THE EFFECTS OF SAMPLING,
RECONSTRUCTION, AND T MODULATION
FOR POLAR K-SPACE ACQUISITIONS IN
MAGNETIC RESONANCE IMAGING

by

M. Louis Lauzon

Department of Medical Biophysics

Submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario
London. Ontario
February 1998

© M. Louis Lauzon 1998



i~

Your file Votre reférence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la

National Library Bibliotheque nationale
of Canada du Canada
Acquisitions and Acquisitions et )
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
The author has granted a non-
exclusive licence allowing the
National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-31087-6

Canadi



Abstract

Magnetic resonance imaging is a powerful imaging modality whereby tissue can
be characterized according to various contrast mechanisms. most notably Th-weighted
contrast. The T)-weighted images are very useful clinically. but the major disadvan-
tage is that these high-quality images often require long imaging times.

The Cartesian RARE-mode acquisition proposed by Hennig retains the soft-tissue
contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of conventional T)-
weighted images. but at a reduced acquisition time. Moreover. non-Cartesian sam-
pling schemes offer further advantages in motion and flow artifact suppression. ane
efficient use of gradients.

In this treatise. the viability of T,-weighted polar k-space sampling acquisitions
is assessed and compared for projection reconstruction (PR-MRI) and concentric
circles (CC-MRI). We analyze the fundamental aspects including sampling and image
reconstruction effects such as aliasing. resolution. and SNR. and we investigate the
T)-weighting contrast of PR-MRI and C'C-MRI when imaging in RARE-mode.

The Fourier aliasing effects of uniform polar sampling are explained from the
2D principal point spread function (PSF). This is determined by assuming equally-
spaced concentric rings in k-space. The 2D polar effects such as replication. smearing.
truncation artifacts. and sampling requirements are characterized.

Although the 2D polar sampling PSF leads to some subtle aliasing effects and
artifacts. these effects can be suppressed depending on the choice of reconstruction
algorithm one uses. For uniform polar sampling. both gridding (GRD) and convolu-

tion backprojection (CBP) are applicable. The respective strengths and weaknesses
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of these algorithms are analvzed. compared. and discussed. Provided that the image
resolution and the SNR are considered together. these algorithms perform similarly.
But. their aliasing behaviour is different because GRD is a 2D Fourier inversion al-
gorithm. whereas C'BP is based upon a D Fourier inversion.

The effective echo times (TE) and resulting T contrast curves of RARE-mode PR-
MRI and CC-MRI are derived. The effective TE of RARE-mode PR-MRI is shown to
be highly dependent on T. the echo spacing (ESP). and the echo train length (ETL).
By comparison. the effective TE of RARE-mode C'C-MRI is not nearly as sensitive
to ESP and ETL. especially for large objects within the field of view.

Finally. we propose a novel yet general method of correcting for the T modulation
effects of RARE-mode sequences to allow the acquisition of high SNR. high CNR.

properly T,-weighted images.

Keywords: polar k-space. principal point spread function. gridding and convo-
lution backprojection reconstruction. resolution. SNR. aliasing. and

T> modulation
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Chapter 1

Introduction

1.1 Brief MR History

Nuclear magnetic resonance (NMR) was first observed in 1945 by two independent
groups. one being the Stanford research group headed by Bloch [1]. and the other be-
ing the Masachusetts Institute of Technology (MIT) research group under the leader-
ship of Purcell [2]. Their pioneering achievermnents were recognized in 1952, for which
both Bloch and Purcell shared the 1952 Nobel Prize in Physics.

From 1946 onwards. NMR became a viable and useful tool in probing the chemical
composition of materials. Although a comprehensive explanation of the theory of
NMR is bevond the scope of this treatise. many books have been written on the
subject. among them the two "bibles of NMR™ by Slichter (3] and Abragam [4].

[n 1973. the State University of New York at Stony Brook research group headed
by Lauterbur succeeded in forming images using NMR [3]. They realized that because
the resonant frequency is proportional to the magnetic field strength. a magnetic field
gradient yvields multiple resonant frequencies. each one corresponding to a spatial
location in the imaging field of view (FOV).

Since its inception in 1973. there have been numerous studies and advancements
in the field of MR imaging (MRI). In fact. the progress has been so rapid that a
complete bibliographic listing is not feasible here. However. for an in-depth historical

review of MRI. the textbooks by Morris [6] and Brey (7] prove to be very informative.
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1.2 Background Theory

Unlike most other imaging modalities modalities. MRI data acquisition occurs in
Fourier space. and the image is calculated from the inverse Fourier transform. Fourier
theory. then. plays an important role in understanding MRI image effects.

In this section. the MRI signal equation is developed which shows the explicit
Fourier nature of MRI. Furthermore. some basic vet useful concepts of Fourier theory

are presented.

1.2.1 Signal Equation

Let us first review the underlving theory of MRI. The governing phenomenological

equations that describe magnetic resonance are the Bloch Equations [3]. namely

dm ( B my . myA+mo—m:. (1.1)
— = 3(mxB)—- =&~ F§+ ——: .
dt / 2-1' 2,9 T[

where B =(B,. B,. B.) is the magnetic field strength. m = (m_,.m,.m.) is the mag-
netization spin-density. m, is the equilibrium magnetization spin-density along the
z-axis. 7 i1s the gyvromagnetic ratio. T} is the spin-lattice relaxation time constant.
i.€. the characteristic time of regrowth back to equilibrium in the z-direction. and T,
is the spin-spin relaxation time constant. i.e. the characteristic time of dephasing of
the magnetization in the transverse plane. Note that m. B and their corresponding
components are functions of space and time. whereas m,. T,. and T, are functions of
space only.

In 1956. Torrey [9] adapted the Bloch equations to include diffusion effects. and
in 1965 Stejskal [10] included velocity effects in the so-called modified Bloch-Torrey
equations. namely

dm my, Mmy. my,~m,,
W = ,(mXB)—?:I—?zy+T~

—(V-vim+V-D-Vm (1.2)

where v and D represent the velocity vector and diffusion tensor. respectively. In

this treatise. however. we will not concern ourselves with diffusion or velocity. but



will focus primarily on sampling effects and T> modulation effects. Therefore. the
signal equation is derived from Eq.(l.1) only. The expansion of Eq.{l.l) into its

components describes the temporal evolution of the magnetization:

dm, my

R s (my,B: —m.B,) — T

dm, my .
(If - I(m:B.r_mrB:)——In'_Z' (l;)
dm. m, — n:

di = ,(m,By—myB:)ﬁ-T

In MR. we are interested in both the longitudinal and transverse components of the
magnetization vector. We define them as follows. where the spatial and temporal

dependences are given explicitly:

Myony, = m:(r'[)

Myruns = Mpeylrt) = mr.t)+imy(r.f) (L. 1)

where i = /—1. After the radiofrequency (RF) pulse has been turned off. the magnetic
field strength components are B, =0. B, =0. and B.(r.t)= B+AB.(r+Gl(t)r. where
B, is the DC magnetic field strength. AB.(r) are z-directional field inhomogeneities.
and G(¢t) = (G,.G,. () is the time-dependent gradient field necessary for spatial
localization. By specifving the initial conditions of the magnetization after the RF

pulse as m,,(r.0)=my (r) and m.(r.0)=m?(r). we find

mo(r.t) = my(r) + (m3(r) = my(r)) e=/THF (1.3)

v (r) C—I/Tz(l‘) e—i‘/Bote—i’v.L\B:(l‘] t 6-'1’- f;G(Tl'if'l' ( [.6)

ry

mg(r.f) = m

Eq.(1.3) is simple and straightforward. It describes the regrowth of m. from its
initial value of m2(r) at time ¢ =0 back to its equilibrium value of m,(r) as ¢t — x.
Note that there is no phase modulation of m. during its temporal evolution.

In Eq.(1.6), the e=/T2 term describes an amplitude modulation (T3 decay). while
all other exponential terms describe a phase modulation. More specifically. the phase

—i~Bo

factor e ¢ describes the oscillatory (or precessional) behaviour of the transverse



magnetization about the z-axis at the Larmor frequency ~ B,. The term e~ "8:(r}t
imposes a position-dependent precessional perturbation (i.e. an off-resonance) effect
on the magnetization. Finally. by defining k(¢) =%/1Gf“) dr. the last term can be
written as €27 KT which. as it turns out. is the Fourier kernel.

The above model is correct for liquid-like systems. but not for solids. Since bio-
logical systems consist of about 30% water and solids do not contribute much signal
due to very short T>. this model is adequate for MRI purposes.

Now. the acquired signal (sav M) is actually the sum of the transverse magneti-
zation at all positions within the excited region (as determined by the RF coil). If we

demodulate the acquired signal at the Larmor frequency. which effectively amounts

to multiplying by the phase factor e**"8+¢, then

+x . ek
Mk.t)y = / mjy(r)e"‘/T-’me"”"\‘B:(r)‘e""' Tdr
e
= F{m,(r)e /T ¢moaburie} (1.7)
=2-tkr

where F is the Fourier transform (FT) operator since ¢ is the Fourier kernel.
This is the MRI signal equation which defines the acquired data in terms of the spatial
frequencies in Fourier space. more commonly known as k-space. The MR image. /(r).

is then calculated from the inverse Fourier transform (IFT) of M(k.t). namelyv

v

[(r) = f“{.w(k.t)} (1.8)

M(k.t) and I(r) form an FT pair and depict the current formalism in MRI:
(1) acquire the data in k-space. and (2) take the [FT to reconstruct the MR image.
The MR image characteristics will depend on the magnetization spin-density
m3 (r). on Ts(r). and on the off-resonance \AB.(r) as evidenced by Eqs.(1.7.1.8).
Also. from Egs.(1.3). we see that m,. m,. and m. are coupled so that the transverse

magnetization also bears T)(r) information. Consequently. the reconstructed MR

image characteristics will also depend on T)(r).



1.2.2 Fourier Theory

As shown in the previous section. the MRI acquisition process occurs in Fourier space.
and one must transform to the image domain via the [F'T. Fourier theory. then. is
the cornerstone of MRI image reconstruction.

Although many books have been written on the various topics of Fourier analysis
and theory. this section merelyv touches on the more important aspects of Fourier
transforms. The reader is referred to Papoulis [11] and/or Bracewell [12] for an in-
depth analysis of continuous Fourier theory. and to Brigham [13] for the discrete

Fourier transform theory.

Fourier Integral

The Fourier transform of the one-dimensional (1D) function f(r) is given as £ (k).

These are defined as

+x + B
Fhky) = flrye ¥k dr. flr) = / Flhoyet?™ % dk, (1.9

- x

The e**77k: term is the Fourier transformation kernel and represents the complex
sinusoid cos(2xrk,;) + isin(2xrk;). Now. f(r) and F(k;) are a Fourier transform
pair. where r and k. are Fourier conjugates. For r in units of length. k. is in units
of reciprocal length. often termed the spatial frequency.

Clearly. one can generalize the above integrals to multiple dimensions. For exam-

ple. in 3D f(z.y.z) transforms to F(k;.k,.k.) according to
+~ +xc +x :
Fhp by k) = / / f(r.y.z) e 2milekatubytzkal g pdyd (1.10)

Furthermore. we do not necessarily have to restrict ourselves to Cartesian coordi-
nates. One can transform either (z.y.z) or (k.. k,.4:) or both to different coordinate
systems. whereby Eq.(1.10) adopts a new form. For example. one can transform to

polar coordinates to gain further insight into the aspects of polar sampling.
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Fourier Theorems

The power of Fourier theory lies in its easily-derived theorems. The theorems (in
ID) are simply stated without derivations. although they can be derived from basic
principles and Eq.(1.9). For a more thorough list. the reader is referred to Chapter 6

of Bracewell [12].

Table 1.1: Basic Fourler transform theorems

Theorem Flr) Fk.)
Scaling flar) ﬁF (/‘(—f)
Addition flry+g(ry  Flk)+ Gk,
Shift flr —a) ek Fik,)
Convolution  f(r) = g(r) Fke)Glkz)

+2 +C
Parseval / |f(r)|3dl~=/_ |F (k)2 dky

The theorems of Table 1.1 can easily be generalized to multiple dimensions. They are

used throughout this treatise.

Discrete Fourier Theory

[n general. one does not measure the continuous (i.e. analog) signal f(.r). but rather
a sampled (i.e. digital) signal. say fs(z). which is a discrete representation of f(.r).
Mathematically. we can express this discretization as the multiplication of the contin-
uous signal with a sampling function s(r) consisting of a series of impulse functions.

often called é-functions. For example. if f(r) is sampled at P locations. then

P P
filz) = f)sx) = f(2) X b(r—zp) = 3 [lap)8(x =)
p=1 p=1
= {fx).f(z2)..... flzp) } (L.11)



One clearly sees the discrete nature of f;(r) owing to the sifting property of the o-
b

function. t.e. / flr)é(r—2')dr= f(r') if a< t' < b. Using the Fourier cenvolution
7

theorem from Table 1.1. we obtain

+2
Foky) = Flhk)*S(ky) = Flu}yS(k, — u) du (1.12)

-
where F(k,) and S(k.) are the FTs of f(r) and s(r). respectively. and * represents
the convolution operation. Convolution is simply this: (1) take the mirror image of
one of the functions. (2) slide this mirrored function to position w«. (3) multiply this
with the un-mirrored function. and (4) calculate the area. This gives one value {at
position u) of the convolution integral. To get the full curve. repeat steps -4 for all
possible u locations.

One must recognize that the convolution ogeration is a ~“smearing” operation
since F(k;) is possibly smoothed and/or blurred and/or replicated depending on the
functional form of S(k;}). [n other words. the process of sampling affects the overall
appearance of the reconstructed function. Note that convolution with a single o-
function returns the original function centred on that ¢-function. and so no blurring
or replication occurs. But. since the Fourier conjugate of a ¢-function is a constant
extending over all space. this is the same as having sampled continuously over an
infinite extent. which is impractical.

In practice. one samples only a finite number of points. This can be thought of
as multiplying a function of infinite extent with some truncation window. And. since
multiplication in one domain engenders convolution in the other. we see that finite
extent sampling may corrupt the true signal: this is called a truncation artifact.

The above effects are very well known in the case of Cartesian sampling. as ex-
pounded upon by Brigham [13]. For a historical perspective. the reader is referred
to the original Nyquist paper of 1928 [14] which describes the aliasing (replication)
phenomenon. To prevent aliasing, Nyquist stated that “the sampling rate must be at
least twice as large as the largest frequency component™. The reader is forewarned

that the above-mentioned definition of the Nyquist criterion applies to Cartesian sam-



pling. but that this definition may not necessarily apply to non-Cartesian sampling.
[n fact. a generalized Nyquist criterion may not exist in a similar form: consequently.
sampling criteria for non-Cartesian acquisitions may be more stringent than those of
Cartesian acquisitions.

Note that in MRI. the sampling procedure occurs in k-space as opposed to image
space. Therefore. blurring. replication. and truncation artifacts show up in the recon-
structed image. In summary. the sampling function determines the basic signal pro-
cessing properties in the resuitant image. Using Fourier theory. one can characterize
the resolution. signal-to-noise. contrast-to-noise. aliasing. 7) and 7> modulations. and
off-resonance effects in the reconstructed images. Moreover. because of the flexibility
of data acquisition. one may acquire the MR k-space data in various non-rectilinear
fashions. This allows the possibility of exploring potential advantages and benefits of

non-rectilinear Fourier theory and analysis.
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1.3 Polar Sampling

[n this section. a brief historical perspective of polar sampling is given. and its close
relationship to computed tomography is described. Also. a bibliographic review of

the salient works on polar sampling in MRI is given.

1.3.1 Historical Perspective

The idea of using linear magnetic field gradients dates back to the early 1950s [15.
16. 17]. However. about 20 vears elapsed before Lauterbur [53] and Mansfield [13]
independently realized that the NMR signal {often called the free induction decay. or
FID) could be encoded with structural information of the spin system by using these
same linear magnetic field gradients.

With the theoretical development of section 1.2.1. one can now appreciate the
Fourier nature of the spatial encoding process. In the early 1970s. though. this
formalism was not vet well established. Nevertheless. Lauterbur reasoned that the
(inverse) FT of the collected FID acquired with a linear magnetic field gradient at
angle f represents a projection at angle 8 through the object being imaged. By varving
the projection angle from 0° to 130°. one can generate a complete set of projections
through the object in analogy to computed tomography (CT) data.

In MRI the projections are calculated from the inverse Fourier transform of the
acquired radial k-space lines. while in CT the projections are acquired directly in
image space. The projection data can then be reconstructed using the convolution
backprojection algorithm. an in-depth review of which is given by Herman [19)].

Lauterbur proposed that his imaging technique be called zeugmatography. which
was taken from the Greek word zeugma meaning -“that which is used for joining .
However. the term projection reconstruction MRI (PR-MRI) is probably more ap-
propriate. By use of the projection (or central) slice theorem [20]. we next show that

PR-MRI and CT data represent k-data on a polar grid.
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1.3.2 Projection Slice Theorem

The projection slice theorem is most easily understood with an example [21]. The 2D

functions f(r.y) and F(k..4,) form an FT pair. whereby
+x  r+x il .
Flhe k,) = / flr.y) e 3kl grgy (1.13)

An arbitrary projection of f(r.y) can be obtained by coordinate transtormation
(e.g. a rotation) followed by integration along one of the coordinates. For example.
if we integrate along the y-axis and project f(r.y) onto the r-axis (‘.e. #=0). then
the projection pg—g(r) is

+x

Pi=o(2r) = ) flr.y)dy (.14

- X

so that its FT pair. P9=o(ﬁ'z)=f{pe=o(l‘)}. is given by

x Y +x +x Yy p A
Pi=o(k,) = / Po=olz) e 37k dr = / { ] f(.z-.y)(ly]e"“"“‘ dr

- -x

X il ke .
= f _f(r-y)f""‘[“‘*”‘”] drdy

ky=0

= F(k..0) (1.13)

The IFT of P_g(k.) returns the projection ps—o(r) given by F~! {F(/:f.(])}. An
important property of the Fourier transform is that it preserves orthogonal transfor-
mations. including rotations [12]. Thus. the projection of f(r.y) at any angle can be
computed as the [FT of the 1D radial line in F(k,.k,) passing through the origin and
at the same angle 0.

[n retrospect. then. the FT of each image domain projection at angle ¢ represents
one radial line in k-space at the same angle . Thus. PR-MRI and CT data are both
polar sampling acquisitions. The difference is that in MRI one samples the FT of the
projections in k-space. while in CT one samples the image domain projections directly.
The ensuing ramifications of this subtlety are examined in the Reconstruction Effects

chapter.
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1.3.3 Projection Reconstruction

As mentioned previously. the beginnings of MR imaging are attributed to Lauterbur
[3] who acquired the Fourier transform of projections through the object. namely
radial k,-lines in k-space. Throughout the history of MRI. PR-MRI has proven to
be useful and beneficial in many clinical situations.

Projection reconstruction MRI is advantageous in acquiring images of short T,
and T, species. Ra {22. 23] used a hybrid PR-MRI and 2DFT imaging method to
measure the short 7, components of sodium **Na within the ranges 0.7-3.0ms and
16-30ms at 1.5 Tesla. The hybrid sequence involved a PR-MRI acquisition for the
ry-directions. and a 2DFT approach in the slice (or =) direction.

Lung parenchyma imaging. like sodium imaging. is limited by low proton den-
sity and short T, components. Furthermore. susceptibility and motion artifacts also
corrupt the image. But. signal intensity from the lung parenchyma. visibility of
pulmonary structures. and signal-to-noise ratio (SNR) are improved using PR-MRI
[24. 23], Also. the imaging of boron ''B (which has a T, on the order of 610us) was
achieved by Glover [26] for potential application to boron neutron capture therapy. a
technique suggested for treating certain brain cancers.

Another advantage of PR-MRI is the suppression of flow and motion artifacts
as compared to conventional 2DFT imaging methods. This is mostly due to the
inherent signal averaging of low spatial frequencies from oversampling of central k-
space data. Nishimura [27] found that PR-MRI is an effective method of eliminating
the displacement artifact arising from flowing spins. Glover [23] also showed that
PR-MRI techniques have intrinsic advantages over 2DFT methods with respect to
diminished artifacts from respiratory motion.

Gmitro [29] used a PR-MRI diffusion-weighted technique to reduce the sensitivity
to global translational motion of the object. while Glover [30] developed a consis-
tent PR technique to reduce streak artifacts by applying consistency criteria to the

acquired k-data.
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Furthermore. the motion artifacts in functional MRI (£MRI) were compared for
2DFT. PR-MRI. and spiral scans [31]. The motions arise from the pulsations of the
brain which cause pulsatile phase shifts in the acquired k-data. [t was shown that
PR-MRI and spiral methods exhibited reduced artifacts compared to conventional
2DFT imaging.

[n addition. the projection reconstruction k-space trajectory lends itself to RARE-
mode acquisition {also known as Fast Spin Echo and/or Turbo Spin Echo). RARE is
the acronym of Rapid Acquisition with Relaxed Enhancement in which the acquisi-
tion time is shorter than in conventional spin echo acquisitions. This is achieved by
assigning multiple echoes in the spin echo train to different regions of k-space. The
ramifications of RARE-mode polar acquisitions are examined in the T, Modulation
Effects chapter. Early on. Hall [32] devised a T>-weighted RARE PR-MRI sequence.
In 1994. Rasche [33] analyzed and applied RARE-mode PR-MRI to abdominal and
cardiac imaging. This provided a familiar contrast behaviour at a reduced scan time.

Hafner [34] proposed a simple fast imaging scheme based on low angle pulse ex-
citation PR-MRI called BLAST (back-projection low angle shot) imaging applicable
for imaging of both solids and liquids. The PR-MRI technique has also been used as
a chemical-shift imaging method [33] whereby the PREP (projection reconstruction
echo planar) imaging sequence was used to obtain fluorine images.

Still. projection reconstruction MRI can be disadvantageous. especially in the
presence of magnetic field inhomogeneities [36]. For 2DFT. these inhomogeneities
lead to geometrical distortions which can be corrected for easily. whereas in PR-MRI
the inhomogeneities produce complicated distortions and a loss of spatial resolution
(i.e. blurring in the image). Nevertheless. PR-MRI offers great promise in the imaging
of short T, species. and in motion artifact suppression.

Therefore. a fundamental in-depth understanding of the image effects such as
aliasing. resolution. SNR. and 7> modulation effects are deemed necessary to establish

the full potential of PR-MRI acquisitions.
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1.3.4 Concentric Circles and Spirals

Polar sampling can be achieved by orienting the readout direction along the radial
direction and repeating this acquisition for different discrete angles (such as in PR-
MRI). or by orienting the readout direction along the azimuthal direction and re-
peating the acquisition for different radii. This second method is termed concentric
circles MRI. or CC-MRI. and is a close relative of spiral imaging.

Concentric circles and spiral k-space trajectories were first conceptualized by
Ljunggren [37]. and later implemented by Matsui [38] and Ahn [39]. respectively.
These trajectories are advantageous in that the point spread functions due to T de-
cay are circularly symmetric. and the sequences exhibit a decreased sensitivity to flow
artifacts.

The problems of reconstructing a 2D function from a set of spiral samples were
addressed by Yudilevich and Stark [40]. but a more general reconstruction method
known as gridding [41. 42. 13| was further exploited by Jackson and Mever [4. 13].
Gridding is a flexible algorithm that can be used to reconstruct any non-Cartesian
k-space data set including spiral. PR-MRI. and CC-MRI acquisitions.

Many studies have been performed using spiral k-space trajectories including
Meyer [44] who investigated coronary arterial disease. Gatehouse [16] and Pike [17]
who examined spiral phase contrast methods for blood flow and velocity imaging.
respectively. and Noll [43] who mapped cortical activation and showed that artifacts
were reduced as compared to conventional imaging. Also. Block [19] shortened the
acquisition time by developing a T»-weighted RARE spiral sequence.

As a simplification to understanding the effects of spiral sampling. concentric
circles can be used. One advantage is that the samples lie on circles at discrete radial
locations. This allows an easier analysis of sampling effects such as SNR. resolution.
and aliasing. and allows for different reconstruction algorithms (e.g. gridding and
convolution backprojection) to be used. CC-MRI also lends itself to RARE-mode

acquisitions whereby the T3 modulation is circularly symmetric and isotropic.
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Matsui [33] developed a concentric circles approach to k-space sampling using only
half the number of pulses required by conventional 2DFT MR imaging. Moreover.
since the readout is in the azimuthal direction (as opposed to the radial direction).
fewer excitations are needed than in PR-MRI since the number of azimuthal samples is
typically =/2 times greater than the number of radial samples. Azhari [50] contrasted
CC-MRI with ~half-Fourier™ 2DFT methods and showed that for equal acquisition
times. C'C-MRI provides about a 17% increase in SNR.

One must be cautious in applying the understanding of CC-MRI effects to those
of spiral MRI. This is especiallyv true in terms of image aliasing since the respective
point spread functions due to sampling are not identical. although they are similar.
However. the T, modulation effects are nearly identical for C'C-MRI and spiral MRL

The importance of this treatise lies in the general formalism that is established
to analyze the sampling. reconstruction. and 7> modulation effects for polar k-space
data. MRI data acquisition involves a number of tradeoffs which may affect the
reconstructed image. In order to optimize the image quality and minimize any image
artifacts. it is imperative that one understand (1) the fundamental effects of the data
acquisition process. and (2) the MR physics associated with it.

This treatise attempts to lay some theoretical foundations to best understand the
tradeoffs involved. Since many possible acquisition schemes are possible. here we
limit ourselves to polar sampling with the intention that the conceptual formalism

established herein be applied to other MRI acquisition schemes.



1.4 Research Goal

Magnetic resonance imaging is a powerful imaging modality that allows various soft-
tissue contrast based primarily on proton density. T} or T» (the characteristic MR
relaxation times). diffusion. or a combination of these characteristics. The so-called
T,-weighted images are very useful clinically: but. the major disadvantage is that these
high-quality. diagnostically-interpretable images often require long imaging times.

The development and optimization of fast and ultrafast techniques [31. 52. 53. 54|
allow shorter acquisition times. However. these methods generally suffer from re-
duced image contrast and/or low SNR. The acquisition sequence proposed by Hennig
[33]. often termed RARE. retains the soft-tissue contrast and SNR of T»-weighted im-
ages. but with a reduced acquisition time in comparison to conventional T-weighted
images.

Currently. non-Cartesian k-space sampling schemes such as spiral acquisitions [3Y.
10. 44]. projection reconstruction [3. 32. 26]. and concentric circles [33] are becoming
more common. [n particular. projection reconstruction and concentric circles schemes
lend themselves easily to RARE-mode acquisitions.

The hypothesis is that polar sampling schemes. and more specifically RARE-mode
polar sampling. are a viable alternative to acquiring high contrast. high SNR. T,-
weighted MR images. In this treatise. the research goal is to analyze the fundamental
aspects of polar k-space sampling. namely sampling and image reconstruction effects
such as aliasing. image resolution and signal-to-noise. and investigate the T, modula-
tion effects when imaging in RARE-mode. The theoretical analyvsis is substantiated
with experimental verification.

Our aim is to establish a firm theoretical framework to properly characterize
the spatial effects of MR data acquisition and to lay the conceptual foundations
of how one should characterize 7> modulation (a temporal effect). The fundamental
understanding gained herein leads us to a potentially powerful. yet general and simple

T5 demodulation method.
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1.5 Thesis Overview

[n this treatise. the research goal is to analyze the fundamental aspects of polar
k-space sampling dealing with image resolution. SNR. aliasing effects. and 7> modu-
lation effects.

In the Sampling Effects chapter. the 2D Fourier aliasing effects of uniform polar
sampling (:.€. equally-spaced radial and azimuthal samples) are explained. The pri-
mary focus is on the radial effects. and so the principal polar point spread function
(PSF) is evaluated by assuming equally-spaced ring samples in k-space. Analyti-
cal derivations of the polar PSF are given. an intuitive approach is presented. and
the aliasing effects are discussed. demonstrated. and numerically substantiated. This

chapter is a published manuscript:

Lauzon ML. and Rutt BK. “Effects of Polar Sampling in K-Space™.
Magn Reson led 36. 940-949 (1996).

