fewer vectors.
Two simple mutation operators and two approaches to dealing with the initial vector
are compared. It is shown that nonlinear CA can be found that reduce test length
significantly. Two advanced mutation operators are considered, one which completely
preserves the state-transition structure, and one which maximizes the similarity be-
tween sequences generated by the mutated and original CA. A technique called good
newghbor enforcement (GNE) is used to improve the crossover operator by discourag-
1eg degenerate behavior in offspring. Both periodic and null boundary CA are used
and if is shown that GNE and a simplified version called sink aveidance are beneficial;
a fast sink avoidance algorithm is given. Finally, & new approach to obtaining the
BIST stopping condition is proposed.
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1. Introduction

OR the purpose of this thesis, a cellular automaton (CA) is a l-dimensional
F array of flip flops, each being updated synchronously by some function of a local
neighborhood of cells; this function is called the cell’s rule. CA have been proposed
as an alternative to linear feedback shift registers (LFSR) for pseudorandom pattern
generators in circuit testing [1, 2] and other applications [3].

Autonomous linear finite state machines have been studied extensively using
the tools of linear algebra and matrix theory [4, 5, 3, 6, 7, 8, 2, 9, 10, 11, 12]. Much
of this work has been geared towards a priori prediction of a machine’s functional
digraph structure and randomness properties, with applications in testing, coding
theory, and cryptography. Little has been done along the same lines with respect
to nonlinear machines, as these mathematical tools assume linearity® . Since linear
machines represent a diminishing fraction of possible machines, we hypothesize that
nonlinear CA exist that are better than the traditionally used linear CA at testing
digital circuits. In this case better refers to being able to cover a target percentage
of faults with a shorter test sequence length. The question remains: how does one
acquire such CA?

The main idea of the thesis is the employment of a genetic algorithm (GA)
to evolve CA that test a prescribed percentage of stuck-at faults in a combinational
circuit using a minimal number of vectors. A GA is a probabilistic search technique
that models the biological phenomenon of survival of the fittest and natural selec-
tion. The operation of GA has been described as “remarkably straightforward” [16].
GA evolve a population of candidate solutions through many generations, creating
new solutions from old by performing the three genetic operations of reproduction,
crossover, and mutation. The algorithm central to this thesis is named the cellular

automata genetic algorithm (CAGA).

! [3] looks at a very restricted class of nonlinear CA, [13, 14, 15] analyzes uniform nonlinear CA,
[7] analyzes nonlinear shift registers
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Working with the nonredundant ISCAS ’85 benchmarks circuits [17], it is shown
that nonlinear CA can be evolved that significantly reduce test lengths over primi-
tive CA. The initial vector of the test sequence can either be fixed or evolved along
with the CA rule vector; experiments are performed comparing the two approaches.
Also, two simple mutation operators are contrasted. We find that on average CAGA
effectiveness does not vary extensively with these choices. The crossover probability
“standard setting” [18] is verified for the CA testing problem.

Several attempts to improve CAGA via advanced genetic operators are inves-
tigated with varying levels of success. A mutation operator called bit role flipping
(BRF) is defined. BRF has the appealing property of completely preserving the
state-transition space of a CA. Last possible mutation (LPM) is another proposed
advanced mutation operator. LPM maximizes the number of equivalent vectors pro-
duced by the mutated CA before diverging in state transition space and is found to
be powerful when it is allowed to introduce radius 2 rules. A technique called good
neighbor enforcement (GNE) is used to improve the crossover operator by discourag-
ing degenerate behavior in offspring. Two variants of GNE are shown to be effective
against evolution of both null boundary and periodic boundary CA.

Also addressed is the problem of halting built-in self-test (BIST) testing. A
new technique is described in which a minimal stopping condition (MSC) is sought
in the test generating FSM. A MSC is a set of generator cells of minimal cardinality
that uniquely distinguishes the final test vector from all others. GA and brute force
search are discussed as means of finding a MSC.

The thesis is organized as follows. Chapter 2 gives an introduction to the theory
of digital circuit testing including the concepts of BIST and pseudorandom pattern
generation. Chapter 3 formally defines cellular automata and summarizes previous
studies involving CA. In chapter 4, genetic algorithms are explained and exemplified.
All discussion and results regarding CAGA and the advanced genetic operators are
presented in chapter 5. The auxiliary chapter 6 proposes the new means of obtaining

the BIST stopping condition. Finally, the thesis is concluded with chapter 7 in which



many avenues of future work are suggested.



2. Digital Integrated Circuit Testing

2.1 Introduction

In the context of the design, production, and use of digital integrated circuits
(ICs), testing (also called structural testing) refers to a process whose goal is the
demonstration that a given IC is free from defects [4, 19]. Here, a defect is a physical
anomaly in the chip that results in incorrect behavior and stems from either man-
ufacturing or deterioration over time. Testing is separate from verification, during
which it is checked that a prototype adheres to its logical functional specifications
and electrical parameters. Testing is normally used to assess whether or not a chip
should be discarded and replaced; the process of actually pinpointing the location
and nature of a defect falls under fault diagnosis and is not relevant to this thesis.

Two distinct testing philosophies exist: functional testing and structural testing
[4, 6]. The standard approach prior to the influential paper by Eldred [20] was
to test a device based on knowledge of its functional specification. For example,
testing an adder would involve checking that it could indeed add two binary numbers.
Structural testing considers the circuit topology in terms of connections between
primitive elements such as AND, OR, and NOT gates. Test vectors are applied to
the circuit that reveal (via primary outputs) the presence of defects in the primitive
elements and/or interconnections. For the remainder of this thesis, the term Zesting
refers to structural testing.

The set of possible logical effects a defect can have on a primitive element or
the interconnections must be defined a priori and is called a fault model, which is the
focus of the next section. Section 2.3 discusses testing under the most common fault
model, the stuck-at model. In section 2.4 built-in self-test is described, followed by a

brief discussion of the testing of sequential logic in 2.5.
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2.2 Fault Models

A physical defect on a chip may take on many forms. Open interconnections,
shorts between conductors, excess leakage current, and burnout from electrical over-
load are but a few examples [4]. The commonality that these imperfections share,
however, is that they each have the potential to affect the logical behavior of the
circuit on which they reside. The term fault refers to this logical effect of a defect,
and is dependent on the fault model being used.

A fault model provides a means of mathematically abstracting the physical
defect to a logical effect. An example of a fault model is that of the delay fault,
in which the defect causes signals in a circuit to be slow-to-rise or slow-to-fall and
adversely affect the operating speed of a chip. Other fault models include the bridging
fault, short-circuit fault, inverse fault, and miz-up fault.

In this thesis only permanent faults are considered. Permanent faults are con-
trasted by intermittent faults which are sometimes active while sometimes not, and
transient faults which only occur for a brief period of time.

The most widely used fault model is the classic stuck-at fault model, proposed
in 1959 by Eldred [20], in which the fault effect is that a wire or gate output is
“stuck-at” logic 1 or logic 0. If a fault causes such behavior it is dubbed a stuck-at
fault; the focus of this thesis is testing for stuck-at faults. The stuck-at fault model

is essentially the foundation of test theory [6].

2.3 Testing for Stuck-At Faults

Let f be a stuck-at fault in some combinational circuit. A test for f is an input
vector v such that given v, the output of the fault-free circuit differs from that of the
circuit when f is present. The test set for f is the set of all tests for f. A fault with
a relatively small test set is referred to as hard to test. Given a set of faults F', a
minimal test set for F' is a set of input vectors with minimal cardinality that contains
a test for each fault in F. If z is a label assigned to a site in a circuit, the notation

z /o represents the fault where z is stuck-at logic a (where a is 0 or 1).
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Figure 2.1: A circuit implementing z = (z; + z;)z;

input Output in Presence of Faults
zi |z [z3 ||z | /0 ) 22/0 | z3/0 [ y/0 | 2/0 | /1 | z2/1 | z3/1 | y/1 ] 2/1
ofo oo o 0 0 00 0 0 0 0 | [1]
ojoft1fof o 0 0 [0]o0 0
01|00} o 0 0 [0o|of o 0 0
o1 frfry v | o] | (o] |[0]|[0]] 1 1 1 |1 |1
1{ojollofl o 0 0 oo} o 0 0
tjofv el o] t |[o] [[o]|[0o]]| 1 1 1 |1 |1
L1000} o 0 0 0| 0 0 0 0
L1 |1 ff1] 1 1 | [0] |[[o]]|[o]| 1 1] 1 1|1

Table 2.1: Fault effects for all stuck-at faults in the circuit of figure 2.1

In this thesis we adopt the single fault assumption which states that at most
one fault in the given model can be present. Most of the time a multiple fault (the
existence of more than one fault) can be detected by the tests for the involved single
faults [21].

By analyzing the structure of a circuit, we can create a complete list of possible
stuck-at faults and determine tests for each. In the circuit of figure 2.1 we see that
there are 5 fault sites (labeled z;, z2, z3, v, and z), and since each may be stuck-at-0
or stuck-at-1, there are 10 possible faults in total. The fourth column of table 2.1
gives the output z of the circuit in the absence of faults. The rightmost ten columns
give the output of the circuit when each of the ten possible faults are active. When
a value in one of these columns is enclosed in a box, this indicates that the output
differs from that of the fault-free circuit for the corresponding input vector. In other
words, the test set for each fault consists of the input vectors corresponding to the
rows in which a box is present under the fault. For example, the test set for z3/1 is

{010,100,110}, in which the bitstrings represent the respective values of z,, z,, and
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z3. Notice that faults such as z,/0 have only one test. Clearly, any minimal test set
for these ten faults must include such tests, else at least one fault would go untested.
Thus any minimal test set must contain 101 (test for z,/0), 011 (test for z,/0), and
001 (test for z;/1, z2/1, and y/1). But these three vectors also include tests for z3/0,
y/0,z/0, and z/1. The only fault left untested is z3/1, for which we arbitrarily choose
010, giving us the minimal test set {001,010,011,101}.

An important fact illustrated by this example is that we can usually cover
all possible stuck-at faults in an n-input combinational circuit with far fewer input
vectors than the 2" vectors applied in exhaustive testing. Our example circuit has
2% = 8 possible input vectors, yet we only need 4 of them to test for all possible
stuck-at faults.

. Observe that in table 2.1 the columns for z,/1, z5/1 and y/1 are identical.
Such faults are called functionally equivalent, which is an equivalence relation that
partitions the set of all stuck-at faults into equivalence classes. The equivalence
classes for the example circuit are {z,/0}, {z2/0}, {z3/0,y/0,2/0}, {z1/1,z2/1,y/1},
{z3/1}, and {z/1}. Fault equivalence classes are important in testing because once
a test has been generated for one member of a class, all other faults in the class are
necessarily covered.

Given a single stuck-at fault f, the process of algorithmically finding a test
vector for f is called test generation. The classic solution to test generation is Roth’s d-
algorithm [22]. PODEM (23, 24] uses heuristics to reduce the amount of backtracking
done by the d-algorithm and is more effective on larger circuits.

Fault simulation refers to the converse problem: given a set of faults F' and
some test vector v, which faults of F' does v detect? There are many fault simulation
algorithms, for a good survey see [21]. The fault simulator used in this thesis was
written by a group at Virginia Polytechnic Institute (Electrical Engineering Dept.)

and based on the algorithm presented in [25].
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Figure 2.2: Basic BIST architecture

2.4 Built-In Self-Test (BIST)

BIST refers to the capability of a circuit or system to test itself and indicate a
pass or fail status using extra test circuitry at the chip or board level [19]. BIST can
be classified as On-line or Off-line [6, 4, 19].

In On-line BIST, the circuit contains logical redundancy that allows it to test
itself while simultaneously performing the intended function. When a fault is present
in a circuit endowed with on-line BIST, it either manages to still function correctly
or it indicates that it cannot do so.

Off-line BIST means that the circuit must be put in fest mode in order for
testing to occur. When in test mode the circuit does not perform its normal function;
it is essentially taken off-line. Some time (preferably a short time) after being placed
in test mode, a circuit with off-line BIST will indicate a pass or fail status via one or
two pins. In most of the literature and the remainder of this thesis, off-line BIST is
referred to simply as BIST.

Figure 2.2 depicts the basic BIST architecture. Naturally, there is an overhead

associated with BIST arising from the auxiliary circuitry needed, namely the test



pattern generator (TPG) and the test response evaluator (TRE). Not explicitly shown
in figure 2.2 is the BIST controller, which controls the CUT, TPG, and TRE when in
test mode. Ideally, the TPG would be a ROM storing the vectors of some minimal or
near minimal test set and would feed these vectors in some deterministic order during
testing; such an approach would keep test time to a near minimum. Similarly, the
ideal response evaluator would store the expected output vectors of the circuit under
the TPG's test sequence (i.e. the response of the fault-free circuit), and perform a
comparison against each observed output. If all actual outputs match the expected
outputs, the chip passes, else it fails. However, such a scheme consumes a great deal
of chip area. For example, if the CUT has n inputs and m outputs, and the test set
has cardinality 7', then the TPG ROM requires n7 memory elements while the TRE
ROM uses mT.

Two technologies have been developed to reduce this overhead significantly. On
the TPG side, pseudorandom pattern generation (PRPG) is used, which typically
requires O(n) memory elements. The cost of PRPG is an increased test sequence
length. For test response evaluation, a technique based on data compaction called
signature analysis is used. Signature analysis can use as many or as few memory
elements as desired, though as the number decreases the probability of aliasing in-
creases. Aliasing occurs when a faulty output stream is passed off as being fault

free.

We now take a closer look at these BIST concepts.

2.4.1 Pseudorandom Pattern Generation

Recall that the problem of finding a vector that tests a specific fault is called
test generation. When seeking a test set for a set of faults F, the standard approach
is given in figure 2.3. The crux of this technique is that once a test vector v is
generated for a specific fault, all other faults in F' that are “accidentally” tested by
v can be marked as tested. PRPG was first proposed when test engineers noticed

that the number of faults tested in this accidental manner was large early on in
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findTestSet (F)
S « 0
while FF # § do
chose some arbitrary f € F
F « F - {f}
generate a test v for f
S « S u {v}
foreach f' € F do
if v tests f’
F « F — {f}
end foreach
end while
return S
end

Figure 2.3: Test set generation

the algorithm [4]. The conclusion reached was that a randomly chosen vector will
typically test many faults. Thus a random sequence of test vectors can be expected
to test a large proportion of faults early on in the sequence. Given a set of faults and
a combinational circuit, the length of a random test sequence that can be expected
to detect a given ratio of the faults can be statistically determined [4, 6, 21]. In the
preceding discussion, the term “random” indicates that each bit in the test sequence
is 0 or 1 with equal probability [21].

There are sequence generating finite state machines (FSMs) that lend themselves
to hardware implementation and exhibit many properties of true random sequences
[7, 21, 4]. Of course, by definition, a FSM is totally deterministic and is therefore the
antithesis of a random pattern generator; this fact is reflected by the use of the term
pseudorandom.

In this context, a FSM can be thought of as a one dimensional array of n
single bit memory elements, often called cells. The n-vector consisting of the bits
stored in the cells constitute the machine’s state. A FSM is a synchronous device,
meaning that the state changes on the active edge of a clocking signal according to

the machine’s nezt state function. The cells themselves are typically thought of as
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Figure 2.4: An example maximal length type I LFSR with n =3

+

—» q, —> a;

Figure 2.5: An example maximal length type IT LFSR with n =3

living on a horizontal line, and are referred to from left to right as a;, as,...,a,; the
next states of the cells are respectively af,af,...,a}.

The most commonly used class of PRPG in BIST are linear feedback shift reg-
isters (LESRs) [4, 6, 19]. LFSRs are a type of feedback shift register with a linear
next state function, and fall under the umbrella of linear finite state machines (LF-
SMs). Because of linearity, the next state function of a LFSM can be expressed as a
transition matrix A, allowing for analysis using the tools of linear algebra (7, 9]. If
s and st are respectively the column vectors representing the current and next state
of a LFSM, then s* = As, where arithmetic is performed over the Galois field of 2
elements, GF'(2).

LFSRs fall into two categories: type I and type II; both types place restrictions
on communication between cells (i.e. the next state function). A type [ LFSR per-
forms polynomial division, and each cell’s next state function is a linear function of
its left neighbor and a,. In a type II LFSR , each cell receives its next state directly
from its left neighbor, i.e. the state vector is shifted right. The feedback in a type II
LFSR only comes into play with a;, whose next state is a linear function of all cells.
Figure 2.4 and 2.5 respectively show a type I and type II LFSR, both with n = 3.

Let Ar and Aj; be the respective transition matrices of the LFSRs of figures 2.4
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and 2.5. For the LFSR of figure 2.4, the next state equations are given by af = as,
af = ay, and af = a, @ as; for figure 2.5 these equations are af = a, & a3, a3 = ay,

and a3 = a,. From these equations we find:

.

~

|
o = O
- o O
e > B

and
0 11

Arr=11 00
010

Starting from initial state s = [100]7 both example LFSRs see all 2* —1 =7
nonzero states before returning to the initial state. The LFSR of figure 2.4 follows
the state sequence (100, 010,001,101,111,110,011,100), while the LFSR of figure 2.5
generates (100,010,101,110,111,011,001,100). LFSMs with this property are called
mazimal length or primitive.

Another class of FSM are cellular automata (CA), which are a focus of this
thesis and will be formally introduced in chapter 3. The next state of each cell in a
CA is restricted to being a function of the cells in a local neighborhood, typically the
cell itself and its two immediate neighbors. Thus all nonzero entries in the transition
matrix of a linear CA (LCA) lie on the main, super, and sub diagonals. Primitive
LCA were first proposed as PRPGs for BIST in [1]. Evidence that LCA make better
BIST test generators than LFSRs is revealed in [11, 12], specifically LCA are better
detectors of delay faults. Thus targeting stuck-at faults using LCA has the amiable
side effect of providing tests for many delay faults. CA are discussed in further detail
in chapter 3 and are used extensively in chapter 5.

The state sequences generated by primitive LFSRs and CAs have been shown
to have many characteristics of random sequences. As such, they work well as PRPGs

for BIST.
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There are many techniques to transform the state vector of a FSM into an
input vector for a CUT, especially if the CUT is sequential. In this thesis, we take
the simplest approach in which a CUT with n primary inputs is tested using a FSM

on n cells and the state of cell a; drives the ¢** input during testing.

2.4.2 Signature Analysis

Several techniques to perform data compaction on the responses (output vec-
tors) of a circuit to a test sequence [4, 21] exist. The most popular is called signature
analysis (SA), a term coined in [26]. For a single output CUT, SA is performed typi-
cally by a LFSR that takes a single input; specifically the CUT’s output. This output
signal is added modulo-2 to the feedback signal driving the leftmost cell of a FSM.
For example, the LFSR depicted in figure 2.5 could be used as a signature analyzer
by using a 3-input EXOR gate in place of the 2-input gate, with the additional input
wired to the output of the CUT. Once the test sequence is complete, the LFSR stops
accepting input and its final state is the output stream’s signature. The signature is
then compared to the known signature of the fault-free circuit, and the test fails if
there is a discrepancy.

