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Abstract 

In t his thesis. we discuss a probabilistic interpretation of the Laplace 

transform of probability density functions (p.d.f.) for waiting times in 

queues. We interpret the Laplace transform of a p.d. f. as the proba- 

bility that the co~~esponding random variable wins a race against (i-e.. 

is Iess than) an exponentid random nriable. This interpretation is 

used to compute Laplace transfo~ms of sorne p.d.f.'s. interpret some 

properties of the Laplace transform and prove some results for M/G/ 1 

queues. In addition. we explore probabilistic interpretations of the 2- 

transform (probability generating function) and its relationship to the 

Laplace transform. 



Xcknowledgements 

I ivoiild exprws my gratitiide to Dr. Hlynka and Dr. Caron for their h d p  

throiighoiit t hcs creation of this t hesis and for the academic inspiration the! 

have bem to me throiighoiit my stiidies at the Cniversity of Windsor. 1 

woiild also like to thank Dr. Brill and Dr. McDonald for serving on my 

thesis cornmittee and for their helpful comments. Finally. 1 would Like to 

thank my wife Jennifer. for her love and support. 



TABLE OF CONTENTS 

1 Introdilct ion 1 

2 Definit ions 
2.1 Continiioiw Distributions 
2.2 Discrete Distribiitions 

3 Laplace Transforms. Random Variables and Probabilities 11 
:3.1 Laplace Transform 11 
3 -2  Probabilities and Random Variables 15 
3.3 Important Properties of the E.xponential 

and Poisson Distribii tions 17 

4 Laplace Transforms and 
the Catastrophe Process 

- 
a Transforms of cont inuoiis distrihiit ions 29 

6 The z-txansform and its Interpretations 36 

7 Transforms of discrete distri bixtions 39 

8 Results Related to Queiieing Theory 43 
Y.1 Laplace Transforms and The Biisy Period 43 
5.2 Poisson Process and Random Intervals 46 
8.3 Yiimber Served in the Busy Period 49 

9 Concliisions 31 



References 

Vita ,\iict,oris 



1 Introduction 

The Laplace transforrn is an often iwed integral transform that is employed 

in many diverse fields of mathematics. It is partictilarly well known for its 

use in solving linear different ial equations with constant coefficients. The 

stiidy of stmhastic processes a b  utilizes Laplace transforms in areas such as 

risk theory. renewal theory and qiieiieing theory. In fact. m a q -  well-known 

r~siilts for Af/G/ l  qiieii~s are stated in terms of Laplace transforms. 

We will restrict oiir stiidy of Laplace transforms to qiteiieing applications. 

We are. therefore. concerned with transforms of probability density Eiinctions 

( p.d.f.'s) corresponding tao waiting times in qiieiies. In this case. there is a 

probabilistic int~rpretat ion of the Laplace t ransform. The Laplace trans- 

form of a p.d.f. is the probability that the corresponding random variable 

is smaller than an exponential random variable with a particular rate. This 

interpret at ion can be employd to cornpiite transforms of certain p.d. fa's and 

prow relat ionships be tween quant ities of interest. in qiieiieing t heory wit hoiit 

the standard compiitat ional and integration techniques. 

The probabilistic interpretation of the Laplace transform was first intro- 

duced in the literature in 1949 by van Dantzig [21] whose original purpose 



was to give an interpretation of the r-transform (probability generating func- 

t ion). Van Dantzig's interpretation ( which he called -.the t heop of collect i w  

niarks" ) and its associated techniqiies were described by Riinnenbiirg (1 91. 

[?O]. In t hese papers. applications t O queiieing t heory were emphasized. Rade 

also I it ilized t hese interpretat ions to soive problems in appiied probability 

Erom a practicd point of view. that woidd be understandable by both the 

technician and the t heoretician [15]. 

Recently. Cong has cornpleted a dissertation [4] and piiblished articles 

[3. 31 on qiieiieing theory and collective marks. In these papers. Cong derives 

resiilts for qiieiieing systems with complicated restrictions. Cong's residts are 

more general and have shortm. more efficient prools. than pr~vioiis r~sii l ts  

regarding the same qiieiieing models. 

It is worth noting that van Dantzig. Rlinnenbiirg. Rade and Cong are 

al1 associated with the University of Amsterdam. While the probabilist ic 

interpretation of Laplac~ transforms is known oiitsids of Amsterdam. it does 

not seem to be well known and is definitely imder-iitilized as a tool in the 

analysis of qiieiies. For instance. Lipsky [13] mentions the interpretation of 

Laplace transforms and Haight (91 notes the collective marks interpretation 

of the z-transform, but they do not use these insights to prove any results. 
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KIeinrock [12] dso notes the interpretation and derives some renewal theory 

resillts. bllt fails to iitilize it in situations where the proofs coiild be made 

more efficient and int iii t ive. !vIost standard qiieiieing t exts ignore t his stib ject 

complet ely. 

For the reasons above. the focirs of this thesis to bring attention to the 

pro habilist ic interpretat ion of Laplace transforms and biiild iipon t his inter- 

pretation to provide a framework for the analpis of queiles. 

This thesis begins with relevant definitions in chaptrr 2. and a gmeral 

disciission of Laplace transforms. probability distribiitions and randorn vari- 

ablw in chapter 3. Chapter 4 introdiices the probabilistic interpretation of 

the Laplace t ransform of certain pro bability density fiinct ions and gives an 

intiiitive interpr~tat~ion of some of the properties of the Laplace transform. 

CVe cornpute transforms of several p.d.f.'s in chapter 5. Chapters 6 and 7 

parallel chapters 4 and 3. this tirne giving interpretations of the 2-transform 

and iising t hese interpretat ions to calciilate transforms of discrete distribu- 

tions. Chapter 6 also disc~isses the close relationship between the Laplace 

transform and the z-transform. The resitlts from chapters 1 through 7 are 

then applied to qiieiies to produce resiilts for M/G/1 systems in chapter 8. 

Finally, we make some concluding remarks and disctiss some issues for fu- 

3 



t i re  investigation in chapter 9. incliiding some ideas on possibl~ met hods for 

invert ing Laplace t ransforms. 

The contribiitions of this thesis are the new proofs of theorems 4.3. 8.1. 

8.3. the new proofs of properties 5.6. 7.1. 7.2. 7.3. and the introduction of 

corollari~s 5.2 and 8.3 and property 5.3. The other significant contribution of 

t his t hesis is that it provides a collection of ideas conc~rning the probabilist ic 

interpretation of t,ransforms of probability dist ribiit ions. The presentat, ion 

of these resiilts gives an alternate method for deding with transforms in 

st,ochast ic procemes. 

