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Abstract

In this thesis, we discuss a probabilistic interpretation of the Laplace
transform of probability density functions (p.d.f.) for waiting times in
queues. We interpret the Laplace transform of a p.d.f. as the proba-
bility that the corresponding random variable wins a race against (i.e..
is less than) an exponential random variable. This interpretation is
used to compute Laplace transforms of some p.d.f.’s. interpret some
properties of the Laplace transform and prove some results for M/G/1
queues. [n addition. we explore probabilistic interpretations of the z-
transform (probability generating function) and its relationship to the

Laplace transform.
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1 Introduction

The Laplace transform is an often used integral transform that is emploved
in many diverse fields of mathematics. [t is particularly well known for its
use in solving linear differential equations with constant coefficients. The
study of stochastic processes also utilizes Laplace transforms in areas such as
risk theory. renewal theory and queueing theory. [n fact. many well-known
results for M/G/1 queues are stated in terms of Laplace transforms.

We will restrict our study of Laplace transforms to queueing applications.
We are. therefore. concerned with transforms of probability density functions
(p.d.f.’s) corresponding to waiting times in queues. In this case. there is a
probabilistic interpretation of the Laplace transform. The Laplace trans-
form of a p.d.f. is the probability that the corresponding random variable
is smaller than an exponential random variable with a particular rate. This
interpretation can be employed to compute transforms of certain p.d.f.’s and
prove relationships between quantities of interest in queueing theory without
the standard computational and integration techniques.

The probabilistic interpretation of the Laplace transform was first intro-

duced in the literature in 1949 by van Dantzig [21] whose original purpose



was to give an interpretation of the z-transform (probability generating func-
tion). Van Dantzig's interpretation (which he called “the theorv of collective
marks”) and its associated techniques were described by Runnenburg [19].
[20]. In these papers. applications to queueing theory were emphasized. Rade
also utilized these interpretations to solve problems in applied probability
from a practical point of view. that would be understandable by both the
technician and the theoretician [13].

Recently. Cong has completed a dissertation [4] and published articles
[2. 3] on queueing theory and collective marks. In these papers. Cong derives
resitlts for queueing systems with complicated restrictions. Cong's results are
more general and have shorter. more efficient proofs. than previous results
regarding the same queueing models.

[t is worth noting that van Dantzig. Runnenburg. Rade and Cong are
all associated with the University of Amsterdam. While the probabilistic
interpretation of Laplace transforms is known outside of Amsterdam. it does
not seem to be well known and is definitely under-utilized as a tool in the
analysis of queues. For instance. Lipsky [13] mentions the interpretation of
Laplace transforms and Haight [9] notes the collective marks interpretation
of the z-transform, but they do not use these insights to prove any results.

2



Kleinrock [12] also notes the interpretation and derives some renewal theory
results. but fails to utilize it in situations where the proofs could be made
more efficient and intuitive. Most standard queueing texts ignore this subject
completely.

For the reasons above. the focus of this thesis to bring attention to the
probabilistic interpretation of Laplace transforms and build upon this inter-
pretation to provide a framework for the analysis of queues.

This thesis begins with relevant definitions in chapter 2. and a general
discussion of Laplace transforms. probability distributions and random vari-
ables in chapter 3. Chapter 4 introduces the probabilistic interpretation of
the Laplace transform of certain probability density functions and gives an
intuitive interpretation of some of the properties of the Laplace transform.
We compute transforms of several p.d.f.’s in chapter 5. Chapters 6 and 7
parallel chapters 4 and 3. this time giving interpretations of the z-transform
and using these interpretations to calculate transforms of discrete distribu-
tions. Chapter 6 also discusses the close relationship between the Laplace
transform and the z-transform. The results from chapters 4 through 7 are
then applied to queues to produce results for M/G/1 systems in chapter 8.
Finally, we make some concluding remarks and discuss some issues for fu-
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ture investigation in chapter 9. including some ideas on possible methods for
inverting Laplace transforms.

The contributions of this thesis are the new proofs of theorems 4.3. 3.1.
8.3. the new proofs of properties 5.6. 7.1. 7.2. 7.3. and the introduction of
corollaries 5.2 and 8.3 and property 3.3. The other significant contribution of
this thesis is that it provides a collection of ideas concerning the probabilistic
interpretation of transforms of probability distributions. The presentation
of these results gives an alternate method for dealing with transforms in

stochastic processes.

2 Definitions

In this chapter. we give the definitions. along with some discussion. of the

continuous and discrete distributions that will be used in this thesis.

2.1 Continuous Distributions

Since we are focusing on waiting times. we will consider probability density
functions. f(x). with non-negative support. i.e.. f(r) 2 0 for x > 0 and f(x) =

0 for r < 0. Some densities of particular interest are the exponential. Erlang,



generalized Erlang. hyperexponential and phase-type.

Definition 2.1 X is an ezponential random. variable with parameter \ > 0

(denoted X ~ ex(\)) if the p.d.f. of X is

Ae= M forr >0
fir) =
0 else,

The exponential distribution plays a prominent role in queueing theory
because of its "“memoryless™ property. This property. along with others. will

be discussed in chapter 3.

Definition 2.2 X is an Erlang random variable with parameters (n.\). A\ >

0. n a positive integer (X ~ Er(n.)\)). if the p.d.f. of X is

AT rnmlemAr forr >0
0 else.

Note that the Erlang distribution is a special case of the gamma distri-

bution f(r) = zy5e r*~le=#/3 1 > 0 where a = n and 3= L.

Definition 2. 3 X is a generalized Erlang random. vartiable

(X ~genEr(Ai. Xa.....Ap)) if X = T8, X, where X; ~ ex(\;) and the Xs

are mutually independent.