Aliasing occurs when the signature of a faulty circuit is that of the fault free
circuit, due to error cancellation occurring in the LFSR. When the SA LFSR has a
degree k characteristic polynomial,? the probability of aliasing approaches 27%. This
result works under the assumption that all output streams are equally probable, which
is seldom valid. However, by selecting the characteristic polynomial of the SA LFSR
intelligently, some types of errors can be guaranteed to be nonaliasing. For instance,
if the characteristic polynomial has at least 2 non-zero coefficients, all single bit error
streams are nonaliasing [21].

When the CUT has more than one output, the hardware overhead incurred by
using a LFSR on each of the m outputs is usually too high. In such circumstances

a device called a multiple input shift register (MISR) is the common choice. MISRs

2this term will be defined in section 3.5
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have at least as many cells as CUT primary outputs. Rather than obtaining its next
state from its left neighbor as in a LFSR, the next state of a MISR cell is the modulo
2 addition of its left neighbor and one of the CUT outputs. The feedback structure
driving the leftmost cell remains unchanged.

CA have been shown as effective for signature analysis as LFSRs in {27].

2.5 Testing of Sequential Circuits

As this thesis targets combinational logic networks, we only give a brief overview
of sequential testing techniques.

Testing of faults in sequential circuitry is a harder problem than that of the
purely combinational case. Generation of a test set for a sequential circuit is algorith-
mically more complex. The situation is even bleaker when dealing with asynchronous
circuitry [21].

One source of this increase in difficulty is that many faults in sequential circuits
need a test sequence rather than a single vector to be detected. For example, consider
testing for the output of a flip-flop stuck-at 1. A sequence of at least one vector will
be needed to store 0 in the flip-flop. Beginning in the succeeding clock period, a
sequence of at least one vector must be applied to propagate the error to a primary
output.

To alleviate this predicament, the practice is to adopt a design for testability
(DFT) methodology. Scan design is a popular DFT technique in which the sequential
network is essentially transformed into a combinational (or at least “less sequential”)
network when in test mode. This is accomplished through the use of scan registers.
Scan registers include all or some of the design’s memory elements. When in normal
operation, these memory elements function as required by the design, though possibly
with an increased delay. In test mode, the memory elements in a scan register are
transformed into a shift register. The input and output of the shift register are
connected to chip I/O pins (if external testing) or wired to BIST circuitry. To apply
a test to the CUT, test data is shifted into the scan register(s). Next, the CUT’s
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response to the test is latched into the scan registers. Finally, the response is shifted
out to the external tester or SA circuitry. The costs of using scan-based design are
the increased delay and area of the scan memory elements and the increased test time
incurred in the process of shifting test and responses in and out of the scan register(s).

There are many different scan-based methodologies proposed by researchers and
in use in industry. These include IBM’s Level Sensitive Scan Design [28], Scan Path
[29], Random-Access Scan [30], and Scan/Set Logic [31, 32].

2.6 Conclusion

This chapter has provided a brief introduction to a broad discipline that has
been the focus of much research in both academia and industry. We have described
fundamental concepts such as fault models, stuck-at faults, fault simulation, BIST,
PRPG, signature analysis, and design for testability. The following chapter gives a

formal definition of cellular automaton and an overview of CA research.
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3. Cellular Automata

3.1 Introduction

Cellular Automata (CA) (singular: Cellular Automaton) were introduced in
section 2.4 as pseudorandom pattern generators and signatures analyzers for BIST,
but we have yet to give a formal definition.

A CA can be defined as a d-dimensional lattice of cells, also called sites, each
of which exist in one of a finite set of states. The state at each cell is updated
synchronously in discrete time steps according to some function of the states of a
local neighborhood of cells. The next state function at a cell is called the cell’s rule.
A uniform CA has the same rule at every cell, while a hybrid CA need not adhere to
this constraint. CA are also characterized by the neighborhood over which the next
state rules are defined. For 1 dimensional CA, the neighborhood is characterized in
terms of radius; a radius r 1 dimensional CA has each cell’s rule depending on the
cell itself, the r closest cells to the right, and the r closest cells to the left (giving a
total of 2r + 1 cells affecting the next state of each cell). Radius 1 CA are also called
nearest neighbor. The number of cells in a CA may be finite or infinite; as the CA of
this thesis are to be implemented in silicon they are all finite. For a finite CA, the
terms size or length (in the 1-dimensional case) refer to the number of cells, and is
usually 'denoted by the variable n. Unless otherwise noted, for the remainder of this
thesis CA will refer to 1 dimensional nearest neighbor finite CA. When considering
finite CA there are various ways of defining the neighborhood of the boundary cells,
i.e. the cells that live on the perimeter of the CA. (In a 1 dimensional CA, these are

the leftmost and rightmost cells.) Three common approaches are:

e null boundary: the missing cells in the neighborhood assume the constant state

0

e periodic boundary: the d-dimensional CA is embedded on the d-dimensional
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Figure 3.1: Abstract view of a 1 dimensional, radius 1 CA

torus rather than d-dimensional Euclidean space. For a 1-dimensional radius 1
CA with cells cq, . .., cn_1, the next state of cell ¢g is a function of ¢,—1, ¢, and

¢; while cell ¢,—; depends on ¢, c,—;, and ¢,

o intermediate boundary: for a 1 dimensional CA, cell ¢y depends on ¢p, ¢, and

¢y, cell ¢,_; depends on ¢,—1, ¢p-2, and cn—3.

Figure 3.1 depicts a segment of a 1 dimensional hybrid nearest neighbor CA.
When implemented in hardware, each cell ¢; is typically a flipflop which is updated
synchronously by the combinational logic f;(¢i—1, ¢, ¢i+1). Clocking lines are omitted
for clarity.

There are various notations in the literature used when discussing CA. In
this thesis the following notations are adopted. The actual cells are denoted by
€0,C1, - - - Cn-1, left to right, where n is the number of cells. The states of these cells
at time t are vg), vgt), ceny v,(fl 1> representing the stored values, and the aggregate of
these is the state vector® v(8) = (v, vy, ..., va_1)®); if £ is understood from the context
or is arbitrary the exponent is omitted. The rule at cell ¢; is fi(ci—1, ¢, cig1)- If time
is arbitrary, the next state of cell ¢; is ¢f, thus ¢f = fi(ci-1, ¢, Civ1)-

A widely used convention used to identify one of the 256 nearest neighbor rules
is the rule number, an integer r with 0 <r< 255. The rule number of a rule f is the
decimal equivalent of the binary number obtained when the values of the rule’s truth
table are listed, i.e. [f(1,1,1)f(1,1,0)...f(0,0,0)]..

Note that the behavior of a CA throughout time is often referred to as evolution.

3often state, CA state, vector, or configuration are used in place of state vector
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fu(C.l,Co,Cl) = c1PBcGa
filea,e1,62) = (cot+a)@ e

faler,e,63) = 1 Bes
falez,e3,¢4) = 2@ (e3 + ca)
fales,cai05) = 3@ s

Table 3.1: The rules of an example CA

To avoid confusion with the concept of genetic evolution central to this thesis and
introduced in chapter 4, this use of the word is neglected here.

Here we give an example of a null boundary CA with n =5 cells. The rules of
this CA are given in table 3.1; note that as this is a null boundary CA the nonexistent
cells ¢c_; and c¢s are taken as constant 0. The rule numbers associated with the rules
fos---, fq are, respectively, 150, 86, 90, 30, and 90. The functional digraph of a finite
CA (or any autonomous FSM) is a digraph in which each of the 2™ nodes is a state,
and a single arc leaving each node follows the transition function. Figure 3.2 depicts
the functional digraph for the null boundary CA of table 3.1. In this digraph, each
state is represented by an integer obtained by interpreting the state vector as a 5-bit
binary number with ¢4 being the low order bit.

The remainder of this chapter consists of four sections, each summarizing a
distinct vein of research on cellular automata. The sections are presented in the
chronological order of when the research was instigated. John von Neumann coined
the term cellular automaton and studied them as a medium for computation; his work
is discussed in section 3.2. Perhaps the most famous family of CA are those that con-
stitute Conway’s game of life presented in section 3.3. CA are hailed as the discrete
analogs of the physicist’s dynamical systems and have been studied extensively by
renowned physicist Steven Wolfram. Wolfram’s work is summarized in section 3.4.
Finally, section 3.5 gives some of the results pertaining to linear CA obtained using
the tools of matrix algebra. Precluded from this chapter is previous work with evo-
lutionary techniques targeting CA, which is reviewed in section 5.2, and the VLSI

testing applications reviewed in section 2.4.
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Figure 3.2: Functional digraph of the CA of table 3.1

3.2 Von Neumann’s Work

The computer scientist and mathematician John von Neumann performed ex-
tensive pioneering work with CA. However, he did not investigate CA for mathemat-
ical properties, but rather as a means of facilitating his search for universal and self
reproducing computational machines [33]. Von Neumann worked with 2-dimensional
infinite cellular space in which each cell’s neighborhood consists of itself and four
immediate neighbors, i.e. those above, below, left, and right of the cell. He defined
a cellular space with 29 states that is both computation-universal and construction-

universal. In the set of 29 states there is a special blank state.
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Computation-universal means that the CA is capable of simulating any Turing
machine. To achieve this, he describes how, given any (deterministic) finite automa-
ton, to construct an initial state assignment in the cellular space (with only a finite
number being non-blank) that simulates the finite automaton. Also, he explains how
to create physical cellular loops to read and write to the tape, thus emulating the tape
mechanism of a Turing machine. Finally von Neumann explains the architecture that
melds these two devices, thus allowing for implementation of any Turing machine in
the cellular space.

Inspired by early work by Post and Turing, the primary goal of von Neu-
mann’s work was the investigation of self-reproductive systems [34]. Construction-
universality requires the existence of a Turing machine M, called the untiversal con-
structor (embedded in cellular space) that, given the description of an arbitrary
Turing machine M on its tape, M. will construct M in a blank region of the cellu-
lar space and begin simulation of M against its input (also specified on M.’s tape).
von Neumann successfully built a universal constructor in cellular space, and since
the Turing machine to be constructed by M, is arbitrary, it could be M. itself, thus
self-reproduction was obtained.

As an interesting note, this work of von Neumann’s was performed analytically.
Later, with the aid of the computer, Codd reduced von Neumann’s cellular space to

one with the same universality properties but with a mere eight states [35].

3.3 Conway’s Game of Life

One of the many “games” theoretically analyzed in [36] is called the Game of
Life. The Game of Life (or simply Life) is an infinite 2-dimensional CA with binary
states. Similar to von Neumann’s cellular space, Life is a uniform CA. However in
Life, the neighborhoods consist of 9 cells: the cell itself, and the eight neighbors
directly or diagonally adjacent. The two states are dubbed live and dead, and the
rule is expressed in table 3.2, in which s and st are the current and next state,

respectively, and C' is the number of live cells of the 8 adjacent neighbors.



s C st | interpretation
live >4 dead | death by overcrowding
live <1 dead | death by exposure
live | € {2,3} | live | survival
dead =3 live | birth
dead #3 dead | remain dead

Table 3.2: Life’s transition function

Conway and other researchers were interested in the limiting behavior of Life
from various initial state assignments with a small number of adjacent live cells.
Many such configurations received colorful names that reflect the induced behavior,
some examples are the tumblers, barbers pole, spaceships, and glider. Some configu-
rations (or patterns) are stable in that Life does not change over time. Others are
oscillatory, 1.e. they cycle through various configurations eventually returning to the
initial configuration. Translatory patterns are oscillatory, but when a state cycle is
complete, the pattern has physically moved in the Life space, the glider is a simple
translatory pattern that consists of but 5 live cells.

Originally Conway hypothesized that Life would always yield a bounded number
of live cells from finite initial conditions. However this was shown to be false when
in 1971 a group at MIT discovered the glider gun, which emits a glider every 30 time
units. Throughout the early 1970s much work was done finding interesting behavior
in Life, most of which went unpublished [34].

Using the existence of glider guns and other constructs, Conway was able to
create the basic logic gates NOT, AND, and OR, and also memory arrays in Life.
Thus this simple CA could implement an arbitrary digital computer, in which the
“wires” were glider paths. The conclusion is that Life is computation-universal; it
was also shown that Life is construction-universal.

Though these results are theoretically very significant, more relevant to this
thesis is the unpredictability of the patterns emerging in Life which Conway and
many others studied. This is exemplified by Conway’s enumeration of Life’s reaction

to each of a straight line of n live cells, 1 < n < 20, and all 12 possible pentominoes
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[36]. The resulting behaviors clearly do not adhere to any simple means of prediction,

which suggests a sort of randomness.

3.4 A Physicist’s Perspective

As a physicist, Stephen Wolfram saw CA as a means of (discretely) modeling
complex physical, chemical, and biological systems. The former child prodigy sought
a new model for the complexity found in the universe, which traditional mathematics
had failed to capture. Familiar with the complexity found in Life, Wolfram turned
to cellular automata for this purpose and during the 1980s embarked on an extensive
study of CA, publishing around 20 papers on the topic. During the 1990s, he has
ceased publication of his research, amassing his results for the populace in a 1200
page text boldly named A New Kind of Science*.

Where the vast majority of prior CA studies focussed on 2 dimensional CA,
Wolfram considered elementary CA to be the logical starting point for his investiga-
tions. Elementary CA are 1 dimensional, uniform, binary CA with nearest neighbor
communication. Hence an infinite elementary CA can be fully described by the uni-
form rule, of which there are 28 = 256. In his work, Wolfram presents many visual
CA growths in which CA states are represented by a row of pixels (white for 0, black
for 1), consecutive states in time being depicted on successive lines®. Examination of
these growths give the observer an intuitive feel for the level of complexity inherent
in the associated CA.

In [13, 14] CA with legal rules are considered. A legal rule f(ci.1,c;i,c144) is
symmetric in ¢;—; and ¢;4; and has f(0,0,0) = 0; there are 32 such rules. Wolfram
examines the behavior of all 32 infinite elementary CA with legal rules, starting from
an initial state with exactly one nonzero site. Many of these are found to demonstrate
fractal patterns with time; the fractal dimensions are calculated. Indeed, the growths

of these CA hauntingly resemble the Sierpidski arrowhead, one of the many fractal

“to be released sometime in 2001
Ssee appendix B for examples of CA growths



sets presented in the classic text on the subject [37].

For an alternate approach, periodic boundary elementary CA of relatively small
size n are examined on a global level, where all 2™ possible states are considered. Some
states are more likely to appear than others; i.e. arise from multiple possible previous
states. This phenomenon is called irreversibility and accounts for the self-organization
prevalent in certain rules. Irreversibility implies the existence of functional digraph
nodes with 0 indegree and others with greater than 1 indegree, this phenomenon is
present in figure 3.2. Another characterization is the differences in the long term
effect of commencing CA simulation with initial states of small Hamming distance.
Wolfram briefly extends his analysis to elementary CA with & > 2 possible states per
cell [14].

In [15], Wolfram qualitatively and quantitatively examines all 32 legal rules,
and partitions them into four classifications depending on the limiting behavior as

CA time becomes large:

1. Almost all initial states lead ultimately to a unique homogeneous state. In time

all information regarding the initial state is lost.

2. Limiting behavior is characterized by simple separated structures. Changing the
value at a cell in the initial state only affects a finite range of cells in successive

states.

3. Attracting structures are chaotic patterns. Independent of the initial state,
these patterns tend to exhibit the same statistical properties. A small change in

the initial state affects an unbounded number of cells in future configurations.

4. The most complicated behavior, complex localized structures emerge. The tem-
poral behavior can only be determined via explicit simulation. Wolfram hypoth-

esizes that these CA are capable of universal computation.

Wolfram recognizes the fact that CA can be employed as random sequence

generators. He investigates the use of an elementary CA with rule 30 ¢f = ¢;i_; ®
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(ci + ciy1) as a generator of random sequences extensively [38]. Twenty unsolved
problems in the field of CA are proposed in {39].

The preceding discussion has summarized the relevant cross-section of Wolfram'’s
(published) work in the field. Omitted is his work applying CA to thermodynamics,

fluid theory, and cryptography, and analyzing 2 dimensional CA.

3.5 Algebraic Results

Section 2.4.1 gave a brief introduction to the theory of linear finite state ma-
chines (LFSMs). This section elaborates and discusses the problem of CA synthests,
the solution to which is utilized in this thesis.

LFSM lend themselves to algebraic analysis because of the fact that the tran-
sition function of a LFSM can be expressed as a transition matrix A. Because the
transition function of a LFSM can be expressed as a transition matrix over a finite
field, many properties of these machines can be determined using algebraic techniques.
Because of linearity, the all 0 state vector (or, simply, the 0 state) is mapped to itself
under the next state function.

A CA is a LFSM if and only if every rule is itself linear; table 3.3 lists the
eight possible linear rules. Of these eight rules, only the two rules 90 and 150 are
nondegenerate in that they preserve two-way communication. For example a cell with
rule 102 only depends on itself and its right neighbor, thus the cell and all cells to its
right are never affected by the cells to the left.

Associated with a LFSM with transition matrix A is the characteristic poly-
nomial ¢(z) = det(xl — A). Much can be deduced regarding the structure of the
functional digraph of a LFSM from its characteristic polynomial and transition ma-
trix.

The transition function of a group LFSM forms a cyclic group. In a group
LFSM, all states have predecessors. A LFSM is a group LFSM if and only if its
transition matrix A has det(A) =1 [3]. If ¢(z) is irreducible, then all nonzero states
lie on cycles of length k, where k& is the least integer such that ¢(z) divides zF—1 [9].
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rule number | expression
0 cF =0
170 cf =cip
204 cf =¢
240 cf =ciy
102 cf =c; & ciqt
90 ¢t =1 Benr
60 = ®a
150 f =c.1®aDan

Table 3.3: The eight linear nearest neighbor CA rules

An irreducible polynomial p(z) of degree n is called primitive if the smallest such &
is 2" — 1. It follows that a LFSM with a primitive characteristic polynomial has all
2" — 1 nonzero states on a single cycle; such LFSMs are called mazimum length or
primitive.

Nongroup LFSM have also been studied. Such machines have transient states
that are not part of a cycle. The functional digraph always consists of one or more
disjoint cycles called attractors with inverted trees of transients rooted on the cyclic
nodes. States with no predecessors (i.e. the leaves of these inverted trees) have been
called garden of Eden states; others are called reachable. It has been shown that in
a LFSM’s functional digraph, the number of predecessors of any reachable state is
equal to that of the 0 state [3]. Furthermore, the trees rooted on cyclic states in the
transition diagram of such CA are all isomorphic [3, 10].