2 Definitions 

In this chapter. we give the definitions. along with some disciission. of the 

continiioris and discrete distribiitions that will be iised in this thesis. 

2.1 Continuous Distributions 

Since w are fociising on waiting times. we will consider probability density 

ftuictions. f (r). wit h non-negative siipport. i.e.. f (.T) 2 O for -1: 2 O and f (z) = 

O for .7: < O . Some densities of particiilar interest are the exponential. Erlang, 



generalized Erlang. hyperexponent ial and phase- type. 

De finition 2. 1 .Y is an pxpon.mtia1 random. variahle with param.eter ,\ > O 

idmotrd  S -- es(,\)) J thr  p.d.f. of S is 

T t i ~  exponential distribution plays a prominent role in qii~iieing theory 

because of its xwmoryless" property. This property. dong wit h ot hrrs. d l  

he disciissed in chapter :3. 

Definition 2. 2 .Y is an. Erlang ran.dum variable with p a r a r n ~ t ~ r s  (n,. A ) .  h > 

O .  n a p o s i t r ~ ~  in . t~ger  (.Y - Er()?. A)) .  i f  f ie  p. d. f. of S is  

Note that the Erlang distribution is a special case of the gamma distri- 

1 ' . r " - l e - x / ? . ~ > O w h e r c c r = n a n d B = x .  bution I(T) = 

Definition 2. 3 .Y is a g e n m d i z ~ d  Erlang random. variable 

(X .v genEr(XI.  X2:. . - . A n ) )  i f  X = C:=] Xi W ~ C T C  -Yi - ~ x ( A , )  an,d the .Y;S 

are m.utuall9 in ,depmdmt .  



The generalized Erlang distribut ion was originally designed t O model non- 

exponential distribiitions by reqiiiring t hat items pass throiigh n ( possibly 

fictitioiis) stages where the time spent a t  stage i is exponmtial with rate 

Xi. The standard Erlang random variabIe is a special case of the generalized 

Erlang random \-aiable with A, = A. i = 1.2. . . . . n.  

Definition 2.4  .Y is a h.i/per~xponmtiaZ randorn variahle with pmram.etrr.s 

( A 1  . . . . .  X,.q . . . . .  a,). A, > 0.i = 1.2 . . . . .  n. ni > 0 . i  = 1.2 ..... n and 

x:=i ni = 1 (.Y -- hyperex(XI. . . . . A,. n 1. . . . . a,)). if the p.d. f. of .Y is 

The hyperesponential (also called the mixed exponent.ia1) distrihiition is 

iised in qiieiieing networks to mode1 sitiiations where there is iincertaint?. as 

to which of r i  parallel service nodes will he entered. The int>erpretation is 

that a ciistomer will enter service node i with prohability ai and. tipon entry. 

the service time will be exponentktlly distribiited with rate X i -  



Definition 2. 5 -Y is a ph.ase-tvpe ran+dom. uaniahle with p a r a r n e t ~ ~ s  (a. T) 

(.Y .- PH((r. T) ) if  th,^ cum:ulatiue distribution fvn.ction (r:.d. f .) of .Y is  

( U ~ . F T P  e is an (m. + 1 )  x 1 vector of ones and a an.d T av deJnpd belo.w. 

The phase-type distribution is characterized as the time iintil absorption 

for a c~nt~iniiolis-tirne Markoc. process with rate matrix (infinit.esima1 gener- 

ator) 

where there are rn transient states and a single absorbing s t a t e  labeled m, + 1. 

WP i d e  a = ( a l .  a2 . . . .a,) to be the initial probability vector and a,+i = 

To is m. x 1 and O is a 1 x m. vector of zeros. Here. t ,  ( a  # j ) .  represents the 

rate at which we move to state j given that we are in state i. It is also worth 

noting that each row of Q siims tao O (Le.. qil = O. i = 1 . . . . rn + 1). 

The phaset,ype distribution is extremely flexible wit h i t u  choice of many 

parameters and can be irsed to mode1 many distribiitions for stochastic p r e  

cesses. In fact. a resiilt hom Cox and Smith [5] (page 116) shows that any 



waiting tirne density can be approxirnated arbitrarily close by a phasetype 

density. 

It is also worth noting t,hat each of the probability dmsities defined in 

t his section is a special case of the phase  type density [Il]. 

2.2 Discrete Distributions 

h> consider discrete distribiitions for random variables that arise from two 

different situations. We are interested in variables that correspond to coiirits. 

for esample. the niimber of ciistomers miving  in a specified period or the 

niimber of ciist,omers in a qiieii~. The other type of variables that ive are 

interestd in are variables that reprrsent  th^ niimber of steps iintil the occilr- 

rence of ari ewnt of interest. The particiilâr variables we will be interested 

in are the geometric. Poisson and discrete phase-type. 

Definition 2. 6 iV i s  a g ~ o m ~ t r i c  ran.dom. uariahl~ with param.~ter p 

(iV - geom,(p)) if th,e prohahifitg m,ass lunction. for 3 i s  



The geometric random variable describes the nomber of independent trials 

iintil the first -siiccess' where. on each trial. the probability of siiccess is p. 

Definition 2. 7 .V is a Poisson. runadom. uariahlr cL.ith param.ptpr h > O 

(.V - PoLs.son(X)) i j  t h , ~  probabilitg mass fun,rtion for .V is 

The Poisson random variable p l a y  an important role in variables corre  

sponding to coiints and. in particiilar. in several discrrte aspects of qiieiieing 

systmis. The Poisson process is intimately related to the aponential  dist ri- 

biition and has m q  interesting and iisefiil properties which will he describpd 

Contintioiis phasetype densities have a discrete phase- type analog. A 

discrete random variabk is of phase-type if it represents the nimber of steps 

until absorption in a Markov chain with transition matrix 



Again. rhere ara m transient statw and a single absorhing state. state ni + 1. 

We take a = ( O  *. a? . . . . a,) to be t he initial probability vwtor and a,, = 

1 -XI=, n, is the probability of starting in state m,+ 1. -4s b~fore. T is m x m.  

T* is rn x 1 and O is a 1 x m. wctor of zeros. H e r ~ .  t,, is the probability of 

moving to  st,ate j on  th^ next strp giwn that the system is in state i. CL+ 

also note that each row of P sltms to 1 ( i . ~ . .  ~,"=: 'p , ,  = 1. i = 1 . .  . . r i ?  + 1). 

