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ABSTRACT

Generalized Singularity Analysis of Mechanisms
Dimiter Stefanov Zlatanov

Department of Mechanical and Industrial Engineering, University of Toronto, 1998

This thesis investigates a general class of mechanism configurations, usually
referred to as kinematic singularities. The study of such configurations is of major practical
and theoretical importance. Indeed, the kinematic properties of mechanisms change
significantly in a singular configuration, and these changes can prove to be either beneficial
or undesirable for different applications. On the other hand, the theoretic significance of
singularities in mechanism theory is well-known and related to the fact that singular points
play a prominent role in the theory of differentiable mappings.

The central objective of this dissertation is to address the problems of mechanism
singularity in a most general setting, namely, to consider arbitrary singular configurations
of both non-redundant and redundant mechanisms with arbitrary kinematic chains, with a
special emphasis on the study of mechanical devices with complex kinematic chains and
non-serial, high-degree-of-freedom architectures. To this goal, a rigorous general mathe-
matical definition of kinematic singularity for arbitrary mechanisms is introduced. This is
achieved by means of a mathematical model of mechanism kinematics formulated in terms
of differentiable mappings between manifolds. When the mathematical model is applied to
the relationship between the joint and output velocities, a new unifying framework for the
interpretation and classification of mechanism singularities is obtained. This framework,
based on the newly introduced six singularity types, is applicable to arbitrary non-
redundant as well as redundant mechanisms. Mathematical tools, such as singularity criteria
and identification methods, are developed for the study of the singularity sets of both non-

redundant and redundant systems with lower kinematic pairs.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1. Introduction

This thesis investigates a class of mechanism configurations generally known as singu-
larities. Mechanisms with arbitrary kinematic chains are considered, the emphasis being on
complex, multi-loop closed chains. It is assumed that the primary purpose of a mechanism
is to move an end-effector: a rigid body which is identified with one of the links of the
mechanism, referred to as the output link. It will be further assumed that some, but not
necessarily all, of the mechanism’s joints are actuated.

In such a general context, there is no standard definition of mechanism singularity.
However, it is well known that the study of the kinematics of mechanical systems in
robotics and mechanism theory cannot be considered complete unless the problems related
to a certain class of configurations, usually referred to as “singular”, “special” or “critical”
configurations, have been addressed. In these configurations, the kinematic (and static)
properties of mechanisms change dramatically. The purpose of this thesis is to contribute to

the theory of mechanism kinematics by studying these configurations.



1.1.1. Motivation for research on kinematic singularity

The significant changes in the kinematic properties of mechanisms, which occur in a
singular configuration, may be undesirable or potentially beneficial. Hence, the study of
such configurations is of significant importance for the application, contro! and design of
mechanisms.

The common objective of numerous researchers who studied kinematic singularities has
been the desire to avoid such configurations during the operation of robotic manipulators.
For a serial manipulator, for example, the Jacobian is not invertible at a singular
configuration. This causes local control methods to fail at singularities. Also, at near-
singular configurations, very large joint motions may be required to produce relatively
small end-effector displacements. Singularities of parallel manipulators are also highly
undesirable, since, if such a configuration were to be encountered, the acquisition of extra
unwanted freedoms would transitorily put the end-effector out of control (Hunt 1986).

Sometimes it may, however, be possible to take advantage of singularities. In a
singular configuration, a serial manipulator can withstand, in principle, infinitely large
forces and torques about the screw axes of the impossible end-effector motions (Hunt
1978, 1986). It has been suggested that this property may be used in applications like
drilling, grinding or handling of heavy objects (Hunt 1986, Wang and Waldron 1987).

Singularities are also of major theoretical importance. It would be impossible to
understand the kinematics of mechanisms without a profound study of their “special” or
singular configurations.

In the case of serial chains, the significant role that singular configurations play in
manipulator kinematics can be deduced from the importance of singularities in the theory of
differentiable mappings. This connection is due to the fact that manipulator kinematics is
fully described by a smooth map (the so-called manipulator map, or the output map)

between two smooth manifolds: the joint space and the workspace (Burdick, 1988). The



singular configurations are the critical (or singular) points of this map. Hence, the theory of
singularities of smooth maps (Arnold, et al. 1985, Golubitsky and Guillemin 1983) is well
suited to provide tools for the investigation of both the local properties of manipulator
kinematics near singularities and the global properties of the manipulator map.

Indeed, a number of researchers have applied ideas from singularity theory for the
classification of serial manipulators and their singularities. The concepts of generic and
transversal mappings have been applied to the kinematic map of a manipulator by Pai and
Leu (1992) and Tsai et al. (1993). (A manipulator kinematic map, f, is said to be generic
when its differential, Df, is transversal to the collection {L;} of all rank-i submanifolds of
the space, L, of all linear maps from the tangent space of the configuration space to the
tangent space of the task space). Tchon (1991) and Burdick (1991) apply the concepts of
generic maps to propose classifications of certain robots and their singular configurations.

Furthermore, a number of studies have demonstrated that singularities play a key role in
determining the global kinematic properties of serial manipulators. Burdick (1988, 1992)
uses singularity submanifolds to partition the joint space into singularity-free regions and
analyzes the global properties of the workspace resulting from the mapping of these regions
by the manipulator map. The special role played by singularities in the study of the
manipulator workspace is also illustrated by the works of Borrel and Liegeois (1986), Hsu
and Kohli (1987) and Wenger (1992). Moreover, the insight gained through such
topological methods can be particularly useful in path planning and design. Indeed, Borrel
and Liegeois (1986) as well as Luck and Lee (1994) have applied singularity analysis to

motion planning, while Burdick (1988) discusses applications to design.

1.1.2. Previous approaches to the study of singularities

In most of the existing literature, singularity analysis has been restricted to specific,

narrowly defined classes of mechanisms, with an emphasis on lower-degree-of-freedom



problems. Thus, the identification and avoidance of singularities has been investigated
extensively for manipulators with non-redundant open-loop kinematic chains (Waldron, et
al. 1985, Hunt 1986, Wang and Waldron 1987, Lipkin and Pohl 1991, and Burdick
1991). For redundant serial manipulators with one extra degree of freedom, singularities
have been classified with respect to their avoidability with self-motion (Bedrossian 1990,
Shamir 1990, Bedrossian and Flueckiger 1991, Flueckiger and Bedrossian 1992). Kiefer
(1992, 1994) analyzed singularities of a non-redundant manipulator following a fixed end-
effector path, and revealed that this problem is equivalent to the classification of the special
configurations of single-loop chains (Hunt 1978, Sugimoto, et al. 1982) as well as to the
aforementioned avoidability problem for redundancy-1 manipulators. Classifications of
singularities and criteria for their occurrence have been developed for classes of parallel
manipulators (Agrawal 1990, Kumar 1990, Merlet 1989, Shi and Fenton 1992). More
recently, some authors have studied the geometry of the singularity sets of some parallel
manipulators (Sefrioui and Gosselin 1994, 1995, Collins and McCarthy 1996, Mayer St-
Onge and Gosselin 1996), while others have addressed the issue of continuous singular
motion (or self-motion) (Husty and Zsombor-Murray 1994, Karger and Husty 1996,
1997). However, there has been no general approach to singularity analysis which would
allow the study, in a single framework, of all singularities of an arbitrary mechanism.

A necessary first step in singularity analysis is the proper definition of singular
configurations and the understanding of the way they affect mechanism kinematics.
Existing studies, however, provide only specific and limited definitions for kinematic
singularity. Although the singularity of serial manipulators has been well defined, studies
of closed-loop kinematic chains do not provide corresponding explicit definitions. In these
works singularity is usually said to be present when a Jacobian matrix, relevant to the
specific mechanisms under investigation, is rank deficient.

For a serial manipulator, a configuration is defined as singular when the end-effector

loses one or more degrees of freedom and the Jacobian becomes rank-deficient, i.e., when

4



the input-output map x=1{0) is singular. For parallel manipuiators, the usual definition of
singularity is dual to the one for serial chains: a configuration is singular when the end-
effector acquires one or more additional degrees of freedom and the Jacobian of the inverse
kinematics becomes rank-deficient, i.e., the inverse input-output map 8 =f{(x) is singular.
However, this duality is incomplete since parallel manipulators can also have configura-
tions where the end-effector has reduced degrees of freedom and it is natural to consider
such configurations as singular as well. Thus, for a closed chain mechanism, singularity
cannot be solely associated with the degeneracy of the derivative of an input-output map.

To surmount this obstacle, one can analyze the singular configurations of both open
and closed chains using the derivative of a more general input-output relationship of the
type f(x, 8) =0 (Gosselin and Angeles 1990). However, as it will be shown later, in
Chapter 3, this approach overlooks certain configurations in which the instantaneous
motion of part of the mechanism is indeterminate, and the end-effector’s degrees of free-
dom may be reduced.

Hunt (1978), and later Sugimoto et al. (1982), analyzed single-loop chains and defined
two types of “special” configurations: “stationary” and “uncertainty” configurations. In this
approach, the mechanism is not considered as an input-output device and some special

configurations cannot be considered as singular from a control viewpoint.

1.1.3. Objectives of the thesis

The lack of a proper definition of kinematic singularities can lead to imperfect methods
for singularity identification and incomplete classification schemes, especially when the
analyzed mechanisms consist of complex, multi-loop kinematic chains. In this thesis, a
general approach to singularity analysis is developed in order to achieve the following

objectives:



(a) Definition of singularity. The first question that must be answered is “What is a
singularity of a general input-output mechanism?” It is important to have a meaningful
general definition from which specific definitions for singularity, for particular classes of
mechanisms, can be obtained. The proposed approach is based on a mathematical model of
mechanism kinematics formulated in terms of differentiable mappings between manifolds.
This formulation allows a rigorous general mathematical definition of kinematic singularity
for arbitrary mechanisms.

(b) Classification of singularities. The next goal is to reveal the structure of the
singularity set. Classification of singularities serves this goal. Classification seeks to
disclose what different kinds of singular configurations are possible and divide the
singularity set into subclasses consisting of different singularity types. The study of the
infinitesimal and local properties of the model yields a comprehensive classification of
singularity, based on the type of degeneracy of the velocity kinematics.

(c) Criteria for singularity. Once the phenomenon is defined, the next task is to
provide methods for answering the questions: “Is a given configuration singular? To what
singularity class does it belong?” Such methods can be developed by establishing effective
analytical or geometrical criteria for singularity. The generalized approach to singularity
proposed in this thesis allows the development of new improved singularity tests. This is
especially true in the case of hybrid-chain manipulators.

(d) Identification of singularities. It is not sufficient to be able to determine whether
a specific (though arbitrary) configuration is singular. For both practical and theoretical
reasons it is important to have means of obtaining the set of all singular configurations. The
large majority of the existing methods and algorithms for finding singularities have been
developed for serial manipulators. The formulation of the infinitesimal model by means of a
velocity equation allows the development of methods for determining the singularities of

closed-loop mechanisms.



1.1.4. Overview of results

Herein, we summarize the contents of each chapter of the thesis, and outline how the

goals, described in Sub-section 1.1.3, are achieved.

Chapter 1. The introductory chapter consists of two sections. This first one, i.e., the
present Section 1.1, clarifies the motivation and background of this work. In the following
section (Section 1.2), we introduce the basic mathematical terminology which will be used

to formulate the kinematic models in Chapters 2 and 3.

Chapter 2. The main task achieved in this chapter is the definition of kinematic singularity
of a general mechanism in terms of the position kinematics. To obtain this result, we
reformulate mechanism kinematics in terms of a novel mathematical model. After defining a
very general class of kinematic systems as families of smooth motions on a manifold, we
proceed to consider articulated systems with their two equivalent models: as motions in
joint space; and in link space, respectively. The configuration space of an articulated system
has the structure of an algebraic set, when considered in either of the equivalent joint and
link formulations. The dimension of this set is the mobility of the articulated system.
Furthermore, we propose a new conception for the definition of a mechanism. Rather than
consider it as a medium for an input-output mapping, which cannot, in general, be given a
proper global definition, we create a symmetrical model by introducing two subsystems of
the given articulated system: the input and the output systems, and two well-defined
mappings, the input and output maps, which map the configuration space into the input-
and output-space manifolds, respectively. Finally, it is postulated that near a nonsingular
configuration, the configuration space is a smooth manifold and the two mappings are of
maximum rank. At a singularity, either the smoothness of the configuration space or the

regularity of the two maps are violated.



Chapter 3. This chapter introduces a new and general framework for the classification
and interpretation of singular configurations, which is obtained by the examination of the
interdependence of six singularity types. The chapter starts with the interpretation of the
symmetric two-map model of mechanism kinematics, developed in Chapter 2, for the study
of the relationship between the joint velocities and the output twist. This amounts to
modelling the instantaneous kinematics at a given configuration. Then, the definition of
singularity is re-stated in terms of the instantaneous model, the six singularity types are
defined, and a classification theorem is established. All these definitions and propositions
are stated for arbitrary kinematic chains, but. at this stage, are restricted to non-redundant
mechanisms, with equal dimensions of the input and output spaces. As shown later, in
Chapter 6, the classification framework can be formulated for redundant mechanisms as
well. However, in the non-redundant case the statements have a simple symmetry which
becomes obscured in the more general case, when redundancy is possible. The singularity

types and their interaction are illustrated by numerous examples.

Chapter 4. The approach developed in Chapter 3 is applied to the study of a class of non-
redundant mechanisms, which are referred to as hybrid-chain manipulators (HCMs). For
these parallel-like manipulators, we simplify the velocity kinematic equations by eliminating
a maximum number of passive-joint velocities. We do that using an improved method for
“annihilation” of the passive-joint screws with reciprocal screws. Unlike previous
approaches based on reciprocity of screws, the technique described in Chapter 4 does not
fail at singular configurations. We then proceed to develop singularity criteria for HCMs,
i.e., we provide necessary and sufficient conditions for a configuration to belong to each of
the six singularity types. We finish the chapter by proving a classification theorem which

describes the possible singularity classes for HCMs.

Chapter 5. The issue of singularity identification is addressed, for the case of a general

non-redundant mechanism. After deriving singularity criteria on the basis of the



formulations and propositions in Chapter 3, we develop methods that can compute the
singularity set and reveal its division into singularity classes. The application of these
methods is exemplified by the detailed singularity analysis of a six-degree-of-freedom

parallel manipulator with a complex singularity set.

Chapter 6. In this chapter, we revisit the formulations and derivations of Chapters 3 and
5 and demonstrate that both the classification framework and the identification procedures
can be generalized and made applicable to mechanisms with redundancy. Mechanisms with
kinematic and dynamic redundancy are considered. The resulting classification tables reveal
the effects that redundancy has on the possible and impossible singularity classes. We
introduce some modifications in the identification methods of Chapter 5 so that the

singularity set of redundant mechanisms can be revealed.

Chapter 7. This final chapter summarizes the contributions and conclusions of the thesis

and points out possible areas of extension.

1.2. Mathematical Preliminaries

The purpose of this section is to introduce a number of mathematical concepts that will
be needed in the thesis and which do not frequently appear in the mechanisms literature.
The propositions which we state are given without proof, since detailed proofs can be

found in the quoted literature.

1.2.1. Groups and rings

In this sub-section, we state some fundamental definitions and facts in abstract algebra.

They will be referred to in later chapters as well as in the rest of the present section.



I.1. Definition. Let G be a set and let p : G X G — G be a binary operation on G.
For any pair (a, b) of elements of G, let p(a, b) be denoted by ab. G is said to be a group
with group product p, if:
(i)  pis associative, i.e., (ab)c = a(bc) for any a, b, and ¢ in G.
(ii)  p has a unit element, i.e., there exists an element e in G such that, for any
ae G, ea=ae =a.
(iii) p admits inverses, i.e., for every a in G there exists an inverse element,

denoted a~', such that aa-'=a-la=e.

It can be shown that the unit element, e, must be unique. If the group product is
comirmutative, i.e., if ab = ba for any a and b, then p(a, b) is usually denoted a + b and
referred to as a sum, while G is called an additive group. For such groups, the unit element

is denoted by 0, while the inverse element is written as —a.

1.2. Definition. A group map f: G — H is a map between groups G and H that

respects the products of G and H, that is, is such that, for alla,b € G,

flab) = (a)f(b).

A group map f: G — H is said to be a (group) isomorphism, if it is bijective.
It can be shown that the inverse of a group map must also be a group map.

1.3. Definition and Proposition. Let G be a group and let F < G. Then, F is a

group with the group product of G if, and only if, the following two conditions are
satisfied:

(i) FFc F, ie., a,be F implies abe F,

(iiy F~-'cF, ie, a € Fimpliesa 'e F.

A subset, F, with these properties is said to be a subgroup of G.
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1.4. Definition. A ring is an additive group, R, in which, apart from the sum, a + b,

there is a product, ab, which is distributive over addition, i.e., for all a,b,c in R,
cla+b)=ca+cb and (a + b)c =ac + bc.

R is said to be commutative, if the product is commutative, and/or with unity, if the

product has unity.

Examples of rings are: the set of integers, Z; the ring of remainders modulo r, Z,; the
ring of polynomials in n variables with coefficients in a field &, k[x,,..., x,]. An
important case, to which we will return later in this section, is the ring of polynomials over

the reals, Rfx,,..., x,].

1.5. Definition. Let R be a commutative ring with unity and let I C R.
(1) A subset, I, is referred to as an ideal of R, if it has the two properties:
(i) for any a,b € I, we have a-b € I,
(ii) IRCR, ie., foranyae I, x€ R, it is true that ax € I.
(2) The ideal I is said to be (finitely) generated by the elements a|, ..., ,a, € I,
if every element, b € I, can be written as b=ba, + - - -+ b,a, for some

b,,....b, in R. We denote: I =(a,,...,a,).

Every ring contains at least two ideals: the zero ideal, which consists solely of the zero in
R; and the unit ideal, which is R itself. Every ideal must contain 0 (the zero of R). The only
ideal that contains | (the unity of R) is the unit ideal.

1.6. Proposition. Every ideal in k[x,, ..., x,] is finitely generated.

A proof of this fact is given in (Hodge and Pedoe, 1954).

1.7. Definition. Let I be an ideal in the ring R.
(1) I is said to be prime, if abe [ impliesae Iorbe L

(2)  Iis said to be primary, if ab € I and a € I implies b* € I, for some integer k.
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1.2.2. Affine spaces

From a geometrical or a mechanical point of view, it is important to distinguish the
affine Euclidian space E3 from the underlying 3-dimensional linear space R3. An affine
space is a linear space without a fixed origin. The elements of E3 are points, while the
elements of R3 are vectors. While E3 is a bijective image of R3, it is not a vector space, and
the elements of an affine space are not subject to the linear operations (vector addition and
scalar muitiplication).

An affine space is rigorously defined as follows, (Porteous 1981, Amold 1979):

1.8. Definition. Let X be a non-empty set and V a vector space. An affine structure
on X with vector space V is a map
c: XXX > V,c(x,v)=x -V,
which satisfies two axioms:
(i) for all 0 in X the map c, : X = V, cy(x) =x — 0, is bijective,
(i) forall x,y,oinX, x-y=(x-0)-(y -0).

The set X, equipped with the affine structure is an affine space.

E3 will denote a three-dimensional affine space over the linear space R3.

The inverse of the map ¢, is denoted by x = 0 + x, where x = x — 0. This defines
the sum of a point, x, and a vector, v. The result, x + v, is the unique point y in £3, such
that v=y —x.

By the use of reference frames (coordinate systems) the elements of both E3 and R3 can
be described by triples of real numbers. A coordinate system in E3 is given by a point, o,
in E3 and a basis, (e,, e,, ;) in R3. For a fixed choice of the reference frame, oe,ee;,
every point, x, in E is described by the coordinates of the vector x = x — o in the basis

(e, e,. e3).
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E3 is referred to as an affine Euclidean space when its vector space, R3, is a real
orthogonal space with a positive-definite scalar product. The scalar product in R3 defines a

distance function, d, on E3.

1.9. Definition.
(1)  The distance between two points in E3 is the function:

d:E*x E* » R,d(x,y) =V(x-y).(x-y),
where “<" is the standard scalar product in R3.

(2) The orientation function, o, is defined on frames (x,y, z) in R3 (or E3), or,

equivalently, on arrays of four points in E3, (0,x,y,2):

l 1 zf det(x,y,z)>0

o(x,Y.z)={ 0 if deu(x,y,z)=0

-1 if det(x,y,z)<O0
The so-defined distance and orientation functions are, in general, dependant on the
choice of a reference frame. This is so, since the scalar product and the determinant
function are not invariant with respect to an arbitrary change of basis in R3. To ensure that
both distance and orientation are invariant with respect to reference frame it is sufficient to
restrict the choice of bases in R3 to only such triples (e,, e, e,) for which €-e = 5,7 and
det(e;, e,, e3) =1 (8,-]- is the Kronecker symbol). This assumption restricts the allowable
coordinate systems in £3. While the origin can be arbitrary, the coordinate vectors must

satisfy the above conditions. Such reference frames are referred to as Cartesian.

1.2.3. Topological spaces and smooth manifolds

1.10. Definition. A topeology on a set X is a collection, T, of subsets of X, which
includes the empty set, @, and the whole set, X, and which is such that:
(i)  the intersection of any finite number of elements of T belongs to T;

(ii)  the union of any set of elements of ‘T belongs to T.
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A set X together with a fixed topology T is called a topological space. The elements

of T are referred to as the open sets in X. Subsets of X whose complements are open are

said to be closed.

A subset, Y, of a topological space, X, is a topological subspace of X , if it is endowed
with the induced topology 7T, = {U N Y| U € T}, where T is the topology of X.

An open neighbourhood of a point x € X is an open subset of X containing x. A
neighbourhood is a subset of X with an open neighbourhood of x as a subset. In Hausdorf
spaces, every two distinct points have non-intersecting neighbourhoods.

Thus, topological spaces generalize familiar concepts about Euclidian affine spaces,
such as open and closed sets, and nearness to a point. The space E", is itself a topological
set with the usual open sets, which can be defined as: the balls with radii £> 0 (i.e.,

Be(x) = {y|d(x,y) < €} )and all their possible unions.

1.11. Definition. A map, f: X — Y, between topological spaces is said to be
continuous, if the inverse image of any open set in Y is an open set in X. A bijective

continuous map with a continuous inverse map is referred to as a homeomorphism.

Topological spaces connected with a homeomorphism are considered equivalent from a

topological point of view.

1.12 Definition. An m-dimensional smooth manifold is a Hausdorf space provided
with a family of pairs {(U,, §,)}, such that,
(i)  {U;} is a family of open sets which covers X, i.e., X = U, U, while ¢; is a
homeomorphism from U, onto an open subset of R™.
(i) For any U, U;# D, the map: ¢;0 ¢;"' : 9(U; " U) = ¢(U, " U),
is infinitely differentiable.
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Each pair (U;, ¢, is referred to as a chart of X, while the whole family, {(U,, ¢,)}, is
called an atlas. The subset U, is referred to as a coordinate neighbourhood and the maps ¢,
are the coordinate maps. Two atlases are said to be equivalent or to define the same smooth
structure, if their union is also an atlas, i.e., it satisfies condition (ii) in Definition 1.12.
Manifolds with the same underlying set, X, and equivalent atlases are considered

equivalent.

1.13. Definition. Let f: X — Y be a map between smooth manifolds, and let
y = fix). The map f is said to be smooth ar the point x, if for some pair of charts, (U, ¢)
and (V, y) withxe Uandye V, the map Wofo ¢! is smooth. If a smooth map f
is invertible and the inverse map, ', is also smooth, then f is referred to as a diffeo-

morphism and the manifolds X and Y are said to be diffeomorphic.

A diffeomorphism is a homeomorphism which preserves the smooth structure. Diffeo-
morphic manifolds are considered geometrically equivalent.

A submanifold, Y, of a manifold X, is a subset of X, which is a manifold.

A curve at x € X is a smooth map g : / — X, where [/ is an open interval of the real
line, 0 € I c R, such that g(0) = x. Two curves at x, g and A, are said to be tangent if,

for some chart, (U, ¢) with x € U, we have:

dxi(g(r)) = dxi(h®))
dt t=0 dt t=0

where x¢ are the coordinate functions of the map ¢. This is, in fact, an equivalence relation
for the space of curves. An equivalence class of curves at x under this relation is referred to
as a rangent vector at x. The set of all tangent vectors at x form the rangent space at x and is
denoted by 7,X. It can be seen that dim 7, X = dim X. The dual space of T X is
referred to as the cotangent space and is denoted by T:X .

A smooth map between two manifolds, f: X — Y, induces a linear mapping,

D,f:T,X = Tg,,Y, between the two tangent spaces at x € X and f(x) € Y, defined
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by: D, f{[g]) = [f-gl. where [h] denotes the equivalence class (i.e., the tangent vector) of

the curve A.
The above facts and further details on smooth and differentiable manifolds can be found
in (Lang 1962) or (Sternberg 1964).

1.14. Definition. A Lie group G is a smooth manifold which is endowed with a
group structure, such that the following two maps, defined by the group operations, are
smooth:

(i) p:GxG-> G, pa,by=ab,

(ii) q:G—> G, qga)=a""'.

A Lie subgroup of a Lie group, G, is a subgroup of G, which is also a submanifold of
G.

1.2.4. Real algebraic sets

1.2.4.1. Basic definitions. We consider the ring of polynomials R[x,,..., xy].
We will abbreviate x = (x,, ..., xy). The array of n indeterminates, x, will be

interpreted as the coordinates of a point, x, of the affine Euclidian space, EV, in some fixed

Cartesian reference frame. If J < R{x] is a set of polynomials, then we denote the

vanishing set of J as:
VJy={ xe EVN|fix)=0 for all f@ R[x] }.
On the other hand, for every subset V c EV, we define the ideal of V-
JV)y={fe R[x]|f(x)=0 forallxe V }.

1.15. Definition. A subset, V < EV, is referred to as a (real) algebraic set, if it is

the vanishing set of a collection of polynomials, i.e., V= V(J) for some J < R[x].
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It can be assumed that the set J from Definition 1.15 is an ideal. (Indeed, if a collection of

polynomials vanishes on V, then the ideal generated by them vanishes on V as well).

1.16. Definition. An algebraic set, V, is reducible if it is the union of two other
algebraic sets, i.e., there exist two algebraic sets, V|, and V,, V, # V # V,, such that

V=V, U V,. Otherwise, the set V is said to be irreducible.

1.17. Proposition. Every algebraic set, V, has a unique decomposition into irre-
ducible components, that is, V can be written uniquely as V=V, u.-.uV_,

where each V, is an irreducible algebraic set and no V, is contained in another V.

1.18. Proposition. Let J be an ideal in R[x], and let V = NKJ).
(1) V is irreducible, if and only if 7(V) is a prime ideal.

(2)  IfVisirreducible, then J is a primary ideal.

(3)  IfJis a prime ideal then V is irreducible.

Proofs of Propositions 1.17 and 1.18 can be found in (Shafarevich 1977 and Hodge and
Pedoe 1954).

1.19. Definition. A mapping, f: U — W is an (entire) rational map, if rthere exist
polynomials p and q, such that 0 ¢ q(U) (i.e.. g(x) # 0 for all x € U) and
fix) = p(x)/q(x). A rational map, f, is said to be a birational isomorphism, if it has a
rational inverse, i.e., if there exists a rational map, g : W — U, such that f o g and

8 of are identities.

Two algebraic sets are said two be birationally isomorphic, if they are connected with a
birational isomorphism. Birational isomorphism is a homeomorphism which preserves all

algebraic structures.
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1.2.4.2. Singularities of real algebraic sets. There is no general agreement in the
literature on the proper way to define singular and nonsingular points on algebraic sets. The
following approach, proposed in (Akbulut and King, 1992) appears to be best suited to
applications in mechanism theory, since it emphasizes the local geometric and topological

properties of the algebraic set.

1.20. Definition. Let Vc EV be an algebraic set. We say that x € V is
nonsingular of dimension d in V, if there exists a neighbourhood, U, of x in E¥, and
N —d polynomials f,, . .., fy_,4such that:

(i) UnNnV=UnYf,urfu_a)s

(ii) The gradients, Vf(x),i=1,...,N —-d are linearly independent.

1.21. Definition. Let V be an algebraic set. The dimension of V, dim V, is defined
to be the largest integer, d, such that there exists a point in V, which is nonsingular of
dimension d. The set of all nonsingular points of dimension d = dim V is denoted by
Nsg V and its elements are referred to as the nonsingular points of V. The complement

of Nsg V, denoted by Sing V =V —~ Nsg V, is the set of the singular points of V.

1.22. Definition. Let V be a real algebraic set and let AV) = (f,, ..., f.). Let x be
in V. Then, the Zariski-tangent space at x, T,2(V), is a vector space defined by
T2 (V)= {v|Vf(x)ev=0,i=1,...,k}.

We note that Definition 1.22 does not depend on the choice of basis in AV).

1.23. Notations. We denote:
n(V) = dim T,2(V),
n(V) = min{n (V) |xe V },
Vl={xe Vin(V)=n(V) },
Vv-=v-ve
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An alternative to Definition 1.21 is the use of V®, V-, as definitions of nonsingular and

singular points, respectively (Bochnak et al., 1987).

1.24. Proposition. Let V < EV be an irreducible algebraic set.

(1) Nsg V is not empty.

(2) dim V = n(V).

(3) Nsg V=V 0

(4) If Wc Vis an irreducible algebraic set and W+ V, then dim W < dim V.

1.25. Proposition. Let V< EV be an algebraic set, and let V= Viu---u 'V,
where V,i=1,...,m, are the irreducible components of V.

(1) Nsg V is not empty.
(2)  x € V is nonsingular of dimension d if and only if: for some j, x € Nsg V;
xe V, foralli#j; and dim V;=e.
(3) ng V= U (NSg V,' - UV,)
dim V; = dim V izj

(4) Sing V is is an algebraic set and dim(Sing V) < dim V.

All statements in Propositions 1.24 and 1.25 are proved in (Akbulut and King 1992).
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CHAPTER 2

MECHANISM KINEMATICS

2.1. Introduction

This chapter introduces a novel mathematical model of mechanism kinematics. The
model evolves from a natural definition of mechanical systems, and kinematic systems in
particular, as families of smooth mappings of the unit interval, 4, into a smooth manifold,
Q. This basic idea allows for a rigorous and consistent derivation of the central concepts
and facts of mechanism theory, including the precise mathematical definition of fundamen-
tal notions like configuration space, kinematic model, mobility, redundancy and singula-
rity.

The chapter begins with a brief discussion of the properties of the group of
displacements of the affine Euclidian space, SE(3), (Section 2.2) which are derived from
the properties of affine spaces, reviewed in Chapter 1. In the subsequent sections, the basic
elements and facts of multi-body kinematics are derived from the properties of the Euclidian
group. All formulations are coordinate-free and underline the intrinsic geometric and
topological nature of kinematic systems.

Kinematic systems and their kinematic models are introduced in most general terms in
Section 2.3. Then, we consider as narrowing subsets of abstract kinematic systems,
consecutively: systems of particles in Section 2.4; rigid-body systems in Section 2.5;

articulated systems in Section 2.6; and serial-chain articulated systems in Section 2.7. The
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derivations in Sections 2.8 and 2.9 are, for the most part, valid for general abstract
kinematic systems, but the natural emphasis is on articulated systems with smooth joints
(e.g., lower pairs). The goal, achieved in Section 2.9, is to provide rigorous formulations
of mechanism mobility, singularity and redundancy, based on the local and global

topological properties of a kinematic system.

2.2. The Euclidian Group

It is assumed that a three-dimensional affine Euclidian space, E?, is given.

2.1. Definition. A displacement of E? is a transformation of E3 (i.e., a map
g: E3 = E3), which preserves the distance and the orientation in E>. The set of all
displacements in three-dimensional space is denoted by SE(3) and is known as the

Euclidian group in three dimensions.

It can be shown that a displacement is a bijective affine map and an automorphism (i.e.,
a homeomorphism of E3 onto itself). The set SE(3) is, indeed, a group. The group product
of two displacements is defined as their composition as maps, g,8.(x) = g,°8,(x) =
£1(g:(x)). The unit element of the group is the identity map on E>, e = idgs. The inverse

element of g is given by the inverse map, g-!.

2.2. Example. A simple example of a displacement is the translation map,
g.(x) =x + t, where t is a constant vector in R3. It maps a point x into the unique point
y in E3 such that y — x = t. Since a translation is defined uniquely by a vector t, the set

of all translations, Tr(E?), can be identified with R? by means of the bijective map

¥ All statements in this chapter can be made for a Euclidian space of arbitrary dimension. Of practical
importance are mainly the cases n = 2 and n = 3. The theory for the plane (n = 2) can be derived from the
spatial case (n = 3), since planar displacements are a subgroup of spatial displacements.
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t: Tr(E3) - R3, 1(g) =t. (2.1)
The addition of vectors in R? turns the space of translations into an additive group. The
unit element of this group is the translation by the zero vector, o. In fact, 7 is a group
isomorphism between Tr(E3) and R3. It can be seen that the group operation and the unit
element in Tr(E3) are identical with those in SE(3), and therefore the group of translations

is a sub-group of SE(3).

2.3. Example. A displacement which maps at least one point, 0 € E3, into itself is
called a rotarion. The set of all rotations about an arbitrary fixed point o, Rot,(E?), is a
subgroup of SE(3). The group Rot,(E?) can be identified with SO(3), the Special
Orthogonal Group. SO(3) consists of the so-called orthogonal linear maps in R3,ie., the
maps which preserve the scalar product and the determinant function. (When a Cartesian
basis is fixed in R3, each element of SO(3) is given by an orthogonal matrix with a positive
determinant).
The isomorphism between Rot,(E3) and SO(3) is given by the map
p: Rot,(E3) = SO(3), p(g) =G, (2.2)
where G : R3 — R? is defined by
Gx =g(o +x)-o0. (2.3)
The inverse map is p-'(F) = f, where f is given by f(x) =0 + F(x - 0).
To show that p is indeed an isomorphism, consider two rotations about o, f and g, and
denote fg = h, p(f) = F, p(g) = G, p(h) = H. We need to show that p(fg) = p(f)p(g).
i.e., H = FG. From the definition of p (Equations 2.2 and 2.3), we have:

FGx =F(g(o +x)-0)=f(o + (g(o +Xx)~-0)) —0 =
2.4)

f(go +x)) -0 =fgo +x) -0 =h(o +x)—-o0 = Hx.

The third equality in (2.4) follows from the definition of the operations “+” and “-" in the

space E3 (discussed in Sub-section 1.2.2).
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Consider the set R3 x SO(3), which has as its elements the pairs of the type vy, F).
We define a product operation by
(Vs F)(v,, G) = (Fv, + v, FG). (2.5)
It can be shown that with this product R3x SO3) is a group with unit element (o, I),
where I is the 3 x 3 unit linear map. This group will be denoted by R3 x, SO(3). (Note:
the symbol G x H, where G and H are groups, denotes a group with a product operation
different from the one in Equation (2.5), namely, (g,, h,)(g;, k) = (8,82, h;h,). )

2.4. Theorem. (Arnold, 1980). The Euclidian group of all displacements in E3, SE(3),
is isomorphic to the group R3 x, SO(3).
Proof. We will construct a map, ¢ : SE(3) = R3 x, SO(3), and show that it is
a group isomorphism.
First, for every dispacement, f, and an arbitrary fixed point, o, we define, a translation,
f,» and a rotation, f,, as:

fi(x) =x + (f(e) - 0),

(2.6)
fr(x) = flx) + (0 - f(0)).
The second equation in (2.6) defines a rotation, since f,(0) = 0.
We now define the map ¢ by:
o) = (¢, p(f)). (2.7)

The maps 7 and p are the ones defined in Examples 2.1 and 2.2 (Equation (2.1) and

Equations (2.2-3)), respectively. We denote

t.=17(f) =fle) —o, F =p(f). (2.8)
We also consider the map ¥ : R3 x SO(3) — SE(3), defined as
y(t,, F) = 7' (t)p~'(F). (2.9)

The image of y is a displacement, f, which is a composition of the translation, f, = 77'(t)),
given by the vector t;, and the rotation, f, = p~'(F), which corresponds to the orthogonal

linear map F.
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It can be checked that ¢- y(t,, F) = (t,, F) and y-¢(f) = f, i.e., y = ¢~'. Thus,
it is established that ¢ is bijective. This implies that every displacement, f, can be written as
the product of a translation, f,, and a rotation, f,, which are obtained from f as shown in
Equations (2.6).

It remains to show that the map ¢ preserves the group product, i.e., for any f, g in
SE(3), ¢(fz) = ¢(No(g)-

We denote k = fg and (t, , H) = ¢(fg). By the definition of the group product in
R3 x, SO(3) (Equation 2.5), we have: ¢()¢(g) = (t;, F)(t,. G) = (Ft,+t;, FG). It
must be proven that: (i) t, = Ft, + t,, and (ii) H = FG:

(i) The definition of the translation vector, t;, and the orthogonal map of a displacement f

(Equation 2.8) and the fact that f = f,f, for every f, allow us to write the following

sequence of equalities:
t, = h() -0 =fgo)-0 =fgg(o)~o0=fglo)-0 =
fif.gf0) —o0o=(fglo) +t)—-0=(fg(o)—-0)+t = (2.10)

((o+ F(go)-0))-0)+t,=((o+ Ft))-0) +t,=Ft, +t.
In (2.10), we also use the definitions of f, and f, in Equations (2.6).
(ii) Similarly to the proof of (i) above, we write:
Hx =(h (o +Xx) -0 =(h(o +x)+(-t,)) -0 =
(fgo +x)+(-t))—-o0o=(f(gg, (0 +x))+(-¢)) -0 =
(flo+Gx +t,)—(-t,))~0 = @11
(f(o +Gx +¢t,) +t)~(-t,))—0 =
((o + F(Gx + tg)) +(t-t)) -0 =
((06 + FGx + Ft )+ (¢, - Ft, —t)) -0 = (o + FGx) -0 = FGx.
In the third-last equality in (2.11) we use the result of (i) (Eq. 2.10).

