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Abstract

Given a graph G = (V. E). a subset of vertices § is C0-irredundant if for anv
vertex v in 5. the closed neighbourhood of v is not contained in the union of the open
neighbourhoods of the vertices of § — {v}. The CO-irredundanié Ramsey number
t{l.m) is the least vaiue of n such that any n-vertex graph ¢ either has a CO-
irredundant vertex subset of at least mm vertices, or its complement & has a CO-
irredundant vertex subset of at least [ vertices. The existence of these numbers is
guaranteed by Ramsey's theorem. We prove that #{4.5) = 8, #{4.6) = 11, (4.7} = 14.
#3.m)=m, and £(3,3.m) =2m — 1 or 2m — 2 for rn odd or even respectively. We
also prove that t(n,,....ne) = R(F), ..., Fi} where n; € {3.4} and F; = P(Cy) if
n; = 3{4). Bounds will be given for £{3.3).
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Chapter 1

Introduction

In 1930, a paper written by Frank Ramsey introduced a result which would become
the foundation of a vast amount of literature on what is referred to as Ramsey type
problems. A special case of Ramsey’s theorem says: Given two positive integers, [
and m, there exists a smallest integer n such that for any graph G on n vertices.
either G contains an independent set of m vertices or G contains an independent set
of | vertices. This number n is denoted by r(l,m) and is called a Ramsey number,
or classical Ramsey number. The classical Ramsey numbers have proven extremely
difficult to evaluate, most of the progress being obtained in the last decade. Slight
changes to the definiton by Chvatal and Harary [10] led to generalized Ramsey theory
for graphs, which is an area of research of great interest with many published results.
The purpose of this thesis is to present a new generalization and to calculate some

nontrivial values.



In 1978, Cockayne, Hedetniemi and Miller [13] introduced irredundant vertex sets
which include independent sets, and this led to the definition of irredundant Ramsey
numbers. CO-irredundance extends the concept of irredundance. A set of vertices
S is CO-irredundant if for each vertex v in S, the closed neighbourhood of v is not
contained in the union of the open neighbourhoods of the vertices in S — {v}. This
permits the following generalization of the Ramsey numbers which is the subject of
this work: Given two positive integers, [ and m, there exists a smallest integer n
such that for any graph G on n vertices, either G contains a CO-irredundant set of
m vertices or G contains a CO-irredundant set of [ vertices. This new number n is
called a CO-irredundant Ramsey number and is denoted by ¢(l. m). The existence of
these numbers is guaranteed by Ramsey’s theorem.

Chapter 2 provides an introduction to all graph theoretic concepts relevant to this
thesis, as well as a selection of results on independence. domination. irredundance.
CO-irredundance, Ramsey theory, and generalized Ramsey theory.

Chapter 3 is dedicated to the calculation of several CO-irredundant Ramsey num-
bers. We will see the simple result that ¢(3, m) = m and it will be shown that several
of the CO-irredundant Ramsey numbers may be obtained from the generalized graph
Ramsey numbers. We will also prove that £(4,5) = 8, ¢(4,6) = 11, ¢(4,7) = 14, and
t(3,3,m) =2m — 1 or 2m — 2 for m odd or even respectively. Bounds will be given

for ¢(5, 5).



Further CO-irredundant Ramsey numbers are probably within reach, but their
evaluation will no doubt be difficult. The use of computer programs may prove
useful, but currently no computer is fast enough to evaluate the smallest unknown

classical Ramsey number, r(5, 5).



Chapter 2

Preliminaries

This chapter summarizes the graph theoretic definitions used in this thesis. It also
provides an introduction to irredundance and CO-irredundance. as well as an intro-
duction to Ramseyv theory. For further discussion of basic graph theory. the reader is

referred to Bondy and Murty [4].

2.1 Graph Theory

A graph G = (V, E) consists of a nonempty set V" of vertices and a set E of unordered
pairs of distinct vertices from V', called edges. When more than one graph is being
discussed, V'(G) and E(G) will be used to denote the vertex set and edge set of the
graph G. For the remainder of this section let G and H be graphs.

If the pair of vertices (u,v) is an edge in E(G), then we write uv € E(G). The
vertices u and v may be referred to as ends of the edge uv, and we say that u and v are

4
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adjacent. In addition, we say that the edge uv is incident to u and to v. Two vertices
u and v are called nonadjacent if uv ¢ E(G). Similarly, two edges are adjacent if
they have a vertex in common, and nonadjacent otherwise.

A subgraph H of G is a graph whose vertex set is a subset of the vertex set of G
and whose edge set is a subset of the edge set of G. In other words. a graph H is a
subgraph of G if and only if V/(H) C V(G) and E(H) C E(G). We write H C G to
show that H is a subgraph of G. If H C G and V(H) = V(G) then H is a spanning
subgraph of G.

Often we are interested in a specific substructure of a graph. Suppose V" is a
nonempty subset of V'(G). The subgraph of G which has vertex set V" and edge set
consisting of all edges of G with both ends in V" is called the subgraph of G induced
by V'. This induced subgraph of G is denoted G[V”]. Similarly. we can define a
subgraph of G induced by an edge subset of E(G): If E* C E(G) then the spanning
subgraph induced by E', denoted G[E'], has vertex set V'(G) and edge set E’.

The union of G and H, denoted GU H, is the graph with vertex set 1 (G)U 1 (H)
and edge set E(G) U E(H).

There are many structures within a graph which are given a special name. Some
simple structures of great importance will be defined here. A vg — v, walk in G is
an alternating sequence of vertices and edges starting with vy and ending with v,:
vgejvi€e;...e v, where e; = v;_ v; for i = 1,2,...,n. Since all graphs which are

considered in this thesis are simple (no multiple edges, no loops, undirected edges),



we can simply write a vg — v, walk as a sequence of vertices: vqu,...v,. A special
kind of walk, a path, has all distinct vertices. We say that the path vov,...uv, is a
path from v, to v, or that it is a vg — v, path. The graph which is precisely a path on
n vertices is called P,, and we say that a graph G contains a P, if P, is a subgraph
of G. A cycle is a walk in which all vertices are distinct except vy = v,. The graph
which is a cycle on n vertices is called C;. If n is odd (even) we say C, is an odd
cycle (even cycle). A graph is called connected if there exists a u — v path for any
pair of distinct vertices u and v.

A complete graph is a graph in which every pair of distinct vertices are adjacent.
The complete graph on n vertices is denoted K,. A clique in a graph G is a subgraph
of G which is a complete graph. An independent set (of vertices) is a set 1" C 17(G)
such that G[V”] contains no edges. A vertex v € 1" C V(G) is said'to be isolated
in V' if v is not adjacent to any vertex in V’. An independent set of edges is a set
of edges in which no two edges have a vertex in common, that is, a set of mutually
nonadjacent edges.

Two graphs G and H are called isomorphic if there exists a function f: V(G) —
V(H) such that f is one-to-one and onto and uv € E(G) if and only if f(u)f(v) €
E(H), and we write G = H.

The complement of G, denoted G, has V(G) = V(G) and E(G) contains precisely
the unordered pairs of distinct vertices which are not in E(G), that is uv € E(G) if

and only if uv € E(G). A graph G is self complementary if G is isomorphic to G. An



important fact to notice is that a clique in G is an independent set in G.

The degree of a vertex v € V(G), degg(v), is the number of vertices in V' (G) which
are adjacent to v, or equivalently the number of edges in E(G) incident to v. We
will write deg(v) if it is clear from the context which graph is being discussed. The

following well-known result will be frequently used
Theorem 2.1.1 Let G be a graph. Then

Y deg(v) = 2|E(G)|.

veV(G)

A simple result which follows from Theorem 2.1.1 is that the number of odd
degree vertices in a graph must be even.

The minimum degree of G, denoted §(G), is the minimum value of deg(v) taken
over all v € V(G). The mazimum degree of G, denoted A(G), is the maximum value

of deg(v) taken over all v € V(G).

2.2 Irredundance and CO-irredundance

Before introducing the definitions of irredundant sets and CO-irredundant sets, it is
important to understand how they originated. We require several new definitions.
The open neighbourhood of a vertex v in G is the set of all vertices adjacent to
v in G. We use Ng(v) to represent the open neighbourhood of v in G. When it
is clear from the context which graph is being discussed, the open neighbourhood

of v will simply be written N(v). The closed neighbourhood of v in G is given by



Ngl[v] = Ng(v) U {v}. Again, Ng[v] will be written N[v] when it is clear what
graph is being discussed. Open and closed neighbourhoods are also defined for vertex

subsets. For X C V(G), the open and closed neighbourhoods of X are given by

N(X) = |J N(2)

zeX

and

N[X]= U N[z].

reX

Given X C V(G) and z € X, the private neighbourhood of x relative to X is
pn(z, X) = N[z] — N[X - {z}].