Definition 2. 8 .V i s  a disrrpt~ ph.asr-typr random v a r i a h l ~  with param.~t~r 

( a .  TI ( .V -. PH(û. T) ) if  th,^ prohahility mass fun,ction for .V is 

for n. = O 

aTn-ITo for n = 1 . 2 . 3 . .  . . . 

Thp pvents that correspond to absorption on step n,. are starting in state i. 

moving from state i to statr  j in n - 1 steps and finally nioving from state 

j to st.ate m. + 1. the absorbing stato. on the dh step. Ckarly. Y = O only if 

LW start in state m. + I which occiirs with probability a,, I .  Siimming over 

a11 other starting states. ive have. for n. = 1 . 2 . .  . . . 

rn m 

= P(star t  in i) P(i - j in n - 1 s teps)P( j  - m + 1 on nth step) 
i= 1 j = l  



3 Laplace Transforms, Random Variables and 

Probabilities 

In this chapter. ive disciiss some peneral concepts regarding Laplace trans- 

forms and some particiilar resdts for Laplace transforms of prohability den- 

sity fiinctions. In addition. NP giw some important r~siil ts regarding the 

mponential and Poisson distribiitions. 

3.1 Laplace Transforms 

To bkgin with. we define the Laplace transform in the standard way* [16]. 

Definition 3. 1 Th.e Laplace transfonn of a fun.ctun. f ( -1: )  i s  denoted idy 

f ( s )  and i s  giu~n.  bq 

bC 

f s )  = e-" f ( x )  d r .  

We will also be interested in the Laplace-Stieltjes transform. 
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Definition 3. 2 The Laplaw-St ie l t j~s  tran.sfonn of a funzfion f (.r) is d e  

nmted h,q &(s) and is  g+um hy 

The Laplace-St ieltjes trransform is i ised to t ransform hinct ions which pos- 

sess both discrete and continiioiis parts and rediices to the standard Laplace 

transform in t, he firlly cont,iniioiw case. 

Since we will b~ Fociising on Laplace transforms of p.d.f.'s with non- 

negatiw siipport. LW will disctiss the convergence of t,he Laplace transform 

in this case. 

Property 3. 1 If f (1 )  is a p.d.f. with n o n . - n q a t i u ~  support .  t h p n   th,^ hm,- 

converges u n i f o m l g  for al1 s 2 0. 

Proof 

Since f(2:) 2 O for r 3 O and O < - e-" 5 1 for al1 r 2 O and s 2 0. the 

integrand e-'"J(.r) 2 O For z 2 O and s 2 0. Abo. fa e-" f (.T)~T - J: f (z)dî-. 



for al1 t 3 O. It follows that j: e-"" f (.r) d.r is increasing in t and boiindrd by 

1. Therefore. the integral converges iinifornily for al1 s 2 0. 

This resiilt shows that the Laplace transform of d l  p.d.f.'s with non- 

negative support, exists for al1 s 3 O. Fiirther. it miist be the case that 

O 5 f*(s)  5 1  for al1 s > 0. 

This sets the stage for viewing Laplace transform as a pr~babilit~y. 

Given a hinction f'(.s). WP wish to know whether or not f'(.sj coiild be 

the t ransform of a density hinction wit h non-riegative siipport . Widder [22] 

giws necessary and sifficimt conditions for this determination as stated in 

property 3.2. 

Property 3. 2 Th-P in.kgral f*(s) = jb"Ce-s"dF(.~:). whpr~ F(.I.) is a hovndrd 

n.on.-d~cr~asin.g funrtion of .r:. ron.oprges for al1 s ij and on,ly if f' (s)  cj corn.- 

p le fe l~~  mon.oton.ic:. Th.at is. 

dk 
( - l ) k - f * ( ~ )  3 O f o i  al1 k 2 O and s > O .  ( 1 )  dsk 

If f ' ( s )  is to br the Laplace transform of a p.d.f., say f (z). then F ( x )  is the 

corrmponding c.d.f. Therefors. if we can confirrn that f ' (s) is completely 

monotonie and we consider F ( z )  = Jz f (t) dto we can conclude. Gom the 
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above property. that f ( .r )  is positive and that F( : r )  bas a limit as r - x 

which we can scalp to he 1. So f (.r ) is non-negatiw for s 2 O and jb* f ( t ) dt = 

I and rhiis. / ( . r )  can represent the p.d.f. of a waiting tirne. So tp  that an 

s i f i c imt  condition for (1) which is pivm by Apostol [l] is 

i" .rn f ( - 1 . )  d3: exists for n = 1.3. 3. . . . . 

This r~s i i l t  will also g iw the iiniform convergence of \oaD e-'" f (2.) dx for al1 

s > o. 

If any two continiioiis fiinctions have the samk Laplace transform. t hen 

t,hosr fiinctions miist be identical [17]. in this sense. al1 the important infor- 

mation r~garcling a densitu is contained within its Laplace transform. For 

example. al1 moments of a density hinction may be obtained directly from 

its Laplace tmmsform. 

Property 3. 3 If ml dmotes  th.e ith m o m , m t  of .Y w h . ~ r ~  th.e p. d. f. of 3- is 



This r~siilt is rdated to  the fact that the Laplace transform of a p-d-f. 

is its moment generating fiinction. A l ( f ) .  evaliiated at t = - S .  For fwther 

disciission of Laplace transforms. the reader is referred to Rainvilk [161 or 

W i d d ~ r  [22]. 

3.2 Probabilities and Random Variables 

In oiir interpretation. WP will be int,erested in the probability that one random 

variable. Say 1'. exceeds another random variable, X. which 11.e denote P(Y > 

X). For continiioiis variables. this probability is d~fined by Hogg and Craig 

[IO] to be 

where f (.T. y )  is the joint p.d.f. of X and Y. Note that we restrict oiir random 

variables to t hose which are independent wit h non-negative siipport . 



-4 more intuitive way to view this probability is 

where f (r) is the p.d.f. of -Y. WP read this expression as the probabilit~ 

that Y ~xceeds a specific valiie of .T- takm as a weighted average with respect 

to f (.r ) over al1 possible valiies for ,Y. 

The discrrte analog of this probability for  discret^ randorn variables .\f 

and .V is 

wherp I)n.m is the joint probability m a s  hinction of .V and M. -4s in the 

continiioiis case. we may vie-- t his probability as 

where on is the probability mass hinction for LV and i\I .V are assiirned 



3.3 Important Properties of the Exponential and 

Poisson Distribut ions 

In t his section. ive will list several well-knom prop~rties t hat will bt. valiiabl~ 

in handling varioils qiieiieing sitiiations. Most of these rrsiilt,~ can be foiind 

in (181. 

