Faster Tomita Parsing
by

John Daniel Aycock
B.5c., University of Calgary. 1993

A Thesis Submitted in Partial Fulfillment of the
Bequirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

(€} John Dariel Aycock. 1998

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by
photocopy or other means, without the permission of the author.

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationaie
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre réference

Our file Notre reférance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-34479-7

Supervisor: Dr. R. N. Horspool i

Abstract

Tomita’s parsing method, or generalized LR parsing, was designed to parse am-
biguous grammars efficiently. Tomita uses specific linear-time LR parsing techniques
as long as possible. falling back on more expensive general techniques when necessary.

Much research has addressed speeding up LR parsers: in this thesis. we argue that
this previous work is not transferable to Tomita parsers. To speed up LR parsers.
we reduce LR parsing overhead two ways: grammar transformations unroll recursion.
and larger finite automata in the parser trade space for time.

We have devised a variant of Tomita's algorithm which incorporates our low-
overhead LR parsers. Our timings show that our Tomita variant gives an order
of magnitude improvement for the worst case ambiguous grammar on most inputs:
several orders of magnitude improvement are seen on larger grammars.

Examiners:

@NJ Hzﬁfa’?_\{“(

Dr. R. N. Horspool. Supervisor (Department of Computer Science)
DD —
Dr. Mé Levy, Eepartmental Member (Department of Computer Science)

Dr. H. A. Miiller, Departmental Member (Department of Computer Science)

Dr. N. J. Dimopoulos, External Examiner
(Department of Electrical and Computer Engineering)

Table of Contents

Abstract

Table of Contents
List of Tables
List of Figures
Acknowledgments
1 Introduction

2 Languages, Grammars, and Parsing

2.1 Languages L
2.2 Grammars -« « v o e vt e e e e e e e e e e e e e e e e
23 Parsing. oL
2.3.1 Parsing Regular Grammars
2.3.2 Parsing Context-Free Grammars

3 Review of LR Parsing

4 Reducing LR Parsing Overhead
4.1 Previous Work
1.2 Parsing with Finite Automata
4.3 Recursion in Grammars 0L

in

i

il

+4.3.1 Left Recursionand PFAs
4.3.2 Right Recursion
4.3.3 Other Recursion oL,
+.4 Grammar Expansiono 0oL o oL
1.5 Constructing the PFA oo oo oL
4.5.1 Background oo
4.5.2 The Derived Grammar
1.5.3 Properties of the Derived Grammar

+.5.4 PFA Construction Algorithm

+.

+.7 Incorporating a Stack

4.8 Modified LR Parsing Algorithm . .

Application to Tomita’s Algorithm

5.1 Background

5.2

5.3 PPA-Based Tomita Parsing

54 Empirical Results
541 Timing Particulars
5.4.2 Discussion of the Results . .

Implementation

6.1 PPA Generation.

6.2 PPA-Driven Recognition

Conclusions and Future Work

7.l Future Work
7.1.1 Adding Lookahead
7.1.2 Recognition vs. Parsing . .

7.1.3 LEven Faster Tomita Parsing
7.2 Conclusions

References

6 Choosing Limit Points Automatically
T

...................

Characterization of PPA State Conflicts

...................

...................

...................

...................

...................

...................

List of Tables

3.1 Left contexts and viable prefixes.

4.1 Limit points derived heuristically.

4.2 Number of PPA states and stack operations

5.1 PPA state conflicts.

...............

]
1]

List of Figures

I~
—

o
H
~

Asimple grammar.o oL

Regular grammar and associated FA.

Asimple CFG. 0o
A LR parsertrace.

Table-driven LR parsing algorithm.

FA accepting a*6*, 0 < k<3
A left-recursive grammar.
PFA for a left-recursive grammar.
An augmented left-recursive grammar.
A right-recursive grammar.
A PFA traceof aaad.

A grammar for simple arithmetic expressions.

.............

.............

vi

.

10

L

14

17

21

4.8

1.9

4.10

+4.11

4.12

4.13

+.15

416

417

1]
h

.
(S

N
o))

ot
h
=1

Grammar expansion. 30
Aderived grammar. oL Lo 33
PFA afterStep L.o 37
PFAafter Step 2. 33
PFA after Step 3. 39
Derived grammmar’s equivalent FA. 00000000 40
Anexample PPA. oL L 45
An example PPA (continued). 106
PPA trace of acaaab. Lo L. 7
Table-driven LR parsing algorithm usinga PPA. 19
Stacks sharing a common prefix. o000 0L 53
Stacks merging. g
A graph-structured stack. oL oL Y|
A sample parser configuration.o Lo SN
PPA-based Tomita parsing algorithm. 54
PPA-based Tomita parsing algorithm (continued). 6U
Timings for Grammar L. L0000 G2
Timings for Grammar 2. L Lo, 63

Timings for Grammar 3. L. (18}

vill

5.10 Timings for Grammar4. 65
5.11 Timings for Grammar 3. 66
3.12 Preallocation timings for Grammar 3. 69
3.13 Custom allocation timings for Grammar 3. 70
7.1 Anon-LR(0) grammar. L. 76
7.2 PPA for a non-LR(0) grammar. 76

1X

Acknowledgments

First. many thanks to Dr. Horspool. who suggested this topic to begin with. He
supplied much useful feedback. support. and constructive criticism.

[would also like to thank Dr. Rokne from the Department of Computer Science
at the University of Calgary. When [was stuck for computing horsepower. he let me
have access to their enormous Silicon Graphics research machine.

Mike Zastre listened to my innumerable tales of woe as we made the daily pilgrim-
age to Tim Horton’s. Shannon Jaeger and Jim Uhl did an excellent job proufreading.
Now if only [weren’t too stubborn to listen to them!

This work could not have been completed without the constant support of my
family. Melissa. who wasn't old enough to understand why Daddy went away to
“work”™ so much: Shannon. who did understand and let me go anyvway: thank vou

both.

Chapter 1

Introduction

She saw the boy with the telescope.

Does the bov have the telescope. or not? The answer lies in the structure of the
sentence. and whether “with the telescope™ modifies “saw”™ or ~boy.” The process of
determining the structure of an input — like the above sentence — is called parsing,.
A computer program which parses input is called a parser.

Parsing is a fundamental topic in computer science because it has so many appli-
cation areas. Programming language compilers. natural languages. database query
languages. and document markup languages like HTML all require parsers. to name
but a few examples.

To guide a parser in determining an input’s structure. it has a set of rules which

describe all possible valid inputs. This set of rules is referred to as a grammar.
Unfortunately, grammars are not always able to describe a unique. unambiguous way
to interpret every input. As with the English gramimar that imposes a structure on
the above sentence, some grammars are ambiguous.

Like humans, parsers have an easier time understanding input which has only a
single interpretation. More importantly. parsers which deal strictly with unambiguous
grammars can operate much faster than parsers for ambiguous grammars. This is
crucial when one considers that the speed of input recognition is highlyv visible to
users. As a result. most artificial languages (such as those for programming languages)
have unambiguous grammars by design. and much research has addressed speeding
up parsers for unambiguous grammars. However. applications like natural language
understanding are rarely able to choose a convenient grammar. so there is still a need
for fast parsers for ambiguous grammars.

In his Ph.D. thesis [38]. Tomita presented a method for parsing which combined
the best of both worlds. A Tomita parser employs techniques used for unambiguous
grammars as long as possible, then falls back on more expensive techniques to handle
ambiguity when necessary. Besides natural languages. Tomita parsers are well suited
to parse any grammar which contains areas of ambiguity.

Our research has focused on speeding up Tomita parsers. Returning to first princi-

ples. we present a different way to construct these parsers. and show that our method
results in faster Tomita parsers.

This thesis is arranged in the following manner. We introduce grammars. lan-
guages. and parsing formally in Chapter 2: Chapter 3 is a review of LR parsers. the
specific class of parsers that we use in our work. Chapter - describes our method for
building faster LR parsers. In Chapter 5. we apply that method to a Tomita parser. a
parsing technique which can efficiently handle ambiguity. Chapter 6 discusses imple-
mentation details. Finally. Chapter 7 preseunts avenues for future work and concludes

the thesis.

Chapter 2

Languages, Grammars, and

Parsing

Since parsing has a large number of diverse applications. it is not surprising that there
is a large body of theoretical work to support it. In this chapter. we present some of

this material as it relates to our work.

2.1 Languages

Formally. a language is a set of strings over an alphabet [29]. An alphabet is a finite set

of symbols. and a string is any finite sequence of alphabet symbols: a language itself

may be either finite or infinite. For example. take the alphabet ¥ = {«.0}. Then
a. aba. and abbbbb would all be examples of strings: the languages over ¥ include
{a.ab.ba} and £*. By T we mean the Kleene closure of ¥, the set formed through
concatenation of zero or more strings in & [29].

Using the notation of [1]. the symbol € denotes an empty string with no symbols.
and 5 is a symbol that acts as a end-of-input sentinel at the end of strings. Lowercase
letters late in the English alphabet. such as w. are used to represent arbitrary strings.

