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Abstract 

The application of elliptic curves to the field of cryptography has been relatively 

recent. It has opened up a wealth of possibilities in terms of security, encryp- 

tion, and real-world applications. In particular, we are interested in public-key 

cryptosystems that use the elliptic curve discrete logarithm problem to establish 

security. The objective of this thesis is to assemble the most important facts and 

hdings  into a broad, unified overview of this field. To illustrate certain points, 

we also discuss a sample implementation of the elliptic curve analogue of the El 

Gama1 crypt os ystem. 



Résumé 

L'application des courbes elliptiques au domaine de la cryptographie est relative- 

ment récente. Elle a ouvert un éventail de possibilités en termes de sécurité, de 

chiffiement, et des applications pratiques. En particulier, nous nous intéressons 

aux systèmes à clé publique qui utilisent le problème du logarithme discret sur des 

courbes elliptiques pour établir la sécurité. L'objectif de cette thèse est de rassem- 

bler les résultats et les faits les plus importants en un aperçu large et unifié de ce 

domaine. Pour illustrer certains points, nous discutons aussi une mise-en-oeuvre 

de l'analogue du système El Gamal. 
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Chapter 1 

Introduction 

Cryptography is the science of securely transmitting messages from a sender to a 

receiver. The objective is to encrypt the message in a way such that an eavesdrop- 

per would not be able to read it. A cryptosystem is a system of algorithms for 

encrypting and decrypting messages for this purpose. Computer cryptography, 

once the exclusive domain of the military, has only recently become accessible 

to the layperson with the advent of personal cornputers and the boom in public 

research over the last 20 years. 

In contrast, elliptic curves are not new to the field of Number Theory - they 

have been studied and scrutinized for most of this past century. But the ap- 

plication of elliptic curves to the field of cryptography is a recent phenomenon, 

beginning barely 10 years aga Some well-known cryptosystems work with multi- 

plicative groups of fields, and as it turns out, elliptic curves over finite fields are 

a rich source of finite abelian groups. Faced with an infinite variety of elliptic 

curves to choose fiom, much research rernains to be conducted on how different 

cryptosystems using difierent elliptic curves perform. 
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Future studies will not be motivated solely by the simple concept of applying 

elliptic curves to cryptographic schemes. As we will see in this thesis, the appeal 

of the elliptic curve cryptosystem is its strengths and its practical applications to 

the real world. Such systems involve elementary arithmetic operations that make 

it easy to implement (in either hardware or software). They can maintain reliable 

security with key lengths that are shorter (therefore more practical) than those in 

other public-key schemes. There are very few known attacks that can break the 

cryptosystems: each is effective only on a particular class of elliptic curves and 

even the best algorithms require exponential time. Therefore, these cryptosystems 

are generally more secure than others. Elliptic curves could easily be applied to 

other cryptosystems (or combinations of cr yptosystems) and as st ated above, there 

are countless elliptic curves to choose from. 

It is fairly easy to learn the dry computational steps of an elliptic curve cryp- 

tosystem, but understanding the scheme's design or implementation requires a 

scholarly background in rnathematics. The objective of this thesis is to assemble 

an overview of this field of study and its findings to date, while filtering out all 

but the basic concepts necessary for understanding this overview. 

We begin with a cursory review (it is assumed that readers have at least an 

undergraduate background in Computer Science) of the mathematics used in the 

rest of the thesis. We also introduce some concepts from the field of cryptography. 

Chapter 3 defines elliptic curves, their arithmetic operations, the discrete loga- 

rithm problem on an elliptic curve, and some of its properties. Chapter 4 focuses 

on one particular elliptic curve cryptosystern - both in theory and in practice - 

then proceeds to break down and analyse the components of elliptic curve cryp- 
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tosystems. We conclude by summarizing the latest findings and predicting the 

future course of study in this seemingly inexhaustible field. 



Chapter 2 

Essent ial Concepts 

Before we begin any discussion on elliptic cuves or publiokey cryptosystems, we 

will first review some basics of number theory, linear algebra, cryptography, etc. 

that support the ideas of the chapters that follow. 

The set of all integers will be denoted by 2. N stands for the set of al1 positive 

integers. For a finite set A, the number of elements of A is denoted by #A. 

An equivaience relation on a set A is a binary relation - on A such that for any 

X , V ,  E A, 

1. x - x Eeflexivity] 

3. if x - y and y - z then x - i [transitivity] 

Let - be an equivalence relation on a set A. Shen p = ((a] 1 a E A), where 

9 
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[a] = ( b  E A 1 a - b )  is a partition of A, that is 

1. for each S E P,  S # fl 

2. if S , T E  P, then S = T o r  S n T = @  

3. USrpS=A 

An element S IZ P is called an equivaience clam of the partition P. 

We assume the reader's familiarity with some of the most basic properties of 

integers. 

Theorem 2.1.1 (Euclid's Division Algorithm) For a, E, E 2, b # O, there exist 

uniquely determined q,r E such that 

[15, page 431. 

If r = O, we Say that & is a divisor of a, and denote it as bla. Otherwise we 

write b la. For al,. . . , a k  E Z, if &lai (i = 1,. . . , k), then b is called a common divisor 

of al,. . . , ak. The largest common divisor of al,. . . , ak always exists. It is denoted 

by gxi(ol, . . . , ak). a, b  E Z are called relatively prime (or coprime) if and only if 

gcd(a, b) = 1. 

Theorem 2.1.2 If a, b E 2, not both zero, then d = gcd(a, b) is the smallest element 

in the set of al1 positive integers of the form ax + by (x, y E 2 ) .  

Proof L e t C = { c ~ E ~ c = a x + b y , x , y ~ Z ) .  C#0,becauseifa#0,-aeC. Let 
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be the smallest element of C .  We shall show that d = e. If a = eq+r, O < r < e, then 

If r # 0, it would be in C and would contradict our choice of e. Thus, ela. Similarly, 

elb, so we have e 5 d. On the other hand, since e = axo + byo and dia, dl&, it follows 

that die. Hence, d 5 e. Therefore, d = e. 

Coroilary 2.1.3 There exist 2; y E z satisfying 

if and only if dlc, where d = gd(a ,  b). 

pmof If a = ed, b = fd, then clearly dJc. On the other hand, if dlc, let kd = c. 

Since there exist 30, y0 E Z such that 

For a, b, m E Z we defme 

a G b rnod rn if and only if ml (a - b) .  

We can easily see that for a fbced m, this is an equivalence relation on 2. Con- 

sequently, Z is partitioned into equivalence classes: 2, = ([a] 1 a E Z), where 

[a] = {b E Z 1 a = b mod rn). Each equivalence class [a] is often represented by its 

element . For example, we can write 2, = {0,1,2, . . . , rn - 1). 
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Theorem 2.1.4 For a, m E 2, there is a x E Z such that ux i 1 mod m if and only if 

gcd(a, m) = 1. 

Pmof There is a x E Z such that ax i 1 rnod nt a there are +,y E 2 such that 

ax - mg = 1. Therefore, Corollary 2.1.3 completes the proof. 

p E N is called a prime number if and only if p > 1 and a / l p  for al1 a E 2, 

1 c a < p .  Let p E N, p > 1. p is prime if and only if for any a,& E 2, 

(See 115, page 461 for the proof.) 

Theorem 2.1.5 (Chinese Remahder Theorem) Suppose ml, . . . , m, E N are rela- 

tively prime in pairs, i.e. gcd(m,mj) = 1 for i # j .  Let al, .. .,a, E Z. Then, the 

system of r congruences 

has a unique solution modulo ikf = ml x . . . x m, given by 

where Mi = M / m  and Mis = 1 mod W .  

~ m o f  Note that M. is the product of al1 mj where j # i. So if j # i, then 

M, E O mod mj. Note also that gcd(Mi,m) = 1, so by Theorem 2.1.4, Miyj E i mod mi 

has a solution ?/i. Thus, 

for all i, 1 5 i 5 r. Therefore, x is a solution to the system of congruences. 
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Euler's function t$ : N -t N is defined as 

$(m) = #{k E N 1 1s k 5 m, gcd(k,m) = 1) 

Theorem 2.1.6 

+(m) = #{a E 2, 1 ab I I mod m for some b E Z,} 

Pmof The proof follows from Theorem 2.1.4. 

Example If p is a prime number , +(p)  = p - i and for any a E Z,, p da, there is 

b E Z, such that ab = 1 mod p.  

Suppose p is an odd prime and x E Z, i 5 x 5 p - 1. Then x is called a quadratic 

residue modulo p if y2 EE x mod p has a solution y E 2,. x is a quadratic non-residue 

if x is not a quadratic residue modulo p and x $ O mod p .  

2.2 Groups 

A group is a structure consisting of a set G and a binary operation * on G (Le. for 

any a, I> E G, a * b E G is defined) such that: 

1. a * ( b  * c) = (a * b) * c for a, b, c E G [associativity] 

2. there is an element e E G such that 

e * a = a * e  = a  for every U E G .  

This unique element e is called the neutrd element of G.  

3. for each a E G there is an element b E G such that 
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b is uniquely deterrnined and called the inverse of a. 

We use the notation (G, *) to represent a group with group operation *. (G, +) 

and (G,.)  are called an additive group and a multipiicative group, respectively. In 

an additive group, the neutral element is represented by the symbol 0 and the 

inverse of a is denoted as -a. In a multiplicative group, the neutral element is 

represented by the symbol 1 and the inverse of a is denoted as a-'. 

(G, *} is called an abelian or commutative group if a * b = &*a for any a, b in G . 

Let (G,+ be a group and let H be a subset of G. The structure (H, O) is said to 

be a subgroup of (G,*), if CI is the restriction of * to H x H and (H,O) is a group. 

If G is a finite group, then the number of elements of G is cded  the order of 

G and it is denoted as IGI. Given a finite multiplicative group G ,  the order of 

an element o E G is the smallest positive integer m such that am = 1. Such an rn 

exists for every element in a finite multiplicative group, as follows from the next 

theorem and its corollary. 

Theorem 2.2.1 Let G be a finite multiplicative group of order n. If the order of 

an element a E G is rn, then 

ak = i if and only if mlk 

P- If k = mg, then ak = (am)q = 1. For the converse, let k = mq + r,  O 5 r < m. 

Then ar = ak = 1. Therefore, it follows by the minimality of m that r must 

be O. 

