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ABSTRACT 

The prox-regular hinctions, a broad class of nonsmooth functions of inter- 

est in variational analysis and opt imization, recent ly introduced by Poliquin and 

Rockafellar in finite-dimensional spaces, are further studied in Hilbert spaces. The 

key properties of prox-regular functions in Rn which include a subgradient char- 

acterization of prox-regulmity, a Lipschitzian property of the graph of the subd- 

ifferential mapping of a prox-regdar function, and smooth (Clf) and convexity 

(lower-C2) properties of its envelope functions are extended to an arbitrary Hilbert 

space. Subgradient and proto-derivative characterizations are also given in separa- 

ble Hilbert spaces, for the convexity and the strong convexity of envelope functions. 

A partial extension in Hilbert space is given to the comection between the second- 

order Mosco epi-derivatives of prox-regular functions and the proto-derivatives of 

tbeir subdltferent ials, 

Two new issues of prox-regular functions are taken up. First, the smooth- 

ness property of envelope functions is used to solve the fundamental problem of 

identiQing nonsmooth functions (up to an additive constant) korn their subdif- 

ferentials for a large class of prox-regular functions in Hilbert space. Second, the 

basic calclilus rules such as addition of prox-regular functions, and a more general 

form of chah rde ( composition of a prox-regular function with a CL+ mapping ) 

are developed in fite-dimensional spaces. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background and Motivation 

Nommouth analysis is one of the most attractive and promising axeas in mod- 

ern mathematics. A systematic study of local behavior of nondifferenriable (not 

necessarily differentiable) functions and set-valued mappings (multifunctions) is 

accomplished in such a fiamework. In recent years, it has grown rapidly in con- 

nection with the study of problems of functional analysis, optimization, optimal 

design, mechanin and plasticity, ditferential equations, and control theory. Re- 

cently, Terry Rockafellar, a pioneer in this area, has given a more appropriate title, 

variational analysis, to reflect this breadth (cf. [46]). 

It is well known that the subgradients of convex functions have very favorable 

properties, and have been the basic impetus to develop more general theory of 

nonsmooth analysis. Evidently, identifying nonconvex functions with properties 

that closely resemble the properties of convex functions is advantageous for the 

possible development of both the subgradient theory and computation. 

In this thesis, we focus on one such class of functions; namely prox-regular 

functions in Hilbert space. These functions were first introduced in 1996, by 

Poliquin and Rockafe11a.r in (291, and thoroughly investigated in [29] and [30]. 



However, their analysis is conûned to finite-dimensional spaces and does not ded 

with important issues like integration of subdSerentials and the calculus rules of 

prox-regular functions. Our further investigation not only deals with such issues 

but extends most of the important properties in [29] to an arbitrary Hilbert space. 

First, we introduce the prox-regular functions and discuss the key facts de- 

veloped in [29]. A concept that is essential in defining prox-regular functions is 

that of the proximal subgradient. 

Let f : Rn -t R := R U {ha) (Le., extended-real-valued function) and f be a 

point where f is finite. A vector G in Rn is said to be a proximal subgradient of 

f at 5 provided that there exist scalars E > O and r > O such that 

T 
f(x) > f(z) + (ù,x - 5 )  - 51x -5i2 for all  x E B(z;E), 

where B ( ~ ; E )  is the open ball of radius E > O, centered at Z. The set of such 8: if 

any, is denoted a, f (5) and is referred to as the proximal subd@ential. 

A limiting form of f is defined by 

which is referred to as the limiting (proximal) subdifferential. 

Another useful limiting subdifferential is defined by 

which is referred to as the limiting singular subdiffeerential. 

A lower semicontinuous (1.s.c.) function f : IR" + is said to be pmx-regular at 

5, a point where f is finite, for the subgradient ü E a f (I), if there exist parameters 

E > O and r 2 O such that for every point (x, V) E gph a f obeying lx - II < E: 

2 



1 f (x) - f (z)[ < E, and Jv - ül < E, one has the local estimate 

r 
f(z') 2 f(z) + (v,zl - z) - -lxf -x12 for d x' E B(z;E).  

2 

When th& holds for all 5 E af (l), f is said to be prox-regular at 5. 

The class of prox-reguiaz functions can be described as a very broad class of 

nonsmooth huictions of interest in variational analysis and optimization, which ad- 

m i t ~  effective generalizations of many of the subditferential properties of extended- 

valued convex functions. 

Now we summarize the key facts of prox-regular functions developed in [ZQ]. 

(a) Subgradient characterization of prox-regularity 

The following subgradient characterization of prox-regularity, established in [29], 

deserves special attention in sever al respect S. 

A I.s.c. function f is prox-regular at Z for tj if and only if ü is a proximal subgradient 

of f a t  5 and, under a suitable localization (f -attentive), the multifunction 8 f +TI 

is monotone. 

In most cases, this subgradient characterization can be used as a handy tool to  test 

the prox-regularity of a function. For example, all Cl+ functions (differentiable 

with locally Lipschitz gradient), all 1.s.c. proper convex functions, all lower-C2 

fimctions (locdy the sum of the function and a positive multiple of the n o m  

square is convex), and all primal-lower-nice functions (see Definition 2.2.1) are in 

turn prox-regular too. 

As it was pointed out in [29], the above "pre-monotonicity" property of af 
is sufficient for a full range of desirable subdifferentiable properties. For example, 

when f is prox-regular at 5 for 5, the graph of af coincides, under a suitable 

localization near (6, ü), with a Lipschitz manifold of dimension n in Rn x IR", a 



property previously detected only for convex funetion and their very close allies 

[39]. Further, it plays a key role in establishing the smoothness and convexity 

properties of envelope functions of a prox-regular function. 

(b) Regularity and convexity properties of envelope functions 

For a proper, 1.s.c. function f : Rn -t and parameter X > 0, the Moreav 

auelope function is defined by 

These functions not only approximate but provide a kind of regularization of f .  

For a 1.s.c function j (may t ake oci values and exhibit discontinuities) minorized 

by some quadratic function, it is known that, for X s m d  enough, e, is finite and 

locdy  Lipschitz continuous, and approximates f in the sense that ex increases 

pointwise to f as X \O (see the book by Attouch [Il). 

AS a cornpanion to the envelope function eA we have the proximal rnapping PA : 

Rn =t Rn dehed by 

that relate to the numerical techniques like the proximal point algorithm in the 

minimisation of f . 

For a prox-regular function, a strong connection between the function and its 

envelope functions and the prolomal mappings was established in [29]: 

If f is prox-regular and subdifferentially continuous at 5 for ü (see Dehition 2.2.3), 

then for any X E (O, l l r ) ,  where r is a parameter in the definition of prox-regularity, 

there is a convex neighborhood V of 2 such that 

the mspping Px is single-valued and Lipschitz continuous on V with PA = 

( I f  AT) -l, where T is a localization of a f around ( 5 , ~ ) .  



the function ex is a differentiable function with locally Lipschitz gradient 

(Clf) and lower-C2 on V with 

T 1 
eA + 2(1 - A r )  

1 - l2 convex VeA = - [ I -  X P ~ ]  = [xI+T-']-~.  

These are very important hdings of prox-regular functions not only fiom a 

variational analysis point of view but for the possible developrnent of numerical 

methods for miniminhg ex, which in e f k t  would open a new approach to mini- 

mizing f despite its nonsmoothness. In fact, these are the properties one would 

expect only of convex functions and alike. For instance, when f is convex ex iç 

convex too, and actually of class Clf ,  and the above formulas hold. Moreover, 

the proximal mapping PA can be used not only to parameterize the graph of af 
but in comection with convex minimization algorithms such as the proximal point 

a lgor i th ,  see [36]. 

(c)  Second-order Theory 

In addition t O the desirable hnctional and subdifferent iable propert ies out lined 

above, prox-regular functions have particularly satisfactory second-order behavioux 

in Rn. In [29], a perfect equivalence between second-order epi-differentiability of 

f at Z for ü and the proto-differentiability of a suitable localization of 3 f at (I, ü) 

was established with a natural formula relating these two derivatives. This gen- 

eralizes the classical idea of obt aining second derivat ives by diff erent iat ing first 

derivatives, which was previously known only for convex functions and strongly 

amenable functions; see [23], [25] and [42]. 

Mor eover , the additional hypothesis t hat the second-order epi-derivat ive func- 

tion f& is finite on a neighborhood of the origin suffices to establish the second- 

order expansion (possibly with a nonquadratic second-order term) formula 

f (z) = f (5) + ( q x  - 5) + f&(x - 5 )  + 011 - qZ. 
5 



1.2. Hilbert Space Extensions and New Issues 

Hereo we state and discuss the principle results of our investigation. In the fÙst 

part of the thesis, we extend the results (a), (5) and (c) to Hilbert spaces. In the 

remaining part, we focus on two new issues of prox-regular functions. 

(A) Extension of subgradient characterization 

We begin by extending the subgradient characterization of prox-regularity, de- 

scribed in (a), to an arbitrary Hilbert space. This extension enables us not only 

to enhance the territory of the prox-regular class but to obtain many desirable 

subdifkrential properties, including the Lipschitz manifold property of the graph 

of a f.  The smooth variational pnnciple is used as  a basic tool in establishing this 

r esult . 

(B) Extension of regularity and convexity properties 

We prove that aJ.I the results stated under (b) are true in aa arbitrary Hilbert 

space setting, including the Cl+ smoothness (Fréchet sense) and the convexity 

properties of envelope functions. This clearly allows, as  mentioned under ( b )  , in 

the possible development of subgradient theory and computation to tackle some 

Hilbert space problems as well. We give one particular example, in the theos, of 

partial differential equations, to highlight thiç point. 

In [47], Stromberg studied the following Cauchy problem: 

u(x,O)  = f(2) 2 E X ,  

where X is an arbitrary Hilbert space. 

He proved ([47], Proposition 3) that when X is an arbitrary Hilbert çpace and 

f + & I2 is convex, where T > O, !i.e., f is lower-c2 everywhere and hence 



prox-regular everywhere too) then 

is a solution to the above Hamilton- Jacobi equation at each point (x: t) in X x 

(O, T) 

Now we c m  say more here: 

For a prox-regular hinction f (wïth parameters E and r )  at 2 for 3, we know that 

et (x) is Clt around 5 for small enough t, and hence, there is a neighborhood V 

of 2 such that u ( x ,  t) = et(x) is a local solution to the above Cauchy problem at 

every point (x, t )  in V x (O, l / r ) .  Note here that f may d o w  infinite values and 

exhibit discontinuïties, and hence there is much fiexibility for setting up the initial 

condition for u. 

In addition to the lower-C2 property of ex, conditions were given in [29] 

under which ex itself is convex or strongly convex. We also find extensions to 

these results in separable Hilbert spaces. In achieving these results, an extended 

version of Rademacher's theorem, a concept of null sets in Banach spaces, and a 

criterion for integrability of Banach space valued functions are employed as weU. 

(C) Extension of second-order theory 

The extension of the second-order theory of prox-regular functions to Hilbert 

spaces is not that prornising. We estabhh the following partial extension for 

the generalized second-or der differ entiat ion: 

Let f be prox-regular at 2 for fi. If f is twice Mosco epi-differentiable at f for a, 

then a suitable localization of the subgradient mapping a f is proto-differentiable, 

and the natural derivative formula holds. The extended results of smoothness 

and convexity properties of e~ play an important role in achieving this result. A 



Hilbert space example is given to show that the second-order expansion of a prox- 

regular function fails to exïst even for a convex hinction with h i t e  second-order 

epi-derivat ive everywher e. 

(D) Integration of prox-regular functions 

A fundamental problern in nonsmooth analysis is to identify functions that c m  be 

recovered up to an additive constant, fiom the knowledge of their subgradients. 

More precisely, a function f is deemed integable if whenever &g(x)  = a+ f (x) 

for all z then f and g ditfer only by an additive constant. Here a+ refers to 

a subdifferential which can be taken in many different wsys (eg. Clarke subdif- 

ferentid, Mordukhovich subdifferential, Fréchet subdifferential, Ioffe approximate 

subdifferential, proximal and limiting subdifferential) . 

Probably the most well known and the oldest result in this area is that the 

convex functions are integrable (in the above sense) even in a Banach Space; see 

1331. However, very few other examples were known. For convex functions all 

types of known subdifferentials are reduced to the subdifferentid in convex anal- 

ysis, but in nonconvex cases the Srpe of the subdifferential used plays a key role. 

The proximal subdifkrential has been successful in identifj6ng some nonconvex 

functions (up to an additive constant). This was done by Poliquin [24] for the 

p.1.n. fwictions defined on IR", and later extended to Hilbert spaces by Thibault 

and Zagrodny [48]. 

The contribution we make to the integration problem is to idente a large 

class of prox-regular functions tnat can be recovered from the knowledge of their 

limiting (proximal) subgradients. More precisely, we prove in an arbitrary Bilbert 

space that if two hinctions, which have the same limiting subgradients locally, 

are prox-regular and subdEerentially continuous relative to a pair ( 5 , ~ )  then the 



functions dïffer by a constant in a local neighborhood of (5, ü). We also conçtruct 

an example to show that our integration result covers a much broader class of 

functions than that of the p.1.n. case [24]. The central too1 that we employ here 

is the smoothness property of the envelopes of prox-regular functions. 

(E) Calculus of prox-regular functions 

In [29], a large core of examples were aven to show the magnitude and applicability 

of the prox-regular class. However, the lack of calculus rules has been a hindrance 

to the constructive development of this clas. We overcome this dficulty by 

developing basic calculus d e s  for prox-regular functions. A master key to our 

calculus is the following chah rule. 

Let F : Rn + mm be CL+ neaz 2 and g : IRm -+ R with g ( F ( 2 ) )  finite and 

a natural constraint quacation is satisfied at F(5) .  We prove that for a h e d  

ü E a(g 0 F) (s ) ,  if g is prox-regular at F@) for all y E g(F (5)) with T F ( % )  * y = ü, 

then the composite function g o F is prox-regular at 2 for ü. Here VF(Z)*  denotes 

the adjoint of the Jacobian matrix V F  at 5. 

As an easy application of the above chah rule we have the following sum rule: 

Let f = fi+ fi, fi : Rn -r Rand ii E dom f and the only vector yi E aa5 fi@) with 
y1 + y2 = O is y1 = y2 = O, where do" f denotes the limiting singular subdifferential 

- of f . Assume &O that fi are prox-regular for all vi E a f i ( Z )  such that + v2 = v. 

