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Abstract 

Controlling mechanisms whose equations of motion involve noniinear discontinuous terms is 

difficult. A robot manipulator doing a task requiring intermittent contacts with the environment is 

such a system. Histoncally, the dificulty was avoided by splitting the global control problem into 

subproblerns defined by the srnooth structures of the piecewise discontinuous rnodel. As a result, 

algorithms for controlling robot manipulators in free motion, transition to contact (impact control) 

and force/motion in contact were obtained separately and implementation was done using a 
switching law. 

in this thesis, nonlinear Mode1 Predictive Control (MPC) is proposed as a unified solution for 

controlling robot manipulators with intermittent contacts. The use of a model-based prediction over 

a receding horizon allows MPC to foresee discontinuous changes in the dynarnics and smoothly 

adjust the control comand .  Therefore, it was used extensively in the process industry where state 

and control cornmand saturations are often present. The first contribution in this thesis lies in the 
use of MPC for controlling systems with discontinuities in the equations of motion. Through 

anaiysis and simulation, the ability of the nonlinear MPC approach to provide a uniQing solution 

is demonstrated. The literanire on nonlinear MPC k i n g  almost inexistent, the work presented herein 
also contributes to the understanding of how MPC c m  be applied to nonlinear systems. 

Because the cornplete analytical solution of the nonlinear MPC problem is not prone <O real-time 
applications, two implementation alternatives are also proposed. Both use the operationai space 

information about the task to perform to reduce considerably how much computation is necessary 

for a solution. The fmt approach is similar to the resolved-acceleration algorithm with the resolved 

acceleration being computed from a reduced MPC problem. The second is called the predictive 

impedance algorithm since its formulation is similar to impedance control with the impedance k i n g  
replaced by the output of a reduced MPC problem. The applicability of both algonthms has been 

dernonstrated through simulation. Experimental results were also obtained for the predictive 

impedance solution. 
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Chapter 1 

Introduction 

1.1 - Scope 

Since the World entered the era of technology, yesterday's dreams have become today's reality. 

Beyond socioeconomic concems, the hurnan desire to control its destiny and its environment have 

prevailed, and technology has fulfilled the need for the human self-detemination. The increasing 

demand for technical expertise is a challenge for us, and wdi continue to be for the generations that 

will follow. 

The technology of automation is a good exarnple of a technical field where the new requirements 

have created a stringent need for innovation. It has reached the level where automatic systems will 

not only behave comectly with respect to their own States, but will also interact intelligently with 

their physicd environrnent. The level of behavioural complexity associated with these new 

objectives is extreme and human-iike machines are expected to result from this quest. In that 

respect, new series of sophisticated sensors and acniators have been and are k i n g  developed, aii 

trying in their own way to replicate one of the hurnan senses and physical abilities. Tacule sensors, 

vision systems, force senson and smart structures are becoming an integral part of the so-cailed 

intelligent automation. 

Although the new technologies are necessary for achieving the desired level of automation, they are 

not sufficient. Beyond their improved precision and eficiency, these new devices have to be 

integrated into complete and comprehensive control schemes to be r e d y  useful. A good example 

is the control of a manipuiator ami performing tasks such as d r i h g ,  grinding, sanding and cleaning 

a window, d l  requiring an intermittent contact with the environment. Contact force, proxirnity to 
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contacting bodies, position, velocity and acceleration of both the robot and the environment, ail these 

variables can be measured using the appropriate sensing device. The algonthms to interpret the 

measurements and generate the proper control comrnands currently limits our abitity to control the 

transition to contact, the force and the motion in a unified framework. The various solutions 

proposed so far have k e n  obtained for specific conditions of the overall problem. As a result, 

global solutions are reaiized using a switching law to evaluate the particular condition of the 

manipulator and to decide which control saategy to apply at a given instant. This switching 

charactenstic of the aigorithm requires considerable caution in practical situations. The discontinuity 

it creates is often severe, and a great deal of stability robusmess is necessary to deal with the effect 

of any model mismatch near the switching conditions. 

Since our physical ability allows us (the human) to deal easily with such situations, starting the 

investigation with the human psychomotor system is naniral. Obviousl y, the approach selected until 

now to solve the robot manipulator problem is not based on a model of the human psychomotor 

system. In control system engineering, problems are essentially considered from the point of view 

of power transfer for which Lyapunov types of analysis are used However, humans do not visuaiize 

the motion of their body parts through power transfer. We use essentially three important 

components of our psychomotor system. First, we have very sophisticated built-in sensing devices 

allowing us to sense our motion, the motion of the environment and some interaction with the 

environment (e.g. heat and force). Second, each part of our body is actuated by a series of muscles 

over which the control depends on the physical abilities specific to each individual. Finally, based 

on abstract knowledge of our motion and of the expected behaviour of the environment, we use our 

reflex system for a rapid but inaccurate action, or we use our brain power to predict the future 

interaction and control the muscles to obtain a desired interaction. These aspects of knowledge and 

prediction are the key issues of the human's cantrol approach. 

In this thesis, a control method based on the notions of knowledge and prediction is proposed to 

control a robot manipulator with unilateral/frictional contacts. The method is known as Mode1 

Predictive Control (WC) and provides a unified solution to the problems of fke motion, transition 

to contact and contact motiordforce control of a robot manipulator. In MPC, the knowledge is 

represented by analytical models of the robot manipulator and the environment. These models are 
used to predict fiom the measurernents, the motion over a receding horizon extending from the 

curent time (or a delayed instant Iater for systems with pure delays) over a fued  interval in the 
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future. The actual control command is decided upon some control objectives over the receding 

horizon. Usudly, the control objectives are given in t e m  of the rninimization of some quaciratic 

criteria defmed over the receding horizon. To i d e n m  the novelty of the approach clearly, the next 

section of Chapter one is dedicated to a review of the literature dealing with robot manipulator 

control for impactkontact motion. 

1.2 - fiterature review 

As reported eariier, the problems of controlling free motion, transition to contact (impact control) 

and position/force while contact, were snidied separately. Many books were published reporting the 

control of robot manipulators in fiee motion (eg. Lewis et al.[ l] and Paul[2]). Impact control was 

snidied fmt by Youcef-Toumi and Gua[3,4] following the modeiiing effort of Zheng and 

Hemrnani[S] and Wang and Mason[6]. From these initial studies of impact control. few results were 

obtained. Mills[7] and Lokhorst and MiIls[8], inspired by GutmanP]. used the notion of 

Generalized Dynamical Systems (GDS) of Roxin [IO. 111 to derive the stability conditions for a 

switching controller during the transition to or from a contact task. Waker[l2] snidied the effect 

of robot configurations on the impact properties of robots. He showed how kinematic redundancy 

c m  be used to reduce the importance of impact during a transition. 

A histoncal perspective of the methods for positiodforce control in contact motion was presented 

by Whitney[l3], and a more recent s w e y  was reported by Vukobratovic and Tuneski[l4]. One can 

mainly distinguish two families of methods: the passive and the active compliance methods. Passive 

compliance methods in which the inherent stiffhess of the manipulator is used are more acadernic 

than practical (see 1141). In reality, indusaial robots are made highly rigid. limiting the practicality 

of using their flexibility for the control of contact force. To compensate for this lack of flexibility, 

Whitney and Nevins[lS] have introduced the idea of Remote Compiiance Centre (RCC). RCCs are 
flexible devices added to the end effector of the manipulator, providing a known contact impedance 

to be controlied. However, RCCs have to be adapted to the particular task performed, and any task 

modification may require a change of RCC devices. 

An active compliance method, the hybrid position/force controller, was introduced by Raibert and 
Craig[l6] and consists of separating the operational space into orthogonal directions in which the 

position and force controllers can be designed independentiy. A compliance selection matrix is used 
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to define the orthogonal directions. In the work of Raibert and Craig, the type of position and force 

controller is generalized such that any control law can be used. Shin and Lee[l7] and 

Yoshikawa[ 181 have used the hybrid positionlforce control schernes. They used the computed toque 

approach (Paul[2]), decoupling the orthogonal subspace for position and force control. Wen and 

Murphy[l9] investigated the stability issues when the operational space control approach of 

Khatib[20] is used. In their analysis, Wen and Murphy showed that, unless the environment is 

innnitely rigici, the force and position loop dynamics are coupled through the effective arm tip mass 

matnx. 

Another active cornpliance method is the reduced order dynamics control, introduced by 

McClamroch[21] and later extended by Wang and McClamroch[22], Krishnan and 

McClamroch[23], Mills and Goldenberg[24] and by Tahboud et al.[25,26]. McClamroch showed 

the similitude between singularly perturbed systerns and dynamic systems defined by differential- 

algebraic equations. From this similitude, the methds for control system design denved from the 

theory of singular perturbations. as presented by Kokotovic et a1.[27]. can be used to design control 

laws for the constrained model defined by a set of differential (treated as the slow dynamics) and 

aigebraic equations (treated as the fast dynamics). For robot manipulaton, this is achieved by 

modelling the rigid contact as a holonomic constraint to the robot dynamics and reducing the 

dynamics(see appendix A). The resulting expression for the constra.int force represents the algebraic 

component of the dynamics, considered as the fast dynamics part of the singularly pemirbed system. 

This approach, in its final fom, is very similar to the hybnd position/force control approach. In fact, 

the order reduction of the dynamic model impiies the determination of an orthogonal complement 

(not necessarily in operational space) that defines a subspace in which the motion is defined by the 

reduced order dynamics. Their similarity is such that they share the same drawbacks. 

The impedance control approach, f i t  introduced in the control system community by Hogan[28], 

can also be considered as an independent approach. although it is apparently the same as  the Khatib's 

operationai space hybnd positionlforce control. In reality, the impedance control approach is much 

more general than the way it is used by Khatib. As discussed in Lewis et al.[l], the duality principle 

can be used to define the family of impedances that would control position and force for different 

types of environments. In hybrid impedance control, the idea is to modulate the control command 

such that a specified impedance is achieved between the positiodforce trajectory and the desired 

posi tionlforce trajec tory. 
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Stiffness control, introduced by Salisbury[Z9], is in fact a precursor to the more generai impedance 

control. In this method, the Cartesian stiffhess of the robot is modulated such that some sets point 

in position and force can be achieved by a unique position controiier. A position set point inside the 

environment leads to a contact force proportional to its depth in the environment. As pointed out 

by Lewis, a major disadvantage of stiffness control is that it can be used for a set point only. 

Another interesting approach, closely related to the impedance control approach, is the vimtai 

environment approach of Fraisse et d.[30]. Based on the reasoning that the major problem in 

contact motion control be the unknown contact stifiess, they suggest the use of a highiy rigid virtual 

stifmess in parallel with the contact stiffhess. In these circumstances, the virtual stiffness becornes 

dominant and the apparent contact stifhess is weil defined. 

1.3 - Thesis Preview 

As shown in the preceding section, the control of robot manipulaton perfomillig contact tasks has 
been well investigated. Nevertheless, the state of the art has not reached a level where al1 the aspects 

of the overali robot control problem can be solved using one unifîed scheme. Different controllen, 

defined for special conditions of the robot state, are put together ro span al1 possible conditions of 

the robot configuration. This thesis is concemed with the development of a control rnethod that 
solves the overull conîrolproblem in a unifiedframework. The novelty in this thesis Lies in the use 

of MPC to deal with the control of a system whose model exhibits variable structures (and 
topology). 

Since MPC is a model-based control method, the modelling stage of the control design process is 

extremely important. In Chapter 2, an extensive discussion about the modelling aspect of the 

different components of the overall physical system is presented. This presentation includes the 

study of manipuiator dynamics (section 2.1), impact/contact models (section 2.2) and environment 

models (section 2.3). The emphasis is put on the assumptions that can be made and their range of 

validity. An overail model is presented in section 2.4. 

In Chapter 3, the formulation of the control problem studied is covered. In section 3.1, a statement 

of the general problem is fomulated. The panicularities of the problem are addressed in section 3.2 

and the methods proposed in the past are reviewed in section 3.3. 
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In Chapter 4, Mode1 Predictive Control (MPC) is ùitroduced. In section 4.1, the general continuous- 

tirne formulation is shown to give a concise picnire of MPC. The application of MPC to Linear time 

invariant systems has been well developed and a unified presentation is given in section 4.2. Section 

4.3 concentrates on developing MPC for noniinear systems. Four approaches to solve the nonlinear 

MPC problem are suggested and revised. 

The application of nonlinear MPC to solve the formulated problem is described in Chapter 5. It is 

shown how the properties of MPC can solve the overaii confrol problem in one cornmon framework. 

It is explained how this novel approach avoids switching control law and the stabilicy problems 

associated with it, 

Finaily, Chapter 6 describes experimental and simulation snidies done to illustrate the applicability 

of the method, using a planar 2 DOF robot contacting a flat wail. The demonstration is simple but 

general enough to prove the applicability of the method for more complex robot manipulators. 

environments and tasks. 
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Chapter II 

Modelling 

For model-based control methods, modelling is a critical stage in the design process. The vaiidity 

of the modefing assumptions ofien determines the success of the method It is no surprise that most 

drawbacks of the existing control methods for impactkontact motion control are related to the 

specific assumptions underlying the various models used. It is therefore the ultimate goal of this 

chapter to clai@ the models and their assumptions. The models reviewed include the ones for the 

robot manipulator, the joint friction, the contact and impact dynamics, the surface friction and the 

environment. In the last section of the chapter, an overall mode1 is synthesized by joining the 
different specific models. 

2.1 - Manipulator A m  Dynamics 

An impressive variety of actuating devices for robot manipulators are available, but only 

electromechanical devices are considered herein. For robot manipulator motion control, stepper 

motors or dc motors are mainly used. For forcdposition control, joint torques need to be explicitly 

controlled and dc motors are usually employed. 

For armature controlled dc motors, the torque z is given by 

t =Kt@,& 

where K, is the proportionality constant, 4, is the magnetic flux and i, is the motor current. The 
current in the motor winding resuits fiom applying the supply voltage V, and the back emf voltage 



to the winding's LR circuit, 

where L, is the winding inductance, & is the motor resistance, &,,,, is the back ernf constant and 

o, is the motor angular speed. When a dc motor is voltage controlled. the torque dynamic is 

modelled by a fmt order system with a time constant L&,, and gain &@A. disturbed by the 

angular velocity. 

In force control, an explicit control over joint torque is desirable. This is usually achieved by 

designing a power amphfier that contains a cwent  feedback controller (current loop). With such 

amplifiers (most of which are Pulse Width Modulated PWM), the bandwidth is increased and the 

appiied voltage maps a desired winding current. 

In many situations, transmissions are added to dc motors to improve the torque to weight ratios. The 

type of gear used for force control has to provide the necessary back-driveability by avoiding 

backlash at the joint Level. The addition of gears generaiiy increases joint friction and sometimes 

adds flexibility at the joint. The reader who wishes to get more information about joint flexibility 

models can fuid good discussions in [3 1.32,33,34]. Joint friction is discussed in section 2.1.4. 

To avoid the problems associated with gears, different types of motors were developed. Of these, 

the direct-drive brushless dc motors are particularly attractive because the winding is mounted on 

the stator and no brushes are needed for commutation. This configuration d o w s  the design of 

motors with more phases and with optimized winding geometry. Consequently, the motor has a 
higher torque to weight ratio and can be used without gears. Some drawbacks of brushless dc motors 

include the need for sophisticated commutation electronics. the need of precise build-in position 

sensors and the torque ripples. The commutation electronics is nowadays extremely fast such that 

the commutation bandwidth is no longer a Limit. In fact, the current loop for each motor phase can 

be implemented directly in the commutation electronics to provide a current controlled rnotor with 

known dynamics characteristics. Moreover, the built-in position sensor prevents the addition of an 
extra sensor at the joint since it can directly provide position signals for control purposes. Finally, 

the torque ripples are easily identifiable and can be compensated by static nodinear feedback. 



The motion of a robot ami cm be described in many different ways. For example. the formalism of 

rigid multi body dynamics, presented in the appendix A, can be used in the case of rigid 

manipulators. Unfortunately, this approach becomes rapidly impracticd, especiaily if the evaluation 

of the constraint reaction forces is not needed. For rigid link manipulators, each link represents a 

rigid body constrained by a kinematic constraint of order five (5 DOF of relative motion removed). 

To represent each increment in DOF with each link, the Danevit-HartenberglDH) convention is 

usually followed (see Lewis et al.[l] or Paul[2]). Using this convention, each acquired DOF is 
represented by a relative coordinate defining the configuration of the link with respect with the 

preceding one. The method simply consists of recursively defining body frames attached to the 

centre of each joint, and to represent the relation b e ~ n  them using homogeneous transformations. 

The approach provides a simplified systematic way to represent constrained motion. 

In the case of manipulaton possessing flexible members, the DH convention is not applicable. 

Within a body. the transfomations between various body frames now include variables describing 

the flexible States. In the assumed-mode approach, specific mode shapes are assurned to always 

hold. With the help of these mode shapes and the associated generaiized flexible coordinates, the 

position and orientation relationship between all body frames within a body cm be defmed Relative 

joint coordinates are usualiy used also to define the state of a body with respect to the preceding one. 

In any case, the motion of the robot can be defined in two different sets of coordinate systems. In 
joint space (or configuration space), the motion is described by the generdized coordinate vector q. 

Essentially, q is composed of q, the joint coordinate and q, the elastic generalized coordinates ( q 

= { qr. q, 1'). The entries of g are usually easy to measure using simple sensing devices at the joints 

and, therefore. control of a manipulator is mostly considered in joint space. The entries of q, are 

more difficult to measure and are usually obsewed using s n a i n  gauges or piezoceramic sensors. The 

motion can also be defmed in the operational space (or task space) by a set of cwrdinates x={q, q,) 

where x, represents the absolute motion of the end effector. These coordinates are more difficult to 

measure directly. New sensing devices and methods are currently k ing  developed for this purpose 
(e.g., vision systems based on camera signals and proximity sensors). In the case of redundant 

manipulators (more joints than DOF), end effector motion in Cartesian space is not a sufficient set 

of coordinate. in this thesis, the discussion is lirnited to non-redundant manipulators. 



The relation between the joint and the operational space, called the forward kinematics. is given by 

the su jective nonlinear mapping r:Rn-Rn described by 

Xe = R q )  (2-3) 

Differentiating equation (2.3) twice with respect to t h e  gives 

i, = V 4 r ( q ) 4  = 

where the matrix J(q) is c d e d  the manipulator Jacobian. The onentation of the end effector may 
be described using the Euler angles , the Euler quaternion or the orientation matrix. 

The sujectivity of the forward kinematic makes the inverse kinematic problem cornplex. In fact, 

even for purely rigid robots, to obtain one operational space position and onentation, there may be 

many solutions in joint space. The selection of a particular solution is usually subject to an extra 

condition spec*g the range of operation of some joints. In an iterative process where the inverse 

kinematics is solved, the solution retained is usuaily the one "closest" to the configuration in the 

previous iterative step. This ad hoc measure insures "smoothoess" in the inverse kinematics 

solution. 

Most of the time, the joints of a robot manipulator are physicaily lirnited in their motion. By 
defining the set of feasible joint coordinates Q, one can define the workspace by the set &={xel 

x,=r(q), ~ E Q ) .  Therefore, to be consistent and precise. the fonvard kinematic is a mapping 
rQ-K. Any operational point not in X, is singular and physicalIy unreachabie. 

Severai methods were applied to obtain the equations of motion using the recursive Newton-Euler 

formulation or the Lagrange dynamics. In the recursive Newton-Euler method, the kinematic 

relationships are used to derive the expression of the generalized accelerations of each link. Starting 

with the most outer link, the Newton-Euler and the flexible dparnics equations are wntten, 

substituting recursively the joint reaction forces calculated from the dynamics of the previous link. 

This is basically the substitution method described in appendix A for rigid body systems. 
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The Lagrangian dynamics methoci is the application of the classical Lagrangian dynamics. In fact, 

each joint represents an ideal holonomic constra.int of order five. Consequently, the kinetic and 

potentiai energy can be M y  defmed by using the constrained coordinate system (q and q), and the 

classical Lagrange dynamics can be applied. 

In any case, the resulting equation of motion for a manipulator on a fixed rigid base is of the fom 

M,(q)@r+M,(q)qe +Nr(q.q)+Gr(q) =FJr)-F f, ( r  f ) +~:f, (2.6) 

where M, is the generaiized inertia matrix associated with joint motion. M, is the generalized inertia 

matrix associated with flexibility, Mer and M, are the generalized inertial coupiing matrices, N, and 

Ne are the nonlinear tems associated with the joint and flexible motions respectively (contains the 

centrifuga1 and Coriolis ternis), Gr and Ge are the gravity vectors, Fr&) and Fe(r) are the generalized 

control force vectors, F,(r,-) and F , ( q  are the generaiized joint friction force vecton, J = [ J ,  Je] is 
the rnanipulator Jacobian for a fuced frame of reference, and f, is the forceltorque vector applied on 

the end effector and expressed dong the same fixed frame of reference. The extemal forcef, is 

assumed to be exogenous to the mode1 for now. For an N link robot arm, the joint friction r, 
includes al1 joint friction applied to each links. 

In general, for rigid manipulators, the flexibility dynamics (equation 2.7) is considered as a singular 
perturbation to the manipulator rigid body dynarnics (equation 2.6) and the equations of motion 

reduce to 

M (q 14 + w q , q )  +G,(q) =s -rf+J!& (2.8) 

where the joint friction is simply 

~ ~ ( ~ ~ 4 4 )  = 
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Using the fornard kinematics (equations 2.3,2.4 and 2.5), the rigid manipulator dynamics can be 
expressed in the operational space as 

M,(x,)X,+NJ&x,) +G,(x,) = ~ - = ( T - r ~ ( s , q , q ) ) + f ,  (2.10) 

where M, =J J -l Nx = J -'(N - MJ -'j@) and G, = J -'G . Implicit to this definition of the 

robot dynamics in operational space is the existence of an inverse solution to the kinematics. This 

is insured in the robot workspace but at singular locations. 

A thorough review of robotic manipulator dynamic models cm be found in [il and [2] .  Other 

important issues conceming robot modelhg include kinematic loops and arborescent tree topology. 

Kinematic loops are obtained, for example, when a manipulator grasps the environment. In this case, 

the extra constraint modifies the structure of the equations of motion. Tree topology are obtained 

when a manipulator is terminated by two smder  manipulators. These important issues require extra 

steps in the definition of the equations of motion, but do not modify the generaiity nor the validity 

of equations 2.6 and 2.7. The work presented in this thesis will concentrate on the control of chah 

topology manipulators in unilaterd contact, avoiding the problems associated with me topology and 

kinematic loops . 

2.1.4 - Joint Friction 

Joint fnction is a factor that is often neglected in the analysis of control systems for robot 

manipulators. Nevertheless, it represents one of the important challenges in robot control. Tribology 

has a long history, but the complexity of the fnction process is such that a unified model, including 

al1 of its panicularities, is yet to be developed. The reader is referred to the appendix B for a more 

detailed discussion about friction. 

In robot joints, friction is mainly the result of motor bearïng drag and gear resistance. The motor 

bearings are usually prestressed to reduce the surface mbbing fnction between bearings. This 

process also has the advantage that the resulting friction level becornes less sensitive to transverse 

and normal loads on the bearings, making the beax-ing friction level more deterministic. Gex  

friction, on the other hand, is difficult to charactenze. The relation between load, speed, position 

and fnction force in gears is extremely difficult to capture in a model. 



Friction models can be classified according to their dynamic nature. Dynamic models represent 

friction as a dynamic process and include states whose evolutions are govemed by nonlinear 

differential equations (see appendix B). 

To include joint friction in a practical way, it is usually assumed that the static and kinetic friction 

torques and forces are independent of the robot states. In reality, static and kinetic hiction are 

anisotropic (dependent on the contact conditions such as speed, direction of motion. position). In 

the robot control iiterature. a static model of friction known as the Coulomb model is mostly used. 

This model is described as 

TA = Tk, sgn(9,)  (2.1 1) 

where r, is the friction torquelforce. t, is the level of kinetic fnction (assumed equal to static 

friction) and q is the joint speed. Since the standard Coulomb model is ill-defined at q=O, an 

augmented Coulomb model is often introduced 

Tk, sgn( qi 1 if qi + 0 

5, sgn(rq;) i f q i z o  and IreqiI'' Ii 

z i f q i = O  and 

where r,, is the equivaient joint torque, r, is the kinetic friction torque and s,., is the static fiction 

torque. The equivalent torque r, is the torque needed to maintain the stuck joint at q=O and q=û. 

In practical situations, however, the fnction torque is not discontinuous at q 4 .  As described in the 

appendix B, the increase in fiction torque at low joint speed (the Stribbeck effect) can be modelled 

using an exponential or a Lorentzian model. For the exponential model (called the Bo&Pavelescu 

model), the friction is given by 

i f q i = O  and 

i f q i = O  and 

where v, and 6 are empirical parameten. 