Thus, by proving (i) and (ii), it is established that ¢ is an isomorphism and the theorem

is proven. O
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2.5. Remarks.

(1) Theorem 2.4 implies that for a fixed choice of the origin, o, every displacement, g, of
E3 can be achieved in a unique way as a composition of a translation, g, and a rotation, g,,
g = 8.8, Moreover, every g is described by a pair (t;, G), where G is an orthogonal linear
map and t, is a vector. The image of each point x with coordinates x =x — o is the point
g(x) with coordinates Gx + t. Furthermore, it follows that each displacement is uniquely
defined by a Cartesian coordinate system, oze,€,e,;, which is the image of the initial
reference frame, oe,e,e,. The new origin, 0, is the image of o under g, 0,= go) =

o+ tg, while the new coordinate vectors, e

21> € and e, are the images of e, e, and e,

under the orthogonal map G, e,; = Ge,.

(2) The elements of SE(3) are conveniently described by homogeneous 4 x 4 matrices of

the type:
H,= Gt |
01
The image of a point in E3 under a displacement, g, with matrix H, ¢ 1s obtained by pre-

multiplying the column vector of the homogeneous coordinates of the point x, (x, 1)T, by

1

X J The composition of two displacements is given by the matrix product.

the matrix: Hg[ 1

2.6. Remark. Both the sets R? and SO(3) are at the same time three-dimensional
smooth manifolds and groups under vector addition and matrix multiplication, respectively.
The group R3 x_ SO(3) is, therefore, a smooth manifold of dimension six. The group
operations in SE(3) are smooth, since they are given by matrix multiplication of 4 x 4
matrices. Therefore, SE(3) is a 6-dimensional Lie group which is a subgroup of GL(4)
(The group of nonsingular 4 X 4 matrices). Tr(E3) and Rot,,(E3) are 3-dimensional Lie

subgroups of SE(3).
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2.3. Kinematic Systems

Consider the space E, E** = E* x ... x E?, i.e., the Cartesian product of n copies
of the Euclidian space E>. A point of E*, x = (x,,...,X,), can be thought of as
describing the positions of n particles in E. In this interpretation, E>" is referred to as the
configuration space of an unconstrained system of n particles. The points of E>" are called
(feasible) configurations of the (unconstrained) system of » particles. (Note that in this
system all configurations are feasible, even those where different particles occupy the same
point in E>.) A (feasible) motion of the system is defined as a smooth path in E*". The set
of all such paths forms the space of (feasible) motions of the system.

The concept of an (unconstrained) particle system, outlined in the preceding paragraph,
can be generalized by replacing the affine space, £>, by an arbitrary smooth manifold. On
the other hand, one can define different mechanical systems on a single manifold by
imposing restrictions on the motions which are considered feasible. In the statements which
follow, we introduce a mathematical formalism for the description of mechanical systems.
Our approach is based on the understanding that a mechanical system is, mathematically,

nothing more than its space of feasible motions.

Let Q be a smooth manifold and let A be the interval {0, 1] of the real line. A (smooth)
motion on Q is understood to be a smooth map, f: A —» @. More precisely, f(1) is a

continuous mapping of the unit interval of the real line into the manifold Q, such that f{t) is

smooth on the interior of A. The set of all such smooth maps will be denoted by (4, Q).

2.7. Definitions. Let Q be a smooth manifold and let C < Q.
(1) An (abstract) mechanical system on Q is a subset, M, of the space C (4, Q).

The elements of M are referred to as feasible meotions of the mechanical system.
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(2) An (abstract) kinematic system on Q with configuration space C, is the
set:
K(C,.Q)={fe C(A, Q) Imfc C},
i.e., the set of all smooth motions on Q, which are contained in C. When C is a
proper subset of Q, the system is said to be constrained. When C = Q, the system
is unconstrained. (X{Q, Q) = C (4, Q) is abreviated X(Q).) The points in C are
the feasible configurations of X(C, Q), while the elements of Q — C are
referred to as non-feasible configurations of the system.
(3) An abstract mechanical system on E™ is referred to as a mechanical system of n
particles in E>.
(4) An abstract kinematic system on E*" with configuration space C, i.e., the system
K(C, E>") = {fe C7(4, E*") | f(4) c C},

is said to be a kinematic system of n particles with configuration space C.

2.8. Remark.

(1) We emphasize that in Definition 2.7(2) the system X{C, Q) is not defined as the
space of mappings €~ (4, C). Such a definition would require the configuration space C to
be a manifold and would be too restrictive. Instead, we define a kinematic system with a
configuration space C with the help of a manifold Q containing C. This ensures that the
feasible motions are well defined as smooth mappings into a2 manifold, even though the set
C may not have any global differential structure.

(2) Analogously to Definitions 2.7.(3—4), we can define a system of particles in E¥, for
any integer k. Among the cases with k # 3 of particular importance are systems in E>*,
referred to as planar (particle) systems, which will be used in numerous examples.
Although planar systems can be thought of as a special case of particle systems in E>, it is
more convenient to remove the third coordinate and think of the motions of such a system

as defined in a 2n -dimensional space.
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In this thesis, we are interested mainly in mechanical systems that can be described by
Definition 2.7(4). A kinematic system of finitely-many particles with a configuration space,
as defined in Definition 2.7(4), is a very important special case of a general mechanical
system of n particles (Definition 2.7(3)). Unlike the general case, the system X(C, E*") is
fully defined by specifying a subset of E>". Other special cases are discussed in the

following remark.

2.9. Remark. The space K(C, E*"), used in Definitions 2.7, is a special sub-space of
K(E*"), described only by constraints on the values of the functions. There are subsets of
motions that cannot be described by a subset of E*", e.g., the space of solutions of a
system of differential equations. Mechanical systems that are described by second (or
higher) order differential equations are referred to as dynamic. However, systems
described only with first-order differential equations are usually referred to as kinematic.
Such systems are called non-holonomic kinematic systems, and they can be described by
specifying a subset of the tangent bundle, TE™" (or, of the cotangent bundle, T°E*"), i.e.,
by specifying constraints on the positions and velocities (or momenta) of the particles. The

systems described in Definition 2.7(4) are referred to as holonomic.

2.10. Definitions. Let M, and M, be abstract mechanical systems on X, and X,.We

denote by Im M; the sets \U Imf,i=1,2. If M;= XK(C;, X;), then Im M; = C,.
feM,

(1) M, and M, are said to be diffeomorphic when Im M, is the image of Im M,
under a homeomorphism which can be extended, at least locally, to a
diffeomorphism of submanifolds of X, and X,.

More precisely, M, is said to be diffeomorphic to M, when there exists a map
¢:Im M, > Im M,, such that:

(a) ¢ is a homeomorphism.
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(b) For every x| € X, denote x, = §(x,). For some neighbourhoods Ox,
x; € Ox, C X, there exist submanifolds M,,x;€ M, C X;, and a diffeo-
morphism, @ : 0Jrl NMy >0, "M Xy such that d(x) = ¢(x) for all x for
which both maps are defined.
We will say that the diffeomorphism of M, and ‘M, is induced by the map ¢ or that
M, and M, are diffeomorphic with map ¢.
(2) Let M, = KIC,, E™), M, = K(C,, E*"). M, and M, are said to be congruent,
if there is a displacement, g € SE(3), such that C, = gC,, i.e.,
C,={(gx,....g8x )l (xy,....x,)e C}.
(3) Let M, and M, be diffeomorphic with @. Then, the pair (M,, ¢) is said to be a
(kinematic) model of M.
(4)  Let (M,, ¢,) and (M, ¢,) be models of systems N, and N,. The models are said
to be congruent, if A, and N\, are congruent. The models are equivalent when

leﬂz-

2.11. Remarks.

() A sufficient but not a necessary condition for the systems M; = X(C;, X)),
i =1, 2, to be diffeomorphic is the existence of a homeomorphism from C, onto C, that
can be extended globally to a diffeomorphism of two submanifolds of X, onto X,. More
precisely, if there exist submanifolds C,c M, c X,, and a diffeomorphism @,
D M, > M,, such that ¢(C,) = C,, then the systems X(C,, X;) are diffeomorphic.

2) It can be shown that Definition 2.10(1) introduces an equivalence relation in the set
of all mechanical systems. (Similarly, the property of congruence, introduced in Definition
2.10(2) is an equivalenece relation in the class of the systems of the type K{C, E*™).
However, the property defined in part (1) of the present remarks (i.e., the existence of a
diffeomorphism of submanifolds containing the configuration spaces) is not an equivalence

relation.
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We note that a kinematic system is described entirely by its model (as defined in
Definition 2.10 (4)). A congruent model is obtained by a change of the reference frame in
the ambient space. Other diffeomorphic models allow, when studying the behaviour of the
system, to substitute the motions in E>* (or E**) with motions on lower-dimensional
manifolds. In particular, whenever the configuration space, C, of some kinematic system

X(C, Q), is a submanifold of the ambient manifold, Q, the system is diffeomorphic to
KO).

2.12. Example. We examine the planar kinematic system of two particles, p; and p,,
with a configuration space C, defined by the following three conditions: (i) the first
particle, p,, must remain at a constant distance, /,, from a fixed point o; (ii) The distance
between the two particles must always be equal to /,; (iii) the second particle must always

remain on a fixed line through o. This system, denoted by ¥, is shown in Figure 2.1.

V/ /4

Figure 2.1. A two-particle kinematic system.

Let the coordinate system in E2 be chosen with an origin at 0 and the x axis along the
line containing p,. Then, the kinematic system is M = X(C, E*), where C is the set of
points in E* with coordinates, (x,, y,, X,, ¥,), which satisfy the following constraints:

2 ,2_12
Xg;m vy, =47,
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(x2 = x)* + (2 =y )% = 1%, (2.12)

y»=0.

This system is diffeomorphic to M = XI{C", E*), where E’ is the set of points with
coordinates (x,, y,, x,) and C’is the vanishing set of the two equations:

xl+y*=172,

(2.13)

(xy - xl)2 + y,2 = 1,2
The map of this diffeomorphism is the inclusion, i, of E? into E*, which maps E® into the
hyperplane {y, =0}. ( i(x, y;, X3) = (X, ¥1- X2, 0) ).

Furthermore, this system is diffeomorphic to the system M= X{C”, X), where X is
a cylinder with radius /,, and C”is the vanishing set of the equation:

h* - 2hl,cos@ = I,> - I} (2.14)
where £ and 6 are the cylindrical coordinates on X. The diffeomorphic map in this case is
the inclusion map, j, which identifies X with the cylinder in E* with equation
xr+y=1> (jth ,8)=(lcos,sinb, h) ).

When [, # /,, the set C”, given by Equation (2.14), is the disjoint union of two
smooth closed curves. Therefore, the system is diffeomorphic to X{C”) and, furthermore,
to KIC”), C”’=S8'uU §', ie., to the set of motions of a point on a pair of circles. The
diffeomorphic relation is established by a map denoted, respectively, k, for the case
[, > 1,, and k, when [, > [,. Each map is defined for an element, @, of either the first or

the second circle denoted (S'), and (S'),, respectively. When /, > I,

h(p), if pe(S!
b SLU ST o M kz((p):[( @.9) if peS) 215
\h(@) @+ m) if Pe(Sh),

where

(@) = l,cos @ +V 13 — (I;sin @)2.
When [, > [;:
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ky: S'o S — E?, k1(¢)={(x(‘p), oL  F oelh
(-x(@), ~¥(@), P) if pe(S),
where
@) =VE - Beos? ¢,
¥ @) = lxcos @,

«@) =lpsin @+ V12 - 3cos? @ .

(2.16)

When I,> =1, = I, C”” becomes the union of a pair of intersecting closed curves on

the cylinder: the circle S = {h =0} and the ellipse E = {h - 2lcosf = 0}, Figure 2.2.

N

Figure 2.2. The configuration space of a 2-particle system.
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In this case, the configuration space is not a smooth manifold and the kinematic system
cannot be modelled by a system on a one-dimensional manifold. The simplest possible
representation is as a system, such as M”, defined on a two-dimensional manifold. An
open submanifold of X containing C”, e.g. {-2/—e<h <2l + €}, €>0, can be
mapped onto an annular region of the plane and thus M can be shown to be diffeomorphic
to a system of the type XS, E2), where S is a set of two intersecting circles in E>.

In conclusion, the pairs (M, i), (M”, iej), (M", i-k) are diffeomorphic kinematic

models of the same kinematic system, M .

2.13. Example. Consider the set C < E*, C =S U I, where S is the unit circle in
the Oxy plane, S = {x* + y* =1, z=0}, and [ is the straight-line interval {x = O,
y=1, -0.5<2z<0.5}, Figure 2.3.

4
<

e . - —-———__
-
-
- -
-~
-
-

R X
- - .
-~ -
- -
-
-
-

Figure 2.3. A singular configuration space, C =S U /, on a cylindrical surface.
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We note that C is a subset of a cylindrical strip, Q, (with axis the z coordinate axis).
Simultaneously, the same set, C, can be considered as a subset of a M&bius strip, M,
obtained by cutting, twisting and re-attaching the cylindrical strip Q. The systems X{C, Q)
and X{C, M) are diffeomorphic, but they do not satisfy the global diffeomorphic condition
described in Remark 2.11(1). Indeed, if this were the case, it would follow that a cylinder
is homeomorphic to a Mobius strip, which is known to be incorrect. This example
illustrates that the condition (which we used in Example 2.12) requiring the existence of a
“global diffeomorphism” (as described in Remark 2.11(1)) is not always satisfied when the
configuration space is not a smooth manifold.

2.4. Rigid Body

Let us consider a system of N > 1 moving particles subject to the condition that in
every feasible configuration the distances between the particles remain the same. Let

x?,...,x9be N> 1 distinct points in E>. We have the system:
3 = K(CNy ES")! CN = {(x|9 LR | xN)l d(xi9 'xj) = d(x‘ovxjo)}' (2'17)

2.14. Proposition. The set Cy, defined in Equation (2.17) is a smooth manifold
described by the following statements:
(1) Ifall the points x? lie along one line, then Cy, is diffeomorphic to the product of
E? and the 2-sphere, S*, E* x S°.
(2) Ifall the points x? do not belong to any single line but lie in one plane, then Cy is
diffeomorphic to SE(3).
(3) Otherwise, if the points x? do not belong to any single plane, then Cy is
diffeomorphic to the disjoint union of two copies of SE(3).

Proof. We denote v;=x;-x,vli=x?-x0,d,=d(x),x?).
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(1) Consider the set C,, C; = {(x, x,) 1 d(x,, x,) =d|,}.

C, is diffeomorphic to E* x S* by the map: (X1, X3) = (x, 0 + (1/d}5)(x, — x,)),
which is obviously bijective and smooth. It remains to show that C, is diffeomorphic to Cy
when the points of the initial configuration are co-linear. When all points of the initial
configuration lie along a single line, then this will be true for any configuration. This is due
to the fact that, in E>, three points, x,, x,, X3, are co-linear if, and only if,

dyz =3(d)3 £ dyy)-
If A, are scalars such that
x?=x{ +2,(x9-xD),
then the diffeomorphism of C onto Cy is given by the map:
xX;=x, + A, (x,—x).

(2) Without loss of generality, let x{, x$ and x§ be non-collinear. We denote by C; the
configuration space of a rigid body which consists of only the first three particles of the
body Cy, i.e.,

Ci={(x, X2, x3)ld(x;,x)=d;;, 1 Si<j<3} (2.18)

First, we show that C; is diffeomorphic to SE(3). Denote x° = (x{, x¢, x{) and
consider the mapping

¢x0: SE(3) = C3, ¢x9(g) = gx° = (gx, gx3, gx). (2.19)
To show that ¢, is bijective, we will choose a reference frame attached to x°.

For any given three non-colinear points, (x,, X, X;), one can define a Cartesian
reference frame in E3, oe,e,e,, in a unique way by specifying: the origin at x,, 0 = x;
the e, axis along x, — x,; the second axis, e,, in the plane of x|, x, and x, in such a way
that x; has a positive second coordinate and e,-e, = 0; and e, so that it completes the
Cartesian frame (i.e., e; must be orthogonal to e, and e,, and det(e,, e,, e;) = 1).

We fix the frame defined by (x ¥, x9, x?) in this manner.

The map @, is injective. Indeed, if gx® = fx° we will show that g =f. Let g and f

be given by (G, t,) and (F, t). gx = fx{ implies t, = t. Since e, and e, are linear
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combinations of x, —x; and x; — x|, it follows that Ge, = Fe, and Ge, = Fe,.
Finally, Ge; = Fe, since G and F preserve the scalar product and orientation.

The map ¢xo is also surjective. Given an arbitrary x = (x,, X,, X;) € C3;, we chose
t, equaltox, - x?, and G such that the axes of the frame attached to x® are mapped along
the ones attached to x. Then, the displacement defined by (t,, G) is mapped by ¢xo into x.

@xo is smooth, since it is linear with respect to the matrix components of g. Therefore,
@xo is a diffeomorphism of SE(3) and Cs.

To complete the proof of (2), we show that Cj is diffeomorphic to Cy. The conditions
(2.17) imply that the coordinates of all points are determined by the coordinates of the three
points. If we attempt to find the coordinates of a point x;, k > 3, in the frame oe,e,e,, we

find a unique solution for the first two coordinates, x;; and x,,, and two solutions for the

third coordinate, x,; = £ Vd% ~ x2; - x3 .

These two solutions coincide if, and only if, the point x, is in the plane of x,, x, and
x ;. Therefore, when all points of the rigid body are in one plane, the configuration space
Cy is diffeomorphic to C; and to SE(3). The theorem is therefore proven for the case of a
“flat” body.
(3) Without loss of generality, let x{, x and x§ be non-colinear and let x? be outside of
the plane oee, (as above,0e,e,e, is the frame attached to x{, x2 and xJ). Then, for each
of the two solutions for x, there is a unique solution for the coordinates of every x;,
k>4 x5 = (1/2x3;)(d3, — d3 + x}| + X}, — x23) . Therefore, given x,, x, and x;, and
the conditions (2.17), there are two solutions for the set of points (x3,...,xy). (The
two solutions coincide if and only if all points lie in the same plane). Hence, there are two
one-to-one smooth mappings, @+ and &-, of SE(3) into Cy, defined by the two solutions
and therefore Cy = @(SE(3)) U P-(SE(3)). The image space of each of these two map-
pings, @+(SE(3)) or @-(SE(3)), is a manifold diffeomorphic to C; and to SE(3). In par-
ticular, this implies that @+(SE(3)) and ®-(SE(3)) are path-connected. The two image

spaces do not intersect unless they coincide (i.e, unless the rigid body is flat). Indeed, if we
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assume that they do intersect, (in view of the path-connectedness of the two image sets) it
would follow that there exists a continuous path, 7, connecting two configurations with the
same positions of x,, x, and x, but two different (mirror-image) locations of x,. In these
two configurations the values of the orientation of the four points, o(x;, x,, x5, x,), have
opposite signs. Since the determinant function is continuous, it follows that there is a con-
figuration along ¥ where the orientation function equals zero, i.e., the points x,,...,x,
lie in one plane. This, however, contradicts the conditions (2.17) and our assumption that

the points are not co-planar in the initial configuration. O

2.15. Definition. A rigid body, B, is a kinematic system of N 2 3 particles in E3
such that the distance and orientation functions, computed for the positions of the particles,
do not change during the motion of the system. Thus, B= K{Cs, E>"), with
Ce={(x,,xy,...,xy) 1 d(x;,x) =d(x,x)),
O(X;, X Xy, X)) = c(x?,x}’,x,?,x,o)},

where (x9,x9, . .., x\) is a given array of points in E3.

2.16. Proposition. Let B be a rigid body with a feasible configuration x°,
x0=(x0,x9, ..., xQ). Then, the pair (K(SE(3)), @x*), where

¢ro: SE(3) = E>, ¢xo(g) = g(x9),
is a model of B.
Proof. The proposition follows from the proof of Proposition 2.14. Indeed, in part (2) of
that proof it was shown that the mapping ¢xv, defined first in Equation (2.19), is a
diffeomorphism between SE(3) and C;. However, since the orientation in the rigid body is

fixed, C, can be identified with Cs. O

2.17. Remark.

(D Usually, when the rigid-body concept is introduced in the literature, only the

conditions (2.17) are used. Rigorously speaking, the configuration space of such a system
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is homeomorphic to R3 x O(3). (O(3) is used to denote the space of linear maps in R3
which preserve the scalar product, but not necessarily the det function, i.e., matrices with a
determinant of £1). The manifold SE(3) = R3 x SO(3) is only one of the two connected
components of R3 x O(3), each of which corresponds to a fixed orientation of the body.
Since a change of orientation cannot be achieved by continuous rigid-body motion, one of
the components of the configuration space can be disregarded. To specify the component it
is sufficient to provide one (initial) feasible configuration.

2) In view of Proposition 2.16 and Remark 2.17(1), a rigid body containing three
non-colinear points can be imagined as another Euclidian space co-located with E3. The
relative position and orientation of these two copies is given by an element of SE(3) and
their relative motion is modelled by the motion of a point in SE(3). It is thus common to
substitute the system K(C,, E>") with K(SE(3)).

3) Proposition 2.13 proves that Cj is a 6-dimensional smooth manifold and therefore a
local coordinate system can be chosen at each of its points. Hence, the relative motion of
two rigid bodies can be locally described by six scalar parameters. However, there is no
system of six coordinates that can be used globally, i.e., on the entire rigid-body
configuration space. Indeed, a global coordinate space would imply that SE(3) is
diffeomorphic to RS. However, one of the components of SE(3) is the manifold SO(3)

(homeomorphic to the real projective space RP®), which is topologically different from R>.

2.5. Rigid-Body Systems: Kinematic Joints

In this section, systems of rigid bodies are defined formally, in a way analogous to the
introduction of systems of particles by Definition 2.7. This approach is justified since, by
Remark 2.17(2), we can “ignore” that a rigid body is composed of particles and treat it as a

point in SE(3). Nevertheless, the definitions in this section can easily be shown to be
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compatible with those in Section 2.4 in the sense that rigid-body systems are well defined

as systems of particles as well.

Denote SE(3)" = SE(3) X - --Xx SE(3). Just as an element of SE(3) determines the
location of a rigid body in a Euclidian space, a point in SE(3)" can be thought of as
describing the location of n rigid bodies in their common ambient space, E>. A kinematic

system of n rigid bodies (or, in short, a rigid-body system) is a subset of X{SE(3)").

2.18. Definitions.

(1) An abstract mechanical system on SE(3)", i.e., a subset of KISE(3)"), is referred to
as a mechanical system of n rigid bodies.

(2) An abstract kinematic system on SE(3)" with configuration space C, i.e.,

K(C, SE(3)"), is referred to as a kinematic system of n rigid bodies with

configuration space C.

2.19. Remark. A system of n rigid bodies, K{C, SE(3)"), can be modeled as a system
of particles. Indeed, we recall that in the proof of Proposition 2.14(2) it was shown that
SE(3) is diffeomorphic to a set, C; < E?, defined by the (arbitrary) choice of a triple of
non-colinear points, x° = (x?, x9. x), x? € E*. Therefore, SE(3)" is diffeomorphic to
a subset of E", C;" = C3 X -- - x C;. The diffeomorphism in question is:
rv: SE(3)" = E°", 08, ..., 8,) = (&8X° ..., 8,x"),

where gx®= (gx?, g, gix?). Thus, K(C, SE(3)") is diffeomorphic to a system of 6n
particles, K(D, E°"), where D is the image of the configuration space C, D = ¢x%C).

Similarly to Remark 2.9 (regarding systems of particles), we note here that the
kinematic systems of rigid bodies with a configuration space, introduced in Definition
2.18(2), are commonly referred to as holonomic, while systems in which not all motions
inside the configuration space are feasible are called non-holonomic. We will be dealing

with holonomic systems.
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Definition 2.10(1) (where diffeomorphic systems were defined) applies to systems of

rigid bodies as well. (Note that two diffeomorphic rigid-body systems need not be

composed of the same number of bodies). Furthermore, some stronger equivalence

relations between systems of an equal number of rigid bodies can be introduced.

2.20.
(1)

(2)

2.21.
(1)

(2)

(3)

Definitions. Let M, = K(S,, SE(3)"), M, = K(S,, SE(3)").
M, and M, are said to be conjugated, if there is a displacement, g € SE(3), such
that S, =gS,g”', ie, S, ={gfg"' Ife S}
Let (N, ¢;) and (N,, ,) be models of the rigid-body systems M, and M,. The
models are said 1o be conjugated, if M, and M, are conjugated. The models are

equivalent when M, = M,.

Definitions.

Let Q be a path-connected subset of SE(3) containing the unit element, e. Then, the
system K{Q, SE(3)) is referred to as a (kinematic) joint with configuration
space Q.

Let C < SE(3). The system of two rigid bodies, X(B, SE(3)?), with configuration
space B = {e} x C is referred to as a kinematic pair with output space C.
Let Jbe a joint with configuration space Q, and let y_ and ¥, be a pair of fixed dis-
placements. Then, the system of two rigid bodies, K(B, SE(3)%), with configura-
tion space

B={e}xy.Qv,"'={(e,7gr.7)ge 0}

is referred to as a kinematic pair with joint 7. The displacements y_and vy, are
said to give the location of the joint 7 in the first and second body of the kine-

matic pair, respectively.
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2.22. Remarks.

(1) The configuration space of the joint, Q, is the set of the possible displacements of a
rigid body relative to one chosen possible location of the body, ie., Q consists of the
elements of SE(3), which map one chosen possible configuration of the rigid body into all
its possible configurations. If A, a path-connected subset of SE(3), is the set of the
possible displacements of the body in the ambient space, then Q would be the set Au',
where u is the chosen configuration. The reference frame attached to « is referred to as the
fixed joint-frame, while a frame attached to a variable displacement v € A is referred to as
the moving joint-frame.

(2) A kinematic pair with output space C is also a kinematic pair with joint 7, if the joint 7is
specified as 7= K(Q, SE(3)), Q@ = Cu™', where u is any chosen element of B. The
location of the joint is then given by (7., ¥,) = (e, «™'). Conversely, a kinematic pair
with joint 7has an output space equal to ¥ Qy,"'.

(3) A kinematic pair describes the displacement of two rigid bodies with respect to a frame
fixed in one of them. The displacement of the second body with respect to the first one is
given by the product ¥ fv,~'. In this expression: y_is the displacement from the frame
associated with the first (fixed) body onto the fixed joint-frame; f is the joint displacement
measured in the fixed joint frame; and 7, is the displacement mapping the frame of the
second (moving) body onto the moving joint-frame, measured in the frame of the second
body. (If all the displacement were measured in the fixed-body frame, the product

displacement would be y,~'fy.).

Clearly, a kinematic joint is a kinematic system diffeomorphic to a kinematic pair with

this joint. Thus, (4, f— (e, 1.f¥%.™")) is a kinematic model of X1Q, SE(3)%).

2.23. Definition. A set of joints, T, is referred to as a joint type, if it consists of all

Jjoints conjugated with some joint, 7.

41



The conjugacy of joints is an equivalence relation and the joint types are its equivalence
classes. Definition 2.23 provides a criterion for comparison of different joints while

disregarding the reference frame in which the joint displacements are being calculated.

2.24. Example. The present example discusses a category of joint types that are of
special practical and theoretical importance. These are the so-called Reuleaux pairs

(Reuleaux 1875), also known as lower pairs, listed in Table 2.1.

Name of joint Notation Surface Configuration Dimension
Space
Spherical joint S Sphere SO(3) 3
Planar joint F Plane SE(2) 2
Cylindrical joint C Cylinder R x 50(2) 2
Revolute joint R of Revolution SO(2) 1
Prismatic joint P of Translation R 1
Helical joint of pitch p H(p) | Helicoidal Sp(1,R), 1

Table 2.1. The Reuleaux pairs.

In the fourth column of Table 2.1, R denotes the group of translations parallel to a
fixed line (isomorphic to the set of real numbers). SO(2) is the group of rotations in the 2-
dimensional space. The manifold SO(2) is diffeomorphic to the 1-dimensional circle,
S!.The group SE(2), the Euclidian group in two dimensions, is defined in a way similar to
SE(3): SE(2) is obtained from the set R? x SO(2) analogically to Theorem 2.4. The
notation Sp(1, R), is understood as the symplectic subgroup of SE(3) for pitch p,
p € (0, «). This group consists of all helical displacements of pitch p and is isomorphic

to (but not a conjugate of) R.
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Physically, the Reuleaux pairs are defined as pairs of identical surfaces in E3, which
can move relative to each other while remaining in surface contact. Most practical
mechanisms have only Reuleaux pairs, since they provide stable contact and are relatively
easy to implement as two parts with mating surfaces.

According to a mathematical definition, a Reuleaux pair is a kinematic pair whose joint
type consists of the symmetry Lie groups of a 2-dimensional (smooth) submanifold of E3
(Selig and Rooney, 1989). In other words, a joint, J, is a joint of a Reuleaux pair when: (i)
its configuration space, Q,, is not only a submanifold but also a subgroup of SE(3) (i.e.Q,
is closed under the composition of displacements); and (ii) there exists a surface in E3, such
that: (a) every displacement in Q, maps the surface into itself and (b) all displacements in
SE(3) with this property are elements of Q,.

A classification of the subgroups of SE(3) (up to conjugacy class) can be found in
Hervé (1978). There are eight different subgroups of dimension 2 or higher. Only four of
these, however, preserve some surface in E3. These are: SO(3), SE(2), R x SO(2) and
R2. The notation R x SO(2) denotes a subgroup generated by the rotations and
translations about one and the same line in E3. The group denoted by R2, which is
generated by the translations in two directions, does not satisfy our definition, since it does
not contain all the symmetries of its invariant surface (a plane parallel to both translations).
This condition is satisfied by a larger group, SE(2), which has R? as its subgroup.
Therefore, there are three Reuleaux joint types of dimension greater than one, and they are
listed in the first three rows of Table 2.1.

The subgroups of SE(3) of dimension 1 are the so-called symplectic subgroups of
SE(3), denoted Sp(l, R)p in general, symplectic groups are groups which preserve
antisymmetric forms (Weyl 1946). In the case of SE(3), a symplecic group preserves a
4 x 4 antisymmetric form (when the elements of the group are interpreted as the 4 x 4
matrices used to change coordinates in PR3, cf. Remark 2.5). A classification of the

symplectic groups (by conjugacy class) can be identified with a classification of the space
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of vector forms in the tangent space of SE(3). This vector-form classification identifies
elements that can be mapped into each other by means of a coordinate change in E? or a
multiplication by a scalar factor. This is, in fact, a classification of screws according to their
pitch®, p. Thus, there are ! different 1-dimensional subgroups of SE(3), one for every
value of p, from 0 to . All these groups correspond to a different Reuleaux pair, which
has an invariant helicoidal surface in E3. The most practical joints are given by the groups
with p =0 and p = o, and these are the groups SO(2) and R, where the helicoid
degenerates into a surface of rotation or translation. The one-dof Reuleaux joints are listed
in the last three rows of Table 2.1. It should be noted that the “helical joint type” actually

consists of an infinite number of distinct joint types with pitch p, 0 < p < oo,

2.6. Articulated Systems

Kinematic pairs describe the possible relative motions of two bodies. When we say that
two bodies are connected with a joint, % it is understood that the relative displacements of
the two bodies are restricted to the configuration space of a kinematic pair with joint 7. If
we imagine that the two bodies are part of a system of rigid bodies then a joint describes a
restriction on the feasible configurations of the system. Systems of rigid bodies, where the
configuration spaces are defined solely by specifying kinematic pairs, are referred to as
articulated systems. The main purpose of this section is to define such systems and
demonstrate some of their basic properties. To achieve this, we will need some basic
concepts from graph theory, which we gradually introduce as we proceed. Our graph-

theoretic notation is closest to Wittenburg (1994).

* The pitch is a projective number (i.e. an element of PR) and an invariant in the 6-dimensional twist
space. For a twist, A, p is defined as p = (Ki(A, A) : 2KI(A, A)), where Ki(A. B) and K(A, B) are the
Klein and Killing forms—the only invariant scalar products in a twist space (Karger and Novak 1985). As a
projective number, p does not change when multiplied by a scalar such as —1 and therefore p can be thought
of as having a value from 0 to co .



A directed graph, I'= G(M, N, v) = (V, A, v), consists of M + 1 vertices labeled
ve V={0,...,M} and N connecting arcs labeled ae A = {1,...,N},
together with a mapping v = (v_, v4),

viA > VXV, v(a) = (v_(a), ve(a) ),
which specifies the starting and terminating vertex of the arc a.
We shall always assume that I has the following properties:
(i) For any arc, a, v_(a) # vi(a).
(i) Any two vertices are connected with at most one arc, i.e., the map v is injective;
(iii) Any two different vertices are connected by either an arc or by a sequence of

arcs and vertices (i.e., I'is a connected graph).

2.25. Definitions. Let I'= GIM, N, v) = (V, A, v) be a directed graph and let P be
a collection of joints such that no two elements of Pare of the same joint type.
(1) Amapp,p:A— P is referred to as a joint distribution for the graph I'.
(2) Amapy.
Y: A = SE(3)’, ¥a) = (7-(a), ¥+(a)),
is referred to as a link geometry for the graph I'.

2.26. Remark. The set P, used in Definition 2.25 is, in fact, a collection of representa-
tives of joint types, and hence a joint distribution, p, assigns a joint type to each arc of the
graph. Each vertex of the graph is associated with a rigid body. In mechanism theory, these
bodies are referred to as links. Then, the pair of maps (p, 7) defines a kinematic pair for
each arc of the graph. The first body of the kinematic pair corresponds to v_(a) and the
second body—to vi(a). The displacements y(a) and y;(a) determine the location of the
ioint in the first and second bodies, respectively, while p(a) is the joint of the kinematic

pair.
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2.27. Definitions. Let I'= G(M, N, v) be a directed graph.

(1) Let p be a joint-type distribution for I'. The pair, (I, p), is referred to as a
kinematic chain with graph I” and joint-type distribution p. Let Q, be the
configuration space of the joint assigned to the arc a, i.e. p(a) = K{Qa, SE(3)).
Then, the space [1,¢ 4 Qa is referred to as the joint space of the kinematic chain.

(2)  Let W= (I, p), where p(a) = K{Qa, SE(3)), be a kinematic chain and let y be a
link geometry for I'. Then, an articulated system with kinematic chain W and
link geometry v, A(W, 7), is defined as the kinematic system of M + 1 rigid bodies
with configuration space C ( i.e., AW, y) = K(C, SE(3)**")) where

C = {(e' gh LR } gM) l gv,(a) = gy_(a)y—(a)fay+(a)—lifa € Qa}-

2.28. Remark. A kinematic chain specifies the bodies that are connected with
kinematic pairs and the joint types of these pairs. However, the kinematic pairs are not fully
described since the location of the joints in the adjacent bodies is unknown. These locations
are given by the displacements ¥._(a) and ;(a). As we mentioned in Remark 2.26, the rigid
bodies (associated with the vertices of a kinematic chain) are referred to as links, which
accounts for the term “link geometry” adopted for ¥. Knowing %, one can calculate the
relative displacement between the joint-frames of two different joints in one and the same
body. It will be convenient to define a transformation of SE(3)", F : SE(3)¥Y — SE(3)",
for a given link geometry ¥. F is given by:
F=(Fi.....,Fa,...,FN), Fa(h)=7-(a)"'h,1e(a).

It can be seen that F is an automorphism of SE(3)". This map transforms an array of N

displacements, (hy, ..., hy), which are thought of as the relative displacements of pairs
of bodies, into (F, ..., Fy), which can be regarded as an array of joint displacements.
The inverse map, F-' = (F~', ..., Fgl,..., Fxy™1), is given by

Fa'(f) = y(a)f, @)™
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An (ordered) sequence of arcs in which every arc (except perhaps the first and the last)
is connected to the preceding and following arcs (i.e., it shares a vertex with them) will be
referred to as a path. In other words, a sequence, P = (a,, a,, - . . , a;), is a path if there
exists a (necessarily unique) sequence of vertices, (v, v,, ..., v;, ), such that

{viovio 1} = {v=(a). ve(a)}, i€ (1,...,k}.
A path is called elementary if all its vertices, with the possible exception of the first and
last, are distinct, i.e., v; # v; whenever li — jl < k. We note that all arcs in an elementary
path must be distinct.

An elementary path for which the first and last vertices coincide (v, = v, ;) is called a
circuit (or loop®). A set of loops {L,,..., L} is said to consist of independent loops if
every loop, Lj, has at least one arc, a?, which belongs to no other loop in the set. In every
connected graph, there exists a set of ¢, c = N — M, independent loops, but there is no
set with ¢ + 1 independent loops. A set of N — M independent loops is referred to as a
fundamental system of loops. The arcs a¥’,je {1,...,c}, are called chords of the
graph. A graph with no loops, i.e., with ¢ =0 is called a tree. If all chords were
eliminated from a graph, I', the remaining graph would be a tree. The subgraph of I”
obtained by removing the chords is called a spanning tree of I'. For a given graph, the
choice of a fundamental system of loops, a system of chords (and the spanning tree) is not

unique.

