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ABSTRACT

The purpose of this research was to investigate the potential of low cost, high
resolution airborne digital camera imagery for use in forest vegetation management.
Airborne imagery with 2.5 cm pixel size was acquired near Sauit Ste. Marie, Ontario,
over two forest regeneration sites to: i) evaluate capabilities for discrimination of conifer
crop species from vegetative competition at various densities using classification of
spectral and textural image information, and ii) develop models relating vegetation
structure parameters to image spectral and textural information. Results indicate very
strong potential for classification and counting of conifer seedlings when competition is
low or not visible to the sensor. Systematic decreases in class separability and conifer
count accuracy were observed with increases in density of competition vegetation. In
biophysical modelling, relations between image and vegetation structure variables were

weak yet statistically significant and improvement is needed for operational use.
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Chapter One
Introduction
L.1 Introduction

Forests in Canada play important roles not only for the country as a whole, but
for communities and individual Canadians as well. Covering over 45 percent of the
Canadian landscape, they directly and indirectly support the economic and social well
being of many Canadians. In addition, forests play an important ecological. role in the
environment. They moderate climate, prevent soil erosion, improve water and air
quality, and provide habitats for countless plants and animals.

The importance of Canadian forests demands their proper management to sustain
and enhance the roles they play. Ninety-four per cent of Canadian forests are publicly
owned, of which 71% are managed by provincial governments, while 23% are managed
by federal and territorial governments (Natural Resources Canada, 1996).
Approximately 50 million hectares are currently being protected from harvesting
activities by government legislation or policy. The legislation and policies governing the
119 million hectares in Canada that are currently being managed for timber production
are primarily under provincial jurisdiction (Natural Resources Canada, 1996). All timber
related practices, such as harvesting, regeneration, and silviculture activities, in each
province or territory, are governed by those provinces’ forestry statutes.

Forestry statutes, such as Ontario’s Crown Forest Sustainability Act (1994)

provide the framework for the use, allocation, and management of all publicly owned
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foreéted lands (Ross, 1995). The Crown Forest Sustainability Act provides for the
sustainability of Crown forests in Ontario and outlines objectives for the management of
the forest to meet present and future social, economic, and environmental needs
(Statutes of Ontario, Chapter 25, 1994). Crown forests are situated on land owned by
Her Majesty in Right of Ontario and are under the management of the Ontario
government.

To comply with provincial regulations and ensure continued access to crown
forests, forest companies utilize standard forest management practices. These practices
include not only highly publicized harvest activities, but numerous silvicultural operations
that ensure successful forest regeneration. Field investigations enable forest managers to
identify and correct, in a timely manner, areas within forest management units' that could

potentially lead to problems, therefore ensuring successful regeneration.

1.2 Context of this Research

The use of remote sensing in forestry applications has been well researched
within the remote sensing and forestry communities (Pitt ef a/., 1997, Hall ez a/., 1996,
Waulder ef al., 1996; Smith ez al., 1989). Numerous sensors (optical and radar) and
platforms (airborne and satellite) have proven useful in aiding forest managers with

various decision-making processes (e.g. herbicide application, supplemental planting)

' An aggregate of forest stands that are managed under the same rotation and silvicultural system.
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durix;g regeneration and harvest operations. Currently, as in the past, forest companies
have primarily used remote sensing in forest mapping and mature forest inventory.

Advancements in technology have led to the development of various new sensors
and platforms. One sensor which has potential for use in forest vegetation management
is an airborne digital camera. Digital camera systems offer a number of advantages over
conventional aerial photography. They are generally lower in cost than 70mm and large
format photographic cameras. Furthermore, they eliminate the need for film
development and subsequent scanning, which is required when subjecting conventional
photography to computer analysis. Digital cameras also offer the capability for in-flight
viewing of images, computer control of exposure levels, and a linear response to
radiance (King, 1995). Many of these features can be found with other optical sensors
(e.g. MEIS, CASI), although costs associated with digital cameras image are
significantly less. Furthermore, airborne digital camera systems currently offer higher
spatial resolution than other airborne and satellite digital sensors as well as complete
flexibility to vary the desired resolution by varying the flight altitude, or lens focal length.
Digital cameras, being frame sensors are more similar to the frame format of
photography than are line scanners, thus providing more potential for integration into
forest management activities which utilize photography.

The belief underlying this research is to develop a methodology that is readily
transferable to a user community, in this case the forest managers. Therefore, this

research was designed to simulate operational conditions, where the parameters, sensor,
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imagé analysis and classification techniques would have a greater chance of
implementation within the forestry sector. Furthermore, the data acquired using the
digital camera were left in an uncorrected state. In an operational setting, image
degradations from bi-directional reflectance, noise, or radiance decrease with view angle
due to optical effects are usually not corrected due to the complicated nature and high
costs of the processes involved. Therefore, if computer analysis on uncorrected data
using commonly available methods is successful, the transfer, with respect to both
functionality and comprehension, to an operational setting would presumably be. easier
and less complicated.

To transfer the technology and methods presented in this work, several other
factors must also be considered. The use of digital frame cameras as opposed to other
high resolution sensors, such as the Compact Airborne Spectrographic Imager (CASI),
do not require advanced user training, extensive preliminary data processing, or high
capacity operating systems. Secondly, imagery obtained from digital frame cameras can
be analysed using standard, commercially available software. Although some of the
methods used in this research are experimental, they were conducted using a simple set
of user inputs with commercially available PC-based software. Lastly, the choice of
spatial resolution is also important. For forest regeneration assessment there is a need to
‘see’ individual conifer seedlings. Other types of sensors typically produce lower
resolution images where individual trees are not imaged and analysis must be conducted

on a canopy basis.
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A workshop held by the Canadian Forest Service in Sault Ste. Marie, Ontario, in
December 1995 examined the use of remote sensing for forest vegetation management.
The workshop concluded that given current data and cost requirements, the best remote
sensing system for implementation in forest vegetation management should include aerial
photography. It was noted that aerial photography has been routinely used since the
1950s and has seen substantial improvements in resolution, forward motion
compensation, motion stabilization, computer designed lenses, integration of GPS, and
exposure control systems (Pitt ef al., 1997). Furthermore, aerial films have also been
improved to achieve increased film speed, spectral sensitivity, resolution, and colour
rendition. Research into the use of aerial photography has demonstrated that a photo
scale of approximately 1:1000 may be used to acquire data for crop and non-crop
vegetation such as height, density and cover (Pitt ef al., 1997). The use of aerial
photography has successfully been demonstrated in regeneration surveys (Hall and
Aldred, 1992; Hall, 1984). However, the workshop recommended that the immediate
focus of research be on the use of digital cameras as replacements for aerial photography
to assist in the acquisition of data used in the forest vegetation management decision
making process (Pitt ef al., 1997).

Digital frame cameras provide a method for obtaining digital images directly.
The workshop stated that not only do digital cameras have a similar technical
sophistication and format to conventional aerial photography, but they offer the same

advantages of digital line scanners at lower cost, permit customization by the user, and
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are easy to install in light aircraft (Pitt ez @/, 1997). Their major limitation is lower
ground coverage at a given resolution than photography due to the smaller size(s)of the
imaging ships. However, digital camera systems are developing rapidly with continuous
improvements in spatial resolutions and greater ground coverage as formats of imaging
chips increase in size.

This research addresses this recommendation through the investigation of digital
camera data for provision of specific FVM information. The procedures used during this
investigation are different from those typically used by forest managers in that methods

are image-based and are automated as opposed to the manual photo interpretation.

1.3 Research Objectives

The research conducted for this thesis focuses specifically on using information
derived from airborne digital camera imagery as a decision making tool for the planning
of silvicultural activities during the regeneration of coniferous forest sites prior to these
sites being assessed for free-to-grow status. The evaluation was conducted with the
following two objectives: i) assess the capability of airborne digital camera imagery for
conifer detection and identification using statistical analysis and automated classification
procedures, and ii) assess the capability for statistical modelling of biophysical
parameters (leaf area index and percent cover) of regenerating vegetation using spectral

and textural information extracted from digital camera imagery.
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The first objective involves identification of the objects of interest, in this case the

conifer seedlings, within digital images and production of thematic maps of the
regeneration plots from the imagery to support the decision-making process. The
second objective relates to the evaluation of plant growth and competition levels, which
are important in dealing with regeneration of conifer trees. This information can be used
in establishing a schedule of where and when to employ certain silviculture activities such
as weed control and spacing. This research includes two components which have not
been previously investigated in FVM; digital cameras and the use of automated

classification.

1.4 Organization of Thesis

To facilitate an evaluation of digital camera imagery as a tool for decision making
in forest vegetation management, some knowledge of forest vegetation management and
silviculture practices needs to be outlined; this is addressed in Chapter 2. Furthermore,
the spectral response of the targets, in this case vegetation, also needs to be summarized.
This background is provided in Chapter 3, in addition to a description of the necessary
technical and contextual background of the work undertaken. This basic background
theory is presented through a progression of past and current remote sensing research.
Chapter 4 describes the study area and data used during this research. Chapter 5
provides a detailed discussion of the methods developed to evaluate the use of airborne

digital imagery in regeneration assessment. The results of the research are presented and
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discu.ssed in Chapter 6. Chapter 7 provides a review of the research, discusses the
significance and limitations of the methods and results, and summarizes the conclusions
reached. It will also provide recommendations for techniques or methods that could be

undertaken in future research.



Chapter Two

Potential for Remote Sensing in Forest Vegetation Management

2.1 Forest Vegetation Management

The management of Canada’s forests has typically focused on the growth and
production of marketable trees and not on forest ecology. In the past, the goal of
management was to ensure a sustainable yield of timber for industry (Canadian Council
of Forest Ministers, 1992). Of late, there is a new standard developing that views forest
vegetation management (FVM) as a component of silviculture which involves -
manipulating the rate and course of early plant succession to achieve a desired
composition, structure and form for the forest stand within a desired time period (Pitt ef
al., 1997). FVM involves integrating the knowledge of plant ecology with a wide
variety of complementary ecosystem-based methods that are socially and economically
acceptable (Wagner, 1994). No longer is the timber component the only concern; forest
managers must include non-timber components of a forest ecosystem such as wildlife,
recreation and watersheds, into their decision-making processes. Intensive forest
management comprises two main activities. The first is that of regeneration through site
preparation and planting or through natural regeneration. The second is to tend
established stands of timber in order to maintain or improve their growth. This process
is subdivided into tending either young regeneration or well-established sites. This

research will focus on the tending of young regeneration sites.
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FVM decisions have to be justified on a site-specific basis. Justification using
quantitative techniques to objectively assess the value of various treatment options on a
site-specific basis is difficult because of the lack of quantitative data (Wagner, 1993).
This has led to a need within forest management for the use of decision support systems
which are based on objective, quantitative assessments. A decision support system
(DSS) is a computer-based information system that includes a database, procedures, and
an interface between the decision-maker and the procedures which are used to serve as a
decision making tool. These systems require large amounts of data, typically more than
what can be provided by current field surveys. Remote sensing offers an important
source of input data in addition to the field survey data, provided that the remote sensing
data can be verified as sound. Decision support systems have been developed to provide
a method of organizing technical components to allow for effective decision-making and
planning (Thompson and Weetman, 1995). There are two features that are recommended
for a forest management DSS: i) include a GIS as its core, and ii) cover all important

planning periods from regeneration to harvest (Thompson and Weetman, 1995).

2.2 Forest Regeneration Assessment
To understand how remote sensing can be used in FVM during the regeneration
phase, it is necessary to review the objectives of regeneration assessment. Specific field

techniques will not be discussed.
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A forest regeneration assessment is conducted in order to determine the status of
a regenerating site. Regeneration sites must be monitored and data collected to evaluate
plant succession and to prescribe necessary silviculture practices to ensure successful
regeneration of the site (Pitt ez a/., 1997). Field methods are currently the predominant
means of acquiring information during regeneration assessments.

The Regeneration Survey Manual for Ontario (Chaudhry, 1981) contains the
procedures, guidelines, and standards used for assessing regeneration in Ontz—lrio. There
are numerous activities involved in a forest regeneration assessment; however, only those
relevant to this research will be discussed. For information regarding other activities, the -
reader is referred to the above manual or to the draft manual Free-growing regeneration
assessment manual for Ontario - draft currently in preparation, which will soon replace
the older manual. The purpose of these manuals is to ensure that the same methods and
standards are used throughout the province, by both industry and government, to assess
the success of regeneration.

The main objectives of regeneration assessment are to: i) determine the relative
success of regeneration on any site; ii) provide resource managers with information to
predict future stand development; iii) determine the need for future treatments on
regenerated areas; and iv) allow for the comparison of different treatments that led to
successful regeneration for various species and sites (Arnup and Rusnak, 1997). To

achieve these objectives, a regeneration assessment is divided into three main categories:
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stocicing assessment; plantation survival assessment; and seeding assessment (Chaudhry,
1981).

Stocking' assessment is the first inventory of an area after harvesting or planting.
The main purpose of stocking assessment is to determine the relative success of
regeneration for an area according to prescribed stocking standards and to provide forest
managers with basic information on stand establishment to predict future yields
(Chaudhry, 1981). Regeneration success is judged on the basis of stocking, species
composition and suitability of species to the site. A secondary objective of stocking
assessment is to determine the need for future treatment, such as release, refill, re-
treatment, insect and disease control, and assessment of free-to-grow condition®. Timing
is one major component of a stocking assessment. It is recommended that the timing
window in northern Ontario be seven to eleven growing seasons after planting or harvest
(Armup and Rusnak, 1997). Assessment too soon after planting or harvesting increases
the risk of declaring trees free-growing that may later be out-competed by other species.
Exceptions to this timing window include: i) areas that have been carefully logged to
protect advance growth, which can be assessed sooner than seven years; and ii) for
chemically treated or manually tended areas, two full growing seasons must elapse after

treatment before regeneration assessment.

! Stocking is defined as the frequency of occurrence of seedlings and advance growth of tree species of
acceptable specifications, based on plots of a certain size as compared with the optimum number of
eveniy distributed trees that fully occupy a site (Chaudhry, 1981).

? Free-growing refers to the ability of a well-spaced crop tree to withstand critical competing non-crop
vegetation through to maturity (Chaudhry, 1981).
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Another component of a stocking assessment typically associated with naturally
regenerating sites is determining if the crop species present is acceptable based on the
ecology of the sites and the site-specific management objectives. Priority is given to
conifer working groups compared to hardwoods, and only crop trees of acceptable
species can be considered for well-spaced® and free-growing status (Chaudhry, 1981).
Stocking assessment is conducted by either an intensive systematic sampling or an
extensive survey. Much of the emphasis during a regeneration survey is given to
intensive systematic sampling. Surveys are conducted based on cover type: conifer,
hardwood, and mixed. For.the conifer cover type, emphasis is on stocking (Chaudhry, -
1981).

The second and third categories of a regeneration assessment are plantation
survival and seeding assessment. Plantation survival assessment involves a field survey
where the survival data are recorded for every plot which has been regenerated by
seedlings. In addition to determining the survival of the crop species, a competition
index® is determined. Recommendations are also suggested in the field. These can
include: subsequent planting of seedlings, re-application of weed-control treatments,
monitoring, or treatment for insect damage or disease. Recommendation of free-to-

grow status is also made during the field survey.

? Well-spaced refers to the distance between crop trees and reflects the potential growing space available
to each of the crop tree through to maturity.

* Visual estimate of the degree of competition based on over-head coverage of broad type competing
vegetation (Chaudhry, 1981).



14

Seeding assessment is similar to plantation assessment; however, it deals with

sites that are regenerating by seeding. A seeding assessment involves collecting
information from the field on the germination, mortality, and survival of seedlings
(Chaudhry, 1981). In addition, the crop species, competition index, and silvicultural
recommendations are also determined in the same manner as the plantation survival

assessment.

2.3 Potential for Remote Sensing in Forest Regeneration Assessment

To understand how remote sensing can be used as a decision-support tool in -
forest management, it is necessary to review past research that has investigated the use
of remote sensing in forest regeneration assessment and the collection of plant
information ordinarily collected through field investigations. Field investigations can be
labour-, time-, and cost-intensive and can limit assessment by restricting the number of
samples taken, the spatial and temporal coverage, and/or the amount of research that is
conducted (Pitt and Glover, 1993). Remote sensing is seen as a method of obtaining
additional data, as well as reducing errors associated with estimations, providing a more
quantitative approach to regeneration assessment. Past research which has investigated
the use of remote sensing has typically focused on large-scale aerial photography to
obtain tree measurements, in attempts to reduce the need for field campaigns or to

provide additional data to support field measurements.
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Studies have investigated the use of large-scale aerial photographs to measure
plant attﬁbutes during the regeneration phase of vegetation management. Aenal
photographs were used to estimate pine density and competition conditions in young
pine plantations by Smith ez a/. (1989). The study objective was to develop a system for
estimating pine density and hardwood competition levels in 3-, 4-, and S-year pine
plantations from aerial photographs. The free-to-grow system was used as an indirect
indicator of competition level, whereas pine density was determined by counting pines in
rows, and between rows with comparable heights and crown sizes.

