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ABSTRACT

In this thesis we present a model for fluid dynamics computations. The
model combines a stochastic propagation scheme with special collision rules.
We consider a class of collision rules with local mass, momentum and energy
conservation laws. We derive the Boltzmann equation for the model and
show that the Boltzmann H-theorem holds. By carrying out a Chapman-
Enskog analvsis we deduce that the macroscopic evolution of the system is
governed by the Navier-Stokes equations. In the linear response approxima-
tion we derive Green-Kubo formulae for the discrete system and show that
the Onsager reciprocal relations are valid for the model without microscopic
reversibility. We derive expressions for the transport coefficients in terms of
autocorrelation functions. Numerical experiments performed on the model
support the theoretical analysis and demonstrate that the model provides a

stable simulation method for turbulent hydrodynamic flows.
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1. INTRODUCTION

Over the past few years lattice gas models have attracted the attention of
researchers in various disciplines.!™ In 1986, Frisch, Hasslacher and Pomeau
(FHP) introduced a model® that in the long-time, large-scale limit leads to
the Navier-Stokes equations. In two dimensions the model consists of a set
of particles on the triangular lattice. The particles propagate among lattice
vertices with unit velocities and interact with each other according to some
artificial local collision rules that satisfy particle number and momentum
conservation laws. This model demonstrated that the complexity of hydro-
dyvnamics may be obtained from a drastically simplified version of molecular
dynamics. Since the introduction of the original FHP model a number of
extensions of the model have been developed which have allowed one to in-
vestigate the properties of complex systems built on simplified microscopic
dynamics. On the computational side, it has been shown that lattice gas
models provide stable simulation schemes that are highly parallelizable and
are efficiently realized either on conventional parallel and vector computers

or specifically designed architectures.®

The atomistic nature of matter suggests that many dynamical processes in
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the physical and biological sciences are good candidates for the application
of such schemes. The lattice gas models of hydrodynamic flows inspired a
variety of other applications; for example, these models have been successfully
applied to simulations of microemulsion formation,” phase separation® and
reaction-diffusion processes.® Lattice gas models may be used to carry out
simulations of large or complex systems where full molecular dynamics is
not feasible. Since lattice gas models utilize a simplified description of phase
space with disrete positions and velocities and employ an exclusion principle
which restricts the number of particles at a site on the lattice, lattice gas
dynamics has some peculiar features: the equilibrium distribution is Fermi-
Dirac and energy relaxation processes cannot be treated since there is only

a single speed in the model.

Other schemes have been devised to overcome some of these limitations.
There exist multiple-velocity lattice-gas and Boltzmann models;!® these mod-
els extend the phase space by considering a finite, but sometimes large, collec-
tion of particle velocities on the lattice. There are also stochastic simulation
methods for the Boltzmann equation!! that provide approximate molecular
dynamics schemes with continuous velocities. There have also been extensive

12,13 which retain the discreteness

developments of lattice Boltzmann methods
of the lattice but work at the level of the real-valued particle distribution.
While powerful, this method lacks the inherent stability of lattice gas meth-

ods.
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The motivation behind the construction of the present lattice gas model was
the desire to combine the stability of the lattice gas automaton and the
Maxwellian character of the colliding molecules. In the thesis we propose a
stochastic lattice gas model with an internal continuous vector parameter.
This vector parameter may be identified with the particle velocity. A major
obstacle is the discreteness of the underlying lattice, which makes it impos-
sible to formulate a deterministic streaming rule for continuous velocities.
Thus, we are forced to abandon microscopic reversibility which is intrinsic to
the deterministic rule. We introduce a stochastic transition scheme and show
that in a certain limit the behaviour of the system is described by the hydro-
dynamic equations. These two features, the existence of the vector parameter
and the stochastic particle propagation, distinguish the present model from
conventional lattice gas models.!* Some features of the proposed model make

it similar to the Bird scheme!! for the Boltzmann equation simulations.

Using the semi-detailed balance property of the system, we have established
the Boltzmann H-theorem for the reduced particle probability distribution.
By carrying out a Chapman-Enskog analysis on the lattice gas model, we
have shown that the evolution of the locally conserved fields is described by
the Navier-Stokes equations. Further investigations of the system have shown
that while microscopic reversibility is absent from the system one may still
show that processes with inverted velocities are symmetric in a certain sense
and Onsager reciprocal relations may be established for the model. Using

projection operator techniques'® we have derived Green-Kubo formulae in
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the linear response regime and obtained autocorrelation function expressions
for the transport coefficients. The autocorrelation expressions have a special

form due to the discrete character of the time evolution.

We applied the lattice gas model to simulations of fluid flow with moderate
Reynolds numbers. The results of the numerical experiments established the
utility of the method. We observed the von Karman street type of flow past a
cvlinder at the expected Reynolds numbers. At lower values of the Reynolds
number we observed a steady double vortex and a steady laminar flow past

the cylinder.

The thesis is organized as follows. We first present in Chapter 2 the opera-
tional description of the lattice gas model. Later in this section we give an

alternative formulation in terms of the evolution of the probability density.

In Chapter 3 we solve the evolution equation in the Boltzmann approxima-
tion using the Chapman-Enskog procedure. We present the system of evolu-
tion equations for the collisional invariants and show how the Navier-Stokes

equations are obtained.

In Chapter 4 we develop the Green-Kubo formalism for the lattice gas system
and derive expressions for the transport coefficients in terms of sums of the
corresponding “force-force” autocorrelation functions. Based on these for-
mulae, we give an alternative derivation of the expressions for the transport

coefficients in the Boltzmann approximation.

We test the theoretical predictions against numerical simulations of the model
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in Chapter 5. In this chapter we also present applications of the lattice gas
model to simulations of fluid flow. We demonstrate that the lattice gas model
is able to reproduce the main features of a flow with high Reynolds numbers.

Finally, the conclusions are summarized in Chapter 6.



2. LATTICE GAS MODEL

In this chapter we shall build a general framework for the efficient description
of stochastic lattice gas models. A major difficulty lies in differences between
the algorithm of the proposed computational scheme and mathematical tools
used for the model analysis. On the algorithmic level one works with random
variables and the evolution of the system results from the transformations of
such random variables. On the other hand, microscopic behaviour is more
conveniently described in terms of expectations of the microscopic quantities
of interest. We provide an interface between the algorithmic and phase space
pictures of such dynamics. In the course of the work we establish links
between the microscopic and macroscopic descriptions and further illuminate

the above-mentioned duality.

We further investigate analytical properties of the collision and propagation
operators. We prove a variant of the Boltzmann H-theorem and prove that
a Maxwellian distribution is a stationary solution. A method for computing
collision integral will be presented and values of transport coeflicients will be
evaluated. Interaction with external fields and boundary collisions will be

dealt with in the later chapters.
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2.1 Notations

In this work we attempt to use notations for different sorts of objects con-
sistently. We use doublelined capital(Blackboard Bold, e.g. 1, V) letters for
function spaces, such as phase space, coordinate space and so on. Script
letters {(e.g. €, D) are used mainly for operators. Examples are the collision
and streaming operators. We denote vector variables with bold letters (e.g.
v = {v;, Uy, v:}). A collection of variables of the same type is symbolized by
a capital letter of the same variable (e.g. V = {v|,..., v, }.I = {i1.1,13}).
We emphasize the random character of the dynamical variables by using
Greek letters e.g. £,(. We often omit an argument, an event in the proba-
bility space, from random variables. With sans serif letters we denote gross
quantities on a lattice site such as the total number of particles n and the
velocity of the centre of mass V. When there is an ambiguity in the choice

of notation, we shall be guided by esthetic principles.
Functions defined on the following spaces will play a major role in this thesis:

L ~ a set of lattice nodes,
A\ - a vector space of particle velocities,
Q= (L®W" - phase space of n particles,

S= @(]V - collision space.

Lis a discrete coordinate space, the nodes of which comprise a regular lattice.



2. Lattice gas model 8

Primarily we consider cubic lattices in three dimensions and square lattices
in two dimensions. In the model considered below restrictions on lattice
symmetry are less severe than in the classic FHP!* model. As we show later
in detail, symmetry of the second rank pressure tensor arises from symmetry
of the local particle probability distribution rather than from the symmetry

of the underlying lattice.

The major novel feature of the present lattice gas model is the introduction of
a continuous internal vector parameter v € V¥ which later will be associated
with the particle velocity. Current lattice-gas models possess a discrete set
of velocities, partially imposed by the underlying lattice .. Collisions of the
particles with small integer velocities lead to a limited number of outcomes
and may be efficiently realized using integer arithmetic and employing update
tables. However, an increase in number of velocities leads to an exponential
increase in the size of update table, thus. sertously hindering performance. Of
course performance is only of secondary importance in the study of lattice-gas
models, which constitute new media for the investigation of non-equilibrium
phenomena in physics and chemistry. In the present model the space of
possible velocities V is IR? in three dimensions and R? for two dimensional
lattices. Occasionally, for convenience, in two dimensions we associate YV

with the vector space of complex numbers C.