Then f is prox-regular at I for ü. 

Another consequence of our chain ruie is the identScation of new examples of 

integrable functions (in the sense of (D)) on Rn. 

This thesis is organized as follows. In Chapter 2, we extend the main results 

of prox-regular functions in IRn to Hilbert spaces. That includes a subgradient 



characterization of prox-regular functions, regulazity and convexity properties of 

its envelope functions and sorne second-order properties. In Chapter 3 we present 

an integration result, and in Chapter 4 we give the calculus rules of prox-regular 

functions with some of their consequences. 

1.3. Notation 

The terminology and notation we adopt here is the standard one of convex and 

variational anaiysis (cf. (141, [35], (461). We'U be working in a real Hilbert space 

X with n o m  1 - 1. The open unit bal1 in X is denoted by 8, its closure by B. The 

open baLI of radius r > O, centered at x ,  is denoted by B ( x ;  r) ,  and its closure by 

A quite useful convention in optimization theory, which we'll also adopt, is to 

allow functions to be eztended-real-valued, i.e. to take values in R = [-oc, w]. We 

employ extended arithmetic with the convention (oriented toward minimization) 

The extended-real line W has a.U the properties of a compact interval. Every 

subset R C R has a supremum (least upper bound) in R, which is denoted by 

sup R, and likewise an infimum (greatest lower bound), inf R. 

For an extended-real-valued function f on a set C: we also introduce notions 

for the sets of points x where the minimum or maximum of f over C is regarded 

a s  being attained : 

argmin f := argmin f ( x )  := { X E  Clf(x) = i d c  f )  if infc f #=, 
C xEC if i d c  f = w, 



For a function f : X -, R we d e h e  the following: 

The effective domain of f is denoted by 

dom f := {XEXI f(x) <+a) 

and its epigmph 

epif := ((2,~) E X x RI f(x) 5 a}. 

We c d  f a proper funmion if f (x) < a? for at least one x E X, and f (3) > -os 

for ail x E X, or in otherwords, if dom f is a nonempty set on which f is finite; 

otherwise it is Zmproper. 

The function f : X + is lower semicontinuous (L.s.c.) at I if 

and lower semicontinuous on X if this holds for every 5 E X. The 1.s.c. of f 

at 2. is clearly equident to saying that for al1 s > O, there exists 6 > O so that 

y E B(3; 6) implies f (y) 2 f (5) - e. 

Let S be a subset of X. The indicator finction of S, denoted by Is ( O ) ,  is the 

extended-valued function defined by 

~ x E S ,  
Is := { !m otherwise. 

The inner pmduct of v and x is denoted (v ,  x), a notation which is also employed 

when X is a Banach space for the evaluation, at x E X, of the h e a r  functiond 

v E X* ( the space of continuous linear functionals defined on X). 

The notation z = w-limk,, x k  or x k  3 x means that the sequence { x k  ) converges 

weakly t o  x in X. 



Let Y be another Hilbert space. A set-valued map (multifunction) T fiom X 

to Y, written as  T : X S Y, is characterized by its graph, gphT, the subset of 

the product space X x Y defined by 

The domain and range of T : X =t Y are taken to be the sets 

domT := {x IT(x)  #@), rgeT := {y  131 with y ~ T ( x ) ) .  

The inverse T-' of T is the set-valued map £rom Y to X, defined by 



CHAPTER 2 

PROX-REGULAR FUNCTIONS IN =BERT SPACES 

Analysis of prox-regular functions is based on proximal anaiysis in Hilbert 

space. For this reason, in section 2.1, we review the basic concepts in proximal 

analysis. In section 2.2 we define the prox-regularity of a function in Rilbert space 

dong with the subdifFerentia.1 continuity. Section 2.3 establishes the subgradient 

characterization of prox-regularity. In section 2.4 we obtain the regularity prop  

erties (Clt smoothness) of Moreau envelopes of a prox-regular function. we also 

identify a localization of gph d f of a prox-regular function f with a Lipschitz mani- 

fold in X x X. Section 2.5 deals with the convexity properties of Moreau envelopes. 

We show that for a prox-regular function the Moreau envelope function is lower-C" 

(i.e., locally the surn of the function and a positive multiple of the norm square 

is convex). Eùrther the conditions are given in separable Hilbert space setting, 

under which ex itself is convex or strongly convex. In section 2.6 we give a partial 

extension to the second-order property [29], Theorem 6.1. We prove in a Hilbert 

space that when f is prox-regdar and twice Mosco epi-differentiable at I for ü 

then a localization of the subgradient mapping af is proto-differentiable at Z for 

ü, with a natural formula relating these two derivatives. A Hilbert space example 

is given to show that the second-order expansion of a prox-regular function fails - 

to  exist even for a convex function with finite second-order Mosco epi-derivative 

ever ywhere. 



The proximal subgradient, a generaIized notion of ciassical derivative, turns out to 

be a powerful tool in characterizhg a variety of functional properties in nonsrnooth 

analysis. A powerful body of theory of proximal subgradients and their counter- 

parts, the proximal analysis, is now available. We refer the interested reader to 

the recent book of Clarke, Ledyaev, Stern and Wolenski [14] for a coherent and 

comprehensive exposition of proximd analysis. 

First, we gather a basic tool kit h m  proximal analysis for our task ahead. 

RecaU that X denotes a real Hilbert space and represents the extended real 

line. 

Definition 2.1.1. (pro-al su bgradients) Let f : X + iR and if be a point 

where f is finite. A vector à is a proximal subgradient off at 2, if there e~ist E > O 

and r > O su& that 

T 
f(z) 2 f(Z) + (ü,x -2) - 21x-42 for alI x E B(T;E): 

where B(5; E )  denotes the open b d  of radius -c > O, centered at 5. 

The set of all such ij is cienoted by a,, f@), and is referred to LU the pmzimd 

su bdiferential. 

The existence of a proXima3 subgradient ij at 5 thus corresponds t o  the ex- 

istence of a "local quadratic support" to f at f. This means the possibility of 

approximating f £rom below (thus in a one-sided manner) by a function whose 

graph is a parabola. The point (f, f (2)) js a contact point between the graph of f 

and the parabola, and B is the slope of the parabola at that point. Compare this 

with the mual derivative, in which the graph of f is approximated by an f i e  

funct ion. 



It follows d e d i a t e l y  from the definition that the proximal subdifferential, 

a, f ( g ) ,  is convex, however it is not necessarily open, closed, or nonempty. 

Example 2.1.2. Let f : IR + B. One can eady  verify that the following: 

3 2 

(b)  XI = - 1 x 1 3 / 2 ?  4, (2) = { @  i f x z o ,  
i f x  = O. 

-- 3 Z  - ifx<O, 
-lx13/2 ifx 5 O: 

if x > 0, ifx=O, x 
ifx > O. 

Note that in (b), f is a Merentiable (Cl) function but it has no proximd subgra- 

dients at x = 0, and in (c ) ,  the subdifferential set f (x) a t  x = O iç not open or 

closed. 

Before developing further properties of proximal subgradient s, we oeed to 

recall some facts about classical derivatives. 

Let F map X to another Hilbert space Y. The usual (one-sided) directional 

derivative of F at x in the direction v is 

when this limit exics. F is gaid t o  admit a Gâteaux derivotive at x, an element 

in the space L(X ,  Y) of continuous linear operators kom X to Y denoted D F ( x ) ,  

provided that for every v in X, F f  (x, v )  exists and equals D F ( x ) v .  This is equiv- 

alent to saying that the diaerence quotient converges for each v ,  that one has 

F (x + tv )  - F ( x )  
= DF(x)v ,  



and that the convergence is miform with respect to u in finite sets (the last con- 

dition is automatically true). If the word ' n i t e "  in the preceding sentence is 

replaced by "compactn, the derivative is known as Hadamur& for "bounded7' we 

obtain the Fréchet derivative. When X = Rn: Hadammd and Fréchet Meren- 

tiability are equivalent; when F is Lipschitz near x: then Hadamard and Gâteaux 

dserentiabilities coincide. 

It turm out that the dinerential concept most naturally linked to the theory of 

limiting subgradients is that of strict differentiability (cf .  [12], proposition 2.2.4). 

We s h d  Say that F admits a strict derivative a t  a, an element of L(X ,  Y) denoted 

D,F(x), provided that for each v, the following holds: 

h l  
F(xf  + t u )  - F (x') 

= D,F(x)v 
2' -5 t 

t l 0  

and provided the convergence is uniform for v in compact sets. (This iast condition 

is automatic if F is Lipschitz near x). 

The first proposition relates 3, f to classical dinerentiability. Recall that a function 

f is said to be proper if f (x) < oo for at least one x E X, and f (x) > -cm for all 

x E X .  

Proposition 2.1.3. Let f : X -+ R be I.s.c., proper and U c X be open. 

(a) Assume that f is Gâteaux differentiable at x E U. Then 4 f(x) c {D f (x)). 
(b) IF f E c~(u), then 8,f (x) = {D f(x)} for a.ü x E U. 

(c) Iff is convex, then u E a, f (x) if and ody if 

f(y) 2 f ( x ) + ( v , y - 2 )  f i r d  y E X *  (2.1s) 

In other words, when f is convex Bp f (x) coincides with the subdifferentiul of convex 

anaZy3is (the set of vectors v sat isf jhg 2.1.1). 

Proof. See Clarke, Ledyave, Stern and Wolenski [14], CoroUazy 2.6. O 



One of the primsry aims of subgradient theory is the analysis of optimality. 

The classical rule of Fermat states that a fimction's derivative must vanish at a 

local minimum. This d e  has the following extension to our nonsmooth setting. 

Proposition 2.1.4. Fermat's d e  generaüzed) Let f : X -+ R be 1.s.c. and 

proper. 

(a) If f bas a local minimm at 5, then O E a , f (~ ) .  
(b) Conversely, if f is convex and O E a, f (z), then 5 is a global minimum of f .  

Proof. 

(a) The definition of a local minimum says that there exists e > O so that f (x) 3 

f (5) for ail x E 8 (2; 6) , which satisfies the definition 2.1.1 with ij = O and 

r = 0, and hence O E a, f (5). 

b) Under the hypothesis, (2.1.1) ho& with v = O. Thus f (x) 2 f (3) foi d 

x E X, which says that f is a global minimum of f .  Cl 

Nonsmooth calculus has been developed in vazying degrees of generalil The 

price to pay for the greatest generality is heavy in terms of technicaliQ. Here, we 

will not survey proximal calculus extensiveIy, however for our purposes we record 

the basic sum rde. First note that we cannot expect a calculus sum   le of the 

form 

a p m  + a&) = $(f + 9)(4 

to hold in much generality. The inclusion a, f (x) + a,g(x) c (f + g) (3) can be 

established easily, but unf~rtunately~ it is nearly useless. To see that the reverse 

inclusion is not always true, simply take f ( x )  = 1x1 and g(x )  = -lx 1 and compare 

the subgradient sets at O. 

We observe that the sum rule just mentioned is trivial if one summand is C2. 

17 



Proposition 2.1.5. Let f : X + be 1s.c-, proper, and let 5 E X whese f is 

finite. Suppose further that g is C2 in a neighborhood of 5. Then 

Proof. Use the fact that for a C2 hinction g the defining functional inequality of 

proximal subgradient can be applied to both g and -g with their gradients. 

Even though the exact sum d e  fails in general, the following result known 

as "fuzzy s u m  rule" holcls in surprising generality. 

Theorem 2.1.6. (fuzzy s u m  nile) Let xo E dom fi n dom h, and let v E a,( f + 
f2)(x0). Suppose that either: 

(a) fi and fi are weakly lower semicontinuous (automatically the case if X iç 

h i t e  dimensional); or 

(b) one o f  the functions is Lipschitz near xo. 

Then, for any e > O, there e-uist (for i = 1,2)  points xi E B ( X ~ ; E )  With 

1 fi (xo) - f i ( x i )  1 < e S U C ~  that 

v E a,f&l, + a p f 2 ( x 2 )  + =B, 

where B is the open unit b d .  

Proof. See Clarke, Ledyave, Stern and Wolenski [14], Theorem 8.3. a 

We now record another important fact about proximal subgradients in Hilbert 

spaces; the set dom(% f )  of points in dom f at which at least one proximal sub- 

gradient exists is dense in dom f. 

Theorem 2.1.7. (demie theorem) Let f : X -+ be I.s.c., proper, and bounded 

below. Then the foflowing set is a dense subset of gph f: 

S := {(x, f(x)); x E dom f and a,f(x) $0) 
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In pasticdar, dom@, f) is dense in dom f. 

Proof. See Clarke, Ledyave, Stem and Wolenski [14], Theorem 3.1. Cl 

One of the drawbacks of proximal subgradients is that the set 6$ f (x) wodd 

seem potentidy empty for many x, and that leads to poor calculus. A remedy 

cornes through perturbing the base point and leads one to d e k e  limiting subgra- 

dients. 

With respect to any function f : X -, R, we'll Say that a sequence of points 

x k  in X converges in the f -attentive s e w e  to 3, mitten x k  L 5, when not only 

x, + 5 but f (xk) -P f (5) (cf. [46]): 

Of course, f-attentive convergence is the same as ordinary convergence of x to Z 

w herever f is cont inuous . 

Definition 2.1.8. (limiting subgradients) Let f : X -. a and 5 a point where f 

finite. 

(a) A vector Ü is a hiting (prozimal) subg~udient off at Z, if for some sequence 

v k  such that vk E f (xk) and xc It 3 one has ü = w-hk,, uk. 

That is, we consider the set of all vectors ij that c m  be expressed as the weak 

Ümit (which is what "w-lim" sigaifies) of some sequence {uk), where uk E 8, f ( x k )  

for each k, and where x k  4 5,  f (xk ) + f (5) .  The set of all such @ is denoted by 

a f (k), and is referred to es the limiting proximal subdiffeîential. 

(b) A vector ü is a ZimiCing singular subgmdient of f at 5, if for some sequences 

t k  \ Or uk such that vk E 4 f (xk) and xk 1, one has = w-limk,, t k v k .  

The set of all such ü is denoted by aoo f (f), and is refwed to as the limiting 

singdar aubdiffemntial. 



The limiting subdiaerential, 3 f (x), which contains a, f (x) is not necessarily 

open, convex or nonernpty but it is sequentially weakly closed. hloreover, when 

X = En, af(x) is a closed set, and if f is Lipschitz near sr then a f (x) $0. 

