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Chapter 1 

Introduction 

In 1930, a paper written by Frank Rarnsey introduced a result which would become 

the foundation of a vast amount of literature on what is referred to a s  Ramsey type 

problems. A special case of Ramsey's theorem says: Given two positive integers. 1 

and rn, there exists a smallest integer n such that for any g a p h  G on n vertices. 

either G contains an independent set of m vertices or G contains an independent set 

of 1 vertices. This number n is denoted by r(1, m) and is called a Rarnsey number. 

or clossical Ramsey number. The classical Ramsey numbers have proven estrernely 

difficult to evaluate, most of the progress being obtained in the 1 s t  decade. SLight 

changes to  the definiton by Chvatal and H a r q  [IO] led to generalized Ramsey theory 

for graphs, which is an area of research of great interest with many published results. 

The purpose of this thesis is to present a new generalization and to calculate some 

nontrivial values. 



In 1978, Cockayne, Hedetniemi and Muer  [13] introduced irredundant vertex sets 

which include independent sets, and this led to the definition of irredundant Ramsey 

nurnbers. CO-irredundance extends the concept of irredundance. -4 set of vertices 

S is CO-zrredundant if for each vertex v in S, the closed neighbourhood of u is not 

contained in the union of the open neighbourhoods of the vertices in S - {v). This 

pennits the foilowing generalization of the Ramsey nurnbers which is the subject of 

this work: Given two positive integers, Z and m, there exists a smallest integer n 

such that for any graph G on n vertices, either G contains a CO-irredundant set of 

m vertices or G contains a CO-irredundant set of 1 vertices. This new number n is 

called a CO-irredundant Ramsey nurnber and is denoted by t(1. rn). The existence of 

these numbers is guaranteed by Ramsey's theorem. 

Chapter 2 provides an introduction to ail graph t heoretic concepts relevant to this 

t hesis, as well as a selection of results on independence. domination. irredundance. 

CO-irredundance, Ramsey theory. and generalized Rarnsey t h e o .  

Chapter 3 is dedicated to the calculation of several CO-irredundant Ramsey num- 

bers. We will see the simple result that t (3, m) = rn and it will be shown that several 

of the CO-irredundant Ramsey numbers may be obtained from the generalized graph 

Ramsey numbers. We will also prove t hat t  (4: 5) = 8: t (4,6) = 11: t (4 .7)  = 14, and 

t ( 3 ,3 ,  m) = 2m - 1 or 2m - 2 for m odd or even respectively. Bounds will be given 

for t (5 ,5 ) .  



Furt her CO-irredundant Ramsey numbers are pro ba bly wit hin reach, but t heir 

evaluation will no doubt be difncult. The use of computer programs may prove 

usehil, but cunently no computer is fast enough to evaluate the smallest unknown 

classical Ramsey number, r (5,5). 



Chapter 2 

Preliminaries 

This chapter summarizes the graph theoretic definitions used in this thesis. It also 

provides an introduction to irredundance and CO-irredundance. as well as an intro- 

duction to Ramsey t h e o ~ .  For further discussion of basic graph theon;. the reader is 

referred to Bondy and Yurty i l ] .  

2.1 Graph Theory 

-4 graph G = (c E) consists of a nonernpty set V of vertices and a set E of unordered 

pairs of distinct vertices from Fr, called edges. When more than one graph is being 

discussed, Y (G) and E(G) will be used to denote the vertex set and edge set of the 

graph G. For the remainder of this section let G and H be graphs. 

If the pair of vertices ( u , ~ )  is an edge in E(G), then we write UV E E(G). The 

vertices u and v may be referred to as ends of the edge UV,  and we Say that *u and u are 

4 



adjacent. In addition, we Say that the edge uv is incident to u and to u. Two vertices 

u and v are called nonadjacent if uv $! E(G). Similarly, two edges are adjacent if 

they have a vertex in common, and nonadjacent otherwise. 

A subgmph H of G is a graph whose vertex set is a subset of the vertex set of G  

and whose edge set is a subset of the edge set of G. In other words. a graph H is a 

subgraph of G if and only û V ( H )  C V(G) and E ( H )  C E(G) .  We mite H C G to 

show that H is a subgraph of G. If H C G and Cr(H) = V ( G )  then H is a spanning 

subgraph of G. 

Often we are interested in a specific substructure of a graph. Suppose I.-' is a 

nonempty subset of V(G). The subgraph of G which has vertex set C" and edge set 

consisting of al1 edges of G with both ends in Vr  is called the subgraph of G induced 

by  Vr .  This induced subgraph of G is denoted G[Yr] .  Similady. we can define a 

subgraph of G induced by an edge subset of E(G): If Er C E(G) then the spanning 

subgraph induced by  Er,  denoted G[E'], has vertex set V(G)  and edge set Et. 

The union of G and H .  denoted G U  H, is the graph with vertex set IF(G) U I'(H) 

and edge set E(G) u E ( H ) .  

There are many structures within a graph which are given a special name. Some 

simple structures of great importance will be defined here. A eo - v, walk in G is 

an dternating sequence of vertices and edges starting with vo m d  ending with un: 

voelvlez.. .enun where ei = vi-ivi for i = 1,2,. . . , n. Since al1 graphs which are 

considered in this thesis are simple (no multiple edges, no loops, undirected edges)' 



we can simply mite a vo - un walk as a sequence of vertices: uoul . . . A special 

kind of walk, a path, has aJl distinct vertices. We Say that the path uo ui . . . Un is a 

path from vo to Un or that it is a vo - v,, path. The graph which is precisely a path on 

n vertices is c d e d  PnI and we say that a graph G contains a Pn if Pn is a subgraph 

of G. -2 cycle is a walk in which all vertices are distinct except uo = un. The graph 

which is a cycle on n vertices is caiied C,. If n is odd (even) we say C, is an odd 

cycle (euen cycle). A graph is called connected if there e-uists a u - u pat h for any 

pair of distinct vertices u and u. 

.A complete graph is a graph in which every pair of distinct vertices are adjacent. 

The complete graph on n vertices is denoted K,,. A clZque in a graph G is a subgraph 

of G which is a complete graph. An independent set (of vertices) is a set 1-' E 1 3 2 )  

such that G[IV] contains no edges. A vertex u E C' C V(G) is said-to be zsolated 

in 1;' if v is not adjacent to any vertex in Cr. An independent set of edges is a set 

of edges in which no two edges have a vertex in common. that is, a set of rnutually 

nonadjacent edges. 

Two graphs G and H are called isomorphic if there exists a function f : I -(G) -t 

V ( H )  such that f is one-to-one and ont0 and *uu E E(G) if and only if f (u)  f (t.) E 

E ( H ) ,  and we write G H .  

The complernent of G, denoted G, bas v(G) = V(G) and E(G) contains precisely 

the unordered pairs of distinct vertices which are not in E(G), that is UV E E(G) if 

and only if UV $! E(G). .4 graph G is self complernentary if G is isomorphic to G. An 



important fact to notice is that a clique in G is an independent set in G. 

The degree of a vertex v E V(G),  deg&), is the number of vertices in I.-(G) which 

are adjacent to u, or equivalently the number of edges in E(G) incident to u.  CVe 

will mi t e  deg(v) if it is clear from the context which graph is being discussed. The 

following well-known result will be frequently used 

Theorem 2.1.1 Let G be a gmph. Then 

A simple result which follows from Theorem 2.1.1 is that the number of odd 

degree vertices in a graph must be even. 

The minimum degree of G ,  denoted b(G) , is the minimum value of deg(u) taken 

over al1 v E Y(G). The maximum degree of G, denoted l(G), is the maximum value 

of deg(u) taken over al1 v E V ( G ) .  

2.2 Irredundance and CO-irredundance 

Before introducing the definitions of irredundant sets and CO-irredundant sets. it is 

important to understand how they originated. We require several new definitions. 

The open neighbourhood of a vertex v in G is the set of al1 vertices adjacent to 

v in G. We use N'(v) to represent the open neighbourhood of u in G. When it 

is clear from the context which graph is being discussed, the open neighbourhood 

of u will simply be written N(u.) .  The closed neighbourhood of u in G is given by 



N&] = &(u) U {u) .  Again, 1V,&] will be written X[u] when it is clear what 

graph is being discussed. Open and closed neighbourhoods are also defined for vertex 

subsets. For .r' C V(G), the open and closed neighbourhoods of 'i are given by 

and 

Given X C V(G) and x E ,Y, the private neighbourhood of x relative to S is 

It is appropriate that the elements of p ( x ,  S) be called private neighbours of r a s  

(infomally) al1 vertices in p ( x ,  S) are neighbours of x and not neighbotirs of any 

other vertex in ,Y. 

-1 set D C V(G) is a dominating set of G (and is said to dominate G) if each 

vertex in C- - D is adjacent to a vertex in D. Further. D is a minimal dominating 

set if no proper subset of D dominates G. 

