
University of Alberta

Asynchronous Parallel Garne-Tree Search

Mark Gordon Brockington O

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 1998

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliagraphic Services services bibliographiques

395 Wellington Street 395, nie Wellington
OttawaON K1AON4 OttawaON K1AON4
Canada Canada

The author has gianted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendr~ des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou su . format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

Tree searching is a fundamental and computationally intensive problern in artificial in-

telligence. Parallelization of tree-searching algont hms is one met hod of improving the

speed of these algorithms. However, a high-performance parallel two-player game-tree

search algorithm has eluded researchers. Most parallel game-tree search approaches

follow synchronous methods, where the work is concentrated within a specific part

of the tree, or a given search depth. This thesis shows that asynchronous garne-

tree search algorithms can be as efficient as synchronous methods in determining the

m i n i m a value.

A tavonomy of previous work in parallel game-tree search is presented. -1 theoret-

ical mode1 is developed for comparing the efficiency of synchronous and asynchronous

search algorithms under realistic assumptions. APHID, a portable parallel game-tree

search library, has been built based on the asynchronous parallel game-tree search

algorithm proposed in the cornparison. The library is easy to implement into a se-

quential game-tree searching program. APHID has been added to four programs writ-

ten by different authors. APHID yields better obsewed speedups than synchronous

search methods for an Othe110 and a checkers program, and yields comparable ob-

served speedups to synchronous methods on two chess prograrns.

Acknowledgement s

1 have been told if you do not thank your supervisor first, he will not sign any nice
reference letters for you. A big thanks to Jonathan Schaeffer, both as a supervisor
and a friend.

Thank you to the other members of my thesis cornmittee, Tony Marsland, Joe Cul-
berson and John Samson, for many discussions and keeping me on track. Thanks to
my extemal examiners, Murray Campbell and Monroe Newborn, for some extremely
valuable feedback on the original version of the thesis.

The author would like to acknowledge the people who have made the experiments
in this thesis possible. The author would like to thank Paul Masiar and Marc Nolte
at the SGI office in Calgary for access to the 6Cprocessor SGI Origin 2000 system
in Eagan, Minnesota. The author would also like to thank Charles Leiserson, Aske
Plaat and Boston University for access to a lab of UltraSPARC machines and the
32-processor SGI Origin 2000 system.

Thank you to the other members of the University of Alberta GAMES Group,
past and present, for many helpful discussions and some valuable proofreading: Darse
Billings, Yngvi Bjornsson, Yaoqing Gao, Andreas Junghanns and Denis Papp.

Thank you to Michael Buro for many opportunities to play against Logistello,
and the knowledge that 1 still need to do some more work. Thank you to Igor Dur-
danovic, Louis Geoffroy, Kevin Hall, David Parsons, Martin Piotte, Colin Springer,
David Summers, Jean-Christophe Weill, and the other regulars on the Internet O t h-
el10 Server for providing challenging opponents for K e y a n ~ over the last four years.

Thanks to Annette Gottstein, Sean Halliday, Kat hleen Kippen, Randal Kornelsen,
Steve MacDonald, David McCaughan, Diego Novillo, Ian Parsons, Kevin Wiebe,
David R! Woloschuk, Debbie and Jerry Yee, and al1 of the other graduate students
and friends who have had to put up with my fascination with cornputer games for
the last five years in Edmonton.

Thank you to Savak, for crushing any aspiration 1 might have had about being a
professional musician. Thank you to my family who have supported and encouraged
me over the years.

Last and definitely not l e s t , a big thank you to my wife, Jennifer.

Brought to you by the letters C and <.
Mark Brockington November 18, 1997

Contents

1 Introduction 1

. 1.1 Overview 1

. 1.1.1 Artificial Intelligence and Games 1

. 1.1.2 Parallel Algorithms for Game-Playing 2

1.2 Contributions . 5

. 1.3 Organization 8

. 1.4 Publications 8

2 Sequential Game-Tree Search 9

2.1 Game Theory and the Min ima Algorithm 10

. 2.2 The cro Algorithm 19

. 2.3 Improving the û.8 Algorithm 24

. 2.3.1 Fail-Soft and Aspiration Searching 25

. 2.3.2 Iterative Deepening 26

. 2.3.3 Move Ordering Techniques 27

. 2.3.4 Nul1 Windows 30

2.3.5 The Minimal Graph . 33

2.4 From Fixed-Depth to Variable-Depth 34

. 2.4.1 Search Extensions 34

. 2.4.2 Search Reductions 36

. 2.5 Other Game-Tree Search Methods 37

2.5.1 SSS* . 37

. 2.5.2 Algorithms for Probabilistic Evaluation Functions 38

2.5.3 Conspiracy Xumbers . 39

2.6 Summary . 40

3 Parallel Search

3.1 Introduction
3.2 Parallel Search Terminology .

3.2.1 Speedup and Efficiency .

3.2.2 Overheads .

3.3 f arailel q3-based Game-Tree Search

3.3.1 Cornparison of the LYP Algorithm

3.3.2 Comparison of the crp Implementations

3.3.3 Summary of Algorithms

3.4 Other Parallel Game-Tree Search hpproaches

3-41 SSS* .

3.4.2 Conspiracy Numbers .

3.4.3 ER .

3.4.4 Theoretical Methods .

3.5 Parallelism in Single-Agent Search .

. 3.5.1 A*

3.5.2 ID.4*.

3.5.3 Comparing Parallel IDA* and Parallel <rp

3.6 Parallel Search Libraries .

3.7 Conclusions .

4 Theoreticai Comparison

4.1 Introduction .

4.2 Experimental Setup .

4.2.1 Computational Mode1 .

4.2.2 Methodology .

. 1.3 Slodeling Game Trees . < 2

.. 1.4 Analysis of Synchronous Game-Tree Search t a

4.4.1 Perfect Critical Tree Mode1 76

4.4.2 Realistic Critical Tree Mode1 83

4.5 Analysis of Asynchronous Game-Tree Search 85

4.5.1 Perfect Critical Tree Mode1 86

4.5.2 Realistic Critical Tree Mode1 88

4.6 Surnmary . 91

5 The APHID Algorithm 94

. 5.1 Introduction 94

5.2 Interna1 Mechanics of the APHID Algorithm 97

5.2.1 Operation of the Master in APHID 98

5.2.2 The APHID Table . 105

5.2.3 Operation of Slave in APHID 108

5.2.4 Hierarchies . 112

5.2.5 Load Balancing . 112

5.2.6 Distributed Transposition Tables 114

5.3 .\ PHID in Operation: An Example 117

5-4 External Interface of the APHID Algorithm 123

5.4.1 Modifications of Existing Code Required for APHID 124

5.4.2 Application-Dependent Knowledge in APHID 129

5 -43 Configuration File . 130

5.5 Sumrnary . 133

6 Experimental Results 135

6.1 Introduction . 135

6.2 h.lethodology . 136

6.2.1 The Hardware . 136

6.2.2 The Applications . 136

. 6.2.3 Search Extensions and Reductions 137

. 6.2.4 Search Depth and Time Constraints 138

. 6.2.5 Transposition Tables 138

. 6.2.6 Overheads in APHID 140

. 6.2.7 Results Reporting 142

. 6.3 -4PHID - Standard Tests 143

. 6.3.1 K E Y A N O - ~ ~ ~ ~ O 144

. 6.3.2 CHINOOK - Checkers 151

. 6.3.3 CRAFTY and THETURK - Chess 154

6.4 Parallelism and the Structure of the Transposition Tables 160

. 6.5 Conclusions 161

7 Conclusions and Future Work 163

. 7.1 ConcIusions 163

. 7.2 Future Work 166

Bibliography 170

A Test Positions 178

. A.1 Chess . CRAFTY and THETURK 148

. A 2 Checkers . CHINOOK 180

. .4.3 O t h e l l o - K ~ y ~ ~ o 181

B APHID's Interface with the Application 183

B . 1 Standard Parameters Used in -4PHID Interface 183

B.2 Application-Dependent Constants . 184

B.3 Call-Back Functions . 186

B.4 Interface Calls Used by Masters and Slaves 189

B.5 Interface Calls Used by Masters Only 190

B.6 Interface Calls Used by Slaves Only 192

List of Tables

Cornparison of Parallel crp-based Game-Tree Search Algorithms . . .

Cornparison of Parallel ap-based Game-Tree Search Implementations

.\vailable Parallelism and Size of Work Granules for Type-1 Nodes in

the Perfect Critical Tree .

Example of Information Used to Determine Guessed Minimax Value .

Speedup Data for KEYANO (Fixed-Depth, Shared Memory) . . - . .

Speedup Data for KEYANO (Variable-Deptn. Shared Memory)

Speedup Data by Depth of Search for KEYANO (Fiued-Depth, Shared

blemory) .
Speedup Data for KEYANO (Young Brothers Wait, Fixed-Depth, Shared

Memory) .

Speedup Data for CHINOOK (Fixed-Depth, Shared Memory) . - - .

Speedup Data for THETURK (Fked-Depth, Shared Memory) . - . - -

Speedup Data for CRAFTY (Fixed-Depth, Shared Memory) . - - - . .
Speedups and Total Search Overheads for Various Transposition Table

Configurations on APHID with 16 processors

Speedup Data for ,411 Promams (Fixed-De~th. Shared Memorv) . . .

List of Figures

2.1 Example of Naughts and Crosses Game Tree 12

2.2 Game Tree with Minimax Values Added 23

2.3 An Implementation of the hlinimax Algorithm 14

2.4 The Negamax Formulation of the Minimax .4 lgorit hm 17

2.5 A Negarnax Formulation of the a8 Algorithm 20

2.6 Example of an ÛP Shallow Cutoff . 21

2.7 Example of an a0 Deep Cutoff . 22

2.8 TheCriticalTree . 23

2.9 The NegaScout Algorithm . 31

2.10 The MTD(f) -4lgorithm . 33

3.1 A Start and Goal Position for the Sliding Tile Puzzle 61

4.1 Sample Histograms and Predicted Probability Density Function . . . 74

1.2 Synchronous Model. Efficiency on Perfect Critical Tree 82

4.3 Synchronous Model. Efficiency on Realistic Critical Tree 85

4.4 Asynchronous Model. Efficiency on Perfect Critical Tree 88

4.5 Asynchronous Model. Efficiency on Redistic Critical Tree 90

4.6 Comparing Models on Perfect Critical Tree. n=256 91

4.7 Comparing Models on Realistic Critical Tree. n=256 92

5.1 APHID Partitioning Game Tree Amongst Processes 96

5.2 Location of Parallelism in Typical APHID and YBWC* Search 98

5.3 -4 Snapshot of APHID Search in Operation 106

5.4 An Example of APHID7s Horizon, With and Without Exemptions . . 114
- -
3.a APHID Example, Part 1: Snapshot of hlaster Tree and Information

from APHID Table for each Slave Process 118

5-6 APHID Example, Part 2: Slave 3 is Searching Speculatively 120

5.7 APHID Example, Part 3: Load Balancing Brings Work to Slave 3 . . 120

5.8 APHID Example, Part 4: Creation of a New Leaf Node (1 122) 121

5.9 APHID Exarnple, Part 5: Change of PV and Bad Bound Search . . . 122

5.10 Code Example: APHID within the NegaScout Algorithm 123

5.11 Code Example: APHID within the Iterative Deepening Loop 127

5.12 Code Exarnple: APHID in Code to Handle the Root of the Game Tree 128

3.13 Code Example: APHID within the Main Program 129

5.14 Flat Hierarchy, APHID Configuration File 131

5.15 Flat Hierarchy, Process Tree Representation 131

5.16 Complex Hierarchy, APHID Configuration File 132

5.17 Complex Hierarchy, Process Tree Representation 133

6.1 Speedups and Overheads for KEYANO (Fixed-Depth, Shared hIemory) 144

6.2 Speedups and Overheads for KEYAHO (Variable-Depth, Shared Memory) 146

6.3 Speedups by Depth of Search for KEYANO (Fixed-Depth. Shared Mem-

ory) . 148

6.4 Speedups and Overheads for KEYANO (Young Brothers Wait, Fixed-

Depth, Shared Memory) . 149

6.5 Speedups and Overheads for CHINOOK (Fiued-Depth, Shared Memory) 151

6.6 Speedups and Overheads for THETURK (Fixed-Depth, Shared Memory) 155

6.7 Speedups and Overheads for CRAFTY (Fixed-Depth, Shared Memory) 138

7.1 Speedups for Ail Programs (Fked-Depth, Shared Memory) . . - - . . 165

Chapter 1

Introduction

1.1 Overview

1.1.1 Artificial Intelligence and Games

Making computers play games in a skillful manner, comparable to that of a good hu-

man player, is an interesting and challenging problem that has attracted the attention

of many computer scientists over the last forty years. It is viewed as an interesting

test bed for other fields of artificial intelligence because of the weil-defined rules and

the wealth of heuristic information that can be applied to achieve "intelligent" play.

Many researchers have explored the development of algorithms to play games such

as checkers, backgammon, Othello ', Monopoly 2, Scrabble 3, and Go. Hoivever, the

majority of the game-playing research in the western world still focuses on chess.

Chess can be considered as one of the original Drosophzia of artificial intelligence

[67]. In the early 1950s, i t was believed that a computer that could play chess a t

a master level would also be able to solve economic and philosophical problems.

Unfortunately, chess can be programmed algorithmically with little insight into life,

'Othello is a registered trademark of Tsukuda Original, iicensed by Anjar Co.
' ~ o n o p o l ~ is a registered trademark of Parker Brothers.
'Scrabble is a registered trademark of Milton Bradley Company, a division of Hasbro, inc.
4Drosophila melonguster is the scientific name for the common h i t fly. It is popular in biological

experiments because of its short life cycle.

2

the universe, and everything. In 1997. a home computer can play a game of chess

that is capable of beating 99.9% of al1 humans by using a tree searching algorithm

and a few heuristics to guide the evaluation function. In May 199?? DEEP BLUE,

an IBM machine utilizing custom hardware and massive parallelism, defeated Garry

Kasparov, the !Vorld Chess Champion, in a 6-game match. Although we have made

great advances in the field of computer chess, both the home computer and DEEP

BLUE are a long way from understanding Descartes.

The research in computer chess is widely applicable to other tw-player games with

perfect information, such as Othello and checkers. The ap algorithm can be used for

any two-player zero-sum garne with perfect information. Furthermore, almost al1 of

the research into making the ap algorithm search a chess tree more efficiently can

be applied directly to other games. In return, other games have contributed many

alternative methods of handling some search problems in the game of chess.

A game-playing program that can outsearch its opponent has a high probability

of winning. It has been shown that there is a strong correlation between the sr .xbh

depth and the relative strength of chess [go], checkers and Othello programs. Thus,

game programmers cont inually attempt to search larger game t rees while s t q i n g

within the time constraints imposed by the niles of the game.

1.1.2 Parallel Algorithms for Game-Playing

A sequential game-tree search algorithm uses only a single processor to search the

game tree. One method of achieving greater search depths involves using many pro-

cessors to speed up the search. A parallel game-tree search algorithm uses multiple

processors simultaneously to determine the value of the garne tree.

In the field of parallel game-tree search, the most important measure of perfor-

mance is speed: How fast can we search the game tree in parallel in cornparison to our

sequential search? We can observe how much faster a program searches a game tree

in parallel than sequentially. This ratio is usually defined as the observed speedup.

If we divide the observed speedup by the number of processors. this is referred to as

3

the observed efficiency of the parallel algorit hm. The ideal parallel game-t ree search

algorithm has a high parallel efnciency on a large number of processors.

For the game of chess, almost al1 of the researchers have used s~nchronous par-

allel game-tree search algorithms to speed up sequential a$-based algorithms. Syn-

chronous parallel game-tree search algorithms force work on one part of the tree to

be completed before work on the rest of the tree can be carried out. One could Say

that a synchronous algorithm has global synchronization points during the game-tree

search that al1 processors must reach before any process is allowed to proceed beyond

the synchronization point.

In some synchronous algorithms, the work is synchronized a t every choice dong

the hypothesized best move sequence, commonly known as the principal variation.

In al1 synchronized algorithms, the work is synchronized at the root of the game

tree. Most game-playing programs use iterative deepening; the program searches

the game tree to positions d moves ahead (commonly known as a d-ply game tree)

before searching the game tree d + 1 moves ahead. The synchronization at the root

of the game tree implies that the d-ply game-tree search must be complete before any

process can proceed to the (d + 1)-ply game-tree search.

The advantage of the synchronous parallel approaches is that the parallel algo-

rithm can use the value of the principal variation without uncertainty, in the same

way that a sequential game-tree search algorithm uses the value of the principal vari-

ation. These synchronous parallel algorithms are successful a t keeping the amount of

ivork required to determine the value of the game tree near the sequential search size,

assuming that processors are able to share search information in an efficient rnanner.

The common method of doing this is a shared table, which stores al1 of the important

search results from each processor.

However, there are fundamental problems with synchronous algorithms for paral-

lelizing ap-based game-tree search. The first problem is that there are many times

when there is insufficient parallelism to keep al1 the processors busy. If we have more

processors than work to do before a synchronization point, some processors must go

4

idle. This idle time is not that important on a small number of processors. but in-

creases in magnitude (and importance) as the number of processors increases. This

problem is exacerbated in games that have a srnaller average number of move choices

than chess, such as Othello and checkers. For example, the best observed speedup

for a state-of-the-art checkers program using a synchronous parallel algorithm is only

3.32 on 16 processors, with further processors being of no benefit.

A second problem is that al1 of the synchronous parallel aB-based algorithms re-

quire an efficient implementation of a shared table between the processes to achieve

a high parallel efficiency. Synchronized algorithms in the domains of computer chess

and checkers exhibit poor parallel efficiency without an efficient shared table irnple-

mentation. due to the requirement of replicating search results on multiple processes.

Most of the synchronous algorithms are tested on machines with fast networks and

slow processors, while the majority of parallel architectures available to researchers

today are distributed networks of workstations with much faster CPCTs relative to the

network speed. On the latter systems, creating a shared table with distributed mem-

ory is not as efficient, and the efficiency portrayed in the literature is not achievable.

The third probiem is that the introduction of these algorithms into existing se-

quential code can force senous implementation difficulties. In general, one wants the

parallel algorithm and the sequential algorithm to agree on the game-tree value as

well as the principai variation of the search. When we implement a parallel search

algorithm in an existing sequential program, it can take a large amount of tirne to

insert the algorithm into the program and verify that the parallel program is working

in the same way that the sequential program does.

Newborn suggested the use of asynchronous search for parallelizing ÛP-based al-

gorithms [69]. Each process is given a subset of the moves from the root of the game

tree to search independent of all other processes. When the time committed to the

search has been exhausted, al1 of the results are combined and the move leading to

the best game-tree value can be determined. .At no point during the search are any of

the processes waiting for another process. Newborn's UIDPABS algorithm is limited

-
3

by the nurnber of moves available a t the root of the game tree. since processes are

not allowed to CO-operate on searching a single move from the root. The idea behind

UIDPABS could be generalized to use massively parallel hardware efficiently

The goal of this thesis is to answer the question: In the area of game-tree search,

can asynchronous parallel algorithms outperform synchronous parallel algorithms?

Contributions

In this thesis, ive will show that it is possible for asynchronous parallel algorithms to

outperform synchronous parallel algorithms in the area of game-tree search.

A taxonomy of parallel ûpbased game tree search algorithms is presented. The

taxonorny shows that many synchronous algorithms that seem dissimilar on the sur-

face are, in fact, using the sarne underlying algorithm. The taxonomy also shows that

asynchronous search algorithms, in the field of game-tree search, have been overlooked

aside from Yewborn's UIDPABS algorithm.

We develop a model for comparing a typical synchronous game-tree search algo-

rithm to an asynchronous game-tree search algorithm. We show that it is possible

for the asynchronous algorithm to outperform the synchronous algorithm on realistic

game t rees.

The -4PHID (Asynchronous Parallel Hierarcliical Iterative Deepening) algorithm

has been developed and is presented in this thesis. APHID is a new asynchronous

ag-based search algorithm based on the proposed asynchronous algorithm used in

the t heoretical model.

APHID keeps ail processors busy by allowing the processes to schedule work for

themselves, with minimal advice from an overseeing process. APHID attempts to keep

communication between the overseer and its child processes to a minimum, alloaing

the system to exhibit reasonable performance on both a network of workstations and

massively parallel hardware.

The -4PHID algorithm is written in a application-independent manner so that it

may be inserted into many different game-tree searching programs to generate parallel

game-tree searching programs. In this work. we exhibit implementations of APHID

in many different programs:

a CHINOOK, the World Man-Machine checkers champion, deveioped by a team

led by Jonathan Schaeffer,

CRAFTY, Robert Hyatt's freeware chess program,

a THETURK, a chess program wntten by Yngvi Bjornsson and Andrea Jung-

hanns, two graduate students at the University of Alberta, and

KEYANO, an Othello program written by the author.

For the message-passing between processes, APHID uses the Parallel Virtual Machine

(PVM) library [33]. Thus, the system is portable across many different architectures.

The APHID system has been tested on many different architectures over the last two

years, including a network of Sun SPARCstation IPC workstations, an SGI Power

Challenge array, a series of û-processor Ultra-SPARC Enterprise machices, as well as

32 and 64-processor SGI Origin 2000 systems.

APHID has been written as a library of application-independent routines that

can be linked into a game-playing program. The library uses a small API to send

information to and from the the sequential application. Instead of forcing the user

to rewrite existing search code to fit the parallel aigorithm, we place a small number

of calls to APHID routines in the sequential application. The library achieves ac-

cess to application-dependent functions via a number of call- back funct ions t hat the

programmer mus t provide.

The library allows the APHID algorithm to be integrated into an existing minimax-

based game-tree search algorithm with little effort. We used the APHID library to

generate al1 of the parallel applications tested in this thesis. Each of the parallel

implementations took less than a day of programming time to achieve a parallel pro-

gram that executed in the same way as the sequential program, and a few days of

additional tuning to achieve the presented parallel speedups.

A synchronous parallel game-tree search algorithm generates greater speedups

in games that have a greater number of move choices in each position. However.

APHID's results are independent of the average number of move choices. This allows

APHID to outperform synchronous algorithrns on game trees mith a srnall nurn-

ber of move choices. For example, CHINOOK yields an obsemed speedup of 14.35

on 64 processors when combined with the APHID library. This is four times the

speedup achieved using a highly-tuned synchronous algorithm in the same applica-

tion. KEYANO, an Othello program, yields observed speedups with .WHID on 64

processors that are 50% larger than the equivaient speedups for YBWC*: the syn-

chronous game-tree search algorithm that has exhibited the best parallel efficiency

for any computer game on more than 64 processors. The observed speedups with

APHID in the two chess programs are 12.96 (THETURK) and 16.56 (CRAFTY) on 32

processors. The speedups are equivalent to many reported speedups in the game of

chess for synchronous parallel algorithms.

The analysis of earlier results has led tû numerous insights into the structure

of the games studied. For example, chess and checkers yield low speedups without

using shared tables. One of the key differences between these games and Othello is

the relative need for a shared table. Through Our experience with APHID. we will

show why the good parallel speedups in computer chess have an efficient shared table

implementation. We will also show 16-processor speedups for al1 of the applications

on local, distributed and shared tables.

The final contribution of this research is to give other researchers a starting point

from which to advance the study of asynchronous game-tree search algorithms. The

code and methods used in APHID are described within this document, and the

APHID library is freely available to any interested game-tree search researcher at

the APHID home page5.

Organizat ion

Chapter 2 gives a summary of garne-tree searching techniques that are ernployed on a

single processor. The chapter is intended to be a brief survey of the field, and is for the

reader who h o w s little about searching game trees. Chapter 3 contains a summary

of the previous work done in parallel tree-search algorithms. An explanation of some

parallel terminology required to comprehend the summaries is also given. Chapter

4 contains a theoretical cornparison of a typical synchronous aB algorithm to an

asynchronous crp algorit hm.

Chapter 5 descnbes the APHID algorithm in detail. along with some illustra-

tive examples of how to add APHID into existing sequential game-tree search code.

Chapter 6 shows the experimental results of implementing APHID in the four a p

plications. C hapter 7 presents the conclusions, and poses some additional questions

that still need to be solved.

The test positions used for each of the applications can be found in Appendix A.

A n in-depth description of the current interface to the APHID library can be found

in Appendk B.

1.4 Publications

.-2 large part of Chapter 3 has been published by the ICCA Journal (131. Preliminary

versions of the APHID library have been presented [lj, 161. However, the library

has been changed substantially since the initial publication. Furthermore? the results

have improved for al1 of the test domains used in the first series of tests.

Chapter 2

Sequent ial Game-Tree Search

Before one can understand how multiple processors can be used by a game-tree search-

ing program, it is important to understand the mechanics of sequential game-tree

searching programs. This chapter deals exclusively with sequential game-tree search,

and how it is used in current practice. The emphasis will be on minimau-based and

ab-based algorithms, since these are the algorithms that can be parallelized with the

APHID library. This chapter is intended as a brief introduction to the field, and not

a substantive review of al1 research.

Section 2.1 is a brief introduction to the theorg of two-player zero-sum games

with perfect information. The motivation and evolution of the a$ algorithm is given

in Section 2.2. A non-exhaustive survey of additions and improvements to fked-

depth a,f3 algorithms can be found in Section 2.3. Section 2.4 deals with algorithms

and heuristics that change a fixed-depth game tree into a variable-depth game tree.

Section 2.5 brietly describes other game-tree search algorithms (SSS*, B*, BPIP and

conspiracy numbers), and Section 2.6 will give us the opportunity for some closing

remarks on sequential game-tree search.

2.1 Game Theory and the Minimax Algorithm

Game theory deals with the mathematical analysis of cornpetitive situations. The two

fields where game theory are regularly employed are econornics and military conflicts.

We could view games as a contest with fixed mles that is decided by skill, strength

or luck.

Von Neumann and Morgenstern's book on game theory (931 commences by par-

titioning games into many classes. The games u-e are interested in, scch as chess,

Othello and checkers, belong to a class of games known as two-player zero-sum games

with perfect information.

Two-player games are those in which two competing forces are attempting to

obtain their goals. .4 player could be a single person, an entire army. or a computer

program. As long as al1 members of the force are attempting to achieve the same

goal, they can be viewed as a single player. A zero-sum game indicates that when al1

payoffs are taken into account, the net sum must equal zero. In a zero-sum game, if

one player wins, the other player must lose by an equivalent amount. If neither player

wins anything, the garne ends in a draw. A game with perfect i n f o n a t i o n requires

that al1 of the information about the current state of the game is risible to each

player. Poker and Scrabble are examples of games with imperfect information. since

some of the cards or tiles are hidden from view and cannot be used in formulating a

strategy.

We can also simpli- matters by stating that the game should have no chance

moves - i t does not rely on a probabilistic event to determine the moves available

in the game. For example, backgammon and Monopoly cm be considered as two-

player zeresum games with perfect information and chance moves, because the die

roll determines the mobility of the game pieces.

Although many two-player zero-sum games with perfect information and no chance

moves may seem dissimilar on the surface, they belong in the same class of games.

Furthermore, strategies can be formulated using the same method. The optimal move

for any position, given best play by the opponent. can be determined from a game

11

t ree.

The root of a game tree represents the current state of the game. Each node in

the tree can have any nurnber of child nodes. Each child of a node represents a new

state after a legal move from the node's state. This continues until we reach a leaJ a

node with no chiid nodes, in the game tree. We assign a payoff vector to each leaf in

the game tree. In a generalized game tree, this payoff vector represents the utzlzty of

the final position to both players. In general, winning a game represents a positive

utility for a player, whiie losing a game represents a negative utility. Since the game

is a two-player zero-sum game, the utility for the first player must equal the negative

of the utility for the second player. The utility for the side to move a t the root of the

tree is usually the only one given to Save space.

In Figure 2.1, an example of a game tree for a game of Naughts and Crosses (or

Tic-Tac-Toe) is given. Note that the two players take alternating turns at different

levels of the tree. X moves a t the root, while the opponent, 0, moves a t the first level

below the root. X position is normally categorized by how many levels down in the

game tree it is located. The common term for this is ply. The root is said to be at

ply O, while the immediate successors cf the root are said to be at p l i 1, et cetera.

The orientation of the game tree in Figure 2.1 is important to understanding the

cornmon terminology used in the literature. When we talk about descending a search

tree, we are travelling away from the root of the game tree towards the leaves. Note

that the ply values increase as we descend the game tree. Travelling upwards in a

search tree is the opposite: we travel towards the root of the game tiee and the ply

values decrease.

Naughts and Crosses, like chess and checkers, has only three possible outcornes for

a player: win, l o s or draw. Normally, we assign the payoff of +1, O and -1 to a win,

draw or loss for the player to move, respectively. These payoffs are given in Figure

2.1 a t the bottom of each leaf position, with respect to the player with the crosses.

We will give names to each player to simpii& our discussion. Let us cal1 the player

to move in the initial position Max and the opponent Min. At each node in the tree

x x .

Figure 2.1: Example of Naughts and Crosses Game Tree

where Max has to move, Max would like to play the move that maximizes the payoff.

Thus, Max will assign the maximum score amongst the children to the node where

Max makes a move. Similarly, Min will minimize the payoff to Max. since that will

maximize Min's payoff. The maximum and minimum scores are taken at alternating

teveis of the tree, since blax and Min alternate turns.

In this way, al1 nodes in the tree can be assigned a payoff or minima value,

starting from the leaves of the tree and moving up the tree towards the root. In

Figure 2.2, we give minimax vaiues for al1 nodes in our Naughts and Crosses game

tree (Figure 2.1). These minimax values tell us what the best possible outcome for

Max is in any position within the game tree, given that Min will do its best to foi1

Max's plans.

Once the root of the game tree has been assigned a minirnax value, a best move

for Max is defined as a move which leads to the same minimax value as the root of

the tree. We can trace down the tree, always choosing moves that Iead to the same

rninimav value. This path of moves gives us an optimal line of play for either player,

X X O XX' XOX X .X X O X O
DXX OlXiX Om OXX OXX OXX 0-0 0- 0-x-0 0x0

Figure 2.2: Game Tree with Minimav Values hdded

and is known as a principal variation. Xote that in our game of Xaughts and Crosses,

the side playing the Crosses will draw the game, but only if an X is played in the

lower central square. Playing to either square in the top row can lead to a loss for

the Crosses, if the opponent plays the best move.

To compute the minimax value of a position, we can use any algorithm which

searches the whole game tree. -4 depth-first search will search each child of a node

completely before exploring any other children. -4 breadth-first search will at tempt to

search al1 children of a node a t the same time. -4 best-first search algorithm attempts

to search and expand the "best" node at every step, irrespective of its location within

the tree. A depth-first search uses l e s memory than a best-first or breadth-first tree

search algorithm, so it is preferred in current game-tree search programs. In Figure

2.3, we show two C functions which are the basis of a recursive depth-first search of

a game tree. By calling Maximize with a position p, we will get the minimax value of

position p as the output of the function after the entire game tree has been searched.

In Figure 2.3, we have left out some of the details. For example, we have not

int Maximize (position p) {

int num0fSuccessors; /* total moves
int gamma; /* curent maximum
int i; /* move counter
int SC; /* score retumed by search

if (EndOf Game (p)) { return(GameVa1ue (pl) ;
gamma = -w;
num0fSuccessors = GenerateSuccessors(p);
for(i=l; i <= num0fSuccessors; i++) {

SC = Minimize(p.succ[i]) ;
gamma = max(gamma, SC);

1
return(gamma1;

) /* Maximize */

int Minimize(position p) {

int num0fSuccessors; /* total moves
int gamma; /* current minimum
int i ; /* move counter
int SC; /* score returned by search

if (EndOf Game (p)) { retum (GameValue (pl) ;
gamma = +w ;
num0f Successors = GenerateSuccessors (pl ;
f or(i=l; i <= num0fSuccessors; i++) {

SC = Maximize (p. succ [il ;
gamma = midgamma, SC) ;

1
returncgamma) ;

} /* Minimize */

Figure 2.3: An Implementation of the M i n i m a Xlgorit hm

defined nhat a position is. since this is game-dependent. min and max are functions

which choose the smallest or Iargest of the two parameters. respectively. There are

three additional functions that would be required to implement the minimax search:

(1) EndOfGame, which determines whether the game is over a t the input position.

retuming a Boolean value of TRUE if the game is over; (2) GameValue, which accepts

a position as a parameter, determines who has won the game, and retums the payoff

with respect to the player Max; and (3) GenerateSuccessors which generates an

array of successor positions (p.succ[l) from the input position, and returns the

number of successors to the calling procedure.

Note that Maximize and Minimize recursively cal1 one another until a position is

reacbed where the EndOfGame function returns TRUE. .4s each successor of a node is

explored, gamma maintains the current assessrnent of the position. based on al1 of the

moves that have been searched so far. Once a11 successors have been examined, the

minimax value for rhat position has been computed and stored in gamma, which can

be retumed to a higher Ievel within the tree.

The minimax algorithm can also determine which rnove yields the score gamma,

and return that up the tree as well. However, there is only one place we are interested

in the move choice: the root of the game tree. We could write a special version of

Maximize that returns a best move and the minimav value. However, there are other

methods of storing the best move and minimax value. We shall discuss these methods

in Section 2.3.

Al1 two-player zero-sum games with perfect information and no chance moves can

be solved using this algorithm. If we already know how to solve al1 games in this

class, why do we not know the best moves to play in the game of chess or checkers?

Unfortunately, these games have very large search trees. -4lthough cornputers are

fast, it would take a desktop computer billions of years to cornpute the final result

for the game of chess from the initial position.

The magnitude of this problem has forced programmers of this algorithm to make

sorne compromises. It is computationally infeasible in most positions to have al1 of the

16

branches of the game tree terminated by a position where we can assign the perfect

payoff vector. Thus, branches in the game tree must be stopped at arbitrary points

in the search. Since we are not necessarily at the end of the game, we need to assign

values for positions that approximate the chance of winning for the player to move.

We must rely on an evaluotion function to approximate this chance of winning the

game. .As the chance of winning the game increases, the evaluation funct ion should

increase in a similar manner. A winning position is usually given a value of +oo in an

evaluation function, while a lost position has the value of -W. How to generate, train,

and update an evaluation function is beyond the scope of this document. However,

we will define some cornponents frequently found in evaluation functions.

-4 sample evaluatiori function for a game may count the number and type of

pieces on the board, otherwise known as material. Material is the most important

component of chess and checkers evaluation functions. As an example from the game

of checkers, assume that each checker is worth 1 point, and each king is worth 2.5

points. By computing the number of points associated with al1 of the checkers and

kings that you have, and subtracting that by the number of points for the checkers

and kings that your opponent has, we have an rudimentary evaluation function for

any position in the game of checkers. In chess, the typicd evaluation function states

that a pawn is worth 1 point, bishops and knights are worth 3 points, a rook is worth

5 points and a queen is worth 9 points.

Mobility, the number of moves available in a position, may be computed for both

players. Mobility is the dominant factor in the evaluation function of top Othello

programs, and is an important factor in most chess and checkers programs. For

example, if we take an Othello position and count the number of rnoves you have

and subtract that by the number of moves your opponent has, the result is a good

evaluation function for the game of Othelio.

We continue Our discussion of the search algorithm by re-examining the min ima

search algorithm from Figure 2.3. It is poor software engineering to use two pieces

of code that do similar things when one would suffice. A different formulation of the

int Negamax(position p) {

int num0fSuccessors; /* total moves */
int gamma; /* curent maximum */
int i; /* move counter */
int SC; /* score returned by search */

if (EndOf Search (pl) { returdEvaluate (pl) ; }
gamma = -00;
num0fSuccessors = GenerateSuccessors(p);
for(i=l; i <= num0fSuccessors; i++) {

SC = -Negamax (p. succ [il ;
gamma = max (gamma, SC) ;

1
retum (gamma) ;

) /* Negamax */

Figure 2.4: The Negamax Formulation of the 3Iinima.s Algorithm

functions Maximite and Minimize removes this problem. This formulation is called

the negamax formulation and is shown in Figure 2.4. The main differences between

the minimax formulation given in Figure 2.3 and the negamav formulation are: (1)

the Evaluate function returns the evaluation of a position for the player to move a t

that node, instead of GameValue, which returned the payoff for SIax and could only

be used at the end of the game; (2) the EndOfSearch function is written to terminate

the depth-first search before the search progresses too deep into the tree (to ensure

completion of the search); (3) at each level, the scores are negated so that nodes

where we would minimize can maxirnize as well. This compacts the code into one

recursive function.

Let us now analyze the search executed by the minimax algorithm. At each node

in the game tree, we must look at all of the children of that node. The average

number of children we must look at is called the bmnching factor. The branching

factor of a particular node in the garne tree is dependent on the position that the

node represents, but we shall simplifi our analysis by assuming a constant branching

factor, b, a t all non-leaf nodes.

18

One of the conditions that is commonly used to stop recursing down the tree is

the depth of the position in the tree. Whenever that depth is reached during the

search, the position is immediately evaluated. Let us assume that this occurs a t d

ply within the game tree. Thus, al1 possible alternatives for the next d moves are

examined from the position a t the root of the game tree.