The phase space Q= I ® Vis used in two different contexts. As a domain of

definition of mapping f : Q = R*, it used in dealing with reduced probability
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distributions and, on the algorithmic level, it defines the position and state
of a particle. In the description of chemical transformations, not considered
in this thesis, (Q can be used for states of molecules with additional internal

degrees of freedom. In this case it acquires the meaning Q=L Ve I.

The space S naturally arises in the description of collisions with different
numbers of particles. Each collision is described by the number of collid-
ing particles and their internal properties. For particles of the same species
without internal degrees of freedom it expressed functionally as a direct sum
of V" or S= EISOV. For convenience at this point we introduce several useful
i=
functionals on this space. A mapping n : S = Z* makes a correspondence
between a collision and the number of the colliding particles. When confu-
ston is unlikely we omit the argument of the functional n. Other important
quantities are the average velocity and the sum of square norms of the ve-

locities. For non-zero particle collisions, s € S, these quantities are defined

as:
M(S) = Z my,
=1
Vo) = 3
= mqvy,
M i=1
1 )
B(s) = 5 > mallvill®,
1=1
where m; are the masses of the colliding particles.

A system state can be specified in two different ways. A knowledge of po-

sitions and internal degrees of freedom, including velocity, for each particle
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fully specifies the system. Alternatively, one may define system state in terms
of the distribution of particles on a lattice by assigning to every site 1 € I,
a collision state ¢ € S. We use both descriptions, the former for analyzing

properties of the streaming operator and the later for studying collisions.

2.2 Algorithmic description

In this section we give a detailed description of the algorithm used in nu-
merical simulations. Validation of the computation scheme is given in later
sections. However, we sometimes refer to these results in qualitative com-

parisons of different approaches.

The lattice-gas model involves consecutive application of the streaming and
collision transformations on the system. We consider the particular case
where the streaming and collision transformations act independently on the

sets of particles and sites respectively.

The particles possess internal variables which constitute an essential feature
of the model. In the model the internal variables change only in the course
of collisions with the other particles and the change is further constrained
to satisfy a set of rules — conservation laws. The conservation laws closely
resemble conservation of energy and momentum and we refer to these laws

by those names.
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2.2.1 Particles and sites

We consider a system consisting of a set of particles on a regular lattice.
Sites are a set of the lattice discrete coordinates. Particles may be identical
or may belong to different classes and are characterized by their position,
mass, momentum, energy (and possibly other internal parameters). There is
no restriction on the number of particles per site. The position of the particle
is given by its discrete coordinates on the lattice and is changed only during
the streaming transformation. The other attributes of the particle may be
changed only during collisions with the other particles or external fields.
The masses of particles of the same type are taken to be the same and are
conserved during evolution. In this case mass and particle number densities
describe the same quantity. The momentum is a vector variable used to

define particle streaming and is closely related to the particle velocity.

The formal description of the particle structure is presented in the following

black-scheme:

Particle
iPosition Mass -----
------------ i Momentum |

Energy
In the discrete space we may separate particles into groups according to their
positions. The collision transformation acts on such groups independently

and, in general, requires information on all attributes of the residing particles.
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It is natural to assume that collisions satisfying conservation laws may be
built from a knowledge of the conserved quantities only. Such models are

especially convenient for computations. In this case a site consists of total

energy, momentum and mass depicted in the following scheme:
" Site ‘:. --------- : ‘.'.'_P_ositior_i:,‘::-

Total Mass ;
Total Momentum
Total Energy '

2.2.2 Streaming transformation

We call any operation on the system that changes the positions of the par-
ticles a streaming operator. The streaming transformation is defined to act
solely on the particle velocities (velocity = momentum/mass) and does not
affect the internal parameters of the particles. Consider a particle with ve-
locity v,

V= E Vi€,

i
where e; are generators of the regular lattice. We shall discuss a construction

of such a representation later.

Propagation of a particle is defined by integer random numbers 7; with the

following property:

E(r],-(vi)) = v;.
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The above formula relates the particle momentum to the particle propagation
velocity. In this case propagation of the particle during one streaming step

is given by:

e=Y m(v)e:
i
and we further restrict ourselves to the case of identically distributed random

numbers n; for all i for reasons of symmetry.

One choice of random numbers has the following distribution:

'4

{v} n=[v]+1,
P(n(v) =n) = J 1-{v} n=][v], (2.1)
0 else,

where {v} and {v] are fractional and integer parts of v, respectively, and the
following identity holds:
{v} +[v] = 0.

The probability distribution (2.1) is obtained by comparison of fractional part
{v} with a uniformly distributed random variable £ on [0,1]. Computations

show that
P(€> {v}) = P(n(v) = [v]),
P(E < {v}) = P(n(v) = [v] + 1).

We show that this choice of random streaming is optimal, namely, it gives

the smallest streaming contribution to the dissipative effects.
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Another convenient choice for the description of streaming may be built on

Poisson distributed random numbers:

A disadvantage of this choice is the lack of Galilean invariance of the resulting
hydrodvnamics equation. It also gives a large dissipative contribution for

large velocities.

The above algorithm for particle transfer is implemented as an update of

position fields for all particles independently.

2.2.3 Collision transformation

A collision transformation is a process that acts on group of particles at a site
but does not change their positions. Very complex collision transformations
can be implemented on the set of particles at a site. However, for most

collision schemes the change in internal variables depends on a fixed number

of collision parameters.

We experimented with a class of such schemes which depends only on gross
quantities such as total momentum, energy and mass and an additional ran-
dom rotation matrix. This class of collision rules still provides for very rich
phenomenology. The schemes are based on the fact that rotations of the

velocities in the frame moving with the velocity of the center of mass does
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not change the excess of the kinetic energy and thus the total energy.'

We implemented collision transformations as a three-step update. On the
first step, for each particle, we incremented total mass, energy and momen-
tum at the site corresponding to the particle position by those values of the
particle. On the second step we computed velocity of the center of mass V
and a random rotation matrix o at each site. This update step is performed
on the set of sites. Lastly, for each particle we updated velocities according

to the formula:
v =V+o(v-V).

Computations show that total energy and momentum are conserved in the
above operation. The values of the transport coefficients depend on the
details of the collision model and, in the case of a monatomic ideal gas, are
defined by choices of collision matrices. Two such choices are considered in
this work. The first class of collision models is given by a set of random
rotations in O(d) with uniform density. The second choice is given by a
set of random rotations {¢;} that transform a vector V into an orthogonal
vector: (VT,o0;V) = 0. The second choice yields the smallest value of the

shear viscosity coefficient in the Boltzmann approximation.

In simulations, as random rotations we used a small array of predefined

rotations. Numerical experiments did not detect any effects arising from the

! We consider systems with quadratic dependence of the kinetic energy of a particle on

the momentum of the particle.
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non-random character of these rotations. We attribute this observation to

the immense complexity of the system under consideration.

2.3 Streaming operator

The streaming operator acts independently on all particles in the system. We
consider a class of translationally invariant streaming operators. In terms of
the reduced probability distribution Py, P, : Q — R it is expressed as

SP(l,v) = Z W(r,v)P,(1—r,v). (2.

rel

8]
[SV]
N

The above formula is conveniently rewritten with the use of the cumulant
expansion for Markov processes specified by transition probabilities 11". One
may verify the following identity by consecutive application of differentiation

to both sides of the equation

o oQ
r rk __ m, no__ .. K n
rzen:w (r.v)e —§F®k —e:\p(nz::ln—?@k ), (2.3)

where © denotes the tensor contraction, m are the moments, ., the cumulants
and the second identity serves as a definition of the cumulant expansion. If
we use formal expressions for translation operators in space and in time as
Fr+1) ="V f(r) and f(t+ 1) = e f(t), respectively, we may rewrite (2.2)
with the use of {2.3) in terms of a cumulant expansion in terms of powers of

V:

S = exp(Z fon (V) o [-V]"). (2.4)
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We apply the formal expression (2.4) to a system of non-interacting particles.
Evolution in discrete time is expressed using finite-time translation in the

exponential form (2.4):

Pi(Lv,t+1) =8P (Lv.t) = Y W(r,v)P(l-r.v.t), (25)
rel
or
exp(z)Pl(l v, t) — exp(i Kn(V) o [-V[")P(Lv,t) =0, (2.6)
ot T v n! T '
which may be expressed as
3
S [/ e’xd'r] XP(l,v,t) =0, (2.7)
0
where
_ 0 2\ Kk (V) n 5
X=5 Z{ o[-V (2.8)

n=

We may establish a connection between the continuous vector parameter v

and the particle velocity by imposing the requirement

Below we will use these two notations for the quantity interchangeably. Evo-
lution of the probability density in the long time - long distance limit is given

by the following Fokker-Planck equation:

ad 1
ézpl +vVv- VP[ = 3((rirj))wViVjP1. (29)
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2.3.1 Transition model

If models employing independent propagations along coordinate axes are
used, cross-cumulants vanish. A particularly simple scheme is to translate a
particle in the z-direction during a unit time by [v,] with probability 1 —{v,}
and by [vz] + 1 with probability {v.}. By [z] we denote the largest integer
not exceeding z and by {z} the fractional part of z. These quantities are

related to each other by {z} + [z] = z.