Models presented so far are staûc and are described by algebraic relations between the robot states 

and the friction force. They al1 inaccurately model fnction at low speed. At this particular condition, 

some phenornena occurring in fiction can be modelled exclusively using dynamic models (Dahl 
effect, friction memory, friction hysteresis). The integrated model of Canudas de Wit et d.[35] is 

one of the newest dynamic models. It includes one fnction state z whose evolution is governed by 

where g(4) defines a static model obtained at steady-state. The fnction force is given by the 

algebraic relation 

r =a,z, +o,i ,  
f, (2.15) 

where a, and o, are contact surface parameters to be identified. It represents a version of Dalh's 
dynamic model modified to include the Sûibbeck effect (dependancy of kinetic friction on slidùig 

velocity). More dynamic rnodels exists and are presented in Appendix B. 

The selection of an appropriate fnction model depends on observations made in practice. Usually, 

robots with lubncated gears will exhibit a friction behaviour that can be represented by a static Bo 

& Pavelescu model or a dynarnic model such as the integrated rnodel with a Bo & Pavelescu steady 

state solution. Direct-drive motors with unlubricated motor bearings are usually well-represented 

using the augmented Coulomb model. 

O For al1 models presented in this section, viscous fnction was neglected. If required, it can be 

added as a velocity term of the form -f, qi to the fiiction force. 

@ These models also assume rneasurable constant static and kinetic fnction forces. Occasionaliy, 

this assumption is not valid and friction modelling becomes a very difficult task. 
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2-13 - The End Effector 

One particular tedious and difficult task in modehng robot manipulators performing contact tasks 

is to de fine the geometric models for the end efiector and extemal body. UsuaiI y, manipulators are 
equipped with special devices needed to do a particular task. The device can be a gripper, a Ml, 

a screwdriver, or any other special tool. The end effector motion is typicdy defined by the motion 

of a point on the end effector. This point is usudy considered as the point of application of aii  

forces on the end effector. But the contact does not necessarily occur at that point (it would be a 

great coincidence). It wodd occur somewhere on the boundary of the tool. This boundary surface, 

designated here by the set Sb, can be described with respect to the end effector reference frame by 

(see fibwe 2.1) 

S , O { ~ X , + X ~ ~ ~ ~ ( X , . ~ X ~ ) = O ,  PX, given ) (2.16) 

where 4, is the surface fuaction defining the boundary points, x, is a three-dimensional vector 

representing any point on the boundary with respect to the end effector frame and Px, is the three- 

dimensional vector representing the position of the end effector frarne. 

Frarne 

Figure 2.1 - End Effector Geometry 

In practice, the object is usually broken d o m  into smaller portions (usually convex objects) and 

surfaces into smooth portions. This will be discussed later in section 2.4.2. The definition presented 

here is general enough to include al1 particularities of the geometric model. 
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2.2 - Zmpact/Contact Models 

In the dynarnic model for the manipulator arm, the contact force f, was assumed to be exogenous. 

In reality, the contact force is fully (but not ody)  dependent on the manipulator dynamics. The 

dynamics of the environment, the contact parameters and even the contact dynamics can influence 

the contact force. In this section, contact models are analysed. The analysis includes a study of 

theoretical mndels, and the presentation of standard simplified impactkontact models. 

2.2.1 - Theoretical Models 

From a microscopic point of view, contact models were weii investigated. The reader is referred to 

GIadweil[36] or Johnson[37] for detailed discussions. In the following section. some notions about 

microscopic models are presented to introduce the generai phenomena occurring during contact. A 

good understanding of these models helps to appreciate the complexity of the contact process. 

Figure 2.2 - GW Contact profile 

One of the weU-known elastic contact models is the mode1 of Greenwood and Wiiiiamson[38] (GW 

model). The GW model is an asperity based model that evaluates the m e  surface of contact 4 and 

the contact load P as a hinction of the separating distance d (see figure 2.2). Using a probability 

density functionflz) representing the proportion of asperity of height z, and using Hertz theory of 

elastic contact for each asperity, the general solution is 

where Na is the total number of asperities in the nominal area of contact, E' is the apparent Young's 
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mdulus of elasticity ( l/E'=( 1-v,')/.E,+( I - V ; ) ~  ) and P is the asperity tip radius (assumed equal for 

each asperity). This model has promoted a better understanding of the contact phenomena at the 

microscopie level. It has explained why the contact rigidity observed during a contact is not as high 
as expected from a simple stress analysis. 

Contact is known to be a dissipative process. This is well represented in the central direct impact 

theory by the use of the coefficient of restitution. The GW mode1 is, however, purely linear-elastic 

and is thecefore completely conservative. It fails to represent dissipation mainly because it neglects 

plastic deformation at the asperity level. Plasticity was introduced in a GW-like model by Chang 

et a1.[39], who have used a volume conservation approach to introduce plastic deformation. Their 

model resulted in 

and 

where a,, is the yield strength of the weakest material in contact and w, is the cnticai deformation 

of an asperity at the onset of plasticity and is given by the Hertz theory of contact as 

Practically, the yield suength for various rnetallic materials is related to the Brinell hardness by 

a,,&H where H is the Brinell hardness converted to Pa (for ferrous matenals, K=0.6)[40]. 

An comparaison between the GW model and Chang's model is presented in example 2.1. As 

anticipated, the linear model overestimates the local contact rigidity and underestimates the mie area 
of contact. 

Example 2.1 

Consider the contact between twof i~r  steel surfaces over a I cm2 porîion. The properiies of steel 
are E=207 Gpa, v=.29 and the Brinell Hardness H=200 (1960 Mpa). A s w i i n g  a normal 
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distribution of the arperity height with a mean of IOpm and a standard deviation of 1 prn with an 

asperiiy tip radius of 5 prn and I.Oxi@ asperiiy/nr7. the contact load and the frue su face of contact 

c m  be estimated as shown here. 

2x 10 
4 Elastic vs Oasto-Phstic Model 

Figure 2.3 - True Contact Area Figure 2.4 - Contact Load 

The elasto-plastic model is a valid model of contact only during the loading portion of the contact, 

until the separation distance d starts to increase. This is caused by the plastic deformation of the 

asperities modifying the asperity properties and inducing a new relationship between the penetration 

distance and the contact force. This intuitive observation has motivated Chang et a1.[4 11 to modiQ 

their elasto-plastic mode1 to take into consideration the restitution part of the process. Briefiy, they 

had separated the impact phenornenon at the asperity level in three distinctive phases. First, the 

phase where the elastic strain energy is stored in the vicinity of the impact site as the asperity 

deforms elastically. Second, the phase where the conditions for plastic deformation arise, and the 

aspenty starts to deform plastically. Then, any additionai work is lost in plastic defonnation. Thkd, 

the phase where only the elastic energy stored is restored. Assuming a continuity in the load and area 

of contact fkom the Ioading phase to the unloading one, they evaluate new aspenty properties. They 

use a purely iinear-elastic GW mode1 to represent unloading. Using this approach, they obtain the 

srnailest separation distance do by equating the work done during loading and the difference in 

kinetic energy of the contacting bodies before impact and when the bodies corne to rest relative to 

each other 
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They fmaily get the coefficient of restitution by computing the square root of the ratio between the 

unloading work given do and the kinetic energy lost at impact 

This model of impact represented accurately the experimental observations about the dependancy 

of the coefficient of restitution with respect to impact velocity. 

The models presented in the preceding section are good theoretical representations of the 

fundamental process underlying contact and impact. On the other hand, their use for model-based 

control impiementations is impractical. The complicated integral lirnits the feasibility of real-time 

computation. Simplifications are consequently needed to obtain practical design models. 

The results of example 2.1 have demonstrated that elastic contacts do not provide contact forces 

linearly dependent on the penetration distance d. In fact, the transition to contact is relatively 

smooth, the contact k i n g  achieved fmt with the highest asperities. The force-separation 

relationship becomes linear once the contact is fdly  developed. Typical models of contact used in 

the iteranue on manipulator contact motion assumes that contact rigidity is constant right away. 

One of the sirnplified elastic rnodel used to obtain the contact load P is 

where defmes sorne contact stiffhess to be obtained by experiments or a thorough analysis of the 

contact geomeüy and conditions. This model is conservative, continuous but nonsmooth (P(d)~e). 

Its conservative nature does not allow the rnodel to represent impact properly. Some have used 

wheref, is a viscous damping factor to include dissipation. This model is dissipative, but is not 

motivated by a good understanding of physics. The addition of the viscous damping term is an 
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artifact to include some kind of damping, perhaps valid just in case of a wet surface. 

In some numencal problems, the use of a model compnsing a CO function may lead to ill-conditioned 

nurnencai situations. This is the case for problerns where Newton-Raphson type numencal methods 

are needed (Newton-like optirnization methods, shooting methods). For these specific problems, it 

is usudy required to relax the discontinuity by including a smooth approximation. For the contact 

models, this relaxation is weil justified since the true phenornena, best descnbed by the model of 

equations (2.19) and (2.20). is smoother than usually considered. Consequently, using a sigmoid 

function to relax the transition from free to contact condition is physically valid. For example, an 
exponential hinction by can be added to the model (2.24) to give 

where E defines the relaxation boundary layer and 6 is the decay factor. 

Another typical design rnodel of contact is the purely rigid contact model. In this case. the contact 

stiffness is assumed infhite and the penetration distance is always considered null. The force of 

contact is assumed to be represented by a constm.int force, constrainhg the motion of the end effector 

to the surface of contact. In other words. this model allows the consideration of the contact condition 

as an extra holonomic constra.int on the manipulator motion. Following the formalism shown the 

appendix A, one can consequently define the constrained motion dynamics and the contact force 

algebraic relation to model the contact force. More discussion about this contact model will be 
presented in section 3.3.5 where the Reduced Order Mode1 Control is reviewed. At this point, 

stating that the purely ngid model is descnbed by the impenetrability condition 

dzO (2.27) 

and the intensibility condition 

is suffcient. These conditions forrnalize the notion of purely rigid contact. 

None of the simplified models presented so far includes impact. In practice, the classicd purely rigid 

impact model is most commonly used. This model is not revised in detail here, as it is a classical 
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model weii descnbed in many references(see Meriam [42]). Nevertheless, it will be used as the basis 

for a more practical rnodel for the study of unilateral contact. 

The classical impact model assumes that the unloading impulse is a fraction of the ioading impulse, 

and that the ratio is a constant defined as the coefficient of restitution 

where t,, and d, are the ioading and unloading times respectively, and F,,, and F,, are the loading 

and unloading forces respectively. If the impuise times are equal, one can define some average 

loading and unloading forces giving 

Considering the contact model of equation (2.24). a modification of contact force that would observe 

the dation (2.30) is 

K e d  i f d < ~ a n d d i ~  

e y  d i f  d<O and d>0 

O ifdrO 

This model is dissipative in the sense that the work done in ioading is only partly restituted during 

unloading. This model of contact dissipation is more representative of the contactlimpact 

phenomena than the viscous model of equation (2.25). 

Finally, the classical purely ngid impact mode1 does not take into consideration the dependance of 

the coefficient of restitution with respect to the impact velocity. To complete the impact model, an 

empirical relation can be used to evaluate the velocity dependent coefficient of restitution 



where p. e-, e- and 8 are empirical parameters, and v,, is the impact velocity. The meaning of 

equation (2.33) is given in figure 2.5. 

v c  'impact 

Figure 2.5 - Coefficient of Restitution vs 
impact speed 

2.23 - Surface Friction 

The tasks performed by a robot manipuiator sometimes requin the control of force in a direction 

normal to the contact surface and position in the tangentid direction. The tangentid motion is 
obviously infiuenced by the surface fnction developed at the contact site. h opposition with joint 

friction where most of the time the prestressed components make the static and kinetic friction levels 
constant, the surface friction definitively depends on the Ievel of normal force. One of Amonton's 

law of friction States that the resistance to motion (friction force) is proportional to the contact load 
and independent of contact are* and is described as 

Fk =Pt Rd) (2.33) 

and 

This obsentation, proven in practice, has for a long Ume defied common sense. 

This centus, brought Light to this intriguing problem. Nowadays, it is known that contact does not 

occur over the entire nominal surface in contact, but occurs only over a fraction of it. This is well 

described by the asperity mode1 of GW (section 2.2.1). In fact, the laws of fnction should stipulate 

that the fnction force is proportional to the true contact area as shown in the foliowing equation 



where F, and ic, define the kinetic fiction force and proportionality constant respectively. Similarly, 

Fs = KSA(CI)  ( 2 3 )  

for the static fiiction force. The mie area of contact is essentiaily proportional to the normal contact 

load, such that Amonton's Iaw is valid for a wide range of contact conditions. The new law of 

friction is definitively more intuitive as one can understand that fiction is a force necessary to break 

the contact between the asperities. More asperities in contact require more effort to break the bounds 
(friction forces). 

The models presented for joint fnction are also valid for surface friction, provided the integration 
of the load dependent static and kinetic fiction forces in the equations. Obviously, the contact and 

the fnction phenornena are closely linked. Effort is king put in trying to develop a comprehensive 
unifying mode1 that would permit to representation of friction and contact forces in one common 

model. Until this model is found, the link between the surface friction and the normal load relies 
exclusively on the m e  contact area 

2.3 - Environment Dynamics 

So far, the manipulator arm dynarnics and the 
contact models were discussed. The effect of the 

contact force on the motion of a robot mmipulator 

is described by equations (2.5), (2.6) and (2.7). 

But the contact force also applies to the 

environment. It is therefore important, to obtain 
a complete model, to include the dynamics of the 

environment. 

Environment 

As for the end effector, rnodelling the x. : 3-0 vector defihing the environment boundary 
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modelling is in constant evolution and only some aspects wiii be briefly described here. For the 
particdar study presented in this thesis, it is assumed that the environment can have some flexible 
dynamics described by the shape coordinate vector q and a rigid body motion defined by the 

coordinate xav of a point on the body (usuaily the centre of maçs). In a way sirnilar to the end 

effector boundary points, the surface of the environment (S,) is represented by the set (see figure 

2.6) 

n { * + e n v  I + e n v ( x * * ~ e n v ) = ~  ) (237) 

where x' is a vector defining the location of the boundas, with respect to a point on the undeformed 
environment and @, is the environment surface description function. This function defines the 

environment location of the surface at a time t, knowing the environment coordinates q and x,,., 
and the mode shapes of the environment. Again, as for the end effector, the environment surface is 
usuaily broken dom into smooth segments composed of flat and quadratic surfaces. The motion 
of the environment is governed by its dynamic equations, described in general terms by 

where f,,, and g,, define the environment dynamics, f,, is the vector of exogenous forces applied 
to the environment and& is a force vector representing the interaction between the environment and 

the robot as defined in equation (2.8). Environment models for which fa',,* are said to be passive 
while those with a force f,,+0 are said to be active. 

b p l e  2.2 - Environment Model 

Consider a cantilevered plate on which a robot 
mnnipulator har to d d l  a hole (seeflgure 2.7). 
The plate hm fzexrexrbility with one dominant mode 
of vibration. Therefore, the position of the surface 
of the plate is given by the coordinates x and y thm 

ve nfi 

y-<p,(x)q = O  (239) 

Figure 2.7 - Example 2.2 



where cp, is the mode shape of the first mode of vibration vibrarion q ,  is the mode coordi~te.  nip 

vibration dynamics c m  be described by 

4, + 2 ~ p , i ,  +ofri =a: k , h , ( x , , ) ~  (2.40) 

where CI is the modal dmpïng  of the first mode, w , is the ~ t u r a l  fiequency of the first mode (in 

rdsec) ,  k, is the generalized stzfiess of theJirst mode and F is the n o m l  contact force. 

2.4 - Monipulator with Unilateral Frictional Impact and Contact[43] 

In the previous sections, models for robot manipulators, contact, impact, fiction and environment 

were considered sepmtely. In this section, they are joined to generate the cornplete dynamic mode1 
of a rigid robot arm contacting an object in its environment. 

The location of the undeformed surfaces of the end effector and of the environment are given 
respectively by the surface points defmed by the sets shown in equations (2.16) and (2.37). In both 
cases, the surface function is selected such that the hction 's  gradient is pointing away from the 
surface. The normal vector n, pointhg away h m  the envimunent surface is defined as (see figure 

2.8) 

where ex is an orthonornial bais  for the fixed frame of reference. The contact force acting on the 
end effector contact site is given by 

f, = p(d) + Ff et (2.42) 

where e, is the tangential vector dong the tangential motion of the end effector with respect to the 

environment, Ff is the surface friction and d is the separation distance defined as 
d 2 min 

L E Z  

where Z is the set of values z given by 

Z = {zIx,~+x+z~ =pxc+xa, X E S , ~ , ,  x a ~ S b .  is given ) 



In the definition represented by equation (2.44), the leading superscript p refers to the position 

component of the position/onentation vector of the end effector. 

Figure 2.8.a - Contact Geometry with d>O Figure 2.8.b - Contact Geometry with d <O 

The relative speed of the end effector with respect to the environment is defined by 

where the leading superscnpt c refers to the vectors resulting from solving equation (2.43). 

Foilowing this definition. we obtain 

The contact force f, applies to the contact site. 
Since the manipulator Jacobian of equation (2.4) 
is defined for the variations of position of the 

end effector frame with respect to variations in 

the joint coordinates, the matrix J in equation 

(2.6) should be adjusted to take into account that 

f is applied to the contact point (see 

S hahinpoor[44] chapter 7). This adjusted 

Jacobian, cded the contact Jacobian, is defined 
Figure 2.9 - Contact Rame 

26 



by the relationship (see figure 2.9) 

where %, defines the orientation component of the end effector frame. Therefore, the new equation 

of motion defining the robot dynamics is 

M(qW+N(4,q)+G(q)  = r - r f ( L 4 . q ) + ~ : f ,  (2.49) 

2.4.2 - Practical Considerations 

The interference evaluation problem, defined by equations (2.42) and (2.43), is a complex 

computational geometry problem. It is not the mandate of this thesis to present research results in 
the field of computational geometry, but a general discussion on the subject is included. 

In practice, objects are represented in a graphitai data base and approximated using polyhedra (made 

of polygon surfaces). Sometimes, when more precision is needed, objects may be represented by 

collections of flat and quaciratic surfaces. One approach to solve the interference problem has k e n  

to cut the end effector and the environment into sets of convex sub-bodies and to solve the 

mathematical programming problem for each pair of possibly interacting objects. Since the surfaces 
are flat or quadratic, the problem is a linear or quadratic programming problem. Moreover, given 

that the two objects are convex, a unique solution exits. This approach has been used by Ma and 

Nahon [45]. 

Another approach has been developed using the concept of Oriented Bounding Boxes (OBB) and 

the separating axis theorem [46]. It can deal solely with polyhedra representations (senes of flat 
surfaces) but appiies to non convex objects. The algonthm is not based on mathematical 

progrâITLIILing. It deals exclusively with the concepts of geornetric projection and inclusion. The 

output does not give the interference directly but indicates if a contact has occurred and on which 
surface. Once a contact is detected, interference can be computed using linear programming 

constrained to the contacting surfaces, or simply using kinematic relationships. 
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2.43 - A Complete Model for Rigid Manipulators 

&ample 2-3 - A Complete Model for Rigid Manipulators 

The different mdeis for mnnipuiator dyluunics, joint friction, end effector geornetry, environment 
dyBamics. environment geometry, contuet-impact ami contact fnction c m  be joined to create the 

overall model. Such a comp[ete mode1 is given in the following table. 

DESCRIPTION 

Rigid Manipulator 
Oynamics 

Joint Friction 

EQUA TIONS 

5, : obtained by soiving a system of n equations-n unknowns 
M(q)q*+N(4,q)+G(q)=t-te, + J T f e  

O otherwise 

Table 2.1 



- -  - 

Manipulator 
and 

Contact 
Kinematics 

End Effectur 
Geomerry 

Environment 
Dynamics 

Environment 
Geometry 

Penetration 
Distance 

Erui Efictor 
and 

Environment 
Contact Points 

Environment 
Su~ace  
N o m l  
Vectur 

'xt €Sb and c ~ , , ~ S e m  such thnt 
Xenv + 'X + dn = + 'xb 



1 contact 
Force 

Nomal 
Con tact 
Luad 

Penetration 
Speed 

Contact Points 
Relative 
Velocity 

Direction of 
Tangen tial 

Motion 

Srrrjüce 
Friction 

NOTE : In contactfiction, ineniol forces are neglecred in F, because they would cause 
the overall systern to be over-constrained. 

Table 2. I - Comptete Mode2 
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Chapter III 

Problem Formulation 

The models presented in the preceding chapter are relatively cornplex. Even simplified, their 

solution is mcuit to achieve. With such complexity, defining precisely the conditions of analysis 

is important. In this chapter, the control problem is formulated with enough precision to restrain the 

field of specific problems investigated. Some conditions of contact will be considered, while others 

may only be contemplated in discussions. The problems specifically resulting from the plant mode1 

are discussed in some detail, both from the point of view of theory and practice. Findy, in the view 

of the formulated problem, the methods proposed in the literature are reviewed and discussed. 

3.1 - The C o n h l  problem 

Generally, four types of control system problem exist: regulation, point to point control, path 

following and tracking'. The problem of path following is the pnmary focus of this thesis. The 

generd control scheme is illustrated by the simplified block diagram of figure 3.1. The main 

objective of the control system design process is to define an impactlcontact motion controller that 

can control the robot motion, the contact force and the environment motion, such as  to follow a 

preset forcelposition trajectory. Here, the problem of trajectory following is made difficult by the 

presence of a non smooth evolution in the dynamic equations. Exisùng solutions have considered 

In the regulation problem. the rderence is fired and the objective LF IO maintain a preset value of the contrded 
variables making disturbance rejection the main issue. In point to point con~rol, the reference changes by steps and 
the control pe$orntunce also includes transient response characteristics such as setrling time and overshoot. In the 
path following problem, the controlled system is asked to follow a preset puth. This i s  urually the case for robot 
control. Finally, for the tracking problem. the system is asked to follow a trajectory whose future evolution is not 
known, as in the case of missile guidance. 
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the global situation by splitting the overall control problem into subproblems, each representing a 

path following case with a smooth dynamical system. These solutions will be discussed in more 

details in a subsequent section of this chapter. This thesis is concemed with the definition of a 

unified solution for the general non smooth dynamical system. 

Desirrd Possible 
Environmcnr - - - - - *: i ~ v i m i n m r  7 1 

Motion Convollcr 1 

I d =  

Figure 3.1 - Simplifieci Control Block Diagram 

In figure 3.1, most of the variables that can be measured are assumed available for feedback. In 
reality, the number of feedback signais is usually limited and includes only some of those presented 

in the figure and observers are usuaüy needed to complete the state feedback. The signals necessary 

for control depend on the type of contact and environment. For example, measuring the environment 

coordinates (q, 4, q and 4) may be necessary for active environments. The states of the environrnent 

and its controller, may be difficult to observe (or maybe unobservable) when relying solely on 

contact force measurements. This is the case when some environrnent states do not contribute at al1 
to the contact force. Conversely, for passive environrnents, ail extra measurements may help to venS 

in real-time the validity of the models used. 
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3.1.2 - Statement of the Problem 

The control system probiem c m  be formulated as folIows. 

Problem 3.1 - General Fonnrrlation 

For the robot manipulator with fictional unilateral impact/contact described in e m p l e  2.3, define 

a control law of the fonn 

Tc =.,(y *YJ)  (3.1) 

that achieves, in a unt~edfiamework, the following control objectives. 

1. Conrrol free motion providing meusures tu avoid excessive high speed impacts. 

2. Control the transition from free motion to contact conditions (stable contact). 
3. Control the motion along the contact surface and force in the n o m 1  direction- 

In this formulation, the feedback control law can be any relationship between measurements and 

control commands. For model-based methods, the model of the system io control becomes an 

integral part of the control Iaw, and therefore one can define an estirnated model parameter vector 

8 such that the control iaw becomes 

Tc = T ~ ( Y  *Y,* 0) (3.2) 

3.13 - Scope 

This definition of the control problem is still general and vague. For the research work presented 

in this thesis, the problem is reduced for simplicity. The method proposed, however, may be adapted 

to embrace the general control problem. The assumptions are as follow. 

Assumption 3.1 - Undisturbed Passive Environment 

The environment is assurned passive, meaning the external forcef,,=O (see equation 2.38). 

Assumption 3.2 - Constrained Environment 

The environment is constrained in the f iedfame of reference. Therefore, the location of the centre 

of mass x, is constant and no dynamics are associated with this variable in equation (2.38). 
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Assumption 3.3 - Highly Rigid Environment 

The environment is assumed highly rigid such that the natural frequency of the first mode of 

vibration is ut afrequency well above the desired close-loop banhvidth of the impact/contact motion 

controller. Therefore, the flexibility coordinate q=0 and no flexible dynamics appear in equation 

(2.38). 

Assmption 3.4 - Static Friction 

n te  joint and sutj5acefictions are assumed well-modelled using a static rnodel. This is usually the 

case for dry sliding contacts and prestressed bearings. 

Assumption 3.5 - Highly Rigid Manipula for 

nie Manipulator is asswned highly rigid such that the natural frequency of the first mode of 

vibration is at afrequency weZl above the desired close-loop bcurdwidth of the impacu'contact motion 

con troller. 

