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ABSTRACT
As water treatment regulations for the removal of disinfection-by-products (DBPs)
become more stringent, water utilities must actively search out new technologies that
improve the removal of DBP precursors, namely natural organic matter (NOM).
Enhanced coagulation has been identified as the best practical technology for the removal
NOM. Few attempts have been made to develop a full-scale model of the enhanced
coagulation process. Models derived from bench-scale and pilot scale experiments often
fail when applied to full-scale systems. This thesis describes the development of full-
scale artificial neural network (ANN) models for the removal of NOM by enhanced
coagulation at the Rossdale and E.L. Smith Water Treatment Plants (WTPs) in
Edmonton, Alberta. The models derived from this research can be used by the WTP
operators at these facilities to optimize the enhanced coagulation process. Alternatively,
the models can be used as virtual full-scale laboratories to provide insight into the

enhanced coagulation process.
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1.0 INTRODUCTION

1.1 Purpose of the Study

The purpose of the current study is to develop full-scale artificial neural network (ANN)
models for the enhanced coagulation process at the EL. Smith and Rossdale Water
Treatment Plants in Edmonton, Alberta. The completed models can be used to optimize
the process by providing plant operators with a robust tool to determine the effects of
their proposed control actions on the removal of disinfection by-product precursors.
Alternatively, the models can be used as virtual full-scale laboratories to provide insight
into the enhanced coagulation process. The effects of simultaneously varying the values
of multiple input parameters on the process output can be assessed without the

prohibitive costs and scale-up concerns of bench-scale and pilot-scale experimentation.

1.2 General Problem Description

1.2.1 Natural Organic Matter and Enhanced Coagulation

In conventional water treatment where free chlorine is used as the disinfectant,
disinfection by-products, such as trihalomethanes (THM) and haloacetic acids (HAAs)
can form by the reaction of residual chlorine with some forms of natural organic matter
(NOM) in the treated water. In addition, in the presence of bromide, the residual free
chlorine oxidizes bromide to hypobromous acid which, in turn, reacts with NOM to

produce brominated-DBPs (Singer 1994). As many DBPs are suspected to be



carcinogenic, it is generally desirable to remove them from the drinking water stream.
Strategies for controlling DBPs in treated water include precursor removal, the use of
alternative disinfectants, and removal of DBPs following formation (Singer 1994). The
precursor removal strategy involves the removal of NOM in the water treatment process
by enhanced coagulation or softening, granular activated carbon (GAC) adsorption, or
membrane filtration. Enhanced coagulation, which involves the use of coagulant doses
that exceed those required for turbidity removal, is considered to be the best available
technology for the reduction of DBPs in treated water (Krasner and Amy 1995).
Membrane filtration and GAC adsorption can be effective at removing DBP precursors,
although both of these technologies are prohibitively expensive (Singer 1994). With
respect to the use of alternative disinfectants, common substitutes for chlorine in
disinfection include chloramines, chlorine dioxide, and ozone. Both chloramines and
chlorine dioxide are able to form DBPs, albeit at lower concentrations than free chlorine,
and ozone can result in the production of brominated DBPs when bromide-containing
waters are ozonated (Crozes, White and Marshall 1995). In addition, the use of substitute
disinfectants may not provide adequate disinfection; the balance between adequate
disinfection and the formation of DBPs must be assessed on a case-by-case basis. The
final DBP control strategy involves the use of air stripping apparatus to remove DBPs
from the treated water. The main disadvantages of this strategy include the inability of
the air stripping apparatus to remove non-volatile DBPs and the enormous costs

associated with treating the entire product stream in large WTPs.



1.2.2 Current and Proposed Disinfection By-Product Regulations

Over the past quarter-century, the United States Environmental Protection Agency
(USEPA) has attempted to find a balance between promoting microbial reduction in
drinking water by disinfection and discouraging the formation of disinfection by-
products. This balance can be quantified through the use of the disinfectant / disinfection
by-product (D/DBP) ratio. The first attempt to control D/DBP was made by the USEPA
in 1974, when THM formation in drinking water was identified as a by-product of
chlorination (Clark, Adams and Lykins 1994). The Total Trihalomethane Regulation
(TTHMR) set initial limits of 0.10 mg/L in treated water for the compounds in
November, 1979. More recently, the USEPA proposed the two-stage D/DBP rule which
will reduce the maximum contaminant level (MCL) of TTHM to 0.080 mg/L and HAA;
to 0.060 mg/L in stage 1 (Crozes, White and Marshall 1995). The TTHM group includes
chloroform, bromodichloromethane, dibromochloromethane, and bromoform while the
HAA; group includes monochloroacetic acid, dichloroacteic acid, trichloroacetic acid,
monobromoacetic acid, and dibromoacetic acid. In addition to these two groups of DBPs,
both bromate and chlorite will be regulated in stage 1 with MCLs of 0.010 and 1.00 mg/L
respectively. Long-term standards for THMs and HAAs will be reduced to 0.040 mg/L
and 0.030 mg/L respectively as part of stage 2 of the D/DBP rule. The D/DBP has met
much opposition from water treatment utilities since the treatment costs associated with
meeting the proposed new legislation are significant. In response to pressures from public
utilities, the U.S. Congress has postponed the promulgation of stage 1 of the D/DBP rule

until November 1998, with stage 2 coming into effect in November 2002. These dates



have been established for facilities which provide water for populations exceeding 10

000; smaller facilities will have a more relaxed schedule of compliance.

With respect to Canadian regulations, under the Guidelines for Canadian Drinking Water
Quality, the current interim maximum acceptable concentration of THMs in drinking
water is 0.1 mg/L (Federal-Provincial Subcommittee on Drinking Water 1995). The
guideline is designated as interim until such time as the risks from DBPs other than
chloroform are ascertained. In Alberta, the Guidelines for Canadian Drinking Water
Quality are enacted into law under the Environmental Protection and Enhancement Act.
Water utilities are required demonstrate compliance with the 0.1 mg/L guideline through
periodic sampling for TTHMs at the extreme end of their distribution (Standards and
Guidelines Branch 1997). The sampling frequency is dependent on the population served

by the utility and varies from every three months to once per year.

1.2.3 Raw Water Quality at the Rossdale and E.L. Smith Water Treatment Planits

Both the Rossdale and E.L. Smith Water Treatment Plants obtain their source water from
the North Saskatchewan River. The river has its headwaters in the Canadian Rocky
Mountains and flows in an easterly direction for approximately SO0 km before reaching
the city of Edmonton. Due to substantial contributions from spring-melt, the river water
quality varies considerably on a seasonal basis. Turbidities range from less than 2 NTU in
winter to over 2000 NTU during spring thaw. Similarly, color ranges from 5 TCU to 80

TCU and TOC ranges from 1.5 mg/L to 8 mg/L. The water is moderately hard (100-135



mg/L as CaCO;) and slightly alkaline (pH 7.8-8.8). The large variations in water quality
will allow for an assessment of the robustness of the model under varying water quality

conditions.

1.2.4 Artificial Intelligence Modelling Techniques

As an alternative to conventional modelling approaches, several artificial intelligence
(AI) modelling techniques have been developed over the past 50 years. These techniques
can be classified into one of three categories: knowledge-based expert systems, fuzzy
logic-systems, and artificial neural networks. The use of Al techniques is currently on the

rise due to the advancement in computer technology in recent years.

Knowledge-based expert systems combine human expertise with the computational
power of specialized systems to solve problems in a specific area (Hushon 1990). The
systems require a database of knowledge about a particular area which, when combined
with a skill pool, allows for a greater understanding of the problem at hand. The
combination of the knowledge base and skill pool also allows for the generation of rules

or heuristics that can be used in problem solving and modelling.

Fuzzy logic systems classify input data according to its degree of membership in the
fuzzy set. The fuzzy set is a loosely defined category to which an input may belong to a
certain degree of probability. The output is reported as a value between 0 and 1, with a

value of 1 indicating 100 % membership in the fuzzy set. Fuzzy logic systems, when



coupled with statistical tools, are able to formulate rules from historical data without the

use of rules generated by experts.

Artificial neural networks mimic the human brain’s problem solving capabilities. ANN
systems are comprised of interconnected arithmetic computing units that are analogous to
the brain’s network of neurons. Artificial neural networks are capable of self-organization
and leaming; concepts and patterns can be extracted directly from historical data without
human subjective inference. ANNs are data intensive; problems for which large set of
data are available are more likely to be solved by this technique. The technique can also
be successfully applied when the problem can not be described by well-defined

algorithms, heuristics, or rules.

The ANN modelling technique has several advantages over conventional modelling
approaches that make it especially applicable to the current study. The ANN approach
does not require mathematical algorithms, only a knowledge of the important factors
govemning the process. In the water treatment industry, many uncertainties exist because
of the micro-scale physical and chemical reactions involved. Conventional modelling
techniques require mathematical algorithms to describe these uncertainties, where a
neural network simply learns the process based on historical data (Stanley, Zhang and
Baxter 1998). In addition, the ANN technique is fast and flexible. Once the historical data
has been compiled, ANN models can be generated rather quickly. Changes in the
underlying process, which would render a conventional model invalid, can be

incorporated into ANN models following a brief period of retraining. The ANN



technique can also handle the non-linearity of changes in the input parameters. In water
treatment, many of the raw water quality parameters vary on a daily and seasonal basis;
models that assume a linear structure are not able to cope with such changes. Finally,
ANNSs tend to be fault-tolerant as their data structure is loosely organized and there is no
boundary limit on the input parameters (Stanley, Zhang and Baxter 1998). This feature

allows the ANN models to be incorporated into real-time process control.

1.3 Thesis and Approach

1.3.1 Summary of Expected Outcomes

Due to the success of previous applications of the ANN technique to the modelling of
water quality parameters (Zhang and Stanley 1997) and water treatment processes
(Stanley and Zhang 1997), it is expected that the current study will yield favorable
results. Each of the models is expected to capture the interactions between the input
parameters and the output parameter in historical data in order to allow for accurate
output parameter predictions using new input data. When tested online for use in process
control, the technique will also prove to be less time consuming and more robust than
current methods of enhanced coagulation process control. Finally, it is expected that the
models, when used as a virtual full-scale laboratory, will provide valuable insights into
the enhanced coagulation process, allowing plant operators to make more effective and

economical decisions with respect to plant operations.



1.3.2 Artificial Neural Network Model Development

The artificial neural network modelling process involves three distinct stages: source data
analysis, ANN model development, and model evaluation using simulated real-time data.
The primary objectives of the source data analysis are to gain a familiarity with the study
domain and to examine the applicability of available data for model development. In the
model development stage, the goal is to design and evaluate a series of network
architectures that can be used as an effective process model. In the final stage, candidate
models, developed using historical data, are evaluated retroactively on data selected to

simulate real-time operations in order to assess their potential for use in process control.

1.4 Criteria for Success

The success of the study is dependent on three key measures: the performance of the
models with respect to the historical data, the ability of the models to cope with
continuous real-time data, and the ability of the models to generate meaningful results
from virtual lab experiments. With respect to the first measure, it is desirable to obtain a
high degree of correlation between actual outputs and model predicted outputs on the
training, testing, and production data sets. With respect to the second measure, the
models will only be useful for process control if they can be applied to continuous real-
time data. The models will be developed using historical data averaged on a daily basis.
In order to ensure that the models are actually capturing the unique features,

relationships, and interactions of the enhanced coagulation system, they will be subjected



to a period of testing in simulated real-time. Based on conversations with plant operators,
a tolerance of 0.5 TCU in the 2.0 - 3.0 TCU range during the real-time simulations is
desirable if the models are to be used in process control applications (Thomas and Shariff
1998). Finally, once the performance of the models on historical and online data has been
proven, the models can be used as virtual full-scale laboratories. Successful models will
be able to reproduce results obtained from bench-scale and pilot-scale experimentation,

and will provide insight that does not conflict with operator knowledge or literature.

1.5 Outline of the Document

The remainder of this document is organized into five sections: background information,
methodology, results and discussion, applications, and conclusions and
recommendations. The background information section consists of an overview of the
treatment scheme at each of the water treatment plants, as well as more detailed
discussions of NOM and enhanced coagulation, coagulation modelling and control, and
artificial neural networks. In the methodology section, much of the discussion focuses on
the protocol used to develop the ANN models. Both the software and the source of the
data used in modelling are also discussed. In the results and discussion section, results
from each of the modelling stages are presented, and the results obtained from each of the
models are discussed. The applications section discusses potential applications of the
model in process control. Finally, a summary of the current study, as well as
recommendations for future study are presented in the conclusions and recommendations

section of this document.



2.0 BACKGROUND INFORMATION

2.1 Overview of the Rossdale and E.L. Smith Water Treatment Plants

2.1.1 Rossdale WTP

The Rossdale Water Treatment Plant (WTP), owned and operated by AQUALTA, is
located on the North Saskatchewan River, a major tributary in the Saskatchewan-Nelson
river system, within the boundaries of the City of Edmonton. The river has its headwaters
in the Canadian Rocky Mountains and flows in an easterly direction for approximately
500 km before reaching the city. Much of the upstream watershed is uninhabited forest
with little industrial or residential development, although there is a significant amount of
agricultural land-use closer to the city. There has been a water treatment facility at the
site since 1903, although the current facility was constructed in 1947 and was expanded

in 1955 to meet the needs of the expanding Edmonton population.

The Rossdale WTP is composed of two independent treatment trains, identified as Plant #
1 and Plant # 2, with a combined operating capacity of 260 ML/day. With respect to the
clarification process equipment, each plant has one square cross-flow clarifier that is
comprised of a rapid-mix chamber, three stages of tapered flocculators, and one
sedimentation basin. The rapid mix uses inline mechanical mixers with a 2.4 m’ mixing
volume and a design Gt of 2000. Each of the three stages of flocculators consists of §
cells with total volumes of 522, 693, and 690 m” for Plant # 1 and 571, 701, 652 m® for

Plant # 2. The design detention times though the clarifiers is 20 minutes during normal
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operating conditions, and 30 minutes during cold weather operations. The sedimentation
basin for Plant # 1 measures 35.0 m x 35.2 m x 4 m, while that for Plant # 2 measures
464 mx 49.8 m x 4 m. Sedimentation is assisted by banks of up-flow tube settlers that
cover approximately 30 % of the sedimentation basin area, and are mounted at the
effluent end of the basin. With respect to the clarification process, the Rossdale facility
practices enhanced alum coagulation with an anionic polymer coagulant aid. Powdered
activated carbon (PAC) can also be added on demand in order to control severe taste and

odour problems, which are especially prevalent during spring runoff.

Following clarification, the effluent is softened using lime and is recarbonated in order to
adjust the pH. Disinfection occurs through the use chlorinated disinfectants. Ammonia is
added within minutes of free-chlorine addition resulting in the formation of chloramines.
The water is fluoridated and passes through a stilling basin for increased disinfection
contact time. The effluent is then filtered via mono-media (crushed-quartz) rapid sand
filtration before being pumped into 100 ML on-site reservoirs. A schematic diagram of

the treatment process at Rossdale WTP is presented in Figure 2.1.

2.1.2 EL Smith WTP

The E.L. Smith WTP, owned and operated by AQUALTA, is also located on the North
Saskatchewan River, approximately 15 km upstream of Rossdale WTP on the western
fringes of the City of Edmonton. The facility was originally built in 1976 and was

expanded to its current configuration in 1984.
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The E.L. Smith facility is carrently a single-train facility with a design capacity of 190
ML/day. The coagulation equipment consists of three identical upflow solids-contacting
clarifiers. Under normal operating conditions two of the clarifiers are used for alum
coagulation, and one is used for lime softening. Each clarifieris a42.7 mx42.7 mx 7.7
m deep concrete basin, with a draught tube and impeller mixer in the center and high rate
shallow depth plastic tube settlers installed approximately 1 m below the launder system
along the outer edges of the clarifier. A cross-section of half of one of the clarifiers is
presented in Figure 2.2. With respect to the clarification process, the E.L. Smith facility
also practices enhanced alum coagulation with an anionic polymer coagulant aid. Again,
PAC can be added on demand in order to control taste and odour problems. The
chemicals are introduced and rapid mixing occurs by means of an in-line mixer in the raw
water supply line at a point just upstream of the clarifiers. The influent raw water is
introduced directly into the circular draught tube via a tangential entry. The raw water
influent is mixed with recirculated sludge and forced upward and out of the draught tube
due to the presence of an impeller-generated recirculated flow. After exiting the draught
tube, the flow may either be recycled back into the draught tube through the bottom or
may exit the clarifier through the tube settlers and launders. There are two primary
purposes for the draught tube and impellers: 1) to provide mixing energy for the
flocculation of particles; and 2) to recycle sludge to increase particle concentration and
improve the efficiency of flocculation. The existing impellers and clarifiers are a

proprietary design of Ecodyne Ltd. They are typically operated at impeller speeds of 4 to
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10 RPM depending upon the conditions necessary to produce an acceptable degree of

flocculation.

Following clarification, the effluent is softened using lime and is recarbonated in order to
adjust the pH. Disinfection occurs through the use of free-chlorine, followed by the
addition of ammonia in order to ensure a chloramine residual in the distribution system.
The water is also fluoridated. The effluent is then filtered via dual-media (anthracite and
sand) rapid sand filtration before being pumped into 125 ML on-site reservoirs. A

schematic diagram of the treatment process at EL. Smith WTP is presented in Figure 2.3.

2.2 NOM and Enhanced Coagulation

2.2.1 NOM and DBPs

Natural organic matter consists of humic substances, amino acids, sugars, aliphatic acids,
and a large number of organic molecules (Malcolm Pirnie Inc. 1993). Organic matter in
natural waters is mostly humic in nature, imparting a yellow or brown colour to the water
(Edwards and Amirtharajah 1985). Humic substances are formed by the biodegradation
of plant and animal matter in both the aquatic and terrestrial environments. As such, the
humic material reflects the aquatic, soil, and vegetative conditions of their originating
drainage basin (Joyce, DiGiano and Unden 1984). Humic substances are amorphous,
acidic, predominantly aromatic, hydrophilic, chemically complex polyelectrolytes
(Edwards and Amirtharajah 1985). In natural water pH conditions, humic substances

exist as negatively charged macromolecules with the negative charge resulting from the
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presence of functional groups (Edwards and Amirtharajah 1985). The major functional
groups are carboxyl, phenolic hydroxyl, and alcoholic hydroxyl; depending on which
functional groups are present, the chemical composition of humic matter varies between
approximately 40-60 % carbon, 30-50% oxygen, 3-6% hydrogen, and 1-4 % nitrogen (by

weight) (Malcolm Pirnie Inc. 1993).

Humic matter is further sub-divided into a number of classes depending on its solubility
in acid, alcohol, and base (Table 2.1) (AWWA Committee 1979).