~oro~ary 2.2.2 If G is a finite multiplicative group of order n, then 
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(1) for every element a E G, un = 1. 

(2) the order of any element of G divides IGI. 

If a E G is of order m, then 

H = (ak 1 k E 2) 

is a subgroup of G of order m. If G has an element a of order n = ICI, then 

G = ( a k  1 ~ E Z )  

and G is called cyck and a is called a generator of G .  

The set z,, = (O, i,2, . . . , n - 1) is a cyclic group of order n under addition modulo 

n, i.e. a + b = r mod n, where r < n (r is the remainder when a + b is divided by n). 

Theorem (Euler) For a, m E Z such that (a, m) = 1, 

a4(m) r 1 rnod m 

pmof By Theorem 2.1.4 

Gm = {a € 2, 1 gcd(a,m) = 1) 

forms a multiplicative group of order 4(m). So this is an immediate consequence 

of Corollary 2.2.2 (1). 

Theorem (Fermat) Let p be a prime number and a E 2. 

(1) op-' = 1 mod p, if p la .  

(2) a p  E a rnod p. 

P T V O ~  (1) Since 4(p)  = p - 1, this is a special case of Euler's Theorem. (2) This 

is trivial if a ZE O mod p. Otherwise, it follows fiom (1). 
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2.3 Rings 

A ring is a set R together with two binary operations + and (called addition and 

multiplication, respectively) defined on R such that the following conditions are 

satisfied : 

1. (R,  +) is an abelian group 

2. a ( b  - c) = (a b) c for any a, 4, c E R [associativity of a] 

3. a-(b+c) =a*b+a .cand  (a+b)-c=a-c+b-cfor  any a , b , c ~  R [distributivity 

of - over $1 

A ring in which the multiplication is commutative is called a commutative 

ring. An element e in a ring R such that e a = a e = a for each c E R is a unity 

eiement or multiplicative identity, and it is represented by 1. If R has a unity 

element, then it is said to be a unitary ring or a ring with unity element. 

2.4 Mappings 

Given that * and O are binary operations on the sets A and B respectively, a 

mapping f : A -. B preserves the operation of A if for al1 a, b E A we have 

Suppose A and B are two groups (or two rings). We cal1 h : A 4 B a homomor- 

pbism of A into B if h preserves the group operation (or ring operations + and 

-) of A. A homomorphism h is a monomorphfm if h is on-to-one (Le. if a # b 

implies that h(a) # h(b)). h is said to be a map onto B if {h(a) 1 a E A} = B. A 
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monomorphism ont0 B is called an isomorphism. If there is an isomorphism of A 

ont0 B, then we say that A and B are isomorphic and we write A cz B. 

2.5 Fields 

A field F is a commutative ring with unity element e # 0 such that F* = { a  E F 1 a # 

O) is a multiplicative group. 

Theorem The ring 2, is a field if and only if p is a prime number. 

~ m o f  Given a , b ~  2, we recall the fact that 

If Z, is a field, then by definition 2,' forms a multiplicative group. If p [a, then 

a $ 0  modp. This would imply that a E 2,' and that a-' exists. So if plab, and p ]a 

then pl(ab)a-l = b.  Therefore, p is prime. 

For the converse, suppose that p is prime. It is sficient to  show that 2,' 

is a multiplicative group, i.e. we only need to show that every x E z,' has its 

multiplicative inverse. For a, b E 2, and x E Z,*, 

since plz(o - b) + plx or pla - b and also x E 2,' implies that p lx. This shows that 

ZZ, = (xa 1 a E z,} = Z,, where xa = i for some a E 2, since there must be a neutral 

element i in z,. Therefore, each x E 2,' has a multiplicative inverse. 

Let F be a field. A subset K of F that is also a field under the operations of 

F (with restriction to K) is called a subfield of F. In this case, F is called an 
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extension field of K. If K # F then K is a proper subfield of F .  A field is called 

prime if it has no proper subfield. 

For any field F ,  the intersection Fo of al1 subfields of F has no proper subfield, 

and 

F~ z Q ( = the field of al1 rational numbers) 

or 

Fo cz Z,, where p is a prime number 

A field F is said to have characteristic 0 if Fo = Q, that is, if F  contains & as a 

subfield. A field F is said to have characteristic p if Fo z 2,. 

A finite field is a field that contains only finitely many elements. Every fmite 

field has a prime number as its characteristic 117, page 161. In a field F of prime 

characteristic p, for al1 a E F ,  

Let F be an extension field of a field K. F = K(a) if F is the smallest extension 

field (i.e. the intersection of al1 extension fields) of K which contains a. If F is a 

fini te field of characteristic p, then the multiplicative group F* = F \ {O) is cyclic 

and F = Z,(a), where a is a generator of the group F* (see [17, pp. 46-47] for the 

proof). a is called a primitive element of F .  

2.6 Vector Spaces 

Let K be a field and let V be an additive abelian group. V is called a vector space 

over K if an operation K x V + v is defined so that the following conditions are 

satisfied : 
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3. a@) = ( a -  b)u 

The elements of V are called vectors and the elements of K are called scdars.  

Let v be a vector space over a field K and let vl,v2,. . . ,vm E V .  Any vector in 

v of the form 

clVl+ c2V2 + + %vm 

where E K (i = 1,. . . ,m) is a Wear combination of vl, 9,.  . . ,vm. The set of all 

such linear combinations is called the iinear span of vl,  v2, . . . , v,  and it is denoted 

by span(vi,v2, .. .,v,). The vectors vl,vz, .. .,un are said to span or generate v if 

V = span(v1, 212, . . . , va). 

Let V be a vector space over a field K. The vectors V I ,  u2,. . . , v, E V are said to 

be linearly independent over K if there are no scalars cl, c l , .  . . , c, E K (not all O) 

that satisfy 

A set S = (ul,u2,. . . , h} of vectors is a basis of V if and only if al, w, . . . ,un are 

linearly independent and they span V. If S is a basis of v, then every element of 

v is uniquely represented as a linear combination of the elements of S. If a vector 

space V has a basis of a finite number of vectors, then any other basis of v will 

have the same number of elements. This nurnber is called the dimension of V over 

K. 
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If F is a n  extension field of a field K, then F is a vector space over K. The 

dimension of F over K is called the degree of the extension of F over K. 

2.7 Polynomial Rings 

Let F be an arbitrary ring. A polynomial of degree n over F is an expression of 

the form 

where n is a positive integer, the coefficients ai E F (O i 5 n), and x is a symbol 

not belonging to F, called an indeterminate over F. To evaluate a polynomial f (a) 

for some a E F ,  we replace every instance of the indeterminate x in f(x) with a. 

Given two pol ynomials 

f ( ~ )  = C aizi and g(x) = bi 

Given two polynomials 

f(x) = C a i x t  and g(x) = C b j s  

we define the product of f (x) and g(x) as 

f (z)g(z) = C ckxk, where ck = C aibj 

The ring formed by all polynomials over F with ordinary operations of addition 

and product is called the polynomiaî ring over F and denoted by F[x].  

In the following, we assume that F is a field. 
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Theorem (Division algorithm for F [ X I )  Let f (x) ,  g (x)  E F [x] be of positive degrees. 

Then there exist unique polynomials q(x), r(x) E F[x] such that 

where the degree of r(x) is less than the degree of g (x) [17, page 20). 

If r ( x )  is the zero polynomial (i.e. r(x) = O), then g(x) is said to be a divisor 

of f ( x ) .  A non-constant polynomial f (x) in F[x] is irreducible in F[x] if it has no 

divisor of lower degree thsn f ( x )  in F[x] .  An element a  E F is a root or zero of the 

polynomial f(x) E F[x] if f(a) = 0. 

Corollary An element a E F is a root of the polynomial f (x)  E F[x] if and only if 

x - a is a divisor of f (x) in F[x] .  

~t.oof In fact, let f (a) = O .  Since f ( x )  = ( x - a ) - q ( x ) + r ( x ) ,  then the degree of r(x)  

is less than 1, i.e. r(x)  = c E F. Hence, c = f ( a )  = O. Conversely, if f(x) = (x-a)-q(x) ,  

then f (a )  = 0. 

CoroUary A nonzero polynomial f (z) E F[xj of degree n can have at most n roots 

in F 117, page 271. 

2.8 Finite Fields 

A field of a finite number of elements is denoted F, or GF(q), where q is the number 

of elements. 

Proposition Let F be a finite extension of degree n over a finite field K .  If K has 

q elements, then F has qn elements. 
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Pmof In fact, let { a t , .  . . , an) be a basis for F as a vector space over K. Then 

every ,û E F is uniquely represented in the form 

where c, E K (i = 1, . . . , n) . Since each may be any of q elements of K, the total 

nurnber of such a linear combination is qn. 

Coroiiary If F is a finite field of characteristic p then F has exactly pn elements 

for some positive integer n [17, page 441. 

Therefore, every finite field is an extension of finite degree of a field isomorphic 

to Zp, where p is a characteristic of F .  

Theorem A finite field F = Fpm is an extension field of 2, of degree n and every 

element of Fpn is a root of the polynomial xpn - z over 2,. 

~ m o f  The characteristic of Fpn must be p. The set F* = F \ {O) forms a multi- 

plicative group of order pn - 1 under the field multiplication. For a E F*, the order 

of cg in this group divides the order of F*, pn - 1. Therefore, for every a E F*, we 

have a p n - l  = 1, i.e. apn = a. Since XP" - x has at most pn roots, Fpn consists of all 

roots of xpn - x over Zp. 

Example We can see that the field FT contains F2 (or 22). If we write the addition 

operation in F p  as the vector addition and mite the product of k and v (k,v E F*) 

as the scalar product kv of k E F2 and v E FZp, then FzV can be viewed as a vector 

space over F2 with a dimension of T. hthermore, let d denote the dimension 

of this vector space. A one twne  correspondence can be drawn between the 
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elements (vectors) of this d-dimensional vector space and the set of al1 d-tuples of 

elements in pz. Therefore, there must be 2d elements in this vector space. Since 

d = r ,  p2* is a vector space of dimension r .  

Let F,m be an extension of F,. Two elements a, E Fqm are conjugate over 

F, if a and p are roots of the same irreducible polynomial of degree m over F,. 

a,aq,aq2,. . . , aim-' are called the coqjugates of a E 4.. with respect to F, [l?, page 

491. 