Aerial photographs were acquired in October using a standard 35mm camera -
with colour slide film. The photographs were acquired in October to maximize the
contrast in foliage colour between the pines and hardwoods due to autumn colouration.
Two scales were acquired with ground representation of 1:4000 and 1:6000. The slides
were interpreted and acetate sheets containing the outline of pine and hardwood crowns
were obtained, as well as the relative heights in comparison to surrounding vegetation.
Crowns were then counted and a dot grid was utilized to obtain the relative percentage
of cover for each category. Regression equations were developed to relate field
surveyed pine density to the photo-based pine crown count. In addition, regression
equations were used in prediction models for two different measures of competition
level.

Results indicated a strong relationship between measurements made using field

techniques and large-scale aerial photographs. The applicability of photo-based
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prediction models in a practical decision-making situation was examined. Treatment
decisions reached using the photos alone and the ground measurements were compared.
Using either of the two photo scales, 78% of the plots produced the same decision as the
ground measurements (Smith ef al, 1989). Results of the study indicated that
photographs can be utilized to determine treatment decisions which are typically based
on field measurements alone.

Pitt and Glover (1993) evaluated the use of large-scale aerial pho.tographs in
assessments of vegetation management research plots. The study investigated the degree
to which large-scale photographs could be utilized to reduce the number of field plots )
needed to obtain estimates of response variables such as woody crown area per hectare
and rootstock density. Woody crown area per hectare and rootstock density
(number/ha) are two response variables used to evaluate competition levels in forest
regeneration areas. Thirty-five millimeter photography was acquired from a small
helium-filled blimp in July of 1990 and 1991, at scales of 1:828 and 1:414 respectively.
Concurrent ground sampling was also conducted for ground truthing. The relationship
between total plot crown area estimates on the ground and those manually measured
from photos was strong (r*=0.97).

The study concluded that, in addition, to effectively evaluating woody plant
response variables, large-scale photographs, with some ground truthing, reduced total
cost of the site survey by a minimum of 14% (Pitt and Glover, 1993). The study also

outlined various advantages and disadvantages of large-scale photography. Advantages
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inclﬁded: providing a permanent record for future reference; utilization of photos by
other groups to evaluate other effects of vegetation management treatments, such as on
animals; ability for research and evaluation to be conducted over the winter months in
preparation for the following field season; reduction in variation between sampling dates;
and potentially more objective evaluation of treatment response variables (Pitt and
Glover, 1993). Disadvantages include the potential loss of records due to equipment
failure and the need for expertise in photo acquisition and measurement.

Another study conducted by Pitt et al. (1996) involved a two-phase approach to
sampling of woody and herbaceous species attributes. The study was conducted over
seven experimental tr-eatments in the fall of 1992. Photography was acquired using a
lightweight aluminum boom attached to a helicopter tc obtain a scale of 1:366. The
sampling objectives were to obtain estimates of crown volume index for woody species,
as well as to estimate herbaceous percent cover. Sampling was conducted in two phases;
phase one involved the evaluation of photographs to obtain crown volume index and
herbaceous percent cover and phase two involved sampling the ground units to obtain
field measurements of the crown volume index and herbaceous percent cover (Pitt ez al.,
1996).

The statistical relationship was evaluated between phase one estimations and
phase two estimations and used to correct phase one estimations for bias. Bias can be
associated with photo interpretation and measurement and can include underestimation

of smaller plants hidden by large plants and not detected on the photographs. Individual
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woo;iy species could be identified and measured on enlargements of the aerial
photographs to a scale of 1:80. Through the use of regression equations relating the
field-based measurement of woody crown volume index to the photo measurements, a
95.7% agreement was obtained. Results indicated that there were no differences
between ground estimates, two-phase photo, and regression photo sampling methods
with respect to the woody crown volume. However, the precision ievels of the methods
varied widely. Regression estimators were consistently more precise, with an average
standard error 78% smaller than ground estimates and 65% smaller than two-phase
estimates, while standard errors of two-phase estimates were 37% smaller than ground '
estimates. The presence of herbaceous vegetation increased the sampling errors of
woody crown volume index estimates by an average of 39%, for both sampling methods.

The study determined that classification of herbaceous vegetation was successful,
with the two-phase estimates and ground estimates producing similar results, while the
two-phase estimates obtained better precision (Pitt ef al., 1996). The study concluded
that if individual species or groups are well represented, large-scale photographs, in a
two-phase sampling design, can be an effective tool for monitoring and quantifying
vegetation structure in silvicultural and forest management field investigations.

Hall and Aldred (1992) outlined three objectives: production of maps to delineate
unproductive areas, assess conifer stocking by species within a specified error, and
evaluate the capability of large-scale photograghs to reduce the cost of regeneration

assessment using field measurements of stocking, density, species identification, and
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percent detection by height class and species. Six cuterr areas were selected in
Saskatchewan and photos at a scale of 1:10 000 and 1:500 were acquired in May 1987.
Field work was also conducted to evaluate the effectiveness of large-scale photographs
as part of the third objective. The 1:500 scale photos were analysed in stereo and the
assessment of the sites included percent conifer seedling estimation, species identification
accuracy, stocking and density estimation, and the development of correction equations
to adjust for systematic differences between photos and field measurements.

The identification of conifer species (jack pine and spruce) was correct 96% of
the time for all seedling sizes. A higher rate of detection was obtained for trees greater -
than 30cm tall which were taller than the surrounding competition. Photo stocking
estimates were considerably lower, by an average of 5% than stocking estimated by field
measurements. A regression of density estimates between photo and field-based
measurements produced a high regression coefficient. However, the resulting large
standard error of estimate suggests that density estimates had low precision using large
scale photographs. The study determined that large-scale photography was useful in
assessing regeneration sites, nonetheless further investigations of various scales to better
identify stocking levels are needed (Hall and Aldred, 1992).

The use of remote sensing, specifically large-scale aerial photographs, has been
examined by several researchers and even put to operational use within the forest
industry for certain objectives where it has been shown to be cost-effective. Research

has begun to address the use of other sensors that can obtain large-scale images. Pitt ef
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al. (i997) outlined data requirements on the part of forest managers and resulting image
requirements, which included the level of spatial detail resolved, coverage, timing, stereo
requirement, spectral characteristics, and image format. Potential sensors were identified
that could be used to meet the image requirements deemed necessary for forest
vegetation management. These sensors included: optical satellites, radar, airborne line
imagers, aerial photography, airborne videography, lasers, and digital frame cameras.

The required image spatial resolution is determined by the size of the vegetation
of interest and the degree to which it has to be identified and measured. The spatial
resolution requirement for trees less than 0.5 m tall was specified to be 1.6 cm for |
density, height, and plant conditions, whereas 8 cm was suggested for stocking
assessments. In addition, it was recognized that for most sensors, the spatial resolution
of the image decreases as the area of coverage increases. Therefore, the workshop
recommended that the most cost-effective system that offers the largest image coverage
with the desired spatial resolution be used. However, for investigations that focus on
individual tree evaluations, an image coverage of at least 0.05 ha is required to ensure
enough surrounding detail and aid in the location of plots (Pitt ef al., 1997). The timing
of image acquisition relative to the vegetation phenology is also an important factor.
Coniferous species are most visible in images acquired in early spring or late fall when
the deciduous vegetation is leafiess and the herbaceous vegetation is brown. Images

should be acquired during the mid to late growing season if an evaluation of the non-
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cropA vegetation is to be conducted due to the difficuity in identifying deciduous woody
vegetation in the leaf-off condition (Pitt ef af., 1997).

Stereo capability was discussed with the observation that stereo images do aid in
manual interpretation of vegetation structure and type and are absolutely necessary for
obtaining vegetation height data. Imagery which includes spectral resolution in the near
infrared portion of the electromagnetic spectrum can enhance differences between
healthy conifers and unhealthy or dead conifers and non-crop vegetation, a;ding in the
interpretation. In addition, for spectral-based computer classifications, colour infrared
imagery may emphasize the difference in near infrared reflectance of vegetation (Pitt ez -
al., 1997). The format of the images was also discussed with an emphasis placed on the
acquisition of digital imagery. Digital images can prevent the loss of spatial resolution
that can result from the scanning of analog images and can also provide useful
information within sunlit or shadow areas that photographs do not contain.
Furthermore, images in a digital form can be stored, manipulated, analyzed, and

interpreted through automated processes within a computer.

2.4 Other Forest Remote Sensing Research relevant to Regeneration Assessment

A large amount of research has investigated relationships between satellite or
airborne image variables and mature forest parameters such as percent cover and LAI
(Franklin ef al., 1997; Bulter et al., 1995; Gong et al., 1995). Leaf area index (LAI) is

the projected leaf surface area per unit of ground area and is typically determined by
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diviciing the leaf area by the ground surface area (Price and Bausch, 1995). LAl is an
indicator of the density of vegetation and can be used for estimation of forest canopy
characteristics and determination of forest exchange rates of water, carbon dioxide, and
oxygen (Gong ef al., 1995). Percent cover is defined as the percentage of the ground
area which is covered with photosynthetic canopy materials, such as leaves or needles
(Elvidge and Chen, 1995). LAI and percent cover are two vegetation structure
parameters addressed in this thesis, and thus discussion of other remote sensing forest
research be restricted to them and will not consider the many other forest attributes
which have been studied.

Much of the research in modelling vegetation parameters is done within the
context of radiative transfer modelling or determination of net primary productivity of an
area. This has typically been conducted using satellite data. For example, Franklin ez a/.
(1997) estimated forest LAI in an area of New Brunswick using Landsat TM data
acquired in 1992. The normalized difference vegetation index (see 5.4.1) was calculated
using TM data for three cover types: softiwood, hardwood, and mixedwood and the
overall relationship to LAI was weak (0.15) but statistically significant. The normalized
difference vegetation index (NDVI) was calculated from the TM data was highly
correlated with LAI for softwood (conifer) stands (0.93), but much less correlated in
mixedwood (0.66) and hardwood (0.13) stands. The addition of stem density, measured
from the TM data, with NDVI in a multiple linear regression improved the correlation

with LAI for hardwood and mixedwood stands.
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Other studies, such as the one conducted by Bulter ef al. (1995) used higher
resolution remote sensing data in estimating leaf area. Data from CASI were used to
produce a forest leaf area map in Kananaskis Country, Alberta. NDVI was calculated
for two bands (red and near infrared). Regression analysis was conducted to identify the
relationship between field measured plot-level LAI and a plot-averaged NDVI for the
same area. The relationship obtained between NDVI values and field measurements of
LAI was weak (0.12) for all stands but was significant. The strength of the relationship
increased with forest stratification by species to approximately 0.34 for white spruce
(Bulter ef al., 1995). The study recommended that the key to LAI values using CASI |
data was to stratify the image into pure stands of different species. This improved the
relationship from 20% correct to over 66% correct. The stratification method worked
best for spruce, followed by pine, and then aspen stands. Variations in NDVI values
were attributed to atmospheric effects, anisotropic reflectance, radiometric striping, and
flight line differences, understory reflectance, and geometric errors in the data.

Another study was also conducted using CASI data to estimate LAI in a
coniferous forest (Gong ef al., 1995). The two imaging modes, spectral mode (low
spatial resolution, many spectral bands) and spatial mode (high spatial resolution few
spectral bands) of the CASI sensor were implemented to determine which technique is
more appropriate for coniferous LAI estimation and to compare the effectiveness of
both. A regression analysis was conducted with LAI as the dependent variable and the

spectral reflectance of each channel, its logarithmic transform and two vegetation indices
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(NDVI and Simple Ratio Index) were defined as the independent variables for three
methods (piece-wise, univariate, and vegetation index-based). Linear correlations
indicated that RVI is more strongly correlated with LAI; NDVI was a better non-linear
estimator of LAI than RVI for univariate regression and the vegetation index-based
methods. For the spectral mode data the situation was reversed, with the piece-wise
regression resulting in the largest prediction errors. The piece-wise method resulted in
lower prediction errors than the other two methods using the spatial mode CASI data.
The use of logarithmic reflectance in the multiple regression method produced better
relationships with LAI and lower errors than did the use of the raw channels. This
occurred for both the spatial and spectral mode data. The researchers also noted that
different from the spatial mede, the near infrared channels of the spectral mode data
made little contribution to LAI predictions with multiple regression. This was possibly
due to the large pixel sizes in the spectral mode, and that the data only covered a portion
of the study area, which lead to locational difficulties of LAI field measurement sites.
The researchers recommended that spatial mode CASI data be used for LAI estimation
because with the spectral mode, the LAI measurement sites were difficult to locate which
can significantly affect the LAI estimates. Furthermore, they recommended that multiple
regression analysis be used to further investigate the relationship between LAI and
spectral reflectance data (Gong ef al., 1995).
The above examples of research to determine mature forest structure

measurements using coarser resolution imagery can be adapted to high resolution
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modelling of regenerating vegetation. In this thesis, the statistical methods and findings

of these studies were applied in the design of the methodology given in Chapter S.

2.5 Summary

There has been little research into the use of airborne digital cameras or other
digital remote sensors in the assessment of regenerating conifer trees. The more
commonly used aerial photography has proven useful in regeneration assessment.
However, most of the methods of information extraction from the photographs are
manual in nature leading to potential subjectivity on the part of the interpreter. -
Furthermore, these methods can also be time consuming for larger areas of study.
Discussions and workshops on the use of remote sensing in forest vegetation
management have reported that digital cameras could replace aerial photography within
the next five years (Pitt ef al., 1997). This demonstrates that there is an interest in the
use of airborne digital imagery within forest vegetation management which needs to be
explored further. This research takes the aerial photography methods and moves them
into a digital environment where automated processing can be exploited.

In addition to the use of airborne digital imagery as a means of assessing
regeneration, this research assesses how well information related specifically to the
vegetation of interest can be extracted from this type of imagery. Most of the research
into the extraction of vegetation parameters, such as LAI and percent cover, has been

limited to analysis of mature forest canopies using satellite data or high resolution
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airbdme sensors. The studies have found that the relationships of spectral reflectance
and spectral transformations with parameters such as LAI are weak but statistically
significant. Research has also examined how the selection of species cover types can
improve the strength of the relationship. High resolution imagery, such as that used in
this research, may provide the analyst improved species identification capabilities and
eliminate the need to predict generalized LAI over large areas where there is more than

one species present.



Chapter Three

Principles of Remote Sensing

3.1 Remote Sensing

Remote sensing is the science of obtaining information about certain features or
phenomena through the use of recording devices or sensors that are not in direct contact
with the area being studied. It allows for both spatial and temporal analysis and can be
used to obtain information about large areas with a minimum amount of time and labour
expense.

Coverage of areas using remote sensing can be more extensive and repeated in a
more effective manner than in-situ investigations. This increased coverage can result in
an extensive historical database that can simplify the assessment of long term trends and
potentially improve methods of forest vegetation management and regeneration
assessment. Furthermore, remote sensing can also be used to study areas where in-situ
investigations are not feasible or are too costly. Once remotely sensed images have been
obtained, information about certain features can be extracted through the use of manual
or computer-aided techniques and used in various applications.

Currently, remote sensing within forest vegetation management has focused on
the use of aerial photography to supplement field investigations. With an ability to

provide information in a timely and effective manner, other sensors, both satellite and

27
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airbo.rne, could potentially play a larger role in forest vegetation management decisions
and may reduce the need for in-situ investigations.

3.1.1 Remote Sensing Theory

Remote sensing can provide information about various surface and sub-surface
earth features through detection of interactions which take place between the features
and incident energy. These interactions typically produce variations in properties of the
electromagnetic spectrum or other energy types. For the purposes of this thesis, only
optical imaging of electromagnetic energy in the visible to short-wave infrared (400 -
2500nm) will be discussed. Remote sensing of other regions of the spectrum (thermal
and microwave) as well as of other energy types (seismic, gamma, gravity, etc.) is not
relevant to the thesis. The electromagnetic spectrum is composed of electromagnetic
energy, characterized by wavelength (A) or frequency (v) (Figure 3.1), which travels at
the speed of light 3 x 10® m/s). Energy travels from a source, the sun, and is either
reflected or re-radiated by the target to a sensor. The interaction of this energy with the
surface results in changes in the wavelength and intensity of the electromagnetic energy
and provides a significant source of information to aid in the interpretation of features or
phenomena from which the energy is reflected (Jensen, 1996). The electromagnetic
energy is reflected to the sensor and is converted to an electronic signal whose voltage is
in proportion to the amount of radiance. It should be noted in Figure 3.1 that the

boundaries between regions are not discrete and are typically used for identification

purposes only.
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) Figure 3.1
Electromagnetic Spectrum
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All features or phenomena on the earth interact in a different way with incident
electromagnetic energy. It is these unique interactions that facilitate the extraction of
information about various features from remotely sensed images. Features like soil,
vegetation and urban areas, all produce different spectral reflectance curves. Vegetation
is the primary focus of this investigation and therefore only the interaction of vegetation
with electromagnetic energy will be discussed.

3.1.2 Remote Sensing of Vegetation

A leaf'is built of layers of structural fibrous organic matter, with pigmentation, air
spaces and water-filled cells (Curran, 1985). Each of these have an effect on the spectral
reflectance, absorption, and transmission properties, which in turn affect the wavelength
and intensity of electromagnetic energy that is detected by the sensor. Pigmentation in
leaves, particularly chlorophyll, causes a high degree of absorption in the visible
spectrum, with relatively more absorption in the blue and red, hence the green
appearance of the vegetation to the human eye. The high reflectance in the near infrared
is principally due to multiple reflections off of the nearly perpendicular cell walls. This is
largely related to the amount of biomass and the turgor of leaves. In addition, there are
numerous discontinuities within the leaf and areas of significant water absorption that
characterize the reflectance of the vegetation within the near and short-wave infrared
portions of the spectrum. The above factors combine to give vegetation low reflectance

in red and blue wavelengths, slightly higher reflectance of green energy, high reflectance
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of near infrared energy, and declining reflection in the short-wave infrared due to water

absorption (Figure 3.2).