Table 2.1 Classification of humic substances

Group Name Definition

Humus Coal Insoluble in water and NaOH

Fulvic Acid Soluble in mineral acid and NaOH

Hymatomelanic Acid Soluble in NaOH and alcohol, insoluble in mineral acid
Humic Acid Soluble in NaOH; insoluble in alcohol and mineral acid

In natural waters, the distribution of the humic substances is > 80 % fulvic acid, ~10 %
hymatomelanic acid, and ~ 2 % humic acid (AWWA Committee 1979). Humus coal,
being insoluble in water, is not found in natural waters in any appreciable quantities.
Many researchers do not distinguish between the hymatomelanic acid and the humic acid
fractions. As such, much of the literature focuses on differentiating the humic acid and
fulvic acid fractions based on their physical and chemical characteristics. Fulvic acids
have molecular weights in the range of 200 - 1000 g/mol and therefore exhibit a much
higher charge density than their humic counterparts, which have molecular weights in the
200000 g/mol range (Kavanaugh 1978). Fulvic acids also contain a higher concentration
of oxygen-containing functional groups and have fewer carbon and nitrogen atoms per

unit weight than the humic acid fractions (AWWA Committee 1979). These differences
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result in the preferential coagulation of certain NOM fractions over others, as will be

discussed further on.

The reasons for removing organic matter from the drinking water stream are many
(AWWA Committee 1979). Natural organic matter imparts colour, taste, and odour to
water, all of which can be aesthetically unpleasing. Organic matter can also interfere with
the oxidation and removal of heavy metals such as iron and manganese and can foul
anion exchange resins, thereby inhibiting demineralization. Natural organic matter is also
a precursor to disinfection by-products and some organics can be toxic and/or
carcinogenic alone or in association with heavy metals and pesticides. Finally, in
distribution systems, the presence of organics may contribute to increased biological

growth and thereby increases the rate of corrosion.

Currently, the most cited reason for removing NOM from the drinking water stream is to
impede the formation of disinfection by-products (DBPs). In conventional water
treatment where chlorinated disinfectants are used, disinfection by-products such as
trihalomethanes (THMs) and haloacetic acids (HAAs) can form by the reaction of
residual chlorine with natural organic matter (NOM) in the treated water (Table 2.2). As
many DBPs, such as chloroform, are suspected to be carcinogenic, it is generally

desirable to remove them from the drinking water stream.

2.2.2 Measurement of NOM

As there is no bulk parameter that measures the concentration of disinfection by-product

precursors in water, surrogate parameters are used. The ideal surrogate is one that can be
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rapidly measured, does not require special equipment or training, and permits the
accurate estimation of the target parameter (Malcolm Pirnie Inc. 1993). A list of the most

common surrogates used for the determination of NOM is presented in Table 2.3.

Table 2.2 Chlorinated disinfection by-products (after Clark, Adams and Lykins 1994)

Class Representative DBPs
Trihalomethanes Chloroform
Bromodichloromethane
Chlorodibromomethane
Haloacetic Acids Dichloroacetic acid
Trichloroacetic acid
Haloacetonitriles Bromochloroacetonitrile
Dichloroacetonitrile
Trichloroacetonitrile
Haloaldehydes Dichloroacetaldehyde
Trichloroacetaldehyde
Haloketones 1,1-dichloropropanone

1,1,1-trichloropropanone
1,1-dichloro-2-butanone
3,3-dichloro-2-butanone
1,1,1-trichloro-2-butanone
Chlorophenols 2-chlorophenol
2,4-dichlorophenol
2,4,6-trichlorophenol
Chloropicrin
Cyanogen chloride

Table 2.3 Methods for the determination of NOM in water

Method Abbreviation Reference
Total Organic Carbon TOC 5310*
Dissolved Organic Carbon DOC S310*
Ultra-Violet Absorption (253.7 nm) UVA 5910%

Specific UV Absorbance SUVA (Edzwald 1993)
Trihalomethane Formation Potential THMFP 5710 B and C*
Colour 2120*

*in Standard Methods, 19® Ed. (Eaton, Clesceri and Greenberg 1995)
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2.2.2.1 TOC and DOC

Total organic carbon (TOC) measures the amount of organically bound carbon in water
samples. Dissolved organic carbon (DOC) is the portion of TOC that remains after the
water is passed through a 0.45 pm filter (Malcolm Pimie Inc. 1993). Both are
independent of the oxidation state of the organic matter and do not measure other
organically bound elements, such as nitrogen and hydrogen (Eaton, Clesceri and
Greenberg 1995). TOC and DOC may not consistently provide an accurate measure of
DBP precursors as they do not indicate aromaticity, aliphatic nature, functional group
chemistry, or chemical bonding associated with natural organic molecules (Malcolm
Pimnie Inc. 1993). The removal of TOC is a conservative indicator of the removal of the
precursors of trihalomethanes and haloacetic acids, the most common DBPs, and of UV-
absorbing compounds (Miltner, Nolan and Summers 1994). As previously mentioned,

TOC will be used by the USEPA for the D/DBP rule.

2.2.2.2 UVA and SUVA

Ultra-violet absorption at a wavelength of 253.7 nm is used to provide an indication of
the aggregate concentration of UV-absorbing organic constituents, such as humic
substances and various aromatic compounds (Eaton, Clesceri and Greenberg 1995). As
such, it is often considered to be a surrogate measure of TOC (Edzwald, Decker and
Wattier 1985). Measuring the organic content of water by UV is a fast, cheap,

automatable process (Reid, Cresser and Macleod 1980). As with any spectrophotometric
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technique, interferences are common. Certain oxidants and reducing agents such as
ozone, chlorate, chlorite, chloramines, and thiosulphate also absorb light at 253.7 nm
(Eaton 1995). UV analyses are also affected by the pH and turbidity of the solution being
tested (Malcolm Pirnie Inc. 1993). The specific ultra-violet absorbance (SUVA) is
operationally defined as the UVA / DOC of the sample (Edzwald 1993). SUVA is an
indicator of the humic content of the organic matter and should be used in addition to
TOC when determining the amenability of a water to enhanced coagulation (Krasner et
al. 1997). Waters with low SUVA values contain primarily non-humic matter that is not

amenable to enhanced coagulation.

2.2.2.3 THMFP

The trihalomethane formation potential (THMFP) of a sample is defined as the
concentration of total trihalomethanes (TTHM) that are formed when the sample is
incubated in the presence of excess free chlorine (Eaton, Clesceri and Greenberg 1995).
THMFP determinations provide a worst-case scenario of the concentration of THMs that
may be formed and do not necessarily provide an accurate description of what will
happen in a full-scale system (Malcolm Pirnie Inc. 1993). In addition, THMFP
determinations are extremely sensitive to solution pH, chlorine dosages, and contact
times.

2.2.2.4 Colour

Colour determinations are reported as "true colour”, that is, the colour of the water from

which turbidity has been removed. Colour in water may result from the presence of
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natural metallic ions, humus and peat materials, plankton, weeds, and industrial wastes
(Eaton, Clesceri and Greenberg 1995). In water treatment applications, colour is a
surrogate measure for the humic content of a sample (Edzwald, Decker and Wattier
1985). As the humic fraction of natural organic mater is largely responsible for the
formation of DBPs, the removal of colour can be used as surrogate for the removal of
DBP precursors, provided that site-specific correlations are made. Reductions in colour
and THM precursors were found to occur almost concurrently (Amirtharajah, Dennett

and Studsuil 1993).

2.2.2.5 Correlations between the NOM Surrogates

As each of the surrogates measures different fractions of the NOM present in a sample,
certain surrogates are preferentially removed over others. In general, the order of
removability is UVA > THMFP > TOC (Reckhow and Singer 1990 ; Cheng et al. 1995).
In spite of being preferentially removed, UVA was found to be linearly correlated with
both TOC and THMFP, although such correlations are case-specific (Edzwald, Decker
and Wattier 1985). Correlations between UVA and TOC are affected by the presence of
chloramines and turbidity; efforts should be made to remove these interferences before
correlations are made (McCarty and Aieta 1984 ; Dobbs, Wise and Dean 1972). The
UVA/TOC correlation may alsc need to be sub-divided on a seasonal basis as the
composition of the organic matter is likely to vary from season to season (Reid, Cresser

and Macleod 1980). With respect to the correlation between colour and TOC, TOC
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removal curves at varying alum doses parallel colour removal curves, although colour is

preferentially removed (Babcock and Singer 1979).

2.2.3 DBP Removal Techniques

Disinfection by-product control strategies commonly fall into one of three categories:
precursor removal, disinfectant modification, and removal after formation. An assessment
of the relative cost of the various control strategies is presented by Clark, Adams and

Lykins (1994).

2.2.3.1 DBP Precursor Removal

The most common and most widely supported means of DBP control is through the
removal of DBP precursors, namely dissolved and suspended natural organic matter.
Precursor removal can be accomplished through precipitative processes, adsorptive

processes, and membrane processes (Clark, Adams and Lykins 1994).

With respect to the precipitative processes such as enhanced coagulation and enhanced
softening, the physical and chemical properties of the organic matter are altered such that
agglomeration is enhanced and the precipitate is removed by settling out or by filtration
(Malcolm Pirnie Inc. 1993). The enhanced coagulation process involves the use of
additional coagulant in the clarification stage of water treatment in order to improve the

removal of disinfection by-product (DBP) precursors, namely natural organic matter
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(Crozes, White and Marshall 1995). NOM removal by enhanced coagulation is
accomplished by chemical precipitation, formation of insoluble complexes through
charge-neutralization, or adsorption onto floc (Bell et al. 1997). The mechanism of
removal is highly dependent on the pH of coagulation; at low pH (4.0 - 4.5) the charge-
neutralization mechanism predominates while the adsorption mechanism predominates at

higher pH levels (6.0-8.0) (Edwards and Amirtharajah 1985).

Adsorption techniques are often employed to remove low molecular weight organics
following or during coagulation. The two main techniques involve using activated carbon
in either the granulated (GAC) or powdered (PAC) form. GAC is either placed in a
gravity bed or in pressure contactors following coagulation, in order to maximize contact
with the pre-treated water. If GAC adsorption is not preceded by coagulation, high
molecular weight organics, which adsorb to a lesser extent on GAC, will block the pores
on the GAC. Adsorption increases with decreasing pH. The overall optimum pH for
coagulation / GAC adsorption can be expected to be somewhat acidic and highly
dependent on the alkalinity of the system (Randtke 1988). Historically, PAC has been
used primarily for the control of taste and odour problems on a seasonal basis. When high
pore-volume PAC is used in elevated doses (>50 mg/L) however, it can assist in the
removal of DBP precursors. PAC is often more economical than GAC since the need for
organics removal often varies considerably throughout the year. PAC is easily turned on
and off as needed, creates no headloss, and involves only a very minor capital investment

(Randtke 1988).
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Membrane processes are generally used in relatively low-turbidity waters in order to
remove total dissolved solids (TDS). The membranes employed in these processes are
defined by their effective pore size which is often expressed as the molecular weight cut-
off (MWC), the molecular weight above which most species are retained by the
membrane. Ultrafiltration (UF), nanofiltraion (NF), and reverse osmosis (RO)
membranes, with MWCs of >500, 200-500, and <200 respectively, are commonly
employed in the water treatment industry (Malcolm Pirnie Inc. 1993). Membranes with
lower effective pore sizes and MWCs have higher operating pressure requirements and

are more susceptible to fouling than those with larger effective pore sizes and MWCs.

2.2.3.2 Disinfectant Modification

In removing DBPs through disinfectant modification, two methods are commonly
employed. The most cost-effective method involves replacing free chlorine with an
alternate disinfectant such as ozone, chlorine dioxide, and chloramine, aithough this
method has several drawbacks. Both chloramine and chlorine dioxide are able to form
DBPs, albeit in lower concentrations, and ozonation of bromine-containing waters can
result in the formation of brominated DBPs (Crozes, White and Marshall 1995). In
addition, because ozone decomposes rapidly in water, it cannot be used to maintain a
residual in distribution systems (Tate and Amold 1990). As such, a chlorinated
disinfectant must be used as the residual disinfectant, potentially forming DBPs in the
distribution system if precursors are present. The second method involves moving the

point of disinfection further downstream. Since DBP formation is time dependent,
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moving the disinfection point further downstream will help to reduce DBP concentrations
in the finished water (Clark, Adams and Lykins 1994). In addition, if disinfection is
delayed until after filtration, fewer precursors remain to react with the disinfectant.
Unfortunately however, moving the point of disinfection further downstream reduces the

disinfection contact time thereby reducing the effectiveness of disinfection.

2.2.3.3 Removal of DBPs

The physical removal of DBPs after formation is a costly alternative to precursor removal
and can generally be accomplished by either GAC adsorption or by air stripping (Clark,
Adams and Lykins 1994). GAC adsorption 1s commonly used in the manner described for
precursor removal above. Since DBPs are, for the most part, volatile organic compounds
(VOCs), they can also be removed by air stripping. The process involves bringing air in
contact with the water in order to transfer the contaminants from the aqueous to the
gaseous phase (Comwell 1990). Air-stripping for the removal of THMs commonly
involves the use of a packed tower with a counter-current flow pattern with water falling
down through the tower packing, and air passing upward. This arrangement maximizes
the turbulence required for high transfer efficiencies. One of the major disadvantages of
the technique is the production of off-gas that is either dispersed to the air or treated by
adsorption onto GAC, a costly alternative. In addition, the formation of DBPs occurs in
two stages, a rapid stage and a long-term (7 day) stage (Knocke, West and Hoehn 1986).

If the DBP precursors are not removed by one of the methods highlighted above, the
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potential for DBP formation in the distribution system will exist regardless of whether or

not air stripping is employed.

2.2.4 Enhanced Coagulation

Enhanced coagulation is considered to be the best available technology for the reduction
of DBPs in treated water (Krasner and Amy 1995). The process involves the use of
additional coagulant in order to improve the removal of disinfection by-product (DBP)
precursors, namely natural organic matter (Crozes, White and Marshall 1995). The
enhanced coagulation process consists of two steps: the conversion of dissolved NOM to
particuiate matter during coagulation and flocculation, and the removal of the particulates
during sedimentation and filtration (Malcolm Pimnie Inc. 1993). A general discussion of
the enhanced coagulation process, as well as detailed descriptions of the mechanisms of

removal is presented by Malcolm Pirnie Inc. (1993).

2.2.5 Factors Affecting NOM Removal by Enhanced Coagulation

Many factors, both chemical and physical, must be controlled in order to maximize DBP

precursor removal by enhanced coagulation.

2.2.5.1 Nature of the Organics

Organic matter occurring in natural waters can be characterized by its molecular weight
distribution (MWD), humic substance content, and hydrophobicity, all of which affect its

removal by enhanced coagulation. Typically, enhanced coagulation removes humic and
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high molecular weight fractions better than it removes non-humic and low molecular
weight fractions (Cheng et al. 1995). In addition, hydrophobic organic molecules are
preferentially removed over their hydrophilic counterparts (Collins, Amy and Steelink

1986).

Separating the humic substances into humic acid and fulvic acid fractions yields
additional information on the removability of natural orgamic matter by enhanced
coagulation. Humic acids, having higher molecular weights than fulvic acids, are
preferentially removed (Krasner and Amy 1995). Fulvic acids typically require
approximately twice the coagulant dose as humic acids for effective removal (Kavanaugh
1978). With respect to the relative reactivities of the two humic components, the fulvic
acid fraction is less reactive than the humic acid fraction (Joyce, DiGiano and Unden
1984). As such, even though fulvic acids comprise over 80 % of the organic matter found
in natural waters, the more reactive high molecular weight humic acid fraction is

preferentially removed.

2.2.5.2 Alkalinity

For the USEPA D/DBP rule, TOC removal requirements are based on raw water
alkalinity, suggesting that the alkalinity is an important parameter for DBP precursor
removal. Alkalinity is an extremely important economic parameter since, along with the
coagulant type and dose, alkalinity governs the pH which can be achieved without
resorting to the use of supplemental acid or base (Randtke 1988). Waters with higher
alkalinity (80 -100 mg/L as CaCOs3) will have good buffering capabilities and will resist

pH depression by the coagulant (Malcolm Pimie Inc. 1993). If a low coagulant dose is
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applied to high alkalinity water however, the pH of the system may be well above the
optimum for organics removal. Conversely, if the alkalinity of the raw water is low, the
pH obtained may be satisfactory for organics removal, but the quantity of solids
precipitated may be too low to coprecipitate some of the soluble organics that could
otherwise be removed (Randtke 1988). In summary, NOM removal will be favored by
lower raw water alkalinities, given the same dosing conditions, provided that the pH of
the water does not drop below the optimal range upon coagulant addition (Malcolm

Pimnie Inc. 1993).

2.2.5.3 Inorganics, Suspended Solids, and Turbidity

The effect of divalent cations and anions, suspended solids, and turbidity-causing
particles on the removal of NOM has been thoroughly studied. Divalent cations can
broaden the pH range for effective removal and lower the required coagulant dosage
(Randtke 1988). In particular, the Ca?* cation was found to enhance the removal of fulvic
acid, which is generally difficult to remove, when alum or PACL is used as the coagulant
(Hundt and OMelia 1988). Conversely, the SO and OH anions may inhibit the
coagulation of organics by competing with organics in solution for hydrolyzed coagulant
species and adsorption sites (Jacangelo et al. 1995). Other monovalent anions, such as
CI', were found to have little effect on the removal of organics (Harrington, Chowdhury
and Owen 1992). Most authors agree that suspended solids, as well as turbidity-causing
particles, have little effect on the removal of humic substances and colour (Dempsey,
Ganho and O'Melia 1984 ; Ollier, Miltner and Summers 1997). In raw waters with low

colour concentrations however, a small amount of turbidity may decrease the required
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coagulant dose by providing adsorption sites for the organic molecules (Edwards and

Amirtharajah 1985).

2.2.5.4 Temperature and Biological Activity

Seasonal variations in both raw water temperature and biological activity affect the
influent water quality and its treatability. During the warmest months, high levels of
NOM are likely to exist, coinciding with the season of peak water demand. As such, it is
necessary to ensure that treatment processes are able to cope with increased organic
loading. Water temperature does not directly affect the removal of TOC by coagulation,
although colour removal is impaired at low temperatures (< 2°C) (Knocke, West and
Hoehn 1986). In addition, the solubility of alum is affected by low temperatures (< 4°C),
as the pH of minimum alum solubility is lowered by approximately 0.5 units (Edzwald
1993). This reduced solubility can result in an increase in the required alum dose. With
respect to biological activity, the effectiveness of reducing NOM does not appear to be
affected by variations in algal or bacterial populations (Hoehn et al. 1984). Biota can
however, contribute to the organic loading of the raw water and thereby increase the

concentration of NOM.

2.2.5.5 Coagulation pH

The optimal pH of coagulation for the removal of organic matter is dependent on the
coagulant used. For alum-based treatment, the optimal pH range has been variously

reported as 5 - 6 (Malcolm Pirnie Inc. 1993) (Kavanaugh 1978), 5.5 - 6.0 (Singer 1994),
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and 5.0 - 6.5 (Edwards and Amirtharajah 1985). For Fe(III)-based coagulants, the optimal
range is shifted to lower values and has been reported as 3 - 5 (Kavanaugh 1978), 4 - 6
(Amirtharajah, Dennett and Studstill 1993), and 4 - 5 (Malcolm Pirnie Inc. 1993). More
detailed studies suggest that the optimal coagulation pH is also dependent on the nature
of the organic matter. For alum coagulation, colour caused by humic acids is best
removed at pH < 5.5, while colour caused by fulvic acids is best removed at 4.5 <pH < 5
(Babcock and Singer 1979). More recent studies suggest that the coagulation pH is not
statistically significant by itself when determining optimal coagulation conditions
(Harrington, Chowdhury and Owen 1992). Rather, optimal regions of organic removals
are defined by specific combinations of alum dose and coagulation pH. The first region,
in which the charge-neutralization mechanism predominates, typically occurs when a
coagulation pH is 4.00 - 4.75 is combined with alum doses of 15 - 80 mg/L (Edwards and
Amirtharajah 1985). At pH 5.75 - 7.50 and alum doses > 30 mg/L, the organic matter is

adsorbed to aluminum-hydroxide precipitates.