The resdt of assumptions 3.1 to 3.4 is the absence of any dynamics in the environment/contact 

model. Therefore, the block entitled Possible Environment Controller in figure 3.1 is absent fiom 

the specific control problem considered. The block entitled Environment represents simply an 
aigebraic relation whose output is independent of the contact and extemal forces. Moreover, the 

block Frictional Impact/Contact represents essentially a discontinuous algebraic relation between 

the robot States and the contact force. Assumption 3.5 reduces the complexity of the manipulator 

dynamics to demonstrate the control approach proposed without dealing with extra complexities. 

These assumptions, when considered with respect to the control approach proposed in this thesis, 

can be made without loss of generality. As it WU be shown in chapter 5, they lead to more practicai 

real-time implementable controllers, without discrediting the method if other assumptions are made. 

3.2 - Specifc Problems 

The solution of the control problem formdated in the preceding section is prone to some particular 

difficulties. In this section, these specific problems are presented and discussed. 
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3.2.1 - Variable Topology Dynamia 

The foliowing two examples introduce the notion of variable topology dynamics (see Pfeiffer [47]) 

Ernmple 3.1 - Dry Friction with Stick-slip 

Consider the system shown in Fig. 3.2. The equation of 

motion of the block in the x direction is given by the Newton 

law of motion, that is, 
m x = F - F I  (3-3) 

where rn is the mass of the block. .f is the acceleration, F is 

the applied force and Ff is the force offriction. lhe force of 

friction F, can be represented by an augmented Coulomb 

Fig. 3.2 - StickSLip Example rnodel defned Os 

Fksgn(x)  if i*0 

if i = O  and IFIsF, 

Fssgn( i )  if X=O and IFI>Fs 

I O if i = 0  and I F (  sFs 

where F, is the force of kineticfncrion and F, is the force of staticfncrion. Unlike the standard 

Coulomb maiel (FFF' sgn(x)), this mode1 is defined for al1 values of velocities and includes stiction. 

Joining eqns. (3.3) and (3.4), the dynamic mode1 of the system. defned as Z,. is given by 

The system modelied by equation 3.5 possesses two distinctive properties. Fit, although the system 
is non smooth, the vector space defmed by the state vector and the force F c m  be broken down into 
subspaces in which the system undergoes a smooth evolution. In the standard Variable Structure 

: m f = ' F - F k  

' F - F ,  if X>O 

F+Fk i f X e 0  

i f  i = 0  and F > F ,  

F+Fk i f  X>O and F C  -$ 
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Systems theoly (VSS), each of these subspaces is a structure of the dynamical system. The 

boundaries between the different structures, where the discontinuities occur, are called the switching 

curves (surface or hypersurface for higher dimensions). When a switching curve, or part of it, is an 

attractive stable manifold, it is cdled a sliding manifold The properties of such sliding manifolds 

have been well investigated in the Russian literahm and represent the basis of the Variable Structure 

Control (VSC) theory. 

As a second property, the manifold correspondhg to the last structure (x=O and IF1 5FJ is an 

equilibriurn manifold. Therefore, when the dynamical system enters this structure, it loses its 
freedom of motion and gains it back only when the force F is sufficiently high to break the sticking 

created by the static friction force. Such a system undergoing a change in its number of degree of 

&dom is called a variable topology system. This terminology has k e n  used to illustrate the fact 

that depending on the structure, the evolution of the dynamical system can be descnbed in a variable 
dimension topologicai space (Topology). 

The second example illustrates another comrnon application where variable topology occurs: the 

unilaterd constraint. 

Example 3.2 - Unilateral Constraint 

A 

Fig. 3.3 - Unilateral Constraints 

Consider the systern as shown in Fig. 3.3. The free 
body dynamics of the systern, including the constraint 
force, is 

m x =  Fx + CI (3-6) 

and, 
m y = F Y  

where FI and F,. are the upplied forces in the x and y 

direction respectively and C, is the constraint force 

occurring when the contact is made. 

For a purely rigid contact, the unilateral constraint can be defined by the irnpenetrability condition 
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and by the compression condition 

Cr i, O 

For a purely plastic impact during transition. the dynamics of the system can be defned by 

x - L<0)or 

(X - L  = O )  and ( F ~ C O ) )  

x = x = o  
i f ( @ - L = O )  and ( ~ ~ 2 0 ) )  

m y = F y  

The two properties of system Z, are also apparent for this system. The non smooth evolution of the 

dynamics is weii represented by the second structure s h o w  in equation 3-10. However, the variable 

topology aspect depends gready on the assumption made about the impactlcontact model. For 

example, with the assumption of purely elastic contact, the number of degrees of freedom is 

maintained and only the dynamic equations change discontinuously. 

The analytical and numerical solutions of systems such as systerns 2, and & have k e n  studied only 

very recently in the field of contact mechanics. This was achieved using the formalism of convex 

analysis (see ref. [48-541). The fmt objective of these analyses is to explore the existence and 

uniqueness properties of the solutions for such models. From a pragmatic point of view, however. 

the real system definitely has a solution since its motion exists. 

For control system design purposes, a generaiization of the formulation of a variable topology system 

is necessary. Recalling that for control design and analysis, a system is usually represented by a state 

equation 

where x, is the state vector, u is the control vector, w is the state noise vector, y is the output vector, 

v is the measurement noise vector and t is the time, a general formulation of a variable topology 

system is given through the following def~t ions.  
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Definition 3.1 - Generalized state vector 
- -- - - - - - -  

Let X be a sequence of state vertors {% / i=I.  . . . .NI, the srnailest dimension vector x,ruch that 

3, - xi = Ti x, W = I .  . . . , N, is called the generalized state vector. 

nie set W is the set of all admissible pairs of vectors (x,u). 

Definition 3.3 - Variable Structure System 

A system 22 defined by 

where for i +j, of, +$ or hi dlj (nonequivalent structures) 

2) WinW,=O (disjoint structures) 

and where WicW, is called a variable structure system (VSS). 

Definition 3.4 - Variable Topology Systern 
- -- 

A VSS system C for which there exist a pair {i, j )  such thut dim(Wi) +dim(W,) is called a variable 

topology system 

Definition 3.5 - Cornpiete System 

nie  VSS sysrern E is called cornplete if the set {q / i= l .  ..., N] f o m  a basis of W. 

As described, variable structure and variable topology systems are dynamical systems characterized 

by a dynamic model that varies discontinuously according to the state and control vectors. An 

important observation is that although their dynamic models change, these systems keep the same 

control and the same output vector in every structure. 

The general model of the robot manipulator with unilaterai fnctional impact/contact, presented in 

example 2.3, is a variable topology model. By assuming the absence of dynamics in the environment 

and in the contact, it has k e n  reduced sirnply to variable stmcture system. Nevertheless. most ofien, 
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dynamical system with unilateral contact exhibit a variable topoiogy when the contact mode1 

contains dynamics or when the contact is assumed purely rigid. The existence and uniqueness of 

a mathematicai solution for such models, is never guaranteed, making them extremely difficult to 

use for model-based control. 

3.2.2 - The Admissible Reference 

For obvious reasons, the reference trajectory has to be physicdy realisable. For example, given a 

structure W ,  the set W, of all  possible pairs of vectors ( 4 , ~ )  that may achieve r at time t is given by 

Wig a hi-'(.) (3.13) 

such that the set YD of all admissible references is given by 

YD = { r ( t )  1 3 -  wim n y + 0 1 
meaning that the reference should be achievable in at least one structure. 

h p l e  3.3 - Admissible Trajectory 

Consider the system defined in exomple 3.2. Any trajectory r=&,yd. Cr j in the set (r / C,=O - 
xd5 L and C, ,4  =xd=L ] represents an admissible trajectory. 

For the control of a robot manipulator with fnctionaüunilateral contact, it has obvious implications. 

A reference trajectory requesting the position of the end effector to be away from the contacting 

surface cannot simultaneously comrnand a contact force. For physical reasons, the controller could 

not track the reference. Therefore, reference trajectory planning is an important part of the control 

effort. In any case, a good control scheme should have the potentiai to ded with a situation where 

an inadmissible reference is requested. 

3.2.3 - The ImpactKontact Mode1 

To obtain a reasonable impactfcontact model, few assumptions were made. The use of more 

comprehensive and complex contact models is not recommended since it would result in diffïculties 

with control system design and implementations. As a result, the design model is strongly uncertain 
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and its non smooth nature is prone to numencal difficdties. This aspect limits the choice of control 

algorithms that c m  be used, as it will be discussed later. 

The friction rnodels have also their own Limitations. The model presented in exarnple 2.3 is vaiid 

only for rubbing fiction, and does not include a plowing term. It invalidates the model when the 

task performed requests material removal for example. 

3.2.4 - Bandwidth Limitations 

The complexity of the phenomena occurriog during impact and contact is well documented in 

Eppinger and Seering[55]. For the design of free motion control for rigid robots, fast dynarnics 

associated with the sensors, the structure, the actuators and the digital implementation are usuaily 
neglected. During impact and contact, however, the dynamics to be controlied are at fiequencies that 

approach the ones at which these become non negligible. Moreover, at impact and during contact, 

some dynamics such as the dynamics of the environment/workpiece and of the force sensor, become 

important. Therefore, the difficulty in contact motion control is to meet the control objectives 
without exciting these dynamic modes. During impact, this requires to achieve the proper darnping 

or to insure that the transition is smooth enough to avoid exciting them. Fiala and Lumia[S6] and 
Paljung et a1.[57] have investigated the effect of digital implementation on contact stabiiity. Qian 

and De Schutter(581 have studied the effect of Coulomb friction and low pass fütenng on contact 
siability, and Zheng and Fan[59] have reported their analysis of the interaction between force sensors 

and impact control. 

The necessity of limiting the bandwidth of the force signal is easily understandable. Both the force 

sensor and the robot actuators are bandwidth-limited. Any modes at a frequency above the 

sensor/actuator bandwidth will be weakly controllable and observable. Another important limitation 
of the bandwidth lies in the distributed dynamics of the robot arms and joints. These dynamic modes 

are usually not considered in the model. For most industrial robots, these phenomena occur at 

frequencies weli above the sensor/actuator bandwidth. Although they do not interfere with the low 

frequency motion controller, care is needed to avoid exciting them during impact. 
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3.3 - A Review of Existing Methods 

Solutions to the overall control problem presented in section 3.1.2, applied to manipuiator control 

with frictional unilateral contact are yet to be found. Generdly. the global problem is divided in 

three subproblems, demanding each an independent solution. The controllers obtained this way have 

different structures or different control parameters, and the general solution is obtained by defining 

a switching law that evaluates the system's status and decides which control law to apply. 

This section reviews the different methods proposed for position/force control of robot manipulators. 

The methods to control the fke motion are not revised in detail here. They are weil described in the 

literahire. For contact motion control, essentidy four distinct rnethods were proposed and they WU 
be described in this section, following the analyses of Lewis [l]. In section 3.3.5, the notion of 

General Dynamitai System (GDS) is introduced. This theory adapts the Lyapunov stability theory 

for systems with discontinuous components. 

33.1 - The Stiffness Controler 

The Stiffness Controller was introduced by Salisbury[29]. The bdamental idea is to use a vimial 
stiffness attached to the end effector to generate a virtuai impedance force pulling the end effector 

toward the interior of the environment. If the contact is asyrnptotically stable, the force reaches a 

constant level at equilibrium. Consider the robot dynamics 

M(q)q+N(q,q)  + G ( q )  = r - r f ( r T p , q )  + ~ l f ,  (3. X 5) 

described in chapter 2, and its operational space formulation, 

MX(xe)Xr +Nx('e>~e) +GX(xe) = ~ - * ( 5 - ~ ~ ( 5 , q , q ) )  +fe 

The stifhess control Iaw is given by 

r =&q) +3f(r,d,q) + J - pxe)-cS p i e )  

where the A defines the estimate of the parameter. For sirnplicity, the environment is assurned fixed, 
passive, frictionless and composed of a flat wall 

s , , = { ~ I ~ , ~ ~ O = O )  (3.18) 
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where G,, is a given parameter, and for which the contact direction is given by 
4 

n = -1 (3.19) 

Further, the end effector is assumed spherical with the contact occurring on the sphencai portion. 

Figure 3.4 Stiffness Control 

With these assumptions, the contact mode1 becomes 

where R is the end effector radius and x, defines the x-component of the position vector defining 

the position of the end effector. A simple representation is shown in figure 3.4. The equilibrium of 

the dynamics is obtained by setting x=x=û in equation 3.16 and is defined by the following 

conditions; 

Y - Y d  

Consequently, if the system is stable and the environment is rigid, the contact force almost reaches 

a level determined by the control parameters Y and x,, and by the system parameter k,. 

The stability of this equilibrium can be investigated using the second method of Lyapunov. For 

example, an appropnate Lyapunov function candidate, valid only if the contact is maintained, is 
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given by 

where I defines the error in position ( f = %-%-Rn) and y is the penetration vector (y=dn). By 

properly defming 

N(9*4) = N ' ( 4 4 4  (3-23) 
one can use the skew-symmetry property of robot manipulators 

and the Lyapunov fimction derivative for constant x, becomes 

Y =  - q t ~ t c s ~ q  

Therefore, from Lasalle's invariance theorem, aithough Sr is negative serni-definite, q-0 and q-0, 

and the system reacfies the equilibrium defined in equation (3.2 1). 

This proof of stability is based on the assumption that contact is always maintained. This extra 

condition implies that the variable d should be bounded by d < O. Since the control law provides 

only partial linearization without inertial decoupiing, this extra condition is difficult to ensure. 

Therefore, stiffness control is used most exclusively when the desired reference is a fmed point. 

Moreover, at equilibrium, the contact force is dependent on the contact rigidity. If the ngidity is 

high, this dependence is extremely weak. On the other hand, for sofi environment, the resulting 

force is far from the desired one. This formulation introduces a direct compensation term for joint 

fiction, but the effect of surface fnction is not considered. In reality, friction is present and modifies 

the equilibrium and the dynamic behaviour. For exarnple, as discussed in the appendix B, unilateral 

friction contact exhibits dynamic couphg between the normal and tangential motion. Finally, the 

structure of the stifiess controuer does not ailow us to consider any of the dynamics of the 

environment. In situations where this is important, the stiffness controller may fail. 

3.3-2 - The Impedance Controller 

Some observations made on Stiffhess Control were considered by Hogan[28]. To generalize the 

approach, he suggested using a joint space impedance formulation for the control law. Following 

Lewis et al. [ 11, the control law is given by 
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where a is the desired operational acceleration. Putthg equation (3.26) into equation (3.15) and 

assuming that the estimates used in the control law are exact, one obtains 
.- J I  + j 4  = x, = a (3.27) 

By d e f ~ g  the directions in which the position has to be controlied and the ones in which the force 

has to be controlled, one can define a manipulator frame transformation T such that 

Therefore, by properly choosing the manipulator impedance Z, (s) one obtains the irnpedance 

position control Iaw 

(3.29) 

where the subscnpt d refers to the desired value, and the force control Law 

q o  =se-' ( z,p-'(f,(s) - f&s) ) ) 

where ce refers to the Laplace transfom. The choice of impedance is govemed by some rules. As 

stated by Lewis[l], one pnnciple that can be used to define the necessary impedance type is the 

duaiity pnnciple. 

This formulation is an extension of the stiffness controller. It provides cornplete Cartesian 
linearization in joint space w ith Cartesian decoupling. The general d e f ~ t i o n  of the manipulator 

impedance is such that deffing a controller requires taking into account the type of environment 

dynamics. State dependent impedances can be included if needed. For example, Fraisse et a1.[30] 
have included an extra virtual impedance between the manipulator and the environment to reduce 
the effect of unknown environment on a stifiess-like force controlier. Many researchers have used 

this property to accomrnodate transition control, by defining a v h a l  resistive media in the 

neighbourhood of a contact surface to reduce kinetic energy before impact. AIthough it can be 
adapted to encompass the global control problem defmed in section 3.1, it does not provide a u&ed 

solution. In fact, the idea of solving the general problem by providing an impedance gain look-up 

is a switching controller approach that may still be ill-behaved in some situations. 



3.33 - The Hybrid Positioflorce Control 

The hybrid positiodforce controller was introduced by Raibert and Craig[l6]. This approach has 
ken  the most successful one for providing good simultaneous control on force and position. 

&~-EJ ,~J  Conmol 1 

Figure 35 - Hybrid PositionlForce Control 

The structure of the hybrid positiodforce control is shown in figure 3.5. A matrix called selection 

main3 S is dehed to describe, in a way similar to the impedance controlier, the directions in which 

the position is controlled. The direction in which the force is to be controlled is given by IS. 
Operational space position and force connoIIers are developed separately, and are joined so that the 

action of the position controiler is in the position control direction and the one of the force controuer 

is in the force control direction only. Decoupling of the two controllers is provided by a Cartesian 

decoupling scheme. 

The similarity with the impedance controller presented in the previous chapter is stringent. In fact, 

it is only different at the irnplementation stage. While for the impedance controller, the decoupling 

between the position and force directions is made before the impedance is applied, for hybrid 

positiodforce control, the decoupling is done in a step foilowing the position and force control laws. 

For impact control, however, the hybrid structure does not permit the use of the force control 

direction to dissipate kinetic energy before impact using some virtual fluid. To account for transition 

from free to contact motion, the impact cm be limited by appropnate path planning (reduced velocity 
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at contact). When contact is made, the selection matrix is set to account for the new control 

objectives. The discontinuity then appears in the selection matrix and not in the control gains as for 

the impedance controller. 

As shown by Wen and Murphy[l9], the hybnd control scheme is sensitive to modeliing errors. For 

example, a coupled friction model in which the tangentiai surface fnction depends on the contact 

force is extremely difficult to model properly. In practice, normal and tangentid motions are 
coupled through surface friction (see [60-641). In such cases, linearization is easily lost and stability 

is not guaranteed. 

3.3.4 - The Reduced-Order Controiier 

The reduced order control has been developed recently. It was introduced by McCIamroch et 

d.[2 1.22,23] and further developed by Mills[24] and Tabhoud[ZS]. It is an extreme generalization 

of the controllers presented in sections 3.3.2 and 3.3.3. In the reduced order controller, the contact 

is modelled as a holonomic omnilateral constraint whose orthogonal complement defines the 

unconstrained dynamics (dynamics in the direction of position control). This formulation generalises 

the notion of force and position controlled directions such that they can be defmed in any coordinate 
system, not only in the operational space. The subsystem defined by the reduced order dynamics, 

representing the unconstrained motion, is controiled for position while the subsystem defined by the 

algebraic relation giving the constraint force is controlled for force. 

Using the formdism described in the appendix A, one can define the contact surface in joint 

coordinates' 

(ben,( q ) = 0 (3.31) 

such that the constraint gradient Cl is defined by 

Using the Lagrange multiplier theorem (see appendix A) and equation (3.15), the descnptor fom 

of the constrained dynamics is given by 

Thirfiutction cm be leomed a priori thmugh o teaching mode, rnoving the manipulutor on the contact 
srrg5ace. 
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A solution to this set of differential-algebraic equations can be found using the orthogonal 

complement approach. The orthogonal complement of the constraint gradient over the free motion 

space is given by 

C = I - 0'@(1')-'0 (334) 

for which only n- l columns are independent. Redefining C to take into account only the independent 

columns, a set of reduced coordinate vectors q, exists such that 

C d r  =Q (3.35) 

Theorem 3.1 - Corollary to the inverse funetion theorem 

If the m- 1 ma& C is fidl row rank at q, then there exists a mapping x:W"'-lEP and its inverse X-'  

such that q=~(q ,  ) and qPf(q) . valid in a neighbourhood N of q,. 

Therefore. the motion is described by the reduced order dynarnics obtained by pre-multiplying 

equation (3.15) by Cc and by using theorem 3.1 to give 

C ' M c  qr +C'(N(~&,Q,)  +G(q,) -r/)=~'r (3.36) 

and the constraint contact force ii. is obtained by using the result of equation (3.36) into equation 

(3.15) using the theorem 3.1. and has the form of an algebraic relationship 

=qdr7qr7') (337) 

Using this reduced state model, a control law of the form can be used 

where &, K, and K, are control gain. The reduced order closed-loop dynamics is given by 

and the overdl dynarnics is given by 



From equation (3.39), the reduced order closed-loop dynamics can be made stable by properly 

selecting the gains & and I$, such that the overall closed-loop dynamics insures that A-&. 

The method is fully oriented in solving the problem of contact motion control. The approach is 

appealing, general and fonnal. Due to its structure, the control law makes it difficult to control the 

transition. To assume the contact as a holonomic constraint, the contact should be very rigid. If it 

is soft o r  if the environment has some flexible dynamics, the definition of the orthogonal 

complement becornes extremely involved. While this is also tme for the impedance controller and 

the hybrid control scheme, these are easier to deal with since they provide a control force in 

operational space. This method is very restrictive due to its highly rigid kictionless contact mode1 

king a fundamenial part of the control scheme. This is clear h m  the assumptions made to develop 

the method (see [2 11). One of these assumptions States that the conditions to meet theorem 3.1 are 

valid. Those conditions, however, are not met if contact is lost momentarily. 

33.5 - Generalized Dynamical System 

None of the approaches presented in this section are general solutions for the problem stated in 

section 3.1. They ail requke the implementation of a switching law to select the controller to apply 

during transition to or fiom contact. The difficulties associated with such controllers possessing 

variable structures have only been partidly discussed. Implementation of switching control laws 

often demands a particular precaution to ensure smooth transition between controller sûuctures. The 

study of stability of such switching control laws bas been an important subject of research, especially 

in the Russian literanire. In practice, it is well known that if the switching manifold separating 

different structures is attractive from al1 structures, the neglected high order dynamics induces a 

chattering motion that is difficult to control. 

The theory of Generalized Dynarnical Systems (GDS) was introduced by Roxin[ 10, 11 ] to snidy the 

stability of systems modelled by differential equations with discontinuous right-hand sides. The 

concept was derived from the study of Filiipov [65]. GDS was applied to study the stability of 

discontinuous control laws for robot manipulator impact control by Mills 171. The main idea behind 

GDS is the description of the evolution of a dynamical system using an attainability fünction instead 

of a state space model. The theory of GDS is summarized here following Gutmm[9]. The proofs 

of the theorems are not given here (see Gutmann[9]). 
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Considering a dynamical system defmed by equation (3.12) and a control law defined by 
u = u ( x p t )  

the following definitions c m  be made regarding GDS. 

Definition 3.6 - Attainability Function 

nte  attainability fwiction F() is the function defned by 

xfW Wx'(to) JO J )  (3.42) 

and represents the set of states xf attainable at rime t from the given initial conditions {x&), t,d. 

Definition 3.7 - Contingent Equation 

The contingent equation E(xp t )  is defned by 

D 8 x j ( t )  E E ( x f , t )  (3.43) 

and represents the set of all passible evolutions of the state trajectory. D ' x ~ t )  is the contingent 

derivative of x, and represents the evo lution of the state. 

Definition 3.8 - Generalized Dynamical System 

When the attainability function is submitted to the following conditions 

i F(x/t&,t)isaclosednon-emptysubsetofR. 

ii F(xLtd, t, to ) = x/to), 
iii F(xAtd, t, t ) is a semigroup: F(x/(O). t, t,) = U F(xkt,).t,.t,) where x(t,) ~F(x/ tJ . t ,  t, ). 

iv Given x(t,). t, and t,s t,, there exists x(tJ such thatx(t,)~F(xLtJ, t, t ), 

v F(x/tJ, t, t ) is 8' (continuous in t). 

vi F(x/tJ, t, t ) is upper semi-continuou (USC) at (xktd, tJ and unifonnly USC in ony 
interval [tl, t J ,  

then the attainability fun ction defines a Generalized Dynamical System 

Definiaon 3.9 - Motion and Trajectory 

A mapping 8:[t, t,] - R" such t h t  to i 6 5 5 t l  implies B( r1 ) E F(xA q,). 5, q ) is called a motion. 

The cuwe it defnes in P is called the trajectory. 
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Theorem 3.2 - Local Motion Existence 

F ~ ( x b t ) , t )  is compact, convex and upper semi-continuous in a ô-neighbourhood N, of ( x l t d  tJ . 
then there exists a motion e t ) ,  n solution of the contingent equation D ' x ~ E ( x ~ t )  pnssing through 

(xktd, td and continuing until the boundary of N, 

Theorent 3.3 - Generalized Dynarnical System 

If a motion locally exists on Na and if escape from N, is impossible (3 E [t, t,], xi. e t )  6NJ.  then 

F(x1tJ. t, t )e E described by 

xf( t, ) E F(x& to) , to, t )  - 38( t ,  ) =x,( t ,  ) and D 'xf €E(xf, t )  (3-44) 

such that x&)=  @tJ and x,(t,)= e t , ) ,  deflnes a Generalized Dynnrnical System. 