üsing the branching factor and depth of the tree, we can calculate the size of

the game tree. There are two important metrics that are commonly used in the

literature to measure the size of a game tree: the number of bottom positions, NBP

[86] and the node count, NC. A bottom position is another name for a leaf in the game

tree, as determined by the EndOf Search function. These bottom positions are not

necessarily terminal nodes within the game tree, although some bottom positions may

be terminal nodes if we have reached the end of the game. In general. the number of

bottom positions measures how many times the function Evaluate is called over the

course of a search. The nurnber of bottorn positions visited by the m i n i m a algorithm

in a game tree with uniform branching factor b and depth d is:

The node count in a game tree, under the same conditions is:

bd+' - 1
NCMINIMAX = 6-1 -

The number of bottom positions is the more popular of the two measures. One

reason for this is that many game-playing programs spend the majority of the CPU

time in the Evaluate routine when executing a search. Thus, the number of bottom

positions can be indicative of bow much time a search will take. Another reason is

that the number of bottom positions is generally more stable than the node count

when averaged over time.

The exponential growth of these metrics as we increase the depth of search is

bothersome, since there is strong evidence of a positive correlation between depth of

search and playing strength in chess, Othello and checkers programs. Research into

finding the min ima value (and hence, the principal variation) by evaluating a smaller

19

number of bottom positions is critical, due to the limited availability of computing

resources.

In the late 1950s. it was realized that it was not necessary to search al1 of the

nodes to ascertain the minimax value of a game tree [70]. Knuth and Moore [47]

have shown that there is a theoretical minimum number of nodes that the rninima~

algorithm must visit to determine the minimax value. If we have a game tree with

uniform branching factor b, and al1 leaves of the game tree are a t depth d, the m i n i m a

algorithm must visit a t l e s t NBPMUIIN bottom positions, where:

There are many algorithms that exhibit this best-case for uniform game trees. The a#3

algorithm satisfies this best-case property and will be described in the next section.

2.2 The cup Algorithm

The first published account of the ap algorithm can be found in an article by Brudno

[18]. However, there are numerous claims by the early researchers in cornputer games

as to who developed the method first. These claims have been summarized by Knuth

and Moore [47].

The û.0 algorithm is a modification of the minimax algorithm. Two bounds are

used at each node in the tree, a and B, and these bounds are passed down as we

traverse the tree in a depth-first manner. At any node, a represents the smallest

node value that can affect the minimax value above that point in the tree, while ,8

represents the largest node value that can affect the minimax value. Thus, a and ,O

are often referred to as the seureh window. The search window is usually written as

(a$) and that notation will be used throughout this document.

The parameter a represents the largest minimax value of evaluated branches a t

Max nodes along the path to the node, including the node itself. -4s each subtree

underneath a Max node is evaluated, a may be increased if we see a new maximal

branch. Thus, as we descend the search tree or explore more successors at a specific

int AlphaBeta(position p. int alpha, int beta) {

int nwn0fSuccessors; /* total moves */
int gamma; /* curent maximum */
int i; /* move counter */
int SC; /* score returned by search */

if (EndOf Search(p1) { return(Eva1uate (pl) ; }
gamma = alpha;
num0fSuccessors = GenerateSuccessors(p);
for(i=t ; i <= num0fSuccessors; i++) {

SC = -AlphaBetacp. succ [il , -beta, -gamma) ;
gamma = max (gamma, SC) ;
if (gamma >= beta) { retun(gamma) ; }

}
return (gamma) ;

} /* AlphaBeta */
-- -

Figure 2.5: A Negamax Formulation of the a@ Algorithm

node, a is monotonically increasing. Similarly, represents the smallest minimax

value of a node's evaluated branches a t Min nodes along the path to the node, in-

cluding the node itself. Thus, 0 is monotonically decreasing as we descend the search

tree or explore more branches a t a Min node.

When we reach a point where a 3 P, we know that there is a better path for one

of the players closer to the root of the tree. There is no need to search the subtree

underneath a node where a 2 0, and we can return to Our parent node immediatel.

In effect, this prunes parts of the tree that cannot contribute to the minirnax value.

It has been shown that the a0 algorithm will return the correct minimav value if the

root position is searched with the search window (-cx>,+oo) (471.

The a@ algorithm, using the negamax framework, is given in Figure 2.5- As we

pass alpha and beta down to the next level, we must negate and swap the two

parameters so that the bound to be changed is always maintained in alpha. If

we examine the negamax formulation carefully, we note that we increase alpha at

even plies (mm nodes) within the tree, and decrease beta at odd plies (min nodes),

fulfilling the requirements of the <rp algorithm.

4 5 6 1 100 200

Figure 2.6: Example of an ap Shallow Cutoff

If ive refer to the garne tree in Figure 2.6, we can see an example of a shallow

cutofl. If we proceed in a left-to-right manner through the tree as we execute Our

depth-first search, we explore the left branch of the root first and discover that the

first move generates a minimax value of 4 for the maximizing side. Thus: when we

start searching the right-hand branch. a is already set to 4. Xow, as we explore the

right branch, we get a minimax value of 1 at node G. Thus, 3 will be reduced to

1 at node C. We have shown that the minimizing side can keep the score down to

at rnost 1 a t node C, while Max will get a score of a t least 4 by playing the move

leading to node B. Thus, there is no point in exploring the other children of node C.

The maximizing side should choose the move leading to B over the move leading to

Cl and the two branches leading to nodes H and 1 are never explored.

The <rB algorithm rnight also generate deep cutoffs. A deep cutoff is caused by

information gathered at a depth d in the tree being used to prune rnoves at a depth

greater than d. For example, the bound information generated by exploring the

subtree below node B cuts off the search a t node J in Figure 2.7.

Before we continue discussing the ab algorithm, there is an interesting feature in

Figure 2.6 that should be emphasized. The optimal play in the shallow cut example

Figure 2.7: Exarnple of an crp Deep Cutoff

is to play the move leading to node B. However, this definition of optimalit? assumes

that the opponent will also play optimally with respect to the evaluation function. If

the opponent is fallible, it is likely that the move leading to node C will provide better

winning chances. Thus, the optimal move (with respect to the evaluation function)

is not always the best move to play against a fallible opponent.

Earlier, we stated that the a@ algorithm c m visit the optimal number of nodes

(NBPwrN). When does the <rp algorithm search NBPMIN nodes? We have seen that

cutoffs occur when the moves leading to better min ima scores are searched before

those that lead to worse minimax scores. At every node, if we can expand the move

that leads to the best minimax value (largest a t Max nodes, smallest a t Min nodes)

first, the afl algorithm searches only NBPMIN bottom positions. A tree of this sort is

called a perfectly-ordered game tree. The proof that the ap explores NBPniiN bottorn

positions in a perfectly-ordered game tree was first given by Slagle and Dixon [86].

In a worst-ordered tree, the minimax values of the successors are arranged from

Figure 2.8: The Critical Tree

worst to best for every node. This prevents the a$ algorithm from performing any

cutoffs, and ap will explore the full minirnax tree. Most game-playing programs

generate strongly-ordered game trees; in practice the best move is searched first 90%

to 95% of the time [74]. -4 lot of research has focused on getting bet ter move orderings,

and some heuristics for generating this ordering will be given in Section 2.3.3.

It is important to note that there is a portion of the tree that must always be

searched, irrespective of move ordering, to determine the minimav value. The cntical

tree is defined as the perfectl-ordered tree that is generated when cu J is started with

the search window (-oo,+w). Figure 2.8 shows the structure of the critical tree.

Nodes marked ALL have a11 of their successors explored by the aP algorithm, while

nodes marked CUT have only one successor explored before the û.P algorithm cuts

off the rest of the successors.

The principal variation (PV on the diagram) of an ap critical tree is the first

branch searched. We do not know a priori where the principal variation is to be

located within a game tree. However, in the case of the a,û critical treeo ive are

24

fortunate enough to search the principal variation first. Al1 of the PV nodes are

searched with the window (-cq+cu). Thus: we search al1 children at PV nodes and

they become ALL nodes.

Subtrees that lie off of the leftmost branch in the critical tree are attempts to

prove that a move on the PV branch is not optimal. Assume that it is player A's turn

to move a t the PV node. and player B is his opponent. Thus, we are attempting to

prove that player A's choice of move at the PV node is not correct by evaluating a

different subtree. Inside this subtree, we explore ail possible moves for player A: these

are the interna1 ALL nodes within the subtree. However, when player B must move

inside this subtree, we need only look at one response to refute player A's choice. The

refutation exists, since the first move of player .4 at the PV node is in a principal

variation; alt other move choices for X lead to lower or equivalent m i n i m a values.

The cornmon terrninology in the literature to describe PV' CUT, and ALL nodes

are type-1, type-:! and type-3 nodes, respectively The numerical names corne from

Knuth and Moore's original description of the structure of the critical tree [47].

We should note that if the game tree has a constant branching factor b, a d-

ply a@ critical tree u4l have exactly NBPMIN bottorn positions. Knuth and Moore

originally defined the critical tree as the minimal tree because it is the smallest tree

mhich determines the minimax value. However, the critical tree is not necessarily

minimal in practice. These confusing and seemingly contradictory statements will

be addressed in Section 2.3.5 after we describe some of the enhancements to the crb

algori t hm.

2.3 Improving the ap Algorithm

This section will deal will some of the numerous improvements that have been made

to the a@ and other minimax-based algorithms over the last thirty years. This is not

intended to be an exhaustive survey of a11 imnrovements. However, those methods

that are mentioned in other chapters of this work will be described and defined here.

2.3.1 Fail-Soft and Aspiration Searching

The first improvement that needs introduction is the fail-soft improvernent (331. and

only requires two changes to the algorithm. In the a0 algorithm given in Figure

2.5, gamma = alpha is replaced by gamma = -00. The other change is to modify

the recursive AlphaBeta call so that the 1 s t parameter changes from -gamma to

-max (gamma, alpha).

By itself, this change does not do anything for the searching efficiency of the û$

algorithm. Any node evaluated by the fail-soft ap algorithm will also be evaluated

by the strict Q$ algorithrn; the converse is also true. However, this is of importance

when an aspiration search is attempted.

An aspiration search is an attempt to guess at the minimax value of the game

tree before doing the search. In aspiration (Y& we call AlphaBeta with a lower

bound on the guessed rninimav value in the alpha parameter, and an upper bound

on the guessed minimax value in the b e t a parameter. For example, if the program

determined with some certainty that the minimas value would be between 5 and 15,

the initial search window or aspiration window could be changed from (-oo,+oc) to

(5,15).

If this aspiration window contains the minimax value, it wiIl cause cutoffs at earlier

points in the tree than the full search window. Hence, a@ with an aspiration window

will evaluate fewer bottom positions than the O$ algorithm started with an infinite

search window.

If the window used does not contain the minimax value, we will know because

the value returned will not lie between our guesses for alpha and beta. If the value

returned is less than or equal to alpha the search is said to have failed low. Similarly,

if the value returned is greater than or equal to beta, the search has failed high.

In the case of failing low in a0 without the fail-soft improvement, ne must re-

search the root with the window (-m,alpha) to find the correct minimax value. In

fail-soft a& it has been shown that if f is the value that is returned by a fail low

search, then the minimax value rnust be less than or equai to f [34]. The re-search

26

need only be done in the window (-m, f) for fail-soft a J. The smaller window (since

f < alpha) means that fewer nodes need to be searched by fail-soft a3 to determine

the m i n i m a value. The corresponding assertions hold true when a fail high occurs.

2.3.2 Iterative Deepening

Iterative deepening was an idea suggested by Scott [84] for his chess program, although

it would take a few years to discover the full extent of the benefits. The idea is that

the ap algorithm should be limited t o exploring a small search depth k by forcing

evaluations of nodes once they reach that depth. Once that search is done, the limit

k can be moved forward by a step s, and the search can be repeated to a depth of

k + S. In chess programs, k and s usually equal 1. Thus, the program does a l-ply

search before doing a 2-ply search, which occurs before the 3-ply search et cetera.

Scott noted that there is no way of predicting how long an crp search will take,

since it depends heavily on the move ordering (84). However? by using iterative

deepening, one can estimate how long a (k + 1)-plu search wivill take, based on the

length of the preceding k-ply search. Vnfortunately, the prediction may be far off the

accurate value. In some cases, a real time constraint (such as a time control in a chess

game) may necessitate aborting the current search. Without iterative deepening, if

a prograrn has not finished a search when the time constraint interrupts the search,

the program may play a catastrophic move. With iterative deepening, we can use the

best move from the deepest search that was completed.

Other benefits were explored by Slate and Atkin in their Chess 4.5 program (871.

They discovered that there were many statistics that could be gathered from a search

iteration, including the principal variation. The principal variation of a k-ply search

is a good starting place to look for a principal variation of a (k + 1)-ply search, so

the principal variation from the k-ply search is searched first a t depth (k + 1). This

improves the ordering of the moves in the (k + 1)-ply search. Usually, the number

of bottom positions explored for al1 of the searches up to depth d with iterative

deepening is significantly smaller than atternpting a d-ply search without iterative

27

deepening.

On top of the better search ordering, we can get estimates to generate aspiration

windows from iterative deepening. Given that a k-ply search leads to a minimax value

v, we can use a small window around u as a hypothetical range for the minimax value

of the (k + 1)-ply search, such as (v - E , v + E) . As discussed earlier in Section 2.3.1.

reducing the size of the initial window reduces the number of bottom positions that are

explored by the ap algonthm. If we are confident that the evaiuation hnction does

not fluctuate wildly as we evaluate trees of greater depth, using aspiration windows

in conjunction with iterative deepening will Save many bottom positions from being

evaluated.

2.3.3 Move Ordering Techniques

The first type of move ordering that was suggested for ordering the successors in a

game tree was a fcced ordering [86]. A fixed ordering is based on sorting the moves

based on the evaluation of each successor node. The move leading to the best rninimav

value is placed a t the front of the list, while the move leading to the worst minirnax

value is rnoved to the end of the list. Thus, the ordering may Vary as the search tree

is traversedo but is fixed every time a particular node is visited. This method has

worked well in sorting moves for Othello endgame searches, but does not work well

in chess. One problem is that the ordering is not dynamic: it cannot use information

gathered from searching other parts of the tree. As well, the evaluations are wasted

in the case of a cutoff occurring at that node in the tree.

Specific information about a search can be saved in a transposition table, first

mentioned by Greenblatt, Eastlake and Crocker [38]. In the ap procedure given in

Section 2.2, al1 of the information about a node can be accumulated including the best

score, the best move from that position, the depth it was searched to, and whether

the score is exact, a fail low or a fail high. Al1 of this information is cornmonly stored

into one transposition table entry. Transposition tables are normal1 y constructed as

closed hash tables, with hashing functions that are easy to update (such as a number

28

of XOR operations [97]) as one traverses the tree. The transposition table information

can be used in two main ways: duplicate detection and move ordering.

Why would we need to detect duplicates in a game tree? in reality. t the game tree

is a graph: sorne of the positions appear in multiple places within the tree. Thus,

i t makes sense that each position should only be explored once if the information

obtained is sufficient to terminate the search. The transposition table assists in

finding and eliminating these duplicated positions.

The same position in the garne will always hash to the same location in the

transposition table. What if the information stored in the table is the same position

as the current node, and the stored result of a search of that position is a t least as deep

as the search we are attempting to execute? Depending on the type of information

that has been saved in the transposition table, one of two things may occur. If we

have an exact minimax value in the hash table for a search that is a t least as deep as

the one to be executed, we can use the result from the hash table and prune the entire

search. In the majority of cases where we can use search results from the transposition

table, we will only have a bound stored in the hash table. In this case, the bound can

be used to reduce the size of the search window. If this reduction completely closes

the search window (i.e. a 2 p), the search can also be pruned without esploring any

nodes.

Most of the time, the duplicate detection will fail to completely elirninate the

search, and we can exploit the transposition table to improve Our rnove ordering. In

the garnes nie are studying, the best move from a previous search depth is likely to

be the best move a t the current search depth. Thus, we can obtain the previous

best move from the transposition table, and search the previous best move before al1

others. In general, the move ordering benefits of combining iterative deepening and

the transposition table are a t l e s t as important to the NBP count as the duplicate

detection property, depending on the application chosen.

The kaller table [87] is another method of storing moves which might be the best

move in a position. However, the killer table does not store moves for specific posi-

29

tions. Each entq- in the table corresponds to a given depth in the game tree. K h e n a

move causes a cutoff in the search, the killer move is changed to the move t hat causes

the cutoff.

The rationale is that the same move played a t the same point in the move sequence

might cause cutoffs in other branches of the tree. For example, assume that we have a

position where Min has an obvious winning move, but Mau has some defensive moves

that can be played to prevent the winning move. Each time Max searches a move

that is not involved in this defence, Min will find the winning move and cause a cutoff

a t that level. By searching this killer move before other move choices for Min. we can

determine which of Max's moves will fail.

The killer and transposition table only offer move ordering information about a

couple of moves in the move list. The history heuristic [82] is a useful technique for

sorting al1 other moves. In the game of chess, a 64 by 64 matriv is used to store

statistics. Each time a move from a square startsq to a square endsq is chosen

as a best move during the search, a bonus is stored in the matrix a t the location

[startsq, endsq]. The size of this bonus depends on the depth at which the move

%-as successful at. A bonus that varies exponentially based on the depth of the subtree

under that position has been found to work well in practice. Moves a i t h higher history

values are more likely to be best moves a t other points in the tree; thus, moves are

sorted based on their current history values. This makes a dynamic ordering for dl

possible legal moves in cases where no ordering information exists.

In the prograrns that the author is aware of, the three latter move ordering tech-

niques are used. The transposition table move is always used first, since it yields

specific information about that node from a previous search. Once the transposition

table move has been searched, the next move to be attempted is the killer move (if it

is legal in the position). Once both of these heuristics have been used, the remaining

moves are sorted by the history heuristic.

2.3.4 Nul1 Windows

A further improvement on the standard fail-soft cri3 algorithm can be derived from

searching with nul1 wzndows. Earlier: it was noted that a smaller initial search window

reduces the size of the tree searched by the a0 algorithm. With the use of the ordering

techniques deçcribed earlier, it is likely that the first move examined ni11 have the

best value. -4s a consequence, al1 of the other moves are likely to be inferior. Let us

assume that the first move returns a minimax value gamma. Instead of searching the

other moves with the window (gamma,beta), we can search them with a nul1 window

(gamma,gamma+l).

If the move is indeed inferior, the value returned to that node will be less than

or equal to gamma and no further work is required. However, if the value returned is

greater than gamma, then the move just searched was superior to the first move. and

we must determine the correct minimax value by calling the routine with a larger

window.

Xull window searching is not worth implementing in a domain where the move

ordering is poor, due to the number of re-searches required. In dornains which are

assisted by strong move ordering, nul1 windows provide a saving in search effort. For

example, Feldmann reports that the ZUGZWANG chess program visits 1.0% to 8.3%

more nodes when using ap as opposed to using a search routine with nu11 windows

~ 9 1 .

Principal Variation Search (also known as PVS) [60] and NegaScout [78] are two

methods which implement nul1 windows in a negamax formulation. The NegaScout

routine is based on an improvement of Pearl's Scout algorithm [73], which uses nul1

windows and a proof procedure to determine whether the move being tested is better

t han the one already evaluated.

The code for the NegaScout algorithm is given in Figure 2.9. The plytogo argu-

ment to this function decreases as the tree is descended, and eventually reaches zero.

The plytogo passed in at the root is the limit to how far ahead NegaScout should

search. The code that checks the transposition table, the killer table and the history

I int NegaScout (pos i t ion p , i n t alpha, i n t beta , i n t plytogo) {

int num0fSuccessors; /* t o t a l moves */
i n t gamma; /* c u r e n t maximum */
i n t i; /* move counter */
i n t S C ; /* score returned by search */
i n t under; /* alpha f o r move t o be searched */
i n t over; /* be ta f o r move t o be searched */

i f (plytogo == 0) { retum(Eva1uate (p)) ; }

gamma = -oo;
/* s e t window f o r f i r s t ch i ld */
under = alpha;
over = be ta ;

f o r (i = l ; i <= num0fSuccessors; i++) {
SC = -NegaScout (p. succ Ci] , -over , -under, p l y t ogo-1) ;
/* 1s a research necessary? */
i f (SC > under %& i > 1 %&

SC < beta && plytogo > 2) {
SC = -NegaScout (p. succ Ci] , -beta, -SC, plytogo-1) ;

1
gamma = max(gamma. SC) ;
i f (gamma >= beta) { return(gamma); }

/* s e t window f o r next ch i ld */
under = max (gamma, alpha) ;
over = under + 1;

} /* NegaScout */

Figure 2.9: The NegaScout Algorithm

32

heuristic is contained in the GenerateSuccessors function. which will generate a

sorted move list based on those heuristics.

The first move is searched with the full window (alpha,beta), while al1 of the

other moves are searched with the minimal window (under,under+l). There are a

number of conditions on when we should re-search, other than the returned value SC

is greater than Our current maximum score gamma. We need iiot re-search the first

move, since it vas searched with a full window. Similarly, if SC 2 beta, this results

in a cutoff and a re-search would not be of any assistance.

The last condition notes NegaScout retums the correct minimax value when

searching the last two ply, irrespective of the search window. When plytogo > 2,

we need to re-search the game tree to determine a better bound on the minimax

value. This condition is only used in game-playing programs where the search depth

is fixed. Chess and checkers programs usually cannot use this enhancement due to

the implementation of search extensions (described in Section 2.4).

If nul1 window searches are good within the tree, why do we not use them at the

root of the game tree? Recent research has shown that the cornmon best-first search

strategies can be reformulated as depth-first search strategies by using nul1 windows

at the root of the game tree and a sufficiently large transposition table. One such

algorithm, a variant of Memory-enhanced Test called MTD(f), has been shown to be

better than NegaScout in many of the games we are interested in [73].

Instead of aspiration searching, MTD(f) uses a heuristic guess about the minimax

value and a succession of nul1 window searches at the root of the game tree to rapidly

generate upper and lower bounds on the minimax value. Once the upper and lower

bounds have converged, the search is completed. An example of the driver code for

MTD(f) is given in Figure 2.10. MTD(f) calls the AlphaBeta function, enhanced

with a transposition table and the other move ordering techniques given in Section

2.3.3. MTD(f) does not use NegaScout since nu11 windows are used throughout the

game t ree.

int MTD(position p, int guess) {

int loubd; /* louer bound on minimax */
int uppbd; /* upper bound on minimax */
int gamma; /* current search window */
i n t SC; /* score returned by search */

SC = guess;
lovbd = -CO; uppbd = +cm;

do {
i f (SC == lowbd) { amma = sc+l; }
else { gamma = S C ; f
SC = AlphaSeta(p, gamma-1 , gamma) ;
i f (SC < gamma) { u pbd = SC; }
else { loubd = SC; P

} vhi le (uppbd ! = loubd) ;
return (gamma) ;

Figure 2.10: The MTD(f) Algorithm

2.3.5 The Minimal Graph

We stated a t the end of Section 2.2 that the criticzl tree is not necessarily minimal.

NegaScout and MTD(f) , with the improvements Iisted previously in this section such

as aspiration searching and transposition tables, can generate trees that are much

smaller than the a0 critical tree while generating the correct minimax value.

The left-first minimal g m p h has been used by many authors to illustrate the size

of the smallest tree that we can search. The left-first minimal graph can be gronn

by searching the tree once to determine the minimax value, and then searching the

tree again using the transposition table move ordering information to generate a

perfec tly-ordered game-tree [28].

However, we can do significantly better than the left-first minimal graph. The left-

first minimal graph does not attempt to maximize the number of duplicates within the

game tree, allowing the transposition table to cut off more branches. Furthermore,

the left-first minimal graph does not always take the cheapest possible cutoff when

34

attempting to determine the minimal graph. The cutoff found during the original

search is used, but there may be other moves which prune the same node with less

effort. Recent research has shown that the real minimal graph, the smallest possible

tree that any algorithm can search to determine the minimax value, is significantly

smdler than the Ieft-first minimal graph [74]. Thus, game-tree search algorithms are

not as efficient as portrayed in the literature.

However, determining the size of the real minimal graph for a game tree is very

difficult. Not only is minimax search required, but numerous re-searches are required

to find the optimal rnove ordering wîth respect to node count a t every interior node

within the tree. Finding the real minimal graph for game trees is a computationally

intractable problem [74].

-4s a final note, researchers have been somewhat sloppy with the term "minimal

tree". It has one of many definitions depending on the context in which it is men-

tioned, including the critical tree, the left-first minimal graph or the real minimal

graph. Thus, the term has been avoided in this document.

2.4 From Fixed-Depth to Variable-Depth

There are nurnerous search extension and reduction heuristics that can be used in CIO-

based algorithms. Some of these heuristics are used to stabilize the search algorithrn,

preventing wild fluctuations as the search depth is incremented. Other enhancernents

help reduce the search effort when a bad rnove is played, since fixed-depth game-

tree search algorithms spend a lot of time proving that poor moves are inferior to

the principal variation. We will discuss search extension heuristics first, followed by

strategies to reduce the search depth.

2.4.1 Search Extensions

In some positions, searching one ply further ahead can cause a drâmatic shift in the

evaluation function. For example, consider the game of chess: if we consider a node

35

that has a queen that can be captured. the evaluation may not take the capture into

consideration. Thus, when the position is searched one plu deeper. ive see the queen

being captured, and the rninimav value for the position changes dramatically.

The inability of a program to assess these tactical features in an evaluation func-

tion is called the horizon effect [IO]. We do not want to evaluate a position at the

bottom of the fixed-depth tree in games where such problerns have been identified.

We use quiescence search to extend the search to a quiet position.

For chess, a quiet position is often defined as a position withcut captures or checks

on either king. Most modern chess programs extend the search of positions with

checks and captures on the board until the checks and captures have been completely

exhausted. This allows chess programs to see deep tactical combinations using a low

nominal search depth.

Not a11 search extension heuristics are used to stabilize the search. In some situa-

tions within the game tree, one has cases where there are very few moves generated.

In chess, an example of this occurs when a player is in check. Since the player must

move out of check, there are a limited number of options available. This reduces the

number of positions searched in the subtree underneath the node. Other branches

of the tree may not have these move-limiting properties and we search more bottom

nodes than the former subtree. Thus, one would like to extend the search depth when

we see a position with a limited number of options so that we can search a similar

number of bottom positions in each subtree.

There are other situations within the game tree where there is a single move which

is clearlg better than al1 other alternatives. The search can be extended for this move

so that the search effort can be focused on the singular move. The application of this

idea, singular extensions, can be found in the chess program DEEP THOUGHT [4] and

its successor DEEP BLUE,

2.4.2 Search Reductions

In most games, we have a small number of good moves at every node within the

tree and a large number of rnediocre and poor moves. The goal of search reduction

techniques is to quickiy determine which moves are bad, avoiding a full fked-depth

search of a bad move.

The best known application of search reduction in the game of Othello is ProbCut

(201. Before a d-ply search is attempted, ProbCut executes a shallow-depth (d < d)

search with a wider search window. If the dl-ply search fails lon or fails high, then

the d-ply search will behave the same way with high probability, and the appropriate

window bound (a or p) is retumed back up the tree.

Although this idea has been attempted in other domains, such as in CHINOOK,

ProbCut is the first attempt to use statistically gathered information to generate the

window for the shallow-depth search. ProbCut requires that the mean and standard

deviation of the difference between a d-ply search and a dl-ply search be computed

off-line for positions in the test domain. The mean and standard deviation are used

in the search to control the amount of certainty one wants in the pmning decision. In

general, the more certainty one wants, the wider the search ivindow for the shalloiv-

depth search, and the smaller the number of searches that will be pruned.

In the game of chess, null moves have become the common method of reducing

search effort. A null move is simply a pass in a position; the opponent is allowed to

have two moves in a row. In games such as chess, simply passing is not legal, but for

the purposes of testing the threats that exist in a given position, it can be considered

as a legal move. If we have a position where a player does nothing and the search fails

high, it is very likely that any move in this position will also fail high, and we can

terminate the search immediately without exploring any of the real moves. To reduce

the effort of searching the null move, the search depth is reduced by an additional 1 or

2 ply. This makes the null move an inexpensive heuristic for determining whether the

branch is worth exploring. Nul1 moves are discussed in numerous places throughout

the literature (1, 9, 27, 37, 721.

37

To use nul1 moves in a game-playing program, the implicit assumption is that

passing is worse than doing something. This is not true in chess where a player is

in check or in zugzwang. When a player is in check, the player must move to Save

the king from being captured. Zugzwang is a state in which it is better to pass than

to make any move. In the game of chess, passing is not an option and a player in

zugzwang must make a move and weaken their position. Nul1 moves work well for

chess (aside from the aforementioned exceptions) but not for Othello and checkers,

since it is often preferable to pass instead of playing a move.

In the game of Othello, playing a move generally reduces your mobility and in-

creases p u r opponent's mobility- Thus, nul1 moves for your opponent tend to yield

a pessimistic value. rather than an optimistic value. However, this suggests that

null-move-enhanced searches (that is, adding nul1 moves to the list of possible moves)

gives an optimistic minimax value for the player.

2.5 Other Game-Tree Search Methods

Although the research on c@-based game-tree search is Our focus in this chapter,

there are other search methods for game trees that are important contributions to

the literature.

2.5.1 SSS*

Stockman [89] introduced the SSS* algorithm, a variant to the depth-first ab search

algorithrns for determining the rninimax value. Initially, it was believed that the

algorithm dominated ap in the sense that SSS* will not search a node if ap did not

search it. The original algorithm, unfortunately, did not have the desired property.

An improvement by Campbell [21] makes the dominance proof correct.

A perceived problem with the algorithm is that a Iist structure (the OPEN list)

must be maintained, which could grow to bdI2 elements, where b is the branching factor

and d is the depth of the tree to be searched. This space requirement was. at the

38

time, considered to be too large for a practical chesçplaying program. Furthermore,

even if the space requirement was not a problem, the maintenance of the OPEN list

slowed d o m the algorithm to make it slower than <r/3 in practice.

Although versions of SSS* eventually managed to become faster than a d for game

trees [79], it has been recently discovered that SSS* and other best-first search strate-

@es (such as DUAL* ' 151, 651) can be implemented as a series of null-window ctfl

calls, using a transposition table instead of an OPEN list [75]. The research showed

that the perceived drawbacks of SSS* are not true. However, it is also important to

note that the benefits also disappear: SSS* is not necessarily better than a@ when

dynamic move reordering is considered. Furthermore, when al1 of the typical crp

enhancements are used, SSS* can be outperformed by NegaScout and MTD(f) .

2.5.2 Algorithms for Probabilistic Evaluat ion Functions

Many approaches have been given in the literature that attempt to retrieve more

information from a node than a simple minimav vdue. The information is used

to determine the best move with less "brute force" than the current ap-based a p

proaches.

Berliner [Il] introduced B* search, which attempts to prove tha t one move is

better than al1 others at the root of the game tree. This can be accomplished through

the use of heunstically-defined optimistic and pessimistic bounds on the minimax

value of a node; the pessimistic bound of the best move at the root of the game

tree should be better than the optimistic values of al1 other moves a t the root. B*

attempts in a best-first manner to focus the tree search towards the nodes that can

give the maximum benefit towards completing the proof. Once this proof is complete,

the search can be terminated. This allows the algorithm to make "obvious" moves

quickly, a feature that the ap-based algorithms lack.

l DUAL* is an aigorithm that attempts to mirror the SSS* search strategy. SSS* attempts to
determine the minimax value by starting at +oo and approaching the rninima.x \ d u e from above.
DUAL* starts at -00 and approaches the minimax d u e from below.

39

Palay [72] introduced a probabilistic version of B*. where the optimistic and p e s

simistic bounds were determined by shallow null-move searches instead of heuristic

evaluation functions. Furt hermore: Palay introduced rules for backing up the prob-

ability distribution determined at each node further up the tree. Berliner and Mc-

Conne11 (121 have further improved methods for finding optimistic and pessimistic

estimates to guide the search. The probability distributions from Palay's thesis were

also improved to simpli@ the structures maintained wit hin the search t ree.

Baum and Smith [7, 81 have done similar work to probabilit-based B* with the

BPIP (Best Play for Imperfect Players) algorithm. The basic idea behind BPIP is to

return a probability distribution instead of a simple value when searching, and choose

the move a t the root that has the highest mean probability distribution. Experiments

show that the approach works better than a4 on both Othe110 and warri.

2.5.3 Conspiracy Numbers

McAllester introduced conspiracy numbers 1661 as an alternative to finding a minimax

value. The basic idea is to determine how many leaves within a game tree must change

their value for the minimax value of a position to change to that va!ue. One would

like to show the root of the game tree needs a large number of nodes to conspire to

change its minimav value. The tree can be grown one node at a time in a manner

that attempts to maximize the conspiracy numbers at the root of the game tree. The

idea seems reasonable in theory and works well in tactical positions in the game of

chess. However, it is often very difficult to prove that the root of the game tree relies

on 2 or more leaves in non-tactical positions [83].

Lorenz and Rottmann developed the Controlled Conspiracy Number Search al-

gorithm [56], which attempts to partition the work in proving a conspiracy number

a t a node v amongst the successors of v. This approach allows the search space

to be subdivided and examined in the traditional depth-first manner that crp-based

programmers are accustorned to. Furthemore, information about what the node is

attempting to prove allows the program to use tighter a3 search windows to deter-

40

mine scores a t leaf nodes than the original Conspiracy Number Search algorithm.

which relied on exact values at every leaf. ULYSSESCCN played at the 1994 Pader-

born Chess tournament using the CCNS algorithrn, and achieved a score of 3.5 in 7

games, which is an admirable result for a relatively new algorithm.

Summary

In theory, ap is a very simple algorithm. The AlphaBeta algorithm given in Figure

2.5 has Iess than 20 lines. However, real implementations of a@ include transposition

tables, iterative deepening, the history heuristic, killer tables, et cetera. A11 of these

enhancements yield an algorithm that can be more than 20 pages of code. -4s a

result, we have very small trees and near-perfect move ordering. We are approaching

the limit of what ap-based game-tree search algorithms can accomplish on a single

processor.

There are two possible methods of taking game-tree search to the next level of

performance. One alternative is the examination of algorithms not based on ab-

based search. B* and BPIP are interesting ideas on paper, but are very complicated

to get working in practice. Independent tests should be completed to verify the

experimental claims of B* and BPIP; both algorithms seem worthy The work on

conspiracy numbers shows promise, although it is not better than ap-based variants

ernployed by game-playing programs a t the present time.

A second alternative is the use of parallelism to speed up ap-based algorithms. .A

discussion of how parallelism has been utilized in tree search algorithms is given in

the subsequent chapter.

Chapter 3

Parallel Search

3.1 Introduction

The field of parallel search algorithms is blessed with a veritable cornucopia of game-

tree search and single-agent search algorithms. As well, atternpts have been made

recently a t writing general libraries for branch-and-bound search problems. The so-

lutions revolve around a major characteristic of the sequential search algorit hm em-

ployed: depth-first search or best-first search. As we shall see in this chapter, the

depth-first search algorithms are generally more successful than their best-first coun-

terparts.

Section 3.2 introduces some of the terms that will be necessary to understand

the brief descriptions given in this chapter. Section 3.3 covers parallel a.$ game-

tree algorithms in depth, and Section 3.4 gives a summary of other parallel game-

tree search algorithms. Section 3.5 introduces the closely-related field of single-agent

search and illustrates approaches to parallelizing single-agent search. Section 3.6

discusses the work on portable parallel branch-and-bound libraries.

3.2 Parallel Search Terminology

Before we start to discuss the various parallel tree-searching algorithms that are

available, it is important to define some of the common terrns that are used in the

field of parallel processing.

Most work on parallel processing uses the variable n to represent the number of

processors being used. This definition will be used throughout the document.

3.2.1 Speedup and Efficiency

One way to measure the performance of a parallel algorithm is the speedup, which

measures how much faster the parallel algorithm amves at the same solution than

the best sequential algorithm:

time taken by the best sequential algorithm
speedup =

time taken by a parallel algorit hm

The speedup is not normalized to the number of processors used. The ef ic iency

of a parallel algorithm measures how well the entire system is utilized:

speedup time taken by the best sequential algorit hm
efficiency = - -

n time taken by a parallei algorithm x n '

In general, one would like to achieve high efficiency while using many processors.

An algorithm with a Iinear speedup is an algorithm with a constant efficiency as you

increase the number of processors.

In mos t tree-searching algorit hms, the bes t sequent ial algorit hm for the goal in

question (determining the minimax value, finding the optimal path from the start to

the goal node) is unknown. In general, authors use their sequential algorithm as the

baseline when measuring speedups. This is defined as the observed speedup:

t ime t aken by a sequent ial algori t hm
observed speedup =

time taken by a parallel algorithm

We can also define the obserued eficiency in an analogous manner. Most of the

speedups and efficiencies that will be discussed in this document will be observed.

43

However, using the observed speedup causes a host of problems that cannot be

dismissed. There is a tendency to compare the observed speedups or observed ef-

ficiencies to determine something about a pair of algonthrns, such as Algorithm A

is better than Algorithm B. There are a number of reasons why this can be very

misleading, especially if the two sequential programs used are different.

(1) Simulated observed speedups are often misleading. The simulation mode1 is

often over-simplified, and it is difficult to determine how a parallel algorithm will

behave on a real application with a large number of processors.

(2) Observed speedups with artificial game trees rarely reflect the unique p rop

erties of searching a real garne tree, and might be geared towards illustrating the

strength of the parallel algorithm [75].

(3) CVe cannot take real trees a t face value either, since the sequential algorithm

used to generate the tree may not be an efficient searcher. The sequential algorithm

used could be reoiganized in a more efficient way for use on a single processor. In-

efficiencies could also be caused by leaving out key move ordering techniques, such

as a sufficiently large transposition table, iterative deepening or killer moves. A poor

sequential searcher will yield more opportunities for parallelism, and may increase

the observed speedup achieved by the algorithm.