Let Fqn be an extension field of Fq. A basis of F p  (a vector space over 4) of 

the form {a, an, d2, . . . , aqmA1 }, consisting of a suitable a E Fqm and i t s  conjugates 

with respect to Fq, is called a normal basis of Fqm over F,. For every extension 

field of finite degree of a finite field there is a normal basis. (See [17, page 561 for 

the proof.) 

2.9 Projective Coordinates 

Consider L = K"+~\{o), where K is a field. For A = (ao, al, . . . , a,), B = (bo, bl, . . . , b,) E 

L, define a relation A - B to mean that A, B and the origin O = @,O,. . . ,O) are 

colinear, that is, there is a E K such that 

Aai=bi  (2'=0,1, ..., n). 

This relation - is an equivalence relation, and defines a partition of L. The 

quotient set is a projective space denoted by P"(K). 

In particular, the projective plane is the set of equivalence classes of triples 

(x, Y, Z) (not al1 mmponents zero) where ( X X ,  X Y ,  XZ)  - (X, Y, 2) (A E K). Each 

equivalence class (x, Y,  2) is called a projective point on the projective plane. If a 
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projective point has z # O, then (x,y, 1) is a representative of its equivalence class 

where we set x = %,y = 5. Therefore, the projective plane can be defined by all 

the points (2, y) of the ordinary (affine) plane (denoted in projective coordinates 

as (x, y, 1)) plus al1 the points for which = O. 
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2.10 Cryptography 

In this section, we discuss some well-known means by which Aiice can send a 

private (Le. encrypted) message to ~ o b .  The information that Alice wants to 

&are with Bob is called the plaintext. The encrypted plaintext that Alice actually 

sends to  Bob is called the ciphertext. A cryptosystem consists of a flnite set of 

possible plaintexts, a finite set of possible ciphertexts, a finite set of possible 

keys, an encryption rule for encr ypting plaint ext into ciphert ext and a decryption 

rule for decrypting ciphertext back to plaintext. The general idea behind any 

cryptosystem is that Alice and Bob must s h m  a secret keyl which is used to 

encrypt a message, and without which the plaintext cannot be recovered. 

Private-key Cryptosystems If there is a way for Alice and Bob to secretly share 

a key K prior to the transmission of plaintext, they can use encryption and de- 

cryption rules defined by their secret value of K. Cryptosystems of this form are 

called private-key cryptosystems. One approach to sharing keys is the key agm+ 

ment protocoï whereby Alice and Bob jointly establish the secret key by using 

values they have sent each other over a public channel. 

In these systems, the decryption rule is identical to or easily derived Erom the 

encryption rule. Hence, exposure of the encryption rule to an eavesdropper will 

render the system insecure. 

Public-key Cryptosystems The security of private-key systems depends on the 

secret exchange or establishment of keys between Alice and Bob. However, in 

public-key cryptosystems Bob keeps his key (and his decryption rule) to  himself, 

' ~ h e  range of possible key values is d e d  the keyspace. 
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whereas the corresponding encryption rule is publicly known. Therefore, Alice 

can send encrypted messages without any prior sharing of keys, and Bob will be 

the only person able to decrypt the messages sent to him. 

2.10.1 The Discrete Logarithm Problem 

For some group G, suppose a, P E G. Solving for an integer x such that d = f l  is 

called the discrete logarithm problem (Dm). The DLP in 2, is considered difficult 

(or intractible) if p has at least 150 digits and p - i has at least one large prime 

factor (as close to p as possible). These criteria for p are safeguards against the 

known attacks on DLP. [33, page 1621 

Numerous cryptosystems base their security on the difficulty of solving the 

DLP. One such public-key cryptosystern is the El Gamd Cryptosystem in z,' 133, 

page 1631 which is presented in Figure 2.1. An attacker could decrypt Alîce's 

message if Bob's secret key as could be computed from ,û = c p ~  (mod p) and o 

which are publicly known. This is the DLP. 

The decryption rule can be explained as follows: 

The Diffie-Hellman Key Exchange [33, page 2711 also involves the DLP. It is a 

key agreement protocol that is described in Figure 2.2. An eavesdropper, Oscar, 

could intercept a a A  nzod p and a a ~  mod p; the security of this protocol is based on 

the (yet unprovenldisproven) assumption that computing K = au*aB mod p from 

those intercepted values is QS hahard as obtaining x from a" = f l  (i.e. the DLP) . Oscar 

could also attempt to derive aA or a~ from ual mod p and naB mod p, respectively, 

then compute the key just as Alice or Bob would, but such computations would 
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Let p be a prime such th& the DLP in Zp is intractible, and let a E Zp* be a primitive elernent. p 

and (Y are publicly known. Each user X chooses a secret key ax (an integer, where O 5 a 5 p-2) 

and publishes ,û where P G cvaX (mod p). 

For Alice to send her message x E Zp*,  she must choose a random number k E Zp,l and send 

To deccypt, the recipient Bob computes 

where aB is his secret key. 

Figure 2.1: The El Gama1 Cryptosystem 

be instances of the DLP. Therefore, this protocol is secure as long as the DLP is 

int ractible . 

There are several algorithms for solving the DLP, though none of them per- 

form in polynomial time. S hanks' algorithm and the Pohlig-Hellraan algorit hm are 

among the strongest attacks, and they are presented in Figure 2.3 and Figure 2.4, 

respectively 133, pp. 165-1701. In both cases, we assume that p is prime and that 

a is a primitive element of 2,. Given p E z,', our goal is to find x (O 5 x 5 p - 2) 

where ax = ,û (mod p ) .  
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Let p be a (large) prime and assume that cr is a primitive element of Zp. p and (Y are publicly 

known. 

1. Nice chooses a~ (O 5 a~ 5 p - 2 )  at random. 

2. Alice computes a u A  mod p and sen& it to Bob. 

3. Bob chooses as (O 5 a B  5 p - 2 )  at random. 

4. Bob cornputes a a B  mod p and sends it to Alice. 

5. Alice computes K = ( a a ~ ) a ~  mod p 

whereas Bob computes K = mod p 

In other words, both Alice and Bob ampute the same key 

K = traAaB mod p 

Figure 2.2: The Diffie-Hellman Key Exchange 
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2.10.2 Factoring 

There are also a number of cryptosystems whose security is based on the difficulty 

of factoring large integers. One well-known example is the public-key system called 

the RSA Cryptosystem [28, 331. It is presented in Figure 2.5. Note that Bob can 

compute a = b-l  mod @(n) from b by using the Extended Euclidean Algorithm [33, 

page 1191 presented in Figure 2.6. 

For x E Zn*, the decryption rule can be verified as follows: since a b  m i (mod 4(n)), 

we can represent ab as ab = k +(n) + 1 for some integer b 2 1. Then 

= x (ntod n) 

For RSA to be secure, it should be computationally infeasible to factor n = pq 

even when using the best factoring algorithms, i.e. p and q should be sufficiently 

large. If p and q are known, it is easy to comp~te #(n) = ( p  - l ) ( q -  1) and derive a. 

At present, it is recommended that p and q should each be primes having around 

100 digits [33, page 1261. However, it should be noted that there are also a number 

of attacks on RSA that do not involve the factoring of n at all. They generally 

exploit weaknesses in the setup of the cryptosystem, such as poor choices of a, 

or Bob's usage of the same n to communicate with other people. For further 

information, see [28, 331. 
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1. Compute amj mod p, where O 5 j 5 rn - 1 

2. Sort the rn ordered pairs (j, ami mod p) with respect to the second coordinates, producing 

a list LI 

3. Compute &-i mod p, where O 5 i 5 rn - 1 

4. Sort the rn ordered pairs (i, mod p) with respect to the second coordinates, producing 

a list L2 

5. Find ( j ,  y)  E Li and (i, y) E Lz, i.e. pairs with identical second coordinates 

6. Defhe x =log,p = m j  + i  rnod ( p -  1) 

Figure 2.3: Shanks' Algorithm for the DLP in Z' 
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Suppose we factorize p - 1 : 
n 

(the qi's are distinct primes). For each qi (1 5 i 5 n) we compute ao, . . . , a,- 1 where 

log, ,O rnod qiq = aiqik 

using the pseudo-code below: 

2. set k = o  and Pk = p  

3. while k _< q - 1 do 

(b) find j S U C ~  that 6 = yj 

(e) k = k + l  

Findly, we use the Chinese Remainder Theorem t o  solve the system of congruences 

log, /3 mod qp (1 5 i 5 n). This gives us log, B modulo JJF='=, qici, i.e. log, /3 mod (p - 1). 

Figure 2.4: The Pohlig-Hellman Algorithm for the DLP in Zp 
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- -  - -- 

Bab secretly chooses two primes, p and q, and publishes n = pq. Next, he randomly chooses 

b such that b and #(n) = ( p  - 1) (q - 1) are relatively prime. Bob cornputes a such that 

ab 1 (mod 4(n)). a i s  his secret key, whereas b is revealed to the public. 

Alice encrypts her plaintext message x E Zn by computing 

and sen& y to Bob. 

Bob retrieves x by computing 

ya rnod n 

Figure 2 .5  The RSA Cryptosystem 

TQ =n, bo = b, to = O ,  t = 1 

r = TQ div bo 

whiie r > O do 

temp = to - 121 x t 

to = t ,  t = temp, = bo, bo = r 

r = no div bo 

If 4 # 1 then b has no inverse modulo n, otherwise b-' = t mod n. 

Figure 2.6 The Extendeci Euclidean Algorithm for computing b-l modulo n 
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Elliptic Curves 

Now we are ready to discuss elliptic curves and their various properties. The 

notation we present here will apply to the rernainder of this thesis. 

3.1 Introduction to  Ellipt ic Curves 

We begin with the definition of an elliptic curve. 

Let K be a field. For example, K can be the h i t e  (extension) field 4. of F,, 

the prime field 2, where p is a (large) prime, the field ït of real numbers, the field 

Q of rational numbers, or the field c of complex numbers. 

Definition An elliptic curve over a field K is defined by the Weierstrass equation: 

Y2 + alxy + a331 = x3 + a2x2 + a4x + as (3-1) 

where al, as, az, a4, as E K. 

The elliptic cuve E over K is denoted E(K) .  The number of points on E (the 

cardinality) is denoted #E(K)  or just #E. 



