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Abstract 

One of the major drawbacks of current acoustically-based speech recognizers is 

that their performance deteriorates drasticdy with noise. The focus of this thesis 

is to develop a computer system that perfonns speech recognition based on visual 

information of the speaker. The -tem automatically extracts visual speech fea- 

t u e s  through image processing techniques that operate on facial images taken in a 

normall-iiluminated environment. To cope with the dynamic nature of change in 

speech patterns with respect to rime as well as the spatial variations in the indirid- 

iial patterns. the recognition scheme proposed in this work uses a recurrent neural 

network architecture. By specifying a certain behavior when the network is pre- 

sented with evemplar sequences. the recurrent network is trained with no more than 

feecl-forward cornplexit. The networkk desired behavior is based on characteriziug a 

gïven word by well-defined segments. Adap tive segmentation is employed to segment 

r he training sequences of a given class. This technique iterates the exeecution of two 

steps. First. the sequences are segmented individually. Then. a generalized version 

of dpamic  time warping is used to align the segments of al1 sequences. At each 

iteration. the weights of the distance functions used in the two steps are updated 

in a way that minimizes a segmentation error. The system has been implemented 

and tested on a few words and the results are satisfactory. In particular, the system 

has been able to distinguish between words with common segments. Moreovero it 

tolerates, to a great extent. variable-duration words of the same class. 
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Chapter 1 

Introduction 

Iri recent years. there has been il growing interest in automatic speech recognition. 

The benefits that could be brought by systems capable of understancikg spoken 

ianguage are grear as people would be able to interface with sophisticated machines 

in a natural way without the hassle of pressing complicated sequences of buttons 

or typing cornmands. However. the performance of current speech recognizers is far 

below human abiiity to perceive speech. One of the major drawbacks of acoustic 

systems is rhat their performance deteriorates drasticaily with noise. ;Uso. there is 

the probiem of speaker isolation which occurs when several people talk at  the same 

t h e .  and it is required to ident. the intended speaker. Moreover. the fact that some 

phonemes are very diEicult to distinguish by analyzing the acoustic signai alone poses 

additional limitations to current approaches. 

It is known that hearing-impaired people use lipreading successfully to perceive 

speech in the absence of acoustic information. Surprisingiy. even normal hearing 

people utilize visual information of the speaker's face for speech perception [12]. It 



has been demonstrated. through what is calied the cocktail par ty  effect. that with a 

high background noise it is easier for humans to understand speech when they watch 

the lips of the speaker. 

The performance of machines in speech recognition could improve. too. by pro- 

cessing visual information. This would be particularly useful in the presence of high 

background noise or in the case of crosstalk. It is worth mentioning, in this context. 

that acoustic and visual information complement each other in speech characteri- 

zation. That is. similar phonemes are often easy to diçtinguish visuaiiy. whereas 

utterances which look very similar visuaily can sound quite Merent .  

The focus of this thesis is to develop a cornputer system that performs speech 

recognition based on visiial information of the speaker. -4 speech recognition -tem 

which uses visual information alone would. pro bably. have iimited applications since 

several groups of phonemes appear similar visuall- Nevertheless. there is no doiibt 

that cornbining such a systern with an acoustic speech recognizer would result in 

an improved recognizer which overcomes many of the existing problems in acoustic 

systems. such as the low performance in noisy environments. 

Xeurocomputing is an attractive choice for visual speech recognition (VSR). It 

leads to systerns that autonornously develop operational capabilities in adaptive re- 

sponse to an information environment that is notonousiy difEcult to mode1 using 

conventional methods. The difnculty of VSR can be viewed in light of two main 

aspects of VSR which 1 would like to refer to as the static aspect and the dynamic 



aspect of VSR. 

1. There is a varie- of speakers with different physicd characteristics including 

the shape of lips. jaws and so on. The lips of a certain person are subjecr. to a 

variety of changes in shape as well. 

2. There are a lot of dialects. and there are different ways of uttering a certain 

word. even by the same person. on different occasions. 

Artificial neural networks possess an attractive property which makes t hem suit able 

for dealing with the implications of the static aspect of VSR. This property is the 

ability t~ l e m  a classification task by observing only a limited number of examples. 

Neural networks can also discover distinguishing feat ures in the training patterns 

whiie making weaker assumptions about the shapes of underl-ving distri butions than 

those made b -  traditional statisticai classifiers. This is particularly important if we 

keep in mind the lack of a comprehensive theory of lipreading. Furthermore. neu- 

ral networks are known to be excellent at noise tolerance. which is an indispensable 

recpirement for any practical system. The motivation for exploring recurrent ar- 

chitectures is their potential for dealing tvith the temporal behavior implied by the 

dpamic aspect of VSR. 

While some previotis at tempts at automatic lipreading required human inter- 

vention in obtaining the visual speech signal or making the speaker Wear reflective 

markers on his face, o w  system autornaticaily extracts visual speech features through 



image processing techniques that operate on facial images taken in a normaily illu- 

minated environment and without any need for reflective substances. 

To properly handle the dpamic nature of change in speech patterns tvith respect 

to time as weU as the spatial variations in the individual patterns. the recognition 

scheme proposed in this work uses reciirrent neural networks. Input to the networks 

are sequences of iow-dimensional patterns rather than matrices of pixels. This leadç 

to a smaller architecture in size. and a shorter t h e  for training. 

1.1 Overview of the Systern 

Figure 1.1 shows an o v e ~ e a  of the system in operation. As in most connectionist 

approaches. the system needs to be trained on exemplar sequences. Given a set of 

image secluences corresponding to some word class. the system is trained as shoan 

in Figure 1.2. 

1.2 Organization of the Thesis 

Chspter 2 surveys methods for locating the mouth in digital images! methods for 

extracting mouth features. techniques for mouth modeling, previouç lipreading sys- 

terns. and neural networks. Chapter 3 presents the method by which the speaker's 

mouth is automatically locatsd in the input images. Chapter 4 descnbes the algo- 

n t h m ~  developed to estimate the mouth characteristics that are used to initialize a 

mouth defomable template. Chapter 5 is devoted to the application of deformable 

templates in extracting the shape of the mouth and tracking its rnovement during 

4 
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Figure 1.1: Overview of the visual speech recognition system. 
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Figure 1.2: Overview of the process for training the recognition system. 



speech. Chapter 6 contains a method to segment a visual speech signal. representing 

a word instance. into visual speech units. A technique to refine the resulting seg- 

mentation by aligning instances of the same word is described. Then. the idea of 

adaptiue segmentation is introduced with a proposed implementation for the case of 

h e a r  distance functions. In Chapter 1. a recurrent neural network for word recogni- 

tion is presented. An efficient way for training the recurrent network based on visual 

word segmentation is proposed. Chapter 8 contains the main conclusions. simidation 

resrdts and directions for future research. 



Chapter 2 

Survey 

2.1 Methods to Locate the Mouth 

Locatinp the mouth automaticaii~ has been a concern in the areas of lipreading. 

face recognition. and speech-assisted video processing. in general. a cornputer sus- 

tem designed for this purpose consists of two main steps. First. an input image is 

preprocessed and a new representation is obtained. The preprocessing step not only 

aims at reducing the amoiuit of information involved in subsequent operations. but 

also. and perhaps more importami- directs the search toward interesting regions of 

the image. The second step. basicaliy identifies the region containhg the mouth by 

searching for some characteristics associated with it . The characteristics could be 

particdar to the appearance of the mouth only. or couid be derived from knowledge 

about the face context as weli. Thus' the seaxh m a -  involve other facial features in 

addition. or instead of. the mouth. 

One of the first artempts to locate facial features automatically was documented 

by Baron [2]. He proposed locating facial featiues by correlation. To locate a feature. 



a set of featwe rnasks stored in a database were correlated against each subimage 

of the input. and the desired location was selected at the subimage with the highest 

correlation. Although the reported results were good, the system is expected to hzve 

been highly sensitive to lightîng conditions. This is mainly due to the fact that 

raw grey %ale pkels were iised instead of some representation that tolerates slight 

changes in intensity- In addition. the method is computationally expensive due to 

its e,uhaustive nature. and sensitive to s c a h g  and rotation. 

Prasad et al. [53] [E!] impiemented a system which detects a region of interest 

containhg the mouth. They proposed two approaches: the k t  starts by obtaining 

a bina- edge image. and is foiiowed by blob detection. The blobs corresponding 

CO the eyes and mouth can be found. next. by locating three blobs whose centroids 

form â triangle on which certain constraints apply In the second approach. temporal 

coherence between consecut ive image frames is used. This alternative approach. 

however. assumes that the only change in the image kames is in the Lips positions. 

If this is nat the case. then the approach is expected to fail. 

Craw. Ellis and Lishman [18] described software that makes facial feature mea- 

siirement S. Their preprocessing is based on extract ing edge information. In addition 

to calçulatirig edge magnitudes by a Sobel filter. edge directions are obtained by the 

same way described by Keiiy 1351. After preprocessing, the basic search technique 

iised is iine following. At each p~uel in a central vertical line, a search for outlines 

of the upper and iower lips is carried on. A lip is detected if the vertical separation 



between the upper and lower lips is within a reasonable range. and the extracted 

lip combination fits into a long thin box. One drawback of this method is that the 

criteria selected to identifj a lip contour could be. possibly matched by contours 

near to the lips such as a mustache and wrinkles. -Uso. this method does not make 

use of the relative magnitude of edges associated Nith the different lines in the search 

space. 

Huang and Chen (311 ernploy thresholding for the preprocessing. -1 scale space 

filter (SSF) is used to determine the zero-crossings of the intensity histogram at 

ciifferent scales. and a set of thresholds is determined accordingly. After thresholding. 

a rough contour estimation routine (RCER) operates on the image. The location of 

the mouth cornes after a sequence of estimations in which a particular feature is 

estimated based on a previous one. 

hlorphological operations j4-1 can also be tised for preprocessing. Chow and Li 

[loi apply a morphoIogical opening residue operation to extract all intensity valieys 

using a çircle mask. Similarly Chen. Graf and Wang [14] [23] perform a morphological 

operation to pi& out areas with strong variations in intensity. The detected pixels 

in the residt are assembled into distinct regions which are. in tuni' grouped into 

plausible face comexts. Then. an evaluation measure is used to rank the possible 

face contests. Chow and Li proposed a control strategy in which the face context 

with the highest rank would be verified in a later stage. However. they did not 

provide a good qualitative measure to indicate failure of hypothesized contexts. 



Kanade [33] incorporated an interesthg control strategy in his system which seeks 

extraction of facial feattires. There is a similarity between his approach and that used 

by Chow and Li in the concept of feedback. However, no attempt is made by Kanade 

to evaluate full face contexts within a single level. instead. the final face context is 

reached by a sequence of operations in separate levels. In each level. a procediire 

locates a set of features. and these are used in a subsequent level to specify the 

search space for another set of featiues. At the end of each block. its performance is 

evaluated and accordingly a decision is made whether to proceed to the next block 

or to backtrack if a failure occurs. Preprocessing consists of applying a Laplacian 

operator followed by thresnolding. The fundamental technique used to conduct the 

actual search is the in tegral projectaon technique. 

Inspired by the intuitive notion of s)?nmetry. Reisfeld. Holfkon. and Yeshunin 

[ s i ]  proposed a low-level operaror that performs local processing on the edges of an 

image. and assigns a continuous symmetry mesure. consisting of magnitude and 

orientation. to every point. in a recent work by Intrator. Reisfeld. and késhurun 

[321. this symmet ry  operacor is used to preprocess the image of a human face. The 

candidates for the eyes and mouth are obtained from the highest peaks of the mdial 

symmetry rnap. 

Yacoob and David [74] locate the mouth as part of their compreliensive approach 

to labeling human face components. The input to their system is range data which 

has the advantage of reflecting topographie features of faces, and is. to a great eutent. 



insensitive to iüuminatioii conditions and projective transformations. To cope with 

che nonrigidity of faces. Yacoob and David propose a preprocessing stage which 

employs a rnultistage diffusion procedure. The diffusion procedure simulates the 

propagation of a nurnber of particles among object voxels. The output is an image 

in which larger values correspond to more convex surface points. The connected 

components in this representation are identified. Then. context-based reasoning. in 

the form of a consistency operator. is used to label the components. 

2.2 Methods to Extract Mouth Features 

Prasad et al. [53] [72] examine two grey scaie profles within a region of interest 

(ROI) containing the mouth: the fkst profile is along a vertical central line and the 

position of the lowest valley in this profile is used to estimate the vertical position of 

the mouth centroid. The grey level d u e  of the same valleu is used to indicate the 

presence or absence of the tongue. The peaks adjacent to the mouth centroid valley 

correspond to the upper and lower lips and their linear separation is used to estimate 

the height of the mouth opening. Presence of teeth is indicated by the grey level 

value of the peaks. From the second grey level profile, which is along a horizontal 

centrai line. the nidth of the mouth opening is estimated from the iinear separation 

benveen the peaks adjacent to the lowesr v d e y  in this profile. 

In their procedures, Prasad et al. assume that the central horizontal and vertical 

h e s  always intersect with the mouth. While tbis assumption is reasonable for the 



vertical line as the width of the mouth is about 80% of the width of the ROI (so an 

exact centralization is not necessq  for the intersection to occur), this may not be 

the case for the horizontal line. Verticaily. the mouth extension is less than 25% of 

the ROI. and since there is no guarantee that the mouth will be exactly centered in 

the ROI. there is a chance that the intersection tvill not occur. In this case or even 

when the line iotersects euclusively with one of the lips. the estimated value obtained 

for the width of the mouth opening is not reiiable. 