LFSR and linear CA can defined by restrictions placed on the entries of the
transition matrix. A (type I) LFSR has a transition matrix of the form in figure
3.3. The sub diagonal consists of all 1s, all other entries are 0 except the rightmost
column, the entries {ag,a;,...,an—1} may be either 0 or 1. When q; is nonzero this
indicates that the next state of cell ¢; is the modulo-2 addition ¢;—; & c,_;, and thus
the rightmost column dictates the placement of the EXOR gates in the LFSR (see
figure 2.4). The characteristic polynomial is then given by

¢($) =z" + an_lxn—l + an—2$n—2 -+ a1z + ao
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0 00 0 ao

1 00 0 a

0 1¢C 0 an

0 01 0 as

0 00 --- 0 an—
.0 0 0 --- 1 apny |

Figure 3.3: General form of a type I LFSR transition matrix

[do 1 0 O 0 0
1 d 1 O 0 0
0 1 d 1 0 0
0 0 1 ds 0 0
¢ 0 0 O © dp—p 1
. 0 0 6 0 1 dp_y

Figure 3.4: General form of a hybrid rule 90/150 CA transition matrix

Thus, given a polynomial p(z), we can immediately construct a LFSR with
characteristic polynomial p(z) by filling in the rightmost column as per the coefficients
in the polynomial. Primitive polynomials exist for all degrees n and can be generated
in polynomial time [40]. These two facts in conjunct allow us to create a maximal
length LFSR with any number of cells. As mentioned in section 2.4, maximum length
FSM make good pseudorandom pattern generators for BIST.

In contrast, given a polynomial p(z), the problem of finding a CA with charac-
teristic polynomial p(z) is difficult. In fact, the existence of a CA for any irreducible
polynomial was not proven until 1995 [5]. A hybrid CA with rules 90 and 150 has
transition matrix of the form of figure 3.4. The sub and super diagonals are all 1s,
all other entries are 0 except for the main diagonal, which has d; = 0 (d; = 1) if cell
¢ uses rule 90 (150). Unlike the entries of the rightmost column of figure 3.3, the

values of dp, dy, . ..,dn—1 hold no simple relationship to the coefficients of the charac-
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teristic polynomial. Given an irreducible polynomial p(z), the problem of finding a
CA with characteristic polynomial p(z) is called the CA synthesis problem. Of course
given a CA, the characteristic polynomial can easily be obtained by computing the
determinant det(zl — A).

A near-brute force search algorithm is given in [2], but is prohibitively slow for
large n. In his PhD dissertation [5], Cattell derives an efficient algorithm for CA
synthesis. This algorithm uses the CA recurrence relation proved in [2]. Given a
CA with n cells, let Ay denote the characteristic polynomial of the CA formed by
removing cells £,k + 1,...,n — 1, thus the characteristic polynomial of the original

CA is A,. Then the CA recurrence relation may be stated:

A_]_ = 0
Ao =1
Ar =(z+dp)Ak-1+Ak02, 1 <k<n

Cattell discovers that the CA recurrence relation essentially describes Euclid’s
greatest common divisor algorithm, with A the dividend, At_; the divisor, {z +
dr) the quotient, and A,_, the remainder. From this it is determined that a CA
may be synthesized from a irreducible polynomial by solving a quadratic equation in
GF(2"). The relevant quadratic has a known solution, and the result is an efficient
algorithm to solve the synthesis problem. Other contributions of the dissertation are
the demonstration that any irreducible polynomial has two CA realizations, and a
proof that no periodic boundary CA has an irreducible characteristic polynomial.
Cattell’s efficient synthesis algorithm facilitates the production of a large number of

primitive CA needed for the main work of this thesis.
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4. Genetic Algorithms

4.1 Introduction

Genetic Algorithms (GA) are a class of search technique based on the natural
phenomenon of natural selection and genetic evolution. They have been used to
tackle hard optimization problems, i.e. those characterized by properties such as
nonlinearity, discontinuity, high-dimensionality, and noisiness. This chapter does not
attempt to summarize the history of research into the mechanics of GA, nor provide
an exhaustive enumeration of the abundant areas in which GA have been successfully
applied. It does aim to provide the background necessary for understanding of the
basics of GA, and outline other evolutionary computing techniques.

Section 4.2 describes the simple genetic algorithm, which most GA closely re-
semble or expand on; an example of the simple GA in action is provided in section 4.3.
The building block hypothesis is explained in section 4.4, while section 4.5 discusses
fitness scaling, a mechanism employed in this thesis. Finally some other members of

the family of Evolutionary Algorithms are summarized in section 4.6.

4.2 The Simple Genetic Algorithm

This section explains the inner workings of a basic genetic algorithm. More ad-
vanced genetic algorithms involve sophisticated genetic operators, parallel processors,
and more accurate imitation of natural genetics.

The operation of a GA is “remarkably straightforward” [16]. Given a specific
computational problem, a GA works against a population of fixed length strings of
symbols called individuals or chromosomes. Each individual [ encodes a candidate
solution to the problem at hand, and there exists a fitness function f(I) that maps
I to a real number called the fitness. The fitness function is chosen by the GA user,
and should be defined such that better solutions in the underlying problem domain
receive higher fitness. In other words, f(I;) > f(I:) should always indicates that
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the solution represented by the chromosome I; is superior to that of [. The GA
evolves the population through many generations, starting from an initial population
P(0), which typically consists of completely random individuals. Generation 7 + 1
is created from generation j by the application of three genetic operators, called
crossover, reproduction, and mutation. Each time a genetic operator is applied, the
individuals involved are selected randomly with probability proportional to the fitness.
The genetic operators are repeatedly applied until enough new individuals have been
created to constitute generation j + 1 (in the simplest GA, the size of the population
is fixed). The fitness of the individuals of the next generation are then evaluated, and
the process iterates until some stopping condition is reached.

The three genetic operators are now described. Crossover takes two individuals
I and I, and randomly selects a crossover point, which is an integer between 1 and
the length of the strings. The offspring I; (I3) is produced by concatenating the
prefix of I; (I2) before the crossover point with the suffix of I, ([;) beginning at the
crossover point. Mutation replaces a symbol in a chromosome with a randomly chosen
symbol from the alphabet; each symbol of an individual [ is subject to mutation with
a typically very small probability. The simplest genetic operator is reproduction, in
which the selected individual is copied unchanged into the next generation.

The pseudocode for a genetic algorithm is given in figure 4.2. This algorithm
is basically the simple genetic algorithm (SGA) of [16], and is used as the basis for
all GA in this thesis. Note that P and P,., in figure 4.2 are multisets, thus the
inner while loop always completes. Also, the routine randomIndividual() returns

an individual selected randomly from P with probability proportional to the fitness.

4.3 An example

Here we follow a simple genetic algorithm that attempts to maximize the real-
valued function p(z) plotted in figure 4.2 (p(z) is a quartic polynomial multiplied
by sin(z)). Individuals are encoded as bitstrings of length 20; each encodes a real

number by interpreting the string as a binary number with the decimal point after
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create initial population P(0)
P « P(0)
while halting condition not reached do
evaluate fitness of each individual in P
Prew — O
while [P, < |[P| do
I, « randomIndividual()
I ¢« randomIndividual()
if rand() < p. then
{I], 15} <« crossover(ly,[2)
else
.[{ — [1
[5 — [2
endif
for 7 « 1l...n do
if rand() < p, then
mutate(/],2)
end 1f
if rand() < p,, then
nutate(/3,7)
end if
end for
Pnew — Pncw U {1{7 é}
end while
end while

Figure 4.1: The simple genetic algorithm

the 7** bit from the left. Since the goal is function maximization, we take the fitness
of an individual as simply the value of p(z). Also, we wish to find the maximum on
the interval [0,100], so values of z in (100, 127) are assigned a fitness of 0. In this
example, the population size used is 10.

Table 4.1 gives the initial and second generations of an actual run of the GA.
The individuals of the first generation are chosen completely randomly, with each bit
being 0 or 1 with equal probability. The top half of table 4.1 lists the individuals of
the initial population under the column “chromosome”, each is assigned an ID under
the leftmost column. To the right of the chromosome is the value of the individual

when decoded as binary number with the most significant bit corresponding to 2°.
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Figure 4.2: The target function in the example GA

The value of p(z) is given in the next to leftmost column. We see that the fittest
individual of this initial population has fitness 535, while a visual inspection of figure
4.2 reveals that the greatest possible fitness is close to 900.

The bottom half of table 4.1 shows the individuals of the second generation,
produced via applications of the genetic operators of crossover, mutation, and repro-
duction against individuals of the initial generation. The rightmost column labeled
“genetic history” indicates what operators and parents from the initial population
bestowed each individual. crossover(a, B3, ¢) indicates that the individual was formed
by the crossover operator concatenating the leftmost ¢ bits of individual with ID
a with the rightmost 20 — ¢ bits of individual f. When individual o was simply
reproduced without crossover the genetic history states reproduce(a). Finally, an
additional mut(d) means that the individual arising from the primary operator expe-
rienced a mutation at bit d, i.e. bit d was flipped. We see that the fittest individual
of the new generation enjoys an improvement over that of the prior. In fact even the
second fittest is more fit than the initial best. Another important observation is that

the average fitness across the population has increased drastically, from 191 to 326.



chromosome z p(z) | genetic history
10100111101110110000 | 83.865 | 535.443
110000001010001001006 | 96.317 | 297.995
00100100010101000001 | 18.164 | 158.613
10010101011100110110 | 74.725 | 101.640
10111011000110001001 | 93.548 | 76.608
11000111000100111011 | 99.539 | 10.927
01010101011100010000 | 42.721 | 10.375

11100101000010110011 | 114.529 0
11100001011001110101 | 112.702 0
11110101111110000001 | 122.984 0

10100101011100110110 | 82.725 | 550.091 | crossover(0,3,4)
10100111101000100100 | 83.817 | 543.443 | crossover(0,1,8)
10100111110101000001 | 83.914 | 526.767 | crossover(0,2,7)
10010111101110110000 | 75.865 | 399.596 | crossover(3,0,4)
11000000101000100100 | 96.317 | 297.988 | reproduce(l)
11000000101110110000 | 96.365 | 292.020 | crossover(1,0,8)
00100000010100110110 | 16.163 | 246.549 | crossover(2,3,11), mut(5)
00100100010101000001 | 18.164 | 158.633 | reproduce(2)
00100100001110110000 | 18.115 | 142.648 | crossover(2,0,7)
10010101011101000001 | 74.727 | 101.926 | crossover(3,2,11)

cooo«:o:c\.pww»—‘ocooo-qc:cn.p.an—-oe

Table 4.1: Initial and second generations of the example GA

4.4 the Building Block Hypothesis

Given the computational problem and solution encoding, the building block hy-
pothesis is a theory that predicts how well a GA will perform [16]. In the study of
GA, the term schema refers to special sets of individuals, defined as follows. Suppose
the GA is working against strings of length n over an alphabet £. A schema is a string
of length n over the alphabet (¥ U {*}), where * represents the don’t care value, i.e.
any member of ¥. A position 7 in a schema H = ho...h,_, is called fized if h; € .
The set of strings represented by a schema H consists of all strings X = zo¢. ..Tn_;
such that z; = h; if 7 is fixed; a member of this set is said to match H (and vice
versa). The defining length §(H) of a schema H is the number of positions between
the rightmost and leftmost fixed positions in H (inclusive), while the order O(H) of
H is simply the number of fixed positions. For example the schema H = %01 **1 has

6(H) = 5 and O(H) = 3. Given a population of individuals, the observed performance
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of a schema H is the average fitness over all individuals matching H.

Equations can be derived predicting the expected number of individuals in the
next generation matching a particular schema. When reproduction is the only oper-
ator taken into account, the resulting equation predicts that schema with observed
performance consistently higher (lower) than the average fitness receive exponentially
increasing (decreasing) copies in successive generations. When crossover is included
in the model. we find that schema with good observed performance and short defin-
ing length are most likely to propagate. This stems from the intuition that schema
with long defining length are more likely to be “broken” by crossover. Finally, when
mutation enters the picture, one finds that another factor in schema survival is the
order; those with low order are less likely to be destroyved when mutation is applied.

The implication is that short, low order schema with high observed performance
enjoy a representation that increases exponentially throughout GA evolution; such
schema are called building blocks. This result is known as the Fundamental Theorem

of Genetic Algorithms, which is formally stated:

m(H, ¢+ 1) > T OSH) [1 _§(H)

T, Pcn—_z — O(H)pm

where m(H,t) is the expected number of individuals matching schema H at generation
t, f:(H) is the observed performance of H in generation ¢, f; is the average fitness
over all individuals in generation ¢, and p. and p,, are the respective probabilities of
crossover and mutation.

Now consider the optimal or near-optimal solutions to a problem, and the strings
they map to under the GA encoding. If the building blocks that match one or more
of these optimal individuals realize high observed performance, then we can expect
the GA to converge to a good solution. However, if many of the building blocks also
match a large number of weak individuals, then they are likely to be killed off. This
concept is referred to as the building block hypothesis. A predicament faced when

applying a GA is determining if the building blocks present in good solutions will
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usually receive above average fitness in other individuals that they represent. This
can be a complex problem, since a single building block matches a large proportion

of the entire search space.

4.5 Fitness Scaling

This section describes the linear fitness scaling (LFS) of Goldberg’s simple GA
[16]. Fitness scaling maps the raw fitness f returned by the user-defined fitness
function to a scaled fitness f'. Under LFS, this mapping takes the form f’ = af+b. the
coeflicients a and b are recomputed each generation such that the expected number of
times the fittest individual is selected for participation in a genetic operation is equal
to the user-specified parameter C,,,i:, and the average individuals are (each) expected
to be selected once. Let frnaz. favg. and fimin respectively denote the maximum.
average, and minimum raw fitnesses in a specific generation. Then we require f, =
Cruit favg and f,,. = foug, .. the scaled fitness of the fittest individual is Cpue that
of the average fitness. These points yield:

a —_— faug(cmult—l)
fma:r_faug (4-1)

f fmaz— multfavg
avg fmar—faug

b

]

A slight problem with this function is that after evolution has occurred for some
time and f,.9 and fme- become close, the slope of the function can become sufficiently
steep as to map fmin to a negative value. This is undesirable, since it complicates
the process of computing selection probabilities. The remedy is to test if equation 4.1
would result with f,,;, <0, and if so, define a and b such that f/ . = 0. keeping the
constraint f,,. = faug-

In practice, the values of C,,,;: employed are typically in the range [1.2,2]; in

this thesis, Crure = 1.5 [16].



4.6 Related Techniques

GA fall under the umbrella of Evolutionary Algorithms, along with its cousins
Fvolutionary Programming, Classifier Systems, and Genetic Programming. Also in
this group are Evolution Strategies, not described here.

Evolutionary Programming (EP) [41] is a technique similar to GA, with two
notable exceptions. EP does not use a crossover operator, the new population is cre-
ated by applving mutations of various degrees of severity to the previous population.
Also, the population size need not be constant. EP was originally used (with limited
success) to evolve small FSM that predict the output sequence of a Markov process;
such FSMs are of use in artificial intelligence.

Classifier Systems are a type of genetics-based machine learning system [16].
and are briefly described here. Embedded in an environment, classifier systems receive
input messages via detectors, which trigger internal if-then rules called classifiers. The
triggered classifiers compete in a credit system, in which those with higher strength are
more likely to win the privilege of transmitting to other classifiers or produce output.
The population of classifiers are subject to a GA, in which they are subject to the
usual genetic operators. Classifier Systems have been used to teach machines a variety
skills, including maze navigation [42], gas pipeline control [43], and Norwegian verb
forms [44].

Genetic Programming (GP) refers to an extension of the GA paradigm in which
the individuals under evolution are actual computer programs. Rather then being
encoded as fixed length strings, the programs are processed as rooted, labeled, edge-
ordered trees. This tree representation is essentially the parse tree a compiler would
build for the program. All functions used in defining the programs are defined a
priori in a function set. Crossover is performed between two parent programs by
randomly selecting a node in each tree, and then swapping the subtrees rooted at
these nodes. Besides mutation, two other secondary genetic operators are utilized in
GP. Permutation selects a node, and then permutes the children, in effect permuting

the arguments to the function. Editing requires a list of editing rules, which are used
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to simplify programs. For example, the occurrence of (NOT(NOT(X))) might be

replaced with (X). Koza [45] provides a comprehensive survey of GP.



5. CAGA and Advanced Operators

5.1 Overview

This chapter presents the central work of the thesis. As described in chapter
3, GAs are an approach to complex optimization problems with search spaces too
large for exhaustive evaluation. The problem we tackle is certainly such, and can be
formally stated as follows:

Given a combinational network C with n primary inputs, find an n-cell cellular
automaton A and a binary n-vector v such that when started in state v. A generates
tests for all single stuck-at faults in C in a minimal number of clock ticks.

The size of the search space here is an impressive 2° (for each primary input we
have a CA cell defined by an 8-bit truth table as well as 1 bit for the initial state). The
encoding used is either a 256-ary or 512-ary string of length n. depending on whether
the initial CA state is included in the chromosome. To what degree this problem and
choice of encoding satisfies the building block hypothesis is clearly intractable. Thus
evaluation is performed empirically over the nonredundant ISCAS "85 benchmark
combinational circuits [17]. Details pertaining to these ten benchmarks can be found
in appendix A.

The remainder of this chapter is partitioned as follows. Section 3.2 gives a
brief survey of previous research relating to the creation of “good” CA-based pattern
generators. In 5.3, the cellular automata genetic algorithm (CAGA) is presented and
issues regarding handling of the initial vector and approach to mutation are addressed.
Also experiments with differing crossover probabilities are performed. Section 5.4 de-
fines and investigates the use of two advanced “application specific” genetic mutation
operators as means of improving the power of CAGA. The possibility of improving
the crossover operator is discussed in 5.5. A simple means of further shortening test

length is given in section 5.6. The chapter is summarized and concluded in section

5.7.
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5.2 Related Work

Genetic evolution of CA is not a new concept. Here we summarize previous
research on finding good CA BIST generators and on the more general problem of
finding a CA that satisfies certain randomness properties, such as some subset of
Knuth’s randomness tests [46]. Note that the history of “non-evolutionary” CA
work is outlined in chapter 3.

In [45], Koza demonstrates how a random number generating 1-dimensional
uniform CA on 32 cells is evolved. The fitness function is based on the entropy (a
measure of randomness) of the bit sequence produced by a fixed cell over 4096 clock
ticks. Somewhat surprisingly, the evolution tends to converge to a rule-30 CA. which
has previously been shown by Wolfram to satisfv several common randomness tests
[38]. Koza also extends his techniques to the evolution of a 2-dimensional CA.

Cellular Programming refers to the local evolution of non-uniform CA to per-
form computational tasks [47]. Cellular programming has been investigated when
the target computational task is random sequence generation. Instead of a population
of CA, cellular programming involves a single non-uniform CA. In each generation,
a fitness is assigned to each cell based on the entropy of the bit sequence produced
by the cell. The reproduction and crossover operators are only performed between
the rules of adjacent cells; mutation is also applied. It is demonstrated that as this
evolution proceeds, the average entropy of all cells in the CA approachs the maximum
possible value [48].

There has been extensive research on applying GAs to various VLSI problems
by the Electronic CAD & Reliability Group at Politecnico di Torino in Italy: the
sequel elaborates.

The most relevant to the work of this thesis is that of Chiusano et al. who
implement a GA working on a population of non-uniform nonlinear CA with fitness
based on fault coverage of a specific CUT [49]. A restricted 2-dimensional CA is the
theme structure; this variation has a width of n cells, where the CUT has n primary

inputs, and a vertical depth of 2 cells. Chiusano et al. target the stuck-at faults of
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sequential circuits. As outlined in section 2.5, testing sequential circuits is a harder
problem then the testing of purely combinational networks. The motivation behind
the use of this 2 x n CA structure is to provide the generator with the resources to
produce the ordered sequences necessary when testing sequential CUTs.