For fields of various characteristics, the Weierstrass equation can be trans- 

formed (and simplified) into different forms by a linear change of variables. We 

present the equations for fields of characteristic # 2,3 and of characteristic 2. (The 

equation for a field of chsracteristic 3 was omitted since it is not central to the 

discussions in the remaining chapters.) 

[Characteristic # 2,3] Let K be a field of characteristic # 2,3, and let x3 + az + b 

(where a, b E K) be a cubic polynomial with the condition that 4a3 + 27b2 # 0 (this 

ensures that the polynomial has no multiple roots) . An eiliptic curve E over K is 

the set of points (x, 21) with x, y E K that satisfy the equation 

and also an element denoted O and called the point at infinity (to be described in 

greater detail below ) . 

[Characteristic 21 If K is a field of characteristic 2, then there are two types of 

elliptic curves: 

An eiiiptic curve of zero j-invariant1 is the set of points satisfying 

(where a3,a4,@ E F ~ ,  a3 # O) and 0, the point at infinity. (It does not matter in 

this case whether the cubic on the right side of the equation has multiple roots or 

not .) 

An emptic cuve of nonzero j-invariant is the set of points satisfying 

' The J-invariant of E over K is an dement of K determinecf by al, a l ,  as, a4 aud as. See [32, pp. 48-52) for 

further detail. 



(where al ,  a6 E 4, a6 # O )  and 0, the point at infmity. 

The Point at Idnity The iine at idnity is the collection of points on the projec- 

tive plane for which Z = O. The point at inanfty is the point of intersection where 

the y-axis and the line at infinity meet. More precisely, the point at infinity is 

(O, 1, O) in the projective plane (the equivalence class with X = = O). 

An elliptic curve E over a finite field K can be made into an abelian group by 

defining an additive operation on its points. The operation is defined in the next 

section. 

3.2 The Rules for Addition 

Given two points P, Q E E(K) we define a third point P + Q so that E(K) forms an 

abelian group with this addition operation. If P # Q, then the line connecting P 

and Q intersects E(K)  in a uniquely determined point which we denote as PQ. If 

P = Q then the tangent of E(K)  at P gives rise to the point PQ. It is tempting 

to take PQ as P + Q, but it would not define a group structure since there is no 

neutral element in this case. Therefore, we find a point of intersection where E(K) 

meets the line connecting PQ and the point at infinity O, and cal1 this point P+Q. 

By joining O to a point PQ on the a fbe  part of E(K) ,  we mean that a vertical 

line is drawn through PQ. A vertical line intersects E(K) at 3 points: (x, y), (x, -y) 

and 0. Hence, the point at infinity O serves as the additive identity element and 

P + Q + PQ = O or P + Q = -PQ, the inverse of PQ. Figure 3.1 illustrates these 

concepts on the elliptic curve y2 = x3 - x, plot ted in the xg-plane2. 

2 ~ h e  cunre was drawn using Gnuplot v3.5 and Xtig v3.1 





For each of the three cases of elliptic curves described above, the algebraic 

formulas which represent P + Q are easily derived from the following geometric 

procedures3 : 

The Addition Formula for 3.2 The inverse of P = (xl, yl) E E is - P = (xl, -M) . If 

Q # -P,  then P + Q = ( ~ 3 ~ 9 3 )  where 

where 

I f P # Q  

The Addition Bbrmula for 3.3 The inverse of P = (xl, pl) E E is - P = (xl, yl + a3). 

If Q # -P,  then P+ Q = (x3, y3) where 

3~ee [32, pp. 55-63] for further discussion of these addition formulas. 
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I f P = Q  

The Addition Formula for 3.4 The inverse of P = (xl, pl) CE E is - P = (zi, yi + si). 

If Q # - P ,  t hen P + Q = (2.1,~~) where 

Theorem The addition operation defined above turns E(K)  into an abelian group 

that has O as the identity element [32, pp. 55-57]. (This is not too difficult to 

prove except for the step where we must show associativity.) 

3.3 The Discrete Logarit hm Problem 

Exponentiation and Logarithm Since an euiptic curve E is made into an abelian 

group by an additive operation (as opposed to a multiplicative one), "the expo- 

nentiation of a point on E" actually refers to repeated addition. Therefore, the 

ith power of a E E is ith multiple of a, Le. ,û = ai = ia. The iogarithm of /3 to the 

base cr would be i, the inverse of exponentiation. 
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The Discrete Logarithm Problem For some group G, suppose a,P E G. Recall 

that in the discrete logarithm problem (DLP) we solve for an integer x such that 

ax = ,û. Analogously, in the elliptic curve discrete logarithm problem (EDLP) we 

solve for an integer x such that xa = /? given a, ,û E B. For the EDLP over E(F,) to 

be intractible, it is important to select an appropriate E and q such that #E(F,) 

is divisible by a large prime (of more than 30 digits [22]) or such that q is itself a 

large prime [23]. The elliptic curve cryptosystems described in the next chapter 

are dependent on the presumed intractibility of the EDLP. It is believed that the 

EDLP is more intractible than the DLP since some of the strongest algorithms 

for solving the DLP cannot be adapted to the EDLP. 

3.4 Computing #E(K)  

Elliptic curve cryptosystems generally involve the selection of a suitable elliptic 

curve E and a point P on E called the base point. To learn more about the 

structure of the group E(K)  (hence to make a wise selection), it is useful to know 

the exact value of #E(K) . We will look at the case when K is F,, a finite field of q 

elements. The following results are the best known methods to date for computing 

#E- 

Hasse's Theorem Let N be the number of points on an elliptic curve over F,, a 

finite field with q elements. Then 

Stated in another way, Hasse's Theorem gives the estimate #E(F,) = q+ î - t  where 

Itl 5 2 4 %  [9, 121 



The Weil Coqfecture In 1949, Weil made a series of conjectures in a general 

context regarding algebraic varieties (geometric objects) defined over finite fields. 

For the case of elliptic curves, Deligne proved the conjectures (now a theorem) in 

1973, although the particular conjecture we present below was proved for elliptic 

curves in 1934 by Hasse [12, 321. 

Let t = q + 1 - #E(Fq). Then 

where i - tx + qx2 = (1 - a+- PX). In other words, it is possible to compute 

#E(Fqk) given #E(Fq). [IO, 201 

Schoof9s Algorithm In 1985, Schoof presented a deterministic algorithm that 

could compute #E(I?,) (its precise value; not a bound or an estimate) in o(1og9 q) bit 

operations (where F, is a finite field of characteristic # 2,3) [29]. This deterministic 

polynomial time algorithm is the fastest to date4, and given few alternatives, it 

is the best choice for computing #E. But in practice, it is awkward and costly to 

implement, particularly when q is large. The implementation of Schoof's algorithm 

is discussed at the end of Chapter 4. 

These are the basic properties of elliptic curves that provide the seed for the 

concept of elliptic curve cryptosystems. 

*Some improvements have been suggested very recently for Schoof's aigorithm in (161. 



Chapter 4 

Elliptic Curve Cryptosystems 

Finally, we are ready to discuss eWptic c u v e  cryptosystems. Unlike earlier c r y p  

tosystems, an elliptic curve cryptosystem works with a finite abelian group formed 

by the points on an elliptic curve over a finite field. 

4.1 History 

In 1976, Diffie and Hellman [7] introduced a cryptographic protocol whose security 

over insecure communication charnels was based on the presumed intractibility 

of the DLP. In other words, they had introduced the notion of a trapdoor oneway 

funetion or TOF. A TOF is easy to evaluate but computing the inverse without a 

secret "trapdoor" is an intractible problem. In 1985, Lenstra succeeded at  using 

elliptic curves for integer factorization. This resul t suggest ed the possibili ty of 

applying elliptic curves to public-key cryptosystems. 

Miller and Koblitz were the first to propose cryptosystems that employed ellip 

tic curves. They did not invent new cryptographic algorithms but they were the 
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fist to implement existing public-key cryptosystems using elliptic curves. (Miller 

proposed an analogue of the DiffieHellman key exchange protocoll in 1985 [21]. 

Koblitz presented analogues of the El Gamal and Massey-Omura cryptosystems 

in 1987 [l3] .) 

The first analogue of the RSA scheme and three new TOFs based on elliptic 

curves were introduced in 1991, by Koyama, Maurer, Okamoto and Vanstone [14]. 

(The analogue of RSA is computationally less efficient than RSA - operating at 

1/6 the speed of RSA. Its security, as with the original RSA scheme, depends 

greatly on the difficulty of integer factorization. However, the analogue is more 

secure than the RSA scheme in terms of attacks that are not based on factoring. 

For example, the analogue is secure against the Low Multiplier Attadc which can 

otherwise exploit RSA's weakness when the same plaintext is encrypted with 

several distinct moduli [14] .) 

Around the same time, Kaliski observed that elliptic curves codd offer one- 

way functions that appear to require exponential time for inversion [Il], while 

Menezes, Okamoto and Vanstone discovered the MOV reduction method for solv- 

ing the EDLP in specific cases. Soon after, Miyaji found the conditions for an 

elliptic curve to be immune to the MOV attack [23] and proposed the real-world 

application of elliptic curves to the signature and identification schemes of smart 

cards [22]. In 1993, Demytko presented a new analogue of RSA based on elliptic 

curves over a ring 2, that overcame the limitations of earlier versions [6], and 

Menezes and Vanstone proposed hardware implementations that would improve 

elliptic curve computations over finite fields [20]. Recently, the notion of con- 
- 

' ~ h e  anaioguô of the DiffiecHellman scheme appears to be around 20% faster than the DifbHeliman key 
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structing elliptic curves for a cryptosystem (instead of randomly choosing one) 

has become a serious concern, as can be seen in [5]. 

4.2 Analogue of the El Gamal Cryptosystem 

Since "elliptic curve cryptosystem" is a generic term for any cryptosystem that 

works in the domain of elliptic curves, we will illustrate the meaning of that term 

by focusing on one particular example: the analogue of the El Gamal cryptosys- 

tem. 

Since the El Gamal protocol (see Figure 2.1) can be generalized to work in an 

arbitrary finite cyclic group, the analogue implemented on an elliptic curve (as 

proposed by Koblitz in 1987) over the field 2, can be described as in Figure 4.1 

[12, 131. We discuss imbedding and the computation of the multiple kP E E(Zp) 

below . 

When we imbed plaintext on an elliptic curve E, we are representing the plain- 

text as points on E so that we may perform our computations in E. Note that 

imbedding is performed prior to encryption (this is not part of the encryption step, 

as demonstrated in the analogue of El Gamal). 

