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ABSTRAcr 

As water treatment regdations for the removai of disinfection-by-produc& (DB Ps) 

becom more stringent, water utilities must actively search out new technologies that 

improve the removal of DBP prrcursors, nameiy natural organic matter (NOM). 

Enhanced coagulation has been identifieci as the best practical technology for the removal 

NOM. Few attempts have been made to develop a full-scaie mode1 of the enhanced 

coagulation process. Models derived h m  bench-scale and pilot scale experiments often 

fail when applied to full-scale systems. This thesis describes the development of full- 

scale aRif1cial n e 4  network (ANN) models for the rernoval of NOM by enhanced 

coagulation at the Rossdale and EL. Smith Water Treatment Plants (WTPs) in 

Edmonton, Alberta. The models derived h m  this research can be used by the WTP 

operators at these facilities to opcimize the enhanced coagulation process. Altematively, 

the models can be used as vimial full-sale laboratories to provide insight into the 

enhanced coagulation process. 
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1.0 INTRODUCTION 

1.1 Purpose of the Study 

The purpose of the current study is to develop N1-scale amficial neural network (MN) 

models for the enhanced coagulation process at the EL. Smith and Rossdale Water 

Treaîment Plants in Edmonton. Alberta. The completed models can be used to optimize 

the process by providing plant operators with a robust tool to determine the effects of 

their proposed control actions on the removd of disinfection by-product precursors. 

Altematively, the models c m  be used as vimial full-scale laboratones to provide insight 

into the enhanced coagulation process. The effects of simuitaneously varying the values 

of multiple input parameters on the process output can be assessed without the 

prohibitive costs and scale-up concerns of bench-scale and pilot-scale experimentation. 

1.2 General Problem Description 

1.2.1 Naiural O r M c  Maner and Enhanced Coaguhtion 

In conventional water treatment where free chIorine is used as the disinfectant, 

disinfection by-products, such as trihalomethanes and haloacetic acids (HAAs) 

can form by the reaction of residual chlorine with some forms of naniral organic matter 

(NOM) in the treated water. In addition. in the presence of bromide, the residual free 

chlorine oxidizes bromide to hypobromous acid which, in him. reacts with NOM to 

produce brominated-DBPs (Singer 1994). As rnany DBPs are suspected to be 



carcinogenic. it is generally desirable to remove them h m  the drinking water Stream. 

Strategies for contmlling DBPs in treated water include precursor rernovd. the use of 

altemative disinfecta~~ts, and removal of DBPs following formation (Singer 1994). The 

precmor removal seategy involves the removal of NOM in thc water -nt process 

by enhanceci coagulation or softening, granular activated carbon (GAC) adsorption. or 

membrane filtration. Enhanced coagulation, which involves the use of coagulant doses 

that exceed those required for turbidity removal, is considered to be the best available 

technology for the reduction of DBPs in treated water (Kr;isner and Amy 1995). 

Membrane Ntration and GAC adsorption can be effective at removing DBP precurson. 

although both of these technologies are prohibitively expensive (Singer 1994). With 

respect to the use of alternative disinfectants, cornmon substitutes for chlorine in 

disinfection include chloramines, chlorine dioxide, and ozone. Both chloramines and 

chlorine dioxide are able to form DBPs. aibeit at lower concentrations than free chlorine. 

and ozone can result in the production of brominated DBPs when brornide-containing 

waters are ozonated (Crozes, White and Marshall 1995). In addition, the use of substitute 

disinfectants may not provide adequate disinfection; the balance between adequate 

disinfection and the formation of DBPs must be assesseci on a case-by-case basis. The 

final DBP control strategy involves the use of air stripping apparanis to remove DBPs 

h m  the treated water. The main disadvantages of this strategy include the inability of 

the air stripping apparatus to remove non-volatile DBPs and the enormous costs 

associated with treating the entue product stream in large WTPs. 



1-2.2 Currenr and Proposed Disinfection Bv-Product Reaulations 

Over the past quarter-century, the United States Envitonmental Protection Agency 

(USEPA) has attempted to find a balance between promoting microbial reduction in 

drinking water by disinfection and discouraging the f o r d o n  of disinféction by- 

products. This balance oui be quantifiecl through the use of the disinfectant I disinfection 

by-product (DDBP) ratio. The first attempt to control D/DBP was made by the USEPA 

in 1974. when THM formation in drinking water was identified as a by-product of 

chlo~at ion (Clark. Adams and Lykins 1994). The Total Trihalomethane Regulation 

m) set initial Limits of 0.10 rngL in water for the compounds in 

November. 1979. More recently, the USEPA proposed the two-stage D/DBP mie which 

wili reduce the maximum contaminant level (MCL) of 'M'HM to 0.080 mg/L and HAA5 

to 0.060 in stage 1 (Crozes. White and Marshall 1995). The ïTHM group includes 

chloroform, bromodichlorornetfiane, dibromochloromethane, and bromoform while the 

HAAS group includes monochloroacetic acid, dichloroacteic acid, trichloroacetic acid. 

monobromoacetic acid, and dibromoacetic acid. In addition to these two gmups of DBPs, 

both brornate and chlorite will be regulated in stage 1 with MCLs of 0.010 and 1 .O0 mg/L 

respectively. Long-term standards for THMs and HAAs will be reduced to 0.040 mgiL 

and 0.030 mgL respectiveiy as part of stage 2 of the D/DBP rule. The DlDBP has met 

much opposition from water treatrnent utilities since the hmtment costs associated with 

meeting the proposed new legislation are signiIicant. in rrspow to pressures fiom public 

utilities, the U.S. Congress has postponed the promulgation of stage 1 of the DIDBP d e  

until Novernber 1998, with stage 2 corning into effect in November 2002. These dates 



have been established for facilities which provide water for populations exceeding 10 

000; smaller facilities wiU have a more relaxed scheduie of compliance. 

With respect to Canadian regulations, under the Guidelines for Canadian Drinking Water 

Quality? the current ïnterirn maximum acceptable concentration of THMs in drinking 

water is 0.1 mg/L (Federal-Rovincial Subcommittee on Drinking Water 1995). The 

guideline is designated as interim until such time as the nsks h m  DBPs other than 

chloroform are ascertained. Ln Alberta, the Guidelines for Canadian Drinking Water 

Quality are enacted into law under the Environmental Protection and Enhancement Act. 

Water utilities are required demonstrate compliance with the 0.1 mg/L guideline through 

periodic sampling for 'ITHMs at the extrerne end of their distribution (Standards and 

Guidelines Branch 1997). The sampling fkequency is dependent on the population served 

by the utility and varies from every three months to once per year. 

1.2.3 Raw Water O u a l i ~  at the Rosshle and E L  Smith Water Treatment Plants 

Both the Rossdale and E L  Smith Water Treatment Plants obtain their source water from 

the North Saskatchewan River. The river has its headwaters in the Canadian Rocky 

Mountains and flows in an easterïy direction for approxirnately 500 km before xaching 

the city of Edmonton. Due to substantial contributions h m  spring-melt, the river water 

quaüty varies considerably on a seasonal basis. Turbidities range from less than 2 NTU in 

winter to over 2000 NTU during spring thaw. Similady, color ranges from 5 TCU to 80 

TCU and TOC ranges from 1.5 mg/L to 8 mg/L. The water is moderately hard (100-135 



mg$ as CaCO,) and siightly alkaline (pH 7.8-8.8). The large variations in water quality 

will allow for an assessrnent of the robustness of the mode1 under varying water q d t y  

conditions. 

1.2.4 Artificial Intelligence Modellin~ Technioues 

As an alternative to conventional modeiiing approaches, several artif~ciai întebgence 

(AI) rnodelling techniques have been developed over the part 50 years. These techniques 

oui be classified into one of three categories: knowledge-based expert systems. fuuy 

logic-systems, and artificial neural networks. The use of AI techniques is currently on the 

rise due to the advancement in computer technology in recent years. 

Knowledge-based expert systems combine human expertise with the cornputational 

power of specialized systems to solve problems in a specific area (Hushon 1990). The 

systems require a database of knowledge about a particular area which. when combined 

with a skiU pool, aiiows for a p a t e r  understanding of the problem at hand. The 

combination of the knowledge base and skill pool also allows for the generation of rules 

or heuristics that can be used in problem solving and rnodelling. 

Fuzzy logic systems classify input data according to its degree of rnembership in the 

fuzzy set. n i e  fuzzy set is a loosely defined category to which an input may belong to a 

certain degree of probability. The output is reported as a value between O and 1, with a 

value of 1 indicating 100 % membership in the f u a y  set. Fuzzy Iogic systems, when 



coupled with statisticai tools, are able to fornulate de s  h m  historical data without the 

use of d e s  generated by expem. 

Artificial neural networks mimic the human brah's problem solving capabilities. ANN 

systems are comprised of interconnecteci aritbmetic computing units thaî are Z ~ ~ O ~ O U S  to 

the brain's network of neurons. -cial neural networks are capable of selfsrganization 

and leaming; concepts and patterns can be extracted direaly fiom historical data without 

human subjective inference. ANNs are data intensive; problems for which large set of 

data are avdable are more likely to be solved by this technique. The technique can also 

be successfully appiied when the problem can not be described by well-defmed 

aigorithm, heuristics, or rules. 

The ANN modelïing technique has several advantages over conventional modeliing 

approaches that rnake it especially applicable to the cumnt study. The ANN approach 

does not require mathematical dgorithms, oniy a howledge of the important factors 

goveming the process. In the water mtment industry, many uncertainties exist because 

of the micro-scale physical and chernical reactions involved. Conventionai modeliing 

techniques require mathematical algorithms to describe these uncertainties, where a 

neural network simply l e a s  the process based on historical data (Stanley, Zhang and 

Baxter 1998). In addition. the A N N  technique is fast and flexible. Once the historical data 

has been compüed, ANN models oui be generated rather quickly. Changes in the 

underlying process, which would render a conventionai mode1 invalid, can be 

incorporated into ANN models foilowing a bief penod of retraining. The ANN 



technique can aiso handle the non-linearity of changes in the input parameters. In water 

-nt, many of the raw water quality pacameters vary on a daiiy and seasonal basis; 

models that assume a linear structure are not able to cope with such changes. Finally, 

ANNs tend to be fauit-tolerant as theV data structure is lwsely organized and the= is no 

boundary limit on the input parameters (Stanley. Zhang and Baxter 1998). This feature 

allows the ANN models to be incorporateci into real-time process control. 

13 Thesis and Approach 

1.3.1 Summay of Erpected Outcornes 

Due to the success of previous applications of the ANN technique to the modelling of 

water quality parameters (Zhang and Stanley 1997) and water treatment processes 

(Stanley and Zhang 1997). it is expected that the current study will yield favorable 

results. Each of the models is expected to capture the interactions between the input 

parameters and the output parameter in historical data in order to allow for accurate 

output parameter predictions using new input data. When tested online for use in process 

control, the technique wiil also prove to be l a s  time consurning and more robust than 

c m n t  methods of enhanced coagulation process control. Fmaliy, it is expected that the 

models, when used as a vimial full-scale Iaboratory, will provide valuable insights into 

the enhanced coagulation process, aIiowing plant openitors to make more effective and 

economical decisions with respect to plant operations. 



1.3.2 Artifleial Neural Network Model Develo~ment 

The amficial neural network modelling process involves three distinct stages: source data 

analysis, ANN model development, and model evaluation using simulated rd-tirne data 

The primary objectives of the source data analysis are to gain a familiarîty with the study 

domain and to examine the applicability of available data for model development In the 

mode1 development stage, the goal is to design and evaluate a series of network 

architectures that can be used as an effective process model. In the final stage, candidate 

models. developed using historical data, are evaluated retroactively on data selected to 

simulate ml-tirne operations in order to assess thek potential for use in process control. 

1.4 Criteria for Success 

The success of the study is dependent on three key measures: the perforxnance of the 

models with respect to the historical data, the abiiity of the models to cope with 

continuous real-time data, and the ability of the models to generate meaningfûl results 

from virtual lab experiments. With respect to the fmt measure, it is desirable to obtain a 

high degree of correlation between actual outputs and mode1 predicted outputs on the 

tmhhg, testing, and production data sets. With respect to the second measm. the 

models will only be useful for process control if they can be applied to continuous r d -  

time data. The models will be developed using historicai data averaged on a daily basis. 

In order to e n s w  that the models are actually caphiring the unique feahires, 

relationships, and interactions of the enhanced coagulation system, they WU be subjected 



to a period of testing in simuiated real-time. Based on conversations with plant operators, 

a tolerance of 0.5 TCU in the 2.0 - 3.0 TCU range during the d - t i m e  simulations is 

desirable if the models are to be used in process control applications (Thomas and Shariff 

1998). F i y ,  once the performance of the modeis on historiai and online data has been 

proven, the models can be used as virtual full-scale laboratories. Successfbl models wiil 

be able to reproduce results obtained h m  bench-scde and pilot-scale experimentation, 

and will provide insight that does not conflict with operator knowledge or literahire. 

1.5 Outline of the Document 

The remainder of this document is organized into five sections: background information. 

methodology, resuits and discussion. applications, and conclusions and 

recommen&tions. The background information section consists of an overview of the 

treatment scheme at each of the water -ment plants, as weil as more detded 

discussions of NOM and enhanced coagulation, coagulation modehg  and control, and 

artif~ciai neural networks. In the methodology section, much of the discussion focuses on 

the protocol used to develop the ANN models. Both the software and the source of the 

data used in modeiiing are also discussed. In the results and discussion section, results 

b m  each of the modeiiing stages are presented, and the results obtained from each of the 

models are discussed. The applications section discusses potential applications of the 

mode1 in process contrul. Euially, a summary of the current study, as well as 

recommendations for future study are presented in the conclusions and recommendations 

section of this document, 



2.0 BACKGROUND INFORlMATION 

2.1 Ovemiew of the Rossdale and EL. Smith Water Treatment Plants 

2.1.1 Rossdule WTP 

The Rossdale Water Treatment Plant (WTP). owned and operated by AQUALTA, is 

Iocated on the North Saskatchewan River. a major tnbutary in the Saskatchewan-Nelson 

river system, within the b o u n d d  of the City of Edmonton. The river has its headwaters 

in the Canadian Rocky Mountains and flows in an easterly direction for approximately 

500 km before reaching the city. Much of the upstream watershed is uninhabited forest 

with M e  industrial or residential development, although there is a significant amount of 

agriculturai l and-w closer to the city. There has been a water treatment facility at the 

site since 1903. although the current faciüty was constructed in 1947 and was expanded 

in 1955 to meet the needs of the expanding Edmonton population. 

The Rossdale WTP is cornposed of two independent treatment trains, identified as Plant # 

1 and Plant # 2. with a combined operating capacity of 260 MUday. With respect to îhe 

clarification process equipment, each plant has one square cross-flow clarifier that is 

comprised of a rapid-mix chamber. three stages of tapered flocculators, and one 

sedimentation basin. The rapid mix uses inline mechanical mixers with a 2.4 m3 muring 

votume and a design Gt of 2000. Each of the b stages of flocculaton consists of 5 

ceUs with total volumes of 522, 693. and 690 m3 for Plant # 1 and 571, 701, 652 m3 for 

Plant # 2. The design detention cimes though the clarifiers is 20 minutes during normal 



operating conditions, and 30 minutes during cold weather operatioos. The sedimentation 

basin for Plant # 1 m u r e s  35.0 m x 35.2 m x 4 rn, whiie that for Plant # 2 measures 

46.4 m x 49.8 m x 4 m Sedimntation is assisted by banks of up-flow tube settlers th* 

cover approximately 30 96 of the sedimentation basin ana, and are mounted at the 

effluent end of the basin. With respect to the clarification process, the Rossdale facility 

practices enhanad aium coagulation with an anionic polymer coagulant aid. Powdered 

activated carbon (PAC) can also be added on dernand in order to control severe taste and 

odour problems, which are especially prevalent dtuïng spring runoff. 

Following ~ l ~ c a t i o n ,  the effluent is softened using lime and is recarbonated in order to 

adjust the pH. Disinfection occurs through the use chlorinateci âisinfectants. Ammonia is 

added within minutes of fiee-chio~e addition resuiting in the formation of chloramines. 

The water is fluoridaîed and passes through a stilluig basin for increased disinfection 

contact tim. The effluent is then fütered via mono-media (crushedquartz) rapid sand 

filtration before k i n g  pumped into 100 ML on-site reservok. A schematic diagram of 

the treatrnent process at Rossdale WTP is presented in Figure 2.1. 

2-1.2 E L  Smith WTP 

The E.L. Smith WTP, owned and operated by AQUALTA, is aiso located on the North 

Saskatchewan River, approximately 15 km upstream of Rossdde WTP on the western 

fringes of the City of Edmonton. ï h e  facility was originally built in 1976 and was 

expanded to its current configuration in 1984. 



The EL. Smith facility is c m n t l y  a single-train facility with a design capacity of 190 

MUday. The coagulation equiprnent consists of three identical upflow solids-contacthg 

clarifiers. Under normal operating conditions two of the clarifiers are used for alum 

coagulation. and one is used for lime softening. Each clarifier is a 42.7 m x 42.7 m x 7.7 

m deep concrete basin, with a draught tube and impeller mixer in the center and high rate 

shaliow depth plastic tube settien instded approximately 1 m below the launder systern 

along the outer edges of the clarifier. A cross-section of half of one of the clarif~ers is 

presented in Figure 2.2. With respect to the clarification process, the EL. Smith facility 

also practices enhanced alum coagulation with an anionic polymer coagulant aid. Again. 

PAC can be added on demand in order to control taste and odour problems. The 

chemicals are introduced and rapid mixing occurs by means of an in-line mixer in the raw 

water supply line at a point just upstream of the clarifies. The influent raw water is 

introduced d k t l y  into the circular draught tube via a tangentid entry. The raw water 

influent is rnixed with recirculated sludge and forced upward and out of the draught tube 

due to the presence of an impeller-generated recirculaîed flow. M e r  exiting the draught 

tube, the flow may either be recyclai back into the draught tube through the bottom or 

may exit the clarifier through the tube settlen and launders. There are two primary 

purposes for the draught tube and irnpellers: 1) to provide muùng energy for the 

flocculation of particles; and 2) to recycle sludge to increase particle concentration and 

improve the ef'ficiency of flocculation. The existing impeliers and clarifiers are a 

proprietary design of Ecodyne Ltd. They are typically operated at impeiier speeds of 4 to 



10 RPM depending upon the conditions necessary to produce an acceptable degree of 

flocculation. 

Following clarification, the effluent is softened using lime and is recarbonated in order to 

adjust the pH. Disinfection occun through the use of k-chlorine. foliowed by the 

addition of ammonia in order to ensure a chloramine residual in the distribution system. 

The water is also fluoridated. The effluent is then frltered via dualmedia (anthracite and 

sand) rapid sand filiration before k i n g  purnped into 125 ML on-site resenroirs. A 

schematic diagram of the treatment process at EL. Smith WTP is presented in Figure 2.3. 

2.2 NOM and Enhanceà Coagulation 

2.2.1 NOM and DBPs 

Nat& organic matter consists of humic substances, amino acids, sugars. aliphatic acids. 

and a large number of organic molecules (Malcolm Pimie Inc. 1993). Organic matter in 

natural waters is mostly humic in nature, imparting a yellow or brown colour to the water 

(Edwards and Arnirtharajah 1985). Humic substances are forxned by the biodegradation 

of plant and animal matter in both the aquatic and temstnal environments. As such the 

humic material reflects the aquatic, soil, and vegetative conditions of their originating 

drainage basin (Joyce. DiGiano and Unden 1984). Humic substances are amorphous, 

acidic. preciominantly aromatic. hydrophüic, chernidy complex polyelectrolytes 

(Edwards and Amiaharajah 1985). In naturai water pH conditions. humic substances 

exist as negatively charged macromolecules with the negative charge resulting from the 
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presence of functional groups (Edwards and Amirtharajah 1985). The major functionai 

fiinctional groups are present, the chernical composition of humic matter varies between 

approximately 4-60 % carbon, 30-50% oxygen, 36% hydrogen, and 1-4 % nitmgen (by 

weight) (Malcolm Pimie Inc. 1993). 

Humic m;irter is m e r  sub-divided into a number of classes depending on its solubility 

in acid, alcohol, and base (Table 2.1) (AWWA Cornmittee 1979). 

Table 2.1 Classification of humic substances 
Group Name Definition 
Humus Cod Insoluble in water and NaOH 
Fulvic Acid Soluble in mineral acid and NaOH 
Hymatomelanic Acid Soluble in NaOH and aicohol, insoluble in mineral acid 
Humic Acid Soluble in NaOH; insoluble in alcohol and mineral acid 

in natural waters, the distribution of the humic substances is > 80 % Mvic acid, -10 % 

hymatomelanic acid. and - 2 % humic acid (AWWA Cornmittee 1979). Humus coal. 

being insoluble in water, is not found in natural waters in any appreciable quantities. 