In the Reconstruction Effects chapter. the resolution. SNR and aliasing charac-
teristics of the gridding and convolution backprojection reconstruction algorithms
are compared and contrasted for polar k-space sampling. This includes an in-depth
analysis of modulation transfer functions and noise propagation. and a description
of the aliasing effects of polar k-data reconstructed with the respective reconstruc-
tion algorithms. Practical SNR improvements with either reconstruction method are
discussed. and the theoretical expectations are verified both numerically and exper-
imentally. Moreover. the potential benefits of a hybrid gridding and convolution
backprojection reconstruction algorithm applicable to radially non-equidistant but
azimuthally equidistant polar k-data are analvzed and discussed. This chapter is a

submitted manuscript currently (February 1998) under review:

Lauzon ML, and Rutt BK, “Polar Sampling in K-Space: Reconstruction
Effects”. submitted to Magn Reson Med on January 8. 1997. and revised

November 5", 1997.
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In the T, Modulation Effects chapter. the amplitude modulation effects of RARE-
mode polar sampling for projection reconstruction and concentric circles are analyzed.
The T,-weighting and 7> impulse response function analyvtical formalism is presented.
Also. the effective echo times are derived. which allows one to characterize the effec-
tive T)-weighted contrast curves. The theoretical expectations are substantiated by
numerical simulations. and verified experimentally. The ramifications of T,-weighting
pertaining to polar acquisitions are discussed.

In the Conclusions and Discussion chapter. a summary of the more pertinent
and salient points of this treatise are presented. The results regarding overall image
quality are discussed. Also. a possible future direction in the area of T»-demodulated

MR imaging is presented.
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Chapter 2

Sampling Effects

2.1 Introduction

Magnetic resonance imaging (MRI) is a versatile imaging modality which allows
various sampling schemes. be they on a Cartesian. polar. spherical. or other non-
rectilinear coordinate system. The data are acquired in Fourier space. often termed
k-space: the image is the inverse Fourier transform (IFT) of these collected data.
which are sampled (i.e. discrete) as opposed to continuous. The discretization and
the finite extent of acquisition leads to potential aliasing effects and/or artifacts which
may adversely affect the image content.

In the majority of MR acquisitions. the data are acquired on a Cartesian co-
ordinate system. Use of the efficient fast Fourier transform (FFT) [l] transforms
the Cartesian k-space frequencies to (artesian image space intensities. The aliasing
effects in such cases are well understood [2. 3]. Cartesian acquisitions allow for ef-
ficient image reconstruction and exhibit aliasing properties that are easily described
by well-known Fourier theorems.

Currently. non-rectilinear sampling schemes are gaining popularity. most notably
spiral acquisitions [4. 3. 6], projection reconstruction [7. 8. 9]. and concentric circles
[10]. These non-rectilinear sampling schemes offer advantages in motion and flow ar-
tifact suppression. efficient use of gradients. and fast acquisitions. The disadvantages

lie primarily in more complicated image reconstruction and off-resonance effects. In



projection reconstruction MRI. the convolution backprojection algorithm [[1. [2] may
be used: in general. however. reconstruction involves regridding [13. 14. [5. 16] the
k-data onto a Cartesian grid and using the FFT. The gridding process may affect the
image [16]: but more fundamentally. non-rectilinear sampling itself will influence the
image characteristics.

Here. we explain the two-dimensional (2D) Fourier aliasing effects of uniform po-
lar sampling. whereby the samples are equallv-spaced both radially and azimuthally.
We focus primarily on radial effects and so assume equally-spaced ring samples in
k-space. Previous work has been done by Stark with regards to computed tomogra-
phy (CT) [I7. 18. 19]: here we adopt a different approach pertinent to MR sampled
data. In this chapter. no attempt is made at explaining MR physics effects such as
off-resonance effects. motion. T; and/or T» modulations: we deal strictly with the
sampling aspects of polar acquisitions. Analyvtical derivations are given. and their

significance is discussed.
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2.2 Theory

[n Cartesian coordinates. the concept of finding the point spread function (PSF). /..
the Fourier transform of the sampling function. in two (or more) dimensions follows
readily from the one-dimensional (1D) case: one performs the [D-FT independently
for each dimension. In polar coordinates. however. the task is more difficult.

A sampling function can be mathematically represented as a superposition of
Dirac delta-functions (é-functions). An important aspect of polar sampling. and
non-rectilinear sampling in general. is the weighting associated with each ¢-function.
This weighting occurs because é-functions are defined within an integral. and the
infinitesimal area of integration must be taken into account in order to properly
normalize each ¢-sample. [n section 2.2.1. we show that this weighting is the Jacobian
in transforming to a coordinate system where the é-spacing is rectilinear.

For polar sampling. the discretization occurs in both the radial and azimuthal
directions. However. in the limit of equally-spaced azimuthal samples being infinites-
imally close together. we can focus exclusively on the radial effects of polar sampling
since we effectively have a superposition of circularly symmetric ring samples. Al-
though the sampling of continuous rings is unrealizable in practice. its FT leads to
the principal PSFE of polar sampling which can be calculated using the Fourier-Bessel
(Hankel) transform. a 1D transform. In section 2.2.2. we develop the governing math-
ematical Fourier formulation. Based on work by Bracewell and Thompson [20]. we
separate the principal polar PSF into its main lobe and a series of ringlobes.

With the analysis developed in the theory section. we are able to characterize
the radial effects of polar aliasing. This includes concepts such as radial sampling

requirements. smearing. leakage. and truncation artifacts.
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2.2.1 Weighting of é6-Functions

Dirac delta-functions. represented as é(x). were introduced by Dirac in quantum
mechanics [21]. Fundamentally. é-functions (impulses) are defined by their action

within an integral. namely

b "o /
[, flr)8(r =) dr = { f((‘;' ) 'fo‘ihiri_i:eb (2.1)
This is called the sifting property of é-functions. Moreover. a é-function has zero
width and infinite height such that the é-area is unity. i.e. /+x s(r)dr=1. If one
changes the scale of r by a factor z. say r — r/z. then é(.r/z2) ; lzlé(x) [3. p.76]. In

other words. a change in scale weights the intensity of the impulse commensurately-.
In general. we may have a superposition of §-functions at various locations. For the
1D unit-spaced case. we have the shah function. [[I(r) =3, 8(xr — j). If we scale

[II(x) in the r-direction from equidistant unit-spacing to z-spacing. then

/ {Zé (? —j) } dr = /{z (r — =) |:|} dr by scaling property
y) - J
= /{Zé(u—j”sl}du for u=ur/: (2.2)
J

The above equation can be interpreted as follows: the d-functions have equidistant
z-spacing in the r-coordinate svstem but are unit-spaced in the u-coordinate syvstem.
However. in both the r- and u-systems. the ¢-functions have a weighting of z: in
the r-system. it arises because of the scaling property of é-functions. whereas in the
u-system. it is the Jacobian |dr/du|. For a general superposition of 8-functions of

the form 3~ é[z(r) — j]. we have

/{Z 8[z(x) = J] }dr = /{—Zl—c’i—.é(%—y_-d—a—)}dz by scaling property
J‘ <

- /{;au—j) dr

}du for u=:z(r) (2.3)
u
Note that the é-functions are equidistant and unit-spaced in the u—system. but could

be non-rectilinear in the r-system. As before. the weighting of the j** é-function is

the Jacobian |dz/dul.=; < |d2(z)/dz|Z2, -
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Note that when one writes 3~ é8[z(x) — j]. this is in fact a short-hand notation
for / 26[5(1') — Jj]dr whereby the é§-functions’ intensity and position information
are hi(lcien within the z{r) term. However. if one makes a coordinate transformation
from r to u such that the spacing is linear and unit-spaced in the u-system. we have
/ > 8[u = j] T, du. where J; is effectively the Jacobian evaluated at u=j. When
writlten in this manner. the intensity (7;) and position (u=j) of each ¢-function are
obvious. and the short-hand notation is given by ¥, 8[u — j] J,. Expressed in the r-
system. and because |dz(r)/dr|;l, =|dr/du|,=;=J,. any one-dimensional sampling

function can be written as
d e —ur,) J, (2.1)
J

where r, and J, are the location and weighting of the j* ¢-function. respectively.
Generalizing Eq.(2.4) to n-dimensions. we have

dr/Ouy ... dry/du, |

Séx—-x,)J  with J, = : SO (2.5)
! dr,/Ouwy ... dr,/ou, lx=x}
where x, and 7, are the location and weighting of the j** n-dimensional ¢-function.
respectivelv. As in the 1D case. the Jacobian is found by transforming from x-
coordinates to u-coordinates such that the é-functions are unit-spaced and rectilinear
in each of the n-dimensions in the u-system.

A few 2D examples may give a better intuition. First. let us look at 2D (‘artesian
sampling with spacing Ar and Ay in the r- and y-directions. respectively. The

transformation requires u; =.r/Az and u> = y/ Ay so that the Jacobian (and hence

the weighting) is ArAy:
ZZ&(.r—jA.l')é(y—kAy) ArAy (2.6)
] k

As a second example. we look at polar sampling where the radial (r) and azimuthal
(0) spacings are Ar and \d. respectively. The polar coordinates r; = rcosf. and

rp=rsinf can be transformed to rectilinear u~coordinates provided that u, =r/Ar.
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and u;=0/20: the Jacobian is |r|ArA@ and the polar sampling function is

> > 8[r — jArcos(kA8)] 8y — jArsin(kANG)] j(Ar)?2E (2.7)
2 1S

Note that for polar sampling. the weighting is proportional to the radial distance of
the sample. One can draw an analogy with parallel-beam computed tomography.

Although CT data are acquired in the image domain. the ID-FT of each image
domain projection at angle 8 represents the k-space line at angle #. To reconstruct
the image. each k-line is multiplied by the ramp filter (a function proportional to the
radial distance). inverse Fourier transformed. and backprojected. The ramp filter.
then. is simply the weighting necessary for polar sampling. Moreover. note that mul-
tiplication of the k-lines with the ramp filter is the Fourier conjugate to convolution of
the image domain projections with the [FT of the ramp-filter. Thus. the convolution
kernel of the CT convolution backprojection algorithm simply applies the necessary
polar sampling weighting in the image domain.

Mathematically. we can express discretization as the multiplication of a continuous
object with a sampling function. Each discrete sample subtends a given area. as
given by the Jacobian. In Cartesian sampling. each sample has the same constant
area. namely Ar\y. so that the é-area for each sample is constant. I[n equidistant
polar sampling. however. the sample size changes as a function of radius. Thus. to
normalize the ¢-area for each sample. we weight each sample by its areal extent: this
is equivalent to correcting for the sampling density.

Finally. note that if we had a non-rectilinear Fourier transform algorithm expressed
in u-coordinates. the algorithm would already include the Jacobian: the o-weighting
would effectively be “built-in" to the algorithm. An example is the Hankel transform
for circularly symmetric objects whose coordinate system changes from r- and y-
coordinates to r-coordinates. as will be shown in section 2.2.2.

In MRI. one can acquire the data in various 2D and/or 3D coordinate systems. To
reconstruct the object properly, however, one must weight the samples appropriately

depending on the reconstruction algorithm used.
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2.2.2 Ring Samples and the Principal Polar PSF

[n polar sampling. the coordinates of interest are the radial and azimuthal directions.
Tyvpically. one acquires enough azimuthal samples so that the maximum arc-distance
between samples is less or equal to the radial spacing. Under these circumstances.
the sampling effects are primarily associated with the radial direction only-.

To understand the radial effects of polar sampling. we will assume equally-spaced.
concentric. continuous ring samples. [n effect. we consider the limiting case where
the azimuthal sample spacing tends to zero. Since the sampling function exhibits
circular properties. it is advantageous to convert the Fourier transform integral from
('artestan to polar coordinates. In MRI. we acquire the data in k-space from which

the image 1s computed as the 2D inverse Fourier transform of S(&,. &, ):

I
H
.
o
—_—

+x rt+x .
s(r. y) — / / 5( If:- Ay) 62:x[rk;+yky] (lk:(”fy (-

where Ak, and &k, are the Fourier conjugates of r and y. respectively. [f we express the
Fourier and image domains in polar notation. namely k. =4k, cos ky. k, =&, sin k5. and
r=rcosf. y=rsiné. with k. and Ay the Fourier conjugates of r and . respectively.

we have [3. p.247]
s(r.f) = / / T Sk, k) €27 RO K= Ll e (2.9)
k=0 or =0

Furthermore. if S(k,.ky) is circularly svmmetric (which is the case here with concen-
tric rings). c.e. S(k..kg) — S(k;). then we can integrate over the &y variable to obtain

the well-known Hankel transform:
s(r) = 27/' Sk ) Jo(27rky) kndh, =/' (27k, Sk )} Jo(27rke ) dk, (2.10)
0 0

Note that S(k.) is weighted by the Jacobian 27k, so that the Hankel transform of
S(k;) is the same as the Cartesian Fourier transform of S(k,.4,). Thus. the necessary
weighting for polar sampling is built-in to this transform.

Assume we sample at the origin of k-space (k, = 0) and at M equallyv-spaced

concentric rings. as shown in Figure 2.1. For a radial spacing of A4,. the ring positions



are given by

M k AYS
Sl = —m) =5 8k, — mAk) Ak,

whose Hankel transform 1s

M
2m( Ak ) D] mdo(2rmAk,)

m=1

Ky

Figure 2.1: K-space sampling rings
Equidistant. concentric sampling rings in k-space.

SZ

31

(2.11)

As for the é-sample at the origin. one might assume the weighting to be identically

zero (since k. = 0). However. the weighting function. as discussed in section 2.2.1.

describes the areal extent of a given sample. If we had sampled continuously in the

radial direction. then the weighting would be zero at k. =0 since the areal extent of a

point is zero. But. for finite sampling. the sample has finite area. and so its weighting

is #(Ak./2)?. The Fourier transform of the weighted é-function at the origin is a

constant. namely 7(Ak,/2)%. Since the Fourier transform is a linear operator. the

IFT of S(k,) is given by

F(Akr)z R% 4

s(r) :

m=1

+ 27 (Ak,)? Z mJdo(2rrmAk,)
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[ts profile is depicted in Figure 2.2 for M = 9. where s(r) is called the prinei-
pal polar PSF. a term coined by Bracewell {20]. Some salient features of s(r) in-
clude: (1) discretization by Ak, in the radial direction leads to radial ringlobes at
r=j/Ak..j={1.2....}. (2) the radial ringlobes are asymmetric and decrease in
amplitude as r increases. (3) there are approximately 1}/ oscillation periods between
successive ringlobes. where M is the number of rings: this is a truncation artifact
and arises because M is finite. (1) the width of the central (or main) lobe decreases
as M increases. (3) the oscillation and ringlobe amplitudes relative to the main lobe
decrease as .M increases. (6) the main lobe behaves as .Ji(r)/r. the jinc function: this
becomes apparent if we let W/ — x and Ak, —0 such that W A&, —c (a unit-height
disk. whose FT is (27¢?)jinc(27rc) [3. p.-249]). (7) although S(&.) is radially-discrete

and of finite extent. s(r) is continuous and of infinite extent.

1t ) ‘
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Figure 2.2: Principal polar PSF profile
Principal polar PSF profile for M =9 concentric rings.

Based on work by Bracewell and Thompson [20]. we can decompose s(r) of

Eq.(2.13) into its main lobe and a series of ringlobes. Using {22. p.952 (8.411)] to
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express .Jg in integral form. and introducing the spin-integration operator Q. we have
, L/
Jolp) = —/ cos(pcos 3) d3 = Q {cos p} (2.14)
=~ Jo

where we define the spin-integrator as

1 -
Q{f(p)};-/o flpcos 3) d3 (2.15)

"

Consequently. Eq.(2.13) can be written as

- .32 M
s(r) = “(Afr) + 27 (k)2 Z m@Q {cos(2xrmAk, )}

m=1

~( Ak )2 al
_ (Al‘r) + Q { Z 27(_3/;,_)2 mcos('_),ﬁl‘nl_xkr)}

1

T(Ak,)? _
(i ) + Q{w(r)} (2.16)

m=1

where v (r) =Z;}1’=1 27( Ak, )2 mcos(2rrmAk.). By going through the Fourier domain.

w(r) = FY{F{u(r}}
M
= F! {Z T( Ak m [0k — mAk.) + 8k + mAl:,)]}

m=l1

F {”-”—\"" [H (2.»1&1;,) = (-\[ik,)] H (Akk)}

= 7 (MAk)? [2sinc(2Mrk,) = sinc*(Mr Ak, )] * [Nk LT (r Ak, )]

- J J |-
= wolr)+ [wo (r— ~*——) + o (r+ )] (2.17)
J‘:-:l Ak, Ak,

where F and F~! denote the forward and inverse Fourier transforms. respectively.

IXI(4k/\k,) represents a series of é-functions spaced by Ak, in k-space. ILI(r\&,)
represents a series of §-functions spaced by 1/\k, in image space. = denotes convo-

lution. and

vo(r) = m(MAk,)? [‘25inc(?.;l[r.&k,) -~ sian(.»erk,)] (2.13)

_J Lol sz g, i=lels el 1
H(”)‘{o. ol > 1/2 “\(")‘{ 0. |p|>1 - 20

(4 -\ =1 TI(%) (2.19)
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Substituting Eq.(2.17) into Eq.(2.16). we have

~( Ak, )? x B ‘
() = —l4_)+g{"°(r)} +ZQ{"°( %) tuo(r v >}
=1 r r
Ak, )? x
= % Fso(r) + 3 s, (r) (2.20)

where sy and s, are the spin integrations of vo(r) and the summation terms. respec-
tively. and the constant term 7(Ak,)?/4 arose because of the é-sample at the origin

of k-space. We next study so(r) and s,(r) individually to gain further insight.

v

0.75¢

o
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Normalized Amplitude
o
)
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-0.2}

Figure 2.3: Normalized principal polar PSF main lobe s¢(r)
Normalized principal polar PSF main lobe so(r) for M =9 concentric rings.

To simplify so(r). we make use of the spin-integral theorem [20. app.B| which
states that Q{w(r)} = H{F.{wv(r)}/(7k.)}. where F. and H denote the Fourier
cosine and Hankel operators. respectively. Since the Fourier cosine transform of ¢g(r)

k| IL (k, /[2M AR,]), we have

\J.\kr ) A Ad&
solr) = H{ (z.w_\.L )} Jo(2mrh:) krdk.

= 2x(MAk)?jinc(2r MrAk,) (2.

Is 7

[EV]
[E™)
—
—
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which is the Hankel transform of a unit height disk of radius M Ak.. Note the jinc-like
behaviour of the main lobe. as expected: so(r) appears in Figure 2.3.
To investigate the ringlobes s,(r). one can apply the spin-integral theorem (as

stated above) to [Lo(r—j/Ak.) + vo(r+j/Ak;)] to show that

._)Tfjkr k,
s, {r = 2 SV IMAL,
"J(,) H{-CO ( -Xkr ) H(z_l[_\&,)}

Mk, 27 k. et fdk >
= —l:u-/(; COS( Akr )-]0(..4-7' r) r r (..‘......)
1t '”
o
S 0.5¢
=
2
°
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s [VVVTY va‘“’"
S
=2
-0.4 u
= j 1

r Ak
;

Figure 2.4: Normalized principal polar PSF ringlobe s, (r)
Normalized principal polar PSF ringlobe s,(r) for M =9 concentric rings.

An analyvtical expression of the above function is not readily available. although
Bracewell and Thompson [20] have approximated this function near j/Ak,. Never-
theless. one can numerically evaluate the above equation to get a visual representation
of s,(r). as shown in Figure 2.1. Note that all ringlobes are similar in appearance.
although their amplitudes will be different depending on the ringlobe order j. From
Bracewell and Thompson's approximation. the maximum amplitude of s; is about
2.25( M Ak )?//mMj. Comparison of two ringlobes shows that their relative ampli-

tudes scale as the square-root of the ratio of ringlobe orders. i.e. |sj,|/|s;,| =~ \/J2/Ji-
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Furthermore. the ringlobe amplitude relative to that of the main lobe. whose ampli-
tude is =( M Ak, )?. is given by

2.25
- 2

J | - - /7‘_-‘—[‘1- |‘50|

For M-values of 64-128 rings (as would be typical in MRI). the peak amplitude of

s

si(r) is about 5.1%-3.6% of the main lobe peak amplitude.

In summary. the principal polar PSF can be decomposed into its main lobe whose
behaviour is jinc-like. and a series of asymmetric ringlobes at j/ Ak, whose peak am-
plitudes decay as j increases. Knowledge of the principal polar PSF. its constituents.
and its characteristics allows us to investigate the aliasing effects incurred by polar

sampling. as discussed in the next section.
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2.3 Results

In the theory section. we mathematically characterized the behaviour and composition
of the principal polar point spread function. In contrast. this section attempts to give
an intuitive understanding of the behaviour of the principal polar PSF. We also discuss
the ensuing effects in the image domain.

Since rectilinear sampling is well understood. section 2.3.1 relates the polar PSF
behaviour to known concepts of the rectilinear PSF. This section. albeit brief. at-
tempts to give some insight as to how the ringlobes and oscillations arise when sam-
pling on a finite polar grid. and why the ringlobes are asymmetric and decrease in
amplitude.

The radial aliasing effects of polar sampling are investigated in section 2.3.2. From
the Fourier convolution theorem [3. p.108]. we study how the principal polar PSF
leads to radial replication and smearing. The concept of an effective field of view or
haseband is expounded upon. which leads to the polar radial sampling requirement.
Finally. we discuss how the image replicates get folded back (or aliased) into the

baseband which can severely corrupt the image.



2.3.1 Polar PSF Intuition

When discussing sampling theory. we invariably talk about rectilinear (Cartesian)
sampling. Conceptually. then. it is advantageous to relate the principal polar PSF
to the Cartesian PSF. Moreover. the principal polar PSF was derived from the 1D
Hankel transform: we therefore develop an intuition based on the 1D Cartesian point
spread function.

In section 2.2.2. we assumed sampling at the origin and at \/ concentric rings
spaced by Ak, (i.e. Akg—0). For 1D Cartesian sampling. this corresponds to a tinite
sampling comb of (2} +1) samples which can be expressed as ¥\, a(k, — m Ak, ).

The Fourier expansion. and hence the Cartesian PSF. is given by

i M | Mo
/ Z b(lxr _ m.l!tr) El:u:k, (”tr — Z elmm:'_\kr
- m=—\M m==\f
_ sin(#[2M + 1]z Ak, ) (2.91)
sin(wmrAk,)
which is depicted in Figure 2.5 for W =9.
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Figure 2.5: Normalized Cartesian PSF
Normalized Cartesian PSF for M =9, i.e. (2M +1)=19 rectilinear sample points.
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We next draw some parallels with the principal polar PSF of Eq.(2.13) and Fig-
ure 2.2. The first observation is that in both the polar and Cartesian cases. we have
replicates at multiples of 1/ k.. For Cartesian sampling. the replicates are exact du-
plicates of the main lobe. For polar sampling. however. the replicates (i.¢. ringlobes)
differ from the main lobe in both shape and amplitude.

A second observation is that M oscillation periods occur between successive repli-
cates: for (Cartesian sampling. it is eractly M periods. while for polar sampling it
is only approrimete. These oscillations arise because we sample over a limited ex-
tent in k-space. This can be understood if we limit the Cartesian sampling comb:
Ik / Nk ) x H(kr/['_)-\[A/f,.]). Its FT is of the form III(r A&, ) « sinc( M.r Ak, ).
where we have used the Fourier convolution theorem. The rect function (H) then.
makes the Cartesian sampling comb finite but gives rise to sinc-like oscillations in
the PSF. In general. a finite sampling extent results in oscillations in the PSFE. often
termed a truncation artifact.

Moreover. because the complex exponentials are purely periodic. Cartesian sam-
pling leads to a coherent summation. In other words. the Cartesian replicates resemble
the main lobe in all respects. In contrast. the Bessel functions’ non-purely periodic
nature leads to destructive interference upon summation. This incoherence creates
asvmmetric polar ringlobes of decreasing amplitude.

The Cartesian and principal polar PSFs are expressed as summations of complex

exponentials and weighted zero-order Bessel functions of the first kind. respectively:

M M
PSE. ~ Z g2mimeaks PSF, ~ z mJo(2xrmAk,) (

m=-\/ m=1

i~
'
[§M]
ot
-

Since both the complex exponentials and Bessel functions are continuous functions of
infinite extent and M is finite. their respective PSFs are also continuous and infinite.

Since Cartesian replicates are duplicates of one another. their energy is the same.
By analogy. then. we assume that all polar ringlobes have the same energy. even
though their amplitudes differ. This can be justified using Eq.(2.22) and realizing that

the volume under each ringlobe is given by the Hankel transform of s;(r) evaluated
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at k.=0: in doing so. one obtains a volume of 2 (arbitrary) units regardless of the
ringlobe order ;. For equal volumes. then. we assume that their energies must also
be equal. [f we further assume that each ringlobe is concentrated at a radius j/ \k,.
then the energy is given by its circumference times its amplitude-squared. namely
2x|s,[*j/Ak,. To obtain a constant energy independent of the ringlobe order. |s,|
must be proportional to 1/./J. as was stated in section 2.2.2.

The intuition mentioned above. albeit mathematically imprecise. supports (in a
hand-waving manner) the concepts developed in section 2.2.2. We next discuss the

image effects and artifacts of polar sampling in k-space.
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2.3.2 Radial Aliasing Effects

Since MR data are discrete. it can be expressed as the multiplication of the continuous
k-data O(k) with a sampling function S(k) as O(k)x S(k). From the Fourier convo-
lution theorem (3. p.103]. the MR image is given by o(r}«s(r). where o(r) = F{O(k)}
is the object in the image domain. s(r) =F{S(k)} is the PSF. and « represents the
convolution operation.

As an example. let the field of view (FOV') be 1/Ak, and the object be a circular
disk of radius 0.375/Ak,. as shown in Figure 2.6(a). The effect of sampling with
concentric rings spaced by Ak, is shown in Figure 2.6(b). Note that the limits are
+1.5/Ak,. i.e. we display three times the expected FOV limits of 0.5/ A4, : the effect
of the main lobe and of the first ringlobe are therefore observable. The salient features
of the magnitude image are: (1) the original object appears at the centre. (2) a bright
ring surrounds the object at a radius of 0.625/Ak,. (3) a non-zero. non-constant. low
amplitude signal appears between the object and the bright ring. (1) immediately
bevond the bright ring. there is a region of almost no signal. (3) beyvond this dark band.
a shaded region appears out to a radius of 1.375/A&.. and (6) the disk’s intensity
profile is no longer uniform. but rather concave.

These features can be understood if we simplify the principal polar PSF to consist
of ¢-functions only. since convolution with a é-function replicates (and scales) the
object centred on that particular é-function. Thus. we simplify the principal polar
PSF as follows: let the main lobe be described by a unit-intensity ¢-function. and let
the first ringlobe be approximated by a ring of negative and positive é-functions at
1/Ak; — Ar and 1/Ak,. respectively. where Ar is the spacing in the image domain
([2M+1)Ar =1/Ak,). The intensity of the “6-rings” are on the order of 2.25/[=V/ M=].

The convolution of the object with this simplified PSF is readily understood. The
central é-function replicates the object at r = 0. which explains salient feature (1).
The é-rings scale. replicate. and distribute the object circularly which produces a

~smearing effect”. The sum of these smeared replicates yields the image.