Kinematic chains, as well as articulated systems, are classified according to the
topology of their graph, I. When I'is a tree (i.e., it contains no closed loops and therefore
M = N), the kinematic chain is referred to as open. A kinematic chain is closed when

every arc of I is part of a closed loop. A simple chain has a graph where every vertex has

TIn graph theory, the term loop refers to an arc which begins and ends in the same vertex, i.e, a circuit
with only one arc. On the other hand, in mechanism theory circuits are usually called loops. Since circuits
with one arc are not present in the graphs we address in this thesis, we shall use the term loop instead of
circuit, thus complying with the usual terminology in kinematics.
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at most two adjacent arcs (i.e., for every vertex, v, the set v_-1(v) U v4-1(v) has at most

two elements). Simple, open chains are referred to as serial chains.

2.29. Notations. Herein, we introduce some notations which will be used in the
subsequent propositions. If a graph, T is a tree, then M = N. Moreover, for every vertex,
v, there is a unique minimal path (i.e., a sequence of distinct arcs and vertices) connecting
v with any fixed vertex, e.g., the vertex 0. Therefore, there exists a correspondence, P(v),
which gives for every v, a unique elementary path, P(v) = (a,, ..., ay,,), such that,
for the vertices of this path, vi =0 and vy, ., = V.

Let P =(a,,a,,...,a) be a path in I'. Let the function 8, : A — {0, I,-1} be

given by:
0 ifa#a;Vi
op(a)=\1 if a=a;and v_(a)=v; (2.20)
l—l if a=a;and v (a)=v;

For every path, P, we denote by A, : SE(3)¥ — SE(3) the map

Ap(h) = hFovplred  plran, (2.21)
where h = (h,..., h,, ..., hy). If h, is the relative displacement of the rigid body

associated with v.(a) with respect to the body-frame associated with v_(a), calculated in the
body frame of body v_(a), then Ap(h) is the relative displacement of body v, with respect to
body frame v,, measured in body-frame v,. The value of A.(h) can be presented as a
function of the joint displacements, f,, by expressing k = F-!(f). (The map F depends on y
and was defined in Remark 2.28.) We denote Zp (f) = Ap(F~'(f)). When the link
geometry, ¥, is clear from the context, we will write simply Zp(f).When P is a loop the

equation Z,(f) = e is referred to as the loop equation for loop P.

In what follows, we show how an articulated system can be described as a set of

motions in the joint space, [1,¢ 4 @, rather than in SEG)¥+ 1.
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We shall assume that the sets Qg, used in the definition of the joint-distribution

map, p, are smooth submanifolds of SE(3). A system satisfying this condition will be said

to be with smooth joints.

2.30. Theorem. Let M = A(I', p,y) be an articulated system and let
L={L,,...,L.} be a fundamental system of loops in I'. Then, M is diffeomorphic to
KD, Q), where

Q =Il,en@ and D = {{(f},....fu)e QI Z(fl=e,VLe L}.
Proof. The articulated system, A(T, p, 7), defined as X({e} x C, SE(3)M*!) (Definition
2.27(2)), is obviously diffeomorphic to X{C, SE(3)*), where

C={(g-- - 8m) ! 8v.y= gv-(a)(F_l)a(.fa)vfa € Qq}.

It is therefore sufficient (and necessary) to prove that the systems X{C, SE(3)*) and
KD, Q) are diffeomorphic.

We denote by A” a set of chords for I', and let the elements of A”“be a? € L,
je {1,...,c}. We consider the spanning tree, I''= G(V, A’, v), obtained from I'
by removing A”(A’=A — A”). Then, the articulated system M’ =A(I'", p, P) is an
open-chain system. (Note that, for simplicity, we use the same notation for a map defined
on A, such as v, p or %, and its restrictions on A”). We will first prove the statement of the

theorem for the open-chain system M.

2.31. Lemma. Let M’'=AI", p, Y be an articulated system with an open kine-
matic chain. Then M’ is diffeomorphic to K(Q"), where Q" =[], ¢ 4* Qs
Proof. We need to show that K[C’, SE(3)) is diffeomorphic to X{Q), where

C'={(gys---+8m) ) 8vuay = &vuayFa 'Uo). fo € Qa,ae A%}, (2.22)
Let the map & : SE(3)Y — SE(3)", be given by
S )=(DP,,.... P, ..., Dy), ©,=Zp.(f). (2.23)
If we denote G : SE(3)Y — SE(3)™ as:
Gh)=(Gyr--er Gy Gy)r Gu(h) = Apy(h), (2.24)
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then we have: @ = G<F'. (We recall that the maps Ap and Xp were introduced in Nota-
tions 2.29).

Let the map ¥: SE(3)¥ — SE(3), be given by

P(E) = (Froeos Tar oo P)s Pald) = F o8y o' 8ra):

If we denote H : SE(3)" — SE(3) as:
H(g, - s8-8 =(Hy o . Hy oo Hy), Ha(8) = 8.0y '8v.tar
we have ¥ = FoH.

We show that G = H ~! and therefore @ = ¥~!. We need to prove that GoH and
H -G are identity maps. Consider G- H(g), G ,(H(g)) = Ap,)(H). Let the path P(v) be
(a,,...,a,) with vertices (v{,...,v,). Then, from Equation (2.21) and the
definition of P(v) (see Notations 2.29) we have:

G.(H(g)) = (gv-(al)-lgv+(al))5p(a,) Tt (gv_(ak)-lgv-p(ak))ap(ak) =

(2.25)
(gvl-lng)(gvz-lng) ct s (gvk_l-lgvk) = gvk = gv *
Therefore, G(H(g)) = g. For HoG(h), we have
Ha(G(h)) = Gv_(a)—le_‘.(a) = (AP(L_(a))(h) )-I(AP(v.',(a))(h) )' (2'26)

Exactly one of the two paths, P(v_(a)) and P(v4(a)), contains the arc a as its last element.
Either P(v4(a)) = (P(v(a)), a) and &p,,(,)(a) = 1, or alternatively P(v_(a)) = (P(v.(a)), a)
and 8p(,_,)(a) = -1. In both cases, the right-hand side of Equation (2.26) equals h, and
hence H, (G(h)) = h.

Therefore, @ is invertible. Both & and its inverse, ¥ = @ !, are smooth maps.
Indeed, both G and H are smooth maps since the group product and the inverse on SE(3)
are smooth. Thus, @ is a diffeomorphism.

It remains to prove that &(Q ") = C". Let f'e Q and consider @(f’) =
(Py,..., Dy). Since @, = G(F~'(f")), we have, similarly to Equation (2.26):

D, o' P,y = Gty F NG o F G = (F)alf). (2.27)
Therefore, (®,, ..., P, satisfies the equations defining C’, i.e., Q") < C”.
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On the other hand, if g € C”then ¥a(g) = Fa(g, (,,'8,.ay)- Since, forevery ge C’, we
must have g, '8, o, € Fa'(C"), we conclude that C’c &(Q".
This shows that the restriction of & on Q” is a diffeomorphism between smooth

manifolds and the lemma is proven. |

Proof of Theorem 2.30. (Continuation). To prove the statement for a kinematic chain
with closed loops, where N > M, we construct a set , 0¥, diffeomorphic to Q’, such that
D < Q* c SE(3)". We will show that there exists a diffeomorphism & : 0* — C’ such
that o(D) = C. This will prove that X{D, SE(3)Mis diffeomorphic to X(C, SE(3)™). Since
KD, Q) is diffeomorphic to K{D, SE(3)") by inclusion, the statement of the theorem
would follow. (We recall that the diffeomorphism of mechanical systems is an equivalence
relation and hence transitive, see Remark 2.11(2) ).

Without loss of generality, we can assume that the arcs in I are numbered in such a
way that A= (A", A”). Let O* be given by:

Q* = {(f' [V € Q'L = Fl(Pr o WD, (o)) ae A7}, (2.28)
The set Q* is a smooth bijective image of QO and we denote by 7: 0* — Q° the
diffeomorphism n(f", f) = f. Now we set 0 = @« x, defining a diffeomorphism
between the M-dimensional manifolds O* < SE(3) and C’c SE(3)M.

It remains to prove that D c Q* and o(D)=C.If fe D < Q, f= (f’, ™), then
for every fundamental loop L, we have X, (f) = e. Therefore, for every chord, a e A”,
we can write:

(Zpew—ay WNEF T N ( oy yapD ) = e, (2.29)
which implies

F () = F (D = (Zpaap )V (ZparanD) = (D, o)V HD, (o(F)).  (2.30)
and therefore,

fo= F (P (N UP, 0y ). Vae A”. (2.31)
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Equation (2.31) is equivalent to fe Q* (cf. Equation (2.29)), and this proves that
D c O*.

Finally, we show that if f= (f, f") € D then o(f) = ®(f) € C, i.e., 6(D)=C.
From the proof of Lemma 2.31, we know that §(f") € C’, since d(f") satisfies Equation
(2.27) for all a € C". However, Equation 2.31 shows that this condition is satisfied for
a € A” as well. Thus, we have

(P, NP, ) € F, Q). V ae A. (2.32)
and therefore, o(D) c C.
If g e C,then o-'(g) = m(¥(g)) = (¥(g), ¥*(g)), where ¥* has ¢ components:
P*,(8) = F (D, o PN NP, o F(©)) = FulBy oy Bruia)- A€ A”. (2.33)
Let L € L and let a be the chord in L. Then,
2(078)) = Z(¥, ¥*) = Zpeap PV NE (P * ) o) ). (2.34)
We recall that @, = 3, and we substitute ¥*  from Equation (2.33) to obtain:
Z1(07(2) = By (o (PIF, (8 iay " 8ruta)) Prsiar{ P (2.35)
We have @ = ¥, hence @, ,,(‘P) = g, ) and Equation (2.35) yields
Z(07MEN = 8 a)(Briay ' 8va))Bruiay = B (2.36)
which proves that o0-'(g) € D and C < o(D).
We have, therefore, shown that (D) = C, and completed the proof of the theorem. []

2.32. Remark. Theorem 2.30 shows that the articulated system M = A(I, p, y) is
modeled by (X{D, Q), 6). This model, referred to as the joint-space model of the system,
can be an alternative to the model based on the system X{(C, SE(3)M). (This second model
can be called the link-space model of the system). The joint-space model is especially
useful when most of the spaces @, are of dimension one, since then the dimension of Q
may be significantly lower than dim SE(3)™ = 6M. When the system M is described by
KD, Q), the elements of Q, can be thought of as points of these manifolds rather than

displacements in SE(3). When this is the case, these elements will be referred to as
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Jjoint variables (or joint parameters) and the notations used will be g, € Q, and

q=(q49.-.-.-,9y) € Q.

2.7. Serial Chains

In this section, we address equivalent substitution of serial chains.

In a serial kinematic chain, the graph has a simple linear structure. Without loss of
generality, we can assume that the arcs, A = {I,..., M}, and vertices, V =
{0, ..., M}, of the graph, (V, A, v), of a serial kinematic chain are labeled in such a
way that

v(a) = (v_(a), vy(a)) =(a -1, a).
Such a graph will be denoted by S(M).

In an articulated system, S= A(S(M), p, 7)., with a serial kinematic chain we will
assume, without loss of generality, that the reference frames attached to the rigid bodies
associated with the vertices are chosen in such a way that y,(a) = e for all a < M.

For every vertex, v = k, the path from O to vis P(v) = P(k) =(1,...,k).
Moreover, since all paths in S(M) are composed of arcs with consecutive numbers,
P=(a+1,...,a+k), the maps Ap and 2p are given by:

Apth)=h, - gy
N =Ap(F\M) =yla+ 1)f, |- Y(a+bh, . (2.37)
Zpy D = Y-()f, - 2)f5 - - Y-(k)h, ¥ (k).

2.33. Definitions. Let S= AS(M), p, 7) be a serial-chain articulated system and let
Q =0, X---x Q,, be the joint space of 5.
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(1) The mapping x: Q — SE(3), x= Zp(k)] o+ s referred to as the output map of
the serial chain S. The set K(Q) is the output space of S. A kinematic pair, P, is
referred to as the substitute pair for 5 if P= K({e} x x(Q), SE(3)?).

(2) The system §is said to be a substitute (system) of another serial-chain articulated
system, S’, (and vice versa) when the two systems have the same output spaces.

(3) S is said to be a diffeomorphic substitute of S’ (and vice versa) when S is a

substitute and it is diffeomorphic to S°.

2.34. Remarks.

(1) When two serial-chain systems are substitutes, the feasible locations of the rigid body
associated with the last vertex of each of the chains are the same. Furthermore, if Sis a
subsystem in a larger articulated system, M, then the substitution of § with $“would have
no effect on the feasible position and orientation of any of the bodies in the system which
are not part of . However, the new system obtained as a result of the substitution, M,
will not be diffeomorphic to M unless Sand §”are diffeomorphic substitutes.

(2) Of particular interest is the substitution of a kinematic pair by a serial-chain system. If §
is a diffeomorphic substitute of a kinematic pair, 7, then the system, M, obtained by the
replacement of P with §in a larger system, M, can be considered equivalent to M. The

system S is a diffeomorphic substitute of a pair only if the map xis bijective.

Many articulated systems of practical or theoretical importance have all their joints
among the Reuleaux pairs. The image space of the joint-type distribution of such a system
consists of the joint types shown in Table 2.1. It is, therefore, important to know whether
some of the Reuleaux pairs of higher dimensions can be diffeomorphically substituted by a
serial chain of Reuleaux pairs of dimension one. In fact, it can be seen that for pairs with
joint types C and F there exist diffeomorphic substitutes with joint of types R and P. The
following two propositions follow directly from the definition of the Releaux-pairs joint

types in Example 2.24 and Definition 2.33.
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2.35. Proposition. Let P be a kinematic pair with joint 7€ F. Then, there exists a
serial-chain articulated system S= A(S(3), p, 1), where p(a) € {R, P}, such that S is
a diffeomorphic substitute of P.

2.36. Proposition. Let P be a kinematic pair with joint 7€ C. Then, there exists a
serial-chain articulated system S= A(S(2), p, Y), where p(a) € {R, P, H}, such that S

is a diffeomorphic substitute of P.

A serial-chain system with three revolute joints, whose axes intersect in one point, is a

substitute of a pair with a spherical joint. However, this is not a diffeomorphic substitute.

2.37. Proposition. Let P be a kinematic pair with joint 7€ S. Then, there can be no
serial-chain articulated system, S= A(S(M), p, 7), where p(a) € {R, P, H}, such that
S is a diffeomorphic substitute of P.

Proof. Such a system cannot have a joint of type P or H, since then the joint space would

not be compact. On the other hand, if all joints in § are revolute, the joint space is

homeomorphic to a torus, T, and therefore cannot be homeomorphic to SO(3). D

It can be proven that for every M, any smooth map ¢ : TV — SO(3) has singularities
(Gotlieb 1986). Therefore, the statement of Proposition 2.37 can be made even stronger.
Namely, for the spherical pair, there is no substitute serial chain with a nonsingular output

map.

2.8. Mobility

In this section, we define mobility, a concept which is widely used in mechanism

theory, but is given only an essentially intuitive definition. Herein, we define mobility for
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arbitrary kinematic systems and make some observations valid for those kinematric
systems, such as articulated systems, whose configuration spaces can be described as

algebraic sets.

2.38. Definitions. Let M = K{C, X) be an abstract kinematic system with dim X = n.
(I) xe Cis aregular configuration of local mobility e, x € C'°, if there is
an open neighbourhood, U, of x in X such that:
(i) U N C is a smooth submanifold of X.
(ii) dimUn C =e.
The set of all such configurations is denoted by C©.
(2) M has (global) mobility u(M), if:
(i) There is a number, e, such that there exist regular configurations of
mobility e, i.e. C\© = D.
(ii) (M) is the largest such number, u(M) = max{e | C'® = D}.
(3) Let Reg M = C¥M) The elements of Reg M are referred to as regular

configurations of M. The complement of Reg M is denoted by Nrg M .

When the configuration space C is a smooth manifold, all configurations are regular
and the mobility of the system is equal to dim C. There are kinematic systems for which the
configuration space is immediately recognized as a smooth manifold. For example, an
open-chain articulated system has a smooth configuration space provided that the
configuration spaces of the individual joints, Qg, are smooth (cf. Lemma 2.31).

For many other systems, including closed-chain articulated systems, the configuration
space, C, is described as the vanishing set of a system of constraint equations. Then, C can
be thought of as an algebraic set in some affine space. Indeed, Theorem 2.30 implies that
the configuration space of an articulated system can always be defined as an algebraic set,
provided that the joint configuration spaces, Qg, are algebraic sets. To see this, we must

recall that by virtue of Proposition 2.14, SE(3) can be identified with an algebraic set in the
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affine space E°. As an algebraic set, C is not guaranteed to be a smooth manifold, as is
demonstrated by the system discussed in Example 2.12.

2.39. Proposition. Let V be an algebraic set in E* and let M = K{V, E"). Ifx is a

nonsingular point of dimension e in C, then x is a regular configuration of local mobility e

in M.

Proof. We recall that, according to Definition 1.20, x € V is a nonsingular point of

dimension e if, and only if, there exist M — e polynomials, p;,..., Py _.. in XV)

such that:

(i) Nearx, Vis the vanishing set of the polynomials, i.e., for some neighbourhood U,
we have UNnV=UnNn{ylpi(y)=0,i=1,..., M -e¢e}.

(i) The polynomials have linearly independent gradients at x.

According to the Implicit Function Theorem (Porteous 1981) a subset V < E" is a smooth

manifold of dimension e near x if the conditions (i) and (ii) are satisfied for M — e smooth

functions p;. Therefore, x is a regular configuration of mobility e. ]

The converse is not true, as the following example indicates.

2.40. Example. Consider the system X{V, E-), where V is the vanishing set of the
equation p(x, y) = y3 + 2x%y — x* = 0. This is a cubic curve, which has a singularity
at the point (0, 0). Indeed, the gradient of every polynomial in AV) is zero at (0, 0). Yet,
the curve is a smooth submanifold of E2, and therefore all configurations of a mechanical

system with configuration space V are regular.

2.4 1. Proposition. Let V be an algebraic set in E" and let M = K{V, E"). Then, the
mobility of the kinematic system, M, is equal to the dimension of its configuration space,

i.e. w(M)=dim V.
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Proof. It is known that for any algebraic set, V, Nsg V # @ (Proposition 1.24(1)).
Hence, there are points in V which are nonsingular of dimension ¢ = dim V. By
Proposition 2.39, this implies that there exist regular configurations of mobility e = dim V.
Therefore, (M) = dim V.

Let us assume that g(M) > dim V. Then, there exists an x € V and a neigh-
bourhood, U, such that U N V is a smooth manifold of dimension d > dim V. This
implies that x ¢ Nsg V and therefore x € Sing V. Moreover, the same is true for all
points in U N V and therefore U N Sing V=U N V is a smooth manifold of
dimension d.

It is known that, for any V, Sing V is either the empty set or an algebraic set of
dimension strictly smaller than dim V (Proposition 1.24(4)). Therefore, we can proceed by
induction and prove that there exists a zero-dimensional algebraic set which contains
U N V in its singularity set. This is impossible, since the singularity set of a zero-

dimensional algebraic set must be empty. ]

2.42. Corollary. Let V be an algebraic set in E" and let M = K(V, E"). Then, the
nonsingular points of the configuration space, V, are regular configurations of the
kinematic system, M, i.e., NsgV c Reg M.

Proof. If x € Nsg V, then, by Proposition 2.39, x is a regular configuration of mobility
e =dim V. According to Proposition 2.41, dim V = (M), and therefore x is a regular
configuration of mobility u(M), i. e.,x € Reg M. O

In particular, Corollary 2.42 shows that for articulated systems with lower pairs all

nonsingular points of the configuration space are regular configurations.
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2.9. Mechanism

In this section we define the term mechanism. An articulated system, M, is referred to
as a mechanism, when it is used as an input-output device for the transformation of motion.
Two kinematic subsystems of M are specified: an input system, where the motions can be
prescribed; and an output system, in which desirable motions must be obtained by
choosing the motion in the input system.

Let M= AT, p, y) be an articulated system with smooth joints (i.e., the sets Q4 are
smooth manifolds). As we showed with Theorem 2.30, the articulated system, M, can be
modelled by two diffeomorphic kinematic systems: X{D, Q), the system of the feasible
motions in joint space; or K{C, SE(3)¥), the space of the feasible link motions.

A subspace of the joint space, I < Q, is chosen as the input space. It is assumed that
the input space has the structure I = HaeA, (s, where A is a collection of arcs in the
graph I'. The joints that correspond to the arcs in A, are referred to as input joints or active
Jjoints and it is assumed that their joint parameters can be actively controlled. The remaining
joints are referred to as passive. Thus, the N-tuple ¢ has two subsets: the active joint
parameters ¢4 and the passive joint parameters ¢”. Since it has been assumed that the joint-
configuration spaces are smooth manifolds, the output space, Z, is a smooth submanifold as
well. We denote dim / = n;. It is usual to assume that n; > u(M). The choice of the input
space defines an input projection, m; : Q — I, which maps each configuration, g, into the
point ¢° € I. The restriction of this map to the configuration space, D, is denoted by f; and
referred to as the input map of the mechanism. The kinematic system X{f{D), ) can be
viewed as a subsystem of X{D, Q). The motions in this subsystem, the input system of
the mechanism, are being actively selected and can be viewed as the control functions of the

system X{D, Q).
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The output space, O, is a chosen subspace of SE(3)¥, i.e of the space of possible
locations of the links of the articulated system. For simplicity, we assume that O is a
Cartesian factor of SE(3)¥. Since SE(3)¥ = R3*¥ x SO(3)¥, O is of the form
R" x SO(3)". Thus, O is a smooth manifold and we denote dim O = n,,. It is assumed
that n, < p(M).

In most practical applications, we have O < SE(3), i.e., O is a subset of the copy of
SE(3) which corresponds to a chosen link associated with some vertex, v, of I'". (In this
case, O can be either the whole space, SE(3), of displacements of the v,-th link, or a
proper submanifold of SE(3) with dimension n.) The link v, is referred to as the output
link or the end-effector of the mechanism.

The choice of the output space, O, as a Cartesian factor of the link space defines an
output projection, Ty : SE(3)¥ — O. For instance, when O = SE(3) the output
projection is To(g,, ..., gy) = 8v, The restriction of the map 7y to C will be denoted

by go- The map f, : D = O, f, = g, ° 0| p is referred to as the output map of the

mechanism. These maps can be illustrated by the following diagram:

m o
I «— 0 SE(3M - o
@) v U U (2.38)
fl qD 8o
(D) «— D - C - o (C)

We note that O need not be defined as a Cartesian factor of the link space. It would be
sufficient to require that O is a submanifold of SE(3)" for which there exists a smooth map
TTp : SE(3)" — O such that Im ny = O and Jro| o = ido.

Similarly to the input system, we can view the kinematic system X[g,(C),0) =
Kfp(D), O) as a subsystem of X{C, SE(3)"), and refer to it as the output system of the
mechanism. The goal during the operation of the mechanism is is to achieve a desirable

motion of the output system.



We can now summarize our definition of a mechanism:

2.43. Definitions. Let M be an articulated system with smooth joints and let XD, Q),

and K{C, SE(3)") be the joint-space and link-space representations of M. Let the

submanifolds I and O be defined as the images of Q and SE(3)", respectively, under two

chosen smooth surjective projections, 1; and g, as described above. Let f; and f,, be the

maps induced on D by these projections.

(1)

(2)

(3)

2.44.
(1)

The triple of kinematic systems B = (M, M,, M), where M, = K(f(D), O)
and M, = K(fp(D), O), is referred to as a mechanism with articulated system
M, input system M, and output system M.

The space D is referred to as the configuration space of the mechanism. The
space I (respectively O) is said to be the input (respectively output) space of 8,
while f, (respectively f,) is the input (respectively output) map of fl.

The number y = u(M) = dim D is referred to as the mobility of M. The
mechanism is said to be non-redundant when n;= il = n,, where n,; = dim I
and n, =dim O. When n;> j, 8 is said to be dynamically redundant (or an
actuator redundancy is said to be present); if U > n, the mechanism is

kinematically redundant (configuration-space redundancy is present).

Definition. Let 8 be the mechanism defined in Definition 2.43.
A configuration, q € D, is said to be a nonsingular configuration of M, if
both of the following conditions are satisfied:
(i) q € Reg M.
(ii) Assuming that (i) is correct, let U < Q be the neighbourhood of q
such that V= U N D is a smooth submanifold of Q of dimension

n. Then, the restrictions of the maps f,and f, on V, i.e., the smooth
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mappingsf,| vy Vo Iandf0| v - V= O must have Jacobian
matrices of maximum rank.
Otherwise, q is said to be a singular configuration (or a singularity) of the
mechanism.
(2) Ifq e Nrg M, i.e., if condition (i) is violated, then q is a configuration-space
singularity of .
(3) If g € Reg M but the map f,l v ( respectively f0| v) is singular at q then the

configuration is referred to as an input (respectively, output) singularity of fll.

2.45. Remarks.

(1) We note that, according to Definition 2.43(1), the term “mechanism” is not synony-
mous to “articulated system”. There exist many different mechanisms having the same
articulated system, and in principle they may have completely different singularities.

(2) The definitions in the present section were formulated to apply to articulated systems
with smooth joints, since these are the usual subject of mechanism theory. It can be noted,
however, that Definitions 2.43 and 2.44 can be generalized for abstract kinematic systems.
Thus an abstract “mechanism” is given by a system X{C, X), two submanifolds, / and O,
of X and two smooth mappings, f; and f,, defined on some open set containing C. Since
U(M) was defined for arbitrary systems, singularity and redundancy can also be defined

for abstract mechanisms.

2.10. Summary

In the present chapter, we have derived the basic notions and facts of mechanism
theory, using as starting points the properties of the Euclidian group of isometries of the

real affine space, introduced in Section 2.2, and the concept of an abstract kinematic
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system, defined in Section 2.3. Section 2.4 addresses the rigid body as a system of
particles and provides a description of the configuration space of this system (Proposition
2.14). In Section 2.5, systems of rigid bodies are introduced, including precise definitions
of a kinematic joint and a kinematic pair as kinematic systems. Articulated systems are the
focus of Section 2.6, where we show that every articulated system has two diffeomorphic
models, the joint-space and link-space representations. Section 2.7 discusses equivalent
substitutions of serial chains and introduces the concept of diffeomorphic substitution. A
novel definition of mobility of kinematic systems (and articulated systems in particular) is
the focus of Section 2.8. Finally, Section 2.9 describes mechanisms and their input and

output maps, and defines mechanism singularity, which is the central topic of the thesis.
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CHAPTER 3

INSTANTANEOUS SINGULARITY ANALYSIS
OF NON-REDUNDANT MECHANISMS

3.1. Introduction

In this chapter, mechanism singularity is analyzed from the viewpoint of instantaneous
kinematics. The velocity kinematics is modelled using tangent spaces and Jacobian maps.
The model is then applied for the classification of singularities.

The approach is applicable to the singularity analysis of non-redundant mechanisms
with arbitrary kinematic chains and an equal number of inputs and outputs. The main
features of this approach are as follows:

(i) The starting point of the singularity analysis is a system of linear equations (the
velocity equation) including explicitly the passive-joint velocities. Such a system of
equations can be obtained for any mechanism and therefore can be used for the
practical identification of singularities.

(ii) A general definition of singularity of non-redundant mechanisms is utilized. A confi-
guration is defined as singular when the kinematics of the mechanism is indeterminate
with respect to either the input or the output velocities.

(iii) Singularities are classified on the basis of the physical (kinematic) phenomena that
occur in such configurations, rather than on the sole basis of the mathematical concept

of degenerating Jacobians.



The velocity equation is introduced in Section 3.2 and the definition of singularity from
Chapter 2 is given a new infinitesimal interpretation in Section 3.3. Six types of singular
configurations are defined in Section 3.4 and illustrated with the help of a 6-dof mechanism
in Section 3.5. The motion-space interpretation of kinematic singularity, introduced in

Section 3.6, is used to obtain a comprehensive singularity classification in Section 3.7.

3.2. Infinitesimal Model of Mechanism Kinematics

In Chapter 2, we showed that a mechanism can be viewed as a device targeted for the
transformation of motions in the input system into motions in the output system. This
approach, which emphasizes the local and global properties of the systems, provides
insight into the position kinematics of mechanisms.

Instantaneous kinematics, on the other hand, regards the mechanism as a device for the
transformation of instantaneous motion, i.e., for the control of the output velocity via the
input velocities.

The global kinematic model of a mechanism, fl, which we developed in Chapter 2, is
given by the configuration space, D, defined as a subset of the joint space manifold, Q; the
input space /; the output space, O; as well as the input and output maps, f; and f,. These
two maps determine the relationship between the input and output parameters, and therefore
describe the position kinematics of the mechanism.

The instantaneous kinematic model of #, at a fixed configuration g € D, is obtained
by replacing the spaces in the global model by their tangent spaces and the maps by their
Jacobians. The tangent spaces T,Q, T I and T,0 are well defined for any ¢ since Q, / and
O are smooth manifolds. The configuration space, D, however, may not be a smooth mani-
fold near g. Then, T,D does not exist. If D is the vanishing set of a system of equations,

we can replace T,D with the null space of the Jacobian of this system of equations.
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In this chapter, we consider a mechanism, M, with N 1-dof lower-pair joints. (There is
no loss of generality since for any mechanism there is an instantaneous substitute
mechanism with lower pairs (Hunt 1978)). As we pointed out in Chapter 2, the
configuration space, D, of such a mechanism is a real algebraic set. Therefore, the number
n, defined as the smallest possible dimension of the Zariski-tangent space at a point of D
(cf. Definition 1.21, Notations 1.22), exists. We assume that the mechanism is non-
redundant and g =n,=n, =n.

We adopt the following notations: A tangent vector of Q, i.e., an element of 7,0, will
be denoted by £2. An output vector (an element of T,0) and an input vector (element of
T,0) will be denoted, respectively, by T (the output twist), and Q° (the active-joint veloci-
ties). The symbol £ will be used for the vector of passive-joint velocities. Also, hereafter,
the tangent spaces 7,0 and T/, will be denoted by O and Z while Pwill be the space of all
the vectors £2°. The dimensions of the vector spaces I, Pand O (and of the vectors o° 0F
and T) are n, N — n, and n, respectively. We define a combined (N + n)-dimensional

velocity vector, m = (T, 2) = (T, 2°, Q°).

The definition of the output space in Section 2.10 implies that the differential output in
any configuration is an explicit linear function of the joint velocities:
T =A(q)%. @G.1)
In fact, the matrix A is the Jacobian of the smooth map p 7, defined in Section 2.10. If
each of the output velocities is a component of the twist of the output link with respect to
the fixed link, then Equation (3.1) is obtained by expressing T as a sum of joint twists
(Davies, 1981). Equation (3.1) will be referred to as the output equation of the mechanism.
For any closed loop, the sum of the joint twists of all the kinematic pairs in the loop is
zero. Hence, each loop imposes 6 linear equations for the joint velocities. A set of joint

velocities will be feasible if and only if it satisfies these equations for all loops in the chain.
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However, the system of all loop equations is equivalent to a system of equations obtained
from a set of ¢ independent loops. Therefore, by specifying ¢ independent loops and
writing the twist equations for each of them, the following system of 6c equations is
obtained as a necessary and sufficient condition for the feasibility of £

C(g)22=0, (3.2)
where C(q) is a 6cxN matrix. The corank of C(q), which we denote by ng (i.e.,
rank C(q) = N — n,), is referred to as the instantaneous mobility at q. By definition, the
Zariski tangent space of D at g contains vectors normal to the gradients at ¢ of all functions
vanishing on D (cf. Definition 1.22). Therefore qua'D contains the kernel of C(q) and
thus we have n < n, for all q. This implies that for any fixed q, the vector Equation (3.2)
can be transformed into an equivalent system of N —n equations, which we denote:

D(q)2=0, (3.3)
where D(q) is a (N — n) x N matrix. (A discussion of twist equations like (3.2) and
(3.3) for multi-loop chains can be found in (Baker 1980) and (Davies 1981), including a
derivation of (3.3) as a mechanical analogy of Kirchhoff’s circulation law).

Combining the N — n equations of (3.3) with the n equations of (3.1), we obtain

N linear equations which fully determine the instantaneous kinematics of the mechanism.
The definition of the matrix L(q) as:

Inxu A(q)

34
Ownyor D) -4)

L(q) =[

completes the proof of the following theorem:

3.1. Theorem. For any given configuration, q, an N X (N + n) matrix, L(q), can be

found, such that a velocity vector, m, is a feasible motion vector of the mechanism if, and

only if,
L(gym = 0. (3.5
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Equation (3.5) will be referred to as the velocity equation of the mechanism for the

configuration q.

We remark that the rank of L(q) is greater than the rank of D(q) (or C(q)) by exactly n,

i.e., rank L(g)=N +n - ng.

3.2. Example. Let us consider the velocity equation of the four-bar linkage shown in

Figure 3.1.

T

o, 7

O 7777 O >
A D

Figure 3.1. A four-bar mechanism.

There is only one loop and ¢ = 1. The loop equation is:

@sS,4 + WgSpg + WS + @pSp =0, (3.6)
where wp, Sp (P = A, B, C, D) are the joint velocities and the joint screws, respec-
tively. Only the planar components of the joint screws are nonzero. For the 6-dimensional
space of twists we use the standard basis composed of the three rotations and three transla-
tions about the coordinate axes of a Cartesian reference frame. If we set the Cartesian refer-
ence frame with two of its axes lying in the plane of the mechanism, only three of the co-
ordinates of the joint screws will be nonzero. Thus, whenever a planar linkage is

considered, we shall assume that the joint screws are three-dimensional vectors. For this
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mechanism, we have Sp = (1, y,, —x,), where x,, y, are the coordinates of point P,
P=A,B,C,D.
In this example, and everywhere else in this dissertation, when a four-bar linkage
ABCD is considered, it will be assumed, unless the opposite is specified explicitly, that AB
is the input link while CD is the output link and also that the joint velocity at A, @, is the
input, while the angular velocity of CD, 7, is the output. The output equation is:
T=-W@p - 3.7)

Therefore, the velocity equation is:

wp |=0. (3.8)

N 4
| 0 0 0 1
o 1 1 1 1 ©a
|\ g |= 0. (3.9)
0 0 yg yc O | W
0 0 -=XB —=XC =XD l

. ®p

3.3. Example. Let us consider the serial-chain 3-dof manipulator shown in Figure 3.2.
There are no loops (and no passive joints) and the velocity equation is equivalent to the
output equation:

T = 048, + 0pSp + WS (3.10)
In the twist Equation (3.10), only three of the six components are nonzero. As in Example

3.2, we can treat the screw vectors in (3.10) as three-dimensional. The matrix L can be

written as:
L=[—I3x3 S4a S Sc ] (3.11)
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Figure 3.2. A 3-dof planar manipulator.

If point A is the origin, Equation (3.11) can be rewritten as:

S
VI
1 0 o0 1 1 1 o
0 -1 0 0 yg yc || g |=© (3.12)
0 0 -1 0 -xp —xcl| g
| @c

3.4. Example. Let us consider the 3-dof planar parallel manipulator shown in
Figure 3.3. For each one of the three serial subchains connecting the base and the end-
effector, we can express the twist of the end-effector as the sum of the joint twists:

2 2 2
T=) af's?=) ofsf=) oSt (3.13)

i=0 i=0 i=0

The first equality in (3.13) can be regarded as the output equation of the manipulator, and
the second and the third as the loop equations of the loops AjA,B,B, and ByB,C,C,.

Therefore, the nine scalar equations in (3.13) are the velocity equations for this linkage.

Rewriting the nine scalar equations yields the velocity equation in the form of (3.6) as:
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[ I,s S 0 0 S& 0o o0 sS4 o o?T

Iy, 0 S8 0 o s8 o o s o 0% |=0, (3.14)

-

I 0 0 Sf 0 o0 S§ o o s§ |l Q°

where T = [@, v, v, Q%= [}, of, of T, and 2°= (o}, &€, 0§, &}, 02, ST

Figure 3.3. A planar parallel manipulator.

3.3. Instantaneous Definition of Singularity

for Non-Redundant Mechanisms

The instantaneous-kinematics analysis of an input-output device addresses two main

problems:
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(i) The forward instantaneous kinematics problem (FIKP): where for a given
configuration ¢, the instantaneous motion of the mechanism is determined when the input
0°%is given; and,

(ii) The inverse instantaneous kinematics problem (IIKP): where for a given
configuration g, the instantaneous motion of the mechanism is determined when the output
Tis given.

For a non-redundant serial-chain robotic manipulator (i.e., 2 non-redundant mechanism
with a serial-chain articulated system), it is well known that singularity occurs when the
Jacobian is not invertible and the inverse instantaneous kinematics is indeterminate. Analo-
gously, for non-redundant mechanisms, the singularity definition from Chapter 2 implies
that singularity occurs whenever the instantaneous kinematics becomes indeterminate.
Thus, a configuration is nonsingular, when both the forward instantaneous kinematic
problem (FIKP) and the inverse instantaneous kinematic problem (IIKP) have unique

solutions for any input or output.

3.5. Definition. Let q be a feasible configuration of the mechanism.
(1) It is said that the FIKP is solvable at q, if there exist matrices Jg and Py of
dimensions n x n and (N—n) X n respectively, such that the velocity equation is

equivalent to the system:
T=Je2°,
Q° —FPF.Q“ G149

(2) It is said that the IIKP is solvable at q, if there exist matrices J, and P, of dimen-
sions n X n and (N-n) X n respectively, such that the velocity equation is

equivalent to the system:
Q° =T,

3.15
Q° =pT. (3.13)
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(3) If both FIKP and IIKP are solvable, the configuration is said to be nonsingular,
otherwise it is a singular configuration.