The compactness condition ensures that the state denvative is bounded, the convexity condition 
implies the existence of the state derivative dong any trajectoiy in the neighbourfiood of a point and 
the upper semicontïnuity condition ensures finite step size in the state derivatives. These definitions 
and theorems represent the essential of the GDS theory. In the GDS theory, the motion resulting 
from a dynamic system is investigated kom the point of view of the state trajectory. The basic 

assumption of GDS is that although the contingent equation (the system's dynamics) is 
discontinuous, the trajectory is continuous in time. This generalization of a dynamical system 

enables the extension of the Lyapunov stabiiity theory to include system with discontinuous 
dynarnics. 

Definihon 3.10 - Strong Stability 

An equilibrium point x, is Strongly (Lyapunov) Stable (SU) iffor al1 o O  and t,?O, there exists 

ÿé,t)>O such that for al1 / j j / <  6 and trt, F(x(tJ, r,  t ) ~ / x t W  / /jk& €1. 

DefNIition 3.1 i - Unifonn Strong Stability 

An equilibriurn point x ,  is Unifonnly StrongLy (Lyapunov) Stable (USLS) if it is SLS and if 

ÿx,t)=&(x) for al1 trt, 

Definition 3.12 - (Iniform Asymptotic Strong Stability 

An equilibrium point x, is Unifonnly Asymptotically Strongly (Lyapunov) Stable (UASLS) if it is 

USLS. and &f there exists r)>0 and a function de) defned for sificiently m l 1  E such that if && r )  
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and to?O. then for any motion qt)such that 8(to)=x, /8(t)l< E hold for ail t kto+ E)- 

These definitions of Lyapunov stability are standard, but have k e n  presented using the notation of 

GDS. 

Definition 3.13 - Derivative of a Function for GDS 
Conrider afunction V(x,t), then the upper derivative of Vis  d@ined by 

D *V(x,t) = lim 
r-t 

the lower denvative is 

DAV(x, t )  = iim 
r-t - 

and the centre derivative is 

Finaily, the stability theorem adapts the Lyapunov theory of stability to include GDS. 

Theurem 3.4 - GDS Stabiliiy 

Let Vix, t) be a positive fi«lction K P x  AI, -AI+. If V(x, t) and -PV(x, t) are positive definte, and if 

V(x,t)-O unifontrly in trO, then x=O is unifornrly asymptoticaily strongly Lyapmv stable (UASLT). 
- - -  -- --  - 

According to the GDS theory, the compacmess, the convexity and the upper semi-continuity of the 

state dynamics are a suffïcient conditions the study of discontinuous systems using Lyapunov 
stability theory. The concept of GDS was used by Mills[7] to ver@ the stability of a switching 
controller to control transitions to and from contact conditions in robot manipulators. The theory 
is an attractive fornial approach to ver@ stability, but its validity depends gready on the mode1 used. 
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Chapter IV 

Model Predictive Control 

The methods presented in the preceding chapter are not unified solutions to the control problem 

formulated in section 3.1. Each represents a particular solution obtained for specific conditions. 

Such a mEed solution is yet to be found and the field of robot control fails in providing the tools 

necessary to obtain it. As a starring point, it is quite natural to look at how humans perform these 

tasks. The human psychomotor system is not relying on power transfer computation and simple 

reaction to senses, as in most control synthesis methods. Its approach is based on the knowledge of 

the effects of actual actions on future results. For humans, this knowledge is leamed with tirne, 

stored in memory and used when needed. The mechanism describing how it is leamed and stored 

is still to be fully discovered, but many models have been proposed. The way it is used to predict 

future events is even more complex, relying on more contextual issues such as culture than the 

storage mechanism. In control systems theory, the system's knowledge has typically the form of 

deterministic mathematical models. In recent years, neural-network (one of the brain knowledge 

models) was also used. In both cases, the idea is to acquire and keep knowledge about the behaviour 

of the entity that has to be controlled. The way models are used in control systems depends on the 

control method considered. Models are dways used in the synthesis stage of the design process, but 

they can also be an integral part of the control system structure as in model-based control methods. 

In this chapter, model-based predictive control (MPC) is presented. This intuitive control approach 

imitates one aspect of the human complex control system. With MPC, the mode1 of the system is 
used to predict the system's response over some h e d  receding time horizon expanding in the future. 

The result of the prediction is used to adjust the actual control actions to meet the control objectives 

over the whole horizon. This approach can easily be exemplified by a car driver. When obstacles 

appear in the way of a vehicle, drivers use their judgement to predict if an impact wiil occur. If an 
impact is predicted, most drivers will slow at a rate proportional to the prediction confidence, up to 
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the limit of the physical system. Better cirivers, who have more experience and skills, can make 

better predictions and react more quickly to a dangerous situation. Poor drives with little driving 

experience may have diffcuity to avoid impact. This level of knowledge is reflected in MPC by the 

accuracy of the model and the quality of the sensor and actuator devices. With MPC, the control 

problem formulated in section 3.1 can be resolved in a unified framework provided a good model 
of the dynamic system to control. 

In this chapter, the concepts behuid MPC are introduced through a general continuous-time 
formulation. The application to linear tirne invariant (LTI) systems is used to illustrate how it c m  
be used in typical control applications. The formulation is then extended to include nonlinear 

systems and several alternatives for solving the noniinear MPC control problem are reviewed. 

Various issues related to design and implementation of the nonlinear MPC approach are also 
discussed, 

4.1 - General Continuous- Time Fomulation 

Typically, controiled systems are represented by general state space models of the form 

x, = f(x*.u,d 
(4-1) 

y = h(x,,u,v) 

where x, is the state vector, u is the control vector (or comrnand), E is the state disturbance vector, 

y is the output vector and u is the measurement noise vector. The Model hedictive Control MPC 
design problem is formulated as an optimal control problem described by 

where <P is the penalizing (or cost) hinctional 
"TA 

W , u )  = J [b -r>'Q,@ -4 + * ~ p ] &  
t 

where Th is the horizon, r is the reference tmjectory, Q, and Q are weighting matrices. Sometimes, 

the complexity of the optimization problem can be reduced by imposing the constraint 

U ( s ) = O  i f r > t + T ,  (4.4) 
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where TusTh is cailed the control horizon. In this formulation. bounds on control commands and 

measurements, as well as a desired final manifold, c m  be accounted for by including the following 

additionai constraints 

y E Y mrd u E U and A(yt,$)=O (4-5) 

This formulation strongly resembles the finite-time optimal control problem. The major difference 

lies in the use of a receding horizon for the MPC problem. The feedback mechanisrn appears in the 

use of the measurements to provide the initial conditions necessary for the prediction. The model 

is not restricted to any particular smicture, but should at least provide an existing solution to insure 

the existence of a solution to the constrained optimization problem. This generality rnakes MPC an 
attractive control scheme to solve problems where a variable topology dynamic system has to be 

controlIed. 

The predictive nature of MPC is uideed a powerfùl property for the control of discontinuous systerns. 

Historicaily, very consemative static f d b a c k  laws were used to ensure proper transitions between 

various structures of a variable structure system. A good example is the virtual fluid introduced in 

the impedance control scheme to handle contact transition when controliing robot manipulator arms. 

While the virtual fluid represents a static reaction obtained from a sensed prediction of an impact, 

the model-based prediction of MPC also includes the local dynamics of the mbot manipulator. 

When the model used in MPC contains a good representation of the transition to occur, the resulting 

dynarnic control action can account for control objectives before, during and after the discontinuity 

haç occurred. Consequently, MPC has the potential to provide a unified control scheme for dynamic 

systerns with variable structures. 

MPC has mainly been formulated for discrete-time LTI SIS0 systerns. ln its original formulation, 

the inequaiity consnaints resulting fiom the application of equation (4.5) are not considered. Most 

of the MPC methods formulated over the yean differ only by the type of model used to represent the 

system or the assumptions made about the conditions of optimization (see [66-901). In the 

presentation that follows, the unified predictive control formulation of Soeterboek[68] is used. 
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4.2-1 - Discrete-the LTI Model 

In general terms, a SIS0 discrete-time system can be modelled by 

where y, is the plant output at tirne k, q is the shift operator, u,, is the piant input at time k- 1, e, is 

the plant disturbance at time k, d is the pure delay of the system and A(q), B(q), C(q) and D(q) are 

polynomiais in descending order of q. Depending on the form of the polynomials, the mode1 takes 

on a different format (see table 4.1). 

Table 4.1 - Discrete-Tïe LTI Models 

In table 4.1, B* is any polynornial in q-l and the operator A is called the difference operator(A o 1 - 
q-l). The disturbance e, may be either deterministic or stochastic. For h e a r  system, the knowledge 

of the model, the actual and past values of y, the hiture values of the plant input and disturbance are 
a sufficient condition for predicting the future values of the output y. When the disturbance is 

deterministic, it may be predicted directly. For a stochastic disturbance that may be derived from 

+ 

Mode1 Name 

F;IR 

IR 

FSR 

ARX 

ARIX 

ARMAX 

ARIMAX 

a white noise the Minimum Variance 0 principle can be used to denve a h4V i-step-ahead 

predictor of the form(see Soeterboek [68]) 

where A defmes the estimate, Gi and Hi are obtained from the solution of the Diophantine equation 

A 

1 

open 

1 

open 

open 

open 

open 

D 

A 

A 
I 

A 

B 

open 

open 

B*A 

C 

1 

1 

1 

open 

open 

ope* 

open 

I 

1 

open 

open 

A 

AA 

A 

AA 



and where F, is obtained by the solution of the Diophantine equation 

The notation A is used on the polynomials to show that these estimates c m  be updated at each step 

in a self-tuning adaptive control scbeme. In any case, the model of equation (4.7) is suficient for 

predicting future values of the output variable, and to construct a prediction model of the fonn 

g ^ = G u + H u ' + F c  (4.10) 

where 

and where h, defines the prediction horizon in sample steps. 

The penalizing functionai as foxmulated in equation (4.2) can take the f o m  of 

where ai and yi are weighting factors, and ri is the reference at the step i. The optimization is 

constrained by 

Aui = O V i ~ [ h , , h , - d ]  (4.12) 

where 4 is cailed the control horizon. When the control horizon is zero, but y is not zero, the MPC 
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controller obtained is called the mean-level MPC controiier. The choice of plant and disturbance 

models. weighting factors and horizons defines the type of controller used. 

In MPC, it is a common practice to solve the optimal control problem over the entire horizon, and 
to apply at a given time only the f ~ s t  value of the resulting control sequence. This process is 
repeated at every sarnpling step. The solution of the optimal control problem defmed by equations 

(4.2,4.5,4.10,4.11,4.12) differs depending on the type of MPC controller chosen. For the general 

case of nonadaptive unbounded MPC, the solution to the problem is analytical and a control law is 

obtained by solving a standard Ricatti problem once off-line. The resulting control law has the 

general form of an output polynomial feedback controller(see Figure 4.1) 

R(q -9 Aui(, = T(drk  - S(q-' )y ,  (4.13) 

Pre- Filter 1 
s(qi) p 

Feedback 1 

Figure 4.1 - Linear MPC Controller 

In adaptive formulations such as the self-nuiing Generaiized Predictive Control (GPC), the solution 

is still analytical but solved on line at every sampling step. When bounds on input and output are 

introduced, the solution requires a real-time numerical solution of the optimization problem. In 
practice. rd-time solutions with bounds on control are obtained using mathematical programming 

algorithms. 

A formulation using state-space models is straightforward. In fact, they lead to easy formulation of 

the MPC problem for MIMO systems. This is shown in the foilowing example. 



Example 4.1 - Mean -level MPC of a Flexible Sh@ Servo (See Necsuiescu and de Canifel [83]) 

Motor Conrider the system represented in figure 4.2. It consists 
Load - of a senomotor coupled to an exremal louà through a 

jlexrexrbZe shqF. A dynmnc mode1 of the system using n one- 
elementfinite element mdel  of theflenble shofr is 

J - J2 +- 

6 6 

Figure 4.2 - Flexible Shaft Sewo 
where JI and J2 are the inertia of the motor and the load 

respectvely~ J is the inertrrtra of the element, K is the s w  s m e s s  and rmtor is the rnotor torque. î k  

following state model can therefore be obtuîned 

O 

where x={i3,, 8, 8,,&Jr, I is the identiv mahù; M and K are respectively the m s  and stzffnes 
matrices defined in eqn (4.14) and rmto, is the motor torque. This continuou-tim mode1 c m  be 
discretized in a standard way, leading to a discrete-tirne m d e l  of the forrn 

where A, is the srate transition mahir and B, is the discrete-tim input rn~ t rL;r~  i f  only the angle on 

the load side is meusureà, the output equation is given by 

Yi = e2 = C xk = {O 1 0 O} xk (4m 17) 

A prediction model of the f o m  of eqn (4.10) can be denved 

O - - -  O 

B, - - -  O 
y = C  u = F x k + G u  

h,-1 
- - -  --• Bd. 

where y ={yk+ ,,,, .. ., y,+@) and u = { tmrocb .. ., r,,r,fip, 1. Introducing the prediction funetion (4.18) in 
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the penaiïzing fu>ctionaI (4.1 1 ) le& to 

@ = a [PX, + Gu - rIT [PX, + GU - r ]  + yu 

Llsing a standard procedure, the optiml solution is given by 

such thut the optimal control oufpur sequence is given by 

By extractingfrom e p  (4.21) the expression for the first value of r,,,, one obtains a control l m  

of the fonn of equahon (4.13). An easier w v  to solve the problem is to assume rmrOr comtant over 
the horizon rien, for the predictor (4.18), the G mamir becomes a vector defined by (the 
convention of lowercase bold letters for vectors is not followed here to avoid confwion) 

and then the vector u in eqn (4.21) c m  be replaced by the scalar r,,-,, ro give the control l m  

similar to the control l m  of eqn (4.13)- The control law possesses a state feedback term and a 
feedfoorward rem that considers Mure changes in reference. 

The parameters of the simulated system are J,=0.565~10' k g d  J2=2.8&c103  kg^ and K=7@ 
Ndrad The inerria of the elernent is ~=0.0036~10' k g d  ï l e  control law is evaluted for a=l, 
y=2rl@, hp=250 steps und implemented at a sampling rate of 10 kHz The servomotor is reqwsted 
tu pe?$onn a sequence of steps f o m  O to 1.57 radian (90 O )  at .2 secondifrom initial tirne. The 
results are shown in Fig. 4.3 and 4.4. The &ect of prediction is visible by the motion being initiated 
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when the step referem is in the prediction horiam Note also t h t  the respme obtained for this 
case is ne& a deadbeat controller. Other sets of puranteteers will give differmt transient respumes. 

example 4.1 - load angle 
21 

1 

1 

O:, O 0.3 0.4 O!, 

1 

time (sec) 

example 4.1 - toque command 

0.1 0.2 0.3 0.4 ( 
time (sec) 

Figure 4.3 - Load AngIe Figure 4.4 - Control Torque 

The stability conditions for finite time optimal controllers have been hown since the late 1970's 
(Kwon and Peanon[9 11). However, the link with MPC has been made only recently (De Nicolao 
and Scattolini [87]). In sumrnary, the conditions of stability for discrete-time LTI implementation 
of Consaainecl Receding Horizon F'redictive Control (CRHPC), are given by the following theorerns, 
stated here without proof. 

Consider a FSR mode1 of a system of order n (see eqn 4.6), subrnitted to a control horizon constra.int 
(equation (4.12)) and constrained by 

- Yk+d-kp-i - rk-d+hp -i Q ~ E  { 1,2,œ-~n } (4924) 

where m>O is an extra design factor. 

Theorem 4. I - CRHPC with Same Prediction and Control Horizon 

If&=h,>n+l unà rn=n+l, then the close-loop system g h  by the system (eqn 4.6) und the conrrol 
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l m  (equution 4.13) is asymptotically stable. 

Theorem 4.1 says that if the horizon is long enough to take in consideration al1 the influence of the 

dynamics on hture values of the output for a given input, and if the predicted output at the end of 

the prediction horizon is equal to the reference, then the solution of the optimization should insure 

that the system is asymptoticaily stable. 

Theorent 4.2 - Deadbeat Control 

If h,=n and m=n+l, then the conrrol 1aw obtained is a stable deadbeat controller for the system 

àèfined by eqrcntion 4.6. 

Theorem 4.2 illustrates the link between predictive control and deadbeat controllers. When the 

control prediction horizon is the order of the system and it is required that the error be zero at the end 

of the control horizon (eqn 4-24), the deadbeat control conditions are obviously obtained. 

Theorem 4.3 - CRHP C Using Only Output Prediction 

If the system under control is arymptotically stable, a=O, m=I and there exists v such that either 

where si is the i<h f ~ o r  of the polymmmLal G,,,, resulhng from solving the Diophntine equation (eqn 

4.8) to define the hp-step-ahead predictor (equarion 4.7). then for hp=hc> V-I, or for h,=O and 
h,>v+l, the close-loop systern obtained by applying the control l m  ( e p  4- 13) to the system 

(equation 4.6). is asymptotically stable. 

Theorem 4.3 is directly denved from the Jury criterion applied to the close loop system. It stipulates 

the conditions that should exist between the coefficient of the system's prediction mode1 (eqn 4.7) 

and the horizon to veri@ the Jury cntenon. 
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The analysis of predictive control stability presented here applies only to a smaii portion of the MPC 
implementations reported. In practice, the condition defmed by equation (4.24) is rarely considered 

in the optimization process. Moreover, input and output constraints are often included and are not 

considered in this analysis. Aithough a rigorous proof of stability for the general linear case is not 

yet avaiiable, MPC has been used successfully in the process industry. An intuitive discussion about 

the stability of predictive control was presented in Robinson and Clarke[8 11. They argued that a 

good de-of-thumb for the stability of linear MPC controilers is that the prediction time includes at 

least one complete cycle of al1 the dynamics to be controlled. In the discrete-time domain. this 

intuitive condition is equivaient to stating that the prediction horizon (in sample steps) is at least 

greater than the ratio of the tirne constant of the slowest dynamics over the sampling time. This 

condition has been found practically suficient. 

4.3 - Nonlinear MPC - A Continuous-time Approach 

MPC for discrete-time LTI systems is straight fonvard, but the advantages of predicùon for linear 

systerns are not obvious. It is well known that for LTI systems, the knowledge of the acniai state and 

future commands is sufficient for definuig any future states. When the command is given by a linear 

static state feedback law, only the acnial states are necessary. Therefore, the advantage of prediction 

limits itself to its ability to deal with pure delays (Schmidt predictor) and rapid variations in the 

reference. Except these specific properties, MPC for LTI systerns represents just another method 
to design polynornial controilers. 

Studies on the extension of MPC to include nonlinear systems are lunited in number. To apply MPC 
to the problem formulated in chapter 3, its application to nonlinear systems has to be investigated. 

The foilowing section discusses the different approaches that can be used to solve the nonlinear MPC 
problern. The discussion concentrates most exclusively on the continuous-time problern. and the 

digital implementation is obtained by discretizing the fmal continuous-time solution. In bnef, four 

different approaches to solve the nonlinear MPC problern exist: the variational formulation, the 

extended MPC, feedback linearization and mathematical programming. Each of these approaches 

is discussed in this section. 



43.1 - The Variationai Formulation 

This formulation is a standard and ngorous procedure to solve almost any dynamically constrained 
optimization problem and uses the calculus of variations. The presentation that follows c m  be found 

in Lewis[92] and concentrates exclusively on the solution of the unbounded optimal control problem. 

Considering a dynamic system given by equation (4.1), for a motion from the initial conditions 

%(O)=% to the final manifold 'P(x&), 4) = O ,  the optimal solution 

x ' ( t )  = argmVl <P, and u ' ( t )  = argmin mC 
"jo, 

where QC defmes a penalty iünctional of the general form 

is given by the simultaneous solution of the following set of equations 

state eqmn'ons 

costate eqmtions 

sîationary condition (4.29) 

x,( t0 =#O initial condition 

dtf = O itansversnlity condition 
'r 

and where A is a vector of Lagrange multipliee. The stationary condition can be used to eliminate 

the control command u from the state equations. The result is a homogeneous two point boundary 
value problem (TPBV). 
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For the specific penalty functional presented in equation (4.3) (without final manifolds), the TPBV 
problem reduces to 

î, =Ax,,u J )  state equu~~om 

staîionary condition 

initid condition 

tt0l~sversalit-y condition 

where r is the reference trajectory. The solution of equation (4.3 1) can be numerically obtained 

using a method for solving TPBV problerns, such as the shooting method. This numerical solution 
is essentidy a Newton-Raphson zero search on the b o u n d a ~ ~  conditions to solve a mutivaiable mot- 
finding problem. For example, the solution of equation (4.3 1) is obtained by finding the n values 

of %(t) and A&,) such that the n values of initial and transversality conditions are met. Therefore, 

the problem is to solve x&) and &) such that 

O The transversality condition in (4.29) accounts for a final manifold For a desùed final manifold 

of the fom x&c))=O, the stationary condition becomes T ( ~ ) = x ~ ,  and both of the costate initial 

and final values have to be defmed. 

Q To include a conaol horizon àifferent h m  the prediction horizon (see equation (4.4)), dynamic 
extension has to be used to augment the plant dynamics and consider the control command 

derivative as the systerns input. 

O The introduction of bounds on the state and input has to be solved using slack-variables. The 

reader is referred to Sage and White 1931 for more details. 



The solution of the problem using a shooting method is computationdy demanding. Therefore, 
this approach is not suitable to real-time implementation. 

One problem with this approach is the structure of the costate equation. If the system's mode1 
represented by the state dynamics contains stable or marginally stable components, then the 

costate dpamics are unsiable. in a finite-tune optimal control problem, this can be dealt with 

if the costates are bounded over the integration horizon. However, practically, numerical 
difficdties may occur if extreme values are reached. 

Finaiiy. the existence of a solution to a multidimensional Newton root finding problem is 
assessed by the Kantorovitch theorem stating "Having a lower borînd P on the nom of the 
Jacobian mark (to avoid singular points), a Zower b o d  K on the nom of the Hessian m t r k  
(tu avoid discontinuous Jacobian), a lower bound q,, on the correction rem and verifiing that 
qOpK is less or e q d  to 0.5. is s@cient tu obtain convergence ". This is a sufficient condition. 
and its conclusion is definitive only if it is met- 

4.3.2 - Extended MPC 

The method presented in the previous section is a formal theoretical approach to solve the optimal 
control problem. When the system is relatively slow (such as some chernical processes). the time 
available between sarnples may be sufficient to solve the variational formulation numerically. For 
systems with faster dynarnics, the method is extremely dificult to realize in rd-time, even with the 
computational power of today's cornputers. 

For control affine systems with mild nonlinearities, which are nonlinearities with relatively slow 
variations, one possible approach is the Extended MPC (EMPC). In EMPC. the system's dynamics 
are linearized around the curent state. and a h e a r  MPC design procedure, as presented in section 
4.2, is applied to define the control command for the given instant and state. 

A control affine system is a special case of equation (4.1) having the following structure 

x, =a) +G(x,)u 
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where f:Rn-Rn is a n-dimensional vector function. G :W- IR- is a n by m control direction matrix 
function, k W n - E t 1  is a 1 dimensional vector function and L:R 'El -is a 1 by m direct link matrix 
function. A Linerkation of this dynamic equation around the operating point (&,uJ is given by 

xs =A.*) + G(x,)uo + [v*,m,) + vx, (ccx,>uo)h (x, -0)  + WX*) (u 
# 

(4934) 
Y =Mxo> +ux*)u,+[~',h(x~) + ~ * , ( ~ ( x , ) u , ) $  (x, -x0)+Uxo)(u  -4 

0 

of the form of a standard LTI state space mode1 with a constant drift 

xs =A x, +Bu +x, 

for which the procedure show in example 4.1 can be used. UsuaUy, the Iinearization is performed 
around a point (%,O) and the constant drift term & is usually collocated with the input u such that 
it cm be compensated dirrctly. 

Example 4.2 - Extended MPC for Position Control of a Pendulum 

Figure 4.5 - Pendulum 

Conrider the pendulm show in figure 4.5. The 
nonlinear dynmnics of the pendulm is given by the 
folluwing state equatiom 

Ifunly the angle 0 is meatured the output eqlcation is 
y = e = [ i  OIX, (437) 

The dynamics of the pendulurn can be Iinearized around the point xo={O, e0) and r=O to give 

of the form of equation (4.35). Compemuting the constant dnifr t e m  by defning 

66 



Chaprer 4 Mode1 Predictive Controt 

and following the procedures show in example 4.1. an EMPC law can be designed for providing 
T,, The linear control law is vuiid about the point x, The implementation strntegy is to perjiurm 
the lineanzarion at every smnpling step, to design the proper feedback l m  for the linearized system 

and to apply the resulting control signal. For a penduium with L=OS m and M=5 Kg, using a 
sarnplingfrequency of 5# Hz a horizon of 20 samples and with the weighting f ~ r  y/a = 1 x106 
(refr to eurmple L I ) ,  the simlated response to n step refrence of 0.5 radian a? 0.1 second is given 
in figure 4.6 and 4.7. 