Figure 2.6: Synthetic disk phantom aliasing

Magnitude image and profile of a synthetic disk phantom of radius 0.375/ Nk, .
(a)} Original object. (b) Disk convolved with the principal polar PSF. (¢) Disk
convolved with the simplified PSF consisting of a é-function at r=0. and two equal
intensity but opposite polarity 6-rings at 1/ Ak, —Ar and 1/ Ak,.. (d) Disk convolved
with the simplified PSF consisting of a 6-function at r=0. and two different
intensity and opposite polarity d-rings at 1/ Nk, —Ar and 1/ Ak,. Note that we
display out to three times the effective FOV'.
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[f the é-rings have equal intensity but opposite polarity. then the edges of the
object will remain intact. as shown in Figure 2.6(c). Since the object is a disk of radius
0.375/ Ak, and the object gets smeared circularly at a radius of 1/\k,. the bright edge
rings appear at (1+0.375)/AA.. This explains the bright ring at 0.625/\A,.. namely
salient feature (2). and why the shaded region appears out to radius of 1.375/\A,. as
stated in salient feature (3).

To mimic the asymmetry of the ringlobe. the negative é-ring is given an intensity of
about Y0% that of the positive é-ring. This value was chosen since from Figure (2.1).
the normalized ringlobe values at j/\&. —Ar and j/Ak, are approximately —0.670
and 0.742. respectively. whose magnitudes differ by about 10%. The resultant smeared
tmage appears in Figure 2.6(d). The shading described in salient feature (3) is now
clearly present. Furthermore. the asymmetry gives rise to a dark region just bevond
the bright ring at 0.625/ k.. The asymmetry explains salient features (4) and (5).

Salient features (3) and (6) arise because the true polar PSF is not as simple as
a o-function at r =0 and é-rings at r ~ I/Ak,. As mentioned before. the object
gets smeared throughout. In general. then. sampling on a finite polar grid produces
circularly smeared artifacts. circular ringing (a truncation artifact due to sampling
over a finite extent). and circular blurring (since the PSF’s main lobe has a finite
width). However. as the number of ring samples increases. the blurring decreases
(since the width of the main lobe decreases). and the amount of ringing also diminishes
since one effectively samples over a larger extent in k-space.

One important aspect of convolution to note is that the object being smeared is
not rotated as it gets smeared circularly. For example. let the object be an elliptical
disk whose major and minor radii are 0.375/ Ak, and 0.25/Ak,. respectively. with the
major axis in the r-direction. The resultant smeared image appears in Figure 2.7.
Note that the bright ring surrounding the object is an ellipse with major and minor
radii (1 —0.25)/A%, and (1 —0.375)/Ak,. respectively. with the major axis in the

y-direction. Also, the dark band just beyond this bright ring is no longer circularly
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svmmetric. Furthermore. the outer shaded region is an ellipse of major and minor
radii of (14+0.373)/Ak. and (1+40.25)/Ak,. respectively. with the major axis in the
r-direction. Now. if the object had been rotated as it was smeared. the bright ring.
the dark band. and the outer shaded region would have been circularly symmetric.

which is clearly not the case.

1.5

-1.5
-15 -1 -05 0 0.5 1 1.5

Figure 2.7: Svnthetic elliptical phantom aliasing
Magnitude image of a synthetic elliptical phantom convolved with the principal polar
PSF. Note that we display out to three times the effective FOV'.

Disks and ellipses exhibit circular properties. Therefore. we expect circular smear-
ing effects. as shown in Figures 2.6 and 2.7. [f the object is not circular or elliptical.
though. the smearing effects assume a more complex pattern.

Since the first ringlobe occurs at 1/A&, and the object gets smeared circularly.
the inner edge of the smeared replicate occurs at (1/ A&k, —rpqar). where r,, is the
maximum radial extent of the object. If rp.. is greater than 0.3/Ak.. then the
replicate appears atop the original object. Thus, the effective FOV (baseband) in
polar sampling is a circle of radius 0.5/Ak,. This is analogous to Cartesian sampling

with a k.- and k,-spacing of Ak,. where the baseband extends from —0.5/Ak, to
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+0.5/Ak,: in Cartesian sampling. however. the FOV is rectangular.

In the aforementioned examples. the extent r,,. of the object never exceeded
0.3/ Ak,. the effective polar FOV radius. If. however. the object consists of two disks
of radius 0.2/ Nk, shifted by 0.25/ Ak, in both the r- and y-directions as depicted
in Figure 2.8(a). then rpe is about 0.354/\k,. which extends bevond the effective
FOV radius. The resultant smeared image appears in Figure 2.8(b).

Note that each disk taken separately looks similar to Figure 2.6(b}: a bright ring
surrounds the disk. followed by a dark band. and a shaded region. These features are
centred with respect to the disk in question. The full image. then. is a superposition of
two translated smeared disk images. C'learly. the bright rings intersect the disks. .e.
part of the replicates emanating from the first ringlobe are aliased into the effective
field of view.

The polar radial sampling requirement is therefore analogous to the (‘artesian
sampling criterion: one must sample above the Nyquist rate. In other words. if the
radial spacing in k-space is Ak,. the object must be limited to within a circle of
diameter 1/ Ak, in the image domain to avoid polar aliasing.

However. we have shown that the finite number of samples M leads to an oscilla-
tory behaviour in the PSF. For finite Cartesian sampling. the oscillations are sinc-like.
where the zero-crossings are equidistant. This property leads to a coherent summa-
tion upon convolution of the Cartesian PSE and the object. and vields the familiar
Gibb’s ringing artifact in the r— and y-directions.

For finite polar sampling. though. the jinc-like oscillations in the polar PSF have
non-equidistant zero-crossings in the radial direction (by virtue of the Bessel functions
not being purely periodic). Consequently. the polar PSF produces a radial ringing
(or truncation) artifact, but also leads to signal leakage/aliasing: this effect was ob-
served by the appearance of a low non-zero background signal and the disk’s intensity
assuming a concave rather than uniform pattern.

This means that even if the Nyquist criterion (as defined for Cartesian sampling) is
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Figure 2.8: Synthetic two-disk phantom aliasing
Magnitude image of a synthetic phantom consisting of two translated disks.
(a) Original object. (b) Two translated disks convolved with the principal polar PSF.
Note that we display out to three times the effective FOV'.
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met in the k.-direction. i.e. that the sample spacing Ak, is such that the radial extent
of the object is fully contained within the baseband. the ringlobes will introduce some
aliasing (and leakage) artifacts into the image. This occurs because convolution of the
object with the ringlobes distributes ringlobe energy into the effective FOV. This is
a consequence of the Nyquist criterion being defined strictly for Cartesian sampling.

Note that when one considers the sampling as a 2D polar sampling effect. as done
here. the Nyquist criterion must be modified and/or generalized. The end result is
that the 2D polar sampling effects do not follow the Cartesian Nyquist criterion.
and thus some form of polar aliasing and/or leakage artifact results. The amount of
aliased signal will depend on the object’s size. geometry and intensity. and will vary
according to pixel location.

From Eq.(2.20). the principal polar PSF is the sum of the main lobe and the

ringlobes. which can be written as PSF = PSF,, + PSF, . In so doing. we have

T(Ak,)?

PSF,, = - + 27 ( M Ak, ) jinc(2x MrAk,)
M

PSF, = 2r( Nk, )? Z mJo(2rrm Ak} = 22 (M ANk ) jine(2x MrAk,) (2.26)
m=1

where we have grouped the constant term arising from the §-sample at the origin with
the main lobe. These PSFs appear in Figures 2.3 (minus the additive constant) and
2.9. respectively. for W =9 concentric rings.

The MR image is then given by o(r) = [PSF,, + PSF, |. Since convolution is a

linear operator. we can write this as
O([‘)*pSFSO +O(I‘)*PSF,J = [0([') +[J'(I‘) (227)

where [y and /; are the image components arising from the object convolved with the

main lobe PSF and ringlobe PSF. respectively. In terms of energy. we have
Ew(r) = |lo(r) + L;(r)[* = |Io(r)]* + |L;(r)]* + [Lo(r) [;(r) + [5(r)L,(r)
= &o(r) + &,(r) + & (r) (2.25)

where &.,. &. &;. and &; represent the total energy. the main lobe energy. the

ringlobe energy. and the cross-term main lobe/ringlobe energy. respectively. and the *
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Figure 2.9: Principal polar PSF arising from the ringlobes only

Principal polar PSF arising from the ringlobes only for M =9 concentric rings
assuming that the amplitude of the amplitude of the full PSF is normalized to unity.

superscript indicates the complex conjugate. Note that & and &, are always positive.
while &, can be positive or negative. Also. the energyv content is object-dependent:
in other words. depending on the ohject’s size and geometry. the energy contributed
by each component will vary.

The main lobe energy is given by &(r). while the aliased energy can be determined
from &;(r)+ &,(r) within the effective FOV of radius 0.5/Ak.. Similarly. one can
determine the total energy contributed by each component within the effective FOV.
For example. Table 2.1 summarizes the main and aliased energy contributions for
disk phantoms of varying radii sampled on a polar grid. Note that here &, takes
on strictly positive values. More importantly. though. is the fact that as the disk
radius increases, the expected uniform intensity assumes a concave shape. Note that
although we have observed the Nyquist criterion (as described/defined previously) in
the k,.-direction. the aliasing can become quite severe for large objects with respect

to the field of view.



Table 2.1: Energy components of synthetic disk phantoms

{9

Energy components and values within the baseband for synthetic disk phantoms of

varying radii.

Radius &o 5_,’ 80_, grol
0.05/Ak, | 0.995 | 0.001 | 0.004 | 1.000
0.10/Ak, | 0.979 | 0.003 | 0.013 | 1.000
0.15/Ak, | 0.956 | 0.007 | 0.037 | 1.000
0.20/Ak, | 0.919 | 0.012 | 0.069 | 1.000
0.25/Ak, | 0.877 | 0.019 | 0.104 | 1.000
0.30/Ak, | 0.328 | 0.023 | 0.144 | 1.000
0.35/Ak, 1 0.757 | 0.041 | 0.202 | 1.000
0.40/Ak, { 0.685 | 0.056 | 0.259 | 1.000
0.45/Ak. | 0.580 ; 0.032 | 0.333 | 1.000
0.495/ 2k, | 0471 | 0.118 | 0.411 | 1.000

[n summary. the polar sampling effective FOV occurs within a radius of 0.3/ \k,.

where AA, is the radial sample spacing in k-space. Since the ringlobes are radial in

nature and occur at multiples of 1/A&,. the replicates are circularly smeared ver-

sions of the original object. Therefore. the object extent must be at least limited to

within a radius of 0.5/Ak,. Because the polar ringlobes are asymmetric and extend

into the baseband. the polar radial sampling requirement is more involved than just

considering the object’s extent.



2.4 Discussion

[n MR imaging. a flexible gradient system allows one to cover k-space in virtually
any fashion. Depending on the trajectory and velocity of traversal. the acquired
k-space samples may be distributed non-rectilinearly. Whenever one samples non-
rectilinearly. one must weight each sample point according to the areal extent of the
given acquired sample. In effect. the weighting function is designed to compensate
for the sampling density.

To gain further insight into the 2D principal polar PSF. we followed Bracewell and
Thompson's [20] formalism and decomposed it into its main lobe (whose behaviour is
jinc-like). and a series of asymmetric ringlobes peaked near j/ Ak, (whose amplitudes
decay as J increases).

Since the first ringlobe occurs at a radius of 1/Ak,. where A&, is the radial sample
spacing in k-space. the object’s extent must be space-limited to within a radius of
0.5/Ak,. This is the sampling requirement similar to that of Cartesian sampling.
However. when sampling on a finite polar grid. the ringlobes are asymmetric. oscilla-
tory. non-periodic. and extend to the origin (i.e. they are not localized at multiples of
1/Ak.}). This means that the 2D polar PSF ringlobes replicate a smeared version of
the object throughout the baseband. This aliasing/leakage artifact leads to a small
non-zero background signal within the baseband.

More importantly. the aliasing affects the overall intensity pattern of the object.
[n our simulations of a uniform disk phantom. polar aliasing resulted in the disk’s in-
tensity assuming a concave pattern. The deviation from a uniform intensity increases
as the object occupies more of the FOV. Thus. to minimize aliasing and image cor-
ruption within the required FOV. oversampling in the k,-direction may bhe necessary.
The oversampling factor would depend on the object’s extent and on the acceptable
tolerance of aliasing.

The concepts of aliasing and leakage are well understood for Cartesian sampling.

However. for polar sampling (and perhaps most if not all non-Cartesian sampling
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acquisitions). this distinction is no longer clearly obvious. Even if we sample with
¢-rings out to infinity. it is not apparent that its 2D PSF is itself a series of concentric
d-rings. Recall that in Cartesian sampling. the concept of aliasing is properly defined
because the FT of an infinite series of é-functions is itself a series of &-functions.
Leakage effects are easily explained and are due to truncation effects. i.¢. due to
the fact that we've sampled over a finite extent. For polar sampling. however. these
two concepts are not as easily defined. Consequently. the 2D PSF of polar sampling
encompasses a “mixing~ of both aliasing and leakage effects. as defined for Cartesian
acquisitions. Here. we've opted to call this simply aliasing.

But. the reader is cautioned that. herein. the term aliasing is used in the broadest
sense of the word: any high frequency (or spatial}) component going under an assumed
low frequency (or spatial) component. In Cartesian sampling. leakage (and ringing)
effects are remedied via the application of suitable filters (e.g. the Hamming window)
prior to IFT. However. for polar sampling. these same filters did not correct the
observed non-uniform intensity pattern of the reconstructed disk objects. Therefore.
we attribute the effect as an aliasing phenomenon. where aliasing is now used in its
most general and all-encompassing meaning.

In Cartesian sampling. the effective FOV is a square region of full-width 1/AA,
for a sample spacing of Ak, in both the k.- and Ay -directions. In polar sampling.
however. it is a circular region of diameter 1/Ak,. In effect. then. the polar FO\" area
is about 78.5% that of the Cartesian FOV for commensurate sample spacing and image
pixel size. For comparable FOVs. the number of samples may have to be increased.
On the other hand. certain polar sampling schemes (e.g. spiral acquisitions) allow
more efficient coverage of k-space for a fixed gradient capability which may offset the
increase in samples required. Furthermore, azimuthal sampling effects have not been
addressed here: it may be that non-equidistant azimuthal sampling offer significant
advantages in reducing aliasing effects.

Another important aspect of polar sampling, and any other k-space sampling
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scheme for that matter. is the signal-to-noise-ratio (SNR). Pipe and Duerk [23] have
analyzed the estimator variances for various sampling schemes. from which the SNR is
given by 1/v/variance. Using [23. Eq.42]. the polar samipling variance with respect to
Cartesian sampling is given by [+.V+2]/[3.V+3]. where .V is the number of readouts
of duration T with M samples per readout: here. we assumed that T. M and .V
are the same for polar and Cartesian sampling. As .V gets large. the polar variance
approaches 1/3. from which the SNR tends to v/3/2=0.366. where we have normalized
the Cartesian SNR at 1.0. Thus. polar sampling has an inherently lower SNR than
("artesian sampling. all else being equal.

In clinical applications. however. polar sampling (and other non-rectilinear sam-
pling schemes) offer some advantages in motion artifact suppression. Although SNR
and aliasing are important considerations. the benefits of non-rectilinear sampling
schemes (both radially and azimuthally) in terms of motion suppression may out-

weigh these disadvantages. Only further work in this area will clarify these tradeoffs.
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Chapter 3

Reconstruction Effects

3.1 Introduction

Magnetic resonance images are most commonly calculated from the inverse Fourier
transform ([FT) of the acquired k-space data. Since the data are discrete as op-
posed to continuous. the sampling process may introduce image artifacts. Also. these
artifacts mayv depend on the reconstruction algorithm used. For uniform k-space
polar sampling. i.e. equally-spaced radial and azimuthal samples. the images mayv
be reconstructed using either the gridding algorithm [L. 2. 3. 4] or the convolution
backprojection algorithm [3. 6. 7].

Gridding is a general reconstruction algorithm which can be used for any non-
(Cartesian sampling scheme. Convolution backprojection. however. applies mostly to
data sampled on a purely polar grid. although other polar-type acquisitions can be re-
constructed with this algorithm (e.g. CT fan-beam. and C'T cone-beam acquisitions).

These two algorithms offer different tradeoffs regarding image resolution. signal-
to-noise ratio (SNR). and aliasing in the reconstructed image. Since these effects may
(adversely) influence the appearance and subsequent analysis of the image content.
the choice of reconstruction algorithm is important. The purpose of this chapter is to
compare the resolution. SNR. and aliasing characteristics of these two reconstruction
algorithms for polar k-space sampling.

For polar k-space sampling, the discretization occurs in both the radial and az-
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imuthal directions. Consequently. the aliasing can occur in both the radial and az-
imuthal directions. Here. we focus primarily on radial sampling issues since one tvpi-
cally samples finely enough in the azimuthal direction to avoid azimuthal aliasing. We
do. however. make some cursory statements about azimuthal sampling considerations
and artifacts.

In the Theory section. we analyze the modulation transfer function (MTF). the
SNR. and the aliasing effects of equally-spaced radial and azimuthal polar MR data
reconstructed using both gridding and convolution backprojection. In the Tradeolfs
section. we discuss the tradeoffs of gridding versus convolution backprojection. We
also discuss practical SNR improvements with either reconstruction method. Ex-
perimental verification of the theory is presented in the Results section. In the Non-
Equidistant &, Sampling section. we discuss the potential benefits of a hybrid gridding
and convolution backprojection reconstruction applicable to radially non-equidistant

but azimuthally equidistant polar k-data.




-t
v ]

3.2 Theory
3.2.1 Gridding

Gridding { GRD) is a general purpose Fourier reconstruction algorithm. It is flexible
in that any non-Cartesian samples are interpolated onto a Cartesian (rectilinear) grid
and then transformed using the rapid and efficient fast Fourier transform (FFT) [3].

which operates on discrete data.

Algorithm Description

Let us assume that the MR magnetization in n-dimensional k-space is given by 1/(k).
In the acquisition process. we sample the magnetization (either rectilineariy or not)
via the function S(k). which consists of unit area é-functions at the appropriate

locations in k-space. The acquired sampled magnetization is given by
M.k) = M(k)S(k) (3.1)

Since the k-space sampling density may be non-uniform for some general acquisi-
tion k-trajectory. each sample at location k is weighted by its areal extent. say 11 (k).
The sampled and weighted magnetization is then interpolated (i.e. regridded) onto a
Cartesian k-space grid via convolution and resampling. namely

. 1 k -
Moes(k) = {[M()W (k)] = C(k)} x ~e L1 (EE) (3.2)

‘here ('(k) is the int lating function. ——
where ('(k) 1s the interpolating function Ak

sian sampling function of spacing Ak in the k directions. » denotes convolution and

k
(H) is the n-dimensional Carte-

x denotes multiplication.

The computationally efficient inverse FFT is then used to reconstruct the regrid-
ded MR image. say [, 4(r). However. by the Fourier convolution theorem [9. p.103].
convolution with C(k) in Fourier space implies apodization by ¢(r) in image space.

where ¢(r) is the IFT of C'(k). To undo this effect. one needs to divide the [FT of
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M5t k) by ¢(r). so that

l
[er(r) = m -7:_1 {-"[swcs(k)} (3.3)

Modulation Transfer Function

[t is customary to describe an imaging system by its frequency respounse. also known
as its transfer function [10]. The transfer fuvnction provides a useful measure of the
svstem’s behaviour and allows for a direct comparison between systems.

[f the input to a linear system is f(r). linear systems theory predicts the output
to be f(r)=p(r). where p(r) is the point spread function (PSF) of the svstem. i.¢. the
response to an impulse function. In frequency space this becomes F(k) P(k). where
F(k)and P(k) are the Fourier transforms of f(r) and p(r). respectively. The transfer
function P(k) describes how each frequency is modulated according to |P(k)| erorlk)
More specifically. | P(k)| and o,(k) are the modulation (MTF) and phase transfer
functions. respectively. Note that if the PSF is a real and even function. then the
transfer function is purelyv real. whereby the phase transfer function can only assume
values of 0 or 7. This is the case with GRD (and convolution backprojection) of polar
k-space data. and so an MTF analysis suffices.

For a point object. M (k) is unity over all of k-space. Consequently. M,(k) is unity
at all discrete locations in Eq.(3.2). and M,,.s(k) is also unity at each regridded
Cartesian k location. even though the sampling density is non-uniform. I[n other
words. after regridding (interpolation and resampling) the energy per unit area is
constant: this is a consequence of the (k) weighting directly compensating for the
variable sampling density. In the particular case of purely polar sampling. the ramp
weighting leads to the GRD algorithm’s MTF being unity throughout the acquisition
region. i.e. within the radial frequency range [0.k7*%]. where AJ** = 1.V, \k,.

The theoretical MTF expectations for GRD reconstruction of polar k-data were
verified via numerical simulations. Analytical k-space values of noise-free image do-

main sinusoidal bar phantoms were calculated. All synthetic phantoms were derived
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from assumed unit amplitude (r-directional) sinusoids given by 1 + sin (l;(l)\\)
where r is within the range £FOV/2. and .V, is the number of sinusoid cyvcles per
FOV (field of view). To avoid leakage artifacts. .V. was chosen to be an integral
number of cyvcles. The reconstructed bar phantom amplitude for \V. = | was then
normalized to unity. and all other reconstructed .V. phantoms were scaled accord-
ingly. Thus. the relative amplitudes of the reconstructed sinusoidal bar phantoms
vielded the MTF values directly. To avoid any beat frequency effects. \. was chosen
to be a factor of .V,. the number of discrete image points per FOV. For example.

with V. =192, the available .V, values were {1.2.3.4.6.3.12.16.24.43}. The measured

svnthetic sinusoid amplitudes (MTF values) were 1.00 &+ 0.01.

Signal-to-Noise Ratio

[n any real physical system. the true signal is accompanied by noise which corrupts
the image. In MRI. it is the measured k-data which include a noise term. say n(k).
We assume that n(k). the input noise function. is a zero-mean complex uncorrelated
Gaussian additive stochastic quantity with standard deviation o. Note that such
noise is strictly true only in the case of an ideal low pass (rectangular) analog-to-
digital acquisition filter. Under this assumption. the duration time of acquisition
(T.e) scales the expectation value according to

a
Enk)n™(k2)] = = &k, 1 (3.4)
acy

where ¢, , is the Kronecker delta. and the = superscript denotes the complex conjugate.
Under these conditions. and the underlying assumption that the samples are acquired
with constant dwell time. Pipe [11] has shown that the variance (per unit k-space
coverage) of the reconstructed noise is given by
2
" [ (k)P dk (3.5)
var = —m——5 ' 3.
Tyeq Area; Jk

where ¥'(k) is the GRD weighting function, and Area; is the entire area of k-space

covered during data acquisition. For 2D purely polar sampling. the product of the
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sampling and weighting functions. i.e. S(k)W (k). is given by
Naol  Ne/2-1
Z Ok —mAk, cosnAky. ky—mNk.sinnNkg) |m| (XA, 2 Ak (3.6)
R=0 m=—N, /2
As expected. the weighting for the [V, x V] polar samples depends on the radial
location |m| Ak.. which is the ramp filter. Note that we have N, azimuthal samples
within 0-7 to be consistent with the convolution backprojection convention. namely

Ay = ¥

Although the ramp filter may not be the ~optimal™ weighting function (in terms
of noise reduction and smoothing). it is the most intuitive one and can be directly
compared to convolution backprojection using the Ram-Lak (ramp) filter [12]. An
apodized ramp filter of the form A(k,)|m Ak.| may prove more beneficial in practice.
although this would alter the GRD MTF. Here. though. we deal strictly with the
unapodized ramp filter. namely A(k.) = l. from which the GRD variance per unit
k-space coverage is given by

1o

ot Y N TAK ) | (Nke )2 Nk
nm e (3.7)

Tq.cg [ﬂ-( .\l.,._AA-r/?’ )2] 2 3 Tl-:q -\'r -\"x

var,ry =

Since the normalized SNR is given by the reciprocal of the square-root of the variance.

we obtain

N ST VN, -
SN Rgr'i S ( 3.8 )

- 20
Note that this effectively represents the SNR per unit vorel volume. According to
Edelstein {13] and Macovski [14]. the SNR scales as the voxel volume Aev. given by
Ae=Ar Ay Az with Az the slice thickness. Thus.

AeyfBT, N, N,
SNRyrq =~ i (3.9)

20

Experimental verification of the {/T,., and Av dependences are given in the Results

sectlon.



Aliasing

Since the magnetization is sampled via S(k). the k-data are discrete as opposed to
continuous. and the reconstructed image is the true image convolved with the point
spread function. which is the IFT of S(k)W (k). The process of discretization. then.
can potentially lead to aliasing artifacts.

For finite extent polar sampling. the principal polar PSF can be determined by
considering %-\} concentric rings spaced by Ak,. as previously shown in the Sampling
Effects chapter of this treatise. Using the formalism of Bracewell and Thompson [L13].
Lauzon and Rutt [16] have shown that the polar PSF is given by the spin integration

of v(r). where v*(r) is the ID IFT of the discrete {as opposed to continuous) ramp

filter. which is the weighting function of Eq.(3.6). Thus.

-\-r/:’
vir) = f‘l{W'(kr)} = f'l{ Z |m Ak, 6(!:,—mAI\',)}

m==N,/2
AR VSEE S . .ol
= (_TL [QSlnc(r.\,Akr)—smc'(gr-\rAk,)] * _\./c,l_[_[(r.lkr)
N AE) & . ] .
= L_'%__)J:;x {QSIHC([r—AJL',] .\,.&k,) —
Ll i .
sine® (5 [r-Mr] Noak) ) (3.10)
sin(w€)

where F~! denotes the IFT operator. and sinc(§)= . The spin integration of

[N
v*(r). denoted Q{w(r)}. is identical to backprojecting v*(r) continuously (as opposed

to discretely) at all angles from 0 to =. [n doing so. we obtain the principal polar
PSF. namely

x so(r) = @ {wolr)}
PSF,ra = solr)+ Y s;(r) (3.11)
=t si(r) = Q{v4,(r) + ooy (n)}

where s¢(r) and s;(r) are the main lobe and ringlobes. respectively. Q is the spin

integration operator. and u,(r) is one term of Eq.(3.10) at that particular ; value.

J(7r N Ak, )
rr N Ak,

which is the circular analog of the sinc function. It describes the blurring effect of

Upon evaluation. so(r) behaves as (the jinc function [9. p.249])
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having sampled over a finite extent. The ringlobes s,(r) are oscillatory and asyvm-

metrical in the radial direction. with their peak amplitude occurring near A—JA— The

r

ringlobe peak amplitudes decay with the ringlobe order as 71;— The reader is referred
to the Sampling Effects chapter of this treatise for a more in-depth analysis of the
characteristics of the polar PSF main lobe and ringlobes.

The resultant image. then. is a summation of the true object convolved with

(1) the main lobe s¢(r) which replicates the object at r=0 and blurs it due to finite

sampling. and (2) with the ringlobes s,(r) which smear the object azimuthally and

radially at multiple radii Furthermore. if the k-space values are not sufficiently

J
Ak
sampled in the azimuthal direction. then streak artifacts (azimuthal aliasing) will also
result. To avoid this type of aliasing. one requires .V, > %rr.\'r.

Although GRD is an optimized interpolation and reconstruction technique (with
the appropriate choice of convolution function). it does not correct for the original
sampling effects [4]. In other words. the 2D polar PSF in Eq.(3.11) affects the aliasing
at a level that is not remedied using GRD. In practice. the regridded k-dara are
subsampled (say by the factor ‘ovr’) onto a finer Cartesian k-grid. Upon [FT. the
resultant image FOV is larger by the same factor "ovr’. The true object is then

h
cropped from the central (oT'r)t region. This subsampling process minimizes any
aliasing from the re-interpolation and subsequent [FT. but it does NOT correct for
the inherent aliasing effects incurred during acquisition.

Consequently. the overall signal amplitude pattern of the object may be compro-
mised. as shown in Figure 3.1: as the object becomes larger relative to the FOV'. the
aliasing leads to a greater deviation of the signal amplitude profile pattern. The GRD
images were regridded using the Kaiser-Bessel window function (an approximation to
the Prolate Spheroidal Wave Function of zero order) given by [y (3, /1 — (%) ). with
parameters L =4. 3=12. and a subsampling factor of ovt =2. These parameters apply

to both the &, and &, directions. and for all GRD reconstructions within this study.