Although a type of closure operation was used in defining t3 f (53, it is a fact 

that this set may fail to be closed when X is infinite dimensional or when f fails 

to be Lipschitz. These facts make the limiting calculus most appealing in the 

presence of Lipschitz hypothesis or in finite dimensions. Here is a sharper form of 

(nonfuzzy) s u m  d e .  

Proposition 2.1.10. (sum rule) If one of fi, f2 is Lipschitz near x E X, then 

ml + f2) (2) E afi (2) + af2 (2). 

Proof.  See Clarke, Ledyave, Stern and WoIenski [14], Proposition 10.1. 

In pardel with proximal subdifferentials, we might be led to believe that 

ah (2) + a fi(.) s a( fi + fi) (x) and hence the equality holds in proposition 

2.1.10. However, this is not the case, as seen by the foUowing example. 

Example 2.1.11. Let fi : 33- R, i = i , 2  defied by fi(z) := ( - 1 )  Then 

afi(0) = (-1, l), afi(0) = [-l,l] and a(fl + fi)(O) = {O). Hence 8fi(0) + 
3f2(0) c &fi + f2)(o). 

However, there are supplementaq hypothesis (such as regularity) under which 

equality does hold in Proposition 2.1.10 (cf. [14], Chapter 2). 

Findy, we present a limiting fonn of Chain Rule ancl S m  Rule in finite 

dimensional context, which will be useful in Chapter 4. 



Theorem 2.1.12. (chain d e )  Let f(x) := g ( F ( x ) ) ,  where F : Rn -t Rm is 

C1 on some neighborbood of 5, w M e  g : Rm + R is I.s.c., proper with F(5) in 

dom( f )  . Assume further that the only vector y E d m g ( F ( Z ) )  with VF(5)'y = O is 

y = O ,  where the Jacobian mat* for F at 5 is denoted by V F ( I ) ,  and its adjoint 

byVF( f )* .  Then 

af(q c V F ( Z ) * ~ ~ ( F ( Z ) ) .  

Proof. See RockafeUar and Wets [46]: Theorem 10.6. 

As an easy application of the chain mle we have the following sum rule. 

Corollary 2.1.13. ( sum d e )  Suppose f = fi+- - *+ fm for proper, 1.s.c. finctioDs 

fi : Rn + R and let 5 E dom f. Assume also that the only combination of vectors 

- V, = O. Then vi € a o o f i ( ~ )  w i t h % + - - - + v m  = O  Oi~l = - . - -  

For a separable function it is easy to veriS the following subgradient formula. 

Proposition 2.1.14. Let f (x) = fl(xl) + - - + fm(xm) for 1.s.c. function~ fi : 

Rn -* where x E IR"' is expressed as (x l  , . . . , x,) with xi E Pi and nl f 

-+nm =n. T h e ~ a t s n y p o i n t Z = ( 3 ~ ,  ..., 5,) where f isfidteonehas 

af(z) = afl (3,) x - - x af, (zm) 

amf(a) G amfl(ai)  x x a*f,(z,). 

Proof. See [46] Proposition 10.5. Cl 

The limiting proximal subgradients play a key role in defining prox-regular 

functions and the development throughout the thesis. 



Prox-regular functions emerge as a generalization to the primal-lower-nice func- 

tions ( p h . ) ,  earlier introduced by Poüquin [Ml, in comection with recovering a 

hinction from its subgradient mapping. First we introduce the p h .  functions in 

Hilbert spaces. 

Recd  that, in our notation, X represents an arbitrary Hilbert space while 

d f denotes the limiting proximal subdifferential on X. 

Definition 2.2.1. (primal-lower-nice propem) A 1.s.c. function f : X + a is 
primai-lower-nice (p.Ln.) at 5, a point where f is M e ,  if there exist scalars 

R > O, c > O a d  E > O such that 

u E a f ( ~ )  and I X  -11 < E.  

Before stating the definition of prox-reg~larity~ we recall that f is ZocuLIy lower 

semicontznuous at if f is 1.s.c. relative to the set {a: [ lx - b( < E, f (x) < a) for 

some E > O and a > f (5). This is equident to the epigraph of f being closed 

relative to a neighborhood of (5, f (5)). Such a neighborhood is ail that counts 

when the focus is on subgradients of f at 2. 

Definition 2.2.2. (prox-regdarity of functions) A function f : X -t R is proz- 

q d a r  at d for ü if f is finite and Iocdy 1.s.c. at z with ü E a f (5): and there 

d t ~ c a l a r s ~ > O a n d r ~ O s u c h t 6 s t  



When this holds for ail V E 3 f (I), f is said to be pmx-wgillar at 3. 

The class of prox-regdar functions is much broader than that of p.1.n. func- 

tions. We see this directly £rom the definitions that the functional inequality for 

p.1.n. functions hm to hold for ail subgradients and do so with a h e a r  growth 

condition, whereas for prox-regular functions the inequality only has to hold for 

subgradients close to a fixed f and just a neighborhood making not only x close 

to 5 but f (x) close to f ( ~ ) ,  i.e. the locaüzation of the subgradient mapping is 

in terms of an f-attentive neighborhood of (2,ü). In particular, prox-regularity 

requires every limiting proximal subgradient v near ü associated with an evolution 

point (2, f ( x )  ) near (Z, f (3)) to be a proximal subgradient, and all such proximal 

subgradients to share a common quadratic rate constant r. 

For many functions the local property of f -attentiveness is automatic, because 

closeness of subgradients already ensures closeness of function values' then the 

condition on h c t i o n  values of Definition 2.2.2 is redundant. This leads to the 

following definition. 

Definition 2.2.3. (subdifferentid continuity) A function f : X + W is subdiffer- 

entially continuow ut 3 for c, where ù E t3 f (3, if for every b > O there exist E > O 

such that 1 f ( x )  - f(Z)I < 6 whenever (x - 21 < E and Iv - ü( < E with v E af (x). 
If th% holds for aB ij E 8 f (z), f is said to be subdifferentially continuous ut Z. 

Next example shows that how a prox-regular function can fail to be subdif- 

ferentidy continuous at 5 E dom f. 

Example 2.2.4. Let f : R -, R. 



Obviously f is 1.s.c. everywhere. It 's easy to see too that f is prox-regular ev- 

e p h e r e .  The graph of af has a vertical branch at (f,ü) = (0, O), though. As 

(xk, O) 4 (5, ü) wit h x k  > O we have f (xk) = 1, so f (xt ) f r  f (Z) = O. Hence f 

fails to be subditferentially continuous at 5 for that ü. 

In [29], Poliquin and Rockafellar showed that many important functions are subd- 

SerentiaJly continuous on Rn. For p.1.n. functionç this property holds in Hilbert 

space as well. 

Proposition 2.2.5. If f : X + is p h .  at  5, then for all x in a neighborhood 

of 5 it is subdXerentidy continuous at x for any v E 3 f (x). 

Proof. The proof given in [29], Proposition 2.2 can be carried over to Hilbert 

spaces as the only requirement there was the norm be given by an inner product. 

The scope and importance of the class of prox-regdar functions in Hilbert 

space is readily appreciated £rom the fact that it includes not only all CL+ func- 

tions, all I.s.c., proper, convex functions, and all p.1.n. functions, but aU strongly 

amenable functions. 

Definition 2 .M. (strong amena bility) A function f : X -, is strongly amenable 

at 5 if f (5) is finite and there is an open neighborhood U of 5 on which f hm a 

representation as g O F with F a C2 mapping fiom U to  another Hilbert space Y 

a d  g a proper, l.s.c., convex function on Y such that the constraint quacation 



hoIds. Here D F (5) denotes the Etéchet derivative of F at 5. 

Note that in the-preceding dehition we adopt an extended version of the 

alternate fom of the constraint qualification in [29], Definition 2.4 to the setting 

of an infinite-dimensional Hilbert space, cf. [15]. 

Proposition 2.2.7. If f : X x is strongly amenable at I7 then f is prox- 

r e g d a  and subdifferentidy continuous at 5 for ü E f (2).  

Proof. Apply [15], Theorem 2.4 to conclude that f is p h .  at 2, and hence 

in particular it is prox-regular and subdifferentidy continuous (kom Proposition 

2.2.5) at 3 for any ü E a f (3). a 

S t rongly amenable funct ions are omnipresent in optimizat ion t heory and vari- 

ationd analysis. In fact the problems most cornmonly encountered in optimization 

theory can be reformulated in tems of these functions. see [IO] : [16], [18]-[20], 

[24]- [2 61, (291- [3Z] and [4O] - [4Z]. 

The analysis of prox-regularity can be geatly simplified by normalking t o  

the case where 3 = O and ü = O, dong with f (5) = O, as seen next. 

Remark 2.2.8. (perturbation of prox-regulmly) Let f : X -t be prox-replar 

at 2 for ü E Of (2) and consider the perturbed function 

We then have O E &@), almg with j(0) = O. It folows easily fiom the definition 

of prox-reguIarity for f that f too is prm-regular at 3 = O for ü = 0. 



2.3. Subgradient Charact erization of Prox-Regularity 

Our h s t  result establishes the subgradient characterization of prox-regularity in 

Hilbert space setting, which paves the way to the impending analysis. We show 

that f is prox-reg& at 5 for ü if and only if ü is a proximal subgradient of f 

at and, under suitable localizat ion the multifunction 8 f + TI is monotone (ï is 

monotone if whenever ui E I'(xi), i = 1,2, then (ul - up , XI - x2) 2 O), where 

T > O constant and I is the identity mapping. This "pre-monotonicitf property 

is d c i e n t  for a full range of desirable subditferentiable properties. For example, 

when f is prox-regular at ii for ti, the graph of df coincides under a suitable 

locaüzation near (Z, ü) (Definition 2.3.1), with a Lipschitz manifold in X x X (see 

Theorem 2.4.7). 

Definition 2.3.1. An f -attentive localization of 3 f around (2, ü), is a (gener- 

ally set-valu&) mapping T : X =t X whose gmph in X x X is the intersection 

of gph8f with the product of an f-attentive neighborhood of 5 and an ordi- 

nary neighborhood of ü; this contrasts with an ordkary locahztion, in which 

the f -attentive neighborhood of 5 is relaxed to an ordinary neighborhood. More 

specXcally for an E > 0, the f -attentive E-localizatzon of 3 f around ( E ,  B ) ,  is the 

mapping T : X =t X defined by 

Next we present a minimization principle due to Borwein and Preiss [9] : which 

plays a key role in establishing the subgradient characterization of prox-regulsrity. 

Theorem 2.3.2. (smooth mriational principle) Let f : X + R be 1.s.c. and 

bounded below, and let ,c > O. Suppose that xo is a point satisfjhg f (xo) < 



idzfx f (x) + E. Then, for any X > O there e& points y and z with 

and 6aving the property thst the function 

2 
3: -+ f (x) + %lx - z12 

has a unique minimum at x = y. 

Proof. See Clarke, Ledyave, Stern and Wdemki [14], Theorem 4.2. a 

The following consequence of the above variational principle will be useful in 

the proof of next theorem. 

Remark 2.3.3. Let {xk) be a minimizing sequence of infZo f (x), i.e. there 

exists ~k \ O such that f (xk) 5 i d z e x  f (x) + ~ k .  Then these exists another mini- 

h i n g  sequence {yk) s u c .  that lyk - zk[ < 4& with O E a f ( y k )  + &B. 
To see this, for each k ,  take B := ~k a d  X := 2t/Ék in Theorem 2.3.2. Then 

correspondhg to the mhimizing sequence {xt  ) there exist sequences {yk) and 

{zk) with Ifk - xk 1 < 2f ik l  1 yk - zk ( < 2& (these two iuequalities i@y 

1yk - xk 1 < f (yk) 5 f ( x k )  (-lies {yk) &O a nzhimking sequence), and 

the hnction 

has a unique minimum at x = yk. The latter implies, by the Fermat's rule 2.1.4, 

2 
0 E a p f  b k )  + $k - 4, 

Now we establish the subgradient characterization of prox-regularity in Hilbert 

space which is obtained in finite-dimensional spaces by Poliquin and Rockafellar. 

See [29], Theorem 3.2. 



Theorem 2.3.4. [subgradient characterization of prox-reguI&ty) When f : X -. 
- 
R is locdy 1.s.c. at I, the folIowing are equivalent. 

(a) The fundion f is prox-reb4ar at 3 for ü, where ü E 8f (5)- 

(b) The vector ü is a proximal subgradient to  f at 2, and there k ém f -attentive 

e-locaüzation T of f at (5, ù) with a constant r > O such that T + r 1  is 
monotone, i-s.; 

Proof. (a) + (b). Take E and T from Dekition 2.2.2 of prox-regularity, and for 

the same a let T be the f-attentive docalization of af as in (2.3.1). As noted, 

the prox-regularity condition implies for every (x, v) E gphT that u is a proximal 

subgradient of f at x, and this applies in particular to (3,û) .  Indeed, for any two 

pairs (xo , vo) and (xi, VI) in gph T we have 

In adding these inequalities together, we get the inequality in (2.3.2)- 

(b)+(a). There is no l o s  of generality in supposing 5 = 0, G = 0, and 

f (O) = O (cf. Remark 2.2.8). Further, we may assume that j be 1.s.c. on X with 

bounded domain, since that c m  be manufactwed out of the local 1.s.c. property 

by adding some indicator function to f. Let and T be parameter values such 

that when T is the f -attentive &localization of f the property in (b) holds for T. 

We fkst establish two claims. 

Claim 1. There ex& E E (0,È) and r > T such that ET < E and z E X with 

I z I  < 4 we have 



Proof of Claim 1. With our setting 5 = O,C = O, f(0) = O and ü E Gf(5)  we 

may also assume that f has a lower bound - ( ~ / 2 ) 2  on r E  for any O < E < & 

Then by [24], Lemma 3.2 (Note that [24] ,Lemma 3.2 is stated in terrns of finite 

dimensional spaze, but the only essential requirement is that the norm be @ven 

by an inner product) we have 

32 (-na) 
for any O < B < E and for r 2 , where m := in.€ {f(x)) 

3~~ 14 1. 
(2.3.3) 

T 3& - € 
one has argmax ( r z , x )  - ~ 1 x 1 ~  - f(x)) C for al1 1 ~ 1  c - 

1x1 SE 4 '  

Now restrict E E (O+?) such that (1613)~~ < t?, E(T + 1) < F and set r := 

33 m)  r n a x { , ~ ,  ( F + l ) ) .  For m, we have m 2 ( - ~ 1 2 ) ~ ~  by the lower bound (-T/~)E* 

of f on &B. We then have 

32(-m) 16- 
either êr = < -TE < E or ET = ~ ( f  + 1) < 

3€ - 3  

as required by the claim. Then Claim 1 follows from (2.3.3). 

