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ABSTRACT

The prox-regular functions, a broad class of nonsmooth functions of inter-
est in variational analysis and optimization, recently introduced by Poliquin and
Rockafellar in finite-dimensional spaces, are further studied in Hilbert spaces. The
key properties of prox-regular functions in JR™ which include a subgradient char-
acterization of prox-regularity, a Lipschitzian property of the graph of the subd-
ifferential mapping of a prox-regular function, and smooth (C'*) and convexity
(lower-C?) properties of its envelope functions are extended to an arbitrary Hilbert
space. Subgradient and proto-derivative characterizations are also given in separa-
ble Hilbert spaces, for the convexity and the strong convexity of envelope functions.
A partial extension in Hilbert space is given to the connection between the second-
order Mosco epi-derivatives of prox-regular functions and the proto-derivatives of
their subdifferentials.

Two new issues of prox-regular functions are taken up. First, the smooth-
ness property of envelope functions is used to solve the fundamental problem of
identifying nonsmooth functions (up to an additive constant) from their subdif-
ferentials for a large class of prox-regular functions in Hilbert space. Second, the
basic calculus rules such as addition of prox-regular functions, and a more general
form of chain rule ( composition of a prox-regular function with a C'* mapping )

are developed in finite-dimensional spaces.
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CHAPTER 1

INTRODUCTION

1.1. Background and Motivation

Nonsmooth analysis is one of the most attractive and promising areas in mod-
ern mathematics. A systematic study of local behavior of nondifferentiable (not
necessarily differentiable) functions and set-valued mappings (multifunctions) is
accomplished in such a framework. In recent years, it has grown rapidly in con-
nection with the study of problems of functional analysis, optimization, optimal
design, mechanics and plasticity, differential equations, and control theory. Re-
cently, Terry Rockafellar, a pioneer in this area, has given a more appropriate title,

vartiational analysis, to reflect this breadth (cf. [46]).

It is well known that the subgradients of convex functions have very favorable
properties, and have been the basic impetus to develop more general theory of
nonsmooth analysis. Evidently, identifying nonconvex functions with properties
that closely resemble the properties of convex functions is advantageous for the

possible development of both the subgradient theory and computation.

In this thesis, we focus on one such class of functions; namely proz-regular
functions in Hilbert space. These functions were first introduced in 1996, by

Poliquin and Rockafellar in [29], and thoroughly investigated in [29] and [30].
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However, their analysis is confined to finite-dimensional spaces and does not deal
with important issues like integration of subdifferentials and the calculus rules of
prox-regular functions. Our further investigation not only deals with such issues
but extends most of the important properties in [29] to an arbitrary Hilbert space.
First, we introduce the prox-regular functions and discuss the key facts de-
veloped in [29]. A concept that is essential in defining prox-regular functions is
that of the prozimal subgradient.
Let f: R® —» R := R U {£oo} (i.e., extended-real-valued function) and Z be a
point where f is finite. A vector ¥ in JR" is said to be a proximal subgradient of

f at T provided that there exist scalars € > 0 and r > 0 such that
f(z) > f(&) + B,z — F) — -;-lx — 2 forall ze B(z;e),

where IB(Z;¢) is the open ball of radius £ > 0, centered at Z. The set of such 7, if

any, is denoted 8, f(Z) and is referred to as the prozimal subdifferential.

A limiting form of 8, f is defined by
8f(z) :={ imwg : vk € Opflzk), T — T with f(zi) — f(Z) }.

which is referred to as the limiting (prozimal) subdifferential.

Another useful limiting subdifferential is defined by
8% f(z) := {lim txvk : te\0, vk € Gpf(zk), z& — T with f(zz) — f(Z)},

which is referred to as the limiting singular subdifferential.

A lower semicontinuous (Ls.c.) function f : R™ — R is said to be proz-regular at
Z, a point where f is finite, for the subgradient 7 € §f(Z), if there exist parameters

€ > 0 and r > 0 such that for every point (z,v) € gph8f obeying [z — Z| < &,
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|f(z) — f(Z)] <&, and |v — 7| < &, one has the local estimate
fl&') = flz) + (v, ' — ) — -;:I.'z:' —z|? forall z’ € B(Z;e).
When this holds for all & € 8f(Z), f is said to be prox-regular at Z.

The class of prox-regular functions can be described as a very broad class of
nonsmooth functions of interest in variational analysis and optimization, which ad-
mits effective generalizations of many of the subdifferential properties of extended-
valued convex functions.

Now we summarize the key facts of prox-regular functions developed in [29].

(a) Subgradient characterization of prox-regularity
The following subgradient characterization of prox-regularity, established in [29],
deserves special attention in several respects.
A Ls.c. function f is prox-regular at Z for v if and only if 7 is a proximal subgradient
of f at Z and, under a suitable localization (f-attentive), the multifunction 8f +rI
is monotone.
In most cases, this subgradient characterization can be used as a handy tool to test
the prox-regularity of a function. For example, all C!* functions (differentiable
with locally Lipschitz gradient), all L.s.c. proper convex functions, all lower-C2
functions (locally the sum of the function and a positive multiple of the norm
square is convex), and all primal-lower-nice functions (see Definition 2.2.1) are in
turn prox-regular too.

As it was pointed out in [29], the above “pre-monotonicity” property of df
is sufficient for a full range of desirable subdifferentiable properties. For example,
when f is prox-regular at Z for ¥, the graph of df coincides, under a suitable

localization near (£, %), with a Lipschitz manifold of dimension n in JR" x R", a
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property previously detected only for convex function and their very close allies
[39]. Further, it plays a key role in establishing the smoothness and convexity

properties of envelope functions of a prox-regular function.

(b) Regularity and convexity properties of envelope functions
For a proper, ls.c. function f : IR* — IR and parameter A > 0, the Moreau

envelope function is defined by

ex(@) = inf { (=) + %w Y
These functions not only approximate but provide a kind of regularization of f.
For a l.s.c function f {may take oc values and exhibit discontinuities) minorized
by some quadratic function, it is known that, for A small enough, e, is finite and
locally Lipschitz continuous, and approximates f in the sense that e, increases
pointwise to f as A\.Q (see the book by Attouch [1]).

As a companion to the envelope function e, we have the prozimal mapping Pj :

R"™ = IR"™ defined by

) 1
Py(z) := argmin { f(z) + a(:c' —z|*},
z’ “
that relate to the numerical techniques like the proximal point algorithm in the

minimization of f.

For a prox-regular function, a strong connection between the function and its
envelope functions and the proximal mappings was established in [29]:

If f is prox-regular and subdifferentially continuous at Z for 7 (see Definition 2.2.3),
then for any A € (0,1/7), where r is a parameter in the definition of prox-regularity,

there is a convex neighborhood V of Z such that

e the mapping P, is single-valued and Lipschitz continuous on V' with Py =
(I +AT)~!, where T is a localization of 8f around (%, 7).
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# the function e, is a differentiable function with locally Lipschitz gradient

(C'*) and lower-C2 on V with

ext 3 [2 convex , Ve, = %[I—PA] = [/\I+T“1]_1.

—r -
(1 —Ar)

These are very important findings of prox-regular functions not only from a
variational analysis point of view but for the possible development of numerical
methods for minimizing e,, which in effect would open a new approach to mini-
mizing f despite its nonsmoothness. In fact, these are the properties one would
expect only of convex functions and alike. For instance, when f is convex e, is
convex too, and actually of class C1*, and the above formulas hold. Moreover,
the proximal mapping P, can be used not only to parameterize the graph of df

but in connection with convex minimization algorithms such as the proximal point

algorithm, see [36].

(c) Second-order Theory
In addition to the desirable functional and subdifferentiable properties outlined
above, prox-regular functions have particularly satisfactory second-order behaviour
in JR™. In [29], a perfect equivalence between second-order epi-differentiability of
f at T for ¥ and the proto-differentiability of a suitable localization of 8f at (Z,7)
was established with a natural formula relating these two derivatives. This gen-
eralizes the classical idea of obtaining second derivatives by differentiating first
derivatives, which was previously known only for convex functions and strongly
amenable functions; see (23], [25] and [42].

Moreover, the additional hypothesis that the second-order epi-derivative func-
tion fz ; is finite on a neighborhood of the origin suﬁcw to establish the second-

order expansion (possibly with a nonquadratic second-order term) formula
f(z) = f(2) + @,z — T) + fis(z — T) + o]z — Z[°.
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1.2. Hilbert Space Extensions and New Issues

Here, we state and discuss the principle results of our investigation. In the first
part of the thesis, we extend the results (a), (b) and (c) to Hilbert spaces. In the

remaining part, we focus on two new issues of prox-regular functions.

(A) Extension of subgradient characterization

We begin by extending the subgradient characterization of prox-regularity, de-
scribed in (a), to an arbitrary Hilbert space. This extension enables us not only
to enhance the territory of the prox-regular class but to obtain many desirable
subdifferential properties, including the Lipschitz manifold property of the graph
of 8f. The smooth variational principle is used as a basic tool in establishing this

result.

(B) Extension of regularity and convexity properties

We prove that all the results stated under (b) are true in an arbitrary Hilbert
space setting, including the C'* smoothness (Fréchet sense) and the convexity
properties of envelope functions. This clearly allows, as mentioned under (b), in
the possible development of subgradient theory and computation to tackle some
Hilbert space problems as well. We give one particular example, in the theory of

partial differential equations, to highlight this point.

In [47], Strémberg studied the following Cauchy problem:
0 110 2
— —| —— [ 0
Btu(x’t)+2|0:ru(z’t)'h 0 zeX,t>0,

_ u(z,0) = f(z) z€X,
where X is an arbitrary Hilbert space.

He proved ([47], Proposition 3) that when X is an arbitrary Hilbert space and

f + 5=| - |? is convex, where T > 0, (i.e., f is lower-C? everywhere and hence
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prox-regular everywhere too) then
1
u(z,t) = e(z) = inf { () + 5-l’ —al* }

is a solution to the above Hamilton-Jacobi equation at each point (z,¢) in X x
(0,7).

Now we can say more here:

For a prox-regular function f (with parameters £ and r) at T for 4, we know that
e:(z) is C1* around z for small enough £, and hence, there is a neighborhood V'
of Z such that u(z,t) = e;(z) is a local solution to the above Cauchy problem at
every point (z,¢) in V x (0,1/r). Note here that f may allow infinite values and
exhibit discontinuities, and hence there is much flexibility for setting up the initial

condition for w.

In addition to the lower-C2? property of e,, conditions were given in [29]
under which e, itself is convex or strongly convex. We also find extensions to
these results in separable Hilbert spaces. In achieving these results, an extended
version of Rademacher’s theorem, a concept of null sets in Banach spaces, and a

criterion for integrability of Banach space valued functions are employed as well.

(C) Extension of second-order theory

The extension of the second-order theory of prox-regular functions to Hilbert
spaces is not that promising. We establish the following partial extension for
the generalized second-order differentiation:

Let f be prox-regular at % for 4. If f is twice Mosco epi-differentiable at Z for 7,
then a suitable localization of the subgradient mapping 8f is proto-differentiable,
and the natural derivative formula holds. The extended results of smoothness

and convexity properties of e, play an important role in achieving this result. A
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Hilbert space example is given to show that the second-order expansion of a prox-
regular function fails to exist even for a convex function with finite second-order

epi-derivative everywhere.

(D) Integration of prox-regular functions

A fundamental problem in nonsmooth analysis is to identify functions that can be
recovered up to an additive constant, from the knowledge of their subgradients.
More precisely, a function f is deemed integrable if whenever d4g(z) = 9« f(z)
for all z then f and g differ only by an additive constant. Here 94 refers to
a subdifferential which can be taken in many different ways (eg. Clarke subdif-
ferential, Mordukhovich subdifferential, Fréchet subdifferential, Ioffe approximate
subdifferential, proximal and limiting subdifferential).

Probably the most well known and the oldest result in this area is that the
convex functions are integrable (in the above sense) even in a Banach Space; see
[33]. However, very few other examples were known. For convex functions all
types of known subdifferentials are reduced to the subdifferential in convex anal-
vsis, but in nonconvex cases the type of the subdifferential used plays a key role.
The proximal subdifferential has been successful in identifying some nonconvex
functions (up to an additive constant). This was done by Poliquin [24] for the
p.l.n. functions defined on JR™, and later extended to Hilbert spaces by Thibault
and Zagrodny [48].

The contribution we make to the integration problem is to identify a large
class of prox-regular functions tanat can be recovered from the knowledge of their
limiting (proximal) subgradients. More precisely, we prove in an arbitrary Hilbert
space that if two functions, which have the same limiting subgradients locally,

are prox-regular and subdifferentially continuous relative to a pair (Z, ¥) then the
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functions differ by a constant in a local neighborhood of (%, %). We also construct
an example to show that our integration result covers a much broader class of
functions than that of the p.l.n. case [24]. The central tool that we employ here

is the smoothness property of the envelopes of prox-regular functions.

(E) Calculus of prox-regular functions

In {29], a large core of examples were given to show the magnitude and applicability
of the prox-regular class. However, the lack of calculus rules has been a hindrance
to the constructive development of this class. We overcome this difficulty by
developing basic calculus rules for prox-regular functions. A master key to our
calculus is the following chain rule.

Let F : R* — IR™ be C'* near 7 and g : R™ — IR with g(F(Z)) finite and
a natural constraint qualification is satisfied at F'(Z). We prove that for a fixed
7 € 8(go F)(Z), if g is prox-regular at F(Z) for all y € g(F(z)) with VF(Z)*y = 7,
then the composite function go F' is prox-regular at Z for 7. Here VF'(Z)* denotes
the adjoint of the Jacobian matrix VF at Z.

As an easy application of the above chain rule we have the following sum rule:
Let f = fi+fa, fi : R® — R and Z € dom f and the only vector y; € 8% f;(Z) with
11 +y2 = 0isy; = yo = 0, where §°° f denotes the limiting singular subdifferential
of f. Assume also that f; are prox-regular for all v; € 8f;(Z) such that v; +vs = 5.

Then f is prox-regular at Z for .

Another consequence of our chain rule is the identification of new examples of

- integrable functions (in the sense of (D)) on R".

This thesis is organized as follows. In Chapter 2, we extend the main results

of prox-regular functions in IR" to Hilbert spaces. That includes a subgradient
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characterization of prox-regular functions, regularity and convexity properties of
its envelope functions and some second-order properties. In Chapter 3 we present
an integration result, and in Chapter 4 we give the calculus rules of prox-regular

functions with some of their consequences.

1.3. Notation

The terminology and notation we adopt here is the standard one of conver and
variational analysis (cf. (14], [35], [46]). We'll be working in a real Hilbert space
X with norm [-|. The open unit ball in X is denoted by B, its closure by B. The
open ball of radius r > 0, centered at z, is denoted by B(z;r), and its closure by
B(z;T).

A quite useful convention in optimization theory, which we’ll also adopt, is to
allow functions to be extended-real-valued, i.e. to take values in R = [—oc, 00]. We

employ extended arithmetic with the convention (oriented toward minimization)

<+ (—o0) = (—0)+oc =00, 0-00=0=0-(—00).

The extended-real line IR has all the properties of a compact interval. Every
subset R C IR has a supremum (least upper bound) in R, which is denoted by

sup R, and likewise an infimum (greatest lower bound), inf R.