Low power BIST adds another dimension of complication to the standard testing
problem in that the power consumption of the chip when in test mode is sought to
be minimized (or at least constrained). In [50], Corno et al. describe a technique for
synthesis of nonlinear CA when the objective is low power BIST. They do not use
a GA, but rather another probabilistic algorithm: Random Mutation Hill Climber.
This technique involves evaluation of randomly chosen mutations on a CA until an
improvement is found, then feeding back the new CA into this process. Of course the
fitness function here is not only based on fault coverage and test length, but also an
estimation of power consumption. Though the search algorithms differ. an important
similarity between this thesis and the work in [30] is that both use primitive CA as
starting points.

In [51], the group use a GA for automatic test pattern generation for sequential
logic. A significant contribution is the concept of improving a GA by using advanced
genetic operators that are specific to the underlying problem. Development and
evaluation of such operators is a primary effort of this thesis.

The Politecnico di Torino group has also investigated the genetic evolution of
a CA for what is dubbed circular CA BIST, in which the same CA is used as the
TPG and output compactor [52, 53]. Other areas of VLSI in which this group
has explored the use of GAs include: floorplan area optimization [54], automatic test
pattern generation [55, 56, 57, selection of flip-flops for partial scan [58], non-aliasing

output compaction [59], and equivalence verification [60].
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5.3 The Cellular Automata Genetic Algorithm
5.3.1 CAGA Described

In this section the central idea of the thesis is presented: a genetic algorithm that
evolves a nonlinear CA that is “good” at testing some target combinational circuit
for stuck-at faults. Here, “good” translates to “able to detect some target percentage
of all stuck-at faults in as few clock ticks as possible™. This subsection describes the
algorithm, its parameters, and which parameters will remain fixed throughout the
thesis. Section 5.3.2 considers two different mutation strategies and inclusion of the
initial CA state in the chromosome. Section 5.3.3 presents a set of experiments that
justifies using a crossover probability of 0.6.

The CAGA algorithm is essentially the simple genetic algorithm (SGA) given by
Goldberg [16] applied to an initial population of distinct primitive CA. These CA are
all of length n, where n is the number of primary inputs to the target circuit (CUT).
The test vector seen by the circuit is simply the state of the CA, i.e. no additional
gating or cells are used. The raw fitness f.,,, of a CA is determined as follows. Fault
simulation determines the test length ¢ required for the target coverage. F.,.. The
parameter T, controls the maximum number of vectors to generate before fault
simulation halts, i.e. if a CA has not achieved the target coverage after 7,,,, vectors,
a value of ¢ = Tj,,- is returned. f,, is then computed using the simple formula
fraw = Tmaz —t. The choice of Ty, itself is such that most of the initial population
has positive raw fitness. The actual value of T, for each benchmark is given in
appendix A.

In CAGA, the chromosomes have length n and the value at position 7 holds
the rule number at cell ¢ of the associated CA. If Goldberg’s SGA paradigm were
to be followed precisely, the initial population would consist of completely random
individuals, i.e. the rule of each cell of each individual would be selected uniformly
from the set {0,1,...,255}. One does not intuitively suspect that a CA created in such
a manner is very likely to be even a mediocre test generator; this suspicion stems

from both preliminary experimentation and the fact that randomly generated CA do
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not normally generate sequences with good randomness properties.

If such an initial population was employed. T;,,, would necessarily be very large.
thus impeding run times significantly. To remedy this situation, CAGA is initially
populated with (usually distinct) primitive CA. This initial population of N primitive
CA is obtained by using Cattell’s efficient CA synthesis algorithm, derived in [5], to
each of a population of degree n primitive polynomials. In turn, the list of primitive
polynomials is generated efficiently using the algorithm outlined in [40]. Note that
when n is sufficiently small compared to V. i.e. when there is less than N primitive
CA of length n, the initial population will have duplicates.

Determining the optimal population size for a GA is nontrivial. Too small of a
population causes premature convergence, while using a very large population incurs
long computation times due to processing of redundant individuals. However. the
focus of this thesis is obtaining good results in some reasonable amount of time, rather
than doing so as efficiently as possible. In the absence of GA runtime constraint, the
use of a conservative (i.e. large) population size is “good practice” [61]. As such. a
population size of 300 is used.

According to De Jong’s landmark dissertation [62], crossover and mutation
probabilities of p. = 0.6 and p,, = 0.001, respectively, gave consistently good per-
formance over his benchmark functions. These parameter values have since been
incorporated so often that they have become known as the “standard settings” [1§].
We present a set of experiments that verify that the standard setting for p. is a good
choice for the problem at hand. Mutation on the other hand is specified on a “per
individual” basis, rather than per gene or bit. Given a value for p,,, tvpically in the
range [0.10,0.15], each gene is mutated with probability 1 — (1 — p,,)'/", the effect of
which is that a CA undergoes «t least one mutation with probability p,,.

The scaling coefficient Cy,yi: gives the expected number of times the fittest CA
from generation g will be selected for reproduction in generation g + 1. see section
4.5. Values between 1.2 and 2.0 have been successful in practice [16]; here the value

of 1.5 is used.
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An auxiliary mechanism used in CAGA not present in Goldberg’s SGA is that
the fittest k.., individuals of generation g are reproduced unaltered into generation
g + 1. This allows for use of a higher than normal mutation rate, since the elite
individuals are never lost in the evolution. Of course, use of a higher mutation rate
further encourages the introduction of nonlinearities, thus allowing for CA with large
numbers of nonlinear rules to be visited in the search process. A value of 10 is used
for k,.p; the fittest k.., distinct CA are reproduced each generation in this manner,
but still included in the mating pool for creation of the remaining NV — & individuals.

Regarding the fault simulator itself. the parallel pattern fault simulator fsim
[25] has been integrated into the genetic algorithm code, thus preventing the overhead
of making calls to an external executable and transferring test data via temporary
files. The fsim algorithm simulates packets of consecutive vectors in parallel. the size
of these packets being dictated by the parameter b, which is typically a power of 2.
Typically the larger b is. the faster fsim runs, however. the test length returned by
fsim is a multiple of . Thus the granularity of fitness levels is adversely affected by
large b. Given these tradeoffs, it makes sense to set b proportional to the expected
test length of the CUT.

Finally, CAGA needs to have a halting condition. The choice made here is to
run all experiments such that after given number Ag of generations without seeing an
improvement, CAGA halts. Obviously the higher Ag is set, the more likely CAGA is
to make an improvement and buy another Ag generations to work with. Unless oth-
erwise noted, a value of 200 is used in this thesis, as this tends to keep the algorithm’s
runtime down to about 3 or 4 days for the “hardest” circuit.

The parameters of CAGA are now summarized:
e the n-input combinational CUT, given in the ISCAS 83 netlist format.
e crossover probability p. = 0.6.
e mutation probability pp,.

e population size N = 300.
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e P(0): the initial population of V primitive CA.

® Cru: = 1.5: the coefficient used in the linear scaling function; determines the

expected number of selections of the fittest individual of a generation.

® k.ep = 10: the number of CA that are reproduced unchanged in the next pop-

ulation.
o T,..., the maximum number of vectors used to evaluate the raw fitness of a CA.

e be{1,2,4,8,16,32}, the number of inputs vectors processed by the fault sim-

ulator in parallel.
e [, the target fault coverage (expressed as a percentage).

e Ag =200, the number of generations without improvement before CAGA halts.

In all experiments, F.,, = 100%, with the exception of experiments in which
either of ¢2670 or c7552 are the CUT. For these two circuits, test lengths required from
typical primitive CA for 100% coverage are at least an order of magnitude greater
than the other benchmarks. As such, the coverage used for ¢2670 and c7532 is always

99%.

5.3.2 Choices Regarding Mutation and Initial Vectors

There are two issues left unresolved regarding the use of GA techniques to evolve
a CA for BIST. One pertains to how mutation is performed; the other deals with the
handling of the initial vector of the CA being processed by the GA. We discuss two
possible choices for each and then give results from a set of experiments conducted

to evaluate all four possible combinations of approaches.

5.3.2.1 Slight or Full Rule Mutation
If we view the chromosomes as length n strings over a 256-ary alphabet, then

the mutation operator, when applied, fully replaces a cell’s rule with a rule drawn
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uniformly from {0.1,...,255}. Alternatively, once a gene has been singled out for
mutation, the operation could be performed by randomly flipping one of the eight
bits defining the truth table of the rule of the corresponding cell. The effect of this
“slight” mutation is either the addition or deletion of one minterm from the rule. It is
unobvious which of the two operators is likely to result in a more productive GA. On
one hand, slight mutation would intuitively seem to have a less drastic effect on the
structure of the functional digraph of a CA, and, indeed, its ability to test. On the
other hand, full mutation encourages a more thorough exploration of the search space,
allowing the more unbalanced rules to be quickly introduced into the population.
For instance, slight mutation causes a linear rule to become a rule with either
3 or 5 ones in its truth table. Suppose the hard to test faults in the CUT are mostly
tested by vectors with 0 on input 7. Then it would seem that shorter test lengths
would be promoted by placing a rule with only one or two minterms at cell 7. For
CAGA to arrive at such a rule under slight mutation, two or three mutations at
the appropriate positions must occur — an unlikely event. Full mutation facilitates
direct introduction of such rules, but also is more likely to bring about trivial rules
or rules that break two-way communication in the CA, though this breakage might
not necessarily be detrimental. Clearly, experimentation is necessary to determine

the better mutation operator.

5.3.2.2 Inclusion of Initial Vector in the Chromosome

In this section we address the question as to whether the initial vector should
be included in the chromosomes of the GA. Suppose we choose some arbitrary initial
vector v(®) that all CA in all generations are seeded with before fault simulation. This
somewhat limits the GA’s ability to find the best CA/initial vector pair in that the
initial vector is fixed. In effect the problem being addressed is that of finding the best
CA for testing the CUT with the prescribed initial vector.

The alternative is to include the initial vector in the chromosome of the in-

dividuals, and allow the initial vector to be unique to each individual and undergo



BOIP Slight Mutation || Full Mutation
circuit FIV | VIV || FIV VIV || FIV VIV
c1355 1240 | 1208 || 984 968 || 1000 952
c1908 4320 | 4400 || 2064 1992 || 2056 1576
c2670 29024 | 37024 || 544 1216 || 1248 576
c3540 3568 | 7888 || 3008 1488 || 3072 4336
c432 180 208 || 176 164 || 180 176
c499 508 404 1 320 304 || 280 348
c3315 1216 | 1320 || 728 1048 992 824
c6288 55 50 35 31 34 37
c7552 5184 | 6752 {] 1696 2048 || 2144 1632
c880 3136 | 3088 || 400 368 || 352 656

Table 5.1: Results of mutation and initial vector approach experiments

crossover and mutation in conjunction with the rule array. Note that inclusion of the
initial state increases the alphabet size from 256 to 512 (each CA cell is now defined
by 9 bits). Under this approach, each primitive CA in P(0) is assigned a randomly
selected initial vector. These vectors are constructed by setting the ith bit to 0 or 1
with equal probability. The crossover operator proceeds as expected; given individu-
als A and B, a crossover point k is randomly selected, and the two offspring counsist.
respectively, of the concatenation of the first & rules and initial state bits of A (B)
with the last n — k& rules and initial state bits of B (A). When a gene is selected for
mutation, slight mutation is performed by uniformly choosing and flipping one of the
9 bits. Thus the initial bit of the selected cell is flipped with probability 1/9. while
the rule is modified with probability 8/9. Full mutation uniformly selects a new rule
and initial bit, i.e. a new symbol from the 512-ary alphabet is chosen to replace the
current symbol.

We call these two approaches fized initial vector (FIV) and wvariable initial vec-
tors (VIV), respectively. As in the question of slight verses full mutation, it is unclear

whether FIV or VIV will result in the superior CAGA.
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5.3.2.3 Results

Experiments were run for each of the four possible choices: slight mutation with
FIV, slight mutation with VIV, full mutation with FIV, and full mutation with VIV.
For the FIV experiments, the initial vector used was always v(® = 101010.... The
results are summarized in table 5.1. The first column gives the name of the CUT
(see appendix A for details). The next two columns give the best of initial population
(BOIP) for the experiments with fixed and variable initial vectors, respectively. The
BOIP is the shortest test length required over all primitive CA in P(0), i.e. the best of
300 primitive CA. Of course this only varies between FIV and VIV runs as the type of
mutation employed has no affect on P(0). BOIP is included here to demonstrate the
power of CAGA regardless of which of its four variants is used. One will observe that
the effectiveness of CAGA varies from profound (against c2670) to almost negligible
(c432).

The rightmost four columns give the test length required by the best CA found
by each of the four CAGA variants. The lowest test length on each row is indicated in
bold font. We observe that these “winning” CA are quite evenly distributed across
the four columns.

As the running time of CAGA against these particular benchmarks and param-
eter values is on the order of several days, time did not allow execution of multiple
runs with differing drand48() seeds. Of course doing so would strengthen the re-
peatability of these experiments. The results of the four approaches in table 3.1
along with results forthcoming in this thesis verify that CAGA always finds CA with
test lengths in the same “ballpark” for a given benchmark®. Also omitted from this
thesis is the exact distribution of fitnesses in the final generation of CAGA. Typically
these populations have many very fit individuals that are closely related, i.e. of small
or zero Hamming distance, as well as weak individuals that were created by “bad”
genetic operations against the previous generation.

To provide another view of the data, table 5.2 expresses the test lengths as

6a notable exception are two experiments for ¢2670 in table 5.4
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Slight Mutation || Full Mutation
circuit || FIV VIV || FIV VIV
cl1355 18.5 19.9 || 17.2 21.19
c1908 52.2 53.9 || 52.4 63.52
c2670 98.1 95.8 || 95.7 98.02
c3540 46.0 73.3 || 44.8 22.13
c432 2.2 8.9 | 0.0 2.22
c499 20.8 24.8 || 30.7 13.86
c5315 40.1 13.8 || 18.4 32.24
c6288 30.0 38.0 || 32.0 26.00
c7552 67.3 60.5 || 58.6 68.52
<880 87.0 88.1 || 88.6 78.76
average || 46.2 47.7 || 43.8 42.6

Table 5.2: Results of mutation and FIV/VIV experiments, as percent
improvement

percentage improvement over the best of the two BOIPs. It appears that on average
slight mutation achieves a better improvement ratio. The best combination of options
occurs when slight mutation is used with VIV, providing a mean improvement of
47.7%.

These experiments do not strongly point at one approach as the most powerful.
We will later find this beneficial, as two advanced genetic operators are introduced.
One of these requires VIV, while the other can be thought of as a strategically applied
slight mutation. Due to the results of this section, we can be confident that these
advanced operators will not inherently weaken CAGA.

Appendix B contains CA growths for the best of initial population and best
evolved CA for each benchmark in the experiments for full mutation with FIV”. Note
that some best evolved nonlinear CA growths have distinctive features not seen in

any of the primitive CA, 1.e. those for ¢2670, c499, c6288, and c7552.

7though these experiments were not the most successful of the four combinations, full mutation
typically results in a more visually pronounced difference between the two growths.
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circuit || p. =0 | p. =02 | p. =04 | p. =0.6 | p. = 0.8 | best
c1355 1024 1072 1016 1000 3888 | 0.8
c1908 2432 2488 2832 2056 1424 | 0.8
2670 576 2720 5472 1248 1184 | 0.0
c3540 4592 4448 2944 3072 3440 | 0.4
c432 180 180 176 180 180 { 0.4
c499 352 368 284 280 276 | 0.8
c3315 1112 1080 838 992 800 | 0.3
c6288 47 42 32 34 35| 04
c7552 4256 3616 2944 2144 3808 | 0.6
cS80 448 432 752 352 448 | 0.6

average | 0.56

Table 5.3: Experiments with differing values of p.

5.3.3 Crossover Probability Experiments

As stated in section 5.3.1, previous work in the study of GAs has determined
that using p. = 0.6 seems to provide good results in a wide variety of GA applications.
In this section we verify that this is indeed true for the problem at hand. Experiments
were run with five different values of p., 0, 0.2, 0.4, 0.6, and 0.8. This was the only
parameter varied across these runs. FIV with »(®) = 1010... was used; full mutation
was applied with probability p,, = 0.15.

Table 5.3 lists the results for each value of p.. The final column indicates the
value that caused CAGA to arrive at the best CA for the given CUT. When these
best values of p. were averaged, the result was 0.56, which indicates that p. = 0.6 is
a reasonable choice for this paramenter. Typical of GA research. there is a deviant
instance in which the algorithm was “lucky”, namely the experiment for benchmark
c2670 with p. = 0; of course without the crossover operator, the algorithm cannot be

considered truly genetic.
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5.4 Advanced Mutation Operators
5.4.1 Bit Role Flipping
5.4.1.1 Discussion

Bit role flipping (BRF) is the name given to a mutation like mechanism that
completely preserves the state-transition structure of a CA. Similar to full and slight
mutation, BRF is done with respect to a CA cell, say cell ¢;. Then the sole difference
between the state-transition diagram of a CA and its BRF-mutated clone is that
every vector has the bit at position ¢ flipped. BRF not only changes the rule at cell
ci, but also the rules at the neighboring cells ¢;_; and ¢;;.

Given the rule f; at cell ¢;, define functions fF, f€, and fF as follows.

fE(icviyvipt) = i B vis vigr)
fl-C(v,'_l, Ui, ’U,'+1) = fi('vi—h Ui, vi-{»—l)
fiR(Ui—lv'Uis 'Ui+1) = fi(Ui—hvi,vi-f-l)

We may now define the effect of BRF at cell ¢; : f; is replaced with :f,? and
the neighboring rules f;_; and fi;41 are replaced with f2, and fE,. respectively.
Additionally, the bit at position ¢ in the initial vector v(®} is flipped.

The motivation behind the BRF operator is twofold. First, preservation of the
state-transition structure guarantees that if a CA-initial-vector pair [ = (A, v(®)
achieves the target fault coverage in k vectors, then the individual [ = (B,u(®)
resulting from an application of BRF will not visit a repeated state in the first k clock
ticks. The same assertion cannot be made with regard to slight or full mutation
and hence we may confidently apply BRF with higher probability than slight or full
mutation. Second, the vectors generated by the two individuals are very similar.
namely for all ¢ > 0. v{!) and u(*) are the same with the exception ult = E for some

2.



Pm = 0.15 Pm =
circuit || best of 5.1 || pprr = 0.2 | pprer = 0.4 || pprr =0.15 | pgrr = 0.3
cl1355 952 920 936 10608 944
c1908 1576 1480 2072 2912 2600
c2670 544 768 576 10368 14368
c3540 1488 3008 4224 4768 3184
c432 164 164 152 168 164
c499 280 332 316 352 304
c5315 728 880 952 760 712
c6288 31 34 33 43 44
c7352 1632 1632 1760 2112 1568
c880 352 672 640 1134 976
Table 5.4: BRF results for various values of pgpr and p,,

5.4.1.2 Results

BRF was incorporated into CAGA by performing the operation at the same
stage as full mutation with probability pgrr, independent of application of full mu-
tation. Four experiments were performed, with varying values of pgrr and p,,; table
5.4 summarizes. The third and fourth columns give results for pgrr set to 0.2 and 0.4
respectively, both using p,, = 0.15. In the fifth and sixth columns the full mutation
operator was never applied, with respective values of pgrr 0.15 and 0.5.