The following proposition shows how dominating sets are related to private neigh- 

bourhoods: 

Theorem 2.2.1 [27] A dominating set D is a minimal dorninating set if and only 

i fpn(d ,  D )  # 0 for al1 d E D. 

When a dominating set D is not minimal, there is some vertex v E D such that 

D - { v )  is still a dominating set which implies pn(u, D) = 0. We c m  cal1 t his vertex 



u redundant in D as it does not dominate any vertex which is not already dominated 

by another vertex in D. This Ieads to the definition of an irredundant set which is 

(informally) a set containing no redundant vertices. 

Formally, a set ,Y C V for which p ( x t  ;Y) # 0 for al1 x E X is called an zmdun- 

dant set. An irredundant set ,Y is rnazimal iwedundant if no proper superset of S is 

irredundant. Note that an irredundant set need not be dominating. 

Irredundance was introduced in 1978 by Cockayne, Hedetniemi. and SlilIer [13]. 

Since then the subjects of domination, independence and irredundance have been 

widely studied; the bibliography in [23] contains over a thousand papers on these 

topics. 

The folloming simple result relates domination and independence: 

Theorem 2.2.2 [2] 

i) S 2s maximal independent if and only if S 2s independent and dominatzng. 

ii) If .Y is maximal independent, then .Y is minimal dominatzng. 

The next result is a similar theorem relating domination and irredundance. Note 

that part ( 2 )  is immediate from Theorem 2.2.1 and the definition of an irredundant 

set. 

Theorem 2.2.3 [13/ 

i )  S is minimal dornznating if and only if S is irredundant and dornznating. 

ii) If X às minimal dorninating, then X is maximal irredundant. 



The domination number and upper domination number of a graph G are denoted 

by y (G) and ï(G) respectively, and are the smdes t  and largest number of vertices in a 

minimal dominating set. Similarly, the independence nurnber and upper independence 

number (iwedundance number and upper irredvndance number) are denoted by i (G) 

and B(G) ( ir(G) and IR(G)) and are the srnailest and largest number of vertices in 

a maximal independent set (maximal irredundant set). From Theorems 2.2.2 and 

2.2.3 it can be seen that 

Farley and Schacharn [18] defined another vertex subset property by generalizing 

the definition of an irredundant set. Recall that a set .Y is irredundant if and on l -  if 

iv[x] - N[4Y - X I  # 0? for alZ x E S. 

Farley and Schacham changed the second closed neighbourhood in the definition of an 

irredundant set to an open neighbourhood, giving: -1 set X is called CO-irredundant 

if and only if 

~ V [ X ]  - N(S - x )  # 0 ,  for all x E .Y. 

The "CO7' in the narne CO-irredundant represents the fact that the neighbourhoods 

in the definition are m s e d  and open respectively. CO-irredundance is not yet well- 

studied, but it is mentioned briefly in [NI7 [20], and [NI. 

We denote N[x]  - N ( X  - x) by PN(z ,  X ) !  and we Say P N ( x J )  is the pri- 

vate neighbourhood of x with respect to X .  It may at first seem confusing that both 



P N ( x ,  X) and p ( x ,  X) are cailed the private neighbourhood of x with respect to 

-Y. However, it will always be clear fiom the conte* whether we are refemng to a 

private neighbour in the irredundant sense or in the CO-irredundant sense. Further- 

moret when more than one g a p h  is being discussed. the notation p ( x .  S. G )  and 

P N ( z ,  X, G) will be used to denote the private neighbourhoods of x with respect to 

S in G. 

The difference between an irredundant set and a CO-irredundant set can be clearly 

seen from the following characterization of pn(x. ,Y) and P:V(x. S). 

Theorem 2.2.4 V e d a  u E pn(z ,X)  if and only i f  

( 2 )  u = x and x is isolated in G[XJ or 

(ii) u E I;' - S and N ( u )  n ,Y = {x) 

Moreouer, u E P!V(xl &Y) if and only 2if ( 2 )  or  (ii) holds or 

(iii) u E X and N(u)  n -Y = {x). 

The characterization in Theorem 2.2.4 shows that p ( x .  X) C PiV(x. -Y). and 

since x E pn(x, X) for any vertex x of an independent set .Y. we deduce 

,Y independent ,Y irredundant ,Y CO - irredundmt 

Thus if COIR(G) is the largest cardinality of a maximal CO-irredundant set in Go 

then 



Although irredundance implies CO-irredundance, a maximal irredundant set need not 

be maximal CO-irredundant . For euample, in P5 with vertex sequence VI, v*, . . . . us 

the set {v2, va} is minimal dominating and t herefore maximal irredundant by Theo- 

rem 2.2.3. However, the set {q , v2: v4} is a CO-irredundant set, and thus {v2 ,  u 4 )  is 

not maximal CO-irredundant . 

The next few results show that CO-irredundant sets have several properties similar 

to those of imedundant sets. 

Theorem 2.2.5 CO-irredundance is a hereditary property. 

Proof Let T C S C L' where S is a CO-irredundant set of G. For t E T.0 # 

P N ( t ,  S )  C P N ( t .  T ) ,  as N[t ]  - N ( S  - t )  C .V[t] - X(T - t ) .  Thus P:V(t. T )  # 0. 

The following theorem is simple but important, as it will be constantly used in 

Chapter 3. 

Theorem 2.2.6 If S 2 U E V and S is CO-irredundant in G[CI]! then S is CO- 

irredundant in G .  

Proof For s E S,@ # P N ( s . S , G [ U ] )  C P N ( s , S , G ) .  a 

4 set S C V(G)  is called total dominating if and oniy if every vertex in I'(G) is 

adjacent to a vertex in S. The following theorem relating total domination and CO- 

irredundance is similar to Theorem 2.2.3 which related domination and irredundance. 



Theorem 2.2.7 

z) S is minimal total dominating if and only if S is CO-irredundant and total domi- 

nating 

ii) If S zs minimal total dorninating, then S is maximal CO-zrredundant. 

Proof 

i) (a) Suppose S is minimal total dominating. Then for each s E S. Y(S - {s}) # V.  

Since S is total dominating, N(S) = V = iV[S]. Thus there exists u E X[S] - :V(S - 

{s)) = P N ( s .  S) and hence S is CO-irredundant. 

(*) Let S be CO-irredundant and total dominating. For s E S, there esists u E 

iV[s] - iv(S - {s)). But u N(S - 1s)) so u has no neighbour in S - { s } .  Thus 

S - {s) is not a total dominating set. Therefore S is minimal total dominating. 

ii) Let S be minimal total dominating. S is certainly CO-irredundant by i). Suppose 

there exists y such that S u {y} is CO-irredundant. Then there exists u E P:V(y _ S u 

{y)) = N[y] - N ( S ) .  Therefore N ( S )  # V ,  a contradiction which shows that S is 

maximal CO-irredundant . i 

2.3 Ramsey Theory 

Ramsey theory refers to a large body of results in mathematics concerning the idea 

that when anq. large enough structure of a certain type is partitioned? some ciass of 

the partition contains a substructure of some prescribed type. 



The pigeonhole p7%xiple states that if m objects are partitioned into n classes. 

then some class contains a t  least r:l objects. This concept is very simple. but a gen- 

eralization c d e d  Ramsey's theorem leads to some very deep results. The pigeonhole 

princzple guarantees that when we partition objects into classes we get a class with 

many objects. Ramsey 's famous t heorem [29] guarantees a similar result : 

Theorem 2.3.1 (Ramsey's Theorem) 

Let r, k be positive integers 2 2 and n L, n*, . . . , nk be positive znteger.5 2 r .  There 

ezists a smallest integer n such that for any ordered partition of the r-subsets of 

{1,2, . . . , n }  into k classes, there is a subset of size n, all of whose r-subsets are in 

the ith c l a s  of the partition, /or some i. This nurnber n is denoted R(nL. nl. . . . . ni: r )  . 

When r = 2 there is a useful graph theory representation of Ramsey's theorem. 

In this case, Ramsey's theorem says that if we partition the 2-subsets of a sufficiently 

large set into k classes there will be an ni-subset al1 of whose 2-subsets are in the 

ith c l a ~ s  of the partition, for some i. This problem is still very difficult to visualize. 

Suppose we allow the elements of a set V to be represented by vertices. We c m  

then represent a 2-subset by an edge joining the elements of the 2-subset. Hence 

the 2-subsets of a set Cr are represented by the complete graph on 1 VI vertices. The 

classes of a partition of the 2-subsets can clearly be represented by "colouring' al1 

the edges in a class with the same colour. Therefore, a partition of the 2-subsets of 

V into k classes can be represented by a k-edge ~010unng of the complete graph on 

1 V 1 vert ices. 



If t here exists an ni-subset dl of whose bsubsets are in the ith class of the partition, 

then in the graph representation there evists a set S of nj vertices such that al1 the 

edges with both ends in S have colour i. 