In this exampie, as in example 2-1. the &ect of prediction is visible since the motion is started before 
the srep is requested The linearized plant is acting as a mass-spring system with a rigidity of 
g/ lc0s(8~)  with a sp@ offset of 0, 

EMPC of a Pendulm - Angle EMPC d a Pendulm - Toque 
I T 1 

I I I 1 

O. 1 02  0.3 0.4 0.5 
Time (sec) 

Figure 4.6 - Angle Figure 4.7 - Torque 

Remarks 

EMPC defeats the purpose of using MPC to control robot manipulators with unilaterd 
impactkontact. In this latter case, MPC is used to predict changes in the dynamic structure of 
the system and after Linearization, such transition becomes unpredictable. 
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8 To apply EMPC to non smooth systems, ail  discontinuities should be relaxed. 

4.3.3 - Feedback Linearization 

When the nonlinearities are weli modelled, a nonlinear compensation law cancelling the system's 

nonlinearity can be found, leaving apparent only the linear portion of the model. Such approaches 

are known as feedback Linearization methods. They are weli dmmented and based on sound 

theoretical foundations. The description of feedback linearization presented herein is extremely 
brief- The reader who whishes to get more infoxmation is referred to [94,95,96]. 

Separahg the h e a r  and nonlinear components of the drifi te= the dynamics of a nonlïnear control 

affine system can be expressed as, 

2s =Axs +fTx,) +G(xs)u (4.40) 

where AEW- is a constant matrix and f contains the nonlinear component of the model. Essentidy, 

two approaches exist for the linearization of nonlinear systems through feedback: Input/State 
Linearization and Input/Output linearization. 

F i t ,  when the nonlùiearities in the system's model are collocated with the input and aU necessary 
states are available, then there exists a control law of the form 

" =~(x, ) - ' (v  -m,)) (4.41) 

Linearizing directly the nonlinear systems, and resulting in the compensated system 

;i ,=Ax,+v (4.42) 

In equation (4.4 1), G'l represents a generalized inverse. If rank G=mai, the nonlinearities should 

reside in the m-dimensional space defined by the image of G (definition of coliocation). When 

nonlinearities are not collocated with the input, control laws of the form of (4.41) resulting in (4.42) 
do not exist. However, a smooth bijective state-transformation (diffeomorphism) 

z = W(x, ) (4.43) 

transforming resulting in nonlinearities collocated with the inputs may stiii exists. Systerns for 
which such diffeomorphisms exists, are said to be feedback linearizable. 
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In practice, however, applying this procedure directly to Multiple-Input-Multiple-Ouiput (MIMO) 
systems may be dificult and, in addition, requïres the knowledge of al l  States. For this reason, a 
second approach called Input/Output (IO) linearization is often used. In I/O linearization, the 

control affine mode1 is 

xs =f(x,) +G(x,)u = 

where g,:Bn-Rn defines the conaol direction of the control input 1 and h,:RnxEa"-R defines the output 

1. Then. the procedure consists of continuously differentiating each output with respect to time until 
at least one input appears coiiocated with each output denvative. Defining ri to be the order of the 

denvative to obtain a coiiocation for the output i, the following matrix equation is obtained 

where the matrix multiplying the control vector is cailed the decoupling matrix and is usuaily 

denoted by E(x,). In equation (4.43, the operation L is the Lie denvative operator defined as 

Lflx1 h(x) = V,h(x) f ( x )  &, h(x) = ~ ~ ~ , ( g )  Mx))  (4.46) 

and represents the projection of the gradient of a function of multiple variables dong the direction 

defined by the vector fünctionf. If mkp and rank(E(x))>p, then the linearizing control law 
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results in a linear decoupled inputfoutput mode1 of the f o m  yi=vj, Vii~[l,p]. The inverse of the 
decoupling matrix is also a generahed inverse. Usually, UO linearization is applied to square 
systems, that is -. 

In MPC with feedback linearization. a linear MPC design is applied to the linearized plant, once 
feedback linearization is applied. This is show in the foilowing example. 

EuunpIe 4.3 - Position Control of Pendulm using MPC wirh Feedback Linearization 

Considèr the same pendulm as in e ~ m p l e  4.2 (figure 4.5) whose dynamcs is defined by equatiom 

(4.36) and (4.37). Exact linearization results in 

Applying the control law (4.48) tu the ~ ' I I C U I Z ~ C S  (equation (4.36)). one obtains 

which is a linear system of the fom of eqwition (4.15). rite Zinearized control c o m n d  V, c m  be 
d e j k d  using the same procedure as in exampZe 4.1. 

Pendulum MPC with Feedback Linearization 
0.6r I 

Pendulum MPC with Feedback Linearization 
60Ol 

Time (sec) 
O. 1 0.2 0.3 0.4 O.! 

Time (sec) 

Figure 4.8 - Angle Figure 4.9 - Torque 
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For a peRduium with L=OS rn and M=5 Kg, uring a sompling f'equency of 5OO Hz a horizon of 20 
samples ami with the weighting fmor y/a =1 x 106 (refer to erampfe 2.1). the simulated respome 
tu a srep reference of 0.5 radian at 0.1 second is given in figure 4.8 and 4.9. This control schemes 
results in two superimposed feedback loups: one nonlinear compemation loup and one MPC 
feedback loop. ï k  resuits obtained are comparable to those for EMPC. 

The presentation of feedback linearization shown here is extremely simpMed. Nevertheless, 

it explains the main idea 

The application of feedback Linearization to nonlinear systerns requires that the system's 
nonlinearities be suficiently smooth (in the mathematical sense) for the existence of the 

derivatives needed to perform y0 linearization. For the contact model presented in example 2.1, 
this condition is not met. Therefore, the application of this approach for the control of a robot 

manipulator with impactkontact motion is Iunited In addition, for robot contact motion control, 

linearization of the contact dynamics using the robot actuators is impossible before contact 
occuis. 

Controllers using feedback luiearization were found extremely sensitive to model uncertainties. 

As discussed in section 3.2.3, the models used for impactkontact are extremely simplified, 

limiting the applicability of feedback linearization to solve the contrd problem of section 3.1. 

As discussed in section 3.2.4, the effect of actuator, sensor and interface dynamics is important 

in impact control. A proper feedback linearization, valid during impact, would require these 

effects included in the model. With a variable structure system. the result would be different 
linearization laws for different structures, irnplemented using a switching law. The purpose of 

the research presented herein is exactly to avoid that problem. 

Some methods presented in section 3.3 use feedback linearization and apply it to the contact 

motion control problem (see equation (3.17). (3.26) and (3.38)). The validity of doing so raides 

on the fact that the methods are developed to solve only a portion of the global control problem 

defined in chapter 3. 
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@ Model-based prediction has other intereshg applications in feedback LUieaLization. Necsulescu 

et a1.[97] have used one-stepahead dynamic-based predictions of the control cornmands to 

rescale the reference when conml saturation were anticipated This was done to prevent failure 

in feedback linearization. This dynamic based prediction of discontinuities is the main 

motivation for using MPC in impact/contact motion control of manipulators. 

4.3.4 - Mathematical Programrning 

The discrete-time equivalent of any optimal control problern can be solved through mathematical 

programmingl. The terminology mathemarical programming refers to aU the numerical methods 
providing a direct solution to a dynamicaily or statically constrained optimization problem. A 

schematic representation of the existing methods is shown in figure 1.10. The following discussion 

is not intended to be a presentation of mathematical programming methods. Various references 

provide good descriptions (see Fletcher [98] for example). The objective of this section is to present 
an o v e ~ e w  of the numerical methods that exists, and to discuss their application for the noniinear 

MPC problem. 

Dynarnic 
Programm ing 

- - -- 

Sratic 
Programm ing 

Figure 4.10 - Mathematical Programming 

See Sage and White [93]. section 6.4- 
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The solution of a dynamicaily consaained optimization probiern, as the one defined by an optimal 
control problem, can be obtained using Dynamic Programming (DP). DP uses the Pontryagin 

maximum principle' to define the Hamilton-Jacoby-Behan equation, 

that represents the evolution of the optimal cost function with respect to the optimal control 

couunand. The function L in (4.50) is called the Lagrangian and is defined in equation (4.28). For 

this continuous-time formulation, as for the variatiooal formulation, the solution of the Two Point 

Boundary Value (TPBV) problem represented by solving equations (4.50) and (4.1) backwards is 

computationaily demanding. 

A computer algorithm to solve the dynamic programming problem was developed, requiring the 
discretization of the state, output and control vectors. The algorithm, called to discrete dynamic 

programniing (DDP) algorithm, is much simpler than the solution of the continuous-time problem. 
However, a huge amount of computer memory is required. For applications where the discretized 
variables can take a broad range of values and where precision is needed, the so-caiied curse of 
dimensionnliry' Limits the application of real-time discrete dynarnics programming. Therefore, this 

approach is not adapted to the solution of the control problem defined in chapter 3. 

4.3.4.2 Uncomtrained Static Proaramming 

Finite time optimal control c m  be solved numericaliy using a static optimization method. For the 

dynamical system represented by the state equations (4.1)- the optimal solution can be assumed to 
have a prescribed f o m  

"An optimal policy Lr ako rn optMnl policy with regard to the states resulting from previoi<s deciriom. '" 

3 Beliman calls the growth in nwnber of arithrnetic operations and in the need for bookeeping, as the 
discretization grid ir d e  fier, the curse of dimensionaliry, In fact. ifthere is rt states each having s possible 
values and m inputs each h i n g  r possible values, then the DDP sohtion over an horizon of HP steps requires 
at mort S P HP operations and variables to store. 

73 
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where u' is the optimal command and x' the optimal trajectory. This optimal solution is consaained 

by the discrete-time dynamics (using forward differences) 

where dt is the thne step. Similady. the discrete-tirne form of the penalizing hinctional defined in 

equation (4.3) becornes 

where al1 the variables y, and u, are defined using (4.51) and (4.52). The optimization problem 

resulting from this time discretization is static, and standard static optimization methods can be used. 

Unconstrained static programming includes a series of standard methods, based on various 

approaches to find the minimum of a single-valued function of multiple variables. Some ad hoc 
methods, such as  the Simplex methoci, were developed and are not s h o w  in figure 4.10. For the 
three families of methods shown in figure 4.10, the main idea is to perfonn an iterative minimization 

process in which the function is successively minimized dong different directions 

where the leading superscript defmes the iteration step, Ix, is the minimum point at the i" iteration 

of the kh sample, cr is a scdar iine parameter, '5, is a search direction at the i" iteration of the ka 
sample. Equation (4.54) represents a single variable rninimization dong a line. At the i" iteration, 
the point from which to search at the next iteration is given by 

i+ Ixk8 = kk + ia isk (4 J5) 

The difference between the different methods lies mainly in the way the search direction 's, is 

updated at each iteration. The single-variable iine minimization dong the search direction, defined 

by equation (4.54), cm be done using any standard method. Commercial sofnirares, such as the 

Numericul Recipes in C 1991 and the Matlab Optimï~t ion Toolbox [100], uses a Golden section 

search algorithm for the iïne minimization. 
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Gradient methods rely exclusively on the knowledge of the gradient V,@ of the cost function to 

define the search direction. One simple method in this category is the steepest descent rnethod that 

defines the search direction s in the opposite direction of the gradient 

s = -Vz@ (456) 

The decision of using equation (4.56) relies on a linear model of the function to minimize. For 
example, if the function has the form 

then the search direction becomes -a and the minimum is reached within one iteration. However, 

the function to be minimized is not necessarily linear. In practice, most descent methods are 

numerically unstable. The reason for this instability is easily understood. Interestingly, when the 
huiction minimized does not have a linear structure, the gradient of the bct ion at the line minimum 

is necessady orthogonal to the search direction (by the definition of minimum). Therefore, if the 

minimum of the hinction is not reached, the next direction search is orthogonal to the previous one, 
meaning that initiaily, the search direction was in the wrong direction. 

By considering a quadratic süucnire to the function of n variables, one c m  define a set of n 

independent search directions, called conjugate directions, dong which the line minimization 
performed in any sequence gives the function7s minimum. This well known fact, reflected in the 
conjugate direction theorem, is the essential part of the conjugate direction methods such as the 

Powell direction set me thod and the Fletc her-Reeves conjugate gradient meth~d'~~! 

Another standard method, based on the quadratic model, is the Newton rnethod. It consists 

essentiaily of applying a Newton-Raphson mot finding algorithm to the function7s gradient. This 

obviously requires the howledge at any point of the Hessian matrix vx@ of the function a. Then, 

the search direction is 

which corrects the steepest descent method to take into consideration the variation of the gradient. 

In most applications, the computation of the Hessian is not possible. For these cases, a senes of 
methods c d e d  Newton-like, quasi-Newton or variable metric methods, have been developed to 
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approximate intefigently the Hessian ma& without causing numerical instabilities. Over the years, 

many algorithrns have been proposeci. The initial work included the methods by Davidon, Fletcher 
and Powell["! More recently, the Broyden family of a l g o r i t h  were developed and proven very 
efficient. Arnong them. the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is the most 
popular and is mainly used in commercial packages. For the BFGS method, the approximation of 

the Hessian matnx H at the ih iteration step (for the next search direction) is given by 

where & '+'xi IX and y= "'{O,@) - '{V$}. 

For rd-time applications, the static optimization methods require, at each sampling step, the 
integration of the system's dynamic mode1 over the receding prediction horizon for each iteration 
of the optimization process. Sunilarly, the Line minimization and the evaluation of the next search 
direction (if not converged), are executed at each iteration of the optimiung procedure. The amount 
of computation required is enormous. Moreover, although the number of line search iterations c m  
be proven finite, the line minjmization is an exact minimization that cannot be carried out in a finite 

number of steps. For real-tirne solutions, where the tune allocated is limiteci, this property is a major 
drawback. Nevertheless, the mathematical programming approach represents the best alternative 
for implementing nonlinear MPC for the impactkontact motion control of a robot manipulator. 

4.3.4.3 Comtrained Static Proaramming 

Constrained static optimization problems (in which some variables are consûained) are solved using 
the methods s h o w  in figure 4.10: Linear Programming (LP), Quadratic Programming (QP), 
Nonlinear Programming ( P U )  and Geometric Rogramming (GP). These methods are standard and 

various commercial s o f ~ a r e  packages are available. The selection of one method depends on the 

type of hinction to minimize and on the type of constraints. The amount of computation needed in 
these cases is not compatible with real-time implementation and, therefore, a detaiied presentation 
is not given here. 
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Chapter V 

Contact Motion Control Using MPC 

The models presented in chapter two are far toa complex for rnost control applications. In that 

respect, the assumptions presented in chapter three narrow down the field of study without lost of 

generality regarding the applicability of the control approach proposed. According to the concept 

of MPC, presented in chapter four, the effect of prediction for linear systerns is limited to an 

enhanced ability to deal with pure delays and pro-actively respond to any future change in the control 

objective. For a discontinuous nonlinear system, however, the ability to predict the discontinuous 

change in the state dynamics is an important and interesting feature. This property represents the 

main motivation for using MPC for process control where state and input saturations are common. 

In robot manipulator control, it is common practice to introduce a virtual viscous layer on the surface 

of a contacthg object to prevent excessive impacts and improve contact stability. In this particular 

case, the prediction of an impact relies mainly on a static state reaction and does not involve the 

manipulator dynamics. As a result, the boundary thickness and the virtual fluid viscosity are defmed 

based exclusively on the wos t  case scenario(maximum speed, perpendicular to the contact surface. 

maxhum inertia configuration). With MPC. the reaction to a predicted impact c m  take into account 

the arm dynamics, and the control action can be adjusted automatically to the dynarnic state 

prevailing jus t before impact . 

in  this chapter, the use of MPC for impactkontact motion control is anaiysed. The equations 

defining the nonlinear MPC problem are analytically set. A method to convert the continuous-tune 

problern to a discrete-thne equivalent is also presented. The various implementation strategies for 

nonhear MPC are introduced in details. Questions such as the existence of a solution to the MPC 
problem and reachabiüty of the reference trajectory are also addressed. 
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5.1 - Analytical Settïng 

MPC for Impacfintacr Motion Conrrol 

In chapter four, the general MPC concept was formulated for a dynamic system represented by 

nonlinear state equations. In this section, the MPC problem is considered fkom the point of view of 

the specific control objectives defined in chapter 3. F i t ,  considering the assumptions 3.1 to 3.4, 

a design model is obtained. Then, the resulting nonlinear discontinuous MPC problem is formulated. 

And findly, an equivalent discrete-time problem is formulated. 

5.1.1 - The Design Mode1 

Using assumptions 3.1 to 3.4, the dynarnic model presented in example 2.3 c m  be reduced to the 

twenty-two equations shown in the following table. 

DESCRIPTION 

Manipulator 

D ynamics 

Joint Friction 

EQUATIONS 

- - 

T a b l e  5.1 
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and 
Contact 

Kinematics 

End Effector 
Geornetry 

Environment 
Geometry 

Penetration 
Distance 

r, : obrained b y  solving a system of n equationî-n unknowns 

qi. r4i.0 
O othenvise 
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End Effector 

and 
Environment 

I Contact Points I 
Environment 

Surface 
Normal 
Vec tor 

Contact Points 
Relative 
Velociiy 

Contact 
Force 

Normal 
Contact 

Force 

Penetration 

Speed 

- -  - 

f, = ~ ( d , d )  n + F~ et (5.14) 

K e d  i f d < ~ r m d d s ~  

eK, d if d<O a d  d>0 (5.15) 

O if d r  O 

d = vd0n (5.16) 

Direction of 
Tangentid 

Motion 

vni - (vI.i*">n 
et = (5.18) 

I vnl - ( v m p > n  l 
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Surface 

Friction 

NOTE : In contact friction, inertial forces are neglected in F, because they would cause 
the overdl system to be over-constrained. 

Table 5.1 - The Design Mode1 

The design model presented here is still too cornplex. The discontinuous nature of the normal force 

(5.15), the joint friction (5.3) and the surface fiction (5.19-5.22) clearly shows that the model 

represents a variable structure system. Moreover, since sticking is included in the joint and surface 

fnction models, the system aiso contains variable structures with variable topological properties. 

Under the conditions prevailing during stiction, the force of friction can be viewed as a constraint 

force preventing motion in one joint. Therefore, the equilibnum of the dynamic system is defined 

as an equilibrium manifold containing al1 the states for which stiction will occur. 

For simplicity in the notation, the mode1 is represented only by 

or, defining the state vector w={qt, ql}' (w is used instead of the standard x to avoid confusion with 

the Cartesian coordinate of the end effector) 

w = A w )  + L ( w ) a ( w , r )  +g(w)s (5.24) 
wheref. L and g are smooth mappings defined on w " ~  (N is the number of degrees of freedom of 

the manipulator), but MW) is a non smooth vector field containing the discontinuous cornponents 

of the dynamics (contact force and joint fnction). If the contact force and the robot states are 

measured, the output equation is simply 
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Although equation (5.23) has a standard state-space form, one should rernernber that. according to 

equations (5.3) ,(5.15) and (5.19), a is only piecewise conthuous in w and r. and has the form 

where Si is the i" state-torque structure and p is the number of structures of a (in which a is 

continuous in {W. r 1). Each discontinuous joint friction model exhibits 3 continuous structures. 

According to equation (5.3), each joint fiction model includes one condition under which the 

freedorn provided by the joint is momentarily lost. Therefore, fiom the 3N structures of Nw, s), there 

is 2N-1 structures in which at least one degree of freedom is lost, meaning that the system has 
variable topology. 

5.1.2 - The MPC Problem 

MPC is formulated as a finite-time optimal control problem where the joint torque r at the time t, 

is given by 

where O is the cost funciional defined by 

where r(t) is an admissible trajectory, th is the prediction horizon, Q, is a positive definite 

measurement weighting rnatrix and is a positive semi-definite control weighting maûix. This 

minimization problem is constrained by equations 5.24 and 5.25. MPC differs from the f ~ t e - t i m e  

optimal control in the use of the receding horizon (Th) requiring the optimal control problem to be 

solved continuously. An interesting option in the definition of MPC is the extra constraint 
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f (O) = O Vt€[t, + t,',t,] (5-29) 

w here O I_ 5 th is called the control horizon. In the case where t p U ,  the MPC solution obtained is 

called the mean-level MPC solution. This situation is particularly important to reduce the 

complexity in nonlinear MPC- 

5.12 - Discrete-Time Equivalent 

A discrete-tirne equivalent formulation of the continuous-time MPC problem is obtainable. This 

procedure is particularly useful to get a simplified numerical solution to the problem. Using the 

forward difference approximation 

where T is the discretizing time step, the dynamic equation (5.23) can be rewntten as 

where, for simpiicity, fk=flwk), &=L(w,), %=a(wk) and &=g(%, ). Sirnilarly. the output equation 

i s 

Yk =hk (5.32) 

Using this discrete-rime approximation of the state dynamics, a i" step ahead predictor can be 

defined by 
i - 1  

As opposed to the linear i" step ahead predictor presented in chapter 4 (exarnple 4. l ) ,  this predictor 

cannot explicitly be expressed in ternis of wk and {r,,. . . , s,,, ). Therefore, a direct minimization 

as done in example 2.1, is impossible since w,, is function of all previous comrnands and States. 

However, a recursive predictor of the type defmed by (5.33) can be used to evaluate the cost function 

for an initial condition wk=wo and for sequence of torque commaads Tk={rk,. . . , r,,,, ). Then, the 

solution of the MPC problem becomes the determination of the optimal sequence T', 



T,' = argmin Qk 
*k 
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(5-34 

where the discrete-tirne cost function is 

=[yk  - R , ~ Q ; [ Y ,  -R,]+ 

and where 

In (5.33, h, is the prediction horizon in number of steps. For a N DOF robot manipulator, this is 
basically the minimization of a function of N*h, variables. Using the extra condition defined by 
equation (5.28) with a zero control horizon, the mean level MPC problem becomes 

This mean level MPC formulation converts the multivalued minimization problem to a single-valued 
one. 
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5.2 - Synthesis Methods 

So far, the equations goveming the nonlinear MPC problem were presented academically. without 

concems about their numencal solution and their rd-tirne feasibility. In the foilowing section, some 

of the approaches for implementing nonlinear MPC are described. The algorithms take into 

consideration the irnplementation issues and the spesific problems associated with the control of 

robots with frictionallunilaterai contacts. As mentioned in section 4.3, complete extended MPC and 

complete feedback linearization are not suitable for the control of robots with contact tasks. These 

methods defeat the purpose of using MPC to predict changes in the dynarnic behaviour. Such 

techniques can still be used to reduce the complexity of the smooth portion of the dynamics and to 

obtain more realistic rd-time implementations. Next, various alternatives for implementing 

nonlinear MPC algorithms in real-tirne are presented without concem about the existence of a 

solution. This important analytical aspect WU be addressed a subsequent section. 

5.2.1 - The Variational Formulation 

In the variational formulation, the optimal solution is obtained by solving a Two-Point Boundary 

Value problem in real-tirne. For the model (equation 5.23) and the cost functional (equation 5.28) 

presented in section 5.1.1, the variational formulation results in the optimality equations 

w =f (w)  + L ( w ) a ( w , ~ )  +g(w)r  state equations 

statiomry condition 

initial condition 

tratt~versality condition 

where each components of the model are given in table 5.1. An important observation about the 

stationary condition is that the partial derivative of a with respect to r is zero but when the 

manipulator is stuck by joint friction (equation 5.4) or the end effector friction (equation 5.19 to 

5.22). In that condition, the partial derivative is unity for the joint friction and equai to a row of the 

contact Jacobian when stuck at the end effector. In any cases, the partial derivation is not function 
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of r and the stationary condition is weii defined One set of optimaiity conditions is denved for each 

struchire of the dynamic system. The problem consists of finding the initial values of À (a) obtain 

1(4)=0, or 
w f , A o )  = 0 (5.40) 

A typical shooting method basicdy consists of finding the roots of the function defmed by equation 
5.40. The algorithm is as follows. 

Algorithm 5.1 - TPBV Problem by the Shooting Methud 

I. Select an initial guess on A, 
2. Proceed with a first shot by integrating the state and costate equutions llring the stationary 

condition in the state equation 
3. If the shot is precise enough (Ai(ti)<e, i=l, ..., n). proceed with step 8. 
4. For each independent variation dAi(0) of the initial condition Ai (O), integrate the state and 

costate equtiom to numrirolly evaluate the Jaeobian matNt: defined by 
1 

5. Correct th shut using '+'A-,='& + ' A 4  where the leading superscnpt refers to the iterarion step 
and 'A& is obtained by solving 

6. Apply divergence tests. lfshooting k diverging, &ort procedure and switch to another control 
approach 

7. Repeat fiom 2. 
8. Compute thefirst optimnl coBmand using W, A,, and the stationary condition. 
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The variational approach has many drawbacks. It is computationdly very extensive. Each iteration 

requires n+l inteption of the dynamic equations over the prediction horizon and the solution of set 

of n equations and n unknowns. Furthemore, a solution is reached in several iteration steps, making 

reai-time implementations less feasible. A large arnount of work is also necessary to set the 

optimality equations properly. FinaLiy, as for any Newton root finding process, the domain of 

convergence is relatively s r n a  and good initial estimates of the solution are necessary. 