3.2 Image Classification

Classification analysis has long been a standard practice in remote sensing to
produce thematic maps. There is a range of techniques that can be applied to classify an
image; the most conventional ones including algorithms such as the- Maximum
Likelihood classifier (Peddle ef al., 1994). The classification process can be based on
either intrinsic variations in brightness, (unsupervised cluster analysis), or based on a
subset of samples of known cover types whose brightness characteristics are matched
with those of the rest of the area (supervised classification). Unsupervised cluster
analysis, in addition to being used as a classification method, can be conducted as a type
of segmentation of the landscape, followed by a classification of those segments.
Classifiers, such as the maximum likelihood, rely on a normally distributed dataset
whereas some classifiers, such as a neural network, can incorporate data that are not
normally distributed. Classification can also be conducted on a per pixel basis, where
each pixel is analyzed and classified as an independent discrete entity, or on an object
basis where the assignment of a pixel to a class is based on its spatial relationship with

surrounding pixels (Lillesand and Kiefer, 1994).
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Unsupervised Cluster Analysis

Unsupervised cluster analysis can serve two purposes. The first is as a
preliminary step to supervised classification, or to aid the analyst in identifying land
cover classes and training samples. The second purpose is as a form of classification
with the production of a thematic map, of statistically discriminated clusters. Its primary
advantage over supervised techniques is less user involvement as only a few input
parameters are required. One of the simplest clustering algorithms is the K-means. The
number of spectral clusters to be extracted from the data is specified and the algorithm
then arbitrarily selects locations for the corresponding number of cluster means within ’
the multi-dimensional image space (Lillesand and Kiefer, 1994). Each pixel within the
image is then assigned to the cluster whose mean value is the closest through the use of a
distance measure such as Euclidean distance. Once all of the pixels have be assigned a
cluster, the algorithm recalculates the cluster means and the image pixels are again
assigned to the nearest cluster. The process is iterated a specified number of times until
there is either no significant change (the user may input the amount of change considered
to be acceptable or the algorithm may use standard statistical values) in the location of
the cluster means from one iteration to the next, or the maximum number of iterations
specified is reached. The user must then determine the land cover class that is associated

with each spectral cluster (Lillesand and Kiefer, 1994).
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User Selection Of Training Samples in Supervised Classification

One of the first steps in supervised classification is the selection of sample
training areas. The overall goal of training site selection is to assemble a set of statistics
that represent the spectral response patterns of all the land-cover classes being used in
the classification (Lillesand and Kiefer, 1994). Typically, training sites are selected
following field investigations and are commonly selected on-screen through the
delineation of polygons or individual pixels. The multispectral image data within the
polygons are then extracted and summary statistics calculated for each polygon.or for
groups of polygons of a selected class. These statistical descriptions typically include the -
number of samples, the mean, standard deviation, variance, minimum value, maximum
value, variance-covariance matrix, and correlation depending on the classification
algorithm being used. They are used in subsequent separability analysis and
classification.

Separability Analysis

A separability analysis of the sample spectral data is conducted as an indicator of
the potential accuracy of the resulting thematic map or to aid in selection of a subset of
spectral bands and other data layers to include in the classification process. It involves
determining the statistical separation between spectral response patterns for all pairs of
classes (Jensen, 1996). A range of statistical parameters can be used to measure
separability, one of which is divergence, a covariance-weighted distance between the

mean values of the classes (Lillesand and Kiefer, 1994). Transformed Divergence is one
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of tl;e most commonly used divergence measures, others include average divergence,
Bhattacharyya distance, and Jeffreys-Matusita Distance (Jensen, 1996). For this research
the Transformed Divergence separability measure was used. It gives an exponential
weight to increasing distances between the classes; therefore, the larger the divergence,
the greater the separability. Values of between 0 and 2000 are obtained, where 0
indicates very poor separability and a value of 2000 indicates excellent between-class
separability (Jensen, 1996). The image analysis package EASI/PACE from PCI
Geomatics Inc. used in this thesis scales the values by a factor of 1/1000 to between O
and 2, where O indicates very poor separability and values of 1.9 to 2 indicate excellent '
separability. Separability analysis, as described above, can be used iteratively in training
site refinement. If the separability between classes is poor, then the training polygons for
those classes can be modified to improve it.

3.2.1 Image Classifiers

Likeli lassification

The Maximum Likelihood Classifier (MLC) is a parametric technique that works
by computing a mean vector, variance, and correlation matrix for all classes in the
training data (Peddle, 1993). Sets of probability functions for all classes are estimated
from the sample data. These functions are used to assign each image pixel to one of the
classes (or to a null class) based on the relative likelihood that the pixe! belongs to each
ciass. The likelihood of pixels belonging to certain classes can be affected by a priori

knowiedge. In the software used, this knowledge is in the form of a bias factor which is
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the value that allows determination of which class a pixel belongs to in the case of a tie
between classes (PCI, 1996). Pixel assignment is also affected by the threshold value set
for each class. The threshold is the number of standard deviations to be used to define
the boundary in spectral space of each class. Beyond this threshold, a data point, or
pixel, has such a low probability of inclusion in a given class that the pixel is excluded
from that class (PCI, 1996).

The MLC assumes that the input data are multivariate normally distributed,
independent, and have approximately equal variances. If these constraints are reasonably
met, then the MLC is well suited for providing optimal classification accuracies using a -
limited number of variables (Peddle, 1993). The MLC is often used as a reference for
classifier comparison because, if the class probability density functions are indeed
Gaussian, it is the optimal classifier (Paola and Schowengerdt, 1995).

Neural Network Classification

Neural network classifiers are capable of incorporating non-normal data. They
are commonly used in artificial intelligence applications and have become practical tools
for use in many classifications, pattern recognition, optimization and forecasting
applications (Miller ez al., 1995). Neural networks are modeled after the constructs of
the human brain. Knowledge is stored in the form of weights that are applied to a node
(inputs). A neural network can be used as a form of supervised classification where,
instead of an algorithm that determines values such as in statistical classification, the

network is presented with repeated examples of inputs and corresponding correct
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outpﬁts, and allowed to ‘learn’ what the correct classification process should be (Miller
et al, 1995). Human beings learn by experience; neural networks leamn by setting
weights that will produce a specified output.

Many variants of neural network algorithms can be used. Two types are the
feedforward and back propagation. Forward feeding networks are two layer networks
that are fixed in the number of units and connections. The input signals in a feedforward
network are sent towards the intermediate hidden layer over connections that either
attenuate or amplify the signal, with each hidden layer processing them in the same way.
The signals are then sent to the output layer with no feedback loop back to the hidden -
layer (Gopal and Woodcock, 1996).

This is quite different from the back propagation network. The back propagation
neural network typically has a three layer configuration with an input layer, an output
layer, and a hidden layer (Paola and Schowengerdt, 1995). The input layer contains a
node for each input band of multispectral imagery and the output layer contains a node
for each desired class label. The hidden layer is needed to process the data which are not
linearly separable (Miller ez al., 1995) Within the network, the signals between the
layers are adjusted iteratively and different weights are applied to each connection of the
hidden layer. These weights are adjusted in order to minimize the global error of the
entire network. To achieve the lowest possible global error, the iterative adjustment of
weights should be very small. However, this would result in an excessive amount of time

required to train the network. This is overcome by specifying a learning rate. The
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Iemﬁng rate represents the percentage of the step towards the global error (Paola and
Schowengerdt, 1995). A larger learning rate can speed up training although there is an
increased risk of oscillation or non-convergence of the segment. Furthermore, with a
small learning rate, the network may require more training iterations to reach the
minimum acceptable error.

During training, the network will take the steepest descent from one position to
the next position to achieve a lower error. Along the way the network can encounter
valleys or local minima. This can cause the network to become stuck and the error will
not decrease to the global error. The network can also oscillate between a local -
minimum and the global error (Paola and Schowengerdt, 1995). These problems can be
eliminated with the specification of 2 momentum parameter which is set at the beginning
of the training phase. A larger momentum rate can allow for an increase in the learning
rate without the risk of oscillation or non-convergence, however, the global error may
not be reached because larger steps are taken between the iterations.

Neural networks have been compared to MLC and proven useful with a minimal
training set (Miller et al., 1995) additionally, other research by Foody er al. (1995)
indicated that the classification accuracy was increased significantly as a result of
increasing the number of training cases.

Contextual Classification
A context classifier is different from conventional per pixel classifiers because it

uses not only the spectral information at each pixel, as do other classifiers, but it also



39
uses-the spatial features derived from spectral information (Gong and Howarth, 1992).
The spatial information is derived from a sample window of several pixels, where the
neighbours of the central pixel are considered in the classification.

The classifier that was used in this research involved grey-level reduction of the
data and a frequency-based contextual classification (Gong and Howarth, 1992). In
order to process large amounts of data in contextual classification, the number of grey-
level vectors in multispectral space is reduced. This is achieved through grey-level
vector reduction such as an eigen-based method involving principal component
transformations. Occurrence frequencies, the number of times that a pixel value occurs '
in a specified window, are determined to generate a table for every pixel in the image
(Gong and Howarth, 1992). A minimum distance classification is then applied to the
frequency tables. For given mean histograms of all land-use classes the distances are
compared by the classifier against the histogram of a given window, based on the
frequency table, and the centre pixel of the window is assigned to the class which has a

minimum distance (Gong and Howarth, 1992).

3.3 Textural Analysis

Image texture refers to the frequency of change and arrangement of tones
(Jensen, 1996), which takes into account the variability of the grey values within a region
of an image or over the entire image (Augusteijn ef al., 1995). One of the most common

uses of texture analysis is to incorporate spatial information in classification of images.
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Claséiﬁcaﬁon is typically based on spectral information only, although, researchers have
begun to include texture measures in the classification of images (Augusteijn ez al., 1995,
Carr, 1996; Palubinskas et al., 1995). Through the addition of the texture of image
features, the accuracy of the classification can be increased (Peddle and Franklin, 1991).

Two common approaches to texture classification involve first-order statistics
and second-order statistics. - A third texture approach, Fourier power spectrum texture
measures, is not considered as this approach is generally inferior to the statistically based
measures (Jensen, 1996). First-order statistics involve measures derived from the raw
image data, such as means, variances, skewness, and kurtosis. For example, the standard '
deviation of brightness values within a window of specified size, moved over an entire
image, provides a measure of the spectral variability over short distances and, as such, is
a measure of local texture (Campbeli, 1987).

More sophisticated measures include second-order texture measures, which are
derived from a dataset which itself was extracted from the raw data. Co-occurrence
texture measures are one set of second-order measures which calculate a set of features
based on the co-occurrence of grey levels in pixel pairs with a specific orientation to one
another. A matrix is calculated giving the frequency of occurrence of all pairs of grey
levels in the specified image area. High frequencies of occurrence on, or near, the
diagonal of the matrix indicate smooth or uniform texture as many adjacent pixel grey
levels are similar. High frequencies farther from the diagonal indicate rougher textures.

From the co-occurrence matrix, many measures of texture can be derived. They include
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entrc;py, angular second moment, contrast, mean, and correlation (Peddle and Franklin,
1991). Each is designed to extract a particular characteristic of the spatial information.
For example, the contrast measure sums the frequencies at each position in the co-
occurrence matrix times the grey level difference so that off-diagonal occurrences
(higher texture) are weighted more (Carlson and Ebel, 1995). Several comparative
studies have found that co-occurrence measures of texture are superior to other texture

measures in increasing classification accuracy (Augusteijn et al., 1995).

3.4 Vegetation Indices

Vegetation indices are mathematical image transformations that are designed to
be sensitive to plant health. They are generally divided into two categories, ratios and
orthogonal indices, the ratio indices being the most commonly used and typically being
derived from red and near infrared spectral data (Elvidge and Chen, 1995). They work
by contrasting the intense chlorophyll pigment absorption in the visible (usually red)
against the high reflectance by plant material in the near infrared. Their use in estimation
of vegetation variables such as percent cover, leaf area index, and absorbed
photosynthetically active radiation has been investigated for modelling of vegetation
parameters and processes as discussed in section 2.4.

Ratio vegetation indices include among others, the simple ratio index (SRI) (see
5.4.1) and normalized difference vegetation index (NDVI). These two indices take

advantage of the complementary reflectance of red and near infrared energy. Variations
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of raﬁo indices, such as the soil adjusted vegetation index (SAVT) (see 5.4.1) incorporate
factors such as reflectance of background properties like soil and rock material. These
factors can affect the indices particularly when there is a low level of vegetation cover
(Elvidge and Chen, 1995). Orthogonal vegetation indices use the distance from a soil
line, defined by samples of bright and dark soils, as a measure of the amount of
vegetation (Elvidge and Chen, 1995). They include the perpendicular vegetation index
(PVI) and the difference vegetation index (DVI).

There are several ways in which background properties such as soil and rock can
affect vegetation indices. For example in a simple ratio of NIR to Red, soil, with a
greater reflectance than vegetation in the red, increases the denominator while its lower
near infrared reflectance decreases the numerator, causing a significant decrease in the
ratio. In addition, vegetation over a bright background will result in a lower vegetation
index than for the same vegetation over a dark background (Elvidge and Chen, 1995).

Another influence of the background materials on vegetation indices is the mixing
of background and canopy reflectance, a process which is most significant in the NIR as
a high proportion of this energy is transmitted through the canopy to the ground. Near
infrared radiation transmitted through the canopy can either be reflected or absorbed by
background materials. For bright backgrounds, there is an increase in near infrared
radiation due to reflectance of the transmitted radiation by the background. The
magnitude of mixing between the plant canopies and the background material is directly
related to the brightness of the background and the wavelength-dependent transmission
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of light through the canopy (Elvidge and Chen, 1995). This effect of mixing can lead to
higher vegetation index values over brighter backgrounds, which is opposite to the

influence described above and thus, the background effects may be somewhat

moderated.



Chapter Four

Study Areas, Image Acquisition and Field Data

4.1 Location and Description of Study Areas

The study areas consist of two regeneration sites located in west-central Ontario
near Sault Ste. Marie (Figure 4.1). The first site is a forest tree nursery (arboretum)
located in the west end of the city. The second site is a natural clearcut situated north-
east of the city in the Searchmont area. The Ontario Forest Research Institute (OFRI)
operates and maintains both sites.

The arboretum contains three blocks (loam, sand, and clay), which are identical
in layout and plant setup. There are eleven, 14m x 28m plots at each block, each
containing the crop species jack pine (Pinus banksiana) and black spruce (Picea
mariana) and one competition species. The competition species are as follows:

Trembling Aspen (Populus tremuloides)

White Birch (Betula papyrifera)

Green Alder (Alnus crispa)

Upland Willow (Salix humilis)

Red Raspberry (Rubus idaeus)

Fireweed (Epilobium angustifolium)
Large-Leaved Aster (A4ster macrophyllus)
White Clover (Tifolium repens)

Braken Fern (Pteridium aquilinum)

Blue-Joint Grass (Calamagrostis canadensis)
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Figure 4.1
Locatier of Research Study Areas
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There are twelve, 7m x 7m experimental units within each plot, each containing
either jack pine (Pj) or black spruce (Sb) and one competition species at a specified
density, with the crop trees planted every metre. Densities of selected competition for
raspberry, braken fern, fireweed, aster, clover, and blue-joint grass are 0, 0.5, 1, 2, 4, and
8 plants per metre square. For the remaining competition speci;:s (trembling aspen,
white birch, green alder, upland willow, and conifer trees planted in competition with
each other), the plant densities are 0, 0.25, 0.5, 1, 2, and 4 plants per metre square.
Competition species’ densities are allocated to experimental units in a randomized block
design. To maintain a single competition species and specified plant density, plots have .
been hand-weeded. The study has been in place since 1994. Figure 4.2 shows the set-up
of the clay plot.

The Searchmont site contains four, 28m x 28m plots, with ten 7m x 7m
experimental units. Each unit contains four coniferous species: red pine (Pinus rubens),
white pine (Pinus strobus), jack pine; and black spruce, with natural herbaceous
competition. A herbicide program with ten different treatments has governed the growth
and amount of competition on each plot. Treatments were applied in a sequential pattern
for the first five years after tree planting: no vegetation removal, annual vegetation
removal, 1, 2, 3, and 4 years of consecutive removal, and waiting 1, 2, 3, and 4 years
before annual removal was initiated. The study has been in place since 1992 and ended
when all treatments were applied in 1996. Figure 4.3 shows an airphoto with a plot

layout overlay.
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4.2 Data Acquisition

The image data for this research were obtained in August, 1996, using the Kodak
Digital Camera Series (DCS) 420IR colour infrared camera which was graciously
provided by the Kodak Eastman Company of Rochester, New York. The DCS 420ir
consists of 2 Nikon N90 camera body with a 28mm lens, which focuses the image onto a
charged couple device (CCD). A CCD is a solid-state chip containing a series of light
sensitive photosites. The CCD in the DCS 420ir camera is of medium format, containing
1524 by 1012 pixels for a total of 1.5 million light sensitive pixels (Omer, 1997). This
provides a chip resolution that approaches that of standard 35Smm colour slide film; -
however, the 35mm slide film covers 2.6 times the ground area of the digital camera
images for a given lens focal length (Greenfield and Maus, 1997). Digital images are
obtained from the photosites which convert the incoming spectral energy into electrons.
Electrons pass through an analog-to-digital converter and a file of digital information is
produced in which bits represent colour and tonal values of a target. Photosites within
the CCD are square, resulting in an image with square pixels and equal resolution in both
directions.

