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ABSTRACT 

In this thesis we present a mode1 for fluid dynamics computations. The 

model combines a stochastic propagation scheme with special collision rules. 

We consider a class of collision rules with local rnass: momentum and energy 

conservation laws. We derive the Boltzmann equation for the model and 

show that the Boltzmann H-theorem holds. By carrying out a Chapman- 

Enskog analysis we deduce that the macroscopic evolution of the system is 

governed by the Xavier-Stokes equations. In the linear response approsima- 

tion we derive Green-Kubo formulae for the discrete system and show that 

the Onsager reciprocal relations are valid for the model without microscopic 

reversibility. We derive espressions for the transport coefficients in terms of 

autocorrelat ion funct ions. Numerical experiments performed on the model 

support the theoretical analysis and demonstrate that the model provides a 

stable simulation met liod for turbulent hydrodynamic flows. 
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1. INTRODUCTION 

Over the past few years lattice gas models have attracted the attention of 

researchers in various disciplines. '-' In 1986, Frisch: Hasslacher and Pomeau 

(FHP) introduced a mode15 that in the long-time. large-scale limit leads to 

the Navier-Stokes equations. In two dimensions the model consists of a set 

of particles on the triangular lattice. The particles propagate among lattice 

vertices with unit velocities and interact with each other according to some 

artificial local collision rules that satisfy particle number and momentum 

conservation Iaws. This mode1 demonstrated that the complesity of hydro- 

dynamics rnay be obtained from a drastically simplified version of molecular 

dynamics. Since the introduction of the original FHP mode1 a number of 

extensions of the model have been developed which have allowed one to  in- 

vestigate the properties of comples systems built on simplified rnicroscopic 

dynamics. On the computational side, it has been shown that lattice gas 

models provide stable simulation schemes that  are highly parallelizable and 

are efficiently realized eit her on conventional parallel and vector computers 

or specifically designed architectures." 

The atomistic nature of matter suggests that many dynamical processes in 
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the physical and biological sciences are good candidates for the application 

of such schemes. The lattice gas models of hydrodynamic flows inspired a 

variety of other applications: for exarnple, these models have been successfully 

applied to simulations of microemulsion f ~ r m a t i o n , ~  phase separation8 and 

reaction-diffusion pro cesse^.^ Lattice gas rnodels may be used to carry out 

simulations of large or complex systems where full molecular dynamics is 

not feasible. Since lattice gas models utilize a simplified description of phase 

space with disrete positions and velocities and ernploy an esciusion principle 

which restricts the number of particles a t  a site on the lattice, lattice gas 

dynamics has some peculiar features: the equilibrium distribution is Ferrni- 

Dirac and energy relaxation processes cannot be treated since there is only 

a single speed in the model. 

Other schemes have been devised to overcome some of these limitations. 

There esist multiple-velocity lattice-gas and Boltzmann models;1° these mod- 

els estend the phase space by considering a finite? but sometimes large. collec- 

tion of particle velocities on the lattice. There are also stochastic simulation 

methods for the Boltzmann equationil that  provide approsimate rnolecular 

dynamics schemes with continuous velocities. There have also been extensive 

developments of lattice Boltzmann methodsL2' l 3  which retain the discreteness 

of the lattice but work at  the level of the real-valued particle distribution. 

While powerful, this method lacks the inherent stability of lattice gas meth- 

ods. 



The motivation behind the construction of the present lattice gas mode1 was 

the desire to combine the stability of the lattice gas automaton and the 

Ma-uwellian character of the colliding molecuIes. In the thesis we propose a 

stochastic lattice gas mode1 with an interna1 continuous vector parameter. 

This vector parameter may be identified with the particle velocity. .A major 

obstacle is the discreteness of the underlying lattice. which makes it impos- 

si ble to formulate a deterrninistic streaming rule for continuous velocities. 

Thus, ive are forced to abandon rnicroscopic reversibility which is intrinsic to 

the deterministic rule. We introduce a stochastic transition scheme and show 

that  in a certain limit the behaviour of the system is described by the hydro- 

dynamic equations. These two features, the existence of the vector parameter 

and the stochastic particle propagation, distinguish the present model from 

conventional lattice gas mode1s.I4 Some features of the proposed model make 

it  similar to the Bird schernel1 for the Boltzmann equation simulations. 

Using the serni-detailed balance property of the system, we have established 

the Boltzmann H-theorem for the reduced particle probability distribut ion. 

By carrying out a Chapman-Enskog analysis on the lattice gas model, we 

have shown that the evoliition of the locally conserved fields is described by 

the Navier-Stokes equations. Further investigations of the system have shown 

that  while rnicroscopic reversibility is absent from the system one may still 

show that  processes with inverted velocities are symmetric in a certain sense 

and Onsager reciprocal relations may be established for the modei. Using 

projection operator techniques15 we have derived Green-Kubo formulae in 
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the linear response regime and obtained autocorrelation function expressions 

for the transport coefficients. The  autocorrelation expressions have a special 

form due to the discrete character of the time evolution. 

We applied the lattice gas model to simulations of fluid flow with moderate 

Reynolds numbers. The results of the numerical experirnents established the 

utility of the rnethod. We observed the von Karman street type of flow past a 

cylinder a t  the expected Reynolds numbers. At lower values of the Reynolds 

number we observed a steady double vortex and a steady laminar flow past 

the cylinder. 

The thesis is organized as follows. VVe first present in Chapter 2 the opera- 

tional description of the lattice gas model. Later in this section me give an 

alternative formulation in terms of the evolution of the probability density 

In Chapter 3 we solve the evolution equation in the Boltzmann approsima- 

tion using the Cliaprnan-Enskog procedure. We present the system of evolu- 

tion equations for the collisional invariants and show how the Xavier-S tokes 

equations are obtained. 

In Chapter 4 we develop the Green-Kubo formalism for the lattice gas system 

and derive expressions for the transport coefficients in terms of sums of the 

corresponding "force-force" autocorrelation functions. Based on t hese for- 

rnulae, we give an alternative derivation of the expressions for the transport 

coefficients in the Boltzmann approximation. 

We test the theoretical predictions against numerical simulations of the model 
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in Chapter 5. In this chapter we also present applications of the lattice gas 

model to simulations of fluid flow. We dernonstrate that the lattice gas model 

is able to reproduce the main features of a flow with high Reynolds numbers. 

Finally, the conclusions are summarized in Chapter 6. 



2. LATTICE GAS MODEL 

In this chapter we shall build a general frarnework for the efficient description 

of stochastic lattice gas models. -4 major difficulty lies in differences between 

the algorithm of the proposed computational scheme and mathematical tools 

used for the mode1 analysis. On the algorithmic level one works with random 

variables and the evolution of t iie systern results from the transformations of 

such random variables. On the other hand. microscopiç behaviour is more 

conveniently described in terms of expectations of the rnicroscopic quantities 

of interest. We provide an  interface between the algorithmic and phase space 

pictures of such dynamics. 111 the course of the work we establish links 

between the rnicroscopic and macroscopic descriptions and furt her illuminate 

the above-mentioned duality. 

We further investigate analytical properties of the collision and propagation 

operators. We prove a variant of the Boltzmann H-theorem and prove that 

a Mauwellian distribution is a stationary solution. A method for computing 

collision integral will Le presented and values of transport coefficients will be 

evaluated. Interaction with external fields and boundary collisions will be 

dealt with in the later chapters. 
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2.1 Notations 

In this work we attempt to use notations for different sorts of objects con- 

sistently. LVe use doublelined capital(B1ackboard Bold, e.g. E v) letters for 

function spaces, such as phase space, coordinate space and so on. Script 

letters (e.g. e, 9) are used mainly for operators. Examples are the collision 

and streaming operators. We denote vector variables with bold letters (e.g. 

v = {u,, u,. v,}). A collection of variables of the same type is symbolized by 

a capital letter of the same variable (e-g. V = {vl , . . . , v, }: I = {il. i2: i3}). 