(4) The varied branching factor of the game trees in different test domains has a

profound effect on the observed speedup. The average branching factor in chess (38)

is higher than the average branching factor in checkers (8 for non-capture positions).

Taking capture positions into account, the average branching factor of checkers is less

than 3 [S i] . The breadth of checkers trees yield observed speedups that are much

smaller in magnitude than the same algorithm implemented to search a chess tree.

(5) The speed of the processor versus the speed of the network also affects how

the algorithm performs on the target hardware. If the algorithm was tested on slow

processors with a fast network linking them, the algorithm may not yield the same

performance when using faster processors and/or a slower network.

In short, it is impossible to objectively compare observed speedups or efficien-

cies for two parallel search implementat ions wit hout understanding the experimental

met hodology.

3.2.2 Overheads

This would not be an active field of research if we could achieve near perfect efficiency

for parallel tree search algorithrns. We must understand where the inefficiencies of the

parallel search are coming from. Thus, one often analyzes the overheads associated

with a parallel algonthm. The total overhead is the amount of additional processing

time that is required to achieve the same result:

parallel time x n - sequential time
total overhead =

sequent iaî time

The parallel algorithm often searches many more nodes t han the sequential algo-

rithm does. The search overhead is defined as:

number of nodes searched by parallel algorithm
search overhead =

number of nodes searched by sequential algorithm '

The search overhead may occur for any number of reasons. For example, information

from other parts of the search tree may be unavailable to the processor, causing it

to search more nodes. Another possible reason is that unnecessary speculative work

could be initiated by the parallel algorithm and subsequently discarded.

We will be focusing on the difference between synchronous and asynchronous par-

allel search algorithms. In a parallel search algorithm, the different parallel tasks are

often dependent upon one another to efficiently solve a specific task. A synchronzza-

tion point is a point in the algorithm where al1 processors must reach consensus on

their work before any processor is allowed to continue past that point. An example of

such a synchronization point in game-tree search would be that al1 processors must

complete their work at k-ply before proceeding to the (k + 1)-ply search.

In general, a synchronow algorithm has many of these synchronization points.

The amount of time that processors sit idle at synchronization points is called the

synchronzzation overhead. and can be expressed as:

time spent idle wai ting at synchronizat ion points
synchronizat ion overhead =

sequent ial t ime

Conversely, an asynchronow algorithm has no synchronization points during the

search (aside from the end of the search). Each process is allowed to execute its own

work without regard for the global state of the search. .4t no time does a process in an

asynchronous search algorithm sit idle while waiting for other processes. Thus, it does

not make sense t o express synchronization overheads for asynchronous algorithms.

Other overheads may be significant, depending on the parallel algorithm used,

such as the communicntzon overhead or the parallelization overhead. In general, the

communication overhead measures the amount of time that the parallel algorithm

spends sending and receiving results from other processors. Since a parallel algo-

rithm does many things in addition to running the sequential algorithm, ive expect

the parallel algorithm to run slower. The parallelization overhead measures the dif-

ference in terms of number of bottorn positions (or nodes) examined per second in

the sequent ial and parallel algorit hms.

In an efficient parallel algorithm, the communication overhead should be very

similar to the parallelization overhead. Hoivever, in some cases. the parallel algorithm

necessitates using different data structures to keep track of the parallel work. These

data structures rnay take a long time to update and are generally not counted in

the sequential algorithm. Depending on the algorithm, i t may make sense to analyze

both the communication and parallelization overhead.

3.3 Parallel op-based Game-Tree Search

In the 1 s t tnenty years, a number of articles and theses have been written that contain

innovative solutions to parallel a@-based game-tree search. The authors of the par-

allel algorithms have shown how their work is unique and interesting. Some authors

have attempted to classify the game-tree search algorithms by listing implernentation

details [& 231.

46

Upon deeper analysis. we notice that many algorithms are simply minor variations

of other algorithms. Some algorithms that seem very different on the surface are using

the same underlying algorithm; the impiementation serves to obfuscate the nature of

the algorithm being used. To Our knowledge, no attempt has been made to classi&

the algorithms based solely on the algorithmic properties. -4 taxonomy ivould rnake

it easy to ascertain what has and has not been accomplished in parallel aB-based

game-tree search. In particular, we will show t hat asynchronous search algorit hms

have been ignored by the majonty of researchers.

The taxonomy in Tables 3.1 and 3.2 isolates the differences between the various

ap-based algorit hms and their implementations. We will first describe the categories

within the taxonomy, followed by a brief summary of each of the algorithms mentioned

in the taxonomy.

3.3.1 Cornparison of the (Y@ Algorithms

Table 3.1 summarizes and classifies the various 00-based algorithms.

The first column gives the name of the algorithm, and the reference that contains

the most details about the algorithm. For example, the Young Brothers Wait algo-

rithm has been described in many papers, but al1 the details are given in Feldmann's

thesis [29].

The second column gives the date that the algorithm was first published or re-

ceived by a journal. This information has been used to order the algorithrns into

chronological order.

The third column contains information on both the processor hierarchy and the

distribution of control wit hin the algorithm. Processot Hiemrch y categorizes algo-

rithms based on the rigidity of the processor tree. If the processor tree is stutic, one

or more processors are designated as masters. and control the other slave processors.

This hierarchy is fixed throughout a search of the game tree. -4 dynamic processor

tree changes based on the distribution of busy and idle processors. Control Distribu-

tion describes whether the control of the algorithm is centralized on a small number

Algorithm
(Reference)

Pardlel Aspiration Seardi
[6]
Mandatory Work First
(2)
Tree Splitting
[34j
PV-Split
[61)
Key Node
[55]
UIDPABS
PSI
DPVS
[8 11
EPVS

Table 3.1: Cornparison of Parallel ap-based Game-Tree Search Algorit hms

PSI
Waycool
1311
Young Brothers Wait
[29 1
Dynamic î k e Splitting
1441
Bound-and-Branch
(321
Delayed Brandi Tree Expansion

1978

1979

1980

198 1

1983

1986

0 1 / 1987

06/198i

Synchronization
Done At These

Nodes

Date First
Described

1987

10/1987

1988

081 1988

1990

Distribution
Static/

Centralized
Static/

Centrdized
Static/

Centralized
Static/

Centralized
Static/

Centralized
Static/

Cent raiized
Dynarnic/

Centralized
Dynamic/

Processor
Hierarchy/

Control

~e i t ra i i zed
Dynamic/

Distributed
Dynamic/

Distributed
Dynamicl

Distributed
Dynarnic/

Distributed
Static/

Frontier Splitting
(571
afl*
[25]
CXBP
(241
Jamboree
i531
ABDADA
[95]
Dynamic Multiple PV-Split
[62)

Parallelism
Possible At

These Nodes

Root (ab window)

Type-1+3+Left-
most child of 3
Top k-ply

Type-1

Type- 1 +3+Left-
rncist child of 3
h o t

Type- 1+3+
Bad Type-2
Type-1+3

Cent rdized -
Dynamic/

Distributed
Dynamic/

Distributed
Static/

Centralized
Dynamic/

Distributed
Dynamic/

Distributed
Dynamic/

Distributed

1993

1993

1994

1994

1995

1995

Root

Root + Bad Type-2

Root

Type- 1

Root + Bad Type-2

Sone

T y p e 1+3+
Bad Type-2
Type- 1 f 3 - .

AH, except Type-2
with no T T entry
Type-1+3f
Bad Type-2
Type-1+3+
BadType-2
Type- 1+3+
Bad Type-:!
Type-1+3

Xodes with TT
& no cutoff
Type- 1 +Bad Ty pe-2

Root+ Bad Type-2

Type- l+Bad T y p e 2

Root i Bad Type-2

Al1

Type- 1 +3+
Bad 'Qpe-2
Type-1+3

Type-1+3+
Bad Type-2
Type1 +3+
Bad Type-:!
Nodes within
PV set

Roo t

Type- l+3+
Bad Type-2
Root + Bad Type-2

Type-1 +Bad Type-2

Type- 1 +Bad Type-2

Xodes within
PV set

48

of masters (e.g. PV-Split). or could be distribvted amongst al1 processors (e.g. Young

Brothers Wait).

The fourth column describes the typical nodes in the game tree where parallelism

could occur. The critical game tree in Figure 2.8 can be used to define where the

parallelism can occur. However, the critical tree is a perfect tree. In some cases' a

type-:! node may not necessarily have a move which causes a cutoff as its first branch.

Thus, the type-2 nodes have been separated into two sub-classes. When a type-:! node

has not been pruned after searching the first move, this node is called a bad type-&

node due to its incorrect move ordering. Similarly, good type-2 nodes are considered

to be type-2 nodes that cause a cutoff after examining the first move (Le. the move

ordering is correct).

For example, PV-Split only implements parallelism at type- l nodes, while the

Young Brothers Wait algorithms allow for parallelism at type-1, type-3 and bad type-

2 nodes. At good type-2 nodes, the Young Brothers Wait algorithm will search the

first move, achieve a cutoff, and none of the other children d l be evaluated.

The fifth column indicates which nodes of the game tree might have parallelism

constrained by waiting for the first k children to be evaluated. For esample, the root

of the game tree and bad type-2 nodes are synchronization points for Akl et a2.k

Mandatory Work First algorithm, while type-1 and bad type-:! nodes are synchro-

nization points for Ferguson and Korf's Bound-and-Branch algorithm.

It is important to note that these are not necessarily global synchronization points

a s mentioned in Section 3.2. For the algorithms given here, synchronization at the

root or a t type-l nodes are global synchronization points.

3.3.2 Cornparison of the cup Implementations

Table 3.2 summarizes an implementation of each algorithm given in Table 3.1.

The first column gives the name of the algorithm, and the reference to the paper

that contains the details about the implementation. In some cases: this paper rnay

be different than the paper which best describes the algorithm.

Algorithm
(Reference)

Paralle1 ,Jspiration Searcb
[6]
Mandatory Work First
(21
Tree Splitting
(341
PV-Split

Hardware
Used

[63]
Key Node
[55]
UIDP-4BS

Simulation

Simulation

LSI- 11 &
Simulation
Sun 3

[6 91
DPVS
[8 11
EPVS
(451
Waycool

Test
Domain

Network
Simulation

Data General

[3 11
Young Brothers Wait

Artificiai
Trees

Arti ficial
Ttees

C heckers

Chess

(mixeci procs.)
Sun 3

Network
Sequent
Balance

Hypercu be

(291
Dynamic Tree Splitting

Artificial
nees
Chess

Thruputers

1961 1 1 (& Othello) 1 messages
Dynarnic Multiple PV-Split 1 AP-1000 1 Artificial 1 PVS I none I x32 tn=64)

S P ~ ~ ~ U P
Obtained

Sequential
Algorithm

ad

a3

a@

PVS

Chess

C h e s

C hess

Cray
[44] Cg16
Bound-and-Branch Hypercu be Othello
[32]
i Chess
(4 1 J

1531
ABDADA

Table 3.2: Cornparison of Parallel ap-based Game-Tree Search Implementations

Trans-
Position

ab

aB

Chess

ad

Frontier Splitting
(571
0
(251
CABP
(241
Jamboree

Table
none

"score
tablen
none

local

NegaScout

a4

Q@

Chess

I I
CM-5 (C h e s 1 ?JegaScout

5 6 for large n
(simulated)
5 6 for large n
(simulated)
2.34 (n=3)
5.12 (n=27$rn)
3.75 (n=5)

none

local

NegaScout

rnemory
distributed
messages

BBN
TC2000

Tkansput ers

Sequent
Balance
CM-5

. .

12.57 (n=20)

3.94 (n=8)

local + TT
,Manager
shared

memory
distributed

1 mesages
aB 1 shared

12 (n=32)

7

NegaScout

NegaScout

a4

NegaScout

Checkers

Chess

Artificial
Trees
Chess

messages
distributeci

7.64 (n=19)

5.93 (n=16)

101 (n=256)
messages

distributeci
344 (n=1021)
Ll.l(n=16)

15.85 (n=32)

142 (n=256)

none

shared
mernory

distributeci
messages
shared

rnernory
distributed

350 (n=1000,
sirnulated)
3.32(n=16)

6.5 (n=8+8TT)

4.6 (n=9)

a50 (n=512)

50

The second column describes the underlying hardware used to host the selected

implementation. A software simulation of hardware is denoted in this column.

The third column describes the type of garne trees explored by the algorithm. If

the game trees were not generated by game-playing programs, they are considered to

be artzficial trees. As discussed earlier, in terms of average branching factor, chess

trees are wider than Othello trees, and both are wider than checkers trees.

The fourth column denotes which of the sequential game-tree searching algorithm

was parallelized: crp, PVS or NegaScout. Some programs are more efficient when

using a different sequential algorithm, depending on the nature of the evaluation

function and the strength of the move ordering techniques in the sequential program.

Thus, the choice of sequential algorithm to compare the parallel algorithm against is

a factor to consider when evaluating a parallel algorithm's resul ts.

The fifth column describes what type of transposition table has been irnplernented

for the algorithm. Efficient sharing of transposition table information is crucial to

the performance of a parallel game-tree search algorithm. The two main methods are

a distn'buted message-passing transposition table and a shared-memo y transposition

table. Special hardware is required to use a shared-memory transposition table, but

it is generally faster than distributed transposition tables based on message pass

ing. Local transposition tables are maintained separately on each processor, and no

transposition table information is shared between the processors.

The final colurnn gives the observed speedup of the implementation on a large

number of processors. As warned in Section 3.2.1, it is nearly impossible to compare

speedups or efficiencies of tree-searching algorithms.

3.3.3 Summary of c@ Algorithms

Baudet's thesis described a method of doing parallel aspiration search [6]. -4s de-

scribed in Section 2.3.1, aspiration search reduces the size of the initial crp window to

a small range. If the minimax value lies within the smaller range, the correct minimax

value could be returned while visiting l e s leaf nodes than would have been Msited

by using the larger range.

In Baudet's thesis, the initial ap window is subdivided into n disjoint windows.

Each processor searches the game tree with those smaller windows. When a processor

is finished, it can use the result of the search (if it is a fail low or fail high) to further

reduce the size of the windows examined. Once a processor determines the minima

value, al1 processors are stopped immediately.

Aki, Barnard and Doran were the first to propose and simulate a mandatory work

Jirst algorithm (21. The idea of the algonthm is to explore in parallel those leaves that

would be examined if the game tree was perfectly ordered. There are two categories

of nodes that correspond to the t y p 2 and type-3 nodes from the critical tree. Left-

hand nodes are similar to type-3 nodes, and al1 of their successors are evaluated at

different processors in paraliel. Right-hand nodes are similar to type-2 nodes, and

only one successor process can be spawned from them a t a time.

The first branch to be evaluated from a right-hand node might establish a score

that signifies a cutoff. The process controlling a right-hand nude is forced to stali

and find out the value of the sibling left-hand node. Once this sibling left-hand node

has a value, the two values are compared and the program determines whether or not

the right-hand node can be pruned based on the first branch that was searched. If

there is no cutoff yet for the right-hand node, the subsequent branches in the right-

hand node are examined one after the other sequentially. This will stop when the

right-hand node gets pruned, or the right-hand node establishes a value higher than

the sibling left-hand node after exploring al1 branches. This allows the scheme to

determine most of the direct shallow cutoffs that would occur in the sequential aB

algorithm, but neglects some of the deep cutoffs possible.

Finkel and Fishburn introduced the concept of tree splitting (341. In their alg*

rithm, a static tree of processors is overlaid on top of a game tree. The root of the

game tree is given to the root of the processor tree. The processor root generates

al1 the moves at ply 1 of the game tree, and hands them over to the first ply of

the processor tree. This process continues until we reach the leaves of the processor

52

tree. where the processors execute the sequential a$ algorithm to the required search

depth. The nodes in the first k levels of the tree, where k is the depth of the processor

tree, can be evaluated in paraliel. The only synchronization point occurs a t the root

of the tree between searches at different depths.

The PV-Split algorithm [21, 611 is a natural extension of tree splitting, based on

the regular structure of the critical game tree as we travel dong the principal variation

(PV). The first stage of the algonthm involves a recwive cal1 to itself as PV-Split

travels d o m the principal variation. Once the left subtree of a PV node has been

examined, d l of the other subtrees below that PV node are searched in parallel using

tree splitting. After al1 of the subtrees have been completely explored, that PV node

can return a score to the PV node above it . At any one tirne, only one node's subtrees

are being examined in parallel by the PV-Split algorithm.

In the original implementation [6l], the PV-Split algonthm did not use minimal

windows or other search enhancement techniques common in garne-playing programs.

To simulate these ordering techniques, strongly-ordered game trees were artificially

created. The PV-Split algorithm was shown to have a better speedup than tree

splitting for the simulated trees. There are several published experiments with the

PV-Split algorit hm [63, 64,681. The best reported efficiency in these implementations

was a speedup of 3.75 on 5 processors [63]. The major problem in the impiementation

of PV-Split is a large synchronization overhead, since many processors are often forced

to wait for long penods of time while the last unevaluated branch of a PV node is

evaluated.

The Key Node method [55] attempts a different method for attacking the tree.

The mandatory work first tree is dynamically evolved and stored within a centralized

message queue. Each processor takes a message from the queue, creates new messages

based on the type of message, and adds the information into the tree, as required.

For example, if a message is sent to a leaf node within the tree, the node is evaluated,

and the value is sent to the parent. At type-1 and type-3 nodes, messages for each

of the children can be sent out at the same time (yielding nearly ideal parallelism).

53

Synchronization occurs at bad type-2 nodes, where each move is tried in turn in an

attempt to Bnd the cutoff.

The Key Node method was simulated using artificial trees, where the score of the

parent was related to the score of the children. The method was compared against the

classical a0 algorithm. In the simulation, each message was assumed to be processed

in unit time, and some efforts were made to simulate contention for the nodes within

the tree. Over 10 test mm, the Key Node method achieved a speedup of 12.57 on 20

processos, using a tree depth of 5 and a breadth of 4.

Newborn's algorit hm, Ilnsynchrunized Itemtàvely Deepenzng Parallel Alpha- Beta

Seurch [69], was the first attempt to asynchronously start the next level of an iter-

atively deepened search instead of synchronizing at the root of the game tree. The

moves from the root position are partitioned among the processors, and the proces-

sors search their own subset of the moves with iterative deepening. Each processor

is given the same initial window, but some of the processors may have changed their

windows, based on the search results of their moves. The UIDPABS algorithm then

combines the results once a predetermined time limit has been reached. Some of

the moves may have been evaluated to larger depths than those on other processors,

which may yield a better quality move choice.

Schaeffer's Dynamic PV-Split algorithm [81] is an enhancement in the PV-Split

framework that allows for dynamic processor trees. Instead of the fixed processor tree

mechanism that was used in PV-Split, processors in Dynamic PV-Split (DPVS) are

allowed to dynarnically attach themselves to other busy processors, which each run the

PV-Split algorithm. This ailows for parallelism dong the pseudwprincipal variation

(the leftmost branch) being searched by any processor, and allows for multiple split

nodes. The process of choosing the new split node started by allocating branches at

type-1 or type-3 nodes, and allowed paralleiism at type-:! nodes once the branches

from al1 type-1 and type3 nodes were allocated. Al1 requests for work went through

a Controller process, which was used to balance the dynamic processor tree amongst

the processors that had the most work to do, as well as assign work from the current

node on the principal variation.

Cnfortunately, the increase in search overhead is balanced by the decrease in

synchronization overhead. The search overhead arose from additional processors, once

they had been reassigned, attempting to search some subtrees without the benefit of

the ordering information from the searched sibling subtrees. By allowing a shared

Table Manager to hande transposition table requests near the root of the game tree,

dong with a mechanism for rebroadcasting history heunstic information, the speedup

for the chess progam PARAPHOENIX was improved to 7.64 on 19 processors. The

mechanism described in the paper tapered off once more than 10 processors were

involved; the overhead of going through a single Table Manager increased linearly as

more processors were added.

The Enhanced PV-Split algorithm [43, 451 is a different type of dynamic allocation

to the PV-Split algorithm. In the Enhanced PV-Split (EPVS) algorithm, when a

processor becomes idle, al1 of the other processors are stopped and a new split node

is created two ply further down the tree of one of the busy processors. -411 processors

then start to work on the smaller subtree. The transposition table ensures that the

srnaller subtree has not been explored yet.

Using a Sequent Balance 21000 computer, the speedup of EPVS was 5.93 on 16

processors. On the same machine and test set, PV-Split achieved a speedup of 4.57

on 16 processors. The authors point out a t the end of their paper that the average

branching factor of a chess tree is 38; their algorithm could not use 64 or more

processors effectively since al1 processors CO-ordinate at one split node at any given

time. Thus, to use massively parallel architectures (with hundreds or thousands of

processors), a greater nurnber of split nodes must be available for parallel work.

Felten and Otto [31] implemented the first parallel crp algorithm that played

chess on more than 32 processors. Their WAYCOOL program decided on the type

of parallelisrn to be applied at a node based on whether there was a transposition

table entry in the system. If a transposition table entry was available, the move

stored would likely be the best move, and it was worth waiting for a bound to bs

55

returned from that transposition table move. Once that bound had been returned

(assuming that the node is not immediately pruned), al1 of the other successors could

be explored in parailel. If there is no transposition table information, al1 subtrees

could be computed in parallel.

The processors were hierarchically organized into a tree structure at the start of

the search, but this processor tree could be restructured as necessary. The scheme

relied on a globally shared transposition table and a load balancing scheme that is

similar to the one used in EPVS. The load balancing scheme reorganized searchers

into new tearns that search a "hot spot" in parallel.

Feldmann et al. implemented a parallel ap algonthm on a large network of Trans-

puters for the chess program ZUGZWANG [29, 30, 941. The algorithm involves the use

of the Young Brothers Wait Concept (YBWC) to determine when nodes can be given

out in a parallel manner.

In a game tree that has near perfect ordering, there is a high probability that

a node is a type-3 node if we evaluate the leftmost branch and have not pruned

the search below that node. The basic Young Brothers Wait Concept States that the

leftmost branch (the eldest brother) must be evaluated before any other branches (the

Young brothers) can be distributed to other procesors. This is not necessarily limited

to the principal variation (i.e. PV-Split) or a pseudo-principal variation (i.e. DPVS

or EPVS); it can happen at any node within the game tree. The algorithm given

in Tables 3.1 and 3.2 is YBWC*. This variation does not wait for p u n g brothers

at type-3 nodes and forces sequential evaluation of al1 "reasonable" moves at type-2

nodes [29].

YBWC* used a request work message sent to a random processor to achieve

good load balancing on a network of Transputers. As well, the slow node-processing

speed of ZUGZWANG allowed the Transputers to be used effectively as a giant shared-

memory hash table, further increasing the quality of the move ordering.

Hyatt introduced Dynamic Z h e Splzttàng (DTS) in his Ph.D. thesis [43]. One

processor is given the root position and the others must try to find a processor that

56

has work to steal. If a processor has work, DTS hands out a branch from the type-3

node that is closest to the leaf. Type-1 nodes that have bound information (i.e. the

lefimost child has been edua ted) are considerd as type-3 nodes. Failing this, the

processor will hand out a branch from a type4 node that does not have any bound

information. Finaily, the processor would hand out branches fiom type-2 nodes that

have not been pruned after the first child has been completely edua ted . The scheme

effectiveiy removes the synchronization points fkom most type-1 nodes other than the

root of the game tree.

In the implementation, split points were placed in shared memory so that other

processors had an opportunity to take branches without disturbing other processors.

Using a Cray C916/1024, DTS generated an average speedup of 11.1 on 16 procesors

when searching a series of positions from a ches game [44].

Bound-and-Branch [32] is a processor allocation scheme in the Distributed Tree

Search framework - a general framework for distributed search - to search a@ trees

generated by an Othello program. If no cutoff bound exists at a node, al1 processors

are assigned to the first child to generate a cutoff bound as quickly as possible.

If a cutoff bound exists! or has been established by completing the search of the

first child, the processors are allocated in a breadth-first manner to al1 remaining

children. Effectively, t his scheme gives the same parallelism and synchronization

pattern described in the YBWC* algorithm. For the Bound-and-Branch processor

allocation scheme, Ferguson and Korf get speedups of 12 while studying Othello trees

using a 32-processor hypercube. The search is assisted by iterative deepening and a

distributed "game-tree representation" , similar to a transposition table.

Hsu described a queued pmcessor a m y mode1 for implementing a pardlel op
algorithm within the second version of DEEP THOUGHT [41]. The host worksta-

tion traverses the tree according to the algorithm until the parallelization horizon is

reached. The subproblems (nodes on the parallelization horizon) are then placed on

a queue that can be accessed by a large number of specialized VLSI processors. Al1

of the processors are connected by the same bus to this queue. The processors take

57

away the subproblerns placed on the queue, run the silicon-encoded a0 routine on

the chip, and return the results to another queue on the bus that goes into the host

procesor. The results are then added to the tree representation in the host cornputer.

Hsu introduced the delayed bmnch tree ezpansion (DBTE) algorithms in his thesis

for generating the work for the specialized processors. These algorithms generate two

queues of nodes. The first queue is a set of nodes that correspond to the a@ criticd

tree, in a left-twright order. The second queue contains nodes that are not in the a0

criticai tree, because of poor move ordering at type-2 nodes. The critical tree queue

is used only when the queue of additional work at failed type-2 nodes is empty.

There is a family of DBTE algorithms based on the choice of CUT nodes to

re-expand. One of the algorithms, the Leftmost First algorithm, is s h o w to be

aspmptotically optimal on best-first trees as well as dominating wezk <rp (a version

of the crB algorithm which only has shallow cutoffs). The Leftrnost First algorithm

causes synchronization to occur at bad type-2 nodes. Simulations reported that a

speedup of 350 with 1000 processors is possible, once the machine is completely

constructed.

Lu [57] implemented a pair of improvements to the basic PV-Split algorithm for

use in the checkers program CHINOOK. To prevent starvation when exploring checkers

trees, frontier splzttzng was proposed and tested. Frontier splitting creates new split

nodes closer to the mot of the variation being explored by the Controller process,

as required. This is different than algonthms like YBWC*, which concentrate on

creating new split nodes undemeath the current split node. Split nodes are created

first at type1 and type-3 nodes, and oniy at type2 nodes when there is no other

parallelism left. The drawback is that the search might be started without any bound

information. Essentially, this removes the synchronization for a given depth search,

and allows for parallelism at any node within the tree.

An implementation of dynamic Ioad balancing, similar to the EPVS method, was

also presented. Straggler preemption gathers a group of idle processors and assigns

them to a subtree that has been worked on by one processor for a long period of time.

Both of the improvernents were tested and the speedup on the test set improved

from 1.92 on 16 processors for the basic PV-Split algorithm to 3.31 on 16 processors.

The average branching factor of the trees being explored was 2.78. Although the

magnitude of the increase was small, the fact that the speedup is larger than the

branching factor is significant because the PV-Split algorithm will not generate a

speedup larger than the branching factor.

David's ap* [25] is a new type of architecture for game-tree search which requires

a shared transposition table. Al1 processors start at the root of the tree and start

travelling down the tree. However, the processors explore different parts of the tree

based on results from the shared transposition table. Each table entry contains a

counter of how many processors are exploring the subtree rooted at that node. Thus,

the processor can discover which nodes have been evaluated.

A depth-limited search is executed at non-PV nodes to determine whether the

node is a type-2 or a type-3 node. Type-:! nodes are searched sequentially, as in other

algorithms. At type-3 nodes, the number of processors allowed to explore a subtree

is Iimited by a constant factor of the number of processors that are currently at the

type-3 node. For the purposes of crp*, once the leftmost child of a type4 node has

been evaluated, the type-1 node effectively becomes a type-3 node. Once a processor

has visited a node, it may not go back above that node until the node is evaluated

(Le. the correct a@ information is known about the value at that node). This means

that as soon as one processor has "evaluated" the root, the search is completed. One

advantage of the ap* algorithm is the parallel code involves only a small number of

changes to the sequential code [95]. In his thesis, David achieved a speedup of 6.5 on

16 Transputers. 8 of the 'Ikansputers were used to control the shared transposition

table, while the other 8 were used as tree searchers.

CABP is an algorithm by Cung [24], similar to the DEEP THOUGHT design pre-

sented by Hsu. The algorithm was designed for a shared memory system, and main-

tains a shared "score tree" for the entire game tree and the two iists of work: critical

nodes one ply above the leaves, and non-critical children of failed cut-nodes. Unlike

59

Hsu's work, the critical nodes are evaluated first, followed by the non-critical children

once the first queue has been finished. At failed cut-nodes, the non-critical children

are added to the lkt k a t a t h e . (In the simulation results given in the thesis, k = 1.)

In his Ph.D. thesis, Cung shows the CABP algorithm generating a speedup of 4.6 on

strongly-ordered trees with a branching factor of 40 using 9 processors on a Sequent

Balance 8000.

Kuszmaul [53] presents Jamboree seareh in his Ph.D. thesis as an algorithm for

testing MIMD scheduling algorithms on the CM-5. Jamboree search is a paralleliza-

tion of NegaScout search which behaves with only a few minor diflerences to the

work done by Feldrnann et al. on the Young Brothers Wait algorithm. In the Young

Brothers Wait algorithm, when a subtree is given to a processor and the search fails

high, the slave processor immediately proceeds to work out the value with the full

search window without informing the rnaster processor. In Jamboree search, a fail

high value is returned to the master processor. This prevents any younger subtrees

from executing a full window search until the new bound a can be established by a

full window search.

Weill introduced an improvement to the ap* algorithm in his Ph.D. thesis [95].

Weill suggested and tested a decision method based on the Young Brothers Wait Con-

cept, instead of the depth-limited search and constant factor at type-3 nodes tested

by David. At any node in the a@* algorithm, if the leftmost child is not evaluated,

al1 processors must evaluate the leftmost child. Once the leftrnost child is evaluated,

processors are ailocated to non-evaluated idle children first, and then allocated in a

balanced manner to the other non-evaluated children in the tree. Although both ap*

and YBWC* use the same heuristic for allowing or denying parallelism, ap* uses a

shared transposition table to keep the processors working on different parts of the

tree, while YBWC* uses master-slave relationships.

In a later paper [96], the combined method was called Abha-Bêta Distributé avec

Droit d ' ~ i n e s s e , or ABDADA. Weill showed that ABDADA yields greater speedups

than YBWC on a CM-5 when studying chess trees. ABDADA also yields similar

60

speedups to YBWC when studying ab trees generated by an Othello progam.

Dynomic Multiple Principal Vu'anation Sptàtting (DM-PVSplit) is a variation of

the PV-Split algonthm that allows for greater parallelism near the start of a search

[62]. To understand the algorithm, it is necessary to define the P V set. The root

is a member of the PV set. At subsequent depths in the tree, nodes are part of the

PV set if the parent is a member of the PV set, and they are generated by the first

k candidate moves in the move list of the parent. The determination of k is given

by a function based on the depth of node in the game tree, and is not necessarily

a fxed number. Thus, the PV set is a right-pnined version of the game tree. An

appropriate hinction allows for greater parallelism without adversely increasing the

search overhead, since the correct move at a PV set node is highly likely to appear

in its PV set children. By always selecting only one candidate move, DM-PVSplit

generalizes into PV-Split. Since the PV set does not respect the structure of the

critical tree, the last two columns in Table 3.2 refleçt this by referring to the PV set,

and not Knuth and Moore's classification of critical tree nodes.

The algonthm is designed for use on strongly ordered trees. In the paper, Marsland

and Gao show the results of an experiment where DM-PVSplit generates a speedup

of approximately 32 over 64 processon, using an artificially generated tree of width

32 and depth 8.

3 -4 Ot her Parallel Game-Tree Search Approaches

Although crp-based methods have been emphasized, there are other search strategies

that can be wd to generate the minirnax value or a move decision on multiple

processors. The four subsections cover the original formulation of SSS*, conspiracy

numbers, the ER method, and theoretical models for garne-tree search.

A parallel SSS* algorithm was proposed by Campbell [21, 221, based on breaking the

tree into stages to reduce the cost of maintaining the OPEN list. At the end of a stage

in the search, the node would be handed to a slave processor in the tree hierarchy.

This limited the depth d, thus preventing the OPEN list fiom becoming too large.

The staged SSS* algorithm is shown to be marginally faster than either tree splitting

or PV-Split on randomly ordered trees in Campbell's work.

Leifker and Kanal (541 proposed the Hk'BRID algorithm, based on the problem

heap from SSS*. However, the paper contains no details pertaining to an implemen-

tation. Vornberger and Monien presented the results of a parallel SSS* algorithm

[94], but the results were disappointing when compared to the parallel ap algorithm

(later to be called "Young Brothers Wait"). Their implementation of parallel SSS*

on a local area network of PCs had a search overhead of over 300 percent when using

16 processors.

Shinghal and Shved [85] propose the IIDSSS algorithm, which implements a PV-

Split constraint at the root of the game tree before executing DUAL* on the children

of the root. The simulations in the paper show that MDSSS, for simulated game

trees. searches less nodes in parallel than the other algonthms. including PV-Split

and Mandatory Work First. However, no attempt was made to compare the to-

tal tirne required to run the SSS* algorithm in practice to implementations of ap.

Diderich described an implementation of Synchronized Distributed State Space Search

(SDSSS*) in an attempt to balance the workload on many distributed processon (261.

SDSSS* achieved a speedup of 11.40 using 32 processors, searching a 5 ply tree with

a branching factor of 16.

There are some other SSS* algorithms by Usui et al. [92], and Kraas [SOI which

deals with how to parallelize work based on the OPEN list. Although the work has

shown some promise in eliminating the difficulties of dealing with an ordered problem

heap, the overhead of dealing with the problem heap is not necessary. I t has been

recently discovered that SSS* can be implemented as a series of dl-window a@

62

calls, using a transposition table instead of an OPEN list [74]. Until the overhead of

distributing the ordered problem heap c m be brought below that of the depth-first

search algonthms presented eariier in the thesis, the author does not believe that

these implementations are practical choices for game-tree search.

3.4.2 Conspiracy Numbers

Section 2.5.3 dealt with the sequential version of the Controlled Conspiracy Number

Search (CCNS) algorithm. Since CCNS is a depth-first search instead of a best-first

search, a parallel CCNS algonthm can borrow ideas from other parallel depth-first

search algonthms. Lorenz and Rottmann introduced Parallel CCNS [56], an algorithm

that is very similar to the Young Brothers Wait algonthm. Processors with no work

use work stealing to ask a processor for work. A node that has not been evaluated by a

processor can be transferred to a processor for evaluation, establishing a master/slave

relationship. When the slave processor determines whether it can or cannot satisfy

the proof required, the result is returned to the master processor. Parallel CCNS

effectively speeds up the search by a factor of 36 on 63 processors, when compared

to a sequential CCNS algorithm. Although it is hard to compare CCNS searches to

crp-based searches, the obsemed speedup is impressive.

Steinberg and Solomon [88] presented the ER method of searching game trees. ER

stands for Evaluate-Refute, and the method attempts to evaluate some mandatory

work before attempting to refute the other moves within the tree. At a node to be

evaluated (an e-node) within the tree, the ER algorithm evaluates the elder grand-

children (concurrently, if possible), and then chooses the child with largest elder

grandchild to be the e-child. This e-child is evaluated, and then the other children

of the e-node are refuted. The method is l e s efficient at searching trees than the

a0 algorithm since it misses some deep cutoffs. Furthermore, the algorithm was not

tested with iterative deepening or minimal windows when refuting e-nodes.

63

The ER method and PV-Split were irnplemented as problem-heap algorithms on a

Sequent Symmetry multiprocessor. Steinberg and Solomon found that they achieved a

better efficiency with the parallel ER algorithm than with PV-Split. When compared

to sequential ER search, the parailel ER algorithm achieved a speedup of 10 with 16

processors, and a speedup of 14.7 with 27 processors.

3.4.4 Theoretical Methods

There are a number of theoreticai algorithms that, to the author's knowledge, have

not been programmed. Karp and Zhang [46] proposed the Parallel a-p algonthm

which yields a linear speedup on trees of height O(n). Althofer [3] proposed an

algorithm which yields a linear speedup on average if the tree height is O(n1ogn).

Broder et al. [l?] have shown that for any parallel tree searching algorithm, there

exists a tree instance that does not run in polyloganthmic parallel run-time1 on a

large number of processors. Broder et al. also describe the ParHope algorithm and

prove a bound on its performance over sequential prefix-driven algorithms such as

d.

3.5 Parallelism in Single- Agent Search

The goal in a single-agent search problem is to find a path from an initial state S to a

goal state G with the minimum possible cost. Although this problem seems difTerent

from the determination of the rninimax value of a game-tree, the two fields are closely

related.

An example of a problem that can be solved with single-agent search is the sliding-

tile puzzle. Figure 3.1 gives an example of a typical start and goal state for the

sliding-tile puzzle. The only move available is moving a single tile horizontally or

vertically into the blank space. The goal is to move from the start state to the goal

'Polylogarithmic parailel run-time implies that t h e exists constants k,l such that on nk prw
cessors, every instance nins in O((1ogn)') tirne.

Figure 3.1: A Start and Goal Position for the Sliding Tile Puzzle

state in the minimum nurnber of moves.

The A* search algorithm [40, 71) is often used to solve single-agent search problems.

A* is a best-first algorithm, similar to SSS* in the domain of game-tree search.

A* search starts with the initial state in a main data structure known as the OPEN

List. The CLOSED List represents the positions that we have already examined, and

is initially empty. For each node within the OPEN and CLOSED lists, A* maintains

two heuristic values: g(n), the best-known minimum cost, and h(n), the estirnate of

the cost to a goal state. Thus, the best node to examine at any point in the algorithm

has the lowest estimated total cost: f (n) = g(n) + h(n).