Coianiz. Terrasani. and Caprile [16] use chrominance analysis to locate a set of 

featiue points acting as constraints on the shape of the mouth. The input to their 

system is a fked lower part of a person's face image. The onginal image is. first, 

preprocessed by filtering the hue component with a weight hinction that emphasizes 

red dominant regions and thk is followed by thesholding with a value that can 

be determined ernpiricaiiy. Then. the spatial distribution of the pixels is analyzed 

to determine the center of the distribution. and its horizontal and vertical standard 

deviations. These measurements are used to bound the mouth in a rectangular region. 

Within this rectangle. the mout h vertices (corners) are localized by O btaining a bina- 

gradient image fiom grey level information. The binary gradient image is projected 

on the horizontal a*. and the x-coordinates of the vertices are dehed  as the most 

external non-nuli points in this projection. The y-coordinate of a vertex is determined 

by examining the projection of a vertical s tnpe around the vertex onto the 

axis. The distribution center of the projection is taken as the y-coordinate. 

vertical 



Once the vertices are deterrnined. the mouth vertical symmetry axis can be cor- 

rectly Localized. The hue-filtered values in a thin box around this avis are projected 

ont0 the vertical auis by adding the values at each row. By analyzing this disîiibii- 

tien. the apices. which are the points where the extemal and intemal boundaries of 

the upper and lower lips intersect the vertical symmetry axis. can be determined. If 

the distribution has a single peak. the mouth is considered closed and the interna1 

points merge in a single point 1yhg on the segment joining the two corners. The 

external points are located at  the rows having 70% of the peak value. if the mouth 

is open. nvo pe& which correspond to the upper and lower lips are eqected. and 

the four points are obtained by cutting each peak at 70% of its value. 

This çolor-based system has the adt-antage of being l e s  sensitive to shadows than 

are grqv level-based methods. However. there are cases that m a -  pose a cbailenge 

to this approach. For example. exkence of reddish facial hair such as a beard or 

mustache dl. &el- confuse the system by emphasizing other facial parts in addition 

to the lips. In other cases. the appearance of the lips' natural color may be modified 

through the use of lipsticks with different colors such as pi& or beige. 

Chen. Graf and. Wang [14] 1231 attempt to find the same features that Coianiz 

et al. extract. but their approach is different. First. the inner part of the mouth 

is rnarked iising connected component andysis. The resulting connected blob is 

compared with a Library of prototypes to make a qualitative judgement about the 

shape of the mouth. Possible shapes include open mouth, closed mouth, and visible 



teeth. The width-to-height ratio cf the blob, as weil as the number of transitions 

from black to white in a central vertical cross section. are uçed in the cornparison. 

From the previous information. the center of the mouth is estirnated and several 

vertical cross sections through the lips are analyzed to measure the types of intensity 

variations that are present across the lips. The measured intensities are compared 

with 15 prototypes which are distinguished on the basis of the number of maxima 

and their relative positions. and the closest prototype is selected. Each prototype is 

associated with a strategy for £inding the edges of the lips. The strategies were made 

different to handle different cases of illumination and contrast betrveen the lips and 

the surrounding skin. 

Rao and Mersereau 1561 search for a set of points iying on the top of the upper lip 

and the lower lip. The vertical position of the center of the rnouth is determined by 

examining the sum of intensity valiies in each row and selecting the row which has 

the minimum value of the distribution. The piveis in the previously selected row are 

analyzed to find out the horizontal extremities of the mouth. For this purpose. the 

average of the maximum and minimum values in this row is selected as a threshold 

and the leftmost and rightmost pixels with values under this threshold are defmed to 

be the corners. Finally three intermediate equally diçtanced columns are analyzed 

and two points in each colurnn are identified by peak picking, one on the top of the 

upper lip and the other in the middle of the lower lip. 



2.3 Methods to Mode1 the Mouth 

2.3.1 Active Contour Models (Snakes) 

-1 snake [43] is a mode1 to represent contours in images. It consists of a set of Iabeled 

points and an energy fimction designed to take minimum \dues when the points 

match some object's boundary. in general. there are three terms that contribute to 

the energy of a snake: intemal energy. image energl and constraints. 

Properties pmicular to  the shape of the spline obtained by Linking consecutive 

points are controlled by the interna1 energ- These properties include continuit- and 

ctirvature. and are usually controiied by the h s t  and second derivatives at each point. 

On the other hand. the image energv attracts the snake toward features like lines and 

edges. The constraints represent the energy of a spring connected benveen a point 

on the contour and some point in the plane. 

I.iass et al. [43] have proposed miniminng the energy b c t i o n  by means of vari- 

ational calcrilus techniques. Alt hough the computational requirements of this a p  

proach are linear. some related problems. as pointed out by -\mini et al. [II! are 

instability and a tendency for points to bunch up on strong portions of an edge. 

To overcome these problems. .knini et al. [I] have proposed a tirne-delayed discrete 

dynamic programming algorithm. This approach provides necessq and s a c i e n t  

conditions for the optimality of the solution and has the advantage that hard con- 



straints. in addition to the soft constraints inherited in the original formdation. can 

be included. However. the method is reiatively slow. Williams and Shah [70] suggest 

a greedp algorithm which is much faster. Their approach. however. does not guar- 

antee a global minimum. but Williams et al. argue that the results obtained by the 

geedy aigorithm are comparable to those of the dynamic programming algorithm. 

The original model developed by Iiass e t  al. [43] c m  be descnbed as knowledge- 

free. Bregler et al. [6] ['il [8] report that this kind of snake model sometimes relaxes 

on undesirable features. In their investigation. they show a iipsnake relaxhg on 

the contour of the nostrils region. To Mprove the model. they propose analyzing a 

large set of possible suake shapes. The process. c d e d  surface learning [?]. induces 

a low-dimensional subspace from the high-dimensional data. The internai energy. 

in this case, can be replaced by the nearest distance to the leamed surface of legal 

shapes. This modified model can be categorized as a link between the active contour 

model and the active shape model. 

2.3.2 Active Shape Models 

Active shape models (;\SMs)[lï] are statistically-based flexible models which repre- 

sent objects by sets of labeled points. Though similar to the snakes of Kass et al. 

ASlls make no heuristic assumptions about iegal shape deformation. Instead. legal 

deformation is obtaked by applyine principal components analysis on a normalized 

training set. The purpose is to derive a point distribution model which describes the 

average shape and the main modes of variation. Xnother important dinerence is that, 
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rather than assuming the points should lie on strong edges and searching for such 

in an image. the ISbl  approach assumes that grey level patterns about a particdar 

point in images of different examples wili often be similar. Accordingly principal 

components andysis is used to produce a statistical mode1 of the allonrable variation 

in one-dimensional profiles normal to the c w e  at each point. Luettin. Thacker. and 

Beet [.LI] rnodified this by concatenating the pronles of all mode1 points to produce 

a global profile for each training image. 

Cootes: HU. Taylor. and Haslam [17] propose an iterative method to guide the 

search in r\SMs. At each iteration. a region around every point is =amined and the 

displacement required to move the point ro a better location is calculated. Next. the 

model parameters are iipdated according to the previous displacements. but hmits 

on the parameters are enforced to ensure that the shape remains sirnilar to that of 

the training set . 

2.3.3 Deformable Templates 

A defomable template [i7] (761 is a geometnc model associated with an energy func- 

tion that measures how weil the mociel matches a particdar abject in an image. 

The template is made up of geometric primitives linked in a certain mariner. -1 

geometric primitive could be any ciwe described by a mathematical formula. This 

has the advantage of a compact representation in terms of the parameters of the 

curves involved. and gives the model the flexibility of deformation to a wide variety 

of shapes by chariging the parameter values. Undesirable parameter configurations 
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can be discouraged by adding penalty terms to the energy function. To account for 

the rotation the object to be extracted may undergo. it is sometimes u s e N  to have 

a parameter for the orientation of the model. in addition to the origin of th? iiiûde17s 

coordinate system. 

The energy function can be thought of as the link between the geometric model 

and the image. as it enables the necessary interaction to attracr. the template to 

salient features of the image. such as edges. peaks. and vaiieys of the intensity. 

Typically. the contribution of each cuve to the energy is expressed as the integral of 

an image potentid field along the cuve. Sometimes. properties of pixels in a closed 

region are reflected by the integral of the image field as it relates to that property 

over the closed region- 

Finding the best parameter values chat would make the template fit into the 

image is equivalent to optimizing the energy fiuiction. Yumerical optimization tech- 

niques which don't guarantee a global optimum solution are the most comrnonlp used 

for this task. The- have the advantage that a good solution is generaily obtained 

with considerably less computatiorial and storage requirernents than those of a more 

exhaustive method. Yuille et al. 1771 have used steepest descent of the energy function 

in parameter space. At each iteration. every parameter is updated by the negative 

of the partial derivative of the function with respect to that parameter. However. 

the calciilation of partial derivatives at every point is an exhaustive task. Simulated 

annealing can aiso be iised in a similar way to that reported in [19]. It is based on 



random samphg and no partial derivatives are involved. However. a relative- large 

sample size is needed. Chow and Li  [l5] have adapted the domhill  simplex method 

proposed by Selder and Mead [47] with some modifications which include randomiz- 

ing the initial simplex configuration to ensure that a good sample is achieved over the 

entire search space. Coianiz et al. [161 have used a stochastic optimization algorithm 

descnbed by Caprile and Girosi [13]. -Xie e t  al. [ï3] have employed the L-.LI method 

of Lavenberg and Marquardt (611. 

Regarding the selection of the coefficients for the energy function terms. experi- 

rnentation is usiially useci. In the absence of a solid theoretical basis that explains the 

dinerent interactions7 heuristics seem t O provide a practical m e c h d m  for assigning 

initial values. Then. h e  tuning is done b -  adjusting certain coefficients individuaiiy 

while k i n g  the others. The extent to which the selection of suitable coefficients may 

affect general performance is not well known. This issue is further complicated by 

imcertainties concerning other design decisions involved in the deformable template 

model. such as the image potential fields used. the energy function t e m s  chosen. and 

the optimization cechnique employed. 

2.4 Previous Speechreading Systems 

Ytlhas. Goldstein. Sejnonrski and Jenkins [75] trained a multi-layer feedfonvard neural 

network on static images of mouth shapes for vowel recognition. The neural network 

was not trained to c l a s s e  the images directk buc rather to estimate the short- 



t e r m  spectral amplitude envelope (STS AE) of the acoustic signal. The estimated 

STSAE was combined with the power spectrum of the noise-degraded audio signal. 

and the result was presented to another neural network classifier. Several strategies 

for combining the two signais were explored inciuding the average. weighted average. 

and a-rr neural networks. It is clear that the applicability of this system was very 

Limired because it was not designeci to deal with tempordy changing patterns. 

Mase and Pentland [.Ml employed optical flow methods to estimate mouth opening 

and elongation velocities. -1 standard minimum distance classifier was used to match 

test ut terances mit h previously-stored templates. after applying h e a r  thne wuping. 

Stork. Wolff and Levine [64] used a tirne delay neural network to reçognize ten 

conso~ants from sequences of visuai features. These features were detected aut omati- 

cally. but required rhat the speaker wears reflective markers around his or her mouth. 

Wolff. Prasad. Stork and Hemecke [72] built upon this recognizer. and replaced the 

requirement of the reflective substance by preprocessing algont hms t hat extracted 

features from grey level images. 

Perajan (511 extracted mcuth opening features fiom each Mage in a seqiience 

of images using a simple thresholding technique. then employed linear time warping 

to match the extracted sequence with exempiar sequences. The linear time warping 

algorithm allowed only for simple dilation and contraction of tirne, which do not 

account for all natural speech variations (621. Brooke and Petajan [10]: in a different 

work. modined the previous s-tem by using dynamic t h e  warping for matching. In 



both systems. there was a problem in the method used to isolate the mouth opening. 

It is unlikely that the threshold that worked for a particdar speaker would work for 

others. especially with variations in skin darkness and presence or absence of facial 

hair . 

Coldschen. Garcia and Petajan (221 described an optical speech recognizer that 

used information from the oral cavity shadow of a speaker's mouth. They did not 

mention. however. how they located and extracted the oral cavity region. During 

training, principal component analysis was performed on seven static oral-cavity 

featiires (area. width. height. romding, perirneter. number of connected regions in a 

component frame. and number of regions in a binary image frame). their first and 

second derivatives with respect to t h e .  and the magnitude of those derivatives. This 

resulted in thirteen features to be considered. In operation. the processing started 

by converting a sequence of oral cavity regions to a sequence of the thirteen features. 

This latter sequence was. in t um. transformed to a sequence of codevectors using the 

Euclidean distance. Recognition !vas clone. next . by hidden .Llarkov modeling . 

In his visual speech recognizer. hlovelian (441 took the approach of p r e s e ~ n g  rhe 

original images and let ting the recognition engine discover relevant features. He iised 

secluences of processed mouth images. These were composites of portions korn dif- 

ferenr representations o btained by symmetry enforcement. temporal differentiation, 

su bsampling 

independent 

and logistic thresholding. These images were modeled as mixtures of 

Gaussian distributions and the temporal dependencies were captured 



with standard hidden hlarkov models. An obvious disadvantage in such a recognizer 

is the size of the input data; 300 pixels for each image in the input sequence. 

Li. Dettmer and Shah [38] proposed eigensequences for lipreading. They used 

the spatiotemporai eigen decomposition. in which the set of eigenveccors spans the 

space of ail possible sequences. Gray level d u e s  of ail the p~uels in all kames 

representing a spoken letter were put in one vector. Several of those training vectors 

that corresponded to a certain c l as  were used to compute the eigenvectors of that 

class. Recognition was performed by computing the energy ratio when the sequence 

to be recognized was projected on the mode1 eigenspace for each class. In such a 

scenario. a certain class was supposed to have a high energv ratio when presented 

with a correct instance. 