2.2.5.6 Type of Coagulant

Many compounds including alum, ferric chloride, polyaluminum chioride (PACL),
cationic polymers, aluminum chlorohydrate, ferric sulphate, sodium aluminate, ferric
chlorosulphate, and polyiron chloride have been used as primary coagulants in water
treatment facilities (Edzwald 1993). In spite of the variety of coagulants available, most
utilities use either alum or ferric chloride as the primary coagulant. In general, ferric
coagulants outperform alum coagulants at higher doses, on an equal dose basis, while

alum has the edge at lower doses (Edwards 1997 ; Randtke and al. 1994). Ferric chloride
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produces approximately 2.8 times more metal hydroxide, produces less sludge, and is
more effective at lowering the coagulation pH than alum, making it more suitable to
enhanced coagulation (Crozes, White and Marshall 1995). In comparing these metal-salt
coagulants to cationic polymers, the metal-salt coagulants are typically more effective at
removing low molecular weight NOM (Randtke 1988). Synthetic organic cationic
polymers can achieve colloidal charge neutralization and possibly participate in the
precipitation of humic and fulvic acids, but they do not provide a substrate for adsorption
of the organic matter (Crozes, White and Marshall 1995). Polyaluminum chloride is
sometimes used as the primary coagulant in low turbidity waters, although the doses used
are generally insufficient to remove NOM (Malcolm Pimie Inc. 1993). Other coagulants
such as aluminum sulphate (Edwards and Amirtharajah 1985), aluminum chlorohydrate
(Williams et al. 1996), and magnesium salts (AWWA Committee 1979) have been
proposed for colour and organics removal, although very few full-scale applications of

these coagulants have been identified.

2.2.5.7 Coagulant Dose

The coagulant dose required for optimal DBP precursor removal is highly dependent
upon the source water characteristics, as well as the type of coagulant used. As such,
there is no single optimal coagulant dose for NOM removal, only general trends and
dose/removal profiles. In general, except at very low colour concentrations, the
coagulant dose required for colour removal is greater than that required for turbidity
removal alone (Edwards and Amirtharajah 1985). The removal of NOM generally

follows one of two dose/removal patterns. Removal either increases very sharply in the
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vicinity of a particular coagulant dosage (type 1 pattern) or increases very gradually with
increasing dosage and eventually becomes asymptotic (type 2 pattern) (Randtke 1988).
Type 1 behavior is indicative of a precipitation mechanism and is associated with low pH
(5-6 for alum) and high concentrations of NOM that is predominantly humic. Type 2 is
associated with relatively high pH, low NOM, and non-humic materials. A stoichiometric
relationship between the NOM and the coagulant exists for the type 1 pattern, but not
necessarily for type 2. Type 2 is most common for surface waters, especially where
turbidity and/or alkalinity are high. With the type 2 pattern, it is possible to reach a point
of diminishing returns where dosing beyond the minimum required for effective removal

of organics does not substantially improve removals (Vrijenhoek et al. 1998).

2.2.5.8 Mixing Conditions

Colour removal by enhanced coagulation is a function of the rapid mix time, the mean
velocity gradient (G), and the flocculation time (T). For most waters, the optimal rapid
mix time for colour removal was found to be 30 - 60 seconds (Bowie and Bond 1977).
With respect to the flocculation characteristics, the mean velocity gradient should not
exceed 100 s in order to ensure proper floc development (Kawamura 1973). Organics
removal was found to be unaffected by changes in the flocculation time in the range of 10
- 30 minutes, however shorter flocculation times may not produce adequate floc for

organics removal (Semmens and Field 1980).
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2.2.5.9 Addition of PAC

Powdered activated carbon (PAC) is commonly used in concentrations of 5 - 10 mg/L on
a seasonal basis to control taste and odour problems. At these low concentrations, PAC is
typically ineffective at removing NOM due to insufficient contact with the organics
(Randtke 1988). At elevated concentrations (> 50 mg/L) however, the PAC acts as a
flocculation nucleus and can significantly reduce the amount of NOM present in the
water (Chadik and Amy 1983). The effectiveness of PAC addition can be improved by
using smaller diameter PAC in order to maximize surface area, and by adding the PAC

before the coagulant in order to maximize contact time (Randtke 1988).

2.2.5.10 Addition of Polymer

While generally ineffective as a primary coagulant for the removal of NOM, polymeric
coagulant aids can reduce the dose of coagulant required to achieve acceptable NOM
removals by as much as 44 % (Hubel and Edzwald 1987). Most studies conclude that the
addition of polymeric coagulant aids does not increase organics removal (Randtke 1988)
(Hubel and Edzwald 1987), although one study suggests that elevated concentrations (2
mg/L) of cationic polymer can reduce the THMFP of finished water by up to 22 %
(Chadik and Amy 1983). At such elevated polymer doses however, the floc may

restabilize resulting in poor turbidity removals (Edzwald, Haff and Boak 1977).
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2.2.5.11 Preoxidation

The use of strong oxidants, such as ozone, can alter the chemical properties of NOM,
making it less amenable to coagulation. Preozonation can convert some humic material
into non-humic material and reduce the molecular weight of the organic matter by
severing the carbon backbone. As such, preozonation can lead to a reduction in UV
absorbance and colour without reducing TOC (Edzwald, Decker and Wattier 1985). In
addition, ozonation increases the polarity and the average acidity of the NOM, resulting

in a diminished tendency of the NOM to bind to the coagulant (Owen et al. 1995).

2.3 Conventional Control and Modelling of Coagulation

2.3.1 General Strategies

2.3.1.1 Batch Dose Control

The most common method of determining optimal coagulation conditions is the jar test, a
batch test consisting of a series of 0.5 - 2.0 L jars that serve as bench-scale clarifiers. The
jar test may be used for coagulant selection, dose selection, coagulant aid and dosage
selection, determination of optimal pH, determination of the point of chemical addition,
optimization of mixing times and energies, and determination of coagulant feed
concentration (Amirtharajah and O'Melia 1990). While many utilities develop their own
Jjar test methodologies, a sample protocol for the determination of coagulant dose is
presented by Amirtharajah and O'Melia (Amirtharajah and O'Melia 1990). In order to
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approximate the full-scale system, it is essential that the relative dimensions of the jar, as
well as the method of chemical preparation, temperature, mixing intensity, and mixing
time are all similar to that found in the full-scale system. When used for coagulant dose
selection, any one of a number of methods including turbidity, colour, streaming current
detection, and particle counts, can be applied to the jar effluent (Dentel 1991). The
optimal dose is often selected by plotting the selected parameter against the doses used in

the jars and selecting the dose that best meets the utility’s process criteria.

There are several key disadvantages to using jar tests for coagulation optimization. First
and foremost is the frequency of testing. Being batch tests, jar tests are only able to
provide a snapshot of influent water quality and are unable to represent the continuously
changing dynamics of the full-scale system. Jar tests are often performed infrequently
throughout the plant operator’s shift and often after clarified water quality begins to
degrade. Adjusting coagulant doses based on the results of jar tests is reactive rather than
proactive; dosing levels generally can not be adjusted until an upset occurs. As such, the
magnitude of the upset is often magnified due the time lag between the change in influent
water quality and the chemical dosing adjustments. In addition the requirement to now
determine the optimal dose for both particulate and organic removal adds significant
complexity to jar testing methodologies. The optimal dosing levels determined by the
bench-scale jar tests may also differ from those in full-scale operations due to the
differences in the hydrodynamics of the two systems. In addition, clarifiers with sludge

recycling are inherently difficult to approximate at the bench scale. In spite of these
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limitations, the jar-test is widely used for determining dosing levels as few alternatives

exist.

2.3.1.2 Continuous Dose Control

Continuous control of coagulant dose can be accomplished via flow-paced chemical feed,
electrokinetic methods, and turbidimetric methods. In flow-paced chemical feed systems,
the coagulant feed rate is adjusted according to the raw water flow rate, thereby
maintaining a constant coagulant dose (Dentel 1991). This method does not address the
need for varying the coagulant dose according to influent water characteristics and is

therefore unsuitable for all but the best quality raw waters.

The main electrokinetic method involves the estimation of the zeta potential of a sample
using a streaming current detector (SCD). The zeta potential is a measure of the electric
potential surrounding particles in solution. Suspensions that are well destabilized by the
charge-neutralization mechanism of coagulation have a zeta potential value near zero. A
streaming current detector is a cylindrical device containing a piston with a reciprocating
motion and an annular space between the piston and the cylinder. A sample of water is
drawn into and pushed out of the annular space as the piston moves up and down,
generating an alternating or streaming current at electrodes affixed to the ends of the
cylinder (Amirtharajah and O'Melia 1990). The streaming current is directly proportional
to the charge on the particles in the sample, and a pH specific correlation can be made

between the SCD reading and the zeta-potential of the sample. The SCD can be
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implemented in feedback loop control systems to automatically adjust the coagulant dose
for effective destabilization of the particles (Amirtharajah and OMelia 1990).
Electrokinetic methods are only useful if the charge-neutralization mechanism of

coagulation predominates.

Turbidimetric methods involve the use of continuous online turbidity measurements
following either flocculation or sedimentation for feedback loop coagulant dose
adjustment. Such methods are rarely used due to the difficulties in the provision of a
trouble-free means of continuous turbidity measurements and the implementation of a
successful control algorithm (Dentel 1991). Conventional turbidity meters are subject to
clogging, and damage through continuous use. With respect to the control algorithm,
conventional set-point control strategies are not always applicable. If excessive coagulant
dosing results in elevated turbidity measurements, for example, the controller would
attempt to control the turbidity by increasing the coagulant dose, clearly the wrong

control action.

2.3.2 Proposed Models

A model for the removal of NOM by coagulation was developed by Harrington using a
forward stepwise variable selection procedure with multiple linear regression analysis
(Harrington, Chowdhury and Owen 1992). Initially, the model considered the effects of
raw water TOC, alum dosage, coagulation pH, temperature, and chloride concentration

on finished water TOC, although the later two parameters were dropped due to lack of
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statistical significance. The resulting model had an adjusted r* of 0.965 based on 44
observations. When applied to data from associated databases, the model tended to under-
predict finished water TOC by approximately 7 %. Harrington’s model verification is
based on a narrow range of water quality and operating conditions (Greiner, Obolensky
and Singer 1992). As such, it may not be able to accommodate site-specific deviations

from the reference databases, resulting in even greater prediction errors.

General and site-specific models for the removal of DOC during enhanced coagulation,
proposed by Edwards, predicted the final DOC with a standard error of approximately
12 % (Edwards 1997). The model inputs were coagulant dosage, coagulation pH, raw
water UVA, and raw water DOC. The author cautions that the excellent predictive ability
of the model should not be construed to imply conceptual validity until further tests are

completed.

2.3.3 Process Optimization and Contro! at Rossdale and E.L. Smith WTPs

The coagulation process at both of the WTPs has traditionally been controlled by manual
operator control. For typical on-line operation control, the operators assess the quality of
the water, using jar-tests or their experience, and then adjust the operational parameters
as they see fit. Both facilities have a supervisory control and data acquisition (SCADA)
system in place to assist in process operation, however these systems serve only to relay
control information and do not generate control actions themselves. In many large water

treatment plants, there may be some dosing control strategy in place however, such
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dosing strategies normally only serve as a guideline and are not rigorously followed. At
Rossdale WTP for example, a strategy exists for selecting alum dose levels based on
clarifier effluent colour. This strategy is rarely invoked however, as each operator
maintains operational control using strategies derived from personal experience. At E.L.
Smith WTP, the overriding goal for the coagulation process is to reduce clarifier effluent
turbidity. Again, each operator achieves this goal using a different strategy based on

personal experience.

2.4 Overview of ANN Modelling

2.4.1 General Characteristics of ANNs

The ANN modelling technique is an artificial intelligence technique that simulates the
human brain’s problem solving processes. Unlike the human brain, which consists of an
estimated 10'' neurons with 10" connections, the most. complex ANNSs consist of less
than 1000 processing elements or artificial neurons and 105 connections (Flood and
Kartam 1997). Artificial neural networks are capable of self-organization and learning;
concepts and patterns can be extracted directly from historical data without the need for
complex mathematical formulae or algorithms. In general, artificial neural networks can
be applied to the following types of problems: pattern classification, clustering and
categorization, function approximation, prediction and forecasting, optimization,
associative memory, and process control (Jain, Mao and Mohiuddin 1996). ANNs are

particularly useful if the characteristics of the specific problem are known, but the
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connections between the data that are necessary to solve the specific problem are not
(Buscema 1997). In the water treatment industry, for example, ANNs can be applied to
processes where the important factors are known but the reactions and interactions

between the factors are difficult to elucidate.

The ANN technique holds several advantages over other statistical methods of data
analysis. With respect to data processing, the type of relationship (linear, non-linear,
exponential, etc.) between input and output data is determined purely from the
information presented, with no in-built assumptions from the ANN (Harvey and Harvey
1998). In addition, discontinuities in the data, different levels of data measurement
precision and noise, and data scatter are easily accommodated (Foody and Arora 1997).
The feature that really sets ANNs apart from other statistical methods however, is the
ability to self-organize or leamn. This feature allows ANNs to produce correct or nearly
correct responses when presented with partially incorrect or incomplete stimuli, and to
generalize rules from the training cases and apply these to new cases (Garret, Ghaboussi

and Wu 1992).

With respect to the disadvantages of the technique, ANNSs are data intensive and are only
suited to problems where large quantities of data exist (Stanley, Zhang and Baxter 1998).
In addition, the ANN technique is considered to be a "black-box" technique; ANN
models do not yield explicit mathematical formulae (Harvey and Harvey 1998). Current
research efforts in the field are aimed at unraveling the black box in order to extract

heuristics and rules from model architectures. In addition, little research has been
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conducted on the ability of ANNSs to extrapolate beyond their knowledge base. As such, if
new patterns contain data which is more that 2 standard deviations away from the mean,
ANN predictions should be used with caution (Boger 1997). Alternatively, the ANN can
be retrained to enlarge its knowledge base. Finally, due to the ease of obtaining accurate
fits to data sets, ANNs are often misused and misapplied (Chen et al. 1996). The
technique is constantly being applied to problems with insufficient or incorrect data,
resulting in unfounded conclusions concerning ANN performance. Models are also often
constructed without due consideration to optimization, resulting in sub-standard

performance.

2.4.2 Historical Development of ANNs

The history of artificial neural networks can be divided into three eras according to the
technique’s acceptance by the scientific community: initial enthusiasm, lack of support,
and re-emergence. An excellent account of the history of neural networks can be derived
from the collection of key papers assembled by Anderson and Rosenfeld (1988). What
follows is a brief synopsis of some of the key developments in the field of artificial neural

networks.

In 1943, McCulloch and Pitts published what is considered by many to be the founding
paper of the field. In the paper, the authors list five main assumptions governing the
operation of biological neurons: 1) the activity of a neuron is an "all-or-none" process, 2)

a certain fixed number of synapses must be excited in order to excite a neuron 3) the only
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significant delay within the nervous system is synaptic delay 4) the activity of any
inhibitory synapse absolutely prevents excitation of the neuron at that time 5) the
structure of the neural net does not change with time (McCulloch and Pitts 1943). The
resulting model of a neuron, referred to as the McCulloch-Pitts Neuron, operates in a
similar fashion to the nodes found in modern ANNs. The neuron responds to the activity
of its synapses, which reflect the state of the presynaptic cells (Anderson and Rosenfeld
1988). If no inhibitory synapses are active, the neuron sums its synaptic inputs and

becomes activated if the sum exceeds a certain threshold.

The next major development came in 1958 when Rosenblatt designed and introduced the
perceptron, a conceptual model of neural activity in the human brain. The perceptron
consists of three layers: sensory units (S-points), association cells (A-units), and
responses (R-units) (Rosenblatt 1958). Stimuli impinge on the S-points, which in tum
transmit impulses to the A-units. If the sum of the impulses arriving at a particular A-unit
exceed a threshold value, the unit is activated and transmits an impulse to a particular R-
unit. Rosenblatt recognized the inherent power in the theories he developed, suggesting
that the perceptron could be useful in pattern recognition, associative learning, temporal
and spatial pattern recognition, and trial-and-error learning (Rosenblatt 1958).
Rosenblatt’s work was well received; seemingly overnight, a hundred learning algorithms
bloomed and a hundred schools of learning machines contended (Anderson and
Rosenfeld 1988). Perceptrons, with a single layer of A-units, were developed and were

able to discriminate between linearly separable patterns. When such systems were tested



with complex patterns that were not linearly separable however, little progress was seen

and many researchers became disenchanted with the field (Harston and Maren 1990).

In 1969, Minsky and Papert published a book that effectively eliminated funding for
neural network development. Perceptrons , a book on the mathematics and the theory of
computations, discusses the limits of Rosenblatt’s perceptrons. Minsky and Papert
suggest that much of the early work on perceptron development was without scientific
value but proceeded due to the romantic enchantment with the new ideas of machine
learning (Minsky and Papert 1969). The authors suggest that simple perceptrons are
limited with respect to their connectedness. Two such classes of limitations include
diameter-limited perceptrons, where each associative unit can only be associated with an
area of fixed diameter on the sensory surface, and order-restricted perceptrons where
each associative unit can only be connected to a set number of points on the sensory
surface. In either case, simple perceptrons are not able to determine whether all the parts
of a geometric figure are connected to each other (Minsky and Papert 1969). In order to
overcome this difficulty, the network would have to be excessively large, making it
impractical for all but the simplest of problems. In the concluding chapter of the book,
the authors suggest that multi-layer variants of the simple three-layer perceptron would
not prove any more fruitful than their less complex counterparts. This assertion became

the mainstream opinion until the resurgence of neural networks in the mid-1980%.

In 1986, Rumelhart, Hinton, and Williams published a two-volume book Parallel

Distributed Processing which contains, among other things, the first well-known
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description of the back-propagation learning algorithm. The algorithm had been
described earlier by Werbos in his Ph.D. thesis in 1974 and was simultaneously re-
discovered by Parker in 1985 and Le Cun in 1986, yet Rumelhart is generally considered
to be the father of back-propagation (Anderson and Rosenfeld 1988). Since 1987, the
back-propagation learning algorithm had been the most popular algorithm for multilayer
networks. Error propagation in the back-propagation algorithm involves the use of the
generalized delta rule, which minimizes the squares of the differences between the actual
and the desired output values summed over the output units and all pairs of input/output
vectors (Rumelhart, Hinton and Williams 1986). The ability of the back-propagation
algorithm to solve a wide variety of problems using multi-layer architectures has since
been demonstrated many times, thereby effectively negating the misplaced comments of

Minsky and Papert with regards to multi-layer perceptrons.

Since Rummelhart’s developments, research in the area of ANNs has once again
intensified. As will be discussed further on, applications using the back-propagation and

other algorithms have provided new insight into a wide variety of processes and systems.