Proof of CIaim 2. Let O c E~ c rnin{E, 16/3) and rl > 7 with ~ i r l  < Ë, where 

rl is given by Claim 1 with E = €1. Let v = r l ( r  - x) E 8f (2) with lzl < ( ~ / 4 ) :  

I L I  < ( ~ 1 4 )  a d  f (x) < ( E ~  14). Notice that 



Consider the foIlowing optimization problem: 

Notice that this supremum is a fmite number because f is bounded below on elB. 

Let {xk) be any maximizing sequence of (P), i.e., there exists {qk) a sequence of 

nonnegative numbers converging to O such that 

Equivalent ly, 

where {xk) is a minimizing sequence of ( -p ) .  By Claim 1, we may assume without 

bss of generality that {xk) c ( 3 / 4 ) ~ ~ B .  Then by Rernark 2.3.3, there exists {wk), 

another minimizing sequence of (-P) same as maidmizing sequence of (P) such 

that lwk - xk 1 - < 4fik and eventually 

We may rewrite the above inclusion with {yk) E B so that 



Hence, eventudy [(riz - rl wk) - fik yk 1 < É because {qk) is converging to O and 

Now we show that 1 f (wk)  1 < E eventudy. 

Indeed, since {wk) is a maximizing sequence of (P), there exists (7:) a sequence 

of nonnegative numbers converging t O O such that 

The last i n e q u w  is a consequence of f (O) = O. We then have 

Wen ce, we eventi u d y  have that 1 f (wk)l < E because the sequences qk and q; a.re 

converging to O and el < 1613. Note here that the inequality f cwk) > -H cornes 

£rom the 1.s.c. of f at O. 

We have shown that [(riz - r lwk)  - JSit yk 1 < E with (riz - ri wk) - fi yk E 

8f (wk) ,  Iwkl < Éand lf(wk)l < E. NOW, i f v  = rl(z-x) E a f ( x )  with 1x1 < (a/4),  

Izl < (e1/4), 1 f (x)l < (~~/4), and hence Ivl < E. B y  (2.3.2) we then have 

( ( ~ 1 2  - ~ 1 w k )  - fiIc% - w, W k  - 2) 1 -?IwL - xI2 

2 
(i - ~ 1 ) l ~ k  - 21 1 J i j k ( 2 / k J J k  - 4. 

Letting q k  \ O, we conclude that {w ) converges to x (recd that ri > T) . Because 

{wk)  is a macimizing sequence of (P) we conclude that the supremum is attained 

at  x. This is because 



We have shom that 

for all S E e l B .  This completes the proof of Claim 2. 

- Now to finish off the proof just let E = c1/8, r = rl. Then if v E af ( x )  with 

I V [  < E, 1x1 < E, 1 f(z)l < H and for z = v/T f x we have 

Notice here that we have used r i  > F + 1 > 1 which is true by our choice of ri . 

Then £rom Claim 2, whenever 1x1 < F: If(x)l < f, lu1 < éwith u E af(x) we have 

- 
r 

f(xr) 2 f(x) + (v, X' - X) - -lx1 - x12 for BU x1 E zB. 2 

This tells us that f is prox-regular at 2 = O for ü = O (with parameters E and F). 

O 

Remark 2.3.5. The implication (a) + (b) is true in general Banach space setting 

as one sees this readily fkom the proof. 

Remark 2.3.6. The proof of the Theorem in finite dimensions (1291, Theorem 

3.2) heavüy depends on the existence of minimizers of 1,s. c. function on a compact 

set. Our proof here relies on a more general technique - the smooth variational 

principle. 



2.4. Regdarity Properties of Moreau Envelopes 

For a proper, 1.s.c. h c t i o n  f : X 4 R and parameter value X > 0, the Moreav 

envelope function, e,, and the proximal mapping, Px are dehed by 

The primary aim of studying the envelope h c t i o n s  e, and the proximal 

mappings Px associated with a hnction f is to learn more about the behaviour of 

f around a point Z. when f is prox-regular at 5 for a vector ü E 8 f (3). For example, 

the nice properties of ex and Px of a prox-regular function f (Theorem 2.4.4) with 

the already established subgradient characterization of f (Theorem 2.3.4) reveal 

the major fact that the graph of 3 f coincides, under a suitable localization, with 

a Lipschitz manifold in X x X (Theorem 2.4.7). 

We proceed to establish the smoothness properties of the Moreau envelopes of 

prox-regular functions. 

Let f : X + be prox-regular at Z for 6 E a f (5). Then G is actually a 

proximal subgradient of f at  2. In order to s i m p l .  our analysis, by Remark 

2.2.8., without any loss of generaEty we normalize to the case 5 = 0, E = O 

and f (O) = O. Since our primary interest of f and il f depend ody  on the local 

geometry of epi f around (5, f(~)), we may further, if necessary, add to f the 

indicator of some ball with center at 5 t o  make dom f be bounded. By taking the 

radius of that b d  small enough we c a n  get the quadratic inequality for ü E ap f (3) 
to hold for d x.  Thus we work under the baseline assumptions that 

f is locally 1.s.c. at O with f (O) = 0, and I 
l' 2 

r>O issuch that f(z) >--lx/ f o r d  z ]  
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which imply that 

ex (O) = 0 and Px (O) = {O) when X E (O, 11~). (2.4.2) 

In order to follow the steps of Poliquin and RocksfeUar, we next extend the results 

of Propositions 4.2 and 4.3 of [29] to Hilbert spaces. First, we require a lemma. 

Lemma 2.4.1. ([XI], Lemma 4.1) Under assumptions (2.4-11, consider any X E 

(O, llr) and let p = (1 - Ar)-'. For any p > 0, 

Proof. The same proof of [29], Lemma 4.1 c m  be carried over to this Hilbertian 

case, since the only requirernent there was the n o m  be given by an b e r  product. 

O 

Proposition 2.4.2. Under assumptions (2.4.11, consider any A E (O, llr). For 

my E > O there is a neighborhood V of 5 = O such that 

(a) ex is Lipschitz continuous on V with constant E and bounded bdow by a 

quadratic function, 

(b) (xtl c E,  1 f (xt)(  < E snd X-'~X - X I (  < E for d X I  E PA(x) when x E V .  

Proof. (The proof given here cliffers from that of Poliquin and RockafeUar [29], 

Proposition 4.2 (a) and (c) because the arement given there relies on the existence 

of minimizers of a 1.s.c. hinction over a closed bounded set, which is not tme in 

the case of Hilbert spaces). Let p = (1 - Ar)-' and E' E (O, e). Choose 6 > O and 

p > O small enough that (28 + 36)/X 5 E and 



(a) Let any x and y belong to V. For any p > O, by the definition of e,(y) as an 

infimum, there e d s  x' such that 

* 

Thus we have 

where K is chosen so that K := (1/X) sup(lxl+ 212 - X I ;  x E V, z E C) < oo. 

Indeed, we have K 2 (l/X){lyl+ 2(x1 - yl) for all  y E V and x' E C and hence 

We &O have that lx - ylK 2 klxllx - y1 because K 2 f lzl for all x in V .  In 

adding t hese inequalities toget her , we get the inequality in (2.4.4) : 

And thk constmt K cannot be bigger than E: 



Reversing the roles of x and y, and then letting p\O in (2.4.4) shows that ex ïs 

Lipschits of rank E on V. 

The asserted lower bound for ex follows fiom 

(b) When x' E Px(x) ,  then Lemma 2.4.1 is true for every p > O which implies 

and also 

Proposition 2.4.3. Under assumptions (2.4.1), there exists for each X E (O, l/r) 

a neighborhood V of I = O on which 

(a) a e X ( x )  c {A-l(x - xi) 1 x' E Px(x)) and Px($) # where x E V, 

(b) X' E PA(x) - A-'(x - X I )  E i3f (x')~ i.e., X' E ( I f  Mf)-'(x). 

Proof. Verscation of (b) ia easy. We begin with that. Recall that the existence 

of a proximal subgradient at x' corresponds to the existence of a 'local quadratic 
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support" t o  f at x' (see the Deiinition 2.1.1 and the remarks thereafter). When 

xf E P x ( x )  we have 

1 1 
f(='') + -Isn -x12 3 f ( x t )  + -(zf - x12 for d x", 

2X 2A 

so that f (Y) - f ( X I )  2 q(z") for the quadratic function q(x" ) = (1s' - xi2 - Idf - 

~1~)/2X. W e  have q(d) = O and Dq(x') = A-'(x-z'), so q foms a local quadratic 

support to f at XI. Thus A-' (Z - XI) E 8, f (z') . In particular, we have (b) - 

Now we ver% (a). (Our proof here ditfers kom that of Poliquin and Rock- 

afellar [29], Proposition 4.3 (a), as their arguments require the compactness of 

closed, bounded sets. Another difEcuIty is to work with "weak-limits" required by 

the limiting proximal subdifferentials) . We fix X E (O, l l r )  and choose a neighbor- 

hood V of O with the properties in Proposition 2.4.2. First note that the Lipschitz 

property of e, on V (2.4.2(a)) ensures that the limiting proximal subdifferential 

ae, ( x )  is nonempty for all x belong to V (see, Loewen[2l], Cor. 4C.9). Consider 

any point x E V and any v E aeA(x). Then v = w-Lmk,, vk for some sequence 

v k  E %eA(xk)  and xi, + x with eA(zk) -+ e x ( x ) .  For each k ,  there are positive 

numbers bIIc and fik such that 

Choose any tk > O so small that t k  < and h&tk < l l k .  This allows us to set 

w = xk + t k u ,  where u E B in (2.4.5): the result c m  be written as 

By the definition of eA(xk )  as an inhum,  there exists yk such that 



Also notice that eA(xk + tku) 5 f (yk) + &l yk - (xt + tku) I2 - Thus, (2.4.6) gives 

which we c m  expand on the right and then rewrite as 

Claim. There exiexists a subsequence {yk/) of {yk) that converges strongly to y' := 

(x - Av). 

Proof of Claim. It is immediate fiom (2.4.8) that {yk) is norm bounded. Then 

there exists a subsequence (yk!) of {yk) that converges we&y to y' := x - Xv. 

This again fouows from (2.4.8) just replacing yk with y k ~ .  Now to see {yk/) actually 

converges to g' strongly, rewrite (2.4.8) as 

and, eventually 

that implies I(v - ix) + y1 < qp  eventually since u E B is arbitrary. So {yv) 

is strongly converging to i = x - Au, as required. 

Restricting to the subsequence {yk!) in (2.4.7) we have 

Since f is locally 1.s.c. at 0, takhg the lower b i t  (liminf) of the above inequality 

as Ji? + oo confbms that ex ( x )  = f (y') + & Ip' - X I * ,  where y' = x - Au. Thus 
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we have proved that Ph(=) # 0 for 8U z E V and since v = the inclusion in 

(a) is valid too. 

When we assume f to be prox-regular, the above propositions with Theorem 

2.3.4 entail the CL+ smoothness of ex and the local single-valuedness of PA a s  seen 

by the next theorem. The proof of the next theorem in Hilbert space easily fouows, 

in fact , it is quite the same as in the hite-dimensional case ([29] : Theorem 4.4). 

Theorem 2.4.4. Suppose that f is prox-regular at i? = O for ü = O with respect to 

e and r, in particlrlar wit6 (2.4.1) holding. Let T be the f -attentive e-localization 

ofd  f around ( O ,  O). Then for each X E (O, l/r) there is a neighborhood V of 5 = O 

such that: on V ,  the mapping Px is single-valued and Lipschitz continuous aith 

constant 1/(1 - Ar) and 

Px (x) = ( I  + AT) -' (x) = [singleton], 

whüe the function ex is of class Cl f  with DeA@) = O and 

Dex(x) = - p'(x) X = A-' [I - [I + AT]-'] (r). 

Proof. Choose V open and s m d  enough that the properties in Propositions 2.4.2 

and 2.4.3 hold on V. Then for x E V we have Px ( x )  nonempty by 2.4.3(s), while 

ae,(x) is nonempty by 2.4.2(a) and satisfies the inclusion in 2.4.3(a). In this 

inclusion and the one in 2.4.3(b) we can replace âf by T because of 2.4.2(b). 

h i n g  at the formulas claimed here for PA ( x )  and De' ( x )  , we kst show that 

(1 + AT)-' cannot be rnultivalued and PA is Lipschitz continuous on V. 

Suppose that xi E (1 + AT')-'(x) n V, i = 0 , l .  Then (X - xi)/X E T(q) .  

Invoking the prox-regularity of f , we have the monotonicity of T + rI by The6rem 

2.3.4 and t herefore 

- 2 0  2 ([y] - [x A ],Xi - 2 0 )  > -+1 -al i 



2 2 
hence -X-'~X~ -zol 2 -rlxi -sol . Then (1 -Xr)lxi -zOl2 O, so xi = xo- 

To show Px is Lipschitz continuous, let zi  E Px(xi) with xi E V, i = 0,l .  We 

have 

This can be written in the form lx: - 58 1 5 [1/(1- AT)] lxI - x0 1. 

Thus we have PA(x) = ( I f  ~T)-l(x) and the limiting proximal silbdifferential 

&, reduces to a single valued mapping on V, Le., aeX(x) = X-PA ( X I  
x . Shen by 

[12], Proposition 2.2.4, t3eA (x) coincides with the strict derivative of e, : D.ex (x) 

on V, i.e., ae, (x) = Dsex(x) = x-2(x) . Becme Px (s) is Lipschitz continuous, en 

is actudy of class CL+ on V. However, when X is hitedimensional, the limiting 

subdserential reduces to a singleton on an open set is necessary and sutiicient 

for the corresponding Lipschitz function to be C1 ([12], Corollary to Proposition 

2.2.4). 

The following lemma helps us to mite the derivative formula in Theorem 

Lemma 2.4.5. For any mapping T : X 3 X and any X > 0, one has the Mentity 

A-' [I - (1 + AT)-'] = ( X I  + T-')-'. 

Proof. The proof in the Hilbert space setting follows exactly as that in [29], 

Lemma 4.5. D 

Proposition 2.4.6. In Theorem 2.4.4, the derivative formula can be expressed 

equivalently as: 



Proof. Simply combine Theorem 2.4.4 with Lemma 2.4.5. 