Transition probabilities satisfy the normalization condition,
(1-{v:}) +{v:} =1

and we verify that the average velocity of a particle is indeed v,:
() = (1 = {ve P{ve] + {vc}([vz] + 1) = vs.

In the one dimensional case the moment of nth power is given by the expres-
sion:
m, = (1 - {UI})[Ur]n + {‘Ur}([vx] + 1),
and from recurrence relations for the second and third cumulants in terms of
moments we have:
. 2
K',z(V) = My — my

k3(V) = m3 — 3m;my + 2m?,
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from which we derive the following formulae:

ra(v) = {v=}(1 = {v:})
r3(v) = ({ve} — D)(2{ve} — 1){ve}

Averages of products of smooth functions with the second cumulant over a
Maxwell distribution play an important role in the subsequent discussion. In
this context it is convenient to appeal to the following representation of the
second cumulant {v.}(1 — {v;}) as a Fourier series'®
o
{va}(1 = {v:}) = é -y = ﬁ;cfvr : (2.10)
k=1
In the above expression we replaced the argument in the cosine by noting that
{vc} is a periodic function and cos(2wk{v.}) = cos(2mkv,) for any integer k.
Computations of averages over polynomial functions become straightforward

and, as an example, the average of unity is given by:

1 = cos(27rlcur)e'k2:.)7. '
(Ralve)fo) =5 = D e (2.11)

k=1

For the parameter values used in the model the sum quickly converges and
the second and higher terms of the expansion are negligibly small. Thus, for
a value of the ratio % = 1, the second and third terms are 0.54 x 10~° and
0.26 x 10735, respectively. We are justified in keeping only the first term, é
The behaviour of integrals of other conserved quantities is similar and for

all collision invariants «* we approximate the diffusive term by the Laplace
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operator:
1 2 a a
SV2: (PR (V) fo) = DA (1), (2.12)

with D = é

2.4 FElementary properties of collision operator

The collision transformation acts on lattice sites independently and. thus, is

formally expressed as a direct product of ||Ii| elementary collision operators

on S.

Properties of a lattice gas model are conveniently described in terms of dy-
namical variables associated with macroscopic quantities. Below we give
expressions for the density, momentum and kinetic energy as functions of

constitutive particles. For a system with .V particles we have:

N

p(l) =D ms(1- &), (2.13a)
N

pl) =3 mi¢s(l- &), (2.13b)
" ‘1

e(t) = omill¢dPs(i - &), (2.13¢)

=1

where {; and &, are, respectively, the velocity and position of the ith particle.

A dual representation of dynamical variables, which depends only on the

particle distribution among sites, is built as follows. Any dynamical variable
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¢ corresponding to a function f on S = éov can be represented by the

following sum:

o(S,1) = % Z ™ an(ﬂw(l)a---:ﬂfr(n)) X

{=} n
n N
x [To00— &) T (1 —6(1— &)l (2.14)
=1 i=n+1

where {7} is a set of permutations of N particles, S is the state of site 1 and

; denotes the internal state of ith particle, which includes particle velocity
Ci-

For additive functions f such as number of particles and total momentum
there is a connection between representations (2.14) and (2.13a)-(2.13¢). Let
us consider the following identity:

N

) 1
[10- 60 - &) + €60~ )] = =y {Z}: x

=1

X Z exp (“Z fWziiy) Hd(l —&xy) H [1 =01 =&l

=1 1=n-+1
and differentiation of the left and right hand sides of the above identity
with respect to u at u = O establishes the relation between site and particle

dvnamical variables.

From (2.14) we obtain the particle number distribution among the sites in

the Boltzmann approximation. The probability to have n particles at a site
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is given by:
N!
P(n =n, l) = m <llj En’(;) —nI-{l[l - K(t) ]>
N1 n -n _ INP(E=1|" _ype-=
- nl(N —n)! (P(E - 1)) (1 - b= 1))N ~ [ n! ] emNFE=D

when VP(§ = 1) ~ O(1) and N > 1 and, thus, particles are distributed

according to the Poisson distribution law.

For the ideal monatomic lattice gas model discussed in Sec. 2.2.3 dynamical

variables change in collisions according to the following rule:

¢i=V+o[¢ - V] (2.15)

We see that total momentum and energy are conserved in the collisions:

= zn:migg = MV+aimi[Ci -V} =Mv,
=1 =1

> millGH? = MV + Zmiuc; - VPP =
=1 =
= M||V||* + thllc - Vi|* = Z mil| €11
A collision transformation at a site is written as:
P'(S"y = W(S — S)P(S),
and the change of the probability distribution in this collision is given by:

PGl = [+ /HchJc “V+a[¢, = V]) Py o).

(2.16)



bo
¥

2. Lattice gas model

We observe that the Maxwell distribution,

n d/2
Po=]](2) &7 (2.17)
2T ’

=1
does not change in collisions and, because it does not depend on particle
positions, it is also is invariant under streaming transformations. Thus, we
conclude that the Maxwell distribution (2.17) is a stationary solution for

an ideal monatomic gas. These arguments can be modified to include more

general cases.

Under the molecular chaos assumption the formula (2.16) is further simpli-
fied. The probability distribution is expressed as a product of one particle

probability distributions:

and, after integration, equation (2.16) takes the form:

Pic = [+ [TTdestei-v = ole, - VD IT i<

We abbreviate the above formula as:

Pi(¢Y) + C(P)(EY) = / : -/Hdcis(ci —V+a¢ = V]) [T Pc),
=1 =1
(2.18)
where € is the collision operator.

We shall prove that a Maxwell distribution is also a stationary solution of

the one-particle reduced collision operator. The method that we employ will
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also be used in calculations of transport coefficients in the Chapman-Enskog
expansion and autocorrelation functions in the Green-Kubo formulae. We

consider the following integral:

(3Pmo) (W) = i /chS(w -V +oV-v])Pa(V)o(vi,V) (2.19)

c€0(d)

where i denotes either sum or integral over a set of rotations. Using the

following representation of the delta function:

d(z) = i/cllce”“,

2T

and the identity

1= Md/dV5(i mz(V - Vi))
=1

we arrive at the expression:

(1Pno) (W) = i /dVdvlo‘(w -V 4oV =v]) x

age0(d)
M4 0 ik Y my(V-v,) ,
X ) / dk 11 dvie =i Pr(V)o(vy, V).
Integrations over v;, ¢ = (2,...,n) and, afterward. over k vield the following

expression:

ers) )= Y [dVavis(w -V ol - w]) x

T€0(d)

X

Md er(_I|MV—mlvll|2
2 &

(274 9T (M — m,) )Pm(V1)¢(V1,V). (2.20)
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In the following identity we employed an explicit expression for the value w

after transformation:

”MV m1v1||
(M —my)

Mm
o v - V1||2 =
—m,

my[vill® + = MIV|I*

M

Mm, ” s |IMV = m w||?
= M||V|]* + ———||V - < =m||lwl||*
IVIIF + 5= 1ll w| llwll” + M =)

and substitution of the above identity in equation (2.20) gives us the following

expression:
/2
(IPnod) (W) = Pp(w) I / [‘HTM ml)] X
o€0(d)
. ”MV - m1W|I2 -1 _ 99
X e:\p( YT (M —m0) o(V+olw-V]V). (221)

In the particular case, when ¢ = 1, we deduce that the Maxwell distribution

is a stationary solution of the collision operator:

(IPnd) (W) = Pn(w).

2.5 Boltzmann equation

The evolution of the probability distribution of the system under consecutive
streaming and collision transformations is governed by the Markov equation
with the transition probabilities given by the composition of the correspond-
ing streaming and collision operators. The Boltzmann equation is the evolu-

tion equation of the 1-particle probability distribution. From the expressions
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for the 1-particle streaming operator, equation (2.7), and the I-particle col-
lision operator, equation (2.18), we deduce the Boltzmann equation for the

lattice gas model:
L

[ / e’xdr] XP(L v, t) = C(P,),
0
with the notation of Sec. 2.3.

~
SV]
V]
o
e

2.6 Boltzmann H-theorem

In this section we provide a partial result on the convergence of the reduced
probability distribution to its stationary form. We consider a specific form
of the collision operator as described in the previous section. This collision
operator transforms the velocities of incoming particles uniformly. Evolution

of the probability distribution on Sis expressed as:
P'(W) = /dV‘J'(V — W)P(V). (2.23)
In order to simplify the proof we introduce some notation.

We shall employ the following result: If ¥ : R = Ris a convex function,

A:Q — Ris some function on 2 and 2 : Q — R with the restriction on A.

/dwﬂ(w) =1land A 20, (2.24)
0
the following inequality holds:

f dwAW)F(Z(W) > F / dwAw)Z(w) | . (2.25)
Q Q
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The above statement says that for a convex function the average of the

function is greater than value of the function at the average position.

For each n-particle collision we define the entropy functional H, by the fol-

lowing formula
H,(P(V)) =/d"VP(V) log(P(V)). (2.26)

We prove that for collisions that satisfy semi-detailed balance the total neg-

ative entropy H, of incoming uncorrelated particles decreases after collision.

