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ABSTRACT 

Generalized Singalarity Analysis of Mechanisms 

Dimiter Stefanov ZIatanov 

Department of Mechanical and Industriai Engineering, University of Toronto, 1998 

This thesis investigates a general class of mechanism configurations, usually 

referred to as kinematic singularities. The study of such configurations is of major practical 

and theoretical importance. Indeed, the kinematic properties of mechanisms change 

signifcantly in a singular configuration, and these changes c m  prove to be either beneficial 

or undesirable for different applications. On the other hand, the theoretic significance of 

singularities in mechanism theory is weli-known and related to the fact that singular points 

play a prominent role in the theory of differentiable mappings. 

The central objective of this dissertation is to address the problems of mechanism 

singularity in a most general setting, namely, to consider arbitrary singular configurations 

of both non-redundant and redundant mechanisms with arbitrary kinematic chains, with a 

speciai emphasis on the study of mechanical devices with complex kinematic chains and 

non-seriai, high-degree-of-freedom architectures. To this goal, a ngorous general mathe- 

matical definition of kinematic singularity for arbitrary mechanisms is introduced. This is 

achieved by means of a mathematical model of mechanism kinematics forrnulated in terms 

of differentiable mappings between manifolds. When the mathematical model is applied to 

the relationship between the joint and output velocities, a new unifying framework for the 

interpretation and classification of mechanism singularities is obtained. This framework, 

based on the newly introduced six singularity types, is applicable to arbitrary non- 

redundant as well as redundant mechanisms. Mathematical tools, such as singularity criteria 

and identification methods, are developed for the study of the singularity sets of both non- 

redundant and redundant systems with lower kinematic pairs. 
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CHAPTER 1 

INTRODUCTION AND PRELIMINARIES 

1J. Introduction 

This thesis investigates a class of mechanism configurations generaily known as singu- 

larities. Mechanisms with arbitrary bernatic chains are considered, the emphasis king on 

complex, multi-lwp closed chahs. It is assumed that the primary purpose of a mechanism 

is to move an end-effector: a rigid body which is identified with one of the Links of the 

mechanism. referred to as the output link. It will be m e r  assumed that some, but not 

necessariiy all, of the mechanism's joints are actuated. 

In such a general context, there is no standard definition of mechanism singularity. 

However, it is well known that the study of the kinematics of mechanical systems in 

robotics and mechanism theory cannot be considered complete udess the problems related 

to a certain class of configurations, usually referred to as "singular". "speciai" or 'tritical" 

configurations, have k e n  addressed. In these configurations, the kinematic (and static) 

properties of mechanisms change dramatically. The purpose of this thesis is to contribute to 

the theory of mechanisrn kinematics by studying these configurations. 



1.1.1. Motivation for research on kinematic singalarie 

The si-cant changes in the kinematic properties of mechanisms, which occur in a 

singular configuration, may be undesirable or potentiaüy beneficial. Hence, the snidy of 

such configurations is of signiricant importance for the application. control and design of 

mechanisms. 

The common objective of numemus researchers who studied kinematic singularities has 

been the desire to avoid such configurations during the operation of robotic manipulators. 

For a serial manipulator. for example, the Jacobian is not invertible at a singular 

configuration. This causes local control rnethods to fail at singularities. &O, at oear- 

suigular configurations, very large joint motions may be required to produce relatively 

small end-effector displacements. Singularities of parallel manipulators are also highly 

undesirable, since, if such a configuration were to be encountered, the acquisition of extra 

unwanted freedoms would trmsitorily put the end-effector out of control (Hunt 1986). 

Sometimes it may, however, be possible to take advantage of singularities. In a 

singular configuration, a seriai manipulator can withstand, in principle, infinitely large 

forces and torques about the screw axes of the impossible end-effector motions (Hunt 

1978, 1986). It has been suggested that this propeny may be used in applications like 

drilling, grinding or handling of heavy objects (Hunt 1986, Wang and Waldron 1987). 

Singularities are also of major theoretical importance. It would be impossible to 

understand the kinematics of mechanisms without a profound study of their "special" or 

singular configurations. 

In the case of serial chains. the significant role that singular configurations play in 

manipulator kinematics can be deduced from the importance of singularities in the theory of 

differentiable mappings. This connection is due to the fact that manipulator kinematics is 

fully described by a smooth map (the so-called manipulator map, or the output map) 

between two smooth manifolds: the joint space and the workspace (Burdick, 1988). The 



singular configurations are the critical (or singuiar) points of this map. Hence. the theory of 

singuiarities of smooth maps (Arnold, et al. 1985, Golubitsky and Guillemin 1983) is well 

suited to provide tools for the investigation of both the local properties of manipulator 

kinematics near singularities and the global properties of the manipulator map. 

Indeed, a nurnber of researchers have applied ideas fiom singularity theory for the 

classification of senal manipulators and their singularities. The concepts of genenc and 

transversal mappings have been applied to the kinematic map of a manipuiator by Pai and 

Leu (1992) and Tsai et al. (1993). (A manipulator kinematic map,f, is said to be generic 

when its differential, Df, is transversal to the collection {Li} of al l  rank-i submmSolds of 

the space. L, of ail linear maps fiom the tangent space of the configuration space to the 

tangent space of the task space). Tchon (1991) and Butdick (1991) apply the concepts of 

generic maps to propose classifications of certain robots and their singular configurations. 

Furthemore, a number of studies have demonstrated that singularities play a key role in 

determinhg the global kinematic properties of serial manipulators. Burdick ( 1988, 1992) 

uses singularity submanifolds to partition the joint space into singularity-fiee regions and 

analyzes the global properties of the workspace resuiting from the mapping of these regions 

by the manipulator rnap. The specid role played by singularities in the study of the 

manipulator workspace is also illustrated by the works of Borrel and Liegeois (1986), Hsu 

and Kohli (1987) and Wenger (1992). Moreover, the insight gained through such 

topological rnethods c m  be particularly useful in path planning and design. Indeed Borrel 

and Liegeois (1986) as well as Luck and Lee (1994) have applied singularity analysis to 

motion planning, while Burdick ( 1988) discusses applications to design. 

1.1.2. Previous approaches to the study of singularities 

In most of the existing literature. singularity analysis has been restncted to specific. 

narrowly defined classes of mechanisms, with an emphasis on lower-degree-of-freedom 



problem. Thus, the identification and avoidance of singularities has been investigated 

extensively for manipulators with non-reduadant open-lwp kinematic chains (Waldron, et 

al. 1985, Hunt 1986, Wang and Waldron 1987, Lipkin and Pohl 1991, and Burdick 

199 1). For redundant serial maaipulators with one extra de- of &dom, singularities 

have k e n  classified with respect to their avoidability with self-motion (Bedrossian 1990, 

Shamir 1990, Bedrossian and Hueckiger 199 1, Fiueckiger and Bedrossian 1992). Kiefer 

(1992, 1994) analyzed singularities of a non-redundant manipulator following a fmed end- 

effector path, and revealed that this problem is equivalent to the classification of the special 

configurations of single-loop chains (Hunt 1978, Sugimoto, et al. 1982) as weU as to the 

aforementioned avoidability problem for redundancy- 1 manipulators. Classifications of 

singulaities and criteria for their occurrence have been developed for classes of parallel 

manipulators (Agrawal 1990, Kumar 1990, Merlet 1989, Shi and Fenton 1992). More 

recently, some authors have studied the geometry of the singularity sets of some pardel 

manipulators (Sefkioui and Gosselin 1994, 1995, Collins and McCarthy 1996, Mayer St- 

Onge and Gosselin 1996), while othen have addressed the issue of continuous singular 

motion (or self-motion) (Husty and Zsombor-Murray 1994, Karger and Husty 1996, 

1997). However, there has been no generai approach to singularity analysis which would 

allow the smdy, in a single framework, of al[ singularities of an arbitrary mechanism. 

A necessary first step in singularity analysis is the proper definition of singula. 

configurations and the understanding of the way they affect mechanism kinematics. 

Existing studies, however. provide only specific and limited definitions for kinematic 

singularity. Although the singularity of serial manipulators has k e n  well defineci, studies 

of closed-Ioop kinematic chains do not provide correspondhg explicit definitions. In these 

works singularity is usually said to be present when a Jacobian matrix, relevant to the 

specific mechanisms under investigation, is rank defcient. 

For a serial manipulator, a configuration is defined as singular when the end-effector 

loses one or more degrees of freedorn and the Jacobian becomes rank-deficient, i.e., when 



the input-uutput map x=K@ is singular. For parallel manipulators, the usuai definition of 

singularity is duai to the one for serial chains: a configuration is singular when the end- 

effector acquks one or more additional degrees of freedom and the Jacobian of the inverse 

kinematics becomes rank-deficient, Le., the inverse input-output map 8 =Ax) is singular. 

However, this duality is incomplete since parallel manipulators can aiso have configura- 

tions where the endeffector has reduced degrees of freedom and it is naturai to consider 

such configurations as singular as well. Thus, for a closed chah mechanism, singularïty 

cannot be solely associated with the degeneracy of the denvative of an input-output map. 

To surmount this obstacle, one can analyze the singular codtgurations of both open 

and closed chains using the derivative of a more general input-output relationship of the 

type f l x ,  8) = 0 (Gosselin and Angeles 1990). However, as it will be shown later, in 

Chapter 3, this approach overlooks certain configurations in which the instantaneous 

motion of part of the mechanism is indeterminate, and the endeffector's degrees of free- 

dom may be reduced. 

Hunt ( l978), and later Sugimoto et al. ( 1982), analyzed single-loop chains and defined 

two types of "specid" configurations: "stationary" and "uncertainty" confgurations. In this 

approach, the mechanism is not considered as an input-output device and some special 

configurations cannot be considered as singular fiom a control viewpoint. 

1.1.3. Objectives of the thesis 

The lack of a proper definition of kinematic singularities c m  lead to irnperfect methods 

for singularity identification and incomplete classification schemes, especially when the 

analyzed mechanisms consist of cornplex, muM-loop kinematic chains. In this thesis, a 

general approach to singularïty analysis is developed in order to achieve the following 

objectives: 



(a) Defiitioa of singuiarity. The f h t  question that must be answered is "What is a 

singularïty of a generd input-output mechanism?" It is important to have a meaningful 

general defrntion nom which smc dennitions for singularity. for particuiar classes of 

mechanisms, c m  be obtained. The proposed approach is based on a mathematical mode1 of 

mechanism kinematics f o d a t e d  in terms of dinerentiable mappings between manifolds. 

This formulation aows  a ngorous general mathematical dennition of kinematic singularity 

for arbitmy mechanisms. 

(b) Classification of singularities. The next goal is to reveal the structure of the 

singularity set. Classification of singularities serves ihis goal. Classification seeks to 

disclose what different kinds of singular configurations are possible and divide the 

singularity set into subclasses consishg of different singulacity types. The study of the 

infinitesimal and local properties of the mode1 yields a comprehensive classification of 

singularity, based on the type of degeneracy of the velocity khematics. 

(c) Criteria for singularity. Once the phenornenon is defined, the next task is to 

provide methods for answenng the questions: "1s a given configuration singular? To what 

singularity class does ir belong?" Such methods cm be developed by establishing effective 

analytical or geometrical critena for singularîty. The generahed approach to singularity 

proposed in this thesis allows the development of new improved singularity tests. This is 

especiaiiy me in the case of hybnd-fhain manipulators. 

(d) Identification of singularities. It is not suficient to be able to determine whether 

a specific (though arbitrary) configuration is singular. For both practical and theoietical 

reasons it is important to have means of obtaining the set of al1 singular confiigurations. The 

large majority of the existing methods and algorithms for finding singularities have k e n  

developed for serial manipulators. The formulation of the infinitesimal mode1 by means of a 

velocity equation allows the development of methods for determinhg the singularities of 

closed-lm p mec hanisms . 



1.1.4. Overview of resuits 

Herein, we summarize the contents of each chapter of the thesis, and outline how the 

goals, described in Sub-section 1.1.3, are achieved. 

Chapter 1. The introductory chapter consists of two sections. This fvst one, Le., the 

present Section 1.1, clarifies the motivation and background of this work. In the following 

section (Section 1.2), we introduce the basic mathematical terminology which will be used 

to formuiate the kinematic models in Chapters 2 and 3. 

Chapter 2. The main task achieved in this chapter is the definition of kinematic singularity 

of a general mechanism in terms of the position kinematics. To obtain this result, we 

refonnulate mechanism kinematics in terms of a novel mathematical model. Afier defining a 

very general class of kinematic systems as families of smooth motions on a manifold, we 

proceed to consider articulated systems with their two equivalent models: as motions in 

joint space; and in Link space. respectively. The configuration space of an articulated system 

has the structure of an algebraic set, when considered in either of the equivdent joint and 

link formulations. The dimension of this set is the mobility of the articulated system. 

Furthemore, we propose a new conception for the def~tion of a mechanism. Rather than 

consider it as a medium for an input-output mapping, which canaot, in general, be given a 

proper global definition, we create a symmenical mode1 by introducing two subsystems of 

the given articulated system: the input and the output systems, and two well-defined 

mappings, the input and output maps. which map the configuration space into the input- 

and output-space manifolds, respectively. Finally, it is postulated that near a nonsingular 

configuration, the configuration space is a smooth manifold and the two mappings are of 

maximum rank. At a singularity, either the smoothness of the configuration space or the 

regularity of the two maps are violated. 



Chapter 3. This chapter introduces a new and general fi-arnework for the classification 

and interpretation of singular configurations, which is obtained by the examination of the 

interdependence of six singularity types. The chapter starts with the interpretation of the 

symmetric two-map mode1 of mechanism kinematics, developed in Chapter 2, for the shidy 

of the relationship between the joint velocities and the output twist. This amounts to 

modelling the instantaneous kinematics at a given configuration. Then, the definition of 

singularity is re-stated in tenns of the instantaneous model, the six siaguiarity types are 

defined, and a classification theorem is established. Aii these d e f ~ t i o n s  and propositions 

are stated for arbitrary kinernatic chains, but at this stage, are reshicted to non-redundant 

mechanisms, with equal dimensions of the input and output spaces. As shown later, in 

Chapter 6, the classification framework can be formulated for redundant mechanisrns as 

well. However, in the non-redundant case the statements have a simple symmetry which 

becomes obscured in the more general case, when redundancy is possible. The singularity 

types and their interaction are ilIustrated by nurnerous examples. 

Chapter 4. The approach developed in Chapter 3 is applied to the snidy of a class of non- 

redundant mechanisms, which are referred to as hybrid-chain manipulators (HCMs). For 

these parallel-like manipulators, we sirnpliQ the velocity kinernatic equations by eliminating 

a maximum number of passive-joint velocities. We do that using an improved method for 

"annihilation" of the passive-joint screws with reciprocal screws. Unlike previous 

approaches based on reciprocity of screws, the technique descnbed in Chapter 4 does not 

fail at singular configurations. We then proceed to develop singularity critena for HCMs, 

i.e., we provide necessary and sufficient conditions for a c ~ ~ g u r a t i o n  to belong to each of 

the six singularity types. We finish the chapter by proving a classification theorem which 

describes the possible singularity classes for HCMs. 

Chapter 5. The issue of singularity identification is addressed, for the case of a general 

non-redundant mechanism. After deriving singularity criteria on the basis of the 



formulations and propositions in Chapter 3, we develop methods that can compute the 

singularity set and reved its division into shgularity classes. The application of these 

methods is exemplified by the detailed singularity analysis of a six-degree-of-freedom 

pardel manipulator with a complex singularity set. 

Chapter 6. In this chapter. we revisit the formulations and derivations of Chapters 3 and 

5 and demonstrate that both the classification f'ramework and the identification procedures 

can be generaiized and made applicable to mechanisms with redundancy. Mechanisms with 

kinematic and dynamic redundancy are considered. The resulting classification tables reveal 

the effects that redundancy bas on the possible and impossible singularity classes. We 

introduce some modifications in the identification methods of Chapter 5 so that the 

singuiarity set of redundant mechanisms can be revealed. 

Chapter 7. This final chapter summarizes the contributions and conclusions of the thesis 

and points out possible areas of extension. 

1.2. Mathematical Preliminaries 

The purpose of this section is to introduce a number of mathematical concepts that will 

be needed in the thesis and which do not frequently appear in the mechanisms literature. 

The propositions which we state are given without proof. since detailed proofs can be 

found in the quoted literahue. 

1.2.1. Groups and rings 

In this sub-section, we state some fundamental definitions and facts in absuact algebra. 

They will be referred to in later chapters as well as in the rest of the present section. 



1. I . Definition. Ler G be a set and let p : G x G + G be a binary operation on G. 

For any pair (a, b) of elements of G. let p(a, b) be denoted by ab. G is said to be n group 

with group product p. @ 

(i) p is associative, i.e.. (ab)c = a(bc) for any a, 6. rmd c in G. 

(ii) p has a unit element, i-e., there exists an element e in G such that. for any 

a E G, ea = ae = a .  

(iii) p udmits inverses. Le., for every a in G there emsts an inverse element, 

denoted a-', such thut aa-L  = c ' a  =e. 

It can be shown that the unit element, e,  must be unique. I f  the group product is 

commutative, i.e., i f  ab = ba for any a and b, then p(a, b )  is usually denoted a + b and 

referred to as a sum, white G is called an additive group. For such groups, the unit element 

is denoted by O, while the inverse element is written as --a. 

1.2. Definition. A group map f: G + H is a map between groups G and H that 

respects the products of G and H, that is, is such that, for al1 a, b E G, 

f(ab) =AaV(f(b)- 
A group map f : G + H is said to be a (group) isomorphism, if it is bijective. 

It can be shown that the inverse o f  a group map must also be a group map. 

1.3. Definition and Proposition. Let G be a group and ler F c G. Then. F is a 

group with the group product of G if: and only if; the following two conditions are 

sawed: 

(i)  F F c F ,  i-e., a , b ~  F implies a b c  F ,  

(ii) F - '  c F, i.e.. a E F implies a - '  E F. 

A subset, F, with these properties is said to be a subgroup of G. 



1.4. Definifion. A A g  ir an additive group, R, in which, apart from the szun, a + b, 

there LE a producft ab, which is disnibutive over uàditiun, i.e., for a11 a.b,c Ur R, 

c(a  + b )  = ca + cb and (a  + b)c  = ac + bc. 

R is said to be commutative, if the product is commutative. andlor with unity, if the 

product hm unity. 

Examples of rings are: the set of integen, Z; the ring of remainders modulo r, Z, the 

ring of polynomials in n variables with coefficients in a field k, k [ x , ,  . . . , x,]. An 

important case, to which we wili return later in ihis section, is the Nig of polynomials over 

the reals, R [ x , ,  . . . , x,].  

1.5. Definition. Let R be a cornmutarive ring with unity and let I c R. 

(1) A subset. 1. is refen-ed to as an ideal of R. if it has the two properties: 

(i) for nny a ,  b E 1, we have a - b E I ,  

(ii) IR c R, i-e.. for any a E 1. x E R, it is true that ax E 1. 

(2) The ideal I is said to be (finitely) generated by the elements a,, . . . , a, E 1, 

if every element, b E I. can be written as b = b , a ,  + - - + b,a, for some 

b , , . . . , b ,  in R. We denote: l = ( a , ,  . . . , a,).  

Every ring contains at least two ideals: the zero ideal, which consists solely of the zero in 

R; and the unit ideal, which is R itself. Every ideal must contain O (the zero of R). The only 

ideal that contains 1 (the unity of R) is the unit ideal. 

1 .6.  Proposition. Every ideal in k[x ,  , . . . , x, J is finitely generated. 

A proof of this fact is given in (Hodge and Pedoe, 1954). 

1 - 7 .  DeJinition. Let I be an ideal in the ring R. 

(1) I is said to be prime. if ab E I implies a E 1 or b E I.  

(2) 1 is said to be primary, if ab E I and a E I implies bk E 1. for some integer k 



1.2.2. Aff~ne spaces 

From a geometrical or a mechanical point of view, it is important to distïnguish the 

affine Euclidian space E~ h m  the underlying 3dimensional linear space R3. An affine 

space is a linear space without a fixed origin. The elements of E~ are points, while the 

elements of R3 ~IE vectors. While E~ is a bijective image of IX3, it is not a vector space, and 

the elements of an a f i e  space are not subject to the linear operations (vector addition and 

scalar multiplication). 

An &me space is rigorously defmed as foilows, (Porteous 1981, Amold 1979): 

1.8. Definition. Let X be a non-empry set and V a vector space. An N i e  structure 

on X with vector space V is a map 

C : X X X + v, C(X,  Y) = X - v ,  

which sarifles two axioms: 

( i )  for ail O in X the map c, : X + V, c&) = x - o. is bijective. 

(ii) f o r a l l x , y , o i n X , x - y = @ - O ) - @ - O ) .  

The set X, equipped with the affine structure is un S i e  space. 

E~ will denote a three-dimensional affine space over the linear space R ~ .  

The inverse of the map c, is denoted by x = o + x, where x = x - o. This defmes 

the sum of a point, x, and a vector, v. The result, x + v, is the unique point y in E ~ ,  such 

that v = y  - x .  

By the use of reference frames (coordinate systems) the elements of both E~ and R3 can 

be described by triples of real numben. A cwrdinate system in E~ is given by a point, O, 

in E~ and a basis, (el, ez, e,) in R ~ .  For a fixed choice of the reference frame, oe,e,e,, 

every point, x,  in E~ is descnbed by the coordinates of the vector x = x - O in the basis 

(e t .  e2* e,) 



E~ is referzed to as an afnne Euclidean space when its vector space, R ~ ,  is a real 

orthogonal space with a positivedefinite scaiar product. The scalar product in It3 defiaes a 

distance function, d, on E ~ .  

Definition. 

The distance between two points in E~ is thefunction: 

d:  E~ x E~ _t R, d ( x ,  y )  = ~ ( x - ~ ) . ( x - ~ ) ,  

where "-'* is the srandard s c u h  produet in It3. 

The orientation function, O, is defned on fromes ( x ,  y, z) in R3 (or E ~ ) ,  or, 

equivalently, on arrays of four points in E ~ .  (o. x, y, 2): 

1 if det(x,y,z)>O 
d x . ~ z ) = (  O if det(x.y,z)=O 

- 1  if det(x,y,z)<O 

The so-defined distance and orientation functions are, in general, dependant on the 

choice of a reference frame. This is so, since the scalar product and the determinant 

function are not invariant with respect to an arbitrary change of basis in R ~ .  TO ensure that 

both distance and orientation are invariant with respect to reference frame it is sufficient to 

restrict the choice of bases in R~ 10 only such triples (e,, e2, e,) for which ei.ej = 4, and 

det(e,, e2, e,) = 1 (6, is the Kronecker symbol). This assumption restricts the dowable 

coordinate systems in E ~ .  While the origin cm be arbitrary, the coordinate vectors must 

satisfy the above conditions. Such reference frames are referred to as Cartesian. 

1.2.3. Topological spaces and smooth manifolds 

1. IO. Definition. A topology on a set X is a collection, ?; of subsets of X. which 

includes the empty set. 0, and the whole set, X,  and which is such thut: 

(i) the intersection of anyfinite number of elements of T belongs to I; 

(i i)  the union of any set of elements of I belongs to I. 



A set X together with a jked topology I is called a topological space nie elements 

o f I  are referred to as the open sets in X Subsets of X whose compfements are open are 

said to be closed 

A subset, Y. of a topological space. X, is a topological subspace of X , if it is endowed 

with the induced topology I, = ( U n Y 1 U E I }, where I is the topology of X. 

An open neighbourhood of a point x E X is an open subset of X containhg x. A 

neighbourhood is a subset of X with an open neighbourhood of x as a subset In Hausdog 

spaces, every two distinct points have non-intersecting neighbourhwds. 

Thus, topological spaces generaiize familiar concepts about Euclidian affine spaces, 

such as open and closed sets, and nearness to a point. The space Z?, is itself a topological 

set with the usual open sets, which can be defined as: the b a s  with radii E > O (i.e., 

B&) = {y 1 d(x ,y )  < €1 ) and al1 their possible unions. 

1.11. Definition. A map, f: X + Y. between topological spaces is said tu be 

continuous. if the inverse image of any open set in Y is an open set in X. A bijective 

continuous map with a continuous inverse map is referred tu as a homeomorphism. 

Topological spaces connected with a homeomorphism are considered equivaient from a 

topological point of view. 

1.12 Definition. An m-dimensional smooth manifold is a Hausdof space provided 

with a family of pairs {(CI,, &) } . such thar. 

( i )  { LI i }  is a family of open sets which covers X, Le., X = U, U;, while #i is a 

horneomorphimfrom Ui onto an open subset of Rm. 

(ii) For any U i n  U j # O .  themap: @,-O@,- '  :@, (Ui r \  C$)+ # , (U in  U,). 

is Uifinitely dflerentiable. 



Each pair (LI,, qi) is referred to as a chart of X, while the whole family, ((U,, @)), is 

c d e d  an atlar. The subset Ui is referred to as a coordimte neighbourhwd and the maps #i 

are the coordinute maps- Two atlases are said to be equNaIent or to &fine the same smooth 

structure, if their union is also an atlas, i.e., it satisfies condition (ii) in Dennition 1.12. 

Manifolds with the same underlying set, X, and equivalent atlases are considered 

equivaien t. 

1 -13 .  Definition. Let f: X + Y be a rnap between smooth manifolds. and let 

y =&). The map f is said to be smooth or the point x if for some pair of charts, (U ,  #) 

and (V, y) with x E U and y E V , the map y of @ -  ' is smooth. If a smooth map f 

is invertible and the inverse map, f- l ,  is also smooth, then f is referred to as a M m -  

morphism and the manifolds X and Y are said tu be diffeomorphic. 

A diffeomorphism is a homeomorphisrn which preserves the smooth structure. Diffeo- 

morphic manifolds are considered geomeuically equivalent. 

A submanifold, Y, of a manifold X, is a subset of X, which is a manifold. 

A curve at x  E X is a smooth rnap g : I + X, where I is an open interval of the real 

line, O E I c R, such that g(0) = x. Two curves at x, g and h, are said to be tangent if, 

for some chart, (U, @) with x E O, we have: 

where xi are the coordinate functions of the rnap 4. This is, in fact. an equivalence relation 

for the space of curves. An equivaience class of curves at x under this relation is referred to 

as a tangent vector at x. The set of aLl tangent vectors at x  form the tangent space at x and is 

denoted by T, X. It can be seen that dim T, X = dim X. The dual space of Tx X is 

referred to as the cotangent space and is denoted by T.:X . 
A srnooth map between two manifolds, f :  X + Y, induces a linear mapping, 

D f :  T x X  + Tfl,,Y, between the two tangent spaces at x E X and f (x )  E Y,  defined 



by: D,ACg]) = [ f ~ g ] ,  where [hl denotes the equivalence class (Le., the tangent vector) of 

the curve h. 

The above facts and M e r  details on smooth and differentiable manifolds can be fomd 

in (Lang 1962) or (Sternberg 1964). 

1 .1  4 .  DejUlition. A Lie group G is a smooth manifold which is endowed with a 

group structure. such that the following two maps, defned by the group operaîions, are 

smooth: 

(i) p : G x G + G ,  p ( a , b ) = a b .  

(ii) q : G + G. q(a) = a-' . 

A Lie subgroup of a Lie group, G, is a subgroup of G, which is also a submanifold of 

1.2.4. Real algebraic sets 

1.2.4.1. Basic definitions. We consider the ring of polynomials R[x,, . . . . x,]. 

We will abbreviate x = (x,, . . . , x,). The array of n indeterminates, x, will be 

interpreted as the coordinates of a point, x, of the affine Eudidian space. p, in some fixed 

Cartesian reference frame. If J c R[x] is a set of polynomials, then we denote the 

vanishing set of J as: 

V ( J )  = ( x E E~ 1 f(x) = O  for d l  f R [ x ]  }. 

On the other hand. for every subset V c we defue the ideal of V: 

J ( V )  = {fe R [ x ]  If(x)=O for al1 x E V }. 

1 .15 .  Definition. A subset, V c E ~ ,  is referred to as a (real) algebraic set, if it is 

the vanishing set of a collection of polynomials, i-e., V = V(J) for some J c R[x]. 



It can be assumed that the set J h m  Dehition 1.15 is an ideai. (Indeed, if a collection of 

polynomials vanishes on V, then the ideal generated by them vanishes on Vas weil). 

I .  I 6 .  Definition. An algebraic set, V. is reducible if if is the union of two other 

algebraic sets. i.e., there exist two algebraic sets. V, and V2, VI f V f V2, such t k t  

V = V, u V2. Othenvise, the set V is said to be irreducible. 

1.17. Proposition. Every algebraic set, V, has a unique decomposition into irre- 

ducible components. that is. V can be written uniquely as V = V I  u - - u V,,,, 
where each V ,  b an irreducible aigebruic set a d n o  I, ccntaaUte in mtother 5. 

I .  18. Proposition. Let J be an ideal in R[x]. and let V = VJ). 

(1) V is irreducible, @und only i f / ( V )  is a prime ideal. 

(2)  If V is irreducible. then J is a primary ideal. 

(3) I f  J is a prime ideal then V is irreducible. 

Proofs of Propositions 1.17 and 1.18 can be found in (Shafarevich 1977 and Hodge and 

Pedoe 1954). 

1.1 9.  Definition. A mapping, f : LI + W is an (entire) rational map, if there exist 

pdynomials p and q. such that O E q ( U )  (Le., q ( x )  é O for al1 x E LI) and 

f l x )  = p(x)lq(x). A rationul map, f; is said to be a birational isomorphism. if it has a 

rational inverse, i-e., if there exists a rational map. g : W + II. such that f g and 

g f are identities. 

Two algebraic sets are said two be biratiunally isornorphic, if they are comected with a 

birational isomorphism. Birational isomorphism is a horneomorphism which preserves al1 

algebraic structures. 



1.2.4.2. Singuiaritîes of real dgebraic sets. There is no general agreement in the 

fiterature on the proper way to define singuiar and nonsinguiar points on algebraic sets. The 

following approach, proposed in (Akbulut and King, 1992) appears to be best suited to 

applications in mechanism theory, since it emphasizes the local geometric and topological 

properties of the algebraic set. 

I .2  O .  Definition. Let V c E* be an algebraic set. We say that x E V i s  

nonsingular of dimension d in V ,  if there exists a neighoourhood, LI. of x in f l  and 

N - d polynomials f,, . . . , f, -, such that: 

(i) LJ n V = U n Wf,, ,f,-,), 

(ii) The gradients. VJ(x),  i = 1, . . . , N - d are linearly independent. 

1.2 1. Definition. Let V be an algebraic set. The dimension of V, dim V,  is dejined 

tu be the largest integer, d. such that there exists a point in V, which is nonsingular of 

dimension d. The set of al1 nonsingular points of dimension d = dim V is denoted by 

Nsg V and its elements are referred tu as the nonsingular points of V. (Ze complement 

of Nsg V. denoted by Sing V = V - Nsg V. is the set of the siaguiar points of V. 

1.2 2. Definition. Let V be a real algebraic set and let 3( V )  = (f,, . . . , fk). Let x be 

in V. Then. the Zariski-tangent space at x, T ~ ~ ( v ) .  is a vector space dejhed by 

T ~ ~ " ' ( V )  = ( V  1 V&(X).V = O ,  i = 1 , .  . . , k). 

We note that Definition 1.22 does not depend on the choice of basis in X V ) .  

1.2 3. Notations. We denote: 

n,(V) = dim T ~ ~ ( ( v ) ,  

n(V)  = min (n,(V) 1 x E V ), 

v 0 =  ( X E  VIn,(V)=n(V) } ,  

v - =  v -  vo. 



An alternative to Definition 1.2 1 is the use of v0, V-, as definitions of nonsingular and 

singular points, respectively (Bochnak et al., 1987). 

1.2 4. hoposition. Let V c E* be an imeducibie aigebraic set. 

(1 )  NsgVisnotempty. 

(2) dim V = n(V).  

(3) N s g V = v 0 .  

(4) I f  W c V is un irreducibie olgebraic set and W t K then dim W < dim V. 

1.25. Proposition. Ler V c E~ be an algebraic set. and let V = V ,  v - u Vm, 
where Vit i = 1. . . . , m, ore the irreducible components 4 V. 

(1) Nsg V is not empîy- 

(2 )  x E V is nonsinguiar of dimension d if and only if: for some j, x E Nsg V,; 

x e V,, for all i t j; and dim V, = e. 

(4) Sing V is ir an algebraic set and dim(Sing V) < dim V. 

AU statemenrs in Propositions 1.24 and 1.25 are proved in (Akbulut and King 1992). 



CHAI'TER 2 

MECHANISM KINEMATICS 

2.1. Introduction 

This chapter introduces a novel mathematicai model of mechanism kinematics. The 

model evolves from a naturai definition of mechanical systems, and kinematic systems in 

particular, as families of smooth mappings of the unit interval, A, into a smooth manifold, 

Q. This basic idea allows for a rigorous and consistent derivation of the cenval concepts 

and facts of mechanism theory, including the precise mathematicai d e f ~ t i o n  of fundamen- 

ta1 notions iike configuration space, kinematic model, mobiiity, redundancy and singula- 

nty. 

The chapter begins with a brief discussion of the properties of the group of 

displacements of the affine Euclidian space, SE(3), (Section 2.2) which are derived from 

the properties of affine spaces, reviewed in Chapter 1. In the subsequent sections, the basic 

elements and facts of multi-body kinematics are denved from the properties of the Euclidian 

group. Al1 formulations are coordinate-free and underline the intrinsic geometnc and 

topological nature of kinematic systems. 

Kinematic systems and their kinematic models are introduced in most general t e m  in 

Section 2.3- Then, we consider as narrowing subsets of abstract kinematic systems, 

consecutively: systems of particles in Section 2.4; rigid-body systems in Section 2.5; 

articulated systerns in Section 2.6; and seriai-chah articulated systems in Section 2.7. The 



derivations in Sections 2.8 and 2.9 are, for the most part, vaiid for general abstract 

kinematic systems, but the naturd emphasis is on articulaîed systems with smooth joints 

(e.g., lower pairs). The goal, achieved in Section 2.9, is to provide rigorous formulations 

of mechanism mobility, singularity and redundancy, based on the local and global 

topological properties of a kinematic system. 

2.2. The Euclidian Group 

It is assumed that a three-dimensional affine Eudidian spacef, E ~ ,  is given. 

2.1. Definition. A displacement of E~ is n transformation of E~ (i.e.. a rnap 

g: E~ + E ~ ) ,  which presentes the distance and the orientation in E~. The set of all 

displacements in three-dimensional space is denoted by SE(3)  and is known as the 

Euclidian group in three dimensions. 

It can be shown that a displacement is a bijective affine map and an automorphism (i-e.. 

a homeomorphism of E~ ont0 itself). The set SE(3) is, indeed, a group. The group product 

of two displacements is defined as their composition as maps, g,g,(x) = g, og,(x) = 

g,(g,(x)). The unit element of the group is the identity map on E ~ ,  e = G. The inverse 

element of g is aven by the inverse map. g -1. 

2.2. Example. A simple example of a displacement is the translation map, 

g,(x) = x + t, where t is a constant vector in R ~ .  It maps a point x into the unique point 

y in E~ such that y - x = te Since a translation is defined uniquely by a vector t. the set 

of aii translations, T ~ ( E ) ) ,  c m  be identified with R~ by means of the bijective map 

AI1 statements in this chapter can be made for a Euclidian space of arbitrary dimension. Of practical 
importance are mainiy the cases n = 2 and n = 3. The theory for the plane (n = 2) can be derived h m  the 
spatial case (n  = 3). since pIanar displacements are a sub,pup of spatial displacements. 



t : T ~ ( E ~ )  + R ~ ,  7(gJ = t. (2-1 ) 

The addition of vectors in R3 tums the space of translations into an additive group. The 

unit element of this group is the translation by the zero vector, o. Io fact, r is a group 

isornorphism between T ~ ( E ~ )  and R ~ .  It can be seen that the group operation and the unit 

element in T ~ ( E ~ )  are identical with those in SE(3). and thexfore the p u p  of translations 

is a sub-group of SE(3). 

2.3. Example. A displacement which maps at least one point, o E E ~ ,  into itself is 

called a rotation. The set of al1 rotations about an arbitrary fked point O, RO~,,(E~), is a 

subgroup of SE(3).  The group R O ~ ~ ( E ~ )  can be identified with S0(3), the Special 

Orthogonal Group. SO(3) consists of the so-cded orthogonal h e a r  maps in R ~ ,  Le., the 

maps which preserve the scalar product and the detenninant hinction. (When a Cartesian 

basis is fixed in R3, each element of S0(3) is given by an orthogonal rnatrix with a positive 

detenninant). 

The isomorphism between RO~JE~)  and SO(3) is given by the map 

p: R O ~ , ( E ~ )  + SO(3). p(g)  = G,  (2.2) 

where G : R~ + R3 is defined by 

GX = g ( o  + X )  - O .  (2.3) 

The inverse map is p -1(F) =f, where f is given by f (x )  = o + F(x - O ) .  

To show that p is indeed an isomoqhism, consider two rotations about O, f and g, and 

denote fg = h ,  p(B = F, p(g) = G, p(h) = H. We need to show that p(fg) = pop(&,  

Le., H = FG. From the definition of p (Equations 2.2 and 2.3), we have: 

F G x  = F ( g ( 0  + X )  - O )  = f(o + (g(o + X )  - O ) )  - O  = 
(2.4) 

f(g(0 + x) )  - o = fg(o + x) - O  = h ( o  + X )  - O  =EX. 

The third equdity in (2.4) follows from the defuiition of the operations "i" and "-" in the 

space E~ (discussed in Sub-section 1.2.2). 



Consider the set R3 x S0(3), which has as its elements the pairs of the type (vf, F). 

We defîne a product operation by 

(vfT F)(vII. G)  = (Fvg + v p  FG). (2.5) 

It can be shown that with this product Ik3 x SO(3) is a group with unit element (O, Z), 

where I is the 3 x 3 unit hear map. This group wiiI be denoted by R~ x, SO(3). (Note: 

the symbol G x H, where G and H are groups, denotes a group with a product operation 

different from the one in Equation (2.5), namely, (g,, h,)(g,, h,) = (glg2. hih2). ) 

2.4. Theorem (Arnold. 1980). The Euclidinn group of all displacements RI E ~ ,  SE(3), 

is isomorphic tu the group R3 X, SO(3). 

