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Abstract 

The Applicability, Usefulness, and Limitations of the PREVENT Model, as 
Demonstrated by Modeling the Effects of Alcohol Consumption Interventions on 

Coronary Heart Disease Mortality: Canada, 1992-2040 

Master of Science 
1997 

Jay Ashvin Joseph 
Graduate Department of Cornmunity Health 

University of Toronto 

Coronary heart disease is a major cause of death in Canada. For health care planning, 

it is important to be able to anticipate future trends in CHD mortality and assess the 

potential effect of interventions. PREVENT is a population disease model designed 

to project the effect of interventions in terms of future morbidity and mortality. This 

paper seeks to provide some evidence for the validity of PREVENT projections by 

performing sensitivity analyses in the context of estimating the potential effect of 

interventions on alcohol consumption for projected CHD mortality in Canada. 

Variables examined are relative risk values, lowest risk category, time spread of the 

intervention, age group versus cohort analysis, and starting year of the intervention. 

The results of the analysis do not refute the validity of the model and suggest that 

PREVENT has the potential to be a usefuI population disease modeling tool. 

Suggestions for further refinements are offered. 
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1. Introduction 

1. i Rationale 

A new imperative for the effective management of scarce health care resources has 

emerged in this age of fiscal restraint. Called upon to make do with less, health care 

providers are restmcturing in an attempt to maintain the quality of service. For those in 

primary care, this means amalgamating and downsizing where possible in an effort to 

reduce redundancy. For many in primary prevention, however, the tme measure of 

success, both in terms of cost-efficient operation and the public good, is maximizing the 

health of the population such that the demand for scarce health care resources is reduced. 

As the main provider of health care in Canada, governments have an interest in carefully 

devising health policies based on the analysis of relevant data such that the impact on the 

health of the population is beneficial. 

Epidemiology, the study of the occurrence and distribution of disease in human 

populations, should have an important role in the development of these policies. 

Epidemiologic studies are most commonly designed to determine the aetiology of 

disease, but as Kelsey et al. ' observe, epidemiologic studies also play an important role 

in setting priorities for investigation and control, and deciding where preventive efforts 

should be focused. 

If health care planning means anticipating future population health outcornes and 

needs, and identifjing opportunities for maximizing population health, then 

epidemiology, in concert with demography, should provide the tools for health policy 

analysts to achieve these aims. PREVENT, a mode1 developed by Louise Gunning- 



Schepers " attempts to fil1 at least part of this need for planning tools. By combining 

demographic modeling with disease modeling and making use of available data such as 

relative risks and exposure prevalence estimates, PREVENT provides population 

estimates of absolute measures, such as, future mortality, future mortality reduction, and 

potential years of life gained (PYLG). These measures can be usefùl in allocating 

resources and identifying opportunities for intervention. 

Prevalence of disease, relative risks and odds ratio estimates from epidemiological 

investigations offer the basic information about diseases and risk factors and are 

sometirnes used in health care planning to justiQ focusing attention on a particular 

disease or risk factor. For exarnple, diseases with a high population prevalence are ofien 

the focus of attention. Diseases with high relative risks for drarnatic outcomes, like 

death, also garner much attention. 

Some diseases fa11 into these categories, but many do not. There are diseases that 

individually are not high prevalence or high incidence diseases, but as a group are al1 

strongly related to a specific exposure. If exposure to this risk factor is reduced, the 

incidence of the entire group of diseases could be reduced. Other diseases are highly 

prevalent but only weakly associated with known risk factors, meaning that opportunities 

for intervention may not be great. Still others produce significant morbidity in a large 

proportion of the population but almost no mortality. For some disease.~, the impact on a 

population is not static. Changing demographics, exposures to risk factors, and 

treatments over time mean that the population impact of a disease today may not be 

indicative of the future. 



Clearly, disease prevalence and relative risk estimates alone do not provide the 

entire picture. With such variation in the impact of diseases on a population, and in the 

state of knowledge about risk factors for diseases, it is important for health care planners 

to carefully analyze available data before investing in treatment and prevention programs. 

More specifically, the health care planner with an interest in the general health of the 

population must be able to: 

(1) anticipate the impact each disease will have on the population, and 

(2) identiQ opportunities for intervention to reduce the impact of each disease. 

This type of knowledge will help health care planners manage their resources to meet 

anticipated tertiary care needs and where possible hnd primary prevention programs to 

ultimately reduce the demand for tertiary care services. 

This is where the PREVENT mathematical model may be of use. Implemented as 

a microcomputer program, it was designed to use epidemiologic and demographic data to 

provide projections that can inform health care planning. It is an attributable-risk based 

model that transforms epidemiological data such as exposure prevalences and relative 

risks into absolute population health measures like mortality, PYLG, or morbidity. It is 

designed to be neither disease nor risk factor specific, but is a general tool that 

theoretically may be used for any set of disease and risk factor combinations. 

The research findings presented in this paper are the results of a PREVENT 

analysis assessing the effect of theoretical alcohol consumption interventions on projected 

population mortality from coronary heart disease (CHD) in Canada. The weight of 

evidence from epidemiological studies conducted over the past twenty years generally 

supports the idea that a J-shaped or U-shaped curve best describes the relationship 



between alcohol consumption and rnortality frorn CHD. Non-drinkers and drinkers at the 

higher end of the alcohol consumption spectrum have a higher mortality fiom CHD than 

drinkers in middle categories. The theoretical interventions examined in this paper 

attempt to reduce CHD mortality by moving non-drinkers or abstainers and drinkers at 

the higher end of the spectrum (the cut-off point is varied) to intermediate levels of 

alcohol consurnption. 

This should not be interpreted to mean that the above intervention is advocated as 

good health care planning. Alcohol has consequences for diseases other than CHD (e.g., 

breast cancer) and it rnay be that the adverse consequences of intermediate levels of 

alcohol consumption outweigh the benefits (at least in tems of the mortality). A 

comparison of the intervention effect on different diseases is needed before the adoption 

of such an intervention can be justified. However, such a comparison has itself an 

important prerequisite: evidence for the validity of the model used in the comparison. 

This paper will present the results of a sensitivity analysis designed to provide some 

information about the validity of PREVENT as a modeling tool. 

The question of validity is important for al1 population models. The validity of 

the results depends on the credibility of the data used as input to the model and the 

methodology used in the model '. The literature review in the Background section 

examines the alcohol/CHD relationship and specific criteria are applied for selecting 

studies for use in this analysis in an effort to use the most credible data available. 

The Background section also provides a description of the methodology which 

PREVENT uses, in cornparison with other models, and the Discussion section delves into 

the strengths and weaknesses of PREVENT's methodology. The sensitivity analysis tests 



whether the model produces results that are congruent with expectations, Le.., does 

projected mortality reduction per year change in the expected direction when the relative 

risks used as input data are changed? 

It should be noted, however, that the sensitivity analysis alone cannot confirm the 

validity of the PREVENT model. In her original publication, Gunning-Schepers 

explored the validity of the PREVENT model through both historical testing and 

sensitivity analyses. Historical testing can be used for testing models that simulate future 

developments. Historical exposure data is used as input into the model, and the outcome 

projections produced by the model are compared with historical outcornes. Gunning- 

Schepers explored the development of smoking-related lung cancer mortality in the 

Netherlands between 1970 and 1984. Unfortunately, in most countrieç the detailed 

historical prevalence data available for smoking are not available for most other risk 

factors (including alcohol consumption), making historical testing impractical for many 

risk factor/disease combinations. 

Gunning-Schepers also perfonned some sensitivity analyses for various risk 

factoddisease combinations. A sensitivity run simply examines how sensitive the model 

is to variations in the initial input data. "Input data" can take the form of epiderniological 

or demographic data or they can be various analysis options. Gunning-Schepers examined 

the effect of varying relative risk values, prevalence values, and time dimension variables. 

This study will examine some of the variables examined by Gunning-Schepers and others 

which she did not examine. In her paper, Gunning-Schepers reported that the model 

responded as expected to changes in input data. This paper will also present the results of 

sensitivity analyses, but in the context of alcohol consumption and CHD rnortality. 



1.2 Objectives 

This paper presents the results of sensitivity analyses on CHD mortality reduction. 

Variables examined are relative risk values, lowest risk category, time spread of the 

intervention, age group vs. cohort analysis, and starting year of the intervention. Values 

for some of these variables are not derived from the literature, either because Iittle 

information is available about them or because they are analysis options in PREVENT 

rather than population estimates. They are nonetheless included in the sensitivity 

analyses because the purpose of the analyses is to confirm that CHD mortality reduction 

varies in the expected direction with variation in input. This test can be perfomed for 

both analysis options and population estimate input data. Exarnining the mode1 in the 

context of alcohol and CHD serves a dual purpose. First, it provides an opportunity to 

test the effect of a theoretical intervention on alcohol consumption, and second, it 

provides information about the performance of the model in a context other than 

smoking/Iung cancer. For a model which is ideally applicable to any set of risk factors 

and diseases, it is important to test its performance in different risk factoddisease 

scenarios. 

Specifically, the objectives of this research are: 

(1) to use the PREVENT model to estimate the potential effect of interventions on 

alcohol consumption for projected CHD mortality and related measures in Canada, 

and 

(2) to provide some evidence for the validity of the results in (1) by performing 

sensitivity analyses with PREVENT. 



The results of the sensitivity analyses detail both the direction in which the results rnove 

in response to variation in input data, and the magnitude of the sensitivity of the results 

to variation in input data. The former is necessary for establishing the validity of the 

model (the model should respond in a way that one would expect based on the change in 

input data) and the latter quantifies uncertainty in the results, if the methodology used by 

the model is valid. As mentioned above, another important part of establishing validity is 

comparing the modelfs output with historical data or with prospectively collected data. 

This analysis does not involve a historical run because historical data for the alcohol 

consumptionlCHD combination is not available at the required level of detail (in fact, a 

historical run is only practical for a very malt  number of risk factorldisease 

combinations). This means that further work on the validity of the PREVENT model will 

depend on cornparisons with prospectively collected data. Such a comparison is beyond 

the scope of this study; only the results of a sensitivity analysis are presented here. 

If the sensitivity analysis fails to produce changes in results that would be 

expected based on changes in initial input, the validity of the model is thrown into 

question and it may be that some of the problems or issues raised in the Discussion 

section may need to be addressed before valid results can be produced. If support for the 

validity of the results is found as a result of the sensitivity analysis, and further research 

establishes the validity of the model through comparisons with prospectively collected 

data, then it may be possible to have greater confidence in PREVENT runs which 

compare the effect of interventions on a risk factor for different diseases (e.g., alcohol, 

and breast cancer vs. CHD) -- a necessary step before anything can be said about the 

overall health benefits or disadvantages of intervening on exposure. 



2 .  Background 

There are a number of components involved in projecting the effect of a risk factor 

intervention on a related health outcome. First, it is necessary to be clear about the health 

outcome(s) of interest. Health outcornes commonly used in health research include 

mortality, potential years of life lost (PYLL), and morbidity measures. Yet, there is no 

theoretical reason why other outcomes, such as sick days, lost wages, and hospital length 

of stay cannot be used. Many risk factors are associated with multiple health outcomes, 

and it is possible that an analysis using one outcome will produce results that contradict 

an analysis using another outcome. Section 2.1 will present justification for the choice of 

CHD rnortality as the outcome of interest in this analysis. 

Second, it is necessary to collect as much information as possible conceming the 

relationship of the risk factor to the health outcome of interest. Section 2.2 provides a 

brief review of the literature on the relationship of alcohol consurnption and CHD 

mortality, a subject of considerable debate over the past decade. This analysis will 

necessarily take one point of view in this debate. 

Finally, a method of producing projections must be explicitly chosen. A survey of 

different models that have been used for CHD mortality projections in Section 2.3 will 

make it clear that there are a number of different ways of approaching the same problem. 

Each of these approaches has strengths and weaknesses. An explanation for the choice 

of PREVENT as the mode1 for this analysis is presented. 



2.1 Selection of the Health Outcome of interest 

Alcohol consumption is associated with many outcomes. Some are accident-related 

injuries due to the physical impairment induced by alcohol, such as falls and motor 

vehicle (car, snowmobile, and boat) accidents 3. Others are diseases, such as CHD, liver 

cirrhosis, and breast cancer ", which can vary in severity and mortality rate. And still 

others are social consequences of alcohol consumption -- inability to hold employment, 

family dysfunction, and engaging in fights. 

This analysis will focus on the effect of alcohol on CHD mortality, CHD 

mortality reduction, and potential years of life gained. There are a few reasons behind the 

choice of CHD mortality as the principal outcome of interest. First, CHD is one of the 

most important causes of death in the Canadian population. Thus, a study that examines 

CHD mortality is relevant and likely of interest. Second, it is an outcome for which data 

are available because most CHD deaths are recorded on the death certificate (data quality 

is always an issue but difficult to address at a national level). Other outcomes, e.g., 

family dysfunction, may be just as interesting, but their prevalence at a national level is 

difficult to determine because data collection is not mandated by law in a way that the 

cause of death must be ascertained and recorded. Thus, while it may be possible for a 

cohort or case-control study to collect information on family dysfunction, there are no 

national databases with this type of information that can be readily used for population 

projections. Third, while it is possibIe to use CHD morbidity rather than CHD mortality 

as an outcome, there is a greater chance that CHD events that do not result in death are 

not recorded because an individual may not go to hospital. Finally, population-based 

case registries do exist for CHD mortality. 



It should be clear that while narrowing the focus to mortality turns this analysis 

into a more practical undertaking, it also precludes any general conclusions about the 

benefits or disadvantages of alcohol consumption. The conclusions reached will 

necessarily address only the relationship behveen alcohol and CHD mortality. 

2.2 Alcohol and CHD 

2.2.1 Health Effects of Alcohol Consumption 

Liver cirrhosis is perhaps the disease most widely recognized as being associated with 

alcohol consumption 5, but evidence has accumulated over the years for a relationship 

with pnmary liver cancer, cancer of the oropharynx (in men), cancer of the larynx (in 

men), cancer of the esophagus (in men), rectal cancer (in beer drinkers), and breast cancer 

(in women) 4. Anderson et al. reviewed 156 papers in an effort to surnrnarize findings 

on the risk for disease fi-om alcohol consumption; nineteen of the 24 papers (80%) 

examining the relationship between alcohol and hypertension found a significant dose- 

response relationship in men. Heavy drinking has been found to be a risk for atrial 

arrhythmia 82, and alcohol is a risk factor for cardiomyopathy 82. 