It is appropriate that the elements of pn(z, X) be called private neighbours of r as
(informally) all vertices in pn(z, X) are neighbours of z and not neighbours of any
other vertex in .X.

A set D C V(G) is a dominating set of G (and is said to dominate G) if each
vertex in V" — D is adjacent to a vertex in D. Further. D is a minimal dominating
set if no proper subset of D dominates G.

The following proposition shows how dominating sets are related to private neigh-

bourhoods:

Theorem 2.2.1 [27] A dominating set D is a minimal dominating set if and only

if pn(d,D) # 0 for alld € D.

When a dominating set D is not minimal, there is some vertex v € D such that

D — {v} is still a dominating set, which implies pn(v, D) = @. We can call this vertex



v redundant in D as it does not dominate any vertex which is not already dominated
by another vertex in D. This leads to the definition of an irredundant set which is
(informally) a set containing no redundant vertices.

Formally, a set X C V for which pn(z, X) # 0 for all £ € X is called an irredun-
dant set. An irredundant set X is mazimal irredundant if no proper superset of X is
irredundant. Note that an irredundant set need not be dominating.

Irredundance was introduced in 1978 by Cockayne, Hedetniemi. and Miller [13].
Since then the subjects of domination, independence and irredundance have been
widely studied; the bibliography in [23] contains over a thousand papers on these
topics.

The following simple result relates domination and independence:

Theorem 2.2.2 (2]
i) S is mazrimal independent if and only if S is independent and dominating.

it} If X is mazimal independent, then X is minimal dominating.

The next result is a similar theorem relating domination and irredundance. Note

that part () is immediate from Theorem 2.2.1 and the definition of an irredundant

set.

Theorem 2.2.3 [13/
i) S is minimal dominating if and only if S is irredundant and dominating.

1) If X is minimal dominating, then X is mazimal irredundant.
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The domination number and upper domination number of a graph G are denoted
by 7(G) and I'(G) respectively, and are the smallest and largest number of vertices in a
minimal dominating set. Similarly, the independence number and upper independence
number (irredundance number and upper irredundance number) are denoted by i(G)
and 3(G) (ir(G) and IR(G)) and are the smallest and largest number of vertices in
a maximal independent set (maximal irredundant set). From Theorems 2.2.2 and

2.2.3 it can be seen that
ir(G) < v(G) < i(G) < B(G) < T(G) < IR(G).

Farley and Schacham [18] defined another vertex subset property by generalizing

the definition of an irredundant set. Recall that a set X is irredundant if and only if
N[z] = N[X —z]#0. for all € X.

Farley and Schacham changed the second closed neighbourhood in the definition of an
irredundant set to an open neighbourhood, giving: A set .X is called CO-irredundant
if and only if

Nz] - N(X —z) #0, for all z€ X.

The "CO” in the name CO-irredundant represents the fact that the neighbourhoods
in the definition are Closed and Open respectively. CO-irredundance is not vet well-
studied, but it is mentioned briefly in [19], [20], and [24].

We denote N[z] — N(X — z) by PN(z, X), and we say PN(z,X) is the pri-

vate neighbourhood of T with respect to X. It may at first seem confusing that both
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PN(z,X) and pn(z, X) are called the private neighbourhood of r with respect to
X. However, it will always be clear from the context whether we are referring to a
private neighbour in the irredundant sense or in the CO-irredundant sense. Further-
more, when more than one graph is being discussed. the notation pn(z. X.G) and
PN(z, X, G) will be used to denote the private neighbourhoods of r with respect to
XinG.

The difference between an irredundant set and a CO-irredundant set can be clearly

seen from the following characterization of pn(z. X)) and PN(z. .X).

Theorem 2.2.4 Vertezr u € pn(z, X) if and only if

(i) u = x and t is isolated in G[X] or

(i) € V — X and N(u) N X = {z}

Moreover, u € PN(z, X) if and only if (i) or (ii) holds or

(7it) v € X and N(u) N X = {z}.

The characterization in Theorem 2.2.4 shows that pn(z.X) C PN(z..X). and

since z € pn(z, X) for any vertex z of an independent set X, we deduce

X independent =—> X irredundant =—> X CO — irredundcent

Thus if COIR(G) is the largest cardinality of a maximal CO-irredundant set in G.
then

B(G) £ IR(G) < COIR(G).
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Although irredundance implies CO-irredundance, a maximal irredundant set need not
be maximal CO-irredundant. For example, in P; with vertex sequence vy, vs,..., Vs
the set {vp,vs} is minimal dominating and therefore maximal irredundant by Theo-
rem 2.2.3. However, the set {v;,v,,v4} is a CO-irredundant set, and thus {vs, vy} is

not maximal CO-irredundant.

The next few results show that CO-irredundant sets have several properties similar

to those of irredundant sets.
Theorem 2.2.5 CO-irredundance is a hereditary property.

Proof Let T € S C V where S is a CO-irredundant set of G. For t € T.0 #
PN(t,S) C PN(t.T),as N[t] - N(S —t) C N[t] - N(T —t). Thus PN(¢t.T) #0. &
The following theorem is simple but important, as it will be constantly used in

Chapter 3.

Theorem 2.2.6 If S C U C V and S is CO-irredundant in G[U], then S is CO-

irredundant in G.

Proof For s € 5,0 # PN(s.5.G[U]) C PN(s,5,G). &
A set S C V(G) is called total dominating if and only if every vertex in V(G) is
adjacent to a vertex in S. The following theorem relating total domination and CO-

irredundance is similar to Theorem 2.2.3 which related domination and irredundance.
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Theorem 2.2.7
t) S is minimal total dominating if and only if S is CO-irredundant and total domi-
nating

12) If S is minimal total dominating, then S is marimal CO-irredundant.

Proof

i) (=) Suppose S is minimal total dominating. Then for each s € S. N(S—{s}) # V"
Since S is total dominating, N(S) = V' = N|[S]. Thus there exists u € NV[S] - N(S -
{s}) = PN(s,S) and hence S is CO-irredundant.

(<) Let S be CO-irredundant and total dominating. For s € S, there exists u €
N[s] — N(S - {s}). But u ¢ N(S — {s}) so u has no neighbour in S — {s}. Thus
S — {s} is not a total dominating set. Therefore S is minimal total dominating.

ii) Let S be minimal total dominating. S is certainly CO-irredundant by i). Suppose
there exists y such that SU {y} is CO-irredundant. Then there exists v € PN (y. SU
{y}) = N[y] — N(S). Therefore N(S) # V, a contradiction which shows that S is

maximal CO-irredundant. g

2.3 Ramsey Theory

Ramsey theory refers to a large body of results in mathematics concerning the idea
that when any large enough structure of a certain type is partitioned, some class of

the partition contains a substructure of some prescribed type.
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The pigeonhole principle states that if m objects are partitioned into n classes.
then some class contains at least [2] objects. This concept is very simple. but a gen-
eralization called Ramsey’s theorem leads to some very deep results. The pigeonhole
principle guarantees that when we partition objects into classes we get a class with

many objects. Ramsey’s famous theorem [29] guarantees a similar result:

Theorem 2.3.1 (Ramsey’s Theorem)

Let T,k be positive integers > 2 and n,ns,...,n; be positive integers > r. There
ezists a smallest integer n such that for any ordered partition of the r-subsets of
{1,2,...,n} into k classes, there is a subset of size n; all of whose r-subsets are in

the i** class of the partition, for somei. This number n is denoted R(n,. no. . ... ne:r).

When r = 2 there is a useful graph theory representation of Ramseyv’s theorem.
In this case, Ramsey’s theorem says that if we partition the 2-subsets of a sufficiently
large set into k classes there will be an n;-subset all of whose 2-subsets are in the
ith class of the partition, for some i. This problem is still very difficult to visualize.
Suppose we allow the elements of a set V' to be represented by vertices. We can
then represent a 2-subset by an edge joining the elements of the 2-subset. Hence
the 2-subsets of a set V™ are represented by the complete graph on |V'| vertices. The
classes of a partition of the 2-subsets can clearly be represented by ”colouring” all
the edges in a class with the same colour. Therefore, a partition of the 2-subsets of
V into k classes can be represented by a k-edge colouring of the complete graph on

|V'| vertices.
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If there exists an n;-subset all of whose 2-subsets are in the #** class of the partition,
then in the graph representation there exists a set S of n; vertices such that all the
edges with both ends in S have colour i.