Proof. We will construct a map, @ : SE(3) + R~ X, S0(3), and show that it is 

a group isomorphisrn. 

First, for every dispacement,f, and an arbitrary fixed point, o. we define, a translation, 

f,, and a rotation, f, as: 

The second equation in (2.6) defines a rotation, since&(o) = o. 

We now defme the map @ by: 

su, = (r(f , ) ,  pur)). (2.7) 

The maps r and p are the ones defined in Examples 2.1 and 2.2 (Equation (2.1) and 

Equations (2 2-3)). respectively . We denote 

t r = 7 C f i ) = f ( o ) - 0 ,  F = p ( f , ) .  (2.8) 

We also consider the rnap y : R3 x SO(3) + SE(3), defmed as 

~ ( t ,  , F) = r-'(t$p -'(F) - (2.9) 

The image of y is a displacementJ which is a composition of the translation,f, = rl($). 

given by the vector 9, and the rotation. f ,  = p -'(F), which corresponds to the orthogonal 

linear map F. 



It c m  be checked that # a  ilr(4, F) = (tf , F) and y0 #(# = f, is., y = #-'. Thus. 

it is estabiished that # is bijective. This implies that every displacementJ can be written as 

the product of a translation, f, and a rotation, f, which are obtained fiom f as shown in 

Equations (2.6). 

It remains to show that the map @ preserves the group product, i.e., for any f, g in 

We denote h = fg and (th , H) = #(fg). By the definition of the group product in 

R~ X, SO(3) (Equation 2.5). we have: #V)@(g) = (tf, F)(t,, G) = (Ft, + tf, FG). It 

must be proven that: (i) th = Ft, + tf. and (ii) E = FG: 

(i) The def~tion of the translation vector, 9, and the orthogonal map of a displacement f 

(Equation 2.8) and the fact that f =fi for every f, dlow us to write the following 

sequence of equalities: 

(ii) Similady to the proof of (i) above, we wnte: 

( ( O  + F ( G x  +tg) )  + (tf- t h ) )  - O  = 

((O + F G x  + Ft,) + (t,- Ft, - tf)) - O  = (O + F G x )  - O  = F G x .  

In the third-last equality in (2.11) we use the result of (i) (Eq. 2.10). 

Thus, by proving (i) and (ii), it is established that @ is an isomorphism and the theorem 

is proven. 0 



2 -5 -  Remarks. 

(1) Theorem 2.4 implies that for a fixed choice of the ongin, O, every displacement, g, of 

E~ c m  be achieved in a unique way as a composition of a translation, g, and a rotation, g, 

g = g,g, Moreover, every g is descnbed by a pair (tg, G), where G is an orthogonal hear 

map and tg is a vector. The image of each point x with coordinates x = x - o is the point 

g(x) with coordinates Gx + t. Furthemore, it follows that each displacement is uniquely 

defined by a Cartesian coordinate system, o,e,,e,,e,,, which is the image of the initial 

reference frame, oe,ele,. The new origin. O,, is the image of o under g, O, = g(o)  = 

o + tg, while the new coordinate vectoa, e,,. eg2 and e,,, are the images of e,, e, and e, 

under the orthogonal map G, e, = Ge,. 

(2) The elements of SE(3) are conveniently descnbed by homogeneous 4 x 4 matrices of 

the type: 

The image of a point in E~ under a displacement, g, with matrix Hg is obtained by pre- 

multiplying the column vector of the homopneous coordinates of the point x, (x, l)T, by 

the rnatrix: H [ 1. The composition of two displacements ir given by the rnatrix produet. 
g 1 

2.6 .  Remark. Both the sets R3 and SO(3) are at the same tirne three-dimensional 

smooth manifoids and groups under vector addition and matrix multiplication, respectively. 

The group R) x, SO(3) is, therefore, a smooth manifold of dimension six. The group 

operations in SE(3)  are smooth, since they are given by matrix multiplication of 4 x 4 

matrices. Therefore, SE(3) is a 6-dimensional Lie group which is a subgroup of GL(4) 

(The group of nonsingular 4 x 4 matrices). T ~ ( E ~ )  and RO~,(E~) are 3-dimensional Lie 

subgroups of SE(3). 



2.3. Kinematic Systems 

Consider the space E ~ " ,  E ~ *  = E~ x - x E ~ ,  i-e., the Cartesian product of n copies 

of the Euclidian space E ~ .  A point of E'", x = (x , ,  . . . , x,), can be thought of as 

describing the positions of n particles in E ~ .  In this intexpretation, E~" is referred to as the 

confgurution space of an unconstrained system of n particles. The points of Eh are cailed 

(feasible) confgurations of the (unconstrained) system of n particles. (Note that in this 

system ail configurations are feasible, eveo those where different particles occupy the same 

point in E ~ . )  A W i b l e )  motion of the system is deîined as a smooth path in E~".  The set 

of ail such paths forms the space of easible) motions of the system. 

The concept of an (unconsuained) panicle system, outhed in the preceding paragraph, 

c m  be generalized by replacing the affine space, E)", by an arbitrary smooth manifold. On 

the other hand, one can define different mechanical systems on a single manifold by 

imposing restrictions on the motions which are considered feasible. In the statements which 

foliow, we introduce a mathematical formaiism for the description of mechanical systems. 

Our approach is based on the understanding that a mechanical system is, mathernatically, 

nothing more than its space of feasible motions. 

Let Q be a smooth manifold and let A be the interval [O, 11 of the real line. A (mooth) 

motion on Q is understood to be a smooth map, f :  A + Q. More precisely. At) is a 

continuous mapping of the unit interval of the real line into the manifold Q, such thatflt) is 

smooth on the interior of A. The set of al1 such smooth maps wiil be denoted by C(A, Q). 

2 .7 .  Defiilions. Let Q be a smooth manifold and let C c Q. 

(1) An (abstract) mechanical system on Q is a subset. M, of the space c ( A ,  Q). 

me elements of Mare referred to as feasible motions of the mechanical system. 



(2) An (abstraet) kinematic system on Q with configuration space C, is the 

sec 

4 C .  Q )  = UE C'(A,  Q >  1 Imf c C}. 

i.e.. the set of al1 smooth motions on Q. which are contained in C. When C is a 

proper subset of Q, the system is said to be constrainid. When C = Q, the system 

is unconstrained. (aQ, Q) = r ( A ,  Q )  is ubreviated XQ).) nie points in C are 

the feasible configurations of K(C. Q ). while the elements of Q - C are 

refened to as non-feasible configurations of the system 

(3) An abstract mechanical systern on E~" is referred to as a mechanical system of n 

particles in E ~ .  

(4) An abstract kirtematic system on E~" with configuration space C. Le.. the system 

is said to be a kinematic system of n particles with configuration space C. 

2 .8 .  Remark. 

( 1 ) We emphasize that in Definition 3.7(2) the system XC, Q) is not defmed as the 

space of mappings C(A. C). Such a definition would require the configuration space C to 

be a manifold and would be too restrictive. Instead, we define a kinematic system with a 

configuration space C with the help of a manifold Q containing C. This ensures that the 

feasible motions are weil defmed as smooth mappings into a manifold, even though the set 

C may not have any global differentid structure. 

(2) Analogously to Def~ t ions  2.7.(34), we can defme a system of particles in E', for 

any integer k. Among the cases with k # 3 of particular importance are systems in E ~ ,  

referred to as planar (particle) systems. which will be used in numerous examples. 

Although plana systems can be thought of as a special case of particle systems in E ~ ,  it is 

more conventent to remove the third coordinate and think of the motions of such a system 

as defmed in a 2n -dimensional space. 



In this thesis, we are interesteci mady in mechanid systems that can be described by 

Definition 2.7(4). A kinematic system of finitely-many particles with a configuration space, 

as defmed in Defmition 2-7(4), is a very important special case of a general mechanical 

system of n particles (Definition 2.7(3)). Unlike the general case, the system nC, is 

fdly defined by speciwing a subset of E'". Other special cases are discussed in the 

following remark. 

2.9.  Remurk The space aC, E~") ,  used in Definitions 2.7, is a special sub-space of 

 XE^"), described only by constraints on the values of the functions. There are subsets of 

motions that cannot be described by a subset of E)", e-g., the space of solutions of a 

system of differential equations. Mechanical systems that are described by second (or 

higher) order differential equations are referred to as dynamic. However, systems 

described only with fmt-order differential equations are usuaily referred to as kinematic. 

Such systems are cailed non-holonomic kinematic systems, and they can be described by 

speciQing a subset of the tangent bundle,  TE^" (or, of the cotangent bundle,  TE^"), i.e., 

by specifying constraints on the positions and velocities (or momenta) of the particles. The 

systems described in Definition 2.7(4) are referred to as holonomic. 

2.10. Defiitions. Let 34, and M2 be abstracr mechanical systems on X, and X2. We 

denote by  Im %-rhe sets V h f .  i = 1, 2. If% = K ( C ,  Xi), then Im Mi = Ci. 
f € M ,  

( 1 )  M, and % are raid to be diffeomorphic when Im % is the image of Im M, 

under a horneornorphism which can be extended, at least locally, to a 

diffeomorphism of submanifolds of X, and X2. 

More precisely, Ml is said to be diffeomorphic 10 fM, when there exists a m p  

# : lm Ml + Im M., such that: 

(a) @ is a homeomorphism. 



(b) For every x, E XI denote x2 = #&). For some neighbourhoods Oxi, 

xi  E OXi c Xi, there exist subnronifolds Mxi, xi E Mxi c Xi, and a diffeo- 

morphism. @ : O,, n Mx,  + 0x2 n Mx,, such rhat Q(x) = #(x) for al1 x for 

which both m p s  are dejined. 

We will say rhat the diffeornorphism of Ml and M2 is ïnduced by the map or that 

IK, and M - are di$eomorphic with map #- 

Let M, = a C , ,  E ~ " ) ,  M2 = II(ICZ9 E ~ * ) -  Ml and M2 are said to be congruent, 

if there is a displacement, g E SE(3). such thut C2 = gCI. Le., 

C 2  = { ( g x p * * - , g x , )  1 ( x l . * . * . x , )  E C l ) *  

Ler Ml and be diffeomorphic with #. Then, the pair (Ml, #) is said to be a 

(kinematic) rnodel of M2. 

Let (MI, #,) and ( M,, - @,) - be models of systems NI and N2- The models are said 

to be congruent. if N1 and N2 are congruent. The rnudels are equivalent when 

x1= Np 

2.1 1. Remarks. 

(1) A sufficient but not a necessary condition for the systems Mi = =Ci, Xi)? 

i = 1,2. to be diffeomorphic is the existence of a homeornorphism from Cl ont0 C2 that 

can be extended globally to a diffeomorphism of two submanifolds of X, ont0 X,. More 

precisely, if there exist submanifolds Ci c M i  c Xi, and a diffeornorphism O, 

@ : M, -t MI, such that #CI) = Cz, then the systems 4C,. X,) are diffeomorphic. 

(2) It cm be shown that Definition 2.10(1) introduces an equivalence relation in the set 

of dl mechanical systems. (Similarly, the property of congruence, introduced in Definition 

2.10(2) is an equivalenece reiation in the class of the systems of the type XC, E ~ " ) ) .  

However, the property defmed in part (1) of the present remarks (Le., the existence of a 

diffeomorphism of submanifolds containuig the configuration spaces) is not an equivalence 

relation. 



We note that a kinematic system is described entirely by its mode1 (as defmed in 

Definition 2.10 (4)). A congruent mode1 is obtained by a change of the reference frame in 

the ambient space. Other diffeomorphic models dow,  when studying the behaviour of the 

system, to substitute the motions in E-'" (or E ~ )  with motions on lower-dimensional 

manifolds. In particular, whenever the configuration space, C, of some kinematic system 

aC, Q), is a subrnanifold of the ambient manifold, Q. the system is diffeomorphic to 

a 0  

2 .  I2. Example. We examine the planar kinematic system of two particies, p, and pz, 

with a configuration space C, defmed by the following three conditions: (i) the fmt  

particle, p,, must remain at a constant distance, I , ,  from a fixed point O; (ii) The distance 

between the two panides must always be equal to 1,; (iü) the second particle must always 

remain on a fmed Line through o. This system, denoted by is show in Figure 2.1. 

Figure 2.1. A two-particle kinematic system. 

Let the coordioate system in E' be chosen with an ongin at o and the x axis along the 

line containing p,. Then, the kinematic system is M= aC, E ~ ) ,  where C is the set of 

points in E' with coordinates. (x , ,  y,, x2, y?), which satisQ the following constraints: 

x,? + ).,' = l , ' ,  



2 (x2 - x,12 + (y2 - Y# = 12 (2.12) 

y2 = o. 

This system is dif'feomorphic to M' = NC: E~), where E~ is the set of points with 

coordinates (x, , y,, q) and C' is the vanishing set of the two equations: 

The rnap of this diffeomorphism is the inclusion, i, of l? into ES, which maps h t o  the 

hyperplane {y, = O ) .  ( i ( x , . y , .  x,) = ( x , ,  y1.x2,O) ). 

Furthemore, this system is diffeomorphic to the system Mt'= ne': X), where X is 

a cylinder with radius 1 ,, and C"is the vanishing set of the equation: 

where h and 9 are the cylindrical coordinates on X. The diffeomorphic rnap in this case is 

the inclusion map, j .  which identifies X with the cylinder in E' with equation 

x I 2  + = 1 .  ( j  , 8 ) = (l,cosO, i ,sinû, h )  ). 

When l2 # I , ,  the set C", given by Equation (2.14), is the disjoint union of two 

smooth closed curves. Therefore, the system is diffeomorphic to XC") and, furthermore, 

to aC"'), C"'= S' u SI, i.e., to the set of motions of a point on a pair of circles. The 

diffeomorphic relation is established by a map denoted, respectively. k, for the case 

1, > i,, and k2 when 1, > 1,. Each map is defined for an element, tp, of either the f m t  or 

the second circle denoted (SI), and (si),, respectively. When 1, > 1,: 

When i, > 1, : 



When 1,' = 1,' = 1, Cf' becomes the union of a pair of intersecting closed curves on 

the cyiinder: the circle S = { h = O} and the ellipse E = { h - 21cos 0 = O}.  Figure 2.2. 

Figure 2.2. The configuration space of a 2-particle system. 



In this case, the confiopration space is not a smooth manifold and the kinematic system 

cannot be modelled by a system on a one-dimensional manifold. The simplest possible 

representation is as a system, such as M't defined on a two-dimensional manifold. An 

open submanifold of X containhg C". e.g. {-21- E < h < 21 + €1, E > 0, can be 

mapped onto an annular region of the plane and thus Mcan be shown to be diffeomorphic 

to a system of the type %S. E ~ ) ,  where S is a set of two intersecting ck i e s  in E ~ .  

In conclusion, the pairs (Mt i). (M", ioj]. (M": iok)  are diffeomorphic kinematic 

models of the same kinematic system, M. 

2.13. Example. Consider the set C c E ~ ,  C = S u 1, where S is the unit ckcle in 

the Oxy plane. S = {x' + y2 = 1, z = O},  and I is the straight-line interval { x  = 0. 

y = 1, -0.5 < z < O S } ,  Figure 2.3. 

Figure 2.3. A singular configuration space. C = S u I ,  on a cylindncd surface. 

33 



W e  note that C is a subset of a cylindrical strip, Q, (with axis the z coordinate axis). 

Simultaneously, the same set, C, can be considered as a subset of a Mobius strip, M, 

obtained by cutting, twisting and re-attaching the c y h d r i d  Saip Q. The systems aC, Q) 

and XC, M) are Meomorphic, but they do not satisfy the global diffeomoxphic condition 

desmiid in Remark 2.1 l(1). Indeed, if this were the case, it would follow that a cylinder 

is homeomorphic to a Mobius strip, which is known to be incorrect. This example 

illustrates that the condition (which we used in Example 2.12) requiRng the existence of a 

"global diffeomorphism" (as described in Remark 2.11(1)) is not always satisfied when the 

configuration space is not a smooth manifold. 

2.4. Rigid Body 

Let us consider a system of N > 1 rnoving particles subject to the condition that in 

every feasible configuration the distances between the particles remain the same. Let 

xp, . . . , x i  be N > 1 distinct points in E ~ .  We have the system: 

2.14.  Proposition. The set C,, defined in Equation (2.1 7) is a smooth manifold 

described by the following statements: 

( I )  I f  al1 the points x p lie dong one Iine, then CN is diffeomorphic tu the product of 

E~ and the 2-sphere. s', E~ x s'. 

(2) I f  al1 the points x p do not belmg to nny single l he  but lie UI one plane, then CN iS 

diffeomorphic to SE(3). 

(3) Otherwise. if the points xp do not belong to any single plane. then CN is 

digeomorphic to the disjoint union of two copies of SE(3). 
O O O Proof. We denote v, = x, - xi ,  vij  = xf - x:. dij = d(x i  , xj  ). 



( 2 )  Consider the set C2, C2 = { (X x2) I d(xl ,  x2) = d l  } . 
C2 is diffeomorphic to E~ x S' by the map: (x, , x,) + (x, , O + ( l /d lz ) (x ,  - x , ) ) ,  

which is obviously bijective and smooth. It remains to show that Cz is diffeomorphic to C,,, 

when the points of the initial configuration are co-linear. When a l l  points of the initial 

configuration lie along a single h e ,  then this will be tme for any configuration. This is due 

to the fact that, in E ~ ,  three points, x,, x,, x,, are CO-linear if, and only if, 

d I z  = *(dl3 * d2,)- 

If 4 are scalars such thai 

XP = x f  + Ai(x?-xp), 

then the diffeomorphism of C2 ont0 C, is given by the map: 

x i  = x ,  + A i  (x2 - x I ) .  

(2) Without loss of generality, let xp, xy and xf be non-collinear. We denote by C3 the 

configuration space of a rigid body which consists of ody the first three particles of the 

body CN, Le., 

C 3  = { ( x , , x 1 , x 3 ) l  d ( x i . x , )  = di,, 1 1 i < j 5 3 )  (2.18) 

First, we show that C3 is diffeornorphic to SE(3).  Denote xo = (x p, xf  , xf) and 

consider the mapping 

@P : S E ( 3 )  + C f ,  # x o ( ~ )  = g x O  = (&, gx;, g ~ f h  (2.19) 

To show that is bijective, we will choose a reference h e  attached to xo. 

For any given three non-colinear points, ( x , ,  x,, x3). one can define a Cartesian 

reference frame in E ~ ,  oe,e,e,, in a unique way by specifjhg: the origin at x ,  , O = x, ; 

the e,  axis along x2 - x ,  ; the second ax is ,  e,. in the plane of x,, x, and x, in such a way 

that x3 has a positive second coordinate and e,.ez = 0; and e3 so that it completes the 

Cartesian frame (i.e., e, mut be orthogonal to e, and e2. and det(e,, e2, e,) = 1 ). 

We frx the frame defmed by (x y ,  x f , x 3 )  in this manner. 

The map #*O is injective. Indeed, if gxO =Do. we will show that g = f. Let g and f 

be given by (G, tg) and (F, tf). gxp = fx? implies t, = t,. Since e ,  and e2 are linear 



combinations of x2 - x, and x, - x,, it foliows that Ge, = Fe, and Ge, = Fe,. 

Finally, Ge, = Fe, since G and F preserve the scalar product and orientation. 

The map & O  is also surjective. Given an arbitrary x = (x,, x,. x,) a C3, we chose 

tg equal to x, - x F, and G such that the axes of the fhme attached to 9 are mapped dong 

the ones attached to x. Then, the displacement defmed by (t, G) is mapped by & O  into x. 

& O  is smooth, since it is linear with respect to the rnatrix components of g. Therefore, 

& O  is a diffeomorphism of SE(3) and C3. 

To complete the proof of (2), we show that C3 is diffeomorphic to C,,. The conditions 

(2.17) imply that the coordinates of a l l  points are detemineil by the coordinates of the three 

points. If we attempt to fmd the coordinates of a point x, k > 3, in the frame oe,e,q. we 

fmd a unique solution for the fmt two coordinates, x,, and x,, and two solutions for the 

third coordinate, x,, = i dd:k - & - & . 
These two solutions coincide if, and only if. the point x, is in the plane of x,, x, and 

x,. Therefore, when al1 points of the rigid body are in one plane, the configuration space 

C, is diffeomorphic to C3 and to SE(3). The theorem is therefore proven for the case of a 

"flat9* body. 

(3) Without loss of genedty. let x F, xf and x! be noncolinear and let x t  be outside of 

the plane oe,+ (as above,oe,e,e, is the frame attached to xp, x: and xg). Then, for each 

of the two solutions for x, there is a unique solution for the coordinates of every x,, 

k > 4: x ,, = ( l/k&)(d& - d:,, + x& + & - .Y&) . Therefore, given x,, x2 and x,, and 

the conditions (2.17)- there are two solutions for the set of points (x,, . . . , x,). (The 

two solutions coincide if and only if ail points lie in the same plane). Hence, there are two 

one-to-one smooth mappings, @+ and 9; of SE(3) into CN, defined by the two solutions 

and therefore CN = e ( S E ( 3 ) )  v 45-(SE(3)). The image space of each of these two map- 

pings, @+(SE(3)) or 0-(SE(3)), is a manifold diffeomorphic to C3 and to SE(3). In par- 

ticular. ihis implies that #+(SE(3)) and @-(SE(3)) are path-comected. The two image 

spaces do not intersect unless they coincide (i.e, unless the rigid body is fiat). Indeed, if we 



assume that they do intenect, (in view of the path-connectedness of the two image sets) it 

would follow that there exists a continuous path, y. comecting two configurations with the 

same positions of x,, x, and x, but two Merent (mirror-image) locations of x,. In these 

two configurations the values of the orientation of the four points, Nx,, x,, x,, xJ, have 

opposite signs. Shce the determinant function is continuous, it foliows that there is a con- 

figuration dong y where the orientation h c t i o n  equals zero, Le., the points x,, . . . , x, 

lie in one plane. This, however, contradicts the conditions (2.17) and our assumption that 

the points are not CO-planar in the initial configuration. 0 

2.  I S. Definition. A rigid body, B. is a kinematic system of N à 3 particles in E~ 

such that the distance and orientation fwictions. computed for the positions of the parnrncies, 

do not change during the motion of the system. ~ ~ L L F .  9= %Ce, E~") ,  with 

C B  = {(x, ,  x2, .  . . , x N )  d ( x i ,  xi) = d ( x ~ , x ~ ) ,  

xi, x,, x,) = o(xp, xj', xp, xP) 1, 

where (x p, xy, . . . , x i )  is a given array of points in E ~ .  

2.16.  Proposition. Let J be a rigid body with a feasible configuration xO, 

O O xO = (x, , x Z, . . . , x j). Then. the pair (K(SE(3)) .  #P). where 

: S E ( 3 )  -t E3". &o(g) = g(xO). 

is o mode1 of B .  

Proof. The proposition follows from the proof of Proposition 2.14. Indeed, in part (2) of 

that proof it was shown that the mapping #P. defined first in Equation (2.19), is a 

diffeomorphism between SE(3) and C,. However, since the orientation in the rigid body is 

fmed, C3 can be identified with Cg. 0 

2.1  7 .  Remark. 

( 1 )  UsuaIly, when the rigid-body concept is introduced in the literature, oniy the 

conditions (2.17) are used. Rigorously speaking, the configuration space of such a system 



is homeomorphic to R~ x O(3). (O(3) is used to denote the space of linear maps in R3 

which preserve the scalar product, but not necessarily the det function, Le., matrices with a 

deteminant o f f  1). The manifold SE(3) = R~ x SO(3) is only one of the two connected 

components of R~ x 0(3), each of which corresponds to a h e d  orientation of the body. 

Shce a change of orientation cannot be achieved by continuous rigid-body motion, one of 

the components of the configuration space can be disregarded To specify the component it 

is sunicient to provide one (initial) feasible configuration. 

(2) In view of Proposition 2.16 and Remark 2.17(1), a rigid body contauiing three 

non-colinear points can be imagined as another Euclidian space CO-located with E ~ .  The 

relative position and orientation of these two copies is given by an element of SE(3) and 

their relative motion is modeiled by the motion of a point in SE(3). It is thus common to 

substitute the system xCB. E)") with il(ISE(3)). 

(3) Proposition 2.13 proves that Cg is a &dimensional smooth manifold and therefore a 

local coordinate system c m  be chosen at each of its points. Hence, the relative motion of 

two rigid bodies can be locally described by six scalar parameten. However, there is no 

systern of six coordinates that can be used globally, i.e., on the entire rigid-body 

configuration space. Indeed, a global coordinate space would imply that SE(3) is 

diffeomorphic to R ~ .  However, one of the components of SE(3) is the manifold SO(3) 

(homeomorphic to the reai projective space @), which is topologicall y different from R~. 

2.5. Rigid-Body Systems: Kinematic Joints 

In this section, systems of ngid bodies are defined formaily, in a way analogous to the 

introduction of systems of particles by D e f ~ t i o n  2.7. This approach is justified since, by 

Remark 2.17(2), we c m  "ignore" that a rigid body is composed of particles and treat it as a 

point in SE(3). Nevertheless, the definitions in this section can easily be shown to be 



compatible with those in Section 2.4 in the sense that rigid-body systems are weii defined 

as systems of particles as weil. 

Denote SE(3)" = SE(3) x - - - x SE(3). Just as an element of SE(3) determines the 

location of a rigid body in a Euchdian space, a point in SE(3)" can be thought of as 

describing the location of n rigid bodies in their common ambient space, E ~ .  A kinemntic 

system of n rigià bodies (or, in short, a rigid-body system) is a subset of aSE(3)"). 

2-18.  Definitions. 

(1) An abstract mechonical system on SE(3)". i.e.. a subset of %SE(3)"), is referred ro 

as a mechanical system of n rigid bodies. 

(2 )  An abstract kinematic system on SE(3)" wirh configuration space C, i.e., 

aC, SE(3)") .  is referred to as a kinematic system of n rigid bodies with 

configuration space C. 

2.1 9.  Remurk. A system of n ngid bodies, a C ,  SE(3)*), c m  be modeled as a system 

of particles. Indeed, we recall that in the proof of Proposition 2.l4(2) it was shown that 

SE(3) is diffeomorphic to a set, C3 cl?, defined by the (arbitrary) choice of a triple of 

non-colinear points, x0 = (xp, xp. x?). xp E E ~ .  Therefore, SE(3)" is diffeomorphic to 

a subset of pn, C," = C, x - - - x C,. The diffeomorphism in question is: 

O 
$10 : SE(3)" + E9", @ d g  1 ,  . . . , g , )  = (g , . - . . g,,xO), 

where ~ F O  = (gcxp, &, &). Thus, aC, SE(3)") is diffeornorphic to a system of 6n 

particles, aD, l?), where D is the image of the configuration space C, D = #=o(C). 

Similarly to Remark 2.9 (regarding systems of particles), we note here that the 

kinematic systems of rigid bodies with a configuration space, intmduced in D e f ~ t i o n  

2.18(2), are commonly referred to as holonomic, while systems in which not al1 motions 

inside the configuration space are feasible are called non-holonomic. We will be deaüng 

with holonomic systems. 



Definition 2.10(1) (where diffeomorphic systems were defineci) applies to systems of 

rigid bodies as well. (Note that two diffeomorphic rigid-body systems need not be 

composed of the same number of bodies). Furthemore, some stronger equivalence 

relations between systems of an quai number of rigid bodies can be introduced. 

2.2 0. Defuritions. Let M, = a s , ,  SE(3)"). rM, = a s 2 ,  SE(3)")- 

(1) Ml and M2 are said to be coqjugated, ifthere i s  a displacement. g E SE(3). such 

rhar S2 = g ~ , g - ' ,  i.e., S2 = { d g - '  I f  E Si}. 

(2) Let (xi, #,) and (x2(,. @2) be modeb of the rigid-body sysems a d  M2 m e  

models are said tu be coqjugated, if M, a d  & are conjuguted. The models are 

equivalent when MI = M.. 

2.2 1.  Definitions. 

( 1 )  Let Q be a path-connected subset of SE(3) containing the unit dement. e. nien, the 

systern NQ, SE(3)) is referred tu as a (kinematic) joint with configuration 

space Q. 

( 2 )  Let C c SE(3). The system of two rigid bodies, NB,  SE(^)'), with configuration 

space B = ( e )  x C is referred to as a kinematic pair with output space C. 

(3) Let Jbe a joint with configuration space Q, and let y- and y+ be a pair of-d dis- 

placements. nien, the system of two rigid bodies, %B.  SE(^)^). with configura- 

tion space 

B = { e l  x y-Qy+-'= w* y-gy+-')lgE Q I  
is referred ta as a kinematic pdr with joint J The displacements Y- and y+ are 

suid to give the location of the joint / i n  thefirst and second body of the kine- 

matic pair, respectively. 



2.2 2. Remarks. 

(1) The configuration space of the joint, Q, is the set of the possible displacements of a 

rigid body relative to one chosen possible location of the body, Le., Q consists of the 

elements of SE(3), which map one chosen possible configuration of the rigid body into a i l  

its possible configurations. If A, a path-connected subset of SE(3). is the set of the 

possible displacements of the body in the ambient space, then Q would be the set AU-', 

where u is the chosen configuration. The reference h e  attached to u is refened to as the 

f ied jo in t - -me,  while a frame attached to a variable displacement v E A is referred to as 

the moving joint-fiam. 

( 2 )  A khematic pair with output space C is also a kinematic pair with joint J if the joint gis 

specified as / = aQ, SE(3)), Q = Cu-', where u is any chosen element of B. The 

location of the joint is then given by (z, y+) = (e. u-'). Conversely, a kinernatic pair 

with joint J has an output space equal to y-Q y+-'. 

(3) A kinematic pair describes the displacement of two rigid bodies with respect to a frarne 

fmed in one of them. The displacement of the second body with respect to the fmt one is 

given by the product y&-! In this expression: is the displacement from the frame 

associated with the fmt (fixed) body ont0 the fixed joint-frame; f is the joint displacement 

measured in the fixed joint frame; and y+ is the displacement mapping the frame of the 

second (moving) body ont0 the moving joint-frame, measured in the frame of the second 

body. (If al1 the displacement were measured in the fixed-body frame, the product 

displacement would be y+-lfz). 

Clearly. a kinematic joint is a kinematic system diffeomorphic to a kinematic pair with 

this joint. Thus, (y, f + (e, y&-')) is a kinematic mode1 of nQ,  SE(^)'). 

2.23. Definition. A set of joints, T ,  is referred to as a joint type, i f  it consisr. of al1 

joints conjugated with some joint, / 



The conjugacy of job is an equivaience relation and the joint types are its equivalence 

classes. Definition 2.23 provides a critenon for cornparison of different joints while 

disregarding the reference fiarne in which the joint displacements are being caiculated. 

2.24. Example. The present example discusses a category of joint types that are of 

special practical and theoretical importance. These are the so-caed Reuleaux pairs 

(Reuleaux 1875), also known as lower pairs, listed in Table 2.1. 

Table 2.1. The Reuleaux pairs. 

Name of joint 

Sphencal joint 

Planar joint 

CyIindrical joint 

Revolute joint 

Prismatic joint 

Helical joint of pitch p 

In the fourth column of Table 2.1, R denotes the group of translations parallel to a 

fixed line (isomorphic to the set of real numben). SO(2) is the group of rotations in the 2- 

dimensional space. The manifold SO(2) is diffeomorphic to the 1-dimensional circle, 

s'.The group SE(2). the Euclidian group in two dimensions, is defined in a way similar to 

SE(3): SE(2) is obtained from the set R2 x SO(2) analogically to Theorem 2.4. The 

notation Sp(1, R),, is understood as the symplectic subgroup of SE(3) for pitch p, 

p E (0, O). This group consists of al1 helical displacements of pitch p and is isomorphic 

Notation 

S 

F 

C 

R 

P 

H(p) 

to (but not a conjugate of) R. 

Surface 

Sphere 

Plane 

Cylinder 

of Revolution 

of Translation 

Helicoidal 

Configuration 

Space 

Sm31 

S m )  

R x SO(2) 

S m )  

R 

SP( 1. w, 

Diniemion 

3 

2 

2 

I , 

1 1 

1 



Physically, the Reuieaux pairs are defined as pain of identical surfaces in E ~ ,  which 

can move relative to each other while remaining in surface contact. Most practicai 

mechanisms have ody Reuleaux pairs, since they provide stable contact and are relatively 

easy to impiement as two parts with mating surfaces. 

According to a mathematical definition, a Reuleaux pair is a kinemaîic pair whose jouit 

type consists of the symmetry Lie groups of a 2dimensional (smooth) submanifold of E~ 

(Selig and Rooney, 1989). In other words. a joint, J, is a joint of a Reuleaux pair when: (i) 

its configuration space, Q,, is not oniy a submanifold but also a subgroup of SE(3) (i.e.Q, 

is closed under the composition of displacements); and (ii) there exists a surface in E ~ ,  such 

that: (a) every displacement in Q, maps the surface into itseif and (ô) ail displacements in 

SE(3) with this property are elements of Q,. 

A classification of the subgroups of SE(3) (up to conjugacy class) can be found in 

Hervé (1978). There are eight different subgroups of Vkension 2 or higher. Only four of 

these, however, preserve some surface in E ~ .  These are: S0(3), SE(2), R x SO(2) and 

R ~ .  The notation R x SO(2) denotes a subgroup generated by the rotations and 

translations about one and the same line in E ~ .  The group denoted by R2, which is 

generated by the translations in two directions, does not satisQ our defdtion, since it does 

not contain d l  the syrnmetries of its invariant surface (a plane parallel to both translations). 

This condition is satisfied by a larger group, SE(2), which has R~ as its subgroup. 

Therefore, there are three Reuleaux joint types of dimension p a t e r  than one, and they are 

iisted in the first &ee rows of Table 2.1. 

The subgroups of SE(3) of dimension 1 are the so-called symplectic subgroups of 

SE(3), denoted Sp(1, R), in generai, symplectic groups are groups which preserve 

antisymmetric forms (Weyl 1946). In the case of SE(3), a symplecic group preserves a 

4 x 4 antisymmetric form (when the elements of the group are interpreted as the 4 x 4 

matrices used to change coordinates in PR3. cf. Remark 2.5). A classification of the 

symplectic groups (by conjugacy class) can be identified with a classification of the space 



of vector foims in the tangent space of SE(3). This vector-form classification identifies 

elements that cm be mapped into each other by means of a cwrdinate change in E~ or a 

multiplication by a scalar factor. This is, in kt, a classification of screws according to their 

pitch*, p. Thus, there are -1 different 1-dimensional subgroups of SE(3), one for every 

value of p, from O to a. Al1 these groups correspond to a different Reuleaux pair, which 

has an invariant helicoidal surface in E ~ .  The most practical joints are given by the groups 

with p = O and p = 0, and these are the groups SO(2) and R, where the helicoid 

degenerates into a surface of rotation or translation. The onedof Reuleaux joints are iisted 

in the Iast three rows of Table 2.1. It should be noted that the "helical joint type" actuaüy 

consists of an infinite number of distinct joint types with pitch p, O < p < 00. 

2.6. Articulated Systems 

Kinematic pairs describe the possible relative motions of two bodies. When we Say that 

two bodies are comected with a joint, 3, it is understood that the relative displacements of 

the two bodies are restricted to the configuration space of a kinematic pair with joint J. If 

we imagine that the two bodies are part of a system of rigid bodies then a joint describes a 

restriction on the feasible configurations of the system. Systems of rigid bodies, where the 

configuration spaces are defined solely by specifying kinematic pairs, are referred to as 

articulated systems. The main purpose of this section is to define such systems and 

dernonstrate some of their basic properties. To achieve this, we will need some basic 

concepts from graph theory, which we graduaily introduce as we proceed. Our graph- 

theoretic notation is closest to Wittenburg (1994). 

* The pitch is a projective number (i.e. an element of PR) and an invariant in the heimensional twist 
space. For a twist, A, p is defined as p = (Ki(A, A) : 2Kl(A, A)), where Ki(A. B) and KI(A, B) are the 
Klein and KilIing forms-the only invariant scalar products in a twist space (Karger and Novak 1985). As a 
projective number, p does not change when multiplied by a scalar such as -1 and therefore p can be thought 
of  as having a vaIue fiom O to - . 



A directed graph, T = HM, N, v )  = (V, A, v), consists of M + 1 vertices labeled 

v E V = { O, . . . , M } and N connecting arcs labeled a E A = { 1, . . . , N } , 

together with a rnapping v = ( v ,  v+), 

v : A + V x V, v(a) = (v-(a), v+(a) ), 

which specifies the startuig and temllnating vertex of the arc a. 

We shall always assume that rhas the following properties: 

(i) For any arc, a. v-(a) # v+(a). 

(ii) Any two vertices are comected with at most one arc, Le., the map v is injective; 

(iü) Any two different vertices are connected by either an arc or by a sequence of 

arcs and vertices (Le., ris a connected graph). 

2.25. Definitions. Let T = G(M. N, v) = ( V ,  A ,  v )  be a directed graph and let P be 

a collection ofjoints such that no two efements of Tare of the s m  joint Vpe. 

( I )  A map p, p : A L is referred to as a joint distribution for the graph T. 

(2) A m a p ?  

y :  A -t  SE(^)', yw = (y-(a), y+(n)), 

is referred to as a LUiI< geometry for the graph T: 

2.2 6. Reniark. The set P, used in Definition 2.25 is, in fact, a collection of representa- 

tives of joint types, and hence a joint distribution, p, assigns a joint type to each arc of the 

graph. Each vertex of the graph is associated with a ngid body. In mechanism theory, these 

bodies are referred to as links. Then, the pair of maps (p, f i  defuies a kinematic pair for 

each arc of the graph. The fmt body of the kinematic pair comsponds to v-(a) and the 

second body-to v+(a). The displacements and y+(a) determine the location of the 

joint in the fust and second bodies, respectively, while p(a) is the joint of the kinematic 

pair. 



2.2 7. Demirtons. Let r = HM, N,  v)  be a directed graph. 

( I )  Let p be a joint-type distribution for T. The pair, (T. p), is referred to as a 

kinematic chain with gruph r and joint-type disttibution p. Let Q, be the 

configuration space of the joint arsigned to the arc a, Le. p(a) = Nea, SE(3)). 

nien. the space na, A is refmed tu as the joint spare of the kinernaric chah. 