CVe emphasize the random character of the dynamical variables by using 

Greek letters e.g. <, C. We ooften omit an argument, a n  event in the proba- 

bility space. from random variables. With sans serif letters we denote g r o s  

quantities on a lattice site such as the total number of particles n and the 

velocity of the centre of m a s  V. When there is an arnbiguity in the choice 

of notation, we shîll be guided by esthetic principles. 

Functions defined on the following spaces will play a major role in this thesis: 

IL - a set of lattice nodes. 

v - a vector space of particie velocities, 

= (IL@ v n  - phase space of n particles. 

S = $ V - coiiision space. 
i =O 

IL is a discrete coordinate space, the nodes of which comprise a regular lattice. 
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Primarily we consider cubic lattices in three dimensions and square lattices 

in two dimensions. In the niodel considered below restrictions on lattice 

symrnetry are less severe than in the classic FHP L%odel. -1s we show later 

in detail, symmetry of the second rank pressure tensor arises from symmetry 

of the local particle probability distribution rather than from the symmetry 

of the underlying lattice. 

The major novel feature of the present lattice gas model is the introduction of 

a continuous interna1 vector parameter v E V which later will be associated 

with the particle velocity. Current lattice-gas models possess a djscrete set 

of velocities, partially imposed by the underlying lattice IL. Collisions of the 

particles with small integer velocities lead to a limited number of outcomes 

and may be efficiently realized using integer arithmetic and employing update 

tables. However: an increase in number of velocities leads to an esponential 

increase in the size of update table. thus. seriously hindering performance. Of 

course performance is only of secondary importance in the study of lattice-gas 

models: which const itute new media for the investigation of non-equilibrium 

phenornena in physics and chemistry. In the present model the space of 

possible velocities V is R 3  in three dimensions and R 2  for tmo dimensional 

lattices. Occasionally, for convenience' in two dimensions we associate V 
with the vector space of comples numbers c. 

The phase space = @ V i s  used in two different contests. As a domain of 

definition of mapping f : + F, it used in dealing with reduced probability 
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distributions and, on the algorithmic level, it defines the position and state 

of a particle. In the description of chemical transformations, not considered 

in this thesis, can be used for States of molecules with additional internal 

degrees of freedom. In t his case it acquires the meaning 0 = IL 8 V@ 1 . 

The space naturally arises in the description of collisions with different 

numbers of particles. Each collision is described by the nurnber of collid- 

ing particles and their internal properties. For particles of the same species 

without internal degrees of freedom it espressed functionally as a direct sum 
00 

of or = @ an. For convenience a t  this point me introduce several useful 
i=O 

functionals on this space. .A rnapping n : -t z+ makes a correspondence 

between a collision and the number of the colliding particles. When confu- 

sion is unlikely we omit the argument of the functional n. Other important 

quantities are the average velocity and the  sum of square norms of the ve- 

locities. For non-zero particle collisions, s E S. these quantities are defined 

as: 

where mi are the masses of the colliding particles. 

.A system state can be specified in two different ways. A knowledge of po- 

sitions and internal degrees of freedom, including velocity, for each particle 
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fully specifies the system. Alternatively, one may define system state in terms 

of the distribution of particles on a lattice by assigning to  every site 1 E IL 
a collision state c E S. We use both descriptions, the former for analyzing 

properties of the streaming operator and the later for studying collisions. 

2.2 Algori thmic description 

In this section we give a detailed description of the algorithm used in nu- 

merical simulations. Validation of the computation scheme is given in later 

sections. However, we sometimes refer to these results in qualitative corn- 

parisons of different approaches. 

The lattice-gas rnodel involves consecutive application of the strearning and 

collision transformations on  the system. We consider the particular case 

where the streaming and collision transformations act independently on the 

sets of particles and sites respectively. 

The particles possess internal variables which constitu te  an essential feature 

of the model. In the model the internal variables change only in the course 

of collisions with the other particles and the change is further constraincd 

to satisfy a set of rules - conservation laws. The conservation laws closely 

resemble conservation of energy and momentum and we refer to  these laws 

by those names. 
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2.2.1 Particles and sites 

We consider a system consisting of a set of particles on a regular lattice. 

Sites are a set of the lattice discrete coordinates. Particles may be identical 

or may belong to different classes and are characterized by their position, 

m a s ,  momentum, energy (and possibly other interna1 parameters). There is 

no restriction on the nurnber of particles per site. The position of the particle 

is given by its discrete coordinates on the lattice and is changed only during 

the strearning transformation. The otber attributes of the particle may be 

changed only during collisions with the other particles or external fields. 

The masses of particles of the same type are taken to be the same and are 

conserved during evolution. In this case rnass and particle number densities 

describe the same quantity. The momentum is a vector variable used to 

define particle streaming and is closely related to  the particle velocity. 

The forma1 description of the particle structure is presented in the following 

block-scherne: 

I I 

i Mass I 

; Momentum j 
i Energy 

In the discrete space we may separate particles into groups according to their 

positions. The collision transformation acts on such groups independently 

and, in general, requires information on al1 attributes of the residing particles. 
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It is natural to assume that collisions satisfying conservation laws may be 

built from a knowledge of the conserved quantities only. Such models are 

especially convenient for computations. In this case a site consists of total 

energy, momenturn and m a s  depicted in the following scheme: .----------_ ------- 
* site ) .----------- -.. -- Position':~:~ 

- - - - - - + - + - -  
- - - . ._C_---  

2.2.2 Streaming transformation 

We cal1 any operation on the systern that changes the positions of the par- 

ticles a streaming operator. The streaming transformation is defined to act 

solely on the particle velocities (velocity = momentum/mass) and cloes not 

affect the interna1 parameters of the particles. Consider a particle with ve- 

locity v7 

1 

where e; are generators of the regular lattice. We shalI discuss a construction 

of such a representation later. 

Propagation of a particle is defined by integer random numbers 77i with the 

following property: 
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The above formula relates the particle momentum to the particle propagation 

velocity. In this case propagation of the particle during one streaming step 

is given by: 

and we further restrict ourselves to the case of identically distributed random 

numbers 17, for al1 i for reasons of symmetry. 

One choice of random numbers has the following distribution: 

mhere {u} and [û.] are fractional and integer parts of u ,  respectively, and the 

following identity holds: 

The probability distribution (2.1) is obtained bu comparison of fractional part 

{ u }  with a uniformly distributed random variable E on [O: 11. Compiitations 

show that 

We show tha t  this choice of random streaming is optimal, namely, it  gives 

the smallest streaming contribution to the dissipative effects. 
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Another convenient choice for the description of streaming may be built on 

Poisson distributed random numbers: 

-A disadvantage of this choice is the lack of Galilean invariance of the resulting 

hydrodynamics equation. It also gives a large dissipative contribution for 

large veloci t ies. 

The above algorithm for particle transfer is implemented as an update of 

position fields for al1 particles independent ly. 

22 .3  Collision transformation 

A collision transformation is a process that acts on group of particles at a site 

but does no t change t heir positions. Very comples collision transformations 

can be implemented on the set of particles a t  a site. However. for most 

collision schemes the change in interna1 variables depends on a fixed number 

of collision parameters. 