The three different wavelengths, in this case the green (500-600nm), red (600-
700nm) and near infrared (700-800nm), are captured in a single, full frame. A filter is
placed over each photosite in the sensor chip, giving it the ability to capture green, red,
or near infrared information. Thus, only one of the three wavebands is actually acquired

at each photosite. As a result, the spatial resolution is degraded to approximately 80%
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of tl;e resolution of a panchromatic DCS camera (King, 1995). Each image in this raw
format is stored on a removable hard disk within the camera. The hard disk used in this
research could hold up to 105 images. The images can be downloaded and stored in a
computer in their raw format. However, for display and analysis of three-band data, the
other two wavebands at each pixel must be derived. This is conducted through a Kodak
proprietary interpolation process where, at each photosite, digital numbers for the two
bands which were not sensed are calculated using weighted averages of their values from
the closest photosites which contain those bands. This procedure is automatically
conducted upon opening an image file with a computer program such as Adobe
Photoshop using a Kodak driver. It produces full three-band images which are three
times the size of the raw image format.

The flights were carried out with the assistance of the Canadian Forest Service.
A mount was constructed for the digital camera which was placed in the hopper of a
Cessna 188 “Ag-Truck™ single person agricultural spray aircraft. The pilot operated the
digital camera through a remote trigger, with the aid of a real-time video image displayed
on a small monitor. Forty digital images were obtained from nominal altitude of 80 m
(250’) above ground over the arboretum. Ground pixel size was approximately 2.5 cm.
At an aircraft speed of about 45 m/s, to obtain about 50% overlap between images, the
images had to be acquired using the camera’s burst mode. In this mode, 5 images can be
acquired into the camera’s RAM in about 2.25 seconds, but after this, a period of about

12 seconds is required to download the images to the camera’s hard disk. As such,
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abilities at such low altitude. The shutter speed of the camera was set to 1/4000s to
optimize the trade-off between image motion during exposure and the exposure level.
At this setting there was approximately 1 pixel of image motion and the exposures
generated typically consisted of about 120 grey levels. An exposure of 1/8000s (the
ﬁmm available) was more desirable, but test images showed that there were too few
grey levels for adequate classification and statistical analysis. The image motion and
limited range of grey levels had to be accepted due to the type of aircraft tha;t was used.
A slower aircraft is more appropriate for operational situations and would result in a
decrease in image motion to suitable levels of less than half a pixel and allow for -
improved exposure settings.

Each acquired image covers an area of 38.1 m x 25.3 m, or approximately 964
m’. Images were acquired for each of the three bloéks at the arboretum and for two of
the plots at Searchmont. Data were also obtained with a ground pixel size of Scm as a
backup in case the image motion was excessive in the higher resolution data. However,
due to the scale of the features being studied, only the 2.5 cm data were utilized. Figures
4.4 and 4.5 show mosaics of the arboretum and Searchmont images.

Investigation of the arboretum image data revealed that the most complete
coverage was obtained for the clay and ioam blocks. The amount of data obtained for
the clay plot was greater than the loam block, as whole plots with full ranges of densities
for three competition types had been imaged. Consequently, the clay block was used

more extensively in this research. The Searchmont data were obtained for two of the
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plotss‘ and were incorporated in the first objective as an ‘operational’ test of the
classification which obtained the highest accuracies at the arboretum site. The limited
coverage of the digital imagery was a result of navigational difficulties at the Searchmont
site, (due to surrounding hills), and the early termination of the flights over the
arboretum site (due to complaints about noise filed by neighbouring residents).

For comparative purposes, 35 mm colour and colour IR slides and prints were
also obtained for scales equivalent to the 2.5 and 5 cm digital data. The scales for the
photos and slides were calculated to give approximately the same spatial resolution, in
line pairs millimeter, as the digital camera imagery. Flight parameters were then
established based on the desired resolution and camera attributes (focal length, shutter
speed, etc.). These photographs were acquired for comparison of visual interpretation,
as backup in case the digital imagery was not sufficient, and to assist in identification of
the location of the digital images as a result of the greater coverage by the 35 mm
photographs. Locational identification of the digital images was also facilitated by the
piot labels that were set out at both ends of the plots by the Canadian Forest Service.

Vegetation measurements, acquired by the OFRI as part of their fieid research,
were obtained for the arboretum, specifically the clay block and the Searchmont site.
These measurements included conifer survival, percent vegetation cover, and leaf area
index. Measurements of percent cover and leaf area index at the arboretum site had been
sampled for the competition species on jack pine experimental units only. Searchmont

field measurements were not used in this research.
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Chapter Five
Methodology

5.1 Imtroduction

There were two phases to this research, reflecting the two objectives. The first
involved evaluation of conifer and competition species identification through automated
classification procedures and the production of thematic maps of the regeneration site.
The second phase involved assessing whether field measured values of selected
vegetation parameters (leaf area index (LAI) and percent cover) could be related to
statistical analysis of grey level values extracted from the imagery.

The underlying approach to this research was to work within a digital
environment, thereby providing a feasible methodology that could be readily transferred
to an operational setting. A PC platform was utilized, representing a minimal operational
investment as opposed to a higher-end workstation or UNIX platform. Commercially
available image analysis software (PCI EASI/PACE) was used to conduct all image
analysis for this research. Statistical analysis was conducted using a SPSS statistical

software. This chapter describes the methods used in phases one and two.

5.2 Data Preparation
To conduct computer analysis of the acquired digital imagery, the first step
involved extraction of the data from the camera’s hard drive. Images were downloaded

55
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to a'Macintosh computer and were expanded to their final format using the Macintosh
Kodak driver for Adobe Photoshop. Images were then saved in a “TIFF” format and
imported into PCI’s EASI/PACE image analysis software. This original, unenhanced

data were used in subsequent analysis.

5.3 Phase 1

5.3.1 Separability Analysis

Preliminary investigation of the image data was conducted on single images from
the clay and loam blocks at the arboretum. Spectral data were extracted for a subset of -
competition species that were available in the imagery, namely: trembling aspen; upland
willow; red raspberry; fireweed; large-leaved aster; braken fern; and blue-joint grass.
Two approaches were undertaken in the selection of sample polygons. The first
approach involved establishing a reference separability. Spectral data were generated for
the conifer trees, jack pine and black spruce, and each of the competition species in areas
of the image where no direct competition between conifers and competition was present.
Analysis of the statistical separability of the conifers from the competition in this case
gave an indication of the spectral distinction between classes, given that there were no
mixed pixels. The second approach involved determining separabilities of the conifers
from the selected competition at the various competition densities available.

Polygon training areas were visually delineated on the image for each conifer and

competition species, for both reference and density dependent separabilities. Iluminated
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(dire& and diffuse) portions of the conifer trees and competition were selected at a
maximum of 30 pixels per tree or plant. A total of between 150 and 300 pixels were
sampled for each species in all paired separability tests. Image data were not limited to
only the most sunlit portion of the trees or competition plants to represent a more
operational approach. However, in polygon delineation, shadows were avoided as they
can severely increase spectral data variance for any vegetation class. The decision to
extract image data from a wider portion of the crowns of trees and plants was based on
previous research by Gougeon (1995) which indicated that typical multispectral mean
values of tree crowns, where the sampling was not restricted to the sunlit portion only,
produced one of the most accurate classifications (~72%) in comparison to
classifications using only the sunlit portions of the training data.

A separability analysis was then conducted using the spectral data extracted from
the images for each training polygon. Transformed Divergence was calculated, with a
value of greater than 1.9 indicating good separability, values between 1.7 and 1.9
indicating average separability, and values less than 1.7 indicating poor separability
(Lillesand and Kiefer, 1996). This initial investigation was followed by a test
classification using the maximum likelihood algorithm to investigate how the classes with
poor separabilities would be represented within the classification.

5.3.2 Production of Mosaic Image for Further Analysis

After the preliminary separability analysis, images from the clay block were

combined to form a mosaic image which provided a full range of densities for selected
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com;;etition species. Starting with mosaic production from two adjacent images,
additional images were added in an iterative procedure. Ground control points (GCPs)
were manually selected from the overlap area between the two images being joined.
GCPs are required in order to rectify one image to another. Four GCPs were selected in
each pair of images and were used in a first-order, nearest neighbour transformation.
GCPs such as tree crowns, dead trees, plot edges, plot markers, and a person’s sneakers
were used. A total of 12 images from the clay block at the arboretum and 9 i.mages from
the Searchmoni site were mosaiced into single images. The mosaics for both the
arboretum and Searchmont site are in Figures 4.4 and 4.5, respectively. The images
have been re-sampled for reproduction purposes, therefore, the resolution has been
significantly degraded.

The creation of a complete image mosaic for the clay block allowed easier
extraction of spectral data, classification, and analysis of results. This mosaic image was
then used in an unsupervised classification as well as three different supervised
classifications.

£.3.3 Evaluation of Automated Classification Methods
Unsupervised Classification

The first classification was conducted using an unsupervised K-means classifier
on the mosaic image with all three spectral bands (green, red, near infrared) as input
information. An output of eleven clusters was specified with a total of twenty iterations

run. Eleven clusters were specified to correspond to the vegetation and land cover
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class;as visually identified in the imagery. A seed file was not specified; therefore, the
algorithm arbitrarily selected the location of the initial mean vector.

Supervised Classification Training

Since the initial separability analysis (5.3.1) had been conducted on an image-by-
image basis, new polygons were delineated for spectral data extraction from the mosaic.
Eleven classes were identified: conifer trees (jack pine and black spruce), fireweed,
upland willow, raspberry, blue-joint grass, large-leaved aster, soil, grass, shadows, and a
null class.
Maximum Likelihood Classification

The second classification procedure was the Maximum Likelihood Classification
(MLC). The classification was applied to the three spectral bands using the eleven
classes, with threshold and bias values for all classes of 3 and 1, respectively. A
threshold value of 3 standard deviations was selected for all classes because knowledge
of the site was extensive, and therefore the chance of incorrectly selecting training pixels
not representative of a given class was very limited. All classes were given an equal bias
value because a change in bias would have subjected the classification to a priori
knowledge on the part of the user, and would unjustifiably give more weight to specific
classes.

Neural Network Classification

The third classification conducted was an artificial neural network (ANN). The

first step in applying the neural network to the image was to create a neural network
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segnient using the three spectral bands and the eleven class signatures. This segment was
then used to train the neural network with 10,000 iterations and a learning rate and
momentum of 0.1 and 0.9, respectively. The learning and momentum rates affect how
quickly the neural network reaches the global error set at 0.01. Arbitrary variations of
the momentum and learning rates were investigated and the lowest error was obtained
for the values listed above. The trained neural network segment was then used to
classify the image and create a thematic map.

Context Classification

The fourth classification that was conducted was a context classifier. A context -
classifier takes into consideration the pixels surrounding a location as opposed to
conventional classifiers such as the MLC and ANN which conduct a per-pixel
classification and consider pixels in isolation (Gong and Howarth, 1992). In order to
implement the context classifier, the spectral dataset was reduced from multiple input
bands (green, red, near infrared), to one information band using an eigen-based grey-
level vector reduction method (Gong and Howarth, 1992). The context classification
was then conducted on this single information band using the eleven class signatures and
a pixel window size of 9 by 9. This window size was selected after investigation
revealed that other window sizes did not identify the planting structure of the plots as

well and certain classes were not correctly identified.
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5.3.4 Texture Analysis

The third step of the first phase involved incorporation of the spatial information
in the image through the use of texture measures. Two co-occurrence texture measures,
Standard Deviation and Variance, were implemented on the red spectral band. The
Standard Deviation texture measure is calculated by using the co-occurrence matrix to
obtain the frequency of occurrence of a given grey level pair. This frequency is
multiplied by the squared difference between the given raw grey level and the mean grey
level of the matrix. This is conducted for all matrix cells and the result is summed and
the square root taken. The resulting value becomes the new grey level value of the
centre pixel in the moving window. This process is repeated at each iteration of the
moving window (PCI, 1996). The variance texture values are calculated in a similar
manner to the standard deviation; however, the square root is not taken. The red band
was used because of the distinct visual difference in grey levels between vegetation and
soil, which was judged to provide better potential for representation of the spatial
information using the texture measures.

Other co-occurrence (Homogeneity, Contrast, Dissimilarity, Mean, Angular
Second Moment, Correlation, and Entropy) and grey level vector difference (Mean,
Angular Second Moment, Contrast, and Entropy) texture measures, a variety of window
sizes (5 x 5,7 x 7, and 9 x 9) and spatial sampling directions (one pixel to right, one
pixel up, one pixel up and to the right, and an average of all spatial directions) were also

investigated. However, the two co-occurrence texture measures selected with a pixel
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windbw size of 3 by 3 and a spatial sampling direction of one pixel below the centre pixel
provided the best visual texture representation. The other texture images did not identify
the change in texture from the crowns of vegetation to the soil as well as the two co-
occurrence texture measures chosen. Other quantitative evaluation methods, such as
determination of the correlation of the texture measures with the spectral band that was
used to derive the texture information and selection of the least correlated texture
measure, or evaluation of correlations of each texture measure with the biophysical
parameters of interest, (Olthof and King, 1997) were not conducted due to the large
amounts of data processing that would be required to test all of the co-occurrence and
grey level vector difference texture measures.

The resulting texture images were extracted into a 32-bit data channel and then
scaled to 8-bit for inclusion in the classification process. The four classifiers:
unsupervised, maximum likelihood, neural network, and context, were all conducted
twice more, using the same parameters discussed above on combined data sets consisting
of the three spectral bands and one of the texture measures.

5.3.5 Accuracy Assessment

The final step of the first phase involved an accuracy assessment of the classified
images. Upon determining that per pixel separability between conifer trees and
competing species was quite low, and that the potential per pixel accuracy of any
thematic classification was low, an alternative approach to accuracy assessment was

developed. Since the primary focus of the phase 1 research was the classification of
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objec;ts (trees), an object oriented approach was taken to conduct the accuracy
assessment. For the assessment, only the competition plots that contained a full range of
plant densities were considered. These included: fireweed, upland willow, and red
raspberry. Other plots with blue-joint grass, large-leaved aster, and Dutch clover, were
not used for two reasons: either they did not have a full range of densities or they were in
a poor state (e.g., excessive weed growth).

Experimental units for the three full density plots were divided ix;to separate
images based on density. The resulting sixteen images contained the unsupervised,
maximum likelihood, neural network, and context classifications for the spectral
information alone, and the same classifications with the inclusion of the two texture
measures. Bitmaps of the two conifer classes were extracted from the classification
images and a graphical mask was applied to the experimental units to eliminate all areas
outside of the plot. Next, polygons were numbered within each of the experimental units
to identify each polygon that was classified as a conifer. The number of pixels which
should be taken to represent only the core of a conifer seedling was not known so for the
given pixel size (2.5cm) and typical tree height and diameter, empirical testing of
polygon sizes between 9 and 20 was conducted. The polygon sizes are based on the size
of the core area of the crown and do not represent the whole crown which would be _
greater in size. Only the core of the crown was used in determination of the polygons
sizes as the test classifications showed that the outer portions of the conifer crowns were

not being identified as coniferous.
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The total count of conifer cores for each experimental unit was used to conduct
an initial accuracy investigation. These counts were compared to the actual number of
conifers for each experimental unit and a value representing the percentage of over-
estimates (positive number) or under-estimates (negative number) of the number of trees
was obtained and graphed. These values were used to determine the best five
classification combinations. A more comprehensive accuracy assessment was then
conducted for the best five classifications to determine the errors of omission and
commission for the experimental units where no competition was present.

The omission and commission errors were used in the calculation of the User’s |
and Producer’s accuracy for each of the plots. User’s accuracy represents the
probability that a tree classified on the map is actually that tree class on the ground and is
determined as 100% minus the errors of commission (trees classified which do not exist)
(Jenisen, 1996). The Producer’s accuracy indicates the probability that a known tree was
correctly classified and is determined as 100% minus the errors of omission (existing
trees that were incorrectly classified) (Jensen, 1996).

5.3.6 Evaluation of Classificatien using Searchmont Image Data

To determine how well the classification of a controlled vegetation complex,
such as the arboretum site, would perform in an operational setting, the classification
method that produced the highest accuracies for all three plots was implemented on the
Searchmont study site data. The four conifer classes were extracted out of the

classification and individual polygon identification labels were created for all those
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polyéons with greater than 100 pixels. A threshold of 100 pixels (625 cm®) was chosen
for the Searchmont site as opposed to the range of 9 to 20 pixels used for the arboretum
accuracy assessment because the trees at the Searchmont site are older and therefore the
diameter of the core area of the crown is larger.