Chomsky [l4. 12] classified languages into four types. Of those language classes.
only two are known to be recognized by efficient parsing methods. so we restrict our
attention to them: regular languages and context-free languages (CFLs). Fortunately
many “interesting” languages for practical purposes. such as programming languages.

belong to these two classes. These classes of languages may be distinguished by one

of the means used to describe them — grammars.

2.2 Grammars

A grammar counsists of a finite set of rules. By applying these rules. a grammar
actually behaves as a generative device for a language. and is able to produce all

strings that belong to it [12]. So to parse an input string and divine its structure. a

parser must operate backwards in the sense that it needs to determine which rules
were used. and in what order, to create a particular input. A parser must also be able
to detect invalid inputs that are not part of the language defined by the grammar.

Grammar rules themselves are comprised of two different types of svmbols:

l. Terminal symbols. These are just symbols from a language’s alphabet. and will
be written using lowercase English letters like b [1]. Depending on the particular
grammar, other symbols like parentheses may be used as terminal symbols for

clarity.

(8N
.

Nonterminal symbols. These are symbols may be thought of as “variables”
that may be substituted with sequences of terminals and nonterminals [42].
The grammar’s rules define all valid substitutions. Uppercase alphabetic letters

early in the alphabet such as B are used to represent nonterminals [1].

Lowercase Greek letters represent strings of terminal and nonterminal svymbols. in-
cluding the empty string: uppercase English letters late in the alphabet (c.g. X)
stand for a single terminal or nonterminal [{].

Returning to the analogy of nonterminals as variables. a grammar rule A — «a
indicates that the nonterminal A may be substituted with a wherever A appears.

When this happens. 4 is said to derive a. written 4 => a. Repeated derivations

may occur: 4 = a means that A derives a in zero or more steps. [f a situation
arises where there are several nonterminals that could be substituted for. substituting
the rightmost nonterminal yields a rightmost derivation. denoted . 7 a.

[n the grammar of Figure 2.1. we have the terminals {a.b.c.d} and the nonter-
minals {S. A. B}. The language defined by this grammar is the finite set {c.ucdb}.

Some of the statements we can make about this grammar are:

S 7= aABb 7= aAdb 7= acdb
S r=:n' acdb

S = acdb

Notice that our derivations above all began with S. Grammars have a distinguished
start symbol from which derivations begin — conventionally. the start symbol is the
nonterminal on the left-hand side of the first grammar rule. In practice. grammars
will sometimes be augmented with a new start symbol 5’ and a rule ' — § $.
Using an augmented grammar simplifies specification and implementation of some
algorithms {10].

Now let us be more precise. A grammar is a four-tuple G = (V. . R. S). where

.V is a finite set of nonterminal symbols.

¥ is a finite set of terminal symbols. © N .V = 0. and

V2

S — aABb
S = ¢
A - ¢
B — d

Figure 2.1: A simple grammar.

S € NV is a start symbol [2. 29].

R is a set of rules whose composition depends on the type of grammar being de-
fined. Remember that we are only interested in regular languages and context-free
languages. and that classes of languages are defined by classes of grammars. Reg-
ular languages are defined by regular grammars. for whom R is a finite subset of
N x (S U(E x V))'. Context-free grammars (CFGs) define context-free languages:
here R is a finite subset of .V x (.VUX)*. For example. the grammar used in Figure 2.1
was a CFG.

The language defined by a grammar (is denoted L(G). & is ambiguous if and

only if two or more distinct rightmost derivations exist for a given input string.

!There are other equivalent definitions. but this one is convenient for discussion purposes.

2.3 Parsing

Now that we have defined what we mean by languages and grammars. we can talk
about the machinery used in parsing. As we implied. the job of a parser is to check
the validity of an input string according to a grammar. [t does so by determining
a sequence of derivations from the grammar’s start symbol that would result in the
production of the input string. Different types of parser go about this task in different
ways. and the method a parser uses determines the class of languages it can recognize:
some classes are larger than others. Given this fact. we treat the parsing of regular

grammars and CFGs separately.

2.3.1 Parsing Regular Grammars

To parse regular grammars. one makes use of the fact that regular grammars are
equivalent in expressive power to finite automata [14]. A finite automaton (FA\) is a
state machine: it is comprised of a finite set of states. and the transitions between
them. Beginning in a unique start state. a FA will make one or more transitions
hetween states for every input symbol it reads. At the end of the input. the FA
accepts the input as valid if the FA is in one of a set of final states.

A direct conversion is possible from a regular grammar to a FA [5. 7]:

10

W
144l

Figure 2.2: Regular grammar and associated FA.

l. Create a FA state for every nonterminal in the grammar. plus a final state [,

[

. For every grammar rule A — a B. add a directed edge from state .| to state B

labeled a.

3. For every rule A — a. add an edge from state A to state £,

4. The state corresponding to the gramunar'’s start symbol is the start state.

To illustrate. Figure 2.2 shows a regular grammar and its associated FA. A states
are drawn as circles; the shaded circle indicates the start state. and the double-circle
is a final state.

The set of regular languages is a proper subset of the set of CFLs [14]. Why would

one not eschew parsing techniques for regular grammars in favor of more powerful

L1

ones used for parsing CFGs? While this would certainly be possible. it turns out that
finite automata have much lower overhead than the corresponding parsers for CFGs:

using a CFG parser for anything but CFGs would be overkill.

2.3.2 Parsing Context-Free Grammars

How then can CFGs be parsed? Unfortunately there are only a few general methods
known. such as Earley’s algorithm [9. 31]. Even the Tomita algorithm we use in this
thesis is unable to handle certain ambiguous grammars [12]. In any case. general
CFG parsing methods tend to have high overhead. and can have poor worst-case
performance: O(n?) for Earley on ambiguous grammars [9]. and Tomita can be expo-
nentially slower than Earley [19]. (On unambiguous grammars. Earley has an O(n*)
worst case.) In practice. often parsers are used for C'FGs which accept only a subset
of CFLs.

One of the more important CFL subsets is the LR class. introduced by Knuth [24].
The LR class consists of those C'FLs whose grammars may be recognized by LR
parsers: these grammars are unambiguous by definition. Not only are many gram-
mars — like those for programming languages — recognizable using LR parsers. but
deterministic parsing methods are known which execute in linear time {l]. Because

of its importance. and because Tomita parsing relies upon it. LR parsing is the topic

of the next chapter.

13

Chapter 3

Review of LR Parsing

By definition. a LR parser reads its input from left to right. and produces a rightmost
derivation in reverse for a valid input string [1].

LR parsers belong to the class of “shift-reduce™ parsers. so named because of
how they operate. They “shift™ their input onto a stack and. at appropriate times.
“reduce” the stack by recognizing the use of a particular grammar rule. A reduction
causes the stack symbols corresponding to the rule’s right-hand side to be popped off
the stack. and replaced by that rule’s left-hand side.

For example. consider the CFG in Figure 3.1. The behavior of a LR parser for

this grammar on the input aacbb is shown in Figure 3.2. Looking at the reductions

L4

S —- aSB
S = ¢
B — b

Figure 3.1: A simple C'FG.

Stack [nput | Action

S aacbby | shift a

Sa acbb$ | shift a

Saa cbb$ | shift ¢

Saac bb$ | reduce by S — ¢
$aaS bbs | shift b

$aaSh b$ | reduce by B — b
$aaSB bS | reducebv S - a S B
$aS b$ { shift b

$aSh $ | reduce by B — b
$aSB $ | reduce by S —+a S B
$S $ | accept

Figure 3.2: A LR parser trace.

made by the parser. one can confirm that it has discovered the derivation

in reverse order.

moaSh

mm aaS BbTm aaSbb o aachb

How does a LR parser decide what actions to take? LR parsers actually look

for handles — a handle can be thought of as the right-hand side of a grammar rule.

Rule | Left Contexts [Viable Prefixes

S —-a$SB|e a. aa. aaa. ... ¢. a. aS. aSB. aa. aaS. aaSB. ...
S—=c¢ €. a. aa. aaa. ... €. C. a. aC. aa. aac. ...

B-—-b aS. aaS. aaaS. ... l €. a. aS. aSh. aa. aaS. aaSbh. ...

Table 3.1: Left contexts and viable prefixes.

but only when reduction to the rule’s left-hand side would correspond to a rightmost
derivation step of the input [l]. In the grammar of Figure 3.1. ¢ is a handle of the
input ac. but b is not a handle of ab. Formally. if A — «a is a grammar rule and
s ﬁ FAw 7w Jaw. then ais a handle at J. Under these circumstances. . is referred
to as a left context of A — «. and any prefix of Ja is called a viable prefix. Table 3.1
shows some left contexts and viable prefixes for the grammmar of Figure 3.1.

Notice that the LR parser makes extensive use of its stack as temporary memory.
to recall what symbols it has seen and the order they occurred in. In terms of
computational power. LR parsers may be modeled by push-down automata: hnite
automata augmented with a stack. Using the above terminology. a LR parser employs
an automaton to find handles. and keeps track of viable prefixes on the stack.