Suppose that each edge of the complete graph K, is assigned a colour from
{1,2,....k}. For i = 1,2....,k let G; be the spanning subgraph of K, induced
by the edges of colour i. Then (G,,Ga,...,Gy) is called a k-edge colouring of K.

We now state Ramsey’s theorem for r = 2 in terms of the graph theorv represen-

tation:

Theorem 2.3.2 Let k > 2 and n; > 3 fori = 1,2,...,k. The classical Ramsey
number r(n,,n,,....ng) is the least integer n such that for any k-edge colouring
(G1,Ga,....Gk) of Ky, there exists i € {1,2,...,k} such that G; contains K,, as a

subgraph.

The most trivial Ramsey number is r(3, 3) = 6. It can easily be seen that r(3. 3) <
6 by considering any vertex v in Kg and any 2-edge colouring of K. There are 5
edges incident to v and therefore by the pigeonhole principle 3 of these edges are of
the same colour. In keeping with the usual practice. we will call the two colours red
and blue and denote the induced subgraphs by R and B. Without loss of generality
there are 3 vertices adjacent to v in R, say z;,zs, 3. Now if there are any edges in
R[{z\,z,,z3}] then such an edge together with the red edges from v form a red K.
If there are no edges in R[{x, T2, z3}] then B[{z,,z2,23}] is a blue K3. Therefore

any colouring (R, B) of K contains a K3 in R or B (or both). To establish that
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r(3,3) = 6, it must be shown that there exists a colouring (R, B) of K5 with no K;

in R or B. Such a colouring can be seen in figure 2.1:

R: B: A

Figure 2.1: A colouring (R, B) of K; withno K3 in Ror B

The method used to prove r(3,3) = 6 demonstrates the two steps needed to
prove the value of any Ramsey number. Firstly, a proof must be given to show
r(ny,na,...,ng) < n. Then, a k-edge colouring of A,_; must be found in which G;
does not contain K, for all ;. The Ramsey numbers have proven immensely difficult

to evaluate. All known 2-colour Ramsey numbers, r(l. m), are listed in Table 2.1.

I\m||3|4|5]|6|7[8]9

3 (|6]9 (1418232836

4 18 | 25

Table 2.1: Known 2-colour Ramsey numbers r(/, m)

The only other known classical Ramsey number is 7(3, 3, 3) = 17, which was found
by Greenwood and Gleason [22]. Although very few Ramsey numbers are known,

the attempts at evaluation have produced many bounds for the 2-colour Ramsey
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numbers. A complete table of known bounds with references can be found in [28].

The following theorem is commonly used to obtain an upper bound on a 2-colour

Ramsey number:

Theorem 2.3.3 r(l,m) < r(l — 1,m) + r(l, m — 1), with strict inequality when both

summands on the right are even.

[+m—2
Corollary 2.3.4 r(l,m) <
[-1

A great deal of work has been done on asymptotic bounds. Theorems 2.3.5 and

2.3.6 are examples of such bounds.

Theorem 2.3.5 [21] For fired n and large m, r(m.n) < c¢(m™ 'loglogm)/logm,

where c depends on n.
For n = 3 and m > 3 this can be improved to:
Theorem 2.3.6 [I1/r(m,3) < cm?/logm.

Ramsey theory has provided beautiful concise proofs for other results. The fol-

lowing theorem can be proved by taking f(m,n) =r(m+1,n+1) — 1.

Theorem 2.3.7 [30] There is a function f(m.n) with the following property:
Ifxy,xs9,...,xN is any sequence of distinct real numbers with N > f(m,n), then there
is either a monotone increasing sequence of length greater than m, or a monotone

decreasing sequence of length greater than n.
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The following geometric fact can also be established using Ramsey theory:

Theorem 2.3.8 [7] There is a smallest integer N(n) such that any collection of
N > N(n) points in the plane, no 3 collinear, has a subset of n points forming a

COnver n-gon.

The proof of Theorem 2.3.8 involves looking at any r(n. 5; 4) points, and colouring

the 4-sets red if they form a convex quadrilateral and blue otherwise.

2.4 Generalized Ramsey Theory

Generalization is one of the most important features of mathematics. We have seen
the classical Ramsey numbers defined in terms of cliques. where r(n;.na.....n)
gives us the smallest K, which must have a clique of a particular size in one of its
monochromatic subgraphs. An extension of this concept is obtained by replacing a
clique with a general graph. Thus the generalized Ramsey number R(F\, F>, . ... F)
is the smallest n such that for any k-edge colouring (G;.Ga,,....Gy) of K,. the graph
F; is a subgraph of G; for some ¢. These new numbers certainly do generalize the

classical Ramsey numbers in that R(Kp,, Kn,...., K,,) =r(ni, na, ... ng).

A simple generalized Ramsey number result is given in Theorem 2.4.1.
Theorem 2.4.1 R(G, K3) = n where n = |V(G)|.

Proof Consider any 2-edge colouring of K,,. If any edge is coloured blue then there

exists a K, in B. Otherwise, R = K, and hence contains G as a subgraph. Therefore
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R(G, K3) < n. Now consider the colouring of K,,_, in which all edges are coloured
red. There is no G in R as R does not have enough vertices, and B contains no K>
as B has no edges. Therefore, R(G,K3) > n — 1. Thus R(G.K>) =n = |V(G)|- &
Radziszowski’s survey paper [28] provides a very thorough summary of known
results on generalized Ramsey numbers and contains an enormous listing of references

on the subject. A sampling of some of these numbers will be given here.

Theorem 2.4.2 [28]
R(Pp, Pp)=n+ %] -1, foralln>m > 2
R(C3,C3) =6
R(Cy,Cy) =6
R(Cy,Cy.Cy) =11
Ri(Cy) < k2+k+1 for all k > 1, where Ry(Cy) = R(Cy4,Cy,...,Cy)
k arguments

Ri(Cy) > k> —k+2 for all k — 1 a prime power

R(G,G) > [(4|V(G)| — 1)/3] for any connected graph G



Chapter 3

CO-irredundant Ramsey Numbers

This chapter will introduce the CO-irredundant Ramsey numbers and show how

several of them are calculated.

3.1 Introduction to CO-irredundant Ramsey

Numbers

Recall that the classical Ramsey number r({, m) is the smallest n such that for any
colouring (R, B) of the edges of K,, K; is a subgraph of R or K,, is a subgraph of
B. Notice that R contains a K; if and only if B contains an independent set of size
[, and similarly B contains a K, if and only if R contains an independent set of size
m. Therefore, the definition of the classical Ramsey numbers can be stated in terms

of independent sets instead of cliques. Now r(l,m) is the smallest n such that for

20
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any colouring (R, B) of the edges of K,,, R contains an independent set of size m or

B contains an independent set of size [. Recall now the following facts:

X independent => X irredundant —=> X CO — irredundant

and

COIR(G) > IR(G) > 3(G) (3.1.1)

Thus it is natural to generalize Ramsey’s theorem in terms of irredundant and
CO-iredundant sets.

Let K > 2and n; > 3 fori = 1,2,....k. The irredundant Ramsey number
s(ny,...,ng) (CO-irredundant Ramsey number t(n,.....n;)) is the least integer n
such that for any k-edge colouring (G, G, . ...Gg) of K, thereexists i € {1.2..._. k}
such that IR(G;) (COIR(G;)) > n;.

The existence of the classical Ramsey numbers together with (3.1.1) guarantees

the existence of the other two types of Ramsey numbers. Furthermore, (3.1.1) gives

t(nlv---snk) < s(nl“"rnk) < r(nlr'-'snk)'

We have seen that the classical Ramsey numbers are very difficult to evaluate. Calcu-
lation of irredundant Ramsey numbers has also proven to be hard. The known values

for £k = 2 can be seen in Table 3.1. The only other known irredundant Ramsey

number is s(3,3,3) =13 ( [14], [15]).
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”l\m 3 4

3 (|6 [5]]| 8 [5] |12 [5] |15 [6] |18 [9] [12]

4 13 [11]

Table 3.1: Known 2-colour irredundant Ramsey numbers s(l, m)

Asymptotic estimations on the irredundant Ramsey numbers have been made by
Chen, Hattingh and Rousseau [8] and by Erdos and Hattingh [16]. The reader is
also referred to the survey article by Mynhardt [26].