Kirby. Weisser and Dangelmay [36] coded a mouth image into a vector of Q 

coefficients computed with respect to the set of Q eigen images determined during 

training as the basis for the space of mouth images. A certain word of P images was. 

accordingly. represented by a Q x P matrix -1 ternplate-matching technique based 

on the Euclidean distance rvas used to i d e n t e  the words. 

Bregler and Konig [8] combined both acoustic and visuai data. The visual data 

consisted of the first ten principal components of a grey level matriv centered arotmd 

the lips (eigenlips) . The data was fed to a multi-layer feedfonvard neural network in 

order to estimate the probability of a certain phone. given the acoustic and visiial 

data ar each time instance. The probabilities were used by an HMM-based system to 



recognize German letters. The grey level matrix coding was invariant against shifting 

and scaling, but not lighting. Bregier and Konig found that the first principal grey 

level axis represented variations in lighting. In general, there is no guarantee thst 

the kst ten principal components correspond to the ten most relevant features of 

visual speech dynamics. 

Finn and Montgomery (211 investigated optical recognition of English consonants 

in a vowei-consonant-vowel (VCV) context. Twelve reflective dots were placed around 

the t alker 's  rnout h. and fourt een distance measurernent s were manually derived from 

the dot positions in each frarne recorded at the rate of thirty per second. The resulting 

seqiience of measurements \vas matched against training sequences iising a weighted 

Euclidea. distance metric. 

Silsbee [62] developed a visual processor which used a modified form of vector 

quantization. Each mouth image of a sequence was mapped into the codevector which 

minimized a "distance" rneasure. The distance  vas computed by h s t  hd ing  a best 

dignment benveen the codevector and the image to be classified. then calcularing the 

total absolute pkel-by-pixel ciifference benveen the wo. However, thk  is not a tme 

distance in the mathematical seme. The triangle inequaiity. for example. does not 

riecessanly hold for this quanti@ One of the consequences of this property was that 

standard vector quantization training techniques would not have been appropriate 

to generate the codevectors automatically. So. the codevectors were chosen by hand 

from the training data. The last phase of Silsbee's lipreading system was based on 



hidden 4larkov models. The major dranrback of this system was its inherent speaker 

dependence due to the fact that it was based on a direct match benveen images rather 

t han higher level represent ations. 

hlaqv of the systems described here were not M y  automatic. Any practical 

system should avoid human intervention as much as possible. Putting a reflective 

material on the user's face. and extracting visual fea tures fiom images by hand are 

both clear violations of this principle. 

A great deal of attention should be directed toward time handling. In many 

past systems. time duration was fx~ed and the individual frames tn speech events 

were concatenated and the result was simply viewed as static patterns. However. 

lipreading is fa r  more complex than static pattern recognition due to the fact that 

time plays a crucial role in speech redization. If cime and space are treated eclually. 

the operation will not be accurately represented. The dpamic  nature of change 

in patterns with respect to tirne. ahich is the main characterization of lipreading. 

should be heady  emphasized. 

2.5 Neural Networks 

An artscia1 neural netvork is a collection of parallel processors cormected together in 

the form of a directed graph, organized such that the network structure lends itself to 

the problem being considered [20]. Historicdly. much of the inspiration for the field 

came korn the desire to produce artificial spstems capable of intelligent computations 



similar to those performed by the human brain. 

Artificial neural networks have a great potential for parallelism. since the com- 

putations of the components are largely independent of each other. Besides the high 

computation rates provided by the massive parallelism. neural networks cari provide 

a greater degree of robustness than do traditional sequential computew. One of the 

most attractive features of neural networks is generalization. This enables a mode1 

to function competently throughout the pattern space. even though it has learned 

from obsenring only a lirnited body of examples. 

2.5.1 Multi-Layer Feed-Forward Neural Networks 

-1 rnulti-layer feed-forward network can be viewed as a structure of several layers on 

top of each other. At the lowest level. there is an input layer. Then. there may be one 

or more hidden layers and. at  the highest level. an output Iayer. The only connection 

aiiowed is the feed-fonvard connection from one layer to the Iayer irnrnediarely on 

top of it. This kind of architecture is especial- u s e N  for static classification tasks 

since it has the capability of approximating not only any continuous map arbitranly 

ciosely. but also the denvatives of such a map. 

The basic operation of each hidden or output node is to map the weighted sum 

of otitputs from the previous layer. according to an activation fmction such as the 

logistic or Gaussian function. The importance of activation hinctions is that they 

introdiice nonlinearity into the network, without which the network would not be 

any more powerful than a plain perceptron (linear classifier). 
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Typically. the backpropagation algorithm [58] (generalized d-rule) is used to train 

feed-forward ne tworks. According to t his dgorit hm. the network is init ialized wit h 

s m d  random weights. then all training data is presented repeatedly to the network. 

Weights are adjusted after eveqi triai. in order to minimis!e a function of the error 

benveen the actiial output produced b -  the network and a desired output. 

One of the main pro blems concerning feed-forward networks trained by backprop 

agation is the slow convergence during training. h o t h e r  problem is the lack of a 

solid theory to guide the user in determining the size of the network (number of 

hidden Iayers and number of nodes in each hidden layer) for a specific application. 

2.5.2 The Hopfield Network 

In this architecture. the nodes are organized as a fdy-connected layer where every 

riode receives stimiilris from ail others. The weight rnatriv is sym.metriç. nieaning 

that the weights on the connections between nvo nodes are equd in both directions. 

The nodes also receive an external input. The d u e s  of the nodes at any given time 

define the state of the network and this state changes until a stable configuration is 

reached. The current state is calculated hom the previous one asynchronously. That 

is. a node is picked randomiy and its value is updated. 

The convergence of the neuronal state of the Hopfield rnodel to its stable states 

is based on the existence of an energy function (Liapunov function) which directs 

the flow in state space. Such a function depends on the current state as well a s  

the weight matrix. To guarantee convergence, the weights must be designed such 
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that any update in the network's state will decrease the energy or at least keep ic 

unchanged. In cases where the network is supposed to act as a content-addressable 

memory. the weight matrix is calculated by taking the outer product of each vector 

to be stored in the network with itselt Then. ail the resulting outer products are 

superimposed on one other. 

The original Hopfield mode1 \vas binary [28] but has been evtended to a continuous 

model by incorporating some results hem neurobiology r29]. The continuous Hopfield 

model can be applied to optimization problems which are NP-complete [30]. In 

such cases. a suitable representation for the problem that corresponds to a Hopfield 

network shotild be found. Then. the network's energy function is designed in a 

way which reflects the constraints of the optimization problem so that the network 

stabilizes on a class of good solutions depending on its initial configuration. 

in practice. the Hopfield network has several lirnit ations. The associative memory 

has a limited capacity. uneven r e c d  ability and recali of spurious States. For opti- 

mization problems. the approach tends to work on examples from a limited domain. 

Severtheless. the Hopfield rnodei provides an excellent demonstration of hom practi- 

cal problems that are tremendously difficult can be attacked by neural networks. in 

particdar. it can be used to model some temporal phenornena. Tank and Hopfield 

[65] discuss tasks similar to those of recognition of words in a continuous Stream of 

speech. 



2.5.3 The Time Delay Neural Network (TDNN) 

This architecture is a modification of the standard multi-layer feed-forward network 

developed to deal nrith patterns that are presented in parts over a period of time [6i] 

1371. The basic unit in the TDNN is modified by introducing time delays. The inputs 

to such a unit are multiplied by several sets of weights. one for each delayed input and 

one for the undelayed input. To train the TDNS. the backpropagation procedure is 

applied to patterns that are stepped through t h e .  Each collection of TDNS units 

is dupiicated for each one hame shift in time. The weights of the corresponding 

connections in the time shifted copies are constrained to be the same. This way. the 

network is forced to  apply the same set of featiue detectors to every slice of the input. 

which makes the abstractions learned by the network invariant under translation in 

time. However. the TDSN architecture is not capable of modeling words that consist 

of multiple phonemes. 

.A rnulti-state time delay neural network (MS-TDNS) 1251 [24] has been proposed 

to extend the TDNN mode1 to a word-level classifier. The MSTDWN incorporates 

dpamic programming into its training, so that the ernbedded time alignment allows 

training with word-level esternal supervision. Another interesthg extension of the 

TDNN is the Meta-Pi network 1251, which has been designed to improve the TDiW's 

performance in the context of multi-speaker phoneme recognition. The Meta-Pi archi- 

tecture comprises a number of TDNNs trained independently on particular speakers. 
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When the speech of an unknonrn speaker is presented. the Meta-Pi network cornputes 

its global output using a combination of the outputs of the individual sub-networks. 

2.5.4 Recurrent Neural Networks 

A recurrent neural network contains at least one unit with the special property that 

its ciment input depends on the unit's output at  an eariier t h e .  This properrp 

ailows the network to keep information about past inputs for an amount of tirne that 

is not fiued a priori. but rather depends on its weights and the input [3]. Recurrent 

networks have not been used as eutensively as feed-forward networks becausr they 

seern more dïfficult to analyze and train optimdy. lievertheles. they have important 

capabilities not foiuid in feed-forward netwc~rks. includùig attractor dpamics and the 

ability to deal with temporal behavior through their own natural operation. 

Severai algonthms have been proposed for training recurrent networks. In the 

backpropagation-through-time algorithm [SB] [68] (691. the recurrent nenvork to be 

trained is unfolded into a multi-layer feed-fonvard network that grows by one layer 

on each cime instance. Then. the backpropagation procedure is applied in its usud 

form except that the correspondhg weights at each layer (or t h e  instance) are 

constrained to be equal. The advantage of this algorithm is its generality in deaiing 

114th recurrent networks of any form. .A major problem, however. is its growing 

rnemory requirernents when given an arbitrarily long training sequence. 

Another algorithm [il],  called fonuard propagation has been derived to train 

unconstrained neural networks in a tempoml svpervised learning task. which means 
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chat certain of the units' output values are to match specified target values at  specified 

t-. The algorithm avoids storing the complete sequence of network activations 

by computing recurjively and keeping in merno- during a regular fortvard pass. 

partial derivatives which indicate how each weight of the network idluences each 

unit's activation. The strong point of this method is that it can be applied in an 

on-line fashion since d the computations involved can be carried out fortvard in 

t h e .  However. it iç computationally eupensive. A variant of this method has been 

experimented Nith. by Williams and Zipser [II]. which incorporates a technique c a e d  

teacher-forced learning. According to this technique. the actual output of a unit is 

replaced the teacher signal whenever such a value e-xists. Williams and Zipser [il] 

report that teacher-forced learning reduced radicdy training time for their recurrent 

networks- 

Other training algonthms have been descrïbed [52] [3] [45] [46] [66].  some of which 

are constrained forms of the backpropagation-through-time or fonvard propagation 

algorithms. In particular. the recurrent backpropagation algorithm [52] is a special 

case of the backpropagation- through-cime when the network's input is held constant 

over time and the network is assumed to relax on a stable Fzpoint [5O]. The back- 

propagation for  sequenees ( B P S )  algorithm (31 &O called focused backpmpagation 

[45]. is somewhat related to the fonvard propagation when the recurrent architec- 

ture is constrained to have units with a single feedback to themselves arïd incornhg 

connections hom the input layer. 



The methods rnentioned above are based on computing the gradient of an enor 

function with respect to the weights of the network. Ln a recent study. Bengio et al. [5] 

conclude t hat training recurrent networks wit h such met hods becornes increasingly 

inefficient when the temporal span of the dependencies to be learned increases. 

Obviously. the existing algonthms to direct- train recurrent networks s d e r  

m d y  from ttvo problems. First . the computational complexity associated wi th 

them is usually much higher than that of feed-ionvard training a l g o r i t h .  Second. 

there has not been sufficient evidence. from a theoretical point of view. that a M y  

recurrent network benefits fiom any of the recurrent algonthms. Ir is possible that 

the recurrent methods malce the network settle on suboptimd solutions that take 

inro arcount short-term rather than long-term dependencies as pointed out in [A]. 

Oliirotimi [48] presents a general fremework for training recurrent neworks which 

avoids both problems to a great extent. His framework. emphasizes the importance 

of retrieving the state variables of the system being modeled. If rhese state vari- 

ables are not retrievable from the output observations. there iç simply not enough 

information to mode1 the system by a- technique. On the other hand. if a reason- 

able state representation can be constructed, the weights of a M y  recurrent network 

can be Learned using an exact transformation that reveais an embedded feed-fonvard 

structure in the recurrent architecture. 



Chapter 3 

Locating the Mouth 

Ln this chapter. a rnethod for automatically locating a speaker's mouth is presented. 

The method consists of three main steps: preprocessing. iocating the eyes. and Locat- 

ing the mouth. The input to the systern is a gre-level image of a person's face. The 

cornputations involved do not aim to h d  the exact pixels pertalning to the mouth. 

Lnstead. a rectangular region. containing the mouth and possibly part of the nose 

and chin. is found. 

3.1 Preprocessing: 
Edge Detection and Thresholding 

Preprocessing is employed to convert the gre-level image to an edge representation. 

When compared to raw grey levels. edges are far less sensitive to lighting; &o. they 

convey valuable information about boundaries between different regions. 

The required task is specific to face processing, and a special-purpose detector 

that c m  be implemented efficiently is used. The following operator. basicaily a 

Laplacian operator. has been reported, in the literature 1331, to work successfdly in 



line extraction from hiunan faces. 

The original gey-level Mage g(i. j) is convolved with the above mask m ( k .  1 ) .  

-4 5 k .  1 5 1. and an edge image e(i. j )  is produced. where each pixel in the new 

representation is calc~dated ils 

The effectiveness of the operator is iliustraced by Figure 3.1. The binary image it 

produced from the original identifies the eyes weii. and it seems to not be particularly 

sensitive to facial hair affecting outlining of the mouth segment. This operator has 

m q  advantages [33]: 

1. It combines dinerential operation with averaging in a single step. 

2. It highlights basic featiires of the human face such as the head outline, eyes 

and mouth. 