Property 3. 4 Th.e ~xponmhia l  distribution is o ~ ~ m . o q ~ k . s s "  - that is. if Y 

Lî an, ~ q o n v x t i a l  random u a f i a h l ~ .  t h , m  P(Y > t + s ( Y > s )  = P(Y > t ) .  

This mernoryless property is not confined to specific values of s and t as 

above. but can be extended to random variables. 



Property 3. 5 If Y is an ~xponiintial random, uariahk an.d .Yl and .Y2 are 

random uariahles with p .  d.J 5 f (.rl ) and f 2 ( . r 2 ) .  r ~ s p e ~ t i ~ d ~ / .  wh.er~ kr.'il 

und - Y  arp u1j r n ~ t u a l l ? ~  i n . d e p ~ n d ~ n , t .  theen, 

Proof 

Si ippos~ Y .- PX(,\). thcn 

P ( Y  > .Y1 + .Y2 ( Y > ?Cl) 

= i," 
= .r 
= il" 

It can also be shown that the only continiioiis density with this property 

is the esponential distribution [6]. 

An interpretation of the mernoryless property is that the distribution of 

the tirne iintil the next went froni a memoryless process is the same regardless 

of the time t hat an obserwr has already tvaited for the event to occir. 



I t  shoiild also be noted tthat the only discrete randorn variable that hris 

t his propert,y is the g~omet  ric [I l ] .  

Property 3. 6 Th.r n~umhrr of r u m b  in an  intprval ( O .  t )  is Poisson(Xt j i/ 

and odg  if thx Gm,r hr twr~n eumts is px(X). 

Slippose t hat : V ( t )  is the nimber of events in (O. t )  and t hat .V(t) - Poisson ( A t ) .  

Let T be the time tintil the next went (st?art,ing a t  time 0). Then. we de fin^ 

We recognize t his expression as the c.d.f. of an exponential random variable 

with rate X and thmefore. T -- ex(X). 

Yow. siippose that the time between events. S. is exponential with rate 

A. Then. the time of occimence of the dh event. denoted T,. is Er(n. A).  



Therefore. 

= 2 - ( ) e L  ,=, 
Ir=t (integrat ion by parts) 

L=O i! 

LVP recognizc t8his 

son random varia 

Poisson( Xt 1. 1 

last siimmation as the ciimiilative distribiition of a Pois- 

.hle with parameter At. Thiis. LW concltide that  Y ( t )  -- 

Property 3. 7 If .Y -- t>x(XI) an,d Y -- ex(X2) wh,er~ .Y und Y arp i n d ~ p ~ n -  

dmt .  rh~n  rnin.(X. Y) - ex(X1 + Xy ) .  

Let .Y - ex(XI) and Y -. ex(,\?) and Z = min(,Y. Y). The ciiniiilatiw 

distribiition fiinction of Z is 



( h l  independence) 

which we rwognize as t, hr ciimttlatr ive distribution fiinc t ion of an esponent i d  

random variable wit h rate XI + XY . 1 

TLr Poisson process has hem regarded as the mathematical mode1 that 

cüptiirm the essence of a tritly random process where no readily discernibk 

pattern appears to anyone observing the process. The lack of pattern is 

largely dile to the memoryless property of the exponential inter-event t imes 



associated with the Poisson process. and the fact. that w m t s  are indapendent 

of each other. 

Wit h t his randomness in mind. we have an intiiitive expianation for the 

P(1' > 'I) whrre .Y and Y are ~xponential randorn variables. If there are 

type 1 svents occiirring with exponential inter-went t i m ~ s  at rate X i  per mit  

time and events of type 2 with exponrntial inter-event times occiirring at rate 

X2 per iinit time. then al1 together random w m t s  occiir at rate XI + A-. Now. 

since triily random events will fa11 iiniformly on any interval. given that a 

known niirnber of e v ~ n t s  haw occiirrd in that interval [lY]. the probability 

that the first ewnt is of type 1 is simply the proportion of evmts that are of 

X type 1. namdy. Al . 

Property 3. 9 Lrf .V ( f )  he a Poisson procas wlth. m.mn At in which i u p  

coun,f two types of F V C ~ , ~ S .  If an r w n t  is of t v p ~  1 with prohahilit:t/ p and t : y p p  

2 ,%th prohahilitg 1 - p. theen th.e procpsses :Vl ( t )  an,d iV2(t) wh.ich covnt t y p e  

1 and tgpp 2 euents. resp~cti~vely. arp independent with  ;VI ( t )  -- Poisson(Xtp) 

and & ( t )  - Poisson(ht(1 - pj). 

Proof 

P ( N l  ( t )  = n, &( t )  = rn) 
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= P(.V1 ( t )  = r?,. x ( t )  = m. 1 .V(t) = n. + rn)P(:V(t) = n + m )  

( A t p ) " e - " ' ~  ( A L (  1 -p) )me- ." I  1 - P ,  Therafore. the marginals of iVl ( t )  and :V2(t) are 
n! and m! 

respectively. and the resiilt follows. 

4 Laplace Transforms and the Catastrophe 

Process 

In this section. we interpet  the Laplace transform of probability density 

hinct ions as the probability t hat the corresponding random variable wins  

a race" against an exponent ially distribiited catastrophe. bVe also lise t bis 

interprrtation to $ive intuitive explanations of some of the properties of the 

Laplace transform. 

O i r  intsrest is in a process which generates events where the time tintil 

the next event h a .  p.d.f. f (z). To calculate the Laplace transform of f ( x ) .  
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consider an independent process t hat generat es --catastrophes" ( a  cat ast ro- 

phe is simply another type of w m t ) .  If the time betwwn catastrophes is 

distribiited as an esporiential random variable with rate s t h m  RF find that 

the Laplace transform of the distribiition of the tirne iintil the next event. 

f * ( s ) .  is simply the long-term proport ion of timr that t h r  went  occiirs before 

t he cat astxophe . This ressiilt is siimmwizd in the following t heor~m. 

Theorem 4.1 Let .Y an.d Y he i n d e p m d ~ n t  r a n d o m  variahlrs. Further. 

supposr th,at Y - ~ x ( s )  and th.e p. d.J of .Y is f (.r). Th.en.. 

I t  is worth noting that since the time iintil the next. catastrophe is exponen- 

tial. the catastrophe process is Poisson and memoryless. These facts will be 
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of great importance in later chapters. 