Next we establish the aforementioned Lipschitzian property of a graph of a 

subdifferential mapping of a prox-regular function. For that matter, we adopt 

from Rockafellar [39] the notion of Lipschitz manifold to suit our Hilbert space 

settings. 

Let Y be another Hilbert space. A set M c X x Y is a Lipschitz manifold 

around a point (5, y) in M if there is an open neighborhood U of (5, ji) and a 

one-to-one mapping between U and an open subset O of X x Y, continuously 

differentiable(fiéchet) in both directions, under which U n M is identilied with 

O gph F for some Lipschitz continuous mapping F from an open subset of X 

into Y. 

Theorem 2.4.7. If the function f : X -r is prox-regular at 5 for a vector 

5 E df(3), then for any E > O the graph of the f -attentive E-locaüzation of a f at 

(5,ü) is a Lipschitz manifold around (5, G)  in X x X. When f is s u  bdifTerentidly 

continuous, this c m  be said of the graph of a f itself. 

Proof. For simplicity we can normalize to Z = O and fi = O (cf. 2.2.8): geometri- 

cally this just amounts to a translation of gph 0 f and its localizations. The formula 

in Proposition 2.4.6 then identifies gph T with the graph of the Lipschitz contin- 

uous mapping DeA near 5 under a certain linear change of coordinates around 

(5, û). a 

As a consequence of this we deduce that the monotonicity of the subgradient 

mapping T + r i  in Theorem 2.3.4 is in fact Yocally maximal" ; 

Definition 2.4.8. A mapping S : X =$ X is locally maximal monotone relative 

to (5, C) E gph S if there is a neighborhood U of (Z, 5)  in X x X such that, for 
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every monotone mapping Sr : X =t X wit6 gph Sf > gph S, one has U n gph Sf = 

U n gph S. 

Proposition 2.4.9. If the functioo f : X + is prox-regular at 1. for ü E 8 f (3) 

xith parameter d u e s  E > O and r > 0, the f-attentive E-locaLization T of af 
at (2, V) has the property that T +- TI is not just monotone but locdy m e a l  

monotone relative to (5, ü + r?). When f is subdiEerentially continuous, this can 

be said of i3f + rI. 

Proof. (The proof is quite the same as in [29], Proposition 4.8 with slight mod- 

ification to Hilbertian settings). We can suppose (5, ü) = (0,O). The elements 

(x, v) E gph T correspond one-to-one to those of gph S for S = T + r i  under 

(x, v )  - (x, v + rx), this being f f i e  in both directions. Hence by Theorem 

2.4.7, gphS is a Lipschitz manifold around (0,O). The same is then true for the 

graph of the mapping P = (1 + S)-l; the correspondence between gphS and 

gph P is given by (x, y) c--r (x + y, x) . The monotonicity of S irnplies t hat P is 

nonexpansive (hence Lipschitz continuous) relative to its domain D in X. Some 

neighborhood of (O, O) in gph P thus corresponds oneto-one to a subset of D con- 

taining O under a mapping that is Lipschitz continuous in both directions. Since 

gph P is a Lipschitz manifold around (O, O) ,  it follows that a subset of D contain- 

h g  O corresponds in such a way to an open subset of X, and therefore that D 

is a neighborhood of O. For any monotone mapping Sf with gph Sr > gph S, the 

mapping P = (1 + SI)-', whose graph corresponds one-to-one with that of Sf , is 

nonexpansive too, and gph P' > gph P. Therefore, P' can do no more than coin- 

cide with P on a neighborhood of O. This means that the graph of S' must agree 

with that of S on a neighborhood of (O, O), and hence that S is locally maximal 

monotone with respect to (O, 0). O 



2.5. Convexity of Moreau Envelopes 

In this section we investigate the local properties of convexity of the envelope 

functions ex of prox-regular functions. We prove (in a Hilbert space) that in some 

local neighborhood the sum of e, and a positive multiple of n o m  square is convex. 

E'urther (in a separable Hilbert space), the conditions are given under which ex 

itself iç convex or strongly convex. 

Let I' : X -t X. Recall that 

ï is monotone if (ul - ua, 11 - x2) 2 O whenever ui E I?(x*). 

l? is strongly monotone if l? - p1 is monotone for some p > 0. 

Lemrna 2.5.1. Let T : X =t X be any set-valued mappuig. Suppose that T = 

a I  + M where fi1 is monotone and o is any d u e  in R (positive, negative, zero). 

Let X > O be s m d  enough that 1 + X a  > O. Then the mapping SA given by either 

side of the identity in Lemma 2.4.5 can be evpressed by 

Cf 
I + hlf with M'(u) = 

1 
SA = 

1 + Xa l+Xa ( 1 + ~ o  A I+M- ' ) -=(  l+Xa w). 

this mapping M' being monotone. Thus, when X > O is sufficiently small, 

d 
T - a1 monotone * 

1+xo 
1 monotone. 

Proof. The proof in the Hilbert space setting follows exactly as that in [29], 

Lemma 5.1. 0 

Theorem 2.5.2. Suppose that f is prox-regdm a t  5 = O for ü = O with respect 

to E and r ,  in particular with (2.4.1) holding, and let X E (O, l j r ) .  Then on some 

neighborhood of O the function 



is nomegative and convex. 

Proof. Prox-regu1axït-y of f at = O for B = O implies the rnonotonicity of the 

mapping T + TI  (cf.Theorem 2.3.4). Then by taking o = -r in Lemma 2.5.1, 

we have SA + r(l - XT)-'I monotone, where SA is the mapping given by the 

identity in Lemma 2.4.5. But this is the derivative mapping of the function in 

question. Hence, t his function is convex. The nonnegat ivity assertion follows 

2 from Proposition 2.4.2 (a), where we proved e~ 2 - . e l  - 1 . CI 

Corollary 2.5.3. If f is prox-regular at 5 = O for ü = 0, and X is sufficiently 

s m d ,  then on some neighborhood of the ongin e, is a Iower-C2 function, hence in 

particdar prox-regulac itself. 

r Proof. From the Theorem 2.5.2, we know that the function fo  := ex + -20 1 - 1 2 

is finite, convex on some neighborhood of O for X E (O, l l r ) ,  which in turn satisfies 

the characterization of lower-C' property for e ~ .  Prox-regularity of ex follows from 

Theorem 2.3.4 because {O) = OpeA(0), and the mapping De, + r(1 - A ~ ) - ' I  is 

monotone around O. 0 

In order to obtain a characterization of the convexity of ex, first we need to  

introduce a concept of c'null'' sets in infinite-dimensional spaces. For our purposes 

the most useful generalization of a null set is that of "Haar-nuUyy set introduced 

by J.P.R. Christensen in [Il]. 

Definition 2.5.4. (Hsr-null set) A Borel subset N of a sepamble Banach space 

E is called a Raar-nu22 set if there exists a probabiüty measure p on the c-dgebra 

of Borel subsets of E so that p(N + x) = O for ail x E E. 

We recall some results of Christensen [II] about the notion of Haar-nd sets. 



Proposition 2.5.5. Let E be a separable Banach space. Then we have the 

follotping* 

(a) If E = Rn, then H c E is Hasr-nuli in E if and ody if H is Lebesgue- 

negligible in inn. 

(b) If (H,) ,,, is a corntable family of Haar-nulI sets in E, then the set H = UneN Hn 

L s H a r - n d i n E .  

(c) If H is Haax-null in E, then E \ H is dense in E. 

(d) Let B be a separable Banach space and H be a Hsar-null subset in B x Rn. 

Shen for almost e v q  b in B, that is except for a Haar-null subset in B, the 

section 

H(b) = { r  E Rn 1 (b ,  2) E H )  

is Lebesgue-negligible su bset in Rn. 

Proof. See the book by Christensen [Il] or Borwein and Moors [7], Proposition 

We will 

orem due to 

need the following infinite-dimensional version of Rademachar's t h e  

Christensen, which states that locally Lipschitz mapping âom a sep 

arable Banach Space to a separable reflexive Banach space is merentiable almost 

all points in the sense of Haôr measure. 

Proposition 2.5.6. Let E be a separable Banad space and F be a separable 

reflexiue Banach space. Let f be a locdy 

Then f is Gâteaux differentiable on a subset 

Proof. See [II], Theorem 7.5. 

Lipschitz mapping fiom E into F. 

We will also need the following lemma in which we characterize the mono- 

tonicity of Lipschitz mappings in separable Hilbert spaces. 



Lemma 2.5.7. Let X be a separable EîZbert space. Suppase P is a Lipschitz 

continuous mappiug i?om an open convex set O C X into X. Then P is monotone 

on O if and ody if the Gâteaux derivative DP(y)  is positive semidef i te  wherever 

it &sts for y in O. 

Proof. First assume that P is monotone on O. Let y in O such that the Gâteaux 

derivative DP(y) exists. Then, fiom the definition of D P  and the rnonotonicity 

of P, it follows that, for any q E X, 

So we get the positive semidefiniteness of DP(y )  as desired. 

Conversely, assume that the Gâteaux derivative DP(y)  is positive semidefinite 

wherever it exists for y in in. Then, by Proposition 2.5.6, there exists a subset M 

of O on which P is Giiteaux differentiable and its Gâteaux derivative DP(y) is 

positive semidefinite, and such that O \ M is Haar-null in O. It suffices to prove 

forally, y + u ~ O .  

Ifv = O then the result is trivial. Let us consider the case u f O. As for  each y E O 

the function 3 u y + su Born [O, 11 into O is derivable, the funaion s - P ( y  + su) 

is derivable at each s E [O, 11 such that y + su 6 N := O \ M. Since X is a Hilbert 

space, we may mite  X = G 8 R-V, as a direct sum of R-V and a subspace G. 

Restricting to the subset O of X we mite O = G' @ R -v, where G' c G and 

R C R. Then, writing 

Y + S ~  = ( y l , y ~ + s v ) ,  where y1 E G and gz ER, 
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it folIows that the function s H P(y + sv) is derivable at each s E [O1 11 such that 

y221 + au $ N ( M ) ,  where N(yl) denotes the section of N at y,,i.e., 

By Proposition 2.5.5(d), there exists a subset L' c G' with G' \ Lr Haar-null in Gr 

and N(yl) is Lebesgue-negligible in Ra for each y E O such that yl E Lr. Therefore 

for each y E O such that y1 E L' the function s I+ (v, P ( y  + SV)) is derivable for 

almost every s in [O, 11 and its derivative is given by (v, DP(y  + s v ) ~ ) .  Thus for 

every y E O such that y1 E LI, applying the Fundamental Theorem of Calculus 

for the Lipschitz (implying absolute continuity ) function s c (v, P(Y + su)), we 
obtain 

f l  

For such y and yl, we then have 

by o u  assumption and (2.5.1). Moreover the definition of a Haar-null set and 

Proposition 2.5.5 (b) and (c) imply that M n (LI x R-V) is dense in G' @ R-v = 0. 

Therefore the required inequality is vedied for each y E M n (L' x R-V) and by 

the continuity of P, is tme for d y in O. This cornpletes the proof of lemma- 

The convexity of ex itself has a full characterization in terms of subgradient 

mapping of f and its proto-derivative. To state it, we r ecd  the following generd- 

ized notion of differentiation of set-valued mappings in terms of set convergence. 

A f d y  of sets Cn c X Painlevtf-Kuratowski (PK) converges to C, denoted by 

lirn sup C, = lim inf C, = C. 



Here limsup C, is the set of all accumulation points cf sequences fiom the sets 

C, and lun inf C, is the set of limit points of such sequences. For more on (PK) 

convergence see [3], [6], [l?], [41], [46] and the reference therein. 

We say that set-valued mapping T : X =t X is proto-differentiable at a point x 

for an element v E T ( x )  if graphs of the set-valued mappings 

regarded as a family Ïndexed by t > O, Painlevé-Kuratowski (PK) converge as 

t \. O. If so, the limit mapping is denoted by TF) and called the pmto-derivative 

of T at x for v ;  see [6], (171, [IS], [20], [41], [46]. This proto-derivative mapphg 

assigns to each E X a subset T$',k)(() of X, which could be empty for some 

choices of ,f. 

The following hown  results of proto-derivatives of set-valued mappings will 

be useful in the next several results of this section (cf. C. DO [17]). 

Let l? : X=t X and z E r(x). 

ï is monotone I'-l is monotone. 

I' is monotone - the proto-derivative mspping ~ $ 5 ~ )  is monotone. 

r is proto-differentiable at z relative to z r-l is proto-differentiable 

~ ( P W  at z relative to 2. One has (r-l) TIC) = (&. ) -'. 
r is locally single-valued and Hadamard differentiôble at x + it is proto- 

'(P~) = Dl'(z), the Hadamard derivative of I' at z. differentiable at x and ndr,,,(,) 

A weU kmm result of convex functions will be required: 

A Gâteaux differentiable function f : X -+ H1 is convex the deriva- 

tive rnapping is monotone. 



We now extend the characterization of convexity of e~ of [29], Proposition 

5.4, to separable Hilbert spaces. The Lemma 2.5.7 plays a key role in estabkhing 

Proposition 2.5.8. Let f : X -+ R, where X is a sepamble Hilbert space. 

Suppose that f is prox-regular at 5 = O for ü = O with respect to E and r,  in 

particular with (2.4.1) holding, and let X E (O, l/r). Let T be the f -attentive 

E-localization T of 8 f around ( O ,  O ) .  Then the foilowing conditions are quivalent: 

(a) The function e, is convex on a neighborhood of O.  

(b) There is a neighborhood U of (0,O) such that if To is the locaiization of T 

obtained by intersecting the graph of T xith U, then TC' f A I  is monotone. 

(c) There is a neighborhood U of ( O ,  O) such that at ail points (x, v) E U n gph T 

where T is proto-differentiable, the proto-derivative mapping c%k) : X 3 X 

is such that (e$?)-l + XI iS monotone. 

(d) Same as (c) but with restriction to the points (2- u) where in addition the 

graph of T ~ Y )  is a h e a r  subspace of X x X. 