We eexperimented with a class of such schemes which depends only on g r o s  

quantities such as total momenturn. energy and mass and an additional ran- 

dom rotation matrix. This class of collision rules still provides for very rich 

phenornenolog- The schernes are based on the fact that rotations of the 

velocities in the frame moving with the velocity of the center of mass does 
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not change the excess of the kinetic energy and thus the total energy.' 

GVe implemented collision transformations as a t hree-step update. On the 

first step, for each particle, we incremented total rnass, energy and momen- 

tum at  the site corresponding to the particle position by those values of the 

particle. On the second step we computed velocity of the center of mass V 

and a random rotation matrix a at  each site. This update step is performed 

on the set of sites. L a s t l ~  for each particle we updated velocities according 

to the formula: 

Compiitations show that total energy and rnomentum are conserved in the 

above operation. The values of the transport coefficients depend on the 

details of the collision mode1 and, in the case of a monatomic ideal gas, are 

defined by choices of collision matrices. Tmo such choices are considered in 

this work. The first class of collision models is given by a set of randorn 

rotations in O(d)  with uniform density The second choice is given by a 

set of random rotations Io i }  that transform a vector V into an orthogonal 

vector: (vT, oiV)  = O. The second choice yields the smallest value of the 

shear viscosity coefficient in the BoItzmann approximation. 

In simulations, as random rotations me used a small array of predefined 

rotations. Xumerical experirnents did not detect any effects arising from the 

l W e  consider systems with quadratic dependence of the kinetic energy of a particle on 

the momentum of the particle. 
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non-random character of these rotations. We attribute this observation to 

the immense complesity of the system under consideration. 

2.3 Streaming operator 

The streaming operator acts independently on al1 particles in the systeni. We 

consider a class of translationally invariant streaming operators. In terrns of 

the reduced probability distribution PL; PL : 0 + R it is espressed as 

SPl(l, v) = C W(r: v)Pl(l - r. v). (2.2) 
rEL 

The above formula is conveniently rewritten with the use of the cumulant 

expansion for Markov processes specified by transition probabilities FV. One 

may verify the following identity by consecutive application of differentiation 

to both sides of the equation 

where O denotes the tensor contraction, m are the moments, K ,  the cumulants 

and the second identity serves as a definition of the cumulant expansion. If 

we use forma1 espressions for translation operators in space and in time as 

f (r + 1) = f (r) and f ( t  + 1) = e f (t), respectively, we may rewrite (2.2) 

with the use of (2.3) in terms of a cumulant expansion in terms of powers of 

v: 
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We apply the formai espression (2.4) to a systern of non-interacting particles. 

Evolution in discrete time is expressed using finite-time translation in the 

exponential form (2.4): 

which may be expressed as 

where 

LVe may establish a connection between the continuous vector parameter v 

and the part icle velocity by imposing the requirement 

Below ive will use these two notations for the quantity interchangeably Evo- 

lution of the probability density in the long time - long distance limit is given 

by the following Fokker-Planck equation: 



2.3.1 Transition mode1 

If models employing independent propagations along coordinate axes are 

used, cross-curnulants vanish. A particularly simple scheme is t.o translate a 

particle in the x-direction during a unit time by [vz] with probability 1- {v,) 

and by [zll] + 1 with probability {v,}. By [ X I  we denote the largest integer 

not exceeding x and by {x} the fractional part of x. These quantities are 

related to each other by {x) + [x] = z. 

Transition probabili ties satisfy the normalization condition, 

and we verify that the average velocity of a particle is indeed v,: 

In the one dimensional case the moment of t h  power is given by the espres- 

sion: 

and from recurrence relations for the second and third cumulants in terms of 

moments we have: 
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from which we derive the foNowing forrnulae: 

-4verages of products of smooth functions with the second cumulant over a 

'vlawell distribution play an important role in the subsequent discussion. In 

this context it is convenient to appeal to the following representation of the 

second cumulant {z~}(l  - {u,}) as a Fourier series16 : 

In the above expression we replaced the argument in the cosine by noting that  

{u,} is a periodic function and cos(2xk{u,}) = cos(2akv,) for any integer k .  

Comput at ions of averages over polynomial funct ions become s traight forward 

and, as an esample, the average of unity is given by: 

For the parameter values used in the model the sum quickly converges and 

the second and higher terms of the expansion are negligibly srnall. Thus: for 
T 

a value of the ratio - = 1, the second and third terms are 0.54 x IO-' and 
m 

1 
0.26 x respectively. We are justified in keeping only the first terrn, - 

6 '  
The behaviour of integrais of other conserved quantities is similar and for 

al1 collision invariants L~ wve approximate the diffusive term by the Laplace 
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operator: 

1 with D = ,. 

2.4 Elementaryproperties of collision operator 

The collision transformation acts on lattice sites independent ly and. t hus. is 

forrnallÿ expressed as a direct product of IIuI elementary collision operators 

on S. 

Properties of a lat tice gas model are conveniently described in terms of d -  

namical variables associated with macroscopic quantities. Below me give 

expressions for the density, momentum and kinetic energy as functions of 

constitutive particles. For a system with :V particles we have: 

spectively. the velocity and position of the i th  particle. 

A dual representation of dÿnamical variables. which depends only on the 

particle distribution among sites, is built as follows. Any dynarnical variable 
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00 

@ corresponding to a function f on = @ can be represented by the 
i = O  

following sum: 

where { x )  is a set of permutations of !V particles, S is the state of site 1 and 

Bi denotes the interna1 state of ith particle. which includes particle velocity 

For additive functions f such as number of particles and total momentum 

there is a connection between representations (2.14) and (2.13a)-(2. l k ) .  Let 

us consider the following identity: 

and differentiation of the left and riglit hand sides of the above identity 

with respect to u a t  u = O establishes the relation between site ancl pürticle 

dynamical variables. 

From (2.14) we obtain the particle number distribution among the sites in 

the Boltzmann approximation. The probability to have n particles at a site 
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is given by: 

- !V ! 
- ( p ( ~  = 1))"(1 - P(E = I ) ) ~ - "  GZ [ N P ( ~  = l)]" e-NP(E=i)  

n!(N - n)!  n! 

when NP(E = 1) - O(1) and N » 1 and, thus, particles are distributed 

according to the Poisson distribution lam. 

For the ideai monatomic lattice gas mode1 discussed in Sec. 2.2.3 dynamical 

variables change in collisions according to the following rule: 

We see that total momentum and energy are conserved in the collisions: 

-4 collision transformation at  a site is written as: 

and the change of the probability distribution in this collision is given by: 
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We observe that the hIaxwel1 distribution, 

does not change in collisions and, because it does not depend on particle 

positions, i t is also is invariant under streaming transformations. Thus, ive 

conclude that the Maxwell distribution (2.17) is a stationary solution for 

an ideal monatomic gas. These arguments can be modified to include more 

general cases. 

Under the molecular chaos assumption the formula (2.16) is further simpli- 

fied. The probability distribution is expressed as a product of one particle 

probability distributions: 

and. after integation, equat ion (2.16) takes the forrn: 

We abbreviate the above formula as: 

tvhere (2 is the collision operator. 

