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PBBSTRACT 

The purpose of this r-ch was to hvestigate the potential of low wst, high 

resoiution airborne digital camera imagery for use in forest vegetatioa managmient. 

Airborne hageiy with 2.5 cm p k d  s i re  was acquired near Sa& Ste. Marie, Ontario, 

over two forest r ~ ~ o n  sites to: i) d u t e  capabilities for discrimination of conifer 

crop species fiorn vegetatjve competition at varias d d e s  using classincation of 

spectral and textural image information, and ii) devdop modds reiating vegetation 

structure parmeters to image spectral ond textuml information. Resuits Udicate very 

strong p o t d  for classifiCIltjOa and counting of tonifier SeedjYlgs when competition is * 

low or not visible to the saisor. Systemitic decreases in cliss separabiiity and conifer 

munt aceuracy were obsmed with irmeases in d e  of wmpetition vqetation. In 

biophysical modelling, r&om between image and vegetation stmcture variables were 

weak yet statisticdy signifiaint and improvement is IIeeded for operatioad use. 
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Chaptcr One 

htro8uction 

1.1 Introduction 

Forests in Canada play important roles not ody for the country as a whole, but 

for comrnunities and individual Canadians as well. Covering over 45 percent of the 

Canadian landscape, they directly and indirectiy support the economic and social well 

being of rnany Canadians. In addition, forests play an important ecological role in the 

environment. They moderate climate, prevent soi1 erosion, irnprove water and air 

quality, and provide habitats for countless plants and animals. 

The importance of Canadian forests dernands their proper management to sustain 

and enhance the roles they play. Nmety-four per cent of Canadian forests are publicly 

owned, of which 7 1% are rnanaged by provincial govements, while 23% are managed 

by federal and temtoriai government s (Naturd Resources Canada, 1 996). 

Approxirnately 50 million hectares are currently being protected f?om harvesting 

activities by government legislation or policy. The legislation and policies goveming the 

1 19 miilion hectares in Canada that are currently being rnanaged for timber production 

are primarily under provincial jurisdiction (Natural Resources Canada, 1996). Ali timber 

related practices, such as habvesting, regeneration, and silviculture activities, in each 

province or ten-itory, are governed by those provinces' forestry statutes. 

Forestiy statutes, such as Ontario's Crown Forest Sustainability Act (1994) 

provide the fiamework for the use, allocation, and management of al1 publicly owned 



forested lands (Ross, 1995). The Crown Forest Sustainability Act provides for the 

sustainabiüty of Crown forests in Ontario and outlines objectives for the management of 

the forest to meet present and fùture social, economic, a d  environmental needs 

(Statutes of Ontano, Chapter 25, 1994). Crown forests are Stuated on laad owned by 

Her Majesty in Ri@ of Ontario and are under the management of the Ontano 

gov-. 

To compiy Ath  provincial regulations and ensure continued access to crown 

forests, forest companies utilize standard forest management practices. niese practices 

include not oniy highly pubîicized b e s t  &vities, but nunaerous sihicultural operations ' 

that ensaire resuccessfirl forest regeneration. Field hvestigations enable forest managers to 

identi& and correct, in a timely mariner, areas within foresi management unitsi that d d  

potentidy Iead to problm, theretore ensuring successfùi regemation. 

1.2 Coitena oi ai9 &searC% 

The use of remote sensing in for* applications has been weil researckd 

wiuiin the remote sensllig end fore* communities (Pin et al., 1997; Hall et d, 19%; 

Wulder et al., 1996; Smith et al., 1989). Numer- sasors (optical and radar) and 

platfonns (airborne anci satellite) have proven usefiil in aiding forest mamgers with 

various decision-making prcwaes (e.g. herbicide appliaâh, suppkmentrl planting) 

1 A n a g g r e g a t e o f f ~ ~ ( b a t a n n r a n a g Q u i d e r t b e s a m c ~ n a i d ~ s y s t e m .  



during regeneration and West  operations. Currently, as in the past, forest companies 

have primanIy used remote sensing in forest mapping and mature forest inventory. 

Advancements in technology have led to the development of various new sensors 

and platfim. One sensor which has potentiai for use in forest vegetation management 

is an airborne digital carnera. Digital camera systems offer a number of advantages over 

conventional aeriai photography. They are generaiiy tower in cost than 70mm and large 

format photographie cameras. Furthemore, they eliminate the need for Hm 

developrnent and subsequent scanning, which is repuireci when subjeaing conventional 

photography to computer aqalysis. Digital cameras also offer the capability for in-aght 

viewing of images, computer control of exposure levels, and a Iinear response to 

radiance (King, 1995). Many of these feahres can be found with other optical sensors 

(e.g. MEIS, CASI), aithough costs associated with digital cameras image are 

significantly less. Furthemore, airborze digital camera systems currently offer higher 

spatial resolution than other airborne and satellite digital çensors as well as complete 

flexibility to vary the desired resolution by varyhg the flight altitude, or lens focal length. 

Digital cameras, being M e  sensors are more s i d a r  to the came f u m t  of 

photography than are line scanners, t hus providing more potential for integration into 

forest management activities which utilize photography . 

The beüef underlying this research is to develop a rnethodotogy that is readily 

transferable to a user cornmunity, in this case the forest managers. Therefore, this 

research was designed to simulate operational conditions, where the parameters, sensor, 



image analysis and classification techniques would have a greater chance o f  

impiementation within the forestry seetor. Furthemore, the data acquired using the 

digital camera were lefi in an uncorrected state. In an operational setting¶ image 

degradations from bidirectional reflectance, noise, or radiance decrease with view ande 

due to optical effects are usuafiy not corrected due to the complicated nature and high 

costs of the processes involved. Therefore, if cornputer d y s i s  on unwrrected data 

using commonly available rnethods is successfùl, the transfer, with respect to botb 

functionality and wrnprehension, to an operational setting would presumably be- easier 

and less complicat ed. 

To transfer the technology and methods presented in this work, several other 

factors must also be considered. The use of digital naine cameras as opposed to other 

high remlution sensors, such as the Compact Airborne Spectrographie Imager (CASI), 

do not require advanced user training, extensive p r e b a r y  data processing, or hi& 

capacity operating systems. Secondly, imagery obtained fiom digital fiarne cameras can 

be analyseci using standard, commercially available software. Although some of the 

rnethods used in this reçearch are experimental, they were conducted using a simple set 

of user inputs with commercially avdable PC-based software. Lastly, the choice of 

spatial resolution is also important. For forest regmeration assessrnent there is a need to 

'see' individual conifer seedlings. Other types of sensors typically produce lower 

resolution images where individual trees are not imaged and analysis must be conducted 

on a canopy basis. 



5 

A workshop held by the Canadian Forest Service in Sauft Ste. Marie, Ontario, in 

December 1995 examined the use of remote sensing for forest vegetation management. 

The workshop concludeci that aven m e n t  data and cost requirements, the best remote 

sensing system for implementation in forest vegetation management shouid include aerial 

photography. It was noted that a&al photography has been routinely used since the 

1950s and has seen substantiai improvements in resolution, forward motion 

compensation, motion stabilization, cornputer designed ienses, integraîion of GPS, and 

exposure control systems (Pitt et ai., 1997). Furthemore, aerial films have also b e n  

improved to achieve increased film speed, spectral sensitivity, resolution, and colour 

rendition. Research into the use of aerid photography has demonstrated that a photo 

scale of approximately 1: 1000 may be used to acquire data for crop and non-crop 

vegetation such as height, density and cover (Pitt et uZ., 1997). The use of aetial 

photography has çuccessfiiliy been demonstrated in regeneration surveys (HA and 

Aldred, 1992; Hall, 1984). However, the workshop recommended that the immdiate 

focus of research be on the use of digital cameras as replacements for aerial photography 

to assist in the acquisition of data used in the forest vegetation management decision 

making process (Pin et al., 1997). 

Digital kame cameras provide a method for obtaining digital images directly. 

The workshop stated that not only do digital cameras have a simüar technical 

sophistication and format to conventional aerial photography, but they offer the same 

advantages of digital line scanners at lower cost, permit customization by the user, and 



are easy to instd in üght a i r d  (Pitt et a[., 1997). W r  major limitation is lower 

ground coverage at a given resohtion than photography due to the d e r  size(s)of the 

imaging ships. However, digital camera systems are developing rapidly with continuous 

improvements in spatial remlutions and greater g r d  coverage as formats of irnaging 

chips inaease in size. 

niis research addresses this recommendation through the investigation of digital 

camera data for provision of specific FVM inf i ,don.  The prooedures used during this 

Uivestigaîion are ciiffer- nom those typicaily uscd by forest managas in that mahods 

are image-based and are automated as opposed to the manuril photo interpretation. 

1.3 Racuea QbjCCfiYes 

nie remch conducted for this tbesis focuses spdically on using infiormation 

derived fkom airborne digital carmm imegery as a decision making tool for the plamhg 

of silviuiitwal activities during the regenmation of cortif'kw~ fonst sites pr ia  to these 

sites king assessed for fiee-to-grow stanis. The evahiation wos conducted with the 

foliowing two objectives: i) asess the capability of airborne digitiil camas mery for 

conifet detection and identification using statistical d y s i s  and outomated classification 

procedures, and ü) assess the capabüity for sutisticd moddluig of biophysical 

puameters (lepfarea index md percent cover) of r e g d g  vegetation using spectral 

and texturd information extracted fkom digital camera irmigery. 



The fïrst objective involves identification of the objects of interest, in this case the 

conifer seedhgs7 within digital images and production of thematic maps of the 

regeneration plots fiom the imagery to support the decision-makllig process. The 

second objective relates to the duation of plant growth and cornpetition levds, which 

are important in dealing with regeueration ofconifer trees. This infodon c m  be used 

in establishg a s c W e  of where and when to employ certain silMdture act~t ies such 

as wccd control and spacing. This research inchides two componcnts which have not 

been preMoudy investigated in FVM; digitai carnais and the use of automated 

classification. 

1.4 mbtioli of Tkrb 

To fàcilitate an evaluadion of digitai ramera bmgeay as a twl for decision making 

in forest vegetation management, some irnowwiedge of forest vegetaîion management and 

sihiculture pPaCQices needs to be outlined; this is a d c i r d  in Chapta 2. FutthermOre7 

the spectral response of the targets, in this case vegetation, also meds to be swnmorized. 

This b a c k g r d  is providai in Chapter 3, in addition to a description of the nccessary 

technical and contextual background of the work undertakm. This basic bitckground 

theory is pre~errted through a progression of past and w e n t  remote sensing research. 

Chapter 4 deseriôes the study a r a  and &ta used during this resairch. Chspter 5 

provides a detakd discussion of the methods developed to d u a t e  t h  use of airborne 

digital inmagery in regCnttZIti0tl m. The results of the rescgcch are presented and 



discussed in Chapter 6. Chapter 7 provides a review of the research, diicusses the 

significance and fimitations of the methods and r d t s ,  aod summorizes the conciusions 

reached. It wiil also provide recommendations for techniques or methods that d d  be 

u n d d e n  in fùture research. 



Cbrpter Two 

Potcntiri for Remote Scnsing in Forest Vegetation Management 

2.1 Forest Vegetation Management 

The management of Canada's forests has typically focused on the growth and 

production of marketable trees and not on forest ewlogy. In the p s t ,  the goal of 

management was to ensure a sustainable yield of timber for industry (Canadian Council 

of Forest Ministers, 1992). Of late, there is a new standard developing that Mews forest 

vegetation management (FVM) as a component of silviculture which involves 

manipulating the rate and course of early plant succession to achieve a desired 

composition, structure and form for the forest stand within a desired t h e  period (Pin et 

al., 1997). FVM involves integrating the knowledge of plant ewlogy with a wide 

variety of complementary ecosystem-based methods that are socially and economically 

acceptable (Wagner, 1994). No longer is the thber component the only concem; forest 

managers must include non-timber components of a forest ecosystem such as wildlife, 

recreation and watersheds, into their decisionmaking processes. Intensive forest 

management comprises two main activities. The first is that of regeneration through site 

preparation and planting or through naturd regeneratioa. The second is to tend 

estabiished stands of timber in order to maintah or improve their growth. This process 

is subdivided into tending either young regeneration or well-estabiished sites. This 

research di fonis on the tending of young regeneration sites. 



FVM decisions have to be justifiai on a site-specific basis. Justification using 

quantitative techniques to objectively assess the value of various treatment options on a 

site-specific basis is difficult because of the lack of quantitative data (Wagner, 1993). 

This hm led to a need within forest management for the use of decision support systems 

which are based on objective, quantitative assessments. A decision support system 

@SS) is a cornputer-based information çystem that includes a database, procedures, and 

an interface between the decision-maker and the procedures which are used to serve as a 

decision making twl.  These systems require large arnounts of data, typically more than 

what can be provided by current field surveys. Remote sensing offers an important . 

source of input data in addition to the field w e y  data, provided that the remote sensing 

data can be verified as sound. Decision support systerns have been developed to provide 

a method of organizing technical components to allow for effective decision-making and 

planning (Thompson and Weetaan, 1995). There are two features that are recomended 

for a forest management DSS: i) include a GIS as its core, and ü) cover all  important 

planning periods fiom regeneration to harvest (Thompson and Weetrnan, 1995). 

2.2 Forest Rcgenemtioa Assessrnent 

To understand how remote sensing can be used in FVM during the regeneration 

phase, it is necessary to review the objectives of regeneration assessment. SpecXc field 

techniques will not be discussed. 
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A forest regeneration assessment is conducted in order to determine the stahis of 

a regenerating site. Regeneration sites must be monitored and data collecteci to evaiuate 

plant succession and to prescribe necessary silvicuiture practices t O ensure successM 

regeneration of the site (Pitt et ai-, 1997). Field methods are currently the predorninant 

means of acquiring information during regeneration assessments. 

The Regeneration Survey MmaI for Onfmo (Chaudhry, 198 1) contains the 

produres, guidelines, and standards used for assessing regeneration in Ontario. There 

are numerous activities involved in a forest regeneration assesment; however, only those 

relevant to this research will be âiscussed. For information regarding 0th- activities, the - 

reader is referred to the above manual or to the draft manuaf Free-grmving regeneration 

aswssment m m m n ~ u r  Ontaro - &a# currently in preparatioq which wiU soon replace 

the older manual. The purpose of these manuais is to ensure that the same methods and 

standards are used throughout the province, by both industry and goveniment, to assess 

the success of regeneration. 

The main objectives of regeneration assessment are to: i) determine the relative 

success of regeneration on any site; ü) provide resource managers with information to 

predict future stand development; iü) determine the need for fùture treabnents on 

regenerated areas; and iv) allow for the cornparison of different treatments that led to 

successful regeneration for various species and sites (Arnup and Rusmk, 1997). To 

achieve these objectives, a regeneration assessment is dMded into three main categories: 
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stocking assessment; plantation survival assessment; and seeding assessment (Chaudhry, 

198 1). 

stockingl assessment is the first hventory of an area after harvesting or planting. 

The main purpose of stocking assessment is to determine the relative success of 

regeneration for an area accordhg to prescribed stocking standards and to provide forest 

managers with basic information on stand establishment to predict fuhire yields 

(Chaudhry, 1981). Regeneration success is judged on the basis of stocking, species 

composition and suitability of species to the site. A secondary objective of stocking 

assessment is to determine the need for fùture treatment, such as release, refill, re- - 

treatment, insect and disease control, and assessrnent of fiee-to-grow condition2. Timing 

is one major component of a stocking assessment. It is recomrnended that the timing 

window in northern Ontario be seven to eleven growing sasons &er planting or harvest 

(Amup and Rusnak, 1997). Assessrnent too soon &er planting or harvesting increases 

the nsk of declaring trees fiee-growing that may later be out-competed by other species. 

Exceptions to this timing window include: i) areas that have been carefùUy logged to 

protect advance gowth, which can be assessed sooner than seven years; and ii) for 

chemically treated or manuaUy tended areas, two full growing seasons must elapse &er 

treatment before regeneration assessment. 

- -- 

1 S t o d O n g k d e n n e d a s t b e f i e q u e n c y o f ~ n c e o f ~ n g r a n d a d r a n c e g m w t b o f ~ ~ e s o f  
accqtable specincations, based on plots of a certain size as cumpared witb the optimum number of 
eveniy distrihted trees that M y  ocaipy a site (Chaudhry, 198 1). 

Free-growing refers to the abiiity of a wellspaced cmp tree to withaand criticai competing non-cmp 
vegetatioa through to maturity ( C h e ,  198 1). 
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hother component of a stocking assessment typically associated with naturally 

regenerating sites is determining if the crop species present is acceptable based on the 

ecology of the sites and the site-specinc management objectives. Pnority is given to 

conifer working groups cornpared to hardwoods, and only crop trees of acceptabie 

species can be considerd for well-spaced3 and free-growing status (Chaudhry, 198 1). 

Stocking assessment is conducted by either an intensive systematic sampling or an 

extensive çurvey. Much of the emphasis d u ~ g  a regeneration survey is given to 

intensive systematic samphg. Surveys are conducted based on cover type: wnifer, 

hardwood, and mixed. For. the conifer cover type, emphasis is on stocking (Chaudhry, 

198 1). 

The second and third categories of a regeneration assessment are plantation 

s u ~ v a l  and seeding assessment. Plantation survival assessrnent involves a field survey 

where the survival data are recorded for wery plot which has been regenerated by 

seedhgs. In addition to deterniining the survival of the crop species, a cornpetition 

index4 is determined. Recommendations are also suggested in the field. These can 

include: subsequent planthg of seedlings, re-app lication of wd-control treamient s, 

monitoring, or treatment for insect damage or disease. Recommendation of free-to- 

grow status is also made during the field suwey. 

WeU-spaced refers to the distanse between cmp trees and reflects the potenpial growing rpace avaiiable 
to each of ihe crop tree through to maturity. 
4 Visual esthate of tbe degree of compeîïtion based on mer-head coverage of broad type competing 
vegetation (Chaudhry, 19% 1). 
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Seeding assessment is similar to plantation assessment; however, it deals with 

sites that are regenerating by seeding. A seeding assessment involves collecting 

information nom the field on the germination, mortality, and sumival of çeedlings 

(Chaudhry, 198 1). In addition, the crop species, cornpetition index, and silvicultural 

recommendations are also determined in the same manner as the plantation s u ~ v a i  

assessment. 