The joint probability distribution of uncorrelated colliding particles is given

by the expression:

n

P(V) =[] Pv) -

=1

—~
[SV]
[SV]

~—

By the use of definition (2.26) we arrive at the following relation:
H.(P(V)) =/d"VP(V) log(P(V)) =
=3 [ evIIPelogBi(v) = 3 Hi(P(vy) - (2:29)
J=1 =1 1=l
To obtain results on behavour of H,, we need a semi-detailed balance condi-
tion:
/dV‘J‘(V - W)=1. (2.29)

We note that if we replace integration over dV with integration over dW
the above relation becomes trivial and easily follows from (2.23) and the

requirement that the probability density is normalized.
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We multiply right-hand side of equation (2.26) with unity and change the

order of integration:
H,(P(V)) = / IV P(V) log(P(V)) / FWT(V - W) =
_ / W ] VTV = W)P(V) log(P(V)). (2.30)

The second integration, due to the semi-detailed balance conditions, satisfies

requirement of inequality (2.25) and thus the following relation holds:

Ha(P) > /d"W/dV"J’(V’—)W)P(V’) x

x log (/ dV"T(V" > W)P(V”)) = H.(P'). (2.31)

Finally, we show that the l-entropy of the post-collision particles is smaller
than their joint n-entropy. We write postcollision reduced 1-particle proba-

bility density as

J

P!(v,) = /dv1 codv, - dv, P'(V), (2.32)

where a hat over a symbol indicates the variable omitted in integration.
The integral of P, over velocities is unity. Using this notation the difference

between entropies is written as:

P(V) \ _
H;’ P;(Vj) -

/d"VHP’ 'V) Slo (le( ) );mgu). (2.33)

HA(P(V) = 3 Hi(Pf,) = [ Vv (
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In the above equation we used inequality (2.25) with F = zlogz, A =

(v;) an = —P’(V)
HJ. P/(v;) and Z Hj Pitv;)’

Combining equations (2.28), (2.31) and (2.33) we arrive at the following

inequality that relates pre- and post-collision entropies:
D (B, Z H(P}(v,))-
i=1

To furnish the proof of the H-theorem we show the well-known fact that a
Maxwelliam distribution gives a global minimum of the H-functional with

fixed velocity and energy of the system.

We use the relation:
/P( ) log(Pn(V))dV = / V) log(P(V))dV. (2.34)

This equation follows from equivalence of energy and momentum expectation

values of P and P, and the identity log(Pn) = const — '—"%
From equation (2.34) we derive:
H(P) ~ H(Py) /P ) log( V) )dV =
pPV)
/P (V log(Pm(V))dV,

with right-hand side of the form (2.25). Applying inequality (2.25) we con-

clude that

H(P) > H(P,) for any P.
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We have shown that under the molecular chaos assumption the Boltzmann
H-functional of the system decreases on each iteration. The Maxwellian
distribution is a stationafy solution of the collision operator and, simultane-
ously, is the global minimum of the H-functional. Thus we conclude that at

equilibrium particle velocities are distributed according to the Maxwell law.?

2 We remark while the proof follows standard procedures it is not complete and requires

additional results on rate of convergence.



3. HYDRODYNAMIC EQUATIONS AND TRANSPORT
COEFFICIENTS

3.1 Chapman-Enskog asymptotic expansion

We derive hydrodynamical equations by using an expansion of the reduced
probability distribution in slowly varving density fields. This Chapman-
Enskog procedure!? is based on the assumption that any relevant functional
can be expanded into a series of partial derivatives of the conserved fields.

After scaling x — ex and ¢ — €t the expansion is ordered in powers of e.

It is further assumed that the reduced probability distribution function is

defined by the instantaneous spatial distribution of local collision invariants

(24

po.

fxv.t) = f(v,p(x)) = D € fulv, p(X)). (3.1)

n>0

The density of a local collision invariant is given by the average value

p(x) = (ef(x,v,1)}, (3:2)

31
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and to ensure uniqueness an additional requirement is imposed

(% fa(x,v,t)) =0 for all n > 0 and «a, (3.3)

where ¢ is the set of the density, momentum and energy dynamical variables

given by equation (2.13a-c).

Time evolution of a functional of conserved quantities is governed by an

operator given as an expansion in the small parameter e:

)
5 = > €D, (3.4)

n20

The expansion of the collision operator in a series of ¢ is written formally as:

C(f) =) €"Calf). (3.5)

n>0

To make the average of (C(f)) vanish we should set the average of each term

of the series to zero (C,(f)) = 0.

The operator X takes the form:

a - nK'"(V) n «
xzea-—;e ! \vi (3.6)

n
By expanding the evolution equation (2.22) in powers of ¢ we arrive at the
following set of equations:
Co(f) = C(fo) =0, (3.7a)
Ci(f) = [Do = V - 6((V)]fo, (3.7b)
Co(f) = Difo~[Do+ V- w1 (V)] fiL +

+ %[Do -~ %V k1 (V)2 fo — V2 : ko (V) fo. (3.7¢)
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The solution of equation (3.7a) vields a local Maxwellian distribution:

m _ milv—ujj®
fo= =T € T P (3.8)

Average of local collision invariants over v commutes with the operator D;

so that integration of equation (3.7b) yields

Dopa =V. (‘iah‘,l(V)fg) (39)

The average of equation (3.7¢) gives the second order correction to the Euler

equations:

V2 (i*Ka(v) fo) — <z'“[:Do ~V s+ é&(f))) ..

| —

Dlpa =
and after transformations

Dipt = 5975 (ma(vf) + V- () + ). (310

where we used the conditions on (i®f;) and (i*C,(f)).

3.2 Navier-Stokes equation

In this section we apply general formulae (3.7a-c) to some collision models.
Regardless of the collision model, the equation for the zeroth expansion term
has the same form and constitutes the Euler equations of compressible flow.

Evaluation of the averages in equation (3.9) vields the following results for
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the evolution of the conserved quantities:

a
—p+ Vipu; =0,

at

0 .

-a—tp‘uj + Vipuiuj + VJpT = 0.

a1 s 3 . 1 2 . 9 | _
Ens [59““” + §PT ] + Vipu, [:;,0”11” + §PT ] =0,

where T* = T/m. Algebraic manipulations transform the above system into

a set of evolution equations for p,v and T*:

9]

— Vipu; =0, 3.11
5P+ Viru (3.11a)
) 1

aﬂj =+ ll.,;vi'U.j + ;VJPT = 0, (311b)
9 T* v, T* 2TV 0 3.11
5{ + u; Vy + 5 u; = 0. ( .11c)

Performing a Laplace - Fourier transform of the linearized version of system

(3.11a-c), we arrive at the following system of equations:

[&]

kKT Of [px
Lp‘_k > k U :0_ (312)

The above system has eigenvalues zo = 0 and zx = +[k|\/27*. Thus there

are no dissipative processes in a system governed by (3.11la-c), which can

—2/3

also be seen from the fact that T"p is conserved along streamlines. The

velocity of sound is given by the expression for an ideal monatomic gas:

/5
CcC = §T
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With the use of equations (3.11a-c) we rewrite equation (3.7b) in the following

form:
dlo
Ci(f) = fo (%[V{vm - Viup] +
dlog( fo) 1 .
O8IV I viu; — 4,V jus — ~VipT
+ Ju, [VJ'uJu1 u;Vju p p ]-%—

9 log( fo) . . 2
+ aT—‘[V{'UiT - uiViT - gT V,—ui] .

We substitute the explicit form of fp given by equation (3.8) and, after alge-

braic transformation, arrive at the following equation:

cl* 3 1 1 .
Ci(f) = fo < [H)I—I - %] ¢VilogT™ + T [Cij - 5”0”25:';‘] Vjui)-. (3.13)

wherec=v — u.

We define the function h, by the relation h, fo = f;. The collision operator

€, has the following form:

e()(w) + fi(w) =Y (n‘fl), -0 x
n=1
y i /dVd(w—V+J(V—v1))Pm(V)Zn:hl(v,-). (3.14)

s€0(d)
using the notation of Sec. 2.13.

Equations (3.14) and (3.13) constitute a linear integral equation for the
function h,, which can be split into two equations, one that involves terms

V log T* and the other that depends on gradients of velocity fields.

With use of the approach developed in Sec. 2.13 we shall show that

1
b = Jags - HlelPsy)
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is an eigenfunction of the collision operator and its corresponding eigenvalue

defines the value of the viscosity coefficient. Namely, with the use of identity:

1 =nd/dVe.\'p(ik-zn:(V—v,~)).

and subsequent integration over v;, i = (2,...,n), equation (3.14) can be
reduced to the sum of the following integrals:

d

n
[= i /dVdclé(w —V+a(V=-c)) i
¢€0(d)
B /dke—’[‘-(n—l)||k||2/2+ik-(nv-c1) [(n — Dkok, + ‘%Clrcly . (3.15)

Evaluation of the above integral for the collision models discussed in Sec. 2.2.3
proves that c;c, is an eigenfunction and gives us the eigenvalues:

1l—p—e"
p p

l—p—e?*
=

for uniformly scattered collisions and collisions with 7/2 rotations, respec-
tively.