Many researchers do not distinguish between the hymatomelanic acid and the humic a d  

fractions. As such, much of the fiterature focuses on differentiating the humic acid and 

fulvic acid fractions based on their physical and chernical characteristics. Fulvic acids 

have molecular weights in the range of 200 - 1000 g h o l  and therefore exhibit a much 

higher charge density than their humic counterparts, which have molecular weights in the 

200000 g/rnol range (Kavanaugh 1978). Fulvic acids also contain a higher concentration 

of oxygen-containing hinctional groups and have fewer carbon and nitrogen atoms per 

unit weight than the humic acid fractions ( A W A  Commîttee 1979). These differences 



result in the preferential coagulation of certain NOM M o n s  over others, as will be 

discussed M e r  on. 

The reasons for rrmoving organic matter h m  the drinking water strean~ are xnauy 

(AWWA Cornmittee 1979). Natural organic matter imparts colour, taste, and odour to 

water, ali of which can be aestheticaiiy unpleasing. Organic matter can also interfere with 

the oxidaîion and rernoval of heavy metais such as iron and manganese and can foui 

anion exchange resins. thereby inhibithg demineralbation. Na& organic matter is dso  

a precursor to disinfection by-products and some organics can be toxic andor 

carcinogenic aione or in association with heavy metals and pesticides. FiaUy, in 

distribution systems, the presence of organics may contribute to increased biological 

growth and thereby increases the rate of corrosion. 

Currently, the most cited reason for removing NOM fiom the drinking water stream is to 

impede the f o d o n  of disinfection by-products (DBPs). In conventional water 

aeatrnent where chlorinated disinfectants are used, disinfection by-products such as 

trihalomethanes (THMs) and haloacetic acids (HAAs) can f o m  by the reaction of 

miduai chlorine with naniral organic matter (NOM) in the treated water (Table 2.2). As 

many DBPs, such as chloroform, are suspected to be carcinogenic, it is generaily 

desirable to remove them h m  the drinking water stream. 

2.2.2 Memurement of NOM 

As there is no b u k  parameter that nieasures the concentration of disinfection by-product 

precursors in water, surrogate parameters are used. The ideal smgate is one that can be 
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rapidly measured, does not require special equipment or training, and permits the 

accurate estimation of the target parameter (Malcolm Pimie Inc. 1993). A list of the most 

common smgates used for the determination of NOM Û presented in Table 2.3. 

Table 23 Chlo~ated disinfection by-products (after Clark. Adams and Lykins 1994) 
Class Representative DBPs 
Trihalomethanes Chloroform 

Haloaçetic Acids 

Haioacetonitriles 

Haloaldehydes 

Haloketones 

Chiorop henols 

B romodic hlorometbane 
Chlorodibromomethane 
DichIomacetic acid 
Trichloroacetic acid 
B romochloroacetonitrile 
DichIomacetonitrile 
Tnchlomacetonitrile 
Dichloroacetaidehyde 
Tric hlomacetaldehyde 
1 , 1 dichioropropanone 
1.1, l -tnchlompropanone 
1, l -dicbIoro-2-butanone 
3,3-dichloro-2-butan011e 
1.1. l -trichioro-2-butanone 
2-chlorophenol 
2.4-dic hlorop henol 
2.4.6-trichlorophenol 
CNoropicrin 
Cyanogen chloride 

TabIe 23 Methods for the determination of NOM in water 
Method Abbreviation Reference 
Total Organic Carbon TOC 53 10' 
Dissolved Organic Carbon 
Ultra-violet Absorption (253.7 nm) 
Specific W Absorbante 
Trihalomethane Formation Potential 

DOC 53 IO* 
W A  5910' 
S W A  (Edzwald 1993) 
THMFP 5710 B and C* 

Colour 212O* 
*in Standard Methods, lgm Ed. (Eaton. Clescen and Greenkg 1995) 



2.2.2.1 TOC and DOC 

Total organic carbon (TOC) measures the amount of orgaaidy bound carbon in water 

samples. Dissolveci organic carbon @OC) is the portion of TOC that remains after the 

water is passed through a 0.45 pm filter (Malcolm Pimie Inc. 1993). Both are 

independent of the oxidation state of the organic matter and do not measure other 

organicaUy bound elements, such as nitrogen and hydrogen (Eaton, Clesceri and 

Greenberg 1995). TOC and DOC may not consistentiy provide an accurate m u r e  of 

DBP precursors as they do not indicate arornaticity, aliphatic nature, functional group 

chemistry, or chernical bonding associated with natural organic molecules (Malcolm 

Pimie Inc. 1993). The removal of TOC is a conservaiive indicator of the removd of the 

precursors of trihalomethanes and haloacetic acids, the most common DBPs, and of UV- 

absorbing compounds (Miltner, Nolan and Sumrners 1994). As previously mentioned, 

TOC will be used by the USEPA for the D/DBP d e .  

2.2.2.2 W A  and S W A  

Ultra-violet absorption at a wavelength of 253.7 nm is used to provide an indication of 

the aggregate concentration of W-absorbing organic constituents, such as humic 

substances and various ammatic compounds (Eaton, Clesceri and Greenberg 1995). As 

such. it is often considered to be a surrogate measure of TOC (Edzwald, Decker and 

Wattier 1985). Measuring the organic content of water by W is a fast, cheap, 

automatable process (Reid, Cresser and Macleod 1980). As with any spectrophotometric 



technique, interferences are common. Certain oxidants and reducing agents such as 

ozone, chlorate, chlorite, chloramines, and thiosulphate also absorb hght at 253.7 nm 

(Eaton 1995). W analyses are also affected by the pH and Nrbidity of the solution king 

tested (Malcolm Pirnie Inc. 1993). The specinc ultra-violet absorbance (SUVA) is 

operationally deîïned as the W A  / DOC of the sample (Edzwald 1993). S W A  is an 

indicator of the humic content of the organic matter and should be used in addition to 

TOC when determining the amenability of a water to enhanceci coagulation (Krasner et 

al. 1997). Waters with low S W A  values contain primariiy non-humic matter that is not 

amenable to enhanced coagulation. 

The trihalomethane formation potencial (THMFP) of a sample is defined as the 

concentraiion of total aihalomethanes (TTHM) that are formed when the sample is 

incubated in the presence of excess free chlorine (Eaton, Clesceri and Greenberg 1995). 

THMFP determinations provide a worst-case scenario of the concentration of THMs that 

may be f o d  and do not necessarily provide an accurate description of what wiil 

happen in a full-scde system (Malcolm Pirnie hc. 1993). In addition, THMFP 

determinations are extremely sensitive to solution pH, chlorine dosages, and contact 

times. 

2.2-2.4 Colour 

Colour determinations are reported as " m e  colour", that is, the colour of the water from 

which hirbidity has been removed. Colour in water may result h m  the presence of 



natural metaiiïc ions, humus and peat materiais, piankton, weeds, and indusaial wastes 

(Eaton, Clesceri and Gnenberg 1995). In water treatment applications, colour is a 

s m g a t e  meastue for the humic content of a sample (Edzwald, Decker and Wattier 

1985). As the humic fiaction of naniral organic mater is largely responsible for the 

formation of DBPs, the removal of colour can be used as surrogate for the removai of 

DBP precursors, provided that site-specinc correlations are made. Reductions in colour 

and T H .  precursors were found to occur almost concurrently ( Amirtharajah, Dennett 

and Studstill 1993)- 

2.2.2-5 Correlations between the NOM Surrogafes 

As each of the surrogates rneasures different fractions of the NOM present in a sample. 

certain swogates are preferentialiy removed over othen. In general, the order of 

removability is UVA > THMFP > TOC (Reckhow and Singer 1990 ; Cheng et al. 1995). 

In spite of k ing  prefereatiaily removed, W A  was found to be hear1y correlated with 

both TOC and THMFP, although such correlations are case-specific ( E d ~ ~ a l d ~  Decker 

and Wattier 1985). Correlations between W A  and TOC are afkcted by the presence of 

chloramines and hirbidity; efforts should be made to remove these interferences before 

correlations are made (McCaay and Aieta 1984 ; Dobbs, Wise and Dean 1972). The 

WAlWC correlation may also need to be sub-divided on a seasonal basis as the 

composition of the organic matter is Likely to Vary from season to season (Reid, Cresser 

and Macleod 1980). With respect to the correlation between colour and TOCT TOC 



removal curves at varyhg dum doses pardel colour removal cu~ves. although colour is 

preferentiaiiy removed (Babcock and Singer 1979). 

2.2-3 DBP Rernoval Technioues 

Disinfection by-product control stratepies commody id into one of three categories: 

precursor removal, disinfectant modification, and removal a k r  formation. An assessrnent 

of the relative cost of the vanous control straîegies is presented by Clark, Adams and 

Lykins ( 1994)- 

2.2.3.1 DBP Precursor Removal 

The most commoa and most widely supported means of DBP control is through the 

removal of DBP precurson, namely dissolved and suspended naturai organic matter. 

Precursor removal can be accomplished through precipitative processes. adsorptive 

processes, and membrane processes (Clark, Adams and Lykins 1994). 

With respect to the precipitaîive processes such as enhanced coagulation and enhanced 

softening, the physical and chernical properties of the organic matter are aitered such that 

agglomration is enhanced and the precipitate is nmoved by senling out or by fdtration 

(Malcolm Pirnie Inc. 1993). The enhanced coagulation process involves the use of 

additional coagulant in the clarification stage of water trmtment in order to irnprove the 

removai of disinfection by-product (DBP) precursors, namely nahiral organic matter 



(Crozes, White and Marshail 1995). NOM removal by enhanced coagulation is 

accomplished by chernical precipitation. formation of insoluble complexes through 

charge-neutralization. or adsorption onto floc (Bell et al. 1997). The mechaniSm of 

removal is highly dependent on the pH of coagulation; at low pH (4.0 - 45) the charge- 

neuiralization mchanism predomioates while the adsorption mechanism predorninates at 

higher pH levels (6.0-8 .O) (Edwards and Amirtharajah 1985). 

Adsorption techniques are often employed to remove low molecular weight organics 

following or during coagulation. The two main techniques involve using activated carbon 

in either the granulateci (GAC) or powdered (PAC) form. GAC is either placed in a 

gravity bed or in pressure contactors following coagulation. in order to rnaximize contact 

with the pre-aeated water. If GAC adsorption is not preceded by coagulation, high 

molecular weight organics, which adsorb to a lesser extent on GAC, wiil block the pores 

on the GAC. Adsorption increases with decreasing pH. The overall optimum pH for 

coagulation / GAC adsorption can be expected to be sornewhat acidic and highly 

dependent on the alkalinity of the system (Randtke 1988). Historically, PAC has been 

used pnmarily for the control of taste and odour problems on a seasonal basis. When high 

pore-volume PAC is used in elevated doses (>50 m a )  however, it can assist in the 

removal of DBP precursors. PAC is often more economical than GAC since the need for 

organics removal often varies considerably throughout the year. PAC is easily turned on 

and off as needed creates no headloss, and involves only a very minor capital investrnent 

(Randtke 1988). 



Membrane processes are generally used in relatively low-hirbidity waters in order to 

remove total dissolved soi& (TDS). The membranes employed in these processes are 

d e h e d  by their effective pore size which is often expresseci as the molecular weight cut- 

off (MWC), the molecular weight above which most species are retained by the 

membrane. Ultrafiltration 0, nanofiltration (NF), and reverse osmosis (RO) 

membranes, with MWCs of >500, 200-500, and QO respectively, are commonly 

employed in the water treatment indu- (Malcolm Pimie h c .  1993). Membranes with 

lower effective pore sizes and MWCs have higher operating pressure requirements and 

are more suscrptible to fouling than those with larger effective pore sizes and MWCs. 

2.2.3.2 Disinfectant Modification 

In removing DB Ps through disinfectant modification. two methods are comrnonl y 

employed. The most cost-effective rnethod involves replacing fk chlorine with an 

alternate disinfectant such as ozone, chlorine dioxide, and chlorarnine, aithough this 

rnethod has severai drawbacks, Both chloiamine and chlorine dioxide are able to form 

DBPs, albeit in lower concentrations, and ozonation of brornine-containing waters can 

result in the formation of brorninated DBPs (Crozes, White and Marshall 1995). In 

addition, because ozone decomposes rapidly in water, it cannot be used to maintain a 

residual in distribution systems (Tate and Arnold 1990). As such, a chlorinateci 

disinfectant must be used as the residud dis infect an^ potentiaily forrning DBPs in the 

distribution system if precursoa are present. The second rnethod involves moving the 

point of disinfection M e r  downstream. Since DBP formation is tirne dependent, 



moving the disinfection point M e r  downstrmm will help to reduce DBP concentrations 

in the finished water (Clark, Adams and Lykins 1994)- In addition, if disinfeztion is 

delayed u n d  after filtration, fewer precursors remain to react with the disinfectant 

Unforhmately however, moving the point of disinfaction fwther downstream reduces the 

disinfection contact tim thereby rcducing the effeaiveness of disinfection. 

The physical rernoval of DBPs after formation is a costly altemative to precunor removal 

and can generally be accomplished by either GAC adsorption or by air stripping (Clark, 

Adams and Lykins 1994). GAC adsorption is commonly w d  in the manner described for 

precursor removal above. Since DBPs are, for the most part, volatile organic compounds 

(VOCs), they can also be removed by air stripping. The process involves bringing air in 

contact with the water in order to tramfer the contaminants fiom the aqueous to the 

gaseous phase (ComweU 1990). Air-stripping for the removal of THMs commonly 

involves the use of a packeâ tower with a counter-current flow pattern with water falling 

down through the tower packing, and air passing upward. This arrangement maximizes 

the turbulence required for high transfer efficiencies. One of the major disadvantages of 

the technique is the production of off-gas that is either disperseci to the air or treated by 

adsorption onto GAC, a costly alternative. In addition, the formation of DBPs occurs in 

two stages, a rapid stage and a long-term (7 day) stage (Knocke, West and Hoehn 1986). 

If the DBP precursors are not removed by one of the methods highlighted above, the 



potentiai for DBP formation in the distribution system wiU exist regardless of wheîher or 

not air stripping is employed. 

2.2.4 Enhanced Coagulation - 

Enhanced coagulation is considered to be the best available technology for the reduction 

of DBPs in treated water (Krasner and Amy 1995). The process involves the use of 

additional coagulant in order to improve the removal of disiafection by-product @BP) 

precursors, namely naturai organic matter (Crozes, White and Marshall 1995). The 

enhanced coagulation process consists of two steps: the conversion of dissotved NOM to 

parthlate matter during coagulation and flocculation, and the removal of the particdates 

during sedimentaiion and n1traîion (Malcolm M e  Inc. 1993). A general discussion of 

the enhanced coagulation process, as weli as detded descriptions of the mechanisms of 

removal is presented by Malcolm Pirnie Inc. (1993). 

2.2.5 Factors Affecting NOM Removal by Enhanced Coagulation 

Many factors, both chernical and physicd, must be controiied in order to maxirnize DBP 

precursor removal by enhanced coagulation. 

2.2.5.1 Nature of the Organics 

Organic matter occurring in naairal waters can be characterimi by its molecular weight 

distribution (MWD), humic substance content, and hydrophobicity, aii  of which affect its 

removal by enhanceci coaguiation. Typicdly, enhanced coagulation removes humic and 
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high mole& weight fiactions better than it removes non-humic and low molecular 

weight fractions (Cheng et al. 1995). In addition, hydrophobie organic molecules are 

preferentidy removed over their hydrophilic counterparts (Collins, Amy and Steelink 

1986). 

Separating the humic substances into humic acid and fulvic acid M o n s  yields 

additional information on the removability of natural organic matter by enhanceci 

coagulation. Humic acids, having higher molecular weights than hilvic acids, are 

preferentially removed (Krasner and Amy 1995). Fulvic acids typically require 

approxirnately twice the coagulant dose as humic acids for effective removal (Kavanaugh 

1978). With respect to the relative reactivities o f  the two humic components, the fulvic 

acid fraction is less reaaive than the humic acid hct ion (Joyce, DiGiano and Unden 

1984). As such, even though fulvic acids comprise over 80 % of the organic matter found 

in nahiral waters, the more reactive high molecular weight humic acid fiaction is 

pre ferentially removed. 

For the USEPA D/DBP d e ,  TOC removal requirements are based on raw water 

alkalinity, suggesting that the alkalinity is an important parameter for DBP precursor 

removal. Alkalinity is an extremely important econornic parameter since, dong with the 

coagulant type and dose, alkalinity govems the pH which can be achieved without 

resorting to the use of supplemental acid or base (Randtke 1988). Waters with higher 

allcalinity (80 -100 mg/L as CaC03) will have g w d  buffering capabilities and WU resist 

pH depression by the coagulant (Malcolm Pimie hc. 1993). If a low coagulant dose is 
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applied to high alkalinity water however, the pH of the system may be well above the 

optimum for organics removal. Conversely, if the alkalinity of the raw water is low, the 

pH obtained may be satisfactory for organics removal, but the quantity of solids 

precipitated may be too low to coprecipitate some of the soluble organics that could 

otherwise be removed (Randtke 1988). In summary, NOM removai WU be favored by 

lower raw water allcalinities, given the same dosing conditions, provided that the pH of 

the water does not drop below the optimal range upon coagulant addition (Malcolm 

Pirnie Inc. 1993). 

2.2.5.3 Inorganics, Suspended Solids, and Tu rbidity 

The effect of divalent catious and anions, suspended solids, and turbidity-causing 

particles on the removai of NOM has been thoroughiy studied. Divalent cations c m  

broaden the pH range for effective removai and Iower the required coagulant dosage 

(Randtke 1988). In particular, the ca2+ cation was found to enhance the removal of fulvic 

acid, which is generally difficult to remove, when alum or PACL is used as the coagulant 

(Hundt and O'Melia 1988). Conversely, the ~ 0 ~ ~ -  and O H  anions may inhibit the 

coagulation of organics by competing with organics in solution for hydrolyzed coagulant 

species and adsorption sites (Jacangelo et al. 1995). Other monovalent anions, such as 

Cl', were found to have little eflect on the removal of organics (Hamngton. Chowdhury 

and Owen 1992). Most authors agree that suspended solids. as well as turbiditycausing 

particles, have Little effect on the removal of humic substances and colour (Dempsey, 

Ganho and OMelia 1984 ; Ollier, Miltner and Summers 1997). In raw waters with low 

colour concentrations however. a srnall amount of turbidity may decrease the quired 



coagulant dose by providing adsorption sites for the organic molecules (Edwards and 

Amirtharajah 1985). 

2.2.5.4 Temperature and Biologieai Activity 

Seasonal variations in both raw water temperature and biological activity affect the 

influent water quality and its treatability. During the wannest months, high levels of 

NOM are likeiy to exist., coinciding with the season of peak water demand. As such, it is 

wcessaiy to ensure that tramnent processes are able to cope with increased organic 

loading. Waîer temperature does not directly affect the removal of TOC by coagulation, 

although colour removal is impaired at low temperatures (< 2OC) (Knocke, West and 

Hoehn 1986). In addition. the solubility of alum is affecteci by low temperatures (c 4OC), 

as the pH of minimum aium solubility is lowered by approximately 0.5 uni& (Edrwald 

1993). This reduced solubility can result in an increase in the required alum dose. With 

respect to biological activity, the effectiveness of reducing NOM does not appear to be 

affected by variations in algal or bacterial populations (Hoehn et ai. 1984). Biota can 

however. conaibute to the organic loading of the raw water and thereby increase the 

concentration of NOM. 

The optimal pH of coagulation for the removal of organic matter is dependent on the 

coagulant used. For alum-based m e n t ,  the optimal pH range has been variously 

reporteci as 5 - 6 (Malcolm Pirnie Inc. 1993) (Gvanaugh 1978), 5.5 - 6.0 (Singer 1994). 



and 5.0 - 6.5 (Edwards and Amirtharajah 1985). For Feo-based coagulants, the optimal 

range is shifted to lower values and has been reported as 3 - 5 (Ibvanaugh 1978). 4 - 6 

( Amirtharajah, Dennetî and Studstill 1993), and 4 - 5 (Malcolm Pimie Inc. 1993). More 

detailed studies suggest that the optimal coagulation pH is also dependent on the nature 

of the organic marter. For alum coagulation, colour caused by humic acids is best 

removed at pH < 55, while colour caused by fblvic acids is best removed at 4.5 c pH c 5 

(Babcock and Singer 1979). More recent studies suggest th& the coagulation pH is not 

statistically signifcant by itself when determining optimal coagulation conditions 

(Harrington, Chowdhury and Owen 1992). Rather. optimal regions of organic removals 

are defined by specific combinations of alum dose and coagulation pH. The first region. 

in which the charge-neutralization mechanism predominates, typically occurs when a 

coagulation pH is 4.00 - 4.75 is cornbineci with alum doses of 15 - 80 m@ (Edwards and 

Amirtharajah 1985). At pH 5.75 - 7.50 and alum doses > 30 m&. the organic matter is 

adsorbed to aluminum-hydroxide precipitates. 