2.3 Potcntiil for Remote Sensing in Forest Regeserntion Assessrnent 

To understand how remote sensing cm be used as a decision-support tool in - 

forest management, it is necessary to review p s t  research that has investigated the use 

of remote sensing in forest regeneration assessment and the collection of plant 

information ordinariiy colected through field investigations. Field investigations cm be 

labour-, the-, and cost-intensive and can limit assessment by restncting the number of 

samples taken, the spatial and temporal coverage, andlor the amount of research that is 

conducted (Pitt and Glover, 1993). Remote sensing is seen as a method of obtaining 

additional data, as weli as reducing errors associated with estimations, providing a more 

quantitative approach to regeneration assessment. Past research which has investigated 

the use of remote senshg has typically focused on large-sale aenal photography to 

obtain tree measurements, in attempts to reduce the need for field campaigns or to 

provide additional data to support field measurements. 



Studies have investigated the use of large-sele aerial photographs to measure 

plant amibutes during the regeneration phase of vegetation management. Aend 

photographs were used to estimate pine density and competition conditions in young 

pine plantations by Smith et al. (1989). The study objective was to develop a system for 

estimahg pine density and hardwoad competition levels in 3-, 4, and 5-year pine 

plantations tiom aerial photographs. The fiee-to-grow system was used as an indirect 

indicator of competition level whereas pine density was determineci by counting pines in 

rows, and between rows with comparable heigbts and crown sizes. 

Aerial photographs were acquired in October using a standard 35mm camera - 

with colour slide film. The photographs were acquired in October to rnaxMze the 

contrast in foliage colour between the pines and hardwoods due to auhimn colouration. 

Two scales were acquired with ground representation of 1:4000 and 1:6000. The slides 

were interpreted and acetate sheets containhg the outline of pine and hardwood crowns 

were obtained, as well as the relative heights in cornparison to surroundhg vegetation- 

Crowns were then counted and a dot grid was utilized to obtain the relative percentage 

of cover for each category. Regression equations were developed to relate field 

surveyed pine density to the photo-based pine crown count. In addition, regression 

equations were used in prediction models for two different measures of competition 

level. 

Results indicated a strong relationship between measurements made using field 

techniques and large-sale aerial photographs. The applicability of photo-based 



prediction models in a 

decisions reached using 
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practicd decision-making situation was examined. Treatment 

the photos alone and the ground measurements were compareci. 

Using either of the two photo scales, 78% of the plots produced the same decision as the 

ground measurements (Smith 

photographs can be utitized to 

on field measurements done- 

Pitt and Glover (1993) 

et al., 1989). Results of the study indicated that 

determine treatment decisions which are typically based 

evaluated the use of large-de aerial photographs in 

assessments of vegetation management research plots. The study investigated the degree 

to which large-scale photographs could be utilized to reduce the niunber of field plots 

needed to obtain estimates of response variables such as woody crown area per hectare 

and rootstock density. Woody crown area per hectare and rootstock density 

(numberfha) are two response variables used to evaluate competition levels in forest 

regeneration areas. Thuty-five miliimeter photography was acquired fiom a s m d  

helium-filleci blimp in Iuly of 1990 and 199 1, at scdes of  1 :828 and 1 :4l4 respectively. 

Concurrent ground sampbg was also conducted for ground tmthing. The relationship 

between total plot crown area estimates on the ground and those manually measwed 

fiom photos was çtrong (84.97) .  

The study concluded that, in addition, to effectively evaiuating woody plant 

response variables, large-scale p hotographs, with some ground tnithing, reduced total 

cost of the site survey by a minimum of 14% (Pin and Glover, 1993). The study also 

outlined various advantages and disadvamages of large-scale photography. Advantages 



included: providing a permanent record for fiiture reference; utilization of photos by 

0 t h  groups to evaluate other eEects of vegetation management treatments, such as on 

anunals; ability for research and evaluation to be conducted over the winter moahs in 

preparation for the following field season; reduction in variation between sampling dates; 

and potentially more objective evaluation of treatment response variables (Pitt and 

Glover, 1993). Disadvantages include the potential loss of records due to equipment 

fdure and the need for expertise in photo acquisition and measurement. 

Another study conducted by Pin et al. (1996) invoived a two-phase approach to 

sarnpling of woody and herbaceous species amibutes. The study was conducted over - 

seven experimental treatments in the fd of 1992. Photography was acquired using a 

lightweight duminum boom attached to a helicopter tc obtain a scde of 11366. The 

sampling objectives were to obtain estimates of crown volume index for woody species, 

as weiI as to estimate herbaceous percent cover. Sampling was conducted in two phases; 

phase one involved the evaluation of photographs to obtain crown volume index and 

herbaceous percent cover and phase two Uwolved samphg the ground units to obtain 

field measurements of the crown volume index and herbacmus percent cover (Pitt et d, 

19%). 

The statisticaf relationship was wduated between phase one estimations and 

phase two estimations and used to correct phase one estimations for bias. Bias can be 

associateci with photo ùiterpretation and measurement and can include underestimation 

of smaller plants hidden by large plants and not detected on the photographs. Individual 



woody species could be identified and measured on enlargements of the aenal 

photographs to a scale of 1:80. Through the use of regression equations relating the 

field-based measurement of woody crown volume index to the photo meanirements, a 

95.7% agreement was obtained. Results indicated that there were no dserences 

between ground estimates, two-phase photo, and regression photo sampling methods 

with respect to the woody crown volume. However, the precision levels of the methods 

varied widely. Regression estimators were consiaently more precise, with an average 

standard error 78% smaller than ground estirnates and 65% smaller than two-phase 

estimates, while standard mors of two-phase estimates were 37% smaller than ground 

estimates. The presence of herbaceous vegetation increased the sampling errors of 

woody crown volume index estimates by an average of 3 9 4 ,  for both sampling rnethods. 

The study detemiined that classincation of herbaceous vegetation was successiid, 

with the two-phase estimates and ground estimates producing similar results, while the 

two-phase estimates obtained better precision (Pin et al., 1996). The study concluded 

that if individual species or groups are weil represented, large-sale photographs, in a 

two-phase sampling design, can be an eEitive tool for monitoring and quantiwg 

vegetation structure in silvicultd and forest management field investigations. 

Hall and Aldred (1992) outiined three objectives: production of maps to delineate 

unproductive areas, assess conifer stocking by species within a specified error, and 

evaluate the capabüity of large-scale photographs to reduce the cost of regeneration 

assessrnent using field measurements of stocking, density, species identifkation, and 
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percent detection by height class and species. Six cutover areas were seIected in 

Saskatchewan and photos at a scale of 1: 10 000 and 1500 were acquired in May 1987. 

Field work was also conducted to evaluate the effectiveness of large-scale photographs 

as part of the third objective. The 1500 scale photos were analysai in sterea and the 

assessrnent of the sites included percent conifer seedling estimation, species identification 

accuracy, stocking and density estimation, and the development of correction equations 

to adjust for systematic diffaences between photos and field measurements. 

The identification of conifer species (jack pine and spruce) waç correct 96% of 

the tirne for al1 seedling s k .  A higher rate of detection was obtained for trees greater 

than 30cm t d  which were taller than the surroundhg cornpetition. Photo stocking 

estirnates were considerably iower, by an average of 5% than stocking estimated by field 

measurements. A regression of density estimates between photo and field-based 

measurements produced a hi& regression coefficient. However, the resulting large 

standard error of estirnate suggests that density estimates had low precision using large 

sale photogtaphs. The study detemrined that large-scale photography was useful in 

assessing regeneration sites, nonetheless tùrther investigations of various d e s  to better 

idente stocking levels are needed (Haii and Aldred, 1992). 

The use of remote sensing, specificaiiy large-scaie a e d  photographs, has been 

examineci by several researchers and even put to operational use withh the forest 

industry for cenain objectives where it has been shown to be cost-effective. Research 

has begun to address the use of other sensors that can obtain large-sale images. Pitt et 



al. (1997) outlined data requirements on the part of forest managers and resulting image 

requirements, which included the level of spatiai detail resolved, coverage, timing, stereo 

requirement, spectral characteristics, and image format. Potential sensors were identified 

that could be used to meet the image requirements deemed necessary for forest 

vegetation management. These sensors included: opticai satellites, radar, airborne Line 

imagers, aerial photography, airborne videography, lasers, and digital frame cameras. 

The required image spatial reçolution is determinai by the size of the vegetation 

of interest and the degree to which it has to be identified and m e a ~ u ~ e d .  The spatial 

resolution requirernent for trees less thm 0.5 m tall was specified to be 1.6 cm for 

density, height, and plant conditions, whereas 8 cm was suggested for stocking 

assessments. in addition, it was recognized that for most sensors, the spatial resolution 

of the image decreases as the area of cuverage increases. Therefore, the workshop 

recornmended that the most cost-effective system that offers the largest image coverage 

with the desired spatial resolution be used. However, for investigations that focus on 

individuai tree evaluations, m'image coverage of at Ieast 0.05 ha is requued to ensure 

enough surroundhg detail and aid in the location of plots (Pitt et al., 1997). The timing 

of image acquisition relative to the vegetation phenology is also an important factor- 

Coniferous species are most visible in images acquired in d y  spring or late fd when 

the deciduous vegetation is ldess and the herbaceous vegetation is brown. Images 

should be acquired during the mid to late growing season if an evaluation of the non- 
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crop vegetation is to be wnducted due to the difnculty in identifying deciduous woody 

vegetation in the leaf-off condition (Pitt et al., 1997). 

Stereo capability was discussed with the observation that stereo images do aid in 

manual interpretation of vegetation structure and type and are absolutely necessary for 

obtalliing vegetation 

infiared portion of 

healthy conifers and 

height data. imagery whkh includes spectral resolution in the near 

the electromagnetic spectmm can enhance differences between 

unhealthy or dead conifers and non-crop vegetation, aiding in the 

interpretation. In addition, for spectral-based computer classifications, colour infiareci 

imagery may emphaçize the dflerence in near infrared refiectance of vegetation (Pitt et - 

al., 1997). The format of the images was also discussed with an emphasis placed on the 

acquisition of digital imagery. Digital images can prevent the los3 of spatial resolution 

that can result fiom the scaaning of analog images and can also provide usehl 

information within s d t  or shadow areas that photographs do not contain. 

Furthemore, images in a digital fonn can be stored, manipulated, analyzed, and 

interpreted through automated processes w i t h  a computer. 

2.4 Other Forest Rernote Scnsing Reserrch devant to Regeneration Asseurnent 

A large amount of research has investigated relationships between satellite or 

airborne image variables and mature forest parameten such as percent cover and LAI 

(Franklin et al., 1997; Bulter et al., 1995; Gong et al., 1995). Leaf area index (LAI) is 

the projected leaf d a c e  area per unit of ground area and is typicdy determineci by 



dividing the leaf area by the ground surface area (Price and Bausch, 1995). LAI is an 

indicator of the density of vegetation and can be used for estimation of forest canopy 

characteristics and determination of forest exchange rates of water, carbon dioxide, and 

oxygen (Gong et al., 1995). Percent cover is defhed as the percentage of the ground 

area which is covered with photosynthetic canopy materials, such as leaves or needles 

(Elvidge and Chen, 1995). LAI and percent mver are two vegetation structure 

parameters addressed in this thesis, and thus discussion of other remote sensing forest 

research be restricted to them and wiU not consider the many 0 t h  forest attributes 

which have been studied. 

Much of the research in modelling vegetation parameters is done within the 

context of radiative t rader  modehg or determination of net prllnary productivity of an 

area. This has typicaiiy been conducted using satellite data. For example, Franklin et al. 

(1997) estimated forest LAI in an area of New Brunswick using Landsat TM data 

acquired in 1992. The normalized diffmence vegetation index (see 5.4.1) was calculated 

using TM data for three cover types: sofhvood, hardwood, and mixedwood and the 

overd relationship to LAI was weak (0.15) but statisticaily sipficant. The nonnalized 

difference vegetation index (NDVI) was calculated fkom the TM data was highly 

correlated with LAI for softwood (conifer) stands (0.93), but much less correlated in 

mixedwood (0.66) and hardwood (0.13) stands. The addition of stem density, rneawed 

fbm the TM data, with NDVI in a multiple Iinear regression improved the correlation 

with LAI for h a r d w d  and mixedwood stands. 



ûther studies, nich as the one conducted by Bulter et 41. (1995) used higher 

resolution remote sensing data in estimating Ieaf area. Data fkom CASI were used to 

produce a forest leaf area map in Kananaskis Country, Alberta. NDW was calcuiated 

for two bands ( r d  and near infhred). Regression d y s i s  was conducted to idente the 

relationship between field measured plot-level LAI and a plot-averaged NDM for the 

same area. The relationship obtained between NDVL values and field measurements of 

LAI was weak (0.12) for ali stands but was significant. The strength of the relationship 

increased with forest stratification by species to approximately 0.34 for white spruce 

(Bulter et al., 1995 j. The study rmmmmded that the key to LAI values using CASI 

data was to stratfi the image into pure stands of diffkrent species. This improved the 

relationship from 20% correct to over 66% correct. The stratification method worked 

best for spnice, foiiowed by pine, and then aspen stands. Variations in NDVI values 

were attributed to atmosplikric effects, anisotropic refkctance, radiometric stnping, and 

flight iine differences, understory reflectance, and geometric mors in the data. 

Another study was also conducted using CASI data to e s t h t e  LAI in a 

coniferous forest (Gong et ai., 1995). The two imaging modes, spectral mode (Iow 

spatial resolution, many spectral bands) and spatial mode (hi@ spatial resolution few 

spectral bands) of the CAS1 sensor were implemented to determine which technique is 

more appropriate for coniferous LAI estimation and to compare the effectiveness of 

both. A regression analysis was cunducted with LAI as the dependent variable and the 

spectral reflectance of each channel, its logarithmic transfomi and two vegetation indices 



(NDW and Simple Ratio Index) were defined as the independent variables for three 

methods (piece-wise, univariate, and vegetation index-based). Linear correlations 

indicated that R M  is more strongly correlated with LAI; NDW was a better non-linear 

estimator of LAI than RVK for univariate regression and the vegetation index-based 

methods. For the spectral mode data the situation was reverse& with the piece-wise 

regression resulting in the largest prediction mors. The piece-wise method resulted in 

lower prediction errors than the other two methods using the spatial mode CAS1 data. 

The use of loganthmic r e f l ~ c e  in the multiple regression method produced. better 

relationships with LAI and lower errors than did the use of the raw channels. This - 

occurred for both the spatial and spectral mode data. The researchers also noted that 

different fiom the spatial mode, the near irafiad channels of the spectral mode data 

made little contribution to LAI predictions with multiple regression. This was possibly 

due to the large pixel sizes in the spectral mode, and that the data only wvered a portion 

of the study area, which lead to locational difficulties of LAI field measurement sites. 

The researchers recommended that spatial mode CAS1 data be used for LAI estimation 

because with the spectral mode, the LAI measurement sites were difficult to locate which 

can significady affect the LAI estimates. Furthemore, they recommended that multiple 

regression analysis be used to b h e r  investigate the relationship between LAI and 

spectral rdectance data (Gong et al., 1995). 

The above examples of research to determine mature forest structure 

measurements using coarser resolution imagery can be adapted to hi& resolution 



modelling of regenerating vegetation. In tbis thesis, the statistical methods and findings 

of these studies were applied in the design of the methodology given in Chapter 5.  

2.5 Summary 

There has been M e  research into the use of airborne digital cameras or other 

digital remote sensors in the assessment of regenerating conifer trees. The more 

commonly used aerial photography has proven useful in regeneration assessment. 

However, most of the methods of information extraction fiom the photographs are 

manual in nature leading to potential subjectivity on the part of the interpreter. 

Furthesmore, these methods can also be time consuming for larger areas of study. 

Discussions and workshops on the use of remote sensing in forest vegetation 

management have reported that digitai cameras couid replace aeriai photography wit hin 

the next five years (Pitt et al., 1997). This demonstrates that there is an interest in the 

use of airborne digital imagery within forest vegetation management which needs to be 

explored fùrther. This reçearch takes the amal photography methods and moves them 

into a digital environment where automated processhg can be expioited. 

Ln addition to the use of airborne digital irnagery as a rneans of assessing 

regeneration, this research assesses how wd information related specifidy to the 

vegetation of interest can be extracteci fiom this type of irnagery. Most of the research 

into the extraction of vegetation parameters, such as LAI and percent cover, has been 

Limited to analyçis of mature forest canopies using satellite data or high resolution 



airborne sensors. The studies have found that the relationships of spectral reflectance 

and spectral transformations with parameters such as LAI are weak but statisticaliy 

signifiant. Research has aiso ercamined how the selection of species cover types can 

improve the strength of the relationship. High resolution imagery, such as that used in 

this research, may provide the analyst improved species identification capabilities and 

eliminate the need to predict generakd LAI over large areas where there is more than 

one species present. 



Cbapter Three 

Principla of Remote Sensing 

3.1 Remote Sensing 

Remote senshg is the science of obtaining information about certain features or 

phenornena through the use of recording devices or sensors that are not in direct contact 

with the area behg studied. It dows  for both spatial and tempord analysis and can be 

used to obtain ùiforrnation about large areas with a minimum amount of tirne and labour 

expense. 

Coverage of aieas using remote sensing can be more extensive and repeated in a 

more effective manner than in-situ investigations. This increased coverage can result in 

an extensive historicai database that can simpw the assessment of long term trends and 

potentidy improve rnethods of forest vegetation management and regeneration 

assessment. Furthemore, remote sensing cm also be used to study areas where in-situ 

investigations are not feasible or are too costfy. Once remotely se& images have been 

obtained, information about certain features can be extracteci through the use of manual 

or cornputer-aided techniques and used in various applications. 

Currently, remote sensing within forest vegetation management has focused on 

the use of aerial photography to supplement field investigations. W~th an ability to 

provide information in a timely and effective marner, other sensors, both satellite and 



airborne, could potentially play a larger role in forest vegetation management decisions 

and may reduce the need for in-situ investigations. 

3.1.1 Remote Sensing Thtopy 

Remote sensing can provide information about various surface and sub-surface 

earth features through detection of interactions which take place between the feanires 

and incident energy. These interactions typically produce variations in properties of the 

electromagnetic spectnim or other energy types. For the purposes of this thesis, only 

optical imaging of electromagnetic energy in the visible to short-wave intiared (400 - 
2500nm) will be discussed. Remote sensing of other regions of the spectnim (thermal ' 

and microwave) as well as of other energy types (seismic, gamma, gravity, etc.) is not 

relevant to the thesis. The electromagnetic spectrum is composed of electromagnetic 

energy, characterized by wavelength (A) or fiequency (v) (Figure 3.1), which travels at 

the speed of light (3 x 10' d s ) .  Energy travels f?om a source, the sun, and is either 

reflected or re-radiated by the target to a sensor. The interaction of this energy with the 

sufice results in changes in the wavelength and intensity of the eiectromagnetic energy 

and provides a signifiant source of information to aid in the interpretation of features or 

phenornena fiom which the energy is reflected (Jensen, 1996). The electromagnetic 

energy is reflected to the sensor and is converted to an electronic signal whose voltage is 

in proportion to the amount of radiance. It should be noted in Figure 3.1 that the 

boundaries between regions are not discrete and are typically used for identification 

purposes only. 