The .4* algorithm is an iterative process. In each step, A* takes the best state

s frorn the OPEN list and moves it to the CLOSED list. The successors of the best

state, si, are generated and are examined in turn. If a successor si does not appear

in either the OPEN or CLOSED list, then si is added to the OPEN list. However, if

si already appears in either list, we muçt check to see if the minimum cost g(n) has

decreased. If g(n) decreases, the node s must be deleted from its current location

and reinserted into the OPEN list.

The heuristic h(n) is critical for the performance of the At algorithm. h(n) is

said to be admissible if the heuristic never overestimates the cost of travelling to

the goal state. If h(n) is admissible, .4* is guaranteed to generate the least cost or

optimal solution the first time the goal node is generated. In the sliding-tile puzzle,

the Manhattan distance * is an admissible and effective heuristic for use in A* search.

As in our discussion of SSS* searches, the emphasis of parallelizing A* searches

generaiiy relies on how to distribute the OPEN and CLOSED lists amongst proces

sors in an effective manner. In a centraüzed scheme, contention for the OPEN and

CLOSED lists becomes a serious bottleneck. However, the search overhead can be

limited to a small arnount. Even in distributed schemes which share information

through a blackboard structure (521, or by message passing a t numerous synchr*

nization points [42], the memory requirements of the best-first .4* algorithm rapidly

becomes excessive on non-trivial problems.

IDA*

One does not necessarily need to use a best-fist algorithm to perform single-agent

search. Korf discovered that iterative deepening works as well in single-agent search

as it does in game-tree search (491. Instead of a memory-intensive OPEN list, IDA*

search is based on depth-first searches, and iterates on successively larger lower bounds

for the total cost f (n). IDA* also returns an optimal solution if used with an admis

sible heurisiic h(n). In practice, IDA* is preferred over A* for the smaller memory

requirements.

The parallel algorithms that have been proposed for IDA* search are similar to ap-

based paraIlel search algorithms. This should not be surprising since the underlying

applications are tree searches with naturd synchronization points between iterations

of i t erat ive deepening.

Rao, Kumar and Ramesh [77] illustrated the first synchronized search of the state-

space using IDA*. Their algorithm, PIDA*, partitioned the space amongst all of the

- - --

' ~ h e surn of the vertical and horizontal displacements of each tile from its current square to its
goal square.

66

processors and let them search independently of one another. -4s processors finish

their work for an iteration, they ask neighbouring processors if they need assistance

finishing their iteration. Eventually, al1 processors run out of work and the next

iteration is started. This continues until one of the processors discovers the goal node,

and the search is subsequently terminated. PIDA* achieves an average speedup of 28

on 30 processors of a Sequent Balance 21000.

IDPS by Mahanti and Daniels (581 and SIDA* by Powley, Ferguson and Korf (761

are similar aigorithms for handling parallel IDA* search on SIMD machines. Both

algorithms partition a set of frontier nodes to each processing element. Each process-

ing element uses depth-first search independently. When a nunber of processors go

ide, a load balancing algonthm is used to repartition the work over all the available

processors. Eventually, al1 processors finish their work for a given iteration, and the

search then continues to the next iteration. As in PIDA*, one of the processors will

eventually discover the goal node, and the search is immediately terrninated. -4 16K

processor CM-2 yields efficiencies of 57% for SIDA* and 76% for IDPS.

Reinefeld and Schnecke took the ideas from these algorithms and implemented

an asynchronous algorithm for handling IDA* search [BO]. r\synchronous IDA*, or

AIDA*, works in a similar manner to al1 IDA* algorithms when distributing the work.

However, only weak synchronization is used to inquire about pieces of work for load

balancing purposes. Until new work arrives for the current iteration, the processor is

allowed to continue to the next iteration. This scheme keeps the processors working

on approximately the same iteration.

AIDA* yields a efficiency of 79% for the 25 problems generating the largest seardi

trees from Korf's data set 1491 on a 1024node Transputer system. Although the

efficiency may look small, Kod's sample positions take too little time to test AIDA*

adequately. AIDA* takes 24.2 minutes to generate the results for ail 100 of Korf's

test cases, 5.7 times faster than SIDA* on 32,768 nodes of a CM-2.

3.5.3 Comparing ParaIlel IDA* and Parallel aB

It is often wondered why crkbased game-t-ee search is so hard to parallelize, while

IDA* search is relatively straightforward. Even with the small branching factor of

the 19puzzle, al1 of the IDA* aigorithms described have remarkable efficiencies on

massively parallel systerns. There are a nurnber of important differences between

IDA* search and ap-based game-tree search.

IDA* has almost no pruning whatsoever. Thus, the search is similar to rninimax
O

search, and not to ap search. It is relatively easy to get a high efficiency when

searching without any pruning techniques. When an improved <rp-based algorithm

such as MTD(f) is used, the tree is pruned aggressively and severe load imbalances

can occur.

Furthermore, when using a@ and the exact value of the first child is not known,

many additional nodes must be searched. Although we can generate a guessed mini-

max value, a small measure of uncertainty is often sufficient to cause a large increase

in the number of nodes searched. Thus, the work is usually synchronized on deter-

mining the rninimax value of the fint child before allowing full parallelism at any

node within the game tree.

Positions in a search tree are generally independent of one another in IDA*; al-

though IDA* c m benefit from using a shared transposition table, it does not seem

to be a large benefit for Korf's 15-puzzle benchmarks. The equivalent is not true for

some game-tree search domains; chess game trees can suffer a large increase in search

effort if local transposition table information is not shared.

Finally, IDA* searches until it finds a solution; it is not time constrained. Game-

tree search must continudly deal with real-time constraints: a move decision must

be made within t seconds. Thus, the game tree generated is not as deep as an IDA*

tree, and does not yield as many natural opportunities for parallelism.

In the author's opinion, these reasons are what make abbased game-tree search

more challenging to parallelize than IDA* search.

3.6 Parallel Search Libraries

There are a few pardlel search libraries in the literature. However, most of the

libraries, like PPBB-Lib [91], concentrate on implementing parallel branch-and-bound

solutions in an efficient manner. The interface has specific information for defining

subproblems, new bounds and parallel 110 support, as well as support for many

different load-balancing schemes. The system uses PVM [35] as its underlying method

of communication.

The ZRAW parallel search bench [19] takes a more ambitious approach to devel-

oping a general tool to be used by researchers. Many search engines are available

within ZRAM, including branch-and-bound, reverse search and backtracking. A vir-

tual machine layer allows for dynamic load balancing, as well as checkpointing and

termination detection. The ZR4M method uses the point-tc+point communication of

MPI 1391 to send messages between processes. The ZRAM parallel search bench has

been used to show that the 15-puzzle takes at most 80 moves to solve any position,

as well as prove conjectures made in other fields such as materials science. However,

Z R I M does not yet have a parallel game-tree search engine.

3.7 Conclusions

The taxonomy given in Section 3.3 shows that there are a number of implementa-

tions which are using the same underlying algorithm. A large number of &basecl

algorithrns are employing minor variations of the same technique. Most of these differ-

ences are due to the different architectures and garne trees studied. This cornparison

is easily made through the separation of the implementation and algorithmic details.

There are other parallel depth-first search algorithrns that are not based on a&

such as IDA*. The study of parallel IDA* search algorithms poses an interesting

question: are synchronous algorithms better than asynchronous algorithms for im-

plementing depth-first search strategies? We will investigate this issue in game-tree

search in the subsequent chapters.

Chapter 4

Theoret ical Cornparison

Introduction

In this chapter. we will compare an asynchronous game-tree search algonthm to the

typical synchronous garne-tree search algorithm using a theoretical model. In Section

4.2, we will describe the computational model used to analyze the sequential and

parallel performance, as well as the method of generating a theoretical speedup for a d-

ply game-tree search using iterative deepening. Section 4.3 deals with modeling game

trees, and how to make a more realistic mode1 through the use of empirical evidence.

Section 4.4 describes and analyzes the typical synchronous parallel game-tree search

algorithm used today. Section 4.5 describes and analyzes an asynchronous game-tree

search algorithm. Theoretical pardlel speedups are shown for both algorithms using

two sequential tree models. Finally, Section 4.6 attempts to compare and contrast

the two algorithms, and shows that asynchronous game-tree search has the potential

for greater speedups than synchronous game-tree search in realistic game trees.

The caveats mentioned in Chapter 3 regarding the use of theoretical or simulated

results when comparing observed speedups should be noted. The theoretical results

given here are not intended to indicate what can be achieved in practice but, rather,

are a conservative estimate of the best results we can hope to obtain. Many of

the real overheads that exist in practical parallel processing are missing from the

70

computational models used. However, the results are intended to give the reader an

idea of how synchronous and asynchronous game-tree search algorithms compare in

a t heoretical framework.

4.2 Experimental Setup

4.2.1 Computational Model

The model of computation used in this chapter is the leof-evaluation model [17, 461.

In this model, each node of a game tree that is evaluated takes one unit of time, and

al1 other costs are considered to be negligible. The number of leaves that a sequential

algonthm evaluates determines its running time. -4 parallel algorithm c m have up to

n processors each evaluating a separate leaf within a single unit of time. The number

of steps required to evaluate al1 of the leaves with n processors yields the parallel

time.

One of the assumptions of the leaf-evaluation model is that the parallel and se-

quential algorithms evaluate the same number of nodes per second. In practice,

implementing a parallel algorithm may reduce the average number of leaf evaluations

per second by a small amount (up to 10%). This effect will be ignored for the results

in this chapter.

4.2.2 Methodology

Once we define a parallel algorithm, how can we derive a theoretical speedup? In

general, a program that executes a d-ply game-tree search uses iterative deepening

(Section 2.3.2) in steps of 1 ply; the k-piy search tree is completed before searching

the (k + 1)-ply game tree. Thus, a search of a d-ply search tree involves d searches of

the game tree to successively greater depths. If we have a model for the nurnber of

leaves we must evaluate in the sequential case for a k-ply tree, along with the formula

for the expected speedup, we can compute the time required to search the k-ply tree

71

in parallel. By summing each of the iterations of iterative deepening from 1 to d

ply, we can generate a total sequential time, a total parallel time and a theoretical

speedup for the complete d-piy iteratively-deepened game-tree search.

The expected theoretical speedup for a d-ply iteratively-deepened search can be

determined mathematicaiiy- However, the summation of the d iterations to generate

an overail speedup yields a very complex formula. lnstead of attempting to give this

formula exactly, we can use a calculator or other process to compute the sum of the

parallel and sequential times and, thus, the expected theoretical speedup. For this

purpose, we have written a srnall program to complete the summation for us. It is

important to note that this program does not actually simulate or execute a real

game- tree search.

As we shall see in the subsequent sections, the parameters required to determine

the expected theoretical speedup are the branching factor of the tree, the depth that

the tree must be searched to, and the number of processors involved in the parallel

search. The type of tree to be searched and the parallel algorithm to be used are

irnplicitly defined by the parallel speedup formula.

We wish to simulate different games that we are interested in (such as checkers,

Ot hello and chess) . For t hese games, there are well-est ablished average branching

factors: 38 for chess (361, 10 for Othello [74], and 3 for checkers (571. These three

branching factors will be examined throughout this chapter. The two processor con-

figurations that will be examined are n = 16 and n = 236, which illustrate typicai

srna11 and large parallel configurations.

To compare speedups generated by different processor configurations, graphs will

be plotted that use the parallel efficiency as the vertical ais. We use the number of

nodeç searched sequentially on the horizontal axis, so that we can compare trees that

have different branching factors. In this way, we can compare the searches based on

al1 of the irnplicit and explicit parameters of the software model.

4.3 Modeling Game Trees

There are many possible theoretical models for game trees. The probabilistic strongly-

ordered tree model [59] is the moçt hquently used model when simulating game

trees. In this model, a strongly-ordered game-tree can be generated by ensuring that

for every node in the tree, there is a fixed percentage chance that the best move (with

respect to the minirnax value) will be the first child exarnined. With this model,

we can Vary the strength of the move ordering, and simulate many different types

of game trees by varying the percentage, the depth and the branching factor of the

tree. However, from a theoretical point of view, this would be complicated to analyze

without a simulation program, both in the sequential and the parallel case. Thus, we

opt for rnodels of garne trees that are easier to analyze without resorting to simulated

search.

One such model of the game tree, the perfect critical tree (aç illustrated in Figure

2.8), is ideal for its relative simplicity and wealth of published results. There are

sorne implicit assumptions in the perfect critical tree: (1) the game tree has a uniform

branching factor b, (2) we always search the best move first, (3) there are no duplicate

nodes within the tree, and (4) the search window at the root of the tree contains the

minimax value.

However, the perfect critical tree is a poor example of what we c m expect in prac-

tice, and drawing conclusions based on this unrealistic model are somewhat suspect.

For the same nominal depth of search and branching factor, game trees generated by

a0 can differ in size by a factor of 100 or more. Let us say that we are interested in

investigating subtrees of d ply. We cannot know, a priori, how many nodes ap must

search for a given 6-ply subtree. So, the question is: what is the typical probability

distribution of the size of subtrees searched by a/3?

In theory, the branching factor estimates given earlier can Vary significantly from

the estimate, and are correlated to the game state. If we ignore the correlation to

the game state, the probability distribution does not affect the expected size of these

Û B trees. Irrespective of the probability distribution. the expected size of a dr-ply

tree will be the expected size of a (d - 1)-ply ab tree, pius (b - 1) t h e s the

expected size of a (d - 1)-ply ap refutation (where b is the average branching factor).

Although the expected size is the same, there is a greater probability of generating

a smaller tree than a larger tree, because there are fewer random choices at intenor

nodes required to generate a small tree. This yields a distribution of tree sizes with

a positive skew.

How does the theory Vary in cornparison to practice? Vie can obtain empirical

evidence on the size of dt-ply game trees through an experirnent. If we take a game-

tree searching program, and instrument it to capture the size (in terrns of number of

bottom positions) of each dt-ply subtree, we can generate a histogram of the distri-

bution of the size. In this expenment we used KEYANO, CHINOOK, and THETURK

as representative samples of Othello, checkers and chess programs. Vie measured the

size of d = 4 ply trees in KEYANO and THETURK, and d = 6 ply trees in CHINOOK'.

Each program searched al1 of the positions in the appropriate test set from Xppendix

.. to 8 ply in TNETURK, 9 ply in KEYANO, and 13 ply in CHINOOK. These depths

are roughly double the ply of the subtrees being examined for each application. This

allows us to generate a sufficiently large number of dt-ply subtrees within the search

of each full game tree.

Tree sizes were organized into buckets covering a range of 10 tree sizes for the

purposes of drawing a histogram. For example, trees with 30 to 39 leaf nodes evaluated

are represented by a single point on the gaph. Examining the histograms in Figures

4.1 show that there is a positive skew to each of the histograms. The histogram

has been normalized for the number of samples being used (approximately 30,000

samples for CHINOOK and KEYANO, and over 80,000 for THETURK) to generate a

sample probability distribution function. The positive skew and visual inspection

indicates that a single probability density function that can accurately mode1 each

histogram may be either a Poisson or gamma probability distribution function.

' d = 4 ply game-trees in checkers are too small t o be analyzed with the same methodology used
for the chess and Othello trees.

Figure 4.1: Sample Histograms and Predicted Probability Density Function

It should be noted that the histogram for KEYANO looks different than the his-

tograrn for CHINOOK and THETURK, and that the vertical scales are different for

each program. The reason behind this is that the full version of the program with

transposition tables enabled was used during the test. Chess and checkers programs

greatly benefit frorn the duplicate detection property of the transposition table, in

cornparison to Othello programs2. This accounts for the large spike at the leftmost

data point for chess and checkers, and the mising spike in the Othello program's

histogram. When the spike is removed from the data, and the data is scaled so that

each expected tree size is roughly the same, dl three gapiis look similar to the g a p h

'Moves in chess and checkers have only a limiteci e f k t on the board position, making it iikely
that the same moves, if played in a different order, can yield the same position. In Othello. a given
move c m flip a large number of discs, dramaticdly changing the board position. Thus, it is less
likely in Othello for a specific position to reoccur by transposing moves.

75

for Keyano.

We can use the sample moments to determine probability density function param-

eters for each histogram. The second line on each graph in Figure 4.1 represents the

fit ted gamma probability distribution function based on the caiculation of the sample

moments.

Varying the level d' does not significantly alter the histograrn in each program

tested, once the different scde of the expected tree size is taken into effect. Thus, we

can use the fitted gamma probability density function to determine a similar distri-

bution of the size of k-ply subtrees for each program. The fitted gamma probability

density b c t i o n c m be scaled so that the expected average size of k-ply subtrees

equals the size of k-ply subtrees in the critical tree.

To generate a realzstie cntical tree from the perfect critical tree, we will allow

k-ply subtrees at the bottom of the game tree to vary according to the scaled gamma

probability deosity function. Note that the top (d - k) levels of the tree are exactly

the same as the perfect critical tree. We will be using the fitted gamma probability

density function that we determined from THETURK, KEYANO and CHINOOK when

the branching factor equals 38, 10, and 3, respectively.

From a sequential viewpoint, the realistic critical tree and the perfect critical tree

evaluate exactly the same number of leaves. Hence, the two trees take the same

time to evaluate sequentially. In parallel search, this size distribution of k-ply trees

can give us a realistic look a t the amount of time spent a t a global synchronization

point. We shall see how this delay can be accounted for in the subsequent analysis of

synchronous and asynchronous game-tree search.

4.4 Analysis of Synchronous Game-Tree Search

The synchronous ap-based parallel game-tree search algorithm that we will examine

has been implemented independently by many authors. In Young Brothers Wait [23],

Dynarnic Tree Splitting [44], Bound-and-Branch [32], Delayed Tree Branch Expansion

76

(411, Jamboree (531, and ABDADA [96], the basic ideas on where to create parallelisrn

and where to synchronize the search are based on the critical tree (Figure 2.8). The

first child must be completely evaluated at a type-1 node ço that an alpha-beta

bound can be discovered for the subsequent children. Once that is completed, al1 of

the remaining children of a type-1 node can be evaluated in parallel. Probable type-3

nodes have al1 of their children eduated in parallel. Probable type-:! nodes have

t heir children evaluated (in general) without parallelism.

For the purposes of this anaiysis, we will assume that the algorithm cornpletely

synchronizes a t each node dong the principal variation. Some of the algorithms

mentioned earlier have attempted to remove the global synchronization points dong

the principal variation. That is, the algorithm only needs to synchronize at the root

of the game tree. However, the algorithm that has reported the best results on a

massively parallel system, Young Brothers Wait, uses synchronization at every node

along the principal variation. Thus, we have decided to use that type of algorithm in

our analysis.

It is also important to note that the parallel algorithms listed have different

schemes to determine when a probable type-:! node should be handled as a type-

3 node. These schemes are not relevant to the analysis, since there are no type-2 or

type-3 nodes in unanticipated places for the game tree models being used.

4.4.1 Perfect Critical Tree Mode1

In this analysis of parailelism in the perfect criticai tree, we will review the total

number of nodes, and the size and number of work granules underneath a given type-

1 node. We will then determine formulas for the theoretical parallel speedup in two

cases, depending on whether the number of processors or the nurnber of work granules

is larger. This section will end with an illustration of theoretical parallel efficiencies

based on the speedup formulas determined.

The number of nodes of each type within the perfect critical tree can be found in

the literature [47]. At ply d of a critical tree with uniform branching factor b, there is

77

exactly one node of type-1, bW21 - 1 nodes of type-2, and 61d/21 - 1 nodes of type-3.

We can also determine the number of bottom positions for each type of node in

the cntical tree. Given a critical tree with uniform branching factor b and leaves that

are d ply away from the node, the number of bottom positions underneath the node,

depending on its type, are:

Synchronous parallel game-tree search algorithms do not spawn work below a

given size, since the size of the work piece may be too small to be worth examining in

parallel. This minimum granuiarity is dependent on the hardware and properties of

the application used. Let us assume that the minimum granularity is 8-plg; no work

is given to another processor with d or l e s depth. The minimum granularity can

also be referred to as the pamllelization horiton; work can be subdivided and studied

in paralle1 above the horizon, but not below it.

Having reviewed the nurnber of bottom positions and defined the parallelization

horizon, we can discuss how the (d - 6) synchronization points affect the d-ply search.

In between each global synchronization point, we must determine how many pieces of

work are available and the size of each piece of work. Table 4.1 illustrates the available

parallelism and the size of each piece of work available over varying distances to the

minimum granulari ty.

The first row represents when we evaluate the type-1 node at the horizon: only

one processor can execute the dr-ply search of the PV node at (d - dl) ply. Thus, we

must use NBPmel to compute the size of a dt-ply search of a type-1 node.

Once that initial search is finished, the search proceeds towards the root of the

game-tree by evaluating the next PV node. Observe that if k is the number of

levels within the game tree we are away from the minimum granularity, we have

brk121 - 6rk/21-i nodes a t (cl - 6) ply that we can evaluate in parallel on separate

Ply To
Horizon

O

Table 4.1: Available Parallelism and Size of Work Granules for Type-1 Nodes in the
Perfect Cntical Tree

- - -

2

3

processors. This can be deterrnined by considering the type-1 node as a type-3 node

Available
Parallelism
At Horizon

1

with only b-1 children. The first move is not counted at a type-1 node for determining

Size Of
Work Granule

At Horizon

p / 2 1 + b l W J - 1

b - l

P - b

the parallelism because it must be evaluated before parallelism can start at a type-1

- - - . . - - - -

b r m l

bla/2j

The type of nodes a t the parallelization horizon alternates as we increase the

depth away from the horizon. As illustrated in Table 4.1, the work granules are

rooted at type-2 nodes a t odd ply to the horizon, and at type-3 nodes a t even ply to

the horizon. Each of these granules of work at (d - 6) ply has either bLb/2] or brg121

bottom positions underneath them, depending on whether the nodes at (d - d') ply

are type-2 or type-3 nodes, respectively.

We are now ready to detemine the theoretical speedup for a single d-ply fixed-

depth critical tree with uniform branching factor. The analysis is complicated by

whether there are more processors than pieces of work. For a depth d search with

a d'-ply parallelism horizon, there are br(d-b)/21 - br((d-d)/2)-il pieces of work. The

first case to be analyzed is when there are more processors than pieces of work, or

n > br(d-b)/21 - br((d-d)/2)-L1. The second case is the converse: there are at least as

many pieces of work as processors in the system. The first case is required to solve

the second case, since the search commences with only one processor executing the

search and eventually grows until dl processors are involved.

Case 1: More processors than pieces of work.

We will define S E b i to be the amount of time required to search the d-ply crit-

ical tree. We are using the leaf-evaluation computational model, where each bottom

position is equal to one unit of t h e . Thus,

In parallel, we have more processors than pieces of work. Thus, each processor

gets at most one dl-ply granule from the Young brothers of a given PV node. This

piece of work takes al1 processors exactly the same amount of time to cornpute, before

they all proceed in tandem to the next PV node. We define the search of the d-ply

tree in parallel as PA&- units of time. This is the same as the sum of the size of

the work granules as we ascend from the principal variation from (d - dl)-ply to the

root:

d

P l = (size of work granule from PV node a t depth (d - k))
k=dt

d
- - brd/21 + bLd/'j - 1 + (work granule a t depth (d - k))

k=dt+ 1 - - brd/21 + bLd/21 - 1 + ((d - d - 1) / 2) (b L ~ / ~ 1 + bfd'/21)

(((d - dl+ 1) / 2)) (b r b m + bLd/2J - 1).

Now, to calculate the speedup, SPDWl, we divide the sequential tirne by the

parallel tirne:

SPDC-, = SEQ-1
P A & d

bfd /21 + bW2j - 1
((d - d + 1)/2) (brdt/21 + bLdf/2J - 1)

bW-b 1/21

= ((d - d f + l) / 2) .

Now that we have calculated the approximate speedup when there are idle proces-

sors, we can calculate the speedup when there is work for every processor to execute.

Case 2: At least one piece of work per processor.

If we assume that n > 1, we know that there exists a point in the search where

the available paralleliçm of a d"-ply subsearch is insufficient to keep al1 processors

busy while the (d" + 1)-ply search is sdficient to keep all processors busy. This point

can be found where d" zz d + 2 log n/ log b.

The parallel speedup SPDcd can be computed in two parts. The speedup up to

and including the df'-ply search, SPDa2,, can be computed directly from SPDcwI,

and the definition of d" from the previous paragraph:

6'

SPD,,2, = 1 (size of work granule from PV node at depth (d - k))
k=dt

b [cd' -dt)121

bf("+2(10g n/ log 6) - d t) / 2]
h, -

((dl + 2(log n/ log b) - di + 1)/2)

h, -
((log n/ log b) + 1/2) -

The second part of the speedup (from (d" + 1) ply to d ply) has every processor

investigating at l e s t one work granule in between each global synchronization point.

If we assume that we can achieve a perfect speedup when there are more pieces of

work than processors, we can greatly simplify the calculation of the speedup. However,

there may be an uneven distribution of work granules amongst the processors. If there

are w pieces of work to be divided amongt n processors, the speedup will be equal

to SPDcueZb = w / ~ w / T I] .

Since w > n, we can determine two constants c and k such that w = n + k, with

c > 1 and 0 5 k $ n - 1. If k=O, SPDCzre2t-, = (C x n) / r (c x n)/nl = n. This is not

surprising, since each processor gets an even number of pieces of work to be analyzed.

Thus, we will examine the case where we have an uneven workload on each processor,

or k # O.

When k # O, we can compute a lower bound on the speedup:

Since c > 1, this gives us a lower bound on the speedup of (n + 1)/2. As the

depth of search increases, both w and c increase by a factor of b every 2 ply. Thus,

as the search depth increases, the lower bound on SPDdb rapidly approaches n.

Even as the lower bound approaches n, it is a bad approximation of the real speedup.

For the majority of values of c and k, SPDcdb = TI . Furthermore, since the leaf-

evaluation model neglects a number of overheads, the theoretical speedup is really

an upper bound on the achievable speedup. For these reasons, it makes sense to

approximate SPDcUKZb for each search from (dl1 + 1) ply to d ply with the upper

bound, or SPDcaseZb = TL

Using the speedups for the two parts of Case 2, we can generate parallel times for

each part of the search, and add the results together to generate a totai parallel time

and speedup for a single d-ply search.

Now that we have determined the speedup for the two cases, we can combine a

series of fixed-depth searches (from 1-ply to d-ply) to generate the total sequential

time and total parallel time required for an iteratively-deepened d-ply search. In

turn, this determines the theoretical parallel speedup for the iteratively-deepened

d-ply search.

Before we analyze the formulas for different branching factors and processor con-

figurations, we must first define the minimum granularity. In the author's experience,

sending a piece of work to another processor that involves l e s than 1000 = 103 node

evaluations is not wort hwhile because the communication costs are too high. We will

define the minimum granularity d for each simulation such that we do not send out

Siu, of Sequentiai S e a h (Numtmr of Bottom Postions)

Figure 4.2: Synchronous Model, Efficiency on Perfect Critical Tree

work that is expected to be smaller than 103 node evaluations. It is important to note

that the number of node evaluations for a piece of work to be considered worthwhile

is not an absolute measure. A slower network or faster CPUs will cause the gram-

larity to increase, while a faster network or slower CPUs will cause the granularity to

decrease.

The graph in Figure 4.2 shows six lines. Each line represents one processor config-

uration with a particular branching factor. Each point on a particuiar line represents

the t heore t ical expec ted efficiency for a parallel iteratively-deepened k- ply search.

Since the graphs are normalized on the basis of sequential search size rather than

depth of tree searched, we have many more data points for the c u m s where the

branching factor is 3 (searched to a maximum depth of 33) than when the branching

factor is 38 (searched to a maximum depth of 10).

If we varied the minimum granularity to be larger than 103 nodes, each of the

lines on Figure 4.2 would retain its shape, but shift to the right. For example, if we

increased the minimum granularity by a factor of 100, the size of the sequential search

83

required to generate a given parallel efficiency would also increase by a factor of 100.

We can determine the expected speedup by multiplying the parallel efficiency by

the number of processors used. For example, for a tree with 106 nodes evaluated, the

mode1 predicts an approximate speedup of 0.505 x 256 = 129 when the branching

factor is 38,0.350 x 256 = 89 when the branching factor is 10 and 0.086 x 256 = 22.2

when the branching factor is 3. If we allow the sequential search size to grow to 107

nodes, the mode1 predicts speedups of 222, 200 and 91 for branching factors of 38, 10

and 3, respectively. It is important to note that this is a theoretical parallel speedup,

and is not an accurate reflection of what can be achieved in practice. Although many

chess programs can search 107 nodes during a regular search, none have regularly

exhibited 222-fold speedups on 256 processors.

The g a p h in Figure 4.2 confirms two observed phenornena in synchronous game-

tree search experiments. The first is that increasing the search depth increases the

parallel efficiency of the search. The graph also confirms the observation that there is

a wide disparity between the speedup of a typical chess tree search (branching factor

of 38) versus the speedup of a checkers tree search (branching factor of 3).

4.4.2 Realistic Critical Tree Mode1

Perfect trees only exist in a perfect world. If al1 the trees were like the perfect critical

tree, we would be achieving a near-perfect parallel efficiency when we have more work

than procesors. Of course, this is not the case in reality.

We have seen the available parallelism and relative frequency of each of the syn-

chronization points in a perfect critical tree. For the realistic critical tree, the size

of the work granules is not uniform, and follows a random distribution. At each

synchronization point, one must wait for all processors to finish their work. Thus,

at each synchronization point, we must compute when each processor finishes its last

piece of work. To simpliS the computation, we will assume that each processor gets

its last piece of work at exactly the same time.

If we have m processors working on different k-ply subtrees, how can we determine

84

the maximum size of the subtrees? A related problem is determining the maximum

of m random numbers drawn from a uniform distribution of real numbers from O to

1. Fortunately, the latter problem is solved easily by computing the median of the

probability distribution.

Let us cal1 the median of the probability distribution z. Thus, the largest random

number chosen will be l es than the real number z 50% of the tirne. For the maximal

random number to be less than 2, al1 of the random numbers chosen must be l e s

than x. If m independent random numbers betwen O and 1 must be less than x , this

irnplies that zm = 0.5. Solving for x, we get 2: = e'n(0-5)lm.

This result can not only be used to determine a likely estimate of the maximum in

the uniform random number case, but for any probability density function. We cm

determine the point x in the cumulative density function where cdf(x) = e'*(0-5)lm to

determine the median of the maximum of m random variables.

Csing the fitted gamma probability density functions from Section 4.3, Ive can

determine the median of the largest of rn pieces of work, and use that to uniformly

add a penalty at each global synchronization point. For example, if 256 processors

attempt to finish a 4-ply search in a bf=38 search, we are looking for the point rhere

cdf(x) = 0.99729. Using the fitted gamma distribution with a mean of 2887 for chess

(A = 7.5718 x IO-=, and r = 0.2186), this yields a median of 44295 nodes for the

largest subtree. Thus, we add a penalty of 44295-2887 = 41408 to the parallel time

at each synchronization point where 256 processors are employed. Figure 1.3 shows

the parallel efficiencies, once the penalties for randomness in the size of work granules

have been taken into account.

Note t hat the theoretical parallel efficiency is dramatically reduced by using the

realistic critical tree instead of the perfect critical tree. For example, if we look a t

256 processors and a 107 node sequential search, Figure 4.3 shows speedups of 71, 67,

and 22 for branching factors of 38, 10 and 3, respectively. The equivalent theoretical

speedups from the perfect critical tree are 222, 200 and 91. This leads us to suspect

that there are large potential gains from removing or reducing the effect of global

Size of Sequemial Search (Numbr of Bottom Positions)

Figure 4.3: Synchronous Yodel. Efficiency on Realistic Critical Tree

synchronization points in the search.

4.5 Analysis of Asynchronous Game-Tree Search

The asynchronous search algorithm that we will explore will be based on a general-

ization of Newborn's UIDPABS search [69]. The algorithm will partition the game

tree amongst the available processors. The processors can then continually search

their own work to geater and greater depths, independently of al1 other processors.

The algorithm will use a fixed fanout of size m to recursively add more processes

to the system until we have one process for each of the n processors in the system.

The first process searches the root of the game tree until it has enough sufficiently

large pieces of work to hand to m processes. Then, the game tree is subdivided into

m independent processes on m separate processors. These m processes can search

their work independently of one another to successively greater depths. Each of these

rn processes can, hierarchically, partition their work to create another group of m

processors. This continues until al1 n processors have a process allocated to them.

Once a time limit is reached, al1 processes stop, combine their results and make

a decision regarding the best move in the position. The exact mechanism of how the

decision is reached is not germane to the analysis; the only important point is that dl

of the searches have been executed to a common search depth before the time limit.

4.5.1 Perfect Critical Tree Mode1

In the perfect critical tree, we have many stages before al1 of the processors are

completely busy. At first, only one processor searches the game tree, attempting to

generate enough work to keep rn processors busy. Let us define this minimum depth

as an x-ply search. Clearly, x is dependent on the number of processors that need

work, the nurnber of pieces of work each processor should get and the size of each

piece of work before it is handed off.

After this point, up to x' ply within the tree, m processors are attempting to

generate enough work to keep m2 processors busy This continues, recursively, until

al1 of the processors are completely utilized. Let u s define the search depth where al1

processors are working as a u-ply search.

Thus, the time required to search the tree in the asynchronous case will take

PARwnd, units of time, where:

x

PAR,,& = (x (size of k-ply search)) /l
k=l

i
+ ((size of k-ply search))/m

k=x+l

a."
+ (1 (size of k-piy search)) /m2

k=t'+l

d
+ + ((size of k-ply search))ln.

k=v+l

Using the formula for sequential tree size from 4.4.1, we can sum up each stage of

the iteratively-deepened search, to determine SEQWnd, which is exact Iy the same as

SEQCm1. Once this is determined, we can get the speedup SPDwnd.

However, there are a number of parameters that must be defined before we can

compute the sequentid time, the parallel time and the speedup. The first parameter

is the size of the fanout m. We want the fanout to be large enough so that the work

c m be distributed quickly to d l processors. However, if the fanout is too large, the

single process generating the pieces of work may take a prohibitive amount of tirne.

For the analysis presented here, we will use a fanout of m = 16 because of the number

of processors chosen.

We must also define how many pieces of work are to be created, and how big each

piece of work must be. Although each procgsor only needs one piece of work, we will

wait until each processor can be allocated 16 pieces of work. If the algorithm has a

load balancing system, 16 pieces of work will be sufficient to allow the workload to be

evenly distributed amongst the processors. More pieces of work per processor could

be sent out, but the key to achieving good parallelism is to minimize the number of

pieces of work we must wait for. This allows the parallelism to start up quickly.

Each of these pieces of work should have at least 20 nodes underneath the horizon

before the piece of work can be given to another processor. This ensures that there is

some stability in the minimax value for the piece of work. In the author's experience,

20 nodes is sufficient to guarantee some stability in the minimax value.

Figure 4.4 shows the parallel efficiency of the proposed asynchronous algonthm

for the same branching factors and processor configurations used in the analysis of

synchronous game-tree search. Using a 10' leaf node sequential search and 256 pr*

cesors, we see that we can achieve approximate speedups of 94, 161 and 133 when

the branching factors are 38, 10 and 3, respectively.

We note that there is a much smaller gap between the best and worst performance

as we vary the branching factor. This is to be expected, since there is no implicit

reliance on the branching factor in the definition of PARma. In the definition of

the theoretical parallel speedup for synchronous search, the branching factor is an

important variable in the formula.

Siui of Sequential Seanh (Number of Bottom Positions)

Figure 4.4: Asynchronous Model, Efficiency on Perfect Critical Tree

Another interesting point is that the speedup when the branching factor is 38 is

worse than the speedup when the branching factor is 10 or 3. The main reason for

this is the size of the steps taken in iterative deepening. By examining Figure 4.4

closely, we note that the parallelism seerns to start at a larger sequential search size

when the branching factor is 38 than when the branching factor is 10 or 3. It should

be noted that a smaller branching factor allows the algonthm to react quickly to the

availability of many pieces of work, and thereby achieve greater parallel efficiency.

4.5.2 Realistic Critical Tree Model

For the synchronous search algorithm in Section 4.4.2, we altered the mode1 to in-

troduce a factor to represent the maximum tree size when al1 processors are working

together. We will now proceed to add this factor to the theoretical parallel speedup

for the asynchronous algorit hm.

In terms of synchronization a t the end of the search, we are in a worse situation

with asynchronous algorithms. This is because there is no op port unit^ for the pro-

89

cessors to synchronize with one another during the search. Under the asynchronous

algorithm, they will always have sornething to do, but it may not be relevant to a

particular search. If a processor starts working on an iteration while other processors

lag behind, the search may be wasted. Without load balancing, some processors could

be waiting for others on the same iteration for a long time. Thus, we will assume that

there is some form of load balancing in place for the asynchronous aigorithm. This

load-balancing scheme was implicit in the synchronous mode1 given earlier since we

stated that the distribution of work was perfect except for the final piece of work.

If the parallelization horizon is a t v-ply, we can assume that we must complete

a (d - v)-ply search underneath that node. The same penalties that we imposed

on the synchronous mode1 can be imposed here. However, with an efficient load-

balancing scheme in place, aii of the processors will be doing useful work until the

final iteration; the penalty should not be assigneci until the 1st level. Thus, we will

assign the penalty only at the final level of a k-ply iteratively-deepened search. Unlike

the case of the synchronous algorithm analyzed earlier, penalties from a completed

k-ply search will not affect an iteratively-deepened (k + 1)-ply search.