Some evidence for a J-shaped relationship between alcohol consumption and 

ischemic stroke exists ', and a minority of researchers assert that the relationship 

between alcohol and hypertension is J-shaped ' However, the most commonly found J- 

shaped relationship is the one that appears to exist between alcohol consumption and 

CHD mortality (a J-shaped relationship exists behveen alcohol consumption and overall 

mortality ' O  " but this appears to be driven primarily by CHD mortality). The literature 

describing the relationship between alcohol consumption and CHD mortality is reviewed 

in Section 2.2.3. 



2.2.2 Risk Factors for CHD 

There is a large body of Iiterature describing prospective studies designed to elucidate the 

aetiology of CHD at a population level. About 30 such studies have been conducted in 

Europe and the Mediterranean area, 25 in North America, and another five in other parts 

of the world over the past 25 years '*. 

Despite the diversity of methodologies used and populations considered in these 

studies, a generally well accepted group of risk factors has emerged for CHD. Of primary 

importance are smoking, physical inactivity 7879, elevated blood pressure, and above- 

optimal levels of total serum cholesterol, al1 of which exhibit direct relationships. 

Diabetes, maIe gender, and older age are also nsk factors but the low prevalence of 

diabetes, the static nature of gender, and the inevitability of aging diminishes the potential 

of these risk factors l3 for public health interventions. Other potential risk factors, still 

debated in the literature, include physical height (negative association), body mass index 

(U-shaped relationship), and alcohol consurnption (U- or J-shaped relationship). 

Few studies have examined whether there is a difference in risk factors for CHD 

incidence and CHD mortality. Haheim et al. found that although the strength of the 

association differed for some risk factors (blood pressure and daily cigarette smoking), al1 

of the variables they examined were risk factors for both CHD and death from CHD 14. 

2.2.3 Relation between Alcohol Consumption and CHD 

A number of investigators have found a J-shaped curve for the relation between alcohol 

consumption and CHD mortality, such that abstainers and excessive drinkers are at higher 

risk of death than those who consume intermediate amounts of alcohol " I S  l 6  . Indeed, 

mcst have found a protective effect associated with moderate alcohol consumption ". 



This finding has been controversial, because others suggest that the apparent protective 

effect of alcohol for abstainers is confounded by previous health status 'O '' l 9  'O. 

Previous health status is an issue because, in some studies, abstainers include 

those who were formerly drinkers, but gave up alcohol for reasons of poor health, or who 

have never drunk for reasons of poor health 'O. It is also possible that some abstainers are 

previous excessive drinkers with a higher risk for health problems IS 20. There is a great 

deal of variation arnong studies in the degree to which possible confounders like 

smoking, diet, previous health status, and previous drinking status have been controlled. 

Most epidemiologic investigations of alcohol and CHD have been based on 

samples of western, middle-aged men. Fuchs et al. explore the question of the 

relationship between alcohol and CHD mortality for women and find that the excess risk 

for female drinkers begins a lower volumes of alcohol consurnption *'. 

Exarnining the question of whether different types of alcohol (Le. wine, beer, 

spirits) have differential effects on CHD incidence, Rimrn et al!' reviewed 12 ecological, 

three case-control, and 10 separate prospective cohort studies. They concluded that there 

was evidence for a reduced risk of CHD with al1 types of alcohol consumption and that a 

substantial part of the cardioprotective effect is derived from alcohol rather than other 

components of each type of drink. 

Two hypotheses concerning the biologic mechanism for the protective effect of 

alcohol on CHD have garnered attention 22 *'. First is the idea that the cardioprotective 

effect of moderate alcohol consumption could be mediated by its effects on HDL- 

cholesterol. It is thought that alcohol consumption results in higher levels of HDL- 

cholesterol which has been associated with reduced risk for CHD. Support for this view 



has been found in analysis of data from the Multiple Risk Factor Intervention Trial 

(MRFIT) 24. In a review of the literature, Srivastava et al. conclude that there are two 

plausible hypotheses for the exact molecular mechanisms 25. First is the theory that 

alcohol may raise HDL levels by direct stimulation of liver lipoprotein synthesis and 

secretion, secondary to ethanol's induction of microsomal enzyme activity. Second, is 

the idea that alcohol may raise HDL levels by enhancing lipoprotein lipase activity in 

tissues outside the liver, thus promoting transfer of surface components from VLDL and 

chylomicrons to nascent HDL particles. It has been suggested that alcohol-modified LDL 

is cleared from the circulation at a faster rate than native-LDL and that alcohol-induced 

HDL particles are cleared at a slower rate than the native particles. 

The second hypothesis concerns alcohol's inhibitory effect on platelet aggregation 

and thus on blood clot formation, an important element in myocardial infarction 26. The 

exact mechanisms by which alcohol achieves this anti-clotting effect are unclear. 

It is woah noting that behind the scenes of some epidemiologic investigations is 

the vested interest of the large wine, beer, and hard liquor industries. The alcohol 

industry does fund and promote research that confirms a protective effect of moderate 

alcohol consumption, and this may skew the literature in favour of the cardioprotective 

effect of alcohol. There are also a few researchers not funded by industry who challenge 

a public health policy that discourages alcohol use. Nonetheless, such potential conflicts 

of interest sliould be noted. 

The purpose of this paper is not to delve into the debate surrounding the U- or 

J-shaped curve, but to produce estimates of the effect of interventions on alcohol 

consumption for future CHD mortality, assuming the U- or J-shaped curve is correct. If 



the U- or J-shaped curve is not correct, a similar anaiysis could be done, but the 

intervention in question would encourage reducing alcohol consumption for ail 

individuals in the population. 

2.3 Modeling CHD Mortality and the Effect of Interventions 

Projecting the evolution of a given population and assessing the effect of interventions on 

the population involves developing an underlying model. Most population models are 

computation intensive and thus typically implemented as computer programs. Over the 

years, a number of computer models aimed at estimating the impact of risk factor 

prevalences on disease incidence and mortality have appeared. Most of these models can 

be classified as one of three types: 

logistic models 
microsimulation models 
attributable nsk models 

This section reviews some of the models in these three general categories, finishing with 

a brief description of the PREVENT model and an explmation for the choice of 

PREVENT over other models for this analysis. A table summarizing al1 of the models 

reviewed is provided at the end of Section 2.3. 

2.3.1 Logistic Models 

McGill Clmlesrerol Model 

In an effort to evaluate the lifetime benefits of reducing total s e m  cholesterol levels to 

prevent CHD, Grover and colleagues developed a logistic regression model using 

Framingham data ". The primary model estimates the probability of dying from CHD 

and the probability of a CHD event as a function of age, diastolic blood pressure, total 



serum cholesterol level, the presence of glucose intolerance, and smoking status. For 

men, the model for the annual risk of al1 CHD events (myocardial infarction, 

uncomplicated angina pectoris or coronary insufficiency, CHD death, al1 CHD events, 

and non-fatal CHD) was as follows: 

Risk = a + P, Age + P, Age' + P,CHL + P,DBP -i- P,SMOK + P, L P Z  + P,GLU + P, (CHL)(AGE) 

This risk was adjusted for the level of high-density lipoprotein (HDL) using a gender 

specific modifier (HDL,,b to produce an annual probability of a CHD event: 

RISE: 

Prob = HDL,,  x - 

The model was validated using data fmm three pnmary prevention clinical trials: the 

Helsinki Heart Study, The Lipid Research Clinics Coronary Primary Prevention Trial, 

and The Multiple Risk Factor Intervention Trial (MRFIT). The authors conclude that the 

model accurately predicts the results of these trials. 

The model has been validated using clinical trials that involved middle-aged men, 

and it is uncertain how the model perfoms with other populations such as women and the 

very old. Also, since this model does not have a separate dernographic modeling 

component, population structure changes (e.g., immigration) are not taken into account, 

It would be premature to use this model as a population model of the effect of cholesterol 

level modification on CHD incidence although further modifications may produce a 

model that can be used for this purpose. 



2.3.2 Microsimulation Models 

POHEM 

POHEM is a population health model based on microsimulation modeling ''. In contrast 

to many other models which simulate changes at a population or cohort level, POHEM 

simulates at the level of the individual. The model first generates a population of 

individuals based on starting parameters describing the population. This population can 

then be followed forward in time with adjustments made according to the probability of 

individual life events (i.e., mortality, morbidity) occurring. Population survey data are 

used tri estimate these probabilities of life events, and Monte Car10 techniques are used to 

assign life events to specific individuals. Population health outcomes cm be obtained by 

aggregating across individuals in the population. 

The state variables used in the modeling are socioeconomic status variables (e.g., 

education, marital status, labour force participation, incorne), risks (e.g., smoking 

cholesterol, blood pressure, obesity), diseases (e.g., CHD, cancers, dementia, arthritis), 

and functional status, costs, and health (e.g., utility scales). 

POHEM is able to model multiple disease and risk factors and report multiple 

outcomes such as mortality, rnorbidity, and costs. The theoretical fiamework on which 

POHEM is based is comprehensive in design because POHEM takes a broader view of 

health than many other models. Unfortunately, this also increases the complexity of the 

model. More importantly, perhaps, the input data required to implement a model of a 

more comprehensive view of health are ofien not available at a population level and thus, 

in practical ternis, POHEM is not able to offer anything more than models based on 

available data. 



CRISPERS 

The Chronic Disease Risk Intervention Simulation Program for Epiderniologic Research 

Studies (CRISPERS) is a generalized Monte Carlo simulation system for chronic disease 

29. Like POHEM, simulation begins with a population of individuals that are 

synthetically generated using Monte Carlo techniques to assign risk probabilities of 

health events. An 'event' occurs for an individual if the assigned random number for an 

individual falls within a set range detemined by the overall event probability. Health 

outcomes at the population level (e-g., morbidity, mortality) are obtained by summing 

individual health status across al1 individuals in the population. 

CRISPERS has been used to mode1 CHD, but is limited by its inability to model 

more than one disease at a time. It is able to model multiple risk factors, adjust for 

demographic changes in a population, and account for the latency period between disease 

incidence and mortality. It was not originally designed to assess the impact of 

interventions, but a sub-program called CRISPERT has been developed to support 

intervention modeling 30. CRISPERS is a mainframe based program. 

2.3.3 Attributable Risk Models 

SAMMEC and ARDI 

Two programs developed for the Center for Disease Control, SAMMEC II and ARDI, are 

irnplementations of an attributable risk based model on a microcomputer to calculate 

deaths, PYLL, health-care costs, indirect mortality costs, and disability costs associated 

with cigarette smoking and alcohol uses3' 32 

SAMMEC II and ARDI use diagnosis-, sex-, and age-specific (0-34,35-64,65 



plus) relative risk estimates for exposure-related diseases. Estimates of current and 

former smoker or drinker prevalence must also be available. The user enters the number 

of deaths in the population by five-year age groups and sex for each exposure-related 

diagnosis. For each age group and sex, the exposure-attributable mortality is then 

calculated by muItiplying the number of deaths by the population attributable nsk. 

Exposure-attributable mortality = Deaths x PAR 

Exposure-attributable PYLL is calculated by adding a PYLL, term which is the number 

of potential years oflife lost for that age of death: 

Exposure-attributable PYLL = Deaths x PAR x PYLL, 

Exposure-attributable indirect rnortality costs are calculated in a similar mamer to the 

exposure-attributable PYLL. A measure called the present value of future eamings 

(PVFE) for the age at death is substituted in the equation: 

Exposure-attributable mortality costs = Deaths x PAR x PVFE 

Both SAMMEC II and ARDI are static models, in that the population of interest is not 

modeled into the future using birth, life expectancy, and population mortality estimates. 

For most risk factorldisease combinations, there is a latency period between disease 

incidence and death and a lag time between cessation of exposure (if it occurs) and a 

reduction in risk to the lowest possible risk for a formerly exposed individual. This 

means that the SAMMEC II and ARDI attributable mortality calculations make the 

simplifying assumptions that mortality occurs in the same year disease does and that 

formerly exposed individuals are the same as never exposed individuals in terms of risk 

of disease. 



CAN*TROL 

Cancer strategy planners have recognized the need for quantitative methods to estimate 

the effectiveness, cost and yield of different cancer control activities. CAN*TROL is a 

computer based program for modeling the impact of cancer control activities year by 

year. '' It has been used to evaluate the value of mammography screening in women 

under 50 years of age and to estimate the cost effectiveness of particular treatments for 

stage III colon cancer. '' '' 

CAN*TROL has several components: a population model, a cancer incidence 

component, a "screening and detection" component, a treatment and support component, 

and a total mortality component. The population model uses the births and deaths for 

each year to model the population by sex and five-year age group for each year in the 

future. The incidence component provides estimates of the number of cases of each 

cancer occumng in the population by sex and five-year age group. The "screening and 

detection" component further stratifies these estimates by stage of disease. Information 

on the cost of new cancer cases and the quality of life for new cases cm also be obtained 

from this component. The treatment and support component calculates patient survival 

for various stages of treatment as a hnction of time afier diagnosis and treatment. Also 

provided are quality of life measures for cancer patients and costs associated with 

treatment, support, and terminal care. The total mortality component calculates the 

mortality fiom causes other than cancer and the cost of terminal care for other causes of 

death. 

CAN*TROL has the ability to partition the population into any number of 

subpopulations which may be targets of different interventions. These subpopulations 



can Vary by size, relative risks, proportion of cases in each stage, and stage-specific 

survival rates. This partitioning ability enables the analyst to take into account different 

geographic regions, populations with access to different levels of care, prograrns aimed at 

people with particular exposures, and subpopulations that are expected to respond 

differently to cancer control activities. 

The intervention modeled cm be designated to have an effect over a defined time 

penod, and interventions can be specific to subpopulations. The program can calculate 

the maximum potential change that would occur if exposure to the risk factor were 

eliminated and the proportion of the maximum change that is expected to occur as a result 

of an intervention. The delay in the expression of this change can also be quantified. 

CAWTROL has the ability to consider the simultaneous effects of an intervention on 

multiple diseases. 

PREVENT 

PREVENT is a mode1 developed in the Netherlands by Gunning-Schepers to simulate the 

effect of an intervention on risk factors on diseases.' The model has been used to 

sirnulate interventions on nurnerous risk factors for various diseases in the Dutch 

population. 