Figure 3.1 
Eleetromagnetic Spectrum 

(Lillesand and Kiefer, 1994) 



AU features or phenornena on the earîh interact in a different way with incident 

electromagnetic energy. It is these unique interactions that facilitate the extraction of 

information about various features frorn remotely sensed images. Features like soil, 

vegetation and urban areas, all produce different spectral reflectance curves. Vegetation 

is the primary focus of this investigation and therefore oniy the interaction of vegetation 

with electromagnetic energy wiii be discussed. 

3.1.2 Remote Scnsing of Vcgttation 

A leafis built of layers of structural fibrous organic matter, with pigmentation, air 

spaces and water-filled cells (Curran, 1985). Each of these have an effect on the spectral 

reflectance, absorption, and transmission properties, which in tum affect the wavelengt h 

and intensity of electrornagnetic energy that is detected by the sensor. Pigmentation in 

leaves, particularly chlorophylt, causes a high degree of absorption in the visible 

spectrum, with relatively more absorption in the blue and red, hence the green 

appearance of the vegetation to the hwnan eye. The high reflectance in the near infiareci 

is principally due to multiple reflections off of the nearly perpendicular celi walls. This is 

largely related to the amount of biomass and the turgor of leaves. In addition, there are 

numerous discontinuities within the leaf and areas of signincant water absorption that 

characterize the refiectance of the vegetation within the near and short-wave infi.ared 

portions of the spectrum. The above factors combine to give vegetation low reflectance 

in red and blue wavelengths, slightly higher rdectance of green energy, high reflectance 
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of near infiared energy, and dechhg reflection in the short-wave inf'rzued due to wata 

absorption (Figure 3 -2). 

3.2 #mage ~akatio. 

Classific8tion d y s i s  has long beni a standard practice in remote sensing to 

produce thematic maps. There is 

image; the most conventional 

a range of techniques thM can be applied to classe an 

oaes includhg elgorithm such as the h b c h u m  

L i k U  classifier (Peddle et ai., 1994). The classification process can be based on 

either inbinsic variations in brightness, (unsupavised chister analysis), or based on a 

subset of samples of kmwn cover types whose brighmess characteriaics are rnatched 

with those of the rest of the area (supenised ciassification). Unsupavised ciuster 

analysis in addition to king used as a classification methai, uui be coducted as a type 

of segmentation of the land-, followed by a classification of thor segments. 

Classiners, such as the maxhum likefihood, rely on a mrmaîiy distribuaed dataset 

wkreas some classifiers, such as a neural networlg cm incorporate data that are not 

nomially diseibuted. C i d a t i o n  can also k conducted on a per pixd basis, where 

each pkd is anal@ and classifieci as an independent discrcte entity, or on an objwt 

b i s  where the assignmmt of a pixel to a C ~ S  is basd on its spatial rdationstrip with 

surrounding pixels (LilleJand d Kiefcr, 1994). 
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Unsuoervised Cluster Analy sis 

Unsupenised cluster analysis cm serve two purposes. The first is as a 

p r e k a r y  step to s ~ p e ~ ~ e d  classification, or to aid the d y s t  in ident-g land 

cover classes and training sampies. The second purpose is as a fom of classification 

with the production of a thematic map, of statistically discrimlliated clusters. Its primary 

advantage over supeMsed techniques is less user involvement as only a few input 

parameters are required. One of the simplest clustering algorithrns is the K-means. The 

number of spectral clusters to be extracteci flom the data is specified and the algorithm 

then arbitrarily selects locations for the correspondhg number of cluster means within 

the multi-dhensional image space &illesand and Kiefer, 1994). Each pixel within the 

image is then assigned to the cluster whose mean value is the closest through the use of a 

distance masure such as Euclidean distance. Once all of the pixels have be assigned a 

cluster, the algorithm recalculates the cluster means and the image pixels are again 

assigned to the nearest cluster. The process is iterated a specified nurnber of tirnes untii 

there is either no significant change (the user may input the amount of change considered 

to be acceptable or the algorithm may use standard statistical values) in the location of 

the cluster means fhm one iteration to the ne-, or the maximum nurnber of iterations 

specified is reached. The user must then cietennine the land cover class that is associated 

with each spectral cluster (Liliesand and Kiefer, 1994). 



U& Selection Of Training Samples in Suwnised Classification 

One of the e s t  steps in supervised classScation is the selection of sarnple 

training areas. The overall goal of training site selection is to assemble a set of statistics 

that represent the spectral response pattems of di the land-cover classes king used in 

the classincation (Liliesand and Kiefer, 1994). Typically, training sites are selected 

folowing field investigations and are cornmonly selected on-screen through the 

delineation of polygons or individual pixels. The multispectral image data within the 

polygons are then extracted and sumrnary statistics cdculated for each polygon. or for 

groups of polygons of a selected class. These statistical descriptions typicaiiy include the - 

number of samplesy the mean, standard deviation, variance, minimum value, maximum 

value, variance-covariance matrix, and wrrelation depending on the classification 

algorithm being used. They are used in subsequent separability analysis and 

classification. 

Separabilitv Analysis 

A separability analysis of the sample spectral data is conducted as an indicator of 

the potential accuracy of the resulting thematic rnap or to aid in selection of a subset of 

spectral bands and other data layers to inciude in the classification process. It involves 

determining the statistical separation between spectral response patterns for ali pairs of 

classes (Jensen, 1996). A range of statistical parameters can be used to meanire 

separability, one of which is divergence, a covariance-weighted distance between the 

mean values of the classes (Lillesand and Kiefer, 1994). Transformed Divergence is one 



of the most c o m w  used divergence measures, 0 t h  include average divergence, 

Bhaitacharyya distance, and Jefieys-Matusita Distance (Jmsen, 1996). For this research 

the Transfomecl Divergence separabiüty masure was used. It gives an exponentiai 

weigbt to increashg distances between the classes; therefore, the larger the divergence, 

the greata the separability. Vahies of Setween O and 2000 are obtakd, where O 

indîcates vesy poor segarability and a vahie of 2000 indicates excelient ~ ~ l a s s  

separability (Jerasen, 1996). The image andysis package EASWACE fiom PCI 

Geornatics Inc. used in this thesis d e s  the values by a factor of 111ûûû to between O 

and 2, whae O indiates very poor seporability and dues of 1.9 to 2 itmdicate excellent 

separability. Sepafability adysis, as described above, caa be usai iteratheiy in training 

site rennement. Ethe separabiiity between classes is poor, theu the training polygons for 

those clrisses can be modified to improve it. 

3.2.1 ruge CirriiTium 

urn L i k e l i b d  Classification 

The MaWmurn Likeiihood Classifier (MLC) is a paramefric technique that works 

by compuaing a mean vator, variance, and wmelation manEr for all classes in the 

training data (Peddle, 1993). Sets of probobility fùnctions for all classes are estimated 

fiom the sample data. These fbctions are used to &gn e r h  image pixel to one of the 

classes (or t~ a nul1 clrss) brsed on the relative likeiibood that the phe! bdongs to e ~ c h  

clw. The l i k e l h d  of pixels belonging to certain classes a n  be aflècted by a md 
biowidge. In the software used, this knowldge is in the fom of a bias -or which k 
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the value that allows determination of which class a pixel belongs to in the case of a tie 

between classes (PCI, 1996). Pixel assignment is also affect& by the threshold value set 

for each ciass. The threshold is the number of standard deviations to be used to defhe 

the boundary in spectral space of each class. Beyond this threshold, a data point, or 

pixel has such a low probability of inclusion in a given class that the pixel is excluded 

nom that class (PCI, 1996). 

The MLC assumes that the input data are multivariate normally*distributed, 

independent, and have approximately equal variances. If these constraints are reasonably 

met, then the MLC is well suited for providing optimal classification accuracies using a * 

limited number of variables (Peddle, 1993). The MLC is ofien used as a reference for 

classifier cornparison because, if the class probability density tiinctions are indeed 

Gaussian, it iç the optimal classifier (Paola and Schowengerdt, 1995). 

Neural Network Classification 

Neural network classifien are capable of incorporating n o n - n o d  data. They 

are commonly used in artificial intelligence applications and have becorne praaical tools 

for use in many classifications, pattern recognition, optimizacion and forecasting 

applications (Miller et al., 1995). Neural networks are modeleci afler the constructs of 

the human brain. Knowledge is stored in the form of weights that are applied to a node 

(inputs). A neural network can be used as a form of supe~sed classification where, 

instead of an algorithm that detennines values such as in statistical classification, the 

network is presented with repeated examples of inputs and correspondhg correct 
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outputs, and allowed to 'leam' what the correct classification process should be (Miller 

et al., 1995). Human beings leam by experience; neural networks Ieam by setting 

weights that will produce a specified output. 

Many variants of neural network algorithms can be used. Two types are the 

feedforward and back propagation. Fonvard f d i n g  networks are two layer networks 

that are fixed in the number of units and connections. The input si@s in a feedfonvard 

network are sent towards the intermediate hidden layer over connections that either 

attenuate or ampli@ the signal, with each hidden layer processhg them in the same way. 

The signals are then sent to the output layer with no feedback loop back to the hidden 

layer (Gopal and Woodcock, 1996). 

This is quite ciiffixent fkom the back propagation network. The back propagation 

neural network typically has a three layer configuration with an input layer, an output 

layer, and a hidden layer (Paola and Schowengerdt, 1995). The input layer contains a 

node for each input band of multispecaai imagery and the output layer contains a node 

for each desired class label. The hidden layer is needed to process the data which are not 

iinearly separable (MïUer et al., 1995) Withui the network, the signals between the 

layers are adjusted iteratively and dEerent weights are applied to each comection of the 

hidden layer. These weights are adjusted in order to rninimize the global error of the 

entire network. To achieve the lowest possible global error, the iterative adjustment of 

weights should be very srnail. However, this would renilt in an excessive amount of time 

required to train the network. This is overcome by specwg a leamhg rate. The 
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leaming rate represents the percentage of the step towards the global error (Paola and 

Schowengerdt, 1995). A lvger leaming rate can speed up training although there is an 

increased risk of oscillation or non-convergence of the segment. Furthemore, with a 

smd leaniing rate, the network may require more training iterations to reach the 

minimum acceptable error. 

hiring training, the network wili take the steepest descent frorn one position to 

the next position to achieve a lower error. Along the way the network cm encounter 

valleys or locai minima. This can cause the network to become stuck and the error will 

not decrease to the global error. The network can also oscillate between a local ' 

minimum and the global error (Paola and Schowengerdt, 1995). These problems can be 

eliminated with the sp5fïcation of a momentum parameter which is set at the beginning 

of the training phase. A iarger momentum rate can d o w  for an increase in the leaming 

rate without the risk of oscillation or non-convergence, however, the global error may 

not be reached because larger steps are taken between the iterations. 

Neural networks have been cumpared to  MLC and proven useful with a milumal 

training set (Miller et al., 1995) additionally, other research by Foody et d (1995) 

indicated that the classification accuracy was increased significantly as a result of 

increasing the number of training cases. 

Contextual Classification 

A wntext classifier is difYerent fiom conventional per pixel classifiers because it 

uses not only the spectral information at each pixel as do other classifiers, but it dso 
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uses the spatial feahves derived from spectral information (Gong and Howarth, 1992). 

The spatial information is derived fiom a sample window of several pixels, where the 

neighbours of the central pixel are considered in the classincation. 

The classifier that was used in this research involved grey-level reduction of the 

data and a ftequency-based contextuai classification (Gong and Howarth, 1992). In 

order to process large amounts of data in contextual classification, the number of grey- 

level vectors in multispectral space is reduced. This is achieved through grey-level 

vector reduction such as an eigen-based method involving principal component 

transformations. Occurrence fiequencies, the number of times that a p h 1  value occurs 

in a specified wuidow, are determined to generate a table for every pixel in the image 

(Gong and Howarth, 1992). A minimum distance classincation is then apptied to the 

frequency tables. For given mean histograms of all land-use classes the distances are 

cornpareci by the classifier against the histogram of a given window, based on the 

frequency table, and the centre pixel of the window is assigned to the class which has a 

minimum distance (Gong and Howarth, 1992). 

3.3 Textud Anritysis 

Image texture refers to the fiequency of change and arrangement of tones 

(Jensen, 19%), which takes into accoum the variability of the grey values within a region 

of an image or over the entire image (Augusteijn et al., 1995). One of the most common 

uses of texture analysis is to incorporate spatial information in classifkition of images. 
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Classification is typically based on spectral information only, although, researchers have 

begun to include texture measures in the classification of images (Augusteun et ai., 1995; 

Carr, 1996; Palubinskas et al., 1995). Through the addition of the texture of image 

features, the amracy of the classification c m  be increased (Peddle and Franklin, 199 1). 

Two cornmon approaches to texture classification involve first-order statistics 

and second-order statistics. - A thkd texture approach, Fourier power spectnim texture 

measures, is not considered as this approach is generally iderior to the statistically based 

measures (Jensen, 1996). First-order statistics involve measures derived from the raw 

image data, such as means, variances, skewness, and kurtosis. For example, the standard 

deviation of brightness values within a window of specified size, moved over an entire 

image, provides a measure of the spectral variability over short distances and, as such, is 

a measure of local texture (Campbell, 1987). 

More sophisticated measures include secondsr der texture measures, which are 

derived h m  a dataset which itself was extracted fiom the raw data. Co-occurrence 

texture measures are one set of second-order measures which calculate a set of features 

based on the w-occurrence of grey levels in pixel pairs with a specific orientation to one 

another. A matrix is calculated giving the frequency of ocmence of di pairs of grey 

levels in the specified Unage area. High frequencies of occurrence on, or near, the 

diagonal of the matrk indicate smwth or uniform texture as many adjacent pixel grey 

levels are similar. Hi& fiequencies farther fiom the diagonal hdicate rougher textures. 

From the co-occurrence matrix, many measures of texture can be derived. They include 



entropy, angular second moment, contrast, mean, and correlation (Peddle and Franklin, 

1991). Each is designed to extract a particular characteristic of the spatial information. 

For example, the contrast measure sums the fiequencies at esch position in the CO- 

occurrence rnatrk timeç the grey level difrence so that off-diagonal occurrences 

(higher texture) are weighted more (Carlson and Ebel 1995). Several comparative 

studies have found that cosccurrence measures of texture are superior to other texture 

measures in increasing classification accuracy (Augusteijn et al., 1995). 

3.4 Vcgetation Indkcs 

Vegetation indices are mathematical image transformations that are designed to 

be sensitive to plant heaith. They are generdy divided into two categones, ratios and 

orthogonal indices, the ratio indices being the most commonly used and typicaiiy king 

denved fiom red and near infiared spectral data (Elvidge and Chen, 1995). They work 

by contrasting the intense chlorophyU pigment absorption in the visible (usuaily r d )  

against the hi& reflectance by plant material in the near infkared. Their use in estimation 

of vegetation variables such as percent cover, le& area index, and absorbed 

photoçynthetically active radiation has been investigated for modelling of vegetation 

parameters and processes as discussed in section 2.4. 

Ratio vegetation indices include among others, the simple ratio index (SRI) (see 

5.4.1) and normalized diEerence vegetation index (NDVT). These two indices take 

advantage of the complernentary reflectance of red and near inhred energy. Variations 
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of ratio indices, such as the mil adjusted vegetation index (S AVI) (see 5 -4.1) iacorporate 

fkctors such as reflectance of background properties like soil and rock material. These 

fàctors can affect the indices pariicularty when t h e  is a low level of vegetation cover 

(Elvidge anci Chen, 1995). Orthogonal vegetaQion indices use the distrioce fiom a soil 

ÜM, dcnned by samples of bright and dark soüs, as a m e  of the amount of 

vegetation (Etvidge and Chen, 1995). nKy iaclude the perpmdicular vegetation index 

(PM) and the dinerence vegetation index (DM). 

nim are s e v d  ways in which background properties aiai as soil and rock can 

vegctation indices. For exampie in a simple ratio of NIR to Red, soit, with a - 

pater  refiectance than vegetation in the red, hxêases the denominator whde its lower 

near inf'rared rdectaace decrases the numerator, causing a sigdicant decxease in the 

ratio. In addition, vegetation over a bnght b a c k g r d  wiM r d  in a Iowa vegetation 

M e x  than for the same vegetation over a da& background (Elvidge and Chen, 1995). 

Another influence of the background n~erials  on vegetation indices is the mkhg 

of B a c k g r d  Md canopy reflectance, a process which is most signincant in the NIR as 

a high proportion of this energy is  transmiatd through the campy to the g r d .  Near 

i d k e d  radiation transdtted thrwgh the c . p y  can either be rdected or absorbed by 

background matmals. For bright bau:kgrOundq there is an increase in near Mareci 

radiation due to reflectanœ of the transmitted radiation by the background. The 

magnitude ofmixhg between tk plPm c~opies aad the background mataial is dircctly 

rehed to the brighmcss of the b a c k g r d  and the wavekngth-depcadent transmission 
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of light through the canopy (Elvidge and Chen, 1995). This effect of mixing can lead to 

higher vegetation index values over brighter backgrounds, which is opposite to the 

influence described above and thus, the background eEeçts may be sornewhat 

moderated. 



Chapter Four 

Staidy Areas Image Acquisition and Fidd Data 

4.1 Location and Description of  Study A r u s  

The study areas cunsist of two regeneration sites located in west-central Ontario 

near Sault Ste. Marie (Figure 4.1). The first site is a forest tree nursery (arboretum) 

located in the west end of the city. The second site is a natural clearcut situated north- 

east of the city in the Searchmont area. The Ontario Forest Research Institute (OFRI) 

operates and maintains both sites. 