The generalized Erlang distribution was originally designed to model non-
exponential distributions by requiring that items pass through n (possibly
fictitious) stages where the time spent at stage { is exponential with rate
A;. The standard Erlang random variable is a special case of the generalized

Erlang random variable with \, = A.i=1.2.....n.

Definition 2.4 X s a hyperezponential random variable with parameters
(Ap...-. Anc@y.....an). N, > 008 = 1.2..... n.a; > 0.:=1.2..... n and

n

10, =1 (X ~ hyperex(\;..... Ancy.. ... a,)). if the p.d.f. of X is

Tr o ahe M forr >0

flr) =

0 else.

The hyperexponential (also called the mixed exponential) distribution is
used in queueing networks to model situations where there is uncertainty as
to which of n parallel service nodes will be entered. The interpretation is
that a customer will enter service node ¢ with probability a,; and. upon entry.

the service time will be exponentially distributed with rate A,.



Definition 2.5 X is a phase-type random. variable with parameters (a.T)

(X ~ PH(a.T)) if the cumulative distribution function (c.d.f.) of X is

1 — aeTe forr >0

F(r)=

0 else.

where e is an (m + 1) x 1 vector of ones and a and T are defined below.

The phase-type distribution is characterized as the time until absorption
for a continuous-time Markov process with rate matrix (infinitesimal gener-

ator)

where there are m transient states and a single absorbing state. labeled m+1.
We take a = (@;.@9....qm) to be the initial probability vector and a4 =
1 - Y™, a; is the probability of starting in state m + L. Here. T is m x m.
T%is m x 1 and O is a 1 x m vector of zeros. Here. t,, (¢ # j). represents the
rate at which we move to state j given that we are in state 7. [t is also worth
noting that each row of @ sums to 0 (i.e.. ;“;,l g, =0i=1....m+1)
The phase-type distribution is extremely flexible with its choice of many
parameters and can be used to model many distributions for stochastic pro-
cesses. In fact. a result from Cox and Smith [5] (page 116) shows that any
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waiting time density can he approximated arbitrarily close by a phase-type
density.
[t is also worth noting that each of the probability densities defined in

this section is a special case of the phase-type density [14].

2.2 Discrete Distributions

We consider discrete distributions for random variables that arise from two
different situations. We are interested in variables that correspond to counts.
for example. the number of customers arriving in a specified period or the
number of customers in a queue. The other type of variables that we are
interested in are variables that represent the number of steps until the occur-
rence of an event of interest. The particular variables we will be interested

in are the geometric. Poisson and discrete phase-type.

Definition 2.6 .V is a geometric random variable with parameter p

(N ~ geom(p)) if the prohability mass function for N is

pn=¢q""'p forn=1.2.3....

where 0 <p<landp+qg=1.



The geometric random variable describes the number of independent trials

until the first “success”™ where. on each trial. the probability of success is p.

Definition 2.7 .V is a Poisson random variable with parameter A > ()

{N ~ Poisson(\)) if the probability mass function for N is

forn=0.1.2.....

The Poisson random variable plays an important role in variables corre-
sponding to counts and. in particular. in several discrete aspects of queueing
systems. The Poisson process is intimately related to the exponential distri-
bution and has many interesting and useful properties which will be described
in chapter 3.

Continuous phase-type densities have a discrete phase-type analog. A
discrete random variable is of phase-type if it represents the number of steps

until absorption in a Markov chain with transition matrix

T T°



Again. there are m transient states and a single absorbing state. state m + 1.
We take a = (). a3 ....amn,) to be the initial probability vector and am.; =
1 -7, a, is the probability of starting in state m+ 1. As before. T is mxm.
T®is m x 1 and 0 is a 1 x m vector of zeros. Here. t;; is the probability of
moving to state j on the next step given that the system is in state i. We

also note that each row of P sums to 1 (i.e.. Z;":llp,-j =li=1....m+1)

Definition 2.8 .V is a discrete phase-type random variable with parameter

{a. T) (N ~ PH(a.T)) if the probability mass function for N is

Qmail forn =0
Pn =
aT" 'T? forn=1.2.3.....
The events that correspond to absorption on step n. are starting in state i.
moving from state ! to state j in n — 1 steps and finally moving from state

J to state m + 1. the absorbing state. on the n'* step. Clearly. N = 0 only if

we start in state m + | which occurs with probability a,,.;. Summing over

all other starting states. we have. forn =1.2.....
P(N =n)

= Z P(start in i) Z P(i — j in n — 1 steps)P(j — m + 1 on n'* step)

=1 =1

10



3 Laplace Transforms, Random Variables and

Probabilities

In this chapter. we discuss some general concepts regarding Laplace trans-
forms and some particular results for Laplace transforms of probability den-
sity functions. In addition. we give some important results regarding the

exponential and Poisson distributions.

3.1 Laplace Transforms

To begin with. we define the Laplace transform in the standard way [16].

[22].

Definition 3.1 The Laplace transform of a function f(xr) ts denoted by
f*(s) and is given by

fi(s) = _/:c e f(z) dr.

where s > 0.

We will also be interested in the Laplace-Stieltjes transform.

11



Definition 3.2 The Laplace-Stieltjes transform of a function f(r) is de-

ﬂ.OtP.d bl/ fES(S) a.”.d 1S g'f:'UF'.” b'l[
o S) = sF dF .Tr).
f[.b( ) /0 € { f')

The Laplace-Stieltjes transform is used to transform functions which pos-
sess both discrete and continuous parts and reduces to the standard Laplace
transform in the fully continuous case.

Since we will be focusing on Laplace transforms of p.d.f.’s with non-
negative support. we will discuss the convergence of the Laplace transform

in this case.