The model is based a modified-version of the population attributable risk called 

thepotential impact fraction (PIF)). It uses life-table methods to simulate the evolution of 

the population and assesses the impact of an intervention by translating the PIF into 

absolute measures like mortality and PYLL. A more detailed description of the 

methodology is provided in the Section 2.4. 



PREVENT is able to model multiple risk factors, multiple diseases, and accounts 

for the latency penod between disease incidence and death (if applicable), and the Iag 

time between cessation of exposure to a risk factor and the point in time at which the 

formerly exposed individual achieves lowest possible risk for disease. Users can speciS, 

trends for risk factor prevalence, the level of stratification of input data, and different 

interventions for sub-populations defined by the stratification variables. 

Table 2-1 summarizes the characteristics of the population health models 

reviewed in this paper. Of the models reviewed, PREVENT and CAN*TROL are the 

most usable for disease modeling at a population level because the data requirements 

most closely match data that are typically available at a national level e.g., prevalences by 

five year age group, sex, and exposure category. Either model could have been used for 

this analysis although PREVENT is offered as a general disease modeling tool and 

CAIPTROL is described as a cancer modeling tool, Perhaps the strongest reason for 

choosing PREVENT is that the model was specifically designed with intervention 

modeling in mind. CAN*TROL is capable of modeling interventions but was not 

designed with this as its primary goal. PREVENT also has the advantage of being able to 

perform a cohort analysis (treats exposure prevalences as characteristic of a cohort) or an 

age-group (treats exposure prevalences as a characteristic of an age-group) analysis. 

Some other models, like POHEM, are more sophisticated in design but less practical 

because population data is not available at the level of detail required. CHD may be best 

described by logistic models 36 but to date no logistic model has been combined with a 

demographic rnodel to produce a seamless population disease model. PREVENT appears 

to provide the best balance of sophistication in design, availability of input data, and 



intervention modeling capabilities from among the models reviewed. For these reasons, 

PREVENT is the model of choice for this analysis. 

Table 2-1 Cornparison of Different Models 

PREVENT CAN"TR0L SAMMEC II 1 CRISPERS POHEM Cholesterol Model 

Methods 
PAR 
Monte Carlo 
Logistic 

Times 
Latency 
Lag 
Lead 

Multiples Diseases 
Multiple Risks 
CosUBenefit Analysis 
Automatic Trend 
Adjustment 

Population 
Risk Factor 

Outcome Measures 
Morbidity 
Mortality 
PY LGlPY LL 
Others 

Models Interventions 
Model Flexibility 

Intervention Types 
Intervention Periods 
Populations 

Models fotward 10 yrs. 
Cohort Analysis option 

Blanks boxes indicate insufficient information or not applicable to model. This table is a rnodified version of 
one presented in Herbert (1992). 37 

2.4 The PREVENT Model 

2.4.1 Underlying Attributable Risk and Potential Impact Fraction Calculations 

As indicated above, PREVENT falls in the general class of attributable risk-based 

models, but is perhaps more correctly described as a potential impact fraction-based 

model. In this section, 1 will describe how the attnbutable risk is related to the potential 

impact fraction and in the following section, some of the additional modifications 



PREVENT has made to permit more realistic modeling. 

There are two general classes of attributable risk definitions 38: 

a attributable risk in the exposed group 
a attributable risk in the total population 

In quantiQing the impact of a risk factor on a population, as is the case here, it is the 

attributable risk in the total population that is of interest. This population attributable risk 

(PAR) may be defined as the number of incident cases due to association with the risk 

factor divided by the total number of incident cases in the population. If R is the 

incidence of disease in the total population and Rg is the incidence of disease for those 

not exposed to the risk factor, then: 

-- - R0 - 
, where RR is the relative risk of disease PAR=-- 

R RR 
(1) 

This definition reflects the traditional etiologic view of PAR as the proportion of incident 

cases in a population that is attributable to the risk factor. Cornmon formulae for the 

calculation of the PAR are based on an estimate of the relative risk associated with 

exposure to the risk factor and an estimate of the prevalence of exposure to the risk factor 

in the population 39: 

PAR = P ( & - 1 )  f i - 1  
1 ' + p ( " - l )  

These formulae are used because relative risk data are oAen readily available from 

etiologic investigations and prevalence data may be obtained from population surveys. 

Morgenstern and Bursic ' O  present an alternative formulation that makes use of 

relative risk and prevalence data which are stratified by k + 1 ordered categories of the 

risk factor (i = O, l....,k) . I f h  is the fraction of the population in each risk factor category 



and Ri is the incidence of disease in the ith category then the total incidence R can be 

expressed as: 

Substituting (2) into (1) we get: 

Dividing by Ro, (3) becomes: 

CfiRR.4 
PAR = '=O 

, where RRi is the relative risk in the ith category (4) 
k 

The PAR is undefined for preventive exposures, i.e., RR < 1, but an analogous measure, 

the preventedfvaction (PF), may be defined. It is the fraction of the potential cases of 

disease in the absence of exposure that are prevented by exposure to the risk factor 4' 39 

and may be calculated using: 

PREVENT calculations are based on (4) which in turn are based on the definition of 

attributable risk in (1). This means that RR values less than 1 cannot be used in analyses 

using PREVENT. Fortunately, this doesn't mean that preventive exposures cannot be 

studied using PREVENT. Redefining the exposure categories such that the lowest risk 

category is the referent category will produce RR values that are greater than or equal to 



one in al1 categories. 

Thepotential impactfraction (PIF) is a useful concept for describing the impact 

of a risk factor intervention on disease incidence. The attributable risk is conceptually 

equivalent to a maximum PIF -- if an intervention were to reduce the prevalence of the 

risk factor to zero the PIF would equal the attributable risk. In practice, complete 

elimination of a nsk factor is rarely achieved so a modified attributable risk measure is 

necessary to quantify the potential impact of an intervention on disease incidence. If R 

and R' are the pre-intervention and post-intervention incidences in the total population 

respectively then: 

R -  R' 
PIF = - 

R 

Note that R' = % if the maximum potential impact is achieved. If gi is the fraction of the 

post-intervention population in the i-th risk factor category, then the total post- 

intervention risk can be expressed as: 

R'= C g , ~ i ,  where C g ,  = i 
i= 0 i=O 

Substituting (2) and (7) into (6) gives: 

Dividing by Ro gives: 



PREVENT uses equation 8 as the basis for its potential impact fraction (PIF) 

calculations. The ordered categories i = O...k are defined as the subgrouping created by 

the sirnultaneous stratification by age and sex 2. This enables PREVENT to use 

information on the relationship between risk factor exposure and disease incidence as 

effectively as possible. If separate estimates are available in the literature by sex or age 

category, then this information can be used in the model. If the information is 

unavailable, then each category can be given identical relative risk and prevalence 

estimates. 

In doing an analysis with PREVENT, the prevalence of exposure and the RR 

associated with various levels of exposure are obtained fiom previously conducted 

descriptive and analytic studies, respectively. The intervention effect used as input data 

may be obtained fiom previous intervention studies but, since such studies are rare, it is 

also possible to use hypothetical data. 

The actual PIF that PREVENT calculates is a modified version of the formula 

described above. To provide more realistic modeling, PREVENT adjusts the PAR and 

PIF calcuIations to address two issues: 

the effect of time 
e the effect of other risk factors 

2.4.2 Time Adjustments in PREVENT 

The expression for PIF in equation 8 is static in that an intervention is assumed to have 

an instantaneous effect on prevalence (fto g) and on the relative risk of the fonnerly 

exposed (the formerIy exposed are assigiied the same relative risk as the unexposed). 

Indexing for time means that an intervention can have an associated time spread, i.e., 



aniount of time it takes for the intervention to have full effect on prevalence. It also 

means that those who are no longer exposed can be assigned residual relative risks that 

are different from those given to the never exposed. These values are usually 

intermediate between exposed relative risk and unexposed relative risk values. In 

PREVENT, these formerly exposed relative risk values are assumed to decrease IinearIy 

with time to some lowest possible risk leve12. 

The actual modifications to the calculations are indexing prevalence by time and 

the creation of a LAG variable which quantifies the arnount of time it takes to reach the 

lowest possible risk level for the fomerly exposed after cessation of exposure. 

A consequence of the introduction of LAG is that not only will interventions have 

a slow reduction in risk over time but that past interventions (and thus past changes in 

prevalences) will have an effect on future incidence. Thus, it is necessary to quantify 

autonomous trends that are separate from the intervention under study. If& and RR, are 

the proportion and relative risk at time O andf; and RR, take trends into account at time t, 

we can define the trend impact fraction TIF, the incident cases prevented at a certain 

moment in time t, by: 

PIF is modified to account for the fact that the reference incidence is not static but 

evolves over time as a consequence of risk factor trends. IfA and RR, take only trends 

into account and f, and RR', take trends and intervention into account then: 



2.4.3 Assumptions for Modeling Multiple Risk Factors in PREVENT 

Since most diseases have multiple risk factors, it is important to clearly state what the 

expected impact of multiple risk factors is on disease incidence. Data on the effect of 

joint exposure data are rare in the literature, and even if available, it cannot be assumed 

that the nature of the relationship between two risk factors will hold for two other risk 

factors. It was thus necessary for Gunning-Schepers to assume that the risk for a disease 

associated with any one risk factor is independent of other risk factors. 

PREVENT was thus designed as a multiplicative model as opposed to an additive 

model. It assumes independence of the effect of risk factors and enables EFs and PIFS to 

be calculated sequentially for each risk factor without knowledge of the joint effect '. If 

the mortality rate associated with risk factor A is independent of the mortality rate 

associated with risk factor B, then the mortality rate when both risk factors are present is 

the sum of the two independent rnortality rates. In an additive model, the mortality rate 

when both risk factors are present would be the surn of the two independent mortality 

rates plus a third term representing the effect of the interaction 38. 

The implication of a multiplicative model for this particular analysis is that risk 

factors like alcohol can be investigated independently of other risk factors. Information 

on the relationship between alcohol and CHD mortality is used for intervention effect 

estimation without reference to relationships between other exposures and CHD 

mortality, e.g., tobacco use and CHD mortality. 



More difficult to address is the case where interaction exists. In this case, the 

model's assumption of the independence of risk factors is incorrect and the relative risk 

estimates for the risk factors of interest may be skewed depending on the values of 

interacting risk factors in the population. 

It should be noted that PREVENT assumes confounding factors are controlled for 

in the studies fiom which relative risks are taken. This means that the estimate of the 

relative risk associated with a risk factor is valid and not entangled with the effect of 

another risk factor. The possibility of unknown confounders always exists, however, and 

these may affect the relative risk estimates and therefore alter the effect of the risk factor 

in the simulation. 



3. Method 

This section describes the data sources used in this analysis and outlines the rationale for 

choosing each data source over alternative sources. PREVENT requires the following 

population and risk factor data: 

Base Year of Simulation 
Population Data: structure by age and sex 

total mortality 
birth projections 
life expectancy 
disease specific mortality 

Risk Factor Data: relative risks for disease specific mortality 
prevalence of exposure to nsk factor in population 
effect of intervention on prevalence 

3.1 Base Year of Simulation 

PREVENT projections begin the year after the selected base year of simulation. The base 

year chosen is dependent on the overall aim of the analysis. If the goal is to determine 

whether the mode1 is accurate, historical testing may be done. The base year of 

simulation for historical testing would likely be twenty or thirty years in the past in order 

to compare simulation results with actual data collected over the past few decades. If the 

aim of the researcher is to predict future health patterns, then a more recent base year may 

be chosen. In this analysis, selection of the base year of simulation involves balancing 

the desire to use the most current data and selecting a base year of simulation for which 

al1 the required types of data are available. 

Since this paper aims to provide a sensitivity analysis rather than historical 

testing, it makes sense to choose a base year which is fairly recent and for which al1 the 

required data are available at a national level. At the tirne that this analysis was started, 



1992 was the most recent year for which data was available and it was thus chosen as the 

base year. 

3.2 Population Data 

A PREVENT run produces outcome measures like mortality and PYLL for a specific 

population. For this analysis, the Canadian population was chosen, and the data sources 

were selected to produce input data that were representative of the Canadian population. 

3.2.1 Structure 

Data Required: PREVENT requires sex-specific population structure data in one-year 

age groups from under 1 to 95 plus years old. 

Data Source: The 1991 Census conducted by Statistics Canada produced estimates of the 

Canadian population distribution by sex and age in one-year age groups from under 1 to 

90 years old. Statistics Canada produces annual postcensal estimates of the population of 

Canada in noncensus years. Thus, the postcensal estimate for 1992 represents the best 

data source for this analysis with a base year of simulation of 1992. The 1995 final 

revised postcensal estimates for the 1992 population, obtained by special request from the 

Demography Division of Statistics Canada, are presented in Table 3-1 and Figure 3-1. 

Issues: Clearly, some estimate must be made of the population distribution by sex in one- 

year age groups for those 91 to 95+ years of age. As Figure 3-1 shows, after 

approximately age 70, the national population of both males and females appear to 

decline linearly. Of course, this does not provide sufficient reason to believe that the 

population will continue to decline Iinearly above age 90 because age is not the only 



Table 3-1 Population Structure, Canada, 1992 

A W  mpulation ('000s) 
Male temale 

Under 1 206.0 193.7 

Age mpulatiin ('000s) Age kpuiatian ('000s) 
w le  kemaie Male kemale 

32 268.9 262.6 64 111.4 120.7 

- -- -- 

predictor of population. If a baby boom occurred between 1887 and 1902, it could have 

the effect of producing a nonlinear decrease in population in the upper age groups in the 

current decade. It may also be the case that those who survive to age 90 are blessed with 

a hardiness which gives thern a longevity beyond that predicted by linear extrapolation. 

The opposite scenarios of a baby bust or a rapid decrease in health are also possible. 



Figure 3-1 Population Structure, Canada, 1992 

Age Group 

Data available for turn of the century are not detailed enough to determine whether there 

had been a small baby boom or baby bust; however, inspection of the 1986 census data 

shows that the numbers aged 84 to 89 (who would be 90 to 95 years old in 1992) are 

consistent with a linear decreasing trend between ages 70 and 90 for both males and 

females. 