Proof. The equivalence between (a) and (b) is easy to establish. Indeed, we have 

e~ convex locally around O if and only if its the derivative mapping DeA = SA 

is monotone locdy  around the point (0,O) in its graph, or equivalently, ST' has 

such local monotonicity. By Proposition 2.4.6 we have SA = (XI + T-')-', which 

means that sA-' = AI+ T-l. This gives the equivalence between (a) and (b) . The 

local monotonicity of 23;' implies that of its protederivative mappings where they 

exist. . Proto-derivative mappings for SY' have the f&m XI+ (~2:~)) -l in tems of 

proto-derivative rnappings for T, and their monotonicity thus corresponds to the 

mappings (T!!Y1) -l+ A I  being monotone. Thus we have (b) implies (c)  . Since (d) 

is a special case of (c), we also have (c )  implies (d). We must show now that (d) 



(pk) 1 implies (a). Condition (d) means that the rnapping (c,, )- + AI is monotone, 

O k )  (PW -1 or equivalently, (DeA)z+xii = ((c,, ) f XI) -' is monotone at points (z, v) 

near (0,O) where the proto-derivative of T exists as a linear mapping (may be 

set-valued). Because the mapping SA = De, is Lipschitz continuous around 0: 

it is Gâteaux (hence Hadamard) differentiable a.e.(w.r.t. a Haar-nul1 set in a 

neighborhood of O), and hence in particular proto-differentiable with the proto 

derivative being the Gâteaux (same as Hadamard) derivative (a continuous linear 

/(PW operator) (cf. [l?], Corouary 3.6). Thus, we have (DeA),A, = D ( ~ e , ( x + X u ) )  = 

DSA(x + Au), for almost all points of x + Xv near O (w.r.t. a Ham-null set). Then 

~ ( P W  the rnonotonicity of (DeA),+A, translate into the positive semidefiniteness of the 

Gâteaux derivative mapping DSx (x+Xv) . Then by Lemma 2.5.7, this is quivalent 

to the monotinicity of SA = De, on a neighborhood of O. This yields (a)? and the 

proof is complete. O 

For strong monotonicity of e, , we have the following sdicient condition. 

Proposition 2.5.9. Suppose that f is prox-regular a t  2. = O for ü = O with 

respect to E and T ,  and let X E ( O ,  l / r ) .  Let T be the f-attentive -locaüzation 

T of af m o u d  (0,O). Suppose T is strongly monotone with moddus p > 0, 

i.e., T - pI k monotone. Then, on some neighborhood of 0, one has the strong 

convexity of ex with modulus p/(l+ Ap), i.e., the conv&ty of 

Proof. This fdlows £rom Lemma 2.5.1 for o = p, because the derivative rnapping 

of the function in question is SA - k/(l+ Ap)] I  with SA the mapping given by 

the identity in Lemma 2.4.5. C3 

Next we characterize the strong monotonicity of T in terms of its proto-derivative. 



First we establish two lemmas. To state it, we recall a criterion for întegrabilïty of 

Banach-space-valued hc t ions  that can be defined by considering an associated 

one-dimensional integral (cf. Berger [5]).  

Suppose a function x ( t )  is defined on a measure space (T, p, a(T)) with range in a 

Banach space X. Then a definition of integrability of x ( t )  by duality is as follows. 

Definition 2.5.10. We say tbat x ( t )  is integrable if there is sn element IE (x) E X 

for each element E of the O-ring o(T) such that 

(z* , IE (z)) = / E  (z* , z(t))dp (in the Lebesgue sense) 

for each x* E X*. We set & x ( t ) d p  = I E ( x ) -  

Lemma 2.5.11. Let the vector function t I+ p ( t )  fiom [O, 11 into a Hilbert space 

X be integrable on [O? 11. We then have 

Proof. Since the function (o := 1 I2 is convex and continuous everywhere on X, 

the subgradient set &o(x) is nonempty for ail x in X. Hence there exists v in X 

such that 

p(x) 1 ' ~ ( x o )  + (VA - 2 0 )  for x ,  

Setting x = p ( t )  and integrating the above inequality we get 



Next lemma is the key to characterize the strong monotonicity of T ,  in which 

we extend the results of [29], Lemma 5.6 to separable Hilbert spaces. 

Lemma 2.5.12. Suppose P is a Lipschitz continuous mapping from an open 

convex set O of a separable Hilbert space X into X .  Then the following conditions 

are equivalent for my a > 0. 

(a) P-l - a1 is monotone. 

(b) For all y E O where P is proto-Merentiable, the proto-derivative mapping 

ïs SU& that (ek))-l - QI is monotone. 

(c) For ail y E O where P is Gâteaux merentiable, the Gâteaux derivative D P( y )  

sa tisfies 

Proof. Condition (a) implies condition (b) through the fact that the proto- 

derivative of a monotone mapping, if it exists, is another monotone mapping. 

Since for Lipschitz mappings Gâteaux and Hadamard der ivatives coincide, when 

P is Gâteaux differentiable, it is proto differentiable and the proto-derivative co- 

incides with its Gâteaux (same as Hadamard) derivative (cf. [17], Corollary 3.6), 

and hence we have condition (b) implies condition (c). We must show now that 

condition (c) implies condition (a). Condition (a) means that 

Since P is Lipschitz on O, from (2.5.1), we have 



where y E O and y1 E L' as in Lemma 2.5.7. This implies 

= alP(y + v )  - P(~)I~. 

where the inequalities are based on the assumptions in (c) and the Lemma 2.5.11, 

In the following, we extend the characterization of strong monotonicity of T, 

given in [29], Proposition 5.7, to separable Hilbert spaces. 

Proposition 2.5.13. Let f : X -t z, where X is a separable Hilbert space. 

Suppose that f is prox-reguk at for V with respect to E and r. Let T be the 

f -attentive c-locakation T of t3 f around (5, ü). Shen the following conditions on 

T and a vdue p > O are equivalent: 

(a) T is strongly monotone with moddus p locally around the point (3,s) E 

gph T. 

(b) There is a neighborhood U of (5, ü) such that s t  d points (x, v )  E U n gph T 

where T is proto-differentiable, the proto-derivative mapping T:!:~) : X =t X 

is strongly monotone with modulus p. 

(c) Same as (b) but with restriction to the points ( X ~ V )  where in addition the 

gmph of T ~ ( U ~ )  is a linear subspsce of x x X. 

Proof. Without any loss of generaliw we may reduce to the case Z = O = ü with 

(2.4.1) holding (see Section 2.4). We have (a) implies (b), applying the fact, proto- 

derivative of a monotone mapping, if it exists, is another monotone mapping, for 

T-PI. Since (c)  is a special case of (b), we also have (b) implies (c).  We must show 



now that (c)  irnplies (a). Consider any p > r such that p + p  > O, where r is a local 

constant from the definition of prox-regularity. Let ar = p + p, P = (T + 
and M = T+ rl. Since M is a maximal monotone mapping in graph around (O, 0) 

(cf. Proposition 2.4.9), and P = ( M  + ( p  - r )  1) with p - r > O, by [2], Theorem 

3.5.9, P is Lipschitz continuous on some neighborhood of O. Condition (c)  means 

'bk) I C p k )  -01 = (P"+,)-' -aI iç that T $ ~ ) - ~ I  monotone, or equivalently, (T+pI),,+, 

monotone at points ( x ,  v) E gph T near (O, O) where the protederivative of T exists 

as a linear rnapping (may be set-valued). Because the mapping P is Lipschitz 

cont inuous around O, it is Gâteaux (hence Hadamard) different iable a-e. (w .r . t . 

a Haar-null set) around 0, and hence in particdm proto-ditferentiable with the 

proto-derivative being the Gâteaux derivative (continuous linear operator) (cf. 

[l?] Corollary 3.6). Then by Lemma 2.5.12, condition (c) is equivdent to the 

rnonotonicity of P-l - c r i  = (T + P I )  - al = T - pI at points (x, v) E gph T 

near (0,O). C3 

Corollary 2.5.14. Let f : X + W, where X is a sepamble Hilbert space. Suppose 

that f is prox-reguiar at Z for with respect to and r. Let T be the f -attentive 

E-locaüzation T of a f around (I, ü). Then the foIIomWIng conditions on T are 

equident: 

(a) T is monotone locally axound the point (5, ü) E gph T. 

(b) There is a neighborhood U of (5,~) such that at all points (2, v) E U n gph T 

where T is protedifferentia ble, the proto-derivative mapping T$&) : X 3 X 

is monotone. 

(c) S&e as (b) but with restriction to the points (x7 v) where in addition the 

graph of is a h e a r  subspace of X x X. 

Proof. Apply Proposition 2.5.13 t o  T, = T + pI for all p > 0. 

54 



Remark 2.5.15. E the function f is also subdifferentidy continuous, then all 

results in this section concerning T as an f -attentive localization of a f at (3, ü) 

can be restated in terms of T being an ordinary localization. 

2.6. Second-Order Theory 

It's time now for a closer look at the classical idea of obtaining second derivatives 

by differentiating k t  derivatives How might this fit into the hamework of "gen- 

eralized second-order" differentiation of prox-regular functions ? We answer this 

question in Theorem 2.6.4. 

First we r ecd  some terminology : 

A f d y  of fimctions f, : X + Mosco epi-converges to f, denoted by f, .-* f, 

if f, strongly and weakly epi-converges to f ,  Le., the epigraph off, (PK) converges 

to  the epigraph of f in both the weak and strong topologies. See [l], [6], [17], and 

[19]. In other words, we have for all x 

f (2) 5 lim inf fn (xn) whenever x, S x 

and 

there exists x x with f (x) _> lim siip f, (x*). 

We will Say that f, Mosco epi-converges to f on C c X if for all x E C 

f(l) < - iiminf fn(xn) whenever x n S  x and {x,) C C 

and 

Recall that a function f is twice Mosco epi-diffemtiable at 3 for a vector ü E t3 f (5) 

if the second-order difference quotient functions Ag y v , f : X - ni, defined by 



Mosco epi-converge to a proper function as t \O .  The Mosco epi-bi t  is then 

the second Mosco epi-deràvatàve function f$?) : X + Hi. see [6], [17], [lg]. 

This function, when it exists, is sequentidy weakly I.s.c., proper and positively 

homogeneous of degree 2. 

When X is finite-dimensional, the weak convergence in the definition is re- 

placed with strong convergence, and hence we drop the prefix btMosco" in the 

t erminology. We simply say epi-convergence and epi-differ ent iable appropriat ely 

in the definition. For more on epi-derivatives see (271, (401, [46]. 

In this section, we establish the connection between the epi-differentiability of 

a prox-regular function and the proto-differentiability of its subdifferential map 

ping wit h a natural formula relating these two derivatives, in the context of Hilbert 

spaces. 

We will need the following results: 

Proposition 2.6.1. Let 9, : X + a be a family of 1.s.c. functions qui-bounded 

beIow near 5 (Le. inf inf   on(^)) > -cal with {cp, (5) ) bounded. Assume 
nEN x € B ( I , r )  

furt'her that {v,) Mosco epi-converges to cp on some neighborhood of 2. Then 

there exist 0 < rl < T:! S U C ~  that for d A > O s m d  enough (Co, + 6B(t7r2))A 

Mosceepi converges to (cp + 6B(5,r2))A on B(5, r l ) ,  where (cp, + 6B(i7r2))A de- 

notes the Moreau A-envelope of 9, + 6s(l,r2). 

Proof. See Levi, Poliquin and Thibault ([19], Proposition 3.3). O 

Proposition 2.6.2. (sum rule) Let f : X -, R be twice Mosco epi-differentia ble 

at x for v E af (x), and g be any C2 function on X with the mapping E + 

( D * ~ ( x ) E ,  5 )  is weakIy lower ~e~continuous.  Then the function h = f f g is tArice 
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where u = v + D g ( x ) ,  v E af (x). 

Proof. See author's M.Sc. thesis ([61, Proposition 3.2.5) I3 

Proof. See Attouch's book ([l], Theorem 3.66). 

In IRn, Poliquin and Rockafellar established the relationship between the 

second-order epi-derivative of a prox-regular function and the protederivative of 

its subgradient mapping ([29l,Theorem 6.1). Our next theorern gives a partial 

extension of that result in the context of a Hilbert space. 

Theorem 2.6.4. Assume that f : X -, Bis pax-regularat Z for 5 with constants 

E and P.. Let T be the f -attentive E-localization of a f around (5, C). If f is tarice 

Mosco epi-dinerentiable at E for C, then T is proto-differentiable at E fol 5. One 

has 

I',!gk) ( E )  = a [+&',(?)] (t) f i  an E.  

The converse is true when X is a finitedimensional space. 

Proof. Without loss of generality we csn suppose that I = 0, D = O, f ( O )  = O 

with (2.4.1) holding (see Section 2.4). In addition we may assume, wit hout any 
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loss of generality, f to be 1.s.c. on X with the domain of f is included in the closed 

b d  of radius e, since that can be manufactured out of the local 1.s.c. property by 

adding the indicator function of the set B(0, E )  to f .  Consider any X E (O, l lr)  

and the function 

7' 
êA(x) : = e  x 

) + 2(1- A r )  1xI2 - 

There is a neighborhood of O on which this function is C1+ by Theorem 2.4.4 and 

convex by Theorem 2.5 -2, the derivat ive mapping being 

Let 

f(z + te) - f (3 - t ( G , S )  
f5,i1 t (Q := 7 where t > 0. 

t 2  

Because f is prox-regular at 5 = O for V = O, we have f (Z + te) - f (5) - (5, () 3 
f te) -~lt<1~ 2 for all c, and hence fzl&) = f ,  2 - f i 1 ~ [ * .  Then, there exists p > O and 

t s m d  enough such that the functions fz,slt axe equi-bounded below on B(0, p) 

and dom fi,v,t c E(0, p)  with fzl~,t(0) = 0. 

Since we assumed that f is twice Mosco epi-dinerentiable at 5 = O for ü = 0, 
1 ~r(m)  Le., fi,s,t "r 5 fz,ù , applying Proposition 2.6.1 there exists T I ,  O < r l  < p, such 

that for all X small enough, the Moreau Xenvelopes 



Observe t hat 

which Mosco epi-converge to 3 (eA)i(? In otherwordç, for X s m d  enough, e~ is 

twice Mosco epi-diaerentiable a t  3 = O for ü = O with 

It follows from the formulas (2.6.1) and (2.6.2) and the sum rule (Proposition 

2.6.2) that êA is twice Mosco epi-diaerentiable at 5 = O for V = O with 

Convexity of êA ensures (cf. [Ir], Theorern 3.9) that the twice Mosco epi-different iability 

of ê, at Z = O for V = O is equivalent to the proto-differentiability of DêA at if = O 

for ü = 0 with 

Hence we have the proto-dif'ferentiability of DeA at 5 = O for G = 0. 