Property 3.1 If f(r) is a p.d.f. with non-negative support. then the 1m-
proper integral

./Ox e~ f(r)dr

converges uniformly for all s > 0.
Proof

Since f(zz) > 0forr > 0and 0 < e <1 forallr>0ands > 0. the

integrand e™** f(z) > Oforx > 0and s > 0. Also. J5 e **f(z)dr < J; f(z)dr.

12



for all + > 0. It follows that [y e™** f(.r) dx is increasing in + and bounded by
1. Therefore. the integral converges uniformly for all s > 0.
This result shows that the Laplace transform of all p.d.f.’s with non-

negative support exists for all s > 0. Further. it must be the case that
0< f(s)<1lforall s>0.

This sets the stage for viewing Laplace transform as a probability.

Given a function f*(s). we wish to know whether or not f*(s) could be
the transform of a density function with non-negative support. Widder [22]
gives necessary and sufficient conditions for this determination as stated in

property 3.2.

Property 3.2 The integral f*(s) = [5° e %*dF(x). where F(r) is a hounded
non-decreasing function of r. converges for all s if and only if f*(s) is com-
pletely monotonic. That is.

(S

d
(“de—szf'(s)ZOfor all k>0 and s > 0. (1)

If f*(s) is to be the Laplace transform of a p.d.f., say f(x). then F(z) is the
corresponding c.d.f. Therefore. if we can confirm that f*(s) is completely

monotonic and we consider F(z) = [5 f(¢) dt. we can conclude. from the

13



above property. that f{r) is positive and that F(r) has a limit as r — x
which we can scale to be 1. So f(r) is non-negative for r > G and [5° f(f)dt =
I and thus. f(r) can represent the p.d.f. of a waiting time. Note that an

sufficient condition for (1) which is given by Apostol [1] is
/ rflr)dr exists forn =1.2.3.... .
Jo

This result will also give the uniform convergence of [5- e™** f(x) dx for all
5> 0.

If anv two continuous functions have the same Laplace transform. then
those functions must be identical [17]. In this sense. all the important infor-
mation regarding a density is contained within its Laplace transform. For
example. all moments of a density function may be obtained directly from

its Laplace transform.

Property 3.3 If m, denotes the i*" moment of X where the p.d.f. of X is

f(x). then
o= (= 1) () lomo -
Proof
i di » _ : d‘ * —sr
(U= (&) o = (<1 7= [T e f(z)dr limo



e ‘
= (-1 [ (5ze |0 )f(x) dr
- (-1)'/:’ (—x)'e™ |,eo )f(r) dr
= /.x_r‘f(.r]a'.r

J0

= m,.1

This result is related to the fact that the Laplace transform of a p.d.f.
is its moment generating function. Af(t). evaluated at + = —s. For further
discussion of Laplace transforms. the reader is referred to Rainville [16] or

Widder [22].

3.2 Probabilities and Random Variables

In our interpretation. we will be interested in the probability that one random
variable. say Y. exceeds another random variable. X. which we denote P(Y >
X). For continuous variables. this probability is defined by Hogg and Craig

{10] to be
P(Y > X) =/0 /f f(x.y) dy dz
where f(z.y) is the joint p.d.f. of X and Y. Note that we restrict our random

variables to those which are independent with non-negative support.



A more intuitive way to view this probability is
PY > X) = / P(Y > r)f(r)dr (independence)
Jo

where f(r) is the p.d.f. of X. We read this expression as the probability
that Y exceeds a specific value of x taken as a weighted average with respect
to f(r) over all possible values for .X.

The discrete analog of this probability for discrete random variables \f

and .V is
xc o
PM>N)=%S pum
n=0 m=n+1

where p,,, is the joint probability mass function of .V and M. As in the

continuous case. we may view this probability as

P(AM > N)= 3" P(M > n)p,

n=0
where p, is the probability mass function for .V and A/ and .V are assurned

to be independent.
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3.3 Important Properties of the Exponential and
Poisson Distributions

In this section. we will list several well-known properties that will be valuable
in handling various queueing situations. Most of these results can be found

in [18].

Property 3.4 The exponential distribution is “memoryless™ - that is. if Y

is an exponential random variable. then P(Y >t+s|Y > s)= P(Y > t).
Proof

Suppose Y ~ ex(\). Then

P(Y >t+s)

P(Y > s)
e—A(s+t)

PY>t4+s|Y >s)

e—As

—A¢

= PY >t)1

This memoryless property is not confined to specific values of s and  as

above. but can be extended to random variables.

17



Property 3.5 IfY is an exponential random variable and X, and X, are
random variables with p.d.f.’s fi(x,} and fo(ra). respectively. where Y .X

and X, are all mutually independent. then
PY>X;+XG|Y > X)) =PY > Xu)

Proof

Suppose Y ~ ex(\). then

P(Y > X;+ X2 | Y > X))
- _/Ox _/0” P(Y > .oy 402 | Y > 1) filr1) folra) dry drs
- ./ooc ./ooo P(Y > .ra) fulry) fa(x2) dry dxy  (property 3.4)
- /0 FPY > 1) folrs) dia

= P(Y > X3). 1

It can also be shown that the only continuous density with this property
is the exponential distribution [6].

An interpretation of the memoryless property is that the distribution of
the time until the next event from a memoryless process is the same regardless

of the time that an observer has already waited for the event to occur.

18



It should also be noted that the only discrete random variable that has

this property is the geometric [11].

Property 3.6 The number of events in an interval (0.t) is Poisson(\t) if

and only if the time between events is ex(\).

Proof

Suppose that N (#) is the number of events in (0. ¢) and that N(t) ~ Poisson(\t).

Let T be the time until the next event (starting at time Q). Then. we define

Fr(t) = P(T<t)

We recognize this expression as the c.d.f. of an exponential random variable
with rate A and therefore. T ~ ex(\).
Now. suppose that the time between events. T'. is exponential with rate

A. Then. the time of occurrence of the n'* event. denoted 7,. is Er(n. \).

19



Therefore.