The arboretum contains three blocks (loam, sand, and clay), which are identical 

in layout and plant setup. There are eleven, 14x11 x 28m plots at each block, each 

containhg the crop species jack pine (Pims bardsiana) and black spruce (Piceu 

marzimxz) and one cornpetition species. The cornpetition species are as follows: 

Trembhg Aspen 
White Birch 
Green Alder 
Upland Waow 
Red Raspbeny 
Fireweed 
Large-Leaved Aster 
White CIover 
Braken Fem 
BlueJoint Grass 



Figure 4.1 
Location of  Researeh Study Areas 

Adapted h m  Natural Resources Canada (1983) - NTS Map Edition 2, scale reduced to 
l:3 12,500 
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There are twelve, 7m x 7m experimental units within each plot, each containina 

either jack pine (Pj) or black spmce (Sb) and one competition species at a specified 

density, with the crop trees planted every metre. Densities of selected competition for 

raspberry, braken fem, fireweed, aster, clover, and blue-joint grass are 0, O S ,  1, 2,4, and 

8 plants per metre square. For the remaining competition species (trembling aspen, 

white birch, green alder, upland d o w ,  and conifer trees planted in competition with 

each other), the plant densities are 0, 0.25, 0.5, 1, 2, and 4 plants per metre square. 

Cornpetition species' densities are ailocated t o  experimental units in a randomiseci block 

design. To maintain a single cornpetition species and specified plant density, plots have 

been aiand-weeded. The study has been in place since 1994. Figure 4.2 shows the set-up 

of the clay plot. 

The Searchmont site contains four, 28x11 x 28m plots, with ten 7m x 7rn 

experimental units. Each unit contains four coniferous species: r d  pine (P ins  rubens); 

white pine ( P i n s  saobus); jack pine; and black spruce, with naturd herbaceous 

competition. A herbicide pro* with ten different treatrnents has govemed the growth 

and arnount of competition on each plot. Treatments were applied in a sequential pattern 

for the fkst  five years afler tree planting: no vegetation removal, annual vegetation 

removal, 1, 2, 3, and 4 years of consecutive removal, and waiting 1, 2, 3, and 4 years 

before annual removal was initiated. The study has been in place since 1992 and ended 

when ail treatments were applied in 1996. Figure 4.3 shows an airphoto with a plot 

layout overlay. 



Bracken Fern 





4.2 Data Acquisition 

The image data for this research were obtained in August, 1996, using the Kodak 

Digital Camera Series @CS) 420W colour infrared camera which was graciously 

provided by the Kodak Eastman Company of Rochester, New York. The DCS 420ir 

consists of a Nikon N9û camera body with a 28mm lem, which focuses the image onto a 

charged couple device (CCD). A CCD is a solid-state chip containing a series of light 

sensitive photosites. The CCD in the DCS 420u camera is of medium format? containing 

1524 by 1012 pixels for a total of 1.5 million light sensitive pixels (Orner, 1997). This 

provides a chip resolution that approaches that of standard 35mm colour slide film; 

however, the 35mm slide film covers 2.6 times the ground area of the digital camera 

images for a given lem focal length (Greenfield and M's, 1997). Digital images are 

obtained tiom the photosites which convert the incoming spectral energy into electrons. 

Electrons pass through an anaiog-to-digital converter and a île of digital information is 

produced in which bits represent colour and tonal values of a target. Photosites within 

the CCD are square, resulting in an image with square pixels and qua1 resolution in both 

directions. 

The three diffixent wavelengths, in this case the green (500aOûnm),  red (600- 

700nm) and near inîhred (700-800nm), are captureci in a single, full âame. A filter is 

placed over each photosite in the sensor chip, giving it the abiiity to capture green, red, 

or near infiared information. Thus, ody one of the three wavebands is actudy acquired 

at each photosite. As a result, the spatial remlution is degraded to approlrimately 80% 



of the resolution of a panchromatic DCS camera (King, 1995). Each image in this raw 

format is stored on a removable hard disk within the camera. The hard disk used in this 

research could hold up to 105 images. The images can be downloaded and stored in a 

computer in their raw format. However, for display and analysis of three-band data, the 

other two wavebands at each pixel must be derived. This is conducted through a Kodak 

proprietary interpolation process where, at each photosite, digitai numbers for the two 

bands which were not sensed are calculated ushg weighted averages of their values fiom 

the closea photosites which contain those bands. This procedure is automaticdy 

conducted upon opening an image file with a computer program such as Adobe 

Photoshop ushg a Kodak driver. It produces full three-band images which are three 

times the size of the raw image format. 

The flights were carried out with the assistance of the Canadian Forest S e ~ c e .  

A mount was constructed for the digital camera which was placed in the hopper of a 

Cessna 188 "Ag-Truck' single person agicultural spray aircr&. The pilot operated the 

digital camera through a remote trigger, with the aid of a real-tirne video image displayed 

on a smali monitor. Forty digital images were obtained from nominal altitude of 80 m 

(250') above ground over the arboretum. Ground pixel size was approxhately 2.5 cm. 

At an aircraft speed of about 45 d s ,  to obtain about overlap between images, the 

images had to be acquired using the carnera's burst mode. In this mode, 5 images can be 

acquired into the camera's RAM in about 2.25 seconds, but after this, a pexiod of about 

12 seconds is required to download the images to the camera's hard disk. As such, 
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abiiities at such low altitude. The shutter speed of the cameni was set to 1/4000s to 

optimizP the trade-off between image motion during exposure and the expure level. 

At this setting there was approximatdy 1 pixel of image motion and the exposures 

generated typicaly consisted of about 120 grey levels. An exposure of 1/8000s (the 

West available) was more desirable, but test images showed that there were too few 

grey levds for adquate classification and statisticai analysis. The image motion and 

iimited range of grey keis  had to be acceptecl due to the type of a i r c d  t h  was used. 

A slowet aircraft is more appropriate for operatiord situations and would r w h  in a 

decrease in image motion to suitabk leveis of less t h  half a pixd and ailow for - 

improved exposure settings. 

Eacb aquired image wvers an area of 38.1 rn x 25.3 m, or approximate1y 964 

m2. Images were q u i r d  for esch of the threc blocks at the arboretum and for two of 

tbe plots at Searchmont. Data were also obtained with a g r d  pixel sk of Scm as a 

backup in case the image motion was excessive in the higher resohation data However, 

due to the scale of the feahies being studied, oniy the 2.5 an dau were utillled. Figures 

4.4 and 4.5 show mosaics of the arboretum and Searchont images. 

Investigation of the arboretum image data r w d d  thPt the most complete 

wverage was obtained for the clay and loam blocks. The amount of daîa obtaiaed for 

the chy plot was pater  than the loam block, as whole plots with fidl mges of densities 

for three cornpetition types had been Unaged. Consequentiy, the cloy bloek was used 

more exîensively in this researcb. The Searchm data were obtaincd for two of the 
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plots and were incorporated in the first objective as an 'operational' test of the 

classification which obtained the highest acamcies at the arboretum site. nie timited 

coverage of the digital Vnagery was a r d  of navigational difltimdties at the Swchmont 

site, (due to mmding Ws), and the &y temidon of the Bights over the 

arbormim site (due to cornplaints about noise nled by neighbouring residents). 

For comparative purposes, 35 mm colour and wlour IR slides and prints were 

dso obtaiwd for scaks equivaht to the 2.5 and 5 cm digital data. The d m  for the 

photos and slides were calcuked to give approxhaieiy the same spatial rwhrtion, in 

üne pairs millim*er, es the digitai corneni imrgay. Flight parameters were then 

estabtished b& on the desked resohmon and cpmetp attributes ( f d  length, shutter 

speed, etc.). These pbotogpaphs were acquirad for compMs0n of visual hterpretation, 

as backup in case the digital hagay  was not wflicient, d to assist in identification of 

the location of the di@ imrges as a resuh of the greater coverage by the 35 mm 

photograph. Locational identification of the digitai images was also fircüitaed by the 

plot labels that wae set out at both mds of the plots by the Caiipdian Forest Service. 

Vegetation nmsmmm& aquired by the OFRI as part of theis fieM research, 

were obUmed for the Prborehun, spd icaUy  the chy block snd the Searchmont site. 

These measwemerrts included wnifbr sunivd, percent vegetation wver, a d  le& area 

iadex. Measutmts  of percent cover and Id ana inda a the arboretum site had been 

sampled for the competition species on jack pine n<paimcnîd units only. Seirchmont 

field measurerneias were not used in this resesrch. 







5.1 iiitaoductioir 

There were two phases to this research, reflecting the two objectives. The first 

invoived evaldon of conifer and coqetition species identification through automated 

classifidon prOCBdures and the production of  thematic maps of the regenaion site. 

The second phase ~ V O M  assessing whether field measured values of Saected 

vegetation parameters (leaf area index (LAI) Md percent wver) couid be related to ' 

statisaicai andysis ofgrey levei vahies extncted fiom the imagery. 

The undertying approach to tliis research was to work withlli a digital 

environment, thereby providing a f&ble methodology that d d  be readily transfmed 

to an operationai h g .  A PC pladenn was utilized, represeriting a minimal oprational 

investmmt as opposed to a higber-ed workstation or CTNM platform. Commercially 

amilable image 4 i d y s i o  software (FCI EASWACE) was used to conduct ail image 

analysis for this research. Stotistid analysis was wdwted using a SPSS statistical 

software. This chapter d e s @ r i i  the methods used in phises one and two. 

5.2 Da. Prrpurtisi 

To conduct compter -sis of the acquired digital hagay ,  the first step 

involved extraction of the &ta the cameni's hard drive. Images were downloded 
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to a Macintosh cornputer and were expanded to their h a 1  format using the Macintosh 

Kodak driver for Adobe Photoshop. Images were then saved in a 'TW' format and 

imported into PCI's EASYPACE image analysis software. This origind, unenhancd 

data were used in subsequent analysis. 

5.3 Phase P 

5.3.1 Separabüity Annlysis 

Preliminary investigation of the image data was conducted on single images f?om 

the clay and loam blocks at the arboretum. Spectral data were extracted for a subset of ' 

cornpetition species that were avdable in the imagery, narnely: trernbhg aspen; upiand 

willow; red raspberry; fjreweed; large-leaved aster; braken fern; and blue-joint g r a s  

Two approaches were undertaken in the seleaion of sample polygons. The first 

approach involved establishing a reference separability. Spectral data were generated for 

the conifer trees, jack pine and black spmce, and each of the competition species in areas 

of the image where no direct competition between conifers and competition was present. 

Analysis of the statistical separability of the conifers f?om the wmpetition in this case 

gave an indication of the spectral distinction betwem classes, given that there were no 

mixed pixels. The second approach involved determining separabilities of the conifers 

From the selected competition at the various competition densities available. 

Polygon training areas were visually deheated on the image for each conifer and 

competition species, for both reference and density dependent separabilities. Illuminateci 



(direct and diffuse) portions of the coder trees and cornpetition were selected at a 

maximum of 30 pixels per tree or plant. A total of between 150 and 300 pixels were 

sampled for each species in al1 paireci separability tests. Image data were not limited to 

only the most suntit portion of the trees or cornpetition plants to represent a more 

operational approach. However, in polygon delineation, shadows were avoided as they 

can severely increase spectral data variance for any vegetation class. The decision to 

extract image data fiom a wider portion of the crowas of trees and plants was based on 

previous research by Gougeon (1995) which indicated that typical dtispectral mean 

values of tree crowns, where the sarnpling was not restncted to the sunlit portion only, 

produced one of the most accurate classifications (-72%) in cornparison to 

classifications using only the sunlit portions of the training data. 

A separability analysis was then conducted using the spectral data extracted fiom 

the images for each training polygon. Transformai Divergence was calculated, with a 

value of greater than 1.9 indicathg good separabiiity, values between 1.7 and 1.9 

indicating average separability, and values less than 1.7 indicating poor separability 

(Lillesand and Kiefer, 1996). This initial investigation was followed by a test 

classification using the maximum iikelihood algorith to investigate how the classes with 

poor separabilities wodd be represented within the classification. 

5.3.2 Production of Mouic Image for Further Annlysis 

After the preliminary separability analysis, images from the clay biock were 

cornbuied to fomi a mosaic Mage which provided a fU range of densities for selected 
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cornpetition species. Starting with mosaic production fiom two adjacent images, 

additional images were added in an iterative procedure. G r d  control points (GCPs) 

were manu* select& nom the overiap a r a  baween the two images being joined. 

GCPs are required in order to rectify one image to a n o k .  Four GCPs were selected in 

mch pair of images and were used in a firstorder, nearest neighbour transfomtion. 

GCPs such as tree crowns, dead trees, plot edges, plot markers, and a person's sneakers 

w m  uxd. A total of 12 images &om the clay block at the arboretum and 9 images h m  

the Searchmon; site w«e mosaiced into single images. The &s for both the 

arborehun anâ Searchoni site an in Figures 4.4 and 4.5, respcaively. The images 

have been re-sampled for reproduction purposes, therefm, tbe resolution has been 

signincantly degraded. 

The creation of a compleâe image mosaic for the clay block dowed easier 

extradon of spectral data, classification, and a d y i s  of resuhs. This mosaic image was 

then used in an unsupervised clessincation as wdl as three dinêreaî supewised 

c~assi6ications. 

53.3 Evdrutdoi of Arlaiiitcd CirrriTmticra McLioQ 

on the mosaic Uriage with ali thne spectral bands (gretai, red, ncar inhed) as input 

infordon. An output of deven clusten, was speafied with a total of twenty itaatians 

m. Eleven chistem were specified to correspond to t h  vegetaîion and laad cover 



classes visuaily identifieci in the irnagery. A seed file was not specified; therefore, the 

algorithm arbitrarily seiected the location of the initial rnean vector. 

Supervised Classification Traininq 

Since the initial separability analysis (5.3.1) had been conducted on an image-by- 

image basis, new polygons were delineated for spectral data extraction f?om the mosaic. 

Eleven classes were identined: coder  trees (jack pine and black spmce), fireweed, 

u pland willow, raspbeny, blue-joint grass, large-leaved aster, soil, grass, shadow s, and a 

n d  class. 

Maximum Likelihood Classification 

The second classification procedure was the Maximum Likelihood Classification 

(MLC). The classification was applied to the three spectral bands using the eleven 

classes, with threshold and bias values for aii classes of 3 and 1, respectively. A 

threshold value of 3 standard deviations was selected for d classes because knowledge 

of the site was extensive, and therefore the chance of incorrectly selecting trainhg pixels 

not representative of a given class was very limited. AU classes were given an quai bias 

value because a change in bias would have subjected the classification to a priori 

knowledge on the part of the user, and would unjustifiably give more weight to specific 

classes. 

Neural Network Classification 

The third classification conducted was an art i f id  neural network (ANN). The 

fbst step in applying the neural network to the image was to create a neural network 
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segment using the three spectral bands and the eleven class signatures. This segment was 

then used to train the neural network with 10,000 iterations and a leamhg rate and 

momentum of 0.1 and 0.9, respectively. The leaming and momentum rates affect how 

quickly the neural network reaches the global error set at 0.01. Arbitrary variations of 

the momentum and 1e-g rates were investigated and the lowest error was obtained 

for the values listed above. The trained neural network segment was then used to 

classi@ the image and create a thematic map. 

Conte* Classification 

The fourth classi&cation that was wnducted was a conte- classifier. A context - 

classifier takes into consideration the pixels surroundhg a location as opposed to 

conventional classifiers nich as the MLC and ANN which conduct a per-pixel 

classification and consider pixels in isolation (Gong and Howarth, 1992). Ln order to 

implement the context classifier, the spectral dataset was r e d u d  fiom multiple input 

bands (green, r d ,  near infiared), to one information band using an eigen-based grey- 

level vector reduction method (Gong and Howarth, 1992). The context classification 

was then conducted on this single information band using the eleven class signatures and 

a pixel window size of 9 by 9. This window size was selected after investigation 

reveaed that other window sizes did not identlfy the planting structure of the plots as 

weil and certain classes were not correctly identsed. 



5.3.4 Texîure Analysh 

The third step of the first phase involved incorporation of the spatial information 

in the image through the use of texture measures. Two CO-occurrence texture measures, 

Standard Deviation and Variance, were implemented on the red spectral band. The 

Standard Deviation texture meanire is calculated by using the co-occurrence matrix to 

obtain the fiequency of occurrence of a given grey level pair. This tiequency is 

multipliecl by the squared dif5erence between the given raw grey level and the mean grey 

level of the matrix. This is conducteci for a l l  matrix ceus and the result is summed and 

the square root taken. The resulting value becornes the new grey level value of the - 

centre pixel in the moving window. This process is repeated at each iteration of the 

moving window (PCI, 19%). The variance texture values are calculated in a similar 

manner to the standard deviation; however, the square root is not taken. The red band 

was used because of the distinct visual difference in grey levels between vegetation and 

soil, which was judged to provide better potential for representation of the spatial 

idonnation using the texture measures. 

Other co-occurrence (Homogeneity, Contrat, Dissimilarity, Mean, Angular 

Second Moment, Correlation, and Entropy) and grey level vector difference (Mean, 

Angular Second Moment, Contrast, and Entropy) texture measures, a variety of window 

sizes (5 x 5,  7 x 7, and 9 x 9) and spatial sarnpling directions (one pixel to right, one 

pixel up, one pixel up and to the right, and an average of aU spatial directions) were also 

hvestigated. However, the two co-occurrence texture measures selected with a pixel 



window size of 3 by 3 aMi a spatial samptimg direction of one pixel below the centre pixel 

provided the best visual texture representation. The other texture images did not identify 

the change in texture h m  the crowns of vegetation to the soi! as wetl as the two co- 

ocam- texture measures chosen. Qther quantitative evahiation methods, such as 

detemination of the correlation of the texture meames with the spectral band that was 

used to derive the texture uiformation and seledon of the least corretated texture 

masure, or a9hiation of c o ~ e i a t i o ~ ~  of tach texture me8SUTe with the biophysical 

parameteps of interest, (Ohhof and King, 1997) were not wnducted due to the large 

Miounts of &a proocssiag tht would be rcquired to test all of the m-oamence and ' 

grey levd vector diffi~ence texture mea~uces. 

The resuhing texture images wae naracted into a 32-bit dota cliannel and thm 

scaled to 8-bit for inclusion in the classification process. The four classinen: 

unsupervised, manmUm I ikehcd ,  neural netw* and context, were di conducted 

twice more, using the sunc parameters dimd above on wmawd data sets consisting 

of the tluee spectral bnds =ad one of rhe tamire measures. 