2-2.5.6 Type of Cuagulont 

Many compounds including alurn, femc chloride, polyaluminum chloride (PACL), 

cationic polymers, aluminum chiorohydrate. femc sulphaîe. sodium aluminate. ferric 

chlorosulphate, and polyiron chloride have been used as primary coagulants in water 

treatment facilities (Edzwald 1993). In spite of the variety of coagulants available, m s t  

utilities use either alum or femc chloride as the prïmary coagulant. In general, femc 

coagulants outperfom alum coagulants at higher doses, on an equal dose basis, while 

alum has the edge at lower doses (Edwards 1997 ; Randtke and al. 1994). Ferric chloride 



produces appmximately 2.8 times more metal hydroxide, produces l e s  sludge. and is 

more effective at l o w e ~ g  the coagulation pH than alum, making it more suitable to 

enhanced coagulation (Crozes, White and Marshall 1995). In cornparing these metal-sait 

coagulants to cationic polymers, the mtal-salt coagulants are typically more effective at 

removing low rnolecuiar weight NOM (Randtke 1988). Synthetic organic cationic 

polymers can achieve coiloidal charge neutralization and possibly participate in the 

precipitation of humic and Nvic acids, but they do not provide a substrate for adsoqtion 

of the organic matter (Crozes, White and Marshall 1995). Polyduminum chloride is 

sometimes used as the primary coaguiant in low twbidity waters, although the doses used 

are generally insufkient to remove NOM (Malcolm Pimie Inc. 1993). Other coagulants 

such as aluminum sulphate (Edwards and Amirtharajah 1985), aluminum chlomhydrate 

(Williams et al. 1996), and magnesium salts (AWWA Cornmittee 1979) have been 

proposeci for colour and organics remval. although very few full-scale applications of 

these coagulants have been i&ntified. 

2 .25  7 Coagulant Dose 

The coagulant dose required for optimal DBP precursor rernoval is highly dependent 

upon the source water characteristics, as weil as the type of coagulant used. As such, 

there is no single optimal coagulant dose for NOM removal, only general trends and 

dose/removai profiles. In general, except at very low colour concentrations, the 

coagulant dose r e q d  for colour removal is greater than that required for turbidity 

removal alone (Edwards and Amirtharajah 1985). The removal of NOM generally 

follows one of two dose/removal pattern. Removal either increases very sharply in the 



vicinity of a paaicular coagulant dosage (type 1 pattern) or increases very gradually with 

increasing dosage and eventually becomes asymptotic (type 2 pattern) (Randtke 1988). 

Type 1 behavior is indicative of a precipitaîion mechanism and is associated with Low pH 

( 5 6  for alum) and high concentrations of NOM that is predominantly humic. Type 2 is 

associated with relatively high pH, Low NOM, and non-humic rnaterials. A stoichiometnc 

relationship between the NOM and the coagulant exists for the type 1 pattern, but not 

necessarily for type 2. Type 2 is most common for surface waters, especiaüy where 

turbidity andor allcalùiity are high. With the type 2 pattern, it is possible to reach a point 

of diminishing r e m  where dosing beyond the minimum required for effective removal 

of organics does not substantially irnprove removais (Vrijenhoek et al. 1 998). 

2.2.5.8 MLxing Conditions 

Colour removal by enhanced coagulation is a function of the rapid mix tirne, the mean 

velocity gradient (G), and the flocculation time (T). For most waters, the optimal rapid 

mix time for colour removd was found to be 30 - 60 seconds (Bowie and Bond 1977). 

With respect to the flocculation characteristics, the mean velocity gradient should not 

exceed 100 s-' in order to ensure proper floc development (Kawamura 1973). Organics 

removai was found to be unaffected by changes in the floccuiation tune in the range of 10 

- 30 minutes, however shorter flocculaiion times may not produce adequate floc for 

organics removal (Semmens and Field 1980). 



2.2.5.9 Addition of PA C 

Powdered activated carbon (PAC) is commonly used in concentrations of 5 - 10 mg,& on 

a seasonal basis to control taste and odour problems. At these low concentrations, PAC is 

typically ineffective at removing NOM due to insuffîcient contact with the organics 

(Randtke 1988). At elevated concentrations (> 50 mg/L) however, the PAC acts as a 

fiocculation nucleus and can signifcantly reduce the amount of NOM present in the 

water (Chadik and Amy 1983). The effectiveness of PAC addition can be improved by 

using smaller diameter PAC in order to maximize surface area, and by adding the PAC 

before the coagulant in order to rnaximize contact time (Randtke 1988). 

2- 2.5.10 Addition of Polymer 

While generally ineffective as a prirnary coagulant for the removal of NOM. polymeric 

coagulant aids can d u c e  the dose of coagulant required to achieve acceptable NOM 

removais by as much as 44 % (Hubel and Ednvald 1987). Most studies conclude that the 

addition of polymeric coagulant aids does not increase organics removal (Randtke 1988) 

(Hubei and Edzwald 1987). atthough one study suggests that elevated concentrations (2 

m a )  of cationic polymer can d u c e  the THMFP of f ~ s h e d  water by up to 22 4b 

(Chadik and Amy 1983). At such elevated polymer doses however. the floc may 

restabilize resulting in poor hirbidity rernovals (Edzwald, Haff and Boak 1977). 



The use of strong oxidants, such as ozone, can alter the chemical properties of NOM, 

making it less amenable to coagulation. Reozonation cm convert some humic material 

into non-humic material and reduœ the molecular weight of the organic matter by 

severing the carbon backbone. As such, preozonation can lead to a reduction in W 

absorbame and colour without reduciog TOC (Edzwald, Decker and Wattier 1985). In 

addition, omnation increases the polanty and the average acidity of the NOM, resulting 

in a diminished tendency of the NOM to bind to the coagulant (Owen et al. 1995). 

2.3 Conventional Control and Modeliing of Coagulation 

2.3.1 General Strateaies 

2.3.1.1 Batch Dose Control 

The most cornmon method of determining optimal coagulation conditions is the jar test, a 

batch test consisting of a series of 0 5  - 2.0 L jars that serve as bench-sale clarifers. The 

jar test may be used for coagulant selection, dose selection, coagulant aid and dosage 

selection, determination of optimal pH, determination of the point of chemical addition, 

optirnizaîion of mixing times and energies, and determination of coagulant feed 

concentration (Amirtharajah and O'Melia 1990). While many utilities develop their own 

jar test methodologies. a sample protocol for the detennination of coagulant dose is 

presented by Arnirtharajah and OMelia (Amirtharajah and O'Melia IWO). In order to 
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approximate the full-scale system, it is essential that the relative dimensions of the jar, as 

well as the method of chernical preparation, temperature, mixing intensity, and rnixing 

tim are a l l  simila, to that found in the full-scale system. When used for coagulant dose 

selection, any one of a number of methods including turbidity, colour, streaming curent 

detection, and particle counts, can be applied to the jar effluent (Dentel 1991). The 

optimal dose is often selected by plotting the selected parameter against the doses used in 

the jars and selecting the dose that best mets  the utility's proass criteria 

There are several key disadvantages to ushg jar tests for coagulation optimization. Fmt 

and foremost is the fiequency of testing. Being batch tests, jar tests are ody able to 

provide a snapshot of influent water quality and are unable to represent the continuously 

changing dynamics of the full-scaie system. Jar tests are often perforrned infkquently 

throughout the plant operator's shift and often after clarified water quality begins to 

degrade. Adjushg coagulant doses based on the results of jar tests is reactive rather than 

proactive; dosïng levels generally can not be adjusted uniil au upset occm. As such, the 

magnitude of the upset is often magnified due the time lag between the change in influent 

water quaiity aod the chernical dosing adjustments. In addition the requirement to now 

determitle the optimal dose for both particulate and organic removal adds signifiant 

complexity to jar testing methodologies. The optimal dosing leveis determined by the 

bench-scale jar tests may also differ from those in full-scale operations due to the 

ciifferences in the hydrodynarnics of the two systems. In addition, clarifiers with sludge 

recycling are inherently difficult to approximate at the bench scale. In spite of these 



limitations, the jar-test is widely used for determining dosing levels as few alternatives 

exist. 

2.3-1.2 Continuous Dose Control 

Continuous control of coagulant dose cm be accomplished via flow-paced chernicd feed, 

electrokinetic methods. and turbidimeûic methods. In flow-paced chernical feed systems, 

the coagulant feed rate is adjusted according to the raw water flow rate, thereby 

maintaining a constant coagulant dose (Dentel 199 1). This method does not address the 

need for varying the coagulant dose according to infiuent water characteristics and is 

therefore unsuitable for ali but the b a t  quality raw waters. 

The main electrokinetic rnethod involves the estimation of the zeta potential of a sample 

using a streaming cumnt detector (SCD). The zeta potential is a masure of the electric 

potential smunding particles in solution. Suspensions thai are well destabilized by the 

charge-neutraiization mechanism of coagulation have a zeta potential value near zero. A 

seeaming cumnt detector is a cylindrical device containing a piston with a reciprocating 

motion and an annula. space between the piston and the cyhder. A sample of water is 

dram into and pushed out of the annular space as the piston moves up and dom, 

generating an altemating or strearning current at eletrodes affixed to the ends of the 

cyhder (Amiaharajah and O'Melia 1990). The str;eaming current is directly proportional 

to the charge on the particles in the sample, and a pH specific correlation can be made 

between the SCD ~ a d i n g  and the zeta-potential of the sample. The SCD cm be 



implemnted in feedback loop confrol systems to automaîicaiiy adj- the coagulant dose 

for effective destabiiization of the particles (Amirthamjah and O'Melia 1990). 

Elecirokinetic methods are ody  usehl if the charge-neutralization mechanisrn of 

coagulation predominates. 

Turbidimetric methods involve the use of conànuous online turbidity measurernents 

foilowing either Bocculation or sedimntation for feedback loop coagulant dose 

adjustment. Such rnethods are rarely used due to the difficulties in the provision of a 

trouble-fiee means of continuous turbidity measurements and the implementation of a 

successful control algorithm (Dente1 1991). Conventional turbidity meten are subject to 

clogging, and damage through continuous use. With respect to the control algorithm. 

conventional set-point control straîegies are not always applicable. If excessive coagulant 

dosing results in elevated nirbidity measurements, for example, the controller would 

attempt to control the turbidity by increasing the coagulant dose, clearly the wrong 

control action. 

A model for the removal of NOM by coagulation was developed by Harrington using a 

forward stepwise variable selection procedure with multiple linear regession analysis 

(Hamngton, Chowdhu~y and Owen 1992). InitiaUy, the mode1 considered the effects of 

raw water TOC, alum dosage, coagulation pH, temperature, and chioride concentration 

on f ~ h e d  water TOC, although the later two parameten were dropped due to lack of 



statktical signifimce. The resulting model had an adjusted 3 of 0.965 based on 44 

observations. When applied to data h m  associated databases, the model tended to under- 

predict nnished water TOC by approximate1y 7 %. Harrington's mode1 venfication is 

based on a namw range of water quafity and operating conditions (Greiner, Obolensky 

and Singer 1992). As such, it may not be able to accommodate site-specific deviations 

fiom the reference databases, resulting in even -ter prediction emrs. 

General and site-specific models for the removal of DûC duRng enhanced coagulation. 

proposed by Edwards, predicted the final WC with a standard error of approximately 

12 8 (Edwards 1997). The model inputs wen coagulant dosage, coagulation pH, raw 

water W A ,  and raw water DOC. The author cautions that the excellent predictive ability 

of the model should not be construed to imply conceptuai validity until further tests are 

comple ted. 

2.3.3 Process Optimization and Control a f Rossdale and E.L. Smith WTPs 

The coaguiation process at both of the WTPs has traditionally been controlled by manual 

operator control. For typical on-line operation control, the operators assess the quality of 

the water, using jar-tests or their expenence, and then adjust the operational parameten 

as they see fit Both facilities have a supervisory control and data acquisition (SCADA) 

system in place to assist in process operation, however these systems serve only to relay 

control information and do not generate control actions themelves. In rnany large water 

treatment plants, there rnay be some dosing control strategy in place however, such 



dosing stmîegies normally only serve as a guideline and are not rigorously foliowed. At 

Rossdale WTP for exaxnple, a strategy exists for selecting alum dose levels baseci on 

clarifier effluent colour. This ssategy is rarely invoked however, as each operator 

maintains operational control using strategies denved h m  personal experience. At EL. 

Smith WTP, the ovemding goai for the coagulation process is to d u c e  clarifier effluent 

turbidity. Again, each operator achieves this goal using a different strategy based on 

personal experience. 

2.4 Overview of ANN Modelling 

2.4.1 General Characteristics of AhOYs 

The ANN rnodeliing technique is an artificial intelligence technique that sirnulates the 

human brain's problem solving processes. Unlike the haman brain, which consists of an 

estirnated 10" murons with 1 014 comections. the most complex ANNs consist of less 

than 100 processing elements or artificiai neurons and 106 connections (Flood and 

Kartam 1997). Artifîcial neural networks are capable of self-organization and leaming; 

concepts and patterns can be extracted directly h m  histoncal data without the need for 

complex mathematical f o d a e  or algorithms. In general, &cial neural networks cm 

be applied to the foiiowing types of problems: pattern classification, clustering and 

categoruation. function approximation, prediction and forecasting, optimïzation, 

associative memory, and process control (Jah, Mao and Mohiuddin 1996). ANNs are 

particdarly usehl if the characteristics of the specific problern are hown, but the 



connections between the data that are necessary to solve the specitic problem are not 

(Buscema 1997). In the water treatment industry. for example, ANNs cm be applied to 

processes where the important factors are lcnown but the reactions and interactions 

between the factors are difficult to elucidate. 

The ANN technique holds several advantages over other statisticai methods of &ta 

analysis. With respect to data processing, the type of re1ationship (linear, non-linear, 

exponential. etc.) between input and output data is determineci purely from the 

information presented, with no in-built assumptioos from the ANN (Harvey and Harvey 

1998). In addition, discontinuities in the data, different levels of data measurement 

precision and noise, and data scatter are easily accomrnodated (Foody and Arora 1997). 

The feature Uiat really sets ANNs apart fiom other statistical methods however. is the 

ability to self-organize or leam. This feature d o w s  ANNs to produce correct or nearly 

comct responses when presented with partialiy incorrect or incomplete stimuli, and to 

generaiize d e s  fiom the training cases and apply these to new cases (Gamet, Ghaboussi 

and Wu 1992). 

With respect to the disadvantages of the technique, ANNs are data intensive and are only 

suited to problems where large quantities of data exist (Stanley, Zhang and Baxter 1998). 

In addition, the ANN technique is considered to be a "black-box" technique; ANN 

models do not yield explicit mathematical formulae (Harvey and Harvey 1998). C m n t  

research efforts in the field are ai& at unravehg the black box in order to extract 

heuristics and rules from mode1 architectures. In addition, little research has been 



conducted on the ability of ANNs to extrapo1ate beyond their knowledge base. As such if 

new patterns contain data which is more that 2 standard deviations away h m  the mean, 

ANN predictions should be used with caution (Boger 1997). Altematively, the ANN can 

be retrained to enlarge its knowledge base. Findy, due to the ease of obtaining accurate 

fits to data sets, ANNs are o k n  misuseci and misapplied (Chen et al. 1996). The 

technique is constantly king applied to problerm with insufficient or incorrect data, 

resulting in unfounded conclusions conceming ANN performance. Models are also ofien 

constructed without due consideration to optimization, resulting in sub-standard 

performance. 

The history of artificiai neural networks can be divided into three eras according to the 

technique's acceptana by the scientific community : initial enthusias m. lack of support, 

and re-emergence. An excellent account of the history of neural networks can be derived 

h m  the collection of key papes assembled by Anderson and Rosenfeld (1988). What 

foilows is a brief synopsis of some of the key developments in the field of artificial neural 

networks. 

In 1943, McCuUoch and Pitis published what is considered by many to be the founding 

paper of the field. In the paper, the authors List five main assumptions governing the 

operation of biological neurons: 1) the activity of a nemn is an "d-or-nonen process, 2) 

a certain k e d  nurnber of synapses rnust be excited in order to excite a neuron 3) the only 



significant delay within the nervous system is synaptic delay 4) the activity of any 

inhibitory synapse absolutely prevents excitation of the neuron at that time 5) the 

structure of the neural net does not change with tim (McCulloch and Pitts 1943). The 

resulting model of a neuron, refemd to as the McCulloch-Piüs Newon, operates in a 

similar fashion to the nodes found in modem ANNs. The neuron responds to the activity 

of its synapses, which reflect the state of the presynaptic cells (Anderson and Rosenfeld 

1988). If no inbibitory synapses are active, the neuron sums its synaptic inputs and 

becornes activated if the sum exceeds a certain threshold. 

The next major development came in 1958 when Rosenblatt designed and introduced the 

perceptron, a conceptual model of neural activity in the human brain. The perceptron 

consists of three layes: sensory uni& (S-points), association cells (A-units), and 

responses (R-units) (Rosenblatt 1958). Stimuli impinge on the S-points, which in turn 

transmit impulses to the A-units. if the sum of the impulses arriving at a particular A-unit 

exceed a threshold value, the unit is activaîed and transmits an impulse to a particular R- 

unit. Rosenblatt recognized the inherent power in the theones he developed, suggesting 

that the perceptron could be useful in pattern recognition, associative leaming, temporal 

and spatial pattern recognition, and triai-and-erra leamhg (Rosenblatt 1958). 

Rosenblatt's work was weil received; seemingiy ovemight, a hundred learning algorithms 

bloomed and a hundred schools of learning machines contended (Anderson and 

Rosenfeld 1988). Perceptrons, with a single layer of A-units, were developed and were 

able to discriminate between hearly separable patterns. When such systems were tested 



with complex patterns that were not linearly separable however. little progress was seen 

and many researchers became disenchantcd with the field (Harston and Maren 1990). 

In 1969. Minsky and Papert published a book that effectively elhinateci funding for 

neural network development Perceptrom , a book on the mathematics and the theory of 

computations, discusses the limits of Rosenblatt's perceptrons. Minsky and Papert 

suggest that much of the eady work on perceptron development was without scientifc 

value but proceeded due to the romantic enchantment with the new ideas of machine 

leaming (Miosky and Papert 1969). The authors suggest that simple perceptrons are 

limited with respect to their comectedaess. Two such classes of limitations include 

diameter-limiteci perceptrons. where each associative unit can only be associateci with an 

area of fixed diameter on the sensory surface. and order-res~cted perceptrons where 

each associative unit c m  only be comected to a set number of points on the sensory 

surface. In either case. simple perceptrons are not able to determine whether all the parts 

of a geometric figure are connected to each other (Mhsky and Papert 1969). In order to 

overcome this diffcuity, the network would have to be excessively large. making it 

impractical for all but the simplest of problems. In the concluding chapter of the book, 

the authors suggest that multi-layer variants of the simple three-layer perceptron would 

not prove any more fruithi than their less complex counterparts. This assertion becarne 

the mainstmm opinion until the resurgence of neural networks in the mid-1980's. 

In 1986, Rumelliaa. Hinton. and Williams published a two-volume book Parallel 

Distnbured Processing which contains. among other things, the fïrst well-hown 



description of the back-propagation learuing algorithm. The algorithm had been 

described earIier by Werbos in his Ph-D. thesis in 1974 and was simultaneously re- 

discovered by Parker in 1985 and Le Cun in 1986, yet Rumelhart is generally considerd 

to be the father of back-propagation (Anderson and Rosenfeld 1988). Since 1987, the 

back-propagation learning algorithm had k n  the most popular algorithm for multilayer 

networks. Error propagation in the back-propagation algorithm involves the use of the 

generulized delta d e ,  which rninimizes the squares of the differences between the actual 

and the desired output values surnmed over the output units and ail pairs of input/output 

vectors (Rumelliart, Hinton and Wiams 1986). The ability of the back-propagation 

algorithm to solve a wide variety of problems using multi-layer architectures has since 

been demonstrated many tirnes, thereby effectively negating the misplaceci comments of 

Minsky and Papert with regards to multi-layer perceptrons. 

Since Rummehart's developments, research in the area of ANNs has once again 

intensified. As wiU be discussed fu<ther on, applications using the back-propagation and 

other dgonthrns have provided new insight into a wide variety of processes and systems. 

There are seven major components to an ANN model, which are collectively known as 

the ANN architecture: 1) processing uni& 2) a state of activation 3) an output function 

for each unit 4) a pattern of comectivity arnong units 5) a propagation rule for 

propagating patterns of activities through the network connectivities 6) an activation 



fûnction for combining the inputs impinging on a unit with the curent state of that unit to 

produœ a new level of activation for that unit 7) a learning d e  whereby patterns of 

connectivity are modifieci by experience (Rume- Hinton and McCleiiand 1986). 