(2) Let W = (r, p), where p(a) = aQ,, SE(3)), be a kinematic chah and let ybe a 

link geometry for T. Then. an articuiated system with kinematic chain W and 

link geornetry A( W. 13, is d e e d  as the kinemaric system of M + 1 rigid bodies 

with configuration space C ( i.e., A(W. j) = aC, SE(3)M+1)) where 

C = { (eV g f ,  - 9 g,u) 1 g,+(,, = g,(,l~-(alf,~+(~)- '~ fa E Qa I - 

2.28. Remark. A kinematic chah specifies the bodies that are connected with 

kinematic pairs and the joint types of these pairs. However, the kinernatic pairs are not M y  

described since the location of the joints in the adjacent bodies is unknown. These locations 

are given by the displacements p(a) and y+(@. As we mentioned in Remark 2.26, the ngid 

bodies (associated with the vertices of a kinematic chain) are referred to as  links, which 

accounts for the term "link geometry" adopted for y. Knowing Y, one can calculate the 

relative displacement between the joint-frames of two different joints in one and the same 

body. It will be convenient to define a transformation of  SE(^)\ F :  SE(^)^ + SE(3)'", 

for a given iink geometry y. F is aven by: 

F = ( 1 , .  . , F a .  . . , F )  Fa(h) = y-(a)-'h,y+(a). 

It can be seen that F is an automorphism of SE(3)Y This map transfoms an array of N 

displacements, (hl, . . . , hN), which are thought of as the reiative displacements of pairs 

of bodies, into (FI.. . . , FN), which can be regarded as an array of joint displacements. 

1 The inverse map, F-' = (F 1-', . . . , Fa- , . . . , FN-I), is given by 

FÜ'O = y-(aKy+(a)-'- 



An (ordered) sequence of arcs in which every arc (except perhaps the f k t  and the las) 

is comccted to the preceding and foI.lowing arcs (Le., it shares a vertex with thern) will be 

referred to as a puth. In other words, a sequence, P = (a,, a ,  . . . , ad, is a path if there 

exists a (necessady unique) sequence of vertices, (v,, v2, . . . , v, + ,), such that 

{vil v i+  1 = (v-(ai)l v+(ai)}, i { 1, - - 1 k} 0 

A path is cailed elementary if all its vertices, with the possible exception of the fmt and 

las& are distinct. i.e., vi # v, whenever li -JI < k. We note that dl arcs in an elementary 

path m u t  be distinct 

An elementary path for which the fmt and last vertices coincide (v, = v, + ,) is caüed a 

circuit (or loup?). A set of loops (L,, . . . , L,} is said to consist of independent loops if 

every loop, L,, has at least one arc, aQ', which belongs to no other loop in the set. In every 

connected graph, there exists a set of c, c = N - M, independent loops, but there is no 

set with c + 1 independent loops. A set of N - M independent loops is referred to as a 

fundamental system of loops. The arcs a", j E { 1, . . . , c } ,  are called chords of the 

graph. A graph with no loops, i.e., with c = O  is called a tree. If al1 chords were 

eliminated from a graph, T, the remaining graph would be a tree. The subgraph of r 
obtained by removing the chords is called a spanning tree of T. For a given graph, the 

choice of a fundamental system of loops, a system of chords (and the spanning tree) is not 

unique. 

Knematic chahs, as weil as articulated systems, are classified according to the 

topology of their graph, T. When r i s  a tree (i.e., it contains no closed loops and therefore 

M = N), the kinematic chain is referred to as open. A kinernatic chah is closed when 

every arc of r i s  part of a closed loop. A simple chah has a graph where every vertex has 

In graph theory. the t e n  loop refers to an arc which begins and ends in the same vertex, Le. a circuit 
with onIy one arc. On the other hand, in mechanism theory circuits are usuaily called loops. Since circuits 
with one arc are not present in the graphs we  address in this thesis. we shall use the term loop instead of 
circuit. thus complying with the usual terminology in kinematics. 



at most two adjacent arcs (i.e., for every vertex, v, the set v--l(v) u v+-I(v) has at most 

two elements). Simple, open chains are referred to as serial chains. 

2.29. Notations. Herein, we introduce some notations which will be used in the 

subsequent propositions. If a graph, T, is a tree, then M = N. Moreover, for every vertex, 

v, there is a unique minimal path (i.e., a sequence of distinct arcs and vertices) comecting 

v with any fured vertex, e.g., the vertex 0. Therefore, there exists a correspondence, P(v), 

which gives for every v, a unique elementary path, P(v) = (a ,, . . . , akt,,,), such that, 

for the vertices of this path, v, = 0 and v,,,, , = v. 

Let P = (a,, a,, . . . . a,) be a path in r. Let the function 6, : A + {O, 1. -1) be 

given by: 

For every path, P, we denote by A, : S E ( ~ ) ~  + SE(3) the map 

Sdad Adh) = hZb' hi** . . . ha, . (2.2 1) 

where h = (h,, . . . , ha, . . . , h,). If ha is the relative displacement of the rigid body 

associated with v+(a) with respect to the body-frame associated with v&), calculated in the 

body hame of body v&), then Ap(h) is the relative displacement of body v, with respect to 

body frame v , ,  measured in body-frame v , .  The value of A,(h) can be presented as a 

function of the joint dispiacements,f,, by expressing h = F'o). (The map F depends on y 

and was defined in Remark 2.28.) We denote &,O = A,(F-,(~)). When the link 

geometry, y, is clear from the context, we will write simply Zp(n.When P is a loop the 

equation Zp(n = e is referred to as the loop eqwtiun for loop P. 

In what follows, we show how an articulated system can be described as a set of 

motions in the joint space, n,. A &, rather than in SE(3)M + I .  



We shall assume that the sets Q,, used in the definition of the joint-distribution 

map, p, are smooth subrnanifoIds of SE(3). A system satismg fhis condition will be said 

to be with m o t h  joints. 

2.30. Theorem. Let 9bi = A(T, p ,  y) be an articulated system and let 

L = ( L , , . . . , L, } be a fundamental system of loups in ï. Then. Mis diffeomorphic to 

%ID. Q), where 

Q =na,,& a n d D  = ((f, , . . . ,  f , , , ) ~  Q I & W = e , V  L E  L}. 

Proof. The articulated system, a(T, p, y), defined as a { e }  x C, SE(3)M+3 (Definition 

2.27(2)), is obviously diffeomorphic to XC, SE(3)M), where 

C = {(gl* - . * g ~ )  1 gv,(a) = gv-(e,(F-')a(fa)*fa E Q,}* 
It is therefore suficient (and necessary) to prove that the systems RC, SE(3)M) and 

a D .  Q) are diffeomorphic. 

We denote by A " a set of chords for T, and let the elements of A " be ab' E L,, 

j E { 1.. . . , c}. We consider the spanning tree, T8= g(V, A', v) ,  obtained from r 
by removing A " (A ' = A - A "). Then, the articulated system M' = A(T: p, y) is an 

open-chah system. (Note that, for simplicity, we use the same notation for a map defined 

on A. such as v, p or y, and its restrictions on A 3. We will fmst prove the statement of the 

theorem for the open-chah system Mt 

2.3 1. Lemma. Let M' = A(T: p, f l  be an arriculated systern with an open kine- 

matic chain. 73en M'is diffeomorphic to XQ?, where Q8= na. (& 

Proof. We need to show that XC: SE(3)M) is diffeomorphic to XQ), where 

C'= {(g19-* .*gM)Ig ,?+(a ,=g ,  -,,,F,-'(f,)Tf,E P , , ~ E  A').  (2.22) 

Let the map 0 : SE(3)M + SE(3)M, be given by 

@Cf') = ( @  - . . 9 . . . OM)> Q v  = LpcrICf8). (2.23) 

If we denote G : SE(3)M -+ SE(3)M as: 

( = ( - - G G v ( h )  = A p ( v , ( h ) ,  (2.24) 



then we have: @ = Go F'. (We recall that the maps &J and Z'' were induced in Nota- 

HOC are identity maps. Consider GOH(g), G,(H(g))  = APcV)(H). Let the path P(v) be 

(a,, . . . , a,) with vertices (v,, . . . , v,). Then, from Equation (2.21) and the 

defuiition of P(v) (see Notations 2.29) we have: 

Therefore, G(H(g)) = g. For HO G(h), we have 

Exactiy one of the two paths, P(v-(a)) and P(v+(a)), contains the arc a as its last element. 

Either P(v+(a)) = (P(v-(a)), a) and &,(,,)(a) = 1, or altematively P(v-(a)) = (P(v+(a)), a) 

and 6p(vA,,)(a) = -1. In both cases, the right-hand side of Equation (2.26) equals ha and 

hence H,(G(h)) = h. 

Therefore, @ is invertible. Both @ and its inverse, Y = O-' ,  are smooth maps. 

Indeed, both G and H are smooth maps since the group product and the inverse on SE(3) 

are smooth. Thus, cP is a diffeomorphism. 

It remains to prove that @ ( Q  ') = C '. Let f' E Q ' and consider Ou') = 

(@,, . . . , @,). Since OV = G(F-IV')), we have, similarly to Equarion (2.26): 

@\f-(ayl = Gbv-(arl(F-lV?)Gt*+(a)(FIV')) = (F1)~V') .  (2.27) 

Therefore, (@,, . . . , QM) satisfies the equations d e f ~ n g  C: Le., O(Q 3 c C: 



On the other hanci, if g E C'then Y&) = Fa(g,,$g,,,J. Since. for every g E C: we 

must have g,,;lg,,, E Fa-'(C?, we conclude that C'c  WQ9. 

This shows that the restriction of cP on Q ' is a diffeomorphism between smooth 

manifoids and the lemma is proven. 

Proof of Theorem 2.30. (Continuation). To prove the statement for a kinematic chah 

with closed loops, where N > M, we construct a set , Q*, diffeomorphic to Q: such that 

D c Q* c SE(3)Y We wiU show that there exists a diffeomorphism a : Q* -t C'such 

that a(D) = C. This will prove that Z D ,  SE(3)"l)s diffeomorphic to aC, SE(3)M). Since 

Z D ,  Q) is diffeomorphic to aD, SE(3)N) by inclusion, the statement of the theorem 

would foiiow. (We recall that the diffeomorphism of mechanical systems is an equivalence 

relation and hence transitive, see Remark 2.1 1(2) ). 

Without loss of generality, we can assume that the arcs in rare numbered in such a 

way that A = (A: A '3. Let Q* be given by: 

Q * =  {v?f'?if '~ Q~fa"=Fa((@r-,alV'>)-t(@v+~a)U')))~a~ A")- (2-28) 

The set Q* is a smooth bijective image of Q'  and we denote by x : Q* + Q' the 

diffeomorphism ~( f :  f ") = f'. Now we set a = cO s, defining a diffeomorphism 

between the M-dimensional manifolds Q* c SE(3)" and C'c  SE(3)M. 

It remains to prove that D c Q* and a ( D )  = C. If f c D c Q, f = (f"'f'9, then 

for every fundamental hop L, we have &(#) = e. Therefore, for every chord, a E A': 

we cm write: 

(%,(.)r(f) )(Fa-l(B)(&<,+(ollV) 1-' = e, (2.29) 

which implies 

Fa-'(fa) = = (%v-ca)~(n )-' ( z ~ ( v + ( a ) ) ( B  ) = (@Y-(a)(f '))- ' (  @P+(a)(f'))T (2.30) 

and therefore, 

f a  = Fa((@,-(al(f'))-'(@v+~Dl~')))~ V a E A ': (2.3 1) 



Equation (2.31) is equivalent to f E Q* (cf. Equation (2.29)),  and this proves that 

D c Q* .  

Findiy, we show that if f = (f', f") E D then = @(f3 E C, Le.. N D )  = C. 

From the prwf of Lemma 2.3 1 ,  we know that @O E C: since #O satisfies Equation 

(2.27) for al l  a E C: However, Equation 2.31 shows that this condition is satisfied for 

a E A '' as well. Thus, we have 

(@v-ca)(f '))- ' (@v+ca,(f '))  E Fa-'(Q), Q a E A- (2.32) 

and therefore, a(D) c C. 

If g E C, then o - l ( g )  = rl( Y ( g ) )  = ( Y(& Y*(&), where Y* has c components: 

* = a ( @ v a  ' v + a  y))) = v +  a A ' (2.33) 

Let L E Land let a be the chord in L. Then, 

zL(o-'(g)) = zL( y, y* ) = j( iy) )(Fa-'( 'y*a))(&(v+(a)~( Y3 ) - l *  (2.34) 

We recall that @\,= &,, and we substitute Y*, from Equation (2.33) to obtain: 

&(o- ' (g))  = @L*-(al( WF~'(Fa(gr-(a~lgv+(al))(@v+~ul~ WI-l* (2.35) 

We have @ = Y-', hence @,l,,(Y) = g,,,,, and Equation (2.35) yields 

- 1  - 1  
& ( ~ - l ( g ) )  = gv-(a)(gv-(a) gv+(u))gv+(a) = e, (2.36) 

which proves that &(g) E D and C c ND). 

We have, therefore, shown that o(D) = C, and completed the proof of the theorem. 0 

2.32. Remark. Theorem 2.30 shows that the articulated system M = A(T, p, y) is 

modeled by (aD, Q), O). This model. referred to as the joint-space model of the system, 

can be an alternative to the model based on the system XC, ~ ~ ( 3 1 ~ ) .  (This second model 

can be caiied the Iink-space mode1 of the system). The joint-space model is especialiy 

useful when most of the spaces Q, are of dimension one, since then the dimension of Q 

rnay be significantly lower than dim ~ ~ ( 3 1 ~  = 6M. When the system Mis  described by 

a D ,  Q), the elements of Q, c m  be thought of as points of these manifolds rather than 

displacements in SE(3). When this is the case, these elements will be referred to as 



joint variables (or joint parameters) and the notations used will be q, E Q, and 

4 = (4,. . -  - . 4 ~ )  E e.  

2.7. Serial Chains 

In this section, we address equivalent substitution of serial chains. 

In a serial kinematic chain, the graph has a simple iinear structure. Without loss of 

generality, we can assume that the arcs, A = (1 , .  . . , M ), and vertices, V = 

{O, . . . , Ml, of the graph, (V, A, v) ,  of a seriai kinematic chain are labeled in such a 

way îhat 

v(a) = ( v - ( d ,  v + ( d )  = (0 - 1, a ) .  

Such a graph will be denoted by S(M).  

In an articulated system, S= A(S(M),  p, y), with a serial kinemaùc chah we will 

assume, without loss of generality, that the reference frames attached to the ngid bodies 

associated with the vertices are chosen in such a way that y+(a) = e for al1 a c M. 

For every vertex, v = k, the path from O to v is P ( v )  = P ( k )  = (1,  . . . , k). 

Moreover, since ail paths in S ( M )  are composed of arcs with consecutive numbers, 

P = (a + 1, . . . , a + k), the maps A p  and Zp are given by: 

Ap(h) = h o  + 1 --• h , + t .  

Z p m  = Ap(F-'(#))  = ~ - ( a  + 1&+ 1 - y-(a + k ) h , + k ,  (2.37) 

zpo@ = Y-( 1 )f y-(3)f2 - y-(k)hky+(k) - 

2.33. Definitions Let 5 = a(S(M), p, yi be a setial-chah articulated system and let 

Q = Q l  x . - x  Q, be the jointspace of S. 



(1) The mapping K : Q + SE(3). K =  z ~ ( ~ J  is referred tu as the output map of 

the serial chuin S The set K(Q) is the output space of S A kinematic pair, I: U 

referred to as the snbstitute pair for -i if 4 = 4 { e ) x qQ), ~ ~ ( 3 1 ~ ) .  

(2) The system S is said to be a substitute (system) of another serial-chain articulared 

gstem, 5'. (and vice versa) when the two systems have the sanre output spaces. 

(3) 5 is said to be a diffeomorphic substitute of S' (and vice versa) when S is a 

substitute and it is d@eomotphic ?O $ : 

2.34. Remarks. 

(1) When two serial-chah systems are substitutes, the feasible locations of the ngid body 

associated with the last vertex of each of the chahs are the same. Furthemore, if Sis a 

subsystem in a larger articulated system, SM, then the substitution of S with S'would have 

no effect on the feasible position and orientation of any of the bodies in the system which 

are not part of S.  However, the new system obtained as a result of the substitution, MI 

wiiI not be diffeomorphic to Munless Sand s'are diffeomorphic substitutes. 

(2) Of particular interest is the substitution of a kinematic pair by a serial-chain system. If 5 

is a dilfeomorphic substitute of a kinematic pair, T, then the system M; obtained by the 

replacement of 4 with S in a larger system, MT can be considered equivalent to The 

system 5 is a diffeomorphic substitute of a pair only if the map ~ i s  bijective. 

Many articulated system of practical or theoretical importance have all  theK joints 

among the Reuleaux pairs. The image space of the joint-type distribution of such a system 

consists of the joint types shown in Table 2.1. It is, therefore, important to know whether 

some of the Reuleaux pairs of higher dimensions cm be diffeomorphically substituted by a 

serial chah of Reuieaux pairs of dimension one. In fact, it can be seen that for pairs with 

joint types C and F there exist diffeomorphic substitutes with joint of types R and P. The 

following two propositions follow directly from the definition of the Releaux-pairs joint 

types in Example 2.24 and D e f ~ t i o n  2.33. 



2.3 5. Proposition. Let tP be a kinmtic pair with joint / E F. Then, there e&s a 

serial-chuin articuluted system S = a(S(3), p, 73. where p(a) E { R, P}. such thot S is 

a d#ieomorphic subs~hite of %? 

2.3 6. Proposition. Let T be a kinematic pair with joint J E C. Then. there exists a 

serial-chuin articulated system S = a(S(2), p, 13. where p(a) E (R ,  P, H }, such thut S 

is a dgeomorphic substiture of 9 

A serial-chah system with three revolute joints, whose axes intersect in one point, is a 

substitute of a pair with a sphericai joint However, this is not a diffeomorphic substitute. 

2.3 7. Proposition. Let T be a kinematic pair with joint / E S. nien, there can be no 

serial-chuin aniculated system, 5 = a ( S ( M ) ,  p, y). where p(a) E ( R, P. H }. such that 

5 is a dzreomorphic substitute of l! 

Proof. Such a system cannot have a joint of type P or H, since then the joint space would 

not be compact. On the other hand, if al1 joints in S are revolute, the joint space is 

homeomorphic to a toms, p, and therefore cannot be homeomorphic to SO(3). 0 

It can be proven that for every M, any smooth map # : T~ + SO(3) has singularities 

(Gotlieb 1986). Therefore, the sratement of Proposition 2.37 cm be made even stronger. 

Namely, for the sphericai pair, there is no substitue senal chah with a nonsingular output 

map. 

2.8. Mobility 

In this section. we define mobility, a concept which is widely used in mechanism 

theory, but is given ody an essentially intuitive definition. Herein, we defme rnobility for 



arbitrary kinematic systems and make some observations valid for those kinematric 

systems, such as articuiated systems, whose configuration spaces can be described as 

algebraic sets. 

2.3 8.  Definifr'oons. Let H = ZC, X) be an abstract kinematic system with dim X = n. 

x E C is a replar configuration of local mobility e, x E if there is 

an open neighbourhood. U, of x in X such that: 

(i) U n C is a smooth submunijdd of X. 

(ii) d i m U n C = e .  

nie set of al1 such configurations is denoted by de). 

M hns (global) mobility p(M), ifr 

(i) There is a number, e. such ihar there exist regular configurations of 
mobility e, i.e. OC) f 0. 

(ii) p(iM) is the largest such number, p(M)  = max(e 1 ce) # 0 } . 

Ler Reg 94 = c ( " ( ~ ) ) .  The elements of Reg M are referred to as regular 

configurations of M. me complenient of Reg M i s  denoted by Nrg M. 

When the configuration space C is a smooth manifold, all configurations are regular 

and the rnobility of the system is equd to dirn C. There are kinematic systems for which the 

configuration space is immediately recognized as a smooth manifold. For example, an 

open-chain articulated system has a smooth configuration space provided that the 

configuration spaces of the individual joints, Q,. are smooth (cf. Lemma 2.3 1). 

For many other systems, including closed-chah articulated systems, the configuration 

space, C, is described as the vanishing set of a system of consaaint equations. Then, C can 

be thought of as an algebraic set in some &ne space. Indeed, Theorem 2.30 implies that 

the configuration space of an articulated system can always be defhed as an algebraic set, 

provided that the joint configuration spaces, Q,, are algebraic sets. To see this, we must 

recail that by virtue of Proposition 2.14, SE(3) can be identifïed with an algebraic set in the 



affine space P. As an algebraic set, C is not guaranteed to be a smooth manifold, as is 

demonstratd by the system discussed in Example 2.12. 

2.39. Proposition. Let V be an algebraic set in P and let M= aV, P). Ifx tF a 

nonshgular point of dimension e in C, then x is a regular configuration of local mobility e 

in M. 

Proof. We recaii that, according to Definition 1.20, x E V is a n o n s i n p h  point of 

dimension e if, and only if. there exist M - e polynomials, p l .  . . . . p y  - .. in XV) 

such that: 

(i) Near x, V is the vanishing set of the polynornials. Le., for some neighbourhood LI, 

we have II n V =  U n  { y  ( p i ( y )  = O ,  i =  1 ,..., M - e } .  

(ii) The polynornials have iinearly independent gradients at x. 

According to the Lmplicit Function Theorem (Porteous 198 1) a subset V c Eh is a smooth 

manifold of dimension e near x if the conditions (i) and (ii) are satisfied for M - e smooth 

functions pi. Therefore, x is a regular configuration of mobility e. C] 

The converse is not me, as the foilowing exarnple indicates. 

2.40. Example. Consider the system gr(IV. E?), where V is the vanishing set of the 

equation p(x, y) = + - x4 = O. This is a cubic curve. which has a singularity 

at the point (O, O). Indeed, the gradient of every polynomial in AV) is zero at (O, O). Yet. 

the curve is a smooth submanifold of E ~ ,  and therefore al1 configurations of a mechanical 

systern with configuration space V are regular. 

2.4 1. Proposition. Let V be an algebraic set in E and let M= aV, En). Then, the 

mobiliry of the kinemutic system. M. is equal to the dimension of its configurarion space, 

i.e.. p ( M )  = dim V. 



Proof. It is known that for any aigebraic set, V, Nsg V # 0 (Proposition 1.24(1)). 

Hence, there are points in V which are nonsingular of dimension e = dim Y .  By 

Proposition 2.39. this implies that there exist regular configurations of rnobiiity e = dim V. 

Therefore, p(M) 2 dirn V. 

Let us assume that p ( M )  > dim V. Then, there exists an x E V and a neigh- 

bourhood, U, such that U n V is a smooth manifold of dimension d > dim V. This 

implies that x a Nsg V and therefore x E Sing V. Moreover, the same is tnie for al l  

points in U n V and therefore U n Sing V = U n V is a smooth manifold of 

dimension d. 

It is known that, for any V, Sing V is either the empty set or an algebraic set of 

dimension strictly smaiier than dirn V (Proposition 1.24(4)). Therefore, we can proceed by 

induction and prove that there exists a zero-dimensionai algebraic set which contains 

CI n V in its singularity set. This is impossible, since the singularity set of a zero- 

dimensional algebraic set must be empty. 0 

2.42.  Corollary. Let V be an algebraic set NI k and let M = aV, En). Then, the 

nonsingulur points of the confiuration spacc. V ,  are regular con$igurations of the 

kinematic systern. M i . .  Nsg V c Reg M. 

Proof. Lfx E Nsg V,  then, by Proposition 2.39, x is a regular configuration of mobility 

e = dim V. According to Proposition 2.41, dirn V = p ( M ,  and therefore x is a regular 

configuration of mobility p(M),  i. e., x E Reg M. 0 

In particular, Corollary 2.42 shows that for aaiculated systems with lower pairs al1 

nonsingular points of the configuration space are regular configurations. 



2.9. Mechanism 

In this section we define the terni mechanism. An articuiated systtm, M, Cs referred to 

as a rnechrmim, when it is used as an input-uutput device for the transformation of motion. 

Two kinematic subsystems of Mare specified: an input system, where the motions c m  be 

prescribed; and an output system, in which desirable motions must be obtained by 

choosing the motion in the input system. 

Let M= AN', p, f i  be an articulated system with smooth joints (Le., the sets Qa are 

smooth manifolds). As we showed with Theorem 2.30, the articulated system. K can be 

rnodelled by two diffeomorphic kinematic systems: a D ,  Q), the system of the feasible 

motions in joint space; or XC, SE(3)M), the space of the feasible link motions. 

A subspace of the joint space, I c Q, is chosen as the input space. It is assumed that 

the input space has the structure I = EA, a, where AI is a collection of arcs in the 

graph T. The joints that correspond to the arcs in AI are referred to as input joints or active 

joinrs and it is assumed that their joint parameters c m  be actively controkd. The remaihg 

joints are referred to as passive. Thus, the N-tuple q has two subsets: the active joint 

parameters q<l; and the passive joint parameters @. Since it bas been assumed that the joint- 

configuration spaces are smooth manifolds, the output space, 1, is a smooth submanifold as 

well. We denote dim I = n,. It is usual to assume that nr 2 p(M). The choice of the input 

space defines an input projection, q : Q -t I, which maps each configuration, q, into the 

point @ E I .  The restriction of this map to the configuration space, D, is denoted byfi and 

referred to as the input mup of the mechanism. The kinematic system W ' D ) ,  I) c m  be 

viewed as a subsystem of Z D ,  Q). The motions in this subsystem, the input system of 

the mechanism, are king  actively selected and can be viewed as the control functions of the 

system XD, Q). 



The output space. 0, is a chosen subspace of SE(3)M, i.e of the space of possible 

locations of the links of the articulated system. For simplicity, we assume that O is a 

Cartesian factor of S E ( 3 ) M .  Since S E ( 3 ) M  = R3M x S 0 ( 3 ) M ,  O is of the form 

Rm x SO(3)". Thus, O is a smooth manifold and we denote dim O = no. It is assumed 

that no I p(fM). 

In most practicai appiications, we have O c SE(3), Le., O is a subset of the copy of 

SE(3) which corresponds to a chosen Link associated with some vertex, vo, of K (In this 

case, O can be either the whole space, SE(3), of displacements of the vo-th link, or a 

proper submanifold of SE(3) with dimension no.) The link vo is referred to as the output 

IUik or the end-effectur of the mechanism. 

The choice of the output space, 0, as a Cartesian factor of the luik space defmes an 

output projection, ira : SE(3)" + O. For instance, when O = SE(3)  the output 

projection is no(g,, . . . , g,) = gv0. The restriction of the map to C wiii be denoted 

by go. The map fo : D + O, fo = go 0 4 is refened to as the output rnap of the 

mechanism. These rnaps can be iilustrated by the following diagram: 

We note that O need not be defmed as a Cartesian factor of the link space. It would be 

sufficient to require that O is a subrnanifold of SE(3)M for wbich there exists a smooth map 

: SE(3)" + O such that Im zo = O and lcol = ido. 

Sirnilady to the input system, we can view the kinematic system ago(C),O) = 

XJ&(D), O) as a subsystem of aC, SE(3)"), and refer to it as the output system of the 

mechanisrn. ï h e  goal during the operation of the mechanism is is to achieve a desirable 

motion of the output systern. 



We can now summarize our definition of a mech- 

2.43. Definitiorts. Let M be an articuluted systern with smooth joints mrd let a D ,  Q), 

and 4C, SE(3)") be the joint-space and link-space representations of M. Let the 

submonifoldr I and O be defined as the images of Q and SE(3)". respectively, under two 

chosen smooth sudeciive projections. xi and 150. us described above. Let fi and fo be the 

maps induced on D by these projecriom. 

( I )  7he mple of kinematic systems a = (M, Ml, Mo), where M, = W L D ) ,  0 )  

and Mo = mO(D), O), is referred to as a mechanism with aniculated system 

M input system Ml a d  output systern Mo 

(2) The space D is referred to as the configuration space of the mechanism. The 

space I (respectively O )  is said to be the input (respectively output) space of fi, 

while fi (respectiveiy fo) is the input (respectively output) map of a. 
(3) The number p = p ( M )  = dim D tr referred to as the mobility of fi. The 

rnechunisrn is said to be non-redundant when nl = p = no. where n, = dim I 

and no = dim 0. When n, > p. f i  is saïù ro be dynamicaiiy redundant (or an 

actuator redundancy is said tu be present); if p > no the mechanism is 

kinematically redunbnt (configurutiun-space redundancy is present). 

2.44. DefiniCion. Let a be the mechanism deDed in Definition 2.43. 

(1 )  A configuration. q E D. is said to be a nonsingular configuration of a. if 
both of the foliowing conditions are sati.@ed: 

(i) q ~ R e g M .  

(ii) Assuming that (i) is correct. let LI c Q be the neighbourhood of q 

such thnt V =  II D is a smooth submanifold of Q of dimension 

n. Then, the restrictions of the mapsfi and fo on V, i.e.. the smooth 



Othenuise, q is said to k a shgular configuration (or a singdarfty) of the 

mechanism. 

(2) If q E Nrg M i.e.. if condition (i) is violated, then q i s  a configuration-space 

singularity of a. 
(3) Ifq E Reg 34 but the map f1l (respectively fo 1 v) is singular ut q then the 

confguration is refrred to as an input (respectively, output) singuiarïty of a. 

2.45. Remarks. 

(1) We note that, according to Definition 2.43(1), the term "mechanism" is not synony- 

mous to "articulated system". There exist many different mechanisms having the same 

articulated system, and in principle they rnay have completely different singulanties. 

(2) The definitions in the present section were formulated to apply to articulated systems 

with smooth joints, since these are the usual subject of mechanism theory. It can be noted, 

however. that Definitions 2.43 and 2.44 c m  be generalized for abstract kinematic systems. 

Thus an abstract "mechanisrn" is given by a system qC, X), two submanifolds, I and 0. 

of X and two srnooth mappings, fi and fo, defined on some open set containing C. Since 

~ ( 3 4 )  was defined for arbitrary systems, singularïty and redundancy c m  also be defmed 

for abstract mechanisrns. 

2.10. Summary 

In the present chapter, we have derived the basic notions and facts of mechanism 

theory, using as starting points the properties of the Euclidian group of isometries of the 

reai affine space, introduced in Section 2.2. and the concept of an abstract kinematic 



system, defmed in Section 2.3. Section 2.4 addresses the ngid body as a system of 

particles and provides a description of the configuration space of this system (Proposition 

2.14). In Section 2.5, systems of rigid bodies are introduced, including precise definitions 

of a kinematic joint and a kinematic pair as kinematic systems. Articuiated systems are the 

focus of Section 2.6, where we show that every articuiated system has two dineomorphic 

models, the joint-space and link-space representations. Section 2.7 discusses equivalent 

substitutions of serial chahs and introduces the concept of diffeomorphic substitution. A 

novel definition of mobility of bernatic systems (and articulated systems in pariicular) is 

the focus of Section 2.8. Finally, Section 2.9 describes mechanisms and their input and 

output rnaps, and defines mechanism singularity, which is the central topic of the thesis. 



CHAPTER 3 

INSTANTANEOUS SINGULARITY ANALYSIS 
OF NON-REDUNDANT MECHANISMS 

3.1. Introduction 

In this chapter, mechanism singularity is analyzed fiom the viewpoint of instantaneous 

kinematics. The velocity kinematics is modelled using tangent spaces and Jacobian maps. 

The mode1 is then applied for the classification of singularities. 

The approach is appiicable to the singularity analysis of non-redundant mechanisms 

with arbitrary kinematic chahs and an equal number of inputs and outputs. The main 

features of this approach are as foilows: 

(i) The starting point of the singularity analysis is a system of linear equations (the 

velocity equation) including explicitly the passive-joint velocities. Such a system of 

equations can be obtained for any mechanism and therefore can be used for the 

practical identification of singularities. 

(ii) A general deffition of singularity of non-redundant mechanisms is utilized. A confi- 

guration is defined as singular when the bernatics of the rnechanism is indeterminate 

with respect to either the input or the output velocities. 

(iii) Singularities are classified on the basis of the physical (kinematic) phenomena that 

occur in such configurations, rather than on the sole basis of the mathematical concept 

of degenerating Jacobians. 



The velocity equation is introduced in Section 3.2 and the definition of singularity h m  

Chapter 2 is given a new infinitesimal interpretation in Section 3.3. Six types of siogular 

confiprirations are defined in Section 3.4 and illustfated with the heip of a Mof mechanism 

in Section 3.5. The motion-space interpretation of kinematic singularity, introduced in 

Section 3.6, is used to obtain a comprehensive singularity classification in Section 3.7. 

3.2. Infinitesimal Mode1 of Mechanism Kinematics 

In Chapter 2, we showed that a mechanism can be viewed as a device targeted for the 

transformation of motions in the input system into motions in the output system. This 

approach, which emphasizes the local and global properties of the systems, provides 

insight into the position kinematics of mechanisrns. 

Instantaneous kinematics. on the other hand, regards the mechanism as a device for the 

transformation of instantaneous motion, Le., for the convoi of the output velocity via the 

input velocities. 

The global kinematic model of a mechanism, a, which we developed in Chapter 2, is 

given by the configuration space, D, defined as a subset of the joint space manifold. Q; the 

input space I; the output space, 0; as well as the input and output maps,fj and fo. These 

two maps determine the relationship between the input and output parameters, and therefore 

describe the position kinematics of the mechanism. 

The instantaneous kinematic model of a. at a fixed configuration q E D, is obtained 

by replacing the spaces in the global model by their tangent spaces and the maps by their 

Jacobians. The tangent spaces TqQ, 7'' and TqO are well defmed for any q since Q, I and 

O are smooth manifolds. The configuration space, D, however, may not be a smooth mani- 

fold near q. Then, Tp does not exist. If D is the vanishing set of a system of equations, 

we c m  replace T$) with the null space of the Jacobian of this system of equations. 



In this chapter, we consider a rnechanism, j/l, with N ldof lower-pair joints. (There is 

no loss of generality since for any mechanism there is an instantaneous substitute 

mechanism with lower pairs (Hunt 1978)). As we pointed out in Chapter 2, the 

configuration space, D, of such a mechanism is a mai algebraic set. Therefore, the number 

n, defmed as the smaiiest possible dimension of the Zanski-tangent space at a point of D 

(cf. Definition 1.21, Notations 1.22), exists. We assume that the mechanism is non- 

redundant and p = nI = no = n.  

We adopt the foffowing notations: A tangent vector of Q, i.e., an element of T,Q, will 

be denoted by l2. An output vector (an element of TqO) and an input vector (element of 

Td) wiU be denoted, respectively, by T (the output twist), and R' (the active-joint veloci- 

ties). The symbol Cf wwiu be used for the vector of passive-joint velocities. Also, hereafter, 

the tangent spaces T'0 and T& wil1 be denoted by Oand I ,  while Twill be the space of aIl 

the vectors 0'. The dimensions of the vector spaces I ,  Tand O (and of the vectors aa, fl 

and T )  are n, N - n, and n, respectively. We define a combined (N + n)-dimensional 

velocity vector, m = (T, 0) = (T, oa, R'). 

The definition of the output space in Section 2.10 implies that the differential output in 

any configuration is an explicit linear function of the joint velocities: 

T = A (q)R. (3.1) 

In fact, the mauix A is the Jacobian of the smooth map p O zo defmed in Section 2.10. If 

each of the output velocities is a component of the twist of the output link with respect to 

the fixed link, then Equation (3.1) is obtained by expressing T as a sum of joint twists 

(Davies, 198 1). Equation (3.1) wilI be referred to as the output eqzuztion of the mechanism. 

For any closed loop, the sum of the joint twists of al1 the kinematic pain in the loop is 

zero. Hence, each loop imposes 6 linear equations for the joint velocities. A set of joint 

velocities will be feasible if and only if it satisfies these equations for all loops in the chah 



However, the system of a l l  loop equatiom is equivalent to a system of equations obtained 

from a set of c independent loops. Therefore, by speciwing c independent Ioops and 

writing the twist equations for each of them. the following system of 6c equations is 

obtained as a necessary and sufncient condition for the feasibility of P 

C(q)Q = 0 ,  (3.2) 

where C(q) is a 6cxN matrix. The corank of C(q), which we denote by n, (Le., 

rank C(q) = N - nq), is referred to as the instantaneous rnobility at q. By definition, the 

Zariski tangent space of D at q contains vectors nomial to the gradients at q of aii functions 

vanishing on D (cf. Definition 1.22). Therefore T,=D contains the kernel of C(q) and 

thus we have n 5 n,, for ail q. This impiies that for any fixed q, the vector Equation (3.2) 

can be transformed into an equivalent system of N - n equations, which we denote: 

D(q)Q  = 0, (3.3) 

where D(q)  is a (N - n) x N matrix. (A discussion of twist equations like (3.2) and 

(3.3) for multi-loop chains can be found in (Baker 1980) and (Davies 198 l), including a 

derivation of (3.3) as a mechanical andogy of Kirchhoff's circdation Iaw). 

Combining the N - n equations of (3.3) with the n equations of (3.1 ), we obtain 

N linear equations which fully detemine the instantaneous kinematics of the mechanism. 

The deffition of the matrix L(q) as: 

completes the proof of the following theorem: 

3 .1 .  Theorem. For any given confguration, q, an N x (N + n) mutrix, L(q), can be 

found, such that o velocity vector, m, is a feasible motion vector of the mechanism if: unà 

only if; 

L(q)m = O. (3.5) 



Eqrurtion (3.5) will be refered to us the veiocie eqoation of the mechism for the 

conFgurution q. 

We remark that the rank of L(q) is greater than the rank of D(q) (or C(q)) by exactly n, 

Le., rank L ( q )  = N + n - n,. 

3.2. 

Figure 

Example. Let us consider the velocity equation of the four-bar m a g e  

3.1. 

A D 

shown 

Figure 3.1. A four-bar mechanism. 

There is only one loop and c = 1. The loop equation is: 

@,SA + uBSB + mCSC + uDSD = 0. (3 .6) 

where ap, S p  (P = A, B,  C, D) are the joint velocities and the joint screws, respec- 

tively. Only the planar components of the joint screws are nonzero. For the o-dimensionai 

space of twists we use the standard basis composed of the three rotations and three transla- 

tions about the coordinate axes of a Cartesian reference fiame. If we set the Cartesian refer- 

ence frame with two of its axes lyuig in the plane of the mechanism. only three of the CO- 

ordinates of the joint screws will be nonzero. Thus, whenever a planar linkage is 

considered, we shail assume that the joint screws are three-dimensionai vecton. For this 



mechanism, we have S p  = (1, y,, -xJ, where x,, y, are the coordinates of point P. 