P(N(t)<n) = P(Tan > 1)

ac \n+!

= / e M dr
t n!

_ i —(A\r)te ™™
=0

_ z": (At)te~

=0

|.r~_-o<:

i' r=t

i!

(integration by parts)

We recognize this last summation as the cumulative distribution of a Pois-

son random variable with parameter Af. Thus. we conclude that V(f) ~

Poisson(At).

Property 3.7 If X ~ex(\;) and ¥ ~ ex(\y) where X and Y are indepen-

dent. then min(X.Y) ~ ex(A; + \y).

Proof

Let X ~ ex(\;) and Y ~ ex(\s) and Z = min(X.Y). The cumulative

distribution function of Z is

Fz(z) = P(Z<z)
= P(min(X.Y) < z)
= 1 — P(min{X,Y) > z)

20



= 1-P(X>:zY >2)
= 1-P(X >:z)P(Y > z) (by independence)
—A1z_—Aa2z

= l-—e e

= 1= e—(/\lflz)z

which we recognize as the cumulative distribution function of an exponential

random variable with rate \; + \,. g

Property 3.8 [f.X ~ex(\). Y ~ex(\2) where X and Y are independent.

then P(Y— > .Y) = —.\—1‘%

Proof

P(Y > X)

oc oc
/ / Me™ M Age™ 3 dy dr
JQ0  Jr

i AL+ A
= / 1\16_( 1r Q)Id:r
J0

The Poisson process has been regarded as the mathematical model that
captures the essence of a truly random process where no readily discernible
pattern appears to anyone observing the process. The lack of pattern is
largely due to the memoryless property of the exponential inter-event times

21



associated with the Poisson process. and the fact that events are independent
of each other.

With this randomness in mind. we have an intuitive explanation for the
P(Y > X) where X and Y are exponential random variables. If there are
type | events occurring with exponential inter-event times at rate \| per unit
time and events of tvpe 2 with exponential inter-event times occurring at rate
A2 per unit time. then all together random events occur at rate A; +\y. Now.
since truly random events will fall uniformly on any interval. given that a
known number of events have occurred in that interval [18]. the probability
that the first event is of type 1 is simply the proportion of events that are of

type 1. namely. T’\o’?

Property 3.9 Let N(t) be a Poisson process with mean \t in which we
count two types of events. [f an event is of type 1 with probability p and type
2 with probability 1 — p. then the processes N\ (t) and N(t) which count type
1 and type 2 events. respectively, are independent with N,(t) ~ Poisson(Atp)

and Na(t) ~ Poisson(At(1 — p)).

Proof

P(.Vl(f) =n, lVg(f,) = m)

22



= 3 P(Nu(t) = 1. Nalt) = m | N(1) = K)PIN(t) = k)
k=0

= PNi(t)=n.Nao(t)=m | N{t)=n+m)P(N(t)=n+m)

(/\t)n-:-me—,\t

= P(Ni(t) = n. Na(t) = m | N(t) = n + m) (n+m)!

_ [(n+m) m (AR)Fme=M
= ( n )" =P =

(Afp)"e=7 (A#(1 = p))meN(i-
n! m! )

n,~— - m,,—At(l—
Therefore. the marginals of Vy(#) and Ny(#) are 221+ P and Qed=p)TeT T

m!

respectively. and the result follows. g

4 Laplace Transforms and the Catastrophe

Process

In this section. we interpret the Laplace transform of probability density
functions as the probability that the corresponding random variable “wins
a race’ against an exponentially distributed catastrophe. We also use this
interpretation to give intuitive explanations of some of the properties of the
Laplace transform.

Our interest is in a process which generates events where the time until
the next event has p.d.f. f(x). To calculate the Laplace transform of f(z).

23



consider an independent process that generates “catastrophes™ (a catastro-
phe is simply another tvpe of event). If the time between catastrophes is
distributed as an exponential random variable with rate s then we find that
the Laplace transform of the distribution of the time until the next event.
f*(s). is simply the long-term proportion of time that the event occurs before

the catastrophe. This result is summarized in the following theorem.

Theorem 4.1 Let X and Y be independent random variables. Further.
suppose that Y ~ ex(s) and the p.d.f. of X is f(r). Then.

fr(s) = P(Y > X).

Proof

P(Y>X) = /0°° /°° Flr)se=Ydy dr
- / T Fr)e™ =z dr
A |
= / = F(r)e~*dx
0
= f7(s)-n

It is worth noting that since the time until the next catastrophe is exponen-
tial. the catastrophe process is Poisson and memoryless. These facts will be

24



of great importance in later chapters.

Since we are dealing with joint probability density functions. by Fubini's
theorem [7]. we may change the order of integration in the proof of Theorem
4.1. As a result. we find an expression for the Laplace transform of the c.d.f.

of X that relates it to the probability P(Y > X).

Theorem 4.2 Let X and Y satisfy the conditions in. Theorem 4.1. Let F(x)

be the c.d.f. of X where f(z) = iF(:r). Then

Fr(s) = %P(Y > X).

Proof

PlY>X) = /Ooc ‘/Oy f(z)se™*¥dr dy
- '/0°° se""’(/ﬂy Flz)dz) dy
= s/ooc e Y F(y)dy

= sF*(s). 1

Using the result of Theorems 4.1 and 4.2, we obtain a well known result
relating the Laplace transform of a function and its derivative (for the spe-
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cial case of the class of probability densities with non-negative support) as

described in the following corollary.