Since we are dealing with joint probability density fiinctions. by Fiibini's 

theorem [7]. we may change the order of integration in the proof of Theorem 

4.1. -4s a resiilt . we find an expression for the Laplace transform of the c.d.f. 

of X that relates it to the probability P ( Y  > .Y). 

Theorem 4. 2 Let ,Y a n d  Y satisfy  th^  condition,^ in Thxorem 4.1. Let F ( T )  

h~ t h t  cd. / .  of X wh,er~  f (x) = & ~ ( : î ) .  Tham. 

1 
F * ( s )  = - P ( Y  > X ) .  

S 

Using the resiilt of Theorems 4.1 and 4.2, we obtain a well known resiilt 

relating the Laplace transform of a function and its derivative (for the spe- 
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cial case of the class of probability dmsities with non-negatiw siipport ) as 

d~scribed in the following corollary. 

Corollary 4. 1 Let F(.r ) and f (r) hr. rfi.speîtio~Zq. th,c c.d. f. and the p. d. f- 

of a random ~ ~ 7 i a h l ~  -Y. Th,m -$F(.T) = f(r) ond 

From Theorems 4.1 and 4.2. f*(s) = P ( Y  > .Y) = s F * ( s )  and the resiilt 

.-\ classical rwiilt regarding  th^ n-fold convoltition of ftinctions may 

obtained iising Theorem 4.1. The convol~ition of ftinctions f and f2 is defiwd 

by Hogg and Craig [IO] to be 

which redtic~s to the standard definit ion [17] : 

becaiise f l ( r )  and f? (x)  are assiimed to have non-negative support. 



The convolirtion operator is associative and we denote the ri-fold convo- 

M o n  of f  l .  f2. . - . . fn as f * f2 * . . . * fn. The classical Laplace transform 

resiilt for siich fiinctions is that  the Laplace transform of the convoliition of 

ftinctions is the prodiict of the Laplace transforms of each fiinction in th r  

convoliition. That is. 

From distribiition theor- we observe that the density hinction of the siim 

of r i  independent random variables is the n-fold convoliition of the pobabilitv 

dmsity hinctions of each random variable in the ~iirnmat~ion [IO]. Thiis. iising 

Theorem 4.1. the Laplace transform of t his convoliition is the probability t hat 

the catastrophe happens after al1 n of the evmts occiir in siiccession. 

Theorem 4. 3 L p t  .Yl. .Y2.. . . . .Yn he a sepence  of n in,depsn,dan,t rmdorn 

uariah1c.s where each. X, h,as p.d./. f i ( z i ) .  If X = Er=, .Y, and th.e p-d.  f. of 

-7 is f ( -7:)  th.cn. 



Let Y r- ex(s). Then 

= P(Y  > .Yl)P(Y > ,Y2). . . P ( Y  > S n )  (p~opert'' 3.5)  

Since the catastrophe process is memoryless. if we are given that k events 

have occiirwd before the catastrophe. we simply reset the *-race" between the 

length of t . im~ for the r~maining a - k events to occiir and the catastrophe. 

Oiir probabilistic int~rpretation also allows lis to niimerically compiite a 

Laplacr transform iising simiilarion (or rnal data). provided that. we are able 

to simiilat~ (or obtain) random valiies Erom the density hinction in qiiest ion. 

To compiite f '(s) for particiilar valiies for s. we can simiilate a series of 

exponential valiies {.yl. y*' . . . . y,) at rate s and a series of valiies kom the 

density in question. J(.T). {.q: x2, . . . . .rn) and ttak the proportion of pairs 

Laplace transform. 



5 Transforms of Continuous Distribut ions 

In this chapter. we cornpute the Laplace transforms for some important 

p.d. f.'s of waiting t imes t, hroiigh the ilse of the probahilist ic intrrpretat ion. 

Property 5. 1 If -Y -- PX(,\). f h m  

Calciilating the Laplace transform iising the probabilistic interpretatian t his 

way rqiiires no integrat ion and since we have an intiiitiw feeling for P ( Y  > 

-y) wtim .Y and Y are exponential it is qiiite natiiral for ils tao derive the 

Laplaw transform in this way. 

Property 5.2 If 'C - genEr(XL X2. . . . . A,). t h m  



Corollary 5 .  1 If .Y - Er(n. A ) .  t h , ~ n  

This resiiit folloivs directly froni property 5.2 iising the standard Erlang ran- 

dom variahie ivith A i  = X for i = 1.2.. . . . n. a 

Property 5 .  3 If  .Y+) i s   th,^ X i t h  ordm statistic O/ a ran-dom sample. Sn = 

{-Yi. S.. . . . .Y,,}. of sizc n. w h c r ~  pach Xi - ex(,\) and coe clmotfi  th^ denwitg 

function for as fk (s) . th.en, 

k - l  ( n  - i ) X  



Let S, = {x:". XiY!'). . . . . .Y(')) denote a random sarnple of size i Fiom an 

exponmtial distribution with rate X. Then. 

Now. we have n exponent ials and t he catastrophe sirniiltan~oiisly riinning a 

race. Givm t hat j of the expon~ntials ( j  = 1. . . . . k - 1) have finished before 

the c.-ttastrophr. WP reset the race and reqiiirr that one of the remaining 

n - j exponentials occ~irs b~fore the catastrophe a t  which point. WP again 

rrset the race. So. giwn t,hat j rvents have occiured (finished the race). w-r 

n ~ e d  t hat the catastrophe is p a t e r  t han the minimiim of n. - j exponent ials. 

Thiw. 

In the above expression. the sampk Si contains i exponential random vari- 

ables. each with rate X and therefore. by property 3.3. min(Si) - ex(iA). 1 
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CVe next drrive a second expression for the Laplace transform of the kth 

order statistic of n exponential random variables. 

Property 5. 4 If is  th,^ kth order statistir of a random. sam.ple. Sn = 

{Xi. -Y2. . . . . -Y, } . of s i z ~  n. u ~ h ~ p r ~  ~ a r h  -Y, 5 PX(,\) and w~ d ~ n o l e  the dcnsitv 

funrtion for as fk(.r:). t h ~ n .  

Here  we compiite Laplace transform directly. iising the standard p.d.f. for 

an order statistic [IO] 

X n.! 
F ( . ~ . ) ~ - I  f (.TI( 1 - F ( . T : ) ) ~ - ~  d:r 

(n. - k ) ! ( k  - l)! 
OC n.! ( 1 - e-b)k- l , \e- , ix(e-Ax)n-k 

( n  - k)!(k - l)! 