P = A ,  B , C , D .  

In this example, and everywhere else in tbis dissertation, when a four-bar linkage 

ABCD is considered, it wiU be assumeà, unless the opposite is spezified explicitiy, that AB 

is the input Link while CD is the output link and also that the joint velocity at A, oA. is the 

input, while the angular velocity of CD. s, is the output The output equation is: 

'r= -OD. (3 -7) 

Therefore, the velocity equation is: 

If point A is the origin and the x-axis is dong AD, Equation (3.8) cm be written as: 

3.3.  ExampIe. k t  us consider the serial-chah 3-dof manipulator shown in Figure 3.2. 

There are no loops (and no passive joints) and the velocity equation is equivalent to the 

output equation: 

In the twist Equation (3. IO), only three of the six components are nonzero. As in Example 

3.2, we can treat the screw vectors in (3.10) as three-dimensional. The rnatrix L can be 



Figure 3.2. A 3-dof planar manipulator. 

If point A is the origin. Equation (3.1 1 )  cm be rewritten as: 

3.4 .  Example. Let us consider the 3-dof planar parallel manipulator shown in 

Figure 3.3. For each one of the three senal subchains connecting the base and the end- 

effector, we can express the twist of the end-effector as the s u m  of the joint twists: 

The fmt equality in (3.13) can be regarded as the output equation of the manipulator, and 

the second and the third as the loop equations of the loops A&,B2B, and BG2C2C0. 

Therefore, the nine scalar equations in (3.13) are the velocity equations for this linkage. 

Rewriting the nine scalar equations yields the velocity equation in the form of (3.6) as: 



Figure 33. A plaaar parailel manipulator. 

3.3. Instantaneous Definition of Singularity 

for NomRedundant Mechanisms 

The instantaneous-kinematics analysis of aa input-output device addresses two main 

problems: 



(i) The fonvnrd instantaneous kinematics problem (FMP): where for a given 

configuration q, the instantaneous motion of the mechanism is determined wèen the input 

R' is given; and, 

(ii) The inverse instantaneous kinematics problem (IMP): where for a given 

conf!iguration q, the insfantaneous motion of the mechaaism is detemined when the output 

T is given. 

For a non-redundant Mal-chai. robotic manipulaior (Le., a non-redundant mechanism 

with a serial-chab articulated system), it is well known that shgAarity occun when the 

Jacobian is not inverMe and the inverse instantaneous kinematics is indeteminate. Ando- 

gously, for non-redundant mechanisms, the singularity definition from Chapter 2 implies 

that singularity occurs whenever the instantaneous kinematics becomes indeterinhate. 

Thus, a configuration is nonsingular, when borh the forward instantaneous kinernatic 

problem (FIKP) and the inverse instantaneous kinematic problem (IIKP) have unique 

solutions for any input or output. 

3 . 5 .  Definition. Let q be a feasible configuration of the mechanism. 

( 1 )  I t  is said that the FIKP is solvable at q, if there exist matrices JF and P, of 

dimensions n x n and (N-n) x n respectively, such that the velocity equation is 

equivalent to the system: 
T =  J&", 
nP = 

(2) It is said that the IIKP is solvable at q. ifthere exist mattices J,  and P, of dimen- 

sions n x n and (N-n) x n respectively. such that the velocity equution is 

equivalent tu the system: 

nu = JIT, 
aP = PiT. 



(3) If both FIKP und ZZm are solvable, the configuration is said to be nowinguiar. 

othenvise it is a singalar configuration. 

In a nonsingular configuration, both Jacobians JF and JI will be nonsingular and 

Ji = J$. However, it should be noted that, according to this dennition, the existence of 

an invertible JF, an n x n matrix, such that T = J ~ R ~  for any feasible pair (T, f24, is 

not a suffïcient condition for declaring that the configuration is nonsingular, unless the 

existence of the matrices PF and PI has also been established 

The formulation of singularity in tenns of the velocity equation, given by Definition 3.5 

aIIows the recognition of six substantiaily different types of singuiarities. 

3.4. Definition of Singularity Types 

Herein, six types of singular configurations are defmed and illusaated by examples. 

3 . 6 .  Definition. A configuration is a singularity of redundant input (RI) type, if 

there exkt a nonzero input, R' # 0, and a vector of passive-joint velocities, f iP ,  which 

satisfv the veioci@ equation for a zero-output. T = O, Le., 

T O I  

3 - 7 .  Proposition. (Correctness of Demition 3.6) 

Ail IU-type configurations are singular. 

Proof: We note that if q satisfies Defdtion 3.6 then it can not satisfy Dennition 3.5 (2). 

Indeed, by Definition 3.6 it follows that the triple T = O, # O, aP represents a 

feasible instantaneous motion at q. However, this motion clearly violates the fmt equation 

in (3.15) and therefore Equation (3.15) is not equivalent to the velocity equation of the 



mechanism (since there are feasible motions for which the Equation fails). Therefore, the 

IIKP is not solvable and q is a singularïty. CI 

3.8.  Example. The Ri singularity type is Uustrated by a four-bar linkage, Figure 3.4. 

In the configuration shown, the output Iink CD camot move, since the velocity of point C 

must be zero. The instantaneous input, o,, however. can have any value. Therefore, Equa- 

tion (3.16) holds, and an RI-type singularity exists, where the IMP is insolvable. 

Figure 3.4. A four-bar mechanism in an RI- and IO-type singular configuration. 

3 . 9 .  Definition. A configuration is a singularity of redundant output (RO) type. i f  

rhere exist a nonzero output, T t 0. and a vector of passive-joint velocities, R', which 

satisfy the velociîy equation for a zero-input, R" = 0: 

3 .1  O .  Proposition. (Correctness of Definition 3.9) 

Ail RO-rype configurations are singular. 



Roof. If q satisfies Definition 3.9, then it can not satisfy De=tion 3.5 ( 1). Indeed. by 

Definition 3.9 it follows that the triple T f O. = O, fl represents a feasible 

instantaneous motion at q. However, this motion clearly violates the nrst equaîion in (3.14) 

and therefore Equation (3.14) cannot be equivalent to the velocity equation of the 

mechanism. Hence, the FMP is not solvable and q is a singularity. 0 

3.11. Exnnple. Let us consider the four-bar linkage configuration shown in Figure 3.5. 

In the configuration shown, the input WAB is Iocked, whïie the instantaneous output, r. 

cm have any value. Thus, Equation (3.17) holds, and an RO-type singularity exists, where 

the FIKP is insolvable. 

Figure 3.5. A four-bar mechanism in an RO- and II-type singular configuration. 

3 .12 .  DeJinition. A configuration ir a singularity of impossible input (II) type. if 

there exisrs a vector R' for which the velociq equation cannot be sntisjied for any 

combination of T and R'. 

3.1 3. Proposition. (Correctness of Definition 3.12) 



AI1 II-type co@guratiotrs are singular. 

Proof. If q satisfies Defdtion 3.12, then the existence of an impossible input vector 

implies that the velocity equation c m o t  be written in the form of Equation (3.14) (since 

(3.14) aliows for arbitrary vdues of T). Thus, q violates the condition of Dennition 3.5 (1) 

and is, therefore, a singularity. We note that an &type singulaity impIies an insolvable 

FIKP. 

3.14. Example. The configuration in Figure 3.5 is an II-type singularity (in addition to 

king an RO-type singularity , as discussed in Example 3.1 1 ), since any nonzero input is 

impossible. 

3 . 1 5 .  Definition. A configuration is a singularity of impossible output (IO) type. if 

there exists a vector T for which the velocity equation cannot be satisfied for any 

combination of aaand aP. 

3.1  6.  Proposition. (Correctness of Definition 3. I5) 

Al1 IO-type configurations are singular. 

Proof: Similarly to the proof of Proposition 3.13, it can be seen that the existence of an 

impossible output vector implies that the velocity equation cannot be written in the form of 

Equation (3.15) and hence an IO-type singularity implies an insolvable IKP. 0 

3.17. Example. The configuration in Figure 3.4 is an IO-type singularity (as well as an 

RI-type singularity, as we showed in Example 3.8), since any nonzero output is impossi- 

ble. 

3 .18 .  Definition. A configuration is a singulariry of increased instantaneous 

mobility (IZM) type, ifrank L c N. 

3.1  9 .  Proposition. (Correctness of Definition 3-18) 

Al1 IIM-type conFguraiions are singular. 



Roof. In an IIM-type singdarity both the FIKP and the m8 are insolvable. Indeed, 

when the velocity equation is in either of the f o m  (3.14) or (3.15), the ma& L(q) 

contains unit matrix of dimension N as a submatrix and rank L(q) = N. n] 

Since rank L = N + n - nq, an IIM-type singdarity is, in fact, an uncertainty 

contiguration (Hunt 1978), where the instantaneous mobility is greater than the full-cycle 

mobility (n < n,). 

3.20. Example. Let us consider the four-bar mechanism shown in its "flattened" 

configuration in Figure 3.6, where it obtains a transitory mobility of 2, thus, having an 

IiM-type singularity. (It can be noted that this conf~guration also belongs to the singularity 

types RI and RO.) 

Figure 3.6. A four-bar mechanism in an ITM-, RI- and RO-type singular configuration. 

3.2 1 .  Definition. A configuration is a singulanty of redundant passive motion 

(RPM) îype. ifthere exists a nonzero passive-joint-velociry vector. f O ,  which satis- 

fies the velocic equation for a zero input and a zero outpur. i.e., 

3.2 2. Proposition. (Correcmess of Definition 3.21) 

All RPM-type configurations are singular. 

Proof. In an RPM-type configuration both the FIKP and the IMP are insolvable. Indeed, 

if (3.18) is valid, neither of the matrices P, and P, can exist. 0 



3.2 3. ExumpCe. Let us consider the 1-dof slider, shown in Figure 3.7~4. 

Figure 3.7a. 
A 1-dof slider. 

Figure 3.7b. 
An RPM-type, (an II-type 

and an IO-type) singularity. 

The velocity of point A is the input, the velocity of B is the output, and the vetocity of C is 

a passive-joint rate. In the configuration shown in Figure 3 . n .  both points A and B must 

have zero velocity, while the velocity of point C can be nonzero. Therefore, motion of the 



mechanism is possible while both the input and the output are zero, and thus an RPM-type 

singularity is prcsent. 

For a i l  the configurations of the slider, the following equation linking the iastantaneous 

input and output holds: 

Y A V A  = Y B V B T  (3.19) 

where yp and vp are the coordinate and velocity of point P (P= A. B). Equation (3.19) can 

be obtained by differentiating the position-kinematics input-output equation, yA2 = y& If 

one solely uses such an input-output relation for the identification of singularities, the sin- 

gularity in Figure 3.7b cannot be detected, since in this configuration Equation (3.19) does 

, not degenerate. Thus, this configuration is not a singularity nom a "traditional" point of 

view. Yet, this is not only an RPM-type configuration, but also an II- and IO-type 

singularity - any nonzero input or output is impossible. 

When q belongs to a certain singularity type, this will be often denoted by q E {type) 

(e.g., q E {RI}). The RI-, RO- and RPM-types wili be referred to as R-types, and the 

others as 1-types. 

3.24.  Rematks 

(1) Each of the six singularity-type definitions describes an important change in the 

kinematic properties of the mechanism that occurs in a singular configuration of that type. 

When the mechanism is in an RO- or IO- (RI- or II-) type configuration the output (input) 

is indeterminate or restncted. In an IIM-type configuration the instantaneous motion of the 

mechanism is indeterminate with respect to any set of n velocities. In an RPM-type 

singularity, the passive motion of part of the mechanism is indeterminate, which may create 

problems such as interference with other links and obstacles. It is, therefore, desirable to 

know whether or not a given configuration belongs to each of these types, and a 

comprehensive singularity classification should dari@ this. 



(2) The fact that the same configuration was used to illustrate the RI and the IO type 

(Figure 3.4) or the RO and the II type (Figure 3.5) does not mean that one of these 

singulanty types implies the other. (Such a wrong impression may be affirmed by the 

observation that the standard senal-manipulator singuiarity belongs to the IO and RI types. 

while the classical parailel-manipulator singularïty is of the RO and II types.) On the 

contrq,  in Figure 3.6 we have a configuration that belongs to both the RI and RO types, 

but is neither an IO nor an II singularity. while Figure 3.7b shows an IO- and Il-type 

configuration which is neither an RI- nor an RO-type singularity. The novelty of the 

approach to kùiematic singularity intmduced in this thesis, consists partly in the recognition 

that IO and RI (II and RO) are separate phenomena which may or may not coincide. 

(3) The defined singulârity types are not non-intersecting, as the examples in this section 

have shown. and therefore do not form a classification of the set of a l l  singular con- 

figurations. In fact, it cm be show that any singular configuration belongs to at Ieast two 

types and is simultaneously an R-type singularity and an 1-type singularity. This fact is 

proven later with Proposition 3.28 in Section 3.7.1. The result is obtained on the way to 

the stronger Theorem 3.30 (in Section 3 -7.2). which fully characterizes the intersections 

of the singularity types and yields a refmed and comprehensive classification of al1 possible 

singular configurations for ail mechanisrns. 

3.5. Example 

In this section a three-branch 64of parallel manipulator, shown in Figure 3.8, WU be 

considered to further illustrate the singularity types introduced in Section 3.4. The 

mechanism has an RRRS joint distribution in each of the three legs (branches). Only the 

second and third rotary joints in each Ieg are actuated. This architecture is essentially 



equivalent to the one used by Collins and Long (1994) for their design of a hand controiier 

for teleoperation. 

Figure 3.8. A 6-dof parallel manipulator. 

The velocity equation, obtained using the method outlined in Section 3.2, is: 



P P where, for all P ( P  = A, B. C), J[ = IS2, S3] is a 6x2 matrix which has as c o l ~  the 

P P P P  active joint screws in the serial sub-chain, and J; = ISI. S4 , S5, S6] is a 6x4 matrix 

composed of the passive screws in the sub-chain. The output is the twist of the moving 

platform. T = T, the input, R" = [a$, qc]T, is composed of the six 

active joint velocities, and the passive velocities are: @ = [or, CD$~I$):, c#.mfl.. . . , ~ I I ~ J ~  . 
(The spherical joints are modelled by three Linearly-independent rotations through their 

centers). The fmt six scalar equations in (3.20) are the output equation (3.1) for this chain, 

while the remaining 12 equations are given by two loop-closure twist equations. 

The velocity equation (3.20) can be shown to be equivalent to the system of equations: 

T = x:=, P = A,  B, C, which is frequently used to describe the velocity 

kinematics of parallel-chain manipulators. 

The definitions from Section 3.4 are used to identify the different types of singularities 

that can occur for the mechanism: 

(i) RI- typ e singularity 

By substituting T = 0 in (3.20) and rearranging the columns of the velocity-equation 

matrix, it can be shown that for an RI-type singularity to be present, at least one of the 

serial sub-chains must be singular, (i.e., the six joint screws in the sub-chain must be 

linearly dependent). Although this is a necessary condition for the occurrence of an RI- 

type singularity, it is not a sufficient condition. For example, in the configuration 

shown in Figure 3.9, the mechanism does not have an RI-type singularity, although the 

B sub-chain is singular. (In Figure 3.9, the center of the spherical joint. B, lies on the 

axis of the passive rotary joint.) Indeed, one can see that, if in Figure 3.9 the end- 

effector were fmed, the input velocities could not be Merent from zero. 



Figure 3.9. An RPM-, IO, and II-type singularity. 

RI-type singularity would occur only when the sub-chain singularity is not due solely 

to a linear dependence of the passive-joint screws, more precisely, when the vanishing 

linear combination of joint screws includes active-joint screws (with nonzero 

coefficients). In this example, the active screws in a sub-chah are always linearly 

dependent. Therefore, an RI-type singularity occurs, if and only if for some P the 

column spaces of J[ and J; have a nonzero intersection. For instance, if the joint 

angle at the third joint of one of the branches were 0' (or 180°), the input would be 

indeteminate (for a given output) and an RI-type singulanty would be present. 

(ii) RO-type singularity 

The substitution of f2' = O in (3.20) shows that an RO-type singularity occurs if and 

only if the column spaces of the three matrices J: have a common nonzero screw. For 

example, the configuration shown in Figure 3.10 is an RO-type singularity since the 



sub-chain. (It should be noted that in Figure 3.10, the axis of the nrsi joint of sukbain 

B lies in the plane of the moving platfonn). Thus, a rotation of the moving platform 

about AC is possible even when al l  six inputs are locked. 

Figure 3.10. An RO-type (and II-type) singularity. 

When a l l  three matrices J; are of full rank, the above-derived condition for RO-type 

singularity is equivalent to the linear dependence of the six reciprocal screws 

correspondhg to each input This formulation has been used in the literature (Kumar 

1990) for the singularity analysis of parallel manipulaton, and d o w s  the detection of 

the RO-type singularities of the discussed mechanism as was done in (Collins and 



Long, 1994). However, one can note that the configuration shown in Figure 3.9 is not 

an RO-type singularity, although six reciprocal screws intersect the line AC oust as in 

Figure 3.10) and are iinearly depen&nt. (In Figure 3.9, the axes of the active joints in 

subchain B are perpendicular to the plane ABC.) 

(iii) IO-fype singularify 

From Equation (3.20) and the definition of Iû-type singulariîy, it c m  be deduced that 

an IO-type singularity occurs, if and oniy if at least one of the ddof serial sub-chahs is 

singuiar. The configuration with a third joint angle of O0 (or 180°), discussed above in 

(i), as well as the singuiarity show in Figure 3.9 belong to this type. 

(iv) II-type singularity 

Figures 3.9 and 3.10 are examples of II-type singularities. For example, consider 

Figure 3.10 and assume that the input velocities in branches A and C are zero. Then, 

there exists a combination of the two inputs in sub-chain B which corresponds to no 

feasible motion of the mechanism. Indeed, if the second and third joints in subchains A 

and C are locked, the direction of the velocities of points A and C are fixed 

(perpendicular to the fïrst joint in the sub-chah). Therefore, the direction of the 

projection ont0 the plane ABC of the velocity of point B is also fixed. Thus, the two 

input velocities in sub-chain B camot be chosen arbitrarily and certain combinations of 

the two input velocities are impossible. Hence, an II-type singularity is present. 

( v )  IIM-type singularity 

For an IIM-type singularity, the whole ma& of the velocity equation must be r d -  

deficient. This is equivaient to the singularity of the 12x18 rnatrix, 



where JP are the sub-chain Jacobians. A necessary and suffiCient condition for this 

phenornenon is the existence, for each of two of the three serial subchains, of a nonzero 

m e w  feciprocai to ai l  joint screws in the subchain, such that a linear combination of the 

two screws is reciprocal to dl joint screws in the third subchain. This condition is 

satisfied if a nonzero screw is reciprocal to dl joint screws in two subchains. For 

example, A d  is present if subchaiiis A and B are in the base plane and ail their joints 

centres except A, and Bo are collinear. Then the movabie hexagon (with vertices A, B 

and the centres of joints si and s:) formed in the base plane by the two subchanes is 

"natteneci". This would be possible only if the link lengths were specially proportioned. 

(vi) RPM-type singularity 

M e r  considering Equation (3.20) for T = R" = O, it c m  be noted that an EWM- 

type singularity occurs if and only if at least one of the matrices J; is singular, Le. 

when the passive-joint screws in a serial subchain are linearly dependent. The 

corfiguration in Figure 3.9 is an RPM-type singularity. Even if both the input and the 

output in this configuration were zero, part of the mechanism (subchain B) could stiU 

move (rotation about the iine BJ3 is possible). 

3.6. Motion-Space Interpretation of Kinematic Singularity 

In this section the definitions of singularity and the singularïty types are interpreted by 

the properties of the space of solutions of the velocity equation (the nuil-space of L) re- 

ferred to as the motion space. This linear-algebraic interpretation reveals the symmetric 

interdependence of the singularity types. 

The spaces O, Iand T(defined in Section 3.2) c m  be viewed as spaxming an (N+no)- 

dimensional space V =  O ICB W V is the tangent space of Q x O at (q,f'(q)). The 



elements of V are velocity vectors of the fom nz = (T, 1;à) = (TT R: H). The feasibk 

velocity vectors form a subspace of II, %*the motion space at q. %$ is the space of solu- 

tions of the velocity equation, and its dimension is equal to the instantaneous mobility nq. 

Ail instantaneous kinernatics pmperties are determined by the orientation of the % in 2! 

Consider the maps p ,  : Mq -, 1, and p ,  : Mq + O, defmed as the restrictions on 

the motion space % of the projections which map Vonto Iand O. They map any motion 

vector into the vector of its input or output, respectively. The ranks of p ,  and p ,  (the 

dimensions of theû image spaces) will be denoted by r, and r, Note that the maps p, and 

p, (and their ranks) are dependent on the configuration q. 

The singdarity definition cm be now refomulated in terms of the properties ofp, and 

p ,  The FIKP is equivalent to the problem of finding the inverse of the map p ,  while 

solving the IIKP is equivalent to findina the inverse map of p ,  Therefore, the following 

proposition is me: 

3.2 5. Proposition 

( i )  The FIKP is solvable for a configuration q, if and only f p ,  ir a one-to-one mapping 

of Mq onto I.  i.e.. 

dim Mq =nq = r ,=  n = dim 1. 

(ii) me ZlKP is solvable for a configuration q, if and only ifp,  is a one-to-one mapping 

of Mq ont0 O. i-e.. 

dim Mq =nq = r ,  = n = dim 0. 

The six singularity types are redefined below in terms of the projection maps. 

3.2 6. Proposition 

(0 q E { R I )  o Kerp,-  K e r p , +  0 ,  

( ii) q~ { R O }  o K e r p , - K e r p , # @ ,  

(iii) q E { I I ]  w 1 -  h p I #  0, 



(iv) q €  ( IO]  e O - I m p , t 0 ,  

(v )  q~ (IIM) a dim Mq > dim 1,. 

f 4 q~ {RPM} o K e r p , n K e r p o # O .  

The proof follows directly h m  the defiaitions ofp,,po and the singularity types. 

The next proposition States the restrictions imposed on r, and ro when q belongs to 

different singularity types: 

3.2 7. Proposition 

(i) 

(ii) 

( iii) 

(iv) 

(v )  

(vi) 

( vii) 

(viii) 

Proof. 

q E { I I }  o r , <  n ,  

q E {IO} o r ,  < n, 

q E ( I I M )  o n c n q ,  

q E ( R I )  r o < n * ,  

q E {ROI * r , < n q ,  

q E 1 RPM ro < nq and r ,  c nq, 

ro<n,* q E ( R I }  o r q  E {RPM}, 

r ,<nq  a q E {RO} o r q  E { R P M J .  

(i)-(vi) Follow directly from the def~tions of the singulanv types. 

(vii) If r,  < nq, there are nonzero motion vectors projected onto zero by p ,  (i.e., 

Ker p ,  # O).  If such a vector M in Kerp, belongs also to Ker p, then an 

RPM-type singulaity is present due to (vi). Othenvise, an RI-type singularity is 

implied by (iii). 

(viii) The proof is andogous to the proof of (vii). 0 

In this section we relate the definitions of singularity and singularity types to the various 

velocity spaces associated with a configuration q. The sets 0, and I are the spaces of the 

potential motions, output motions and input motions, respectively. Their subspaces. %, 



Imp, and Imp, consist of the fecrsibie motions, output motions and input motions. The 

subspaces Kerp, and Kerp, of % are, in fact, the spaces of the zeru-output and zero- 

input motions, respectively. Singdarity occurs when at least one of these kerneis is greater 

than zero. The difference of the two kemels determines an RI- or RO-type singufarity, 

whiie theK nonzero intersection leads to an RPM-type singularity. The IIM-type is present 

when the existence of the kemels is due to the higher dimension of %. When a nonzero 

kemel is due to the singularity of the mapsp, andp,. the configuration is IO- or &type. 

3.7. Classification of Singularities 

3.7.1. Singularity-type combinations 

For any configuration, singular or nonsingular, r ,  L n I nq and r ,  S n I nq. A 

configuration is nonsingular, only if r ,  = n = nq and r, = n = nq. The cases in which 

these equalities do not hold are analyzed below: 

Case 1. n < nq 

This is an IIM-type singularity. It can be noted that in this case r,  < nq and r,  < nq. 

Therefore, as implied by Proposition 3.27, (vii) and (viii), an RPM-type singularity or a 

singularity belonging to both the RI- and the RO-type must be present as well. 

Case 2. r ,  c n = nr and r ,  = n = *4 
This case is a combination of the II- and RO- singularity types. Indeed, r, < n impiies an 

II-type singularity according to Proposition 3 -27, (i). According to Proposition 3.27, (viii), 

either an RO- or an FWM-type singularity is present. But, if the ~ o ~ g u r a t i o n  were an 

RPM-type singularity, according to Proposition 3.27, (vi), r, would be s d e r  than nT 



Case 3. r ,=  n = n g  and r o < n  = n q  

This case is symmetrical to Case 2 and is a combination of the IO- and RI-type 

singularities. The reasoning is the same as above. 

Case 4. r l < n = n q a n d r o < n =  nq 

This case is a combination of the II and IO types together with either an RPM type or any 

combination of at least two different R types. The II-type and the IO-type singularities are 

implied by Proposition 3.27, (i) and (ii), while (vii) and (viii) show that in this case there 

should be either an RPM-type singularity or a singuiarity of at least two different R-srpes. 

The above discussion of the four cases provides the proof for the following proposition: 

3.2  8 .  Proposition. Let q be a singular configuration. Then, 

(1) q belongs to at least one of the types RO. RI. and RPM. 

(2)  q belongs to at least one of the types IO, 11, unâ andM 

Indeed, each individual singularity belongs to exactly one of Cases 1 to 4. and for each 

case, it was shown that the configuration must be of at least one 1-type and one R-type. 

3.7.2. Enumeration of ail possible combinations 

Below, the velocity-space formulation of the singularity problem is applied to fmd al2 

feasible combinations of the six singularity types for the general case of an arbitrary 

kinematic chain. First, in the following proposition the niles for the simultaneous 

occurrence of the singularity types are stated. 

3.29.  Proposition 

(0 

(ii) 

( iii) 

q E {RI} 3 q E {IO} or q E ( I I M } ,  

q~ {ROI { I I ) o r q ~  {IIM},  

q E ( I I )  q E (ROI or q E ( R P M } ,  



(iv) q E {IO} q~ [RI)  o r q ~  {RPM}, 

( v )  q~ { R P M } * ( ~ E  ( I I } a n d q ~  {IO} ) o r q ~  (I IM},  

(vi) q~ { 1 I M } a ( q ~  { R I ) a n d q ~  { R O ] ) o r q ~  ( R P M ] ,  

(vii) q E {II} * q E {IO} o r q  E (RO},  

( viii) q E {IO)  3 q E {II} o r q  E {RI} ,  

(k) q~ { R I }  q~ (10) o r q  E ( R O ) ,  

q~ { R O ) s q e  ( 1 I ) o r q ~  {RI) .  

Proof. 

Proposition 3.27, (iv), implies r, < nq. Therefore, since r, l n l nq, either 

r, < n, which is equivaient to an IO-type singularity according to Proposition 

3.27, (ii), or n < nq, which is the condition for an IIM-type singularity. 

SuniIar to (i). 

From Proposition 3.27, (i) and (vii). 

From Proposition 3.27, (ii) and (viii). 

From Proposition 3.27, (vi), (i) md (ü). 

From Proposition 3.27, (vi), (i) and (ii). 

An II-type singularity implies that p, is not of maximum rank (Proposition 3.27, 

(i)), and therefore: Ker p, # O. Let us consider the image of Kerp, under p,,  

p,(Kerp,). Then, i fp , (KerpJ#O,  an RI is present. I fp , (Kerpd=O.  

then Ker p ,  3 Ker p ,, and hence r,  2 r ,  Since p, is rank-deficient, r, is also 

smaüer than n, and therefore an II-type singuiarity is present. 

Andogous to the proof of (vii). 

Assume there is no IO-type singularity. Then, p ,  is of maximum rank and the 

motion space, M, c m  be decomposed as M= Ker p ,  8 Mo, where Mo is a 

subspace of M with dim Mo = dim O = r , .  Let us consider p , ( M , ) .  If 

p,(Md) + 1, an RO-type singularity is present. 



W e  assumep,(w = I. Then, any input vector is an image underp, of a motion 

vector with nonzero output (since Kerp, n Mo = O). On the other hand since 

an RI-type singuîarity is present, there are motion vectors with nonzero input and 

zero output Thus, there exist two different outputs (one is nonzero and the other is 

equd to zero) which are feasible with one and the same input. If we subtract the 

motion vectors corresponding to these two different outputs, a motion vector with 

nonzero output and zero input is obtained, which implies an RO-type singularity. 

(x) Analogous to the proof of (ix). CI 

3.30. Theorem. Let S be a combination of singulariry Wpes. ntere exisrs a non- 

redundant mechanism with a configuration, q, such that q E S.  if and only ifs is marked 

with "Y" in Table 3.1. 

1 RPM 

Table 3.1. Possible combinations of singularity types. 



h o $  To prove the theorem, we need to establish that: (i) ail combinations not marked 

with "Y" in the table cm never oc=, and (ii) there exist mechanisms and configurations 

with the marked singularity-type combinations. 

(i) There are six singularity types and therefore there are 26 = 64 combinations (one of 

them is the nonsinguiar combination). From Propositions 3.28 we conclude that it is 

suficient to consider the ones that include at least one 1-type and one R-type. These 

combinations are represented by the 49 celis of Table 3.1. The celi in the i-th row and j-th 

column of the table corresponds to a combination of ail singularity types listed to the left of 

the i-th row and on the top of the j-th column. 

We must show that the combinations corresponding to blank cells of the table are 

impossible. This is proven with the help of Proposition 3.29 as illustrated by Table 3.2. 

1 RPM 

1 RI and RPM 

- 
IIM 

- 
(vi) - 
(vi) - 
Y - 
Y - 
fi* - 
(4 - 
Y - 

II 
c.ld 
IIM 

- 
(iii) - 
(vil - 
Y - 
W i )  - 
fW - 
Y - 
Y - 

Table 3.2. Impossible combinations of singularity types for non-redundant mechanism. 



Each of the 28 empty ceiis represents a combination of singularity types which, if it 

occurred in some configuration, would violate (at least) one statement in Roposition 3-29. 

Table 3.2 illustrates which statement each blank-ceil comt,Won vioIates. 

(ii) We need to give an example for each of the 21 combinations, corresponding to "Y" 

celis. Four of these combinations were already illustrated in this section: 

(MT 10) Figure 3.4 in Examples 3.8 and 3.17; 

Wo. II) Figure 3.5 in Examples 3.1 1 and 3.15; 

(RI, ROT IIM) Figure 3.6 in Example 3.20: 

(W'M, 10, II) Figure 3.7b in Example 3-23, and Figure 3.9 in Section 3.5. 

Twelve additional combinations occur in different examples in Chapten 4 and 5 of the 

(RI, RO, RPM, IO, IIM) 

(ROT RPM, IO, II, IIM) 

(RI, RO, RPM, IO, II, IIM) 

Figure 4.5 in Example 4.7, this combination aiso occurs for 

the mechanism in Figure 5.7 as discussed in Section 5.6.3; 

Figure 4.7 in Example 4.25, and Figure 5.10 in Section 

5.6.3; 

A variation of Figure 5.8 as discussed in Section 5.6.3; 

Figure 4.6 in Example 4.11, and a variation of Figure 5.12 

as discussed in Section 5.6.3; 

A variation of Figure 5.9 as discussed in Section 5.6.3; 

Figure 4.8 in Example 4.30; 

A variation of Figure 5.1 1 as discussed in Section 5.6.3; 

Figure 5.9 in Section 5.6.3; 

Figure 5.8 in Section 5.6.3; 

Figure 4.9 in Example 4.3 1 ; 

Figure 5.12 in Section 5.6.3; 

Figure 5.1 1 in Section 5.6.3. 



The remaining five combinations. nareely (RPM, IM), (RI, RO, RPM, IIM), (RI, RO, 

II. DM), (RI, RU, RPM. II, IIM) and (RO. RPM, II, IlM) an illustrated with the five 

examples below. 

3.3 1. Example. Let us consider a four-bar mechanism such that AB = AD and 

BC = CD. Furthemore. let the active joint be at B (rather than the customary, A), while 

the output velocity is the usud (the angular velocity of link CD). In the configuration 

shown in Figure 3.1 1. the points A and C coincide. It can be seen that this is an RPM-type 

singularity. Indeed. when both the input and output are set to zero, o~ = z= 0, the 

mechanism retains mobility: a rotation of links AB and CB about point A = C is possible. 

On the other hand, this singular configuration belongs to neither of the types RI, RO, IO 

and II, since mg = -5 cm have any value. The configuration is therefore an example for 

an (RPM, IIM) singularity type combination. 

Figure 3.11. A four-bar rnechanism in an RPM- and IIM-type singulanty. 

3.32. Example. We consider a six-bar mechanism shown in Figure 3.12. The input is 

the joint velocity at A and the output is the angular velocity of link EF. 

Assuming that the link lengths are appropnately chosen, the mechanism in Figure 3.12 

can be positioned in the configuration shown in Figure 3.13. 

By fixing, respectively, z = O, w, = 0, and wA = .s = O, it c m  be seen that the 

configuration belongs to types RI, RO, and RPM. It is also clear that this is not an IO-type 



or an II-type configuration (since neither the input nor the output need to be zero). 

Therefore, the singularity in Figure 3.13 is a representative of the singulanty-type 

combination (RI, RO, RPMT IIM). 

Figure 3.12. A six-bar mechanism. 

Figure 3.13. A configuration of singularity types RI, RO, RPM and IIM. 

3.3 3. Example. The mechanism shown in Figure 3.14 has 3 dof. The active joints are 

A ,, B I  and Co. The output is the motion of Link ABC. The configuration shown belongs to 

types RI and RO but it is not an RPM-type singularity. On the other hanci, this is an II-type 



configuration (since the input velocities at A, and BI must always be equal) and not an IO- 

type singularity (since the output link c m  have an arbitrary instantaneous motion). 

Therefore, Figure 3.14 proves the existence of singularities belonging to the combination 

of types (RI, RO, II, m. 

Figure 3.14. A configuration of singularity types RI, ROT II and IIM. 

3.3 4. Example. The mechanism and the configuration in Figure 3.15 are very similar to 

the ones presented in Figure 3.14 (and discussed in the previous Example 3.33) except for 

two changes: the third input joint is CI rather than Co; and the points Co and D, coincide. 

Just like the configuration in Figure 3.14, the present example belongs to the singularity 

types RO, II and IIM but not IO. In addition, an RPM-type singularity is present, since the 

point Cl can have a nonzero velocity even when the output link is faed and the inputs are 

equal to zero. However, udike Figure 3.14 the present configuration is not an RI-type 

shgularity, since when the output link is fmed a l i  inputs, including the joint velocity at Cf 



must be zero. Thus, Figure 3.15 presents a configuration. which is an RO-, RPM-, II-, 

IIM-type singuiarity. 

Figure 3.15. A configuration of singularity types RI, RO, II and IIM. 

3.3 5. Example. The mechanism shown in Figure 3.16 is sirnilar to the ones in Figures 

3.14 and 3.15. However, here the four-bar subchain CoCl Dl Do is replaced with a six-bar 

subchain CoCID&IIE&, which is similar to the one shown in Figure 3.13. As in both 

Examples 3.33 and 3.34. it is established that the configuration belongs to types RO, II and 

that it is not an IO singularity. Assuming that the output Link ABC is fmed, the study of the 

six-bar subchain reveals in a way analogous to Example 3.32 that RI- and RPM-type 

singularities are present. Therefore, we have a configuration which is a representative of 

the combination (RI, RO, RPM, 11, 



Figure 3.16. A configuration of singularity types RI, RO, II and IIM. 

This completes the proof of Theorem 3.30. 

3.36. Remark. In Remark 3.24(3) it was noted that the introduction of the six 

singulaxity types does not immediately provide a rigorous classification of the singular 

configurations of non-redundant mechanisms, since each singulanty belongs to more than 

one type. A proper classification of some set is a representation of the set as a union of 

non-intersecting classes. Theorem 3.30 proves that the set of dl skgularities of al1 non- 

redundant mechanisms consists of 21 non-intenecting non-empty subsets, each king the 

set of singularities that belong to the combination of singularity types correspondhg to one 

of the non-blank cells of Table 3.1. Thus, Table 3.1 presents a comprehensive classifi- 

cation of the singularities of a generai non-redundant mechanism with 21 non-intesecting 

classes. 



In this chapter, a general framework for the singularity analysis of non-redundant 

mechanisms was developed. On the bais of the velocity equation. derived as a necessary 

and sufficient condition for the feasibility of the instantaneous motion of a mechanism, a 

new generai d e f ~ t i o n  of singularity was proposed. A configuration is regarded as 

singular, when either the foward or the inverse kinematics problem does not have a 

general solution. Six types of singularities, reflecting different possibilities for the 

occurrence of indetemiinacy of the instantaneous kinernatics, were defined. On the basis of 

a motion-space interpretation of these definitions, the relationsbip between the singuiarity 

types was revealed and a comprehensive and refined classification was developed. The 

presented approach can be used as a starting point for the singularity analysis of specific 

mechanisms, since the velocity equation can be obtained for any given mechanism as an 

explicit function of the joint screws. 



CHAPTER 4 

HYBRID-CHAIN MANIPULATORS 

4.1. Introduction 

Io this chapter, the concepts introduced in Section 3 are applied to a narrower set of 

mechanisms, namely a class of parallel-iike manipulators, herein referred to as hybrid-chain 

manipulators (HCMs). As a result, new mathematicai tools for the instantaneous kinematics 

and singularity analysis of HCMs are. obtained. 

The HCMs are formally defmed in Section 4.2. They have a parallel-like topology of 

the kinematic chain, which is similar to the one found in walking machines and multi- 

fmgered grippers. The velocity equations for such mechanisms is presented in the same 

section. 

In Section 4.3, the passive-joint velocities are elirninated from the velocity equation, in 

such a way that the resulting input-output equation is a necessary and suficient condition 

for feasible 1. L: md output. A new screw-theory based formulation of the instantaneous 

kinematics for this class of rnechanisms is obtained. Unlike existing solutions for parallel 

manipulators, the derived (instantaneous) input-output equation is a necessary and 

sufficient condition for the feasibility of the manipulator' s motions. 