In a nonsingular configuration, both Jacobians Ji and J; will be nonsingular and
Jy =Jg"!. However, it should be noted that, according to this definition, the existence of
an invertible Jg, an n X n matrix, such that T = JF.Qa for any feasible pair (T, 27, is
not a sufficient condition for declaring that the configuration is nonsingular, unless the
existence of the matrices Pg and Py has also been established.

The formulation of singularity in terms of the velocity equation, given by Definition 3.5

allows the recognition of six substantially different types of singularities.

3.4. Definition of Singularity Types

Herein, six types of singular configurations are defined and illustrated by examples.

3.6. Definition. A configuration is a singularity of redundant input (R]) type, if
there exist a nonzero input, Q° % 0, and a vector of passive-joint velocities, 2°, which

satisfy the velocity equation for a zero-output, T =0, ie.,

0
.Q: =0. (3.16)
Q"

L

3.7. Proposition. (Correctness of Definition 3.6)

All RI-type configurations are singular.
Proof. We note that if q satisfies Definition 3.6 then it can not satisfy Definition 3.5 (2).
Indeed, by Definition 3.6 it follows that the triple T=0, 2°# 0, 2” represents a
feasible instantaneous motion at . However, this motion clearly violates the first equation

in (3.15) and therefore Equation (3.15) is not equivalent to the velocity equation of the
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mechanism (since there are feasible motions for which the Equation fails). Therefore, the

IIKP is not solvable and ¢ is a singularity. O

3.8. Example. The RI singularity type is illustrated by a four-bar linkage, Figure 3.4.
In the configuration shown, the output link CD cannot move, since the velocity of point C
must be zero. The instantaneous input, @,, however, can have any value. Therefore, Equa-

tion (3.16) holds, and an RI-type singularity exists, where the ITKP is insolvable.

A Vo444 D

Figure 3.4. A four-bar mechanism in an RI- and IO-type singular configuration.

3.9. Definition. A configuration is a singularity of redundant output (RO) type, if
there exist a nonzero output, T # 0, and a vecror of passive-joint velocities, Q. which

satisfy the velocity equation for a zero-input, Q°=0:

T
L I: op}zo. 3.17)
[P

3.10. Proposition. (Correctness of Definition 3.9)

All RO-type configurations are singular.
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Proof. If q satisfies Definition 3.9, then it can not satisfy Definition 3.5 (1). Indeed, by
Definition 3.9 it follows that the triple T#0, 2°=0, £’ represents a feasible
instantaneous motion at g. However, this motion clearly violates the first equation in (3.14)
and therefore Equation (3.14) cannot be equivalent to the velocity equation of the

mechanism. Hence, the FIKP is not solvable and ¢ is a singularity. Ol

3.11. Example. Let us consider the four-bar linkage configuration shown in Figure 3.5.

In the configuration shown, the input link AB is locked, while the instantaneous output, 7,
can have any value. Thus, Equation (3.17) holds, and an RO-type singularity exists, where
the FIKP is insolvable.

B

L4
A 7 D

Figure 3.5. A four-bar mechanism in an RO- and II-type singular configuration.

3.12. Definition. A configuration is a singularity of impossible input (II) type, if
there exists a vector 2° for which the velocity equation cannot be satisfied for any

combination of T and $2°.

3.13. Proposition. (Correctness of Definition 3.12)
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All II-type configurations are singular.
Proof. If q satisfies Definition 3.12, then the existence of an impossible input vector
implies that the velocity equation cannot be written in the form of Equation (3.14) (since
(3.14) allows for arbitrary values of T). Thus, ¢ violates the condition of Definition 3.5 (1)
and is, therefore, a singularity. We note that an II-type singularity implies an insolvable

FIKP. L

3.14. Example. The configuration in Figure 3.5 is an II-type singularity (in addition to
being an RO-type singularity, as discussed in Example 3.11), since any nonzero input is

impossible.

3.15. Definition. A configuration is a singularity of impossible output (/0) type, if
there exists a vector T for which the velocity equation cannot be satisfied for any

combination of Q%and Q°.

3.16. Proposition. (Correctness of Definition 3.15)
All IO-type configurations are singular.

Proof. Similarly to the proof of Proposition 3.13, it can be seen that the existence of an
impossible output vector implies that the velocity equation cannot be written in the form of
Equation (3.15) and hence an IO-type singularity implies an insolvable IKP. O
3.17. Example. The configuration in Figure 3.4 is an IO-type singularity (as well as an
RI-type singularity, as we showed in Example 3.8), since any nonzero output is impossi-

ble.

3.18. Definition. A configuration is a singularity of increased instantaneous

mobility (IIM) type, if rank L < N.

3.19. Proposition. (Correctness of Definition 3.18)
All IIM-type configurations are singular.
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Proof. In an [IM-type singularity both the FIKP and the IIKP are insolvable. Indeed,
when the velocity equation is in either of the forms (3.14) or (3.15), the matrix L{g)

contains unit matrix of dimension N as a submatrix and rank L(q) = N.

Since rank L =N +n —n,, an IIM-type singularity is, in fact, an uncertainty
configuration (Hunt 1978), where the instantaneous mobility is greater than the full-cycle
mobility (n < ng).

3.20. Example. Let us consider the four-bar mechanism shown in its “flattened”
configuration in Figure 3.6, where it obtains a transitory mobility of 2, thus, having an

[IM-type singularity. (It can be noted that this configuration also belongs to the singularity

types RI and RO.)
B<§" S
@

AQ 7777 pD C

Figure 3.6. A four-bar mechanism in an [IM-, RI- and RO-type singular configuration.

3.21. Definition. A configuration is a singularity of redundant passive motion
(RPM) type, if there exists a nonzero passive-joint-velocity vector, QP # 0, which satis-

fies the velocity equation for a zero input and a zero output, i.e.,

-
L! 0J=o. (3.18)
L

3.22. Proposition. (Correctness of Definition 3.21)

All RPM-type configurations are singular.
Proof. In an RPM-type configuration both the FIKP and the HKP are insolvable. Indeed,

if (3.18) is valid, neither of the matrices Pg and P, can exist. |
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3.23. Example. Let us consider the 1-dof slider, shown in Figure 3.7a.

4

B vB

Ve V.
— —
/e W—C— )
C
A lv,,
Figure 3.7a. Figure 3.7b.
A 1-dof slider. An RPM-type, (an O-type

and an IO-type) singularity.

The velocity of point A is the input, the velocity of B is the output, and the velocity of C is
a passive-joint rate. In the configuration shown in Figure 3.7b, both points A and B must

have zero velocity, while the velocity of point C can be nonzero. Therefore, motion of the
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mechanism is possible while both the input and the output are zero, and thus an RPM-type
singularity is present.

For all the configurations of the slider, the following equation linking the instantaneous
input and output holds:

YaVa = YBVap» (3.19)
where yp and v, are the coordinate and velocity of point P (P= A, B). Equation (3.19) can
be obtained by differentiating the position-kinematics input-output equation, y42 = yg2. If
one solely uses such an input-output relation for the identification of singularities, the sin-
gularity in Figure 3.7b cannot be detected, since in this configuration Equation (3.19) does
not degenerate. Thus, this configuration is not a singularity from a *“traditional” point of
view. Yet, this is not only an RPM-type configuration, but also an II- and IO-type

singularity — any nonzero input or output is impossible.

When g belongs to a certain singularity type, this will be often denoted by ¢ € {type}
(e.g., g € {RI}). The RI-, RO- and RPM-types will be referred to as R-types, and the

others as I-types.

3.24. Remarks

(1) Each of the six singularity-type definitions describes an important change in the
kinematic properties of the mechanism that occurs in a singular configuration of that type.
When the mechanism is in an RO- or IO- (RI- or II-) type configuration the output (input)
is indeterminate or restricted. In an IIM-type configuration the instantaneous motion of the
mechanism is indeterminate with respect to any set of n velocities. In an RPM-type
singularity, the passive motion of part of the mechanism is indeterminate, which may create
problems such as interference with other links and obstacles. It is, therefore, desirable to
know whether or not a given configuration belongs to each of these types, and a

comprehensive singularity classification should clarify this.
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(2) The fact that the same configuration was used to illustrate the RI and the IO type
(Figure 3.4) or the RO and the II type (Figure 3.5) does not mean that one of these
singularity types implies the other. (Such a wrong impression may be affirmed by the
observation that the standard serial-manipulator singularity belongs to the IO and RI types,
while the classical parallel-manipulator singularity is of the RO and II types.) On the
contrary, in Figure 3.6 we have a configuration that belongs to both the RI and RO types,
but is neither an IO nor an II singularity, while Figure 3.7b shows an IO- and II-type
configuration which is neither an RI- nor an RO-type singularity. The novelty of the
approach to kinematic singularity introduced in this thesis, consists partly in the recognition
that IO and RI (II and RO) are separate phenomena which may or may not coincide.

(3) The defined singularity types are not non-intersecting, as the examples in this section
have shown, and therefore do not form a classification of the set of all singular con-
figurations. In fact, it can be shown that any singular configuration belongs to at least two
types and is simultaneously an R-type singularity and an I-type singularity. This fact is
proven later with Proposition 3.28 in Section 3.7.1. The result is obtained on the way to
the stronger Theorem 3.30 (in Section 3.7.2), which fully characterizes the intersections
of the singularity types and yields a refined and comprehensive classification of all possible

singular configurations for all mechanisms.

3.5. Example

In this section a three-branch 6-dof parallel manipulator, shown in Figure 3.8, will be
considered to further illustrate the singularity types introduced in Section 3.4. The
mechanism has an RRRS joint distribution in each of the three legs (branches). Only the

second and third rotary joints in each leg are actuated. This architecture is essentially
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equivalent to the one used by Collins and Long (1994) for their design of a hand controller

for teleoperation.

Figure 3.8. A 6-dof parallel manipulator.

The velocity equation, obtained using the method outlined in Section 3.2, is:

Is J4 0 0 —J8 0 O || T
o Ji -JB 0 Jp -JB o || @° |=0 (3.20)
o o0 12 -Jf o J§ sl af
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where, for all P (P = A, B, C), J§ =[S, ${] is a 6x2 matrix which has as columns the
active joint screws in the serial sub-chain, and ],f =S, s?, Sg ) Sg] is a 6x4 matrix
composed of the passive screws in the sub-chain. The output is the twist of the moving
platform, T = T, the input, Q° = [0, 0} ,0F, 0f,05, 0§17, is composed of the six
active joint velocities, and the passive velocities are: QF = [of', of ,0?, . 0% ...., &7 .
(The spherical joints are modelled by three linearly-independent rotations through their
centers). The first six scalar equations in (3.20) are the output equation (3.1) for this chain,
while the remaining 12 equations are given by two loop-closure twist equations.

The velocity equation (3.20) can be shown to be equivalent to the system of equations:
T = 2?= . SP wf,P = A, B, C, which is frequently used to describe the velocity
kinematics of parallel-chain manipulators.

The definitions from Section 3.4 are used to identify the different types of singularities

that can occur for the mechanism:

(i) RI-type singularity

By substituting T = 0 in (3.20) and rearranging the columns of the velocity-equation
matrix, it can be shown that for an RI-type singularity to be present, at least one of the
serial sub-chains must be singular, (i.e., the six joint screws in the sub-chain must be
linearly dependent). Aithough this is a necessary condition for the occurrence of an RI-
type singularity, it is not a sufficient condition. For example, in the configuration
shown in Figure 3.9, the mechanism does not have an RI-type singularity, although the
B sub-chain is singular. (In Figure 3.9, the center of the spherical joint, B, lies on the
axis of the passive rotary joint.) Indeed, one can see that, if in Figure 3.9 the end-

effector were fixed, the input velocities could not be different from zero.
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Figure 3.9. An RPM-, IO, and II-type singularity.

RI-type singularity would occur only when the sub-chain singularity is not due solely
to a linear dependence of the passive-joint screws, more precisely, when the vanishing
linear combination of joint screws includes active-joint screws (with nonzero
coefficients). In this example, the active screws in a sub-chain are always linearly

dependent. Therefore, an RI-type singularity occurs, if and only if for some P the

column spaces of J§ and JJ have a nonzero intersection. For instance, if the joint
angle at the third joint of one of the branches were 0° (or 180°), the input would be

indeterminate (for a given output) and an RI-type singularity would be present.

(ii) RO-type singularity
The substitution of 2° =0 in (3.20) shows that an RO-type singularity occurs if and

only if the column spaces of the three matrices J; have a common nonzero screw. For

example, the configuration shown in Figure 3.10 is an RO-type singularity since the
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sub-chain. (It should be noted that in Figure 3.10, the axis of the first joint of sub-chain
B lies in the plane of the moving platform). Thus, a rotation of the moving platform

about AC is possible even when all six inputs are locked.

Figure 3.10. An RO-type (and I-type) singularity.

When all three matrices J ,‘,° are of full rank, the above-derived condition for RO-type
singularity is equivalent to the linear dependence of the six reciprocal screws
corresponding to each input. This formulation has been used in the literature (Kumar
1990) for the singularity analysis of parallel manipulators, and allows the detection of

the RO-type singularities of the discussed mechanism as was done in (Collins and
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Long, 1994). However, one can note that the configuration shown in Figure 3.9 is not
an RO-type singularity, although six reciprocal screws intersect the line AC (just as in
Figure 3.10) and are linearly dependent. (In Figure 3.9, the axes of the active joints in
subchain B are perpendicular to the plane ABC.)

(iti) 10-type singularity
From Equation (3.20) and the definition of IO-type singularity, it can be deduced that
an IO-type singularity occurs, if and only if at least one of the 6-dof serial sub-chains is
singular. The configuration with a third joint angle of 0° (or 180°), discussed above in
(i), as well as the singularity shown in Figure 3.9 belong to this type.

(iv) II-type singularity

Figures 3.9 and 3.10 are examples of II-type singularities. For example, consider
Figure 3.10 and assume that the input velocities in branches A and C are zero. Then,
there exists a combination of the two inputs in sub-chain B which corresponds to no
feasible motion of the mechanism. Indeed, if the second and third joints in subchains A
and C are locked, the direction of the velocities of points A and C are fixed
(perpendicular to the first joint in the sub-chain). Therefore, the direction of the
projection onto the plane ABC of the velocity of point B is also fixed. Thus, the two
input velocities in sub-chain B cannot be chosen arbitrarily and certain combinations of

the two input velocities are impossible. Hence, an II-type singularity is present.

(v) IIM-type singularity

For an IIM-type singularity, the whole matrix of the velocity equation must be rank-
deficient. This is equivalent to the singularity of the 12x18 matrix,

JA I8 0

{ o J& |
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where J? are the sub-chain Jacobians. A necessary and sufficient condition for this
phenomenon is the existence, for each of two of the three serial subchains, of a nonzero
screw reciprocal to all joint screws in the subchain, such that a linear combination of the
two screws is reciprocal to all joint screws in the third subchain. This condition is
satisfied if a nonzero screw is reciprocal to all joint screws in two subchains. For
example, I[IM is present if subchains A and B are in the base plane and all their joints
centres except A, and B, are collinear. Then the movable hexagon (with vertices A, B
and the centres of joints S§ and S%) formed in the base plane by the two subchanes is

“flattened”. This would be possible only if the link lengths were specially proportioned.

(vi) RPM-type singularity
After considering Equation (3.20) for T = 2°=0, it can be noted that an RPM-
type singularity occurs if and only if at least one of the matrices J}," is singular, i.e.
when the passive-joint screws in a serial subchain are linearly dependent. The
configuration in Figure 3.9 is an RPM-type singularity. Even if both the input and the
output in this configuration were zero, part of the mechanism (subchain B) could still

move (rotation about the line BB is possible).

3.6. Motion-Space Interpretation of Kinematic Singularity

In this section the definitions of singularity and the singularity types are interpreted by
the properties of the space of solutions of the velocity equation (the null-space of L) re-
ferred to as the motion space. This linear-algebraic interpretation reveals the symmetric
interdependence of the singularity types.

The spaces O, I'and P (defined in Section 3.2) can be viewed as spanning an (N+n)-

dimensional space V= 0@ I® 2. Vis the tangent space of Q X O at (q, fo(q)). The
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elements of ¥ are velocity vectors of the form m = (T, 2) = (T, Q° Q° ). The feasible
velocity vectors form a subspace of ¥, M.the motion space at q. M is the space of solu-
tions of the velocity equation, and its dimension is equal to the instantaneous mobility n,.
All instantaneous kinematics properties are determined by the orientation of the 44 in V.

Consider the maps p,: M, — I, and p,: M, —> O, defined as the restrictions on
the motion space M, of the projections which map ¥onto Iand O. They map any motion
vector into the vector of its input or output, respectively. The ranks of p, and p,, (the
dimensions of their image spaces) will be denoted by r, and r,. Note that the maps p, and
P, (and their ranks) are dependent on the configuration q.

The singularity definition can be now reformulated in terms of the properties of p, and
P, The FIKP is equivalent to the problem of finding the inverse of the map p, while
solving the IIKP is equivalent to finding the inverse map of p, Therefore, the following

proposition is true:

3.25. Proposition
(i) The FIKP is solvable for a configuration q, if and only if p, is a one-to-one mapping
of M, onto 1, i.e.,

dim Mq =n,=r,=n=dim I

q
(i) The IIKP is solvable for a configuration q, if and only if p , is a one-to-one mapping
of M, onto O, i.e.,

dim M, =n, =r,=n=dim O.
The six singularity types are redefined below in terms of the projection maps.

3.26. Proposition

(i) ge {RI} & Kerp,-Kerp,# D,
(ii) ge (RO} & Kerp,-Kerp,# 3D,
(iit) ge {lI} & I-Imp,=+ O,
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(iv)
(v)
(vi)

ge {I0}) ® O-Imp,# 3,
qe {IIM} & dim Mq>dim I,.
ge {RPM} & Kerp,n Kerp,# 0.

The proof follows directly from the definitions of p,, p, and the singularity types.

The next proposition states the restrictions imposed on r, and r, when g belongs to

different singularity types:

3.27. Proposition

(i)

(i)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

Proof.

qe {II} & r,<n,
qge {I0} & r,<n,

qc (IIM} & n<ng

q € {RI} = r,<ny,,

g € {RO} = r, <ng

q € {RPM} =>r0<nqand ry<ng,
ro<ng= qce€ {RI} org e {RPM},

r,<n,= qe€ (RO} orge {RPM}.

q

(i)-(vi) Follow directly from the definitions of the singularity types.

(vii) Ifr,< ng, there are nonzero motion vectors projected onto zero by p, (i.e.,

Ker p,# 0). If such a vector M in Ker p,belongs also to Kerp, then an

RPM-type singularity is present due to (vi). Otherwise, an RI-type singularity is

implied by (iii).

(viii)  The proof is analogous to the proof of (vii). O

In this section we relate the definitions of singularity and singularity types to the various

velocity spaces associated with a configuration g. The sets ¥, O, and 7 are the spaces of the

potential motions, output motions and input motions, respectively. Their subspaces, ﬂ{q
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Imp, and Im p, consist of the feasible motions, output motions and input motions. The
subspaces Ker p, and Ker p, of M, are, in fact, the spaces of the zero-output and zero-
input motions, respectively. Singularity occurs when at least one of these kernels is greater
than zero. The difference of the two kemnels determines an RI- or RO-type singularity,
while their nonzero intersection leads to an RPM-type singularity. The [IM-type is present
when the existence of the kernels is due to the higher dimension of Mq . When a nonzero

kernel is due to the singularity of the maps p, and p,, the configuration is IO- or II-type.

3.7. Classification of Singularities

3.7.1. Singularity-type combinations
For any configuration, singular or nonsingular, r,Sn<n,andr,<n<n, A
configuration is nonsingular, only if r,=n =ng and r,=n = n,. The cases in which

these equalities do not hold are analyzed below:

Case 1. n<ng

This is an IIM-type singularity. It can be noted that in this case r,<n, and r, < n,.
Therefore, as implied by Proposition 3.27, (vii) and (viii), an RPM-type singularity or a
singularity belonging to both the RI- and the RO-type must be present as well.

Case 2. rr<n=ngand ro=n=n,

This case is a combination of the II- and RO- singularity types. Indeed, r, < n implies an
[I-type singularity according to Proposition 3.27, (i). According to Proposition 3.27, (viii),
either an RO- or an RPM-type singularity is present. But, if the configuration were an

RPM-type singularity, according to Proposition 3.27, (vi), r, would be smaller than n,.
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Case 3. rr=n=ngand r,<n=n,
This case is symmetrical to Case 2 and is a combination of the IO- and Rl-type

singularities. The reasoning is the same as above.

Case 4. ri<n=njand ro<n=n,

This case is a combination of the II and IO types together with either an RPM type or any
combination of at least two different R types. The II-type and the IO-type singularities are
implied by Proposition 3.27, (i} and (ii), while (vii) and (viii) show that in this case there
should be either an RPM-type singularity or a singularity of at least two different R-types.

The above discussion of the four cases provides the proof for the following proposition:

3.28. Proposition. Let q be a singular configuration. Then,
(1) q belongs to at least one of the types RO, RI, and RPM.
(2) q belongs to at least one of the types IO, II, and IIM.

Indeed, each individual singularity belongs to exactly one of Cases 1 to 4, and for each

case, it was shown that the configuration must be of at least one I-type and one R-type.

3.7.2. Enumeration of all possible combinations
Below, the velocity-space formulation of the singularity problem is applied to find all
feasible combinations of the six singularity types for the general case of an arbitrary

kinematic chain. First, in the following proposition the rules for the simultaneous

occurrence of the singularity types are stated.

3.29. Proposition

(i) q€ {RI} = g€ {I0}orqe {IIM},
(ii) ge {RO} = qe (II})orqe {IIM},
(iii) qe {II} = g€ {RO}orqge {RPM},
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(iv) ge {I0} = ge {RI} orq e {RPM},
(v) g€ {RPM} = (qe {II}) and g € {IO} )orq e {IIM},
(vij qe€ {(IIM} = (qe€ {(RI} andqg € {RO})orge {RPM},

(vii) qge {II} = qe {I0} orq e {RO},
(viii) q € {I0O} = qe {II} orq € {RI},
(ix) qe {RI} = qe {IO} orgqge (RO},
(x) g€ {RO} = ge {II} or g € {RI}.
Proof.
6] Proposition 3.27, (iv), implies r, < n,. Therefore, since r, < n < ng, either

r, < n, which is equivalent to an IO-type singularity according to Proposition
3.27, (i), or n < n,, which is the condition for an IIM-type singularity.

(i1) Similar to (i).

(iii)  From Proposition 3.27, (1) and (vii).

(iv)  From Proposition 3.27, (ii) and (viii).

(v) From Proposition 3.27, (vi), (i) and (ii).

(vi)  From Proposition 3.27, (vi), (i) and (ii).

(vil)  An II-type singularity implies that p, is not of maximum rank (Proposition 3.27,
(1)), and therefore: Kerp,# O. Let us consider the image of Kerp, underp,,
po(Ker p,). Then, if p,(Kerp) # O, an RI is present. If p,(Kerp ) = O,
then Kerp,> Ker p,, and hence r, 2 r,. Since p, is rank-deficient, r, is also
smaller than n, and therefore an II-type singularity is present.

(viii) Analogous to the proof of (vii).

(ix)  Assume there is no IO-type singularity. Then, p, is of maximum rank and the
motion space, M, can be decomposed as M = Ker p, ® M,,, where M, is a
subspace of M with dim M,= dim O = r,. Let us consider p,(M,). If
P, (My # I, an RO-type singularity is present.
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We assume p (M) = I. Then, any input vector is an image under p,of a motion
vector with nonzero output (since Ker p, N M, = 0). On the other hand, since
an RI-type singularity is present, there are motion vectors with nonzero input and
zero output. Thus, there exist two different outputs (one is nonzero and the other is
equal to zero) which are feasible with one and the same input. If we subtract the
motion vectors corresponding to these two different outputs, a motion vector with
nonzero output and zero input is obtained, which implies an RO-type singularity.

(x)  Analogous to the proof of (ix). O

3.30. Theorem. Let S be a combination of singularity types. There exists a non-

redundant mechanism with a configuration, q, such that q € S, if and only if S is marked

with “Y” in Table 3.1.

o | jlo |mM|IO |DB |IO
ad ad |ad | ad
i ™M |mM | 1
ad
m
RI Y

RO Y
RI and RO Y|IY!Y|Y]|Y
RPM Y |Y Y
RI and RPM Y Y Y
RO and RPM Y YI|Y
RI and RO and RPM YI|YIY|]Y]|Y

Table 3.1. Possible combinations of singularity types.
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Proof. To prove the theorem, we need to establish that: (i) all combinations not marked
with “Y” in the table can never occur; and (ii) there exist mechanisms and configurations
with the marked singularity-type combinations.
(i) There are six singularity types and therefore there are 26 = 64 combinations (one of
them is the nonsingular combination). From Propositions 3.28 we conclude that it is
sufficient to consider the ones that include at least one I-type and one R-type. These
combinations are represented by the 49 cells of Table 3.1. The cell in the i-th row and j-th
column of the table corresponds to a combination of all singularity types listed to the left of
the i-th row and on the top of the j-th column.

We must show that the combinations corresponding to blank cells of the table are

impossible. This is proven with the help of Proposition 3.29 as illustrated by Table 3.2.

©olo fio |[mM|lio {1 0

ad ad |ad | ad

i mM |IM | I

ad

M

RI Y | i) { i) Vovi) | ovi) | caii) | (i)
RO i) | Y cv) {oviy L av) | v | Gv)
RI and RO i) | Y |Y ] Y |Y|Y
RPM wm L) VY | Y |wiiip |evi) | Y
RI and RPM wm o Y i ]Y oY
RO and RPM @ v |Y [ lviinl Y | Y
RlandROandRPM | i) | () | Y | Y Y |Y |Y

Table 3.2. Impossible combinations of singularity types for non-redundant mechanisms.
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Each of the 28 empty cells represents a combination of singularity types which, if it
occurred in some configuration, would violate (at least) one statement in Proposition 3.29.
Table 3.2 illustrates which statement each blank-cell combination violates.

(ii) We need to give an example for each of the 21 combinations, corresponding to “Y™

cells. Four of these combinations were already illustrated in this section:

(R, 10) Figure 3.4 in Examples 3.8 and 3.17;

(RO, ) Figure 3.5 in Examples 3.11 and 3.15;

(RI, RO, IM) Figure 3.6 in Example 3.20;

(RPM, IO, II) Figure 3.7b in Example 3.23, and Figure 3.9 in Section 3.5.

Twelve additional combinations occur in different examples in Chapters 4 and 5 of the

thesis:

(RI, RO, IO, IN) Figure 4.5 in Example 4.7, this combination also occurs for
the mechanism in Figure 5.7 as discussed in Section 5.6.3;

(RI, RO, IO, IM) Figure 4.7 in Example 4.25, and Figure 5.10 in Section
5.6.3;

(R, RPM, IO, II) A variation of Figure 5.8 as discussed in Section 5.6.3;

(RO, RPM, 10, I) Figure 4.6 in Example 4.11, and a variation of Figure 5.12
as discussed in Section 5.6.3;

(RI, RPM, IO, IIM) A variation of Figure 5.9 as discussed in Section 5.6.3;

(RI, RO, IO, O, IM) Figure 4.8 in Example 4.30;

(RI, RO, RPM, 10, II) A variation of Figure 5.11 as discussed in Section 5.6.3;

(RPM, IO, I1, IM) Figure 5.9 in Section 5.6.3;

(RI, RPM, 10, I1, IIM) Figure 5.8 in Section 5.6.3;
(RI, RO, RPM, IO, IIM) | Figure 4.9 in Example 4.31;
(RO, RPM, IO, I, IM) Figure 5.12 in Section 5.6.3;
(RL, RO, RPM, IO, II, IM) Figure 5.11 in Section 5.6.3.
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The remaining five combinations, namely (RPM, IIM), (RI, RO, RPM, IIM), (R, RO,
I, IIM), (R1, RO, RPM, II, [IM) and (RO, RPM, II, IIM) are illustrated with the five

examples below.

3.31. Example. Let us consider a four-bar mechanism such that AB = AD and
BC = CD. Furthermore, let the active joint be at B (rather than the customary, A), while
the output velocity is the usual (the angular velocity of link CD). In the configuration
shown in Figure 3.11, the points A and C coincide. It can be seen that this is an RPM-type
singularity. Indeed, when both the input and output are set to zero, wg = T=0, the
mechanism retains mobility: a rotation of links AB and CB about point A = C is possible.
On the other hand, this singular configuration belongs to neither of the types RI, RO, IO

and II, since wg = -7 can have any value. The configuration is therefore an example for

an (RPM, IIM) singularity type combination.
o, T

&) ot ERS

7777
A = C D

Figure 3.11. A four-bar mechanism in an RPM- and IIM-type singularity.

3.32. Example. We consider a six-bar mechanism shown in Figure 3.12. The input is
the joint velocity at A and the output is the angular velocity of link EF.

Assuming that the link lengths are appropriately chosen, the mechanism in Figure 3.12
can be positioned in the configuration shown in Figure 3.13.

By fixing, respectively, 7=0, w, =0, and @4 = T=0, it can be seen that the

configuration belongs to types RI, RO, and RPM. It is also clear that this is not an IO-type
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or an Il-type configuration (since neither the input nor the output need to be zero).
Therefore, the singularity in Figure 3.13 is a representative of the singularity-type
combination (RI, RO, RPM, IIM).

C

A D E

Figure 3.12. A six-bar mechanism.

L@ | _ jo! J>—FT-5;

A =C

Figure 3.13. A configuration of singularity types RI, RO, RPM and IIM.

3.33. Example. The mechanism shown in Figure 3.14 has 3 dof. The active joints are

A), By and Cy. The output is the motion of link ABC. The configuration shown belongs to
types RI and RO but it is not an RPM-type singularity. On the other hand, this is an II-type
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configuration (since the input velocities at A, and B, must always be equal) and not an IO-
type singularity (since the output link can have an arbitrary instantaneous motion).
Therefore, Figure 3.14 proves the existence of singularities belonging to the combination
of types (RI, RO, II, [IM).

A1 Bl
1 1
A A B B C
Dl
C y®

0 0

C

1

@ C D

0 0 0

Figure 3.14. A configuration of singularity types RI, RO, II and IIM.

3.34. Example. The mechanism and the configuration in Figure 3.15 are very similar to
the ones presented in Figure 3.14 (and discussed in the previous Example 3.33) except for
two changes: the third input joint is C; rather than Cy; and the points C and D) coincide.
Just like the configuration in Figure 3.14, the present example belongs to the singularity
types RO, I and IIM but not IO. In addition, an RPM-type singularity is present, since the
point C, can have a nonzero velocity even when the output link is fixed and the inputs are

equal to zero. However, unlike Figure 3.14 the present configuration is not an RI-type

singularity, since when the output link is fixed all inputs, including the joint velocity at C,
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must be zero. Thus, Figure 3.15 presents a configuration, which is an RO-, RPM-, II-,

IIM-type singularity.
A B
" o’
1 13
A, A B B (o
\\
C Cé 0
CO = Dl DO

Figure 3.15. A configuration of singularity types RI, RO, I and IIM.

3.35. Example. The mechanism shown in Figure 3.16 is similar to the ones in Figures
3.14 and 3.15. However, here the four-bar subchain C,CD,Dj is replaced with a six-bar
subchain CyC,DyDExE,, which is similar to the one shown in Figure 3.13. As in both
Examples 3.33 and 3.34, it is established that the configuration belongs to types RO, II and
that it is not an IO singularity. Assuming that the output link ABC is fixed, the study of the
six-bar subchain reveals in a way analogous to Example 3.32 that RI- and RPM-type
singularities are present. Therefore, we have a configuration which is a representative of

the combination (RI, RO, RPM, II, [IM).
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3

E

0

A B
1
A, A BB j
C, o C<;=D D, E
0

Figure 3.16. A configuration of singularity types RI, RO, IT and IIM.

1

This completes the proof of Theorem 3.30. O

3.36. Remark. In Remark 3.24(3) it was noted that the introduction of the six
singularity types does not immediately provide a rigorous classification of the singular
configurations of non-redundant mechanisms, since each singularity belongs to more than
one type. A proper classification of some set is a representation of the set as a union of
non-intersecting classes. Theorem 3.30 proves that the set of all singularities of all non-
redundant mechanisms consists of 21 non-intersecting non-empty subsets, each being the
set of singularities that belong to the combination of singularity types corresponding to one
of the non-blank cells of Table 3.1. Thus, Table 3.1 presents a comprehensive classifi-
cation of the singularities of a general non-redundant mechanism with 21 non-intersecting

classes.
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3.8. Summary

In this chapter, a general framework for the singularity analysis of non-redundant
mechanisms was developed. On the basis of the velocity equation, derived as a necessary
and sufficient condition for the feasibility of the instantaneous motion of a mechanism, a
new general definition of singularity was proposed. A configuration is regarded as
singular, when either the forward or the inverse kinematics problem does not have a
general solution. Six types of singularities, reflecting different possibilities for the
occurrence of indeterminacy of the instantaneous kinematics, were defined. On the basis of
a motion-space interpretation of these definitions, the relationship between the singularity
types was revealed and a comprehensive and refined classification was developed. The
presented approach can be used as a starting point for the singularity analysis of specific
mechanisms, since the velocity equation can be obtained for any given mechanism as an

explicit function of the joint screws.
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CHAPTER 4

HYBRID-CHAIN MANIPULATORS

4.1. Introduction

In this chapter, the concepts introduced in Section 3 are applied to a narrower set of
mechanisms, namely a class of parallel-like manipulators, herein referred to as hybrid-chain
manipulators (HCMs). As a result, new mathematical tools for the instantaneous kinematics
and singularity analysis of HCMs are obtained.

The HCMs are formally defined in Section 4.2. They have a parallel-like topology of
the kinematic chain, which is similar to the one found in walking machines and multi-
fingered grippers. The velocity equations for such mechanisms is presented in the same
section.

In Section 4.3, the passive-joint velocities are eliminated from the velocity equation, in
such a way that the resulting input-output equation is a necessary and sufficient condition
for feasible 1. > 1nd output. A new screw-theory based formulation of the instantaneous
kinematics for this class of mechanisms is obtained. Unlike existing solutions for parallel
manipulators, the derived (instantaneous) input-output equation is a necessary and
sufficient condition for the feasibility of the manipulator’s motions.

The formulation of singularity for non-redundant mechanisms, given in Chapter 3, is

applied to HCMs. In Section 4.4, conditions for each of the six singularity types are
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derived. In Section 4.5, a comprehensive classification of all singularities of all HCMs is

given.

4.2. Hybrid-Chain Manipulators

A typical HCM is a non-redundant mechanism (i.e., n; = i = ny) with mobility
U =n <6, which consists of a base link, an end-effector, and & serial subchains
connecting the base and the end-effector. Each serial chain consists of joints with total
dimension of n, e.g., n 1-dof joints. Only n of the kn joints are actively controlled. These
active joints are distributed in an arbitrary way amongst the subchains. We denote the
number of active joints in the j-th subchain by n;, n; < n. The classical serial and parallel
manipulators can be regarded as special cases of HCMs. The former has only 1 subchain
(k=1) and all n joints are active, while the latter has n subchains (k = n) and 1 active
joint in each.

The joint space, @, of a HCM is of dimension nk. Due to the specific symmetric
structure of the kinematic chain the system of loop equations defining the configuration
space D (Theorem 2.30 and Equation (2.21)) are equivalent to a system of the form:

HaDHgh) - HiaD) =glg)., j=1.....k 4.1)
where the subscript denotes the number of the joint and the superscript is the number of the
subchain. The right-hand side g(g) is the displacement of the end-effector and is the same
for each of the Equations (4.1). Thus, the configuration space, D, of the HCM is the subset
of Q composed of all ¢, which satisfy (4.1).

The input space, I, of the HCM is the n-dimensional Cartesian product of the
configuration spaces of the active joints (as defined in Section 2.6). The output space is

defined as the smallest Lie subgroup of SE(3) containing all possible displacements. There
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exist HCMs with output spaces all possible Lie sub-groups of SE(3), however three types
have the greatest practical importance. These are manipulators with O diffeomorphic to R?,
SE(2) or SO(3). It is assumed that each serial sub-chain consists of n joints which all
belong to the same r-dimensional Lie subgroup of SE(3) and do not belong to any smaller
subgroup. This ensures that the mobility of the mechanism is equal to n and that the
dimension of the output space is n, i.e., the mechanism is non-redundant.

Since in this chapter, we are interested mainly in instantaneous analysis, we shall
represent the joints by their joint screws S{:, where j is the index of the subchain, while i
indicates the joint in the chain. The subscripts of the n; acti\r;e (actuated) joints in the j-th
subchain form a set that is denoted by AjA;j={ie {1,...,n} | S": is active}).