As CO-irredundance is a generalization of irredundance, it is reasonable to ex-
pect that the CO-irredundant Ramsey numbers will also be challenging to calculate.
Theorem 2.2.4 showed that a vertex in a CO-irredundant set must have a private
neighbour of one of three types. We now develope some notation relating to these
three types of private neighbours.

Let X be a CO-irredundant set. A vertex u € PN(v, X)) is called an XPN of
v. If uis an XPN of type (i) or (i), i.e. a private neighbour of v in X. then u
is called an internal private neighbour of v (abbreviated iXPN). If v has a private
neighbour of type (ii), i.e. if there exists u € V" — X such that V(u) N X = {v}, we
say that u is an external private neighbour of v (abbreviated eXPN). Furthermore,
we will abbreviate " CO-irredundant” to ”"CO-irr.” and denote a CO-irr. set of size
m by c¢m for ease of notation.

The following simple observation will be repeatedly used.
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Theorem 3.1.1 X is a CO-irr. set of G such that each t € X has an :XPN if and

only if A(G[X]) < 1 (i.e. G[X] = MK, U pK;).

Proof Let z € X. If z is not isolated in X, then r has an iXP.N. say y. Since y is
not adjacent to any vertex in X — z, y must have z as its zX PN. Therefore, both z
and y have degree 1. Therefore A(G[X]) < 1. g

Theorem 2.3.3 states that r(l.m) < r({ —1,m)+r(l.m — 1) with strict inequality
if both summands are even. Analagous theorems hold for the irredundant and CO-
irredundant Ramsey numbers and are usually the starting points for finding upper

bounds.

Theorem 3.1.2 t(l.m) < t(l — 1,m) +t(l.m — 1) with strict inequality if both sum-

mands are even.

Proof Consider the complete graph on ¢({—1, m)+¢(l, m — 1) vertices and any 2-edge
colouring (R, B). A vertex v is adjacent to either i) t(I — 1, m) vertices in R or ii)
t(l,m — 1) vertices in B. In i), these t(l — 1, m) vertices contain either a c¢(/ — 1) in
B or acm in R. In the second case, there is a cm in R. In the first case. the ¢({ — 1)
together with v forms a ¢l in B. Similarly for ii).

If t(l — 1,m) and (I, m — 1) are both even, consider the complete graph on ¢(! —
1,m) +t({,m — 1) — 1 vertices. Since |V'| is odd, there exists a vertex v with even
degree in R and in B (Theorem 2.1.1). Let R, = Ng(v) and let B, = Ng(v).

Either |R,| > t({ — 1,m) — 1 or |B,| > t({,m — 1) — 1. Without loss of generality
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suppose that the former is true. Then |R,| > #(l — 1, m) as |R,| is even. By definition
of ¢(l — 1,m), R[R,] contains a cm or B[R,| contains a c¢(l — 1). Therefore, either
R[R, U {v}] contains a ¢ or B[R, U {v}] contains a cl. g

Part of the difficulty in evaluating the CO-irredundant Ramsey numbers is that
there is no useful characterization of ¢m’s for most values of m. However. theorems

have been established which state precisely when a graph contains a ¢3 or a c4.

Theorem 3.1.3 B has a ¢3 if and only if R has P; as a subgraph.

Proof Let R have P; as a subgraph and ry, yz be red edges. Then A(B[{z.y.z}]) <1
and {z,y, z} is a blue ¢3 (by Theorem 3.1.1).

Conversely, let X = {z.y, z} be a blue ¢3. If say z is a blue XPN of type (i). then
 is isolated in B[{z,y.z}] and z has red degree at least two as required. Otherwise
B[{z,y,z}] is P; or K3. In either case at least one vertex say r has a blue eXPN u.

which implies that uy, uz are red as required. g
Theorem 3.1.4 B has a cd if and only if R has Cy as a subgraph.

Proof If X is the vertex set of a red C,, then B[X| has maximum degree one which
implies that X is a blue ¢4 (Theorem 3.1.1).

Conversely suppose that X = {1,2,3,4} is a blue c4. If the maximum degree
A(B[X]) < 1, then R[X] contains a Cy. Otherwise without loss of generality 12 and
13 are blue. If 4 is isolated in B[X], then at least two of 1, 2, 3 have blue eXPNs. If

4 is not isolated in B[X], then at most two vertices of X have iXPNs and so again
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at least two vertices have blue eXPNs. With suitable relabelling, if 1, 2 have blue
eXPNs 5, 6 respectively, then 3, 5, 4, 6 is the vertex sequence of a red Cy. g

No theorem has been found which shows precisely when a graph contains a c5.
The following theorem relates to graphs with a ¢5. Note that the graph A5 — 2R is

simply the graph obtained by removing two nonadjacent edges from Kj.

Theorem 3.1.5 B has a ¢5 in which at least three vertices have an internal private

neighbour if and only if R has a K5 — 2K>.

Proof

(<) Suppose R contains a K5 — 2K,. Then B contains a set of 5 vertices which
induce a graph with < 2 (nonadjacent) edges. These 5 vertices are a ¢5 in which all
the vertices have an internal private neighbour.

(=>) Assume B hasa ¢3. X = {1.,2,3,4,3}. and vertices 3. 4.5 all have iXPN’s. There
are 3 cases: i) 1 and 2 have iXPN's, i7} 2 has an iXPN but 1 does not, or ii) neither
1 nor 2 has an iXPN.

¢) Since all vertices in .X have an iXPN, B[X] contains at most 2 (nonadjacent) edges.
Then R[X] D K; — 2K,.

1) Without loss of generality 1 is adjacent to 2, so 2 must be adjacent to some other
vertex, as 1 has no iXPN. Say 2 is adjacent to 3. Now 3 has an iXPN which is not
1,2 or 3. Without loss of generality 3 has private neighbour 4. Now 4 must have
private neighbour 5 and hence 5 is not adjacent to 1,2 or 3. Thus 5 has no iXPN,

which contradicts the assumption.
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12) Let 1 and 2 have eXPN’s z and y respectively. At least one of 3.4.5 has its
iXPN in {3,4,5}. Say 3 has a private neighbour in {3,4,5}. If B[{3,4,5}] has <1
edge then R[{z,y,3,4,5}] D K5 — 2K,. Otherwise, B[{3.4,5}] is the path 435 and
the iXPN of 3 (which is 4 or 5) has no internal private neighbour. contradicting the

assumption. g

3.2 Calculation of ¢(3,m), (3,3, m), and t(nq,...,ng)

where n; € {3,4}

In this section we will calculate ¢(3,m), ¢(3, 3, m), and some values of t(n,..... ng)

where n; € {3,4}. Theorems 3.1.3 and 3.1.4 will be frequently used.
Theorem 3.2.1 For any m > 3, t(3,m) = m.

Proof Let B = K,,_;, R = K,,_; and consider the 2-edge colouring (R. B) of Kpm_,-
Then B has no ¢3, R has no ¢cm and so t(3,m) > m — 1. Now let (R.B) be any
2-edge colouring of K, (vertex set V). If A(R) > 2. then B has a ¢3 by Theorem

3.1.3. Otherwise A(R) <1 and V" is a red cm by Theorem 3.1.1. g
Theorem 3.2.2
(i) For odd m > 3, t(3,3,m) =2m — 1.

(#i) For evenm > 4, t(3,3,m) =2m — 2.
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Proof

Lower bounds

As in the earlier work, for example, 12 denotes the edge joining vertices 1 and 2.
If variables are involved in vertex labels, the edge joining vertices a and b will be
denoted by (a,b). Let {1,...,n} be the vertex set of A, where n = 0 (mod 4).

Define

B, = {12,34,...,(n—1,n)}

and R, = {13,24,57.68,....(n-3,n—1),(n—2.n)}.

If m is odd, then 2m — 2 = 0 (mod 4). Let (R, B,G) be the 3-edge colouring
of Kom—2 where the edge sets of R, B are R5,,_, and B3, _, respectively. Then R
and B have maximum degree one and so neither R nor B has a ¢3 (Theorem 3.1.3).
Moreover G = RU B = (27)C, which has no cm. Hence £(3.3.m) > 2m — 2.