Evaluation of the averages in equation (3.10) vields the following expressions

for the second order terms in the Chapman-Enskog expansion:

Dip = DAp, (3.16)
Dipu; = DApu; — Vjmy;, (3.17)
1o 3 1 [l 3 | 3 .

Dy [5/0”11” + §PT ] = DA [5/’”“” + §PT ] - Viumi; + §vif\viT ,
(3.18)
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where A is thermal conductivity coefficient and the irreversible contribution

to the pressure tensor is given by the following expression:

1 1 2
Tij = pT' [—)- -+ ;} (V,-uj + VJ'U;' - §6ijvkulc)- (319)

4

We observe that in the above equation the density continuity equation has an

additional flux term DAp which can be conveniently rewritten as V0DV ; log p.

Thus, in the new set of variables w = u — DV log p, the continuity equation

assumes the familiar form:

d
—p + Vi' P = 0.
Btp wip

L5

1.0

2.0 4.0 6.0 8.0 10.0

Kinematic viscosity for different collision models at T* = 1.

Fig. 3.1
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o ZZ L .

Pictorial representation of the streaming transformation in

the stochastic model.

The form of the continuity equation suggests that we look for the hydro-
dynamic equations in the new set of variables (p,w.T"). After algebraic

transformations we arrive at the following set of equations:

a

= ynp = .2
Eridas Viwip =0, (3.20a)
a 1 « I’V [ 9
a’wi + ijjwi + ;leT = —; iTij (3...0[))
o) 2D

- e 2. 2
ET + -in,-T -+ §T V,-w,— = —3—p7rfjv,-ij,-j bl ?Viwjvjwi -+

‘)
+ %V,—(Dp—i— NVIT" - ST Alogp.  (3.20)

We observe that in the new variables evolutions of velocity, temperature and
density fields are governed by the Navier-Stokes equation with the following

pressure tensor:

ﬂ':-j = TF,'J' - pD(V,-wJ- + iji)

Fig. 3.2
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The above expression does have a Newton pressure tensor form with values
of shear and bulk viscosity coefficients ' = n+ Dp and %3 = ng +2Dp/3, re-
spectively. The pressure tensor is spherically symmetric and, for the collision

models discussed above, has vanishing bulk viscosity coefficient ng = 0.

In Fig. 3.1 we plot the values of shear viscosity coefficients for the models.

Equation (3.19) gives us the following values:

l+p—e7?
1= pD + pT* ,
r’l p p 2(6-9—(1—p))
and
/ * 1_8—.0
ny = pD + pT .
’ 2(e~ - (1-0))

The modified bulk viscosity coefficient has the same value in both models
ng = 2Dp/3.

At this point we give a physical explanation for why the change of variables
w = u — DV log p leads to the Navier-Stokes equations. In Fig. 3.2 we com-
pare deterministic streaming of particles with its stochastic counterpart. The
deterministic streaming transfers particles from the shaded domain to the
similarly shaded translated domain. If in the initial domain the particle den-
sity was not uniform, the probabilities of transfer into domain pairs (1,4) and
(3,4) are (1= {v.})p+ (1= {0 {2} Vop/2 and (v }o— (1= {v:}) {12} Vep/2.
respectively.! In the stochastic models we consider systems which consist of

cells with uniform particle density and the correction term &3(v) does not

! The cell edge length is set to unity.
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enter the equations. The change of variables w = u — DV log p accounts for

the correction term and reduces system to the Navier-Stokes equations.



4. GREEN-KUBO FORMULAE AND COMPUTATION OF
TRANSPORT COEFFICIENTS

In this section we develop a projection operator formalism and derive Green-
Kubo formulae for discrete systems. We obtain important results as a con-
sequence of the description of the system in terms of linear response, such
as Onsager relations for discrete systems. The approach developed here will
be used to derive expressions for transport coefficient for various relaxation

processes.

4.1 Green-Kubo formulae

The approach we chose follows the lines of the well-known reduction of the
classical evolution of a Hamiltonian system to a generalized Langevin equa-
tion.'®* However, the intrinsic stochasticity of the model and discreteness
of the system introduces unique features in the derivation of Green-Kubo

formulae that require special treatment.

41
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4.1.1 Projected dynamics

We define a projection operator as follows:

(PH)(T') = Hp(T) = al(T) Py(T) (aaf)“/dr'a(r’)H(r'), (4.1)
where a is a set of dynamical variables. The operator P is indeed a projection
operator. By direct application of the operator twice we verify the identity
PP = P. We define a complimentary operator Q by the following relation:

Q+P=1 (4.2)

By acting on the identity (4.2) with the operator P from the left and from
the right we prove orthogonality of the operators P and Q;

PQ = QP = 0. (4.3)

By acting on the identity (4.2) with the operator Q and using the orthogo-

nality condition (4.3) we find that Q is a projection operator; QQ = Q.

We consider the evolution of the probability distribution P(T", ¢) governed by
the transition operator 'W;

P([,t+1) = /dF'W(F’ — D)P(T, ¢), (4.4)
where the integral sign implies summation over discrete variables. In what
follows we shall often drop the argument ['. We separate the above equation
into a system of two equations:

Py(t + 1) = ?W(P:p(t) + PQ(t)),

Po(t + 1) = QW(Ps(t) + Pq(t)).
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Using relation (4.3) we transform the above system into

Py(t + 1) = PWP5p(t) + P(W — 1)Pq(2), (4.5)
Po(t+1) = Q(W — 1)Pp(t) + QWPa(t). (4.6)
A recursive application of equation (4.6) yields the following equation:
¢
Po(t) = [QW]'Pa(0) + Y _[Q@W] 7' Q(W - 1)Py(t - 7)., (4.7)
=1

which, after substitution into equation (4.3), yields

Py(t + 1) = PWP5(t) + P(W — 1) D [QW] QW - 1)Ps(t — 7). (4.8)

=1
We eliminated the first term of right-hand side of the relation (4.7) by the
use of a specially prepared ensemble of initial conditions, where deviations in
only the dynamical variables occur. For slowly decaying dynamical variables.

which are our main concern, Pp(t — 7) can be replaced by Py(t).

For convenience of the subsequent discussion we introduce an operator 8(I', t)
which relates to the state [' at the initial time the set of states after ¢ steps
of evolution, weighted with the probability of transition to the correspond-
ing state. Using this notation we may express equilibrium averages in the

following form:
/dra(F)W(F' = D)B(IY) Po(T") = (a(8(T, 1))6(T)) ,

where summation over states is implied.
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4.1.2 k-dependence of the operator P (W - i)

Our main interest lies in spatial dynamical variables for small k.

We consider a particular case of projection operators defined by locally con-

served quantities. In k-space such quantities are expressed as

ai (T(t)) = ) ta(t)e™ ™,

n

and, for the dynamics given by a composition of streaming and collision in

that order, the following identity holds:

D en(t)e T =Y "y (¢ - et (4.9)

n n

Equation (4.9) follows from the conservation of the quantities ¢ under colli-

sions at time ¢t + 1.

Using identity (4.9) and expanding a in powers of k, we write the P-projection

of [W — i] b. where b is an arbitrary function as:

(P[W-1]p)(T) =
= al(T) Py(T) (aa’) " /dF’[a(S(I", 1)) - a(T")]b(I") =

= a'(T) Py(T) (aaf)—l/df’ [eik‘r"‘(‘)b(I") N

x Y (ik - [r}(1) = r4(0)] e (0) + o(k)) |. (4.10)

Along the same lines we may prove that [W - i]fP = O(k).



4. Green-Kubo formulae and computation of transport coefficients 45

With the use of the above identity (4.10) we recast the expression for the

memory kernel as
X(r) = P(W-1)[aw]" (W - I)?. (4.11)
Our aim is to prove
[QW]"Q = QW"Q + o(k). (4.12)

For n = 0 the relation (4.12) holds. Let us assume that it holds for n = NV

9 = [ow]¥awa.

and prove the relation for n = :V + 1. We write [QW] N+t

Then
[aw] "2 = [aW]TowQa = QWY aWQ + o(k) =
=WV [Q+ (W - 1) + o(k)]Q + o(k) = QWV*'Q +o(k), (4.13)
where we re-expressed QW in the equivalent form
W=0+(W-1)-PW-1) =0+ (W-1) +o(k). (4.14)
We proved the assertion of the recursion and, thus, the formula (4.12).