These parameters were chosen in such a manner to minimize uniformity deviations
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(in the least-squares sense) of an expected uniform synthetic disk phantom occupying
30% of the FOV. We fixed the oversampling parameter to ovr=2. and varied L and
3 within 3-6 and 6--20. respectively. Within this range of parameters. the measured
uniformity deviations were similar. which suggests that the gridding reconstruction

1s not overly sensitive to the choice of the L and .3 parameters.
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Figure 3.1: Synthetic. uniform disk profiles using GRD and CBP

Synthetic. noise-free. uniform disk profiles of reference Cartestan k-data
reconstructed with the FFT (solid). and of polar k-data reconstructed using GRD
(dotted) or C'BP (dashed). The GRD reconstruction kernel parameters can be found
in the tert. The radial ares are in units of the FOV. The profiles are for disk
diameters of (a) 25% of the FOV. (b) 50% of the FOV'. (¢} 753% of the FOV. and
(d) 95% of the FOV. Note the increasing non-uniform profile signal amplitude for
GRD as the object size increases. an aliasing effect arising from the ringlobes s,(r).

The sampling effects of purely polar sampling can be minimized if one sinc inter-
polates in the radial k, direction prior to regridding. This is most easily accomplished
by taking the ID IFT of the radial k.-lines. zero-padding to twice their length. and
Fourier transforming back to k-space. Gridding can then be used by applving the
discrete ramp weighting (whose spacing is now Ak, ). In this case. the polar PSF is
given by so(r)+i32j(r). Since the first ringlobe s;(r) and all odd-order ringlobes

J=1
have been eliminated, the reconstructed image has reduced aliasing.
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For example. an object occupyving 95% of the FOV may deviate from its true signal
amplitude pattern by as much as 20% if GRD is performed on the original k-data. as
shown in Figure 3.1(d). However. by sinc interpolating in the &, direction by a factor
of 2 prior to gridding. the signal amplitude deviations are within 1% owing to the
reduced aliasing. Similarly. by sinc interpolating in the &, direction by a factor of
priorto gridding. the deviation is within 0.1% for the same object since the polar PSF
now consists of the main lobe and every 4** ringlobe. i.e. .so[rj-f-i sy, (r). For general
non-Cartesian sampling schemes. though. sinc interpolation in ?1119 k. direction may

not be practical nor possible.
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3.2.2 Convolution Backprojection

The convolution backprojection (CBP) algorithm has been used extensively in com-
puted tomography (CT). Although CT acquires data in the image domain (:.c. real
projections through the object). one can show using the central slice theorem [17]
that this is equivalent to polar sampling in k-space. Furthermore. CBP may be
applied to (noisy) complex projections since one can reconstruct the real and imag-
inary components independently. Therefore. 'BP has potential applications to MR

reconstruction.

Algorithin Description

The reconstructed MR image is given by the inverse Fourier transform of the sampled
magnetization. M (k). If one expresses the Fourier variables in polar notation. namelv
(hr =k, cos kg. ky =k, sinky). the polar sampled magnetization can be written as

Na-1 Ve/2-1
S M(keke) 8(kr—mNke. ky—n k)

n=0 m=-\,/2

= ZZ Mo(m Ak 8(kr—m Ak kg—nAks) (3.12)

115( A‘,.. /\‘9 )

Il

where M. (mAk,) is the magnetization sampled in the &, direction at angle n\k,.

With the use of Eq.(3.29) from Appendix A. the reconstructed CBP image is

Na—1

Lop(z.y) = Y B{F ' [Milm Ak, )] + Canplr) } (3.13)
n=0

where B is the backprojection operator. C'sp(r) is the discrete convolution function

and the term being backprojected is the discrete

) l
sampled at spacing Ar = N
convolved MR -“projection”™ at angle nAks. The image is summed over all .V, con-
volved projections being backprojected at the desired Cartesian (r.y) locations.
The convolution function is effectively given by the sampled IFT of the finite

continuous (as opposed to discrete) ramp filter {k.[. To reduce high frequency leakage

effects. this filter is often apodized by A(k,) so that in general C, is given by the
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following:

: — FU Ak ke L o .
C:bp(r) - -7: {A(Lr)IL’{H(-\'rAkr)}XAI‘LI_I(AI) (;[“

where H(f) =1 for |} _<_% and zero otherwise.

For a direct comparison of the CBP and GRD algorithms. we limit ourselves to the
ramp filter (known as the Ram-Lak filter in the C'T community} wherebyv A(k,)=1.
in analogy to the GRD case. A brief overview of the tradeoffs of apodized ramp
filters is discussed in the Tradeoffs section. The ('BP reconstruction aigorithm may
be applied to any type of purely polar k-data. be it Hermitian. anti-Hermitian. or

non-Hermitian (see Appendix A).

Modulation Transfer Function

The convolution backprojection MTF is dependent on three factors: (1) the convo-
lution function Cup(r) which weights the projections (in the image domain). (2) the
interpolation function used in the backprojection stage. and (3) the resampling onto
the image grid.
The interpolation arises because each desired image (r. y) location corresponds to
a given projected location onto the 1D convolved MR projection vector at angle n A&y.
These projected locations may or may not coincide with an actual MR projection
N, Y

sample located at v ik . with p= {— 5 _)r —1}. Thus. some interpolation is

required so that the appropriate MR projection value is backprojected to each desired

image pixel location.

Various filter (apodized ramp) functions and their convolution counterparts ap-
pear in Jain [18. Ch.10]. although we will only analyze the case for the Ram-Lak
(unapodized ramp) filter {12]. Of course, the analysis below follows readily for any
filter function. In the case of the Ram-Lak filter, Cep,(r) of Eq.(3.14) is easily calcu-
lated and the coefficients are given in Appendix B.

After discrete convolution of the projections with Cu,(r). one must backproject

these onto the image grid: this requires both interpolation and resampling. One of
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the more computationally efficient and commonly used interpolation techniques is

linear interpolation. which is assumed here. It can be expressed as a convolution (in
2

N AR,

the image domain) with a triangle function of width 2Ar= . In k-space. this

NAL,

The convolved interpolated projection is then backprojected and resampled onto

. . k
corresponds to a modulation of smc"( : .

the desired image locations. This resampling leads to some form of wraparound in
the 2D k-space. the details of which can be found in Appendix B.

The CBP algorithm’s MTF can be calculated for large .V, (.V, > 16.\,) with
M. (m XAk, )=1 for all m. In this case the MR projections. F~! {.\[n } are given by a
single impulse function at r=0. Reconstruction of these data vields the algorithm’s
PSF since we expect to reconstruct a point at the image centre. Finally. the Fourier
transform magnitude of the PSF gives the MTF.

The Ram-Lak MTF contour is given in Figure 3.2(a). For comparison. that of
the Shepp-Logan filter (an apodized ramp) is also shown in Figure 3.2(c). Note that
the MTFs are not circularly symmetric. nor are theyv confined to a circle of diameter
N.Ak.. even though the acquired data are within that circle. These effects arise
because of the interpolation and resampling during backprojection. as discussed in

Appendix B. However. at low spatial frequencies these MTFs can be approximated by

the circularly sy etric functions sinc? e d sinc® e respectively
3 3 S . S ¥ "

ircularly symmetri in VAL and sinc AL spectively

These approximations are also depicted in Figures 3.2(b) and (d). respectively.

The MTF values were verified with simulations. The synthetic phantom k-values
were calculated in the same manner as that for GRD (see section 3.2.1). and the
images were reconstructed using the CBP algorithm. The theoretical MTF val-
ues on aris for .V, = 192, and V. assuming values of {1.2.3.1.6.3.12.16.24.43} are
{1.000.0.999.0.998.0.993.0.996.0.994.0.983.0.979.0.955.0.348}. respectively. The mea-

sured svnthetic sinusoid amplitudes (the MTF values) were within £2% of these

theoretical values.
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Figure 3.2: Convolution backprojection MTFs
Contour percentages of CBP MTFs. The ares are in units of N, Ak,. (a) True

MTF using the Ram-Lak filter. (b) Truncated .::inc"z( e ) (c) True MTF using

NAL

the Shepp-Logan filter. (d) Truncated sinc3< Vl:k ) Note that the true MTFs are

Jour-fold symmetric. while the truncated sinc® and sin¢® approrimations are
circularly symmetric.

Signal-to-Noise Ratio

As in GRD. we assume that the k-space noise term is a zero-mean uncorrelated
complex additive Gaussian stochastic variable with standard deviation o. Pipe’s
variance analysis [11] for GRD reconstruction. as given in Eq.(3.3). is equally valid

for the CBP reconstruction. Thus. the variance per unit k-space coverage is still

0.2
AT T real J WK dK 3.15
o Tac,;Area.f./l;”(k)l (3.15)

where (k) is the effective weighting function in k-space. namely the CBP filter
function A(k.,)|k.| times the appropriate MTF.

In the previous section. we showed that the convolution function. backprojection.
and resampling operations lead to a non-uniform MTF in k-space. Consequently. the

effective weighting function must incorporate these effects. This is done by multi-
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plying the (perhaps apodized) ramp function with the calculated CBP MTF. ('onse-

quently. the CBP variance per unit k-space coverage is given by
1 Ne/2-1

Na—
a3 [A(m Mk)|m k| MTE(m Ak, n Nkg) Mk, Mg
n=0

m=-N\,/2

(3.16)

Tch [T(,\'rAL.r/:z)z]?
More particularly. vars, using the Ram-Lak (rala) filter requires A(m AA.) =1 and

the Ram-Lak MTF (shown in Figure 3.2). so that

Na=t  Ne/2-1
)
o>

n=0 m=-\./2

[m Ak MTF ruia{lmAk,. n Nkg) Nk, Ay

Varlrrqin, =

Tucq [7(N: Ak /207
o2

Tzch -\',r -\.'1

1

e
=
-
-

(3.17)

Since the C'BP MTF is difficult to ascertain analytically. we resorted to a numerical
evaluation of the variance per unit k-space coverage. Therefore. the 0.711 factor
comes about from a numerical integration of the square of the finite. circular. ramp
filter multiplied by the Ram-Lak MTF divided by the circular k-space area squared.
\/A%. the CBP..a SNR relative to GRD of

polar data using the ramp filter is easily compared. and is given in Table 3.1. The

Using Eqgs.(3.9).(3.17). and SNR =

Shepp-Logan results are also included for further comparison. The C'BP algorithm
implemented with the Ram-Lak filter vields an increased SNR relative to GRD of
polar k-data using the ramp filter. However. with GRD the MTF is flat while with
CBP the MTF falls off at higher frequencies. resulting in a loss of resolution. This

point will be expounded upon in the Tradeoffs section.

Aliasing

The aliasing using the CBP algorithm of Eq.(3.13) is markedly different than that
of GRD. Because the radial k.-lines are discretized rectilinearly with spacing \A..
the Nvquist criterion applies in the radial direction: if the object is spatially-limited

., then the IFT of each radial k.-line is a non-aliased

to within a diameter of

1
Nk,



Table 3.1: Theoretical variance and SNR values for GRD and CBP

Polar Sampling Polar Sampling Polar Sampling !
GRD Recon CBP,|, Recon CBP,pjo Recon [
4 o o2 .
var 3 T Vo Vs L 045 TV N,
var
— l 0.53 0.34
S\R ﬂ Av/Toey VeV 119 Av /Ty VLV,
2 o c
SNR
SNR,. 1 1.37 1.725

Theoretically erpected absolute and relative variance (var) and SNR values for
[N.x N,] polar samples reconstructed using either GRD with the ramp filter. CBP
with the Ram-Lak (rala) filter. or CBP with the Shepp-Logan (shlo) filter. Under

these conditions. the effective resolution will be marimum for GRD (since its MTF is
uniform) while that of CBP is reduced (since the MTFs roll off at higher frequencies.
as depicted in Figures 3.2(a) and 3.2(c) for the rala and shlo filters. respectively).

projection through the object. Thus. unlike GRD. in CBP the original sampling
effects in the k. direction are treated in 1D as opposed to 2D.

The azimuthal sampling criterion. though. remains the same between the two
algorithms: if the k-space values are azimuthally undersampled. the reconstructed
image will contain streak artifacts. [f. however. .\, > 17.\,. then the image will not
suffer from this streaking artifact.

The effective PSF of CBP is similar to that of GRD. except that the PSF is
composed of the main lobe only and no ringlobes. If there are an infinite number
of projections. then the CBP PSF is calculated from the spin integration of C'.,(r)
found in Eq.(3.14). However. one must note that Cep(r) is the IFT of the continuous
(perhaps apodized) ramp filter followed by discretization in the image domain: by
comparison. the GRD weighting function is discretized directly in k-space. from which

the GRD PSF is the spin integration of the IFT of the discretized W'(k). This
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difference is what leads to the ringlobes in GRD. but not in CBP. For example.

C.p(r) using the Ram-Lak filter is. from Appendix B.
Caplr) x [" inc(r V. A&, ) —si cz( ﬁ.\k )] x L (L) (3.13)
cbp 2sinc(r. NV, A&, n rQ - Arlll < 3.13

with Ar= as before. Neglecting the sampling process. i.e. the [[[(r/Ar) term.

NoAA,
(’.sp above is identical to ¢(r) of Eq.(3.10) for j=0. Upon spin integration. the CBP

PSF is given by Q {L‘Q(I‘)} = s¢(r). Thus. as stated previously. the PSF consists of
the main lobe only and no ringlobes. In effect. the ringlobes in GRD emanate from
the sampling (in k-space) of the weighting function prior to the [FT and subsequent
spin integration. Conversely. CBP eliminates the ringlobes by sampling (in the image
domain) the [FT of the weighting function after the IFT.

In reality. the discretization of C.s,(r) means that the true CBP PSF is different
than so(r). the GRD main lobe. While sy(r) is calculated from the spin integration
of vo(r). in CBP one spin integrates Cu,(r) which is a sampled and subsequently
interpolated version of wo(r). The functions g and C'., are depicted on the left sides
of Figures 3.3(a) and 3.5(e). respectively. which are found on page 91.

The CBP sampling criterion is simply stated: provided that (1) the A, spacing

Ak, is such that the object is contained within a circle of diameter and (2) the

r

number of projections .V, within the azimuthal range 0-7 is of the order {7\, or

greater. then the aliasing resulting from the CBP reconstruction will be negligible.



3.3 Tradeoffs

Although GRD is a general reconstruction algorithm and CBP applies mostly to polar
sampling. their respective tradeoffs concerning resolution. SNR. and aliasing can be
directly compared for purely polar k-space acquisitions.

The effective resolution of each algorithm is dependent on its modulation transfer
function. The MTF of GRD for polar k-data using the ramp filter is unityv for radial
frequencies [k.| < 1.V, Ak.. Conversely. the MTF of CBP using the Ram-Lak filter is

not unity. nor is it circularly symmetric. Rather. it is an even four-fold symmetric
'r

NAR,

function which can be approximated by sinc2< ) at low spatial frequencies. as
explained in the CBP-MTF section.

For GRD reconstruction using the ramp weighting. the MTF is flat. Conversely.
for CBP reconstruction using the Ram-Lak filter. the MTF decreases at higher spatial
frequencies. Thus. the effective image resolution of CBP (rala) images is degraded
with respect to that of GRD. However. this decrease in resolution is compensated by
an increase in SNR. as shown in Table 3.1.

The weighting functions need not be limited to the ramp (Ram-Lak) functions.
Many choices of apodized ramp functions are possible. both for GRD and CBP.
The ramp filter guarantees the maximum resolution (for a given algorithm) in the
reconstructed image. However. with the ramp filter the variance is also maximized
which leads to a minimal SNR. For apodized ramp functions. the MTF rolls off at
higher &, values. This leads to blurring in the image but with an increase in SNR.
Thus. resolution and SNR must be considered in unison to properly compare the
GRD and CBP algorithms.

In both GRD and CBP. the variance is given by the effective k-space weight-
ing squared. namely the (possibly apodized) ramp weighting times the MTF of the

reconstruction algorithm. i.e.

Na—t Ny /2-1
> [A(m Ak, )|m Ak, | MTF(mAk,.nAkg) Nk, Mg (3.19)
n=0

m=—N,/2
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For both GRD and CBP. A(m Ak,) is unity when using the ramp and/or Ram-
Lak filters. However. their respective MTFs are different. which leads to a different
variance and SNR. However. the change in SNR is directly compensated for by a
change in resolution owing to their different MTFs. as discussed earlier.

One can. in principle. restore maximum resolution by deconvolving the PSF from
the reconstructed CBP image. but doing so decreases the SNR to a level similar to
that of GRD images. Also. it is possible to use an apodized ramp weighting in GRD
so that the image SNR is comparable to the CBP,,;, SNR. In other words. the GRD
MTF would no longer be uniform but would roll off at higher frequencies. In this
case. the GRD and CBP image resolution and SNR will be comparable.

[n effect. if one reconstructs the k-data to obtain a comparable SNR between the
GRD and C'BP images. then the effective image resolution or blurring will also be
comparable. The reverse is also true. Thus. the GRD and CBP algorithms behave
similarly when one considers resolution and SNR together: GRD with the ramp filter
maximizes resolution with minimal SNR. whereas C'BP sacrifices resolution with a
gain in SNR. Still. one can judiciously alter the weighting parameters to get compa-
rable results between the two algorithms. However. the aliasing properties will not
be significantly altered since altering the weighting does not eliminate the ringlobes
in GRD although it may suppress them slightly.

Although SNR and resolution must be considered together. one can simultaneously
maximize both provided the azimuthal spacing varies as a function of &, such that the
GRD weighting 1}'(k) is constant. Gridding of these data yields maximum resolution

(because of the unit MTF) and maximum SNR [19. 20]. since the variance is minimized
o’ . : .. .
1o ——. where .\, is the total number of sampled points. Since we require that

T,

\
q-'p
7.\, only at AT = %N,Ak,. then .V, < .V,..V,. Thus. the GRD reconstruction

o

N,

[

time will be shorter than for the purely polar case of [V, x .V,] sample points. Note.
however. that the aliasing characteristics will be identical in both cases because PSF .,

of Eq.(3.11) 1s still applicable since there is no azimuthal aliasing.
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The aliasing incurred using CBP with the Ram-Lak filter and linear interpolation.
and GRD with the ramp filter are different. For an infinite number of projections
(.V. — ). the point spread function is given by the spin integration of the appropriate
function. namely Eq.(3.10) for GRD and Eq.(3.18) for CBP, .. [n actuality. .\, is
finite and so the respective PSFs are given by a discrete and finite spin summation
instead of spin integration. This leads to potential azimuthal (streaking) artifacts in
the baseband unless .V, > %n’.\',.

For GRD reconstruction. the ramp filter is discretized priorto the [FT. while for
CBP it is discretized afterthe [F'T. Because the ringlobes emanate from the discretiza-
tion of the filter prior to the IFT. the CBP PSF is composed of the main lobe only.

Thus. provided the object being reconstructed is contained within a circular FOV of

diameter and .V, > lx.V.. the aliasing resulting from the ('BP reconstruction

e
will be negligible.

[n comparison. the ringlobes present in the GRD PSF are due to the fact that the
GRD reconstruction retains the original 2D sampling effects. One way to minimize
the effects of the ringlobes is to sinc-interpolate in the radial direction before GRD
reconstruction. as suggested in section 3.2.1.

[t is interesting to note that if one applies the ramp (Ram-Lak) filter directly to
the polar k-data prior to the 1D IFT (ie. in a multiplicative fashion in analogy to
what occurs in GRD). takes the [FT in the k. direction and backprojects. then the
reconstructed image aliasing is similar to that of the GRD image. This is because the
[FT of the discrete ramp produces replicates which upon backprojection (the discrete

analog of spin integration) leads to ringlobes. Thus. the discrete convolution in image

space is preferable to the discrete multiplication in k-space.



3.4 Results

The theoretical SNR expectations were verified experimentally on a 0.5T GE Signa
scanner (General Electric Medical Systems. Milwaukee. WI). whose maximum gradi-
ent amplitude and slew rate are 1.0 Gauss/cm and 1.67 Gauss/cm/ms. respectively.
The phantom consisted of 9 NMR glass tubes (1.0 cm diameter. 15 cm length) closely
packed within a 4x4 cm? region. Each tube was filled with various concentrations of
agarose doped with nickel chloride (NiCl;) to generate phantoms with T and 7, values

ranging from 250ms-1250ms and 25ms-400ms. respectively. as shown in Table 3.2.

Table 3.2: Agarose/NiCl, phantom T and T, values

Tube # NiCl, Agarose T, T,
1 5.0 mM 1.0 % 209 ms | 249.8 ms
2 5.0 mM 1.0 % 79.4 ms | 263.2 ms
3 5.0 mM 0.2 % 178. T ms | 270.1 ms
4 2.0 mM 1.0 % 273 ms | 503.4 ms
5 2.0 mM 1.0 % 95.5 ms | 373.5 ms
6 2.0 mM 0.2 % 234.0 ms | 367.1 ms
T 0.5 mM 1.0 % 27.9 ms | 1066.0 ms
3 0.5 mM 1.0 % 107.3 ms | 1230.0 ms
9 0.5 mM 0.2 % 407.7 ms | 1240.0 ms

Measured T\, and T, relaration times for the nickel/agarose (NiCly) phantoms of
varying concentrations.

A Concentric Circle Spin Echo pulse sequence was written (EPIC 5.6 pulse pro-
gramming language) such that half the circle was acquired at each excitation. The
readout was in the azimuthal direction. and the radial steps were increased for sub-
sequent excitations to acquire the entirety of k-space. i.e. both the top and bottom
half. The k-space values were acquired using the GE head coil and a loader shell to
properly load the coil.

The MR parameters were as follows: an echo time (TE) of 40ms. a repetition

time (TR) of 2000ms. a 3mm slice thickness. 1 excitation (NEX) per image. a matrix
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size of [384x 160} (namely 384 azimuthal points within 0-x with 160 radial points per
projection). with a scan time of 5:24 per image. The k-space values were measured for
FOVs of llem. 22cm. and 33cm using filter bandwidths (BW) of £32kHz. £16kHz.
and £3kHz. which correspond to acquisition times (T,.,) of 6144us. 12283us. and
24576us. respectively. All images were reconstructed onto a 236x236 image grid for
both GRD and CBP.

Two images were acquired for each FOV/BW combination. say img; and img,.
The resultant signal and noise images were calculated from l) img, +img, | and
—% [imgl—img._, . respectively. The pair of images were then scaled such that the
sig;lal image was normalized to have a maximum amplitude of one. We measured the
average signal and noise within various regions of interest (ROI) of the phantoms.
and determined the SNR by taking their ratio. Thirty six ROIs were chosen within
the NMR tubes. and 36 ROIls were chosen in the surrounding air medium (:.¢. noise
regions).

All noise images (GRD and CBP) were observed to be fairly uniform over the
entire FOV. Furthermore. the signal images were observed to possess comparable
signal intensities (to within £3%) at the various FOVs and BWs.

From Eq.(3.9) and Table 3.1. the SNRs of both GRD and CBP are expected
to scale as the square-root of the acquisition time. And. since T,., x 1/BW. the
SNRs at £16kHz and +3kHz relative to that at +32kHz are expected to increase by
V2 .41 and V4 = 2. respectively. The experimental results of Table 3.3 support
the theoretical expectations.

We also verified the noise dependence with voxel volume. Since the reconstructed
images consist of .V, square pixels of width Ar. the FOV along the r and y directions
is given by FOV = N, Ar. Consequently, the voxel volume is Av=FOV?Az/ V2. All
images were acquired for Az and N, held constant. so that A scales as FOV?.

The mean noise value was measured in 36 air regions at different FOV's for various

BWs for both GRD and CBP reconstruction. Since the SNR is expected to scale as



Table 3.3: Experimental SNR measurements relative to a +32kHz filter

=1

[0

+32kHz +16kHz +3kHz
(6144us) (12283us) (24576us)
GRD (llcm) 1.000 1.38 £ 0.07 | 1.95 £ 0.12
CBPraje (llem) 1.000 1.39 + 0.06 | 2.00 £+ 0.13
CBPshis (1lcm) 1.000 1.39 £ 0.08 | 2.01 £ 0.13
GRD (22¢m) 1.000 1.33 £ 008 | 1.97 £ 0.16
CBP o (22cm) 1.000 1.33 £0.12 | 1.93 £ 0.22
CBPa (22cm) 1.000 1.30 £ 0.11 | 1.89 £ 0.20
GRD (33cm) 1.000 149 £0.19 | 1.93 £ 0.36
CBPraa (33cm) 1.000 1.39 £ 0.19 | 1.85 £ 0.34
CBPsnio (33cm) 1.000 .41 £0.23 | 1.85 £ 0.35

Erperimental SVR measurements relative to a £32kH: bandwidth filter (with the
corresponding acquisition times in brackets). The measurements represent the mean
plus one standard deviation of measured relative SNRs in 36 different ROIls within
the various NiCl, phantoms. The theoretical expectations at +16kH= and £8kH:= are

1.41 and 2.0. respectively.

FOV? and the maximum signal within all images was normalized to unity. then the
variation of noise only is expected to scale as 1/FOV?. Thus. relative to an llcm
FOV. the expected noise at 22cm and 33cm FOVs is expected to be 1/22 = 0.25
and 1/3% = 0.11. respectivelv. The experimental results of Table 3.4 support the
expectations. although there seems to be a bias to slightly overestimate the noise.
Finally. we verified the theoretically expected SNR increases of ('BP images rel-
ative to GRD images. as given in Table 3.1. We expected an SNR increase of ap-
proximately 1.37 using the Ram-Lak filter. and an increase of about 1.723 using the
Shepp-Logan filter. The results of Table 3.5 agree with theoretical predictions.
Although the GRD and CBP Signal-to-Noise Ratio theory sections were devel-
oped assuming ideal conditions. the results of Tables 3.3-3.5 provide experimental

validation of the simplified theoretical analysis.



Table 3.14: Experimental noise measurements relative to an 1lem FOV

llem FOV 22cm FOV 33cm FOV

GRD (£32kHz) 1.000 0.28 £ 0.01 0.13 £ 0.01
CBP .. (£32kHz) 1.000 0.27 £ 0.01 0.12 £ 0.01
CBPnis (£32kHz) 1.000 0.27 £ 0.01 0.12 £ 0.01
GRD (£16kHz) £.000 0.28 + 0.01 0.13 & 0.01
CBP,a, (£16kHz) 1.000 0.27 £ 0.01 0.12 = 0.01
CBPsnis (£16kHz) 1.000 0.27 £ 0.01 0.12 £ 0.01
GRD (£3kHz) 1.000 0.27 £ 0.0!1 0.12 = 0.01
CBPry., (£8kHz) 1.000 0.27 £ 0.01 0.11 = 0.01
CBPgns, (£8kHz) 1.000 0.26 = 0.01 0.12 + 0.01

Erperimental noise measurements relative to an [[cm FOV. The measurements
represent the mean plus one standard deviation of measured noise regions in 36
different ROls within the air regions surrounding the NiCl, phantoms. The
theoretical erpectations at 22cm and 33cm FOVs are 0.25 and 0.11. respectively.

Table 3.3: Experimental SNR measurements of CBP relative to GRD

GRD CBPrata CBPsnis
llem FOV. =32kHz 1.000 1.33 £0.06 | 1.68 + 0.10
22cm FOV. £32kHz 1.000 1.37 £0.05 | 1.72 £ 0.09
33cm FOV. £32kHz 1.000 1.35 + 0.06 | 1.65 + 0.09
llecm FOV. £16kHz 1.000 1.39 £ 0.05 | 1.70 £+ 0.07
llem FOV. £8kHz 1.000 l.41 £ 0.04 | 1.72 £+ 0.06

Erperimental SNR measurements of CBP,,, and CBP,, reconstruction relative to
GRD reconstruction. The measurements represent the mean plus one standard
deviation of measured relative SNRs in 36 different ROls within the various NiCl
phantoms. The theoretical expectations for CBP,q1. and CBP.y, are [.37 and [.723.
respectively.