Most current LR parsers are table-driven. The automaton’s transitions and parser
actions are encoded into tables. thus a short algorithm such as the one in Figure 3.3 is

sufficient to drive the parser. Figure 3.2 notwithstanding. this algorithm reflects the

fact that LR parsers actually maintain a stack of state numbers rather than grammar

16
symbols; this difference does not affect parser operation in any material way. This
is because "... parse states encode the symbol that has been shifted and the handles
that are currently being matched.” [10. page 139]

As with most types of parser. a LR parser can be made to accept a larger set
of languages by allowing it to look ahead at symbols in the input [12]: intuitively.
this allows the parser to look into the future and choose parsing actions based on
this foreknowledge. A LR parser using & symbols of lookahead is a LR(A) parser.
Unless stated otherwise. only LR parsers and parse tables without lookahead will be
considered in the remainder of this thesis — in other words. LR(0) parsers.

See [1] for a more thorough treatment of LR parsing and parsing in general.

function action(inputSymbol, state) {
Based on its parameters, returns one of:
SHIFT n
REDUCE A — «
ACCEPT

ERROR
This would typically be a simple table lookup.

}

function goto(nonterminalSymbol, state) {
Based on its parameters, returns a state number to

go to. Again, this is typically a table lookup.

}

initialize stack to contain the start state

while (true) {
input = lookAtNextInputSymbol()
switch (action(input, topOfStack)) {
case SHIFT n:
push n
consumelnputSymbol ()
case REDUCE A — a:
pop |a| states from stack
push goto(A, newTopOfStack)
case ACCEPT:
accept input
default:
error

Figure 3.3: Table-driven LR parsing algorithm.

L7

Chapter 4

Reducing LR Parsing Overhead

To achieve our goal of building faster Tomita parsers. we begin by reducing the

amount of overhead consuined by their inner workings — LR parsers.

4.1 Previous Work

Much attention has been devoted to speeding up LR parsers. and the majority of this
tesearch pertains to implementation techniques. The argument is that interpreted.
table-driven programs are inherently slower than hardcoded. directly-executable pro-
grams: given that. the best way to speed up a table-driven LR parser is to convert it
into a directly-executable form that needs no tables.

[32. 18. 34. 4] all start with a LR parser’s handle-finding automaton and translate

1Y
it directly into source code — this source code can then be compiled? to create an
executable LR parser. Basically. each state of the automaton is directly translated
into source form using boilerplate code. This process tends to produce inefficient
code. so these papers expend effort optimizing the source code output.
Several other papers [35. 36. 27. 23] have taken a slightly different approach. intro-
ducing a technique called recursive ascent parsing. Here. a LR parser is implemented
with a set of mutually recursive functions. one for each state® in a table-driven LR

parser’s handle-finding automaton. To quote Grune and Jacobs [12. page 221].

"The key idea is to have the recursion stack mimic the LR parsing
stack. To this end. there is a procedure for each state: when a token is to
he shifted to the stack. the procedure corresponding to the resulting state
is called instead.”

Unfortunately. all of the above work is of limited use when applied to a Tomita
parser. LR parsers produce a single derivation for an input string. [n terms of
implementation. a LR parser only needs to keep track of a single set of information:
the current parser state — what the parser is doing right now. and what it’s done in
the past. In a table-driven LR parser. this information is kept on an explicit stack:
in a directly-executable LR parser. the information exists through a combination of

the CPU’s execution stack and program counter.

?Or assembled. as is the case in [32].
3Two functions per state are reputed to be required in [28].

20

In contrast. a Tomita parser produces all derivations for an input string. This
means that a Tomita parser may need to keep track of multiple parser states concur-
rently. To construct a directly-executable Tomita parser. one would need to maintain
multiple CPU stacks and program counters. Certainly this is possible. but the over-
head in doing so and switching between them frequently would be prohibitive. at least
on a uniprocessor architecture.

Once direct execution of Tomita parsers is ruled out. the obvious line of inquiry
is to investigate speeding up table-driven LR (and thereby Tomita) parsers. Looking
at the LR parsing algorithm and its operation. one source of improvement would be
to reduce the reliance on the stack. Fewer stack operations would mean less overhead

and should result in a faster parser.

If stack-related overhead is to be reduced. then the ideal situation is to have no
stack at all. So instead of parsing with push-down automata. we would be using finite

automata.

4.2 Parsing with Finite Automata

Theoretically. it is impossible to parse C'FLs using finite automata. For example.

consider the language L = {a”b".n > 0}. Given a constant k& > 0. one can easily

Figure 4.1: FA accepting a*6*.0 < k < 3

construct a FA to recognize ¢*b. such as the one in Figure 4.1 for 0 < & < 3.
Unfortunately. such a FA doesn’t accept the input a*T'65*! despite the fact that
that input is in L.

In contrast. L is recognizable by a PDA: each « is pushed onto the stack as it is
read, the stack is popped once for each b read. and an empty stack must correspond
to the end of input. Effectively. the stack is used to count the number of a symbols
seen.

When parsing CFLs with a PDA. the stack is used to remember information. In
the previous example. it retained a single number: more generally. it can retain the
entire left context of a handle. Having no explicit means of storage. FAs cannot do
this — their comparative lack of expressive power is colloquially stated as “finite
automata can't count.”

In practice. however. often a subset of a CFL is sufficient. [n the above example.

if we could determine that there was an upper bound u« on n. then the language we
are actually interested in is ¢"b",0 < n < u. This new language is recognizable with
a FA having 2u + 1 states.

The same principle holds true for programming languages. Compiler writers often
set limits on a programming language for implementation reasons. Some examples:
limiting the complexity of arithmetic expressions: restricting the depth that blocks or
functions can nest: limiting the number of labels in a case statement. The net effect
of imposing such restrictions in a compiler is that the compiler no longer accepts
the full language as specified by the language's grammar. That being the case. it is
reasonable to consider eliminating a LR parser’s stack. and instead constructing a
large FA to parse the restricted language.

Similar ideas have been explored in the natural language community. [33] uses a
FA to recognize an approximation of a ('FG: by design. their FA accepts a superset
of the original language. However. since we are trying to speed up LR parsing. it is
important not to accept any inputs not accepted by the original parser. Given this.
and the fact that language subsets arise naturally in practice. our work only considers

using FAs to accept subsets of CFGs.

4.3 Recursion in Grammars

How do we construct our parsing FAs? A discussion of the exact method is deferred
to Section +4.35. As it turns out. some grammar transformation is needed before the FA
can be built. In this section and the next. we motivate the need for this transformation
and describe it in detail.

The problem in constructing parsing FAs (PFAs) comes from recursion in the
grammar. A grammar is recursive if. for any nonterminal A. 1 == Jd~. Left
recursion is the case where 4 = 4v: right recursion is where -\ = J.1.

We will examine three cases: left recursion. right recursion. and “other™ recursion
(recursion which is neither exclusively left nor right). [t is assumed. without loss of

generality. that trivial recursion of the form 4 = 1 is not present in the grammar.

4.3.1 Left Recursion and PFAs

Left recursion is trivial to handle. In a LR parser. left recursion vields a shallow
stack — a handle is accumulated atop the stack and is reduced away immediately. A
similar process happens with PFAs. With a PFA. the handle of a left-recursive rule
is recognized. and a reduction causes a simple state transition.

To illustrate, the grammar in Figure 4.2 contains the left-recursive rule S — S

a. This grammar, which generates the language ba™. is easy to represent with a PFA

wn
wn
o

o

—
—

w

Figure 4.2: A left-recursive grammar.

b reduce 2 M

Figure 4.3: PFA for a left-recursive grammar.

because it only needs to remember a small. finite amount of information: has a b been
seen? was an « just seen? have we just seen the end of input? The reductions are
straightforward too. If a b is seen. the PFA can immediately reduce by S — b: if an
a is seen. the PFA can reduce by S — S a immediately. The PFA for this grammar
is shown in Figure 4.3.

Compared to a FA. there are two unusual aspects to the PFA which warrant

explanation:

e The end-of-input symbol. 3. is explicitly represented in the PFA. even though

[
S]]

it was not in the grammar. This is because the PFA is based on an augmented

grammar having a new start symbol S’ and a new grammar rule 5 — S §.

o Edges are labeled with reduction actions. Making a transition across one of
these reduction edges does not cause any input to be consumed. but it does
indicate that the PFA is performing a reduction by a grammar rule. Grammar
rules are referred to by number. so reduce 2 means a reduction by the second rule
in the grammar. Figure 4.4 shows the augmented grammar complete with rule

numbers — further grammars will be shown in this manner when appropriate.

Formally. a PFA inherits much from the definition of a FA [29]. A PFA is a five-tuple

M=(Q.X.A.s. f). where

Q is a finite set of states.
¥ is the input alphabet.
s € @ is the start state.

f € Q is the accepting state.

and .\ is a transition relation, a finite set whose membersarein @ x (SURU{L})x Q.
R is a finite set of symbols that represent reduction by grammar rules — there is one
distinct symbol in R per rule. and RN T = (. (The symbols in R are the formal

equivalent of reduce n.) The purpose of the symbol L is explained in Section 4.-}: for

08 — S5
1S = Sa
2 S —=- b

Figure 4.4: An augmented left-recursive grammar.

now. it is enough to know that L ¢ (RU X). There is only a single accepting state
as a result of augmenting the grammar: there is a unique way to make a transition

on the end-of-input symbol.