Figure 4.5 shows the parallel efficiency of the asynchronous algorithm with the

penalty for synchronization inserted. There is little difference between the perfect

and realist ic cri tical trees for the asynchronous algorithm. This is expected since

there is only one synchronization point (at the end of the search) to womy about. For

a 107 node search using 256 procesors, we note that the pardlel speedup drops from

94 to 92 when the branching factor equals 38. The speedups also drop from 161 to

145 when the branching factor is 10, and from 133 to 121 when the branching factor

is 3.

It is important to observe that the curves taper off before reaching a perfect

efficiency. The synchronization penalty takes place on a (d - v)-ply tree for the

asynchronous algorithm. As the search depth d increases, the size of the tree that we

apply the penalty to increases at the same relative rate. Thus, the penalty becomes a

fued constant of the pardlel efficiency. Note that in the analysis of the synchronous

Size d Sequential Search (Nurnber of Bottom Positions)

Figure 4.5: Asynchronous Model, Efficiency on Realistic Critical Tree

algorithm, the work granule size was fixed. Thus, the penalty for a k-ply work granule,

where k does not increase with d, eventually becomes negligible in cornparison to the

overaII tree size.

The curves also have a sawtooth pattern as they approach the limit of their effi-

ciency in the asynchronous algorithm. This is because the number of leaves examined

in the last piece of work only increases every two ply, while the tree size increases

a t every ply. Thus, the relative penalty decreases and increases, depending on the

parity of the depth of search.

There are other overheads that should be examined in the asynchronous algorithm.

For example, the implicit assumption is that we know a priori the window that we

must search to determine the minima value at any given node. In practice, we do not

know the search window. Furthemore, in cases where we guess incorrectly, the work

must be re-searched with the correct window (just in case it is the final iteration). It

seems that we rnust use a process to keep track of the poor window choices and to

alert the workers of their mistakes.

Sizs of Sequemtial S e a h (Numbsr d Bonorn Pasitioris)

Figure 4.6: Comparing 3lodels on Perfect Critical Tree, n=256

This means that the processor must receive score information from the searchers

on a timely bais. Furthermore, the system is now centralized. causing potential

communication bottlenecks. The theoretical mode1 does not consider these things

but they are important in practice, as we shall see in subsequent chapters.

4.6 Summary

Let us now compare the synchronous model to the asynchronous model on both the

perfect and realistic cntical trees. The synchronous model outperforms the asyn-

chronous model on the perfect critical tree for the simulated chess and Othello game

trees examined (Figure 4.6). The simulation of checkers search trees show a slight im-

provernent for asynchronous search. However, the benefits of asynchronous game-tree

search are relatively clear once the realistic critical tree model is examined (Figure

4.7), especially for trees similar to those found in the game of checkers. This result

is not surprising; global synchronization can impose a huge cost on game-tree search,

Size of Sequantial Search (Numbar of Boltom Positions)

Figure 4.7: Comparing Models on Realistic Critical Tree, n=256

and should be minimized if possible.

However, the synchronous game-tree search algorithm will event ually catch up

and overtake the proposed asynchronous algorithm on the realistic crit ical tree, given

a sufficiently long search. The global synchronization is relatively large at the be-

ginning of the synchronous game-tree search algorithm, but decreases the search

depth increases. Whether the synchronous or asynchronous search algorithm per-

forms better will depend on the time limit. For the relatively short time constraints

under which moves must be selected in chess, Othello and checkers, the asynchronous

search algorithm seems to be favoured.

It is very difficult to determine whether synchronous or asynchronous game-tree

search is better suited for a given real-world application. Important considerations

have not been addressed by this theoretical framework that impact on one or both

of the parallel search implementations. The requirements for sharing transposition

table entries, centralized versus distributed control, message latency and bandwidt h,

the ability to guess the correct ap search window and the time limit for making the

93

move decision are al1 important factors in determining the actual performance of the

algorit hms.

These benefits and drawbacks should not only be exarnined in a theoretical man-

ner, but also on real game trees using real game-playing programs. Before we can

study asynchronous game-tree search on real game-playing programs, we must de-

velop a working implementation that can be tested. The implementation of APHID,

a parallel game-tree search library using the asynchronous algorithm described in

Section 4.5, will be described in the next cbapter.

95

This chapter introduces the Asynchronous Parallel Hierarchical Iterative Deepen-

ing (APHIDL) game-tree search algorithm. APHID represents a departure from the

plethora of synchronous algorithms described in Chapter 3 and has been designed to

address the aforementioned problems. First, the algorithm is asynchronous in nature;

it removes al1 global synchronization points from the a@ search and from iterative

deepening. Second, the algonthm does not require a shared transposition table for

move ordering information, although one can be used if duplicate detection is im-

portant in the underlying application. Third, parallelism is only applied at nodes

that have a high probability of needing parallelism, and this decision is based on the

best information amilable at a given point in time. Finally, APHID is designed to

easily fit into an existing sequential aPbased search algorithm. APHID has been

implemented as a game-independent library of routines. This library, combined with

application-dependent routines that the programmer supplies, allows a sequential aB

program to be easily converted to a parallel ap program. Although most parallel ap

programs take months to develop and debug, the garne-independent library allows

programmers to integrate parallelism into their apbased application with only a few

hours of work.

APHID subdivides the tree into many distinct pieces which each process can search

independently of al1 other processes. Figure 5.1 gives an example of how the game

tree would be divided into distinct portions by the APHID algorithm. The figure

shows us a single-level master/slave hierarchy. A single master process controls the

top d ply of the game tree, including the root. The leaves of the master's dt-ply tree

are the pieces of work that each slave process examines. Each of the k slave processes

get a portion of the pieces of work on the horizon. %y only analyzing the pieces of

work allocated to them by the master, the k processes subdivide the remainder of the

garne tree, as illustrated in the figure.

In APHID, the master process makes repeated searches or passes over its part of

the game tree. The top part of the tree is smdl and is quickly searched by the master

l An aphid is a soft-bodied insezihat su& the sap korn plants.

% = PlECE OF WORK

d

Figure 5.1: APHID Partitionhg Game Tree Amongst Processes

process. The master tells the slaves about new pieces of work that it uncovers, and

can delete pieces of work that are no longer releva&. The master may move pieces

of work from one slave to another for load-balancing purposes and subdivide a piece

of work into many smaller pieces of work.

At the horizon between the master and the slave processes in APHID (as illus-

trated in Figure 5.1), each x dong the horizon represents a piece of work that the

master has given to a specific slave. Each slave is given a number of pieces of work.

The master informs each slave of the relative importance of each piece of work.

Each slave is responsible for searching al1 of its allocated pieces of work to the

same depth, plus any extensions that the master requires. Instead of waiting for the

master to inform the slave to what depth each piece of work should be searched, the

slave uses iterative deepening to search each piece of work deeper and deeper until

the master tells the slave to stop. Thus, the slave is always searching one of its own

pieces of work, independently of the other processes. The slave informs the master of

the minima value of the searches as soon as they are determined, and periodically

listens for important update messages from the master.

By partitioning the game tree in this manner, APHID's performance does not rely

on the implementation of a global shared rnemory or a fast interconnection network

between the processes. This makes the APHID algorithm suitable for loosely-coupled

architectures (such as a network of workstations), as well as tightly-coupled architec-

t ures.

The APHID algorithm has been implemented as an application-independent li-

brary of routines that can be easüy ported to any apbased application. The li-

brary has been designeci to provide minimal interference with an existing sequential

search algorithm. APHID uses cd-back functions and application-dependent vari-

ables provided by the programmer to access vital information from the sequential

search algorit hm.

The APHID library is also portable across various parallel and distributed archi-

tectures. APHID is coded in the C programming laquage and uses PVM [35], a

portable message-passing interface, to allow a large selection of parallel hardware to

use the APHID library without the user having to modiS the source code.

In this chapter, we will discuss the rnechanics of the APHID algorithm and the

application-level interface. Section 5.2 discusses how the APHID algorithm performs

the asynchronous search. Section 5.3 gives an in-depth example of how APHID oper-

ates during a parallel search. Section 5.4 illustrates the external interface of APHID,

and how the algorithm integrates with an existing sequential ap-based algorithm.

5.2 Interna1 Mechanics of the APHID Algorithm

As mentioned in the introduction, APHID c m be viewed as an asynchronous mas-

terislave program. A master process is responsible for organizing the search on a

number of slave processes, but never globally synchronizes the slaves during the search

itself. For a depth d search, the master is responsible for the top d ply of the tree.

The remaining (d - 6)-ply are searcheci by the slaves.

Figure 5.2 illustrates graphically where work is allocated over the course of a

typical APHID and YBWC* search. Each location marked with an x shows where

the parallelism typically takes place. Although more parallelism could be generated in

YBWC*, we should note that each x dong the left side of the YBWC* tree represents

a global synchronization point.

APHID YBWC*

Figure 5.2: Location of ParalIeIism in Typicd APHID and YBWC* Search

We will start by describing the processes and illustrating the interactions between

a master and its slave processes (Sections 5.2.1 to 5.2.3). Eùrther sections descnbe

how the hierarchy of processes is constructed (Section 5.2.4) and how the work load

is balanced amongst the processes (Section 5.2.j). Finally, we discuss the implemen-

tation of a novel distributed transposition table mechanism that has been added to

the APHID library of routines (Section 5.2.6).

5.2.1 Operation of the Master in APHID

In general, when a master process is informed that it must execute a d-ply search of

the game tree, it continudly repeats the following five steps:

1. Execute a quick search (or pass) of the dr-ply tree using a/3. The search uses

exact or guessed evaluations of the remaining (d - d')-ply of the tree at the

leaves of the dr-ply tree.

2. If we have detennined an accurate d-ply minimax value during the last p a s ,

exit the loop.

3. Compute any required changes to the work lists.

4. Inform slaves of changes to their work lists.

5. Wait for new information from a slave process before going back to the first

step.

The E s t question that is raised is why does the master continually search the

di-ply game tree? The master continually obtains new information on the leaves of

the dl-ply tree fiom the slaves. There are two alternatives for updating the dl-ply tree

to determine a minimax value. The first is to maintain the top part of the game tree

in memory and update the tree in place as results are returneà. This method was

suggested for Hsu's queued processor array mode1 [41]. The second is to repeatedly

traverse the d'-piy tree until an accurate minimax value has been detemined on one

of the searches of the tree. Hsu's choice was based on the relatively large tree that

must be maintained within the host workstation. The parallelization horizon d is

usually small in APHID, and we cannot assume that a game tree representation is

given to us by the search algorithm. Thus, the second approach is taken in APHID.

Now that we understand why we search the tree repeatedly, we will deal with the

details of how the master conducts a search of the df-ply game tree. When the master

reaches a leaf node at the artificial horizon of the 6-ply tree, the master must decide

whet her to give this work to a slave or search the node itself. We define the variable

g to represent the minimum number of ply required for a slave process to be allowed

to search the node. This is often called the minimum gmnulanty for a piece of work.

Thus, a ieaf node that needs to be searched to g ply or greater is transmitted to a

slave process. Leaf nodes of the d-ply tree that require less than g ply of search are

carried out by the master, since they are deemed to be too small to be handed to

another process.

Assuming that the leaf has been given to a slave in a previous or the current pass

of the tree, we must determine a minimax value for the leaf so that the master may

complete the a0 search. If the slave has already given the master a (d - dl)-ply search

result, that value is used2. If the (d - 8)-ply result is unavailable because the slave has

21n the implementations presented here, we do not use deeper ply d u e s even if they are available.
This will be discussed in subsequent chapters.

not reached that depth of search, or the (d - dl)-ply result has returned a bound that

yields insufficient information on the minimax value with respect to the a@ search

window, then the algorithm guesses at the minimax value. Any node where we are

forced to guess at the minimax value is marked as an uncertain node.

As minimax values get backed up the tree during the search, the master maintains

a count of how many uncertain nodes have been visited in a pass of the d-ply tree. As

long as the score at any of the leaves that are currently within the master's dl-ply tree

are uncertain, we have not determineci the minimax value a t the root with certainty,

and the master must execute another pass of the d'-ply tree. Once the master has a

reliable value for al1 the leaves in its d'-ply tree, the minimax value of the complete

d-ply tree is known, and we exit the loop. Generally, the application would proceed to

the next iteration by incrementing d and asking the master to search the tree again.

Earlier, we avoided defining exactly how the algorithm generates a guessed mini-

max value. The reason for this is that generating a guessed minimax value at a leaf

node is a very complex issue, and will be covered in-depth in the following paragraphs.

The guessed score aigorithm attempts to find a result which completely determines

the minimax value with respect to the search window. For example, if the search

nindow is (0 4 and the guessed value is 5 5, the guessed value does not tell us

anything relevant to the ap algorithm. The search window (0,2) tells us that we want

to know whether the minimax value is 5 0, equal to 1 or 2 2. The algorithm checks

successively shallower depths of search returned by the slave until we get a result that

is a, 2 P, or an exact min ima value. This is guaranteed to happen, since the

master stores an exact evaluation of a leaf node when the leaf is fint generated and

given to a slave.

The first definition of the best available result used in the APHID algorithm was

the largest search result that had the same parity of depth. This definition was

chosen since some applications exhibit an odd/even effect. Thus, APHID only used

3~ program that exhibits an odd/even &kct d have oscillating minirnax d u e s as we use
iterative deepening to search the tree to deeper levels. However, when we look at only odd search
depths or even search depths, the minimax values are stable.

101

even search depths for guessing an even search depth, and odd search depths for

guessing the value of an odd search depth. This definition was originally believed to

be sufficient ta cover the majority of applications, and was present in earlier tests of

the APHID library [15, 161.

However , as numerous applications were tested, some deficiencies in t his algorithm

became clear. The first is that some programs do not exhibit an oddleven effect

in tactical positions; using the result of the same parity can drarnatically alter the

master's dl-ply tree. For example, if a tactical combination is determined at (d - 1) ply

that changes the principal variation, using guessed values from (d - 2) ply will cause

the tree to revert to the old principal variation and the program must re-discover the

combinat ion.

-4nother serious deficiency occurs when the minimax value of the principal vari-

ation drops, but will still be the best move for a depth d search. If the (d - 2)-ply

minimax value is 5, and the d-ply value for the principal variation drops to 3, the only

information that we have for the other variations is that the minimax value is 5 5

at (d - 2) ply. The algorithm believes that the best move is worse than every other

move choice. The APHID algorithm atternpts to prove that each of the alternative

move choices is better, and fails on each move. Every change in the best move choice

at the root of the game tree causes the master's tree to change dramatically, and this

yields severe performance degradation.

In Iight of these concems, a new definition of best available result was required.

The current definition can use any ply value, not just the deepest available result of

the same parity of depth. However, we should not use the result returned by the slave

directly. We must scale the slave's rninimax value, based on the difference between

the minimax value of the full search that it was generated for and the hypothetical

minimax value of the current search. For example, if the current search has a h y p e

thetical minimax value of 5, and we wish to use a result of 5 6 fkom a search that

had a minimax value of 7 at the root of the game tree, we would add the difference

of the minimax values (5-7) to the result. Thus, the value changes from 5 6 for the

Table 5.1: Example of Information Used to Determine Guessed Minimax Value

earlier search to 5 4 for use as a guessed minimax value in the current search.

This scaiing algonthm is necessary to guarantee that a node a e c t s the search

tree in the same way as it previously affecteci the search tree. If the old search result

(5 6) was sufficient to cause the tree to be pnined in the earlier search, the guessed

value (5 4) will be sufficient to prune the search tree in the current search. Thus, the

master's search tree does not change until new information is given to the master.

Let us follow a complete example of how the guessed score aigorithm would behave

a t a sample leaf node of the master's dl-ply search tree. Assume that the master has

reached a leaf node with the search window (-10, 8), and we want the minimax value

of a 6-ply search. From the search window and the definition of LLB, we want to

determine a minimax value that is 2 -IO,? 8, or an exact value in between those

two bounds. For the purposes of the algorithm, assume tha t the hypothetical minimax

value is -2. In Table 5.1, the first row of numbers represent the ply that the leaf node

has been searched to on the slave. The second row represents the values returned

by the slave for each search depth. The third row represents the minimax value of

the complete d-ply search that this search depth is associated with. If we do not use

search extensions or reductions, d is equal to d' plus the search depth given in the

first row. The fourth and final row represents the values returned by the slave, scaled

by the difference between the hypothetical minimax value, -2, and the minimax value

of the earlier search (as given in the third row). Unknown values that have not been

sent to the master are represented as a question mark (?).

The algorithm starts by looking a t the scaled 6-ply result, and determines that

the value is not available. Thus, the algonthm proceeds to the 5-ply scaled result.

This result of 5 20 is not of interest, since it doesn't tell us where the minimax value

lies with relation to the search window (-10, 8). We proceed to the 4-ply result, where

4
2 2
-3

2 3

3
= -6
-1

= - 7

Ply Of Slave Result
Result Returned By Slave

Minimax Value of Fidl Search
ScdedResdtReturnedBySlave

5
5 15
- 7

5 2 0

1

5 -8
5

5-15

O
= 20

3
=15

6
?
?
?

2
2 20
7
211

we have a scaled value of 2 3. Although this result is interesting, it does not tell US

whether the minimax value is 2 8 or, if the value is in between 3 and 7, what the

exact minimax value is. Thus, this value is &O insufficient to terminate the search.

The algorithms proceeds to the 3-ply result, with a scaled minimax value of -7. Since

this result is exact, this scaled value is used by the master as the evaluation of the leaf

node, the node is marked as uncertain, and the master's search is ailowed to continue.

It is important to note that the 1-ply and 2-ply result would also be suscient to

terminate the search, since the scaled minimax results are 5 -10 and 3 8, respec-

tively. Also note that the O-ply result is s a c i e n t to terminate the search since the

scaled result is dways an exact value and not a bound on the minimax value.

When we described the definition of uncertain nodes, we alluded to the fact that

the (d - dl)-ply search result may be insufficient for the master to determine the

minimax value. We have seen examples where a scaled minimax value from an earlier

search may not be relevant to the search window. This can also happen with the

(d - dl)-ply search result. If we do not remedy the situation by determining a useful

(d-dl)-ply search result, the node will remain uncertain and the d-plp search will never

terminate. Thus, the slave responsible for searching the node must be informed that

it needs to execute a "bad bound" search. When a bad bound search is generated, the

depth of search and the search window that must be searched are comrnunicated to

the slave process. Clearly, any nodes where we are waiting for bad bound information

to be updated by the slave are considered as uncertain by the master, since we must

use the guessed score algorithm to determine a likely minimax value. In a future pass

of the game tree, the slave will return updated minimax value information that is

consistent with both the original information and the search window requested4.

The master obtains information as the search of the d'-ply tree is executed. The

moves that are played to reach the leaf node are obtained as we descend the search

41t may happen that the origind search and the boundn search are inconsistent with one
another, through the use of search extensions that rnay or may not be triggered baseci on the search
window used. In this case, the search explicitly requested by the master ovemdes the information
that had been previously storeà.

tree. In some positions, we may not want to search a given piece of work to (d - df)

ply as we did in the sequential algorithm. Search extensions and reductions may be

applied to the node in the master's d'-ply tree. The adjustment to the required search

depth is determined before we attempt to evaluate the leaf of the d'-$y search tree,

so that it rnay be transrnitted to the appropriate slave process.

Additional information is also acquired as we back up the master's search tree. We

can determine upper and lower bounds on every node within the master, including

the root of the game tree. Furthemore, we have a hypothetical principal Mnation

from the last pass of the master's tree that can be used at any time during the search.

The number of uncertain and reliable leaf evaluations is also availabIe to the

application. We can use this additional information for a sophisticated termination

algorithm. For example, if there is only one uncertain node left in an iteration, and

the application has reached the time limit, the time limit might be extended for a

few seconds to allow the search of the last piece of work to complete.

Before deciding to start searching in parallel, APHID aiso obtains information on

the frequency and location at which nodes are generated during the search of the

game tree. These statistics are stored in a table that is organized by ply number.

APHID uses advice from the user along with these statistics to determine when to

start parallelism.

To be precise, we attempt to generate hypothetical values for df and g, based on

their definitions. The user, as we shall see in Section 5.4, defines the minimum number

of pieces of work per slave process, and the minimum average size of each piece of

work. According to the APHID algorit hm, the definition of the parallelization horizon

d' is the smallest ply within the game tree where we routinely search k nodes or more.

k is the user-set minimum number of pieces of work per slave process multiplied by

the number of slave processes. Similarly, the minimum granularity g is defined as the

difference between d' and the smallest ply within the game tree where we routinely

search 1 nodes or more. 1 is the user-defined minimum size of each piece of work

multiplied by k, as defined earlier.

105

If hypothetical values of d' and g can be satisfactorily determined by the statistics,

the search starts in parallel with those parameters. Otherwise, the full d-ply search

is done sequentially by the master. It is important to note that the size of the tree

searched in each iteration increases. Thus, the search will eventually grow large

enough to define values for d' and g.

As a final note, APHID solves one of the problems that synchronous algorithms

have with respect to initializing paralielism incorrectly at a potential type-2 node.

By using the guessed scores when accurate information is not available, the APHID

algorithm automatically determines if a subûequent child is likely to generate a cut-off

at a failed type-2 node. If it seems likely that a child will generate a cut-off based

on guessed values, the children of the failed type2 node are evaluated sequentially.

If it seems unlikely that the node will be pruned due to low minimax values, the

search would continue for a promising node at that branch in parallel. This is al1

handled automatically by the c . 0 routine combined with the estimated and/or accu-

rate minimax d u e s . The handling of a hypothesized type-2 node is stronger than the

equivalent scenario in the YBWC algorithm, which ignores previous score information

available for some branches of the failed type-:! node. In the full version of YBWC*,

application-dependent information is used to do what APHID handles automatically

with the crp algorithm.

5.2.2 The APHID Table

If a leaf node is visited by the master for the first time, it is allocated to a slave

process. This information is recorded in a table, the APHID table, that is shared

by al1 processes. Figure 5.3 shows an example of how the APHID table would be

organized a t a given point in time.

The table is replicated on the master and slave processes. However, each slave

process only knows of the entries relevant to it within the table. For example, in

Figure 5.3, the first slave only knows about the entnes for 1, 4 and 7, and does

not know of the existence of the other entries. The master, which is responsible for

Slave 1 Slave 2 Slave 3

Figure 5.3: A Snapshot of APHID Search in Operation

distributing the work to al1 of its slaves, has copies of every table entry. Thus, there

are two copies of a given entry in al1 of the processes' APHID tables.

The master and slave only read their local copies of the information; there are

no explicit messages sent between them asking for information. The entries in the

APHID table are partitioned into two parts: one which only the master can mi te to,

and one which only the slave that has been assigned that piece of work can write to.

Any attempt to write into the table generates a message that informs the slave or

master process to update its replicated copy of the table entry.

The master's half of the table is illustrated above the dashed line in Figure 5.3.

For each leaf that has been visited by the master, there is an entry in the APHID

table. Information maintained on the leaves includes the moves required to generate

the leaf positions from the root R, the approximate location of the leaf in the tree

(which is used by the slave to prioritize work), whether this leaf was visited on the

last p a s that the master executed, and the number of the slave that the leaf was

107

allocated to.

In Our example, we can see that roughly the same number of leaves have been

allocated to each slave. Note that there is an additional leaf, 8, that is not represented

in the master's 6-ply search tree. This leaf node has been visited on a previous

p a s of the dr-ply search tree, and was not visited on the latest pas. However, the

information that the slave has generated may be needed in a later pass of the tree

and is not deleted by the master. Leaves are initially allocated to the slaves in a

round-robin manner, and may move due to load balancing (as described in Section

5.2.5). Although there may be better methods of allocating leaves, it has been found

that this is a reasonable method of initially balancing the load on a small number of

processes.

The slave% part of the table, illustrated by the area below the dashed line, contains

information on the minimax value at various depths of search. The best information

(with respect to search depth) and the ply to which the leaf was examined is given

underneath each leaf node. For leaf 1. the score retumed is -1 with a search depth of

4. Leaf 3 illustrates that the score information retumed by the slave is not necessarily

an exact number. The slaves maintain both an upper bound and a lower bound on

the minimax value for each ply of search depth. Clearly, the value is known to be

exact when the upper and lower bounds are the same. In Figure 5.3, we note that

only a single bound is shown to make the figure l e s complicated.

Early irnplementations allocated space for a large number of possible entries in

the APHID table before the beginning of each search. These irnplementations had

difficulties because of the size of the data structure; the APHID table took about half

of the 8 MB of M M available on some cornputers. Thus, the current version of the

APHID algorithm features an APHID table that is gown dynamically by the master

and slaves. As more entries are required on a process, more locations to store the

ent ries are dynamically created. This allows the applications being parallelized with

APHID to use the majority of the memory available on the system, if needed.

5.2.3 Operation of Slave in APHID

A slave process essentially executes the same code that a sequential a0 searcher

would. The process simply repeats the following three steps until the master tells it

that the search is complete:

1. Look in its portion of its local copy of the APHID table, and find the best node

to search.

2. Execute the search.

3. Report the result back to the master (fetching any update to its APHID table

in return).

The first work selection cntenon is based on the depth to which the slave has

already searched a node. Nodes with shallower search depths are preferred over those

with deeper depths, because they represent more work t o be done. As we can see

for Slave 1 in Figure 5.3, leaves 1, 4 and 7 have been searched to 1, 3 and O ply,

respectively. Thus, Slave 1 is attempting to search leaf 7 to 1 ply, and will continue

to search leaf 7 up to 3 ply using iterative deepening, if no new work arrives from the

master.

Although we have not shown the information in Figure 5.3, each of these pieces of

work need not necessarily be searched to the same depth. If the master has told the

slave that there is a depth adjustment of 2 for a given piece of work (for example, a

search extension of 2 ply), the piece of work must be searched to depth (k + 2) while

the other pieces of work are searched to depth k. Thus, the depth adjustment must

be subtracted from the depth dready searched in the algonthm given above. This

allows work that must be searched to varying depths to have the same priority.

The second criterion is the location of the node within the master's game-tree.

This criterion is necessary since it is usually beneficial to generate the results in

a left-to-right order for the master. Children of nodes are usually considered in a

best-t+worst ordering, implying that the left-most branches a t a node have a higher

109

probability of being useful than the right-most ones. For Slave 2 in Figure 5.3, leaves

2 and 5 have both been searched to 5 ply, but leaf 2 is being searched in the slave to

6 ply since it is further left in the tree than leaf 5.

Unfortunately, maintaining a complete ordering of each leaf in the d'-ply tree c m

be expensive. Thus, APHlD uses a priority scheme to give an approximation of this

second criterion. For each type4 node that is traverseci as a move path is generated,

4 is added to the priority. Since the root is a type4 node, al1 nodes that are visited

on a p a s have a minimum priority of 4. If the node is judged to be part of the critical

tree, two is added to the priority. This favoun critical work over speculative work

in cases where the guessed minimax values are incorrect. The final adjustment is an

addition of 1 if we are evaiuating one of the first few uncertain nodes. This final

adjustment ensures that the search proceeds in a roughly left-to-right manner when

the other priority determinants are equivalent. If a node is not touched on a p a s of

the master's tree, it is given a priority of zero.

A node that has a priority of zero will not be selected for further search by a slave.

For Slave 3, we notice that Leaf 8 would be searched if i t had been visited by the

master on the latest p a s . Leaf 8 is ignored by the scheduling algorithm because it is

not currently part of the master's tree.

Each process may have many pieces of work to examine each time it decides to

choose a node. In earlier versions of APHID, the algonthm would search through

every entry for the best node to evaluate. This proved to be costly, since 99% of the

entries were empty in a typicd parallel search.

APHID now maintains a doubly-linked list of priority buckets for each depth of

required search. A bucket is designed to hold a fixed number of locations within the

APHID table that correspond to the same priority. Each bucket contains a pointer

to the previous and next bucket in the list, the priority and the adjusted depth that

each entry in the bucket has been solved to. For each depth of search, the buckets are

kept in order of decreasing priority, making it easy for the algorithm to find a bucket

and, thus, an entry with the highest priority and/or the lowest search depth.

The slave can determine to what leve1 each node must be searched. If there are

nodes that must be searched for the current iteration of the master, the node with the

highest priority is always scheduled until it has been searched to the requisite depth.

When al1 nodes at a slave have been searched to the required depth, the nodes at the

lowest search depth have their search extended, with priority values as a secondary

consideration.

Before a search can be executed, an ap search window must be generated by the

slave. The master continually advises the slaves of the leaf's priority value, and the

hypothetical value of the root of the master's tree. Although the width of the search

window is application-dependent, we normdly want to eenter the window around

this hypothesized root value. If we are certain of the minirnax value of the leftmost

child at a type4 node, we would typically use a nuii window to search the alternative

branches. However, if we are uncertain of the minimax value, the window should be

marginally larger to reflect this uncertainty. This uncertainty should also be taken

into account when we start speculative searches for future iterations, since we have

no information on the minirnax value at the next ply. In each of the programs tested

in Chapter 6, the window selection algorithm described above has been used. The

algorithm has been customized for each application, based on the scale and variance

of the evaluation function.

When reporting the search result back to the master, a count of the number of

nodes is returned to the master dong with the minimax value. These node counts

are used in the load-balancing algorithm, as we shall see in Section 5.2.5.

The cost of creating and sending a message to the master for each piece of work

may be prohibitive if the interconnection network is slow and the slave process gen-

erates results quickly. Furthermore, at the beginning of the parallel search, there are

a large number of results to be sent to the master. If each result is sent in a separate

message, the master will become congested with message t r a c . For these reasons,

the score updates sent from the slave to the master are buffered before the results are

sent. APHID does not allow score updates to be sent unless the slave has searched

111

at l e s t m nodes since the 1 s t score update was sent. rn is based on the number of

processors in the system, and the number of nodes per second that the application

typicall y searches.

There are three types of update messages that a slave receives from the master: a

new piece of work has been given to a slave process, the location of a leaf node within

the master's tree has changed (changing the secondary work scheduling cnterion),

and notification of a "bad bound" on a node. The bad bound message alerts the

slave that a position's search information is insufncient from the master's point of

view. In this case, the slave m u t re-search the node with the ply requested and the

u/3 search window selected by the master.

As a performance improvement, we want to force the slave to always work on

nodes for the current search depth of the master. When al1 the slave's work has been

searched to the required depth, the slave starts researching its work speculatively

in anticipation of the next iteration (depth d + 1). The slave routinely checks the

communication channel for messages from the master as it searches a piece of work,

since the APHID algorithm m u t be able to respond quickly to "terminate search"

messages from the master. If the slave receives a new piece of work to do at (d - d')

ply or less, the speculative search is immediately aborted and control is returned to

the slave's scheduling algorithm. The scheduling algorithm will force the required

work to be executed before the speculative work can continue.

Depending on how the score updates are buffered, there may be a significant delay

in the master receiving the final score update for the current search depth. Thus, we

force the master to recognize that the slave process has finished its work for the

current search by flushing the score update buffer as the 1 s t piece of work for a d-ply

search is completed.

At some points during the search, a slave process will have no work to examine.

This occurs routinely a t the start of the search when the master is searching the tree

sequeotially. If a slave process has no work to execute, it iteratively searches the root

of the game tree while waiting for a piece of work to examine. This root-node search is

112

treated as a speculative search, and is useful for seeding the move-ordering heuristics

with information before the search is started in parallei. However, this root-node

search may not always be beneficial if information is shared amongst processes, as we

shall see in Chapter 6.

Using a single master and many slaves will eventually cause a communication bot-

tleneck at the master. Although we have limited Our previous discussion to a single

master/multiple slave relationship, APHID allows the implementation of a hierar-

chical structure within the processes. A mid-level process can behave as a slave for

its parent, and a master for the processes underneath it. This will spread out the

communication congestion at the pinnacle of the process hierarchy.

In the current implementation of APHID, this hierarchy is determined by the user

before the program is started. This allows APHID to be responsible for creating the

processes on the requested cornputers, and starting up the interproces communica-

tion package. Over the course of a run of the application, the hierarchy is static and

cannot be changed. There are many schemes in the literature for making dynamic

process hierarchies, as we have seen in Chapter 3. However, the static hierarchies are

sufficient t O alleviate the communication bot t lenecks, assuming the resources being

used remain constant.

5.2.5 Load Balancing

Mthough the master attempts to give an equal amount of work to each slave in

APHID, neither the master nor the slave can predict the arnount of effort required to

cornplete a (d - df)-ply search for a given piece of work. Thus, load imbalances can

occur based on the allocation of work to slaves.

-4s part of a p a s of the dt-ply tree, the master cornputes how many uncertain

nodes it is waiting for from each slave. The master can move leaves of the d'-ply

tree from an ovenuorked slave (a slave with a large number of uncertain nodes) to an

113

undenuorked slave (a slave with no uncertain nodes). This yields a tradeoff between

faster convergence for a given ply search of the tree and additional search overhead,

since the previous searches for the piece of work to be moved must be re-searcheci on

another processor.

The load-balancing algorithm always attempts to strip pieces of work away from

the most overworked slave at the current point in t h e . The algorithm prefers to take

pieces of work that are small, since they lead to smaller search overheads. To prevent

the piece of work that the slave is working on kom being taken by the master, the

first uncertain node encountered on each slave durhg a p a s cannot be considered for

load-balancing purposes. Another stipulation is that the same piece of work cannot

be moved twice in a row; this prevents a very small piece of work from being passed

from process to process.

Another cause of a load imbalance is a piece of work that is much larger than the

other pieces of work. For example, the search tree for the node along the principal

variation is generally much larger than the last subtrees examined during a sequential

search. When we have such a large piece of work, we would like multiple processes to

participate in generating the minimax value. Thus, we need a mechanism that breaks

a large piece of work into a number of srnaller work pieces that can be distributed

(via the load-balancing algorithm) to ot her processes.

One method of accomplishing this is moving the master's parallelization horizon

deeper within the tree for a large piece of work. This allows the master to subdivide a

single piece of work into many smaller pieces of work. It could be said that the large

piece of work is ezempted from the parallelization horizon a t df-ply. In Figure 5.4, we

see an example of how the horizon c m change when exemptions are used. Note that

new pieces of work created from exemptions can also be exempted.

The master within APHID is responsible for determining the pieces of work tu

be exempted, since the master can calculate how much effort has been devoted to

each piece of work. In between passes of the tree or in between iterations, the master

determines the largest pieces of work that have been explored for the last few itera-

Horizon Between
Master and Slave
Processes

Without Exemptions With Exemptions

Figure 5.4: An Example of APHID's Horizon, With and Without Exemptions

tions, dong with the average size of each piece of work. If the size of the largest piece

of work is v times the size of the average piece of work, the largest piece of work is

exempted in future searches. In the current implementation, v is a parameter that

can be found in the APHID algorithm, and modified to suit the application.

The nature of the ap algorithm does not guarantee that many more work granules

will be created if we only extend the horizon by a single ply. For example, if the node

to be exempted is a type-2 node, the search will likely generate a single type-3 node.

When APHlD exempts a large piece of work, APHID always extends the horizon by

2 ply to guarantee that the work will be split into multiple pieces.

5 .Z.6 Distributed Transposition Tables

Insofar as possible, a master in APHID endeavours to keep a piece of work on the

slave process that it has been assigneci to. This allows ail of the move ordering

information to be stored locally. In some domains, such as checkers and chess, the

duplicate detection feature of the transposition table is as important as the move

ordering information stored in the transposition table. For these domains, sharing

transposition table information is vital to achieving high parallel efficiency. Therefore,

a distributed transposition table has been integrated into the APHID library as a

supplement to the asynchronous algonthm.

There are many distributed transposition table aigorithms in the literature. As in

other parts of APHID, the goal is to achieve the sharing of transposition table entnes

with minimal use of communication and without requiring the use of shared memory.

Thus, a general-purpose scheme cannot generate a message per node exarnined; this

would clog the interconnection network between the machines participating in the

search. A depth-limited scheme that only inquires about nodes a fixed number of ply

away from the root shows more promise, but the majority of the benefits are already

encapsulated within the mater's df-ply search tree. Thus, a new algorithm is needed

for sharing transposition table entries over an interconnection network.

In the APHID model, we have only described communication between a master

process and its slaves; slave processes cannot communicat e directly wit h one anot her.

However, slave processes that have the same master are peer processes. For the

purposes of sharing transposition table results, they should be allowed to communicate

with one another directly. We define any pair of slaves that have the same master as

peer slave pmcesses.

When APHID creates all of the processes, we keep track of the next peer slave

process that is spawned, and allow one-way communication from a slave process to

the subsequent peer slave process. We also allow the last peer slave process in the

process list to communicate with the fint, creating a complete cycle.

Instead of transmitting requests for specific nodes to another process, we accu-

mulate information within a small transposition table which is called the shadow

transposition table. The existence of APHID's shadow transposition table is hidden

from the application. Over the course of the search, APHID attempts to store the

transposition table entries that are most likely to be usehl in the shadow transposi-

tion table. In general, entries that are closer to the root of the garne tree are more

useful. Thus, the shadow transposition table entries are selected based on search

depth.

As a slave communicates search results back to its master, the distributed t r a n s

116

position table algorithm is permitted to send its own shadow transposition table to

the next peer slave process. After the message is sent, the shadow transposition table

is cleared and the slave begins to fiil up the shadow transposition table again with

information from the next work granule.

When a slave receives a shadow transposition table, the slave inserts the shadow

table entries into the slave's local transposition table. APHID then immediately

forwards the message to the next peer slave process. Once the message goes around

to d l of the peers and retums to the original sender, the original sender is allowed to

send out new shadow transposition table information. A given slave is not permitted

to send out another shadow transposition table until the message completes the entire

cycle of peer slave processes and returns to the original sender. Thus, each slave can

have at most one outstanding shadow transposition table being sent amongst its peer

slave processes.