\Ve shaIl prove that a hIaxwell distribution is also a stationâry solution of 

the one-particle reduced collision operator. The method that  we employ will 
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also be used in calculations of transport coefficients in the Chaprnan-Enskog 

espansion and autocorrelation functions in the Green-Kubo forrnulae. We 

consider the following integral: 

where & denotes either sum or integral over a set of rotations. Using the 

following representation of the delta function: 

and the identity 

we arrive at the expression: 

Integrations over vi, i = (2 , .  . . n) and, afterward. over k yield the following 

expression: 
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In the following identity we employed an explicit expression for the value w 

after transformation: 

and substitution of the above identity in equation (2.20) gives us the following 

expression: 

llMV - rn1wl(' ----) 2T(M - m l )  @(V + 0 - l  [W - VI_ V). (2.21) 

In the particular case, mhen @ = 1, we deduce that the hfix~well distribution 

is a stationary solution of the collision operator: 

2.5 Boltzmann equation 

The evolution of the probability distribution of the system under consecutive 

streaming and collision transformations is governed by the blarkov equation 

with the transition probabilities given by the composition of the correspond- 

ing streaming and collision operators. The Boltzmann equation is the evolu- 

tion equation of the 1-particle probability distribution. From the expressions 
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for the 1-particle streaming operator, equation ( 2 . i ) ,  and the 1-particle col- 

lision operator, equation ('.la), ive deduce the Boltzmann equation for the 

lattice gas rnodel: 

with the notation of Sec. 2.3. 

2.6 Boltzmann H-theorem 

In this section ive provide a partial result on the convergence of the reduced 

probability distribution to its stationary form. We consider a specific form 

of the collision operator as described in the previous section. This collision 

operator transforrns the wlocities of incoming particles uniformly. Evolution 

of the probability distribution on 9 is expressed as: 

In order to simplify the proof we introduce some notation. 

We shall employ the following result: If 3 : + is a conves function' 

A : R + a i s  some function on R and Z : R + with the restriction on A. 

the following inequality holds: 
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The above staternent says that for a convex function the average of the 

function is greater than value of the function a t  the average position. 

For each n-particle collision we define the entropy functional H,, by the fol- 

lowing formula 

We prove that for collisions that satisfy serni-detailed balance the total neg- 

ative entropy HI  of incoming uncorrelated particles decreases after collision. 

The joint probability distribution of uncorrelated colliding particles is given 

by the espression: 

n 

By the use of definition (2.06) we arrive a t  the folloming relation: 

To obtain results on behavour of H, we need a semi-detailed balance condi- 

tion: 

We note that if we replace integration over dV with integration over d W  

the above relation becomes trivial and easily follows from (2.23) and the 

requirement that the probabilitÿ density is normalized. 
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CVe multiply right-hand side of equation (2.26) with unity and change the 

order of integration: 

The second integration, due to the semi-detailed balance conditions, satisfies 

requirement of inequality (2.23) and thus the following relation holds: 

Finally, we show that the 1-entropy of the post-collision particles is smaller 

than their joint n-entropy. LVe write postcoIIision reduced 1-particle proba- 

bility density as 

where a hat over a symbol indicates the variable omitted in integration. 

The integral of P, over velocities is unity. Using this notation the ciifference 

between entropies is written as: 

= J P V ~ P ; ( V ~ )  Pr(V)   IO^ ( ) 2 log( l / -  (2.33) 
1 nj pj(vj) Ilj PJvj) 
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In the  above equation we used inequality (2.25) with 3 = xlogx, A = 

nj P;(vj) and 2 = P ' ( V  
Ilj P:<vj) ' 

Combining equations (2.28), (2.31) and (2.33) Ive arrive at the following 

inequality that relates pre- and post-collision entropies: 

To furnish the proof of the H-theorem me show the well-known fact that a 

b1axweHiarn distribution gives a global minimum of the H-functional with 

fixed velocity and energy of the system. 

We use the relation: 

This equation follows from equivalence of energy and rnomentum expectation 

values of P and Pm and the identity log(P,) = const - m(v-(v))' 
2T 

From equation (2.34) ive derive: 

with right-hand side of the form (2.25). Applying inequality (2.25) we con- 

clude that 

H ( P )  2 H(P,) for any P. 
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LVe have shown that under the molecular chaos assumption the Boltzmann 

H-functional of the system decreases on each iteration. The kf axwellian 

distribution is a stationary solution of the collision operator and, simultane- 

ously, is the global minimum of the H-functional. Thus we conclude that at 

equilibrium particle velocities are distributed according to the Maxwell Iaw.' 

' We remark while the  proof follows s tandard procedures it is not complete and requires 

additional results on rate of convergence. 



3. HYDRODYNAMIC EQUATIONS AND TRANSPORT 

COEFFICIENTS 

3.1 Chapman-Enskog asympto tic expansion 

CVe derive hydrodynamical equations by using an expansion of the reduced 

probability distribution in slowly varying density fields. This Chapman- 

Enskog procedureLi is based on the assurnption that anÿ relevant functional 

can be espanded into a series of partial derivatives of the conserved fields. 

After scaling x -t cx and t + et  the espansion is ordered in powers of E .  

It is further assumed that the reduced probability distribution function is 

defined by the instantaneous spatial distribution of local collision invariants 

pn - 

The density of a local collision invariant is given by the average value 
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and to ensure uniqueness an addi t ional requirement is imposed 

(Pf,(x, V, t ) )  = O for al1 n > O and (Y: (3-3) 

where L is the set of the density. momentum and energy dynarnical variables 

given by equation (2.13a-c). 

Time evolution of a functional of conserved quantities is governed by an 

operator given as an expansion in the small parameter E :  

The expansion of the collision operator in a series of is written formally as: 

n30 

To make the average of (e( f )) vanish we should set the average of each term 

of the series to zero (en (f)) = 0. 

The operator X takes the forrn: 

By expanding the evolution equation (2.22) in powers of e Ive arrive a t  the 

following set of equations: 

(3. Ta) 

(3 .Tb) 
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The solution of equat ion (3. ia)  yields a local Mavwellian distribution: 

Average of local collision invariants over v cornmutes with the operator Di 

so that integration of equation (3.ib) yields 

The average of equation ( 3 . 7 ~ )  gives the second order correction to the Euler 

equations: 

and after transformations 

1 -v* : (#-a 
%a = f + - ( ) + ( ) ) .  ., (3.10) 

mhere we used the conditions on ( 2 "  f l )  and ( i T l  (f)) .  

3.2 Navier-Stokes equation 

In this section we apply general formulae (3.7a-c) to some collision models. 

Regardless of the collision model. the equation for the zeroth expansion term 

has the same form and constitutes the Euler equations of compressible flow. 

Evaluation of the averages in equation (3.9) yields the following results for 
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the evolution of the conserved quantities: 

where T* = Tlm. Algebraic manipulations transform the above system into 

a set of evolution equations for p, v and T*: 

Performing a Laplace - Fourier transform of the linearized version of system 

(3.1 la-c). we arrive at the following system of equations: 

The above systern has eigenvalues zo = O and zk = &lkl \/!P. Thus there 

are no dissipative processes in a system governed by (3.1 la-c), which can 

also be seen from the fact that ~ * p - * / ~  is conserved along streamlines. The 

velocity of sound is given by the expression for an ideal monatomic gas: 
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With the use of equations (3.1 la-c) ive rewrite equation (3.7b) in the following 

form: 

We substitute the explicit form of fo given by equation (3.8) and, after alge- 

braie transformation, arrive at  the following equation: 

el (f)  = fo ( [ y  - :] î,Vi log* + 

WTe define the function hl 

e, has the following form 

by the relation hl  fo = fi.  The collision operator 

using the notation of Sec. 2.13. 

Equations (3.14) and (3.13) constitute a linear integral equation for the 

function h l ,  which can be split into two equations, one that invoIves terms 

V logTn and the other that depends on gradients of velocity fields. 