Note that application of the BRF operator on a linear CA simply negates the
rules at the cells neighboring the point of mutation and the bit at the point of mutation
in the initial vector. Since P(0) consists entirely of the linear rules 90 and 150 only. it
follows that all individuals in the experiments with p,, = 0 only have these two rules
and their nonlinear negations, 165 and 1035.

In table 5.4 the second column reproduces the best test lengths over all four
columns of table 5.1. Bold values in table 5.4 indicate test lengths that are better
than the second column. BRF seems to work well against some benchmarks while the
operator impedes evolution for others; there does not appear to be any predictable
pattern in table 5.4. For example, the rightmost column in which only BRF mu-
tation is used (with the very high probability pgrr = 0.5), the GA outperformed

all experiments of section 5.3.2.3 for three benchmarks. However the same param-
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eter set failed miserably for others, the most prominent being c2670. For exactly
half of the benchmarks, at least one of the paramenter sets of table 5.4 obtained a
better CA. The most influenced benchmark was c1355, for which three of the four
BRF experiments achieved better results then the previous experiments. In the fol-
lowing section we discuss another advanced mutation operator which provides more

consistent improvement.

5.4.2 Last Possible Mutation
5.4.2.1 Discussion

Very little can be said about the vector sequence generated by a mutated in-
dividual when compared to that of the original. Last Possible Mutation (LPM) is a
mutation operator that seeks to remedy this situation.

The following discussion requires the definition of £. which is used in the context
of an individual 7 and a mutated clone /. If I and [ generate sequences v(® v(1), ..
and u(®, u(M)_ ... respectively, let ¢ denote the largest time such that ¢(® = 4(®), »(1) =
u® .., v® = u® Then LPM can be described as a slight mutation in which the
point of mutation, rather than being selected at random. is chosen such that {is
maximized.

The motivation behind LPM is this. Recall that when pseudorandom testing,
the majority of the faults are detected early on in the test sequence. Thus a fit
individual I would be expected to cover a large number of faults during the onset of
its sequence. The test length required by I is determined by how soon [ reaches the
desired coverage following this massive and early “fault consumption”. If a mutated
clone [ of I is created such that # is large, we would expect the probability of [ being
fitter to be higher than if [ has few or no vectors in common with .

LPM is best thought of as a strategically applied slight mutation. Recall that
slight mutation involves randomly flipping one of the § defining bits of a rule. Let
fi(vie1,vi,viy1) be the rule of cell 7, and let f,-“bc(v,-_l,v;,v,-_,.l) be the rule formed

when f; undergoes a slight mutation at row (a,b,c). More specifically, for some



3-tuple (a, b, ¢), we have

f?bc(vi-u Vi vigt) = flvimr, vi,vig1) i (vic1, 05, viga) = (@, b,¢)
f(vi—y,vi, viyy) otherwise

Now consider an individual / defined by the CA initial vector pair (A, v(?).
Let [ be the individual formed when rule f; of I undergoes slight mutation and is
replaced with f#%. Then it follows that the vector sequence generated by [ will be
identical to that of I up to and including the first occurrence of a vector v such
that (vi-y, vi, v;H)(a = (a,b,¢). This arises from the fact that the next state function
of both CA only differ for such vectors.

As previously explained, the correlation between the test lengths required by [
and [ would intuitively seem dependent on #, as both individuals’ vector sequences
have at least ¢ vectors in common.

But how can we force £ to be large? For each CA cell ¢;, the CA object associates
8 bits of memory m;(0), m;(1),..., m;(7), initially zeroed. Before the transition from
CA time ¢ to t + 1, m;((v;— v;vip)?) is set for each cell ¢, where (vi_jviviy)® is
interpreted as a 3-bit binary number. Any time a bit is set, the cell and bit number
are stored as a pair in a list called the LPM list. The LPM list is overwritten each
time step, unless no bits are set. At the end of CA simulation, i.e. when the target
fault coverage is realized or T, vectors have been generated, the LPM list will
necessarily contain at least one cell /bit number pair. Execution of the LPM operator
is performed by simply flipping the rule bit corresponding to an LPM list element
(chosen randomly if there is more than one).

For an example, the vector sequence generated by a (primitive) CA with rule
vector (150, 90,90, 150, 150) is given in table 5.5. The values stored in m;(7), ma(7),
and m3(7), 0 £ 7 < 7, over time are given in the 24 columns with numerical headings
(the headings are the values of 7). One observes that at time ¢ = 0, the neighborhoods
of ¢;, ca, and c3 are respectively 011, 110, and 100. The decimal equivalents of these

binary numbers are 3, 6, and 4, respectively, thus the only bits that are set in the first
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row of table 3.5 are m(3), m2(6), and mz(4). As time progresses, more and more of
these bits become set, the last being m3(0) at time ¢ = 18. We see that at times such
as 7,10,11,14,15,18, ..., no bit is set, and therefore the LPM list retains its previous
contents. At the end of simulation the LPM list contains the sole cell/bit number pair
(3,0). The LPM operator can now be applied by replacing f3 with fJ%, resulting in
the rule vector (150,90, 90,151, 150). Note that the new CA has v{!®) = 10110 = v{!%),
thus, in this case. LPM causes the CA to fall into a short cycle. However, when 2™ is
large compared to f, the probability that the LPM-mutated CA will fall into a short
cycle is very small. The crux of this example is the fact that when started in the
state 01100, the two CA (150.90,90.150,150) and (150,90,90.151,150) generate 19
equal vectors before differing.

I[n the previous example we saw that the time of last possible mutation (TOLPM)
was 18, i.e. the vector at CA time 19 is the first differing vector generated by the
LPM-mutated clone. Given n, the width of a CA, we wish to determine the expected
number of vectors generated before TOLPM, call this value Erpyr(n). Considering
any three adjacent CA cells (¢;—;. ¢, ¢iy1), we view their combined state as a symbol
over the 8-ary alphabet {000,001,010.011,100,101,110,111} and refer to this symbol
as the symbol at cell c;. As CA time progresses. we may observe the number of unique
symbols that have been encounterred. This is equal to the number of bits set in m;.
We assume that at any point in time the next symbol is chosen from a uniform dis-
tribution independent of the sequence of symbols seen before hand. This assumption
is clearly not valid, especially with regards to rules with unbalanced truth tables.
Another assumption taken in this analysis that does not accurately reflect reality is
the independence of neighboring symbols. For example, if the symbol at cell ¢; is 001,
than the only two possible symbols at cell ¢;;; are 010 and 011. However, we will see
that the approximated values of Erppr(n) and observed TOLPMs for primitive CA
correspond.

Suppose at some time t we have encountered d of the § symbols. Then the

probability of the next symbol being a new symbol is (8 — d)/8, while the probability
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that the symbol has already been seen is d/8. This defines an absorbing Markov chain

of 8 states [63] with the following transition matrix.

(18 7/8 0 0o 0 o0 o 0 |
0 2/86/8 0 0 0 0 O
0 0 3/358 0 0 0 0
yo| 0 0 0 4sam 0 0 o
0 0 0 0 53838 0 0
0 0 0 0 0 68 2/8 0
o 0 0 0 0 0 7/8 1/3
o0 0 0o 0 0 o 1 |

Using this model, we may quite easily compute the mean number of steps before
absorption, i.e. the number of time steps before all 8 symbols have appeared [63].
However, this is not the solution to our original problem. Under the assumption
that the sequence of neighborhood configurations for each of the n cells of a CA are
independent, we conclude that £ par(n) is the expected mazimum time to absorption
(TTA) over n independent runs® of the Markov chain with transition matrix M. The
following solution to this problem is due to [64].

Let m be the column of the single absorbing state of the transition matrix M
of a Markov chain with n states®, and suppose column 1 represents the unique start
state. Let {I},...,T,} be the set of n random variables denoting the TTA of n runs
of the Markov chain. Then the probability that the TTA for run ¢ is no more than
some integer ¢ is P(T; < t) = (M*);,m. Over all n runs, the probability that none of

the n TTAs exceed t is

P(Ty,..., To <t) =[P(T: <)
= [(fwt)hm]n

8A slightly more accurate analysis might reduce this number to n — 2 as the two boundary cells
have neighborhoods that are restricted to 4 symbols.
Sinourcase m=8and n =8
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Now defining Tmaz(n) = maz(Th,...,Ts), the probability that T,.-(n) is equal to ¢
is
P(Tmas(n) =t) = P(Th,...,Tn <) = P(Tp...., Ta <t — 1)
= (M) m]® = (M) 1m]"

Hence the expected value of Ti,.2(n) is

oo

Erpar(n) = B(Tras(n)) = 3t [[(M )] = (M) 1m]”] (5.1)

t=1

Figure 5.1 shows this value!? (labeled “rad 1 computed”) for a range of values
of n that spans the input cardinalities of the benchmark set and indeed the majority
of practical combinational circuits. Thus, for circuits with at least 20 primary inputs.
we would expect that the first 50 vectors generated by some individual / to be the
same as those generated by the individual obtained by performing LPM against /.

Now suppose we repeat the preceding theory with respect to radius 2 CA. in
which the next state of cell ¢; depends on the five cells ¢;_5.....ciy2. Then the
neighborhood state of an internal cell is a 3-vector corresponding to one of 2° = 32
possible symbols. The implied Markov chain now has 32 states and its transition
matrix, Ms is defined by (Ma);; =i/32 for 1 € ¢ < 32 and (Ma);i+1 = (32 —1)/32
for 1 <17 < 31, with all other entries 0. The expected point of LPM. Eppara(n) can
be computed by replacing the matrix M with M, in equation 5.1 and taking m = 32;
this function is also plotted in figure 5.1 as the function labeled “rad 2 computed”.
One can observe that for radius 2 CA, the LPM operator is expected to preserve the
first two to three hundred vectors.

In general, radius 2 CA incur a substantial increase in hardware resources over
their radius 1 cousins, since the next state rules depend on 5 cells rather than 3. The
beauty of the radius 1 CA for implementation in silicon is the simple and local logic
driving its flip-flops; increasing the radius of a CA decreases both the simplicity and

locality of this logic. As such, the focus of this thesis has been restricted to radius 1

1%omputed using a C program, using 500 for oo
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Figure 5.1: Computed and observed radii 1 & 2 TOLPM (primitive CA)

CA. However, if we track the 5-neighborhood states of a radius-1 CA and apply LPM
as if the CA was of radius 2, the result will be a CA in which all cells except the
mutated one still have 3-variable next state rules. The mutated cell’s rule is altered to
depend on is “next-to-next-door” neighbors, but all other rules keep the simple and
local properties. With this very small (and constant) hardware price comes a major
increase in the number of identical states visited by a CA and its mutated clone. For
the remainder of the thesis, LPM2 refers to the aforementioned version of LPM that

slightly breaks the definition of the radius 1 CA.

5.4.2.2 Experiments and Results
Experments pertaining to the LPM operator were performed in an attempt to

answer the following three questions:
1. How well does equation 5.1 predict the expected poinv of LPM?
2. How often does application of LPM give an improvement?

3. Is CAGA more powerful when augmented with LPM?
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[tem 1 was addressed by selecting 300 arbitrary primitive CA and simulating
from a random initial state. The TOLPM for both radius 1 and radius 2 neighbor-
hoods were recorded; this was done for CA widths n € {10,20,...,250}. The results
are compared to the expected TOLPM (computed via equation 5.1) in figure 5.1. We
see that the equation predicts quite well, though seems to be slightly lower than than
the empirical results. This discrepancy is most pronounced for the radius 2 LPM.

To resolve item 2, 300 primitive CA of appropriate width were obtained for
each of the benchmarks. Since we wish to determine if applying LPM is more ben-
eficial than simple slight mutation, for each CA the test length of the original CA.
a slightly mutated clone, and a LPM-mutation clone were computed. Extending the
experimentation to LPM?2, the control mutation operator is the radius 2 equivalent of
radius 1 slight mutation, SM2. SM2 is executed by considering the radius 1 rule as a
radius 2 rule that happens to be independent of both “outer” neighbors, and flipping
one randomly selected bit in the 32 bit truth table. Again. the initial vectors were
chosen randomly.

Table 5.6 gives the results. The numbers in table 5.6 indicate the number of CA
(of the 300 total) for which the mutation operator resulted in a CA with test length
strictly less than the original CA. To facilitate accurate results, the fsim packet size
used was 1. Some of the values of Ty, were increased for these experiments, so that
at most 1 of the 300 “CA families” all failed.

These numbers indicate that radius 1 LPM does not provide a significant im-
provement over SM. However, LPM?2 sees far more improvements on test length than
radius 2 slight mutation. This can be accounted for by the fact that the number of
vectors a LPM2 mutated clone has in common with the original CA is typically 4 to
6 times that of a LPM mutated clone.

Note that the only CUT for which LPM2 was not more successful than SM2
was c6288. The LPM2-CAGA code only keeps track of which minterms of each cell’s
rule are used up until the target coverage is reached. The result of this is that when

the typical CA in the population is LPM2-mutated, only the last few (probably 1 or



circuit SM | LPM | SM2 | LPM2
cl355 124 141 70 157
c1908 101 114 69 142
c2670 149 128 | 135 149
c3540 112 112 42 118
c432 148 149 78 149
c499 141 144 71 160
c)315 142 160 38 154
c6288 118 138 61 13
c7552 142 140 | 118 161
c880 139 145 70 159
total 1316 | 1371 | 772 1362

Table 5.6: Effectiveness of various mutations on primitive CA

1 reproduce k., best individuals

A

3 while: < N do

4 mate_1 ¢ randomIndividual()

5 if drand48() < ppm

6 then add lpm-mutated clone of mate_1 to new population
7 1 — 141

8 else

9 mate_2 ¢ randomIndividual()

10 recombine mate_1 and mate_2 as per CAGA
11 1 ¢— 1+2

12 end if

13 end while

Figure 5.2: Incorporation of the LPM operator into CAGA

2) vectors are changed. For the new individual to achieve a better test length than its
unmutated clone, the new vectors it generates after diverging must cover the untested
faults in less time. Since these last faults are typically hard to test, it is unlikely that
these vectors will fulfill this requirement.

Figure 5.2 gives the evolve algorithm used to integrate LPM or LPM2 with
CAGA in order to address item 3. Since applying the operator only makes sense if
the target is among the fitter individuals, the LPM operator is done as an alternative

to the normal recombination operators of crossover and normal mutation. When



circuit || SM [ LPM | %10032-LF
c1355 |[ 1000 | 880 12.0
cl908 || 1536 | 2120 -38.0
c2670 640 | 1536 -140.0
c3540 || 2592 | 3392 -30.9
c432 136 | 168 -23.5
c499 324 | 264 18.5
c3315 896 | 664 25.9
c6288 38 34 10.5
c7552 || 1504 | 3968 -163.8
c880 272 432 -58.8

average -38.8

60

Table 5.7: LPM results

an individual is selected, its LPM-mutated clone is added to the new population
with probability pipm. Otherwise, the individual is processed exactly as in CAGA.
Specifically, a mate is chosen and the two are crossed over with probability p., and
fully mutated with probability pm.

For these experiments, a value of 0.2 was used for piym2. Note that in LPM-
CAGA, the actual probability that a selected individual will be involved in crossover
is reduced from p. to p.(1 — pipm)- In an attempt to maintain consistency and offset
this reduction, p. was increased from 0.6 to 0.7. The probability of mutation used
was pm = 0.1, the initial vector used was fixed at 101010....

Table 5.7 gives the results when CAGA is augmented with LPM. As a control,
a batch of experiments was performed in which the LPM operator was replaced with
slight mutation. In other words, the algorithm of figure 5.2, the SM-mutated clone
is added instead of the LPM-mutated clone, in line 6. The resulting test lengths for
LPM-CAGA and the control are in the columns labeled LPM and SM, respectively.
The rightmost column give the percentage improvement that LPM gave. The results
are less than encouraging, on average the LPM-CAGA runs saw a —38.3% “improve-
ment” over the control experiments. We hypothesize that the number (35-60) vectors
that are shared between an individual and its LPM-mutated clone is not large enough

to incur a significant correlation between their fitnesses.
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circuit SM2 | LPM2 | %10022=%2 | LPM2 5-rules n
cl1355 1040 1016 2.3 2.0 41
1908 2168 1296 40.2 4.0 33
c2670 1536 640 58.0 8.3 | 233
c3540 2752 2304 16.3 15.5 50
c432 176 164 6.8 5.0 36
c499 332 364 -9.6 2.5 41
¢5315 936 388 5.1 42| 178
c6288 36 44 -22.2 2.7 32
c7552 4128 4640 -12.4 2.0 207
c880 368 304 17.4 11.6 60
average” 13.8 6.1 | 97.7

%c6288 omitted

Table 5.8: LPM2 results

Table 5.8 illustrates the effect LPM2 has on CAGA. The column labeled LPM?2
gives the minimal test length found by CAGA augmented with the LPM2 operator.
As for radius-1 LPM, control experiments were executed. In these, the LPM?2 operator
(line 6 of figure 5.2 was replaced with the radius-2 equivalent of slight-mutation, SM2.
Under SM2, a single rule is picked at random, converted to an equivalent radius-2 rule
if necessary, and then one randomly selected bit in the 32 bit truth table is negated.
This, in effect, is exactly what LPM2 does, with the exception that the choice of rule
and bit is done wisely.

The columns labeled LPM2 and SM2 gave the LPM?2 and control results, re-
spectively. One will observe that LPM2 outperforms the control, demonstrating that
it indeed is a useful approach to mutation. The increase in expected shared vectors
between an individual and its mutated clone when LPM2 is used seems to be substan-
tial enough to have a significant effect on the correlation between the two’s ability to
test.

Because of our previous discussion on the affect LPM2 on ¢6288, we conclude
that it is justified to leave out the results for this benchmark from the computation of
the average, and that it only makes sense to use LPM2 in CAGA when the “ball park”

test length of good testers is somewhat greater than the expected time of LPM2.
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This said, the average improvement of LPM2 over the radius-2 slight mutation is
an impressive 13.8%. This suggests that, for circuits with similar test length require-
ments as those in the benchmark set, LPM?2 is a powerful augmentation to CAGA.
If hardware restrictions are somewhat relaxed, one would expect LPM stretched over
high radii to be useful when the test length magnitudes are greater. The column
labeled “LPM2 5-rules™ in table 5.8 gives the average number of radius 2 rules found
in the best CA; when compared to the number of CA cells given in the rightmost
column we see that on average only 6% of the cells use the larger neighborhood. This
is a reasonable trade off for the decrease in test length.

In the following section we consider advanced techniques for the crossover op-

erator.

5.5 Can we Perform “Intelligent” Crossover?

In this section we consider the interactions between neighboring rules in a CA,
and attempt to discourage degenerate behavior. In section 3.3.1, the concepts of
stnks, abandons , and good neighbors are defined. A fast algorithm to detect sinks
is given in section 5.5.2. In section 5.5.3 a technique that reduces CAGA run time
is described. Section 5.5.4 gives experimental results when good neighbor techniques
are used against null boundary CA. In section 5.5.5 a phenomenon called boundary
subcycles is described, the frequency of which is arguably lessened by using the pe-
riodic boundary condition; pertaining experimental results are presented in section

5.5.6.