4.3.2 Right Recursion

Now consider a right-recursive grammar. such as the one in Figure 1.5, and a valid

input string such as aaab. The derivation of that input string is

- Crle e “r " o 3
ST SS TR aS$ T aaSS T aaaS$ Tm aaabs

which the PFA must produce in reverse — herein lies the problem.

Assume for the moment that we can construct a PFA for this grammar. Figure 4.6
shows the actions taken by this hypothetical PFA. (Empty action fields mean that
nothing happens aside from a PFA state transition.) The sequence of consuming

input and performing reductions must occur in this order for the PFA\ to find the

0§ —- S%
1 S — a8
28 — b

Figure 4.53: A right-recursive grammar.

correct derivation. Why? For this grammar. a PFA must see the entire input before
announcing any reductions. and when it does. it must have one reduce [for every «a it
read. In many respects. this is the same problem as recognizing «"b" with a FA in the
previous section — it can't be done. The key here is that the PFA must remember
what it has seen.

[n parsing terms. our hypothetical PFA is looking for the handle b. and the PFA
must recognize and remember b's entire left context in order to find the right re-
ductions. Unfortunately. for the full language. the set of left contexts is infinite:
{c.a.aa.qaa....}. Compare this to the left-recursive example. where the set of left

contexts was always {c}

4.3.3 Other Recursion

For completeness. grammars that contain other types of recursion must be considered.
These types of recursion are sometimes unavoidable. as in the arithmetic expression

grammar of Figure 4.7. the Dyck languages [26]. or the if-then-else construct

[nput | Action
aaab$
aab$
ab$
h$

$ | reduce 2

S | reduce 1

$ | reduce |

$ | reduce I

accept

Figure 4.6: A PFA trace of aaab.

Stmt — if Expr then Stmt else Stmt.

[n actual fact. the problem that other forms of grammar recursion pose is ex-
actly the same one presented by right-recursive grammars. To produce the correct
derivation. the PFA would have to remember an infinite set of left contexts.

For example. in the grammar of Figure 4.7. a PFA would need to keep count of
the number of left parentheses seen. Otherwise. it would not be able to look for
the correct number of matching right parentheses. Again. we are back to the «"b"

problem.

0 8 — ES
1 E —-— E+F
2 E - F
3 F - (E)
4 F — n

Figure 4.7: A grammar for simple arithmetic expressions.

4.4 Grammar Expansion

To solve the problems posed by non-left-recursive grammars. we apply the ideas from
Section 4.2. What we want to do is to make finite the set of left contexts that the PFA
must recognize and remember. [n terms of the grammar. we want to limit its depth of
recursion: for example. one can imagine a grammar for arithmetic expressions where
parenthesized expressions may not be nested greater than ten deep.

A straightforward approach to limiting grammars [13] is to essentially “unroll™ the
recursion in the grammar. An example is shown in Figure 4.3. We use the notation
A'n to indicate that the nonterminal - should be expanded n times. The point in
the grammar where expansion occurs is called a limit point.

When a grammar has been fully expanded. the nonterminal at the limit point is
replaced by the special symbol 1. Upon encountering L in the transition relation.
the PFA outputs an error message and rejects the input. A PFA for the expanded

grammar of Figure 4.8 would accept inputs b. ab. and aab. but output an error for

30

a S~_) 2

a S
b

v W
AR
& W
U
U
L1441l

S = Ss Y —= S5

S = a$, N S = ab,
> S —= b / S — b

Sg — a Sl L S-_; — a S[

S = b S: —= b

S[— a Sk S[- a Ll

S[— b S[— b

Figure 4.8: Grammar expansion.

aaab.

We devised the following algorithm to expand the grammnar:

l. Choose a rule ry = A — a Bln 3.

=

. If n = 0. replace ry with A — a L 3.

3. Ifn>0:

(a) For each rule r = C = =+ such that B == (C'n (this includes the case
where B = (). add a new rule r’. To map r into r’. replace all nonterminal

symbols D in r with D,. If r = r,. then the limit point B'n should be

31
mapped into BY(n — 1) in r’ instead.
(b) Replace ry with A — a B, 3.
1. Repeat steps 1-3 until there are no more limit points to expand.

For reduction purposes, a rule added through expansion should retain its parent’s

rule number. This is so reductions reported by a PFA make sense in terms of the

original grammar.

4.5 Constructing the PFA

Once the erammar has been augmented and necessary grammar expansions have been
(=] Pl]

performed. the PFA can be built.

4.5.1 Background

The theoretical basis for PFAs comes from some early work in LR parsing. In IKnuth’s
seminal paper on LR parsing [24]. he proposed two ways to determine if a grammar
(G was LR(A) for some integer & > 0:

L. Successfully construct a handle-finding automaton for (+. This method directly

vields a method for parsing the grammar (if the grammar is indeed LR(A)). LR

parsers and research in LR parsing are almost exclusively based on this method.

32
2. Derive a new grammar F from (. then test the language generated by F for a

specific condition. Only a few researchers [3. 13] have explored this method.

For our purposes, we are not concerned with whether or not & is LR(k). just
with the construction method itself. Using the second method above. the following

sections describe our technique for reducing LR parsing overhead.

4.5.2 The Derived Grammar

As mentioned. we need to derive a new grammar £ from ([3]. Both terminals and
nonterminals in (¢ are treated as terminal symbols in F. F has a different set of
nonterminals. which are derived from the nonterminals of ;. The uotation [A} is
used to refer to a nonterminal in F which was derived from the nonterminal 1A in G.

Initially. F consists of the single rule
[S'] — e
Then. one rule
(A] = [B] e

is added to F for every rule B — a A 3 in (. Finally. we delete direct cycles from
F (e.g. [A] = [A]), which does not change L(F) [12]. but makes F easier to handle

from an implementation point of view.

33

S — ¢

(El — (5]
(F] — [EJE+
[E] — [Fl(

Figure 4.9: A derived grammar.

Figure 1.9 shows F for the grammar in Figure 4.7 (page 29). The rule [E] — [E]

has been deleted.

4.5.3 Properties of the Derived Grammar

F' has one extremely useful property. Take Lp([4]) to mean L(F) where [A] is used
as the start symbol. Then the set of left contexts for a rule A — « in G is Lg([.4]) [3].
\We will refer to this set of left contexts as LC(\).

To understand why. recall the definition of a handle in Chapter 3. If

ST IAw T Jaw

then a is a handle at 3. Going back a step further. -4 must also be part of a handle.

Say .3 = 32, w = wywq, and B = 3 A w, is a rule in (&. Then we have

S' ™ 31Bw; 7 b Aw e, T 3 dhawwy

34
This means that LC(B) C LC(A). More specifically. because B — 3, A w,. we can
strengthen it to say LC(B)- 3, C LC(A). (LC(B) -3, is written as shorthand for
{vd:|y € LC(B)}.)

Using a grammar as a generative device. we can express the above relation between
LC(B) and LC(A) with the rule [A] — [B] 3, in F. The rule [S'] — ¢ is added to F
because the left context of G's start symbol must be e.

Given that Lp([A]) = LC(A). the handle of A — a can be found by looking for
Lr([1]) - a from the start of the input string: call this set LRC(A — o). This ability
to find handles gives us a means to parse input. But can it be done with a FA?

Another property of F is that it is a regular grammar by construction' [3].
As a result. Lp({d]) is regular for all nonterminals [A]. The right-hand sides of
(r’s grammar rules. as strings. form a regular language as well. So the set ¢ =
{U_,\ = aeq LRC(A — a)} of all G’s handles and their left contexts is regular due
to closure properties of regular languages [14]. [t is therefore sufficient to use a FA
to find handles and their left contexts — not a surprising result!

As we realized. what /s different is that F gives us a systematic method for
generating all left contexts of a handle. This way. all handles and all their left

contexts can be enumerated in the PFA (due to grammar expansion. there will be a

*To be precise, F is leftlinear [14, 3].

35

finite number of them). [f we did not have a separate path in the PFA for each. then

the PFA would have no idea what handles to start looking for following a reduction.

4.5.4 PFA Construction Algorithm

Now that we have a theoretical basis for the PFA. we can describe our algorithm for

its construction. Starting with an augmented. expanded CFG (. create the derived

grammar F'. and the set ®. Then. the algorithm is:

l.

o

(‘hoose a unique start state s for the PFA. For all members X\, X, ... X, € ©.
add to the PFA the minimal number of transitions needed so that there is a
path X1 X, ...\, in the PFA starting at s. No transitions on ¢ are added to

the PFA.

For the expanded grammar in Figure 4.8. & = {¢55. a2, eb. aaS). ab.aaa L. uab}.
and its PFA would look like Figure -1.10 after this step. The result of this step

is a trie data structure [23].

Now the reduction transitions can be added to the PFA. Take all members
NN XX oo XL € @Lwhere X4 ... X, is a handle of the rule

A=\, X, at point X1 X5, X,

Let ¢o be the state at the end of the path XX, ... X, X;uy1 ... X, starting with

36
s: ¢y is the end state of the path XX, ... X, 1. also starting with 5. Assuming
the rule A — Xpnyy ... X, ts numbered k. then add a transition from ¢ to ¢
labeled reduce k. As a special case. the final state f for the PFA is the state at

the end of the path 5.

Figure 4.11 shows the PFA from Figure .10 with its reduction edges added.