Two of the three plots (3-6 and 4-10) in the Searchmont image were used to
conduct an accuracy assessment (see Figure 4.3). This assessment involved determining
errors of omission and commission, and determination of User’s and Producer’s

accuracy for each of the plots.

5.4 Phase 2

The purpose of the second phase of the research was to assess whether statistical
analysis of grey level values extracted from the imagery could be statistically related to
corresponding field measured values of leaf area index (LAI) and percent cover. The
methods used to conduct this phase of the research are outlined in the following sections
and were conducted using spectral image data, spectral transformations, and texture data
derived from the digital imagery.

5.4.1 Vegetation Indices

Three vegetation indices were derived using the red and near infrared spectral

data. The first two are standard indices; a ratio vegetation index (RVI) which is derived

by simply dividing the measured brightness of the near infrared band by the brightness of
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red band (Equation 5.1) and the normalized difference vegetation index (NDVI)

(Equation 5.2).
NIR
RVI=— X
Red >
NIR - Red
NDVI = NIR +Red 32

The third vegetation index that was used in this research was the soil adjusted vegetation
index (SAVI). This index takes into account the spectral properties of the background
soil which can have adverse effects on such indices, especially when there are low levels
of vegetation present. A soil adjustment factor (L) is added into the equation (5.3) and is
typically set to 0.5 (Elvidge and Chen, 1995).

SAVI = NIR-Red .., 53
~NIR+Red+L(+ ) ’

The index values generated were left as 32-bit data to maintain the resulting data range
and precision; if the index values were scaled into 8-bit values, then the grey level values
would be similar for all the vegetation indices. Such a loss in precision would negate the
purpose of exploring different types of indices.
5.4.2 Statistical Database Compilation
To conduct statistical analysis on the grey level values, they needed to be
extracted from the imagery at the same location as the field samples on only the

experimental units of jack pine trees; field measurements were not conducted on black
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spruée units. Graphic polygons were delineated over the conifer trees in the image at the
three field sample locations for each of the density plots.

Polygons covered an area of one metre square (approx. 1936 pixels) and were
centred on each jack pine tree. Grey level values were obtained for the raw spectral
bands, both texture measures identified in phase one, and all three vegetation indices.
The mean and variance of the grey level values for each of the variables were extracted
and placed into a statistical package with the field measured values for LAI and percent
cover. All remaining statistical analysis was conducted using the image and field
information contained in this database.

5.4.3 Statistical Analysis

Tests for normality using skewness and kurtosis were conducted on the database.
Those data which were not normally distributed were transformed using a logarithmic
transformation to achieve a normally distributed dataset.

Linear, bivariate correlations were conducted separately using the mean and
variance of each image variable against each field variable to determine the strength of
their relationships. Probability values were also calculated to determine the significance
of the correlation values obtained. Investigation of the correlation analysis results
involved not only examination of the strength and significance of the correlations for
each variable pair, but also comparison of the r-values obtained for the 1% order
measurements (grey level values for the spectral bands) to those r-values obtained for the

2™ order measurements (co-occurrence texture measures). Furthermore, the r-values
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obtai_ned for the 2™ order co-occurrence texture measure, Variance, were compared to
those obtained for the statistical variance derived from the raw imagery and the spectral
transformations, which can be considered as 1* order texture measures.

A forward stepwise multiple-regression analysis was conducted separately for the
mean and variance of all image variables against the field measured values of LAI and
percent cover in order to determine how well spectral and textural information obtained
from the digital images could predict the field measures. Regression Mcients,
standard errors, and F-statistics were calculated to determine the strength of the
relationships, the level of significance, and the contribution of each of the variables to the

regression equation.



Chapter Six

Results and Discussion

6.1 Introductioa

Resuits of analyses that were conducted during this research are presented and
discussed in the following sections. The initial separability analysis that was conducted
will be discussed first, followed by the classification and accuracy assessment results.
The final portion of this chapter will discuss results of the statistical analyses that were

conducted as part of the biophysical modelling.

6.2 Separability Analysis

Results of the initial per pixel separability analysis were originally presented in
Haddow ef al. (1997). Tables 6.1 and 6.2 show the reference separabilities for the
competitor and conifer species (jack pine and black spruce) that were considered ‘good’
(greater than 1.9) and ‘poor’. Good separabilities, with values ranging from 1.90 to
2.00, were obtained for large-leaved aster, upland willow, red raspberry and fireweed
from both conifer species. Large-leaved aster and fireweed were both flowering at the
time of image acquisition, contributing significantly to their ‘good’ separabilities. As a
result, timing of image acquisition should play an important role in obtaining images for
spectral analysis and classification of various species. However, this may present

difficulties when there are a number of different species that have to be taken into
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consideration, as flying at different times for different stages of growth would be costly
and lead to difficuity in combining the data for proper analysis. As numerous studies
have found (e.g., Pitt er al., 1997, Hall, 1984), if identification, counting, and
measurement of coniferous species is the objective, then acquisition of data should be
during leaf-off periods of the competing deciduous vegetation (i.e., spring and fall).
However, to assess the type and amount of competition acquisition of images must be
conducted when there are leaves present on the trees.

Poor separabilities were obtained for the remaining competitor species; blue-joint
grass, braken fern, and trembling aspen. In addition to the separabilities between
conifers and the competition species, an analysis of the separability of jack pine from
black spruce was conducted when they were not in competition with each other. The
results indicated that the two conifers species had essentially similar spectral
characteristics in this imagery, with a poor separability of 1.27. Several factors may
explain such poor results. First, at most densities, the background reflectance of the soil
contributed significantly to the image brightness, thereby producing a similar spectral
response for each pair of classes. Secondly, sampling of individual conifer tree crowns at
medium to high competition densities was very difficult and locational errors could have
resulted in the incorporation of additional spectral information from the surrounding
competition. Conifer crowns were undetectable at densities as low as 2 competitor
plants per metre square for plots where blue-joint grass and red raspberry were in

competition with the conifers. A third factor involves the sensor used to collect the data.
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The low separabilities could be attributed to the fact that the DCS420 CIR
camera has wide spectral bandwidths. The use of narrower bandwidths may improve
separabilities. Furthermore, the dynamic range of the imagery was not very high, being
only 120 digital numbers. In-flight investigation revealed that increasing the exposure
resulted in either saturation of trees in the near IR or too much image motion.
Therefore, the exposure settings used represented a compromise between these factors.
Image motion was about 1 pixel with the aperture fully open. Two factors could have
been cofrected to reduce image motion: 1) fly at a slower aircraft speed, which was not
possible with the aircraft available, or 2) increase the shutter speed to 1/8000 sec but this -
would have reduced the dynamic range even further.

Most of the factors discussed above are related to the technical performance of
the camera. In order to obtain 2.5cm pixel imagery the camera was pushed to the limits
of its capabilities. The small pixel size was necessary to assess regenerating trees less
than 1m in height. Radiometric response improvements of digital cameras such as the
DCS420 CIR should improve their use in automated spectral classification of
regenerating sites. However, the first two factors noted above, spectral contribution of
non-crop species and locational errors in sampling, are more difficult to overcome. They
limit capability at moderate to high competition density for both visual interpretation and
automated spectral classification because, in many cases the conifer trees were
completely obscured by the competitor species (Haddow et al., 1997). The situation is

different when the species of interest are the competition. Visual identification is casier
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because the competition typically is not obscured to the same degree as the conifer
seedlings.

Transformed Divergence separabilities for a full range of densities of two
competition species, trembling aspen (Figure 6.1), and upland willow (Figure 6.2) were
also obtained. Partial sets of densities were obtained for large-leaved aster and blue-joint
grass and are located in Table 6.3. All data showed an inverse linear relationship
between separability and density (Haddow ef al., 1997). The detrimental effect of
competition density on spectral separability of conifers and competitor species is evident.
As competition levels increase, separability decreases. This relationship can be attributed -
to the factors that were discussed above in relation to the reference separabilities that
were obtained.

The ability to identify the conifer trees at various densities is also dependent on
the types of competition that surrounds the trees. For example, conifer trees were visible
at all densities of large-leaved aster, due to the distinct spectral difference between the
two because the competition was flowering (Table 6.3). Therefcre, a density threshold
for conifer identification could be as high as eight competition plants to one conifer as
long as the aster is flowering at the time of image acquisition. However, conifers were
difficult to identify at all densities, even very low densities, for other competition species
such as trembling aspen and blue-joint grass (Table 6.2). The separabilities when there
was no competition were ‘poor’ to begin with and decreased as the level of density

increased. A threshold for these types of competition might be set as low as one
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metion plant for every two conifers or require that these species not be present at
all. This assignment of a density threshold beyond which conifer seedlings cannot be
accurately identified will be difficult to determine in a more operational setting when
different competition species are growing together in a singie plot.

Initial test classifications using a maximum likelihood classifier were conducted
for competitors which had ‘poor’ separabilities with the conifer species (Table 6.2) to
test the worst case scenario for thematic mapping. Contrary to expected’results, the
thematic maps showed very clearly the planting pattern of the experimental units for
conifer and competition species. Therefore, although the separability of each pair of
competition and conifer classes was ‘poor’ in these tests, the presence of trees were well
identified by the classifier. Examples of such thematic maps can be found in Appendix C.
The reason for this apparent discrepancy is that, on a per pixel basis, there were many
pixels in error, particularly near the edges of seedlings where soil background and/or
overlapping competition contributed most to pixel brightness. Thus, low separabilities
translated into low per pixel classification accuracy. However, with a central portion of
each conifer or competition plant classified correctly, the output map showed their
planting patterns very well (Haddow er al, 1997). This indicated potential for
production of such thematic maps for use in tree counting and regeneration success

measurement despite the poor per pixel separability.



Table 6.1
Crop aad Competition Reference Separabilities
which were ‘Good’.
jack pime black spruce
isrge-leaved aster 2.00 2.00
apland willow 1.91 1.96
red raspberry 1.94 1.90
fireweed 200 1.91
Table 6.2
Crop and Competition Reference Separabilities
which were ‘Poor’.
jack pise black spruce
blwe-joint grase 1.4 111
braken ferm 1.07 1.03
trembling aspen 1.20 1.44
conifers 1.27
Table 6.3

Partisl Density Dependent Separzbilities for
Large-Leaved Aster and Blue-Joint Grass

llmldz2 jack pine black spruce
L (plasty/ar)
large-leaved aster

0 1.99 1.99

1 1.99

4 1.99

8 1.95

biue-joint grase
0 1.44 1.11
0.5 1.21 1.38
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Figure 6.1
Transformed Divergence of Trembling Aspea Competition and Two
Conifer Species at Various Competition Deasities.
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6.3 Evaluaﬁon of Automated Classification Methods

6.3.1 Image Statistics
S Training Sample Statisti

Eleven land cover classes were used in the training of the supervised
classifications. They included: jack pine, black spruce, fireweed, upland willow, red
raspberry, blue-joint grass, large-leaved aster, soil, grass, shadows, and a null class. The
latter was included to account for the area in the mosaic that did not contain any data,
such as the area on the red raspberry plot where the flight lines did not provide enough
overlap. These classes were selected using the plot map (Figure 4.2) that was provided
by the Canadian Forest Service as a reference. The mean and standard deviation for the
training samples of the eleven classes used in the production of the thematic maps using
the spectral data for the arboretum site are located in Table A-1 of Appendix A.
Spectral ili is

Training samples’ statistics demonstrate why the separabilities between the
vegetation classes are low, as the separabilities are affected by mean and standard
deviation values of the competition and conifer classes. Upland willow, red raspberry,
and large-leaved aster have some of the better separability values with the conifers, 1.42,
1.25 and 1.99, respectively for jack pine and 1.33, 1.36, and 1.99 for black spruce. The
mean values of these classes are quite different from the means of jack pine and black
spruce for more than one band. However, high standard deviations affect the

separabilities as well.
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Standard deviation vaiues obtained for the classes range from 4.3319 to as high
as 13.5951. These high values can be associated with locational error in polygon
sampling for the vegetation. Furthermore, some of the highest standard deviation values,
greater than ten, were obtained for vegetation that was flowering such as fireweed and
large-leaved aster, because not only were the leaves selected for classification, but the
flowers were also included, which is necessary if the entire plant is going to be classified
correctly. The timing of acquisition again plays an important role, not only with the
vegetative state, but also with the condition of the soil. Image acquisition when the
vegetation contains no leaves would eliminate variations in grey levels within herbaceous
species, thereby reducing the standard deviation. The soil class also exhibited high
standard deviations. These values can be associated with the tilling of the soil which can
cause variations in the soil moisture within and between plots. In addition, images
should be acquired when there is a greater chance of uniform soil moisture. However, as
discussed earlier, if the level of competition is being measured, avoiding high standard
deviations may be difficult because the images need to be acquired when there are leaves
on the competition.

When the standard deviations are applied to obtain data distribution ranges, most
of the vegetation classes overlap. For example, jack pine and black spruce have mean
values of 90.35 and 87.82, respectively, in the green band. For respective standard
deviations of 7.56 and 7.57, the full distributions (+3s from mean assuming normality)

for the two classes range from 67.67 to 113.03 for jack pine and 65.11 to 110.54 for
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blaclé spruce. This represents an overlap of approximately 42 grey levels or 94%. Such
overlap of grey level values also occurs for the other spectral bands and texture
measures, explaining why the separability between the two conifer species is poor. Other
vegetation classes also exhibited overlap between data distributions. If the standard
deviation values were lower for those classes where overlap occurs and the data had a
greater range of grey level values (> 120), this would result in a greater separation
between mean values and the amount of overlap between distﬁbutions: would be
decreased. This would certainly lead to an improvement in the separability between the
vegetation classes.

Table A-2, Appendix A contains the separabilities for the eleven classes based on
the incorporation of the spectral information only. These results repeat what was
discussed above for the initial separability analysis. The conifers again exhibited poor
separability of 1.13, which is less than the value obtained in the initial analysis.
Separabilities between the competition classes were also low as is the case with the very
poor separability of 0.29 that was obtained between upland willow and red raspberry.
The four competition species (large-leaved aster, upland willow, red raspberry, and
fireweed) which obtained high separability with the conifer species in the initial
separability analysis produced lower separabilities in this analysis. Large-leaved aster .
was the only one to maintain a ‘good’ separability (1.99), while the other fell to 1.42 for
upland willow, 1.25 for red raspberry, and 1.66 for fireweed. For the competition
species, the highest separabilities were obtained between vegetation that was flowering
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and that which was not, and also between land cover classes that were distinctly different
such as vegetation and soil or vegetation and shadow. Reasons for the poor separability
results were discussed above with respect to the initial separability analysis and applied
to the results obtained during the evaluation of automated classifiers.

The reduction in separability from the initial values can be associated with the
mosaic image. The initial separability analysis involved selection of polygons in a single
image for each of the competition species. However, in order to obtain an image that
was representative of the entire piot, the mosaic was compiled. Since no radiometric
corrections or colour matching were applied to the image when they were incorporated '
into the mosaic, spectral differences for the same species between images due to optical
lens effects and bi-directional reflectance variations may have been significant. Attempts
were made to restrict sampling to the centre of the images and reduce the influence of
these effects, except the vegetation being sampled did not always fall within the centre of
the images. Furthermore, small changes in brightness between some images add to the
variance for those classes that were sampled from more than one image within the
mosaic. These factors not only influence the separability between classes, but also the
mean and standard deviation statistics that were obtained for the land cover classes.

6.3.2 Image Classification of Conifers from Spectral Data Alone

The purpose of evaluating the various classification methods was to determine if

an automated classification process could provide accurate identification of conifer
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seedlings for species composition assessment and for measurement of other attributes

that require seedling counts.
U i i ing with S Information

Unsupervised clustering resuited in the production of a thematic map with eleven
spectral clusters. The mean and standard deviation statistics that were produced for the
spectral classes are located in Table A-3 of Appendix A. An example of the spectral
cluster map (Figure C-2) produced by the K-means clustering is located in Appendix C.
The mean and standard deviation values obtained for the eleven classes for the
supervised training samples were used in addition to visual inspection of the thematic
map and knowledge of the location of planted conifers to determine which spectral
cluster(s) corresponded to the conifer species on the ground. Clusters 4 and 5 were
identified to be conifer species and were used in tree counting assessment. The other
clusters were not assigned land cover class labels as they were not required for this
process.

Supervised Classifications with Spectral Information

In classification of images using neural networks, errors in the network training
stage are output for assessment before the classification is conducted. The global error
reached during training of the neural network for the spectral information alone was
0.44. The specified default error of 0.01 was not reached, yet the neural network was
considered to be “trained” and the error was accepted. Variations in the number of

iterations, learning rates and momentum rate were investigated, but the global error was
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consi-stemly greater than the software maximum default error mentioned above.
Although the final training parameters of 10,000 iterations, learning rate of 0.1 and a
momentum of 0.9 did not reach the specified error of 0.01, they were accepted for
classification, as the specified error would not have been reached because the neural
network was oscillating. Even with changes in the learning rate and momentum
oscillation still occurred. This oscillation and high global error could be a result of the
poor separability between most classes, which can lead to confusion between classes or
because there are too few input channels. Improvements in the spectral separability
between the classes could lead to a lower total error produced.