2.4.3.1 Processing Units 

1 
ANN models are comprised of intemmected arithmetic processing units, also d e d  

artificial neurons, neurodes. or units, that are analogous to the biologiml neurons in the 

hurnan brain. Each neuron is an elementary processor thaî performs primitive operations, 

like summing the weighted inputs coming to it and then amplifying or thresholding the 

sum (Pal and Srimani Pradip 1996). A schematic diagram of a single neuron is presented 

in Figure 2.4. In multi-layer architectures, there are three basic types of processing units: 

input units, output units, and hidden units (Gamü, Gunaratman and Ivezic 1997). The 

units are arranged in layers, the input layer, the output layer, and the hidden layer(s). 

Input uni& receive input from extemai sources. cornpute their activation level, compute 

their output as a function of activation level, and transmit this output to the next layer of 

units in the system. Output units receive input from the rest of the network and cornpute 

or transmit their output to extenial receivers or, in the case of recurrent networks, back to 

the input layer for M e r  processing. Hidden units only receive theû input from, and 

transmit their computed output to, other layers in the network. 



2.4.3.2 Stute of Activarion 

The state of activation is an overall p i c m  of the activation level of each of the neurons 

in the network, which typicdy have a value in the continuous range between O and 1 

(Garrett, Gunaratman and Ivezic 1997). Input and output unit activation levels represent 

the cumnt extemal input to the input processing units, and the current output king 

transmitted to the extemal receivers, respectively. The activaiion level of the hidden units 

represents the features within the input pattern that are present, and influence the output 

produced by the network (Rumelliart. Hinton and McCIelland 1986). 

Associated with each processing unit is an output function which defmes how the output 

value for the processing unit is determined from its activation (Garrett, Gunaratman and 

Ivezic 1997). In some models, this function is unity. In other models the output function 

is a threshold hinction; a pnxessing unit produces no output unless the activation exceeds 

some predefined level of activation (Rumelhart, Hinon and McCleiiand 1986). 

2.3.3.4 Pattern of Connectivi4 

Rocessing units are connecteci to each other and communicate with each other via 

connection weights. The pattern of comectivity influences how a network will respond to 

a given set of inputs (Garrett, Gunaratman and Ivezic 1997). A positive weight represents 



an excitatory input, a negative weight represents an inhibitory input, and a zero weight 

represents an inactive input; the absolute value of the weight is the comection sirength 

(Rumbart, Hintton and McCIeUand 1986). 

2.3.3.5 Rule of Activation Propagation 

The d e  of propagation describes how the inputs c o ~ e c t e d  to a processing unit and the 

strengths of the connections are combined to compute the net input (Garrett, Gunaratman 

and Ivezic 1997). The input is generally expressed as the weighted sum of the outputs 

from connected neurons (Eigure 2.4). 

2.3.3.6 Activation Function Employed 

The activation function defmes how the net input received by a processing unit is 

combined with its cumnt level of activation to compute a new level of activation 

(Garrett, Gunaratman and Ivezic 1997). When ANN learning is accomplished using the 

backpropagation algorithm, a sigmoidal activation function, which is continuous and 

differentiable, is often used to maiotain the value of activation for a processing unit 

between O and 1. The mathematical expression of the logistic function. the most popular 

sigmoidal function, is (Mn, Mao and Mohiuddin 1996) : 

where is the slope parameter. 



2.3.3.7 Rule of karning 

The learning d e  defines how the network is modifieci in response to training patterns 

presented to the system (Garrett, Gunaratman and Ivezic 1997). Network modification 

oui take place via the development of new co~ections, the loss of existing connections, 

and the modification of the strengths of co~ect ions that aiready exist. As wiil be 

discussed in the next section, the k t  of the three methods is the most cornmon. 

2-4.4 The AhrN Leaminn Process 

While many leaniing algorithrns are available, the backpropagation algorithm is the most 

common and is used in the current study. As such, much of the ensuing discussion 

conceming leaming focuses primarily on the backpropagation algorithm The ability to 

leam is a fundamental trait of intelligence ; the leamhg process for ANNs can be viewed 

as a problem of updating network architecture and connection weights so that a net can 

perfom a specific task (Jain, Mao and Mohiuddin 1996). In the leaming process, each 

presentation of a pattern and subsequent modification of co~ect ion  weights is caiied a 

learning cycle. A set of cycles, one for each pattern is called an epoch. The leaming cycle 

has 3 steps (Garret, Ghaboussi and Wu 1992). 1) For the training p m m  to be learned. 

the network is presented with the input pattern and then propagates the activation through 

to the output processing units. 2) The output uni& then backpropagate their errors back to 

the hidden processing units according to the generalimd delta mle (GDR). or another 

learning rule. 3) The units then modify their incoming connection strengths using this 



backpropagated error and the leanùng d e .  The entire cycle is repeated until the ANN 

produces a suficiently srnd e m r  on a previously unseen data set (Boger 1992). 

There are three broad paradigrns of learning: supervisex& unsupervised, and reinforcement 

(Pal and Srimani Pradip 1996). In supervised learning, adaptation occm when the system 

directiy compares the network output with a known output. In unsupervised learning, the 

network is tuned to the statistical reguiarities of the input data so that it can form 

caîegories by optimizing, with respect to the network's free parameters, a task- 

independent mesure of the quality of the net's category representation. Reinforcement 

Iearning attempts to l e m  the input-output mapping through trial and error with a view to 

rnaximizing a performance index cailed the reinforcement signal. The system knows 

whether the output is correct or not, but does not laiow the value of the comct output. 

The backpropagation algorithm uses supervised leamhg implemented in two stages. In 

the forward stage, the network node outputs are computed, in the backward one, weights 

are adjusted to rninimize the error between the observed and desked mode1 output (Pal 

and Srimani Radip 1996). 

There are four basic types of leamhg d e s :  emorrect ion,  Bolltzmaan , Hebbian, and 

Cornpetitive (Jain, Mao and Mohiuddin 1996). The generalized delta d e  (GDR) used in 

backpropagation networks is a gradient descent error-comtion learning rule. The GDR 

is applicable only for semi-linear activation functions and layered feed-forward nets 

where the input units form the bottom layer, the outputs form the top and ai l  others are 



hidden (Garret, Ghaboussi and W u  1992). The d e  can be summarized by the following 

three equaîions (Rmlhar&, Hinton and U r i  1986): 

A,"$ =?p5 PJ 0 pi 

6, = ( f p j  - Opj)f i ' (netpj  

In the first equation, the change in the weight (Aw) h m  the f' to the $ unit following 

the presentation of pattem p is proportional to the product of an e m r  signal, 6 , available 

to the unit receiving input dong that line and the output (O)  of the unit sending activation 

dong that line. The symbol q represents the learning rate of the system and has a value 

between O and 1. The other two equations represent the error signal, the determination of 

which is a recursive process starting with the output unit. If a unit is an output unit, its 

emr signal is given by the second equation where t~ is the target input for the $ 

component of the output pattern for pattern p, op, islm element of the actual output pattern 

produced by the presentation of input pattern p. and f ;(net,i) is the derivative of the 

semilïnear activation function which maps the total input to the unit to an output value. 

Finaiiy, the e m r  signal for hidden units for which there is no specified target is 

detemiined recursively in tenns of the e m r  signals (opd of the units to which it directly 

connects and the weights (ww) of those connections. For a more detaiied description of 

the generaüzed delta d e ,  as well as for the complete derivation of the above equations, 

please refer to the text by Rumehart (1986). 



2.4.5 ANN Architectures 

ANN architectures can be separated into two broad categories, feed-forward and 

feedback, according to the direction of communication of input information (Gamet, 

Ghaboussi and Wu 1992). In feed-forward nets, communication takes place in the 

forward direction only, although errors can be backpropagated. In feedback or recurrent 

nets, there is iterative computation between the nodes as communication is cyclic. Within 

each of the two main classes of ANNs, there are a number of faLnilies that arise from the 

variances in the activation functions and l e h g  d e s  applied. A Iist of the most 

comrnon families is presented in Table 2.4; a more detailed description of these network 

architectures can be found in the text by Jain (1996). The most common family of fked- 

fonuard nets. multi-layer perceptrons, have layers of neurons that are completely 

comected, although there is no intra-layer connectivity (Pal and Srimani h d i p  1996). A 

sample diagram show ing the interconnectivity of multi-layer perceptrons is presented in 

Figure 2.5. Feed-forward nets are memoryless in the sense thai their response to an input 

is independent of the previous network state. (Jain, Mao and Mohiuddin 1996). Recumnt 

nets are dynarnic systems; when a new input pattern is presented, the neuron outputs are 

computed. Because of feedback paths, the inputs to each neuron are then modified, which 

leads the network to enter a new state. (Jain, Mao and Mohiuddin 1996). 

Table 2.4 Classification of network architectures (after Jain, Mao and Mohiuddin 
1996) 
Feed-Forward Networks Feedback Networks 
Single-Layer Perceptron Cornpetitive 
Multilayer Perceptmn Kohonen's Self-Organizing Mapping 
Radial Basis Function Hop field 

Adaptive Resonance Theory 



2.4.6 Mode1 Deveio~ment and Evaluation 

In conventional modelling, mode1 development consists of three stages: data selection, 

mathematical model specification, and evaluation (Schwerk 1996). With respect to ANN 

model development, the model specincation stage includes the selection of training cases, 

the selection of architecture and fom details. and the a c d  training of the network 

(Garret, Ghaboussi and Wu 1992). 

2.4.6.1 Data Selection 

The selection of the type and quantity of data is a key step in model development. A 

network will struggle if presented with too litîle or too much data or if presented with 

data that doesn't emphasize differentiating components (Villarreal and Baffes 1992). If 

the network is not trained using relevant data, it will be unable to make accurate 

predictions on a generalized data set (Schwerk 1996). Most researchers advocate spiitting 

the data randomly into training and testing data sets (Boger 1997 ; Garret, Ghaboussi and 

Wu 1992); the training set is used to train the model, while the testing set is used to test 

its performance on previously "unseen" data. The ratio of data in each set can be 

arbitrarily assigned (Boger 1997) or deterrnined experimentally (Bernieri et al. 1996). 

With respect to the selection of training cases. there should be at least 10-30 times as 

rnany training patterns as there are input variables (Foody and Arora 1997). Increasing 



the number of training patterns provides more information about the shape of solution 

surfaces and thus increases the potentid level of accuracy that can be achieved by the 

network. Large training sets can however. overwhelm some training algonthms. leading 

to the net geaing stuck in a local minimum (Fiood and Kartam 1997). Since ANNs are 

not usually able to extrapolate, the input pattern should be selected to encompass the 

entire problern domain. It is also advisable to have the training pattern evenly distributeci 

throughout the domain, else the net WU tend to focus on areas where patterns are tightiy 

clustered. In this respect, it may be beneficial to have more patterns in areas w h e ~  the 

response surface is more complicated. In practice though, it is not aiways possible to 

control the distribution of data, especiaily when historical data are used (Flood and 

Kartam 1997). 

There are many aspects of network architecture design that wiii affect the ability of and 

ANN model to generaiize, that is the ability to corredly predict outputs for new or 

previously unseeo data cases. Some of the key considerations include: architecture type. 

the number and size of the hidden layers, and the leaming rate and mornenturn (Foody 

and Arora 1997 ; Schwerk 1996). There are cumntly no gwd heuristics or rules of 

thumb for selection of network architecture, however experience has shown that there are 

definitely good and bad architectures for a given problem (Gamet, Ghaboussi and Wu 

1992). Untii M e r  advances in ANN model developrnent techniques are made. 

empirical methods and experimentation must be used to detetmine optimal architecture 

configurations (Viiiarreal and Baffes 1992 ; Yabunaka, Hosomi and Murakami 1997). 

With respect to the size of the network, two issues must be addressed: the number of 



hidden layen, and the number of neurons per layer. When the output is a continuous 

hinction, some researchers advocate the use of a single hidden layer (Hecht-Nielsen 

1987). while others suggest the use of two hidàen layers (Flood and Kartam 1997). In 

general, two hidden layers provide more flexibility at modehg more cornplex surfaoes 

however, only one layer is required for problems whem the network has only one input or  

where the input values are binary (1 or O) (Flood and Kartam 1997). With respect to the 

number of neurons in each layer, input and output layers contain the sarne number of 

neurons as thex are inputs and outputs (Villarreal and Baffes 1992). Generally, there is 

no direct and precise way of deterniinhg the most appropriate number of neurons to 

include in each hidden layer. Increasing the number of hidden nodes wiii increase the 

likefiood that the network will converge, but an excess of hidden nodes wili result in 

poor genetalization capabilities (Villaffeal and Baffes 1992 ; Shang and Wah 1996). 

S o m  researchers have made bmad suggestions, with regards to the number of nodes, that 

rnay not be applicable to every problem. Hecht-Nielson, for example, suggests that when 

a single hidden Iayer architecture is used, an upper Limit of 2n+l hidden layer neurons, 

where n is the number of inputs, should be used (Hecht-Nielsen 1987). For networks with 

two hidden layes, a 3: 1 ratio of neurons in the two hidden Iayers is suggested (Maier and 

Dandy 1996). Weigend suggests that the n u m k t  of hidden neurons should be less than 

1/10 the number of training patterns in order to avoid overfitting (Weigend, Huberman 

and Rumehart 1990). 

The prediction accuracy and generalization capabilities of a network can be affected by 

two other factors, the learning rate and the momntum factor, which alter the speed of 



convergence (Schweric 1996). When a net is trained, the weights are initially randomized. 

The amount by which the weights are rnodified in any given training step is the leaming 

rate. If the 1e-g rate is srnall (cO.Z), the weights will be changed in srnaller increments 

resulting in slower convergence with less oscillation (Ganet, Ghaboussi and Wu 1992). 

Larger learning rates (>OS) will cause the weights to be adjusted more drasticaiiy, but 

this rnay cause the optimum combination of weights to be overshof resulting in 

oscillations about the optimum. (Garret, Ghaboussi and Wu 1992). In general. lower 

leamhg rates should be used for more noisy data (SchmuUer 1990). The rnomntum 

factor, which has a value between O and 1, is a smoothing factor that dows  for faster 

learning without osciiiaîion by making the weight change a hinction of the previous 

weight change (Ward Systems Group Inc. 1996). 

With respect to the actual training of the network, it is possible to over-learn if training 

proceeds too long. The situation is analogous to learning to drive a car by driving around 

the block over and over again. AU of the necessary skUs are learned. but the driver would 

have difficuity applying those skills correctly to highway dnving (Viilarreal and Baffes 

1992). DeSiIets suggests a maximum of 2000 iterations (epochs) (DeSilets et d. 1992), 

although in practice. this number must be experimentaily detennined. Another issue 

involved with lengthy training penods is the possibility that the network will try to fit 

noise in the data. Assumiog that the noise is small in comparïson to the features, it is only 

in the later stages that the net wiii try to fit noise. Stopphg the training before the noise is 

Learned wiii improve generalization. (Weigend, Huberman and Rumehart 1990). 



2.4.6.3 Mode1 Evaluation and Validation 

In order to evaluate the performance of a modei, a variety of qualitative and quantitative 

means can be employed. Most researchea advocate the use of ody two data sets, the 

training set and the testing set, as previously discussed. Other studies advocate the use of 

a third data set, the production set (Weigend, Huberman and Rumelhaa 1990). The utility 

of the production set will be discussed in the methodology section of this report. In the 

case of the former, the testing set is most cornrnonly used to assess a model's 

performance, while for the later, the production set is used. With respect to qualitative 

means of evaluation, a visuai inspection of a plot of actual outputs venus predicted 

outputs can serve as masure of the fitness of a model (Flood and Kartam 1997). 

Quantitaiively, the fiiness of a mode1 can be assessed using a statistical indicator such as 

the mean squared error, the mean absolute error, or the R~ parameter (Schwerk 1996). 

In order to ensure that the ANN is not simply memorizing the training patterns, the model 

must be validated. The most cornmon means of vaiidating a model involves swapping the 

training and tesoing sets, retraining the model, and comparing the new model's 

performance with that of the old one (Schwerk 1996). This cross-validation technique can 

also be applied when 3 data sets are used by swapping the production and trainhg or 

production and testing sets, as wiU be discussed in the methodology section. 



The ANN technique has been applied to viitually every field where complex non-linear 

enor miairnization problems exist An extensive List of known and potential applications 

in fields as diverse as finance and health-care is presented in the text by Buscema (1997). 

The remainder of this section focuses on hown and developing applications in the field 

of environmental engineering. 

2.4.7.1 Environmen tuf Engineering Applications 

Civil and environmental engineering applications of ANN modeiling date to the late 

1980's when models for optimuing construction tasks were developed (Flood and Kartam 

1997). Since that t h e ,  interest in ANN applications has increased at a steady rate, as 

Uidicated by an increase in the number of publications. Specifically, applications have 

been developed in the areas of hazardous waste management and groundwater 

exploration (Schmuller 1990). hydrology and water resources engineering (Danieil 199 1 ), 

groundwater remediation (Garrett, Ranjithan and Eheart 1992), and biological waste 

eeatment (Cote et al. 1994). More recently. ANNs have been used in transient drainage 

design (Shukla et al. 1996). air quality monitoring (Hasham, Stanley and Kindzierski 

1998), and wastewater treatment plant operations (Boger 1997). As the focus of the 

current study is the ANN modelling of water treatment plant processes, known 

applications in the water eeatrnent industry are discwed separately. 



2.4.7.2 Water Quulity and Treaîment Applications 

To date, while severai ANN applications in the areas of water quality monitoring and 

water treatment have been proposeci, the potential for application in these areas remallis 

largely unexploited. With regards to water quality applications. the Califomia 

Department of Water Resowces has used ANN models to predict THM formation and 

speciation in the Sacramento Delta (Hutton et. al., 1996). In addition. ANN models have 

b e n  developed to forecast salinity in the Chesapeake Bay in order to determine 

appmpriate pumping schedules for water supply (DeSilets et al. 1992). Fially. research 

in the Environmental Engineering Program at the University of Alberta has led to the 

development of successfid models for colour in the North Saskatchewan River (Zhang 

and Stanley 1997). 

With respect to water treatment operations. much of the research has focussed on 

m o d e h g  chernical dosing levels in the coagulation process. To this end. models have 

been developed for alum and polymer dose forecasting at a water -ment plant in New 

South Wales (Mirsepassi, Cathers and Dhannappa 1995). While good correlations 

between predicted and actual doses were obtained the models have Little practical use. 

The mode1 input parameters are exclusively tirne-series data, resulting in the development 

of models which essentially follow the slope of historical dosing levels without capturing 

the unique features of the treatment processes. Operational hùl-sale models for the 

removal of turbidity at the two City of Edmonton water treatment facilities have been 



developed (Stanley and Zhang 1997) and will be used, in conjunction with tée results of 

the cumnt study to optimize the enhanced coagulation process at each facility. 

In addition to the coagulation models. a model has been developed to impmve control 

and to reduce backwash water volume for the rapid gravity fdters in London. U.K 

(Koutsakos 1995). As weii, successful models for the concentration of residual chlorine 

in distribution systems in Quebec and Ste. Foy have been developed (Rodriguez et al. 

1997). FinaUy, models are currently king developed for predicting breaks in city water 

mains by rnembers of the Environmental Engineering Program at the University of 

Alberta. 

2.4.8 Process Control Usina ANNs 

In process conml applications, neural networks can be incorporateci in intemal model 

control (IMC) in either direct or indirect methods (Psichogios and Ungar 1991). In the 

direct rnethod, a neural network is trained with observed input-output data h m  the 

system in order to represent its inverse dynarnics. As such. given the current state of the 

system, the network can be trained to produce the control action required to reach a 

desired target state. In the inci- rnethod. the network is trained with input-output data 

h m  the dynamic system to represent the forward dynamics. As such, given the current 

state and the current conhol action, the network can be trained to predict the next state of 

the system. Accordhg to M C  theory, if a good plant process model exists, the closed- 

loop M C  system will achieve exact set-point following unmeasured disturbances acting 



on the plant (Yan et al. 1996). A direct dual-mode1 JMC system is presented 

schematically in Figure 2.6. In this system, the control action, u . is the output of an 

ANN controiler hained to represent the plant inverse dynamics (Psichogios and Ungar 

1991). The process model, also an ANN d e l ,  is used in parallel to the plant in order to 

provide the feedback error between the a c a  and predicted value of the plant's output. 

S i d a r  ANN controï strategies have been proposed for chernical process systems (Bhat 

and McAvoy 1990). anaerobic digestion (Wilcox et al. 1995). and, as previously 

discussed, water treatrnent dosing ievels (Koutsakos 1995 ; Zhang and Stanley 1998). 