5.33 Accmmy -8 

The final step of the nrst pbase invoived an accuracy assessrpient of the clessified 

images. Upm determinin8 that per pixel separabdity h e m  conSet trees and 

oompeting species was quite low, and thst the potentiel per pixd acamcy of any 

t h d c  classification was low, an ahenrative spproach to accumcy assessment was 

developed. SUne the primrry focus of the phase 1 research was the dasdicaîion of 



63 

objects (trees), an object oriented approach was taken to conduct the accuracy 

assessment. For the assessment, oniy the cornpetition plots that containeci a fidi range of 

plant densities were considered. These included: &eweed, upland willow, and red 

raspberry. Other plots with blue-joint grass, large-leaved aster, and hitch clover, were 

not used for two reasons: either they did not have a full range of densities or they were in 

a poor state (e-g., excessive weed growth). 

Experimmtal units for the three fbil density plots were divided into separate 

images based on density. The resuiting sixteen images contaid  the unsupervised, 

maximum likelihood, neural network, and context classifications for the spectral 

infirmation alone, and the same classincations with the inclusion of the two texture 

measures. Bitmaps of the two conifer classes were extracteci fiom the classification 

images and a graphical mask was appiied to the experimental d t s  to eliminate ail areas 

out side of the plot. Next, polygons were numbered w i t h  each of the experimentd units 

to idente each polygon that was classified as a conifa. The number of pixels which 

should be taken to represent only the core of a conifef seedling was not known so for the 

given pixel size (2.5cm) and typicai tree height and diameter, empuical testing of 

polygon sizes between 9 and 20 was conducted. The polygon sizes are based on the size 

of the core a r a  of the crown and do not represent the whole crown which would be 

greater in size. M y  the core of the crown was used in detemination of the poiygons 

s k s  as the test classifications showed that the outer portions of the conifer crowns were 

not king identifid as conifèrous. 



The total count of comkr cores for each srperimemal unit was used to conduct 

an initiai acniracy hvestigation. These mums were compareci to the actual nwnber of 

wnifers for each unit and a vahie representhg the percentage of over- 

estimates (positive numbea) or under-estimates (negative wmber) ofthe number of  trees 

was obtained 'and gqhed. T h e  values were us& to detemiine the best five 

clawinCILtion wmbirraoions. A more compr-ve acaracy assessmmt was then 

wnducted for the best fke classifications to detemine the mors of omission and 

commission for the ex- units where no wmpaition was present. 

The omission and commission mors were used in the caldation of the User's 

and Roducer's accuracy for each of the plots. Usei's ~ccurscy represents the 

probability thet a tree c l d e $  on the msp is sctuilty that tree class on the ground and is 

detemiinsd as 1W!% minus the erron of commission (trea classined which do not d s t )  

(Jerisen, 1996). The Produ~e~'s accuracy indicatm the probability that a lmown tree was 

correctly ciassified and is deterpnined as 1W! mimis the errm of omission (existing 

trenr t h t  were incorrectty classified) (Jeasen, 1996). 

S A 6  Evdmatk. o l a u r i r i  aiy SurrLmaat image Diti 

To detemiiae how w d  the c iasdidon of a controlled vegetation cornplex, 

such as the ubormim site, would perform in M operatiomi sethg the c l d c a t i o n  

method that produceâ thc highcst acwscies for aii thne plots m s  implemented on the 

S e a r c b t  study site data. The four CO& classes were extmcted out of the 

classification and indivicîuaf poiygon identificrtion lakls were created for all those 
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polygons with p a t e r  than 100 pixels. A threshold of 100 pixels (625 cm2) was chosen 

for the Searchmont site as opposed to the range of 9 to 20 pixels used for the arboretum 

accuracy assessment because the trees at the Searchmont site are older and therefore the 

diameter of the core area of the crown is larger. 

Two of the three plots (3-6 and 4-10) in the Searchmont image were used to 

conduct an accuracy assessment (see Figure 4.3). This assessment involved determinhg 

mors of omission and commission, and detennination of User's and Producer's 

accuracy for each of the plots. 

5.4 mase 2 

The purpose of the second phase of the research was to assess whether statistical 

analysis of grey level vaiues extracted from the imagery could be statistically related to 

correspondhg field measured values of leaf area index (LAI) and percent cover. The 

methods used to wnduct this phase of the research are outhed in the following sections 

and were conducted using spectral image data, spectral transformations, and texture data 

derived from the digital imagery. 

5.4.1 Vegetition Iadka 

Three vegetation indices were derived using the red and near infiard spectral 

data. The fkst two are standard indices; a ratio vegetation index @VI) which is denved 

by simply dividing the measured brightness of the near infrared band by the brightness of 
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red band (Equation 5.1) and the norrnalized difference vegetation index (NDVI) 

(Equation 5 -2). 

MR 
RW=- 

Red 

MR-Red 
NDVI = 

NIR + Red 

The third vegetation index that was used in this research was the soil adjusted vegetation 

index (SAVI). This index takes into account the spectral properties of the background 

soi1 which can have adverse effects on such indices, especialiy when there are low levels 

of vegetation present. A soil adjustment factor (L) is added into the equation (5.3) and is 

typicaily set to 0.5 (Elvidge and Chen, 1995). 

NIR - Red 
SAYI = 

r n + R e d + L  (1 + L) 

The index values generated were lefi as 32-bit data to maintain the resulting data range 

and precision; if the index values were sded into 8-bit values, then the grey Ievel values 

would be simiiar for all the vegetation indices. Such a loss in precision would negate the 

purpose of explorhg daerent types of indices. 

5.42 Statisaicai Database Compilation 

To conduct statistical analysis on the grey level values, they needed to be 

extracted from the imagery at the same location as the field simples on only the 

experimental units of jack pine trees; field measurements vxre not wnducted on black 



spruce units. Graphic polygons were delineated over the conifer trees in the image at the 

three field sample locations for each of the density plots. 

Polygons covered an area of one metre square (approx. 1936 pixels) and were 

centred on each jack pine tree. Grey level values were obtained for the raw spectral 

bands, both texture meaSuTes identined in phase one, and all three vegetation indices. 

The mean and variance of the grey level values for each of the variables were extracted 

and p l a d  into a statistical package with the field measured values for LAI and percent 

cover. AU remaining statistical analysis was conducted using the image and field 

information contained in this database. 

5.4.3 S t a i i s W  Anilysbr 

Tests for normality using skewness and kurtosis were conducted on the database. 

Those data which were not n o d y  distributed were transformed using a logarithmic 

transformation to achiwe a normdy distributed dataset. 

Linear, bivariate correlations were conducted separately using the mean and 

variance of each image variabte against each field variable to deteranine the strength of 

their relationships. Probabiliiy vaiues were also caldated to determine the significance 

of the correlation values obtained. Investigation of the correlation anaiysis results 

involved not only examination of the strength and significance of the correlations for 

each variable pair, but also cornpaison of the r-values obtained for the 1' order 

measurements (grey level values for the spectral bands) to those r-values obtained for the 

2* order measurements (cooccurrence texture masures). Furthemore, the r-values 
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obtained for the 2* order ccwcmn- textwe rneasure, Variance, were comparexi to 

those obtained tOr the statistid d a n c e  dmved from the raw imagay anci the spectrd 

transformations, which c m  be considerd as i* orda  texture meawres. 

A forward stepwise muhiple-regression analysis was oomluded separately for the 

rnean and variance of aM imrge v d e s  against the field me8suced vahies of LAI and 

percent cover in order to detemillw how w d  specnal Pnd textufai information obtained 

fiom the digital images could predid the fidd masures- Regression coefficients, 

standard mors, and Pstatistics were dculated to chermine the sftength of the 

relationships, the level of si@cance, and the contribution of esçh of the variablec, to the 

regrasion equation. 



Chapter Sir 

Resab r d  Di)C~lmh 

6.1 Intmdustior 

Resdts of d y s e s  that were conducted during this research are presented and 

discussed in the following sections. The M a l  sepârability analysis that was conducted 

will be discussed first, followed by the classifidm and accuracy assessrnent resufts. 

The final portion of this chapter wiU disaiss resuhs of the staîistical analyses that were 

conducted as part of the biophysical modelling. 

6.2 Scprmbiüîy Amaîylir 

Resutts of the initiai pei pixel separsbiiity anaiysis were origuralS. presented in 

Haddow et al. (1997). Tables 6.1 and 6.2 show the reference separabiiities for the 

cornpetitor and conif'ier s p i e s  (jack p k  and black spuce) thai were considerd 'good' 

(gratter t h  1.9) and ‘par'. 600d separabilities, with vahies ranghg nom 1.90 to 

2.00, were obtained for large-leaved aster, upland willow, red ras- and fireweed 

fiom both conifer species. Large-leaved aster and fireweed were both flowering at the 

time of image acquisition, contnbuting significantiy to theh 'gd' separabüities. As a 

rpsuh, timing of image acquisition should play an important role in obtauillig images for 

spectral d y s i s  Md classification of various species. However, this may pesent 

dpfffaihaes when t h e  are a numkr of different @es thot have to be taken h o  



consideration, as flyuig at Merent tunes for digerent stages of growth would be costly 

and lead to cMhity in combining the data for proper anaiysk. As nwnerous studies 

have f d  (e.g., Pitt el al., 1997; Hail, 1984), if identification, cwnting, and 

ma~~ernient  of coniferous species is the objective, then acquisition o f  data should be 

duhg leafsff @ods of the cornpethg deciduous v e g d o n  (Le., s p ~ g  and hU). 

However, to assess the type and amount of cornpetition acquisition d images must be 

coducted when t h e  are leaves prem on the trees. 

Pwr  separabiüties were obtaineû for the remsining cornpetitor species; blue-joint 

grass, braken fern, and trynMing aspen. In addition to the separribihies between - 

conifers ad the cornpetition species, an analysis of tbe separability of jack pine nom 

black spmce was coaducted when they were not in cornpetition wiui each 0th. The 

results indicated t h t  the two conifèrs @es bad essentiJiy similar spectral 

characteristics in this ixnagery, with a poor sepimbility of 1.27. Several factors may 

explain such poor resuhs. First, at mod derisities, the b a c k g r d  refleotatlce of the soil 

contributeci sisnificantfy to the imrge btighmess, thereby producing a similar spectral 

response for each pair ofclosocs. Seçoadly, samphg of Udivimial cornfer tree crowns at 

medium to high competition detlsipies was very diniailt and locational m n  d d  have 

resuhed in the incorporation of edditiod spccttal  on tiom the surrounding 

competition. Co& mwns were undeteaable at dasitics as low as 2 compaiaor 

plants pa m e  square for plots where Mue-joint gnss and r d  taspbeny were in 

competition with the wnfns. A third factor involves the snisor wed to wUect the data. 



The low sqwabilities could be amibuteci to the fiia that the DCS420 CIR 

camera has wide speftral bandwidths. nie use of narrower bandwidths may improvq 

separabilities. Funkmore, the dynamc range of the imagery was not very hi& being 

only 120 digital numbers. La-flight investigation revealed that increasing the sq>osure 

rrsuhed in e i t k  saturation of trees in the near IR or too much image motion. 

Therefore, the exposure settings used represented a compromise between these Eiaors. 

Image motion was about 1 pixd with the epemue fiilS opai. Two fQctors could have 

been correct4 to reduce image motioa: 1) fly at a sluwer aircraft sped, wtiich was not 

possible with the a i r d  avaiiaib1e7 or 2) increase the htter  speed to 1/8000 sec but this - 

would have reduced the dynamic range evai tiirther. 

Most of the ktors discussed above are rdated to the te~~hncai perfonnat~ce of 

the camera. In order to &ah 2.Sm pixel imagery the camca was pushed to the lixnits 

of its capabilities. The smd pixd size was necewuy to assess r e g d g  trees less 

than Irn in height. Radiometric response Vnpiovemmts of digitai canaens such as the 

DCS420 C W  shouid improve their use in automnted spectral classification of 

regenemting sites. However7 the first two factors wted above. spectral contribution of 

non-cmp species and l d o d  mors in sempiing, are more to overwmt. T k y  

Ihit upability st moderate to lrigh competition den* for both v i d  interpretation and 

automatai spectral becawc, in many cases the conif= trecs were 

completeîy obscured by tk competitw spe&~ (Haddow et d., 1997). Thc sitiution is 

di&rent whm the species of interest are the corqxtition. Wsurl identification is casier 
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becaise the cornpetition typicalty is not obsca~ed to the same degree as the conifer 

sedùlgs. 

T d o d  Divergence se~arabilitks for a ni11 range of densities of two 

compnition spaies, trdling aspen (Figure 6. L), and u p h d  d o w  (Figure 6.2) were 

elso obtained. Partial sets of densities were obtained for large-1eavd aster and blue-joint 

g r a r r ~  and are located in Table 6.3. Ail data showed an inverse b a r  relatiOILShip 

betweea separsbility and density (EWdow et al., 1997). The detrimental eff- of 

compnition density on spectral sepanbüity of conifm and oompetitor @es is evident. 

As cumpnition levels iacrrrse, sepsfability decreaaes. This rdrtionship am be attnbuted ' 

to the factors that were discussed above in relation to the refèfence sepmbilities th! 

were obtbiined. 

nie ability to identifl. the wdfa trees af varims densities is also dependent on 

the types of competition thot s u r r d s  the trees. For example, coder trees were visible 

at al1 densities of large-leaved aster, due to the distinct spectral Merence between thc 

two k a u s e  the wmpetition was flowering (TaMe 6.3). Tkerefore, a density threshoId 

for conifèr identification d d  be as high as eight competition plants to one conifer as 

long as the aster is Bowering at thc time of image acquisition. However, conifers were 

ditFcult to identify at aii densities, even veay low densities, for other competition mer 

such as tmnbütig aspen md he-joint gras (Tiibk 6.2). Tae sep.nbüitics w k n  there 

was no competitiom were 'poor' to begin with ruid d e c n d  as the levd of density 

i n c r d .  A threshold for these types of wmpetition mi@ be set as low as one 
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competition plant for every two wnifèrs or require that these species not be present at 

d. This assi- of a density threshold beyond which wnifbr seedhgs ûinnot be 

acçurately identifiai d be difficult to detennine in a more operational s&g when 

diffment compdtion are growkg together in a single plot. 

uiitial test clmifjcations using a marcimu~xp WeWood classifier were conduaed 

for cornpetitors which had 'poor' separabilities with the conifès species (Table 6.2) to 

test the worst case s c ~ o  for thematic mapping. Contrary to expected results, the 

thematic maps showed veqr cieariy the planthg pattern of the e>cpaimmnl units for 

conifer Md compeMion @es. Therefore, dthough the oeporoaüty of each pair of ' 

competition and conSm classes was 'poor' in these tests, the presence of trees were weii 

identified by the classifier. Ewmpies of such thematic maps c m  be found in Apjmdix C. 

The reason for this appara t  discrepancy is thst, on a per pixd basis, there were many 

pixels in enor, patîculPriy near the edges of seedlings wtrere soil background a d o r  

overlapping cornpetition mmributed most to pixel brigtmiess. Thus, low seperabilities 

translateû h o  low per pixel c@ificaton accuracy. H o w ~ i ,  with a central portion of 

each coder or cornpetition plant classifiai cunectiy, the output nirip showed their 

plantkg patterns very W& (Hsddow et al., 1997). This Ulcücated potentid for 

production of such thematic msps for use ùi tree ccnmting ad r e g d o n  success 

me8suTm despite the poor per pixel sepdility. 
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S~ectrd Training S a d e  Statistics 

EIeven land wver classes were used in the training of the supeMsed 

classifications. nKy inchided: jack p h ,  black spruce, firewmd, upland d o w ,  red 

raspberry, blue-joint gras, large-leaved aster, soil, grass, W o w s ,  and a nul class. The 

latter was Uicluded to account for the area in the mosaic that did not contain any data, 

such as the a m  on the r d  raspberry plot where the flight lines did not provide enough 

overlap. These classes were dected using the plot map (Figure 4.2) thaî was provided ' 

by the Canadian Forest SerMce as a refisence. The mean and standard dwiation for the 

t d g  sampks of the deven classes used in the production of the thematic maps ushg 

the spectral data for the arbrehun site are located in Table A-1 of Appendix A 

Training sampies' statistics demonstraîe why the separabities between the 

vegetation classes are low, as the separabilities are affecteci by mean and standard 

deviation values of the wmpetition and wder classes. U p M  willow, r d  raspbeny, 

and large-laved aster have some of the better seporability vahxes with the oonifm, 1.42, 

1.25 and 1.99, reqectiveiy for jack pine and 1.33, 1.36, and 1.99 for black spnice. The 

mean vahies of these clruses are quite Merent fiom the merns of jack pllie and black 

spruce for more than one band. However, high standard deYiELfiOm afféct the 

sepanbilities as weü. 



Standard deviation values obtained for the classes range fiom 

as 13.5951. nKse hi& values can be aSSOciateû with locational 
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4.3319 to as high 

error in poiygon 

sampling for the vegetation. Furthennore, some of the highest standard deviation vaiues, 

greater than ten, were obtained for vegetation that was flowering such as fueweed and 

large-leaved aster, because not ody were the leavcs selected for classification, but the 

flowers were also inciuded, which is mxswy if the entire plant is going to be c l d d  

correaiy. The timing of acqisition again plays an important rde, not only with the 

vegetative state, but also with tbe condition of the mil. Image acquisition when the 

vegetation contains no leaves w d d  eiiminatt variations in grey levels witliin herbaceous * 

Speaes, thereby reducing the standard daiition. The soil clas also exhibited high 

standard deyigtiom. These dues can be associated with the tilling of the mil which can 

cause variations in the soil moisture within and bawea plots. In addition, images 

should be acquired wbai t h e  is a greater chance o f d o m  soü moisnue. However, 

discussed earlier, if the kvel of compaition is being measwed, avoiding high standard 

deviations may be difficdt because the images need to be acquired when there are 12s'r'es 

on the competition. 

Whai the standard daiatioas are applied to obtain &ta distribution ranges, mod 

of the v e g d o n  classes overiap. For exampie, jack pine a d  bhck spruce have mean 

values of 90.35 and 87.82, rcspectively, in the grem band. For respective standard 

deviatiocio of 7.56 and 7.57, the full distributions ( I j s  &om mtlll d g  n o d t y )  

for the two classes range h m  67.67 to 113.03 for jack pine ad 65.1 1 to 110.54 for 
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black spiuce. lhis represnts an overlap of approxhateiy 42 grey Ievds or 94%. Such 

overlap of grey levei d u e s  also ocws for the o k  bands and texture 

m e s ,  explaining why the separabiiity between the two conifer species is poor. ûther 

vegetation classes also exhibit& overîap between data distributions. If the s~anüard 

deviatioa vahm were lower 

greater range of grey 1 4  

ôetween mean vatues and 

for those classes whae overiap ocarrs and the data had a 

values (> 120), 

tbe amount of 

this would r d  

ovcrlap between 

Table A-2, Appendix A contains the separabilities for the ekven ciasses baseâ on 

the incorporation of the s p d  information ody. These resuhs repeat what was 

disaissed above for the initial q-ty walysis. The wn%ers again exhibiteci poor 

sepsrabiiity of 1.13, which is lm than the va& 0btaPned in the Mial malysis. 