2.4.3 Components of ANN Architectures

There are seven major components to an ANN model, which are collectively known as
the ANN architecture: 1) processing units 2) a state of activation 3) an output function
for each unit 4) a pattern of connectivity among units 5) a propagation rule for

propagating patterns of activities through the network connectivities 6) an activation
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function for combining the inputs impinging on a unit with the current state of that unit to
produce a new level of activation for that unit 7) a learning rule whereby patterns of

connectivity are modified by experience (Rumelhart, Hinton and McClelland 1986).

2.4.3.1 Processing Units

]

ANN models are comprised of interconnected arithmetic processing units, also called
artificial neurons, neurodes, or units, that are analogous to the biological neurons in the
human brain. Each neuron is an elementary processor that performs primitive operations,
like summing the weighted inputs coming to it and then amplifying or thresholding the
sum (Pal and Srimani Pradip 1996). A schematic diagram of a single neuron is presented
in Figure 2.4. In multi-layer architectures, there are three basic types of processing units:
input units, output units, and hidden units (Garrett, Gunaratman and Ivezic 1997). The
units are arranged in layers, the input layer, the output layer, and the hidden layer(s).
Input units receive input from external sources, compute their activation level, compute
their output as a function of activation level, and transmit this output to the next layer of
units in the system. Output units receive input from the rest of the network and compute
or transmit their output to external receivers or, in the case of recurrent networks, back to
the input layer for further processing. Hidden units only receive their input from, and

transmit their computed output to, other layers in the network.
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2.4.3.2 State of Activation

The state of activation is an overall picture of the activation level of each of the neurons
in the network, which typically have a value in the continuous range between 0 and 1
(Garrett, Gunaratman and Ivezic 1997). Input and output unit activation levels represent
the current external input to the input processing units, and the current output being
transmitted to the external receivers, respectively. The activation level of the hidden units
represents the features within the input pattern that are present, and influence the output

produced by the network (Rumelhart, Hinton and McClelland 1986).

2.4.3.3 Output Function

Associated with each processing unit is an output function which defines how the output
value for the processing unit is determined from its activation (Garrett, Gunaratman and
Ivezic 1997). In some models, this function is unity. In other models the output function
is a threshold function; a processing unit produces no output unless the activation exceeds

some predefined level of activation (Rumethart, Hinton and McClelland 1986).

2.3.3.4 Pattern of Connectivity

Processing units are connected to each other and communicate with each other via

connection weights. The pattern of connectivity influences how a network will respond to

a given set of inputs (Garrett, Gunaratman and Ivezic 1997). A positive weight represents



an excitatory input, a negative weight represents an inhibitory input, and a zero weight
represents an inactive input; the absolute value of the weight is the connection strength

(Rumelhart, Hinton and McClelland 1986).

2.3.3.5 Rule of Activation Propagation

The rule of propagation describes how the inputs connected to a processing unit and the
strengths of the connections are combined to compute the net input (Garrett, Gunaratman
and Ivezic 1997). The input is generally expressed as the weighted sum of the outputs

from connected neurons (Figure 2.4).

2.3.3.6 Activation Function Employed

The activation function defines how the net input received by a processing unit is
combined with its current level of activation to compute a new level of activation
(Garrett, Gunaratman and Ivezic 1997). When ANN leamning is accomplished using the
backpropagation algorithm, a sigmoidal activation function, which is continuous and
differentiable, is often used to maintain the value of activation for a processing unit
between 0 and 1. The mathematical expression of the logistic function, the most popular

sigmoidal function, is (Jain, Mao and Mohiuddin 1996) :

f(x) = 1/(1+exp{-Bx})

where B is the slope parameter.
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2.3.3.7 Rule of Learning

The learning rule defines how the network is modified in response to training patterns
presented to the system (Garrett, Gunaratman and Ivezic 1997). Network modification
can take place via the development of new connections, the loss of existing connections,
and the modification of the strengths of connections that already exist. As will be

discussed in the next section, the last of the three methods is the most common.

2.4.4 The ANN Learning Process

While many learning algorithms are available, the backpropagation algorithm is the most
common and is used in the current study. As such, much of the ensuing discussion
concerning learning focuses primarily on the backpropagation algorithm. The ability to
learn is a fundamental trait of intelligence ; the learning process for ANNs can be viewed
as a problem of updating network architecture and connection weights so that a net can
perform a specific task (Jain, Mao and Mohiuddin 1996). In the learning process, each
presentation of a pattern and subsequent modification of connection weights is called a
learning cycle. A set of cycles, one for each pattern is called an epoch. The learning cycle
has 3 steps (Garret, Ghaboussi and Wu 1992). 1) For the training pattern to be learned,
the network is presented with the input pattern and then propagates the activation through
to the output processing units. 2) The output units then backpropagate their errors back to
the hidden processing units according to the generalized delta rule (GDR), or another

learning rule. 3) The units then modify their incoming connection strengths using this



backpropagated error and the learning rule. The entire cycle is repeated until the ANN

produces a sufficiently small error on a previously unseen data set (Boger 1992).

There are three broad paradigms of learning: supervised, unsupervised, and reinforcement
(Pal and Srimani Pradip 1996). In supervised learning, adaptation occurs when the system
directly compares the network output with a known output. In unsupervised learning, the
network is tuned to the statistical regularities of the input data so that it can form
categories by optimizing, with respect to the network’s free parameters, a task-
independent measure of the quality of the net’s category representation. Reinforcement
learning attempts to learn the input-output mapping through trial and error with a view to
maximizing a performance index called the reinforcement signal. The system knows
whether the output is correct or not, but does not know the value of the correct output.
The backpropagation algorithm uses supervised learning implemented in two stages. In
the forward stage, the network node outputs are computed, in the backward one, weights
are adjusted to minimize the error between the observed and desired model output (Pal

and Srimani Pradip 1996).

There are four basic types of learning rules: error-correction, Bolltzmann , Hebbian, and
Competitive (Jain, Mao and Mohiuddin 1996). The generalized delta rule (GDR) used in
backpropagation networks is a gradient descent error-correction learning rule. The GDR
is applicable only for semi-linear activation functions and layered feed-forward nets

where the input units form the bottom layer, the outputs form the top and all others are
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hidden (Garret, Ghaboussi and Wu 1992). The rule can be summarized by the following
three equations (Rumelhart, Hinton and Williams 1986):

A,w; =nb

piaru'

0, = (‘p,- =0, )fj'(netpj)

8, = fi(net,)d 6,,w,
k

In the first equation, the change in the weight (Aw) from the j® to the /" unit following
the presentation of pattern p is proportional to the product of an error signal, § , available
to the unit receiving input along that line and the output (o) of the unit sending activation
along that line. The symbol n} represents the learning rate of the system and has a value
between 0 and 1. The other two equations represent the error signal, the determination of
which is a recursive process starting with the output unit. If a unit is an output unit, its
error signal is given by the second equation where #,; is the target input for the Ia
component of the output pattern for pattern p, o,; is /" element of the actual output pattern
produced by the presentation of input pattern p, and f ;(net,,,-) is the derivative of the
semilinear activation function which maps the total input to the unit to an output value.
Finally, the error signal for hidden units for which there is no specified target is
determined recursively in terms of the error signals (o,:) of the units to which it directly
connects and the weights (wy) of those connections. For a more detailed description of
the generalized delta rule, as well as for the complete derivation of the above equations,

please refer to the text by Rumelhart (1986).
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2.4.5 ANN Architectures

ANN architectures can be separated into two broad categories, feed-forward and
feedback, according to the direction of communication of input information (Garret,
Ghaboussi and Wu 1992). In feed-forward nets, communication takes place in the
forward direction only, although errors can be backpropagated. In feedback or recurrent
nets, there is iterative computation between the nodes as communication is cyclic. Within
each of the two main classes of ANNS, there are a number of families that arise from the
variances in the activation functions and leamning rules applied. A list of the most
common families is presented in Table 2.4; a more detailed description of these network
architectures can be found in the text by Jain (1996). The most common family of feed-
forward nets, multi-layer perceptrons, have layers of neurons that are completely
connected, although there is no intra-layer connectivity (Pal and Srimani Pradip 1996). A
sample diagram showing the interconnectivity of multi-layer perceptrons is presented in
Figure 2.5. Feed-forward nets are memoryless in the sense that their response to an input
is independent of the previous network state. (Jain, Mao and Mohiuddin 1996). Recurrent
nets are dynamic systems; when a new input pattern is presented, the neuron outputs are
computed. Because of feedback paths, the inputs to each neuron are then modified, which

leads the network to enter a new state. (Jain, Mao and Mohiuddin 1996).

Table 2.4 Classification of network architectures (after Jain, Mao and Mohiuddin

1996)

Feed-Forward Networks Feedback Networks

Single-Layer Perceptron Competitive

Multilayer Perceptron Kohonen’s Self-Organizing Mapping
Radial Basis Function Hopfield

Adaptive Resonance Theory
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2.4.6 Model Development and Evaluation

In conventional modelling, model development consists of three stages: data selection,
mathematical model specification, and evaluation (Schwerk 1996). With respect to ANN
model development, the model specification stage includes the selection of training cases,
the selection of architecture and form details, and the actual training of the network

(Garret, Ghaboussi and Wu 1992).

2.4.6.1 Data Selection

The selection of the type and quantity of data is a key step in model development. A
network will struggle if presented with too little or too much data or if presented with
data that doesn’t emphasize differentiating components (Villarreal and Baffes 1992). If
the network is not trained using relevant data, it will be unable to make accurate
predictions on a generalized data set (Schwerk 1996). Most researchers advocate splitting
the data randomly into training and testing data sets (Boger 1997 ; Garret, Ghaboussi and
Wu 1992); the training set is used to train the model, while the testing set is used to test
its performance on previously "unseen” data. The ratio of data in each set can be

arbitrarily assigned (Boger 1997) or determined experimentally (Bernieri et al. 1996).

2.4.6.2 Model Specification

With respect to the selection of training cases, there should be at least 10-30 times as

many training patterns as there are input variables (Foody and Arora 1997). Increasing
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the number of training patterns provides more information about the shape of solution
surfaces and thus increases the potential level of accuracy that can be achieved by the
network. Large training sets can however, overwhelm some training algorithms, leading
to the net getting stuck in a local minimum (Flood and Kartam 1997). Since ANNSs are
not usually able to extrapolate, the input patterns should be selected to encompass the
entire problem domain. It is also advisable to have the training patterns evenly distributed
throughout the domain, else the net will tend to focus on areas where patterns are tightly
clustered. In this respect, it may be beneficial to have more patterns in areas where the
response surface is more complicated. In practice though, it is not always possible to
control the distribution of data, especially when historical data are used (Flood and

Kartam 1997).

There are many aspects of network architecture design that will affect the ability of and
ANN model to generalize, that is the ability to correctly predict outputs for new or
previously unseen data cases. Some of the key considerations include: architecture type,
the number and size of the hidden layers, and the learning rate and momentum (Foody
and Arora 1997 ; Schwerk 1996). There are currently no good heuristics or rules of
thumb for selection of network architecture, however experience has shown that there are
definitely good and bad architectures for a given problem (Garret, Ghaboussi and Wu
1992). Until further advances in ANN model development techniques are made,
empirical methods and experimentation must be used to determine optimal architecture
configurations (Villarreal and Baffes 1992 ; Yabunaka, Hosomi and Murakami 1997).

With respect to the size of the network, two issues must be addressed: the number of
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hidden layers, and the number of neurons per layer. When the output is a continuous
function, some researchers advocate the use of a single hidden layer (Hecht-Nielsen
1987), while others suggest the use of two hidden layers (Flood and Kartam 1997). In
general, two hidden layers provide more flexibility at modelling more complex surfaces
however, only one layer is required for problems where the network has only one input or
where the input values are binary (1 or 0) (Flood and Kartam 1997). With respect to the
number of neurons in each layer, input and output layers contain the same number of
neurons as there are inputs and outputs (Villarreal and Baffes 1992). Generally, there is
no direct and precise way of determining the most appropriate number of neurons to
include in each hidden layer. Increasing the number of hidden nodes will increase the
likelihood that the network will converge, but an excess of hidden nodes will result in
poor generalization capabilities (Villarreal and Baffes 1992 ; Shang and Wah 1996).
Some researchers have made broad suggestions, with regards to the number of nodes, that
may not be applicable to every problem. Hecht-Nielson, for example, suggests that when
a single hidden layer architecture is used, an upper limit of 2n+1 hidden layer neurons,
where n is the number of inputs, should be used (Hecht-Nielsen 1987). For networks with
two hidden layers, a 3:1 ratio of neurons in the two hidden layers is suggested (Maier and
Dandy 1996). Weigend suggests that the number of hidden neurons should be less than
1/10 the number of training patterns in order to avoid overfitting (Weigend, Huberman

and Rumelhart 1990).

The prediction accuracy and generalization capabilities of a network can be affected by

two other factors, the leamning rate and the momentum factor, which alter the speed of
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convergence (Schwerk 1996). When a net is trained, the weights are initially randomized.
The amount by which the weights are modified in any given training step is the leaming
rate. If the learning rate is small (<0.2), the weights will be changed in smaller increments
resulting in slower convergence with less oscillation (Garret, Ghaboussi and Wu 1992).
Larger leamning rates (>0.5) will cause the weights to be adjusted more drastically, but
this may cause the optimum combination of weights to be overshot, resulting in
oscillations about the optimum. (Garret, Ghaboussi and Wu 1992). In general, lower
learning rates should be used for more noisy data (Schmuller 1990). The momentum
factor, which has a value between 0 and 1, is a smoothing factor that allows for faster
learning without oscillation by making the weight change a function of the previous

weight change (Ward Systems Group Inc. 1996).

With respect to the actual training of the network, it is possible to over-leam if training
proceeds too long. The situation is analogous to learning to drive a car by driving around
the block over and over again. All of the necessary skills are learned, but the driver would
have difficulty applying those skills correctly to highway driving (Villarreal and Baffes
1992). DeSilets suggests a maximum of 2000 iterations (epochs) (DeSilets et al. 1992),
although in practice, this number must be experimentally determined. Another issue
involved with lengthy training periods is the possibility that the network will try to fit
noise in the data. Assuming that the noise is small in comparison to the features, it is only
in the later stages that the net will try to fit noise. Stopping the training before the noise is

learned will improve generalization. (Weigend, Huberman and Rumelhart 1990).
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2.4.6.3 Model Evaluation and Validation

In order to evaluate the performance of a model, a variety of qualitative and quantitative
means can be employed. Most researchers advocate the use of only two data sets, the
training set and the testing set, as previously discussed. Other studies advocate the use of
a third data set, the production set (Weigend, Huberman and Rumelhart 1990). The utility
of the production set will be discussed in the methodology section of this report. In the
case of the former, the testing set is most commonly used to assess a model’s
performance, while for the later, the production set is used. With respect to qualitative
means of evaluation, a visual inspection of a plot of actual outputs versus predicted
outputs can serve as measure of the fitness of a model (Flood and Kartam 1997).
Quantitatively, the fitness of a model can be assessed using a statistical indicator such as

the mean squared error, the mean absolute error, or the R? parameter (Schwerk 1996).

In order to ensure that the ANN is not simply memorizing the training patterns, the model
must be validated. The most common means of validating a model involves swapping the
training and testing sets, retraining the model, and comparing the new model’s
performance with that of the old one (Schwerk 1996). This cross-validation technique can
also be applied when 3 data sets are used by swapping the production and training or

production and testing sets, as will be discussed in the methodology section.
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2.4.7 Applications of ANN Modelling

The ANN technique has been applied to virtually every field where complex non-linear
error minimization problems exist. An extensive list of known and potential applications
in fields as diverse as finance and health-care is presented in the text by Buscema (1997).
The remainder of this section focuses on known and developing applications in the field

of environmental engineering.

2.4.7.1 Environmental Engineering Applications

Civil and environmental engineering applications of ANN modelling date to the late
1980’s when models for optimizing construction tasks were developed (Flood and Kartam
1997). Since that time, interest in ANN applications has increased at a steady rate, as
indicated by an increase in the number of publications. Specifically, applications have
been developed in the areas of hazardous waste management and groundwater
exploration (Schmuller 1990), hydrology and water resources engineering (Daniell 1991),
groundwater remediation (Garrett, Ranjithan and Eheart 1992), and biological waste
treatment (Cote et al. 1994). More recently, ANNs have been used in transient drainage
design (Shukla et al. 1996), air quality monitoring (Hasham, Stanley and Kindzierski
1998), and wastewater treatment plant operations (Boger 1997). As the focus of the
current study is the ANN modelling of water treatment plant processes, known

applications in the water treatment industry are discussed separately.
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2.4.7.2 Water Quality and Treatment Applications

To date, while several ANN applications in the areas of water quality monitoring and
water treatment have been proposed, the potential for application in these areas remains
largely unexploited. With regards to water quality applications, the California
Department of Water Resources has used ANN models to predict THM formation and
speciation in the Sacramento Delta (Hutton ez. al., 1996). In addition, ANN models have
been developed to forecast salinity in the Chesapeake Bay in order to determine
appropriate pumping schedules for water supply (DeSilets et al. 1992). Finally, research
in the Environmental Engineering Program at the University of Alberta has led to the
development of successful models for colour in the North Saskatchewan River (Zhang

and Stanley 1997).

With respect to water treatment operations, much of the research has focussed on
modelling chemical dosing levels in the coagulation process. To this end, models have
been developed for alum and polymer dose forecasting at a water treatment plant in New
South Wales (Mirsepassi, Cathers and Dharmappa 1995). While good correlations
between predicted and actual doses were obtained, the models have little practical use.
The model input parameters are exclusively time-series data, resulting in the development
of models which essentially follow the slope of historical dosing levels without capturing
the unique features of the treatment processes. Operational full-scale models for the

removal of turbidity at the two City of Edmonton water treatment facilities have been
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developed (Stanley and Zhang 1997) and will be used, in conjunction with the results of

the current study to optimize the enhanced coagulation process at each facility.

In addition to the coagulation models, a model has been developed to improve control
and to reduce backwash water volume for the rapid gravity filters in London, UK.
(Koutsakos 1995). As well, successful models for the concentration of residual chlorine
in distribution systems in Quebec and Ste. Foy have been developed (Rodriguez et al.
1997). Finally, models are currently being developed for predicting breaks in city water
mains by members of the Environmental Engineering Program at the University of

Alberta.

2.4.8 Process Control Using ANNs

In process control applications, neural networks can be incorporated in internal model
control (IMC) in either direct or indirect methods (Psichogios and Ungar 1991). In the
direct method, a neural network is trained with observed input-output data from the
system in order to represent its inverse dynamics. As such, given the current state of the
system, the network can be trained to produce the control action required to reach a
desired target state. In the indirect method, the network is trained with input-output data
from the dynamic system to represent the forward dynamics. As such, given the current
state and the current control action, the network can be trained to predict the next state of
the system. According to IMC theory, if a good plant process model exists, the closed-

loop IMC system will achieve exact set-point following unmeasured disturbances acting
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on the plant (Yan et al. 1996). A direct dual-model IMC system is presented
schematically in Figure 2.6. In this system, the control action, « , is the output of an
ANN controller trained to represent the plant inverse dynamics (Psichogios and Ungar
1991). The process model, also an ANN model, is used in parallel to the plant in order to

provide the feedback error between the actual and predicted value of the plant’s output.