For an extended-real-valued function f on a set C, we also introduce notions
for the sets of points z where the minimum or maximum of f over C is regarded

as being attained :

argmin f := argmin f(z) :=
zeC

{{-'BEC’If(:v) =infc f} if infeo f # oo,
0 ifinfc.f=w1

{zr € C|f(z) =supc f} if supe f # —oo,

argmax f = argmax f(z) := { if supcf =

zeC

10



For a function f: X — IR we define the following:

The effective domain of f is denoted by
dom f := {z € X | f(z) < +oo}

and its epigraph
epi f := {(z,a) € X x R| f(z) < o}

We call f a proper function if f(z) < oc for at least one z € X, and f(z) > —oc
for all z € X, or in otherwords, if dom f is a nonempty set on which f is finite;
otherwise it is improper.

The function f : X — IR is lower semicontinuous (Ls.c.) at % if
lim inf f(z) > f(2)

and lower semicontinuous on X if this holds for every Z € X. The lLs.c. of f
at ¥ is clearly equivalent to saying that for all € > 0, there exists § > 0 so that
y € B(z;6) implies f(y) = f(Z) — .
Let S be a subset of X. The indicator function of S, denoted by Is(:), is the
extended-valued function defined by

0 frxes,

Is(z) = +o00 otherwise.

The inner product of v and z is denoted (v, z), a notation which is also employed
when X is a Banach space for the evaluation, at z € X, of the linear functional
v € X* ( the space of continuous linear functionals defined on X).

The notation z = w-limg_,o Tk OF Ty < T means that the sequence {z;} converges

weakly to z in X.
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Let Y be another Hilbert space. A set-valued map (multifunction) T from X
to Y, written as T : X =3 Y, is characterized by its graph, gph T, the subset of
the product space X x Y defined by

gph T := {(z,y) e X x Y | y € T(z)}.
The domain and range of T : X =3 Y are taken to be the sets
domT := {z | T(z) #0}, rgeT := {y| 3z with yeT(z)}.
The inverse T~! of T is the set-valued map from Y to X, defined by

zeTy) <= yeT(z) <= (z,y)€gphT

12



CHAPTER 2

PROX-REGULAR FUNCTIONS IN HILBERT SPACES

Analysis of prox-regular functions is based on proximal analysis in Hilbert
space. For this reason, in section 2.1, we review the basic concepts in proximal
analysis. In section 2.2 we define the prox-regularity of a function in Hilbert space
along with the subdifferential continuity. Section 2.3 establishes the subgradient
characterization of prox-regularity. In section 2.4 we obtain the regularity prop-
erties (C1* smoothness) of Moreau envelopes of a prox-regular function. We also
identify a localization of gph df of a prox-regular function f with a Lipschitz mani-
fold in X x X. Section 2.5 deals with the convexity properties of Moreau envelopes.
We show that for a prox-regular function the Moreau envelope function is lower-C>
(i.e., locally the sum of the function and a positive multiple of the norm square
is convex). Further the conditions are given in separable Hilbert space setting,
under which e, itself is convex or strongly convex. In section 2.6 we give a partial
extension to the second-order property [29], Theorem 6.1. We prove in a Hilbert
space that when f is prox-regular and twice Mosco epi-differentiable at Z for ¥
then a localization of the subgradient mapping df is proto-differentiable at Z for
7, with a natural formula relating these two derivatives. A Hilbert space example
is given to show that the second-order expansion of a prox-regular function fails
to exist even for a convex function with finite second-order Mosco epi-derivative

everywhere.
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2.1. Proximal Analysis

The prozimal subgradient, a generalized notion of classical derivative, turns out to
be a powerful tool in characterizing a variety of functional properties in nonsmooth
analysis. A powerful body of theory of proximal subgradients and their counter-
parts, the prorimal analysis, is now available. We refer the interested reader to
the recent book of Clarke, Ledyaev, Stern and Wolenski [14] for a coherent and

comprehensive exposition of proximal analysis.

First, we gather a basic tool kit from proximal analysis for our task ahead.
Recall that X denotes a real Hilbert space and IR represents the extended real
line.

Definition 2.1.1. (proximal subgradients) Let f : X — IR and T be a point
where f is finite. A vector ¥ is a prozimal subgradient of f at z, if there exist ¢ > 0

and r > 0 such that
flz) > F(@) + (B, — Z) — glz _z? forall ze B(Fe),

where IB(Z;e) denotes the open ball of radius = > 0, centered at T.
The set of all such ¥ is denoted by 8,f(Z), and is referred to as the prozimal

subdifferential.

The existence of a proximal subgradient ¥ at Z thus corresponds to the ex-
istence of a “local quadratic support” to f at £ This means the possibility of
approximating f from below (thus in a one-sided manner) by a function whose
graph is a parabola. The point (Z, f(Z)) is a contact point between the graph of f
and the parabola, and ¥ is the slope of the parabola at that point. Compare this
with the usual derivative, in which the graph of f is approximated by an affine
function.

14



It follows immediately from the definition that the proximal subdifferential,

O, f(Z), is convex, however it is not necessarily cpen, closed, or nonempty.
Example 2.1.2. Let f : IR — IR. One can easily verify that the following:

ifz#0,

(a) f(z) = —|z], apf(z) = {@—I%I. ifr=0.

__3_=z ;
B)  f@) = —lef¥2,  8,f(x) = { 2 £2#0,
0 ifx=0.
—%h:—le/—z ifr< 0,

—|z372 i
@ fa)={7" E220 ot - {(0,1] i#z=0,
’ 1 ifz > 0.

Note that in (b), f is a differentiable (C') function but it has no proximal subgra-
dients at = = 0, and in (c), the subdifferential set 0,f(z) at x = 0 is not open or

closed.

Before developing further properties of proximal subgradients, we reed to

recall some facts about classical derivatives.

Let F map X to another Hilbert space Y. The usual (one-sided) directional

derivative of F at z in the direction v is

tv) —
F'(z,v) := lim F(z + tv) — F(z)
t10 t

when this limit exits. F is said to admit a Gdteauz derivative at z, an element
in the space £(X,Y) of continuous linear operators from X to Y denoted DF(z),
provided that for every v in X, F'(z,v) exists and equals DF(z)v. This is equiv-
alent to saying that the difference quotient converges for each v, that one has

lim F(z + tv) — F(z)
tl0 t

= DF(z)v,
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and that the convergence is uniform with respect to v in finite sets (the last con-
dition is automatically true). If the word “finite” in the preceding sentence is
replaced by “compact”, the derivative is known as Hadamard; for “bounded” we
obtain the Fréchet derivative. When X = JR"™, Hadamard and Fréchet differen-
tiability are equivalent; when F' is Lipschitz near z, then Hadamard and Gateaux

differentiabilities coincide.

It turns out that the differential concept most naturally linked to the theory of
limiting subgradients is that of strict differentiability (cf. [12], proposition 2.2.4).
We shall say that F' admits a strict derivative at z, an element of £(X,Y") denoted

D, F(z), provided that for each v, the following holds:
lim F(z' + tv) — F(z')

z’'—z t
£10

= D,F(z)v

and provided the convergence is uniform for v in compact sets. (This last condition
is automatic if F' is Lipschitz near z).

The first proposition relates g, f to classical differentiability. Recall that a function
f is said to be proper if f(z) < oo for at least one z € X, and f(z) > —oo for all

re X.

Proposition 2.1.3. Let f: X — IR be Ls.c., proper and U C X be open.
(a) Assume that f is Gateaux differentiable at € U. Then 8,f(z) € {Df(z)}.
(b) If f € C2(U), then 8,f(z) = {Df(z)} forallz € U.
(c) If f is convez, then v € 8, f(z) if and only if

fy) > f(z)+ (v,y—=z) forall yeX. (2.1.1)
In other words, when f is convex 8, f (z) coincides with the subdifferential of convez

analysis (the set of vectors v satisfying 2.1.1).
Proof. See Clarke, Ledyave, Stern and Wolenski (14], Corollary 2.6. ]
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One of the primary aims of subgradient theory is the analysis of optimality.
The classical rule of Fermat states that a function’s derivative must vanish at a

local minimum. This rule has the following extension to our nonsmooth setting.

Proposition 2.1.4. (Fermat’s rule generalized) Let f : X — IR be lLs.c. and
proper.
(a) If f has a local minimum at I, then 0 € 3, f(Z).

(b) Conversely, if f is convex and 0 € 8, f(Z), then Z is a global minimum of f.

Proof.

(a) The definition of a local minimum says that there exists € > 0 so that f(z) >
f(z) for all z € B(Z;¢), which satisfies the definition 2.1.1 with ¥ = 0 and
r =0, and hence 0 € 8, f(Z).

(b) Under the hypothesis, (2.1.1) holds with v = 0. Thus f(z) = f(Z) for all

z € X, which says that Z is a global minimum of f. a

Nonsmooth calculus has been developed in varying degrees of generality. The
price to pay for the greatest generality is heavy in terms of technicality. Here, we
will not survey proximal calculus extensively, however for our purposes we record
the basic sum rule. First note that we cannot expect a calculus sum rule of the
form

Opf(x) + Opg(z) = Op(f + g)(z)

to hold in much generality. The inclusion 8,f(z) + 8p9(z) € 8p(f +g)(z) can be
established easily, but unfortunately, it is nearly useless. To see that the reverse
inclusion is not always true, simply take f(z) = |z| and g(z) = —|z| and compare

the subgradient sets at 0.
We observe that the sum rule just mentioned is trivial if one summand is C2.
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Proposition 2.1.5. Let f : X — IR be Ls.c., proper, and let T € X where f is
finite. Suppose further that g is C? in a neighborhood of z. Then
Bp(f + 9)(Z) = B, f(%) + Dg(3).
Proof. Use the fact that for a C? function g the defining functional inequality of
proximal subgradient can be applied to both g and —g with their gradients. O
Even though the exact sum rule fails in general, the following result known

as “fuzzy sum rule” holds in surprising generality.

Theorem 2.1.6. (fuzzy sum rule) Let zg € dom f; Ndom f>, and let v € 8,(f1 +

f2)(zo). Suppose that either:

(a) fi and fo are weakly lower semicontinuous (automatically the case if X is
finite dimensional); or

(b) one of the functions is Lipschitz near xg.
Then, for any € > 0, there exist (for i = 1,2) points z; € B(xg;e) with
| fi(zo) — fi(z;)| < & such that
v € Opf1(z1) + Opfa(z2) + BB,
where IB is the open unit ball.

Proof. See Clarke, Ledyave, Stern and Wolenski [14], Theorem 8.3. o

We now record another important fact about proximal subgradients in Hilbert
spaces; the set dom(9,f) of points in dom f at which at least one proximal sub-

gradient exists is dense in dom f.

Theorem 2.1.7. (density theorem) Let f : X — IR be Ls.c., proper, and bounded

below. Then the following set is a dense subset of gph f:
S = {(z, f(z)); z €dom f and 8,f(z) # 0}
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In particular, dom(3,f) is dense in dom f.
Proof. See Clarke, Ledyave, Stern and Wolenski [14], Theorem 3.1. O

One of the drawbacks of proximal subgradients is that the set 8, f(z) would
seem potentially empty for many z, and that leads to poor calculus. A remedy
comes through perturbing the base point and leads one to define limiting subgra-

dients.

With respect to any function f: X — IR, we'll say that a sequence of points
T in X converges in the f-attentive sense to T, written z; £ Z, when not only

Ty — T but f(zx) — f(Z) (cf. [46]):
zy L Z & z—% with f(zx)— f(T).

Of course, f-attentive convergence is the same as ordinary convergence of z to Z

wherever f is continuous.

Definition 2.1.8. (limiting subgradients) Let f : X — IR and % a point where f

finite.

(a) A vector ¥ is a limiting (prozimal) subgradient of f at Z, if for some sequence
vk such that v € 8pf(zx) and zx L Z one has ¥ = w-limg—oc Vk-

That is, we consider the set of all vectors 7 that can be expressed as the weak

limit (which is what “w-lim” signifies) of some sequence {vi}, where v € 8, f(zx)

for each k, and where z — %, f(xx) — f(Z). The set of all such ¥ is denoted by

8f(Z), and is referred to as the limiting prozimal subdifferential.

(b) A vector © is a limiting singular subgradient of f at Z, if for some sequences
tr \0, v such that vi € 8pf(zx) and zx 4> T one has 7 = w-limg_o0 LxVk-

The set of all such 7 is denoted by 8% f(Z), and is referred to as the limiting

singular subdifferential.
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The limiting subdifferential, 8 f(z), which contains 8, f(z) is not necessarily
open, convex or nonempty but it is sequentially weakly closed. Moreover, when

X = R", 3f(z) is a closed set, and if f is Lipschitz near z, then 3f(z) # 0.

Example 2.1.9. Let f : R — R.
(a) f(z) = —l=l,  8f(0) = {-1,+1}, 8=f(0) = {0}.
(b) f(z) = =/Izl, 8f(0) =0, 8°f(0) = (~00,00).

Although a type of closure operation was used in defining df(Z), it is a fact
that this set may fail to be closed when X is infinite dimensional or when f fails
to be Lipschitz. These facts make the limiting calculus most appealing in the
presence of Lipschitz hypothesis or in finite dimensions. Here is a sharper form of

(nonfuzzy) sum rule.
Proposition 2.1.10. (sum rule) If one of f1, f» is Lipschitz near x € X, then

o(fi + f2)(z) € 0fi(z) + Ofa(z).
Proof. See Clarke, Ledyave, Stern and Wolenski [14], Proposition 10.1. |

In parallel with proximal subdifferentials, we might be led to believe that
8fi1(z) + 8f2(z) € 8(fi + f2)(z) and hence the equality holds in proposition

2.1.10. However, this is not the case, as seen by the following example.
Example 2.1.11. Let f;: R — R, i = 1,2 defined by fi(z) := (=1)*|z|. Then
8£1(0) = {~1,1}, 8£2(0) = [~1,1] and 8(f1 + f2)(0) = {0}. Hence 9£(0) +
0£2(0)  8(f1 + f2)(0).

However, there are supplementary hypothesis (such as regularity) under which
equality does hold in Proposition 2.1.10 (cf. [14], Chapter 2).

Finally, we present a limiting form of Chain Rule and Sum Rule in finite

dimensional context, which will be useful in Chapter 4.
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Theorem 2.1.12. (chain rule) Let f(z) := g(F(z)), where FF : R — R™ is
C! on some neighborhood of Z, while g : IR™ — R is Ls.c., proper with F(Z) in
dom(f). Assume further that the only vector y € §®g(F(Z)) with VF(Z)*y =0is
y = 0, where the Jacobian matrix for F at T is denoted by VF(Z), and its adjoint
by VF(z)*. Then

0f(z) € VF(z)"09(F(z)).

Proof. See Rockafellar and Wets {46}, Theorem 10.6. (]
As an easy application of the chain rule we have the following sum rule.

Corollary 2.1.13. (sum rule) Suppose f = fi+-- -+ fm for proper, Ls.c. functions
fi : R® — IR and let £ € dom f. Assume also that the only combination of vectors

v; € 8% f(%) with vy, + -+ Um =0 is vy = --- = v, =0. Then

0f(z) € 8f1(Z) + -+ 0fm(Z)
0% f(z) € 0% f1(Z) + -+ + 0% fm(T).
Proof. See [46] Corollary 10.9. O

For a separable function it is easy to verify the following subgradient formula.