Figure 3.1: Onginal image. and its binary edge image produced using the Laplacian 
operator of Equation (3.1). 

:3. It eliminates most irrelevant details and noise. 

The pinpose is to produce a bina- image on which a search for the location of the 

eyes is performed. The strategy pursued for determining the threshold value relies 

on experimentation. E.qeriments have shown rhat a value of 200 for the threshold 

produces a binary edge image b(i. j) that successfully suits the method of locating 

the eyes. 

3.2 Locating the Eyes 

Although not relevant to speech processing: the eyes are located so that the' can 

be iised as a reference point to locate the mouth. This process has been somewhat 

problernatic. Kanade [33] was able to locate facial features through his pioneering 

work in the field. The fundamental technique used in his system the integral 

projection technique. By piacing a dit, be it horizontal or vertical, and analyzing 

the distribution of pixels dong either direction, Kanade was able to locate the top of 
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the head. then the sides of the face. This \vas foilowed by locating the nose. rnouth. 

chin. chin contourt cheeks, md finally the eyes. In my approach, however. there is 

no need to locate facial features other than the eyes. 

The method used here is derived fiom an interesting property of the binary edge 

image b ( i .  j). O 5 i < .V - 1. O 4 1 5 .Cl - 1. where .V is the number of rows 

and -LI is the number of columns in the input image. This property d o w s  for the 

simpiification of the method used by Kanade. Instead of anaiyzing the distriburion 

of pixels in a dit. a simple computation that maps the slit to a quantity relevant to 

locating the eyes is performed. 

Let h be a value approximately equal to the height of the eyes and the eyebrows. 

This value can be detennined using o priori knowledge of the speaker's head size. 

The approach taken here is to LY an index representing the ratio between the height 

of the eyes region and the height of the head. at a value that has proven to give good 

approximations when applied to a varie@ of people. If the height of rhe head in 

the input is elcpected to be highly variable due to a wide range of aLiowed distances 

tetween the user and the camera. h can be calculated by multipl-ving the Lved indes 

by the height of the head. Altematively. if the expected variation in the user's 

distance from the camera lies within a reasonable range. h c m  be assigned a fixed 

value. 

Define edgeness,(r) as the number of foreground pixeis in a horizontal di t  with 

nldth .ld and height h starting at row r .  Since b( i ,  j )  is a b i n q  edge image. 



edgeness (r ) 

r: row nurnber 

Figure 3 . 2  Histogram used for locating the eyes. The maximum peak occurs at the 
location of the eyes. 

edgeness,(r) can be calculated as foiiows: 

Now. consider moving the dit don= from the top of the image. 

It is observed that edgenessh(r) reaches maximum values when the eyes and the 

eyebrows are contained in the slit starting at 7.  as Figure 3.2 shows. This is so because 

the eyes region is associated with a strong variation in intensity values. making the slit 

of eyes cikitinguished fkom the dits of other portions. Thus, a possible approach for 

identifjiog the eyes could be accomplished by calculating edgeness,(r) for each row 

r in the image. then searching for the maximum value in the resulting distribution. 



However. the computationai requirements for such an approach are rather high. 

-1 simpüfication of the process can be derived from another property. The starting 

row of the optimal slit lies rvithin a range of rows corresponding to slits that are 

also disthguished (Le.. they map to globaiiy high values of edgeness,). even though 

they cover the eyes partiaiiy. This suggests that a subsampling technique results in 

an approxhated histogram. the maximum value in nrhich lies within a suflicientl- 

s m d  neighborhood of the original maximum. Therefore. the original Listograrn is 

subsarnpled at O. h/2. h. 3h/2. - - a.  That is. two consecutive sarnples overlap in h/2. 

O t h/2;  7nax c O: s t O: k i- O 
wkiie k < .V/o 

s u m ( k )  +- C 
for i = o . k  t o o - k + h  

for j = O to ,\/I 
sum(k )  t .sum(k) + b ( i ,  j )  

end for 
end for 
if .sum(k) > max then 

maz t sum[k)  
s t k  

end if 
k t k + l  

end while 

Algorithm to locate the eyes 

Note that the new histogram always contains a slit covering at Least 75% of the eyes 

region. and noc .50% as the overlapping factor might wrongly indicate. To show this. 

assume the con t rq .  that is. assume that the slit starting at row 1 is the sample 

with mauimtun coverage of the eyes region. covering cr < 0.75 which corresponds to 

a lower part of the eyes region (a simila argument applies in the case of an upper 
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part). If a < 0.35. the slit starting at 1 - h,. which is ako sampled. covers 

which is obviously more than 75% of the upper part. if 0.25 5 o < 0.5. the sIit 

starting at row 1 - h l 2  covers 

which is &O more than 75% of the lower part. Findie if 0.5 5 n < 0.75. then the 

coverage by the slit starting at i - h/2 is 

which is at least 7S% as  w4.l (upper part). In all three cases. a slit which covers 

at l e s t  7.5% of the target region vvas found. contradicting the assumption that the 

rnc~uimiim coverage is less than 75%. 

The computational reduction acfrieved by subsampling is by 2 / h .  For a typical 

vdaliie of h = 30. it requires only 6.67% of the computation thar the exhaustive 

approach would take. 

3.3 Determining the Region of Interest (ROI) 

The organization of the human face. in terms of the basic components. is L~ed.  

Iloreover. the relative distances ben-een these components foLiow a certain pattern- 

Csing this information. and given the approximate location of the eyes obtained in 

the previous step. the f o I I o ~ ~ g  can be estimated: 
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Dimensions of the ROI: 

The size of the region of interest is made larger than the expected size in order 

to account for personal variations. chat may cause some deviation fiom the 

elrpected measurements; and the approximation made in locating the eyes due 

to subsampling. Consequently. the height and width of the ROI are both set 

to 4h. 

Position of the ROI: 

The left-top corner of the region of interest is positioned a t  

where r is the starting row of the slit containhg the eyes. 

Note tliat both estimates are expressed in terms of the height of eyes region. making 

the system invariant to scaiing. The expressions have been selected as such after 

experirnents had shown their effectiveness in bounding the mouth entirely even when 

it is wide open. 

By deterrnining the ROI. the focus of attention becomes restricted to a much 

srn'der region than the whole input image. in which more elaborate techniques can 

be ernpioyed to seek accurate measurernents for the mouth. 

This chapter has addressed automatic location of a speaker's mouth. In the next 

chapter we address the problem of extracting features of the mouth. 



Chapter 4 

Extract ing Mout h Features 

in this chapter. methods for =tracting particular mouth features are described. The 

features include the center. width and height of the iips. The search space is restncced 

to the region of interest extracted in the previous chapter. Figure 4.1 shows the main 

rnouth characteristics that the algorithms presented in this chapter estirnate. 

L 1 

c l  c2 

Figure 4.1: Mouth measurements. 



4.1 Locating the Central Row 
and Corners of the Mouth 

The central row of the moitth. i.e.. the row where the upper and iower lips meet: has 

a strong edge presence. Accordingly. che sum of edge values dong this row. Nithin 

the ROI. is expected to have a mxcimum valialue. The method to locate the centrai 

romr of the mouth uses the edge image e ( f .  j) obtained by applying the Laplacian 

operator descnbed in the previous chapter. An example is s h o w  in Figure 4.2. 

Figure 4.2: Histogram used for locating the central row of the momh. The maximum 
peak corresponds to the central row. 

Locating the ieft and right corners of the mouth enables the estimation of two 

important features: the central c o l 1 m  and the width of the mouth. In this section. 

a method for obtaining initiai estirnates of the corners is described. The method 

assumes that the central row of the mouth has been appropriately determined. 

First, the distribution of the absolute vertical gradient at each column in the 

central row of the mouth is analyzed. Figure 4.4 is an example of this distribution. 



Let y, denote the centrai row of the mouth. The vertical gradient of the pixel at 

column j. row pc? denoted gradient (j). is obtained by appl-ving the foiiowing mask. 

which emphasizes horizontal edges. to pkel (y,. j ) .  

The corners occur near two peaks in the corresponding histogram (see Figure 4.4). 

These peaks are distinguiçhed by the following characteristics: 

0 Define left-height(j)? the left height at column j .  as  

left-height ( j )  = Jgradient ( j )  1 - (gradient (vl ) 1 

where ul is the vailey immediateiy preceding j. Let pl be such that 

left-height (p l  ) is maximum. The left corner cl is set at the minimum value 1. 

fgradient (x) 1 2 jgradienr (pl ) 1 + /gradient ( ul ) 1 
3 
d 

D e h e  right-height(j). the right height at column j' as 

where q is the valley immediately following j .  Let p, be such that 

The right corner c2 is set at  the mauinium d u e  



Figure 4.9 shows a peak with its right and left heights. 

Figure 4.3: Left height and right height of a peak. 

Now. initial estimates for the central column of the mouth x, and its width u7 can 

be determined b_v 

4.2 Locating the Upper and Lower Lips 

The rows where the extemal borders of the upper and lower lips intersect with the 

vertical auis. denoted u and 1 respectively. can be idemified tising the previoiisly 

estimated measurements. -1 histogram is used to stm up each rowk grey levels for 

columns betiveen the corners. Only rows in a small neighborhood around the center 

of the mouth need to be considered. It is expected that a change in intensity wili 

occur at the maximum extremities of the lower and upper lips and this should be seen 



Fibgure 4.4: Histogram iwd for locating the mouth corners. First. the peaks with the 
maximum left and right heights ( p l  and m) are identified. then the corners (ci and 
c2) are computed according to (4.1) and (4.2) (see teut). 

in the histograrn. An example is Uustrated in Figure 4.5. In fact. experiments have 

sho~vn that the peak located immediately before the center of the moiith corresponds 

to the highest point on the upper lip and the peak after it corresponds to the lowesr 

point on the lower lip. This estimate seems to be very good for the upper lip. 

Hoivever. there are cases where a peak occurs before the esternal outiine of the lower 

Lip because of a bnght spot in the lower lip region. A method to correct this will be 

disciissed in section 4.4. 

4.3 Improving the Mouth Corners 

The idea is to search for the best fit of two curves (correspondhg to the extemal 

outline of the left half of the mouth) dram from the left corner to the central column. 

The search is implemented by moving the left corner to the left until a local optimum 
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m F t i: row number 

Figure 4.5: Histogram used for locating the upper and lower lips. -1 search for the 
nvo peaks surrounding the central row is performed. 

is foiuid for the function left-fit (1,' y=, I .  IL. cl). This function gives a measure of firness 

benveen the Left ciwes and the edge image. and is defined as foiiows: 

where y, (x) and g2(x) are the quartics given by 

A similar definition appiies for the right corner. 

c2 -1c 

right-fit (x,, y,, 1. u. Q) = vertgrad(& + YI (3)' ZC + X) 
t = O  

c2 -.cc 

- vertgrad(y, + y~(x).xc + x) 
t = O  



In the definitions above? the summations have opposite signs. This is justified 

by the foiiowing. When applied to grey leveis. vertgrad(i. j )  (which is the result of 

applying the same mask mentioned in section 4.1 to pixel (io j )  ) emphasizes two kinds 

of edges: 

1. Xegacive edges. the grey levels above which are lower than those below them. 

The edges on the estemal outline of the lower iip are of this kind. 

7. Positive edges. the grey levels abnve which are higher than those below thern. 

The edges on the extemal outline of the upper Lip are of this kind. 

A lower value for Mt-fit or right-fit means a better match between the curves and 

the lips. 

while left-fit(x,. .yc. 1. u. cl )  2 left-fit(x,. ~ ~ $ 1 .  u. cl - 1) 
cl t cl - 1 

end while 
while right-fit(x,. gc! 1. u. c2) 2 right-fit(xc. .yc7 1. u. c2 + 1) 

c2 t C2 + I 
end while 

Aigorithm to improve the upper and lower lips 

4.4 Improving the Lower Lip 

-1s mentioned earlier, the estimate for the lower lip might not be accurate. The 

method used to correct this resembles the one applied to the mouth corners. but 

here the search is implemented by moving the lower lip d o m  while keeping ail other 

parameters fiued. Now, suppose that the initial estimate is accurate, then this tech- 

nique will probably identify the lower lip in the wrong place. Thus, to ensure that 
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good initiai estimates do not get compted. the change is not made if it goes beyond 

certain rang ,s controlled by the upper lip. 

whiie left-fit (x,. y,. 1. u. cl ) + right-fit(x,. y,. 1. u. q) < 
left-fit&. y,. 1 + 1. u. cl )  +- right-fit(zc. y,, l + 1. u- c2) 

L t l t l  
end mhile 
whiie left-fit(xco y,' 1: u. cl) + nght-fit(xct y,, 1. u. c2) 2 

left-fit(x,, y,J + 1. u . q )  + right-fit(z,, y,J + 1. u . ~ )  
l t l t l  

end while 

Algorirhm to improve the lower lip 

4.5 Experiment at ion 

In this section. results of the application of the various algorithms descnbed previ- 

oiisly are presented. The estimated mouth measurements are compared to the actual 

measurements in order to qunlifv the acciiracy of the methods. Table 4.1 contains the 

error of the estimated measurements when applying the algonthms to 29 facial image 

samples. The absolute error is calculated as the absolute difference in p~uels between 

the estimated measurement and the actual measurement. Each row in the table srm- 

marizes the results of an individual sample. For example, the hst row indicates that 

nhen the algorithm~ were applied to the fint image sample, the estimated central 

row and c o h n  of the rnouth and the lower Lip extremity were accurate (error was 

0); the estimated upper Lip extremity was 2 pixels away fiom the actual point: and 

each of the estimated corners had a ciifference of 1 pixel from the exact value. As can 

be seen from Table 4.1. the accuracy of the rnethods is very good. In particdar. the 



colnmn labeled "y,'? shows that the estimated central row has been accurate at ail 

samples. Furthermore. 93.7% (163/174) of the estimated measurements have been 

within a range of 4 pixels fkom the exact ones. 