Similar ANN control strategies have been proposed for chemical process systems (Bhat
and McAvoy 1990), anaerobic digestion (Wilcox et al. 1995), and, as previously
discussed, water treatment dosing levels (Koutsakos 1995 ; Zhang and Stanley 1998).
While most of these proposed control schemes have yet to be tested on full-scale systems,
preliminary results suggest that full-scale integration of ANN-IMC systems will occur in

the near future.
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3.0 METHODOLOGY

3.1 Data Collection and Management

All of the data used in the development of the ANN models was obtained from
AQUALTA, the parent company that owns and operates both Rossdale WTP and E.L.
Smith WTP. The data from both facilities is stored on a central supervisory control and
data acquisition (SCADA) system and can be accessed at will by plant operators. As will
be discussed, three primary types of data were used in model development: raw water

quality, process data, and performance data.

3.1.1 Raw Water Quality Data

The raw water quality data used in model development were measured by lab technicians
on a 4-hour cycle, and were acquired from the SCADA system as daily average values.
The daily high values of some parameters, such as turbidity and colour, were also
recorded although they were not used in model development, as will be discussed. A list
of the raw water quality parameters, as well as the error associated with their

measurement, is presented in Table 3.1.

3.1.2 Process Data

The process parameters, which include chemical dosing as well as plant flow

information, are measured in real-time online and stored in the SCADA system. For the
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Table 3.1 Error associated with raw water quality data applications (Thomas and

Shariff 1998)

Parameter Error

PH + 0.2 pH units
Colour +1TCU
(TCU)

Turbidity £10%
(NTU)

Alkalinity + 5 mg/L
(mg/L)

Temperature +*2%
(°C)

Hardness 5 mg/L
(mg/L as CaCOs)

purposes of the current study, daily average values were used. A list of instrumental

errors associated with each of the process parameters is presented in Table 3.2.

Table 3.2 Error associated with process data applications (Thomas and Shariff

1998)

Parameter Error
Plant flow 3%
(ML/d)

Alum dose +7%
(mg/L)

PAC dose +10%
(mg/L)

Polymer dose +6%
(mg/L)

3.1.3 Performance Data

The model output parameter, clarifier effluent colour, is measured by laboratory
technicians on a 4-hour cycle, and is reported as a daily average value. The error

associated with colour determinations is the same as that reported for raw water colour.
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3.2 Software

ANN model development was accomplished using NeuroShell 2 Release 3.0 from Ward
Systems Group, Inc. of Frederick, Maryland, USA. The software was chosen due to the
high degree of control over model development given to the user. In addition, NeuroShell
2 is completely compatible with Microsoft Excel spreadsheets, allowing for seamless
importing and exporting of data. Finally, the software has a user-friendly Windows-based
interface that allows for the simultaneous construction of multiple models. Much of the
information that follows concerning NeuroShell 2 features can be found in detail in the

NeuroShell 2 User’s Manual (Ward Systems Group Inc. 1996).

3.2.1 Architecture Types

3.2.1.1 Feed-Forward Architectures

The NeuroShell 2 software supports both supervised and unsupervised feed-forward
networks. With respect to the former, backpropagation neural networks, probabilistic
neural networks (PNNs) and general regression neural networks (GRNNSs) are supported.
Three types of backpropagation networks, which differ in the connectivity of the neurons,
are supported, and all use Rummelhart’s backpropagation learning algorithm (Section
2.4.4). In backpropagation networks with standard connections, commonly termed
backpropagation networks, every layer is connected to the immediately previous layer. In
backpropagation networks with jump connections, or jump networks, every layer is

connected to every previous layer. Ward Networks, proprietary backpropagation
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architectures developed by the Ward Systems Group Inc., allow hidden neurons to be

grouped into slabs so that more than one activation function can be used simultaneously.

PNNs are a type of supervised network known for their ability to train quickly on sparse
data sets. These networks separate data into a specified number of output categories, and

are therefore not useful for continuous valued outputs.

GRNNs are a type of supervised network that, like backpropagation networks, have the
ability to produce continuous valued outputs. GRNNs are three-layer networks and have
one hidden neuron for each pattern in the training set. While these networks are
particularly good at generalizing cases similar to those on which they were trained, they

tend to have poor interpolation capabilities.

With respect to unsupervised feed-forward architectures, the software supports the
Kohonen Self Organizing Map (SOM). Kohonen SOMs have the ability to learn without
being shown correct outputs in sample patterns and are able to separate data into a

number of predetermined categories.

3.2.1.2 Feedback Networks

The NeuroShell 2 software supports three types of feedback or recurrent networks. All

three types use the backpropagation algorithm in training. Recurrent networks can be

easily distinguished from feed-forward networks due to the presence of an extra slab in
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the input layer that is connected to one of the layers via feedback connections. This extra
slab holds the contents of one of the layers as it existed when the previous pattern was
trained. As such, “memory” is added to the network, making it particularly useful for

time-series data.

3.2.2 Scaling Functions

In order to scale data from its numeric range to a range that the networks are able to use
more effectively, a scaling function is employed. The NeuroShell 2 software supports
both linear and non-lirear scaling functions. In either case, data can be scaled into one of
two ranges: -1 to 1 or O to 1. Both ranges can be either bounded, where values outside the
parameter boundaries are scaled to the boundary value, or unbounded, where values
outside the boundaries are scaled proportionately. The linear scaling function scales data
using a common divisor, while non-linear scaling functions, such as logistic and tan h,

tend to compress values near the extreme ends of the data ranges.

3.2.3 Activation Functions

NeuroShell 2 supports 8 separate activation functions that can be used in the hidden
layers of network architectures. While functions such as the logistic function have been
widely reported in literature others, such as the sine function, are rarely used. Some of the

functions map values to the -1 to 1 range, whiie others map values to the 0 to 1 range. A
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list of the activation functions, as well as their respective equations and mapping ranges,

supported by the software is presented in Table 3.3.

Table 3.3 Activation functions supported by NeuroShell 2

Activation Function Equation Mapping Range
Logistic fx)=1/(1+e*) Otol
Linear fx)=x -ltolorQto1l
Tanh f (x) = tanh(x) -1to 1
Tanhl.5 f(x) = tanh(15x) -ltol
Sine f(x) =sin(x) -ltol
Symmetric Logistic fx)=Q/(1+e*)~1 -lto 1
Gaussian f(x)=e* Otol
Gaussian Complement f(x)=1—-(e™) Otol

3.2.4 Weight Updates

The software supports three methods of updating weights: vanilla, momentum, and
turboprop. The vanilla method uses a proprietary algorithm to apply only a learning rate
term to the weight updates. Weight updates by the momentum method include not only a
leaming rate term, but also incorporate a portion of the last weight change as the
momentum term. The turboprop method is not sensitive to either leaming rate or
momentum. Training proceeds through an entire epoch before weights are updated. The
turboprop method uses an independent weight update size for each different weight as

opposed to having a single learning rate or momentum term applied to all weights.
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3.2.5 Method of Pattern Selection

During training, the software can select patterns in either a random fashion or in
rotational order. When the turboprop method of weight updates or recurrent network

architectures are used, only the rotational method of pattern selection is available.

3.3 ANN Model Development and Evaluation

As previously discussed, there is no set protocol for the development of ANN models.
What follows is a description of the three-step protocol employed in the current study.
As ANN model development is very much a trial and error process, the protocol was

continuously updated to reflect the knowledge gained from working with ANN systems.

3.3.1 Source Data Analysis

The primary objectives of the source data analysis were to gain a familiarity with the
study domain and to examine the applicability of available data for model development.
Initially, the problem domain was thoroughly examined through a review of pertinent
literature on enhanced coagulation and DBPs, as blind application of the ANN technique
to problems that have not been thoroughly studied will lead to the development of models
with poor generalization capabilities. Following the domain study, all the available
pertinent data were examined and subjected to comprehensive statistical analyses in order
to determine the range, seasonal and daily trends, and other important data

characteristics.
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3.3.2 ANN Model Development

3.3.2.1 Rossdale WTP, Plant #1

The artificial neural network modelling process used involved two distinct stages:
preliminary model development and model optimization. The objective of the
preliminary model design stage was to design and evaluate a series of network
architectures that, when optimized, could be used as an effective process model. This
objective was best met through the use of a four-step scheme which included the
selection of input and output parameters, the organization of the data patterns, the
selection of preliminary factors and levels of anmalysis, and the evaluation of potential
architectures. With respect to the selection of input and output parameters, the output
parameter which best represents the process was selected. Each input parameter was
selected based on data availability and the likelihood of there being a cause-effect
relationship between it and the output parameter. Once the model parameters were
selected, the data patterns were selected to reflect the availability and reliability of the
data. Incomplete patterns, as well as those that appeared to be inconsistent with the

remaining data were removed.

The data was initially organized into two categories based on the value of the output
parameter. The boundary was selected according to process performance criteria and

separated regular operating conditions from process upset or special case conditions. In
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order to develop a successful model, the data was further divided into three fractions: the
training set, the test set, and the production set. The training set consisted of data patterns
that the network processes repeatedly in order to learn trends and patterns in the data.
During the leamning process, the network was periodically evaluated using the test set
patterns in order to ensure that the network was not simply memorizing the training data.
The trained network was applied to the production set which consists of data that the
network had never “seen” before in order to assess the performance of the model. Each of
these data sets contained an equal percentage of special case data in order to ensure that

the model was trained, tested, and evaluated over a similar range of effluent quality.

In designing the preliminary architectures, many factors needed to be considered
including the type of architecture, the number of layers, the number of neurons in each
layer, the type of scaling and activation functions, and the learning approach. In order to
determine the optimal levels of each of these factors, the factorial experimental design
approach was applied. This statistical method is generally used for studying the effects of
varying the levels of multiple parameters in a limited number of runs. For an in-depth
discussion on the mechanisms of factorial design experimentation, please refer to the text
by Box and Hunter (1978). Even with the aid of factorial design experimentation,
determining the effects of the multitude of factors that can be altered in network design
was beyond the scope of the current study. As such, a number of factors were held
constant throughout the preliminary design stage. All input data were scaled using an
unbounded linear scaling function in the -1 to 1 range. The linear function was selected in

order to ensure that data in the extreme ends of each parameter's range were not
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compressed. The unbounded -1 to 1 range allowed for the inclusion of negative values,
which were present for some of the parameters, as well as values beyond the preliminary
data range that may have surfaced when the model was applied to real-time data. With
respect to the activation function used in the hidden layers, the logistic function was
employed exclusively in the preliminary model design stage, as it is the default activation
function used by the software. In addition, the turboprop method of weight updates was
used, as it is insensitive to learning rate and momentum. Finally the range of the output
parameter was exclusively positive, necessitating the use of an activation function that
maps values into the 0 to 1 range. The logistic activation function, being the function
used most often in ANN applications, met this criterion and was always used on the

output layer.

In order to assess the model’s performance, two separate statistical indicators were
applied to the production data set. The coefficient of multiple regression, R? , compares
the accuracy of the model to the accuracy of a trivial benchmark model wherein the
prediction is just the mean of all the samples. A perfect fit would result in an R? value of
1, a very good fit near 1, and a very poor fit near 0. The equation the NeuroShell 2 uses to

calculate R? is:

where SS, is the residual sum of squares and SSr is the total sum of squares of the model
output. The R? indicator was applied to the entire production data set and therefore serves

as a measure of the model’s performance in periods of routine operation as well as during
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special-case scenarios. The second statistical indicator, the mean absolute error, was used
to compare the actual process outputs with the network predictions. This indicator can
serve to highlight inconsistencies in model predictions and can also be used to determine
whether the model predictions are adequate for process control. In the initial model
development stage, the mean absolute error was used to assess the performance of the
model during the special-case scenarios only. The ideal network will have a low mean
absolute error on the special-case scenarios without sacrificing the goodness of fit, as

measured by R?, for the entire production data set.

In the model optimization stage, the most promising candidate models were optimized
through the fine-tuning of the network architectures in order to minimize the error on the
production set data. The activation functions, method of weight updates, leamning rate,
and momentum, all factors that were held constant throughout the preliminary model
design stage, were varied. The optimal model will be able to follow daily trends in plant
operations in addition to predicting the special case patterns. In addition the model should
produce consistent results for all three data sets. The model should also be insensitive to
retraining following a swapping of the testing and production sets. Finally, a plot of the

model residuals should be free of obvious trends.

3.3.2.2 Rossdale WTP, Plant # 2

Building on experience gained from developing an ANN model for Plant #1, a new

protocol was developed for ANN model development and was applied to Plant # 2. In
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developing the model for Plant #1, all of the backpropagation networks including those
with standard, jump, Ward, and recurrent configurations were evaluated for use in model
development. Of these architectures, only the 3-layer and 4-layer backpropagation
networks with standard connections yielded acceptable results. In the interest of
increasing the efficiency of the ANN protocol, only these two architectures were

evaluated for use in the model for Plant #2.

One of the glaring deficiencies in the protocol used for Plant #1 is its heavy reliance on
factorial design to determine the optimal level of each factor. The factorial design
approach is particularly useful if all factors are continuous and there is some overriding
trend with regards to the relationship between the factor and the model output.
Unfortunately, this is not the case for many of the factors associated with neural network
design. Many of the factors being evaluated in ANN model design are categorical, with
more than two possible levels, and can not be ordered to allow for the application of
response surface methodology. There are, for example, 8 separate activation functions
that can be used in ANN model development. The factorial design approach assumes that
there is some definable relationship between each of the possible activation functions. If
the logistic and linear activation functions were selected as the initial levels of analysis,
for example, the factorial design approach would not be able to tell the experimenter
which function to try next, only which of the two functions works best under the given

conditions.
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Keeping these limitations in mind, the new protocol involved the use of classical one-
variable-at-a-time experimental design. The optimal values of each of the factors were
determined sequentially, keeping the values of the other factors constant. A factorial
design was employed in the final stages in order to determine the appropriate learning
rate and momentum, as these factors are not subject to the limitations highlighted above.
Overall, the protocol involved the following 9 steps: selection of input and output
parameters, selection and organization of data patterns, determination of the appropriate
training : testing : production ratio, determination of the appropriate number of neurons
for each hidden layer, determination of the appropriate activation function, reassessment
of the number of hidden layer neurons, evaluation of model stability, model fine-tuning,
and comparison of candidate models. The protocol was applied separately to each of the
two architectures being investigated. Unless otherwise discussed the scaling functions,
activation functions, and weight updates were kept constant as described in the Plant #1

protocol.

In order to evaluate the model’s performance as it was being developed, a composite
parameter, termed the performance code or the run effect, was developed. The value of
the code is based on the R? and mean squared error on the production set, as well as the
percentage of production set predictions that have a relative error greater than 30 %. As
previously discussed, the best models will have a high R? and low mean squared error.
The "percent > 30 % error” also serves as a measure of prediction accuracy; lower values

are best. As shown in Table 3.4, each of the three parameters is coded over a pre-
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determined range. The run effect or performance code is simply the sum of the three

coded parameters; higher values indicate better performance.

Table 3.4 Generation of performance codes

R? Mean Squared Error % >30%
Value Coded Value Coded Value Coded
<03 1 >0.5 1 >30% 1
03-0.34 2 0.45-0.5 2 25-30% 2
0.35-0.39 3 04-044 3 20-24% 3
04-0.44 4 0.35-0.39 4 15-19% 4
045-049 5 0.3-0.34 5 10-14% 5
0.5-0.54 6 0.25-0.29 6 <10% 6
0.55-0.59 7 0.2-0.24 7
0.6-0.64 8 0.15-0.19 8
0.65-0.69 9 0.10-0.14 9
0.7-0.74 10 <0.10 10
0.74-0.79 11
0.80-0.84 12
0.85-0.89 13
0.90 - 14

As will be discussed, the model parameters used for the Plant #2 were identical to those
used for Plant #1. For the Plant #2 model, no differentiation was made between special
case scenarios and normal operating conditions. Instead, the data was initially sorted
according to the value of the output parameter. The separation of the data into the
training, testing, and production sets, was done in order, thereby insuring an equal
distribution of high and low clarifier effluent colour data in each set. Following these
steps, the appropriate training : testing : production ratio was selected by preparing a
number of data files with varying ratios and testing the model performance on each.

Ratios in the range of 1:2:2 to 4:1:1 were prepared and a series of preliminary runs was
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performed on each. The ratio that gave the best performance, based on both R? and mean

absolute error, was selected.

Keeping both the T : T : P ratio and the activation function constant, the number of
hidden layer neurons for each layer was varied. For single layer networks, the number of
neurons was increased in five-neuron increments over a pre-selected range. For two-layer
networks, a grid was used to determine the appropriate number of neurons in each layer.
Again, the number of neurons was increased in five-neuron increments over a pre-
selected range. Following this initial assessment, the range of values for the number of
hidden layer neurons that yielded the best results was expanded. Within this range, the

number of neurons was varied in single-neuron increments.

Holding the T : T : P ratio and the number of hidden layer neurons constant, the best
activation function was selected by comparing the results for models trained with each of
the eight separate activation functions. For multiple-layer models, a grid system was

again employed.

If the activation function selected in previous step was not the logistic activation function,
the appropriate number of hidden layer neurons was again determined, as previously
described, to ensure that the best possible combination of number of neurons and

activation function was obtained.
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In order to ensure that the results obtained were not dependent on the manner in which
the data were extracted, an alternate data set in the appropriate T : T : P ratio was
prepared. The results of the models were compared to ensure that there was no significant

difference when different data sets were used.

The model was retrained using the momentum and vanilla weight updates in order to
determine if any improvements could be made. Using weight updating methods other
than turboprop necessitated the evaluation of the effects of learning rate and momentum,
as well as the method of pattern selection. All four factors were evaluated simultaneously

using factorial design experimentation.

Finally, the candidate models derived from each of the two base architectures were
compared with respect to their performance on the training, testing, production, and
cross-validation sets. The candidate with the best performance, as defined by R% mean

squared error, and mean absolute error, was selected.

3.3.2.3 E.L. Smith WTP

Once again, experience gained in the development of the models for Rossdale WTP
allowed for a further pairing-down of the steps involved in developing successive
models. First, the ratio of data in the training, testing, and production sets fixed at 3:1:1
Based on the first two models, this ratio was found to be most appropriate. In addition,

the determination of the appropriate architecture step was eliminated. Based on the first
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two models, the logistic activation function always provided the best results and, as such,
was the sole activation function evaluated in the EL. Smith model. As only one
activation function was evaluated, the reassessment of the number of hidden layers was
also eliminated from the protocol. The protocol used in the development of the model for
E.L. Smith WTP therefore, had 6 distinct steps: selection of input and output parameters,
selection and organization of data patterns, determination of the appropriate number of
hidden layer neurons, evaluation of model stability, model fine-tuning, and comparison of
candidate models. The methodology employed for each of these steps is identical to that
used for Rossdale WTP, Plant #2, with the exception of the selection and organization of
data patterns. As previously mentioned, two clarifiers are used for coagulation at E.L.
Smith WTP. While both have identical dimensions and receive the same raw water,
different dosing levels are sometimes employed in each. In order to develop a single
model for the WTP, the values of each of the process and performance parameters were

averaged between the two clarifiers.