Suppose that each edge of the cornpiete graph K, is assigned a colour from 

{l, 2,. . .: k}. For i = 1.2. .  . . , k let Gi be the spanning subgraph of & induced 

by the edges of colour i. Then (Gl , G2, . . . , Gr)  is called a k-edge colouring of An. 

We nom state Ramsey's theorem for r = 2 in terms of the graph theory represen- 

tation: 

Theorem 2.3.2 Let k 2 2 and ni 2 3 for i = 1,2, . . . k. The classical Ramsey 

number r ( q ,  n2, . . . . nit) iS the least integer n such that for any k-edge colouring 

(Gi, Gz,.. . Gk) of Kno there ezists i E (1, 2 , .  . . k )  svch that Ci contains Kng as a 

subgraph. 

The most trivial Ramsey nurnber is r (3,3) = 6. It can easily be seen t hat r (3.3) 5 

6 by considering aqv vertex v in K6 and any 2-edge colouring of Ks. There are 5 

edges incident to u and therefore by the pigeonhole principle 3 of these edges are of 

the same colour. In keeping with the usual practice. we d l  cal1 the two colours red 

and blue and denote the induced subgraphs by R and B. Without Ioss of generality 

t here are 3 vertices adjacent to u in R, Say x 1, x* x3. Now if t here are any edges in 

R[{x1,x2,x3)] then such an edge together with the red edges from v form a red K3. 

If there are no edges in R[{xi ,  x2, x3}] then B[{x l ,  x*: x3)] is a blue K3. Therefore 

any colouring (R, B) of K6 contains a K3 in R or B (or both). To establish that 



r (3 ,3 )  = 6, it must be shown that there exists a colouring (R1 B) of K5 with no hj 

in R or B. Such a colouring can be seen in figure 2.1: 

Figure 2.1: A colouring (R, B) of K5 with no K3 in R or B 

The method used to prove r(3 ,3)  = 6 demonstrates the two steps needed to 

prove the value of any Ramsey number. Firstly, a proof must be given to show 

r(nl, nzl. . . , nm) 5 n. Then, a k-edge colouring of Kn-l must be found in nhich Gi 

does not contain K,, for al1 i. The Ramsey numbers have proven immensely difficult 

to evaluate. -411 known 2-colour Ramsey numbers, r(l .  m), are listed in Table 2.1. 

Table 2.1: Known 2-colour Ramsey numbers r(1, m)  

The only other known classical Ramsey number is ~ ( 3 ~  3,3) = 17, which was found 

by Greenwood and Gleason [22]. Although very few Ramsey numbers are known, 

the atternpts a t  evaluation have produced many bounds for the 2-colour Rarnsey 



numbers. A complete table of known bounds with references can be found in [28]. 

The folIowing theorem is commonly used to obtain an upper bound on a 2-colour 

Rarnsey number: 

Theorem 2.3.3 r(1, m) 5 r(l - 1 ,  m)  + r(1, m - l), with strict inequality when 60th 

surnmands on the right are euen. 

A great deal of work has been done on asyrnptotic bounds. Theorems 2.3.3 and 

2.3.6 are examples of such bounds. 

Theorem 2.3.5 [21] For fized n and large m,  r(m. n )  5 c(mn-Lloglogm)/logm. 

where c depends on n. 

For n = 3 and m 3 3 this can be improved to: 

Theorem 2.3.6 [l] r(m, 3) < m2/logrn.  

Ramsey theory has provided beautiful concise proofs for other resuhs. The fol- 

lowing theorem can ùe proved by taking f (m, n) = r ( m  + 1. n + 1) - 1. 

Theorem 2.3.7 [30] There is a functzon f (m. n )  w2th the folloving property: 

If xl, 22: . . . , XN is any sequence of distinct real numbers with N > f (ml n )  , then there 

is either a monotone increusing sequence of length grrater than m? or a monotone 

decreasing sequence of length greuter than n .  



The following geometric fact can &O be established using Ramsey theory: 

Theorem 2.3.8 [7/ There is a srnallest znteger iV(n) such that any collection of 

N 1 N(n) points in the plane, no 3 collinear, has a subset of n points forming a 

convex n-gon. 

The proof of Theorem 2.3.8 involves looking at any r(n: 5; 1) points, and colouring 

the 4se t s  red if they form a convex quadrilateral and blue othenvise. 

2.4 Generalized Ramsey Theory 

Generalization is one of the most important features of mathematics. We have seen 

the classical Ramsey numbers defined in t e m s  of cliques. where r(n1. na. . . . . nk) 

gives us the smallest & which must have a clique of a particular size in one of its 

monochromatic subgraphs. An extension of this concept is obtained by replacing a 

clique with a general graph. Thus the generalized Ramsey nvmber R(Fi .  F2. . . . . Fk) 

is the smallest n such that for any k-edge colouring (Gi . G2, . . . . Gk) of I(,. the graph 

Fi is a subgraph of Gi for some i. These new nurnbers certainly do generalize the 

classical h s e y  numbers in that R(K,, : Kn2 . . . , Knk ) = r (n l ,  na, . . . . n t ) .  

A simple generalized Ramsey number resdt is given in Theorem 2.4.1. 

Theorem 2.4.1 R(G, K2) = n where n = IV(G)(. 

Proof Consider any 2-edge colouring of K,. If any edge is coloured blue then there 

exists a K2 in B. O t herwise, R = K, and hence contains G as a su bgraph. Therefore 



R(G, K2) 5 n. Xow consider the colouring of Kn-I in which aH edges are coloured 

red. There is no G in R as R d o s  not have enough vertices, and B contains no K2 

as B has no edges. Therefore, R(G, K2) > n - 1. Thus R(G, K2) = n = IuG)I- 4 

Radziszowski's survey paper [28] provides a very thorough summary of knolvn 

results on generalized Ramsey numbers and contains an enormous Listing of references 

on the subject . .2 sampling of some of these numbers will be given here. 

Theorem 2.4.2 [28] 

%(C4) $ k2 + k + 1 for  al1 k 2 1, where Rk(C4) = R(C4, Ca. - - . C4) - 
k arguments 

Rk(C4) 2 k2 - k + 2 for  al1 k - 1 a prime power 

R(G, G) 3 [(4lV(G)I - i)/3J for any connected graph G 



Chapter 3 

CO-irredundant Ramsey Numbers 

This chapter will introduce the CO-irredundant Ramsey numbers and show how 

several of them are calculated. 

3.1 Introduction to CO-irredundant Rarnsey 

Numbers 

Recall t hat the classical Ramsey number r (1, m) is the srnailest n such t hat  for any 

colouring (R, B) of the edges of K., Kr is a subgraph of R or Km is a subgraph of 

B. Notice that R contains a Ki if and only if B contains an independent set of size 

I ,  and similarly B contains a Km if and only if R contains an independent set of size 

m. Therefore, the definition of the classical Ramsey numbers can be stated in terms 

of independent sets instead of cliques. Now r(1, m) is the smallest n such that for 



any colouring (R, B) of the edges of K,, R contains an independent set of size m or 

B contains an independent set of size 1. R e d 1  now the following facts: 

X independent X irredundant ,Y CO - irredundant 

and 

COIR(G) 2 IR(G) 2 9(G) (3.1 -1  ) 

Thus it  is natural to generalize Ramsey7s theorem in terms of irredundant and 

CO-iredundant sets. 

Let k 2 2 and ni 2 3 for i = 1,2:. . . . k. The irredundant Ramsey number 

s ( n i , .  . . , nç) (CO-irredundant Ramsey number t(ni. .  . . . nt)) is the l e s t  integer n 

such that for any k-edge colouring (Gi , G2, . . . : Gk) of Kn: there exists i E { 1.3. . . . . k} 

such that IR(G;) ( C O I R ( c ) )  2 ni. 

The existence of the classical Ramsey numbers together with (3.1.1) guarantees 

the existence of the other two types of Ramsey numbers. Furthemore. (3.1.1) gives 

We have seen that the classical Ramsey numbers are very difficult to evaluate. Calcu- 

lat ion of irredundant Ramsey numbers has dso  proven to be hard. The known values 

for k = 2 can be seen in Table 3.1. The only other known irredundant Ramsey 

number is s(3,3,3) = 13 ( [14], [El). 



Table 3.1: Known 2-colour irredundant R m e y  numbers s(l.  rn) 

Asymptotic estimations on the irredundant Ramsey numbers have been made by 

Chen, Hattingh and Rousseau [8] and by Erd6s and Hattingh [16]. The reader is 

also referred to the survey article by Mynhardt [26]. 

As CO-irredundance is a generalization of irredundance, it is reasonable to ex- 

pect that the CO-irredundant Ramsey numbers will also be challenging to calculate. 

Theorem 2-2.4 showed that a vertex in a CO-irredundant set must have a private 

neighbour of one of three t s e s .  We now develope some notation relating to these 

t hree types of private neighbours. 