X n.! k-1 
- - k - 1  - A -  - - ( A ( n - L + l ) t s ) 3  

)e d3- 

X n.! k- L 
- k - 1  
- -(A("-')+s)" dn: 

( n  - k ) ! ( k  - l)! i=o 

k- I 
- - k - 1  1 

(n. - k ) ! ( k  - l)! X(n - i) + s 
I 



Properties 5.3 and 3.4 siiggest one powerfiil advantage of the probabilistic 

interpretation of the Laplace transform when we compiite a transform in two 

alternate ways. In the above t,wo properties. we have derived an expression 

for P(Y > *Y) = f&s) from a probabilistic point of v i w  and an expression 

1; ( s )  in the standard way. so the ressidting expressions miist be eqiial. This 

gives the follomlng corollary. 

Corollary 5 . 2  

The interpretat ion allows 11s to relate expressions that woiild not other- 

wise be readily compiited or perhaps woiild not sven be consid~red since they 

may appear to be i~nrelated. We will use this technique again to ohtain some 

qiieueing theoretic resiilts in chapter 8. In the striictiire of many queries. 

we often find it natiral  to look at things fiom many different points of view 

which enahles ils to lise this techniqiie. 

Property 5.  5 If .Y - hyperex(XIXî, . . . . A,. n l .  a?. . . . . a,). thsen 



Let k- - P.Y(S) and ,Y1 - ex(Xi). Then 

Property 5. 6 T ~ P  Laplaw-Stir l t j~s  t rans fonn  of  th,^ p. d. f. of a phase-tl/l>ç. 

random. uariahb. X - PH(a.T) is  fis(.s) = a,,+1 + a(s1 - T)- 'T0.  

Reca11 that t.he phase-type random variable is the time tintil absorption for 

a continiioiis t i m ~  Markor process. Let qi be the probability tthat absorption 

occiirs bdore the catastrophe given that WP start in state i. Clearly. q,,,~ = 1. 

For al1 ot her i. at the t ime of first trcuisition. either absorption is immediate 

or ive mow from state i to state j and the race restarts as if w~ had started 

in stat,e j. Let 11s denote the (i. j) drment of T by t,; and t.he i th clcment of 

T O  as tp. Thiis. for .i = 1 .2 . .  . . . m.. 



Solving the a b o v ~  for qi and iising the fact that Eh, t ink + tp = O givs  

If. q = [ q l .  q2 . .  . . . qm]'. WP have. in matr~u from. 

sq = TO + Tq. 

Solving for q giws the soliition for the prohability of absorption before catas- 

trophe conditional on starting st,ate as: 

Finally. t-O solw for t hr Laplaces t ieltjes transform. 

The existence of (SI - T)-' is ensnred iinder the assumption that states 1 

throiigh m. are transient (141. Note that this residt coiild have been obtained 



iising niatrix calcrilits but we choose to cornpiite this Laplace transforrn in 

an intuitive way by exploring tha iinderpinnings of the associated Markov 

process. 

6 The z-transform and its Interpretations 

Tha  discret^ analog of the Laplac~ transform is  th^ z-transform. For a prob- 

ability mass fiinction {p,. n. = 0.1.2.. . .) of a  discret^ random variable. say 

.V. thr 2-transform is defined to be 

The fiinction P ( t )  is also known as the probability generating function. 

In the discretr setting. if 3 represents the niimber of s t ~ p s  itntil the first 

occiirrrnce of an event whera p, = P(first event occius on nth s t ~ p ) .  WP rnay 

consider a  discret^ geometric catastrophe process where the ntimber of steps 

iintil the next çat,astroph~. M. is geometric with paramater (probability of 

siiccess) 1 - t. With this in mind. we obtain the following theorem. 

Theorem 6.1 Let M - georn(1 - 2) and AT bn a discrete random variable 

with  distribution {fi, n 2 0). wh.ere pn = P(first event occurs on dh step) .  



at least n failiues from catastrophe process 

process before the first siiccess 

This z-transform interpretation is the exact parallel of the interpretation 

the Laplace transform. The Laplace transform of a probability density is the 

probability that the corresponding variable wins a race against (i.e.. is less 

t han) a memoryless catastrophe process and the z-transform is the probabil- 

ity that the variable of interest wins a race (i.e.. in a fewer nimber of steps) 

against a discrete memoryless catastrophe process. 

An alternate probabilistic interpretation cornes fiom the theory of collec- 

tive marks 1211. Let {pn? n = 0: 1.2. . . .) be the probability mass function 

for a random coiinting process on N. Then it is to our advantage to view 
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the 2-transform as a different probability than the one which was il1ustratc.d 

in Theor~m 6.1. Suppose that we are coiinting things of interest in some 

stochastic process which we will cal1 ..items". .As WP coiint eüch item in 

the process. LW randomly mark that item with probability 2. Then the 2- 

transform of the distribiition of 3 is the probability that al1 items coiinted 

are marked. 

Theorem 6. 2 Let .V h~ a d i s c r ~ t e  ran,dom variable with prohahilitl/ mass 

fun,rtion {p,. n = 0. 1.2. . . .}. If each i tem is markrd wiiti,. prohahilitg z .  t h ~ n  

j ( z )  = P(al1 item.s arp m.arlr:fid). 

= P(observe n items)P(n observed items arp marked) 
n=O 

= P(a1l items in the process are rnarked). 1 

A s  with the Laplace transform. we can obtain al1 moments of a variable 

:V from the @ ( z )  by manipiilating the foilowing result . 

Property 6. 1 Consider a disrmte random vaniahle iV with prohability gen- 



In addition. we can also obtain the elements of the actiial probability 

m a s  fiinction hom its generat ing hinction. 

Property 6. 2 If $ ( z )  is  th,^ gmeratin,g fimction for a prohahihty mass funr- 

tion. {p,. n = 0.1.2. . . .} thm.  

7 Transforms of Discrete Distributions 

Property 7.1 Let AT .- geom(p) an,d q = 1 - p then 

Let bl -. geom(1 - z ) .  Then. 