5.5.1 Good Neighborhoods

In section 5.4, we looked at two different variations on the mutation operators
that attempt to improve CAGA. Given a relatively fit individual, these operators
increase the probability that the mutated-clone would also be fit, or, equivalently,
they decrease the probability that the clone would be highly unfit. In this section we

attempt to improve the crossover operator using the same philosophy. Under our GA
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parameters, the crossover operator is applied much more frequently than mutation,
hence we expect that improvement of crossover might have a more drastic effect on
CAGA.

Inspection of a sample of the worst individuals in various generations of CAGA
revealed two undesirable phenomenon in these CA. To assist in our discussion of these

traits, we introduce the following definitions:

Definition 1 Given a CA, suppose there exists a k-vector w (kK < n) and inder
i (0 < i < n—k) with the property that (ci, ..., cirer ) = w always implies
(CiyervsCiphar)® = w for all t > t. Then the cells {civ.- s Ciyr—1} are called a k-

sink and the CA is said to be k-sinking. A CA with no k-sink is called k-nonsinking.

We say that {c;,...,citx—1} sink into w.

Definition 2 Given a CA, suppose there ezists a k-vector w (k < n) and index
i (0 < i < n—k) with the property that (ci,...,cix1)? # w always implies
(Ciy-ensCivia1)) # w for all t > £. Then the cells {c;....,cipx—1} are called a k-

abandon and the CA is said to be k-abandoning. A CA with no k-abandon is called

k-nonabandoning. The vector w is called the abandoned vector.

Clearly, the presence of sinks or abandons degrades pseudorandomness. How-
ever, do either phenomenon impede testing? If a k-sink exists. then all vectors pro-
duced after time # will have certain cells at fixed values, thus any faults that require
vectors with different values in these cells can never be detected after time f. In the
presence of a k-abandon, once a value other than w is seen at the involved cells. no
vector that includes w at these positions is ever generated again. When & is small.
the effect is a reduction in the set of cubes the CA generates vectors from. Note that
a l-abandon and a 1-sink are equivalent.

In terms of CA growths, sinks manifest themselves as vertical stripes in the
bitmap as is visible in the right half of some of the figures in appendix B. Figure B.3
has a wide sink near the left side and a single cell that sinks to O on the right. The

CA of figures B.8 and B.9 are also noticeably sinking. Abandons do not generally



64

have a simple visual manifestation.

We now give examples of neighboring CA rules that result in a 2-abandon and
a 2-sink.

The neighboring rules (149,76) result in a 2-abandon, the abandoned vector
being (11). Consider four adjacent CA cells (a, b, ¢, d}, with cells b and ¢ having rules
149 and 76, respectively. Expressing these rules algebraically vields bt = b+ ac+abe.
and ¢t = bc + cd. For the next value of (b, ¢) to be (11), we need:

(b*,c*) = (11) = btct =1
= (b& + a¢ + abc)(bc + cd) = 1
= abed =1
= (a,b,c.d) = (1110)

Thus the only way (b, ¢) can reach the state (11) is when the previous state of
(a,b,c.d) is (1110). But in this previous state, we have (b,c) = (11). Therefore once
(b, c) enter a state other than (11), the two cells will never return to this state.

Now we examine the neighboring rules (106,232); these cause a 2-sink into
the vector (00). Let (a,b.c,d) be four neighboring CA cells, and suppose b and ¢
have respective rules 106 and 232. Then the next state functions for b and ¢ are
b* = Gc + be + abé and ¢t = cd + bd + be. To show that b and ¢ sink to (00). note
that the cofactors 67 |y=gc=0 and c*|4—g o are both the constant function 0. Thus
once (b, c) equals the vector (00) these two cells will remain in this state for all future
times, regardless of the bits stored in a and d, i.e. (b,c) sinks to (00).

An observation'! that has an important impact on CAGA is that primitive CA
are k-nonsinking and k-nonabandoning for all £ < n. Therefore, starting from an
initial population of primitive CA, if we are cautious when applying mutation and
crossover, we can ensure that no k-sinking or k-abandoning CA are born. Given
a k-vector r = (fo,.--, fre—1) of rules, we can check if the presence of » in a CA’s

rule vector would imply a k-sink or a k-abandon; if neither occurs we call r a good

lifor k = n, the all zero vector 0 is both sunk into and abandoned
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neighborhood. For the problem of checking for an abandon, exponential time brute-
force search may be the only option. However in section 5.3.2 we describe a linear
time algorithm for detecting sinks.

When two CA are cut and joined in a crossover operation, there are (at most)
2(k — 1) new k-rule vectors created. Suppose CA A and B are to be involved in
a crossover operation, and the rule vectors of the respective CA are (ag.....an_1)
and (bg,...,b,_1). Given the random crossover point c. the two offspring A’ and B’

have respective rule vectors (ag.- - -, e beq1,---+bn-1) and (bo. ... boeloplnn n-lnot)-

e bc+1: bC+27 bc+37 s bc+k—27 bc+k—l
Gc—y, Qc, bc-{—l: bc+27 e bc+k—37 bc+k—'2
Qe Qom1s oy Degis - -+ 3 Ooplogs Berkes > new k-neighborhoods in A’
Aomkopls Gompet 2y Qo k435 ok 43y - - - Aoy Doyt )
\
be, Qeg1: Qet2y Ae37 - - -+ Cetb—23 Aot k-1
bemy,bcsGeg1s Gegas - - -5 opk—3, Qetk—2
bc—?.’ bc—l : bt:7 Aeg 1y -+ -3 Qegh—ayQct-k-3 ¢ NEW k-neighborhOOdS in B,

be—k1sbckt2,0c—k43,0c—k43, - -+ b i1 |

To ensure that no k-“bad neighborhoods™ arise from the proposed crossover
operation, we must verify that each of these k-vectors is a good neighborhood. If
this is not satisfied, the crossover point c is rejected and the sequence of crossover
points c—l,e+1,c—2,c+2,...(mod(n — 1)) is followed until a point is found that
does not induce a bad neighborhood. We call this mechanism k-good neighborhood
enforcement (k-GNE). Note that £-GNE does not necessarily imply that no &’-bad
neighborhoods will arise for &’ < k. When GNE is used for all &' < k. we describe

the mechanism as k-mazimal good neighborhood enforcement (k-MGNE).
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Recall that for & = 1, “sink” and “abandon” degenerate to equivalent defini-
tions. In this case, the concepts of sinking and abandoning do not reflect interactions
between neighboring rules, but are an intrinsic property of single rules. We call such
rules sinking rules. It is easy to show that a rule f(a,b,c¢) is sinking if and only if
flo=a = « for some a € {0,1}, i.e. a cofacter of f when the center variable is fixed
is precisely the constant function of the fixed value. There are 31 sinking rules for
radius 1 CA; by eliminating them from the possible rules that may be introduced via

full mutation, we are guaranteed to have no 1-sinks.

5.5.2 Linear Time Sink Detection

Let » = rj,...,7j+x—1 be the respective rules of k£ adjacent CA cells C =
{¢j.....cjrk—1}. We may determine if C is a sink with time complexity O(k). To aid
comprehension, we use as an example the rule vector 216, 245, 37.228. 108, the truth
tables of which are given in table 5.9. Recall from section 5.4.2.1 that the symbol at
cell 1 is defined as the aggregate of cell states ¢;_jc;ciy1. Also, we refer to the two
cells ¢j_; and cjyr as the bordering cells, while the two cells ¢; and ¢jir_; are the
endmost cells. We wish to find a k-vector u = uq, ..., tur—1 such that the & equations

5.2 hold; r is a sink if and only if such a u exists.

ri(—suo,u1) = ug
rip1(uo, Uy, u2) = uy
Figo(Uy, Uz, uz) = u
j2(Uy, Uz, uz) 2 (5.2)
Titk—2(Uk—3, Ug—2, Uk—1) = Uk_2
Tirk—1{Uk—2, Uk—1,—) = Up_1

The ‘' characters in the first and last of equations 5.2 denote don’t care, i.e.
these two equalities must hold independent of the respective bordering cell. For each
solution of each equation, the algorithm creates a node labeled with the corresponding

symbol. The nodes of the two endmost cells are labeled using ‘-’ to represent the
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bordering cell value (thus there are but four possible nodes for each endmost cell).
Since there are exactly eight symbols per cell (with the previously noted exceptions),
and determining if each is a solution involves a single rule evaluation, this phase
requires a constant time per cell. In table 5.9 the solutions to equations 5.2 for the
example rule vector are indicated by a box around the function value. Note that the
solutions for the endmost cells adhere to the additional requirement of independence
from the corresponding border cell. Figure 5.3 exemplifies this step. Each column of
symbols corresponds to the set of possible nodes for the associated cell: those that
are actually manifested (i.e. the solutions) are indicated with ovals.

The final phase of the algorithm is to create a directed acyclic graph (DAG) with
the existing nodes. Beginning with the nodes of the leftmost cell ¢; and proceeding
rightwards, arcs are introduced as follows. An arc is created from a node labeled abc
of ¢; to a node labeled bed of ¢ip; when either of the following hold: 1) the indegree
of abe is greater than 0, or 2) ¢; is the left endmost cell. Creation of all arcs incident
from all nodes of a cell takes constant time. This follows from the facts that there are
at most 8 nodes per cell; and there are at most 2 arcs that may be made incident from
each (given a node labeled abc we have but two choices for d, thus two choices for
bcd). In Figure 5.3 we observe several nodes that are left unconsidered when adding
arcs, since they have indegree of 0.

If during the algorithm it should occur that no arcs are added between nodes of
cell ¢; and cell ¢;yy, then C is not a sink. However if we successfully create a directed
path from a node of the left endmost cell ¢; to one of the right endmost cell ¢;41_; , then
C is a sink. Furthermore, each such path in the DAG represents a unique subvector
that C sinks to. In our example there are exactly 4 paths from the left side to the
right side of the DAG, corresponding to the 4 vectors {01000,01001,11000,11001}.

In conclusion, the algorithm outlined in this section will detect a k-sink with

time complexity O(k).
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Ci—1CiCiy1 r; = fzm Ti+1 = fass Tit2 = far rj+3 = fzzs Tita = fios
000 0 1 1 [0] 10]
001 [0] [0] [0] [0] [0]
010 0
011 0 0 0
100 1 1 [0] [0] 0
101 [0] 1 1 1 1
110 1 0 ] 1
111 0 0

Table 5.9: Preprocessing phase of the sink detection algorithm

€; Cj+1 Cj+2 Ci+3 Citg

000

011

Figure 5.3: A DAG of the sink detection algorithm

5.5.3 Dynamic Max Time Reduction

An auxiliary mechanism not previously used was employed in the experiments
of this section. Recall that CAGA requires the parameter T,,.. which dictates the
maximum number of vectors to produce from an individual before “giving up”, i.e. if
the sequence generated by the CA has not met the target fault coverage F.,, by time
Tnaz, the individual is assigned a fitness of 0 and fault simulation terminates. The
value of T,,, was chosen such that most of the initial population P(0) had positive

fitness. However, in the advanced generations the population as a whole has an
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average raw fitness much greater than that of P(0); i.e. the majority of the individuals
require much less than T},.. clock ticks to achieve F,,,. In these generations, the very
few individuals that require close to T}, vectors or those that never detect F,,, of
the faults become progressively less valuable to the genetic algorithm. vet they take
the most computation time during fault simulation.

The natural remedy to this inefficiency is to reduce T},,, as CAGA evolves.
We call this dynamic maz time reduction (DMTR). DMTR was implemented such
that the value used for Tyn.. in generation g, Tmaz(g), is such that 90% of P(g — 1)
require less than T,,.-(g) vectors, as long as this value is at least 3 times that of the
fittest individual in P(g — 1} (otherwise Truaz(g9) = Tmaz(g — 1)). The reason for this
second constraint is to prevent 7},,. from becoming too small, i.e. so that in future

generations it won’t be “hard” for an individual to receive nonzero fitness.

5.5.4 Null Boundary CA Results

Original experiments employing 3-GNE revealed less than satisfactory results
that are not repeated here. These experiments used full mutation and FIV, with the
usual parameter settings of population size NV = 300 and GA halting after Ag = 200
generations without improvement. At first, this was thought to indicate that, contrary
to intuition, GNE does not improve CAGA. However, after closer investigation, we
bypothesize that this may be accounted for as follows. Consider the nondegenerate
linear rules 90 and 150 (recall foo(zi-1, zi, Tip1) = Tic1SZip1 and fiso(Tio1. Tiy Tig1) =
Ti—1 @ z; © zi41); these are the only two rules present in primitive CA. With the
exception of the leftmost and rightmost cell in the CA, neither of these rules can
exist with the endmost cells of a sink. This is a direct implication of the fact that
both of these functions have the property that negation of one of the dependent
variables z;_; or z;;; always negates the function itself.

When CAGA works against an initial population P(0) consisting entirely of
primitive CA, these two rules are the dominant rules (count wise) for many genera-

tions, since only the secondary genetic operator of mutation can introduce different



MGNE SA
circuit || CTRL TL | %impr || TL | %impr
cl355 864 396 -3.7 848 1.9
c1908 1632 || 1592 2.5 || 1760 -7.8
c2670 800 608 24.0 608 24.0
c3540 3936 || 1536 61.0 || 2272 42.3
c432 136 156 -14.7 144 -5.9
c499 316 292 7.6 300 5.1
cd315 752 688 8.5 728 3.2
c6288 30 30 0.0 30 0.0
c7552 960 || 1120 -16.7 || 1120 -16.7
c880 448 384 8.3 336 25.0
average 8.3 7.1

Table 5.10: Good neighborhood enforcement for null boundary CA

rules. Inspection of the fittest individuals in the final generation of these experiments
confirm that even after hundreds of generations, the rules 90 and 150 are still by far
the most numerous rules. Thus, in these experiments, the event that GNE actually
rejects a candidate crossover point is rare. In conclusion, GNE has little impact on
CAGA when the majority of the rules in the population are 90 and 150.

Under this observation, we attempt to seed CAGA with parameters that will
result in a greater proportion of nonlinear rules. Boosting both NV and Ag intuitively
has this consequence; if CAGA is allowed to evolve a larger population for a longer
time, the effect of mutation should become more dominant. The values N = 500 and
Ag = 1000 were used to verify this theory.

Results of these CAGA runs are given in table 5.10. The control experiment
(CTRL) uses full mutation, FIV, and the complete rule space, i.e. {0,...,255}.
Experiments of the columns labeled MGNE employed 3-MGNE and used the same
parameter settings as CTRL. Under “TL” the minimum test lengths are listed, while
the “%impr” column gives the percentage improvement over CTRL. The improve-
ments range from -16.7% to 61.0% with a mean value of 8.3%, which is substantial.

Intuitively, sinks are bad for testing, however, abandons might not be as prob-

lematic. Suppose there is a k-abandon A and the abandoned subvector is w. Such a
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defect in randomness only negatively affects testing when there is a hard to test fault
f with a significant number of vectors in the test set of f having A = w. Based on
this intuition, we performed experiments using GNE with no abandon checking; we
call this mechanism sink avoidance (SA).

The columns in table 5.10 labeled “SA™ lists the results of experiments that
differ from MGNE only in that no abandon checking is done, i.e. no k-sinks for
k € {1,2,3} are created by any genetic operation. Here the range of improvements
is -16.7% to 42.3%, with mean 7.1%. It is interesting to note that both MGNE
and SA provide a positive augmentation to CAGA against benchmarks ¢2670. ¢3540.
c499, ¢3313, and ¢880, while for c432 and ¢7552 it appears that MGNE and SA
are detrimental'? to CAGA performance. Clearly there is some consistency in GNE
effectiveness against various CUTS. However it is unclear if there exist techniques to
determine a priori if GNE should be used for a given circuit, and. if so. which “flavor”
of GNE should be applied.

In the next section we discuss a degenerate CA behavior that is a generalization

of sinking.

5.5.5 Boundary Subcycles

Again we turn to informal inspection of the worst CA in an attempt to assess
what phenomenon causes birth of undesirable individuals in the experiments of section
5.5.4. There are various unwanted rule interactions that are not filtered out by GNE
and would seem to be computationally hard to detect.

These problematic rule interactions cause a subcycle which is a generalization
of a sink in which some neighborhood of cells C' = {¢;,...,¢jsr—1} of size k enters
a cycle of length at most 2* that is never broken by the bit sequences seen at ¢;_,
and c¢j4f. In other words, the next configuration of C' is independent of both ¢;_;
and ¢;y« for all times after the subcycle is enterred'®. We found that when subcycles

occur they usually reside on the left or right end of the CA. This is expected, since

12of course this consistency could be attributed to the CTRL runs being “lucky”
133 subcycle with cycle length of 1 is simply a sink
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(under the null boundary condition) on the left end c¢;-, is always 0 and on the right
end c;4k is always 0. Thus at the left (right) end, the next substate of C is trivially
independent of ¢;_; (cjt«) for all configurations. It follows that subcycles are more
likely to occur on the CA boundary; we call these boundary subcycles.

A subcycle in a CA growth appears as a column with a vertically repeating
pattern. In the right side growth of figure B.5 there is a very wide boundary subcycle.
The nonlinear growth of figure B.7 has a 3-cell internal subcycle which appears to
degrade randomness of nearby cells; it is possible that this subcycle is part of a wider
and longer subcycle.

The fact that subcycles are more likely to occur on CA boundaries is the primary

motivator for the work of the next section.

5.5.6 Periodic Boundary CA Results

In this section we employ CAGA to run against periodic boundary CA (PBCA).
Recall that null boundary CA assume the constant value 0 at the nonexistent cells
left of ¢g and right of c,—1. In PBCA, ¢ and ¢,—; are logically adjacent, i.e. the left
neighbor of ¢g is c,—;. while ¢,_’s right neighbor is ¢o. A worthy analogy states that
a null boundary CA is to a line segment as a PBCA is to a circle. The hope here is
that eliminating the null boundary condition will result in fewer subcycles because
many potential boundary subcycles will be eliminated.

An issue we face when using PBCA in CAGA pertains to the initial population.
It has been shown that no PBCA has an irreducible characteristic polynomial [3].
Hence P(0) must be populated with individuals that are inferior to primitive CA in
terms of pseudorandomness. We are forced to evolve humans from mice rather than
from monkeys; the PBCA of P(0) are created by randomly assigning each cell to
either rule 90 or rule 150.

Another consequence of the periodic boundary condition is that it becomes
natural to think of the chromosomes as being circular, i.e. as having no “ends™. As

such, we use a variation of crossover called circular crossover. Circular crossover



MGNE SA
circuit || CTRL TL | %impr || TL | %impr
cl355 920 380 4.4 952 -3.5
c1908 1136 || 1272 -12.0 || 1368 -20.4
c2670 1440 512 64.4 416 T1.1
c3540 2128 | 2112 0.8 || 1968 7.5
c432 144 132 8.3 144 0.0
c499 312 304 5.1 276 11.5
c3315 552 784 -42.0 656 -18.8
c6288 32 34 -6.3 32 0.0
c7552 1120 928 17.1 960 14.3
c880 304 304 0.0 272 10.5
average 4.0 7.2

Table 5.11: Good neighborhood enforcement for periodic boundary CA

selects two crossover points and swaps the segments of the parent’s chromosomes
between these points to obtain the two offspring. We add the additional constraint
that the distance between the two crossover points is at least 5 positions in both
directions around the circular chromosome.