Three different models were applied tu the data points between 70 and 90 years of 

age: a linear model, a loganthmic model, and a quadratic model The resulting lines fit 

reasonably well; however, extrapolation produced zero population for males before age 

90 and for females before age 95. Imputing zero values for ages 96 to 100 for males and 

age 100 for females improved the expected values but not sufficiently. A quadratic line 

was then fit with the imputed zeros and this produced the best results. Zero population 

was still reached before it should have been, but the results were close enough that the 



Figure 3-2 Linear, Logarithmic, and Quadratic Curve Estimations 
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few remaining conflicting data points were manually imputed with reasonable values. 

The results of the line fitting are given in Figure 3-2 and the expected values are in Table 

3-1. 

3.2.2 All-Cause Mortality 

Data Required: PREVENT requires population mortality data to be sex and age specific. 

Numbers must be input as rates (per 100,000) for each one-year age group between under 

one and 95 plus. 

Data Source: The total rnortality rates used in this analysis were calculated using the 

number of deaths in Canada 42 (see TabIe 3-2) and the population structure data from 

section 3.2.1. The calculated rates used as input data for the PREVENT analysis are 

given in Table 3-3. The calculated rates were al1 reasonable, with the exception of the 

rate for males in the 95 plus age category. The quadratic function used for extrapolation 

of the population in the age category predicts a population of 200 males; however, it is 

known that there were 1607 deaths in this age category in 1992.42 The quadratic function 

thus underestimates the population of 95 plus males in 1992, and it was necessary to 

'guesstimate' a mortality rate of 60,000 per 100,000 for this group and from this calculate 

a 1992 population of 2678 males aged 95 and over. 

3.2.3 Birth Projections 

Data Required: PREVENT requires 51 years of birth projections by sex in absolute 

numbers. 

Data Source: A 1994 Statistics Canada publication provides 48 years of birth projections 

for Canada ". For the purpose of this analysis, the projections for 1993 and 1994 are 



Table 3-2 Number of Deaths, Canada, 1992 

Pge Deaths Pge Ueaths Pge Veaths 
Male temale Male Fernale Male temale 

Under 1 1389 1042 pp 

- - - - - - 

replaced by actual count data from another Statistics Canada publication 44 leaving 46 

years of birth projections. These data are presented in Table 3-4 and Figure 3-3. 

Issues: Birth projections for the remaining two years (2041-42 and 2042-43) are not 

given in the Statistics Canada publication. PREVENT requires 50 years of birth 

projections for it to calculate complete projections through to 2043. The alternatives 



Table 3-3 Mortality Rates, Canada, 1992 (per 100,000) 

43e Mortality Rate 
Male Female 

Under 1 67427 532.45 

N e  Mortality Rate 
Male Female 

32 125.33 53.31 

N e  Mortality Rate 
Male Fernale 

64 1856.37 996.69 

were to extrapolate the birth projections curve or to drop the final two years fiom the 

analysis and ignore projections provided by PREVENT for those two years. 

Figure 3-3 presents total birth projections for Canada from 1996 to 2041. It is not 

obvious that extrapolation of a fitted line will produce acceptable results. In contrast to 

the extrapolation done for the population structure -- a situation in which the population 



is known to ultimately reach zero -- there is no 'ultimate' number of births. Births in any 

given year depend on many factors including the population structure for women in their 

fertile years, levels of female employment, knowledge and use of effective contraception, 

sterilization and other means of birth control, economic factors, and postponed 

~hildbearing.~~ Each of these factors follows different patterns. For exarnple, economic 

factors may apply a downward pressure on fertility rates while postponed childbearing 

may only have a temporary downward effect on fertility rates. Given the complexity of 

projecting births and the questionable nature of the necessary assumptions, the final two 

years were dropped fiom the analysis. 

A second issue arose fiom the fact that available birth projections are not given 

separately by sex as required by PREVENT. Data fiom Statistics Canada 44 show that the 

male-female ratio of live births in Canada has not varied greatly since 1974. Assuming 

that this ratio will remain constant over the simulation period, an average of the male- 

female ratios for the twenty year period 1974 to 1994 (1.055144) was applied to the birth 

projection figures for 1995 to 2039 to obtain the separate male and female birth 

projections figures given in Table 3-4 (1 993 and 1994 figures, for both males and 

females, are actual numbers of births). 

3.2.4 Life Expectancy 

Data Required: PREVENT needs the life expectancy for a 95 years old male and a 95 

year old female to generate a life expectancy table for the population in the base year. 

Data Source: A Statistics Canada publication provides life expectancies for Canadians 



Table 3-4 Projected Births, Canada, 1992-2040 

Y ear Births Y ear trirths 
Male temale Total Male i-emale Total 

1992 200.2 189.8 390.6 201 / 213.0 201.9 414.9 

Figure 3-3 Projected Births, Canada, 1992-2040 
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Table 3-5 MalelFemale Birth Ratio, Canada, 1974-1994 

Year Number of Nurnber of WF Ratio 
Males Females 

180250 170400 1 .O57805 
184534 174789 1 .O55753 
184832 1751 55 1 .O55248 
185923 175477 1 .O59529 
183879 174973 1 .O50899 
188382 177682 1 .O60220 
190395 180314 1 .O55908 
190603 180743 1 .O54553 
191 307 181775 1 .O52438 
192236 181453 1 .O59426 
193678 183353 1 .O56312 
193247 182480 1 .O59004 
191 043 181 870 1 .O50437 
189314 180428 1 .O49250 
192989 183806 1 .O49960 
201 152 191 509 1 .O50353 
208205 197281 1 .O55373 
20661 2 19591 6 1 .O54595 
204378 194264 1 .O52063 
199744 188650 1 .O58807 
1981 73 186939 1 .O60094 
9 

Figure 3-4 MalelFernale Birth Ratio, Canada, 1974-1994 

Year 



by single years of age 45 but since PREVENT generates its own life table, the only 

required data are the life expectancies of 95 year old males and fernales. These are 2.86 

years and 3.35 years, respectively. 

3.2.5 Mortality from CHD 

Data Required: For disease-specific mortality, PREVENT requires that data be input as 

mortality rates (per 100,000) for 20 five-year age groups by sex. 

Data Source: CHD mortality data, as classified using the International Classification of 

Diseases v. IX code (ICD 410-414), were obtained by special request from the Health 

Statistics Division of Statistics Canada. Table 3-6 presents the mortality data, both 

absolute numbers of deaths and rates. 

Issues: The data from Statistics Canada are available in five year age categories up to 85 

plus years old. PREVENT requires the disease-specific mortality rates to be further 

stratified in the upper age category (85 plus) into 85 to 89 years, 90 to 94 years, and 95 

plus years old. Some estimate of the distribution of CHD mortality over these three age 

categories must be made. CHD is an age-related disease, but since age is not the only 

predictor of CHD, it is not clear what kind of relationship exists behveen the h o  

variables. Attempts at fitting linear, logarithmic, and quadratic lines al1 produced large 

deviations from the observed values and were thus considered unacceptable for 

extrapolation. Following a methodology used by Herbert,37 CHD mortality rates, as a 

proportion of all-cause mortality rates, were exarnined separately by sex for possible 

trends. 



Table 3-6 CHD Mortatity Rate, Canada, 1992 

Pge 
Group 

O 10 4 
5to9 

10 to 14 
15 to 19 
20 to24 
25 to 29 
30 to 34 
35 to 39 
40 !O 44 
45 to 49 
50 to 54 
55 to 59 
60 to 64 
65 to 69 
70 to 74 
75 to 79 
80 b 84 
85 to 89 
90 to 95 
95plus 

Deaths 

Male Fernale 

Mortality Rate 
per 100,000 

Male Fernale 
0.10 0.00 

3.3 Risk Factor Data 

3.3.1 Prevalence Estimates 

Data Required: Estimates of the prevalence of alcohol consumption for 1992 in Canada 

by age and sex are required by PREVENT, 

Data Source: Statistics Canada conducts a telephone survey of Canadians on a regular 

basis to solicit information concerning social patterns. In the 1991 Cycle 6 of the General 

Social Survey (GSS) are questions concerning the frequency of alcohol consumption and 

the quantity of alcohol consumed on drinking occasions. For this analysis, estimates of 

alcohol consumption were obtained by multiplying frequency of drinking by the average 

quantity drunk on each occasion. Below is a histogram of the calculated drinks per day: 

42 



Figure 3-5 

Histogram of Drinks per Day 
1991 GSS Survey, Canada (n=6540) 

z 
ûrinks per day 

The histogram suggests that one-third of Canadians are abstainers, one-third drink less 

than 0.2 drinks a day on average, and the remaining third drink 0.2 or more drinks per day 

on average. The proportion of Canadians who drink 1.5 drinks a day or more on average 

is relatively smail(6.7% of the population). 

PREVENT requires that the exposure variable be categorized into six or fewer 

categories. For the purposes of this analysis, five categories have been defined: 

abstainer (those who have not had any alcohol in thepast twelve months), > O to 0.5 

drinkdday, > O S  to 1.0 drinks/day, > 1.0 to 1.5 drinkdday, and > 1.5 drinkdday. A 

crosstabulation by age category, sex, and drinking category produced the prevalence 

estimates shown in Table 3-7. 

Issrtes: The GSS is conducted using a sample of the national population. It will be 

assumed that the alcohol consumption calculations approximate the drinking patterns of 



the national population, even though the survey is cross-sectional in design and 

respondents are thus required to recall their drinking patterns over the previous year. 

Table 3-7 Prevalence of Alcohol Consumption In Canada, 1991 
by sex and age group (drinks per day) 

From Table 3-7, it is clear that in some dnnking categories the validity of the prevalence 

estimates can be challenged because of the small nurnber of individuals in these 

categories, e.g., females drinking more than one drink per day on average. These small 

numbers do not corne as a surprise because it is well known that there are relatively few 

women who drhk large arnounts of alcohol. Since the GSS Survey is one of the larger 

national surveys, it would be difficult to obtain better estimates stratified by sex and age 

gr*uP* 

As discussed earlier, the evidence to date supports the idea that al1 types of drinks 

confer some cardioprotective effect 'O. Thus, this analysis does not distinguish between 

different types of drinks. 

3.3.2 Relative Risk Estimates 

Data Required: Relative risk data are needed separately by sex, age group, and exposure 

level. Residual risk data, defined as the minimum relative risk which is experienced after 



the cessation of exposure, is also needed by sex, age group and exposure level. 

Data Source: Although studies suggest a J-shaped curve for the relationship between 

alcohol consumption and CHD mortality, the reported relative risks Vary widely. This 

inconsistency in the published literature presents an opportunity for a sensitivity analysis. 

Since there are an infinite number of possibilities for the exact shape of the J- 

shaped curve, a sensitivity analysis must rnake some assumptions about how the J-shaped 

curves in the different scenarios will differ from each other. For this analysis, the J- 

shaped curves Vary along three dimensions: 

the relative risk at the low-point of the curve 
the level of alcohol consumption at the low-point of the curve 

Rather than designating one study as having the correct relative risk value or level of 

alcohol consumption at the low-point of the curve, ranges of values are derived fiom the 

literature. Since the literature in the area of alcohol and CHD is extensive, it is important 

to first choose from among the many studies examining the relation between alcohol 

consumption and CHD. For the purpose of this analysis, the reviewed studies were 

measured against the following criteria: 

1. Studies which examine CHD martality 

Some studies look at coronary artery disease (CAD) or cardiovascular disease (CVD) 

which includes events such as stroke. These studies are excluded because the relationship 

between alcohol and stroke may differ from that for alcohol and CHD. Since myocardial 

infarction (MI) forms the bulk of CHD deaths, studies examining MI specifically are 

considered. Although the risk factors for CHD mortality and CHD incidence appear to be 

similar," the magnitude of relative risk is different. Thus studies which examine only 



CHD incidence are excluded for the purposes of establishing the range of relative risks. 

2. Prospective studies with a reasonably long follow-up period 

A case-control study design in a study of mortality presents problems. Retrospective 

designs have potential problems in terms of recall bias. Since enough studies have been 

conducted in this domain, it is reasonable to restrict this analysis to prospective studies 

which generaIIy provide better estirnates of relative risk. 

3. Studies wi'lich rmtrol for possible confounders 

Given the controversy over the effect of former drinkers becoming abstainers, it is 

desirable that the relative risks exarnined be based on studies which controlled for this 

confounder. Other obvious confounders, such as age and smoking status, must be 

controlled for. 

Some other criteria were also considered that did not necessarily result in exclusion if a 

study did not meet the criterion. These included sample size (a prospective study should 

have a fairly large sample size for enough cases to occur), location of sarnple (studies that 

were conducted in areas of the world that were similar to a Canadian population were 

favoured), and date of publication (recent results are more likely to be applicable to 

curent populations than earlier results). 

The studies that could be quickly dismissed because they fell short of the criteria 

in too rnany areas are listed in Table 3-8 dong with the reasons they were dropped. Table 

3-9 outlines the characteristics of the studies that were used to obtain the range of values 

for the low point of the cunie. It should be evident that if a meta-analysis with sample 



size as the primary weighting criterion had been performed, the American Cancer Society 

" and Nurses Cohort Study " would overwhelm the other studies because of their large 

sample sizes. This would amount to assuming that these two studies had the correct 

relative risk values. The alternative approach, used in this analysis, is to view al1 the 

studies in Table 3-9 as useful and use a range of values obtained from the studies as the 

basis for constructing different scenarios. This partly acknowledges that the advantage of 

sample size is often offset by the logistical difficulties of conducting larger studies 

(potentially resulting in more errors in the data). 

The low-point relative risk values for the four theoretical J-shaped or U-shaped 

curves used in this analysis are presented in Table 3-10. The choice of values used for 

the low-point of the curve in these scenarios is infonned by the studies in Table 3-9. The 

values for the complete curve are not taken fiom any one particular study because no one 

particular study has a perfect J-shaped or U-shaped curve. AIso, the cut-points used for 

the drinking categories differ fiom study to study. Rather, relative risk values for the 

category with lowest risk are compared and used to inform the choice of values for the 

scenarios in Table 3-10. Some assumptions were necessary, for example, neither Fuchs 

nor Garfinkel have results for women at the high end of the drinking spectrum because so 

few women drink more than two or three drinks a day. For this analysis, it is assumed the 

risk for women increases at higher consumption levels as it does for men. 