The thematic maps produced by the maximum likelihood, neural network, and
context supervised classifications for the spectral data are located in Appendix C and are
figures C-3, C-4, and C-5, respectively. The images located in Appendix C represent an
example of the thematic maps generated for the arboretum site for all of the
classifications conducted as part of this research. Due to the similarities of the maps,
others produced at later stages are not included. The thematic maps clearly demonstrate
the ability of the classification algorithms to identify the planting structure of the
experimental units, discussed above. The unsupervised cluster map, maximum
likelihood, and neural network thematic maps all appear similar, with a very jagged
appearance to boundaries and more noise than the context thematic map. The amount of
noise within classes was less for the context thematic map and it had a more visually

pleasing and interpretable appearance. There were no harsh edges within the context
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map ’compared to the other thematic maps, where the edges of plots, targets, and field
markers were more distinct. The context classification resulted in a more generalized
appearance in the land cover classes. However, the generalized appearance of the
context thematic map also resuited in loss of detail at this resolution as groups of
individual trees were often combined into a single polygon and represented as a single
tree. The map may give a false impression regarding the condition of the site. For
example, such groupings of trees may lead to an under-estimate of stocking levels

because only one tree might be identified when there are actually more than one present

on the ground.
6.3.3 Image Classification of Conifers from Textural and Spectral
Information
T rainin )

The mean and standard deviation (Table B-1, Appendix B) for the Standard
Deviation and Variance co-occurrence texture measures exhibit a degree of overlap
between class distributions. Instead of overlapping by 94%, the distributions of jack pine
and black spruce only overlap by 82% for the Standard Deviation measure and 84% for
the Variance measure from the spectral distribution. This decrease in overlap with the
addition of a texture measure, Standard Deviation or Variance, was expected to improve
the separabilities between the Iand cover classes when the texture band was added to the

three spectral bands.
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Texture Separability Analysis

The separability values obtained for the training polygons from the combined
spectral/texture information are summarized in Table B-2, Appendix B. With the
addition of the texture information, the separabilities between land cover classes
improved slightlty. However, the improvement was not sufficient to obtain good
separabilities between classes like jack pine and black spruce. The separabilities between
jack pine and black spruce increased from 1.13, to 1.23 with the addition of tl;e Standard
Deviation texture information and to 1.17 with the Variance texture information. This
improvement is not significant, as the separability between the two classes is still ‘poor’.
More significant is the improvement in separability between coniferous species and
deciduous species. The separability between jack pine and fireweed increased from 1.66
to 1.83 and 1.77 with the addition of Standard Deviation and Variance texture measures,
respectively. In addition, the separability between jack pine and upland willow increased
from 1.42 to 1.51, with the addition of the Standard Deviation texture measure and to
1.57, with the Variance texture measure. Separabilities between black spruce and the
various competition species demonstrate similar increases.

Separabilities for land cover classes that were distinctly different, such as
vegetation and soil, remained similar even after the addition of spatial information. The
separabilities between some of the competition species increased with the addition of
spatial information. The competition with the lowest separability using only spectral
information (0.29) between upland willow and red raspberry, was improved somewhat to
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0.35‘with the addition of Standard Deviation texture measure and to 0.40 with the
addition of Variance texture measure. The addition of texture appeared to have a
greater effect on the separability between competition than between vegetation and other
land cover classes such as soil and shadow. There was little improvement in the
separabilities between vegetation classes and soil and shadow because they were already
very high. The improvement in separability for vegetation classes can be attributed to
the fact that there is more spatial information present within vegetated areas than there is
for soil or within areas of shadow.

n 1 steri ith S Infi ion
The spectral classes that were generated with the addition of the texture
measures by the K-means algorithm were similar to those generated with the spectral
data only. Clusters 4 and 5 were identified for use in the accuracy assessment in both the
clustering using the Standard Deviation and Variance texture information. These

clusters were identified in the same manner as those for the spectral data only.

The total errors that were obtained for the neural network training phase for the
classifications of spectral data plus either Standard Deviation and Variance texture
measures were 0.36 and 0.37, respectively. However, in order to obtain good accuracy,
the neural network must be adequately trained and a low global error reached. In this
case, the error achieved was accepted and the image was classified using the neural

network. The addition of the co-occurrence texture measures decreased the global error
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and improved the training of the neural network slightly over the spectral data alone
(0.44).

6.3.4 Accurscy Assessment of Conifer Seedling Counts

Thematic maps produced by each of the classification techniques were used to
obtain conifer seedling maps by masking out all other classes. These conifer seedling
maps (Figure C-1) were then used to conduct an accuracy assessment of automated
seedling counting. Note that in the tables and graphs presented in the following
discussion, plots are identified by the competition species that are growing in each.
Thus, the accuracy assessment was conducted for each individual plot where conifers
were planted with a competition species at a given density. Appendix D contains graphs
representing the percent over- and under-estimates for counts of conifer seedlings
obtained during the initial phase of the accuracy assessment. Each graph represents the
conifer counts expressed as a percent over- or under-estimate of the actual field count,
for all densities of the three plots (fireweed, upland willow, red raspberry) based on the
range of pixel sizes specified. As outlined in the methods, the range of pixel sizes used
represents the possible size of the central cores of conifer seedlings and does not reflect
the size of entire crowns.

Figures 6.3 through 6.7 represent the best five classifications that were chosen
out of the twelve that were conducted. These include: a neurai network with spectral
and Standard Deviation texture information; a context classifier with spectral and

Variance texture information; and three unsupervised clustering maps, one with the
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st information only, one with the addition of the Standard Deviation texture
measure, and the third with the spectral and Variance texture information. Figure 6.8
represents one, for comparison purposes, of the classifications that was not chosen due
to the high percentage of errors that it produced. The five best classifiers (Figures 6.3 to
6.7) represented the classifications with the lowest percentage of error from the actual
number of trees in each plot. The graphs demonstrate that the error curves for the five
classifications were much closer to 0% error than those that were not chosen such as
Figure 6.8.

The accuracy of each classifier depended on the competition species. For
example, the fireweed plot seemed to have the greatest amount of over-estimates for all
classifications except for the context classification where it produced under-estimates. In
the case of the context classifier, the raspberry plot produced the greatest over-estimates.
Upland willow consistently produced the least amount of over and under-estimation and
was generally grouped together over the range of densities in that plot, with less than
100% error. Classifier accuracy was also dependent on the density of competition. As
expected, the lower densities of the various plots produced the lowest percentage of
over and under-estimates. As the density of competition increased, the amount of over
and under-estimation increased, with the higher densities (eight competition plants to one
conifer) typically producing the greatest amount of over and under-estimation for each

plot. Thus, as density increased, the percent error in conifer counting increased.
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The effect of changing the minimum acceptable number of pixels to define the
core of a conifer seedling, was most prevalent for the fireweed plot. As the number of
pixels increased from 9 to 20, the amount of over-estimation decreased. This was seen
for all of the classifications except for the context classifier which remained the most
constant in counting errors for the entire range of pixels for all densities and plots. For
the other plots, upland willow and red raspberry, the decrease with number of pixels was
not as pronounced as for fireweed. As a result, it is difficult to suggest a single number
of pixels to be used as different trees have different diameters.

The effect of pixel size is also dependent on the type of species. Determination
of a correct number of pixels may not be as important for upland willow and red
raspberry as they remained relatively unaffected by the change, but determining the
appropriate number of pixels for fireweed may reduce the amount of error in the conifer
counts. Determination of a single number of pixeis is limited by the features under study
and therefore should be chosen based on the features, and not on which one produces
the least amount of error in the conifer counts. However, the downward trend of the
curves does indicate that the x-axis intercept may actually be close to the whole tree size
as opposed to the core area of the conifer crown. This value could be used as an optimal
number of pixels to represent a seedling.

The neural network appeared to have performed the best overall, with the lowest
percentage of over and under-estimates. The unsupervised clustering for all three
variations produced similar results with the upland willow and red raspberry plots all
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concéntrated between approximately 100% and -50% and the fireweed around 300%
except when there was no competition present. The context classifier had a greater
balance between over- and under-estimates but like the other classifiers produced high
over-estimates for the fireweed plot. These errors are very high and demonstrate that
when all but the lowest densities are present, automated conifer counting using these
methods is feasible.

Both over-estimation or under-estimation of conifer counts aﬂ‘ect decision
making. The worst case scenario is if the area is actually understocked, but the conifer
counts are over-estimated from the thematic maps and indicate a well stocked area. This .
may lead a forest manager to believe the plot does not require treatment to improve
stocking with the long-term consequence of insufficient yield or harvest. Conversely, if
the plot is actually overstocked, and an under-estimate is made from the map, a decision
not to treat the plot may be made. Such overstocking may lead to growth problems as
the trees may compete with one other, decreasing potential total yield. Short-term costs
can also be affected by the conifer estimates. This situation can arise if a plot is actually
at an acceptable stocking level, yet a forest manager believes the plot is understocked
because the conifer count from the thematic map was under-estimated. The short-term
costs involve conducting field surveys to determine which silvicultural practices may be
required to increase the number of conifers and ensure a well stocked plot when it is time
to harvest. The expense of the fieid survey is actually wasted because there is no

requirement to improve the stocking of that plot.
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Figure 6.4
Conifer Counting Ervor (%) for Context Classifier with Spectral and Varisnce Texture Data as 8 Function of
Competition Species and Density, and the # of Pixels Defining a Seediing
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Table 6.4 identifies the errors of omission and commission for the five
classifications that were identified as performing well. Errors of omission resulted when
a conifer existed in the field but was not identified on the map. Errors of commission
resulted when a conifer was identified on the map but it did not exist on the ground at
that focation. The values were obtained on conifer experimental units where there was
no competition present. These plots were chosen because the separabilities between the
conifers and the various competitions species would result in excessive errors of
commission as the density of competition increased. In addition, these plots simulate the
leaf-off condition which is more reasonable for counting trees. A grouping of pixels was —
considered if there were more than nine pixels present. Those that had less were
disregarded because they did not constitute a tree by definition.

It can be seen that the context classifier has a high occurrence of errors of
omission for all plots. The unsupervised clustering had high errors of commission for
only the fireweed plot as well as a high occurrence of errors of omission for the
clustering with the addition of the Variance texture measure. Of all plots, fireweed
produced the highest number of commission errors for all classifications. This could be
associated with the greater amount of weeds that were present at this plot than were
present in the other two.

From the errors of omission and errors of commission, User’s and Producer’s
m were determined for each of the classifications (Table 6.5). The highest

accuracies were obtained for the neural network with the Standard Deviation texture
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infor;nation added to the spectral data. This classification obtained both the highest User
and Producer accuracies out of the five classifications for all three plots. An interesting
note is that the unsupervised clustering, both with only spectral information and the
addition of texture information, performed reasonably well in comparison to the
supervised methods, especially the context classifier. The context classifier performed
the poorest, obtaining the lowest accuracies of all the classifiers. The User’s accuracies
obtained by the neural network are similar to those obtained by Hall and Aldred (1992)
for jack pine trees, where 96% accuracy was obtained in identification of conifer
seedlings through manual interpretation of aerial photographs.

6.3.5 Assessment of Classification on Searchmont Data

Appendix C also contains an image of the neural network classification with
spectral data and Standard Deviation texture information that was conducted for the
Searchmont mosaic (Figure C-6). The minimum total errcr reached after 10,000
iterations of training was 0.11. The target maximum total error (0.01) was not reached,
although, the error achieved at the Searchmont site was better than the error that was
achieved at the arboretum site (0.36) for the same combination of spectral information
and the Standard Deviation texture information.

In addition to achieving a lower total error during the training, the neural
network for the Searchmont site trained in a little over half the time that was required to
train the arboretum neural network. File size could have played a role in this, yet the

difference between the two files was not that great to produce the significant reduction in
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t@ng time. Another factor that could have played a role in the reduction in training
time is the smaller number of classes (five) at the Searchmont site than the arboretum site
(eleven). The method used in this research was that the number of hidden layers
corresponded to the number of classes used in the training phase. As a result there were
fewer hidden layers, therefore, fewer connections between the nodes. This can reduce
the amount of computation that occurs at each iteration to adjust the weights that are
applied to each node in an attempt to achieve the total error specified.

The errors of omission and commission that were obtained for the three
Searchmont plots are given in Table 6.6. Plot 3-3 was not included in the assessment
due to the excessive amount of competition that prevented accurate visual identification
of conifer trees. Furthermore, in Plot 3-3 the competition was so heavy that when
polygons were generated to count the errors of omission and commission the majority of
the plot was identified as being one polygon. The User’s and Producer’s accuracies
were obtained from the omission and commission errors. The user’s accuracies that
were obtained for plots 3.6 and 4.10 were 77.6% and 21.8%, respectively. The results
indicate that the user’s accuracy was significantly affected by the density of the
competition at each of the plots with plot 3.6 visually having a lower level of competition
than plot 4.10. The producer’s accuracy for both plots was 100% since there were no

errors of omission for either plot.
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Table 6.4
Errors of Omission and Commission in Counting Conifer Trees
for Arboretum Plots: when no competition t

Fireweed Red Raspberry Upland Willow
Plot Plet Plot
Plot Conifer Total =93 ] Plot Conifer Total = 84 Plot Conifer Total = 94
Neural Netwerk i 49 6 1 1 5
Standard Devistion
Coatext 42 9 59 1 20 L]
Variance
Unmpervised 1 68 3 3 1 6
Spectral -
Unsupervised 1 70 2 1 1 9
Staadard Deviation
Ussupervised 37 11 3 3 1 8
Variance
Table 6.5

User’s and Producer’s Accuracies for Each Plot Whea No Competition Present at
the Arboretum Site Based on Ervors of Omission and Commission

Fireweed Raspberry Upland Willow
Plot Plot Plet
Producer’s | User’s | Producer’'s | User’s | Producer’s | User’s
Neural Network 99.0% 66.4% 92.9% 98.7% 99.0% 94.4%
Standard Deviation
Comtext 57.1% 93.2% 29.8% 96.1% 78.7% 74.7%
Variance
Unsapervised 99.0% 58.8% 96.4% 96.4% 98.9% 93.9%
Spectral
Unsupervised 99.0% 58.1% 97.6% 98.8% 98.9% 91.2%
Standard Devistion
Unsupervised 62.2% 84.7% 96.4% 96.4% 98.9% 92.1%
Variance
Table 6.6
Errors of Omission and Commission in Counting Conifer Trees
for Searchmont Plots
Plot 3.6 Plot 3.3 Plot 4.10
Plot Conifer Total = 128 = Plat Conifer Total = 87
o R e F—— — re—
Neural Network 0 36 . * 0 312
Standard Devistion

* Unable to count errors in Plot 3.3 due to excessive competition growth, see following text.



6.4 Biophysicali Modelling Statistical Analysis

Appendix E contains the mean (Table E-1) and variance (Table E-2) statistics for
the grey level values that were extracted for the jack pine trees measured in the field for
LAI and percent cover. LAI and percent cover field values are also listed in the tables.
The tables contain both the original data and the normalized data. A power
transformation was applied to the mean dataset, while a logarithmic transformation was
applied to the variance dataset. Those variables that were transformed to obtain
normality are indicated by an asterisk (*) after the variable name. It is these variables
that were used in the analysis in place of the non-normal original data. Kurtosis and .
skewness values that were obtained for all of the variables are also listed in Appendix E
for the mean and variance statistics, tables E-3 and E-4 respectively.

6.4.1 Correlation Analysis

The correlation values (r) and corresponding significance values (p) obtained for
the mean and variance datasets are located in Tables 6.7 and 6.8, respectively.
Correlation values that are discussed in the following sections are indicated in bold.
Significance level was measured with a 95% confidence interval. Therefore, a p-value of
0.05 or less indicates a significant comrelation. Results of the correlation analysis using
the mean of the variables will be discussed first, followed by the variance.

rrelati is using M f Variabl
Table 6.7 indicates the r values obtained for the mean dataset. Overall, the

values obtained for LAI were weak, and not statistically significant. The highest r value
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obtained was with near infrared reflectance (-0.31). The negative refationship is contrary
to what would typically be associated with the two; as NIR reflectance increases, the
LAI should increase because there is more vegetation present. This may be due to the
NIR spectral bandpass of the camera which includes a significant amount of red
spectrum transmission. The red band, produced a correlation of -0.31 (p=0.06). The
negative relationship is expected, as red reflectance decreases, the absorption by the
plant increases, suggesting that there is an increase in the amount of vegetation and,
therefore, LAL

The Standard Deviation texture measure has a negative relationship (~0.30) with -
LAI This suggests that as the amount of texture decreases, the area becomes smoother,
resulting in a more homogeneous land cover; in this case vegetation. This would be
indicative of an increase in the LAIL

Percent cover produced similar relationships with the image variables as LAL,
since the two are positively correlated (0.86). Correlation coefficients obtained for
percent cover with the variables discussed above were higher than those with LAI and
also more statistically significant. For example, the correlation between red and LAI was
-0.31 (p=0.06), yet, the correlation between red and percent cover was -0.40 (p=0.01).
All three of the vegetation indices produced significant correlations with LAI and percent
cover, yet they were ‘weaker’ than either the red or NIR spectral data.
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_C_orr‘gjgtion Analysis using Variance of Variables

Table 6.8 indicates the r values obtained for the variance dataset. Overall, the
values obtained for LAI were weak, and not statistically significant. The highest
correlation coefficient between LAI and the image variables was with the variance of red
reflectance (-0.35). The relationship is weak, but significant (p=0.03). Since the
variance is essentially a 1* order texture measure, the same logic applied to the Standard
Deviation texture measure can be used here. As the variance in red decreases, there is a
smoother grey level surface, an increase in the absorption of red energy, more vegetation
present, and therefore, the LAI increases.