If m is even, then 2m — 4 = 0 (mod 4). Let (R, B,G) be the 3—edge colouring of
Kom-3 (vertex set {1,...,2m — 3}) where edge sets of R, B are R3,_, and B;,,
respectively. As above neither R nor B has a ¢3. Further G = (252)C; U K which

has no cm. Hence £(3,3,m) > 2m — 3.

Upper bounds

To establish the upper bounds suppose to the contrary that for m odd (even).

(R, B, G) is a 3-edge colouring of Kom_1 (K2m_2) with no ¢3 in B or B and no cm in G.
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Then A(R) and A(B) are at most one (Theorem 3.1.3) and so A(G) = A(RUB) < 2.
Thus components of G are paths, cycles or isolated vertices. Each such component
X of G with ¢ vertices has a CO-irr. set of size at least % and if X 2 Cy, then X has
a CO-irr. set of size at least %2

If m is odd, the union of these CO-irr. sets is a CO-irr. set of G of size at least
2m=l je. G has a cm.

If m is even, then 2m — 2 = 2 (mod 4). Hence not all components are Cj’s.
Therefore, in this case also, G has a CO-irr. set of size at least 3—"‘2—*1 and G has a cm.

Therefore for m odd (even), £(3,3,m) < 2m — 1 (2m — 2) as required. g

Some values of t(n,,...,n;) where n; € {3,4} may be obtained from Theorems

3.1.3, 3.1.4, and the generalized Ramsey numbers listed in Section 2.4.

Theorem 3.2.3 Fori=1,...,kletn; € {3,4} and F; = P; (Cy) if n; =3 (4). Then

Proof By Theorem 3.1.3 and Theorem 3.1.4, for any k-edge colouring (G,..... Gk)
of K,, G; contains F; as a subgraph if and only if G; has a cn;. g
From Theorem 3.2.3 we immediately obtain the following results. References to

the work on the corresponding generalized Ramsey numbers may be found in [28].
Theorem 3.2.4
(i) t(4,4) =6.

(ii) t(4,4,4) =11.



k+2 ifkis odd
(iii) £(3,3,....3) (k arguments) =

k+1 tfk s even.

(iv) #(3,3,4) =6.

(v) t(3,4,4) = 8.

(vi) #(4,4.4,4) > 18.

(vii) £(4,4.4.4,4) > 25.

(viii) ¢(4,...,4) (k arguments) < K>+ k + 1.

(ix) t(4,....4) (k arguments) > k* — k+ 2, if k — 1 is a prime power.

3.3 Calculation of ¢(4,m) for m = 5,6, and 7

In this section we evaluate the CO-irredundant Ramsey numbers £(4, 3), £(4.6). and
t(4.7). For each of these values, a proof will be given to establish ¢(4. m) < n. Then.
a 2-edge colouring (R, B) of K,_, will be given which contains no cm in R and no ¢4
in B, proving that (4, m) = n. An edge colouring (R, B) of K, with no ¢/ in B and

no ¢cm in R will be referred to as a t(I,m) Ramsey colouring of Kn.

3.3.1 t(4,5)=38

The first theorem of this section will be used in the calculation of all three numbers

t(4,5), t(4,6), and £(4, 7).
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Theorem 3.3.1 Let (R, B) be a t(I,m) Ramsey colouring of K, and consider an

arbitrary vertez v. Then
n—t(l,m—1)<degr(v) <t(l-1,m)— 1.

Proof Let R, = Ng(v). Then degg(v) = |R,|. Suppose firstly that |R,| > t(/—1.m).
If B[R,] contains a ¢(l — 1), X, then since all edges from v to R, are red, X U {v}is
a cl in B, a contradiction. But then by the Ramsey property. R[R,] contains a cm,
also a contradiction and thus the upper bound holds.

Let B, = Ng(v). If |[R,| < n—t(l,m—1) —1, then |B,| > ¢({, m —1). Since B[B,)]
does not contain a cl, it follows that R[B,| contains a ¢(m — 1) which, together with

v, forms a cm in R, a contradiction. g
Theorem 3.3.2 £(4,5) = 8.

Proof Let (R, B) be the 2-edge colouring of K; where R = C;. Then R has no Cj,
hence (by Theorem 3.1.4) B has no c4. Moreover R has no ¢5 and we conclude that
t(4,3) > 7.

In order to prove that £(4,5) < 8, suppose to the contrary that (R, B) is a 2-edge
colouring of K with no blue ¢4 and no red ¢5. We establish a sequence of lemmas

leading to contradictions. Let V' = {1,...,8}

Lemma 3.3.3 For any vertez v, 2 < degg(v) < 3.

Proof of Lemma 3.3.3. By Theorem 3.3.1 §(R) > 2.
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Next suppose that contrary to Lemma 3.3.3 the edges 12, 13, 14, 15 are all red.

Then to avoid a Cy in R[{1,...,5}], without loss of generality 2. 3, 4, 5 is the vertex
sequence of a blue Cj.
If at most one of 24, 35 is red, then, say, 2 is isolated in R[{2,3.4.5}] and since
degp(2) > 2, say 26 € R. Any vertex of {6.7,8} sends at most one red edge to
{2,3,4,5} (avoid Cy in R). Hence R[{2,3,4,5,6}] has maximum degree at most one
and {2,3,4,3,6} is a red c5. We conclude that 24, 35 are red.

If, say, 6 sends no red edge to {2,3,4,5}, then {2,3.4,5.6} is a red ¢5. Hence
each of 6, 7, 8 send exactly one red edge to {2,3,4, 5}.

Suppose, say, both 6 and 7 send their red edge to 2. Then {3.4.3.6.7} is a red c5.
Hence without loss of generality 26, 37, 48 are the only red edges between {6.7.8}
and {2,3,4,5}.

To avoid red Cy’s 68, 16, 17, 18 are all blue and since d(R) > 2, 67 and 78 are red.
There are no additional red edges i.e. R is completely specified. But {2.3.3.6.8} is

a ¢d in R, a contradiction which establishes Lemma 3.3.3.

A vertex of R will now be called saturated when its degree in R is three (i.e. the

maximum degree given by Lemma 3.3.3).

Lemma 3.3.4 If 1,...,5 is the verter sequence of a red Cs, then each verter of

Y = {6,7,8} sends at most one red edge to X = {1,...,5}.
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Proof of Lemma 3.3.4.
If Lemma 3.3.4 is false, then to avoid red Cy’s without loss of generality 61,62

are red and 1, 2 are saturated. We have two cases to consider.

Case 1. 6 is isolated in R[Y].
Since 6(R) > 2 (by Lemma 3.3.3), 7 and 8 each send a red edge to {3,4,5}. At most
three red edges join {3,4,3} to {7,8} (saturation), hence to make §(R) > 2, 78 € R.
To avoid Cy's in R, without loss of generality 73 and 85 are in R which implies that
74, 84, 83, 75 are all blue (avoid red Cy’s). But now {1.6.7.8,4} is a red ¢5.
Case 2. 67€R.
Then 73, 75 are blue (avoid red Cy’s). If 78 € B, then to ensure degg(7) > 2. 71 € R.
The degree requirement of 8 implies that 83 and 85 are red which forms a red C,. a
contradiction which shows that 78 € R.

Now {1,2,5,6,7} is a red c5 unless 74 or 85 is red. If 74 € R, then 83 or 85 is red
and a red C; is formed in each case. If 85 is red, then 74 and 83 are blue (avoid red

Cy's). Now {1,2,3,6,7} is a red ¢5 irrespective of the colour of 84.

Lemma 3.3.5 A(R) = 2.

Proof of Lemma 3.3.5.
Suppose to the contrary that R has vertex 1 of degree three and 12. 13, 14 are
red. To avoid red Cy’s, R[{2, 3, 4}] has at most one edge and any vertex of {5,6, 7,8}

sends at most one red edge to {2, 3, 4}.
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Case 1. {2,3,4} is independent.

Since §(R) > 2, each vertex of {2, 3,4} sends a red edge to {5.6,7,8} and (to avoid
red Cy’s) without loss of generality we may assume that 25, 36, 47 are all red. To avoid
the red ¢6 {2,5,3,6,4, 7} without loss of generality 56 € R and then {2.5.3.4,7}isa
red c5 unless 57 € R. Lemma 3.3.4 now implies that 67 € B and hence {2.3.6.4.7}
is a red c5.