3.3.3 Model Evaluation Using Real-time Data

In order to assess the models’ performance on real-time data, the three models were
applied retroactively to data supplied by AQUALTA. The time frame of the study was
selected to correspond with spring-thaw, typically a difficult time for water treatment
plant operations. The frequency of data was selected to reflect the frequency of updates
of model parameters in the SCADA system. The performance of the models was assessed

using R? , mean absolute error, and other statistical indicators.
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4.0 RESULTS

4.1. Source Data Analysis

As suggested in the methodology section, the first step in developing an effective ANN
model is a careful study of the problem domain. With respect to the enhanced coagulation
process, the data can be divided into major categories: raw water quality parameters,
process parameters, and performance parameters. The raw water quality parameters
provide an assessment of the quality of the raw water that must be treated by the WTPs
and include, for example, colour, turbidity, alkalinity, and pH. The process parameters
are those that can be controlled by the plant operators in order to optimize the enhanced
coagulation process and include the doses of alum, PAC, and polymer, as well as the flow
through each of the plants. The performance parameters allow the operators to assess the
performance of the enhanced coagulation process and include clarifier effluent turbidity

and colour.

4.1.1 Rossdale Water Treatment Plant

4.1.1.1 Raw Water Quality Parameters

In order to effectively operate the facility, a number of raw water quality parameters are
monitored at Rossdale WTP on either a real-time, or scheduled basis. The availability of
data for many of these parameters is presented in Table 4.1. Due to substantial seasonal
variations in the North Saskatchewan River flow and ambient air temperature, the river
water quality varies considerably. Raw water daily average turbidities range from

approximately 2 NTU in winter, when the river is under ice cover, to over 1400 NTU
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during spring thaw (Table 4.2). Similarly, raw water colour ranges from approximately 2
TCU to 80 TCU throughout the year. The seasonal nature of these parameters is
presented graphically in Figures 4.1 and 4.2. Other parameters, such as total alkalinity

and total hardness, show far less variation with mean values of 133.7 + 9.3 mg/L and

166.9 + 12.6 mg/L (as CaCO3) respectively.

Table 4.1 Rossdale WTP, daily data availability for raw water quality parameters

Parameters 1990 1991 1992 1993 1994 1995 1996

PH X X X X X X X
Temperature X X X X X X
°O)

River flow

(m’/s)

Turbidity, daily low
(NTU)

Turbidity, daily high
(NTU)

Turbidity, daily average
(NTU)

Colour, daily low
(TCU)

Colour, daily high
(TCU)

Colour, daily average
(TCU)

Total hardness

(mg/L as CaCO,)

Total alkalinity

(mg/L)

vOC

(mg/L)

Maximum conductivity
(uS/cm)
UV-absorbance X X

(200 nm)

UV-absorbance X X X
(254 nm)

Raw TOC X

(mg/L)

X X X X X X
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Table 4.2 Rossdale WTP, data analysis for raw water quality parameters

Parameter Date Mean Std.Dev. Min. Max. Range Percentile
95"  so*  s*

pH 9296 8.2 0.2 7.8 88 1.0 85 83 79

Temperature 9296 103 6.2 0.5 25.0 245 20.7 80 1.0

cO

Ri\;cr flow 92-96 1904 104 8 180 10500 10320 3686 1590 950

(m’/s)

Turbidity, daily high 92-96 49.6 1534 20 24000 23980 1700 120 3.0

(NTU)

Turbidity, daily ave. 92-96 31.7 88.9 16 14810 14794 1162 80 24

(NTU)

Colour, daily high 9296 102 10.3 20 820 80.0 320 7.0 3.0

(TCU)

Colour, daily ave. 9296 90 9.1 20 770 750 6.0 20 20

(TCU)

Total hardness 9296 166.9 126 104. 2040 1000 188.0 1670 1440

(mg/L as CaCOs) 0

Total alkalinity 9296 133.7 9.3 940 1740 80.0 149.0 1340 1190

(mg/L)

voC 94-96 0.01 0.02 000 04 0.44 003 000 0.00

(mg/L)

Raw TOC 92 2.7 1.3 0.2 7.90 7.70 5.1 23 1.2
_(mg/L)

4.1.1.2 Process Parameters

With respect to the operating conditions at the WTP, a list of the parameters that can be

controlled by the operator in order to optimize the enhanced coagulation process is

presented in Table 4.3. As discussed, the Rossdale facility is split into two separate

treatment trains, Plant #1 and Plant #2. The mean flow through Plant # 1 is approximately

61 ML/d, while that for Plant #2 is 86.9 ML/d (Table 4.4). With respect to the alum dose,

the range for both plants is from 9 mg/L under the most favorable water quality

conditions, to 164 mg/L for poor quality source water. PAC is used extensively during

spring runoff in order to remove taste and odour causing compounds. Doses of up to 146

mg/L have been used, although the dose exceeds 45 mg/L less than 5 % of the time
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(Table 4.4). The anionic polymer dose is typically 0.30 mg/L, although higher doses may

be added during periods of high alum use.

Table 4.3 Rossdale WTP, daily data availability for process parameters

Parameter 1990 1991 1992 1993 1994 1995 1996
Raw flow, Plant # 1 X X X X X X X
ML/d)
Raw flow, Plant # 2 X X X X X X X
ML/d)
Alum dose, Plant # 1 X X X X X X X
(mg/L)
Alum dose, Plant # 2 X X X X X X X
(mg/L)
PAC dose, Plant # 1 X X X X X X X
(mg/L)
PAC dose, Plant # 2 X X X X X X X
(mg/L)
Polymer dose, Plant # 1 X X X X X
(mg/L)
Polymer dose, Plant # 2 X X X X X
(mg/L)
Table 4.4 Rossdale WTP, data analysis for process parameters
Parameter Date Mean Std.Dev. Min. Max. Range Percentile

95® so* s
Raw flow, P #1 9296 612 23.0 0.0 125.0 125.0 97.6 640 0.0
ML/)
Raw flow, P #2 92-96 869 278 0.0 165.0 1650 1366 850 404
ML/d)
Alum dose, P #1 92-96 318 19.7 9.0 164.0 155.0 71.1 26.0 15.0
(mg/L)
Alum dose, P #2 92-96 328 20.6 9.0 164.0 155.0 73.2 270 14.0
(mg/L)
PAC dose, P #1 9296 10.7 18.1 0.0 145.6 145.6 46.0 44 0.0
(mg/L)
PAC dose, P #2 92-96 10.2 16.7 00 1421 142.1 442 49 0.0
(mg/L)

Polymer dose, P#1 9296 0.29 0.15 00 087 087 051 030 0.0
(mg/L)
Polymer dose, P#2 92-96 0.28 0.14 000 08 08 049 030 0.00

(mg/L)
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4.1.1.3 Performance Parameters

The most common measures of enhanced coagulation treatment performance employed at
Rossdale WTP include clarifier effluent turbidity and clarifier effluent colour. The
availability of data for these performance parameters is presented in Table 4.5. With
respect to clarifier effluent turbidity, mean values of 2.5 NTU and 2.8 NTU are obtained
for Plant #1 and Plant #2, respectively (Table 4.6). With respect to clarifier effluent
colour, a mean value of 2.1 TCU is shared between the two plants. Neither the effluent
turbidity nor the effluent colour show any seasonal variations, as isolated cases of high
effluent turbidity and colour occur throughout the year. With respect for the values
obtained for the 5 percentile of both clarifier effluent colour and clarifier effluent
turbidity, values of 1.0 TCU and 1.0 NTU were obtained respectively, for both plants.
Rather than being purely coincidental, this occurrence can be explained by the manner in

which the lab technicians recorded values below 1.0 TCU or 1.0 NTU in their log books.

Table 4.5 Rossdale WTP, daily data availability for performance parameters

Parameters 1990 1991 1992 1993 1994 1995 1996

Effluent turbidity, Plant # 1 X X X X X X

(NTU)
Effluent turbidity, Plant # 2

X X
(NTU)

Effluent colour, Plant # 1 X X
(TCU)

Effluent colour, Plant # 2 X X
(TCU)

Residual TOC

(mg/L)

X
X X X X
X X X X
X X X X

o T T T
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In some cases, the technicians simply entered a value of "<1" for values below 1.0. In
order to include this data in the preliminary statistical analysis, a nominal value of 1.0
was assumed. Data for which a value of "<1" was entered were not, however, used in

model development.

Table 4.6 Rossdale WTP, data analysis for performance parameters

Parameter Date Mean Std. Dev. Min. Max. Range Percentile

95*  so® s
Effluent turbidity, P#1  92-96 2.5 1.3 0.4 11.6 11.2 48 22 1.0
(NTU)
Effluent turbidity, P#2  92-96 2.8 1.8 0.3 18.7 18.4 6.1 24 1.0
(NTU)
Effluent colour, P# 1 92-96 2.1 0.9 0.5 74 6.9 38 20 1.0
(TCU)
Effluent colour, P # 2 92-96 2.1 0.8 0.4 75 71 35 20 1.0
(TCU)

4.1.2 EL Smith Water Treatment Plant

The modelling process for E.L. Smith WTP was started almost a full year later than that
for Rossdale WTP. As such, the availability and analysis of the data, as listed below, is

more current than that for Rossdale.

4.1.2.1 Raw Water Quality Parameters

The availability of data used to measure influent water quality from 1990 - present is
presented in Table 4.7. Both the pH and the temperature of the influent show seasonal
variations, with low values occurring during the winter months and higher values during
the summer months (Figure 4.3). The pH of the influent typically dips to a minimum of

7.7 under ice cover and reaches a high of 8.6 during July and August (Table 4.8).
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Table 4.7 E.L. Smith WTP, daily data availability for raw water quality parameters

Parameter 1990 1991 1992 1993 1994 1995 1996 1997 1998

pH X X X X X X X X X
Temperature X X X X X X X X
°O)

River flow

(m’/s)

Turbidity, daily low
(NTU)

Turbidity, daily high
(NTU)

Turbidity, daily
average

(NTU)

Colour, daily low
(TCU)

Colour, daily high
(TCU)

Colour, daily X X X X
average

(TCU)

Total hardness X X X X
(mg/L as CaCOs)
Total alkalinity X X X X
(mg/L)
vOC
(mg/L)
Maximum
conductivity
(uS/cm)
UV-absorbance X X

(200 nm)

UV-absorbance X X X
(254 nm)

Total organic carbon

(mg/L)

X X X X X X X X

o T T T

Lol
"
»
oI
T - Lol
o T T - LT
o T T B > »
T B - M

»3
»
>
o T B

Similarly, water temperature varies between 0 and 25 °C. As previously mentioned,
variations in raw water turbidity and colour are due primarily to seasonal fluctuations in
river flow and the contributions of run-off during spring-thaw and summer storm events.

Raw water daily average turbidity varies between approximately 1 NTU, under ice cover,
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to well over 1300 NTU during spring thaw and summer storm events (Table 4.8).
Similarly, daily average colour varies between 2 and 98 TCU. The erratic nature of these
two parameters is presented in Figures 4.4 and 4.5 respectively.

Table 4.8 E.L. Smith WTP, data analysis for raw water quality parameters

Parameter Date Mean Std. Dev. Min. Max. Range Percentile

95® so®  s*
pH 94-97 82 02 1.7 86 0.9 85 8.2 79
Rix;cr flow 9296 1904 1048 180 1050.0 10320 3686 1590 95.0
(m’/s)

Turbidity, daily high 9497 532 178.5 20 20000 19980 1910 8O0 20
(NTU)

Turbidity, daily average 94-97 323 944 10 13640 1363.0 1330 60 20
(NTU)

Temperature, 94-97 7.8 7.8 0.0 250 250 202 40 0.0
°C

Colour, daily high 9497 118 13.2 20 1090 1070 390 6.0 30
(TCU)

Colour, daily average 9497 103 11.6 1.0 98.0 970 340 6.0 20
(TCU)

Total hardness 94-97 164.9 134 1020 2020 1000 1890 1640 144.0
(mg/L as CaCOs5)

Total alkalinity 9497 132.0 9.0 960 1620 660 1470 1320 116.0
(mg/L)

voC 94 0.0004 0.0005 0.0000 0.0060 0.0060 0.0010 0.0001 0.0001

(mg/L)

4.1.2.2 Process Parameters

At EL. Smith WTP, plant operators can modify the doses of alum, PAC, and anionic
polymer and, to a lesser extent, the flow through the plant. Comprehensive records of
these control actions are available, as listed in Table 4.9. The raw flow through the plant
is subject to water supply and demand and typically ranges from a maximum of 240
ML/d to a minimum of 60 ML/d, although flows less than 160 ML/d occur less than 5 %
of the time (Table 4.10). Alum doses vary concurrently with influent water quality and
range from a low of 10 mg/L to a high of 182 mg/L. PAC doses show similar variability,

with doses exceeding 150 mg/L during periods of poor quality influent. PAC is typically
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used to control taste and odour problems that occur in January as well as during spring
thaw. The anionic polymer coagulant-aid, used to assist in turbidity removal, is applied in

doses up to 2.1 mg/L, although doses over 0.4 mg/L are rarely used (Table 4.10).

Table 4.9 E.L. Smith WTP, daily data availability for process parameters

Parameter 1990 1991 1992 1993 1994 1995 1996 1997 1998

Raw flow X X X X X X X X
(ML/d)

Alum dose X X
(mg/L)

PAC dose X X
(mg/L)

Polymer dose

(mg/L)

X
X X X X X X
X X X X X X
X X X X X X

L T T

Table 4.10 E.L. Smith WTP, data analysis for process parameters

Parameter Date Mean Std.Dev. Min. Max. Range Percentile
9s* s s*

Raw Flow 95-97 1844 21.1 537 2441 1904 2209 180.8 159.8

(ML/d)
Alumdose 9497 406 266 100 1820 1720 950 300 180
(mg/L)

PACdose 9497 8.0 21.1 00 1510 1510 571 00 00
(mg/L)

Polymer dose 94-97 0.2 0.1 0.0 2.1 2.1 04 03 0.1
(mg/L)

4.1.2.3 Performance Parameters

Historically, clarifier effluent turbidity and colour have been used as a measure of the
performance of the coagulation process (Table 4.11). Other methods, including streaming
current detection and online TOC, have been used sparingly and very little data exists.

Clarifier effluent turbidity rarely exceeds 3 NTU, although spikes as high as 8.9 NTU

87



have been observed (Table 4.12). Similarly, clarifier effluent colour exceeds 4.7 TCU

less than 5 % of the time.

Table 4.11 Rossdale WTP, daily data availability for performance parameters

Parameter 1990 1991 1992 1993 1994 1995 1996 1997 1998

Effluent turbidity X X X X X X X X X

(NTU)

Effluent colour X X X X X X X X X

(TCU)

Residual TOC X

(mg/L)

Table 4.12 E.L. Smith WTP, data analysis for performance parameters

Parameter Date Mean Std. Dev. Min. Max. Range  Percentile
95™ 5o 5™

Clarifier effluent turbidity 95-96 1.2 0.8 00 89 89 27 1.1 03

(NTU)

Clarifier effluent colour 95-97 23 1.2 01 69 68 47 2.1 05
(TCU)

4.2 ANN Model Development

4.2.1 Rossdale WTP, Plant #1

As previously mentioned, the model for Plant #1 at Rossdale WTP was developed first,
using a five-step scheme which included the selection of input and output parameters, the
organization of the data patterns, the selection of initial factors and levels of analysis, the

evaluation of potential architectures, and model optimization.

4.2.1.1 Selection of Input and Output Parameters

In order to select appropriate input and output parameters for the model, the study

domain was thoroughly examined. From recent literature in the areas of coagulation and
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enhanced coagulation, as well as from plant operating records, a number of potential

input parameters and output parameters were identified (Tables 4.13 and 4.14).

As previously mentioned, the ANN technique is data intensive. Only parameters for
which large quantities of historical data exist are suitable for ANN model development.
Of the potential output parameters suggested in the literature and listed in Table 4.14,
only clarifier effluent colour has been continuously monitored at the Rossdale WTP. Data
for the other potential outputs is either sketchy or non-existent. With respect to the model
input parameters, historical data exists for colour, hardness, alkalinity, pH, turbidity,

temperature, river flow, plant flow, alum dose, PAC dose, polymer dose, maximum

Table 4.13 Potential model input parameters

Parameter Classification

TOC Raw water quality parameter
DOC Raw water quality parameter
UVA (254 nm) Raw water quality parameter
Colour Raw water quality parameter
THMFP Raw water quality parameter
SUVA Raw water quality parameter
Particle counts Raw water quality parameter
Hardness Raw water quality parameter
Alkalinity Raw water quality parameter
pH Raw water quality parameter
Turbidity Raw water quality parameter
Water temperature Raw water quality parameter
Conductivity Raw water quality parameter
vVOC Raw water quality parameter
Electrophoretic mobility Raw water quality parameter
River flow Raw water quality parameter
Plant flow Process parameter
Coagulant dose Process parameter

Polymer dose Process parameter

PAC dose Process parameter

Mixing Gt Process parameter
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Table 4.14 Potential model output parameters

Parameter Classification

Clarifier effluent TOC Performance parameter
Clarifier effluent DOC Performance parameter
Clarifier effluent Colour Performance parameter
Clarifier effluent UVA (254 nm) Performance parameter
Clarifier effluent THMFP Performance parameter
Clarifier effluent SUVA Performance parameter

conductivity, and VOC concentration. Of these, VOC concentration and maximum
conductivity were eliminated due to the questionable accuracy of the recorded data. In
addition, while the two parameters can be used to quantify a portion of the organics and
inorganics in the raw water, respectively, there is no suggested direct link in the literature
between either parameter and the effectiveness of the enhanced coagulation process.
River flow was also eliminated as changes in river flow due to summer storms, ice cover,
and spring-thaw are reflected in changes to the values of other parameters such as colour,

turbidity, and water temperature.

Following the elimination process, 10 input parameters remained: colour, hardness, pH,
alkalinity, turbidity, water temperature, plant flow, alum dose, PAC dose, and polymer
dose. While most of the historical data for these parameters has been recorded as daily
average values, the daily high values of both raw water turbidity and colour have also
been recorded. Daily average values of these parameters were selected over the daily high
values in order to ensure continuity with other input parameters. With respect to the plant
flow parameter, most WTPs prefer to use the overflow rate as a measure of the flow
through the clarifiers. The overflow rate, defined as the plant flow (m3/d) / surface area of
the clarifiers (m?), was used in developing the model instead of the plant flow in order to

allow for easier comparison between WTPs.

90



With regards to the 6 water quality input parameters, the value reported in any given day
might be strongly correlated to the previous day’s value. This time-series information can
be used by the model to establish an operational baseline; an increase in turbidity of 500
NTU in 24 hours, for example, is an indication of recent summer storm activity.
Autocorrelation coefficients are useful for measuring such correlations over a series of
previous days. For the purposes of this study, a lag is defined as the difference between
today’s value and a previous day’s value, with lag x being the difference between today’s
value and the value x days ago. The autocorrelation coefficients over 6 lags for each of

the 6 parameters are presented in Table 4.15.