The variance of the Standard Deviation texture measure also obtained a
significant (p=0.02) correlation with LAI {-0.35). While the correlation between the two
was weak, the relationship is interpreted: as the variance of the Standard Deviation
texture increases, the LAI decreases because there are more openings within the canopy.
Similar relationships were obtained with percent cover and the variables discussed above.
Again, the correlations between percent cover and the image variables were higher than
those obtained for LAIL.

An interesting result that appeared when using the variance as a summary statistic
was that the 1* order texture, the variance of green, red, and NIR were significantly
correlated with the Standard Deviation and Variance, 2™ order texture measures
(p=0.05). Correlation coefficients themselves were ‘strong’ for the Standard Deviation

texture measure and relatively ‘weak’ for the Variance texture measure. The higher
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coeﬁcients were obtained with the red variance, which is to be expected as the texture
measures were determined using the red spectra! information.
Summary of Correlation Analysis

Similar relationships were observed for correlations obtained from both the mean
and variance datasets. The correlation coefficients for both LAI and percent cover with
the Standard Deviation texture data are very similar to the coefficients obtained for the
red band with LAI and percent cover. This is because they are highl.y correlated
themseives, 1.00 for mean and 0.99 for variance. Both relationships were highly
significant, both obtaining a p-value of 0.00. This is a result of the fact that the Standard
Deviation texture information was determined using the red spectral information. Thus,
the addition of either one into a regression analysis will provide the same information.
However, the use of other texture measures which are not highly correlated with the
speciral data may improve the strength of the regression coefficient even more that the
ones identified in this research.

Results obtained for LAI and percent cover were generally more significant and
the correlation coefficients were typically higher than the mean of the variables using the
variance of the variables. The correlation coefficients obtained for percent cover were
better than LAI for both of the datasets. The difference between the values obtained for .
LAI and those obtained for percent cover could be a reflection of the sampling methods
used in the field. As well, locational errors in image sampling could favour one

parameter over the other. The visual estimate of percent cover could allow for more
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erroxl in image sampling, whereas the field measurement of LAI is a more standard and
less arbitrary measurement, maintaining consistency over different plots and for different
surveyors. The values that were obtained for the correlation between all the image and
field variables (LAl and percent cover) were weak overall, but in most instances
statistically significant. Similar results were found by Bulter ef a/. (1995) and Franklin ez
al. (1997) where correlations with LAI were weak but statistically significant.

6.4.2 Regression Analysis

Results of stepwise regression analysis conducted on the mean and variance
datasets are presented in Tables 6.9 and 6.10. The purpose of this analysis was to
determine if vegetation indices or textural information increase the ability of the spectral
data obtained from the imagery to predict field measured vatues of LAI and percent
cover. The variables used in the regression were tested for linearity. Those that were
not linear, were corrected. Results will be discussed in the same way as the correlation
analysis; regression analysis using the mean dataset will be discussed first, followed by
the results of the variance dataset.
R ion is using Mean of Vari

Tables 6.9 and 6.10 identify the five regression analyses conducted using the
mean of the variables for LAI and percent cover and are identified by the additional
variable to the spectral data: the texture measures, Standard Deviation and Variance, and
the vegetation indices: RVL, NDVI, and SAVI. Each will be discussed independently

with a summary at the end of this section addressing similarities and differences.
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The first regression analysis was conducted using the mean values of green, red,
NIR, and Standard Deviation texture against LAI and then percent cover. In the LAI
regression equation, the NIR variable was the first to be added into the equation,
followed by the green, and finally the Standard Deviation texture. The variable ‘red’ was
not added into the equation. As mentioned, this could have occurred because the red
and Standard Deviation are highly correlated. The Standard Deviation was added in to
the equation because it was more significant to the equation than the red data. The
addition of the Standard Deviation texture data to the equation produced a better r*
(0.41) than with the NIR and green data alone (0.39). The addition of the Standard
Deviation texture increased the regression coefficient but the increase was not
statistically significant because the slope of the Standard Deviation, when it was entered
into the equation, was not significant (0.15). The addition of the Standard Deviation
does improve the equation because the standard error of the equation decreased from
1.00 to 0.99, although, the equation with NIR, green, and Standard Deviation is not as
statistically significant as the one based on NIR and green spectral data alore. The
standard errors obtained were high, therefore, at this point, equations for the prediction
of field variables were not developed.
Regression analysis for percent cover exhibited similar results; exclusion of the
red data and an increase in the r* fiom 0.53 to 0.59 with the addition of the Standard
Deviation texture information to the NIR and green data. The difference between the

LAI equation and the percent cover equation using these variables is that the equation
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for petcent cover with Standard Deviaticn is statistically significant because the slope of
the Standard Deviation variable (0.02), when it was entered into the equation in step 3, is
significant at the 95% confidence interval.

The second regression equation that was conducted used the mean of the
Variance texture data with the spectral data. The addition of the Variance texture data
did not improve the LAI equation. It actually resulted in a lower regression coefficient
than with the spectral data alone. The value decreased from 0.42 for N]R, green, and
red data to 0.41 with the addition of the Variance texture. Similar results were again
obtained for the regression of percent cover, although the values were higher (0.58) for
both the spectral data and the addition of the Variance texture. However, the addition of
the Variance texture was not significant because the standard error increased from 17.91
to 17.94. Furthermore, the slope of the Variance texture information, when it was added
into the equation, was not significant (0.35).

The third regression analysis was conducted using the spectral data and the ratio
vegetation index. The ratio variable was added in at the fourth step of the regression
equation. The ratio vegetation index did not add anything to the LAI regression
equation. The regression coeflicient decreased from 0.42 with the spectral data only to
0.40 with the addition of the ratio data. The regression equation for percent cover was
actually improved with the addition of the ratio data, increasing from 0.53 with the NIR
and green data to 0.59 with the addition of the ratio data. The increase was also

statistically significant because the standard error decreased and the slope of the ratio
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variable was 0,02 which is significant at the 95% confidence interval. However, when
the red variable was added into the equation after the ratio variable, the regression
coefficient decreased to 0.58 and the standard error increased.

The final two regression analyses conducted used the spectral data with the
addition of NDVI and SAVIL. The results obtained for both LAI and percent cover for
both NDVI and SAVI were similar to those obtained by the ratio vegetation index. For
the LAI regression, the vegetation indices are added in at the last step, lowering the
regression coefficient value and increasing the standard error. For the percent cover
equation, they were added in the third step, increasing the regression coefficient and -
lowering the standard error. The addition of both NDVI and SAVI to the percent cover
equation is statistically significant because the slopes for both variables was 0.02, which
are significant at the 95% confidence level when they are entered into the equation. In
the case of SAVI, the red variable was not entered into the percent cover equation
because the minimum toierance of 1.00 x 10 was exceeded by the red variable (6.9 x
10*). Furthermore, adding the red variable into the equation would reduce the * value
as indicated by the ‘Beta In’ value of 0.40. This ‘Beta In’ value is the standardized
regression coefficient that would resuit if the variable was entered into the equation at
the next step (Norusis, 1993). The similarity between all three vegetation indices occurs
because they are highly correlated with each other.

Overall, the regression analyses produced better results for percent cover than for

LAIL This is similar to the correlation analysis, where correlations between percent
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cove;' and the image variables were better than with LAI. With respect to the spectral
data alone, the NIR variable was always entered into the equation at the first step, and
this was followed by the green variable at the second step. The addition of the green
variable always resulted in a significant (p<0.05) increase in the regression coefficient.

The addition of Standard Deviation texture improved the equations for both LAI
and percent cover, but the improvement was only statistically significant for percent
cover. However, the standard error for the LAI equation was reduced even though the
slope of the Standard Deviation variable for the LAI equation was not significant.
Therefore, the addition of the Standard Deviation texture data could be considered
valuable for the prediction of both LAI and percent cover. The addition of the Variance
texture improved only the percent cover regression coefficient, although, the
improvement was not statistically significant because the standard error increased and the
variable’s slope was greater than the 0.05 significance level.

The three vegetation indices all produced similar results, improving the percent
cover equation and decreasing the regression coefficient for LAI. The regression
coeflicients obtained for both LAI and percent cover with the addition of each vegetation
index were all relatively similar. However, NDVI produced the highest value for the
percent cover equation while SAVI produced the highest for the LAI equation, despite
the value decreasing when SAVI was added into the equation. This indicates that any of
the three vegetation indices investigated in this research could be used to improve the

estimation of percent cover from imagery measured variables.
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In addition, the incorporation of Standard Deviation texture data to the spectral
data in a regression analysis could also be used to determine LAI. This is the only
variable that was able to improve on the strength of the regression coefficient obtained
by the spectral data alone. Standard Deviation texture could also be used with spectral
daia to determine percent cover and obtsined a regression coefficient similar to those
produced by the vegetation indices. It can also be used to obtain a stronger regression
for LAI. However, it is recommended that if the means of the various image variables
are used, then the addition of Standard Deviation texture data to the spectral information
would be better than using a vegetation index as LAI can be estimated in addition to ‘
percent cover using the texture data, whereas the vegetation indices only achieved a
better regression coefficient for percent cover.

R ion is using Vari of Variabl

The same five regression analyses conducted using the variance of the regression
variables are identified in Tables 6.11 and 6.12. The r* values are much lower than those
of the mean dataset but the same pattern of variable additions at each step was evident.
The addition of the Standard Deviation texture information to the equation resuited in a
lower regression coefficient for both LAI and percent cover. For LAL the regression
coefficient decreased from 0.14 for the green and red spectral information to 0.12 with
the addition of thé variance of the Standard Deviation texture. A similar decrease was
obtained for percent cover, decreasing from 0.15 to 0.13. The addition of the Variance

texture resulted in the same regression coefficient for both LAI (0.14). This similarity in
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the regression coefficients with the addition of the Variance texture could be because the
texture measure is derived from the red spectral information which had already been
added into the equation in the previous step. The addition of Variance increased the
regression coefficient from 0.13 to 0.20 for percent cover. The difference between the
two equations is that the increase for the LAI was not statistically significant and the
increase for percent cover was. The three vegetation indices all produced similar results.
The regression coefficients for both LAI and percent cover were both significantly

improved when the variance of the vegetation indices were added into their equations.

One of the major differences between the two datasets is that the variance dataset
resulted in weaker regression relationships. However, for both datasets, the regression
analyses for percent cover produced stronger regressions than did LAI. Furthermore,
the mean of the Standard Deviation could be used to predict both LAI and percent
cover, yet the variance of Standard Deviation could not. The situation was reversed for
the Variance texture measure; the variance could be used over the mean to predict LAI
and percent cover. However, it is recommended that the mean of the Standard
Deviation be used because of the stronger regression relationships derived. The mean of
the vegetation indices only improved the percent cover model, whereas their variance

improved the regression coefficients of both LAI and percent cover.
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Stepwise Regression Results for V.

Table 6.12

ariance of Image Variables and Percent Cover
Regression Step 1 Step 2
Variables
Variable | ¢ | Standard F Sigei. | Stepe | Variable | r* | Standard F Signif. | Slope
Entered | valwe | Error | statistic | of F Emtered | valwe | Erver | statistic | of F
Spectral plus Red* | 013 | 2594 6.57 002 | 002 | Green | 015 | 2558 441 002 | o0l6
Standard deviation
Spectral plus Red* | 013 | 2594 657 | 002 | 002 | Variance | 020 | 2489 5.66 00/ | 005
Variance
Spectral phs RVE | Rea* | 043 | 25.94 657 | 002 | 002 ] RV 0.23 24.40 6.63 001 | 003
Spectral pins Red* | 013 | 2594 657 | 002 | o002 | NOvI | 027 | 2378 7.94 000 | oo!
NDVi
| Spectral plus SAVI | Red* | 013 | 2594 6.57 002 | 0021 savi 1 0271 2378 7.93 000 | 001
Regression Step 3 Step 4
Variobles
Variable | ¢ | Standard F Sigaif. | Stope | Variable | ¥ | Standard F Sigaif. | Stope
Emicred | value | Errer | statistic | of F Entered | value | Erver | satistic | of F
Spectralplus | StdDev* | 0.13 | 2591 290 | 004 [ 076 | NR* | o 26.28 2.12 010 | 089
Standard devistion
Spectral pins Green | 022 | 24.51 460 | 001 | 0is]| NR* | 020 | 2483 3.39 002 | 0.72
Variance
Spectralphs RVI | NIR* | 022 | 24.53 458 | 001 | 044 | Green | 020 | 2484 3.38 002 | 0.72
Spectral plus NIR* [ 027 | 2370 5.73 000 | 028 | Green | 025 24.02 421 002 | 077
NBVI
| Spectral phus SAVI | NIR* | 027 | 2370 5.73 000 | 028 | Green | 0.25 24.02 4.21 002 [ 077

italics indicate variables that significantly contributed to the regression equation

S11
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6.5 Sunnary of Results

The following section summarizes the results of both phases of the research and
highlights those of importance. The conclusions of this work and their impact on forest
regeneration assessment are presented in Chapter 7.

6.5.1 Phase 1

Per pixel separabilities that were obtained for the eleven land cover classes were
generally ‘poor’, particularly for the vegetation classes. The addition of two co-
occurrence texture measures improved the separabilities of the land cover classes, but
they were still ‘poor’. This lack of good separability between land cover classes led to a
large percentage of individual pixel errors when identifying conifer seedlings. However,
since the seedling cores were generally well classified, an assessment of accuracy of
seedling counts was conducted. The five classifications, of the twelve, which obtained
the lower percentage of errors in the counting the conifer seedlings were selected.
Errors of omission and errors of commission were identified for those five classifications
for each of the three plots on the experimental units where no competition was present.
This condition was used to simulate leaf-off imagery which would normally be used in
conifer seedling identification and counting. The User’s and Producer’s accuracies for
each of the classifiers were determined. The classification that produced the highest
accuracies for all plots was the neural network using the spectral data plus the Standard
Deviation co-occurrence texture measure. It was well over 90% accurate for all counts

except for the User’s accuracy in the fireweed plot. Of the five classifications, four
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contéined co-occurrence texture information. The accuracies of conifer seedling counts
obtained in this research are as good as those achieved by Hall and Aldred (1992)
through manual interpretation of stereo images, although the site used in this research
was a more controlled situation than the study areas used by Hali and Aldred. However,
the results obtained in this research suggest that automated methods can be used to
classify and count conifer seedlings. However, it must be conducted in leaf-off
conditions because as the density of competition increases counting accuracy decreases.
A combination of manual and automated methods, such as the use of stereo images in
locating training samples could mitigate the effect of density.

Testing of the neural network with spectral and Standard Deviation texture
information was conducted on the imagery of the operational cutover site at Searchmont.
Of the two plots evaluated, the piot with the lesser amount of competition achieved a
higher user’s accuracy (77.6%) than the other plot (21.8%).

6.5.2 Phase 2

The correfation coefficients for the image variables and field variables for both
datasets (mean and variance) generally indicated that there is a good potential to predict
plant parameters such as LAI and percent cover from image variables. However,
correlation coefficients were generally lower for the variance of the regression variables
than for the mean, representing a ‘weaker’ relationship when the variance of the
variables was used. Percent cover obtained better correlation coefficients against the

image variables for both of the datasets than LAL
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Spectral data alone can be used to predict the field measurements (LAI and
percent cover), although the use of the mean of the Standard Deviation co-occurrence
texture information and the mean of the three vegetation indices (RVI, NDVIL, SAVI)
could be used to strengthen the relationship. Although regression relationships were
‘weak’, they were statistically significant and were better than those obtained using the
variance of the variables. Furthermore, it is recommended that a stepwise multiple
regression be used to conduct the analysis because, in some cases, the addition of
spectral variables did not significantly contribute to the equation. These variables can be
identified in a stepwise method and excluded from the model. For example, when adding '
vegetation indices to the spectral data, the vegetation index was added before the green
spectral data, and when the green spectral data was added, the strength of the regression
relationship was reduced. The use of a stepwise method can allow the user to determine
which variables should be included in the equation. This method was also recommended

by Gong et al. (1995) as they obtain the lower prediction errors than with other methods

of regression analysis.



Chapter 7

Conclusions

7.1 Introduction

This chapter outlines the major conclusions that were reached as part of this
research, discusses the limitations that were encountered over the course of this research,
and provides recommendations to improve on this work.

The research conducted for this thesis focused specifically on the evaluation of
information derived from digital camera imagery which can be used in decision making
for planning silvicultural activities during the regeneration of coniferous forest sites prior
to these sites being assessed for free-to-grow status. The evaluation was conducted in
two phases. The first phase assessed the capability for conifer identification and
counting using statistical analysis and automated classification procedures. The second
phase determined the capability for statistical modelling of biophysical parameters (leaf
area index and percent cover) of regenerating vegetation using spectral and textural

information extracted from digital camera imagery.