While most of these proposed control schernes have yet to be tested on N1-scale systems, 

preliminary results suggest that full-scale integration of ANN-IMC systems will occur in 

the near future. 
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Figure 2.1 Rossdale WTP process schematic 

Figure 2.2 Cross-section of an E.L. Smith WTP clarifier 



Figure 2.3 E.L. Smith WTP process schematic 
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Figure 2.6 Intemal mode1 control structure (after Psichogios and Ungar 199 1 ) 



3.1 Data Coiiection and Management 

AU of the data used in the ùevelopment of the ANN models was obtained h m  

AQUALTA, the parent Company that owns and operates both Rossdaie WTP and EL.  

Smith WTP. The data from both facilities is s t o d  on a central supervisory contml and 

data acquisition (SCADA) system and can be accessed at wiU by plant operators. As will 

be discussed, three primary types of data were used in mode1 development: raw water 

quality, process data, and performance data 

3.1.1 Raw Water Oualitv Data 

The raw water quality data used in mode1 development were rneasured by lab technicians 

on a Chour cycle, and were acquired from the SCADA system as daily average values. 

The daily high values of some parameters, such as turbidity and colour, were also 

recorded although they were not used in mode1 development, as will be discussed. A list 

of the raw water quality parameters, as weil as the error associateci with their 

masurement, is presented in Table 3.1. 

3.1.2 Process Data 

The process parameters, which include chernical dosing as well as plant flow 

information, are rneasured in real-tim odine  and stored in the SCADA system. For the 



Table 3.1 Error associated with raw water qualitg data appïicaüons (Thomas and 
Shariff 1998) 
Parame ter Error 
PH + 0.2 pH mits 

Colour f l TCU 
( T m  
Turbidity k 10% 
(m 
Alkalinity + 5 mg/L 
(wu 
Temperature 2 2 %  
(OC) 
Hardness + S m g / L  
( m a  as CaC03) 

purposes of the current study, daily average values were used. A list of instrumental 

errors associated with each of the process parameters is presented in Table 3.2. 

Table 3 2  Error associated with process data applications (Thomas and Sharin 
1998) 
Parameter Error 
Plant flow 2 3 %  

3.1.3 Performance Data 

The mode1 output parameter, clarifier effluent colour, is measured by laboratoiy 

technicians on a 4-hour cycle, and is ~ported as a daily average value. The error 

associaîed with colour determinations is the same as that reported for raw water colour. 
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3.2 Software 

ANN mode1 developmnt was accomplished using NeuroSheli 2 Release 3.0 h m  Ward 

Systems Group, Inc. of Fredenck, Maryland, USA The software was chosen due to the 

high degree of control over mode1 development given to the user. In addition, NeuroSheii 

2 is completely compatible with Microsoft Excel spreadsheets, aüowing for seamless 

importing and exporting of data E'inally, the software har a user-fiiendly Wmdows-based 

interface that d o w s  for the simultaneous construction of multiple rnodels. Much of the 

i n f o d o n  that follows concerning NeuroShell 2 features can be found in detail in the 

NeuroSheU 2 User's Manual (Ward Systems Group Inc. 1996). 

3.2.1 Architecture Types 

3.2.I.l Feed- Forward Architectures 

The NeuroSheii 2 software s u p p o ~ ~ ,  both supervised and unsupervised feed-fonvard 

networks . With respect to the former, backpro pagation neural networks, pro babilis tic 

neural networks (PNNs) and geneml regression neural networks (GRNNs) are supported. 

'Ihree types of backpropagation networks. which differ in the connectivity of the neurons, 

are supported. and al l  use Rummelhart's backpropagation learning algorithm (Section 

2.4.4). In backpropagation networks with standard connections. commonly termed 

backpropagation networks, every layer is comected to the immediately previous layer. In 

backpropagation networks with jump connections, or jump networks. every layer is 

comected to every previous layer. Ward Networks, propnetary backpropagation 



architectures developed by the Ward Systems Group Inc., allow hidden neurons to be 

grouped into slabs so that more than one activation fimction can be used simultaneously. 

PNNs are a type of supervisai network known for their ability to train quickly on sparse 

data sets. These networks separate data into a specified number of output categories, and 

are therefore not usefui for continuous valued outputs. 

GRNNs are a type of superviseci network like backpropagation networks, have the 

ability to produce contuiuous valued outputs. GRNNs are th - l aye r  networks and have 

one hidden neuron for each pattern in the training set. While these networks are 

particularly gwd at generaiizïng cases s i d a r  to those on which they were trained, they 

tend to have pwr interpolation capabilities. 

With respect to unsupervisecl feed-fonvard architectures, the software supports the 

Kohonen Self Organizing Map (SOM). Kohonen SOMs have the ability to leam without 

king s h o w  correct outputs in sample patterns and are able to separate data into a 

nurnber of predetemllned categones. 

3.2.1.2 Feedback Nen~orks 

The NeuroShell 2 software supports three types of feedback or recurrent networks. AU 

three types use the backpropagation algorithm in training. Recumnt networks cm be 

easily distinguished from feed-forward networks due to the presence of an extra slab in 



the input layer that is comected to one of the layers via feedback connections. This extra 

SM holds the contents of one of the layers as it existed when the previous pattern was 

traïned. As such, "memory" is added to the network, making it particdarly useful for 

tirneseries data 

3.2.2 Scalina Functions 

In order to scale data from its nu&c range to a range that the networks are able to use 

more effectively, a scaling b c t i o n  is employed. The NeuroSheil 2 software supports 

both linear and non-linear scaling functions. In either case, data can be scaled into one of 

two ranges: -1 to 1 or O to 1. Both ranges can be either bounded, where values outside the 

parameter boundaries are scded to the boundary value, or unbounded, where values 

outside the boundaries are scaled proponionately. The linear scaiing function scales data 

using a common divisor, while non-linear scaling functions, such as logistic and tan h, 

tend to cornpress values near the extreme ends of the data ranges. 

3.2.3 Activation Functions 

NeuroSheil 2 supports 8 separate activation functions that can be used in the hidden 

layers of network architectures. Whiie functions such as the logistic function have k e n  

widely reporteci in literature others, such as the sine function, are rarely used. Some of the 

functioos map values to the -1 to 1 range, while othen map values to the O to 1 range. A 



list of the activation functions. as well as their respective equations and mapping ranges. 

supported by the software is presented in Table 3.3. 

Table 3 3  Activation functioos supported by NeuraSheli 2 
Activation Function Equaîion Mapping Range 
Logistic f ( x )  = l / ( l+ed' )  O to 1 

Linear f (x )  = x -1 to 1 or O to 1 
Tanh f ( x )  = t a n u )  -1 to 1 
Tanh 1.5 f (x) = tanh(l5x) -1 to I 
Sine f ( x )  = sin(x) -1 to 1 
Symmetric Logistic f ( x )  = (2/(I+e-")) - 1  -1  to l 
Gaussian f ( x )  = e-" O to 1 
Gaussian Complement f ( x )  = 1-(e-") O tol 

The software supports three methods of updating weights: vanilla. momentum, and 

turboprop. The vanilla method uses a proprietary algonthm to apply only a leaxning rate 

terni to the weight updates. Weight updates by the momentum rnethod include not only a 

leaming rate term, but also incorporate a portion of the last weight change as the 

mornenturn term. The turboprop method is not sensitive to either leaming rate or 

momentum. Training proceeds through an entire epoch before weights are updated. The 

turboprop method uses an independent weight update size for each different weight as 

opposed to having a single leafning rate or momentum term applied to a i i  weights. 



3-25 Method of Paîtem Seleetion 

During training, the software can select patterns in either a random fashion or in 

rotational order. When the turboprop method of weight updates or recurrent network 

architedures are used, ody the rotational rnethod of pattern selection is available. 

As previously discussed, there is no set protocol for the development of ANN models. 

What follows is a description of the three-step protocol employed in the current study. 

As ANN model development is very much a triai and error process, the protocol was 

continuously updated to reflect the lmowledge gained from working with ANN systems. 

3-3.1 Source Data Anatvsis 

The prirnary objectives of the source data analysis were to gain a familiarity with the 

study domain and to examine the applicabüity of available data for model development. 

Initially, the problem domain was thoroughly examined through a review of perîinent 

Literature on enhanced coagulation and DBPs, as blind application of the ANN technique 

to problerns that have not been thoroughly studied will lead to the development of models 

with poor generalization capabilities. Foliowing the domain study, all the available 

pertinent data were examined and subjected to comprehensive statisticai analyses in order 

to determine the range, seasonai and daily trends, and other important data 

chatacteristics. 



The artificial neural network modelling process used involveci two distinct stages: 

preliminary model development and mode1 optimization. The objective of the 

preliminary mode1 design stage was to design and evaiuate a series of network 

architectures th* when optirnkd, could be used as an effective process model. This 

objective was best met through the use of a four-step scheme which included the 

selection of input and output parameters, the organization of the data patterns. the 

selection of prelirninary factors and levels of analysis, and the evaluation of potential 

architectures. With respect to the selection of input and output parameters, the output 

parameter which best represents the process was selected. Each input parameter was 

selected based on data availability and the likelihood of there k i n g  a cause-effect 

relationship between it and the output parameter. Once the model parameters were 

selected? the data patterus were selected to reflect the availability and reliability of the 

data. hcomplete pamms. as well as those that appeared to be inconsistent with the 

remaining data were removed. 

The data was initially organized into two categones based on the value of the output 

parameter. The boundary was selected accordiag to process performance criteria and 

separated regdar operating conditions from process upset or special case conditions. In 



order to develop a successful model, the data was funher divided into three fractions: the 

aaining set, the test set, and the production set. The training set consisted of data patterns 

that the network processes repeaîedly in order to leam trends and patterns in the data 

During the learning process, the network was periodically evaluated ushg the test set 

patterns in order to ensure that the network was not simply rnemorizing the training data 

The train& network was applied to the production set which consists of data that the 

network had never "seen" before in order to assess the performance of the model. Each of 

these data sets containeci an equal percentage of special case data in order to ensure that 

the model was trained, tested, and evaluated over a similar range of effluent quaiity. 

In designhg the preliminary architectures, many factors needed to be coasidered 

including the type of architecture, the nurnber of layen, the number of neurons in each 

layer, the type of scaiing and activation hinctions, and the leaming approach. In order io 

determine the optimal levels of each of these factors. the fmorial experirnental design 

approach was applied. This statisticai rnethod is generally usai for studying the effects of 

varying the levels of multiple parameters in a limited number of mns. For an indepth 

discussion on the mechanisms of factorial design experimentation, please refer to the text 

by Box and Hunter (1978). Even with the aid of factorial design experimentation, 

determinhg the effects of the multitude of factors that can be altered in nehvork design 

was beyond the scope of the current study. As such a number of factors were held 

constant throughout the preliminary design stage. AU input data were scaled using an 

unbounded linear scaling function in the -1 to 1 range. The linear function was selected in 

order to ensure that data in the extreme ends of each parameter's range were not 



compresseci. The unbounded -1 to 1 range aiiowed for the inclusion of negative values. 

which were present for some of the parameters. as well as values beyond the preliminary 

data range thaî may have surfaced when the model was applied to rd-time data Wïth 

respect to the activation function used in the hidden layers. the logistic function was 

employed exclwively in the preliminary model design stage. as it is the default activation 

function w d  by the software. In addition, the turboprop mthod of weight updates was 

useci, as it is insensitive to learning rate and momentum. Euiaiiy the range of the output 

parameter was exclusively positive, necessitating the use of an activation hinction that 

maps values into the O to 1 range. The logistic activation function, king the function 

used mst often in ANN applications. met this criterion and was always used on the 

output Layer. 

In order to assess the model's performance, two separate statisticai indicators were 

applied to the production data set. The coefficient of multiple regression. It2 , compares 

the accuracy of the model to the accuracy of a trivial benchmark model wherein the 

prediction is just the mean of a l l  the samples. A perfect fit would result in an R* value of 

1, a very good fit near 1, and a very poor fit near O. The equaîion the NeuroShell2 uses to 

calculaie is: 

where SS, is the residual sum of squares and SSr is the total sum of squares of the model 

output. The R~ indicator was applied to the entire production data set and therefore serves 

as a m u r e  of the model's performance in periods of routine operation as well as during 



special-case scenarios. The second statisticai indicator, the mean absolute emr ,  was used 

to compare the actuaI process outputs with the network predictions. This indicator can 

serve to highlight inconsistencies in model predictions and can &O be used to determine 

whether the mode1 predictions are adequate for process control. In the initiai mode1 

development stage, the mean absolute error was used to assess the performance of the 

model during the special-case scenarios only. The ideal network wiil have a low man 

absolute e m r  on the specialcase scenarios without sacrificing the goodness of fit, as 

rneasured by R~. for the entire production data set 

In the mode1 optimization stage, the most promising candidate models were optirnimd 

through the fme-tuning of the network architectures in order to minimite the error on the 

production set data The activation functions, method of weight updates, learning rate, 

and mornentum, aii factors that were held constant throughout the preliminary model 

design stage, were varied. The optimal model will be able to follow daily trends in plant 

operations in addition to predicting the special case patterns. In addition the model should 

produce consistent results for al1 three data sets. The model should also be insensitive to 

retraining following a swapping of the testing and production sets. Fmdy,  a plot of the 

model residuals should be free of obvious trends. 

Building on experience gained nom developing an ANN model for Plant #1, a new 

pmtocol was developed for ANN model development and was applied to Plant # 2. In 



developing the mode1 for Plant #1, a l i  of the backpropagation networks including those 

with standard, jurnp, Ward, and recurrent configurations were evaluated for use in model 

developmnt. Of these architectures, only the 3-layer and 4-layer backpropagation 

networks with standard connections yielded acceptable results. In the interest of 

increasing the eficiency of the ANN protocol, only these two architectures were 

evaluated for use in the model for Plant #2. 

One of the glaring deficiencies in the protocol used for Plant #1 is its heavy reliance on 

factorial design to detennine the optimal level of each factor. The factorial design 

approach is particularly useN if all factors are continuous and the= is some overriding 

trend with regards to the relationsbip between the factor and the mode1 output 

Unfominately, this is not the case for many of the factors associated with neural network 

design. Many of the factors king evaluated in ANN model design are categorical, with 

more than two possible levels, and can not be ordered to dlow for the application of 

response surface methodology. There are, for example, 8 separate activation functions 

that can be used in ANN model development. The factorial design approach assumes that 

there is some definable relaîionship between each of the possible activation functions. If 

the logistic and hear activation functions were selected as the initial levels of analysis, 

for exarnple, the factorial design approach would not be able to tell the experirnenter 

which function to try next, only which of the two fuactions works best under the given 

conditions. 



Keeping these limitations in minci, the new pmtocol involved the use of classicd one- 

variable-at-a-tim experimental design. The optimal values of each of the factors were 

determined sequentiaiiy, keeping the values of the other factors constant. A factoriai 

design was employai in the final stages in order to determine the appropriate learning 

rate and momentuxn, as these factors are not subject to the limitations highlighted above. 

Overall, the protocol involved the following 9 steps: selection of input and output 

parametea. selection and organizaton of data patterns, determination of the appropriate 

training : testing : production ratio, determination of the appropriate number of neurons 

for each hidden layer, detemination of the appropriate activation function, reassessment 

of the number of hidden layer nemns, evaluation of mode1 stability, model fme-tuning, 

and cornparison of candidate models. The protocol was applied separately to each of the 

two architectures being investigated. Unless otherwise discussed the scaüng functions. 

activation functions, and weight updates were kept constant as descrïbed in the Plant #1 

protocol. 

In order to evaluate the model's performance as it was king developed, a composite 

parameter, termed the performance code or the m effect, was developed. The value of 

the code is based on the R~ and mean squared enor on the production set, as wel1 as the 

perœntage of production set predictions that have a relative error greater than 30 W. As 

previously discussed, the best models wiii have a high R~ and low mean squared error. 

The "percent > 30 % emr" &O serves as a measure of prediction accuracy; lower values 

are best As shown in Table 3.4, each of the three parameten is coded over a pre- 



detwmined range. The nui effect or performance code is simply the sum of the three 

coded parameters; higher values indicate better performance. 

Table 3.4 Generation of performance codes 
R' Mean Squared Ermr 96 >30% 

Value Coded Value Coded Value Coded 
< 0.3 1 M.5 1 > 3 0 %  1 

0.3 - 0.34 2 0.45 - 0.5 2 25 - 30 96 2 
0.35 - 0.39 3 0.4 - 0.44 3 20-2496 3 
0.4 - 0.44 4 0.35 - 0.39 4 15 - 19 % 4 
0.45 - 0.49 5 0.3 - 0.34 5 10- 14% 5 
0.5 - 0.54 6 0.25 - 0.29 6 < 10% 6 
0.55 - 0.59 7 0.2 - 0-24 7 
0.6 - 0.64 8 0.15 - 0.19 8 
0.65 - 0.69 9 0.10 - 0.14 9 
0.7 - 0.74 10 4.10 10 
0.74 - 0.79 I l  
0.80 - 0.84 12 
0.85 - 0.89 13 
0.90 - 14 

As will be discussed, the model parameters used for the Plant #2 were identical to those 

used for Plant #1. For the Plant #2 rnodel, no differentiation was made between special 

case scenarios and normal operating conditions. Instead, the data was initially sorted 

according to the value of the output parameter. The separation of the data into the 

training, testing, and production sets. was done in order. thereby insuring an equal 

distribution of high and low clarifier effluent colour data in each set Foilowing these 

steps. the appropriate training : testing : production ratio was selected by preparing a 

number of data files with varying ratios and testing the model performance on each. 

Ratios in the range of 1:2:2 to 4:l:l were prepared and a senes of prelirninary runs was 



performed on each. The ratio that gave the best performance, based on both R~ and mean 

absolute error, was selected. 

Keeping both the T : T : P ratio and the activation function constant, the number of 

hidden layer neurons for each layer was varied. For single layer networks, the nurnber of 

nemns was increased in five-neuron increments over a pre-selected range. For two-layer 

networks. a grid was used to detemine the appropriate number of neumns in =ch layer. 

Again, the number of neurous was increased in five-neuron incrernents over a pre- 

selected range. Following this initial assesment, the range of values for the number of 

hidden layer neurons that yielded the best results was expanded. Within this range, the 

number of neurons was varied in single-neuron increments. 

Holding the T : T : P ratio and the number of hidden Iayer neurons constant, the best 

activation function was selected by comparing the results for models trained with each of 

the eight separate activation functions. For multiple-layer models, a grid system was 

again employed. 

If the activation function selected in previous s ep  was not the logistic activation function, 

the appropriate nurnber of hidden layer neurons was again deterrnined, as previously 

described, to e n s w  that the best possible combination of number of neurons and 

activation function was obtained, 



In order to ensure that the results obtained were not dependent on the manner in which 

the data were extracted, an altemate data set in the appropriate T : T : P ratio was 

prepared. The resdts of the models were compared to ensure that there was no significant 

difference when different data sets were used, 

The mode1 was reîrained using the momentum and v a d a  weight updates in order to 

determine if any improvements could be made. Using weight updating methods other 

than turboprop necessitated the evaiuation of the effects of leaming rate and momentum, 

as weil as the method of pattern selection. Ail four factors were evaluated simultaneously 

using factorial design experimentation. 

Finaily. the candidate models denved h m  each of the two base architectures were 

compared with respect to their performance on the training, testing. production, and 

cross-validation sets. The candidate with the best performance, as defuied by R~. mean 

squared error, and mean absolute erroi. was selected. 

3.3.2.3 E L  Smith WTP 

Once again, experience gained in the development of the models for Rossdale WTP 

aiiowed for a further pairing-dom of the steps involved in developing successive 

models. Fit, the ratio of data in the training. testing, and production sets fixed at 3:l: 1 

Based on the fmt two models, this ratio was found to be most appropriate. In addition, 

the determination of the appropriate architecture step was eliminated. Based on the fmt 



two models, the logistic activation hc t ion  always provided the best results and, as such, 

was the sole activation funaion evaluated in the EL. Smith model. As ody one 

activation function was evaluated, the reassessment of the number of hidden layers was 

also eLiminated h m  the protocol. The protocol used in the development of the model for 

EL. Smith WTP therefore. had 6 distinct steps: selection of input and output parameters. 

selection and organization of data patterns. determination of the appropriate number of 

hidden layer neurons, evaluation of model stability, model fine-tuning, and cornparison of 

candidate models. The methodology ernployed for each of these steps is identical to that 

used for Rossdale WTP, Plant #2, with the exception of the selection and organization of 

data patterns. As previously mentioned, two darifiers are used for coagulation at EL. 

Smith WTP. Wbile both have identical dimensions and receive the same raw water, 

different dosing levels axe sometimes employed in each. In order to develop a single 

model for the WTP, the values of each of the process and performance patameiea were 

averaged between the two clMers. 