3.5 Non-Equidistant k., Sampling

The SNR. resolution. and aliasing characteristics are important design (and recon-
struction algorithm) considerations for any MR acquisition. However. the scan time
and the resulting flow/motion artifacts in the image are just as important. Since the
gross features of the imaged object are contained near the centre of k-space while
its edge information is located at the high spatial frequencies. it may be desirable to
sample non-uniformly in the radial and/or azimuthal directions to reduce scan time
and suppress motion artifacts. Here. we restrict ourselves to non-equidistant radial
polar sampling with equally-spaced azimuthal samples.

To reconstruct such radially non-equidistant polar k-data. GRD can still be used
because of its flexibility and generality. provided that the 2D weighting function i (k)
is known. CBP. however. expects the projection data (i.e. the |D [FT of the k. -lines)
to be equally-spaced. Consequently. one can perform a 1D GRD of the &,.-lines (which
gives rectilinear MR projections) followed by CBP: this we call the hvbrid GRD/CBP
reconstruction.

To perform the GRD/CBP reconstruction. one first needs to determine the 1D
weighting function W'(4,) required in the 1D GRD of the non-equidistant k, samples.
This is easily calculated. For example. assume 3 consecutive k. samples are located at
krpi. krp. and k. p. The weighting of the p** sample. a measure of its areal extent.

Is given by

. 1 l .
144 (/\'r.p) = 5 |kr.p - kr.p—ll + 5 |kr.p+1 - kr.pl (3.20)

Although GRD/CBP reconstruction is generally more time-consuming than 2D
GRD. it does offer some benefits: W (k.) is easily calculated (as shown above). and
the aliasing is reduced.

The aliasing reduction of GRD/CBP compared to 2D GRD is obvious when one
compares their PSF's which are given by the spin integration of the effective weighting

functions. For general non-uniform radial polar sampling, the (k.. k,) coordinates are



[
—

transformed to (A’ (A;). ks). where A'(k,) represents some general function. For 2D

GRD. the weighting is

ok, Ok,
ok, adk y .
(k) = ? = |K(mAk, 2B (mak) (3.21)
ok, dk, dk,
ddk,  Odks i, —max,
so that the PSF. using the Fourier convolution theorem. is given by
: y k
PSF,., = @ {f“ [ [\'(mAk,)fl—l—\—(%]}
. k. ’
= Q{f'l[d—[-\%—)}*f—l [I[\(mAk,H]} (3.22)
dk,

where @ and F~! are the spin integration and [FT operators. respectively. and * is
the convolution operator. [n analogy to Eq.(3.11). spin integrating the [FT of the
discrete weighting will produce ringlobes in the PSF.

In comparison. for the GRD/CBP reconstruction. the 1D gridding portion requires
b f[d[\'(m.Akr)
a weighting of | ————

o o ‘ d‘.r

image space in the CBP portion of the algorithm via Cup(r). The PSF is thus

. The ramp-like weighting is applied as a convolution in

dR (mAk,)

PSFarijety = Q{}-—l[ ak,

] - chp(r)} (3.23)

where Cu,(r) is given in Eq.(3.14). Note that before convolution. only the baseband

is retained. Within this baseband. the aliasing effects of having undersampled at large

dK(mA\k,) term
dk, '
Now. comparison of Eqs.(3.22) and (3.23) shows that the only difference in the

k. persist. which is reflected in the F! {

PSFs is the function convolved with F~! { |[dKN(mAk,)/dk. | } prior to spin integration.
[n GRD/CBP. it is C'4,(r) which is calculated from the IFT of the continuous ramp
function. which is Eq.(3.18). Conversely. in 2D GRD. it is the IFT of the (non-
uniformly) sampled ramp function. Thus. in analogy to the purely polar case. the
ringlobes emanating from the [FT of the discrete k-space ramp weighting have been
eliminated. although the original sampling effects (i.e. those due to undersampling of

the high spatial frequencies) are retained within the baseband.
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Figure 3.3: Polar k-space sampling trajectories

K-space sampling patterns for (a) purely polar samples with radial spacing Nk, .
(b) radially non-equidistant polar samples whose radial positions are given in
Eq.(3.2}). and (c) purely polar samples with radial spacing 1.52k.. Note that all
trajectories cover the same effective area in k-space. The ares are in units of N . \k,.

A simulation of radially non-equidistant polar k-data was carried out. The data
were reconstructed using both 2D GRD and the GRD/CBP algorithms (Figure 3.4).
The reference image in Figure 3.4(a) depicts the syvnthetic noise-free phantom k-
data reconstructed from [128 x 128] Cartesian samples of spacing Ak, in both the
k. and &, directions. Figures 3.4(b) and 3.4(c) show the 2D GRD and GRD/('BP
reconstructions. respectively. of the same synthetic phantom sampled with radially
non-equidistant polar sampling. The k-data consisted of 200 azimuthally equidistant

samples within (0.7) by M radial samples located at A'(k,) given by

:t%z s +cs ——k' 5+ kr * O(k, — mAk,) (3.24)
2 \ 3k TNk T VAL = mAk,

where ¢; and ¢y are constants. and M < .V,. By setting cs =35000. and ¢, =380000. we
get M =384 so that the total k, extent is 128 Ak,. This represents a 31% reduction of
k, samples. For comparison, Figure 3.4(d) depicts the case of 81 radially equidistant

polar samples covering the same &, extent of 128k, but with spacing 1.52\k,.
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Figure 3.4: Syvnthetic. noise-free. phantom images
Synthetic. noise-free. phantom images. (a) Reference [128x 128] Cartesian image
reconstructed with the FFT. (b) Radially non-equidistant [34x200] polar k-data
reconstructed with the 2D GRD algorithm. The radial spacing is about Ak, at low
frequencies but increases to over 3\k. at high frequencies. (c¢) The same k-data as
in Figure 3.4(b). but reconstructed with the hybrid GRD/CBP algorithm.

(d) Radially equidistant [34x200] polar k-data of radial spacing 1.52\k,
reconstructed with the 2D GRD algorithm. The details of the k-data sample
locations can be found in the terxt. All images were reconstructed onto a [123x 123]
image grid. Note the severe aliasing in Figure 3.4(d) as compared to Figure 3.{(b)
or Figure 3.4(c). even though the matrir size and k-space ertent are the same.

Note that because the radial extent of k-space is constant (see Figure 3.3). all
reconstructed images have the same pixel size. The aliasing effects. however. are
different. especially when comparing the equidistant versus non-equidistant cases.
Furthermore. the SNR and effective resolution differ. although these two effects must
be considered jointly (as discussed in the Tradeoffs section).

In Figure 3.4(c). the circular oscillations present inside and outside the object
are strictly due to undersampling at large k.. They emanate mostly from the ob-
ject boundary (outer ellipse) since the aliasing effect is more pronounced for large
objects within the FOV. In Figure 3.4(b). the oscillations are slightly larger. espe-

cially in the region outside the object. This is the ringlobe effect arising from the
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F- [|[\'(mAkr)!] term in Eq.(3.22). Moreover. the signal amplitude effect seen in
Figure 3.1 persists in Figure 3.4(b) but is eliminated in Figure 3.4(c) since this too is
a ringlobe effect. It emanates from the k-space discretization of the ramp-like filter
priorto [FT and subsequent spin integration.

Figure 3.4(d) clearly demonstrates that if the k-space coverage and number of
samples is the same as in the radiallv non-equidistant case. the aliasing is severe.
although the underlying gross characteristics of the object are still recognizable.

Neither the GRD nor GRD/CBP reconstructions correct for aliasing present due
to undersampling of the data. Thus. some aliasing is inevitable under those sampling
circumstances. However. not all aliasing is catastrophic. In fact. it may be possible
to sample in such a way that the aliasing within the image is tolerable and does not
affect the overall SNR and/or C'NR (contrast-to-noise ratio) characteristics of the
image too severely. These concepts may be applicable when the object undergoes
motion. whereby an increase in spatial sampling artifacts (/.e aliasing) is traded off

for a decrease in temporal artifacts (i.e. a reduction in motion artifacts).
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3.6 Discussion

The image reconstruction effects of equidistant radial/azimuthal polar k-data were
investigated for both the gridding and the convolution backprojection algorithms.
These effects included the SNR. resolution. and aliasing present in the image.

While GRD is primarily a Fourier domain algorithm and CBP is an image domain
technique. both of these algorithms perform identically in terms of SNR and resolu-
tion. provided that these two effects are considered together. [n their most basic
implementations. i.e. the weighting based on ramp filters. GRD maximizes resolution
at the expense of SNR. while CBP sacrifices resolution to increase the SNR.

The variance analysis presented herein yvields the SNR value. an effectively global
figure of merit. However. a more in-depth analysis of the noise power spectrum is war-
ranted to ascertain and determine the complete characteristics of noise propagation
within each algorithm.

Gridding offers the advantage of direct manipulation of the k-space data. Thix
allows one to tailor the resolution versus the SNR. Moreover. GRD allows for the
possibility of non-equidistant azimuthal polar sampling whereby one can maximize
resolution and SNR simultaneously.

In this chapter. we contrasted GRD using the ramp filter with CBP using the Ram-
Lak (ramp) filter. the most direct comparison between the two algorithms. However.
many choices of reconstruction weighting and/or convolution functions are possible
for both GRD and CBP. [n fact. the polar k-data can be reconstructed using CBP
and GRD such that the images have comparable SNR and resolution. In this case.
either the GRD weighting function or the CBP convolution function or both must be
altered to yield comparable variances and MTFs. Apodized ramp filters also have the
added benefit of suppressing Gibb’s ringing artifacts. but doing so leads to increased
blurring and a loss of image resolution.

One important difference between GRD and CBP is their different PSFs which

lead to different aliasing behaviour. The polar PSF using GRD includes the main
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lobe and the ringlobes. The main lobe describes the blurring effect of finite saru-
pling. and the ringlobes are a measure of the expected aliasing. Conversely. the PSF
using CBP eliminates the ringlobes altogether. Thus. provided the radial sampling
satisfies the Nvquist criterion. the aliasing using CBP will be minimal. In both al-
gorithms. though. insufficient azimuthal sampling leads to streaking artifacts in the
image (azimuthal aliasing). Neither GRD nor CBP correct for this artifact.

I[nterestingly enough. simulations show that if the k-data are radially continuous
as opposed to discrete (i.e. spiral versus concentric circles). the PSF ringlobes are
reduced. which leads to reduced aliasing. However. the spiral PSF is dependent on
the number of interleaves acquired. and consequently so is the aliasing. [n short. one
must fully characterize the PSF of the particular sampling scheme to ascertain the
aliasing effects. Therefore. the conclusions drawn here for purely polar sampling do
not necessarily apply to spiral sampling.

To reconstruct radially non-equidistant but azimuthally equidistant k-data. we
suggested a hvbrid GRD/CBP reconstruction algorithm. This technique reduces
aliasing in comparison to 2D GRD. although the reconstruction times tend to be
longer by about 30% or so. Though an in-depth analysis of the radial sampling
effects of radially non-equidistant polar k-data is bevond the scope of this treatise.
the hybrid GRD/CBP algorithm may allow one to investigate the tolerable aliasing

limits and ensuing tradeoffs of radially non-equidistant polar k-space sampling.



3.7 Appendices
3.7.1 App. A — CBP Integral

[n polar coordinates. we write k. =k, cos k3 and k, =4, sin k4. from which the 2D [FT
of M(k..ks)is
[(I. y) = /_: /'t .‘[( k.. ke) E;’,:;'k,[.rcosk9+y5ink9] ke dk, dh
k,;_(] vr =0

=// I(k,. Lg;e"=”&du/\9+

bd 0

where X = [rcos ky+ysin k). In the second integral. we can first substitute k; = k==

then note that M{k,. &3+ 7 = M(—k,.k3). and then substitute ky = —4, to obtain

/ / T Mk kg) 75X kdhodhy =
kg== Jk.=0

~ r0 . .
/ / Mk, k3) €275 (k| dkodh (3.26)
0 —-C
so that
I(r.y) // [(kr.hg) €275 k| dkodhy (3.27)

Now. for a particular ks =kj}. the X(x.y) variable represents the projection of (. y)-
space at the same angle &} in the image domain. Conversely. we can write this 2D

X(r.y) representation as a 1D representation of r in conjunction with backprojection:

/_x Mk ky) €75 XL | dk, — B{/_x .\[(kr.k{,)ez“""’lkrldl.-,}
= B{F ' [Mylk)kl]} = B{F ' [Mylk)|~F [kAl} (328

where B denotes backprojection. and My (kr) = M (k.. kg) represents the radial k-
line at angle k). Note that Eq.(3.28) applies to continuous functions. whereby the
ramp weighting can be applied as a multiplication in k-space or as a convolution in
image space (by virtue of the Fourier convolution theorem [9. p.108]). When applied

to discrete functions. however. the convolution expression is preferred since it does
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not suffer from cyelical aliasing {21. Ch.7]. Finally. then
[(r. = [T B{F M k)]« F k1% dk, 3.29
(o) = [ B{F Miyikell « F {1k 1} ks (3.29)

The interpretation of Eq.(3.29) follows readily. The [FT of each radial &.-line at
angle kg is convolved with the IFT of the ramp filter which compensates for the vari-
able sampling density. This convolved projection at angle ky is then backprojected for
each desired image (r.y) location. The reconstructed image [(.r.y) is the summation
of all the convolved projections at angles kg within (0. 7). Note that we imposed no
conditions on M (k.. ks) so that this reconstruction formalism is valid for Hermitian.

anti-Hermitian. or non-Hermitian polar k-data.



3.7.2 App. B - CBP MTF

One might expect the convolution backprojection MTF (using linear interpolation)
to be given by A( k,)sincg( _

NoAE,
A(k.) is the apodization function applied to the finite ramp filter. However. the

) out to a maximum radius of 1 N.Ak.. where

discretization. interpolation. and resampling of the convolved data onto a C'arresian
grid leads to a more complicated MTF (see Figure 3.2).

The MTF is given by the Fourier transform of the PSF. where we assume the
object to be a point object so that each projection is given by a single impulse at r=0.
namely &(r). The convolved projection is thus the [FT of the filter function. Here. we
assume that the filter function is the Ram-Lak filter and that linear interpolation is
used in the backprojection stage. The analysis depicted in Figure 3.5 can he applied
for other filters and more sophisticated interpolation schemes.

Figure 3.3(a) depicts the ramp filter F(k;) in the Fourier domain (on the right).

[ts [FT is

+N, Ak /2 N
flry = ko | €275 dk, (3.30)
—Nr Ak /2
N Ak )? . . Y ATV S -
= %—)— [2 sinc (r. N, Ak ) — smc'(,—-_)—>] (3.31)

which is depicted on the left of Figure 3.5(a) (the image domain). For computa-

tion purposes. the convolution function is discretized at the Nyvquist rate. namely
_ 1

CONAR
pling function LL[ (—_{;) of Figure 3.3(b) to obtain f,(r). as shown in Figure 3.5(c).

Ar This discretization is expressed by multiplying f(r) with the sam-

: . . . k, :
In Fourier space. this corresponds to convolving F(k,) with | I | VL to give

Fik,). a replicated version of F(k,). as shown in Figure 3.5(c). The coefficients at

locations p Ar (where p is an integer) of f,{(r) are

1/4 p=0
Ram-Lak filter: —1/(p7)® pis ODD (3.32)
0 pis EVEN

The discrete f,(r) function is then (here assumed linearly) interpolated. Now.
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linear interpolation can be expressed as a convolution with a triangle function of width

2Ar. say A (L) as depicted in Figure 3.5(d). This gives f,(r) <\ (—-,——) . which is
Ar Ar
shown in Figure 3.5(e). Note that this is effectively Cp(r) of Eq.(3.14). In Fourier

) which

space. this corresponds to F(k;) being multiplied (apodized) by sincz( v Arl.'
is shown in Figures 3.5(e) and 3.5(f). the latter showing an expanded view.
With the interpolated f,(r) representing one projection at angle k;. we then

backproject it onto the image grid at the appropriate (r.y) locations. This pro-

cedure is depicted in Figure 3.35(g). The 2D FT of this backprojected data results

: ok :
in F{ k,.]sinc‘( W ) at the same angle k4 in (k.. k,)-space. However. because of
discretization in the r and y directions. we get wraparound (or folding) of the 1D
function £ k,.)sinc2< -

NeAA,

) in the 2D k-space. as shown in Figure 3.3(g).

- 2 kr . - : .
If k5 =0. then F(L‘,)sinc‘( V2 ) is folded onto itself and is resampled with

spacing Ak.. which is the original sample spacing. and the foldover points occur at

odd multiples of £3.V, k.. In this case. we recover the ramp filter exactly. as shown
N AL,

itself. However. unlike the Ay =0 case. the foldover points occur at odd multiples of

in Figure 3.5(h). Similarly. if ks = 45°. then F(A'r)sincz( ) also folds onto
:i:é;.\}.ll;,. The effective weighting at 13° is not a ramp. but rather an apodized
ramp-like function that is non-zero at &, = 0 and extends out to [k,| = \lﬁ-\-r—\kr-

This too. is depicted in Figure 3.5(h). For cases where ky is not a multiple of 43°.

F(A'r) Sincz(.\',.li_:.k,) is distributed over much of the 2D k-space. as shown in Fig-
ure 3.5(i).

When backprojecting numerous projections within the azimuthal range 0-. one
gets the PSF. whose 2D FT is the MTF (see Figure 3.2). The MTF’s non-circular

symmetry and the fact that it is not restricted to within a diameter of .V, A&, is due

to the above-mentioned wraparound effect.
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Figure 3.5: Comprehensive development of the CBP MTF
Convolution backprojection MTF details in both the image domain and the Fourier
domain. (aj The ramp filter F(k.) and its corresponding [FT f(r) in the image
domain. (b) The ID image domain sampling function of spacing Ar and its FT. a
series of impulses with spacing 1/ Ar =N, Ak.. (c) The result of sampling gives
fotr). whose FT is F(k,). a replicated version of the ramp filter. (d) The triangle
function of width 2 Ar. and its FT which is proportional to sinc?(k, /[N, Ak,]).
(¢) Linear interpolation of f,(r). i.e. convolution with the triangle function. and its
FT given by F(k,) apodized by the sinc® function. (f) An erpanded rview of
F(k,)sincz(k,/[.\",Ak,]) out to =4 N, Ak,. (g) The backprojection of
fs(r)*-\(r/_lr) at angle ky onto the image grid. and its Fourier counterpart
[:"( lf,)sincz(k,/[.\",Ak,]) which is centred at (0.0). oriented at angle ky. and wrapped
around due to 2D image domain sampling. (h) At kg =[0".45°].
F(k,) sinc(k, /[N, Ak.]) wraps onto itself giving 1D profiles at kg =07. 15,
respectively. in 2D Fourier space. (i) The wraparound effect in the Fourier domain
for kg not a multiple of 15°. shown here for ky=722.5".
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Chapter 4
Ty Modulation Effects

4.1 Introduction

One major advantage of magnetic resonance imaging (MRI) is the Hexibility of tis-
sue characterization by various contrast mechanisms. The majority of clinical MRI
acquisitions are based on T)-weighting. proton density weighting. and T>-weighting.
and to a lesser extent on diffusion weighting and other novel contrast mechanisms.

T\-weighted images have the added benefit of being acquired with short acquisition
times. This translates into more efficient patient throughput. cost effectiveness. and
less discomfort to the patient. The trade-off. though. is usually a signal-to-noise ratio
(SNR) penalty.

However. it is the high contrast-to-noise ratio (CNR) T;-weighted imaging tech-
niques that prove to be clinically useful to the radiologist for generic components of
pathology. But. proper T)-weighted MR images such as from a conventional spin echo
(SE) experiment require long acquisition times so that they are not influenced by any
T'\-weighting.

In 1986. Hennig [1] proposed a fast T)-weighted acquisition technique which goes
under the names of RARE (Rapid Acquisition with Relaxed Enhancement). FSE
(Fast Spin Echo), or TSE ( Turbo Spin Echo). In this treatise. these terms are used
interchangeably. The acquisition time is shorter than conventional SE since multiple

spin echoes in the echo train are assigned to different regions of k-space. Accordingly.
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the time reduction with respect to conventional SE is the length of the echo train.

The first principles of FSE have been fullv analvzed for Cartesian acquisitions
[2]. to some degree for projection reconstruction MRI (PR-MRI) [3]. and not at all
for concentric circles MRI (CC-MRI). Here. we analyvze the T> modulation effects tor
both PR-MRI and CC-MRI polar acquisitions.

In the Theory section. we develop the T)-weighting formalism which modulates
the k-space data directly and leads to possible artifacts in the reconstructed image.
In the Results section. we present some experimental verifications of the theory. The

ramifications of T,-weighting for polar k-space data are discussed.



4.2 Theory

The effect of T, modulation can be readily understood by considering the signal
equation (developed in the Introduction chapter) and using basic Fourier theory.

Recall that the acquired magnetization. ignoring field inhomogeneities. is given by

+x
M(k.t) :/ m? () e H/Tae) g=2mker gy (L.1)

-

~t/TAT) represents

where m7 (r) is the transverse magnetization spin-density and e
the T»-weighting function which is both temporally and spatially dependent. This
expression assumes mono-exponential T decay at each position r.

However. if we assume that the object is composed of NV, different T, species.
then the j* species of the T,-weighted magnetization spin-density can be written

—t/Tg,J

as my, (r)e . where T, is the T, spin-spin relaxation time constant of the

I’y
J* T, species. Note that the spatial and temporal dependences are now separately
associated with the m?,  and e~/T2u terms. respectively.

Since the Fourier transform obeys the superposition principle (i.¢. the addition

theorem of Table 1.1). then the net magnetization is formed from the summation of

N,
all .V, different T; species. namely Y m?, (r) e~t/T:u_ Substituting this into Eq.(4.1).
=t
we can write the signal equation as
+x N T smik
Mik.t) = / S me, (1) e~Tes =27k gy (42)
- o

By interchanging the order of the summation and integral svmbols (which is per-

—Z/Tg

missible since the Fourier transform is a linear operator) and noting that ¢ I is
independent of r. we have
.\.: T +‘x r)'k
“[(k.t) = Ze—t/ 2. / m;yd'(r)e—-“l .r dl‘
=1 =
N, - v, |
= Y e TMi(k) = Y e f{lg(r)} (1.3)

where [/(r) is the spin-density weighted image of the j** T, species. and F denotes

the Fourier transform operator.
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Note how the total acquired k-space data are given by the sum of the k-space
representation of the j** T, species MJ(k) exponentially weighted according to its
T’ value. This formalism allows one to characterize the effective T,-weighting of the
reconstructed images for both conventional and RARE-mode spin echo acquisitions.

[n conventional spin echo (see Figure 4.1). the n** echo in the echo train forms
the n** image at time TE=nESP. where ESP and TE are the echo spacing and echo

time. respectively. The k-space magnetization and MR image are given by

N.

Mo k) = Y e M Flnr} (4.4)
=1
N,
Ler) = F M0} = 3 e T L) (4.3)
=1

Thus. the reconstructed image is made up of the sum of the .V, individual 7, species
images. each one scaled according to its 1> value.

Since the k-space data are acquired at one effective echo time. the T)-weighting
function is independent of the spatial frequency coordinate (k). Consequently. the T,
contrast for a conventional SE acquisition is only dependent on the echo time { TE)
and on the T, values of the .V, different T, species. Short T, species will be reduced
in intensity relative to longer T species. and so a T,-weighted contrast is achieved.

By comparison. in RARE-mode acquisitions. multiple echoes within the echo train
are used within the same k-space. as shown in Figure 4+.2. [n so doing. different
regions of k-space are encoded at different echo times. i.e. k(#). One can invert this
such that the temporal coordinate is dependent on the spatial frequency location.
namely ¢t — t(k). By writing it this way. the temporal dependence in Eq.(4.3) can be
written as a spatial frequency dependence. C'onsequently. the acquired RARE-mode

k-space data and MR image are given by

N,
Mearn(k) = Y e ™/ F{L(r)} (+.6)
=1

Lare(r) = F ' { M)} = 'Zv’;f“{e-"“”n-'}*fz(r) (+.7)
=1
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where the » svmbol denotes convolution. and we have used the Fourier convolution
theorem [4. p.103]. Although not explicitly stated previously. the inverse Fourier
transform operation required to go from M (k) to I(r) is performed over the spatial
frequency k-coordinate only. which is why we parameterize time as a function of
spatial frequency.

Unlike the conventional SE acquisition. T modulation in RARE-mode acquisitions
leads to a more complicated effect than mere scaling. Rather. the j** T, species
is blurred (i.e. smeared) and perhaps replicated via the convolution process. \n

~tk)/T2, {5 therefore warranted.

understanding of the functional form of €

[f the j** T, species is represented as a point object or impulse. i.e. [/(r)=0d(r).
then F~! {e“(k)/T2~f} is said to be the T, impulse response function (IRF). Note that
there are different T, [RFs for each T, species.

[n analogy to the conventional SE acquisition. in RARE-mode acquisitions each
T, species is affected according to its respective T, impulse response function. For
conventional SE. the T3 [RF is merely a scalar which modifies the intensity of the
respective T, species. whereas for RARE-mode acquisitions. the T, [RF is a spatially
varying function which scales. smears. and blurs the respective T, species.

Moreover. since the T>-weighting function in RARE-mode acquisitions is depen-
dent on the spatial frequency. the k-space trajectory plays an integral part in the
functional form of the T,-weighting function: the image contrast and k-space trajec-

tory are no longer separable for these types of acquisition. Thus. the T)-weighting

and T, IRF functions of PR-MRI and CC-MRI are analyzed separately.
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Figure 4.1: Conventional spin echo k-space representation
FEach of the n echoes within the echo train (labelled F1-E8) is encoded within one
k-space matriz. The data (shown here as CC-MRI) are collected at one effective
echo time given by TE=nFESP.
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Figure 1.2: RARE-mode spin echo k-space representation
All of the n echoes (labelled E1-E8) are encoded within the same k-space matrir.
The data (shown here as CC-VIRI) are amplitude modulated by the T)-weighting
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4.2.1 Projection Reconstruction

For projection reconstruction MRI. the readout direction (on the order of a few mil-
liseconds) is in the radial direction. Thus. for RARE-mode PR-MRI. the T)-weighting
occurs along the azimuthal direction and cannot be circularly symmetric or isotropic.
This has the potential of introducing artifacts into the reconstructed MR image.

In 1994. Rasche [3] surmised that RARE-mode PR-MRI. which he termed Radial
TSE. could provide a familiar contrast behaviour at a reduced scan time. Rasche
analvzed the T, impulse response function and effective TE for RARE-mode PR-
MRI. Here. we present some of our own findings which differ from Rasche’s. In fact.
we show that Rasche’s analysis may be in error. Moreover. the formalism and analysis

of T, contrast method presented herein is general and can be applied to any k-space

trajectory.
4 1Espm,
e

o
£ -2ESP/T,
= e
=y -3ESP/T,
o e
2 -4ESP/T,
= €

1 2N, /ETL 4N, /ETL

Azimuthal Location

Figure 1.3: PR-MRI T;-weighted banding approach
The Tr-weighting in the azimuthal direction is made up of bands of echoes at the
same echo time nESP. The 1D representation along the azimuthal direction is
shown on the left. while its 2D representation is shown on the right.

Many types of modulation functions are permissible. The first approach follows
readily from the Cartesian RARE-mode acquisition. here called the banding approach.
as shown in Figure 4.3. The azimuthal T;-weighting is displayed assuming .V, projec-

tions within 0-7 and an echo train length (ETL) of 4 echoes. In this approach. the
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first echo of each excitation is encoded such that the projection lies within (0. ;) .
ETL
T . T 2%
the second echo projection lies within (— —‘> and so on.
ETL ETL

The normalized T, impulse response function with an echo spacing ESP=15ms. an
echo train length ETL=41 echoes. .V,=192 projections. .V,=128 points per projection.
and a T, value of 25ms is shown in Figure 4.4. Here. we display the magnitude of the

T, IRF in decibels (dBs). i.e. 10log,,(|IRF}).