Sepdilities between the cornpetition classes were also low as is tbe case with the veiy 

poor separabiiity of 0.29 that was obtruied baweai uplPDd d o w  and r d  raspberry. 

The four compnition @es (Iwgeleaved aster, upland willow, r d  napbersr, and 

fireweed) which obtaîned high separabiiity with the conifer species in the initial 

sepaaab'i Maysis produced lower sep~rabilities in this ady.sis .  Large-leaved aster 

was the only one to munuin a 'good' sepuabiÜty (LW), d e  the othcr f d  to 1.42 for 

upland willow, 1.25 for red nqhmy, and 1.66 for firewd. For the compaition 

species, the highest s e p a r a b W i  were obtamed between vegetation t h t  was flowering 



and that which was wt, and also h ~ e n  land cover classes that were distinct@ different 

such as vegetation and soii or vegetation and shadow. Reasoas for the poor separability 

r d t s  were discussed above with r w  to the initial sep8cddity analysis and applied 

to the results obtauied during the evaluation of automaaed ciessifiers. 

The reduction in separability fkom the initial values uui be 8SSOCiated with the 

mosaic image. The initiai s e p d i t y  d y s i s  Uivolved se ldon of plygons in a single 

Uriage for each of the comp*ition species. However, in order to obtain an image that 

was representative of the entire plot, the mosaic was compiied. S b  no radiometric 

corrections or colout matchhg were apptied to the image when they wcrc incorporateci 

into the mosaic, spectral &iffiences for the sum species h e e n  images due to optical 

l a i s  &kas and bi-duectional reflectance variations may have beai signifiant. Attempts 

were made to restnct sampling to the centre of the images aad r e d u e  the inaience of 

these dects, ex- the vegetation M g  sampled did not always fsll within the centre of 

the images. Furthermore, smrill changes in brightness beeweén some images add to the 

variance for those classes thet wen sampled âom more than one h g e  within the 

mosaic. niese factors not os@ infIuence the seprrabüity b e e n  c h ,  but also the 

rnean and standard deviation statistics t h t  were c h i d  for the land cover c ~ ~ .  

6.3.2ImagecI.rryiutk..ICoiifaif'SpcctirlD.t.Ahme 

The purpose of cvahiating the various c l d c a t i o n  methods w u  to detemine if 

an autornated c-on process wuld provide accurate identificaîkm of wnifkr 



Seedjings for s@es wmposition assasrnent and for measufement of other attributes 

that require seaihg counts. 

Unsupervid ciustering r d e d  in the production of a thematic map with &ven 

spectral clusters. The mean and standard deviation statistics that were producd for the 

spectral classa are located in Table A-3 of Appendix A An example of the spectral 

cluster map (Figure C-2) produced by the K-means clustering is located in Appendix C. 

The mean and standard deviation vahies obtained for the eleven cl- for the 

supervisecl trauiing sampks were used in addition to v i s 4  inspeaion of the thematic ' 

map and knowiedge of the location of planted conifers to detemiine whkh spectral 

cluster(s) corr-ded to the coder Spenes on the gound. Clusters 4 and 5 were 

identifid to be conifer species and were used in tree counting assessrnent The 0 t h  

chisters were not assi@ land cuver class labds as they were not required for this 

process. 

S u h s e û  Classificatkais with S m  Lnformation 

In classification of Unsges using neural networks, emrs in the netwoak training 

stage are output for essessrnent More the dadication is wnâucted. nie @&al error 

reackd hÛing tralliing of the mural network for the spectral idonnation alone was 

0.44. The specined deauilt em>r of 0.01 wu not reechsd, yet the n e a d  network was 

c o a s i d d  tu be c'trhained" and the error was accepfd. Vuinions in tbe number of 

itetatims, leamhg rates and moamtum rate were imestigated, but the @&ai aror was 



consistently greater than the software maximum defkuft error mentioned above. 

Mthough the final training parameters of 10,000 iterations, 1e-g rate of 0.1 and a 

rnomentum of 0.9 did not reach the spedied error of 0.01, they were accepteci for 

classification, as the speded error would not have been reached because the neural 

network was oscillating. Even with changes in the leamkg rate and rnommhim 

oscillation still occurred. This oscillation and high glubal =or could be a result of the 

poor separabdity between most ciasses, which can lead to coniiwon between ciasses or 

because t h e  are too few input chanwls. Improvements in the speard separabdity 

between the classes cwld lead to a lower totai error produceci. 

nie thematic maps produced by the maximum lilelihood, neural networlg and 

comext supeMsed ciassificatbns for the spectral data are lOC8ted in Appendix C and are 

figures C-3, C-4, and C-5, respectively The images located in Appeadiv C represent an 

example of the thematic maps generated for the arborehm site for ail of the 

classifications concducted as part of this rewuch. Due to the similarities of the maps, 

0 t h  produced at leta stages are not Uicluded. Th thematic maps ckdy  dernonstrate 

the sbüity of the cldC4LtiOn aigorithms to identify the planting srnichue of the 

experimeatal uoits, dirvcussed above. The unsuperviseci chister map, maximum 

likdhmd, aad neural neâwork thematic mps PU ~ppear si&, with a vecy jagged 

appearamx to bourrdincs and more noise than the context thematic msp. Tb amount of 

noise within classes was less for the context thematic map and it had a mon vipiallv 

pleasing Md inteqretable appairance. T k e  were no husb dges within the wntext 



map compareci to the other thematic maps, where the edges of plots, targets, and field 

markers were more d i s W .  The context classification redted in a more generalized 

appearance in the land cover classes- However, the generaiized appeararnce of the 

context thematic map dso resulted in loss of detaii at this resohitim as groups of 

individuai trees were often combineci h o  a single polygon and represented as a single 

tree. The map may give a fàîse impression regarding the condition of the site. For 

example, such groupings of trees may lead to an WLder-estimate of stockhg levels 

because ody one tree might be i d d e d  when there are achially more than one present 

on the ground. 

Texture T 1e Statisttcs 
. . raininn S a m  

The mean and standard deviation (Table B-1, Appendix B) for the Standrud 

Mat ion  and Vanance co-o~cuflence texture m e s  exhibit a degree of overlap 

bnween class distributions. Mead of overlapping by 94%, the distributions ofjack pine 

and black spiuce only ove- by 82% for the Stendard Deviation measire and 84% for 

the Variance measure fiom the spectral distribution. This ckrease in overlap with the 

addition ofa texture m e 9  Standard Deviation or Variace, was expected to improve 

the seperabilities betwem the Iand cover classes wtmi the texture band was added to the 

three spectral bands. 



The separability vatues obtained for the training polygons from the combined 

spectral l t~e  information are !ammuid in Table E2, Appendix B. Wdh the 

addition of the texture infiomtion, the separabilities ùetween land cover classes 

Unproved slightiy. However, the improvement was not SuffiCient to obtain gwd 

separabfiaies h e e n  classes üke jack pine ad black spnrce. The separabilhies between 

jack pllie and black spnrce increoeed fiom 1.13, to 1.23 with the addition of the Standard 

fkhation texture irifoamation and to 1. t 7 with the Variance texture infonnartiorn. This 

Mprovemein is not sigmficant, as the separability h e e n  the two classes is stiu 'poor'. 

More sigdcpm is the improvement in separability baween wnifaous species and 

deciduous species. The oeparability between jack piw and firewd UIcreased h m  1.66 

to 1-83 and 1.77 with the addition of Standard Mation and Variance texture measurees, 

respectiveiy. In addition, the separability between jack pine and upland wülow k r d  

fiom 1 -42 to 1.5 1, with the addition of the Starxiard Deviation texture meuwe and to 

i -57, with the Variance texhue mcasure. Separabiliaies betweetl black spruce and the 

various cornpetition @es demonstrete similar incteases. 

SeparabWa for land cover classes that were disihctly diffèrent, such as 

vegetation and mil, remuned sanilar even oAer the addition of spatid iafomirtion. nie 

separabibies W e m  some of the cornpetition species i n c r d  with the addition of 

spatial Wonnation. The competition with the lowest sepinbility using only spectral 

information (0.29) between uplsnd willow and d raspberry, was improved somewhat to 
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0.35 with the addition of Standard Qeviation texture masure and to 0.40 with the 

addition of Variance texture rneasure. The addition of texture a~peared to have a 

greater &ect on the separabipity between cornpetition t h  between vegetation and o t k  

land cover classes such as soi1 and shadow. There was litth improvement in the 

separabilities h e e n  vegetaeion classes and mil and shadow because they were ralready 

very hia. The improvement in separability for vegetâtim classes can be amibuted to 

the hct t h  there is more spatial information present within vegetated areas than there is 

for soii or within areas of shadow. 

The speçtral classes thaî were genemted with the addition of the texture 

measures by the K-means algorithm were War to those gemxated with the spectral 

data ody. Chisters 4 Pnd 5 were identified for use in the accuracy assessrnent in both the 

ciustering using the Standard M a t i o n  and Variance texture Bbormatioa. These 

clusters were identifieci in t&e same marner as those for the s p a t n d  data only. 

SupeMsed Classihtion with S - ~ e x t u p e  Infornietion 

nie totai mors thot were obtained for the aeuriil ~ o r k  haining phase for the 

classincatioas of spectral data plus either Standard Mat ion  and Variance texture 

~e8suces were 0.36 and 0.37, respeaively. Howeveq in order to &aM good accufac~? 

the neural network muet be adepuatdy trained and a low gîoba m o t  reechcd. h this 

case, the a ~ o r  acbieved was accepted and the image was classiacd ushg the neural 

network. The addition ofthe coacumetpce tamire masures d e c r d  the global error 
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and improved the training of the neural network slightiy over the spectral data alone 

(0.44). 

Thematic meps produced by each of the classification technipues were used to 

&tain wnifier seedluig meps by masking out ail other classes. niese conifer segdling 

q s  (Figure C-1) were then used to conduct an acniracy assessrnent of mtomated 

seedling countiag. Note that in the tables ad graphs presented in the foflowing 

discussion, plots are i d d d  by the coinpetition @es t h  are growing in each. 

Thus, the accumcy asse- was conducted for each indMduol plot where conifers - 

were planted with a cornpetition species at a @ v a  densi@. Appmdix D cornains graphs 

repreeeming the percent over- and underlestitfb8tes for cwnts of wnifer seedlings 

obtaimd â u ~ g  the initial phase of the accuracy asasment. Each gtaph represents the 

conifer counts srpressed as a percent over- or underlestimnate of the actual field cwnt, 

for al1 deosities of the the plots (firewted, u p f d  willow, red riispberry) bassd on the 

range of pixel sizes specified. As wtlined in the methods, the range of pixel sizes used 

represents the possiMe size of the central cores of conifér sedhgs and does not reflect 

the size of entire crowns. 

Figures 6.3 t b g h  6.7 represent the best five cldcatione thit were chosen 

out of  the twelve that were conducîed. nKsc include: a neund mhuork with @ 

and Standard M o n  texture idonnafion; a context classik with S@ rnd 

Variance texture infordon; and three unsuperviseci chutering mipq one with the 



s-ai information ody, one with the addition of the Standard Deviation texture 

measure, and the third with the speçtnil and Variance texture idormation. Figure 6.8 

represmts one, for cornparison purposes, of the classificatio~~~ thit was not chosen due 

to the high percentage of m o r s  that it produced. The five best classafiers (Figures 6.3 to 

6.7) represented the cl&cations with the lowest percemage of mm fiom the actual 

number of trees in each plot. The grepbs demonstrate that the error curves for the five 

classifications were much closer to 0% errer thara thse thai were not chosen such as 

Figure 6.8. 

The $ C C U T ~ ~  of each classifier depended on the cornpetition species. For 

example, the keweed plot seemed to have the greatest amount of over-esaimates for al1 

classifications accept for the wntext classification whae it produced Undep-estimates. in 

the case of the context classilier, the raspberry plot produced the greatest o v e r ~ t e s .  

Upland willow consistently produced the least amount of over aad wider-estimation and 

was gemrplS. grmped togetk over the range of densities in thar plot, with less than 

1W/o error. CIdlSSifier acairacy was also dependent on the dmsity of competition. As 

expected, the lower densitics of the various plots prodinced the lowest percmtage of 

over and under-estimstcs. As the d&ty of coqethion increased, the amout  of over 

and uader-estimation increased, with the higher d d e s  (eight cwipdtion plants to one 

conifèr) typicaiiy produchg the grpltest amount of over a d  under ..estirnotion for each 

plot. Thus, as density ùmeased, the percent em>r in wnifer cwntiag incrrrsed. 



The eEm of changing the minimum acceptable n u m k  of pixels to define the 

wre of a wnifer sadling, was most prevalent for the fireweed plot. As the numk of 

p d s  i n c r d  from 9 to 20, the amount of over-eatimation decreased. This was seen 

for al1 of the classifications except for the wntext classifier which remained the most 

wasiant in counting mors for the entire range of pixels for a l l  deflsjties and plots. For 

the other plots upland wiliow and red raspbeny? the decrease with numk of pix& was 

not as prorw~inced as for fireweed. As a result, it is diffi& to rniggest a single number 

of pixels to be used as ciiffixent trees have Mèrent diarneters. 

The effect of p k d  site is also dependent on the type of @es. Determination 

of a correct number of pixels may not be as important for upland willow and red 

raspberry as they remained relativeiy d e c t e d  by the change, but detmaining the 

appropriate number of pixels for fireweed may reduce the m u n t  of error in the wnifkr 

counts. Detemination of a singie number of p i d s  is Wted by the f a e s  under study 

and therefore should be chosen based on the feâ~ures? Md not on which one produces 

the least amount of error in the conif'ér counts. However, the downward trend of the 

awes does iadicate that the x 4 s  imercept may actuaily be ciose to the whole tree size 

as opposed to the core are0 of the con8er crown. This vaiue cwM be used as an optimal 

number of pixels to represeat a sesdling. 

The nwPl mztwmrk appeared to have perfomKd the best ovetau, with the iowest 

perccntage of over and uder-esthtes. The unsupavised chistning for aiî three 

va~Mons producd similar resuhs with the uplond wiliow ad r d  raspkrry plots ail 



concentrateci between approhtely 1W/o and -50% and the fireweed around 300% 

except when there was no cornpetition present. The context classifier had a greater 

balance b e e n  over- and underethates but tike the other classifiers producd high 

over-estllnetes for the fireweed piot. These mors are very high and demonstrate that 

whm ail but the lowest densities are present, automed conifer counting using these 

methods is âeasible. 

h t h  o v e r ~ t i o n  or under-eshation of conifep m t s  affect decision 

making. The worst case scaaio is if the area is aauolly understocked, but the coder 

counts are over-estimated 6om the thematic maps and iadicate a weü stocked area. This 

may lead a fonst matrager to believe the plot does not repuire treatmmt to improve 

stockhg with the long-term collse~uence of insuffiCient yield or harvest. Conversdy. if 

the plot is o v ~ o c k e d 7  and an under -estimate is made from the map, a decision 

not to treat the plot rnay be made. Such overstocking rnay lead to growth problerns as 

the trees may compete with one other, decrerPmg p o t d a 1  total yield. Short-tenn costs 

can aiso be a t t d  by the conifer esthtes.  This situation cm Mse if a plot is aauelly 

at m acceptable stocking level, yet a forest manager believes the plot is  understockeci 

because the conifer count 60rn the themitic msp was under-esthted. nie short-tenn 

wsts invohe conducthg fidd swcys to detemine which sihricuitiard pr8Ctices rnay be 

required to increase the II& ofwmfen and ensure a w d  stock& plot when it is time 

to &est. The expmse of the fidd survey is aaualty wasted because t h e  is no 

repuirement to improve the stocking of that plot. 
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Table 6.4 identifies the mors of omission and coPnmissisn for the five 

classifications that were identined as perfomiing wefl. Errors of omission resuited wtien 

a conifix existai in the field but was not identifieci on the rnap. Enors of commission 

resuited when a coder was ideniified on the map but it did not mist on the 8 p d  at 

that location. The wdues were obtained on coder exprhmtao units where t h e  was 

no cornpetition pres*it. Tkse plots were chosen because the segarabilities between the 

conifas and the wious cornpetitions s w e s  w d d  resuh in excessive emrs of 

comMssion as the dmsity of compeiition i n a d .  In addition, h i e  plots sidate the 

leafoff condition which is more reasonrble for counthg trees. A grouping of pixels was 

considerad if there were more than nine pixels present. Tbose t!hat had less were 

disrcgarded because thq. did aot wnstime a tree by definition. 

It cm be ~ e e a  t h  the contact classifier has a high occurrence of mon of 

omission for aü plots. The unsupervisal clustering hd high mors of commission for 

ody the fieweed plot as wd as a hi& occurrence of mors of omission f8r the 

clusterhg with the addition of the Variance texture meruiure. Of a plots, fhweed 

producd the hi- Mmber of commission mors for 9 classifications. This could be 

ossociated with the greater amwnt of wecds that were present at this plot than were 

present in the otha two. 

From the emm, of omission and errors of commission, User's and Producer's 

acamcies were detemiiwd for each of the classifications (Table 6.5). nie highest 

accuracks were obtained for the lpeufd network with the Standard Deviarion texture 
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information added to the spectrd data. This classincation obtained both the highest User 

and Producer accu~acies out of the fwe classific8tio11~ for al ttiree plots. An interesthg 

note U thot the unsupavised chistahg, both with only s p e c t d  information and the 

addition of texhire infodon, M o r d  re850nabiy wd in cornparison to the 

su@& methodq especially the m e x t  c l d e r .  The wntext classifier pedormed 

the poorest, obtaining the lowest accuracies of di the classifien. The User's &es 

o b t d  by the m a l  network are simüar to those obtained by Hall Md Aldred (1992) 

for jack piae trees, where %% ~cwacy was obtained in identification of conifer 

Seedlings through m ~ n d  interpretation of a e d  photographs. 