Proposition 2.1.14. Let f(z) = fi(z1) + - -- + fm(zm) for Ls.c. functions f; :
R™ — IR, where £ € R" is expressed as (z1,...,Tyn) with z; € R™ and n; +
-+ + N, =n. Then at any point Z = (Z1,...,Zn) where f is finite one has
0f(z) = 0f1(Z1) X -+ X Ofm(ZTm)
0% f(Z) € 0% fi(Z1) X -+~ X 0% fin(Tm)-
Proof. See [46] Proposition 10.5. O

The limiting proximal subgradients play a key role in defining prox-regular

functions and the development throughout the thesis.
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2.2. Prox-regular Functions

Prox-regular functions emerge as a generalization to the primal-lower-nice func-
tions (p.l.n.), earlier introduced by Poliquin [24], in connection with recovering a
function from its subgradient mapping. First we introduce the p.l.n. functions in
Hilbert spaces.

Recall that, in our notation, X represents an arbitrary Hilbert space while

Jdf denotes the limiting proximal subdifferential on X.

Definition 2.2.1. (primal-lower-nice property) A ls.c. function f : X — R is
primal-lower-nice (p.ln.) at z, a point where f is finite, if there exist scalars

R >0,c>0 and £ > 0 such that
(@) 2 flz) + (v,z' ~x) — g[:z' —z|? forall 7’ € B(Z;e)
whenever r > R, |v| < cr, v € 8f(z) and |z — F| < &.

Before stating the definition of prox-regularity, we recall that f is locally lower
semicontinuous at T if f is l.s.c. relative to the set {z ||z — | < ¢, f(z) < o} for
some € > 0 and « > f(Z). This is equivalent to the epigraph of f being closed
relative to a neighborhood of (%, f(Z)). Such a neighborhood is all that counts

when the focus is on subgradients of f at Z.

Definition 2.2.2. (prox-regularity of functions) A function f : X — R is proz-
reqular at T for © if f is finite and locally Ls.c. at # with ¥ € 8f(Z). and there

exist scalars € > 0 and r > 0 such that
f&) > flx) + (v, ' —z) — %lx' —z|? forall ' € B(Z;¢)

whenever v € 8f(z), lv—9| <e, |z —Z| < ¢, |f(z) —- F(Z)| <e&.
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When this holds for all v € 8f(&), f is said to be proz-regqular at Z.

The class of prox-regular functions is much broader than that of p.Ln. func-
tions. We see this directly from the definitions that the functional inequality for
p.Ln. functions has to hold for all subgradients and do so with a linear growth
condition, whereas for prox-regular functions the inequality only has to hold for
subgradients close to a fixed ¥ and just a neighborhood making not only z close
to £ but f(z) close to f(Z), i.e. the localization of the subgradient mapping is
in terms of an f-attentive neighborhood of (Z,%). In particular, prox-regularity
requires every limiting proximal subgradient v near ¥ associated with an evolution
point (z, f(x)) near (Z, f(Z)) to be a proximal subgradient, and all such proximal
subgradients to share a common quadratic rate constant r.

For many functions the local property of f-attentiveness is automatic, because
closeness of subgradients already ensures closeness of function values, then the
condition on function values of Definition 2.2.2 is redundant. This leads to the

following definition.

Definition 2.2.3. (subdifferential continuity) A function f : X — IR is subdiffer-
entially continuous at % for 7, where ¥ € 8f(Z), if for every § > 0 there exist € > 0
such that |f(z) — f(Z)| < § whenever |z — Z| < ¢ and [v — 9| < € with v € 0f(z).

If this holds for all T € 8f(Z), f is said to be subdifferentially continuous at I.

Next example shows that how a prox-regular function can fail to be subdif-

ferentially continuous at Z € dom f.

Example 2.2.4. Let f: IR — R.
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f@={g 5220 or@ = ofe = {7 E120

Obviously f is l.s.c. everywhere. It’s easy to see too that f is prox-regular ev-
erywhere. The graph of 3f has a vertical branch at (Z,7) = (0,0), though. As
(zx,0) — (Z,7) with zx > 0 we have f(zx) = 1, so f(zx) /~ f(Z) = 0. Hence f
fails to be subdifferentially continuous at Z for that .

In [29], Poliquin and Rockafellar showed that many important functions are subd-
ifferentially continuous on R™. For p.l.n. functions this property holds in Hilbert

space as well.

Proposition 2.2.5. If f: X — IR is p.Ln. at Z, then for all z in a neighborhood

of z it is subdifferentially continuous at z for any v € 8f(z).

Proof. The proof given in [29], Proposition 2.2 can be carried over to Hilbert

spaces as the only requirement there was the norm be given by an inner product.

a

The scope and importance of the class of prox-regular functions in Hilbert
space is readily appreciated from the fact that it includes not only all C'* func-
tions, all L.s.c., proper, convex functions, and all p.l.n. functions, but all strongly

amenable functions.

Definition 2.2.6. (strong amenability) A function f : X — R is strongly amenable
at T if f(Z) is finite and there is an open neighborhood U of Z on which f has a
representation as g o F' with F a C*> mapping from U to another Hilbert space Y

and g a proper, Ls.c., convex function on Y such that the constraint qualification

Ry(domg - F(Z)) - DF(Z)(X) =Y
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holds. Here DF(Z) denotes the Fréchet derivative of F at I.

Note that in the preceding definition we adopt an extended version of the
alternate form of the constraint qualification in {29], Definition 2.4 to the setting
of an infinite-dimensional Hilbert space, cf.[15].

Proposition 2.2.7. If f : X — IR is strongly amenable at %, then f is prox-

. regular and subdifferentially continuous at T for ¥ € 8 f(Z).

Proof. Apply [15], Theorem 2.4 to conclude that f is p.L.n. at £, and hence
in particular it is prox-regular and subdifferentially continuous (from Proposition

2.2.5) at z for any U € 8f(Z). O

Strongly amenable functions are omnipresent in optimization theory and vari-
ational analysis. In fact the problems most commonly encountered in optimization
theory can be reformulated in terms of these functions. see [10}], [16], [18]-[20],

[24]-[26], {29]-[32] and [40]-[42].

The analysis of prox-regularity can be greatly simplified by normalizing to

the case where Z = 0 and 7 = 0, along with f(Z) = 0, as seen next.

Remark 2.2.8. (perturbation of prox-regularity) Let f : X — IR be prox-regular

at % for v € 3f(Z) and consider the perturbed function

f(z) = flz+Z) - f(Z) - (7,2)-

We then have 0 € 8f(0), along with f(0) = 0. It follows easily from the definition

of prox-regularity for f that f too is prox-regular at Z = 0 for & = 0.
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2.3. Subgradient Characterization of Prox-Regularity

Our first result establishes the subgradient characterization of prox-regularity in
Hilbert space setting, which paves the way to the impending analysis. We show
that f is prox-regular at Z for ¥ if and only if ¥ is a proximal subgradient of f
at T and, under suitable localization the multifunction 3 f + I is monotone (T is
monotone if whenever u; € I'(z;), 1 = 1,2, then (u; — us,z; — z2) = 0), where
7 > 0 constant and I is the identity mapping. This “pre-monotonicity” property
is sufficient for a full range of desirable subdifferentiable properties. For example,
when f is prox-regular at T for 4, the graph of df coincides under a suitable
localization near (%, ) (Definition 2.3.1), with a Lipschitz manifold in X x X (see

Theorem 2.4.7).

Definition 2.3.1. An f-attentive localization of §f around (Z,v), is a (gener-
ally set-valued) mapping T : X = X whose graph in X x X is the intersection
of gph@f with the product of an f-attentive neighborhood of Z and an ordi-
nary neighborhood of #; this contrasts with an ordinary localization, in which
the f-attentive neighborhood of T is relaxed to an ordinary neighborhood. More
specifically for an € > 0, the f-attentive e-localization of §f around (Z,¥), is the
mapping T : X = X defined by
T(z) = {{v €0f(z)|lv—15|<e} iflz—Z <eand|f(z)— f(Z)|<e,
otherwise.
(2.3.1)
Next we present a minimization principle due to Borwein and Preiss [9], which

plays a key role in establishing the subgradient characterization of prox-regularity.

Theorem 2.3.2. (smooth variational principle) Let f : X — R be Ls.c. and

bounded below, and let € > 0. Suppose that zq is a point satisfying f(zg) <
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infzex f(z) + €. Then, for any X\ > 0 there exist points y and z with

lz=zo] <A, Jy—2zl <A, f(y) < f(zo)

and having the property that the function

z — f(z)+ ﬁlx -z
has a unique minimum at z = y.
Proof. See Clarke, Ledyave, Stern and Wolenski [14], Theorem 4.2. a

The following consequence of the above variational principle will be useful in

the proof of next theorem.

Remark 2.3.3. Let {z;} be a minimizing sequence of infyex f(z), i.e. there
exists e, \.0 such that f(zi) < infzex f(z)+er. Then there exists another mini-
mizing sequence {y} such that |y — zi| < 4y/E, With 0 € 3f(yk) + Ve, B-
To see this, for each k, take € := e and X := 2./¢, in Theorem 2.3.2. Then
corresponding to the minimizing sequence {z;} there exist sequences {y} and
{zx} with |z — x| < 2v/&, |lyk — zx| < 24/E, (these two inequalities imply
|lux — zx| < 4v/ER), f(yr) < f(zx) (implies {yx} also a minimizing sequence), and
the function

2~ f(@)+ Goiysle — al’
has a unique minimum at = = y;. The latter implies, by the Fermat’s rule 2.1.4,

2
0 € 8o (k) + 3y — 2),
0 € 8f (yk) + Ve, B.
Now we establish the subgradient characterization of prox-regularity in Hilbert

space which is obtained in finite-dimensional spaces by Poliquin and Rockafellar.
See [29], Theorem 3.2.
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Theorem 2.3.4. (subgradient characterization of prox-regularity) When f : X —

R is locally l.s.c. at , the following are equivalent.

(a) The function f is prox-regular at T for v, where ¥ € 3f(Z).

(b) The vector v is a proximal subgradient to f at Z, and there is an f-attentive
g-localization T of §f at (%Z,v) with a constant r > 0 such that T 4+ rI is

monotone, i.c..

i2

(vi —vo, 71 —x0) = —r|z1 —xz0!” when v; € T(z;), i =0,1. (2.3.2)

Proof. (a) = (b). Take € and r from Definition 2.2.2 of prox-regularity, and for
the same ¢ let T be the f-attentive e-localization of df as in (2.3.1). As noted,
the prox-regularity condition implies for every (z,v) € gphT that v is a proximal
subgradient of f at z, and this applies in particular to (Z,7). Indeed, for any two

pairs (zp,v) and (z;,v;) in gph T we have

f(@1) 2 f(z0) + (vo, £1 — 0) = Fl1 - zol?,
f(z0) 2 f(21) + (01, 0 — 71) = 5lz0 — =il
In adding these inequalities together, we get the inequality in (2.3.2).

(b)=>(a). There is no loss of generality in supposing Z = 0, ¥ = 0, and
f(0) = 0 (cf. Remark 2.2.8). Further, we may assume that f be L.s.c. on X with
bounded domain, since that can be manufactured out of the local l.s.c. property
by adding some indicator function to f. Let & and 7 be parameter values such

that when T is the f-attentive &-localization of 8f the property in (b) holds for 7.

We first establish two claims.

Claim 1. There exist € € (0,&) and v > T such that er < £ and z € X with

|2| < § we have
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argmax {(r2,7) — lzf? — f(z)} € 2B,

lzl<e
Proof of Claim 1. With our setting £ = 0,5 = 0, f(0) = 0 and ¥ € 3,f(Z) we
may also assume that f has a lower bound —(7/2)e? on €IB for any 0 < € < &.
Then by [24], Lemma 3.2 (Note that [24],Lemma 3.2 is stated in terms of finite
dimensional space, but the only essential requirement is that the norm be given

by an inner product) we have

32(—m)

for any 0 < € < £ and for r2—§-6—2—

, where m := inf {f(z)}

, e TE 4 (233

one has argmax( (rz,z) — =|z|2 — f(a:)} Cc —B, forall |z| < -.

lz|<e 2 4 4

Now restrict € € (0,&) such that (16/3)fe < &, (F+ 1) < £ and set r :=

max{g’)ég;ﬂl, (F+1)}. For m, we have m > (—7/2)e? by the lower bound (~7/2)e?
of f on eB. We then have

either er=22(3;smls-l§%<é or er=¢g(F+1) <§

as required by the claim. Then Claim 1 follows from {2.3.3).

Claim 2. There exist e; > 0 and r; > 0 such that if v = r(2 — z) is in 3f(z)
with |z| < (e1/4), |2 < (€1/4) and f(z) < (e1/4) then

fl@) = f(z) + (v, 2’ — ) — gl:v' —~z|? for all ' € £, B.

Proof of Claim 2. Let 0 < £; < min{Z,16/3} and r; > 7 with e171 < &, where
r, is given by Claim 1 with € = ;. Let v = r;(z — z) € 8f(z) with |z]| < (e1/4).
|z] < (e1/4) and f(z) < (e1/4). Notice that

£1 , € TIEL _ _
lv] < ri(lz] + |z]) < rl(zl+ Zl = —19—1— <E&.
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Consider the following optimization problem:

(P): sup {(nz2)) - TRl - f(=)}.

[z’ | <&y

Notice that this supremum is a finite number because f is bounded below on &; B.
Let {z;} be any maximizing sequence of (P), i.e., there exists {n;} a sequence of

nonnegative numbers converging to 0 such that

(riz,z) — %[mklz — f(zx) > sup {(rlz,:r’) - %llrc’lz — f(:r')} — Nk

e’ 1<e1

Equivalently,

Tt 2 . 7 T1, 12 ’
—_ P < —_ _ -
iz ae) + Gl + f@0) < jnf { —(naa)+ FP+ £} +m

where {z;} is a minimizing sequence of (—P). By Claim 1, we may assume without
loss of generality that {z;} C (3/4)e,B. Then by Remark 2.3.3, there exists {w;},
another minimizing sequence of (—P) same as maximizing sequence of (P) such

that |wg — zk| < 4,/7, and eventually
T —_
00— (nz) + F -+ £0)] (w) + v, B.
We may rewrite the above inclusion with {y;} € BB so that

(r1z — mwe) — V1. yk € 0f(wy).

Eventually |(r1z — mwz) — /M, yk| < & To see this notice that

[(riz = rowe) — vl < rulzl + rfwe] + /7,

€1

3
< 1'1—4- +1’1(—i;1- +4\/ﬁk) + \/ﬁk

= re + (1 + 4T1)\/?7k.
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Hence, eventually |(r1z—riwe) — /7, y&| < & because {1} is converging to 0 and

T1E1 < E.
Now we show that |f(wk)| < & eventually.

Indeed, since {w;} is 2 maximizing sequence of (P), there exists {n;} a sequence

of nonnegative numbers converging to 0 such that

™ T
M+ (rizwe) — Shoel® - flwe) 2 sup {(riz,2) - DI/ - £(@)} 2 0.