Figure 1.4: PR-MRI T, impulse response function for the banding approach
The normalized T, impulse response function is displayed in dBs for an ETL of |
echoes. N, =192 projections. N. =128 points per projection. an ESP of [5ms. and a

T, value of 23ms. The corresponding linear gray scale colourbar is also shown.

Note the asymmetry of the impulse response function due to the junctions occur-
ring between successive bands. Simulations show that such a T:-weighting scheme
leads to severe smearing in the reconstructed image. This is demounstrated in Fig-
ure 1.5 for the reconstruction (using convolution backprojection) of a synthetic noisy
disk phantom with an SNR2100.

The second approach. termed the sequential approach. depicts the echoes being
sequentially ordered along the azimuthal direction. as shown in Figure 1.6. Once
again we have assumed an ETL of 4 echoes. For display purposes. we chose .V, =24
projections (within 0-m) and N,=128 points per projection. In practice. however.

one would have :V; on the order of %Nr to avoid azimuthal streaking artifacts. as



Figure 4.5: PR-MRI image reconstruction effect for the banding approach
The effect of the PR-MRI banding approach is shown for a synthetic disk phantom
(left} being severely smeared (right) when subjected to the banding approach with
ESP=15ms. ETL=4 echoes. N,=192 projections. N, =128 points per projection. and
T)=25ms. The corresponding linear gray scale colourbars are also shown: the two
images are at the same windowing level.
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Figure 1.6: PR-MRI T,-weighted sequential approach
The T>-weighting in the azimuthal direction is sequential with echo time. The 1D
representation along the azimuthal direction is shown on the left. while its 2D
representation is shown on the right.

1
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explained in the Reconstruction Effects chapter. Its 2D representation is also shown
for comparison with that of Figure 4.3.

Although the junctions still exist at every multiple of ETL along the azimuthal
direction. the T,-weighting function exhibits a more symmetrical appearance since
the junctions are distributed throughout. This also leads to a more symmetrical T,
impulse response function. The normalized magnitude T, [RF (in dBs) is shown in
Figure 4.7 assuming an ESP of 15ms. an ETL of 4 echoes. V,=192 projections within

0-=. .N.=123 points per projection. and a T, value of 25ms.

4
. i

Figure 4+.7: PR-MRI T, impulse response function for the sequential approach
The normalized T, impulse response function is displayed in dBs for an ETL of }
echoes. N, =192 projections. N, =128 points per projection. an ESP of [5ms. and «

T, value of 23ms. The corresponding linear gray scale colourbar is also shown.

[n comparison to Figure {.1. the sequential T> IRF of Figure 4.7 appears more
uniform and pseudo-isotropic. is four-fold symmetric. and there is more distributed
energy away from the centre. The reconstruction of a noiseless synthetic disk phantom
(depicted in Figure 4.8) shows little smearing artifacts. but slight streaking (i.€. star-
like) artifacts outside the object emanating from the edges of the disk phantom. This
effect arises due to the star-like appearance of the T, IRF (as shown in Figure 4.7).

The third and final approach depicts the interleaved approach. The ordering is

similar to the sequential approach except that one tries to marimize the number of
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Figure 4.8: PR-MRI image reconstruction effect for the sequential approach

The effect of the PR-MRI sequential approach is shown for a reconstructed synthctic
notseless disk phantom. The parameters are ESP=15ms. ETL=16 echoes. N,=192
projections. N, =128 points per projection. and To=25ms. The image on the right is
the same as that on the left but at a higher brightness level to accentuate the
star-like artifacts (note the different gray scale colourbars).
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Figure 1.9: PR-MRI T;-weighted interleaved approach
The T)-weighting in the azimuthal direction is interleaved with echo time. as
erplained in the tert. The 1D representation along the azimuthal direction is shown
on the left. while its 2D representation is shown on the right.
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junctions in the T,-weighting function. Therefore. the first half of the echo train is
encoded sequentially at the odd azimuthal locations. while the second half of the echo
train is encoded in a reverse sequential fashion at the even azimuthal locations. An
example helps to elucidate the approach.

If the echo train length is 8 and the echoes are labelled E1-ES. then the azimuthal
ordering is { E1.ES.E2.ET.E3.E6.E1.E5}. Figure 1.9 depicts the case of ETL=1 echoes
and N,=21 projections (for display purposes only). The 2D representation can be
directly compared to that of Figure 1.6 since the ESP and T, values are the same in
these two cases. Note that in the interleaved approach. one introduces more intense
junctions than the banding or sequential approaches in an attempt to minimize the

coherence of T)-weighting in the azimuthal direction.

0

o
.i im
-40

Figure 4.10: PR-MRI T, impulse response function for the interleaved approach
The normalized T, impulse response functions are displayed in dBs for an ETL of |
echoes. N, =192 projections, N, =128 points per projection, an ESP of 15ms. and T,

values of 25ms (left) and 80ms (right). The corresponding linear gray scale
colourbars are also shown; the two images are at the same windowing level.

The normalized magnitude 7> impulse response function (in dBs) is shown in
Figure 1.10 assuming an ESP of 13ms. an ETL of 4 echoes. .V,=192 projections.
V.=128 points per projection, and T, values of 25ms and 30ms. Comparison of the

T>=25ms sequential and interleaved IRF images of Figures 1.7 and 4.10. respectively.
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shows that the interleaved approach appears slightly more diffuse than the sequential
T, IRF. and there is less energy in the spokes. This leads to reduced star-like and
smearing artifacts in the reconstructed MR image.

[n Figure 4.10. one can clearly observe that for longer T, species. the IRF has
reduced intensity in the spokes. This leads to reduced blurring effects for long 7.

species relative to short T, species.

Figure 4.11: PR-MRI image reconstruction effect for the interleaved approach
The effect of the PR-MRI interleaved approach is shown for a reconstructed
synthetic disk phantom with SNR~{5. The parameters are ESP=1[5ms. ETL =16
echoes, N, =192 projections. N, =128 points per projection. and Tr=25ms. The
image on the left is the reconstructed disk subjected to the sequential approach. while
the image on the right is for the interleaved approach. Note the reduced signal
outside the object for the interleaved approach. The corresponding linear gray ~cale
colourbars are also shown: the two images are at the same bright windowing lerel to
accentuate the star-like artifacts.

The reconstruction of a synthetic disk phantom of SNR245 subjected to the inter-
leaved approach is shown on the right of Figure 4.11. For comparison. the same disk
phantom subjected to the sequential approach is shown on the left. The T,-weighting
parameters include ESP=15ms. ETL=16 echoes. .V,=192 projections. .N, =128 points
per projection. and a T, value of 25ms. The interleaved approach image has slightly
less signal (about 53%) outside the object (:.e. reduced star-like artifact), and the SNR

is slightly greater (~46 vs. ~44) in comparison to the sequential approach.
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For PR-MRI the azimuthal junction artifact is difficult to avoid. However. one
could adopt a two-sided approach to eliminate the junctions altogether. For example.

the one-sided sequential approach for ETL=1 echoes is
{EL.E2.E3.E4.E1.E2.E3.E4.E1.LE2.E3.EL.EL... }

which has junctions between the El and El echoes. In the two-sided sequential

approach. the azimuthal weighting would be (for ETL=4 echoes)
{E1.E2.E3.E{.E4.E3.E2.EL.EL.E2.E3.E1.E1.. . }

which no longer has a junction between the E4 and El echoes.

But. the two-sided approach emphasizes the star-like pattern of T,-weighting
which leads to an enhanced star-like appearance in the 7> [RF. This has the dele-
terious effect of enhancing streaking artifacts in the reconstructed image. The two-
sided interleaved approach. which was suggested by Rasche [3]|. also suffers from
increased star-like artifacts. The PR-MRI one-sided interleaved approach proposed
here. though. appears to be a good compromise in minimizing smearing and star-like
artifacts in the image.

The effective echo time of PR-MRI RARE-mode acquisitions (TE,.) is somewhat
more difficult to ascertain. Since it is the centre of k-space that dictates the overall
contrast of the object. the effective TE is the time at which one samples the central
k-space data. But. in PR-MRI all the projections within the echo train traverse the
centre of k-space.

Nevertheless. an effective echo time can be derived if we assume that the object
being imaged is circularly symmetric and centred within the field of view (FOV). In
this case. all the projections are identical, except for an amplitude variation owing to
T, modulation.

To provide stronger T,-weighting, say. one may wish to acquire the first echo at
time ESPy which may be different than the echo spacing ESP of subsequent echoes.

This may be achieved either by delaying the acquisition time of the echo train. or by
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not acquiring the first m echoes in the echo train. Furthermore. if ESP4>ESP. the
lipid signal is reduced due to J-coupling effects (i.e. scalar coupling). Consequently.
the signal intensity fraction of RARE-mode PR-MRI relative to a conventional spin

echo PR-MRI acquisition collected at time TE=ESPy is given by

ETL-1 -
Z -2 ¢—(ESPo+nESP)/T;
ETL-1
S = n=0 ETL — L (—nESP/T; (1.8)
a ETL n=490 ' h

Na
Z e—ESP{)/TQ
n=1

Note that &, is independent of ESPy since the fraction is relative to that echo time.

Recognizing Eq.(4.8) as a finite geometric series. it can be rewritten as

s _ ] L[ —exp (—ESPXZETL) o)
"7 T e (50 "

The signal intensity fractions are plotted in Figure 4.12 at various ETL values assum-

ing ESP=15ms for T, values within the range 1-500ms.
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Figure 4.12: PR-MRI signal intensity fraction curves
The PR-MRI signal intensity fraction curves are plotted assuming an echo spacing
ESP=15ms.

[t may be instructive to consider a few limiting cases. First. if ETL=1 echo. then
the fraction containing the exponentials in S, reduces to one so that S, is unity.

This is as expected since there is effectively no T> modulation: this represents the

conventional SE acquisition.
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Second. in the limit of 7, — . the Taylor series expansion of the fraction of
exponentials term tends to ETL such that S,, is unity. This is also as expected since
an infinite 75 would not suffer any T, signal intensity decay.

Third. in the limit of T, — 0. the exponential terms in T, are much smaller than

one. Thus. &, tends to for T, — 0. as observed in Figure 4.12.

L
ETL

Figure 1.13: PR-MRI signal intensity fraction synthetic phantom images
The synthetic phantom consists of 6 rings with T> values of 25ms. 80ms. [10ms.
[80ms. 280ms. from the centre outwards with the largest ring having an infinite T,.
The image on the left is the conventional SE PR-MRI image (TE=135ms). whereas
the image on the right is the RARE-mode PR-VIRI image with ETL=8 echoes.
N, =384 projections. N.=128 points per projection. and ESP=15ms. These images
are at the same windowing level.

Numerical verification of Eq.(1.9) was carried out in the following manner. We
generated a synthetic phantom consisting of a series of concentric rings of various
T, values. as shown on the left of Figure 1.13. The k-space data (1238 radial points
per projection by 384 projections within 0-7) were synthesized for each ring. and the
appropriate one-sided interleaved T,-weighting was determined for each different T,
species. Two composite images were formed. namely the conventional SE PR-MRI
image and the RARE-mode image. These are depicted in Figure 1.13 on the left and
right. respectively.

The composite k-space data sets were reconstructed using the convolution back-
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projection algorithm. The outer ring was chosen to have an infinite T» (so that its
S, is unity for all ESP/ETL combinations). and all images were normalized to unity
with respect to this outer ring.

The PR-MRI signal intensity fraction was then calculated from the ratio of the
RARE image to that of the conventional SE image for the respective T, rings. The sig-
nal intensity fractions were found to correspond to theoretical expectations of Eq.(+.9)
within +£1% for various ESP (153ms. 20ms. 30ms. 40ms) and ETL (1. 2. 4. 3. 16. 32)
combinations for 75 values within 1-300ms.

The PR-MRI effective echo time TE,, is given by the expected T,-weighting at

time ESPy multiplied by S,,. namely ¢ ~TEer/T2 =Spre~ESP“/Tz. from which

TE,, = ESPy,—T;logs,,

= ESPy — T»l | l—exp (_Qﬁﬁ_TL) N
= o — lzlog ETL — s o
L -exp (~5)

140,
gng. .
E
@ 100F
g
2
2 ETL-8
% sob
:E 4of, ETL=4
e
? ETL=2
o 20
& ETL=1

C

(=]

50 100 150 200 250 300 350 400 450 500
Tzvalues(msetsl

Figure 4.14: PR-MRI effective TE curves
The PR-MRI effective echo time curves are plotted assuming an echo spacing
ESP=15ms. and ESPy=ESP=15ms. Note that the ETL=1 echo curve (which
represents the conventional SE acquisition) has TE,, =ESPy for all T, values.

The TE,, is plotted in Figure 4.14 for the various signal intensity fraction curves
of Figure 1.12 (ESP=135ms) and setting ESPo=ESP=15ms. Note the rapid increase

in effective echo time for short T, species and the somewhat "flat” region at larger
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T, values. In reality. this region is tending to the asvmptotic TE,, limit for a given
ESPy. ESP. and ETL combination. as shown below.

Again. it is instructive to consider a few limiting cases. First. for ETL=1 echo. we
previously found that S, tends to unity. so that log S, tends to zero and TE,,=ESP,
for all 7, values since TE,, is independent of T in this case. This is as expected since

the ETL=1 echo case represents the conventional SE acquisition.

1
ETL"

to zero (since T, tends to zero) so that TE,.=ESP,. Consequently. all curves in

Second. in the limit of T, — 0. S, tends to but the 7T, logS,. term tends

Figure 1.13 start at TE,,=ESP, and increase as a function of 7.

Third. in the limit of 75 > ESPXETL. one can show that the Tavlor series ex-

ESP(ETL-1
pansion of the logarithmic term reduces to -L—T)-' Thus. the =T, log S, term
l 21
tends to ;ESP(ETL-[) and
TE,, = ESPo+ éESP(ETL-I) for T> >» ESPxETL (4.11)

. 1
If ESPo=ESP. then the TE,, asvmptote is given by ;ESP(ETL-H).
['sing the nomenclature established in this section and assuming ESP,=ESP.

Rasche [3] determined TE,, to be given by

) T ESPxETL
TERasche  _ _ 7] {—-'— [1 — e (———)]} 4.12
pr 2108 ESPxETL exP T, ( )

For the above. one can show that for T, > ESPXETL the Tayvlor series expansion of

_ 1
ﬁ;‘:ﬂ_ so that TE,, tends to sESPxETL. This
2zl -

is close but not exactly equal to what was derived above (for ESP;=ESP).

the logarithmic term reduces to —

Note. however. that for ETL=1 echo. Rasche predicts an effective echo time of
ESP/2 for large T, values even though all the projections were acquired at an echo
time of ESP. Moreover. the effective echo time is less than ESP (=ESPy) for short
T, values. In ftact. for 75— 0. one can show (using I’'Hospital’s rule) that TE,, tends
to zero. again less than the acquisition time of the first echo. Consequently. it is felt

that Rasche’s analysis may be in error.
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[n all fairness to Rasche. one can show that the effective TE of Eq.(4.10) from our
analysis reduces to Rasche’s effective TE of Eq.(4.12) if one assumes that (1} ESP,=0.
and (2) To>ESP so that the 1—e"55F/T2 term can be written as ESP/Th. Still. these
assumptions are overly restrictive and do not represent the general case.

Experimental verification (found in the Results section) of the theoretical expecta-
tions of the PR-MRI signal intensity fraction. and by implication that of the effective

echo time TE,,. substantiates our above analyvsis for PR-MRI.
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Figure 4.15: PR-MRI effective signal intensity curves

The PR-MRI effective signal intensity curves are plotted assuming an echo spacing
ESP=15ms. and ESPy=FSP=13ms.

Finally. by knowing the effective echo time TE,,. one can calculate the effective

signal intensity from e~ T8»/T2_ This is plotted in Figure 4.15 for the various effective

echo time curves of Figure 4.14 with ESPq=ESP=15ms. Note the small signal inten-

sity for short T, species. as expected. The ETL=1 echo curve is the conventional SE

-ES
case and represents the T contrast curve e ESFo/Tz,
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4.2.2 Concentric Circles

[n contrast to projection reconstruction MRI. the readout direction for concentric cir-
cles acquisitions (CC-MRI) occurs in the azimuthal direction. Therefore. for RARE-
mode CC-MRI. the T-weighting occurs in the radial direction. Unlike PR-MRIL
the T, modulation is circularly symmetric. which leads to a circularly svmmetric T,
impulse response function.

Previous work by Block {5] introduced RARE spiral acquisitions wherein it was
mentioned that the T5-weighting should be smoothly varyving. and one should attempt
to minimize the T)-weighting variations. However. little justification was given. Here.
we show that for CC-MRI the T,-weighting should not only be smoothly varying. but
also monotonically decaving to avoid introducing any further artifacts.

The first T,-weighting approach follows readily from the PR-MRI banding ap-
proach except that for CC-MRI the bands occur in the radial direction. [f the maximal

radial location is given as £, then in the C'C-MRI banding approach the first echo

Jnar Jnar BYRLPS
is encoded to lie within |k.] < ——. the second echo lies within — <[k} < ——.
ETL ETL ETL

and so on. This is depicted in Figure 1.16 for ETL=1 echoes.
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Figure 4.16: CC-MRI T)-weighted banding approach
The T-weighting in the radial direction is made up of bands of echoes at the same
echo time nESP. The 1D representation along the azimuthal direction is shown on
the left. while its 2D representation is shown on the right.
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Because of circular symmetry. one can use the Fourier-Bessel (i.e. Hankel) trans-
form to calculate the T, impulse response function. Moreover. in analogy to PR-MRI
RARE-mode acquisitions. one may wish to provide stronger T,-weighting. (‘onse-
quently. we assume that the first acquired echo occurs at time ESPy and that all
subsequent echoes have an echo spacing ESP. The 1D weighting of Figure 1.16 can
then be written as

ETL-1

§ .11 (e ) (k)

n=0 = r = r
where &, > 0. we have used the definition of the ~rect” function H(.f) to be unity for
£ <1/2 and zero otherwise. and for n=0 we assume that the second rect function is
identically zero (since it is undefined in that case).

From Bracewell [{. p.249]. the Hankel transform of the rect function is proportional
to the jinc function. which is the circular analog of the sinc function. Therefore. the

T, IRF for the CC-MRI banding approach is proportional to

ETL-1 .mar .mnr

Yo e nESP/T {(n—}-l)zjinc (‘27rr(n+l) ErTL ) — n?jinc (277‘/1 ErTL )} (4.14)

n=0
[
. Iu

Figure 4.17: CC-MRI T, impulse response function for the banding approach
The normalized T» impulse response function is displayed in dBs for an ETL of 4
echoes. N, =128 points per projection, N,=192 projections, an ESP of |5ms. and a

T’ value of 25ms. The corresponding linear gray scale colourbar is also shown.
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The normalized T, impulse response function with an echo spacing ESP=15ms. an
echo train length ETL=4 echoes. .V, =123 points per projection. \,=192 projections.
and a T3 value of 25ms is shown in Figure 4.17. We display the magnitude of the T,
[RF in decibels (dBs). as before.

Simulations show that such a T>-weighting scheme leads to ring-like artifacts in the
reconstructed image. This is demonstrated in Figure 4.18 for the reconstruction (using
convolution backprojection) of a synthetic noisy disk phantom with SNR~100 and
assuming T»-weighting parameters of ETL=4 echoes. .V,=123 points per projection.

NV.=192 projections. ESPa=ESP=15ms. and a T; of 25ms. These ring-like artifacts

Jnar
r

- in the T>-
TL

are due to the junctions between the radial bands at multiples of

weighting function (see Figure 1.16).

Figure 4.18: C'C-MRI image reconstruction effect for the banding approach
The effect of the CC-VIRI banding approach is shown for a synthetic disk phantom
(left) having ringing artifacts (right) when subjected to the banding approach with
ESP=15ms. ETL=/4 echoes, N,=128 points per projection. N, =192 projections. and
T, =25ms. The corresponding linear gray scale colourbars are also shown: the two
images are at the same windowing level.

Since the junctions occurring between successive bands lead to ring-like artifacts
in the reconstructed image, a better approach is to produce a smoothly varying. but

still monotonically decaying T>-weighting, as shown in Figure 1.19.

~t(kr

The T>-weighting function is given by e /T2 since it occurs in the radial direc-
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tion for CC-MRI. This must be rewritten as e ~**"!_ where a, is the parameterization
of the temporal T, constant as a spatial frequency constant. We assume that the
first echo occurs at time ESP,. that subsequent echoes have an echo spacing ESP.
and that the echo train length is ETL so that the &, decay constant is given by

ESPxETL . . . .
————=a,k™*. Consequently. the smoothly decaying T»-weighting function is

I
6—[[/\',-)/T3 — E-ESPOIT’JE—"l,Jikrl
. ( ESP0> ESPxETL |4, (13
= € -_ ex - 4.1
p T p T, femaz ))
‘e-uzswr2
o
=
=
D
7}
=
I__Ql
— .
0 2k /ETL 4K /ETL

Radial Location
Figure 4.19: CC-MRI T),-weighted smoothly decaying approach
The Ty-weighting in the radial direction is made pseudo-continuous to eliminate the

Jjunction artifacts seen in the banding approach. The [D representation along the
radial direction is shown on the left. while its 2D representation is on the right.

The T, impulse response function of the smoothly varyving approach is calculated
from the Hankel transform of e “*/T2 of Eq.(4.15). To get a better intuition. we

assume that the weighting is of infinite extent so that the T, IRF is given by
o / " e~ESPo/Ta g=acks [ (dzr Vk, dk, (4.16)
0

which can be rewritten as

27 ¢ ~ESPo/T /N {koJo(2mrk, )} €70 dk, (4.17)
4]
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Now. Eq.(4.17) can be recognized as the Laplace transform of k..J,(2xrk.) at the
specific “Laplace domain frequency” of a,. since the Laplace transform of a function
f(E€). say. is given by /Orx f(€)e™*¢ d¢. Using [6. p.T12 (6.623)] with the appropriate
variables. the CC-MRI smooth approach T» IRF is of the form

27 a,exp(—ESPy/T3) th g — ESPxETL
2 _2..913/2 W1 o = T, kmar
(az + 47°r°) 2 K7

The normalized magnitude T [RF (in decibels) is shown in Figure 1.20 assuming

(4.13)

an echo spacing ESP=15ms. an echo train length ETL=4 echoes. .\.=123 points
per projection. .V,=192 projections. and a T, value of 25ms. Note that unlike the
above analysis. the actual T,-weighting function is finite (instead of infinite). and
the weighting function is pseudo-continuous (instead of truly continuous) since one

measures a finite number of &, points.

-30

-35

-40

Figure 1.20: CC-MRI 75 impulse response function for the smooth approach
The normalized T, impulse response function is displayed in dBs for an ETL of |
echoes. N. =128 points per projection, N,=192 projections. an ESP of |5ms. and a

I, value of 25ms. The corresponding linear gray scale colourbar is also shown.

In comparison to the T, IRF of Figure 4.17. the smooth approach T, [RF is
mostly concentrated at the centre and has negligible sidelobes. The noisy synthetic
disk phantom of SNR~100 (shown on the left of Figure 4.21) subjected to this T
IRF is free from ring-like artifacts, but experiences some radially isotropic blurring

(as shown on the right of Figure 4.21).
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Thus. in contrast to PR-MRI. in CC-MRI one must eliminate the junctions (be-
tween bands) to prevent any further image artifacts. However. the T, IRF does lead
to isotropic blurring. which is T,-dependent: short 75, species will be blurred more
heavily than long T, species. This occurs because the T)-weighting functions of short
and long T, species are narrow and broad. respectively. This. in turn. means that

their 7> [RFs are broad and narrow. respectively.

Figure 1.21: CC-MRI image reconstruction effect for the smooth approach
The effect of the CC-MRI smooth approach is shown for a synthetic disk phantom
(left) being slightly blurred (right} but not suffering from any ring-like artifacts when
subjected to the smooth approach with ESP=15ms, ETL=4 echoes. N,.=1[28 points
per projection, N, =192 projections. and Ty=23ms. The corresponding linear gray
scale colourbars are also shown: the two images are at the same windowing level.

To demonstrate the necessity of the monotonicity requirement. Figures +4.22 and
1.23 show the T>-weighting and reconstructed phantom image. respectively. of a non-
monotonically decaying smoothly varying T, modulation for ETL=4 echoes. .\, =123
points per projections, :V,=192 projections, ESP=13ms. and T,=25ms.

Although the weighting is smooth. the reconstructed image suffers from some edge
enhancement whereby the edges of the disk appear brighter than the centre of the
disk. This effect becomes more pronounced as the T,-weighting peak is made further
from the centre of k-space. Therefore, if one wishes to acquire the centre of k-space

at some time different than the echo spacing ESP and avoid edge enhancement. it is



T, weighting

r

2K /ETL
Radial Location

Figure 1.22: CC-MRI T>-weighted non-monotonic approach

The T,-weighting in the radial direction is pseudo-continuous to eliminate the
Jjunctions. but the weighting function is peaked away from the centre of k-space.

Figure 1.23: CC-MRI image reconstruction effect for the non-monotonic approach
The effect of the CC-MRI non-monotonic approach is shown for a synthetic disk

phantom (left) being edge enhanced (right) when subjected to the non-monotonic

approach with ESP=15ms, ETL=4 echoes, N,=128 points per projection. N,=192
=25ms. The corresponding linear gray scale colourbars are also

projections. and To=
shown: the two images are at the same windowing level.
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best to either (1) delay the acquisition time of the echo train to ESPy. or (2) to not
acquire the first m echoes in the train so that the (m+1)*® echo occurs at time ESP,.
[n so doing. the CC-MRI T>-weighting will be monotonically decaying.

In analogy to PR-MRI. it is the time of acquisition of the centre of k-space that
determines the overall contrast. In CC-MRI. this is represented by the acquisition
of the first echo at time ESPy. However. short T} species are apodized more heavily
than long T, species. which may well affect the effective echo time (TE..) since the
signal intensity fraction of the RARE-mode acquisition is different than that of the
conventional SE acquisition.

For the PR-MRI analvsis. this consideration was taken care of by assuming a cir-
cularly symmetric object whose radial &.-lines were identical. Subsequent application
of the T)-weighting modified the amplitude of each k,-line by a scalar. In CC-MRI.
however. the T,-weighting occurs along the k. direction. Consequently. the signal
intensity fraction is more difficult to calculate.

Let us consider a uniform. circularly symmetric disk of finite radius c. centred

within the FOV. Because of circular symmetry. one can calculate the &, signal profile
j[( -0 A C )

using the Hankel transform: from Bracewell [4. p.249]. one obtains 2x¢’ ey
_.h c

where .J; is the first-order Bessel function of the first kind.
The CC-MRI signal intensity fraction S, from a RARE-mode acquisition relative
to a conventional SE acquisition is given by the ratio of their respective integrated

k-space signals. namely

ereseorm [ [% oz ETRC) sk ke i,
S. = 7'rk c '
o J Ji(27k.c)
‘-ESPO/H/ / 127ReC) L ks
_rkc T

/ J(2xk,c)e™ > dk,
= 20— (4.19)

/ Jy(2xk,c) di
0

where we have performed the integral over the kg variable (which yields 2x). and

have eliminated common terms. Both of these definite integrals can be found from



Gradshteyn [6. p.665 (6.511)] and [6. p.707 (6.611)]. from which

V ag + (27"6)2 —d, 1
Scc - 1 -

\/ag-i-(‘.?rrc)2 \/1 + (27rc)

)

a,
~1/2 . ) -1/2
2wcTy kmer = V.d, T\~
= |l-|l+|— = |- |14+ | (£.20)
ESPxETL 2ESPXETL
ESPxETL
where we have used q, = ﬁ Moreover. we assume that &7**=\,/2 so that

the FOV in image space is unity. Consequently. the disk diameter d,=2c is expressed
as a percentage of the FOV.