Arnong the studies selected, CoIditz70, SuhZ4, and ~uchs'l appear to be on the low 

end of the spectrum, suggesting that the cardioprotective effect of alcohol is in the range 

of 0.3 to 0.5 relative risk (those who do not drink as referent category). Boffetta'l and 

Garfinke17' suggest that the protective effect may only be in the range of 0.7 to 0.8 at its 



Table 3-8 Excluded Studies 

Study Not a NotCHD CHD Lacked basic Follow.up Sarnple 
prospective or MI incidence control of period too size too 
cohort not confounders short small 

mortaiity 

Blanchi (7993) 4b X X ma. 

de-Labry (1992) 47 X X 

Farchi ( 1992) 48 

Garg (1 993) 49 X n.a. 

Gordon (1 987) ' O  X X n.a. 

Gordon (1981)" X 
Jackson (1991) 52 X X n.a. 

Kaufman (1 985) 53 X X X n.a. 

Kittner (1 983) 54 X n.a. 

Kivela (f989) 55 X 

Klatsky (1990) 56 X 

Klatsky (1981) " X n.a. 
Klatsky (1981) X X 
Kono (1 986) 

Lazaruç (f 991 ) 59 

Marmot (1981) 60 X 

Miller (1990) 6' X n.a. 

Rimm (1991) 62 X X X 
Rimm (1 991) X n.a. 

Rosenberg (1981) X X X n.a. 

Scragg (1987) 64 X X X X n.a. 

Shaper (1987) 65 X n.a. 

Suhonen (1987) 66 X X 
Wannamethee (1992) 67 ? 

Yano (1 977) 69 x x 

Table 3-9 Selected Studies 

Population Sample Follow-up Adjusted For 
Size Period 

Coldib (1985)" American M & F 1,184 4.75 yrs. Sex, age, smoking, cholesterol 

Camacho (1 987) " American M & F 4,590 15 yrs. Age 

Boffetta (1 990)" American M 276,802 12 yrs. Age, smoking 

Garfinkel (1988)" American F 581,321 12 yrs. Smoking 

Gordon (1983)~~ American M 9,532 Age, smoking 

Suh (1 992)24 American M 11,688 c=12 yrs. Age, smoking 

Fuchs (1 995)" American F 85,709 12 yrs. Age, smoking 



greatest. In the four scenarios in Table 3-10, the relative risk is varied between 0.5 and 

0.7 (0.3 was not used because only Colditz reported this value and it was for those who 

drink -0.5 drinkslday or less -- he found a relative risk of 0.6 for those drinking between 

0.5 drinkslday and 3.0Idrinks a day). The values for the entire curve in the different 

scenarios are presented in Section 4.2. 

These scenarios are designed to test the effect of varying the relative risk and level 

of alcohol consumption at the low point of the J-shaped curve on CHD mortality. Other 

factors, such as whether the intervention is modeled with the assumption that alcohol 

consumption is an age group characteristic or a cohurt characteristic are also explored 

(see the Results section). 

What little information there is on residual relative risk afier cessation of exposure 

suggests that the cardioprotective effect is lost once drinking stops. For this analysis, 1 

assume that former drinkers have no more protection than abstainers. This assumption is 

consistent with at least one of the hypotheses (platelet aggregation) relating to the 

biological mechanism of the cardioprotective effect of alcohol (See Section 2.2.3). 

Table 3-10 Four Curve Low Points 

Alcohol consurnption Relative Risk 
Scenario at lowest relative risk at lowest point 

(avg. drinks/day) 
1 71 .O to 1.5 0.5 
2 71.0 to 1.5 0.7 
3 7 0.5 to 1.0 0.5 
4 7 0.5 to 1.0 0.7 



3.3.3 Intervention Estimates 

Data Required In order for PREVENT to compute the projected impact of an 

intervention on the CHD mortality in a population, data on the impact of an intervention 

on the prevalence of exposure to alcohol consumption at a population level are required. 

Data Source: There is very little in the literature conceming the effect of interventions to 

change alcohol consurnption at a population level (historically, prohibition is perhaps the 

most significant population level intervention) and nothing of a form that could be used 

in the PREVENT analysis. In one of the few comrnunity based studies in the literature, 

van Assema et al.76 were unable to show that intervention methods such as mass media 

messages, self-help materials, lectures, and small group activities had any effect on 

excessive alcohol use. The disappointing results may be related to the time limitation of 

the study. Interventions on smailer populations, e.g. general practitioner settings, have 

been reported in the literatureT7, however, these populations are not likely to be 

representative of the Canadian population. Theoretical estimates of intervention effects 

are therefore used in this analysis. 

Intervention data entered into PREVENT should ideally be stratified by the sarne 

variables (sex and age-group) that the prevalence and relative risk input data are stratified 

by. For simplication, in tnis analysis, the theoretical intervention estimates used are 

assumed to be the same for al1 age and sex categories in higher risk drinking categories. 

The intervention estimates are expressed as the percent reduction in the 

proportion of the population in higher risk drinking categories (stratified by age and sex) 

-- not a percent reduction in quantity consurned. For exarnple, Table 3-1 1 depicts the 

prevalence estimates in the population after a 50% intervention with > 0.5 to 1.0 drinks 



per day as the category with lowest risk. Since the intervention moves individuals frorn 

higher risk to lower risk, the lowest risk category does not have a reduction but rather an 

increase in the proportion of the population it contains. In the base scenario (see table in 

Section 4.2), the intervention estimates used are IO%, 20%, 30%, 40%, and 50%. In the 

sensitivity analyses, the intervention estimate in al1 scenarios is 50%. 

Table 3-11 Prevalence Estimates Before and After 50% Intervention, Canada 

Before Intervention: 

After Intervention: 



4. Results 

4.7 PREVENT Projections 

PREVENT provides results for both the entire population and for specific disease 

subpopulations. This subsection will present results for the entire Canadian population 

using a base intervention scenario which has been assigned intermediate values of various 

input variables where possible (see section 4.2 for specific values). For example, relative 

risk values in the literature var -  fiom 0.7 to 0.5 for the protective effect of alcohol at the 

low point of the J-shaped curve, and the relative risk used for the low point of the J- 

shaped curve in the base scenario is 0.6. Note that 0.7 to 0.5 relative risk, in the lowest 

risk category with abstainers as referent category, is equivalent to 1.4 to 2.0 relative risk 

among abstainers if the lowest risk category is the referent category. 

To provide some context for examining CHD deaths, it is useful to look at all- 

cause mortality projections for Canada. All-cause mortaiity is calculated in PREVENT 

Figure 4-1 
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using the overall mortality rate. PEVENT projects all-cause mortality in Canada tu 

increase steadily over the next 48 years. Male deaths are just over 100,000 and female 

deaths just under 100,000 in 1992. By 2040, this is projected to reach 230,000 deaths for 

males and 220,000 deaths for females, a combined total of 450,000 deaths per year. This 

steady increase in deaths is not due to an increase in mortality rate but probably due to a 

shifi in the population pyramid to upper age categones. 

In mortality studies, potential years of life lost (PYLL) is sometimes used as an 

outcome measure. Since this intervention analysis examines deaths prevented, it is 

possible to look at the anafogous potential years of life gained (PYLG) as a result of an 

intervention. To calcuIate PYLG, every prevented death is rnultiplied with its age 

specific life expectancy and the result is summed over ages. The life expectancies are 

derived fiom overall mortality. 

Looking at a 50% intervention (see Section 3.3.3 for a definition of a 50% 

intervention) using the base scenario, PREVENT calculates that the PYLG peaks at about 

53,000 years. The shape of the curve bears some resemblance to the total mortality 

reduction curve, but after the 12 year intervention, the decline in PYLG is much slower 

than the decline in deaths prevented. This is because most CHD deaths occur in upper 

age categories whicli leads to a smaller PYLL than deaths in lower age categories. Not 

shown on the graph are the PYLG for the other interventions of 4O%, 30%, 20%, and 

10%. The results are in proportion to the magnitude of the intervention, i.e., the PYLG 

with a 10% intervention is one-fifih of the PYLG in the 50% intervention graphed below. 

PREVENT also calculates the actual years of life gained (AYLG) which is the difference 

between the reference and the intervention population. The rate of increase in actual 



Figure 4-2 
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years of life gained increases during the 12 year span of the intervention. Afier the 

intervention, the number of AYLG continues to increase but the rate of increase declines. 

The AYLG for the other interventions of 4O%, 30%, 20%, and 10% are in proportion to 

the magnitude of the intervention. 
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Potentially of interest is whether the life expectancy of men and women changes as a 

result of the intervention. PREVENT generates its own life expectancy table and 

calculates that the life expectancy of men and women is 74.5 years and 81 .O years 

respectively under the 50% intervention scenario. Over the course of the simulation, 

there is a greater increase in life expectancy for men (74.5 to 74.9 years old) than women 

(8 1 .O to 8 1.2 years old). 

Finally, it is also important to examine the effect of the intervention in terms of 

CHD-specific mortality. In 1992, there are 14,000 male CHD deaths and 10,000 female 

CHD deaths. Under the 50% intervention scenario, the effect of the intervention appears 

Table 4-1 Life Expectancy, Canada, 1992-2040 

Men - 
74.53 
74.59 
74.65 
74.70 
74.75 
74.79 
74.83 
74.83 
74.84 
74.84 
74.85 
74.85 
74.86 

Women 
80.96 
81.00 
81.03 
8 1 .O7 
81.10 
81.12 
81.14 
81.15 
81.15 
81.15 
81.15 
81.16 
81.16 

Women 
81.16 
81.17 
81.17 
81.17 
81.17 
81.18 
81.18 
81.18 
81.18 
81.18 
81.18 
81.18 

to balance population pressures for the span of the 12 year intervention such that the 

nuinber of CHD deaths remains fairly steady (slight increase). Once the intervention 

ends in 2004, population pressures take hold and the numbers of deaths start to climb 

reaching 42,000 per year by 2040. Without the intervention, PREVENT projects that 

49,000 per year would die because of CHD (not shown). 



Figure 4-4 
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The graph of CHD mortaiity reduction makes this clearer. The intervention 

results in a rapid increase in the number of CHD deaths prevented. At the end of the 12 

year intervention, PREVENT assumes that the effect of the intervention on alcohol 

consumption continues and so deaths continue to be prevented. 

Figure 4-5 
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The results presented thus far are that total mortality is projected to increase, mortality 

reduction is anticipated to be greater for males than fernales, mortality reduction is 

proportional to the intervention effect, PYLG increases during the intervention and 

gradually drops off aftenvards, the increase in life expectancy is greater for men than 

women, CHD mortality holds steady during the intervention and increases aftenvards, 

and CHD mortality reduction increases during the intervention and is stable aftenvards. 

This type of information, in the context of a valid model and realistic 

interventions, is useful for population health planning. The next subsection presents the 

results of a sensitivity analyses, in the context of alcohol and CHD, aimed at providing 

some information about the validity of the model. As previously mentioned, cornparisons 

with historical data or prospectively collected data are also necessary to establish the 

validity of the model; the following sensitivity analyses are a first step. Following the 

example of Gunning-Schepers, CHD mortality reduction is used as the outcome of 

interest. 

It is important to note that the interventions modeled in this paper are theoretical 

interventions. An intervention which moves non-drinkers to become drinkers, at the 

same time as it moves excessive drinkers to drink at more moderate Ievels, may have a 

maximal impact on CHD deaths but is not necessarily a realistic intervention for 

implementation. The more common type of intervention, which tries to shift exposure 

levels in an entire population in one direction or another, is arguably difficult enough to 

implement. 



4.2 Sensitivity Analyses 

Outcome estimates are only as good as the methods used to produce the estimates and the 

quality of the input data. As discussed in the Background section, the PREVENT 

methodology is one of a number of different approaches to population modeling and 

intervention simulation. It is arguably the most practical method for population level 

estimation because it makes use of data that are typically available. However, data 

availability does not mean that there won? be variation in the reported values, e.g., 

published relative nsks. Other input data, mostly analysis parameters, are not found in 

the literature, so there is uncertainty about the values most appropriately used. 

The sensitivity analyses done in this section involve establishing a range of values 

for each variable and performing a PREVENT run using the extreme values in the range. 

The range of values chosen may be derived from the literature or may simply be based on 

an assessment of what are realistic parameters for an intervention. Both approaches are 

used in the sensitivity analyses in this paper. Table 4-2, following, outlines the different 

scenarios in the sensitivity analyses, Note that the base scenario was used in Section 4.1. 

4.2.1 Varying Relative Risk and the Lowest Risk Category 

This analysis assumes that the relationship between alcohol consumption and CHD 

mortality is correctly described by a U-shaped or J-shaped cunie. However, the exact 

location of the low point of the curve is uncertain. Thus, this subsection will report 

results of a sensitivity run on location of the low point of the curve. 

As described in the Method section, two different relative risk scenarios have 

been constructed for this analysis. These are theoretical scenarios because they are not 



Table 4-2 Base and Sensitivity Analysis Scenarios for Data Input t o  PREVENT 

Variable 

Relative Risk 
abstainers 
> O to 0.5 
0 . 5 t 0  1.0 
> 1.0to 1.5 
> 1.5 

Cohort orage group analysis 
Tirne spread of intervention 
Fi& year of intervention 
lntervention effect on alcohol 

Variable 

Relative Risk 
abstainers 
> O to 0.5 
> 0.5 to 1.0 
> 1.0 to 1.5 
> 1.5 

Cohort or age group analysis 
Time spread of intervention 
First year of intervention 
lntervention effect on alcohol 

Variable 

Relative Risk 
abstainers 
> O to 0.5 
> 0.5 to 1.0 
> 1.0 to 1.5 
> 1.5 

Cohort or age group analysis 
Time spread of intervention 
First year of intervention 
lm+-m,~mb:.-.- -WB-+ mm -1,w.hd 

Scenarios 
Base 1 2 3 4 5 6 7 8 9 I O  

cohort age age age age cohort cohort cohort cohort age age 
12 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 24 year 24 year 

7992 1992 1992 1992 1992 1992 1992 1992 1992 1992 1992 
1 O-50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 

Scenarios 
II 32 13 14 15 16 17 18 19 20 21 

age age cohort cohort cohort cohort age age age age cohort 
24 year 24 year 24 year 24 year 24 year 24 year 1 year 1 year 1 year 1 year 1 year 

1992 1992 1992 1992 1992 1992 2002 2002 2002 2002 2002 
50% 50% 50% 50% 50% 50% 50% 50% 50% 50°h 50% 

Scenarios 
22 23 24 25 26 27 28 29 30 31 32 

cohort cohort cohori age age cohorî cohort age age cohort cohort 
1 year 1 year 1 year 24 year 24 year 24 year 24 year 24 year 24 year 24 year 24 year 

2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 
E ~ O L  E ~ O L  c n o ~  G ~ O L  L ~ O L  E ~ O L  E ~ O L  P ~ O L  r n o ~  r n o ~  r n o ~  



taken directly from any one study but are designed to reflect the relative risk magnitudes 

reported in the literature. In the first scenario, the relative risk values are 2.0, 1 S, 1.2, 

1 .O, and 2.9 for the drinking categories abstainer, > O to 0.5 drinkdday, >0.5 to 1.0 

drinks/day, > 1. O to 1.5 drinks/day, and > 1.5 drinkdday, respectively (equivalent to a 0.5 

relative risk for protective effect of alcohol at the low-point of a J-shaped curve). The 

second scenario relative risk values are 1.4, 1.2, 1.1, 1 .O, 1.8 for the same categories 

respectively (equivalent to a 0.7 relative risk for the protective effect of alcohol at the 

low-point of a J-shaped curve). An intervention effect of 50% in the first year of the 

simulation is assumed in both scenarios. 