From the relation (4.10), its dual expression, and the formula (4.12) we ex-

press the memory kernel equation as:
X(r) = P(W-1)QwrQ(w -1)?
4.1.3 Symmetry of time-correlation function

Due to their nature, stochastic models do not possess time reversal sym-

metry. However, for time-correlation functions involving averages over the
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equilibrium distribution we may obtain some partial results. We express the

time-correlation of dynamical variables a; and a; in integral form:
(a(S(T, 1)), (T)) = / dTdC' P(L, t|T, 0)ase (D) (I').  (4.15)

For each state [' we define a pre-collision state [, where we use the same
ordering of collision and streaming operators as in Sec. 4.1.2. If ay is a set
of locally conserved dynamical variables the value of the correlation function
is invariant with respect to change of [' to [. An analysis of the model
shows that transition probabilities of [' — " and ' — [ are equal after we
reverse the velocity direction. During evolution the equilibrium distribution
also remains constant so that by performing a change of variables in (4.13)

we arrive at the following identity:

(as(8(T. ), (D)) = (@ 5 (8(T. ) acie(T))
or in the matrix form:

(a(8(C.0)al(T))' = (a(8(T,H)a’, (1)) (4.16)

Equation (4.16) constitutes the Onsager relations for discrete models. The
above derivation relied on the invariance of the dynamical variables with
respect to the collision transformation. In general one may obtain similar

relations for dynamical variables of the form 1 (b(I") + b(I)).
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4.1.4 Evolution of the locally conserved quantities

The average of a set of conserved quantities over the projected probability
distribution (4.8) yields evolution equation for these quantities. In a vector

forms they read:
a(t +1) — a(t) = ((a(S(T, 1)) - a(T))al(T)) (aa’) ™ a(t) +
+Z(a —DowQ(w - 1)al) (aah) ' a(t - 7). (4.17)

We rewrite the first term on the right-hand side of equation (4.17) as a sum

of symmetric and antisvmmetric operators as:

((a(8(T. 1)) - a(T))al(I)) = %(a(S(I‘,l))af( ) —a(D)al(8(T', 1)) —

- é ((a(3(T, 1)) — a(D)) (a'(8(T. 1)) —a'(T))). (4.18)

where we used time-translation invariance of the equilibrium probability dis-

tribution

(a(S(r.1))a'(8(r, 1)) = (a(T)al(T)).

For the memory kernel acting on <aa“>_l a we write
(a(W - 1)awt-to(w — T)al) = <f(t)f‘(0)> , (4.19)
where

£(t) = a(S(T, ¢ + 1)) — (a(8(I", 1))a' (")) (aal) ™" a(S(T, t)). (4.20)

£(0) = al(T) — af(S(T, 1)) (aa') ™" (a(S(I", 1))a’(I")).
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We shall show that the memory kernel can be represented in form of a “force-
force” time-correlation function. The sum ft(0) + £(0) is of order k? as can

be seen from the following relation:

al(8(T', 1)) — af(T) (aa’) ™ (a(Mal(s(I", 1)) +
+al() —al(§(T, 1)) (aaf)— (a(8(I", 1))al(I")) =

= L(al(D) - al(5(T, 1)) {a(S(T. D)a!(T) — a(T)a!(8(T, 1)) +

+ = (af(l) +a'(8(T, 1))) ([a(I") — a(S(I",1))] [al (") — aT(8(I", 1))]),

l\DIy—'

where we used time-translation invariance of equilibrium averages in the same
way as in equation (4.18). If a are locally conserved variables then both
terms on the right-hand side of the above formula are of order k and, thus,

the difference is of order k2.

We introduce notation b(I') = a(l') — a(8([', 1)). We write the second term

of the equation (4.18) as:

%(b( b () == (b (I‘)Qbf(l“))+%(b([‘)?b*(l‘)). (4.21)

tvlt—‘

First, we notice that Qbf([') = £7(0) and, thus, the first term has the same
form as the summands of the memory kernel: (3ff"). The second term in

the above equation we expressed as:

(b(T)PbI(T)) = — ((a(8(T, 1)) — a(I))al(T)) x
x (aal) ™" (a(T) (al(8(T, 1)) — al(I)))
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Furthermore, we show that:

9

E (a(8(T. 1))al(T) — a(T)al(S(T. 1))} (aa) ™' | =
= — (b(T)Pb/(T)) (aal) ™" +o(k?).

Indeed,

; (a(S(T.1))al () — a(T)al(S(T, 1)) — ((a(8(T. 1)) - at(T))a(T)) =

A

| —

= = ([a(I") - a(S(I". 1))] [a!(I') - af(8(T". 1))]) = ofk),
with the similar expression for the second factor.

Now we consider a general question about discrete time dynamics. Suppose

that time evolution of the system is given by the following Euler scheme:
a(t+ 1) =a(t) + [A — Bla(t).

where A and B are of the first and second orders in k. In this case we write

the operator identity:

d .
exp(g) =1+ A-3B,
or, by expanding the logarithm into a Taylor series up to second order in k:

2:44—_3,42—‘3.

5 > (4.22)

Combining equations (4.22), (4.21), (4.18) and (4.19) we arrive at the follow-

ing expression for the time evolution of ensemble averages of locally conserved
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dyvnamical variables a:

a = é (a(8(T,1))a’(T) — a(l)a’(S(T, 1) )(aa’)

- 1 (0)£1(0)) Z t)£1(0))| (aaf) 'a. (4.23)

8

We note that the sum of the force-force time-correlation function is repre-

sented by a trapezoid approximation of the continuous time integral.

In some cases equation (4.23) admits a further reduction. We may separate
a random component due to stochastic nature of the streaming operator
from the force-force auto-correlation function. Indeed, the correlations of

streaming operator enter equation (4.23) only through term (£(0)£7(0)).

We consider the evolution of a set of conserved dynamical variables f, =
ge’®!, where g depends only on the internal state of the particles. In this

case the force-force auto-correlator at time zero can be split in two parts:
<fkfl> = —Dkk (gg') + (gv(gv)") (4.24)

where D is the same as in equation (2.12).

4.2 Hydrodynamic equations in Green-Kubo formalism

In this section we present a derivation of the hydrodynamic equations. We
apply equation (4.23) to a complete set of independent conserved quantities

in the system. It is convenient to work with an orthogonal set of dynamical
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variables. From the system of equations (2.13a-c) we construct the following

set:

ag = {Pk:p'krsk}y

where we introduce the notation sy = ex — 3T pr/2 and we consider particles

of unit mass so that 7* = T..

The cross-correlation matrix is indeed diagonal and has the following form:

(1000 o)
0T 00 O
<akai>=:V oo0oTo0 0| (4.25)
00 0T 0
\0 0 0 0 T

where ¢, = 3/2 in the case of three dimensions and .V is the number of

particles.
The dissipation free evolution is defined by the following equation:

3 (ax(8(T, 1))al(T) - aw(T)ak(8(r, 1)) =

[ o ik,T ik, T kT 0 )
ik, T 0 0 0 ik, T?
N ik, T O 0 0 ik, |- (4.26)

ik.T 0 0 0 ik.T?

\ 0 ikT? ikT? kT? 0 )
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From equation (4.20) we find the expressions for the forces:
fE(t) =ik - 2 (t+ 1) = &(t) — ¢] + o(k), (4.27)

fE) = Z(c,-m e (&t +1) - &) - Skll¢.(OIP ) folk),  (4.28)

i

felty = - (et +1) — £0) ~ GO} G GO - 5T)
i
+ > ik (o) nc (DI = 5T) +o(k). (4.29)
t

and, by taking into account equation (4.24) we observe that, apart from
the diffusive terms, hydrodynamical equations for the lattice gas model have
exactly the same form as equations for the ideal non-interacting gas with
the integration in the expressions for transport coefficients replaced by the
trapezoid approximation. One verifies that the cross-correlation of the terms
proportional to [Ei(t +1) - &;(t) - Ci] and corresponding to different times
vanishes and, thus, the matrix of force auto-correlation functions has the
diagonal form. It is convenient to rewrite the momentum force as a sum of
two terms; the term parallel to k and the perpendicular term which defines
the shear viscosity coeflicient.

st = 3 (cHe ¢ el - i iP) ) +oto,

1

where C'l! and CiL are the parallel and perpendicular components of the ve-
locity, respectively and in the above expression we average over the random

jumps.
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Algebraic manipulations give the following expression for the linearized hy-
drodynamic equations:
Ocpre = —D||k|px + ik - gy, (4.30)

Qe = ~DIK[Ppi + ik [Tow+ ] +ifkck SIS (e31)

Gusic = = D|k|[*sic + Tik - py, + Al =55 (4.32)

The contribution to the bulk viscosity coefficient vanishes because of sym-
metry reasons; 3 <C1~|(t)2> = (||¢;()[1?). The transport coefficients are given

by the following relations:

i = / Zcri(t)cyi(t)cz,-(Och,-(O) (4.33)

i = [ Z(—nc @ - 37 ) e - (516,00 - 3T)¢,0 @y

where the integral sign in the above equation denotes the trapezoid approx-
imation to the integral. The above equations for transport coefficients are

identical with the ideal gas expressions for the same quantities.