With use of the approach developed in Sec. 2.13 we shall show that 
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is an eigenfunction of the collision operator and its corresponding eigenvalue 

defines the value of the viscosity coefficient. Namely, wit h the use of identity: 

and subsequent integration over vi, i = (2, . . . : n), equation (3.14) can be 

reduced to the sum of the following integrals: 

Evaluation of the above integral for the collision models discussed in Sec. 2.2.3 

proves that c,ç, is an eigenfunction and gives us the eigenvalues: 

1 - p - e d P  ?1 - p - e-P 
a/ = and y = , 

1 

P P 

for uniformly scat tered collisions and collisions with rr /2  rotations. respec- 

tively. 

Evaluation of the averages in equation (3.10) yields the following expressions 

for the second order terms in the Chapman-Enskog expansion: 
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where X is thermal conduc tivity coefficient and the irreversible contribution 

to the pressure tensor is given by the following expression: 

We observe that in the above equation the density continuity equation has an 

additional flux term Dl lp  which can be conveniently rewritten as V i p D V i  log p. 

Thus, in the nem set of variables w = u - D V  log p, the continuity equation 

assumes the farniliar form: 

Kinematic viscosity for different collision models a t  T* = 1. Fig. 3.1 



3. Hydrodynamic eq ua tions and transport coeincien ts 38 

Pictorial representation of the streaming transformation in 

the stochastic model. 

The form of the continuity equation suggests that we look for the hydro- 

dyiarnic equations in the neiv set of variables (p .  W. T*). After algebraic 

transformations we arrive a t  the foliowing set of equations: 

We observe that  in the new variables evolutions of velocity, temperature and 

density fields are governed by the Navier-S tokes equation wit h the following 

pressure t.ensor: 

Fig. 3.2 
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The above expression does have a Newton pressure tensor form with values 

of shear and bulk viscosity coefficients q' = 7 + Dp and 7's = 7s + 2Dp/3. re- 

spectively. The pressure tensor is spherically symrnetric and, for the collision 

models discussed above, has vanishing bulk viscosity coefficient q~ = 0. 

In Fig. 3.1 we plot the vaIues of shear viscosity coefficients for the models. 

Equation (3.19) gives us the following values: 

and 

1  - e-P 
r & = p D + p T *  

2 ( e - p  - (1  - p ) )  ' 

The modified bulk viscosity coefficient has the same value in both models 

r& = 2Dp/3. 

At this point ive give a physical esplanation for why the change of variables 

w = u - DV logp leads to the Xavier-Stokes equations. In Fig. 3.2 Ive corn- 

pare deterministic streaming of particles wit h its stochastic counterpart . The 

deterministic streaming transfers particles from the shaded domain to the 

similarly shaded translated domain. If in the initial domain the particle den- 

sity was not uniform, the probabilities of transfer into dornain pairs (1:4) and 

( 3 4 )  are ( 1  - {v z } )p+( l -  { % } ) { ~ V Z P / ~  and { % } P -  (1-  { ~ v , ) ) { . ~ Z } V Z P / ~ ,  

respectively.' In the stochastic models we consider systems which consist of 

cells with uniform particle density and the correction term n2(v) does not 

The ce11 edge length is set to unity. 
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enter the equations. The change of variables w = u - DV logp accounts for 

the correction term and reduces system to the Navier-S tokes eqiiations. 



4- GREEN-KUBO FORMULAE AND COMPUTATION OF 

TRANSPORT COEFFICIENTS 

In this section we develop a projection operator formalisrn and derive Green- 

Kubo formulae for discrete systems. Vie obtain important resiilts as a con- 

sequence of the description of the systern in terrns of linear response, such 

as Onsager relations for discrete systems. The approach developed here will 

be used to derive expressions for transport coefficient for various relaxation 

processes. 

4.1 Green-Ku bo formulae 

The approach we chose follows the  lines of the well-known reduction of the 

classicai evolution of a Hamiltonian system to a generalized Langevin equa- 

t ion. l8 However, the intrinsic stochastici ty of the mode1 and discreteness 

of the system introduces unique features in the derivation of Green-Kubo 

formulae that require special treatment. 
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4.1.1 Pro jected d-vnamics 

We define a projection operator as follows: 

where a is a set of dynamical variables. The operator Y is indeed a projection 

operator. By direct application of the operator twice we verify the identity 

PT = Y. We define a complimentary operator Q by the following relation: 

By acting on the identity (4.2) with the operator P from the left and from 

the right we prove orthogonality of the operators 3' and (I; 

By acting on the identity (4.2) mith the operator 12 and using the orthogo- 

nality condition (4.3) we find that Cl is a projection operator; 09 = Cl. 

We consider the evolution of the probability distribution P( r .  t )  governed by 

the transition operator W; 

mhere the integral sign implies summation over discrete variables. Zn what 

follows ive shall often drop the argument r. We separate the above equation 

into a system of two equations: 
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Using relation (4.3) we transform the above system into 

.A recursive application of equation (4.6) yields the following equation: 

which, after substitution into equation ( 4 3 ,  yields 

We eliminated the first term of right-hand side of the relation (4.7) by the 

use of a specially prepared ensemble of initial conditions. where deviations in 

only the dynamical variables occur. For slowly decaying dynamical variables. 

which are our main concern, PI(t - T) can be replaced by P&). 

For convenience of the subsequent discussion me introduce an operator S(T, t )  

which relates to  the state r at the initial tirne the set of states after t steps 

of evolution,. weighted with the probability of transition to the correspond- 

ing state. Using this notation we may express equilibriiim averages in the 

following form: 

where summation over states is implied. 
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4 . 2  k-dependence of the operator ?(w - î) 

Our main interest lies in spatial dynamical variables for srnall k. 

We consider a particular case of projection operators defined by locally con- 

served quantit ies. In k-space such quanti ties are expressed as 

and, For the dynamics given by a composition of streaming and collision in 

that order, the following identity holds: 

Equation (4.9) folloms from the conservation of the quantities L under colli- 

sions at  time t + 1. 

Csing identity (4.9) and expanding a in powers of k? we write t lie ?-projection 

of [W - î] 6.  where b is an arbitrary function as: 

Along the same lines we may prove that [W - î] F' = O(k). 
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With the use of the above identity (4.10) we recast the expression for the 

memory kernel as 

x ( ~ )  = P(W - î) [nw]'n(w - î)?. (4.11) 

Our aim is to prove 

For n = O the relation (4.12) holds. Let us assume that it holds for n = ;V 

and prove the relation for n = N + 1. GVe write [Qw] N'LC! = [QW] N ~ ~ ~ .  

Then 

[aw] "+ln = [nw] "nwa = awNnwn + ~ ( k )  = 

= <IwN [O + (W - î) + o(k)] (1 + o(k) = <IW"+'Q + o(k),  (4.13) 

where we re-espressed QW in the equivalent form 

aw = (1 + (w - î) - ?(IV - î) = a + (IV - î) + ~ ( k ) .  (4.14) 

LVe proved the assertion of the recursion and. thus, the formula (4.12). 

Frorn the relation (4.10): its dual espression, and the formula (4.12) we es- 

press the memory kernel equation as: 

X ( T )  = ?(w - ~ ) Q ~ v ' o ( w  - î)? 