The formulation of singularity for non-redundant mechanisms, given in Chapter 3. is 

applied to HCMs. In Section 4.4. conditions for each of the six singularity types are 



derived. In Section 4.5, a comprehensive classification of ail singularities of all HCMs is 

4.2. Hybrid-Chain Manipulators 

A typical HCM is a non-redundant mechanism (Le., n, = p = no) with mobility 

p = n 16 ,  which consists of a base Iink, an end-effector, and k serial subchains 

comecting the base and the end-effector. Each serial chab consists of joints with total 

dimension of n, e.g., n 1-dof joints. Only n of the kn joints are actively controiled. These 

active joints are distributed in an arbitmy way amongst the subchains. We denote the 

number of active joints in the j-th subchain by nb ni I n. The classical serial and paralle1 

manipulators can be regarded as special cases of HCMs. The former has only 1 subchain 

(k = 1) and al1 n joints are active, whib the latter has n subchains (k = n) and 1 active 

joint in each. 

The joint space, Q, of a HCM is of dimension nk. Due to the specific symmetrïc 

structure of the kinematic chah the sysrem of loop equations defining the configuration 

space D (Theorem 2.30 and Equation (2.21)) are equivalent to a systern of the form: 

$ (q{ ) l r ; (g i ) - - -g (q i , )=g (q ) ,  j = l * * * - * k  (4.1) 

where the subscript denotes the number of the joint and the superscript is the number of the 

subchain. The right-hand side g(q) is the displacement of the end-effector and is the same 

for each of the Equations (4.1). Thus, the configuration space, D, of the HCM is the subset 

of Q composed of al1 q, which satisQ (4.1). 

The input space, 1, of the HCM is the n-dimensional Cartesian product of the 

configuration spaces of the active joints (as defined in Section 2.6). The output space is 

defined as the srnallest Lie subgroup of SE(3) containing ai i  possible displacements. There 



exist HCMs with output spaces dl possible Lie sub-groups of SE(3), however three types 

have the greatest practicd importance. These are manipulaton with O diffèomorphc to R2, 

SE(2) or SO(3). It is assumed that each serial subchain consists of n joints which aiï 

belong to the same n-dimensional Lie subgroup of SE(3) and do not belong to any smaller 

subgroup. This ensures that the mobility of the mechanism is equal to n and that the 

dimension of the output space is n, Le., the rnechanism is non-redundant. 

Since in this chapter, we are interested mainly in instantaneous analysis. we shall 

represent the joints by their joint screws si, where j is the index of the subchain, w& i 

indicates the joint in the chain. The subscnpts of the ni active (achlated) joints in the j-th 

subchain form a set that is denoted by Aj (Aj = ( i  c ( 1 . . . . , n } I S: is active)). 

Using the notation fmt introduced in Section 3.2, the (instantaneous) input is the n- 

dimensional vector (column matrix) R* consisting of the active joint rates. In the 6-dof case 

(n = 6) the output will be the twist T = (o. v) representing the instantaneous motion of 

the end-effector. When n < 6 (e.g., a plana. or sphencai mechanism), the output will be 

an n-dimensional vector including only part of the components of T. The n-dimensional 

column matrix of the instantaneous outputs will be denoted by T. In this case (Le., 

n < 6),  suppose that for any configuration, all the joint screws (and therefore the output 

twist) belong to a common n-dimensional subspace. 5 of the 6-dimensional vector space 

of twists, T Also. suppose that 5 allows a ''standard" basis, i.e., that a famiiy of Cartesian 

reference fiames in the 3-dimensional Euclidean space exists. such that the basis vecton of 

Scan be chosen only among the three rotations and three translations about the coordinate 

axes. This condition is satisfied for di the screw systems (Le., the subspaces of I), which 

guarantee fullcycle mobility as listed in (Hunt 1978), p. 378. These subspaces are in fact 

the Lie algebras of the Lie subgroups of SE(3). Then, if we use only such reference 

frames, the same 6 - n coordinates of the joint twists and the output twist will be zero at 

any configuration. For exarnple, in the case of 3-dof planar manipulators, S is the screw 



system of planar motion, which oui be spanned by a rotation and two translations. and thus 

al1 the twists involved will have only three nollzero coordinates. 

The twist of the output link can be expressed as a hear combination of the joint twists 

in each of the n subchains: 

where 4 is the joint velocity of the joint dong s{. If only n screw-coordinates are 

nonzero, (4.2) is a set of nk h e a r  equations relating the output twist T, the column rnatrix 

of the input velocities R ~ ,  and the passive joint rates R'. It is satisfied for any feasible 

instantaneous motion (TT R: op) of the HCM. On the other hand, if T. aa. and Cf 

satisfy (4.2), they represent a feasible motion of the manipulator. Therefore. these nk 

equations in (4.2) are equivalent to the veluci@ equation of the HCM according to the 

definition in Section 3.2. 

The results presented in this chapter are valid for any mechanism whose instantaneous 

kinematics is described by n of the rows of a twist equation of the type of (4.2), even if the 

mechanism's architecture does not correspond to the exact description of HCMs above. 

Thus, an HCM can be redefined as foilows: 

4.1. Definition. A mechnnism with an n-dimensional configurarion space. C, is 

referred to as a Hybrid Chain Manipulator, when there exist n-dimensional screw 

subspace, S, S c  ?; and nk maps ~j : C + S, such that for every confiuration q in C. 

the screws satisfy Eqwtion (4.2). if and oniy if al1 the velocities 4 are feasible for 

the rnechanh in this configuration. 

In other words, HCMs are mechanisrns, whose instantaneous kinematics is entirely 

described by (4.2). 

Equation (4.2) can be modified into an equivalent expression that will match the form 

Lm = O  of the velocity equation defined in Chapter 3, Equation (3.5).where L is a 



kn x (k + 1)n matrix and n = (T, a) = (T, Lta, &) Let Ji be the Jacobian of the 

j-th serial subchain, i.e., a rnatrix of col- s{, i = 1 , . . . , n . Let JT be the mat& 

composed of the active-joint screws only, i.e., of columns si, i E Ai. Let $' lx the 

maîrix composed of the passive-joint screws only, i.e., of columns s{, i e A,. By 

neglecting the zero rows, one cm consider these three matrices as n x n, n x nj and 

n x (n - ni)-dimensional, respectively. Then, (4.2) can be rewntten as, 

T = J ~ R ~ = J P ~ ~ + J ; R [  i= l , . . . ,  k (4-3) 

where Ri, R !  and @ are vectors (column matrices) composed of dl, the active-, and the 

passive-joint velocities respectively , in the j-th subchain. B y rearranging (4.3). we obtain 

the velocity equation for a general HCM: 

In Equation (4.4) above, In is the n x n unit ma&. 

4.2. Example. Consider the 6-dof platform manipulator shown in Figure 4.1. In this 

case, n = 6, 5 = ?; the output is the twist of the platform ABC, T = T, and S: are the 

joint screws of the mechanism. The spherical joints are modelled by three linearly- 

independent rotations through the center of the joint. The sets of active joints in each 

subchain are AA = { 1 ,2 ,3} ,  AB = {2 ,3}  and Ac= (3 }. The velocity equation, in 

either of the forms (4.2). (4.3) or (4.4), is 6 x 3 = 18 dimensional. The mechanical 

design and kinematic analysis of this manipulator architecture was reported in (Zlatanov et 

al. 1992). 



Figure 4.1. A 6-dof hybrid-chain manipulator. 

4.3 .  Example. For the manipulator shown in Figure 4.2, n = 3, is the screw 

system of planar motion. T = [a, v,. vJT, where v, and v,, are the planar velocity 

cornponents of point C, oa = [O$ CO?, - qc]T, and 0' = [Of, 4, 4. dlT. 
P S i ,  i = 1..  . . , n, P = A ,  B ,  C, are the joint screws of the mechanism. In a screw 

b a i s  of ?; corresponding to a Cartesian frame with two coordinate axes (x and y) in the 

plane of the mechanisrn, only three of the equations of (4.2) are nonzero (T and all S r  

being in 5)- therefore (4.3) and (4.4) are 3 x 3 = 9 dimensional. Equation (4.4) is: 

where S: are the 3-dimensional vectors composed of the three nonzero coordinates of the 

A T S A =  joint screws, e.g., S$ = [O, cos qf, sin ql ] , 1 [L y?, - 4 ITg 



Figure 4.2. A 3-dof planar hybrid-chah manipulator. 

4.4. Example. The five-bar linkage show in Figure 4.3 can be considered as an 

HCM, if the 'output link" is the point C and two of the four joint angles that are not at C 

are actively controlled. Then, the output is T = [ v ,  vJT, where v, and v,, are the velocity 

components of point C, and therefore Sis the system of planar translations. Since the achd 

joint screws of the linkage are al1 rotational. and thus, they do not belong to & we need to 

redefine the joint screws. They will be considered only in coordinate systems with an 

ongin coinciding with C and their rotational coordinates will be ignored. Thus, the new 

"joint screws" are translations equal to the moment with respect to C of the actual joint 

rotations. In this way, the instantaneous bernatics of the linkage is described by two of 

the equations in (4.2) and the rnechanism cm be treated as an HCM. If the actuated joints 

are these at the base. the 4-dimensionai velocity equation will be: 



where R' = [a$, oflT, R~ = [(Ut, and S: = ~yr, -xnT. This linkage was 

considered as a rnanipulator and anaiyzed in (Asada and Youcef-Toumi 1984) and (Kumar 

Figure 4.3. A five-bar iinkage considered as a hybrid-chah manipulator. 

4.3. The Input-Output Equation 

Let us denote the subspace of Tspanned by the active joint screws in the j-th subchain 

by 3 (9 = Span{ S: 1 i E A j ) )  The subspace spanned by the passive joint screws in 

the j-th subchain is denoted by 5 = Span( S{ 1 i e Ai}, while the subspace of al1 the 

joint screws in the subchain is refend O s ?;. = Span ( S{ 1 i = 1 , . . . , n } . 

If dl the n - ni passive screws in the subchain are Iinearly independent, then is of 

dimension n - ni, otherwise the dimension is smaller. Thus, in general, 



dim Tj = (n - ni) -di (4.7) 

where O -< di I n - ni. 
If Fis a subspace of Z then its (reciprocal) orthogonal complemenlt G~ is defmed by, 

@ = (TE I 1 ToG = O VGE G} . Here, the symbol '"" denotes the so-calleci "reciprocal 

product" - an indefinite scalar product in Z given by AoB = A d l B  = A%B, where "e" 

denotes the standard dot product, and l7is the qrmmeaic matrix: 

I3 is the 3 x 3 identity matru. It is known that dim ÇI = 6 - dim Ç. Therefore, 

J, For each j, one can chwse a maximum collection of lineariy independent twists in - S 

and denote them by Ri , 1 = 1, . . . , ni + di. In other words, a basis of 2f can be 

chosen in such a way that 6 - n of the basis vectors are in # and the remaining ni + di 
basis vecton are the twists R{. When n = 6, R{ can be any bais  of @. Obviously, such 

a set (Ri } is not unique. It c m  be shown that the results presented in this chapter are 

invariant with respect to the choice of the twists R! . 

We now take the reciprocal product of each R{ and Equation (4.2) for the j-th 

subchain, 

Since the twists Ri belong to e, their reciprocal products with the elements of are zero. 

There fore, 

for 1 = 1, . . . , ni + di and j = 1, .  . . , k. In a matrix form, (4.9) and (4-10) are 



where Ri is a ma& of dimension (ni + di) x n obtained from n of the columns of the 

matrïx 

Only the columns that correspond to nonzero coordinates of the output twist. T, are 

considered. 

Thus, n + xi= 1 dj scalar equations are obtained, 

I I :  

a, = RiJ; is a matrix of dimension (ni + di) x ni with elements 

where i,, m = 1,. . . , ni are the elements of the index set Ai. 

Denoting the (n + xi= 1 d,) x ni-dimensional matrices in (4.13) by R and 8, the 

following theorem c m  be stated: 

4.5.  Theorem. Let the HCM be in a given configuration. q, and let the matrices 

R = R(q)  and H = E(q) be defined as above. Then an n-dimensional input vector. T. 

(i.e.. the corresponding îwist. T E S) and an n-dimensional vector, oa, can be a feasible 

pair of outpt~t and input for the HCM in q, if and only 

R T = H Q ~ .  



Sufficiency. If T and na are feasible, there exist passive-joint velocities, Lf , for 

which the velocity Equation (4.2) is satisfied. By multiplying this equation with a basis of 

!If, as was described above, Equation (4.14) is obtained. 

Necessity. L.et T and nu satisQ (4.14). We must show that there exists a passive-joint 

velocity vector , R', such that T, f iu  and d2' sa&@ the velocity Equation (4.2). Let US 

fm j and consider the twist, 

Equation (4.14) impiies that the reciprocal product of V j  and the twist R: is zero for aU 
I 

1, 1 = 1, . . . , ni + di. Since V j  is in S, this is equivalent to V E (!€f) = Tj* 

Therefore, V, cm be presented as a linear combination of the passive screws of the j-th 

subchain, i.e., there exist scalars 4, i B Ai, such that 

i.e., Equation (4.2) is satisfied for that j. Since the argument is valid for any j, the existence 

of R' is established. C] 

4.6. Example. Consider the linkage described in Example 4.4, Figure 4.3. In this 

case, .? is Cdimensional and is spanned by the planar motions and a vertical translation 

(perpendicular to the linkage plane). T' is a 1-system (1-dimensional screw subspace) 

almg [O, 0, O, -4, OIT. The reciprocal screws, which are in &but not in $, are 

R:= [ x f ,  y!, O* O* 0, OIT9 Le., rotations with axes dong CP,, P = A,  B. The input 

output equation is: 

xZyi4 L a  



2' could degenerate ody if the points C and P2 were to coincide, which is an impossible 

case. If. however, one of the active joints were at Az instead of Al, it could be passible to 

have C = A ,  (Figure 4.4) and PA wodd be zero. Then, there would be two linearly 

independent screws R: : R: = (1. O, O, 

Equation (4.14) wodd become: 

1 O 

O 1 

x2B Y! 

D, O, O) and R$ = (0, 1. 0,  0, 0,  O), and 

Figure 4.4. An RPM-, IO, and II-type singularity. 

4.7. Example. For the mechanism of Example 4.3, Figure 4.2, Tp = S ~ ( S  7 ,  s 3) is a 

2-system unless the two points PI and P coincide for some P. Assuming P I  # P for all P, 

the spaces & are 4 dimensional and spanned by the twists of planar motion and a rotation 



intersecting the axes of both S; and s:. Since, in this case, & = s, the reciprocal screws 

can be chosen as the rotations with axes through the points P and P I ,  Le., R; = 

( x r - x P ,  y r - y p ,  0 ,  0 ,  0 ,  m4, where mP= (PPJdist(C, P P I )  are the moments of 

these rotations with respect to C (the origin of the Cartesian fnime is assumed at C). Then, 

the input-output equation can be obtained as: 

where R~OS:  = (xfl - xB)(yf - yB) - (y! - - d). 

As in Example 4, if P l  = P for some P. the space !& wodd be of a higher dimension 

(five) and there wodd be two linearly independent twits R; for this P. Then the matrices in 

the input-output equation would be rectangular. 

4.8. Example. For the platforin-type manipulator in Example 4.2, Figure 4.1, n = 6, 

= O and the screws R; rnust be chosen as a basis of @. The unit vector parailel to the 

axis of S is denoted by k:, the unit vectors dong PP, are denoted by by pl (= al,  b l ,  

cl), and finally the vectors dong AB and A C  by b and e. For simplicity, we assume that 

IP, P31 # IPP31 for ail P, and configurations in which P, = P do not exist. 

The subspace & is the screw system of al1 rotations with axes through A. It is 

convenient to choose as its basis the three rotations with axes pardel to k& a x k$, and 

a,. Then, if we assume that the origin of the Cartesian reference £kame is at A, 

Also, for RA = RAJA, we obtain: 



where rny= l r n p ( ~ ~ l ,  (mnI  is the projection of rnp($) on the axis of R; and e = +1. 

rnp(s;) is the moment of S: with respect to point Q. 

In the subchain B, there are four passive joint screws which span either a 4- 

dimensional or a 3-dimensional subspace, and !& is either 2 or 3 dimensional. The passive 

screws are lineariy dependent, only when BB, is vertical and the axis of S: passes 

through P (the so-called "wrist-above-shoulder" configuration of the serial subchain). in 

ihis case, & is andogous to &. When the passive screws are independent, !E$ consists of 

al1 rotations through B lying in a plane perpendicular to k:. We choose the fust basis 

vector parallel to b l  x k!, the second basis vector parallel to bl, and the thkd (if 

necessary) parailel to k!. Then, the matrices RB and Q are obtained as, 

In a similar way, Rc and Hc are obtained as: 

The last rows appear only if the subchain is in a wrist-above-shoulder configuration. 

-0 

where the rows enclosed in braces are necessary only when C is exactly above CI. 

1 14 



From Equations (4.19) to (4.20) we obtain the input-output equation in the form of 

The matrices R and E in (4.14) are square, only when di = O for al1 j (Le., when in all 

subchains is of maximum dimension). In this case, if specific bases of !lf are chosen, 

the matrix El will be diagonal. To achieve this, each of the bsis vectors is chosen to be not 

ody reciprocal to q, but also reciprocal to al l  active joint screws in the subchain but one. 

Based on this idea, an equation similar to (4.14), with a square matrix on the lefi-hand side 

and a diagonal matrix on the nght-hand side, was fmt obtained in (Mohammed and Du@ 

1984), although the standard dot product was used instead of the reciprocal product. Later, 

(Kumar 1990, Agrawal 1990) proposed the use of reciprocity for the solution of the 



instantaneous kinematics of HCM and the analysis of their shgdar configurations. In ail 

these works, unlike in the present paper, the reciprocal screws did not have to be linearly 

independent for a fixed j. However, this type of an input-output equation is effective only 

when the joint screws of each subchain are linearly independent and therefore a large dass 

of singdar configurations cannot be explored. The reason for this limitation is that, unlike 

(4.14), such an equation is in general ody a sufficient but not a necessary condition for the 

feasibility of the input and output. 

4.4. Conditions for Singularity 

In this section, the conditions for each of the six singularity types are given by six 

theorems. In aU of hem, we assume that the HCM is in a given configuration, q. 

4.9 .  meorem. The following are equivalent: 

(i) q is a redundanfioutput (RO) rype singulari~. 

(ii) rank R c n . 
k 

(iiil n I; # O. 
j = l  

Proof.  

( i )  * (ii). Let T t O and R" = O satisS the velocity equation (for some 0'). Then, 

from Equation (4.1 l),  RT = O and therefore rank R c n . 

(ii) (iii). I f  rank R < n ,  then a twist V E 5, V f 0, exists, such that R V  = O. This 

means that V will be reciprocal to the R{ vectors for all ! and al1 j. Therefore. V will be in 
I 

the reciprocal complement of @ for ail j . But (q) = 5, and therefore, 



(iü) * (i). Let V # O and V E q, for all j. Then, there are xalars, #, such that 

satisfy the velocity equation (4.2), and a RO-type singularity is present. 

The theorem shows that the occurrence of RO-type singuiarïty, which is ofien the only 

type of singularity addressed when pardel manipulators are analyzed, is entirely 

determined by the configuration of the passive joints and not by the active-joint screws. 

4.1 O. Example. The configuration shown in Figure 4.5 is an RO-type singularity. 

Figure 4.5. An RI-, RO-, IO, and II-type singularity. 
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The end-effector can rotate (instantaneousiy) about the point O, even if al1 the inputs, 4, 
(see Figure 4.2) are zero. On the other hand, the ma& R for this manipulator, as shown 

in the lefi side of Equation (4.17) is singular in this configuration, since it is composed of 

the nonzero coordinates of the three rotations R: P = A,  B ,  C, which are linearly 

dependent as they are CO-planar and intersect in D. 

4.1 1. Example. Figure 4.6 also shows an RO-type singularity. 

Figure 4.6. An RO-, RPM-, IO, and II-rype singularity. 

In the depicted configurationT the only singular serial subchain is B (wrist-above-shoulder) 

and dso the point CI lies in the plane ABC. The redundant-output freedom is a rotation 

about the axis AB, which is feasible even if dl  the active-joint velocities are zero. As 

predicted by Theorem 4.9, the matrix R is singular (rank R c 6 )  although it has seven 



rows. For any configuration of the manipulator, R (given in (4.24)) is rank deficient if and 

ody if rank A < 3, where A is the matrix, 

In the considered configuration, A is composeci of only the fint four rows of Equation 

(4.25). When the points Cl ,  A ,  B and C lie on one plane, the vector c x c is 

perpendicular to this plane and to b in particular. Thus, al1 row vectors in A are 

perpendicular to b, and therefore are CO-plana.. 

4.12. Exmq.de. It cm be seen that the configuration shown in Figure 4.4 is not an RO- 

type singularity. When the input at A2 is zero, the point C is fixed. Accordingly, the matrix 

R, as given by (4.16) is of rank two. 

4.1 3 .  Theorem The following are equivalent: 

( i )  4 is a redwidant-input (RI) singulariiy. 

(ii) r a n k R c n .  

(iii) For some j. rank Hi < ni. 

liv) For some j. there exisr scalars Ai, i E Ai, not all zero. such thar, 

( v )  F o r s o m e j ,  dimTj<nj+dimI; . .  

(vi) For some j, either aj nl;. f O or dim Ai < nj. 



Proof 

(i) o (ii). According to Dennition 3.6 an RI-type singularity occurs, when a nonzero 

input and a zero output are simultaneously feasible. Theorem 4.5 implies that this is 

possible, if and only if HR" = O for some 0" # O, which is equivalent to rank H < n. 

(ii) o (iii). Implied by the block-diagonal structure of H. 

(iii) o (iv). rank Hi < ni, if and only if there exists a vector, A # O, such that 

H ,A = R jJ'A = O. According to the defuition of Ri, this is equivaient to R~OJYA = O for 

aU j. In the last expression, Jy is interpreted as a mavix with 6-dimensional screws as 

columns. Since the R{ are (a part of) a basis of e, this is equivalent to Ji42 E 5, and the 

statement of (iv). 

( iv)  o (vi). O # Jp E Tj is equivalent to A, n T, # O, while O = J;A is the 

necessary and suff~cient condition for dim 5 < ty 

IV) cs (vi). Follows from: dim Zj S dim Aj + dim T, S nj  + dim I;.. Cl 

Theorem 4.13 shows that the HCM is in an RI-type singularity, when a serial subchain 

has a singularity "involvingT' active-joint screws. 

4.1 4. Example. The configuration discussed in Example 4.10, Figure 4.5, is also an 

RI-type singularity. kdeed, if the end-effector were to be fixed, the input velocity at C2 

could be instantaneously nonzero. As predicted by Theorem 4.13, the El matrix in (4.17) is 

singular, since one of the diagonal elements, Zj3 = 4, is zero. Also, as suggested by (iv) 

of the Theorem, the joint screw at C2 belongs to Tc. 

4.15. Example. On the contrary to the manipulator configuration in Example 4.14, the 

configuration in Figure 4.6 is no? of RI-type. If the output plaâom ABC were to be k e d ,  

the active-joint velocities would be zero. The matrix H is of full rank since none of the 

diagonal elements in the left-hand side of (4.24) is zero in this configuration. 



4.16. Ineorem nie followng are equivaient: 

(i) 4 Lr a redundmrt-passive-motion (RPM) rype singulan'ty. 

(ii) Forsomej,dimI>i<n-ni.  

(iii) H and R are not squure. 

Proof 

(i} o (ii). An RPM-type singularity is present, when a nonzero motion is possible for 

zero input and zero output. According to (4.3) this is true if and only if, for some j, there 

exists a vector, qP # O, such that J T L ~  = O. That is equivalent to rank J '  < n - nj  

and (ii). 

(ii) - (Ni). FOUOWS h m  the definition of R and H. 

4.1 7. Example. The configurations in Figures 4.4 and 4.6 are RPM-type singularïties, 

however the one in Figure 4.5 is not. In Figure 4.6, the subchain singularity (Le.. the 

singularity of JB)  is due only to the linear dependence of the passive screws, while in 

Figure 4.5 the active screw in subchain C is "involved" in the linear dependence of the 

subchain screws. 

4. I 8 .  Theorem. The following are equivalent: 

( i )  q is an impossible-output (IO) rype skgulmly. 

(ii) I m R - I m H # 0 .  

(iii) For some i. 1 I i l n. no input vector, Cla, can satisfy the equation 

ri = ana, where ri is the i-th coiumri of R. 

(iv) For some j, J j  is singular. 

Proof 

( i )  o (ii). A configuration is an IO-type singularity when there exists an n-dimensional 

vector T, which cannot be a feasible output for any values of the joint velocities. According 

to Theorem 4.5 this is true if and only if there exists T, such that RT + ER" for any au. 

Thus, for some T, RT B Im H, or, equivalently RT E Im R - Im 8. 



( i i )  o (iii). Since Im R = Span{ril i= 1,. . . , n). 
(i) o ( iv) .  A twist, T E S, is impossible as an output if and only if, for some j, 

T Q 5. However, I j  t ,$ oaly if dim !Zj = rank Ji < n. 0 

4.19. Example- AU the singular configurations shown in this section are of the IO-type, 

since in ai i  of them a seriai subchain is singular. However, if in Figure 4.5 the angle at C2 

were not extended and the three lines still intersected in D, the configuration wodd have 

been an RO- and an &type but not an IU-type singuhity. 

4.2 0. Tneorem. nie following are equivalent: 

( i )  q is an impossible input (II) vpe  singulari& 

(ii) I m H - I m R # 0 .  

(iii) For some i, 1 S i 5 n, no output vector, T, can satisfy the equation 

RT = li, where Li is the i-th column of B. 

Proof: The proof is similar to the proof of (i) (ii) (iii) in Theorem 4.18. a 

4.2 1. Example. Al1 configurations in Figures 4.4,4.5 and 4.6 are II-type singularities. 

For example. in Figure 4.4 the input (1,O. O) is impossible, since the velocity of the point 

A m u t  be perpendicular to AA 1. It cm be checked from (4.17) that the equation RT = Ii 

has no solution for T. 

4.2 2 .  Theorem ïke following are equivalent: 

( i )  q is an increased-instantaneuus-mobilig (IIM) type singul&ty . 

(ii) There exisr 1, 2 b 1 5 n, twists. Aj,, . . . , Ajp 

(il,. . . , j r )  c ( 1 , .  . . . k ] ,   SUC^ ta-'ut: 

I 
1) A,, E qf- .S , 



The proof is obtained with the help of the following two lemmas. 

4.2 3. Lemma. An IIM-type s ingulari~ is present if and only if there exist Z, 1 2 2. n- 

dimensional nonzero vectors, Aj,,  - - . , A,, ( j  i ,  . . . . il } c { l , . . . , k } , such that, 

T Ci=i Ajs=O a n d  AjsJis=O. 

Proof. According to Definition 3.18 an IIM-type singularity is equivalent to a singular 

velocity-equation matrix L. This is so, if and only if there is nonzero nk-dimensional 

vector, A, A = ( A l ,  . . . . AL) such that A ~ L  = O. The matrix product of A with the 

first n columns of L gives x: =, A, = 0. The product of A  with the n columns of L which 

contain the columns of the Jacobian of the j-th subchain gives L& = O. Therefore, when L 

is singuiar at least two of the Aj vectors are nonzero and satisfy the conditions of the 

Lemma. Conversely, when such a set of at least two vectors exists, the vector A c m  be 

constructed by f a n g  in zeros. O] 

4 . 2 4 .  Lemma 

subspaces of 2! 

k 
and equality is present if and only if L = nj = l  Lj = (Cl 1 l qs)"+, for any set of 

s-1 

subscripts { j , . . . , j l }  c { 1, . . . , k } . 

Proof. By using the formula: 

dim ( A  + B )  = dim A + dim B - dirn A n B ,  

we obtain: 



Proof (of Theorem 4.22) 

( i )  o (ii). This part is easily proven by Lemma 4.23. Indeed the vectors Aj,, . . . , Ajl 

4.25. Exomple. Consider the "flattened" five-bar linkage shown in Figure 4.7. 

Figure 4.7. An RO-, RI-, IO- and IIM-type singularity. 

The fmt and the third rows of the rnatrk of the velocity equation in Equation (4.6) are 

identical, since the x-coordinates of ai l  joint screws are zero. Therefore, the ma& is not of 

N 1  rank, which is the definition of an IIM-type singularity. On the other hand, the two 



rotations with axes CA 1 and CBi satisfy all the conditions of (ii) in Theorem 4.22. The 

condition from (ci), for this configuration, yields 5 c (5 + 5) - (2 - 1)(6 - 2) = 6, 

which is correct. 

4.5. Classification of Singularities 

An individual singular configuration always belongs to more than one singularîty type. 

For example, the configuration shown in Figure 4.4 is simultaneously an RPM-, an IO- 

and an II-type singularity. The configuration of the o-dof manipulator shown in Figure 4.6, 

on the other hand, belongs to types RPM, RO, II and IO. If the active joints are at A i  and 

B 1, the singularity shown in Figure 4.7 would be IIM-, IO-, RI- and RO-type. 

Not al l  combinations of singulanty types are feasible. In Chapter 3, different d e s  were 

derived for the sùnultaneous occurrence of the singularity types for the case of a general 

mechanism. Al1 of these apply for HCMs. Some additional d e s  c m  be denved from the 

results of Section 4.4. 

4.2 6. Proposition. For an HCM, if a configuration is an RI-type singularity, then it is 

an IO-type singulariiy as  weil . 

Roof. This result follows directly from Theorem 4.13 (v) and Theorem 4.18 (iv). 

4.2 7. Proposition. For an HCM, if a configuration is an RPM-type singuian% then ir 

is an IO-iype singularity as well . 

Proof. The proposition follows from Theorem 4. L 6 (ii) and Theorem 4.18 (iv). 0 

4.2 8. Proposition. For an HCM, if a configuration is an IIM-iype singularir), then it is 

on IO-type singulariry as well . 
Proof: This is implied by Lemma 4.23 and Theorem 4.18 (iv). 0 



In Chapter 3, it was shown that ail possible combinations of singuiarity types for a 

general mechanism are given by the 21 non-empty ceiis of Table 3.1 (these are both the 

ceiis marked by "Y" and the ones madced by "N" in Table 4.1 below). In this way, the set 

of ail singular configurations of aU non-redmdant mechanisms c m  be divided into 2 1 non- 

intersecting classes. The foiiowing theorem establishes an analogous classification for the 

singular configurations of HCMs. 

4.2 9. Tireorem. Let S be a combination of singulariry rypes. Thre exists an HCM with 

a confguration, q, such that q E S. if and only ifs is marked with "Y" in Toble 4.1. 

RI and RO 

RPM 

RI and RPM 

RO and RPM 

RI and RO and RPM 

Table 4.1. Possible combinations of singularity types for HCMs. 

Proof. To prove this theorem. it is necessary to show that: (i) the combinations not 

marked "Y' are impossible; and (ii) that the ones marked "Y" are indeed possible. 



(i) The blank ceiis in Table 4.1 correspond to singulanty-type combinations, which are 

impossible for any mechanism. The 6 celis marked "N" are not possible for HCMs because 

they violate Roposition 4.28. 

(ii) To show that the "Y' cells denote possible combinations it is sufficient to give one 

example for each of these combinations. In this chapter, we already considered four 

singular combinations, which illustrate four different singuiarity-type combinatiom: 

(WM, IOTH) Figure 4.4 in Example 4.23; 

(RI, RO, 10, El Figure 4.5 in Example 4.7; 

(RI, ROT 10, ml Figure 4.7 in Example 4-25; 

(RO, RPM, IO, II) Figure 4.6 in Example 4.1 1. 

Although the two basic combinations, (RI, IO) and (RO, II), are not shown, they c m  

be easily visualized by srnall modifications of Figure 4.5. If the oniy change in the figure 

were a slight shift of point C2 so it no longer lies on the line defmed by points Co and CI, 

then the altered figure would represent a HCM in a singularity of class (RO, II). On the 

other hand, if the configuration shown in Figure 4.5 were changed by a small motion of the 

mechanism while keeping subchain C fixed (so that the three lines and P P ,  no longer 

intersect in one point), the result would be a singuhity of class (RI, IO). 

In Chapter 5. the singularity set of a 6-dof spatial HCM is considered in considerable 

detail. Seven additional singularity types are iiiustrated with figures and discussed in 

Section 5.6.3: 

(RI, WM, 10, 11) A variation of Figure 5.8 as discussed in Section 5.6.3; 

(RI, W M ,  10, IIM) A variation of Figure 5.9 as discussed in Section 5.6.3; 

(RI, RO, RPM, IO, II) A variation of Figure 5.1 1 as discussed in Section 5.6.3; 

(WM, 10, n, rn Figure 5.9 in Section 5.6.3; 

(RI, RP.M, IO, 11, IIM) Figure 5.8 in Section 5.6.3; 

(RO, RPM, IO, n, IIM) Figure 5.12 in Section 5.6.3; 

(RI, ROT RPM, IO, II, IIM) Figure 5.1 1 in Section 5.6.3. 



The remaining two combinations, namely (RI, RO, RPM, IO. IIM) and (RI, RO, IO, 

II, IM). are proven to exist by the following two examples. 

4.30. Ekumple. Consider the configuration shown in Figure 4.8. 

Figure 4.8. A planar HCM in a singular configuration of class (FU, RO, IO, II, IIM). 

The mechanism shown is a p!anar HCM similar to the one in Figure 4.2, however, in the 

present example d l  joints are revolute. As in Figure 4.2, the active joints are the second 

joints in ail subchains. 

Since subchains B and C are singular, the configuration in Figure 4.8 is an IO-type 

singularity. Moreover, it is an II-type singularity as well, since the input velocity in joint Al  

must be zero. When the output link ABC is fmed and the input velocities are zero, there can 

be no instantaneous motion in the present configuration. Therefore, this is not an RPM- 

type singularity. (Aiso, it is ciear that condition (iii) in Theorem 4.16 is not satisfied, since 

dim 2 2 for al1 three subchains.) Furthemore, condition (üi) in Theorern 4.22, applied 

for the configuration in Figure 4.8, yields: 4 < (3 + 4 + 4) - (3 - 1)(6 - 2) = 5, 

and therefore the configuration is an IIM-type singularity. A configuration which belongs 

to type IIM but not RPM, must be an RI- and RO-type singularity. Tbus, the present 



example establishes the existence of singtùanties of singuiarity type combination (RI RO, 

IO, n, IIM). 

4.3 1. Euunple. The mechanism shown in Figure! 4.9 is similar to the one in Figure 4.8. 

The difference is in subchain A: in the present figure point A coiacides with point A, and 

point A, is aligned with the other joint centres. 

Figure 4.9. A planar HCM in a singular configuration of class (RI, RO, RPM, IO, IIM). 

Due to the position of point Al, unlike Figure 4.8 the configuration shown in the 

present figure is no longer an II-type singularity. (It can be checked that each one of the 

input joints c m  move whïie the other two are fned.) On the other hand, this is an RPM- 

type sinplarity, since subchain A can rotate about point A =Ao even when both the input 

and output are zero. Therefore, the configuration must be an IIM-type singularity as well 

(since it is of RPM-type but not &type). Furthemore, it can be shown that this is an IO-, 

EU and RO-type singularity. Indeed, the IO-type singularity is due to the singular seriai 

subchains, the RO-type singularity becomes apparent when we fix the input joints and 

observe that the output link can still rotate about point A, and, fmally, the RI-type 

singularity is established by noting that the inputs at joints B1 and C, need not be zero even 

when points B and C of the output Iink are fixed. In conclusion, Figure 4.9, provides an 

example of an HCM singularity of class (RI, RO, RPM, IO, m. 



This completes the proof of Theorem 4-29. 

4.6. Summary 

This chapter presented the analysis of the instantaneous kinematics of a class of 

mechanisms with several serial subchains arranged in paralle1 to connect the base with the 

endeffector. The veiocity equation (as defmed in Chapter 3) of such mechanisms, which 

compietely describes the mechanism rate kinematics. was used as the starting point for the 

analysis. A method for the elimhation of the passive-joint velocities fkom the velocity 

equation was described. This method is applicable for dl HCMs and the resulting equation 

fully characterizes the input and output at any configuration, even at singularity. This 

equation was then applied to the singularity analysis of HCMs, which was performed in 

accordance with the general theory of kinematic siagularity for non-redundant mechanisms 

developed in Chapter 3. For each of the six singularity types introduced there, the present 

chapter provides several criteria (necessary and sufficieut conditions for their occurrence) 

for the case of HCMs. A refined and comprehensive classification of the singular 

configurations of HCMs is obtained by the enurneration of ail 15 feasible combinations of 

singularity types. 



CHAPTER 5 

SINGULARITY IDENTIFICATION 

5.1. Introduction 

In the present chapter, the problem of singularity identification is addresseci. The objec- 

tive is to provide a method for the solution of the foîiowing problem: Given an arbitrary 

non-redundant mechanism with lower pairs, find ali the singularities of the rnechanism and 

determine their type. The end result of the solution process must be a description of the 

singularity set as a whole, as well as a division of this set into subsets belonging to exactly 

the same singularity types. 

The proposed solution technique is based on the velocity-equatioa formulation of 

kinematic singularity, introduced in Chapter 3. The definitions of Sections 3.3 and 3.4 are 

used in Section 5.2 to derive the singularity criteria, i.e., necessq and sufficient 

conditions for the occurrence of singularities of different types. On the basis of these 

criteria, methods for computing the singularity set and revealing its division into singularity 

classes are proposed in Sections 5.3 and 5.4, respectively. The application of these 

methods to complex spatial mechanisms is discussed in Section 5.5 and illustrated in 

Section 5.6. where the singularity set of a 6-dof pardel manipulator is obtained and 

anal y zed. 



5.2. Conditions for Singrilanty 

The singularity of a aven configuration, q, can be determined by examining the maÛix 

L(q) of the velocity equation (introduced in Section 3.2, Equation (3.5)). Let LI, Lo and 

L, be the submatrices of L obtained by removing the columns corresponding to the input, 

output, and both the input and output, respectively. Then, the foilowing general singularity 

condition holds: 

5.1. Theorem. For any non-redundant mechanism. a configuration, q. is nonsinguiur, 

if and only ifboth the matrices LI and Lo are nonsngular at q. 