3.3.3 Model Evaluation Usim Real-time Data 

In order to assess the models' performance on real-tirne data. the three models were 

applied retroactively to data supplied by AQUALTA. The time frame of the study was 

selected to correspond with spring-thaw. typicdiy a difncult time for water treatment 

plant operations. The fraquency of data was selecteâ to reflect the frequency of updates 

of model panuneters in the SCADA system The performance of the models was assesseci 

using R~ , mean absolute emr. and other statistical indicaiors. 



4.1. Source Data Anaiysis 

As suggested in the methodology section, the first step in developing an effective ANN 

mode1 is a careful study of the problem domain. With respect to the enhanced coagulation 

process, the data cm be divided into major categories: raw water quality parameters, 

process parameters. and performance parameters. The raw water q d t y  parameters 

provide an assessrnent of the q d t y  of the raw water that must be treated by the WTPs 

and include, for example. colour, turbidity, alkalinity, and pH. The process parameters 

are those that cm be controlled by the plant operators in order to optimize the enhanced 

coagulation process and include the doses of aium, PAC, and polymer. as weii as the flow 

through each of the plants. The performance panuneters aiiow the operators to assess the 

pedormance of the enhanced coagulation process and include clarifier effluent turbidity 

and colour. 

4.2.2 Rossdale Water Treatrnent Plant 

4.1.1.1 Raw Water Quality Parameters 

In order to effectively operate the facility, a number of raw water quaiity parameten are 

monitored at Rossdale WTP on either a mal-tirne, or scheduled basis. The availability of 

data for many of these parameters is presented in Table 4.1. Due to substantid seasonal 

variations in the North Saskatchewan River flow and arnbient air temperature* the river 

water quality varies considerably. Raw water daily average turbidities range from 

approximately 2 NN in winter, when the river is under ice cover, to over 1400 NTU 



during spring thaw (Table 4.2). Similady, raw water colour ranges h m  approxirnately 2 

TCU to 80 TCU throughout the year. The seasonal nature of these parameten is 

presented graphidy in Figures 4.1 and 4.2. m e r  panmeters, such as total allcalinity 

and total hardness, show far less variation with man values of 133.7 I 9.3 m& and 

166.9 f 12.6 mg/L (as CaC03 respeaively. 

Table 4.1 Rossdale WTP, daily data availability for raw water quaiity parameters 
Parameters 1990 1991 1992 1993 1994 1995 1996 

Temperature X X X X X X X 
(OC) 
River flow X X X X X X X 
(m3/s) 
Turbidity, daily low X 
O 
Turbidity, daily high X 
O 
Turbidity, daily average X 
O 
Colour, daiiy low X 
C r W  
Colour, daiiy high X 
(?'CU) 
Colour, daily average X 
W U )  
Total hardness X 
(mg/L as CaC03) 
Total alkalinity X 
(mglu 
V o c  X 
( m m  
Maximum conductivity 
@S/cm) 
W-absorbante 
(200 nrn) 
UV-absorbance X X X 
(254 nm) 
Raw TOC X 
(mg/L) 



Table 4 3  Rossdaie WTP, data analysis for raw water quaiity parameters 
Parameter Date Mean Std Dev. Min, Max. Range Pcrcentile 

Terilperature 92-96 103 6.2 0 5  25.0 243 20.7 8.0 1.0 
cc) 

River flow 92-96 190.4 104.8 18.0 1050.0 1032.0 368.6 159.0 95.0 
(m3/s) 
Turbidity. daily high 92-96 49.6 153.4 2.0 2400.0 2398.0 170.0 120 3.0 
0 
Turbidity, dail y ave. 92-96 3 1 -7 88-9 1.6 1481.0 1479.4 1162 8.0 2.4 
0 
Colour, daily hi@ 92-96 10-2 10.3 2.0 82.0 80.0 32.0 7.0 3.0 
Crw 
Colour, daily ave. 92-96 9.0 9.1 2.0 77.0 75.0 6.0 2.0 2.0 
( T m  
Total hardness 92-96 166.9 12-6 104. 204.0 100.0 188.0 167.0 144.0 
(mg/L as CaC03) O 
Total allcalinity 92-96 133.7 9.3 94.0 174.0 80.0 149.0 134.0 119.0 
(WU 
VOC 94-96 0.01 0.02 0-00 0.44 0.44 0.03 0.00 0.00 
( m m  
Raw TOC 92 2.7 1.3 0.2 7.90 7.70 5.1 2.3 1.2 
(mg/L) 

4.1.1.2 Process Parameters 

With respect to the operaiing conditions at the WTP, a List of the parameters that can be 

controlied by the operator in order to optirnite the enhanceci coagulation process is 

presented in Table 4.3. As discussed, the Rossdaie facility is split into two separate 

treatment trains, Plant #1 and Plant #2. The mean flow through Plant # 1 is approximateiy 

61 MU& while that for Plant #2 is 86.9 MUd (Table 4.4). With respect to the aium dose, 

the range for both plants is fiom 9 mg/L under the most favorable water quality 

conditions, to 164 mg/L for poor quality source water. PAC is used extensively during 

s p ~ g  runoff in order to remove taste and odour causing compounds. Doses of up to 146 

mg/L have been used, although the dose exceeds 45 mgL less than 5 % of the tirne 



(T'able 4.4). The anionic polymr dose is typically 0.30 mg.&, although higher doses may 

be added during periods of high alum use. 

Table 4 3  Roasdale WTP, daiiy data availability for process pairameters 
Parameter 1990 1991 1992 1993 1994 1995 1996 
Raw flow, Plant # 1 
(Mudl 
Raw flow, Plant # 2 
(Mudl 
Alum dose, Plant # 1 
mm 
Afum dose, Plant # 2 
(ml$) 
PAC dose, Plant # 1 

PAC dose, Plant # 2 
( m m  
Polymer dose, Plant # 1 
(ml$) 
Polymer dose, Plant # 2 

Table 4.4 Rossdaie WTP, data analysis for process parameters 
Parameter Date Mean Stci Dev. Min. Man Range Percentile 

95& 5om 5& 
Raw flow, P #1 92-96 612 23.0 0.0 125.0 125.0 97.6 64.0 0.0 
(MU4 
Raw flow, P #2 92-96 86.9 27.8 0.0 165.0 165.0 136.6 85.0 40.4 
(Mua 
Ahm dose. P # 1 92-96 31.8 19.7 9.0 164.0 155-0 71.1 26.0 15.0 
( m m  
Aium dose, P #2 92-96 32.8 20.6 9.0 164.0 155.0 73.2 27.0 14.0 
( m m  
PAC dose, P #l 92-96 10.7 18.1 0.0 145.6 145.6 46.0 4.4 0.0 
(WU 
PAC dose, P #2 92-96 102 16.7 0.0 1421 142.1 44.2 4.9 0.0 
( m m  
Polymer dose, P #1 92-96 0.29 0.15 0.0 0.87 0.87 0.51 0.30 0.00 
(ml&) 
Polymcr dose, P #2 92-96 0.28 0.14 0.00 O.= 0.86 0.49 0.30 0.00 
(ma) 



The most common measures of enhanced coagulation treatment performance ernployed at 

Rossdale WTP include clarifier effluent hirbidity and clarifier effluent colour. The 

availability of data for these performance parameters is presented in Table 4.5. With 

respect to clarifier effluent twbidity, meao values of 2.5 NTU and 2.8 NTU are obtained 

for Plant #1 and Plant #2. respectively (Table 4.6). wth respect to clarifier effluent 

colour, a mean value of 2.1 TCU is shared between the two plants. Neither the effluent 

turbidity nor the effluent colour show any seasonal variations, as isolated cases of high 

effluent turbidity and colour occur throughout the year. With respect for the values 

obtained for the 5& percentiie of both clarifîer effluent colour and clarifier effluent 

turbidity, values of 1.0 TCU and 1.0 NTU were obtained respectively, for both plants. 

Rather than being purely coincidental, this occurrence can be explained by the rnanner in 

which the lab technicians recorded values below 1 .O TCU or 1.0 NTU in thei. log books. 

Table 4.5 Rossdaie WTP, daily data availability for penormance parameters 
Paramet ers 1990 1991 1992 1993 1994 1995 1996 
Effluent nirbidity, Plant # 1 X X X X X X X 
(NTU) 
EMuent turbidity, Plant # 2 X X X X X X X 
O 
Effluent colour, f lant # 1 X X X X X X X 
ucv) 
Effluent colour, Plant # 2 X X X X X X X 
uCU) 
Residual TOC X 
(ma) 



In s o m  cases, the technicians simply entered a value of "<ln for values below 1.0. In 

order to include this data in the preliminary statistical analysis, a nominal value of 1.0 

was assumed. Data for which a value of "<lu was entered were not, however, used in 

Table 4.6 R~ossdale WTP, data analysis for performance parameters 
Parameter Date Mean StdDev. Min. Max. Range Percen tile 

9 9  5oh 5& 
Enluent furbidity, P # 1 92-96 2 5  13 0.4 11.6 11.2 4.8 2.2 1.0 
O 
Effluent turbidity, P # 2 92-96 2.8 f -8 0.3 18.7 18.4 6.1 2-4 1.0 
0 
Effluent colour, P # 1 92-96 2.1 0.9 O 5  7.4 6.9 3.8 2.0 1.0 
mm 
Effluent cotour, P # 2 92-96 2. I 0.8 0.4 75 7.1 3 5  2.0 1.0 
( T m  

4. 1 -2 E L  Smith Water Treatment Plant 

The modelling process for E.L. Smith WTP was started almost a hill year later than that 

for Rossdaie WTP. As such, the availability and analysis of the data as listed below, is 

more current than that for Rossdale. 

4.1.2.1 Raw Wafer Quality Parantefers 

The availability of data used to mesure influent water quaiity h m  1990 - present is 

presented in Table 4.7. Both the pH and the temperature of the influent show seasonal 

variations. with low values occmhg during the winter months and higher values during 

the surnmer months (Figure 4.3). The pH of the influent typically dips to a minimum of 

7.7 under iœ cover and reaches a high of 8.6 during July and August (Table 4.8). 



Table 4.7 E L  Smith WTP, daiiy data availabiïity for raw water qtmfim parameters 
Parameter 1990 1991 1992 1993 1994 1995 1996 1997 1998 

Temperature X 
(OC) 
River flow X 
(m3/s) 
Turbidity, daily low X 
O 
Turbidity, daily high X 
O 
Turbidity, daily X 
average 
m 
Colour, daily low 
( T m  
Colour, daily high 
mu) 
Colour, daily 

conductivity 
@S/crn) 
UV-absorbante 
(200 nm) 
W-absorbante 
(254 nm) 
Total organic carbon X 
m a )  
Similarly. water temperature varies between O and 25 OC. As previously mentioned, 

variations in raw water turbidity and colour are due pnmarily to seasonal fluctuations in 

river flow and the contributions of run-off during spring-thaw and sumrner storm events. 

Raw water daily average turbidity varies between approximately 1 NTU, under ice cover, 



to welî over 1300 MU during spring thaw and summer storm events (Table 4.8). 

Similady, daiiy average colour varies between 2 and 98 TCU. The erratic nature of these 

two parameters is presented in Figures 4.4 and 4.5 respectively. 

Table 4.8 EL. Smith WTP, data aaalysis for raw water q d t y  parameters 
Parameter Date Mean S d D e v .  Min- Max. Range Percentile 

9sh 5oh 5& 

PH 94-97 8.2 0.2 7.7 8.6 0.9 85  8.2 7.9 

River flow 92-96 190.4 104.8 18.0 1050.0 1032.0 368.6 159.0 95.0 
(m3/s> 
Tdidity, daily high 94-97 53-2 1785 2 0  2000.0 1998.0 191.0 8-0 2.0 
0 
TMidity, daily average 94-97 32.3 94.4 1.0 1364-0 1363.0 133.0 6.0 2.0 
OIJTU) 
Temperanire, 94-97 7.8 7.8 0.0 25.0 25.0 202 4.0 0.0 
OC 
Colour, d d y  high 94-97 11.8 13.2 2.0 109.0 107.0 39.0 6.0 3.0 
(TCW 
Colour, daily average 94-97 10.3 11.6 1.0 98.0 97.0 34.0 6.0 2.0 
Wv) 
Total hardness 94-97 164.9 13.4 1020 2020 100.0 189.0 164.0 144.0 
(mg/L as CaCW 
TotaI aIkalinity 94-97 132.0 9.0 96-0 162.0 66.0 147.0 1320 116.0 
(6) 
VOC 94 0.0004 0.0005 0.0000 0.0060 0.0060 0.0010 0.0001 0.0001 
(ml&) 

4.1.2.2 Process Parameters 

At EL. Smith WTP, plant operators can modify the doses of alum PAC, and anionic 

polyrner and, to a lesser extent, the flow through the plant. Cornprehensive records of 

these control actions are available, as listed in Table 4.9. The raw flow through the plant 

is subject to water supply and demand and typically ranges fkom a maximum of 240 

M i d  to a minimum of 60 MU& although flows less than 160 MUd occur less than 5 % 

of the tirne (Table 4.10). Alum doses Vary concurrently with influent water quality and 

range from a low of 10 mglL to a high of 182 mg/L. PAC doses show similar variability, 

with doses exceeding 150 mg/L during periods of poor quaiity influent. PAC is typically 
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w d  to control taste and odour problems that occur in January as weïï as during s p ~ g  

thaw. The anionic polymer coapuiant-aid, w d  to assist in turbidity removal, is applied in 

doses up to 2.1 mg& although doses over 0.4 mgR. are d y  used (Table 4.10). 

Table 4 9  EL. Smith WTP, daily data availabitity for process parameters 
Pammeter 1990 1991 1992 1993 1994 1995 19% 997 1998 
Raw fiow X X X X X X X X X 
(MUa) 
Alum dose X X X X X X X X X 
(mgm 
PAC dose X X X X X X X X X 
( m g U  
Polymer dose X X X X X X X 
mtm 

Table 4.10 E.L. Smith WTP, data anaiysis for profess parameters 
Parameter Date Mean Std.Dev. Min. Max. Range Perceutile 

9 9  5om 5" 
Raw Flow 95-97 184.4 21.1 53.7 244.1 190.4 220.9 180.8 159.8 
(Mudl 
Alum dose 94-97 40.6 26.6 10.0 182.0 172.0 95.0 30.0 18.0 
(mg/L) 
PAC dose 94-97 8.0 21.1 0.0 151.0 151.0 57.1 0.0 0.0 
(mgn) 
Polymer dose 94-97 0.2 0.1 0.0 2.1 2.1 0.4 0.3 0.1 
(mflJL) 

4.1.2.3 Perjiormance Parameters 

Historically, clarifier effluent turbidity and colour have b e n  used as a masure of the 

performance of the coagulation process (Table 4.11). Other methods, including streaming 

current detection and online TOC, have been used sparingly and very littie data exists. 

Clarifier effluent nirbidity rarely exceeds 3 NTU, aithough spikes as high as 8.9 NTU 



have been observed (Table 4.12). Similarly, clarifier effluent colour exceeds 4.7 TCU 

less ttian 5 % of the time. 

Table 4.11 Rosdale WTP, daiiy data availability for performance parameters 
Parameter 1990 1991 1992 1993 1994 1995 1996 1997 1998 
Effluent turbidity X X X X X X X X X 
0 
Effluent colour X X X X X X X X X 
CTCW 
Residual TOC X 
(mg/L) 

Table 4.12 EL. Smith WTP, data analysis for performance parameten 
Parame ter Date Mean Std. Dev. Min. Max. Range Perceutile 

99' soh 
Clarifier effluent turbidity 95-96 1.2 0.8 0.0 8.9 8.9 2.7 1-1 0.3 
O 
Clarifier effluent colour 95-97 2.3 1.2 0.1 6.9 6.8 4.7 2.1 0.5 
(TCU) 

4 2  ANN Mode1 Development 

4.2.1 Rossdale WTP. Plant #I 

As previously rnentioned, the rnodel for Plant #1 at Rossdale WTP was developed fmt, 

using a five-step scheme which included the selection of input and output parameters, the 

organization of the data patterns, the selection of initial factors and levels of analysis, the 

evaluation of potential architectures, and model optimization. 

4.2.1.1 Selection of Input and Output Parameters 

In order to select appropriate input and output parameters for the model. the study 

domain was thoroughly examined. From recent literaaire in the areas of coagulation and 
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enhanced coagulation, as weli as h m  plant operathg records, a number of potentiai 

input parameters and output parameters were idenWed uables 4.13 and 4.14). 

As previously mentioned, the ANN technique is data intensive. Only parameten for 

which large quantities of historical data exist are suitable for ANN model development 

Of the potential output parameters suggested in the literature and listed in Table 4.14, 

only clarifier effluent colour has been con~uous ly  monitored at the Rossdale WTP. Data 

for the other potential outputs is either sketchy or nonexistent With respect to the model 

input parameters, historical data exists for colour, hardness, aikdinity, pK turbidity, 

temperature, river flow, plant flow, alum dose, PAC dose, polymer dose, maximum 

Table 4.13 Potential model input parameters 
Parameter Classification 
TOC Raw water quality parameter 
DOC 
W A  (254 am) 
Colou 
T)IMFP 

S W A  
Particle counts 
Hardness 
Alkalinity 
PH 
Turbidity 
Water temperature 
Conductivity 
VOC 
Electrophoretic mobiliîy 
River flow 
Plant flow 
Coagulant dose 
Polymer dose 
PAC dose 

Raw water quality parameter 
Raw water quality parameter 
Raw water quality parameter 
Raw water quality paramter 
Raw water quality parameter 
Raw water quaiity parameter 
Raw water quality parameter 
Raw water quality parameter 
Raw water quaiity parameter 
Raw water quality paranieter 
Raw water quality panimeter 
Raw water quality parameter 
Raw water quality parameter 
Raw water quality parametex 
Raw water quality parameter 
Process pafameter 
Process parameter 
Process parameter 
Pmcess parameter 



Table 4.14 Potentid mode1 output parameters 
Parameter Classification 
Clarifier effluent T& Performance pirameter 
Clarifier effluent DûC Performance parameter 
Clarifier effluent Colour Performance parameter 
Clarifier effluent UVA (254 nm) Performance parameter 
Clarifier effluent THMFP Performance parameter 
Clarifier effiuent S W A  Performance parameter 

conductivity, and VOC concentraîion. Of these, VOC concentration and maximum 

conductivity were eiiminated due to the questionable accuracy of the nxorded data In 

addition, while the two parameters can be used to quanti& a portion of the organics and 

inorganics in the raw water, respectively, there is no suggested direct link in the Lteranire 

between either parameter and the effectiveness of the enhanced coagulation process. 

River flow was also elimiaated as changes in river flow due to summer storms, ice cover, 

and spring-thaw are ~fiected in changes to the values of other parameters such as colour, 

hubidity, and water temperature. 

Following the eliminatioa process, 10 input parameters remained: colour, hardness, pH, 

ahhnity.  turbidity, watcr temperature, plant flow. alum dose, PAC dose. and polymer 

dose. While most of the historicai data for these parameters has been recorded as daily 

average values, the d d y  high values of both raw water turbidity and colour have also 

been recorded. Daily average values of these parameters were selecte. over the daily high 

values in order to ensure continuity with other input parameters. With respect to the plant 

flow parameter, most WTPs prefer to use the overfiow rate as a rneasure of the flow 

through the clarifies. The overflow rate, defined as the plant flow (m3/d) / surface area of 

the clarifiers (m2), was used in developing the mode1 instead of the plant flow in order to 

ailow for easier cornparison between WTPs. 



Wïth regards to the 6 water quality input parameters, the value reportai in any given day 

might be strongly comlaîed to the previous day's value. This tirne-series information can 

be used by the &el to estabhh an operational badine; an uicrease in turbidity of 500 

NTU in 24 hours, for example, is an indication of ment summer storm activity. 

Autocorrelation coefficients are usefid for measaniig such correlations over a series of 

previous days. For the purposes of this study, a lag is dehed as the difference between 

today's value and a previous &y's value, with lag x king the difference between today's 

value and the value x days ago. The autoconelation coefficients over 6 lags for each of 

the 6 parameten are presented in Table 4.15. 