Let X be a CO-irredundant set. A vertex u E P N ( v .  S) is called an S P Y  of 

u. If u is an XPN of type ( 2 )  or (iii), i.e. a private neighbour of u in S. then u 

is called an interna1 private neighbour of v (abbreviated LYPN). If u has a private 

neighbour of type (ii), i.e. if there exists u E Gr - ,Y such that iV(u) n S = {v}, we 

Say that u is an eztemal private neighbour of u (abbreviated eXPN). Furthermore. 

we will abbreviate "CO-irredundant" to "CO-irr." and denote a CO-in. set of size 

rn by cm for ease of notation. 

The following simple observation will be repeatedly used. 



Theorem 3.1.1 X is a C O i m  set of G such that each x E X hm an iXPN if and 

only i fA(G[X])  < 1 ( i e .  G[X] 2 XKI U pKZ) .  

Proof Let x E X. If z is not isolated in ,Y1 then x has an X P X .  say y. Since y is 

not adjacent to any vertex in X - x, y must have x as  its i X P N .  Therefore. both x 

and y have degree 1. Therefore 4(G[X]) 5 1. 

Sheorem 2.3.3 states that r(1. m) 5 r(1- 1. m) +r(l .  m - 1) with strict inequality 

if both summands are even. ha lagous  theorems hold for the irredundant and CO- 

irredundant Ramsey numbers and are usudly the starting points for finding upper 

bounds. 

Theorem 3.1.2 t(1. m) 5 t ( l  - 1, m )  + t(1. m - 1 )  wzth strict inequality if both sum- 

mands are even. 

Proof Consider the complete graph on t(1- 1, m) + t(1, m - 1)  vertices and any 2-edge 

colouring (R .  B). A vertex u is adjacent to either i) t(1 - lo  m) vertices in R or ii) 

t(1, m - 1) vertices in B. In i), these t(1 - 1,m) vertices contain either a c(l - 1) in 

B or a cm in R. In the second case. there is a cm in R. In the first case. the c(1- 1 )  

together with v forms a cl in B. Similarly for ii). 

If t(1 - 1, rn) and t(1, n - 1) are both even: consider the complete graph on t ( l -  

1' m) + t  ( l ,  m - 1) - 1 vertices. Since IV1 is odd, there euists a vertex L' with even 

degree in R and in B (Theorem 2.1.1). Let R, = h ( v )  and let B, = iVs(v). 

Either 1&1 3 t(l - 1 ,m)  - 1 or IBvI 2 t(1, m - 1)  - 1. Without loss of generaüty 



suppose that the former is true. Then 1 &, 1 3 t ( 1  - 1, m )  as 1% 1 is even. By definition 

of t(l - l ,m),  R[&] contains a n or B[&] contains a c(1 - 1). Therefore, either 

R[& ü {u)] contains a cm or B[& U (v)] contains a cl. 1 

Part of the difficulty in evaluating the CO-irredundant Rarnsey numbers is that 

there is no usefd characterization of cm's for most values of m. However. theorems 

have been established which state precisely when a graph contains a c3 or a c4. 

Theorem 3.1.3 B has a c3 zf and only if R has P3 as a subgraph. 

Proof Let R have P3 as a subgraph and zy, yz be red edges. Then i l (B [ {xo  y. z } ] )  5 1 

and {x, y,  2) is a blue c3 (by Theorem 3.1.1). 

Conversely. let S = {x. y ,  z )  be a blue c3. If say x is a blue ?(PX of type (i). then 

x is isolated in B [ { x .  y. z)] and x has red degree at l e s t  two as required. Otherwise 

B [ { x ,  y ,  z ) ]  is P3 or K3. In either case at least one vertex say x has a blue eSPN u. 

which implies that uy, uz are red as required. 4 

Theorem 3.1.4 B has a c4 if and only if R has C4 as a subgraph. 

Proof If ,Y is the vertex set of a red Cd? then B[X] has maximum degree one which 

implies that ,Y is a blue c4 (Theorem 3.1.1). 

Conversely suppose that ,Y = {1,2,3,4) is a blue d. If the maximum degree 

A(B[X]) 5 1, then R[X] contains a C4. Othermise without Ioss of generality 12 and 

13 are blue. If 4 is isolated in B [ X ] ,  then at least two of 1, 2, 3 have blue e S P k  If 

4 is not isolated in B [ X ] ,  then at  most two vertices of X have iXPNs and so again 



a t  Ieast two vertices have blue eXPNs. With suitable relabelling, if 1. 2 have blue 

eXPNs 5, 6 respectively, then 3, 5, 4, 6 is the vertex sequence of a red Cd. i 

No theorem has been found which shows precisely when a graph contains a Q. 

The following theorem reiates to graphs with a CS. Note that the graph h:i - 2& is 

simply the graph obtained by removing two nonadjacent edges from K5. 

Theorem 3.1.5 B has a c5 in which at least three vertzces have an internul private 

neighbour i/ and only if R has a K5 - 2K2. 

Proof 

(e) Suppose R contains a K5 - 2K2. Then B sontains a set of 5 vertices which 

induce a graph with 5 2 (nonadjacent) edges. These 5 vertices are a c5 in which d l  

the vertices have an intemal pivate  neighbour. 

(*) -4ssume B has a c5. S = (1.2,3,4,5}. and vertices 3. -1.5 al1 have iSPNos. There 

are 3 cases: i) 1 and 2 have iXPX's, ii) 2 has an LXPY but 1 does not. or i i i)  neither 

1 nor 2 has an XPN. 

i) Since al1 vertices in ,Y have an L V N ,  B [ X ]  contains a t  most 2 (nonadjacent) edges. 

Then R[X] > Kg - 2h;. 

ii) Without loss of generality 1 is adjacent to 2, so 2 must be adjacent to some other 

vertex, as 1 h a  no LWN. Say 2 is adjacent to 3. Now 3 has an X P N  which is not 

1 ,2  or 3. Without Ioss of generality 3 has private neighbour 4. Xow 4 must have 

private neighbour 5 and hence 5 is not adjacent to 1,2 or  3. Thus 5 has no iXP'i. 

which contradicts the assumption. 



iii) Let 1 and 2 have eXPN's x and y respectively. At least one of 3 .4 .5  has its 

iXPN in {3,4,5). Say 3 has a private neighbour in {3,4,5). If B[{3.1, J)] has 5 1 

edge then R[{z, y, 3,4.5)] > K5 - 2K2. Otherwise, B[{3,4,5}] is the path 435 and 

the LYPN of 3 (which is 4 or 5) has no interna1 private neighbour. contradicting the 

assumption. 4 

3.2 Calculation of t (3, m) , t (3,3,  m),  and t (ni, . . . , nk) 

where ni E {3,4) 

In this section we will calculate t (3 .  m), t (3,3'  m),  and some values of t ( n l . .  . . . nk) 

where ni E {3,4). Theorems 3.1.3 and 3.1.1 will be frequently used. 

Theorem 3.2.1 For any m 2 3, t (3 ,m) = m. 

Proof Let B = Km-, . R = and consider the 2-edge colouring (R. B) of Km- 

Then B has no c3, R has no cm and so t (3 ,  m) > m - 1. 'low let (R. B) be any 

2-edge colouring of Km (vertex set V ) .  If A(R) 3 2. then B has a c3 by Theorem 

3.1.3. Otherwise A(R) 5 1 and V is a red cm by Theorem 3.1.1. 

Theorem 3.2.2 

(i) For odd m 2 3, t ( 3 , 3 , m )  = 2772 - 1. 

(ii) For even rn 2 1, t (3 .3 ,  rn) = 2m - 2. 



Proof 

Lower bounds 

-4s in the earlier work, for example, 12 denotes the edge joining vertices 1 and 2. 

If variables are involved in vertex labels, the edge joining vertices a and b will be 

denoted by (a, 6). Let (1,. . . , n} be the vertex set of h;, where n r O (mod 4). 

Define 

Bz = {12,34?.. ., (n - l!n)} 

and Ri = {l3.24,57.68,. . . . ( n  - 3, n - 1): (n  - 2. n)) . 

If m is odd, then 2m - 2 2 O (mod 4). Let (R, B, G) be the 3-edge colouring 

of &-* where the edge sets of R, B are Km-, and B;m-l respectively. Then R 

and B have maximum degree one and so neither R nor B has a c3 (Theorem 3.1.3). 

Moreover G = R U  B 2 (?)Cd which has no cm. Hmce t(3.3. m) > Pm - 2. 

If m is even. then 2m - 4 = O (mod 4). Let (R, B, G) be the 3-edge colouring of 

K2m-3 (vertex set (1,. . . ,2772 - 3)) where edge sets of R. B are R;,-, and B;,_, 

respectively. As above neither R nor B has a c3. Further G (?)Cd U KI which 

has no m. Hence t(3,3,m) > 2m - 3. 