Obviously, the problem can be set to obtain a slowly varyïng optimal solution such that the solution 

at the previous sampling step is a good estimate of the current one. This aiso has the advantage to 

reduce the number of iterations to obtain the solution. Moreover, if the expected optimal solution 

varies slowly with respect to the samphg  rate, then a fixed number of iterations can be used. Then, 

although the optimal solution has not b e n  completely reached. convergence of the shooting process 

insures a reasonable output. This fixed iteration step approach is attractive for real-iime 

implementation. Nevertheless, the amount of computation is still extraordinary. 

5.2.2 - BFGS : A Variable Metric Method 

The optimization process can be reduced enormously by solving the equivalent discrete-time 

problem defmed in section 5.1.3. With this setting, the penalizing hinctional becomes a function of 

vectors evaluated using a recursive estimator of the dynamics. Under these circumstances, the 

dynamically constrained optimization problem as defined in the variational formulation, is 

converted to an unconstrained optimization problem. This conversion eliminates the need for 

integrating the costate equations and can be solved using standard efficient methods. Here, the 

mean-level MPC control approach is used where the control command is assurned constant over the 

entire prediction horizon. This basic assumption results in the minimization of a single-valued 

function of N variables (N is the number of DOF of the robot). The algorithm suggested is the 

following. 

Algonlhm 5.2 - BFGS with approximate line minimization 

I .  Select an initial estimte of the optimal torque vector 'r,*=r,,* 
2. Use the recursive estimtor defined by equations 5.32 and 5.33 to evaluate 'Y, the output 

estimte for the in iteration of smnple k using y, tu set the initiai conditions. 
3. Compute the reference Irk a d  the cost estimte for the In  iteration of sumple k 
4. Nwnerically compte thefirst estimate of the gradient of the cos t f i~~~t ion  ' vrGk 
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5. Initialize the e s t i ~ e d  Hessian mtrrX of the costfunction to an identity rnatrix 'H=L 
6. Use the gradient as the initial search direction ls = -' V,Gk . 
7. Mile not properly converged or not reached m * n t ~ l l l  d e r  of iteratiom 

8. PerJom approxirnate rninirmrmmîion along the line defined by 's to get "' r. 
9. Use the recursive estimtor d&ned by equations 132 and 5.33 to evaluate "'Yb 
IO. Cornpute the refrence '+Ir, mid the c m  estimte '+' Gb. 
I I .  Nurnerically compute the estimate of the gradient '+' VrQi, 
12. Use the BFGS equation to updnfe the costfunction Hessian matrix "'H 

where 6= '+' S+ s and y= i+' {v.@) - v$}. 
- i + l ~  i+lv @ 13. Update the search direction to '"s = 's r b- 

14. Apply the optimal solution t*k 

This approach reduces enormously the number of operations for solving the problem since no system 
of n equation and n unknowns has to be solved in rd-time. The implementation is schematically 
represented in figure 5.1. 

MPC with BFGS Solution 

Figure 5.1 - The BFGS Solution 

As shown, the feedback mechanism lies in the use of the rneasurements to set the initial conditions 
for the predictor. A iine minimization is done along the direction s and the resulting optimal toque 
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(compared with the previous one), is used to update the Hessian matrix and compute the next search 
direction. The iteration process is continued until a convergence has occurred on r. 

5-23 - MPC with Partiaiiy Linearized Dyoamics 

The number of arithrnetic operations to be performed at every step cm be si,hficantly reduced if 

the known nonlinearities resulting from Coriolis accelerations, centrifuga1 accelerations and joint 

fiction are compensated directly. Formally, if the control law is specified as 

s = ? f + N ( q , q )  +&) +r, (5-44) 

where the notation A indicates "the e s h a t e  of', and where r,, represents the part of the control 

resulting from the MPC, then the robot dynamics apparent to the MPC controiler are sirnplified to 

r = ~ - l ( q ) ( X  L + 7-) (5.45) 

reducing how much computation to execute in the recmive predictor (eq. 5.32 and 5.33). The new 
partially linearized dynamics is stiil given by equations 5.32 and 5.33, but with the sirnplified 

cornponents 

w Mq)- l  O ] 
The implementation of this approach is shown in figure 5.2. 
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Figure 5.2 - The BFGS Solution with Partial Linearization 

5.24 - A Feasible Sub-optimal Solution for Robot Control 

A major drawback for many optimal control schemes is their unnecessary search of exact solutions 

to the mathematical problem. in practice, the control design models are only accurate within certain 

limits and exact mathematical solutions are practically impossible to achieve. For this reason, 

controi theorists have developed new synthesis methods where minimization is based on the 

sensitivity of the close loop system to modelling erron, and not strictly o n  time histones. In fact, 

the LQGnTR (Linear Quadratic Gaussian Reguiatod Loop Transfer Recovery) design approach 

proved that a suboptimal solution based on the designer common sense is more likely to be 

successful than the exact optimal solution. In the LQG/LTR controller, the optimal solution obtained 

fiom the LQG formulation is corrected to recover the proper stability margins. 

The same drawback applies to the MPC approach presented here. By selecting a solution not 
optimal in the sense of the control problem of section 5.1, but resulting in another interesthg feasible 

solution, a more desirable control law can be obtained. The solution proposed in this section is 

based on the analysis of impedance control where the manipulator is linearized and decoupled in 

Cartesian Space through joint measurements (see figure 5.3) and where joint torques are applied to 

provide a pre-specified impedance of the end effector. 
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J* Manipulator 

(a) (b) 

Figure 5.3 - Impedance Control 
Irnpedance control c a ~ o t ,  however, easily deal with contact transition since different types of 

impedance are necessary for force and position control. However, the concept of using knowledge 

about the desired Cartesian motion to modulate the joint torques is interesting. In nonlinear MPC, 

most of the effort is spent defining a search direction 
(in the joint torque space) that WU result in an overali 

minimal cost. Due to the nature of the robot 

dynamics and to the knowledge of the reference 

forcdpath trajectory, information about the direction 

of the control command is readily available. This 

information cm be used to define a search direction 

dong which the cost function could be miriirnized. End 

Although a global minimum is not obtained, the o ~ g i n  

resulting motion can be satisfactory. 
r. 

Figure 5.4 - Search Direction 

One of the solution proposed in this thesis uses the trajectory information in the follwing manner. 
First, a vector p is defined 
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representing the weighted direction in which the control commands should act. In equaiion 5.47, 

y, is the position weight, y Js the velocity weight and y js the weight on the force. Then, this 

Cartesian direction is mapped to the joint space by doing 

which can be used as the search direction for the solution. The control law is then defined as 

r = o f + N ( q , ~ )  +6(q) +rws (5.49) 

and the resulting partially linearized dynamics to solve is 

4" =~" (4 ) (5 , ( 4 ) '  fe(q,4) + r,s) 

The MPC problem now becomes a single-vdued hinction minimisation, independent of the number 

of DOF of the manipulator considered, that has more chance to be solved in real-time. The 

implementation is shown in figure 5.5. 

lux&hmx 
Robot 

" - p + o l o o a t f ~  

N(8, 8)+G(B)+F,(8, ô') 1 

Figure 5.5 - Sub-Optimal MPC 
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In equation 5.50, whilef, is discontinuous, the terms M(q) and JJq) have smooth nonlineanties and 

are hinctions of position ody. if one assumes that the displacement over the prediction horizon is 

small and generates only small variations in the entries of M(q) and JAq), theo the solution obtained 

setting M(q)=M(q> and Jc(q)=Jc(q0) cm be valid around 4,. Such a local solution can also be used 

to reduce the number of computations to be done at each iteration step. 

5.25 - Modei Predictive Impedance Approach 

So far, the computations for the optimal solution were done in joint space. The Cartesian reference 

trajectory was translated to a joint space reference trajectory using the inverse kinematics. Since 

position measurements are done in joint space. it appeared to be a n a d  approach. However. given 
that the major uncompensated discontinuity is in Cartesian space (contact force), the dynamics in 

Cartesian space could be an interesthg aspect to consider. Recalling equation 2.1 1 

MX(qEd +N'(&q) +G,W =~-*(r  - r f ( t , 4 , q ) )  +f, (5.51) 

then the close-loop dynamics becomes 

xe =A, + ~ , ( ~ ) - l f ~  

In this formulation, everythuig but the contact force portion of the dynamics has been decoupled in 

Cartesian space. Hogan[28] has proposed an approach to decouple the contact force when it is 

measmd. Using his linearization scheme. the MPC control law would be 

r = J r(q)(tf+fi'(*,4) +ex(*) +@(* )M; 'A~  -f .+&(*)~o%) (5.55) 

resulting in the close-loop dynamics 
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where decoupling with respect to the end effector force (considered as an exogenous force) is 

achieved. In reality, however, the end e f f ao r  force model is highly coupled and perfect decoupling 
is never achieved. In addition, the force sensor dynamics and iimited precision would require the 

de finition of a very robust impedance to maintain good stability margins. Consequenti y, Hog an' s 

linearization scheme will not be considered in this thesis. 

As in section 5.2.4, the equation 5.46 c m  be used to defme the direction of the impedance force 

needed. The control law is then 

then the close-loop dynamics becomes 

xf, 'PL +Mzcd-% 

With this new definition in Cartesian space, the predictor model (equations 5.31 and 5.32) has 
changed considerably. The new predictor becomes 

i-1 

w here 
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.w) =il 
The implementation of the predictive impedance controuer is s h o w  in figure 5.6. 

1 
1 

I 

I 

n i e :  

Figure 5.6 - Mode1 Predictive Impedance Control 
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5.2.6 - The Extended Mode1 Predictive Impedance Approach 

In the dynarnics described in equation 5.58, the entries to the inertia ma& (and its inverse) are 

srnooth in q. For very short prediction horizons. the variation in the entries of M , can be 
relatively small. To improve the real-tirne applicabiiity of the convol method, one can assume that 

M, is not varying over the horizon and is taken as ly(qJ where q, represents the acnial 

measurement of the joint angle. 

The problem formulated in section 5.1 is the nonlinear MPC problem. The existence of a solution 

and the ability for the solution to control the motion of the robot with fnctionaI/uniIateral are 
investigated in the following sections. 

53.1 - Local Existence of a Motion 

Obviously, the motion exists for the physical system. However, the existence of a solution at any 

physically realizable state is an essential property for the model. This is particularly tme when the 

model is used in a model-based control method. 

In the standard theory of ordinary differential equations. the local existence and unicity of a 

continuous solution to the general problem 

valid in a neighbourhood N of (x&),g). is verified by the sufficient conditions thatf, is continuous 

in x, and t, and that the Lipschitz condition 

IV;(X, -A(+) II s w1 41 (5.63) 

be observed for all x,,x2 EN. Obviously, the model of the robot manipulator with frictionaVunilateral 

contact, presented in table 5.1, does not ver@ those conditions for every robot state. For example. 

when the motion of the contact point in the tangential direction of the surface comes to a rest, the 

friction force may take three different values (F&{@(d), pP(d), F,-et}) depending on r. 
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For boundary points where the discontinuities occur, the notion of GDS introduced in section 3.3.5 

is less restrictive. For example, assuming that the control toque command r e U  where U is a 

compact set (this is usuaily true by construction), then the attainabiiity funchon F defined as 

F(w(to),to,lf ) ~ { w ( t > l  w=f lw>+L(w) f , (w)+G(w)r ,  w(tO)=wO,  EU, t ~ l t ~ ~ t f l )  (5.64) 

represents all the possible trajectories from w,. Similarly, the contingent set E defmed as 

E(wJ ={W (96 =f(wO) +Uwl)f ,(wO) +Ci(w& EU} (5.65) 

represents al1 the possible state denvatives achievable at a point w,. According to theorem 3.2, a 

smwth motion w(t)~F exists in a 6-neighbowhood N,(w,,&) if the set E(w,) is compact, convex and 

upper semi-continuous in N,. The compactness of E over N6(w0) is easily verified. Since all  the 

discontinuous terms of the dynamic equation have finite discontinuities, and since the set U is 

compact, then E is compact The analysis of the convexity of E requires the foliowing definitions. 

Dflnitiun 5. I - Convex Set 

The set B such t h t  for any x , ,x2~B,  the line segment joining x, d x 2  is in B .  is cailed a cornex set. 

Lets dejïne YB) ar 
L ( B )  = { ~ ( e )  lx(e) =ex, +ci -e)~,, e ~ [ o . i l j  (5.66) 

I~L(B)EB Kx,.x~EB, then B is convex. 

Concerning the convexity of contingent sets, if dl the state derivatives between two possible state 

derivatives (joint accelerations) are achievable by at least one command r in U. then the contingent 

set E is convex. For the discontinuities encountered in the models of table 5.1, this cm be 

interpreted as a condition requinng that the command r be capable of counteracting any 
discontinuous changes in the dynarnic equations. This is similar to the condition for the 
controllability of a system with friction, requiring the set of achievable control commands to include 

at least what is required to counteract the friction force. As stated by Gumiann[9] and Mfls[24 1. 
this condition cm be considered satisfied by constmction. 

The upper semicontinuity (USC) is the critical condition. To investigate to USC of E, the notion 

of a USC set is needed. 
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Defnition 5.2 - Distance Between a Set and a Point 

The distance d(x.A) between a point XEP und a set A cl?" is defind as 

d(xA)=E>f(llx-~ll, y 4  

DefSnirion 5.3 - Separution Between Two Sers 
The sepmation J(A,B) between a set A c F  and a set BcR' is dejïned as 

d ( A , B ) = s u p { d ( ~ , ~ ) ,  XEA} (5.68) 

The definition 5.2 is intuitive. The distance between a point and a set is the smaliest distance 
between the point and any point of the set. The notion of separation requires more attention. The 
separation is a mûasure of the difference between the two sets A and B. For example, two similar 
sets sharing the same boundary but in a neighbourfiood of one boundary pin& have their separation 
represented by the Iargest dflerence between the boundaries of A and B in the neighbourhood of the 
boundary points that are not shared. The notion of Separmion between two sets c m  be used to define 
upper serni-continuity of a set. 

Dejkition 5.4 - Upper Semi-Continuous Variable Set 

A variable set A(x)ER" LÎ upper sema-continuous a? a point x,dP ifgiven any 00, 36>0 such that 
ifx EN&), then b(A(x)A(x,))<é. In other wor& A@) is USC at 1, if its separation is continuous 
there. 

The existence of a motion within each continuous structure of the dynamic mode1 exists and is 
unique. At the switching boundaries, a sufficient condition for the existence of a motion is the 
continuity of the sepmition between contingent sets in the neighbourhood of a boundary point. 

Defnition 5.5 - Discontinuous Dynamical System with Nom-Bounded Discontinuity 

C o d e r  a dynamical system of the f o m  

w =Aw) +g(w)u +L(w)a(w)  (5.69) 
whereJ g mid L are m o t h  mappings and where a:F-W is a single valued discontilul0urfUncrion 

Let N =(w /&w)=o) and N& J be n &neighbourhood of w, I f  
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then equurion 5.69 represents a discontinuour dynumic system with nom-bounded discontinuity. 

L e m  5.1 - USC Propew of the contingent set for a Discontrntrnuous Dynamitai System with Nom- 
Bounded Discontinuity 

The contingent set of a dy1~11111~cai system with nom-bounded discontimity and u E Bu = {u /Au l<pJ 

Proot See Appendix C 

Knowing that discontinuities in the model of table 5.1 are bounded. the contingent set defined by 

(5.65) is USC for every point in the neighbourhood of a discontinuity. Therefore, since E is 
compact, convex and USC, then a motion locdy exists. 

53.2 -Existence of Solution to MPC Problem 

The existence of solution to the differential equation representing the dynarnic model is crucial for 
the existence of a solution to the MPC problem defmed in section 5.1.2. Obviously, a necessary 
condition to the existence of a solution to the MPC problem, is the existence of a motion. This 
justifies the effort put in the preceding section. Still, the existence of a motion is not a sufficient 
condition for the existence of a solution to the noniinear MPC problem. 

Obviously, the penalty functional dehed  for the nonlinear MPC problem (equation 5.28) c m  be non 
smooth in tirne, aven the non smooth nature of the dynamic constraints (equations 5.23 and 5.25). 
As a result, the nonlinear MPC problem as stated here is a non smooth dynamic optimization 
problem. The topic of non smooth optimuation is relatively Young. The conditions for the existence 

of a minimum to a non differentiable function f(x) is usually assessed using convex analysis (see 



Chapter 5 MPC for ImpacKontact Motion Conno! 

Fletcher [981). This topic is introduced by the foilowing definitions. 

Definition 5.5 - Converfunction 

for any X,.X,E K is a converfunction over K 

Dejinition 5.6 - Subdifferential 

is called the subdifferenhal off ot x. 

The convexity of a function over a convex 

domain, by definition, implies the existence of 

a minimum on that domain. Definition 5.6 

\ I / represents, in a way similar to the contingent 
equation in the GDS theory, the set of aU 

possible gradients (or supporting hyperplanes) 

in the neighbourhwd of x. For example, the 

Figure 5.7 - Subdifferential 

set of ail possible lines supporting the function 

f l x )  at point x' in figure 5.7 defines the 

subdifferential of the function at x*. This 
definition is a generalization of the gradient of smooth functions to include non smooth convex 
func tions - 

Theorem 5.1 - First Order Necessary Condition of minimum at x* 

Theorem 5.1 is essentidy a generaiization of the conditions for an extrema of a smooth function, 

requiring that the gradient be n d .  Since the gradient is not necessarily nul1 for non smooth 
functions, the set of possible gradient at that point should contain the nul1 gradient 
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For dynamically constrained optimization problem with smooth dynarnic rnodels, the necessary 
conditions for an opMial solution are equivalent to those for the existence of a solution of the Two 

Point Boundary Value ('TPBV) problem presented in section 4.3.1. Those conditions were obtained 

by defining the augmented penalty functional 

'f 

4: = O c ( ~ / ( ' r ) J f )  + J Wqr,),t,) +[ [Uw, ,u , r )  +PV-w,)] (5.74) 

' 0  

and by using the Lagrange Principle stating that the constrained optimum of & is the unconsaained 

optimum of &'. Using the calcuius of variations, the conditions for having the variations 6&'=0 
for any independent variations 6w,, 6u, 6 v, 6 A  are extracted leading to the TPBV problem presented 

in equation 4.29. non smooth penalty hinctional, it is suficient that O E ~ @ ~ '  where a&' is the 

subdifferential of &'. In fact, the non smooth nature of the dynamics does not influence the solution 
of the optimization problem, and the only other condition is to v e m  the convexity of the augmented 

penalty function &'. 

If the Lagrangian U w ,  u. r) has k e n  defmed as a convex function by construction (it is a 

requirement), than an optimal trajectory with a discontinuity in the solution occurring at t=t, 

(b~[b,t& should necessdy verify the folIowing Weierstrass-Erdrnann corner conditions 

A(t,+O-) = q t d  +O+) 

H(td + O-) =H(td +O*) 

for the penalty functional to be convex at that point. They stipulate that the costate irajectory and 
the Hamiltonian should be continuous at the time when the discontinuity occurs. Recalling the 

definition of the Hamiltonian (H=L+AT~) and the fact that L is convex by construction, the continuity 

in A implies the Upper Serni Continuity of the contingent set E (equation 5.65). Therefore, if the 

system is a GDS, then the optimal solution exists. 

5.3.3 - Stability and Path Following 

Stabitity is an important property for any conml system. MPC has been useci, however, for numbea 
of years without any generalized stability verifcations. The cause of this lack of stabitity results is 

the nanile of MPC itself. In most cases of process control where it has been used, MPC was selected 
because of its ability to ded with input/output/state conshaints as they often appear in chernical 
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processes. For such cases, a typicd Linear system analysis is not  cieu eut, The good performances 

obtained in application did not justiQ the effort to obtain a complete analysis of stability. 

Obviously, a sufficient condition for the path foiiowing stability is the existence within the 
attainability hinction (equation 5.64) of the reference trajectory for any state within the reference 
irajectory. More fomally. for the system given by 

w = f ( w )  + L ( w ) a ( w , r )  +g(w)r (5.76) 

with the reference trajectory r(t), if at a time t,, y(to))=r(r(to) and r(t) EF(W(I~), tt, t ) *(ta) E h-'(r(t,)), 
then the solution of the MPC problem with T,=T, gives y(t) = r(t). 

This type of reasoning gives some idea about the stability and path foiiowing properties of nonlinear 
optimal control systems. However, the conditions specified for the applicability are practically never 
me.  In fact, stability properties of nonlinear receding finite time optimal control problerns are stili 
a subject of research in applied mathematics and no convincing analysis has been found in the i i t e r a .  
on optimal control. In the particuiar case analyseci in here. the compiexity of the analysis of stability 
is king increased by the non smooth na- of the dynamic systea Any reasonable p m f  of stability 
would necessitate the use of the GDS concept presented in chapter three. 
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Chapter VI 

2 DOF Phnar Robot: A Case Study 

MPC is an interesting candidate to provide a unified solution to the problem of free motion, contact 

transition and contact motion control of a robot a .  manipulator. The main aspects of the theory and 

the issues related to control synthesis have been covered in chapter 5. However, the applicability 

of the method can be best shown through the analysis of a simple case study. 

The present chapter is concemed with the application of the proposed method to a real physical 

system. In the fmt section, the experimental setup is presented in details. Control design and 
simulation models for the robot arm are also proposed. The study has been carried out in three 
stages. Fit, the parameters of the robot models were evaiuated both analytically and 

experimentaliy. The analytical parameters were obtained from the design data sheets of the various 

components of the robot arm and sensors. A Recursive Least Square (RLS) estimate of the robot 

parameters was also obtained by randomly moving the robot and by identiQing its parameten in 

real-tirne. In the second stage, a simulator was used to evaluate various solution alternatives. The 

general s t rucm of the simulator developed for the analysis is presented with ifs characteristics. The 

simulation results were then used to select the approach most suitabie for real-tirne implementation. 

Finally, the best alternative was implemented on the real physical system and the results obtained 

are presented in details. 

6.1 - Description 

The objective of the case study is to illustrate nonlinear MPC as a unified method to solve the 

general control problem presented in chapter 3. To meet this objective, the rigid 2 DOF k t - d r i v e  

robot of the University of Ottawa's Mechanical Systerns Control Laboratory was used. Based on the 

conceptual design of professor Necsulescu (see Jassemi and Kiguchi [101 J), this robot provides a 
realistic test-bed for venfymg the applicability of robot control algorithms. 
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Figure 6.1 - Experimental Setup 

6.1.1 - Experirnental Setup 

The expenmental setup is schematically represented in figure 6.1. The robot arms are driven by 2 
torque controlled NSK MegaTorque direct-drive motors (ref. [lûû]). The larger motor, driving link 

1, can provide a maximum torque of 90 Nm with linear operation over speeds ranging from O to 30 

rpm. The smailer motor, for link 2, can linearly deliver a maximum torque of 10 Nm over speeds 

from O to 180 rpm. A pair of curent control amplifiers with a 120 Hz bandwidth is used, and the 
resolution of the delivered torque is 8 bits. Torque npples are automatically compensated for in the 

motor driver. The fust structural mode of the robot arm is higher than 80 Hz (highly rigid). The 
dimensions of the robot are shown in appendix D. 

For this case study, the contact surface is simply flat wall at a distance + from the centre of the 

fvst joint. The force is sensed on the environment side using a Barry-Wright FS6-120A 6-axis force 

sensor. The sensor uses six strain gauge transducers whose bridged signals are filtered at 120 Hz 
and sampled at 400Hz with a 12-bit resolution. The calibraied data represents six decoupled 

forcdmornents with the moments specified about a known fixed point in space. Nominaily, the data 
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can be trammitted to a prirnary control computer through a serial link (RS-232) or cm be converted 

to an analog signal. For this application, the normal contact force is msmitted to the prirnary 
control processor (dSPACE) as an analog signal. 

The primary control computer is a dSPACE Controiier equipped with a TMS320C30 Digital Signal 

Processor (DSP). Various interfaces are accessed by the DSP via a Peripheral High Speed (PHs) 

Bus. These include a 16-bit MUX A/D converter board with 32 channels, ten incremental encoder 
quadrature counters, ten 12-bit D/A converters and a general digital UO interface. The TMS320C30 

can execute 32-bit floating point number operations at speeds up to 33 MFLOPS. 

The robot position is measured using the NSK motor's built-in position resolvers. The NSK motor 
driver module converts the resolver signal into a quadrature that can be sensed by the dSPACE 
encoder card. The position resolution is of 640,000 stepslrev for motor #1 and 409,600 steps/ rev 
for motor #2. 

The details of the robot dimensions are given in appendix D. The robot mode1 is described using 
the parameters as they are defined in figure 6.2. 

Figure 6.2 - Robot Geometry 
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The dynamics of the 2 DOF planar robot is given by equation (5.1) with G(q)=O and 

where C,=~OS(~) ,  g=sin (q), q,=cos(%+~), ~ i ~ = s i n ( q  +B), \ is the length of Link i, 4 is the distance 
between the preceding joint and the centre of mass of the Link i. For this model, the centre of mass 

of each Link is assumed to Lie on the axis joining the ongin of two successive link frarnes. 