Roof. Let Lr be the matrix fomed by the columns of L, which correspond only to the 

output velocities, and La be the rnaaix of the columns of the input velocities. Then, the 

velocity equation (3.5) can be rewritten as: LTT + L.R' + L,R' = O, or, in any of the 

following two forms: 

and 

From Equations (5.1) and (5.2), it is evidenr that al1 velocities can be expressed in terms of 

the output (input) velocities. if and only if Li (respectively Lo) is invertible. According to 

the definition of singularity in Section 3.3 this proves the theorem. 0 

The conditions for the occurrence of the different singuhity types are described by the 

foilowing proposition: 

5 .2 .  Proposition 

(i) q~ (RI}orankLo<rankL,+t~, 



(ii) q~ {RO)  o r a n k L , < r a n k L , + n ,  

(iii) q~ (RPM) e+ r a n k L , < N - n .  

(iv) q~ {II} m r a n k L I < r a n k L ,  

(v )  q E {IO) rank Lo c r a n k L ,  

(vi) q~ {IIM} o r a n k L c N ,  

(vii) q~ (RI}  o r q e  (RPM} o q ~  {IO} o r q c  {IIM) o Lo is singular, 

(viii) q ç  {ROI o r q  E {RPM} o q ~  ( I I}  o r q ~  {IIM} o L I i s  singu1a.r. 

Proo f 

q E (RI} is equivdent to the existence of a R" # O such that Equation (5.2) is 

satisfied with a zero right-hand side. 

Let d, d è O, be defined by rank L,, = N - n - d. Then, dim(Ker Lo) is exactly 

d, if and ody if the left-hand side of (5.2) can be zero only for a zero RO. Therefore, 

an RI-type singularity is present only when dim(Ker Lo) > d. This proves (i), 

since rank Lo = N - dim(Ker Lo) and rank L, + n = N - d . 

AnaIogous to (i). 

Follows directiy nom the def~ t ion  of the RPM-type. 

Equation (5.1) implies that q E (II} is equivalent to the existence of a vector v ,  

which is in Irn L, but not in Im LI, i.e., equivalent to Im La - Im Li = 0. Since 

Im L = Im La + Im LI, th is  in mm is equivalent to Im L - Im L, = 0,  Le., 

rank LI < rank L. 

Analogous to (iv). 

Follows directly from the definition of the IIM-type. 

For any configuration, B is tnie that 

rank Lo I rank L S N. 

The matrix Lo is singular, when rank Lo < N. Therefore, Lo is singular, if and 

only if either 



rank Lo < rank L or rank L < N. 

Using (v) and (vi), we conclude that Lo is singular if and only if the configuration 

belongs to either IO or IIU 

On the other han& it is always mie that 

rank Lo S n + rank L, L N. 

For Lo to be singular, rank Lo < N. Therefore, a necessary and sufficient condi- 

tion for the singdarity of Lo is that at least one of the following two inequalities 

holds: 

rank Lo < n + rank L, w rank L , 5  N - n. 

It follows from (i) and (iii) that Lo is singular, if and only if the configuration is 

either an RO- or an RPM-type singularity. 

(viii) Analogous to the proof of (vii). 

5.3. Renzark. A mechanism configuration, q, is an N-tuple of values of all joint 

parameters. As was pointed out in Chapter 2, in the case of closed-loop mechanisms not al1 

such N-tuples correspond to feasible configurations. The configuration space is given by 

the solution set of a system of equations, &(n = e, L E L (Theorem 2.30). When a local 

coordinate system is chosen on the joint-space manifold, Q, Equations (2.3) become a 

system of nonlinear scdar equations, l(q) = O. In the present chapter, when referring to 

the "loop equations" of the kinematic chain, we will have in mind the scalar equations. 

When attempting to fmd the singularities of a given rnechanism, it must be assured that 

the values obtained for q are compatible with the loop equations. If only parts of the 

configuration space need to be considered, additional inequality constraints on the joint 

parameters are imposed. The feasible set consistent with the joint consvaints wiil be 

denoted by F. Thus, the set of feasible configurations is (q  E F I l(q) = O}. 



5.3. Determination of the Singnlarity Set 

When a feasible configuration, p. is given, the rank of the matrices L,, Lo, Lp and L 

are computed and the type of singuiarity is determined by rewiewing conditions (i) to (viii) 

listed in Section 5.2. Theorem 5.2. However, to obtain the singularities of a mechanism, 

without considering all feasible q, the conditions must be interpreted as systems of 

equations for q, and the singularity set and its subsets be obtained as solutions of these 

equations. This process is described below. 

For singularity identification of closed-loop mechanisms, the matrices LI and Lo play a 

role analogous to the one of the Iacobian in the case of a serial ch&. The singularities of a 

non-redundant mechanism with known kinematic chah, link parameters and joint 

constraints, cm be determined by solving the following two systems of nonlinear 

equations: 

det LXq) = 0, 

&q)  = O? 

and 

det Lo(q) = 0, 

= 0, 

subject to the joint constraints F. 

Therefore, the problem of singuiarity identification can be resolved by the execution of 

the following steps: 

(1) Derive the loop equations, l(q) = O, of the mechanism. 

(2) Derive the velocity equation, L(q)M = O, of the mechanism. 



(3) SoIve the system 

det Ll(q) = 0, 

= 0. 

subject to the joint constraints F. 

Solve the system 

det Lo(q) = 0, 

= o. 
subject to the joint constraints F. 

Obtain the singularity set as the union of the sets obtained as solutions of the 

systems in Steps (3) and (4). 

For a non-redundant mechanism each of the two subsets of the singularity set, obtained 

by Equations (5.3) and (5.4) (Steps 3 and 4)- is the solution of a system of (N - n + 1) 

equations. Therefore, the singularity set will be typically of dimension (n - 1) or, 

equivalently, of CO-dimension 1 in the n-dimensional configuration space of the 

mechanism. Thus. mechanisms with mobility of 1 usuaiiy have a fd te  number of isolated 

singularities, whüe for higher values of n the singuiarity set will have points. 

5.4.  Example. As an example, the above procedure is appIied to a four-bar linkage 

(shown in Figure 5. la  and 5.b) with dimensions AB =AD = DC = 1, BC = 2. with 

no joint constraints. The input link is AD and the output link is BC. 

The four-bar mechanisrn is parameterized by the coordinates of the points C and D. 

(When p1anar linkages are considered. it is often convenient to use Cartesian position 

coordinates rather than joint angles). The base reference h e  is such that the coordinates 

of A and B are (0,O) and (1,O). 



Figure Sala An RI- and IO-type singularity. 

Figure S.lb. An RO- and II-type singularity. 



The velociv equation, gewnc for any four-bar linkage (cf Example 3.2), is of 

where Sp, P = A, B, C, D, are 3-dimensional planar screws, i.e., vectors 

of the type S, = ( 1, y,, -x& and op are the joint velocities. The first 

equation in (5.6) is the output equation, and the remaining three form a screw 

equation, which States that the sum of the joint twists in the only loop is zero. 

The expression for det Ldq) leads to the following expression: 

This equation is solved together with the system of Equations (5.5). The 

solution is x, = 114, y, = m 1 4 ,  xc = 1/2, yc = h m 2 ,  (Figure 5.la). 

The expression for det L&) leads to the following equation: 

This equation is solved together with the systern of Equations (5.5). The 

solution is x, = O, y, = Ifl, x ,  = 1/1, y, = tG/2,  (Figure 5.lb). 

Thus, 4 distinct singular configurations are obtained. They are symmetrical 

with respect to the iine AB. 

5.5. Example. Consider the slider shown in Figure 5.2a, with A C = BC = 1. 



Figure 5.2a. A 1-dof slider. 

Figure 53b. 

An (RO, RI, IlM)-class singularity. 

Figure 5 . 2 ~ .  

An (RPM, II, IO)-class singularity 



The prismatic joints a .  A and B are on a h e  which is perpendicular to the axis of the 

pnsmatic joint C. The input is the velocity of point A, v,. The output, v = v,, is the 

motion of the point B. The coordinates of points A, B and C are used as position 

parameters. The base reference fiame is chosen with its axes dong the iines of the prismatic 

joints. 

( 1) The Ioop equations are the expressions for the constant lengths of AC and BC, 

as weU as for the constant orientation of the prismatic joint axes: 

(2) The velocity equation is obtained with a 7 x 8 matrix L: 

where S,, P = A,  B, C, are 3-dimensional plana revolute-joint screws 

(S, = (1. y,, -x,)? and P,, P = A ,  B,  C. are prismatic-joint screws: 

PA = (0, O, 1)',P, = (O, O, -I)T,P,=(o,-l, O)? 

(3) Thesystem 



is solved and six singularities are obtained: (y, = y, = O, x, = f 1) (Figure 

(Figure 

(4) The system 

det Lo(q)  = yflc = 0 ,  
2 Y i + ~ C =  1, 

Y j + x $ =  1. 

yields the same six configurations obtained in Step (3). 

( 5 )  The singularity set has six elements with the following values of (y,, yB, xc): 

( a o *  1); (O, O, -1); (1, 1, O); (-1, -1, O); (1, -1, O); (-1, 1,O). 

It must be noted that, if singuiarity identification were attempted by means of an input- 

output equation, the singuiarities with xc = O would not be detected (as this was already 

pointed out in Section 3.4). 

5.4. Determination of the Singularity Types 

The algorithm presented in Section 5.3 can identiS> ail the singularities of a mechanism. 

However, it cannot classify them, narnely determine to which types each singularity 

belongs. Herein, a comprehensive algorithm that cm both identiQ and classi0 the 

singularïties of a given mechanism is described. 

5.4.1. Finite num ber of singularities 

To classify the singularities of a given mechanism, the singularity conditions (i) to (viü) 

listed in Section 5.2 must be used. For a fuiite number of singularities, as could have been 

detemiined by the algorithm in Section 5.3, the classification can be camied out by checking 

each condition for each singularity . 



5.6. Example. Consider the four-bar mechanism in Figure 5.1. For the singular 

configurations given by (xD = 114, y, = *3/4, xc = 1/2. y c  = im/2), it is 

established thai: rank L = 4, rank L, = 3, rank Li = 3, and rank Lo = 4. Using 

conditions (üi), (vi), (vii) and (fi), it is d e t e h e d  that the singuiarities obtained in Step 3 

belong to both types RI and IO and to no other type, Le., they are of the (RI, IO) class. 

For the singularities given by (xc = O, yc = M. x,  = 1/2 , y, = t f l / 2 ) ,  it is 

established that: rank L = 4, rank L, = 3, rank Ll = 4, and rank Lo = 3. Using 

conditions (iii), (vi), (vii) and (viii), it is detexmineci that the shgularities obtained in Step 4 

belong to types RO and II and to no other type, Le., ceU (RO, II) in Table 3.1. 

5.7.  Example. For the slider in Figure 5.2, it c m  be found that when x, = O (and 

y,  = y, ;t 0) the ranks are: rank L = 7, rank L, = 5, and rank LI = rank Lo = 6. 

Therefore, from conditions (i), (ii), (iii), (vi), (vii) and (viii), it follows that these 

singularities belong to the (RPM, IO, II) class (Figure 5.2~). 

When y, = y, = O ( x ,  # O), it can be found that: rank L = rank L, = rank LI = 

rank Lo = 6. Conditions (iii) to (viii) then imply that the singularity belongs to the (IIM, 

RI, RO) class (Figure 5.2b). 

If a mechanism has infinitely many singularities, the class of each separate singularity can 

be obtained by calculating the rmks of the four matrices, L, L,,, LI and Lo. However, in 

order to find al1 singularities that belong to each class, the conditions (i) to (viü) must be 

solved for an unknown q, to obtain the sets of singularities belonging to the corresponding 

types. 

5.4.2. Classification via LI and Lo 

Though the solution of Equations (5.3) and (5.4) idenmies al l  the singularities of a 

mechanism, it does not classify them. In generai, by using only matrices LI and Lo, it is 

not possible to classify ail the singularities of a mechanism. However, class~cation cm be 



accomplished for some mechanisms, and for some of the singularities of other 

mechanisms. Conditions (vii) and (viii) imply that, if for a given configuration LI is 

singular but Lo is nonsingular, the configuration is a singuiarity of class (RI, IO). 

Conversely, when a configuration satisfies condition (vüi) but not (vii). it must be of the 

(RO, II) class. It is only when both LI and Lo are singular that conditions other than (vii) 

and (viii) need to be considered. Singularities that satisfy both (vü) and (viii) may have 

substantidly different kinematic features, e.g., they may lead to either a loss or a gain in 

output/iput dof. In fact, a configuration where both LI and Lo are singular may or may 

not belong to any of the six singularity types. 

5.8. Example. For the four-bar linkage analyzed above, the singularity subsets 

obtained in Steps (3) and (4) of the identification algorithm in Section 5.3 do not intenect. 

Therefore, the singularities obtained in Step (3), with a singular Ll, form the (RI, IO) 

singularity class, while those obtained in Step (4). with a singular matrix Lo, form the 

(RO, II) class. 

5.9.  Example. In the case of the slider, however, d l  the singularities satisfy both 

conditions (vii) and (viü) and they cannot be classified without using additional singdarity 

conditions. As it was shown in Sub-section 5.1, the singularities are either of the (RPM, 

II, IO) class or of the (IIM, RO, RI) class, and therefore for this mechanism conditions 

(vii) and (viii) cannot resolve whether the singularity bdongs to any particular singularity 

type* 

From Example 5.9, it is evident that singularities that satisfy both (vii) and (viii) may 

have substantially different kinematic featwes, e-g., they rnay lead to either a loss or a gain 

in outputhput dof. Therefore, a more refmed classification is needed. 



5AJ. CIassification algorithm 

On the basis of the discussion in Section 5.4.2, if it were known that there are no 

singuiarities of the IIM or RPM types, the identification and classificiition process could be 

completed by examining only conditions (vii) and (viii). The main smtegy of the method 

described below is, thus, to first identify and classifj~ the IIM and RPM singularities, and 

then analyze the remaining configurations using the d e t e h a n t s  of Lq and Lo. 

As in Sub-Section 5.3, it is understood that the singularity equations are solved subject 

to the joint constraints and the loop equations. To simpli@ the presentation, these 

operations are not explicitly included in the description of the algorithm. Below, {k} stands 

for "all configurations obtained in Step k of the algorithm." 

(1 ) Find al1 feasible q satisSing condition (vi). 

(2) Find ail feasible q satisfying condition (iii). 

(3) C l a s s i ~ { l } u { 2 ) :  

For { 1 }, check (iv) and (v). Obtain 4 sets: 

IlMrIIM&EIIM&IO;IIM&II&10. 

For (21, check (i) and (ii). Obtain 4 sets: 

RPM; RPM & RI; IIM & RO; RPM & RI & RO. 

Find dl the intersections of each set in (3.1 ) and each set in (3.2). 

Obtain 10 classes. (These are the 10 classes that belong to the 

IIM and RPM types, see Table 3.1) 

Subtract ( 2 )  from each set in ( 3.1). Obtain 4 classes. 

(The 4 classes of IIM, but not RPM singularities. see Table 3.1). 

Subtract { 1 } f?om each set in 13-21. Obtain 4 classes. 

(The 4 classes of RPM, but not IIM singularities, see Table 3.1). 

(4) Find ail q satisQing condition (vii). From these subtract { 1 ) u {2). 

(5)  Find d l  q satisQing condition (viii). From these subtract ( 1 ) u (2).  



(6) Intersect (4) and ( 5 ) .  Ob& 3 c h s a .  

(Singuiarities that are neither IIM nor RPM). 

Thus, the singularities that belong to each of the 2 1 classes in Table 3.1 are identifiai. 

5.1 O. RemmR The operations in S teps (1 ) and (2) requin the identification of the points 

x for which some rectanguiar matrix M(x) is singular. This can be done by fmiding all x for 

which dl sub-matrices of maximum dimension have zero determinants, Le., by solving a 

system of nonlinear equations. In Steps (3.1) and (3.2) it is required to find sets of the type 

R= { x  l rank A(x)  < rank B(x)  1. This can be done by presenting Ras the union of 

the sets i& = (x I rank A(x)  < i I rank B ( x ) } .  The sets % cm be obtained by solving 

systems of equations. 

5.1 1. Remark. It can be noted that, since the condition for RPM (or IIM) singularity 

requires the rank-deficiency of a rectangular matrix, a larger number of equations must be 

satisfied and the dimension of the solution set will be typicdy lower than the dimension of 

the singularity set as a whole. In practice, IIM singularities occur only for mechanisms with 

specially proportioned link parameters. RPM singularities. when they exist, form sets of 

low dimensions. The algorithm is organized in such a way that the conditions for RI, RO, 

II and IO, which may involve the examination of multiple cases, are solved only together 

with the conditions for IIM (RPM), i.e., for a comparatively small subset of shggularities. 

5.12. Example. The algorithm is applied to the slider in Figure 5.2. 

(1) Two configurations are obtained: y, = y, = O, x, = f 1. 

(2) Four configurations are obtained: y, = &y, = f 1, x, = 0. 

(3) (3.1) Both elements of { 1 } belong to neither {II} nor (10 ) 

(neither (iv) nor (v) are satisfied). 

(3.2) Both elements of {2} belong to neither {RI} nor ( RO ) 

(neither (i) nor (ii) are satisfied). 



(3.3) The inteisection of { 1 } and (2) is empty. 

AU ten classes of DM-type and RPM-type singularities are empty. 

(3 -4) The two elements of { 1 } form the (IhrZ RI. RO) singdarity class. 

The other three classes of IIM, but mt RPM singuiarïties are empty. 

(3.5) The two elements of { 2 j form the (RPM, II, IO) singularity class. 

The other three classes of RPM, but not IIM shgularîties are empty. 

(4 to 6) {4} and (5) are empty. The remaining three classes are empty. 

5.13. Example. Consider the mechanism shown in Figure 5.3 (N = 8, n = 2). 

Figure 5.3. A 2-dof planar mechanism. 
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The inputs are the joint velocities at A and ET the output is the motion of point G. The 

link dimensions are AB = AD = BC = DE = 1, CD = FG = 2, CG = 1.5, EF = 3. 

The L matrix with dimensions 8 x 10 is: 

where S p ,  P = A,  B ,  . . . , G, are 3-dimensional planar screws, Q p  = (1, yp ,  

mpc = Qp - yC, xG - +)*, and I2 is the 2 x 2 unit matrix. To fmd all the singularities 

and establish their types, the procedure descriid in Remark 5.10 is foilowed: 

Check for IIM singularities. For the given mechanism, it is established that condi- 

tion (vi) has no solution compatible with the given link lengths. 

Check for RPM singularities. The condition (fi) is satisfied only when the detemii- 

nants of both [S&&] and [S&SD] vanish. This yields 8 distinct singular confi- 

gurations (one of them is shown in Figure 5.4). 

(3.2) For each of 8 the configurations in {2}, Conditions (i) and (ii) are checked 

and it is found that neither is satisfied. 

(3.5) The (RPM, IO, II) ciass consists of the 8 elements of (2) .  

Condition (viii) is appiied. (viii) is equivalent to the singularity of at least one of the 

matrices [ S s S c S D ]  or [SCSGSF]. The solution of each of these equations 

(combined with the loop equations) is a 1-dimensional submanifold of the 2-di- 

mensional configuration space. The first manifold has 4 connected components, 

and the second one has 3 components. Ail elements of the union of these mani- 

folds, except the 8 elements of (2)  found in Step 2, are of the types RO and II . 

One such singularity is shown in Figure 5.5. The corresponding connected 

component is obtained by moving the iinkage, while keeping the joint angle at G 

constant, 



Figure 5.4. An RPM-, IO-, and II-type singularity. 

(5) The condition (vii) is applied. (vii) is equivalent to die singularity of at least one of 

the matrices [S.4SBSd, [SGSCSD]  or [SESGSF]. The solution for each of these 

equations (combined with die loop equations) is a 1-dimensional submanifold of the 

2-dimensional configuration space. The fvst and third manifolds have each 2 

connected components, while the second one has 4. AU elements of the union of 

these manifolds, except the 8 elements of (21, belong to the types RI. IO. Figure 

5.6 provides an example. The connected component corresponding to the s h o w  



configuration is obtained by moving the Iinkage while keeping the poinis B and C 

fixed. 

(6) The intersection of the sets obtained in Steps 4 and 5 consists of 16 configiaatiom 

Apm from the 8 configurations classified in Step 3 5  as (RPM & II and IO)class 

singularïties, the others are (RI, RO, IO. Q-class singularities. The = d g  

configurations obtained in Step 4 (or 5) belong to the class (RO, II) (or (RI, Io)). 

Figure 5.5. An RO- and II-type singularity. 



Figure 5.6. An RI- and IO-type singularity. 

Thus, four different classes of singularities are obtained for the given mechanism: 8 

(RPM, XI, IO) singuiarities. Step (3.5); 8 (RI, RO, IO, II) singuiarities, Step (6); - 1  (RO, 

II) configurations, Steps (4) and (6); and, (RI, IO) configurations, Steps (5) and (6). 



5.5. Mechanisms with High-Dimensional Singnlarity Sets 

Once the Ioop equations and the velocity equation of a mechanism are derived the 

methods described in Section 5.4 reduce the problem of singularity identification and 

classification to the solutions of systems of algebraic equations. However, since these are 

systems of nonlinear equations with multiple unknowns, their symbolic solution, if it 

exists, rnay be non-trivial. Numerical methods, on the other hand, may be computationally 

expensive, especially when the mobility of the mechanism is higher than 1, in which case 

the solution sets are manifolds rather than finite sets. These manifolds cm be quite cornplex 

as can be seen in (Sefrioui and Gosselin 1994, 19951, (Mayer St-Onge and Gosselin 1995) 

or Coilins and McCarthy 1996) where examples of singularity sets are provided for RO- 

type singularities of parallei manipulaton. 

This section addresses the application of the proposed methocl to complex mechanisms 

with high-dimensional singularity sets. Two methods for the simplification of this process 

are discussed and, as an illustration, the comprehensive singularity identification and 

classification of a 6-do f multi-loop mec hanism is performed. 

5.5.1. Geornetrical solution of the singularity conditions 

Geometrical considerations can be used to simplify the solution of the suigularity 

conditions. Since the velocity equation is composed of screw equalities, Conditions (i)- 

(viii), which require the rankdeficiency of difierent submatnces of the velocity equation, 

are equivalent to conditions of linear dependence of certain joint screws. Instead of 

attempting to analytically solve the nonlinear equations, obtained from the vanishing of 

different detenninants, one can fuid geometrical conditions for the linear dependence of the 

columns of the corresponding matrices. For instance, in Step (2) of Example 5.13 the 

singularity of the matrix Lp is equivalent to the linear dependence of the last six columns of 

the matrix given in Equation (5.8). However, it can be seen that, if a non-trivial linear 



combination of these 8-dimensional column vecton v a l s  zero, then both sets of screws 

( S B ,  Sc, S D  } and {Sc, S D ,  SG 1 must be linearly dependent. (Indeed, since mm is 

never zero, the coefficient of the last column must be zero. Moreover, since SB is always 

different fiom So the coefficients of three columns preceding the 1 s t  one (columns 7,8,9 

of L in (5.8)) are not ail zero. This implies that {Sc, SD,  Sc}  are linearly dependent. 

From the properties of planar screws, it then follows that an RPM-type singularity of the 

mechanism shown in Figure 5.3 occurs when both sets of points {B, C, D }  and 

{ C, D, G } are collinear (Figure 5.4). 

Thus, using screw theory, the singularity conditions c m  be interpreted as geometnc 

criteria, as iUusvated by the example anaiyzed later in Section 5.6. Such a screw-theory 

based approach provides a better geometricai insight into the problem of singularity 

identification, and it is not dependent on the specific values of the link parameters. This 

ailows the snidy of singularities that occur for a given bernatic chah regardless of the 

values of the link parametea. This geometric approach is simüar to the one used by Merlet 

( 1989) to analyze RO-type singuiarities of parailel manipulators with prismatic actuators. 

5.5.2. Simplification of the velocity equation 

For complex mechanisms with many lwps, the dimension of the velocity equation can 

be quite large. Sometimes, the velocity equation can be simplifïed by elirninating some of 

the passive velocities. It is important, however, to ensure that the resulting equation is a 

necessary and suffkient condition for the feasibility of the rernaining velocities. 

Let 5' be a vector with components (N - n - k) of the passive-joint velocities of the 
aT -p 

mechanism and E= [TT, l2 , i2 1. Alço, let the (N - k) x (N - k + n) matrix aq) 
be a continuous function of q. Let &, and cp be submatrices of z, defmed in the same 

way as LI, Lo and L,, were defined as submatrices of L in Section 5.2. For brevity we 
^ P  

introduce the notation N = N - k. Also, we denote by Sa the column matrix composed 

of the k remaining passive velocities. The following proposition can be then proven: 



5.14. Proposition. Suppose that, for e vev  q. there is a mat* P(q) such that the 

velocity e4uatim can be written Ui the fom: 

?km. al1 singulanty conditions derived in Theorems 5.1 and Proposition 5.2 remain m e  

when the ma& z(q) is used instead of L(q), Le., 

A configuration. q, is nansingular, if and only if both the mamkes LI and & are 

nonsingular at q. 

q E {RI) o rankro c r a n k r p  + n, 

q E {ROI o rankrIr  c r a n k r p  + n ,  

q E { R P M }  w rankcp c N - n. 

q E {II} a rank rI c rank L, 

q E (101 = rank& < r a n k z ,  

q E {IIM} o rankE < N, 
q E {ROI or q E {RPM} o q E {II} or q E { H M )  ~j issingular, 

q E {RI} or q E {RPM} o q E (IO} or q E {IIM} o zI issingular. 

(1)  It needs to be proven that g is singular. if and only if at least one of the matrices & 
and Eo is singular. 

As in the proof of  Theorern 5.1. we note that Equation 5.9 can be written in any 

of the foilowing two fomis: 

and 



From Equations (5.1 1) and (5.12). it is evident that ail, but the eliminated 

velocities, can be expressed in terms of the output (input) velocities, if and only if 
* P  

(respectively &) is invertible. The eliminated passive velocities, B , are given 

as a fiuiction of the remaining velocities by Equation (5.1 0) Therefore, according to 

the d e f ~ t i o n  of singularity in Section 3.3 (Definition 3.9, Theorem 5.1 rernains 

tnie when stated for the matrices and &. 

(2)  

(i) A codigtuation, q. is of the RI-type only when the velocity equation is satisfied for 

R" + O and T = O. Considering the form of the velocity equation given by 

Equations (5.12) and (5. IO), the condition for RI becomes: 

Let d, d 2 O, be defined by rank zp = N - n - d. Then, dim(Ker &) is 

exactly d, if and only if the left-hand side of (5.2) c m  be zero only for a zero aa. 
Therefore. an RI-type singularity is present oniy when dim(Ker &) > d. This 

proves condition (i), since rank ro = N - dirn(Ker G) as well as N - d = 

rank Lp + n. 

(ii) Analogous to (i). 

(iii) From Equations (5.9) and (5.10) and the definition of RPM-type singularity, 

Definition 3.2 1, it is clear that an RPM-type singuiarity c m  occur oniy when the 

equation zpZP = O cm be satisfied for a nonzero 2. This is so only when rP is 
singular, Le., raak rp < N - n 

( iv)  Equation (5.11) implies that q E (II} is equivalent to the existence of a vector v ,  

which is in Im z, but not in Im LI, Le., to Im - 1 rn LI = 0 .  Since 



1 m L  = i m  La+ 1m ~ , t h i s i n t u r n i s e q u i v a l e n t t o ~ m ~  - Im rf = 0, i.e., 

rank k c rank z. 
(v) Analogous to (iv). 

(vi)  According to Defrnition 3.18, the IIM-type singularity requires that the scaiar 

equations of the velocity equation are linearly dependent Since the k scalar equations 

in (5.10) are cleariy linearly independent, q can be of the IIM singularity type. if and 

ody if Equation (5.9) is singular, i.e., rank < W. 

(vii) FoHows h m  (ii), (iii), (iv) and (vi). 

(viii) Follows from (i), (iii), (v) and (vi). 0 

5.15. Remark The above Proposition 5.14 allows us to decrease the dimension of the 

singularity-identification problem by the elimination of sorne passive velocities. It must be 

noted that passive velocities can be eliminated only when the resulting reduced velocity 

equation (Equation (5.9)) is still a necessary and sufficient condition for the feasibiiity of 

the rernaining velocities. 

Note that the matrix function P(q) need aot be known explicitly in order to apply the 

singularity critena, since they are based solely on the submatrices of E(q). It is s&cient to 
^ P  

make sure that for every configuration the eliminated velocities, A2 , are deterrnined in a 

unique way by the remaining joint velocities. 

Later in this chapter, in Sub-Section 5.6.2 the process of partial elimination of the 

passive screws and the derivation of simplified singularity conditions will be illustrated by 

an example. 

The elimination of passive velocities may be executed by algebraic manipulations of the 

velocity equation, or geometricaiiy by using reciprocal screws. Reciprocal screws have 

been used by different authors to obtain input-output velocity equations of parallel and 

hybrid-chah manipulators (Kumar 1990, Angeles 1994, Etamadi-Zangaoeh and Angeles 

1994, Chapter 4 of this thesis). A similar approach c m  be used for generzl closed-loop 



mechanisms: by multiplying the twist equation for each l w p  by one or more reciprocal 

screws part of the passive velocities are eiiminated. However, as it was shown in 

Chapter 4, if the reciprocal screws are not chosen in a comct way, the resulting equation 

may no longer be a necessary and sufficient condition and would not be suitable for 

singulanty analysis. 

5.6. Singularity Analysis of an Exemplary Spatial Mechanism 

5-6.1. The mecbanism 

To illustrate the above techniques, herein, the singularities of the mechanism shown in 

Figure 5.7 are identified. This is a 6-dof platform manipulator with an asymmevic 

distribution of the actuated joints (fmt descnbed in Zlatanov et al., 1992). The output link 

(the end-effector) is the moving platform ABC, the six input joints are: the fmt three joints 

of sub-chah A, the second and third joint in subchain B and the third joint in subchain C. 

The base A&?& and the moving platform are equilateral triangles with sides AB = 

A d ,  = a. The two nonzero links in each senai subchain have the same length, 1. It is 

assumed that 2L43 I a I 2 1. 

The velocity equation, obtained using the method outlined in Chapter 3, is: 

where, for each P, (P = A, B.  C), J ,  is a matrix which has as its columns the active 

joint screws in the serial sub-chain, while J/  is composed of the passive screws in the 

sub-chain. The output is the twist of the moving platform. T = T, the input, 

R" = [a$, 4, af,of, 4, & J ~ ,  is composed of the six active-joint velocities, and RP 



is the vector of the passive velocities. (The sphericai joints are modeiied by three linearly- 

independent rotations through their centers). The first six scaiar equations in (5.14) are the 

output equation, while the remaining 12 equations are given by two loopclosure twist 

equations. The oniy restrictions împosed on the joint parameters is the condition of non- 

interference of the different links. In particular, those configurations for which a leg is 

folded (ic., where P = Po) will be considered as impossible to achieve. 

Figure 5.7. A 6-dof hybrid-chah manipulator. 



5.62. Simplification of the singularity conditions 

Foliowing the guidelines from Sub-Section 5.52, Equation (5.14) can be simplifieci by 

eliminating some of the passive-joint velocities. Fkt, we observe that (5.14) is equivalent 

to the system of equations: 

(Systems of this type are commonly used in the literature to describe the velocity kinematics 

of parallel manipulators). 

Each of the three twist equations in (5.15) can be multiplied (via the so-called r e c i p r d  

scalar product) by a screw, R, to obtain a scaiar equation. If R is chosen to be always 

orthogonal (Le., reciprocal) to one or more joint screws, then the corresponding joint 

variables will be eliminated from the resulting equations. If a sufficient number of such 

reciprocal screws can be found, a new system with a smaUer number of variables wiU be 

obtained. As it was pointed out in Section 5.5.2, to be suitable for singularity 

identification, the new system must be equivalent to the old one and the values of the 

eliminated variables must be uniquely determined for each set of values of the remaining 

variables. In the case of System (5.15), this can be ensured only if the joint screws of the 

eliminated velocities in each one sub-chain are linearly independent. Therefore, ail passive- 

joint velocities could be eliminated, ody if the manices J: were of maximum rank for aU P 

and for al1 q. This, however, is not true, since for some configurations the passive-joint 

screws in subchains B and C can become Linearly dependent. For exampie, whenever point 

B lies on the screw axis S: , the rank of J; is 3 rather than 4. Therefore, it is impossible 

to properly eliminate al1 four passive velocities in this subchain. Indeed, if we assume that 

al1 other velocities are known, could still have any value, and thus the values of the 

passive-joint velocities in sub-chah B could not be determined in a unique way. 

On the other hand, since the three joint screws comesponding to each spherical joint are 

aiways linearly independent, the corresponding nine passive velocities can be safely 



eliminated. This is done by multiplying each of the three screw equations in (5.9) by the 

screw "annihiiator" of the spherical joint (Angles 1994). In other words, we take the 

teciprocal product of equation P with three hearly independent saews, a l l  reciprocal to 

joint-screws s:, SC and s:. Therefore, these three screws must be hear ly  independent 

rotations with axes through P. It is convenient to choose these axes parailel to the axes of 

the reference frame. Then, in a coordinate system with orïgin at A and axes paraUe1 to those 
-- 

of the base frarne the foilowing system, LM = O, is obtained: 

In Equation (5.16), rnf is the moment of the screw s with respect tu point P, while M;--- 

is the matrix [mr, mi4 . . . 1. For a 3-dimensionai vector v ,  v denotes the skew- 
- 

symmeuic matnx with the propeny: v x w = vw, for any vector W. The vector b is 

parallel to AB and c is patallel to AC. Only three of the passive joint velocities remain in 

(5.16), zP = [mf, OF, &]T. 

According to Proposition 5.14 in Sub-Section 5.5.2, Equation (5.16) can be used in 

the same way as (5.14) or (5.15) for singularity identification. Note that, using the above 

technique one can easily obtain equations analogous to (5 . ,6)  for any hybnd-chain 

manipulator with passive spherical joints at the moving platform. 

Several simpiified matrices can be introduced and used for the calculation of the ranks 

of L I ,  G, and (or LI, Lo, L, and Lj. 

From Equation (5.14) it c m  be deduced that rank L = rank S + 6 (and, therefore, 

rank L = rank L I -  3), where S i s  the the 12 x 18 matrix, 

Above, JP are the 6 x 6 sub-chah Jacobians. 



From Equation (5.16), it foUows that rank rp = rank îp, whece z, is the 6 x 6 

matrix, 

Also fiom (5.16), the rank of Er can be expressed by the ma& LI, 

for which: rankG = rank + 3 

Finally, rank & = rank io, where Zo is obtained by rearranging the columns of 

Et * 

Thus, for the mechanism in Figure 5.7, the conditions from Section 5.2 can be 

expressed in tenns of the matrices from Equations (5.17) to (5.20) as foilows: 

(i) q~ { R I } o r a n k ~ o < r a n k ~ p + 6 .  

( i i)  q~ {ROI- r a n k & < r a n k i p + 3 .  

(iii) q~ {RPM)  o ranki'c 3 .  

(iv) q~ { I I }  e rank& e r a n k L -  6 ,  

(vi) q E { H M }  o r a n k i  < 12. 

(vii) q~ {ROI orq E { R P M }  o q~ { I I }  o r q E  {IIM) o ~oiss ingular ,  

(viii) q E { R I )  o r q  E { R P M ]  cs q E ( I O }  o r q  E {IIM} o LI issingular. 



5.6.3. IdenaTication and classifkation of the mechanism's singularities 

5.63.1. Summary. We apply the identification aigorithm fiom Section 5.2 to the 

mechanism in Figure 5.7 using conditions (ixviii)  listed above, in Sub-Section 5.6.2. At 

each step, the conditions are resolved through geometrk anaiysis of the screws composing 

the corresponding matrices. The singularities obtained are summanZed in Table 5.1. 

RI and RPM 

RO and RPM 

RI and RO and RPM 

1 YES 
Step 6 

Stcp 6 
5.13-14 

Step 6 

Step 3.5 I 5.9' yES 
YES 

Step 3.5 

step 3.5 
S . l? t  + Stcp 3.5 

5.11+ 

NO 
Stcp 3.1 

- NO- 
Stcp 3.1 

NO 
Step 3.1 

Stcp YESINo 3.4 Stcp 3.1 1 Sttp *O 3.4 -=y-+K step 3.3 

stcp No 3.3 1 Step No 3.1 1 Stcp3.3 

YES 
stcp 3.3 

5.9' 

f A representative of this class is obtained by a srnail variation of  the configuration in the 
corresponding figure. 

* 
A representative of this class is obtained by a re-labelling of the corresponding figure. 

NO 
Step 3.1 

Table 5.1. Possible singularity classes for the 6-dof mechanism shown in Figure 5.7. 

5 . 9  
YES 

stcp 3.3 
5 . 8  
YES 

Stcp 3.3 



In the table, for each singularity class, the following are denoted: whether the class is 

non-empty ( n s )  or empty (No); the steps in which the singularities of the class are 

obtained (or it is proven that the class is empty); and, the number of the figure that shows a 

representative configuration of the class. 

It is determined that, the mechanism has singularities belonging to 13 different 

singularity classes. Seven figures (Figures 5.8-5.14) illustrate the singularities of the 

mechanism. Except for Figures 5.13 and 5.14, which represent the same (RO, II) 

singularity class, the figures depict configurations belonging to different singularity 

classes. One figure (Figure 5.9) is used to illustrate two singularity classes after a re- 

labelling of the subshains (Step 3.3). Four figures (Figures 5.8, 5.9, 5.11 and 5.12) can 

illustrate four additional classes, if a small perturbation in the depicted configuration is 

performed (Step 3.5). The remaining two classes, which are not dkectly illustrated by 

figures, consist of singularities that are comparatively easy to describe and envision (Steps 

5 and 6). 

5.6.3.2. The identification procedure. Below, the steps of the identification 

procedure are detailed. 

For an IIM-type singularity, the matnx S must be rank-deficient. A necessary and 

sufficient condition for this is the existence of a row vector [( l?A)T, (17C)T], which is 

in the kernel of ST. (IIA is the screw A with its rotational and translational parts 

interchanged). Equivalently, there must exist screws A and C reciprocal to alI the 

columns of, respectively, JA and JC,  while A - C is reciprocal to the columns of JB.  

This condition is quite restrictive and for generic values of the link parameten no IIM- 

type configurations exist. In the present example, however, the special choice of 



congruent triangles for the base and moving pladonns assures the existence of such 

singularities- 

CarefX geometrical analysis reveals that the set of IIM-type configurations consists of 

two non-intersechg components. 