Upper bounds 

To establish the upper bounds suppose to the contrary that for m odd (even). 

(R, B, G) is a 3-edge colouring of K2m-l (K2m-2) with no c3 in R or B and no m in G. 



Then A(R) and 4(B)  are a t  most one (Theorem 3.1.3) and so A@) = ~ ( R U B )  5 2. 

Thus components of G are paths, cycles or isolated vertices. Each such component 

X of G with t vertices has a CO-irr. set of size at least f and if X 9 C4: then .Y has 

a CO-irr. set of size at least F. 
If rn is odd. the union of these CO-irr. sets is a CO-irr. set of G of size at ieast 

*y-', i.e. G has a cm. 

If m is even, then 2m - 2 = 2 (mod 4). Hence not d l  cornponents are C4's. 

Therefore, in this case also, G has a CO-irr. set of size a t  least y and G bas a cm. 

Therefore for rn odd (even), t(3,3, m) 5 2 n  - 1 (2m - 2 )  as required. 

Some values of t ( n l ,  . . . nk) where ni E {3,4) rnay be obtained from Theorems 

3.1.3, 3.1.4, and the generalized Ramsey numbers listed in Section 2.4. 

Theorem 3.2.3 For i = 1, . . . , k let ni E {3' 4) and Fi = P3 (C4) if ni = 3 (4). Then 

t ( n l o . .  . n k )  = R(Fl . .  . . , Fk). 

Proof By Theorem 3.1.3 and Theorem 3.1.4, for any k-edge colounng (GIS. .  . . G k )  

of K,, Gi contains Fi as a subgraph if and only if has a mi. 

From Theorem 3.2.3 we immediately obtain the following results. References to 

the work on the corresponding generalized Ramsey numbers may be found in [28]. 

Theorem 3.2.4 

(i) t (4 ,4)  = 6. 

(ii) t(4,4,4) = 11. 



k + 2  i f k  fi odd 
(iii) t ( 3 , 3 , .  . . .3)  (k arguments) = 

k + l  i fk iseven.  

(iv) t(3,3,4) = 6. 

(viii) t ( 4 , .  . . 4) ( k  arguments) 5 k' + k + 1. 

(k) t ( 4 : .  . . .4) (k arguments) 2 k2 - k + 2, if k - 1 zs a prime power. 

3.3 Calculation of t (4 ,m)  for m =5 ,6 ,  and 7 

In this section we evaluate the CO-irredundant b e y  numbers t (4.5). t(4.6). and 

t(4.7). For each of these values, a proof will be given to establish t(4. m) 5 n. Then. 

a 2-edge colouring (R, B )  of Kn-i will be given which contains no n in R and no c4 

in B, proving that t (4,  m) = n. An edge colouring (R .  B) of K, with no cl in B and 

no cm in R will be referred to as a t(1, m) Ramsey colouring of Kn. 

The first theorem of this section will be used in the calculation of al1 three numbers 

t(4, J) ,  t(4,6), and t(4,7). 



Theorem 3.3.1 Let (R: B) be a t ( l ,  rn) Ramsey colounng of K, and consider an 

arbitrary vertez v . Then 

Proof Let R, = NR(v) .  Then dega(v) = 1&1. Suppose k t l y  that 181 2 t(1- 1 .  m) .  

If B[&] contains a c(l - l ) ,  .Y., then since d l  edges £rom v to  R, are red, .Y u { c )  is 

a cl in B, a contradiction. But then by the Ramsey prope- R[&] contains a m. 

also a contradiction and thus the upper bound holds. 

Let B, = Ns(v ) .  I f  I&( 5 n - t ( l ,  m - 1 )  - 1: then 1B.I 3 t(1, m - 1)- Since B[B,] 

does not contain a cl, it follows that R[BJ contains a c (m - 1 )  which, together with 

u. f o m s  a m in R, a contradiction. 4 

Theorem 3.3.2 t ( 4 . 5 )  = 8. 

Proof Let (R, B) be the 2-edge ~010unng of K7 where R 2 C7. Then R has no Ca, 

hence (by Theorem 3.1.1) B has no d. Moreover R has no c5 and we conclude t hat 

t(4,J.) > 7. 

In order to prove that t ( 4 , 5 )  5 8, suppose to the contrary that (R, B) is a 2-edge 

colouring of K8 with no blue c4 and no red c5. We establish a sequence of lemmas 

leading to contradictions. Let V = { I l . .  . ,8) 

Lemma 3.3.3 For any vertex v ,  2 5 deg,(v) 5 3.  

Proof of Lemma 3.3.3. By Theorern 3.3.1 6(R) 2 2. 



Next suppose that contrary to Lemma 3.3.3 the edges 12, 13, 14, 13 are al1 red. 

Then to avoid a C4 in R[{ll.. . ,511, without LOSS of generality 2. 3, 4. 5 is the vertex 

sequence of a blue C4. 

If at most one of 24, 35 is red? then. Say. 2 is isolated in R[{2.3.4.5}] and since 

degR(2) 2 2, say 26 E R. Any vertex of {6.7,8} sends at  most one red edge to 

(2,3,4,5) (avoid C4 in R). Hence R[{2,3,1,3,6)] has maximum degree at most one 

and {2,3,4,2,6} is a red 8. We conclude that 24, 35 are red. 

If, say, 6 sends no red edge to {2,3,4,5), then {2,3.4,5.6) is a red c5. Hence 

each of 6, 7, 8 send exactly one red edge to  {2,3,4.5). 

Suppose, Say. both 6 and 7 send their red edge to 2. Then {3.4 3.6.7) is a red c3. 

Hence without loss of generality 26, 37, 48 are the only red edges between {6 .T .  8} 

and {2,3,4,5). 

To avoid red Cd's 68, 16, 17, 18 are al1 blue and since b(R) 2 2. 67 and 78 are red. 

There are no additional red edges i.e. R is completely specified. But (2 .3 .5 .6 .8)  is 

a c5 in R, a contradiction which establishes Lemma 3.3.3. 

A vertex of R will now be called saturated when its degree in R is t hree (i.e. the 

maximum degree given by Lemma 3.3.3). 

Lemma 3.3.4 If 1, . . . , 5  is the uertex sequence of a red Cs, then each vertex of 

Y = {6,7,8) sends ut rnost one red edge to ;Y = { l ,  . . . ,J}. 



Proof of Lemma 3.3.4. 

If Lemma 3.3.4 is false, then to avoid red C4's without loss of generality 61,62 

are red and 1, 2 are saturated. We have two cases to consider. 

Case 1. 6 is isolated in R[YI. 

Since b(R) 3 2 (by Lernma 3.3.3), 7 and 8 each send a red edge to {3,4? 5 ) .  At most 

three red edges join {3,4,5) to (7.8) (saturation), hence to rnake b(R) 2 2, 78 E R. 

To avoid C4's in R, without loss of generaiity 73 and 85 axe in R which implies that 

74, 84, 83. 75 are al1 blue (avoid red C4k) But now {1.6.7.8_ 4) is a red 8. 

Case 2. 67 E R. 

Then 73, 75 are blue (avoid red C4's). If 78 E B, then to ensure deg,(i) 2 2- 74 E R. 

The degree requirement of 8 implies that 83 and 85 are red which forms a red C4. a 

contradiction which shows that 78 E R. 

Now {1,2,5,6,7) is a red c5 unless 74 or 85 is red. If 74 E R, then 83 or 85 is red 

and a red C4 is formed in each case. If 85 is red, then 74 and 83 are blue (avoid red 

C4's). NOW {1,2,3,6.7) is a red c5 irrespective of the colour of 84. 

Proof of Lemma 3.3.5. 

Suppose to the contrary that R has vertex 1 of degree three and 12. 13. 14 are 

red. To avoid red C43, R[{2,3,4)] has at most one edge and any vertex of {3,6.7,8) 

sends at most one red edge to {2,3,4). 



Case 1. {2,3,4) is independent. 

Since b(R) 2 2, each vertex of {2,3,4) sends a red edge to {S. 6,7 ,8)  and (to avoid 

red Cd's) without loss of generality we may assume that 25,36,47 are al1 red. To avoid 

the red c6 {2,5,3,6,1,7) wit hout loss of generality 56 E R and then (2,s. 3.4' 7) is a 

red c5 unles 57 E R. Lemma 3.3.1 oow implies that 67 E B and hence ( 2 . 3 . 6 . 4 7 )  

is a red c5. 

Case 2. 23 E R. 

If Say 5 and 6 do not send red edges to {2,3,4}? then {2,3.4.5,6) is a red c5. Hence 

one of the fouowing subcases occur. 

Subcase (i). 25, 36 and 47 are red. 

Then 56 E B (no red C4) and 57. 67 are blue by Lemma 3.3.4. In order to 

make red degrees of 5. 6 and 7 at l e s t  twoo we have that 8 has red neighbours 

3, 6, 7, and this situation is impossible by Case 1. 