$(.) = P(!W > .V) 

= P(success and no catastrophe on step 1) 
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+ P(fai1iire) P (no  catastrophe on step 1 )  P ( M  > .V) j 

= P(&V = 1. !bf > 1) + P(.V > 1)P(!bf > l)P(!\.l > *v 1 .V > 1. ;1f > 1) 

= pz + q z p ( r  ) 

and solving for p ( z ) .  the resnlt follows. 1 

The above property illiistrates the advmtage of the memoryless property 

of the catastrophe processps. Here. if t here is no catastrophe and no siiccess. 

we simply restart the race. The probahility that the event occiirs before the 

catastrophe in rha new race miist again be P ( z ) .  Wit,h the qiiantity we are 

piwsiiing. P ( 2 ) .  appar ing  on both sides of the equation. we simply solve for 

f i (=>-  

Property 7. 2 L d  -V - Poisson(X). Th.~n 

Let the probability of an event being marked be 2. Since iV is Poisson(,\). 

the niimber of marked ciistomers iV, is Poisson(Xz) and the niimber of non- 



marked ciistomers. Y,, is Poisson(X(1 - z)) by property 3.9. 

Property 7.3 L p t  .V -- P H @ .  T) thrn 

Recall that a d i sc r~ te  phasetype random variable is characterized as the 

niimber of steps iintil absorption. Let M -- g e m ( 1  - z )  be the niimber 

of steps to achieve the next catastrophe. Let q; be the probability that 

absorption occiirs before the catastrophe given that ive start  in state i (i.e.. 

q; = P(AI > N 1 start in i).  Note that  q,+l = 1. We denote the (i? j) 

element of T by t i j  and the ith ebrnent of as tp. 

Now. on the  first transition. we either move from i t o  the absorbing state 

with probability ty or we move from state i to state j and restart the race. 
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Thar is. 

Solving For q giws 

.Again. we know (1 - zT) - l  exists iinder t the assiimption t hat states 1 t hroiigh 

m are transient 1141. 

Having solwd for the probability of absorption before catastrophe. con- 

ditional on starting in state i. finding the probability that  absorption occiirs 

before the catastxophe is as follows. 



8 Results Related to Queueing Theory 

In this chapter we will lise the interpretations pres~nted in chap t~ r s  4-7 to 

prove some residts in qrieiieing theory. 

8.1 Laplace Transforrns and the Busy Period 

The biis- pariod is the lmgth of time hom the beginning of service of the 

first ciwtomer to the first time when there are no ciistomers in the system. 

In oilr analpis. we will reqiiire a specific characterization of the biisy prriod 

that is oiitlined below. 

The Imgth of the biisy poriod is independent of the order of service s i n c ~  

as long as there is any work to be done. the server is still biisy. Thiis. it is to 

our advantag~ to consider the biisy period iinder a Lut,-Corne-First-Senred 

(LCFS) discipline. 

Cnder LCFS discipline. ciistomer 1 arrives to begin the biisy poriod. then 

some random nuniber of ciistomers. 1V. arrives diuing the service of customer 

1. After service of citstomer 1 is compbted. we then place the W h  ciistomer 

who arrived diiring the service of ciistomer 1 into service as thoiigh it had 

just arrived. Now. More  we ret urn to begin service on the ( N  - 1)'' customer 



that arriwd dirring service of ciistorner 1. w must serve d l  ciistomers in a 

*.personal" biisy period associated wit h ciistomer .V. We concliide t hat the 

total biisy period is the service time of ciistomer 1 pliis the siim of the bris? 

periods associated with each ciistomer who mives  diiring service of ciistomer 

1. Firrther. the distribiition of the ..personal" hiisy period msociated wit h 

ciistomers arriving diuing service of ciistomer 1 is the same as the distribiition 

of the entire biisy period. 

The distribiition of the length of the biisy period is generally difficiilt 

to cornpute. biit for an !LI/G/l qiieiie. WP can relate Laplace txansforms of 

t hn dist,ribiitions of the length of the biisy period and the service rime in a 

fiinctiorial eqiiation . 

Theorem 8. 1 For an M/G/ 1 queue. r f  th.s p. d. f. of th,e s ~ r v i r ~  t i m ~  is b(.r ) 

and  th,^ p. d. f. of  th,^ husy p~riod is g ( . r ) .  t h , m  

g ' (s )  represents the probability that a biisy period ends befor~ the catas- 

trophe. Now. each ciistomer who arrives diiring service of ciistomer I has a 



biisy period associated with it and the probability that this particidar ciis- 

torner's personal biisy period will not end before (Le.. be interriipted by) the 

catastrophe is I - g * ( s ) .  As ciistomers arrive diuing the service of cirstomer 

1. we attach a mark to  each ciistomer designating whether or not that ciis- 

tomer's biisy period will be interriipted when it cornes to riin the race ûgainst 

the catastrophe. So we mark *'catastrophic cii~t~omers" ( t hose whose biisy 

period will be interriipted) wit,h probability 1 - g * ( s )  and --good ciwtomers" 

(who win the race) with probability g* ( s ) .  Ziow. the interarrival time of 

catastrophic ciistomers denoted k; is ox(X(1 - g9(s))). Let Y - ex(s)  be the 

time iintil t,he next catastrophe and .Y be the service t i m ~  with p.d.f. b(.r ). 

g œ ( s )  = P(entire btisy period ends before catastrophe occiirs) 

= P(sarvice time of ciist,omer I ends More  the catastrophe 

and before the arrivai of a catastrophic ciistomer) 

= P(m.in(Y. k;) > -Y) 

= b*(s  + X ( l  - g e ( s ) ) )  

The biisy period will only be interriipted by the catastrophe if the service 

time of ciistomer 1 is interrupted or one of the personal biisy periods is inter- 

rupted. Thiis. racing the catastrophe against the bus- period is quivalent 
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to racing service time against the occimence of the actiial catastrophe and 

the arriva1 of a ~atmt~rophic ciwt,omer. 

8.2 Poisson Process and Random Intervds 

Vsing both the catastrophe int~rpretation of Laplace transforms and the col- 

lective marking interpretat ion for probability generating fiuict ions. we obtain 

a series of classical restilts relating the z-transform of the number of occw- 

rences in a random interval and the Laplace transform of the p.d.f. of the 

tength of the interval where the events are governed by a Poisson proces .  

Theorem 8. 2 .-lssum.e  th.^ num,ber of mmts. N(t) .  ocr~um~n~g in ( O .  f )  is 

e-"' ( A t ) n  
Poisson. .w%frh p,(t) = n !  . L P ~  ,iC hfi th,e l m g t h  of a ran.dom intwual with. 

p.d. f. f ( x ) .  L p t  p ( z )  h p   th.^ ;-transfom. of ?/(,Y). Th,~n.  

If ive mark the wents in oiir Poisson stream wit h probability z t h m  the 

.'thinneci'' process which generates non-markecl events is Poisson with rate 

X(1 -  2). Let Y be the time between siiccessive iinmarked occurrences. Then 



Y - e x ( X ( I  - 2)). Therefore. 