It may seem wasteful to imrnediately forward peer slave update messages, espe-

cially if we receive the message in the middle of a search. Unlike other messages in

the APHID system, the peer slave updates are time-critical. If a peer slave update

takes too long to reach a process, the search results within the message may have

already been replicated by the process. Thus, the utility of the message decreases as

the message transmission time increases. Therefore, it is imperative to get the table

entries to al1 peer processes as quickly as possible.

The size of the shadow transposition table is another important factor to consider.

As the number of shadow table entries increases, it takes more time to process the

message at each slave process. We would prefer a small and fast shadow table over

a large and slow shadow table, because the messages are tirnecritical. However, if

the messages are too small, they are l e s likely to assist the search. In Our tests in

Section 6.4, having a shadow transposition table with 128 entries was sufficient for

distributing useful and timely transposition table information between 15 slaves.

There are better schemes for broadcasting information, depending on the network

architecture being used. However, al1 communication might be serialized through

117

a small number of processes. Improved schemes which use hypercube-like links to

parallelize message sending are not useful under these situations. In some cases,

sending out more messages in parailel may hurt the overall performance of the APHID

algorithm by slowing down important master/slave messages. Thus, the simpiistic

broadcast mechanism described earlier is used in the current version of APHID.

One drawback of the shadow transposition table algorithm is that the process has

no idea whether the information that is being broadcast is usehi for another process.

Thus, a second hash table is used to retain the hash table locations that bave been

broadcast by other peer slave processes. The general concept is that if a process

generates the same 32-bit hash key as a hash key broadcast by another process, it is

likeiy that the two processes are searching the sarne position. In that case, the 32-bit

hash key is flagged as important, and any update to the information with that hash

key will be stored in the shadow transposition table, irrespective of search depth.

This second hash table is much larger in size than the shadow transposition table.

For the tests run in Section 6.4, the second hash table has 64K entries.

5.3 APHID in Operation: An Example

This section attempts to illustrate some of the algonthms and decisions during the

operation of a parallel search with the APHID algorithm. The example will illustrate

the slave scheduling algorithms, show examples of combining guessed and real mini-

max values, show how APHID balances the load on many slaves, and illustrate how

pieces of work are created, moved, and removed fiom scheduling.

We commence at a point in time where Figure 5.5 represents the current state of

the master's tree and of each of the 3 slaves assisting the master.

The master's tree is represented on the left-hand side of Figure 5.5. The master

has set the parallelization horizon for the search at d = 4 piy, and the application is

currently trying to search a 10-ply search tree.

For each position, there are only two move alternatives in the game tree to be

Figure 5.5: APHID Example, Part 1: Snapshot of Master Tree and Information from
APHID Table for each Slave Process

examined. An X appears in the diagram to indicate a path that is not explored. We

have labelled each position in the tree depending on the moves required to reach the

node. Starting at the root node (R), by investigating the first move (1) for the player

and the second move (2) for the opponent, we reach position 12 in the game tree.

The information on the right-hand side of Figure 5.5 represents sorne of the im-

portant information for each slave process. The upper left field in each rectangle gives

the identifier for the slave. The number in the upper right field represents the leaf

node that the slave is currently searching. For example, Slave 2 is searching position

1121, while Slave 3 is searching position 211 1.

The columns in the bottom part of each rectangle represent the work that each

slave has attributed to them, dong with the important statistics. The first column

gives the leaf node identification. The second column gives us the priority of each

piece of work. For example, leaf 1211 (Slave 1) has a priority of 11, while leaf 2221

(Slave 3) has a priority of O. The third column represents the depth to which the

leaf node in the first column has been searched by the slave. For example, leaf 1211

has been searched to 5 ply, but leaf 2221 has only been searched to 2 ply. The fourth

Il9

column gives us either the accurate minimax value returned for the correct depth of

search or the scaled guessed minimax value, depending on the depth of search. For

example, leaf 1112 has a minimax value of 16 which is accurate, since we are using

6-ply results from the slave to generate values for the full search depth of 10 ply. Leaf

2121 is using a guessed minimax value of 5 12 since it has only been searched to 5

ply on a previous iteration. It is important to note that the 9-ply minimax value for

the root node is 14, and that the best information for the current 10-ply search is

the same as the 9-ply value. Hence, there is no difference between the 4ply minimax

value and the guess at 10 ply. The fifth column, which is blank for al1 nodes in Figure

5.5, will represent the "bad bound" search information (the search window and the

depth of search).

Xow that we have described the information provided for each slave process, we

can note that each slave in Figure 5.5 is searching the highest priority node that has

not been searched to Bply. Slave 3 has already searched the highest-priority node,

11 12, to &ph, and must search the only other active node, 21 11.

Until one of the three slaves retums some score information to the master, the

master sits idle. Only when a score is retumed is another p a s of the tree executed.

In our example, we will simulate Slave 3 finishing the search of node 2111 to 6-ply,

and returning a bound of 5 14. We can see the changes in the master's next pass

reflected in Figure 5.6.

Information that changes in between the figures in this example are emphasized

with bold-faced text. Note that the depth of search has changed from 5 ply to 6 ply

for leaf 211 1. The minimax value shown for leaf 2111 (s 14) is an exact minimax

value, instead of a guessed minimax value. Also note that since Slave 3 has now

searched al1 of its non-zero priority nodes to 6 ply, it starts working on extending al1

of its non-zero priority nodes to 7 ply, starting with the highest priority node, 1112.

When the master gets the 6-ply result from Slave 3, it now recognizes that Slave

1 is the most overworked process, while Slave 3 has finished al1 of its work. Thus, the

master moves the node 2121 from Slave 1 to Slave 3, resulting in Figure 5.7.

Figure 5.6: APHID Example, Part 2: Slave 3 is Searching Speculatively

Figure 5.7: APHID Example, Part 3: Load Balancing Brings Work to Slave 3

SLAVE 1 1 1111 1

1 SLAVE 3 1 2121 1

Figure 5.8: APHID Example, Part 4: Creation of a New Leaf Node (1122)

Note tha t as the work is moved, the previous score information is deleted, since

Slave 3 has not generated those results. This results in using the evaluation of the

leaf node in the guessed score algorithm. In this case, we have generated a guessed

rninirnav score of 5. Also note that when leaf 2121 arrives a t Slave 3, the 7-ply

speculative search on 1112 is stopped immediately, and the search on 2121 begins.

We have seen how the search tree is not modified when the returned result falls

in line with the guessed minimâu value. What happens if the result does not fa11 in

line with expectations? Before the next pass of the master in our euample, Slave 2

returns a score of 2 15 for the 6-ply search of node 1121. We examine the changes

made to the information on the next pass of the master in Figure 5.8.

During the aB search, node 1121 no longer yields a score that is sufficient to cut-

off the search a t node 112. Thus, the master must examine position 1122. Position

1122 is a very bad position for the first player, resulting in a guessed minimau value

of -200. Thus, a re-search from node I l is not necessary, since ûfl mil1 return a score

of -200 to node 11.

This is the first time that 1122 has been touched during the search, so it must

be allocated to a slave process. Since none of the processes are doing speculative

1 SLAVE t 1 1122 1

1 SLAVE 2 1 1212 1

1 SLAVE 3 1 2121 1

Figure 5.9: APHID Example, Part 5: Change of PV and Bad Bound Search

work, the work is handed out to the next process in a round-robin fashion. For our

purposes, let us assume that the round-robin allocation gave the last new node to

Slave 3. Thus, we give this new piece of work to Slave 1. Adding node 1122 on Slave

1 does not interrupt the search of node 1111, since the search of node 11 11 is not

speculative.

As a final note on Figure 5.8, we should observe that instead of exploring 1121 on

the next p a s , we will ignore 1121 and explore only node 1122 and attempt to show

that it is 5 14 for a 6-ply search. Thus, 1121 remains in Slave 2 but will be set to a

priority of zero on the next pass of the master's tree. The priority of node 1122 will

increase from 13 to 13, since the node will be explored first and become part of the

critical t ree.

We will show another example of how the master's tree and slave information can

change for the fifth part of this example. In this final part, slave 1 returns the 6-ply

result of =li for node 1111, nhich is different from the predicted value of =14. This

will change the PV on the next pass of the tree from the path leading to node 1111 to

the path leading to 1112. Furthermore, the change will also change the hypothetical

minimav value. These changes are reflected in Figure 5.9.

123

Note that the exact minimax values returned for 6ply searches do not change.

The hypothetical minimax value of the entire tree is 16 after finishing the search

under node 111, instead of 14. Thus, ali guessed minimax values are increased by 2

to reflect this change in the hypothetical minimax value.

Node 2111 (on slave 3) poses a problem because it is searched with the search

window (16, 17) in this pass of the master's tree. The 6ply result returned by the

slave after the first p a s in our example (5 14) does not yield any usefid information

for this search window. Thus, we must use a guessed rninimax value for the node

(represented by <= 16 in the fourth column), and instnict the slave to do a "bad

bound" search to a depth of 6 ply with the search window (16, 17). This information

is encoded in the Wth column for Slave 3 in Figure 5.9.

As a final note on the example, we should observe that on the subsequent pass of

the tree, the location of nodes 1111 and 1112 will be reversed if we have reasonable

ordering techniques in the a p routine, since 1 i 12 lies on the principal variation.

We hope this illustration of the master's tree and slave information evolving over

time has left the reader with a greater understanding of how the procedures described

in Section 5.2 fit together.

5.4 External Interface of the APHID Algorithm

The APHID algorithm has been written as an application-independent library of

C routines. The library was written to provide minimal intervention into a working

version of sequential ap or its common variants: NegaScout, PVS, or MTD-(f). Since

the library is application-independent, a potential user must mite a few application-

dependent routines (such as move format, how to make/unmake moves, position

format, setting a window for a slave's search, etc.).

In this section, we will start by describing how APHID modifies existing code,

and then describe the application-dependent routines (or call-back functions) that

the programmer is required to write. Finally, we will discuss the configuration file

and how the APHID library instantiates the processes.

Before we start the descriptions, we should note that Appendix B contains specific

information on what each aphid- function accomplishes, the types of each parameter,

and the required tasks to be carried out by each of the call-back functions.

5.4.1 Modifications of Existing Code Required for APHID

To parallelize a sequentiai crp program, the user modifies his or her search routine as

shown in Figure 5.10. The changes required by APHID are marked by shading, and

easily fit into the standard ap framework. This one piece of code functions as the

search algorithm for both the master and the slave processes.

The code is very similar to the code for NegaScout presented earlier (Figure 2.9),

but we have shown more of the code here to illustrate some of the changes that are

required. The main difference between Figures 2.9 and 5.10 is that the transposition

table code was encapsulated in GenerateSuccessors in Figure 2.9. Although the

code given here shows a transposition table implementation, APHID does not require

a transposition table to work properly. The fint highlighted change (marked (1) on

Figure 5.10) is not required if a transposition table implementation is not present.

The final change (marked (8)) is only required if we wish to use APHID's distributed

transposition table algorit hm.

Let us examine each of the highlighted changes from Figure 5.10 in detail. The

first shaded code example illustrates that any master process should not use the

transposition table score information to immediately terminate the search or curtail

the search window. The main reason for not using the transposition table score

information is that the master may be required to make multiple passes over the top

of the game tree. If we use the score information, information from the first pass of

the tree (which will be based on numerous guessed minimax values) will immediately

terminate the search during the second pas . Thus, we must prevent a master from

using the score information. On the other hand, using the best move advice from the

transposition table is critical and should not be forbidden.

niove nCve?rs: I M - L E a L
rn: nwtfSuccessors:
rnc g-;
Lnc ::
rnc SC:
rn: under:
rnc wer;
scve ocve-3pc;
char 'D-tnC-T;
char 't-hsh:
=hAr *p-àey;
an: h-leagch:
rn: h-sc?re:
Ln: h-fhg:
ma- h a v e ;

/. Cu.erace hash value and key f o r ctrri pasicron ' I
generate-hash (p. p-h. p-keyl ;
1' Ferch rnforzmc~on frai tranrgosrcron tabla .I
recrreve (p-hash. p-key. p-mey, Llangch. bscore. Lf hg. h ~ ~ v e l ;

/' Generace ma- lise. waluaci porrcion rf na moves .I
aulOfSuccessors = CuieraceSuccersors(~t:
rf {numOfSuccasrocs == O) (recurnlEvahace~pJ':_) ~ _ . ~ - y , - - - - - ~ ~ c m - ~ 7 -

if (~ c h . c l r à L a r s - w] ' I l i E W t l -t '-y->- -. . . . - c.nnhc -;--S. ,=.-;-j:.:- -; > r .;-y 17t-:7-2-v--'' =- :- . . . t -_ .
return[O)j. f :Sou ld . r rd t ~ a g Ü - t &*i~rtrrn-dum-an O/: .: :--

) '. _ - . as . - ' - . Lx -t '' - .--. ----;: ;2;&.-_L, L;.--L.$ri-- --

se = -NegaScouc tp. -ovcr. -under.~Lytopo-LI :
I o 1s a resrarch nuessary? * /
if (SC . under LL r 1 LL sc c bec6 65 plycogo , 21 (

SC r -KegaScouc (p. -bsCa. -SC. plyc-O-1) ;
1

1' se: uandou for ncxc chz?d ' 1
under = aaxlq-. ol&al ; over = under - 1;

l

Figure 5.10: Code Example: APHID within the NegaScout Algorithm

126

The second highlighted code sample in Figure 5.10 illustrates the artificial search

horizon created by the APHlD libraq. The a p h i d l o r i z o n o cal1 returns TRUE nhen

we have hit the parallelization horizon for the master. aphid-evalleaf 0 determines

the correct or guessed minima value, as described in Section 5.2.1. The other pararn-

eters to the aphidAorizon() cal1 are necessary because the function is responsible

for detecting and extending the horizon for exempted pieces of work.

The third highlighted code sample shows the aphid-checkalarm () function. This

function cornputes how many nodes have been searched, and calls the communication

routine after a fixed number of calls to determine if there are any messages pending

for the process. The code encapsulated here may receive, process and forward peer

slave requests as well as obtain new information from the master. The most important

piece of information to be obtained from the master is rhether or not the search has

been terminated. If aphid-checkalarm (1 returns a non-zero number, the current

search must be immediately aborted. Note that there are two possible reasons for

terminating the search: the master has asked al1 slaves to stop processing. or the slave

is working on a speculative piece of work and a new piece of work for the current search

depth has arrived. terminate-search is an example of a global variable that is set

to terminate the search when a real-time constraint is reached. This application-

dependent variable, or some other routine that accomplishes a shutdown of a search

in progress, is normally present in game-playing programs.

The highlighted examples marked (4) through (7) in Figure 5.10 represent the

calls that the application must execute if the process is a niaster in the hierarchy.

The aphid-intnode- family of routines is designed to gather and obtain information

fkom a pass of the master's tree.

aphid-intnode-start O initializes the processing of a master's node. If the func-

tion is called, aphid-intnode-end0 must also be called to terminate the gathering

of information.

aphid-intnodeaove O intercepts the move path information that ive are exam-

ining so that it can be transmitted to the slaves. aphid-intnodeapdate0 receives

- - -

apbid-initseareh (PUXDEPPH) ;
foriplytcqo = 1; plytogo c= XXXDEPEi Lh done == F A S E 1 : plyt~qO--l (

/ Sec ug searcti '/
/ * Search ac root around value (mess) wrth nnall error (ewsl - 1
/ * Cal1 to aphid-raotsearch replaces cal1 t o EhgaScout O /

score = eph i~wtsearch(0 . plytogo. puesr-cgs. guess+agsl;
I * Priat ouc resulcs of sear-A - 1

Figure 5.11: Code Example: APHID within the Iterative Deepening Loop

the score information so that the code can accumulate information on the bounds of

the minimav value a t a specific node within the master's tree.

The final highlighted change ((8) in Figure 5.10) illustrates how the transposition

table information is absorbed into the -4PHID library for use by the distributed

transposition table implernentation. The p-entry pointer gives the location where

the transposition table information !vas writ ten to. As stated earlier, this addition

to the code is not required if the distributed transposition table implementation in

APHID is not used.

There are only a relatively srna11 number of changes to be made outside of the 48

algorithm, but they are critical to XPHID7s performance. The first piece of code that

we should examine is the iterative deepening loop. -2 sample of this loop is given in

Figure 5.11.

There are three highlighted changes in Figure 5.11. The first is the call to

aphid- in i t searcho . This call tells al1 of the slaves that ive will be starting a new

search. With the help of some aphid-stub- functions described in -4ppendix B, the

function also transmits the current state of the game to each slave so that the slaves

can start esamining the root position, while waiting for the master to give it work to

do.

The second highlighted change in the iterative deepening example is the call to

aphidxootsearch O. If running in parallel, this routine is the main loop that keeps

the master cycling over the d pl- tree until ive have no uncertain nodes. If running

sequentially, this routine simply calls the regular search function, and returns the

minimal value back to the application.

The final highlighted change is a call to aphid-endsearch0. This routine tells

/' Search ocher rwves ac rooc. a&d mly rurch if pove h a C s ' 1
I * PV score (oldscoral by a s a d l =-grn (d o i t a i ' 1

Figure 5.12: Code Example: APHID in Code to Handle the Root of the Game Tree

al1 slaves to stop searching the current position. The slave processes d l sit idle until

the search is started again with another aphid-initsearch0 call.

Initially, it was anticipated that al1 users would want to search in parallel from

the root of the game tree. However, there are some applications that wish to handle

the root of the game tree in a different way than the other leaves of the search

tree. For example, we could add calls to the time-control mechanism or modify

the search window a t the root. APHID has been generalized to integrate with this

style of searching the game tree; Figure 5.12 illustrates the changes necessary. The

aphid-intnode-premove () calls are the only significant changes from Figure 5.1 1.

This allows the master process to determine the prefis of al1 of the move paths that

should be handed to the slaves.

The prefkx also allows APHID to remove only those nodes that should not be

esamined by the slaves. Recall that if a node is not touched within the p a s of a tree,

1' Inicialiiacion required only by -he absoluce ztaster process
1 - Play game O /

Figure 5.13: Code Example: APHID within the Main Program

whfcaxit O ; . . .
eXiCl0);

1 i' main ' 1

its priority is set to zero. However, if the prefk on the untouched piece of work is not

the same as the prefix that we are currently searching, we should not stop scheduling

the piece of work because we did not espect to see the piece of work wivithin the current

search. Instead, APHID lowers its priority and speculatively works on the pieces with

different prelives if a slave has nothing better to do.

There are two calls that are inserted into the main program, which are illustrated

in Figure 5.13. aphid-startup O is the routine which starts up PVM (if necessary),

spawns slave processes, and allows the process to determine where it belongs in the

hierarchy. aphid-exit O should be called before any process terminates in the system.

(21

5 A.2 Application-Dependent Knowledge in APHID

Since APHID is designed as a general-purpose system for any algorithm that uses a p

as the core search mechanism, the programmer must define a number of application-

dependent constants. For example, some of the constants that APHID needs to know

are how big the hash type and key are, how big a transposition table entry is and

what the minimum and maximum values for the evaluation are. These constants are

covered in greater detail in Appendix B.2.

Since the code does not rely on direct access to the application's data structures,

the APHID library also needs the programmer to provide a series of application-

dependent call-back routines to perform some taskç. These include encoding a board

position, decoding the encoded board position, determining the next step of iterative

deepening and how to cal1 the evaluation function and search routines. Specific

information on the stubs can be found in in Appendix B.3.

5.4.3 Configuration File

Although a nurnber of configuration parameters are compiled directly into the code:

a number of important parameters can be modified without recompiling the code.

Al1 of these parameters are available in the configuration file entitled aphid. conf ig,

which should be available and readable by al1 processes in the hierarchy. -4 sample

configuration file is illustrated in Figure 5.14.

The numbers on the first line represent the minimum size of each piece of work (in

terms of non-terminal nodes), and the minimum number of pieces of work that each

slave process should get, respectively. We use non-terminal nodes to count the size of

work in APHID, since the count is maintained through calls to aphid-checkaland).

This function is usually not called at leaf nodes where we return an evaluation. For

example, in Figure 5.10, we see the cal1 to Evaluat e O before the second highlighted

change, and the cal1 to aphid-checkalam() is in the third highlighted change. Be-

cause APHID does not include leaf nodes in the count, the minimum size of each piece

of work is usually very small. For the tests in the subsequent chapter, the largest

size chosen for any of the test runs was 25 non-terminal nodes. As an example, if

we attempt to distribute work to 64 processoa, each requiring a t Ieast ten pieces of

work of with a minimum of 25 non-terminal nodes, parallelism does not usually start

up until a 6 or 7-ply search tree is attempted.

The lines after the two numbers each represent the host names that the slave

processes should be started on. The absolute master process is not included in this

list, because it is chosen by where the first program is run by the user.

The optiond # argument after the host name gives the user the ability to run a

different executable. If the t argument is missing, the program will attempt to spawn

the same executable as the absolute master process.

In Figure 5.15, we see a representation of the same hierarchy as a process tree.

Each rectangle or arced rectangle represents a process within the system. The host

Figure 5.14: Flat Hierarchy, APHID Configuration File

aiy,statian

Figure 5-15: Flat Hierarchy, Process Tree Representation

that the process is being run on is represented in the box. For the process tree,

we have assumed that the first process has been started on a host with the name

mystation. The shape of the object on the process graph denotes nhat executable

the process is running. For example, the process running on lego iç not using the

same executable (special. slave) as the processes mnning on al1 of the other hosts.

Thus, the proces on lego has an arced rectangle instead of a regular rectangle in the

process graph. Each iine in the process tree represents a rnaster/slave relationship.

In this simple example, there is a single master and five slaves.

The hierarchy given in Figure 5.14 is a flat hierarchy; al1 slaves report to a single

master process. To make a given process the slave of a slave, we use tabs before

the host name to represent levels within the hierarchy. A complicated hierarchy of

processes is illustrated by the sample aphid. conf i g file in Figure 5.16.

The first thing to note about the complex hierarchy is that the machine names are

actuaily IP addresses on the Internet. With PVM installed on the target machines,

APHID can establish a virtual machine that will star t up and distribute work around

5 10
slinky . bu. edu

l tonka.bu.edu#special.slave
lego.bu.edu#special.slave

savnlk.cs .ualber ta .ca
sundance.cs.ualbertaaca#special.slave
sunset.cs.ualberta.ca#special.slave
ipiatik.cs.ualberta.ca#special.slave
charron.cs.ualberta.ca#special.master

charron.cs.ualbertaaca#special.slave
charron.cs.ualberta.ca#special.slave
charron.cs.ualberta.ca#special.slave
charron.cs.ualberta-ca#special.slave

sundance.cs.ualberta.ca#special.slave
xolas0.lcs.mit.edu#special.slave

Figure 5.16: Complex Hierarchy, APHID Configuration File

the world. It should be noted that the current version of the APHID library does not

support multiple types of processors participating in the same search. For example.

an SGI Origin 2000 could not have an Intel Pentium as a slave because the elemen-

tary data types are not equivalent on the two machines. Support for heterogeneous

computing can be added to APHID, at the cost of additional CPU time in PIrM's

message packing and unpacking routines.

Each tabular indentation represents how deep in the hierarchy the given process is.

For example, the process running on slinky is a slave of the absolute master, but the

processes running on lego and tonka are slaves to the process on sl inky. hlso note

that although sliaky has only two slaves within its hierarchy, the process running

on s a m l k has five slaves, and that the process on charron has four processes on the

same machine that report to it. The hierarchy is easier to visualize when represented

as a process tree. The complex hierarchy is given as a process tree in Figure 5.17.

In Figure 5.17, we note that each process is represented as a rectangle, arced

rectangle or a ellipse to represent the executable that is run in each case. The rectangle

represents processes that are using the same executable as the root of the processor

tree. The arced rectangles represent processes that are running special . slave, and

Figure 5.17: Complex Hierarchy, Process Tree Representation

the ellipse represents the process that is running the special .master executable.

In the current implementation of the start-up code. the absolute rnaster process

(the process at the top of the process tree) is responsible for starting up PVM. the

message-passing interface, on each host used in the hierarchy. However, each m a s

ter is responsible for spawning its immediate slaves. Thus, the process running on

slinky is responsible for starting u p the slaves on tonka and lego, and reports back

to the absolute master process on my-station to report whether the spawning was

successful. Only once d l of the processes have been set up will the absolute master

return from the aphid-startup0 cal1 described earlier.

5.5 Summary

We have described the implementation of an asynchronous gametree search algorithm

based on the mode1 from Chapter 4. APHID is asynchronous in nature while a search

is being executed; there are no global synchronization points along the principal

variation or in between iterations of iterative deepening. The .4PHID algorithm is

designed to work without using shared transposition tables. APHID uses the crB

134

search window to naturally handle parallelism at type-2 nodes. APHID is designed

to be portable across rnany application domains. and will work on an- hardware

platform that supports PVM. Another design goal of APHID is to use inter-process

communication sparingly. This allows APHID to behave well on bot h loosel y-coupled

and tightly-coupled processors.

Within APHID itself, we have introduced a method of determining a hypothetical

minimax value based on previous search information. We have also introduced a

new distributed transposition table scheme which does not impact heavily on the

interconnection network between a series of machines.

Possibly the most important point is that APHID integrates into existing appli-

cations without requiring drastic changes to the application. Other parallel ap-based

algorithrns require significant changes to the sequential search algorithms used in

practice. If the search algorithm has been designed without regard for multitasking

or a specific parallel model, integating a parallel algorithm into the code can be a

significant ta& By using the sequential algorithm and call-back functions to the

user's code whenever possible, APHID represents a significant decrease in the effort

required to achieve a working parallel game-tree search program over its synchronous

counterparts.

Most authors illustrate a synchronous parallel algorithm with one application.

Chess is usudly chosen because synchronous algorithms yield large observeci speedups

when the branching factor is large. In the next chapter, we will illustrate -4PHID's

performance with four different applications, each written by different authors and

with different coding styles. This ambitious comparison of performance in multiple

application domains is possible because of APHID's ease of integration into an existing

sequent ial program.

Chapter 6

Experiment al Results

6.1 Introduction

In Chapter 4. we cornpared the performance of an asynchronous parallel search algo-

rithm to the performance of a synchronous parallel search algorithm in a theoretical

framework. The comparison showed that it was possible for asynchronous algorithms

to outperform synchronous algorithms on realistic game trees.

in this chapter, we will run some performance tests on the version of the APHID

garne-tree search library described in Chapter 5. We will test the asynchronous paral-

le1 algorithm in four different applications, written by four different authors. Ué will

show where the asynchronous algorithm succeeds and fails in comparison to APHID's

synchronous counterparts.

Section 6.2 describes the experimental rnethodology. Section 6.3 describes the

standard test runs for the various applications tested in this chapter. Each appli-

cation parallelized with the APHID algorithm is anaiyzed separately, and compared

against the best results for synchronous parallel search algorithms in the respective

domain. Section 6.4 describes a series of experiments that examine the structure

of the transposition table in different application domains, and how this affects the

overall performance of the APHID library

6.2 Methodology

6.2.1 The Hardware

Previously published results for the APHID algorithm were run on a network of

Sun SPARCstation IPC workstations [15, 161. For the results in this chapter, two

similar hardware configurations were used. The 8 and 16-processor tests were run

on a 32-processor SGI Origin 2000 computer system a t Boston University. The 32

and 64processor tests were run on a 64-processor SGI Origin 2000 computer at the

Cray Research Facility in Eagan, Minnesota. Both systems contained 195 MHz MIPS

RLOOOO processors and at least 4 gigabytes of RAM available. This is sufficient to

run dl of the processes without swapping to secondary storage.

An advantage of using the SGI Origin 2000 system is that al1 of the processors

have access to a global distributed shared memory. This allowed us to compare the

performance of APHID using local, distributed and shared transposition tables (see

Section 6.4). We can use the transposition table structure to emulate many hardware

configurations. For example, we can emulate a network of fast workstations by using

only local transposition tables.

Another advantage of using the SGI Origin 2000 system for large-scale parallel

experiments is the number of installations where large numbers of processors are

already available. Acquiring access to large parailel cornputers can be complicated.

6.2.2 The Applications

For Our experiments, we have irnplemented APHID in four applications written by

different gtoups of authors:

CHINOOK, the Man-Machine M'orld Champion checkers program.

0 CRAFTY, Robert Hyatt's freeware chess program,

KEYANO, an Othello program written by Mark Brockington. and

THETURK, a chess program by Yngvi Bjornsson and Andreas Junghanns.

Each of the applications given here were cornpiled with SGI's cc compiler. Each

sequentiai and parallel program was optimized with the -02 flag turned on. ?io time

was spent attempting to optimize the search code for the SGI Ongin 2000, aside from

debugging some bizarre interactions between the code and the hardware, as we shall

see in Section 6.2.5.

For the parallel tests, two different versions of the code were compiled. The

first parallel program could be used a t run-tirne as a master or a slave by APHID.

The second program was an executable that could only be used by APHID as a

slave. The only difference between the first and second program was that al1 of

the aphid-intnode-*() calls were removed from the main search routine. This al-

lowed the second program to search the pieces of work at a rate close to that of

the sequential program. Without this optimization, a slave process in APHID can

incur a 10-20% slowdown on the number of nodes visited per second by calling the

aphid-intnode,* () routines.

6.2.3 Search Extensions and Reductions

For each application, some standards for testing must be imposed. Parallel and se-

quential algorithms often do not agree with each other about minimax values and best

moves when the full version of the program is used [57]. For example, different search

windows cause different search extensions to be turned on, causing different minimax

values. Thus, ail search extensions, search reductions and nul1 move searching were

tumed off for the purposes of this experiment. Although a fked depth is enforced on

the programs, quiescence search was left in THETURK, CRAFTY and CHINOOK to

prevent the evaluations from being significantly unstable. This allowed the parailel

and sequential programs to return identical minimax values and principal variations

in the majority of the test positions, yielding a meaningful O bserved speedup.

6.2.4 Search Depth and Time Constraints

A suitable benchmark set was chosen for each game (see Appendis -4 for the positions

used). We originally attempted to run al1 of the tests to the same depth. This was

successful in KEYANO, where the size of any pair of 15-ply searches varied by at

most a factor of 3. However, the positions used in the chess and checkers prograrns

produced widely varying search sizes for the same nominal search depth. Thus, some

of the positions were searched to greater depths than other positions.

The size of each of the searches is important to the obsewed speedup, as we shall

see in Section 6.3.1. In synchronous parallel game-tree search algorit hms, the speedup

can be improved arbitrarily by increasing the size of the search. Searching game trees

that occur under tournament time controls is critical to assessing a parallel garne-

tree search aigorithm's performance. Thus, we have attempted to limit the size of the

individual tests so that the average time spent on the 64 processors should ncjt exceed

the usual time controls in the game being studied. This is 180 seconds in chess (40

moves in two hours), 60 seconds in Othe110 (approximately 30 mores in 30 moves),

and 120 seconds in the game of checkers (30 moves in one hour).

6.2.5 Transposition Tables

Using a transposition table that is large enough to accommodate the search results

discovered during the search is important to the performance of any game-playing

program. Each application allowed the number of transposition table entries to be a

power of 2. For each application, we chose the largest transposition table that kept

the overd size of the transposition table and main program below 400 megabytes

of RAM. Although both SGI Origin 2000 configurations had gigabytes of RAM, this

limitation was chosen so that the algorithms could also be tested on an bprocessor

SGI Challenge at the University of Alberta. It was unanticipated that this limitation

would dramatically affect the speedup on a large numbers of procesors, but we will

see that 400 MB of M M is inadequate for the large searches attempted in the chess

and checkers programs.

It is very important to note that the size of the transposition table did not increase

as the number of processors increased. The sequential tests used exactly the same

number of transposition table entries as each of the parallel tests. If the parallel run

used 64 processors, each process received 1164th of the transposition table entries

that the sequential process received. Thus, the experiments measured the scalability

of the number of processors and not the scalability of m e r n o . Other experiments

have allowed the number of transposition table entries to increase in tandem with the

number of processors. As mentioned in Chapter 3, the reader should avoid compar-

ing speedups without understanding the conditions under which the speedups were

achieved.

The standard set of tests for each program involved examining a fixed-depth game

tree and using a shared memory transposition table, over a varying number of pro-

cessors. Each progarn was tested on n=16, 32 and 64 processors, using a single-level

hierarchy: one master allocated work to n - 1 slaves for each test position.

Using SGI's distributed shared rnemory for storing the transposition table, a cou-

ple of optimizations were made to the algorithms to assist the performance of the

tests. The first optimization was made to the APHID library for al1 of the shared

memory tests. The APHID iibrary usuaily allows the slave processes to search the

root of the game tree when there is nothing to do. However, with SGI's distributed

shared memory system, we experienced a severe performance slowdown a t the start

of the search when al1 of the processes attempt to access the same memory pages at

the sarne time. Thus, the slaves are not allowed to search the root of the tree when

there is no work available. This ailowed the master to quickly distribute work without

interference from the slaves.

The second optimization was made to the transposition table code for the 64

processor mns in both APHID and YBWC. The SGI distnbuted shared memory in

the Origin 2000 allowed up to 32 processors to access the transposition table with

no appreciable slowdown in performance. However, when we moved to 61 processors,

140

the performance on the Origin 2000 drops significantly due to overloading the shared

rnemory with too man? requests. To counteract this feature of the SGI hardware.

the applications were forbidden from reading or writing to the hash table nhen they

are within one ply of the leaves. This optimization increased the search size by a

small margin, while making the programs run significant ly faster. yielding an overail

performance gain.

6.2.6 Overheads in APHID

The overheads in the APHID algorithm will be illustrated in the analysis of the

results. Since the overhead mode1 used in this chapter is slightly different than that

used by other authors, we rnust define the terminology used in this chapter.

The total overhead represents the additional computing time required by the par-

allel algorithm to achieve the sarne result :

(parallel time x n) - sequential time
total overhead =

sequential time

where n is the number of processors. The total overhead can also be computed bu

examining the overheads. The three main overheads are using a processor exclusively

as a master (the master overhead), the effective decrease in nodes per second esam-

ined (parallelization overhead), and the additional number of nodes searched by the

parallel algorithm (total search overhead). There is no synchronization overhead in

the APHID algorithm since the algorithm operates in an asynchronous manner. The

breakdown of overheads can be expressed in the following formula1 for total overhead:

total overhead = (1 f master overhead) x (1 + parallelization overhead)

x (1 + total search overhead).

The master overhead is the approximate penalty incurred by having a single pro-

cessor being allocated completely to the handling of the master. This is simply

l/(n - l), the benefit of adding another slave to the other n - 1 slaves.

'This formula is not the same & the formula presented in earlier publications (15, 161 where an
additive formula for computing the total overhead was presented.

241

The purullelzzation overhead is the penalty incurred by the APHID library on the

speed of the slaves. The difference between the rate a t ahich the parallel slaves explore

nodes and the sequential program's node rate is assumed to be the parallelization

overhead. This parallelization overhead is derived partially from the overhead of using

PVM, and partially from the work-scheduling algorithm on each slave. In effect, the

parallelization overhead inciudes synchronization overhead, complexity overhead and

communication overhead, as used in previous parallel a0 models [57, 63' 811.

The total search overhead represents the number of additional nodes searched by

the algorithm while attempting to determine the d-ply minimax value. In the case of

APHID, we have two types of nodes that combine to make the total search overhead:

the search overhead and the speculative search.

The search overhead represents the additional nodes searched to achieve the d-pl-

minimax value. This can be computed by dividing the nodes searched to generate

d-ply search results in the parallel program by the nodes searched by the sequential

program. Most of the search overhead is incurred by attempting to do searches before

the correct search window is available. Thus, the slaves use ai$' search windows that

are larger than those in the sequential program. If we do not use a shared-memory

transposition table, some of the increase in search overhead as we increase the number

of processors can be attributed to information deficiency, since data is not shared

efficiently between the processes.

The remainder of the increase in search overhead is attributable to the load-

balancing algorithm. The APHID algorithm forces work to be recalculated when it

is moved to another processor. When there are more processors in the system, the

load-balancing algonthm is more active in balancing the workload, thus causing more

search overhead.

Since we only search each position to d ply, the asynchronous nature of the slaves

will result in some work being done at (d + 1) ply or more. The speculative search

represents the amount of additional search that APHID has undertaken which is be-

yond what the sequential algorithm has attempted for a d-ply search. The speculative

142

search can be computed by taking the number of speculative nodes searched and divid-

ing that by the number of nodes searched in the sequential case. In our experiments.

the speculative search results were not used so that the parallel program produced

the identical results as the sequential version, verimng APHID's correctness.

It is important to note that ignoring the speculative search results will understate

the potential of the APHID algorithm. In a real tournament game, this speculative

search could be used to look an extra move ahead on some key variations, since it

is highly likely that the variations extended a ply ahead would be in the left-most

branches of the tree. Thus, it is very likely we have searched the key variations not

only to d-ply, but to (d + 1)-ply. This allows APHID to find important variations

much sooner than a synchronous parallel program with the same obsemed speedup.

If we aish to measure the results of the speculative search in each of the programs,

we must be able to test the algorithm using a different measure other than observed

speedup for a given search depth. There are a number of test sets that measure move

quality in chess, where the performance metric is how quickly a program determines

the best move in a tactical position. However, most of the published results for parallel

chess programs have focused only on the observed speedup. Thus, it is difficult to

compare any rnove quality experiment (aside from observed speedup) against the

results in the literature. Furthermore, there are no tests that measure move quality

in Othello. If we wish to use a common methodology for al1 of the programs to

be tested, we must formulate an equivalent test set for Othello, a garne that relies

on positional play during the middle game. For these reasons, we have resorted to

comparing observed speedups.