7.2 Potential of Airborne Digital Camera Imagery in Vegetation Classification and
Biophysical Modelling

Under simple structural conditions, there appears to be a strong potential for

airborne digital camera imaging in provision of thematic maps of conifer seedlings and in

119
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biophysical modelling of vegetation structure. Specific conclusions reached for each

phase of this research are:
Phase 1

1. In absence of competition and non-overlapping crowns, very high accuracies were
obtained for conifer counts. Accuracy was highest for the neural network
classification with user’s and producer’s accuracies over 90%, with the exception of
the user’s accuracy for the fireweed plot which was 66%. This level of accuracy is
indicative of what should be achievable using imagery acquired in leaf-off conditions.

2. Use of automated classifications to produce thematic maps obtained better results for
very low densities of competition than for higher levels of competition. This was
best demonstrated by the counting error curves for the various densities at the
Arboretum site

3. The addition of co-occurrence texture measures improved the separabilities and the
accuracy of the thematic maps.

4. A per-pixel accuracy assessment is not suitable for classifications obtained from high
resolution imagery such as that used in this research. An object-based accuracy
assessment was developed, where the percentages of over- and under-estimates of
conifer counts were obtained for a range of pixel groupings that constituted an
object. Although a suitable number of pixels to use in representation of a seedling
could not be determined, results indicate that conifer counts can be highly accurate if
the number of pixels is equal to the number of pixeis classified correctly in conifer
crowns (i.e. core crown area).

Phase 2

1. Multiple regression of combined spectral and textural image data showed very good
potential for use in prediction of LAI and percent cover as r* values ranged from 0.4
to 0.58. However, standard errors were high, being approximately 1.0 for LAI and
17% for percent cover.

2. The addition of vegetation indices to the spectral information resulted in a statistically
significant increases in the strength of models predicting field measured variables.
The model for percent cover did not include the red spectral data, yet the r* value was
higher for this model than the LAI model although the standard error was greater for
percent cover.



121

3. The use of the mean statistics for correlation and regression variables produced better
results than the variance statistics.

4. The use of the Standard Deviation co-occurrence texture measure in addition to the
spectral information results in an increase in the strength of the model for the
prediction of LAI and percent cover.

5. A stepwise regression equation should be used to conduct the regression analysis to

enable the selection of variables that are statistically significant to the model and avoid
those that could produce a “weaker’ model.

QOverall

1. The imagery obtained using the digital camera may be suitable for use in forest
vegetation management, although the spectral quality of the imagery could certainly
be improved. Poor spectral quality is demonstrated by the inverse correlation
between NIR and LAI. The relationship should be positive, as NIR increases, the
amount of vegetation increases, therefore, the LAI will increase.

2. The pixel size of the imagery obtained also may be suitable for forest vegetation
management applications, specifically forest regeneration assessment. Small pixel
sizes are necessary for the identification of conifer seedlings, which would not be
visible at larger pixel sizes.

7.3 Discussion

7.3.1 Benefits of this Research

This research demonstrated that airborne digital camera imagery has potential for
use in determination of the status and structure of conifer regeneration areas. The
methodology and technology examined over the course of this work may provide an
effective operational support tool for forest vegetation management. The cost of digital
camera image acquisition is iower than other high resolution imagery. Furthermore, the
learning principles for digital cameras are less complex than those for hyperspectral

sensors and the computer processing, software and operator training requirements are
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also »less. Interpretation of digital frame camera imagery can be based on similar
methods used for aerial photography, which is currently the most common remote
sensing medium used in regeneration assessment. Digital camera systems can offer
numerous advantages over conventional aerial photography: elimination of the need for
film development, in-flight viewing of images, computer control of exposure levels, and a
linear response to radiance (King, 1995) The spatial resolution used in this research (2.5
cm) reflects the operational requirements, in that the resolution was chosen based on the
need to ‘see’ individual conifer seedlings. Most other sensors (e.g. CASI and other line
scanners) do not have the capability to acquire data at such high resolution and are thus -
limited to analysis of the canopy and not of individual seedlings. The need to image
individual conifer seedlings is a requirement if it is the growth of individual trees that is
to be monitored from a young age. Given the above benefits of high resolution airborne
digital camera imaging, there is a much greater potential for cost-effective integration of
the methods evaluated in this research into operational regeneration assessment than
exists for other current sensors.

7.3.2 Limitations and Recommendations

To adapt the methods presented in this research to an operational situation,
improvements in the technology and methods are needed to provide consistent resuits,
under a wide range of conditions. The following recommendations should be
implemented in further research. 1. Sample plots on the ground are needed for either

training classifiers or for biophysical modelling. However, in order to obtain proper
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mv&age of these plots, larger format digital frame cameras (e.g. 3k x 2k pixels) than the
one used in this research should be used. The identification of sample plots is also
important. The use of stereo images should improve tree identification when there is
competition present over the monoscopic viewing used in this thesis and also reduce the
locational error present during the selection of training samples. 2. Use of a digital
camera with narrow spectral bandwidths (< 100nm). This may reduce the amount of
error in classification and identification of conifer seedlings by improving separability
between vegetation classes. 3. If training samples are going to be selected over a
number of images in a mosaic, radiometric correction of the imagery could increase
separability and improve accuracy of conifer seedling counts, although at added cost. 4.
The addition of other information from the imagery itself, such as other co-occurrence
texture measures, which are less correlated with the spectral data than the two measures
used in this research, may reduce the amount of error in conifer seedling counts. The
importance of obtaining an acceptable amount of error is critical when the information is
being used to support forest vegetation management decisions as both long-term and
short-term costs can be affected. Furthermore, the modelling of biophysical parameters,
such as LAI and percemt cover, can also be improved upon by the above
recommendations.

The timing of acquisition is another operational consideration that was a
limitation of this research for conifer classification and counting. Classification and

counting of conifers can be improved if the images are acquired in early spring or late
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fall, when there are no leaves present on the competition. However, images cannot be
acquired at this time if the competition species and density, or overall vegetation
structure are to be assessed. By acquiring images at different phenological stages, the
separability between vegetation classes can improve because some of the competition
plants may be flowering. This is, however, a costly proposition as growth sequences of
various species are different. Therefore, datasets from various dates would need to be
combined, a process which would be difficult and not op«aﬁow efficient.
Consequently, the potential for single date imagery in classification of competing
vegetation is very limited while multi-date imaging is probably not a cost-effective
approach. Pitt ef al. (1997) suggested an imaging schedule for use in several forest
management activities which should be followed when planning the timing of image

acquisition.

7.4 Concluding Remarks

As discussed at the beginning of this thesis, forests play an integral role not only
for the country as a whole, but for communities and individual Canadians as well.
Ensuring the successful regeneration of Canada’s forest is therefore essential. The
evaluation of remote sensing technologies in forest management is not new, although,
few such technologies have proven to be cost-effective and are therefore rarely used on
an operational basis. As the requirements of forest vegetation management change, the
technologies and methods used must also adapt. This paper evaluated one such
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techﬁology using various methods to provide information on conifer status and
vegetation structure in support of the decision-making processes required for monitoring
and ensuring the successful regeneration of forests. Real potential has been
demonstrated for the given applications. The next stage should be an evaluation of cost-

effectiveness of the methods in an operational pilot project setting.
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Appendix A

Statistics and Traasformed Divergence Separability
Results of Training Samples using Speciral Dats
for the Arboretum Site



Table A-1
Training Sample Statistics for Arboretum Site

from Spectral Data
Class Number of Green Red Near IR
Pixels Sampled
Mean | Std Dev | Mean Std Dev Mean Std Dev
Jack Pine 453 90.35 7.56 66.04 6.83 54,17 6.25
Black Spruce 433 87.82 7.57 72.19 6.09 63.43 5.70
Fireweed 474 85.16 9,68 77.54 13.60 59.46 9.99
Upland Willow 522 106.20 6.13 83.54 6.78 73.07 7.97
Red Raspberry 477 110.21 10,08 83.73 8.45 71.31 928
Blue-Joint Grass 389 87.89 7.97 75.71 7.36 63.86 7.15
Large-Leaved 384 96.53 10.42 109.07 10.82 91.00 7.89
Aster
Seoil 548 67.10 483 92.10 5.81 79.03 433
Grass 543 75.62 6.68 64.69 6.95 57.10 6.08
Shadows 413 30.01 5.23 32.11 5.31 29,90 421
Null 568 0 0 0 0 0 0

cel
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Cluster
( 1
{( 2)
 3)
{ 4)
( 5)
( 6)
(7
( 8)
( 9
( 10)
{ 11)

Total

Pixels

2116184

1210636

3279321

2235045

1128914

1439787

609467

98744

20695

12416

12169430

Table A-3
K-Means Unsupervised Cluster Statistics for Arboretum Site
Spectral Data

Mean Poszition

0.00958
0.00695
0.00574

44.78409
38.71128
33.49008

69.96330
58.24697
50.07249

88.91564
73.33978
62.65425

66.82279
82.97275
70.13397

76.95976
98.99581
82.96462

91.68109
110.80635
93.56657

101.66858
131.12549
113.17224

128.18014
174.94245
169.88997

147.47769
219.77118
211.86042

184,.81603
232.43611
243.27707

Std Dev

0.47655
0.34592
0.28975

9.98268
8.05914
7.38750

8.02363
5.97416
5.75519

9.13446
7.06622
6.46398

6.58805
6.71605
5.72978

6.97598
5.49615
4.971786

11.99981
7.89890
7.04288

10.58897
8.57333
10.50304

13.58401
15.48578
15.76933

15.16935
19.81150
18.12022

16.78556
12.96389
10.13004
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Appeadix B

Deviation Statistics and Transformed Divergence Separability
Resuits of Training Samples using Spectral and Co-occurreace Texture Data
for the Arboretum and Searchmoat Sites



136

0 0 0 0 896 nN
6C'8 gL 88'¥ 08'I¢ el smopuys
€L'9 2091 1$°9 ILY9 €S sse1)
09'L 9L'¢l 6€TI S0'€0l 8bS jloS
6€'8 ¥9'61 LL'6 L8'L01 b8¢ RIBY PIAYT-ITIN]
8L'L 091 LS9 vo'SL 68€ SS®AL) Julof-Injg
91'CH et SI'L 99'Z8 LLY Ausaqdsey poy
$9'8 ST $S'S $8'78 TS MOt puejd))
vo'Ll ¥8'87 €6°Cl 9L'9L bLY pRdMAIY
6L'8 £5°L1 ws Lv'TL eeh Pndg g
£€'9 €8'LI LE9 96'¢9 %32 Julg yoep
A PIS USIA A s L 2] 0|
pIjduieg spPxIg
NuUBLIBA uousIA paspuelg Jo quiny 13y 1%

VIR MNXI ], UTLIEA PUE UOHBIAN] PIVPUR)S UI0)
NS WNYAIOGAY J0) 5INsHE)S AHdueg Sunnva ],

1-43quL




137

sMopwyg

9666° 1

S8VXH

0000°2¢ 0000°¢ 6666°1 0000°¢
86661 8166°1 619071 y006° 1
021s°1 G666°1 0000°¢

£6G86°1 86661

£066°1

aney

paAve] ssexp XAxzoqdswd MOTTIM
puerdn pesmerry

Trog -ebxwl juyop-enig peoy

BEQ JIMXI], UONWNAX( paepusig pue [rndadg 3ms) sapdwieg Juurws

0000°2

ELT6 1

0000°2

L8661

99¢r "1

9GPE’0

6666°1

Leov 1

0.L66°1

26681

0E8L"0

82€8°1

g8ece 't

6666"1
1STIL°0

0000°¢

8666° 1

S61IL°0

8ISy ' 1

LSBE"T

90L9°1

sonxdg
yowig

IMS Wnoqry Y} 59§ SNIGRILdIS 22uIRIA] pIwaojsura ],

[2: i o LA X

6666°1

[AT] A

0000°¢

6666°1

10SS°T

SSLE'T

860S°1

LYeEs'1

60271

euty
xoup

sMopeyg
ssuxp
{To§
Iy

ssexp
juyor-entg

Kxzeqdsey
pay

MOTTTM
puetdn

posHexty

Xoutd



138

sHopeyg

8666°1 0000°¢ 0000°¢ 0000°¢ 0000°2
9866° 1 2cB6°1 99€0°1 SL06" T
LTT1S'1 5866°1 6666° 1

rece- 1 02661

9¢22¢9°1

ey 8yY

psAwY] ssvxp Axxeqdswy MOTTIM
puerdn pesssary

sselp 1708 -ofizwy juyop-enyd pen

0000°¢

9LEG T

6666°T

29L6°T

L62s°1

800y ‘0

6666°1

GEZS T

b566° 1

vice- 1

L990°1

STOL"'T

8T9L"°1

66661
Sveg’o0
6666° 1

$866°Y

90SS°0

166S°Y

086% T

1 £4: Rl ¢

sonxdg
oIy

iR UMIXI] Rusiivp puk [wapdg Suis;y sopdwmeg Suynyea ],
NS WGy P 50) sajiquandag duaBaaayg pouriojsusa ],

€4 3qvl

6666° 1

086V "1

0000°¢

96661

L69E"X

Leer't

0L9S "1

LoLL'y

PELT T

suryq
youp

SMopRYs
ssexp
1¥o§

Iy

ssexp
jutop-entd

Kxxeqdswy
oy

HOTTTIM
puetdn

sonxdg
yoetd



Table B-4
Training Sample Statistics for Searchmont Site
from Spectral and Standard Deviation Texvure Data

Class Number of Green Red Near IR Standard Deviation
Pixels Sampled

Mean | Std Dev | Mean | Std Dev | Mean | Std Dev | Mean Std Dev
Conifers 464 98.88 13.28 7741 11.49 67.99 12,95 106,18 27.90
Competition 518 94.36 13.28 77.89 8.94 65.16 7.94 106.79 20.79
Soil 472 85.15 10.48 11289 | 1595 9538 13.45 188.05 31.66
Shadow 487 33.63 11.16 32.34 13.96 27.87 11.32 20,69 22.89

Null 451 0 0 0 0 0 0 0 0

6¢l



Table B-§
Transformed Divergence Separabilities for the Searchmont Site
Training Samples Using Spectral and Standard Deviation Data

Conifers Competition Soil
Competition 0.6476
Soil 1.9999 1.9943

Shadow 1.9955 1.9854 1.9654
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Appeadix C

Examples of Thematic Maps obtained from Unsupervised Clustering,
Maximum Likelikood, Neural Network, and Coatext Classification



142

Thematic Map Legend
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Figure C-1
Example of Plot Classification used in determination
of User’s and Producer’s Accuracies

Each coloured polygon indicates a conifer identified by the classification. The colour of
the polygons represeats the unique polygon identification that was assigned and aided in
the accuracy assessment.



Figure C-2
Example Spectral Cluster Map of Arboretum Site
Using Unsupervised Clustering on Spectral
Information Only

Figure C-3

Example Thematic Map of Arboretum Site
Using a Maximum Likelihood Classification on
Spectral Information Only

For Legend please see preceding page
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Figure C-4
Example Thematic Map of Arboretum Site
Using a Neural Network Classification on
Spectral Information Only

Figure C-5
Example Thematic Map of Arboretum Site
Using a Context Classification on
Spectral Information Only

For Legend please see preceding page
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Figure C-6
Neural Network Classification with Spectral and Standard Deviation
Texture Data on the Searchmont Site

Thematic Map Legend

H Conifers

E Soil

- Shadows
D Null

- Competition
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Appendix D

Conifer Counting Error Graphs for alt Classifications expressed in
Percent as a Function of Competition Species and Deasity, and tke
Number of Pixels Defining 2 Seedling Core
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Conifer Counting Error (%) for Maximum Likelihood Classifier with Spectral and Standard Deviation Texture Data as
a Function of Competition Species and Density, and the # of Pixels Defining a Scedling
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Conifer Counting Error

(%) for Context Classifier with Spectral and Standard Deviation Texture Data as a Function of

Competition Species and Density, and the # of Pixels Defining a Seedling
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Appeadix E

Statistical Database used in modelling LAY and Percent
Cover from Image Derived Ixformation
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Variable

SAVI
NDVI
SAVI*
NDVI*
Variance
RVI

LAT
RVI*

% Cover
NIR

Red
Green
Std Dev

Skewness and Kurtosis Values for the
Means of the Image and Field Variables

Kurtosis S.E. Kurt Skewness S.E.

1.60
1.60
.36
.13
-.28
1.34
-.74
.68
-1.50
-.30
.02
.79
.04

Table E-3

.74
.74
.74
.74
.74
.74
.74
.74
.74
.74
.74
.74
.74

-1.01
-1.01
-.52
-.70
~.16
-.90
.58
-.64
.13
-.14
-.04
.17
-.06

Skew

.38
.38
.38
.38
.38
.38
.38
.38
.38
.38
.38
.38
.38
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Variable

NDVI
SAVI
RVI
Variance
LAI
NIR*
Red*
Std Dev*
$ Cover
NIR

Red
Green
Std Dev

Skewness and Kurtosis Valaes for the
Variance of the Image and Field Variables

Kurtosis S.E. Kurt Skewness S.E.

.15
.11
-.24
-.31
-.74
.15
-.30
-.25
-1.50
2.22
1.03
.14
1.29

Table E-4

.74
.74
.74
.74
.74
.74
.74
.74
.74
.74
.74
.74
.74

.33
.32
.17
.14
.58
.21
.20
.17
.13
1.28
1.08
.68
1.15

Skew

.38
.38
.38
.38
.38
.38
.38
.38
.38
.38
.38
.38
.38
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