-4.1.3 S4vmmetry of time-correla tion functiou 

Due to their nature, stochastic models do not possess time reversai sym- 

rnetry. However, for time-correlation functions involving averages over the 
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equilibrium distribution we may obtain some partial results. We express the 

time-correlation of dynamical variables ai and aj in integral form: 

For each state l? ive define a pre-collision state f ,  where we use the same 

ordering of collision and streaming operators as in Sec. 4.1.2. If ak is a set 

of locally conserved dynamical variables the value of the correlation function 

is invariant with respect to change of r to f'. An analysis of the mode1 

shows that transition probabilities of l? + r and l? + r' are equal after we 

reverse the velocity direction. During evolution the equilibrium distribution 

also remains constant so that by performing a change of variables in (4.15) 

ive arrive a t  the following identity: 

or in the matrix form: 

Equation (4.16) constitutes the Onsager relations for discrete models. The 

above derivat ion relied on the invariance of the dynamical variables wi t h 

respect to the collision transformation. In general one may obtain similar 

relations for dynarnical variables of the form ( b ( r )  + b(I?)).  
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4.1 -4 Evolu tion of the locally conserved quantities 

The average of a set of conserved quantities over the projected probability 

distribution (4.8) yields evolution equation for t hese quantities. In a vector 

forms they read: 

FVe rewrite the first term on the right-hand side of equation (4.17) as a sum 

of symmetric and antisymrnetric operators as: 

mhere me used time-translation invariance of the equilibriurn probability dis- 

tribution 

For the rnemory kernel acting on (ad)-' à Ive write 

where 
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We shall show that the mernory kernel can be represented in form of a "force- 

force" time-correlation function. The sum ft(0)  + f(0) is of order k2 as can 

be seen from the following relation: 

1 + ;, (at ( r )  + at (S(r,  1))) ( [a(Tt) - a(S(rt ,  i))] [at (T') - at (S(r1, i))] ) , - 

where we used tirne-translation invariance of equilibrium averages in the same 

way as in equation (4.18). If a are locally conserved variables then both 

terms on the right-hand side of the above formula are of order k and, thus, 

the difference is of order k? 

We introduce notation b ( r )  = a(T) - a(S(r: 1)). LVe write the second term 

of the equation (4.18) as: 

First, \ire notice that Qbt(r) = ft(0) and, thus, the first term has the same 

form as the surnmands of the memory kernel: ( i f f f ) .  The second term in 

the above equation we espressed as: 
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Furthermore, we show that: 

Indeed, 

1 
= - 3 - ([a(Tt) - a(S(r'. i))] [at(r') - a+(~(r". i))])  = ~ ( k ) ;  

with the similar expression for the second factor. 

Now we consider a general question about discrete time dynamics. Suppose 

that time evoIution of the system is given by the following Euler scheme: 

where A and 3 are of the first and second orders in k. In this case we write 

the operator identity: 

e s )  = ~ + A - B .  

or: by espanding the logarithm into a Taylor series up to second order in k: 

Combining equations (4.22): (4.21), (4.18) and (4.19) we arrive a t  the follow- 

ing expression for the time evoiution of ensemble averages of locally conserved 
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) (4.23) 

We note that the sum of the force-force time-correlation function is repre- 

sented by a trapezoid approximation of the continuous time integral. 

In some cases equation (4.23) admits a further reduction. We may separate 

a random component due to stochastic nature of the streaming operator 

from the force-force auto-correlation function. Indeed, the correlations of 

streaming operator enter equation (4.23) only through term (f(~)ft(~)). 

We consider the evolution of a set of conserved dynamical variables fk = 

geak'lo where g depends oniy on the interna1 state of the particles. In this 

case the force-force auto-correlator at  time zero can be split in two parts: 

mhere D is the same as in equation (2.12). 

4.2 Hydrodynamic equations in Green-K u bo formalism 

In this section we present a derivation of the hyirodynamic equations. We 

apply equation (4.23) to a complete set of independent conserved quantities 

in the system. It is convenient to work with an orthogonal set of dynamical 
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variables. From the system of equations (2.13a-c) we construct the following 

set: 

where we introduce the notation sk = ~k - 3 T p k / 2  and we consider particles 

of unit mass so that T* = 7'. 

The cross-correlation matrix is indeed diagonal and has the following form: 

mhere c, = 312 in the case of three dimensions and :V is the number of 

particles. 

The dissipation free evolution is defined by the following equation: 
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From equation (4.20) we find the expressions for the forces: 

ando by taking into account equation (4.24) we observe that, apart from 

the diffusive terms, hydrodynamical equations for the lattice gas mode1 have 

esactly the same form as equations for the ideal non-interacting gns with 

the integration in the espressions for transport coefficients replaced by the 

trapezoid approximation. One verifies that the cross-correlation of the terms 

proportional to [&(t + 1 )  - &( t )  - ci] and corresponding to different times 

vanishes and, t hus, the rnatrix of force auto-correlation functions lias the 

diagonal form. It is convenient to rewrite the rnomentum force as a sum of 

two terms: the terni parallel t o  k and the perpendicular term whicti defines 

the shear viscosi ty coefficient. 

where C! and are the parallel and perpend 

Iocity, respectively and in the above expression 

jumps. 

icular components of the ve- 

we average over the random 
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Algebraic manipulations give the following expression for the linearized h -  

drodynamic equat ions: 

*Sk 
&sk = -Dllkl12sk + Tik . pk + X1lk1l2- 

cVT2 

The contribution to the bulk viscosity coefficient vanishes because of sym- 

met- reasons; 3 = ( I IC i ( t )  I l 2 ) .  The transport coefficients are given 

by the following relations: 

where the integral sign in the above equation denotes the trapezoid appros- 

imation to the integral. The above equations for transport coefficients are 

identical with the ideal gas expressions for the same quantities. 

4.3 Computation of the transport coefficients 

As an application of the above formalism we derive espressions for transport 

coefficients in terms of time-correlation functions. With the use of simple 

approximations to the relaxation dynamics we obtain analytical expressions 

for such coefficients. 
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4.3.1 Selfidiffusion coefficient 

LVe illustrate application of the expression (4.23) and obtain a n  expression 

for the value of the self-diffusion coefficient. The dynamitai variable corre- 

sponding to the diffusive relaxation process is 

where 1 is the position of the marked particle and a is a one-component 

vector. In k-space the dynamical variable is espressed as 

The expression for the force (1.20) takes the form: 

fk ( O )  = e'k-l(l) - (, ik-[1(1)-1(0)] ) eLk.l(O) = ik - [1(1) - 1(0)], (4.36) 

and the expression for the reversible Rus vünishes by the Onsager relation 

(4.16): 

Using relation (4.36) and the expression (4.23) we arrive at  the following 

equation: 

1 &ak = -- ((k -[1(1) - L(O)])(k - [1(1) - 1(0)])) ak - 
2 

a2 

- C ((k . v(t))(k -v(o)))  à k ,  (1.37) 
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where we employed the fact that transitions l(0) + l(1) and l(t) -t l ( t  + 1) 

are uncorrelated. We also omitted terms of order k h n d  higher in the above 

expression. 

When the stationary probability distribution is spherica1Iy symmetric equa- 

tion (4.37) is invariant with respect to rotations of space R.  Thus setting k 

to  a fixed value, say e,? we read off the value of the diffusion coefficient from 

the equation (4.37): 

We compare this expression with the value obtained from the definition of 

the self-diffusion coefficient as the dope of mean-square displacement: 

where d is the space dimension. Using the relation 

and invariance of the correlation function with respect to time translation 

we obtain the following relation: 

L 
D, = lirn - 1 t (v(t)v(û)) + 

t+oo d t  

which, for spherically symmetric equilibrium distributions, has the same 

value as (4.37) if the velocity auto-correlation decays fast enough. 
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Following standard procedure'' me define the viscosity coefficient from the 

Iinearized equation of motion for the transverse component of the current: 

The transverse component of current satisfies the condition of a non-divergent 

flow: V - jt = 0. 

From comparison of long-time, long-scale decay of the "stress-stress" time 

correlation function and the microscopie espression for the same quantity we 

derive the following expression for the viscosity coefficient: 

rl = lim 
r+cx 

The argument in the average in equation (1.40) may be rewritten as 

We attach the meaning of pre- and post-collision celocities of particle i to the 

variables v:(t) and v:(t + 1). Because of local conservation of momentum, 

the sum of these terms over al1 particles vanishes. 