Subcase (ii) . 25, 46 and 47 are red. 

Shen 56 and .57 are blue (by Lemrna 3.3.4) and so 58 E R (degree of 5). 

Without loss of generality 86 E R (degree of 8) and now 67 E R (degree of 7). 

No further red edges are possible and {l, 3,6,7,5) is a red ~ 5 :  a contradiction 

which completes the proof of Lemma 3.3.5. 

By Lemmas 3.3.3 and 3.3.5, R is reguiar of degree two. Since there is no red Cd: 

R 3 C3 U C5 and contains a c5. This completes the proof of Theorem 3.3.2. 



Theorem 3.3.6 t(4,6) = 11. 

Proof We h t  show that t ( 4 , 6 )  > 10. Let R' be the graph with V = {O. 1:. . . .9) 

and edges so that 1, 3, 5 ,  7, 9 is the vertex sequence of a Cs and 123, 343. 567. 789. 

901 are C3k Rt has no C4 and hence has no c4 (Theorern 3.1.4). Suppose that 

is a c6 of R'. 

If ;Y is independent, then IX n (1, . . . ,5) 1 5 2 and IS n (6. . . . . O )  ( 5 3. Hence 

I-ul 5 5, a contradiction. 

Suppose that D is the vertex set of a component of R'[S]. If ID1 = 2. then 

without loss of generaiity D = {1,2) or D = {1,3). If D = (1: 2). then S - {II 2) 

I.- - !V[{l. 2)] = {4 5,6' 7,8) and it is easy to check that ,Y is not a c6. If D = (1 .3) .  

then X - (1: 3) V - iV[{1,3}] = 16.7: 8} and IXI 5 5. a contradiction. 

Hence there elàsts D such that ID1 2 3. Since R'[D] contains no h; (there cannot 

exist an eXPN for the vertex of degree two), without loss of generality D contains 

{2,3,4),  {1,3,4) or {1,3,5). If {2,3,il) C D, then (since G[D] contains no K3) 

D = {2,3,4} and 2 has no XPN. If {1.3,4) C D' then 5 4 D and 4 has no XPN. If 

{1,3,5) C D, then neither 2 nor 4 are XPNs for 3 hence without loss of generality 1 

is an XPN of 3. Hence 1 has degree one in Rt[X] and IC n {2,4, 0,9) = 0. However 

{5,6,7) is not contained in X and so 1x1 5 5, the final contradiction which proves 

that Rt has no c6. 



Therefore (RI ,  z) is the required 2-edge colouring of Kio which shows t hat t (4.6) > 

10. 

In order to prove that t ( 4 6 )  5 11, suppose to  the c o n t r q  that (R. B) is a 2-edge 

colouring of Kl l  with neither blue d nor red c6. By Thoerem 3.1.4. R has no C4. 

We establish two properties, Lemma 3.3.7 and Lemma 3.3.8, of the graph R. 

Lemma 3.3.7 R has 8 vertices of degree three and 3 vertices of degree 4 .  

Proof of Lemma 3.3.7. B y  Theorem 3.3.1, b(R)  3 3. If R has at l e s t  four vertices 

of degree four or more then the number of edges in R is a t  least b(4 - x 4 + 7 x 3) = 18h. 

However the Turan number T(11, C4) (Le.? the greatest number of edges in an 11- 

vertex graph with no C4) is 18 131, a contradiction. Hence R has at least 8 vertices 

of degree t hree. 

Let R, be the set of vertices joined by red edges to  vertex u where r = 1 & 1  2 5. 

Let Bv = V - (R, U { a ) )  and observe that each u E B, sends at most one red edge 

to R, (to avoid red Cd's). Hence the number of edges in R[&] is at least 

for r 2 5. Hence R[&] contains a P3 and so R[& u {v)] has a Ca, a contradiction 

which proves A(R) 5 4. 

Now R has either 8 or 10 vertices of degree 3. It remains to show that R cannot 

have ten vertices of degree three and one of degree four. Suppose to the contrary that 

V = {v, 1,2, . . . ,9, O), where v 1, u2, v3, v4 are red while 1, . . . ,9 ,0  al1 have degree 



three. Let R, = (1,. . . ,4)  and Bu = (5 , .  . . ,9,0).  Since t(4,4) = 6 and B has no c4. 

R[B,] has a c4 Say W. If some u E R, sent no red edge to B,, then CV u {u. u } is a red 

c6 and we conclude that each u E R, sends at least one red edge to B,. Furthemore 

to avoid C4's no IL E Bu sends more than one red edge to &, . Hence wit hout loss of 

generality 15, 26, 37, 48 are red. At most two additional red edges (from 9. 0) link 

R. to Bu. Therefore the nurnber of red edges in R [ a ]  is at least $ [4 x 3 - 101 = 1. To 

avoid C4's R[&] has at most two (indepenent) edges. Suppose that 12 E R. If 34 is 

also in R then no u E &, is adjacent (in R) to 19, O) (deg,(u) = 3) and so R, U (9, O }  

is a red c6. Thus 12 is the only edge of R[&] and without loss of generality 39 E R 

(deg,(3) = 3). Sow R, U {8- 9) is a red c6, unless 89 E R and R, U {7.8} is a red ô 

udess 78 E R. Therefore 89 and 78 are red which produces the red C4 3. 7. 8. 9. a 

contradiction which completes the proof of Lemma 3.3.7. 

Lemma 3.3.8 Vertices of degree four in R are adjacent. 

Prooj of Lemma 3.3.8. 

Let V = (a, B,1, . . . ,9 )  and suppose contrary to the statement that a and ,d have 

red degree four but E B. 

Firstly assume that cu and f l  have no cornmon neighbour. Specifically let al1 edges 

from a to {1,2,3,4} and from 0 to {5,6,7,8) be red. Then vertex 9 sends three red 

edges to (1,. . . ,8) and hence a t  l e s t  two to {1,2,3,4) or to {5,6,7,8}. Thus a C4 

is formed, a contradiction. 



Secondy suppose that cr and /3 have the cornmon neighbour 4 in fact a: 6 send 

red edges to {l. 2,3,1)  and {4,5,6,7) respectively. 

Each of 8? 9 send at most one red edge to {11 2,3 ,4)  and to {4.5. 6.7) (to avoid 

C4's). Hence 84 and 94 are blue. 41so both 8 and 9 send at ieast two red edges to 

(1 , .  . . ,7) (b(R)  2 3). We conclude: 

each of 8: 9 sends precisely one red edge 

to {1,2,3) and to (5: 6,7) (3.3.1) 

Hence exactly 12 red edges join (1, . . . ,7) to {a; ,0,8,9} and so the number of 

edges in R[{l, .  . . ,711 = :[(a x 1) + (6 x 3) - 121 = 5. Moreover to avoid Cd's both 

R[{l, 2,3,4)] and R[{4,5,6,7)] have at most two edges. 

Therefore without losing generality 26 E R and since degR(4) 3 3. say 43 E R 

(42 E B to avoid red C4). The C4-free property now also implies that 16, 25. 27. 13: 

14, 23, 24, 35, 36, 37 and 46 are al1 blue. There are now two cases. 

Case 1. 26 is the only edge in R fiom {1,2,3) to {5,6.7). 

Then R[{1,2,3,4}] "- R[{5 ,6 ,7 ,8 ) ]  S 2K2 (to avoid C4% and to achieve 5 edges 

in R[{1, . . . ,7)]). Hence 12 E R and (recall Lemma 3.3.7) 4 is the third vertex of 

degree four in R. Since 46 E B, 57 E B and hence without loss of generality 45 and 



67 are red while 47, 56 are blue. By (3.3.1) without loss of generality 85 and 97 are 

red. Therefore in order to satisfy (3.3.1) and to avoid C4'si 81 and 93 are in R. This 

completes R which has the c6 {1,2,4,5.7,9). 

Case 2. There exists a second edge in R bom {1.2,3) to {5 ,6 .7} .  

Without loss of generality this second red edge is 15 which impiies that 17 and 45 

are blue (to avoid red C4k) Since deg, (7) 2 3 and the degree of 7 in R[{4.8,6.7)]  

is at most one, we may assume that 79 E R. The possibilities for the remaining two 

edges to rnake up the five of R [ { l ,  . . . ,7)] are 12, 56, 75, 76, 74. Since 12 and S6 are 

not both red (red Cd), without loss of generality 76 or 74 is a red edge. 

If 76 E R, then 75, 74, 65 are all blue (avoid red C4's). The edge 12 is the 

on- remaining possibility for the fifih edge of R[{1. . . . . i)] which is now- cornp1e:ely 

defined and has the c6 {6,7; 1,5.4,3). 