Referring to table 5.11, we again find that MGNE and SA both give positive
average improvement. All experiments ran against the same parameter set as those
of table 5.10, except PBCA were used and P(0) was created randomly. For MGNE,
the improvements were as low as -42.0% and as high as 64.4%, and averaged 4.0%.
Under SA, the range shifted up to -20.4% to 71.1% and the mean improvement over
CTRL was 7.2%.

Table 5.12 provides a comparison of the data of table 5.10 and 5.11. i.e. a
comparison of the results of the null boundary CAGA runs of section 5.5.4 and the
PBCA CAGA runs of this section. The numeric columns of table 5.12 give the
percent improvement of PBCA experiments over null boundary experiments for the
corresponding CAGA settings. Evolution of PBCA with sink avoidance seems to be
the most powerful combination; an average improvement of 10.0% is achieved when
SA is used against PBCA rather than null boundary CA.

We hypothesize that sink avoidance attains greater results for PBCA than for



circuit || CTRL | MGNE | SA
c1355 -6.5 1.8 | -12.3
c1908 30.4 20.1 ] 223
c2670 -80.0 158 | 31.6
c3540 45.9 -37.5 | 134
c432 -5.9 15.4 0.0
c499 1.3 -1.4 | 8.0
¢5315 26.6 -14.0 9.9
c6238 -6.7 -13.3 | -6.7
c7552 -16.7 17.1 | 14.3
c880 32.1 20.8 | 19.1
average 2.1 2.5 1 10.0

Table 5.12: Improvement of PBCA over null boundary

null boundary CA as follows. Boundary subcycles are a hindrance in evolution of
null boundary CA, possibly more so than sinks. Since boundary subcycles are less
frequent in PBCA, sinks may be a more common reason for low fitness. By preventing
sinks in PBCA, CAGA avoids production of many degenerate CA, and in the end

usually finds a better solution to the CA testing problem.

5.6 Test Sequence Truncation

5.6.1 Description

In this section we present a simple technique that can potentially further shorten
the required test length for a test generator. The technique, call test sequence trun-
cation (TST), is shown to be effective against many of the “good” CA produced by
genetic means.

Recall that the fault simulator takes a parameter b that controls the number
of vectors that are fault simulated in parallel. Let T be the true test length and
T’ the test length returned by the fault simulator. Then 7" is actually the smallest
multiple of b greater than or equal to 7. If 6 = 1 or we are lucky, T' = T. Otherwise
it follows that there are up to b — 1 extra test vectors at the end of the sequence
that are unnecessary for the target coverage. The true value of 7 can easily be

computed following completion of the GA by setting b = 1 and performing a final
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fault simulation. Therefore several vectors may be shaved off of the end of the test
sequence; we call this tail truncation.

However, we may also remove vectors from the beginning of the sequence. Let
S =v@ .. v(T-D be a tail truncated test sequence. It follows that removal of v(T—1)
from S will not provide the desired fault coverage F.,,. This is because v!T~!) is the
vector that causes the fault coverage of S to go from being less than F,,, to being
greater or equal to F,,. But the same cannot necessarily be said about the initial
vector v(®). As long as each fault detected by v(® is also covered by some vector in
M w{T-1, we may clearly remove v(©) from the test sequence. This reasoning can
be extended to a maximal number of vectors as follows: Let 7 be the minimum integer
such that v() detects at least one fault f such that f is not detected by any vector in
v+ y(T=1) Then the sequence S’ = v(?,. .., v{T~Y has the same fault coverage
as 5, but is shorter than S when 7 > 0. By using the same machine that generates 5,
but seeding with initial state v() rather than v(®), we have found a generator/initial
state combination that produces S’. This can be done algorithmically quite quickly

by using a binary search and fault simulations to determine :. We call this form of

truncation head truncation.

5.6.2 Results

To demonstrate the effectiveness of TST, the CA resulting from a previous
experiment were subjected to TST. The set of experiments used were those using full
mutation and FIV that were summarized in table 5.1. Each CA underwent first tail
and then head truncation.

The results are shown in table 5.13. We see that TST is an effective device; on
average the required test length was reduced by %6.2, which is certainly worth the

effort, which is minor.



circuit | original | after TST | % impr
c1355 1000 966 3.4
c1908 2056 1799 12.5
c2670 1248 1246 0.0
c3540 3072 3013 1.9
c432 180 164 8.9
c499 280 252 10.0
c5315 992 895 9.8
c6288 34 33 2.9
c7532 2144 1932 9.9
c380 352 341 3.1
average 6.2

Table 5.13: Test sequence truncation results

5.7 Conclusion

In this chapter we have not only successfully applied the simple genetic algo-
rithm to evolve CA that are good at testing a target circuit, we have also explored
several mechanisms that improve the GA.

Empirical evidence was presented that indicates that none of the four combina-
tions of choices regarding FIV/VIV and slight or full mutation is especially superior
or inferior. The standard GA setting of p. = 0.6 was verified to be appropriate.

Two new mutation operators were proposed, BRF and LPM. BRF proved to
work well against some CUTSs, while poorly against others. However, when other
forms of mutation are omitted, BRF will only yield CA with rules 90, 105, 150. and
165 (when the initial population is entirely primitive CA), which may be desirable
if CA regularity is an asset. LPM did not seem to out perform slight mutation
when radius 1 neighborhoods were used, however the extension LPM2 proved to be
more beneficial than radius 2 slight mutation. The mathematics of Markov chains
was used to compute the approximate expected time of last possible mutation, and
experimentation showed that the resulting equation approximates reality quite closely.

A mechanism that avoids selection of bad crossover points or mutation choices
was proposed, which avoids creation of sinks and abandons. We found that this

mechanism improves CAGA, as does a simplified version that only prevents sinks.
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These improvements held for both null boundary and periodic boundary CA; the most
powerful nonlinear CA were found when CAGA evolved PBCA using sink avoidance.
A linear time algorithm for sink detection was defined.

Finally we give a simple technique to further reduce test length called test
sequence truncation. Test sequence truncation provided a mean test length reduction
of %6.9 for a set of CA evolved by CAGA.

The next chapter describes auxiliary work that gives a new method to obtain a

stopping condition for BIST testing.



6. Minimizing a Test Stopping Condition

6.1 Problem Definition and Background

In this chapter we apply a genetic algorithm to another problem in BIST . namely
that of stopping the test pattern generation. A genetic algorithm is used to evolve
a small subset of a test generator’s state variables that can be used to uniquely
distinguish the final vector from all other patterns.

Suppose one has chosen a suitable pseudorandom test pattern generator &G and
initial state v{®) for a target circuit. Furthermore, fault simulation has determined
that 7'+ 1 test vectors are necessary to achieve the target coverage when G is seeded
with v(®). The designer proceeds by obtaining the fault free output sequence of the
CUT for the T + 1 input vectors, and computing the signature left by the sequence in
the output compactor. For the BIST to work, the output compactor device needs to
stop accepting input exactly 7'+ 1 clock ticks following instigation of testing. Clearly
an additional input line to the output compactor must be implemented such that
when asserted, the compactor halts and the signature comparison is performed. The
question remains: what logic drives this signal?

Though details pertaining to BIST controller architecture are rare in the litera-
ture, the typical solution involves the use of a dedicated counter to keep track of the
number of tests. More specifically, if the test sequence is of length T', an accumulator
of [log,T'] bits is loaded with the binary representation of 7'+ 1 upon test initializa-
tion. The accumulator is decremented after each test is applied, i.e. with the system
clock. The contents of each memory element in the accumulator are fed into a NOR
gate, the output of which will rise only when all cells are zero indicating that all tests
have been applied [65].

In this chapter a new technique is proposed, which reduces BIST circuitry area
by eliminating the need for the accumulator.

A definition is needed to describe the approach to the test stopping problem
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taken herein. Let S be a k-subset of Z,, say S = {i1,%2,....ix} where {; < i <

- < i;. Let v be a binary n-vector. Then define substate(S,v) as the vector
(Viys Vigs - - -, Ui, ). We say vectors v and u are equal in substate S if substate(S,v) =
substate(S, u).

Now consider a subset S = {71,7,...,1} of Z, with the following property. For
all t in [0, T — 1], substate(S, v") # substate(S,v(T)). Then the subset of generator
cells {c;,,¢cip:---, ¢, } uniquely distinguishes v(7) from all other test vectors in the
test sequence. If k£ is small enough, then it becomes feasible to create a k-input AND
gate (or, equivalently, a cascade of lesser input AND gates) with input j hooked into
the state of ¢; if vEJT) = 1, or the state negated & otherwise. We call S a stopping
condition (SC), more specifically, if £ = |S|, we call S a £-SC. If there does not exist
a k'-SC for any &' < k, we call S a minimal stopping condition (MSC). Clearly the
size of the chosen SC directly affects the hardware requirements of the logic driving
the stop-test signal, thus finding a minimal or near-minimal SC is beneficial.

Let us exemplify this approach. Suppose some 10-input CUT is to be tested
by the primitive CA with rule vector (150,90,90.90. 90, 90, 90.90,150.150). When
seeded with the initial state vector »(®) = 0100110001, 26 vectors are required to
achieved the desired fault coverage, i.e. we wish to stop the test procedure imme-
diately following CA time ¢ = 25. Table 6.1 gives the content of the 10 CA cells
€oy.--,¢9 for 0 < ¢t < 25. The rightmost column in table 6.1 gives the substate
vector substate({4,6,9},v()) = (vqvsve)(). Note that the first value of ¢ such that
(v4veve)®) = 100 is ¢ = 25. Thus this substate can be used to uniquely identify the
25t* vector, i.e. 4,6,9 is a 3-SC. If one wires the inputs of a 3-input AND gate to the
CA state variables ¢4, T, and ¢, the output of this gate can be used as a stop-test
signal for whichever devices require such an assertion. In the example of table 6.1,

{4,6,9} is the only 3-SC; furthermore it is a MSC since there are no 2-SCs or 1-SCs.
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tllvolvilve|vg|vg | U5 | Vs | Usr| Vs | Vg || LyUs¥g
oo 1010} 1 1100011 101
1 1 oOl1([11]1 1 1/0(1 {1 111
2 1(0l]1{0|O0{0]1{0]0/|0 010
3 1 0j]0cf{1]0 1/0]1|0]|0O 000
44 1 111000100 ,1]0 000
31101011 1]10(0j0|1|1|1 001
6| 0 11 11110 1 (1 110 110
71 1 110/l0{1|{0}1}]00}1 111
840 1)1 1]0[0{0]1 111 0o1
9 1 i1ojrir1{o0ojp1ry1i11]0 110
10 O 1{o0j1{1|{0]10]|]0]1 111
11 1 00|11 0;0(|1]1 1 101
12 1 171 111 1 11110 110
1I3(jo0|0(0]0]O0|0]j]O0O;0]|0¢}1 001
4j0(|0}J0Jl0fO0|0]O0}]0}|1]1 001
154 0;0|]0|10(fO0O]J0}JO0O}1]0]O0 000
6(fo0(0)jocfofjojoj1{011]o0 010
wHoi{olorotlo 11010111 001
Isfyojo0j0jo0of{1r{0|1|1}j0]O0 110
194000 11]1]01|0 1 /110 010
200010711011 1 110|011 111
21 0 110010 111 1 1 111
22 1 0|1]1(01{0 10|10 010
23 1 0j]1]11|1 1{y0{0}|1:1 101
24 11017010 1 1110 |0 010
25 11010111 110(j1}1110 100

Table 6.1: Minimal test stopping condition example

6.2 Analysis

Here we wish to determine the expected cardinality of the MSC. Suppose we
are given a sequence v{®, ... v(D) of T + 1 n-vectors, assumed to be produced ran-
domly. Let A be the random variable denoting the cardinality of a MSC; we seek
the expectation F(R’) in terms of T and n. Deducing an exact equation is hard, here
we simply derive a lower bound on E(K). We will see that the cardinalities of the
MSCs found via a GA are very close to this lower bound, allowing us to conclude
that the GA performs well. We assume that the vectors are produced at random,

with each vector being drawn from a uniform distribution. The fact that there are
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no repeat vectors in a sequence from a test generator is only taken into account when
determining the probability that there exists an n-SC (this probability is 1 if there
are no repeated vectors allowed).

We first determine s(k, T'), the probability that a fixed k element substate vector
w of v{T) is a SC. Given a value of ¢, with 0 < ¢t < T, the probability that w is not
equal to the same substate of v(!) is simply 1 — 2=%. The probability that w is not
equal to the same substate for any ¢, 0 <t < T, is therefore (1 —27%)7, as the vectors
are independently produced. Thus s(k.T) = (1 — 27%)T.

Letting e(k) denote the probability of existence of a k-SC, we now consider the
complementary probability e°(k) = 1 — e(k); this is the probability there is no £-SC.
Choosing some fixed k-substate w, the probability that w is not a SC is s°(&,T) =
1 —5(k,T) =1—(1—-25FT. Let w be a k-substate different from w. and let
m = |wN w’|. Let A denote the event that w is not a SC and B denote the event
that w’ is not a SC. If m = 0, i.e. w and w’ do not share any bit positions. then
the probability of B given A, P(B|A) = s°(k,T), as the two events are independent.
However when m > 0 we find that P(B]A) > s°(k,T). This is explained as follows.

Suppose w is not a SC, then we know that there exists = > 0 vectors in
v® . »(T=1 that equal v7) in w; let u be one of these vectors. The probability
that « matches w’ is no longer 27*, it is increased to 2™ *. (Since m > 0. we have

2m—k > 2%} Thus the probability that w is not a SC is:

P(BlA) =1~ (1—2mk) (1 —2-4)T=r
> 1— (1= 274)7(1 — 2747
=1—(1=-2"8T

=s%(k,T)

If the events that each of all ¥V = (Z) possible k-substate are not SCs were
independent, we could express ef(k) = s(k,T)". However, as the above argument
demonstrates, even assuming that one k-substate is not a SC implies that the proba-

bilities of (2) - (";k) — 1 other k-substates are each increased to some value greater
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than s°(k,T). Through similar reasoning it follows that this effect is compounded the
more substates we mark as non-SCs. We must conclude e‘(k) > s°(k, T)(z), which

implies

e(k) < 1 — s°(k, T)(%) (6.1)

We may now use equation 6.1 to obtain a lower bound on E{K). Consider the
cumulative distribution function p(A < k), i.e. the probability that the cardinality
of a MSC is at most k. It is trivially true that if a SC exists with cardinality &, then
for all &’ with & < k' < n there exist SCs of size &’. Conversely. if there does not exist
a SC of cardinality k, then it is implied that for all &” with 0 < &’ < & there does not
exist a &’-SC. It follows that p(A < k) = e(k). We proceed:

E(K) =S, kp(K = k)
= r  k(p(K <k)—p(K <k—1))
=Y r kp(K < k) — SRSk +1)p(K < k)

Since p(A" < n) =1 and p(K <0) =0:

E(K) =n+335 kp(K < k) - i (k+ Lp(K < F)
=+ SPTNk — (k4 1)K < R)
=n— Yo P(K <)

Now using 6.1 we obtain:

E(K) 2 n— ikl — sk, T)®)
=n -0l - (1 - (1 —27%)T) (%))
=1+l -1 —27%7)E
= E(K)

(6.2)

Figure 6.1 plots the bound E’(K) from equation 6.2 for 7 € {10%,10%,10°}

and n € [20,200]. It appears that once n is large enough, the lower bound becomes
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Figure 6.1: Lower bound on E(K) for various n and T

only dependent on T, assuming the values of 6, 9, and 12 for the respective values
of T. Therefore, somewhat counterintuitively, if T is fixed and n is allowed to grow

indefinitely, the expected size of a MSC will never be less than some constant value.

6.3 Implementation of MSCGA

In this section we describe the Minimal Stopping Condition Genetic Algorithm
(MSCGA), which attempts to find a small SC for a given sequence of vectors. The
individuals in MSCGA are simply various substates. [f an individual is a £-SC, it is
assigned fitness proportional to (n — k)2. On the other hand. if an individual is not
a SC, it is assigned a fitness of 0.

We first discuss the encoding of substates, and then describe the crossover and

mutation operators in MSCGA.

6.3.1 Encoding
In theory, an individual is represented by an n symbol string over the alphabet
{X,~-}; finding X (—) at position j in the string means that cell j of the generator is

included (not included) in the substate. In practice, an individual [ is stored as two
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bitstrings called B;(/) and Bo({). A 1 at position j in B;([]) means that j is included
in the substate and vJ(—T) = 1. Conversely, a 1 at position j in By(/) also means that
7 appears in the substate, but vJ(—T) = 0. When position j of neither strings is set,
this indicates that cell 7 is not used in the substate. Of course, since the final vector
is known to the GA a priori, only one of B;([) or By([) can ever be set at each
position over all possible individuals. This encoding lends itself to bit-level machine

manipulation when performing vector comparisons, and thus aids in accelerating the

algorithm. For example, the SC illustrated in table 6.1 would be encoded with

By(I) = 0000100000
Bo(I) = 0000001001

6.3.2 Genetic Operators

The genetic operator of crossover is carried out as expected. Suppose 4 and
B are individuals that are to partake in crossover. The crossover point z is chosen
uniformly from the set Z,+,. The first offspring C is created such that B;(C) is the
concatenation of the leftmost z bits of B;(A) with the rightmost n — z bits of B;(B).
The second offspring D is created such that B;(D) is the concatenation of the leftmost
x bits of B;(B) with the rightmost n — z bits of B;(A).

When an individual [ is to be mutated, the straightforward approach would be
to select a bit position = at random, and then either add z to the substate if it is
not included, or remove z if it is already a member. However, if the GA evolves to
the point at which the average substate cardinality is significantly less than n/2 (a
common occurrence), then mutation would most likely cause elements to be added to
substates. As we are seeking to minimize a SC, this is undesirable.

To avoid this, the employed mutation operator increases or decreases the size
of the effected substate with equal probability. If the operator chooses to add an
element, one of the missing elements is selected at random and the appropriate bit of
either Bo([) or B;([) is set. Otherwise a random member of the substate is removed

by clearing a bit in either of the bitstrings.



6.4 Experiments and Results

Experiments were first performed by applying MSCGA to the test stopping
problem. “Pseudo” test sequences were created using the standard C library function
drand48(), each bit in each vector being set with probability 1/2. A mechanism
was used to ensure that no repeat vectors would be present in the sequence. The
sequence was then fed to the GA. Members of the initial population were also created
randomly, with each position being included in the SC with probability 1/2. Other

parameters are:

e crossover probability p, = 0.6

e mutation probability p,, = 0.13

e population size V = 300

e the fitness scaling coefficient Cpyy = 1.5

e the number of individuals reproduced unchanged in the next generation k., =

10

¢ the number of generations without improvement before MSCGA halting Ag =

200

Note that p,, is slightly smaller than the mutation probability used in CAGA
(0.15). This parameter was lowered here because of the hunch that mutation plays a
less important role in MSCGA than in CAGA. Table 6.2 summarizes the results. Each
number in the table is the average minimal SC cardinality found by the GA over 5
runs, each run using a different randomly generated test sequence. The actual integral
values averaged for each entry differed by at most 1, suggesting a low variance. The
values in each row correspond to the same generator width », while columns indicate
test length 7'.