Table 4.1: Error of the estimated mouth measurements obtained y -  applying otir 
image sa 

- 

- 

Absolute Error (in 

The average and mauimum errors of each estimated feature are obtained by an- 

alyzing the columns of Table 4.1' and are iisted in Table 4.2. This latter table helps 
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in ranking the estMateci variables in terms of a c c u r c .  For exampie. it c m  be seen 

hom Table -1.2 that the central row estimate is the most accurâte one. bloreover. it 

is evident that di estimates are qtiite accurate on the average (the average error is 

less than 3 pixels for all estimates). 

Table 4.2: Average and maximum errors of each estimated mouth measurernent 

This chapter has described algonthms that estimate mouth characteristics. In the 

next chapter. we use these characteristics to initialize a mouth deformable template 

mhich extracts the shape of the mouth and tracks its movement during speech. 

obtained by analyzing the samples of Table 4.1 
Maximum Error (in pixels) 

1 
Measurement 

!/c 

Average Error (in pixels) 
0.1724 



Chapter 5 

Mouth Deformable Template 

5.1 Geometric Mode1 

Figure 5.1: Mouth deformable template. 



5.1.1 Geometric Primitives 

The deformable template for the mouth consists of the foiiowing geometric primitives 

(see Figure 5.1) : 

1. The external outline of the lower iip is modeled as a quartic. 

2. The internal outline of the lower lip is modeled as a puabola. 

3 .  The extemal outline of the upper lip is modeled as a quartic. 

4. The internal o u t h e  of the upper lip is modeled as a parabola. 

The points on the curves above are in reference to a coordinate systern centered 

at (0.0). To transform the template to the image coordinate systern. every point on 

each curve iç rotated by 8. which is the angle of mouth inclination in the image. then 

translated by (yc. x,) '. which is the center of the mouth in the image. Figure 5.2 

shows a transformed mouth template. 

IIn this thesis, a pixel in row y and coliunn z is denoted (y, z). To auoid any confusion, the 
p ~ i n t  in the xy-plane that corresponds to pixel (y, z) is denoted (y, z) as well. 



Figure 5.2: Transforming the template to the image coordinate system. 

5.1.2 Pararnet ers 

The previous modeling scheme results in the foliowing parameters: 

1. hl : height of the extemai outline of the Lower lip. 

2. h2 : height of the interna1 outline of the lower lip. 

4. h4: height of the internai outline of the upper lip. 

3. wl : width of the external region. 

6. a: offset of the center of the upper quartic fkom the ordinate. 



- . : width of the interna1 region. 

8. ql : parameter to control how far the lower quartic deviates from a parabola. 

9. q2: parameter to control how far the upper quartic deviates fiom a parabola. 

10. 1,: x-coordinate of the center of the rnouth. 

Il. #: y-coordinate of the center of the eutemal Lips. 

12. O: the angle of inchation. 

5.2 Energy Function 

The deformabie template is associated with an energy huiction E which gives a 

mesure  of fitness between the geometric model and the image. Consider the set 

i = {(Y. x) : (y. x) is a lip border pixel} 

The goal. at this point. is to ckaracterize the set I .  The deformable template approach 

attempts to mode1 the set I in terms of the parametrized curves contained in the 

gometric model. In other words. it seeks to approximate the set I by a set .\f such 

t hat 



(.yt. xt) is the resuit of transforming (y  x) to the image coordinate system. 

Obviously. .CI depends on the parameters (hi. h2. h3- h4. w l .  a.  w?. qi . q 2 .  x,. ye O ) .  

and so the problem of hding the set .II of pixels is reduced to the problem of h d i n g  

the model's parameters that wodd make ,CI "match" 1. 

Since the set I is not known in advance. ir is natural ro exploit one of its known 

properties. which is that the p~xels contained in this set have srrong edge magnitudes. 

Consider the foiiowing quanti- 

where @, is ün edge rneasure and (Cil is the length of c u v e  gi [26]. This quantity is 

supposed to have a minimum value when ,II matches 1. 

To define the edge value at pixel (2. j ) .  a 3 x 3 kernel u(1. m). - 1 c - 1. rn 5 1. is 

iised. 



When the pixel ( 2 .  j) is on the border of the lower hp. this makes edge(i. j )  high 

in magnitude. but negative in sign. On the other hand. if (i. j )  is on the upper lip 

border. edge(i. j )  wili have a positive high value. 

Given panicular d u e s  for the parameters of the model. the terms of the eneru  

function can be calculated. 

1 1 

k3 C C C g( i :  + 1. ji + m)v( l .  m) t e m 3  = -- 
I I *  

where 

The siunmations are divided by w l  or w2 in order to normaiize the quantities. The 

summation in tem, and ternq is preceded by a minus sign because the horizontal 

edges on the borders of the upper lip are positive. In addition, there are penalty 

terms to ensure that the moiith template does not deform to iliegd mouth shapes. 



tem5 ensures that y, is always below g2. and ter* ensures that y3 is always above 

.y+ k,. /22' k3. k4' l i j?  k6. k7. ka are non-negative constants rhat can be detennined em- 

5.2.1 Minimizing the Energy Function 

Finding the template that best matches the mouth in an image is equivalent to 

minimizing the energv fiinction. Two methods have been investigated in this work. 

5.2.2 Method 1 (Greedy Method) 

/ while not stopcriteria 1 
1 for each parameter pi 1 

l p i  cupdate(pi) 
end for 
for each parameter pi 

Pi Pi + -Ipi 
end for 

end while 

At each iteration. every template parameter pi is updated by one of three values: 

fstep,? -step,. or O. 

If pi E (h l .  h2>h3: h4, w l ' a .  w ~ J ~ . ~ ~ ) ~  then step, = 1. This is so because these 

parameters are related to pixels which should have integer values. Othenvise (pi E 

{ q l  . (12. O } ) .  it is preferable to assign a decimal value. such as 0.1. to stepi since thesr 

variables can take real values. and it is desirable to have a value for step, that changes 

the shape of the template gradualljr during the rninimization process. -1 value of 1 

for step, when pi E {q ,  , q2 ,  O }  codd make the template change its shape drasticaliy 



in a single step. Note that 0 is measured in radians rather than degrees. 

f + E(p l .  P.Li P3< .... pi + stepi. - . . .pl2) - E(p1 .  R, m. --..pi. -.-.pi*) 
b + E ( p l .  b. m. ..-. pi. ....p12) - E ( P ~ .  ~2 m. ---.pi - stepi. . . . .p l?)  
if f < O then 

update t step, 
else if b > O then 

update t -stepi 
else 

update t O 
end if 

In practiçe. the method ~lelds acceptable results. However. theor? shows thar it 

has the potential to give erroneous results [SI. The method tries to minimize the 

function along the unit vectors 

in tum. Theoreticdly. minimizing along a particular direction couid be spoiled by 

the rninimization dong m o t  her direction. 

5.2.3 Powell's Method 

Powell's method [9] iç attractive because it attempts to minimile an n-dimensional 

function without the need to explicitly compute the function's gradient. Comput- 

ing the gradient requires the computation of the h c t i o n ' s  partial derivatives with 
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respect to each variable; a task that is not straightfonvard in our case because the 

basic terms of the energy fùnction are not e?cpressed analyticdiy. Furthemore. Pow- 

ell's method overcomes the potential for error in the greedy method. It consists u l  a 

mechanism for tipdating the set of directions (which can be the unit vecton at the 

beginning) as the method proceeds. attemptuig to devise with a non-interferhg set 

of directions. These directions are caiied conjugate directions. and have the special 

property that minimization along one direction is not spoiled by subsequent mini- 

mization dong  .mot her. 

The basic procedure is as foilows: 

1. hitialize the set of directions u; to the basis vectors. 

Sote that the nimber of such directions is cqüel to the number of parameters 

of the mouth template. 

2. Repeat the foilowing sequence of steps untü the energy funcrion stops decreas- 

ing : 

m Save the starting position as Po. 

0 For i = 1: . . . . n. move Pi- to the minimum along direction ui This 

involves hd ing  a value A& for A ar which the function E(P,-, + Aui) 

is minimum. Since the vectors Pi-i and ui are h e d ,  E(Pi-! + Aui) is 



Figure 5.3:  do^^^ direction defined by a and 6. Search for a third point in the 
direction indicated by the arrow. 

a function in one variable and can be minimized using a one-dimensional 

method. M'ter that. set 

The method by which the one-dimensional function is minirnized consists 

basically of two steps: 

(a) Given initial values a = O and b = 1: End n e a  points a. 6. and c 

that bracket a minimum of the function, by searching in the downhill 

direction defined by the function at the initial points [X] (see Figure 

5.3). 

By definition: a: 6? c are talues for X that bracket a minimum of the 
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Figure 5.4: Triplet [a. b. c] bracket a minimum of E(Pi-I  + Aui). 

h c t i o n  E(Pi -  1 + Aui) if b is betnreen u and C. and E(Pi -  1 + bu,) is 

less than both E(Pi- + aui) and E(Pi -  1 + Cui) (see Figure 5.4). 

(b) Cse Brent's method [9] to minimize the hinction on the triplet [a. b. cl. 

For i = I ..... n - 1, set u, t ui+ 

Set un +- P, - PO. 

0 .\love P, to the minimum along direction un and c d  this point Po. Thar 

is. h d  a value A- for X that minimizes the function E(P, + Au,). Set 

The basic procedure must not be used in the form given above because it tends 

co produce sets of directions that become linearly dependent. When this happens. 

the procediire h d s  the minimum only over a subspace of the fd n-dimensional case. 

The approach taken to fix up this problern is similar to the one reported in reference 
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[54]. l t  makes use of a heuristic scheme which tries to find a few good directions 

dong narrow vallep instead of n necessarily conjugate directions. The change to the 

basic procedure is the follotving: at each iteration. discard the oid direction aloug 

which the function made its largest decrease. That is. Ui is discarded (substituted 

by the nenr direction P, - Po which is the average direction moved after trying all n 

possible directions) if AE, 2 IE,. J = 1 . 2 . .  . . . n. 

5.3 Dividing the Minimization Process into Two 
Phases 

The general method of deformable templates implies that aii the curves making up the 

model are fit at the same t h e .  However. it has been found? through experimentation. 

that a twephase minimization process gives better results than those obtained by 

sonie single phase techniques. This indicates that the interaction of with the rest 

of the mode1 does not help the template to converge. Therefore. the minllnization 

process is divided into nvo phases: 

1. In the first phase. the external curves are fit. The orio$nal geometric model is 

modified. The internal width w? is replaced by wi : and the internal heights. 

h2 and h4. are repiaced by hi and hi. This sirnpler template has been able to 

capture the extemal borders accurately. and to give reasonable estimates for 

h; and hi (up to 3 pixels away hom the actual internal heights). In this phase. 



the furiction 

is minimized using Powell's method. 

Figiue 5.5:  hlodified mouth model for the first phase. 

2. In the second phase. b. h,. and w2 are fine-tuned by rninimizing the function 

t em?  and termd attracts the intemal curves to strong horizontal edges in the 

image. The term kg tan(") encourages w;, to be less than w , .  The last two 

t e m  ensure that h2 and h4 stay relative- close to and hi respectively. 

5.4 Tracking the Lips 

Given a digitized movie of a person's face. the deformable template technique is used 

to model the mouth shape in each image kame. 

1. -1 region of interest containing the mouth is located in the k t  £rame. Then. 

image processing techniques are applied to roughly estimate several rnout h 
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features such as center. width and height. These estimates are used as initiai 

values for the defonnable template parameters in the first frame. 

2. Having the initiai values. the deformable template can be positioned ini t idy 

near the mouth. The energ-- of the remplate is minimized. and this leads to an 

optimum match. 

3. Since there is a relatively s m d  change between two consecutive kames. the 

initial values for a particular f r m e  z. i 2 2 .  are set to the parameter values of 

frame 2 - 1. This has the advantage of saving the time that would be. othemise. 

needed to apply the initial operations to every single frarne. 

This chapter has addressed the application of deformable templates in extracring 

the shape of the mouth and tracking its movement during speech. In the next chapter. 

w e  address the problem of segmenting a word into visual speech units. 



Chapter 6 

Visual Speech Segmentation 

6.1 Introduction 

In this chapter. the problem of visual speech segmen~ation is addressed. The merhod 

described here is applied to the training data of the speech recognizer. 

The pro blem of visual speech segmentation is formulateci as foilows. Let 

be a giveu sequence of vectors. representing a word visuallx where vi is a vector of 

rn features characterizing the mouth shape of a speaker. saying a word W. at time 

i lr .  where r is the sampling rate and assuming that the speech starts at time O .  It is 

required to fhd a naturd number I < n! and indices kl , k2, . . . . ki- 1 for {vil:- ' S U C ~  

that 

O = k o < k l  < ~ < . - . < k l - l < n - I  



where T is a transformation. and Va. V I .  . . . . Vi - 1 are visual speech units such that 

Vo k distinct from V I  

V I  isdistinctfkom V2 

VI - 2  is distinct from VI - . 

1 is the number of segments. and k,, i = O. 1, . . . . 1  - 1 is the index of the first hame 

in segment i. 

The procedures presented in this chapter operate on sequences of featiire vectors 

derived from the parameters of the mouth deformable template. Let FC' be the mouth 

external wicirh ( w l  ) in the first frame (at time O)  of the sequence. Each fiame in the 

sequence in mapped to a vector of the followi~~g featimes. 



The purpose of dividing the parameters by CL- is: 

1. to make the system scde invariant. 