The first component has 4 configurations, and one of them is shown in Figure 5.8. 

Figure 5.6. A singular confi,pration of class (RPM, RI, IIM, II, IO). 

In this contiguration, the points P are on the S; axes and the three axes S: intersect in 

one point, D. The -3 configurations can be obtained by varying the elevation of the 

moving platform and moving the intersection point, D, in the base plane (D can also be 

at infinity). Several 2-dimensional manifolds of IIM-type singularities are attached to 



the 3-dimensionaI set. One of these can be obtained from the configuration show in 

Figure 5.9 by rotaihg the moving plattom about the h e  BC (and varying the elevation 

of points B and C). 

Figure 5.9. A sinplar configuration of class (RPM, IIM, II, IO). 

The second component is 1-dimensional and consists of configurations iike the one in 

Figure 5.10, where the three supporthg legs are fidlv extended and the two platforms 

are in the sarne plane. 



Figure 5.10. A singular configuration of class (RI, RO, IO, m. 

(2) RPM-type singulatities 

From Equation (5.18) it is evident that E, is singular only when either rn? or mf are 

zero, i.e., when either B or C are on the axis of the first-joint screw of the 

corresponding subchain. Each of these two conditions corresponds ro a set of 

~o~gurations. They intersect in a 4-dimensional set. 

(3) Classifcc~tion of { 1 } u (2) 

(3.1) It can be observed that in all existing singularities of { 1 ) the rank of L decreases 

by only one, while the rank of L0 decreases by at least two. Therefore, { 1 } is a 

subset of the IO type. Therefore, the six classes belonging to the IIM-type but 

not the IO-type are empty. 

From Condition (iv), it foUows that an element of { 1 ] is an II-type singuiarity, if 

and only if the 6 x 6 matrix & has a nuil-space dimension of at least two. 

Next, we check whether this condition is satisfied for the different IIM-type 

singularities as determined in Step ( 1 ). 



For ali the a c ~ ~ g u r a t i o n s  of the type show in Figure 5.8. where for al l  three 

serial subchains point P is on the ~f axis. the condition is satisfied since ~ and 

m f are zero vectors. 

For the IIM-type configurations with thne extended legs (as in Figure 5.10) the 

condition is not satisfied. 

If only two subchains are singular (simiiarly to figure 5.9). the condition is - 

always satisfied. when the singular subchains are B and C (as in the figure). 

When. bowever, one of the singular subchains is A. then, generally, the matrix 

A is of rank 5. There are two exceptions. The first is represented in Figure 5.1 1. 

Figure 5.11. A singular configuration of class (RI, RO, RPM, IO, II. m. 
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In Figure S. 1 1, the singular subchains are A and B and, additionaüy, the point 

Co lies in the piane ABC. The second exception is shown in Figure 5.12, where 

not only points B and C are located on screws S: and s f, but ais0 point A lies 

in the (vertical) plane defined by the two screws. Each of Figures 5.1 1 and 5.12 

represents, in fact, 00' configurations, since the elevation of point A c m  Vary. 

Figure 5.12. A singular coafiguration of class (RO, RPM, IO, II, IM). 

Thus, the set of singularities belonging to the IIM, IO and II types consists of a 

main 3-dimensional set (Figure 5.8), a 2-dimensional set (Figure 5.9) and two 

1-dimensional sets (Figures 5.1 1 and 5.12). The set of singularities in the IIM 

and IO types has two 2-dimensional components (similar to Figure 5.9, with 



subchain A as one of the singular ones) and one 1-dimensional component 

(Figure 5.10). 

(3.2) According to condition (i) and Equation (5.14). a configuration is an RI-type 

singularity, if and ody if at least one of the foilowing conditions is satisfied: 

either the subchaio A is singular (in any way); or subchain B is fuiiy exteaded; or 

subchain C is M y  extended. 

Condition (ii) and Equation (5.13) imply that an RPM-singularity is also of the 

RO-type in the following tbree cases: 

(a) When C is on the S: mis and the plane ABC is perpendicular to mg 

(Fgure 5.12 is an example, though subchain B need not be singular). 

(b) When C is on the S f axis but point B is not on the S; axis, and b I 4. 
(c) When B is on the SI axis, while point C is not on the S: a i s ,  and the 

point Co Lies in the plane ABC. (Figure 5.11, though subchain A need not 

be singular ) . 

Thus, four sets are obtained: RPM-type singdarities, m4 RPM and RI-type 

singularities, -4 RPM and RO-type singularities and RPM, RI and RO-type 

singularities. 

(3.3) The intersections of the subsets of {3.1} and (3 .2)  give the ten sinplarity 

classes (Table 5.1) of configurations that are both IIM and RPM. Of these. only 

five classes are non-empty for the mechanism under consideration: 

(a) (IIM, IO, RPM. IU) has -2 configurations with two singuiar subchains 

simiiarly to Figure 5.9, but sub-chah A must be one of the singular sub- 

chains. 

When the two singular subchains are A and B, point Co should not Lie in the 

plane ABC (Le, unlike Figure 5.12). Altematively, if the singular subchains 

are A and C, then the plane ABC should not contain Co and A,. 



(b) (IIM, IO, II, RPM) has -2 configurations as in Figure 5.9. The singdar 

subchains must be B and C. The plane ABC must not contain Co and Bo 

(unlike Figure 5.12). 

(c) (IIM, IO, II, RPM, RI) has 4 confgurations with three singular subchains 

as in Figure 5.8. 

(d) (IIM JO, II. RPM, RO) has -l configurations like the one depicted in 

Figure 5.12. The moving plane ABC contains the points Co and Bo and the 

subchains B and C are singular in the same way as in Figure 5.9. 

(e) (IIM, IO, II, RPM, RI, RO) has mi configurations in two l-àimensional 

sets. The first is represented by the configuration in Figure 5.1 1. It is 

similar to Figure 5.9 with singular sub-chah A and B. but point Co is in 

the plane ABC, allowing for a RO-type singularity. The second set is 

similar to the configuration in Figure 5.1 1, however, the nonsingular 

subchain must be B rather than A. 

(3.4) Only one of the four classes of IIM but not RPM singdarities is non-ernpty: 

(IIM, IO, RI, RO) consists of -1 configurations as in Figure 5.10. 

(3.5) AU of the four RPM but not IiM classes are non-empty. 

(RPM, II, IO) has coniigurations. An example for this class can be obtained 

from the configuration in Figure 5.9 by an arbitrarily smail perturbation of the 

subchain C while subchains A and B remain fixed- 

(RPMJU, II, IO) hm m4 configurations and cm be illustrated by a variation of 

Figure 5.8 obtained by rnaintaining the depicted position of the subchains A and 

B and slightly pemirbing subchaio C. 

(RPM, ROT II, IO) has m4 configurations. An example is obtained from the 

coafiguration in Figure 5.12 by a srnail rotation of subchain C about S f .  

(RPM, RI, ROT II, IO) has -2 configurations and a representative can be 

obtained from Figure 5.1 1 by a s d  rotation of subchain C about S f .  



(4) RO- and II-type shguhrities 

There are .d configurations that are of the RO and II types but are not IIM nor RPM- 

singuiarities. From Equation (5.19), the conditions for Rû-type singularity are: 

(a) Either Co must be in the plane ABC (Figure 5-13), or 

(b) The point A must be in the plane of subchain B (Figure 5-14), Le.. b I *. 

Figure 5.13. A singular configuration of class @O, II). 



Figure 5.14. A singular configuration of class (RO, IL). 

(5)  RI- and IO-type singulariries 

There are .d configurations which satisfy (viii) without k ing  RPM or IIM-type. In 

these configurations. the subchain A is singular or one of the other two serial chains is 

fully extended. 

(6) Classification of (4) u ( 5 )  

The last three shgularity classes are obtained as the intersection and ciifferences of {4) 

and (51. (EU, IO) and (RO, II) have 4 configurations, while (RI, RO, IO. II) is of 

dimension 4. 



Thus, for the the mechanism considered in this example there are 13 different classes of 

singularities. The rernaining 8 classes are empty. 

It has been shown that the singuiarities of a general non-redundant mechanism form a 

set which is divided into 2 1 singularity classes. Singularities fiom the same class belong to 

exactly the same combination of the six fundamental singularity types. On the basis of the 

velocity-equation formulation of mechanism singularity, this chapter establishes the 

necessary and sufficient conditions for the occurrence of singularities from each of the six 

singularity types. By employing the proposed singularity criteria, ail the singular 

configurations of an arbitrary non-redundant mechanism can be identified and classified. 

This can be achieved via a procedure, described in the Section 5.4, which reveals step-by- 

step the structure of the singularity set of the mechanism. The configurations belonging to 

each of the singularity classes are obtained as solution sets of nonlinear algebraic equations. 

Algebraic and geometric techniques for finding these solution sets are proposed. As a 

cornprehensive example, a 6-dof hy brid-c hain rnanipulator, with asymmetrical disaibution 

of the input joints and a complex singularity set, is studied. Through careful geornetric and 

alpbraic analysis, the structure of the singularity set is revealed and configurations from ail 

singularity classes are described and illustrated. 



CHAPTER 6 

REDUNDANT MECHANISMS 

6.1. Introduction 

In this chapter, the techniques proposed in Chapters 3 and 5 are M e r  generalued to 

include mechanisms with redundancy. Mechanism redundancy was defined in Chapter 2. It 

is present when the dimensions of the input and output space are not equal and therefore 

either n > no or nl > n. The fust inequality defines kinematic redundancy. If nl > n we 

will Say that a dynamic redundancy is present. This phenomenon is often referred to as 

actuation redundancy in the Iiterature. 

In this chapter, it will be assumed that n, 2 n 2 no. Thus, non-redundant, dynami- 

cally-redundant and kinematically-redundant mechanisms W U  be ueated as special cases of 

the general assumption. AU d e f ~ t i o n s  and propositions in the present chapter will be valid 

for redundant and non-redundant rnechanisms alike. Moreover, the classification frame- 

work and the identification methods, proposed herein, when applied to non-redundant 

mechanisms, must be equivalent to the respective results obtained in Chapters 3 and 5. 

The main task of this chapter is to define the singularity types for a redundant 

mechanism and study their inter-dependence. The difficulty arises from the fact that the 

definition of the singularity types in Section 3.4 was based on the specific definition of 

singularity for non-redundant mechanisms, (Section 3.3). This approach allowed for 

simple definitions that clarified the kinematic implications of each singularity type and 



emphasized the symmetry of input and output and of 1-type and R-type singuiarities. This 

symmetry was further exploited in Section 3.6 and made explicit in the symmetnc 

statements of Proposition 3.29 and the diagonal symmetry of the classification table, 

Table 3.1. As we shall see in the following sections, these symmetries are not entirely 

preserved in the general case (when redundancy is possible). It will be shown that there are 

six additional singularity classes (combinations of singuiarity types), which never occur in 

non-redundant mechanisms but are possible for some redmdant mechanisms. This means 

that the identification methods, derived for non-redundant mechanisms in Chapter 5, must 

be modined to be applicable to redundant mechaniSmS. 

In Section 6.2, we bnefly discuss the appiicability of the velocityequation and motion- 

space models of instantaneous kinematics for the case of redundant rnechanisms. In Section 

6.3, the six singularïty types are re-defmed in a way relevant to redundant mechanisms. In 

Section 6.4, we study the interdependence of the singularity types and prove classification 

theorems for redundant mechanisms. Finally, in Section 6.5, we examine the identification 

a l g o r i t h  of Chapter 5 and make the necessary modifications to make these procedures 

applicable to redundant mechanisms as well. 

6.2. Infinitesimal Mode1 of Mechanism Kinematics 

The goal of this Section is to generalize Theorem 3.1 and obtain a statement vaiid 

for redundant mechanisms as well. 

For redundant mechanisms, the notations T, R', fiP are defmed, as this was done in 

Section 3.2 for non-redundant mechanisms. T denotes an output vector (an element of 

T,O), is an input vector (an element of TPI) and ClP is the vector of passive-joint 

velocities. Also, the tangent spaces TqO and Td, are denoted by O and 1, while T is the 



space of al l  the vectors @. The dimensions of the vector spaces I, T and O (and of the 

vectors fia, @ and T )  are np  N - np and no, respectively. 

The spaces O, I and defmed in Section 3.2, c m  be viewed as spannkg an (N+no)- 

dimensional space V = O CBI @P. V is, in fact, the tangent space of the manifold Q x O 

at the point (q, f,(g)). The elements of V are velocity vectors of the form 
T 

n = ( T, $2 ) = ( T, f24 M) . Those velocity vectors, that represent feasible motions, 

fom a subspace of the motion space at q, denoted by %. Its dimension is equal to the 

instantaneous mobility n4. AU properties of the instaataneous kinematics of the mechanism 

are determined by the orientation of the subspace % in 2! 

The maps p ,  : Mq + 1, and p,: Mq + O, are defmed as the restrictions on Mq of 

the projections which rnap Vonto I and O. They map any motion vector into the vector of 

its input or output, respec tively. The ranks of p , and p ,  , Le., the dimensions of their 

image spaces, are r, and r ,  respectively. The dimensions of their null-spaces will be 

denoted by d, and do, respectively. Additionaily, we introduce the notation d,, defined as: 

d m  = dim(Kerp,n Kerp,). 

Note that, the maps p ,  andp, (and their ranks) are dependent on the configuration q.  For 

sirnplicity, this dependency will not be denoted explicitiy. 

As in Chapter 3, we make the naniral assumption that the differential output in any 

configuration is an explicit linear function of the joint velocities: 

T = A (q)Q. (6.1) 

The difference with Equation (3.1) is that A(q) is of dimension no x N. Equation (6.1) is 

the output equation of the mechanism. 

The derivation of Equations (3.2) and (3.3) is unaffected by redundancy, since this 

derivation does not depend on the choice of inputs or outputs. Thenfore, it remains a i e  

that for every configuration, q, there is an N x (N - n )  matrix, D(q) ,  such that the 

feasible joint velocities, i2, are given by the solution of the equation: 



D(q)L? = O. (6.2) 

Combining the N - n equations of (6.2) with the no equations of (6.1) we obtain a 

system of N - n + no linear equations which fully determines the instantaneous 

kinematics of the mechanism. The definition of the rnatrix L(q) as: 

completes the proof of the foilowing theorem: 

6.1. Theorem. For any given configuration. q, an (N - n + no ) x (N + no ) 

matni, L(q). c m  be found, such that a velocity vector, m. is a feasible motion vector of 

the rnechanism, ifand only if 

L(q)m = 0. (6-4) 

Equation (6.4) will be referred to herein as the velocity equation for q. 

6.2. Example. Let us obtain the velocity equation of the simple mechanism shown in 

Figure 6.1. This is a five-bar Iinkage with three inputs and a single output. The input 

velocities are the joint velocities at points A, B and C. The output velocity is the angular 

velocity of the link ED. The general mobility of the mechanism is two. 

There is only one loop and c = 1. The loop equation is: 

wASA + osSB + o c S c  + o o S D +  wESE = 0 ,  (6-4) 

where a+, Sp ( P  = A ,  B ,  C, D) are the joint velocities and the joint screws, respec- 

tively. Since only the planar components of the joint screws are nonzero, they are 3 4 -  

mensional vectos). The output equation is: 

T =-Op 

Therefore, the velocity equation is: 



If point A is the ongin and the x-axis is dong AE, Equation (6.6) can be written as: 

Figure 6.1. A 2-dof redundant mechanism. 

6.3. Example. Another mechanism, dus time with two independent loops is shown in 

Figure 6.2. In this case. we have: n, = n = 2, no = 1. The input velocities are the joint 

velocities at joints A and E. The output is the motion of the siider G. 



Figure 6.2. A 2-dof redundant mechanism. 

The output equation is simple: 

f = - V G ,  (6.8) 

where vc is the joint velocity of the base link with respect to the Link FG. We use the loops 

ABCDE and ABCFG. The two loop twist equations, together with Equation (6.8), Iead to 

the foiiowing velocity equation: 



6.3. Singularity and Singularity Types for 

Redundant Mechanisms 

In this Section we give new, more general de finitions for the six singularity types, fmt 

defmed in Chapter 3. Before that, we must examine how the instantaneous formulation of 

the definition of singularity, as given in Sections 3.3 for non-redundant mechanisms, 

changes when redundancy is possible. 

6.3.1. Singularity 

6.4 .  Proposition. A configuration, q, is nonsingular, if and only if 

r I = n = n  a n d r o = n o .  
4 

Proof. The proposition follows directly from the general definition of singularity, 

Definition 2.3 1. 

Indeed, q is a regular point of the configuration space manifold, D, if and only if 

n = nq. On the other hand, a configuration is nonsingular, only iffi and fo are nonsingular 

at q. Since rl and ro are, in fact, rank DJ and rank D, fo, a configuration is nonsingular, 

only if rI = min(n , n ) and ro = no. 
q 

O 



6.5. Remark. It should be noted that the definition of singularity by means of the 

fomard and inverse kinematics is not applicable in the case of redundant mechanisms. In- 

deed, if Definition 3.5 is applied for a mechankm with n, > no, every nonsingular confi- 

guration (according to the general dennition) will qualify as singular, since the inverse 

kinematics is not solvable in the sense of Definition 3.5(2). For a tmly redundant 

rnechanism, al1 configurations with solvable forward and inverse kinematics (i.e., 

configurations that satisQ the nonsingularity conditions of Definitions 3.5(1) and 3.5(2)) 

must be singular. Indeed, a solvable IIKP would imply r, < no c min(np n& and 

therefore a singular configuration. 

The observations in Remark 6.5 show that the singularity of redundant mechanisms 

cannot be understood in terms of forward and inverse kinematics. However, it can be 

modelled by means of the motion-space formulation, as given in Section 3.6. Indeed, 

Proposition 6.4 is a generalization of Proposition 3.25 for non-redundant mechanisms 

since the two propositions are identical when nl = no. 

The motion-space formulation is used in the presentation of the six singularity types, 

which is given in the following sub-sections. The definitions are generalizations of the 

definitions in Section 3.4. For each of the definitions a generalization of one of the 

statements in Proposition 3.26 is provided. 

6.3.2. Redundant Input 

6 .6 .  Definition. A configuration is a singularity of redundant input (RI) type, i f  
a 

there exist at l e m  n - no + l linearly independent input vectors. OP, . . . , an+@l, 

such thar each of them sarisfies the velocity eqwtion for a zero-output, T = O (and some 

vector of passive-joint velocities, aPj, Le., for every i, the following equation is satisfied 

for some R": 



6.7. Proposition. A necessary and su#icient condition for m, RI-type singularity is the 

ineqdity: 

dim(Ker p,) - dim(Ker p ,  n K e r p d  > n - no. 

or equivulenrly, 

do - dlo > n - no. (6.1 1) 

Proof. The condition (6.11) is satisfied, if and only if there is a subspace of Kerp, .S., of 

dimension greater than n - no, which is complementary to Ker p ,  n Ker p ,  In other 

words, 5 is such that S + (Ker p, n Ker p J  = Ker p ,  and 5 n (Ker p ,  n Ker pJ 

= O, i.e., 5 9 (Ker p, n Ker pJ = Ker p,. This observation proves the Proposition. 

since any basis of 5 provides the "redundant input" vectors required by Definition 6.6. 

while when the existence of such vectoa is given. their linear envelope provides the 

subspace 5 needed to establish Equation (6.1 1 ). fl 

6 . 8 .  Remark. A comparison of the above Definition 6.6 (and Proposition 6.7) with 

Definition 3.6 (and Proposition 3.27. (i)) shows that the definition of RI-type singularity 

has been modified in order to include mechanisms with redundancy. W l e  in the non- 

redundant case an RI-type singularity is associated with the existence of at least one motion 

with zero output and nonzero input. in the redundant case. a whole space of such motions, 

with dimension larger than the degree of kinematic redundaocy. n - no, is required. 

The reason for this difference is that when n > no, the existence of only one motion 

with zero output is no longer a sufficient condition for the occurrence of singularity. 

Indeed, fixing the output to zero removes only no freedoms. which is not sufficient to im- 

mobilize a mechanism with mobility higher than no. Thus, even in a nonsingular configu- 

ration n - no bbredundant-input" motions are expected to exist. This c m  be illusmted with 

the configuration shown in Figure 6.1. A nonsingular configuration is shown, which 



satisfies the "non-redundaut" Definition 3.6. When the output link is fixed, the remaining 

Links fom a four-bar linkage with rnobility of one. It cm be said that according to Denni- 

tion 3.6, every ~ o ~ g u r a t i o n  of a kinematically-redundant mechanism would be singular 

and belong to the RI type. 

On the other hand, Definition 6.6 is correct in the sense that it describes a singular 

confguration, as this is shown in the next proposition. 

6.9. Proposition. (Cornecmess of Definition 6.7) 

AI1 configurations belonging to the RI-type are singular. 

hoof. Equation (6.11) implies 

do > d ,  - d, ,  > n - n o .  

Since do = dim(Ker p,) = dim Mq - dim(1m p,) = nq - ro,we have: 

n -rO > n - no, 
Q 

and therefore, either nq > n or ro c no. According to Proposition 6.4 this implies that the 

configuration is singular. 0 

6 -10  Example. As a simple example of an RI-type singularity for a redundant 

mechanism, let us consider the configuration in Figure 6.3. The mechanism in the figure 

has the same kinematic chah and choice of inputs and outputs as the one considered in 

Example 6.2 and shown in Figure 6.1. 

In the configuration shown in Figure 6.3. the output velocity is zero and the remainder 

of the M a g e  forms a flattened four-bar linkage with mobility two. The maximum number 

of linearly-independent inputs is two, which is greater than n - no. Indeed, the two 

"redundant input" vecton can be chosen by fixing, respectively, the joint velociiy at A and 

at B to be zero. Checking Equation (6.1 l), the mobility with fixed input rmd output, dIo, is 

zero, while the mobility with fixed output is do = 2. The difference, do - dl, = 2, is 

greater than the degree of kinematic redundancy, n - no = 1. 



Figure 6.3. A singular configuration of class (RI, IO). 

6.3.3. Redundant Output 

6 . 1  I .  Definition. A configuration ic a singulnrity of redundant output (RO) rype, if 

there exist a nonzero output. T t 0. and a rector of passive-joint velocities, aP, which 

satisfy the velocity equation for a zero-input, R'I = O: 

6 . 1 2 .  Proposition. A necessary and suncient condition for an RO-type singularity is 

the ineqw fity: 



dim(Ker p,) - dim(Ker p ,  n Ker p d  > 0, 

dl - d,, > 0. (6.13) 

Roof. Equation (6.13) is equivalent to Kerp,- Kerp, # 0. This condition. stating 

that there are motion vectors with zero input and nonzero output, is equivalent to the 

requirement of Defintion 6.10. 0 

6.12. Remmk Comparing the above formulation of the RO-type with Definition 3.9 and 

Proposition 3.26, we note that for this singuiarity type the definition does not change when 

redundancy is istroduced. As a result, for redundant mechanisms the RO-type definition 

does not rnirror the RI-type d e f ~ t i o n  as closely as in the non-redundant case. As we shail 

see later, this leads to a loss of the input-output symmetry in the redundant-rnechanism 

singularity classification. 

The reason for keeping Definition 3.9 is that, unlike Defmition 3.6. it ensures that the 

configuration is singular even when the mechanism is redundant. (See Proposition 6.14 

below). In fact, for redundant mechanisms the requirement for an RO-type configuration is 

even harder to satisQ. Indeed, for dynamically-redundant mechanisms (n, > n), dl will be 

smaller, since when the inputs are fixed to be zero, a greater number of dof may be lost. If 

the mechanism has nonzero mobility when the inputs are zero (Le., dl > O), then a 

kinematically-redundant mechanism wiIl be more likely to have a higher dm, since it has 

fewer outputs. For example, one can note that a five-bar mechanism with three inputs 

(Figures 6.1 and 6.3, Examples 6.2 and 6.10) can have no RI-type singularities. In any 

configuration, if the fmt threg joints are locked no link can move. 

6.1 4. Proposition. (Correctness of Definition 6.1 1) 

All RO-type confgurations are singular. 



follows: 

n - rI = (nq  - n) + (n - r I )  > 0.  
4 

This is possible ody if nq > n or min(nq, n,) 2 n > rr According to Proposition 6.4, 

this impiies that the configuration is singuiar. 0 

6-15. Example. Figure 6.4 depicts an RO-type singula. configuration. The shown 

kinematic chain was introduced in Example 6.3. It can be seen that even when the joint 

velocities at points A and E are zero, the output slider can still move. It is easy to see that, 

in this configuration, df = 1 and dIo = O. Therefore Equation (6.12) is satisfied. 

Figure 6.4. A singularity of class (RO, II). 

185 



6.3.4. Impossible Input 

6.16. Definition. A configuration is a singulanw of impossible input (II) ope, if 

there exists a subspace of 1, S. of dimension higher than the degree of dynamic 

redundancy, nI - n, such that for every vector R' # O in 5 the velociîy e p t i o n  cannot 

be satisfied for uny choice of T mid R'. 

6.1 7 .  Proposilion. A necessary and smcient condition for M II-type singulariry is the 

inequuli~: 

rI < n, 

or equivalently, 

n - n  c d , .  
9 

(6.14) 

Proof. First, we note that rI < n is equivalent to (6.14) because of rI = nq - dr 

The inequality rl < n holds if and only if there is a subspace of 1, S, with dimension 

nI - n or more, such that .5 8 Im p! = I. Since none of the nonzero elements of S is in 

Im pp 5 satisfies the requirements Definition 6.16. CI 

6.18. Remark. Similarly to the Definition of the RI type, the definition of II-type 

singulaities is different in the redundant and non-redundant cases. A cornparison of 

Definition 6.16 and Definition 3.12 or Proposition 3.26(iii) shows that in the redundant 

case the def~tion is more restrictive. It is no longer sufficient to establish the existence of a 

single "impossible input" vector, rather an "impossible input" subspace must be present. 

This means that II-type configurations are more "rare" for dynarnically-redundant 

mechanisms. For example, the 5-bar mechanism with three inputs shown in Figures 6.1 

and 6.3 cannot have an II-type singularity since dI is obviously zero (and therefore, by 

Equation (6.14), an II-type singularity is not present). 



As in the case of the RI-type definition (see Remark 6-81, the requirement of the II-type 

non-redundant-case Definition 3.12 does not gumtee that the configuration is singuiar, 

moreover, for dynamicaliy-redundant mechaaisms this condition is satisfied in al1 configu- 

rations. Indeed, there can be no more than n linearly independent feasible inputs, and when 

n, > n, there must exist input vectors that are not feasiblt for the mechanism. 

Definition 6.16 ensures that the configuration is singular by requiring that II-type 

configurations have "more" impossible inputs than a nonshgular ~ o ~ g u r a t i o n .  When 

n, = n , this is the same as Defuution 3.12 and both defitions are equivalent to the 

inequality rf < n (see Propositions 3 Z ( i )  and 6.17). 

6.1 9 .  Proposition. (Correcmess of Definition 6.16) 

Ali Il-ope confgurations are singular. 

Proof. A configuration is an II-type singularity, if and only if rI < n. Since we have 

n I min(nq, n!), it follows that fi is not of maximum rank and is therefore singular at this 

configuration. CI 

6.2 0. Example. Consider again the configuration shown in Figure 6.4, which was used 

as an example for an RO-type singularity (Example 6.15). We will show that this is an II- 

type singularity as well. As was mentioned in Example 6.15, it is easy to see that d, = I. 

It can also be s h o w  that n, = 2. (Indeed, if oA = oB = O, then point C has no velocity, 

and therefore al1 joint velocities must be zero. Therefore, 2 = n I n, 1 2 ) .  Then, n, - 
n = O and nq - n < dl and according to Proposition 6.17 this implies an II-type 

singularity. This can be established directly by noting that when one of the input velocities 

is zero, the other one must be zero as well and therefore there is a one-dimensional 

impossible input space. (When = O, point B is fixed and then in the four-bar M a g e  

BCDE the joint ai E is locked.) 

This is an example without dynarnic redundancy (n, = n = 2). If we increase nI to 3 

by assuming that the joint at point E is active, then in the same configuration (Figure 6.4), 



dI decreases to zero (Le., when the three inputs are k e d  to zero, ail joints are locked) and 

there can be no II-type singularity . 

6.2 1. Example. Let us consider au example of a mechanism with dynamic redundancy 

in an II-type singularity. Figure 6.5 shows a mechanism with the same kinematic chah as 

the mechanisms in Figures 6.2 and 6.4. 

Figure 6.5. A singular configuration of class (RO, II). 

However, one additional joint is active, narnely the joint ai point E. The configuration is 

such that the points B, C, D, F, G are aligned (and this line is perpendicular to the 



prismatic-joint axis). In this configuration, dl = 1 and n = no = 2. According to 

Equation (6.14). the configuration is an II-singuiarity. It can also be show that do = 1. 

and according to Roposition 6.12 an RO-type singularity is also present 

6.3.5. Impossible Output 

6.2 2 .  Definition. A configuration is a singularity of impossible output (IO) rype. if 

there exists cl vector T for which the velocity equation cannot be satified for any 

combination of ~ O a n d  R'. 

6.23.  Proposition. A necessary und sufficient condition for an IO-type singulatity is 

the mequaliy: 

'O < no' 

or equivalently, 

no - n o  < do .  (6.15) 

ProoJ First, ru < no is equivalent to (6.15) because of ro = n, - do. 

The inequality ro c no holds, if and only if there is at least one output vector, which 

corresponds to no feasible instantaneous motion, i.e., it is equivalent to D e f ~ t i o n  6.22. [7 

6.24. Remark. Comparing the above formulation of the IO-type with Definition 3.15 

and Proposition 3.26, we note that for this singularity type the deffition does not change 

when redundancy is inuoduced. As a result, for redundant mechanisms the IO-type 

definition does not mirror the II-type definition as closely as in the non-redundant case. 

This leads to a loss of the input-output symmetry in the redundant-mechanism singularity 

classification. The reason for keeping Definition 3.15 is that, unlike Definition 3.12, it 

ensures that the configuration is singular even when the mechanism is redundant. 



6.2 5. Propositon. (Correctness of Definition 6.23) 

AIL IO-type confguratiuns are sitzgular. 

Proof. The inequality ro < no is a necessary and sufncient condition for the singularity 

of the output map fo and therefore implies that the mechanism is in a singular configura- 

tion. O 

6.26. Example. The configuration s h o w  in Figure 6.3, and discussed in Example 

6.10, is an IO-type singularity. It can be seen that the joint at point E is locked. (Indeed 

point D cannot have a velocity component paralle1 to the line dong A, B and C.) Also, 

since do = 2, n, = 2 and no = 1 (see Example 6. IO), Equation 6.23 is satisfied. 

6.3.6. Increased Instantaneous Mobility 

6 .27 .  Definition. A configuration is  a singularity of increased instantaneous 

mobility (IIM) type, ifrank L < N - n + no. 

6 .2  8 .  Proposition. An IIM-type is present, if and only if n < nq. 

Proof. Since the output equations are hearly independent, the sum rank L + no does 

not depend on the choice of input parameters. Therefore, just like in the non-redundant 

case. L is singular if and only if n c n,. 0 

6.2 9. Remark. Clearly , an IIM- type singularity occurs if and ody  if the configuration 

is a singular point of the configuration space of the mechanism, D. Therefore, it does not 

depend on the choice of the active joint or the output h ic .  IIM is a propeq of the kinematic 

chah and is therefore not influenced by redundancy. Thus, the configurations of non- 

redundant mechanisms, that have been shown to be IIM-type singularities in previous 

chapters, can be used as examples for the redundant case. It suffices to assume that sorne 

of the passive joints are active or redefme the output. This cannot be done for the other sin- 

gularity types, since they are affecteci by the way the input and output are chosen. 



6.30. Example. Consider, for example, the configuration shown in Figure 6.6. 

Figure 6.6. An (RI, IIM)-class singular configuration. 

The mechanism is similar to the one shown in Figures 6.1 and 6.3, Le., a five-bar 

M a g e  with three input joints and a single output. The flattened configuration is essentiaiIy 

the same as the one used in Example 4.25 to iliustrate IIM-type singularity for (non- 

redundant) HCMs, although in that case there were two inputs and a two-dimensional 

output. Since in both cases we have 2 = n < nq = 3, an IIM-type singularity is present 

for the redundant mechanism as well. For the rnechanism in Figure 6.5, we aiso have: 

n, = 3, n = 2, no = 1 and dIo = O, di = O. do = 2. Applying the singularity-type 

definitions in this section (and Propositions 6.7,6.12, 6.17 and 6.23) we conclude that the 

configuration s h o w  also belongs to the RI type but does not belong to types RO, IO, or II 

(it does not belong to the RPM-type either, as c m  be seen by applying Definition 6.31 

below). This indicates that the combinations of singularity types for redundant mechanisms 

obey d e s  different fkom the ones for non-redundanr mechanisms, revealed in Section 3.7. 

For instance the present example proves that Proposition 3.29(ix) does not hold in the 

redundant case, 



6.3.7. Redundant Passive Mobility 

6.3 1.  Definition. A configuration is a singularity of redondant passive motion 

(RPM) type, if there exists a nonzero passive-joint-velocity vector, @ #  O ,  which 

satisjïes the velocity equution for a zero input and a zero outpu, Le., 

6.32.  Proposition. An RPM-type singularity is present. if and only if 

dIo > O .  (6.17) 

hoof: The inequality (6.17) holds, if and only if the intersection Kerp, n Ker p, has 

a dimension of at least one. Therefore, there is a nonzero motion vector, which is mapped 

into zero by both p, and p, i.e., a nonzero instantaneous motion with zero input and zero 

output. 0 

6.3 3. Remark. The above definiton is identical with D e f ~ t i o n  3.2 1. As we wiiI prove 

in the next Proposition 6.34, the definition requirement ensures that the configuration is 

singular, so there is no need to m o m  the definition for the redundant case. In general, the 

chances for the existence of an RPM-type singularity improve when the combined total of 

the inputs and outputs is decreased, and vice versa. Therefore, dynarnic and kinematic 

redundancy have a different effect on RPM-type singularities. A s d e r  number of outputs 

facilitates the occurrence of RPM-type singularities, while an increase in the number of 

active joints makes it more mcult for RPM-type configurations to occur. 

6.34.  Proposition. (Correcmess of Definition 6.31) 

AI1 RPM-type configurations are singular. 

Proof. Since dI 2 dlo , the Inequaiity (6.17) implies dI > O. Now the proof can proceed 

as in the proof of Proposition 6.14. From dI = nq - r, it foilows: 

n - r! = ( n ,  - n )  + ( n  - rI )  > 0 .  
4 



This is possible only if n, > n or min(n,, nl) 2 n > rr According to Proposition 6.4, 

this implies that the configuration is singuiar. CI 

6.35. Example. As an illustration of the RPM singularity type, we use another configu- 

ration of the kinematic chah described in Examples 6.3,6.15 and 6-21. The codiguration 

considered here, show in Figure 6.7, is very similar to the one in Figure 6.5, but this time 

the point G is not aligned with B, C, D, F.  Sirnilady to Examples 6.3 and 6.15, it is 

assumed herein that the mechanism has only two active joints. namely A and E. 

Figure 6.7. A singular configuration of type (RPM, II). 



It is verified that dIo = d, = 4 = 1 and n, = n = 2. Then, it is easy to check that 

the o d y  singularity types that are present are of the RPM and II types. We note that the 

singularity class (RPM, II) is not among the ones occurring in non-redundant mechanisrns 

(see Table 3.1). The passive motion, which can take pIace with the input and output equal 

to zero, occurs with an instantaneous motion of point C dong a line normal to the line BD. 

It c m  be noted that, if the joint F were active as weU, the configuration would no longer be 

of the RPM type. 

Fmaliy, to sumrnarize the present section, we give Table 6.1. 

Table 6.1. Definitions of the singularity types for mechanisms with redmdancy. 

h 

Type Condition 



6.4. Classification of Singularïties 

6.4.1. Combinations of singularity types 

As a first step to a complehensive generai classification of the singularities of arbitrary 

mechanisms, we study the interdependence of the six singularity types. A singular 

configuration never belongs to a single singularity type but rather to a combination of 

singulariry Vpes. The following proposition provides the d e s  which wiH aiiow us to 

distinguish the possible combinations h m  the impossible ones. 

(ii) If q is an RO-type singularity, then d, - d ,  > O. We assume that q is not an IIM- 

type singularity, i.e., n = n,. Therefore, 

4 2  d l -  d lo  > O = nq - n. 



However. dI > n - n, implies an II-type singularity. 
9 

(iio q E {II} implies dI > nq - n. Assume the confîguration is not an RPM-type 

singularity, or ,  equivdently, that dIo = O. Therefore , we cm write: 

d ,  - dIo = dI > n, - n 2 0 ,  

which, according to Proposition 6.12, implies that q is an RO-type singularity. 

(ivl The condition for an IO-type singuiarity is do > n, - no (Proposition 6.23). We 

assume that the singdarity is not of the RPM type, Le., dm = O. Thus, we have 

do - dIo = d o  > nq - no 2 n - O' 

i.e., do - dIo > n - no, which is the condition defining an RI-type singularity. 

(v) An ReM-type singularity is given, thus, dIo > O. Assume q is not an IIM-type 

singularity, i.e., n, = n. Since dI is always at least as large as dIo, it foliows that: 

dI 2 dl* > O = nq - n. 

This proves that d, > n,, - n, Le., the configuration is an II-type singularity . 

(vi)  An D[M-type singularity is equivalent to nq > n. We assume dlo = O, (Le., that the 

configuration is not an RPM-type singularity). Then, 

do - dIo = do = n - ro 2 n, - no.> n - no 
4 

Above, we have used no 2 ro (the rank of a map cannot exceed the dimension of the 

target space). Thus, the inequality do - dm > n - no is obtained and this ensures the . 

presence of an RI-type singularity at q. 

(vii) It is given that dl > dlo (RO-type singularity). Let us assume that the configuration 

does not belong to the II type, hence dl I nq - n. Then, we can write: 

do - dIo > do - d ,  2 do - (nq - n )  = n - (n, - d o )  = n - ro 2 n - n o .  

Above, the first two inequalities follow from dI > dIo and dI 5 nq - n., respectively. 

The last inequality uses ro 5 no. As a result, it is established that do - d,, > n - 
no, i.e., the configuration belongs to the RI type. 