Table 4.15 Autocorrelation coefficients for water quality parameters

Parameter Autocorrelation Coefficient

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5§ Lag 6
Influent turbidity 0.73 0.44 031 0.28 0.28 0.29
Influent colour 0.95 0.85 0.73 0.63 0.54 0.48
Influent alkalinity 0.93 0.90 0.88 0.86 0.85 0.83
Influent hardness 0.93 091 0.89 0.87 0.85 0.83
Influent temperature 0.98 0.96 0.95 0.94 0.93 0.92
Influent pH 0.93 091 0.90 0.88 0.86 0.84

The results of the autocorrelation study suggest that alkalinity, hardness, temperature, and
pH are strongly autocomelated until at least the 6™ lag. When examining the
autocorrelation data however, it is important to determine whether the autocorrelations
are meaningful or not. In the case of these parameters, the high degree of autocorrelation
can be explained by the fact that while these parameters show seasonal variation, they do
not vary to a great extent on either a daily or even a weekly basis. Including lag values of
these parameters in the models would not be beneficial, as the complexity of the model
would be increased without a corresponding increase in the available information

provided to the network. Both turbidity and colour are strongly autocorrelated to the 1%
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lag. The large drop in the autocorrelation function for turbidity between lag 1 and lag 2
suggest that autocorrelations beyond the 1*' lag are weak and should not be incorporated
into the model. The more gradual difference between successive autocorrelation
coefficients for colour suggests that the inclusion of time-series data for the first three
lags may be beneficial. In the interest of keeping the model as simple as possible,
however, only the 1% lag was used. As a result, two time-series parameters were added to
the list of model inputs. The complete list of model input and output parameters is

presented in Table 4.16.

Table 4.16 Rossdale WTP, Plant # 1 model input and output parameters

Parameter Category Classification

Influent pH Input Raw water quality parameter
Influent turbidity Input Raw water quality parameter
(NTU)

Influent water temperature  Input Raw water quality parameter
(°C)

Influent colour Input Raw water quality parameter
(TCU)

Influent hardness Input Raw water quality parameter
(mg/L as CaCOs)

Influent alkalinity Input Raw water quality parameter
(mg/L)

Alum dose Input Process parameter

(mg/L)

PAC dose Input Process parameter

(mg/L)

Polymer dose Input Process parameter

(mg/L)

Overflow rate Input Process parameter

(m’/d)

Lag 1 influent turbidity Input Time-series parameter
(NTU)

Lag 1 influent colour Input Time-series parameter
(TCU)

Clarifier effluent colour Output Performance parameter
(TCU)
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4.2.1.2 Selection and Organization of Data Patterns

In order to develop a successful model, an appropriate time frame for data acquisition
must be selected. Three years of data, 1994-1996, were selected as the data records for
this period are complete, and no major operational changes have taken place at Rossdale
WTP since 1994. In order to avoid introducing uncertainties into the modelling process,

incomplete or questionable data patterns were removed. The resulting data file consisted

Table 4.17 Statistical analysis of model input and output parameters for Rossdale

WTP, Plant #1

Parameter Mean Std. Dev. Max. Min. Percentile
5" 50" o5t

Influent pH 82 0.2 8.6 79 80 82 85

Influent turbidity 41.8 1178 14810 1.6 2.5 9.0 1706

(NTU)

Influent water temperature 9.7 6.1 25.0 0.5 1.0 70 200

°C)

Influent colour 10.5 10.3 770 2.0 3.0 70 326

(TCU)

Influent hardness 167.2 14.7 204.0 104.0 141.4 168.0 190.0

(mg/L as CaCO;)

Influent alkalinity 135.1 10.1 169.0 940 116.0 136.0 150.6

(mg/L)

Alum dose 343 21.9 164.0 9.0 15.0 290 780

(mg/L)

PAC dose 99 19.2 145.6 0.0 0.0 00 475

(mg/L)

Polymer dose 0.3 0.1 0.9 0.0 0.0 0.3 0.6

(mg/L)

Overflow rate 573 11.6 101.5 106 446 528 812

(m’/d)

Lag I influent turbidity 03 85.1 9530 -969.0 -39.0 00 310

(NTU)
Lag 1 influent colour 0.0 33 270 -180 40 00 40

(TCU)
Clarifier effluent colour 2.2 0.8 5.1 0.4 1.0 2.1 35
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of 889 separate days or patterns, spanning three years of water treatment at the Rossdale
Water Treatment Plant. A statistical analysis of the data used in model development is
presented in Table 4.17. The data was initially organized into two categories based on
the.value of the output parameter. The boundary separating the data corresponds to the
90™ percentile of the clarifier effluent color and has a numerical value of 3.20 TCU. Data
that exceeds this boundary falls into the special-case scenario category, while the
remaining data corresponds to normal operating conditions at the WTP. The data file was
then sorted into training, testing, and production sets according to the protocol previously
discussed. The initial separation of data according to the value of the output parameter
ensured that each of the three data sets contained an equal quantity of special-case

scenario data

4.2.1.3 Selection of Factors and Initial Levels of Analysis

As previously mentioned, model development and optimization for Rossdale WTP Plant
# 1 was accomplished using factorial design experimentation. This statistical technique
allows for the evaluation of the effects of multiple factors on a single or multiple outputs
while minimizing the number of experimental trials. For the preliminary model
development stage, the effects of some of the most significant factors were evaluated. A
sample list of factors, as well as their corresponding initial levels of analysis is presented

in Table 4.18.
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Table 4.18 Factors and initial levels of analysis used in preliminary model

development
Factor + -
Ratio of training to testing data 1:1 2:1
Total number of hidden layer neurons 30 120
Activation function Logistic Gaussian Complement

For multiple hidden layer architectures, the ratio of neurons in each of the hidden layers
was also evaluated. In addition, when Ward networks containing multiple hidden layer
slabs were used, different activation functions were used for each slab. The initial levels

of analysis were selected based on previous experience in ANN modelling.

4.2.1.4 Evaluation of Potential Architectures

Two separate statistical measures were used to assess the performance of the preliminary
models. The R? indicator was applied to the entire production data set and therefore
serves as a measure of the model’s performance in periods of routine operation as well as
during special-case scenarios. The second statistical indicator, the mean absolute error,

was used to assess the performance of the model during the special-case scenarios only.
Initially, ten separate architectures were evaluated using the factors and initial levels of

analysis previously outlined. For each of these architectures, the best values obtained for

each of the statistical indicators is listed in Table 4.19.
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Table 4.19 Results of preliminary runs for Rossdale WTP, Plant #1

Architecture R* Mean Absolute Error
(TCU)
3 Layer Backpropagation 0.5819 0.7860
4 Layer Backpropagation 0.5703 0.8127
5 Layer Backpropagation 0.5396 0.8003
2 Hidden Slab Ward 0.6129 0.7398
3 Hidden Slab Ward 0.6096 0.7581
2 Hidden Slab Ward + Jump Connection 0.5906 0.7902
Recurrent 0 NA
3 Layer Jump Connection 0.6107 0.7822
4 Layer Jump Connection 0.5593 0.8059
5 Layer Jump Connection 0.5798 0.8042

In these preliminary trials, the recurrent network performed extremely poorly since the
separation of the data into multiple sets removes the time-series correlations between
adjoining data patterns. The R? value of 0 obtained for the recurrent network suggests
that the neural model predictions were worse than those that could have been obtained by
using the mean of the model outputs as the network predictions (Ward Systems Group
Inc. 1996). The remaining networks produced satisfactory results and were subjected to

further optimization.

In the second set of trials, a second factorial design incorporating the most favorable
levels of analysis derived from the results of the first factorial design was applied to each
of the architectures. In general, both the R squared and average absolute error values
improved by approximately 0.01 to 0.10. Based on the average absolute error results from
the second set of trials, the best network is the 3 layer backpropagation network with 96
hidden layer neurons, a logistic activation function, and a 3:1 training data to testing data
ratio. This network had an absolute average error for the special-case scenarios in the

production set of 0.7074 and a production set R squared of 0.6621. A plot of the actual
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data against the network predictions for this network is presented in Figure 4.6. This
preliminary model follows daily operational trend well, although there are many

inconsistencies in the model predictions for the special-case scenarios.

4.2.1.5 Model Optimization

From the preliminary model design stage, a number of potential candidate model
architectures were selected for further optimization. Of these, the three-layer
backpropagation architecture produced the most favorable results. When the trained
network was applied to each of the data sets, the results were consistent, ranging from an
R’ of 0.71 for the testing set to 0.76 for the training set (Table 4.20). Similarly, the mean
absolute error for all data ranged from 0.30 TCU for the training set to 0.32 TCU for the
testing set. In addition, when the testing and production data sets were swapped and the
model was retrained and applied to the new production set, the results are identical to
those for the original test set. This suggests that the internal network structure is identical
for both the original and swapped data, since the original test set contains the same data
patterns as the new production set. As such, the model architecture is decidedly stable, a

requirement for use in process control.

Table 4.20 Model results for Rossdale WTP, Plant # 1

Data Set R’ Mean Absolute Error
(TCU)

Training 0.76 0.30

Testing 0.71 0.32

Production 0.75 0.31

Cross-validation 0.71 0.32
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The model results for previously unseen data (production data) are presented graphically
in Figure 4.7. The model follows the trends in the actual clarifier effluent data quite well,
although two areas of apparent inaccuracy require a further examination. In the first 15
patterns, when the actual clarifier effluent colour ranges from approximately 1 to 2 TCU,
the network tends to over-predict the actual values. From a process control standpoint
however, this error is negligible since these pattems correspond to late-winter days where
the raw water quality conditions are ideal and process control modifications are rarely
required. With respect to the second area of concern, the model has some difficulty in
predicting the value of the highest clarifier effluent colour peaks present during process
upset conditions. For these cases the model clearly recognizes the existence of the peaks,
however, it tends to under-predict the actual effluent colour by approximately 1 TCU.
The model could be retrained to reduce the prediction error on these peaks, at the expense
of reducing the predictive capacity during normal operating conditions. The ultimate goal
of this study is to develop models that can eventually be used in process control
applications to reduce the frequency and severity of plant upsets. As such, while it is
important that the model recognizes plan upsets, it is far more important that the model
better predictive capacity in the normal operating range (< 3 TCU) of clarifier effluent

colour than during periods of upset.
In order to ensure that there are no obvious trends in the model residuals, a plot of the
residuals against the model predictions for the production set is presented in Figure 4.8.

The majority of the model residuals fall within a narrow band in the range of -0.5 TCU to
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0.5 TCU. The clarifier effluent colour measurements are performed on an instrument that
is only accurate to within 1 TCU. As such, all but a few of the residuals are smaller than
the instrumental error. With respect to the distribution of the model residuals, a histogram
delineating the frequency of error on the absolute scale is presented in Figure 4.9. From
this figure, it is possible to see that approximately 95 % of the model residuals are within

0.8 TCU of the actual recorded values.

4.2.2 Rossdale WTP, Plant # 2

Building on knowledge gained through the development of the model for Plant # 1, the
model for Plant # 2 was developed using a protocol that involved the following 9 steps:
selection of input and output parameters, selection and organization of data patterns,
determination of the appropriate training : testing : production ratio, determination of the
appropriate number of neurons for each hidden layer, determination of the appropriate
activation function, reassessment of the number of hidden layer neurons, evaluation of

model stability, model fine-tuning, and comparison of candidate models.

4.2.2.1 Selection of Input and Output Parameters

The model input and output parameters used in the development of the model for Plant #
2 are identical to those used in the development of the model for Plant #1 (Table 4.16).
Since the two plants share the same source water and have the same quality and quantity
of historical data, the selection process used for Plant #1 is assumed to be valid for Plant

#2.

99



4.2.2.2 Selection and Organization of Data Patterns

Using the same reasoning applied to the Plant #1 model, data from 1994 - 1996 was used
in model development. Incomplete or ambiguous data patterns were removed, resulting in
a final data file of 961 complete data patterns or days. The statistical analysis for each of
the parameters used in the development of the model for Plant #2 is presented in Table
4.21. The data was sorted according to the value of the output parameter and separated

into the training, testing, and production sets as discussed in the methodology section.

4.2.2.3 Determination of the Appropriate Training : Testing : Production Ratio

In developing the model for Plant # 1, a 3:1:1 ratio was found to be the most favorable. In
order to confirm this result, a series of runs was performed for a variety of data ratios. For
each series, a 3-layer backpropagation network was used, and the number of hidden
layers was varied across a predetermined range. Runs were evaluated on the basis of
production set R? and mean absolute error; the results are presented graphically in
Figures 4.10 and 4.11, respectively. From the two figures, the best results are
concentrated around the 3:1:1 ratio. As such, this ratio was selected for use in the

development of the model for Plant #2.
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Table 4.21 Statistical analysis of model input and output parameters for Rossdale

WTP, Plant #2
Parameter Mean Std. Dev. Min. Max. Percentile

s 50" 9s®
Influent pH 8.2 02 7.9 8.8 8.0 8.2 8.5
Influent turbidity 42.1 116.6 1.7 1481.0 2.6 90 1744
(NTU)
Influent water temperature  10.7 6.3 0.5 250 20 8.0 210
O
Influent colour 10.8 9.7 2.0 770 3.0 70 330
(TCU)
Influent hardness 167.1 13.6 1140 2040 1440 167.0 190.0
(mg/L as CaCOs)
Influent alkalinity 135.6 9.2 940 1640 120.0 136.0 150.0
(mg/L)
Alum dose 35.6 224 9.0 1640 140 29.0 80.0
(mg/L)
PAC dose 8.6 15.6 0.0 1207 0.0 00 390
(mg/L)
Polymer dose 0.3 0.1 0.0 0.8 00 03 0.5
(mg/L)
Overflow rate 41.1 9.8 130 714 282 389 606
(m’/d)
Lag 1 influent turbidity -0.6 85.8 -969.0 9530 -41.8 00 28.0
(NTU)
Lag 1 influent colour -0.1 32 -180 270 40 00 3.0
(TCU)
Clarifier effluent colour 2.3 0.8 04 7.5 1.0 2.3 36

4.2.2.4 Determination of the Appropriate Number of Hidden Layer Neurons

For the 3-layer backpropagation network with a single hidden layer, the number of
neurons was initially varied in 5 neuron increments over the range of 5 to 100 neurons.
For the 4-layer backpropagation network with two hidden layers, a grid system was
employed with the number of neurons in each hidden layer being varied in the range of 5

to 50 in 5 neuron increments. The initial network response, with respect to performance
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codes, to changes in the number of hidden neurons in the two backpropagation networks

is presented in Figures 4.12 and 4.13.

Areas of highest network response were further investigated by performing additional
runs. For the 4-layer network, for example, additional runs were performed at 2 neuron
intervals in the range of 25 to 35 neurons for the first hidden layer and 20 to 30 neurons
in the second hidden layer. The process was continued until an optimal number of
neurons was determined. For the 3-layer network, the optimal levels of performance were
obtained for both 4 and 62 hidden layer neurons. For the 4-layer network, the optimal
combination was 30 neurons in the first hidden layer and 27 neurons in the second hidden

layer.

4.2.2.5 Determination of the Appropriate Activation Function

Keeping the number of hidden layer neurons constant at the optimal values, a series of 8
runs, one for each of the available activation functions, was performed for each of the 3-
layer backpropagation networks. For the 4-layer backpropagation network, a grid system
was again used. In the interest of saving time, the linear activation function was not
evaluated for this network as it typically produces poor results. The results of the trials

are presented in Tables 4.22 and 4.23.
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Table 4.22 Determination of the appropriate activation function for the 3-layer

backpropagation networks
Activation Function Run Effect
4 Hidden Layer Neurons 62 Hidden Layer Neurons

Logistic 18 18
Tan h 13 17
Tan 1.5 12 17
Sine 4 16
Symmetric Logistic 15 16
Gaussian 14 14
Gaussian Complement 14 14
Linear 7 15

Table 4.23 Run effect for variations in activation function for the 4-layer
backpropagation network

Activation Function for Hidden Layer 1
Logistic Tanh Tan 1.5 Sine Sym.Log. Gaus. G.C.

Logistic 20 20 16 16 18 18 17
=4
Q
3 Tanh 17 18 12 16 14 8 14
o o)
5 Tan 1.5 14 17 15 16 14 13 14
§
2§ Sine 14 13 14 10 17 16 17
E =
£~ Sym Log. 12 16 14 17 12 116
=]
3 Gaus. 14 12 14 15 11 2 14
< G.C. 18 16 12 12 18 16 14

In all cases, the best resuits were obtained using the logistic function. While the logistic /
tan h combination also yielded favorable results for the 4-layer network, the effort
required to reassess the number of hidden layer neurons using this combination of
activation functions outweighed the potential benefits. As such, the logistic activation

function was selected for all the hidden layers in each of the architectures.
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4.2.2.6 Reassessment of the Number of Hidden Layer Neurons

Since the activation function selected did not differ from that used in the determination of

the number of hidden layer neurons, this step was not necessary.

4.2.2.7 Evaluation of Model Stability

In order to ensure that the results obtained were not dependent on the manner in which
the data were extracted, an alternate data set was prepared. The best models for each of
the architectures were retrained on the alternate data set, and the results in terms of R®

and mean squared error (MSE) on the production set data are presented in Table 4.24.

Table 4.24 Evaluation of model stability

Original Data Set Alternate Data Set
Architecture R? MSE R’ MSE
4-layer network 0.66 0.23 0.59 0.29
3-layer network 0.65 0.23 0.46 0.38
(4 hidden neurons)
3-layer network 061 0.26 0.57 0.30
(62 hidden neurons)

From these results, both the 4-layer network and the 3-layer network with 62 neurons
appear to be resistant to the effects of changing the data sets, as only minimal changes in
performance were observed. For the 3-layer network with 4 neurons however, there was a
marked decrease in model performance when the alternate data set was used. As such,

this architecture was eliminated from further consideration.
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4.2.2.8 Model Fine-tuning

The final stage of ANN model development employed for Rossdale WTP Plant #2
involved the evaluation of the effects of the method of weight updates, values of learning
rate and momentum, and method of pattern selection on model performance using
factorial design experimentation. With respect to the 4-layer architecture, the best model
was obtained using momentum weight updates, a learning rate of 0.2, a momentum of
0.8, and random pattern selection. For the 3-layer architecture, momentum weight
updates with a learning rate of 0.1, a momentum of 0.9, and random pattern selection

yielded the best results.

4.2.2.9 Comparison of Candidate Models

In order to determine which of the two models has the best performance, each was
applied to the training, testing, production, and cross-validation sets as previously
described. The results for the 3-layer model can be found in Table 4.25, while those for

the 4-layer model are listed in Table 4.26.

Table 4.25 Results for the 3-layer backpropagation architecture

Data Set R® Mean Squared Error  Mean Absolute Error
(TCU)

Training 0.63 0.26 0.38

Testing 0.59 0.26 0.39

Production 0.68 0.19 0.35

Cross-validation 0.51 0.32 0.42
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Table 4.26 Results for the 4-layer backpropagation architecture

Data Set R* Mean Squared Eror Mean Absolute Error
(TCU)

Training 0.63 0.26 0.38

Testing 0.59 0.26 0.38

Production 0.67 0.21 0.36

Cross-validation 0.57 0.28 0.38

Both of the two candidate models offer similar levels of performance on the production
set data. When the testing and production sets were swapped and the models retrained
however, the 3-layer model showed a marked decrease in performance. As such, the 4-
layer backpropagation model was selected as the final model for Rossdale WTP, Plant

#2.

The model results for the production data set are presented graphically in Figure 4.14.
While the overall performance of the model, as measured by the statistical indicators in
Table 4.24, is not as good as that for Plant #1, a visual inspection of the figure suggests
that the model still follows operational trends quite well. The operators at Rossdale WTP
acknowledge that Plant #2 is harder to optimize than Plant #1, as reflected by the
differences in network performance. Recognizing the optimization difficulties with Plant
#2, the operators tend to push Plant #1 to the limits. While Plant #2 has the larger
capacity and the higher mean flow (Table 4.4), the overflow rate through Plant #1 (Table

4.17) is substantially higher than that for Plant #2 (Table 4.21).