Just like in the PR-MRI analysis. the CC-MRI signal intensity fraction is inde-
pendent of ESPg since it is relative to that echo time. But. an important difference is
that S.. depends not only on ESP. ETL. and T5. but also on the diameter d, of the
disk and on the number N, of radial points. Typical CC-MRI §.. curves are plotted
in Figure 4.24 for various .N.. ETL. and d, values assuming ESP=15ms for T, values
within the range [-500ms.

The dependences on T,. the echo spacing ESP. the echo train length ETL. and the
disk size d, are expected. The .V, dependence may seem somewhat surprising. But.
a little thought and the use of Figure 4.25 help to elucidate this dependence. Recall
that the FOV is normalized to unity. and that d, is the disk diameter relative to the
FOV. Thus. for fixed FOV and d,. the non T,-weighted k-space signal is the same
for all .V, values except that one samples out farther in k-space for larger .\, values.
This is shown schematically as the dotted portion of the signal in Figure 1.25. For a
given ESP/ETL combination. then. the T,-decay occurs over a smaller extent for .\,
being small: therefore. more signal is apodized for small .V, compared to large .V.. all
else being equal.

It may be instructive to consider a few limiting cases. First. if a,=0. then the
square-root term tends to infinity. and S.. is unity. This is as expected since the a,=0
condition is met if (1) there is no T,-weighting (the conventional SE acquisition). or

(2) To— oc which also means that the object is not influenced by any T,-weighting.
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Figure 1.24: CC-MRI signal intensity fraction curves
The C'C-MRI signal intensity fraction curves are plotted assuming an echo spacing
ESP=15ms. At the top. the S.. curves are for dy=10% and ETL=8 echoes at
various N, values (64.128.192.256). The bottom left S.. curves are for d,=10% and
N, =128 radial points at various ETL values (2.4.8.16). Finally. the bottom right S..
curves are for N, =128 radial points and ETL=38 echoes for various d, values

(5%.10%.25%.50%).
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Figure 4.25: CC-MRI signal intensity fraction .V, dependence
The MR k-space signal is shown schematically for a disk of diameter d, within the
FOV. Since the FOVs are the same for small/large N, values. one must sample the
MR signal out farther for large N, (depicted by the dotted portion of the MR signal).
For small N, values. the T,-weighting function (solid) is of shorter ertent than for
large N, ralues (dotted). so that a larger fraction of signal is apodized for small N, .

Second. in the limit of zero diameter disk. i.e. d, — 0. then the term within the
round brackets brackets is zero so that S.. tends to zero. This is also as expected
since there is effectively no object to be imaged.

Third. in the limit of T, — 0. the term within the round brackets is zero and S..
again tends to zero. This makes intuitive sense since the CC-MRI signal intensity
fraction is defined over at least one echo spacing. and a short T, with respect to
ESPXETL represents a significant signal loss: in this case. a complete signal loss.

Fourth. in the limit of .V, — oc. the square-root term tends to infinity and S.. is
unity. This is as expected since this corresponds to a, — 0: recall that a,= %

S hem
and AT — ¢ as N, —oc. '

Numerical verification of Eq.(4.20) was carried out in the following manner. We
generated a synthetic phantom consisting of a disk of diameter d, with respect to the
FOV and a large concentric ring. as shown on the left of Figure 4.26. The k-space data
(.V; radial points per projection by g:\l} projections within 0-7) were synthesized for

the disk and ring, and the appropriate smooth, monotonically decaying CC-MRI T>-
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weighting was determined for the disk. The outer ring was chosen to have an infinite
T, (so that its S, is unity for all ESP/ETL/.V,/d, combinations).

Two composite images were formed. namely the conventional SE CC-MRI image
and the RARE-mode image which are depicted on the left and right of Figure 1.26.
respectively. The composite k-space data sets were reconstructed using the convo-
lution backprojection algorithm. Since the outer ring had an infinite T5. its S.. was

unity. Thus. all images were normalized to unity with respect to the outer ring.

Figure 4.26: CC-MRI signal intensity fraction synthetic phantom images
The synthetic phantom consists of a disk of diameter d, percent of the FOV (here
d,=25% and Ty=25ms) and centred within the FOV, and a concentric ring with an
infinite To. The image on the left is the conventional SE CC-MRI image
(TE=15ms). whereas the image on the right is the RARE-mode CC-MRI image with
ETL=232 echoes. and ESPo=ESP=15ms. Both images have N,=192 projections.
and N.=128 points per projection. These images are at the same windowing level.

The CC-MRI signal intensity fraction was calculated from the ratio (at the centre
of the disk) of the RARE image to that of the conventional SE image. The signal
intensity fractions were found to agree with the theoretical expectations of Eq.(4.20)
within £2% for various ESP (15ms.23ms.40ms). ETL (4.8.16.32). d, (10%.25% .50% ).
and .V, (64.96.128) combinations for T, values within 1-300ms.

The CC-MRI effective echo time TE.. is given by the expected T,-weighting at
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o
s

—TECC/'I}_S 6—ESP0/T2
— e

time ESPg multiplied by S... namely e . from which

TE.. = ESPo—T,logS..

) V1 —1/2
T-'-\-,.d 2 -
= ESPO—T2 log 1 — [1-{— (ﬁ) } (-1.201)

This is plotted in Figure .27 for the various signal intensity fraction curves of Fig-
ure 1.21 (ESP=15ms) and setting ESP;=ESP. Note the increase in effective echo time
and the "hump’ region for short T, species. This is expected since the =T, log S.. term
involves the function T,. which ranges from [0.oc). multiplied with the logarithmic
function. which ranges from (—2c.0] as T, goes from zero to infinity. These competing
effects result in a “hump’-like region. Also note the "flat’ region (greater than ESPy)
at large T, values. The curves tend towards the asvmptotic TE.. limit for a given
ESPy. ESP. ETL. .V,. and d, combination. as shown below.

Again. let us consider a few limiting cases. First. for ap=0 we previously found
that S.. tends to unity. Consequently. log S.. tends to zero and TE..=ESP, for all
T, values since TE.. is independent of T, in this case. This is as expected since the
a,=0 echo case represents the conventional SE acquisition.

Second. in the limit of T; — 0. the Taylor series expansion of the logarithmic term
times 15 reduces to —2T, log{J37T>}. where 3 inciudes ESP. ETL. V,. and d,. In the
limit of T tending to zero. one can show using |'Hospital's rule that this tends to zero
and TE..=ESPg. Thus. all curves in Figure 4.27 start at TE..=ESPq and increase as
a function of T5.

Third. in the limit of .V, — oc, we previously found that S.. tended to unity.
Consequently. TE,. tends to ESPq for .V, becoming large. as depicted in Figure 1.27.

Fourth. in the limit of d, —0. S, tends to zero so that the —~T>log{} term tends
to infinity. Consequently. TE.. tends to infinity for d, tending to zero. This makes
intuitive sense since for d,=0. we expect no signal. and e~ TE</T2 indeed tends to zero
as TE,. tends to infinity.

Fifth. in the limit of [.V.d,T,] > ESPxETL. the Taylor series expansion of the
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Figure 4.27: CC-MRI effective TE curves
The CC-MRI effective echo time curves are plotted assuming ESPo=FESP=[5ms. Al
the top. the TE.. curves are for d,=10% and ETL=8 echoes at various N, values
(64.128.192.256). The bottom left TE.. curves are for d,=10% and N, =128 radial
points at various ETL values (2.4.8.16). Finally, the bottom right TE.. curves are
Jfor N. =128 radial points and ETL=8 echoes for various d, values
(5. 10%.25%.50%). The conventional SE CC-MRI results are represented by the
dashed line.
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2ESPxETL
logarithmic term in Eq.(4.21) reduces to —%. so that TE.. tends to
nVpllp i)
2ESPxETL ]
TE. = ESPo+——r— for [V,d, T3] > ESPXETL (4.22)
T.¥rdy

This is the asymptotic limit seen in Figure 4.27. One can clearly observe that for large
V. (and large d,). the CC-MRI effective echo time approaches ESP,. as expected.
The ETL dependence is also clearly obvious. Note the resemblance of the asvmptotic
echo time limits of PR-MRI and CC-MRI. which are TE,,,=ESP0+§ESP:(ETL and

TE..=ESPy+ ESPxETL. respectively.

a.vrdy

Finally. by knowing the effective echo time TE... one can calculate the effective

~TE/T2  This is plotted in Figure 4.23 for the various effec-

signal intensity from e
tive echo time curves of Figure 4.27 with ESPo=ESP=15ms. Note the small signal
intensity for short T, species. as expected. The SE CC-MRI (dashed) curve is the

~ESPo/T:  \lso note the

conventional SE case and represents the T, contrast curve €
clustering of the curves near the conventional SE CC-MRI case. This is somewhat
different than the PR-MRI case of Figure 4.15.

The signal intensity fraction and effective echo time analysis for CC-MRI is similar
to that for Cartesian RARE-mode acquisitions (see Appendix on page 1146) in that
the centre of k-space is acquired at time ESPy. Recall that for PR-MRI. though. the
centre of k-space was acquired at various times throughout the echo train.

Moreover. our CC-MRI signal intensity expectations are consistent with Melki’s
observation [7] (which pertained to a Cartesian acquisition) that if the object is large
with respect to its T, impulse response function. namely d,7> >ESPxETL. then the
k-space signal intensity loss is minimal. i.e. S.. is close to unity and TE..~ESPy. In
this case. the effective echo time is governed solely by the acquisition of the central
k-space data. namely ESP,.

To substantiate the theoretical analysis set forth in the Theory section for both

PR-MRI and CC-MRI, we confirmed our expectations via experimental verification.

This is described in the next section.
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Figure 4.28: C'C-MRI effective signal intensity curves
The CC-MRI effective signal intensity curves are plotted assuming

ESPo=ESP=15ms. At the top. the effective signal intensity curves are for d,=10%
and ETL=& echoes at various N, values (64.128.192.256). The bottom left effective
signal intensity curves are for d,=10% and N.=128 radial points at various ETL
values (2.4.8.16). Finally. the bottom right effective signal intensity curves are for
N. =128 radial points and ETL=8 echoes for various d, values (5%.10%.25%.50%).

The conventional SE CC-MRI results are represented by the dashed line.
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4.3 Results

[n the Theory section. we characterized the T,-weighting functions and their Fourier
conjugates. the T, impulse response functions. for both PR-MRI and CC-MRI multi-
echo acquisitions. We also demonstrated some of the pitfalls of certain T, approaches
and analyzed the effective echo times TE . and TE... These are important parameters
since the effective echo time is a global measure of the T, contrast between different
T, species within the object.

The theoretical expectations were verified experimentally on a 0.5T GE Signa
scanner (General Electric Medical Systems. Milwaukee. WI). The phantom consisted
of 9 NMR glass tubes (1.0 crn diameter. 15 cm length) closely packed within a 4x4 cm?®
region. Each tube was filled with various concentrations of agarose doped with nickel
chloride (NiCl,) to generate T, values within the range 230ms-1230ms and T, values

from 25ms-400ms as shown in Table 3.3 of the Reconstruction Effects chapter.

4.3.1 Projection Reconstruction

For projection reconstruction RARE-mode acquisitions. the one-sided interleaved ap-
proach was deemed to be a good compromise in minimizing smearing and star-like
artifacts. Therefore. all PR-MRI experimental data used this approach.

The PR-MRI signal intensity fraction curves were verified using the tube phan-
toms with the following MR parameters: an echo spacing ESP of [5ms. ESP;=15ms.
a repetition time TR of 4000ms. a 3mm slice thickness. an acquisition matrix of
128x 288 (namely 128 points per projection with 288 projections within 0-7). one
excitation per image (1 NEX), a field of view FOV of 9cm. and a receive bandwidth
RBW of +16kHz. The k-space values were acquired for ETL values of {1.4.8.16.32}
echoes using the GE extremity coil. All images were reconstructed (using convolution
backprojection) onto a 256x236 image grid and normalized to unity at the brightest
pixel. The ETL={1.4.8} echoes reconstructed PR-MRI phantom images are shown

in Figure 4.29.
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We measured the average signal (plus one standard deviation) within various
regions of interest (ROI) of the phantoms. Since all the images were normalized
to unity. we then renormalized each ETL image by the expected signal intensity
fraction of the 408ms T, tube by calculating S, from Eq.(1.9) with ESP=I15ms at
the appropriate ETL values. The experimental signal intensity fractions were then
calculated by dividing the average ROI signal intensity in the ETL>1 echo images
by the average ROI signal intensity in the ETL=I echo image (which represents the
conventional SE PR-MRI acquisition).

In Tables 4.1-14.3. the experimental PR-MRI signal intensity fractions (plus or
minus one standard deviation) are given. along with the theoretical expectations
calculated from Eq.(4.9) with ESP=135ms at the appropriate ETL and 7, valies. In
general. the experimental values agree to within £5% of the theoretical predictions

in the PR-MRI Theory section.
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Figure 4.29: PR-MRI T, tube phantom images for ETL={1.14.8} echoes
The tube phantoms (1-9) have various Ty and T, values, as given in Table 3.3. The
MR parameters appear in the text. On the top is the ETL=1 echo image
(TE=15ms) whereas on the bottom left and right appear the ETL=4 echoes and
ETL=8 echoes images. respectively, for ESPo=LESP=15ms. N,=128 points per
projection and N, =288 projections. All images are at the same windowing level.



Table 4.1: PR-MRI signal intensity fraction verification ( Tubes 1-3)

Echo Train Length T, Measured S,, Theoretical S,
25ms 0.53 + 0.04 0.504
ETL=4 79ms 0.79 £ 0.03 0.769
179ms | 0.39 + 0.03 0.885
25ms 0.29 + 0.03 0.275
ETL=38 79ms 0.39 £ 0.03 0.565
L T9ms 0.76 + 0.03 0.759
25ms 0.15 + 0.03 0.139
ETL=16 T9ms 0.36 £ 0.02 0.344
179ms 0.57 £ 0.02 0.573
25ms 0.07 = 0.03 0.069
ETL=32 19ms 0.19 £ 0.02 0.130
179ms 0.36 £ 0.02 0.361

Table 1.2: PR-MRI signal intensity fraction verification ( Tubes 4-6)

Echo Train Length T, Measured S, Theoretical S,

27Tms 0.35 £ 0.04 0.523

ETL=4 96ms 0.31 £ 0.04 0.303
284ms 0.91 £+ 0.03 0.925

2Tms 0.31 £ 0.03 0.290

ETL=3 96ms 0.63 + 0.03 0617
284+ms 0.81 &£ 0.03 0.337

2Tms 0.15 £ 0.03 0.147

ETL=16 96ms 0.40 + 0.03 0.397
284ms 0.67 + 0.03 0.693

2Tms 0.07 £+ 0.03 0.073

ETL=32 96ms 0.22 £ 0.02 0.215
284ms 0.48 £+ 0.03 0.495




Table 4.3: PR-MRI signal intensity fraction verification (Tubes 7-9)

Echo Train Length T, Measured S, Theoretical S,.

23ms 0.55 £ 0.04 0.532

ETL=4 10Tms 0.33 + 0.04 0.320
408ms 0.94 + 0.04 0.947

28ms 0.31 £ 0.03 0.297

ETL=3 107ms 0.65 + 0.04 0.644
108ms 0.86 + 0.03 0.332

28ms 0.16 + 0.03 0.151

ETL=16 107ms 0.43 + 0.03 0.427
403ms 0.75 + 0.03 0.770

28ms 0.10 + 0.03 0.075

ETL=32 107Tms 0.24 + 0.02 0.236
103ms 0.56 + 0.03 0.599
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4.3.2 Concentric Circles

For concentric circles acquisitions. the smooth monotonically decreasing approach was
deemed necessary in minimizing ring-like artifacts and edge enhancement artifacts in
the reconstructed image.

The C'C-MRI T impulse response function is sensitive to junctions and non-
monotonic T>-weightings. In fact. we discovered that experimentally. for equal phase-
encode locations. the first echo was at a lower signal intensity than the second echo.
This effect is due to the stimulated echo present in the second (and subsequent) echoes
but not in the first echo. This has the effect of violating the decaying monotonicity
requirement of the Th-weighting. and leads to some peculiar reconstruction artifacts.
as shown in Figure 1.30. Consequently. in CC-MRI the first echo was not used for

ETL>2. thereby increasing the minimum effective echo time to 2 ESP.
-~ (=)

1.00

Normalized Signal

Figure 4.30: Stimulated echo artifact of CC-MRI acquisition
The erpected uniform sphere phantom appears non-uniform for ETL=16 echoes if
the first echo in the echo train is used (left). On the right. a vertical profile depicts
the effect more clearly. The dotted light gray profile represents the conventional SE
CC-MRI whereas the darker dashed curve is the profile of the disk on the left. Note
the uniformity change near the centre and edges.

The CC-MRI signal intensity fraction curves were verified using the tube phan-

toms with the following MR parameters: an echo spacing ESP of 20ms. ESPy=40ms.
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a repetition time TR of 4000ms. a 5mm slice thickness. an acquisition matrix of
256x 123 (namely 236 projections within 0-7 with 128 points per projection). one
excitation per image (1 NEX). a field of view FOV of 9cm. and a receive bandwidth
RBW of +£16kHz. The k-space values were acquired for ETL values of {1.1.8.16.32}
echoes using the GE extremity coil. All images were reconstructed (using convolution
backprojection) onto a 256x2356 image grid and normalized to unity at the brightest
pixel. The ETL={1.4.8} echoes reconstructed CC-MRI phantom images are shown
in Figure 4.31.

We measured the average signal (plus one standard deviation) within various
regions of interest of the phantoms. Since all the images were normalized to unity.
we then renormalized each ETL image by the expected signal intensity fraction of
the 108ms T, tube by calculating S from Eq.(4.20) with V,=128. d,=11.1%. and
ESP=20ms at the various ETL values. The experimental signal intensity fractions
were then calculated by dividing the average ROI signal intensity in the ETL>1 echo
images by the average ROI signal intensity in the ETL=1I echo image (which is the
conventional SE CC-MRI acquisition).

In Tables 1.4-4.6. the experimental CC-MRI signal intensity fractions (plus or
minus one standard deviation) are given. along with the theoretical expectations cal-
culated from Eq.(4.20) with ESP=20ms. .V, =128 points. d,=11% at the appropriate
ETL and T, values. In general. the experimental values agree to within experimental
error of the theoretical predictions in the CC-MRI Theory section.

However. the experimental results for ETL=32 echoes and T, on the order of
23ms-30ms overestimate the theoretical signal intensity fraction by as much as 50%.
This is postulated to be an effect due to stimulated echoes being present in the
later echoes which produces a net signal increase. Note that the CC-MRI signal
intensity fraction analysis of section 4.2.2 did not incorporate the effects of stimulated
echoes. Therefore, the experimental results are expected to be slightly greater than

the theoretical expectations: this is an observable trend in Tables 4.4-1.6.
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Figure 4.31: CC-MRI T3 tube phantom images for ETL={1.4.8} echoes
The tube phantoms (1-9) have various T\ and T, values, as given in Table 3.3. The
MR parameters appear in the tert. On the top is the ETL=1 echo image
(TE=40ms) whereas on the bottom left and right appear the ETL=/} echoes and
ETL=8 echoes images. respectively, for ESPo=40ms, ESP=20ms. N.=128 points
per projection and N, =256 projections. All images are at the same windowing level.



Table 1.4: C'C-MRI signal intensity fraction verification (Tubes 1-3)

Echo Train Length 15 Measured S.. Theoretical S..
25ms 0.87 £ 0.12 0.333
ETL=4 79ms 0.97 + 0.05 0.955
179ms 0.99 £+ 0.04 0.930
25ms 0.78 £ 0.12 0.725
ETL=3 79ms 0.93 + 0.05 0.910
17T9ms 0.96 + 0.04 0.960
23ms 0.58 + 0.11 0.503
ETL=16 T9ms 0.35 £ 0.05 0.522
179ms 0.93 + 0.04 0.920
25ms 0.41 £ 0.09 0.247
ETL=32 T9ms 0.73 £ 0.05 0.639
179ms 0.87 £ 0.04 0.542

Table 4.5: CC-MRI signal intensity fraction verification (Tubes 1-6)

Echo Train Length T, Measured S.. Theoretical S..

2Tms 0.8 £ 0.12 0.369

ETL=14 96ms 0.97 £+ 0.05 0.963
284ms 0.99 + 0.05 0.987

27ms 0.78 £ 0.12 0.744

ETL=3 96ms 0.93 +£0.05 0.926
284ms 0.93 £ 0.05 0.975

27ms 0.60 £ 0.10 0.531

ETL=16 96ms 0.86 + 0.05 0.852
284ms 0.96 £ 0.05 0.950

27Tms 0.44 £+ 0.09 0.272

ETL=32 96ms 0.77 £ 0.06 0.714
284ms 0.91 £ 0.05 0.900
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Table 4.6: CC-MRI signal intensity fraction verification (Tubes 7-Y)

Echo Train Length T, Measured S.. Theoretical S..

23ms 0.839 £ 0.12 0.373

ETL=4 107Tms 0.98 £ 0.05 0.967
108ms 0.99 + 0.04 0.991

23ms 0.77 £ 0.12 0.732

ETL=38 107ms 0.93 £+ 0.06 0.933
108ms 0.93 £+ 0.04 0.932

28ms 0.57 £ 0.11 0.545

ETL=16 107Tms 0.36 + 0.06 0.367
108ms 0.95 & 0.04 0.965

28ms 0.40 £+ 0.09 0.285

ETL=32 107Tms 0.76 £ 0.06 0.741
408ms 0.92 &+ 0.04 0.930
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4.3.3 In Vivo Comparison

Finally. we show an in vivo example of PR-MRI vs. CC-MRI RARE-mode images of
an axial slice through the head. and include the Cartesian acquisition for comparison.

The following MR parameters were used for both the PR-MRI and CC-MRI ac-
quisitions: an echo spacing ESP of 20ms. an ESPq of 40ms. a repetition time TR of
2000ms. a 3mm slice thickness. an acquisition matrix of 320 projections within 0-x
with 192 points per projection. one excitation per image (1 NEX). a field of view FOV
of 24cm. and a receive bandwidth RBW of £16kHz. The first echo in the echo train
was not used in the ETL>1 CC-MRI acquisitions to eliminate the artifact arising
from the stimulated echo. The Cartesian acquisition had the same parameters except
that the acquisition matrix consisted in 236 frequency encodes by 192 phase encodes.

The k-space values were acquired for ETL values of {1.4.8.16.32} echoes using
the GE head coil. All PR-MRI and CC-MRI images were reconstructed using convo-
lution backprojection and normalized to unity at the brightest pixel. The Cartesian
images were reconstructed using the fast Fourier transform (FFT) algorithm. The
ETL={1.3} echoes reconstructed images are shown in Figure 4.32.

Note that for ETL=1 echo. the PR-MRI and CC-MRI appear very similar. as
expected. However. for ETL=8 echoes. one can observe the significant signal intensity
decrease in the gray matter (whose T,~100ms at 0.5T [8]) and white matter (two
components with T>~20ms and T>~70ms at 0.5T [3]) for the PR-MRI acquisition. In
CC-MRL though. the image appears more blurry. although the white matter and gray
matter are still at the same relative brightness level. In all cases. the cerebrospinal

fluid is at maximum intensity since it is a long T5 species (on the order of 2-3 seconds).
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Figure 1.32: Cartesian. PR-MRI. and CC-MRI head images for ETL={1.8} echoes
Arial head images comparison for Cartesian, PR-MRI. and CC-MRI acquisitions.
The MR parameters appear in the text. (a) Cartesian conventional SE image with

ESPy=/0ms. (b) Cartesian RARFE-mode image for ETL=8 echoes. ESP=20ms. and
ESPy=40ms. (c) PR-MRI conventional SE image with ESPy=40ms. (d) PR-MWRI
RARE-mode image for ETL=8 echoes. ESP=20ms. and ESPy=40ms. (e¢) CC-MRI

conventional SE image with ESPy=40ms. (f) CC-MRI RARE-mode image for

ETL=8 echoes, ESP=20ms, and ESPy=40ms. All images are normalized to unity at

the brightest pirel, and appear at the same windowing level.
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4.4 Discussion

[n MR imaging. the tissue characterization and contrast using T>-weighted images is
of great clinical importance. However. proper T,-weighted MR images require long
acquisition times. Thus. RARE-mode sequences are clinically usefui since they speed
up data acquisition. Projection reconstruction and concentric circles MRI are easily
modifiable k-space trajectories that lend themselves to RARE-mode acquisitions.
Herein. we analyzed the ensuing ramifications of such schemes.

For projection reconstruction RARE-mode acquisitions. we showed that a good
compromise in suppressing smearing and star-like artifacts is to use the one-sided
interleaved T)-weighted approach. This has the effect of maximizing the amplitude
and number of junctions between different echoes. Moreover. no advantage was seen
for a smoothly varving weighting. For concentric circles RARE-mode acquisitions. the
smooth monotonically decaying approach was essential for minimizing both ring-like
and edge enhancement artifacts in the reconstructed image.

The effective echo times were also analyzed. We showed that the signal intensity
fraction (and the effective TE) of RARE-mode PR-MRI is highly 7>-dependent for
different ESP/ETL combinations. By comparison. the effective TE of RARE-mode
CC-MRI is not nearly as sensitive to various ESP/ETL combinations. especially for
large objects within the field of view. However. in general. the effective echo time in
CC-MRI depends on the echo spacing. the echo train length. the T) value. the size of
the object. and the size of the acquisition matrix.

Although the theoretical analysis assumed ideal noiseless data. perfect reconstruc-
tion. and no stimulated echoes. the experimental projection reconstruction and con-
centric circles RARE-mode signal intensity fractions agreed quite well with theoretical
expectations. although the effect of the stimulated echoes led to slight overestimates.

Stimulated echoes are generated for three or more successive radiofrequency (RF)
pulses. Thus. the first echo in the spin echo train consists of the spin echo (aka

Hahn echo) only, whereas subsequent echoes contain the Hahn echo plus stimulated
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echoes. Since RARE-mode CC-MRI acquisitions are sensitive to non-monotonic T»-
weightings. it is best not to use the first echo in the train. unless one can suppress
the stimulated echoes or design refocussing RF pulses for a smooth monotonic decay.
Still. it may be advantageous to use this first echo as a navigator echo to correct for
motion artifacts [9. 10].

In vivo head images showed that the T>-weighted projection reconstruction and
concentric circles MRI images have different T, contrasts for equal ESP/ETL parame-
ters. Therefore. contrast characteristics can differ considerably for RARE-mode polar
acquisitions depending on the k-space trajectory taken.

Although not shown herein. the motion artifacts using projection reconstruction
are greatly reduced in comparison to concentric circles acquisitions. This can be
explained by the fact that in PR-MRI. one samples the centre of k-space for each
readout whereby phase discontinuities due to motion are averaged. But. in C'('-MRI
one samples the centre of k-space only once. analogous to Cartesian acquisitions. so
that phase discontinuities due to motion are not averaged. Consequently. concentric
circles (and Cartesian) RARE-mode acquisitions are more sensitive to motion effects
in comparison to projection reconstruction RARE-mode acquisitions.

Our analysis and results indicate that RARE-mode projection reconstruction is a
viable method of acquiring fast T>-weighted images. Although the T, contrast is com-
promised somewhat. and especially so at larger ESP/ETL values. the RARE-mode
projection reconstruction sequence appears to be more robust than concentric circles
RARE-mode acquisitions in suppressing motion artifacts and minimizing blurring

effects in the reconstructed image.
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4.5 Appendix
4.5.1 Effective TE for Cartesian RARE-Mode

In this appendix. we derive the analytic expressions of the signal intensity fraction. the
effective echo time. and the effective signal intensity for the Cartesian RARE-mode
acquisition. It can be directly compared with the concentric circles RARE-mode
effective TE analysis.

[t is the time of acquisition of the centre of k-space that determines the overall
contrast. In Cartesian spin-warp (SW-MRI). this is represented by the acquisition
of the first echo at time ESPqy. However. short T, species are apodized more heavily
than long T, species. which may well affect the effective echo time {TE,,.) since the
signal intensity fraction of the RARE-mode acquisition is different than that of the
conventional SE acquisition.