[z'{<e1
The last inequality is a consequence of f(0) = 0. We then have
T
flwr) < (riz,we) — o lwkl + 7}
< rilz||we] + mg

T1€1 ,3€
< = (7 4V + g

3 _
< et riE1y/ My, + .
Hence, we eventually have that |f(wg)| < & because the sequences 7, and 7;. are
converging to 0 and &; < 16/3. Note here that the inequality f(wg) > —Z comes

from the ls.c. of f at 0.

We have shown that |(r1z2 — riwk) — /7 Y| < € with (rz2 —rywe) — /T 0k €
8f (w), |wi| < £ and |f(wi)| < & Now, if v = r1(z—z) € 8f(z) with |z| < (€1/4),
lz] < (1/4), |f(z)] < (e1/4), and hence |v| < . By (2.3.2) we then have
{(r1z — mwg) — VM 0k — ¥V, Wk — T) 2 —Flwg — z[?
(F — r)lwe — z? > Vi, (yk, we — 7).
Letting nx \.0, we conclude that {w;} converges to z (recall that r; > 7). Because
{wk} is a maximizing sequence of (P) we conclude that the supremum is attained

at x. This is because

limsup { (2, we) — Z-wel® - f(we) } < (nz,2) - Slel? - £(2).

k—o0
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We have shown that
’ Ti, n2 ’ Ty 2
(riz,z) — ?lm [* = f(2') < (nz,z) - '2-|-’17| — f(x)

for all 2/ € £,1B. Rearranging this inequality we get
f(@) 2 f@) +(nza —2) + el - D'
= f@@) + (ri(z ), 2’ ~z) — Fla’ — al?
for all ' € ¢;IB. This completes the proof of Claim 2.
Now to finish off the proof just let & = £1/8, 7 = r;. Then if v € 0f(z) with
v <&, |z] <&, |f(z)| < € and for z = v/7 + = we have

v - 1=
1z < U+|a.-| < |v|+|z| < 26 =2
7’1 4

Notice here that we have used r; > 7+ 1 > 1 which is true by our choice of r; .

Then from Claim 2, whenever |z| < &, |f(z)| <&, |v]| < é with v € 8f(z) we have
f(z) > flz) + (v, ' — ) — §|$' —z|? for all ' € éBB.

This tells us that f is prox-regular at £ = 0 for = 0 (with parameters ¢ and 7).

g

Remark 2.3.5. The implication (a) = (b) is true in general Banach space setting

as one sees this readily from the proof.

Remark 2.3.6. The proof of the Theorem in finite dimensions ([29], Theorem
3.2) heavily depends on the existence of minimizers of l.s.c. function on a compact
set. Our proof here relies on a more general technique - the smooth variational

principle.
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2.4. Regularity Properties of Moreau Envelopes

For a proper, ls.c. function f : X — IR and parameter value A > 0, the Moreau

envelope function, e, and the prozimal mapping, P, are defined by
ex@) =it {Fe) + 511 o'},
Pi(z) := argmin {f(x') + —;Klz' - :r:i2 )
T

The primary aim of studying the envelope functions e, and the proximal
mappings P, associated with a function f is to learn more about the behaviour of
f around a point T when f is prox-regular at Z for a vector € §f(Z). For example,
the nice properties of e, and P, of a prox-regular function f (Theorem 2.4.4) with
the already established subgradient characterization of f (Theorem 2.3.4) reveal

the major fact that the graph of df coincides, under a suitable localization, with

a Lipschitz manifold in X x X (Theorem 2.4.7).

We proceed to establish the smoothness properties of the Moreau envelopes of
prox-regular functions.

Let f : X — IR be prox-regular at Z for ¥ € 8f(z). Then © is actually a
proximal subgradient of f at Z. In order to simplify our analysis, by Remark
2.2.8., without any loss of generality we normalize to the case Z = 0, ¢ = 0
and f(0) = 0. Since our primary interest of f and @f depend only on the local
geometry of epi f around (Z, f(Z)), we may further, if necessary, add to f the
indicator of some ball with center at % to make dom f be bounded. By taking the
radius of that ball small enough we can get the quadratic inequality for 7 € 8, f(Z)

to hold for all z. Thus we work under the baseline assumptions that

f is locally ls.c. at 0 with f(0) =0, and
(2.4.1)

r> 0 is such that f{z) > —§|z|2 for all z
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which imply that
ex(0) =0 and P, (0) = {0} when X € (0,1/r). (2.4.2)

In order to follow the steps of Poliquin and Rockafellar, we next extend the results

of Propositions 4.2 and 4.3 of [29] to Hilbert spaces. First, we require a lemma.

Lemma 2.4.1. ([29], Lemma 4.1) Under assumptions (2.4.1), consider any A €
(0,1/7) and let p = (1 — Ar)~L. For any p > 0,

|| < 2ujz|+ V2Aup,

F)+ gsle ol < ex@+p = { £@) S5l +0

r 2
£(&) 2 =% (2ule| + V2Rup) -
(2.4.3)
Proof. The same proof of [29], Lemma 4.1 can be carried over to this Hilbertian

case, since the only requirement there was the norm be given by an inner product.

a

Proposition 2.4.2. Under assumptions (2.4.1), consider any A\ € (0,1/r). For

any € > 0 there is a neighborhood V' of Z = 0 such that

(2) e, is Lipschitz continuous on V with constant ¢ and bounded below by a
quadratic function,

(b) |z'| <&, [f(&')] <€ and A7 Mz — 2’| < & for all ¢’ € Py(z) whenz € V.

Proof. (The proof given here differs from that of Poliquin and Rockafellar [29],
Proposition 4.2 (a) and (c) because the argument given there relies on the existence
of minimizers of a l.s.c. function over a closed bounded set, which is not true in
the case of Hilbert spaces). Let u = (1 — Ar)~! and & € (0,¢). Choose § > 0 and
p > 0 small enough that (2¢/ 4+ 36)/A < e and

2 6(1+2
2ué+ /2 pp <€, -213624-;755', g(2,u6+\/2/\pp) <é, —(——;—‘L—)Ssls
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and let V := {z||z| <6} and C := {z||z] < ¢'}.
(a) Let any = and y belong to V. For any p > 0, by the definition of e, (y) as an
infimum, there exists £/ such that
1
f@)+ 55l — I <ex(®) +p.
Then by Lemma 2.4.1 we have |z| < 2uly| + V2 o < 2ué + /2App < €/, which
implies =/ € C.
Thus we have
er(@) —ex(¥) < F(&) + orle —af* — F(&') — 5xle! — 9+
A AN = 2\ 2
_ 1 2 1 7
= ol =yl ~3le—y —y) +p
1 1
< — _ 2 - _ / _—
< oxle—ol" + gle —yllz’ —yl +p
where K is chosen so that K := (1/A)sup{|z|{ +2|z—z|;z €V, z € C} < .

Indeed, we have K > (1/A){|y| + 2|z’ —y|} for all y € V and z’ € C and hence

1
- ylK = {lz —yllyl + 2|z — yllz" - yl}-
We also have that |z — y|K > Ll|z|lz — y| because K > :|z| forall z in V. In
adding these inequalities together, we get the inequality in (2.4.4):
1
e —ylK 2 ox{le =~ yl(lzl + ly]) + 2lz —yllz’ — 3}
1 , 1 )
> |z — Zlz— — 1.
> o~y + 5lo -yl ]
And this constant K cannot be bigger than e:

K = %sup{|:c|+2|z—a:|;a:€V,zeC’}

INA

5 sup{lz] + 22l + [sl); 2 € V; 2 € C}

51:(36 +2¢) <e.

IA
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Reversing the roles of r and y, and then letting p\.0 in (2.4.4) shows that ey is

Lipschits of rank € on V.

The asserted lower bound for e, follows from

ex(@) = inf {£(&) + g5le’ —l?}

>

. __7:_ r12 i_ 7
of{—zl T+ 55l
1l r

(b) When z’ € Py(z), then Lemma 2.4.1 is true for every p > 0 which implies

'] <
f@) < ==|af <
< glaf* <

f(z') >

and also

Xlx -] <
<
<

2ulz| <2ub <€ <e,

1 2 ’
— <
2)‘6 <& <eg,

2
~ 2 (2ulel + VBp) 2 —¢' > —,

(el +12'D
S+ 2)lz]

-f\—(1+2/_z) <d<e.

a

Proposition 2.4.3. Under assumptions (2.4.1), there exists for each A € (0,1/r)

a neighborhood V' of Z =0 on which
(a) dey(z) C {A\"Yz —2') |z’ € Pr(z)} and Pr(z) # 0, wherez €V,
(b) ' € P\(z) => A" (z — ') € 8f(2'), i.e., 2’ € (I + A8f)~1(z).

Proof. Verification of (b) is easy. We begin with that. Recall that the existence

of a proximal subgradient at z’ corresponds to the existence of a “local quadratic
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support” to f at z’ (see the Definition 2.1.1 and the remarks thereafter). When

z’ € Py\(z) we have
F@") + g5le" ~ o 2 F(&) + 55le’ ~ af? for all 2"
2X = 2\ ,

so that f(z") — f(z’) > ¢(z") for the quadratic function q(z”) = (|2’ —z|* —|z” —
z|?)/2X. We have g(z/) = 0 and Dg(z’) = A~'(z—2’), so q forms a local quadratic
support to f at z’. Thus A~!(z —z’) € 8, f(z’). In particular, we have (b).

Now we verify (a). (Our proof here differs from that of Poliquin and Rock-
afellar [29], Proposition 4.3 (&), as their arguments require the compactness of
closed, bounded sets. Another difficulty is to work with “weak-limits” required by
the limiting proximal subdifferentials). We fix A € (0, 1/r) and choose a neighbor-
hood V of 0 with the properties in Proposition 2.4.2. First note that the Lipschitz
property of e, on V (2.4.2(a)) ensures that the limiting proximal subdifferential
Oe, (z) is nonempty for all z belong to V (see, Loewen[21], Cor. 4C.9). Consider
any point z € V and any v € e, (z). Then v = w-limg_., v for some sequence
v € Opey(zr) and zx — z with e, (zx) — e,(z). For each k, there are positive

numbers M. and 6 such that
ex(w) > ey(zx) + (g, w — Tk) — My |w — x| Vwez,+6B. (2.4.5)

Choose any t; > 0 so small that £ < 8 and Mitr < 1/k. This allows us to set

w = z} + txu, where u € B in (2.4.5): the result can be written as
(Ve tew) < ey(zk + tew) — ex(zk) + Miti. (2.4.6)
By the definition of e, (zx) as an infimum, there exists yx such that

ex(z) < flye) + %ka —zi]? < ey (zx) + 2. (2.4.7)
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Also notice that e, (zx + tru) < f(yk) + 35|yr — (zk + txu) . Thus, (2.4.6) gives
us

1 1
(vk, teu) < 5;\—|yk — (zx + tku)[2 - ;)Klyk — :Z:k|2 + (Mg + l)ti,
which we can expand on the right and then rewrite as

1 t
(e — (o —yx) ) < ﬁ + Mty + £,

tr 1
< X + A + tg. (2.4.8)

Claim. There exists a subsequence {yg'} of {yx} that converges strongly toy’ :=

(z — ).

Proof of Claim. It is immediate from (2.4.8) that {y;} is norm bounded. Then
there exists a subsequence {yx} of {yx} that converges weakly to ' := z — Av.
This again follows from (2.4.8) just replacing y; with yg-. Now to see {y } actually

converges to y’ strongly, rewrite (2.4.8) as

1 1 1 Y tir 1
) — =Tl ~— —_—— _—— ~— —_— —_— ter
(Vi /\zk (v A:t:)+(1.t /\:z:)-i- 5 yuy < oY + T + i

and, eventually
1 ’
((’U - ;\'z) + gf‘,'l.’,) < Mgty where (1% \.0,

that implies |(v — Sx) + %] < mx eventually since u € BB is arbitrary. So {yer}

is strongly converging to 3y’ = £ — Av, as required.

Restricting to the subsequence {yx-} in (2.4.7) we have
1
ex(zi) < fluw) + gylow —zwl* < e;(aw) + th-

Since f is locally l.s.c. at 0, taking the lower limit (liminf) of the above inequality
as k' — oo confirms that ey(z) = f(y') + 55|y’ — z|?, where ¥’ = z — Av. Thus
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we have proved that Py\(z) # 0 for all x € V and since v = 52}- the inclusion in

(2) is valid too. ®»

When we assume f to be prox-regular, the above propositions with Theorem
2.3.4 entail the C'* smoothness of e, and the local single-valuedness of P, as seen
by the next theorem. The proof of the next theorem in Hilbert space easily follows,

in fact, it is quite the same as in the finite-dimensional case ([29], Theorem 4.4).

Theorem 2.4.4. Suppose that f is prox-regular at T = 0 for ¥ = 0 with respect to
€ and r, in particular with (2.4.1) holding. Let T be the f-attentive e-localization
of 3f around (0,0). Then for each A € (0,1/r) there is a neighborhood V of T =0
such that, on V, the mapping P, is single-valued and Lipschitz continuous with

constant 1/(1 — Ar) and
Pi\(z) = (I+ XT)"!(z) = [singleton],

while the function e, is of class C** with Dey(0) = 0 and

z — Py(z)
A

Proof. Choose V open and small enough that the properties in Propositions 2.4.2

De,(z) = =1 [I — I+ AT]‘l] (z).

and 2.4.3 hold on V. Then for £ € V we have Py (z) nonempty by 2.4.3(a), while
de, (z) is nonempty by 2.4.2(a) and satisfies the inclusion in 2.4.3(a). In this
inclusion and the one in 2.4.3(b) we can replace df by T because of 2.4.2(b).
Aiming at the formulas claimed here for Py(z) and De,(z), we first show that
(I + AT)~! cannot be multivalued and P, is Lipschitz continuous on V.

Suppose that z; € (I + AT)~"(z) NV, i = 0,1. Then (z — z;)/* € T(z:).
Invoking the prox-regularity of f, we have the monotonicity of T +rI by Theorem
2.3.4 and therefore

([52] - [£5) -e) 2 i
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hence —A~1|z; — :n0|2 > —r|z) — :z:ol2. Then (1 — Ar)|z; — zo|?2 <0, so z; = zo-

To show P, is Lipschitz continuous, let 2} € Py\(z;) with z; € V, 7 =0,1. We

T — T} To — I 2
([252] - [252] = -t) = let -t

so {(z1 — zg, T, —zh) > (1 — )|z} — zﬁ{z, ie., |z — x| = (1 — Ar)|z] — zp)-

have

This can be written in the form |z — | < [1/(1 — Ar)]|z1 — 2ol

Thus we have Py\(z) = (I + AT)~!(z) and the limiting proximal subdifferential
Oe, reduces to a single valued mapping on V, i.e., de,(z) = ’—"—%-El. Then by
[12], Proposition 2.2.4, de, (z) coincides with the strict derivative of ey, Dse,(x)

’—'—I—j\éﬂ. Because P, (z) is Lipschitz continuous, e;

onV,ie., de,(z) = Dsey(z) =
is actually of class C'* on V. However, when X is finite-dimensional, the limiting
subdifferential reduces to a singleton on an open set is necessary and sufficient
for the corresponding Lipschitz function to be C! ([12], Corollary to Proposition
2.2.4).

(]

The following lemma helps us to write the derivative formula in Theorem

2.4.4 in a useful form.