Corollary 4.1 Let F(r) and f(x) be. respectively. the c.d.f. and the p.d.f.

of a random. variable X. Then ,i—‘_{;F(.r) = f(r) and

Proof

From Theorems 4.1 and 4.2. f*(s}) = P(Y > X) = sF*(s) and the result
follows. g

A classical result regarding the n-fold convolution of functions may be
obtained using Theorem 4.1. The convolution of functions f; and fs is defined

by Hogg and Craig [10] to be

fixhta) = [ filr = nfar) dr.

which reduces to the standard definition [L17]:

fixfa= /0r filx = £) fa(t) dt.

because f|(r) and f(x) are assumed to have non-negative support.

26



The convolution operator is associative and we denote the n-fold convo-
lution of fi. fo..... fnas fix fox ... % f,. The classical Laplace transform
result for such functions is that the Laplace transform of the convolution of
functions is the product of the Laplace transforms of each function in the

convolution. That is.

flry=fixfox.. . x fo(r) = f (s) = Hff(s).

From distribution theory. we observe that the density function of the sum
of n independent random variables is the n-fold convolution of the probability
density functions of each random variable in the summation [10]. Thus. using
Theorem 4.1. the Laplace transform of this convolution is the probability that

the catastrophe happens after all n of the events occur in succession.

Theorem 4.3 Let X;. X5...... X, be a sequence of n independent random
variables where each X, has p.d.f. fi(x;). If X =¥, X, and the p.d.f. of
X is f(x) then.

£(s) = [L £2(5).
=1

Proof

27



Let Y ~ ex(s). Then

fis) = P(Y >X)
= P(Y > i.‘(,)
=1
= PlY>X)PY>X 1+ XY > X )
A PY S X+ X0+ + XY S X+ X+ X))
= P(Y > X,))P(Y > Xy)...P(Y > X,) (property 3.3)

= fi(s)f3(s)... fa(s)- m

Since the catastrophe process is memoryless. if we are given that k£ events
have occurred before the catastrophe. we simply reset the “race” between the
length of time for the remaining n — k& events to occur and the catastrophe.

Our probabilistic interpretation also allows us to numerically compute a
Laplace transform using simulation (or real data). provided that we are able
to simulate (or obtain) random values from the density function in question.
To compute f~(s) for particular values for s. we can simulate a series of
exponential values {y;.yo,....y,} at rate s and a series of values from the
density in question. f(x). {x),7s,....z,} and take the proportion of pairs
(7;. y;) such that y; > x,. In the limiting case. this is exactly the value of the

Laplace transform.
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5 Transforms of Continuous Distributions

In this chapter. we compute the Laplace transforms for some important

p.d.f.’s of waiting times through the use of the probabilistic interpretation.

Property 5.1 If X ~ ex(A). then

fris) =

A+s

Proof

fi(s) = P(Y >X)

/\ .
= Y1 (Property 3.8 ). 1

Calculating the Laplace transform using the probabilistic interpretation this
way requires no integration and since we have an intuitive feeling for P(Y" >
X) when X and Y are exponential it is quite natural for us to derive the

Laplace transform in this way.

Proof



Since X ~ genEr(\ ). .. .. An). X =30, X, where X, ~ ex(A,) and thus.

fils) = P(Y > X)
= PY>X +Xo+...+X,)

= [ f7(s) (by Theorem 4.3)

=1
2 /\,‘
- 1:111 /\i +S. .

Corollary 5.1 If X ~ Er(n. \). then

F(s) = ().

T\ +s

Proof

This result follows directly from property 5.2 using the standard Erlang ran-

dom variable with \, = Afori=1.2.....n. 8

Property 5.3 If X is the k' order statistic of a random sample. S, =
{X1. X ... X,.}. of size n. where each X; ~ ex(\) and we denote the density

function for X as fi(x). then

Proof
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Let S,

= {Xf“.Xé” ...... X fi)} denote a random sample of size /| from an

exponential distribution with rate \. Then.

fi(s)

= P(Y > .Y(k))

= P(Y > .Y(”)P(Y’ > _Y(g) { Y > .X'(U)' --P(Y > _Y(k) I Y > -Y(k—l))-

Now. we have n exponentials and the catastrophe simultaneously running a

race. Given that j of the exponentials (j = 1..... k — 1) have finished before

the catastrophe. we reset the race and require that one of the remaining

n — j exponentials occurs before the catastrophe. at which point. we again

reset the race. So. given that j events have occurred (finished the race). we

need that the catastrophe is greater than the minimum of n — j exponentials.

Thus.

f(s)

In the

= P(Y > .Y(U)P(Y > x‘(’(g) ] Y > _)((1)) ---P(Y > )((/L-' | Y > -’\'(k—l],)

= P(Y > min(S5,))P(Y > min(S,_,)) - P(Y > min(S,_+1})

A (n—1)A (n—k+ 1)\

- n,,\—e-s(n.—1)/\+s”-(n—k+1)/\+s
Al (n—i)A

- g(n——i)/\+s'

above expression. the sample S; contains ¢ exponential random vari-

ables. each with rate A and therefore. by property 3.3. min(S,} ~ ex(iA). 8
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We next derive a second expression for the Laplace transform of the &kt

order statistic of n exponential random variables.

Property 5.4 If X is the k** order statistic of a random sample. S, =
P T CTAS Xn}. of size n. where each X; ~ ex(\) and we denote the density

function for X, as fiu(x). then

fi(s)

B An! k-1 Lyt 1
T (n— k) (k =1} ‘:0( i (=1) An—=4)+s

Proof

Here. we compute Laplace transform directly. using the standard p.d.f. for

an order statistic [10].

fals) =/°C Ll

nl!
RV T § Ayn—k g
- / TR E T @ = F)
n! —Aryk—1\_—Ar/_ —Azryn—k
= / RIS A S

Anl!