P ( z )  = P(al1 events in random period are rnarkedj 

= P(period ends before a n  iinrnarked ~ v m t  occiirs) 

= f*(W - t)). i 

In this situation. the --catastrophe2 is the arriva1 of an iinrnarked event . 

Since ,L' is distribiited according to a Poisson process. the time between 

srich catastrophes is exponentid with rate A ( l  - z) and so we are racing the 

length of the interval against the ~ x ( X ( 1 -  z ) )  which WP rwognizr. dile to oiir 

interpretat ion. as: a Laplace transform. 

Froni Theormi 8.2. we obtain several specific r~slilts for an M/G/1 qii~iie- 

ing s ~ t e r n .  In this sustem. since the arriva1 process is Poisson. WP may apply 

Theorem 8.3 wher~ :V(f)  is  th^ niimber of ciistomers arriving in (O. t ) and the 

interval in qiiestion can be interpreted as any particiilar interval of interest. 

Corollary 8.1 If U is th.e num.her of am'vals during th,e husg pçiriod and 

g ( x )  is Lh,e p.d. f. of  th,^ lmgth of th.e husy perkd then C(z) = g*(A(l - z ) ) .  

Corollary 8. 2 If V is th,e n,um,bsr of nmiuals dun'n,g a service pçiriod anPd 

b ( r )  is the p. d.j. for service timz then ,fi(.?) = b* (X (1  - 2)). 

47 



Corollary 8. 3 If Q is the nimrher of rustom.er.s a m w i n g  d ~ n n g  a particda~r 

custonwr S total s y s t~m.  tim.~. th.m 

These resiilts follow direct ly from Theorem 8.2. 

It is interesting to  notp that the ntunber of arrivals during a ciistomer's 

system time is axactly the niimber of ciistomers in the sustem at the time of 

service complet ion of t hat cristomer. This niimber of ciistomers in the system 

after a service compbtion forms the standard hlarkov chain associatad with 

an :\I/G/l qiieiie [S. 12. 181. 

Corollary 8.3 also prodtices Little's formiila in the case of an M/G/1 

qiiei le. 

( z )  = ufe(A(l - z ) )  



Since Q is the nimber of ciistomers in the syst~rn after a serv ic~  completion. 

wbich has been s h o w  to represent the niimber in the system at any point 

in time [Y. 121. E ( Q )  is really the expected qiietie length which is iisiiall~ 

denoted E( L ). Thmefore. otir r~siilt becornes 

8.3 Number Served in the Busy Period 

L-sing collect.ive marks. we establish a fiinct ional relat ionship for t hc 2- 

transform of the niimher of ciistomers served in the biisy period in terms 

of the service distribiition. 

Theorem 8. 3 If R i s  the numaber of custom~rs serucd durintg fhc husy period 

/or an Al/G/1 queue. theen. 

wh.er~ b(3:) is  th.^ p. d. f. of th.c service bimw. X. 

Proof 

As in Theorem 8.1. we will split the streanl of ciistomers arriving diiring the 

service of ciistomer 1 into two independent streams. those whose personal 
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biisy period ivill contain an iinmarked ciistomer which is Poisson(X(1- ? ( z  l ) )  

and those whose biisy period contains no iinmarked aistomers which is 

Poisson(XF(z 1). If Lve denote the time tintil the nest arriva1 of a ciistomer 

whose persona1 b i ~ y  period contains at least one immarked ciistomer as Y'. 

then Y - px(X(1 - i . ( z ) ) ) .  Now. 

? ( z )  = P(al1 those semd in biisy period are rnark~d) 

ciistomer 1 is marked and al1 others uriving 
= .( 

diiring hiisy period arp marked 

r persona1 biisy periods associated wi th each ciistomer 

= -P arriving diiring service of customer 1 contains 

no iinmarked ci fitomers i 
I service of ciistomer 1 ends before the arrivd 

= -P  of a ciistomer whose personal biisy period 

contains an  iinrnarked cils tomer 

= r P ( Y  > ,Y) 

The proof of Theorems 8.1 and 8.3 are an improvement in length over 

the traditional proofs and force iis to acqiiire a better understanding of the 



9 Conclusions 

CVP have presentrd sewral rwtilts regarding the transforms of distribut ion 

which ara common in qiieiieing theory We compiited these resiilts iising 

probabilistic argnments. rather than the standard calcid~ts techniques. 6% 

have also. iising oiir int erpretations. obtained new proofs of classical resiilts 

for .II/G/ 1 qiieiies. 

The application of the probabilist ic int erpret a t  ion of t ransforms certainly 

does not end here. There are many other sitiiations that can be esp lor~d  

iising the techniqites ooiitlined in t his thesis. Areas t hat reqiiire flirt her st  iidy 

incliide GI/AI /m and G'I/G/m qiieiies. L~'P wish to see how oiir interpr~ta- 

tion may be i i s ~ d  to obtain classical r~sii l ts  for thwe qiieiieing models. Not 

only shotild we be swking new proofs of old rssidts. biit the probabilistic 

interpretation shoiild allow i l s  to find new resiilts that on- become clpar 

with t his new probabilistic perspective We can also explore qiieiieing s y -  

tems with other constraints stich as biilk service or arrival. balking, vacations 

and priorities as in the work started by Cong [4. 2, 31. Oiitside of qiieueing 



theon. t h e r ~  is also the possibiiity to lise this interpretation in the stiidy of 

risk. rmewal processes and ot h ~ r  st ochast ic processes. 

. h o t  her issiie is the problem of inverting the trmsform. We have foiind 

ways of obtaining Laplace transforms and 2-t ransforms in cert ain queue- 

ing sitiiations. biit have said nothing about how to invert the transform. 

which is often difficiilt or impossible. PVP are interested to see if we can iise 

oiir probabilist ic interpret at  ion to create sonie met hod for invert ing Laplace 

transforms. Givm a Laplace transform or a set of points from a Laplace 

transform. perhaps we coiild somehow fit a Laplace transform of a known 

distribiition throiigh these data and corne iip with an approximation for the 

original d~nsity. Xnother awniv may be. for a specific valiie of S .  to simii- 

latr random values kom a exponmtial distribution at rate s and iising the 

k n o m  Laplace transform. see if we can approximatr a random sample from 

the original distribiition. 

The probabilist ic interpr~t a t  ion of the Laplace transform and the z-transform 

give ils some nelv insight into related problems in stochastic processes and 

will definitely provide a rich soiirce of research material for the future. 
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