3. Delete transitions in the PFA that are labeled with a nonterminal symbol from
(i. They are superfluous. since the PF:A can never read nonterminals from an

input string. The final PFA for our running example is shown in Figure 4.12.

4.6 Choosing Limit Points Automatically

After implementing our algorithm from the previous section. we tried to construct
PFAs for increasingly larger grammars. As we did so. it became increasingly ditfi-
cult to select appropriate limit points by inspection. Some way to have limit points
suggested automatically was needed.

Since the goal of limit points is to ensure that @ is finite. the first step was to
determine what could make ®’s size infinite to begin with. This is quite easy: there
are a finite number of grammar rules in (. so the set of handles must bhe finite.

Therefore. if ® is infinite in size. it must be because of the set of left contexts.

Figure 4.10: PFA after Step 1.

37

reduce 2 reduce 2

reduce |

reduce |

reduce |

Figure 4.11: PFA after Step 2.

reduce 2

reduce 2 reduce 2 reduce 2

reduce |

reduce |

reduce 1

Figure 4.12: PFA after Step 3.

39

40

Figure 4.13: Derived grammar’s equivalent FA.

Since the left contexts are generated using the derived grammar F. analysis of
it should vield a set of limit points. [deally. we would also like a minimal set of
[imit points — this would allow the PFA to accept the largest subset of the original
(unexpanded) grammar’s language.

Because F is a regular grammar. it is equivalent to a FA [I4] — call it Fgy. The
FA for the derived grammar of Figure 4.9 is shown in Figure 4.13.

We also know that a FA's transition diagram contains a (non-¢) cvcle if and only
if the FA accepts an infinite language [11]. So if we remove a set of transitions from
Fry such that it no longer contains any cycles. then the language accepted/generated
by it must be finite. This set would provide us with the limit points.

The problem of removing a minimal set of edges from a directed graph so that

1

Ada 42
ANSIC 38
Java 23

Modula-2 23
Table 4.1: Limit points derived heuristically.

the resulting graph has no cycles is well-known in graph theory: the feedback arc set
(FAS) problem [37]. Unfortunately, the FAS decision problem is NP-complete [22].
and the corresponding optimization problem — finding the minimal FAS — is NP-
hard [L1]. There are. however. heuristic algorithms for the problem. We have chosen
to implement the algorithm from [3] due to its relative simplicity.

The number of limit points obtained for various programming language grammars
is shown in Table 4.1. [t is important to remember that these numbers may be
lower. depending on Fry and the heuristic algorithm. For example. starting with the
computed limit points. hand experimentation revealed that no more than twelve limit
points are needed for the Modula-2 grammar.

Clearly. the work in this thesis will directly benefit from further work on the FAS

problem.

4.7 Incorporating a Stack

One obvious drawback to the PFA so far is that it only recognizes a subset of the
original unexpanded grammar. To remove this restriction. a stack is added to the
PFA to form a parsing pushdown automaton (PPA).

How can a stack be incorporated into a PFA? Intuitively. the places where a
grammar (is expanded are the natural places to push information onto a stack [16]:
when a 1 transition appears. essentially the PFA is stating that it no longer llas'a
sufficient number of states to remember any more. By pushing information at those
points. a PPA is able to remember that which the PFA cannot.

A PPA is a simple extension of a PFA. To construct a PPA for (. we tirst build

a PFA for ¢¢. PFAg. in the usual manner. Then. while there are L transitions in

PFAq. choose one and do the following:

. Find the nonterminal 5, that was initiallv expanded and which caused L to be
placed in PFAq. In Figure 4.12. L appears as a result of the initial expansion

of S (see Figure 4.8).

o

('reate a new grammar (, from . Initially. all rules in & are placed tn (.
Then. set the start svmbol for (G, to be 5. and remove all rules from G,

that are not reachable from this new start symbol. Augment &/ with the rule

43
S, — S, pop. Due to the simplicity of the grammar in Figure 4.3. the net effect

of this step is to replace S’ 5 S$in (), with 5, — S, pop.

3. Construct a PFA for Giy; call it PF4,. The states of PF:A; and PFA, must
be disjoint. PFA; will act as a ~subroutine™ for PF-; in the sense that when
PF:A reaches the L transition. it will push a “return state” onto a stack. then
go to PF: s start state. When PF-, reaches a pop transition (which must be
unique due to (7;’s augmentation). it goes to a state which is popped off the

stack.

4. Say that the transition on L in PF; was made from state ¢q to state ¢;. Delete
that transition from PF-g. replace it with a transition from ¢ to the start state

of PFA ;. and label the new transition push q.

5. Merge PFA1, into PFAg. Since these PPA construction steps continue while
there are L svmbols in PFAs. this means that all L symbols in PF:1 eventually

get replaced.

The result of the above steps is the PPA for (¢. As all the PF:l, “subroutines™ are
built independently of any left context seen by their “caller.” they can be re-used
in other contexts. So the maximum number of PF:, that will be created for (/' is

bounded by the number of limit points. Also. notice that the construction of Gy

preserves any grammar expansion that has occurred in G.
The final PPA for the grammar in Figure 4.8 is shown in Figures 4.14-4.15. com-
plete with state numbers. A trace of the PPA on input ¢eaaabis shown in Figure 1.16.
The formal definition of a PPA resembles that of a pushdown automaton [29]. A

PPA is a six-tuple M = (Q.Z.T. A.s. f). where

Q is a finite set of states.

¥ is the input alphabet.

[is the stack alphabet (I' = Q).
s € is the start state.

f € Q is the accepting state.

and A\ is a transition relation. a finite set whose members are in Q@ x (YU RU P) x Q).
R has the same definition as it did for a PFA. P is a finite set. disjoint from ¥ and
R. whose members are in (QU®) x (QU®). P models stack operations: for example.
(e.12) is a push and (34.¢€) is a pop.

Table 1.2 shows some PPA sizes and the relatively small number of stack op-
erations in each. The arithmetic expression grammar used is from Pfahler [3]: his
automaton for the same grammar had twelve states. The Modula-2 grammar we used
1s recognizable using 386 states. according to the LALR(1) parser generator yacc [20].

In both grammars. the expansion factors at the limit points were all set to zero. As a

reduce | | reduce 2 reduce 2
(to stare {2)

reduce |

reduce !

Figure 4.14: An example PPA.

reduce 2

16

o
=

push 17 °

reduce 2 reduce | | reduce 2 reduce 2

reduce |

reduce |

pop

(to popped state)

Figure 4.15: An example PPA (continued).

Stack | State [nput | Action
$ 0 | aaaaab$

$ 1l | aaaab$

5 2 aaab$

5 5 aab$ | push 6
$6 12 aab$

56 13 ab¥%

56 16 bs

56 13 $ | reduce 2
$6 20 $ | reduce |
$6 21 $ | reduce |
56 22 $ | pop

$ 6 $ | reduce 1
$ S 5 | reduce |
$ 9 5 | reduce 1
$ 10 $

S Il accept

Figure 4.16: PPA trace of aaaaab.

Total Stack

l Pushes Pops States Operations
1923 S 18279 10.6%.
S L 56 16.1%

Modula-2
Expression

Table 4.2: Number of PPA states and stack operations.

PPA must recognize more than a handle-finding automaton. it has many more states.
While the PPAs may seem large. remember that we are trading space for time. With

the proliferation of large. inexpensive memory in modern computers. the PPA size

should not typically be a concern.

4.8 Modified LR Parsing Algorithm

The LR parsing algorithm. modified to use a PPA. is shown in Figure 4.17. (Lor

comparison. the original table-driven LR parsing algorithm appeared in Figure 3.3.)

function action(inputSymbol, state) {

Based on its parameters, returns one of:
SHIFT n
REDUCE A — «, GOTO n
PUSH m, GOTO n
POP
ACCEPT
ERROR

This can be implemented as a simple table lookup.

}

initialize stack to be empty
currentState = start state

while (true) {
input = lookAtNextInputSymbol()
switch (action(input, currentState)) {
case SHIFT n:
currentState = n
consumeInputSymbol ()
case REDUCE A — a, GOTO n:
currentState = n
case PUSH m, GOTO n:

push m
currentState = n
case POP:
currentState = state popped off stack

case ACCEPT:
accept input
default:
error

Figure 4.17: Table-driven LR parsing algorithm using a PPA.

1Y

Chapter 5

Application to Tomita’s Algorithm

5.1 Background

Tomita’'s parsing algorithm, also known as generalized LR (GLR) parsing. was devel-
oped to parse natural languages efficiently [38]. Tomita observed that grammars for
natural languages were mostly LR. with occasional ambiguities.

With that in mind. Tomita's algorithm behaves as a normal LR parser until it
reaches a LR parser state where there is a conflict — the LR parser has a set of
conflicting actions it could perform. and is unable to choose between them. A Tomita
parser is not able to choose the correct action either. and instead simulates nondeter-

minism by doing a breadth-first search over all the possibilities [12]. Conceptually.

51
one can think of the Tomita parser reaching a conflict. and starting up a new parser
running in parallel for every possible action: each new parser “process™ would have
a copy of the original stack. A parser process that finds what seems to be crroneous
input may assume that the action it took from the conflict point was the wrong one.
and can terminate.