Using the notation first introduced in Section 3.2, the (instantaneous) input is the n-
dimensional vector (column matrix) 2° consisting of the active joint rates. In the 6-dof case
(n = 6) the output will be the twist T = (®, v) representing the instantaneous motion of
the end-effector. When n <6 (e.g., a planar or spherical mechanism), the output will be
an n-dimensional vector including only part of the components of T. The n-dimensional
column matrix of the instantaneous outputs will be denoted by T. In this case (i.e.,
n < 6), suppose that for any configuration, all the joint screws (and therefore the output
twist) belong to a common n-dimensional subspace, 5, of the 6-dimensional vector space
of twists, 7' Also, suppose that §allows a “standard™ basis, i.e., that a family of Cartesian
reference frames in the 3-dimensional Euclidean space exists, such that the basis vectors of
Scan be chosen only among the three rotations and three translations about the coordinate
axes. This condition is satisfied for all the screw systems (i.e., the subspaces of 7°), which
guarantee full-cycle mobility as listed in (Hunt 1978), p. 378. These subspaces are in fact
the Lie algebras of the Lie subgroups of SE(3). Then, if we use only such reference
frames, the same 6 — n coordinates of the joint twists and the output twist will be zero at

any configuration. For example, in the case of 3-dof planar manipulators, S is the screw
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system of planar motion, which can be spanned by a rotation and two translations, and thus
all the twists involved will have only three nonzero coordinates.
The twist of the output link can be expressed as a linear combination of the joint twists

in each of the n subchains:

T=) &S, j=1,....k (4.2)

i=1

where a),' is the joint velocity of the joint along S{ If only n screw-coordinates are
nonzero, (4.2) is a set of nk linear equations relating the output twist T, the column matrix
of the input velocities £2°, and the passive joint rates 2°. It is satisfied for any feasible
instantaneous motion (T, 2°, Q) of the HCM. On the other hand, if T, Q°, and Qf
satisfy (4.2), they represent a feasible motion of the manipulator. Therefore, these nk
equations in (4.2) are equivalent to the velocity equation of the HCM according to the
definition in Section 3.2.

The results presented in this chapter are valid for any mechanism whose instantaneous
kinematics is described by n of the rows of a twist equation of the type of (4.2), even if the
mechanism'’s architecture does not correspond to the exact description of HCMs above.

Thus, an HCM can be redefined as follows:

4.1. Definition. A mechanism with an n-dimensional configuration space, C, is
referred to as a Hybrid Chain Manipulator, when there exist n-dimensional screw
subspace, S, S < 7, and nk maps S{: : C > S, such that for every configuration q in C,
the screws S{(q) satisfy Equation (4.2), if and only if all the velocities (of are feasible for

the mechanism in this configuration.

In other words, HCMs are mechanisms, whose instantaneous kinematics is entirely

described by (4.2).
Equation (4.2) can be modified into an equivalent expression that will match the form

Lm =0 of the velocity equation defined in Chapter 3, Equation (3.5),where L is a
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kn x (k + 1)n matrix and m = (T, Q) = (T, 2°, 2°) Let J; be the Jacobian of the
Jj-th serial subchain, i.e., a matrix of columns S{:, i=1,...,n. Let J} be the matrix
composed of the active-joint screws only, i.e., of columns S{, i€ Aj Let J]’.’ be the
matrix composed of the passive-joint screws only, i.e., of columns S{:, ie¢ A;. By
neglecting the zero rows, one can consider these three matrices as n X n, n X n; and
nx(n- n; )-dimensional, respectively. Then, (4.2) can be rewritten as,
T=JSy =T +F 2 j=1.....k (4.3)
where €, .Qf and .Q,p are vectors (column matrices) composed of all, the active-, and the
passive-joint velocities respectively, in the j-th subchain. By rearranging (4.3), we obtain

the velocity equation for a general HCM:

(1, JF 0 . 0 7 0 - 0]
: T
I, 0 J§ 0 JE
.n . 2 . - 2 ‘ Qa =0. (4'4)
: : . 0 . 0 ,
.\ -, 0 .. 0 Jt O ... 0 J} | £

In Equation (4.4) above, I, is the n X n unit matrix.

4.2. Example. Consider the 6-dof platform manipulator shown in Figure 4.1. In this
case, n =6, 5= 7, the output is the twist of the platform ABC, T =T, and S’ are the
joint screws of the mechanism. The spherical joints are modelled by three linearly-
independent rotations through the center of the joint. The sets of active joints in each
subchain are A4 = {1, 2,3}, Ag={2,3} and A= {3}. The velocity equation, in
either of the forms (4.2), (4.3) or (4.4), is 6 X 3 = 18 dimensional. The mechanical
design and kinematic analysis of this manipulator architecture was reported in (Zlatanov et

al. 1992).
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Figure 4.1. A 6-dof hybrid-chain manipulator.

4.3. Example. For the manipulator shown in Figure 4.2, n =3, § is the screw
system of planar motion, T = [@, v,, v,]", where v, and v, are the planar velocity
components of point C, Q° = [¢f, 03, ©$]", and Q° = (&}, 0, 0f, 2, ©f, T
Sf, i=1,...,n,P=A, B, C, are the joint screws of the mechanism. In a screw
basis of 7, corresponding to a Cartesian frame with two coordinate axes (x and y) in the

plane of the mechanism, only three of the equations of (4.2) are nonzero (T and all §¥

being in ), therefore (4.3) and (4.4) are 3 x 3 =9 dimensional. Equation (4.4) is:

I; 4 0o o0 S{ s§{ o o0 o0 O T
I; 0o S o o0 o0 s s o o || % (=0 @5
Ll s 0 0 Sf o o o0 o sf sfllaf

where S F are the 3-dimensional vectors composed of the three nonzero coordinates of the

joint screws, e.g., S5 = [0, cos gf, sin gf]", S{! = [1, yf, - xf I".
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A,
Figure 4.2. A 3-dof planar hybrid-chain manipulator.

4.4. Example. The five-bar linkage shown in Figure 4.3 can be considered as an
HCM, if the “output link” is the point C and two of the four joint angles that are not at C
are actively controlled. Then, the output is T = [v,, vy]T, where v, and v, are the velocity
components of point C, and therefore Sis the system of planar translations. Since the actual
joint screws of the linkage are all rotational, and thus, they do not belong to S, we need to
redefine the joint screws. They will be considered only in coordinate systems with an
origin coinciding with C and their rotational coordinates will be ignored. Thus, the new
“joint screws” are translations equal to the moment with respect to C of the actual joint
rotations. In this way, the instantaneous kinematics of the linkage is described by two of
the equations in (4.2) and the mechanism can be treated as an HCM. If the actuated joints

are these at the base, the 4-dimensional velocity equation will be:

A A T
I, §j 0 s; O o |=o0, 4.6)
b 0 s o s
Qf
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where Q° = [of, 0f]", Q° = (0, @317, and SP = [yF, -xF]". This linkage was
considered as a manipulator and analyzed in (Asada and Youcef-Toumi 1984) and (Kumar
1990).

A1 931

Figure 4.3. A five-bar linkage considered as a hybrid-chain manipulator.

4.3. The Input-Output Equation

Let us denote the subspace of 7spanned by the active joint screws in the j-th subchain
by A; (4; = Span{ S{: lie A;}). The subspace spanned by the passive joint screws in
the j-th subchain is denoted by %; = Span{ S{: lie A ;1. while the subspace of all the

1,...,n}.

joint screws in the subchain is referred to as 7; = Span{ S’,: | i
If all the n — n; passive screws in the subchain are linearly independent, then %; is of

dimension n — n;, otherwise the dimension is smaller. Thus, in general,
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dim ;= (n - n)) - d;, 4.7
where 0<d;<n -n;

If Gis a subspace of 7, then its (reciprocal) orthogonal complement gJ‘ is defined by,
Gt={TeT | T-G=0VGe G}. Here, the symbol “-” denotes the so-called “reciprocal
product” — an indefinite scalar product in Z; given by A°B = A<ITB = ATITB, where “*”
denotes the standard dot product, and ITis the symmetric matrix:

H=[ 0 13].
I 0

I is the 3 x 3 identity matrix. It is known that dim gl = 6 —dim G. Therefore,

dim 8" = 6 -n + n; + dj. (4.8)
For each j, one can choose a maximum collection of linearly independent twists in 1;" - st
and denote them by R} , I=1,.. ., n;+d; In other words, a basis of B" can be
chosen in such a way that 6 — n of the basis vectors are in SL and the remaining n; + d;
basis vectors are the twists R’;. When n =6, Rj, can be any basis of 1}" Obviously, such
a set {Rj, } is not unique. It can be shown that the results presented in this chapter are

invariant with respect to the choice of the twists R}.

We now take the reciprocal product of each R’; and Equation (4.2) for the j-th

subchain,
- " - - -
Rimr=Y grjms). 4.9)
i=1
Since the twists R’} belong to P, their reciprocal products with the elements of P, are zero.
Therefore,
Rimr= Y 4R ms! (4.10)
ity i :
€A
forl=1,..., nj+dj and j=1,...,k. In a matrix form, (4.9) and (4.10) are
written as:
RT=RJ;iQ;=RJQ’ (4.11)
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where R i is a matrix of dimension (n; + dj) X n obtained from n of the columns of the

matrix

R}'IT

R, 11

T
nj+d; I i

(4.12)

Only the columns that correspond to nonzero coordinates of the output twist, T, are

considered.

k . .
Thus, n + 2 j=1 dj scalar equations are obtained,

R, H, 0 0
Ry lr=| 0 H2 - 0 o7
R, o 0 .- H
H; =R ij’ is a matrix of dimension (n; + d;) X n; with elements
.T >
(Hj)lm= R; HS;M, l=1, ey nj-i-dj;
m=1,...,n;
where i,,,m = 1,..., n; are the elements of the index set A;.

(4.13)

Denoting the (n +Zj—=1 dj) x n;-dimensional matrices in (4.13) by R and H, the

following theorem can be stated:

4.5. Theorem. Let the HCM be in a given configuration, q, and let the matrices

R = R(q) and H = H(q) be defined as above. Then an n-dimensional input vector, T,

(i.e., the corresponding twist, T € ) and an n-dimensional vector, Q°, can be a feasible

pair of output and input for the HCM in q, if and only if:
RT=HQ"
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Proof

Sufficiency. If T and Q° are feasible, there exist passive-joint velocities, 27, for
which the velocity Equation (4.2) is satisfied. By multiplying this equation with a basis of
B}, as was described above, Equation (4.14) is obtained.

Necessity. Let T and 2 satisfy (4.14). We must show that there exists a passive-joint
velocity vector, Q7 such that T, Q° and QF satisfy the velocity Equation (4.2). Let us

fix j and consider the twist,
V;=T- Y 4¢is].
i€Aj
Equation (4.14) implies that the reciprocal product of V; and the twist R-I is zero for all
L,I=1,...,n;+d; Since V;is in §, this is equivalent to V;e (fljj')J' = P
Therefore, V; can be presented as a linear combination of the passive screws of the j-th

subchain, i.e., there exist scalars g/, i € A}, such that
V;=T- Y 4¢isi=3 4lsl.
i€Aj €A
i.e., Equation (4.2) is satisfied for that j. Since the argument is valid for any j, the existence

of Q7 is established. O

4.6. Example. Consider the linkage described in Example 4.4, Figure 4.3. In this
case, SL is 4-dimensional and is spanned by the planar motions and a vertical translation
(perpendicular to the linkage plane). Pp is a 1-system (l-dimensional screw subspace)
along [0, 0, 0, y§, —x¥, 01". The reciprocal screws, which are in 5 but not in S, are

R’,’: [x§, y§, 0,0, 0,0], i.e., rotations with axes along CP,, P = A, B. The input

output equation is:
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Pp could degenerate only if the points C and P, were to coincide, which is an impossible
case. If, however, one of the active joints were at A, instead of A,, it could be possible to
have C = A, (Figure 4.4) and #, would be zero. Then, there would be two linearly
independent screws R : Rf =(1,0,0,0,0,0) and R4=(0,1,0,0,0,0), and
Equation (4.14) would become:

1 0 y4 0 oA

o 12|« -« o [ } 4.16)
B ¢ B o

X2 Y2 0 -y

Figure 4.4. An RPM-, IO, and II-type singularity.

4.7. Example. For the mechanism of Example 4.3, Figure 4.2, Pp = Sp(ST,8 ) is a
2-system unless the two points P; and P coincide for some P. Assuming P # P for all P,

the spaces 2# are 4 dimensional and spanned by the twists of planar motion and a rotation
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intersecting the axes of both S and S%. Since, in this case, S =, the reciprocal screws
can be chosen as the rotations with axes through the points P and P, i.e., R} =
(xf -xP, yf -yP, 0, 0, O, mP), where m? = |PP,|dist(C, PP,) are the moments of
these rotations with respect to C (the origin of the Cartesian frame is assumed at C). Then,

the input-output equation can be obtained as:

mA  xf-xt yfoyA o —AAY| 0 0 (37
m%  xf - xB yf B [w}: 0 RS.s% 0 of |. (4.17)
0 x£ yf i L 0 0 xfyf - yExf L of

where R¥o8% = (x8 - xB)(y$ - yB) - (B - yB)(x£ — xB).
As in Example 4, if P; = P for some P, the space P would be of a higher dimension
(five) and there would be two linearly independent twits Rf for this P. Then the matrices in

the input-output equation would be rectangular.

4.8. Example. For the platform-type manipulator in Example 4.2, Figure 4.1, n = 6,
5 =0 and the screws R’ must be chosen as a basis of . The unit vector parallel to the
axis of Sf is denoted by k‘f . the unit vectors along PP, are denoted by by p; (= a,;, b;,
¢;), and finally the vectors along AB and AC by b and ¢. For simplicity, we assume that
IP, Pl # |PPsl for all P, and configurations in which P, = P do not exist.

The subspace Pf is the screw system of all rotations with axes through A. It is
convenient to choose as its basis the three rotations with axes parallel to k‘é a,; x k%, and

a,. Then, if we assume that the origin of the Cartesian reference frame is at A,

I( 0 0 0 K4’
Ry= 0 0 [axkil |- (4.18)
0 0 a;’

Also, for Hy =R,Jj, we obtain:
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emf 0 0 ]
Hy= 0 m$  (mf) | {4.19)
0 0 (mf) J

where mf = Imp(SO), (mf), is the projection of mp(SF) on the axis of R and £ = 1.
mQ(Sf ) is the moment of S with respect to point Q.

In the subchain B, there are four passive joint screws which span either a 4-
dimensional or a 3-dimensional subspace, and 5 is either 2 or 3 dimensional. The passive
screws are linearly dependent, only when BB, is vertical and the axis of S passes
through P (the so-called “wrist-above-shoulder” configuration of the serial subchain). In
this case, P is analogous to Bf. When the passive screws are independent, P} consists of
all rotations through B lying in a plane perpendicular to kg . We choose the first basis
vector parallel to b, x k3, the second basis vector parallel to by, and the third (if

necessary) parallel to k3. Then, the matrices R and Hp are obtained as,

bx(bxk&]'  [byxk5)’

Rz=|  [bxb) bT (4.20)
| bxk8I" T}
m§  (mf),
Hg=, 0 (m{) | (4.21)
Y U

The last rows appear only if the subchain is in a wrist-above-shoulder configuration.

In a similar way, Rc and H - are obtained as:

lexei]” ot |
Rc= (4.22)
[ fexk§]" kST }}
(m§), }
He= B (4.23)
¢ [{ o )

where the rows enclosed in braces are necessary only when C is exactly above C,.
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From Equations (4.19) to (4.20) we obtain the input-output equation in the form of

(4.14),

[ 0 k‘{r ]
0 [a;xk4]’
0 a;’
bxbixkd)'  [byxkd] 'm]_
bxby]" b " val®
[cxcllT c;T
[ mxksy’ k37 |
[ fexksT” KT}
 emf 0 0 0 0 0 |
0  mf (md) 0 0 I &
0 0 (mf) 0 0 a5
0 0 0 mf (m?)l 0 (ug‘ (4.24)
0 0 0 0 (mh, o w5
0 0 0 0 0 (m$)N wf
0 0 0 0 0 0 I of
) 0 0 0 0 0 |

The matrices R and H in (4.14) are square, only when d;=0 for all j (i.e., when in all
subchains %; is of maximum dimension). In this case, if specific bases of @ are chosen,
the matrix H will be diagonal. To achieve this, each of the basis vectors is chosen to be not
only reciprocal to %, but also reciprocal to all active joint screws in the subchain but one.
Based on this idea, an equation similar to (4.14), with a square matrix on the left-hand side
and a diagonal matrix on the right-hand side, was first obtained in (Mohammed and Duffy
1984), although the standard dot product was used instead of the reciprocal product. Later,

(Kumar 1990, Agrawal 1990) proposed the use of reciprocity for the solution of the
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instantaneous kinematics of HCM and the analysis of their singular configurations. In all
these works, unlike in the present paper, the reciprocal screws did not have to be linearly
independent for a fixed j. However, this type of an input-output equation is effective only
when the joint screws of each subchain are linearly independent and therefore a large class
of singular configurations cannot be explored. The reason for this limitation is that, unlike
(4.14), such an equation is in general only a sufficient but not a necessary condition for the

feasibility of the input and output.

4.4. Conditions for Singularity

In this section, the conditions for each of the six singularity types are given by six

theorems. In all of them, we assume that the HCM is in a given configuration, g.

4.9. Theorem. The following are equivalent:
(i) q is a redundant-output (RO) type singularity.
(ii) rank R < n.
(ii) rk\ B % 0.

j=1

Proof.

(i) = (ii). Let T # 0 and Q=0 satisfy the velocity equation (for some £°). Then,

from Equation (4.11), RT =0 and therefore rank R <n .
(ii) = (iii). If rank R < n, then a twist V € §, V # 0, exists, such that RV =0. This
means that V will be reciprocal to the RJ; vectors for all / and all j. Therefore, V will be in

the reciprocal complement of B for all j . But (15-")"' = P, and therefore,
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k
0Ve N3
j=1
(iii) = (i). Let V# 0 and V & B, for all j. Then, there are scalars, A/, such that:
v=Y Alsl j=1,... k.
i€Aj
Let us define Tas T=Vand 2 by g/ = A/, ie A;. Then T, Q" and Q°=0 will

satisfy the velocity equation (4.2), and a RO-type singularity is present. Ol

The theorem shows that the occurrence of RO-type singularity, which is often the only
type of singularity addressed when parallel manipulators are analyzed, is entirely

determined by the configuration of the passive joints and not by the active-joint screws.

4.10. Example. The configuration shown in Figure 4.5 is an RO-type singularity.

(D

Figure 4.5. An RI-, RO-, IO, and II-type singularity.
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The end-effector can rotate (instantaneously) about the point D, even if all the inputs, a{ R
(see Figure 4.2) are zero. On the other hand, the matrix R for this manipulator, as shown
in the left side of Equation (4.17) is singular in this configuration, since it is composed of
the nonzero coordinates of the three rotations Rf ,P=A,B, C, which are linearly

dependent as they are co-planar and intersect in D.

4.11. Example. Figure 4.6 also shows an RO-type singularity.

A

Figure 4.6. An RO-, RPM-, IO, and II-type singularity.

In the depicted configuration, the only singular serial subchain is B (wrist-above-shoulder)

and also the point C lies in the plane ABC. The redundant-output freedom is a rotation
about the axis AB, which is feasible even if all the active-joint velocities are zero. As

predicted by Theorem 4.9, the matrix R is singular (rank R < 6) although it has seven
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rows. For any configuration of the manipulator, R (given in (4.24)) is rank deficient if and
only if rank A < 3, where A is the matrix,

| bx @ xkB] |
bxb]"

A= [exeq]” . (4.25)
[ x|
{ [c><k§]T } |

In the considered configuration, A is composed of only the first four rows of Equation
(4.25). When the points C,, A, B and C lie on one plane, the vector ¢ X ¢, is

perpendicular to this plane and to b in particular. Thus, all row vectors in A are

perpendicular to b, and therefore are co-planar.

4.12. Example. It can be seen that the configuration shown in Figure 4.4 is not an RO-
type singularity. When the input at A, is zero, the point C is fixed. Accordingly, the matrix

R, as given by (4.16) is of rank two.

4.13. Theorem. The following are equivalent:
(i) q is a redundant-input (RI) singularity.
(ii) rank H < n.
(i)  For some j, rank H; < n;.

(iv)  For some j, there exist scalars A;, i € A;, not all zero, such that,
.S/ A
ziEA,' Ai Si € 2)J :

(v) For some j, dim J;<n;+ dim ;.

(vi)  For some j, either A NP # 0 or dim A; < n;j.
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Proof

(i) ¢ (ii). According to Definition 3.6 an RI-type singularity occurs, when a nonzero
input and a zero output are simultaneously feasible. Theorem 4.5 implies that this is
possible, if and only if HQ? = 0 for some Q= 0, which is equivalent to rank H < n.
(ii) ¢ (iii). Implied by the block-diagonal structure of H.

(iii) < (iv). rank H; < n;, if and only if there exists a vector, A # 0, such that
H ;A = R JiA=0. According to the definition of R;, this is equivalent to R’, »JiA =0 for
all j. In the last expression, ]j‘ is interpreted as a matrix with 6-dimensional screws as
columns. Since the Rj, are (a part of) a basis of P, this is equivalent to J A € P, and the
statement of (iv).

(iv) & (vi). 0 # J/A € P; is equivalent to A; NP; # 0, while 0 = J/A is the
necessary and sufficient condition for dim 4; < n;.

(v) <> (vi). Follows from: dim 7; < dim 4; + dim %; < nj + dim %;. O

Theorem 4.13 shows that the HCM is in an RI-type singularity, when a serial subchain

has a singularity “involving” active-joint screws.

4.14. Example. The configuration discussed in Example 4.10, Figure 4.5, is also an
RI-type singularity. Indeed, if the end-effector were to be fixed, the input velocity at C,
could be instantaneously nonzero. As predicted by Theorem 4.13, the H matrix in (4.17) is
singular, since one of the diagonal elements, /533 = H3, is zero. Also, as suggested by (iv)

of the Theorem, the joint screw at C, belongs to Z..

4.15. Example. On the contrary to the manipulator configuration in Example 4.14, the
configuration in Figure 4.6 is not of RI-type. If the output platform ABC were to be fixed,
the active-joint velocities would be zero. The matrix H is of full rank since none of the

diagonal elements in the left-hand side of (4.24) is zero in this configuration.
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4.16. Theorem. The following are equivalent:

(i) q is a redundant-passive-motion (RPM) type singularity .

(i)  For some j, dim P;<n - n;.

(iii) H and R are not square.
Proof
(i) < (ii). An RPM-type singularity is present, when a nonzero motion is possible for
zero input and zero output. According to (4.3) this is true if and only if, for some j, there
exists a vector, .Q,P # 0, such that JJ’.’ .Q]p = 0. That is equivalent to ranka <n-n;
and (ii).
(ii) & (iii). Follows from the definition of R and H. O

4.17. Example. The configurations in Figures 4.4 and 4.6 are RPM-type singularities,
however the one in Figure 4.5 is not. In Figure 4.6, the subchain singularity (i.e., the
singularity of Jp) is due only to the linear dependence of the passive screws, while in
Figure 4.5 the active screw in subchain C is “involved” in the linear dependence of the

subchain screws.

4.18. Theorem. The following are equivalent:

(i) q is an impossible-output (10) type singularity.

(it) ImR-ImH=#O.

(iii) For some i, 1 £i < n, no input vector, £° can satisfy the equation

ri = HQ° where r; is the i-th column of R.

(iv)  For somej, Jis singular.
Proof
(i) < (ii). A configuration is an IO-type singularity when there exists an n-dimensional
vector T, which cannot be a feasible output for any values of the joint velocities. According
to Theorem 4.5 this is true if and only if there exists T, such that RT # HQ® for any Q°.

Thus, for some T, RT ¢ Im H, or, equivalently RT € ImR - Im H.
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(ii) < (iii). Since ImR = Span{r;li=1,...,n}.
(i) & (iv). A twist, T € §, is impossible as an output if and only if, for some j,

T ¢ 7;. However, 7; # S only if dim 7; = rank J; <n. O

4.19. Example. All the singular configurations shown in this section are of the IO-type,
since in all of them a serial subchain is singular. However, if in Figure 4.5 the angle at C,
were not extended and the three lines still intersected in D, the configuration would have

been an RO- and an [I-type but not an IO-type singularity.

4.20. Theorem. The following are equivalent:
(i) q is an impossible input (II) type singularity.
(ii) ImH-ImR#D.
(iii)  For some i, 1 <i < n, no output vector, T, can satisfy the equation
RT =1;, where l; is the i-th column of H.

Proof. The proof is similar to the proof of (i) & (ii) ¢ (iii) in Theorem 4.18. C

4.21. Example. All configurations in Figures 4.4, 4.5 and 4.6 are [I-type singularities.
For example, in Figure 4.4 the input (1, 0, 0) is impossible, since the velocity of the point

A must be perpendicular to AA;. It can be checked from (4.17) that the equation RT = [

has no solution for T.

4.22. Theorem. The following are equivalent:
(i)  qis an increased-instantaneous-mobility (IIM) type singularity .
(ii) There exist I, 2 <1< n, twists, A;, . . ., Aj,
{Jis--ndpb e {1, ..., k}, such t.at:
1) Aj e ‘Ij," -5,
2) i A; =0.

s=1
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k k
(ii§) dim Y, T< Y, dim T - (k- 1)(6 - n).
j=t =l

The proof is obtained with the help of the following two lemmas.

4.23. Lemma. An IIM-type singularity is present if and only if there exist I, [ 2 2, n-

dimensional nonzero vectors, Aj, - - ., Aj, {ji,...,J;} © {1....,k}, such that,
:=1 A,=0 and Aj::-]js =0.

Proof. According to Definition 3.18 an IIM-type singularity is equivalent to a singular

velocity-equation matrix L. This is so, if and only if there is nonzero nk-dimensional

vector, A, A =(A,,..., A}) such that ATL =0. The matrix product of A with the
first n columns of L gives Z:f -1 As = 0. The product of A with the n columns of L which

contain the columns of the Jacobian of the j-th subchain gives L] J; = 0. Therefore, when L

is singular at least two of the A; vectors are nonzero and satisfy the conditions of the
Lemma. Conversely, when such a set of at least two vectors exists, the vector A can be

constructed by filling in zeros.

k
4.24. Lemma. Let V be a vector space and let Lj, j=1,...,k LC mj=1 L;, be

subspaces of V. Then
k k
dim Y, £i< Y dim 4—-(k-1)dim £
j=t j=1

k -
and equality is present if and only if L= ﬁj___l Lj=(2i=: .q,)m.c,-, for any set of

subscripts {jy,....j;} < {1l,...,k}.

Proof. By using the formula:
dim (A + B) =dim A + dim B - dim A N B,

we obtain:
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dim X, L= 3, dim £~ dim (4, 0 5) ~dim (45 + ) O 4] -
i= j=
k-1
---—dim[(z £)N L,»,]:
s=1

k k -1
Y, dim 4- 3 dim[(E 5)o r,] <
j=1 =2 s=1
k k
Y, dim £~ (k- DdimN £ <

i

j= j=l

k

Y dim £— (k- 1)dim £

j=1
and we have equality only when L= o Li= ( -1 -[j)nL' O

j=l s=1 RS TN T

Proof (of Theorem 4.22)
(i) < (ii). This part is easily proven by Lemma 4.23. Indeed the vectors Aj,, . . . , A
are obtained by A;, = I1A;,.
(i} ¢ (iii). Apply Lemma 4.24 for £;= T} O

4.25. Example. Consider the “flattened” five-bar linkage shown in Figure 4.7.
A 1 A 2
2! v O Q—=—%oc—0»
A i A ) B 1 C B 2

Figure 4.7. An RO-, RI-, IO- and [IM-type singularity.

The first and the third rows of the matrix of the velocity equation in Equation (4.6) are
identical, since the x-coordinates of all joint screws are zero. Therefore, the matrix is not of

full rank, which is the definition of an IIM-type singularity. On the other hand, the two

124



rotations with axes CA;| and CB satisfy all the conditions of (ii) in Theorem 4.22. The
condition from (iii), for this configuration, yields 5<(5+5)-(2-1)(6-2) =6,

which is correct.

4.5. Classification of Singularities

An individual singular configuration always belongs to more than one singularity type.
For example, the configuration shown in Figure 4.4 is simultaneously an RPM-, an IO-

and an [I-type singularity. The configuration of the 6-dof manipulator shown in Figure 4.6,
on the other hand, belongs to types RPM, RO, II and IO. If the active joints are at A; and

B, the singularity shown in Figure 4.7 would be [IM-, IO-, RI- and RO-type.

Not all combinations of singularity types are feasible. In Chapter 3, different rules were
derived for the simultaneous occurrence of the singularity types for the case of a general
mechanism. All of these apply for HCMs. Some additional rules can be derived from the

results of Section 4.4.

4.26. Proposition. For an HCM, if a configuration is an Rl-type singularity, then it is
an IO-type singularity as well .
Proof. This result follows directly from Theorem 4.13 (v) and Theorem 4.18 (iv). [

4.27. Proposition. For an HCM, if a configuration is an RPM-type singularity, then it
is an 1O-type singularity as well .

Proof. The proposition follows from Theorem 4.16 (ii) and Theorem 4.18 (iv). O

4.28. Proposition. For an HCM, if a configuration is an IIM-type singularity, then it is
an IO-type singularity as well .
Proof. This is implied by Lemma 4.23 and Theorem 4.18 (iv). )
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In Chapter 3, it was shown that all possible combinations of singularity types for a
general mechanism are given by the 21 non-empty cells of Table 3.1 (these are both the
cells marked by “Y™ and the ones marked by “N” in Table 4.1 below). In this way, the set
of all singular configurations of all non-redundant mechanisms can be divided into 21 non-
intersecting classes. The following theorem establishes an analogous classification for the

singular configurations of HCMs.

4.29. Theorem. Let S be a combination of singularity types. There exists an HCM with
a configuration, q, such that g € S, if and only if S is marked with “Y” in Table 4.1.

o| oo |mM|[IO |I |10
ad ad |ad |ad
I m™mM|mM| B
ad
oM
RI Y

RO Y
RI and RO Y|N|JYI|NI|Y
RPM Y|N Y
RI and RPM Y Y Y
RO and RPM Y NI|Y
RI and RO and RPM Y| NI|YINI|Y

Table 4.1. Possible combinations of singularity types for HCMs.

Proof. To prove this theorem, it is necessary to show that: (i) the combinations not

marked “Y™ are impossible; and (ii) that the ones marked *Y™ are indeed possible.
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(1) The blank cells in Table 4.1 correspond to singularity-type combinations, which are
impossible for any mechanism. The 6 cells marked “N” are not possible for HCMs because
they violate Proposition 4.28.

(i) To show that the “Y™ cells denote possible combinations it is sufficient to give one
example for each of these combinations. In this chapter, we already considered four

singular combinations, which illustrate four different singularity-type combinations:

(RPM, 10, I) Figure 4.4 in Example 4.23;
(RI, RO, IO, I) Figure 4.5 in Example 4.7;

(RL, RO, 10, IIM) Figure 4.7 in Example 4.25;
(RO, RPM, IO, I) Figure 4.6 in Example 4.11.

Although the two basic combinations, (RI, IO) and (RO, II), are not shown, they can
be easily visualized by small modifications of Figure 4.5. If the only change in the figure
were a slight shift of point C, so it no longer lies on the line defined by points C, and C,,
then the altered figure would represent a HCM in a singularity of class (RO, II). On the
other hand, if the configuration shown in Figure 4.5 were changed by a small motion of the
mechanism while keeping subchain C fixed (so that the three lines and PP, no longer
intersect in one point), the result would be a singularity of class (RI, IO).

In Chapter 5, the singularity set of a 6-dof spatial HCM is considered in considerable

detail. Seven additional singularity types are illustrated with figures and discussed in

Section 5.6.3:

(RI, RPM, IO, II) A variation of Figure 5.8 as discussed in Section 5.6.3;
(RI, RPM, IO, IIM) A variation of Figure 5.9 as discussed in Section 5.6.3;
(RI, RO, RPM, IO, IT) A variation of Figure 5.11 as discussed in Section 5.6.3;
(RPM, IO, 11, IIM) Figure 5.9 in Section 5.6.3;

(RI, RPM, IO, II, IIM) Figure 5.8 in Section 5.6.3;
(RO, RPM, IO, II, IIM) Figure 5.12 in Section 5.6.3;
(RI, RO, RPM, IO, II, [IM) Figure 5.11 in Section 5.6.3.
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The remaining two combinations, namely (RI, RO, RPM, IO, IIM) and (RI, RO, IO,

II, IM), are proven to exist by the following two examples.

4.30. Example. Consider the configuration shown in Figure 4.8.

Al
a)IA
@’ a)c
1 1
J{ {/ J{ //
A, A B B B C C, C,

Figure 4.8. A planar HCM in a singular configuration of class (R1, RO, IO, II, [IM).

The mechanism shown is a planar HCM similar to the one in Figure 4.2, however, in the
present example all joints are revolute. As in Figure 4.2, the active joints are the second
joints in all subchains.

Since subchains B and C are singular, the configuration in Figure 4.8 is an IO-type
singularity. Moreover, it is an II-type singularity as well, since the input velocity in joint A,
must be zero. When the output link ABC is fixed and the input velocities are zero, there can
be no instantaneous motion in the present configuration. Therefore, this is not an RPM-
type singularity. (Also, it is clear that condition (iii) in Theorem 4.16 is not satisfied, since
dim P2 2 for all three subchains.) Furthermore, condition (iii) in Theorem 4.22, applied
for the configuration in Figure 4.8, yields: 4<(3+4+4)-3-1)(6-2)=35,
and therefore the configuration is an IIM-type singularity. A configuration which belongs
to type IIM but not RPM, must be an RI- and RO-type singularity. Thus, the present
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example establishes the existence of singularities of singularity type combination (RI, RO,
IO, I, [IM).

4.31. Example. The mechanism shown in Figure 4.9 is similar to the one in Figure 4.8.
The difference is in subchain A: in the present figure point A coincides with point Ay, and
point A is aligned with the other joint centres.

A B C

(0

I8 3>5g_2> wa

A=A A B B,

l

Figure 4.9. A planar HCM in a singular configuration of class (RI, RO, RPM, IO, IIM).

Due to the position of point A, unlike Figure 4.8 the configuration shown in the
present figure is no longer an II-type singularity. (It can be checked that each one of the
input joints can move while the other two are fixed.) On the other hand, this is an RPM-
type singularity, since subchain A can rotate about point A = A, even when both the input
and output are zero. Therefore, the configuration must be an [IM-type singularity as well
(since it is of RPM-type but not II-type). Furthermore, it can be shown that this is an IO-,
RI and RO-type singularity. Indeed, the IO-type singularity is due to the singular serial
subchains, the RO-type singularity becomes apparent when we fix the input joints and
observe that the output link can still rotate about point A, and, finally, the RI-type
singularity is established by noting that the inputs at joints B, and C; need not be zero even
when points B and C of the output link are fixed. In conclusion, Figure 4.9, provides an

example of an HCM singularity of class (RI, RO, RPM, IO, IIM).
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This completes the proof of Theorem 4.29. O

4.6. Summary

This chapter presented the analysis of the instantaneous kinematics of a class of
mechanisms with several serial subchains arranged in parallel to connect the base with the
end-effector. The velocity equation (as defined in Chapter 3) of such mechanisms, which
completely describes the mechanism rate kinematics, was used as the starting point for the
analysis. A method for the elimination of the passive-joint velocities from the velocity
equation was described. This method is applicable for all HCMs and the resulting equation
fully characterizes the input and output at any configuration, even at singularity. This
equation was then applied to the singularity analysis of HCMs, which was performed in
accordance with the general theory of kinematic singularity for non-redundant mechanisms
developed in Chapter 3. For each of the six singularity types introduced there, the present
chapter provides several criteria (necessary and sufficient conditions for their occurrence)
for the case of HCMs. A refined and comprehensive classification of the singular

configurations of HCMs is obtained by the enumeration of all 15 feasible combinations of

singularity types.
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CHAPTER 5

SINGULARITY IDENTIFICATION

5.1. Introduction

In the present chapter, the problem of singularity identification is addressed. The objec-
tive is to provide a method for the solution of the following problem: Given an arbitrary
non-redundant mechanism with lower pairs, find all the singularities of the mechanism and
determine their type. The end result of the solution process must be a description of the
singularity set as a whole, as well as a division of this set into subsets belonging to exactly
the same singularity types.

The proposed solution technique is based on the velocity-equation formulation of
kinematic singularity, introduced in Chapter 3. The definitions of Sections 3.3 and 3.4 are
used in Section 5.2 to derive the singularity criteria, i.e., necessary and sufficient
conditions for the occurrence of singularities of different types. On the basis of these
criteria, methods for computing the singularity set and revealing its division into singularity
classes are proposed in Sections 5.3 and 5.4, respectively. The application of these
methods to complex spatial mechanisms is discussed in Section 5.5 and illustrated in
Section 5.6, where the singularity set of a 6-dof parallel manipulator is obtained and

analyzed.
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5.2. Conditions for Singularity

The singularity of a given configuration, ¢, can be determined by examining the matrix
L(q) of the velocity equation (introduced in Section 3.2, Equation (3.5)). Let L;, Lo and
L, be the submatrices of L obtained by removing the columns corresponding to the input,
output, and both the input and output, respectively. Then, the following general singularity

condition holds:

5.1. Theorem. For any non-redundant mechanism, a configuration, q, is nonsingular,
if and only if both the matrices L; and Lo are nonsingular at gq.

Proof. Let Lt be the matrix formed by the columns of L, which correspond only to the
output velocities, and L, be the matrix of the columns of the input velocities. Then, the
velocity equation (3.5) can be rewritten as: L;T + LQ°+L p.Q‘" =0, or, in any of the

following two forms:

L,*r T L-L‘,Q“, (5.1)
L7
and
Lo[ 2 }=-L,T. (5.2)
o

From Equations (5.1) and (5.2), it is evident that all velocities can be expressed in terms of
the output (input) velocities, if and only if L, (respectively L) is invertible. According to

the definition of singularity in Section 3.3 this proves the theorem. J

The conditions for the occurrence of the different singularity types are described by the

following proposition:

5.2. Proposition

(i) g € {RI} & rank Lo <rank L, + n,

132



(ii) qc {RO} & rank L;<rank L, + n,

(iii) qe {RPM} < rank L, <N -n,

(v) qe {II} © rank L;<rank L,

{v) qe {I0O} & rank Lo <rank L,

(vij qe {IIM} & rank L <N,

(viii qe {RI} orgqe {RPM} & qe {IO}orqe {IIM} & L, is singular,

(viii} g€ {RO}orge {RPM} & qge {II}orqe {IIM} & L,;is singular.