6.2.7 Results Reporting

There are two methods of reporting speedups and overheads for a large number of test

positions. The Brst is to add dl of the searches for the multiple positions together,

and perform the speedup and overhead analysis on the combined data. The second

method is to perform the speedup and overhead analysis on each individual position,

143

and average the speedups and overheads.

Both methods have drawbacks. In game-tree search, sorne positions ail1 yield

smaller search trees than the average search, and a few positions d l yield much

larger search trees. Since s m d e r searches, in general, do not perform as well as larger

searches, this will inflate the aggregate observed speedüp if we use the first method.

Using the second method will underest imate the aggregate observed speedups.

For example, let us take the results of Feldmann's Young Brothers Wait Concept

[29]. Feldmann's analysis of the speedups and overheads used the first method to

generate a speedup of 142.82 on 256 processors. However, close analysis of the 24

positions reveals that the four largest positions account for 45% of the time spent on

the entire test set. The speedups of 280, 228, 124 and 220 bias the aggregate speedup

upwards. If we use the second method to determine the average speedup that ive

would see over the 24 positions, the speedup would be only 119. Even if we discard

the three smallest searches (combined, they take 0.2% of the total time for al1 24

positions for the sequential mns), the average speedup is only 133 using the second

method.

We have chosen to use the second method in this thesis, because it will not over-

estimate the observed speedup for a large number of test positions. However, it is

important to note that the speedups and overheads are independently averaged over

24 positions. For each position, the speedups and overheads will follow the formu-

las given earlier, but the mean of the speedups and overheads presented in the next

section will not necessarily follow the formula.

6.3 APHID - Standard Tests

The section, describing the main results for each program, will be subdivided into

t hree subsections, dealing wit h each of the application domains in turn.

We will start with the Othe110 progam KEYANO, followed by the checkers program

CHINOOK, and the two chess programs CRAFTY and THETURK.

Figure 6.1: Speedups and Overheads for KEYANO (Fixed-Depth, Shared Memory)

6.3.1 KEYANO - Othello

KEYANO (141 is an Othello program writ ten by Mark Brockington. KEYANO routinely

finished in the top five in international cornputer Othello competitions. up until its

retirement from tournament play in late 1996. Since 1994, the program has been used

as a research t ool for parallel game- t ree search algorit hms.

We will examine an irnplementation of the APHID algorithm in KEYANO, and

analyze APHID's performance. l e will compare and contrast the results with a

hand-optirnized version of the algorithm yielding the best observed speedups for syn-

chronous parallel garne-tree search, Young Brothers Wait Concept 1291.

The 20 positions in Appendix A.3 corne from the early midgame of the 1994 World

Othello Championship match between Emmanuel Caspard and David Shaman. Each

position sas searched to a fixed depth of 15 ply for this experiment. Figure 6.1 gives

the speedups and overheads for the fixed-depth shared memory version of KEYANO.

The data is also given in a tabular format in Table 6.1.

In Figure 6.1, we see that the observed speedup is nearly linear in the number of

processors. However, the results are tapering off as we approach 64 processors. On 64

processors, we see that the total time taken for the 20 test position is approximately

70 seconds per position. This is close to typical time control of 60 seconds per move

Table 6.1: Speedup Data for KEYANO (Fixed-Depth, Shared Merno-)

n
1
8
16

in the game of Othello.

The average overheads in APHID are illustrated in Table 6.1. Note that these

overheads are the average of the observed overheads taken over 20 different searches.

Thus, we do not expect the total overhead to be an exact combination of the over-

heads, as given by the formula in Section 6.2.6.

As the number of processors increases, we see that the master overhead and the

parallelization overhead decreases. On 8 and 16 processors, the parallelization over-

head is quite high. It is probable that there is a minor difference between the 32-

processor and 6Cprocessor SGI Origin 2000 machines used in the experirnents, making

the parallelization overhead drop a t 32 processors. The decrease in the paralieliza-

tion overhead from 32 to 64 processors is due to the transposition table code change

described in Section 6.2.5.

In an algorithm that does not synchronize, it should not be surprising to discover

that the largeçt portion of the total overhead is accounted for by the search overhead

and the speculative search. As the number of processes increases, the processors get

fewer pieces of work and the need for Ioad balancing increases. This also allows some

of the slaves to get further ahead than the overworked slaves, causing a rise in the

speculative search.

As we shall see in later sections, the observed speedups for KEYANO are much

higher than the equivalent speedups for the chess and checkers programs. One pos-

sible exphnation for this discrepancy is that the Othello algorithm is not an efficient

searcher. However, this is not the case. Experiments on Keyano have shown that

the algorithm searches an average of 1.10 successors at a type-2 node. Furthermore,

Speedup

5.74
11.27

Total
Time

53526 s
" 9424 s

4753 s

Total
Overhead

Master
Overhead

Search
Overhead

48.29%
49.37%

654%
10.59%

14.28%
6.67%

Specuiative
Search

Pardlelization
Overhead

2.48%
6.67%

19.45%
19.71%

-
O 8 16 24 32 4û 48 56 61 12 O 8 16 24 32 40 4éi 56 64 72

Numkral- hlumeerolProgsson

Figure 6.2: Speedups and Overheads for KEYANO (Variable-Depth, Shared Memory)

the best move is searched first a t any node within the game tree 89%-93% of the

time [Ml. These numbers are equivalent to the move ordering available in modern

chess and checkers programs. Thus, this is not the reason behind the large observed

speedups.

The real explanation for the observed speedups is that K E Y A N O ~ game trees

are true ked-depth game trees. The subtrees that are examined by the slaves are

roughly the sarne size, and very little load balancing is necessary in the fixed-dept h

case to keep al1 processors occupied on the current variation. To add the equivalent

unbalancing that quiescence or capture search causes, we can use a version of KEYANO

with ProbCut enabled. This allows us to search 19-ply variable-depth game trees,

instead of 15-ply fixed-depth game trees.

Figure 6.2 gives the speedups and overheads for the variable-depth shared memory

version of KEYANO. Note that the speedup curve for the hed-depth shared memory

version of KEYANO is given on the left-hand graph as a reference point. The data for

the variable-depth shared memory version of KEYANO is also given in Table 6.2.

As we can see, the algorithm does not perform as well when we consider a variable-

depth version of KEYANO. The main differences between the fixed-depth and variable-

depth algorithms can be sumrnarized into three points: (1) the search overhead

is much higher for the variable-depth searches, (2) the parallelization overhead is

Table 6.2: Speedup Data for KEYANO (Variable-Depth, Shared Memory)

marginally higher for the variable-depth searches, (3) the search size is significantlp

smaller for the variable-dept h searches.

Speculative
Search

-
4.74%
11.85%
27.74%
80.93%

n
I
8
16
32
64

It is not surprising that the search overhead increases as we change the fixed-depth

Total
Time

29458 s
5738 s
3149 s
2081 s
1326 s

Parallelization
Overhead

-
23.02%
23.55%
20.43%
10.7%

Speedup
-

5.48
9.40
15.11
23.05

tree to a variable-depth tree. The load balancing associated with the APHID algo-

rithm increase dramatically with variable search depths. Hence, the search overhead

-

and speculat ive search are much higher in the variable-dept h tests.

The parallelizat ion overhead is marginally higher t han the equivalent overhead for

Total
Overhead

61.93%
79.27%
130.87%
218.61%

a fixed-depth search. The reason for this is that the APHID algorithm is spending

more time handling smaller pieces of work in the variable-depth case than in the

hlaster
Overhead

-
14.28%
6.67%
3.22%
1.59%

fixed-depth case.

Search
Overhead

-
10.98%
24.68%
58.60%
101.86%

Finally, we note that the average sequential search size is 1500 seconds for the

variable-depth test, and over 2600 seconds for the fked-depth case. Does this allow

for greater parallelism in the algorithm? Schaeffer illustrated that the performance

of the DPVS algorithm (a synchronous algorithm) relied on the depth of search (811.

However, the assertion that the size of the search is important to the overall speedup

in asynchronous algorithms (such as APHID) should be confirmed experimentally.

It is easy to generate data concerning the depth of search and the speedup in

KEYANO, because a11 of the positions are searcheci to the same depth. Figure 6.3

gives the obsenved speedups for the fixed-depth shared memory version of KEYANO

as we increase the search depth from 12 to 15 ply. The overheads and speedups used

to generate this figure are also given in Table 6.3.

As we can see, there are some interesting features to the observed speedups. We see

that for a fixed number of processors, as the search depth increases! the speedup also

Figure 6.3: Speedups by Depth of Search for KEYANO (Fixed-Depth, Shared Memory)

Table 6.3: Speedup Data by Depth of Search for KEYANO (Fixed-Depth, Shared
Memory)

increases. This confirms our earlier hypothesis that the search size is an important

factor in determining the observed speedup in APHID. If we search deeper game trees

than the ones we examined, we would be able to achieve higher speedups. However,

these deeper game trees would not be able to run on 64 processors using real time

constraints. The reader must be very careful when comparing observed speedups

without considering the search depth.

However, search size is not the only factor determining the observed speedup. If

we examine the 14ply fixed-depth shared memory test, and compare it to the 19-

ply variable-depth shared mernory test, we find the speedup curves to be similar.

However, the hed-depth search is half of the size of the variable-depth test on a

single processor.

Another interesting feature of Table 6.3 is that speedups can decrease as APHID

Figure 6.4: Speedups and Overheads for KEYANO (Young Brothers Wait, Fixed-
Depth, Shared Memory)

uses more procesors. This is possible if we require a greater number of pieces of work

to be created by the master before allowing parallelism to start. For large parallel

configurations, i t may take a signifiant amount of time for APHID to catch up to a

smaller parallel configuration. For exarnple, it takes a 14-ply fixed-depth search for

the n=64 processor configuration to finally catch up and overtake the n=32 processor

configuration.

As a last data point for KEYANO, we would like to compare the APHID algorithm

to the synchronous algorithm that generates the best results in the game of chess,

Young Brothers Wait Concept. The version of YBWC implemented in KEYANO

was originally coded in 1994 and taken directly from Feldmann's thesis. The author

spent a considerable amount of time attempting to optimize the performance of the

algorit hm.

We tested YB WC and APHID under similar conditions. We used the same test set,

searched to the same depth, and used the same size of shared memory transposition

table for both parallel algorithms. The performance of APHID versus YBWC can

be seen in Figure 6.4, with the raw data for the YBWC experiments to be found in

Table 6.4.

The synchronous nature of the YBWC algorithm forces us to change the raw data

Table 6.4: Speedup Data for KEYANO (Young Brothers Wait, Fixed-Depth, Shared
Memory)

format given in Table 6.4. The two new columns are the Synchronization Overhead

column and the Average Time Spent Idle column. The latter column represents the

percentage of the time that each procesor in the system was idle on average. These

results can be converted into the numbers seen in the Synchronization Overhead

column. As we can see, YBWC is rapidly starved out of work to do once we reach 64

processors: the processors are only busy 59.85% of the tirne.

The search overhead in YBWC starts a t a higher level than APHID's search

overhead on 8 processors, but the search overhead in APHID rapidly increases past

the equivalent level in YBWC. However, it is important to note that the overhead in

APHID is partially due to speculative search. When we run APHID on 61 processors.

a 32.63% overhead is attnbuted to speculative search. If we intended to search the

positions to 16 ply, these speculative search results would give APHID a head start on

the next iteration. YBWC would be forced to attempt the entire search from scratch.

Earlier tests with YBWC in Keyano had a parallelization overhead of over 20% due

to the iterative method presented in Feldmann's original description of the algorithm.

However, once we have proceeded past the minimum ganularity, we can use the

recursive ap routine. This reduces YB WC's parallelization overhead to the levels

ParalIelization
Overhead

-
n
1

seen in Table 6.4. These overheads are much lower than the equivalent overheads

in APHID. However, APHID never slows down t o wait for messages from another

Total
Overhead

-

procesor or to find work.

To test whether the implementation of YBWC is equivalent to previously pub-

lished results, we can examine Weill's tests of YBWC and ABDADA on a CM-5 using

Synchronization
Overhead

-

Search
Overhead

-
Speedup

-

Time
Spent
Idle
-

Tot al
Time

53526 s

n i . . . T . V . . R

Figure 6.5: Speedups and Overheads for CHINOOK (Fixed-Depth, Shared Memory)

a different Othello program [95]. YBWC achieved a 9.5-fold speedup and ABDADA

achieved a Il-fold speedup on 16 processors. Thus, the results generated b!* YBWC

in Keyano are in Iine with other published results for the algorithm.

6.3.2 CHINOOK - Checkers

CHINOOK is the current Man-Machine World Champion checkers program. It was

written by a team that includes Martin Bryant, Rob Lake, Paul Lu. Jonathan Scha-

effer and Norman Treloar. The program is currently the toprated checkers playing

entity in the world, with a rating 180 points higher than the Human World Champion,

Ron King. CHINOOK is currently retired from tournament play, but can be played

via the Chinook home page on the World Wide Web2.

The 20 positions in Appendix A.2 corne from the 1992 Tinsley-Chinook Test Suite

(571. The positions were examined to depths varying from 23 to 29 ply, depending on

the individual position. Figure 6.5 gives the speedups and overheads for the fixed-

depth shared memory version of CHINOOK. The speedup and overhead data is also

given in Table 6.5.

On 64 processors, the parallel searches take 226 seconds on average. This is larger

2http : //m. C S . ualberta. ca/'chinook

Table 6.5: Speedup Data for CHINOOK (Fixed-Depth, Shared hlemory)

than the 120 second searches that we set out to achieve. The search depths for the

Parailelization
Overhead

experiment were chosen based on the 16 processor results and the likelihood that the

results would scale well up to 64 procesors. Unfortunately, that was not the case for

CHINOOK. The limit of 120 seconds per move may be slightly higher if we consider

Search
Overhead

r

n

captures, because captures are forced.

Speculative
Search

Tot al
Time Speedup

In cornparison to the observed speedups for KEYANO, the speedups for CHINOOK

-
36.7%
111.4%
176.3%

1
' 16

32

could be described as disappointing. However, other authors that have attempted

58557 s
8042 s
5943 s
4529 s

Tot al
Overhead

8.35
10.82

to parallelize checkers programs a i th synchronous algorithms have met with limited

Master
Overhead

' 64 1 14.35

-
50.75%
90.16%
216.8%

success. The best-known speedup for a synchronous algorithm on a high-performance

checkers program is 3.32 for Lu's Principal Variation Frontier Splitting with Load

Balancing 157). Thus, the observed speedup of 14.35 on 64 processors for APHID

-
124.26%
289.08%
457.89%

18.4%
22.1%
8.9%

is a four-fold improvement over previously published results for an? synchronous

algori thm in the domain of checkers.

-
6.67%
3.22%
1.59%

It is important to note that comparing the obsemed speedups in this manner is

not entirely fair. It is very likely that the synchronous algorithm would yield better

observed speedups if it was tested on the SGI Origin 2000. The search size that

CHINOOK is capable of reaching in 226 seconds on a 64processor SGI Origin 2000 is

significantly larger than the search depths achievable on the BBN Butterfly. Using

the sarne test suite, Lu's algorithm was only able to search to a maximum depth of

17 to 21 ply with CHINOOK.

One factor that may be limiting APHIDYs observed speedup in CHINOOK in corn-

parison to variable-depth KEYANO is that the root is handled in a different manner in

CHINOOK. Instead of allowing APHID to control the entire search of the tree, CHI-

NOOK forces APHID to search only the best move first in an attempt to determine

153

the minimax value for the best move. Then, once that is complete. CHINOOK allows

APHID to return to the root of the tree and ver@ that there are no better moves

than the best move. This is an impediment to APHID's attempts to schedule both

parts of work at the same time, and it does d e c t APHID's performance.

Another factor that limits APHID's observed speedup in CHINOOK is the size of

the transposition table used. For each search, CHINOOK searches between 200 and

1300 million nodes sequentially, and we attempt to store the results in 16 million

transposition table entries. It is clear that this is insufficient for some of the larger

sequential searches. APHID searches approxirnately five times as many nodes as

the sequential program when total search overhead is taken into account. Thus,

if sequential CHINOOK does not have enough transposition table entries. then this

problem must be more serious in the APHID version of CHINOOK.

In Table 6.3, we see that the parallelization overhead is close to the profile of

the parallelization overhead for variable-depth searches in KEYANO. This is expected

since both programs place similar requirements on the load balancing algorithm.

We can observe that the total search overhead is the dominant factor in the total

overhead in both KEYANO and CHINOOK. However, in the case of CHINOOK, we see

more speculative search than search overhead on n = 16 and n = 61 processors.

One reason for the large amount of speculative search is the special handling of

the root of the game tree imposed by CHINOOK'S source code. A second reason

is that the forced capture rule in checkers yields subtrees with aide variations in

size. In cornparison to Othe110 and chess programs, this makes load balancing more

challenging in CHINOOK.

A third reason for this phenornenon is the fact that the algorithm for subdividing

large pieces of work is not as aggressive in CHINOOK as in KEYANO. If we take

the exemption threshold as a power of the branching factor, we note that it would

take over 6 ply of additional search (when the branching factor is 3) for CHINOOK

to subdivide a piece of work. The exemption threshold for CHINOOK'S fixed-depth

shared memory test was 34 times the average piece of work, which is larger than

154

3(6/2) = 27. For KEYANO (exemption threshold of 75. branching factor of IO), it

takes at most the equivalent of 4 additional ply of search for a piece of work to be

su bdivided.

6.3.3 CRAFTY and THETURK - Chess

We have seen how APHID can yield larger observed speedups in domains with low

branching factors such as checkers and Othello. However. the real test is the two

chess programs: CRAFTY and THETUM. Here, synchronous algorithms achiew

higher efficiencies because of the increased number of alternatives available at split

nodes. It will be difficult to exhibit better performance than a synchronous game-tree

search algorithm on a chess program.

THETURK is a chess program written by Yngvi Bjornsson and Andreas Jung-

hanns, two Ph-D. students at the University of Alberta. The program competed at

the 1996 World Micro Computer Chess Championship. Although the program did

not fare well in that tournament, the program has improved substantially since that

tournament. The progarn is available to be played against on the World Wide U'eb3

CRAFTY is Robert Hyatt's freeware chess program. Robert Hyatt !vas the princi-

pal author of CRAY BLITZ, the top ranked chessplaying program in the early 1980s.

He has parlayed bis years of experience in writing chess programs into CRAFTY.

CRAFTY is believed to be the strongest freely-available chess program. Unlike many

other freeware chess programs, CRAFTY'S code is Iegible and cleanly written. Because

of this, the author was able to add -4PHID into CRAFTY without Robert Hyatt's as-

sistance. The version of CRAFTY used in these experiments is the "Jakarta" version

which played a t the 1996 World Micro Computer Chess Championship.

The test set used is the Bratk+Kopec test set [48], the most popular test set

used for benchmarking parallel chess programs. The positions from the test set can

be found in Appendix A.1. Both CRAFTY and THETURK attempt to search the

- - - - - - . . - -

3http: //mu. CS .ualberta. ca/-gmes/TheTurk/index. cgi

Figure 6.6: Speedups and Overheads for THETURK (Fixed-Depth, Shared Memory)

Table 6.6: Speedup Data for THETURK (Fixed-Depth. Shared Memory)

n
I
16

positions to depths of 11 or 12 ply.

Some of the positions are much smaller than the average search in the test set. The

fint position is a mate-in-3 that is solved in less than one second by both programs.

S peedup

8.48

Positions 6 and 8 are searched very quickly by modern programs because of the limited

mobility and many transpositions available in the endgame positions. Thus, positions

Total
Overhead

98.88%

Total
Time

139658 s
17609 s

1, 6 and 8 have been dropped frorn the averages, and the results given below are for

the remaining 21 positions.

Figure 6.6 and Table 6.6 give the observed speedups and overheads for the fixed-

Master
Overhead

-
6.67%

depth shared memory version of THETURK. Figure 6.7 and Table 6.7 give similar

Search
Overhead

-
52.91%

S pecuiative
Search

7.35%

data for CRAFTY.

Parailelizat ion
Overhead

24.2%

The total time taken by THETURK to search the 21 positions on 61 processors does

not accurately reflect the time control in the game of chess. On average, THETURK'S

searches take 470 seconds each. CRAFTY'S searches take 230 seconds per position.

Thus, the searches for both programs are marginally larger than those that we can

expect to see in real-time constraints of 180 seconds per move. The search depths

were chosen based on the observed speedups in the 16-processor results.

The observed speedups for THETURK and CRAFTY are marginally better than

the results for CHINOOK, but lower than the observed speedups for KEYANO. This is

surprising to researchers who are familiar with synchronous parallel game-tree search

algorithms. It is important to remember that an asynchronous algorithm does not

rely on spawning parallelism from a specific node. In APHID, we subdivide the tree at

a level and make pieces of work out of al1 nodes a t that level. Thus, the performance

of APHID is not linked to the branching factor in the game tree being searched.

We hypothesized earlier that CHINOOK did not yield good speedups because the

transposition table is barely adequate for the sequential program. By the same rea-

soning, we can state that the transposition table size limit is barely adequate for the

sequential versions of CRAFTY and THETURK. Although each program had 16 mil-

lion transposition table entries. the chess programs searched betwen 300 million and

900 million nodes sequentially. We expect that a larger shared-memory transposition

table will yield marginally faster sequential times and much faster parallel times due

to reduced search overhead.

How do the speedups for the chess programs compare to results achieved by

synchronous parallel search algorithms in the game of chess? As a representative

synchronous parallel algorithm, let us examine Weill's tests that were run on a 32-

processor Connection Machine 5. Weill's implementation of Young Brothers Wait

achieves speedups of 12 on 32 processors, and his implementation of ABDADA

achieves an observed speedup of 16 on 32 processors [95]. Weill's results are sim-

ilar to other reported speedups with synchronous garne-tree search algorithms. The

majority of these synchronous algorithms have been tested under similar conditions

to those used for the chess programs in this thesis (Le. no search extension/reduction

algorithms). Although it is not an objective cornparison between algorithms, the

observed speedups in the literature for synchronous algorithms are comparable, up

157

to 32 processors, with the observed speedups seen for the APHID algorithm in both

THETURK and CRAFTY.

However, there is one important data point that is significantly larger than the

reported speedups by any other author. Feldmann's Young Brothers Wait algorithm

achieves speedups of 21.83 on 32 procesors and 37.34 on 64 processors for 7-ply

searches that take place in tournament time [29]. Results of this calibre have not

been reported for any other algorithm or by any other author.

Why are Feldmann's observed speedups so large? Feldmann's results are based

on a very slow program, ZUGZWANG. ZUGZWANG visited 523 nodes per second on

a single processor, and only reaches 7-ply in 190 seconds on 32 Transputers. In

cornparison, CRAFTY is searching approximately 130,000 nodes per second on a SGI

Origin 2000 processor. and accomplishes 11- and 12-ply searches in approximately

260 seconds using 32 processors. There is a dramatic speed difference between the

Transputer and the 195 MHz MIPS RlOOOO used in the SGI Origin 2000. but that

does not completely account for the 248-fold difference in search speed.

ZUGZWANG also spends an inordinate amount of time doing move ordering at

each node. While the node is setting up some tables for move ordering, the process is

able to send a message to another Transputer and receives a transposition table entry

in return before ZUGZWANG is ready to read the message! No other chess program

that the author knows of spends that amount of time assembling move ordering

statistics before embarking on a search of a node. However, the effort does pay off:

ZUGZWANG'S move ordering is very strong. Instead of searching the best move first

96% of the time, ZUGZWANG could be written the way other chess prograrns are

written. By using l e s expensive move ordering heuristics, the node rate will increase

dramatically and will easily subsume the additional nodes that the program must

search because of the poorer move ordering.

Another reason for the extraordinary speedups is that the transposition table

was allowed to grow as more Tkansputers were added to the systern. Thus, the

observed speedups are illustrating the power of adding additional processors and

Figure 6.7: Speedups and Overheads for CRAFTY (Fixed-Depth, Shared Memory)

1 Total 1 Total 1 Master 1 Seardi 1 Speculative 1 Parallelization 1

Table 6.7: Speedup Data for CRAFTY (Fked-Depth, Shared Memory)

n
1
16
32
64

transposition table memory, not just additional processors. Examining the 8-ply

result.~, we see that three of the four largest searches for ZUGZWANG search less nodes

Speedup
-

8.76
16.56 '

' 18.00

in parallel than the associated sequential run. For the largest search (position 4 in

the Bratk-Kopec test set), ZUGZWANG searches 61 million nodes sequentially with

Tirne
7 1596 s
9441 s
5230 s
4819 s

a small transposition table, and 41 million nodes in parallel on 256 processors with

a much larger transposition table. It is likely that the number of nodes ZUGZWANG

Overhead

110.71%
140.66%
350.55%

searches sequentially would decrease if much larger transposition tables were used

during the sequential test.

Overhead
-

6.67%
3.22%
1.59%

In short, ZUGZWANG is a very slow sequential program, operating in an envi-

ronrnent where messages are very fast in relation to the program, +th superb move

Overhead
-

59.00%
78.69%
191.15%

ordering and with memory usage that increases with the number of processors being

tested. These four characteristics allow a synchronous algorithm to perform extremely

Search

10.90%
42.01%
109.50%

well. With a fast sequential program, operating in an environment where messages

Overhead
-

26.3%
" 12.4%

1

12.9%

159

are not fast in relation to the program. less than superb move ordering and con-

stant memory usage in the sequential and parallel runs, it is unlikely thar Feldmannos

observed speedups can be duplicated with any synchronous parallel algorithm.

If we have a program without quiescence search, it is possible to generate equiva-

lent speedups with asynchronous search. We have already demonstrated that APHID

can generate speedups of that calibre in the fixed-depth version of KEYANO. How-

ever, quiescence search is integral to modern chess programs. Hence, it is unlikely

that any asynchronous parallel aigonthm would achieve observed speedups sirnilar to

Feldmann's results.

The parallelization overheads for CRAFTY and THETURK are very similar to the

parallelization overhead exhibited in CHINOOK. This reflects the fact that APHID

and the load- balancing algorit hm (in particular) are doing approximately the same

amount of work to distribute the work amongst al1 of the processors in al1 three

programs.

-4 surprising observation from Table 6.6 is that the GPprocessor numbers have a

negative parallelization overhead. In other words, the slaves during the 64-processor

runs searched more nodes per second than the sequential runs in THETURK. As

mentioned earlier, we removed the transposition table lookups at the last ply of

search to prevent the shared transposition table from slowing down the program.

THETURK is the only program that also uses the transposition table during the qui-

escence search. The search algorithm does not know when the quiescence search will

terminate. Thus, no transposition table accesses were allowed during the quiescence

search in 64processor tests with THETUM. The transposition table lookups slow

down the quiescence search considerably on an SGI Origin 2000. Hence, the parallel

program can run 4.8% faster than the sequential program.

In t e m s of performance, the search overhead is where the two chess programs

differ. THETURK spends more time attempting to work on the current iteration, as

reflected by the larger numbers in the Search Overhead column. This also indicates

that more load balancing is necessary to get the work correctly distributed. The

Table 6.8: Speedups and Total Search Overheads for Various Transposition Table
Configurations on APHID with 16 processors

search overhead in CRAFTY srnoothly increases and are smaller than the equivalent

numbers for THETURK.

The speculative search is at the same level in CRAFTY and THETURK. As the

Application

CHINOOK
CRGFTY

number of processors increases, both programs run out of work to balance at the end

of each iteration. The equivalent speculative search lines indicate that both programs

have similar distributions of subtree sizes on the slave processors at the end of the

Distributeci LocaI

search.

Speedup

5.54
6.71
11.31
8.52
6.59

Speedup

4.68
5.70

S hared

6.4 Parallelism and the Structure of the Transpo-

Tot al
Search

Over head
247.71%
140.19%
22.25%
56.27%
123.15%

Tot al
Search

Overhead
257.05%
188.53%
25.11%
64.65%
164.44%

Speedup

8.35
8.76
11.27 KEYANO - fixed

KEYANO - variable
THETURK

sit ion Tables

Total
Search

Over head
87.37%
69.90%
17.26% ' 11.19

8.36
5.65

We have made many claims on how the speedup is dec ted by the transposition table.

In this section, we hope to present some numbers that will illuminate the nature of

duplicate detection in the various applications.

9.80
8.48

Table 6.8 shows the speedups and total search overheads on 16-processor tests

36.53%
60.26%

over various transposition table configurations. Because of the limited time available

on the 64processor SGI Origin 2000 configuration, it was not possible to complete

al1 of the tests on 32 and 64 processors.

The local transposition tables in Table 6.8 indicate that each process maintains

a separate transposition table, and no sharîng between the tables is allowed. The

distributed transposition table numbers represent the results when using the shadow

transposition table algorithm described in Section 5.2.6. The shared transposition

table uses a shared-memory transposition table that each process is able to read from

and write to.

It is interesting to note that in Othello, MIying the configuration of the transpo-

sition table makes very little difference. The same can not be said for the checkers

and chess prograrns. For CHINOOK, there is a dramatic increase between using 10-

cal transposition tables and a shared transposition table with the APHID algorithm.

Although the difference is not a s dramatic for the two ches programs (CRAFTY and

THETURK), it is still worthwhile to consider using a distributed or shared transposi-

tion table.

6.5 Conclusions

We set out in the beginning of this chapter to show whether asynchronous algorithms

could be competitive -5th synchronous algorithms in real applications searching real

game trees. The APHID algorithm can be competitive with a synchronous algorithm

when compared using observed speedup. If we also consider the additional benefit

of speculative search on the key variations in the tree which is ignored by the ob-

served speedup measure, the APHID algorithm must be heavily favoured over its

synchronous counterpart.

APHID's results are independent of the branching factor within the tree. The

synchronous search results, on the other hand, are very dependent on the branching

factor; a larger branching factor yields more parallelism and less idle time. Thus,

the asynchronous algonthm in APHID is a better choice in applications with small

branching factors, such as checkers and Othello.

The observed speedups achievable by the APHID aigorithm are similar to those

achieved by synchronous parallel algorithms up to 32 processors for chess. Thus, a

synchronous parallel algorithm may be a reasonable choice for wide variable-depth

game trees. When APHID's ease of integration into existing legacy code is considered,

162

the likelihood of better observed speedups with more transposition table memory.

and the additional benefit of speculative search on sorne of the key variations at the

next search depth, we feel that APHID is worth investigating in al1 game-tree search

programs.

Once the author gets further access to an SGI Origin 2000, an interesting exper-

iment that should be nin is an examination of the effect of the transposition table

size on both the sequential time and the parallel time in CHINOOK, CRAFTY and

THETURK. The author believes that the observed speedups will improve for al1 three

programs if a larger shared-memory transposition table is used for both the sequential

and the parallel tests.

Chapter 7

Conclusions and Future Work

The question we wished to answer in this document was: In the area of game-tree

search, can asynchronous parallel algorithms outperform synchronous parallel alg*

rithms? This document shows that asynchronous game-tree search algorithms can

match or outperform the best synchronous game-tree search algorithms.

A similar question posed by Feldmann in the English translation of his thesis

(291. If t is the search depth attained by the search algorithm. Feldmann's Open

Problem 1 States:

By the iterative deepening in a game tree, 0(t2) synchronization nodes

are generated, which decrease the processor workload. 1s it possible to de-

crease the number of synchronization nodes without increasing the search

overhead?

APHID reduces the number of synchronization points to a single point at the end of

the search. Thus, this thesis demonstrates that it is possible to remove the synchro-

nization nodes without dramatically increasing the search overhead.

7.1 Conclusions

In Chapter 3, the parallel game-tree search algorithms that have been published

over the 1 s t 25 years are claçsified into a tauonorny. The taxonomy isolated the

163

164

algorithmic properties from the implementation details. This separation alloned us

to determine that synchronous game-tree search algorithms have been widely studied

in the literature.

This concentration of research on synchronous parallel game-tree search algo-

r i t h m has led many of the researchers in the same direction. A number of the

modern synchronous paralle1 garne-tree search algorithms are, in fact, remarkably

similar to one another. When the implementation details are removed from the un-

derlying parallel algorithm, it is clear that numerous researchers have re-invented the

same algorithm. This fact has b e n obscured by the different hardware and software

implernentations useci.

If synchronous game-tree search algonthms are over-studied, the opposite could

be said for asynchronous game-tree search algorithms. Aside from Neaborn's Un-

synchronized Iteratively Deepening Parallel Alpha-Beta Search (UIDPABS) and this

document, no other research has focused on asynchronous parallel game-tree search

algorithms that partition the game tree.

In Chapter 4, we compared a synchronous garne-tree search algorithm to an asyn-

chronous game- tree search algorithm in a theoretical framework. Csing game trees

that are designed to be similar to those searched by real game-playing programs, the

asynchronous algorithm was shown to generate a greater parallel efficiency than the

synchronous algorithm.

In Chapter 5, the Asynchronous Parallel Hierarchical Iterative Deepening (APHID)

aigorithm was introduced. APHID is based on extending Newbornos original work on

the UIDPABS algorithm. UIDPABS only dlowed for the tree to be split a t the root

node, while APHID ailows the algorithm to be split a t an arbitrary level within the

game t ree.

A game-independent parallel search library containing the APHID algorithm has

been implemented and describeci in this document. This library can be inserted

into a game-playing program written in the C progamming language. This makes

the APHID algorithm very easy to port among different applications and different

Figure 7.1: Speedups for AU Programs (Fixed-Depth, Shared Memory)

Table 7.1: Speedup Data for Al1 Programs (Fixed-Depth. Shared Memory)

hardware configurations.

In Chapter 6, we explored the observed speedups that can be achieved with the

current version of the APHID library. In Figure 7.1 and Table 7.1, a concise summary

of the tests is presented.

Synchronous game-tree search algorithms have a performance that is strongly

correlated to the depth of search attempted and the branching factor in the garne

tree. The asynchronous algorithm in APHID does not depend on the branching

factor. Instead, APHID's speedup is detennined by the depth of search and the

variability in the size of the subtrees examined by the slave processors.

In terms of observed speedup, the Othe110 program KEYANO gives us the largest

numbers. The reason for this is that KEYANO searches a real fixed-depth game

tree. Thus, little load balancing is required to maintain an average work load on

n
8
16

' 32
64

TheTurk

Speedup

8.48
12.96
15.96

Tot al
Search
Over.

-
59.26%
157.2% ,
384.8%

Keyano

Speedup
5.74

i 11.27
21.99
37.44

Total
Search
Over.
9.12%
17.26%
28.78%
76.72%

Chinook
7

Speedup
-

8.35
10.82
14.35

Total
Search
Over.

-
87.45%
201.6%
393.1%

Crafty

Speedup
-

8.76
16.56
15.00

Totd
Sear ch
Over.

-
69.9%
120.7%

300.65%

166

each processor. When we compared APHID to an optimized version of YBWC. the

observed speedup for the KEYANQIAPHID combination is about 50% larger than the

observed speedup for Young Brothers Wait on 64 processors. Although the search

overhead was smaller in Young Brothers Wait, the processors were busy searching the

game tree only 60% of the time.

For the other programs, we compared APHID's results against the obsewed

speedups in the literature. The speedups for APHID in the checkers program CHI-

NOOK may be considered a s disappointing. However, the observed speedup is still

four times larger than previously published results for a highly-tuned synchronous

aigorithm in CHINOOK. The observed speedups for the chess programs (THETURK

and CRAFTY) are in line with the majority of previously published results for chess

programs containing synchronous parallel game-tree search algorithms.

In al1 four of the programs, we have additional speculative search which is ignored

by the observed speedup numbers. In a real tournament game, not only would ae see

the observed speedup when we measure search depth, but the key variations would

sometimes be searched an additional ply or two deeper than they would be in the

synchronous case.

In short, the speedups have been shown to be cornpetitive or significantly stronger

than synchronous methods on common game-tree searching applications. Thus, we

have shown both that our original question can be answered afnrmatively in both a

t heoretical framework and in practice.

7.2 Future Work

Although a lot of development effort has gone into the second version of the APHID

library, there are a number of things that rernain to be tested or implemented.

Library Usability

The first and foremost issue to be determined is the usability of the library

by other reseaxchers. The author has been responsible for the majority of the

167

development work on the library over the 1s t two years, and the code has not

undergone beta testing by the general game-playing cornmunit.

Speculative Search and Move Quality

An interesting addition to the research on arynchronous parallel gametree

search would be quantifying the additional benefit that the speculative search

can yield to a game-playing program. Although the benefits may be difficult to

quanti@ in some of the prograrns given in this thesis, it would be interesting

to run a test that measures APHID's ability to speed up a program's selection

of a winning variation in a tactical position. By comparing a synchronous al-

gorithm's ability on the same test set, we could quanti@ the difference that

specutative search makes in terms of move quality.

Another experiment that could be run is a match between a sequential program

with APHID versus the same sequential program with a synchronous parallel

algorithm. Using a varied number of random and equal openings. we could de-

termine whether the APHID version can routinely defeat a synchronous parallel

algorit hm.

Aspiration Windows

APHID does not perform well on sequential search algorithms that manipulate

aspiration windows at the root of the tree, such as the MTD family of algo-

rithms. The current version of APHID can determine whether the algorithm

will fail high or fail low for a search window at the root of the game tree. As each

slave processor finishes its work on the current iteration, it attempts to start

the next search depth via iterative deepening. If APHID was enhanced to un-

derstand whether a re-search a t the same depth was likely, a new sub-iteration

could be attempted before proceeding to the next iteration of iterative deepen-

ing. This would likely increase the search overhead and reduce the speculative

search component of the total search overhead.