Let us introduce the notation: 
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Jumps at  different times and of different particles are uncorrelated so that 

we express the above formula in terms of velocity correlations and a diffusion 

term: 

~ ( t )  = (x ( t )  $ (i) v; ( O )  + Y 4 t )  (a (uV ( O ) ) U ~ ( O ) ? )  . 
1 7 1  

Under the assumption that  the above auto-correlation function decays in a 

geometrical progression with rate q,  the viscosity is found to be: 

,m2 I 
lim -- 

'= r+m TV 2r 
t=l 

If ive further assume that only particles at different nodes are uncorrelated 

we rewrite lii(1) as sum over sites with at least one particle collision s E s: 

Xumber of the n-particle coilisions in a large system 

by the scaled Poisson distribution: 

witli density p defined from the relation iV = llulp 
particles. 

is approsimately given 

where LV is number of 

By averaging over collisions with different numbers of particles we arrive at 
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the expression: 

where p was accounted for by the normalization factor in Mavwellian distri- 

bution. PVe note that computation of @(O) from the above formula 

Nest we determine the value of cli(1) for the two collision models witli 

yields: 

different 

sets iR of rotations. When set of rotations coincides with O(d) ,  set of al1 

rotations. we perform integration over W first with subsequent averaging 

over R: 

The average momentum distribution has a IvIaxwellian form with the power 
MV2 

of exponential - - vielding the result for zb(1): 
2T ' ' 
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Carrying out the sum in equation (4.45) we arrive at the expression for the 

viscosi ty CO efficient: 

FVe see that in this model, for moderate values of temperature and density. 

the viscosity is mainly defined by the second term. 

Let us now consider the coIlision rule mhere R is a set of rotations by and 

-- " As one can easily see under action E'rom 93 the product cx:,u, changes 2 ' 

sign. For this collision mode1 formula (4.44) yields: 

Further integration with respect to V yields the values for viscosity coefficient 

and damping factor q: 

For this collision model the system displays an interesting behaviour. It re- 

veals a st rong negative autocorrelation in the system which possesses only 
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local interactions. This feature enables us to perform simulations in the phys- 

ically interesting regime of low kinematic viscosity. In later sections we shall 

numericalIy investigate the autocorrelation functions discussed above and 

comment on the agreement between the theoretical and simulated values. 



5 .  NUMERICAL STUDY OF THE LATTICE GAS MODEL 

In this section we discuss numerical experiments on the lattice gas model. 

The results are separated in two groups. The results of the first group serve to 

validate the theoretical constructs of the previous sections. In this group we 

also include computations of the transport coefficients using the formiilae of 

Sec. 4. Applications of the lattice gas rnodel to simulations of fliiid dynamics 

constitute the second category of numerical experiments. 

5.1 Equilibrium properties 

The theoretical results of the previous section are based on an assumption 

concerning the nature of the local equilibrium distribution. In Sec. 2.6 me 

gave a proof that, in the Boltzmann approsimation. the probability distri- 

bution converges to a iLIanvell distribution. In order to ensure that a local 

probability distribution has the blauwell form we need to establish some facts 

on the rate of convergence to the stationary distribution. Theoretical results 

with such content are very few and usually are difficult to obtain for a general 

model.*' 
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Xumerical and theoretical energy probability distribution 

densities. The solid line shows the Mauwdl energy profile. 

The dotted line is obtained from numerical simulations. 

We perform a simulations of the lattice gas mode1 with the following param- 

eters: 

on a cubic lattice with dimensions 40 x 15 x 25 with periodic boundary condi- 

tions yielding a total of 1.5 x 105 particles. Initially particles are distributed 

uniformly in the domain. We assign to the particles initial velocities from 

the set {f fie,, &fie,, f fie,). Thus. the initial energy distribution is 

Fig. 5.1 
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-1 test of equation of state of the lattice gas model. 

given by a Dirac function a t  E = 3/2 or Po(€) = b ( ~  - 312). We observed 

that after several steps the energy distribution is thoroughly randomized. 

The number of steps depends on the system density and is independent of 

temperature. In general the rate of relaxation to the 3k~1ve l l  distribution is 

high and the assurnption on the local Gaussian character of the probability 

distribution holds. In Fig. 5.1 we show the energy probability distribution 

after 100 automation steps. The solid line represents the Ma~well ian energy 

distribution: 

Fig. 5.2 

The dotted line represents the results of numerical simulations. The energy 
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Célocity-velocity and stress-stress normalized time correlation 

functions for the collision model 1vit.h an orthogonal scattering 

of the colliding particies. 

segment is divided int,o 400 bins and probability distribution density for the 

energy corresponding to the median point of a bin is assigned according to 

the number of particles in the bin. We found a good agreement between the 

theoretical prediction and the numerical results. The L~lanvell distribution 

is spherically symmetric and, thus, Ieads to a symmetric pressure tensor. 

Fig. 5.3 

The lattice gas model represents a non interacting monatomic lattice gas and 

its caloric equation of state is simply: 
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Velocity-velocity and stress-stress normalized time correlation 

func tions for the collision mode1 wit h a random scattering of 

the colliding particles. 

The second equation of state for the ideal gas is: 

where p is the rnass density of a sÿstem. We ran a series of simulations on a 

two dimensional square Iattice with dimensions 100 x 100 for different values 

of temperature and density. We imposed periodic boundary conditions in 

one direction and no-slip boundary conditions in the other direction. The 

no-slip boundary conditions were imposed by inverting the velocity a particle 

colliding with a wall. The pressure was computed as the total momentum 

Fig. 3.4 
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transferred to a wall during an automation step divided by the wall length. In 

Fig. 5.2 we present the results of simulations where we observe: as expected 

for a non-interacting gas, that the ratio p / ( p T 8 )  is independent of particle 

density and is equal to unity for a wide range of temperatures. The deviation 

frorn unity for large values of temperatures. when the velocity is compara- 

ble mith the system linear dimensions, has its origin in the non-hIauwellian 

properties of the boundary collision rule. The choice of a proper boundary 

collision kernel is discussed in literature." For rnoderate values of the  tem- 

perature this collision rule the sÿstem is described by the equation of state 

of an ideal gas. 

For the systerns where particles are correlated the Boltzmann approsimation 

breaks down and the results of Sec. 3.1 no longer hold. In this case the re- 

sults provided by the Green-Kubo formulae are indispensable. In principle. 

it is possible to obtain vaiues of the transport coefficients by measuring the 

response of a system to an esternal field.22 however, this approach requires a 

complicated system setup. Application of Green-Kubo formulae yields vahies 

of transport coefficients through the computations of time correlation func- 

tions. Green-Kubo formulae have been applied to lattice gas models."' This 

approach another advantage is that  it provides insight into the dynamics of 

such time correlation functions and informat ion on the possible contributions 

to the values of transport coefficients. 

In Fig. 5.3 and Fig. 5.4 we present the results of numerical esperirnents on the 
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collision models described in Sec. 2.2.3. From the form of equation (1.42), 

Ive observe that if the time correlation contribution vanishes the viscosi ty 

coefficient is given by the first term of the sum. To reduce the value of the 

viscosity coefficient we introduced a model with negative stress-stress cor- 

relation, mhich yields a significantly lower value of the viscosity coefficient. 