Proof

(i) q € {RI} is equivalent to the existence of a 02%#0 such that Equation (5.2) is
satisfied with a zero right-hand side.
Let d,d 20, be defined by rank L, = N —n — d. Then, dim(Ker L) is exactly
d, if and only if the left-hand side of (5.2) can be zero only for a zero Q°. Therefore,
an Rl-type singularity is present only when dim(Ker Lo) > 4. This proves (i),
since rank Lo = N —dim(Ker Ly) andrank L, +n=N-d .

(ii}  Analogous to (i).

(iti) Follows directly from the definition of the RPM-type.

(iv) Equation (5.1) implies that ¢ € {II} is equivalent to the existence of a vector v,
which is in Im L, but not in Im L, i.e., equivalent to ImL,-Im L, = &. Since
ImL =ImL, + Im L, this in turn is equivalent to ImL —-Im L, =, i.e.,
rank L; <rank L.

(v)  Analogous to (iv).

(vi) Follows directly from the definition of the IIM-type.

(vii) For any configuration, it is true that

rank Lo <rank L < N.
The matrix Lo is singular, when rank Ly < N. Therefore, L, is singular, if and

only if either
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rank Lo <rank L or rank L < N.
Using (v) and (vi), we conclude that L, is singular if and only if the configuration
belongs to either IO or [IM.
On the other hand, it is always true that
rank Lo <n +rank L, £ N.
For Lo to be singular, rank L, < N. Therefore, a necessary and sufficient condi-
tion for the singularity of Ly is that at least one of the following two inequalities
holds:
rank Lo <n +rank L, or rank L, < N - n.
It follows from (i) and (iii) that Ly is singular, if and only if the configuration is
either an RO- or an RPM-type singularity.

(viii) Analogous to the proof of (vii).
O

5.3. Remark. A mechanism configuration, ¢, is an N-tuple of values of all joint
parameters. As was pointed out in Chapter 2, in the case of closed-loop mechanisms not all
such N-tuples correspond to feasible configurations. The configuration space is given by
the solution set of a system of equations, 2;(f) = e, L € £ (Theorem 2.30). When a local
coordinate system is chosen on the joint-space manifold, Q, Equations (2.3) become a
system of nonlinear scalar equations, /(q) = 0. In the present chapter, when referring to
the “loop equations” of the kinematic chain, we will have in mind the scalar equations.
When attempting to find the singularities of a given mechanism, it must be assured that
the values obtained for ¢ are compatible with the loop equations. If only parts of the
configuration space need to be considered, additional inequality constraints on the joint
parameters are imposed. The feasible set consistent with the joint constraints will be

denoted by F. Thus, the ser of feasible configurationsis {q € F |l(q) =0}.
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5.3. Determination of the Singularity Set

When a feasible configuration, ¢, is given, the rank of the matrices L;, Lo, L, and L
are computed and the type of singularity is determined by reviewing conditions (i) to (viii)
listed in Section 5.2, Theorem 5.2. However, to obtain the singularities of a mechanism,
without considering all feasible g, the conditions must be interpreted as systems of
equations for ¢, and the singularity set and its subsets be obtained as solutions of these

equations. This process is described below.

For singularity identification of closed-loop mechanisms, the matrices L; and L, play a
role analogous to the one of the Jacobian in the case of a serial chain. The singularities of a
non-redundant mechanism with known kinematic chain, link parameters and joint

constraints, can be determined by solving the following two systems of nonlinear

equations:
det L(q) =0,
(5.3)
I(q) =0,
and
det Lo(g) = 0,
(5.4)
I(q) =0,

subject to the joint constraints F.

Therefore, the problem of singularity identification can be resolved by the execution of
the following steps:
(1)  Derive the loop equations, I(g) = 0, of the mechanism.

(2) Derive the velocity equation, L(g)M = 0, of the mechanism.
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(3) Solve the system
det L(q) =0,
l(q) =0,
subject to the joint constraints F.
(4) Solve the system
det Lo(q) =0,
l(q) =0,
subject to the joint constraints F.
(5) Obtain the singularity set as the union of the sets obtained as solutions of the

systems in Steps (3) and (4).

For a non-redundant mechanism each of the two subsets of the singularity set, obtained
by Equations (5.3) and (5.4) (Steps 3 and 4), is the solution of a system of (N ~n + 1)
equations. Therefore, the singularity set will be typically of dimension (n — 1) or,
equivalently, of co-dimension | in the n-dimensional configuration space of the
mechanism. Thus, mechanisms with mobility of 1 usually have a finite number of isolated

singularities, while for higher values of n the singularity set will have " points.

5.4. Example. As an example, the above procedure is applied to a four-bar linkage
(shown in Figure 5.1a and 5.1b) with dimensions AB=AD =DC-=1, BC =2, with
no joint constraints. The input link is AD and the output link is BC.

The four-bar mechanism is parameterized by the coordinates of the points C and D.
(When planar linkages are considered. it is often convenient to use Cartesian position
coordinates rather than joint angles). The base reference frame is such that the coordinates

of A and B are (0, 0) and (1, 0).
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A B

Figure 5.1a. An RI- and IO-type singularity.

Figure 5.1b. An RO- and II-type singularity.
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(1) The loop equations are:
xpt+yp?=1
(xc - xp)? + (yc-yp)*=1 (5.5)
(xc= 1P +yc2=1

(2)  The velocity equation, generic for any four-bar linkage (cf Example 3.2), is of

the form:
T
(O]
1 0 0 0 1
=0 (5.6)
[ 0 Sa Sp S¢ Sg ((:,)?_
)]

where S;p, P = A, B, C, D, are 3-dimensional planar screws, i.e., vectors
of the type Sp = (1, yp, —x;)7, and @, are the joint velocities. The first
equation in (5.6) is the output equation, and the remaining three form a screw
equation, which states that the sum of the joint twists in the only loop is zero.

(3) The expression for det L{qg) leads to the following expression:
~ypxc + ycxp =0
This equation is solved together with the system of Equations (5.5). The
solution is x, = 1/4, vy, = £V13/4, x. = 1/2, v, = +V15/2, (Figure 5.1a).
(4) The expression for det Ly(g) leads to the following equation:
—yc(l —xp) + vp(l -xc) =0

This equation is solved together with the system of Equations (5.5). The
solution is x- =0, yo =%V3, xp = 1/2, y, = +¥3/2, (Figure 5.1b).
(5) Thus, 4 distinct singular configurations are obtained. They are symmetrical

with respect to the line AB.

5.5. Example. Consider the slider shown in Figure 5.2a, with AC=BC = 1.
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Figure 5.2a. A 1-dof slider.

4
7
o| B
A=B VB
C ve C
O 7 Y/
l VA
ol A
I
Figure 5.2b. Figure 5.2c.
An (RO, RI, IIM)-class singularity. An (RPM, II, IO)-class singularity
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The prismatic joints at A and B are on a line which is perpendicﬁlar to the axis of the
prismatic joint C. The input is the velocity of point A, v,. The output, v = v, is the
motion of the point B. The coordinates of points A, B and C are used as position
parameters. The base reference frame is chosen with its axes along the lines of the prismatic
joints.

(1)  The loop equations are the expressions for the constant lengths of AC and BC,
as well as for the constant orientation of the prismatic joint axes:
X,=xg=yc=0,

yz+xé=1,
y§+x3-= 1.

(2) The velocity equation is obtained with a 7 x 8 matrix L:

v

VA

A
OOOO—IOOwé

1
0 P4 S4 S¢ P 0O 0 O =0, 6.7
O 0 0 0 P- Pg Sz Sc | Y¢
Vg
@B
L o

where Sy, P = A, B, C, are 3-dimensional planar revolute-joint screws
(Sp=(1, yp, —xp)") and Pp, P = A, B, C, are prismatic-joint screws:
P,=(0,0, ), Pg=(0,0,-1),P.=(0,-1,0).

(3) The system

det L/(q) = y,xc =0,
yitxg=1,
y§+xcz-= I.
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is solved and six singularities are obtained: (y, = y5 =0, x. = *1) (Figure
5.2b), and (y, = *yp = £1, x- =0), (Figure 5.2c).
(4) The system
det Lo(q) = ygxc = 0,

y } + xé =1,
y% + xg- =1.
yields the same six configurations obtained in Step (3).

(5) The singularity set has six elements with the following values of (y,, yz, x0):

(Oy 01 1); (O’ 0! —I); (11 19 0); (-'11 -ls 0); (1’ -17 0); (—1, IQO)'
It must be noted that, if singularity identification were attempted by means of an input-
output equation, the singularities with x- = 0 would not be detected (as this was already

pointed out in Section 3.4).

5.4. Determination of the Singularity Types

The algorithm presented in Section 5.3 can identify all the singularities of a mechanism.
However, it cannot classify them, namely determine to which types each singularity
belongs. Herein, a comprehensive algorithm that can both identify and classify the

singularities of a given mechanism is described.

5.4.1. Finite number of singularities

To classify the singularities of a given mechanism, the singularity conditions (i) to (viii)
listed in Section 5.2 must be used. For a finite number of singularities, as could have been
determined by the algorithm in Section 5.3, the classification can be carried out by checking

each condition for each singularity.
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5.6. Example. Consider the four-bar mechanism in Figure 5.1. For the singular
configurations given by (xp = 1/4, y, = +¥15/4, x. = 1/2, y. = £¥15/2), it is
established that: rank L =4, rank L, =3, rank L;=3, and rank Ly = 4. Using
conditions (iii), (vi), (vii) and (viii), it is determined that the singularities obtained in Step 3
belong to both types RI and IO and to no other type, i.e., they are of the (RI, IO) class.
For the singularities given by (xo =0, yo =%V3, x, = 172, y, = £V3/2), it is
established that: rank L =4, rank L, =3, rankL,=4, and rank L, = 3. Using
conditions (iii), (vi), (vii) and (viii), it is determined that the singularities obtained in Step 4

belong to types RO and II and to no other type, i.e., cell (RO, IT) in Table 3.1.

5.7. Example. For the slider in Figure 5.2, it can be found that when x- =0 (and
Y4 = yg #0) the ranks are: rank L =7, rank L, =5, and rank L; = rank Lo = 6.
Therefore, from conditions (i), (i), (iii), (vi), (vii) and (viii), it follows that these
singularities belong to the (RPM, IO, II) class (Figure 5.2c).

When y, =yp=0 (x-#0), it can be found that: rank L =rank L, =rank L, =
rank Ly = 6. Conditions (iii) to (viii) then imply that the singularity belongs to the (IIM,
RI, RO) class (Figure 5.2b).

If a mechanism has infinitely many singularities, the class of each separate singularity can
be obtained by calculating the ranks of the four matrices, L, L,, L; and Lo. However, in
order to find all singularities that belong to each class, the conditions (i) to (viii) must be

solved for an unknown ¢, to obtain the sets of singularities belonging to the corresponding

types.

5.4.2. Classification via L, and L,
Though the solution of Equations (5.3) and (5.4) identifies all the singularities of a
mechanism, it does not classify them. In general, by using only matrices L; and Ly, it is

not possible to classify all the singularities of a mechanism. However, classification can be

142



accomplished for some mechanisms, and for some of the singularities of other
mechanisms. Conditions (vii) and (viii) imply that, if for a given configuration L, is
singular but L, is nonsingular, the configuration is a singularity of class (RI, I0).
Conversely, when a configuration satisfies condition (viii) but not (vii), it must be of the
(RO, ) class. It is only when both L; and L, are singular that conditions other than (vii)
and (viii) need to be considered. Singularities that satisfy both (vii) and (viii) may have
substantially different kinematic features, e.g., they may lead to either a loss or a gain in
output/input dof. In fact, a configuration where both L, and L, are singular may or may

not belong to any of the six singularity types.

5.8. Example. For the four-bar linkage analyzed above, the singularity subsets
obtained in Steps (3) and (4) of the identification algorithm in Section 5.3 do not intersect.
Therefore, the singularities obtained in Step (3), with a singular L,, form the (RI, IO)
singularity class, while those obtained in Step (4), with a singular matrix Lo, form the

(RO, @) class.

5.9. Example. In the case of the slider, however, all the singularities satisfy both
conditions (vii) and (viii) and they cannot be classified without using additional singularity
conditions. As it was shown in Sub-section 5.1, the singularities are either of the (RPM,
I1, IO) class or of the (IIM, RO, RI) class, and therefore for this mechanism conditions

(vii) and (viii) cannot resolve whether the singularity belongs to any particular singularity

type.

From Example 5.9, it is evident that singularities that satisfy both (vii) and (viii) may
have substantially different kinematic features, e.g., they may lead to either a loss or a gain

in output/input dof. Therefore, a more refined classification is needed.
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5.4.3. Classification algorithm

On the basis of the discussion in Section 5.4.2, if it were known that there are no
singularities of the IIM or RPM types, the identification and classification process could be
completed by examining only conditions (vii) and (viii). The main strategy of the method
described below is, thus, to first identify and classify the [IM and RPM singularities, and
then analyze the remaining configurations using the determinants of L; and L.

As in Sub-Section 5.3, it is understood that the singularity equations are solvad subject
to the joint constraints and the loop equations. To simplify the presentation, these
operations are not explicitly included in the description of the algorithm. Below, {k} stands

for “all configurations obtained in Step & of the algorithm.”

(1) Find all feasible ¢ satisfying condition (vi).
(2) Find all feasible ¢ satisfying condition (iii).
(3) Classify {1} U {2}:
(3.1) For {1}, check (iv) and (v). Obtain 4 sets:
M IM&ILIM&IO; IM & I & IO.
(3.2) For {2}, check (i) and (ii). Obtain 4 sets:
RPM; RPM & RI; IIM & RO; RPM & RI & RO.
(3.3) Find all the intersections of each set in {3.1} and each set in {3.2}.
Obtain 10 classes. (These are the 10 classes that belong to the
IIM and RPM types, see Table 3.1)
(3.4) Subtract {2} from each set in {3.1}. Obtain 4 classes.
(The 4 classes of IIM, but not RPM singularities, see Table 3.1).
(3.5) Subtract {1} from each set in {3.2}. Obtain 4 classes.
(The 4 classes of RPM, but nor [IM singularities, see Table 3.1).
(4) Find all g satisfying condition (vii). From these subtract {1} U {2}.
(5) Find all g satisfying condition (viii). From these subtract {1} U {2}.
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(6) Intersect {4} and {5}. Obtain 3 classes.
(Singularities that are neither IM nor RPM).

Thus, the singularities that belong to each of the 21 classes in Table 3.1 are identified.

5.10. Remark. The operations in Steps (1) and (2) require the identification of the points
x for which some rectangular matrix M(x) is singular. This can be done by finding all x for
which all sub-matrices of maximum dimension have zero determinants, i.e., by solving a
system of nonlinear equations. In Steps (3.1) and (3.2) it is required to find sets of the type
R = {x | rank A(x) < rank B(x)}. This can be done by presenting X as the union of
the sets ®; = {x | rank A(x) < i <rank B(x)}. The sets X; can be obtained by solving

systems of equations.

5.11. Remark. 1t can be noted that, since the condition for RPM (or IIM) singularity
requires the rank-deficiency of a rectangular matrix, a larger number of equations must be
satisfied and the dimension of the solution set will be typically lower than the dimension of
the singularity set as a whole. In practice, IM singularities occur only for mechanisms with
specially proportioned link parameters. RPM singularities, when they exist, form sets of
low dimensions. The algorithm is organized in such a way that the conditions for RI, RO,
I and IO, which may involve the examination of multiple cases, are solved only together

with the conditions for [IM (RPM), i.e., for a comparatively small subset of singularities.

5.12. Example. The algorithm is applied to the slider in Figure 5.2.
(1) Two configurations are obtained: y, = yz =0, xo = £1.
(2)  Four configurations are obtained: y, = *yz =1, x = 0.
3) (3.1) Both elements of {1} belong to neither {II} nor {IO}
(neither (iv) nor (v) are satisfied).
(3.2) Both elements of {2} belong to neither {RI} nor {RO}

(neither (i) nor (ii) are satisfied).
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(3.3) The intersection of {1} and {2} is empty.
All ten classes of IIM-type and RPM-type singularities are empty.
(3.4) The two elements of {1} form the (IIM, RI, RO) singularity class.
The other three classes of IIM, but not RPM singularities are empty.
(3.5) The two elements of {2} form the (RPM, II, IO) singularity class.
The other three classes of RPM, but not [IM singularities are empty.
(4 to 6) {4} and {5} are empty. The remaining three classes are empty.

5.13. Example. Consider the mechanism shown in Figure 5.3 (N=8, n =2).

0
F
CI)E T
A V74 b" /4 E"-g

Figure 5.3. A 2-dof planar mechanism.
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The inputs are the joint velocities at A and E, the output is the motion of point G. The
link dimensions are AB=AD=BC=DE=1,CD=FG=2,CG=1.5, EF =3.
The L matrix with dimensions 8 x 10 is:

I, 0 Mrc 0 0 0 0 0 mrc
L= 0 S4 0 Sz Sc Sp 0 o 0 (5.8)
O 0 Sg 0 0 Sp S¢ Sg SF
where Sp, P =A, B, ..., G, are 3-dimensional planar screws, Sp = (1, yp, —xp)7,

Mpg = (Yp — Yg» X — Xp)’., and I, is the 2 X 2 unit matrix. To find all the singularities

and establish their types, the procedure described in Remark 5.10 is followed:

(1) Check for IM singularities. For the given mechanism, it is established that condi-
tion (vi) has no solution compatible with the given link lengths.

(2)  Check for RPM singularities. The condition (iii) is satisfied only when the determi-
nants of both [SSSp] and [ScSSp] vanish. This yields 8 distinct singular confi-
gurations (one of them is shown in Figure 5.4).

3) (3.2) For each of 8 the configurations in {2}, Conditions (i) and (ii) are checked

and it is found that neither is satisfied.
(3.5) The (RPM, IO, II) class consists of the 8 elements of {2}.

(4)  Condition (viii) is applied. (viii) is equivalent to the singularity of at least one of the
matrices [SgScSp] or [ScSsSr]. The solution of each of these equations
(combined with the loop equations) is a 1-dimensional submanifold of the 2-di-
mensional configuration space. The first manifold has 4 connected components,
and the second one has 3 components. All elements of the union of these mani-
folds, except the 8 elements of {2} found in Step 2, are of the types RO and II .
One such singularity is shown in Figure 5.5. The corresponding connected
component is obtained by moving the linkage, while keeping the joint angle at G

constant.
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77 ~ /4

A D E

Figure 5.4. An RPM-, IO-, and II-type singularity.

The condition (vii) is applied. (vii) is equivalent to the singularity of at least one of
the matrices [S4SsScl, [ScScSp] or [SES6SF]. The solution for each of these
equations (combined with the loop equations) is a 1-dimensional submanifold of the
2-dimensional configuration space. The first and third manifolds have each 2
connected components, while the second one has 4. All elements of the union of
these manifolds, except the 8 elements of {2}, belong to the types RI, IO. Figure

5.6 provides an example. The connected component corresponding to the shown
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6)

configuration is obtained by moving the linkage while keeping the points B and C
fixed.

The intersection of the sets obtained in Steps 4 and 5 consists of 16 configurations
Apart from the 8 configurations classified in Step 3.5 as (RPM & II and 10)-class
singularities, the others are (RI, RO, IO, II)-class singularities. The remaining

configurations obtained in Step 4 (or 5) belong to the class (RO, I) (or (RL, 10)).

/4 ~

A D E

Figure 5.5. An RO- and I-type singularity.
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: 77 V//4
A

D E

Figure 5.6. An RI- and IO-type singularity.

Thus, four different classes of singularities are obtained for the given mechanism: 8

(RPM, 11, IO) singularities, Step (3.5); 8 (RI, RO, IO, II) singularities, Step (6); «! (RO,
) configurations, Steps (4) and (6); and, «! (RI, IO) configurations, Steps (5) and (6).
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5.5. Mechanisms with High-Dimensional Singularity Sets

Once the loop equations and the velocity equation of a mechanism are derived, the
methods described in Section 5.4 reduce the problem of singularity identification and
classification to the solutions of systems of algebraic equations. However, since these are
systems of nonlinear equations with multiple unknowns, their symbolic solution, if it
exists, may be non-trivial. Numerical methods, on the other hand, may be computationally
expensive, especially when the mobility of the mechanism is higher than 1, in which case
the solution sets are manifolds rather than finite sets. These manifolds can be quite complex
as can be seen in (Sefrioui and Gosselin 1994, 1995), (Mayer St-Onge and Gosselin 1995)
or Collins and McCarthy 1996) where examples of singularity sets are provided for RO-
type singularities of parallel manipulators.

This section addresses the application of the proposed method to complex mechanisms
with high-dimensional singularity sets. Two methods for the simplification of this process
are discussed and, as an illustration, the comprehensive singularity identification and

classification of a 6-dof multi-loop mechanism is performed.

5.5.1. Geometrical solution of the singularity conditions

Geometrical considerations can be used to simplify the solution of the singularity
conditions. Since the velocity equation is composed of screw equalities, Conditions (i)
(viii), which require the rank-deficiency of different submatrices of the velocity equation,
are equivalent to conditions of linear dependence of certain joint screws. Instead of
attempting to analytically solve the nonlinear equations, obtained from the vanishing of
different determinants, one can find geometrical conditions for the linear dependence of the
columns of the corresponding matrices. For instance, in Step (2) of Example 5.13 the
singularity of the matrix L, is equivalent to the linear dependence of the last six columns of

the matrix given in Equation (5.8). However, it can be seen that, if a non-trivial linear
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combination of these 8-dimensional column vectors equals zero, then both sets of screws
{Sz.Sc. Sp} and {Sc, Sp. S} must be linearly dependent. (Indeed, since mg; is
never zero, the coefficient of the last column must be zero. Moreover, since S is always
different from S, the coefficients of three columns preceding the last one (columns 7, 8, 9
of L in (5.8)) are not all zero. This implies that {S¢, Sp, S¢} are linearly dependent.
From the properties of planar screws, it then follows that an RPM-type singularity of the
mechanism shown in Figure 5.3 occurs when both sets of points {B, C, D} and
{C, D, G} are collinear (Figure 5.4).

Thus, using screw theory, the singularity conditions can be interpreted as geometric
criteria, as illustrated by the example analyzed later in Section 5.6. Such a screw-theory
based approach provides a better geometrical insight into the problem of singularity
identification, and it is not dependent on the specific values of the link parameters. This
allows the study of singularities that occur for a given kinematic chain regardless of the
values of the link parameters. This geometric approach is similar to the one used by Merlet

(1989) to analyze RO-type singularities of parallel manipulators with prismatic actuators.

5.5.2. Simplification of the velocity equation

For complex mechanisms with many loops, the dimension of the velocity equation can
be quite large. Sometimes, the velocity equation can be simplified by eliminating some of
the passive velocities. It is important, however, to ensure that the resulting equation is a
necessary and sufficient condition for the feasibility of the remaining velocities.

Let Q7 be a vector with components (N - n - k) of the passive-joint velocities of the
mechanism and AT:[TT, o .(—2"1]. Also, let the (N — k) X (N — k + n) matrix L(q)
be a continuous function of ¢. Let L;, Lo and L, be submatrices of L, defined in the same
way as L;, Lo and L, were defined as submatrices of L in Section 5.2. For brevity we
introduce the notation N = N ~ k. Also, we denote by fz” the column matrix composed

of the k remaining passive velocities. The following proposition can be then proven:
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5.14. Proposition. Suppose that, for every q, there is a matrix P(q) such that the

velocity equation can be written in the form:

LigM =0, (5.9)
@ = pg)MT. (5.10)

Then, all singularity conditions derived in Theorems 5.1 and Proposition 5.2 remain true
when the matrix L(q) is used instead of L(q), i.e.,
(1) A configuration, q, is nonsingular, if and only if both the matrices L; and Lo are
nonsingular at q.
(2)
(i) g€ {RI} & rank Lo < rank L, + n,
(i) qe {RO} & rankL;; <rankL, + n,
(i) q€ {RPM} « rankL, <N - n,
(iv qe {II}) & rankL; < rank L,
(v) qe {10} @ rankLp <rank L,
(vij qe {IIM} & rankL < N,
(vii g€ {RO}orqe {RPM} & qe {IlI} or g € {IIM} & Ly is singular,
(viii) q€ {RI}orgqe {RPM} & g e (10} orq € {IIM} & L; is singular.
Proof.
(1) It needs to be proven that ¢q is singular, if and only if at least one of the matrices L;
and Lo is singular.
As in the proof of Theorem 5.1, we note that Equation 5.9 can be written in any

of the following two forms:

L I ]=—29“, (5.11)
Q| :
and
a
fo[ Q2 jl:—fTT. (5.12)
QP



(2)
(i)

(ii)
(iii)

(iv)

From Equations (5.11) and (5.12), it is evident that all, but the eliminated
velocities, can be expressed in terms of the output (input) velocities, if and only if
L; (respectively Lo) is invertible. The eliminated passive velocities, fz”, are given
as a function of the remaining velocities by Equation (5.10) Therefore, according to
the definition of singularity in Section 3.3 (Definition 3.5), Theorem 5.1 remains

true when stated for the matrices L; and L.

A configuration, g, is of the RI-type only when the velocity equation is satisfied for
Q°#0 and T = 0. Considering the form of the velocity equation given by

Equations (5.12) and (5.10), the conditicn for RI becomes:

_Qa

QP

Lo =0 ,0Q°#0. (5.13)

Let d,d 20, be defined by rank L, = N —n —d. Then, dim(Ker Lo) is
exactly 4, if and only if the left-hand side of (5.2) can be zero only for a zero Q°.
Therefore, an RI-type singularity is present only when dim(Ker Lp) > 4. This
proves condition (i), since rank Lp = N — dim(Ker Ly) as well asN —d =
rank L, + n.
Analogous to (i).
From Equations (5.9) and (5.10) and the definition of RPM-type singularity,
Definition 3.21, it is clear that an RPM-type singularity can occur only when the
equation Z._,, QP =0 can be satisfied for a nonzero 2°. This is so only when ij is
singular, i.e., rankL, < N - n
Equation (5.11) implies that g € {II} is equivalent to the existence of a vector v,

which is in ImL, but not in ImL;, ie., to ImL,- Im L; = @. Since
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ImL =ImL,+ Im L, this in turn is equivalent to ImL — Im L; = O, i.e.,
rank L; < rank L.

(v) Analogous to (iv).

(vi) According to Definition 3.18, the IIM-type smgulaﬁty requires that the scalar
equations of the velocity equation are linearly dependent. Since the k scalar equations
in (5.10) are clearly linearly independent, ¢ can be of the IIM singularity type, if and
only if Equation (5.9) is singular, i.e., rank L < N .

(vii) Follows from (ii), (iii), (iv) and (vi).

(viii) Follows from (i), (iii), (v) and (vi). a

5.15. Remark. The above Proposition 5.14 allows us to decrease the dimension of the
singularity-identification problem by the elimination of some passive velocities. It must be
noted that passive velocities can be eliminated only when the resulting reduced velocity
equation (Equation (5.9)) is still a necessary and sufficient condition for the feasibility of
the remaining velocities.

Note that the matrix function P(q) need not be known explicitly in order to apply the
singularity criteria, since they are based solely on the submatrices of L(g). It is sufficient to

. . p . .
make sure that for every configuration the eliminated velocities, £2 , are determined in a

unique way by the remaining joint velocities.

Later in this chapter, in Sub-Section 5.6.2 the process of partial elimination of the
passive screws and the derivation of simplified singularity conditions will be illustrated by
an example.

The elimination of passive velocities may be executed by algebraic manipulations of the
velocity equation, or geometrically by using reciprocal screws. Reciprocal screws have
been used by different authors to obtain input-output velocity equations of parallel and
hybrid-chain manipulators (Kumar 1990, Angeles 1994, Etamadi-Zanganeh and Angeles
1994, Chapter 4 of this thesis). A similar approach can be used for general closed-loop
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mechanisms: by multiplying the twist equation for each loop by one or more reciprocal
screws part of the passive velocities are eliminated. However, as it was shown in
Chapter 4, if the reciprocal screws are not chosen in a correct way, the resulting equation
may no longer be a necessary and sufficient condition and would not be suitable for

singularity analysis.

5.6. Singularity Analysis of an Exemplary Spatial Mechanism

5.6.1. The mechanism
To illustrate the above techniques, herein, the singularities of the mechanism shown in
Figure 5.7 are identified. This is a 6-dof platform manipulator with an asymmetric
distribution of the actuated joints (first described in Zlatanov et al., 1992). The output link
(the end-effector) is the moving platform ABC, the six input joints are: the first three joints
of sub-chain A, the second and third joint in subchain B and the third joint in subchain C.
The base A,B,C, and the moving platform are equilateral triangies with sides AB =
AoB, = a. The two nonzero links in each serial subchain have the same length, [ It is
assumed that 2IA3 < a < 21.
The velocity equation, obtained using the method outlined in Chapter 3, is:
[ Is JA O O -JA 0 o T
o It JE o Jp JE 0 || 0° |=0 (5.14)
o o J§ -Jf o Jf -S|l QF

where, for each P, (P = A, B, C), JF is a matrix which has as its columns the active

joint screws in the serial sub-chain, while J,f is composed of the passive screws in the
sub-chain. The output is the twist of the moving platform, T = T, the input,

Q=[af, A, 0} 03, w,B , cof]T , is composed of the six active-joint velocities, and 027
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is the vector of the passive velocities. (The spherical joints are modelled by three linearly-
independent rotations through their centers). The first six scalar equations in (5.14) are the
output equation, while the remaining 12 equations are given by two loop-closure twist
equations. The only restrictions imposed on the joint parameters is the condition of non-
interference of the different links. In particular, those configurations for which a leg is
folded (i.e., where P = P,) will be considered as impossible to achieve.

Figure 5.7. A 6-dof hybrid-chain manipulator.
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5.6.2. Simplification of the singularity conditions

Following the guidelines from Sub-Section 5.5.2, Equation (5.14) can be simplified by
eliminating some of the passive-joint velocities. First, we observe that (5.14) is equivalent
to the system of equations:

T =25, 8P’ P=A,B,C. (5.15)

i=1

(Systems of this type are commonly used in the literature to describe the velocity kinematics
of parallel manipulators).

Each of the three twist equations in (5.15) can be multiplied (via the so-called reciprocal
scalar product) by a screw, R, to obtain a scalar equation. If R is chosen to be always
orthogonal (i.e., reciprocal) to one or more joint screws, then the corresponding joint
variables will be eliminated from the resulting equations. If a sufficient number of such
reciprocal screws can be found, a new system with a smaller number of variables will be
obtained. As it was pointed out in Section 5.5.2, to be suitable for singularity
identification, the new system must be equivalent to the old one and the values of the
eliminated variables must be uniquely determined for each set of values of the remaining
variables. In the case of System (5.15), this can be ensured only if the joint screws of the
eliminated velocities in each one sub-chain are linearly independent. Therefore, all passive-
joint velocities could be eliminated, only if the matrices J7 were of maximum rank for all P
and for all q. This, however, is not true, since for some configurations the passive-joint
screws in subchains B and C can become linearly dependent. For example, whenever point
B lies on the screw axis S? , the rank of J§ is 3 rather than 4. Therefore, it is impossible
to properly eliminate all four passive velocities in this subchain. Indeed, if we assume that
all other velocities are known, a)f could still have any value, and thus the values of the
passive-joint velocities in sub-chain B could not be determined in a unique way.

On the other hand, since the three joint screws corresponding to each spherical joint are

always linearly independent, the corresponding nine passive velocities can be safely
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eliminated. This is done by multiplying each of the three screw equations in (5.9) by the
screw “annihilator” of the spherical joint (Angles 1994). In other words, we take the
reciprocal product of equation P with three linearly independent screws, all reciprocal to
joint-screws Sf, Sf and SZ. Therefore, these three screws must be linearly independent
rotations with axes through P. It is convenient to choose these axes parallel to the axes of
the reference frame. Then, in a coordinate system with origin at A and axes parallel to those

of the base frame the following system, LM = O, is obtained:

0 I -My; O 0 0 0 T
b I o -M%5 o -mf o Q° |=0.(5.16)
€ I3 0 o -m§ o0 -M§ [|@QFf

In Equation (5.16), mf is the moment of the screw S¥ with respect to point P, while M 5
is the matrix [m?, mf ,...]. For a 3-dimensional vector v,V denotes the skew-
symmetric matrix with the property: v x w = vw, for any vector w. The vector b is
parallel to AB and c¢ is parallel to AC. Only three of the passive joint velocities remain in
(5.16), 2" = [0, oF, WSIT.

According to Proposition 5.14 in Sub-Section 5.5.2, Equation (5.16) can be used in
the same way as (5.14) or (5.15) for singularity identification. Note that, using the above
technique one can easily obtain equations analogous to (5.16) for any hybrid-chain
manipulator with passive spherical joints at the moving platform.

Several simplified matrices can be introduced and used for the calculation of the ranks
of Ly, Lo, L, and L (or L, Lo, L, and L).

From Equation (5.14) it can be deduced that rank L = rank L +6 (and, therefore,
rank L = rank L — 3), where L is the the 12 x 18 matrix,

JA <18 0 |

L= . (5.17)
M

Above, JP are the 6 x 6 sub-chain Jacobians.
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From Equation (5.16), it follows that rank L, = rank fp, where fp is the 6 X 6
matrix,

c

L [ml‘g 0 oJ (5.18)
P 0 mf m3 ] .

Also from (5.16), the rank of L; can be expressed by the matrix f,,
~ [5' mf 0 GJ

¢ 0 mf m§

(5-19)

for which: rank L; = rank L; + 3
Finally, rank Lp = rank Lo, where Ly is obtained by rearranging the columns of
Lo,
Lo = diag(M?3, M{53,M {53). (5.20)

Thus, for the mechanism in Figure 5.7, the conditions from Section 5.2 can be

expressed in terms of the matrices from Equations (5.17) to (5.20) as follows:

(i) qe {RI} & rank Lo <rank L, + 6,

(i) qe {RO} & rankL; <rankL, + 3,

(iii) qe {RPM} & rank L, < 3,

(iv) qe {IlI} & rank f; < rank L - 6,

(v) q e {IO}@rankfo<rankE—3,

(vij gqe {IIM} & rank L < 12,

(vii ge {RO}orqe {RPM} & ge (I} orqe {IIM} & Lo is singular,
(viii) g€ {RI} orge {RPM} & g € {IO}orqe {I[IM} < E, is singular.
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5.6.3. Identification and classification of the mechanism's singularities

5.6.3.1. Summary. We apply the identification algorithm from Section 5.2 to the
mechanism in Figure 5.7 using conditions (i)—(viii) listed above, in Sub-Section 5.6.2. At
each step, the conditions are resolved through geometric analysis of the screws composing

the corresponding matrices. The singularities obtained are summarized in Table 5.1.

10 II 10 M 10 )il 10
and and and and
I m J10.Y I
and
M
YES
RI Step 6
YES
RO Step 6
5.13-14
YES NO YES NO NO
RI and RO Step 6 | Step 3.1 Step 3.4} Step 3.1 Step 3.4
5.10
YES NO YES
RPM Step 3.5 Step 3.1 Step 3.3
5.9 5.9
YES YES YES
RI and RPM Step 3.5 Step 3.3 Step 3.3
5.8% 5.9° 5.8
YES NO YES
RO and RPM Step 3.5 Step 3.1 | Step 3.3
5.12% 5.12
YES NO NO NO YES
RI and RO and RPM Step 3.5] Step 3.1 | Step 3.3} Step 3.1 | Step 3.3
5.11% 5.11

T A representative of this class is obtained by a small variation of the configuration in the
corresponding figure.

A representative of this class is obtained by a re-labelling of the corresponding figure.

Table 5.1. Possible singularity classes for the 6-dof mechanism shown in Figure 5.7.
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In the table, for each singularity class, the following are denoted: whether the class is
non-empty (YES) or empty (NO); the steps in which the singularities of the class are
obtained (or it is proven that the class is empty); and, the number of the figure that shows a

representative configuration of the class.

It is determined that, the mechanism has singularities belonging to 13 different
singularity classes. Seven figures (Figures 5.8-5.14) illustrate the singularities of the
mechanism. Except for Figures 5.13 and 5.14, which represent the same (RO, II)
singularity class, the figures depict configurations belonging to different singularity
classes. One figure (Figure 5.9) is used to illustrate two singularity classes after a re-
labelling of the sub-chains (Step 3.3). Four figures (Figures 5.8, 5.9, 5.11 and 5.12) can
illustrate four additional classes, if a small perturbation in the depicted configuration is
performed (Step 3.5). The remaining two classes, which are not directly illustrated by
figures, consist of singularities that are comparatively easy to describe and envision (Steps

5 and 6).

5.6.3.2. The identification procedure. Below, the steps of the identification

procedure are detailed.

(1) IIM-type singularities
For an IIM-type singularity, the matrix L must be rank-deficient. A necessary and
sufficient condition for this is the existence of a row vector [(ITA)T, (JTIC)T], which is
in the kernel of L. (ITA is the screw A with its rotational and translational parts
interchanged). Equivalently, there must exist screws A and C reciprocal to all the
columns of, respectively, JA and J€, while A — C is reciprocal to the columns of JB.
This condition is quite restrictive and for generic values of the link parameters no IIM-

type configurations exist. In the present example, however, the special choice of
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congruent triangles for the base and moving platforms assures the existence of such
singularities.