Case 2. 23 € R.

If say 5 and 6 do not send red edges to {2, 3,4}, then {2.3,4.5,6} is a red c5. Hence

one of the following subcases occur.

Subcase (i). 25, 36 and 47 are red.
Then 56 € B (no red C,) and 57, 67 are blue by Lemma 3.3.4. In order to
make red degrees of 5. 6 and 7 at least two, we have that 8 has red neighbours

5, 6, 7, and this situation is impossible by Case 1.

Subcase (ii). 25, 46 and 47 are red.
Then 56 and 37 are blue (by Lemma 3.3.4) and so 38 € R (degree of 3).
Without loss of generality 86 € R (degree of 8) and now 67 € R (degree of 7).
No further red edges are possible and {1,3,6.7,5} is a red ¢35, a contradiction

which completes the proof of Lemma 3.3.5.

By Lemmas 3.3.3 and 3.3.5, R is regular of degree two. Since there is no red Cj.

R =2 C3 U Cjs and contains a ¢5. This completes the proof of Theorem 3.3.2. g
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3.3.2 t(4,6) =11

Theorem 3.3.6 t(4,6) = 11.

Proof We first show that ¢(4,6) > 10. Let R' be the graph with V" = {0.1,...,9}
and edges so that 1, 3, 5, 7, 9 is the vertex sequence of a Cs and 123, 345, 567. 789.
901 are Cs’s. R’ has no C, and hence R has no ¢4 (Theorem 3.1.4). Suppose that
X isacbof R

If X is independent, then [ X N {1,...,5}| £ 2 and |[X N {6.....0}} < 3. Hence
|.X} < 3, a contradiction.

Suppose that D is the vertex set of a component of R'[X]|. If |D| = 2. then
without loss of generality D = {1,2} or D = {1,3}. If D = {1,2}, then X — {1.2} C
V- N[{1.2}] = {4,5,6,7,8} and it is easy to check that X is not a ¢6. If D = {1.3}.
then X — {1.3} C V' - N[{1,3}] = {6.7.8} and |X| < 5, a contradiction.

Hence there exists D such that |D| > 3. Since R'[D] contains no A’; (there cannot
exist an eXPN for the vertex of degree two), without loss of generality D contains
{2,3,4}, {1,3,4} or {1,3,5}. If {2,3,4} C D, then (since G[D] contains no Kj3)
D = {2,3,4} and 2 has no XPN. If {1,3,4} C D, then 5 ¢ D and 4 has no XPN. If
{1,3,5} C D, then neither 2 nor 4 are XPNs for 3 hence without loss of generality 1
is an XPN of 3. Hence 1 has degree one in R'[X] and X N {2,4,0,9} = 0. However
{5,6,7} is not contained in X and so |X| < 5, the final contradiction which proves

that R’ has no c6.
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Therefore (R, R) is the required 2-edge colouring of K¢ which shows that £(4.6) >
10.

In order to prove that ¢(4,6) < 11, suppose to the contrary that (R, B) is a 2-edge
colouring of K;; with neither blue c4 nor red ¢6. By Thoerem 3.1.4. R has no Cj.

We establish two properties, Lemma 3.3.7 and Lemma 3.3.8, of the graph R.

Lemma 3.3.7 R has 8 vertices of degree three and 3 vertices of degree 4.

Proof of Lemma 3.3.7. By Theorem 3.3.1, 6(R) > 3. If R has at least four vertices
of degree four or more then the number of edges in R is at least %(4 x4+7Tx3) = 18%.
However the Turan number T(11,Cy) (i.e., the greatest number of edges in an 11-
vertex graph with no C,) is 18 [3], a contradiction. Hence R has at least 8 vertices
of degree three.

Let R, be the set of vertices joined by red edges to vertex v where r = |R,| > 5.
Let B, =V — (R, U {v}) and observe that each u € B, sends at most one red edge

to R, (to avoid red Cj’s). Hence the number of edges in R[R,] is at least

[3@r =B =) =[38r—(10-r)-7)]=[¥-5]>%.
for r > 5. Hence R[R,] contains a P; and so R[R, U {v}] has a Cj, a contradiction
which proves A(R) < 4.

Now R has either 8 or 10 vertices of degree 3. It remains to show that R cannot

have ten vertices of degree three and one of degree four. Suppose to the contrary that

V = {v1,2,...,9,0}, where vl, v2, v3, v4 are red while 1,...,9,0 all have degree
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three. Let R, = {1,...,4} and B, = {5,...,9,0}. Since ¢(4,4) = 6 and B has no c4.
R[B,] has a c4 say W. If some u € R, sent no red edge to B,, then WU {u,v} is a red
c6 and we conclude that each u € R, sends at least one red edge to B,. Furthermore
to avoid C,’s no u € B, sends more than one red edge to R,. Hence without loss of
generality 15, 26, 37, 48 are red. At most two additional red edges (from 9. 0) link
R, to B,. Therefore the number of red edges in R[R,] is at least 3[4x3—10] = 1. To
avoid Cy's R[R,] has at most two (indepenent) edges. Suppose that 12 € R. If 34 is
also in R then no u € R, is adjacent (in R) to {9,0} (degg(u) = 3) and so R,U{9,0}
is a red ¢6. Thus 12 is the only edge of R[R,| and without loss of generality 39 € R
(deggr(3) = 3). Now R, U {8,9} is a red ¢6, unless 89 € R and R, U {7.8} is a red c6
unless 78 € R. Therefore 89 and 78 are red which produces the red C; 3. 7. 8. 9. a

contradiction which completes the proof of Lemma 3.3.7.

Lemma 3.3.8 Vertices of degree four in R are adjacent.

Proof of Lemma 3.3.8.

Let V = {a,3,1,...,9} and suppose contrary to the statement that o and 3 have
red degree four but a3 € B.

Firstly assume that a and 3 have no common neighbour. Specifically let all edges
from o to {1,2,3,4} and from 3 to {5,6,7,8} be red. Then vertex 9 sends three red
edges to {1,...,8} and hence at least two to {1,2,3,4} or to {5,6,7,8}. Thus a C,

is formed, a contradiction.



37

Secondly suppose that o and 3 have the common neighbour 4 in fact o, 3 send
red edges to {1,2,3,4} and {4, 5,6, 7} respectively.

Each of 8, 9 send at most one red edge to {1,2,3,4} and to {4,5,6.7} (to avoid
C,’s). Hence 84 and 94 are blue. Also both 8 and 9 send at least two red edges to

{1,...,7} (6(R) > 3). We conclude:

o degp(8) = degp(9) =3
e 89cR

e each of 8, 9 sends precisely one red edge

to {1,2,3} and to {5,6,7} (3.3.1)

Hence exactly 12 red edges join {1,...,7} to {c,3,8,9} and so the number of
edges in R[{1,...,7}] = 1[(4 x 1) + (6 x 3) — 12] = 5. Moreover to avoid C;’s both
R[{1,2,3,4}] and R[{4, 5,6, 7}] have at most two edges.

Therefore without losing generality 26 € R and since degg(4) > 3. say 43 € R
(42 € B to avoid red Cy). The Cy—free property now also implies that 16, 25, 27. 13,
14, 23, 24, 35, 36, 37 and 46 are all blue. There are now two cases.

Case 1. 26 is the only edge in R from {1, 2,3} to {5,6,7}.
Then R[{1,2,3,4}] = R[{5,6,7,8}] = 2K, (to avoid C4’s and to achieve 5 edges

in R{{1,...,7}]). Hence 12 € R and (recall Lemma 3.3.7) 4 is the third vertex of

degree four in R. Since 46 € B, 57 € B and hence without loss of generality 45 and
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67 are red while 47, 56 are blue. By (3.3.1) without loss of generality 85 and 97 are
red. Therefore in order to satisfy (3.3.1) and to avoid Cy’s, 81 and 93 are in R. This
completes R which has the ¢6 {1,2,4,5,7,9}.

Case 2. There exists a second edge in R from {1,2,3} to {5,6.7}.

Without loss of generality this second red edge is 15 which implies that 17 and 45
are blue (to avoid red C;’s). Since degg(7) > 3 and the degree of 7 in R[{4.5,6.7}]
is at most one, we may assume that 79 € R. The possibilities for the remaining two
edges to make up the five of R[{1,...,7}] are 12, 36, 75, 76, 74. Since 12 and 36 are
not both red (red Cy), without loss of generality 76 or 74 is a red edge.