But DeA has been identified locally with [XI + T-']-' in Proposition 2.4.6. 

The g a p h  of the latter mapping is the image of the graph of T under the in- 

vertible hear transformation (x, v )  I+ (x + Xv, v )  from X x X onto itself. Since 
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p r o t e e r e n t i a b  at 5 for a is a geometrïc property of graphs at (5, f) that is 

maintainecl when graphs are sub jected to an invertible h e m  transformation, and 

the proto-derivative mappings themselves then correspond under the same tram- 

formation, we deduce that the prote-differentiable of DeA at 5 for V is q u i d e n t  

to that of T on B ( 0 ,  rl) in which event there is the formula 

Since the proto-desivative mapping is positively homogenuouç, the above equiva- 

lence ( and 2.6.5) is true everywhere. This complete the kst part of the proof. 

We now turn to verify the derivative formula in the theorem. The positive 

homogeneity of the derivative mappings involved in the formulas (2.6 -3) , (2.6.4) 

and (2.6.5) imply that they are actually valid everywhere and hence combining 

them yield 

and hence 

The convexity of Mosco epi-limit of convex functions (cf. [l?], Proposition 2.2) 

lc12 (through 2.6.3). Hence the functions implies that of 3 (ex):!;) (5) + P( 
l )"(ml . ( t,13 (6) + fr tel2 are convex for sufficiently small A, which indeed increase to 

L'-)(c) + ilc12 as h o .  Thus Y f,,Y 



Then, by Attouch's theorem (Theorem 2.6.3) for convex functions, 

1 ~ ~ ( r n )  gph { ~ ( i  ( e & ~ ~ ' )  + T I )  % gph { B ( ~  fZ,. ) + T I )  as X \ O. 

L ff(m) F'rom (2.6.7) and (2.6.8) we conclde that G ~ ) ( E )  = a[5fr,v ] ( E )  for all as 

When X is finite-dimensional, the converse of Propositions 2.6.1 (see [25], Propo- 

sition 2.1) and 2.6.2 (see [40], Proposition 2.10) are true, and hence the proof 

given here can easily be reversed. Cl 

CoroUary 2.6.5. Assume that f : X -, N is prox-regular and subMerentially 

continuous at f for V with constants E and r .  If f iç twice Mosco epi-differentiatde 

at 5 for ü, then af is proto-ditferentiable at 5 for a. One has 

The converse is true when X is a hite-dimensionai space. 

Proof. Just apply the theorem noting that the f -attentiveness in the localization 

of af to T is superfluous here. 

For a convex, C2 h c t i o n  the above derivative formula agrees with the classical 

results of second derivatives. 

Corollary 2.6.6. For a convex, C2 function f : X -i R one has 

and hence the derivative formula in Theorem 2.6.4 hdds. 

Proof. See [l?] , Proposition 4.1. 

The proof of Theorem 2.6.4 has revealed additional facts concerning f and 

the second-order properties of its Moreau envelopes e ~ ,  which we record ne*. 



Theorem 2.6.7. Suppose that f is prox-regular at 5 = O for ü = O with respect to  

s and T ,  in particular with (2.4.1) holding: and let X E (O, l/r ) . Lf f is twice Mosco 

epi-Merrentiable s t  O for 0, then e~ has t6is property. One then has f (e,)o(r) as 

1 ~ ~ ( r n )  the Moreau A-envelope of a foyo , and the function for?) + T I  - (* is nonnegative 

and convex with 

Proof. Follows readily hom the proof of Theorem 2.6.4. 

Corollary 2.6.8. Suppose that f is prox-regular at 3 E argmin f for G = O with 

respect to E and r. Let T be the f -attentive e-localization of a f around (5,~). 

Assume that there is a neighborhood U of (5, G) and h > O such that at all points 

(x, u) E U n gph T, and for a& O < X < 5, f is twice Mosco epi-differentiable at x 

for v ,  then e, has thk property at x + Au for v. One then has 

Proof. Assume that = O with f(0) = O. Consider ( 2 J )  E gphT and the 

function i(z) := f (z + 2)  - f (5) - (G, x). There is a neighborhood U of (O, 0) and 

R > r such that for all points (5,C) E U fi gphT, we have f(z) > - ( R / Z ) ~ X / *  for 

all x (see [29], Corollazy 6.6). 

It is very essy to ver@ that for O < X < (l/R) 

ë&) = e),(w + I +  AG) - (w,li) - f(3) - ( ~ / 2 ) 1 . ~ 1 ~ :  

'f(4 = here ëx is the Moreau A-envelope of f. From this we conclude that 

ffh) - 1 )  - rl(m) (eA)i+,G,v. Finally note that DeA @+AG) = Ü. (because V E t3 j ( I ) ) ,  fo,o - fftI , 
and that j is prox-regular at O for O with respect to E and R, in particular with 



(2.4.1) holding ( f in place of f and R in place of r )  . Now simply apply Theorem 

2.6.7 to the function f .  

Nat every property of prox-regular hc t ions  in finite-dimensional spaces has 

a Hilbert space extension. We r e c d  in Theorem 2.6.9 that a prox-regular function 

in finite-dimensional spaces has a second-order expansion. We conclude Chapter 

2 by giving an example which illustrates that even for convex functions in Hilbert 

space this property does not hold. 

Theorem 2.6.9. ([29], Theorem 6.7) Let X be a finite dimensional space. S u p  

pose f : X -* R is prox-regulâr at 2 for 5 E af (z) with constants e, r ,  and ako 

that f is twice epi-dserentiable at 5 for ü. I f  the second-order epi-denvative func- 

tion f& is finite on a neighborhood of O, it must ac tudy  be a 1owerC2 function. 

Then f must itseiY be lowerC2 around 5, diEerentiable at 3 with D f (5) = ü, 

and the second-order differeence quotient functions AgYY,, f not o d y  epi-converge 

to f&, but converge uniformly on all bounded sets. In other words, one has the 

expansion 

The following example shows that the extension of above theorem to Hilbert 

spaces fails. 

Example 2.6.10. (Bornein and NoIl [SI) Let f : Z2 -, R be the convex function 

F h t  notice that convexity of f ensures the prox-regularity of f everywhere 

in Zz Consider the point x = (n-2) E 12.  Then f is twice Mosco epi-diaerentiable 



at x with . OQ 

However, the second-order merence quotient fails to converge to f=("% In fact, 

if A:,,,, f + O pointwise, then f had to be Lipschitz smooth at z (cf. Borwein 

and Noll [8], Proposition 2.2). Borwein and Noll showed that this is not the case. 

See Borwein and Noll [8] ; Example 2, pp 62 for details. 



CHAPTER 3 

INTEGRATION OF PROX-REGULAR FUNCTIONS 

3.1. Integration Problem 

In this chapter, we study the fundamental problem of determining functions that 

c m  be recovered up to an additive constant, kom the kuowledge of their subgra- 

dients. More precisely, a function f is deemed integrable if whenever &g(x) = 

d# f (x) for all x then f and g difTer only by an additive constant. Here refers 

to a subdifferential, which can be taken in many different ways (e.g. Dini sub- 

differential, Clarke subdifferential, b-subdifferential, Michel-Penot subditferential, 

Mordukhovich subdifferential, Ioffe approximat e subdifferent ial, Fkechet subdiffer- 

ent id: and proximal subdifferent id). 

The scope of the (non-dinerentiable) functions that are deemed integrable 

seems somewhat restricted. It is clear that not every function can be recovered, 

up to an additive constant, fiom its subgradients. We only need to look at the 

following two functions. 

Example 3.1.1. 

Let 



These two functions have the same subgradients everywhere yet they m e r  

by dïfferent constants in the pieces of the (connected) domain. 

It has been conjectured that the locally Lipschitzian functions can be recov- 

ered from their proximal subgradients. This is due to a theorem of Rademacher, 

a locally Lipschitzian funct ion is differentiable a.lrnost everywhere. Recently, t hiç 

was proven negative by Benoist. 

Example 3.1.2. (Benoist [4]) 

For every countable dense set D C R, there m s t s  idh 

hinctions f, differing by more than a constant, such that 

itely many Lipschitzian 

However, it was proved in [38] that this undesirable situation does not aise  

for some important classes of locally Lipschitzian functions such as the upper 

regular, semismooth and separably regular functions. 

Probably the most well known and the oldest result in this area concerns con- 

veu functions. If two 1.s.c. convex functions (defineci on Banach spaces) have the 

same subgradients, then they difEer by a constant; see RockafeUar [33]. However, 

very few other examples were known. 

The nst work outside the field of locdy Lipschitzian functions was done by 

Poliquin for the p.1.n. functions. If two functions axe p.1.n. at 5 and have the same 

subgradients, then on a neighborhood of the functions differ by a constant. See 

[24]. Later this result was extended to Hilbert spaces by Thibault and Zagrodny 



[48]. The contribution we make to the integration problem is to identify a large 

class of prox-regular functions, which differ only by a constant, £rom the knowledge 

of their limiting subgradients. We establish the integation result in an arbitrary 

Hilbert space, and certainly it applies to a much wider temtory than that of p h .  

case (See Example 3.3.2). The central tool k achieving this integration result is 

the smoothness property of the Moreau envelopes of prox-regular functions that 

we established in Chapter 2. 

3.2. Main Resdt 

We prove t hat if two functions, which have the same subgradients locdy, are prox- 

regular and subditferentially continuous relative to a pair (5, G) then the hnctions 

differ by a constant in a local neighborhood of (5,ü). More precisely, we have: 

Theorem 3.2.1. Let fi : X -. R be prox-regular at Z for ü E afi(5),  a' = 1,2 .  

Assume that there exists a neighborhood of i? such that both fi and f2 have 

the same limiting subgradients and fi is su bdifferentidly continuous at 5 for fi. 

Then f2 is subdifferentidy continuous at i? for ü, and there is a k in R such t6at 

fi (x) = f2(x) + k for alI x near f with v in t3 fi  (x) close to ü. 

Proof. Without loss of generality (cf. 2.4.1) we norm&e t o  the case 5 = 0, 

tj = O  with 

fi is locally 1.s.c. at O with fi(0) = 0, and r > 0 ) 

2 (3.2.1) 
is such that f i (x)  2 --lx[ for all x, and i = 1,2 

2 
which imply that 

ei(0) = O and e(0) = {O) when X E ( O J T )  and i = 1,2,  (3.2.2) 

where e; and ~ * e  the Moreau envelope function and the proximal mapping of 

fi, respectively. 



We may further assume that there exi& E > O such th& fi and fi are prox- 

regular at = O for = O with respect to the same r with (3.2.1) holding. For 

i = 1,2 let Ti be the fi-attentive E-localkation of afi around (0,O). Then, by 

Thecrem 2.4.4, for each X E (O, l/r) and i = 1 ,2  there exists 6 > O such that: on 

V := {x; 1x1 < 61, the mappings Pi are singlevalued and Lipschitz continuous 

with constant 1/(1- A r )  and 

R(s) = (1 + AT.)-'(x) = [singleton], 

while the functiom e i  is of class Clf with ~ e i ( 0 )  = O and 

and the properties in Propositions 2.4.2 and 2.4.3 hold. 

Decreasing E fkrther if necessary, we c m  arrange that fi and fi have the same 

subgradients on EB, where E > O cornes hom the definition of prox-regularity of 

JI* 

Ciaim 1. For each A E (O, l/r) , we have Pi (x) = PX (x) = [singleton], and 

e:(x) = ez (x )  on V. 

Proof of Claim 1. First notice that the proximal mappings P;, i = 1 1 2  are 

single-valued on V by (3.2.3). Let any x in V and xi = e ( x ) ?  i = 1,2. Then 

by Propositions 2.4.2(b) and 2.4.3(b) we have lxll < E,  Ih(xi)l < E and lvll < E,  

where vl = f (Z - x1) E a fl (z,). With the same reasoning 2 2  = P?(X) gives 

lx2 1 < E and lv2 1 < e, where v2 = i(x - x 2 )  E a fi (x~). Since lx2 1 < e we have 

q E a f i ( x 2 )  = fi (x2). Since fi is subdifferentidy continuous at f = O for 

= O, we may also assume that 1 fi (x2)1 < e. Thua applying Theorem 2.3.4 for 



the pairs (xi, ui ) and (x2, 112) we get 

2 2 hence - X - ' ~ Z ~  -xzl 2 -r!xl -x21 - Then (1 -Xr)lxl -x2I2 5 0, so 11 = 1 2 -  

Therefore, we have P '  (x) = P; (x) and by (3.2.4), ~ e :  (x) = ~ e i ( x )  on V. Thus 

we conclude e i  (x) = e:(x) since ei(0) = O when X E (O, llr) and i = 1,2 by 

(3.2.2). 

Claim 2. For d x in domafi n (6/4)B and v in afl(x) with 6 small enough 

such that Ivl < (614) < e, and X srnaIl enough we have p,'(zA) = P?(Z,) = {x), 

where z,, = x + Au. 

Proof of Claim 2.  Take any x in domafi n (6/4)B and restrict X < 3. Then 

so z~ belongs to  V. 

Let 2. be an element of = ~ ' ( 2 , )  (equality due to Claim 1). Then by 

Propositions 2.4.2(b) and 2.4.3(b) we have 151 < E ,  1 fi(I)l < E and ICI < E:  where 
- 
v = ~ ( z A - 2 )  E afi(Z). By our hypothesis v = 7 E afl(z) with I v I  < (614) < E 

and 1x1 < (614) < E.  Since fl is subdifferentially continuous at 5 = O for ü = 0: 

we may also assume that 1 fi (x) 1 < E.  Thus applying Sheorem 2.3.4 for the pairs 

(Z,.U) and (x, v )  we get 

([FI - [y] 5 - 2) > -7-5 - Zl2, 

2 2 hence -X-115-xl 2 - r l ~ - x l  . Then ( l - X r ) l j . - ~ 1 ~  5 O, so 2 =  x. Thus we 

have = P~(z,) = {x) as clahed. 



Claim 3. I f  x belongs to dom fi and x is near 5 = O with subgradients v E 

t3fl(x) = afi(x) and close to ü = O, we have fl(x) = f2(2). 

Proof of Claim 3. Take any x in domafi n (6/4)B and v in t3fi(x) with I V [  < 

(6/4) < E. Restricting X as in Claim 2, we have zx = xf Xy in V. Shen by Claims 

1 and 2, we get P: (zJ = P: (z-J = {x) and e: (tx) = e:(zx). This means 

and hence fl(x) = f2(x). This cornpletes the Claim and hence the Theorem. 