4.3 Computation of the transport coefficients

As an application of the above formalism we derive expressions for transport
coefficients in terms of time-correlation functions. With the use of simple
approximations to the relaxation dynamics we obtain analytical expressions

for such coefficients.
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4.3.1 Self-diffusion coefficient

We illustrate application of the expression (4.23) and obtain an expression
for the value of the self-diffusion coefficient. The dynamical variable corre-

sponding to the diffusive relaxation process is
a(r) =4(r - 1),

where 1 is the position of the marked particle and a is a one-component

vector. In k-space the dynamical variable is expressed as

ay = e, (4.35)

The expression for the force (4.20) takes the form:
fk(O) = ekl(1) _ (eik-[l(l]—l(O)]> ek l0) — k. [1(1) _ 1(0)] (436)

and the expression for the reversible flux vanishes by the Onsager relation

(4.16):

<ak(8(r, 1))al(T') — ax(T)al (S(T, 1))) = (HN-NO] _ il = g

Using relation (4.36) and the expression (4.23) we arrive at the following

equation:

B3 = 3 {(k -[1(1) — O (- (1) = 10)])) &% -

= (k- v(@)(k ~v(0))) Ak, (4.37)
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where we employed the fact that transitions 1(0) — 1(1) and 1(¢) — 1(¢ + 1)
are uncorrelated. We also omitted terms of order k® and higher in the above

expression.

When the stationary probability distribution is spherically symmetric equa-
tion (4.37) is invariant with respect to rotations of space R!. Thus setting k
to a fixed value, say e., we read off the value of the diffusion coefficient from

the equation (4.37):

D, = 5 (mafu)) + 5 (v2(0)0(0)) + > (a0u0). (438)

We compare this expression with the value obtained from the definition of

the self-diffusion coefficient as the slope of mean-square displacement:

i) = 1o

D, = tl-lglo 2dt

where d is the space dimension. Using the relation

1(£) = 1(0) = D _¢U(r) = U(r = 1)],

T=1

and invariance of the correlation function with respect to time translation

we obtain the following relation:

oQ

D, = lim %Zt(v(t)v(O)) +

t~»00
t=1

+§ .21.<([1(1) = 10)]) - [1(1) = 1)) + D _ (v(t)v(0))] ,

which, for spherically symmetric equilibrium distributions, has the same

value as (4.37) if the velocity auto-correlation decays fast enough.
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4.3.2 Viscosity coefficient

Following standard procedure!? we define the viscosity coefficient from the

linearized equation of motion for the transverse component of the current:

d

Tvr2:
at.lt = pv Je- (4.39)

The transverse component of current satisfies the condition of a non-divergent
flow: V -j, =0.

From comparison of long-time, long-scale decay of the “stress-stress” time
correlation function and the microscopic expression for the same quantity we

derive the following expression for the viscosity coefficient:

n= Tlggc v <{Z yi(T)vi(7) = 5(0)v “’(0)] > - (4.40)

The argument in the average in equation (4.40) mayv be rewritten as

yi(T)vi (1) — 4i(0)7(0) =
(it + 1) = w7 (0) + [67 (¢ + 1) = o (O)]wilt +1)). (4.41)

T

Ll
Il
o

We attach the meaning of pre- and post-collision velocities of particle i to the
variables v¥(¢) and vf(¢t + 1). Because of local conservation of momentum,

the sum of these terms over all particles vanishes.

Let us introduce the notation:

w(t) = <Z<yl(t + 1) = () (1) - yj(O))vf(t)vf(O)> -

ij
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Jumps at different times and of different particles are uncorrelated so that

we express the above formula in terms of velocity correlations and a diffusion

term:

vt = <Z vf(t)v?(t)v;m)vf-(m> + N8(e) (ma(07(0))07(0)%)) .

Under the assumption that the above auto-correlation function decays in a

geometrical progression with rate g, the viscosity is found to be:

- m? 1 -
1= lim 7oL (7u0) + 320 - 9u(0) -
- t=1

_mp[1 ’ T? 1+g¢ o
== [5 (Kka(v (0)))T+;—n§m_—q) . (4.42)

[f we further assume that only particles at different nodes are uncorrelated

we rewrite ©(1) as sum over sites with at least one particle collision s € S

w(1) = Y (Vay(5)Vy (C(s))) .

n(s)#0
Number of the n-particle collisions in a large system is approximately given

by the scaled Poisson distribution:
T STY
p(n) = LY e,

with density p defined from the relation N = ||[J|p where N is number of

particles.

By averaging over collisions with different numbers of particles we arrive at
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the expression:

N e T
p()= =3 50 /ddeHo(w,-—v—o(v,.-V)) x
p n=1 n: i=1
0€ER
X Pm(V) Z Wi Wyj Z Ugty,  (4.43)
j=1 =1

where p was accounted for by the normalization factor in Maxwellian distri-

bution. We note that computation of ¥(0) from the above formula yields:

Ne™* T?
¥(0) = -;-e—n—p n{v.vev,vy) = N(v,v,v,v,) = \/;.

Next we determine the value of ¢(1) for the two collision models with different
sets R of rotations. When set of rotations coincides with O(d), set of all

rotations. we perform integration over W first with subsequent averaging

over ‘R:
I—X/dWH‘S(W' —o(vi = V) ) wgjuw,; =
o€R s=t

-y S Vs + 0fvi = V)|, ] [V + ofvi = V)] = nVaVy. (4.44)

0€ER 7=1

The average momentum distribution has a Maxwellian form with the power
2

5T vielding the result for ¥(1):

of exponential —

N X ple? }
== {Vavavyvy). (4.45)
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Carrying out the sum in equation (4.45) we arrive at the expression for the
viscosity coefficient:

1—e?

p
7= 0|5 (Rt (O))) +

q:

z l+p—e?*
m2(e~? —~ (1 - p))

We see that in this model, for moderate values of temperature and density,

the viscosity is mainly defined by the second term.

Let us now consider the collision rule where R is a set of rotations by 7 and
—Z. As one can easily see under action from R the product v;v, changes

sign. For this collision model formula (4.44) vields:

[= iz[vm(vi—wu [V, +o(vi = V)|,] =

oE€R J=1
n

= I Z[—vi,_v‘-y . ov,-[yoV]I - ovi[IoVIy] =

0ER ij=1

= Z [anlv.'/ = Ui.l‘viy] . (448)
7=1

Further integration with respect to V vields the values for viscosity coefficient
and damping factor ¢:

-p

p
T l—e?

n=p {é (ke (O)) + 75— (4.49)

g=-1+2

For this collision model the system displays an interesting behaviour. It re-

veals a strong negative autocorrelation in the system which possesses only
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local interactions. This feature enables us to perform simulations in the phys-
ically interesting regime of low kinematic viscosity. In later sections we shall
numerically investigate the autocorrelation functions discussed above and

comment on the agreement between the theoretical and simulated values.



5. NUMERICAL STUDY OF THE LATTICE GAS MODEL

In this section we discuss numerical experiments on the lattice gas model.
The results are separated in two groups. The results of the first group serve to
validate the theoretical constructs of the previous sections. In this group we
also include computations of the transport coefficients using the formulae of
Sec. 4. Applications of the lattice gas model to simulations of fluid dvnamics

constitute the second category of numerical experiments.

5.1 Equilibrium properties

The theoretical results of the previous section are based on an assumption
concerning the nature of the local equilibrium distribution. In Sec. 2.6 we
gave a proof that, in the Boltzmann approximation, the probability distri-
bution converges to a Maxwell distribution. In order to ensure that a local
probability distribution has the Maxwell form we need to establish some facts
on the rate of convergence to the stationary distribution. Theoretical results
with such content are very few and usually are difficult to obtain for a general

model.?0

61
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Numerical and theoretical energy probability distribution
densities. The solid line shows the Maxwell energy profile.

The dotted line is obtained from numerical simulations.

We perform a simulations of the lattice gas model with the following param-

eters:

on a cubic lattice with dimensions 40 x 25 x 25 with periodic boundary condi-
tions yielding a total of 1.5 x 10° particles. Initially particles are distributed
uniformly in the domain. We assign to the particles initial velocities from

the set {i\/gez,:tﬁey,:t\/iez}. Thus, the initial energy distribution is

Fig. 5.1
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A test of equation of state of the lattice gas model.

given by a Dirac function at ¢ = 3/2 or Fy(¢) = §(e — 3/2). We observed
that after several steps the energy distribution is thoroughly randomized.
The number of steps depends on the system density and is independent of
temperature. [n general the rate of relaxation to the Maxwell distribution is
high and the assumption on the local Gaussian character of the probability
distribution holds. In Fig. 5.1 we show the energy probability distribution
after 100 automation steps. The solid line represents the Maxwellian energy
distribution:

2
v

The dotted line represents the results of numerical simulations. The energy

Pn(e) = Vee ST,

Fig. 5.2
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Velocity-velocity and stress-stress normalized time correlation
functions for the collision model with an orthogonal scattering

of the colliding particles.

segment is divided into 400 bins and probability distribution density for the
energy corresponding to the median point of a bin is assigned according to
the number of particles in the bin. We found a good agreement between the
theoretical prediction and the numerical results. The Maxwell distribution

is spherically symmetric and, thus, leads to a symmetric pressure tensor.

The lattice gas model represents a non interacting monatomic lattice gas and

its caloric equation of state is simply:

U=cC,T.