If 76 € R, then 75, 74, 65 are all blue (avoid red Cy's). The edge 12 is the
only remaining possibility for the fifth edge of R[{1.....7}] which is now completely
defined and has the ¢6 {6,7,1,5, 4, 3}.

If 74 € R, then 76, 75 are blue (avoid Cy’s in R) and 4 is the third vertex of
degree four in R. Hence each of 5, 6 and 7 have red degree three. The two remaining
candidates for the fifth edge of R[{1,...,7}] are 12 and 36. If 56 € R, then 5. 6 and
7 are all saturated in R and 8 cannot send a red edge to {5,6,7}, a contradiction
with (3.3.1). Therefore 12 € R which saturates 1 and 2. Now only one of 8, 9 can

send a red edge to {1,2, 3}, again contradicting (3.3.1). This completes the proof of

Case 2 and of Lemma 3.3.8.

By Lemma 3.3.8, the three vertices a, 3,7 of red degree four (Lemma 3.3.7)

form a red triangle. To avoid red C,’s, no pair from {a, 3,~} has a second common
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neighbour. Let 1, 2 (resp. 3, 4 and 5, 6) be the other two red neighbours of a (resp.
8 and 7). To avoid red Cy’s the only possible edges in R[{1,...,6}] are 12, 34 and
56. Then {1....,6} is a red c6 by Theorem 3.2.4. This final contradiction completes

the proof of Theorem 3.3.6. g

R
T
Figure 3.1: Three t(4, 6)-critical graphs
A t(n,,....n;) Ramsey colouring of K, is called #(n;.....ng)—critical if n =

t(ny,...,ng) — 1.
Analogous critical colourings for the 2-colour classical Ramsey numbers have been
well-studied [28]. For example it is well known that the only (3, 3)-critical colouring

is (05,55).
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Work on such critical colourings will appear elsewhere but preliminary inves-
tigations indicate that there are only three t(4,6)-critical colourings (R, B) with
A(R) = 4. The three graphs R are depicted in Figure 3.1. The graph R’ is that used
in the proof of Theorem 3.3.6 and criticality for all three cases was checked by a

computer program written by G. MacGillivray (Appendix A).

3.3.3 t(4,7)=14

The following additional notation will simplify the proof that ¢(4.7) = 14:
Given a 2-edge colouring (R, B) of K,, each vertex v and its neighbours in R and B.

respectively. induce a partition ({v}, R,, B,) of V(K,) where
R, = Ng(v)

B,, = iVB(U).

For any z € R,, define

S:w = {u € By : uz € E(R)}.

Note that S;, = Ng(z) — R, — {v}. In addition, define

T,=B,— |J S:v={u€ B,:uzr € E(B)forallz € R,}.
TER,

Our evaluation uses the following theorem which contains many facts that were

used in the proofs of earlier theorems without being formally stated.
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Theorem 3.3.9 Let m > 4. Consider a t(4, m) Ramsey colouring (R, B) of K, and

let v € V(K,) be arbitrary.

(1) Each vertex in B, is adjacent (in R) to at most one vertez in R,.
(ii) A(R{R,]) < 1.

(iii) [Ry| <m -1

(iv) For each z € Ry, |Sz0] < m — |Ry|.

(v) For each r,y € R, with zy € E(R),|Szu| + |Sy] < m — |Ry| + 1.

Proof

i) If u € B, is adjacent to z,y € R, with z # y, then uzvy is a Cy, contradicting
Theorem 3.1.4.

ii) If A(R[R,]) > 2, then R[R,] contains P; as a subgraph, which forms a C, with v
in R, again contradicting Theorem 3.1.4.

i12) Follows from Theorem 3.3.1.

iv) Suppose |S;,| > m — |R,| for some z € R,. Note that A(R[S;,UR, — {z}]) <1
and |S;, UR, ~ {z}| =|S;u| + |Rs| —1 = m, a contradiction.

v) Suppose z,y € R, with zy € E(R) and |S;,| + |Sy4] > m - |R,| + 1. By (i).
Sz» N Sy = 0. Further, to avoid a C, in R containing z and y, there is no red edge
between S, , and S, ,. Hence A(R[S;,USy,]) <1,and if X = S;,US, ,UR, —{z.y}.

then A(R[X]) <1 and [X| = |Szu| + |Sys| + |Rs| — 2 > m, a contradiction. g
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Theorem 3.3.10 t(4,7) = 14
Proof We establish that t(4,7) > 14 by constructing a graph R on 13 vertices which
has no ¢7 and no Cy. Such a graph is given in Figure 3.2. Computer verification

(Appendix A) confirms that (R, B), where R is the graph of Figure 3.2, is a £(4,7)

Ramsey colouring of K)3.

10

Figure 3.2: A graph on 13 vertices with no ¢7 and no C,

It remains to be shown that ¢(4,7) < 14. Suppose to the contrary that (R, B) is
a t(4,7) Ramsey colouring of Kj;. By Theorem 3.3.1, 3 < |R,| < 6 for each vertex
v € V. However, if there is a vertex v with |R,| = 6, then by Theorem 3.3.9 (iv).
{Sry| < 1 foreach z € R,. Thus there is a vertex u € T, and it follows from Theorem
3.3.9 (i1) that R, U {u} is a c7, a contradiction. Hence 3 < |R,| < 5 for each vertex

v € V. We now prove a series of lemmas.
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Lemma 3.3.11 R contains no adjacent vertices u and v of degree three and R con-
tains no adjacent vertices u of degree four and v of degree three such that u and v lie

on a common K.

Proof In each case |V (K\4) — N[{u, v}]| > 8. But then V(Ky) — N[{u,v}] contains

ac5, S, as t(4.5) =8. Thus SU {u, v} is a ¢7. a contradiction.

Lemma 3.3.12 For each vertez v, 3 < |R,| < 4.

Proof Suppose |R,| = 5. Since the maximum degree in R, < 1 (to avoid Cy’s),
|Szy| > 1 for each z € R,. Since |B,| = 8, |S;,»,] = 1 for at least two vertices
z;. These vertices are not isolated in R[R,] and by Lemma 3.3.11 are not adjacent.
Therefore they are both adjacent to vertices y, and y, in R, with y; # y» such that

|Sy;.s] = 3. But then |B,| > 8+ 2 and |V(R)| > 14, a contradiction.

Lemma 3.3.13 R is not 4-regular.

Proof Since there are more than 9 vertices under discussion, we will now represent the
edge uv by v — v for clarity. Suppose R is 4-regular and consider an arbitrary vertex
v. The 4-regularity of R and a counting argument show that |T,] = 1, |S;.,| = 2 for
each r € R, and R[R,] = 2K,. Let T, = {u}, R, = {1,2,3,4} with 1-2 and 3-4 red.
S1v = {5,6}, Sap, = {7,8}, S3, = {9,10} and S,, = {11,12}. Since |R,| = 4 and
to avoid Cy’s, u is adjacent to at most one vertex in each S;,, i € R,, it follows that

u is adjacent to exactly one vertex in each S;,. By symmetry we may assume that
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u-6, u-8, u-10, and u-12 are red. By the above argument for ({u}, R,. B,) it follows
that R[{6.8,10,12}] = 2K, and since 6-8 and 10-12 are blue (to avoid C;’s). we may
assume without loss of generality that 6-12 and 8-10 are red. By also repeating the
argument for ({6}, R, Bs) we see that 5-6 and similarly 7-8, 9-10 and 11-12 are red.
Consider vertex 5. Since |Rs| = 4, 5 is adjacent in R to two vertices in {7.9,11}.
But 5-7 is blue (to avoid the red C; 5-7-2-1) and 3-11 is blue (to avoid 3-11-12-6). a
contradiction.

By the above lemmas R consists of vertices of degree three and four. We next

show that R has a vertex of degree three which lies on a Kj.

Lemma 3.3.14 R has a vertezr v with R[R,] = K, U K,.

Proof Suppose this is not the case. By Theorem 3.3.9 (ii) and Lemma 3.3.13 there
exists a vertex v with R[R,] = K3. By Lemma 3.3.11, |{S;,| = 3 for each r € R,
and hence |T,| = 1. Say T, = {u}, R, = {1.2.3}, Sy, = {4,5.6}, S», = {7.8.9}
and S;, = {10,11,12}. Since 3 < |R,| < 4 and u is adjacent to at most one vertex
in S;, for each ¢ € {1,2,3}, it follows that |R,| = 3. Without loss of generality say
R, = {5,8,11}.