If 74 E R, then 76, 75 are blue (avoid C4's in R) and 1 is the third vertes of 

degree four in R. Hence each of 5, 6 and 7 have red degree three. The two remaining 

candidates for the fifth edge of R[{l,. . . 7}] are 12 and 56. If 56 E R, then 5 .  6 and 

7 are d l  saturated in R and 8 cannot send a red edge to (5' 6 ,7 ) ,  a contradiction 

with (3.3.1). Therefore 12 E R which saturates 1 and 2. Now only one of 8' 9 can 

send a red edge to {l. 2,3), again contradicting (3.3.1). This completes the proof of 

Case 2 and of Lemma 3.3.8. 

By Lemrna 3.3.8, the three vertices a, P, y of red degree four (Lemma 3.3.7) 

form a red triangle. To avoid red C4k, no pair from {a, ,û, y} has a second common 



neighbour. Let 1, 2 (resp. 3, 4 and 5,  6) be the other two red neighbours of cr (resp. 

/3 and 7). To avoid red Cd's the o d y  possible edges in R[(1, . . . ,611 are 12: 34 and 

56. Then (1, . . . , 6 )  is a red c6 by Theorem 3.2.4. This final contradiction completes 

the proof of Theorem 3.3-6- 

Figure 3.1: Three t(4,ô)-critical graphs 

A t(nl, . . . nt) Ramsey colouring of K. is called t(nl. . . . . nk)-critical if n = 

halogous critical colourings for the 2-colour classical Rarnse- numbers have been 

well-studied [28]. For example it is well known that the only r (3,3)-critical colouring 

is (c~, Cs). 



Work on such critical colourings will appear elsewhere but preliminary inves- 

tigations indicate that there are only three t(4,6)-critical colourings (R, B) with 

A(R) = 4. The three graphs R are depicted in Figure 3.1. The graph R' is that used 

in the proof of Theorem 3.3.6 and criticality for dl three cases was checked by a 

cornputer program written by G. MacGillivray (Appendix A). 

The following additional notation will simplify the proof that t (4.7) = 14: 

Given a 2-edge colouring (R, B) of K,, each vertex .u and its neighbours in R and B. 

respectively. induce a partition ({v), &, Bu) of V(K,) where 

For any x E a, define 

SZ,, = {U E Bu : ux E E ( R ) ) -  

Note that S,, = N&) - El, - {u). In addition. define 

Our evaluation uses the following theorem which contains many facts that were 

used in the proofk of earlier theorems without being formally stated. 



Theorem 3.3.9 Let m 2 4. Consider a t(4, m) Ramsey colouring (R ,  B) O/ K, and 

let u E V(KJ be arbitmy. 

(i) Each vertex in Bv is adjacent (in R)  to ut most one vertex in &. 

(v) For each z,y E R, with xy E E ( R ) ,  IS,,vI + IS,,.I < m - (&( + 1. 

Proof 

i) If u E Bu is adjacent to x, y E & with z # y, then î~xuy is a C4, contradicting 

Theorem 3.1.4. 

ii) If 4(R[&]) > 2, then R[&] contains P3 as a subgraph, which forms a C4 with u 

in R, again contradicting Theorem 3.1.4. 

iii) Follows from Theorem 3.3.1. 

2v) Suppose ISz,l > m - Il&,[ for some x E K .  Note that A(R[Sx,, u R, - {s}]) 5 1 

and IS,,, u R, - {XII = ISr,,l + l& 1 - 1 2 m. a contradiction. 

v) Suppose x , y  E & with xy E E(R) and IS,,I + IS,,,I > m - + 1. By (2). 

SzVv n S,, = 0. Further, to avoid a C4 in R containing x and y, there is no red edge 

between S,, and S,,. Hence A(R[S,,,US,,~]) 5 1, and if X = S,,,US,,, UR, - {z. y) _ 
then h ( R [ X ] )  5 1 and 1x1 = IS,,,I + /S,,, 1 + Il$,( - 2 2 m, a contradiction. 1 



Theorem 3.3.10 t (4 ,7 )  = 14 

Proof We establish t hat t ( 4 7 )  2 14 by constructing a graph R on 13 vertices which 

has no c7 and no Cd- Such a graph is given in Figure 3.2. Cornputer verification 

(--2ppendi~ A) confirms that (R, B), where R is the graph of Figure 3.2. is a t ( 4 .  7) 

Ramsey colouring of &. 

1 

Figure 3.2: h graph on 13 vertices with no c7 and no C4 

It remains to be shown that t (4 ,7 )  5 14. Suppose to the contrary that (R' B) is 

a t ( 4 , 7 )  Ramsey colouring of KL4. By Theorem 3.3.1, 3 5 1% 1 5 6 for each vertex 

v E V. However, if there is a vertex v with l&l = 6. then by Theorem 3.3.9 ( 2 ~ ) .  

ISz,v 1 5 1 for each x E &. Thus there is a vertex u E TV and it follows from Theorem 

3.3.9 (ii) that R, u {a) is a c7, a contradiction. Hence 3 5 I&, 1 5 5 for each vertex 

v E V .  We now prove a series of lemmas. 



Lemma 3.3.11 R contains no adjacent vertices u and v of degree three and R con- 

tains no adjacent vertices u of degree four and u of degree three such that u and a lie 

on CL common K3. 

Proof In each case 1 V(KI4) - N [ ( u ,  v)] 1 > 8. But then V(KL4) - iV[{ul u ) ]  contains 

a CS. S, as t ( 4 . 5 )  = 8. Thus S U {u, u )  is a c7' a contradiction. 

Lemma 3.3.12 For each vertes v, 3 5 1&1 4 4. 

Proof Suppose J & I  = 5. Since the maximum degree in R, 5 1 (to avoid C4's): 

I&,,I 2 1 for each x E &. Since 1 Bvl = 8: ISr,,v 1 = 1 for a t  least two vertices 

xi. These vertices are not isolated in R[&] and by Lemma 3.3.1 1 are not adjacent. 

Therefore they are both adjacent to vertices y 1 and y, in R, with yi # y* such that 

IS,,,I 2 3. But then lBul > 8 + 2 and IV(R)I > 14, a contradiction. 

Lemma 3.3.13 R is not 4-regular. 

Proof Since there are more than 9 vertices under discussion, we will now represent the 

edge UV by u - v for clarity. Suppose R is Pregular and consider an arbitra- vertex 

W. The Pregularity of R and a counting argument show that ITvI = 1. IS,.,I = 2 for 

each x E R, and R[&] Z 2K2. Let Tu = {u), R, = {l, 2,3,4) with 1-2 and 3-4 red. 

S, ,  = { 5 , 6 ) ,  SzVu = {7,8}, S3,u = {9,10) and S4,u = {I l ,  12). Since I&,l = 4 and 

to avoid C&, u is adjacent to a t  most one vertex in each Si,,, i E &, it follows that 

u is adjacent to exactly one vertex in each Si,*. By symmetry we may assume that 



u-6, u-8, u-10, and 24-12 are red. By the above argument for ( { u ) ,  &. Bu) it follows 

that R[{6.8,10,12)] i 2K2 and since 6-8 and 10-12 are blue (to avoid C4's). we may 

assume without loss of generality that 6-12 and 8 1 0  are red. By also repeating the 

argument for (161, %, Bs) we see that 5-6 and similarly 7-8: 9-10 and 11-12 are red. 

Consider vertex 5. Since 1 R5 ( = 4, 5 is adjacent in R to two vertices in (7.9.11 }. 

But 5-7 is blue (to avoid the red C4 5-7-2-1) and 5-11 is blue (to avoid 5-11-12-6). a 

contradiction. 

By the above lemmas R consists of vertices of degree three and four. We next 

show that R has a vertex of degree three which lies on a K3. 

Lemma 3.3.14 R hcls a vertex u with R[&] 2 K I  U K2. 

Proof Suppose this is not the case. By Theorem 3.3.9 (iz) and Lemma 3.3.13 t here 

- 
exists a vertex v with R[&] i K3. By Lemma 3.3.11. (S,,,I = 3 for each x E R ,  

and hence 1T.I = 1- Say Tu = {IL)? R, = {1,2.3}, SI., = {4,5.6).  S2., = (7.8.9) 

and S3,, = {IO, 11.12). Since 3 5 I & I  5 4 and u is adjacent to at most one vertex 

in Si, for each i E {l, 2,3), it follows that = 3. Without loss of generality say 

& = {5?8? 11). 