Fig. 5.3



5. Numerical study of the lattice gas model 65

Ia? a 00'
} o--o0,
'I
1
0.5\
. &
< "y
s> oo 3 0 100 15.0 0.0
& ¢ s, "0 1 0.
i
!
-05 -
i
-1o}

Velocity-velocity and stress-stress normalized time correlation
functions for the collision model with a random scattering of

the colliding particles.
The second equation of state for the ideal gas is:
p=pI".

where p is the mass density of a system. We ran a series of simulations on a
two dimensional square lattice with dimensions 100 x 100 for different values
of temperature and density. We imposed periodic boundary conditions in
one direction and no-slip boundary conditions in the other direction. The
no-slip boundary conditions were imposed by inverting the velocity a particle

colliding with a wall. The pressure was computed as the total momentum

Fig. 5.4
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transferred to a wall during an automation step divided by the wall length. In
Fig. 5.2 we present the results of simulations where we observe, as expected
for a non-interacting gas, that the ratio p/{pT*) is independent of particle
density and is equal to unity for a wide range of temperatures. The deviation
from unity for large values of temperatures. when the velocity is compara-
ble with the system linear dimensions, has its origin in the non-Maxwellian
properties of the boundary collision rule. The choice of a proper boundary
collision kernel is discussed in literature.?! For moderate values of the tem-
perature this collision rule the system is described by the equation of state

of an ideal gas.

For the systems where particles are correlated the Boltzmann approximation
breaks down and the results of Sec. 3.1 no longer hold. In this case the re-
sults provided by the Green-Kubo formulae are indispensable. In principle,
it is possible to obtain values of the transport coefficients by measuring the
response of a system to an external field.?? however, this approach requires a
complicated system setup. Application of Green-Kubo formulae vields values
of transport coefficients through the computations of time correlation func-
tions. Green-Kubo formulae have been applied to lattice gas models.?* This
approach another advantage is that it provides insight into the dynamics of
such time correlation functions and information on the possible contributions

to the values of transport coeflicients.

In Fig. 5.3 and Fig. 5.4 we present the results of numerical experiments on the
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collision models described in Sec. 2.2.3. From the form of equation (4.42),
we observe that if the time correlation contribution vanishes the viscosity
coeflicient is given by the first term of the sum. To reduce the value of the
viscosity coefficient we introduced a model with negative stress-stress cor-
relation, which yields a significantly lower value of the viscosity coefficient.
In Fig. 5.3 we represent velocity-velocity and stress-stress normalized time
correlation functions by dashed and dotted lines, respectively. The simula-
tions were carried out on a square lattice with dimensions 100 x 100 and

parameters:

We observe that correlations decay in geometrical progression and this is con-
sistent with the Boltzmann approximation. The experimental decay factor,
q = 0.6, is the same as the theoretical value given by equation (4.49), ¢ = 0.6.
The corresponding values of the kinematic viscosity are v., = 0.1258 and
p = 0.1239 for the experimental and theoretical values of the non-diffusive
contribution to the viscosity, respectively. For higher values of density we
observe a deviation of experimental values of the damping factor from the
theoretical predictions. We attribute this deviation to the development of
correlations in the system and a breakdown of the Boltzmann approxima-

tion.

In Fig. 5.4 we present the results for the collision model with random scat-
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tering. It yields significantly higher values for the viscosity coefficient. For
the same parameter values as in Fig. 5.3 we obtained the value of 0.489 for
the kinematic viscosity coefficient. The rates of decay of the velocity auto-
correlation function are the same for the two models and yeild the same value

of the self-diffusion coeflicient.

5.2 Simulations of fluid dynamics

In this section we present the results of simulations of the lattice gas model
for hydrodynamical flows. Our goal was to determine if the method exibits
the turbulent flow characteristics seen in fluid turbulence experiments. The
setup of the simulation was chosen for comparison with photographs of a real

water flow past cylinder®! with similar values of the Reynolds number.

In Fig. 3.5 we present the results of simulations of a two dimensional von
Karman street' using the lattice gas model. The simulations were carried

out on a 1200 x 400 square lattice (5.28 x 10° particles). Parameters of the

! Von Karman street is a regime displayed by a flow past cylinder for the range of
Reynolds numbers from 70 to 2,500. It is characterised by a system of perodically

oscillating wakes past the cylinder.
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simulations were:

p=11.0,
T" =15
u; = 0.5,

and for these values of the parameters the system satisfies the condition of

validity of Navier-Stokes equation:
2
u
< <L
c
The value of kinematic shear viscosity for this parameter values in the Boltz-

mann approximation was found from formula (4.49) and is equal to v = 0.158.

We impose periodic boundary conditions on the system. We start from a
system configuration with uniform particle distribution and zero total mo-
mentum. The particles are driven on the system boundary as follows. We
assign to all particles with coordinate z = 0 velocities from the Maxwell
distribution with temperature T* = 1.5 and u, = 0.5. No-slip boundary
condition on the object were implemented by inverting velocity of a particle

that collided with the object.

The diameter of the circle on the picture is 78 and the value of the Reynolds

number is:

L
Re = % = 240,

where, conventionally, L is chosen as the circle diameter.
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To reduce the statistical noise we averaged the particle distribution over 100
automation steps and a 2 x 2 cell. For the density used in the simulations
we estimate the mean square deviation of the average velocity from the ex-

pression for Gaussian random variables: (§v?) = 3.4 x 107

In Fig. 5.5 we present the result of the simulations of von Karman streets. In
the figure, a part of the system with dimensions 600 x 200 is shown and the
snapshots correspond to a frames taken each 100 automation steps. A flow
on short distances from the object establishes after a transient time, how-
ever, a flow tail grows indefinitely until it occupies the entire system length.
In experiments with fluid flow for these values of the Reynolds number the
existence of von Karman streets is documented?! (see Figure 4.12.6 of Batch-
elor G., An introduction to fluid dynamics). The density of the fluid is nearly
uniform and velocity randomization at the boundary eliminates the feedback

due to the periodic boundary conditions in the system.

To investigate a local structure of flow eddies close to the object we performed
simulations for a system with a higher Reynolds number. In Fig. 5.6 we
present simulations that display the creation of a boundary layer on the
surface of the object. The system setup is similar to the one described above

with the following parameter values:
p = 5.0,
T =1.5,

u, = 0.3.
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The system dimensions are 800 x 800 and the cylinder diameter L = 278. The
effective density of the system is higher because the disk occupies approxi-
mately 3% of the domain area. The theoretical kinematic shear viscosity and
the corresponding Reynolds number are 0.27 and Re = 310. respectively. In
this case a small system length prevents the development of the von Karman
street and instead a pair of stable vortices forms. However, for this value of
the Reynolds number this pair is not stable and a turbulent flow between
the cylinder wall and the vortex ensues. In Fig. 5.6 snapshots of the initial
stages of the formation of the vortices are shown. The vectors represent the
flow field and are colour-coded according to the magnitude of the vertical
component of the velocity field. These shapshots are to be compared with
the very similar pictures presented in Batchelor G., An introduction to fluid

dynamics, Fig. 5.11.3.

Since this thesis is not dedicated to the study of the hyvdrodynamical phe-
nomena but rather to the methods to study such phenomena, further studies
of specific hydrodynamic flow problems are not addressed here. However, we
note that the fine structure of the small scale eddies as well as large scale
structures, existing in the physical systems, are reproduced in the lattice gas
model simulations. Thus, we believe that the model can be used to study the
behaviour of fluid flow under wide range of conditions. In general, we found
the method to be stable with respect to changes of different conditions, the

system geometry, temperature and flow velocity.
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6. CONCLUSION

The results in this thesis are intended to form a starting point for research
on a new class of discrete models for hydrodynamic computations. At the

current stage of development spectral methods for solving the Navier-Stokes

equation are more efficient than the lattice gas and lattice Boltzmann schemes.

The present lattice gas model provides a simple alternative scheme that ac-
counts for the Maxwellian distribution of velocities and is easily extended to
treat a wide class of physical and chemical problems. Further studies will
determine if the method is competitive with the spectral or other standard

simulation methods.

At this point we would like to mention some unsolved problems. An inter-
esting problem is phase separation in multi-component lattice gases. In the
traditional lattice gas models phase separation is achieved through the in-
troduction of auxiliary species of particles or through local collision schemes
without the semi-detailed balance condition.® An implementation of the force
through an exchange particle mechanism, which satisfies detailed balance, is
a possible approach to this problem and is easily implemented within the

context of the present model.
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The particle-wall collision scheme requires further investigation. The collision
rule used in the present simulations does not adequately describe collisions
at high temperatures and, more important, it supports only adiabatically

insulated systems.

We believe that the model can also be an efficient tool for the molecular
dynamics simulations of reactive fluids or problems where fluctuations are
important. We envision applications of such schemes for the modelling of
shock waves or combustion fronts. This model can be easily modified to
incorporate chemical reactions for which microscopic collision schemes are
known.?®> These schemes take into account the excess energy of the reactive
binary collisions and satisfy the detailed balance condition. The rates of the
reactions obtained in these schemes satisfv the Arrhenius law and have a

clear chemical meaning.

We demonstrated the connection between the present model and the evolu-
tion of an ideal gas and, on this basis, we believe that the range of applicabil-
ity of this lattice model is wider than simply the macroscopic Navier-Stokes
equations obtained from it on long distance and time scales. In regimes where
the system behaviour is unknown or unpredictable the inherent stability of
the lattice gas method can be an asset and, we hope, this feature will make

this research useful to workers in the field.
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