= TR / k- ( )(_e_,\_r)k’]—l)e—(/\(nﬂkﬂ-l)—f-s);r dr
anl! s
- k)(k—l'z( ) 1)kt /0 e—(An=id+s) 4.

an! — — 1
=( KWk — 1) Z( ) D /\(-n,—i)+s'l
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Properties 5.3 and 5.4 suggest one powerful advantage of the probabilistic
interpretation of the Laplace transform when we compute a transform in two
alternate ways. In the above two properties. we have derived an expression
for P(Y > X') = fi(s) from a probabilistic point of view and an expression
fi(s) in the standard way. so the resulting expressions must be equal. This

gives the following corollary.

Corollary 5.2

k—1 - k—1
(n— A _ An! k — l) k-l 1
H (n—N+s (n—/.t)!(k—l)!z( i (=1) AMn—i)+s

t=0 ={)

The interpretation allows us to relate expressions that would not other-
wise be readily computed or perhaps would not even be considered since they
may appear to be unrelated. We will use this technique again to obtain some
queueing theoretic results in chapter 8. In the structure of many queues.
we often find it natural to look at things from many different points of view

which enables us to use this technique.

Property 5.5 [f X ~ hyperex(A\a,.... \p.ay.a0..... a,). then

fiis)= iai/\-/\; s

=1

Proof
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Let ¥ ~ ex(s) and X, ~ ex(A;). Then

fr(s) = P(Y >X)

= ia,P(Y > X))
=1

n /\l
- ;ai,\‘ s !

Property 5.6 The Laplace-Stieltjes transform of the p.d.f. of a phase-type

random variable, X ~ PH(a.T) is f;5(s) = ey + a(sI — T)7'TO.
Proof

Recall that the phase-type random variable is the time until absorption for
a continuous time Markov process. Let g; be the probability that absorption
occurs before the catastrophe given that we start in state i. Clearly. g, = 1.
For all other i. at the time of first transition. either absorption is immediate
or we move from state ¢ to state j and the race restarts as if we had started

in state j. Let us denote the (i. ) element of T by #,; and the i** element of

T as t9. Thus. for i = 1.2..... m.
t? m .
% = + D . qj

zzlzl:k;&i tik + t? + s J=lg#i Zzl:l:k;éi tik + f? + s
f? e ti_) tu

ke bk + 9+ s _,gl Yor g bk H 12+ 8 T T i tie + 9+ s

q,.
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Solving the above for ¢; and using the fact that i, t. 1 + ¢ = 0 gives

fz: to m t‘J
L+ @ = 0 Z 0. .4
kgt 10+ s Skt 1) + s IT1 Tk rk bk H E) s
So
0
sq = {, -+-Zi‘qu.
=1

’

If.qgq=[q.q..... gm|’. we have. in matrix from.

sq =T° + Tq.

Solving for q gives the solution for the probability of absorption before catas-
trophe conditional on starting state as
= (sI - T)~'T°
Finally. to solve for the Laplace-Stieltjes transform.
fisls) = P(Y > X)

= Qmy4; t+ gmiai%'

= Qm+) +0aq

= ams +a(sI-T)"'TO g
The existence of (sI ~ T)~! is ensured under the assumption that states 1
through m are transient [14]. Note that this result could have been obtained
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using matrix calculus but we choose to compute this Laplace transform in
an intuitive way by exploring the underpinnings of the associated Markov

process.

6 The z-transform and its Interpretations

The discrete analog of the Laplace transform is the z-transform. For a prob-
ability mass function {p,.n = 0.1.2....} of a discrete random variable. say

V. the z-transform is defined to be

The function p(z) is also known as the probability generating function.

In the discrete setting. if N represents the nnmber of steps until the first
occurrence of an event where p, = P(first event occurs on n'® step). we may
consider a discrete geometric catastrophe process where the number of steps
until the next catastrophe. M. is geometric with parameter (probability of

success) 1 — z. With this in mind. we obtain the following theorem.

Theorem 6.1 Let M ~ geom(l — z) and N be a discrete random variable

with distribution {p,.n > 0}. where p, = P(first event occurs on n'* step).
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Then.

p(z) = P(M > N).

Proof

P(M>N) = 3 p.P(M>n)

n=0

i at least n failures from catastrophe process
= pnP

n=0

oo
= Z pnz"

n=0

process before the first success

= p(z).

This z-transform interpretation is the exact parallel of the interpretation
the Laplace transform. The Laplace transform of a probability density is the
probability that the corresponding variable wins a race against (i.e.. is less
than) a memoryless catastrophe process and the z-transform is the probabil-
ity that the variable of interest wins a race (i.e., in a fewer number of steps)
against a discrete memoryless catastrophe process.

An alternate probabilistic interpretation comes from the theory of collec-
tive marks [21]. Let {p,,n = 0.1.2....} be the probability mass function
for a random counting process on N. Then it is to our advantage to view
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the z-transform as a different probability than the one which was illustrated
in Theorem 6.1. Suppose that we are counting things of interest in some
stochastic process which we will call “items™. As we count each item in
the process. we randomly mark that item with probability z. Then the z-
transform of the distribution of .V is the probability that all items counted

are marked.

Theorem 6.2 Let N bhe a discrete random variable with probability mass

function {p,.n =0.1.2....}. If each item is marked with probability z. then

p(z) = P(all items are marked).

Proof

Az) = ) put
=0
= Z P(observe n items)P{n observed items are marked)
n=0

= P(all items in the process are marked). g

As with the Laplace transform. we can obtain all moments of a variable

N from the p(z) by manipulating the following result.

Property 6.1 Consider a discrete random variable N with probability gen-
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erating function p(z). then

E(N(N=1)---(N=i+1))=—p(2) |z=1 -

In addition. we can also obtain the elements of the actual probability

mass function from its generating function.