Lemma 2.4.5. For any mapping T : X = X and any X > 0, one has the identity
ATHI-T+2T)7H] = M +T7H)™h

Proof. The proof in the Hilbert space setting follows exactly as that in [29],

Lemma 4.5. O

Proposition 2.4.6. In Theorem 2.4.4, the derivative formula can be expressed
equivalently as:
Dey(z) = [N +T7Y 7 (2).
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Proof. Simply combine Theorem 2.4.4 with Lemma 2.4.5. O

Next we establish the aforementioned Lipschitzian property of a graph of a
subdifferential mapping of a prox-regular function. For that matter, we adopt
from Rockafellar [39] the notion of Lipschitz manifold to suit our Hilbert space
settings.

Let Y be another Hilbert space. A set M C X xY is a Lipschitz manifold
around a point (%,y) in M if there is an open neighborhood U of (Z,7) and a
one-to-one mapping between U and an open subset O of X x Y, continuously
differentiable(Fréchet) in both directions, under which U N M is identified with
O Ngph F for some Lipschitz continuous mapping F' from an open subset of X

into Y.

Theorem 2.4.7. If the function f : X — IR is prox-regular at T for a vector
¥ € 8f(Z), then for any € > 0 the graph of the f-attentive e-localization of 0f at
(%,9) is a Lipschitz manifold around (Z,%) in X x X. When f is subdifferentially

continuous, this can be said of the graph of df itself.

Proof. For simplicity we can normalize to Z =0 and 7 =0 (cf. 2.2.8): geometri-
cally this just amounts to a translation of gph 8f and its localizations. The formula
in Proposition 2.4.6 then identifies gph T with the graph of the Lipschitz contin-
uous mapping De, near I under a certain linear change of coordinates around

(z,9). O
As a consequence of this we deduce that the monotonicity of the subgradient
mapping T + rI in Theorem 2.3.4 is in fact “locally maximal”;

Definition 2.4.8. A mapping S : X =3 X is locally mazimal monotone relative
to (Z,7) € gph S if there is a neighborhood U of (Z,7) in X x X such that, for
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every monotone mapping S’ : X = X with gph S’ D gph S, one has U Ngph S’ =
UnNgphS.

Proposition 2.4.9. If the function f : X — IR is prox-regular at  for € 8f(Z)
with parameter values £ > 0 and r > 0, the f-attentive e-localization T of Of
at (Z,v) has the property that T + rI is not just monotone but locally maximal
monotone relative to (Z,v + rz). When f is subdifferentially continuous, this can

be said of 8f + rI.

Proof. (The proof is quite the same as in [29], Proposition 4.8 with slight mod-
ification to Hilbertian settings). We can suppose (Z,7) = (0,0). The elements
(z,v) € gphT correspond one-to-one to those of gph § for § = T + rI under
(z,v) «— (z,v + rz), this being affine in both directions. Hence by Theorem
2.4.7, gph S is a Lipschitz manifold around (0,0). The same is then true for the
graph of the mapping P = (I + S)~!; the correspondence between gph S and
gph P is given by (z,y) «—— (z + y,z). The monotonicity of S implies that P is
nonexpansive (hence Lipschitz continuous) relative to its domain D in X. Some
neighborhood of (0,0) in gph P thus corresponds one-to-one to a subset of D con-
taining 0 under a mapping that is Lipschitz continuous in both directions. Since
gph P is a Lipschitz manifold around (0,0), it follows that a subset of D contain-
ing 0 corresponds in such a way to an open subset of X, and therefore that D
is a neighborhood of 0. For any monotone mapping S’ with gph S’ O gph S, the
mapping P’ = (I + §’)~!, whose graph corresponds one-to-one with that of §’, is
nonexpansive too, and gph P’ O gph P. Therefore, P’ can do no more than coin-
cide with P on a neighborhood of 0. This means that the graph of S’ must agree
with that of S on a neighborhood of (0,0), and hence that S is locally maximal

monotone with respect to (0,0). O
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2.5. Convexity of Moreau Envelopes

In this section we investigate the local properties of convexity of the envelope
functions e, of prox-regular functions. We prove (in a Hilbert space) that in some
local neighborhood the sum of e, and a positive multiple of norm square is convex.
Further (in a separable Hilbert space), the conditions are given under which e,

itself is convex or strongly convex.

Let I' : X =3 X. Recall that
e ' is monotone if (u; — ua2,z) ~ z2) > 0 whenever u; € I'(z;)-

e I' is strongly monotone if I’ — ul is monotone for some u > 0.

Lemma 2.5.1. Let T : X =% X be any set-valued mapping. Suppose that T =
ol + M where M is monotone and ¢ is any value in IR (positive, negative, zero).
Let XA > 0 be small enough that 1+ Ao > 0. Then the mapping S given by either

side of the identity in Lemma 2.4.5 can be expressed by

—_— a 4 . 4 — 1 A -1 -1 1
S o= 1+/\0'I+A/I MthM(w)_l+/\cr(1+)\0'I+M ) (1+/\a'w)’

this mapping M’ being monotone. Thus, when A > 0 is sufficiently small,

T — oI monotone = Sy — I monotone.

1+ Ao

Proof. The proof in the Hilbert space setting follows exactly as that in [29],

Lemma 5.1. O

Theorem 2.5.2. Suppose that f is prox-regular at T = 0 for ¥ = Q0 with respect
to € and r, in particular with (2.4.1) holding, and let A € (0,1/r). Then on some

neighborhood of 0 the function

T .2
et gy !
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is nonnegative and convex.

Proof. Prox-regularity of f at £ = 0 for ¥ = 0 implies the monotonicity of the
mapping T + rI (cf. Theorem 2.3.4). Then by taking ¢ = —r in Lemma 2.5.1,
we have S\ + (1 — Ar)~!] monotone, where S\ is the mapping given by the
identity in Lemma 2.4.5. But this is the derivative mapping of the function in
question. Hence, this function is convex. The nonnegativity assertion follows

from Proposition 2.4.2 (a), where we proved e, > —gS5y] - % O

Corollary 2.5.3. If f is prox-regular at £ = 0 for ¢ = 0, and X\ is sufficiently
small, then on some neighborhood of the origin e, is a lower-C? function, hence in

particular prox-regular itself.

Proof. From the Theorem 2.5.2, we know that the function fo := e, + ;pZ551- |2
is finite, convex on some neighborhood of 0 for A € (0,1/r), which in turn satisfies
the characterization of lower-C? property for e,. Prox-regularity of e, follows from
Theorem 2.3.4 because {0} = 8,e,(0), and the mapping De, + r(1 — Ar)~'[ is

monotone around 0. 8

In order to obtain a characterization of the convexity of e,, first we need to
introduce a concept of “null” sets in infinite-dimensional spaces. For our purposes
the most useful generalization of a null set is that of “Haar-null” set introduced

by J.P.R. Christensen in [11].

Definition 2.5.4. (Haar-null set) A Borel subset N of a separable Banach space
E is called a Haar-null set if there exists a probability measure y on the o-algebra
of Borel subsets of E so that u(N +z) =0 forall z € E.

We recall some results of Christensen {11] about the notion of Haar-null sets.
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Proposition 2.5.5. Let E be a separable Banach space. Then we have the

following.

(a) If E = R", then H C E is Haar-null in F if and only if H is Lebesgue-
negligible in IR™.

(b) If (Hn)n en 52 countable family of Haar-null sets in E, then the set H = Upen Hp,
is Haar-pull in FE.

(c) If H is Haar-null in F, then E'\ H is dense in E.

(d) Let B be a separable Banach space and H be a Haar-null subset in B x IR™.
Then for almost every b in B, that is except for a Haar-null subset in B, the
section

H®b) = {ze R" | (b,z) € H}
is Lebesgue-negligible subset in IR™.

Proof. See the book by Christensen [11] or Borwein and Moors [7], Proposition
2.1. a

We will need the following infinite-dimensional version of Rademachar’s the-
orem due to Christensen, which states that locally Lipschitz mapping from a sep-
arable Banach Space to a separable reflexive Banach space is differentiable almost

all points in the sense of Haar measure.

Proposition 2.5.6. Let E be a separable Banach space and F be a separable
reflerive Banach space. Let f be a locally Lipschitz mapping from E into F.
Then f is Gateaux differentiable on a subset Dy with E \ Dy Haar-null in E.

Proof. See [11], Theorem 7.5. . a

We will also need the following lemma in which we characterize the mono-

tonicity of Lipschitz mappings in separable Hilbert spaces.
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Lemma 2.5.7. Let X be a separable Hilbert space. Suppose P is a Lipschitz
continuous mapping from an open convex set O C X into X. Then P is monotone
on O if and only if the Gateaux derivative DP(y) is positive semidefinite wherever

it exists for y in O.

Proof. First assume that P is monotone on O. Let y in O such that the Giteaux
derivative DP(y) exists. Then, from the definition of DP and the monotonicity

of P, it follows that, for any n € X,

{n, DP(y)n) = lgfgt%(tn, P(y+tn) — P(y)) = 0.

So we get the positive semidefiniteness of DP(y) as desired.

Conversely, assume that the Gateaux derivative DP(y) is positive semidefinite
wherever it exists for y in O. Then, by Proposition 2.5.6, there exists a subset M
of O on which P is Giteaux differentiable and its Gateaux derivative DP(y) is

positive semidefinite, and such that O\ M is Haar-null in O. It suffices to prove
(P(y+v) —P(y),v) 20

forally, y+veO.

If v = 0 then the result is trivial. Let us consider the case v # 0. Asforeachy € O
the function s +— y+ sv from [0, 1] into O is derivable, the function s — P(y+ sv)
is derivable at each s € [0, 1] such that y+sv & N := O\ M. Since X is a Hilbert
space, we may write X = G @ IR-v, as a direct sum of IR-v and a subspace G.
Restricting to the subset O of X we write O = G' & R-v, where G’ C G and

R C R. Then, writing

y+sv = (y1,y2v + sv), where y; € G’ and y2 € R,
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it follows that the function s — P(y + sv) is derivable at each s € [0, 1] such that

%2v + sv € N(y,), where N(y;) denotes the section of N at y;,i.e.,
N(y1) = {yov+sv € R-v|(y1,y2v + sv) € N}.

By Proposition 2.5.5(d), there exists a subset L' C G’ with G’ \ L’ Haar-null in G’
and N (1) is Lebesgue-negligible in Rwv for each y € O such that y; € L’. Therefore
for each y € O such that y; € L’ the function s — (v, P(y + sv)) is derivable for
almost every s in [0, 1] and its derivative is given by (v, DP(y + sv)v). Thus for
every y € O such that y; € L, applying the Fundamental Theorem of Calculus
for the Lipschitz (implying absolute continuity ) function s — (v, P(y + sv)), we
obtain

(P(y+v) — P(y),v) = /Ol(v, DP(y + sv)v)ds (2.5.1)

For such y and y,;, we then have
(P(y+v) = P(y),v) 20,

by our assumption and (2.5.1). Moreover the definition of a Haar-null set and
Proposition 2.5.5 (b) and (c) imply that M N (L’ x R-v) is dense in G' ® R-v = 0.
Therefore the required inequality is verified for each y € M N (L' x R-v) and by

the continuity of P, is true for all y in O. This completes the proof of lemma. O

The convexity of e, itself has a full characterization in terms of subgradient
mapping of f and its proto-derivative. To state it, we recall the following general-
ized notion of differentiation of set-valued mappings in terms of set convergence.
A family of sets C, C X Painlevé-Kuratowski (PK) converges to C, denoted by
Cp 2 Cif

limsupC, = liminfC,, = C.
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Here limsup C,, is the set of all accumulation points of sequences from the sets
C, and liminf C, is the set of limit points of such sequences. For more on (PK)
convergence see [3], [6], [17], [41], [46] and the reference therein.

We say that set-valued mapping T : X =3 X is proto-differentiable at a point z

for an element v € T'(z) if graphs of the set-valued mappings
AzutT : &= [T(z + t€) —v]/t,

regarded as a family indexed by ¢t > 0, Painlevé-Kuratowski (PK) converge as
t\.0. If so, the limit mapping is denoted by T_i,,ﬁk) and called the proto-derivative
of T at z for v; see [6], [17], [19], [20], [41], [46]. This proto-derivative mapping
assigns to each £ € X a subset T;Eﬂk)(f) of X, which could be empty for some

choices of £.

The following known results of proto-derivatives of set-valued mappings will

be useful in the next several results of this section (cf. C. DO [17]).

Let [': X == X and z € ['(z).
e I' is monotone <= TI'~! is monotone.

/(pk)
.z

e I" is monotone = the proto-derivative mapping ['z’; ' is monotone.

e T is proto-differentiable at z relative to z <=> I'~!is proto-differentiable
. k -
at z relative to z. One has (I“'l);(f7 ) = ( ;(ﬂk)) h
e I islocally single-valued and Hadamard differentiableat z == it is proto-

differentiable at = and F;(i*k()z) = DI'(z), the Hadamard derivative of I" at z.

A well known result of convex functions will be required:
o A Giteaux differentiable function f : X — IR is convex <=> the deriva-

tive mapping is monotone.
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We now extend the characterization of convexity of ¢, of [29], Proposition
5.4, to separable Hilbert spaces. The Lemma 2.5.7 plays a key role in establishing

it.

Proposition 2.5.8. Let f : X — IR, where X is a separable Hilbert space.
Suppose that f is prox-regular at £ = 0 for ¥ = 0 with respect to € and r, in
particular with (2.4.1) holding, and let A € (0,1/r). Let T be the f-attentive
g-localization T of 8f around (0,0). Then the following conditions are equivalent:
(2) The function e, is convex on a neighborhood of 0.

(b) There is a neighborhood U of (0,0) such that if Ty is the localization of T
obtained by intersecting the graph of T with U, then Ty ' 4+ Al is monotone.
(c) There is a neighborhood U of (0,0) such that at all points (z,v) € UNgphT
where T is proto-differentiable, the proto-derivative mapping T;'c(,{,’k) 1 X=3X

is such that (T;fﬂk))‘l + A\ is monotone.
(d) Same as (c) but with restriction to the points (x,v) where in addition the

graph of TX®® is a linear subspace of X x X.

Proof. The equivalence between (a) and (b) is easy to establish. Indeed, we have
e, convex locally around O if and only if its the derivative mapping De, = Sy
is monotone locally around the point (0,0) in its graph, or equivalently, S5 has
such local monotonicity. By Proposition 2.4.6 we have Sy = (A +T~')~!, which
means that Sy ™! = A[+7~!. This gives the equivalence between (2) and (b). The
local monotonicity of S’;l implies that of its proto-derivative mappings where they
exist. Proto-derivative mappings for Sy ' have the form Al + (TXP*)Y~1 in terms of
proto-derivative mappings for T, and their monotonicity thus corresponds to the
mappings (T,'_-(,,’;k))—1+,\I being monotone. Thus we have (b) implies (c). Since (d)

is a special case of (c), we also have (c) implies (d). We must show now that (d)
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implies (a). Condition (d) means that the mapping (T2&¥))~1 + AI is monotone,
or equivalently, (De,)/ %% = (TE2*)=1 4 A1)~ is monotone at points (z,v)
near (0,0) where the proto-derivative of T exists as a linear mapping (may be
set-valued). Because the mapping Sy = De, is Lipschitz continuous around 0,
it is Giteaux (hence Hadamard) differentiable a.e.(w.r.t. a Haar-null set in a
neighborhood of 0), and hence in particular proto-differentiable with the proto
derivative being the Giteaux (same as Hadamard) derivative (a continuous linear
operator)(cf. [17], Corollary 3.6). Thus, we have (Dex);(f;)v = D(De,(z+Av)) =
DSy (z + \v), for almost all points of z + Av near 0 (w.r.t. a Haar-null set). Then
the monotonicity of (De ,\);(f:)v translate into the positive semidefiniteness of the
Géteaux derivative mapping DS, (z+Av). Then by Lemma 2.5.7, this is equivalent
to the monotinicity of Sy = De, on a neighborhood of 0. This yields (a), and the

proof is complete. O
For strong monotonicity of e,, we have the following sufficient condition.