This cycle of a parser process starting others vields a wholly impractical algorithm.
The time spent making copies of parser stacks could be enormous. not to meuntion
the potentially exponential growth of the number of processes [10]. To address this.

Tomita made two important optimizations:

l. A new process need not have a copy of its parent’s stack. .\ processes can share
a common prefix of a stack. From an implementation perspective. clements
of the stack can all contain pointers to point to the previous element of the
stack. Then. multiple stack elements can point to a common prefix. Figure 5.1
illustrates what happens to the stack when a conflict between three actions

arises in state 36: the top of the stack is on the left side.

2. There are a finite number of automaton states the parser can be in. Several pro-
cesses may be in the same state. albeit they may have different stack contents.
A set of processes that are in the same state can merge their stacks together.

leaving one resulting process. This places an upper bound ou the number of

]
4

parsing processes that can exist.

In a LR parser, its current state is the topmost state on the stack (see Figure 3.3
on page 17). So to merge .V stacks. one would remove the top node (rom each
— they must all have the same state number s — and create one node with
state s that points to the remainder of the .V stacks. In Figure 3.2. two stacks

are merged together since their processes are both in state |7.

The result of these optimizations is called a graph-structured stack. (A slight mis-
nomer. since the stacks actually form a directed acyclic graph.) The graph-structured
stack in Figure 5.3. for instance. corresponds to four processes and five conceptual

stacks.

To now understand how we have applied our PPAs to Tomita’s work. we first

examtine what constitutes a state conflict in a PPA.

5.2 Characterization of PPA State Conflicts

Normal LR(0) parsers are subject to two types of conflicts [10]:

L. Shift/reduce conflicts. where both a shift action and a reduce action are possible

from a single parser state.

Figure 5.1: Stacks sharing a common prefix.

Figure 5.3: A graph-structured stack.

]
[\

shift reduce push pop
shift X X X
reduce | X X X X
push X X X X
pop X X X

Table 5.1: PPA state conflicts.

2. Reduce/reduce conflicts. where two or more distinct reduction actions are pos-

sible from a single parser state.

The other combination. shift/shift. cannot exist as a conflict because there can be
only one shift edge for a given input symbol from a single state.

Recall that our PPAs are also LR(0) parsers. but we have more types of actions
possible and hence more types of conflict that can arise. In fact. ifa PPA state has any
combination of two or more edges leaving it. there is a conflict unless all the edges are:
all =shift™ actions labeled with terminal symbols: all pop actions. (Actually. multiple
pop edges from a PPA state cannot occur if the PPA is built using the algorithm
in Section 4.7.) Table 5.1 shows the various combinations: a “X" in the table entry
indicates a conflict.

Since a Tomita parser starts a new parsing process whenever it reaches an LR(0)
conflict. a PPA-based Tomita parser also does so whenever it discovers one of the

above PPA conflicts. While this may seem like a great deal more work. remember

56
that stack actions in a PPA are infrequent: in practice. most PPAs are unlikely to be

riddled with conflicts.

5.3 PPA-Based Tomita Parsing

To use a PPA as the engine for a Tomita parser. we have devised an algorithm which
is the combination of our modified LR parsing algorithm in Section 4.8 and the work
of Tomita [38. 39. 40]. Its pseudocode is shown in Figures 5.5-3.6.

Some discussion of the data structures we used is appropriate. There are two

major types of structures: one for processes. the other for stack nodes.

[. Processes. Each process structure has a PPA state number and a pointer to a
stack top associated with it. Unlike LR parsers. a PPA’s current state number
is stored separately from the stack. so each process must maintain a PPA state

number.

Process structures are linked into one of two lists. The current process list
contains the processes that still require processing for the current input symbol:
the pending process list contains processes that will need processing when the
next input symbol is read. Every time a new input symbol is read. the pending

process list becomes the current process list.

2. Stack nodes. There are two types of stack nodes:

(a) Data nodes. This type of node contains the actual data of a process’
stack. Each data node holds a single PP state number. and a pointer to
a previous stack node (i.e. pointing away from the stack top). If we used

only this type of stack node. then we would have a tree-structured stack.

(b) Fan-in nodes. These nodes are used to make the graph-structured stack:
each one contains a set of pointers to previous stack nodes. When two
process’ stacks are merged. a fan-in node is created which holds pointers
to both stacks. In our implementation. to bound the amount of effort
required to find a data node. we add the constraint that a fan-in node may

only point to data nodes.

Figure 5.4 illustrates a sample parser configuration (the pending process list is not
shown). Having now described the mechanics of our algorithm. the natural question

is: how does it perform?

5.4 Empirical Results

We performed some timing experiments to compare a standard Tomita parser with our

PPA-based Tomita parser. [n the remainder of this section we discuss our experinients

Current
Process
List

Graph-Structured Stack

23

9

42

-

7R

17

Figure 5.44: A sample parser configuration.

HOE

1]

oL

function process(P, input) {
foreach a € action(input, P.state) {
switch (a) {
case SHIFT n:
mergelntoPending(n, P.stack)
case REDUCE A — «, GOTO n:
mergelntoCurrent(n, P.stack)
case PUSH m, GOTO n:
mergelntoCurrent(n, push(m, P.stack))
case POP:
let S be the set of stack data nodes atop P.stack
foreach node (state, stack) € 5 {
mergelntoCurrent(state, stack)

}

}

initialize pending process list to be empty
initialize current process list to be a single process,
at the PPA’s start state with an empty stack

while (current process list is nonempty) {
input = getNextInputSymbol()
while (current process list is nonempty) {
remove a process P from the list
process(P, input)
}
exchange the current and pending process lists
if (input == EOF) {
if (process in current process list is in accept state)
accept input
else
reject input
}
}

reject input

Figure 5.5: PPA-based Tomita parsing algorithm.

60

function mergeIntoPending(state, stack) {
Looks in the pending process list for a process with
a matching state as that passed in. If it finds such
a process, it simply merges its stack with the one
passed in; if not, it creates a new process structure
with the given state number and stack pointer, and adds
it to the pending process list.

}

function mergelntoCurrent(state, stack) {
The same as mergelntoPending(), but using the current
process list instead.

}

function push(state, stack) {
Returns a new stack data node containing the given
state and stack pointer.

}

function action(inputSymbol, state) {
Based on its parameters, returns a set containing
zero or more of:
SHIFT n
REDUCE A — a, GOTO n
PUSH m, GOTO n
POP
This can be implemented as a simple table lookup.

Figure 5.6: PPA-based Tomita parsing algorithm (continued).

61

and the results.

5.4.1 Timing Particulars

As a basis for comparison. we used the public domain Tomita parser available from
the comp.compilers Usenet newsgroup archive®. [t uses LR(0) parse tables inter-
nally which are computed at startup. Both it and our PPA-based Tomita parser are
implemented in C.

To ensure that the timings reflect only parsing speed. we have extricated the
lexical analyzer and the LR(0) parse table computation code from the public domain
parser and used it in our PPA-based parser. In other words. our parser incurs the
same startup penalty and lexical analysis overhead as the public domain parser. The
only change we have made to the public domain parser’s source code is to increase
the size of a string table used by the lexical analyzer: this is so the lexical analvzer (as
used in both parsers) would be able to handle our tests involving long input strings.

All tests were run on a Sun SPARCsystem 300 with 32M of RAM. Both parsers
were compiled using gcc with compiler optimization (-0) enabled. To try and mitigate
the effect of unpredictable system conditions on our timings. we ran the tests five times

on each input: the results we report are the arithmetic mean of those times.

Shttp://wuw.iecc.com as of this writing.

62

S =+ Sa
S - b
20 ' T .
¥ PPA —o—

18 F '!' Tomita -+~--]
16 - ‘1’ b

1
';5 14 + ! }

T :l
8 12 B ‘1 1

8 i
0] 10 = I‘ h
) 8 F / .
E | ,
£ 6 ,’! /
4 B I' / T

4 /
2 B /// / ~
0 ——— B
10 100 1000 16000 100000

Input symbols
Figure 5.7: Timings for Grammar 1.

Our results are shown in Figures 5.7-5.11 along with the grammars used. For
convenience of reference. we have numbered the grammars | through 5. The grammars

have the limit points shown that were used for the PPA: they were of course not needed

for the public domain parser.

(seconds)

Time

63

S — alS0b
S — ¢
14 T T T
PPA ——)>
12 | Tomita -*~V%
+ /
I 4
10 / .
I
)
II
8 r ; 1
6 r i
4 i
2 F i
O A A:‘E‘ - L
11 101 1001 10001 100001

Input symbols

Figure 5.8: Timings for Grammar 2.

(seconds)

Time

O-Ol 1 | 1 L 1 i 1 1 i

O

lOOO E L] J ¥ ' ¥ T T T T

PPA —o—]
Tomita -+-- |

= _2
lOO 3 ,”,/ 3
3 Pl 3
8
s)
4

10 20 30 40 50 60 70 80 SO 100
Input symbols

Figure 5.9: Timings for Grammar 3.

(seconds)

Time

S —= SS'08'0
S — x5S0
S —- «x
1000 § : : - :
: PPA ——-f
Tomit@» --
100 L]
/*//
10 f e 3
/(/ .’
1¢F L 9
0.1 1 . L L
10 20 30 40 50

Input symbols

Figure 5.10: Timings for Grammar 4.