2. and to provide a suitable (nomaiized) representation for the neural network 

that will process the data in a later stage. 

An example is ïepresented graphically in Fig. 6.1. In this figure. each horizontal 

h e  represents a feature. The lengths of the h e s  are proportional to the values of 

the features. The graph has been built by applying the mouth deformable ternplate 

of the previoiis ctiapter to a sequence of facial images of a person during speech 

(sampled at the rate of 30 kames per second). then mapping the resulting mouth 

remplate of each image into the seven features Listed above. Xote that each row of 

horizontal h e s  corresponds to the shape of the mouth at a certain time. 

6.2 Maximum Distance Met hod 

The proposed solution to the problem posed in the previous section is based on 

identifying dissimilarities within the sequence to be segmented. Let f .  f" fi. f2 be 



Figure 6.1: Craphical representation of a sequence of feature vectors corresponding 
to a person's mouth during speech. 



feature vectors. Define 

dist2(f. fl. f2) = min(dist(f. fl). dist(f. f2)) 

dist(f. f') measiues the distance between frames f and ft.  if f = ft. obviously 

dist(f. ft)  = 0. dist2(f. fi. f2) measures how far £rame f is fkom both frames fl 

and f2. If dist2(f. fl. f2) = d. that means that f has a distance of at least d fkom fl 

and B. 

Civen a fiame f and a set of fiames F' it is possible to identify the most distant 

frame in F Çom f by finding fmav E F according to 

dist  (f. fmau) = mauftEFdist(f. f') 

Similarly. given nvo fiames f l  and El. the most distant frame in F kom borh fl and 

f2 is the kame fmav E F such thac 

dkt2(fmnu. fl. n) = maXfEFdist?(f. fl. a) 

Cpon segmenthg a sequence of fiames. there are two cases that have to be dis- 

tinguished. 

The sequence consists of more than one segment. 

In this case. a good candidate for a segmentation point is the fiame that has 

the maximum distance from the starting fiame. The value of the maximiun 

distance represents a segmentation confidence rneasure. The higher the value 
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of the maximum distance. the higher the confidence that this point is a real 

boundary. 

The sequence consists of oniy one segment. 

For this to happen. ali the kames in the sequence shouid be -'close'' to each 

other. This situation can be identified by evamining the ma.uimum distance 

between the first hame and the rest of the hames. If this distance is $-en; 

small. it follows that di the barnes are sufEciently close to each other. 

Claim: In a sequence of b m e s  v,vs- 1 . --ev,-,- 1 .  suppose that k E = 

{ s  + 1's + 2 . .  . .. s + n - 1) is such that 

Then. for any p .  q E I '  

dist(vp. v,) 5 3d. 

ProoE The assumption implies that 

dist (v,. v,) 5 d 

dist (v, . v,) 5 ci 



Adding bot h inequalit ies yields 

That is. 

i rn-i 

rvhere a. 6 and c are any real nurnbers.O 

Hence. if the segmentation confidence measute is l e s  than a threshold 8. it is 

giiaranteed that no nvo frames in the sequence are at a distance greater rhan 

2d. 

Consider the foliowing algonthm that takes as input a sequence of n vectors 

find k from the set V = {s + 1. s + 2.. . . + n - 1) such that 
dkt (v, v*) = m Z L ~ ~ ~ ~ d i s t  (v,. vi) 



This algorithm segments the sequence v,v, -, . . - vs-, - into two subsequences h (in- 

cernal subsequence) and t such chat 

To complete the process of finciing ali the segments in the given sequence. the same 

algorithm can Se applied reciusively to t. It c m  also be applied to h. But since vk-1 

and v i  are two consecut ive visual speech fiames and. thus. very close to each other. 

there is a high probability tkat applying the algorithm on h will result in segmenting 

the subsequence at its last frame (k - 1). To avoid this situation. a siightly difFerent 

algorithm is proposed. The algorithm takes as input an intemal sequence of TL frames 

V,V,-~ . . v,-n -, and the starting frame of the next subsequence v,+. 

find k from the set I.' = { s  + 1. s + 2 . .  .. . s + n  - I} such that 
d i ~ t ' L ( ~ ~ '  V,. v,-,) = ma'tiE&t2(vi. Vs! v,-,) 

Now. two recursive versions of the previous algonthms can be dehed .  

Algorit h m  segment (vsvs- v S-n- 1 )  

find k from the set IV = {s + 1. s + 2 . .  . . . s + n - l} such that 
diSt(vs. vt) = U l a ~ ~ ~ ~ . d i ~ t ( ~ ~ .  vi) 

if dist (v,. vç) > 6 
output k 
segrnent2(vsv,- 1 a . . vi- vt j 
s e g m e n t ( ~ ~ v ~ - ~  . v,-,-~) 

end if 



, Algorithm ~egmenr2(v,v,-~ . - vSTn- 1. v ~ - ~ )  
find k kom the set Ir  = {s + 1. s + 2 . .  . . . s + n - 1) such tbat 

Algorithm segment fin& ail segment boundaries with confidence greater t han the 

threshold 6 in the given sequence. segment2 does the same thing but has as  input an 

intemal subsequence. Given a sequence of frarnes vovl. - v,- representing a word. 

d l  the segment boundaries (k's in the problem dehinition) with confidence greater 

than the threshold b can be found by simply calling 

segment (vOvl - . . vn- ) 

The nimber of segments is equal to the number of segment boundaries plus one. 

Figure 6.2 is a graphical representation of appl-ying the .Llauimum Distance method 

to a word. in this figure. each feature is represeuted by a rectangle. The intensity of 

the rectangles is proportional to the d u e  of the conesponding features. The partial 

restdts of applying the method recursively are shown at the left of the sequence (these 

results evolve as we go to the left direction). The Enal results are shown a t  the right 

of the sequence. 



Recursive 
Application of 
the Algofith 

Potential 
Candidates for 
Segment 
Boundaries 

Figure 6.2: Individual segmentation by ,Lla.Omum Distance method. 



Let x. y and z be three dinerent samples of the same word. If these seqiiences are 

segmented inditidually. the result d l  be: 

The problem is that the number of segmeots in x. y and z might be different. 

Thus. alignment aims to find a segmentation for z. y and r such that the number 

of segments in all the sequences is equal. Moreover. and more importantly. the 2-th 

segment in a y  of the sequences shodd correspond to the 2-th segment in the others. 

Civen two sequences. it is possible to find such a segmentation using dynamic 

time uiurping (DTW) [591. -1 DTW algorithm takes ttvo sequences of fi-ames a = 

%al --% - 1 and b = bob 1 . *. b,- as input. and outputs the optimum warping path 

between them accordhg to some distance measurernent. The cost of the optimum 

warping path is also produced as an output. The algonthm mesures how well the 

two sequences can be aligned to each other based on the distance function used. 

The DTW algonthm operates by caiculating a matris g ( i ,  j), 1 5 i 5 n. 1 5 j 5 

rn. The interpretarion of g is that 



51(2. j )  is the cost of the optimum warping path 
between subsequences %ai . and bobl . b J -- 1 

Therefore. the required output wiil be stored in g(n. m). To calculate g ( i .  j ) .  there 

are two cases: 

1. i = 1 and J = 1 (initiai case) 

2. i # l o r j # l  

In caiculating g ( i .  j )  in generai. there are three subpaths to consider: 

(a) The subpath formed by linking the optimum warping path between 

%al ---ai-, and bobl -.-b,-? to the alignment of frames ai-, and bj-[. 

(b) The subpath formed by iinking the optimum warping path between 

%at - . * & - *  and bobl .mebj-? to the alignment of frames a,-l and bj-l- 

(c) The subpath formed by linking the optimum warping path between 

*al - . -a i -?  and bobl *- .bJ - l  to the alignment of frames ai-, and b,-l. 

Figure 6.3 ihstrates this situation. It shows the three options available at 

a certain point while constructing the warping path between hvo sequences. 

Clearly. the optimum cost in this case is the cost of the subpath that has the 



rninimum cost among the three subpaths. 

Figure 6.3: Calculating the optimum warping path 

The coefficients of dist () in (6 .5)  and (6.6) are cailed the weighting coeficients. 

The specific values given to these coefficients make the algorithm s p m e t r i c  This 

implies that the result of aligning n to b will be the same as chat of aligning b to a. 

When calculating the fist row of g (g(1. j ) .  L 5 j 5 m). the elements in the O-th 

row are used. Since there are no real subpaths corning from such elements thar need 

to be considered. they should be initiaiized to a large value in order to prevent them 

from being selected as  the optimum choice. A similar argument applies to the @th 

g ( i ,  O) = oc! l _ < i < n  



The DTW algorithm uses a parameter r caiied the window length. This parameter 

limits the optimum path to not go beyond a region around the diagonal of rnatriv g. 

Therefore. only the elements in this region of g rieed to be calculated. The limited 

region can be expressed by 

The purpose of such a constraint is to prevent an =cesive timing ciifference between 

the h u n e s  of the two sequences. In order for the constrained set of points to include 

g ( n .  m) ,  it is necessary that 

is satkfied. 

The optimum warping path c m  be obtained by recording the choice made ac each 

calcdation. then tracing the sequence of choices £rom the final output g(n. ln) back 

to the initial point g(l. 1). 



for j = 1 to m 

9(0* 1) 4- 30 

end for 
for i = I to n 

g(2. O) t. x 
end for 
g(1.1) t M s t  (a. bo)) 
for j - 1 to 7n 

for i=mau(l. j - r) to  min@. j + r )  
i f i # l o r j # l  

g ( i .  j )  t min( 
g ( i .  J - 1) + dist(a,-, . b,-l), 
g(i - 1. j - 1) + Z d i ~ t ( % - ~ . b ~ - ~ ) .  
g ( z  - 1. j )  + &t(a,-l! b,-l)) 

end if 
end for 

end for 
cost t g(n. rn) 

The aligmnent problem can make use of DTW. However. the tisuai DTCV al- 

gorithm needs to be modified to suit thiç problem. In the rnodified version. the 

aigorithm takes as input the segment boudaries in two sequences. The optimum 

warpirig path is used to derive a unified segmentation scheme for both sequences. 

To convert the path produced by the algorithm to a unified segmentation: 

1. A vector of ordered pairs. caiied the correspondence vector. is obtained by 

foilowing the warping pach. The first component in an ordered pair represents 

a frarne in sequence a. and the second component is the corresponding hame 

in 6.  

2.  Starting from the end of the correspondence vector, which represents the 1 s t  



$ames in both a and 6. the folionring is repeated until the beginning of the 

correspondence vector k reached. 

(a) If the nvo adjacent pairs. at the current point. are different in both com- 

ponents; record a segmentation boundary 

(b) Decrement the current point index, 

The problem. now. is how to generalize this alignment method to more than two 

sequences. A possible way to generalize the method could be to select a reference 

sequence and align it to aii other sequences. But even then. this mighr lead to a 

dinerent segmentation for the reference sequence in every alignment . 

unique segmentation. the foilowing procedure is proposed. 

select a reference secpence r 
segment ;r 
for each sequence a # x 

segment .s 
align s to x 
iipdate the segmentations of I and s according 

to the result of the previous alignrnent 
end for 
for each sequence s # x 

align s to x (thzs tzme the segmentation of x is f i e d )  
end for 

To obtain a 

Nom. two questions arise. First. how to select the reference sequence x? Second. 

in which order shoiild the other sequences be aligned to x*? In In probabilit- such 

decisions will affect the hai alignments. Hence. there is a need to rank the sequences 

according to some criteria. The criteria selected for ranlang a certain sequence is 



based on how weii the sequence aligns to the rest of the sequences. Recali that the 

DTW algorithm retunis the minimum cost at which sequences x and s c m  be aiigned 

to each O t her cost (x. s) . To get an overd cost for a particular sequence x. the average 

cost over al1 other sequences is t aken 

where .V is the number of sequences. Figure 6.4 shows the result of ahgning 4 

instances of the same word using the method described above. 

6.4 Adaptive Segmentation 

Two distance fùnctions have been used in the segmentation method described above. 

First . the distance hinction for individual segmentation and second. the distance 

function for dynamic tirne warping. The Euclidean distance mas seiected for both 

purposes. 

There is no reason why the Euclidem àistance is better than a weighted distance. 

Csing a weighted distance couid not have been possible before because there was no 

a prion' knowledge about the segments of a particular word. But now that there is 

a segmentation (initial segmentation). this knowledge can be used to derive proper 

weights. 

This principle leads to an iterative method that starts by segmentadon and align- 

ment using the Euclidean distance, which is equivalent to a weighted distance with 

equal weights. At each iteration. an error is computed based on the previous seg- 
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Figure 6.4: ,-Uignment between segments in samples of the same tvord. 



mentation. The weights are adjusted in such a way that reduces the error. Then. 

segmentation and alignment are repeated using the new weighted distances. 

6.4.1 Weights for Individual Segmentation Distance 

Let w be the set of weights of the distance hinction used in the individual segrnen- 

tation. TWO tables are formed. 

Similarity table for w: 

Each entry is a vector computed as 

where x and y are two frames belonging to the same segment. and * denotes 

~miiltiplication" of vectors elernent by elernent. For each segment containing 

more than one frame. x is selected as the fint frame. and y as the most distant 

frame from x in the same segment. 

0 Difference table for w: 

Each entry is a vector computed as 

w * (x' - y') 

where x' and y' are two frames belonging to adjacent segments. For each two 

adjacent segments. x' is seiected as the b t  frame in the hst segment. and y' 

as the first frame in the second segment. 



The average entry a = [ao ai a? - - - % - I I  in the similarity table is computed. 

then the average eiement -4 in that entry is taken 

The enor derived from the similarity table is expressed as 

I 
error l = y C I'' (A - ai) 

where 

and d is the nimber of elements in a that are greater than -4. The weight updates 

based on this error are as follows. 

in other words. the weights of the features that have a large (greater than A) con- 

tribution to the total distance in kames of the same sequence are reduced by their 

deviation from the average contribution. The justification is that such features are 

not so relevant in segmentation given the fact that they recorded a large contribution 

for hames in the same sequence. 