Consider the three edges 1-6, 2-9, and 3-12 and note that the only possible fur-
ther red edges between these six vertices are edges in R[{6.9,12}]. To avoid the c7T
{1,6,2,9,12,u}, at least one of these three edges is red; without loss of generality say
6-9 is red. Then 6-7 is blue to avoid a Cy. Now consider 1-6 and 2-7 and note that

7-z is red for at most one r € {10,12}. By symmetry we may assume that 7-10 is
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blue. To avoid the red ¢7 {1,6,2,7,3,10,u}, 6-10 is red and thus 6-12 is blue. Then
7-12 is red to avoid the ¢7 {1,6,2,7,3,12,u}. Considering 1-4, 2-7 and 3-10, we find
similarly that 4-10 is blue since 6-10 is red, and so 4-7 is red. Now, 4-7 and 7-12 red
implies 4-9 and 9-12 blue, respectively. Thus, to avoid the ¢7{1.4,2.9,.3.12. u}. 412
is red. Similarly {1,4,2,9,3, 10, u} shows that 9-10 is red.

The set {4,7,6, 10,8, u, v} and the edge colouring described above now imply that
7-8 or 4-6 is red. But if 7-8 is red, then 8-9 is blue and so {4.12.6.9.8.u.v} shows
that 4-6 is red anyway. Similarly, 7-9 and 10-12 are red. but then we have the C,’s
4-6-9-7 and 4-6-10-12, a contradiction which completes the proof of Lemma 3.3.14.

To complete the proof that t(4,7) < 14, let v be a vertex with R[R,] = K| U K;
say R, = {1,2,3}, where 1-3 is red. Then 1 (and 3) can not have degree 3 (as v has
degree 3) and can not have degree 4 (as it is in a K3 with a vertex of degree 3). This

contradicts Lemma 3.3.12 and completes the proof. g

3.4 Bounds on t(5,5)

The best known bounds for ¢(5, 5) are given in our last result.
Theorem 3.4.1 14 < ¢(5,3) < 15.

Proof The upper bound follows immediately from Theorem 3.1.2 since t(4.3) =
t(5,4) = 8. The lower bound can be established with the following edge colouring of

K,3. Let the vertices of K3 be labelled 0,1,2,...,12 and (R, B) be the edge colouring
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of K3 in which each vertex v is adjacent in Rtov+1,v+3,v+4,v+9.v+10. v+ 12
where addition is modulo 13. The computer program of the appendix verified that
neither R nor B has a ¢5 and so £(5,5) > 14. 4

In fact the graph R of Theorem 3.4.1 (depicted in Figure 3.3) is a self complemen-
tary circulant graph. It is easily checked that f : v — 2v is an isomorphism from R
to B: For example, (v, v+ 10) is an edge of R and (f(v), f(v +10)) = (2v,.2v +20) =
(2v,2v + 7) is an edge of B. The circulant structure and the self complementary

property permit the lower bound to be established analytically.

<7 \

27 \..\v"

Figure 3.3: A self-complementary graph on 13 vertices with no ¢d

In view of Theorem 3.4.1, the value of #(5,3) depends on the existence or non-
existence of a 2-edge colouring (R, B) of K;4 with no ¢35 in either R or B. Such a
colouring must have the following properties. Firstly, Theorem 3.3.1 shows that for

any vertex v, 6 < deg(v) < 7. Hence all vertices must have degree 6 or 7 in both R
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and B. Secondly, it is known that the generalized Ramsey number R(K;5 —2K,, K5 —
2K5) = 15. Thus there exists a set X of 2-edge colourings of K4 in which neither
colour has a K5 — 2K,. Because of Theorem 3.1.5, any colouring not in .X contains
a cbin R or B. So far we have been unable to find a colouring in X without a ¢3 in

at least one colour.
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Appendix A

Program For Finding CO-irr. Sets

program CoIR (input, output);

const

max_au = 18;

type

vertex = integer;

adjacency_matrix = array[l..max_nu, 1..max_nu] of vertex;
vertex_list = array[0..max_nu] of integer;
vertex_set = array[l..max_nu] of integer;

var

nu: integer;

A: adjacency_matrix;

X, y: vertex;

co_ir_size: jinteger;
co_ir_size_comp: integer;
S: vertex_list;
lastsubset: boolean;
co_ir_found: boolean;

procedure initialize_adjacency_matrix (var A: adjacency_matrix;
var nu: integer);
var
i, j: integer;



(51}
N

X: vertex;
begin
for i := 1 to nu do
for j := 1 to nu do
Afi, jl := 0;
for i := 1 to nu do
begin
while (not eoln(input)) do
begin
read(x);
if (x <> i) and (x >= 1) and (x <= nu) then
begin
Afi, x]
Alx, i]
end;
end;
readln;
end;
writeln;
writeln;
writeln(’The adjacency matrix of your graph.’);
writeln;
for i := 1 to nu do
begin
for j := 1 to nu do
write(A[i, j] : 2);
writeln;
end;
end;

| ]
-
. .

procedure complement_adjacency_matrix(var A: adjacency_matrix;
var nu: integer);

var

i, j: integer;
begin

for i := 1 to nu do

for j := i+l to nu do begin
Afi,j] := 1 - A[i,j;



Alj,i] := 1 - A[j,il;
end;
end;

procedure first_kset (n, k: integer; var S: vertex_list;
var lastsubset: boolean);

{3

{Initialization for generation of all k-subsets of 1..n}

{in lexicographic order.}

{The k-sets are stored in S. The algorithm is from Reingold,}
{Neivergelt and Deo}

{Combinatorial Algorithms, page 181.}

{}
var
i: integer;
begin
for i := 0 to k do
S[i] := i;
for i := k + 1 to max_nu do
S[i) := 0;

lastsubset := false;
end; { first_kset}

procedure next_kset (n, k: integer; var S: vertex_list;
var lastsubset: boolean);
{3
{Generate the nextk-subsets of 1..n in lexicographic order and}
{return it in S}
{The algorithm is from Reingold,Neivergelt and Deo}
{Combinatorial Algorithms, page 181.}
8
var
i, j: integer;

begin
lastsubset := (S[1] = n -k + 1);
if not lastsubset then



begin
j = k;
while (S[j] = n - k + j) do
j=3-1

S[jl := s[(j] + 1;
fori := j + 1 to k do
S[i] := s[i - 1] + 1;
end;
end; { next_kset }

procedure print_subset (var S: vertex_list; k: integer);
var
i: integer;

begin

for i :=1 to k do
write(S[i] : 3);
writeln;

end; { print_subset }

function co_irredundent (var S: vertex_list; k: integer; var A:
adjacency_matrix; nu: integer): boolean;
var
Nv, NS_minus_v: vertex_set;
i, j, m, x, v: integer;
v_has_pn: boolean;
diffs_all_non_empty: boolean;

begin
diffs_all_non_empty := (k > 0);
for i := 1 to k do

begin
v := S[i];
for j := 1 to nu do

NVEj] = A[vlj];
Nvlv]l := 1;



form :=1 to

NS_minus_v([m] :=

v_has_pn := f
form := 1 to
begin

x := S[m};

nu do

0;
alse;

k do

if (x <> v) then

for j
if A
N

end;
for j
v_has_pn
diffs_all_non

end;
co_irredundent
end;

=1 to

begin
readln(nu);

—empty

:= 1 to nu do

(x, j1 = 1 then
S_minus_v[j] := 1;

nu do

:= v_has_pn or ((Nv[j]
:= diffs_all_non_empty and v_has_pn;

:= diffs_all_non_empty;

1) and (NS_minus_v[jl = 0));

writeln(’Number of vertices in the graph: ’, nu:l);
initialize_adjacency_matrix(A, nu);

readln{(co_ir_size,
writeln;

co_ir_size_comp) ;

writeln(’Size of the co-irredundent set to check for in G: '’

co_ir_size:1);

3

writeln(’Size of the co-irredundant set to check for in G complement:

co_ir_size_comp:1)

first_kset(nu, co_ir_size, S, lastsubset);
while (not lastsubset) and (not co_ir_found) do

begin
co_ir_found :=

if (not co_ir_found) then
next_kset(nu, co_ir_size, S, lastsubset);

end;
writeln;
if co_ir_found then

co_irredundent (S, co_ir_size, A, nu);

3
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