In Figure 4-6, scenario 1 projects the number of CHD deaths prevented to be 

about 5600 in 1993 and to rise to almost 12,000 by 2040. In cornparison, scenario 2 

begins around 3500 and peaks at 7200 CHD deaths prevented in the year 2040. This 

suggests that the nurnber of deaths prevented varies in the direction expected. One would 

expect that a scenario with a greater assumed protective effect of alcohol, hence lower 

relative risk for the intermediate drinking categories, would produce larger numbers of 

deaths prevented. The lower relative risk implies that the mortality rate is lower, and 

everything else being equal, the number of deaths should be lower. Scenario 1, with an 

assumed protective effect of alcohol greater than that in scenario 2, projects larger 

numbers of CHD deaths prevented. 

The area under each of the curves is the total number of CHD deaths prevented 

over the 48 year span of the simulation. Table 4-3 below presents these numbers 

separately by sex. The "percentage difference fiom base" column provides the 

percentage difference in the projected number of CHD deaths prevented from the 



Figure 4-6 

CHD Mortality Reduction, Canada, 1992-2040 
(scenario 1 vs. xenario 2) 

projected number of CHD deaths prevented in the base scenario. This is not meant to 

imply that the base scenario is the correct scenario. The base scenario is used simply as a 

reference point against which the other scenarios can be compared and the percentage 

difference can be positive or negative. A large gap in the "percentage difference from 

base" between Scenario 1 and Scenario 2 would suggest that the varying the relative risk 

has a substantial effect on results, whereas a small gap suggests that varying relative risk 

has little consequence for the results of this analysis. It should be evident that the gap of 

Table 4-3 Effect of Relative Risk on Number of Deaths Prevented 

Number of Deaths Percentage Difference 
Prevented from Base 

Scenario 1 Male 25 1 O00 +5 8% 
Female 167000 +56% 
Total 4 1 8000 +58% 

Scenario 2 Male 164000 +3% 
Female 94000 -12% 
Total 259000 -3% 



61 (58% + 3%) suggests that the uncertainty in relative risk values has a substantial effect 

on projections. Note that the gap is greater for females (68) than males (55). 

A recent review of research suggests that the cardioprotective effect of alcohol 

exists in a dose range of 10 to 20 g ram of alcohol per  da^.'^ This is equivalent to "five- 

sixthsfl to "one and two-thirds" standard drinks per day. In this anaIysis, the categories 

close to "five-sixths" to "one and two-thirds" drinks per day are the > 0.5 fo 1.0 

drinkdday category and the > 1.0 to 1.5 drinks/day category. In scenarios I and 2, the 

lowest risk category is the > 1.0 to 1.5 drinkdday category. To permit a sensitivity 

analysis on the category with lowest risk, scenarios 3 and 4 use the > 0.5 to 1.0 

drinks/day category as the lowest risk category. 

Figure 4-7 suggests that mortality reduction varies in the direction expected. If 

two scenarios differ by the category chosen as lowest risk category, then whether 

mortality reduction differs between the two should depend on the prevalence estimates 

for each of the categories (everything else being equal). The scenario with the lower 

prevalence of exposure in the lowest risk category should have the greater reduction in 

rnortality. The lower prevalence of exposure implies that, compared to the other scenario, 

the other exposure categories have higher prevalences. A 50% intervention, for example, 

on higher prevalences inoves more individuals to the lowest risk category than a 50% 

intervention on lower prevalences. From Section 3.3.1 we know that scenario 1 has 

lower prevalence estimates in the lowest risk category than scenario 3. Figure 4-7, 

below, suggests that CHD mortality reduction is greater in scenario 1 than in scenario 3. 

The choice of lowest risk category appears to have a much smaller impact on PREVENT 

projections for CHD mortality reduction than do the relative risk values. In fact, the 



Figure 4-7 

CHD Mortality Reduction, Canada, 1992-2040 
(scenario 1 vs. scenario 3) 
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number of CHD deaths prevented over the 48 year simulation period (41 8000) in scenario 

1 is only 10,000 deaths greater than the number of deaths prevented in scenario 3. 

Scenarios 2 and 4 also differ little in the projected nurnber of death prevented (not 

shown). 

Table 4-4 Effect of Lowest Risk Category on Number of Deaths Prevented 

Number of Deaths Percentage Difference 
Prevented from Base 

Scenario 1 Male 25 1 O00 +5 8% 
Fernale 167000 +56% 
Total 41 8000 +5 8% 

Scenario 3 Male 245000 +54% 
Female 162000 +51% 
Total 408000 +53% 

4.2.1 Cohort vs. Age-Group Analysis 

PREVENT provides a number of different analysis options which can have an important 

effect on the outcorne. Significant among these is the option to treat the exposure of 



interest as a cohort characteristic or as an age-group characteristic. If alcohol 

consumption is treated as a cohort characteristic, then, as the population ages, the 

proportions within an age group that fa11 into the different alcohol consumption 

categories are assurned to move with the aging individuals. If alcohol consumption is 

treated as an age-group characteristic, then, the proportions for a specific age group are 

assumed to be static and apply to each new wave of individuals passing through the age 

Scenarios 1 through 4, described in the previous section, al1 assume that alcohol 

consumption is an age-group charactenstic. Al1 four scenarios have been repeated (as 

scenarios 5 through 8) assurning that alcohol consumption is a cohort characteristic. 

Table 4-5 Age-Group vs. Cohort Analysis Comparisons 

Relative Risk at Low Category with Age-Group Cohort 
Point of J-Curve Lowest Relative Risk Analysis Analvsis 

, 0.5 > 1.0 to 1.5 scenario 1 scenario 5 
0.7 > 1.0 to 1.5 scenario 2 scenario 6 
0.5 > 0.5 to 1.0 scenario 3 scenario 7 
0.7 > 0.5 to 1 .O scenario 4 scenario 8 

Figure 4-8 suggests that the age group vs. cohort analysis option has the expected impact 

on mortality reduction. Since the age group simulation and the cohort simulation both 

begin with the same exposure prevalences in the each age category, once would expect 

mortality reduction to be similar in the early years of the simuIation. As time passes, 

individuals in one age group move into the next age group. In the cohort simulation, 

these individuals take their exposure level with them. This differs from the age-group 

simulation where these individuals adopt the exposure level of the age-group they enter. 



From Section 3.3.3, we know that the younger age categories tend to have lower 

prevalences in the higher nsk exposure categories. This means that in the cohort analysis, 

as the simulation progresses, the impact of the intervention will diminish as smaller and 

smaller proportions of the population are moved fiom higher risk exposure categories to 

the Iowest risk exposure category. Thus we would expect the age-group simulation to 

project higher mortality reduction than the cohort simulation. Figure 4-8 shows that 

scenario 1, an age-group simulation, begins with a similar mortality reduction to scenario 

5, a cohort simulation, but diverges as the simulation progresses. By 2040, the age-group 

analysis scenario is projected to reduce CHD mortality by 11,700 deaths per year 

compared with only 8,900 deaths per year for the cohort analysis scenario. 

Figure 4-8 

CHD Mortality Reduction, Canada, 1992-2040 
(xenario 1 vs  scenario 5) 
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Comparing the total number of deaths prevented over the 48 year simulation period, it is 

apparent that the choice of age-group vs. cohort analysis has a sizable effect on the 

projected number of CHD deaths prevented. The gap in percentage difference (23%) is 



larger than that for the sensitivity run on choice of lowest risk category (gap of 5%) but 

smaller than that for the sensitivity run on relative risk (gap of 61%). UnIike relative risk, 

however, the gap due to the variation of analysis type is smaller for females (18%) than 

males (26%). 

Table 4-6 Effect of Analysis Type on Number of Deaths Prevented 

Number of Deaths Percentage Difference 
Prevented fiom Base 

Scenario 1 Male 25 1 O00 +58% 
Female 167000 +56% 
Total 4 18000 +58% 

Scenario 5 Male 2 1 O000 +32% 
Female 148000 +38% 
Total 358000 +35% 

The other three cornparisons (scenario 2 vs. scenario 6, scenario 3 vs. scenario 7, and 

scenario 4 vs. scenario 8) may be used to explore the possibility that the above gaps are 

dependent on the relative risk values and the choice of lowest risk category. Table 4-7 

shows that there may be interaction, although without confidence limits, it is impossible 

to tell whether these resuIts are due to chance or not. 

The greatest gaps in the "percentage difference from base" belong to the scenario 

3 vs. scenario 7 cornparison and the scenario 1 vs. scenario 5 comparison (53% - 30% = 

23% and 58% - 35% = 23%, respectively). The driving force behind these large gaps is 

the greater assumed cardioprotective effect of alcohol(0.5 relative risk for lowest risk 

category). These two cornparisons differ, however, when gender is taken into account. 

The scenano 1 vs. scenario 5 comparison has a gap of 26% for males and 18% for 

females, but the scenario 3 vs. scenario 7 comparison has a gap of 24% for males and a 

gap of 21% for females. This is primarily due to the effect of the choice of lowest risk 



category which lowers the number of deaths prevented in scenario 7 in comparison to 

scenario 5. 

Note that in scenario 7, the number of deaths prevented is lower than in scenario 

5, but in scenario 8, the number of deaths prevented is about the same as in scenario 6. 

The effect of the choice of lowest risk category noted above is balanced by a decreased 

cardioprotective effect of alcohol. 

Table 4-7 Effect of Analysis Type on Nurnber of Deaths Prevented 

Number of Deaths Percentage Difference 
Prevented from Base 

Scenario 2 Male 164000 +3% 
Fernale 94000 -12% 
Total 259000 -3% 

Scenario 6 Male 136000 -14% 
Female 84000 -21% 
Total 220000 -17% 

Scenario 3 Male 245000 +54% 
Female 162000 +51% 
Total 408000 +53% 

Scenario 7 Male 206000 +3 0% 
Female 139000 +3 0% 
Total 345000 +30% 

Scenario 4 Male 165000 +3% 
Female 94000 -12% 
Total 259000 -3% 

Scenario 8 Male 142000 -1 1% 
Female 84000 -21% 
Total 225000 -15% 

4.2.3 Varying the Time Spread of the Intervention 

An intervention can have a fairly swift impact on exposure levels in a population or it 

may take years for the intervention effect to reach its maximal level. This section will 

examine the impact of varying the time spread of the intervention (i.e., the time between 



the beginning of the intervention and the point of maximal intervention effect) on CHD 

mortality reduction. Table 4-8 shows that the two basic scenarios compared in this 

analysis are a one year time spread and a 24 year time spread. A 48 year time spread is 

not used because the simulation period is 48 years and the intervention starting date is a 

variable that will be explored in the subsection 4.4.2 (an intervention with a 48 year time 

spread and a start date afler 1992, the simulation start date, would go beyond the 

simulation period). 

Table 4-8 Intervention Time Spread Cornparisons 

Relative Risk Catego~y with Analysis One Year 24 Year 
at Low-Point Lowest Relative Risk Type Time Spread Time 

Spread 

age-growp 
age-group 
age-group 
age-group 

cohort 
cohort 
cohort 
cohort 

scenario 1 
scenario 2 
scenario 3 
scenario 4 
scenario 5 
scenario 6 
scenario 7 
scenmio 8 

scenario 9 
scenario 10 
scenario I l  
scenario 12 
scenario 13 
scenario 14 
scenario 15 
scenario 16 

Since a longer time spread of the intervention implies that population has less time to be 

affected by the intervention at its maximal level, one would expect mortality reduction to 

be lower for scenarios with longer time spreads (everything else being equal). Figure 4-9 

shows that scenario 9, the 24 year tirne spread scenario, doesn't reach its maximal 

intervention effect until the year 2016, at which time its effect is the sarne as scenario 1, 

the one year time spread scenario. Thus mortality reduction is lower for the scenario with 

a longer intervention time spread. Note that PREVENT assumes that the effect of an 

intervention on prevalences of exposure lasts afier the actual intervention has ceased. 



Figure 4-9 
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CHD Mortality Reduction, Canada, 1992-2040 
I (scenario 1 vs. scenario 9) 
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The number of CHD deaths prevented per year clearly differs the most in the early 

years of the intervention. The implication for the total number of deaths prevented over 

the simulation period is that scenario 1 can be expected to be more effective than scenario 

9 (as suggested by the area under the cuwes). The table below shows that PREVENT 

projects 418,000 prevented deaths in scenario 1 but only 357,000 prevented deaths in 

scenario 9. 

Table 4-9 Effect of Intervention Time Spread on Number of Deaths Prevented 

Number of Deaths Percentage Difference 
Prevented from Base 

Scenario 1 Male 25 1 O00 +58% 
Female 1G7000 +56% 
Total 41 8000 +58% 

Scenario 9 Male 214000 +35% 
Female 143000 +34% 
Total 357000 +34% 



Figure 4-10, below, shows that for al1 the one year vs. 24 year cornparisons, the number 

of CHD deaths prevented is reduced when the intervention is spread over 24 years (it is 

likely that the decrease in deaths prevented follows a straight line as shown). For ease of 

interpretation, those scenarios which assume the > 0.5 to 1.0 category is the lowest risk 

category are not graphed (i.e., scenarios 3,4,7,8, 11, 12, 15, and 16). Varying the 

category with lowest risk has already been shown to produce little variation in the number 

of CHD deaths prevented. Figure 4-12 suggests that the fa11 in deaths prevented is greater 

for the "scenario 1 vs. scenario 9" and "scenario 5 vs. scenario 13" comparisons than the 

other two comparisons. 