Let us consider a uniform rectangular phantom of size w, by w, in the r- and

y—directions. respectively. and centred within the field of view so that the k-space
1
T2k hy

smoothly decaying and symmetric in the k,-direction. in analogy to the smoothly

signal is given by sin(ww. k) sin(7wyk,). The Tr-weighting is assumed to be
decaying approach in CC-MRI. The SW-MRI signal intensity fraction &, from a
RARE-mode acquisition relative to a conventional SE acquisition is given by the

ratio of their respective integrated k-space signals. namely

+x  r+x sin(ww k) sin{ 7w,k .
e—ESPo/Tz/ / (Fw ke )sin(muw, ”)e‘““”'dk:dlry
o -

s _ il S
s 4+ +x qf Twk in(mw. k
e—ESPo/Tz/ / Sll’l( urkflsln( uyAy)dL’IC”»’y
~ -2 ToNLRy

/”—° sin(wwyky,) e—oky gk

— v
_ Do by (4.23)

/"x‘ sin(mwyk, ) dk
0 k Y

y

where the integration over the k. variable cancels out. and we have eliminated com-

mon terms. Both of these definite integrals are tabulated and can be found from
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Figure 1.33: SW-MRI signal intensity fraction curves
The SW-MRI signal intensity fraction curves are plotted assuming an echo spacing
ESP=15ms. At the top. the S,,, curves are for w,=10% and ETL=8 echoes at
various .N, values (64.128.192.256). The bottom left S, curves are for w,=10%
and N,=128 phase encodes at various ETL values (2.4.8.16). Finally. the bottom
right s, curves are for Ny=128 phase encodes and ETL=8 echoes for various w,
values (53%.10%,25%.50%).



Gradshteyn [6. p.405 (3.721)] and (6. p.439 (3.941)]. from which

Sue = Zran~ (T2) = 2 tan-! (M) (1.21)
Ty a, ry 2ESPxETL
ESPXETL )
where we have used a, = T oz Moreover. we assume that k"' =\, /2 so that
3N ’
2Ry

the FOV in image space is unity. Consequently. w, is expressed as a percentage of
the field of view.

Just like in the CC-MRI analysis. the SW-MRI signal intensity fraction is inde-
pendent of ESPy since it is relative to that echo time. An important consequence is
that S, depends not only on ESP. ETL. and T,. but also on the width w, of the
rectangle and on the number .V, of phase encodes. Typical SW-MRI S;,. curves are
plotted in Figure 1.33 for various .V,. ETL. and w, values assuming ESP=15ms for
T, values within the range 1-500ms.

[t may be instructive to consider a few limiting cases. First. if a,=0. then the
arctan term tends to 7 /2 and S;,. is unity. This is as expected since the a,=0 condition
is met if (1) there is no T>-weighting (the conventional SE acquisition). or (2) T, — x
which also means that the object is not influenced by any T»-weighting.

Second. in the limit of zero width. i.e. w, — 0. then the arctan term tends to zero
so that S, tends to zero. This is also as expected since there is effectively no object
to be imaged.

Third. in the limit of 75 — 0. the arctan term tends to zero and S;,. again tends to
zero. This makes intuitive sense since the SW-MRI signal intensity fraction is defined
over at least one echo spacing. and a short T, with respect to ESPXETL represents a
significant signal loss: in this case. a complete signal loss.

Fourth. in the limit of .V, — oc. the arctan term tends to 7/2 and S, is unity.
ESPxETL d
—. an
Ty ks

This is as expected since this corresponds to a, — 0: recall that ¢, =
L';"” —x as .V, — 0.

The SW-MRI effective echo time TE,, is given by the expected T,-weighting at
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time ESPy multiplied by S,,.. namely e TE«/T2 =S, ¢ ~E5P/T from which
TE,. = ESPy - T,logS;.
2 7.'.\- ; T)
— ESP, — T log {— tan~" ($)} (4.25)
T 2ESPxETL

This is plotted in Figure 4.34 for the various signal intensity fraction curves of Fig-
ure 4.33 (ESP=15ms) and setting ESP;=ESP. Note the increase in effective echo time
and the "hump” region for short T5 species. This is expected since the —T,log S,..
term involves the function T>. which ranges from [0.5c). multiplied with the loga-
rithmic function. which ranges from (—>c.0] as 7> goes from zero to infinity. These
competing effects result in a “hump’-like region. Also note the “flat’ region (greater
than ESPg) at large T, values. The curves tend towards the asymptotic TE,, limit
for a given ESPo. ESP. ETL. .V,. and w, combination. as shown below.

Again. let us consider a few limiting cases. First. for ag=0 we previously found
that S, tends to unity. Consequently. log S;,, tends to zero and TE,,.=ESPq for all
T, values since TE,, is independent of T in this case. This is as expected since the
a,=0 echo case represents the conventional SE acquisition.

Second. in the limit of T, — 0. the Tavlor series expansion of the logarithmic term
times T reduces to —T,log{37T>}. where 3 includes ESP. ETL. N,. and w,. In the
limit of 75 tending to zero. one can show using ['Hospital's rule that this tends to zero
and TE,,=ESPqy. Thus. all curves in Figure 1.34 start at TE,,.=ESPg and increase
as a function of T5.

Third. in the limit of N, — oc. we previously found that S;, tended to unity.
Consequently. TE,,, tends to ESPy for .V, becoming large. as depicted in Figure 1.34.

Fourth. in the limit of w, — 0. S,,, tends to zero so that the —7>log{} term tends
to infinity. Consequently. TE,, tends to infinity for w, tending to zero. This makes

intuitive sense since for w,=0. we expect no signal. and €
zero as TE,, tends to infinity.

Fifth. in the limit of [Vyw,T,] > ESPxETL. the —T),log 5, term can be solved
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Figure 4.34: SW-MRI eftective TE curves
The SW-MRI effective echo time curves are plotted assuming ESPo=ESP=15ms. At
the top. the TE,, curves are for w,=10% and ETL=8 echoes at various N, ralues
(64.128.192.256). The bottom left TE,, curves are for w,=10% and N,=128 phase
encodes at various ETL values (2.4.8.16). Finally. the bottom right TFE,,. curves are
for N, =128 phase encodes and ETL=8 echoes for various w, values
(3%.10%.25%.50%). The conventional SE SW-MRI results are represented by the
dashed line.
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. . . . . .. 1ESPxETL
using 'Hospital's rule whereby in the limit it tends to —? \:\ .so that TE,, is
=2\,
4ESPxETL . .
TE,. = ESPo+ w—\‘u— for [.V,w,Ts] > ESPxETL (1.26)
Ty

This is the asymptotic limit seen in Figure 4.34. One can clearly observe that for large
N, (and large w,}. the SW-MRI effective echo time approaches ESP,. as expected.
The ETL dependence is also clearly obvious. Note the resemblance of the asvmptotic
echo time limits of both SW-MRI and CC-MRI. which are respectively given by

- 4 2
IE,,.=ESPy+-———ESPxETL. and TE..=ESPy+——ESPxETL.
2\, w, ~N.d,

Finally. by knowing the effective echo time TE,,.. one can calculate the etfective

~TEsw/T2  Thjs is plotted in Figure 4.35 for the various effec-

signal intensity from e
tive echo time curves of Figure 1.34 with ESPo=ESP=135ms. Note the small signal
intensity for short T, species. as expected. The SE SW-MRI (dashed) curve is the

~ESPo/T:  \lso note the

conventional SE case and represents the T, contrast curve €
clustering of the curves near the conventional SE SW-MRI case. This is reminiscent
of the CC-MRI analysis.

The signal intensity fraction and effective echo time analvsis for SW-MRI is sim-
ilar to that for CC-MRI RARE-mode acquisitions in that the centre of k-space is
acquired at time ESP,. Moreover. our SW-MRI signal intensity expectations are
consistent with Melki's observation [7T] (which pertained to a Cartesian acquisition)
that if the object is large with respect to its T, impulse response function. namely
w, T35 >ESPXETL. then the k-space signal intensity loss is minimal. i.e. S, is close

to unity and TE,.~ESPq. In this case. the effective echo time is governed solely by

the acquisition of the central k-space data. namely ESPy.
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Figure 4.35: SW-MRI effective signal intensity curves

The SWW-MR! effective signal intensity curves are plotted assuming
ESPy=ESP=15ms. At the top. the effective signal intensity curves are for w,=10%
and ETL=8 echoes at various N, values (64.128.192.256). The bottom left effective
signal intensity curves are for w,=10% and N,=128 phase encodes at various ETL
values (2.4.8.16). Finally. the bottom right effective signal intensity curves are for

N, =128 phase encodes and ETL=8 echoes for various w, values
(3%.10%.25%.50%). The conventional SE SW-MRI results are represented by the

dashed line.
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Chapter 5

Conclusions and Discussion

Magnetic resonance imaging is a powerful imaging modality in that the tissue can be
characterized according to various contrast mechanisms. most notably Th-weighted
contrast. The T,-weighted images are very useful clinically. but the major disadvan-
tage is that these high-quality images often require long imaging times.

The Cartesian RARE-mode acquisition sequence proposed by Hennig [1] retains
the soft-tissue contrast and signal-to-noise ratio (SNR) of T,-weighted images. but
at a reduced acquisition time in comparison to conventional T»-weighted images.
Moreover. non-Cartesian sampling schemes offer further advantages in motion and
How artifact suppression. and efficient use of gradients.

In this treatise. the viability of fast T;-weighted polar k-space sampling acquisi-
tions was assessed and compared for projection reconstruction (PR-MRI) and con-
centric circles (CC-MRI). Both of these sequences are easily modifiable k-space tra-
Jectories that lend themselves to RARE-mode acquisitions. We therefore analvzed
the fundamental aspects of polar k-space acquisitions. including sampling and image
reconstruction effects such as aliasing. image resolution and SNR. and investigated
the Ts-weighted contrast effects when imaging in RARE-mode.

Herein. a summary of the salient conclusions of chapters 2-1. namely the Sampling
Effects. Reconstruction Effects. and T2 Modulation Effects chapters is given. Possible

future directions of rapid T,-weighted MR imaging are also presented.
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5.1 Sampling Effects

[n the Sampling Effects chapter. the Fourier aliasing effects of uniform polar sampling
(i.€. equally-spaced radial and azimuthal samples) were analvzed and explained. The
primary focus rested on the radial effects of polar k-space sampling which were treated
from a two-dimensional (2D) formalism.

The principal point spread function (PSF) of polar k-space sampling schemes
was analyzed by assuming equally-spaced ring samples. We followed Bracewell and
Thompson’s 2| formalism and decomposed the PSF into its main lobe (whose be-
haviour is jinc-like). and a series of asymmetric ringlobes peaked near j/ Ak, (whose
amplitudes decay as j increases). where j is the ringlobe number and A4, is the radial
sample spacing in k-space.

Since the first ringlobe occurs at a radius of 1/\k,. the object’s extent must be
space-limited to within a diameter of 1/\k,. in analogy to the Cartesian Nyvquist
sampling criterion. However. due to sampling on a finite polar grid. the ringlobes
are asymmetric. oscillatory. non-periodic. and extend to the origin. Thus. when we
consider the full 2D sampling effects. aliasing artifacts occur even if the radial Nyvquist
criterion is satisfied. This aliasing leads to a small non-zero background signal within
the baseband and affects the overall intensity pattern of the object. The deviation
from the true intensity increases as the object size increases relative to the FOV.

The full two-dimensional PSF includes the main lobe and the ringlobes. the latter
leading to aliasing effects. However. unlike Cartesian sampling. the aliasing is not
merely just a fold-over at the edges of the image. but a fold-over at the FOV radius.
which represents a continuous folding. Moreover. unlike Cartesian sampling. the
ringlobes are asymmetric and not purely periodic. which leads to a more complicated
Gibb’s-like ringing artifact and perturbs the expected signal intensity pattern.

The concepts of aliasing and leakage are well understood for Cartesian sampling.
However. for polar sampling (and perhaps most if not all non-Cartesian sampling

acquisitions). this distinction is no longer clearly obvious. Even if we sample with
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o-rings out to infinity. it is not apparent that its 2D PSF is itself a series of concentric
¢-rings. Recall that in Cartesian sampling. the concept of aliasing is properly defined
because the FT of an infinite series of d-functions is itself a series of &-functions.
Leakage effects are easily explained and are due to truncation effects. i.e. due to the
fact that we've sampled only over a finite extent. For polar sampling. however. these
two concepts are not readily separable. Consequently. the 2D PSF of polar sampling
encompasses a “mixing  of both aliasing and leakage effects. as defined for Cartesian
acquisitions. Here. we've opted to call this simply aliasing.

But. the reader is cautioned that. herein. the term aliasing is used in the broadest
sense of the word: any high frequency (or spatial) component going under an assumed
low frequency (or spatial) component. In Cartesian sampling. leakage (and ringing)
effects are remedied via the application of suitable filters (e.g. the Hamming window)
prior to [FT. However. for polar sampling. these same filters did not correct the
observed non-uniform intensity pattern of the reconstructed disk objects. Therefore.
we attribute the effect as an aliasing phenomenon. where aliasing is now used in its
most general and all-encompassing meaning.

In Cartesian sampling. the effective FOV is a square region of full-width 1/\A,
for a sample spacing of Ak, in both the k.- and &,-directions. [n polar sampling.
though. it is a circular region of diameter 1/\k,. This means that the polar FOV
area is about 78.5% that of the Cartesian FOV for commensurate sample spacing and
image pixel size. For comparable fields of view. the number of polar samples may
have to be increased. On the other hand. certain polar sampling schemes (e.g. spiral
acquisitions) allow more efficient coverage of k-space for a fixed gradient capability
which may offset the increase in samples required.

Although the 2D polar sampling PSF leads to some subtle aliasing effects and/or
artifacts. these effects can be suppressed depending on the choice of reconstruction

algorithm one uses. This was the subject of the subsequent chapter in this treatise.



5.2 Reconstruction Effects

[n the Reconstruction Effects chapter. the resolution. signal-to-noise ratio and aliasing
characteristics of the gridding (GRD} and convolution backprojection {(("BP) recon-
struction algorithms were compared and contrasted for polar k-space sampling.

Gridding is primarily a Fourier domain algorithm while CBP is an image domain
technique. Still. both of these algorithms perform identically in terms of image SNR
and resolution provided that these two image characteristics are considered together.
In their most basic implementations. where the sampling density correction is based on
ramp filters. GRD maximizes resolution at the expense of SNR. while CBP sacrifices
resolution to increase the SNR.

More generally. for a given choice of k-space trajectory and sample locations. the
SNR and resolution are intimately related: the increase of one of these characteris-
tics engenders a commensurate decrease in the other. The choice of reconstruction
algorithm merely opts for a different balance between these two effects.

The GRD algorithm offers the advantage of direct manipulation of the k-space
data via multiplication. This gives the user flexibility in trading off resolution for
SNR (and vice versa) for a given acquisition. Moreover. due to its generality. GRD
allows for the possibility of non-equidistant azimuthal polar sampling whereby one
can maximize resolution and SNR simultaneously. This is achieved if the sampling
density in k-space is uniform.

One important difference between GRD and CBP is their different PSFs which
lead to different aliasing behaviour. The polar PSF using GRD includes the main
lobe and the ringlobes, as given in the Sampling Effects chapter. where the main lobe
describes the blurring effect of finite sampling. and the ringlobes are a measure of
the expected aliasing. The gridding PSF retains the inherent 2D polar PSF char-
acteristics. In fact. the gridding algorithm is nothing more than a computationally
efficient discrete Fourier transform for non-Cartesian data. Consequently. the full 2D

sampling effects are not altered by gridding.
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By comparison. the convolution backprojection PSF eliminates the ringlobes al-
together since the radial effects of the PSF are calculated from a 1D Fourier inversion
instead of a 2D Fourier inversion. The 1D projections are then convolved with the
CBP convolution function to compensate for the variable sampling density in k-space.
Since this process is applied to the baseband projections only. there are no ringlobes
arising from the replicates. Thus. provided that the radial sampling satisfies the
Nvquist criterion. i.e. that the object’s radial extent is within a circular FOV of
diameter 1/\A,. the aliasing using CBP will be minimal.

Having characterized the fundamental sampling and reconstruction effects of polar
sampling. we then analyzed the T, modulation and resultant T-weighted contrast of

polar k-space sampling schemes acquired in RARE-mode.
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5.3 T, Modulation Effects

In the T, Modulation Effects chapter. the amplitude modulation effects of RARE-
mode polar sampling were analyzed and compared for projection reconstruction and
concentric circles acquisitions. The T,-weighting and 7, impulse response function
formalism was presented. More importantly. the effective echo times of each sequence
were derived. allowing one to characterize the effective T>-weighted contrast curves.

For projection reconstruction RARE-mode MRI acquisitions. a good compromise
in suppressing both smearing and star-like artifacts is to use the one-sided interleaved
T’>-weighted approach. Conversely. for concentric circles RARE-mode acquisitions.
the smooth monotonically decaying approach was deemed to be essential in minimiz-
ing both ring-like and edge enhancement artifacts in the reconstructed image.

The signal intensity fraction and the effective echo time of RARE-mode PR-MRI
were found to be highly T>-dependent for different echo spacing (ESP) and echo train
length (ETL) combinations. By comparison. the effective echo time of RARE-mode
CC-MRI was found not to be nearly as sensitive to various ESP/ETL combinations.
especially for large objects within the field of view. In general. the effective echo time
in RARE-mode PR-MRI depends on ESP. ETL. and T5. while in CC-MRI it depends
on ESP. ETL. T,. the object size. and the acquisition matrix size.

[n vivo head images showed that the RARE-mode projection reconstruction and
concentric circles MRI images have different 7, contrasts for equal ESP and ETL
parameters. Therefore. contrast characteristics can differ considerably for RARE-
mode polar acquisitions depending on the k-space trajectory taken.

Moreover. motion artifacts using projection reconstruction are greatly reduced in
comparison to concentric circles acquisitions since in PR-MRI one samples the centre
of k-space repeatedly. By comparison. in CC-MRI one samples the centre of k-space
only at the beginning of the acquisition. The PR-MRI sequence has the advantage
of averaging out the effects of motion near the centre of k-space. Since it is the low

spatial frequencies which define the overall characteristics of the image. the motion
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averaging leads to slight image blurring but minimal ghosting artifacts. In C'C-MRI.
though. motion effects lead to significant smearing. blurring. and ghosting artifacts
in the reconstructed image.

Our analysis and results indicate that RARE-mode PR-MRI is a viable method
of acquiring fast T»-weighted images. Although the T, contrast is compromised some-
what. and especially so at larger ESP/ETL values. the RARE-mode projection re-
construction MRI sequence appears to be more robust than concentric circles RARE-
mode acquisitions in minimizing blurring and/or smearing effects in the reconstructed
MR image. Moreover. PR-MRI acquisition schemes are less sensitive to motion and

flow effects and artifacts.
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5.4 Future Perspectives

Our hypothesis was that polar sampling schemes. and more specifically RARE-mode
polar sampling. are a viable alternative to acquiring high contrast. high SNR. proper
T,-weighted MR images. [ndeed. we demonstrated this theoreticaily and substanti-
ated the analytical claims with experimental verification.

The time savings of acquiring T>-weighted images can be increased further by
using longer echo train lengths. However. one can appreciate that for large ETL the
image blurring and/or smearing may become severe. or the T>-weighted contrast may
be significantly compromised. But. what if one were somehow able to “deconvolve”
the effect of the various T impulse response functions from the resultant image ?

[n general. deconvolution is a difficult process. But. recall that the T)-weighting
is multiplicative in k-space. This suggests that the solution to this problem may be
more easily manageable in k-space (i.e. a demodulation) than in image space.

As in the T, Modulation Effects chapter. we assume that the object is composed

of .V, different T, species. Therefore. the T,-weighted RARE-mode image. which may

be collected with any desired k-space trajectory. is given by
N.
Mear(k) = Y e ™/ 30k (3.1
J=1

where M/(k) and T, are the spin-density k-space magnetization and T’ value. re-
spectively. of the j* T, species. and t(k) reflects the acquisition trajectory used.
Since there are N, different T species to be demodulated. we assume that .\, differ-
ent RARE-mode data sets are acquired at the same spatial frequency locations. but
with different T»-weighting functions:

N,

Morer(k) = Ze—tl(k)/T’.’.J Mj(k)

=t

N,
Mearov, (k) = Ze—th(k)/n) Mi(k)

i=1
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This can be written in matrix notation. namely

Moo (k) e—ttk)/T2n -a(k)/Tay, MYk)
: = : .. : bt :
-‘[rare..\', ( k) C_t'\" (k)/Tz'l ... E—('v’ (k)/TZ'N! -‘[._;V‘ ( k)
M (k) = E(k) M,(k) (5.3)

where the definition of the column vectors ﬁrqre(k) and ﬁ[o(k) are obvious. and the

()% term of E(k) is given by e~ “®¥/T2; The inversion of Eq.(5.3) leads to
E-'(k) E(k)M,(k) = E~'(k) Mar(k). so that
M,(k) = E“'k) Mar(k) (5.4)

where E"(k) is the matrix inverse of E(k). Note that this inversion process must
be carried out for each acquired k-space sample location.

Also note that we have effectively isolated the .V, different spin-density k-space
magnetization T species. V\3(k). Their inverse Fourier transform vields .V, different
[J(r) images. i.e the images of each T, species without any Th-weighting. The resultant
MR image is simply the superposition of these individual T, species images.

[n theory. the resultant image is free from any 7T, modulation effects. It is surmised
that the signal-to-noise ratio will be different (most probably lower) in comparison to a
conventional SE acquisition. This is because the T,-weighting correction is calculated
from lower SNR k-data that are apodized by the T)-weighting. But. some of the loss
in SNR may be replenished by the fact that one uses .V, multiple sets of acquisitions.

The difficulty lies in determining the terms of the E(k) matrix. The t(k) is easilv
characterized from the trajectory of acquisition. but one also needs to determine the
Y, different T, values. One could assume tvpical T, values for. say. short. medium.
and long 73 species. Otherwise. it may be advantageous to acquire a rapid. low-
resolution multi-echo scout image to approximately determine the .V, different T,
values in the imaged object.

More generally. it might be possible to solve for f&o(k) using a minimized least-

squares type of solution: since there are P sample locations and .V, different data
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Figure 3.1: Synthetic conventional SE and RARE-mode SW-MRI images
The two disks of diameter 25% and J0% of the FOV with T, values of {0ms and
[20ms. respectively, are shown at the top for a conventional Cartesian SE
acquisition. On the bottom are the two different RARE-mode images for ESP=10ms
and ETL=4 echoes (see text for details) with symmetric T,-weighting at
ESPy=10ms appearing on the left and symmetric Ty-weighting at ESPy=50ms
appearing on the right. The images are normalized to unity at the brightest pirel.
and all images are at the same windowing level.
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acquisition sets. one may be able to determine E(k) and ﬁlo(k) by solving for all the
k-locations simultaneously. Only further work in this area will clarify these issues.

We present a proof by concept of Eq.(3.4) with a simple simulation carried out
in the following manner. We generated a synthetic phantom consisting of two disks
with diameters of 25% and 40% of the FOV. with 75 values of 40ms and 120ms.
respectively. as shown on the top of Figure 5.1. The Cartesian k-space data (1258x128)
were svnthesized for each disk. and two RARE-mode acquisitions were synthesized
with ESP=10ms and ETL=41 echoes. The k-space data included additive. zero-mean.
Gaussian noise vielding an SNR of about 200 in the conventional SE image. and
commensurately lower in the RARE-mode images.

The first RARE-mode acquisition had a symmetric T,-weighting with ESPq set
at 10ms. while the second acquisition also had a symmetric T)-weighting but with

ESPo=30ms. The respective RARE-mode images are shown in Figure 5.1.

Figure 5.2: Isolated T, species from two RARE-mode acquisitions
The image on the left is the isolated Ty=40ms disk phantom of diameter 25% of the
FOV, and that on the right is the T,=120ms disk phantom. The images are
normalized to unity at the brightest pizel, and both images are at the same
windowing level.

[n Figure 3.2. we show the normalized images of the two isolated T species when

demodulating the T,-weighting using the proposed correction scheme. Note that we
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used the proper T, values. namely 40ms and 120ms. in evaluating the E matrix. Also
note that the disks appear somewhat noisier than the respective conventional SE or
RARE-mode images.

(learly. there are many issues to be resolved: a noise propagation analyvsis. a
sensitivity analysis of the E matrix. the accuracy requirements of the T, values. the
required number N, to properly characterize the different T species. and the optimal
k-space RARE-mode trajectories. to name but a few. Still. these preliminary results
are very promising. In fact. simulations with an infinite SNR (/.f. no noise) allow one
to perfectly extract the .V, different T, species for T as low as 3ms or so. and for the
T, species separated by no more than Ims from one another.

[n general. MR k-space data contain both spatial and temporal information that
are collapsed onto each other. Consequently. there is a tradeoff to be made. Fur-
thermore. the spatial information alone arising from a particular choice of sampling
trajectory offers a number of tradeoffs (resolution. SNR. aliasing. CNR. for example)
which may affect the reconstructed image.

To optimize the image quality and minimize any image artifacts. one must un-
derstand both the fundamental aspects of the data acquisition process. and the MR
physics associated with it. This is why we so painstakingly established firm theoret-
ical foundations to analyze the sampling. reconstruction. and 7> modulation effects.
Although we dealt only with polar k-space acquisitions. the intention is that the
concepts herein be applied to other MRI acquisition schemes to find an optimal com-
promise between spatial and temporal effects in the image.

[n clinical applications. polar sampling and other non-rectilinear sampling schemes
offer significant advantages in motion artifact and flow suppression. The image reso-
lution. signal-to-noise ratio, aliasing, and amplitude modulation effects are all impor-
tant considerations. The MR scientist is often trading off the spatial and temporal
effects. With the T,-weighting “demodulation” scheme proposed herein. it may be

possible to separate these effects and better optimize the reconstructed MR images.
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Glossary

1D/2D
2DFT
B
B(r.¢)
Baseband
BW
CBP
CC-MRI
CNR
CT

ESP
ETL

One-dimensional/two-dimensional
Two-dimensional Fourier transform imaging (see SW-)MRI)
Backprojection operator

Magnetic field strength vector

Effective FOV

Analog-to-digital filter bandwidth

Convolution backprojection reconstruction algorithm
Concentric circles MRI acquisition
Contrast-to-noise ratio

Computed tomography

Echo spacing when imaging in RARE-mode
Echo train length when imaging in RARE-mode
Fourier transform operator

Inverse Fourier transform operator

Fast Fourier transform

Free induction decay

Functional MRI

Field of view

Fast Spin Echo (same as RARE)

Fourier transform

Magnetic field gradient vector

Gridding reconstruction algorithm
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Jo(r)
Ji(r)
m(r.¢)
Mk t)
MRI
MTFE
NEX
NMR
PR-MRI
PSF

r

RARE
RF

Q

8./ Spr] Su
SE

SNR
SW-MRI
I

T,

TE

TR

TSE
UWO

Fourier domain spatial frequency coordinate
Reconstructed MR image

[nverse Fourier transform

Zeroth-order Bessel function of the first kind
First-order Bessel function of the first kind
Magnetization spin-density vector

Acquired MRI signal

Magnetic resonance imaging

Modulation transfer function

Number of averages in an MR experiment
Nuclear magnetic resonance

Projection reconstruction MRI acquisition

Point spread function

[mage domain spatial coordinate whose Fourier conjugate is k
Rapid Acquisition with Relaxation Enhancement
Radiofrequency pulse

Spin integration operator
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K-space signal fraction of RARE-mode CC-MRI/PR-MRI/SW-MRI

Conventional spin echo MR acquisition
Signal-to-noise ratio

Cartesian (spin-warp) MRI acquisition
Characteristic MR spin-lattice relaxation time

Characteristic MR spin-spin relaxation time

Echo time

Repetition time
Turbo Spin Echo (same as RARE)
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