168

Determining Search Windows on Slave Processors

.4PHIDYs current method for predicting the ab search window on the slaves

was chosen after numerous experiments. There may be better algorithrns for

determining the search window on slave procesors.

Another important point to be made is that the variables in the current al-

gorithm were hand-coded by the author to achieve the best performance on

each application. A fair amount of testing went into determining the constants

for each application, and there may be better ways to automatically determine

these constants within APHID. For example, default values for the search win-

dow sizes could be used and optirnized over a series of runs by a mechanism

interna1 to the APHID library.

a Hierarchies

Although the hierarchies are available within the APHID l i b r a n the code for

implementing the hierarchies has not been performance tuned. Due to limited

availability of the SGI Origin 2000 systems for testing, it is difficult to obtain

the time to analyze the issues surrounding the performance of hierarchies in

APHID.

It would also be nice t o be able to demonstrate a situation where the hierarchy

is necessary for APHID's performance. One probable scenario where this could

be demonstrated is a tree search distributed over different cornputers on the

Internet. The hierarchy could be used to ensure the high-level communication

between the sites is relatively small. The intra-site communications can be

organized so that the majority of the messages stay on the same site.

Additional Algorithms in APHID Framework

The APHID library has many custom attachrnents for efficiently executing

game-tree search. The library could be generalized to encompass other tree

searching algorithrns, such as IDA*.

169

A n interesting line of research is parallelism in the B* game-tree search algo-

rithm. There are obvious avenues for parallelizing the B* search algorithm, such

as executing many probe searches at the same time, or executing probe searches

on more than one node concurrently. It is not clear whether synchronous or

asynchronous search methods will be more successful in parallelizing the B*

search algorithm.

It is hoped that this document, in conjunction with the APHID libras; will be

helpful for garne-tree researchers to investigate t hese and ot her ideas surrounding

asynchronous game-tree search.

Bibliography

[1] G. M. Adelson-Velsky, V. L. Arlazarov, and M. V. Donskoy. Some Methods of
Controlling the Tree Search in Chess Programs. Artificial Intelligence, 6(4):361-
371, 1975. (36)

[2] S. G. Akl, D. T. Barnard, and R. J. Doran. Design, Analysis and Implementation
of a Parailel Tree Search Algorithm. IEEE Tmnsactions on P attern Analysis and
Machine Intelligence, PAMI-4(2): 192-203, 1982. (47,49,51)

[3] 1. Althofer. -4 Parallel Game Tree Search Xlgorithm with a Linear Speedup.
Journal o j Algon'thms, 15:175-198, 1993. (63)

[4] T. Anantharaman, M. S. Campbell, and F.-h. Hsu. Singular Extensions: Adding
Selectivity to Brute-Force Searching. Artificial Intelligence. 43(1):99-109, 1990.

(35)

[5] H. E. Bal and R. van Renesse. A Surnrnary of Parallel Alpha-Beta Search Results.
ICCA Journal, 9(3):146-149, September 1986. (45)

[6] G. M. Baudet. The Design and Analysis of Algonthms for Asynchronous Mul-
tiprocessors. PhD thesis, Carnegie Mellon University. Pittsburgh, PA, 1978.
Available as Tech. Rept. CMU-CS-7%116. (47,49,50)

[7] E. B. Baum, C. Garrett, W. D. Smith, and R. Tudor. Best Play for Imperfect
Players and Game Tree Search; Part II - Experiments. Technical report, NEC
Research Institute, Princeton, NJ, April 1995. (39)

[SI E. B. Baum and W. D. Smith. Best Play for Imperfect Players and Game Tree
Search; Part 1 - Theory. Technical report, NEC Research Institute, Princeton,
NJ, April 1995. (39)

[SI D. F. Beal. A Generalized Quiescence Search Algo rit hm. A rtificial Intelligence,
43(1):85-98, 1990. (36)

[IO] H. J. Berliner. Some Necessary Conditions for a Master Chess Program. In
Proceedings of IJCA 1- 73, pages 77-85, Stanford, CA, 1973. (35)

[Il] H. J. Berliner. The B* Tree Search Algonthm: A Best-First Proof Procedure.
Artificial Intelligence, 12:23-40. 1979. (38)

[12] H. J. Berliner and C. IIcConnell. B* Probability Based Search. Art~fificial Intel-
ligence, 86:97-136, 1996. (39)

1131 M. G. Brockington. A Taxonomy of Parallel Game-Tree Search Algori t hms.
ICCA Journal, 19(3) : 162-174, 1996. (8)

[14] M. G. Brockington. Keyano Unplugged - The Construction of an Othe110 Pro-
gram. Technical Report 97-05, University of Alberta, Department of Computing
Science, Edmonton, Canada, June 1997. Presented a t the "Game Tree Search
in the Past, Present and in the Futuren Workshop, NEC Research Institute,
Princeton, NJ, -4ug. 1997. (144,146)

1151 M. G. Brockington and J . Schaeffer. The APHID Parallel aB Search Algorithm.
In Proceedings of IEEE SPDP '96, pages 428-432, New Orleans, Louisiana, Oc-
tober 1996. (8,101,136,140)

[16] M. G. Brockington and J. Schaeffer. APHID Ganle Tree Search. In H. J. van den
Herik and J.W.H.M. Uitenvijk, editors, Advances in Cornputer Chess 8, pages
69-91. Universiteit Maastricht, 1997. (8,101,136,140)

[17] A. Broder, A. Karlin, P. Raghavan, and E. Cpfal. On the Parallel Complexity
of Evaluating Game-Trees. In Proceedings of the Second Annucd ACM-SIAM
Symposium on Dzscrete Algorithnu, pages 404-413, January 1991. (63,70)

[18] .4. L. Brudno. Bounds and Valuations for Abridging the Search for Estimates.
Problems of Cybenetics. 10:225-241, 1963. Translation of Russian original in
Problemy Kzbernetikz, 10: 141-150, May 1963. (19)

[19] A. Brüngger, A. Marzetta, K. Fukuda, and J. Nievergelt. The Z R 4 M Parallel
Search Bench and its Applications. Annals of Operation Research, 1997. To
appear.
U~~:http://nobi.ethz.ch/ambros/aor-zram.ps.gz (68)

[20] M. Buro. ProbCut: An Effective Selective Extension of the Alpha-Beta Algo-
rithm. ICCA Journal, 18(2):71-76, 1995. (36)

[21] M. S. Campbell. Algorithms for the Parallel Search of Game Trees. Master's
thesis, University of Alberta, Department of Computing Science, Edmonton,
Canada, 1981. Available as Tech. Rep. TR 81-8. (37,52,61)

[22] M. S. Campbell and T. A. Marsland. A Cornparison of Minima Tree Search
Algorithms. Artijicial Intelligence, 20:347-367, 1983. (61)

[23] P. Ciancarini. Distributed Searches: A Basis for Cornparison. ICCA Journal,
17(4):194-206, 1994. (45)

[24] V.-D. Cung. Contribution à I'Algorithmique Non Numérique Parallèle: Erplo-
ration d'Espaces de Recherche. PhD thesis, Université Paris VI. April 1994. In
French. (47,49,58)

[25] V. David. Algorithmique Pamllèle sur les Arbres de Décision et Raisonnement
en Temps Contraint - Etude et Application au Minimax. PhD thesis. ENÇAE.
Toulouse, France, 1993. In French. (47,49,58)

[26] C. G. Diderich. Evaluation des Performances de l'Algorithme SSS* avec Phases
de Synchronisation sur une Machine Parallèle à Mémoires Distribuées. Technical
Report LITH-99, Swiss Federal Institute of Technology, Lausanne, Switzerland,
July 1992. In French. (61)

[2?] C. Donninger. Nul1 Move and Deep Search: Selective Search Heuristics for Ob-
tuse Chess Programs. ICCA Journal, 16(3) :137-143, 1993. (36)

[28] C. Ebeling. AZI the Rtght Moues: A VLSI Architecture for Chess. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 1986. Also 1987 book. MIT Press,
Cambridge, MA. (33)

(291 R. Feldmann. Spielbaumsuche auf Massiv Paraltlen Systemen. PhD thesis,
University of Paderborn, Paderborn, Germany, May 1993. English translation
available: Game Tree Search on hlassively Parallel Systems.
URL: ftp://ftp.uni-paderboni.de/doc/techreports/Infomatik/misc/
phdFe1dmann.ps.Z (30,46,47,49,55,75,143,144,157,163)

[30] R. Feldmann, B. Monien, P. Mysliwietz, and 0. Vornberger. Distributed Game
Tree Search. ICCA Journal, 12(2):65-73, 1989. (5 5)

[31) E. W. Felten and S. W. Otto. Chess on a Hypercube. In G. Fox, editor,
Proceedings of The Third Conference on Hypercube Concurrent Cornputers and
Applications, volume IEApplications, pages 1329-1341, Pasadena, CA, 1988.

(47,49,54)

[32] C. Ferguson and R. E. Korf. Distributed Tkee Search and its Application to
Alpha-Beta Pruning. In Proceedings of A AAI-88, pages 128-132, Saint Paul,
MN, August 1988. (47,49,56,75)

[33] R. A. Finkel and J. P. Fishbuni. Paraliel Alpha-Beta Search on Arachne. In
Proceedings of the IEEE International Confwence on Porallel Processing, pages
235-243, 1980. Also Tech. Rep. 394, University of Wisconsin, Madison WI. (25)

[34] R. A. Finkel and J. P. Fishburn. Parallelism in Alpha-Beta Search. Artificial
Intelligence, 19(1):89-106, 1982. (25,47,49,51)

[35] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam.
PVM: Pamllel Vi'irtual Machine - A User's Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994. (6,68997)

[36] 3. J. Gillogly. Performance Analysis of the Technolog Chess Program. Technical
Report 189, Carnegie hlellon University. Pittsburgh, PA, 1978. (71)

[37] G. Goetsch and M. S. Campbell. Experiments with the Xull-Move Heuristic.
In T. A. Marsland and J. Schaeffer, editors, Cornputers, Chess, and Cognition.
pages 55-78. Springer-Verlag, 1990. Earlier version appeard in 1988 AAAI Spring
Symposium Proceeding, pages 1418. (36)

[38] R. D. Greenblatt, D. E. Eastlake, and S. D. Crocker. The Greenblatt Chess
P r o g a . In Proceedings of the Fa11 Joint Computer Conference, volume 31,
pages 801-810, 1967. (27)

[39] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Pamllel Programming
with the Message-Passzng Interface. MIT Press, 1994. (68)

1401 P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Detemination of Minimum Cost Paths. IEEE Tramactions on Systems Science
and Cybernetics, SSG4(2) : 100-107. 1968. (64)

[41] F.-h. Hsu. Large Scale Parallelization of Alpha-Beta Search: An Algon'thmic
and Architectural Study lvith Computer Chess. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 1990. Also Tech. Rept. CMU-CS-90-108, Carnegie
Mellon University, Feb. 1990. (47,49,56,?6,99)

[42] S. Huang and L. R- Davis. Parallel Iterative A* Search: An Admissible Dis-
tributed Search Algorithm. In Proceedings of IJCAI-89, pages 23-29, Detroit,
MI, August 1989. (65)

(431 R. M. Hyatt. A High- Performance Parallel Algorithm To Search Depth-First
Game Trees. PhD t hesis, University of Alabama, Birmingham, Alabama, 1988.

(54,55)

[44] R. M. Hyatt. The Dynamic Tkee Splitting Parallel Search Algorithm. ICCA
Journal, 20(1):3-19, 1997. (47,49,56,?5)

[45] R. M. Hyatt, B. W. Suter, and H. L. Nelson. A Parallel Alpha/Beta Tree
Searching Algorithm. Pamllel Computing, 10(3):29+308, 1989. (47,49,54)

[46] R. M. Karp and Y. Zhang. On Parallel Evaluation of Game Tkees. In Pmceedings
of SPAA '89, pages 409-420, New York, NY, 1989. ACM Press. (63970)

(471 D. E. Knuth and R. W. Moore. An Analysis of Alpha-Beta Pruning. Artzficzal
Intelligence, 6(3):293-326, 1975. (19,20,24,76)

[48] D. Kopec and 1. Bratko. The Bratko-Kopec Experiment: A Cornparison of
Human and Computer Performance in Chess. In M.R.B. Clarke, editor, Advances
in Cornputer Chess 3, pages 57-72. Permagon Press, 1982. (154,178)

[49] R. E. Korf. Depth-First Iterative Deepening: An Optimal Admissible Tree
Search. Artzficial Intelligence, 27:97-109, 1985. (6 5 m

[50] H.- J. Kraas. Zur Parczllelisierung des SSS*-Algorithmus. PhD thesis, Tu' of
Braunschweig, Braunschweig, Germany, January 1990. In German. (61)

[51] V. Kurnar and L. N. Kanal. Parallel Branch-and-Bound Formulations for
ANDIOR Tree Search. IEEE Transactions on Pattern Anolysis and Machine
Int ellàgence, PAMI-6(6) 368-778, November 1984. (38)

[52] V. Kumar, K. Ramesh, and V. N. Rao. Parallel Best-First Search of State-Space
Graphs: A Summary of Results. In Proceedzngs of AAAI-88, pages 122-127,
Saint Paul, MN, August 1988. (65)

[53] B. C. Kuszmaul. Synchmnzzed MIMD Computing. PhD thesis, Massachusetts
Institute of Technology, Cambridge. MA, 1994. (47,49,59,76)

[54] D. B. Leifker and L. N. Kanal. A Hybnd SSS*/Alpha-Beta Algorithm for Parallel
Search of Garne l'rees. In Proceedzngs of IJCAI-85, pages 1044-1046, 1985. (61)

[55] G. Lindstrom. The Key Node Method: A Highly-Parallel Alpha-Beta Algorithm.
Technical Report UUCS 83- 101, University of Utah, Department of Computer
Science, Salt Lake City, UT, March 1983. (47,49,52)

[56] U. Lorenz and V. Rottmann. Controlled Conspiracy Number Search, September
1993. Diplomarbeit, University of Paderborn, Paderborn, Germany. (39,62)

[s i] C.-P. P. Lu. Parallel Search of Narrow Game Trees. hlaster's thesis, Univer-
sity of Alberta, Department of Computing Science, Edmonton, Canada, 1993.

(43,47,49,57,71,137,141,151,152,180)

[58] A. Mahanti and C. Daniels. A SIMD Approach to Parallel Heuristic Search.
Artificial Intelligence, 60:243-282, 1993. (66)

[59] T. A. hl arsland. Relative Performance of the Alpha-Beta Algorit hm. ICCA
Journal, 5(2):21-24, 1982. (72)

[60] T. A. Marsland. Relative Efficiency of Alpha-Beta Implementations. In Proceed-
ings of IJCAI-83, pages 763-766, Karlsruhe, Germany, 1983. (30)

[61] T. .4. Marsland and M. S. Campbell. Parallel Search of Strongly Ordered Game
Trees. A CM Computzng Surveys, 14(4):533-551, 1982. (47952)

[62] T. A. Marsland and Y. Gao. Speculative Parallelism Improves Search? Tech-
nical Report 9545, University of Alberta, Department of Computing Science,
Edmonton. Canada, April 1995. (47,49,60)

[63] T. A. Manland, M. Olafsson, and J. Schaeffer. Y ultiprocessor Tree-Search Ex-
periments. In D. Beal, editor, Advances in Computer Chess 4, pages 37-51.
Permagon Press, 1986. (49,52,141)

[64] T. A. Marsland and F. Popowich. Parallel GameTree Search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-7(4):442-452, 1985.

(52)

[65] T. A. Marsland, A. Reinefeld, and J. Schaeffer. Low Overhead Alternatives to
SSS*. Artijicial Intelligence, 31: 185-199, 1987. (38)

[66] D. -4. McAllester. Conspiracy Numbers for Min-Max Searching . A rt2ficial Int el-
ligence, 35:287-310, 1988. (39)

[67] J. McCarthy. Chess as the Drosophilia of -41. In T. A. Marsland and J. Schaeffer,
editors, Computers, Chess, and Cognition, pages 227-237. Springer-Verlag, 1990.
Also "The h i t f l y on the Fly", ICCA Journal, vol. 12, no. 4, pp. 199-206. (1)

[68] M. M. Newbom. A Paralle! Search Chess Program. In Proceedings of the ACM
Annual Conference, pages 272-277, 1985. (52)

[69] M. M. Newborn. Unsynchronized Iteratively Deepening Parallel Alpha-Beta
Search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-lO(5) :687-694, 1988. (4,47,49,53,85)

(701 -4. Newell, J. C. Shaw, and H. A. Simon. Chess Playing Programs and the
Problem of Complexity. IBM Journal of Research and Development, pages 320-
335, Oct 1958. Reprinted in Computers and Thought (eds. E..4. Feigenbaum and
J. Feldman), pages 39-70. McGraw-Hill, New York, 1963. (19)

[71] N. J. Nilsson. Problem-Solving Methods in Artzficial Intelligence. McGraw-Hill
Book Company, New York, NY, 1971. (64)

[72] A. J. Palay. Searching With Probabilzties. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1983. Also published by Pitman, Boston, MA, 1983.

(36,39)

(731 J. Pearl. Asymptotic Properties of Minimax Tkees and Game-Searching Proce-
dures. Arttficid Intelligence, 14: 113-138, 1980. (30)

[74] A. Plaat. Reseurch Re:Seurch d Re-seorch. PhD thesis, Erasmus University,
Dept. of Computer Science, Rotterdam, The Netherlands, 1996. (23,34,62,71)

[75] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Exploiting Graph Properties
of Game Trees. In Proceedings of AAAI '96, volume 1, pages 234-239? Portland,
Oregon, August 1995. (32,38,43)

[76] C. Powley, C. Ferguson, and R. Korf. Depth-Fint Heuristic Search on a SIMD
Machine. Artificial Intelligence, 60:199-242' 1993. (66)

[77] V. N. Rao, V. Kumar, and K. Ramesh. A Parallel Implementation of Iterative-
Deepening-A*. In Proceedings of A AAI-87, pages 178482, Seattle, Washington,
July 1987. (65)

[78] A. Reinefeld. An Improvement to the Scout Tree-Search Algorithm. ICCA
Journal, 6(4):4-14, 1983. (30)

[79] A. Reinefeld. A Minimax Algorithm Faster than Alpha-Beta. In H.J. van den
Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk, editors, Advances in Computer
Chas 7, pages 237-250. University of Limburg, 1994. (38)

[BO] A. Reinefeld and V. Schnecke. AIDAt - Asynchronous Parallel ID.4*. In Pro-
ceedings of 10th Canadian Conference on Artàficial Intelligence (AI'94), pages
295-302, Banff, Canada, 1994. (66)

[81] J . Schaeffer. Distributed Game-Tree Searching. Journal of Parallel and Dis-
tn'buted Computing, 6(2):90-114, 1989. (47,49,53,141,147)

[82] J. Schaeffer. The History Heuristic and Alpha-Beta Search Enhancements in
Practice. IEEE Transactions on Pattern Analysas and Machine Intelligence,
PAMI-11 (11):1203-1212, 1989. (29)

[83] J. Schaeffer. Conspiracy Nurnbers. Artificial Intelligence: 13(1):67-84, 1990.
(39)

[84] J. J. Scott. A Chess-Playing Program. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 255-265. Edinburgh University Press, 1969. (26)

[85] R. Shinghd and S. Shved. Proposed Modifications to Parallel State Space Search
of Game Trees. International Journal of Pattern Recognition and Artificial In-
telligence, 5(5):809-833, 1991. (61)

[86] J. R. Slagle and J. K. Dixon. Experiments With Some Programs That Search
Game Trees. Journal of the ACM, 16(2): 189-207, April 1969. (18,22,27)

[87] D. J. Slate and L- R. Atkin. Chess 4.5 - The Northwestern University Chess
Program. In P. W. Rey, editor, Chas Skill in Man and Machine, pages 82-1 18.
Springer-Verlag, New York, 1977. (26,28)

[88] 1. R. Steinberg and M. Solomon. Searching Game Trees in Parallel. In Procced-
ings of the 1990 International Conference on Parallel Pmcessing, vol. 3, pages
9-17. Penn. State University Press, 1990. (62)

(891 G. C. Stockman. A Minimax Algorithm Better than Alpha-Beta? Artificial
Intelligence, 12: 179-196, 1979. (37)

[90] K. Thompson. Computer Chess Strength- In M.R.B. Clarke. editor. Advances
in Computer Chess 3, pages 55-56. Permagon Press, 1982. (2)

[91] S. Tschoke and T. Polzer. Portable Parallel Branch-and-Bound Libran (PPBB-
Lib) User Manual, Version 1.1, 1996.
URL:http://vvv.uni-paderborn.de/-ppbb-lib (68)

[92] H. Usui, M. Yarnashita, M. Imai, and T. Ibaraki. Parallel Searches of Game
Trees. Systems and Cornputers in Japan, 18(8):97-109, 1987. (61)

[93] J. von Neumann and 0. Morgenstern. Thwry of Cames and Economic Behavior.
Princeton Press, Princeton, U.S.A., 1944. (10)

[94] 0. Vornberger and B. Monien. Parallel Alpha-Beta versus Parallel SSS*. In
Proceedings of the IFIP Conference on Distributed Processing, pages 613-625.
North Holland, October 1987. (55961)

[95] LC. Weill. Programmes d'Échecs de Championnat: Architecture Logicielle,
Synthèse de Fonctions d'Évaluations, Parallélisme de Recherche. PhD thesis,
Université Paris 8, January 1995. In French. (4?,58,59,151,156)

[96] J .-C. Weill. The ABDADA Distributed Minimax-Search Algorit hm. ICCA Jour-
nal, 19(1):3-16, 1996. (49,59,76)

[9T] A. L. Zobrist. A Hashing Method with Applications for Garne Playing. Techni-
c d Report 88, University of Wisconsin, 1970. Reprinted in the ICCA Journal,
13(2) :69-73, 1990. (2 8)

Appendix A

Test Positions

A.l Chess - CRAFTY and THETURK

The positions used for the experiments in this document corne from the Bratko-Kopec

experiment [48].

Position I

BIack To Move

Position 5

White To Move

Position 2

White To Move

Position 6

White To Move

Position 3

Black To Move

Position 7

White To Move

Position 4

White To Move

Position 8

White To Move

Position 9

White To Move

Position f O

Black To Move

Position 11

White To Move

Position 12

Black To Move

Position 13

White To hdove

Position 14

White To Move

Position 15

White To Move

Position 16

White To Move

Position 17

Black To Move

Position 18

Black To Move

Position 19

Black To hlove

Position 20

White To Move

Position 21

White To Move

Position 22

Black To hlove

Position 23

Black To klove

Position 24

White To Move

A.2 Checkers - CHINOOK

The positions used in the experiments are frorn the Tinsley-Chinook 1992 Test Suite

Position 1

Black To Move

Position 2

Black To Move

Position 3

White To Move

Position 4

Black To Move

Position 5 Position 6 Position 7 Position 8

Black To Move Black To Move tvhite To Move BIack To Move

Position 9 Position 10 Position 11 Position 12

Black To hlove White To hlove Black To Move Black To Move

Position 13 Position 14 Position 15 Position 16

L17hite To hlok-e Black To Move White To &love Black To hlove

Position 17 Position 18

Black To Move Black To Move

Position 19

Black To Move

Position 20

White To Nove

The positions used in the experiments for Keyano are taken from moves 18-27 of the

two games in the 1994 World Championship final between Emmanuel Caspard and

David Shaman.

1-1
Position 1

White To Move

Position 2

Black To Move

Position 3

White To Move

Position 4

Black To XIove

-

Position 5

White To Move

Position 6

Black To Move

Position 7

White To Move

Position 8

Black To Move

Position 9 Position 10

White To Move Black To Move

Position 13

White To Move

Position 14

Black To Move

Position 11 Position 12

WIiteToMove BlackToMove

Position 15

White To Move

Position 16

Black To Move

Position 17 Position 18 Position 19 Position 20

White To Move Black To Move White To Move Black To blove

Appendix B

APHIDSs Interface with the

Application

This appendix attempts to give a precise interface between the APHID library and

the application. Since the APHID library is application-independent. some definitions

of how things are implemented must be given to the library.

We will start by specifying the parameters used throughout the various sections

in the appendix (Section B.1). Next, we will describe the application-dependent

constants that are to be defined by the programmer in the pub1ic.h file (Section

B.2. The aphid-stub- ca l l -bah that APHID uses to retrieve or send application-

dependent information are described in Section B.3. Finally, the various calls that are

inserted into the existing application code are descnbed. This list is broken down by

calls that both master and slave processes use (Section B 4 , followed by master-only

functions (Section B .5) and slave-only hnctions (Section B.6).

B.1 Standard Parameters Used in APHID Inter-

face

argv: Standard argument list passed into the main0 C routine. Used by

APHID to instantiate the slaves with the same run-time parameters as the

183

absolute master.

depth: The number of ply the current node is away from the root of the game

tree.

plytogo: The number of ply until we reach the bottom of the game tree. In

a search with no extensions or forward pruning, p lytogo + depth should be

constant.

PmoveLi] or Obestmove: A pointer to an area of APHIDMOVESIZE bytes which

specifies the move being played.

a phash: A pointer to an area of APHIDHASHTYPESIZE bytes that contains the

current hash value.

O p-key: -4 pointer to an area APHIDJASHKEYSIZE bytes that contains a lock

which can "guarantee" the board stored in the location of the hash table is

correct.

p-entry: A pointer to an area of APHID-TRANSENTRYSIZE bytes that contains

the hash value just written into the local transposition table.

alpha and beta: Search window used by ap implementation.

value and score: Minimax values of the sub-trees of a node and the node itself,

respect ive1 y.

B .2 Application-Dependent Constants

ApHIDmSII?YPESIZE: The size (in bytes) of the hash value used in the appli-

cation. Typicdly, this will either be 4 or 8 bytes, depending on whether your

hash value is 32 or 64 bits in length. Even if only 20 bits are commonly used

for the hash value, the full length of the random number generated should be

passed in.

185

0 APHIDHASHKEYSIZE: The size (in bytes) of the key used to guarantee that two

positions that hash to the same location are the same. In some cases: this may

be the sarne as the hash value. However, some applications use the cornplete

board representation as the key wit hin the transposition table.

a APHID-TRAHSENTRYSIZE: The size (in bytes) of each transposition table entry.

This is required so that the prograrn can copy the correct number of bytes for

use by the diçtributed transposition table code in APHID.

0 APHID-PIOVESIZE: The size (in bytes) of the representation of a move in the

application.

APHIDMINUSINF and A P H I D S L U S I N F : The minimum and maximum possible

values returned by the application's evaluation function.

0 APHID-INVALIDSCORE: A value that is outside the range represented by the

specified minimum and maximum evaluation function values.

0 APHIDLOGZ-TABSIZE: The size of the APHID table that o u intend on using

to share between the master and the slaves, taken to a base 2 logarithm. For

example, a value of 14 indicates an APHID table with 214 = 16384 entries.

A P i i I D ~ S U ~ L Y S E A R C H : The maximum nominal search depth that you ex-

pect to hand to a slave to search. Once this depth is reached, the slaves stop

searching the work granules.

UHID_PUXMASTERPLYSEARCH: The maximum depth that we expect the master

should reach. Note that this includes the hierarchy of dl masters and any

exemptions that may be applied.

APHIDJODESPERSECOND: The number of leaf and interna1 tree nodes that the

application usually visits within one second. The number will be used to de-

termine an approximate measure of time while a game-tree search is taking

place.

186

B.3 Call-Back Functions

int aphid-stub-encodeinit (char *mg): Provides the absolute master prw

cess with a 4000-byte buffer (pointed to by msg) to store al1 pertinent informa-

tion about the root of the game tree, such as the position and the game history

(if this is relevant to the search algorithm). The return value is the number of

bytes written into the string m g .

int aphid-stub-decodeinit (int mg-ln , char *msg) : Al1 other processes

in the system, aside fiom the absolute master, receive the message length and

the message encoded by aphid-stub-encodeinit , and should use the informa-

tion to prepare to search the game tree. 4 process should be in the same game

state as the absolute master after the routine is finished.

void aphid-stub-movedonipath (int numaoves , char *movepath) : Called

by the slaves, a series of nusioves moves is given in movepath. with each

move being APHIDAOVESIZE bytes long. The routine should play through the

moves given in movepath, starting at the position at the root of the game tree.

0 void aphid-stubsioveuppath(int numaoves, char *movepath): Cdled by

the slaves, this routine should completely undo any changes made when moving

d o m the move path. After this routine is finished, the game state should be

the same as it was after the end of the aphid-stub-decodeinit call.

int aphid-stub-iterativedeepening(int depth, int last, int mm):

Cded by the slaves, this routine should retum the search depth for the subse-

quent search of a leaf node. The parameters specify the current depth of the

leaf node, the depth that the 1 s t search was completed to, and the maximum

search depth that can be assigneci, respectively. For most programs that do

iterative deepening in 1-ply steps, this routine should simply return last + 1.

For programs that do iterative deepening in steps of 2, depth and last can

be used to ensure that the the value returned, when added to depth. has the

correct parity.

0 void aphid-stub-preparesearch(int depth. int p ly togo ,

int vinstats [] , int *alpha. int *beta): Called by the slaves, this rou-

tine should set the initial window searched and place it in the integers pointed

to by alpha and beta.

To assist in the decision, the vinstat s array contains numerous statistics, such

as whether a bad bound search has been signalled, the search window used at

the root of the garne tree, and the likelihood that the minimax value will not

change. The statistics in the current array are:

- [O] : A boolean value that represents whether the search window contained

in the next two entnes must be used (if the entry equals 1). or is simply

the window used at the root of the game tree (if the entry equals O).

- Ci 1 : Contains a from a search window (see entry COI).

- C21: Contains ,O from a search window (see entry CO J).

- C3J : Current guessed minimax value of the root of the game tree. Should

be used as the center of the window.

- C41: Boolean value that indicates if we are doing a speculative search.

- Cs] : Contains the depth adjustment to the plytogo parameter. It may

be needed by some programs to disallow null-rnoves and/or ProbCut.

- [6] : An indicator to determine whether a nul1 window search should be

centered to the left (m m - 1, m m) or to the right (rnmz, mmz + 1).

If the value retumed here is even, the window should lean to the right.

Otherwise, it should lean to the left.

- C71: A count of how many left-branches of the current PV must be made

certain before the current guessed minimax value is known. The window

should be made marginally wider for each left-branch given in this array

value.

188

- C83: An estimation of the distance between this node and the Pi ' node.

If this value equals the current depth, the node we are examining is the

PV node and should be searched with the full search window prorided in

entries Cil and [2J -

- Cg] : Reserved for future purposes.

It must be emphasized that this routine is critical to the performance of the

APHID algorithm, and d l of the variables retumed are used. Making windows

that are too wide or too small seriously S e c t s the performance of the APHID

algorithm.

a void aphid-stub-clear-alarm(): This routine should clear the global alarm

information in the application. It will be called before each search by both the

master and the slave processes.

O i n t aphid-stub-alphabetafint depth , i n t p l yt ogo , int alpha,

int beta) : Called by both the master and the slaves: this routine should call

your implementation of ap, and return the minimaw value back t o the APHID

library.

i n t aphid-stubavaluate(int depth, int alpha, i n t be ta) : Called by

the master the first time it visits a leaf of its tree, this routine should simply call

your evaluation routine and return the score for the position reached a t depth

ply within the tree.

i n t aphidatub-stopsearch (i n t pass-stats U) : Called only by the a b s e

lute master process, this routine should check your timer and determine if your

time limit has been exceeded for a search. If the time limit has been exceeded.

this routine should return 1; otherwise, 0.

To make the decision to terminate a search more robust, a nurnber of statistics

are passed in to this routine via the pass-stat s array. The entries contains the

following information.

- [O] : The number of uncertain leaf nodes touched in the latest p a s .

- [il: The total number of leaf nodes touched in the last p a s

- [2] : The lower bound on the minimax value a t the root of the tree being

examined in parallel.

- [3] : The guessed minimax value a t the root of the tree being examined in

parallel.

- [4 1 : The upper bound on the rninimax value a t the root of the tree being

examined in parallel .

- [5] : Reserved for future use.

i n t aphid-stub-visited0: Called by the slaves, this should return a global

count of the number of nodes visited by the proceçs.

i n t aphid-stub-insert-local-tt (in t hash, char *tt-ptr) : Called by

slave processes, this routine should attempt to store the complete transposi-

tion table entry pointed to by t t - p t r into the transposition table location

given by hash. The values corne from information passed into a peer slave's

aphid-distt Ansertentry routine (Section B.6).

B.4 Interface Calls Used by Masters and Slaves

void aphidstartup(argv): In the first process run, PVM is spawned on the

machines specified, and a slave process is spawned with the same argument

list (argv) as the master, as specified by the aphid. conf i g file. The APHID

library never exits this function cal1 when a slave process executes it.

void aphid-exit O: This routine removes a process from the PVM goup, and

it should be cailed before any proces exits (due to errors or normal completion).

If the process is the absolute master, completion of this routine ensures that al1

of the spawned processes have been shut down successfully.

190

int aphidsiaster O : Returns 1 if the process is a master in the hierarchy. and

O othenvise.

in t aphid-slave O : Returns 1 if the process was spawned, returns O if it is

the absolute master process which spawned the other processes. Note that a

process can be both a slave and a master depending on the hierarchy specified

in aphid. config.

B.5 Interface Calls Used by Masters Only

void aph id - in i t s erachbt maxdepth]: Called by the absolute master prc+

cess, this procedure prepares to start a search in paraIlel. This routine cdls

aphid-stub-encodeinit, and then informs al1 of the other processes of the cur-

rent state of the game. The parameter indicates the maximum depth that any

process is norninally allowed to search, not including search extensions.

0 i n t aphidxootsearch(int depth, int plytogo, int alpha, int beta):

This routine is called by the absolute master, instead of calling the typical a3

implementation. It allows a master process to do multiple passes of the tree

until the search is completed, or aphid-stub-stopsearch signals that the search

should be terminated. If the search is allowed to complete, this routine returns

the minimax value of the tree that it has been asked to search.

i n t aphid-intnode-premove (i n t depth, char *moveptr) : Called by the

absolute master, this routine stores moves made before aphidxootsearch into

the move list .

void aphid-endsearcho: The absolute master should c d this routine when

it is finished searching a tree that has been cailed. The routine stops al1 slaves

from working on the leaves of the game tree and prepares the slaves to receive

a new root position.

191

i n t aphid_horizon(int depth, i n t plytogo, char *phash,

char *p-key) : A master process calls this routine to determine if it has reached

its artificial horizon. If the routine returns a 1, we have reached the paralleliza-

tion horizon. We must continue searching if it retums a O. depth and plytogo

are used to determine whether the piece of work is large enough and at the right

level. phash and p k e y are required to detect exempted nodes.

a int aphid-evaLleaf(int alpha, i n t beta , i n t depth, int plytogo,

char *p_hash, char *pkey): This routine returns a minimax value for the

leaf, based on the best information available to the master. alpha and beta

represent the current search window. depth and plytogo are used to determine

the best information, and the hash value and key are used to look up the position

within the APHID table.

void aphid-intnode-start (int depth , char *phash, char *p_key) :

Called by a master process, this routine initializes bound gathering information

for an interior node within the garne tree. p-hash and p k e y are required to

determine if this node has been previously visited.

void aphid-intnode-move (i n t depth , char *moveptr) : Called by a master

process, this routine inserts the move pointed to by moveptr into a hidden move

list that will eventually be sent to a slave in aphid-eval-leaf.

void aphid-intnode-update (i n t depth , i n t value) : Called by the master

process, this routine takes the value returned by the child aB cal1 and uses it to

update the hidden "boundn information gathereà for every node in the master's

tree.

0 void aphid-intnode-end (int depth , i n t score, i n t beta) : This routine

is called by a master for every interna1 node within the tree, and ensures that

the score returned is consistent with previously gathered information about the

node. beta, the upper bound on the search nindow, is used to determine the

correct bound information wit hin the master's tree.

B.6 Interface Calls Used by Slaves Only

0 int aphid-checkalarm(int force-check): This routine checks to see if a

search should be tenninated. If the parameter force-check is zero, the PVM

message queue will be checked a few times evey second. If the parameter is

non-zero, the PVM message queue will be checked immediately. It is highly

recommended that a slave process cal1 the routine with force-check = O. If

the value retumed by aphid-checkalarm is equd to 0, the search should con-

tinue. If the value retumed is not equal to 0, the current search has been

interrupted, and we should terminate it in a "nice" way. 1 is returned if the

absolute master has terminated the search, and 2 is returned if we are searching

speculatively and should stop the current search. However. for the purposes of

the application, they should be treated the same way.

void aphid-distt-insertentry (int hash, char *p-entry , int plytogo) :

This routine will store the transposition table location pointed to by p-entry

into the shadow transposition table. hash is used to determine where the trans-

position table information should be placed on the peer slave processors, and

plytogo is used to determine which pieces of work to Save. The routine has

no return value, since it is not relevant for the slave to know if the entry was

stored in the shadow transposition table.

IMAGE EVALUATION
TEST TARGET (QA-3)

APPLIED INLAGE . lnc
1653 East Main Street - -. , , Rochester. NY 14609 USA -- -- - - Phone: 71 W82-0300

I- -- - - Fax: 716/288-5989

O 1993. App(ied Image. tnc.. All Rights Reserved