Careful geometrical analysis reveals that the set of IIM-type configurations consists of
two non-intersecting components.

The first component has «3 configurations, and one of them is shown in Figure 5.8.

Figure 5.8. A singular configuration of class (RPM, RI, IIM, II, 1O).

In this configuration, the points P are on the S{ axes and the three axes S% intersect in
one point, D. The o3 configurations can be obtained by varying the elevation of the
moving platform and moving the intersection point, D, in the base plane (D can also be

at infinity). Several 2-dimensional manifolds of [IM-type singularities are attached to
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the 3-dimensional set. One of these can be obtained from the configuration shown in
Figure 5.9 by rotating the moving platform about the line BC (and varying the elevation
of points B and C).

Figure 5.9. A singular configuration of class (RPM, IIM, II, IO).

The second component is 1-dimensional and consists of configurations like the one in
Figure 5.10, where the three supporting legs are fully extended and the two platforms

are in the same plane.
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Figure 5.10. A singular configuration of class (RI, RO, IO, IIM).

2) RPM-type singularities
From Equation (5.18) it is evident that fp is singular only when either m§ or m§ are
zero, i.e., when either B or C are on the axis of the first-joint screw of the
corresponding subchain. Each of these two conditions corresponds to a set of o5
configurations. They intersect in a 4-dimensional set.
3) Classification of {1} U {2}
(3.1) It can be observed that in all existing singularities of {1} the rank of L decreases
by only one, while the rank of fo decreases by at least two. Therefore, {1} is a
subset of the IO type. Therefore, the six classes belonging to the [IM-type but
not the [O-type are empty.
From Condition (iv), it follows that an element of {1} is an II-type singularity, if
and only if the 6 X 6 matrix L; has a null-space dimension of at least two.

Next, we check whether this condition is satisfied for the different [IM-type

singularities as determined in Step (1).
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For all the «=3 configurations of the type shown in Figure 5.8, where for ail three
serial subchains point P is on the S7 axis, the condition is satisfied since m% and
m¢ are zero vectors.

For the IIM-type configurations with three extended legs (as in Figure 5.10) the
condition is not satisfied.

If only two subchains are singular (similarly to Figure 5.9), the condition is _
always satisfied, when the singular subchains are B and C (as in the figure).
When, however, one of the singular subchains is A, then, generally, the matrix

A is of rank 5. There are two exceptions. The first is represented in Figure 5.11.

Figure 5.11. A singular configuration of class (RI, RO, RPM, IO, II, IM).
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In Figure 5.11, the singular subchains are A and B and, additionally, the point
C, lies in the plane ABC. The second exception is shown in Figure 5.12, where
not only points B and C are located on screws S¥ and Sf, but also point A lies
in the (vertical) plane defined by the two screws. Each of Figures 5.11 and 5.12

represents, in fact, oo! configurations, since the elevation of point A can vary.

Figure 5.12. A singular configuration of class (RO, RPM, IO, II, IIM).

Thus, the set of singularities belonging to the IIM, IO and II types consists of a
main 3-dimensional set (Figure 5.8), a 2-dimensional set (Figure 5.9) and two
1-dimensional sets (Figures 5.11 and 5.12). The set of singularities in the ITM

and IO types has two 2-dimensional components (similar to Figure 5.9, with
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(3.2)

3.3)

subchain A as one of the singular ones) and one I-dimensional component

(Figure 5.10).

According to condition (i) and Equation (5.14), a configuration is an RI-type

singularity, if and only if at least one of the following conditions is satisfied:

either the subchain A is singular (in any way); or subchain B is fully extended; or
subchain C is fully extended.

Condition (ii) and Equation (5.13) imply that an RPM-singularity is also of the

RO-type in the following three cases:

(2) When C is on the S¢ axis and the plane ABC is perpendicular to m§
(Figure 5.12 is an example, though subchain B need not be singular).

(b) When Cis on the S§ axis but point B is not on the S$? axis, and b L m¥.

(c) When B is on the S? axis, while point C is not on the S§ axis, and the
point C, lies in the plane ABC. (Figure 5.11, though subchain A need not
be singular).

Thus, four sets are obtained: «> RPM-type singularities, 4 RPM and RI-type

singularities, ««* RPM and RO-type singularities and RPM, RI and RO-type

singularities.

The intersections of the subsets of {3.1} and {3.2} give the ten singularity

classes (Table 5.1) of configurations that are both IM and RPM. Of these, only

five classes are non-empty for the mechanism under consideration:

(a) (IIM, IO, RPM, RI) has =2 configurations with two singular subchains
similarly to Figure 5.9, but sub-chain A must be one of the singular sub-
chains.

When the two singular subchains are A and B, point C, should not lie in the
plane ABC (i.e, unlike Figure 5.12). Alternatively, if the singular subchains
are A and C, then the plane ABC should not contain C, and A,.
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(3.4)

3.5)

(b) (IIM, IO, II, RPM) has <=2 configurations as in Figure 5.9. The singular
subchains must be B and C. The plane ABC must not contain C, and B,
(unlike Figure 5.12).

(c) (IIM, IO, I, RPM, RI) has <3 configurations with three singular subchains
as in Figure 5.8.

(d) (IIM IO, II, RPM, RO) has ! configurations like the one depicted in
Figure 5.12. The moving plane ABC contains the points C, and B, and the
subchains B and C are singular in the same way as in Figure 5.9.

(e) (IIM, IO, I, RPM, RI, RO) has ! configurations in two 1-dimensional
sets. The first is represented by the configuration in Figure 5.11. It is
similar to Figure 5.9 with singular sub-chains A and B, but point C, is in
the plane ABC, allowing for a RO-type singularity. The second set is
similar to the configuration in Figure 5.11, however, the nonsingular
subchain must be B rather than A.

Only one of the four classes of IM but not RPM singularities is non-empty:

(IIM, IO, RI, RO) consists of «! configurations as in Figure 5.10.

All of the four RPM but not IIM classes are non-empty.

(RPM, II, IO) has oo coniigurations. An example for this class can be obtained

from the configuration in Figure 5.9 by an arbitrarily small perturbation of the

subchain C while subchains A and B remain fixed.

(RPM,RI, II, IO) has =+ configurations and can be illustrated by a variation of

Figure 5.8 obtained by maintaining the depicted position of the subchains A and

B and slightly perturbing subchain C.

(RPM, RO, II, I0) has «* configurations. An example is obtained from the

configuration in Figure 5.12 by a small rotation of subchain C about § lC

(RPM, RI, RO, II, IO) has «2? configurations and a representative can be

obtained from Figure 5.11 by a small rotation of subchain C about S¢.
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4) RO- and Il-type singularities
There are = configurations that are of the RO and II types but are not [IM nor RPM-
singularities. From Equation (5.19), the conditions for RO-type singularity are:
(a) Either C, must be in the plane ABC (Figure 5.13), or
(b) The point A must be in the plane of subchain B (Figure 5.14),i.e.,b L m‘l’ .

A

Figure 5.13. A singular configuration of class (RO, II).
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Figure 5.14. A singular configuration of class (RO, II).

(5) RI- and IO-type singularities
There are == configurations which satisfy (viii) without being RPM or IIM-type. In
these configurations, the subchain A is singular or one of the other two serial chains is
fully extended.

(6) Classification of {4} L {5}
The last three singularity classes are obtained as the intersection and differences of {4}
and {5}. (RI, IO) and (RO, II) have > configurations, while (RI, RO, IO, ) is of

dimension 4.
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Thus, for the the mechanism considered in this example there are 13 different classes of

singularities. The remaining 8 classes are empty.

5.7. Summary

It has been shown that the singularities of a general non-redundant mechanism form a
set which is divided into 21 singularity classes. Singularities from the same class belong to
exactly the same combination of the six fundamental singularity types. On the basis of the
velocity-equation formulation of mechanism singularity, this chapter establishes the
necessary and sufficient conditions for the occurrence of singularities from each of the six
singularity types. By employing the proposed singularity criteria, all the singular
configurations of an arbitrary non-redundant mechanism can be identified and classified.
This can be achieved via a procedure, described in the Section 5.4, which reveals step-by-
step the structure of the singularity set of the mechanism. The configurations belonging to
each of the singularity classes are obtained as solution sets of nonlinear algebraic equations.
Algebraic and geometric techniques for finding these solution sets are proposed. As a
comprehensive example, a 6-dof hybrid-chain manipulator, with asymmetrical distribution
of the input joints and a complex singularity set, is studied. Through careful geometric and
algebraic analysis, the structure of the singularity set is revealed and configurations from all

singularity classes are described and illustrated.
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CHAPTER 6

REDUNDANT MECHANISMS

6.1. Introduction

In this chapter, the techniques proposed in Chapters 3 and 5 are further generalized to
include mechanisms with redundancy. Mechanism redundancy was defined in Chapter 2. It
is present when the dimensions of the input and output space are not equal and therefore
either n > n, or n, > n. The first inequality defines kinematic redundancy. If n, > n we
will say that a dynamic redundancy is present. This phenomenon is often referred to as
actuation redundancy in the literature.

In this chapter, it will be assumed that n, 2 n 2 n,. Thus, non-redundant, dynami-
cally-redundant and kinematically-redundant mechanisms will be treated as special cases of
the general assumption. All definitions and propositions in the present chapter will be valid
for redundant and non-redundant mechanisms alike. Moreover, the classification frame-
work and the identification methods, proposed herein, when applied to non-redundant
mechanisms, must be equivalent to the respective results obtained in Chapters 3 and 5.

The main task of this chapter is to define the singularity types for a redundant
mechanism and study their inter-dependence. The difficulty arises from the fact that the
definition of the singularity types in Section 3.4 was based on the specific definition of
singularity for non-redundant mechanisms, (Section 3.3). This approach allowed for

simple definitions that clarified the kinematic implications of each singularity type and
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emphasized the symmetry of input and output and of I-type and R-type singularities. This
symmetry was further exploited in Section 3.6 and made explicit in the symmetric
statements of Proposition 3.29 and the diagonal symmetry of the classification table,
Table 3.1. As we shall see in the following sections, these symmetries are not entirely
preserved in the general case (when redundancy is possible). It will be shown that there are
six additional singularity classes (combinations of singularity types), which never occur in
non-redundant mechanisms but are possible for some redundant mechanisms. This means
that the identification methods, derived for non-redundant mechanisms in Chapter 5, must
be modified to be applicable to redundant mechanisms.

In Section 6.2, we briefly discuss the applicability of the velocity-equation and motion-
space models of instantaneous kinematics for the case of redundant mechanisms. In Section
6.3, the six singularity types are re-defined in a way relevant to redundant mechanisms. In
Section 6.4, we study the interdependence of the singularity types and prove classification
theorems for redundant mechanisms. Finally, in Section 6.5, we examine the identification
algorithms of Chapter 5 and make the necessary modifications to make these procedures

applicable to redundant mechanisms as well.

6.2. Infinitesimal Model of Mechanism Kinematics

The goal of this Section is to generalize Theorem 3.1 and obtain a statement valid

for redundant mechanisms as well.
For redundant mechanisms, the notations T, 2°, Q7 are defined, as this was done in
Section 3.2 for non-redundant mechanisms. T denotes an output vector (an element of
T,0), Q“ is an input vector (an element of T,l) and Q" is the vector of passive-joint

velocities. Also, the tangent spaces T,0 and T/, are denoted by O and /, while P is the
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space of all the vectors £2°. The dimensions of the vector spaces I, P and O (and of the
vectors 2°, QF and T) are n ;N —n,, and n, respectively.

The spaces O, I and 2, defined in Section 3.2, can be viewed as spanning an (N+n)-
dimensional space ¥V = O®IDP. ¥ is, in fact, the tangent space of the manifold Q x O
at the point (q, f,(q)). The elements of ¥ are velocity vectors of the form
m = (T, Q)=(T, Q° )T. Those velocity vectors, that represent feasible motions,
form a subspace of ¥, the motion space at g, denoted by ﬂv[q Its dimension is equal to the
instantaneous mobility n,. All properties of the instantaneous kinematics of the mechanism
are determined by the orientation of the subspace 44, in V.

The maps p,: M, — I, and p,;; M, — O, are defined as the restrictions on M, of
the projections which map 4V onto and O. They map any motion vector into the vector of
its input or output, respectively. The ranks of p, and p,, i.e., the dimensions of their
image spaces, are r, and r,, respectively. The dimensions of their null-spaces will be
denoted by d, and d,,, respectively. Additionally, we introduce the notation 4 ,, defined as:

d,, = dim(Ker p,n Ker p,).
Note that, the maps p, and p, (and their ranks) are dependent on the configuration ¢. For
simplicity, this dependency will not be denoted explicitly.

As in Chapter 3, we make the natural assumption that the differential output in any
configuration is an explicit linear function of the joint velocities:

T=A(q)12. 6.1)
The difference with Equation (3.1) is that A(q) is of dimension n, x N. Equation (6.1) is
the output equation of the mechanism.

The derivation of Equations (3.2) and (3.3) is unaffected by redundancy, since this
derivation does not depend on the choice of inputs or outputs. Therefore, it remains true
that for every configuration, g, there is an N x (N — n) matrix, D(q), such that the

feasible joint velocities, £2, are given by the solution of the equation:
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D(g)Q2 =0. (6.2)
Combining the N — n equations of (6.2) with the n, equations of (6.1) we obtain a

system of N —n + n, linear equations which fully determines the instantaneous

kinematics of the mechanism. The definition of the matrix L(q) as:

I, A
L(q) - ’- oxXno q ’
L ONen yxno D, (6.3)

completes the proof of the following theorem:

6.1. Theorem. For any given configuration, q, an (N -n +np) X (N +n,)
matrix, L(q), can be found, such that a velocity vector, m, is a feasible motion vector of
the mechanism, if and only if

L(g)m = 0. (6.4)

Equation (6.4) will be referred to herein as the velocity equation for q.

6.2. Example. Let us obtain the velocity equation of the simple mechanism shown in
Figure 6.1. This is a five-bar linkage with three inputs and a single output. The input
velocities are the joint velocities at points A, B and C. The output velocity is the angular
velocity of the link ED. The general mobility of the mechanism is two.

There is only one loop and ¢ = 1. The loop equation is:

WS4+ @wpSp + OcSc + WpSp+ @Se =0, (6.4)
where wp, Sp (P = A, B, C, D) are the joint velocities and the joint screws, respec-
tively. Since only the planar components of the joint screws are nonzero, they are 3-di-
mensional vectors). The output equation is:

T =-Wg. (6.5)

Therefore, the velocity equation is:
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If point A is the origin and the x-axis is along AE, Equation (6.6) can be written as:
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Figure 6.1. A 2-dof redundant mechanism.

6.3. Example. Another mechanism, this time with two independent loops is shown in

Figure 6.2. In this case, we have: n,=n =2, n, = 1. The input velocities are the joint

velocities at joints A and E. The output is the motion of the slider G.
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Figure 6.2. A 2-dof redundant mechanism.

The output equation is simple:

T =vg, (6.8)

where v;; is the joint velocity of the base link with respect to the link FG. We use the loops

ABCDE and ABCFG. The two loop twist equations, together with Equation (6.8), lead to
the following velocity equation:
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6.3. Singularity and Singularity Types for

Redundant Mechanisms

In this Section we give new, more general definitions for the six singularity types, first
defined in Chapter 3. Before that, we must examine how the instantaneous formulation of
the definition of singularity, as given in Sections 3.3 for non-redundant mechanisms,

changes when redundancy is possible.

6.3.1. Singularity

6.4. Proposition. A configuration, q, is nonsingular, if and only if
r,=n=nqana’r0=no.
Proof. The proposition follows directly from the general definition of singularity,
Definition 2.31.
Indeed, ¢ is a regular point of the configuration space manifold, D, if and only if
n=n,. On the other hand, a configuration is nonsingular, only if f; and f,, are nonsingular
at ¢. Since r; and r,, are, in fact, rank D ; f;and rank D A fo» @ configuration is nonsingular,

only if r; = min(n,, nq) and rp, = n,. O
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6.5. Remark. It should be noted that the definition of singularity by means of the
forward and inverse kinematics is not applicable in the case of redundant mechanisms. In-
deed, if Definition 3.5 is applied for a mechanism with n; > n, every nonsingular confi-
guration (according to the general definition) will qualify as singular, since the inverse
kinematics is not solvable in the sense of Definition 3.5(2). For a truly redundant
mechanism, all configurations with solvable forward and inverse kinematics (i.e.,
configurations that satisfy the nonsingularity conditions of Definitions 3.5(1) and 3.5(2))

must be singular. Indeed, a solvable IIKP would imply r; < n, < min(n;, n.). and

therefore a singular configuration.

The observations in Remark 6.5 show that the singularity of redundant mechanisms
cannot be understood in terms of forward and inverse kinematics. However, it can be
modelled by means of the motion-space formulation, as given in Section 3.6. Indeed,
Proposition 6.4 is a generalization of Proposition 3.25 for non-redundant mechanisms
since the two propositions are identical when n, = n,,.

The motion-space formulation is used in the presentation of the six singularity types,
which is given in the following sub-sections. The definitions are generalizations of the
definitions in Section 3.4. For each of the definitions a generalization of one of the

statements in Proposition 3.26 is provided.

6.3.2. Redundant Input

6.6. Definition. A configuration is a singularity of redundant input (RI) type, if

N . . . a a
there exist at least n—ng + 1 linearly independent input vectors, 2y, . . . , Sn-no+1,

such that each of them satisfies the velocity equation for a zero-output, T = 0 (and some
vector of passive-joint velocities, fold J, i.e., for every I, the following equation is satisfied

for some QP
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0
L [.Q{’] =0. (6.10)
o

6.7. Proposition. A necessary and sufficient condition for an RlI-type singularity is the
inequality:
dim(Ker p,) - dim(Ker p, " Ker p,) > n —n,,

or equivalently,

dy—d;p>n—ng,. (6.11)
Proof. The condition (6.11) is satisfied, if and only if there is a subspace of Ker p, S, of
dimension greater than n — n,, which is complementary to Ker p, » Ker p,. In other
words, S is such that S+ (Ker p,n Ker p,) = Ker p, and S (Ker p,n Ker p,)
=0, i.e., S® (Ker p, N Ker p,) = Ker p,. This observation proves the Proposition,
since any basis of § provides the “redundant input” vectors required by Definition 6.6,
while when the existence of such vectors is given, their linear envelope provides the

subspace S needed to establish Equation (6.11). 0O

6.8. Remark. A comparison of the above Definition 6.6 (and Proposition 6.7) with
Definition 3.6 (and Proposition 3.27, (i)) shows that the definition of Rl-type singularity
has been modified in order to include mechanisms with redundancy. While in the non-
redundant case an RI-type singularity is associated with the existence of at least one motion

with zero output and nonzero input, in the redundant case, a whole space of such motions,

with dimension larger than the degree of kinematic redundancy, n - n,,, is required.

The reason for this difference is that when n > n,, the existence of only one motion
with zero output is no longer a sufficient condition for the occurrence bf singularity.
Indeed, fixing the output to zero removes only n,, freedoms, which is not sufficient to im-
mobilize a mechanism with mobility higher than n,,. Thus, even in a nonsingular configu-
ration n — n, “redundant-input” motions are expected to exist. This can be illustrated with

the configuration shown in Figure 6.1. A nonsingular configuration is shown, which
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satisfies the “non-redundant” Definition 3.6. When the output link is fixed, the remaining
links form a four-bar linkage with mobility of one. It can be said that according to Defini-
tion 3.6, every configuration of a kinematically-redundant mechanism would be singular

and belong to the RI type.

On the other hand, Definition 6.6 is correct in the sense that it describes a singular

configuration, as this is shown in the next proposition.

6.9. Proposition. (Correctness of Definition 6.7)
All configurations belonging to the RI-type are singular.
Proof. Equation (6.11) implies
dog>dp-dig>n—ng,.
Since do = dim(Ker p,) = dim Mq —dim(Im p,) = n,—rg.we have:
n,-ro >n-ng,,
and therefore, either n g > norrg<ng,. According to Proposition 6.4 this implies that the

configuration is singular. |

6.10 Example. As a simple example of an RI-type singularity for a redundant
mechanism, let us consider the configuration in Figure 6.3. The mechanism in the figure
has the same kinematic chain and choice of inputs and outputs as the one considered in
Example 6.2 and shown in Figure 6.1.

In the configuration shown in Figure 6.3, the output velocity is zero and the remainder
of the linkage forms a flattened four-bar linkage with mobility two. The maximum number
of linearly-independent inputs is two, which is greater than n — n,. Indeed, the two
“redundant input” vectors can be chosen by fixing, respectively, the joint velocity at A and
at B to be zero. Checking Equation (6.11), the mobility with fixed input and output, 4,,, is
zero, while the mobility with fixed output is d,, = 2. The difference, d, -d;, =2, is

greater than the degree of kinematic redundancy, n ~n, = 1.
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Figure 6.3. A singular configuration of class (RI, 10).

6.3.3. Redundant Output

6.11. Definition. A configuration is a singulariry of redundant output (RO) type, if
there exist a nonzero output, T # 0, and a vector of passive-joint velocities, 2°, which
satisfy the velocity equation for a zero-input, Q°=0:

L [ 0 =o0. (6.12)
ol

&

6.12. Proposition. A necessary and sufficient condition for an RO-type singularity is

the inequality:
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dim(Ker p) - dim(Ker p,n Kerp,) >0,
or equivalently,
d;—-d; > 0. (6.13)
Proof. Equation (6.13) is equivalent to Ker p,~ Ker p,# &. This condition, stating
that there are motion vectors with zero input and nonzero output, is equivalent to the

requirement of Definition 6.10. [

6.12. Remark. Comparing the above formulation of the RO-type with Definition 3.9 and
Proposition 3.26, we note that for this singularity type the definition does not change when
redundancy is iztroduced. As a result, for redundant mechanisms the RO-type definition
does not mirror the RI-type definition as closely as in the non-redundant case. As we shall
see later, this leads to a loss of the input-output symmetry in the redundant-mechanism
singularity classification.

The reason for keeping Definition 3.9 is that, unlike Definition 3.6, it ensures that the
configuration is singular even when the mechanism is redundant. (See Proposition 6.14
below). In fact, for redundant mechanisms the requirement for an RO-type configuration is
even harder to satisfy. Indeed, for dynamically-redundant mechanisms (n, > n), d; will be
smaller, since when the inputs are fixed to be zero, a greater number of dof may be lost. If
the mechanism has nonzero mobility when the inputs are zero (i.e., d;>0), then a
kinematically-redundant mechanism will be more likely to have a higher d,,, since it has
fewer outputs. For example, one can note that a five-bar mechanism with three inputs
(Figures 6.1 and 6.3, Examples 6.2 and 6.10) can have no RI-type singularities. In any
configuration, if the first three joints are locked no link can move.

6.14. Proposition. (Correctness of Definition 6.11)

All RO-type configurations are singular.
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Proof. Since d;, 20, the inequality (6.13) implies that d,> 0. From d,=n g =it
follows:

nq—r,=(nq—n)+(n—r,) > 0.
This is possible only if n g>nor min(n 7 n;) 2 n > r;. According to Proposition 6.4,

this implies that the configuration is singular. O

6.15. Example. Figure 6.4 depicts an RO-type singular configuration. The shown
kinematic chain was introduced in Example 6.3. It can be seen that even when the joint

velocities at points A and E are zero, the output slider can still move. It is easy to see that,

in this configuration, d,= 1 and d,, = 0. Therefore Equation (6.12) is satisfied.

G T
F
, C
O\
B D
) n =2
wA £ n1=2
n0=1
A E

Figure 6.4. A singularity of class (RO, II).
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6.3.4. Impossible Input

6.16. Definition. A configuration is a singularity of impossible input (II) type, if
there exists a subspace of I, S, of dimension higher than the degree of dynamic

redundancy, n;— n, such that for every vector Q%0 in S the velocity equation cannot

be satisfied for any choice of T and QF.

6.17. Proposition. A necessary and sufficient condition for an II-type singularity is the
inequality:
r,<n,
or equivalently,
n,-n<d, ' (6.14)

Proof. First, we note that r; < n is equivalent to (6.14) because of r,=n P d,.
The inequality r, < n holds if and only if there is a subspace of 1, S, with dimension
n;—n or more, such that $® Im p, = I Since none of the nonzero elements of Sis in

Im p,, § satisfies the requirements Definition 6.16. O

6.18. Remark. Similarly to the Definition of the RI type, the definition of II-type
singulzarities is different in the redundant and non-redundant cases. A comparison of
Definition 6.16 and Definition 3.12 or Proposition 3.26(iii) shows that in the redundant
case the definition is more restrictive. It is no longer sufficient to establish the existence of a
single “impossible input” vector, rather an “impossible input” subspace must be present.
This means that II-type configurations are more “rare” for dynamically-redundant
mechanisms. For example, the 5-bar mechanism with three inputs shown in Figures 6.1

and 6.3 cannot have an II-type singularity since d, is obviously zero (and therefore, by

Equation (6.14), an II-type singularity is not present).
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As in the case of the RI-type definition (see Remark 6.8), the requirement of the II-type
non-redundant-case Definition 3.12 does not guarantee that the configuration is singular,
moreover, for dynamically-redundant mechanisms this condition is satisfied in all configu-
rations. Indeed, there can be no more than n linearly independent feasible inputs, and when
n, > n, there must exist input vectors that are not feasible for the mechanism.

Definition 6.16 ensures that the configuration is singular by requiring that II-type

configurations have “more” impossible inputs than a nonsingular configuration. When

n,=n , this is the same as Definition 3.12 and both definitions are equivalent to the

inequality r, < n (see Propositions 3.27(i) and 6.17).

6.19. Proposition. (Correctness of Definition 6.16)

All lI-type configurations are singular.

Proof. A configuration is an II-type singularity, if and only if r; <n. Since we have

n < min(n o h p- it follows that f; is not of maximum rank and is therefore singular at this

configuration. 1

6.20. Example. Consider again the configuration shown in Figure 6.4, which was used
as an example for an RO-type singularity (Example 6.15). We will show that this is an II-

type singularity as well. As was mentioned in Example 6.15, it is easy to see thatd, = 1.
It can also be shown that n a= 2. (Indeed, if @, = wp =0, then point C has no velocity,

and therefore all joint velocities must be zero. Therefore, 2=n <n_, <2). Then, n -

q
n=0 and n g < d, and according to Proposition 6.17 this implies an II-type

singularity. This can be established directly by noting that when one of the input velocities
is zero, the other one must be zero as well and therefore there is a one-dimensional
impossible input space. (When @, =0, point B is fixed and then in the four-bar linkage
BCDE the joint at E is locked.)

This is an example without dynamic redundancy (n, = n = 2). If we increase n;to 3

by assuming that the joint at point E is active, then in the same configuration (Figure 6.4),
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d; decreases to zero (i.e., when the three inputs are fixed to zero, all joints are locked) and

there can be no II-type singularity.

6.21. Example. Let us consider an example of a mechanism with dynamic redundancy
in an II-type singularity. Figure 6.5 shows a mechanism with the same kinematic chain as

the mechanisms in Figures 6.2 and 6.4.

D

Figure 6.5. A singular configuration of class (RO, II).

However, one additional joint is active, namely the joint at point E. The configuration is

such that the points B, C, D, F, G are aligned (and this line is perpendicular to the
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prismatic-joint axis). In this configuration, d;=1 and n=n 7= 2. According to
Equation (6.14), the configuration is an II-singularity. It can also be shown thatd, =1,

and according to Proposition 6.12 an RO-type singularity is also present.

6.3.5. Impossible Output

6.22. Definition. A configuration is a singularity of impossible output (I0) type, if
there exists a vector T for which the velocity equation cannot be satisfied for any

combination of 2%and Q°.

6.23. Proposition. A necessary and sufficient condition for an I0-type singularity is
the inequality:
I'O < no,
or equivalently,
nq-—n0<d0. (6.15)
Proof. First, rg<ng is equivalent to (6.15) because of ro=n,— do.
The inequality r,, < n, holds, if and only if there is at least one output vector, which

corresponds to no feasible instantaneous motion, i.e., it is equivalent to Definition 6.22. []

6.24. Remark. Comparing the above formulation of the IO-type with Definition 3.15
and Proposition 3.26, we note that for this singularity type the definition does not change
when redundancy is introduced. As a result, for redundant mechanisms the IO-type
definition does not mirror the II-type definition as closely as in the non-redundant case.
This leads to a loss of the input-output symmetry in the redundant-mechanism singularity
classification. The reason for keeping Definition 3.15 is that, unlike Definition 3.12, it

ensures that the configuration is singular even when the mechanism is redundant.
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6.25. Proposition. (Correctness of Definition 6.23)

All IO-type configurations are singular.
Proof. The inequality r, < n,, is a necessary and sufficient condition for the singularity

of the output map f,, and therefore implies that the mechanism is in a singular configura-
tion. ]

6.26. Example. The configuration shown in Figure 6.3, and discussed in Example
6.10, is an IO-type singularity. It can be seen that the joint at point E is locked. (Indeed
point D cannot have a velocity component parallel to the line along A, B and C.) Also,

sinced,=2,n .= 2 and n, = 1 (see Example 6.10), Equation 6.23 is satisfied.

6.3.6. Increased Instantaneous Mobility

6.27. Definition. A configuration is a singularity of increased instantaneous

mobility (IIM) type, ifrank L <N —n + n,,

6.2 8. Proposition. An [IM-type is present, if and only if n<n -

Proof. Since the output equations are linearly independent, the sum rank L + n,, does
not depend on the choice of input parameters. Therefore, just like in the non-redundant

case, L is singular if and only if n < n,. gd

6.29. Remark. Clearly, an [IM-type singularity occurs if and only if the configuration
is a singular point of the configuration space of the mechanism, D. Therefore, it does not
depend on the choice of the active joint or the output link. [IM is a property of the kinematic
chain and is therefore not influenced by redundancy. Thus, the configurations of non-
redundant mechanisms, that have been shown to be [IM-type singularities in previous
chapters, can be used as examples for the redundant case. It suffices to assume that some
of the passive joints are active or redefine the output. This cannot be done for the other sin-

gularity types, since they are affected by the way the input and output are chosen.
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6.30. Example. Consider, for example, the configuration shown in Figure 6.6.

o, o, W n =3
N\ N NS ot i
gy vig , Y O
A B E /rc D

Figure 6.6. An (RI, [IM)-class singular configuration.

The mechanism is similar to the one shown in Figures 6.1 and 6.3, i.e., a five-bar
linkage with three input joints and a single output. The flattened configuration is essentially
the same as the one used in Example 4.25 to illustrate IIM-type singularity for (non-
redundant) HCMs, although in that case there were two inputs and a two-dimensional
output. Since in both cases we have 2=n <n_=3, an IIM-type singularity is present
for the redundant mechanism as well. For the mechanism in Figure 6.5, we also have:
n=3,n=2,n,=1and d;,=0, d,=0, d, =2. Applying the singularity-type
definitions in this section (and Propositions 6.7, 6.12, 6.17 and 6.23) we conclude that the
configuration shown also belongs to the RI type but does not belong to types RO, IO, or I
(it does not belong to the RPM-type either, as can be seen by applying Definition 6.31
below). This indicates that the combinations of singularity types for redundant mechanisms
obey rules different from the ones for non-redundant mechanisms, revealed in Section 3.7.
For instance the present example proves that Proposition 3.29(ix) does not hold in the

redundant case.
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6.3.7. Redundant Passive Mobility

6.31. Definition. A configuration is a singularity of redundant passive motion

(RPM) type, if there exists a nonzero passive-joint-velocity vector, QF 0, which
satisfies the velocity equation for a zero input and a zero output, i.e.,

0
L { 04:0. (6.16)
Q

6.32. Proposition. An RPM-type singularity is present, if and only if
d,y> 0. (6.17)

Proof. The inequality (6.17) holds, if and only if the intersection Ker p, N Ker p, has
a dimension of at least one. Therefore, there is a nonzero motion vector, which is mapped
into zero by both p, and p, i.e., a nonzero instantaneous motion with zero input and zero

output. O

6.33. Remark. The above definition is identical with Definition 3.21. As we will prove
in the next Proposition 6.34, the definition requirement ensures that the configuration is
singular, so there is no need to modify the definition for the redundant case. In general, the
chances for the existence of an RPM-type singularity improve when the combined total of
the inputs and outputs is decreased, and vice versa. Therefore, dynamic and kinematic
redundancy have a different effect on RPM-type singularities. A smaller number of outputs
facilitates the occurrence of RPM-type singularities, while an increase in the number of

active joints makes it more difficult for RPM-type configurations to occur.

6.34. Proposition. (Correctness of Definition 6.31)

All RPM-type configurations are singular.
Proof. Since d; 2 d;, , the Inequality (6.17) implies d,> 0. Now the proof can proceed

as in the proof of Proposition 6.14. From d, = n g =Ty it follows:

nq-r1=(nq—n)+(n-—r1)>0.
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This is possible only if n g > 1 or min(n g ") 2 n > r;. According to Proposition 6.4,

this implies that the configuration is singular. O

6.35. Example. As an illustration of the RPM singularity type, we use another configu-
ration of the kinematic chain described in Examples 6.3, 6.15 and 6.21. The configuration
considered here, shown in Figure 6.7, is very similar to the one in Figure 6.5, but this time
the point G is not aligned with B, C, D, F. Similarly to Examples 6.3 and 6.15, it is

assumed herein that the mechanism has only two active joints, namely A and E.

G T

>

Figure 6.7. A singular configuration of type (RPM, II).
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It is verified that d;, =d,=d, =1 and n,=n= 2. Then, it is easy to check that
the only singularity types that are present are of the RPM and II types. We note that the
singularity class (RPM, II) is not among the ones occurring in non-redundant mechanisms
(see Table 3.1). The passive motion, which can take place with the input and output equal
to zero, occurs with an instantaneous motion of point C along a line normal to the line BD.
It can be noted that, if the joint F were active as well, the configuration would no longer be

of the RPM type.

Finally, to summarize the present section, we give Table 6.1.

Type Condition
RI dp—dip>n-ng
RO dj-dip>0
I dy>n,—n
IO dp>n,—ng
oM n,—n >0

RPM d;p>0

Table 6.1. Definitions of the singularity types for mechanisms with redundancy.
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6.4. Classification of Singularities

6.4.1. Combinations of singularity types

As a first step to a comprehensive general classification of the singularities of arbitrary
mechanisms, we study the interdependence of the six singularity types. A singular
configuration never belongs to a single singularity type but rather to a combination of
singularity types. The following proposition provides the rules which will allow us to

distinguish the possible combinations from the impossible ones.

6.36. Proposition

(i) g€ {RI} = g€ {I0}orq e {IIM},

(ii) ge {RO} =qe {I} orge {IIM},

(iii) g€ {II} = qe {RO} orqge {RPM},

(iv) q € {I0} = qe {RI} orq e {RPM},

(v) g€ {RPM} = g€ {Il} orq e {IIM},

(vi) g€ {IM} = q e {RI} orge {RPM},
(vii) ge {RO}=>qe {II} orqg € {RI},

(viii) ge (IO} =qe€ {II} orq e {RI},

(ix) ge (O} andq e {RI} = g € {I0} orq e {RO}.

Proof

(i) An RI-type singularity is given. Assume that there is no [IM-type singularity. Thus,
we haved,-d;,>n—-n,andn= n,. Therefore,
d02d0—d,0>n—no=nq—n0.
Then, the inequality d, > n — implies an IO-type singularity (Proposition 6.23).
(i)  If q is an RO-type singularity, then d, - d,, > 0. We assume that g is not an [IM-
type singularity, i.e.,n =n. Therefore,
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However. d;>n . implies an II-type singularity.

(ii) q € {II} implies d,>n ¢ — - Assume the configuration is not an RPM-type

singularity, or , equivalently, that d;, = 0. Therefore , we can write:
d, —d,0=d,>nq—n 20,

which, according to Proposition 6.12, implies that ¢ is an RO-type singularity.

(iv)  The condition for an IO-type singularity is d, >n — (Proposition 6.23). We
assume that the singularity is not of the RPM type, i.e., d,, = 0. Thus, we have
i.e.,dy —d;p>n-n,, which is the condition defining an RI-type singularity.

(v) An RPM-type singularity is given, thus, d,, > 0. Assume ¢ is not an [IM-type
singularity, i.e., n = Since d, is always at least as large as 4, it follows that:

d,2d,o>0=nq—n.
This proves that 4, > n,-n, i.e., the configuration is an II-type singularity.

(vi)  An I[IM-type singularity is equivalent to n ndl We assume 4, = 0, (i.e., that the
configuration is not an RPM-type singularity). Then,

do-—d,ozdo =nq—r02nq—n0.>n—n0
Above, we have used n,, 2 r,, (the rank of a map cannot exceed the dimension of the
target space). Thus, the inequality d, —d,, > n—n is obtained and this ensures the
presence of an RI-type singularity at g.

(vii)  Itis given that d, > d;, (RO-type singularity). Let us assume that the configuration
does not belong to the II type, hence d,<n g~ Then, we can write:

d, -d,o>d0—-d,?.do—(nq—n)=n-(nq—-d0) =n-rop2n-ng,.
Above, the first two inequalities follow from d;>d,, and d; < n, - n., respectively.
The last inequality uses r, < n,. As a result, it is established that d, —d,, > n -

n., i.e., the configuration belongs to the RI type.
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(viii} q is an JO-type singularity. This requires d, >n .~ "o If the configuration is
not an II-type singularity as well, then d;<n ¢~ - We have:
do —d,0> ("q‘”o)"dlo 2(nq—no) -d,?_
(nq—no)—(nq-n) =n-ng,.
The second inequality uses d; 2d;,. Once again, we obtain d, -d,, >n —n,,

hence the configuration belongs to the RI type.