(viii) q is an IO-type singularity. This requires do > n, - no. If the configuration is 

not an II-type singuiarity as weli, then dl L nq - n. We have: 

do - dIo > (np - R ~ )  - dI0 2 (nq - no) - d I  2 

(n, - no) - (nq - n) = n - no. 

The second inequality uses di 2dIo- Once again, we &tain do - d ,  > n - no, 

hence the ~onfi~gration belongs to the RI type. 

(ix) It is given that q belongs to both the 11 and RI singularity types. This implies two 

inequalities, d, > nq - n and do - d ,  > n - no, respectively. If we assume that q 

is not of the IO type as well, we must also have do = n, - no. Using these conditions 

the following sequence of inequalities can be can be written: 

d ,  - dro > ( n q  - n) - dI0 - = (nq - n) + no - no - dl* - 
(n, - no) - d lo  - (n - n o )  = do - dlo - (n - no) > 0. 

This proves d, > dro and therefore the occurrence of an RO-type singularity. 0 

6.3 7. &mark. The above proposition is analogous to Proposition 3.29 for non- 

redundant mechanisms. Cornparing the two, one can note that only part of the statements of 

Proposition 3.29 could be proven for redundant mechanisms. Six of the ten points in 

Proposition 3.29 are present in Proposition 6.36 . The remaining four statements, namely 

(v), (vi), (vii) and (ix), have ken  weakened and transformed into Statements (v), (vi) and 

(ix) of Proposition 6.36. In fact, we already presented proof that these four parts of 

Proposition 3.29 are not correct for redundant mechanisms. In Example 6.30, a 

configuration which belongs only to the types IIM and RI was shown (Figure 6.6). This 

example disproves Proposition 3.29 (vi) and (ix). Another configuration, introduced with 

Example 6.35 (Figure 6.7), belongs to the RPM and II types and to no other type. 

Therefore, Proposition 3.29 (v) and (x) do not hold for redundant mechanisms either. 



The goal of this section is to classify the set of all singulanties of al l  mechanisms. As in 

Chapter 3, this set is divided into classes. using as a criterion the combination of singularity 

types to which a configuration belongs. More precisely, two configurations are considered 

"equivaient", i.e., they belong to the same singularîty class, when they belong to exactly 

the same singularity types. This is a relation of equivalence which divides the set of all 

singularities into non-intersecting classes. In this Sub-section we identQ the combinations 

for which there exist configurations and which therefore correspond to a non-empty 

singularity class. Thus, by listing ail non-empty singularity classes, we develop a 

comprehensive singularity classification . 

6.38.  Proposition. Let q be a singular configuration. nien, q belongs to at least one 

of the types IO, II, and ITM. 

Proof. According to the definition of mechanism singularity in Chapter 2, a configura- 

tion, q, is singular in (at least) one of three cases: q is a singular point of C; q is a singular 

point of fo; and, q is a singular point offi. 

The fvst case, when the conf~guration space is singular, is equivalent to the presence of 

a singularity of the IIM type. 

When fo is singular, we have ro = rank fo c no, which is equivalent to IO. 

Finally, when q is a singular point offi, we have rI = rank fi < min(np nq). If we 

assume that the configuration is not an IIM-type singularity, Le, n = nq, then, it foilows 

that r* < min(n,, nq) 6 nq = n. However, ri < n implies an II-type singularity (Propo- 

sition 6.17). [3 

6.3 9. Proposition. Let q be a singular configuration. nien. q belongs to at l e m  one 

of the types RO, RI, and RPM. 

Proof. From Proposition 6.38, it follows that each singularity belongs to at l em one of 

the 1-types. From Proposition 6.36 (iii), (iv) and (vi), it is evident that a singularity of any 



1-type (Le.. II, IO or IM) must belong to at lest one of the R-types (i.e.. d* RO or RPM) 

as weu. III 

other qpes, i f ad  only if S is mrked with "Y" in Table 6.2. 

- 
IO 
ard 
IIM 

- 
Y - 
- 
Y - 
- 
Y - 
- 
Y - 

Table 6.2. Possible combinations of singularity types for redundant mdchhsm- 

Proof. To prove the theorem, we need to establish that (i) al1 combinatior~s marked 

with "Y' in the table can never occur and (ii) there exist mechanisms and c*nfi~*tio*s 

with the marked singularity-class combinations. 

(i) There are six singularity types and therefore there are 26 = 64 combidations (one of 

them is the nonsingular combination). From Propositions 6.38 and 6.39 we conclude it 

is sufficient to consider the mes that include at Ieast one 1-type and one P - t y ~ e  These 



combinations are represented by the 49 cells of Table 6.2. The ceii in the i-th row and j-th 

column of the table corresponds to a combination of aii singuiarity types listed to the left of 

the i-th row and on the top of the j-th column. 

We must show that the combinations corresponding to blank cells of the table are 

impossible. This is proven with the help of Proposition 6.36. Each of the 22 empty cells 

represents a combination of singularity types which, if it occumd in some configuration, 

would violate (at least) one of the statements of Proposition 6.36. Table 6.3 illustrates 

which statement each blank cell violates. 

IO IIM 
aid 
II 

(iii) y 

- 
IO 
mi 
II 

ard 
lIM 

- 
( iii) - 
(iv) - 
Y - 
Y - 
Y - 
Y - 
Y - 

Table 6.3. Impossible combinations of singularity types for redundant rnechanisms. 

(ii) We need to give an example for each of the 27 remaining combinations. However, 

we aiready know that 21 of them are possible since it was proven that they occur for non- 

redundant mechanisms. Two additional combinations were estabiished in Exarnples 6.30 

(RI, IIM) and 6.35 (II, RPM). The remaining four combinations, namely (RI, IO. UM), 



(RO, RPM, II), (RPM, IL IIM) and (RI, RPM, I M )  are illustrated by the four examples 

which follow. 

6.41. Example. The configuration shown in Figure 6.8 is a singuiarity belonging to the 

types IO, IIM and RI but to no other type. The mechanism is similar to the one used in 

Examples 6.3, 6.15, 6.21, and 6.35, however in the present case the joint F is prismatic 

and assumed to be active, Le., an input joint. It can be established by inspection that 

dlo = O, dl = O, do = 3 and nq = 3. Using the inequalities in Table 6.1, it is easy to 

establish that the combination of singuiarity types for this configuration is (FU, IO, IIM). 

Figure 6.8. An (RI. IO, IDA)-class configuration 

6.42. Example. The configuration shown in Figure 6.9 is the same as in Figure 6.5 

(discussed in Example 6.2 1). However, in the present example, the joint F is passive, ihus 

n, = n = 2. It is found that dlo = 1, dl = 2 ,  do  = 1 and n, = 2. According to the 

defining conditions given in Table 6.1, the configuration is of the singularity-type 

combination (RPM, RO, II). 



Figure 6.9. An (RO, RPM, II)-class singular configuration. 

6.43. Example. In Figure 6.10 we present yet another variation of the five-bar-and- 

slider mechanism. Here, ali rotary joints are aligned and two of them, A and C, coiacide. 

The joint F is active (as well as joints B and D), therefore n, = 3. By inspection, it is 

established that dm = 1,  dl = 1, do = 3 and n, = 3. This implies that the configuration 

belongs only to types RI, RPM and IIM. 



Figure 6.10. An (RI, RPM, IIM)-class singular configuration. 

6.44. Example. Finaily. let us consider the rnechanisrn shown in Figure 6.1 1. 

Figure 6.11. A 3-dof redundant planar mechanism. 



The output is the velocity of the slider, i.e., no = 1. The joints at points A, F and K 

are active and thus nl = n = 3. In the configuration shown in Figure 6.12, it is not 

difficult to see that-dlo = 3, dl = 3, do = 4 and n, = 5. This translates into a singularîty 

of the (RPM, II, IIM)-class. 

Figure 6.12. An (RPM, II, IIM)-class singular configuration. 

With this the proof of Ttieorem 4-40. is completed. 

6.4.3. Singularity classifications for partially non-redundant mechanisms 

In this Sub-section, we modify the general classification estabfished with Theorem 6.40 

and obtain classifications for two important special cases of redundaot mechanisms. 

Herein, we are concemed with partially non-redundant mechanisms, Le., mechanisms for 

which at least one of the two non-redundancy equalities, n = no and n = np holds. A 

mechanism is referred to as kinematically non-redundant when n = no (and n I nl). 

Ntematively, a mechanism is dynamically non-redundant when n = n, (and n 2 no). 



Most redundant mechanisms appearing either in appiications or in the literature belong to 

one of these groups, therefore the two classifications presented below are of interest. 

When one of the non-redundancy conditions holds, some of the statements of 

Proposition 3.29 which are generally not mie for redundant mechanisms can be proven. 

This rules out some singularity combinations and as a result two classifications with 24 

non-empty classes each are obtained. 

6.45. Proposition. Let the rnechanism be kinematicaily non-redwidant, i.e.. n = no. 

(0 q E { R P M }  3 ( q E ( I I }  and q E {IO} ) or q E {IIM}. 

(ii) q~ {II}  * q E {IO} o r q  E {RO}. 

Proo f 

(i) Let q be an RPM-type singularity but not an IIM-type singulariw. Proposition 

6.36 (v) implies that the configuration belongs to the II type. It remains to establish 

that q is an IO-type singularity as well. E IRPM} implies dm > 0. Since there is 

no IIM-type singularity, we must haven = nq. Then, we can write: 

d o Z d I o > O = n  - n =  
4 nq - " 0 .  

where the last equality uses the kinematic non-redundancy. Thus, it is established that 

do > nq - no, which is equivalent to the presence of an IO-type singularity. 

(ii) q E {n} implies dl > n, - n. We assume that there is no IO-type singularity, 

therefore, do = nq - no. We need to show that d, - dm > 0. 

To establish this we will use the inequality sequence in the proof of Proposition 6.36 

(ix). We notice that this sequence can be used to prove dI - dlo > 0, even when in the 

last inequality of the sequence the sign "9' is replaced with "Y, Le., when the 

sequence is modifed as follows: 

- dl  - dIo > ( n p  - n) - dIo  = (nq - n )  + no - no - dIO - 
(n, - no) - d10 - (n - no) = do - dlo - (n - no) 2 0 .  



Therefore, to be able to use the above sequence we need only do -dm 2 n - no 

(since the other equalities and inequdities in the sequence were already established in 

the proof of Proposition 6.36 (v)). However, this 1 s t  inequality is implied by the 

kinematic non-redundancy, since 

do -dIo 2 O =n -no. /II 

6.4 6. Proposition. Let the mechanisnt be dy~amically non-redundant, i.e.. n = np 

fi) q~ { I I M }  ( q ~  ( R I )  a n d q ~  {RO} ) o r q  E {RPM), 

(ii) q E ( I I}  q E ( I O }  or  q E { R O } .  

Proof 

(i) Let q be an IIM-type but not an RPM-type singularity. From Proposition 6.36 (vi) 

it follows that the configuration belongs to the RI-type. It remains to establish that q  is 

an RO-type singularity as weli. The IIM-type singularity is characterized by n c nq. 

When there is no RPM-type singularity, we have dfo = O. Then, it follows that: 

d, - dIo = d l  = n - rI  > n - r, = n f  - r f  2 0 -  
Q 

This yields d, > dl*, which is equivalent to the presence of an RO-type singula.rity. 

(il) Assuming that there is no IO-type singularity, we have do = n, - no. and (fmm 

the given RI-type singularity) do - dlo > n - no. 

As in Proposition 6.45 (ii), to prove the statement we wül use a variation of the 

inequality sequence in the proof of Roposition 6.36 (ix). We notice that this sequence 

can be used to prove d,  - dlo > O even if in the fmt  inequality of the sequence the 

sign "9' is replaced with '*2", namely: 

d I  - dlo  2 (n, - n) - dIo = (n, - n )  + no - no - dro - - 

(nq - no) - dIo - (n - n o )  = do - dlo - (n - no) > 0. 

Therefore, to be able to use the above sequence we need only to establish the additional 

(first) inequality, dl 2 nq - n. This, however, is implied by the dynamic non- 

redundancy, since 



6.4 7. Theorem Let S be un arbitrary combination of some of the sir singularity types. 

There exists a kinentntically non-redundant rnechanism with a configuration. q, which 

belongs to all types m S and ru no other types, i fad only if S is mnrked with 'Y" UI Toble 

6.4. 

RI and RO 

RPM 

RI and RPM 

RO and RPM 

RI and RO and RPM 

IO II 
mi mi 
IIM m 

Y 

Y Y 

Y 

Y 

Table 6.4. Possible combinations of singularity types for 

kinematically non-redundant mechanism. 

Proof. Similarly to the prwf of Theorem 6.40, the present proof has of two parts. 

(i) To prove that the blank ceiis correspond to impossible confi~gurations, we can use 

Proposition 6.40. The 22 configurations marked with blank ceiis in Table 6.2 are impossi- 

ble for any mechanisrns, including kinematically non-redundant mechanisms. There are 



three additional blank ceUs in Table 6.4, narnely (RPM, II), (RPM, II, IIM) and (ROT 

RPM, II). These singularity-type configurati011~ are disproved by Roposition 6.45. 

(ii) We cm use Theorem 3.30, to establish that 2 1 of the combinations are possible. 

(Since non-redundant mechanisms are a special case of kinematically non-redundant 

mechanisms). The remaining three are (RI, IIM), (RI, IO, IBQ and (RI, RPM. IIM). In 

the proof of Theorem 6.40, the singularity classes were iliustrated with kinernatically 

redundant mechanisms. Below we present examples of mechankms with n = no. 

6.48. Example. To prove the existence of (RI, IIM) singularities we consider a four-bar 

linkage, Figure 6.13. The output is defued as usual, while dynamic redundancy is 

introduced by assuming that the joint at point B is active (in addition to joint A). Thus, we 

have nI = 2 r  n = no = 1. In the flattened configuration shown in the figure, the 

parameters determining the singularity types are dlo =O,  d I =  O, do = 1 ,  n, = 2. 

according to Table 6.1, the configuration belongs only to the types RI and IIM. 

Figure 6.13. An (RI, IIM)class singular configuration. 

6.4 9. Example. Let us consider the five-bar linkage in its flattened configuration shown 

in Figure 6.14. The output is the position of point C, while there are three input joints at A, 

B and E.  Therefore, nl = 3, n = no = 2. It i s  checked that dro = O, d ,  = O, do = 2, 

"i, 
= 3. This implies a singularity of the CRI, 10, IIM) class. 



Figure 6.14. An (RI, IO, IlM)-class singularity. 

6.50. Example. We consider the configuration shown in Figure 6.15. The figure 

resembles Figure 6.10. however the present mechanism is composed using a four-bar 

linkage rather than a five-bar. As a result, the mobility is 1 rather than 2. The output is the 

motion of the slider, the input joints are B and E .  Thus, n, = 2,  n = no = 1 .  W e  

establish that dlo = 1, d ,  = 1 .  do = 2, n, = 3, which implies a singularity-type 

combination (RI, RPM, IIM). 

Fibre 6.15. A singular configuration of class (RI, RPM. IIM). 

This completes the proof of Theorem 6.47. 0 

6.5 1 .  Theorem Let S be an arbitrary combinarion of some of the six singulariry types. 

There exists a dynamically non-redundant mechanism with a configuration, q, which 



beiongs tu al2 types in S and to no other tvpes, ifand oniy if S is marked with "Y" in Toble 

6.5. 

Table 65 .  Possible combinations of singularity types for 
dynamicdy non-redundant mechanisms. 

Proof. Similarly to the previous Theorern 6.47, we need to prove that three combinations 

are impossible and establish that three other combinations are possible. 

(i) The three classes. which are impossible for dynamicail y non-redundant mechanisms, 

but are possible for a general (redundant) mechanism are (RI, IIM), (RI. IO, IIM) and (RI. 

RPM, IIM). Indeed, if such singularities were to exist for some mechanisms this would 

contradict Proposition 6.46. 

(ii) The three classes, which occur for dynamically non-redundant mechanisms. but are 

impossible for non-redundant mechanisms are (RPM, II), (RO, RPM, II) and (RPM, II, 



IIM). The existence of singularities h m  these classes is confimied by Examples 6.35, 

6.42 and 6.44, respectively. 0 

6.5. Singularity Identification 

In this Section, we address the problem of singularity identification, already introduced 

in Chapter 5. Herein, the techniques developed in Chapter 5 for the singularity 

identification of non-redundant mechanisms are generalized and made applicable to 

redundant mechanisms as weU, 

6.5.1. Conditions for singularity 

The velocity equation, Lm = 0, can be written in the form: 

LTT + L,R' + L ~ R ~  = o .  

As in the non-redundant case, we define two sub-matrices of L, narnely LI = [LTLp] and 

Lo = [L&,,]. When the rnechanism is redundant, these matrices are rectangular. The di- 

mensions of LI and Lo are: (N - n + no) x (N - ni + no) and (N - n + no) x NT 
respectively . 

6.52. Lemmu. 

(0 n = N + n o  - r a n k L ,  4 

( ii) do  = N - rank LOT 

(iii) d l  = N - n i  + no - rank L I ,  

(iv1 40 = N - nI - rank L,. 

Proof 

(i) By definition. no is the dimension of the space of feasible instantaneous motions. 

This space is isomorphic to the the space of solutions of the velocity equation. i.e., the 



space of al1 m, such that Lm = 0. Therefore, n, = dirn(Ker L). Since L has 

(N + no) columns, dim(Ker L) + rank L = N + no, which proves (i). 

(ii) By definition. do = dim(Kerp&, is the dimension of the space of feasible instan- 

taneous motions with zero output. This space coincides with the space of vectors 

m = ( O ,  0: RP), which are solutions of the velocity equation. Therefore, do is, in 

fact, the dimension of the space of solutions of the equation [LaLp]x = O, Le., 

do = dim(Ker Lo). Now, (ü) follows from the foilowing equality: 

rank Lo + dim(Ker Lo) = N. 

(iii) We know that dI = dim(Kerp,). Kerp, is the space of motions with zero input. It 

is isomorphic to the space vectors m = (T, O, RP) such that L m  = O,  or 

equivdently to the solution space of Lq = O. Therefore, dr = dirn(Ker Ld and since 

LI has (N - ni + no ) columns, we have (iii). 

(iv) By definition, dIo = dirn(Kerp, n Ker pd,  i.e., d ,  measures the dimension of 

the space of motions with zero input and zero output. These motions are, in fact, given 

by the solutions of the equation L@ = 0, and therefore 

dIo  = dim(Ker L p )  = (N - nI) - rank L,. 

6.53. Proposition. 

f i )  q E {RI} o rank Lo c rank L,+nI- (n-no), 

(ii) q E { R O )  o rankLr<rank  L ,+no ,  

(iii) q E [RPM) o rankL, < N - n ,  

(iv) q E (II) o rank LI c rank L - (nI - n), 

(4  q E (IO) w rankLo< rankL, 

(v i )  q~ (IIM} o r a n k L < N - n + n Q  

(vii) q~ {IO) orqE (IIM} oLoiss ingular ,  



(viii) q E {ROI orq E {RPMJ o LI is shgular. 

Proof. 

(i) An RI-type singularïty is present if and only if do - dm > n - no (Table 6.1). Applying 

Lemma 6.52, we have 

do - dlo = (N - rank Lo) - (N - nI - rank Lp) = rank L, + ni - rank Lo. 

Therefore the denning inequality for the RI type is equivdent to: 

rankLp+ni-rankLosn-no,  

which is equivalent to the inequality in (i). 

(ii) From the Lemma 6.52, we obtain: 

dr - dlo = (N - nI + no - rank LI) - (N - n* - rank L,) = rank Lp - rank LI + no. 
A necessary and sufficieut condition for the RO-type singularity is the inequality: dl > 

dro (Proposition 6.12). From Lemma 6.52, this is equivalent to 

N - n l + n o  -rankLI>N-nI-rankLp, 

l.e., 

rank L, + n, > rank LI. 

(iii) An RPM-type singularity occurs when dro > O. According to Lemma 6.52 (iv), this 

is true exactly when 

N - n, - rank Lp > 0, 

or, equivaiently, when rank L, < N - n,. 

(iv) The 11 singularity type is defined with the inequality dl > nq - n. Lemma 6.52 

implies that this inequality is equivalent to: 

N - n l + n o - & L I > N + n o  -rankL. 

The above is obviously equivalent to the condition in (iv). 

(v) The necessary and sufficient condition for an IO-type sùigulaity is do > n, - no. In 

this, we substitute the expressions for do and n, from Lemma 6.52: 

N-rankLo>N+no  -rankL-no, 



i .e., 

rank Lo < rank t. 

(vi) Equivalent to Definition 6.27. 

(vii) FoUows h m  (v) and (vi). Indeed it is always true that 

rank Lo 5 rank L 5 N - n  +no. 

When the rnatrix Lo is nonsingular, we have equalities and neither an IO- nor an 1-type 

singularity are possible. When Lo is singular, at least one of the above inequalities 

must be "4' and therefore either an IO- or IIM-rype singularity is present 

(viii) Foiiows from (iii) and (iv). The maximum rank of LI is N - nl + no. For any 

configuration, it is true that: 

rankLIIno  + rankLpSN-nl+no. 

LI is singular, if and only if 2" c m  be replaced in at least one of the above 

inequalities. From (iii) and (iv) it is evident that LI is singular, if and only if either an 

RO- or an RPM-type singularity is present. 

O 

6.5 4. Proposition. For al1 mechanism (including redmdant ones), a configuration, q. 

is nunsingulur if and unly if both the mairices LI rmd Lo are nonsingular at q. 

Proof. When either LI or Lo is singular, it is clear from Proposition 6.53 (vii) and (viii) 

that the configuration is singular. It remains to show that when the matrices are both non- 

singular the configuration must be nonsingular. We assume that q is singular. Then, q 

belongs to at least one of the types: IO, II, IIM. An IO- or IIM-type singdarity implies that 

Lo is singular (Proposition 6.53 (vii). Therefore, q must be an &type singularity. Then, 

by Proposition 6.53 (iv) and since rank L S N - n + no, we have: 

rank LI < rank L - (nl - n )  S N - n* + no, 

Le., LI has less than maximum r d .  



6.55. Rernark. A cornparison of Propositions 6.53-4 with Theorem 5.1 and 

Proposition 5.2 for non-redundant mechanisms shows that the matrices LI and Lo continue 

to play a key rde in the identification of singuiarities and their types. Theorem 5.1 remains 

true in the redundant case as proven by Theorem 6.54. The necessary and sufficient 

conditions for the different singularity types, as established by Proposition 6.53 (i)-(vi), 

are modified versions of the conditions (i)-(vi) in Proposition 5.2. As was the case with the 

de f~ t ions  in Section 6.3, the singularity conditions for redundant mechanisms lack the 

input-output symrnetry of the corresponding results for non-redundant mechanisms. In 

addition, we note that statements (vii) and (viii) in Proposition 6.52 are weaker than the 

corresponding points in Proposition 5.2. As we s h d  see in the next Sub-section these 

variations of the singularity conditions require some changes in the identification methods 

as well. 

6.56. Proposition. Let the rnechanisrn be kinematically non-redundant, Le.. let 

n = no. Then, 

q E {RI) orq  E (RPM} o L o  is singular. 

Proof. When n = no, the matrix Lo is square of dimensions N x N, therefore, it is 

singular when rank Lo c N. For any configuration the following inequalities hold: 

rank Lo I nl + rank Lp 9 N. 

Therefore, Lo is singular, if and only if either 

rankLo<nl+rankLp or rankLp<N-nr. 

This, according to Proposition 6.53 (i) and (iii) is equivalent to RI or RPM. 0 

6.5 7. Proposition. Let the mechanisrn be dynamically non-redundant, Le.. let n = n, 

Then, 

q E { I I }  u r q  E {IIM) o Lr is singular. 



Proof. When n = n, the matrix LI is square of dimensions (N - n + no), therefore it is 

singular when rank Lo < N - n + no. For any configuration, the foilowing inequalities 

hold: 

rank Lr  S rank L I N  - n  + no. 

Therefore. LI is singuias if and only if either 

rank LI c rank L or rank L c N - n + no. 

The fmt of the above inequalities is equivalent to the presence of an II-type singularity 

according to Proposition 6.53 (iv) (note that n, - n = O). The second inequality the 

condition for mM. f l  

6.5.2. Identification and classification methods 

The singuiarity conditions derived in Sub-section 6.5.1 can be used to identiS, and 

classify ail the singularities of a specific mechanism. Herein, we discuss the methods for 

achieving this goal. The aigorithms are similar to the ones proposed in Chapter 5 for the 

singularity analysis of non-redundant mechanisms, however some modifications are 

necessary due to the variations in the singularity conditions. 

When the goal is only to find the singularities, without necessarily determining to 

which class each singularity belongs, an algorithm analogous to the one presented in Sub- 

section 5.3.1 can be used. The only modification will be necessary by the fact that the 

matrices LI and Lo are rectangular for redundant mechanisms. Therefore, in Steps 3 and 4 

the determinants of LI and Lo cannot be used. Instead, each of these steps will include the 

solution of a system of equations, namely that all minors of maximum dimension are equal 

to zero. 

For the determination of the singularity classes of a given redundant mechanisrn a 

modified version of the aigorithm presented in Sub-section 5.4.3 is used: 

( 1) Find al1 feasible q satisfying condition (vi). 



(2) Emd ail feaUble q satisfying condition (iii). 

(3) Classify{l}u(2}: 

For { 1 ) , check (iv) and (v). Obtain 4 sets: 

m; mm; IIMgrIo; rn&Ir&rO. 

For {2}, check (i) and (ii). Obtain 4 sets: 

RPM; RPM&RI; IKMBrRO; RPM&RI&RO. 

F i d  ail the intersections of each set in (3.1 } and each set in (3.2). 

Obtain 12 classes. (These are the 12 classes that belong to the 

IIM and RPM types. see Table 6.2) 

Subtract (2} from each set in {3.1}. 

Obtain 2 classes, namely 

(RI* RO, II, IIM), (RI, RO* K IO, m, 
and 2 sets, namely 

Tl[M and IIM&IO, both with no RPM. 

(3.4.1 ) Check (5) for the 2 sets. 

Obtain 4 classes, namely 

(rn, RI), (IIM* RI, ROI, 

(IO, IIM, RI) and (IO, IIM, RI, RO). 

Subaact { 1 } from each set in (3.2). 

Obtain 2 classes, namely 

(RI, RPM, II, IO) and (RI, RO, RPM, 11, IO), 

and 2 sets, namely 

RPM and RPM&RO, both with no IIM. 

(3.5.1) Check (v) for the 2 sets. 

Obtain 4 classes, namely 

(RPM, II), (RPM II* IO), 

(RO, RPM, II) and (RO, RPM, II, IO). 



(4) Find al1 q satisfying condition (vii). From these subtract ( 1 } u {2}. 

(5 )  Fmd ail q satisfying condition (viii). From these subtract { 1 ] u (2).  

(6) htersect {4} and (5 } . Obtain 3 classes, namely 

(RI, IO), (RO, and (RI* R a  10, m. 

6.6. Summary 

In this chapter, a general framework for the singularity analysis of redundant 

mechanisms was developed. This was achieved by the generalization of the ideas 

introduced in Chapters 3 and 5 for non-redundant mechanisms. The six singularity types, 

were re-introduced with new, generalized definitions which rernain relevant even when the 

rnechanism is redundant. Using the motion-space mode1 of instantaneous kinematics, the 

interdependence of the singularity types was exarnined. A comprehensive classification of 

the singular configuration of arbitrary mechanism was obtained. It was shown that, there 

are 27 different singularity classes, which can occur for various redundant mechanisms. 

Furthermore, the problem of singularity identification and classification of specific 

mechanisms was addressed. New necessary and sufficient conditions for the occurrence of 

each of the singularity types were derived. The aigorithms for the suigularity analysis of 

non-redundant mechanisms, introduced in Chapter 5, were modified in a way that allows 

their application to redundant mechanisms. 



CHAPTER 7 

CONCLUSIONS 

7.1. Summary and Contributions of the Thesis 

This thesis presents a new, general. approach to the study of mechanism singularity. 

Ualike many previous works, this investigation is not limited to a narrow class of 

mechanisms. On the contrary, the central objective has been to address the problems of 

mechanism singularity in a most general setting, namely, to consider arbitrary singular 

configurations of both non-redundant and redundant mechanisms with arbitrary kinematic 

chains. Hence, the theoretical results of the thesis provide general insight into the 

kinematics of mechanical systems, while the proposed methods for singularity analysis and 

identification are applicable to al1 mechanisms, including ones with multiple closed loops 

and a high number of degrees of freedom. In fact, the dissertation places a special emphasis 

on the snidy of mechanical devices with complex kinematic chains, thus contributing to 

those increasingly important areas of robotics research and application (such as pladorm 

manipulaton, waiking machines, grasping), where non-serial, high-dof architectures play a 

centrai d e .  

The main contributions of this work c m  be briefly summarized as foIiows. The thesis 

contains a re-formulation of mechanism kinematics in the geometnc and topological 

language of a novel mathematical model. Mechanical singularity has k e n  examined in the 

terms of this model and thus a general yet rigorous mathematical definition of singular 



conFgurarions for arbitrary mechanisrns has been proposeci. When the mathematical model 

is appiied to the relationship between the joint and output velocities, a new, unifying 

frcunework for the interpretation a d  clarsifcan'on of mechanlm2 singulcYties is obtained. 

This framework based on the newly introduced six sinpuiarity types, is applicable for 

arbitrary non-redundant as weii as redundaut mechanisms. Furthemore, in the terms of 

this framework, mathematical tools, such as singulan'ty criteria anù idenMcution methuds 

have been developed for the study of the singularity set of both non-redundant and 

redundant systems. The analysis and classification of the singularities of hybrid-chah 

manipulators has k e n  examined in detail, which has r d t e d  in new mathematical took for 

the kinematic analysis 4HCM.s. 

Our mathematical model of mechanism position kinematics was introduced in Chapter 

2. There, general, abstract kinematic systems were defmed as families of srnooth c w e s  on 

manifolds. Kinematic c h a h  were introduced as kinematic systems with specific 

configuration spaces, which c m  be described in t e m  of a co~ectivity graph and a joint- 

type distribution function, while articulated systems were defmed as kinematic chains with 

a given iink-geometry map. This aUowed the d e f ~ t i o n  of a mechanism as an articuiated 

system where two subsysterns, namely, the input and output systems were identified. The 

maps between the configuration space of the mechanism and the configuration spaces of 

these two systerns were defined as the input and output maps of the mechanism. The local 

geometncal properties of the configuration space as well as the input and output maps were 

then used to define singularity: At a nonsingular configuration, the mechanism 

configuration space must locally be a srnooth manifold, whiie the two maps must be 

srnooth and regular. 

The local nature of singularity was used to re-state the singularity definition from 

Chapter 2 in terms of the velocity kinematics (fust, in Chapter 3, for non-redundant 

mechanisms and later, in Chapter 6, for arbitrary mechanisrns). The examination of the 

various possibilities for the degeneration of the instantaneous kinematics led to the 



definition of sin different types of singularity, namely, singularities of redundant input 

(output), impossible input (output). increased instantaneous mobility and redudant passive 

motion. The interdependence of the six types was studied and a classification theorem was 

proved establishing that the non-redmdant-mechanism singularities c m  be divi&d into 2 1 

distinct classes, each class containhg only kuiematicaily similar singuiarities. 

In Chapter 4. hybrid-chain manipulators were saidied as an example of the potentiai for 

application of the general framework, developed in Chapters 2 and 3, to specific 

mechanisms. (HCMs are a specific, yet quite general, type of mechanisms that includes 

many cornplex pardel-like rnanipulator architectures w hic h fmd increasingly wide 

applications.) Efficient critena for the detection and classification of the singular 

configurations of HCMs were presented. This was achieved with the help of an irnproved 

method for the elimination of passive-joint velocities from the velocity equation. Such 

innovations in the methods for velocity analysis of parallel manipulators were necessary 

since the existing techniques were shown to fail at certain singular configurations. A 

classification theorem for HCM singularity was proved and it was established that the 

singularities of HCMs can be divided into 15 distinct classes, while 6 other singularity 

classes, though occumng in general non-redundant mechanisms, are impossible for 

HCMs. 

Methods for the identification of the singular configurations of any non-redundant 

mechanism and the description of the division of the singularity set of the mechanism into 

classes were presented in Chapter 5. This identification and classification problem was 

solved by the methodical application of six criteria for the occurrence of the singularity 

types, derived in the same chapter. Special attention is given to the application of the 

proposed methods to the analysis of mechanisms with cornplex chains. Two techniques for 

the simplification of the process of identification and singuiarity-class description for multi- 

loop high-dof mechanisms were proposed and applied to a 6-dof example mechanism. 



The validity of the classification fhmework of Chapter 3 and the identification methods 

of Chapter 5 were M e r  generalized in Chapter 6, where it was shown that the 

propositions and methods obtained in the former chapters can be applied with some 

modifications. to mec hanisms with redundancy . The e ffects of dynamic W o r  kinematic 

redundancy on each of the results obtained for non-redundant mechanisms was examined. 

The classification theorem proved for redundant mechanisms established that the 

singularities of al1 mechanisms (redundant or not) cm be divided into 27 distinct classes. 

Six of these occur only for redundant mechanisms, three classes being associated with 

dynamic redundancy while the other three are caused by kinematic redundancy. 

7.2. Possibilities for Future Work 

Obviously, there remain many unsolved problems related to the kinematic singularity of 

mechanisms. Herein, we suggest areas of continued investigation based on the generd 

approach presented in this dissertation. 

7.2.1. Generic singularities 

As demonstrated in the previous chapters, mechanisms have a large variety of substan- 

t idy  different singularities. The pattern of the locations of the singular co~gurations can 

be very complicated even for simpler classes of mechanisms like serial chahs. It would be 

very difficult to characterize the global properties of the singularity set without imposing 

any restrictions on the geornetry of the mechanisms considered. Therefore, it is desirable to 

establish a comparatively simple description valid for a comparatively large subset of 

mechanisms. Ideally, one would like to prove that the singularity set of almost every 

mechanism forms "nice" topological spaces, such as smooth manifolds. The words "almost 



every mechanisrn" cm be made rigorous by using the notion of generic properties, which is 

f o d y  defmed below. 

Suppose a bernatic chah, K, is given (Le., a graph and a joint-type distribution) and 

the input joints and the output link are specified. Thus, the spaces Q, 1, and O (defined in 

Chapter 2) are given. The space D and the mapsf, and fo wilI then depend on the choice of 

the link geometry y. However, the link geometxy cm be described by the parameters that 

determine the relative position of the joint axes in each link These parameters are angles 

and distances that can be chosen in the spirit of the Denavit-Hartenberg symbolism. 

Therefore, each mechanism geometry with the given architecture is specified by a unique 

point, a, in a space, A, of the type x F (F is the m-dimensional toms). 

To Say that a property. P, is true for aimost every mechanism or, equivalently, that P is 

a generic property, wiU be understood to mean that, for every architecture, the union of the 

points a for which P is satisfied is a dense and open subset of A. Thus, if a mechanism 

satisfies P, the property will be preserved under small perturbation of the link parameten, 

and if for a mechanism P is not me ,  this may be corrected by a srnall change of the 

mechanism. 

It is proposed to find a dense set in A for which the singularity set of the corresponding 

mechanisms has a comparatively simple structure. Such mechanisms can be cailed generic. 

The non-genenc mechanisms form thin sets (with measure zero) which divide the space A 

into classes of generic mechanisms. 

For serial chains. this problem cm be solved by applying to the output map the results 

on the singularities of the so-called "one-generic" maps (Golubitsky and Guillemin 1973). 

For arbitrary chains, the problem is more complicated since not only the properties of the 

output map, but also the properties of the input map and the stmcnue of the configuration 

space are important. Moreover, the requirernent for fo to be one-generic is not suitable 

since it can be shown that the mechanisms with such output maps correspond to a non- 

dense set in A. Furthemore, one cannot expect a dense subset of the mechanisms with a 



given architecture to have a structure of the singularity set as simple as the one of genenc 

serial chains. A conjecture can be made that the generic singularity set of a mechanism 

consists of a number of smooth manifolds which intersect traasversally. 

7.2.2. Automatic singuiarity anaiysis 

For aU but the simplest mechanisms the singuiarity set contains ùifinitely many 

configurations and therefore to locate the singularities implies the task of obtaining a good 

description of a multi4imensional subspace of the mechanism's configuration space. This 

could be done by either obtaining simpiifîed syrnbolic equations for the singuiarity set or by 

providing an algorithm able to trace numericdiy and represent graphicdy the projections 

and cross-sections of this set. 

The procedures in Section 5.4 describe an algorithm for the automatic identification 

of the singularity set, however signifïcant kinematic and computational problems remain to 

be solved before a "black box" can emerge for suigularity analysis. Some of these issues 

are briefly outlined below. 

The fmt step in an algorithm for singularity analysis must be the automatic generation 

of the loop equations. It is desirable to make use of symbolic methods designed to take 

advantage of possible closed form solutions (Kecskeméthy 1993). On the other hand, since 

an algebraic solution cannot be guaranteed, a representation that is suitable for numencal 

iterative solution should be preferred. In particular, the position parameten should be 

chosen in such a way that the resulting equations are polynomial. 

The next step is the (automatic) formulation of the singulzrity conditions. As it was 

shown in Sections 5.3 and 5.4 these conditions involve the rd-deficiency of some 

(polynomial) ma& function of q. According to Davenport et al. (1993) for such matrices 

(functions of multiple variables) the Cramer rule is a more efficient way for symbolic 

computation of the determinants than any process of Gaussian elimination (transforming 

the ma& into a triangular fonn). However, if the kinematic nature of L(q) is taken into 



account, the matrix could be simplined and the computation of singuiarity conditions for 

the submatrïces be made easier- The strategies for passive-joint screw elirnination by 

reciprocal screws developed for hybrid chains in Chapter 4 and discussed in Section 5.5 

could be helpfui. 

Finally. once the systems of algebraic equations have been generated, the goal would 

be to extract maximum idonnation about their solution sets. These sets (algebraic varieties) 

are subsets of the singularity set. This investigation rnay involve symboiic simplification of 

the equations or their numerical solution. (On the other hand, some interesting propexties of 

the solution set may be deduced without solving the equations by applying algebraic- 

geometry tools (Merlet, 1993)). Ideally, one would like to obtain a stratification of the sin- 

gularity set, which would decompose the set into non-intersecting manifolds consisting of 

singularities of the same class. 
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