Property 6.2 [fp(z) is the generating function for a probability mass func-

tion {p,.n =0.1.2....} then.

7 Transforms of Discrete Distributions

Property 7.1 Let N ~ geom(p) and q =1 — p then

pz

p(z) = gz

Proof

Let M ~ geom(l — z). Then.

p(z) = P(M>N)
= P(success and no catastrophe on step 1)
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+ P(failure) P(no catastrophe on step 1)P(AM > V))
= P(N=1LM>1+PN>1PM>1DPM>N|N>LM>1)

= pz+qzp(z)

and solving for p(z). the result follows. g

The above property illustrates the advantage of the memorvless property
of the catastrophe processes. Here. if there is no catastrophe and no success.
we simply restart the race. The probability that the event occurs before the
catastrophe in the new race must again be p(z). With the quantity we are
pursuing. p(z). appearing on both sides of the equation. we simply solve for

p(z).

Property 7.2 Let N ~ Poisson(\). Then

B(z) = ™20,
Proof

Let the probability of an event being marked be z. Since V is Poisson(\).

the number of marked customers V,, is Poisson(Az) and the number of non-
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marked customers. .V,,, is Poisson(A(1 — z)) by property 3.9.

p(z) = P(all events marked)
= P{(no non-marked event in the process)

= P(Num =0)

(M1 — z))0e21=2)
ol

e—,\(l—z)_ 2

Property 7.3 Let N ~ PH(a.T) then
p(z) = ams + 2a(I - 2T)7 1T,
Proof

Recall that a discrete phase-type random variable is characterized as the
number of steps until absorption. Let M ~ geom(l — z) be the number
of steps to achieve the next catastrophe. Let ¢; be the probability that
absorption occurs before the catastrophe given that we start in state i (i.e..
gi = P(M > N | start in i). Note that g, = 1. We denote the (i, )
element of T by t;; and the i** element of T° as #9.

Now. on the first transition. we either move from i to the absorbing state
with probability 0 or we move from state ¢ to state j and restart the race.
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That is.

q,‘ = Zf? 4+ =z z "Jq]'
=1

[f we construct a vector of ¢;'s. @ = [g1.¢G2- . ... gm)'. then
_ 70
q=:T" +:Tq.

Solving for g gives
q=z(I-:T)°'T°
Again. we know (I—zT) ! exists under the assumption that states 1 through
m are transient {14].
Having solved for the probability of absorption before catastrophe. con-
ditional on starting in state {. finding the probability that absorption occurs

before the catastrophe is as follows.

jz) = P(M>N)
= am+lQm+l+Zaiql'
=1

= Qam+1 +aq

= ams + za(l—2T)7'TO §
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8 Results Related to Queueing Theory

In this chapter we will use the interpretations presented in chapters 4-7 to

prove some results in queueing theory.

8.1 Laplace Transforms and the Busy Period

The busy period is the length of time from the beginning of service of the
first customer to the first time when there are no customers in the system.
[n our analysis. we will require a specific characterization of the busy period
that is outlined below.

The length of the busy period is independent of the order of service since
as long as there is any work to be done. the server is still busy. Thus. it is to
our advantage to consider the busy period under a Last-Come-First-Served
(LCFS) discipline.

Under LCFS discipline. customer 1 arrives to begin the busy period. then
some random number of customers. .V, arrives during the service of customer
1. After service of customer 1 is completed. we then place the :N** customer
who arrived during the service of customer 1 into service as though it had

just arrived. Now. before we return to begin service on the (N —1)* customer
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that arrived during service of customer 1. we must serve all customers in a
“personal” busy period associated with customer .V. We conclude that the
total busy period is the service time of customer 1 plus the sum of the busy
periods associated with each customer who arrives during service of customer
1. Further. the distribution of the “personal” busy period associated with
customers arriving during service of customer 1 is the same as the distribution
of the entire busy period.

The distribution of the length of the busy period is generally difficult
to compute. but for an M/G/1 queue. we can relate Laplace transforms of
the distributions of the length of the busy period and the service rime in a

functional equation.

Theorem 8.1 For an M/G/1 queue. if the p.d.f. of the service time 15 b(.r)

and the p.d.f. of the busy period is g{r). then

g (s) =b"(s + M1 —g7(s)))-

Proof

g°(s) represents the probability that a busy period ends before the catas-

trophe. Now, each customer who arrives during service of customer | has a

44



busy period associated with it and the probability that this particular cus-
tomer's personal busy period will not end before (i.e.. be interrupted by) the
catastrophe is 1 — g*(s). As customers arrive during the service of customer
1. we attach a mark to each customer designating whether or not that cus-
tomer's busy period will be interrupted when it comes to run the race against
the catastrophe. So we mark “catastrophic customers™ (those whose busy
period will be interrupted) with probability 1 — ¢*(s) and “good customers™
(who win the race) with probability g*(s). Now. the interarrival time of
catastrophic customers denoted Y, is ex(A(1 — g*(s))). Let Y ~ ex(s) be the

time until the next catastrophe and X be the service time with p.d.f. b(.r).

g°(s) = Pf(entire busy period ends before catastrophe occurs)
= P(service time of customer ! ends before the catastrophe
and before the arrival of a catastrophic customer)
= P(min(Y.Y.) > X)
= b (s +A1—-g'(s)))
The busy period will only be interrupted by the catastrophe if the service
time of customer 1 is interrupted or one of the personal busy periods is inter-

rupted. Thus. racing the catastrophe against the busy period is equivalent
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to racing service time against the occurrence of the actual catastrophe and

the arrival of a catastrophic customer.

8.2 Poisson Process and Random Intervals

Using both the catastrophe interpretation of Laplace transforms and the col-
lective marking interpretation for probability generating functions. we obtain
a series of classical results relating the z-transform of the number of occur-
rences in a random interval and the Laplace transform of the p.d.f. of the

length of the interval where the events are governed by a Poisson process.