3.3. Necessity of the Assumptions 

The following examples show that the assumptions in Theorem 3.2.1 are necessary. 

Further, Example 3.3.2 shows that Theorem 3.2.1 covers a much broader class of 

functions than that of p.1.n. case [24]. 

Example 3.3.1. (necessi@ of subdïf5erentia.l continuityl 

Let 

O i f x  <O, O Z S ~ O ?  
1 ifx>O, 2 ifx>O, 

These two functions are prox-regular but not subdifierentially continuous at 

I = O for ü = O (cf. Example 2.2.4). we see that they do not differ by a constant 

in any neighborhood of (5, a). This explains the necessity of the subdifferential 

continuity of the functions in Theorem 3.2.1. 

Example 3.3.2. (necessity of the closeness of the subgradients) 

70 



Let 

First, we c l a h  that both fi and f2 are prox-regular and subdifferentially 

continuous at 2 = O for ü = O. To see th& : take B = 4 and for i = 1,2 ,  Ti be the 

fi-attentive E-localizat ion of d fi around (5, û) . It is easy to calculate, for i = 1: 2 

(0) 
z(4 = {[O, 

0 

Then the prox-regtdarity of fi, i = 1,2, 

Theorem 2.3.4. Since fi is continuous it 

f o b w s  kom the monotonicity of Ti via 

remains to ver& that f2 is subdifferen- 

tially continuous at 5 = O for 5 = O. Indeed, for any sequence (x,, un) + (0,O) 

with v, E a f2(xn) eventudy we have f2(x,) = O = fi(0). Thus, fi is also s u b  

differentially continuous at T = O for ü = O. Yet fi  and f2 differ by Merent 

constants on any neighborhood of 5 = O. However, when we restrict to , Say with 

E = 4'  not only lx - Zl < E but IV - î?I < e with v E a f i ( x )  = Bf2(x)? then 

such x has to be in (-E, O] and we have fi (2) = O = f2 (2) for all x in ( -E ,  O]. 

This justifies that the requirement of taking not only x close to 2 but also the 

subgradients v close to in Theorem 3.2.1. 

This example also revetùs that Theorem 3.2.1 covers much broader class of 

functions than that of p.1.n. case. For this, we only have to verify that fi is not 

p h .  at I = O. Here we make use of a corresponding subgradient characterization 

avaüable for p.1.n. functions. 



Theorem 3.3.3. (Levi, Poliquin and Thibault [19], CoroIIary 2-31 Let f : X -t R 

be a Ls-c. function that is f i t e  at 2. The following are equident: 

(a) f is primd-lower-nice at 5. 

(b) There ex& positive constants E,  c and R such that 

whenever vi E f (xi), lvil 5 cr, r 2 R and lxi - 21 5 E, i = 1,2.  

If fi were p h .  at 5 = O then there would be constants E, c and R as in 

Theorem 3.3.3. Then for any r > R, consider the mapping T formed by adding r 

times the identity to the subgradient mapping of fl, 

A 

T ( x )  := - +TI for x E (0,~). 
2 J j c  

1 The critical points of T are given by Tt(z) = -- + r = 0, and attained at 
42 2 

xm := l . Since T1I(x) = 3 > O, z, is a local minimum for T. Now restrict 3 8s 
1 the subgradients of fi such that -& 5 m, Le, z0 := 5 I. Then T to 

be monotone on [ x o , ~ ) ,  x, has to be less than or equal xo. This requires that 

r2 5 &. But, for the large values of r this is impossible and which contradicts 

the monotonicity of T required by Theorem 3.3.3. This confirms that fi is not 

p.1.n. at 5 = 0. 



CHAPTER 4 

CALCULUS OF PROX-REGULAR FUNCTIONS 

As noted in Chapter 2, Poliquin and Rockafellar, in their study of prox-regular 

hinctions, have obtained many functional properties, however calculus rules for 

these functions have not appeared yet. We fill this gap by developing basic calculus 

rdes for prox-reguiar functions. A master key to our calculus is the following chah 

rule. 

4.1. The Chain Rule 

Here we establish the prox-regularity of a composite Eunction obtained by corn- 

posing a prox-regular function with a CL+ (differentiable with l o c d y  Lipschitz 

Jacobian) mapping under a natusal constraint quaJification. 

Theorem 4.1.1. (chah rule) Assume that F : IR" - HZ" is continuously dif- 

ferentiable c l t  5 mith the Jacobian mapping V F  Lipschitz continuous near 2, 

g : Rm + R with g(F(5) )  finite, and that the following constraint qualification 

(R) is satisfied at F(3) .  

(R): Theonlyvector y~aOOg(F(fi?)) with V F ( I ) * ~ = O -  is y=O.  



Assume further that the outer function g is prox-regular at F(2)  for ail y E Y (5, ü) . 

Then the composite function g  o F is prox-regular at 5 for 5. 

Proof. Let u E a(g 0 F ) ( x )  and consider the set 

Y ( x , v )  := { y  E a g ( F ( x ) )  ; VF(x)*y = v ) .  

First we show t hat , for all (2, u) in an (g 0 F)-attentive neighborhood of (f , 5) the 

subgradients y in Y ( x ,  u )  are bounded. 

Claim 1. For ij E a(g  o F )  (5) there evists E > O such that the set 

is bounded. 

Proof of Claim 1. Suppose that the statement of the claim does not hold. Then 

there exist sequences xn -, 5, un -+ ü, and y, E Y(x , , v , )  with ly,l + oc and 

g(F(xn))  -) g(F(5)) .  Since v, = VF(x,)*y, ,  with y,, E ag(F(x , ) )?  by passing to 

the vectors 

and extracting a subsequence, we can suppose that yn/lyn 1 converges to some 
y, with lyl = 1. Then O # y E a o 0 g ( F ( ~ ) ) ,  by the definition of singular limiting 

subgradients. At the same time we have VF(5)'y = O by (4.1.1) and the continuity 

of VF. This contradicts the constra.int q u a c a t i o n  (R). O 

Thus, by Claim 1, and the closedness of the limting proximal subdifferential set, 

in particular, we cohclude that the set Y@, 5)  is compact. 

Now consider, for ü E a(g 0 F) (L), the set 



For each y E Y@, ü), there exkt parameters E, > O and r, > O kom the defmition 

of prox-regularity of g at F(3) for y, and hence we have a covering of Y(2,  a) by 

open balls, Le., 

The compactness of Y@, 8)  d o w  us to h d  a fiaite subcovering: 

m 

Y(z,Ü) c UB(&?E~~) where yi E Y(5,ii). 
i= 1 

Now fix E as in Claim 1. 

Claim 2. There exists F > O such that O < E c E and 

- II - %I < E 

IV - ül < E 

IdF(4) - g(F@))  1 < 5 

with v E 8(g 0 F ) ( x )  and y E Y ( x ,  ZI) 

3 yi E Y(Z ,5 )  in (4.1.2) 

-i such that 1 y - yi 1 < 

for sume i = 1,. . . ,m. 

Proof of Claim 2. Assume the contraq i.e., there exist sequences Zn -r f, - ü with yn E Y ( xR ,  un) and g ( F ( x n ) )  + g(F(5)) S U C ~  that for all y* E Y (5, ü) 

one bas 

Then by Claim 1, yn are bounded (eventually), and hence extracting a sub- 

sequence, we may suppose that y, converges to  some g. Then E ag(F(2))  by 

the closednesa of the graph of limiting subdifferentials. Since y, E Y(x , ,u , ) ,  Le, 

vn = VF(xn)*yn Wlth y, E a g ( F ( x n ) )  and the continuity of V F ,  we &O have 

ü = V F ( z ) * i  with E ag(F(2)). Then ij E Y ( ~ , G )  and hence by (4.1.2) there 

exists yi E Y@, ü) such that Ig - yil < for some i E (1,. . . m). At the same 



time we have, by (4. L3), I$j - yi 1 2 E , ~  for ail i E (1, . . . , m), which contradicts 

the preceding statement . 

Recall that ~i and ri, i = 1,. . . , m, are the parametes corresponding to the prox- 

regularity of g at F ( I )  for yi E Y (5, Zi). Choose 

8 =  rnin{~,,; i = 1 ,... ,m) and T = max{ri; i = 1 ,... ,m). 

Then by Claim 2, and the contiauity of F,  there exists é such that O < f < 

min{€, E )  and 

with u E a(g 0 F ) ( z )  and y E Y (z. v) ) and 1 F ( z )  - F ( I )  1 < E. 
(4.1.4) 

Consider a (g 0 F)-attentive É-localizat ion of B(g O F) around (z, ü) as in the 
- 

left hand side of (4.1.4). We then have Ig(F(x)) - g(F(3))I < E < syi1  and by 

(4.1.4), IF(x)-F(5)I < E < E ~ ~ ,  Iv-yil < E~~~ gi E Y(E,Ü)  for some i = 1,. ..,m. 

Hence, invoking the prox-regularity of g at F(z) for yi E Y@, G) (with parameters 

E~~~ and r i )  we get 

g(F(z'))  2 g(F(z)) + (y, ~ ( x ' )  - F ( x ) )  - ~ I F ( x ' )  - F(x)~' 

where x' E B(3, Z) and f = max{ri ; i = 1,. . . , m). 
Let k be the local Lipschitz constant for F and K be that of V F  on the set 

B(3, 2 I )  ( we shrinlc P if necessary). Applying the local Lipschitzness of F to 



(4.1.5) we obtain 

To show that g O F is prox-regdar at ii for ü E a(g O F)(?), we need T' > O lta.rge 

enough such that 

Thus, by (4.1.6) we have (4.1.7) whenever the followhg inequaliv holds, 

T / ?k2 
( U , X  - X I )  + -lx 2 - X I I '  2 (y, F ( I )  - F ( z l ) )  + 2-1r - z'(~. 

Thus, we will be done if we can verify inequality (4.1.8). For that , choose r' large 

enough such that M := ($ - -1) 2 > O and M > qK, where 7 is the bound for 

y E S in CIaim 1. Note that y E Y(x,v) in (4.1.7) same as in (4.1.8) are belong 

to the set S in Claim 1. This is because é < E,  by our choice. 

Now consider the point y' defined by 

where we assume that d # x ,  otherwise inequality (4.1.8) holds trivially. By the 

Mean Value Theorem, the norm of i is bounded by Klx' - X I ,  and by Claim 1, 
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y E S are bounded by 7. Utilizing these two bounds, we obtain the estimate 

1 

(VF(x)(x -d), y) + MIx - x'I2 2 (y, F ( x )  - F(x') ) .  

Now (4.1.8) follows since v = VF(z)*y and M = ($ - y). 
In the fkamework of nonsmooth analysis, the chab rule for f = g O F is the 

foundation for many other rules of calculus. For instance, it gives instant access 

to the following sum rule. 

Corollary4.1.2. (sumnile)Suppose f = fi+---+f,, fi: Rn -rR, i> €dom f, 

.U E a f (5) and the only combination of vectors yi E Bo" f i @ )  with y1 + - +ym = O 

is yi = ... = y, = O. Assume dso that, for i = 1, , m, fi are prox-regular for 

ail vi E a fi (5) such. that vl + - + v, = ü. Then f is prox-re,dar at 5 for 5. 

Proof. Let F : Rn -t (Rn)m be the mapping that takes x to (2,. . . :x), and 

define the function g : (Rn)m + R by 

Then f ( x )  = g ( F ( x ) ) ,  and the following subgradient formulas hold (cf. Proposition 



Next we show that this composite function goF satisfies the constraint qualification 

(a) at F(2)  of the Theorem 4.1.1. Indeed, for all i = (81, . . . , @,) E amg(?, . . . ,5) 

with V F ( f ) * @  = O imply 

Le., + - - - + gm = O with gi E EaODfi(iE), i = 1,. . . ,m. Then by our assumption 

- ij, = O, as desired. Thus we have (cf. Theorem 2.1.12), we have gl = - - 

Since fi are prox-regular for all ui E af,(f) such that ul + - - + u, = G, it 

follows that g is prox-regular at F ( I )  for all y = (ul - - , u,) E Og(F(5)) such that 

VF(3c)'y = ui + - - - + v ,  = V, where vi E af i ( f )?  i = 1 ,...,m. Hence, applying 

Theorem 4.1.1 for the composite b c t i o n  g o F we conclude that f is prox-regular 

at 5 for 5. 

4.2. Some Applications 

Next, we record several applications of the Chain Rule (Theorem 4.1.1). 

Corollary 4.2.1. Assume that F : Rn + Rm is continuous1y differentiable at f 

with the Jscobian mapping VF Lipschitz continuous near 5,  g : Rm W with 

g(F(z ) )  fînite, and that the following constraint quaLification (R) is satisfied at 

F (2). 

(72) : Theonlyvector y €  ao0g(F(2)) with VF(e)*y=O is y = O .  

Let iï E a (g  o F) (5) and set 



Assume furtber that the outer function g is prox-regulax at F(z)  for au y E Y(?, 5)  

and the composite function g O F is subdifferentidy continuous at 2 for ü. In this 

setting, g O F i$ *ce epi-differentiable at I for ü if and only if a(g o F) is prote 

differentia ble at 5 for ü with 

Further, when g O F is twice epi-dserentiable at 2 for c with a finite second-order 

epi-derivative (g  O F):,, on a neighbourhood of 0, the composite function go F has 

a second-order expansion 

(9 O F)(z) = (g o F)(z) + (ü,x - I) + (go F)',',,(z - 5) + ~ ( I x  - 5 1 ~ ) .  

Moreover, the composite function g O F is integrable in the sense of the Theorem 

3.2.1. 

Proof. Since g O F is prox-regular at 3 for by Theorem 4.1.1, the stated results 

follow directly from Corollary 2.6.5, Theorem 2.6.9, and Theorem 3.2.1 (in the 

same order). 0 

The smoothness and convexity properties of Moreau envelopes of a prox-regular 

function can also be transformed into the above composite case. 

CoroUary 4.2.2. Consider the composite function goF in the setting of CoroUary 

4.2.1. Then the Moreau envelope ex of g o F is not only C If but also lowerC2 in 

a neighbourhood of 2 wit6 



Proof. Since g O F is prox-regular at Z for ü by Theorem 4.1.1, the stated results 

follow directly fiom Proposition 2.4.6 and Theorem 2.5.2 (in the same order). 
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