Similarly. the average entry b = [bo bl  b2 -4,- 11 in the Merence table is 

computed. as well as the average element B in that entry 

1 m-l  



The error derïved from the Merence table îs expresseci as 

where e is the number of elements in b thar are l e s  than B. The weight updaws 

based on this error are: 

That is. the weights of the features that have a s m d  contribution to the total distance 

in hames of distinct segments are enforced. The purpose is to  emphasize the relevance 

of such feat ures in distinguishing betiveen Rames of different segments. 

6.4.2 Weights for DTW Distance 

To adjust the weights of the DTW distance z. similarity and ciifference tables are 

formed. 

9 Similarity table for z: 

Each entry is a vector computed as 

where x is the starting frarne in a segment belonging to the refereuce sample. 

and y is the starting £rame in the corresponding segment of another sample. 

r, Difference table for z: 

Each entry is a vector computed as 

z * (x' - y') 
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where x' is the starting Bame in a segment belonging to the reference sample. 

and y' is the starting fiame in a segment adjacent to the conespondhg segment 

of another sample. 

The error derived from the similarity table for z is calculated as 

rvhere c = [co cl c2 . - cm- l ]  iS the zverage entry in the similarity table for z. 

and p is the number of elements in c that are greater than C. The weight updates 

according to this error are 

The error derived from the difference table for z is calculated as 

where f = [k f i  f2 O *  fm- is the average entry in the ciifference table for z. 

and q k the number of elements in f that are l e s  than F. The weight updates 

according to this error are 



The overd  error is caiculated as 

errort + error;, + enor3 + error~ 

In this chapter. ive have addressed the problem of segmenting a word into visual 

speech iinits. The next chapter addresses the problem of visuai word recognition 

using reciirrent neural net works. 



Chapter 7 

Visual Speech Recognition 

7.1 Neural Network Architecture 

State at Time t 

Fnme at Time t 

Figure 7.1: Recurrent neural nehvork for visual speech recognition. 



7.1.1 Neural Network Computation 

The input hames are presented to the input layer sequentially. one at  a rime. The 

input fiame at time t is denoted v(t). and the k-th unit Ui the input layer is denoted 

~ ' k ( t )  - 

The iinits of the hidden layer are computed according to 

where s ( t  - 1) is the rime-delayed state vector? Xik is the weight on the connecrion 

from the k-th input unit to the i-th hidden unit. rij is t.he weight on the connection 

from the ;-th unit in the time-delayed state vector to the Gth hidden unit. and f is 

a sigrnoidal function. 

The connections from the tirne-delayed state layer to the hidden Iayer are calleci 

recurrent connections. These connections make the network different from an ordi- 

nary miilti-layer feed-fonvard neural network. The purpose of such connections is to 

provide a contevt for each input pattern so that the network can capture not only 

the spatial characteristics of the individual patterns. but &O the dynamic change 

of patterns mlth time. Before presenting the f i s t  input fiame to the nenvork, the 

tirne-delayed state vector is assumed to have no activity, that is. al1 iinits in that 

layer are zero. 



To compute the curent state vector s ( t )  . the following is used 

where wji is the weight on the connecrion Erom the i-th hidden unit to the j-th state 

Lulit. 

The extemal output is considered only when all input £rames have been presented 

to the network. and is calculated as 

where yj is the weight on the connection £rom the j-th state unit to the estemal 

output unit. The recurrent neural network is shown is Figure 7.1. 

7.1.2 Desired Activity on State Vector 

Given a correct sequence of frames 

which can be segmented at kt, k2. k3. . . . . the desired activity on the state vector 

is formulated as follows: 

The fiames belonging to the same segment should cause 
the network to form the same pattern on the state vector. 

- - 

That is, when presenting the kames of the k t  segment (segment 0). the state 

should be at each time the same. c d  it SI. When presenting the frames of the 

second segment. the state shouid be s2 and so on. After presenting al1 the frames 
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to the network. the externa1 output is inspected. I t  is designed to recognize the Iast 

state which corresponds to the l u t  segment. 

In general. s i  and .sj. where i < j. should be different from each other. Otherwise. 

the order segment i - 1 preceding segment j - 1 could never be enforced. That is 

because s, and s, would correspond to h-ames of both segments. Even if the two 

segments are spatidy identical. it should be emphasized that the corresponding 

states must be made different. The correspondence between segments and states is 

not based on the spatial characteristics of the segments alone. It is also based on the 

order of the segments. This results in state s j  being characterized by: 

The spatial characteristics of the individual cornponents corresponding to that 

state. 

The context provided by the recurrent connections (preceded by state s j -1 ) .  

There is an obvioiis reciusion in the previous characterization. the main purpose of 

which is to ensure that the segments foiiow the specific order dictated by the nature 

of the word to be recognized. 

S tat e Encoding 

The foiiowing encoding scheme d l  be used for the states: 



The state variable contains at least 1 + 1 bits (any nurnber of trailing zeros should 

not make a Merence). sa encodes the initial state. and s, encodes an undefined 

state which inclicates faiiure to recognize the sequence. In t h  scheme. each unit 

on the state tayer corresponds to a particular state. 'iote that. £rom a theoretical 

viewpoint. one set of state variables is as good as any other. 

7.2 Training 

Two types of training are commonly seen: supervised and unsupervbsed. in supervised 

training. there is a "teacher" who "teiis" the network what the correct output for a 

certain input is. In unsupenrised training, the network is autonomous. It h c i s  out 

about some of the properties of the data set. and l e m  to reflect these properties 

in its output. For the network used in this thesis. we chose supervked training since 

we knea the correct output for each training sequence. 

Suppose the reciirrent neural network ( R'IX ) descnbed previously has trained to 

recognize a word u1 of the form 



then' on a new instance w' (of the same class of w) 

w here 

Vo is distinct fiom VI  

V I  is distinct kom V2 

is distinct fiom VI-1 

it is required that the RXX behaves as follows: 

Just before takuig the £ k t  input. the current state is in initial configuration 

.Sg . 

0 On inputs V ' ~ . V ' , ~ .  . . . dy + the RiUN should have sl on the state layer. 

On inputs v'k;. v ' + ~ ! .  . . . ~ ' ~ - 1  (Bames of the segment 1): the state should be 
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8 On inputs gr . -1 '  . . . v ' , ~ - ~ ~  the state rhould be si .  
1 - 1  ' 

8 When aii the fiames are presented and the state vector is in si. the exrernal 

output which is comected to the state Layer by feed-fonvard connections musr 

have a high value indicating that m' is recognized. 

Therefore. the RN3 needs to learn from the sample word w the following transfor- 

mation: 

such that 

!dore generally. 

( .si if i = O  and v E Vo 

e last lin e is to ensure that the RXX does not recognize nmmg sequences. Note 

that it is not necessary for 



to hold. This makes the system toierant to variable-length segments. which enables it 

to handle reaiistic situations where the t h e  taken to speak a certain word varies from 

instance to instance even by the same speaker. Furthemore. it is aimost impossible 

to have the duration of a cenain segment exact- the same in different instances of 

a given word. 

In summary. 

1. -1 dpamical (abstract) system with time-nuying input and state is strongly 

believed to have the potential to handie important aspects of word recognition. 

The behavior of the system can be described by 

2 .  There are tirne-delayed samples (to be iised as training data) of the system 

which include state variables expected to appear during the system's operation 

These are ob 1 tain e c w g  a desired behavior, where the specification 

is based on characterizing a word by certain segments appearing in a specific 

order. 

Civen points 1 and 2. and according to a proposition by Olurotimi [48]! if an RXS 

is to learn the dynamics of the system x ( t )  using the a d a b l e  training data, it does 
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not need more than feed-forward comple-xi- That is. it is only required to train 

the feed-forward network embedded in the recurrent architecture by conventionai 

methods (back-propagation). The R ' iN  will leam its required dynamic behavior as 

much as the feed-forward network learns its static task. namely. the transformation 

R : V x S + S. where V is the set of input patterns and S is the set of States. 

The feed-fomard neural network embedded in the recurrent architecture is ob- 

tained by the follonring steps: 

1. Remove the extemal output unit and its connections since this part of the 

network performs onty a static pattern classification task that can be left out 

at  this stage without af5ecting the training of other parts. 

2. Remove the the-delay connections. 

3. Consider the time-delayed state vector as part of the input in the embeddec: 

network. 

4. Consider the state vector as the output layer in the embedded architecture. 

Figure 7.2 demonstrates the process. 

7.2.1 Training Data for the Embedded Feed-Forward Net- 
work 

Equation (7.1) is used as the basis for obtaining the training samples for the em- 

bedded network. Given training sequences for the RNN containing instances of the 

96 



Fieme 7.2: Obtaining the feed-fonvard neural network embedded in the R S X  

word w that is supposed to be recognized by the network as weii as instances of 

other words. an algorithm bas been designed to generate the training samples for the 

embedded feed-fonvârd network. 

Each sample generated by the aigorithm is an input-output pair. The input has 

two parts: state and (speech) frame. The generated sampies contain di possible 

States. That is. there are samples containing so in their state part. ochers containing 

s l .  and so on. 

For samples containing sa as part of the input. there are nvo possible static 

outputs: 

1. s, : if the fiame part of the sample belongs to segment O of word W. 

2. s,: othekse .  

Therefore. there should be samples of the form 



output = st 

where u is a kame belonging to segment O of W. The pseudo code used to 

produce such samples is 

for each sample sequence s belonging to word w 
for each £rame u in segment O of s 

output(soo u. SI) 
end for 

end for 

Xlso. there shoiùd be samples of the form 

input = .SO. v 

output = -5, 

where v is a frame beionging to a segment chat is spatially different from 

segment O of W .  The issue of obtaining such £rames will be discussed later. 

e For samples containing s k .  k = 1.3.3.  . . . : 1 - 1' there are three possible outputs: 

1. st: if the associated £rame belongs to segment k - 1 of word W .  

2. sk-1:  if the associated fiame belongs to segment k of word W .  

:3. Y,: otherwise. 

For samples ~ 0 n t i . g  sl in the input part. there are two possible outputs: 

1. s i :  if the associated £rame belongs to segment 2 - 1 of word W. 

2. s,: otherwise. 



Finaiiy. for sarnples containing s,. there is o d y  one possible output which is 

Sm - 

7.2.2 Obtaining frames for the undefined state s, 

-4s shown earlier. the embedded network should be trained to produce s, if the 

frame present in the input is not consistent with the input state. This includes the 

following cases: 

1. The state is so and the kame belongs to a segment that is spatially different 

from segment 0. 

2. The state is sk. k = 1 .2 .3 . .  . . .1  - 1. and the fiame belongs to a segment that 

is sparialiy different from segments k and k - 1. 

3 .  The state is si and the kame belongs to a segment that is spatially different 

fiom segment 1 - 1. 

It is very important to ident* such spa t idy  different segments as failure to do so 

could probably lead to problems in training. For euampie. if a certain segment i was 

assumed mon& to be spatially different from segment 0: the static sample 

input = so. v 

output = S ,  



where v belongs to segment i: could be incliided in the training set. However. the 

training set contains. as well. samples of the form 

input = so. u 

output = .Et 

where u belongs to segment O. Since the inputs of the two samples are practicaily of 

the same class while the outputs s,  and s, are different. this situation violares the 

definition of a mapping. and if allowed will certninly conhise the training process. 

Even if the spatial characteristics of segment i are slightly different from those 

of segment 0. the fiames of segment i should not be used to generate samples that 

have s 0  in the input state anci s, in the output. Those fiames should not be used 

becaise. after training. iuiseen frarnes that supposedly belong to segment O wiil be 

possibly viewed by the network to be close to both segments O and i. if the training 

set included such samples. this would increase the chance that the network enters 

iindefined state configurations for sequences that are acceptably close to those used 

in training. Therefore. when generating the static samples that contain a particular 

input state and map to s,! it is necessary to select the most distant segments from 

the one that corresponds to that state. One way to achieve this is by developing 

a dinerence measuremeut between segments. and selecting the segments mltk the 

highest difference values. To impiement such difference measurement? some of the 

concepts discussed in the previous chapter d be employed. 



Assume that there are n samples of segment a taken from words belonging ro 

class cl. and rn samples of segment b taken from words belonging to class c?. Let 

dist be the weighted distance function used for aiigning the segments of the words 

belonging to class cl. and distz be the weighted distance hinction used for aligning 

the segments of the words belonging to class q. First. each segment is mapped to 

a representative frarne by averaging aii the fiames in the segment. This results in 

two sets of Erames C and I' containing the representative fiames for sample segments 

of h d s  a and b respective- Second. a new distance function. dist. is derived by 

averaging the weights of the two distance funetions dist and &t2. According1~. for 

any two frames u E U and v E K. the distance between them (and also benveen the 

two segment samples being represented) is calculated as 

dist (u. v) + dist, (u. v) 
dist (u. v) = 

3 - 

To get an overd  difference measurement between the two kitids of segments. the 

distance between di possible nrn frame pairs u E LI and v E I -. is calculated. Then 

rhe average of the painvise distances is caken 

I - 1 dist(u. v). 
nnt " E  Lr vE 1.' 
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Figure 7.3: Soise handling in the recurrent networks used for visuaï speech recogni- 
t ion. 
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7.3 Noise Handling 

In the original model described in subsection 7.1.1. if a correct sequence contains 

some noise. this dl cause the state to become s, when the network reads the first 

noisy hame. and stay s, iuitil the end of the sequence. This situation is not desirable 

since it does not tolerate any noise. What makes the mode1 intolerant to noise is the 

fact that the ciment state is delayed every time to  be part of the input to the hidden 

layer in the nest time instance. 