Figure 4-10 

CHD Mortality Reduction, Ca nada, 1992-2040 
(by intervention time spread) 
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Table 4-10 confirms that the slopes of the lines do appear to differ. The driving force 

behind the difference of 20,000 deaths appears to be the relative risk values. 



Table 4-1 0 Difference in Deaths Prevented 
by Intervention Time Spread Cornparison 

Difference in Number of 
Deaths Prevented 

Scenario 1 vs. Scenario 9 61000 
Scenario 5 vs. Scenario 13 60000 
Scenario 2 vs. Scenario 10 38000 
Scenario 6 vs. Scenario 14 37000 

4.2.4 Varying the Starting Year of the Intervention 

The last variable to be examined in this paper is the starting year of the intervention. This 

variable may have an impact on the number of CHD deaths prevented because the 

proportion of individuals in each age category can differ at different points in time, Le., 

due to population evolution. As the simulation progresses, individuals pass £tom one age 

category to the next, with some individuals dying (the number depends on the total 

mortality rate for the previous age category). This implies that the population affected by 

the intervention varies over time. This will probably mean differences in absolute 

outcome measures like the number of CHD deaths prevented. In this particular case, the 

number of CHD deaths prevented in Canada will be compared for two different 

intervention start dates: 1992 and 2002. 

Note that the lower boundary for the starting year of the intervention is the start 

year of the simulation, but that strictly speaking there is no upper boundary because the 

starting year of the intervention is determined by the initiator of the intervention. Thus 

the sensitivity run reported in this subsection is not based on uncertainty in the values for 

the starting year of the intervention. Rather, it is a test of whether variation in the starting 

year of the intervention produces the expected results in CHD mortality reduction. As in 



previous subsections, a 50% intervention is used. 

Table 4-1 1 Intervention Starting Year Cornparisons 

Relative Risk Analysis Time Spread of 1992 2002 
at Low-Point Type the Intervention Intervention Intervention 
of J-shaped Start Date Start Date 

Curve 

0.5 age P'uP one year scenario 1 scenario 17 
0.7 age grouP one year scenario 2 scenario 18 
0.5 cohort one year scenario 5 scenario 21 
0.7 cohort one year scenario 6 scenario 22 
0.5 age W u P  24 year scenario 9 scenario 25 
0.7 age €FuP 24 year scenario 10 scenario 26 
0.5 cohort 24 year scenario 13 scenario 29 
0.7 cohort 24 year scenario 14 scenario 30 

The expected results depend on how the population structure for 1992 (see subsection 

3.2.1) differs from the projected population structure for 2002. This largely depends on 

the mortality rates in each age category (and birth rate for the two youngest age 

categories). It is not obvious from the material presented in this paper how the 

population structure will differ. Fortunately, others have worked to provide these type of 

projections; George et al. 43 project that the ''christmas tree with a thick trunk" population 

pyramid for Canada in 1993 will evolve into "pot with lid" population pyramid in 2016 

and an "um" population pyrarnid by 204 1 (see following page). Delaying the starting 

year of the intervention wiIl obviously reduce the total number of deaths prevented in the 

48 year simulation perîod. However, the population pyrarnids suggest that the number of 

deaths prevented in the first year of the intervention should be greater in the scenario with 

a intervention starting year of 2002 than in the scenario with an intervention starting year 

of 1992, because there are larger numbers of individuals in the upper age categories in the 



former case. Figure 4-1 1 shows that scenario 17, with a intervention starting year of 

2002, begins with a mortality reduction in excess of that for the first year of scenario 1 

which has an intervention starting year of 1992. 

Figure 4-1 1 

CHD Mortality Reduction, Canada, 1992-2040 
(scenario 1 vs  scenario 17) 

As would be expected, there is an impact in terms of the number of CHD deaths 

prevented because delaying the start of the intervention means there is less time within 

the simulation to change exposure in the population. In this particular case, Table 4- 12 

shows that a 1992 vs. 2002 intervention starting date results in a projected 57,000 

difference in CHD deaths prevented. Of course, if the simulation is extended beyond 48 

years, one would expect the difference in the number of CHD deaths prevented to be 

much smaller. In this parîicular analysis, the simulation cannot be extended because birth 

projections are not available beyond 2040. 



Figure 4-12 Population by Age Group and Sex, Canada, 1993,2016, and 2041 
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Source: George MV, Noms MJ, Nault F, Loh S, Dai SY. Population Projections for Canada. 
Provinces and Territoies 1993-20 16. Ottawa: Statistics Canada, 1994. 



Table 4-12 Effect of Starting Year of Intervention on Number of Deaths Prevented 

Number of Deaths Percentage Difference 
Prevented from Base 

Scenario 1 Male 25 1 O00 +58% 
Female 267000 +56% 
Total 41 8000 +58% 

Scenario 17 Male 2 16000 +36% 
Female 144000 +35% 
Total 361000 +36% 

Plotting the projected number of CHD deaths prevented reveals that there appear to be 

sorne small differences in the effect of varying the starting date of the intervention, 

depending on which two scenarios are compared (note that the lines are used for clarity 

and not to imply that CHD mortality reduction follows a straight line fiom a 1992 

intervention starting date through to a 2002 intervention starting date). The slopes of the 

"scenario 1 vs. scenario 9" cornparison and the "scenario 5 vs. scenario 13" cornparison 

are similar, as are the slopes of the "scenario 9 vs. scenario 25" cornparison and the 

"scenario 13 vs. scenario 29" comparison, suggesting that the analysis type (age-group 

vs. cohort) does not modiQ the effect of intervention starting date. However, the dope of 

the "scenario 1 vs. scenario 9" comparison differs from both the "scenario 2 vs. scenario 

10" comparison and the "scenario 9 vs. scenario 25" comparison suggesting that the 

relative risk values and the time spread of the intervention both independently modifj the 

impact of the starting date of the intervention (but in opposite directions). 

An examination of the actual projected number of deaths appears to support these 

conclusions (although, without confidence limits, it can't be concluded that the observed 

differences aren't within the boundaries of error). 



Figure 4-1 3 

CHD Mortality Reduction, Canada, 1992-2040 
(by intervention sbrting date) 
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Table 4-13 Difference in Deaths Prevented 
by Intervention Starting Year Cornparison 

Difference in Nurnber 
of Deaths Prevented 

Scenario 1 vs. Scenario 9 6 1 O00 
Scenario 5 vs. Scenario 13 60000 
Scenario 9 vs. Scenario 25 72000 
Scenario 13 vs. Scenario 29 67000 
Scenario 2 vs. Scenario 10 38000 
Scenario 6 vs. Scenario 14 37000 
Scenario 10 vs. Scenario 26 44000 
Scenario 14 vs. Scenario 30 41000 



5. Discussion 

The results of the analyses suggests that PREVENT has the potential to be a useful tooI 

for population health planning. While other models oversimplify population modeling 

or make unrealistic demands for input data, PREVENT balances data availability and 

level of data stratification in such a way as to make projections possible but potentially 

still usefil. The option to provide greater detail in input data is ofien available in 

PREVENT, but is usually not a requirement for projections. This flexibility means that 

projections can usualIy be done with the best available data. 

The sensitivity analysis in the context of alcohol and O morîality revealed that 

PREVENT responds to the values of the input variables in a way that is anticipated based 

on variation of the input data. Variation in some input variables produces greater 

variances in CHD mortaIity reduction than others (e.g., variation in the relative risk 

produced a difference of about 60% in CHD mortality reduction projections but other 

variables, such as the category with lowest risk, age group versus cohort analysis, and the 

time spread of the intervention produced mortality reduction ranges that were notable but 

not as large) but the direction in which mortality reduction changed was always 

consistent with expectations. 

As has been previously mentioned, the sensitivity analysis only partially addresses 

the question of validity. A valid model should produce changes in output (e.g. mortality 

reduction) in the direction expected with changes in input data. However, a model can 

change its projections in the right direction but still produce invalid results because the 

magnitude of the change is too small or large. Ascertainment of this aspect of validity 



must be done by comparing projections with actual data (either historical or prospectively 

collected). Since historical testing is impossible for many risk factorldisease 

combinations and prospective follow up impractical except in the long term, we are 

forced to make assumptions about the validity of the model. 

If the results are valid, it is apparent that the relative risk sensitivity analysis 

produced the largest variation in mortality reduction. This rnay be attributable to the 

large degree of uncertainty surrounding relative risk in the context of alcohol and CHD 

mortality. The U-shaped or J-shaped curve is controversial partly because the results 

published by various investigators differ so widely. This makes alcohoVCHD mortality 

an ideal context in which to test PREVENT because if PREVENT produces useful results 

even with fairly large variation in relative risk values then it can potentially handle most 

risk factoddisease combinations where the range in relative risks may not be as large. 

The definition of "usefulness" depends on the health planner, but it might be that 

variations in mortality reduction projections that are an order of magnitude smaller than 

total projected CHD mortality are usehl for planning purposes. Section 4.1 showed that 

annual CHD mortality would increase fiom about 25,000 deaths to 40,000 deaths over the 

simulation period. Subsection 4.2.1 showed that the difference in projected mortality 

reduction between the relative risk scenarios would increase from about 2,000 deaths to 

5,000 deaths over the simulation period (some of the input variables differ between the 

base scenario CHD mortality projection and the relative risk sensitivity analysis 

projection, but this example is for illustration). These figures suggest that the variation in 

mortality reduction is an order of magnitude less than the projected CHD rnortality. 

The methodological basis for PREVENT described in the Background section 



suggests that PREVENT is designed in a sound manner, and for this reason one might 

assume that the results are valid, even though only prospective data collection will tmIy 

reveal whether PREVENT produces valid results for some risk factorldisease 

combinations. If the results are vaiid, this analysis suggests that an intervention on 

alcohol can have a clear impact on both overall and CHD mortality, at least theoretically. 

A 50% intervention is projected to produce a yearly mortality reduction in the low 

thousands per year. Even a 10% intervention could prevent almost a thousand deaths a 

year. Part of the reason for the large numbers is, of course, the fact that CHD is a major 

cause of mortality in Canada. A PREVENT analysis on another cause of death might not 

provide nearly as drarnatic an intervention effect on mortality. 

The sensitivity analyses done in this paper suggests that the general shape of the 

mortality reduction curve does not depend on relative risk values used as input data but 

the magnitude of the reduction does depend on these values. PREVENT calculates that 

for alcohoVCHD mortality, the extremes of the relative risk range produce as mucb as a 

60% difference in projected mortality reduction. With annual mortality reduction 

projected to be in the low thousands, this kind of variation translates into substantial 

numbers of deaths and c m  have significant implications for resource planning. 

The sensitivity analyses also project variation on the order of about 60,000 

prevented CHD deaths over the simulation period for both the choice of analysis type 

(age-group or cohort) and the starting year of the intervention. The choice of analysis 

type is more important as the length of the simulation increases. The choice of the 

category with lowest relative risk, subject to much speculation in the literature, appears to 

have a minimal effect on the projected nurnber of prevented CHD deaths. This 



information on the magnitude of the change in projections may be useful for prioritizing 

further efforts. If uncertainty in relative risk values causes greater variation in results 

than the issue of age-group vs. cohort analysis, then perhaps further research should 

concentrate on narrowing the range of relative risk values before establishing whether the 

risk factor is best modeled in a cohort mode1 or an age-group model. 

The rest of this section is mostly a discussion of the implications for the projections of the 

model's assumptions and limitations. Some of the issues are raised for the sake of 

completeness but others are problems which could potentially be resolved in a future 

release of PREVENT. 

The final subsection is a discussion of the substantive consequences of this 

analysis. 

5.1 Assumptions and Limitations of PREVENT 

Although there is overlap between the two categories of issues, the order of presentation 

in this subsection will roughly be to first address issues surrounding the input data and 

then tackle issues surrounding the methodology PREVENT uses for projections. 

Data availability and quality issues are not unique to PREVENT. Much of the 

input data needed by PREVENT must be taken f?om the international literature. While 

some publications might be classified as reports on surveillance, much of the 

epidemiologic literature is oriented toward testing aetiologic hypotheses and not with 

population disease modeling in mind. Considerations of power and sample size mean 

that data may not be stratified by the needed variables. Or data may be stratified but the 



cut-points may differ from publication to publication. These types of problems suggest 

the need for easy access to data warehouses. Just as peers should be able to access data 

on which journal articles are based to satisQ their own curiosity about published results, 

those interested in disease modeling should be able to access potential input data as 

required by any population model. Some funding institutions, particuiarly in the U.S., 

have made it mandatory for investigators to archive data in order to receive financial 

support. This is a step in the right direction. 

One might also argue that the problem of variable cut-points can be lessened by 

adopting non-categorical models, e.g., logistic models. This might help for some 

variables like age, but for other variables (e.g., alcohol consumption), the value of a 

continuous variable may be minimal. Most surveys of alcohol consumption are crude 

estimates of drinking behaviour at best because they rely on respondent recall (of quantity 

and frequency of drinking) and depend on the respondent's abiIity to correctly estimate 

an average or "usuai" value for number of drinks consumed on an occasion or the 

frequency of drinking over a given time period. Volume of alcohol consumed is then 

calculated by combining quantity and frequency information, but since this is a calculated 

value, the uncertainty about the value is even greater than that about each of the 

components. Perhaps the best population model isn't one that forces a choice between 

continuous or categorical input forms but one that presents the option of analyzing the 

input data either way for comparison. 

In this paper, prevalence estimates were stratified by sex and age group. It should 

be noted, however, that these are not the only variables on which stratification can be 

done. Socioeconomic status (SES) and racelethnicity has been shown to be 



independently associated with risk for some diseases. Unfortunately, there is no standard 

definition for SES, making comparison of different studies extremely difficult. 

Racelethnicity also suffers from problems of definition although not to the same extent. 

Relative risks for diseases like sickle ce11 anemia are probably adequately stratified with 

racelethnicity values like African, European, Oriental, and South Asian, but it is not clear 

whether this holds for other risk factors/diseases. 

The variation in values for input data in the literature presents problems. 

Confidence limits on the input data (e.g., relative risk, prevalence estimates) that could be 

translated into confidence limits on the output (i.e., number of deaths prevented) would 

provide the ability to distinguish between factors that have a statistically significant 

impact. However, the number of studies with sarnple sizes large enough to provide 

narrow confidence limits on mortality reduction estimates is likely very small because of 

the numerous calculations with estimated quantities that are made in moving from 

prevalence and relative risk estimates to mortality reduction estimates. 