Example Here is one probabilistic method of imbedding2 a plaintext m on E&), 

where p is a prime such that p t 3 (mod 4). Suppose that E(Zp) is given by 

equation 3.2 and the plaintexts m are integers such that O m < p/10ûû - 1. 

Appending three digits t o  m will produce a value x such that iûûûm 5 x < lûûû(m + 
1) < p. We try appending different digits until we find an x such that f ( x )  = P+az+b 

2 ~ h i s  is a modified version of an example presented in [13]. 
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We are given a prime field Zp, an elliptic nvve E(Zp),  and a base point P E E, al1 of which are 

fixecl and publicly known. Each user X of this system chooses a random integer ax which will 

be his/her own secret key, then computes and publishes the point ax P. 

Suppose Alice wishes to send a message m (an integer, let's say) to Bob. First, she imbeds the 

value rn onto the elliptic curve E, i.e. she represents the plaintext m as a point Pm € E. Now 

she must encrypt Pm. Let a~ denote Bob's secret key (50, asP will be publicly known), Alice 

first chooses a random integer A: and sen& Bob a pair of points on E: 

To decrypt the ciphertext, Bob computes 

Figure 4.1: Analogue of the El Gama1 Cryptosystem 
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is a square in 2, and y (where f ( x )  = y2 rnod p )  satisfies y f - 1 rnod p. Then, we 

define the imbedded point corresponding to m as 

Let s = f (s) = r3 + az: + b EE y2 mod p. Then Pm is a point on E(Zp) (i.e. rw t 
y rnod p)  for the following reasons: 

Since p = 3 (mod4), we can mite p = 4k + 3. Then 

If 9 E O or y = 1 rnodp, then clearly 2- , y2kf2 = y rnod p. Otherwise, let rn be the 

order of y modp in the group 2,'. By Fermat's Theorem, 

hence m14k + 2 = 2(2k + 1). Since y2 $ 1  rnod p, it follows that m12k + 1. Therefore, 

Y2k+1 = - 1 mod p. Thus, by Fermat's Theorem again, 

We can easily retrieve a plaintext m from a point Pm E E(Zp), by simply dropping 

the last three digits from the x-coordinate of Pm. f (2) is a square for roughly ; 
of al1 x 112, page 1631 since there is an qua1 number of quadratic residues and 

quadratic non-residues rnod p. Therefore, the probability that f (x) will not be a 

square is very small (around & since ioûûm 5 x < 10ûû(m + 1)). 

kP E E(Zp), where k is an integer, can be computed by adding the base point 

k times (a simple but tedious approach), or it could be found in O(iog klog3 p) bit 

operations by using the doubleand-add algoxithm3 which is described in Figure 4.2: 
3analogous to the square-and-rnultlply algorithm for raising an element to the k-th power 
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Let ko, kl , . . . , km- denote the binary digits of k, such that k = k o ~ + k 1 2 ~ + k ~ 2 * + -  km- 1 2 ~ ~ '  

(Le. )ci = O or 1, and kmdl = 1 is the most significant bit). Set P, = ni1 and Py = P. 

for i = O t o m -  1 

if ki = 1 

if Pz = nil then P, = Pu 

else Px = P, + Py 
double Pu, Le. set P, = P, + Pu 

The resulting value of Px is kP. 

Figure 4.2: The Double-and-Add Algorithm 

Security If an eavesdropper, Oscar, can solve the EDLP, then he could deter- 

mine Bob's secret key CQ from the publicly known information P and UBP and 

consequently read Alice's message. Clearly, the security of the analogue system 

relies heavily on the intractibility of the EDLP, just as the original El Gama1 

cryptosystem relies on the intractibility of the DLP. In turn, the intractibility of 

the EDLP clearly depends on the choie of the elliptic cuve E and the base point 

P E E. Methods for selecting a suitable E and P are analysed at the end of this 

chapter . 

Unlike some other cr ypt osys tems (the analogue of the Massey- Omura system, 

for example), this scheme has the advantage that the value of #E&) is not re- 

quired in its computations. However, the latter cryptosystem has a message ex- 

pansion factor' of 4, as opposed to the message expansion factor of 2 of the former 

4 ~ h i s  is the ratio of the number of field elements sent as the ciphertext to the number of field elements in the 



cryptosystem. 

A variant of the El Gamal analogue is the Menezes-Vanstone Eliiptic Curve 

Cryptosystem [20, 331. The difference between the Analogue of El Gamal pre- 

sented above and this scheme is that Alice will "mask" her plaintext instead of 

"imbedding" it (this will be explained later in greater detail). Figure 4.3 describes 

the Menezes-Vanstone Cryptosystem. 

The decryption rule can be explained as follows : since y0 = kP, Bob can 

compute 

a B  y0 = aB (kp) = k(aBP) = (cl,  cz) 

and then 

Ylcl-l  = (c~xl)cl- '  = 11 mod p 

Y ~ Y -  l E ( ~ 2 x 2 ) ~ ~ - 1  E x2 m0d p 

4.3 Sample Implementation 

We have chosen to implement the Menezes-Vanstone Elliptic Curve Cryptosystem 

due to the conveniences that stem from "masking" vs. "imbedding" plaintext 

(explained in the next section). We use the elliptic curve E defined by 

over the prime field 231 (Le. p = 31). Therefore, E is over a field of characteristic 

# 2,3 as in equation 3.2. We dso h e d  the base point to be p = (9,io). The 

underlying field of E is not large in cardinality, but we have used it for the sake 

of simplicity. As it turns out, # E ( Z ~ ~ )  = and P is an element of order 34 
origid plaintext. 
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Let E be an elliptic curve over the prime field Zp (p > 3) SU& that E contains a cyclic subgroup 

H in which the EDLP is intractible. Zp, E(Zp) ,  and a base point P E E (preferably a generator 

of E), are fixed and publicly known. Each user X chooses a random integer aX which will be 

his/her own secret key, then cornputes and publishes the point ax P. 

Suppose Alice wishes t o  send a m a g e  M = (XI, 22)  E Zp* x Zp* to Bob. Let ae denote Bob's 

secret key. AIice chooses a random integer k E ZIHl and sends 

where (ci, c2) = k(aBP).  

To decrypt the ciphertext, Bob cornputes 

where a ~ y o  = (cl, c2). 

Figure 4.3: The Menezes-Vanstone Elliptic Curve Cryptosystem 
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(these values were drawn from [33, page 2011, though they are not required in 

the operation of this particular cryptosystem). Al1 the points in E are listed in 

Table 4.1. 

Table 4.1: The Points in E(&) 

Since we are masking plaintext instead of imbedding it, the plaintext space 

is z ~ ~ *  x &*. Each plaintext ( x l ,  x2) represents two alphabetic character~ in this 

case, and "a" corresponds to 1, "b" to 2, 'W' to 3, . . ., "z" to 26 (O is avoided since 

it is not allowed in the plaintext). Inverses modulo p were computed using the 

Extended Euclidean Algorithm that was described in Figure 2.6. Multiples kP of 

a point P E E were computed using the double-and-add algorithm. 

A sample output of the program GAMAL.C5 is shown in Figure 4.4. Note 

that we have printed out each important step in the encryption and decryption 

process. The lines of input are marked with % . 

=The source code for this implementation is provided on the World Wide Web at ftp://ftp 

cgrl.cs.mcgill.~pub/crypto/saeki/gamal.c. It waa written in C and tested using Turbo Cf+ 01990, 1992, 

version 3.0. 
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Bob: Enter your secret key 

X 12 

Bob's public key = (28,131 

Alice: Please enter your message 

% crypto 

Alice: Chose k=7 

Alice: Now sending ciphertext((6.241, 26, 23) 

Alice: Chose k=29 

Alice: Now sending ciphertext((25,16), 11, 30) 

Alice: Chose k=1 

Alice : Now sending ciphertext ( (9,101 , 2, 9) 

Decryption starting 

Bob: Reading Alice's message 

crypto 

Figure 4.4: Sample Output of GAMALX 

The encryption and decryption steps are straightforward and easy to imple- 

ment. Our program could be used with any elliptic cuve defined by equation 3.2, 

and it could also be adapted to other types of elliptic curves. The program's 

performance could also be improved by applying the various techniques described 

in the next section. 

However, this alone is not enough to ensure the security of the cryptosystem. 

To preclude any attacks, the program should be preceded by an algorithm for 
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selecting an elliptic curve with secure properties, i.e. a curve where #E has a large 

prime factor or is itself a large prime. Therefore, we are compelled to compute 

the value of #E, as discussed (more thoroughly) in section 4.4.34 

t It should be noted that the El Gama1 algorithm is unpatentecl but Public Key Partners 

(PKP) dubiously considers it to be covered under the Diffie-Hellman patent6 which will expire 

on April 29, 1997, making it the first public-key cryptography algorithm (for encryption and 

digital signatures) unencumbered by patents in the United States.128, page 4791 

'~ellman, M.E., Diffie, W., Merkle, R.C., “Cryptographie Apparatus and Method," U.S. Patent #4,200,770, 

29 Apr 1980. 
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4.4 Analysis of Techniques 

Let us now analyse some of the better known techniques that can enhance the 

implementation and security of an elliptic c u v e  cryptosystem. We shall draw 

examples from the sample implementation above. 

4.4.1 SoftwareIHardware Optimization Techniques 

There are various ways of simpli&ing the computations involved in an elliptic cuve  

cryptosystem. These tricks and shortcuts can speed up the computations or reduce 

storage requirements for intermediate results. Unfortunately, one improvement 

cornes at the expense of the other, so one must weigh the importance of speed 

versus space before irnplementing these techniques. 

Imbedding vs. Masking Plaintext There are basically two ways of representing 

plaintext in an  elliptic curve cryptosystem. Imbedding (or "ernbedding" ) plaintext 

on an elliptic curve E is one way. The other way is to use an elliptic curve to  

"mask" the plaintext. 

Imbedding We face three key issues when choosing to imbed our plaintext. The 

first is that users will want a simple system of imbedding such that the relationship 

between the plaintext and its corresponding point on the elliptic curve is clear. 