(ix) It is given that g belongs to both the II and RI singularity types. This implies two
inequalities, d,>n L and d, — d;; > n — n,, respectively. If we assume that ¢
is not of the IO type as well, we must also have d, =n 4 — Mo Using these conditions
the following sequence of inequalities can be can be written:

d,-d,, > (nq-n)—dm:(nq-n) +ng—-ng-d;y=
(nq—no)—dm—(n -ng)l=dy-d;p-(n-ny)>0.

This proves d, > d,,, and therefore the occurrence of an RO-type singularity. |

6.37. Remark. The above proposition is analogous to Proposition 3.29 for non-
redundant mechanisms. Comparing the two, one can note that only part of the statements of
Proposition 3.29 could be proven for redundant mechanisms. Six of the ten points in
Proposition 3.29 are present in Proposition 6.36 . The remaining four statements, namely
(v), (vi), (vii) and (ix), have been weakened and transformed into Statements (v), (vi) and
(ix) of Proposition 6.36. In fact, we already presented proof that these four parts of
Proposition 3.29 are not correct for redundant mechanisms. In Example 6.30, a
configuration which belongs only to the types IIM and RI was shown (Figure 6.6). This
example disproves Proposition 3.29 (vi) and (ix). Another configuration, introduced with
Example 6.35 (Figure 6.7), belongs to the RPM and II types and to no other type.

Therefore, Proposition 3.29 (v) and (x) do not hold for redundant mechanisms either.
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6.4.2. General singularity classification

The goal of this section is to classify the set of all singularities of all mechanisms. As in
Chapter 3, this set is divided into classes, using as a criterion the combination of singularity
types to which a configuration belongs. More precisely, two configurations are considered
“equivalent”, i.e., they belong to the same singularity class, when they belong to exactly
the same singularity types. This is a relation of equivalence which divides the set of all
singularities into non-intersecting classes. In this Sub-section we identify the combinations
for which there exist configurations and which therefore correspond to a non-empty
singularity class. Thus, by listing all non-empty singularity classes, we develop a

comprehensive singularity classification .

6.38. Proposition. Let q be a singular configuration. Then, q belongs to at least one
of the types IO, II, and IIM.
Proof. According to the definition of mechanism singularity in Chapter 2, a configura-
tion, ¢, is singular in (at least) one of three cases: ¢ is a singular point of C; q is a singular
point of f,; and, ¢ is a singular point of f;.

The first case, when the configuration space is singular, is equivalent to the presence of
a singularity of the IIM type.

When f,, is singular, we have r,, = rank f, < n,, which is equivalent to IO.

Finally, when ¢ is a singular point of f;, we have r, = rank f; < min(n,, n 7" If we
assume that the configuration is not an IIM-type singularity, 1.e,n=n - then, it follows

that r, < min(n;,, n q) <n,=n. However, r; < n implies an II-type singularity (Propo-

q
sition 6.17). [

6.39. Proposition. Let q be a singular configuration. Then, q belongs to at least one
of the types RO, Rl, and RPM.
Proof. From Proposition 6.38, it follows that each singularity belongs to at least one of

the I-types. From Proposition 6.36 (iii), (iv) and (vi), it is evident that a singularity of any
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I-type (i.e., I, IO or [IM) must belong to at least one of the R-types (i.e., Rl. RO or RPM)
as well.

6.40. Theorem. Let S be an arbitrary combination of some of the six singularity types.
There exists a mechanism with a configuration, q, which belongs to all types in S and to no

other types, if and only if S is marked with “Y” in Table 6.2.

o|onlio MO |B |IO
ad ad |ad | ad
I M oM | B
ad
M

RI Y YIiY

RO Y

RI and RO YI|YI]Y]|Y|Y
RPM Y|Y|Y YI|Y
RI and RPM Y|Y]Y Y
RO and RPM YIY YI|Y
RI and RO and RPM YIY|Y|Y|Y

Table 6.2. Possible combinations of singularity types for redundant meéchanisms.

Proof. To prove the theorem, we need to establish that (i) all combinations not marked
with “Y™ in the table can never occur and (ii) there exist mechanisms and configurations
with the marked singularity-class combinations.

(i) There are six singularity types and therefore there are 26 = 64 combinations (one of
them is the nonsingular combination). From Propositions 6.38 and 6.39 we conclude that it

is sufficient to consider the ones that include at least one I-type and one R-type. These
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combinations are represented by the 49 cells of Table 6.2. The cell in the i-th row and j-th
column of the table corresponds to a combination of all singularity types listed to the left of
the i-th row and on the top of the j-th column.

We must show that the combinations corresponding to blank cells of the table are
impossible. This is proven with the help of Proposition 6.36. Each of the 22 empty cells
represents a combination of singularity types which, if it occurred in some configuration,
would violate (at least) one of the statements of Proposition 6.36. Table 6.3 illustrates

which statement each blank cell violates.

o |0 |[l0o |IM|IO |I ()

ad ad |ad | ad
)i mM|IM| @

ad

m

RI Y |G |ai) | Y | Y |y | i)

RO () 1Y v v |iv) |vi) Liv)
RI and RO @ | lY Y |Y{Y|Y
RPM m{Y|Y |Y l[vinlY |Y
RI and RPM w o lY Y Y |ltw]Y
RO and RPM (i) VY |Y |vipliip | Y | Y
RlandROandRPM | @) | ) | Y | Y | Y |Y |Y

Table 6.3. Impossible combinations of singularity types for redundant mechanisms.

(i) We need to give an example for each of the 27 remaining combinations. However,
we already know that 21 of them are possible since it was proven that they occur for non-
redundant mechanisms. Two additional combinations were established in Examples 6.30

(RI, IM) and 6.35 (II, RPM). The remaining four combinations, namely (RI, IO, [IM),
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(RO, RPM, II), (RPM, II, [IM) and (RI, RPM, IM) are illustrated by the four examples
which follow.

6.41. Example. The configuration shown in Figure 6.8 is a singularity belonging to the
types IO, IIM and RI but to no other type. The mechanism is similar to the one used in
Examples 6.3, 6.15, 6.21, and 6.35, however in the present case the joint F is prismatic
and assumed to be active, i.e., an input joint. It can be established by inspection that

d;p=0,d,=0,d,=3 and n, = 3. Using the inequalities in Table 6.1, it is easy to

establish that the combination of singularity types for this configuration is (RI, IO, IIM).

n, =3 © T’

o 7777

n,= l

_ vF
wA

\
g ¥ &y >
A B E ¢ D

Figure 6.8. An (RI, IO, IIM)-class configuration

6.42. Example. The configuration shown in Figure 6.9 is the same as in Figure 6.5

(discussed in Example 6.21). However, in the present example, the joint F is passive, thus

n,=n=2 Itis found that d;5,=1,d,=2,d,=1 and n,= 2. According to the
defining conditions given in Table 6.1, the configuration is of the singularity-type

combination (RPM, RO, II).
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D

Figure 6.9. An (RO, RPM, II)-class singular configuration.

6.43. Example. In Figure 6.10 we present yet another variation of the five-bar-and-

slider mechanism. Here, all rotary joints are aligned and two of them, A and C, coincide.

The joint F is active (as well as joints B and D), therefore n,= 3. By inspection, it is

established that d,;,=1,4d,=1,d,=3 and n 7= 3. This implies that the configuration
belongs only to types RI, RPM and [IM.
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n,=3 n=2 ng, =1

()] ()]
N 7 §
Q \ B@le a)—
B E D

F llr

Figure 6.10. An (RI, RPM, IIM)-class singular configuration.

A =C

6.44. Example. Finally, let us consider the mechanism shown in Figure 6.11.

Figure 6.11. A 3-dof redundant planar mechanism.

203



The output is the velocity of the slider, i.e., n, = 1. The joints at points A, F and K
are active and thus n, = n = 3. In the configuration shown in Figure 6.12, it is not
difficult to see that'd;, =3, d;=3,d,=4 and n,= 5. This translates into a singularity

of the (RPM, II, IM)-class.

nl=3

n 3

n0=1
wA

A B D C H

Figure 6.12. An (RPM, II, [IM)-class singular configuration.

With this the proof of Theorem 6.40. is completed. O

6.4.3. Singularity classifications for partially non-redundant mechanisms
In this Sub-section, we modify the general classification established with Theorem 6.40
and obtain classifications for two important special cases of redundant mechanisms.

Herein, we are concerned with partially non-redundant mechanisms, i.e., mechanisms for

which at least one of the two non-redundancy equalities, n = n,, and n = n;, holds. A
mechanism is referred to as kinematically non-redundant when n =n, (and n < nj).

Alternatively, a mechanism is dynamically non-redundant when n = n; (and n 2 ny).
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Most redundant mechanisms appearing either in applications or in the literature belong to
one of these groups, therefore the two classifications presented below are of interest.

When one of the non-redundancy conditions holds, some of the statements of
Proposition 3.29 which are generally not true for redundant mechanisms can be proven.
This rules out some singularity combinations and as a result two classifications with 24

non-empty classes each are obtained.

6.45. Proposition. Let the mechanism be kinematically non-redundant, i.e., n = no.

(i) g€ {RPM} = (g e {II} andgqe {IO})orqe {IIM},
(ii) ge {II} = q e {[0} orqe {RO}.
Proof

(i) Let ¢ be an RPM-type singularity but not an IIM-type singularity. Proposition
6.36 (v) implies that the configuration belongs to the II type. It remains to establish
that g is an IO-type singularity as well. ¢ € {RPM} implies d,, > 0. Since there is
no [IM-type singularity, we must haven =n . Then, we can write:

d02d10>0=nq-n=nq—no,
where the last equality uses the kinematic non-redundancy. Thus, it is established that

dy>n ¢ — o> Which is equivalent to the presence of an IO-type singularity.

(ii) g € {II} implies d;>n, —n. We assume that there is no IO-type singularity,
therefore, d = n, — n,. We need to show that d; - d,, > 0.
To establish this we will use the inequality sequence in the proof of Proposition 6.36
(ix). We notice that this sequence can be used to prove d;—d,, > 0, even when in the
last inequality of the sequence the sign “>” is replaced with “>”, i.e., when the

sequence is modified as follows:
d,-d,o>(nq—n)—d,0= (nq-n)+no—no-d,o =

(nq~n0)—d10-(n—n0)=d0—dlo—(n—n0)20.
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Therefore, to be able to use the above sequence we need only dj, ~d,, 2n—-n,
(since the other equalities and inequalities in the sequence were already established in
the proof of Proposition 6.36 (v)). However, this last inequality is implied by the

kinematic non-redundancy, since

dy-dyp20=n-ng,. O

6.46. Proposition. Let the mechanism be dynamically non-redundant, i.e., n=n,

(i) qe {IIM} = (qe {RI} andge {RO} )orqe {RPM},
(ii) ge {II} = qe {I0}orge {RO}.
Proof

(i) Let q be an IIM-type but not an RPM-type singularity. From Proposition 6.36 (vi)
it follows that the configuration belongs to the RI-type. It remains to establish that g is
an RO-type singularity as well. The IIM-type singularity is characterized by n <n -

When there is no RPM-type singularity, we have d,, = 0. Then, it follows that:

d,—d,o=d,=nq—r,>n—r,=n,—r,20.

This yields d, > d,,, which is equivalent to the presence of an RO-type singularity.
(ii) Assuming that there is no IO-type singularity, we have d, = n,—ng. and (from
the given RI-type singularity) d, —d;; >n—n,.
As in Proposition 6.45 (ii), to prove the statement we will use a variation of the

inequality sequence in the proof of Proposition 6.36 (ix). We notice that this sequence

can be used to prove d;—d,;, >0 even if in the first inequality of the sequence the
sign “>" is replaced with “2”, namely:
d,-d,OZ(nq—n)—dm:(nq—n)+n0—no—d,0 =
(nq—no)—dlo—(n -ng)=dg-d;p-(n-ngy) > 0.
Therefore, to be able to use the above sequence we need only to establish the additional

(first) inequality, d, 2 n, ~n. This, however, is implied by the dynamic non-

redundancy, since
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_nl_

q

-n.

O

6.47. Theorem. Let S be an arbitrary combination of some of the six singularity types.

There exists a kinematically non-redundant mechanism with a configuration, q, which

belongs to all types in S and to no other types, if and only if S is marked with “Y " in Table

6.4.

0o |no fio |mM|IO |D {10
ad ad |ad | ad
i M |[IM | &
ad
™M

RI Y YIY

RO Y

RI and RO Y{YI|YI|Y|Y
RPM Y |Y Y
RI and RPM YI|lYI|Y Y
RO and RPM Y YIY
RI and RO and RPM Y| Y|Y|Y|Y

Table 6.4. Possible combinations of singularity types for

kinematically non-redundant mechanisms.

Proof. Similarly to the proof of Theorem 6.40, the present proof has of two parts.

(i) To prove that the blank cells correspond to impossible configurations, we can use

Proposition 6.40. The 22 configurations marked with blank cells in Table 6.2 are impossi-

ble for any mechanisms, including kinematically non-redundant mechanisms. There are
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three additional blank cells in Table 6.4, namely (RPM, II), (RPM, II, IIM) and (RO,
RPM, ). These singularity-type configurations are disproved by Proposition 6.45.

(ii) We can use Theorem 3.30, to establish that 21 of the combinations are possible.
(Since non-redundant mechanisms are a special case of kinematically non-redundant
mechanisms). The remaining three are (RI, IIM), (RI, IO, IIM) and (RI, RPM, IIM). In

the proof of Theorem 6.40, the singularity classes were illustrated with kinematically

redundant mechanisms. Below we present examples of mechanisms with n =n,,.

6.48. Example. To prove the existence of (RI, [IM) singularities we consider a four-bar
linkage, Figure 6.13. The output is defined as usual, while dynamic redundancy is
introduced by assuming that the joint at point B is active (in addition to joint A). Thus, we
have n;=2, n =n, = 1. In the flattened configuration shown in the figure, the
parameters determining the singularity types are d;,=0,d;=0,d,=1, n 7= 2.
according to Table 6.1, the configuration belongs only to the types RI and IIM.

(OA a)B n, =2
A\ A\ o1
g \ o TB | p
A B D 71; C

Figure 6.13. An (RI, [IM)-class singular configuration.

6.49. Example. Let us consider the five-bar linkage in its flattened configuration shown
in Figure 6.14. The output is the position of point C, while there are three input joints at A,
B and E. Therefore, n; =3, n = n, =2. It is checked that d,,=0, d;,=0, d, = 2,
n,= 3. This implies a singularity of the (RI, 10, IIM) class.
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2, @, C(x,y)
gV Y \&/, S j)m:Z
A B E O, D ol

Figure 6.14. An (RI, IO, IM)-class singularity.

6.50. Example. We consider the configuration shown in Figure 6.15. The figure
resembles Figure 6.10, however the present mechanism is composed using a four-bar

linkage rather than a five-bar. As a result, the mobility is 1 rather than 2. The output is the

motion of the slider, the input joints are B and E. Thus, n;=2, n=n,=1. We

establish that d,, =1, d;=1,dy=2,n g = 3, which implies a singularity-type

combination (RI, RPM, [IM).
n;,=3 n=2 no =1
\a)B A wE
¥ 3 ¢
B A=C D E l lT

Figure 6.15. A singular configuration of class (RI, RPM, IIM).
This completes the proof of Theorem 6.47. O

6.51. Theorem. Let S be an arbitrary combination of some of the six singularity types.

There exists a dynamically non-redundant mechanism with a configuration, q, which
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belongs to all types in S and to no other types, if and only if S is marked with “Y " in Table
6.5.

o |nm o |mM|IO |n |10
ad ad |ad | ad
I IM|IM | O
ad
M
RI Y

RO Y
RI and RO Y|Y|YI|Y]|Y
RPM Y|Y|Y Y |Y
RI and RPM Y Y Y
RO and RPM YI|Y Y I|Y
RI and RO and RPM YI|IYI{YI|Y!]Y

Table 6.5. Possible combinations of singularity types for
dynamically non-redundant mechanisms.

Proof. Similarly to the previous Theorem 6.47, we need to prove that three combinations

are impossible and establish that three other combinations are possible.

(i) The three classes, which are impossible for dynamically non-redundant mechanisms,
but are possible for a general (redundant) mechanism are (RI, [IM), (RI, IO, IIM) and (R,
RPM, IIM). Indeed, if such singularities were to exist for some mechanisms this would

contradict Proposition 6.46.

(i1) The three classes, which occur for dynamically non-redundant mechanisms, but are

impossible for non-redundant mechanisms are (RPM, II), (RO, RPM, II) and (RPM, 11,
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IIM). The existence of singularities from these classes is confirmed by Examples 6.35,
6.42 and 6.44, respectively. O

6.5. Singularity Identification

In this Section, we address the problem of singularity identification, already introduced
in Chapter 5. Herein, the techniques developed in Chapter 5 for the singularity
identification of non-redundant mechanisms are generalized and made applicable to

redundant mechanisms as well.

6.5.1. Conditions for singularity
The velocity equation, Lm = 0, can be written in the form:
LiT+LQ+L,2"=0.
As in the non-redundant case, we define two sub-matrices of L, namely L; = [LyL,] and
Lo =[L,L,). When the mechanism is redundant, these matrices are rectangular. The di-

mensions of Lyand Lg are: (N -n+ny)X(N-n,+n,) and (N~-n+n,) XN,

respectively.
6.52. Lemma.
(i) nq=N+n0 —-rank L,
(ii) do = N —-rank Lo,
(iii) d,=N-n;,+n,—-rank L,
(iv) dip=N-n,—rank L.
Proof
(1) By definition, n g is the dimension of the space of feasible instantaneous motions.

This space is isomorphic to the the space of solutions of the velocity equation, i.e., the
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space of all m, such that Lm = 0. Therefore, n 7= dim(Ker L). Since L has
(N + ny) columns, dim(KerL) +rank L =N + n,, which proves (i).
(ii) By definition, d,, = dim(Ker p ), is the dimension of the space of feasible instan-

taneous motions with zero output. This space coincides with the space of vectors

m = (0, Q° QP), which are solutions of the velocity equation. Therefore, dg is, in

fact, the dimension of the space of solutions of the equation [L,L,]x =0, i.e.,

d, = dim(Ker Lo). Now, (ii) follows from the following equality:
rank Lo + dim(Ker Ly) = N.
(iii) ~We know that d, = dim(Ker p ). Ker p, is the space of motions with zero input. It

is isomorphic to the space vectors m = (T, 0, 2°) such that Lm = 0, or

equivalently to the solution space of Lx = 0. Therefore, d;, = dim(Ker L,) and since
L, has (N - n; +n, ) columns, we have (iii).

(iv) By definition, d,, = dim(Ker p, " Ker p), i.e., d;, measures the dimension of
the space of motions with zero input and zero output. These motions are, in fact, given

by the solutions of the equation L,,.Qp =0, and therefore
d;, = dim(Ker Lp) = (N - n;) —rank L.

6.53. Proposition.

(i) g € {R1} & rank L, <rank Lp+n,—(n—-n0),
(it) g€ {RO} & rankL;<rank L, +n,

(iii) ge {RPM} & rankL, <N -n,

(iv) ge {II} < rank L, < rank L - (n, - n),

(v) g€ {I0} © rankLp < rank L,

(vi) ge {IIM} = rank L<N-n+ng,

(vii) q € {10} or q € {IM} & L is singular ,
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(viii) q € {RO} or g € {RPM} & L, is singular.
Proof.
(1) An RI-type singularity is present if and only if d,, —d,, > n —n, (Table 6.1). Applying

Lemma 6.52, we have

dy—dy=(N-rankLo) -~ (N—n;—rank L,) = rank L, + n; — rank L.

Therefore the defining inequality for the RI type is equivalent to:
rank L, + n; —rank Lo > n—n,,
which is equivalent to the inequality in (1).
(i1) From the Lemma 6.52, we obtain:
d,—d;jg=(N-n;+n,-rank L)) — (N —n; —rank L;) = rank L, — rank L; + n,,.
A necessary and sufficient condition for the RO-type singularity is the inequality: d, >
d,,, (Proposition 6.12). From Lemma 6.52, this is equivalent to
N-n+ny—rank L;>N —n;—rank L,
1.e.,
rank L, + n, >rank L;.
(i) An RPM-type singularity occurs when d,, > 0. According to Lemma 6.52 (iv), this
is true exactly when
N-n,—rank L, > 0,
or, equivalently, when rankL,<N -n,.
(iv)  The II singularity type is defined with the inequality d, > n e~ Lemma 6.52
implies that this inequality is equivalent to:
N-n+ny—rankL;>N+n, —rank L.

The above is obviously equivalent to the condition in (iv).

) The necessary and sufficient condition for an IO-type singularity is d, >n 7~ "o In
this, we substitute the expressions for d, and from Lemma 6.52:

N-rankLo>N +n, —-rank L -n,
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i.e.,

rank Lo < rank L.
(vi)  Equivalent to Definition 6.27.

(vii) Follows from (v) and (vi). Indeed it is always true that
rank Lo<rank L<N-n+n,
When the matrix L, is nonsingular, we have equalities and neither an IO- nor an I-type
singularity are possible. When L, is singular, at least one of the above inequalities
must be “<” and therefore either an IO- or IIM-type singularity is present.
(vii)) Follows from (iii) and (iv). The maximum rank of L;is N — n, + n,. For any
configuration, it is true that:
rank L;<n, +rank L, <N —n;+n,.
L,is singular, if and only if “<” can be replaced in at least one of the above
inequalities. From (iii) and (iv) it is evident that L, is singular, if and only if either an
RO- or an RPM-type singularity is present.
O

6.54. Proposition. For all mechanisms (including redundant ones), a configuration, q,
is nonsingular if and only if both the matrices L; and L are nonsingular at q.

Proof. When either L; or L is singular, it is clear from Proposition 6.53 (vii) and (viii)
that the configuration is singular. It remains to show that when the matrices are both non-
singular the configuration must be nonsingular. We assume that ¢ is singular. Then, ¢
belongs to at least one of the types: IO, IT, IM. An IO- or IIM-type singularity implies that
Lo is singular (Proposition 6.53 (vii). Therefore, g must be an II-type singularity. Then,
by Proposition 6.53 (iv) and since rank L £ N —n + n,, we have:

rank L;<rankL - (n;—n)SN-n; +n,,

i.e., L; has less than maximum rank. O
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6.55. Remark. A comparison of Propositions 6.53-4 with Theorem 5.1 and
Proposition 5.2 for non-redundant mechanisms shows that the matrices L; and L, continue
to play a key role in the identification of singularities and their types. Theorem 5.1 remains
true in the redundant case as proven by Theorem 6.54. The necessary and sufficient
conditions for the different singularity types, as established by Proposition 6.53 (i)-(vi),
are modified versions of the conditions (1)-(vi) in Proposition 5.2. As was the case with the
definitions in Section 6.3, the singularity conditions for redundant mechanisms lack the
input-output symmetry of the corresponding results for non-redundant mechanisms. In
addition, we note that statements (vii) and (viii) in Proposition 6.52 are weaker than the
corresponding points in Proposition 5.2. As we shall see in the next Sub-section these
variations of the singularity conditions require some changes in the identification methods

as well.

6.56. Proposition. Let the mechanism be kinematically non-redundant, i.e., let
n=n,. Then,

q € {R1} orq e (RPM} & Lo is singular .
Proof. When n = n,, the matrix Lo is square of dimensions N x N, therefore, it is

singular when rank L, < N. For any configuration the following inequalities hold:

rank Lo<n, + rank L, < N.

Therefore, L, is singular, if and only if either

rank Lo < n; + rank L, or rank L, <N —n,.

This, according to Proposition 6.53 (i) and (iii) is equivalent to RI or RPM. O

6.57. Proposition. Let the mechanism be dynamically non-redundant, i.e., let n =n,

Then,
qge {Il} orqe {IIM} & L, is singular .
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Proof. When n = n, the matrix L, is square of dimensions (N —n + ny), therefore it is
singular when rank Lo < N —n + n,,. For any configuration, the following inequalities
hold:

rank L;<rank L<N -n +n,.

Therefore, L, is singular if and only if either

rank L;<rank L or rank L <N -n + n,.

The first of the above inequalities is equivalent to the presence of an II-type singularity

according to Proposition 6.53 (iv) (note that n;—n = 0). The second inequality the

condition for ITM. |

6.5.2. Identification and classification methods

The singularity conditions derived in Sub-section 6.5.1 can be used to identify and
classify all the singularities of a specific mechanism. Herein, we discuss the methods for
achieving this goal. The algorithms are similar to the ones proposed in Chapter 5 for the
singularity analysis of non-redundant mechanisms, however some modifications are
necessary due to the variations in the singularity conditions.

When the goal is only to find the singularities, without necessarily determining to
which class each singularity belongs, an algorithm analogous to the one presented in Sub-
section 5.3.1 can be used. The only modification will be necessary by the fact that the
matrices L; and L, are rectangular for redundant mechanisms. Therefore, in Steps 3 and 4
the determinants of L, and L, cannot be used. Instead, each of these steps will include the
solution of a system of equations, namely that all minors of maximum dimension are equal
to zero.

For the determination of the singularity classes of a given redundant mechanism a

modified version of the algorithm presented in Sub-section 5.4.3 is used:

(1) Find all feasible g satisfying condition (vi).
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(2) Find all feasible ¢ satisfying condition (ii).
(3) Classify {1} U {2}:
(3.1) For {1}, check (iv) and (v). Obtain 4 sets:
IIM; IM&II; IM&IO; IM&I&IO.
(3.2) For {2}, check (i) and (ii). Obtain 4 sets:
RPM; RPM&RI; IM&RO; RPM&RI&RO.
(3.3) Find all the intersections of each set in {3.1} and each set in {3.2}.
Obtain 12 classes. (These are the 12 classes that belong to the
IIM and RPM types, see Table 6.2)
(3.4) Subtract {2} from each setin {3.1}.
Obtain 2 classes, namely
(RI, RO, I, M), (RI, RO, 1, 10, IM),
and 2 sets, namely
M and IM&IO, both with no RPM.
(3.4.1)  Check (ii) for the 2 sets.
Obtain 4 classes, namely
(IIM, RI), (IIM, RI, RO),
(10, 1M, RI) and (IO, IIM, RI, RO).
(3.5) Subtract {1} from each setin {3.2}.
Obtain 2 classes, namely
(RI, RPM, I1, IO) and (RI, RO, RPM, 11, 1O),
and 2 sets, namely
RPM and RPM&RO, both with no I[IM.
(3.5.1) Check (v) for the 2 sets.
Obtain 4 classes, namely
(RPM, II), (RPM, 1, 10),
(RO, RPM, II) and (RO, RPM, 1, 10).
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(4) Find all g satisfying condition (vii). From these subtract {1} U {2}.
(5) Find all ¢ satisfying condition (viii). From these subtract {1} U {2}.
(6) Intersect {4} and {S}. Obtain 3 classes, namely

(R1, 10), (RO, IT) and (RI, RO, IO, II).

6.6. Summary

In this chapter, a general framework for the singularity analysis of redundant
mechanisms was developed. This was achieved by the generalization of the ideas
introduced in Chapters 3 and 5 for non-redundant mechanisms. The six singularity types,
were re-introduced with new, generalized definitions which remain relevant even when the
mechanism is redundant. Using the motion-space model of instantaneous kinematics, the
interdependence of the singularity types was examined. A comprehensive classification of
the singular configuration of arbitrary mechanism was obtained. It was shown that, there
are 27 different singularity classes, which can occur for various redundant mechanisms.

Furthermore, the problem of singularity identification and classification of specific
mechanisms was addressed. New necessary and sufficient conditions for the occurrence of
each of the singularity types were derived. The algorithms for the singularity analysis of
non-redundant mechanisms, introduced in Chapter 5, were modified in a way that allows

their application to redundant mechanisms.
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CHAPTER 7

CONCLUSIONS

7.1. Summary and Contributions of the Thesis

This thesis presents a new, general, approach to the study of mechanism singularity.
Unlike many previous works, this investigation is not limited to a narrow class of
mechanisms. On the contrary, the central objective has been to address the problems of
mechanism singularity in a most general setting, namely, to consider arbitrary singular
configurations of both non-redundant and redundant mechanisms with arbitrary kinematic
chains. Hence, the theoretical results of the thesis provide general insight into the
kinematics of mechanical systems, while the proposed methods for singularity analysis and
identification are applicable to all mechanisms, including ones with multiple closed loops
and a high number of degrees of freedom. In fact, the dissertation places a special emphasis
on the study of mechanical devices with complex kinematic chains, thus contributing to
those increasingly important areas of robotics research and application (such as platform
manipulators, walking machines, grasping), where non-serial, high-dof architectures play a
central role.

The main contributions of this work can be briefly summarized as follows. The thesis
contains a re-formulation of mechanism kinematics in the geometric and topological
language of a novel mathematical model. Mechanical singularity has been examined in the

terms of this model and thus a general yet rigorous mathematical definition of singular
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configurations for arbitrary mechanisms has been proposed. When the mathematical model
is applied to the relationship between the joint and output velocities, a new, unifying
framework for the interpretation and classification of mechanism singularities is obtained.
This framework, based on the newly introduced six singularity types, is applicable for
arbitrary non-redundant as well as redundant mechanisms. Furthermore, in the terms of
this framework, mathematical tools, such as singularity criteria and identification methods
have been developed for the study of the singularity set of both non-redundant and
redundant systems. The analysis and classification of the singularities of hybrid-chain
manipulators has been examined in detail, which has resulted in new mathematical tools for
the kinematic analysis of HCMs.

Our mathematical model of mechanism position kinematics was introduced in Chapter
2. There, general, abstract kinematic systems were defined as families of smooth curves on
manifolds. Kinematic chains were introduced as kinematic systems with specific
configuration spaces, which can be described in terms of a connectivity graph and a joint-
type distribution function, while articulated systems were defined as kinematic chains with
a given link-geometry map. This allowed the definition of a mechanism as an articulated
system where two subsystems, namely, the input and output systems were identified. The
maps between the configuration space of the mechanism and the configuration spaces of
these two systems were defined as the input and output maps of the mechanism. The local
geometrical properties of the configuration space as well as the input and output maps were
then used to define singularity: At a nonsingular configuration, the mechanism
configuration space must locally be a smooth manifold, while the two maps must be
smooth and regular.

The local nature of singularity was used to re-state the singularity definition from
Chapter 2 in terms of the velocity kinematics (first, in Chapter 3, for non-redundant
mechanisms and later, in Chapter 6, for arbitrary mechanisms). The examination of the

various possibilities for the degeneration of the instantaneous kinematics led to the
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definition of six different types of singularity, namely, singularities of redundant input
(output), impossible input (output), increased instantaneous mobility and redundant passive
motion. The interdependence of the six types was studied and a classification theorem was
proved establishing that the non-redundant-mechanism singularities can be divided into 21
distinct classes, each class containing only kinematically similar singularities.

In Chapter 4, hybrid-chain manipulators were studied as an example of the potential for
application of the general framework, developed in Chapters 2 and 3, to specific
mechanisms. (HCMs are a specific, yet quite general, type of mechanisms that includes
many complex parallel-like manipulator architectures which find increasingly wide
applications.) Efficient criteria for the detection and classification of the singular
configurations of HCMs were presented. This was achieved with the help of an improved
method for the elimination of passive-joint velocities from the velocity equation. Such
innovations in the methods for velocity analysis of parallel manipulators were necessary
since the existing techniques were shown to fail at certain singular configurations. A
classification theorem for HCM singularity was proved and it was established that the
singularities of HCMs can be divided into 15 distinct classes, while 6 other singularity
classes, though occurring in general non-redundant mechanisms, are impossible for
HCMs.

Methods for the identification of the singular configurations of any non-redundant
mechanism and the description of the division of the singularity set of the mechanism into
classes were presented in Chapter 5. This identification and classification problem was
solved by the methodical application of six criteria for the occurrence of the singularity
types, derived in the same chapter. Special attention is given to the application of the
proposed methods to the analysis of mechanisms with complex chains. Two techniques for
the simplification of the process of identification and singularity-class description for multi-

loop high-dof mechanisms were proposed and applied to a 6-dof example mechanism.
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The validity of the classification framework of Chapter 3 and the identification methods
of Chapter 5 were further generalized in Chapter 6, where it was shown that the
propositions and methods obtained in the former chapters can be applied, with some
modifications, to mechanisms with redundancy. The effects of dynamic and/or kinematic
redundancy on each of the results obtained for non-redundant mechanisms was examined.
The classification theorem proved for redundant mechanisms established that the
singularities of all mechanisms (redundant or not) can be divided into 27 distinct classes.
Six of these occur only for redundant mechanisms, three classes being associated with

dynamic redundancy while the other three are caused by kinematic redundancy.

7.2. Possibilities for Future Work

Obviously, there remain many unsolved problems related to the kinematic singularity of
mechanisms. Herein, we suggest areas of continued investigation based on the general

approach presented in this dissertation.

7.2.1. Generic singularities

As demonstrated in the previous chapters, mechanisms have a large variety of substan-
tially different singularities. The pattern of the locations of the singular configurations can
be very complicated even for simpler classes of mechanisms like serial chains. It would be
very difficult to characterize the global properties of the singularity set without imposing
any restrictions on the geometry of the mechanisms considered. Therefore, it is desirable to
establish a comparatively simple description valid for a comparatively large subset of
mechanisms. Ideally, one would like to prove that the singularity set of almost every

mechanism forms “nice” topological spaces, such as smooth manifolds. The words “almost

222



every mechanism” can be made rigorous by using the notion of generic properties, which is
formally defined below.

Suppose a kinematic chain, X, is given (i.e., a graph and a joint-type distribution) and
the input joints and the output link are specified. Thus, the spaces Q, I, and O (defined in
Chapter 2) are given. The space D and the maps f; and f,, will then depend on the choice of
the link geometry y. However, the link geometry can be described by the parameters that
determine the relative position of the joint axes in each link. These parameters are angles
and distances that can be chosen in the spirit of the Denavit-Hartenberg symbolism.
Therefore, each mechanism geometry with the given architecture is specified by a unique
point, ¢, in a space, A, of the type R¥ x T™ (T™ is the m-dimensional torus).

To say that a property, P, is true for almost every mechanism or, equivalently, that P is
a generic property, will be understood to mean that, for every architecture, the union of the
points ¢ for which P is satisfied is a dense and open subset of A. Thus, if a mechanism
satisfies P, the property will be preserved under small perturbation of the link parameters,
and if for a mechanism P is not true, this may be corrected by a small change of the
mechanism.

It is proposed to find a dense set in A for which the singularity set of the corresponding
mechanisms has a comparatively simple structure. Such mechanisms can be called generic.
The non-generic mechanisms form thin sets (with measure zero) which divide the space A
into classes of generic mechanisms.

For serial chains, this problem can be solved by applying to the output map the results
on the singularities of the so-called “one-generic” maps (Golubitsky and Guillemin 1973).
For arbitrary chains, the problem is more complicated since not only the properties of the
output map, but also the properties of the input map and the structure of the configuration
space are important. Moreover, the requirement for f, to be one-generic is not suitable
since it can be shown that the mechanisms with such output maps correspond to a non-

dense set in A. Furthermore, one cannot expect a dense subset of the mechanisms with a
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given architecture to have a structure of the singularity set as simple as the one of generic
serial chains. A conjecture can be made that the generic singularity set of a mechanism

consists of a number of smooth manifolds which intersect transversally.

7.2.2. Automatic singularity analysis

For all but the simplest mechanisms the singularity set contains infinitely many
configurations and therefore to locate the singularities implies the task of obtaining a good
description of a multi-dimensional subspace of the mechanism’s configuration space. This
could be done by either obtaining simplified symbolic equations for the singularity set or by
providing an algorithm able to trace numerically and represent graphically the projections
and cross-sections of this set.

The procedures in Section 5.4 describe an algorithm for the automatic identification
of the singularity set, however significant kinematic and computational problems remain to
be solved before a “black box” can emerge for singularity analysis. Some of these issues
are briefly outlined below.

The first step in an algorithm for singularity analysis must be the automatic generation
of the loop equations. It is desirable to make use of symbolic methods designed to take
advantage of possible closed form solutions (Kecskeméthy 1993). On the other hand, since
an algebraic solution cannot be guaranteed, a representation that is suitable for numerical
iterative solution should be preferred. In particular, the position parameters should be
chosen in such a way that the resulting equations are polynomial.

The next step is the (automatic) formulation of the singularity conditions. As it was
shown in Sections 5.3 and 5.4 these conditions involve the rank-deficiency of some
(polynomial) matrix function of q. According to Davenport et al. (1993) for such matrices
(functions of multiple variables) the Cramer rule is a more efficient way for symbolic
computation of the determinants than any process of Gaussian elimination (transforming

the matrix into a triangular form). However, if the kinematic nature of L(q) is taken into
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account, the matrix could be simplified and the computation of singularity conditions for
the submatrices be made easier. The strategies for passive-joint screw elimination by
reciprocal screws developed for hybrid chains in Chapter 4 and discussed in Section 5.5
could be helpful.

Finally, once the systems of algebraic equations have been generated, the goal would
be to extract maximum information about their solution sets. These sets (algebraic varieties)
are subsets of the singularity set. This investigation may involve symbolic simplification of
the equations or their numerical solution. (On the other hand, some interesting properties of
the solution set may be deduced without solving the equations by applying algebraic-
geometry tools (Merlet, 1993)). Ideally, one would like to obtain a stratification of the sin-
gularity set, which would decompose the set into non-intersecting manifolds consisting of

singularities of the same class.
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