Joint fiction can be modelled using a static fiction model 

The term rqj is obtained fiom solving 

M(@)Q*+NQ,q)+G(q) =s-r, +J% 
w here 

The parameters s, and r, represent respectively the kinetic and static level of fnction in each joint. 

This model is valid at every state and cornrnand conditions, and includes stiction. 
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The contact surface is assumed to be defmed by x,,,,,-x=û. Therefore, the environment mode1 is 

s, ={(.,Y> I x =xway = O) (6-3 

and the normal vector n is a constant defmed by 

n={-1,O) 

The penetration distance is obtained directly, without a need of an iterative procedure 

d =x, +R-xwd (6-7) 

Therefore, the contact force is given by 

where the friction force F, c m  be modelled using a static mode1 of the form 

In equation 6.1 1, p, is the coefficient of kinetic fiction, and where the equivalent force F , 
represents 

where the symbol [O], refers to the y translation component of the forcdtorque vector. The dynamics 

of a robot manipulator can be represented linearly in ternis of their parameters by grouping parameter 
terms such as to represent equation 5.1 by 

@(q,&q.r)' 8 =r (6.1 1) 

where the 8 is a nonlinear regression ma& and the 8 is a parameter ma& whose entries are 

formed by product of parameters such as link masses, inertia, Iength, fiction coefficients, 

environment stiffhess and environment darnping. ObviousIy, the variable structure dynamic system 
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obtained here has different parametric representations, one for each stmcbire of its dynamic model. 
For the 2 DOF planar robot, the form linearized in te- of the parameters is difficult to obtain for 

every structure of the model. To evaluate at Ieast the robot link parameters, it is possible to rewrite 

the dynamics to obtain such a model valid in f k  motion and when aU joint velocities are non zero. 

This model is obtained by definng 

and 

6.13 - The Shulator 

A non real-the simulator was developed to test various alternatives to the solution of the noniinear 

MPC problem. The simulator was coded in C with the ANS1 C standards such that the control 

modules developed for the simulator codd be directly implemented on the dSPACE system. The 
simulator has the following feanires: 

The simulation is based on a rigid body dynamic rnodel of the manipulator, including a joint 
fnction model and a fictional unilateral contact model as presented in chapter 2. 
Integration is performed using the Runge-Kutta-Nystrom algorithm. 
Data is stored in ASCII format. 
Robot motion is animated. 
The contact force is displayed on the animation screen. 
Distinct models and parameters for control and simulation. 
Data reduction and post-processing is done using MATLAB. 
Execution time of the control algorithm is monitored for cornparison. 



Chapter 6 2 DOF Piunar Robot .- A Case Study 

Figure 6.3 shows the animation display of the simulator. It is redistic enough to provide a good 

evaluation of the different alternatives to solve the nonlinear MPC control problem. 

CONTACT MOTION - 2 DOF PLANAR ROBOT 

Contact Force 

Figure 6.3 - Simulator Interface 

6.2 - Parameter Identiiation 

6.2.1 - Nominal Robot Parameters 

Nominal parameten were obtained from the design data sheets and drawings. Their precision, 

however, does not exceed 90%. They are summarized in table 6.1. To obtain a good model for the 

MPC controiIer with partial hearization, a pararnetric identification of the robot was peformed. To 

achieve ihis, the nonlinear model was rewritten as a model linearized in t e m  of the parameters as 

defined in equation 6.1 1,6.12 and 6.13. The initial mess on the vector 8 was 
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I Parameter I Vaiue I 

Table 6.1 - Robot's nominal parameters 

6.2.2 - The Robot Identification Process 

The ernpiricai evaluation of the vector 8 was done by moving the robot manipulator randomiy using 

a Stiffness ControIler. The desired Cartesian trajectory was obtained by feeding a white noise 

through a second order low pass filter with a selected bandwidth (see figure 6.4). The level of the 

noise was adjusted to obtain a desired Root Mean Square (RMS) amplitude for each coordinate. 

That way, adjusting the frequency band and the amplitude of the excitation to provide proper and 

sufficient excitation was relatively easy. The resulting control outputs and measurements was used 

to evduate the vector 8 using a Recursive Least Square (RU) algorithm(see ref. [103]). The joint 

accelerations and velocities were obtained by digital filtering of the position signal. 



2 DOF Planar Robor : A Case Strcdq. 

Figure 6.4 - The Identification Proces 

6.2.3 - Robot Parameters Identification Results 

The results are presented in figure 6.5 (a) to (e) in which time histories of the estimated parameters 
are shown. Asymptoûc values are given in the table 5.2. 

Parameter 1 Units 1 Andytical 1 Identified 

Value Value 

Table 6.2 - Cornparison Between Identified and ~o&al  Parameten 
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Robot identification 

Robot ident~fication 
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Time (sec) 

(dl - 0, 
Figure 6.5 - Robot Identifcation Resuits 
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63.4 - Force Sensor Response 

One of the assumptions stated in chapter 3 is that the environment is rigid. In the experimental 

setup, however, the environment is composed of a rhircy (30) centimeter square plate attached to the 

force sensor at its middle point and will inevitably exhibit dynamics. To establish the dynamic 

response of the force-torque sensor, 
FTS Impulse Respanse a simple impulse response IO" . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - - - . *  . . -  - . . - - - . - . .  - - - - - . . -  - . - . - - . - . - -  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  experiment was done. The operation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- - . -. . - . -  - . - . - .  % . - . .  * - . . * - . .  . ............ 
consisted of hitting the force-sensor 

platform with a small hammer while 2 
CV recording the response. While this Z 
O 
<n simple expriment does not provide n 

proper information about scaling, it 
, - . - - .- - . -  - . - . * * C  .a.. * . f . - . .-  - . - . - . - . - . - r  - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  nevertheless gives important . . . . . . . . .  . . . . . . . . .  

1 O-' l 

information about the force-torque 1 oO 1 o t  1 oz 
Frequency (Hz) 

sensing apparatus dynamics. Figure 

6.6 gives the Impulse Response in Figure 6.6 - lTS Impulse Response 
temis of the Power Speceal Density. The Sensor/Platform system has a fmt nanual mode at 25 Hz 

and another at 30 Hz. These are sufficiently high to be neglected, although great care must be taken 

not to excite them during contact. The high level in the PSD at low fiequency is mainly the result 

of the large offset in the force measurement. During the implementation, this offset must be reduced 

to a minimum. 

6.3 - Simulation Results 

Few methods to implement noniinear MPC have been presented in chapter 4 and 5, some of which 

were clearly stated to have potential to solve the control problem defined in chapter 3. In this 

section, some of the simulation results obtained applying various possible implementations are 

presented. The objectives of the simulation analysis were to demonstrate the potential of MPC to 

solve the problem of impactlcontact control and to investigate the real-the applicability the three 

of the approaches defined in chapter 5. Obviously, with fuily deterministic environments, 

implementing a tmjectory generation algorithm adapting the motion for a contact transition is always 
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possible. Therefore, as a part of the simulation, it is shown how noniinear MPC cm deal with 

roughly defined trajectories and help remove the need for a complex higher level of control. To 

achieve this, reference trajectories were defmed as senes of constant velocity segments. For aU the 

simulation results shown in this section, the reference trajectory is as shown in figure 6.7. It was 

designed to snidy every aspect of the control problem: free motion control, transition to contact, 

contact force control and contact motion patidforce control. 

Reference Trojecrory Reference Conlad Force 

1 I 
O 2 4 6 8 IO 

TIME (SEC) 
O 2 4 6 8 IO 

TlXfE (SEC) 

Reference Trajectory 

(0 
Figure 6.7-Reference Trajectory 

To include modelling errors, the simulation mode1 used the analytical parameten shown in table 5.1. 

while the control mode1 was set to use the parameters identified experimentally. The 5 to 10% 

modehg emor is cornmon in robot control practice and helps in validating the simulation results. 

For joint fiction, the experimentally identified fiction levels were used both for the simulation and 
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control models. Surface ffiction was modelled using p,= ~ $ 2 .  In ail simulations, the integration 

time step was set to 0 . 0 5  second. 

Deaiing with contact surface friction is particularly mcult. In the experimental setup, the fnction 

force measurement is not available for control. Two options are available to include its effect in the 

control law. A surface friction compensation tem, based on a static nonlinear state reaction using 

velocity and normal force measurements, could be added to the feedback linearization component 

of the control torques. To be practicai, very good models of surface fnction would be needed for 

this. A more reasonable approach consists of including the surface fnction in the control mode1 used 
to create the predictor. That way, the apparent compensation of surface fnction is dynamic in nature 

and rely on aii feedback signals. This latter approach was selected for all implementations. 

63.1 - Variational Formulation 

The variationai formulation leads to the classical solution method for this type of problems. The 
robot variable structure dpamics result in a Two-Point Boundary Vaiue problem with variable 

structures as well. It is assumed in this approach that the state vector w is 

and the output vector y, is 

where [f,], = (f;n)n represents the normal component of the contact force f,. If the penalty 
functional presented in equation 5.27 is used, the state equation of the variable suucture system is 

of the form of equations 5.21 to 5.25 with the details presented in equations 6.1 to 6.12, that is 

w = f ( w )  +L(w)f , (w) + G ( w ) r  (6-17) 

with the initial condition defined by 

w ( to )  =O 

and the costate equation is given by 
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(6.19) 

w here 

and where the term c$/& is a discontinuous rnatrix. The stationary condition is given by 
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If no extra constraint is applied to the state or to the control signai within the horizon, then the 

transversaiity condition becomes 

Equations 6.17,6.19 and 6.25, with the conditions expressed in equations 6.18 and 6.26, represent 

a Two-Point Boundary Value problem. The term &3v in the costate equaûon can be evaiuated 

numerically such that a numencal solution can be obtained using the algorithm 5.1. 

The simulated results for the free motion control are still presented here as a demonstration of the 

potential for the method. The results are shown in figure 6.8. The sampling fkquency was set to 

200 Hz and the control parameters were 

A numerical overflow occurred when the impact appeared within the prediction horizon after three 

(3) seconds of simulation. At that instant, the cost functional grew to values out of the range of 

numencal stability of the shooting method algorithm, resulting in physical instabilities of the 

controlled system. The results in free motion stiU demonstrate the excellent tracking performance 

that could be achieved with nonlinear MPC. 

QI = 

The difficulties in solving the variational problem appear in the nature of the contact phenornena and 

the properties of shooting methods. Recalling remark 5 in section 4.3.1, the contact stiffhess in the 

state equations that appears during contact make the unstable costate equations grow more rapidly. 

The weighting factors could be reduced in an effort to stabilize the costates, but the resulting fhx 

motion conaol would become unsatisfactory. In addition, shooting method algorithms are 

essentially the application of a Newton zero search method requiring the numerical evaluation of the 

functions' s lacobian. Suc h numerical differentiation over wide range of numericd values is 
numericaily ill-condi tioned. 

0-0 l.Oe.5 0.0 0.0 0.0 

0.0 0.0 0.2 0.0 0.0 

0.0 0.0 0.0 0-2 0.0 

0.0 0.0 0.0 0.0 100.0- 

0.03 0.0 
QI=[ ] Th =OB5 sec 

0.0 0.03 
(6-27) 
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FmaUy, the variational problem was solved in no less than 2.0 seconds using the simulator code on 
a Pentium 100MHz. This is not sufficient for real-time irnplementation on comrnon computer 

platforms. 

Sim dation - Variutional Approach 
s 4 I I 

3. 

2 -  

I L  

1 2 3 
T M E  (SEC) 

Slm ulution - Variational Approach 

Simulation - Variational Approach 

I I I 
O I 2 3 

TIME (SEC) 

Shulation - Variation al Approach 

O f 2 3 
TrsrE (SEC) 

Figure 6.8 - Sirulateci Response - Variational Approach 

63.2 - BFGS: A Variable Metric Approach 

Using partial linearization(equation 5.44), the equation of motion to be used for the MPC solution 
can be reduced as in equation 5.45. Using this mode1 and the state vector defined in equation 6.15, 
a ih-step-ahead nonlinear predictor (as in equation 5.33) can be built and used to compute the cost 
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functional Y .  =W. I V .  .fi.. . I where y, is the known measurement R, is the known reference to 

track over the horizon and Tk is the unknown sequence of MPC torques (Tk={rk+,, r,,,, .... rkAp}). 
The rninimization of cP is the minimization of a single-valued function of 2Nh variables. If the mean- 

level MPC controller is used, that is if the consû-aint defined by equation 5.29 is applied for T,=û, 
then W. W .  1 W .  T .  J which resdts in the rninimization of a singled-valued fimction of 2 

variables. Aigorithm 5.2 presented in chapter 5 was used to solve this opt-ation problem in real- 
tirne. The BFGS aigorithm irnplemented for this application is a modified version of the a l g o n t h  

provided Nwnerical Recipe in C 1971. The modifications concentrated mainly on dynamic memory 

docation and algorithm failure mechanisms for real-time implementation. Within the BFGS 

algorihn, the iine minimization was perfomed using an approximate line minimization using a iine 
search algorithm with quaciratic interpolations 1971. 

The simulation results are shown in figure 6.9. Excellent tracking results were obtained. Just before 

3.0 sec, the upcoming impact with the environment appeared in the prediction horizon and the 

controller dowed the tracking error to increase mornentarily to avoid excessive impact loads. For 

these resuits, the control parameters are 

These simulation results alone are sufficient to prove that nonlinear MPC couid solve the problem 

of impactkontact motion control of a robot ami. On the other hand, they also show that although 

the execution t h e  has been reduced by a factor of twenty with respect to the variational approach, 

the algorithm is s t .  computationally very demanding and vimiaiIy impossible to implement in real- 

time on a common compter. 
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Simulution - BFGS Approoch 
O. 4 1 I 

TZME (SEC) 

( a )  

SimuIution - BFGS Approach 

O 2 4 6 8 10 O O, I O. 2 O. 3 O. 4 
Tl'ME (SEC) x (m) 

Figure 6.9 - Simulated Response - Variable Metnc Approach with Partial Linearization 

6 3 3  - The Extended Predictive Impedance Approach 

The extended predictive impedance approach, with its reduced dynamics and pre-defîned search 

direction. could be a good alternative for a faster realization of MPC. The method is fuily detailed 

in section 5.2.5 and needs no m e r  clarification. Predictive -dance adds three more control 

parameters for Nnuig the control algorithm (search direction). Here, iine rninimization was achieved 
using Brent's Golden section method [97]. While a faster approximate minùnization was possible 

with the BFGS approach, a more precise solution was required for the predictive impedance. 
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The results are shown in figure 6.10. They were obtained for 

and for yx=4.0, y"= 1 .O, y+.03. 

Simulation - Predicthrc Impedance 
0.4 1 1 , . 1 

- 
O 2 4 6 8 IO 

T M E  (SEC) 

Simulation - Predictive Impedame 

S b  ulation - P redictive Impedance 

Simrrla!ion - Predictive Impedance 
0.3 1 l 

1 

Figure 6.10 - Simulated Respoose - Extended Mode1 Predictive Impedance 
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The tracking precision appeared to be reduced by a small factor, but ail other properties of the full 

optimal control approach were mauitained. The chattering that occurred during simulation, as visible 

from the normal contact force curves, is mainly the result of the iimïted precision of the nurnencal 

solution of the MPC interacting with the stiff system obtained during the contact dynarnics 

simulation. In experiment, the small errors in the numericd solution of the MPC problem will have 

less effect on the real contact force. The algorithm resulted in a reduction by a factor of twenty (20) 

of the execution time with respect to the BFGS approach. This improvement is sufficient to enable 

real-time implementation. 

Extended model predictive impedance appeared as the only possible approach for real-time 

implementation on the dSPACE platform. Obviousiy, sorne adjustments were needed to the 

algori thm and control parameters to deal with experimental issues more difficul t to c haracterize. 

One of these was the difficulty in precisely evaluating contact surface distance. Here, a manual 
teaching operation was implemented to provide that information to the controller. but the resulting 

precision was at best a few tenth of millimetres. For ngid contacts, this could represent a huge offset 

in the estimated contact force with respect to the measured one. Naturaüy, diis problem could have 

been solved by using a proximity sensor to provide separation within micrometen. This solution 

is costly and cornplicated. Instead, the force sensor was used as a contact detection trigger to adjust 

the geometric model of the environment. This was sufficient for the particular case of a Bat-waii 

environment. Another major issue was the dificulty in modelhg low speed joint and surface 

friction. Nowadays, ihis aspect of robot control is a subject of intense research. The experimental 

results obtained here just emphasize on the need to develop a better comprehension of the fiction 

phenornena at low speed, especially in robots. 

As expected from the discussion of section 3.2.4, bandwidth limitations in the force sensor also 

resulted in implementation problem. Most force sensors, including the one used in this experiment 

, are rate limited. During a collision, the force sensor response can be momentarily extremely 

nonhear. Moreover, to avoid measurement spillovers, the force sensor signal had to be low-pass 

filtered to remove any content that could destabilize the environment platform (see section 6.2.4). 

FinaUy, a bias removal algorithm had to be implemented to remove the offset in the force 

measurernent. This was done by taking five (5) seconds of force sensor data, extracting the mean 
and subtracting this mean to any other subsequent measures. The results obtained are s h o w  in 
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Although more weight had to be given to the position e m r  to deal with the increased low-speed joint 

friction, the results are still good. To avoid excessive position gain, the weight on the requested 

MPC output had to be increased as well. 

More tracking error than in simulation is obtained during the contact motion stage of the trajectory 

(from 4.5 to 6.5 seconds) due to surface friction. The stick-slip motion in Y during that thne period 

supports this observation. This is not a limit inherent to the algorithm presented herein. This type 

of sticking error is a problem for ail control methods dealing with surface friction. Until better 
models and identification techniques are made available for friction, it is going to be the case. The 

simulation results presented in the preceding chapter used the same type of mode1 for the dynarnic 
simulation than for the predictor, explaining the good results obtained. The experimental results 

show that the selected mode1 of fnction, aithough at the leading edge in friction modeliing, is still 
not adequately representing low speed friction. 

As expected, the chattering observed in simulation do not appear on the experimental results. On 

the other hand, oscillations in the force response that were not in the simulation results are observed 

in experiment. They are essentiaily the results of the environment pladorm dynamics. Finally, 

during the stage where 10 N was requested, the 11.5 N obtained resulted from the effort of the 

controuer to reduce the error in the Y direction. 
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Conclusions 

A literature review on modelling and control of manipulaton doing contact tasks has shown the 
inability of the existing control approaches to solve the problem in a -ed ~ e w o r k .  Io practice, 
these methods have to rely on switching laws to match a particular control algorithm with the 
particular conditions it has been designed for. This discontinuous nature of the solution is the result 
of non smooth discontinuous te- and, sometimes, variable topological structures in the equations 
of motion of the close loop system. 

A general evaluation of mode1 predictive control (MPC) is enough to understand that the method 
may be well adapted for the control of dynamic systems undergoing such non smooth evolutions. 
The model-based predictive nature of the method is indeed an interesting property for such cases. 
It allows the control law to predict when the discontinuities wili occur in tirne and to modiw pro- 
actively the control command for an upcoming variation. The fmt contribution of this thesis is to 
use MPC as a unified solution to the control of noalinear discontinuous dynamic systems, and in 
particular the control of robot manipulators doing tasks with intermittent contacts. Because the 
literature on nonlinear MPC is relatively spane, this thesis also contributes to the overail 
understanding of the application of nonlinear MPC. In that respect, the last section of chapter 4 
describes the various alternatives for implementing nonlinear MPC. 

The theoretical issues regrading the existence of a solution to the general nonünear MPC problem 
were discussed in some details. Despite the non-smooth evolution of the dynamics, if a dynamic 
system is a General Dynamic System (GDS), the solution exists. The notion of GDS thus proves that 
if a discontinuous system has bounded discontinuities in the state dynamics, the system may s a  be 
a GDS with an existing theoretical solution. However, the numencal solution of the global 
formulation is not prone to real-tirne implementation, as required in practical control applications. 
Therefore, this thesis also contributes by proposing two sub-optimal alternatives that reduce how 
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much computation is needed for a solution without losing the interesting feanires of MPC. Both 

methods were successfully tested in simulation. Experimentai results were aiso obtained for the 

fastest option called predictive impedance control. 

The applications investigated in this thesis are far less complicated than in real industrial Life. 
Nevertheless, the analyses presented are general enough to encompass every type of application, and 
the algorithm derived from them are also independent of the complexity of the model. With the 

belief that computing technology will evolve continuously, the computational aspect of the problem 
will become obsole te very swn. Nowadays, very complex real-time simulators are king developed 

to emulate the dynamics of complicated flexible mechanisms with multiple contact points. The tirne 
where this technology will become available to the generai industrial world is near. At this time in 

the history, the simple argument of computing time should never be accounted as a drawback to an 
advanced control method. 
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Appendix A 

Appendix A 

Rigid Multi-body Dynamics 

The goal of this Appendix is to provide a quick access to some theoretical background on rigid 

multi-body dynamics. Some of the anaiysis presented in chapter 3 makes use of the notion of 

constrained multibody systems. The materid presented here is an introductory lecture in the matter. 

It is presented with enough detail to allow the understanding of chapter 3 without having to consult 

another reference on the subject. However, it is not a complete treatise on the subject matter. 

Rigid multi-body dynamics is the branch of rnechanics studying the dynamics of collections of rigid 

bodies. The analysis of multibody dynarnicd sysrerns requires the use of nurnerous anaiytical tools, 

including classical mechanics, analytical mechanics and differential geometry. Good overviews of 

classical and analytical mechanics are provided in Gantmacher[A. 11, Spiegel [A.2] and 

Woodhouse[A.3]. Most of the matenal presented here was adpated from Haugh[AA]. Simeon[A.5] 
and Tahboud[A.6]. 

A.1- Free-Body Dynarnics 

The dynamics of one body I of a collection of n bodies c m  be defined using the standard Newton- 

Euler equations as 

where m, is the mass, ~ E B ~  is the absolute coorduiate of the centre of mass, F,EW-' represents the sum 
of externally applied forces, F:EB' is the sum of the constraint forces, F,~ER' is the surn of 
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frictional forces acting at the contact points, I~EIR'XJR~ is the inertia tensor in some body frarne, 

~ : I R ' x B ~ - R ~  defines the angular velocity of the body expressed dong the body a i s ,  &W.' is a 3 

dimensional vector containhg the Euler angles, rieB3 is the sum of moment resulting from extemal 

efforts, riCdR3 is the sum of moment resulting from the constraint efforts and T?EHL~ is the sum of 

moment resulting from fictional efforts. In this description, the ' operator defines the term wise 

derivative of a vector. 

With the Euler angles description, the angular velocity is given by 

o = T ( B ) ~  

where T:R~-B'XR' such that by differentiation, 

d 
-W = ~ ( e )  ë + T(e) e 
dt 

In equation A. 1, the angular rnomentum is defined with 

(A.3) 

respect to the non inertial body axes. 

Consequently, when performing the derivative on the right-hand side of both equations, the Coriolis 

iheorem is applied and equation A. 1 becomes 
C F 

mixi = Pi + F i  + F i  

C F li &,+o;li o, = si + ti + ti 

where o' is the skew-symrnetric ma& described in general tensor notation as o;f~,koi 

(ei~=e,-,l=~3iz=l and E , ,=&,~=Q~~=-~)  and ai is the i" component of the velocity vector o. 

Defimition A.1. The coordinate vector (xlt, Olt, xi: e&., x:, 0,L}kIE6" is called the 

generalizedfree-body coordinate vector of the collection of rigid bodies. 

Equation A.2 and A.3 can be used to defme generalized fiee-body velocity and acceleration vectors. 

Definition A.2. The velocity vector qf;o (x,', o,', x;, oit, ..., x&  ER^" is called the 

generalized free-body velocity vector of the collection of rigid bodies. 



Definition A 3  The acceleration vector qf,'o{x,', a,', x:, q', ..., x i ,  %'}'ER~ is cailed the 

generalized free-body acceleration vector of the coI1ection of ngid bodies. 

The differential relationship between the free-body generalized position. velocity and acceleration 

is given by 

where T(0) is defined by equation A.2 and I defines the unity matrix. 

-- - - 

Definition A-4. The equacons obtained for each free-body can be  grouped into 

where M' is the inertia matrix, Q the vector of generalized extemal forces, Q' the generalized 
constra.int force, Q~ is the generalized fiction force and Q* is the generalized nonlinear force (from 
Coriolis effects) 

E p x h  ~ f o  

F - 
m,I O O O 

O I ,  - - -  O O 

i : . .  -. i 

O O - - -  m,l O 

O O --. O 1, 



is called the free-body dynamics of the col[ection of ngid bodies. 

A.2 - Constraints 

The motions of each body in a collection of rigid bodies can be related to the motion of other bodies 

by the mean of constraints. In rigid multi-body dynamics, constraints represents idealized 

relationship between the motion of neighbouring bodies. In this subsection, the terminoiogy used 

to describe such rigid constraints is defmed. Consvaints generally represents kinematic relationships 

between the free-body coordinates and velocities of the different bodies in a collection of bodies. 