It should be easy for any authorized user to convert back and forth between the 

plaintext (integers) and the coordinates of the points on E.  Secondly, when we 

make these conversions from plaintext to  points on E, we need a fast, systematic 

way of generating these imbedded points on E. And finally, there aren't any 

deterministic polynomial time algorithms for imbedding a lave number of points 
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on an srbitrary elliptic curve E over ~, . [12,  page 1631 

Masking To mask an ordered pair of elements (ml,m2) with an elliptic curve 

means to alter the pair by multiplying ml and nt, with the x and a, coordinate, 

respectively, of some point on the curve. In the case of the Menezes-Vanstone 

Elliptic Cuve Cryptosystem, we are masking the pair of plaintexts M = (x1,x2) 

with the point (Q, q) = k(asP) .  Although as P is publicly known, the maslsing point 

is protected fkom eavesdroppers by the secret value R, which thereby protects the 

plaintext as well. Consequently, plaintexts and ciphertexts are not required to be 

imbedded as points on an elliptic curve: they can be any ordered pair of (nonzero) 

field elements. In the sample implemention, the plaintext space is Z31* x 2& 

allowing 900 = 30 x 30 plaintexts. If we had used an imbedding algorithm, we 

would be restricted to just #E(&) = 34 plaintexts. Masking instead of imbedding 

kept the cryptosystem simple, and also saved us some valuable computing time. 

Masking does not appear to be any more or less secure than imbedding since both 

methods rely on the EDLP for security. [20, 331 

Brie vs. Projective Coordinates Projective coordinates (or homogeneous coordi- 

nutes) have the distinct advantage of being able to explicitly represent the point 

at infînity as (O, 1, O). They also make it possible for us to avoid field inversions 

(divisions) in our calculations (an example will follow). This is particulary useful 

since - at present - field inversions are considerably more expensive to com- 

pute than field multiplications [20, 301. Special techniques are being developed 

for calculating inverses or "reciprocals" more efficiently (this is the subject we will 

present next), but for now, it would be advisable to avoid inversions as much as 

possible, making good use of the properties of projective coordinates [6, 201. 
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~xaff lpb Suppose we have an elliptic curve E over a finite field K of characteristic 

# 2,s. Therefore, this is an elliptic curve defined by equation 3.2. We s h d  

consider addition and subtraction in the field K to be negligible cornputations 

since they take significantly less time than multiplication and division. For the 

sake of simplicity, multiplying a field element with a small constant (such as 2, 3, 

4 or 8 in this example) will also be considered negligible [22]. 

Recall the rules of addition for (3.1). Given P = (xl, yl), Q = (x2, y2) where P, Q E 

E(K)  and P,Q # 0, the addition formula for computing P + Q = (x3,y3)  involves 

two field multiplications and one inversion when P # f Q, and three multiplications 

and one inversion when P = Q. To rewrite the addition formula in the projective 

plane, let P = (&,YI,&), Q = (&,&,&) and P + Q = (&,Ys,&). Then we wiU 

have: 

x3 = v7v12 

= ~ 6 ( ~ 1 0 ~ 3  - ~ 1 2 )  - vllvl 

2 3  = 2111215 

where the following values are computed and saved in this rough order: 
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I f P = Q  

where the following values are computed and saved in this rough order: 

Step 3 vg = v4vg, vlo = vs2 

Step 4 vil = vlo - Sv7 

If we follow the above steps, the formula for P # fQ will consist of 15 mul- 

tiplications and no inversions, whereas the formula for P = Q will require 12 

multiplications and no inversions. 

The resulting projective coordinate (X3, Y3, 5) can be converted back to a 5 e  

coordinates by dividing each coordinate by Z3 (or by multiplying the inverse of 

to each coordinate). In effect, we have managed to avoid all but one inversion 

that is required at the end of al1 our cornputations on the projective plane. 

Note that our count of multiplications in a formula depends on how the for- 

mula is written and which intermediate results we choose to store in memory. 

For instance, if we did not Save the value of during our calculations in affine 

coordinates, we would have to perform three times as many inversions in a single 

addition operation. Clever substitutions and frugal storage of intermediate results 
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have a substantial effect on computing speed. However, the need to store so much 

data is also its weakness: this technique offers its speed at  the expense of storage 

space. 

Faster Inversions For a long time, many have placed emphasis on the heavy 

computational costs of field inversions and have gone out of their way to avoid 

inversions by any means possible. But as we saw in the example above, bypassing 

an inversion leads to a dramatic increase in the number of multiplications. Clearly, 

there cornes a point when the cost of al1 the extra multiplications surpasses the 

cost of computing a reciprocal. Recent improvements in the area of fast field 

divisions have highlighted this issue and have been slowly restoring the appeal 

of reciprocals. Schroeppel, Orman, O'Malley and Spatscheck[30] have proposed a 

"relatively fast algorithm for field inversion" that takes approximately three times 

as long as a multiplication. This is considerably faster than the performance of 

previous algorithms. 

The new algorithm is aptly named The Aimost Inverse Algorithm. Given an 

element u from the field 4, it fbst computes /3 and k such that a$ i uk mod q 

using a combination of known algorithms. Then it uses a smart strategy of bit 

operations to divide uk out of & thus hd ing  the reciprocal of a. The proposed 

algorithm was written for the field 5 1 6 6  (specifically, a polynomial extension field) 

and it would be interesting to see if and how it applies to other fields. 

Montgomery's Method The x coordinate of a point on an elliptic curve is sur- 

prisingly malleable and informative. Two ideas have sprung fkom the interesting 

properties of the x coordinate: 



CHAPTER 4. E L L P T K  CURVE CRYPTOSYSTEMS 57 

1. rewriting part of the addition formula using only the x coordinates of points, 

and 

2. reconstructing the value of the y coordinate using only x and a single bit from 

Y* 

The former is referred to as Montgomery's Method. The latter concept will be 

discussed next . 

An idea by Montgomery was adapted to the addition formula of elliptic curves 

in [ZO]. Given an elliptic curve E, P = (xl,yl) and Q = (x2 ,g2 )  where P,Q E E 

and P # -9, and supposing that P + Q = ( x 3 , ~ ) ,  then Montgomery's Method is 

to express xs using only x i ,  xz and x4 where P - Q = (x4, gr). Note that P - Q is 

the addition of p and -Q. Unfortunately, this technique does not apply to every 

elliptic curve, since it depends on the equation of the curve E and the definition 

of -Q with respect to Q E E. According to [20], it works well with "supersingular" 

curves over Fzl (see equation 3.3) of the form g2 +y = x3 + a4x + m, resulting in the 

expression 
1 

x3 = x4+ 
(31 + ~ 2 ) ~  

when P # Q. Not only is x3 expressed using only the x coordinates of points, but 

it can also be calculated using only one inversion. 

Reconstructing the QI coordinate Recall that the Menezes-Vanstone Elliptic Curve 

Cryptosystem masked its plaintext and had a message expansion factor of 2. Since 

it is possible to recover the 9 coordinate of a point on an elliptic curve with just the 

x coordinate and a single bit from y (explained in [20]), we can reduce the message 

expansion factor of the Menezes-Vanstone scheme down to 3. More specifically, 
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we only need to publish and send the x coordinate of the public key a x p  (using 

the notation from before). Therefore, if we use kPx to denote the 2 coordinate of 

kp, then = kPx will suffice, where (yo, yi, 9 2 )  is the ciphertext that Alice sends to 

Bob. 

If Montgomery's Method applies, then it could be combined with this recovery 

technique to limit most (or all) calculations to the x coordinate alone. Focusing 

on the x coordinate of points will help reduce the complexity of computations and 

also Save storage space. Demytko's new analogue of RSA [6] performs encryption 

and decryption on the x coordinate only, using projective coordinates and a new 

scheme to his advantage. Other schemes can benefit from the same approach [22]. 

Hardware Implementatlons Menezes and Vanstone [20] have noted that arith- 

metic in the finite field F27 is especially suitable for hardware implementation. An 

arithmetic processor efficiently designed to compute in Fp could readily apply to 

implementations of elliptic curve cryptosystems over the same field. Hence, it is 

worth examining some of the properties of the field F2r. 

Looking at F27 as a vector space of dimension T over F2 (recall the example from 

Chapter 2), the elements of FZp can be represented as binary vectors (or strings) 

of length r, given a suitable basis of this vector space. This makes it easy to store 

data in hardware (ideally in shift registers of length T ) .  Addition in pz, c m  be 

performed in one clock cycle by bitwise XOR-ing the operands. 

If we use a normal basis7, then by definition it would have the form 

'~onstructing a special class of normal basis caiied an optimal normal basis [26] could further minimize 

hardware complexity. 
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for some appropriate P E Fr. Then any o! E Fr can be expressed as 

where ai E Fz. Conveniently, 

Therefore, squaring an element in F2r is merely a matter of rotating its vector 

representation, which can be done in one clock cycle. 
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4.4.2 Surnmary of Attacks 

Just like any other encryption system, elliptic cuve cryptosystems are by no 

means immune to atttack. However, the effective attack algorithms - al1 of which 

attempt to invert the EDLP in subexponential time - are few in number, and 

those that perform at practical, usable speeds are fewer still. From a cryptanalytic 

view , elliptic cuve cryptosystems are generally very secure. 

The MOV Muction The most effective and important attack to date is the 

MOV reciuction (also called the MOv attack), introduced by Menezes, Okamoto 

and Vanstone in 1991 [19]. Essentially, it is a method for reducing the elliptic 

curve logarithm problem in E(F,) to the discrete logarithm problem in Fqr for 

some integer k - it exploits an isomorphism between the elliptic cuve and fmite 

field when gcd(#E(F,), q) = 1. It is the first subexponential algorithm for solving the 

EDLP when k is small. Consequently, its effectiveness is limited to a special class 

of elliptic curves called supersinguh curves (such as those defined by equation 3.3) 

since it has been shown that k 2 6 for these curves. For most other curves (called 

nonsupersinguiar curves), k is too large for the MOV reduction to apply. (Both 

classes of curves d l  be examined in greater detail in the next section.) 

Miyaji [23] observed that the reduction applies well to elliptic curves defined 

over F*. But it was also proposed that elliptic curves defined over F, (where 

p is a large prime) are immune to the attack. Furthermore, Miyaji proposed 

a construction for such an elliptic curve that would make the reduction of the 

EDLP to the DLP impossible. Therefore, not all elliptic curve cryptosystems are 

susceptible to the MOV attack. 