Proposition 2.5.9. Suppose that f is prox-regular at T = 0 for v = 0 with
respect to € and r, and let A € (0,1/7r). Let T be the f-attentive s-localization
T of 8f around (0,0). Suppose T is strongly monotone with modulus p > 0,
i.e., T — ul is monotone. Then, on some neighborhood of 0, one has the strong
convexity of e, with modulus u/(1 + Ap), i.e., the convexity of
e
VLA
Proof. This follows from Lemma 2.5.1 for o = u, because the derivative mapping
of the function in question is Sy — /(1 + Au)}I with S, the mapping given by
the identity in Lemma 2.4.5. a

Next we characterize the strong monotonicity of T in terms of its proto-derivative.
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First we establish two lemmas. To state it, we recall a criterion for integrability of
Banach-space-valued functions that can be defined by considering an associated

one-dimensional integral (cf. Berger [5]).
Suppose a function z(t) is defined on a measure space (T, u, o(7")) with range in a
Banach space X. Then a definition of integrability of z(¢) by duality is as follows.

Definition 2.5.10. We say that z(t) is integrable if there is an element Ir(z) € X

for each element E of the o-ring o(T) such that
(z*, Ig(z)) = / (z*,z(t)}dy  (in the Lebesgue sense)
E

for each z* € X*. We set [ z(t)du = Ig(z).

Lemma 2.5.11. Let the vector function t — p(t) from [0,1] into a Hilbert space

X be integrable on {0,1]. We then have

L 2 L 2
[ sfae> | [ poael”

Proof. Since the function ¢ := | ~|2 is convex and continuous everywhere on X,
the subgradient set 8¢ (z) is nonempty for all z in X. Hence there exists v in X
such that

o(z) > p(zo) + (v,z —z0) foral z,

where zg = fol p(t)dt € X.

Setting = = p(t) and integrating the above inequality we get

1 1
| et 2 o) + [ oty =z0) te.
0 4]

1 1
/0 Ip(t)[*dt = I/O p(t)dt|*.
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a

Next lemma is the key to characterize the strong monotonicity of T, in which

we extend the results of [29], Lemma 5.6 to separable Hilbert spaces.

Lemma 2.5.12. Suppose P is a Lipschitz continuous mapping from an open

convex set O of a separable Hilbert space X into X. Then the following conditions

are equivalent for any o > 0.

(a) P! — ol is monotone.

{b) For all y € O where P is proto-differentiable, the proto-derivative mapping
Pé(”k) is such that (P!’,(pk))‘1 — al is monotone.

(c) For ally € O where P is Giteaux differentiable, the Giteaux derivative DP(y)

satisfies

(n,DP(y)n) = cxlDP(y)'r]{2 forall n € X.

Proof. Condition (a) implies condition (b) through the fact that the proto-
derivative of a monotone mapping, if it exists, is another monotone mapping.
Since for Lipschitz mappings Gateaux and Hadamard derivatives coincide, when
P is Gateaux differentiable, it is proto differentiable and the proto-derivative co-
incides with its Giteaux (same as Hadamard) derivative (cf. [17], Corollary 3.6),
and hence we have condition (b) implies condition (c). We must show now that

condition (¢) implies condition (a). Condition (a) means that
(P(y+v) — P(y),v) = o|P(y +v) — P(y)l2 forall y,y+ve€O.
Since P is Lipschitz on O, from (2.5.1), we have

(P(y+1v) — P(y),0) = /0 (v, DP(y + sv)v)ds.
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where y € O and y; € L' as in Lemma 2.5.7. This implies
1
(P(y+v)— P(y),v) > a/ IDP(y+sv)v(2ds
0

1
> af / DP(y + sv)vds]2
0
= a|P(y+v) — Py)|".
where the inequalities are based on the assumptions in (c) and the Lemma 2.5.11,

respectively. Then the result follows for all y, y+v € O, as proved in Lemma 2.5.7.
a

In the following, we extend the characterization of strong monotonicity of T,

given in [29], Proposition 5.7, to separable Hilbert spaces.

Proposition 2.5.13. Let f : X — IR, where X is a separable Hilbert space.

Suppose that f is prox-regular at T for v with respect to € and r. Let T' be the

f-attentive s-localization T of 8 f around (Z, ). Then the following conditions on

T and a value p > 0 are equivalent:

(a) T is strongly monotone with modulus p locally around the point (Z,7) €
gphT.

(b) There is a neighborhood U of (Z,¥) such that at all points (z,v) € UNgphT
where T is proto-differentiable, the proto-derivative mapping T,f(,ﬁk) X3 X
is strongly monotone with modulus p.

(c) Same as (b) but with restriction to the points (z,v) where in addition the

graph of TX2F) s a linear subspace of X x X.

Proof. Without any loss of generality we may reduce to the case £ = 0 = ¥ with
(2.4.1) holding (see Section 2.4). We have (a) implies (b), applying the fact, proto-
derivative of a monotone mapping, if it exists, is another monotone mapping, for

T—ul. Since (c) is a special case of (b), we also have (b) implies (c). We must show
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now that (c¢) implies (a). Consider any p > r such that p+p > 0, where r is a local
constant from the definition of prox-regularity. Let o = p+ p, P = (T + pI)7 1,
and M = T+rI. Since M is a maximal monotone mapping in graph around (0, 0)
(cf. Proposition 2.4.9), and P = (M + (p—r)I) ~! with p—r > 0, by [2], Theorem
3.5.9, P is Lipschitz continuous on some neighborhood of 0. Condition (c) means
that T;Egk) —u] monotone, or equivalently, (T'+pI )'I(f:,ﬁ)_px—aI = (P,',g‘_’:;)“l —alis
monotone at points (z,v) € gph T near (0, 0) where the proto-derivative of T exists
as a linear mapping (may be set-valued). Because the mapping P is Lipschitz
continuous around 0, it is Gateaux (hence Hadamard) differentiable a.e.(w.r.t.
a Haar-null set) around 0, and hence in particular proto-differentiable with the
proto-derivative being the Gateaux derivative (continuous linear operator) (cf.
[17], Corollary 3.6). Then by Lemma 2.5.12, condition (c) is equivalent to the
monotonicity of P~ —al = (T + pI) —al = T - ul at points (z,v) € gphT
near (0,0). (]

Corollary 2.5.14. Let f : X — IR, where X is a separable Hilbert space. Suppose

that f is prox-regular at T for ¥ with respect to € and r. Let T be the f-attentive

e-localization T' of 8f around (Z,7). Then the following conditions on T are
equivalent:

(a) T is monotone locally around the point (Z,%) € gphT.

(b) There is a neighborhood U of (%, %) such that at all points (z,v) € UNgph T
where T is proto-differentiable, the proto-derivative mapping T,';Eﬁk) X=X
is monotone.

(c) Same as (b) but with restriction to the points (z,v) where in addition the

graph of Téff,’k) is a linear subspace of X x X.

Proof. Apply Proposition 2.5.13 to T, = T + uI for all p > 0. (]
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Remark 2.5.15. If the function f is also subdifferentially continuous, then all
results in this section concerning T as an f-attentive localization of 8f at (Z,7)

can be restated in terms of T' being an ordinary localization.

2.6. Second-Order Theory

It’s time now for a closer look at the classical idea of obtaining second derivatives
by differentiating first derivatives. How might this fit into the framework of “gen-
eralized second-order” differentiation of prox-regular functions ? We answer this

question in Theorem 2.6.4.
First we recall some terminology :

A family of functions f, : X — IR Mosco epi-converges to f, denoted by f, 3 f,
if f, strongly and weakly epi-converges to f, i.e., the epigraph of f, (PK) converges
to the epigraph of f in both the weak and strong topologies. See [1], [6], [17], and

[19]. In other words, we have for all =
f(z) < liminf f,(z,) whenever z,% T

and

there exists z, —z  with  f(z) > limsup fr(z,).
We will say that f, Mosco epi-convergesto fon CC X ifforallz € C
f(z) <liminf f,(z,) whenever z, % z and {z,}CC
and
there exists z, —z with with {z,} CC and f(z) > limsup fn(z.).

Recall that a function f is twice Mosco epi-differentiable at T for a vector 7 € 9f(Z)

if the second-order difference quotient functions A2 ; ,f : X — IR, defined by

AL ;. (&) = [f(B +16) — f(7) — t(5,6)] /3¢ for £ > 0,
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Mosco epi-converge to a proper function as £\ 0. The Mosco epi-limit is then
the second Mosco epi-derivative function fg,(l-,m) : X — R. see [6], [17], [19]
This function, when it exists, is sequentially weakly l.s.c., proper and positively

homogeneous of degree 2.

When X is finite-dimensional, the weak convergence in the definition is re-
placed with strong convergence, and hence we drop the prefix “Mosco” in the
terminology. We simply say epi-convergence and epi-differentiable appropriately

in the definition. For more on epi-derivatives see [27], [40], [46].

In this section, we establish the connection between the epi-differentiability of
a prox-regular function and the proto-differentiability of its subdifferential map-
ping with a natural formula relating these two derivatives, in the context of Hilbert
spaces.

We will need the following results:

Proposition 2.6.1. Let ,, : X — IR be a family of L.s.c. functions equi-bounded
1 7 (ie. inf inf n - it n(Z); bounded. A
below near % (i.e Jof iof {on(z)} > —c0) with {¢n(Z)} bounded. Assume
further that { ¢n} Mosco epi-converges to ¢ on some neighborhood of . Then
there exist 0 < 1 < r9 such that for all A > 0 small enough (pn + 6B(z,rs))
Mosco-epi converges to (¢ + 8p(z,ry)), o0 B(Z,71), where (pn +8p(z,r)), de-

notes the Moreau A-envelope of ¢, + dg(z.r,)-
Proof. See Levi, Poliquin and Thibault ([19], Proposition 3.3). a

Proposition 2.6.2. (sum rule) Let f : X — IR be twice Mosco epi-differentiable
at ¢ for v € 8f(z), and g be any C? function on X with the mapping £ —
(D?g(z)€,&) is weakly lower semicontinuous. Then the function h = f + g is twice
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Mosco epi-differentiable at = with

R (€) = Fr0m)(€) + (D?g(z)E, €),

where u = v+ Dg(z), v € 3f(z).
Proof. See author’s M.Sec. thesis ([6], Proposition 3.2.5) O

Theorem 2.6.3. (Attouch’s theorem) Let {¢,}, @ be a sequence of l.s.c. proper

convex functions on X. Then v, 5 ¢ if and only if the following conditions hold:
(i) gph 8y, 25 gph dp.

(ii) 3(€,7n) € gph By, I(En,Mn) € gPh By such that (E,, 1) — (€, m) and pa(&s) —

p(€)-

Proof. See Attouch’s book ([1], Theorem 3.66). O

In IR™, Poliquin and Rockafellar established the relationship between the
second-order epi-derivative of a prox-regular function and the proto-derivative of
its subgradient mapping ([29],Theorem 6.1). Our next theorem gives a partial

extension of that result in the context of a Hilbert space.

Theorem 2.6.4. Assume that f : X — IR is prox-regular at % for t with constants
€ and r. Let T be the f-attentive e-localization of 8f around (Z,%). If f is twice
Mosco epi-differentiable at = for 7, then T is proto-differentiable at T for . One

has

TR5(6) = 8[3£257](6) forall ¢.
The converse is true when X is a finite-dimensional space.

Proof. Without loss of generality we can suppose that Z = 0, 7 = 0, f(0) =0

with (2.4.1) holding (see Séction 2.4). In addition we may assume, without any
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loss of generality, f to be l.s.c. on X with the domain of f is included in the closed
ball of radius &, since that can be manufactured out of the local l.s.c. property by
adding the indicator function of the set B(0,¢) to f. Consider any A € (0,1/r)

and the function

&,\(z) = e, (z) + 5(1—277)""'2' (2.6.1)

There is a neighborhood of 0 on which this function is C'* by Theorem 2.4.4 and

convex by Theorem 2.5.2, the derivative mapping being

DéA = De,\-i— I. (2.62)

r
1—Ar
Let

fz,5,:(6) == f(z + &) té(a:) O, 5) where t> 0.

Because f is prox-regular at T = 0 for ¥ = 0, we have f(Z + t§) — f(Z) — (7,€) =
—Z|t&|? for all €, and hence fz,5,:(€) = —Z|€|%. Then, there exists p > 0 and
t small enough such that the functions f,—_,,-,,t are equi-bounded below on B(0, p)
and dom fz 5.+ C B(0, p) with fz5.:(0) =0

Since we assumed that f is twice Mosco epi-differentiable at Z = 0 for 7 = 0,
11(m)

e, fzo:> 3 f , applying Proposition 2.6.1 there exists r;, 0 < < p, such

that for all A small enough, the Moreau A-envelopes

(f::vt))‘ s (2 ll(m))A on B(O 1‘1)
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Observe that

(fz,5.),(8) = iﬂf{f:«:,ﬁ.t(&') + %"5’ - 5!2}

s, f(ttf) %\.lgl_fﬁ}

= t2 it {06+ g5 le - "}

= %'g‘ex(if)

ex(Z + t€) — e, (Z) — t(De, (Z),€)
12 :

which Mosco epi-converge to %(e,\)g(;"). In otherwords, for A small enough, e, is

twice Mosco epi-differentiable at Z = 0 for 7 = 0 with
Hen)ot™ = (37257), on B(O,m).

It follows from the formulas (2.6.1) and (2.6.2) and the sum rule (Proposition

2.6.2) that é, is twice Mosco epi-differentiable at Z = 0 for ¥ = 0 with

E)E(€) = )@ + Tyl on BO)  (263)

(1-
Convexity of &, ensures (cf. [17], Theorem 3.9) that the twice Mosco epi-differentiability
of é, at T = 0 for 7 = 0 is equivalent to the proto-differentiability of Dé, at T =0

for 7 = 0 with

8[3(eN21() = (D&)TF(¢)

= (Dey) 9 (e) + ¢ on B(0,r;) (2.6.4)

(1-Ar)
Hence we have the proto-differentiability of De, at z =0 for ¥ = 0.