They are mathematicdly represented as 

where RF, c is the number of constraints. Typicaliy, constraints equations are derived recursively 

using relative variables describing the configuration of one body with respect to the other ones it 

relates to. 

Definition AS- Constraints for which the relation A.8 is an equation are called omnilateral 
constraints while those with inequality relationships are called unilateral constraints. 

Definition A.6. Constraints that are not explicitly function of time are cailed scleronornic 
constraints. Their counterparts, called rheonornic constraints, are explicitly function of time. 

Throughout the rest of this appendix, o d y  scleronomic omnilateral constraints will be considered 

and the time variable will be dropped from the notation of the constraints equations. 
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Definitioii A.7. Geometrical constraints of the form 

M6, = O  

for which rank(d@/aqf)=h, are called holonomic constraints of order h. 

- - - . . -  

Definition A.8. Kinematic constraints of the form 

a(& 4/ = O or Qc& 6, = 0 

for which rank(Q)=d are c d e d  digerential constraints of order d. 

Definition A.9. The matrix is cailed the constraint Jacobian. 

Defimition A. IO. Differential constraints that can be integrated into the geometric form (eq. 

A.9) are cailed the dtrerential f o m  of the holonomic constraints. 

-- - - - .- - - - - - - 

Defmition 2.1 1. Differential constraints that cannot be integrated into the geometnc form (eq. 

A.9) are cailed the nonholonomic constraints. 

The nonholonomicity of a differential constraint is typically verified using the Pfaffian test. The 

problems associated with nonholonornic constraints were not weil understood until this century. The 

non-integrability of the differential constraint invalidates any approach that uses the ideal constraint 

assumption, such as the Lagrangian and Hamiltonian formulations. Other formulations such as the 

Gauss principle of least constraint, the Gibbs-Appel method and Kane's variational method, can ded 

with coostrained generalized coordinates and velocities having different dimensions. 

A.3 - Constrained Dynamics 

The set of equations defining the fke-body dynamics is under determined. The set of equations 

defineci by the constraints and free-body dynamics is, however, usudy well determined. In general, 

the following statements hold. 



Defdtion A. 12. The set of differentiai equations de fked by the free-body dynamics (eq. A.6) 

and the differential constraints of order d (eq. A. 10) is cded  the Set of Constrained Dynnrnics 

Equations. 

The set of consaained dynamic equations defines a system of 6n+d differential equations to be 

solved simultaneously. The d differential constraints can be used to evaluate the d constraint forces 

in the system. One way to formalize this is by using the Lagrange Multiplier Theorem. 

Theorem A.1. (Lagrange Mu1 tiplier Theorem) Let b€Rn and A E F ,  if db=O VSE kerA, then 

3;1dRm s.t. s'b + scAcA = O VSEIW". Since it is for all admissible s, then b=-AtA. Moreover, if A is 

full row rank, A has a unique solution. 

Proof: The proof of this theorem is done using the irnplicit function theorem. From the implicit 

hinction theorem, one can define s={u,v} such that u=-B*'Cv where B and C are defined by A=m 

Cl. Similarly, one can defie  b={etf '1' such that ute+vW. Substituting u, one obtains vc( -CcB-'e 
+ f')=0. Defining A=-Bh, one obtains e=-B'A and f=-C'A which proves the theorem. O 

- -  

Corollary to theorern A.l The constraint forces Q' of the free-body dynamics equation can be 

expressed as 

ec = -a(& A ( ~ ~ 1 1 )  
if the constraint Jacobian Q is full row rank. 

Definition 2.13. The equation 

obtained differentiating the differential constraint (A. 10) once more 

~ ( b ,  = 4 6 )  6, = r 

(A. 13) 

(A. 12) 

and using A. 1 1 is cailed the descriptor fonn of the constrained dynamics. 
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The existence of a solution to the descriptor form constrained dynarnics is defined by the following 

theorem. 

Theorern Ad. (Constrained Dynamics Existence Theorem) Let a be an admissible virtual vel ocity 

(ae{a 1 &=O)), then if aTM!a>O Va€ {a 1 &=O } and if the constraint Jacobian D is fidl row rank, then 

there exists a unique solution to the constrained dynamics given by 

b (A. 14) 

The proof of this theorem is given in HaughCA.41. The full row r d  condition of the constraint 

Jacobian is strong. There may exist configurations in a collection of ngid bodies where two or more 

constraints become redundant. In these conditions, the constraint Jacobian Ioses its full row rank 

condition and the existence of a solution is momentarily lost. 

- -- 

Defimition A.14. The set of configuration Co {q'l Q(qf) is not full row rank) is c d e d  the set of 

constraint singularities. 

Research is underway to investigate the problem of singdarity in mechanical systerns. Numerical 

integration and control system design problems are some of the fields where singularity plays an 

important role. This is beyond the scope of this appendix. 

A.1.4 - Analytical Solution 

One global analytical solution consists of analyticaüy inverting the matrix shown in equation A. 14. 

This approach may be extremely time and effort consuming, especially when the number of bodies 

and constraints are hi& The most widely used methods are the substitution methods. Arnong the 

most popular , the recursive Newton-Euler consists of recursively solving consaaint forces from the 

extremity going inwards, and substituting the result for the inboard body. Al1 substitution methods 

makes use of the following theorem. 
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Theorem A 3 .  (Cwrdinate Partitionhg Theorem) Let each element of Q with rank d be c times 
differentiable and let q f ( ~ )  be the initial condition, then by the implicit function theorem, if P is full 
row rank, there exists a partitioning of qf=( ut,$ }' for which rank(Q(d(0)) }=d such that there exists 

a unique c times diserentiable solution u=u(v) valid in a neighbourhood of v,. 

The proof of ihis theorern is not presented here. In reality, the theorem is a corollary to the implicit 

function theorem and, consequently, shares the same proof. It can easily be extended to include the 

partitioning of the velocity vector, with the result that ù=f(v.Y) valid in some neighbourhood of v, 

and Y,. 

Definition 2.15. The coordinates u and v obtained from the partitioning are respectively c d e d  

the dependent coordinates and the independent coordinates. 

From equation A. 15. ü may be expressed as 

Ü = - n,~] 

The coordinate partitioning theorem can be used to partition the descriptor fom as 

(A- 16) 

- - 
Mu Mm 0: 

M w  Mw 0: 

- Q u  Q" 0 -  

and substituting equation A. 16 in the first two equations of equation A. 15, one obtains a reduced 

order problem for which the solution for Y observe the following equation 

M ÿ  = Q + Q F  + ed (A.17) 

+ Q v  + Q v  

w here 

M = M,-M,P;'P, -Q:o;'[M, -M,P;*Q,] 

The constraint efforts are then expressed as 



As a result, the dynamics part of the constrained dynamics is reduced to the dynamics of the 

independent coordinate (eq. A. 17). Equations. A. 16 and A. 19 are consequently algebraic 

expressions of the dependent coordinate and constraint effort respectively as a function of the 

independent coordinates (and higher denvatives). This genenc representation of substitution 

methods is purely mathematic. In practice, as  for the recursive Newton-Euler method, the 

substitution is applied recursively to single constraint partition instead of to the hole vector of 

constraints. 

- -- 

Deffition A.16. The set of equations given by the dynamics of the independent coordinates 

(A. 17) and the expression of the constraint effort (eq. A. 19) is called the reduced form of the 

constrained dynamics. 

Another general methoci to obtain a solution is the method of the orthogonal complement, based on 

the following definitions and theorem. 

- 

Defmition A.17. Consider a matrix A(x):Rn-R"", then a matrix C(x):Rn-B"" for which 

AC* VxlWn is called the orthogonal complement of A. 

Theorem A.4. (Orthogonal Complement theorem) Consider a matrix AEW- where n *m then the 

matrix C=I-A~(AA')-'A is an orthogonal cornplement of A. 

Defdtion A.18. Consider a matrix AER"" where n+m, then the matrix A'=A'(AA~)" is the 

pseudoinverse of A. Note that only m columns of A' are independent. 

The orthogonal complement method rnakes use of the orthogonal complement to define the nuil 
space of the constraint forces. D e f ~ g  an orthogonal complement of the constra.int lacobian, 

c = 1 - Q ~ ( ~ Q ~ ) - ' P  (A.20) 



premuitiplying equation A.6 by Ct and using equation A. 1 1, one obtains 

M g <  = c'IQ + Q~ + ed] ( A w  

where M'=CM Using again the coordinate panitioning theorem, the acceleration vector can be 

partitioned into dependent and independent coordinates, and the reduced form of the constrained 

dynamics is obtained. The constraint efforts are obtained by isolating A. in equation A.6. The 

resulting equations are identical to equations A. 16, A. 17 and A. 19. 

Pmctically, the orthogonal complement solution is relatively complex for the generai case. However, 

some relationships between the orthogonal complernent and the partitions Q, Q for the case of a 

three structure simplifies the formulation when relative coordinates are used to defme the kinematic. 

A.1.5 - Numerical Solution 

Numerical solutions c m  be obtained in a numerous number of ways. Here, an algorithm to solve 

globally the descriptor f o m  and proposed by Haug [A.4] is presented. The algorithm has been 

adapted to incorporate the presence of rnixed constnints (holonornic and nonholonomic). First, the 

holonomic constraints are represented by @(q)=û and the non-holonomic constraints are given by 

A(q)q=O, such that the total difierential constraint is Q(q)q=û where Q(q)= {V&(q)',A(q)' } '. 

step 1 + 
step 2 j 
step 3 + 
step 4 + 

step 5 + 

step 6 + 

step 7 + 

stev 8 3 

Partition q such that V,@(q)Ù+V&q)ir=O using Gaussian elirnination. 
Partition q such that Q(q)w+~(q)x=û using Gaussian elimination. 
Solve equation A. 13 using LU decomposition and back substitution to obtain q and A. 
Integrate numerically q to obtain q and q. For example, the Adams-Bashforth-Moulton- 
predictor c m  be used. Note that values for u, v, w, x, u, Y, w and x are obtained. 
Keeping v constant and using the value of u obtained in step 4 as initial guess. use a 
nonlinear Newton-Raphson algorithm to find the values of u that verifies the holonomic 
constraints @(u,v)=û. Obtain new q that verifies the holonomic constraints. 
Evaiuate the constraint Jacobian with the new q and solve &(q)w+Q(q)H for w keeping 
k constant using a Gaussian elimination with back substitution. Obtain a new q that verifies 
the differential constraints. 
In the resulting Gaussian elimination done in step 1 or 2, if the new q and q generates a 
srnall pivot condition (invalidate the partition). proceed to next iteration from step 1. 
until the end, proceed to next iteration from step 3. 
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Appendix B 

Tribology 

Tnbology as a science was bom in Endand at the beginning of this century. However, the study of 
friction is relatively old. Leonardo da Vinci at the end of the xV" cennüy descnbed in his 
Notebooks the analysis of the motion of a brick on an inclined flat wall (refer to Armstrong [B. 11). 

His statements reflected what is known today as the fundamental laws of friction. However. it is 

only some two centuries after and apparently without the knowledge of da Vinci's work that 
Amontons stated the laws of friction. They are summarized as 1) the friction force is a force 

opposing the motion, proportional to the nomai load, and 2) the friction force is independent of the 

contact area. 

One of the most substantial contribution to uibology is the work of a French army Engineer (Charles 

Augustin Coulomb) who. s timulated by the French war industry, established scienti fically the basic 
laws of tribology. His statements on the relation that exists between the microstructure of the 

interfacing bodies in contact and the fiction force has survived up until now. In his model, the 
surface roughness was represented by bnstles and the friction force was explained by the effort 

necessary to move two brushes one relative to another, with their bristles in contact. Using this 

analogy, the ciifference between static and kinetic fnction could be explained by the fact that, at 

higher speed, the bristles may have jump over opposing gaps resulting in less effort to oppose the 

motion. In addition, the reduction of friction due to lubrication could also be explained by the 

lubricant fdling up the gaps. The main weakness of the Coulomb bnstle model was its incapacity 

to explain the dissipative process of fiction. However, the effect of surface roughness on fiction 

was found to be a large part of the tmth. 

ki the 1930's and 1940's, and with the intention of understanding W e a r  and lubrication for industrial 

purposes, Bowden and Tabor CB.21 investigated the microscopie behaviour of solids in contact. 

Since then, tribology as it is defined today was bom. The rate of publication in tribology has been 



increasing ever since. An impressive amount of publications, treating both experimental and 

theoretical studies, is avaiiable today. The following discussion is a summary of the ideas that 

emerged fkom these investigations and that are considered as fundamental to tribology. The 
discussion is separated into four sections. First, the fnction in unlubricated contacts is described. 
With the understanding of the fundamental process underlying dry fnction, the effect of lubrication 
is presented in a second subsection. Then. for practical purposes, some of the models representing 
the macroscopic behaviour of friction are presented and analyzed. 

B.1- Unlubn'cated Friction 

In his work. Coulomb used the bristle mode1 to represent the topography of the contact surface. A 

generaiization of the bristle was introduced by Bowden p.4: the asperity rnodel. While bristies are 
long and thin by d e f ~ t i o n ,  asperities c m  have any height and size. This genenlization directly lead 
to the concept of apparent and true surface of contact. 

A study of the topography of the contact area is indeed the best approach to explain fnction. 
Consider two bodies A and B in contact over a finite dimension area (fig. A. La). Let denote A, as 
the total m a  of contact, N the normal force and F the tangential force due to friction. Figure A. 1 b 

represents a mapification of one portion of the contact area. The protuberance of each surface are 
called asperities. At this level, the two bodies are in contact only over a portion of the total area 
The sum of those microscopic contact surfaces is called the true area of contact A, as opposed to the 
apparent area of contact 4. The asperities rnay have different height, slopes and radius of curvature 
of the tip. In addition, the slopes rnay differ in different directions. 

With this description of the topography of contact in mind, an intuitive explanation of friction is 
possible. The apparent stress at the contact surface rnay appear relatively low. However, at the true 
contact sites, the stresses rnay become extremely high. Under these circumstances, two phenomena 
rnay occur. For one, if the materials are molecularly compatible, the high compressive stresses rnay 
reduce the separation to a level where the intermolecular distance is low enough for the appearance 
of Van der Waals forces. Therefore, fiction at the contact of two clean metalLic surface rnay be the 

result of a phenomena sirnilar to healing in fatigue crack growth. However, this is not dominant in 
every fictional contacts and explains exclusively the static friction forces. 
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Figure A.1- The Topography of Contact 

The other possible consequence of the high true contact stresses is plastic yielding. The stresses may 
easily reach the yield strength of one or the other materials in contact. From there, assuming the 
normal loading constant, any increase in tangentid loading would be equivdent to an increase in the 
number of true contact sites reaching plasticity lirnits. When al1 the true contact sites reach that 
limit, breakaway occurs and sLiding is initiated. This observation is in agreement with the work of 
Rabinowicz p.31 and Dahl p.41 who suggested rnicroscopic displacement occurring in static 
friction called the Dahl effect. In addition, this analysis could explain the dissipative behaviour of 
friction since plastic deformation is a dissipative process. 

The aspenty mode1 can explain other important observations on the macroscopic behaviour of 

fiction. For example, when operating under static friction, the limits of plasticity are not reached 
for a i l  m e  contact sites. Consequently, assuming that the materials obey Hook's Iaw in the elastic 

region. a spring-like behaviour is observed (Dahl p.41). In cm also explain the reduction in fnction 
in the kinetic fiction regime. During sliding, some asperities are brought in contact and are 
deformed up to the plasticity îimit. In that process however. some aspenties that were plastically 
defonned are freed, releasing a certain amount of elastic strain energy that cm be partly used to 



defom newly contacting aspenties. This aay explain the difference that exists between static and 
kinetic friction. Fially, the asperity mode1 can easily explain the fundamentai laws of Mction. The 
increase in normal loading is reflected at îhe asperity level by an increase in number of contact sites 

and m e  contact surface. As a result, the amount of tangentid force necessary to bring ail contact 

sites to the plasticity limit is also increased. 

The study of the topography of different surfaces was later measured using precise profîlometric 
instruments and demonstrated the vaiidity of the asperity mode1 (Majumbar~S], Greenwood and 

Williamson~,6], MannP.71 and BaileyP.S]). Throughout the years, researchers have used contact 
mechanics to study the asperity contact problem. Various models were developed using Elasticity 
and Elasto-plasticity approaches (Rigneyp.9], Avitzur and al.[B. L0,B. 1 11 and Chang and 

al.B1 12.B. 131. 

B.2 - Lubricated Friction 

Lubrication has been used for a long time for reducing fiction and wear. Obviously, lubrication and 
tribology are very closely related. The analysis of Wear in mechanisms demonstrates that Wear is 
essentiaily a result of fnction. Again for industrial and military purposes. the problem of lubrication 
was studied in great details in the XIXth century. A good approach for the understanding of 
lubrication in frictional contacts is through the analysis of the Stribeck curves relating the relative 
velocity between the contacting surfaces and the friction force for constant normal loads. 

II- 

- 
Velocity 

Figure A.2 - Typical Stribeck Cuwe 



A typicai Stribeck curve is represented in figure A.2. There exists four distinctive regions to the 
Stribeck curve (See Armstrong and al. B. II). Region 1 is called the stiction region. In this regime, 
the lubricant fills up the void at the contact surface without preventing the contact of asperities. 
Consequently, the friction can be explained using the same argument as those used for static dry 
contacts. Dahl effects are present in the stiction regime. Region II is the boundary lubrication 
region. The lubricant, trapped in the gaps between asperities, moves to the contact sites and forms 
dong both surface a boundary layer preventing rubbing between the molecular level asperities. The 
result is a decrease in friction associated with the flow development of the lubricant. Region II is 
the partially lubricated region. As the flow develops, the fluid film increases in thickness, pushing 
apart the two surfaces and reducing the amount of asperities that may come in contact. However, 
as the flow is developing, the shear stress present in the film becomes the dominant effect of fnction. 
As a result, fnction keeps on reducing up to a point where the reduction in asperity contacts becomes 
insignificant with respect to the increase in shear stress. Finally, region N is the full Buid 
Iubrication region. The flow is fully developed and the dominant effect on the variation of the 
fnction force is the shear stress in the fluid, proportional to the relative velocity for Newtonian fluids. 
The residual Coulomb friction force is due to the interaction present between asperities with height 
greater than the fluid film thickness. 

The analysis of fnction performed so far is static. However, it was clearly dernonstrated that some 
phenomena associated with fiiction are dynamic in nature. Some researchen. RabinowiczB .3], 
Dahl@A], and Hess and Soomp. 141 in particular, performed experimental studies that suggested 
some behavioun that clearly demonstrated fiction to be dynamic in nature. The most important 
experiment is the stick-slip experiment of Rabinowicz p.31. A schematic representation of the 
experiment is shown if figure A.3a. It simpiy consists of a slider attached to a fixed wall with a 
spring and a damper, and resting on a conveyor. The conveyor motion is then controlled in velocity 
to provide some measurernent of the fnction force. Ideaily, the damper should not be used to obtain 
the simple relation F ~ y a x .  However, the vibrations induced by the relative motion of rough 
surfaces practically make impossible such a simplification. Consequentiy, a damper is introduced 
to Limit the bandwidth of the slider longitudinal motion. However, F a t  care in the selection of the 
damper is needed. Indeed, the bandwidth of the mechanical systern should not be too restrictive to 
interfere with phenomena amibuted to fnction (see Bell and Burdekinw .15]). The damper should 
be selected such that 1) the force it generates is negligible when compared to the spring force and 
2) such that stick-slip is not avoided. 
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Figure A.3 - S tick-Slip Experiment 

A typical spring force response (position) is presented in figure A.4b. At first, the static friction is 
dominant and the force builds up in the spring. When the breakaway force is reached, the slider 
starts to move backward due to the reduction in the friction force associated with kinetic friction. 
When the relative motion between the slider and the conveyor reaches zero, the slider sticks and the 

process is repeated. If the damper is selected to be such that the position at which stiction reoccurs 
is near the equilibrium between spring force and kinetic fiction, the stick-slip process is avoided. 
From the static anaiysis presented in the preceding sections, this explanation makes sense. However, 
it cannot predict the difference between the point A, B and C. in fact, it has been observed that the 
maximum stiction force is a function of the dwell tirne. Consequently, the level of stiction present 
at the fust breakaway (point A) is higher than under steady state operation (point B). Also, when 
the speed of the conveyor is increased, the stiction force is reduced (point C). If it is increase to a 

certain level. stick-slip disappean. A similar result is obviously reached if the spring is stiffened. 
These observations cannot be explained using the static arguments of the preceding section. So far, 
nobody had succeeded to fully describe the process behind the dweii thne dependency of stiction. 
On the other hand, many lubricant companies had studied empiricaüy and a great deal of empiricai 
data is available. 

Another obvious presence of dynamics in fiction is cailed the friction hysteresis. Experimentdy, 
one may modulate the sliding velocity of the form v=~+Asin(ot) where E is a srnail number and 



record the fiction force as a h c t i o n  of velocity. A frequency dependent hysteresis occurs near the 

zero velocity zone. This can be explained only using a dynamic model. 

B-4 - Friction Models 

There exists two major types of models of fiction: the static models and the dynamic models. The 
most common static model is the Coulomb model described by, 

where v,, defines the relative velocity between the contacting surfaces, f, defines the viscous 
darnping coefficient, et defines the positive direction of the tangentid vector, F,, is the sum of 

extemally applied force to the contacting body, F, is the static force of friction (F,=pp). Fk is the 
kinetic force of friction (F,=p,N),N is the nomal contact force, p, and pk are respectively the static 

and kinetic coefficient of friction. The friction vector is given by Ff,,,,=Ff~,,~ne,. Usually, the 
Coulomb model is presented by the fmt condition of equation A.22. The addition of the other two 
conditions makes the model determinate for al1 speed and force conditions and is useful to explain 
stick-slip. 

Our previous static analysis of friction have shown that in cases of lubricated contact. the Stribeck 
effect is important to consider. The inclusion of the Stribeck effect in a static mode1 was done in two 
different ways. First, Hess and Soom[A.ZO] used a Lorentzian mode1 of the form 

to replace the equation when v,,+O in eq. A.22. In eq. A.23, the parameter v, is an empiricai 
constant. Second, Bo and Pavelescu@. 161 suggested the use of an exponential model of the form 

where v, and 6 are empirical constants. These friction models are static and do not introduce extra 
States. Such models cannot, however, include ail aspects of fiction. 



Dah.ip.41 introduced a bnstle model of the form 

where o represents the ngidity of the contact and i is an empirical model. This model represents well 

the Dahl effect (spring-like behaviour in stiction). Its steady-state solution is the static Coulomb 

model with Fs=Fk. This model does not capture the Stribeck effect. 

Another Dynamic model was proposed by Haessig and Friedland [B. 171. In this model, the state of 

friction is estimated by an bounded integrator for which the input is O if their is a relative velocity 

and the integrator is saturated, and v,, if the integrator is not saturated. 

if v,pO and I P  I >Po 
(A.26) 

The fiction force is given by Ffnct,,=Y p + P p. The resultinp "reset-integrator model" is similar to 

the DahJ model and captures the same phenornena. 

Finally, Canudas and al. 18-18] captured the Stribbeck effect into a bristle model sirnilar to the Dahi 
model. For their model, the state of contact deformation is given by 

Ffricrion = ooz + o i i  + fvvrel 

where 0, defmes the contact rigidity, o, defmes the contact damping and g(v,,) is set to achieve the 
desired steady-state solution to the dynamic friction model. For example, to include the Stribbeck 

effect, one selects 

f 

describing a Bo&Pavelescu exponential model. 
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Appendix C 

Proof of Upper Semi-Continuiîy 

The contingent set associateci to the dynamic systern of equation 5.69 is given by 
~ ( w ) o ~ ~ z = / ( w ) + ~ ( w ) a ( w ) + g ( w ) u }  (CA) 

The proof consists of demonstrating that the separation between contingent sets on both sides of 
the discontinuity is continuous. This is depicted in figure C. 1 .  

Figure C.1- Concept of Separation 

The points in a ô-neighborhood N,(w,) c m  be in N, or N2. Since lV+ and %(w) is continuous on 

Nz oniy the separation d*(K,, 8 )  needs to be checked for continuity. 

The separation is given by 

Using the triangular inequaiity Il x+yII a Il xll +llyII and reorganizing 



Since, the inferior n o m  of (n - u,) is zero (u is in a bal1 Bu for di w E N,u N2) and a(w) is 
bounded as described in equation 5.7 1, the following statement also holds. 

d - ( ~ , . g ) + - . t ~  ~ + I B - B , ~ ~ ~ + J L ~ ~ - L , ~ ,  (c-4) 

Therefore, since f, g and L are continuous, given any E,, e2 and E,, there exists 8,, 62, 6 , s  such 
that 

1lÜ - W [ < E I - i f - f l  1<6, 

Consequently, the separation is continuous in any bneighborhood of any point WE N which 

implies that the contingent set K is USC VWE m. 
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Robot Dimensions 

Roboi Dimensions 

Fig. D.1- Top View 
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Figure D.2 - Side View 
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