Table 4.15 Autocorrelation coefficients for water quality parameters 
Parameter Autocom~ation Coefficient 

Lag 1 Lag2 Lag 3 Lag4 Lag 5 Lag 6 
Influent turbidity 0.73 0.44 0.3 1 0.28 0.28 0.29 
Influent colour 0.95 0.85 0.73 0.63 0.54 0.48 
influent alkalinity 0.93 0-90 0.88 0.86 0.85 0.83 
influent hardness 0.93 0.9 1 0.89 0.87 0.85 0.83 
Influent temperature 0.98 0.96 0.95 0.94 0.93 0.92 
Influent pH 0.93 0.9 1 0-90 0.88 0.86 0.84 

The results of the autocorrelation study suggest that alkalinity, hardness. temperature, and 

pH are strongly autocorrelated until at least the 6& lag. When examining the 

autocorrelation data however. it is important to determine whether the autocorrelations 

are meanin@ or not. In the case of these paramters, the high de- of autocorrelation 

can be explaineci by the fact that whiie these parameters show seasonal variation, they do 

not Vary to a great extent on either a daily or even a weekly basis. Including lag values of 

these parameters in the rnodels would not be beneficial, as the complexity of the mode1 

would be increased without a corresponding inc~ase in the available information 

provided to the network. Both turbidity and colour are strongly autocorrelated to the 1' 



lag. The large drop in the autocorrelation function for turbidity between lag 1 and lag 2 

suggest that autocorrelations beyond the ln lag are weak and shodd not be incorporated 

into the model. The more gradua1 difference between successive autocorrelation 

coefficients for colour suggests that the inclusion of time-series data for the fmt hree 

lags may be beneficial. In the interest of keeping the d e l  as simple as possible. 

however. only the ln lag was used. As a result, two time-series parameters were added to 

the List of mode1 inputs. The complete Iist of model input and output parameters is 

presented in Table 4.16. 

Table 4.16 Rossdale WTP, Plant # 1 model input and output panuneters 
Parameter Category Classification 
Influent pH Input Raw water quality parameter 

Influent turbidity 
O 
influent water temperature 
( O C )  

Influent colour 
(TCU) 
Muen t  hardness 
( m a  as CaCO3) 
Influent alkaiinity 
(mgm 
Alum dose 
( m m  
PAC dose 
( m m  
Polyrner dose 
( m m  
Overflow rate 
(m3/d) 
Lag 1 influent turbidity 
O 
Lag 1 influent colour 
wu) 
Clarifier effluent colour 
n'CU) 

In put 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

hput 

Output 

Raw water quality parameter 

Raw water quality parameter 

Raw water quality pararneter 

Raw water quality parameter 

Raw water quality parameter 

Rocess parameter 

Rocess parameter 

Process pararneter 

Process parameter 

Tirne-series parameter 

Time-series pafameter 

Performance pararneter 



In order to develop a successful modei, an appropriate time fiame for data acquisition 

must be selected. Three years of data, 199419%. were seieded as the data records for 

this period are coqlete.  and no major operational changes have taken place at Rossdde 

WTP since 1994. In order to avoid introducing uncertainties into the modelling process, 

incomplete or questionable data patterns were removed The resulting data file consisted 

Table 4.17 Statisticai analysis of mode1 input and output parameters for Rossdaie 
WTP, Plant #1 
Parameter Mean Std. Dev. Max. Min. Percentile 

5" 50" 9sm 
Influent pH 8.2 

Influent hirbidity 
(rn 
Influent water temperature 
(OC) 
Influent colour 
(TCU) 
Influent hardness 
(mgn CaCO3) 
Muent alkalinity 
(mg/') 
Aium dose 
(mg/L) 
PAC dose 

Polymer dose 
(mgfu 
Ovefflow rate 
(m3/d) 
Lag 1 influent turbidity 
O 
Lag 1 influent colour 
CCU) 
Clarifier effluent colour 



of 889 separate days or patterns. spanning three years of water treatment at the Rossdale 

Water T ~ a t m n t  Plant A statistical anaiysis of the data used in model development is 

presented in Table 4.17. The data was initially organized into two categories based on 

the-value of the output parameter. The boundary separating the data corresponds to the 

9om percentile of the darifler effluent color and has a numricai value of 3.20 TCU. Data 

that exceeds this boundary falls into the special-case scenario category. while the 

rernaining data comsponds to normal opemting conditions at the WTP. The data fie was 

then sorted into training, testing, and production sets according to the protocol previously 

discussed. The initiai separation of data according to the value of the output parameter 

ensured that each of the ti-me data sets contained an equal quantity of special-case 

scenario data 

4.2.1.3 Selection of Factors and Inirial Levels of Analysis 

As previously mentioned, model development and optimization for Rossdale WTP Plant 

# 1 was accomplis hed using factorial design ex perimentation. This statistical technique 

allows for the evaiuation of the efTects of multiple factors on a single or multiple outputs 

while rninimizing the number of exper-ntal trials. For the preliminary model 

development stage, the effects of sotne of the most significant factors were evaluated. A 

sample list of factors, as weli as their corresponding initial levels of analysis is presented 

in Table 4.18. 



Table 4.18 Factors and initial leveis of aaalysir used in preliminarg mode1 
develo~ment 
Factor + - 
Ratio of training to testing data 1 : 1 2: 1 
Total number of hidden layer neurons 30 1 20 
Activation function Logistic Gaussian Cornplenlent 

For multiple hidden layer architectures, the ratio of neurons in each of the hidden layen 

was also evaiuated. In addition, when Ward networks containhg multiple hidden layer 

slabs were use& different activation hnctioas were used for each slab- The initial levek 

of analysis were selected based on previous experience in ANN modeiling. 

4.2.1.4 Evduation of Potential Architectures 

Two separate statistical measures were used to assess the performance of the preliminary 

models. The R~ indicator was applied to the entire production data set and therefore 

serves as a masure of the model's performance in periods of routine operation as well as 

during specialcase scenarios. The second statistical indicator. the mean absolute error, 

was used to assess the performance of the mode1 during the special-case scenarios oniy. 

Initially. ren separate architectures were evaluated using the factors and initial levels of 

analysis previously outlined. For each of these architectures. the best values obtained for 

each of the statistical indicators is listed in Table 4.19. 



Table 4.19 ResuIts of ~reliminarv nins for Rossdale WTP. Piant #1 
Architecture R' Mean Absolute Error 

3 Layer Backpropagation 0.58 19 0.7860 
4 Layer Backpropagation 0.5703 0.8 127 
5 Layer Backpropagation 0.5396 0.8003 
2 Hidden SIab Ward 0.6 129 0.7398 
3 Hidden Slab Ward 0.6096 0.758 1 
2 Hidden Slab Ward + Jump Comection 0.5906 0.7902 
Recurrent O NA 
3 Layer Jump Connection 0.6 1 07 0.7822 
4 Layer Jump Comection 0.5593 0.8059 
5 Layer Jump Connection 0.5798 0.8042 

In these prelirninary trials, the recurrent network performed extremely poorly since the 

separaiion of the data into multiple sets removes the tirne-series correlations between 

adjoining data patterns. The R~ value of O obtained for the recurrent network suggests 

that the neural mode1 predictions were worse than those that could have ben obtained by 

using the mean of the mode1 outputs as the network predictions (Ward Systems Group 

hc. 1996). The mmaining networks produced satisfactory results and were subjected to 

in the second set of trials, a second factorial design incorporating the rnost favorable 

levels of analysis denved h m  the results of the fVst factorial design was applied to each 

of the architectures. In general. both the R squared and average absolute error values 

improved by approximately 0.01 to 0.10. Based on the average absolute enor results from 

the second set of trials, the best network is the 3 layer backpropagation network with 96 

hidden Iayer neurons. a logistic activation function, and a 3: 1 training data to testing data 

ratio. This network had an absolute average error for the special-case scenarios in the 

production set of 0.7074 and a production set R squared of 0.6621. A plot of the achial 



data against the network predictions for this network is presented in Figure 4.6. This 

preliminary mode1 follows daiiy operational trend weU, although there are many 

incousistencies in the model predictions for the special-case scenarios. 

4.2- 1.5 Model Optimization 

From the prelirninary model design stage. a number of potential candidate model 

architectures were selected for M e r  optimization. Of these, the three-layer 

backpropagation architecture produced the most favorable results. When the trained 

network was applied to each of the data sets. the results were consistent, ranging from an 

R' of 0.7 1 for the testing set to 0.76 for the training set (Table 4.20). Sirnilarly, the mean 

absolute error for ail data ranged h m  0.30 TCU for the training set to 0.32 TCU for the 

testing set In addition, when the testing and production data sets were swapped and the 

model was retrained and applied to the new production set, the results are identical to 

those for the original test set. This suggests that the intemal network structure is identical 

for both the original and swapped data, since the original test set contains the same data 

patterns as the new production set. As such, the model architecture is decidedly stable, a 

quirement for use in process conml. 

Table 4 2 0  Model results for Rossdale WTP, Plant # 1 
Data Set R~ Mean Absolute Error 

CTCU) 
Training 0.76 0.30 
Tes ting 0.7 1 0.32 
Production 0.75 0.3 1 
Cross-validation 0.7 1 0.32 



The mode1 results for previousty unseen data (production data) are presented graphically 

in Figure 4.7. The model follows the trends in the actuai clarifier effluent data quite weli, 

although two areas of apparent inaccuracy require a M e r  examination. In the fmt 15 

patterns, when the achial clarifier effluent colour ranges h m  approximately 1 to 2 TCU. 

the network tends to over-predict the actual values. From a process control standpoint 

however, this error is neglïgible since these pattern correspond to late-winter days where 

the raw water quality conditions are ideal and process control modif~cations are rarely 

required. With respect to the second area of concem, the model has some difficulty in 

predicting the value of the highest clarifier effluent colour peaks present during process 

upset conditions. For these cases the model clearly recognizes the existence of the peaks, 

however, it tends to under-predict the actual effluent colour by approximately 1 TCU. 

The mode1 could be retrained to reduce the prediction emr on these peaks, at the expense 

of reducing the predictive capacity during normal operating conditions. The ultimate goal 

of this study is to develop models that can eventudy be used in process control 

applications to reduce the fkquency and severity of plant upsets. As such, while it is 

important that the model recognizes plan upsets, it is far more important that the mode1 

better predictive capacity in the normal operating range (c 3 TCU) of clarifier effluent 

colour than during periods of upset. 

In order to ensure that there are no obvious trends in the model residuals, a plot of the 

residuals against the model predictions for the production set is presented in Figure 4.8. 

The majority of the model residuals f a  within a narrow band in the range of -0.5 TCU to 



0.5 TCU. The clarifier effluent colour measuremeots are performed on an instrument that 

is only accurate to within 1 TCU. As such. aii but a few of the residuals are s d e r  than 

the instrumental enor. With respect to the distribution of the mode1 residuals. a histograrn 

delineaîhg the kquency of emr on the absolute scale is presented in Figure 4.9. From 

this figure. it is possible to see that approximaîely 95 % of the model residuals are within 

0.8 TCU of the actual recordeci values. 

4.2.2 Rossahie WTP. Pian t # 2 

Building on knowledge gained through the development of the model for Plant # 1. the 

model for Plant # 2 was developed using a protocol that involved the foilowing 9 steps: 

selection of input and output parameters, selection and organization of data pattern. 

determination of the appropriate training : testing : production ratio, determination of the 

appropriate number of neurons for each hidden layer, determination of the appropriate 

activation function. reassessment of the number of hidden layer neurons. evaluation of 

mode1 stability, mode1 fme-runing, and comparison of candidate models. 

4.2.2.1 Seleetion of Input and Output Parameters 

The model input and output parameters used in the developrnent of the model for Plant # 

2 are identical to those used in the development of the model for Plant #1 (Table 4.16). 

S i n a  the two plants share the same source water and have the same qualïty and quantity 

of histoncal data, the selection process used for Plant #1 is assumed to be valid for Plant 

#2. 



4.2.2.2 Selectiort and Organization of Data Pattern 

Using the same reasoning applied to the Plant 81 model, data h m  1994 - 1996 was used 

in model development. Incomplete or ambiguous data pattern were removed, resulting in 

a final data file of 961 complete data patterns or days. The statistical analysis for each of 

the parameters used in the development of the model for Plant #2 is presented in Table 

4.21. ïhe  data was sorted according to the value of the output paramtex and separated 

into the training, testing, and production sets as discussed in the methodology section. 

4.2.2.3 Determi~tiun of the Appropriate Training : Testing : Production Ratio 

In developing the model for Plant # 1. a 3: 1: 1 ratio was found to be the most favorable. In 

order to confirm this resulk a series of runs was performed for a variety of data ratios. For 

each series, a 3-layer backpropagation network was used, and the number of hidden 

layers was varied across a predetermined range. Runs were evaluated on the basis of 

production set R~ and mean absolute error. the results are presented graphically in 

Figures 4.10 and 4.1 1. respactively. From the two figures, the best results are 

concentrated around the 3:l:l ratio. As such, this ratio was selected for use in the 

development of the model for Plant #2. 



Table 4.21 Statistjcai analysis of mode1 input and output parameters for Rossdale 
WTP, Plant #2 
Parame ter Mean Std. Dev. Min. Max. Percentile 

srn 5om 9sm 
Muent pH 8 -2 0.2 7.9 8.8 8.0 8.2 8.5 

Muent turbidity 
O 
Innuent water temperature 
( O C )  
Infiuent colour 
W U )  
Influent hardness 
(mg/. &CO31 
Influent alkalinity 
m m  
Alum dose 
@g/]L) 
PAC dose 
( m m  
Polymer dose 
(mgm 
Overflow rate 
(m3/d) 
Lag 1 influent turbidity 
O 
Lag 1 influent colour 
UCU) 
Clarifier effluent colour 

4.2.2.4 Detenni~tion of the Appropriate Number of Hidden Luyer Neurons 

For the 3-layer backpropagation network with a single hidden layer, the number of 

neurons was initiaily varied in 5 neuron iocrements over the range of 5 to 100 neurons. 

For the Mayer backpropagation network with two hidden layers, a grid system was 

employed with the number of neurons in each hidden layer king varieci in range of 5 

to 50 in 5 neuron increments. The initial network response, with respect to performance 



codes, to changes in the number of hidden neurons in the two backpropagation netwo* 

is presented in Figures 4.12 and 4.13. 

Areas of highest network response were m e r  investigated by performing additional 

nuis. For the Mayer network, for example, additional mm were performed at 2 neuron 

intervals in the range of 25 to 35 neurons for the h t  hidden layer and 20 to 30 neurons 

in the second hidden layer. The process was continued until an optimal number of 

neurons was determined. For the 3-layer network, the optimal levels of performance were 

obtained for both 4 and 62 hidden layer neurons. For the Clayer network, the optimal 

combination was 30 neurons in the k t  hidden layer and 27 neurons in the second hidden 

layer. 

4.2.2.5 Dereminarion of the Appropriate Activation Function 

Keeping the nurnber of hidden layer neurons constant at the optimal values, a senes of 8 

m s ,  one for each of the available activation functions, was performed for each of the 3- 

Iayer backpropagation networks. For the 4-layer backpropagation network, a grid system 

was again used. In the interest of saving tirne, the linear activation hinction was not 

evaluated for this network as it typically produces poor results. The results of the trials 

are presented in Tables 4.22 and 4.23. 



Table 4.22 Determination of the appropriate activation hct ion for the 3-layer 
backpropagation networks 
Activation Function Rua Effect 

4 Hidden Layer Neurons 62 Hidden Layer Neurons 
Logistic 18 18 
Tan h 13 17 
Tan 1.5 12 17 
S ine 4 16 
Symmetric Logistic 15 16 
Gaussian 14 14 
Gaussian Coqlement 14 14 
Linear 7 15 

Table 4.23 Run effect for variations in activation fundion for the Clayer 
backpropagation network 

Logistic 
C 

Tan h 

Li 

2 Tan 1.5 

Sine 

Sym Log. 

Gaus. 

G.C. 

Activation Function for Hidden Layer 1 
Logistic Tan h Tan 1.5 Sine Sym. Log. Gaus. G.C. 

20 20 16 16 18 18 17 

17 18 12 16 14 8 14 

14 17 15 16 14 13 14 

14 13 14 10 17 16 17 

12 16 14 17 12 11 16 

14 12 14 15 1 1 12 14 

18 16 12 12 18 16 14 

In a l l  cases, the best results werr obtained using the logistic huiction. While the logistic / 

tan h combination also yielded favorable results for the Clayer network, the effort 

required to reassess the number of hidden layer neumns using this combination of 

activation hinctions outweighed the potential benefits. As such, the logistic activation 

fûnction was selected for al1 the hidden layers in each of the architectures. 



4.2.2-6 Reassessment of the Number of Hidden Loyer Neurom 

Since the activation funciion selected did not differ h m  that used in the determination of 

the number of hidden layer neurons, this step was not necessary. 

4.2.2.7 Evaluation of Mode1 Stability 

In order to ensure that the resdts obtained were not dependent on the rnanner in which 

the data were extraaed, an alternate data set was prepared. The best models for each of 

the architectures were retrained on the alternate &ta set, and the results in terms of R* 

and mean squared emor (MSE) on the production set data are presented in Table 4.24. 

Table 4.24 Evaluation of model stability 
Original Data Set Altemate Data Set 

Architecture R~ MSE R~ MSE 
Mayer network O .O6 0.23 0.59 0.29 

3-layer network 0.65 0.23 0-46 0.38 
(4 hidden neurons) 
3-Iayer network 0.6 1 O .26 0.57 0.30 
(62 hidden neurons) 

From these results, both the Clayer network and the 3-layer network with 62 neurons 

appear to be resistant to the effects of changing the data sets, as only minimal changes in 

performce were observed. For the 3-layer network with 4 neurons however. there was a 

rnarked decrease in model performance when the altemate data set was used. As such, 

this architecture was eliminated h m  M e r  consideration. 



The fmal stage of ANN model developmnt emp1oyed for Rossdale WTP Plant #2 

involvecl the evaluation of the effects of the rnethod of weight updates. values of learning 

rate and momentum. and method of pattern selection on mode1 performance using 

factorial design experimentation. With respect to the 4-layer architecture9 the b a t  mode1 

was obtained using momentum weight updates, a leaming rate of 0.2. a momentum of 

0.8, and random pattern selection. For the 3-layer architecture, momentum weight 

updates with a learning rate of 0.1. a momentum of 0.9. and random pattern selection 

yielded the best results. 

4.2.2.9 Cornpurison of Candidate Models 

In order to determine which of the two models has the best performance. each was 

applied to the training, testing. production. and cross-validation sets as previously 

demibed. The results for the 3-layer mode1 cm be found in Table 4.25, while those for 

the Clayer model are listed in Table 4.26. 

Table 435 Results for the Ilayer backpropagation architecture 
Data Set R~ Mean Squared Error Mean Absolute Error 

mu) 
Training 0.63 0.26 0.38 
Testiug 0.59 0.26 0.39 
Production 0.68 0.19 0.35 
Cross-valiàation 0.5 1 0.32 0.42 



Table 4.26 R d t s  for the 4-layer backpropagation architecture 
Data Set R~ Mean Squared Error Mean Absolute Error 

UCU) 
Training 0.63 0.26 0.38 
Testhg 0.59 0.26 0.38 
Production 0.67 0.2 1 0.36 
Cross-validation 0.57 0.28 0.38 

Both of the two candidate models offer similar leveis of performance on the production 

set data When the testing and production sets were swapped and the models retrained 

however, the 3-layer model showed a marked decrease in performance. As such. the 4- 

layer backpropagation mode1 was selected as the final model for Rossdale WTP, Plant 

#2. 

The model results for the production data set are presented graphically in Figure 4.14. 

While the overail performance of the model, as measured by the statistical indicators in 

Table 4.24. is not as good as that for Plant #1, a visual inspection of the figure suggests 

thai the model s t i i l  follows operational trends quite weii. The operators at Rossdale WTP 

acknowledge that Plant #2 is &der to optimize than Plant #1. as retlected by the 

differences in network periomce.  Recognizing the optimization difficulties with Plant 

#2. the operators tend to push Plant #1 to the limits. While Plant #2 has the larger 

capacity and the higher mean flow (Table 4.4). the overfïow rate through Plant #1 (Table 

4.17) is substantialiy higher than that for Plant #2 (Table 4.21). 

In order to ensure that there are no obvious trends in the mode1 residuals. a plot of the 

residuals across ai i  of the patterns in the production set is presented in Figure 4.15. As 



with the model for Plant #1, the majority of the modei residuals f d  withùi a narrow band 

in the range of -0.5 TCU to 0.5. although there is slightiy more scaüer for the Plant # 2 

modd. With respect to the distribution of the model residuals, a histogram delineating the 

fkquency of enor on the absolute scale is presented in Figure 4.16. From this figure, it is 

possible to see thaî approximaîely 95 % of the model residuals are within 0.8 ?'CU of the 

actual recorded values. 

4.2.3 E L  Smith WTP 

Following the development of a model for Rossdale WTP, Plant # 2. a number of steps 

were mnoved from the mode1 development protocol in order to increase its efficiency. 

Fit, the determination of the appropriate training : testing : production ratio step war 

eliminated. B ased on the fmt two rnodels, a 3: 1 : 1 ratio was found to be most appropriate. 

In addition, the detemination of the appropriate activation function step was eliminated. 

Based on the fmt two models. the logistic activation hinction always provided the best 

results and, as such, was the sole activation function evaluated in the E.L. Smith model, 

As only one activation function was evaiuated. the reassessrnent of the number of hidden 

layers was also eliminated from the protocol. The protocol used in the development of the 

model for EL. Smith WTP therefore, had 6 distinct steps: selection of input and output 

parameters, selection and organization of data patterns, determination of the appropriate 

nurnber of hidden layer neurons, evaluation of model stability, mode1 f i n e - h g .  and 

cornparison of candidate models. 