But De, has been identified locally with [AI + T!]~! in Proposition 2.4.6.
The graph of the latter mapping is the image of the graph of T under the in-

vertible linear transformation (z,v) — (z + Av,v) from X x X onto itself. Since
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proto-differentiability at T for ¥ is a geometric property of graphs at (Z,7) that is
maintained when graphs are subjected to an invertible linear transformation, and
the proto-derivative mappings themselves then correspond under the same trans-
formation, we deduce that the proto-differentiable of De, at Z for ¥ is equivalent

to that of T on IB(0,r), in which event there is the formula
(Dey)S = [AI+ 571" with §=Ti% on B(0,m). (2.6.5)

Since the proto-derivative mapping is positively homogenuous, the above equiva-

lence ( and 2.6.5) is true everywhere. This complete the first part of the proof.
We now turn to verify the derivative formula in the theorem. The positive

homogeneity of the derivative mappings involved in the formulas (2.6.3), (2.6.4)

and (2.6.5) imply that they are actually valid everywhere and hence combining

them yield
O[S + gyl 710 = M+ 577 @ + g€ Prall e
Thus
B[2(e)2V](6) = [M+ 5717 () with § =T, (2.6.6)
and hence
gph 8(3(e,)2 ) 2=, gph TEY as ANO. (2.6.7)

The convexity of Mosco epi-limit of convex functions (cf. [17], Proposition 2.2)
implies that of 3(e))2™(£) + sy €° (through 2.6.3). Hence the functions

2(ex) 25 (€) + 5l€|? are convex for sufficiently small A, which indeed increase to

L2 (€) + 51€12 as ANO. Thus

HOVARIGERESY #(m) (g) 4 = SI6P as ANO.
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Then, by Attouch’s theorem (Theorem 2.6.3) for convex functions,
gph{@(g(ek )2y +rI} gph {6(2 20my +rI} as AN0. (2.6.8)

From (2.6.7) and (2.6.8) we conclde that T22%) (£) = 8[3fi5™](€) for all &, as

v

required.

When X is finite-dimensional, the converse of Propositions 2.6.1 (see [25], Propo-
sition 2.1) and 2.6.2 (see {40], Proposition 2.10) are true, and hence the proof

given here can easily be reversed. m]

Corollary 2.6.5. Assume that f : X — IR is prox-regular and subdifferentially
continuous at T for ¥ with constants € and r. If f is twice Mosco epi-differentiable

at T for v, then @f is proto-differentiable at T for . One has
(05)a7 (€)= 8[3 £25™](6) forall €.
The converse is true when X is a finite-dimensional space.

Proof. Just apply the theorem noting that the f-attentiveness in the localization

of 8f to T is superfluous here. (m}

For a convex, C? function the above derivative formula agrees with the classical

results of second derivatives.

Corollary 2.6.6. For a convex, C? function f : X — IR one has
2521 (©) = (D*f(2)€.6),
(DF)h ey (6) = D*f(z)e, €€X

and hence the derivative formula in Theorem 2.6.4 holds.
Proof. See [17], Proposition 4.1. (|

The proof of Theorem 2.6.4 has revealed additional facts concerning f and

the second-order properties of its Moreau envelopes e,, which we record next.
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Theorem 2.6.7. Suppose that f is prox-regular at £ = Q for ¥ = 0 with respect to
€ and r, in particular with (2.4.1) holding, and let A € (0,1/r). If f is twice Mosco
epi-differentiable at 0 for 0, then e, has this property. One then has 3(e )‘)”(m)

the Moreau A-envelope of § "(m) , and the function fy ¢ "‘m) + r|-|2 is nonnegative

and convex with
A3t = [M+5 " = A I - (I +29)7Y] for S:=8[3f05"]-

Proof. Follows readily from the proof of Theorem 2.6.4. |

Corollary 2.6.8. Suppose that f is prox-regular at ¥ € argmin f for ¥ = 0 with
respect to € and r. Let T be the f-attentive e-localization of 8f around (Z,7¥).
Assume that there is a neighborhood U of (Z,%) and A > 0 such that at all points
(z,v) € UNgphT, and for all 0 < A <, f is twice Mosco epi-differentiable at =

for v, then e, has this property at z + Av for v. One then has
O[3(e) ) 1 = M+ 871 = AT I = (T +A8)7Y] for S:=8[5525M].

Proof. Assume that £ = 0 with f(0) = 0. Consider (%Z,7) € gphT and the
function f(z) := f(z + %) — f(%) — (¥, z). There is a neighborhood U of (0, 0) and
R > r such that for all points (%,3) € U N gph T, we have f(z) > —(R/2)|z|? for
all z (see [29], Corollary 6.6).

It is very easy to verify that for 0 < A < (1/R)

éx(w) = ex(w+Z +28) — (w, ) — f(Z) — (A/2) 5],

here &, is the Moreau A-envelope of f. From this we conclude that (e,\)"(m)

(ex)ggﬂ; ;- Finally note that Dey (Z+Av) = v. (because 7 € 8f(Z)), f ”(m) fy‘(im)’

and that f is prox-regular at 0 for 0 with respect to £ and R, in pa.rticular with
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(2.4.1) holding (f in place of f and R in place of r). Now simply apply Theorem
2.6.7 to the function f. (m |

Not every property of prox-regular functions in finite-dimensional spaces has
a Hilbert space extension. We recall in Theorem 2.6.9 that a prox-regular function
in finite-dimensional spaces has a second-order expansion. We conclude Chapter
2 by giving an example which illustrates that even for convex functions in Hilbert

space this property does not hold.

Theorem 2.6.9. ([29], Theorem 6.7) Let X be a finite dimensional space. Sup-
pose f : X — IR is prox-regular at T for o € 8f(Z) with constants <, r, and also
that f is twice epi-differentiable at % for ©. If the second-order epi-derivative func-
tion fY ; is finite on a neighborhood of 0, it must actually be a lower-C* function.
Then f must itself be lower-C? around z, differentiable at T with Df(Z) = 7,
and the second-order difference quotient functions AZ ; . f not only epi-converge
to ff 5, but converge uniformly on all bounded sets. In other words, one has the

expansion

flz) = f@) + (7, z—2)+ fl ;(z — %) +o(lz — ZI?).

The following example shows that the extension of above theorem to Hilbert

spaces fails.

Example 2.6.10. (Borwein and Noll (8]) Let f : lo — IR be the convex function

f@) =Y fulea),  z=(zs) €l (26.9)

n=1

where f,(n) =n"*Ip| (z <a<1).

First notice that convexity of f ensures the prox-regularity of f everywhere

in I3. Consider the point z = (n~2) € l2. Then f is twice Mosco epi-differentiable
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at r with

) = 23 Fllan)2 =0 forall €€l
n=1

However, the second-order difference quotient fails to converge to fr (™) In fact,
if A2, .f — 0 pointwise, then f had to be Lipschitz smooth at z (cf. Borwein
and Noll [8], Proposition 2.2). Borwein and Noll showed that this is not the case.

See Borwein and Noll [8], Example 2, pp 62 for details.
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CHAPTER 3

INTEGRATION OF PROX-REGULAR FUNCTIONS

3.1. Integration Problem

In this chapter, we study the fundamental problem of determining functions that
can be recovered up to an additive constant, from the knowledge of their subgra-
dients. More precisely, a function f is deemed integrable if whenever dxg(z) =
Oy f(z) for all = then f and g differ only by an additive constant. Here 9y refers
to a subdifferential, which can be taken in many different ways (e.g. Dini sub-
differential, Clarke subdifferential, b-subdifferential, Michel-Penot subdifferential,
Mordukhovich subdifferential, Ioffe approximate subdifferential, Frechet subdiffer-

ential, and proximal subdifferential).

The scope of the (non-differentiable) functions that are deemed integrable
seems somewhat restricted. It is clear that not every function can be recovered,
up to an additive constant, from its subgradients. We only need to look at the

following two functions.

Example 3.1.1.

Let

_ {0 ifz<o, _ [0 iz<0,
f("’)“{1 iz >0, g(x)‘{z £z >0,
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then

o1 =000 = oy 25

These two functions have the same subgradients everywhere yet they differ

by different constants in the pieces of the (connected) domain.

It has been conjectured that the locally Lipschitzian functions can be recov-
ered from their proximal subgradients. This is due to a theorem of Rademacher,
a locally Lipschitzian function is differentiable almost everywhere. Recently, this

was proven negative by Benoist.

Example 3.1.2. (Benoist [4])
For every countable dense set D C IR, there exists infinitely many Lipschitzian

functions f, differing by more than a constant, such that

0,f(@) = { §H D Az D

However, it was proved in [38] that this undesirable situation does not arise
for some important classes of locally Lipschitzian functions such as the upper
regular, semismooth and separably regular functions.

Probably the most well known and the oldest result in this area concerns con-
vex functions. If two L.s.c. convex functions (defined on Banach spaces) have the
same subgradients, then they differ by a constant; see Rockafellar [33]. However,

very few other examples were known.

The first work outside the field of locally Lipschitzian functions was done by
Poliquin for the p.l.n. functions. If two functions are p.l.n. at Z and have the same
subgradients, then on a neighborhood of Z the functions differ by a constant. See

[24]. Later this result was extended to Hilbert spaces by Thibault and Zagrodny
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[48]. The contribution we make to the integration problem is to identify a large
class of prox-regular functions, which differ only by a constant, from the knowledge
of their limiting subgradients. We establish the integration result in an arbitrary
Hilbert space, and certainly it applies to a much wider territory than that of p.l.n.
case (See Example 3.3.2). The central tool in achieving this integration result is
the smoothness property of the Moreau envelopes of prox-regular functions that

we established in Chapter 2.

3.2. Main Result

We prove that if two functions, which have the same subgradients locally, are prox-
regular and subdifferentially continuous relative to a pair (Z, 7) then the functions

differ by a constant in a local neighborhood of (Z, 7). More precisely, we have:

Theorem 3.2.1. Let f; : X — IR be prox-regular at T for ¢ € 8f;(Z), i = 1,2.
Assume that there exists a neighborhood of T such that both f; and f, have
the same limiting subgradients and f, is subdifferentially continuous at Z for ©.
Then f, is subdifferentially continuous at Z for U, and there is a k in IR such that

fi(z) = fa(z) + k for all = near ¥ with v in 8f;{(z) close to v.

Proof. Without loss of generality (cf. 2.4.1) we normalize to the case £ = 0,
7 = 0 with
f; is locally ls.c. at 0 with f;(0) =0, and r>0
(3.2.1)

is such that f;(z) > —§|a:|2 forall z, and i =1,2
which imply that
€t (0) =0 and P;(0) = {0} when A€ (0,1/r) and ¢ =1,2, (3.2.2)
where e‘;‘ and P} are the Moreau envelope function and the proximal mapping of
fi, respectively.
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We may further assume that there exists ¢ > 0 such that f; and f; are prox-
regular at = 0 for ¥ = 0 with respect to the same r with (3.2.1) holding. For
i = 1,2 let T; be the f;-attentive e-localization of 8f; around (0,0). Then, by
Thecrem 2.4.4, for each A € (0,1/r) and ¢ = 1,2 there exists § > 0 such that, on
V := {z; |z| < 6}, the mappings P} are single-valued and Lipschitz continuous

with constant 1/(1 — Ar) and
Pi(z) = (I + \T:)"'(z) = [singleton], (3.2.3)

while the functions €, is of class C'* with De3 (0) =0 and

z - Pi(2)

Def\(:t:) = X

= A1 [I — [+ /\Ti]_l] (z), (3.2.4)

and the properties in Propositions 2.4.2 and 2.4.3 hold.
Decreasing e further if necessary, we can arrange that f; and f2 have the same

subgradients on £/B, where € > 0 comes from the definition of prox-regularity of

£
Ji*

Claim 1. For each A € (0,1/r) , we have P}(z) = P?(z) = [singleton], and

ex(z) =e2(z) on V.

Proof of Claim 1. First notice that the proximal mappings P}, i = 1,2 are
single-valued on V' by (3.2.3). Let any z in V and z; = Pi(z), i = 1,2. Then
by Propositions 2.4.2(b) and 2.4.3(b) we have |1,| < &, |fi(z1)| < € and |v| < ¢,
where v; = 1(z ~z,) € dfi(z1). With the same reasoning z; = P§(z) gives
|zo| < € and |v2| < &, where v2 = F(z — 22) € 8f2(z2). Since [r3]| < & we have
vo € Ofa(z2) = Of1(z2). Since fi is subdifferentially continuous at Z = 0 for

7 = 0, we may also assume that |f(z2)| < €. Thus applying Theorem 2.3.4 for
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the pairs (z;,v;:) and (z2,v2) we get

r—T r—
<[ X 1]_[ X 2]’“’1_z2>2_rlxl—x2[2’

hence —A~!|z; -:1:2[2 > —r|z; —- :r:2|2. Then (1 — Ar)|z; — 22]® < 0, so z; = z,.

Therefore, we have P}(z) = P§(z) and by (3.2.4), De}(z) = De2(z) on V. Thus
we conclude e} (z) = e3(z) since €5(0) = 0 when X € (0,1/r) and i = 1,2 by

(3.2.2).

Claim 2. For all z in dom 8f; N (§/4)1B and v in 8f,(z) with § small enough
such that |v| < (6/4) < &, and ) small enough we have P}(z,) = Pi(z,) = {z},

where zy, =z + Av.

Proof of Claim 2. Take any z in dom @f; N (§/4)B and restrict A < 3. Then

6 é ) 6
< —_ - = - -) =
|z,\|_l:::|+,\|v|<4+/\4 (1+A)4<4(4) 8,

s0 z, belongs to V.

Let Z be an element of P}(z,) = P2(z,) (equality due to Claim 1). Then by
Propositions 2.4.2(b) and 2.4.3(b) we have |Z| < ¢, | f1(Z)| < € and |3] < &, where
b = +(za—Z) € 8f1(%). By our hypothesis v = 2A=% € 8f| (z) with |[v| < (6/4) < ¢
and |z| < (6§/4) < e. Since f; is subdifferentially continuous at Z = 0 for & = 0,
we may also assume that [f;(z)| < . Thus applying Theorem 2.3.4 for the pairs

(Z,7) and (z,v) we get

<[z>‘/\—&'::| _ [zx;m]’ i_$> > —r|5:—:z:[2,

hence —A~1|Z — :z:l2 > —r|E — :1:[2. Then (1 - Xr)|£ — |2 < 0, so £ = z. Thus we

have P}(z,) = P%(z,) = {z} as claimed.
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Claim 3. If x belongs to domdf, and z is near £ = 0 with subgradients v €
Af1(z) = 8f»(x) and close to © = 0, we have fi(z) = fo(z)-

Proof of Claim 3. Take any z in dom 8 f; N (§/4)B and v in 8f;(z) with |[v| <
(6/4) < e. Restricting )\ as in Claim 2, we have 2, =z+ Ay in V. Then by Claims

1 and 2, we get Pi(z,) = P3(zs) = {z} and e} (2)) = €3(z,)- This means
1 . 1 \
fl($)+§';\“[m—zx| = f2($)+ﬁ|‘1’—2,\| ;

and hence fi(z) = fa(z). This completes the Claim and hence the Theorem.

3.3. Necessity of the Assumptions

The following examples show that the assumptions in Theorem 3.2.1 are necessary.
Further, Example 3.3.2 shows that Theorem 3.2.1 covers a much broader class of

functions than that of p.l.n. case [24].

Example 3.3.1. (necessity of subdifferential continuity)

Let

0 ifz<0, _ [0 ifz <O,
fl(‘”)={1 ifz>0, f2(”)‘{2 ifz >0,

then

@) = 8fa(e) = 0ala) = Opaw) = { B HEZ D

These two functions are prox-regular but not subdifferentially continuous at
Z =0 for 7 = 0 (cf. Example 2.2.4). We see that they do not differ by a constant
in any neighborhood of (%,%). This explains the necessity of the subdifferential

continuity of the functions in Theorem 3.2.1.