6.33 Amssmcrre sCC&rrUhtio. QO st.pChmmt Oltr 

Appendiir C also wntains an image of the nairal network classification with 

spectral data and Standard Mation texture information that was conduaed for the 

Searchmont mosaic (Figure Cd). The minimum total erra reached d e r  10,000 

iterations of training was O. 1 1. The target maximum total mur (0.01) was imot reached, 

althwgh. the =or ackiieved at the SearchIIHPrn site was better than the error thet was 

achieved at the arbor- site (0.36) for the same comblliation of spectral information 

and the Standard Mation texture inf'ition. 

In addition to achbhg a lower total error during the hining, the nnval 

networl h r  the Searchont site trainai in a linle over Wthe time that was required to 

train the arboretwn nnval wtwork. Fie size could h v e  played o role in this, yet the 

difkence between the two fiies was wt that great to probuce the sigdicant rectuction in 



training tirne. Another factor that wuid have played a role in the reduction in training 

t h e  is the s d e r  number of classes (five) at the Searchmont site than the arboretum site 

(eleven). nie rne<hod used in this research was that the number of hidden layers 

currespnded to the n u m k  of classes used in the training phase. As a resuh there were 

fewer hidden leyers, thefore, fewer w ~ m s  between the d e s .  This can reduce 

the amount of cornpuution thet ocws at each iteratim to adjust the weights thât are 

applied to each d e  in an attaapt to a c h e  the total error specified. 

The mors of omission arid commission that were obtained for the rhree 

Searchmont plots are gven in Tabk 6.6. Plot 3-3 wcis not included in the assessrnent 

due to the excessive amount ofcompetition t h  prevented acainte v i d  identification 

of wmfer trees. Furthennore, in Piot 3-3 the competition was so heavy that when 

polygons were germateci to count the mors of omission uid commission the majorhy of 

the plot was i d d e d  as being one m o n .  The User's and Roducer's accufacies 

were Ob- fiom the omission and commission emors. The user's d e s  t h  

were obtained for plots 3.6 and 4.10 were 77.6% and 21.8?4, respsciiveiy. The r d s  

indicate that the user's accuracy was sismficomly affecteci by the dmsity of the 

cornpetition at each of the plots with plot 3.6 visually having a lower levd of ~ ~ r n p e t i t i ~  

than plot 4.10. The producer's acwacy for both plots was lW? since there w a e  w 

mm of omission for either plot. 
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6.4 Bi0phyW.l Moddli.g Strtiracrl A a w u  

Appendix E cornains the mean (Table E-1) and variance (Table E-2) statistics for 

the grey levd vahies that were exha*ed for the jack pine trees measuaed in the fidd for 

LAI and percent cover. LAI and percent cover field values are also listeci in the tables. 

The tabks comain both the original data and the mmialized data. A power 

ârandormation was applied to the mean dataset, d e  a logwithraic transformation was 

applied to the variance dataset. niose variables that were trransfod to obtain 

normaüty are indicated by an asterisic (*) after the variable name. It is these variables 

that were used in the anilysis in place of the non-normal original data. Kurtosis Md 

skewness values that were obtained for ail of the variables u e  rilso iisted in AppendDc E 

for the mean and variance statistics, tables E-3 and E 4  respectivefy. 

6.4.1 Corrd.tm A d p b  

The cuneiation vahies (r) and correspondiog signifiame d u e s  @) obtpined for 

the rnean and variance datasets are located in Tables 6.7 and 6.8, respective@. 

Correlation v h  that are disaissec! in the following sections are indicated in bold. 

Sipifiance Ievel was measured with a 95% confidence interval. Therefore, a pvalue of 

0.05 or less indiCates a signifiant correlation. aesuhs of tbe correlation anaysis using 

the mean of the variables wül be disaissed fmt, fotlowed by the variance. 

s usiw Mean of Variables - 

Table 6.7 indicates the r values obtained for the mean dataset- WerPilf, the 

values obtiined for LAI were weak, and not stritistically siBnifiamt. The hi@ r valw 



obtained was with near bfhred reflectance (-0.3 1). The negative relationship is wntrary 

to what wouid typically be asdateci with the two; as NIR reflectance increases, the 

LAI shwld increase beuiuse there is more vegetation pr-. This mey be due to the 

MR spearal bandpass of the camera which indudes a significant amount of r d  

s p e c h u n  trammission. The red band, produced a condation of -0.31 (p=û.06). The 

negative relationship is -4, as red refle~t811~e d e c r ~ ,  the absorption by the 

plant ùrcreases, suggesting that t h e  is an increase in the mount of vegetation and, 

therefore, LAI. 

The Standard Deviation texture mea%ure has a negntive rektionship (-0.30) with 

LAI. This wggests thpt as the MWC~P of texture decrerises, the a m  becornes mwahet, 

resuhing in a more homogeneosis luid cover; in this case vegetation. This would be 

indicative of an incrase in the LAI. 

Percent cover promiced similar relationships with the image variables as LAI, 

suice the two are positive@ coneiated (0.86). Correlation coefiticients obtained for 

percent wver with the variables disaissed above were higha thsn those with LAI and 

also more statistidy signifiant. For example, the correluion h e m  red and LAI was 

-0.3 1 (p=û.û6), yet, the correlation between red and percent cover was -0.40 @0.01). 

AU three of the vegetation indioes producd signifiant correlatiolls with LAI and percent 

wver, yet they were 'weaker' thsn either the r d  or NTR s p c t d  data. 
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Correlation Analvsis usinn Variance of Variables 

Table 6.8 indicates the r dues obtained for the v m  dataset. Oveaall, the 

values obtained for LAI wae weak, and not statisticaliy sisnificant. The highest 

correlation coefficient h e m  LAI and the image variables was with the variarnce of red 

reflectance (-0.35). The relationship is weak, but siBnificatrf @=0.03). Since the 

variaace is essentially a la order texture rneasure, the same logic opplied to the Standard 

Deviation texture measure can be u s d  here. As the variance in r d  demeases, there is a 

smoother grey levei surface, an increase in the absorption of red ewrgy, more vegetation 

presecit, and therefoce, the LAI increases. 

The variance of the Standard Devisatiori texture rneasure also sbtisined a 

s i g d e m t  W . 0 2 )  mrrelation with LAI (-0.35). Whüe the wmeiation beovem the two 

was weaiq the relationship is interpreted: as the variance of the Standard Deviaaion 

texture increases, the LAI decreases becauss t h e  aie more openings within the cawpy- 

Similar relationships were obtallied with percent wver and the wrkôies dîscussed above. 

Again, the correlations b e &  percent cover ad the Mage variaeles were higher than 

t b s e  obtained for LAI- 

An intaesting r d  that isppeared w k n  ushg the variance as a summary statistic 

was t h  the 1. order texture, the variance of green, red, d NIR were significamIy 

correlated with the Standerd DeMation and Variance, 2" order t e e  me8suces 

(pû.05). Correlation coefficients themseIves were 'sirong' for the Standard DMation 

texture measure and relativdy 'w&' for the Variance texture masure. Tbe higha 



d c i e n t s  were obtaiwd with the red variance, which is to be expected as the texture 

memures were determined ushg the red spectd Uifonnation. 

Similar relationships were obsened for correiations obtained fiom b t h  the meaa 

aMi variance datasets. The correlation coefficients for both LAI and percent cover with 

the Standard W o n  texture data are very similar to the coefficients oûtPined for the 

red band with LAI and percent cover. This is because they are highly wrrelated 

themsAives, 1.00 for mean and 0.99 for variance. Both relationships were highly 

sigdicant, both obtainuig a pvaiue of 0.00. This is a result of the hct that the Standard 

Deviaîion texture Wormation ion detemiincd using the r d  spectd informaticm. Tbq 

the addition of either one into a regession analysis wiü provide the same idonnation. 

However, the use of other texture masues which are not hi@@ comeked with the 

spectral data rnay improve the strength of the regression d c i m t  even more that the 

ones identifid in this research. 

Results obtained for LAI aad percent cover were genedy more significaat and 

the condation d c i ~  were t y p i d y  hi* than the man of thc variables uahg the 

variance of the variabies. The correlation d c i e n t s  obtained for gercent wver were 

k t e r  t h  LAI for both of the a s .  The diaererice between the values obtahd for 

LAI and those obt.incd for percent wver c d d  be a r-on of the ~amptiag methods 

used in the field. As weü, locaîhnal enors in image sompüng muid h v w  o w  

parameta over the other. The visuai estimate of percent cuver could d o w  for more 
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error in ixnage samplin& whereas the field measwement of LAI is a more standard and 

less arbitrary measurement, maultaining considency over differm plots and for different 

sumyon. The values thrit were obtained for the correlation between al l  the image and 

field variables (LA[ and percent cover) were weak overall, but in most instances 

statistically sigdi~8nt. Siniilar r d s  were found by Bukr et al. (1995) and Franklin et 

al. (1997) where correlations with LAI were weak but statistidy signifiant. 

6.4.2 Repuhm Auiprir 

Results of stepwise regession d y s i s  conducted on the mean and variarice 

daîasets are presented in Tables 6.9 and 6.10. The plrgose of thk d y s i s  was to 

determine if vegetation indices or tsaural infomiation increase the ab'ity of the spxtrai  

dota obtaimd tiom the imagery to predict fieid measaucd values of LAI and percent 

cover. The varia&les used in the regression were teste$ for W. Those that were 

not hem, were wrrected. Results wüi be discussed in the spme way as the corndation 

-sis; regrasion annlysis using the mean dataset wili be discussed first, foilowed by 

the resuits of the variance dataset. 

Tables 6.9 and 6.10 identify the five regremion udyses conductsd using the 

mesn of the variables for LAI a d  percent cover Md are identifid by the additiod 

variabk to the spcctrPi dat.: the texture mcasures, Standard Dcviatioa and Variance, and 

the vegetation indices: RVI, NDVT, and SAM. Each will be disnissed indepeademly 

with a smmary at th md ofthis xction Pddressing simiisritics a d  ditterences. 







The fist regression adysis  was conducteci using the rnean values of green, red, 

NIR, and Standard DeMation texture ag& LAI and then pma cover. In the LAI 

regression equation, the NCR variable was the first to be added uito the equation, 

foUowed by the green, and nnally the Standard M o n  texture. The variable ' r d '  was 

not added into the equation. As mentioned, this codd have OC CUIT^^ b u s e  the r d  

and Standard Devkhn are highly corrdated. The Standard Deviation was added in to 

the equaiion h s e  it was more signincant to the equatim than the red data. The 

addition of the Standard P)eviation tamire data to the equation prohiad a better 8 

(0.4 1) than with the NW Md green data alone (0.39). The addition of the Standard 

Dairition texture U i c r d  the regession coefficient but the increase was not 

statistidy sienificant because the dope of the Standard Deviation, when it was entered 

into the equotion, was not signifiant (O. 15). The addition of the Standarrd Deviation 

does improve the quation because the standard error of the equPtion decreased 6om 

1.00 to 0.99, dthaugh, the equatim with NIR, green, and Stuidard Deviation is not as 

statistically signifamt as the -one based on MR and green spectral dma done. The 

standard mors ob- were hi& therefore, at this point, equatiom fw the prediction 

of field variables were not devefoped. 

Regression adytùs for percent p~rcmtver exhibited sunikr results; exclusion d the 

red data and an increasc in the 8 fkom 0.53 to 0.59 with the addition of the Standard 

Deviation texture i n f i 0 1 1  to the MR and green data. The difference bedween the 

LAI equation and the percent cover equ~tion using these variables is that the rquation 



for percent cover with Standard Deviath is statisticaUy signdïcant because the dope of 

the Standard Deviation variable (0.02), Umen it was entered into the equation in step 3, is 

signiacant at the 95% confidence htervai. 

The second regraion equatioa that was conducted used the mean of the 

Variance texture data with the spectral data. The addition of the Variance texture data 

did not ùnprove the LAI equation. It actudy r&ed in a lower regression d c i a i t  

than with the spectnl data alone. The value decreased fiom 0.42 for NIR, greeq and 

red data to 0.41 with the addition of the Variance texture. S i d a r  r d t s  were again 

obtoined for the regression of percent =ver9 although the values were hi* (0.58) for 

both the spearai data and the addition of the Verisnce texture. Howwer9 the addition of 

the V a h c e  texture was not sigdiconi because the standivd emw increased from 17.91 

to 17.94. Furthennore, the dope of the Variance texture ifnfodon, when it was addd 

Uito the equation, was not signifiant (0.35). 

The third regression d y s i s  was wducted using the specaaal data aad the d o  

vegetation index. The ratio variable was added in at the f d  step of t h  regression 

equation. The ratio vegetation index did oot add to the LAI regression 

eqwtion. The regrasion coefl3cient decreased from 0.42 with the s p c t d  data ody to 

0.40 with the addition of tbe d o  data. The regression quation for percent wver was 

octuPUy improved with the M o n  of the ratio da% imeasing nom 0.53 with the MR 

and green data to 0.59 with the addition of the ratio data. The increase was also 

sutisrically significmt because the standard mor decreased and the dope of the ratio 



variable 

the red 

was 0.02 which is sigdicant 

variable was added into the 

1 IO 

at the 95% confidence htewal. Howevert w h  

e q d o n  &er the ratio variable, the regression 

d c i e n t  d e a d  to 0.58 and the standard error increased. 

nie final two rqpssion anaiyses conhicted used the spearal  data with the 

addition of NDW and SAM. The resuhs obtallwd for both LAI d percent cover for 

both NDW and SAM were similar to those obtaincd by the ratio v e g d o n  index. For 

the LAI regression, the vegetation uidices are addd in a! the last step, lowering the 

regression coefficient vdue and kegging the standard m. For the percent wver 

eqution, they were added in the third step, increasing the regression coefficient and ' 

lowering the standard mot.  The addition of both MIM a d  SAVI to the percent cover 

equation is statisticaiiy siitficant bccsusc the dopes for both variables was 0.02, which 

are signifkmt at the 95% confidence levei wtmr thcy are entered into the qulition. in 

the case of SAW, the red variable was not entered into the percent cova e~uation 

because the minimum tolennce of 1.00 x W4 was exceeded by the red variable (6.9 x 

10~).  Furthermore. addmg the red variable Uno the quation would reduce the 8 value 

as hdicated by the 'Beta in' vaiue of 0.40. This '&ta In' value is the s t a n d a r ~  

regression coefficient thaî would r d  if the variable was entered into the cquation at 

the next step (Nonisis, 1993). The similarity between all three vegetation mdices ocws 

because they arc highiy correlateci with each 0 t h .  

Overail, the regr&on analyses producd better results fw percent cova than for 

LAI. This is s h k  to the correlation analysis, w k e  wrrehîio119 h e m  percent 



wver and the image variabtes were better than with LAI. With respect to the qmtral 

data done, the N[R v8n8ble wss aiways enterd into the equation at the first step, and 

this was foiiowed by the green variable at the second step. The addition of the green 

variable ahvays resulted in a signincant (p4.05) increase in the regression coeflçicient. 

The addition of Stwdard M o n  texaire improved the equ8tion.s for both LAI 

and percent cover, but the improvement was onIy statisticdy sisnificant for percent 

cover. However, the standard error for the LAI eqU8tion was r e d u d  even though the 

dope of the Standard Beviation variable for the LAI equation was aot signifiant. 

nierefore, the addition of -the Standard m i o n  texhue data could be wnsidered - 

vahiable for the prediction of both LAI and percent cover. The addition of the Variance 

texture improved only the percent cover regression coefncient, ahhough, the 

improvm~nt was not sutisticPlly signifiant kcouse the standard error imeaSea and the 

variable's dope was grmer then the 0.05 significance levd. 

The three vegetation indices all produced similar r d s ,  irnproving the percent 

cover quation and decrrrsiog the regression d c i e n t  for LAI. The regtession 

d c i e n t s  obtained for both LAI and percent cover with the addition of each vegetation 

index were ail reiativeiy similap. However, MIV[ pro&& the hi- value for the 

percerit cuver m o n  wiiile SAW prduced the hi- for the L N  w o n ,  despite 

the vahie decreasiag when SAM was added into the cquation. This indicates that any of 

the three vegeution indices investigrted in thU rescuch d d  be used to impmve the 

esthution of percent cover from mery measured vanables. 



In addition, the incorporation of Standard Deviation texture data to the spectrai 

data in a regression andysis d d  also be used to detennine LAI. This is the O* 

vdable that was able to miprove on the strength of the regression coefncient oûtained 

by the spectral data done. Starrcfud mation texture d d  also be used with s p e d  

da;a to detemine percent cover and &.W a regression coefficient umilar to those 

produced by the vegetation indices. It can dm be used to &tain a stronger regression 

for LAI. However, it is recommended that if the mcans of tbe v h s  image variables 

are used, then the addition of Standard Deviation texture data to the spectral idonnafion 

would be &ta than using a vegetation index as LAI can be estimatecf in addition to 

percent cover using the texture data, where85 the vege4ation indices only mfiieved a 

better regression d c i m t  for percent cover. 

The same five regession analyses wnducted ushg the variance of the regression 

variables are identifid in Tables 6.1 1 and 6.12. nie 8 vlhies are mch lower tban those 

of the mean &taset but the same pattern of &able additions at each step was aident. 

nie addition of the Standard Dwiation texture information to the equaîion resulted in a 

Iowa regression d c i e n t  for both LAI and percent wver. For LAI, the regrasion 

d i c e n t  decreased fkom 0.14 for the green and red spectral infocmation to 0.12 with 

the addition of the variance of the Standard Deviation texture. A M a r  decrease was 

obtained for percent cova, decreasing from O. 15 to O. 13. The ddition of the Variance 

texture r d e d  in the same regression d c i e n t  for both LAI (0.14). This s a *  in 
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the regression coefncients with the addition of the Vanance texture GOUM be because the 

texture measure is derived from the red spectral information which had akeady been 

added into the equation in the previous step. The addition of V* imeâsed the 

regression coefficient fiom 0.13 to 0.20 for percent cover. The dSerence between the 

 HO equations is that the krease for the LAI was not statisticaüy si@cant and the 

incrase for percent cover was. The three vegetation imlias ail produced imilar resuhs. 

The regression d c i e n t s  for both LAI and percent oover were both significantly 

improved when the variance of the vegetation indkes were aMed Uno th& equtions. 