4.2.3.1 Selection of Input and Output Parameters 

The model input and output paranieten used in the development of the model for EL. 

Smith WTP are identical to those used in the development of the mode1 for Rossdale 

WTP Plant #I and Plant #2 (Table 4.16). Both the Rossdale and EL. Smith f'ilities 

share the same source water, although Rossdale WTP is approxirnately 15 km 

d o m m  of EL. Smith. As such, the raw water quality characteristics at the two 

facilities are similar and cm be descnbed by the same raw water quality parameters. 

Operationally, while the two facilities use different types and configurations of clarifiers, 

the pmcess parameters used to define the coagulation process at Rossdale WTP are 

equally applicable to E.L. Smith. 

4.2.3.2 Selection and Organizution of Data Patterns 

As the E.L. Smith WTP mode1 was the last to be developed, more current data were used. 

Almost three years of water treatment data. from May 1995 to Aprii 1998, were used in 

model deveioprnent. Data pnor to May 1995 could not be ernployed as new tube sertiers 

were installe& and a new spectrophotometer for colour mcasurement was purchased, at 

that tirne. Questionable or incomplete data patterns were removed, resulting in a fmal 

data file of 916 separate pattern or days. The statistical analysis of the parameters used 

in the development of the mode1 is pmented in Table 4.27. The data was extracteci into 

the training, testing, and production sets as described in the methodology section. 



Table 4.27 Sfatisticai analysis of mode1 input and output parametecs for E L  Smith 
WTP 

Muent turbidity 
O 
Influent water temperature 
( O C )  

Influent colour 
W U )  
Influent hardness 
(mg/L =Co31 
Influent allralinity 
(mg/L) 
Alum dose 
( m g m  
PAC dose 
(ma) 
Polymer dose 
(-1 
Overflow rate 
(m3/d) 
Lag 1 influent turbidity 
O 
Lag 1 influent colour 
W U )  
Clarifier effluent colour 

Parameter Mean Std. Dev. Min. Max. pe&ntile 
sm 5om 9 9  

Muent pH 8.2 

4.2-3.3 D e f e m i ~ t i o n  of the Appropriate Number of Hidden Loyer Neurons 

The optimal number of hidden layer neurons for each of the backpropagation 

architectures was determinecl in the same manner as  described for Rossdale WTP, Plant 

#2. For the 3-layer network, the optimal number of neurons was found to be 85. For the 

4-layer network, a combination of 40 neurons in the h t  hidden layer and 40 neurons in 

the second hidden layer o f f e d  the best network performance. 



Once again. alteniate training. testing, and production sets were prepared h m  the 

original data fde. The two candidate models were retrained using the alternate data sets in 

order to ensure that the results obtained were not dependent on the manner in which the 

data was extracted. A cornparison of each of the results obtained on the production data 

set h m  both the original and aitemate data files for each model is presented in Table 

4.28. 

Table 4 3  Evaluation of model stability 
Chiginai Data Set Alternate Data Set 

Architecture R~ MSE R~ MSE 
3-layer network 0.85 O -24 0.75 O -40 
4-layer network 0.88 O. 19 0.87 0.2 1 

Mile the 3-layer network offered extremely good resdts on the original data set, there 

was a substantial decrease in performance when the architecture was ntrained on the 

alternate data set. This suggests that the f layer model may not be as robust to process 

changes as the Clayer model. whose performance on the altemate data set was only 

rnarginally inferior to that on the original data set. As such, the 3-layer architecture was 

eliminated h m  further consideration. 

4.2.3.5 Mode1 Fine -Timing 

The 4-layer backpropagation architecture was optimized in the manner previously 

describeci. When the model was retrained using momentum weight updates with a 



leamhg rate of 0.1. a momentum of 0.9, and randorn pattern seleaion. the model 

performance was inmead, as wiii be discussed in the ioiIowing section. 

4.2.3.6 Cornparison of Candidate Mo&k 

As ody one architecture. the Clayer backpropagation architecture with 40 neurons in 

each hidden layer. was M y  optimized, it is not possible to rnake a direct cornparison 

with other architectures initially evaluared for use in the EL. Smith WTP model. As 

demoastrated in Table 4.29. the mode1 for EL. Smith WTP offers better lt2 values. when 

applied to historical data, than those developed for Rossdale WIF (Tables 4.20 and 

4.26). 

Table 4.29 Mode1 d t s  for E.L. Smith WTP 
Data Set R~ Mean Squared Error Mean Absolute Error 

W U )  
Training 0.92 0.13 0.27 
Testhg 0.89 O. 17 0.3 1 
Production 0.89 O. 17 0.30 
Cross-validation 0.89 0.17 0.3 1 

A plot of the achial and predicted values of clarif~er effluent colour across al1 of the 

values in the production set is presented in Figure 4.17. It appears as though there are no 

major deficiencies in the model; daily trends as weîi as plant upsets are predicted with 

similar levels of accuracy. In order to ensure that there are no obvious trends in the model 

residuals, a plot of the residuals across a i l  of the patterns in the production set is 

p~sented in Figure 4.18. While the model residuals show more scatter than either of the 

two Rossdale WTP models. the majority of the residuals still fall within the -0.5 to 0.5 



TCU range. Wïth respect to the distribution of the model residuds. a histogram 

delineating the frequency of error on the absolute scale is presented in Figure 4.19. Once 

again, approximately 95 % of the model residuais are within 0.8 TCU of the aaud 

rezorded values. 

4.3 Mode1 Evaluation with Red-time Data 

While aiI  of the models developed for the two AQUALTA facilities performed adrnirably 

on historical data, the tme mcasure of the models' performance is their ability to provide 

accurate predictions for real-time data For the purposes of this study. a simulated reai- 

tirne environment was employed; each of the models was applied retroactively to data 

obtained from AQUALTA's SCADA system on a four-hour cycle for the mon& of 

March, April, and May 1998. The four-hour cycle was chosen to coincide with the 

frequency of laboratory anaiysis updates. and the three-month time frame was selected to 

coincide with spring-thaw. one of the most operationdy difficult time periods for water 

treatrnent facilities. Overail, the number of data patterns evaluated for each of the plants 

was 530 for each of the Rossdaie plants and 550 for EL. Smith. The differences in the 

number of pattern used for each of the facilities is due to the fact that 5 days of data 

h m  Rossdaie were unusable. The results of the real-time data evaluation for each of the 

models is presented in Table 4.30. In addition, as mentioned in the introduction, a mean 

absolute error of 0.5 TCU in the 2-3 TCU range is desirable if the models are to be 

employed in process contml applications. The results of the real-time data evaluation 

when the effluent colour was in the 2-3 TCU range are presented in Table 4.3 1. 



Table 4 3 0  R d t s  of model evaiuation using reaï-the data 
Mode1 R~ Meau Absoiute Emr 

( T m  
Rosscide WTP, Plant #1 0.71 0.25 
Rossdale WTP, Plant #2 0-76 0.3 1 
EL. Smith WTP, Clarifier 1 0.67 0.57 
EL. Smith WTP, Clarif~er 2 0-72 0.49 

Table 4 3 1  Results of model evaluation using r d - t h e  data, 2.0 - 3.0 TCU effluent 
colour range 
Mode1 Mean Absolute Error 

n'CU) 
Rossdale WTP, Plant #l 0.25 
Rossdale WTP, Plant #2 0.33 
E L  Smith WTf, ClarXer 1 0.75 
E.L. Smith WTP, Clarif~er 2 0.54 

With respect to the results obtained for Rossdale WTP, Plant #1. the model showed 

slightly l e s  correlation. in terms of the lZ2 values. than when applied to histoncal data 

(Table 4.20). On the absolute scale, however, the rnean absolute error on the production 

set irnproved by approximately 0.05 TCU on the reai-tirne data. A plot of the acnid 

clarifier effluent colour dong with the mode1 predicted darifler effluent colour is 

presented in Figure 4.20. The model appears to follow daily plant operations quite well. 

with most of the variation being ataibuted to daily fluctuations in the measured clarif~er 

effluent colour. 

When applied to the real-time data, the model results for Rossdale, Plant # 2 irnprove 

considerably over those obtained on historical data (Table 4.26). A plot of the actual 

clarifier effluent colour and the predicted clarifier effluent colour is presented in Figure 

4.21. Whüe the mode1 follows actuai operational trends quite weil, as with the model for 

Plant #1. most of the deviations stem h m  the daily fluctuations of the output parameter. 



In some cases, the model tends to overpredict the value of the output parameter, although 

the overall mean of the model residuals was found to be essentidy zero ( (IO)-"). 

In spite of demonstrating the best performance on historical data, the model for EL. 

Smith WTP had the poorest performance of the three models when applied to rd-time 

data As was previously discusd, the mode1 for EL. Smith was developed using data 

averaged fiom the two clarifiers. While most of the input parameters had the same values 

for both clarifiers, the values of polymer dose, ovefiow rate, and clarifier effluent color 

were averaged between the two plants. With respect to the real-time evaluation it was 

necessary to apply the same model to each of the clarifea, in spite of the presence of 

srnail operational differences between them Plots of the actual and predicted clarifier 

effluent colour for clarifier 1 and 2 are presented in Figures 4.22 and 4.23 respectively. 

Of the two clarifiers, clarifier 1 dernoostnited more variable performance, as  the 

fluctuation in successive values of clarifier effluent colour is greater than that observai 

for clarifier 2. In both cases, the model tends to underpredict the value of clarifier effluent 

colour at higher values. although the mean of aii the residuals is again essentially zero for 

both models. 

With respect to the criteria established in the introduction section for successful model 

developrnent, both of the Rossdale WTP models demonstrateci excellent performance in 

the 2.0 - 3 .O TCU range of clarifier effluent colour, with mean absolute erron of 0.25 and 

0.33 TCU for Plant #1 and Plant #2, respectively. When appiied to clarifier 2, the model 

for EL. Smith exceeded the 0.5 TCU mean absolute error target by only 0.04 TCU. 



When appiied to clarifîer 1 however, this target was exceeded by 025 TCU. From a 

process control standpoint, these emrs may still prove to be acceptable. Few studies have 

k e n  conducted on the a c c m y  of the decisions made by the plant operators at either 

facility, and the proposed models may very weil offer superior performance when used in 

process control. 



Figure 4.1 Rossdale WTP. raw water daily average turbidity, 1995 

Figure 4.2 raw water daily average colour. 



Figure 4.3 E.L. Smith WTP, raw water pH and temperature 

- - 

Figure 4.4 EL. Smith WTP, raw water hubidity, 1995-1998 



I Date 

Figure 4.5 E.L. Smith WTP, raw water colour, 1995-1998 

Figure 4.6 Reliminary mode1 rrsults for Rossdaie WTP, Plant #1 



Figure 4.7 Mode1 resuits for Rossdale WTP, Plant #1 

Figure 4.8 Rossdale WTP, Plant #1 mode1 residuals 



Figure 4.9 Distribution of absolute error for Rossdde WTP, Plant 

Figure 4.10 Determinaiion of appropriate trainhg:testing:production ratio using RA 
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Figure 4.1 1 Detemination of appropriate training:testing:production ratio using m a n  
absolute error 

Figure 4.12 Determination of the appropriate number of hidden layer neurons for the 3- 
layer backpropagation network using performance codes 



Figure 4.13 Detennination of die appropriate number of hidden layer neurons for the 4- 
Iayer backpropagation network using performance codes 

Figure 4.14 Mode1 results for Rossdale WTP, Plant #2 



Figure 4.15 Rossdale WTP, Plant #2 model residuals 

Figure 4.16 Distribution of absolute error for Rossdale WTP, Plant #2 model 



Figure 4.17 Modef results for EL. Smith WTP 

Figure 4.18 E.L. Smith WTP mode1 residuds 



Figure 4.19 Distribution of absolute error for EL. Smith WTP mode1 

4.20 Mode1 results for Rossdale WTP Plant #1 using d - t i m e  data 



Figure 4.21 Model results for Rossdale WTP Plant #2 using real-time data 

- - -  

Figure 4.22 Mode1 resdts for E.L. Smith WTP clGer 1 king real-time data 



Figure 4.23 Mode1 results for EL. Smith WTP clarifier 2 using real-time data 



5.0 APPLICATIONS 

The completed models c m  be used in a wide variety of process control and rdated 

applications. In reference to the interna1 model contml (MC) scheme discussed in the 

background information section, the models have ali been trained to represent the 

forward dynamics of the enhanceci coagulation process; given a set of process inputs, the 

models are able to predict the process output. As such, the models can be used in indirect 

model control as a tool to help plant operaton select the appropriate process operating 

conditions. Ln order to be used in direct process contro-ol, where the models select 

appropriate operating conditions independently, given the current raw water quality and 

desirrd clarifier effluent colour, the models would need to be retrahed to represent the 

process inverse dynamics. 

The remainder of this section wili focus on the discussion of two potential offline 

methods of indirect process control. The operator decision verifkation method dows the 

operators to verify the effect of their control actions on the process pnor to making 

changes in process operatioas. The virtual laboratory method cm be used to generate 

heuristics or guideiines for a given influent water quality. 

The NeuroSheil2 software aliows completed ANN models to be accessed by a variety of 

other software applications using a dynamic link library @LL). Languages such as 



Visual Basic and C, as well as applications such as Microsoft Excel. can incorporate 

traiaed networks as part of thek source code or as a spreadsheet function. In Excel. for 

example, the following function will return the predicted output of a trained network, 

given a series of inputs: 

where "def-path" is the paîh of the network fde, "input-array" is the location of the 

values of the input parameters within the Excel spreadsheet, and "output-numberW is the 

number of the desired output The "output-nurnber" has a value of 1 for networks with 

only one output, as is the case for the current study. 

A spreadsheet can then be set up where the plant operators can enter the values of the 6 

water quality and the 2 time-series model input parametea. The operators can then enter 

their proposed control actions for the given water quality information: alum dose, 

polymer dose, PAC dose, and overfiow rate. The Excel spreadsheet will calculate the 

model prediction for clarifier effluent colour based on the information entered by the 

operators. If the predicted clarifier effluent colour is at an acceptable level, the operators 

can proceed with their proposed control actions. Otherwise, the levels of each of the 

process parameters can be varied in the spreadsheet until an acceptable level of clarif~er 

effluent colour is achieved, 



This pmcess can also be used in the training of new plant operaton. A spreadsheet 

containing nurnerous sets of water quality and tirne-series Uiformation can be made 

available so that operators-in-training c m  leam the effects of proposed control actions on 

the q d t y  of the clarifier effluent 

The completed models can aiternatively be used as vimial full-sale labonitories to 

provide insight into the enhanced coagulation process. The information generated from 

the v h a l  experirnents can be used to assist plant operators to select the appropnate 

operating conditions for a given influent water quality. 

Initially, a specific type of water is selected. For the purposes of the current discussion 

highly coloured, moderately nirbid water, typical of the beginning of spring-thaw, is 

selected. By examining historical data records, appropriate values for each of the raw 

water quality and tirne series parameters can be selected (Table 5.1). 

Table 5.1 Typical raw water characteristics of in eariy spring-thaw 
Parameter Value 
PH 8.0 
Turbidity 0 19 
Tempe- (OC) O. 1 
Colour 50 
Total hardness (mgk as CaC03) 153 
Total ailralinity (mgL) 129 
hg-1 Twbidity 10 
Lag- l Colour (TCU) 30 



Typical ranges of process parameters for a given water treatment plant can then be 

identined. At EL. Smith WTP, the ranges of each of the process paranieters th& wodd 

t y p i d y  be used to treat the water described above are pfesented in Table 5.2 

Table 5 3  Typical values of proces parameters at E L  Smith WTP during early 
spring-thaw conditions 
Parameter Range 
Alum dose (mg/L) 30 - 70 
PAC dose (mgiL) 40 - 80 
Polymer dose (mg/L) 0.25 - 0.35 
Overflow rate (m/d) 40-60 

It should be noted that overfîow rate is typicaliy not varied in response to raw water 

qudity, but rather in response to customer water demand. As such* colour control is 

maintained primarily by varying each of the chemicai dosing levels in the descnbed 

ranges. Plots of each of aium dose. PAC dose, and polymer dose over a range of overfîow 

rates can be plotted against clarifier effluent colour. The clarifier effluent colour values 

are generated using an Excel spreadsheet, dong with the "Callw fimction descnbed above. 

Altematively, one or more of the process parameters can be held constant, while other are 

varied alone or in combination. Figure 5.1 shows the variation in color with alum dose 

and PAC dose in the ranges of 30 - 90 mg/L and 40 - 80 mg& respectively. The polyrner 

dose and overflow rate were held constant at 0.30 mgL and 50 mld, respectively. As 

shown in the figure, the mode1 responds gradudy and logically to changes in chemicai 

doses, indicating that the rnodel appears to have determined trends between input and 

output parameters. A sirnilar plot of the effects of polymer dose on clarifier effluent 

colour is presented in Figure 5.2, with the PAC dose held constant at 60 m& As 

shown, the mode1 predicts that varying polymer dose in the range of 0.2 to 0.4 mgfL does 



not significantly impact the removal of colour over a wide range of alum doses. This 

result is in agreement with the plant operators'howledge base; polymer has historically 

been used to increase nirbidity removals and has had little effecî on the remval of 

coIour. 

The plots can be used by the plant operators to select appropriate dosing combinations for 

a given influent water quaiity. If a clarifier effluent colour of 2.0 TCU was desired at E.L. 

Smith WTP during spring thaw, for example, an alum dose of 60 mg/L in combination 

with a PAC dose of 60 mg/L and a polymer dose of 0.30 m g L  would be effective at 

typical overfiow rates. 

Once the Excel spreadsheet has been created, any one of the input variables c m  be 

changed and a new plot generated with ease. As such. a series of dose / response plots 

can be generated for any given water quality in order to give the plant operators a 

graphical representation of possible effective dose combinations 



Figure 5.1 Effect of varying PAC dose and alum dose on clarifier effluent colour at EL. 
Smith WTP during early spring-thaw 

Figure 5.2 Effect of varying polymer dose and alum dose on clarifier effluent colour at 
EL. Smith WTP during early sp~g- thaw 



6.0 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The purpose of this study was to develop full-sde aaincial neural network (ANN) 

models for the enhanced coagulaiion process at the EL. Smith and Rossdaie Water 

Treaîmcnt Plants in Edmonton, Aiberta. For each facility, models were developed using 

historical data and were evaluated in a simulated rd-t ime environment Wlth respect to 

pedormance on histoncal data, each of the models was able to p d c t  clarifier effluent 

colour with a high degree of accuracy. When applied to simdated real-time data, the 

models for Rossdale WTP demonsirated betîer performance tban on histoncal data. The 

EL. Smith mode1 exceeded the target maximum error by a srnail rnargin, although the 

validity of the target value has yet to be determineci. Two methods of ofnine indirect 

model-based control were discussed, and the utility of the models in assisting operators to 

make appropriate controi actions was demonstnued. Rather than king all encompassing 

however, this research demonstrates only a few of the many potential applications of the 

ANN modelhg technique to the water treatment industry and relaieci fields. Rocesses 

such as filtration and disinfection, for example, should be equally amenable to the 

technique. 

6.2 Recommendations 

Basexi on the knowledge gained in the development of the models, a nurnber of areas 

requiring m e r  study have k e n  identifiai. 



6-2.1 Amlicabilitv tu Other Processes 

As previously mentioned the ANN m o d e b g  technique should be e q d y  applicable to 

other water treatment and related processes. Studies shouid be completed to confirm the 

applicability of the technique to filtration and disinfection. In addition. the technique may 

be applicable to the areas of maintenance scheduling, residud management, and 

distribution systems management. 

If the developed rnodels are to be used in process control applications, there is a need to 

establish criteria to detennine whether the mode1 performance is acceptable. The target of 

0.5 TCU in the 2 - 3 TCU range was suggested by staff  at AQUALTA, but does not have 

any real significance with regards to actuai process operations. St~dies should be 

undertaken to determine the accuracy and reproducibility of operator control actions, as 

well as the level of accuracy required for proper process control. Based on the results of 

these studies, more meaningful mode1 performance criteria can be estabLished. 

With regards to process control applications, the developed models should be 

implemented ofThe at the water matment plants for control action verif idon and the 

trainiug of new operators. Each of the models should also be retrained to represent the 

plant inverse dynamics so that they cm evenhidy be used in a direct IMC system 



As mentioned several times, few ANN model developmnt methodologies exist. While 

the protocols employed in the cumnt study yielded acceptable models, M e r  work in 

the area of protocol development is warranteci. 

While the ANN models provide accurate predictions in the domain on which they were 

trained. linle Û known about the abiiity of ANN models to extrapolate beyond the data 

ranges on which they were trained. A study should be conducted to determine the ANN 

model boudaries so that the models can be used with confidence in process control 

applications. 
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