Example 3.3.2. (necessity of the closeness of the subgradients)
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Let
0 ifz<o, [0 ifz <0,
ﬁhy’{yi if z>0, ﬁ@%_{l+v5 ifz >0,

then

{0} ifz <0,
Afi(z) = Opfr(z) = 0fe(z) = Bpfa(z) = { [0,00) ifz=0,
f/; ifz > 0.

First, we claim that both f; and fo are prox-regular and subdifferentially
continuous at Z = 0 for 7 = 0. To see this , take ¢ = § and fori = 1,2, T; be the

fi-attentive e-localization of 8 f; around (Z,%). It is easy to calculate, for 7 = 1,2

(=)

{0} if -}<z<0,
Tf($)={{0a%;) if z =0,

0 f 0<z<iz.
Then the prox-regularity of f;, i = 1,2, follows from the monotonicity of T} via
Theorem 2.3.4. Since f; is continuous it remains to verify that fo is subdifferen-
tially continuous at £ = 0 for ¥ = 0. Indeed, for any sequence (z,,v,) — (0,0)
with v, € 8fa(zy) eventually we have fo(z,) = 0 = f5(0). Thus, f is also sub-
differentially continuous at Z = 0 for 4 = 0. Yet f; and fo differ by different
constants on any neighborhood of Z = 0. However, when we restrict to , say with
e = 4, not only |z — % < € but [v—3| < ¢ with v € 8f1(z) = 0fa(z), then
such z has to be in (—¢,0] and we have fi(z) = 0 = fao(z) for all z in (—¢,0].
This justifies that the requirement of taking not only z close to & but also the

subgradients v close to ¥ in Theorem 3.2.1.

This example also reveals that Theorem 3.2.1 covers much broader class of
functions than that of p.l.n. case. For this, we only have to verify that f; is not
p.Ln. at T = 0. Here we make use of a corresponding subgradient characterization

available for p.l.n. functions.
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Theorem 3.3.3. (Levi, Poliquin and Thibault [19], Corollary 2.3) Let f : X — IR
be a Ls.c. function that is finite at . The following are equivalent:
(a) f is primal-lower-nice at Z.

(b) There exist positive constants e, ¢ and R such that
(vy = v2, Ty — T2) > —rlz; —T2)?

whenever v; € 0, f(z;), |[vil <er,r>Rand |z; — %[ <e,i=1,2.

If f; were p.l.n. at £ = 0 then there would be constants ¢, c and R as in
Theorem 3.3.3. Then for any > R, consider the mapping T formed by adding 7

times the identity to the subgradient mapping of f;,

1

T(z) = 55 +rz for z€(0,¢).
The critical points of T are given by T'(z) = _f{ + 7 = 0, and attained at
T

Tm = -(::T{. Since T (z) = ;3;- > 0, Tp, is a local minimum for T. Now restrict
the subgradients of f; such that -2-5&- < cr, ie, zg == g2z < z. Then T to
be monotone on [zp,£), Tm has to be less than or equal zo. This requires that
r? < 3. But, for the large values of r this is impossible and which contradicts
the monotohicity of T required by Theorem 3.3.3. This confirms that f; is not

p.ln. at Z =0.
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CHAPTER 4

CALCULUS OF PROX-REGULAR FUNCTIONS

As noted in Chapter 2, Poliquin and Rockafellar, in their study of prox-regular
functions, have obtained many functional properties, however calculus rules for
these functions have not appeared yet. We fill this gap by developing basic calculus
rules for prox-regular functions. A master key to our calculus is the following chain
rule.

4.1. The Chain Rule

Here we establish the prox-regularity of a composite function obtained by com-
posing a prox-regular function with a C'* (differentiable with locally Lipschitz

Jacobian) mapping under a natural constraint qualification.

Theorem 4.1.1. (chain rule) Assume that F : R" — IR™ is continuously dif-
ferentiable at £ with the Jacobian mapping VF Lipschitz continuous near I,
g : R™ — R with g(F(Z)) finite, and that the following constraint qualification
(R) is satisfied at F(Z).

(R): The only vector y € 8%g(F(z)) with VF(Z)'y=0 is y=0.
Let 7 € 3(go F)(Z) and set

Y(z,0) = {y€dg(F@)); VF(&)'y=1}.
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Assume further that the outer function g is prox-regular at F(z) for ally € Y (%, 7).

Then the composite function g o F' is prox-regular at T for ©.

Proof. Let v € 9(g o F)(z) and consider the set
Y(z,v) .= {y € dg(F(z)); VF(z)*y=v}.

First we show that, for all (z,v) in an (g o F')-attentive neighborhood of (Z, %) the

subgradients y in Y (z,v) are bounded.

Claim 1. For v € 8(go F)(Z) there exists € > 0 such that the set
S:={yeY(z,v);|lz—Z[<e,|lv—-7 <e and |g(F(z))—g(F(Z))|<e '
is bounded.

Proof of Claim 1. Suppose that the statement of the claim does not hold. Then
there exist sequences r, — I, v, — ¥, and y, € Y(zn,vn) with |y,| — oc and
g(F(z,)) — g(F(Z)). Since v, = VF(zn)*yn with y, € 8g(F(z,)), by passing to
the vectors

Un = y‘n
— =VF(z,)"—, 41.1

and extracting a subsequence, we can suppose that y,/|yn| converges to some
y, with |y| = 1. Then 0 # y € 8°g(F(Z)), by the definition of singular limiting
subgradients. At the same time we have VF'(Z)*y = 0 by (4.1.1) and the continuity
of VF. This contradicts the constraint qualification (R). O

Thus, by Claim 1, and the closedness of the limiting proximal subdifferential set,

in particular, we conclude that the set Y (Z,9) is compact.
Now consider, for 7 € 8(g o F)(Z), the set
Y (Z,7) = {y € 8g(F(g)); VF(E)'y=7}.
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For each y € Y(Z, ¥), there exist parameters ¢, > 0 and r, > 0 from the definition
of prox-regularity of g at F(Z) for y, and hence we have a covering of Y (Z, %) by

open balls, i.e.,

Y(z,9) C U B(y,&y).
y€Y (z,5)

The compactness of Y(Z, %) allow us to find a finite subcovering:

Y(z,7) c | | B(yi,ey) where y; € Y(Z,%). (4.1.2)

i=1

Now fix € as in Claim 1.

Claim 2. There exists € > 0 such that 0 < & < < and

N

lt—Z| < €
y; € Y(Z,0) in (4.1.2)
lv—17] < &

lg(F(z)) —g(F(@)| < €

with v€d(go F)(z) and ye€Y(z,v) )

= such that |y —yi| < gy,

for some i=1,...,m.

Proof of Claim 2. Assume the contrary, i.e., there exist sequences z, — Z,
Up — U With y, € Y (2n,vs) and g(F{z,)) — g(F(Z)) such that for all y; € Y(Z,7)
one has

[Yn —yil 25, i=1,...,m. (4.1.3)

Then by Claim 1, y, are bounded (eventually), and hence extracting a sub-
sequence, we may suppose that y, converges to some §. Then § € 8g(F(Z)) by
the closedness of the graph of limiting subdifferentials. Since y, € Y (zn,vn), i€,
tp = VF(z,)*yn with y, € 89(F(z,)) and the continuity of VF, we also have
7 = VF(Z)*§ with § € 8g(F(z)). Then § € Y(Z,7) and hence by (4.1.2) there

exists y; € Y(Z,7) such that |§ — 3| < &, for some i € {1,...,m}. At the same
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time we have, by (4.1.3), |§ — vi| = &, for all ¢ € {1,...,m}, which contradicts
the preceding statement. @

Recall that ¢; and r;, ¢ = 1,...,m, are the parameters corresponding to the prox-

regularity of g at F(Z) for y; € Y(Z,%). Choose
€=min{e, ;i=1,...,m} and F=max{r;;i=1,...,m}.

Then by Claim 2, and the continuity of F', there exists £ such that 0 < € <

min{e, £} and

lz—z| < € ) (g €Y(Z,9) in (41.2)
lv—79] < € such that |y —yi| < &y,
> =
[g(F(z)) —g(F(Z))| < € for some i=1,...,m,
with v € d(go F)(z) and y € Y(z,v) | (| and |F(z) - F(Z)| <&

(4.1.4)

Consider a (g o F)-attentive é-localization of (g o F') around (Z,¥) as in the
left hand side of (4.1.4). We then have [g(F(z)) — g(F(Z))| < € < &, and by
(4.1.4), |F(z) - F(Z)| < E < ey;, ly—wil < €y;,¥: €Y(Z,0) forsomei=1,....m.
Hence, invoking the prox-regularity of g at F(Z) for y; € Y(Z, ¢) (with parameters

ey, and r;) we get

9(F(z')) 2 g(F(z)) + (y, F(z') — F(z)) - %IF () = F(=)®

> g(F(z)) + (0, F(z') = F(z)) = 5IF@) ~F@P  (415)

where 2’ € IB(Z,€) and ¥ = max{r;; i =1,...,m}.
Let k be the local Lipschitz constant for F' and K be that of VF on the set
B(%,2¢) ( we shrink £ if necessary). Applying the local Lipschitzness of F' to
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(4.1.5) we obtain
o(F@)) 2 9(F@) + . F&) ~ F@) — el ~af'.  (416)

To show that g o F' is prox-regular at Z for ¥ € §(go F)(Z), we need r > 0 large

enough such that
7
g(F(z") 2 g(F(2)) + (2" —z) — =2/ —z* forall o’ € B(%8) (4.1.7)

whenever v € §(go F)(z), y € Y(z,v), [v—-8| < &, |z—Z| < &, |g(F(z))—g(F(Z))} <

-

£.

Thus, by (4.1.6) we have (4.1.7) whenever the following inequality holds,

=19

J
(v,z —2') + %lx —z'|> > (y, F(z) — F(z')} + rl2c lz — z'|2.
Or equivalently,
, r Fk2 "o ,
v,z -2 + (5 — 5 )z —2'° 2 (y, F(z) ~ F(z)). (4.1.8)

Thus, we will be done if we can verify inequality (4.1.8). For that, choose r’ large
enough such that M := (’é—' - %i) > 0 and M > nK, where n is the bound for
y € S in Claim 1. Note that y € Y(z,v) in (4.1.7) same as in (4.1.8) are belong

to the set S in Claim 1. This is because £ < &, by our choice.

Now consider the point ' defined by

., F(@')— F(z) = VF(z)(z' — z)
v & — 2]

where we assume that 2/ # z, otherwise inequality (4.1.8) holds trivially. By the
Mean Value Theorem, the norm of 3’ is bounded by K|z’ — z|, and by Claim 1,
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y € S are bounded by 5. Utilizing these two bounds, we obtain the estimate
—M|z' —z| = —%EMHK[:B! — x|
1
— Mnly
En nly'|

< -lylly'l ( since M >Kn and [yl <m)

S_.

< (v, v¥)-

Hence, replacing 3’ by the defined expression gives
(VF(z)(z ~2'),y) + Mlz ~'|> 2 (y,F(z) — F(z')).

Now (4.1.8) follows since v = VF(z)*y and M = (% - i’;——z- .

In the framework of nonsmooth analysis, the chain rule for f = g o F is the
foundation for many other rules of calculus. For instance, it gives instant access

to the following sum rule.

Corollary 4.1.2. (sum rule) Suppose f = fi+---+fm, fi : R" — R,z € dom f,
7 € 8f(%) and the only combination of vectors y; € 8 f;(Z) with y1 +- ~~+ym =0
isy; = --- = ym = 0. Assume also that, for i = 1,---,m, f; are prox-regular for

all v; € 8f;(£) such that v; + - -+ v, = 9. Then f is prox-regular at z for v.

Proof. Let F : R® — (JR™)™ be the mapping that takes z to (z,....z), and
define the function g: (IR")™ — R by

g(I]_,.- . ,.’Z:m_) = fl(xl) +---+ fm(xm)

Then f(z) = g(F(z)), and the following subgradient formulas hold (cf. Proposition

2.1.14).
ag(xl,---szm) = afl(ml) X+ X afm(zm)

aoog(ml’ v :xm) g aoofl(xl) XX aoo.fm(xm)
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Next we show that this composite function goF’ satisfies the constraint qualification
(R) at F(Z) of the Theorem 4.1.1. Indeed, for all§ = (1, ..., Jm) € 0%°g(Z, ..., T)
with VF(Z)*y = 0 imply

Inxn
(gly"'v-y.m) : = 07 where g’ieaoofi(i)yi:l:-"rm-
Inxn

ie, 1 +---+ Um =0 with §; € 8°f;(Z), 71 = 1,...,m. Then by our assumption

we have §; = »-+= ¢, = 0, as desired. Thus we have (cf. Theorem 2.1.12),

9f(z) € VF(z)"8g(F(z))

Since f; are prox-regular for all v; € 8f;(Z) such that vy + +--+ vy, = 7, it
follows that g is prox-regular at F(Z) for all y = (vy, *- -, vm) € 89(F(Z)) such that
VF(Z)*y = vi +---+ vy = 0, where v; € 3f;(Z), i = 1,...,m. Hence, applying
Theorem 4.1.1 for the composite function g o F’ we conclude that f is prox-regular

at 7 for o.

4.2. Some Applications

Next, we record several applications of the Chain Rule (Theorem 4.1.1).

Corollary 4.2.1. Assume that F : R™ — IR™ is continuously differentiable at T
with the Jacobian mapping VF Lipschitz continuous near %, g : R™ — IR with
g(F(z)) finite, and that the following constraint qualification (R) is satisfied at
F(z).
(R): The only vector y& §%g(F(z)) with VF(z)*'y=0 is y=0.
Let 7 € 8(go F)(Z) and set
Y(z,9) = {y€dg(F(z)); VF(@)'y=17}.
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Assume further that the outer function g is prox-regular at F(Z) for ally € Y (Z, %)
and the composite function g o F is subdifferentially continuous at Z for . In this
setting, g o F is twice epi-differentiable at Z for ¥ if and only if 8(g o F'} is proto-

differentiable at T for v with

B(g o F)], ;&) = 8[3(go FIZ;)(6) forall €.

Further, when go F is twice epi-differentiable at Z for 7 with a finite second-order
epi-derivative (go F')f ; on a neighbourhood of 0, the composite function go F’ has

a second-order expansion

(9o F)(z) = (9o F)(&) + B,z — %) + (g0 F)j 5(z — &) +o(|z — 2I*).

Moreover, the composite function g o F is integrable in the sense of the Theorem
3.2.1.

Proof. Since go F is prox-regular at Z for 7 by Theorem 4.1.1, the stated results
follow directly from Corollary 2.6.5, Theorem 2.6.9, and Theorem 3.2.1 (in the

same order). d

The smoothness and convexity properties of Moreau envelopes of a prox-regular

function can also be transformed into the above composite case.

Corollary 4.2.2. Consider the composite function goF in the setting of Corollary
4.2.1. Then the Moreau envelope e, of go F is not only C'* but also lower-C2 in

a neighbourhood of £ with

De)‘ = [AI'{" [3(g Q F)]—l] -1, and € -+ -2—(—1——.7;—A7)'| . l2 convex.
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Proof. Since go F is prox-regular at T for ¥ by Theorem 4.1.1, the stated results

follow directly from Proposition 2.4.6 and Theorem 2.5.2 (in the same order). O
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