Theorem 8. 2 Assume the number of events. N(t). occurring in (0.t) is

e~ M(A"
[}

Poisson with p,(t) = . Let X be the length of a random interval with

p.d.f. f(r). Let p(z) be the z-transform of N(X). Then,

p(z) = f1(M1 = z2)).

Proof

If we mark the events in our Poisson stream with probability z then the
“thinned” process which generates non-marked events is Poisson with rate

AM1—-2z). Let Y be the time between successive unmarked occurrences. Then
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Y ~ ex(A(1 — z)). Therefore.

P(all events in random period are marked)

g1

—
te
]

= P(period ends before an unmarked event occurs)

]

PlY > X)
= ff(Ml=-2)). u

In this situation. the “catastrophe” is the arrival of an unmarked event.
Since .V is distributed according to a Poisson process. the time between
such catastrophes is exponential with rate A(1 — z) and so we are racing the
length of the interval against the ex(A(1 — z)) which we recognize. diie to our
interpretation. as a Laplace transform.

From Theorem 8.2. we obtain several specific results for an M/G/1 queue-
ing svstem. In this svstem. since the arrival process is Poisson. we may apply
Theorem 8.2 where NV (#) is the number of customers arriving in (0.¢) and the

interval in question can be interpreted as any particular interval of interest.
Corollary 8.1 If U is the number of arrivals during the busy period and
g(x) is the p.d.f. of the length of the busy period then u(z) = g*~(A\(1 — 2)).
Corollary 8.2 If V is the number of arrivals during a service period and
b(x) is the p.d.f. for service time then v(z) = b*(\1 ~ z)).
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Corollary 8.3 IfQ is the number of customers arriving during a particular

customer’s total system time. then

where w(r) is the p.d.f. of a customer’s total system time.

These results follow directly from Theorem 8.2.

[t is interesting to note that the number of arrivals during a customer’s
system time is exactly the number of customers in the system at the time of
service completion of that customer. This number of customers in the system
after a service completion forms the standard Markov chain associated with
an M/G/1 queue [8. 12. 18].

Corollary 8.3 also produces Little’s formula in the case of an M/G/1

quette.

q(z) = w(Al-2z))

d d .
= E;q(~) le=1 = e (M1 = 2)) |==1
=q'(1) = w(0)A

— E(Q) = AE(W).
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Since @ is the number of customers in the system after a service completion.
which has been shown to represent the number in the system at any point
in time (8. 12]. E(Q) is really the expected queue length which is usually

denoted E(L). Therefore. our result becomes

E(L) = AE(W).

8.3 Number Served in the Busy Period

Using collective marks. we establish a functional relationship for the :-
transform of the number of customers served in the busy period in terms

of the service distribution.

Theorem 8. 3 If R is the number of customers served during the busy period

for an A[/G/1 queue. then

r(z) =zb"(A(1l —r(z))
where b(x) is the p.d.f. of the service time. X.
Proof

As in Theorem 8.1. we will split the stream of customers arriving during the
service of customer 1 into two independent streams, those whose personal
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busy period will contain an unmarked customer which is Poisson(\(1 —r(z)))
and those whose busy period contains no unmarked customers which is
Poisson(Ar(z)). If we denote the time until the next arrival of a customer
whose personal busy period contains at least one unmarked customer as Y.

then Y ~ ex(A(1 — r(z))). Now.

) = P(all those served in busy period are marked)

%
—
te

customer 1 is marked and all others arriving
= P

during busy period are marked

(

personal busy periods associated with each customer
= P arriving during service of customer 1 contains

\ no unmarked customers

service of customer 1 ends before the arrival

= P of a customer whose personal busy period

\ contains an unmarked customer

= ZP(Y > ./Y)

= zb"(A\(1 = 7(2))).

The proof of Theorems 8.1 and 8.3 are an improvement in length over

the traditional proofs and force us to acquire a better understanding of the
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structure of an M/G/1 queue.

9 Conclusions

We have presented several results regarding the transforms of distribution
which are common in queneing theory. We computed these results using
probabilistic arguments. rather than the standard calculus techniques. We
have also. using our interpretations. obtained new proofs of classical results
for M/G/1 queues.

The application of the probabilistic interpretation of transforms certainly
does not end here. There are many other situations that can be explored
using the techniques outlined in this thesis. Areas that require further study
include GI/M/m and GI/G/m queues. We wish to see how our interpreta-
tion may be used to obtain classical results for these queueing models. Not
only should we be seeking new proofs of old results. but the probabilistic
interpretation should allow us to find new results that only become clear
with this new probabilistic perspective. We can also explore queueing sys-
tems with other constraints such as bulk service or arrival, balking, vacations

and priorities as in the work started by Cong [4. 2, 3]. Outside of queueing
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theory. there is also the possibility to use this interpretation in the study of
risk. renewal processes and other stochastic processes.

Another issue is the problem of inverting the transform. We have found
ways of obtaining Laplace transforms and z-transforms in certain queue-
ing situations. but have said nothing about how to invert the transform.
which is often difficult or impossible. We are interested to see if we can use
our probabilistic interpretation to create some method for inverting Laplace
transforms. Given a Laplace transform or a set of points from a Laplace
transform. perhaps we could somehow fit a Laplace transform of a known
distribution through these data and come up with an approximation for the
original density. Another avenue may be. for a specific value of s. to simu-
late random values from a exponential distribution at rate s and using the
known Laplace transform. see if we can approximate a random sample from
the original distribution.

The probabilistic interpretation of the Laplace transform and the z-transform
give us some new insight into related problems in stochastic processes and

will definitely provide a rich source of research material for the future.
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