Other Attacks Before the MOV reduction was proposed in 199 1, the best attacks 

were Shanks' "baby-step giant-step" method, which works in exponential time (in 

log # E ) ,  and a modified version of the Pohlig-Hellman attack, whose rmning time 

is proportional to  the square root of the largest prime factor of #E [21]. They 

are algorithrns for solving the DLP in the prime field 2, that can be extended 

t o  the EDLP. A combination of both will also serve as a good "general-purpose" 

algorithm for the EDLP [20]. Another known attack on the EDLP is the Pollard 

pmethod (221. 

It is possible, however, to thwart the Pohlig-Hellman attack. To avoid an 

easy solution to the EDLP, we want an elliptic curve E over F, that contains a 

cyclic subgroup H in which the EDLP is intractible, i.e. we want the order of the 

subgroup (or # E )  to be divisible by at least one large prime factor (of more than 

30 digits [22]). This technique applies to any finite abelian group. 

Various other attacks have proven to  be ineffective against elliptic curve cryp- 

tosystems. Most notably, there are no known adaptations of the Index Calculus 

attack (which is a powerfd algorithm for solving the DLP) to  the EDLP. The 

analogue of the Diffie-Hellman key exchange protocol is apparently immune to  

the attack methods of Western, Miller, and also Adleman's subexponential-time 

attacks [21]. Demytko's analogue of RSA is safe from homomorphLsm attacks 

[6]. The schemes proposed in [14] are believed to  be immune to homornorphism 

attacks, isomorphism attacks and low multiplier attacks. 
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4.4.3 Choosing an Elliptic Curve 

After reviewing the attacks we have mentioned, it should be apparent that the 

choice of the elliptic curve E and its underlying field K has enormous impact 

on the speed, efficiency, key length (Le. practicality) and security of any elliptic 

curve cryptosystem. Although E, K and a base point P E E are all fixed and 

publicly known prior to the encryption process, the task of selecting them for a 

given scheme is the most important step. We will explore some of the choices 

here. 

The Field K 

Let us review the influence that K has on the group structure of E(K)  and on any 

cryptosystem over E(K) . 

In the first place, an elliptic curve E over a finite field forms an abelian group, 

which makes it useable in cryptosystems. We have seen that certain fields such 

as F~ are amenable to hardware implementations and fast field operations. In 

fact, computations such as doubling a point (Le. computing P + P, P E E) using 

field arithmetic in Fzr can be "fiee" (of negligible cost) if the field elements are 

represented by a normal basis. For example, the formula for doubling a point 

P = (xl, pl) in an elliptic cuve defined by y2 + 3 = x3 can be simplified to 

(because a3 = 1, a* = Q, = 0, and FT has characteristic 2). Since the addition of 

field elements and squaring a field element each take only one clock cycle, they are 

considered to be "hee" computations. Therefore, (x3, y3) = P + P can be cornputed 
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in 5 clock cycles in this case, which is a negligible amount of time. [20] 

Elliptic curves over are vulnerable to the MOV reduction which can solve 

the EDLP in subexponential time, whereas curves over Fp ( p  is a large prime) are 

safe against such attacks. Clearly, elliptic curves on the prime field Fp (231 and 

curves on the finite field F q n  [20, 301 have well-established properties that make 

them attractive for practical implernentations. 

In addition, recall that it is advantageous to  know the value #E(K).  For exam- 

ple, E with an appropriate value #E would be immune from the Pohlig-Hellman 

attack. It can be computed using Schoof's deterministic polynomial time algo- 

nthm which was proposed for elliptic curves over a finite field F, with characteristic 

# 2,3. The speed of Schoof's algorithm depends on the size and characteristic of 

K. For example, when T is small, #E(Fp) can be computed slightly faster than 

#E(Fp) for a prime p whose size is comparable to zr, but as r increases, the former 

takes much more time to compute than the latter [16]. Future improvements in 

this area may change this result . 

Types of EIliptic Curves 

To choose the "right" elliptic curve, we first need to know what kind of curve we 

want and what types we can use. There are infinite varieties of elliptic curves 

to choose from but a select few have been of interest to the study of elliptic 

curve cryptosystems. In the previous section, we looked at the fields K that 

have demonstrated qualities amenable to fast mmputation and security. We shdl 

present two classes of elliptic curves that have been used in various encryption 

schemes. 
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SupersinguIar Curves Menezes and Vanstone 120) have examined the advantages 

of supersinguiar elliptic curves in cryptosystems, specifically those over the field 

F ~ .  An elliptic curve over a finite field of q elements is said to be supersingular if 

t2 = O, q, 2q, 3q or 49 where t is defined in Hasse's theorem as t = q + 1 - #E(F,), (tls 

2 4 .  An elliptic curve over a field of characteristic 2 or 3 is supersingular if 

and only if it has a zero j-invariant. For example, an elliptic curve defined by 

equation 3.3 is a supersingular curve. 

As stated before, the arithmetic operations for supersingular curves over Far can 

be implemented in hardware and the elements of F2v can be eaciently represented 

by a normal basis. Also, given a supersingular cuve over Fa., if we choose a3 = 1 

(see equation 3.3) then inversions can be eliminated when doubling points (adding 

a point to itself) [20]. 

Unfortunatel y, certain supersingular curves are vulnerable to the MOV attack 

(namely, the curves over F~.). For supersingular curves, it has been s h o w  that 

k 5 6 [19]. A supersingular curve could be protected fiom this attack if a finite field 

F, of sacient ly  large size is chosen, so that the DLP in F,r would be intractible 

even when using the best known algorithms for this problem. 

Nonsupersingular Curves A nonsuperslngular curve or an "ordinary" elliptic curve 

has a nonzero j-invariant. Equation 3.4 describes such a curve. The computation 

techniques that apply to supersingular curves - projective coordinates, optimal 

normal basis representation, hardware implementation, etc. - can easily be ex- 

tended to  the case of nonsupersingular curves. The advantage that a nonsuper- 

singular cuve has over a supersingular cuve is that it can provide the same level 

of security as the supersingular curve, but with a much smaller underlying field 
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[20]. This shortens the key length, making it attractive for use in smart cards. 

Much emphasis has been placed on supersingular curves, but they are vulner- 

able to the MOV attack, and as it turns out, they make up only a small minority 

of the domain of elliptic curves [5]. Nonsupersingular curves are a practical alter- 

native. 

Nonsupersingular curves appear to be immune to the MOV attack (for example, 

those with a cyclic subgroup of size Po). Therefore, the best known attack on 

these curves is Shanks' exponential algorithm. The order of the subgroup should 

be divisible by at least one large prime factor to guard it from a Pohlig-Hellman 

attack. 

Selection Methods 

There are several approaches to making the "right" choices. To date, curves have 

often been selected randomly, though this method is losing some of its appeal due 

to the lack of control exercised over the value of #E(K) in the selection process. 

This technique is being replaced by the relatively recent idea of w~trueting the 

desired elliptic cuve with specific attributes in mind (Le. attributes that pre- 

clude known attacks). Yet another alternative would be to create a cryptographic 

scheme whase security is not dependent on the EDLP (like the elliptic curve based 

analogues of RSA), thereby making the appropriate selection of elliptic curves a 

non-issue. 

Notice t hat elliptic curve cryptosystems actually work in the cyclic subgroup 

of a curve E generated by the base point P,  rather than the entire group E. 

Therefore, it is also important to select an appropriate P. 
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Randornly Choosing Elliptic Curves Randornly picking an elliptic curve E over 

the field K and a base point P E E is essentially a process of trial and error. K 

has been chosen and fixed in advance. Koblitz's random selection method [12, 

page 1661 for cuves over F, (for large q) is described in Figure 4.5 (suppose we 

are dealing with F, of characteristic # 2,3). 

1. Randomly select three elements from Fq; cal1 them x, y, a 

2. Set the value for b by computing b = y2 - (x3 + ax) since equation 3.2 is y2 = z3 + &a: + b 

3. C k k  that the cubic on the right side of 3.2 does not have multiple roots, i.e. check that 

4a3 + 27b2 # O 

4. if the previous condition is not met, return to step 1. 

5. eise set P = (x, y) and let y2 = x3 + ax + b be our elliptic curve 

Figure 4.5: Koblitz's Random Selection Method 

Other random selection methods are similar, except for the condition in step 

3. which could be any desired condition(s) to be met by the elliptic curve E.  

The problem with this approach is that we waste time by repeating steps 1.- 

3. until we iînally obtain an acceptable result. Note that the probability that 

a random x E F, is in fact the x coordinate of a point in E is approximately 4 
(by Hasse's Theorem). This method offers us very little direct oontrol over the 

structure of the elliptic cuve and the base point - their properties are more or 

less left up to chance - and therefore it denies us control over the security of the 



cryptosystem. 

Constructing an Eiiîptic Curve A more complex approach is to construct the 

elliptic curve we want. Ideally, it would be desirable for our design strategy to 

exercise total control over the group structure of the the elliptic cuve we choose. 

In other words, we would h s t  like to specify the properties we want in an elliptic 

curve, then set out to construct one that meets al1 our conditions. 

However, in practice, the best known strategy is to place more demanding 

conditions in step 3. or elsewhere in the random selection method. The more 

demanding the conditions becorne, the less unpredictable the resulting selections 

will be. 

Example For security, we want the cyclic subgroup generated by the base point 

P to be a group in which the EDLP is intractible. To satisfy this condition, we 

could verify in step 3. that the order of P = (x, y) is divisible by a large prime (as 

close to #E as possible). 

To date, Miyaji has suggested some constructions for elliptic curves over F, 

(where p is a large prime) in [22, 231. Chao, Tanada and Tsujii [5] very recently 

modified Atkin and Morain's algorithm [l, 251 for building curves with complex 

multiplication that satisfy specifications on #E. 

Unfortunately, the control that we want over our choice of elliptic curves cornes 

at the expense of speed. (For example, the construction algorithm in (51 takes 

exponential time.) Not surprisingly, the cornputation of #E is required in all 

constructions interested in the securit y of the elliptic curve, and therefore, Schoof 's 

cumbersome algorithm (the best to date for computing #E)  often accounts for the 
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compromise of speed. 

We implemented (a slightly modified version of) Koblitz's construction algo- 

rithm [5], which is described in Figure 4.6. As indicated, Schoof's algorithrn was 

involved, and the size of the resulting program (nearly 700 lines of code) made 

the algorithm's complexity plainly obvious. 