(seconds)

Time

1000 ——————+—+—
100 |

10 ¢}

O'Ol [l L 1L L I L i 1

10 20 30 40 50 60 70 80
Input symbols

Figure 5.11: Timings for Grammar 3.

S0

100

60

5.4.2 Discussion of the Results

Grammars | and 2 are unainbiguous. and were selected to illustrate several points
about PPA operation. First. since these two grammars are unambiguous. any Tomita
parser should exhibit run times that are linear with the input size. as our results
show. (The public domain Tomita parser ran out of memory on samples larger than
about 2300 symbols for both grammars after about thirty seconds. so only partial
results are shown for it.)

Second. Grammar | is one of the best possible cases for a PPA. Because it is
left recursive. the set of left contexts is ¢: the PPA requires no stack operations and
essentially spends its time sitting in a tight loop reading input and making transitions
between two states.

Third. the limit point in Grammar 2 forces the PPA to perform a pair of stack
operations for every handle of S — a S b it sees. The PPA stills behaves linearly. but
with a greater overhead than the PPA for Gramimar | had.

Grammar 3 is an ambiguous grammar used in [23]. It is one of the worst cases for
a PPA-based Tomita parser. requiring it to perform numerous stack operations ou
multiple stacks. The interesting feature we see in this set of tests is a crossover point
that occurs between input strings of length 95 to 100. We speculate that this may be

in part due to our algorithm’s use of memory. Looking at the amount of “system”

63
time our parser spends in the operating system kernel. it spends no measurable time
there until an input length of 60. The amount of system time then stays steady until
a length of about 80-85 where it jumps by a factor of 2-3: at length L00 it jumps by
a factor of 3. In contrast. the public domain parser’s system time tends to ramp up
gradually with the input length. Since there is no [/O overhead for these short inputs
to speak of. the system time is most likely due to the memory allocator requesting
heap pages from the kernel. That being the case. if the memory usage of the PPA-
based Tomita parser is tuned. it may improve its performance on this grammar. To
test this hypothesis. we modified both parsers so that all memory was preallocated:
after startup. no further requests to the operating system for heap space were made.
For a fair comparison. we preallocated the same amount for both parsers. and made
no further memory optimizations in the PPA-based parser. The preallocation results
for parsing Grammar 3 are shown in Figure 5.12.

In addition. profiling of our parser has shown that over 40% of total run time
can be spent doing memory allocation and deallocation when parsing ambiguous
grammars. Figure 5.13 shows the results obtained for Grammar 3 when we added a
custom-built memory allocator to our parser.

Grammar 4, another ambiguous grammar. is derived from one in [23]. For reasons

discussed in Section 7.1.3. reductions in ambiguous grammars by rules with longer

(seconds)

Time

6Y

lOOO E t T L 1 L] T L] L) L3

PPA ———
Tomita -+~--

100 F

0.0l L L 1 1 1 1) I] —l

10 20 30 40 50 60 70 80 SO
Input symbols

Figure 5.12: Preallocation timings for Grammar 3.

100

(seconds)

Time

1000 g— r ; : : , _ . _
| PPA ——
' Tomita -+--
100 ¢ PPA (custom alloc) .
lOE
l 9
0.1
O'Ol ! L L L 1 L 1 1 i

10 20 30 40 50 60 70 80 90 100
Input symbols

Figure 5.13: Custom allocation timings for Grammar 3.

vl
and longer right-hand sides are exponentially more expensive to parse. On the other
hand. a PPA always takes negligible time for reductions. as reflected in the results.

Grammar 3 is included to show the effect of gramimar expansion on parsing time:
the case where n = 0 is the same as Grammar 3's PPA. As might be expected. more
grammar expansion — and therefore fewer stack operations and shallower stacks —
translates into faster parsing times. The n > 0 expausions require less memory. and
their timing curves are substantially different than the one for n = 0. tending to
support the hypothesis that memory usage patterns may influence the PPA result for

Grammar 3.

Chapter 6

Implementation

6.1 PPA Generation

The code to generate PPAs is comprised of approximately 1100 lines of Python [30].
an object-oriented scripting language. The program is divided into a front end and a

back end. as follows:

. The front end takes as input a file containing a CFG and builds the PPA for the
grammar. [t then “pickles” the result by storing the PPA object and associated

information into a file for later consumption.

o
H

A back end reads the pickled PPA and processes it in some way. C'urrently. there

are three different back end programs: print. which prints the PPA: stats.

3
which generates statistics about the PPA (e.g. the number of states): table.
which outputs the PPA as a set of tables suitable for inclusion in a table-driven

parser.

[n the present implementation. the user is responsible for setting limit points in
the grammar. However. the program does compute a FAS and thereby is able to
suggest a set of limit points: a PPA is not generated unless the set of left contexts is
finite.

The front end is capable of performing a connectivity check on the intermediate
PFAs that are built. In other words, it can verify that every PFA state is reachable
from the start state and that each state has a path to the final state. For large PPAs.
this check takes a great deal of time and rarely finds useless states. so it is usually
disabled. We conjecture that the presence of useless states in the PPA results from a

flaw in the input grammar.

6.2 PPA-Driven Recognition

We have implemented three recognizers. all of which use the same tables as generated

by the table back end:

l. 1r0. a LR(0) recognizer using the algorithm from Section 4.8.

T
2. tree.a Tomita recognizer with a tree-structured stack — common stack prefixes

are preserved during parsing. Tree was a prototype for graph. below.

3. graph. a Tomita recognizer with a graph-structured stack. This implements
the algorithm from Section 5.3. and is the program used in the timing tests
of Section 5.4. It uses a reference-counting garbage collection scheme [21] to

reclaim unreferenced nodes in the graph-structured stack.

All the recognizers are written in C. and together consist of approximately 1000 lines
of code (excluding the PPA tables).

The PPAs generated for most grammars tend to be extremely sparse. and have a
large number of states. To conserve memory at parse time. we use an adjacency-list
representation for the PPA tables [6]. These adjacency lists are stored consecutively
in an array. Another array. indexed by PPA state number. holds pointers to each
PPA state’s list. If a PPA has v vertices and e edges in its transition diagram. then

it has O(ve) space requirements.

Chapter 7

Conclusions and Future Work

7.1 Future Work

7.1.1 Adding Lookahead
To again quote Grune and Jacobs [12. page 205]:

*Our initial enthusiasm about the clever and efficient LR(0) parsing
technique will soon be damped considerably when we find out that very
few grammars are in fact LR(0).’

Consider the grammar in Figure 7.1: its PPA is shown iu Figure 7.2. The grammar
is not LR(0). which manifests itself as the reduce/reduce contlict at the PPA state

marked "X.” By looking at the PPA. one can see that if one lookahead symbol were

0 8 = S5%
IS — Aa
2 S — Bb
3 A — a
4+ B — a

Figure 7.1: A non-LR(0) grammar.

reduce 3 reduce |

reduce 4 reduce 2

Figure 7.2: PPA for a non-LR(0) grammar.

used at ~X." it would be easy for the PPA to decide which reduce edge to traverse.

As we have presented and implemented them. PPAs take no lookahead into ac-
count and are therefore LR(0) parsers. However. they can be changed into LR(1}
parsers with relatively little effort. Lookahead svinbols arc only needed on edges
which are not already labeled with a terminal symbol: reduce. push. and pop.

The basic idea is as follows. Start at the end of the cdge ¢ which needs a set
of lookahead symbols. From that point in the PPA. follow all paths until an edge
is found labeled with a terminal symbol (this includes already-computed lookahead
svmbols adorning edges too). The collection of all such terminal symbols constitutes

the set of lookahead symbols for €.

In computing lookahead sets for a PPA. pop edges add a slight wrinkle. This is
because at run time, traversing a pop edge causes the PP\ to go to one of a set of
states. Fortunately. the set of states T a pop can go to is determinable at parser build
time. This leaves several approaches as to low to find the lookahead across a pop

edge:

l. Blind luck. As a special case. some grammars will have PPAs where the looka-
head set for a pop edge is the same no matter which state in 7 is returned to.

This case can be checked for at parser build time.

2. Almost LR(1). At parser build time. an inexact lookahcad set can be computed
by taking the union of all lookahead sets for states in 7. Although further study

is needed. this may be suitable for most practical graimmmars.

3. Full LR(1). At run time. the exact lookahead set for a pop edge can be known if
push actions place the appropriate lookahead set onto the stack along with the

state they push. Of course. this method would incur a slight run-time penalty.

Given that the primary application of our work is Tomita’s algorithm. a LR(1)
PPA may seem pointless. After all. Tomita’s algorithm is designed to deal with LR
conflicts! If even a single lookahead is used. however. it reduces the amount of work

a Tomita parser must do - there are fewer dead-end paths to follow during parsing.

v

A PPA may be further extended to be LR(A) by annotating edges with A symbols
of lookahead [17]. but this is not necessary in most cases. The number of lookahead
svmbols is a tradeoff between space (to store A > 0 lookahead symbols) and the class
of grammar that can be recognized. LR(l) is a good choice because it only requires
a small amount of extra space over LR(0). vet the LR(1) class of languages encom-
passes most "important™ ones such as programming languages. In addition. lookahead

analysis for a PPA would become more expensive for more than one lookahead.