To make the model noise-tolerant, a mechanism to monitor the current state 

is incorporated by having a control unit that indicates whether the curent state 

rvill cause the sequence to be rejected when time-delayed. If this is the case. the 



cxrrent state is ignored and an intemal counter is incremented. The same scenario 

is aiiowed to happen for subsequent frames as long as the value of the counter does 

not exceed the d u e  of a parameter caiied the noise tolerance parameter. If the 

network recovers £rom the wrong configuration before exceeding the noise tolerance 

parameter. the counter is reset and the cunent state is tirne-delayed. Othemise. the 

sequence contains more noise than mhat can be tolerated and is considered wrong. 

Figure 7.3 demonstrates the mechanism for noise handhg.  Note that the noise 

tolerance parameter is the rna.cimum number of consecutive noisy frames that are 

ailowed to e-xist in a correct sequence. If this parameter is set to zero. not a single 

noisy frame wi i l  be allowed to occur in a correct sequence. and the network wîl i  be 

noise-intolerant. 

7.4 External Output 

The external output unit indicates whether the sequence is correct or not. To deter- 

mine this. the output unir is inspected after all the input kames have been fed to the 

network. To calculate the external output. the state layer is copied into a Maximum 

Detection Subnetwork (MDS) which makes the maximum unit one and the rest of 

the tmits zero. This can be implernented by a Hopfield network perfonning a uiinner- 

take-all cornpetition in which every unit enforces itself and inhibits the others. The 

final state unit in the MDS is. then. copied into the external output unit. This wax 

any sequence causing the network to have a maximum output on the final state unit, 



at the end. will be recognized as a correct sequence. Sequences causing a maximum 

output on any other state WU be considered nrrong. The cornpucation of the extemal 

output is iilustrated in Figure 7.4. 

Figure 7.4: Computation of the extemal output in the rectment networks used for 
visual speech recognition. 



Chapter 8 

Experiments, Results and 
Conclusion 

8.1 Experirnents and Results 

In this thesis. a computer systern for visilal speech recognition has been presented. 

The input to the system is a sequence of digital images containing the face of a person 

diiring speech. In the k t  phase of the system's operation. t ime-vamg visual speech 

patterns are obtained from the sequence of images. Through a number of algorithms. 

that have been developed. main characteristics of the mouth are estimated. These 

estimates are i w d  to initialize a deformable template model. An energy fiincrion 

has been designed to measuse how well the template's geornetric primitives match 

the iips' o u t h e s  in the image. Due to the relatively high dimensionality of the 

energy function. seeking an exact solution for its minirnization problem is not prac- 

tical. Csing a numerical optimization technique. a good soiution is obtained with 

considerably less computational and storage requirements than that of an exhaus 

tive met hod. Taking advantage of the relativeiy smali change between consecutive 



hames. the system sets as initial position of each subsequent kame the best fit of 

the preceding one. chus. eliminating the need to apply the initial operations to every 

single kame. -4 recurrent neural network architecture has been proposed to classi@ 

the spatio-temporal pattern obtained in the first phase. In this network. recurrent 

connections are made between the hidden iayer and the state layer so that a contest 

c m  be combined with the input patterns which are fed to the network one at a time. 

Trxining the reciirrent network is accomplished by training the feed-forward network 

embedded in the recurrent architecture. To denve static training samples for the 

feed-forward network. a certain behavior is ipecified when the nemork is presenred 

with samp!e sequences. The specification is based on characterizhg a aven word by a 

sequence of segments appearing in a certain order. where each segment is a variable- 

length set of kames that represent a visuai speech cue. Adaptive segmentation is 

employed to segment the training sequences of a given class. This method iterates 

the execution of hvo steps. First. the sarnple sequences are segmented individualiy 

by an algorithm that bas been developed. Then, a generalized version of dynarnic 

tirne warping is used to align the segments of ail sequences belonging to the same 

class. At each iteration. the weights of the distance functions used in the previous 

two steps are updated adaptively in a way that minimixes a segmentation error. 

The system has been irnplemented using the C language and sirnulated on a Sun 

Sparc workstation under the Unix operating system. To test the performance of the 

rnouth extraction subsystem. the technique has been applied CO 15 people. Figure 



8.1 shows the resdt of some samples. 

Figure 8.1: Defonnable template appiied to images. 

-1s can be seen. the method tolerates some rotation and facial tilt. The grey 

scale valiies of the p~uels in the lips region varied from person to person. and the 

program ivas stiU able to get a good match. Aiso. the presence of facial hair did not 

seern to have affected the performance of the program. It should be noted that when 

matching natural curves with pararnetrized curves? slight details might be missed. 

However, the final parameter values are. to a great extent, accurate. This is suitable 

for the task of visual speech recognition, since the ta& uses oniy the d ~ a m i c  change 
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of those parameters over tirne. Because the method of locating the mouth depends 

on locating the eyes. the system is limited to cases where the speaker's e y s  can be 

seen. If the speaker's eyes are obscured by wearing a pair of sunglasses. for euample. 

the system not be expected to locate the mouth appropriately because it Nill 

probably fail in locatkg the eyes. 

To test the complete system. experiments have been carried out to recognize 5 

words: yes. no. down. right. left. A person was recorded while uttering each word 

6 times using an 8 mm Sony Handycam. The recordings were copied to a Beta 

format tape. then digitized and sampled at the rate of 30 h u e s  per second in one 

of two methods. In the first method. the Beta tape was played back one frame at a 

time using a Beta ACE editor. The ACE editor produced an NTSC signal that was 

captured and saved to disk by a Sun Videop~u capture board. In the second method. 

the Beta tape was played by a Beta X E  editor and the output was sent to a personal 

anzmation recorder. This recorder consisted of two specialized hardware car& that 

were put in a Pentium computer system. One of the cards was a Live Video card wirh 

a time base corrector. The Live Video card sent its output to a PAR board (video 

compression board) that stored the video on a hard drive in compressed format- 

The personal animation recorder system had software to retrieve the video and store 

it as a sequence of individual frames in jpg format. A training data set consisting 

of 4 instances of each word class was used to train 5 recurrent units corresponding 

to the 5 word classes. The training sequences were segmented using the adaptive 



Table 8.1: R e d t s  of implementing the visual speech recognition system to recognize 
-5 word classes (adaptive segmentation was used in this implementation) 

Sequences 7 
Y S  
no 

d o m  
right 
le ft 

Static 1 Convergence 1 Performance 1 Performance 

segmentation technique proposed in chapter 6 .  Accordingly. static samples were 

generated to train the feed-forward networks corresponding to the recurrent units 

as described in chapter 7. Each feed-forward network was trained independently for 

LOO0 iterations usiiig the backpropagation algorithm described in subscction 2.5.1. 

Training was stopped in nny of the networks whenever the system error for that 

network was reduced to 0.01. Mter training. the system was tested on a data set 

consisting of the sequences that were not tised for training (2 instances for each 

word). Table 8.1 sumar izes  the training process and the classification results for 

the sptem. There was only one case where a misclassification happened. One of the 

'right' instances was confused to be 'y'. which c a w d  the performance of the 'yes' 

imit on the training set to be 19/70. Due to the relatively s m d  size of the training 

data. the 'yes' unit was not able to capture all the ciifferences between the two words. 

There were no other kinds of confusions. In particular. the recognition scheme was 

able to distinguish between 'down' and 'right' even though they have common starting 

parts (/da/ Ira/). Aso, 'down' and 'no' were diçtinguishable despite the fact that 

Samples 
198 

error iteration 

0.0373 at 1000 
on Training Set 

19/20 
on Test Set 
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Table 8.2: Results of implementing the visual speech recognition system to recognize 
5 word classes (adaptive segmentation was not used in this implementation) 

1 Word 1 Training 1 Static ( Convergence 1 Performance 1 Performance 

most segments in 'no' do exkt in 'down'. 

Y= 
no 

down 
right 
Ieft 

To show the efFect of the adaptive segmentation technique proposed in this thesis. 

another system was built in exacily the same way as the first one. except that the 

adaptive segmentation of chapter 6 was nor used. The results are summarized in 

Table 8.2. 

The convergence of the second system was generally slower than before. indicating 

chat adaptive segmentation provides an easier task to learn. Furthermore. r he classi- 

fication residts were much better in the k t  system that used adaptive segmentation. 

It is worrh mentionhg here that the cornputational tirne required to train the tasks of 

the fmt system. which used adaptive segmentation, was less than the time required 

y the tasks of the second system. These results demonstrate that segmentation plays 

a crucial role in visual speech recognition, and the method of adaptive segmentation 

when appiied to the training sequences leads CO a better system. 

Sequences 
4 
4 
4 
4 
4 

Samples 
554 
44-4 
694 
646 
628 

error iteration 

0.3924 at 1000 
0.0153 at 1000 
0.0117 at 1000 
1.4941 at 1000 
0.0170 at 1000 

on Training Set 
16/20 
20/20 
20/20 
16/20 
18/20 

on Test Set 
8/ 10 
10/ 10 
8/ 10 
8/10 
9/ 10 



8.2 Contributions 

I. Knowledge about the spatial organization of the human face has been iised to 

develop a heuristic that limits the search space of the mouth location effectively. 

The heuristic is based on characterizing the mouth by its relative iocation with 

respect to the eyes rather than local details of the human mouth which are very 

sensitive to distance. orientation and illumination; furthemore. these cas va? 

fiom person to person. The eyes are located by appl-ying a simple version of 

di t  analpis to the Laplacian of the facial image. 

2. Several dgorithms proposed here have been applied to estimate local measure- 

ments of the mouth. including the cemer. left and right corners. and upper and 

lower lips. These algonthms anaiyze the relative magnitude of the grey leveis 

associated with horizontal and vertical lines in the region of interest. The algo- 

nthms provide a robust means of positioning an initial mouth template prior 

to the application of the deformable template. This is knolvn to be cmcial for 

the technique to succeed in extracting the shape of the mouth. 

3. The two-phase rninimization algorithm proposed in this thesis, which uses a 

modified version of Powell's method, has been shown to be suitable for min- 

imizing the energy function of the mouth deformable template. so that the 

system is able to track the speaker's mouth during speech. 

111 



4 The approach taken to mode1 the mouth in terms of key parameters not only 

enables the extraction of its shape. but also provides a compact description of 

it for classiîication. 

5. The fact that there is a relatively s m d  change in the visuai speech signal 

makes the task of visual word segmentation ciifficuit. This thesis presents a 

robust method to identify potential candidates for segment boundaries. 

6. In the projec t7 the dynamic time warping algonthm has been generalized to take 

several sequences as  input instead of two. The generalized aigorithm selects the 

segment boundaries for words of the same class by finding warping paths that 

rninimize a weighted distance measure. 

7. The idea of adaptive segmentation has been introduced. Civen an initial seg- 

mentation of a set of words belonging to a certain class. properties of the seg- 

ments are learned and reflected in the weights of the distance functions used for 

segmentation and alignment such that a better segmentation will be produced 

if the adjusteci distance fuzrctions are ued .  

S. A reciurent neural network architecture has been proposed for visual word 

recognition. The recurrent connections between the state and the hidden layers 

provide a context with each speech pattern so that the network is capable of 

capturing not o d y  the spatial characteristics of the individual patterns. but 

also the dpamic change of the patterns tvith t h e .  
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9. The proposed architecture for recognition aiiows for a naturd way of handling 

variable-length words by taking the input patterns one at a tirne. This elimi- 

nates the need to alter the input sequences to make them of a fked length- 

10. By speci&hg a desired behavior based on word segmentation. the recurrent 

network is trained with no more than feed-forward cornplexi. Theoretically. 

this approach guarantees that the dparnical behavior is leamed as long as 

there is an unambiguous training set representing the state variables of the 

system in the form of static samples. 

8.3 Directions for Future Work 

8.3.1 Use of Other Articulators 

in this thesis. the shape of the lips has been used for speech recognition. Perhaps 

the movement of the lips is the most valuable source of information. but it is not 

the only one. For example. the appearance of the teeth and tongue may assist 

in automatic lipreading as it is beiieved to do in human iipreading. -4 system that 

wodd incorporate those articulators should contain a subsystem which automatically 

analpes the interior of the mouth. searching for such objects as the teeth and tongue. 

A s~i table modeling technique for the teeth and tongue would also be necessary. 

8.3.2 Clustering Segments 

When static samples for training are being generated, determining the most distant 

segments fkom a particular segment is significant in preserving the network's ability 
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to tolerate spatial variations in unseen sequences. Our system uses a linear distance 

function for the task. This mi& not be the best way to do it. Clustering ail 

the segments based on nonlinear associations to determine the dinerence bct\ccxo 

segments might provide an improved systern. for example. 

8.3.3 Nonlinear Classifiers for Segmentation 

The idea of adaptive segmentation is implernented using h e a r  hinctions. In generai. 

linear functions have limited classification capabiiities. Therefore. it is believed t hat 

the adaptive segmentation technique ndi improve if it uses nonlinear hinctions. -4 

suitable way to irnplement this could be by neural network classifiers. 

8.3.4 Extension to Multi-Speakers 

It is desirable to extend the system to handle rnirltiple speakers. We beiieve that this 

will add a new dimension to the problem. For example. because people are different in 

the physical characteristics of their mouths. it is possible that the geometric features 

representing mouth shapes of two dinerent speakers at the same viserne be different. 

To handle this properl- it might be necessary to incorporate additional features 

characterizing the speaker with each hame. Another implication of hai-ing multiple 

speakers is the alignment. be tween training sequences of different speakers. The 

distance function used for that would have to be designed in a way that accounts 

for the Merences between different speech cues but not for the Merences emerging 

from the physical characteristics of the speakers. 
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