Given that our lower bounds on the expected cardinalities of MSCs for T = 103,

T = 10% and T = 10%, were respectively 6, 9, and 12, we conclude that MSCGA



n|T=10°|T=10* | T =10°
20 7.0 10.4 14.0
40 7.0 10.2 13.6
60 7.2 10.6 13.4
30 7.2 10.4 14.0
100 7.4 10.6 13.6
120 7.2 10.6 13.6
140 7.6 10.6 13.8
160 7.0 10.4 13.6
180 7.4 10.6 13.6
200 7.2 10.6 13.6

Table 6.2: Average stopping condition cardinalities over various test
lengths and generator widths

performs quite well, as the average best individual found was always no more than
2 bits larger than these numbers. Of course, given that we have only computed a
lower bound on the expected cardinality of a MSC. it is quite possible that the actual
expected values are even closer to these results.

For further experiments, we modify MSCGA such that the fitness evaluation is
not only based on the SC size, but also a second metric — the span of the SC. The
span of the SC is the value of bg — br + 1, where bgr and by are the rightmost bit
and the leftmost bit in the SC, respectively. In a design environment in which the
logical relative positions of test generator cells is correlated to the physical layout at
fabrication, a smaller span is preferable. This is because the longer the span. the
longer the wires that carry the SC cell values to the conjunctive network that detects
the final vector.

As in the previous experiments, a substate (individual) that is not a SC receives
a raw fitness of 0. Those that are SCs obtain a raw fitness proportional to the the
square of the difference of the total number of cells and those involved in the SC.
However, to promote low spans, an additional quantity based on the span is added

to this value. If w and s are the weight and span of a SC, then the raw fitness is
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T =10° T =10* T =10°
n || size | span | size | span | size | span
20 7.4 | 11.2 | 104 | 15.6 | 13.6 | 17.4

40 |{ 7.0 | 18.0 | 10.0 | 25.0 | 13.6 | 27.0
60 || 7.0 [ 18.2 | 10.2 | 32.4 | 13.2 | 35.0
80 || 7.0 | 27.0 | 10.0 | 34.0 | 13.2 | 38.6
100 | 7.0 | 38.2 | 10.0 | 45.8 | 13.4 | 56.2
120 || 7.0 | 318 [ 10.0 | 55.2 | 13.0 | 57.4
140 | 7.0 | 222 {10.2 | 60.8 | 13.4 | 83.6

160 | 6.8 | 414 | 10.0 | V3.6 | 13.2 | 76.8
180 || 7.2 | 314 | 10.0 | 67.6 | 13.2 | 80.6
200 || 6.8 | 38.0 | 10.0 | 94.8 | 13.4 | 110.4

Table 6.3: MSCGA with span minimization results

computed as:
fraw =(n —w) +(n—w+1)* = (n —w)’)(n —s)/(n —w + 1)

Essentially this defines a two tiered fitness measure in which a SC with weight w will
always receive a higher raw fitness than one with weight w + 1, while two SCs with
equal weight will be assigned raw fitnesses such that the one with lower span will be
fitter.

The results of these experiments are given in table 6.3. For each (n.7T") pair, the
numbers in the table are averages over 5 separate MSCGA runs. It seems that the
span of the resulting best individual is usually not much more than 1/2 of the total
width of the generator. We note that the size of the best SC found by MSCGA is not
affected by this slight change in fitness measure, thus we gain a more “compact™ SC

without sacrificing SC cardinality.

6.5 Comparison Against Brute Force Search
In the previous section it was demonstrated that a SC with cardinality close to
the expected minimum can be found via GA techniques. Utilizing bit level manipu-

lation for vector comparison, these GAs run much faster than CAGA of the previous
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chapter, however for test lengths of 10°, MSCGA still takes about an hour to com-
plete. The question remains: is exhaustive search of all SCs of some cardinality k a
superior approach?

Suppose we have determined that the expected MSC cardinality is &, then the
previous question is very similar to the question: what is the ratio r of the expected
number of £-SCs to (’,:) , the total number of k-substates? There exist algorithms to
generate all (’L‘) k-subsets of an n element set that run in constant amortized time
[66]. We would expect to have to examine only about r/ (2) substates before finding
a k-SC. It is quite conceivable that this scheme would find a &-SC much faster than
MSCGA.

To test this hypothesis, random test sequences of length T = 1000 were created
as before, but rather than using MSCGA to find a SC, brute force search over all
7T-substates was used in an attempt to identify a 7-SC. The results in the second
column of table 6.2 suggest that 7-5Cs usually exist for this test length. The results
indicated that in this case r is sufficiently high so that a 7-SC is always found within
seconds. This appears to render MSCGA an inefficient approach to the problem.

However, use of MSCGA is warranted by the following observation. MSCGA
does not use the parameter £ passed to the brute force search, and thus is capable
of finding a SC with cardinality less than k, if one exists. If a MSC with cardinality
k' < E(K) exists, one would expect the number of such MSCs to be very small.
For such a test sequence, brute force search would typically need to exhaust a large
fraction of the whole search space. Noting that the size of the search space is (:,)
the time requirements of the brute-force algorithm could easily be prohibitive.

Experiments were performed to determine if MSCGA could locate a MSC with
lower than expected cardinality. Similar to those of section 6.4, these experiments
worked with randomly generated test sequences. However, an additional mechanism
was added to the code such that given parameters k£ and m, a set S of m random k-
substates is created. To create the actual test sequence, a final vector v!T! is randomly

chosen, and then the remainder of the test sequence v(@, ..., »T~1 are selected such
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m = 100 m = 1000

n || average |SC| 100/ (gy average |SC| 1000/(2)

80 6.60 | 332.8 x 10~° 5.07 | 332.8 x 1073
100 6.73 | 83.9 x 10~° 5.27 | 83.9 x 1078
120 6.80 | 27.4 x 10~° 5331 274 x 108
140 6.87 | 10.7 x 10~° 5.53 | 10.7 x 10~
160 6.93 4.7 x 10~° 5.73 4.7 x 1078
180 7.00 2.3 x 107° 5.67 2.3 x 10~8
200 7.07 1.2 x 10~° 5.93 1.2 x 1078

Table 6.4: Artificial SC injection with £ =6 and T = 1000

that no vector v(), 0 < 7 < T matches v'T? in any substate w € S. In this fashion. m
k-SCs are artificially injected into the sequence.

Table 6.4 summarized the MSCGA runs that with artificial injection of 6-SCs
for test sequences of length 1000 (recall that the experiments of table 6.2 suggested
that 7 was the smallest SC normally found by MSCGA for T = 1000). Experiments
were performed for both m = 100 and m = 1000. Each value in the “average |SC|”
columns in table 6.4 is taken over 15 runs. One observes that even when only 100 of
the (2) possible 6-substates are forced to be SCs, MSCGA is still capable of locating
one of them. When m = 1000 it appears that there are enough “forced” 6-SCs such
that their intersections imply a high proability of the existence of 5-SCs: furthermore
MSCGA seems to be able to locate these 5-SCs quite frequently. Also included in
table 6.4 are the values of m/ (g) for the various n and m values. These give an
indication that, for these test sequences, brute force search is analogous to looking
for a needle in a haystack.

At this point one might suggest that real pseudorandom test generators are
highly unlikely to have smaller than expected SCs in their sequences. However,
suppose we were to obtain an exact expression for the expected minimal stopping
condition, say E(R") = f(n,T). We know that f(n,T) increases continuously with
T, thus there are many values of (n,T) such that f(n,T) is close to k + % for some
integer k, i.e. f(n,T) is near equidistant from k& and £ + 1. Now does one run the

brute force search against all k-substates or all (k + 1)-substates? Of course finding
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a k-SC is preferable, yet we are not very confident that one exists. If no £-SC exists,
running the brute force search for a k-SC is futile and costly. Running the brute force
search for a (k + 1)-SC will certainly be successful, but will result in a suboptimal
solution if there indeed exists a £-SC. In such a situation, use of MSCGA is clearly

the superior option, as the previous experiments demonstrate.

6.6 Conclusion

This chapter’s contributions are threefold. A new technique for obtaining a
test halt signal has been proposed. This technique uses only a subset of the test
generator’s cells and requires no additional memory elements. A lower bound on
the number of generator cells needed to be tapped to create this signal is derived.
Finally, the use of a genetic algorithm to locate such cells is explored and contrasted

with using brute force search.
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7. Conclusions and Future Work

It is unclear to what extent CA conform to the building block hypothests, which is a
means of determining a priori how effective GA techniques will be against a problem.
However, results of this thesis indicate that CAGA can usually improve significantly
over primitive CA for testing. Empirical evidence was presented that indicates that
in the simple CAGA, slight mutation is slightly more effective than full mutation.

Two advanced mutation operators were introduced: Bit Role Flipping and Last
Possible Mutation. BRF seemed to work well against some benchmarks but was
detrimental for others. The mathematics of Markov chains was used to compute
the expected time of LPM, and experimentation with primitive CA showed that the
resulting equation is a good predictor. Though uneffective for the test lengths required
by our target benchmarks, when extended to LPM2 the operator was shown to be a
powerful augmentation to CAGA, outperforming radius 2 slight mutation. The price
of using LPM2 is the emergence of radius 2 rules, which are more costly to implement
in hardware.

Mechanisms that avoid degenerate CA behavior were explored. Preventing nar-
row abandons and sinks or simply sinks alone proved to be good practice when evolv-
ing both null boundary and periodic boundary CA. A fast algorithm to prevent sinks
was given. On average the shortest test lengths were obtained by periodic boundary
CA when evolved using sink avoidance.

Auxiliary work on obtaining a BIST stopping condition was presented. A lower
bound on the expected minimum number of pseudorandom pattern generator cells
needed to uniquely distinguish the final test vector was derived. Use of GA and brute
force search techniques for stopping condition identification were compared. The
results indicate that under typical test lengths and generator widths, only a fraction
of the cells are necessary to form a stopping condition.

On a higher level, we have shown that genetic evolution of CA for test generation
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can be enhanced by the utilization of advanced genetic operators that are devised
specifically for CA. Such a philosophy is surely applicable to other genetic algorithm
applications.

The potential avenues of research that could emerge from the work of this thesis

are abundant; the remainder proposes several.

7.1 GA fine tuning

Due to the large number of parameters controlling the genetic algorithms pre-
sented in this thesis, it is doubtful that the combinations of values chosen herein are
the best. Experimentation with different values of any of the CAGA parameters listed
in section 5.3.1 could reveal a more productive actual parameter set.

Using completely random nonlinear CA rather than primitive CA in the initial
population will clearly result in a less fit initial population and would require a much
larger value of Trnaz. However, it is quite plausible that over many generations such

a starting point would result with better test generators.

7.2 Alteration of GA goal

At the onset of this research, successful experiments (not discussed in the thesis)
were executed that took a different approach to the testing problem. Rather than
fixing Fi., and attempting to minimize the number of vectors needed, the number of
vectors generated was fixed and the genetic algorithm sought to maximize the fault
coverage. Further research along these lines would certainly be interesting.

Other test generator attributes could potentially be optimized via GA tech-
niques. For example, limiting the power consumption incurred during testing (as in
[50]) is a worthwhile quest. Another option is to consider more complex fault models

during fault simulation.



93

7.3 GA Distribution

GAs lend themselves to immediate parallelization in that the evaluations of the
fitness function against each individual in a generation are totally independent. Thus
distributing these evaluations across a network can vastly accelerate the algorithm,
allowing for more generations and larger population sizes to be processed. Aside from
this “obvious” means of GA distribution, there are more advanced paradigms such

as the island model.

7.4 Evolution of Feedback Shift Registers

In practice, feedback shift registers are used as BIST generators more often than
CA. This is likely due to the fact that in general a shift register cell takes up less area
than a CA cell [1].

A nonlinear type II FSR is defined totally by one function of n variables. i.e. the
logic driving the leftmost cell. These machines are discussed in [7]. Because of the
successes of this thesis with the evolution of CA, it would seem reasonable to use a GA
to evolve nonlinear FSR that minimize test length. Of course the encoding scheme
used for the feedback function is an issue that would need intelligent resolution, since

manipulation of entire truth tables is clearly infeasible when n is much greater than

10. A possible solution might employ a decision diagram representation.

7.5 Sequential Circuits

Based on the results of this thesis, extension of the CAGA to evolve CA with
cells involved in a CUT’s scan path should certainly be worth the effort. When
testing a combinational circuit, the temporal cost of a single test is typically one
clock tick, while under a scan-based architecture application of a single test takes
multiple ticks because of the scan-in/scan-out operations. Thus reduction of test

length is an important pursuit for scan-based designs.
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7.6 Signature Analysis

Moving our attention to “the other shore” of BIST, synthesis of a signature
analyzer that somehow reduces the probability of aliasing given a CUT and test se-
quence might be a job for a GA. However, the obvious way to evaluate an individual’s
fitness is to compute the signature left by each of the faulty output streams and count
how many match the fault free signature. Given the typical number of faults and test
vectors, the time requirements of such a program would be very high. Perhaps a more

cunning approach exists.

7.7 MSCGA

Recall that the MSCGA of chapter 6 assigns a zero fitness to substates that are
not stopping conditions. The algorithm may perform better when a more intelligent
fitness function is used, i.e. one that incorporates the number of times a substate
matches into its computation. This stems from the fact that a substate that matches
only a small number of times is likely converted to a true stopping condition in a small
edit distance. Of course non-genetic means of obtaining a MSC exist and warrant

further research.

7.8 Detection of Abandons

Though checking for small abandons in section 5.5 suggested that abandons
do not impede CAGA (avoiding sinks alone gave similar results), existence of a fast
detection algorithm would facilitate experimentation with larger abandons. Finding

such an algorithm or proving the problem NP-complete would be beneficial.

7.9 Further Sink Prevention Experimentation
The experiments of section 5.5 were performed prior to discover of the fast
sink detection algorithm. Running experiments with k-sink prevention for larger k

will certainly reveal more information with regards to the value of this mechanism.
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Generalization to short subcycle detection and determining probabilities of sinks and

short subcycles are other possible areas of valuable research.
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APPENDIX A

Benchmark Circuits

Table A.1 lists various attributes of the ISCAS 85 Benchmark Circuits [17. 67].
Note that the numeric part of the circuit name is the number of internal wires, and
the number of faults is counted after equivalence fault collapsing. Circuits c499 and
cl1355 are functionally equivalent; all EXOR gates in c499 have been expanded into

the four NAND gate implementation in c1335.

circuit function total gates inputs | outputs | faults Trar
c432 Priority Decoder | 160 (18 EXOR) 36 7 524 1000
c499 ECAT 202 (18 EXOR) 41 32 758 5000
c880 ALU and Control 383 60 26 942 20000
cl335 ECAT 546 41 32 1574 5000
c1908 ECAT 880 33 25 1879 10000
c2670 | ALU and Control 1193 233 140 2747 | 100000
c3540 | ALU and Control 1669 50 22 3428 20000
¢5315 | ALU and Control 2307 178 123 5350 5000
c6288 | 16-bit Multiplier 2406 32 32 TT44 500
c7552 | ALU and Control 3512 207 108 7550 15000

Table A.1: The Benchmark Combinational Circuits



APPENDIX B
Example CA Output Plots

This appendix provides CA growths for the best of initial population and best evolved
CA for the experiments using full mutation and fixed initial vector of section 5.3.2.3.
The growths use the same initial vector as used in the CAGA runs, and span 600
time steps. Note that the benchmark c432 is omitted since CAGA provided no im-

provement over the initial population in this experimental run.
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Best primitive CA Best evolved CA

Figure B.1: CA growths for c1355
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Best primitive CA Best evolved CA

Figure B.2: CA growths for c1908



Best primitive CA

Figure B.3:

Best evolved CA

CA growths for ¢2670
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Best primitive CA Best evolved CA

Figure B.4: CA growths for ¢3540
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Best primitive CA Best evolved CA

Figure B.5: CA growths for c499
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Best primitive CA

Figure B.6:

Best evolved CA

CA growths for c5315
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Best primitive CA Best evolved CA

Figure B.7: CA growths for c6288
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Best primitive CA Best evolved CA

Figure B.8: CA growths for c¢7552
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Best primitive CA Best evolved CA

Figure B.9: CA growths for c880



APPENDIX C
libfsim User Manual

The fault simulator used in this thesis is based on the algorithm of [25]. This algo-
rithm was implemented in a C program called £sim by the authors of [25]. To facili-
tate the massive number of fault simulations needed during the execution of CAGA,
this code was modified so that the fault simulator could be accessed via function calls
into a library called 1ibfsim. Prior to these modifications the fault simulation was
performed by invoking an external £sim process for each simulation and passing test
vectors via temporary files. For information on using the fsim program (found at
/home/csvlsi/sw/bin/fsim), see the document /home/csvlsi/sw/doc/fsim.doc (both
on the UVic VLSI group research machine shannon). The remainder of this ap-
pendix explains how use libfims in a C or C++ program and describes its three
access routines.

The libfsim code is available on shannon, under /home/jbingham/libfsim/. This
directory contains the libfsim source, header, and object files, a makefile. and the
source for two example main programs (c_prog.c and cpp-prog.cc) that run some
fault simulations. To use 1ibfsim, fsim.h must be #included in the source, and
libfsim.a must be linked during compilation; the source may be compiled as either
C or C++.

libfsim requires the user to have implemented a function adhering to the fol-

lowing prototype:
void getTestPatterns(int n,int a[l,int batchSize)

libfsim calls getTestPatterns() to retrieve a batch of test vectors. These vectors
are of width n and are returned in the array a[]; batchSize determines the number
of vectors. If b is equal to batchSize then the b n-vectors ¢{?, ... v(=1) are stored in

a[] as follows. The low order bit of a[:] stores the value UEO), the second lowest order
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bit of a[z] stores the value vl(l), etc., for 0 <7 < n. Thus, when getTestPatterns()
returns, the jt* lowest order bit of al[z] must store the bit v ™"

The 1ibfsim initialization function is:
void fsim_init(char *namel, int batchSize)

The character pointer argument must point to a string containing the path to the
circuit description file (in ISCASS85 format [67]). The second argument must be a
power of 2 between 1 and 32 inclusive and tells fsim how many vectors to process in
parallel; the higher this number the faster the fault simulation algorithms performs,
but the resulting test lengths are rounded up to the nearest multiple of batchSize.
This same value will always be passed to getTestPatterns() when called by the
library.

Actual fault simulation is performed by:
int fsim_sim(float cov, int maxVectors)

fsim_sim takes a float in the unit interval that specifies the desired fault coverage; for
100% fault coverage this parameter should be 1.0. The second argument determines
the maximum number of vectors to process before returning. The return value is
the lowest multiple of batchSize (as passed to fsim_init () ) greater or equal to the
number of vectors needed to reach the desired fault coverage or maxVectors.

Finally, before subsequent calls to £sim_sim are made. this function must be

called:

void fsim_reset()

It cleans up all internal data structures used by the fault simulator, and need not be

called before the very first simulation during runtime.
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