Finally, there is the issue of the length of the simulation period. Ideally, one 

would like projections for as long a simulation period as possible because the more 

information one has about future developments, the more opportunity there is to plan or 

intervene. In this analysis, a 48 year simulation period was used because birth projections 

were available up to 2040. However, some of the rnodeling assumptions are stronger 

early in the simulation and much weaker towards the end of the simulation period. 

Changes in all-cause mortality rates and the effects of immigration (discussed below) fa11 

into this category of assumptions. There is no simple way of deterrnining a "'cut-off' 

point for projections because the mode1 assumptions can differ in when they become 



weaker. 

Aside from input data issues, there are also a number of methodological issues 

surrounding PREVENT projections. As described in the Background section, the disease 

modeling aspect of PREVENT falls under the classification of attributable risk models. 

These types of models necessarily require exposure or risk factor prevalence information 

and relative risks associated with different levels of exposure for an outcome such as 

mortality. In modeling diseases for which risk factor prevalence data is readily available, 

an attributable risk model may be adequate, but for others, where exposure prevalences 

may change rapidly, it quickIy becomes apparent that an attributable risk based model c m  

present problems. 

For exarnple, measuring the prevalence of exposure to risk factors for HIV 

infection is virtually impossible. Even if information about the sexual behaviours or drug 

use of individuals can be measured, and this is difficult in a general population because of 

the sensitivity of the topic, it does not necessarily follow that the information about 

exposure to risk factors has been obtained. It is impossible to tell from the respondent 

alone whether a sexual encounter or IV drug use exposed them to a risk factor like HIV. 

It might be possible to estimate the prevalence of exposure by working backwards from 

the number of deaths and various rates (Le. case fatality rate, rate of infection upon 

exposure) but this approach has flaws (e.g. some rates will be based on clinical trials, 

treatments are constantly changing). Considering these problems, it may be that other 

disease modeling approaches are more appropriate for some risk factor/disease 

combinations. 

The demographic component of PREVENT is based on the cornmonly used life 



table methodology for population projections. However, PREVENT provides little in the 

way of direct output from its population modeling component. Not only does it make 

certain comparisons impossible (for example, it would be usehl to compare the internally 

generated life expectancy table with similar tables produced by Statistics Canada) but 

interpretation of results is harnpered. An updated version of PREVENT which provides 

these projections should be straightforward since PREVENT must generate these figures 

intemally anyway in order to provide intervention effect estimates. 

One shortcoming of the population modeling component of PREVENT is evident 

even without access to the output: PREVENT does not take into account immigration 

patterns in its population modeling. In the Netherlands, where population immigration 

accounts for a relatively small proportion of changes in population structure from year to 

year, this simplification doeç not present a problem. In Canada, however, immigration 

accounts for a substantial proportion of population structure changes from year to year. 

Badets 74 reports that 1,238,455 immigrants came to Canada behveen 1981 and 1991 . If 

the annual immigration numbers can be approximated as 120,00O/year, it is clear that 

immigration accounts for one-seventh (14%) of population structure change fiom year to 

year (there are about 400,000 births a year and 200,000 deaths a year in Canada -- see 

Sections 3.2.2 and 3,2.3). Obviously, immigrants arrive in Canada at various ages, so it 

is not possible to add immigration projections to yearly birth projections. However, the 

impact for this particular analysis of alcohol-CHD may not be that great since almost al1 

immigrants to Canada are under 45 years of age (37% of immigrants were aged 25 to 44 

when they came to Canada, 27% were 15 to 24, and 28% were under 1574). Since the 

high CHD mortality rates do not begin until about age 55 for males and age 65 for 



females (see Sections 3.2.5 and 3.2.2), it is likely that the first twenty or so years of 

projections in this paper for number of CHD deaths prevented are not substantially 

different fiom what would have been projected had immigration been taken into account. 

As discussed in the Background section, PREVENT makes some assumptions 

about the interaction of the effect of risk factors on diseases. There is general uncertainty 

in biological models whether the risk associated with exposures combines additively or 

multiplicatively. Gunning-Schepers opted to assume a multiplicative model. The 

obvious advantage of this assumption is that the effect of one risk factor on outcome is 

assurned to be independent of the effect of other risk factors. This makes the use of data 

from aetiologic investigations possible since relative risks for the joint effect of exposures 

are rarely published. Indeed, in this analysis, only the effect of alcohol was considered, 

and this exclusive type of analysis was possible only because PREVENT is a 

multiplicative model. Had an additive model been assurned, it would have been 

necessary to consider the combined effect of alcohol with other significant risk factors for 

CHD like tobacco use and diet. Some researchers who have explored the issue of 

additive models versus multiplicative models have concluded that the use of 

multiplicative models is reasonable in situations where specific data are lacking 75 or for 

specific groups of di~eases.'~ 

Another issue has to do with the assumption PREVENT makes about exposure 

prevalences after the end of the intervention (but before the end of the simulation). 

PREVENT assumes that once an intervention ends, the adjusted exposure prevalences 

remain as they are for the remainder ofthe simulation period. This is separate fiom 

modeling the effect of trends in exposure prevalences. Trends are assumed to be 



independent of the intervention and apply throughout the simulation period. PREVENT is 

capable of modeling trends in addition to the intervention although this has not been done 

in this analysis because unlike some exposures, e.g. smoking, alcohol consumption 

prevalences have been fairly stable in Canada. However, PREVENT is not capable of 

modeling "elastic" risk factors. It is typical for some interventions to affect prevalence of 

exposure as long as they are being implemented but once they cease, the tendency is 

toward an 'undoing' of the intervention effect. Interventions to promote condom use 

among adolescents might be an example of this kind of elastic risk factor. There is a 

wealth of information on the ternporary effect of interventions like media programs, and 

legal changes surrounding impaired driving, unless there is reinforcement. Tax changes 

are perhaps one of the few interventions which have a long-tem effect (but even there a 

proportion of the population will find ways to get around the tax). 

The issue of cohort versus age-group analysis noted above must also be 

considered. That PREVENT provides this option at al1 is evidence of the sophistication 

of the mode1 compared to other models (see Table 2-1 in subsection 2.3.3), but this 

choice in analysis also brings with it some new problems. It is reasonably clear which of 

the two types defined by PREVENT (age-group or cohort) some risk factors fa11 under, 

e.g., hypertension is strongly associated with age and can thus be considered an age- 

group characteristic. Many risk factors and exposures, however, do not fit neatly into 

either category. Tobacco use and alcohol consumption are of this latter type. It is likely 

that alcohol use has both cohort and age-group aspects. PREVENT only provides the 

option to choose one or the other. It would be desirable to be able to define a mix of 

cohort characteristic and age-group characteristic for a risk factor exposure. 



The mortality rates which are input for the base year of the simulation are used for 

every year of the simulation. Over a ten year period, the mortality rates may not vary too 

greatly (although for certain subpopulations, advances in treatment have had a rnarked 

effect on mortality rates, e.g., infants and advances in cardiovascular surgicd 

procedures). However, over a fi@ year period, the mortality rates can fluctuate notably, 

especially considering that mortality rates are input into PREVENT stratified by sex and 

five-year age group. Arnong adults, improved diet, healthier lifestyles, and advances in 

health care exert a downward pressure on mortality rates in al1 but the uppermost age 

categories. The advent of new diseases with high case fatality rates, e.g., AZDS, exert an 

upward pressure on mortality rates. In sum, mortality rates cm change (and have 

changed in the past) and the simplification PREVENT makes in assuming static mortality 

rates cm lead to error in projected prevented deaths. 

PREVENT is fairly sophisticated in that it incorporates time dimension concepts 

like latency period (time between disease incidence and death) and lag time (time 

between cessation of exposure, if it occurs, and a reduction in risk to the lowest possible 

risk for a formerly exposed individual). However, PREVENT does not include 

adjustments for lead tirne (time between beginning of exposure and the upward 

rnovement of risk to the point of maximum risk for the category). In practice, lead time 

data are rarely available in the literature. Nonetheless, it may be of interest to explore the 

effect of lead time on projected prevented deaths through a sensitivity analysis. It should 

also be noted that for lag time, the reduction in risk is assumed to occur in a linear 

(straight line) fashion, which may be a reasonable assumption for some diseases but not 

for others. 



5.2 Consequences of this Analysis 

The two objectives of this paper were: 

(1) to use the PREVENT model to estimate the potential effect of interventions on 

alcohol consiimption for projected CHD mortality and related measures in Canada 

(2) to provide some evidence for the validity of the results in (1) by performing 

sensitivity anaIyses with PREVENT 

The sensitivity analyses has provided evidence for the validity of the results, although not 

to the exclusion of the possibility that the magnitude of changes in mortality reduction are 

incorrect. Cornparisons with historical or prospectively collected data are needed to 

confirm the validity of the model. 

With regard to the first objective, the results suggest that the theoretical 

intervention modeled c m  have a significant impact on CHD mortality. A 50% 

intervention is projected to prevent between 200,000 and 400,000 deaths over the iength 

of the simulation. Even a 10% intervention could prevent almost a thousand deaths a 

year. These are not numbers to be ignored, but do the results then suggest that the 

intemention modeled in this paper should be seriously considered as a public health 

intervention? Unfortunately not. 

First, the benefits achieved in this analysis were largely achieved by moving the 

bulk of the population in the abstainer category to the drinking category with lowest risk 

(either > 0.5 tu 1.0 drinkdday, or >1.0 to 1.5 drinkdday). Such an intervention may be 

of theoretical interest, but there is no evidence to support the idea that such an 

intervention would actually work. In fact, some research has shown that this type of 

intervention is likely to fail. There is the added complication that this theoretical 



intervention moves different alcohol consumption subpopulations in different directions, 

i.e., it moves abstainers to drink and drinkers at the high end of the spectrum to Iower 

consurnption levels. 

Second, as mentioned in the Introduction, no general conclusion can be made 

about the benefits or advantages of alcohol consumption as a result of the analyses in this 

paper, and such a general conclusion is necessary before any intervention on alcohol 

consumption can be advocated. The primary outcome in this analysis has been CHD 

mortality and CHD mortality reduction. As discussed in the Background section, there 

are many other diseases related to alcohol consurnption. Any analysis aimed at making a 

general statement about the benefits or advantages of alcohol consumption must take into 

consideration al1 of these other diseases, and preferably look at multiple outcomes, such 

as mortality, mortality reduction, morbidity, PYLL, sick days, income lost, etc.. 



6. Conclusion 

The PREVENT analysis done in this paper has been an interesting exercise in population 

disease modeling. It has served both as a test of the validity of the PREVENT model and 

an exploration of the effect of theoretical alcohol consumption interventions on CHD 

mortality. 

The sensitivity analyses have provided some support for the validity of the model, 

and the projected mortality reduction is of an order of magnitude which suggests that the 

relationship between alcohol and CHD mortality and the distribution of the population in 

alcohol consumption categories provides ample opportunity for interventions, at least 

theoretically. 

It appears that Gunning-Schepers has succeeded in developing a model which 

combines dernography and epidemiology to produce a useful tool for population health 

planning. Issues as to how the projections will compare to actual data remain, but these 

issues are no different from the questions of validity that can be asked of al1 population 

projection models. The results in this paper at least do not refute the validity of the 

model, and suggest that PREVENT is useful at demonstrating for which risk factors and 

diseases one can expect interventions to produce substantial results. 

Further work on the model should focus on accumulating evidence for the validity 

of the model, expanding the scope of its use to other domains, modiQing the model to 

address some of the issues raised in the Discussion, and finally, performing analyses 

which compare the beneficial and harmful effects of exposures for a particular outcome 

measure, e.g., the effect of alcohol on CHD mortality compared to the effect of alcohol 



on breast cancer and other disease mortality. 

Further modifications, together with the potential prospective validation of the 

model in various of areas of inquiry, would transform this model from one with 

potentially useful results to one with great utility. In any case, it appears that PN3VENT 

advances the state of the art in population disease modeling and provides a solid 

foundation for future work. 



abstainer - the alcohol consumption category label for those who don't drink alcohol. In 
the General Social Survey, it is specifically those who haven't consumed any alcohol in 
the past 12 months. In some early studies reporting a J-shaped curve, former heavy 
drinkers were included in the abstainer category. More recent analyses have excluded 
fiorner heavy drinkers fiom the abstainer category. 

attributable risk - the number of incident cases due to association with the risk factor 
divided by the total number of incident cases in the population 

base scenario - an intervention scenario which has been assigned intermediate values of 
various input variables where possible 

gap in percentage difference from base - the difference between two scenarios in the 
percentage difference fiom base value calculated for each scenario. 

intervention estimate - expressed as the percent reduction in the proportion of the 
population in higher risk drinking categories e.g. a 50% intervention could reduce the 5% 
of the population who are heavy drinkers to 2.5% by moving them to the lowest risk 
category. 

J-shaped curve - is the shape of the curve describing the relationship between average 
daily alcohol consumption for an individual and CHD incidencehnortality. Some feel it 
is more appropriately described as a U-shaped curve. 

lowest risk category - the alcohol consumption category containing the low-point of the J- 
shaped curve. 

low-point of the J-shaped curve - the point of the J-shaped curve which has lowest risk 
for death fiom CHD. 

mortality reduction - the number of CHD deaths prevented over the simulation period 

percentage difference from base -- the percentage difference in the projected number of 
CHD deaths prevented in a scenario from the projected number of CHD deaths prevented 
in the base scenario 

PIF (potential impact fraction) - describes the impact of an risk factor intervention on 
disease incidence. The attributable risk is conceptually equivalent to a maximum PIF -- if 
an intervention were to reduce the prevalence of the risk factor to zero the PIF would 
equal the attributable risk. 

PYLG - potential years of life lost, calculated by multiplying every prevented death with 
its age specific life expectancy and the result is summed over ages 



referent category - the alcohol consumption category with the risk of CHD death 

scenario - an individual PREVENT run with set values for input variables. 

sensitivity analysis - the comparison of PREVENT output (e.g. CHD deaths prevented) 
under different scenarios, i.e. different values for input variables. 

TIF (trend impact fraction) - describes the impact of autonomous trends in risk factor 
prevalence, e.g. decreasing cigarette smoking in the population on disease incidence. 
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