CornPanson of Remession R a i t s  for the Mean andi Variance Datasetg 

Ooe of the N o r  ciiffierences between the two datasets is that the variance datasa 

resulted in weaker regession relationsbips. Howevers for both datasets, the regession 

analyses for percernt wver produced stronger regressions than did LAI. Furthennore, 

the mcan of the Standard M a t i o n  couid be used to predict both LAI and percent 

coveq yet the variance of Standard Deviation cuuid mt. The sinirition was r w d  for 

the Variance texture measure; the varime could be used over the mean to predia LAI 

and percent cover. Howevers it is recummended that the mean of the Standard 

Mation be used because of the stronger regression reiationships derived. The mean of 

the vegetation andices ody improved the percent cover modd, whereas their variance 

improved the regretaion d c i e n t s  of both LAI Md percent cover. 
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63 S u m u r g  of Railts 

The following section sunmmke the results of both phases of the research and 

highlights those of importance. The conclusions of this work and their impact on forest 

regmxaîion  as^^ are presented in Chapter 7. 

65.1 mase f 

Per pixel sepanbilities thrit were &taineû for the devm h d  wver classes were 

geneaaliy 'poor', paiticuîmly for the vegetation classes. The addition of two co- 

ocmence texture aneasufes improved the sepanbilities of the land cuver classes, but 

they were stdl 'poor'. This lack ofgood separabiiity h e m  land cover clrsses kd to a ' 

large percentage of indMâwl pixd errors when id-g con& seedlings. However, 

since the seedling cores were gmerally w d  c!assined, an asmmmt of ô c c u r a ~ y  of 

seedhg counts was oonducted. The five classidicatiom, of the twelve, which obtaimd 

the lower percentage of mors in the counting the coder seedhgs were selectd. 

Errors of omission and mors of commission were identifid for tkose 6ve ciassifications 

for each of the three plots on the eqwhmaai  units wfme no cornpetition was present. 

This condition was used to simukte leaf4ff imagery which w d d  n o d y  k used in 

conifm semihg i d d d o n  and couming. The User's and Rhcer's a d e s  for 

each of the classinen were detcrmined. The classification t h t  prohiced t k  higkt 

aCCUf8Cies for al1 plots was the naval w o r k  using the spectral data pius the Standard 

DeMation c c w c ~ ~ ~ e n c e  texture masure. It was weU over W h  accwate for d couias 

except for the Usa's acaury in the firewed plot. Of the five class'ition~, 



containeû COiX'rCUTrence texture information. The accurack of conüér se#iüng counts 

obtaked in this research are as good as those achieved by Hall aad Aldred (1992) 

through maMal interpretation of stereo images, ahhougb the site used in this research 

was a more wntroUed situation than the shidy areas used by Hall and Aldred. However, 

the results obtained in this r-ch suggest that automated methods can be used to 

classify and count co9iifer seedhgs. However, it must be conducted in leafsff 

conditions because as the density of cornpetition b r a i e s  cwnting ammcy decreases. 

A cumbination of mand  Md autoinateci methods, wch as the use of stereo images Ui 

locating training siamples could rnitigate the &kt ofdmsity. 

Testing of the neurai networlr with spech.al anci Standard Deviation texture 

information was conducted on the imagery of the operational çutover site at Searchmont. 

Of the two plots evahmted, the piot with the lesser amount of cornpetition achieved a 

higher user's a a a c y  (17.6%) than the other plot (2 1.8%). 

63.2 mase 2 

The amdation coefficients for the image variables and field variables for both 

datasets (mean and wiance) gemdy indicated that there is a good potentiai to predict 

plant paramefers such as L M  and percent cover fiom image variables. Howwer, 

correlation d c i e n t s  were gencrPlly lower for the wiana of the regressfon variables 

than for the mean, repnseming a 'weaker' rehtioaship whm the varhce of the 

variables was used. Percmt cover obtained Mer co~tlation coeîiicients agallist the 

image varinbles for both of the datasets than LAI. 



Spectmi data alone can be used to predict the fidd measurements &AI and 

percent cover), although the use of the mean of the Standard DeMation ca-axmence 

texture information and the meen of the three vegetation indices (RW, NDW, SAVI) 

amid be used to strengthen the reiaîionship. A l t h g h  regression relatioaships were 

'weak', they were statistically significant aad were better than those obtained using the 

variance of the vasiables. Furthemore, it is recomrnended thet a stepwise multiple 

regrasion be used to «>&a the anatysis becruse, in some ceses, the addition of 

spectral variables did aot si@cantiy wnm'bute to the equation. These variabIes c m  be 

i d d e d  in a stepwise method and exciuded fiom the modd. For example, when adding 

vegetaîïon indices to the spectral data, the vegetation index was added Wore the green 

spectral data, and whea the green spectral data was added, the stpength of the regression 

relationship was reduced. The use o f a  stqwise method can aiiow the user to detennuic 

which variabIes should be Wudecl in the equation. This method w u  also recomfnendd 

by Gong et al. (1995) as they &tain the Iower prediction mors than with other methodr 

of regraion anaiysis. 



7.1 htroâactioa 

This chapter outlines the major conclusions t h  wen reached as part of this 

research, discusses the limitations that were encountered over the course of this research, 

and provides reco-om to improve on this work. 

The research conducted for this thesis focused s p e c i f i d y  on the waluation of 

information derived fiom digitPl camera imagery which c m  be used in decision making 

for p l d g  sihricuhufal actMties during the regeneration ofconiferous forest sites prior 

to these sites being assessed for freato-grow status. 'I?e evaiuation was conducteci in 

two phases. The ditst phase assessed the capaality for coder identification and 

counting using statistical d y s i s  and automaâed clossification procedwes. The second 

phase detenmned the capabüity for statistical modehg of biophysical parameters (leaf 

area index and percent cover) of regenerating vegetation ushg spectral and texhual 

information extracted h m  digital c~mers imagesy. 

Uder simple stnichiral conditions, thme appears to be a strong potenhi for 

airborne digital camen m g  in provision of thematic maps of cornifer dhgs and in 



biophysical modehg of vegetation structure. Specific conclusions racM for each 

phase of this research are: 

1. In absence of competition and aon-overiapping r o m ,  very high $CCUfaCia were 
obtrllied for wnifi couats. Acairacy was highest for the nairal network 
classification with user's and producer's Pcwefies over 9V?, with the exception of 
the user's accuracy for the fkeweed plot which was 66%. This level of acmmy is 
indicative of what shodd be schievabk using imsgery acquired in leaf'aff wncfitiom. 

2. Use of autornated classifi~~tiolls to produce thematic mtps obtairied better resuhs for 
vcry low densities of cornpetition thpa for hi- k v d s  of cornpetition. This was 
best demonstrated by the cwmllig error c w e s  for the various d d e s  at the 
Arboretllm site 

3. The addition of cooccurrence texture tfiea~u~es improved the sepsnbitities a d  the 
wwacy of the thematic meps. 

4. A per-pixel accuracy %ssessmenf is not suitable for cksiûcations obtiiiaed !hm high 
resdution imagery such as that uJcd in this research. An Object-Based acauacy 
asses~ment was developed, whae the percentages of over- and undet-edmtes of 
wMfa cuunts were obtPined for a range of pixel groupings that codtuted an 
object. Ahhwgh a suitaMe numba of pixds to use in represenî&on of a seedhg 
cwld nat be detennwd, resuits Uidicaîe that codier wunts can be highS ocwate if 
the number of pixels is epual to the nimkr of pixels chsified mrrectly in conifer 
crowns (Le. core crown a m ) .  

1 .  Multiple regression of combinai spc td  and texturai image data showed very good 
p o t d  for use in prediction of LAI and percent cover as 8 dues  rangeci h m  0.4 
to O. 58. However, stMdrrd mors were hi@, being approxhtely 1 .O for LAI and 
17% for percent wver. 

2. The addition of vegetation indices to the speanl inComution resuited in a statistidy 
sipificam increoses in the strength of modets prcdicting field measured varllbks. 
The mode1 for percent cover did wt inchide the r d  spectral data, yet the 8 value was 
higher for this model t h  the LAI d d  iihhough the siaadud enor was greater for 
percent covef. 



3. The use of the mean statiaics for correlation and regression variables produced M e r  
resdts than the variance statistics. 

4. The use of the Standard Mat ion  ccwccumence texture measure in addition to the 
spectral information resuits in an k e a s e  in the strength of the d e l  for the 
prediction of LAI and percent cover. 

5. A stepwise regression equation should be ussd to wnduct the regession analysis to 
eMMe the Seaection of variaôles that are statisticajfy  si@^ to the modd aDd avoid 
those that d d  prochce a 'weaker' model. 

1. The imagery obtained ushg the digital camera may be suitabie for use in forest 
vegetation management, ahhough the spectral quslity of the hagery could certainly 
be improved. P w r  spectrpt quPlity is danonstrateci by the inverse condation 
between MR and LAI. nK relationship should be positive, as NIR increases, the ' 
amount of vegetation keases, therefore, the LAI d kease .  

2. The pixel size of the imagery obtallied also may be suitable for forest vegetation 
management applications, specifically forest regetmation osscssment. Small pixel 
sizes are necessary for the i d d c a t i o n  of oomfcr seedlings, which would not be 
visible at iarger pixel sizes. 

This r-ch demomtrated that airborne digital camera irnagery hiis potential for 

use in determination of the otatus and structure of conitcf regetmation areas. The 

methodology and technology ewmined over the couse of this work mny provide an 

eB&e operotional support tool for forest vegetation management. The wst of digital 

camen image acquisition is iower than otba high resolution h g e r y .  FurtheBnorc, the 

Itaniing pMcipks for digital csmeras are legs wmplex than those for hyperspecnat 
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also les. Interpretation of digital fiame camera imagery cm be based on similar 

meuiods used for aerial photography, wtiich is cufcentiy the most cornmon remote 

senshg medium used in regeneration assessment. Digital camem systenrs can offi  

numerous advantages o v e  conventid aerial photography: elimination of the need for 

nIm development, in-fiight viewing of images, cornputer wntroi ofexpsure levels, and a 

Bnear reçponse to radiaace (King, 1995) The spatial resohition used in this research (2.5 

cm) rdeas the opemionai requirements, in that the resoIution was chosen based on the 

need to 'se' ïnâividurl conifii seeâlings. Most 0th- seasors (e.g. CASI and other üne 

scanners) do not have the capab'ity to aquire data at such high resohition and are thus ' 

Limited to anaiysis of the campy and not of individuai Seedlings. The need to imige 

individual conifer seedhgs is a requirement if it is the growsh of idhidual t m s  that is 

tc be monitored fiom a ywng age. Givm the above bmefits of hi@ resolution airborne 

digital ~awrp  imrging, there is a much greater potemid for wsr-efktke integration of 

the methods evaiuated in this research into operational regeneration assessrnent than 

exists for 0 t h  current semors. 

7.3.2 Lir i ta t ioas rub Rccorimeadatkrs 

To adapt the methods presented in tYs research to an operatiod situation, 

improvemems in the technology an8 methods are nœûeû to provide consistent results, 

under a wide range of conditions. Th foiiowing mnmiendatioas should be 

implemented in fuRha research. 1. Sampk plots on the ground are needed for either 

trainhg c l d e r s  or for biopbysical modeiling. Howeva, in order ?O obtain proper 



coverage of these plots, Iarger format digital M e  camerss (e-g. 3 k x 2k pixeis) than the 

one used in this research should be used. The identification of sampk plots is also 

importam. nie use of stereo images should improve tree identification when there is 

cornpetition present over the monoscopic viewing used in this thesis and dso redhice the 

locational mor present during the d e d o n  of training samples. 2. Use of a digital 

camera with m o w  spectrat bandwidths (< 1ûûnm). This may duce the amount of 

error in classification and identihtion of conifet seedlings by improving separability 

b e e n  vegetation classes. 3. If training samples ore going to be dected over a 

a u m h  of images in a mosaic, radiommic correction of the hagery d d  increase 

sepambiiay and improve acn<rocy of d e r  segdling counts, although at sdded wst. 4. 

The addition of other information fiom the hagery i t a  such as other co-oaweflce 

texture measrara, &ch are las correiated with the spectrai data than the two measure, 

used in this research, may reduce the amount of error in cornfer seedling cBunts. The 

importance of obtaining an acceptable amount ofaror is cnticaî when the iaifonnsition is 

being used to support forest vege(ation management decisions as both long-temi and 

short-terni costs can be affecte& Furthamore, the modeMing of biophysid parsmeten, 

such as LAI and percent wver, can also be improved upon by the above 

r m d t i o n s .  

nie timing of acquisition is another operationai consideration thaâ was a 

Limitation of this tescarch for wnifer classification d counting. Clasdication and 

counting of conifers can ôe improved if the images are iscquired in euty spring or Iate 



fd ,  when there are no laves present on the competition. However? images canaot be 

acquired at this t h e  if the cornpetition specîes and density, or oved vegetation 

muchire are to be assessed. By aq&g images at Merent  phmdogical stages, the 

separability ûetween vegetation classes CM improve because some of t h  competition 

plants may be flowering. This is, however, a costly proposition as gmwth sequences of 

various species are differeîit. Therefore, datasets f?om variws dates would need to be 

wmbined, a process which w d d  be ciiffi& aad mt operationaUy efticient. 

Conseqwntly, the potential for SingIe date hagery in ciassification of wmpeting 

vegetation is very M e d  wtiile muiti-date ima@g is proôabiy not a cost-effective - 

approach. Pitt et al. (1997) suggested an imaging scheduk for use in severai forest 

management 8CtMOies whkh should be foilowed when pl- the timing of image 

acquisition. 

7.4 Coaddhg ataiarirr 

As discussed at the begllming of this thesis, fm- play an integral d e  not ody 

for the country as a whole, but for c o d e s  and individuai Canadians as well. 

Ensuring the successfùi regenadon of  Caneda's forest is therefore essential. nie 

wduation of remote SeflSing technologies in forest mariagcment is w t  new, ahhough, 

few such technologies bave proven to be cost-effective Md are therefore mely used on 

an opentiod basis. As the rcquiremcnts of forest vegetation miinigem*a change, the 

technologies and methodrr used must rlso awt. This paper d w t e d  oœ such 



technology using various methmis to provide infbdm on caser status and 

vegetation structure in support of the decisiorrmakulg processes required for monitoring 

and ensuring the s u d  regeneration of forests. Real potential has been 

demonstrated for the givm applications. The next stage should be an evalU8fion of cos- 

&eCtivéness of the mahods in an operaîioniil pilot project setting. 
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Table A-l 
Training Sampk Statistics for Arboretum Site 

Crom Spectral Data 

Chss 

Jack Pine 
Blick Spnice 

Firewccd 
Upland Wllow 
R d  RmpBcrry 

BluoJoint Gnss 
Large-Lcavd 

Aster 
Soi! 

t 

Grass 
1 

Shadow~ 
1 

NuIl 

Numkr of 
Pixels SampM 

453 
433 
474 
522 
477 
389 
384 

Green 

548 

lblean 
90.3 5 
87.82 
85.16 
1 06.20 
110.21 
87,89 
96,53 

Std I)tv 
7,56 
7.57 
9.68 
6.13 
10,08 
7.97 
10.42 

92.10 
64.69 
32.11 

O 

Red 

67,10 

Mcan 
66.04 
72.19 
77.54 
83.54 

Near IR 

4.83 

Std Dtv 
6.83 
6,09 
13.60 
6.78 

83.73 
75.71 
109.07 

Mtrra 
54,17 
63,43 
59,46 
73,07 

6.68 
5.23 

O 

Std Dcv 
6,25 
570 
9,99 
7.97 

4.33 
6.08 
4,2 1 

O 

5.81 
6.95 
5 3  1 

O 

543 
413 
568 

, 79,03 
57. 1 O 
29,90 

O 

75.62 
30,01 

O 

9.28 
7.15 
7.89 

8.45 
7.36 

, 71.31 
63.86 

1 O, 82 91 ,O0 





TaMt A-3 
K-Muas Uosupemised Cluster Statistics for Arboretum Site 

Spectral Data 

Clus ter Pixels  Mem Position S t d  Dm? 

T o t a l  











T a k  B-4 
Training Sampk Statistics Cor Surcbmont Site 

from Spectral and Standard Deviaho Tcxrurc Data 

Numbcr of 

Mcan Std Dcv Meaa Std Dcv 
77.4 1 11.49 67.99 12.95 



Table E S  
Trnesformed Divergence Separabüitks for the Surchmont Site 
Training Sampk Usiag Spectral and Standard Lkvhtion Data 





Thematic Map Legend 

Jack Pine 

Biaêk Spruce 

Fireweed 

Upland Willow 

Red Raspberry 

Bllue-Joint Grass 

Lar ge-Leaved As ter 

Soîl 

Grass 

Sbadows 

Nul1 



Figure C-l 
Exampte of Plot Classification used in determination 

of User's and Broducer's Accuracies 

Each coloured polygon indicates a conifer identified by the classification. The colour of 
the polygons represents the unique polygon identification that was assigned and aided in 
the accuracy assessment. 



Figure C-2 
Example Spectral Cluster Map of Arboretum Site 

Using Unsupervised Clustering on Spectral 

Figure C-3 
Example Thematic Map of Arboretum Site 

Using a Maximum Likelihood Classifcation on 
Spectral Information Only 

For Legend please see preceding page 



Figure C-4 
Example Thematic Map of Arborehim Site 
Using a Neural Network Classification on 

Spectral Information O d y  

Figure C-5 
Example Thematic Map of Arboretum Site 

Ushg a Context Classification on 
Snectral Information Onlv 

For Legend please see preceding page 



Figure C-6 
Neural Network Classification with Spectral and Standard Deviation 

Texme Data on the Searchmont Site 

Thematic Map Legcnd 

Conifers 

Cornpetition 

Soil 

Shadows 

n Nu, 
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Cuiller Counting Emr (%) fur Mariimum UMlbu* Cbslfier rlih S p c t n l  and Standard Deviath Testum Data as 
a Functiw of Coopditkm n i c i e s  and Denslty, and the # of Pixels Dofining a Scedllng 





Conlfer Countiag Ermr (Y*) for Context Clinrifier wltb Spectral and Standard Deviation Textum Dita an a Punctiw of 
Cornpetition Species and Density, and t b  # uf Pixdn Drlialqg 8 Secdliiig 
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Variable Kurtosis S.E. Kurt Skewness S.E. Skew 

SAVI 
NDVI 
SAVI* 
NDVI* 
Variance 
RVI 
LAI 
RVI * 
% Cover 
NIR 
R e d  
Green 
Std Dev 



Variable 

NDVI 
SAVI 
RVI 
Variance 
LAI 
NIR* 
Red* 
Std Dev* 
% Cover 
NIR 
Red 
Green 
Std Dev 

Tabk E4 
~~~ and Kortoru Vdrrcs tiw the 

Variamce d t k  Emge a d  Fidd Variables 

Kurtosis S.E. Kurt Skewness S.E. Skew 
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