7.1.2 Recognition vs. Parsing

There is a difference between recognition and parsing. A\ recognizer reads an input
string and will simply say “ves™ or “no.” depending on whether or not the input is in
the language that the recognizer accepts. A parser also does the jobh of a recognizer.
but in addition will output at least one derivation if given a valid input string {2].
Our work has primarily focused on recognition. While PPAs know when reductions
are performed. they make no attempt to record this information. In the case of
unambiguous grammars. there can be only one derivation for a valid input string.
and many LR parsers defer the work of remembering this derivation to the user. By
permitting semantic actions to be attached to reductions. a LR parser allows the user

to supply code to store all or part of a derivation (as needed). Extending the PPA

7Y
model to include semantic actions would be straightforward.

Ambiguous grammars pose a greater challenge. Here. an input string may have
multiple derivations. Tomita [33. 39. -10] solved the problem of recording these deriva-
tions by “sub-tree sharing.” Basically. Tomita took advantage of the node sharing in
the graph-structured stack to construct a directed acyclic graph (DAG) on the fy:
this DAG represents all possible derivations of the input. It is presently unclear if

PPAs. with their different method of using the stack. can employ a similar technique.

7.1.3 Even Faster Tomita Parsing

We see two approaches to building even faster PPA-based Tomita parsers:

I. Our implementation of the parser extensively uses dynamic memory allocation.
Study of the parser’s memory usage patterns. along with the tuning of our

custom-built memory allocator. should further decrease our parser’s run time.

2. The worst-case performance bound for Tomita's original algorithm is known to
be O(n?*'). where p is the length of the longest right-hand side of any rule in
the grammar [23]. This bound was reduced to O(n®) with a reformulation of

Tomita’s algorithm by Kipps [23].

A dominant factor in the time complexity of Tomita’s original algorithm is

30
that. upon reduction by a rule A — a. all paths of length |a| from a stack
top have to be found in the graph-structured stack. To obtain his bound of
O(nr*), Kipps reduced the amount of work necessary during this step by caching
previously-computed paths. In our PPA-based parser. reductions do not require
any stack operations. And. when a PPA does need to access the stack. it is only
ever accessing the topmost entry in the stack. Therefore. we suspect that by
combining our work with Kipps'. we may be able to improve the upper time

bound of Tomita’s algorithm bevoud O(n3).

7.2 Conclusions

Parsing is a key topic in computer science because of its wide variety of application
areas. [n particular. parsing user input quickly is important because of its high degree
of user visibility.

The class of context-free grammars is sufficient to describe many programming
languages and parts of natural language. For a large subset of context-free grammars
— the LR class — deterministic linear-time methods are known. Parsers for general
context-free grammars tend to be slower on unambiguous grammars not in LR. and

slower still on ambiguous grammars. Tomita's parsing method was designed for use

in parsing natural languages. and handles ambiguous grammars efficiently.

Unfortunately. while much work has been directed at speeding up LR parsers. not
much of this is applicable to the more general case of Tomita parsers. [n this thesis
we have taken steps to remedy this gap in knowledge: our work has resulted in the
speedup of Tomita parsers.

Revisiting early research on LR parsers. we developed an original algorithm to
construct PPAs. a variant of pushdown automata. These PPAs recognize more than
the handle-finding automata used in standard LR parsers. and as a result perform
much fewer stack operations than their counterparts.

Then. we devised a method to combine our PPAs with Tomita’s parsers. Our
PPA-based Tomita parser typically takes substantially less time to parse than a reg-
ular Tomita parser. even for highly ambiguous grammars. In the worst case. an
improvement by a factor of ten is shown to occur on most inputs.

Our conclusion is that by trading space for time — a larger LR parser in exchange
for faster execution times — we are able to build Tomita parsers which are faster and
better suited to more widespread application outside the natural language domain.

We believe that further research will make them faster still.

References

{t]

[9]

[£0]

A. V. Aho. R. Sethi. and J. D. Ullman. Compilers: Principles. Techniques. and
Tools. Addison-Wesley. 1936.

A. V. Ahoand J. D. Ullman. The Theory of Parsing. Translation. and Compiling.
Volume 1: Parsing. Prentice-Hall. 1972.

R. C. Backhouse. An Alternative Approach to the Improvement of LR(k)
Parsers. Acta Informatica. 6:277-296. 1976.

A. Bhamidipaty and T. A. Proebsting. Very Fast YAC(C-Compatible Parsers
(For Very Little Effort). Technical Report TR 95-09. Department of Computer
Science. University of Arizona. 1995.

N. Chomsky and G. A. Miller. Finite State Languages. [nformation and Control.
1:91-112. 1958.

T. H. Cormen. C. E. Leiserson. and R. L. Rivest. [ntroduction to Algorithms.
McGraw-Hill. 1990.

P. J. Denning, J. B. Dennis. and J. E. Qualitz. Machines. Lenguages. and
Computation. Prentice-Hall, 1978.

P. Eades. X. Lin. and W. F. Smyth. A fast and effective heuristic for the feedback
arc set problem. Information Processing Letters. 47:319-323. 1993.

J. Earley. An Efficient Context-Free Parsing Algorithm. Communications of the
ACM, 13(2):94-102, 1970.

(. N. Fischer and R. J. LeBlanc. Jr. Crafting a Compiler. Benjamin/Cummings.
1938.

[11]
[12]

[13]

(23]
[24]

[25]

[26]

33
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman. 1979.

D. Grune and C. J. H. Jacobs. Parsing Techniques: A Practical Guide. Ellis
Horwood. 1990.

S. Heilbrunner. A Parsing Automata Approach to LR Theory. Theoretical C'omn-
puter Science, 15:117-157. 1981.

J. E. Hopcroft and J. D. Ullman. [ntroduction to Automata Theory. Languages.
and Computation. Addison-Wesley. 1979.

R. N. Horspool. Personal communication. October 1997.
R. N. Horspool. Personal commmunication. November 1997.
R. N. Horspool. Personal communication. February 1998.

R. N. Horspool and M. Whitney. Even Faster LR Parsing. Software. Practice
and Erperience. 20(6):515-535, 1990.

M. Johnson. The Computational Complexity of GLR Parsing. In Tomita [41].
pages 35-42.

S. C. Johnson. YACC — Yet Another Compiler Compiler. UNIX Programmer’s
Manual. 7th Edition. 2B. 1979.

R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. Wiley. 1996.

R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher. editors. Complerity of Computer Culculations. pages 35-103.
Plenum Press. 1972.

J. R. Kipps. GLR Parsing in Time O(r®). In Tomita {41]. pages 43-59.

D. E. Knuth. On the Translation of Languages from Left to Right. /nformation
and Control. 3:607-639. 1965.

D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley. 1973.

D. C. Kozen. Automata and Computability. Springer-Verlag. 1997.

[27]

[39]
[-+0]

S+

F. E. J. Kruseman Aretz. On a Recursive Ascent Parser. [nformation Processing
Letters. 29:201-206. 1983.

R. Leermakers. Recursive ascent parsing: from Earley to Marcus. Theoretical
Computer Science. 104:299-312. 1992.

H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall. 1981.

M. Lutz. Programming Python. O Reilly & Associates. 1996.

P. McLean and R. N. Horspool. A Faster Earley Parser. In Proceedings of the
International Conference on Compiler Construction (C'C' "96). pages 231-293.
1996.

T. J. Pennello. Very Fast LR Parsing. In Proceedings SIGPLAN St Symposium
on Compiler Construction. volume 21(7) of ACM SIGPLAN Notices. pages 145
151, 1936.

F. C. N. Pereira and R. N. Wright. Finite-State Approximation of Phrase-
Structure Grammars. In E. Roche and Y. Schabes. editors. Finite-State Language
Processing. pages 149-173. MIT Press. 1997.

P. Pfahler. Optimizing Directly Executable LR Parsers. In Compiler Compilers.
Third International Workshop., C'C "90. pages 179-192. Springer-Verlag. 1990.

G. H. Roberts. Recursive Ascent: An LR Analog to Recursive Descent. ACH
SIGPLAN Notices, 23(8):23-29. 1Y88.

G. H. Roberts. Another Note on Recursive Ascent. [nformation Processing
Letters. 32:263-266. 1939.

E. Speckenmeyer. On Feedback Problems in Digraphs. n Graph-Theorelic (Con-
cepts in Computer Science. pages 213-231. Springer-Verlag. 1939.

M. Tomita. An Efficient Contert-Free Parsing Algorithm for Natural Languages
and [ts Applications. PhD thesis. Carnegie-Mellon University. 1985.

M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic. 1936.

M. Tomita. An Efficient Augmented-Context-Free Parsing Algorithm. Compu-
tational Linguistics. 13(1-2):31-46. 1987.

[41] M. Tomita, editor. Generalized LR Parsing. Kluwer Academic. 1991.

[42] F. W. Weingarten. Translation of Computer Languages. Holden-Day. 1973.

IMAGE EVALUATION
TEST TARGET (QA—23)

16

L4

.

150mm

125

~Co

© 1993, Applied Image, Inc., Ail Rights Reserved