In Fig. 5.3 we represent velocity-velocity and stress-stress normalized time 

correiation funct ions by dashed and dot ted lines, respectively The simula- 

tions were carried out on a square lattice mith dimensions 100 x 100 and 

parame ters: 

We observe that correlations decay in geometrical progression and this is con- 

sistent with the Boltzmann approximation. The experimental decay fact.or. 

q = 0.6, is the same as the theoretical value given by equation (4.49), q = 0.6. 

The corresponding values of the kinernatic viscosity are v,, = 0.1238 and 

uth = 0.1239 for the esperimental and theoretical values of the non-diffusive 

contribution to the viscosity, respectively. For higher values of density ive 

observe a deviation of experimental values of the damping factor from the 

theoretical predictions. We attribute this deviation to the development of 

correlations in the system and a breakdown of the Boltzmann approxima- 

tion. 

In Fig. 5.4 we present the results for the collision model with random scat- 
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tering. It yields significantly higher values for the viscosity coefficient. For 

the same parameter values as in Fig. 5.3 ive obtained the value of 0.489 for 

the kinematic viscosity coefficient. The  rates of decay of the velocity auto- 

correlation function are the same for the two models and yeild the same value 

of the self-diffusion coefficient. 

5.2 Simulations of Auid dynamics 

In this section we present the results of simulations of the lattice gas model 

for hydrodynamical flows. Our goal was to determine if the method exibits 

the turbulent flow characteristics seen in fluid turbulence esperiments. The 

setup of the simulation mas chosen for cornparison with photographs of a real 

water flow past cylinder2' with similar values of the Reynolds number. 

In Fig. 5.5 we present the results of simulations of a two dimensional von 

Karman streetl using the Iattice gas model. The simulatioris rvere carried 

out on a 1200 x 100 square lattice (3.28 x 106 particles). Parameters of the 

Von Karman street is a regime displayed by a flow past cylinder for the range of 

Reynolds numbers from 70 to 2?500. It is characterised by a system of perodicaily 

osciltating wakes past the cylinder. 
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simulations were: 

and for these values of the parameters the system satisfies the condition of 

validity of Navier-Stokes eqtiation: 

1 

The value of kinematic shear viscosity for this parameter values in the Boltz- 

mann approximation was found from formula (4.49) and is equal to u = 0.158. 

We impose periodic boundary conditions on the system. We start from a 

system configuration wit h uniform particle distribution and zero total mo- 

mentum. The particles are driven on the system boundary as follows. We 

assign to al1 particles with coordinate x = O velocities from the hlaxwell 

distribution with temperature T* = 1.5 and ,u, = 0.5. No-slip boundary 

condition on the object were implemented by inverting velocity of a particle 

that collided with the object. 

The diameter of the circle on the picture is 78 and the value of the Reynolds 

nurnber is: 

where, conventionally, L is chosen as the circle diameter. 
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To reduce the statistical noise we averaged the particle distribution over 100 

automation steps and a 2 x 2 cell. For the density used in the simulations 

we estimate the mean square deviation of the average velocity from the ex- 

pression for Gaussian random variables: (6v2) = 3.1 x 10-.'. 

In Fig. 5.5 we present the result of the simulations of von Karman streets. In 

the figure, a part of the system with dimensions 600 x 200 is shown and the 

snapshots correspond to a frames taken each 100 automation steps. -1 flow 

on short distances from the object establishes after a transient time, how- 

ever, a flow tail grows indefinitely until it occupies the entire system length. 

In esperiments with Auid Aow for these values of the Reynolds nurnber the 

existence of von Karman streets is documented2" (see Figure 4.12.6 of Batch- 

elor G., .4n introduction to Puid dynomics). The density of the fluid is nearly 

uniform and velocity randomization a t  the boundary eliminates the feedback 

due to the periodic boundary conditions in the system. 

To investigate a local structure of Rom eddies close to the object we performed 

simulations for a system with a higher Reynolds number. In Fig. 5.6 ive 

present simulations that display the creation of a boundary layer on the 

surface of the object. The system setup is similar to the one described above 

with the following parameter values: 
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The system dimensions are 800 x 800 and the cylinder diameter L = 278. The 

effective density of the system is higher because the disk occupies approxi- 

mately 3% of the dornain area. The  theoretical kinematic shear viscosity and 

the corresponding Reynolds number are 0.27 and Re = 310. respectively. In 

this case a small system length prevents the development of the von Karman 

street and instead a pair of stable vortices forms. However, for this value of 

the Reynolds number this pair is not stable and a turbulent flow between 

the cylinder wall and the vortex ensues. In Fig. 5.6 snapshots of the initial 

stages of the formation of the vortices are shown. The vectors represent the 

flow field and are colour-coded according to the magnitude of the vertical 

component of the velocity field. These shapshots are to be compared mith 

the very similar pictures presented in Batchelor G., .4n introduction to Puid 

dynamics. Fig. 5.11.3. 

Since this thesis is not dedicated to the study of the hydrodynamical phe- 

riomena but rather to the methods to study suc11 phenornena, further studies 

of specific hydrodynamic flom problems are not addressed here. Hoivever, we 

note that the fine structure of the srna11 scale eddies as well as large scale 

structiires. existing in the physical systems, are reproduced in the lattice gas 

model simulations. Thus, we believe that the model can be used to study the 

behaviour of fluid flow under wide range of conditions. In general, we found 

the method to be stable with respect to changes of different conditions, the 

system geometry, temperat ure and flom velocity. 



Siniiilation of t\vo diniensional \.on Iiarniiin street. Fig. 1 



Dei-elopnient of a t iirhiilent boiindar 
flu\\-. 

y layer for a high Re!-nolcis niiniber 



6. CONCLUSION 

The results in this thesis are intended to form a starting point for research 

on a new class of discrete models for hydrodynamic computations. At the 

current stage of development spectral methods for solving the Xavier-Stokes 

equation are more efficient than the lattice gas and lattice Boltzmann schemes.13 

The present lattice gas model provides a simple alternative schenie that ac- 

counts for the kTa.xwellian distribution of velocities and is easily estended to 

treat a wide class of physical and chernical problems. Further studies will 

determine if the method is competitive with the spectral or other standard 

simulation met hods. 

At this point we would like to mention some unsolved problems. Jin inter- 

esting problem is phase separation in multi-component lattice gases. In the 

traditional lattice gas models phase separation is achieved through the in- 

troduction of auxiliary species of particles or through local colIision schemes 

wit hout the semi-detailed balance cond i t i~n .~  An implernentat ion of the force 

through an exchange particle mechanism, which satisfies detailed balance, is 

a possible approach to this problem and is easily irnplemented within the 

contest of the present model. 
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The particle-wall collision scheme requires further investigation. The collision 

rule used in the present simulations does not adequately describe collisions 

at  high temperatures and, more important, it supports only adiabatically 

insulated systems. 

We believe that the model can also be an efficient tool for the molecular 

dynamics simulations of reactive fluids or problems where fluctuations are 

important. We eenision applications of such schemes for the modelling of 

shock waves or combustion fronts. This model can be easily modified to 

incorporate chernical reactions for which rnicroscopic collision schemes are 

known.*' These schemes take into account the excess energy of the reactive 

binary collisions and satisfy the detailed balance condition. The rates of the 

reactions obtained in these schemes satisfy the Arrhenius law and have a 

clear diemical meaning. 

We demonstrated the connection between the present model and the evolu- 

tion of an ideal gas and, on this basis. we believe that the range of applicabil- 

i ty of this lattice mode1 is wider than simply the macroscopic Savier-Stokes 

equations obtained from it on long distance and time scales. In regimes where 

the system behaviour is unknown or unpredictable the inherent stability of 

the lattice gas method can be an asset and, we hope, this feature will make 

this research useful to workers in the field. 
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