1. Randomly choose a (large) prime q 

2. Use Koblitz's random selection method to find an elliptic curve E(F,) of the type defined 

by equation 3.2 

3. Use Schoof's algorithrn [29] to compute #E(F,) 

4. Veri& that #E(F,) k a (large) prime. 

5. if the previous condition is not met, return to step 2. 

Figure 4.6: Koblitz's Construction Algorithm 

If we perform Koblitz's algorithm, then any point in E other than O would be 

a generator of E (since any group of prime order is cyclic), and the EDLP over E 

would be intractible. Once the desired elliptic curve is found, it c m  be used in 

the cryptosystems described earlier in this chapter . 

Schoof's algorithm essentially consists of four steps, as described in Figure 4.7. 

Step 2. is the most computationally taxing step, as can be seen in the processes 

described in the Appendix. It involves numerous evaluations of complicated poly- 
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1. Let l1 = 3, l2 = 5,13 = 7,. . . , l k  be the k consecutive primes starting at 3, where k is the 

largest integer such that 

and set L = Ir. (Note: Schoof's paper [29] asks for n:=l 11>44 t o  be satisfied, which 

appears to be a mistake.) 

2. Compute T. (mod l i )  for dl i (1 5 i < k) via the steps described in the Appendix. 

3. Use the Chinese Remainder Theorem to compute 

where M = li, Mi = M and Migi G 1 mod li. F i d  a t that satisfies Itl < 2 4 j  li 

(Hasse's Theorem), Le. if t > 2Jq set t = t - M 

4. Compute #E(l$) = q + 1 - t 

Figure 4.7: Schoof's Algorit hm 

nomials such as q.(x,y) and fn(x) ,  and a maze of tests that eventually yield the 

final result. 

Various other functions clutter the program. For example, the square-and- 

mdtiply algorithm 133, page 1271 and the Extended Euclidean Algorithm were 

borrowed from the program described in section 4.3. Prime generation is per- 

formed via trial division [8, pp. 37-40] and primality testing is perforrned by the 

Miller-Rabin pnmality test 133, page 1371 (applied five times to reduce the proba- 

bility that a composite number will pass the test 128, page 2601). Euler's Criterion 
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[33, page 1311 is used to determine whether a number is a quadratic residue or 

not, and the square root modulo p (where p is an odd prime) is computed by an 

algorithm presented in [12, pp. 47-48]. For brevity, we will not examine these 

algorithms in further detail. 

Unfortunately, there is no definitive answer yet that determines the probability 

that #E will be prime for a random E. Certainly, the extra criterion on #E'S 

properties forces the program to test and discard many elliptic curves. But there 

is no way of predicting how the program will perform, as can be seen in Table 4.2. 

Note that # mies refers to the number of curves that were rejected by the program 

before the h s t  "acceptable" curve was found, and T h e  indicates the number of 

seconds this process took8. # mies also reflects how frequently the program fails 

to produce desirable output at step 4. of Koblitz's algorithm. 

Another difficulty with the implementation is that there is no easy way of 

testing the validity of the program's output for large 4. For small q, verification 

is a simple, straightforward matter of generating all the points on E(F,), but this 

method becomes less and less practical as q becomes large. 

It should also be noted that much of the program depends on the randomness 

of the random numbers it generates. Since the best a computer can do is gener- 

ate a pseudo-random sequence of numbers, there is a threat to the security of a 

cryptosystem if the number generation turns out to be predictable (which it is, 

in the case of the rand() function in Thbo C++ 01990, 1992, version 3.0, with 

which t his program was tested) . 
s ~ h e s e  results were obtained on a Del1 Peatiurn XPS P90. 



CHAPTER 4. ELLLPTIC CURVE CRYPTOSYSTEMS 71 

~liiptic Curves Over a ~ i n g  2, Finally, we would like to take this opportunity 

to mention a concept that doesn't quite fit in anywhere else in the thesis: crypto- 

graphie schernes based on elliptic curves over a ring 2, where n is a product of two 

large primes. Most elliptic curve cryptosystems are designed around the EDLP, 

relying on the intractibility of the problem for its security. However, a public-key 

cryptographie scheme that uses curves over a ring Zn rely on the difficulty of fac- 

toring n - a farniliar, "traditional" approach to security in cryptography, used in 

RSA, for example. This frees us from the grand task of selecting a curve from a 

vast number of choices and the restrictions that other cryptosystems place on us 

whenever we choose the "right" (or L'wrong") elliptic curve for the scheme. 

Koyama, Maurer, Okamoto and Vanstone were the first to propose TOFs based 

on elliptic curves over the ring 2, [14]. A couple of years later, Demytko modified 

these early concepts so that the selection of elliptic curves could be more flexible: 

"the scherne [. . .] can be used on elliptic curves with arbitrary parameters." [6] 



Table 4.2: Program Performance 

q 

11 

13 

17 

19 

23 

# Tries 

2667 

11 

60 

2 

18 

E(Fq 

y2 = x3 + 82 + 1 

y 2 =  ~ ~ + 2 x + 9  

y2 = x 3 + 9 x + 5  

y 2 = x 3 + 5 x + 1 2  

y2 = x3 + 2 x + 6  

#E(F,) 

17 

17 

11 

19 

29 

Time (sec) 

0.164835 

0.000000 

0.054945 

0.054945 

0.000000 



Chapter 5 

Conclusion 

So far, practical applications of elliptic curve cryptosystems have primarily in- 

volved bardwaxe implementations in arithmetic processors. In conjunction with 

Cryptech Systems Inc. (Canada), Newbridge Microsystems Inc. manufactured a 

single chip device that computes arithmetic in the field F 2 5 ~ =  for implementing var- 

ious cryptosysterns. A cuçtom gate array device was constructed for field arith- 

metic in F'ME., specifically designed for efficient elliptic cuve point additions [20]. 

In light of these results, the idea of implementing digital signature/identification 

schemes in the form of smart cards has quickly gained momentum. Since the con- 

venience of smart cards depends on their portable size, the arithmetic processors 

they ernploy should be restricted to an area of approximately a) mm2. Current 

technology can't produce chips that meet this criterion.[20] However, elliptic curve 

cryptosystems can provide security with short key lengths, requiring less data for 

storage on a smart card and less computation.[22] According to Menezes and Van- 

stone, a chip designed to perform arithmetic in F2m where m = 200 could occupy 

just 15% of that allotted area. In maintainhg a secure chamel of communication, 
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the hardware described above could be shared by al1 users, regardless of what 

elliptic cuve they choose, as long as everyone uses curves over the same field K. 

Pol 

Next Computer Inc. recently patented the Fast Elliptic Encryption (FEE) 

algorithml which uses elliptic curves and pragmatically features private keys that 

are allowed to be strings. This makes a key easy to rernember and use like an 

ordinary password [28, page 4811. However, this is a dubious advantage since keys 

that are easy to remember have a limited keyspace. 

The infinitude of elliptic curves - with familiar cryptographic properties, but 

conveniently without properties that commonly facilitate cryptanalysis - sug- 

gests the need to continue these studies with different elliptic curves and different 

cryptosystems. Previously neglected elliptic curves might be applied to the cryp- 

tosystems studied so far, since we have seen that the choice of curves can seriously 

affect the security and efficiency of an elliptic curve cryptosystem. The search for 

suitable elliptic curves will be ongoing. Or, we could examine other existing cryp- 

tosystems to which elliptic curves have yet to be applied, since the advantages 

of elliptic curves Vary from cryptosystem to cryptosystem. Some have recently 

proposed public-key cryptosystems using hyperelliptic curves [27]. The marner in 

which elliptic curves are chosen could also be changed by welcome improvements 

in Schoof's indispensable algorithm for calculating the cardinality of an elliptic 

curve. [l6] 

These ideas for irnproving the computational speed, efficiency and security of 

'RE. Cranden, "Method and Apparatus for PublieKey Exchange in a Cryptographie System," US. Patent 

#5,159,632, 27 Oct 1992. 
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elliptic cuve cryptosystems are useful for irnproving practical implementations. 

However, the exact nature of the relationship between the EDLP and the DLP 

remains unclear. It is a critical open problem whose solution would determine 

the security (or lack thereof) of elliptic curve cryptosystems, especially since the 

MOV reduction seems to apply only to specific types of curves. Are there any 

more practical methods for solving the EDLP expediently? Are there any more 

TOFs that cannot be inverted in (sub)exponential time? 

Furthermore, new results in the area of quantum computing may eventually 

make crytosystems based on the EDLP obsolete. Quantum computers are ma- 

chines based on principles of quantum mechanics (for more information, see [3]). 

Shor [31] presented an algorithm that would theoretically allow a quantum com- 

puter to solve the DLP in polynomial time, and recently, Boneh and Lipton [2] 

showed that a quantum computer would be able to solve the EDLP in polynomial 

time as well. 



Appendix A 

Schoof's Algorithm 

This section describes step 2. of Schoof's Algorithm (see Figure 4.7). 

First , we define the polynomials P, (3, y)  E Fp [x, y] and fn(x) )E Fn [x] for n E Z2 - l .  

If we replace all y2-terms in @, with x3 + ax + b (see equation 3.2), we cal1 the 

resulting polynornial 8 , t ( z ,  y ) .  So we define 

@,t(x,y) /y  if n is even and n>o 
f n b )  = 

( x ,  ) otherwise 

For simplicity, we will use 1 and T to denote and ri, respectively. For a given I ,  

perform the following: 
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2. if the value computed in step 1. is # i then goto step 3. 

else goto step 8. 

3. if q is not a quadratic residue moddo 2 then set r r O (rnod 1 )  [END] 

else goto step 4. 

4. Compute 

{ 
gcd((# - x ) f ~ ( x ) ( x 3 + a x + b ) + f w - i ( x ) f W + l ( x ) ,  fi(x)) i f w  is even 

g o d ( ( ~  - z)fZ (2) + fw- i ( ~ ) f ~ + ~ ( x ) ( ~ ~  + ax + b)? fi (4) if W is odd 
where w2 I q (mod 2 )  

5. if the value computed in step 4. is = 1 then set T = O (rnod 2 )  [END] 

else goto step 6. 

6. Compute 

7. if the value computed in step 6. is = 1 then set r = -2w (mod 1)  [END] 

else set T = 2w (mod 2 )  [END] 

8. Find a r (O < r < 2 )  that satisfies the following two conditions: 
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