In order to ensure that there are no obvious trends in the model residuals, a plot of the

residuals across all of the patterns in the production set is presented in Figure 4.15. As
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with the model for Plant #1, the majority of the model residuals fall within a narrow band
in the range of —0.5 TCU to 0.5, although there is slightly more scatter for the Plant # 2
model. With respect to the distribution of the model residuals, a histogram delineating the
frequency of error on the absolute scale is presented in Figure 4.16. From this figure, it is
possible to see that approximately 95 % of the model residuals are within 0.8 TCU of the

actual recorded values.

4.2.3EL Smith WTP

Following the development of a model for Rossdale WTP, Plant # 2, a number of steps
were removed from the model development protocol in order to increase its efficiency.
First, the determination of the appropriate training : testing : production ratio step was
eliminated. Based on the first two models, a 3:1:1 ratio was found to be most appropriate.
In addition, the determination of the appropriate activation function step was eliminated.
Based on the first two models, the logistic activation function always provided the best
results and, as such, was the sole activation function evaluated in the E.L. Smith model.
As only one activation function was evaluated, the reassessment of the number of hidden
layers was also eliminated from the protocol. The protocol used in the development of the
model for E.L. Smith WTP therefore, had 6 distinct steps: selection of input and output
parameters, selection and organization of data patterns, determination of the appropriate
number of hidden layer neurons, evaluation of model stability, model fine-tuning, and

comparison of candidate models.
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4.2.3.1 Selection of Input and Output Parameters

The model input and output parameters used in the development of the model for EL.
Smith WTP are identical to those used in the development of the model for Rossdale
WTP Plant #1 and Plant #2 (Table 4.16). Both the Rossdale and E.L.. Smith facilities
share the same source water, although Rossdale WTP is approximately 15 km
downstream of EL. Smith. As such, the raw water quality characteristics at the two
facilities are similar and can be described by the same raw water quality parameters.
Operationally, while the two facilities use different types and configurations of clarifiers,
the process parameters used to define the coagulation process at Rossdale WTP are

equally applicable to E.L. Smith.

4.2.3.2 Selection and Organization of Data Patterns

As the EL. Smith WTP model was the last to be developed, more current data were used.
Almost three years of water treatment data, from May 1995 to April 1998, were used in
model development. Data prior to May 1995 could not be employed as new tube settlers
were installed, and a new spectrophotometer for colour measurement was purchased, at
that time. Questionable or incomplete data patterns were removed, resulting in a final
data file of 916 separate pattemas or days. The statistical analysis of the parameters used
in the development of the model is presented in Table 4.27. The data was extracted into

the training, testing, and production sets as described in the methodology section.
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Table 4.27 Statistical analysis of model input and output parameters for E.L. Smith
WTP

Parameter Mean Std.Dev. Min. Max. Percentile

5% so* 95
Influent pH 8.2 0.2 1.7 8.6 78 82 85
Influent turbidity 376 110.7 1.0 13640 20 50 1683
(NTU)
Influent water temperature 7.5 7.8 0.0 244 00 35 200
(°C)
Influent colour 11.3 11.5 2.0 740 30 70 353
(TCB)
Influent hardness 163.8 14.0 1020 199.0 142.0 163.0 189.0
(mg/L as CaCO3)
Influent alkalinity 131.6 9.4 96.0 162.0 117.0 131.0 1490
(mg/L)
Alum dose 43.5 29.2 16.0 1820 20.8 30.5 1033
(mg/L)
PAC dose 5.6 17.6 00 151.0 0.0 00 342
(mg/L)
Polymer dose 0.2 0.1 0.1 2.1 0.1 02 04
(mg/L)
Overflow rate 56.8 14.8 147 109.1 442 52.1 935
(m’/d)
Lag | influent turbidity -0.1 80.2 -909.0 9020 -295 00 21.5
(NTU)
Lag | influent colour 0.0 39 -150 350 -40 00 40
(TCU)

Clarifier effluent colour 2.2 1.3 0.1 69 0.5 2.0 4.8

4.2.3.3 Determination of the Appropriate Number of Hidden Layer Neurons

The optimal number of hidden layer neurons for each of the backpropagation
architectures was determined in the same manner as described for Rossdale WTP, Plant
#2. For the 3-layer network, the optimal number of neurons was found to be 85. For the
4-layer network, a combination of 40 neurons in the first hidden layer and 40 neurons in

the second hidden layer offered the best network performance.
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4.2.3.4 Evaluation of Model Stability

Once again, alternate training, testing, and production sets were prepared from the
original data file. The two candidate models were retrained using the alternate data sets in
order to ensure that the results obtained were not dependent on the manner in which the
data was extracted. A comparison of each of the results obtained on the production data
set from both the original and alternate data files for each model is presented in Table

4.28.

Table 4.28 Evaluation of model stability

Original Data Set Alternate Data Set
Architecture R? MSE R? MSE
3-layer network 0.85 0.24 0.75 0.40
4-layer network 0.88 0.19 0.87 0.21

While the 3-layer network offered extremely good results on the original data set, there
was a substantial decrease in performance when the architecture was retrained on the
alternate data set. This suggests that the 3-layer model may not be as robust to process
changes as the 4-layer model, whose performance on the alternate data set was only
marginally inferior to that on the original data set. As such, the 3-layer architecture was

eliminated from further consideration.

4.2.3.5 Model Fine-Tuning

The 4-layer backpropagation architecture was optimized in the manner previously

described. When the model was retrained using momentum weight updates with a
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learning rate of 0.1, a momentum of 0.9, and random pattern selection, the model

performance was increased, as will be discussed in the following section.

4.2.3.6 Comparison of Candidate Models

As only one architecture, the 4-layer backpropagation architecture with 40 neurons in
each hidden layer, was fully optimized, it is not possible to make a direct comparison
with other architectures initially evaluated for use in the E.L. Smith WTP model. As
demonstrated in Table 4.29, the model for E.L. Smith WTP offers better R? values, when
applied to historical data, than those developed for Rossdale WTP (Tables 4.20 and

4.26).

Table 4.29 Model results for E.L. Smith WTP

Data Set R* Mean Squared Error Mean Absolute Error
(TCU)

Training 0.92 0.13 0.27

Testing 0.89 0.17 0.31

Production 0.89 0.17 0.30

Cross-validation 0.89 0.17 0.31

A plot of the actual and predicted values of clarifier effluent colour across all of the
values in the production set is presented in Figure 4.17. It appears as though there are no
major deficiencies in the model; daily trends as well as plant upsets are predicted with
similar levels of accuracy. In order to ensure that there are no obvious trends in the model
residuals, a plot of the residuals across all of the patterns in the production set is
presented in Figure 4.18. While the model residuals show more scatter than either of the

two Rossdale WTP models, the majority of the residuals still fall within the -0.5 to 0.5
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TCU range. With respect to the distribution of the model residuals, a histogram
delineating the frequency of error on the absolute scale is presented in Figure 4.19. Once
again, approximately 95 % of the model residuals are within 0.8 TCU of the actual

recorded values.

4.3 Model Evaluation with Real-time Data

While all of the models developed for the two AQUALTA facilities performed admirably
on historical data, the true measure of the models’ performance is their ability to provide
accurate predictions for real-time data. For the purposes of this study, a simulated real-
time environment was employed; each of the models was applied retroactively to data
obtained from AQUALTA’s SCADA system on a four-hour cycle for the months of
March, April, and May 1998. The four-hour cycle was chosen to coincide with the
frequency of laboratory analysis updates, and the three-month time frame was selected to
coincide with spring-thaw, one of the most operationally difficult time periods for water
treatment facilities. Overall, the number of data patterns evaluated for each of the plants
was 530 for each of the Rossdale plants and 550 for E.L. Smith. The differences in the
number of patterns used for each of the facilities is due to the fact that 5 days of data
from Rossdale were unusable. The results of the real-time data evaluation for each of the
models is presented in Table 4.30. In addition, as mentioned in the introduction, a mean
absolute error of 0.5 TCU in the 2-3 TCU range is desirable if the models are to be
employed in process control applications. The results of the real-time data evaluation

when the effluent colour was in the 2-3 TCU range are presented in Table 4.31.
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Table 4.30 Results of model evaluation using real-time data

Model R®  Mean Absolute Error
(TCU)

Rossdale WTP, Plant #1 0.71 0.25

Rossdale WTP, Plant #2 0.76 0.31

E.L. Smith WTP, Clarifier 1 0.67 0.57

E.L. Smith WTP, Clarifier 2 0.72 0.49

Table 4.31 Results of model evaluation using real-time data, 2.0 - 3.0 TCU effluent

colour range

Model Mean Absolute Error
(TCY)

Rossdale WTP, Plant #1 025

Rossdale WTP, Plant #2 033

E.L. Smith WTP, Clarifier 1 0.75

E.L. Smith WTP, Clarifier 2 0.54

With respect to the results obtained for Rossdale WTP, Plant #1, the model showed
slightly less correlation, in terms of the R’ values, than when applied to historical data
(Table 4.20). On the absolute scale, however, the mean absolute error on the production
set improved by approximately 0.05 TCU on the real-time data. A plot of the actual
clarifier effluent colour along with the model predicted clarifier effluent colour is
presented in Figure 4.20. The model appears to follow daily plant operations quite well,
with most of the variation being attributed to daily fluctuations in the measured clarifier

effluent colour.

When applied to the real-time data, the model results for Rossdale, Plant # 2 improve
considerably over those obtained on historical data (Table 4.26). A plot of the actual
clarifier effluent colour and the predicted clarifier effluent colour is presented in Figure
4.21. While the model follows actual operational trends quite well, as with the model for

Plant #1, most of the deviations stem from the daily fluctuations of the output parameter.
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In some cases, the model tends to overpredict the value of the output parameter, although

the overall mean of the model residuals was found to be essentially zero ( (10)1%).

In spite of demonstrating the best performance on historical data, the model for EL.
Smith WTP had the poorest performance of the three models when applied to real-time
data. As was previously discussed, the model for EL. Smith was developed using data
averaged from the two clarifiers. While most of the input parameters had the same values
for both clarifiers, the values of polymer dose, overflow rate, and clarifier effluent color
were averaged between the two plants. With respect to the real-time evaluation it was
necessary to apply the same model to each of the clarifiers, in spite of the presence of
small operational differences between them. Plots of the actual and predicted clarifier
effluent colour for clarifier 1 and 2 are presented in Figures 4.22 and 4.23 respectively.
Of the two clarifiers, clarifier 1 demonstrated more variable performance, as the
fluctuation in successive values of clarifier effluent colour is greater than that observed
for clarifier 2. In both cases, the model tends to underpredict the value of clarifier effluent
colour at higher values, although the mean of all the residuals is again essentially zero for

both models.

With respect to the criteria established in the introduction section for successful model
development, both of the Rossdale WTP models demonstrated excellent performance in
the 2.0 - 3.0 TCU range of clarifier effluent colour, with mean absolute errors of 0.25 and
0.33 TCU for Plant #1 and Plant #2, respectively. When applied to clarifier 2, the model

for EL. Smith exceeded the 0.5 TCU mean absolute error target by only 0.04 TCU.
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When applied to clarifier 1 however, this target was exceeded by 0.25 TCU. From a
process control standpoint, these errors may still prove to be acceptable. Few studies have
been conducted on the accuracy of the decisions made by the plant operators at either
facility, and the proposed models may very well offer superior performance when used in

process control.
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Figure 44 E.L. Smith WTP, raw water turbidity, 1995-1998
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5.0 APPLICATIONS

The completed models can be used in a wide variety of process control and related
applications. In reference to the internal model control (IMC) scheme discussed in the
background information section, the models have all been trained to represent the
forward dynamics of the enhanced coagulation process; given a set of process inputs, the
models are able to predict the process output. As such, the models can be used in indirect
model control as a tool to help plant operators select the appropriate process operating
conditions. In order to be used in direct process control, where the models select
appropriate operating conditions independently, given the current raw water quality and
desired clarifier effluent colour, the models would need to be retrained to represent the

process inverse dynamics.

The remainder of this section will focus on the discussion of two potential offline
methods of indirect process control. The operator decision verification method allows the
operators to verify the effect of their control actions on the process prior to making
changes in process operations. The virtual laboratory method can be used to generate

heuristics or guidelines for a given influent water quality.

5.1 Operator Decision Verification

The NeuroShell 2 software allows completed ANN models to be accessed by a variety of

other software applications using a dynamic link library (DLL). Languages such as
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Visual Basic and C, as well as applications such as Microsoft Excel, can incorporate
trained networks as part of their source code or as a spreadsheet function. In Excel, for
example, the following function will return the predicted output of a trained network,

given a series of inputs:

=CALL("NSHELL2.DLL","Predict","pppp",def_path,input_array, output_number)

where "def_path" is the path of the network file, "input_array” is the location of the
values of the input parameters within the Excel spreadsheet, and "output_number” is the
number of the desired output. The "output_number” has a value of 1 for networks with

only one output, as is the case for the current study.

A spreadsheet can then be set up where the plant operators can enter the values of the 6
water quality and the 2 time-series model input parameters. The operators can then enter
their proposed control actions for the given water quality information: alum dose,
polymer dose, PAC dose, and overflow rate. The Excel spreadsheet will calculate the
model prediction for clarifier effluent colour based on the information entered by the
operators. If the predicted clarifier effluent colour is at an acceptable level, the operators
can proceed with their proposed control actions. Otherwise, the levels of each of the
process parameters can be varied in the spreadsheet until an acceptable level of clarifier

effluent colour is achieved.
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This process can also be used in the training of new plant operators. A spreadsheet
containing numerous sets of water quality and time-series information can be made
available so that operators-in-training can learn the effects of proposed control actions on

the quality of the clarifier effluent.

5.2 Virtual Laboratory

The completed models can alternatively be used as virtual full-scale laboratories to
provide insight into the enhanced coagulation process. The information generated from
the virtual experiments can be used to assist plant operators to select the appropriate

operating conditions for a given influent water quality.

Initially, a specific type of water is selected. For the purposes of the current discussion
highly coloured, moderately turbid water, typical of the beginning of spring-thaw, is
selected. By examining historical data records, appropriate values for each of the raw

water quality and time series parameters can be selected (Table 5.1).

Table 5.1 Typical raw water characteristics of in early spring-thaw

Parameter Value
PH 8.0
Turbidity (NTU) 19
Temperature (°C) 0.1
Colour (TCU) 50
Total hardness (mg/L as CaCOs) 153
Total alkalinity (mg/L) 129
Lag-1 Turbidity (NTU) 10
Lag-1 Colour (TCU) 30
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Typical ranges of process parameters for a given water treatment plant can then be
identified. At EL. Smith WTP, the ranges of each of the process parameters that would

typically be used to treat the water described above are presented in Table 5.2

Table 5.2 Typical values of process parameters at E.L. Smith WTP during early

spring-thaw conditions

Parameter Range
Alum dose {mg/L) 30-70
PAC dose (mg/L) 40 - 80
Polymer dose (mg/L) 0.25-0.35
Overflow rate (m/d) 40 - 60

It should be noted that overflow rate is typically not varied in response to raw water
quality, but rather in response to customer water demand. As such, colour control is
maintained primarily by varying each of the chemical dosing levels in the described
ranges. Plots of each of alum dose, PAC dose, and polymer dose over a range of overflow
rates can be piotted against clarifier effluent colour. The clarifier effluent colour values
are generated using an Excel spreadsheet, along with the "Call" function described above.
Alternatively, one or more of the process parameters can be held constant, while other are
varied alone or in combination. Figure 5.1 shows the variation in color with alum dose
and PAC dose in the ranges of 30 - 90 mg/L and 40 - 80 mg/L, respectively. The polymer
dose and overflow rate were held constant at 0.30 mg/L and 50 m/d, respectively. As
shown in the figure, the model responds gradually and logically to changes in chemical
doses, indicating that the model appears to have determined trends between input and
output parameters. A similar plot of the effects of polymer dose on clarifier effluent
colour is presented in Figure 5.2, with the PAC dose held constant at 60 mg/L. As

shown, the model predicts that varying polymer dose in the range of 0.2 to 0.4 mg/L does
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not significantly impact the removal of colour over a wide range of alum doses. This
result is in agreement with the plant operators’ knowledge base; polymer has historically
been used to increase turbidity removals and has had little effect on the removal of

colour.

The plots can be used by the plant operators to select appropriate dosing combinations for
a given influent water quality. If a clarifier effluent colour of 2.0 TCU was desired at E.L.
Smith WTP during spring thaw, for example, an alum dose of 60 mg/L in combination
with a PAC dose of 60 mg/L and a polymer dose of 0.30 mg/L. would be effective at

typical overflow rates.

Once the Excel spreadsheet has been created, any one of the input variables can be
changed and a new plot generated with ease. As such, a series of dose / response plots
can be generated for any given water quality in order to give the plant operators a

graphical representation of possible effective dose combinations.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The purpose of this study was to develop full-scale artificial neural network (ANN)
models for the enhanced coagulation process at the EL. Smith and Rossdale Water
Treatment Plants in Edmonton, Alberta. For each facility, models were developed using
historical data and were evaluated in a simulated real-time environment. With respect to
performance on historical data, each of the models was able to predict clarifier effluent
colour with a high degree of accuracy. When applied to simulated real-time data, the
models for Rossdale WTP demonstrated better performance than on historical data. The
E.L. Smith model exceeded the target maximum error by a small margin, although the
validity of the target value has yet to be determined. Two methods of offline indirect
model-based control were discussed, and the utility of the models in assisting operators to
make appropriate control actions was demonstrated. Rather than being all encompassing
however, this research demonstrates only a few of the many potential applications of the
ANN modelling technique to the water treatment industry and related fields. Processes
such as filtration and disinfection, for example, should be equally amenable to the

technique.

6.2 Recommendations

Based on the knowledge gained in the development of the models, a number of areas

requiring further study have been identified.
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6.2.1 Applicability to Other Processes

As previously mentioned the ANN modelling technique should be equaily applicable to
other water treatment and related processes. Studies should be completed to confirm the
applicability of the technique to filtration and disinfection. In addition, the technique may
be applicable to the areas of maintenance scheduling, residual management, and

distribution systems management.

6.2.2 Performance Criteria

If the developed models are to be used in process control applications, there is a need to
establish criteria to determine whether the model performance is acceptable. The target of
0.5 TCU in the 2 - 3 TCU range was suggested by staff at AQUALTA, but does not have
any real significance with regards to actual process operations. Studies should be
undertaken to determine the accuracy and reproducibility of operator control actions, as
well as the level of accuracy required for proper process control. Based on the results of

these studies, more meaningful model performance criteria can be established.

6.2.3 Process Control

With regards to process control applications, the developed models should be
implemented offline at the water treatment plants for control action verification and the
training of new operators. Each of the models should also be retrained to represent the

plant inverse dynamics so that they can eventually be used in a direct IMC system.
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6.2.4 ANN Development Protocols

As mentioned several times, few ANN model development methodologies exist. While
the protocols employed in the current study yielded acceptable models, further work in

the area of protocol development is warranted.

6.2.5 Model Boundaries

While the ANN models provide accurate predictions in the domain on which they were
trained, little is known about the ability of ANN models to extrapolate beyond the data
ranges on which they were trained. A study should be conducted to determine the ANN
model boundaries so that the models can be used with confidence in process control

applications.
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