Consider the three edges 1-6, 2-9, and 3-12 and note that the only possible fur- 

ther red edges between these s k  vertices are edges in R[{6.9,12}]. To avoid the c ï  

{1,6,2,9,12, IL), a t  least one of these three edges is red; Nithout loss of generality say 

6-9 is red. Then 6-7 is blue to avoid a Cq. NOW consider 1-6 and 2-7 and note that 

7-2 is red for at most one x E {10,12). By symmetry we may assume that 7-10 is 



blue. To avoid the red c7 {1,6,2,?, 3,10, u), 6 1 0  is red and thw ô-12 is blue. Then 

7-12 is red to avoid the c i  {1,6,2,7,3.12, u ) .  Considering 1-4, 2-7 and 3-10, we End 

similady that 4 4 0  is blue since 6-10 is red, and so 4-7 is red. Now. 4-7 and 7- 12 red 

implies 4-9 and 9-12 blue, respectively. Thus, to avoid the c7{1.4- 2.9.3.12. u }. 4 1 2  

is red. Simiiarly {1,4,2,9.31 I O 1  u )  shows that 9-10 is red. 

The set {1,7- 6,10,8, u, u )  and the edge colouring described above now imply that 

7-8 or 4-6 is red. But if 7-8 is red, then 8 9  is blue and so (4 12 .6 .9 .8 .u . r }  shows 

that 4-6 is red aqway- Similarly, 7-9 and 10-12 are red. but then we have the Cd's 

46-9-7 and 4-6-10-12, a contradiction which completes the proof of Lemma 3.3.14. 

To cornplete the proof that t ( 4  7) 5 14, let u be a vertex with R[&] = KI U h;: 

say R, = {l ,  2.3). where 1-3 is red. Then 1 (and 3) cm not have degree 3 (as v has 

degree 3) and can not have degree 4 (as it is in a K3 with a vertex of degree 3). This 

contradicts Lernma 3.3.12 and completes the proof. 

3.4 Bounds on t (5 ,5)  

The best known bounds for t ( 5 , S )  are given in our last result. 

Theorem 3.4.1 14 5 t ( 5 , 5 )  < 15. 

Proof The upper bound follows imrnediately fiom Theorem 3.1.2 since t(4.5) = 

t(3,4) = 8. The lower bound can be established with the following edge colouring of 

KI3.  Let the vertices of KIJ be labelled O, 1,2, . . . ,12 and (R, B) be the edge colouring 



of K13 in which each vertex v is adjacent in R to u + 1. v + 3, i r  + 4. v + 9. v + 10. u + 12 

where addition is rnodulo 13. The cornputer program of the appendiv verified that 

neither R nor B has a 6 and so t ( 5 , 5 )  2 14. 4 

In fact the graph R of Theorem 3.4.1 (depicted in Figure 3.3) is a self complemen- 

tary circulant graph. It is easily checked that f : v -+ 2v is an isornorphism from R 

to B: For example, ( v ,  v + 10) is an edge of R and (f (u), f (u + 10)) = (2v: 2v + 20) = 

(2v, 2u + 7) is an edge of B. The circulant structure and the self complementq 

property permit the lower bound to be established analytically 

Figure 3.3: -4 self-complementaq graph on 13 vertices with no Q 

In view of Theorern 3-41, the value of t ( 5 3 )  depends on the existence or non- 

existence of a 2-edge colouring (R, B) of KI4 with no c5 in either R or B. Such a 

colouring must have the following properties. Firstly, Theorem 3.3.1 shows that for 

any vertex v, 6 5 deg(v) 5 7. Hence al1 vertices rnust have degree 6 or 7 in both R 



and B. Secondly, it is known that the generalized Ramsey number R(Ks - 2h2, K5 - 

2K2) = 15. Thus there exists a set X of 2-edge colourings of K14 in which neither 

colour has a Ks - 2K2. Because of Theorem 3.1.5, any colouring not in S contains 

a c5 in R or B. So far we have been unable to find a colouring in -Y sithout a c5 in 

at l e s t  one colour. 
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Appendix A 

Program For Finding CO-irr. Sets 

program Co I R  (input, output) ; 

const 
max-nu = 18; 

t YPe 
vertex = integer; 
ad jacency-matrix = array Cl. .ma-nu, 1. .ma-nul of vertex ; 
vertex-list = array [ O .  .ma-nu] of integer ; 
vertex-set = array Cl. . max-nu] of integer ; 

var 
nu: integer; 
A :  adjacency-matrix; 
x ,  y:  vertex; 
CO-ir-size: integer; 
co,ir,aize,comp: integer; 
S:  vertex-l ist;  
lastsubset: boolean; 
CO-ir-found: boolean; 

procedure initialize-adjacency-matrix (var A :  adjacency-matrix; 
var nu: integer); 
var 
i, j: integer; 



x: vertex; 
begin 

for  i := 1 to nu do 
for j := 1 t o  nu do 
A h ,  j] := O; 

f o r  i := 1 t o  nu do 
begin 
vhile (not eoln(input) ) do 

begin 
read(x) ; 
if (X <> i) and (x >= 1) and (x <= nu) then 
begin 
A C i ,  x] := 1; 
Atx, il := 1; 
end ; 

end ; 
readïn ; 
end ; 

uriteln; 
writeln; 
writeld 'The adjacency matrix of your graph. ' ) ; 
writeln; 
for i := 1 to nu do 

begin 
for j := 1 t o  nu do 

write(A[i, jJ : 2 ) ;  
writeln; 

end; 
end ; 

procedure complement-adjacency-matrix(var A :  adjacency-matrix; 
var nu : integer) ; 

var 
i, j: integer; 

begin 
for  i := 1 to nu do 

for j := i+l t o  nu do begin 
A [ i , j ]  := 1 - A [ i , j ] ;  



A C j , i ]  := 1 - A[j,i]; 
end ; 

end ; 

procedure first-kset (n, k: integer; var S: vertex-list; 
var lastsubset: boolean); 
O 
{Initialization for generation of al1 k-subsets of l..n) 
{in lexicographic order.) 
{The k-sets are stored in S. The algorithm is from Reingold,) 
{Neivergelt and De01 
{Combinatorial Algorithms, page 181.) 

O 
var 
i: integer; 

begin 
for i := O to k do 
SC11 := 1; 

for i := k + 1 t o  max-nu do 
SCi] := O; 
lastsubset := faïse; 

end; ( first-kset) 

procedure ne=-kset (n, k: integer; var S: vertex-list; 
var lastsubset : boolean) ; 

0 
{Generate the nextk-subsets of l..n in lexicographic order and) 
{retum it in S) 
{The algorithm is from Reingold,Neivergelt and Deo) 
{Combinatorial Algorithms , page 181.) 
O 
var 
i, j: integer; 

begin 
lastsubset := (SEI] = n - k + 1) ; 
if not lastsubset then 



begin 
j := k; 
while (SCj] = n - k + j) do 

j : = j -  1; 

S [ j ]  := SCj3 + 1; 
f o r  i := j + 1 t o  k do 
Sri] := S r i  - 11 + 1 ;  

end ; 
end; ( next-kset ) 

procedure print-subset (var S: vertex-l is t ;  k :  i n t e g e r ) ;  
var 
i: integer; 

begin 
f o r  i := 1 t o  k do 
write(S [il : 3) ; 

writeln; 
end; C print-subset 3 

function CO-irredundent (var S: ver tex- l i s t ;  k: in teger ;  var  A: 
adjacency-rnatrix; nu : integer)  : boolean; 

var 
Nv, NS-minus-v: vertex-set; 
i, j ,  m ,  x ,  v: integer; 
v-has-pn: boolean; 
diffs-all-non-empty: boolean; 

begin 
d i f  f s-all-non-empt y : = (k > O) ; 
f o r  i := 1 t o  k do 
begin 

v := Sri ] ;  
fo r  j := 1 t o  nudo 

Nv[j] := ACv, j] ; 
Nv[v] := 1; 



for m := 1 to nu do 
NS-minus-v Cm] : = 0 ; 

v-has-pn : = f alse ; 
for m := 1 to k do 
begin 

x := SLmJ; 
if (x 0 v) then 

for j := 1 to nu do 
if A[x, j] = 1 then 

NS-minus-v [ j] : = 1 ; 
end ; 
for j := 1 to nudo 

v-has-pn : = v-has-pn or ((Nv[jJ = 1) and (NS-minus-v [jl = 0) ) ; 

diffs-all-non-empty := diffs-all-non-empty and v-has-pn; 
end ; 
CO-irredundent := diffs,all,non,empty; 

end ; 

begin 
readln (nu) ; 
writeld'Number of vertices in the graph: ' , nu: 1) ; 
initialize-adjacency-matrix(A , nu) ; 
readln(co-ir-size, CO-ir-size-comp) ; 
writeln ; 
writeld'size of the CO-irredundent set to check for in G: ', 
CO-ir-size: 1) ; 

writeln('Size of the CO-irredundant set to check for in G complement: ' ,  
CO-ir-size-comp : 1) ; 

first,kset(nu, CO-ir-size, S,  Lastsubset); 
while bot lastsubset) and (not CO-ir-found) do 
begin 
CO-ir-found := co,irredundent(S, CO-ir-size, A, nu); 
if (not CO-ir-f ound) then 
ne--kset (nu, CO-ir-size , S , lastsubset ; 

end ; 
writeln; 
if CO-ir-found then 
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